1 Несобственные интегралы Римана двух типов. Критерий Коши сходимости несобственного интеграла.

1. Пусть функция f определена на промежутке $[a, +\infty)$ и $\forall b \in [a, +\infty)$ $f \in \Re[a, b]$. Предел

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

если он существует и конечен, называют несобственным интегралом первого рода и обозначают символом

$$\int_{a}^{+\infty} f(x)dx$$

Аналогично определяется интеграл

$$\int_{-\infty}^{b} f(x)dx$$

2. Пусть функция f определена на промежутке [a,B), неограничена в окрестности точки B и $\forall b \in [a,B)$ $f \in \mathfrak{R}[a,b]$. Предел

$$\lim_{b \to B-0} \int_a^b f(x) dx,$$

если он существует и конечен, называют несобственным интегралом второго рода и обозначают символом

$$\int_{a}^{B} f(x)dx$$

3. Критерий Коши сходимости несобственного интеграла: Несобственный интеграл $\int_a^w f(x) dx$ сходится \iff

$$\forall \epsilon > 0 \quad \exists B \in [a, w) \quad \forall b_1, b_2 \in (B, w) \quad \left| \int_{b_1}^{b_2} f(x) dx \right| < \epsilon$$

Доказательство:

В силу определения несобственного интеграла его сходимость равносильна существованию предела функции $F(b)=\int_a^b f(x)dx$ при $b\to w,\quad b\in [a,w),$ а

$$\int_{b_1}^{b_2} f(x)dx = \int_a^{b_2} f(x)dx - \int_a^{b_1} f(x)dx = F(b_2) - F(b_1).$$

Осталось записать условие критерия Коши существования предела функции F при $b \to w$.

2 Абсолютная сходимость несобственного интеграла. Признаки абсолютной сходимости несобственных интегралов.

- **1. Говорят, что** несобственный интеграл $\int_a^w f(x) dx$ абсолютно сходится, если сходится интеграл $\int_a^w |f(x)| dx$.
- **2.** Пусть $f(x)\geqslant 0 \quad \forall x\in [a,w).$ Тогда интеграл $\int_a^w f(x)dx$ сходится \iff когда функция

$$F(b) = \int_{a}^{b} f(x)dx, \quad b \in [a, w),$$

ограничена.

Доказательство:

Если $f(x)\geqslant 0 \quad \forall x\in [a,w)$, то функция $F(b)=\int_a^b f(x)dx$ неубывает на [a,w) и поэтому она имеет предел при $b\to w,\quad b\in [a,w),\iff$ когда она ограничена.

3. Признак мажорации:

Если $0\leqslant f(x)\leqslant g(x)\quad \forall x\in [a,w)$ и интеграл $\int_a^w g(x)dx$ сходится, то интеграл $\int_a^w f(x)dx$ тоже сходится.

Доказательство:

Если интеграл $\int_a^w g(x)dx$ сходится, то функция

$$G(b) = \int_a^b g(x)dx, \quad b \in [a, w),$$

ограничена. Согласно свойству монотонности несобственного интеграла

$$0 \leqslant F(b) = \int_a^b f(x)dx \leqslant \int_a^b g(x)dx = G(b),$$

и, следовательно, функция F также ограничена. В силу предыдущей теоремы интеграл $\int_a^w f(x) dx$ сходится.

4. Пусть $\forall x \in [a, w) \quad f(x) \geqslant 0, \quad g(x) > 0$ и $\lim_{x \to w} \frac{f(x)}{g(x)} = A, \quad 0 < A < +\infty.$

Тогда интегралы $\int_a^w f(x) dx$ и $\int_a^w g(x) dx$ одновременно сходятся или расходятся.

Доказательство:

Возьмём $\epsilon = A/2 > 0$. $\exists c \in [a,w)$ такая что $\forall x \in [c,w)$

$$\left| \frac{f(x)}{g(x)} - A \right| < A/2,$$

то есть

$$\frac{A}{2}g(x) < f(x) < \frac{3}{2}Ag(x), \quad x \in [c,w).$$

Остаётся воспользоваться признаком мажорации и свойством:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, \quad c \in [a, w)$$

3 *Признаки условной сходимости несобственных интегралов. Несобственные интегралы с несколькими особенностями.

Утверждение: Если существует интеграл $\int_a^w g^{'}(x)F(x)dx=A$ и существует конечный предел $\lim_{b\to w}g(b)F(b)=B$, то существует несобственный интеграл

$$\int_{a}^{w} f(x)g(x)dx = B - g(a)F(a) - A.$$

1. Признак Дирихле:

Пусть функции $f,g,g^{'}$ непрерывны на $[a,w),\quad F(b)=\int_{a}^{b}f(x)dx$ ограничена на [a,w), функция g(x), монотонно убывая, стремится к 0 при $x\to w.$ Тогда интеграл $\int_{a}^{w}f(x)g(x)dx$ сходится.

Доказательство:

Очевидно, что $\lim_{b \to w} g(b) F(b) = 0$. Поскольку $g^{'}(x) \leq 0$, то

$$\lim_{b \to w} \int_{a}^{b} |g'(x)| dx = -\lim_{b \to w} \int_{a}^{b} g'(x) dx = -\lim_{b \to w} [g(b) - g(a)] = g(a),$$

то есть, интеграл $\int_a^w |g^{'}(x)| dx$ сходится. Так как функция F ограничена, то согласно признаку мажорации интеграл $\int_a^w |g^{'}(x)F(x)| dx$ сходится, и, следовательно, интеграл $\int_a^w g^{'}(x)F(x)dx$ сходится. Осталось воспользоваться предыдущим утверждением.

2. Признак Абеля:

Пусть функции $f,g,g^{'}$ непрерывны на [a,w), интеграл $\int_{a}^{w}f(x)dx$ сходится, функция g монотонна и ограничена на [a,w). Тогда интеграл $\int_{a}^{w}f(x)g(x)dx$ сходится.

Доказательство: (Нужно найти и записать)

3. Несобственные интегралы с несколькими особенностями:

Если оба предела интегрирования являются особенностями того или другого из изученных типов, то полагают по определению

$$\int_{w_1}^{w_2} f(x)dx := \int_{w_1}^{c} f(x)dx + \int_{c}^{w_2} f(x)dx,$$

где c — произвольная точка промежутка (w_1, w_2) .

При этом предполагается, что каждый из интегралов в правой части равенства сходится.

В том случае, когда подынтегральная функция не ограничена в окрестности одной из внутренних точек w отрезка интегрирования [a,b], полагают

$$\int_{a}^{b} f(x)dx := \int_{a}^{w} f(x)dx + \int_{w}^{b} f(x)dx,$$

требуя, чтобы оба стоящих справа интеграла сходились. Наконец, если на промежутке интегрирования имеется несколько (конечное число) тех или иных особенностей, лежащих внутри промежутка или совпадающих с его концами, то неособыми точками промежуток разбивают на конечное число таких промежутков, в каждом из которых имеется только одна особенность, а интеграл вычисляют как сумму интегралов по отрезкам разбиения.

4 Числовой ряд, сумма ряда, сходящийся числовой ряд. Критерий Коши сходимости числового ряда. Необходимое условие сходимости числового ряда.

1-3. Пусть (a_n) числовая последовательность. Определим новую последовательноть (S_n) , где

$$S_n = \sum_{k=1}^n a_k, \quad n \in N.$$

Числовым рядом $\sum a_n$ называют последовательность (S_n) . Если в \overline{R} существует предел $\lim_{n\to\infty}S_n=S,$ то $S\in\overline{R}$ называют суммой ряда и обозначают

$$S = \sum_{n=1}^{\infty} a_n$$

Если число S конечное, то ряд называют сходящимся.

4. Говорят, что ряд $\sum a_n$ удовлетворяет условию Коши, если

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall p \in N \quad \left| \sum_{k=n+1}^{n+p} a_k \right| < \epsilon$$

5. Критерий Коши сходимости числового ряда:

Ряд $\sum a_n$ сходится \iff когда он удовлетворяет условию Коши. Доказательсво:

Используя критерий Коши сходимости последовательности, имеем: ряд $\sum a_n$ сходится \iff (S_n) сходится \iff (S_n) фундаментальна, т.е.

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall p \in N \quad |S_{n+p} - S_n| < \epsilon$$

Осталось заметить, что

$$S_{n+p} - S_n = \sum_{k=1}^{n+p} a_k - \sum_{k=1}^n a_k = \sum_{k=n+1}^{n+p} a_k.$$

6. Необходимое условие сходимости ряда:

Если ряд $\sum a_n$ сходится, то $\lim_{n\to\infty}=0$

Доказательство:

Пусть ряд $\sum a_n$ сходится и его сумма равна числу $S \in R$. тогда

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0$$

5 Теорема об арифметических действиях над сходящимися рядами. Абсолютная сходимость числовых рядов, связь со сходимостью.

