Lineare Regression	Regularisierung	Convolutional Neuronal Networks	Lineare Regression
Linearer Zusammenhang zwischen den Eingabevariablen x und der Ausgabevariable y wird modelliert.	Kostenfunktion mit L2-Regularisierung: $J(\theta) = \operatorname{frac}\{1\}\{2n\} \sum \left(h_{\theta(x^{\{(i)\}})} - y^{\{(i)\}}\right)^2 + \lambda \sum_{\{j=1\}}^d \theta_j^2$ Effekt von λ : $ \cdot \lambda = 0 \to \operatorname{kein} \operatorname{Penalty} $ $ \cdot \operatorname{großes} \lambda \to \operatorname{starke} \operatorname{Bestrafung}, \operatorname{Underfitting} $ Bias-Term θ_0 wird off nicht regularisiert		Linearer Zusammenhang zwischen den Eingabevariablen x und der Ausgabevariable y wird modelliert. $ \begin{aligned} & \textbf{Hypothesenfunktion:} \\ & h_{\theta(x)} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n \\ & \textbf{Kostenfunktion (MSE):} \\ & J(\theta) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2 \end{aligned} \\ & \textbf{Ziel:} \\ & \text{Finde Parameter } \theta \text{ um J zu minimieren } \\ & \text{min } J(\theta) \\ & \textbf{Multivariat:} \\ & \text{Mehrere Features } x_1, x_2, \ldots, x_n \\ & \textbf{Polynom-Regression:} \\ & h_{\theta(x)} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \ldots \end{aligned} $
	Support Vector Machines		
Gradient Descent	Ziel: $m \in \atop \{w,b\}$ (frac $\{1\}\{2\}$ $ w ^2 + C \sum xi_i)$		Gradient Descent
$\begin{aligned} & \textbf{Update-Regel:} \\ & \theta_i \coloneqq \theta_i - \alpha \; \text{frac}\{\partial\} \big\{\partial \theta_i\big\} J(\theta) \end{aligned}$	Nebenbedingungen:		$\begin{aligned} & \textbf{Update-Regel:} \\ & \theta_i \coloneqq \theta_i - \alpha \; \text{frac}\{\partial\} \big\{\partial \theta_i\big\} J(\theta) \end{aligned}$
Für lineare Regression: $\theta_j \coloneqq \theta_j + \alpha \; frac\{1\}\{n\} \sum_{\{i=1\}}^n \left(y^{\{(i)\}} - h_{\theta(x^{\{(i)\}})}\right) \cdot x_j^{\{(i)\}}$	$y^{\{\{i\}\}}(w^T x^{\{\{i\}\}} + \overline{b})ge1 - xi_i \text{ mit } xi_i ge0$ C kontrolliert Trade-off: großes $C \to \text{weniger Fehler,}$		Für lineare Regression: $\theta_j \coloneqq \theta_j + \alpha \; \text{frac}\{1\}\{n\} \sum_{\{i=1\}}^n \left(y^{\{(i)\}} - h_{\theta(x^{\{(i)\}})}\right) \cdot x_j^{\{(i)\}}$
Lernrate α: Zu groß → Divergenz, zu klein → langsame Konvergenz	kleines $C o g$ rößerer Margin Kernel-Trick : z.B. $K(x,x') = e^{\{-\gamma x-x' ^2\}}$ (RBF-Kernel)		Lernrate α : Zu groß \to Divergenz, zu klein \to langsame Konvergenz
Logistische Regression	Neuronale Netzwerke		Logistische Regression
Sigmoidfunktion: $g(z) = \operatorname{frac}\{1\}\big\{1 + e^{\{-z\}}\big\}$	Feedforward:	1	$ \begin{aligned} & \textbf{Sigmoidfunktion:} \\ & g(z) = \text{frac}\{1\}\big\{1 + e^{\{-z\}}\big\} \end{aligned} $
Hypothese:	$z^{\{(l+1)\}} = \theta^{\{(l)\}}a^{\{(l)\}}$ $a^{\{(l+1)\}} = g(z^{\{(l+1)\}})$	Modell Evaluation	Hypothese:
$h_{ heta(x)} = g(heta^T x)$ Klassifikation:	Backpropagation : $\delta^{\{(L)\}} = a^{\{(L)\}} - y$		$h_{\theta(x)} = g(\theta^T x)$ Klassifikation:
$h_{ heta(x)}ge0.5 ightarrow ext{Klasse 1}$	$\delta^{\{(l)\}} = \left(\theta^{\{(l)\}} \right)^T \delta^{\{(l+1)\}} \cdot *g'(z^{\{(l)\}})$	Entscheidungsbäume	$h_{ heta(x)}ge0.5 ightarrow ext{Klasse 1}$
$ heta_{ heta(x)} < 0.5 ightarrow ext{Klasse 0}$ Entscheidungsgrenze:	Gradientenabstieg: $\theta^{\{(l)\}} := \theta^{\{(l)\}} - \alpha \delta^{\{(l)\}} a^{\{(l-1)\}}$		$h_{\theta(x)}$ < 0.5 → Klasse 0 Entscheidungsgrenze:
$ heta_0 + heta_1 x_1 + heta_2 x_2 = 0$	Aktivierungsfunktionen:	Pricipal Component Analysis (PCA)	$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
Nicht-linearität durch Features wie x_1^2 , x_1x_2 , dots	Sigmoid, Tanh, ReLU, Leaky ReLU, Softmax		Nicht-linearität durch Features wie x_1^2 , x_1x_2 , dots