1.1

- (a) Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of the polynomial $f = y x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k
- (b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.
- (c) Let f be any irreducible quadratic polynomial in k[x,y], and let W be the conic defined by f. Show that A(W) is isomorphic to A(Y) and A(Z). Which one is it and when?

Solution:

(a) Consider the map $\phi: k[x,y] \to k[x]$ where $\phi(p(x,y)) = p(x,x^2)$. As this is (1) surjective and (2) has kernel $(y-x^2)$, we see that

$$k[x,y]/(y-x^2) \cong k[x].$$

Hence $(y-x^2)$ is prime. Moreover, if we denote $Y=Z(y-x^2)$, then we see that

$$A(Y) \cong k[x,y]/I(Y) = k[x,y]/I(Z(y-x^2)) = k[x,y]/(y-x^2) \cong k[x].$$

Therefore, $A(Y) \cong k[x]$.

(b) Consider the map $\phi: k[x,y] \to k[x,1/x]$ where $\phi(p(x,y)) = p(x,1/x)$. This is surjective with kernel (xy-1). This then gives us

$$k[x,y]/(xy-1) \cong k[x,1/x] \not\cong k[x].$$

Denote Y = Z(xy - 1). Note that xy - 1 is irreducible in k[x, y]. Hence, (xy - 1) is prime. Moreover,

$$A(Y) \cong k[x,y]/I(Z(xy-1)) = k[x,y]/(xy-1) \not\cong k[x].$$

Thus $A(Y) \ncong k[x]$.

(c) Let $f = x^2 + axy + by^2 + cx + dy + e$. Suppose b is a perfect square. Then

$$f = (x + by)^2 + cx + dy + e.$$

Write X = x + a. Then $f = X^2 + cx + dy + e$.

1.2 The Twisted Cubic Curve. Let $Y \subseteq \mathbf{A}^3$ be the set $Y = \{(t, t^2, t^3) \mid t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric representation x = t, $y = t^2$, $z = t^3$).

Solution: Construct the map $\phi: k[x,y,z] \to k[x]$ were $\phi(p(x,y,z)) = p(x,x^2,x^3)$. Then the kernel of the map is (x^2-y,x^3-z) . Therefore,

$$k[x, y, z]/(x^2 - y, x^3 - z) \cong k[x].$$

(I think my dimension calculation here can be greatly simplified by using the above isomorphism.) Hence $Y = Z(x^2 - y, x^3 - z)$ closed, irreducible, and hence an affine variety. Now observe that

$$(x^2 - y) \subset (x^2 - y, x^3 - z)$$

as prime ideals. Thus $(x^2 - y, x^3 - z)$ corresponds to an ideal J of $k[x, y, z]/(x^2 - y)$. In fact, J is generated by the coset $x^3 - z + (x^2 - y)$. As this is not a unit in $k[x, y, z]/(x^2 - y)$, we may conclude that J has height of one by Theorem 1.11A. We then have by Theorem 1.8A that

$$\operatorname{ht}(J) + \dim\left((k[x,y,z]/(x^2-y))/J\right) = \dim\left(k[x,y,z]/(x^2-y)\right)$$

However, we know that

$$ht(x^2 - y) + dim(k[x, y, z]/(x^2 - y)) = dim(k[x, y, z]).$$

By Theorem 1.11A, $ht(x^2 - y) = 1$ since $x^2 - y$ is not a zero divisor or unit. In addition, dim(k[x, y, z]) = 3 by Proposition 1.9. Hence

$$\dim (k[x, y, z]/(x^2 - y)) = 1 \implies \operatorname{ht}(J) + \dim ((k[x, y, z]/(x^2 - y))/(x^3 - z)) = 2$$

As we know ht(J) = 1, we see that $\dim ((k[x, y, z]/(x^2 - y))/J) = 1$. But

$$\dim ((k[x, y, z]/(x^2 - y))/J) = \dim ((k[x, y, z]/(x^2 - y, x^3 - z))) = \dim(Z(x^2 - y, x^3 - z)).$$

Therefore, $\dim(Z(x^2-y,x^3-z))=1$.

Finally, observe that $I(Y) = I(Z(x^2 - y, x^3 - z)) = (x^2 - y, x^3 - z)$. Thus the generators are just $x^2 - y$ and $x^3 - z$.

