目录

1	基本	概念和例子	1
	1.1	基本概念	1
		1.1.1 随机过程的定义	1
		1.1.2 轨道和修正	1
		1.1.3 有限维分布族	1
		1.1.4 左极右连实现	2
	1.2	随机游动	2
		1.2.1 轨道的无界性	2
		1.2.2 首达时分布	2
	1.3	布朗运动	3
		1.3.1 背景和定义	3
		1.3.2 布朗运动的构造	3
		1.3.3 布朗运动的性质	3
	1 4	等互松过程	3

1 基本概念和例子

1.1 基本概念

1.1.1 随机过程的定义

Definition 1. 设 I 是非空指标集, $(\Omega, \mathcal{F}, \mathbb{P})$ 是概率空间。若 $(X_{\alpha} : \alpha \in I)$ 是一组定义在 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的随机变量(取值为 \mathbb{R}^d),则 称 $(X_{\alpha} : \alpha \in I)$ 为一个随机过程。

Definition 2. 假设 $(X_{\alpha}: \alpha \in I)$ 和 $(Y_{\alpha}: \alpha \in J)$ 是两个随机过程。若对于任何有限序列 $(s_1, \dots, s_n) \subset I, (t_1, \dots, t_m) \subset J$,都有 $(X_{s_1}, \dots, X_{s_n}) \perp (Y_{t_1}, \dots, Y_{t_m})$,则称这两个随机过程独立。

1.1.2 轨道和修正

Definition 3. 设 $(X_{\alpha}: \alpha \in I)$ 为随机过程。固定 $\omega \in \Omega$,称 $t \mapsto X_t(\omega)$ 为 X 的一条轨道。

Definition 4. 称一个随机过程是(左连续//右连续//连续//左极右连//左连右极)的,若它的所有轨道都是(左连续//右连续//连续// 左极右连//左连右极的)。

Definition 5. 设 $(X_t:t\in I)$ 和 $(Y_t:t\in I)$ 是两个随机过程。若 $\forall t\in I$,有 $\mathbb{P}(X_t=Y_t)=1$,则称它们互为修正。若 $\mathbb{P}(\forall t\in I,X_t=Y_t)=1$,则称它们是无区别的。

Theorem 1. 设 $(X_t:t\geq 0)$ 和 $(Y_t:t\geq 0)$ 是两个右连续的随机过程,而 D 是 $(0,\infty)$ 的可数稠密子集。若 $\forall s\in D, \mathbb{P}(X_s=Y_s)=1$,则有 $(X_t:t\geq 0)$ 和 $(Y_t:t\geq 0)$ 是无区别的。

1.1.3 有限维分布族

为了简化记号,我们用 S(I) 表示 I 的全体有序有限子集。即:

$$S(I) := \{(t_1, \dots, t_n) : n \ge 1, t_i \in I, \forall i = 1, \dots, n\}$$

用 E 表示 \mathbb{R}^d ,用 \mathcal{E} 表示博雷尔代数。

Definition 6. 设 I 是非空指标集。若对于每个 $J \in S(I)$,都对应一个 $(E^{I}J|, \mathcal{E}^{I}J|)$ 上的概率测度 u_{J} ,则称 $(\mu_{J}: I \in S(I))$ 为 E 上的一个有限维分布族,其中每个 μ_{J} 称为一个有限维分布。设 $X = (X_{t}: t \in I)$ 是一个随机过程,用 μ_{J}^{X} 表示 $(X_{t_{1}}, \dots, X_{t_{n}})$ 的分布。称 $\mathcal{D}_{X} := \{\mu_{J}^{X}: J \in S(I)\}$ 为 X 的有限维分布族,称 μ_{J}^{X} 为其中的一个有限维分布。

Definition 7. 给定 (E,\mathcal{E}) 上的有限维分布族 \mathcal{D} ,若存在随机过程 $X=(X_t:t\in I)$ 使得 $\mathcal{D}_X=\mathcal{D}$,则称 X 为 \mathcal{D} 的一个实现。若两个随机过程 X,Y 满足 $\mathcal{D}_X=\mathcal{D}_Y$,则称它们为等价的。两个等价的过程互称实现。显然,两个互为修正的随机过程一定等价,反过来却未必。

1.1.4 左极右连实现

Definition 8. 状态空间 $E = \mathbb{R}^d$ 上的随机过程有左极右连实现 \iff 它有左极右连修正。证明见教材 p5

1.2 随机游动

Definition 9. 设 $\{\xi_n: n \geq 1\}$ 是独立同分布的 d 维随机变量列,而 X_0 是与之独立的一个 d 维随机变量。令 $X_n:=X_0+\sum_{k=1}^n \xi_k$ 。 称 $(X_n: n \geq 0)$ 为 d 维随机游动,并称 $\{\xi_n: n \geq 1\}$ 为其步长列。