1. Теорема об арифметических действиях над сходящимися рядами:

Пусть ряды $\sum a_n, \sum b_n$ сходятся и $\sum_{n=1}^\infty a_n = A, \sum_{n=1}^\infty b_n = B, \quad \lambda \in R.$ Тогда ряды $\sum (a_n + b_n)$ и $\sum \lambda a_n$ сходятся и

$$\sum_{n=1}^{\infty} (a_n + b_n) = A + B, \quad \sum_{n=1}^{\infty} \lambda a_n = \lambda A.$$

Доказательство:

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{n \to \infty} \sum_{k=1}^{n} (a_k + b_k) = \lim_{n \to \infty} (\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k) = \lim_{n \to \infty} \sum_{k=1}^{n} a_k + \lim_{n \to \infty} \sum_{k=1}^{n} b_k = A + B.$$

$$\sum_{n=1}^{\infty} \lambda a_n = \lim_{n \to \infty} \sum_{k=1}^{n} \lambda a_k = \lim_{n \to \infty} (\lambda \sum_{k=1}^{n} a_k) = \lambda \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lambda A.$$

- **2.** Ряд $\sum a_n$ называют абсолютно сходящимся, если сходится ряд $\sum |a_n|$.
- 3. Теорема о сходимости абсолютно сходящегося ряда:

Если ряд сходится абсолютно, то он сходится.

Доказательство:

В силу свойств модуля

$$\left| \sum_{k=n+1}^{n+p} a_k \right| \le \sum_{k=n+1}^{n+p} \left| a_k \right|,$$

и остаётся воспользоваться критерием Коши сходимости числового ряда.

6 Основной признак Вейштрасса. Интегральный признак сходимости.

1. Основной признак Вейштрасса:

Ряд с неотрицательными членами сходится \iff когда последовательность его частных сумм ограничена.

Доказательство: (Нужно найти и записать)

2. Интегральный признак сходимости:

Пусть функция f неотрицательная и невозрастающая на промежутке $[1,+\infty)$. Тогда интеграл $\int_1^{+\infty} f(x) dx$ и ряд $\sum f(n)$ сходятся или расходятся одновременно.

Доказательство:

Обозначим $S_n = \sum_{k=1}^n f(k)$ и $F(b) = \int_1^b f(x) dx$. Согласно условию при $k=1,2,\dots$ имеем

$$f(k+1) \le \int_{k}^{k+1} f(x)dx \le f(k)$$

Следовательно

$$\sum_{k=1}^{n} f(k+1) \le \int_{1}^{n+1} f(x) dx \le \sum_{k=1}^{n} f(k)$$

т.е.

$$S_{n+1} - f(1) \le F(n+1) \le S_n$$

Так как функция F и последовательность (S_n) неубывают, то из последннего двойного неравенства вытекает, что ограниченность функции F равносильна ограниченности последовательности (S_n) .

Следовательно интеграл $\int_1^{+\infty} f(x) dx$ сходится \iff когда сходится ряд $\sum f(n)$.

7 Признак мажорации. Признак сравнения.

1. Признак мажорации:

Пусть $\forall n \in N \quad a_n \ge 0, \quad b_n \ge 0, \quad a_n = O(b_n)$ и $\sum_{n=1}^\infty b_n < +\infty$. Тогда $\sum_{n=1}^\infty a_n < +\infty$

Доказательство: Итак,

$$\exists C > 0 \quad \forall n \in N \quad 0 \le a_n \le Cb_n.$$

Поэтому

$$0 \le \sum_{k=1}^{n} a_k \le C \sum_{k=1}^{n} b_k.$$

Переходя далее к пределу при $n \to +\infty$, получим

$$0 \le \sum_{k=1}^{\infty} a_k \le C \sum_{k=1}^{\infty} b_k < +\infty.$$

Следствие 1: Пусть $\forall n \in N \quad a_n \geq 0, b_n > 0$, последовательность $\left(\frac{a_n}{b_n}\right)$ сходится и $\sum_{n=1}^{\infty} b_n < +\infty$. Тогда $\sum_{n=1}^{\infty} a_n < +\infty$.

Из условия вытекает, что последовательность $\left(\frac{a_n}{b_n}\right)$ ограничена, т.е.

$$\exists C > 0 \quad \forall n \in N \quad 0 \le \frac{a_n}{b_n} \le C,$$

и, следовательно, $a_n = O(b_n)$. Осталось воспользоваться признаком мажорации.

2. Признак сравнения в предельной форме:

Пусть $\forall n \in N \quad a_n > 0, \quad b_n > 0,$ и существует конечный предел

$$\lim_{n \to \infty} \frac{a_n}{b_n} = k \neq 0.$$

Тогда ряды $\sum a_n$ и $\sum b_n$ ведут себя одинаково.

Доказательство:

В силу следствия 1 предыдущей теоремы из сходимости ряда $\sum b_n$ вытекает сходимость ряда $\sum a_n$. Поскольку

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{1}{k},$$

то в силу того же следствия из сходимости ряда $\sum a_n$ вытекает сходимость ряда $\sum b_n$.

8 Признак Коши

Признак Коши:

Пусть $\forall n \in N \quad a_n \ge 0$ и

$$\overline{\lim_{n\to\infty}}\sqrt[n]{a_n} = \alpha.$$

Тогда

- 1) если $\alpha < 1$, то ряд $\sum a_n$ сходится; 2) если $\alpha > 1$, то ряд $\sum a_n$ расходится;
- 3) если $\alpha = 1$, то вопрос о сходимости ряда остаётся открытым.

Доказательство:

1) Пусть $\alpha < 1$ и $\alpha < q < 1$. Согласно определению верхнего предела $\exists n_0$, начиная с которого

$$\sqrt[n]{a_n} \le \sup_{n > n_0} \sqrt[n]{a_n} < q,$$

T.e. $a_n < q^n$

Поскольку ряд $\sum q^n$, 0 < q < 1, сходится, то заключение верно в силу признака мажорации.

- 2) Если q>1, то для бесконечного числа значений $n-\sqrt[n]{a_n}\geq 1$. Слодовательно, $a_n \neq o(1)$, и ряд расходится.
- 3) Для рядов $\sum \frac{1}{n}$ и $\sum \frac{1}{n^2}$ указанное в теореме число $\alpha=1$, в то время как один из них расходится, а другой сходится.

9 Признак Даламбера

1. Следствие признака мажорации:

Пусть $\forall n \in N \quad a_n > 0, \quad b_n > 0, \quad \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ и $\sum_{n=1}^{\infty} b_n < +\infty$. Тогда $\sum_{n=1}^{\infty} a_n < +\infty.$

Доказательство:

Имеем

$$0 < \frac{a_{n+1}}{b_{n+1}} \le \frac{a_n}{b_n} \le \dots \le \frac{a_1}{b_1},$$

и, следовательно, $a_n = 0(b_n)$. Осталось воспользоваться признаком мажорации.

2. Признак Даламбера:

Пусть $\forall n \in N \quad a_n > 0$ и

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \alpha$$

Тогда

- 1) если $\alpha<1$, то ряд $\sum a_n$ сходится. 2) если $\alpha>1$, то ряд $\sum a_n$ рассходится.
- 3) если $\alpha = 1$, то вопрос о сходимости ряда остаётся открытым.

Доказательство:

1) Пусть $\alpha < 1$ и $\alpha < q < 1$. В силу порядковых свойств предела

$$\exists n_0 \quad \forall n \ge n_0 \quad \frac{a_{n+1}}{a_n} < q = \frac{q^{n+1}}{q^n}$$

Поскольку ряд $\sum q^n$ при 0 < q < 1 сходится, то, на основании следствия признака мажорации, делаем вывод о сходимости ряда $\sum a_n$.

2) Пусть $\alpha > 1$. Тогда

$$\exists n_0 \quad \forall n \ge n_0 \quad \frac{a_{n+1}}{a_n} > 1,$$

т.е. $a_{n+1}>a_n$ при $n\geq n_0$. В это случае $a_n\neq \mathrm{o}(1),$ следовательно ряд $\sum a_n$ расходится.

3) Для рядов $\sum \frac{1}{n}$ и $\sum \frac{1}{n^2}$ указанное в теореме число $\alpha=1$, в то время как один из них расходится, а другой сходится.

10 Необходимое и достаточное условие абсолютной сходимости ряда. Понятие условно сходящегося ряда.

