Optimization Method homework 6

Qingfu Wen

2015213495

October 29, 2015

CONTENTS

i. Problem 1	2
ii. Problem 2	3
iii. Problem 3	5

I. PROBLEM 1

Given a linear programming problem:

min
$$-2x_1 - x_2 + x_3$$

s.t. $x_1 + x_2 + 2x_3 \le 6$
 $x_1 + 4x_2 - x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

its simplex table is as follow:

		x_1	x_2	x_3	x_4	x_5	
	x_3	0	-1	1	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$
•	x_1	1	3	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{14}{3}$
		0	-6	0	$-\frac{1}{3}$	$-\frac{5}{3}$	$-\frac{26}{3}$

- 1. if vector $b = (6,4)^T$ changed into $b' = (2,4)^T$ on the right side, is optimal base still optimal? Please solve the optimal table using old optimal table.
- 2. if change the coefficient of x_1 in objective function from $c_1 = -2$ into c'_1 , what range does c'_1 belong to, old optimal solution is still optimal for new question?

Solution:

1. compute column vector on the right side

$$\overline{b'} = B^{-1}b' = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} \\ \frac{10}{3} \end{bmatrix}$$
$$c_B \overline{b'} = (1, -2) \begin{bmatrix} -\frac{2}{3} \\ \frac{10}{3} \end{bmatrix} = -\frac{22}{3}$$

	x_1	x_2	x_3	x_4	x_5	
x_3	0	-1	1	$\frac{1}{3}$	$\left(-\frac{1}{3}\right)$	$\frac{2}{3}$
x_1	1	3	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{\frac{10}{3}}{\frac{10}{3}}$
	0	-6	0	$-\frac{1}{3}$	$-\frac{5}{3}$	$-\frac{22}{3}$
x_5	0	3	-3	-1	1	2
x_1	1	1	2	1	0	2
	0	-1	-5	-2	0	-4

this solution is $(x_1, x_2, x_3) = (2, 0, 0)$, $f_{min} = -4$.

2. change c_1 to c'_1

$$\begin{cases} z_1' - c_1' = 0 \\ z_2' - c_2' = -6 + 3(c_1' + 2) \le 0 \\ z_3' - c_3' = 0 + 0(c_1' + 2) \le 0 \\ z_4' - c_4' = -\frac{1}{3} + \frac{1}{3}(c_1' + 2) \le 0 \\ z_5' - c_5' = -\frac{5}{3} + \frac{2}{3}(c_1' + 2) \le 0 \end{cases}$$

we get $c_1' \leq -1$.

II. PROBLEM 2

Given a linear programming problem:

$$\max -5x_1 + 5x_2 + 13x_3$$
s.t.
$$-x_1 + x_2 + 3x_3 \le 20$$

$$12x_1 + 4x_2 + 10x_3 \le 90$$

$$x_1, x_2, x_3 \ge 0$$

Please solve this problem using simplex method first. Then change the original problem respectively as follow, and solve them using old optimal table.

- 1. change the coefficient of x_3 in objective function c_3 from 13 into 8
- 2. change b_1 from 20 to 30
- 3. change b_2 from 90 to 70
- 4. change column of *A* from $(-1,12)^T$ to $(0,5)^T$
- 5. add constraint condition $2x_1 + 3x_2 + 5x_3 \le 50$

Solution:

Add slack variable x_4 , x_5 , change it into:

$$\max -5x_1 + 5x_2 + 13x_3$$
s.t.
$$-x_1 + x_2 + 3x_3 + x_4 \le 20$$

$$12x_1 + 4x_2 + 10x_3 + x_5 \le 90$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

solve it using simplex method.

oorvo it domo omipron mouro di								
	x_1	x_2	x_3	x_4	x_5			
x_4	-1	(1)	3	1	0	20		
$\begin{array}{ c c c c c }\hline x_4 \\ x_5 \end{array}$	12	4	10	0	1	90		
	5	-5	-13	0	0	0		
x_2	-1	1	3	1	0	20		
x_5	16	0	-2	-4	1	10		
	0	0	2	5	0	100		

this solution is $(x_1, x_2, x_3) = (0, 20, 0)$, $f_{max} = 100$.

1. when c_3 changed from 13 to 8, x_3 's test number $z_3' - c_3' = (z_3 - c_3) + c_3 - c_3' = 2 + 13 - 8 = 7 > 0$, solution does not change. $(x_1, x_2, x_3) = (0, 20, 0)$, $f_{max} = 100$.

3

2. change b_1 from 20 to 30

	0 -					
	x_1	x_2	x_3	x_4	x_5	
x_2	-1	1	3	1	0	30
x_5	16	0	(-2)	-4	1	-30
	0	0	2	5	0	150
x_2	23	1	0	(-5)	$-\frac{\frac{3}{2}}{\frac{1}{2}}$	-15
<i>x</i> ₃	-8	0	1	2	$-\frac{1}{2}$	15
	16	0	0	1	1	120
x_4	$-\frac{23}{5}$	$-\frac{1}{5}$	0	1	$-\frac{3}{10}$	3
x_4 x_3	$\frac{6}{5}$ $\frac{103}{103}$	- 1 5 2 5	1	0	$\begin{array}{r} \frac{1}{10} \\ \underline{13} \end{array}$	9
	$\frac{103}{5}$	$\frac{1}{5}$	0	0	$\frac{13}{10}$	117

the solution is $(x_1, x_2, x_3) = (0, 0, 9)$, $f_{max} = 117$.

