

The importance of fillers for text representations of speech transcripts.

Oral Presentation at WACAI 2021

Tanvi Dinkar*, Pierre Colombo ****
Matthieu Labeau , Chloé Clave

The importance of fillers for text representations of speech transcripts.

Oral Presentation at WACAI 2021

Tanvi Dinkar*; Pierre Colombo *****
Matthieu Labeau , Chloe Clavel

Spoken language is rarely fluent, filled with disfluencies.

- Spoken language is rarely fluent, filled with disfluencies.
- Fillers: disfluencies filling a pause in an utterance or conversation, "um" or "uh" in English.

- Spoken language is rarely fluent, filled with disfluencies.
- Fillers: disfluencies filling a pause in an utterance or conversation, "um" or "uh" in English.

Jorge Cham, www.phdcomics.com

- Spoken language is rarely fluent, filled with disfluencies.
- Fillers: disfluencies filling a pause in an utterance or conversation, "um" or "uh" in English.
 - Meanings of fillers:
 - Contextual, dependent on the perception of the listener.

Jorge Cham, www.phdcomics.com

- Spoken language is rarely fluent, filled with disfluencies.
- Fillers: disfluencies filling a pause in an utterance or conversation, "um" or "uh" in English.
 - Meanings of fillers:
 - Contextual, dependent on the perception of the listener.
 - Feeling of another's knowing (FOAK)
 (Brennan & Williams, 1995), perception of confidence.

Jorge Cham, www.phdcomics.com

- Spoken language is rarely fluent, filled with disfluencies.
- Fillers: disfluencies filling a pause in an utterance or conversation, "um" or "uh" in English.
 - Meanings of fillers:
 - Contextual, dependent on the perception of the listener.
 - Feeling of another's knowing (FOAK)
 (Brennan & Williams, 1995), perception of confidence.
- Despite rich linguistic literature, fillers SLU typically considered noise!

Jorge Cham, www.phdcomics.com

(I pronounce FOAK as the English word "folk" \fōk\)

- Spoken language is rarely fluent, filled with disfluencies.
- Fillers: disfluencies filling a pause in an utterance or conversation, "um" or "uh" in English.
 - Meanings of fillers:
 - Contextual, dependent on the perception of the listener.
 - Feeling of another's knowing (FOAK)
 (Brennan & Williams, 1995), perception of confidence.
- Despite rich linguistic literature, fillers SLU typically considered noise!

Jorge Cham, www.phdcomics.com

(I pronounce FOAK as the English word "folk" \fōk\)

That is quite the rap sheet, Prison Mike .
$$\omega_1^4 \ \omega_2^4 \ \omega_3^4 \ \omega_4^4 \ \omega_5^4 \ \omega_6^4 \ \omega_7^4 \ \omega_8^4 \ \omega_9^4 \ \omega_{10}^4$$

Language modelling:

Language modelling:

That is [MASK] the rap [MASK], Prison Mike .
$$\omega_1^4 \ \omega_2^4 \ \omega_3^4 \ \omega_4^4 \ \omega_5^4 \ \omega_6^4 \ \omega_7^4 \ \omega_8^4 \ \omega_9^4 \ \omega_{10}^4$$

Language modelling:

Language modelling:

Classification

Language modelling:

Classification

Language modelling:

Classification

Language modelling:

Finetuning

Classification

That is quite the rap sheet Prison Mike .
$$\omega_1^4 \ \omega_2^4 \ \omega_3^4 \ \omega_4^4 \ \omega_5^4 \ \omega_6^4 \ \omega_7^4 \ \omega_8^4 \ \omega_8^4 \ \omega_9^4 \ \omega_{10}^4$$

Language modelling:

Finetuning

Classification

Language modelling:

Finetuning

Classification

Language modelling:

Finetuning

Classification

Aim

Studied Observations

Studied Observations

O1: Fillers play an important role in spoken language, should not be removed as noise.

