Matrix Tree Theorem

Jordan Wheeler

Nebraska Wesleyan University Department of Mathematics

April 26, 2017

Directed and Undirected Graphs

A **directed graph** is a graph that each edge is assigned a direction.

Directed and Undirected Graphs

An **undirected graph** is a graph which no edges are assigned a direction.

Trees

Definition

A connected simple graph G that satisfies either (and therefore both since they are equivalent) of the following conditions is called a **tree**. (Note: all trees on n vertices have exactly n-1 edges)

- G is a minimally connected, meaning if any edge of G is removed, then the obtained graph, G', will not be connected.
- G does not contain a cycle.

Trees

Definition

A connected simple graph G that satisfies either (and therefore both since they are equivalent) of the following conditions is called a **tree**. (Note: all trees on n vertices have exactly n-1 edges)

- G is a minimally connected, meaning if any edge of G is removed, then the obtained graph, G', will not be connected.
- G does not contain a cycle.

Spanning Trees

Definition

If G is a connected graph, we say that T is a **spanning tree** of G, if G and T have the same vertex set and each edge of T is also an edge of G.

Spanning Trees

Definition

If G is a connected graph, we say that T is a **spanning tree** of G, if G and T have the same vertex set and each edge of T is also an edge of G.

Adjacency Matrix

Definition

Let G be an undirected graph on n labeled vertices and define an $n \times n$ matrix $A = A_G$ by setting $A_{i,j}$ equal to the number of edges between vertices i and j. Then A is called the **adjacency matrix** of G.

Adjacency Matrix

Definition

Let G be an undirected graph on n labeled vertices and define an $n \times n$ matrix $A = A_G$ by setting $A_{i,j}$ equal to the number of edges between vertices i and j. Then A is called the **adjacency matrix** of G.

Incidence Matrix

Definition

Let G be a directed graph. Let $\{v_1, v_2, ..., v_n\}$ denote the vertices of G and let $\{e_1, e_2, ..., e_m\}$ denote the edges of G. Then the **incidence matrix** of G is the $n \times m$ matrix A defined by:

- $a_{i,j} = 1$ if v_i is the head of e_j
- $a_{i,j} = -1$ if v_i is the tail of e_j
- $a_{i,j} = 0$ otherwise

Incidence Matrix Example

Incidence Matrix Example

Theorem

Let G be a directed graph without loops and let A be the incidence matrix of G. Remove any row from A and let A_0 be the remaining matrix. Then the number of spanning trees of G is det $A_0A_0^T$.

Proof

Assume, without loss of generality, that the last row of A is removed and call that A_0 . Let B be an (n-1) imes (n-1) submatrix of A_0 .

Now we will claim that the det B=1 if and only if the subgraph G' corresponding to the columns of B is a spanning tree. Otherwise, det B=0.

Theorem

Let G be a directed graph without loops and let A be the incidence matrix of G. Remove any row from A and let A_0 be the remaining matrix. Then the number of spanning trees of G is det $A_0A_0^T$.

Proof.

Assume, without loss of generality, that the last row of A is removed and call that A_0 . Let B be an $(n-1) \times (n-1)$ submatrix of A_0 .

Now we will claim that the det B=1 if and only if the subgraph G' corresponding to the columns of B is a spanning tree. Otherwise, det B=0.

Theorem

Let G be a directed graph without loops and let A be the incidence matrix of G. Remove any row from A and let A_0 be the remaining matrix. Then the number of spanning trees of G is det $A_0A_0^T$.

Proof.

Assume, without loss of generality, that the last row of A is removed and call that A_0 . Let B be an $(n-1) \times (n-1)$ submatrix of A_0 .

Now we will claim that the det B=1 if and only if the subgraph G' corresponding to the columns of B is a spanning tree. Otherwise, det B=0.

Proof Cont.

Let's assume there is a vertex $v_i (i \neq n)$ of degree one in G'. Then the *i*th row of B contains exactly one nonzero element, which is either 1 or -1.

