Домашнее задание 14. R-Вычислимость и рекурсивность.

 $(7 \ декабря \rightarrow 14 \ декабря)$

1) Пусть On(a) означает, что a является кодом некоторого оператора; Пpor(a) означает, что a является кодом некоторой программы; и Per(i,a) означает, что a является кодом некоторой программы, содержащей переменную r_i .

Докажите, что предикаты Оп, Прог и Рег рекурсивны.

2) Пусть (a) = l + 1, если a является кодом некоторой программы длины l + 1, и (a) = 0, если a не является кодом программы.

Пусть $\mathbb{A}(a)$ равно памяти программы с кодом a, если a является кодом некоторой программы, и $\mathbb{A}(a) = 0$ в противном случае.

Пусть $\mbox{$\mathbb{F}$}(a,x_0,\ldots,x_n,t)=\langle s\rangle,$ если a является кодом программы P и s — состояние P в момент t при вычислении $\varphi_P(\bar{x}),$ и $\mbox{$\mathbb{F}$}(a,x_0,\ldots,x_n,t)=0,$ если a не является кодом программы.

Докажите, что функции , Я и У рекурсивны.

3) Докажите, что функция на множестве натуральных чисел R-вычислима тогда и только тогда, когда она рекурсивна. (Учтите все технические детали, которые были пропущены на лекции.)

Докажите, что частичная функция на множестве натуральных чисел R-вычислима тогда и только тогда, когда она рекурсивна.

4) Пусть g — произвольная функция на \mathbb{N} . Функция f рекурсивна относительно g (символически, $f \leq_T g$), если f получается из g, +, \cdot , $\chi_{<}$, I_k^n последовательными применениями суперпозиции и минимизации.

Функция f R-вычислима относительно g, если существует вычисляющая ее программа с оракулом g: формально, оператор присваивания может принимать ещё вид $r_i \coloneqq g(r_i)$.

Докажите равносильность этих двух определений: функция рекурсивна относительно g тогда и только тогда, когда она R-вычислима относительно g.

5) Пусть $\varphi_n = \varphi_P^{(1)}$, если n является кодом программы P, и $\varphi_n = \varnothing$, если n не является кодом программы. Тогда φ — нумерация всех рекурсивных частичных функций, а $W_n = \text{dom}(\varphi_n)$ — нумерация всех рекурсивно перечислимых множеств.

Докажите, что частичная функция $(n,x)\mapsto \varphi_n(x)$ рекурсивна, а множество $\{n\mid n\in W_n\}$ рекурсивно перечислимо, но не рекурсивно.