## Moore:



仿真条件: 读入数据 data\_i=8'b01010111。

初始时,同步控制信号 set\_i 置 0,清零端 rst\_n\_i 置 1,此时保持输入为 data\_i[7]=0,现态 curstate=s0,次态 nextstate=s1,没有输出。

在 10ns 时, set\_i 置 1, 可见:

第一个时钟上升沿时读入 data\_i[6]=1,现态 curstate=s1,次态 nextstate=s2,没有输出;第二个时钟上升沿时读入 data\_i[5]=0,现态 curstate=s2,次态 nextstate=s3,没有输出;第三个时钟上升沿时读入 data\_i[4]=1,现态 curstate=s3,次态 nextstate=s4,没有输出;第四个时钟上升沿时读入 data\_i[3]=0,现态 curstate=s4,次态 nextstate=s3,没有输出;第五个时钟上升沿时读入 data\_i[2]=1,现态 curstate=s3,次态 nextstate=s4,没有输出;第六个时钟上升沿时读入 data\_i[1]=1,现态 curstate=s4,次态 nextstate=s5,没有输出;第七个时钟上升沿时读入 data\_i[0]=1,现态 curstate=s5,次态 nextstate=s1,此时检测到序列"01011"并使 detect\_o 输出高电平 1.

在 110ns 时,将 rst\_n\_i 置 0,此时对已读入数据清零,现态和次态均为 s0。

在 210ns 时,将 set\_i 置 0,rst\_n\_i 置 1,此时保持输入为 data\_i[7]=0,现态 curstate=s0,次态 nextstate=s1,没有输出。

在 310ns 时,将  $set_i$  置 1,则重新开始读入序列,370ns 时检测到序列"01011"并再次输出高电平。



仿真条件: 读入数据 data\_i=8'b11011111.

由于状态机始终无法检测到序列"01011",虽然也改变了 rst\_n\_i 和 set\_i 的值,但输出 detect o 始终为低电平。

## Mealy:



仿真条件: 读入数据 data i=8'b01010111。

初始时,同步控制信号  $set_i$  置 0,清零端  $rst_n_i$  置 1,此时保持输入为  $data_i$ [7]=0,现态 curstate=s0,次态 nextstate=s1,没有输出。

在 10ns 时, set\_i 置 1, 可见:

第一个时钟上升沿时读入 data\_i[6]=1,现态 curstate=s1,次态 nextstate=s2,没有输出;第二个时钟上升沿时读入 data\_i[5]=0,现态 curstate=s2,次态 nextstate=s3,没有输出;第三个时钟上升沿时读入 data\_i[4]=1,现态 curstate=s3,次态 nextstate=s4,没有输出;第四个时钟上升沿时读入 data\_i[3]=0,现态 curstate=s4,次态 nextstate=s3,没有输出;第五个时钟上升沿时读入 data\_i[2]=1,现态 curstate=s3,次态 nextstate=s4,没有输出;

第六个时钟上升沿时读入 data\_i[1]=1,现态 curstate=s4,次态 nextstate=s0,此时检测 到序列 "01011" 并使 detect\_o 输出高电平 1.

在 110ns 时,将 rst\_n\_i 置 0,此时对已读入数据清零,现态和次态均为 s0。

在 210ns 时,将 set\_i 置 0,rst\_n\_i 置 1,此时保持输入为 data\_i[7]=0,现态 curstate=s0, 次态 nextstate=s1,没有输出。

在 310ns 时,将  $set_i$  置 1,则重新开始读入序列,360ns 时检测到序列"01011"并再次输出高电平。



仿真条件: 读入数据 data\_i=8'b11011111.

由于状态机始终无法检测到序列 "01011",虽然也改变了  $rst_n_i$  和  $set_i$  的值,但输出  $detect_o$  始终为低电平。