Estadística matemática

Wilfredo Gallegos 27 de julio de 2023

Jueves 6 de julio

1. Contenido

5.1

Definición 1.1. Sean Y_1 y Y_2 variables aleatorias discretas. La función de probabilidad conjunta para Y_1 y Y_2 es $P(y_1,y_2)=P(Y_1=y_1)$ – ínf $< y_2 <$ ínf)

martes 11 de julio

Definición 1.2. Si Y_1 y Y_2 son variables aleatorias discretas conjuntas con funcion de probabilidad conjunta $P(y_1, y_2)(P[Y_1 = y_1] \cap [Y_2 = y_2])$ y función marginal $P_1(y_1)(P[Y_1 = y_1])$ y $P_2(y_2)(P[Y_2 = y_2])$

$$\Rightarrow p(y_1|y_2) = P([Y_1 = y_1]|[Y_1 = y_1]) = \frac{P([Y_1 = y_1] \cap [Y_2 = y_2])}{P([Y_2 = y_2])} = \frac{P(y_1, y_2)}{P_2(y_2)}, \quad Siempre \ que \ P_2(y_2) > 0$$

Nota:

$$p(y_2|y_1) = \frac{P(y_1, y_2)}{P_1(y_1)} \ge 0 \ y \ \sum p(y_1|y_1) = 1$$

5.7 ej. 5.5

Encontrar la distrubución condicional de Y_1 dado $Y_2 = 1$

5.6

Definición 1.3. Si Y_1 y Y_2 son variales aleatorias continuas con función densidad conjunta $f(y_1, y_2) \Rightarrow \text{la función de distribución acumulada condicional de <math>Y_1$, dado $Y_2 = y_2$ es $F(y_1|y_2) = P(Y_1 \leq y_1|Y_2 = y_2)$

5.7

Definición 1.4. Sean Y_1 y Y_2 son variales aleatorias contunuas con funsion densidad conjunta $f(y_1, y_2)$ y densidades marginales $f_1(y_1)$ y $f_2(y_2)$. Para cualquier y_2 tal que $f_2(y_2) > 0$, la densidad condiciona de Y_1 , dado $Y_1 = Y_2$ es

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

y para cualquier $y_1 \ni f_1(y_1) > 0$, la densidad condicional de Y_2 dada $Y_1 = y_1$ es

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_1(y_1)}$$

5.8 ej.

 Y_2 : existencia de bebidas al inicio de un dia determinado

 Y_1 : despacho durante el dia

$$f(y_1, y_2) = \begin{cases} Y_1 \leq Y_2 \\ 1/2, & 0 \leq y_1 \leq y_2 \leq 2 \\ 0, & en \ caso \ contrario \end{cases}$$

Encontrar la densidad condicional de Y_1 dad o $Y_2 = y_2$ y calcular la probabilidad de que se venda menos o igual a 1/2 galón, dado que la maquina contiene 1.5 galones al empezar el dia.

Sol:

$$f_2(y_2) = \begin{cases} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 = \int_0^{y_2} \frac{1}{2} dy_1 = \frac{1}{2} y_1 \Big|_0^{y_2} = \frac{1}{2} y_2 &, \quad 0 \le y_2 \le 2\\ 0 &, \quad Cualquier \ otro \ caso \end{cases}$$

Note que
$$f_2(y_2) > 0$$
 en $0 < y_1 \le 2$
 $f(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)} \frac{1/2}{1/2y_2} = \frac{1}{y_2}, 0 < y_1 \le y_2 \le 2$
Además, $f(y_1|y_2)$ es indefinida si $y_2 \le 0$ 0 $y_2 > 2$
5.8 ej.

$$P(Y_1 \le 1/2 | Y_2 = 1,5) = \int_{-\infty}^{1/2} f(y_1 | y_2 = 1,5) dy_1$$

$$= \int_{-\infty}^{1/2} \frac{1}{1,5} dy_1 = \frac{1}{1,5} y_1 \Big|_{0}^{1/2} = \frac{1/2}{1,5} = \frac{1}{3}$$

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$

5.7 Varaibles aleatorias independientes 5.8

Definición 1.5. Sean Y_1 con una función distribución acumulada $F_1(y_1)$ y Y_2 con función de distribución acumulada $F_1(y_1)$ y $F(y_1, y_2)$ es la función de distribución acumulada conjunta de Y_1 y Y_2 , entonces Y_1 y Y_2 son independientes ssi $F(y_1, y_2) = F_1(y_1)F_2(y_2) \forall (y_1, y_2) \in \mathbb{R}^2$ Si Y_1 y Y_2 no son independientes son dependientes

Teorema 1.1. Dado una variable aleatoria $X \Rightarrow P([X = a]) = \lim_{n \to 0} P([a - n < x \le a])$

Demostración. Sea
$$a \in \mathbb{R}$$

Como $\lim_{n \to 0} a - n = a \left(\lim_{n \to \infty} a - \frac{1}{h} \right) = a$