Studied Observations

- O1: Fillers play an important role in spoken language, should not be removed as noise.
- O2: Fillers play an important role in the listener's perception of the speaker's expressed confidence (FOAK).

Studied Observations

- O1: Fillers play an important role in spoken language, should not be removed as noise.
- O2: Fillers play an important role in the listener's perception of the speaker's expressed confidence (FOAK).

Advantages of our study:

Studied Observations

- O1: Fillers play an important role in spoken language, should not be removed as noise.
- O2: Fillers play an important role in the listener's perception of the speaker's expressed confidence (FOAK).

Advantages of our study:

Experimental validation of O1,O2, without handcrafting features.

Studied Observations

- O1: Fillers play an important role in spoken language, should not be removed as noise.
- O2: Fillers play an important role in the listener's perception of the speaker's expressed confidence (FOAK).

Advantages of our study:

- Experimental validation of O1,O2, without handcrafting features.
- Efficiently represent and study informativeness of fillers using SOTA models.

Which dataset?

Which dataset?

- POM dataset (*Park et al., 2014*), spontaneous speech, movie review videos.
 - Speakers record videos of themselves giving a movie review.
 - Annotators: "How confident was the speaker?"

Which dataset?

- POM dataset (Park et al., 2014), spontaneous speech, movie review videos.
 - Speakers record videos of themselves giving a movie review.
 - Annotators: "How confident was the speaker?"

Why do we rely on POM?

Which dataset?

- POM dataset (Park et al., 2014), spontaneous speech, movie review videos.
 - Speakers record videos of themselves giving a movie review.
 - Annotators: "How confident was the speaker?"

Why do we rely on POM?

- Filler count high (4%), inter-annotator agreement confidence high (Kripps alpha = 0.73).
- Annotator were not asked to pay attention to the speaker's use of fillers.

Which dataset?

- POM dataset (Park et al., 2014), spontaneous speech, movie review videos.
 - Speakers record videos of themselves giving a movie review.
 - Annotators: "How confident was the speaker?"

Why do we rely on POM?

- Filler count high (4%), inter-annotator agreement confidence high (Kripps alpha = 0.73).
- Annotator were not asked to pay attention to the speaker's use of fillers.

It is worth noting that ...

Dataset

Which dataset?

- POM dataset (Park et al., 2014), spontaneous speech, movie review videos.
 - Speakers record videos of themselves giving a movie review.
 - Annotators: "How confident was the speaker?"

Why do we rely on POM?

- Filler count high (4%), inter-annotator agreement confidence high (Kripps alpha = 0.73).
- Annotator were not asked to pay attention to the speaker's use of fillers.

It is worth noting that ...

- Annotations of fillers and confidence available.
- Monologues, dialogue related disfluencies (such as backchannels) are not present.

O1: Fillers play an important role in spoken language

O1: Fillers play an important role in spoken language

A language modelling task, using BERT, same MLM objective (Devlin et al., 2019).

01: Fillers play an important role in spoken language

A language modelling task, using BERT, same MLM objective (Devlin et al., 2019).

Each experiment: token representation strategy (TR) and a pre-processing strategy (PS).

PS1: Fillers removed (Training + inference)	PS3: Fillers kept (Training + Inference)
TR1: No special treatment	TR2: Special Token for each

01: Fillers play an important role in spoken language

A language modelling task, using BERT, same MLM objective (Devlin et al., 2019).

Each experiment: token representation strategy (TR) and a pre-processing strategy (PS).

PS1: Fillers removed (Training + inference)	PS3: Fillers kept (Training + Inference)
TR1: No special treatment	TR2: Special Token for each

Raw (um) Things that (uh) you usually wouldn't find funny.

O1: Fillers play an important role in spoken language

A language modelling task, using BERT, same MLM objective (Devlin et al., 2019).

Each experiment: token representation strategy (TR) and a pre-processing strategy (PS).

PS1: Fillers removed (Training + inference)	PS3: Fillers kept (Training + Inference)
TR1: No special treatment	TR2: Special Token for each

Raw (um) Things that (uh) you usually wouldn't find funny.

