

PGM foundations - Part 2 Priors, Generative processes and Mixture models

Francisco Pereira

Filipe Rodrigues

DTU Management EngineeringDepartment of Management Engineering

Outline

- PGMs in continuous domain
- Generative processes
- Mixture models

PGM in continuous domain

- Thus far, we've been using only discrete variables
- Conditional Probability Tables
- Extension to continuous domain is almost trivial...
- But with it, some concepts become more relevant
 - Prior
 - Conjugate prior

PGMs in continuous domain

General form

- We use functions instead of tables
- Typically, each function is a well-known distribution (or combination of them)
- ullet Every distribution is parameterized by a set heta

PGMs in continuous domain

Guassian distribution

- A well-known example is the Gaussian (or Normal) distribution
- In this PGM, we assume to have observations x_n , that follow a Gaussian distribution
- It has two parameters (mean μ , variance σ^2)
- Inference
 - It has a well-known log likelihood function

PGMs in continuous domain

- A Graphical Model allows for a full Bayesian treatment:
 - We can assign *priors* to the parameters
 - We can use domain knowledge
 - Good to prevent overfitting
 - What would be the form of those priors?

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick any distribution, $D(\mu|\theta)$?
- Our joint distribution would become:

$$p(\mu, \mathbf{x} | \theta, \sigma) = D(\mu | \theta) \prod_{n=1}^{N} p(x_n | \mu, \sigma)$$

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick any distribution, $D(\mu|\theta)$?
- Common simplification to unclutter notation:

$$p(\mu, \mathbf{x}|\theta, \sigma) = D(\mu|\theta) \prod_{n=1}^{N} p(x_n|\mu, \sigma)$$

- \bullet To simplify, let's assume we know σ but not μ
- Can we pick any distribution, $D(\mu|\theta)$?
- Common simplification to unclutter notation:

$$p(\mu, \mathbf{x}) = D(\mu|\theta) \prod_{n=1}^{N} p(x_n|\mu, \sigma)$$

- ullet To simplify, let's assume we know σ but not μ
- Can we pick *any* distribution, $D(\mu|\theta)$?
- Our joint distribution would become:

$$p(\mu, \mathbf{x}) = D(\mu|\theta) \prod_{n=1}^{N} p(x_n|\mu, \sigma)$$

- If $D(\mu|\theta)$ is normal, then $p(\mu,\mathbf{x})$ is normal too!
- If $p(\mu, \mathbf{x})$ is not a known distribution, we may have trouble deriving it (analytically)...

Conjugate priors

ullet For many known distributions, there is a corresponding *conjugate prior*, P, that preserves its form under multiplication. I.e., if we have distribution L and its conjugate prior P_0 , we should have

$$P_1 = L \times P_0$$

- ullet where P_1 has the same form as P_0
- For example, the Beta distribution is the conjugate prior of Bernoulli; and we've seen that the Normal is the conjugate for the mean of the Normal (when variance is known).
- If we have a known closed form for model, inference is generally more efficient!
- This is great for online learning (why?)!

Conjugate priors

• We usually use a table

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \ \beta + n - \sum_{i=1}^n x_i$	$\begin{array}{l} \alpha-1 \text{ successes, } \beta-1 \\ \text{failures}^{[\text{note 1}]} \end{array}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$
Binomial	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \ \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$\alpha-1 \text{ successes, } \beta-1$ $\text{failures}^{[\text{note 1}]}$	$\operatorname{BetaBin}(\tilde{x} \alpha',\beta')$ (beta-binomial)
Negative binomial with known failure number, r	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{[\text{note 1}]} \text{ (i.e., } \frac{\beta-1}{r} \\ \text{experiments, assuming } r \text{ stays} \\ \text{fixed)} \end{array}$	
Poisson	λ (rate)	Gamma	k, θ	$k+\sum_{i=1}^n x_i,\;rac{ heta}{n heta+1}$	k total occurrences in $\frac{1}{\theta}$ intervals	$\operatorname{NB}(ilde{x} k', heta')$ (negative binomial)
			α , $\beta^{[\text{note 3}]}$	$\alpha + \sum_{i=1}^n x_i, \; \beta + n$	α total occurrences in β intervals	$\operatorname{NB}\!\left(ilde{x} lpha',rac{1}{1+eta'} ight)$ (negative binomial)
Categorical	<pre>p (probability vector), k (number of categories; i.e., size of p)</pre>	Dirichlet	α	$\pmb{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{[{ m note } 1]}$	$\begin{split} p(\tilde{x} = i) &= \frac{{\alpha_i}'}{\sum_i {\alpha_i}'} \\ &= \frac{{\alpha_i} + c_i}{\sum_i {\alpha_i} + n} \end{split}$

Figure: From Wikipedia

Some conjugate priors to remember...

Likelihood	Prior
Normal with known variance	Normal
Normal with known mean	Inverse Gamma
Multivariate normal, known	Inverse Wishart
mean	
Multivariate normal, unknown	Normal-inverse-Wishart
mean and variance	
Exponential	Gamma
Bernoulli	Beta
Mulitnomial	Dirichlet
Poisson	Gamma

Last note on priors

• Depending on what you know of the problem (or the constraints you want to impose...):

Playtime!