1. Необходимое и достаточное условие абсолютной сходимости ряда:

Ряд $\sum a_n$ абсолютно сходится \iff когда сходятся ряды $\sum a_n^+$ и $\sum a_n^-$. Доказательство: (нужно найти и записать)

2. Числовой ряд называют условно сходящимся, если он сходится, но не сходится абсолютно.

11 Преобразование Абеля. Теорема о равносходимости рядов, связанных преобразованием Абеля.

1. Преобразование Абеля:

Пусть $B_n = \sum_{k=1}^n b_k, n \geq 1$. Тогда справедлива формула

$$\sum_{k=1}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k \qquad (*)$$

Доказательство:

Принимая во внимание очевидные равенства

$$b_1 = B_1, b_2 = B_2 - B_1, \dots, b_n = B_n - B_{n-1},$$

получим

$$\sum_{k=1}^{n} a_k b_k = a_1 B_1 + a_2 (B_2 - B_1) + \ldots + a_n (B_n - B_{n-1}) =$$

$$= B_1(a_1 - a_2) + B_2(a_2 - a_3) + \ldots + B_{n-1}(a_{n-1} - a_n) + B_n a_n =$$

$$= \sum_{k=1}^{n-1} B_k(a_k - a_{k+1}) + B_n a_n,$$

что эквивалентно равенству (*).

2. Теорема о равносходимости рядов, связанных преобразованием Абеля:

Пусть $B_n = \sum_{k=1}^n b_k$, и последовательность $(a_n B_n)$ сходится. Тогда ряды $\sum a_n b_n$ и $\sum B_n (a_{n+1} - a_n)$ ведут себя одинаково.

12 *Признак Абеля. Признак Дирихле и Лейбница.

1. Признак Абеля:

- 1) последовательность (a_n) монотонна и ограничена;
- 2) ряд $\sum b_n$ сходится;

Тогда ряд $\sum a_n b_n$ сходится.

Доказательство:

Пусть $|a_k| \leq M, k \geq 1$. Запишем условие Коши для сходящегося ряда $\sum b_n$:

$$\forall \epsilon > 0 \quad \exists n_0 \in N \quad \forall n \ge n_0 \quad \forall p \in N \quad \left| \sum_{k=n+1}^{n+p} b_k \right| < \epsilon.$$

Обозначим

$$B_p^n = \sum_{k=n+1}^{n+p} b_k.$$

В этих обозначениях имеем

$$|B_n^n| < \epsilon, \quad n \ge n_0, \quad p \in N.$$

Применив к сумме

$$\sum_{k=n+1}^{n+p} a_k b_k$$

преобразование Абеля, получим

$$\sum_{k=n+1}^{n+p} a_k b_k = a_{n+p} B_p^n - \sum_{k=n+1}^{n+p-1} (a_{k+1} - a_k) B_k^n.$$

При $n \ge n_0$ имеем

$$\left| \sum_{k=n+1}^{n+p} a_k b_k \right| \le |a_{n+p}| |B_p^n| + \sum_{k=n+1}^{n+p-1} |a_{k+1} - a_k| |B_k^n| \le$$

$$\leq M\epsilon + \epsilon \sum_{k=n+1}^{n+p-1} |a_{k+1} - a_k|.$$

В силу монотонности и ограниченности последовательности (a_n)

$$\sum_{k=n+1}^{n+p-1} |(a_{k+1} - a_k)| = |a_{n+p} - a_{n+1}| \le 2M$$

И

$$\left| \sum_{k=n+1}^{n+p} a_k b_k \right| < M\epsilon + \epsilon 2M = 3M\epsilon.$$

По критерию Коши ряд $\sum a_n b_n$ сходится.

2. Признак Дирихле:

- 1) последовательность (a_n) монотонная и бесконечно малая;
- 2) последовательность $B_n = \sum_{k=1}^n b_k$ ограничена.

Тогда ряд $\sum a_n b_n$ сходится.

Доказательство:

Согласно условиям теоремы

$$a_n B_n = o(1)O(1) = o(1).$$

В силу теоремы о равносходимости рядов, связанных преобразованием Абеля, ряды $\sum a_n b_n$ и $\sum B_n (a_{n+1} - a_n)$ ведут себя одинаково. К исследованию сходимости вроторого из этих рядов применим критерий Копти

Пусть $|b_k| \leq M, k \geq 1$. Возьмём произвольное $\epsilon > 0$ $\exists n_0 \quad \forall n \geq n_0 \quad |a_n| < \epsilon$ (это возможно поскольку $a_n = o(1)$).

При $n \ge n_0$ будем иметь оценку

$$\left| \sum_{k=n+1}^{n+p} (a_{k+1} - a_k) B_k \right| \le \sum_{k=n+1}^{n+p} |(a_{k+1} - a_k)| |B_k| \le M \sum_{k=n+1}^{n+p} |(a_{k+1} - a_k)|.$$

Так как последовательность (a_n) монотонна, то разности $a_{k+1}-a_k$ одного знака и поэтому

$$\sum_{k=n+1}^{n+p} |(a_{k+1} - a_k)| = \left| \sum_{k=n+1}^{n+p} (a_{k+1} - a_k) \right| = |a_{n+p+1} - a_{n+1}| \le$$

$$|a_{n+p+1}| + |a_{n+1}| < 2\epsilon.$$

Соединяя все оценки, получим

$$\left| \sum_{k=n+1}^{n+p} (a_{k+1} - a_k) B_k \right| < 2M\epsilon$$

 $\forall n \geq n_0$ и $\forall p \geq 1$, что по критерию Коши эквивалентно сходимости ряда $\sum (a_{n+1} - a_n)B_n$. Теорема доказана.

3. Признак Лейбница:

Пусть последовательность (a_n) монотонная и бесконечно малая. Тогда ряд $\sum (-1)^{n-1} a_n$ сходится.

Доказательство:

Нужно положить $b_n = (-1)^{n-1}$ и воспользоваться признаком Дирихле.

13 Сумма ряда как обобщение суммы конечного числа слагаемых, сочетательный закон.

Сочетательный закон:

Пусть ряд $\sum a_n$ сходится, последовательность натуральных чисел (m_n) возрастает (строго), $m_1=1.$ Тогда ряд

$$\sum_{n=1}^{\infty} \left(\sum_{k=m_n}^{m_{n+1}-1} a_k \right)$$

сходится и его сумма равна сумме $\sum_{n=1}^{\infty} a_n$.

Доказательство:

Последовательность частных сумм сгруппированного ряда является подпоследовательностью последовательности частных сумм ряда исходного, следовательно, она также сходится, и их пределы равны.

14 Коммутативный закон для знакоположительных и абсолютно сходящихся рядов.

1. Коммутативный закон для знакоположительного ряда:

Если $\forall k \in N \quad a_k \geq 0,$ то для любой перестановки ряда выполняется равенство

$$\sum_{k=1}^{\infty} a_{n_k} = \sum_{k=1}^{\infty} a_k.$$

Доказательство:

Пусть

$$m_p = max(n_1, n_2, \dots, n_p), \quad p \in N.$$

Тогда $\forall p \in N$

$$\sum_{k=1}^{p} a_{n_k} \le \sum_{k=1}^{m_p} a_k \le \sum_{k=1}^{\infty} a_k$$

и, следовательно,

$$\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} a_{n_k}.$$

Следовательно, верно равенство.

2. Коммутативный закон для абсолютно сходящегося ряда:

Если ряд абсолютно сходится, то любая его перестановка абсолютно сходится и их суммы равны.

Доказательство:

Нужно применить предыдущую теорему к рядам $\sum a_n^+$ и $\sum a_n^-$.

15 *Теорема Римана.

Теорема Римана:

Если ряд $\sum_{k=1}^\infty a_n$ сходится условно, то $\forall A\in\overline{R}$ найдётся перестановка, сумма которой $\sum_{k=1}^\infty a_{n_k}=A$.

Доказательство:

В силу условной сходимости ряда имеем

$$\sum_{n=1}^{\infty} a_n^+ = +\infty, \quad \sum_{n=1}^{\infty} a_n^- = +\infty, \quad a_n \to 0.$$

Рассмотрим сначала случай, когда A — конечное число. Тогда, начиная с некоторого значения n, будет выполняться неравенство

$$\sum_{k=1}^{n} a_k^+ > A.$$

Обозначим через n_1 наименьшее значение n, при котором это неравенство выполняется, т.е.

$$\sum_{k=1}^{n_1-1} a_k^+ \le A < \sum_{k=1}^{n_1} a_k.$$

Это означает, что мы сделали набор из неотрицательных членов ряда, не нарушая их порядка, пока их сумма не превысила число A ровно на один, последний в этом наборе, член $a_{n_1}^+$.