PS1 Things that you usually wouldn't find funny.

01: Fillers play an important role in spoken language

A language modelling task, using BERT, same MLM objective (Devlin et al., 2019).

Each experiment: token representation strategy (TR) and a pre-processing strategy (PS).

PS1: Fillers removed (Training + inference)	PS3: Fillers kept (Training + Inference)
TR1: No special treatment	TR2: Special Token for each

```
PS1 Things that (uh) you usually wouldn't find funny.

PS1 Things that you usually wouldn't find funny.

TR1 ['um', 'things', 'things', 'that', 'uh'...]

TR2 ['[FILLER-UM]', 'things', 'that', '[FILLER-UH]'...]
```

01: Fillers play an important role in spoken language

- A language modelling task, using BERT, same MLM objective (Devlin et al., 2019).
- Each experiment: token representation strategy (TR) and a pre-processing strategy (PS).

PS1: Fillers removed (Training + inference)	PS3: Fillers kept (Training + Inference)
TR1: No special treatment	TR2: Special Token for each

```
PS1 Things that (uh) you usually wouldn't find funny.

PS1 Things that you usually wouldn't find funny.

TR1 ['um', 'things', 'things', 'that', 'uh'...]

TR2 ['[FILLER-UM]', 'things', 'that', '[FILLER-UH]'...]
```

Optionally fine-tune BERT for each PS and TR, using MLM.

Adding fillers, both with and without fine-tuning, model with lower perplexity.

Adding fillers, both with and without fine-tuning, model with lower perplexity.

Language Modelling task		Perplexity
w/o	PS1: Fillers removed (Training + inference)	22
fine-tuning	PS3: Fillers kept	20
W	PS1: Fillers removed	5.5
fine-tuning	PS3: Fillers kept	4.6

Adding fillers, both with and without fine-tuning, model with lower perplexity.

	Language Modelling task	
w/o	PS1: Fillers removed (Training + inference)	22
fine-tuning	PS3: Fillers kept	20
W	PS1: Fillers removed	5.5
fine-tuning	PS3: Fillers kept	4.6

Fixing PS3 as strategy, TR1 best. Better to keep the existing representations.

Adding fillers, both with and without fine-tuning, model with lower perplexity.

	Language Modelling task	
w/o	PS1: Fillers removed (Training + inference)	22
fine-tuning	PS3: Fillers kept	20
W	PS1: Fillers removed	5.5
fine-tuning	PS3: Fillers kept	4.6

- Fixing PS3 as strategy, TR1 best. Better to keep the existing representations.
- Interestingly, BERT unable to distinguish between two fillers (Clark and Fox Tree, 2002).

Adding fillers, both with and without fine-tuning, model with lower perplexity.

	Language Modelling task	
w/o	PS1: Fillers removed (Training + inference)	22
fine-tuning	PS3: Fillers kept	20
W	PS1: Fillers removed	5.5
fine-tuning	PS3: Fillers kept	4.6

- Fixing PS3 as strategy, TR1 best. Better to keep the existing representations.
- Interestingly, BERT unable to distinguish between two fillers (Clark and Fox Tree, 2002).

Best	Token Representation	Perplexity
PS3	TR1: No treatment	4.6
	TR2/3: Treatment	4.7

- Downstream confidence prediction task, informative.
 - Adding a Multi-Layer Perceptron (MLP) on top of a BERT.
 - Same pre-processing PS as before, fixed token rep TR1.
 - Optionally fine-tuned using the MLM.
 - Mean Squared Error (MSE) loss.

- Downstream confidence prediction task, informative.
 - Adding a Multi-Layer Perceptron (MLP) on top of a BERT.
 - Same pre-processing PS as before, fixed token rep TR1.
 - Optionally fine-tuned using the MLM.
 - Mean Squared Error (MSE) loss.

