Plenum
$$15/11-13$$

9.2: $1e g R = 3$, $\frac{3}{4}$, $\frac{3}{4}$, $\frac{1}{4}$, $\frac{9}{15}$, $\frac{23}{23}$, $\frac{25}{25}$

9.3: $1d$, $3abe$, $5afg$, $\frac{9}{4}$, $\frac{17}{17}$, $\frac{21}{21}$, $\frac{23}{25}$, $\frac{27}{31}$

9.5: $1ab$, $3ac$, $\frac{6}{10}$, $\frac{10}{10}$

9.2: $1)h$) $\int arcsin \sqrt{x} $dx = \int arcsin (u) 2u du$
 $= 2 \int u \, arcsin (u) du \qquad u = \sqrt{x} du$
 $= 2 \left(\frac{1}{2}u^2 \, arcsin (u)\right) \qquad \frac{1}{2}u^2 \, du = dx$
 $v = arcsin (u) \qquad \frac{1}{2}u^2 \qquad \frac{1}{1-u^2} du$
 $v = \frac{1}{2}u^2$
 $v = \frac{1}{2}u^2$$

$$= \int \sqrt{1-\sin^2 v} \cos v \, dv - archin(u)$$

$$= \int \sqrt{00^2 v} \cos v \, dv - archin(u)$$

$$du = \cos v \, dv = \int \cos^2 v \, dv - archin(u)$$

$$= \frac{1}{2} \left(\frac{1}{2} \sin(2v) + v \right) + \left(\frac{1}{2} v + C \right)$$

$$= \frac{1}{4} \sin(2v) + \frac{1}{2} v + C$$

$$= \frac{1}{4} \sin(2v) + \frac{1}{4} \sin(2arc\sin(u)) - \frac{1}{2} archin(u)$$

$$+ C$$

$$= x archin(x) dx = u^2 archin(u) + \frac{1}{4} \sin(2archin(u))$$

$$= x archin(x) + \frac{1}{4} \sin(2archin(x))$$

$$= \frac{1}{2} archin(x) + C$$

3.) c)
$$\int_{4}^{9} \frac{\sqrt{x} + 1}{1 - \sqrt{x}} dx = \int_{2}^{3} \frac{u + 1}{1 - u} du du$$

$$= -2 \int_{2}^{3} \frac{u^{2} + u}{u - 1} du \int_{2}^{3} \frac{u + u}{2 \sqrt{x}} dx$$

$$\lim_{x \to u} \frac{\sqrt{x}}{2 \sqrt{x}} dx$$

$$\lim_{x$$

d)
$$\int_{0}^{3} \operatorname{arctan}(x) dx = \int_{0}^{3} \operatorname{arctan}(u) \operatorname{andu}(u) du = \int_{0}^{3} \operatorname{arctan}(u) \operatorname{andu}(u) = \int_{0}^{3} \operatorname{arctan}(u) \operatorname{andu}(u) = \int_{0}^{3} \operatorname{arctan}(u) \operatorname{andu}(u) = \int_{0}^{3} \frac{1}{1+u^{2}} \operatorname{andun}(u) = \int_{0}^{3} \operatorname{arctan}(u) = \int_{$$

$$|5.| \int_{0}^{\sqrt{3}} \frac{1+x}{|4-x^{2}|} dx = \int_{0}^{\sqrt{3}} \frac{1}{|4-x^{2}|} dx + \int_{0}^{\sqrt{3}} \frac{x}{|4-x^{2}|} dx$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{|4-x^{2}|} dx + \int_{0}^{1} (-\frac{1}{2}) \frac{1}{|4-x^{2}|} dx$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{|4-x^{2}|} dx + \int_{0}^{1} (-\frac{1}{2}) \frac{1}{|4-x^{2}|} dx$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{|4-x^{2}|} dx + \int_{0}^{1} \frac{1}{|4-x^{2}|} dx$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{|4-x^{2}|} dx + \int_{0}^{\sqrt{3}} \frac{1}{|4-x^{2}|} dx$$

9.3: 5.)a)
$$\int \frac{x^2 + 2x - 3}{x + 1} dx$$

Polynomdivisjon:

$$\frac{x^{2}+2x-3}{x^{2}+2x-3}: x+1=x+1-\frac{4}{x+1}$$

$$\frac{-(x^{2}+x)}{x-3} = \int \frac{x^{2}+2x-3}{x+1} dx = \int \{x+1-\frac{4}{x+1}\} dx$$

$$= \frac{1}{2}x^{2}+x-4 \ln|x+1|+C$$

9.)
$$\int \frac{X+1}{(X-1)(X^2+X+1)} dX$$

$$\sum_{x=-1\pm\sqrt{1-4}} \frac{1+\sqrt{1-4}}{2} : \text{Kan ille faltoniseres}$$
mer realt.

