DATA ANALYTICS & ML FINAL PROJECT : Bank Marketing

1. Loading Data:

```
In [2]: import pandas as pd
        df = pd.read csv("bank-additional-full.csv", sep=';')
        df.head(3)
```

Out[2]: age job marital education default housing loan contact mor 56 housemaid married basic.4y no no no telephone n services married high.school unknown 57 telephone no n 2 37 services married high.school no yes no telephone n

 $3 \text{ rows} \times 21 \text{ columns}$

```
In [3]: print("Initial data info:")
        df.info()
```

Initial data info:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 41188 entries, 0 to 41187 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype		
0	age	41188 non-null	int64		
1	job	41188 non-null	object		
2	marital	41188 non-null	object		
3	education	41188 non-null	object		
4	default	41188 non-null	object		
5	housing	41188 non-null	object		
6	loan	41188 non-null	object		
7	contact	41188 non-null	object		
8	month	41188 non-null	object		
9	day_of_week	41188 non-null	object		
10	duration	41188 non-null	int64		
11	campaign	41188 non-null	int64		
12	pdays	41188 non-null	int64		
13	previous	41188 non-null	int64		
14	poutcome	41188 non-null	object		
15	emp.var.rate	41188 non-null	float64		
16	cons.price.idx	41188 non-null	float64		
17	cons.conf.idx	41188 non-null	float64		
18	euribor3m	41188 non-null	float64		
19	nr.employed	41188 non-null	float64		
20	у	41188 non-null	object		
dtypes: float64(5), int64(5), object(11)					

memory usage: 6.6+ MB

2. Initial Cleaning & Preprocessing:

```
In [5]: # Checking for null values
    print("Missing values before dropping:\n", df.isnull().sum())

# Checking for duplicates
    print("\n\nDuplicate rows:", df.duplicated().sum())
    print("\n")

# Checking for unkown values
    categorical_cols = ['job', 'marital', 'education', 'default', 'housing', 'lc
    print("Unkown values : ")
    for col in categorical_cols:
        unknown_count = df[col].value_counts().get('unknown', 0)
        print(f"{col:<12} | 'unknown' count: {unknown_count}")</pre>
```

```
job
                         0
                         0
       marital
                         0
       education
       default
                         0
       housing
       loan
                         0
                         0
       contact
       month
                         0
       day of week
                         0
       duration
                         0
       campaign
                         0
       pdays
                         0
       previous
                         0
                         0
       poutcome
       emp.var.rate
                         0
       cons.price.idx
                         0
       cons.conf.idx
                         0
       euribor3m
                         0
       nr.employed
                         0
                         0
       dtype: int64
       Duplicate rows: 12
       Unkown values :
                   | 'unknown' count: 330
       iob
                      'unknown' count: 80
       marital
                      'unknown' count: 1731
       education
       default
                      'unknown' count: 8597
                    | 'unknown' count: 990
       housing
       loan
                      'unknown' count: 990
       contact
                      'unknown' count: 0
                      'unknown' count: 0
       month
       day of week | 'unknown' count: 0
       poutcome
                    | 'unknown' count: 0
In [6]: # Deleting duplicate values
        df = df.drop duplicates()
        # Replacing Unknown with mode of the column
        df['job'] = df['job'].replace('unknown', df['job'].mode()[0])
        df['housing'] = df['housing'].replace('unknown', df['housing'].mode()[0])
        df['loan'] = df['loan'].replace('unknown', df['loan'].mode()[0])
        df['education'] = df['education'].replace('unknown', df['education'].mode()[
        df['marital'] = df['marital'].replace('unknown', df['marital'].mode()[0])
        df['default'] = df['default'].replace('unknown', df['marital'].mode()[0])
```

3. Feature Overview

Missing values before dropping:

Feature	Description	Range		
Age	Age of the client	Numeric		
Job	Type of job	"admin.", "blue-collar", "entrepreneur", "housemaid", "management", "retired", "self-employed", "services", "student", "technician", "unemployed", "unknown"		
Marital	Marital status	"divorced", "married", "single", "unknown"		
Education	Level of education	"basic.4y", "basic.6y", "basic.9y", "high.school", "illiterate", "professional.course", "university.degree", "unknown"		
Default	Has credit in default?	"no", "yes", "unknown"		
Housing	Has a housing loan?	"no", "yes", "unknown"		
Loan	Has a personal loan?	"no", "yes", "unknown"		
Contact	Type of contact communication	"cellular", "telephone"		
Month	Last contact month	"jan", "feb", "mar",, "nov", "dec"		
Day_of_week	Last contact day of the week	"mon", "tue", "wed", "thu", "fri"		
Duration	Last contact duration in seconds (used only for benchmarking)	Numeric		
Campaign	Number of contacts in current campaign (includes last contact)	Numeric		
Pdays	Days since last contact from previous campaign (999 means never contacted)	Numeric		
Previous	Number of contacts before this campaign	Numeric		
Poutcome	Outcome of previous marketing campaign	"failure", "nonexistent", "success"		
Emp.var.rate	Employment variation rate (quarterly indicator)	Numeric		
Cons.price.idx	Consumer price index (monthly indicator)	Numeric		
Cons.conf.idx	Consumer confidence index (monthly indicator)	Numeric		
Euribor3m	Euribor 3-month rate (daily indicator)	Numeric		

