Advanced Calculus Exam Solutions

Student Name

June 25, 2025

Question 1

(a)

Proof. Assume for contradiction that $a \neq 0$. Then a > 0. Take $\epsilon = \frac{a}{2} > 0$. By the given condition, $a < \frac{a}{2}$, which implies 2a < a or a < 0. This contradicts $a \geq 0$. Therefore, a = 0.

(b)

We solve |x-1| > |x+1|: Square both sides:

$$(x-1)^{2} > (x+1)^{2}$$

$$x^{2} - 2x + 1 > x^{2} + 2x + 1$$

$$-4x > 0$$

$$x < 0$$

The solution is all real numbers x such that x < 0.

Graph description: The inequality holds for all points to the left of the origin on the number line.

(c)

Find the supremum and infimum:

(i)

 $\left\{\cos\frac{n\pi}{2}:n\in\mathbb{N}\right\}$

The sequence of values is periodic:

- $\bullet \ n=1: \cos \frac{\pi}{2}=0$
- n = 2: $\cos \pi = -1$

- $n=3: \cos \frac{3\pi}{2}=0$
- n=4: $\cos 2\pi = 1$, and repeats.

Thus, the set is $\{-1, 0, 1\}$.

- Supremum = 1
- Infimum = -1

(ii)

$$\left\{\frac{x+2}{3}: x > 3\right\}$$

 $\left\{\frac{x+2}{3}: x > 3\right\}$ For x > 3, $\frac{x+2}{3} > \frac{5}{3}$. As x approaches 3 from above, the expression approaches $\frac{5}{3}$, and as

- Infimum = $\frac{5}{3}$
- Supremum does not exist (set is unbounded above)

 (\mathbf{d})

- *Proof.* To show Sup $\left\{1 \frac{1}{n} : n \in \mathbb{N}\right\} = 1$: 1. For all $n \in \mathbb{N}$, $1 \frac{1}{n} < 1$, so 1 is an upper bound. 2. For any $\epsilon > 0$, choose $n > \frac{1}{\epsilon}$ (by Archimedean property). Then $1 \frac{1}{n} > 1 \epsilon$. Thus, 1 is the least upper bound.

Question 2

(a)

Proof. Let $\alpha = \text{Inf } S$ and $\beta = \text{Sup } \{-s : s \in S\}.$

- 1. For all $s \in S$, $s \ge \alpha \Rightarrow -s \le -\alpha$. Thus $-\alpha$ is an upper bound for $\{-s\}$.
- 2. Since β is the least upper bound, $\beta \leq -\alpha$.
- 3. Conversely, $-s \leq \beta \Rightarrow s \geq -\beta$, so $-\beta$ is a lower bound for S.
- 4. Since α is the greatest lower bound, $\alpha \geq -\beta$.

Thus $\alpha = -\beta$.

(b)

Archimedean Property: For any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

Proof. Assume for contradiction that $\mathbb N$ is bounded above. Then by completeness, $\mathbb N$ has a supremum s. But then s-1 is not an upper bound, so there exists $n \in \mathbb{N}$ with n > s-1. Then n+1>s, contradicting s being the supremum.

(c)

For $S = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$:

- The maximum occurs when n is minimized and m is maximized: as n = 1 and $m \to \infty$, expression approaches 1.
- The minimum occurs when m=1 and $n\to\infty$, expression approaches -1.
- All intermediate values are achieved.

Thus:

- Sup S = 1
- Inf S = -1

(d)

Definition: A sequence (x_n) converges to L if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|x_n - L| < \epsilon$.

Uniqueness of limit. Suppose L and L' are both limits. For any $\epsilon > 0$, there exist N_1, N_2 such that:

- $n \ge N_1 \Rightarrow |x_n L| < \epsilon/2$
- $n \ge N_2 \Rightarrow |x_n L'| < \epsilon/2$

For $n \ge \max(N_1, N_2)$:

$$|L - L'| \le |L - x_n| + |x_n - L'| < \epsilon$$

Since ϵ is arbitrary, L = L'.

Question 3

(a)

Proof. For any $\epsilon > 0$, choose $N > \frac{23}{9\epsilon}$. Then for $n \geq N$:

$$\left| \frac{2n+3}{3n-7} - \frac{2}{3} \right| = \left| \frac{23}{3(3n-7)} \right| < \frac{23}{9n} < \epsilon$$

(b)

Proof. Let $x_n = n^{1/n} - 1 \ge 0$. By binomial theorem for $n \ge 2$:

$$n = (1 + x_n)^n \ge \frac{n(n-1)}{2}x_n^2$$

Thus
$$x_n \leq \sqrt{\frac{2}{n-1}} \to 0$$
 as $n \to \infty$.

(c)

Sandwich Theorem: If $a_n \leq b_n \leq c_n$ for all $n \geq N$ and $\lim a_n = \lim c_n = L$, then $\lim b_n = L$.

Proof. For any $\epsilon > 0$, there exists N' such that for $n \geq N'$:

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$

Thus
$$|b_n - L| < \epsilon$$
.