1.3 Let Y be the algebraic set in A^3 defined by the two polynomials $x^2 - yz$ and xz - x. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Solution: Since $Y = Z(x^2 - y, xz - z)$, we see that it consists of all \mathbf{A}^3 that satisfy:

$$\begin{cases} x^2 - yz = 0 \\ xz - x = 0 \end{cases}$$

There are three main ways we can satisfy the above equations.

- We could set $z=1 \implies x=y^2$. This consists of $Z(z-1,x=y^2)$.
- We could set z = x = 0. This consists of the points of Z(x, z).
- Finally, we could set x = y = 0. This consists of Z(x, y).

Thus $Z(z-1,x-y^2) \cup Z(x,z) \cup Z(x,y) \subset Y$. It is not hard to see that conversely any $(x_0,y_0,z_0) \in Y$ must be in one of the three sets. Therefore, $Y = Z(z-1,x-y^2) \cup Z(x,z) \cup Z(x,y)$. Moreover, each of these are affine varities, and as none are contained in any other, we see that these are the unique irreducible components of Y.

1.4 If we identify \mathbf{A}^2 with $\mathbf{A}^1 \times \mathbf{A}^1$ in the natural way, show that the Zariski topology on \mathbf{A}^2 is not the product topology of the Zariski topologies on the two copies of \mathbf{A}^1 .

Solution:

1.5 Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbf{A}^n , for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Solution: Thanks for pointing out the mistakes Feiyang! I cleared up a lot of my confusion. If B is a k-algebra isomorphic to an affine coordinate ring, then

$$B \cong k[x_1, \dots, x_n]/I(Y)$$

with Y an algebraic set. By definition, this is a finitely generated k-algebra. Additionally, I(Y) is radical, and so B cannot have any nilpotents.

Converseley, suppose B is finitely generated and has no nilpotents. By definition, there exists elements $b_1, \ldots, b_n \in B$ and a surjection $\phi: k[x_1, \ldots, x_n] \to B$ where $p(x_1, \ldots, x_n) \mapsto p(b_1, \ldots, b_n)$. This establishes the isomorphism

$$B \cong k[x_1, \dots, x_n] / \ker(\phi).$$

Since B has no nilpotents, we know that for any $x \in k[x_1, ..., x_n] - \ker(\phi)$, $x^r \notin \ker(\phi)$ for any r > 0. Hence, $\sqrt{\ker(\phi)} = \ker(\phi)$, so that $\ker(\phi)$ is radical. Therefore,

$$B \cong k[x_1, \dots, x_n] / \ker(\phi) \cong k[x_1, \dots, x_n] / I(Z(\ker(\phi))).$$

We now see that B is isomorphic to the affine coordinate ring of $Z(\ker(\phi))$, which is an algebraic set.

1.6 Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Solution: We first prove the first sentence. Let U be a nonempty open subset of X, an irreducible space. Observe that $\overline{U} \cup U^c = X$. Since X is irreducible and U is nonempty, we see that $\overline{U} = X$. Therefore, U is dense.

Now suppose U was reducible (in its subspace topology). Then this implies that $U = Y_1 \cup Y_2$ with Y_1, Y_2 closed and proper (in U's subspace topology). Now we may express $Y_1 = Z_1 \cap U$ with Z_1 closed in X; similarly, there is a closed Z_2 corresponding to Y_2 . Therefore,

$$U \subset Z_1 \cup Z_2 \implies \overline{U} \subset \overline{Z_1 \cup Z_2} \implies X = Z_1 \cup Z_2.$$

Hence either $X = Z_1$ or Z_2 , so Y_1 or Y_2 is either U, contradicting our assumption that Y_1 and Y_2 are proper. Therefore, U is irreducible.

Now we prove the second sentence. Let Y be irreducible in its subspace topology, and suppose \overline{Y} is reducible in X. Then there exists proper, closed subsets Z_1 , Z_2 of \overline{Y} such that $\overline{Y} = Z_1 \cup Z_2$. Hence, $Y = (Y \cap Z_1) \cup (Y \cap Z_2)$, which implies that $Y = Z_1$ or $Y = Z_2$. However, this implies that $\overline{Y} = Z_1$ or Z_2 , a contradiction. Therefore \overline{Y} is irreducible.