Feature	Description	Range
Nr.employed	Number of employees (quarterly indicator)	Numeric
y (Target)	Has the client subscribed to a term deposit?	"yes", "no"

4. Exploratory Data Analysis:

1- Numerical Data:

```
In [9]: import matplotlib.pyplot as plt
         import seaborn as sns
         # Select numerical features
         numerical df = df.select dtypes(include='number').columns
         n cols = 5
         n rows = -(-len(numerical df) // n cols) # Ceiling division
         fig, axes = plt.subplots(n rows, n cols, figsize=(5*n cols, 4*n rows))
         axes = axes.flatten()
         # Plot each numerical feature
         for i, col in enumerate(numerical df):
             sns.histplot(data=df, x=col, kde=True, ax=axes[i])
             axes[i].set_title(f'{col} Distribution')
         plt.tight layout()
         plt.show()
                                                campaign Distribution
                                                                                  previous Distribution
                        1250 -
                                         10000
7500
```

2- Categorical Data:

```
In [11]: # Select categorical features
    categorical_df = df.select_dtypes(include='object').columns

# Exclude the target if needed
    categorical_df = [col for col in categorical_cols if col != 'y']

# Grid size
```

```
n_cols = 5
n_rows = -(-len(categorical_df) // n_cols)

fig, axes = plt.subplots(n_rows, n_cols, figsize=(6*n_cols, 5*n_rows))
axes = axes.flatten()

for i, col in enumerate(categorical_df):
    sns.countplot(data=df, x=col, ax=axes[i], order=df[col].value_counts().i
    axes[i].set_title(f'{col} Distribution')
    axes[i].tick_params(axis='x', rotation=45)

for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()
```

5. Feature Engineering & Transformation:

```
In [13]: import numpy as np
                                from sklearn.preprocessing import LabelEncoder
                                from sklearn.preprocessing import StandardScaler, MinMaxScaler
                                from sklearn.preprocessing import OneHotEncoder
                                # 1- The target variable
                                df['y'] = df['y'].map(\{'yes': 1, 'no': 0\})
                                # 2- Numerical values
                                standard_scaler_cols = ['age', 'emp.var.rate', 'cons.price.idx', 'cons.conf.
                                minmax_scaler_cols = ['duration', 'campaign', 'pdays', 'previous']
                                scaler std = StandardScaler()
                                scaler minmax = MinMaxScaler()
                                df[standard scaler cols] = scaler std.fit transform(df[standard scaler cols]
                                df[minmax scaler cols] = scaler minmax.fit transform(df[minmax scaler cols])
                                # 3- Categorical values
                                # One hot encoding for the categories :
                                onehot_cols = ['job', 'marital', 'default', 'housing', 'loan', 'contact', 'default', 'nousing', 'loan', 'contact', 'co
                                df = pd.get dummies(df, columns=onehot cols, drop first=True)
```

```
# Cyclically encode months using sine and cosine transformations to capture
month map = {'jan':1, 'feb':2, 'mar':3, 'apr':4, 'may':5, 'jun':6,
             'jul':7, 'aug':8, 'sep':9, 'oct':10, 'nov':11, 'dec':12}
df['month num'] = df['month'].map(month map)
df['month sin'] = np.sin(2 * np.pi * df['month num']/12)
df['month cos'] = np.cos(2 * np.pi * df['month num']/12)
df.drop(columns=['month', 'month num'], inplace=True)
# Cyclic encoding for education levels :
edu map = {
    'illiterate': 0,
    'basic.4y': 1,
    'basic.6y': 2,
    'basic.9y': 3,
    'high.school': 4,
    'professional.course': 5,
    'university.degree': 6,
df['education'] = df['education'].map(edu map)
```

Feature Selection:

1- Correlation analysis:

```
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

print("\nCalculating Correlation Matrix...")
correlation_matrix = df.corr()

plt.figure(figsize=(16, 9))
mask = np.triu(np.ones_like(correlation_matrix, dtype=bool))
sns.heatmap(correlation_matrix, annot=True, cmap='RdYlBu', fmt='.2f', linewiplt.title('Correlation Matrix of Processed Features', fontsize=14)
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
```

Calculating Correlation Matrix...