Tomese una sucesión

$$t_1 < t_2 < \ldots < t_n < a$$

tal que $\lim_{n \to \infty} t_n = 0$ y $A_n = [t_n < t \le a]$

$$A_{1} = [a - 1 < t \le a]$$

$$A_{2} = [a - 1/2 < t \le a], A_{2} \subseteq A_{1}$$

$$\vdots$$

$$\vdots$$

$$A_{n} = [a - 1/n < t \le a], A_{n} \subseteq A_{n-1}$$

Luego

$$\lim_{n \to 0} P([a - n < x \le a]) = \lim_{n \to \infty} P([t_n < x \le a])$$

$$= \lim_{n \to \infty} P([x \le a]) - P([x \le t_n]) = P([x \le a]) - \lim_{n \to \infty} P([X \le t_n])$$

$$= P([X < a]) - P([X < a]) = P([X = a])$$

Por otro lado:

$$C_1 = [x \le t_1]$$

$$C_2 = [x \le t_2], C_1 \subseteq C_2$$

.

$$C_n = [x \le t_n], C_{n-1} \subseteq C_n$$

$$\lim_{n \to \infty} [x \le t_n] = \bigcup_{i=1}^{\infty} [x \le t_i] = [x < a]$$

Luego

$$B_1 = [x \le t_1]$$

$$B_2 = [x \le t_2] \setminus [x \le t_1]$$

.

$$B_n = [x \le t_n] \setminus [x \le t_{n-1}]$$

Notese que $B_i \cap B_j = \emptyset$ para $i \neq j$ y $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n [x \leq t_{i-1}]$ entonces

$$\lim_{n \to \infty} P(\bigcup_{i=1}^{n} B_i) = \sum_{i=1}^{n} P(B_i)
\lim_{n \to \infty} \sum_{i=1}^{n} P(B_i) = \lim_{n \to \infty} \sum_{i=2}^{n} P([x \le t_i] \setminus [x \le t_{i-1}]) + P([x \le t_i])
= \sum_{i=2}^{n} [P([x \le t_i]) - P([x \le t_{i-1}])] + P([x \le t_i])
= \lim_{n \to \infty} P([x \le t_n])$$

Teorema 1.2.

- 1. Si Y_1 y Y_2 son variables aleatorias discretas con función de probabilidad conjunta $P[y_1, y_2]$ y funciones marginales $P_1(y_1)$ y $P_2(y_2)$, entonces Y_1 y Y_2 son independientes ssi $P(y_1, y_2) = P_1(y_1)P_2(y_2)$, $\forall y_1, y_2 \in \mathbb{R}$
- 2. Si Y_1 y Y_2 son variables aleatorias continuas con función densidad conjunta $f(y_1, y_2)$ y funciones densidades marginales $P_1(y_1)$ y $P_2(y_2)$, entonces Y_1 y Y_2 son independientes ssi $f(y_1, y_2) = f(y_1)f(y_2)$, $\forall y_1, y_2 \in \mathbb{R}$

martes 18 de julio

Ej.

Sea X y Y variables aleatorias contincuas con funci'on densidad

$$f(x,y) = \begin{cases} 6e^{-2x}e^{-3y}, & 0 < x, y < \infty \\ 0, & En \ cualquier \ otro \ caso \end{cases}$$

¿X y Y son variables aleatorias independientes?

$$I(x,y) = \begin{cases} 1, & 0 < x, y < \infty \\ 0, & en \ cualquier \ otro \ caso \end{cases}$$

$$I(x) = \begin{cases} 1, & 0 < x < \infty \\ 0, & en \ cualquier \ otro \ caso \end{cases}$$

$$f(x,y) = 6e^{-2x}e^{-3y} \cdot I(x,y) = (2e^{-2x} \cdot I(x)) \cdot (3e^{-3y} \cdot I(y)) =$$

$$= f_x(x)f_y(y), \ \forall x, y \in \mathbb{R}$$

Por el teorema 5.8, X y Y son variables aleatorias independientes.

Ej.

Sea X y Y variables aleatorias con funci'on densidad

$$f(x,y) = \begin{cases} 24xy, & 0 < x, y < 1; 0 < x + y < 1 \\ 0, & en \ cualquier \ otro \ caso \end{cases}$$

Claramente no se puede factorizar en 2 partes que de x y otro que depende de y. Por lo tanto, X y Y son variables aleatorias dependientes.

5.9 Teorema

Sean Y_1 y Y_2 variables aleatorias independientes y sean $g(Y_1)$ y $h(Y_2)$ funciones solo de Y_1 y Y_2 . Entonces $E(g(Y_1) \cdot h(Y_2)) = E(g(Y_1)) \cdot E(h(Y_2))$ siempre que existan los valores esperados.

Ej.

