Linguagens regulares Sistemas de estados finitos Autômato finito determinístico Estendendo a função programa Considerações finais

Teoria de Linguagem Autômatos Finitos Determinísticos

Vinicius H. S. Durelli

⊠ durelli@ufsj.edu.br

Organização

- 1 Linguagens regulares
- Sistemas de estados finitos
- 3 Autômato finito determinístico
 - Fital
 - A unidade de controle e a cabeça de leitura
 - Definição formal
 - Representando AFDs
 - Exemplo
 - Processamento
- Estendendo a função programa
- Considerações finais

Linguagens regulares (Tipo 3)

De acordo com a hierarquia de Chomsky (Chomsky 1956), as linguagens regulares são a **classe de linguagem mais simples**.

- Fortes limitações de expressividade.
- Por exemplo, linguagens que possuem duplo balanceamento não são regulares.

Formalismos usados para "processar" linguagens regulares

Essencialmente, dois formalismos são usados:

- Denotacional; e
- Operacional.

Definição → Formalismo Operacional

Máquina abstrata baseada em estados, em instruções primitivas e na especificação de como cada instrução modifica cada estado (Menezes 2011).

→ Um formalismo operacional é dito **reconhecedor** no sentido que permite a "análise" de uma dada entrada para verificar se ela é **reconhecida** pela máquina.

- Linguagens regulares
- 2 Sistemas de estados finitos
- 3 Autômato finito determinístico
 - Fita
 - A unidade de controle e a cabeça de leitura
 - Definição formal
 - Representando AFDs
 - Exemplo
 - Processamento
- 4 Estendendo a função programa
- Considerações finais

Um pouco sobre sistemas de estados finitos...

Basicamente, um **sistema de estados finitos** é um modelo matemático de sistema com **entradas e saídas discretas** (em oposição ao contínuo) (Menezes 2011).

Características de tais sistemas:

- Assumir um número finito e predefinido de estados.
 - Assim, todos os estados do sistema podem ser explicitados antes de iniciar o processamento.
- Cada estado resume informações do passado para determinar as ações para a próxima entrada.

Sistemas de estados finitos: exemplos

Sistemas de estados finitos podem ser associados a diversos tipos de sistemas **naturais** e **construídos**.

Exemplo clássico: elevador

- Não memoriza as requisições anteriores;
- Cada "estado" sumariza as informações:
 - "Andar corrente";
 - "Direção de movimento".
- Entradas: requisições pendentes.

Sistemas de estados finitos: exemplos

Sistemas de estados finitos podem ser associados a diversos tipos de sistemas **naturais** e **construídos**.

Exemplo clássico: elevador

- Não memoriza as requisições anteriores;
- Cada "estado" sumariza as informações:
 - "Andar corrente";
 - "Direção de movimento".
- Entradas: requisições pendentes.

Contraexemplo: cérebro humano

- Composto por cerca de 2³⁵ células (Menezes 2011).
- O elevado número de combinações (i.e., estados) torna essa abordagem pouco eficiente em termos práticos (explosão de estados).

- 1 Linguagens regulares
- Sistemas de estados finitos
- 3 Autômato finito determinístico
 - Fita
 - A unidade de controle e a cabeça de leitura
 - Definição formal
 - Representando AFDs
 - Exemplo
 - Processamento
- 4 Estendendo a função programa
- Considerações finais

Fita A unidade de controle e a cabeça de leitura Definição formal Representando AFDs Exemplo Processamento

O que é um autômato finito determinístico (AFD)?

Formalismo operacional ou reconhecedor muito importante em diversos estudos teórico-formais da computação.

Um AFD é um **sistema de estados finitos**, portanto, possui um **número finito e predefinido de estados** (Menezes 2002; Menezes 2011)

Por que determinístico?

Visto que para o estado corrente e o símbolo lido da entrada, tais autômatos sempre assumem **um único estado bem determinado**.

