Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$x_1(k+1) = x_1(k) (1 - x_2(k)) + u(k)$$
$$x_2(k+1) = x_2(k) (1 + x_1(k)) - u(k)$$
$$y(k) = x_1(k) + x_2(k)$$

dove $x_1(k) \in R$, $x_2(k) \in R$

2. Determinare il valore di ingresso $u(k) = \bar{u}$ richiesto per ottenere come stati di equilibrio $\bar{x}_1 = 1$ e $\bar{x}_2 = 5$.

In equilibrio
$$X_1(x_1)=X_1(x_1)=\overline{X_1}=\overline{X$$

3. Scrivere le equazioni del sistema linearizzato attorno allo stato di equilibrio trovato nel punto precedente.

Matrici del setema lineari ZZato:

$$A = \frac{3F}{3K} = \begin{bmatrix} 1 - \overline{X}_2 & -\overline{X}_1 \\ \overline{X}_2 & 1 + \overline{X}_1 \end{bmatrix}; B = \frac{3F}{3U} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}, D = 0$$
Wel equilibrio:
$$\begin{bmatrix} SX_1(K+1) \\ SY_2(K+1) \end{bmatrix} = \begin{bmatrix} -4 & -1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} SX_1(K) \\ SX_2(K) \end{bmatrix} \begin{bmatrix} 1 \\ SX_2(K) \end{bmatrix}$$

$$SY(K) = \begin{bmatrix} 1 & 1 \\ 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} SX_1(K) \\ SX_2(K) \end{bmatrix}$$

4. Studiare la stabilità del sistema linearizzato ricavato al punto 3 e, se possibile, la stabilità del movimento di equilibrio del sistema non lineare di partenza.

mento di equilibrio del sistema non lineare di partenza.

Polidomio carritteriatico (PA) =
$$det(7I-A)$$
 $Q(A) = \begin{cases} 7+4 & 1 \\ -5 & 3-2 \end{cases} = 7^2 + 27 - 8 + 5 = 7^2 + 27 - 3$

autoralori: $\lambda_1 = -3$, $\lambda_2 = 1$

17.11=371; Il sistema li Mearizza to e auche il movimento di equilibrio del sigtema non lineare sono RCIZIO 2

In figura sono rappresentati i diagrammi di Bode del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento G(s) di un sistema lineare tempo invariante senza autovalori nascosti.

1. Determinare ordine, tipo, poli, zeri e guadagno (statico o generalizzato) di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

Ci somo singolarita in co, = 0, I radis, co = Iradis, wz =50 rad/5.

CU; fordonta @ a -rollder =7 Polo, Fage Oa go a) stabile Cuz: Pendenza - rody/dec a co - 7 zevo, Faxe -48a-180=) Faxevon Wz: Pendenza & a - rodr/dec =7 Polo, Fase -185 a - 278 => Stable

- 2. Si dica, approssimativamente, quanto vale a regime l'uscita y(t) del sistema a fronte di un ingresso u(t) pari a:
 - 1) $u(t) = 5\operatorname{sca}(t)$
 - 2) $u(t) = -3\sin(0.4t)$
 - 3) $u(t) = 4\sin(20t)$.

Per
$$v(t) = 5 \cdot sca(t)$$
.
 $S_1(0) = 5 \cdot G(0) = 500$
Per $v(t) = -3 \cdot sin(0,46)$, $w = 0,4 \cdot rad/s$
 $1G(50,4)1 = 27db$, $arg(G(30,4)) = -100^{\circ}(1,749ad)$
 $S_2(t) = -(22,4) \cdot 3 \cdot sin(0,46-1,74)$
Per $v(t) = 45 \cdot to(200)$, $w = 20 \cdot rad/s$
 $1G(520)1 = 19ab$, $arg(G(320)) = -200^{\circ}(-3,5 \cdot rad)$
 $S_3(t) = \{8,9\} \cdot 4 \cdot sin(200-3,5)$

Si consideri la seguente funzione di trasferimento

$$G(s) = \frac{1}{s(s+5)}$$

di un sistema lineare tempo invariante senza poli nascosti. Si supponga che il sistema venga retroazionato come in figura.

Figura 1: Esercizio 3 - Sistema di controllo

Per ognuno dei seguenti regolatori:

$$R_1(s) = 5;$$
 $R_2(s) = 500 \frac{s+5}{s+50}$

Rispondere:

1. Determinare la funzione di anello L(s) e calcolare guadagno, tipo, poli e zeri di L(s).

$$L_{1}(s) = R_{1}(s) \cdot G(s)$$

$$L_{1}(s) = \frac{5}{5(s+5)}$$
Tipo I, $M_{g} = 1$
 $foli = \{0, -5\}$
 $eri = Non cisano$

The guadagno, tipo, poli e zeri di
$$L(s)$$
.

 $L_{Z}(s) = R_{Z}(s) G(s)$
 $L_{Z}(s) = \frac{500}{5(s+50)}$

Tipo I, $M_{g} = 10$

Poli = $90, -90$, Più polo Mascos to

IN -5

Zeri = Non ci sono, [cakella sione]

2. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento L(s). Usare la carta semilogaritmica fornita.