Обозначим $y_1 = \sum_{k=1}^{n_1} a_k^+$.

Далее будем брать отрицательные члены ряда в том порядке, как они стоят в этом ряду, до тех пор, пока вся сумма не станет меньше числа A, т.е.

$$\sum_{k=1}^{n_1} a_k^+ + \sum_{k=1}^{m_1} (-a_k^-) + \sum_{k=n_1+1}^{n_2-1} a_k^+ \le A \le$$

$$\leq \sum_{k=1}^{n_1} a_k^+ + \sum_{k=1}^{m_1} (-a_k^-)$$

Обозначим $y_2 = \sum_{k=1}^{m_1} a_k^+$.

Продолжим набор $-a_k^+$ так, что

$$\sum_{k=1}^{n_1} a_k^+ + \sum_{k=1}^{m_1} (-a_k^-) + \sum_{k=n_1+1}^{n_2-1} a_k^+ \le A \le$$

$$\leq \sum_{k=1}^{n_1} a_k^+ + \sum_{k=1}^{m_1} (-a_k^-) + \sum_{k=n_1+1}^{n_2} a_k^+.$$

Обозначим $y_3 = \sum_{k=n_1+1}^{n_2} a_k^+$.

Продолжим набор $-a_k^-$ так, что

$$\sum_{k=1}^{n_1} a_k^+ + \sum_{k=1}^{m_1} (-a_k^-) + \sum_{k=n_1+1}^{n_2} a_k^+ + \sum_{k=m_1+1}^{m_2} (-a_k^-) < A \leq$$

$$\leq \sum_{k=1}^{n_1} a_k^+ + \sum_{k=1}^{m_1} (-a_k^-) + \sum_{k=n_1+1}^{n_2} a_k^+ + \sum_{k=m_1+1}^{m_2-1} (-a_k^-).$$

Обозначим $y_4 = \sum_{k=m_1+1}^{m_2} (-a_k^-)$.

Продолжая так далее, получим ряд $\sum y_n$, частные суммы S_n которого удовлетворяют неравенствам:

$$|S_1 - A| \le a_{n_1}^+, \quad |S_2 - A| \le a_{m_1}^-,$$

$$|S_3 - A| \le a_{n_0}^+, \quad |S_4 - A| \le a_{m_0}^-,$$

.....

$$|S_{2k-1} - A| \le a_{n_k}^+, \quad |S_{2k} - A| \le a_{m_k}^-,$$

.....

Поскольку $a_n \to 0$, то сумма ряда $\sum_{n=1}^{\infty} y_n = A$.

Очевидно, что ряд $\sum y_n$ получен из некоторой перестановки ряда $\sum a_n$ добавление нулевых слагаемых и группировкой членов. Нулевые слагаемые появляются в связи с тем, что одно из чисел a_k^+ b a_k^- обязательно равно нулю. Поскольку сгруппированные члены имеют одинаковые знаки, то частные суммы перестановки заключены между частными суммами ряда сгруппированного. Следовательно, указанная перестановка имеет ту же сумму, то есть A.

16 Произведение числовых рядов, согласованное с произведением частных сумм.

Произведение числовых рядов, согласованное с произведением частных сумм:

Пусть даны числовые ряды $\sum a_n$ и $\sum b_n$. Числовой ряд $\sum c_n$, где

$$c_n = a_n * \sum_{k=1}^{n-1} b_k + b_n \sum_{k=1}^{n-1} a_k + a_n b_n,$$

будем называть произведением исходных рядов, согласованным с перемножением частных сумм.

Обратим внимание на следующий факт:

$$C_n = A_n * B_n,$$

где

$$C_n = \sum_{k=1}^n c_k$$
, $A_n \sum_{k=1}^n a_k$, $B_n = \sum_{k=1}^n b_k$.

17 Теорема о произведении абсолютно сходящихся рядов.

1. Теорема о произведении абсолютно сходящихся рядов:

Если ряды $\sum a_n$ и $\sum b_n$ абсолютно сходятся, то при любой нумерации элементов матрицы C ряд $\sum c_n$ абсолютно сходится и

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n * \sum_{n=1}^{\infty} b_n.$$

Доказательство:

Рассмотрим нумерацию:

$$c_1 = a_1b_1, c_2 = a_1b_2, c_3 = a_2b_2, c_4 = a_2b_1,$$

$$c_5 = a_1b_3, c_6 = a_2b_3, c_7 = a_3b_3, c_8 = a_3b_2, c_9 = a_3b_1, \dots$$

Тогда видно, что

$$\sum_{k=1}^{n} |c_k| \le \sum_{k=1}^{n^2} |c_k| = \sum_{k=1}^{n} |a_k| * \sum_{k=1}^{n} |b_k|.$$

Переходя к пределу при $n \to \infty$, получим

$$\sum_{k=1}^{\infty} |c_k| \le \sum_{k=1}^{\infty} |a_k| * \sum_{k=1}^{\infty} |b_k| < +\infty,$$

т.е. ряд $\sum c_n$ абсолютно сходится. Тогда любая его перестановка $\sum c_{\phi(n)}$ абсолютно сходится и

$$\sum_{n=1}^{\infty} c_{\phi(n)} = \sum_{n=1}^{\infty} c_n.$$

Осталось в ряду $\sum c_n$ произвести группировку

$$c_1 + (c_2 + c_3 + c_4) + (c_5 + \ldots + c_9) + \ldots$$

согласованную с перемножением частных сумм и воспользоваться ранее доказанными фактами. Таким образом, при любой нумерации элементов матрицы C получаем ряд, сумма которого

$$\sum_{n=1}^{\infty} c_{\phi(n)} = \sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n * \sum_{n=1}^{\infty} b_n.$$

- 18 Равномерная норма функции и её свойства. Поточечная и равномерная сходимости функциональных последовательностей. Критерий Коши равномерной сходимости.
- 1-2. Равномерная норма и её свойства.

Пусть функция f определена на множестве X. Равномерную норму функции обозначим сомволом ||f|| и определим равенством

$$||f|| = \sup_{x \in X} |f(x)|.$$

Простейшие совйства равномерной нормы:

$$1. \forall x \in X \quad |f(x)| \leq ||f||.$$

$$2.||f|| < +\infty \iff f$$
 ограничена.

$$3.||f|| > 0$$
 и $||f|| = 0 \iff f(x) = 0 \quad \forall x \in X.$

$$4.\forall \lambda \in R \quad ||\lambda f|| = |\lambda| * ||f||.$$

$$5.||f + g|| \le ||f|| + ||g||.$$

$$6.||f * q|| < ||f|| * ||q||.$$

Доказательство: (нужно найти и написать)

2. Равномерная сходимость функции:

Пусть все функции f_n и функция f определены на множестве X. Будем говорить, что последовательность (f_n) равномерно сходится к функции f и обозначать символом $f_n \rightrightarrows f$, если

$$\lim_{n\to\infty} ||f_n - f|| = 0.$$

Условие определения равномерной сходимости можно расписать подробнее:

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall x \in X \quad |f_n(x) - f(x)| < \epsilon.$$

2. Поточечная сходимость функции:

Если последовательность (f_n) равномерно сходится к функции f, то последовательность (f_n) сходится поточечно к функции f.

3. Критерий Коши равномерной сходимости функциональной последовательности:

Последовательность (f_n) равномерно сходится \iff когда

$$\forall > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall m \ge n_{\epsilon} \quad ||f_n - f_m|| < \epsilon.$$

Доказательство:

Необходимость доказывается тривиально.

Достаточность

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall m \ge n_{\epsilon} \quad \forall x \in X \quad |f_m(x) - f_n(x)| < \epsilon. \tag{8}$$

Это означает, что последовательность $(f_n(x))$ $\forall x \in X$ фундаментальна, следовательно, она сходится (мы воспользовались критерием Коши сходимости числовой последовательности).

Пусть функция f является поточечным пределлом последовательности (f_n) .

Перейдя к пределу при $m \to \infty$ в условии (8), получим

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall x \in X \quad |f(x) - f_n(x)| \le \epsilon.$$

Это означет, что $f_n \rightrightarrows f$.

19 Непрерывность, дифференцируемость и интегрируемость суммы функционального ряда.

1. Теорема о непрерывности предела функциональной последовательности:

Пусть $\forall n \in N \quad f_n$ непрерывны в точке $x_0 \in X$ и $f_n \rightrightarrows f$. Тогда функция f непрерывна в точке x_0 .