1.7

- (a) Show that the following conditions are equivalent for a topological space X: (i) X is noetherian; (ii) every nonempty family of closed subsets has a minimal element; (iii) X satisfies the ascending chain condition for open subsets; (iv) every nonempty family of open subsets has a maximal element.
- (b) A noetherian topological space is *quasi-compact*, i.e., every open cover has a finite subcover.
- (c) Any subset of a noetherian topological space is noetherian in its induced topology.
- (d) A noetherian space which is also Hausdorff must be a finite set with the discrete topology.

Solution:

- (a) First note that $(ii) \implies (i)$ and $(iv) \implies (iii)$ are immediate by definition of a Noetherian space. We show $(iii) \implies (iv)$. Since the ascending chain condition is satisfied, we may use Zorn's Lemma to deduce that any nonempty family of open subsets has a maximal element (we order it by inclusion, then apply the lemma). We can prove $(ii) \implies (i)$ similarly.
- (b) Let X be a Noetherian space and suppose $\mathcal{U} = \{U_i\}_{i \in \lambda}$ is an open cover of X. By (a), there exists a maximal element V_1 of \mathcal{U} . Using V_1 as our base case, inductively build the sets

$$V_{i+1} = \max \left(\left\{ U_i \in \mathcal{U} \mid U_i \not\subset V_1 \cup \dots \cup V_i \right\} \right) \qquad i = 1, 2, \dots$$

The maximum will exist by repeatedly applying (a). Now the chain

$$V_1 \subset V_1 \cup V_2 \subset \cdots V_1 \cup \cdots \cup V_j \subset \cdots$$

must have stabilize for some finite number of unions. This then implies that $X = V_1 \cup \cdots \cup V_r$ for some r. Hence, V_1, \ldots, V_r is our finite subcover of \mathcal{U} , so that X is compact.

1.8 Let Y be an affine variety of dimension r in \mathbf{A}^n . Let H be a hypersurface in \mathbf{A}^n , and assume $Y \not\subseteq H$. Then every irreducible component of $Y \cap H$ has dimension r-1. (See (7.1) for a generalization.)

Solution: First denote $Y = Z(\mathfrak{p})$ where \mathfrak{p} is a prime ideal in $k[x_1, \ldots, x_n]$. By Corollary 1.6, we can express the algebraic set $Y \cap H$ uniquely as

$$Y \cap H = V_1 \cup \cdots \cup V_\ell$$

where each V_i is an affine variety and $V_i \not\subset V_j$ for $i \neq j$. For each affine variety V_i denote $V_i = Z(\mathfrak{p}_i)$ with \mathfrak{p}_i prime. We make some observations.

- Each prime ideal \mathfrak{p}_i contains \mathfrak{p} , and hence corresponds to a prime ideal \mathfrak{p}_i' in $k[x_1,\ldots,x_n]/\mathfrak{p}$.
- Since $Y \not\subset H$, we know that $(f) \not\subset \mathfrak{p}$ which implies $f \not\in \mathfrak{p}$. Hence, we see that $f + \mathfrak{p} \in k[x_1, \ldots, x_n]/\mathfrak{p}$ is not a zero divisor (as it is an integral domain). It is also not a unit as f is irreducible. Write \bar{f} as the representative of f in $k[x_1, \ldots, x_n]/\mathfrak{p}$. If $\bar{f}\bar{g} = \bar{0}$, then $fg \in \mathfrak{p}$. Since $f \in \mathfrak{p}$ and \mathfrak{p} is prime, this means that $g \in \mathfrak{p}$, i.e. $\bar{g} = \bar{0}$. So \bar{f} is not a zero-divisor.
- The ring $k[x_1, \ldots, x_n]/\mathfrak{p}$ is Noetherian. Thus, by Theorem 1.11A, every minimal prime ideal in $k[x_1, \ldots, x_n]/\mathfrak{p}$ containing $f + \mathfrak{p}$ must have height one.