Analysis of Correlation Matrix and Feature Selection

From analyzing the correlation matrix, features with high correlation coefficients (close to 1 or -1) suggest redundancy. To reduce multicollinearity, we are dropping the following features:

Feature	Highly Correlated With			
previous	poutcome_nonexistent, nr.employed, euribor3m,			
pdays	poutcome_success, poutcome_nonexistent, previous,			
emp.var.rate	euribor3m, cons.price.idx, nr.employed,			
euribor3m	pdays, previous, cons.price.idx,			
marital_single	age, job_student, marital married,			

```
In [17]: # Dropping features based on correlation
    df.drop(columns=['previous', 'pdays', 'emp.var.rate', 'euribor3m', 'marital_

# Visuallising the difference
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np

print("\nCalculating Correlation Matrix...")
    correlation_matrix = df.corr()

plt.figure(figsize=(16, 9))
    mask = np.triu(np.ones_like(correlation_matrix, dtype=bool))
    sns.heatmap(correlation_matrix, annot=True, cmap='RdYlBu', fmt='.2f', linewiplt.title('Correlation Matrix of Processed Features', fontsize=14)
```

```
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
```

Calculating Correlation Matrix...

2- Feature Importance Analysis

```
In [19]: from sklearn.model selection import train test split
         from sklearn.ensemble import RandomForestRegressor
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         # Split data
         X train, X test, y train, y test = train test split(df.drop(columns=['y', 'd
         # Sample a subset
         X train sample = X train.sample(frac=0.2, random state=42)
         y train sample = y train.loc[X train sample.index]
         print("\nEvaluating feature importance using Random Forest...")
         rf = RandomForestRegressor(n estimators=100, random state=42, n jobs=-1)
         rf.fit(X train, y train)
         # Get feature importances
         importances = rf.feature importances
         indices = np.argsort(importances)[::-1]
         # Plot feature importances
         plt.figure(figsize=(12, 8))
         plt.title('Feature Importances for Music Popularity')
         plt.bar(range(X train.shape[1]), importances[indices], align='center')
```

```
plt.xticks(range(X_train.shape[1]), [X_train.columns[i] for i in indices], r
plt.tight_layout()
plt.show()

# Select top features based on cumulative importance
cumulative_importance = np.cumsum(importances[indices])
n_features = np.where(cumulative_importance > 0.9)[0][0] + 1
top_features = [X_train.columns[i] for i in indices[:n_features]]
print(f"Top features (90% cumulative importance):\n\n{top_features}\n")

# Create refined dataset
df_important = X_train[top_features].copy()

# Retain custom features if not included
for feature in ['energy_to_acousticness_ratio', 'vocal_character']:
    if feature not in df_important.columns and feature in X_train.columns:
        df_important[feature] = X_train[feature]

print(f"Refined feature set shape: {df_important.shape}")
```

Evaluating feature importance using Random Forest...

Top features (90% cumulative importance):

['age', 'nr.employed', 'campaign', 'education', 'housing_yes', 'marital_marr
ied', 'poutcome_success', 'loan_yes', 'cons.conf.idx', 'month_sin', 'day_of_
week_thu', 'day_of_week_tue', 'day_of_week_mon', 'day_of_week_wed', 'job_tec
hnician', 'default_no', 'cons.price.idx', 'job_blue-collar', 'month_cos']

Refined feature set shape: (32940, 19)

ANN Model:

1- Scaling:

```
In [21]: from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         import pandas as pd
         # Assuming 'df' is your DataFrame and 'target' is the popularity column
         X = df[top features]
         y = df['y']
         # Standardize the features
         # For boolean features
         for column in X:
             if df[column].dtype == bool:
                 df[column] = df[column].map({True: 1, False: 0})
         # For numerical features
         scaler = StandardScaler()
         columns to exclude = ['age', 'cons.price.idx', 'cons.conf.idx', 'nr.employed
         X scaled = X.copy()
         X scaled[X.columns.difference(columns to exclude)] = scaler.fit transform(X[
         # Split into train, validation, and test sets
         X train, X temp, y train, y temp = train test split(X scaled, y, test size=€
         X val, X test, y val, y test = train test split(X temp, y temp, test size=0.
         # Preview
         print("Preview of final scaled X values : ")
         X.head()
```

Preview of final scaled X values :

Out[21]:

	age	nr.employed	campaign	education	housing_yes	marital_married
0	1.533143	0.331695	0.0	1	False	True
1	1.629107	0.331695	0.0	4	False	True
2	-0.290177	0.331695	0.0	4	True	True
3	-0.002284	0.331695	0.0	2	False	True
4	1.533143	0.331695	0.0	4	False	True

2. Defining The Model

We decided to go ahead and experiment with an **Artificial Neural Network** (**ANN**) model, as we have many features to handle, introducing several complex, non-linear relationships. We'll begin with a simple architecture:

- **Input Layer**: 19 neurons (corresponding to the total number of final chosen features)
- **Hidden Layer 1**: 64 neurons, ReLU activation

- **Hidden Layer 2**: 32 neurons, ReLU activation
- Output Layer: 1 neuron, linear activation

```
In [30]: import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense, BatchNormalization, Dropout
         from tensorflow.keras.optimizers import Adam
         model = Sequential([
             # Input layer
             Dense(128, activation='relu', input shape=(X train.shape[1],)),
             BatchNormalization(),
             Dropout(0.3),
             # Hidden layers
             Dense(64, activation='relu'),
             BatchNormalization(),
             Dropout (0.2),
             Dense(32, activation='relu'),
             BatchNormalization(),
             Dropout (0.2),
             # Output layer - for binary classification
             Dense(1, activation='sigmoid') # Sigmoid for binary classification
         ])
         # Compile with appropriate loss for binary classification
         model.compile(
             optimizer=Adam(learning rate=0.001),
             loss='binary_crossentropy', # Suitable for binary classification
             metrics=['accuracy', 'AUC'] # Track accuracy and AUC
         )
```

