Ethylene/Ethane Separation in Metal-Organic Frameworks by Computational Modeling

Wenqin You Georgia Institute of Technology 10/31/2019

Advisor: Dr. David S. Sholl

Committee Members: Dr. Krista S. Walton

Dr. Matthew J. Realff

Dr. Ryan P. Lively

Dr. Eric Vogel

HAPPY/ HALLOWEEN

Chapter 1: Motivation for C₂H₄/C₂H₆ Separation

MOFs with OMS: Adsorption-based C₂H₄/ C₂H₆ Separation

Chapter 2 (Published)

Competitive binding of H₂O, CO, and C₂H₄ in 65 dimer Cu MOFs^[1]

Chapter 3 (Published)

Tune the binding tendencies by metal substitution and linker functionalization^[2]

Chapter 4 (Done)

Performance of the mixed-metal MOFs

^[1] You, W.; Liu, Y.; Howe, J. D.; Sholl, D. S., J. Phys. Chem. C 2018, 122 (16), 8960-8966.

Chapter 2: Two Top Ethylene-Selective MOFs

Notable dual site binding

Negligible dual site binding

Finding 4: Suggests a possible avenue for developing other MOFs in which the $BE_{C_2H_4}$ is higher than the BE_{H_2O}

^[1] Chen, Banglin, et al. Journal of the American Chemical Society 122.46 (2000): 11559-11560.

^[2] You, W.; Liu, Y.; Howe, J. D.; Sholl, D. S., J. Phys. Chem. C 2018, 122 (16), 8960-8966.

Chapter 3: Metal-Substitution on Isostructural MOFs

- Each data point shows average of 5 MOFs.
- The energy variation due to metals is stronger than the identity of linker
- C₂H₆ has the lowest binding affinity in all cases.

Chapter 3: Relative Binding Energies in 12-metal MOFs

Chapter 3: Five Types of Binding Tendencies

Chapter 3: Separation Strategies

If H₂O is the dominant contaminant

If CO is the dominant contaminant

Chapter 3: Ethylene/Ethane Selectivity

Trade off between larger $\Delta E(C_2H_4 - C_2H_6)$ and smaller $E_-(C_2H_4)$

Chapter 4: Optimization of the Adsorption Process

Case Study for the Zn-BTC

Finding: Although the simple model underestimates the maximum possible purity and the energy consumed, it still provides a useful general estimate of optimal operating conditions and process performance.

Chapter 4: Performance of Pure Metal MOFs

80

70

(a) Purity(%) at 1.0 GJ/ton 100 Mg 40 ₹Zñ 90 $\mathrm{BE}_{\mathrm{C_2H_6}}$ (kJ/mol) Mn 35 80 Co 70 ′/RuV<mark>≸</mark>, 25 Æе 60 20

50

60

(kJ/mol)

30

40

Full Process Model

