Complex Integration

Recall

Definition: Let $\gamma:[a,b]\to\mathbb{C}$, be a contour and $S\subset\mathbb{C}$ such that $\gamma\subset S$. If $f:S\to\mathbb{C}$ is a continuous function then the **the contour integral** (or line **integral**) of f along the curve γ is defined by

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

Example: Let $f(z) = \bar{z}$.

- If $\gamma_1(t)=e^{it},\ t\in[0,\pi]$ then, $\int_{\gamma_1}f(z)dz=i\pi$.
- If $\gamma_2(t) = 1(1-t) + t \cdot (-1) = 1 2t$, $t \in [0,1]$ then, $\int_{\gamma_2} f(z) dz = 0$.
- In the above example γ_1 and γ_2 are two paths joining 1 and -1. But the line integral along the paths γ_1 and γ_2 are NOT same.
- Question: When a line integral of f does not depend on path?

Complex integration

• (The fundamental integral) For $a \in \mathbb{C}$, r > 0 and $n \in \mathbb{Z}$

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 0 & \text{if} & n \neq -1 \\ 2\pi i & \text{if} & n = -1 \end{cases}$$

where $\gamma(t) = a + re^{it}$ for $t \in [0, 2\pi]$ is the circle of radius r centered at a.

- Let f, g be piecewise continuous complex valued functions then $\int_{\gamma} [\alpha f \pm g](z) dz = \alpha \int_{\gamma} f(z) dz \pm \int_{\gamma} g(z) dz.$
- Let $\gamma:[a,b] \to \mathbb{C}$ be a curve and a < c < b. If $\gamma_1 = \gamma|_{[a,c]}$ and $\gamma_2 = \gamma|_{[c,b]}$ then $\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$.

Complex integration

• Let f be a piecewise continuous function defined on a set containing a cotour γ . If $|f(z)| \leq M$ for all $z \in \gamma$ and L =length of γ then

$$\left| \int_{\gamma} f(z) dz \right| \leq \left| \int_{a}^{b} f(\gamma(t) \gamma'(t)) dt \right|$$

$$\leq \int_{a}^{b} |f(\gamma(t))| \gamma'(t)| dt$$

$$\leq M \int_{a}^{b} |\gamma'(t)| dt = ML. \quad (ML-inequality)$$

• Let $\gamma(t)=2e^{it}, t\in[0,\frac{\pi}{2}]$ and $f(z)=\frac{z+4}{z^3-1}.$ Then by ML-ineuqality $\left|\int_{\gamma}f(z)\,dz\right|\leq\frac{6\pi}{7}.$

Antiderivatives

Definition: The antiderivative or primitive of a continuous function f in a domain D is a function F such that F'(z) = f(z) for all $z \in D$.

- The primitive of a function is unique up to an additive constant.
- The following theorem is an answer to the Question: When a line integral of f does not depend on path?)
- **Theorem:** Let D be a domain in \mathbb{C} and γ be a contour in D with initial and end points z_1 and z_2 respectively. If $f:D\to\mathbb{C}$ is a continuous function with primitive $F: D \to \mathbb{C}$, then

$$\int_{\gamma} f(z)dz = F(z_2) - F(z_1).$$

Proof. Let $\gamma:[a,b]\to\mathbb{C}$. Since $\frac{d}{dt}F(\gamma(t))=F'(\gamma(t))\gamma'(t)$ therefore

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} \frac{d}{dt}F(\gamma(t))dt$$
$$= F(\gamma(b)) - F(\gamma(a)) = F(z_{2}) - F(z_{1}).$$

• Corollary: In particular, if γ is a closed contour then $\int_{\gamma} f(z)dz = 0$.

Antiderivatives

When such F exists we write

$$\int_{\gamma} f(z)dz = \int_{z_1}^{z_2} f(z)dz = \int_{z_1}^{z_2} F'(z)dz = F(z_2) - F(z_1).$$

- **4** The function $\frac{1}{z^n}$, n>1 is continuous on \mathbb{C}^* . Thus the integral of the above function on any contour joining nonzero complex numbers z_1 , z_2 not passing through origin is given by

$$\int_{z_1}^{z_2} \frac{dz}{z^n} = -(n-1)\left(\frac{1}{z_2^{n-1}} - \frac{1}{z_1^{n-1}}\right).$$

In particular we have $\int_C \frac{dz}{z^n} = 0$ where C any closed curve not possing through origin.

Complex integration

- So far, we get an answer to the following question:
- **Question:** When a line integral of *f* does not depend on path?
- We proved that "a line integral of f does not depend on a path if f has primitive.
- Now, we will come by an answer to the following question:
- Question: Under what conditions on f we can guarantee the existence of g such that g' = f?

