Potential Energy Prediction with Persistence Images

Owen Queen, Sai Thatigotla, Henry Eigen

Problem Statement

- Predict potential energy surface of a molecule
 - Ultimately, find lowest energy conformer of the molecule

Framing the Problem with ML

- Δ geometry $\rightarrow \Delta$ energy
 - How to capture geometric perturbations?
- Need to solve...
 - Regression problem
 - Optimization problem

Persistence Diagrams

Persistence Images

Generating Conformations

- Base structures from GDB-17 database¹
- Conformations generated with XTB²
 - Uses molecular dynamics

Distribution of Pl's

Distribution of Energy per Pl

Energy Distributions

ML Models

- Non-deep learning
 - XGBoost, Kernel Ridge Regression, Support Vector Machine
- Deep learning
 - Convolutional neural network (CNN)
 - Recurrent Neural Network (RNN)

Deep Learning Architectures

- Any architecture can learn anything (sorta)
- Goal is to find architecture that learns efficiently for given data
 - Image vs. Text
 - Sparse vs. Dense
 - Dynamic vs. Static
 - etc.

^{*}Image from Asimov Institute

Convolutional Neural Networks

*Image from Shervine CS230 @ Stanford

Convolutional Neural Networks Cont.

Recurrent Neural Networks

- How does stored information affect interpretation of new observation
- How much of past stored information should be replaced with information from new observation

*Images from Shervine CS230 @ Stanford

Recurrent Neural Networks Cont.

One Hot Encoding

Rome Paris word V Rome = [1, 0, 0, 0, 0, 0, ..., 0] Paris = [0, 1, 0, 0, 0, 0, ..., 0] Italy = [0, 0, 1, 0, 0, 0, ..., 0] France = [0, 0, 0, 1, 0, 0, ..., 0]

PI as Time Series Data

Training Details

- Split: 70% training, 30% testing
- Results reported in Mean Absolute Error (MAE)
- Regular ML: Sci-kit Learn
- CNN: PyTorch
 - Accuracy reported on lowest test loss observed during training
 - Trained on MAE as loss function
- Only trained/tested on conformers of Base Structure 1

Results - One Structure

Non-deep learning models (Mean Absolute Error kcal/mol)

- XGBoost: 0.0033107
- Kernel Ridge Regression: 0.0069986
- Support Vector Machine: 0.0076822

Deep Learning:

- CNN: ~0.004
- RNN: still in development

Open Questions

- How well do PIs work for this problem?
 - Can they capture subtleties in geometries?
- Which ML algorithms optimally capture information in Pls?
- How to optimize for lowest-energy conformation?

Future Work

- Graph neural networks (GNNs)
- Implement recurrent neural networks (RNNs)
- Autoencoders
- Transfer learning across molecules
- Using PIs as augmentation tool