Our claim is that each \mathfrak{p}'_i is a minimal prime ideal containing $f + \mathfrak{p}$. Assuming this is true, we can observe by Theorem 1.8A that

$$\operatorname{ht}(\mathfrak{p}_i') + \dim\left((k[x_1, \dots, x_n]/\mathfrak{p})/\mathfrak{p}_i'\right) = \dim\left(k[x_1, \dots, x_n]/\mathfrak{p}\right) \implies 1 + \dim\left(A(V_i)\right) = r$$
$$\implies \dim\left(A(V_i)\right) = r - 1$$

Thus we show the claim. Suppose \mathfrak{q} is a prime ideal in $k[x_1,\ldots,x_n]/\mathfrak{p}$ containing $f+\mathfrak{p}$, and that $\mathfrak{q}\subseteq\mathfrak{p}_i'$ for some i. Then \mathfrak{q} corresponds to a prime ideal \mathfrak{q}' of $k[x_1,\ldots,x_n]$ (1) containing \mathfrak{p} and (2) containing f. However,

$$\sqrt{\langle \mathfrak{p}, f \rangle} = \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_\ell$$

and as the radical of $\langle \mathfrak{p}, f \rangle$ (the smallest ideal containing \mathfrak{p} and f) is the intersection of all prime ideals containing this ideal, we see that $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_\ell \subseteq \mathfrak{q}'$. By Proposition 1.1.11(b) in Atiyah-MacDonald, this implies that $\mathfrak{p}_j \subseteq \mathfrak{q}'$. However, it must be that j = i, since none of these prime ideals are contained in each other. This then implies that $\mathfrak{p}_i' \subseteq \mathfrak{q}$ in $k[x_1, \ldots, x_n]/\mathfrak{p}$, which gives us that $\mathfrak{q} = \mathfrak{p}_i'$. Hence, \mathfrak{p}_i is a minimal prime ideal in $k[x_1, \ldots, x_n]/\mathfrak{p}$ containing $f + \mathfrak{p}$, and so we may apply our above calculation. This then shows that

$$\dim(A(V_i)) = r - 1$$

as desired. \Box

1.9 Let $\mathfrak{a} \subseteq A = k[x_1, \dots, x_n]$ be an ideal which can be generated by r elements. Then every irreducible component of $Z(\mathfrak{a})$ has dimension $\geqslant n-r$.

Solution: We prove this by induction.

Base Case.: Consider an ideal $\mathfrak{a}=(a)$ which is generated by a single element. We assume \mathfrak{a} is not all of $k[x_1,\ldots,x_n]$ (i.e., a is not a unit); otherwise, $Z(\mathfrak{a})$ is empty, which is not irreducible, and further it does not make sense to talk about the irreducible components for the empty set.

- Suppose a = 0. Then $\mathfrak{a} = 0 \implies Z(\mathfrak{a}) = \mathbf{A}^n$ which is irreducible and has dimension n.
- Suppose a is not a unit and is nonzero. Since $k[x_1, \ldots, x_n]$ is a UFD, then we may uniquely express a as $a = u \cdot f_1 \cdots f_m$ with u a unit, eac f_i irreducible. We then have that

$$Z(\mathfrak{a}) = Z(f_1) \cup Z(f_2) \cdots \cup Z(f_m).$$

Now by Theorem 1.11A, we can conclude that for each i = 1, 2, ..., m, $\operatorname{ht}(f_i) = 1$. Hence

$$ht(f_i) + dim(Z(f_i)) = n \implies dim(Z(f_i)) = n - 1.$$

Hence, every irreducible component of $Z(\mathfrak{a})$ has dimension n-1.

In each case we see that the irreducible components of (a) have dimension dim $\geq n-1$, which proves the base case

Inductive Step.: Let $\mathfrak{a} = (a_1, \ldots, a_r)$ be our ideal, and suppose the statement is true for all ideals generated by (r-1)-many elements. Let a_i be nonzero. Denote the decomposition of $Z(a_1, \ldots, a_r)$ into its irreducible components as below

$$Z(a_1,\ldots,a_r)=V_1\cup\cdots\cup V_\ell$$

with $V_j = Z(\mathfrak{p}_j)$. Similarly for $(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_r)$ write

$$Z(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_r) = Y_1 \cup \cdots \cup Y_m.$$

with $Y_j = Z(\mathfrak{q}_j)$.

Observe that for each $j = 1, 2, \dots, \ell$,

$$\mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_m \subset \mathfrak{p}_i$$
.

