MULTIMOADAL TRANSFORMER FOR UNALIGNED MULTIMODAL LAGUAGE SEQUENCES

2021.08.12 REVIEW

CONTENTS

INTRODUCTION

RELATED WORKS

PROPOSED METHOD: Multimodal Transformer (MulT)

INTRODUCTION

- multimodal : language, vision, audio
- issue
- 1) inherent data non-alignment due to variable sampling rates for the sequences from each modality
- 2) long-range dependencies between elements across modalities
- propose : Multimodal Transformer (MultT)

RELATED WORKS

- 1) Human multimodal language analysis
- 2) Transformer Network

PROPOSED METHOD

- crossmodal attention

(a) Crossmodal attention $CM_{\beta \to \alpha}(X_{\alpha}, X_{\beta})$ between sequences X_{α} , X_{β} from distinct modalities.

PROPOSED METHOD

PROPSOED METHOD (1) temporal convolution (CONV1D)

- contain the local structure of the sequence
- poject to the same dimension d

PROPSOED METHOD (2) Positional embedding

$$PE[i, 2j] = \sin\left(\frac{i}{10000^{\frac{2j}{d}}}\right)$$

$$PE[i, 2j + 1] = \cos\left(\frac{i}{10000^{\frac{2j}{d}}}\right)$$

PROPOSED METHOD (3) Crossmodal Transformers

(b) A crossmodal transformer is a deep stacking of several crossmodal attention blocks.

PROPOSED METHOD (4) Self-Attention Transformers and Prediction

Table 1: Results for multimodal sentiment analysis on CMU-MOSI with aligned and non-aligned multimodal sequences. h means higher is better and $^\ell$ means lower is better. EF stands for early fusion, and LF stands for late fusion.

Metric	Acc_7^h	Acc_2^h	F1 ^h	MAE^{ℓ}	Corr ^h			
(Word Aligned) CMU-MOSI Sentiment								
EF-LSTM	33.7	75.3	75.2	1.023	0.608			
LF-LSTM	35.3	76.8	76.7	1.015	0.625			
RMFN (Liang et al., 2018)	38.3	78.4	78.0	0.922	0.681			
MFM (Tsai et al., 2019)	36.2	78.1	78.1	0.951	0.662			
RAVEN (Wang et al., 2019)	33.2	78.0	76.6	0.915	0.691			
MCTN (Pham et al., 2019)	35.6	79.3	79.1	0.909	0.676			
MulT (ours)	40.0	83.0	82.8	0.871	0.698			
(Unaligned) CMU-MOSI Sentiment								
CTC (Graves et al., 2006) + EF-LSTM	31.0	73.6	74.5	1.078	0.542			
LF-LSTM	33.7	77.6	77.8	0.988	0.624			
CTC + MCTN (Pham et al., 2019)	32.7	75.9	76.4	0.991	0.613			
CTC + RAVEN (Wang et al., 2019)	31.7	72.7	73.1	1.076	0.544			
MulT (ours)	39.1	81.1	81.0	0.889	0.686			

Table 2: Results for multimodal sentiment analysis on (relatively large scale) CMU-MOSEI with aligned and non-aligned multimodal sequences.

Metric	Acc_7^h	Acc_2^h	F1 ^h	MAE^{ℓ}	Corr ^h			
(Word Aligned) CMU-MOSEI Sentiment								
EF-LSTM	47.4	78.2	77.9	0.642	0.616			
LF-LSTM	48.8	80.6	80.6	0.619	0.659			
Graph-MFN (Zadeh et al., 2018b)	45.0	76.9	77.0	0.71	0.54			
RAVEN (Wang et al., 2019)	50.0	79.1	79.5	0.614	0.662			
MCTN (Pham et al., 2019)	49.6	79.8	80.6	0.609	0.670			
MulT (ours)	51.8	82.5	82.3	0.580	0.703			
(Unaligned) CMU-MOSEI Sentiment								
CTC (Graves et al., 2006) + EF-LSTM	46.3	76.1	75.9	0.680	0.585			
LF-LSTM	48.8	77.5	78.2	0.624	0.656			
CTC + RAVEN (Wang et al., 2019)	45.5	75.4	75.7	0.664	0.599			
CTC + MCTN (Pham et al., 2019)	48.2	79.3	79.7	0.631	0.645			
MulT (ours)	50.7	81.6	81.6	0.591	0.694			

Table 3: Results for multimodal emotions analysis on IEMOCAP with aligned and non-aligned multimodal sequences.

