Meeting 10-13-23

Dominique McDonald

2023-02-17

Dirac Masses

Suppose $a \in \mathbb{R}^3(\mathbb{R}^d, X)$ where X is some arbitrary set.

Say We want to know if a particle is in the set E. (include graphic - DJM)

- $\delta_a(E) = 1$ $a \in E$ $\delta_a(E) = 0$ $a \notin E$

 δ_a : a dirac mass concentrated at a

- $\delta_a(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} E_i$ $E_i = E_j = \emptyset$ when $i \neq j$ i.e a can only be present in one.
- $\delta_a[\mathbb{R}^d] = 1$

We want to check if the dirac mass is a probability measure. Often times in probability (??? DJM) we are looking at the average of dirac masses.

Examples

- $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{a_i} = \frac{\delta_{a_1} + \delta_{a_2} + \ldots + \delta_{a_n}}{n}$ Here we are counting how many particles are in A and dividing by n to average.
- $\mu[A] = \frac{k}{n}$ where k = (number of particles)

Notation

- Ω : Probability space (a set)
- \mathbb{P} : Probability measure on $\Omega \implies \mathbb{P}: \Sigma \to [0,1]$
- Σ : a σ -algebra on Ω
- \mathbb{R}^d : a vector space of d dimensions

• B: borel σ -algebra on \mathbb{R}^d

(add graphic - DJM)

Defintions

- Borel σ -algebra : the smallest σ -algebra containing the open subsets in \mathbb{R}^d
- Boret Set : any element of a Borel $\sigma\text{-algebra}$

$\underline{\mathrm{Aside}}$

 $\Theta \subset \mathbb{R}$ is open IFF Θ is a union of open intervals

OT broad overview

- 1. start with a map $T: \Omega \to \mathbb{R}^d$
- 2. construct a set $B \subset \mathbb{R}^d$
- 3. Pull the set back to Ω to get $T^{-1}(B) \subset \Omega$
- 4. Find a probability measure $\mu(B) = \mathbb{P}[T^{-1}(B)]$ where μ is called the *law* of T