16. Hagnýtingar margfaldra heilda

Stærðfræðigreining IIB, STÆ205G, 25. febrúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

16.1

Kúluhnit

Skilgreining 16.1

Látum (x, y, z) vera punkt í \mathbb{R}^3 . Kúluhnit (x, y, z) eru þrennd talna ρ, φ, θ þannig að

$$x = \rho \sin \varphi \cos \theta$$

$$y = \rho \sin \varphi \sin \theta$$
 $z = \rho \cos \varphi$.

$$z = \rho \cos \varphi$$

Punktur sem hefur kúluhnit ρ, φ, θ er táknaður með $[\rho, \varphi, \theta]$.

16.2

Umræða 16.2

Eftirfarandi jöfnur gefa aðferð til að finna kúluhnit:

 ρ er fjarlægðin frá (0,0,0) til (x,y,z), það er að segja

$$\rho = \sqrt{x^2 + y^2 + z^2}.$$

 φ er hornið á milli jákvæða hluta z-ássins og línustriksins frá (0,0,0) til (x,y,z). Hornið φ má ákvarða út frá jöfnunni

$$\tan \varphi = \frac{\sqrt{x^2 + y^2}}{z}.$$

 θ er hornið sem jákvæði hluti x-ásins myndar við línustrikið frá (0,0,0) til (x,y,0) (sama horn og notað í sívalningshnitum (og pólhnitum)). Hornið θ má finna út frá jöfnunni

$$\tan \theta = \frac{y}{x}.$$

Um kúluhnit $[\rho, \varphi, \theta]$ fyrir punkt (x, y, z) gildir að velja má ρ, φ, θ þannig að $0 \le \rho$, $0 \le \varphi \le \pi$ og $0 \le \theta \le 2\pi$.

16.3

Breytuskipti í kúluhnit

Setning 16.3

Látum R vera rúmskika þannig að þegar notuð eru kúluhnit þá fæst eftirfarandi lýsing

$$R = \{ [\rho, \varphi, \theta] \mid \alpha \le \theta \le \beta, c \le \varphi \le d, a \le \rho \le b \}.$$

Ef f er fall sem er heildanlegt yfir R þá er

$$\iiint_{R} f(x, y, z) dV =$$

$$\int_{\alpha}^{\beta} \int_{c}^{d} \int_{a}^{b} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d\rho d\varphi d\theta.$$

16.4

Massamiðja

Regla 16.4

Látum D tákna svæði í plani. Hugsum D sem plötu þ.a. í punkti (x,y) er efnisþéttleikinn gefinn með falli $\delta(x,y)$. Massi plötunnar er

$$m = \iint_D \delta(x, y) \, dA.$$

V e g i plötunnar um línuna x=0 (þ.e. y-ás) og um línuna y=0 (þ.e. x-ás) eru gefin með

$$M_{x=0} = \iint_D x \delta(x, y) dA$$
 og $M_{y=0} = \iint_D y \delta(x, y) dA$.

Hnit $massami\partial ju$ plötunnar eru $(\overline{x}, \overline{y})$ þar sem

$$\overline{x} = \frac{M_{x=0}}{m}$$
 og $\overline{y} = \frac{M_{y=0}}{m}$.

16.5

Regla 16.5

Látum R tákna rúmskika. Hugsum R sem hlut þannig að í punkti (x, y, z) er efnisþéttleikinn gefinn með falli $\delta(x, y, z)$. Massi hlutarins er

$$m = \iiint_R \delta(x, y, z) dV.$$

V e g i hlutarins um planið x = 0 (þ.e. yz-planið) er

$$M_{x=0} = \iiint_R x \delta(x, y, z) \, dV.$$

Svipað skilgreinum við

$$M_{y=0} = \iiint_R y \delta(x, y, z) dV$$
 og $M_{z=0} = \iiint_R z \delta(x, y, z) dV$.

Hnit $massami\delta ju$ hlutarins eru $(\overline{x}, \overline{y}, \overline{z})$ þar sem

$$\overline{x} = \frac{M_{x=0}}{m}$$
 og $\overline{y} = \frac{M_{y=0}}{m}$ og $\overline{z} = \frac{M_{z=0}}{m}$.

16.6

Hverfitregða

Regla 16.6

Látum R tákna rúmskika. Hugsum R sem hlut þannig að í punkti (x,y,z) er efnisþéttleikinn gefinn með falli $\delta(x,y,z)$. Látum L tákna línu (snúningsás) í rúminu. Hverfitregða hlutarins um L er

$$I = \iiint_R D^2 \, \delta \, dV$$

þar sem $\delta = \delta(x,y,z)$ og D = D(x,y,z) er fjarlægð punktsins (x,y,z) frá L.

16.7

Yfirborðsflatarmál

Regla 16.7

Látum D vera svæði í plani og f(x,y) diffranlegt fall skilgreint á D. Flatarmál grafsins z = f(x,y) þar sem $(x,y) \in D$ er gefið með formúlunni

$$S = \iint_D \sqrt{1 + f_1(x, y)^2 + f_2(x, y)^2} \, dA.$$

16.8