3. Verificare che il sistema in anello chiuso sia asintoticamente stabile e determinare il margine di fase e di guadagno.

Per entrambi i sistemi si applica il criterio della piccola pase;

- 1(5) van ha poli a parte reale positiva - My 70

- | arg (L(Ja))/< 180°

-Il sistema retroaziona to o asintotramento stabile 4. Determinare quanto vale l'ampiezza di regime dell'uscita y(t) quando $y^{o}(t) = 10 + 3\sin(3t) + \sin(20t)$.

$$|Y(s)| = \frac{L(s)}{1 + L(s)}$$

$$- Y_1(t) = |Osca(t)|$$

$$L_1(s) + |POI, allowarder Y_1 = |Ooder |$$

$$- Y_2(t) = 3sin(3t)$$

$$Wc_1 = 2rad/s < (W = 3)$$

$$|L(3s)| = 0, |=7| / 2 (4) = 0, 3$$

$$- \frac{1}{3}(4) = \frac{1}{3}(20t), 2077 (4) = \frac{1}{3}(20t)$$

$$|L(20s)| = \frac{1}{3}(20t), 2077 (4) = \frac{1}{3}(20t)$$

$$|Y_2(t)| = \frac{1}{3}(20t), 2077 (4) = \frac{1}{3}(20t)$$

$$|Y_3(t)| = \frac{1}{3}(20t), 2077 (4) = \frac{1}{3}(20t)$$

$$|Y_3(t)| = \frac{1}{3}(20t), 2077 (4) = \frac{1}{3}(20t)$$

$$|Y_3(t)| = \frac{1}{3}(20t), 2077 (4) = \frac{1}{3}(20t)$$

- γ_1 (t) = 10 sca (t) 2z (s) 2z

- 5. Quale, tra i due regolatori considerati, offre delle prestazioni migliori in termini di Stabilità robusta, errore statico di fronte a ingressi di riferimento tipo scalino, errore di regime di fronte a ingressi di riferimento tipo sinusoide? Giustificare le risposte.
- I due regulatori opprono margini di stabilità simili, un = 40°, km = +00,
- o I due regolatori gavantiscono emore zero di pronte a impressi di viferimento tiposalino perche L(S) e tipo 1.
- · Per ingressi di tipo simusoidale, il regolatore

 12(5) offre pres tazioni miglioti perche

 waz = 10 rad/s >> West = 1 rad/s, allora,

 il modulo del errore avegime e:

 reo = 1 torad/s mentre

 reo = 1 torad/s mentre

 reo A (6), questo vale solo fino a Irad/s

Si consideri il seguente schema

1. Determinare la funzione di trasferimento da U(s) a Y(s).

$$G_{E}(s) = G_{1}(s) \cdot \left(\frac{G_{2}(s)}{1 + G_{2}(s) \cdot G_{4}(s)}\right) \cdot G_{3}(s)$$

$$= \frac{G_{1}(s) G_{2}(s) G_{3}(s)}{1 + G_{2}(s) \cdot G_{4}(s)}$$

2. Posto $G_1(s) = 1/(1+s)$, $G_2(s) = 1/(s^2+s-2)$, $G_3(s) = 2/(s+1)$, $G_4(s) = k$ valutare la funzione di trasferimento da U(s) a Y(s) e studiare la stabilità del sistema al variare di $k \in \mathbb{R}$.

GE(5)=
$$\frac{2}{(1+5)^2} \cdot \frac{5^2+5-2}{5^2+5-2}$$
 = $\frac{2}{(1+5)^2 \cdot (5^2+5+k-2)}$
I due poli in -1, non dipendono di K (Non sono Mellamelo di Vetroazione)

- * 52+5+K-Z: Per il criterio di Routh, Sistema Asint. stabile se k-270=) K72
 - 3. È possibile affermare che, per $G_2(s)$ e $G_4(s)$ asintoticamente stabili, il sistema equivalente sarà sempre asintoticamente stabile? giustificare la risposta.

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\begin{cases} \dot{x}_1(t) = -3x_1(t) + 2x_2(t) + u(t) \\ \dot{x}_2(t) = -\alpha x_2(t) \\ y(t) = x_2(t) + u(t) \end{cases}$$

1. Scrivere il sistema in forma matriciale e classificare il sistema

2. Determinare per quali valori del parametro α il sistema risulta asintoticamente stabile.

3. Posto ora $\alpha = 1$ calcolare il movimento forzato dello stato e dell'uscita per u(t) = 2sca(t).

Movimento Fortato.
$$X(p)=0$$
Formula di Lagrange: $X(t)=\int_0^t e^{A(t-\tau)}BU(\tau)d\tau$
 $X_2(t)=0$ indipendente di $U(t)=0$, $X_1(t)=0$,

 $X_2(t)=0$,

 $X_1(t)=-3X_1(t)+2SCa(t)$,

 $X_1(t)=\int_0^t e^{-3(t-\tau)}(1-e^{-3t})Sca(t)$
 $X_1(t)=U(t)=2SCa(t)$