执行时间ms	链接实现栈	stl顺序栈	基于顺序表	顺序栈
1	1932.56	859.804	955.011	453.186
2	2017.49	869.666	945.612	485.928
3	1959.83	910.654	997.137	500.21
4	1976.03	881.617	982.431	476.098
5	1939.02	846.837	987.891	479.18
6	2017.16	830.396	986.148	526.158
7	1980.8	866.455	948.487	463.732
8	1937.55	888.15	964.792	457.903
9	1986.29	889.98	983.797	483.606
10	1973.62	892.28	991.936	451.476
平均值	1972.035	873.5839	974.3242	477.7477

程序运行结果及数据统计如上图, 进行十次试验后取平均值, 可以看出链栈所需的时间 最长, stl 顺序栈和基于顺序表实现的栈时间稍短, 顺序栈所需时间最少。

根据书本知识,对于顺序栈,除了进栈操作以外, 所有运算实现的时间复杂度都是 O (1)。进栈运算在最坏情况下的时间复杂度是 O (N)。但最坏情况在 N 次进栈操作中至 多出现一次。如果把扩展数组规模所需的时间均摊到每个插入操作,每个插入只多了一个拷贝操作,因此从平均的意义上讲,插入运算还是常量的时间复杂度。

而链栈所有运算的时间复杂度都为 O(1)。

此处链栈所需时间较顺序栈长不少,可能原因是顺序栈扩容时以指数增长,因此 doublespace 后的拷贝操作次数是有限的, 而链栈需要不断的申请动态空间以及 delete 动态空间, 这可能导致了链栈所需的时间较长。

但链栈适合多栈操作,所以总体来说还是各有优劣,各有各的适用场景。

至于继承顺序表实现的顺序栈可能是因为需要定义顺序表来实现,导致时间较长。