3팀

김다민 김보근 서유진 송승현 심현구 조성우

INDEX

- 1. EDA 및 데이터 전처리
- 2. 모델링
- 3. 결론

1

EDA 및 데이터 전처리

데이터셋 구조

단호한 학회장팀…

변수명은 확인 불가하며, 자료형만 확인 가능합니다!

training_set

55000 * 171 Int, float만으로 구성 test_set

21000 * 170

Int, float만으로 구성

클래스 불균형

클래스 불균형이 심각

(0:1의 개수가 58:1의 비율로 존재)

학습 과정에서 소수 데이터에 대한 학습이 잘 이루어지지 않을 가능성이 높음

데이터 샘플링(sampling)을 고려해볼 수 있음

데이터 샘플링 기법

오버샘플링(oversampling)

적은 클래스의 관측치를 늘리는 방법 랜덤오버샘플링, SMOTE 등

심각한 클래스 불균형 하에서는 **과적합 위험성** 증대 언더샘플링(undersampling)

많은 클래스의 관측치를 줄이는 방법
Tomek Links 등

중요한 데이터가 탈락되어 정보의 소실 발생 가능

클래스 불균형 해결방법

알고리즘을 통한 데이터 샘플링의 한계 확인

심혈관질환 위험 예측을 위한 비용민감 학습 모델(이유나 외, 2021)

비용민감학습 (Cost-sensitive learning)

모델링 학습 과정 중 더 적은 클래스를 잘못 예측했을 때 큰 가중치를 주는 방법

샘플링과 비용민감학습 비교 (XGBoost)

SMOTE	예측값(N)	예측값(P)
실제값(N)	15268	217
 실제값(P)	1	15453

비용민감학습	예측값(N)	예측값(P)
실제값(N)	15291	181
실제값(P)	13	164

Method	SMOTE	비용민감학습
validation cost	453	4220
실제 Cost	4565	3995

SMOTE에서는 과적합이 일어남 → 비용민감학습 채택

열 결측치 확인

결측치 20%(11000개)이상 열 24개는 해당 **행 결측치 여부**로 대체

열 결측치 확인

열 제거 기준을 20%로 설정한 이유

실제 변수 모집단이 완만한 분포일 경우(ex. 정규분포), median 등으로 보간 시에 분포가 왜곡되어 많은 정보의 손실을 야기 정규분포 가정이 있는 모델 사용에도 부정적인 영향을 미친다.

결측치 20%(11000개)이상 열 24개는 해당 **행 결측치 여부**로 대체

열 결측치 확인

결측치 여부 열에 대한 Chi-square 독립성 검정 진행

→ 'class'와 독립으로 검정된 X58 삭제

열 결측치 확인

결측치 11000개 이하 열은 결측치를 보간하기로 결정

행 결측치 확인

본격적인 열 결측치 처리 전 결측치 20%(34개) 이상인 관측치 2837개는 정보량이 부족하다고 판단하여 삭제

열 결측치 처리

결측치 보간

변수별 밀도함수와 상관계수를 확인 후 비슷한 패턴을 보이는 변수들을 묶어서 처리하거나 mode, median 등으로 대체

변수별 Distribution 확인

Yeo-Johnson 변환

데이터 값의 범위가 너무 넓어 분포를 잘 확인할 수 없음

변수별 Distribution 확인

변수별 Distribution 확인

Yeo-Johnson 변환

Yeo-Johnson 변환

Yeo-Johnson 변환

- Box-cox변환을 일반화한 변수변환법
- 실수 전체 구간에서 정의된 확률변수에 적용할 수 있음
- Yeo-Johnson 변환을 Scaling 목적으로 활용
- Log변환 했을 때보다 Yeo-Johnson변환했을 때 더 분포가 잘 보임