/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
 super().__init__(activity_regularizer=activity_regularizer, **kwargs)

3. Training & Evaluating the Model

We're training the model on the **scaled X values** with the following configuration:

- **Epochs**: Number of times the model sees the full dataset (e.g., 100)
- **Batch Size**: Number of samples processed before updating the model's weights (e.g., 32)
- Validation Split: A portion of the training data reserved to monitor performance and prevent overfitting

```
# Define callbacks
early_stopping = EarlyStopping(
   monitor='val_loss',
   patience=20, # More patience
   restore best weights=True,
   verbose=1
reduce lr = ReduceLROnPlateau(
   monitor='val_loss',
   factor=0.5,
   patience=5,
   min lr=0.00001,
   verbose=1
# Train with better parameters
history = model.fit(
   X_train, y_train,
   epochs=150,
   batch size=64, # Try different batch size
   validation_data=(X_val, y_val),
   callbacks=[early_stopping, reduce_lr],
   verbose=1
```

```
Epoch 1/150
              6s 3ms/step - AUC: 0.6467 - accuracy: 0.7521 -
515/515 ----
loss: 0.5560 - val AUC: 0.7864 - val accuracy: 0.8924 - val loss: 0.2963 - l
earning rate: 0.0010
Epoch 2/150
515/515 ----
                     2s 3ms/step - AUC: 0.7295 - accuracy: 0.8890 -
loss: 0.3170 - val AUC: 0.7874 - val accuracy: 0.8936 - val loss: 0.2941 - l
earning rate: 0.0010
Epoch 3/150
             1s 3ms/step - AUC: 0.7663 - accuracy: 0.8975 -
515/515 ----
loss: 0.2918 - val AUC: 0.7907 - val accuracy: 0.8936 - val loss: 0.2900 - l
earning rate: 0.0010
Epoch 4/150
              2s 4ms/step - AUC: 0.7630 - accuracy: 0.8959 -
515/515 ----
loss: 0.2949 - val AUC: 0.7917 - val accuracy: 0.8934 - val loss: 0.2906 - l
earning rate: 0.0010
Epoch 5/150
3s 5ms/step - AUC: 0.7687 - accuracy: 0.8942 -
loss: 0.2927 - val AUC: 0.7901 - val accuracy: 0.8949 - val loss: 0.2891 - l
earning rate: 0.0010
Epoch 6/150
                 2s 4ms/step - AUC: 0.7798 - accuracy: 0.8983 -
515/515 ----
loss: 0.2840 - val AUC: 0.7947 - val accuracy: 0.8910 - val loss: 0.2891 - l
earning rate: 0.0010
Epoch 7/150
515/515 1s 3ms/step - AUC: 0.7749 - accuracy: 0.8990 -
loss: 0.2846 - val AUC: 0.7917 - val accuracy: 0.8910 - val loss: 0.2913 - l
earning rate: 0.0010
Epoch 8/150
1s 3ms/step - AUC: 0.7764 - accuracy: 0.8962 -
loss: 0.2873 - val AUC: 0.7898 - val accuracy: 0.8936 - val loss: 0.2892 - l
earning rate: 0.0010
Epoch 9/150
                    1s 3ms/step - AUC: 0.7830 - accuracy: 0.9004 -
515/515 ----
loss: 0.2788 - val AUC: 0.7885 - val accuracy: 0.8941 - val loss: 0.2889 - l
earning rate: 0.0010
loss: 0.2846 - val AUC: 0.7924 - val accuracy: 0.8924 - val loss: 0.2887 - l
earning rate: 0.0010
Epoch 11/150
515/515 -----
             ______ 1s 3ms/step - AUC: 0.7836 - accuracy: 0.8992 -
loss: 0.2795 - val AUC: 0.7929 - val accuracy: 0.8927 - val loss: 0.2891 - l
earning rate: 0.0010
Epoch 12/150
1s 3ms/step - AUC: 0.7948 - accuracy: 0.9008 -
loss: 0.2747 - val AUC: 0.7955 - val accuracy: 0.8927 - val loss: 0.2891 - l
earning rate: 0.0010
Epoch 13/150
                 1s 3ms/step - AUC: 0.8004 - accuracy: 0.9010 -
515/515 ----
loss: 0.2697 - val AUC: 0.7994 - val accuracy: 0.8936 - val loss: 0.2871 - l
earning rate: 0.0010
Epoch 14/150
2s 3ms/step - AUC: 0.7942 - accuracy: 0.8985 -
loss: 0.2780 - val AUC: 0.7929 - val accuracy: 0.8927 - val loss: 0.2899 - l
earning rate: 0.0010
```

```
Epoch 15/150
                   ______ 2s 3ms/step - AUC: 0.7962 - accuracy: 0.9016 -
515/515 -----
loss: 0.2736 - val AUC: 0.7939 - val accuracy: 0.8932 - val loss: 0.2877 - l
earning rate: 0.0010
Epoch 16/150
                      2s 3ms/step - AUC: 0.7985 - accuracy: 0.9008 -
515/515 ----
loss: 0.2747 - val AUC: 0.7929 - val accuracy: 0.8934 - val loss: 0.2879 - l
earning rate: 0.0010
Epoch 17/150
              2s 3ms/step - AUC: 0.7943 - accuracy: 0.8977 -