Доказательство:

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| \le |f(x) - f_n(x_0)| \le |f(x$$

$$\leq 2||f - f_n|| + |f_n(x) - f_n(x_0)|,$$

где n — любое число.

Пусть $\epsilon>0$ — произвольное число. В силу условия $f_n \rightrightarrows f \quad \exists n_1 \quad ||f-f_{n_1}|| < \frac{\epsilon}{3}.$ Поскольку функция f_{n_1} непрерывна в точке x_0 , то $\exists \delta>0 \quad \forall x \in X \quad (|x-x_0|<\delta\Rightarrow|f_{n_1}(x)-f_{n_1}(x_0)|<\frac{\epsilon}{3}).$ Тогда

$$|f(x) - f(x_0)| \le 2||f - f_{n_1}|| + |f_{n_1}(x) - f_{n_1}(x_0)| < \frac{2\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

 $\forall x \in X$, удовлетворяющих условию $|x-x_0| < \delta$. Согласно определению Коши непрерывности функции делаем заключение, что функция f непрерывна в точке x_0 .

2. Теорема об интегреруемости предела функции:

Пусть $\forall n \in N \quad f_n$ непрерывны на отрезке [a,b] и $f_n \rightrightarrows f$. Тогда функция f интегреруема и

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx.$$

Локазательство

В силу теоремы о непрерывности предела функциональной последовательности функция f непрерывна на отрезке [a,b], и, следовательно, интегреруема.

Тогда, пользуясь свойствами интеграла, имеем

$$\left| \int_{a}^{b} f_{n}(x)dx - \int_{a}^{b} f(x)dx \right| = \left| \int_{a}^{b} (f_{n}(x) - f(x))dx \right| \le$$

$$\leq \int_{a}^{b} |f_n(x) - f(x)| dx \leq ||f_n - f||(b - a) = o(1),$$

следовательно,

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$

Следствие:

Пусть $\forall n \in N \quad f_n$ непрерывны на отрезке [a,b] и $f_n \rightrightarrows f$. Тогда $\forall x_0 \in [a,b]$ последовательность функций

$$F_n(x) = \int_{x_0}^x f_n(t)dt, \quad x \in [a, b],$$

равномерно на этом отрезке сходится к функции

$$F(x) = \int_{x_0}^{x} f(t)dt, \quad x \in [a, b].$$

Доказательство:

Обратим внимание на то, что $\forall x \in [a, b]$

$$|F_n(x) - F(x)| = \left| \int_{x_0}^x f_n(t)dt - \int_{x_0}^x f(t)dt \right| \le \left| \int_{x_0}^x |f_n(t) - f(t)|dt \right| \le C$$

$$\leq \int_{a}^{b} |f_n(t) - f(t)| dt \leq ||f_n - f|| (b - a),$$

следовательно,

$$||F_n - F|| \le ||f_n - f||(b - a) \to 0 \quad n \to \infty.$$

3. Теорема о дифференцируемости предела функциональной последовательности:

Пусть $\forall n \in N$ f_n непрерывно дифференцируемы на отрезке [a,b], последовательность (f_n') равномерно сходится на отрезке к функции ϕ , а последовательность (f_n) сходится в некоторой точке $x_0 \in X$. Тогда последовательность (f_n) равномерно на этом отрезке сходится к некоторой функции f и $\forall x \in [a,b]$ $f'(x) = \phi(x)$.

Доказательство:

Согласно формуле Ньютона-Лейбница имеем равенство

$$f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t)dt$$

Обозначим

$$A = \lim_{n \to \infty} f_n(x_0), \quad F_n(x) = \int_{x_0}^x f_n'(t) dt \quad \Phi(x) = \int_{x_0}^x \phi(t) dt, \quad x \in [a, b].$$

В силу следствия теоремы об интегреруемости предела функциональной последовательности $F_n \rightrightarrows \Phi$. Тогда последовательность (f_n) равномерно на этом отрезке сходится к функции

$$f(x) := A + \int_{x_0}^x \phi(t)dt, \quad x \in [a, b].$$

Дифферецируя интеграл по верхнему пределу интегрирования, получим равенство

$$f'(x) = \phi(x) \quad \forall x \in [a, b].$$

- Функциональные ряды. Поточечная, равномерная и нормальная сходимости функциональных рядов, их связь.
 Критерий Коши равномерной сходимости функицонального ряда. Признак
 Вейштрасса равномерной сходимости.
- **1.** Пусть (f_n) функциональная последовательность, и все функции f_n определены на множестве X.

Функциональным рядом $\sum f_n$ будем называть последовательность $(S_n),$ где $S_n = \sum_{k=1}^n f_k, \quad n \in N.$

2. Поточечная сходимость функционального ряда:

Ряд $\sum f_n$ поточечно сходится, если последовательность (S_n) поточечно сходится.

3. Равномерная сходимость функционального ряда:

Ряд $\sum f_n$ равномерно сходится, если последовательность (S_n) равномерно сходится.

4. Нормальная сходимость функционального ряда:

Ряд $\sum f_n$ нормально сходится, если сходится ряд $\sum ||f_n||$.

5. Теорема о равномерной сходимости нормально сходящегося ряда:

Если ряд $\sum f_n$ нормально сходится, то ряд $\sum f_n$ равномерно сходится. Доказательство:

В силу свойств равномерной нормы имеем

$$||\sum_{k=n+1}^{n+p} f_k|| \le \sum_{k=n+1}^{n+p} ||f_k||.$$

Осталость применить критерий Коши сходимости числового ряда и критерий Коши равномерной сходимости функционального ряда.

6. Критерий Коши равномерной сходимости функционального ряда:

Ряд $\sum f_n$ равномерно сходится \iff когда

$$\forall \epsilon > 0 \quad \exists n_{\epsilon} \in N \quad \forall n \ge n_{\epsilon} \quad \forall p \in N \quad ||\sum_{k=n+1}^{n+p} f_k|| < \epsilon.$$

7. Признак Вейштрасса равномерной сходимости ряда:

Пусть $\forall n \in \mathbb{N} \quad ||f_n|| \le a_n, \quad \sum_{n=1}^\infty a_n < +\infty.$ Тогда ряд $\sum f_n$ равномерно сходится.

Доказательство:

Согласно признаку мажорации ряд $\sum ||f_n||$ сходится, т.е. ряд $\sum f_n$ сходится нормально, а, следовательно, сходится равномерно.

21 *Признаки Абеля и Дирихле равномерной сходимости функционального ряда.

1. Признак Абеля:

Пусть $\forall x \in X$ $f_n(x) \downarrow$, ряд $\sum g_n$ равномерно сходится и $||f_n|| = O(1)$. Тогда ряд $\sum f_n g_n$ равномерно сходится.

Доказательство:

Пусть M>0 такое, что $\forall n\in N \quad ||f_n||\leq M,$ и $\epsilon>0.$ Согласно критерию Коши равномерной сходимости функционального ряда из условия равномерной сходимости функционального ряда $\sum g_n$ имеем

$$\exists n_{\epsilon} \in N \quad \forall n > n_{\epsilon} \quad \forall k \in N \quad \forall x \in X \quad |G_{n,k}(x)| =$$

$$= |G_{n+k}(x) - G_n(x)| < \epsilon.$$

Поэтому $\forall n \geq n_{\epsilon} \quad \forall p \in N \quad \forall x \in X$

$$\left| \sum_{k=n+1}^{n+p} f_k(x) g_k(x) \right| = \left| \sum_{k=1}^{p-1} (f_{n+k}(x) - f_{n+k+1}(x)) G_{n,k}(x) + f_{n+p}(x) G_{n,p}(x) \right| <$$

$$<\epsilon \sum_{k=1}^{p-1} (f_{n+k}(x) - f_{n+k+1}(x)) + \epsilon |f_{n+p}(x)| = \epsilon (f_{n+1} - f_{n+p}) + \epsilon |f_{n+p}(x)| \le$$

$$< \epsilon 2M + \epsilon M = 3M\epsilon.$$

Согласно критерию Коши ряд $\sum f_n g_n$ сходится равномерно.

2. Признак Дирихле:

Пусть $\forall x \in X \quad f_n(x) \downarrow, \quad ||\sum_{k=1}^n g_k|| = O(1), \quad ||f_n|| = o(1).$ Тогда ряд $\sum f_n g_n$ равномерно сходится.