변수별 Distribution 확인

Yeo-Johnson 변환

변수 간 상관계수 시각화

열 결측치 처리

변수명	특징	처리
X14		
X15	X1과 상관계수 높음	X1을 기준으로
X16		선형보간
X17		

결측치가 비슷한 패턴을 보이는 변수는 <mark>상관계수가 높은</mark> 다른 변수를 기준으로 선형보간

보간 전과 후의

밀도함수가 거의 일치

보간이 잘 되었다고 판단

열 결측치 처리

변수명	특징	처리
X28	결측 256, nunique 작음(2681)	
X29	결측 257, nunique 작음(3417)	
X30	결측 153, nunique 작음(3732)	mode
X31	결측 151, nunique 작음(1031)	

<보간 전>

<보간 후>

첨도가 높은 변수는 mode로 선형보간

보간 전과 후의 밀도함수가 거의 일치

보간이 잘 되었다고 판단

파생변수 추가

Row_Nas_count

20% 이상 결측치를 보유한 obs는 삭제한 후 결측치의 개수가 의미있는 변수가 될 수 있을 것이라고 판단

Cluster_label

Feature importance top2 기준으로 군집화 (Kmeans, n=2) 후 군집별 클래스 비율 확인

군집1 0:50934개, 1:226개

군집2 0:631개, 1:372개

PCA

기존 변수들로 PCA를 진행, 분산을 80%만큼 설명하는 PC 3개를 선택하여 파생변수로 사용

Isol_score

Isolation forest score

2

모델링

모델링 방향

다양한 모델로 성능 평가 후 최종 앙상블에 사용할 모델 top5 선정

앙상블을 통해 submission data 생성

비용민감학습(Cost-sensitive learning)

Cost Function

$$cost = 250 \times FN + 5 \times FP$$

가중치가 높은 **FN**(False Negative)을 줄이는 게 핵심 즉, 실제값이 1인데 예측값이 0인 경우를 줄이기 위해

Xgb, lgbm, catboost에서 소수클래스에 weight를 부여하며 학습을 진행

후보 모델

XGBoost

트리 기반의 앙상블 모델 뛰어난 예측 성능과 빠른 학습 시간 과적합 방지 결손 데이터 자체 처리

LightGBM

트리 기반 Gradient Boosting 모형 Leaf-wise 확장 방식으로 빠른 속도 대용량 데이터에 적합

learning_rate	트리 학습 비율
max_depth	트리 최대 깊이
n_estimators	생성할 트리 개수
subsample	각 트리별 훈련 데이터 비율
colsample_bytree	각 트리별 피처 비율

n_estimators	결정나무의 개수
max_depth	결정나무의 최대 깊이
min_child_sample s	과적합 방지 위한 파라미터
num_levels	개별 트리가 가질 수 있는 최대 리프 개수

후보 모델 CatBoost

과적합 방지에 집중한 트리 기반 부스팅 모델
Level-wise 트리 확장 방식
데이터 일부만 사용하여 잔차 구하는 방식
범주형 변수 데이터에 효과적

Tabnet

트리와 신경망의 특성 결합한 딥러닝 모델 유연하고 재귀적인 특성 선택 병렬 처리를 통한 과적합 방지

max_depth	결정나무의 최대 깊이
l2_leaf_reg	L2 정규화의 정도
iterations	반복 횟수
border count	각 피처 공간에서 수행할 분할의 수
class_weights	클래스 불균형이 있는 경우 비율 지정

n_steps	특성 선택 매커니즘 단계 설정
n_decision_layers	각 단계 선택할 특성 수
n_attention	재귀적인 특성 선택 반복 수
n_shared	공유 특성 사용 여부

후보 모델 Support Vector Machine

결정경계 (decision boundary)를 정의 마진 최대화 커널 기법을 통한 비선형 문제 해결 가능

Random Forest

부트스트랩 샘플링을 통한 학습 데이터 형성 랜덤 특성 선택 앙상블 방식을 통한 과적합 방지

С	소프트 마진 규제
kernel	커널 함수 지정
gamma	결정 경계 곡률 조정

n_estimators	결정나무의 개수
max_depth	결정나무의 최대 깊이
max_features	결정나무를 분지할 때 고려하는 특성 수
min_samples_ split	노드 분할 위한 최소 샘플 데이터 수
min_samples_ leafs	리프노드가 되기 위해 필요한 최소 샘플 데이터 수

후보 모델

클래스 불균형이 심하기 때문에 class = 0을 정상치로 학습하면 class = 1인 데이터를 이상치로 탐지하지 않을까?