515/515 -----
loss: 0.2812 - val AUC: 0.7920 - val accuracy: 0.8924 - val loss: 0.2880 - l
earning rate: 0.0010
Epoch 18/150
                   Os 3ms/step - AUC: 0.7990 - accuracy: 0.8998 -
506/515 -----
loss: 0.2746
Epoch 18: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.
515/515 2s 4ms/step - AUC: 0.7989 - accuracy: 0.8998 -
loss: 0.2746 - val AUC: 0.7942 - val accuracy: 0.8922 - val loss: 0.2884 - l
earning rate: 0.0010
Epoch 19/150
                      2s 4ms/step - AUC: 0.7934 - accuracy: 0.8991 -
515/515 -----
loss: 0.2770 - val AUC: 0.7930 - val accuracy: 0.8936 - val loss: 0.2875 - l
earning rate: 5.0000e-04
Epoch 20/150
515/515 ———
              ______ 1s 3ms/step - AUC: 0.7951 - accuracy: 0.8983 -
loss: 0.2772 - val AUC: 0.7956 - val accuracy: 0.8932 - val loss: 0.2868 - l
earning rate: 5.0000e-04
Epoch 21/150
                     1s 2ms/step - AUC: 0.8037 - accuracy: 0.8993 -
515/515 ———
loss: 0.2738 - val AUC: 0.7932 - val accuracy: 0.8963 - val loss: 0.2872 - l
earning rate: 5.0000e-04
Epoch 22/150

515/515 — 1s 2ms/step - AUC: 0.8017 - accuracy: 0.9015 -
loss: 0.2736 - val AUC: 0.7893 - val accuracy: 0.8927 - val loss: 0.2877 - l
earning rate: 5.0000e-04
Epoch 23/150
                  ______ 1s 3ms/step - AUC: 0.7938 - accuracy: 0.9014 -
515/515 -----
loss: 0.2719 - val AUC: 0.7925 - val accuracy: 0.8934 - val loss: 0.2877 - l
earning rate: 5.0000e-04
Epoch 24/150
1s 3ms/step - AUC: 0.8105 - accuracy: 0.9010 -
loss: 0.2696 - val AUC: 0.7917 - val accuracy: 0.8949 - val loss: 0.2885 - l
earning rate: 5.0000e-04
Epoch 25/150
512/515 ----
                    Os 3ms/step - AUC: 0.8055 - accuracy: 0.9003 -
loss: 0.2722
Epoch 25: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
515/515 2s 3ms/step - AUC: 0.8055 - accuracy: 0.9003 -
loss: 0.2722 - val_AUC: 0.7870 - val_accuracy: 0.8941 - val loss: 0.2886 - l
earning_rate: 5.0000e-04
Epoch 26/150
515/515 ----
              ______ 2s 3ms/step - AUC: 0.8021 - accuracy: 0.9018 -
loss: 0.2730 - val AUC: 0.7918 - val accuracy: 0.8941 - val loss: 0.2880 - l
earning rate: 2.5000e-04
Epoch 27/150
2s 3ms/step - AUC: 0.8107 - accuracy: 0.9007 -
```

```
loss: 0.2717 - val AUC: 0.7898 - val accuracy: 0.8939 - val loss: 0.2881 - l
earning rate: 2.5000e-04
Epoch 28/150
                    ______ 1s 2ms/step - AUC: 0.8050 - accuracy: 0.9006 -
515/515 ----
loss: 0.2713 - val AUC: 0.7890 - val accuracy: 0.8939 - val loss: 0.2882 - l
earning rate: 2.5000e-04
Epoch 29/150
515/515 — 1s 3ms/step - AUC: 0.8076 - accuracy: 0.9022 -
loss: 0.2720 - val AUC: 0.7903 - val accuracy: 0.8941 - val loss: 0.2883 - l
earning rate: 2.5000e-04
Epoch 30/150
                   Os 2ms/step - AUC: 0.8010 - accuracy: 0.9004 -
513/515 ----
loss: 0.2743
Epoch 30: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
515/515 — 1s 2ms/step - AUC: 0.8010 - accuracy: 0.9004 -
loss: 0.2743 - val AUC: 0.7909 - val accuracy: 0.8941 - val loss: 0.2886 - l
earning rate: 2.5000e-04
Epoch 31/150
515/515 -
                        — 1s 3ms/step - AUC: 0.7994 - accuracy: 0.9015 -
loss: 0.2720 - val AUC: 0.7902 - val accuracy: 0.8936 - val loss: 0.2882 - l
earning rate: 1.2500e-04
Epoch 32/150
1s 3ms/step - AUC: 0.8040 - accuracy: 0.8989 -
loss: 0.2750 - val AUC: 0.7907 - val accuracy: 0.8932 - val loss: 0.2880 - l
earning rate: 1.2500e-04
Epoch 33/150
                   1s 3ms/step - AUC: 0.8178 - accuracy: 0.9033 -
515/515 ----
loss: 0.2637 - val AUC: 0.7905 - val accuracy: 0.8927 - val loss: 0.2880 - l
earning_rate: 1.2500e-04
Epoch 34/150
                      1s 3ms/step - AUC: 0.8190 - accuracy: 0.9020 -
515/515 ----
loss: 0.2657 - val AUC: 0.7900 - val accuracy: 0.8934 - val loss: 0.2884 - l
earning rate: 1.2500e-04
Epoch 35/150
506/515 ———
                  Os 2ms/step - AUC: 0.8123 - accuracy: 0.9012 -
loss: 0.2692
Epoch 35: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
