Ringen en Lichamen

Luc Veldhuis

30 Oktober 2017

Herhaling

Vorige keer

In een HIR (Hoofd ideaal ring) geldt 'priem element' en 'irreducibel element' zijn hetzelfde .

Definitie

Een ontbindingsring is een domein R zodat elke $x \in R$ $x \neq 0$, $x \in R^*$ geschreven kan worden als $x = p_1 p_2 \dots p_s$ met alle p_i irreducibel en als ook $x = q_1 q_2 \dots q_t$ met alle q_j irreducibel, dan geldt s = t en, na eventueel hernummeren van de q_j geldt p_i en q_i zijn geassocieerd $\Leftrightarrow q_i = u_i p_i$ met $u_i \in R^*$.

Stelling

Een hoofdideaalring (in het bijzonder een Euclidische ring) is een ontbindingsring.

Bewijs

• Existentie van een factorisatie Als $y \neq 0$, $y \notin R^*$, zeg 'y is ' als y het product is van eindig veel irreducibele elementen.

Te bewijzen: als $x \neq 0$, $x \notin R^*$, dan is x ok.

Stel van niet: voor $x \neq 0$, $x \notin R^*$ dan is x niet irreducibel \Rightarrow

 $x = x_1y_1 \text{ met } x_1, y_1 \neq 0, x_1, y_1 \notin R^* \text{ en } x \text{ of } y \text{ niet ok.}$

We mogen aannemen dat x_1 is niet ok.

Herhaal dit voor x_1 ipv x, $x_1 = x_2y_2$ met $x_2, y_2 \neq 0$ en $x_2, y_2 \notin R^*$ en x_2 niet ok.

Bewijs (vervolg)

```
Ga zo door voor x_n = x_{n+1}y_{n+1} met x_{n+1}, y_{n+1} \neq 0 en
x_{n+1}, y_{n+1} \notin R^* en x_{n+1} niet ok. Dan krijg je
(x) \subseteq (x_1) \subseteq (x_2) \subseteq \ldots, want (a) = (b) \Leftrightarrow b = ua met u een
eenheid, maar x = x_1 y_1 met y_1 \notin R^*.
Schrijf I_i = (x_i).
Dus I_1 \subseteq I_2 \subseteq I_3 \subseteq \dots
Dan is I = \bigcup_{i=1}^{\infty} I_i een ideaal. (Ga na)
Dus (R is HIR), I = (z) voor een z in I.
Dan is z \in I_k voor een k > 1.
Nu geldt I_k \subseteq I en I = (z) \subseteq I_k, dus I = I_k, maar I_{k+1} \subseteq I = I_k.
Tegenspraak. I_k \subseteq I_{k+1}.
```

Bewijs

Uniciteit.

Stel $x \neq 0$, $x \notin R^*$ heeft 2 factorizaties.

 $x = p_1 p_2, \dots p_s = q_1 q_2 \dots q_t$ met alle p_i , q_j irreducibel.

Doe inductie naar de minimale s met $x = p_1 p_2 \dots p_s$ alle p_i irreducibel.

s=1: dan is x irreducibel. Als $x=q_1q_2\dots q_t$ met $t\geq 2$ en alle q_i irreducibel.

x irreducibel $\Rightarrow q_1$ is een eenheid (kan niet, irreducibel) of $q_2q_3\ldots q_t$ is een eenheid \Rightarrow dan is elk element een eenheid, kan niet, ze zijn irreducibel.

Tegenspraak, dus t = 1.

 $x = p_1 = q_1$.

Neem nu aan: als x een factorizatie heeft in $\leq s-1$ factoren, dan is die essentieel uniek.

Bewijs (vervolg)

Schrijf $x = p_1 p_2 \dots p_s = q_1 q_2 \dots q_t$ met alle p_i , q_j irreducibel.

Dan geldt $p_1|q_1 \dots q_t$. In een HIR is p_i een priemelement.

Dus $p_1|ab$ dan $p_1|a$ of $p_1|b$.

 $p_1|q_j$ voor een j dus $q_j = zp_1$ voor een $z \in R$, q_j irreducibel, p_1 geen eenheid $\Rightarrow z$ is een eenheid.

Hernummeren $q_1 \dots q_t$ zodat nu $q_1 = up_1$ met $u \in R^*$.

Dus
$$x = p_1 ... p_s = q_1 ... q_t = p_1(uq_2)q_3 ... q_t$$

$$\Rightarrow p_2 \dots p_s = (uq_2)q_3 \dots q_t = q_2'q_3' \dots q_t'$$
 irreducibel.

Inductie hypothese: $s-1=t-1 \Rightarrow s=t$ en na hernummeren van de q'_j voor $j=2,\ldots,s$ geldt p_i en q'_i zijn geassoccieerd voor $i=2,\ldots,s$ en ook q'_2 is geassocieerd met q_2 voor hernummeren.

Voorbeeld

 $\mathbb{Z}[i]$, \mathbb{Z} , k[x] met een lichaam zijn Euclidische ringen, dus HIR, dus ontbindingsringen.

In \mathbb{Z} 6 = 2 · 3 = 3 · 2 = (-2)(-3) = (-3)(-2) de mogelijke factorizaties in \mathbb{Z} .

Stelling

In een ontbindingsring vallen de begrippen 'irreducibel' en 'priemelementen' samen.

Bewijs

Als gezien: In een domein is elk priem element irreducibel.

Nu te bewijzen: in een ontbindingsring is een irreducibel element priem. Stel x is irreducibel, dus $x \neq 0$, $x \notin R^*$.