By Proposition 1.11(b) in Atiyah MacDonald, this implies that $\mathfrak{q}_s \subset \mathfrak{p}_j$ for some s = 1, 2, ..., m. Thus, denote \mathfrak{p}'_j as the prime ideal in $k[x_1, ..., x_n]/\mathfrak{q}_s$ corresponding to \mathfrak{p}_j . By Theorem 1.8A, we have that

$$\operatorname{ht}(\mathfrak{p}_j') + \dim\left(\left(k[x_1,\ldots,x_n]/\mathfrak{q}_s\right)/\mathfrak{p}_j'\right) = \dim(k[x_1,\ldots,x_n]/\mathfrak{q}_s).$$

Now \mathfrak{p}'_i is a minimal prime ideal containing $a_i + \mathfrak{q}_s$, which is not a unit or zero divisor. Hence, its height is one. Therefore,

$$1 + \dim(V_i) = \dim(k[x_1, \dots, x_n]/\mathfrak{q}_s) \geqslant n - (r - 1) \implies \dim(V_i) \geqslant n - r.$$

This completes the inductive step and the proof is complete.

1.10

- (a) If Y is any subset of a topological space X then $\dim Y \leq \dim X$.
- (b) If X is a topological space which is covered by a family of open subsets $\{U_i\}$, then dim $X = \sup \dim U_i$.
- (c) Give an example of a topological space X and a dense open subset U with $\dim U < \dim X$.
- (d) If Y is a closed subset of an irreducible finite-dimensional topological space X, and if $\dim Y = \dim X$, then Y = X.
- (e) Give an example of a noetherian topological space of infinite dimension.

Solution:

- (a)
- (b) It suffices to show that there exists i such that $\dim X \leq \dim U_i$. Given a chain $Z_0 \subset Z_1 \subset \cdots \subset Z_n$ of distinct irreducible closed subsets of X, there exists U_i such that $U_i \cap Z_{n-1} \neq \emptyset$. Then we claim that $Z_0 \cap U_i \subset Z_1 \cap U_i \subset \cdots \subset Z_n \cap U_i$ is a chain of distinct irreducible closed subsets of U_i . It suffices to show distinctness. Suppose that $Z_i \cap U_i = Z_{i+1} \cap U_i$. Notice that

$$Z_{j+1} = Z_j \cup Z_{j+1} = Z_j \cup (Z_{j+1} \cap U_i) \cup (Z_{j+1} \cap U_i^c) = Z_j \cup (Z_{j+1} \cap U_i^c).$$

Since Z_{j+1} is irreducible and since $Z_j \neq \emptyset$ (the empty set is not considered irreducible), we have that $Z_{j+1} \cap U_i^c = \emptyset$. However, this implies that $Z_{j+1} = Z_{j+1} \cap U_i = Z_j \cap U_i$, which is a contradiction to $Z_j \subsetneq Z_{j+1}$.

1.11 Let $Y \subseteq \mathbf{A}^3$ be the curve given parametrically by $x = t^3$, $y = t^4$, $z = t^5$. Show that I(Y) is a prime ideal of height 2 in k[x, y, z] which cannot be generated by 2 elements. We say Y is not a local complete intersection—cf. (Ex. 2.17).

Solution: Construct the map $\phi: k[x,y,z] \to k[t]$ where $p(x,y,z) \mapsto p(t^3,t^4,t^5)$. The kernel of this map is given by $I(Y) = \{f \in k[x,y,z] \mid f(t^3,t^4,t^5) = 0 \text{ for all } t \in k\}$. However, the map is not surjective. Thus we have that $k[x,y,z]/I(Y) \cong \operatorname{im}(\phi)$.

Since k[t] is an integral domain, and $\operatorname{im}(\phi)$ is a subring, this nevertheless implies that I(Y) is a prime ideal. Alternatively we have an isomorphism of varieties between Y and $X = \{(t, t^3, t^4, t^5)\}$ via $(x, y, z) \mapsto (x^{-1}y, x, y, z)$ and $(t, t^3, t^4, t^5) \mapsto (t^3, t^4, t^5)$.

1.12 Give an example of an irreducible polynomial $f \in \mathbf{R}[x,y]$, whose zero set Z(f) in $\mathbf{A}^2_{\mathbf{R}}$ is not irreducible (cf. 1.4.2).

Solution: Consider $f = (x^2 - 1)^2 + y^2$. $Z(f) = Z((x - 1, y)) \cup Z((x + 1, y))$, and so is reducible. Now we prove that f is irreducible. Suppose f is reducible. Then f = g(x, y)h(x, y). One can check that $f(x, 1) = (x^2 - 1)^2 + 1$ has no factorization two non-units over \mathbb{R} . Therefore f(x, y) = g(y)h(x, y). However f has a term x^4 and no other x^4y^i terms, which implies that g(y) is a unit.