1s 2ms/step - AUC: 0.8122 - accuracy: 0.9012 -
loss: 0.2692 - val AUC: 0.7902 - val accuracy: 0.8934 - val loss: 0.2884 - l
earning rate: 1.2500e-04
Epoch 36/150
515/515 ----
                  1s 2ms/step - AUC: 0.8125 - accuracy: 0.9032 -
loss: 0.2658 - val AUC: 0.7905 - val accuracy: 0.8932 - val loss: 0.2884 - l
earning rate: 6.2500e-05
Epoch 37/150
              ______ 1s 2ms/step - AUC: 0.8081 - accuracy: 0.9039 -
515/515 ----
loss: 0.2645 - val AUC: 0.7904 - val accuracy: 0.8932 - val loss: 0.2885 - l
earning rate: 6.2500e-05
Epoch 38/150
                    1s 2ms/step - AUC: 0.8150 - accuracy: 0.9014 -
515/515 ----
loss: 0.2662 - val AUC: 0.7904 - val accuracy: 0.8929 - val loss: 0.2885 - l
earning rate: 6.2500e-05
Epoch 39/150
             ______ 1s 2ms/step - AUC: 0.8140 - accuracy: 0.9004 -
515/515 —
loss: 0.2695 - val AUC: 0.7896 - val accuracy: 0.8934 - val loss: 0.2884 - l
earning rate: 6.2500e-05
```

```
Epoch 40/150

496/515 — — — Os 2ms/step - AUC: 0.8082 - accuracy: 0.9010 - loss: 0.2719

Epoch 40: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.

515/515 — — 1s 2ms/step - AUC: 0.8082 - accuracy: 0.9011 - loss: 0.2718 - val_AUC: 0.7890 - val_accuracy: 0.8936 - val_loss: 0.2885 - learning_rate: 6.2500e-05

Epoch 40: early stopping

Restoring model weights from the end of the best epoch: 20.
```

```
In [34]: import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.metrics import classification report, confusion matrix, roc cur
         # Get probabilities
         y pred prob = model.predict(X test)
         # Convert to binary predictions
         y pred binary = (y pred prob > 0.5).astype(int)
         # Calculate metrics
         print(classification_report(y_test, y_pred_binary))
         # Create confusion matrix
         cm = confusion matrix(y test, y pred binary)
         # Plot ROC curve
         fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
         roc auc = auc(fpr, tpr)
         # Create visualization dashboard
         fig = plt.figure(figsize=(16, 12))
         fig.suptitle('Bank Marketing Classification Results', fontsize=16, fontweigh
         # Define grid for subplots
         gs = fig.add gridspec(2, 2, hspace=0.3, wspace=0.3)
         # ROC curve
         ax1 = fig.add subplot(gs[0, 0])
         ax1.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (AUC = {roc_a
         ax1.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
         ax1.set xlabel('False Positive Rate')
         ax1.set ylabel('True Positive Rate')
         ax1.set title('Receiver Operating Characteristic (ROC)')
         ax1.legend(loc="lower right")
         ax1.grid(True, alpha=0.3)
         # Confusion Matrix
         ax2 = fig.add subplot(gs[0, 1])
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', ax=ax2)
         ax2.set xlabel('Predicted Label')
         ax2.set ylabel('True Label')
         ax2.set title('Confusion Matrix')
         # Training history
         ax3 = fig.add subplot(gs[1, 0])
         ax3.plot(history.history['loss'], label='Training Loss')
```

```
ax3.plot(history.history['val loss'], label='Validation Loss')
ax3.set_xlabel('Epochs')
ax3.set ylabel('Loss')
ax3.set title('Training and Validation Loss')
ax3.legend()
ax3.grid(True, alpha=0.3)
# Classification metrics table
ax4 = fig.add subplot(gs[1, 1])
ax4.axis('off')
metrics_text = f"""
CLASSIFICATION METRICS
Accuracy: {accuracy score(y test, y pred binary):.4f}
Precision: {precision score(y test, y pred binary):.4f}
Recall: {recall score(y test, y pred binary):.4f}
F1 Score: {f1 score(y test, y pred binary):.4f}
AUC: {roc auc:.4f}
ax4.text(0.5, 0.5, metrics text, fontsize=12,
        ha='center', va='center',
         bbox=dict(boxstyle="round,pad=1", facecolor='#f0f0f0',
                  edgecolor='gray', alpha=0.7))
plt.tight layout()
plt.subplots adjust(top=0.9)
plt.show()
```

