1

NCERT Discrete - 10.5.2.2

EE23BTECH11058 - Sindam Ananya*

Question 10.5.2.2:

1) 30th term of the AP: 10, 7, 4, ... is

2) 11th term of the AP: $-3, -\frac{1}{2}, 2, ...$ is

Solution: 1)Let the AP be a function $x_1(n)$ where

Parameter	i value	value	Description
$x_i(0)$	1	10	First
	2	-3	term
d_i	1	-3	Common
	2	5/2	difference
$x_i(29)$	1	?	30th term
$x_i(10)$	2	?	11th term
TABLE 2			

INPUT PARAMETERS

 $x_1(n)$ is the (n+1)th term of AP(1).

Let the common difference be d_1 .

So, the first term is $x_1(1-1)$ which is $x_1(0)$; given $x_1(0) = 10$

For the 30th term of the series we need to find $x_1(30-1)$ which is $x_1(29)$.

Let Z-transform of $x_1(n)$ be $X_1(z)$. Let U(z) be the Z-transform of u(n).

where u(n) is the step function.

$$x_1(n) = [x_1(0) + (n) \times d_1] \times u(n) \tag{1}$$

$$X_1(z) = x_1(0).U(z) + d_1(Z\{nu(n)\})$$
 (2)

$$= \frac{x_1(0)}{1 - z^{-1}} + \frac{d_1 \times z^{-1}}{(1 - z^{-1})^2}$$
 (3)

$$= \frac{10}{1 - z^{-1}} + \frac{(-3)z^{-1}}{(1 - z^{-1})^2} \tag{4}$$

$$=\frac{10}{1-z^{-1}}-\frac{3z^{-1}}{(1-z^{-1})^2}\tag{5}$$

$$= \frac{10 - 13z^{-1}}{(1 - z^{-1})^2} \quad \forall \quad |z| > 1$$
 (6)

From the values given in table:1:

$$x_1(29) = (10 + (29)(-3))(u(n)) \tag{7}$$

$$= (10 + 29(-3))(u(n)) \tag{8}$$

$$= (10 + (-87))(u(n)) \tag{9}$$

$$= -77 \tag{10}$$

(where u(n) = 1 if $n \ge 0$)

So, the 30th term of the AP is -77.

2)Let the AP be a function $x_2(n)$ where $x_2(n)$ is the (n + 1)th term of AP(2).

Let the common difference be d_2 .

So, the first term is $x_2(1-1)$ which is $x_2(0)$; given $x_2(0) = -3$

For the 11th term of the series we need to find $x_2(11-1)$ which is $x_2(10)$.

Let Z-transform of $x_1(n)$ be $X_1(z)$. Let U(z) be the Z-transform of u(n).

where u(n) is the step function.

$$x_2(n) = [x_2(0) + (n) \times d_2] \times u(n) \tag{11}$$

$$X_2(z) = x_2(0).U(z) + d_2(Z\{nu(n)\})$$
 (12)

$$= \frac{x_2(0)}{1 - z^{-1}} + \frac{d_2 \times z^{-1}}{(1 - z^{-1})^2}$$
 (13)

$$= \frac{-3}{1 - z^{-1}} + \frac{(2.5)z^{-1}}{(1 - z^{-1})^2}$$
 (14)

$$= \frac{0.5z^{-1} - 3}{(1 - z^{-1})^2} \quad \forall \quad |z| > 1 \tag{15}$$

From the values given in table:1:

$$x_2(10) = (-3 + (10)\left(\frac{5}{2}\right))(u(n)) \tag{16}$$

$$= (-3 + 10(2.5))(u(n)) \tag{17}$$

$$= (-3 + 25)(u(n)) \tag{18}$$

$$=22\tag{19}$$

(where u(n) = 1 if $n \ge 0$)

so, the 11th term of the AP is 22.