

Al Agent for Playing Gomoku

Bo Yu

SUNet ID: boyu19

Stanford
Computer Science

Problem Definition

- What is Gomoku?
 - A two-player turn-based zero-sum game
 - Played with Go pieces on a Go board
 - Winner is the player who can first obtain an unbroken chain of five pieces horizontally, vertically, or diagonally
 - White wins in the following example
- Challenges
 - Search space is huge (in a 9×9 board, there are around 80 moves and in a 15×15 board, there are around 225 moves at each state)
 - Good heuristic evaluation function requires deep domain knowledge of the game
- Scope
 - Build AI agents for playing Gomoku based on minimax and Monte Carlo tree search

Model

- Two-player, perfect-info, zero-sum game
 - Players = {black, white} (black moves first)
 - State s: (piece positions, whose turn it is)
 - Actions(s): all legal positions that Player(s)
 can place the piece
 - Succ(s, a): resulting game state if choosing action a in state s
 - **IsEnd(s):** whether s results in a five-in-a-row or draw
 - Utility(s): $+\infty$ if white wins, $-\infty$ if black wins
 - Player(s) \in Players: player who controls state s

Minimax with alpha-beta Pruning

- Limited depth minimax with alpha-beta pruning time complexity
 - $O(b^{2d})$ for branching factor b and depth d
 - For 15×15 board: $b \approx 225$, $b^2 \approx 50625(d = 1)$, $b^4 \approx 2562890625(d = 2)$
 - For 9×9 board: $b \approx 81$, $b^2 \approx 6561(d = 1)$, $b^4 \approx 43046721(d = 2)$
 - d = 2 is prohibitively complex
- Minimax with search space reduction
 - Not all legal actions need to be searched
 - We can reduce the branching factor using certain heuristics (like beam search) and then increase the depth of search tree
- Evaluate function
 - Features: different threat patterns

$$\begin{aligned} \text{Eval}(s) &= 6000 \cdot \left(N_{5}^{agent} - N_{5}^{opp} \right) + 4800 \cdot \left(N_{open4}^{agent} - N_{open4}^{opp} \right) \\ &+ 500 \cdot \left(N_{half4}^{agent} - N_{half4}^{opp} \right) + 500 \cdot \left(N_{open3}^{agent} - N_{open3}^{opp} \right) \\ &+ 200 \cdot \left(N_{half3}^{agent} - N_{half3}^{opp} \right) + 50 \cdot \left(N_{open2}^{agent} - N_{open2}^{opp} \right) \\ &+ 10 \cdot \left(N_{half2}^{agent} - N_{half2}^{opp} \right) \end{aligned}$$

Monte Carlo Tree Search

- Tree policy: using UCB1 algorithm
- Default policy: roll out simulations to completion
 - Random policy
 - Incorporate domain knowledge

Experiments and Results

- Environment: 9×9 and 15×15 board
- Agents
 - Baseline:
 - ➤ Greedy heuristic algorithm: randomly select one of the top *K* candidates according to the heuristic board evaluation function Eval(*s*)
 - Minimax with alpha-beta pruning:
 - Depth = 1 without search space reduction
 - \triangleright Depth = 2 with search space reduction (b = 5/10)
 - Monte Carlo tree search:
 - Random roll-out policy with 1000/2000/4000/8000 sim. budget
 - > Heuristic roll-out policy with 200/500 sim. budget
- Comparison with baseline:

Agents	Winning ratio	Average time per step (sec)
Minimax-d1	20/20	0.73
Minimax-d2 ($b = 5$)	20/20	3.3
MCTS-random-1000	7/20	15.1
MCTS-random-2000	9/20	45.5
MCTS-random-4000	13/20	105.1
MCTS-random-8000	20/20	140.7
MCTS-heuristic-200	8/20	90.3
MCTS-heuristic-500	13/20	191.3

Comparison with minimax depth = 1

Minimax-d2 (b = 5)

Minimax-d2(b = 10)

9×9 board	Winning ratio	Average time per step (sec)
Minimax-d2 ($b = 5$)	6W/10D/4L	3.9
Minimax-d2(b=10)	1W/9D	16.2
15×15 board	Winning ratio	Average time per step (sec)

20L

6W/3L

10.7

58.3

Analysis

- Minimax algorithm:
 - Depth = 1:
 - Performs the best considering both winning percentage and time
 - Depth = 2:
 - Need to reduce branching factor significantly, which degrades accuracy and performance
- Monte Carlo tree search algorithm:
 - With random roll-out policy:
 - No domain knowledge or handcrafted evaluation functions are needed
 - Need large number of random simulations (selfplays) to get good performance (converge to minimax policy), which is very time-consuming
 - With heuristic roll-out policy:
 - Incorporate some domain knowledge during roll-out stage instead of using random policy
 - Require a smaller number of simulations, but each simulation takes longer time

Future Work

- Minimax algorithm:
 - More sophisticated features for the evaluation function based on expert knowledge of the game
 - Use TD learning to learn the weights of the evaluation function
- Monte Carlo tree search algorithm:
 - Use deep neural networks to guide MCTS to reduce the effective depth and breadth of the search tree, thus improve the efficiency and accuracy of the algorithm

References

[1] Sylvain Gelly, David Silver, "Monte-Carlo tree search and rapid action value estimation in computer Go," Artificial Intelligence, vol. 175, Issue 11, 2011, pp. 1856-1875.

[2] C. B. Browne *et al.*, "A Survey of Monte Carlo Tree Search Methods," in IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1-43, March 2012.