Isolation Forest

전체 데이터셋을 decision tree을 통해서 각 노드에 하나의 데이터포인트만 포함되도록 분리하는 모델로, 이 때 분리 횟수가 적은 데이터들을 이상치로 탐지한다.

후보 모델

n_estimators	생성할 Isolation tree 개수
max_samples	각 트리별 샘플 최대 비율
contamination	이상치의 비율

모델 설정

XGB

Weight =
$$\frac{class\ 0\ 개수}{class\ 1\ 개수}$$

CV 기법: Optuna

Threshold tuned

LGBM

XGB와 유사하지만 Regression을 통해서 예측을 진행하여 threshold가 확률값이 아님 Threshold tuned

Catboost

Weight = 'balanced'
Threshold tuned

Isolation Forest

Contamination = 0.08 Contamination 값 기준 CV 진행

Threshold Tuning

1로 분류하는 기준확률(threshold)을 낮게 설정해 1로 많이 분류하기 위해 0과 가까운 구간에서 cost를 최소화하는 threshold 탐색

모델링 성능 (validation 기준)

모델	cost	rank	
XGBoost	2408	1	
XGBoost_tuned	2670	3	
LightGBM	3086	4	
LightGBM_tuned	2593	2	
Catboost	3576	5	
Tabnet	6468	8	
Isolation Forest	6380	7	
Support Vector Machine	4864	6	
Random Forest	8696	9	

성능이 좋은 5개 모델로 앙상블 결정

앙상블

Hard Voting

Test set의 결과 중 N개 이상의 모델이 1로 예측한 경우만 최종 1로 판정이 때의 N은 voting에서 사용한 모델의 개수에 따라서 상이하게 설정함

XGB	XGB_ tuned	LGBM	LGBM _tuned	CatBoost	threshold	score
1	1				1	4635
1	1				2	4265
1	1	1			2	3555
1	1	1	1	1	3	4545
2	2	2	1	1	5	3950

앙상블

XGB	XGB_ tuned	LGBM	LGBM _tuned	CatBoost	threshold	score
1	1				1	4635
1	1				2	4265
1	1	1			2	3555
1	1	1	1	1	3	4545
2	2	2	1	1	5	3950

동일한 가중치 하의 5개 모델 중 threshold인 3개 이상의 모델이 해당 data point를 1로 예측하였다면 1로, 그렇지 않다면 0으로 분류하는 앙상블

앙상블

보간을 완료한 데이터셋으로 학습시킨 모델

XGB	XGB_ 보간	LGBM	LGBM _보간	CatBoost	threshold	score
1	1		1		2	3745
1	1		1	1	2	4105
2	1	1	1		3	3865
2		1			2	4055
1	1		1		2	3910
2	3	1	3		6	3825
5	3	1				3975

위의 결과를 포함한 수많은 시도…

2 모델링

앙상블

	XGB	XGB_ tuned	LGBM	LGBM _tuned	CatBoost	threshold	score
	1	1				1	4635
	1	1				2	4265
\	1	1	1			2	3555
	1	1	1	1	1	3	4545
	2	2	2	1	1	5	3950

최종 최고점 3555 with XGB, XGB_tuned, LGBM <<결측치 보간 안 한 모델이 1위>> 3개 모델 중 2개 이상이 1로 예측해야 최종 1

3

결론

XGB가 성능 면에서 좋을 수밖에 없었던 이유

Value Class

- XGB가 과적합에 비교적 강건
- 결측치에 대해 sparsity-aware split finding 알고리즘을 통해 들어온 결측치를 한쪽 leaf에 몰아서 더 좋은 split point를 찾을 수 있도록 돕는다

인사이트

최종적으로 앙상블에 모델을 3개만 사용한 이유

- 회귀 문제에서는 나쁜 모델(분산이 큰 모델)들을 많이 앙상블할 경우, 모델 전체의 분산이 줄어드는 효과가 있어 더 정확한 예측이 가능
- 그러나 분류 문제에서, 특히 Hard Voting의 경우 전체 성능에 악영향을 끼치는 투표가 이루어 질 수 있음

