

Introduction to EDA (Exploratory Data Analysis)

Agenda

- The importance of Exploratory Data Analysis
- Data Cleaning
- Data Processing and the Concept of ETL
- Data Visualization

What is EDA?

Exploratory Data Analysis (EDA) is a crucial step in the data analysis process, which involves examining the main characteristics of a dataset, often visually, before making any assumptions or building statistical models. This approach helps in uncovering patterns, spotting anomalies, testing hypotheses, and checking assumptions through summary statistics and graphical representations.

- How many rows?
- What is the avg of "Total"? Does it make sense?
- Is there any data missing in variable "C"?

Data Cleaning

Assume the data is dirty - but what does this mean? You will be faced with datasets of inconsistent data, that you will need to fix - aka, clean - yourselves.

- 1. San Francisco, CA, USA
- 2. San Franciso, California, USA (typo)
- 3. san francisco, california, usa (case issues)
- 4. SF, California, USA (abbreviation)
- San Francisco CA USA (missing commas)
- 6. S. Francisco, California, USA (shortening)
- 7. San Francisco, Calif., USA (different abbreviation)
- 8. San Francisco California, USA (alternative delimiter)
- 9. san francisco, ca, usa (case and abbreviation issues)
- 10. San Fran, CA, USA (nickname)
- 11. SAN FRANCISCO, CALIFORNIA, USA (all caps)
- 12. San Francisco California, USA (missing comma)
- 13. San Fransisco, California, USA (typo)
- 14. Saint Francisco, California, USA (formal/incorrect name)
- 15. SFO, California, USA (airport code used as city name)
- 16. San Francisco, Cali, USA (informal abbreviation)
- 17. San Fran., Cal., USA (abbreviated with periods)
- San Francisco Calif USA (missing punctuation)
- 19. San Francisco, Cal., US (country abbreviation inconsistency)
- 20. San Francsco, California, US (typo and country abbreviation inconsistency)

Data Injection

Cleaning data is no just about typos - often you will also having missing data that is central to your analysis.

"Something" is often better than nothing. But which "something?

Common imputation techniques:

- Mean
- Median
- Mode
- Zero
- and many more

The concept of an outlier is a point that is valid - it exists in our data and in reality - but it is not representative of our dataset.

out of curiosity I ran the numbers and Mark Zuckerberg singlehandedly has 2% of all Millennial wealth

Outliers

What should we do about Outliers?

There is no Golden Rule – Outliers are still valid situations in our reality

Outliers

What should we do about Outliers?

Sales of a shop vs Wealth of Millenials

Data processing - Filtering

Filtering is one of the main parts of EDA - it reflects our choice over the analysis that we want to do and which data we want to include.

Filtering is done by rules, not by hand

- Filter on a subset of elements
- Filter on a condition (a > b) or a combination of condictions
- Filter on an issue (remove Nas or invalid rows)

Filtering is done on the rows

			Brana natings						
ID	Age	Gender	Preferred cola	Coca- Cola	Diet Coke	Coke Zero	Pepsi	Diet Pepsi	Pepsi Max
1	25 to 29	Female	Pepsi Max	2	5	2	3	1	4
2	45 to 49	Male	Pepsi Max	5	1	5	5	3	4
3	25 to 29	Female	Diet Coke	5	4	2	3	1	1
4	25 to 29	Female	Coca-Cola	4	2	2	2	2	2
5	55 to 64	Female	Diet Coke	3	4	3	3	4	2
6	55 to 64	Female	Diet Pepsi	3	3	3	3	4	4
7	50 to 54	Female	Coke Zero	2	3	5	2	2	2
8	35 to 39	Female	Coca-Cola	4	2	5	3	2	5
9	65 or more	Male	Diet Pepsi	5	5	3	5	5	3
10	45 to 49	Female	Coke Zero	4	4	4	5	5	3
11	45 to 49	Male	Coca-Cola	4	1	1	4	1	1
12	55 to 64	Male	Coca-Cola	5	2	2	5	2	2
13	55 to 64	Male	Coca-Cola	5	2	2	3	2	2
14	30 to 34	Male	Pepsi Max	3	2	5	3	3	5
15	65 or more	Female	Diet Pepsi	2	4	2	5	4	2

Brand Ratings

Data processing - Aggregations

The importance of aggregating data cannot be overstated. Every time technology advances, humanity is able to collect and process a high and more detailed volume of data – but the human brain still needs to understand high level, aggregated data to have a full picture.