3. change b_2 from 90 to 70

	x_1	x_2	<i>x</i> ₃	x_4	x_5	
x_2	-1	1	3	1	0	20
x_5	16	0	-2	-4	1	-10
	0	0	2	5	0	100
x_2	23	1	0	-5	$\frac{3}{2}$	5
x_3	-8	0	1	2	$-\frac{1}{2}$	5
	16	0	0	1	1	90

the solution is $(x_1, x_2, x_3) = (0, 5, 5)$, $f_{max} = 90$.

4. change column of A from $(-1,12)^T$ to $(0,5)^T$, x_1 's test number

$$z_1 - c_1 = c_B B^{-1} p_1 - c_1 = 0 - (-5) = 5 > 0$$

the solution is $(x_1, x_2, x_3) = (0, 20, 0)$, $f_{max} = 100$.

5. add constraint condition $2x_1 + 3x_2 + 5x_3 \le 50$, add a new slack variable x_6

	x_1	x_2	x_3	x_4	x_5	x_6	
x_2	-1	1	3	1	0	0	20
x_5	16	0	-2	-4	1	0	10
x_6	2	3	5	0	0	1	50
	0	0	2	5	0	0	100
x_2	-1	1	3	1	0	0	20
x_5	16	0	-2	-4	1	0	10
x_6	5	0	-4	-3	0	1	-10
	0	0	2	5	0	0	100
x_2	$\frac{11}{4}$	1	0	$-\frac{5}{4}$	0	$-\frac{3}{4}$	$\frac{25}{2}$ 15
x_5	$\frac{27}{2}$	0	0	$-\frac{5}{2}$	1	$-\frac{1}{2}$	
x_3	$ \begin{array}{r} \frac{11}{4} \\ \frac{27}{2} \\ -\frac{5}{4} \\ \hline \frac{5}{2} \end{array} $	0	1	-54 -52 31 4 -72	0	$-\frac{1}{4}$	<u>5</u>
	$\frac{5}{2}$	0	0	$\frac{7}{2}$	0	$\frac{1}{2}$	95

the solution is $(x_1, x_2, x_3) = (0, \frac{25}{2}, \frac{5}{2}), f_{max} = 95.$

III. PROBLEM 3

Given the original linear problem:

$$min cx$$
s.t. $Ax = b$

$$x \ge 0$$

Suppose this problem and its dual problem is feasible, $w^{(0)}$ is an optimal solution of dual problem.

- 1. if $\mu \neq 0$ multiply the kth equation of original problem, we can get a new problem. Please solve dual problem of this problem.
- 2. if μ multiply the kth equation of original problem and add it to the rth equation. Please solve dual problem of this problem.

Solution:

suppose A is a m * n matrix. And write

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

we can rewrite the original problem into:

min
$$cx$$

s.t. $A_i x = b_i, i = 1, 2, \dots, m$
 $x \ge 0$

and its dual problem:

$$\max \sum_{i=1}^{m} b_i w_i$$
s.t.
$$\sum_{i=1}^{m} w_i A_i \le c$$

1. $\mu \neq 0$ multiply the *k*th equation of original problem, dual problem is

max
$$b_1 w_1 + b_2 w_2 + \dots + \mu b_k w_k + \dots + b_m w_m$$

s.t. $w_1 A_1 + \dots + \mu w_k A_k + \dots + w_m A_m \le c$

we can see that $\mathbf{w} = (w_1^{(0)}, \cdots, \frac{1}{\mu} w_k^{(0)}, \cdots, w_m^{(0)})$ is a feasible solution, and at this point, the value of objective function equals to the dual one, so this a optimal solution.

2. the original problem after changing:

min
$$cx$$

s.t. $A_1x = b_1$,
 \vdots
 $A_kx = b_k$,
 \vdots
 $(A_r + \mu A_k)x = b_r + \mu b_k$,
 \vdots
 $A_mx = b_m$,
 $x \ge 0$

its dual problem:

$$\max b_1 w_1 + \dots + \mu b_k w_k + \dots + (b_r + \mu b_k) w_r + \dots + b_m w_m$$

s.t.
$$w_1 A_1 + \dots + \mu w_k A_k + \dots + w_r (A_r + \mu A_k) + \dots + w_m A_m \le c$$

we can see that $\mathbf{w} = (w_1^{(0)}, \cdots, w_k^{(0)} - \mu w_r^{(0)}, \cdots, w_r^{(0)}, \cdots, w_m^{(0)})$ is a feasible solution, and at this point, the value of objective function equals to the dual one, so this a optimal solution.