Visão geral de AFDs

Um AFD pode ser visto como uma máquina composta, basicamente, de **três partes** (Menezes 2002):

- Fita: que desempenha o papel de dispositivo de entrada
- Unidade de controle: reflete o estado da máquina.
 Possui uma cabeça de leitura que acessa uma célula da fita por vez e movimenta-se exclusivamente para a direita.
- Função de transição: função que comanda as leituras e dita o estado da máquina.

Fita
A unidade de controle e a cabeça de leitura
Definição formal
Representando AFDs
Exemplo
Processamento

Sobre a fita...

Considerando o formalismo que será apresentado no decorrer desta disciplina, a fita é:

- Finita (à esquerda e à direita)
- Dividida em células: cada célula armazena um símbolo do alfabeto de entrada.
- Não é possível gravar sobre a fita.

Sobre a fita...

Considerando o formalismo que será apresentado no decorrer desta disciplina, a fita é:

- Finita (à esquerda e à direita)
- Dividida em células: cada célula armazena um símbolo do alfabeto de entrada.
- Não é possível gravar sobre a fita.

A unidade de controle e a cabeça de leitura...

Conforme mencionado, a unidade de controle possui um **número finito e predefinido de estados**.

• A unidade de controle lê um símbolo da entrada (fita) por vez.

Após a leitura, a cabeça de leitura sempre se move uma célula para a direita.

 Inicialmente, a cabeça de leitura encontra-se posicionada na célula mais à esquerda da fita.

© "programa" é uma função parcial tal que: dependendo do ① estado corrente e do ② símbolo lido, determina o novo estado do autômato.

Definição formal

Definição -> Autômato Finito Determinístico

Um AFD \mathcal{M} é uma quíntupla: $\mathcal{M} = (\Sigma, Q, \delta, q_0, F)$ onde:

- Σ representa o alfabeto de símbolos de entrada;
- Q é o conjunto finito de estados do autômato;
- δ função de transição $(\delta: Q \times \Sigma \to Q)$ a qual é uma função parcial;
 - Supondo que a função programa é definida para um estado p e um símbolo a resultando no estado q, então:

$$\delta(p,a)=q$$

é uma transição do AFD.

- $q_0 \in Q$ estado inicial;
- $F \subset Q$ representa o conjunto de estados finais.

Representando AFDs: diagrama/grafo (1)

AFDs podem ser representados na forma de diagramas nos quais:

- Estados são nós/vértices, representados por círculos;
- Transições são arestas, ligando os vértices;
- Estados iniciais e finais são representados de forma distinta.

Representando AFDs: tabela (2)

Uma forma alternativa de se representar a função programa é por meio de uma **tabela de dupla entrada**.

Por exemplo, uma transição do tipo $\delta(p,a)=q$ pode ser representada como abaixo:

δ	а	
р	q	
q		

Considere o AFD que aceita a linguagem L_1 descrita formalmente como:

 $L_1 = \{ w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavras} \}$

Considere o AFD que aceita a linguagem L_1 descrita formalmente como:

$$L_1 = \{ w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavras} \}$$

• Alfabeto?

Considere o AFD que aceita a linguagem L_1 descrita formalmente como:

$$L_1 = \{ w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavras} \}$$

- Alfabeto?
 - $\Sigma = \{a, b\}$
- Exemplos de palavras aceitas pelo AFD?

Considere o AFD que aceita a linguagem L_1 descrita formalmente como:

$$L_1 = \{ w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavras} \}$$

- Alfabeto?
 - $\Sigma = \{a, b\}$
- Exemplos de palavras aceitas pelo AFD?
 - aa;
 - bb:
 - abbab; e
 - aabbbb.
- Exemplos de palavras rejeitadas pelo AFD?

Considere o AFD que aceita a linguagem L_1 descrita formalmente como:

$$L_1 = \{ w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavras} \}$$

- Alfabeto?
 - $\Sigma = \{a, b\}$
- Exemplos de palavras aceitas pelo AFD?
 - aa;
 - bb;
 - abbab; e
 - aabbbb.
- Exemplos de palavras rejeitadas pelo AFD?
 - ε;
 - a; e
 - ababab.