When we expand the det B by this row, the claim follows: G' is a spanning tree of G if and only if $G' - v_i$ is also a spanning tree of $G - v_i$.

Therefore det B=1

Proof Cont.

Let's assume there is a vertex $v_i (i \neq n)$ of degree one in G'. Then the *i*th row of B contains exactly one nonzero element, which is either 1 or -1.

When we expand the det B by this row, the claim follows: G' is a spanning tree of G if and only if $G' - v_i$ is also a spanning tree of $G - v_i$.

Therefore det B=1

Proof Cont.

Let's assume there is a vertex $v_i (i \neq n)$ of degree one in G'. Then the *i*th row of B contains exactly one nonzero element, which is either 1 or -1.

When we expand the det B by this row, the claim follows: G' is a spanning tree of G if and only if $G' - v_i$ is also a spanning tree of $G - v_i$.

Therefore det
$$B = 1$$
.

Proof Cont.

Now, let's assume that G' has no vertices of degree one. Then G' is not a spanning tree.

Since G' has n-1 edges and it is not a spanning tree, there must be a vertex in G' that has degree 0.

If this vertex is not v_n , then B has a zero row and the det B=0. If this vertex is v_n , then each column of B are linearly dependent and the det B=0.

Proof Cont.

Now, let's assume that G' has no vertices of degree one. Then G' is not a spanning tree.

Since G' has n-1 edges and it is not a spanning tree, there must be a vertex in G' that has degree 0.

If this vertex is not v_n , then B has a zero row and the det B=0. If this vertex is v_n , then each column of B are linearly dependent and the det B=0.

Proof Cont.

Now, let's assume that G' has no vertices of degree one. Then G' is not a spanning tree.

Since G' has n-1 edges and it is not a spanning tree, there must be a vertex in G' that has degree 0.

If this vertex is not v_n , then B has a zero row and the det B=0.

If this vertex is v_n , then each column of B are linearly dependent and the det B = 0.

Proof Cont.

Now, let's assume that G' has no vertices of degree one. Then G' is not a spanning tree.

Since G' has n-1 edges and it is not a spanning tree, there must be a vertex in G' that has degree 0.

If this vertex is not v_n , then B has a zero row and the det B=0. If this vertex is v_n , then each column of B are linearly dependent and the det B=0.

Proof Cont.

So, we now know that det B=1 if the subgraph G' corresponding to the columns of B is a spanning and det B=0 otherwise.

By the Binet-Cauchy formula, $\sum (detB)^2 = detA_0A_0^T$, where the summation ranges over all $(n-1) \times (n-1)$ submatrices B of A_0 . Thus, det $A_0A_0^T$ equals the number of spanning trees of G.

Proof Cont.

So, we now know that det B=1 if the subgraph G' corresponding to the columns of B is a spanning and det B=0 otherwise. By the Binet-Cauchy formula, $\sum (detB)^2 = detA_0A_0^T$, where the summation ranges over all $(n-1)\times (n-1)$ submatrices B of A_0 .

Jordan Wheeler

Proof Cont.

So, we now know that det B=1 if the subgraph G' corresponding to the columns of B is a spanning and det B=0 otherwise. By the Binet-Cauchy formula, $\sum (detB)^2 = detA_0A_0^T$, where the summation ranges over all $(n-1) \times (n-1)$ submatrices B of A_0 . Thus, det $A_0A_0^T$ equals the number of spanning trees of G.

Theorem

Let *U* be a simple undirected graph. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of *U*. Define the $(n-1) \times (n-1)$ matrix L_0 by:

$$l_{i,j} = \begin{cases} ext{the degree of } v_i ext{ if } i = j \\ -1 ext{ if } i
eq j, ext{ and } v_i ext{ are connected} \\ 0 ext{ otherwise} \end{cases}$$

where $1 \le i$, $j \le n-1$. Then U has exactly det L_0 spanning trees.

Proof.