Definition 10. 若 X_0, ξ_1 均取值与 \mathbb{Z}^d ,则该随机游动状态空间可以取为 \mathbb{Z}^d 。特别地,若还有 $\mathbb{P}(|\xi_1|=1)=1$,则称其为简单随机游动。进一步地,若对于 \mathbb{Z}^d 中的任一单位向量 v,均有 $\mathbb{P}(\xi_1=v)=\frac{1}{2d}$,则称其为对称简单随机游动。

1.2.1 轨道的无界性

方便起见, 考虑 \mathbb{Z} 上的简单随机游动 S_n , 设其步长列为 $\xi_n: n \geq 1$ 。设 $\mathbb{P}(\xi_n = 1) = p$, $\mathbb{P}(\xi_n = -1) = q$, 其中 $p, q \in (0, 1), p + q = 1$ 。

Theorem 2. $(S_n: n \ge 1)$ 的轨道是几乎必然无界的。即:

$$\mathbb{P}(\sup_{n>0}|S_n|=\infty)=1. \tag{1}$$

证明见教材 p9

1.2.2 首达时分布

Definition 11. $i \in \mathbb{P}_i(\cdot) = \mathbb{P}(\cdot \mid S_0 = i)_{\circ}$

Definition 12. 定义 $(S_n : n \ge 0)$ 到达 $x \in \mathbb{Z}$ 的首达时 $\tau_x := \inf\{n \ge 0 : S_n = x\}$ 。

Theorem 3. 当 $p = q = \frac{1}{2}$ 时,对于 $a < b, i \in [a, b], a, b, i \in \mathbb{Z}$,有

$$\mathbb{P}_i(\tau_b < \tau_a) = \frac{i-a}{b-a}, \mathbb{P}_i(\tau_a < \tau_b) = \frac{b-i}{b-a}$$
(2)

当 $p \neq q$ 时,有

$$\mathbb{P}_{i}(\tau_{b} < \tau_{a}) = \frac{1 - (\frac{q}{p})^{i-a}}{1 - (\frac{q}{p})^{b-a}}, \mathbb{P}_{i}(\tau_{a} < \tau_{b}) = \frac{(\frac{q}{p})^{i-a} - (\frac{q}{p})^{b-a}}{1 - (\frac{q}{p})^{b-a}}$$
(3)

证明见教材 p10

Theorem 4. 当 $p \ge q$, 对 $a \le i \le b \in \mathbb{Z}$, 有

$$\mathbb{P}_i(\tau_a < \infty) = (\frac{q}{p})^{i-a}, \mathbb{P}_i(\tau_b < \infty) = 1 \tag{4}$$

当 $p \leq q$,有

$$\mathbb{P}_i(\tau_a < \infty) = 1, \mathbb{P}_i(\tau_b < \infty) = (\frac{p}{q})^{b-i} \tag{5}$$

证明见教材 p11

1.3 布朗运动

1.3.1 背景和定义

Definition 13. 假定 $\sigma^2 > 0$,具有连续轨道的实值过程 $(B_t : t \ge 0)$ 满足:

1.
$$\forall 0 \le s \le t, B_t - B_s \sim N(0, \sigma^2(t-s));$$

2.
$$\forall 0 \leq t_0 \leq \cdots \leq t_n, B_0, B_1 - B_0, \cdots, B_{t_n} - B_{t_{n-1}}$$
 独立,

 $\Re(B_t:t\geq 0)$ 是以 σ^2 为参数的布朗运动。特别的, 当 $\sigma=1$, $(B_t:t\geq 0)$ 为标准布朗运动。

Definition 14. 有限维分布为正态分布的随机过程称为正态过程。

1.3.2 布朗运动的构造

Theorem 5. 布朗运动是有连续实现的。证明见教材 p13.

1.3.3 布朗运动的性质

Theorem 6. 从原点出发的零均值高斯过程 $(B_t: t \ge 0)$ 是标准布朗运动 $\iff \forall s, t \ge 0, \ \mathbb{E}(B_t B_s) = t \land s$ 。证明 p17.

Theorem 7. 布朗运动轨道几乎处处不可导。证明 p17-18.

1.4 普瓦松过程

标准布朗运动,	3
步长列, 2	
布朗运动,3	

等价, **2** 对称简单随机游动, **2**

轨道, 1

简单随机游动,2

连续, 1

 $\mathbb{P}_i, 2$

实现, **2** 首达时, **2**

S(I), 1

随机过程,1

随机过程独立, 1

随机游动,2

无区别, **1**

修正, 1

右连续, **1** 有限维分布, **1** 有限维分布族, **1**

正态过程, **3** 左极右连, **1**, 2 左连续, **1**

左连右极,1