

TechEdSat 7,10,13,15:

EXO-BRAKE EXPERIMENTS ON THE ISS, FIRST VIRGIN ORBIT, AND FIRST FIREFLY-ALPHA TEST FLIGHTS

NOW The Nano Orbital Workshop

Rapid Flight Development Group

Malachi Mooney-Rivkin, ME

The TechEdSat NOW Team:

Marcus Murbach PI, Seth Schisler PM, A. Salas, J. Alvarellos, T. Stone, S. Krzesniak, S. Zuniga, K. Boateng, M. Mooney-Rivkin, A. Rehman, A. Brock, C. Priscal, T. Hector

OUTLINE

TES and The Exo-Brake
TES-7, 10, 13, and 15
Upcoming Experiments

CUBESAT DEVELOPERS WORKSHOP 2023 - TECHEDSAT

NASA

Who we are:

Innovative flight project focused on rapid design & innovation

- 2-3 flights a year, low cost, ISS standards
- LEO, Lunar, & Mars exploration proposals
- Payload pathfinder(s) for new space launch providers (ISS, VO, Firefly)
- ❖ 100% In-house development, over 90% experiment success rate
 - Rapid development group for technology and people

Key Innovations:

Communication

- Iridium SBD for quick command and control
- Custom 'Lunar' and 'Mars' S-Band SDR radios
- Satellite-internal mesh Wi-Fi network

Exo-Brake

- Precision deorbit and reentry
- Space debris mitigation via EoM disposal

AI/ML Testbed

❖ Neuromorphic processing, cognitive communication, and health monitoring

Support:

Ames Research Center
Glenn Research Center
Goddard Space Flight Center
Air Force Research Laboratory
NASA STMD
NASA SST Program
NASA CSLI Program

University Partners:

San Jose State University University of Minnesota University of Idaho

THE EXO-BRAKE

What is the Exo-Brake?

An Exo-Atmospheric drag device technology designed to provide either:

- Non-Propulsive Debris Mitigation for five-year orbital end-of-life requirement
- Guided sample return, or V-LEO flight operations

Debris Mitigation 'Disposal-Type' Exo-Brake

- □ Lower spacecraft ballistic coefficient to less than $2\frac{\kappa g}{m^2}$ for a very rapid de-orbit
- ☐ High drag profile in a small packing volume
- ☐ Fixed-struts of inflatable or rigid design for simple construction, integration, and deployment

Sample Return 'Modulated-Type' Exo-Brake

- ☐ Survive high dynamic pressure and temperature
- Modulated rigid struts enable active control of ballistic coefficient to change entry trajectory
- ☐ Small Payload Quick Return (SPQR) Concept

Size: 2U – 217mm

- Virgin Orbit 'Demo 2'
 - January 17th, 2021 May 4th, 2022
 - 500km, 61° Orbit

Disposal-Type Mylar Exo-Brake

- Spring-loaded ejection plate
- Hydrogen-cell and water vaporinflated strut design

Spacecraft Mass	3.51 kg
Exo-Brake Area	0.75 m ²
Estimated Drag Coefficient	1.5
Ballistic Coefficient	3.12 kg/m ²

TECHEDSAT 7 - VIRGIN ORBIT

Successfully demonstrated hydrogen-inflation Exo-Brake design and new TES avionics

NASA

• **Size**: 6U-Long, 740mm

- ISS Deployment, Nanoracks
 - July 13th, 2020 March 15th, 2021
 - ISS orbit: 422km x 413km, 51.64°
- Primary Payload: NOAA Radio
- Modulated-Type Mylar Exo-Brake:
 - Rigid spring-steel strut design
 - Spring-loaded ejection plate

AIAA SmallSat Mission of the Year 2021

Spacecraft Mass	6.45 kg
Exo-Brake Area	0.44m ²
Estimated Drag Coefficient	2.2
Ballistic Coefficient	6.32 kg/m ²

TECHEDSAT 10 - ISS

ISS Deploy

Successfully demonstrated Exo-Brake modulation effect on drag, along with all payloads and avionics

Modulation scheme was generated by Dr. Sanny Omar, NASA Research Fellow (now Millennium Space)

Size: 3U - 340mm

- Virgin Orbit 'Above the Clouds'
 - January 13th, 2022 **Present**
 - 500km Circular Orbit, 45°
- **Primary Payload:** AI/ML Brainstack with Intel® Neuromorphic Processor
- **Disposal-Type Kapton Exo-Brake**
 - Spring-loaded spring-wound ejection plate
 - First rigid-strut disposal Exo-Brake
 - First non-metalized RF-transparent design

Spacecraft Mass	3.0 kg
Exo-Brake Area	0.372 m ²
Estimated Drag Coefficient	2.0
Ballistic Coefficient	4.0 kg/m ²

TECHEDSAT 13 - VO

Virgin Orbit

Mission is ongoing and currently active at 468km, decaying at 162 m/day

Size: 3U - 340mm

- Firefly Alpha-2 'Back to the Black'
 - October 1st, 2022 October 6th, 2022
 - 270km x 215km, 137° Orbit
- High-Temperature Disposal-Type Exo-Brake:
 - Rigid spring-steel strut design
 - Spring-loaded ejection plate
 - Space Shuttle TPS material construction

Spacecraft Mass	3.55 kg
Exo-Brake Area	0.24 m ²
Estimated Drag Coefficient	1.5
Ballistic Coefficient	9.86 kg/m ²

Eighty-orbit mission helped to advance the next Exo-Brake modulation design scheme

Space Force 18th SpCS and CARA relationships strengthened regarding Exo-Brake use:

- Continue pre-coordination of Exo-Brake deployment timeline to better validate collision assessment profile
- For modulating designs, modulation can begin once orbital altitude is low enough that risk is not posed to other spacecraft per CARA assessment and approval
- Future modulating flights will involve autonomous navigation and targeting below a defined altitude for safe operation

Successful test of new flight software and data collection systems

UPCOMING EXPERIMENTS

TES-11

- 6U-XL bus size, NASA CSLI VCLS Demo-2/Firefly, NET August 8/29/23
- Largest TES Exo-Brake Yet: 2.0m²
- Gen-2 TES SDR S-band Radio, NOAA Radio

2024 Plans:

12U Upcoming tech-demo in development, with 12U Exo-Brake validation

TechEdSat 7,10,13,15:

EXO-BRAKE EXPERIMENTS ON THE ISS, FIRST VIRGIN ORBIT, AND FIRST FIREFLY-ALPHA TEST FLIGHTS

NOW The Nano Orbital Workshop

Rapid Flight Development Group

Exo-Brake Data

TechEdSat Website