En el ej. 5.19

Y₂: Proporci'on de impurezas en la muestra

 Y_1 : dProporci'on de impurezas de tipo I entre todas las impurezas encontradas

$$f(y_1, y_2) = \begin{cases} 2(1 - y_1), 0 < y_1, y_2 < 1 \\ 0, en cualquier otro caso \end{cases}$$

Encontrar $E(y_1, y_2) = E(y_1) \cdot E(y_2)$ si Y_1 y Y_2 son independientes.

$$E(y_1, y_2) = \int_0^1 \int_0^1 \underbrace{y_1 \cdot y_2}_{functiones} \cdot \underbrace{2(1 - y_1)}_{densidad} dy_2 dy_1$$

$$= 2 \int_0^1 y_1 (1 - y_1) \frac{y_2^2}{2} \Big|_0^1 dy_1$$

$$= 2 \int_0^1 y_1 (1 - y_1) \left(\frac{1}{2}\right) dy_1$$

$$= 2 \int_0^1 \underbrace{y_1}_2 - \underbrace{y_1^2}_2 dy_1 = \left[\frac{y_1^2}{4} - \frac{y_1^2}{6}\right] \cdot 2\Big|_0^1 =$$

$$= 2 \left(\frac{1}{4} - \frac{1}{6}\right) = \frac{1}{6}$$

Marginales

$$f(y_1) = \begin{cases} \int_0^1 2(1-y_1)dy_2 = 2(1-y_1), & 0 \le y_1 \le 1\\ 0, & en \ cualquier \ otro \ caso \end{cases}$$
$$f(y?2) = \begin{cases} \int_0^1 2(1-y_1)dy_1 = 2y_1 - y_1^2 \Big|_0^1 = 1, & 0 \le y_2 \le 1\\ 0, & en \ cualquier \ otro \ caso \end{cases}$$

Valores ESperados

$$E(Y_1) = \int_0^1 y_1(2)(1-y_1)dy_1 = \int_0^1 2y_1 - 2y_1^2 dy_1 = y_1^2 - \frac{2}{3}y_1^3\Big|_0^1 = 1 - \frac{2}{3} = \frac{1}{3}$$

$$E(Y_2) = \int_0^1 y_2(1)dy_2 = \frac{y_2^2}{2}\Big|_0^1 = \frac{1}{2}$$

Valores esperados y varianzas de funciones lineales de variables aleatorias

5.8) Teorema: Sean $Y_1,...,Y_n$ y $X_1,...,X_n$ variables aleatorias con $E(Y_i) - \mu_i$ y $E(X_j) = \xi_j$. Se define $U_1 = \sum_{i=1}^n a_i Y_i$ y $U_2 = \sum_{i=1}^m b_j X_j$ para $a_1,...,a_n,b_1,...,b_m \in \mathbb{R}$. Entonces,

1.
$$E(U) = \sum_{i=1}^{n} a_i E(Y_i)$$

2.
$$Var(U_1) = \sum_{i=1}^{n} a_i^2 Var(Y_i) + 2 \sum_{1 \le i \le j \le n}^{n} a_i a_j Cov(Y_i Y_j)$$

•
$$Cov(X,Y) = E(x,y) - (E(x))(E(y))$$

3. a)
$$Cov(U_1, U_2) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i a_j Cov(Y_i X_j)$$

b)
$$Cov(X,Y) = (E(x - E(x)))(E(y - E(y)))$$

Demostración.

$$E(U_1) = E(\sum_{i=1}^{n} a_i Y_i) = \sum_{i=1}^{n} E(a_i Y_i) = (Por \ teorema \ 5.8) =$$

$$\sum_{i=1}^{n} a_i E(Y_i) = \sum_{i=1}^{n} a_i \mu_i (\leftarrow Por \ teorema \ 5.7)$$

$$Var(U_{1}) = E((U_{1} - E(U_{1}))^{2})(\leftarrow Pordef.devarianza)$$

$$= E([\sum_{i}^{n} a_{i}Y_{i} - \sum_{i}^{n} a_{i}\mu_{i}]^{2}) = E([\sum_{i}^{n} a_{i}(Y_{i} - \mu_{i})]^{2})$$

$$= E(\sum_{i}^{n} \sum_{j}^{m} a_{i}(y_{i} - \mu_{i})a_{j}(Y_{j} - \mu_{j}))$$

$$= E(\sum_{i}^{n} a_{i}^{2}(Y_{i} - \mu_{i})^{2} + \sum_{i}^{n} \sum_{j}^{m} a_{i}a_{j}(Y_{i} - \mu_{i})(Y_{j} - \mu_{j}))$$

$$= \sum_{i}^{n} a_{i}^{2}E((Y_{i} - \mu_{i})^{2}) + \sum_{i}^{n} \sum_{j}^{m} a_{i}a_{j}E((Y_{i} - \mu_{i})(Y_{j} - \mu_{j}))$$

$$= \sum_{i}^{n} a_{i}^{2}Var(Y_{i}) + \sum_{i}^{n} \sum_{j}^{m} a_{i}a_{j}Cov(Y_{i}, Y_{j})$$

$$= \sum_{i}^{n} a_{i}^{2}Var(Y_{i}) + 2\sum_{1 \leq i \leq j \leq n} a_{i}a_{j}Cov(Y_{i}, Y_{j})$$