Simply Connected

- Definition: A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.
- Examples:
 - ullet The whole complex plane ${\mathbb C}$
 - Any open disc
 - The right half plane $RHP = \{z : Re \ z > 0\}.$
- A domain *D* is called **multiply connected** if it is **not** simply connected.
- Examples:
 - The sets $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$
 - $B(o, r) \setminus \{0\},$
 - The annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}.$

Cauchy's Theorem

Theorem: (Cauchy's Theorem) If a function f is analytic on a simply connected domain D and C is a simple closed contour lying in D then

$$\int_C f(z)dz=0.$$

To prove the above theorem we need the following **Green's Theorem**.

Green's Theorem Let C be a positively orientated simple closed curve. Let R be the domain that forms the interior of C. If u and v are continuous and have continuous partial derivatives u_x , u_y , v_x and v_y at all points on C then

$$\int_{C} u dx + v dy = \int \int_{R} [v_{x} - u_{y}] dx dy.$$

Cauchy's Theorem

Proof. Let f(z) = f(x + iy) = u(x, y) + iv(x, y) and C(t) = x(t) + iy(t), $a \le t \le b$ is the curve C. Then

$$\int_{C} f(z)dz = \int_{a}^{b} f(C(t))C'(t)dt$$

$$= \int_{a}^{b} [u(x(t), y(t)) + iv(x(t), y(t))][x'(t) + iy'(t)]dt$$

$$= \int_{a}^{b} (ux' - vy')dt + i \int_{a}^{b} (vx' + uy')dt$$

$$= \int_{C} udx - vdy + i \int_{C} vdx + udy$$

$$= \int_{R} (-v_{x} - u_{y})dxdy + i \int_{R} (u_{x} - v_{y})dxdy,$$
(by Green's theorem)
$$= 0 \quad \text{(by CR equations } u_{x} = v_{y} \text{ and } u_{y} = -v_{x}\text{)}.$$

Cauchy's Theorem

Let $C(t) = e^{it}$, $-\pi \le t \le \pi$, denotes the unit circle.

- 1 It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- ② $\int_C f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- 4 If $f(z) = (\operatorname{Im} z)^2$ then $\int_C f(z)dz = 0$ (check this). As f is not analytic anywhere in $\mathbb C$ Cauchy's theorem can not be applied to prove this.

Consequences of Cauchy's Theorem

• Independence of path: Let D be a simply connected domain and $f:D\to\mathbb{C}$ analytic. Let $z_1,\,z_2$ be two points in D. If γ_1 and γ_2 be two simple contour joining z_1 and z_2 such that the curves lie entirely in D then,

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz.$$

• Proof: If we define

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{if } 0 \le t \le 1/2\\ \eta(t) = \gamma_2(2(1-t)) & \text{if } 1/2 \le t \le 1 \end{cases}$$

then γ is a simple closed curve and

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\eta} f(z)dz.$$

By Cauchy's theorem

$$\int_{\infty} f(z)dz = 0.$$

From last two equations we get

$$\int_{\gamma_1} f(z)dz = -\int_{\eta} f(z)dz = \int_{\gamma_2} f(z)dz.$$

Consequences of Cauchy's Theorem

- Following theorem is a answer to the question Under what conditions on f we can guarantee the existence of g such that g' = f?
- **Theorem:** If f is an analytic function on a simply connected domain D then there exists a function g, which is analytic on D such that g' = f.
 - **Proof.** Fix a point $z_0 \in D$ and define

$$g(z)=\int_{z_0}^z f(w)dw.$$

- The integral is considered as a contour integral over any curve lying in D and joining z with z_0 .
- By the result the integral does not depend on the curve we choose and hence the function g is well defined.
- We will show that g' = f.

Consequences of Cauchy's Theorem

• If $z + h \in D$ then

$$g(z+h)-g(z)=\int_{z_0}^{z+h}f(w)dw-\int_{z_0}^{z}f(w)dw=\int_{z}^{z+h}f(w)dw,$$

where the curve joining z and z+h can be considered as a straight line $I(t)=z+th,\ t\in[0,1].$ Since $\int_I f(z)dw=f(z)h$ therefore we get

$$\left|\frac{g(z+h)-g(z)}{h}-f(z)\right|=\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|.$$

- Now f is continuous at z, then for any given $\epsilon > 0$ there exist a $\delta > 0$ such that $|f(z+h) f(z)| < \epsilon$ if $|h| < \delta$.
- Thus for $|h| < \delta$ we get from ML-inequality that

$$\left|\frac{1}{h}\int_{z}^{z+h}(f(w)-f(z))dw\right|\leq \frac{\epsilon|h|}{|h|}=\epsilon.$$

• This show that $g'(z) = \lim_{h \to 0} \frac{g(z+h) - g(z)}{h} = f(z)$.