(d)

Proof. Let (x_n) be increasing and bounded above. By completeness, $S = \{x_n\}$ has a supremum L. For any $\epsilon > 0$, $L - \epsilon$ is not an upper bound, so there exists N with $x_N > L - \epsilon$. By monotonicity, for all $n \ge N$:

$$L - \epsilon < x_N \le x_n \le L$$

Thus $|x_n - L| < \epsilon$.

Question 4

(a)

Proof. 1. Monotonicity: By induction, $x_{n+1} > x_n$ and bounded above by 2.

- 2. Bounded: $x_n < 2$ for all n (induction).
- 3. By monotone convergence, limit L exists.
- 4. Taking limit: $L = \sqrt{2+L} \Rightarrow L^2 L 2 = 0 \Rightarrow L = 2$.

(b)

Proof. Take $\epsilon = 1$. There exists N such that for all $m, n \geq N$, $|x_m - x_n| < 1$. Then for $n \geq N$:

$$|x_n| \le |x_N| + 1$$

Thus $\{x_n\}$ is bounded by $\max(|x_1|, ..., |x_{N-1}|, |x_N| + 1)$.

(c)

Proof. Consider $x_{2n} - x_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{n}{2n} = \frac{1}{2}$. If (x_n) converged, this difference would tend to 0. Contradiction.

(d)

Find limit superior and inferior:

(i)

$$x_n = (-2)^n \left(1 + \frac{1}{n}\right)$$

Subsequence $x_{2k} \to +\infty$, $x_{2k-1} \to -\infty$.

- $\limsup x_n = +\infty$
- $\liminf x_n = -\infty$

(ii)

$$x_n = (-1)^n \left(\frac{1}{n}\right)$$

Subsequence $x_{2k} \to 0, x_{2k-1} \to 0$.

- $\limsup x_n = 0$
- $\liminf x_n = 0$

Question 5

(a)

Proof. - If $|r| \ge 1$, terms don't tend to $0 \Rightarrow$ diverges. - If |r| < 1, partial sums $S_n = a \frac{1-r^n}{1-r} \to \frac{a}{1-r}$.

(b)

Telescoping series:

$$\frac{1}{(n+a)(n+a+1)} = \frac{1}{n+a} - \frac{1}{n+a+1}$$

Thus sum = $\frac{1}{a+1}$.

(c)

$$0.\overline{15} = \frac{15}{99} = \frac{5}{33}$$

(d)

Check convergence:

(i)

$$\sum \frac{1}{\log n}$$

By comparison with $\sum \frac{1}{n}$ (divergent) and $\frac{1}{\log n} > \frac{1}{n}$ for $n \geq 3$, series diverges.

(ii)

$$\sum \tan^{-1} \left(\frac{1}{n}\right)$$

 $\sum \tan^{-1}\left(\frac{1}{n}\right)$ Since $\tan^{-1}(1/n) \sim 1/n$ as $n \to \infty$, and $\sum 1/n$ diverges, this series diverges by limit

Question 6

(a)

Ratio Test: For $\sum a_n$, if $\lim \left| \frac{a_{n+1}}{a_n} \right| = L$:

- L < 1: converges
- L > 1: diverges
- L = 1: inconclusive

(i)

$$\sum \frac{n!}{n^p}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^p} \cdot \frac{n^p}{n!} = (n+1) \left(\frac{n}{n+1}\right)^p \to \infty$$

Thus diverges for all p.

(ii)

$$\sum \frac{n!}{e^n}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{e^{n+1}} \cdot \frac{e^n}{n!} = \frac{n+1}{e} \to \infty$$

Thus diverges.

(b)

Check convergence:

(i)

$$\sum \frac{\log n}{n^2}$$

Compare with $\sum \frac{1}{n^{3/2}}$. Since $\frac{\log n}{n^{1/2}} \to 0$, $\frac{\log n}{n^2} < \frac{1}{n^{3/2}}$ for large n. Thus converges by comparison.

(ii)

$$\sum \frac{n^{n^2}}{(n+1)^{n^2}}$$

$$a_n = \left(\frac{n}{n+1}\right)^{n^2} = \left(1 - \frac{1}{n+1}\right)^{n^2} \approx e^{-n}$$

Thus series behaves like $\sum e^{-n}$ (convergent geometric series), so converges.

(c)

Absolute convergence: $\sum |a_n|$ converges.

Proof. For any $\epsilon > 0$, there exists N such that $\sum_{k=m}^{n} |a_k| < \epsilon$ for $n > m \ge N$. Then $|\sum_{k=m}^{n} a_k| \le \sum_{k=m}^{n} |a_k| < \epsilon$, so $\sum a_n$ converges by Cauchy criterion.

Converse false: $\sum (-1)^n/n$ converges conditionally but not absolutely.

(d)

Check convergence:

(i)

$$\sum (-1)^{n+1} \frac{n}{n^2+1}$$

Alternating series with $\frac{n}{n^2+1}$ decreasing to $0 \Rightarrow$ converges. $\sum |a_n|$ diverges by comparison with $\sum \frac{1}{n}$. Thus conditionally convergent.

(ii)

$$\sum (-1)^n \frac{1}{n^2 + (-1)^n}$$

For even n, $a_n \approx \frac{1}{n^2}$; for odd n, $a_n \approx -\frac{1}{n^2}$. Thus $\sum |a_n|$ converges by comparison with $\sum \frac{1}{n^2}$. Absolutely convergent.