ACT-11302: Cálculo Actuarial III

ITAM

Lista de Ejercicios (Parte I)

Prof: Juan Carlos Martínez Ovando

7 de octubre de 2015

La siguiente lista de ejercicios nos ayudará a preparar el primer examen parcial del curso.

- 1. Sea X una variable aleatoria con distribución gamma, $Ga(x; \alpha, \beta)$. Sea π un escalar fijo. Derive la distribución de $Y = \pi X$.
- 2. Sea X una variable aleatorioa con distribución log-normal, $LN(x; \mu, \sigma)$. Sea π un escalar fijo. Derive la distribución de $Y = \pi X$.
- 3. Sea *X* la variable aleatoria del monto de un reclamo de seguros. Considere el problema de riesgo compartido entre aseguradora y reaseguradora, donde la aseguradora cubre el monto total del reclamo hasta el monto de retención *M* y la reaseguradora participa del riesgo en exceso del monto de retención. Así, las variables aleatorias que denotan el monto del pago de aseguradora y reaseguradora se definen como:

$$Y = \min(X, M),$$

 $Z = \max(0, X - M),$

respectivamente. (Note que X = Y + Z).

- a) Calcula $\mathbb{E}(Y)$ en función de la distribución $F_X(x)$ para X (puedes suponer que F_X es absolutamente continua).
- b) Suponga que $F_X(x) = 1 \exp\{-\lambda x\}$, con $\lambda > 0$. Deriva la función generadora de momentos para Z, $M_Z(t)$.
- 4. Sean X_1, \ldots, X_n variables aleatorias independientes tales que $X_j \sim \text{Po}(x_j; \lambda_j)$, para $j = 1, 2, \ldots, n$. Deriva la distribución de $S = \sum_{j=1}^n X_j$.
- 5. Sean X_1, \ldots, X_n variables aleatorias i.i.d. con distribución $Ga(x; 1, \beta)$. Siguiendo la fórmula de convolución, deriva analíticamente la distribución de $S = \sum_{j=1}^{n} X_j$. (Sugerencia: Emplea un argumento de inducción matemática).
- 6. Sea X una variable aleatoria con distribución dada por:

$$F_X(x) = \begin{cases} 0 & \text{si } x < 20\\ (x+20)/60 & \text{si } 20 \le x < 40\\ 1 & \text{si } x \ge 40. \end{cases}$$

Calcula:

Lista de Ejercicios 2

- *a*) $Pr(X \le 30)$.
- b) Pr(X = 40).
- c) $\mathbb{E}(X)$.
- d) $\mathbb{V}(X)$.
- 7. **Definición.** Una distribución empalmada (*splicing distribution*) de k componentes se define como:

$$f_X(x) = \begin{cases} \alpha_1 f_1(x) & c_0 < x < c_1 \\ \alpha_2 f_2(x) & c_1 < x < c_2 \\ \vdots & \vdots \\ \alpha_k f_k(x) & c_{k-1} < x < c_k, \end{cases}$$

donde $\alpha_j > 0$ para $j = 1, \dots, k$, tal que $\sum_{j=1}^k \alpha_j = 1$, y $f_j(x)$ es una función de densidad en el intervalo (c_{j-1}, c_j) , para $j = 1, \dots, k$.

a) Crea una función empalmada de dos componentes para los intervalos $(0, \gamma)$ y (γ, ∞) , donde el primer componente esté inducido por una distribución exponencial, $\operatorname{Exp}(x; \lambda)$, con $\lambda > 0$ y el segundo componente esté inducido por una distribución Pareto, $\operatorname{Pa}(x; \beta, \theta)$, con $\beta, \theta > 0$ (considera $\gamma > 0$ como un número fijo).