RESCIENCEC

Replication / Computational Neuroscience

[Re] Stimulation-Based Control of Dynamic Brain Networks

Nicolas Roth¹, Teresa Chouzouris¹, Cristiana Dimulescu¹, Klaus Obermayer¹, and Christoph Metzner^{1,2,10}

¹Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany – ²Biocomputation Group, Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, United Kingdom

Edited by (Editor)

Received

Published

DOI

Introduction

Transcranial electrical and magnetic stimulation (TES and TMS, respectively) have been increasingly used in studies over the last decades and have been found to alter and enhance cognitive processes^{1,2,3}. Furthermore, deep brain stimulation (DBS) has shown remarkable results in the treatment of tremor symptoms in Parkinsons disease⁴ and also great potential in the treatment of psychiatric disorder such as obsessive-compulsive disorder⁵. However, despite this growing success in clinical settings, a principled understanding of the effects of stimulation on the dynamical processes in the brain is still lacking and, hence, stimulation parameters and target areas are currently not being optimized in a systematic fashion.

Therefore, Muldoon et al.⁶ develop a framework to explore the effects of targeted transcranial or deep brain stimulation on overall brain dynamics. In their framework they use data-driven computational model based on subject-specific structural connectivity and a nonlinear model of regional brain activity (the so-called Wilson-Cowan model⁷). Furthermore, they demonstrate that structure-based measures from linear network control theory can predict the functional effect of targeted stimulation.

In this work, we present an implementation of the modelling framework from Muldoon et al.⁶ writtem im pure Python, where we exchanged the model of regional brain activity to a faster, phenomenological model, the FitzHugh Nagumo model⁸. We report a partial/full(?) replication of their results.

Methods

Briefly recapitulate

- · FitzHugh Nagumo
- · Oscillatory transition parameters
- Intraclass correlation coefficient (ICC)
- · Linear network control theory
- Functional and structural effect, fractional activation

Copyright © 2019 N. Roth et al., released under a Creative Commons Attribution 4.0 International license Correspondence should be addressed to Christoph Metzner (cmetzner@ni.tu-berlin.de)
The authors have declared that no competing interests exists.
Code is available at https://github.com/ChristophMetzner/Muldoon-Replication.

Reproduction of experiments

- Replicate Figure 2 (b),c) and d)), 3 states of the FitzHugh Nagumo and comparison to the Wilson-Cowan in b), and for c) our box plots for all subjects, and d) bar plots with our data
- · Replicate Figure 3
- · Replicate Figure 4 c)
- Replicate Figure 5 a)-d)
- Replicate Figure 6 (?)

I don't think we need to replicate Figure 7 (Structure-function landscape)

Reimplementation

• Details on the new implementation (packages/dependencies, other stuff?, maybe just a paragraph in the methods section)

Discussion

• Main similarities and differences between our and original results. Replication: full, partial or not at all?

References

- V. Walsh and A. Cowey. "Transcranial magnetic stimulation and cognitive neuroscience." In: Nature Reviews Neuroscience (2000).
- C. Lage, K. Wiles, S. S. Shergill, and D. K. Tracy. "A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition." In: Journal of Neural Transmission 123.12 (Dec. 2016), pp. 1479–1490.
- W. Paulus, M. A. Nitsche, and A. Antal. "Application of transcranial electric stimulation (tDCS, tACS, tRNS)_ From motor-evoked potentials towards modulation of behaviour_." In: European Psychologist 21.1 (2016), pp. 4–14.
- A. Collomb-Clerc and M.-L. Welter. "Effects of deep brain stimulation on balance and gait in patients with Parkinson's disease: A systematic neurophysiological review." In: Clinical Neurophysiology 45 (2015), pp. 371–388.
- P. Alonso et al. "Deep brain stimulation for obsessive-compulsive disorder: A meta-analysis of treatment outcome and predictors of response." In: PLoS ONE 10.7 (July 2015).
- 6. S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S. Bassett. "Stimulation-Based Control of Dynamic Brain Networks." In: **PLoS Computational Biology** 12.9 (Sept. 2016). arXiv: 1601.00987.
- 7. H. R. Wilson and J. D. Cowan. "Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons." In: **Biophysical Journal** 12.1 (1972), pp. 1–24.
- 8. R. FitzHugh. "Impulses and Physiological States in Theoretical Models of Nerve Membrane." In: **Biophysical Journal** 1.6 (1961), pp. 445–466.