129/129 ——	Os 2ms/step			
123, 123	precision		f1-score	support
0	0.90	0.99	0.95	3636
1	0.75	0.21	0.33	482
accuracy			0.90	4118
macro avg	0.83	0.60	0.64	4118
weighted avg	0.89	0.90	0.87	4118

/var/folders/96/58r8hw9s4kjdr3zgpcmyjtn80000gn/T/ipykernel_65146/2964765037.
py:71: UserWarning: This figure includes Axes that are not compatible with t
ight_layout, so results might be incorrect.
 plt.tight_layout()

Bank Marketing Classification Results

CLASSIFICATION METRICS

Accuracy: 0.8997
Precision: 0.7518
Recall: 0.2137
F1 Score: 0.3328
AUC: 0.7863

4- Cross Validation:

```
from sklearn.model selection import KFold
In [36]:
         import numpy as np
         import tensorflow as tf
         from tensorflow.keras.callbacks import EarlyStopping
         # Set up cross-validation
         kfold = KFold(n splits=5, shuffle=True, random state=42)
         cv scores = []
         # Manual cross-validation loop
         for train idx, val_idx in kfold.split(X_scaled):
             # Split data
             X_train_cv, X_val_cv = X_scaled.iloc[train_idx], X_scaled.iloc[val_idx]
             y train cv, y val cv = y.iloc[train idx], y.iloc[val idx]
             # Build model
             model = tf.keras.Sequential([
                 tf.keras.layers.Dense(128, activation='relu', input shape=(X scaled.
                 tf.keras.layers.BatchNormalization(),
                 tf.keras.layers.Dropout(0.3),
                 tf.keras.layers.Dense(64, activation='relu'),
                 tf.keras.layers.BatchNormalization(),
```

```
tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(32, activation='relu'),
        tf.keras.layers.BatchNormalization(),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(1, activation='sigmoid')
   ])
    # Compile
    model.compile(
        optimizer=tf.keras.optimizers.Adam(0.001),
        loss='binary crossentropy',
        metrics=['accuracy']
    )
   # Train
    early stopping = EarlyStopping(monitor='val loss', patience=10, restore
    history = model.fit(
       X train cv, y train cv,
        epochs=50,
        batch size=64,
        validation data=(X val cv, y val cv),
        callbacks=[early stopping],
       verbose=0
   )
   # Evaluate
   _, accuracy = model.evaluate(X_val_cv, y_val_cv, verbose=0)
   cv scores.append(accuracy)
# Print results
print(f"CV Accuracy: {np.mean(cv scores):.4f} (±{np.std(cv scores):.4f})")
```

```
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwarqs)
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
CV Accuracy: 0.8992 (±0.0022)
```