- Downstream confidence prediction task, informative.
 - Adding a Multi-Layer Perceptron (MLP) on top of a BERT.
 - Same pre-processing PS as before, fixed token rep
 - Optionally fine-tuned using the MLM.
 - Mean Squared Error (MSE) loss.

- Downstream confidence prediction task, informative.
 - Adding a Multi-Layer Perceptron (MLP) on top of a BERT.
 - Same pre-processing PS as before, fixed token rep TR1
 - Optionally fine-tuned using the MLM.
 - Mean Squared Error (MSE) loss.

Results

- PS3 (Fillers kept in training+inference) outperform other PS, both with/without MLM fine tune.
- Fillers, discriminative feature in confidence prediction.

Confidence Prediction task		MSE
w/o MLM	PS1: Fillers removed	1.47
	PS3: Fillers kept	1.30
wMLM	PS1: Fillers removed	1.32
	PS3: Fillers kept	1.24

- Downstream confidence prediction task, informative.
 - Adding a Multi-Layer Perceptron (MLP) on top of a BERT.
 - Same pre-processing PS as before, fixed token rep TP1
 - Optionally fine-tuned using the MLM.
 - Mean Squared Error (MSE) loss.

Results

- PS3 (Fillers kept in training+inference) outperform other PS, both with/without MLM fine tune.
- Fillers, discriminative feature in confidence prediction.

Confid	dence Prediction task	MSE
w/o MLM	PS1: Fillers removed	1.47
	PS3: Fillers kept	1.30
w MLM	PS1. Fillers removed	1.32
	PS3: Fillers kept	1.24

■ Fillers, improve results when working with contextualised word embeddings

- Fillers, improve results when working with contextualised word embeddings
 - LM, in spoken language, fillers leveraged to reduce uncertainty of BERT
 - Unexpected, as intuitively, perplexity reduction as sentence simplified.
 - BERT, representation of fillers already exist.

- Fillers, improve results when working with contextualised word embeddings
 - LM, in spoken language, fillers leveraged to reduce uncertainty of BERT
 - Unexpected, as intuitively, perplexity reduction as sentence simplified.
 - BERT, representation of fillers already exist.
 - Downstream task of confidence/FOAK prediction.
 - Fillers, discriminative feature in confidence prediction.
 - Validation on spontaneous speech corpora.

- Fillers, improve results when working with contextualised word embeddings
 - LM, in spoken language, fillers leveraged to reduce uncertainty of BERT
 - Unexpected, as intuitively, perplexity reduction as sentence simplified.
 - BERT, representation of fillers already exist.
 - Downstream task of confidence/FOAK prediction.
 - Fillers, discriminative feature in confidence prediction.
 - Validation on spontaneous speech corpora.
- Unsupervised way of studying their informativeness.

- Fillers, improve results when working with contextualised word embeddings
 - LM, in spoken language, fillers leveraged to reduce uncertainty of BERT
 - Unexpected, as intuitively, perplexity reduction as sentence simplified.
 - BERT, representation of fillers already exist.
 - Downstream task of confidence/FOAK prediction.
 - Fillers, discriminative feature in confidence prediction.
 - Validation on spontaneous speech corpora.
- Unsupervised way of studying their informativeness.
- Future work: Acoustic representation, pre-trained representations.

- Fillers, improve results when working with contextualised word embeddings
 - LM, in spoken language, fillers leveraged to reduce uncertainty of BERT
 - Unexpected, as intuitively, perplexity reduction as sentence simplified.
 - BERT, representation of fillers already exist.
 - Downstream task of confidence/FOAK prediction.
 - Fillers, discriminative feature in confidence prediction.
 - Validation on spontaneous speech corpora.
- Unsupervised way of studying their informativeness.
- Future work: Acoustic representation, pre-trained representations.

Thesis of Tanvi Dinkar: Representation of disfluencies in spoken language understanding!

Link to Paper

Thanks for listening

Title: The importance of fillers for text representations of speech transcripts.

Corresponding Authors:

Tanvi Dinkar

Pierre Colombo

Link to POM

