5 – Amplificadores operacionais: configurações básicas

Objectivos – Conhecer as características principais dum amplificador operacional comercial. Conhecer e saber dimensionar uma configuração inversora para dado valor de resistência de entrada e ganho. Circuito somador e integrador.

5.1 – O amplificador operacional TL081

Neste trabalho vamos utilizar um amplificador operacional (OpAmp) muito popular, o TL081, disponível na forma dum circuito integrado de 8 pinos (fig. 5.1).

Consulte o *datasheet* (folheto de especificações) deste OpAmp, disponível no elearning, e registe os valores máximos das características seguintes:

Tensões de alimentação; Tensão de entrada.

Obtenha também os seguintes parâmetros:

Ganho de tensão (malha aberta); Resistência de entrada do OpAmp; Excursão máxima de saída.

Fig. 5.1

Fig. 5.2

Nos circuitos que vai montar a seguir, o TL081 vai ser alimentado por duas tensões simétricas⁶: $V_{CC} = +15V$, ligada no pino 7 e $V_{EE} = -15V$, ligada no pino 4. Os esquemas de circuitos com OpAmps raramente mostram explicitamente as ligações das alimentações, mas é claro que elas têm de ser feitas.

Assim, comece por montar na placa branca o circuito integrado fornecido, tal como indicado na fig. 5.2. Recomenda-se que use uma das ligações ao longo do comprimento da placa para o nó de alimentação V_{CC} , outra para o nó de massa e uma terceira para o nó V_{EE} .

5.2 – Configuração inversora

a) A fig. 5.3 mostra o esquema da configuração inversora ligada ao gerador de sinal. Com base no número do seu grupo e nas correspondentes especificações de *resistência de*

⁶ Consulte os seus apontamentos relativos ao Trabalho 3 para recordar como se configura a fonte de alimentação da bancada para fornecer duas tensões simétricas.

Grupos	1 e 6	2 e 7	3 e 8	4 e 9	5 e 10
Resistência de entrada ($k\Omega$)	6.8 a 12	3.3 a 6.8	1.8 a 3.3	1 a 1.8	0.47 a 1
Ganho	6	12	25	50	100

Tabela 5.1 – Especificações de resistência de entrada e ganho

entrada e de ganho pretendidos para a configuração (consulte a Tabela 5.1), calcule os valores das resistências R_1 e R_2 a usar. Tente obter o ganho pretendido (com um erro até 5%) usando os valores padrão disponíveis. Se necessário, aproxime o valor desejado de cada resistência usando associações em série ou em paralelo (mas não associe mais do que duas resistências).

b) Adicione R_1 e R_2 ao circuito.

Ajuste primeiro a fonte de alimentação para as tensões de +15 e -15V. Só depois é que a deve ligar ao circuito. Depois configure o gerador de sinal para uma saída sinusoidal a 1KHz com cerca de 300mVp-p (pico a pico) e ligue-o à entrada do seu circuito.

Certifique-se que a sinusóide que observa na saída não tem distorção visível e, finalmente, meça o ganho e compare com o valor teórico esperado. Observe também a relação de fase entre V_o e V_s .

c) Analise o comportamento do OpAmp na zona de saturação. Para isso aumente suavemente, no gerador de sinal, a amplitude da tensão sinusoidal aplicada na entrada do circuito. O que acontece quando este sinal (V_s) força uma excursão da tensão de saída (V_o) para fora dos limites da tensão de alimentação do OpAmp? Registe a forma de onda observada na saída do circuito e relacione os valores de tensão limite observados com o valor da excursão máxima de saída indicado no *datasheet* do TL081.

Fig. 5.3

5.3 - Somador

- a) Ao circuito da fig. 5.3 adicione o circuito da fig. 5.4, que inclui um potenciómetro de $10k\Omega$ e uma resistência de $150k\Omega$. Com o gerador de sinal regulado para uma saída sinusoidal de pequena amplitude de modo a não saturar a saída do OpAmp, varie a posição do potenciómetro e veja o efeito que isso tem na saída V_o . Explique.
- **b)** Considerando $V_S = \partial V$, quais deverão ser, teoricamente, os valores máximo e mínimo de V_o que obtém quando o cursor do potenciómetro é colocado em cada uma das suas posições extremas.

5.4 – Integrador

Monte agora o OpAmp na *configuração integradora* representada na fig. 5.5. Como viu nas aulas teóricas, \mathbf{R}_f não faz parte do integrador mas é adicionada na prática para limitar o ganho do circuito às baixas frequências, evitando que este sature.

- a) Ajuste o gerador de sinal para uma saída sinusoidal simétrica com cerca de 2Vp-p e uma frequência de 1kHz. Observe no osciloscópio as formas de onda de V_o e V_S . A que frequência obtém um ganho de tensão unitário?
- **b)** Aplique uma onda rectangular de *500Hz* e observe as formas de onda da entrada e da saída. Interprete o resultado obtido e compare-o com o que observou no circuito RC, no trabalho anterior (em 4.3-a).
- c) Retire do circuito a resistência R_f e observe o efeito.

Fig. 5.5

Aulas práticas de Sinais e Sistemas Electrónicos – 2022/2023					
Departamento de Electrónica, Telecomunicações e Informática – Universidade de Aveiro	18				