Докзательство:

Обозначив

$$G_n = \sum_{k=1}^n g_k, \quad G_{n,k} = \sum_{i=1}^k g_{n+i},$$

имеем:

$$\exists M \quad \forall n \in N \quad ||G_n|| \le M$$

И

$$\forall n \in N \quad \forall k \in N \quad ||G_{n,k}|| = ||G_{n+k} - G_n|| \le ||G_{n+k}|| + ||G_n|| \le 2M.$$

Тогда $forallx \in X$

$$\left| \sum_{k=n+1}^{n+p} f_k(x) g_k(x) \right| = \left| \sum_{k=1}^{p-1} (f_{n+k}(x) - f_{n+k+1}(x)) G_{n,k}(x) + f_{n+p}(x) G_{n,p}(x) \right| \le$$

$$\leq 2M \sum_{k=1}^{p-1} (f_{n+k}(x) - f_{n+k+1}(x)) + f_{n+p}(x) * 2M = 2M f_{n+1}(x) \leq 2M ||f_{n+1}||.$$

Пусть $\epsilon>0$. Тогда $\exists n_{\epsilon} \quad \forall n\geq n_{\epsilon} \quad ||f_n||<\epsilon$. Продолжим оценку

$$\forall n \ge n_{\epsilon} \quad \forall p \in N \quad \forall x \in X \quad \left| \sum_{k=n+1}^{n+p} f_k(x) g_k(x) \right| \le 2M ||f_{n+1}|| < 2M\epsilon.$$

Согласно критерию Коши ряд $\sum f_n g_n$ равномерно сходитсяю

22 Непрерывность, дифференцируемость и интегрируемость суммы функционального ряда.

1. Теорема о непрерывности суммы функционального ряда:

Пусть $\forall n \in N \quad f_n$ непрерывны в точке $x_0 \in X$ и ряд $\sum f_n$ равномерно сходится. Тогда сумма ряда $S = \sum_{n=1}^{\infty} f_n$ непрерывна в точке x_0 .

2. Теорема о дифференцируемости суммы ряда:

Пусть $X=[a,b], \forall n\in N$ f_n непрерывно дифференцируемы на отрезке [a,b], ряд $\sum f_n'$ равномерно сходится, ряд $\sum f_n$ сходится в некоторой точке $x_0\in [a,b].$ Тогда ряд $\sum f_n$ сходится равномерно и $\forall x\in [a,b]$ справедливо равенство

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

3. Теорема об интегреруемости суммы ряда:

Пусть $X=[a,b], \forall n\in N$ f_n непрерывны на отрезке [a,b] и ряд $\sum f_n$ равномерно сходится. Тогда сумма ряда $S=\sum_{n=1}^\infty f_n$ интегрируема и

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

23 Степенные ряды. Радиус сходимости и интервал сходимости. Теорема Коши-Адамара. Теорема Абеля.

1. Степенной ряд:

Функциональный ряд вида

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$

где $a_0, a_1, \ldots \in R, \quad x_0 \in R$, называют степенным рядом.

2-3:

Пусть $L = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}$.

Определим число

 $R = \frac{1}{L}$, если $0 < L < +\infty$;

 $R = +\infty$, если L = 0;

R=0, если $L=+\infty$.

Число R называют радиусом сходимости степенного ряда $\sum_{n=0}^{\infty} a_n x^n$. Интервал (-R,R) называется интервалом сходимости степенного ряда $\sum_{n=0}^{\infty} a_n x^n$.

4. Теорема Коши-Адамара:

- 1. Если последовательность ($\sqrt[n]{|a_n|}$) неограничена, то ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится только в точке x=0.
- 2. Если последовательность ($\sqrt[n]{|a_n|}$) ограничена и L>0, то ряд абсолютно сходится во всех точках x, удовлетворяющих условию $|x|<\frac{1}{L}$, и расходится во всех точках x, удовлетворяющих условию $|x|>\frac{1}{L}$.
- 3. Если последовательность ($\sqrt[n]{|a_n|}$) ограничена и L=0, то ряд абсолютно сходится во всех точках $x\in R$.

Доказательство:

- 1. Очевидно, что $\forall x \neq 0$ последовательность $(|x| \sqrt[n]{|a_n|}) = (\sqrt[n]{|a_n x^n|})$ неограничена и, следовательно, $a_n x^n \neq o(1)$. Таким образом, не выполняется необходимое условие сходимоти ряда, а значит ряд расходится.
- 2. Пусть $|x| < \frac{1}{L}$. Тогда

$$\overline{\lim_{n \to \infty}} \sqrt[n]{|anx^n|} = |x| * \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} < \frac{1}{L} * L = 1$$

и согласно признаку Коши ряд абсолютно сходится.

Пусть $|x| > \frac{1}{L}$. Тогда

$$\overline{\lim_{n\to\infty}}\sqrt[n]{a_nx^n}<\frac{1}{L}*L=1$$

и последовательность $a_n X^n \neq o(1)$. Таким образом, не выполняется необходимое условие сходимости ряда, ряд расходится.

3. $\forall x \in R$

$$\overline{\lim_{n \to \infty}} \sqrt[n]{a_n x^n} = |x| * L = 0$$

и согласно признаку Коши ряд абсолютно сходится.

5. Теорема Абеля:

Если степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится в некоторой точке $x_1 \neq 0$, то ряд сходится в интервале $(-|x_1|,|x_1|)$.

Доказательство:

Точка x_1 лежит внутри интервала сходимости, либо является граничной точкой интервала сходимости, следовательно, $(-|x_1|,|x_1|) \subset (-R,+R)$.

24 Свойства суммы степенного ряда.

1. Теорема о равномерной сходимости степенного ряда

Пусть R>0 — радиус сходимости степенного ряда $\sum_{n=0}^{\infty}a_nx^n$. Тогда $\forall r\in(0,R)$ ряд равномерно сходится на отрезке [-r,r]. Доказательство:

Степенной ряд абсолютно сходится в точке x=r. Поскольку $\forall x \in [-r,r]$

$$|a_n x^n| \le |a_n| r^n,$$

то в силу признака Вейштрасса ряд равномерно сходится на отрезке [-r,r].

2. Теорема о непрерывности суммы степенного ряда:

Пусть R>0 — радиус сходимости степенного ряда. Тогда его сумма $S(x)=\sum_{n=0}^{\infty}a_nx^n$ непрерывна на интервале (-R,R).

Доказательство:

В силу предыдущей теоремы и теоремы о непрерывности суммы функционального ряда функция S непрерывна на отрезке $[-r,r] \quad \forall r \in (0,R)$. Следовательно, S непрерывна на всём интервале (-R,R).

3. Теорема об интегрируемости суммы степенного ряда:

Пусть R>0 — радиус сходимости степенного ряда и |x|< R. Тогда степенной ряд можно почленно интегрировать на отрезке с концами 0 и x

$$\int_0^x S(t)dt = a_0x + \frac{a_1x^2}{2} + \ldots + \frac{a_{n-1}x^n}{n} + \ldots,$$

причём радиус сходимости полученного ряда равен R.

Доказательство:

Возможность почленного интегрирования ряда следует из равномерной сходимости ряда на отрезке с концами 0 и x и теоремы об интегрируемости суммы функционального ряда, а утверждение о радиусе сходимости из равентсва

$$\overline{\lim_{n\to\infty}}\sqrt[n]{\frac{|a_{n-1}|}{n}}=\overline{\lim_{n\to\infty}}\frac{\sqrt[n]{|a_{n-1}|}}{\sqrt[n]{n}}=\overline{\lim_{n\to\infty}}\sqrt[n]{|a_{n-1}|}=R.$$

4. Теорема о дифференцируемости суммы степенного ряда:

Сумма степенного ряда дифференцируема на интервале сходимости (-R,R), R>0, и

$$S'(x) = \sum_{n=1}^{\infty} a_n n x^{n-1},$$

причём радиус сходимости полученного ряда равен R.

25 Ряд Тейлора и понятие аналитической в точке функции. Определение элементарных функций степенными рядами.

1. Аналитическая в точке функция:

Функцию f называют аналитической в точке x_0 , если в некоторой окрестности (x_0-r,x_0+r) этой точки функцию можно разложить в степенной ряд:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

2. Ряд Тейлора:

Пусть функция f бесконечно дифференцируема в точке $x=x_0$. Ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

называют рядом Тейлора.

3. Определение элементарных функция степенными рядами:

Рассмотрим степенные ряды

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

Радиус сходимости каждого ряда $R=+\infty,$ т.е. эти ряды абсолютно сходятся $\forall x\in R.$

Функцию

$$e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in R,$$

называют показательной функцией.

 $\forall x \in R$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}, \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Теорема о разложении функции в степенной ряд:

 $\forall x \in (-1,1)$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}.$$

Доказательство:

В равенстве

$$\ln(1+x) = \int_1^{x+1} \frac{dt}{t},$$

где x > -1, сделаем замену $t = 1 + \tau$. Получим, что

$$\ln(1+x) = \int_1^x \frac{d\tau}{1+\tau} = \int_1^x \sum_{n=0}^\infty (-1)^n \tau^n d\tau = \sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n}.$$

Почленное интегрирование законно ввиду сходимости ряда при $\tau \in (-1,1)$. Таким образом, полученная формула справедлива $\forall x \in (-1,1)$.

