

DISCRETE STRUCTURES Lab 10 Tree

1. Introduction

In this tutorial, we will practice graph presentation on computer and matrix techniques.

2. Binary Tree representation

Read following lecture notes of **Discrete Structures** on site elit.tdtu.edu.vn

Week14_Graphs_and_Trees_2.pdf

2.1. Vector

A binary tree can be represented using a vector where element (count from 0) $2^{i} - 1 +$ *j* and $2^i + j$ is the children element $2^{i-1} - 1 + j$

Where:

i is the level of the node

j is the order of the node in i^{th} level from left to right.

Normally, this method can only represent a complete binary tree. However, if we represent the empty children as None, the tree can be represented by

2.2. Vector

Another common way to represent the tree is by using linked list. In binary tree case, we can use a linked list with maximum two children on each note.

This Tree can be represented by:

```
class bNode(object):
    def __init__(self,data=None):
        self.left = None
        self.right = None
        self.data = data
A=bNode('A')
A.left=bNode('B')
A.right=bNode('C')
B=A.left
```

```
C=A.right
B.right=bNode('D')
D=B.right
C.left=bNode('E')
C.right=bNode('F')
E=C.left
F=C.right
D.left=bNode('G')
D.right=bNode('H')
E.left=bNode('I')
G=D.left
H=D.right
I=E.left
H.left=bNode('J')
J=H.right
I.left=bNode('K')
I.right=bNode('L')
K=I.left
L=I.right
```

3. Exercise

1. Represent the following trees as Vector of values and print out each level in separate line:

- 2. Represent the 2 previous binary trees using linked list.
- 3. Write functions NLR(A), LNR(A), LRN(A) for linked list to print out the pre-order, inorder, and post-order traversals of the previous trees.

TON DUC THANG UNIVERSITY Faculty of Information Technology

- 4. Write functions **breadthFirstSearch(A,Data)**, **depthFirstSearch(A,Data)** for linked list to find H from the previous section tree, 11 from the left tree and 19 from the right tree and print the path you have traveled to find the data.
- 5. Write functions **breadthFirstSearchV(A,Data)** for vector to find H from the previous section tree, 11 from the left tree and 19 from the right tree and print the path you have traveled to find the data.