Formalmente, o AFD que aceita L_1 pode ser descrito como:

$$M_1 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_1, q_0, q_f\}$$

onde δ_1 é dado pela tabela abaixo:

Formalmente, o AFD que aceita L_1 pode ser descrito como:

$$M_1 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_1, q_0, q_f\}$$

onde δ_1 é dado pela tabela abaixo:

δ_1	а	b
q_0	q_1	q_2
q_1	q_f	q_2
q_2	q_1	q_f
q_f	q_f	q_f

O AFD M_1 pode ser representado em forma de diagrama conforme mostrado ao lado.

- O AFD usa os estados q₁ e q₂ para "memorizar" o símbolo lido anteriormente. Assim:
 - q₁: "símbolo anterior foi a"
 - q2: "símbolo anterior foi b"
- Qual informação memorizada por q_0 e q_f ?

Exercícios (1)

Considerando o alfabeto $\Sigma=\{1,0\}$, crie AFDs que aceitam as linguagens descritas a seguir.

Exercício ①: $L_{e1} = \{ w : w \text{ possui } 01 \text{ como subpalavra} \}$

Exercício ②: $L_{e2} = \{ w : w \text{ possui um número par de } 0 \text{ e um número par de } 1 \}$

Exercício ③: $L_{e3} = \{ w : w \text{ possui pelo menos três } 0 \}$

Exercícios (2): agora vamos tentar resolver algo ligeiramente mais complexo...

Considerando o alfabeto $\Sigma = \{a, b, c\}$, crie um AFD que aceita a linguagem descrita a seguir.

Exercício 4: $L_{e4} = \{ w : w \text{ possui aab como subpalavra} \}$

Solução:

Exercícios (2): agora vamos tentar resolver algo ligeiramente mais complexo...

Considerando o alfabeto $\Sigma = \{a, b, c\}$, crie um AFD que aceita a linguagem descrita a seguir.

Exercício 4: $L_{e4} = \{w : w \text{ possui aab como subpalavra}\}$

Solução:

A linguagem aceita por um AFD é o conjunto de todas as palavras "aceitas" pelo AFD.

 \rightarrow Como saber se um AFD aceita uma palavra $a_1 a_2 \cdots a_n$?

A linguagem aceita por um AFD é o conjunto de todas as palavras "aceitas" pelo AFD.

- \rightarrow Como saber se um AFD aceita uma palavra $a_1 a_2 \cdots a_n$?
 - O autômato começa o processamento no estado inicial,
 q₀.

A linguagem aceita por um AFD é o conjunto de todas as palavras "aceitas" pelo AFD.

- → Como saber se um AFD aceita uma palavra $a_1 a_2 \cdots a_n$?
 - O autômato começa o processamento no estado inicial,
 q₀.
 - Inicialmente, consulta-se a função de transição δ para o primeiro símbolo da palavra: digamos $\delta(q_0, a_1) = q_1$.

A linguagem aceita por um AFD é o conjunto de todas as palavras "aceitas" pelo AFD.

- → Como saber se um AFD aceita uma palavra a₁ a₂ ··· a_n?
 - O autômato começa o processamento no estado inicial,
 q₀.
 - Inicialmente, consulta-se a função de transição δ para o primeiro símbolo da palavra: digamos $\delta(q_0, a_1) = q_1$.
 - Em seguida, processa-se o próximo símbolo da palavra, a_2 , avaliando $\delta(q_1,a_2)=q_2$

Como um AFD processa palavras?

A linguagem aceita por um AFD é o conjunto de todas as palavras "aceitas" pelo AFD.