26 Пространство R^m . Последовательности в R^m и их свойства.

1. Пространство R^m :

Пусть число $m \in N$. Множество упорядоченных наборов (x_1, x_2, \dots, x_m) , где $x_i \in R$, $i = 1, \dots, m$, называют пространством R^m .

2. Понятие последовательности в пространстве R^m :

Отображение множества N в множество R^m называют последовательностью и обозначают (\overline{x}_n) или $(\overline{x}_n)_{n=1}^{\infty}$, где $\overline{x}_n = (x_{1n}, \dots, x_{mn})$.

последовательности (\overline{x}_n) , соответсвует m числовых последовательностей $(x_{in})_{n=1}^{\infty}$, $i=1,\ldots,m$, которые будем называть координатными последовательностями.

3. Свойства последовательностей в пространстве R^m :

Последовательность (\overline{x}_n) является ограниченной или бесконечно малой, или фундаментальной \iff когда все её координатные последовательности $(x_{in})_{n=1}^{\infty}, \quad i=1,\ldots,m,$ являются огранченными, бесконечно малыми, фундаментальными соответственно.

$$\overline{x}_n \to \overline{x}_0 \iff \forall i = 1, \dots, m \quad x_{in} \to x_{i0}.$$

$$\overline{x}_n \to \overline{x}_0, \quad \overline{y}_n \to \overline{y}_0, \quad \alpha_n \to \alpha_0 \Rightarrow$$

$$\overline{x}_n + \overline{y}_n \to \overline{x}_0 + \overline{y}_0, \quad \alpha_n \overline{x}_n \to \alpha_0 \overline{x}_0, \quad \overline{x}_n * \overline{y}_n \to \overline{x}_0 * \overline{y}_0, \quad |\overline{x}_n| \to |\overline{x}_0|.$$

Всякая сходящаяся последовательность ограничена.

Любая подпоследовательность сходящейся последовательности сходится, причём к той же самой точке.

Последовательность сходится \iff когда она фундаментальна.

У любой ограниченной последовательности существует сходящаяся подпоследовательность.

- 27 Вектор-функции векторного переменного.
 Предел и непрерывность функции в точке.
 Непрерывность функции на множестве.
 Равномерная непрерывность и теорема
 Кантора. Теорема о непрерывном образе
 компакта и её следствия.
- 1. Понятие вектор функции векторного переменного:

Отображение вида $\overline{f}: X \to R^k$, где $X \subset R^m$, m>1, k>1, называют векторной функцией многих переменных или вектор-функцией векторного аргумента.

2. Предел функции в точке:

Определение предела функции в точке по Коши:

Пусть точка \overline{x}_0 — предельная точка области определения функции $\overline{f}:X\to R^k,\quad \overline{A}\in R^k.$

Вектор \overline{A} называют пределом функции \overline{f} в точке \overline{x}_0 и обозначают символом $\lim_{\overline{x}\to\overline{x}_0}\overline{f}(\overline{x})=\overline{A},$ если

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall \overline{x} \in D(\overline{f}) \quad (0 < |\overline{x} - \overline{x}_0| < \delta \Rightarrow |\overline{f}(\overline{x}) - \overline{A}| < \epsilon).$$

Определение предела функции в точке по Гейне:

Пусть точка \overline{x}_0 — предельная точка области определения функции $\overline{f}:X\to R^k,\quad \overline{A}\in R^k.$

Вектор \overline{A} называют пределом функции \overline{f} в точке \overline{x}_0 , если для любой последовательности (\overline{x}_n) точек, принадлежащих $D(\overline{f})$ и удовлетворяющей условиям: $\overline{x}_n \neq \overline{x}_0$, $\overline{x}_n \to \overline{x}_0$, имеет место

$$\overline{f}(\overline{x}_n) \to \overline{A}$$
.

3. Непрерывность функции в точке:

Определение непрерывности функции в точке по Коши:

Функция \overline{f} называется непрерывной в точке $\overline{x_0}$ если

$$\forall \epsilon > 0 \quad \forall \delta > 0 \quad \forall \overline{x} \in D(\overline{f}) \quad (|\overline{x} - \overline{x}_0| < \delta \Rightarrow |\overline{f}(\overline{x}) - \overline{f}(\overline{x}_0)| < \epsilon).$$

Определение непрерывности функции в точке по Гейне:

Функция \overline{f} называется непрерывной в точке \overline{x}_0 , если для любой последовательности точек (\overline{x}_n) , принадлежащих $D(\overline{f})$ и удовлетворяющей условию $\overline{x}_n \to \overline{x}_0$, имеет место

$$\overline{f}(\overline{x}_n) \to \overline{f}(\overline{x}_0).$$

4. Непрерывность функции на множестве:

Функция непрерывная во всех точках множества, непрерывна на этом множестве.

5. Теорема Кантора:

Функция непрерывная на компакте равномерно непрерывна на нём.

6. Теорема о непрерывном образе компакта и её следствия:

Образ функции, непрерывной на компакте, тоже является компактом.

Первая теорема Вейштрасса:

Функция непрерывная на компакте ограничена на нём.

Вторая теорема Вейштрасса:

Функция непрерывная на компакте принимает на нём наибольшее и наименьшее значения.

28 Теорема о непрерывном образе линейно связного множества и её следствия:

1. Теорема о непрерывном образе линейно связного сножества и её следствия:

Пусть функция \overline{f} непрерывна на множестве X и множество X линейно связно. Тогда множество $Y=\overline{f}(X)$ так же линейно связно.

Следсвие:

Пусть функция $f: X \to R$ определена и непрерывна на линейно связном множестве $X \in R^m$ и принимает на нём значения A и B. Тогда эта функция принимает любое значение промежуточное между A и B.

29 Частные производные функции многих переменных. Дифферренцируемость в точке функции многих переменных. Теорема о непрерывности диффиренцируемой функции.

1. Понятие частной производной функции многих переменных:

Частной производной функции f по первой переменной в точке $\overline{x}_0 = (x_1^0, \dots, x_m^0)$ называем предел

$$\lim_{x_1 \to x_1^0} \frac{f(x_1, x_2^0, \dots, x_m^0) - f(x_1^0, x_2^0, \dots, x_m^0)}{x_1 - x_1^0},$$

если он существует, и обозначают символом

$$rac{df}{dx_1}(\overline{x}_0)$$
, или $f_{x_1}^{'}(\overline{x}_0)$, или $D_1f(\overline{x}_0)$

Аналогично определяются частные производные по остальным переменным.

2. Дифференцируемость функции в точке:

Пусть точка \overline{x}_0 является внутренней точкой области определения функции f.

Функция f называется дифференцируемой в точке \overline{x}_0 , если приращение функции в этой точке может быть представлено в виде

$$f(\overline{x}) - f(\overline{x}_0) = \phi_1(\overline{x})(x_2 - x_2^0) + \ldots + \phi_m(\overline{x})(x_m - x_m^0), \tag{11}$$

где функции $\phi_k(k=1,\ldots,m)$ непрерывны в точке \overline{x} .