Task	Haj	рру	Sa	ad	An	gry	Neu	ıtral	
Metric	Acc^h	$F1^h$	Acc^h	$F1^h$	Acc^h	$F1^h$	Acc^h	$F1^h$	
(Word Aligned) IEMOCAP Emotions									
EF-LSTM	86.0	84.2	80.2	80.5	85.2	84.5	67.8	67.1	
LF-LSTM	85.1	86.3	78.9	81.7	84.7	83.0	67.1	67.6	
RMFN (Liang et al., 2018)	87.5	85.8	83.8	82.9	85.1	84.6	69.5	69.1	
MFM (Tsai et al., 2019)	90.2	85.8	88.4	86.1	87.5	86.7	72.1	68.1	
RAVEN (Wang et al., 2019)	87.3	85.8	83.4	83.1	87.3	86.7	69.7	69.3	
MCTN (Pham et al., 2019)	84.9	83.1	80.5	79.6	79.7	80.4	62.3	57.0	
MulT (ours)	90.7	88.6	86.7	86.0	87.4	87.0	72.4	70.7	
(Unaligned) IEMOCAP Emotions									
CTC (Graves et al., 2006) + EF-LSTM	76.2	75.7	70.2	70.5	72.7	67.1	58.1	57.4	
LF-LSTM	72.5	71.8	72.9	70.4	68.6	67.9	59.6	56.2	
CTC + RAVEN (Wang et al., 2019)	77.0	76.8	67.6	65.6	65.0	64.1	62.0	59.5	
CTC + MCTN (Pham et al., 2019)	80.5	77.5	72.0	71.7	64.9	65.6	49.4	49.3	
MulT (ours)	84.8	81.9	77.7	74.1	73.9	70.2	62.5	59.7	

Figure 5: Validation set convergence of MulT when compared to other baselines on the unaligned CMU-MOSEI task.

Table 4: An ablation study on the benefit of MulT's cross-modal transformers using CMU-MOSEI.).

	(Unaligned) CMU-MOSEI							
Description	Sentiment							
	Acc_7^h	Acc_2^h	F1 ^h	MAE^ℓ	Corr^h			
Unimodal Transformers								
Language only	46.5	77.4	78.2	0.653	0.631			
Audio only	41.4	65.6	68.8	0.764	0.310			
Vision only	43.5	66.4	69.3	0.759	0.343			
Late Fusion by using Multiple Unimodal Transformers								
LF-Transformer	47.9	78.6	78.5	0.636	0.658			
Temporally Concatenated Early Fusion Transformer								
EF-Transformer	47.8	78.9	78.8	0.648	0.647			
Multimodal Transfomers								
Only $[V, A \to L]$ (ours)	50.5	80.1	80.4	0.605	0.670			
Only $[L, A \rightarrow V]$ (ours)	48.2	79.7	80.2	0.611	0.651			
Only $[L, V \to A]$ (ours)	47.5	79.2	79.7	0.620	0.648			
MulT mixing intermediate- level features (ours)	50.3	80.5	80.6	0.602	0.674			
MulT (ours)	50.7	81.6	81.6	0.591	0.691			

Figure 6: Visualization of sample crossmodal attention weights from layer 3 of $[V \to L]$ crossmodal transformer on CMU-MOSEI. We found that the crossmodal attention has learned to correlate certain meaningful words (e.g., "movie", "disappointing") with segments of stronger visual signals (typically stronger facial motions or expression change), despite the lack of alignment between original L/V sequences. Note that due to temporal convolution, each textual/visual feature contains the representation of nearby elements.