Tracking a small set of Experts

Yoav Freund

February 5, 2020

Based on "Tracking a Small Set of Experts by Mixing Past Posteriors" by Bousquet and Warmuth.

Review of vovk's meta algorithm

Vovk's meta-algorithm

Fix an achievable pair (a, c) and set $\eta = a/c$

Review of vovk's meta algorithm

Vovk's meta-algorithm

Fix an achievable pair (a, c) and set $\eta = a/c$

- Fix an achievable pair (a, c) and set $\eta = a/c$
- **▶** 1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

- Fix an achievable pair (a, c) and set $\eta = a/c$
- **▶** 1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)} \right)$$

- Fix an achievable pair (a, c) and set $\eta = a/c$
- **▶** 1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)}
ight)$$

If choice of γ_t always exists, then the total loss satisfies:

$$\sum_{t} \lambda(\omega^{t}, \gamma^{t}) \leq -c \ln \sum_{i} W_{i}^{T+1} \leq aL_{\min} + c \ln N$$

- Fix an achievable pair (a, c) and set $\eta = a/c$
- **▶** 1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)} \right)$$

If choice of γ_t always exists, then the total loss satisfies:

$$\sum_{t} \lambda(\omega^{t}, \gamma^{t}) \leq -c \ln \sum_{i} W_{i}^{T+1} \leq aL_{\min} + c \ln N$$

Vovk's result: *yes!* a good choice for γ_t always exists!

Review of vovk's meta algorithm

The set of achievable bounds

► Fix loss function $\lambda : \Omega \times \Gamma \to [0, \infty)$

The set of achievable bounds

- ► Fix loss function $\lambda : \Omega \times \Gamma \to [0, \infty)$
- The pair (a, c) is achievable if there exists some prediction algorithm such that for any N > 0, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\min} + c \ln N$$

The set of achievable bounds

- ► Fix loss function $\lambda : \Omega \times \Gamma \to [0, \infty)$
- The pair (a, c) is achievable if there exists some prediction algorithm such that for any N > 0, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\min} + c \ln N$$

Definition of achievability for non-uniform prior

Definition 1 (Haussler et al., 1998, Vovk, 1998) Let $c, \eta > 0$. A loss function L and prediction function pred are (c, η) -realizable if, for any weight vector $\mathbf{v} \in \mathcal{P}_n$, prediction vector \mathbf{x} and outcome y,

$$L(y, \operatorname{pred}(\boldsymbol{v}, \boldsymbol{x})) \le -c \ln \sum_{i=1}^{n} v_{i} e^{-\eta L(y, x_{i})} . \tag{1}$$

▶ Specifies c, η instead of a, c and $\eta = a/c$

Definition of achievability for non-uniform prior

Definition 1 (Haussler et al., 1998, Vovk, 1998) Let $c, \eta > 0$. A loss function L and prediction function pred are (c, η) -realizable if, for any weight vector $\mathbf{v} \in \mathcal{P}_n$, prediction vector \mathbf{x} and outcome y,

$$L(y, \operatorname{pred}(\boldsymbol{v}, \boldsymbol{x})) \le -c \ln \sum_{i=1}^{n} v_{i} e^{-\eta L(y, x_{i})} . \tag{1}$$

- ▶ Specifies c, η instead of a, c and $\eta = a/c$
- Mixable: a = 1 or equivalently $\eta = 1/c$

► Switching experts: *n* experts. Algorithm's total loss compared to total loss of best expert sequence with *k* switches.

- Switching experts: n experts. Algorithm's total loss compared to total loss of best expert sequence with k switches.
- ► Regret bound **Regret** $\leq ck \log n + c \log \frac{T-1}{k}$

- Switching experts: n experts. Algorithm's total loss compared to total loss of best expert sequence with k switches.
- ► Regret bound **Regret** $\leq ck \log n + c \log \frac{T-1}{k}$

- Switching experts: n experts. Algorithm's total loss compared to total loss of best expert sequence with k switches.
- ► Regret bound **Regret** $\leq ck \log n + c \log \frac{T-1}{k}$

Switching in a small set: Same, but comparator restricted to a subset of m ≪ n experts.

- ► Switching experts: *n* experts. Algorithm's total loss compared to total loss of best expert sequence with *k* switches.
- ► Regret bound **Regret** $\leq ck \log n + c \log \frac{T-1}{k}$

Switching in a small set: Same, but comparator restricted to a subset of m ≪ n experts.

Short term vs. long term

► In the short term - track the sequence of switching experts. Regret of $\frac{k \log n}{n}$ per switch.

Short term vs. long term

- ► In the short term track the sequence of switching experts. Regret of $\frac{k \log n}{n}$ per switch.
- In the long term Identify the set of m ≪ n experts and switch only among them. Regret of c log m per switch.

Short term vs. long term

- ► In the short term track the sequence of switching experts. Regret of $k \log n$ per switch.
- In the long term Identify the set of m ≪ n experts and switch only among them. Regret of c log m per switch.
- Practical implication: when the set of models is small, transitions are tracked more quickly.

► Fix:

- ► Fix:
 - / sequence length

- Fix:
 - ▶ / sequence length
 - k number of switches

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts

An inefficient algorithm

- Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.

- Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ▶ No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$

- ► Fix:
 - / sequence length
 - k number of switches
 - n number of experts
- Consider one partition-expert per sequence of switching experts.
- ▶ No. of partition-experts : $\binom{l}{k-1} n(n-1)^k = O\left(n^{k+1} \left(\frac{el}{k}\right)^k\right)$
- ► The regret for a mixable loss with constant c is $c((k+1)\log n + k\log \frac{1}{k} + k)$

▶ Define a meta-expert for each subset S of $\{1, ..., n\}$ of size m.

- Define a meta-expert for each subset S of {1,...,n} of size m.
- ▶ There are $\binom{n}{m}$ meta-experts.

- ▶ Define a meta-expert for each subset S of $\{1, ..., n\}$ of size m.
- ▶ There are $\binom{n}{m}$ meta-experts.
- Each meta-expert considers switches among the experts in S

- ▶ Define a meta-expert for each subset S of $\{1, ..., n\}$ of size m.
- ▶ There are $\binom{n}{m}$ meta-experts.
- ► Each meta-expert considers switches among the experts in S
- A standard exponential weights algorithm is used to combine all meta-experts.

Regret bound for inefficient algorithm

For inefficient switching experts:

```
R \approx ck \log n + ck \log \frac{1}{k}
```

Regret bound for inefficient algorithm

► For inefficient switching experts:

$$R \approx ck \log n + ck \log \frac{1}{k}$$

For inefficient switching in a small set:

```
R \approx ck \log m + ck \log \frac{1}{k} + cn \log \frac{n}{m}
```

Regret bound for inefficient algorithm

For inefficient switching experts:

$$R \approx ck \log n + ck \log \frac{1}{k}$$

For inefficient switching in a small set:

$$R \approx ck \log m + ck \log \frac{1}{k} + cn \log \frac{n}{m}$$

Remember two part coding for log loss: encode the model and then the data given the model. The length of the description of the model is the regret.

Efficient algorithm

Parameters: $0 < \eta, c$ and $0 \le \alpha \le 1$ Initialization: Initialize the weight vector to $v_1 = \frac{1}{n}\mathbf{1}$ and denote $v_0^m = \frac{1}{n}\mathbf{1}$ FOR t = 1 TO T DO

• **Prediction:** After receiving the vector of experts' predictions x_t , predict with

$$\hat{y}_t = \mathtt{pred}(oldsymbol{v}_t, oldsymbol{x}_t)$$
 .

• Loss Update: After receiving the outcome y_t , compute for $1 \le i \le n$,

$$v_{t,i}^m = \frac{v_{t,i}e^{-\eta L_{t,i}}}{\sum_{j=1}^n v_{t,j}e^{-\eta L_{t,j}}}, \quad \text{where } L_{t,i} = L(y_t, x_{t,i}) .$$

• Mixing Update: Choose non-negative mixture coefficients $\beta_{t+1}(q)$ (q = 0, ..., t) such that $\sum_{q=0}^{t} \beta_{t+1}(q) = 1$ and compute

$$oldsymbol{v}_{t+1} = \sum_{q=0}^t eta_{t+1}(q) oldsymbol{v}_q^m \ .$$

Mixing in past weights

Bound For Uniform Past

Bound for the Fixed Share to Uniform Past Mixing Scheme. Consider a mixing scheme that equally penalizes all vectors in the past: $\beta_{t+1}(q) = \alpha \frac{1}{t} \ (q = 0..t - 1)$.

Corollary 8 For the Mixing Algorithm A with the Fixed Share to Uniform Past mixing scheme and for any sequence of T comparison vectors \mathbf{u}_t with k shifts from a pool of m convex combinations, we have

$$L_{1..T,A} \le \sum_{t=1}^{T} \mathbf{L}_t \cdot \mathbf{u}_t + cm \ln n + ck \ln \frac{1}{\alpha} + c(T-k-1) \ln \frac{1}{1-\alpha} + ck \ln(T-1) .$$

Bound For Decaying Past

Bound for the Fixed Share to Decaying Past Mixing Scheme. We now show that an improvement of the above corollary is possible by choosing $\beta_{t+1}(q) = \alpha \frac{1}{(t-q)^{\gamma} Z_t}$ for $0 \le q \le t-1$, with $Z_t = \sum_{q=0}^{t-1} \frac{1}{(t-q)^{\gamma}}$.

Corollary 9 For the Mixing Algorithm A with the Fixed Share to Decaying Past mixing scheme with $\gamma=1$ and for any sequence of T comparison vectors \mathbf{u}_t with k shifts from a pool of m convex combinations, we have

$$L_{1..T,A} \leq \sum_{t=1}^{T} L_t \cdot u_t + cm \ln n + ck \ln \frac{1}{\alpha} + c(T - k - 1) \ln \frac{1}{1 - \alpha} + ck \ln \frac{(T - 1)(m - 1)}{k} + ck \ln \ln(eT) .$$

Proof The proof follows the proof of Corollary 8 and is given in Appendix B.

Experiments

Switch to paper (BousquetW02.pdf)