Обозначим $A_k = \phi_k(\overline{x}_0)$. Тогда $\phi_k(\overline{x}) = A_k + \alpha_k(\overline{x})$, где функции α_k бесконечно малы в точке \overline{x}_0 . Очевидно, что равенство (11) эквивалентно равенству

$$f(\overline{x}) - f(\overline{x}_0) = A_1(x_1 - x_1^0) + \dots + A_m(x_m - x_m^0) + \alpha_1(\overline{x})(x_1 - x_1^0) + \dots + \alpha_m(\overline{x})(x_m - x_m^0).$$
 (12)

Покажем, что условие (11) эквивалентно условию

$$f(\overline{x}) - f(\overline{x}_0) = A_1(x_1 - x_1^0) + \dots + A_m(x_m - x_m^0) + o(|\overline{x} - \overline{x}_0|). \tag{13}$$

Действительно,

$$|\alpha_1(x)(x_1-x_1^0)+\ldots+\alpha_m(x)(x_m-x_m^0)| \leq \left[|\alpha_1(\overline{x})|\frac{|x_1-x_1^0|}{|\overline{x}-\overline{x}_0|}+\ldots+|\alpha_m(\overline{x})|\frac{|x_m-x_m^0|}{|\overline{x}-\overline{x}_0|}\right]|\overline{x}-\overline{x}_0| \leq |\alpha_1(x)(x_1-x_1^0)+\ldots+|\alpha_m(x)(x_m-x_m^0)| \leq |\alpha_1(x)(x_1-x_1^0)+\ldots+|\alpha_m(x)(x_m-x_m^0)| \leq |\alpha_1(\overline{x})|\frac{|x_1-x_1^0|}{|\overline{x}-\overline{x}_0|}+\ldots+|\alpha_m(\overline{x})|\frac{|x_m-x_m^0|}{|\overline{x}-\overline{x}_0|}$$

$$\leq (|\alpha_1(\overline{x})| + \ldots + |\alpha_m(\overline{x})|)|\overline{x} - \overline{x}_0| = o(|\overline{x} - \overline{x}_0|).$$

С другой стороны,

$$o(|\overline{x} - \overline{x}_0|) = \frac{o(|\overline{x} - \overline{x}_0|)}{|\overline{x} - \overline{x}_0|} \frac{|\overline{x} - \overline{x}_0|^2}{|\overline{x} - \overline{x}_0|} =$$

$$=\frac{o(|\overline{x}-\overline{x}_0|)}{|\overline{x}-\overline{x}_0|}\frac{|x_1-x_1^0|^2+\ldots+|x_m-x_m^0|^2}{|\overline{x}-\overline{x}_0|}=$$

$$= \left\lceil \frac{o(|\overline{x} - \overline{x}_0|)}{|\overline{x} - \overline{x}_0|} \frac{x_1 - x_1^0}{|\overline{x} - \overline{x}_0|} \right\rceil (x_1 - x_1^0) + \ldots + \left\lceil \frac{o(|\overline{x} - \overline{x}_0|)}{|\overline{x} - \overline{x}_0|} \frac{x_m - x_m^0}{|\overline{x} - \overline{x}_0|} \right\rceil (x_m - x_m^0)$$

Обозначая

$$\alpha_i(\overline{x}) = \frac{o(|\overline{x} - \overline{x}_0|)}{|\overline{x} - \overline{x}_0|} \frac{x_i - x_i^0}{|\overline{x} - \overline{x}_0|}$$

и учитывая, что $\alpha_i=o(1)$ при $\overline{x}\to \overline{x}_0$, придём к представлению (12). Равенства (11), (12), (13) называют условием диффиринцируемости функции в точке \overline{x}_0 .

3. Теорема о диффиренцируемости функции в точке:

Если функция f дифференцируема в точке \overline{x}_0 , то она непрерывна в этой точке.

Доказательство:

Доказательство вытекает из равенства (11).

30 Теорема о существовании частных производных у дифференцируемой функции.

Теорема о существовании частных производных у дифференцируемой функции:

Если функция f диффиренцируема в точке \overline{x}_0 , то в этой точке у неё существуют все частные производные и $\forall k=1,\ldots,m$

$$\frac{df}{dx_k}(\overline{x}_0) = A_k,$$

где числа A_k из равенства

$$f(\overline{x}) - f(\overline{x}_0) = A_1(x_1 - x_1^0) + \dots + A_m(x_m - x_m^0) + \alpha_1(\overline{x})(x_1 - x_1^0) + \dots + \alpha_m(\overline{x})(x_m - x_m^0). \tag{12}$$

Доказательство:

Согласно равенству (12) имеем

$$f(x_1, x_2^0, \dots, x_m^0) - f(x_0^1, \dots, x_m^0) = A_1(x_1 - x_1^0) + \alpha_1(x_1, x_2^0, \dots, x_m^0)(x_1 - x_1^0).$$

Поделив обе части равенства на $x_1-x_1^0$ и перейдя к пределу при $x_1\to x_1^0$, получим

$$\frac{df}{dx_1}(\overline{x}_0) = A_1$$

Аналогично доказываются равенства для частных производных по остальным переменным.

31 Геометрический смысл условия диффиренцируемости функции дфух переменных. Касательная плоскость и вектор нормали к графику диффиренцируемой функции.

Геометрический смысл условия диффиренцируемости функции и понятия касательной плоскости и вектора нормали к графику дифференцируемой функции:

Если функция z=f(x,y) диффиренцируема в точке (x_0,y_0) , то это означает, что

$$f(x,y) = f(x_0, y_0) + A(x - x_0) + B(y - y_0) + o(\sqrt{(x - x_0)^2 + (y - y_0)^2})$$

при $(x,y) \to (x_0,y_0)$, где

$$A=rac{df}{dx}(x_0,y_0)$$
 и $B=rac{df}{dy}(x_0,y_0).$

Рассмотрим в \mathbb{R}^3 плоскость

$$z = z_0 + A(x - x_0) + B(y - y_0),$$

где $z_0 = f(x_0, y_0)$.

Сравнивая эти равенства, видим, что график функции f в окрестности точки (x_0, y_0, z_0) хорошо аппроксимируется плоскостью. Точнее, точка (x, y, f(x, y)) графика функции отклоняется от точки (x, y, z(x, y))

плоскости на бесконечно малую более высокого порядка, чем величина $\sqrt{(x-x_0)^2+(y-y_0)^2}$.

Эта плоскость с уравнением

$$z = f(x_0, y_0) + \frac{df}{dx}(x_0, y_0)(x - x_0) + \frac{df}{dy}(x_0, y_0)(y - y_0)$$

называется касательной плоскостью к графику функции z = f(x,y) в точке $(x_0, y_0, f(x_0, y_0))$.

Записывая уравнение касательной плоскости в каноническом виде

$$\frac{df}{dx}(x_0, y_0)(x - x_0) + \frac{df}{dy}(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0$$

Заключаем, что вектор

$$\left(\frac{df}{dx}(x_0, y_0), \frac{df}{dy}(x_0, y_0), -1\right)$$

является нормальным вектором касательной к плоскости. Его называют нормальным или ортогональным к графику функции в точке $(x_0, y_0, f(x_0, y_0))$.

32 Достаточное условие дифференцируемости.

Достаточное условие диффиренцируемости функции в точке:

Если у функции f в некоторой окрестности точки \overline{x}_0 существуют все частные производные и они непрерывны в самой точке \overline{x}_0 , то функция f диффиренцируема в точке \overline{x}_0 .

Доказательство:

Для сокращения записи проведём доказательство для функции двух переменных f(x,y) и точки (x_0,y_0) .

Представим приращение функции следующим образом

$$f(x_0 + h_1, y_0 + h_2) - f(x_0, y_0) =$$

$$= (f(x_0 + h_1, y_0 + h_2) - f(x_0, y_0 + h_2)) + (f(x_0, y_0 + h_2) - f(x_0, y_0))$$

Выражение $f(x_0 + h_1, y_0 + h_2) - f(x_0, y_0 + h_2)$ можно рассматривать как приращение функции $f(x, y_0 + h_2)$ одной переменной на x на отрезке $[x_0, x_0 + h_1]$. Применяя к этому приращению формулу Лагранжа, найдём такое $\theta_1 \in (0, 1)$, что

$$f(x_0 + h_1, y_0 + h_2) - f(x_0, y_0 + h_2) = f'_x(x_0 + \theta_1 h_1, y_0 + h_2)h_1.$$

Так как производная f_x^i непрерывна в точке (x_0,y_0) , то

$$f_x'(x_0 + \theta_1 h_1, y_0 + h_2) = f_x'(x_0, y_0) + \alpha_1(h_1, h_2),$$

где α_1 — бесконечно малая при $(h_1,h_2) \to (0,0)$ фукнция. аналогично рассуждая, получим

$$f(x_0, y_0 + h_2) - f(x_0, y_0) = f'_y(x_0, y_0 + \theta_2 h_2)h_2 = (f'_y(x_0, y_0) + \alpha_2(h_1, h_2))h_2,$$

где $\theta_2 \in (0,1)$ и α_2 — бесконечно малая при $(h_1,h_2) \to (0,0)$ функция. Таким образом

$$f(x_0 + h_1, y_0 + h_2) - f(x_0, y_0) =$$

$$f_x^{'}(x_0, y_0)h_1 + f_y^{'}(x_0, y_0)h_2 + \alpha_1(h_1, h_2)h_1 + \alpha_2(h_1, h_2)h_2.$$

Последнее равенство представляет собой условие дифференцируемости

$$f(\overline{x}) - f(\overline{x}_0) = A_1(x_1 - x_1^0) + \ldots + A_m(x_m - x_m^0) + \alpha_1(\overline{x})(x_1 - x_1^0) + \ldots + \alpha_m(\overline{x})(x_m - x_m^0). \tag{12}$$
 функции f в точке (x_0, y_0) .