5- Fine Tuning the hyper parameters :

```
In [38]: import itertools
         from tensorflow.keras.optimizers import Adam, RMSprop
         # Define parameter grid
         param combinations = list(itertools.product(
             [32, 64, 128], # batch size
             [0.001, 0.01], # learning rate
                            # dropout rate
             [0.2, 0.3],
             ['adam', 'rmsprop'] # optimizer
         ))
         results = []
         # Use a sample of the data for quicker hyperparameter tuning
         train idx, val idx = train test split(np.arange(len(X train)), test size=0.3
         X train sample, X val sample = X train.iloc[train idx], X train.iloc[val idx
         y train sample, y val sample = y train.iloc[train idx], y train.iloc[val idx
         # Try each combination
         for batch size, learning rate, dropout rate, optimizer name in param combine
             # Build model
             model = tf.keras.Sequential([
                 tf.keras.layers.Dense(128, activation='relu', input shape=(X train.s
                 tf.keras.layers.Dropout(dropout rate),
                 tf.keras.layers.Dense(64, activation='relu'),
                 tf.keras.layers.Dropout(dropout rate),
```

```
tf.keras.layers.Dense(32, activation='relu'),
         tf.keras.layers.Dropout(dropout rate),
         tf.keras.layers.Dense(1, activation='sigmoid')
     ])
     # Configure optimizer
     if optimizer name == 'adam':
         optimizer = Adam(learning rate=learning rate)
     else:
         optimizer = RMSprop(learning rate=learning rate)
     # Compile
     model.compile(
         optimizer=optimizer,
         loss='binary crossentropy',
         metrics=['accuracy']
     )
     # Train
     early stopping = EarlyStopping(monitor='val loss', patience=5, restore t
     history = model.fit(
         X train sample, y train sample,
         epochs=30, # Reduced for speed
         batch size=batch size,
         validation data=(X val sample, y val sample),
         callbacks=[early stopping],
         verbose=0
     )
     # Evaluate
     _, accuracy = model.evaluate(X_val_sample, y val sample, verbose=0)
     # Store results
     params = {
         'batch size': batch size,
         'learning rate': learning rate,
         'dropout rate': dropout rate,
         'optimizer': optimizer name,
         'accuracy': accuracy
     results.append(params)
     print(f"Params: {params}")
 # Find best parameters
 best params = max(results, key=lambda x: x['accuracy'])
 print(f"\nBest parameters: {best params}")
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Params: {'batch size': 32, 'learning rate': 0.001, 'dropout rate': 0.2, 'opt
imizer': 'adam', 'accuracy': 0.9023476839065552}
```

```
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Params: {'batch size': 32, 'learning rate': 0.001, 'dropout rate': 0.2, 'opt
imizer': 'rmsprop', 'accuracy': 0.9024488925933838}
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Params: {'batch size': 32, 'learning rate': 0.001, 'dropout rate': 0.3, 'opt
imizer': 'adam', 'accuracy': 0.9013357758522034}
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Params: {'batch_size': 32, 'learning_rate': 0.001, 'dropout_rate': 0.3, 'opt
imizer': 'rmsprop', 'accuracy': 0.9024488925933838}
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a laye
r. When using Seguential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Params: {'batch_size': 32, 'learning_rate': 0.01, 'dropout_rate': 0.2, 'opti
mizer': 'adam', 'accuracy': 0.9007285833358765}
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
Params: {'batch size': 32, 'learning rate': 0.01, 'dropout rate': 0.2, 'opti
mizer': 'rmsprop', 'accuracy': 0.9013357758522034}
Best parameters: {'batch size': 32, 'learning rate': 0.001, 'dropout rate':
0.2, 'optimizer': 'rmsprop', 'accuracy': 0.9024488925933838}
 Making predictions and Final Evaluation :
```

```
In [40]: from sklearn.metrics import accuracy_score, classification_report, confusion
import matplotlib.pyplot as plt

# Extract best parameters
best_batch_size = best_params['batch_size']
best_learning_rate = best_params['learning_rate']
best_dropout_rate = best_params['dropout_rate']
best_optimizer_name = best_params['optimizer']

# Rebuild final model with best params
final_model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation='relu', input_shape=(X_train.shape
    tf.keras.layers.Dropout(best_dropout_rate),
```

```
tf.keras.layers.Dense(64, activation='relu'),
     tf.keras.layers.Dropout(best dropout rate),
     tf.keras.layers.Dense(32, activation='relu'),
     tf.keras.layers.Dropout(best dropout rate),
     tf.keras.layers.Dense(1, activation='sigmoid')
 ])
 optimizer = Adam(learning rate=best learning rate) if best optimizer name ==
 final model.compile(optimizer=optimizer, loss='binary crossentropy', metrics
 # Train final model
 final model.fit(X train, y train, epochs=50, batch size=best params['batch s
                 validation split=0.2, callbacks=[EarlyStopping(patience=5, r
 # Predict and evaluate
 y pred probs = final model.predict(X test).ravel()
 y pred = (y pred probs > 0.5).astype(int)
 print(f"\nFinal Test Accuracy: {accuracy score(y test, y pred):.4f}")
 print(f"ROC AUC Score: {roc auc score(y test, y pred probs):.4f}\n")
 print("Classification Report:\n", classification report(y test, y pred))
 print("Confusion Matrix:\n", confusion matrix(y test, y pred))
 # ROC Curve
 RocCurveDisplay.from predictions(y test, y pred probs)
 plt.title("ROC Curve")
 plt.grid()
 plt.show()
/opt/anaconda3/lib/python3.12/site-packages/keras/src/layers/core/dense.py:8
7: UserWarning: Do not pass an `input shape`/`input dim` argument to a laye
r. When using Sequential models, prefer using an `Input(shape)` object as th
e first layer in the model instead.
  super(). init (activity regularizer=activity regularizer, **kwargs)
129/129 -
                   Os 1ms/step
Final Test Accuracy: 0.8961
ROC AUC Score: 0.7777
Classification Report:
                            recall f1-score
               precision
                                              support
           0
                   0.90
                             0.99
                                       0.94
                                                 3636
                   0.76
                             0.16
                                       0.27
                                                  482
           1
                                       0.90
                                                 4118
    accuracy
                   0.83
                             0.58
                                       0.61
                                                 4118
   macro avq
weighted avg
                  0.88
                             0.90
                                       0.87
                                                 4118
Confusion Matrix:
 [[3611
         25]
 [ 403 79]]
```


This notebook was converted with convert.ploomber.io