Nog te zien: als x|ab dan x|a of x|b. x|ab betekend ab = x voor een $c \in R$.

Bewijs (vervolg)

Als $ab = 0 \Leftrightarrow a = 0$ of b = 0, dan geldt x|a of x|b want x|0. Neem nu aan: $a, b \neq 0$. Als $a^* \in R^*$ dan ab = xc dus $b = xca^{-1}$ en x|b.

Idem: als $b \in R^*$ dan x|a.

Neem nu ook aan $a, b \notin R^*$.

Schrijf $a = p_1 \dots p_s$, $b = q_1 \dots q_t$ alle p_i irreducibel.

Als $c \notin R^*$, $c = r_1 \dots r_k$ alle r_i irreducibel, dan zijn

 $p_1 \dots p_s q_1 \dots q_t = x r_1 \dots r_k$ twee factoriaties in irreducibele

elementen, maar R is een ontbindingsring

 $\Rightarrow x$ is geassocieerd met een p_i of een q_j

 $\Rightarrow x|a \text{ of } x|b$, want $p_i|a \text{ of } q_j|b$.

Als $c \in R^*$ doe die zelf.

Opmerking

- ullet In ${\mathbb Z}$ heet een positief irreducibel element een priem**getal**
- In $\mathbb{Z}[i]$ of k[x] met k een lichaam spreek je meestal over irreducibele elementen (ookal zijn dat priemelementen).

Opmerking

Als $a,b\neq 0$ in een ontbindingsring R dan schrijf je $a=up_1^{m_1}\dots p_s^{m_s},\ b=vq_1^{n_1}\dots q_t^{n_t}$ met $u,v\in R^*$ met p_1,\dots,p_s irreducibel paarsgewijs niet geassocieerd.

$$a \in \mathbb{R}^* \Leftrightarrow m_1 = \cdots = m_s = 0.$$

$$a \notin R^*$$
 $a = q_1 q_2 \dots q_t = u_1 p_{f(1)} u_2 p_{f(2)} \dots u_s p_{f(s)}$ met q_j irreducibel.

Kies uit elke associatie klasse van irreducibele elementen 1 representant.

Voorbeeld

In $\mathbb{Z}[i]$ geldt 4 = (1+i)(1-i)(1+i)(1-i), en 1-i = -i(1+i). Dus $4 = (-i)^2(1+i)^4$. Dan is $p_1^{\min(m_1,n_1)}p_2^{\min(m_2,n_2)}\dots p_s^{\min(m_s,n_s)}$ een ggd van a en b. Dus ggd(a,b) bestaat altijd. (ggd(a,a)=a).

Voorbeeld

In k[x] met k een lichaam hebben we $k[x]* = k^*$.

Normaliseer je $f(x) \neq 0$ door kopcoëfficiënt 1 te eisen (dat wil zeggen f(x) is monisch).

Bijvoorbeeld
$$3X^6 - 3 = 3(X^6 - 1) = 3(X^3 - 1)(X^3 + 1) = 3(X^2 + X + 1)(X - 1)(X^2 - X + 1)(X + 1)$$
 in factoren.

$$X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X^2 + 1)$$
 irreducibel:

$$\Rightarrow$$
 de (monische) ggd van $3X^6 - 3$ en $X^4 - 1$ is $(X - 1)(X + 1) = X^2 - 1$.

Voorbeeld

Wat zijn de irreducibele elementen in $\mathbb{Z}[i]$?

Stel $\pi \in \mathbb{Z}[i]$ is irreducibel, dus $\mathbb{Z}[i]/(\pi)$ is een domein.

Dan is $(\pi) \cap \mathbb{Z}$ is een priemideaal $\neq 0$: $\mathbb{Z} \to \mathbb{Z}[i]/(\pi)$ natuurlijke afbeelding, een ring homomorfisme met kern $\mathbb{Z} \cap (\pi)$.

Dan volgt nu uit de eerste isomorfie stelling $\Rightarrow \mathbb{Z}/(\mathbb{Z} \cap (\pi)) \cong$ beeld, een domein.

 $\mathbb{Z}\cap(\pi)$ is een priemideaal van \mathbb{Z} , $(\neq 0$ want $\pi\cdot\overline{\pi}$ is er in.)

Voorbeeld (vervolg)

Dus als $\mathbb{Z} \cap (\pi) = (p)$ met p priemgetal in \mathbb{Z} dan is $p \in (\pi)$, dus $\pi | p$ in $\mathbb{Z}[i]$.

Conclusie: we vinden alle irreducibele elementen in $\mathbb{Z}[i]$ door alle priemgetallen p te factorizeren in $\mathbb{Z}[i]$.

Stel p is een priemgetal en $p = \pi_1 \pi_2 \dots \pi_s$ is een element in $\mathbb{Z}[i]$. $p^2 = N_m$ en $(p) = N_m(\pi_1)N_m(\pi_2)\dots N_m(\pi_s)$ met $N_m(\pi_i) \neq 1$. Dus s = 1 of s = 2.

Je vindt:

- p = 2, 2 = (1 + i)(1 i) allebei irreducibel.
- $p \equiv 1 \mod 4$: $p = \pi \overline{\pi} \mod \pi$, $\overline{\pi}$ irreducibel met norm p. Voorbeeld 13 = (2 + 3i)(2 3i)
- $p \equiv 3 \mod 4$: die zijn irreducibel in $\mathbb{Z}[i]$. Voorbeeld p = 3, 7, 11, 19.

