Memory

Muhammad Tahir

Lecture 18

Electrical Engineering Department University of Engineering and Technology Lahore

Contents

1 Memory Hierarchy

2 Memory Types

3 Memory Organization

Memory Hierarchy

Processor-Memory Performance Gap

000

Memory Hierarchy

Memory Hierarchy Cont'd

Memory Types

Non-Volatile Memory (Flash Type)

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems
- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage
- Flash bits wears out after 1000's of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear leveling: remap data to less used blocks

Non-Volatile Memory (Magnetic/Optical)

Magnetic	Optical
Data stored magnetically	Data stored optically
Storage is based on magnetic	Storage is based on height vari-
alignment	ations (pits & bumps)
Access time < 10 ms	Access time ¡ 200 ms
Faster data read/write	Slower data read/write
Always readable and rewrite-	Readable, write-able and may
able	be rewrite-able

Volatile Memory

- Random Access Memory (RAM)
 - Any byte of memory can be accessed arbitrarily
 - RAM is the most common type of memory found in computers and other digital devices
 - There are two main types of RAM
- DRAM
 - Needs to be "refreshed" regularly (~ every 8 ms)
 - Refreshing accounts for 1 to 2 % of the active cycles of the DRAM
 - Used as Main Memory
- SRAM

Volatile Memory Cont'd

- Random Access Memory (RAM)
 - Any byte of memory can be accessed arbitrarily
 - RAM is the most common type of memory found in computers and other digital devices
 - There are two main types of RAM
- DRAM
- SRAM
 - Will last until power turned off
 - Low density (6 transistor cells), high power, expensive, fast
 - Used for Caches

Volatile Memory Cont'd

 Single-transistor DRAM cell is considerably simpler than six-transistor SRAM cell

RAM Memory Organization

• Memory organized as arrays

RAM Memory Organization Cont'd

Only one Wold-line activated by address decoder

RAM Memory Organization Cont'd

• Contents of selected word-line are available at output

Building Large Memories

- Problem: (a) Larger is slower AND (b) Faster is expansive
- How to make large memory fast too?
- Solution (a): Divide large memory into multiple banks, which can be accessed independently as well as simultaneously
 - Each bank is smaller than the entire memory
 - Different memory banks can be accessed in parallel

Building Large Memories Cont'd

• Solution (b): Organize memory hierarchically

Memory Optimizations

- Double Data Rate (DDR): Transfer data on both rising and falling edge of the clock signal.
- Quad Data Rate (QDR): Two DDRs with separate inputs and outputs
- Multiple banks on each DRAM/SDRAM device

Principle of Locality

- Hierarchical organization of memory works primarily because of the Principle of Locality (POL)
- POL works because a program accesses a relatively small address space at a given time instant
- Stated otherwise, as a well known saying, that a processor spends 90% of the time on 10% of the code

Principle of Locality Cont'd

Two types of Locality

- Temporal Locality: If an item is referenced, it is going to be referenced again soon (e.g., loops, reuse)
- Spacial Locality: If an item is referenced, items at nearby addresses will tend to be referenced soon (e.g., straight-line code, array access, loops etc.)

Principle of Locality Example

- Locality in Instructions:
 - Instructions are referenced sequentially (Spacial locality)
 - Cycling through the loop (Temporal locality)
- Locality in Data:
 - Variable sum is referenced in each iteration (Temporal locality)
 - Accessing array elements (Spacial locality)

Example program.

```
\begin{aligned} \text{sum} &= 0;\\ \text{for } (i = 0;\ i < j;\ i++)\\ \text{sum} &= \text{sum} + \text{data}[i]; \end{aligned}
```

Suggested Reading

 Read relevant sections of Chapter 5 of [Patterson and Hennessy, 2021].

Acknowledgment

 Preparation of this material was partly supported by Lampro Mellon Pakistan.

References

Patterson, D. and Hennessy, J. (2021).

Computer Organization and Design RISC-V Edition: The Hardware Software Interface, 2nd Edition.

Morgan Kaufmann.