First, turn U into a directed graph G, by each edge going in both directions. Let A_0 be the incidence matrix of G.

The entry of $A_0A_0^T$ in position (i,j) is the scalar product of ith and jth row of A_0 .

If i = j, then every edge that starts or ends at v_i contributes 1 to the product.

Proof.

First, turn U into a directed graph G, by each edge going in both directions. Let A_0 be the incidence matrix of G.

The entry of $A_0A_0^T$ in position (i,j) is the scalar product of ith and jth row of A_0 .

If i = j, then every edge that starts or ends at v_i contributes 1 to the product.

Proof.

First, turn U into a directed graph G, by each edge going in both directions. Let A_0 be the incidence matrix of G.

The entry of $A_0A_0^T$ in position (i,j) is the scalar product of ith and jth row of A_0 .

If i = j, then every edge that starts or ends at v_i contributes 1 to the product.

Proof.

First, turn U into a directed graph G, by each edge going in both directions. Let A_0 be the incidence matrix of G.

The entry of $A_0A_0^T$ in position (i,j) is the scalar product of ith and jth row of A_0 .

If i = j, then every edge that starts or ends at v_i contributes 1 to the product.

Proof Cont.

If $i \neq j$, then every edge that starts at v_i and ends at v_j and every edge that starts at v_i and ends at v_i contributes -1 to the product.

Therefore, the entry of $A_0A_0^T$ in position (i,j) is -2 if v_iv_j is an edge of U and 0 otherwise.

So $A_0 A_0^T = 2L_0$.

This implies that 2^{n-1} det $L_0 = \det (A_0 A_0^T)$. Note that each spanning tree of U are 2^{n-1} different spanning trees of G.

Jordan Wheeler

Proof Cont.

If $i \neq j$, then every edge that starts at v_i and ends at v_j and every edge that starts at v_j and ends at v_i contributes -1 to the product. Therefore, the entry of $A_0A_0^T$ in position (i,j) is -2 if v_iv_j is an edge of U and 0 otherwise.

So $A_0 A_0^T = 2L_0$.

This implies that 2^{n-1} det $L_0 = \det (A_0 A_0^T)$. Note that each spanning tree of U are 2^{n-1} different spanning trees of G.

Proof Cont.

If $i \neq j$, then every edge that starts at v_i and ends at v_j and every edge that starts at v_j and ends at v_i contributes -1 to the product. Therefore, the entry of $A_0A_0^T$ in position (i,j) is -2 if v_iv_j is an edge of U and 0 otherwise.

So $A_0 A_0^T = 2L_0$.

This implies that 2^{n-1} det $L_0 = \det(A_0 A_0^T)$. Note that each spanning tree of U are 2^{n-1} different spanning trees of G. Thus, it follows that U has exactly det L_0 spanning trees.

Proof Cont.

If $i \neq j$, then every edge that starts at v_i and ends at v_j and every edge that starts at v_i and ends at v_i contributes -1 to the product.

Therefore, the entry of $A_0A_0^T$ in position (i,j) is -2 if v_iv_j is an edge of U and 0 otherwise.

So
$$A_0A_0^T = 2L_0$$
.

This implies that 2^{n-1} det $L_0 = \det (A_0 A_0^T)$. Note that each spanning tree of U are 2^{n-1} different spanning trees of G.

Thus, it follows that U has exactly det L_0 spanning trees.

Proof Cont.

If $i \neq j$, then every edge that starts at v_i and ends at v_j and every edge that starts at v_i and ends at v_i contributes -1 to the product.

Therefore, the entry of $A_0A_0^T$ in position (i,j) is -2 if v_iv_j is an edge of U and 0 otherwise.

So
$$A_0 A_0^T = 2L_0$$
.

This implies that 2^{n-1} det $L_0 = \det (A_0 A_0^T)$. Note that each spanning tree of U are 2^{n-1} different spanning trees of G.

Thus, it follows that U has exactly det L_0 spanning trees.

