

Юстина Иванова

Программист, data scientist

Основные статистические тесты и проверка гипотез.

Юстина Иванова,

Data scientist по Компьютерному зрению в компании ОЦРВ, Выпускница МГТУ им. Баумана Магистр по Artificial Intelligence В University of Southampton

Повторение

Доверительный интервал — интервал, в котором лежит р% данных.

Правило трех сигм.

Виды распределений: дискретное и непрерывное.

Скалярное произведение векторов и проецирование вектора.

Линейная регрессия и классификационный анализ.

Проецирование данных на вектор

Чтобы посчитать расстояние между точкой и прямой, необходимо знать как проецировать вектор на прямую.

cv = np.dot(w, v)/np.dot(v,v)*v.

Скалярное произведение

Необходимо для выполнения проецирования данных на вектор.

$$np.dot(w,v) = w1*w2 + v1*v2$$

 Γ де $w = (w1, w2)$
 $v = (v1, v2)$

$$cv = np.dot(w, v)/np.dot(v,v)*v.$$

Линейная регрессия

Для заданного пространства данных найти уравнение прямой (или кривой), минимизирующую сумму расстояний от точек до нее.

Квантиль

- 0,25-квантиль называется первым (или нижним) квартилем;
- 0,5-квантиль называется медианой или вторым квартилем;
- 0,75-квантиль называется третьим (или верхним) квартилем.

Интеркварти́льным размахом называется разность между третьим и первым квартилями, то есть x_{0,75}-x_{0,25}. Интерквартильный размах является характеристикой разброса распределения величины и является аналогом дисперсии. Вместе, медиана и интерквартильный размах могут быть использованы вместо математического ожидания и дисперсии в случае распределений с большими выбросами, либо при невозможности вычисления последних.

Значение квартиля

Предоставляют важную информацию о структуре вариационного (колонку таблицы) ряда признака. Вместе с медианой они делят вариационный ряд на 4 равные части. Квартилей две, их обозначают символами Q, верхняя и нижняя квартиль. 25% значений меньше, чем нижняя квартиль, 75% значений меньше, чем верхняя квартиль.

Генеральная совокупность и выборка.

Генеральная совокупность — множество всех объектов, обладающих изучаемым признаком.

На основе свойств выборки делаем заключение о свойствах генеральной совокупности.

Статистические гипотезы о данных

Выборочная совокупность — множество всех объектов, отобранных случайно из генеральной совокупности для изучения.

Нулевая гипотеза (Н0)— гипотеза о сходстве

Альтернативная гипотеза, конкурирующая, (Н1)— гипотеза о различиях

Статистические гипотезы о данных

https://www.youtube.com/watch?v=4eyEp_NTXAU

Пример: тест на наличие болезни.

	Disease present	Disease absent
Positive	a True positive	b False positive
Negative	c False negative	d True negative

Статистические гипотезы о данных

Ошибка 1 рода: Вероятность отве

Вероятность отвергнуть гипотезу, Но в действительности она верна Alpha — вероятность ошибки. Критически значимый уровень alpha = 0.05

Ошибка 2 рода:

Вероятность принять гипотезу, Но в действительности она неверна beta — вероятность ошибки. Мощность исследования = 1-beta.

Статистически значимость

СТАТИСТИЧЕСКАЯ ЗНАЧИМОСТЬ (ЗНАЧЕНИЕ Р)

– РАСЧЕТНАЯ ВЕРОЯТНОСТЬ ОШИБКИ ПЕРВОГО РОДА, КОТОРАЯ РАССЧИТЫВАЕТСЯ С ПОМОЩЬЮ РАЗЛИЧНЫХ СТАТИСТИЧЕСКИХ КРИТЕРИЕВ

P < 0,05

Подсчитывается с помощью разных критериев.

А/В тесты

A/B тестирование — это мощный маркетинговый инструмент для повышения эффективности работы вашего интернет-ресурса.

Ниже на картинках приведены примеры распределения значений показателя в

сегментах.

Пример A/B теста: Wallmonkeys

Компания WallMonkeys решила оптимизировать веб-сайт на клики и конверсию.

https://www.crazyegg.com/blog/ab-testing-examples/

Пример A/B теста: WallMonkeys

1 тест: 27% кликов.

2 тест: 550% кликов

Виды статистических критериев

Критерии согласия -

проверка на согласие подразумевает проверку предположения о том, что исследуемая случайная величина подчиняется предполагаемому закону.

Параметрические критерии -

группа статистических критериев, которые включают в расчет параметры вероятностного распределения признака (средние и дисперсии).

Непараметрические критерии -

группа статистических критериев, которые не включают в расчёт параметры вероятностного распределения и основаны на оперировании частотами или рангами.

Параметрическая — непараметрическая гипотеза

Параметрические критерии - группа статистических критериев, которые включают в расчет параметры вероятностного распределения признака (средние и дисперсии).

t-критерий Стьюдента Критерий Фишера Критерий отношения правдоподобия Критерий Романовского

Параметрическая — непараметрическая гипотеза

Непараметрические критерии

Группа статистических критериев, которые не включают в расчёт параметры вероятностного распределения и основаны на оперировании частотами или рангами.

О-критерий Розенбаума U-критерий Манна — Уитни Критерий Уилкоксона Критерий Пирсона Критерий Колмогорова — Смирнова

Распределение Стьюдента

Мы хотим сгенерировать нормальное распределение, но по некоторым причинам не можем вычислить среднеквадратичное отклонение (например, выборка маленькая). Мы можем найти выборочное среднее и выборочную дисперсию по выборке.

Пусть $x_1, ... x_n$ — выборка размером п

Выборочное среднее
$$\bar{x} = \frac{\sum_{i=1}^n x_i}{x_i}$$

Выборочная дисперсия
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

Распределение Стьюдента

Случайная величина t имеет распределение Стьюдента с n^{-1} степенями свободы, где n — размер выборки.

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Проверка гипотез методом Стьюдента

Владимир Савельев «Статистика и котики»

Тесты для проверки гипотез: тест Фишера

Метод Стьюдента чувствителен к выбросам => параметрический метод: мы можем посмотреть, являются ли песики более разнообразными по размеру, чем котики, или же нет. Для этого мы можем воспользоваться F-критерием равенства дисперсий Фишера, который укажет нам, насколько различаются между собой эти показатели.

Владимир Савельев «Статистика и котики»

Проверка гипотез методом Манна-Уитни

Метод Стьюдента чувствителен к выбросам => параметрический метод:

Чтобы рассчитать критерий Манна-Уитни, необходимо выстроить всех песиков и котиков в один ряд, от самого мелкого к самому крупному, и назначить им ранги. Самому большому зверьку достанется первый ранг, а самому маленькому-последний.После этого мы снова делим их на две группы и считаем суммы рангов отдельно для песиков и для котиков. Общая логика такова: чем сильнее будут различаться эти суммы, тем больше различаются песики и котики.

Владимир Савельев «Статистика и котики»

Вопросы?

Контакты спикера: yustiks@gmail.com