중우 정치

衆愚政治人

인사이트

Isolation score & anomaly를 앙상블에 사용하지 않은 이유

- Isolation Forest는 목적함수가 없기 때문에 분류 정확도를 높이는 방향으로 튜닝할 수 없음 → 분류에 적합한 모델 X
- isolation forest를 통해 이상치 탐지로 해당 문제를 접근해보았고, 그 결과 validation set에서 4800대의 cost가 나왔다. 분류 문제에 전혀 적합하지 않은 모델임에도 쓸만한 성능이 나왔기에, 그 output인 score와 anomaly를 파생변수로 사용함.

3 결론

의의

데이터 전처리

- 클래스 불균형이 심각한 데이터에 대한 전처리 시 샘플링을 하는 방법과 모델학습 과정에서 비용민감학습을 진행하는 방법의 성능을 비교해보고 어떤 상황에서 어떤 방법이 나은 지 알게 됨
- 차원이 매우 큰 데이터 분석 시 다양한 기준을 통한 변수 제어와 결측치 보간법을 적용해보고 성능을 평가해 봄

3 결론

의의

모델링

- 클래스 불균형이 심각한 데이터라는 점에서 착안하여 소수 class를 이상치로 탐지하도록 하는 방법인 isolation forest로 예측을 시도하는 창의적인 분석 시도
- 성능평가지표에서 FN(False Negative)의 영향력이 큰 상황에서 threshold 최적화를 통해 hyperparameter tuned model을 threshold tuning해서 모델을 fit하는 창의적인 분석방법 시도

3 결론

의의

모델링

- overfitting이 발생하는 상황에서 preprocessing으로 돌아가 모델 개선에 영향을 미칠만한 방법을 찾는 과정에서의 많은 논의
- 보다 강건한 모델링을 위해 각 모델별 가중치를 부여한 앙상블 시도

부 3팀 역사 (2023 ~ 2023)

3팀 개설

3팀 복지

- 자율출퇴근제
- 민트 캔디 / 간식 상비
- 웃음벨

선대회귀 많은 사랑 바랍니다

부 3팀역사 (2023 ~ 2023)

3팀 장기집권기

*** 5위 안에 들어야 3팀 타이틀 유지 가능

#	Team	Members	Score
1	3팀 심현구		4090.00000
2	3팀 김다민		4215.00000
3	3팀 조성우		4820.00000
4		진격의 멧돼지 돌진!!	5005.00000
5	3팀 서유진	강화유리 박살낸 위력! 3:03	5785.00000
6	3팀 송승현		5860.00000
7		leassong	8125.00000
8		3팀 송승현	9250.00000
9		Kaggle Novice	10305.00000
10	그냥 김보근	Follow	13595.00000

부 3팀역사 (2023 ~ 2023)

3팀 난세

1			3150.00000	6	5h
2		4	3150.00000	11	12m
3			3230.00000	6	9h
4	3팀 송승현		3555.00000	6	9h
5			3590.00000	7	10h
6			3770.00000	9	12h
7	그냥 서유진	4	3950.00000	11	3h
8	그냥 조성우		3995.00000	8	3h
9	그냥 심현구		4090.00000	7	11h
<u></u>	Your Best Entry! Your submission scored 4335.	00000, which is not an improvement of you	ur previous score. Keep trying!		
10	그냥 김다민		4135.00000	7	1d
11	그냥 김보근		4265.00000	9	4h

부 3팀 역사 (2023 ~ 2023)

3팀 도읍 탈환 시도

2	Your Best Entry!				
10	멧돼지4	3910.00000	9	10h	
9	멧돼지3	3865.00000	12	11h	
8	멧돼지2	3825.00000	12	1h	
7	2팀 최용원	3770.00000	9	1d	
6	멧돼지1	3745.00000	10	10h	
5	2팀 이상혁	3590.00000	7	1d	
4	멧돼지 대장	3555.2000	6	1d	

Your Best Entry!
Your most recent sul
Great job!

11 맷돼지5

감사합니다