- Open notebook "3-PGM fundamentals.ipynb"
- Do part 1 (est. duration=30 min)

Generative processes

- By now, you understand that you can combine variables in multiple ways in your graphical model
- On the other hand, you may be overwhelmed about where to start doing your own
 - Small models, with few variables, are simple
 - What if you have a lot of variables, assumptions, domain knowledge?...
- You need to think from a generative perspective...

"Generative story" of data

How is a data point generated?

- ullet Given a parameter heta
- \bullet For n=1..N, do
 - **1** Draw a random latent variable, $z_n \sim p(z|\theta)$
 - **2** Given z_n , generate x_n such that $x_n \sim p(x|\theta,z_n)$
- In fact, this resembles a program structure!

A more complex example - Dwell time prediction

For a given bus stop, that serves a single line, can we predict the amount of time the next bus will be stopped there to load/unload passengers (the dwell time)?

- Our dataset contains $\{x_n=\{0,1\}$ -representing peak/non-peak hour, dt_n dwell time $\}$.
- Notice that, sometimes, the bus does not stop at all!
- ullet When it stops, we measure the duration as dt

Dwell time prediction

DTU

Given N, σ_{β} , σ_{ϵ} and π

- **1** Draw a pair of parameters¹, $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, I\sigma_{\boldsymbol{\beta}})$
- **2** For n = 1..N
 - **1** Draw one value for z_n , such that $z_n \sim Bern(\pi)$.
 - If $z_n = 1$, the bus has stopped $(z_n = 0 \text{ otherwise})$.
 - \bullet Distributed as Bernoulli, with parameter π
 - **2** Draw one value for k_n , such that $k_n \sim \mathcal{N}(\beta_0 + \beta_1 x_n, \sigma_{\epsilon})$
 - **3** If $z_n = 1$, $dt_n = k_n$,
 - otherwise $dt_n = 0$

 $^{^1}$ We need two values for β , one for the intercept, another for the peak/non-peak information.

Dwell time prediction

- After you define your model, you need to estimate it. I.e. infer the following:
 - Distribution of β
 - Optimal values of σ_{ϵ} , σ_{β} , and π (we defined them as constants!)
- Of course, when you have them, you can make your predictions!
- Your model will look different:

"Generative story" of data

- Set up the building blocks, as per available knowledge
- Easy to change data distributions inside the model
- Can be used to actually generate data!
 - Ancestral sampling

Playtime!

- Open notebook "3-PGM fundamentals.ipynb"
- Do part 2 (est. duration=30 min)

Mixture models

- A PGM is composed of observed and latent variables, parameters, constants.
- In this course, we'll approach some examples from this very large family
- Mixture models are pervasive in data modelling in general
- Problem:
 - Sub-populations of data
 - Data generated from combination/competition of multiple sources
 - Number of sources usually discrete and finite

The canonical example: Gaussian Mixture

• What we observe

• What really happens

Generative story

Given:

- A dataset with N points (or vectors) $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ and a value K
- $oldsymbol{0}$ Draw $oldsymbol{\pi}$, and $(oldsymbol{\mu_k}, oldsymbol{\Sigma_k})$ for all K gaussians
- **2** For n = 1, 2, ..., N
 - **1** Draw $z_n \sim Multinomial(\boldsymbol{\pi})$
 - π is a vector $(1 \times K)$ with the probabilities of each class
 - **2** Define $k=z_n$. Generate \mathbf{x}_n , from the k-th Gaussian,

$$\mathbf{x}_n \sim \mathcal{N}(oldsymbol{\mu_k}, oldsymbol{\Sigma_k})$$

Note: in practice we need to be exhaustive

...particularly in probabilistic programming (e.g. STAN)

- $\pi \sim Dir(\alpha)$
- $\mu_k \sim \mathcal{N}(\mathbf{0}, I\sigma_\mu)$
- ullet $oldsymbol{\Sigma}_{oldsymbol{k}} \sim \mathcal{W}^{-1}(oldsymbol{\Psi},
 u)$
 - ullet Typically, u= number of dimensions, and $oldsymbol{\Psi}=I$

Playtime!

- Open notebook "3-PGM fundamentals.ipynb"
- Do part 3 (est. duration=45 min)

The problem of inference

- ...your last exercise should show that we need efficient inference methods
 - Complex distribution (e.g. involving log of sum; an unknown form; etc.)
 - High dimensionality (e.g. more than a couple of parameters is often too many!)
 - Continuous dimensions instead of discrete
- Two general approaches:
 - Exact inference
 - Approximate Inference
- Before we get practical (i.e. STAN), we need to understand a bit how inference can be done
 - Important to manipulate STAN and understand its output
- STAN uses Approximate Inference (we'll talk about it today)
- In a later class, we'll get more detailed (in both Exact and Approx.).

Conclusions

- PGMs are extremely flexible. They can combine:
 - Discrete and continuous variables
 - Parametric and non-parametric models
 - Informative and non-informative priors
 - Online learning with conjugate priors
 - Partial and complete data
- Think in a generative way helps design a model

References

• (Koller and Friedman, 2009) Koller, D., and Friedman, N. Probabilistic graphical models: principles and techniques. MIT press. (2009).