Extended Explainability Report: Tree-Based Models – Decision Tree & Random Forest

Model Summary		
Model	Description	
Decision Tree (DTC)	Interpretable, rule-based, low-bias, high-variance	
Random Forest (RFC)	Ensemble of decision trees — reduces overfitting, improves accuracy	
Model Performance		
Decision Tree (Entropy)		
Metric	Value	
Accuracy	92%	
Comments	Performs well, may overfit slightly depending or depth	

Random Forest (100 Trees, Entropy)

Metric	Value
Accuracy	95%
Comments	Top performer in terms of accuracy and generalization

Both models exhibit strong classification capability, especially RFC due to ensemble averaging.

Explainability with SHAP

Decision Tree SHAP Summary

- SHAP explainer used on .predict_proba() for better class separation.
- Top Influencers:
 - o https_token
 - o statistical_report
 - o request_url
 - o web_traffic

Insights:

- Feature contributions clearly show rule-based splits and their cumulative impact.
- Visuals are interpretable good for feature reasoning.

Random Forest SHAP Summary

- SHAP values based on mean SHAP across 100 trees.
- Top Influencers (Similar to DTC):
 - https_token, statistical_report, having_at_symbol, obfuscation_score

Insights:

- Very consistent SHAP importance due to feature bagging in RFC.
- SHAP values more stable across different test samples than DTC.

Explainability with LIME

Decision Tree (LIME)

- Clear, intuitive rule breakdown.
- LIME matches SHAP's findings but focuses on local instance explanation.

Random Forest (LIME)

- Still very interpretable thanks to decision trees in ensemble.
- Shows probability weights influenced by top ~10 features.

Summary:

- LIME excels at per-instance storytelling.
- SHAP excels at global feature importance.