Delbroloppspattning:

$$\frac{X+1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$$

$$x+1 = A(x^2+x+1)+(Bx+C)(x-1)$$

$$= x^2(A+B)+x(A-B+C)+(A-C)$$

$$A+B=0, A-B+C=1, A-C=1$$

$$A = -8 \quad \text{NP} \quad 2\beta + C = 1$$

$$C = 1 + 2\beta$$

$$3. \text{ light: } -\beta - 1 - 2\beta = 1 = b - 3\beta = 2, \beta = -\frac{2}{3}$$

$$= b \quad A = \frac{2}{3}, \quad C = -\frac{1}{3}$$

$$\int \frac{x+1}{(x-1)(x^2+x+1)} dx = \frac{2}{3} \int \frac{1}{x-1} dx - \frac{1}{3} \int \frac{2x+1}{x^2+x+1} dx$$

$$= \frac{2}{3} \ln|x-1| - \frac{1}{3} \int \frac{1}{u} du$$

$$= \frac{2}{3} \ln|x-1| - \frac{1}{3} \ln|x^2+x+1| + C$$

$$= \frac{1}{3} \ln \left[\frac{(x-1)^2}{x^2+x+1} \right] + C$$

$$\frac{1}{x^{3} + 8} dx = \int \frac{1}{(x+2)(x^{2}-2x+4)} dx$$

$$\frac{1}{x^{3} + 8} dx = \int \frac{1}{(x+2)(x^{2}-2x+4)} dx$$

$$\frac{1}{x^{3} + 8} (-2x)^{3} + 8 = 0$$

$$\frac{1}{x^{3} + 8} (-2x)^{3} + 8 = 0$$

$$\frac{1}{x^{3} + 8} (-2x)^{3} + 8 = 0$$

$$\frac{1}{x^{2} + 2x^{2}} - 2x + 4$$

$$\frac{1}{x^{2} + 2x^{2}} - 2x + 4$$

$$\frac{1}{x^{2} + 2x^{2}} + \frac{1}{x^{2} + 2x^{2}} - 2x + 4$$

$$\frac{1}{x^{2} + 2x^{2}} + \frac{1}{x^{2} + 2x^{2}} + \frac{1}{x^{2} + 2x^{2}} - 2x + 4$$

$$\frac{1}{x^{2} + 2x^{2}} + \frac{1}{x^{2} + 2x^{2}} + \frac{1}{x$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \int \frac{2x-8}{x^2-2x+4} dx$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \left(\int \frac{2x-2}{y^2-2x+4} dx + \int \frac{-6}{x^2-2x+4} dx \right)$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \int \frac{1}{12} dx + \frac{1}{4} \int \frac{1}{x^2-2x+4} dx$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \ln |x+2| - \frac{1}{24} \ln |x^2-2x+4|$$

$$+ \frac{1}{4} \int \frac{1}{(x-1)^2+3} dx$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \ln |x^2-2x+4|$$

$$+ \frac{1}{4} \int \frac{1}{3(\frac{x-1}{3})^2+1} dx$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \ln |x^2-2x+4|$$

$$+ \frac{1}{4} \int \frac{1}{3(\frac{x-1}{3})^2+1} dx$$

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \ln |x^2-2x+4|$$

$$+ \frac{1}{12} \arctan \left(\frac{x-1}{13} \right) + C$$

9.5: 6.)
$$\int \ln(x^3 + x^2) dx$$
 konv. eller div .?

 $\int \ln(x^3 + x^2) dx = \lim_{a \to 0^+} \int \ln(x^3 + x^2) dx$

Merk: Flor ingen problemer med at int. $-b+\infty$, trenger denfor kun å begrenze nedenfra.

 $\ln(x^3) \leq \ln(x^3 + x^2)$

Siden $\ln ar$ volvande

NB: $\int \ln(x^3) dx = 3 \left[\times \ln x - t \right]_{x=a}$
 $= \int 3 \ln x dx = 3 \int 1 \cdot \ln x dx$
 $= \int 3 \ln x dx = 3 \int 1 \cdot \ln x dx$
 $= -3 - a \ln a + a$

M: $\lim_{a \to 0^+} a \ln a = \lim_{a \to 0^+} \frac{1}{a}$
 $= \lim_{a \to 0^+} a = 0$

Sô: $\lim_{a \to 0^+} a = 0$

Sô: $\lim_{a \to 0^+} a = 0$

Siden
$$\ln(x^3) < \ln(x^3 + x^2)$$
 og

 $\int \ln(x^3) dx$ konvergerer, gir sammen lignings-

kniteriet at $\int \ln(x^3 + x^2) dx$ konvergerer.

10.) For huilke p konv.

$$\int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx \stackrel{?}{=} \int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx$$

$$\int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx \stackrel{?}{=} \int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx$$

$$= \int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx + \int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx$$
 $\int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx + \int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx$

Konvergerer for Set. 9.5.4: Konv. for $p > 1$

Så: $\int_0^{\frac{1}{2}} \frac{1}{|x|^p} dx$ konv. for $p > 1$

og divergere for $p \le 1$.