France	TRUE	couplerio-sandbi	2915	29	Hand LLC deal	22	USD	8/31/2019	10/18/2019
France	TRUE	couplerio-sandbe	2947	30	Ortiz, Farrell and	669	USD	8/31/2019	10/18/2019
France	TRUE	couplerio-sandb	1604	28	Roob-Nader dea	622	USD	7/31/2018	10/18/2019
France	TRUE	couplerio-sandb	2995	30	Medhurst-Padbe	830	USD	9/30/2019	10/18/2019
France	TRUE	couplerio-sandbi	3093	29	Hintz, Doyle and	497	USD	10/31/2019	10/18/2019
France	TRUE	couplerio-sandbe	3112	29	Parker-Schmeler	75	USD	10/31/2019	10/18/2019
France	TRUE	couplerio-sandbi	3123	29	Kreiger-Sauer de	142	USD	10/31/2019	10/18/2019
France	TRUE	couplerio-sandbi	3142	29	Keeling, Crooks	51	USD	10/31/2019	10/18/2019
France	TRUE	couplerio-sandb	3170	29	Wisozk-Ullrich d-	228	USD	10/31/2019	10/18/2019
France	TRUE	couplerio-sandbi	1628	28	Adams, Kling an	628	USD	7/31/2018	10/18/2019
France	TRUE	couplerio-sandb	3245	29	Harvey, Wolf and	647	USD	11/30/2019	10/18/2019
France	TRUE	couplerio-sandb	3283	30	Schinner, Glover	945	USD	11/30/2019	10/18/2019
France	TRUE	couplerio-sandbi	3294	29	Mitchell-Purdy d	867	USD	11/30/2019	10/18/2019
France	TRUE	couplerio-sandbi	2915	30	Hand LLC deal	39	USD	11/30/2019	10/18/2019
France	TRUE	couplerlo-sandbi	1644	28	Bartoletti-Harris	287	USD	7/31/2018	10/18/2019
France	TRUE	couplerlo-sandbe	1647	28	Bauch-Casper d	881	USD	8/31/2018	10/18/2019
France	TRUE	couplerlo-sandbe	1679	28	Stroman-Heaney	763	USD	8/31/2018	10/18/2019
France	TRUE	couplerio-sandbi	1698	28	Brakus, Fay and	340	USD	8/31/2018	10/18/2019
France	TRUE	couplerio-sandbe	1704	30	Mante and Sons	439	USD	8/31/2018	10/18/2019
France	TRUE	couplerio-sandbi	1708	28	Hartmann-Nitzsc	758	USD	8/31/2018	10/18/2019
France	TRUE	couplerio-sandb	1714	30	Adams-Graham	295	USD	8/31/2018	10/18/2019
France	TRUE	couplerio-sandb	1726	28	Hill LLC deal	148	USD	8/31/2018	10/18/2019
France	TRUE	couplerio-sandbi	1733	28	Walsh and Sons	83	USD	9/30/2018	10/18/2019
	TOUT	encolade eseds	4724	20	Daniel Dalface :	000	1100	012012010	10110/2010

Country	Conversion rate	Total revenue
Australia	32.01%	\$42,851.00
Canada	28.57%	\$38,630.00
Denmark	28.47%	\$34,078.00
France	27.89%	\$39,561.00
Germany	30.10%	\$43,460.00
Netherlands	28.09%	\$45,102.00
Ukraine	28.04%	\$31,025.00
United Kingdom	33.44%	\$52,149.00
United States	29.50%	\$40,088.00
United Arab Emirates	27.84%	\$38,934.00

Total deals	Total revenue	Average deal life time (days)	
299	\$45,102.00	50	

Data processing – Transformation

During our data flow, transformations will be necessary – and they start in our exploratory analysis.

Transformations / Formulas: often we will need to alter what the data looks like

Date of birth becomes Age 02/07/1988 35

Data processing – Transformation

During our data flow, transformations will be necessary – and they start in our exploratory analysis.

Transformations / Formulas: often we will need to alter what the data looks like.

Statistical Analysis: normalization, standardization

Wealth Rage 30\$-13B\$

becomes

Wealth Rage normalized 0-1

Data Visualization

The outcome of all Data Analysis it for a user make an informed decision – that information needs to be shared with the user in some sort of visual matter – often through charts.

The way we visualize that data is, in itself, a science: Data Visualization

Data Visualization

As we study how to visualize data, there are several areas of DataViz to be studied.

What can be displayed:

DIMENSIONS:

Data Attributes

Examples: Geo-Location (City, Country), Categorical Breakdown

(Usually) strings METRICS:

METRICS

Measurable values that describe your data

Examples: Sales, Profit, dedicated KPIs (what are KPIs??)

Data Visualization

As we study how to visualize data, there are several areas of DataViz to be studied.

The different ways it can be displayed