- → Como saber se um AFD aceita uma palavra a₁ a₂ ··· a_n?
 - O autômato começa o processamento no estado inicial,
 q₀.
 - Inicialmente, consulta-se a função de transição δ para o primeiro símbolo da palavra: digamos $\delta(q_0, a_1) = q_1$.
 - Em seguida, processa-se o próximo símbolo da palavra, a_2 , avaliando $\delta(q_1,a_2)=q_2$
 - O processamento continua encontrando estados q_3, q_4, \dots, q_n de forma que $\delta(q_{i-1}, a_i)$ para cada i.

Como um AFD processa palavras?

A linguagem aceita por um AFD é o conjunto de todas as palavras aceitas pelo AFD.

- → Como saber se um AFD aceita uma palavra a₁ a₂ ··· a_n?
 - O autômato começa o processamento no estado inicial,
 q₀.
 - Inicialmente, consulta-se a função de transição δ para o primeiro símbolo da palavra: digamos $\delta(q_0, a_1) = q_1$.
 - Em seguida, processa-se o próximo símbolo da palavra, a_2 , avaliando $\delta(q_1,a_2)=q_2$
 - O processamento continua encontrando estados q_3, q_4, \dots, q_n de forma que $\delta(q_{i-1}, a_i)$ para cada i.
 - Ao final do processamento, se q_n é membro de F, então a palavra a₁ a₂ ··· a_n é aceita – caso contrário a palavra é "rejeitada".

- Linguagens regulares
- 2 Sistemas de estados finitos
- Autômato finito determinístico
 - Fita
 - A unidade de controle e a cabeça de leitura
 - Definição formal
 - Representando AFDs
 - Exemplo
 - Processamento
- 4 Estendendo a função programa
- Considerações finais

A computação de um AFD...

A computação de um AFD para uma palavra w consiste na sucessiva aplicação da função programa para cada símbolo de w até ocorrer uma condição de parada.

Condições de parada

- Aceita a entrada w: após processar o último símbolo da fita, o AFD assume um estado final.
- Rejeita a entrada w. Duas possibilidades:
 - após processar o último símbolo da fita, o AFD assume um estado não final; ou
 - ao longo do processamento de w, a função programa é indefinida para o argumento (estado corrente e símbolo lido da fita).

Função programa estendida...

Para definir formalmente o comportamento de um AFD, é preciso estender a definição da função programa.

Definição → Função Programa Estendida

Seja $\mathcal{M}=(\Sigma,Q,\delta,q_0,F)$ um AFD. A função programa estendida denotada por:

$$\delta^* = Q \times \Sigma^* \to Q$$

é a função programa estendida para palavras e pode ser indutivamente definida como a seguir:

$$\delta^*(q, \varepsilon) = q$$

 $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$

Exemplo: função programa estendida

Dado $\mathcal{M}_1 = \{\{a,b\}, \{q_0,q_1,q_2,q_f\}, \delta_1,q_0,\{q_f\}\}$. A função de transição estendida aplicada à palavra *abaa* a partir do estado inicial q_0 é como segue:

$$\delta^*(q_0, abaa) = \delta^*(\delta(q_0, a), baa) =$$
 $\delta^*(q_1, baa) = \delta^*(\delta(q_1, b), aa) =$
 $\delta^*(q_2, aa) = \delta^*(\delta(q_2, a)a) =$
 $\delta^*(q_1, a) = \delta^*(\delta(q_1, a), \varepsilon) =$
 $\delta^*(q_f, \varepsilon) = q_f$

Exercício

Exercício ⑤: Dado o AFD mostrado anteriormente: $\mathcal{M}_1 = \{\{a,b\},\{q_0,q_1,q_2,q_f\},\delta_1,q_0,\{q_f\}\}$. Detalhe a função de transição estendida aplicada à palavra *abab* a partir do estado inicial q_0 .

Solução:

Exercício

Exercício ⑤: Dado o AFD mostrado anteriormente: $\mathcal{M}_1 = \{\{a,b\},\{q_0,q_1,q_2,q_f\},\delta_1,q_0,\{q_f\}\}$. Detalhe a função de transição estendida aplicada à palavra *abab* a partir do estado inicial q_0 .

🖊 Solução:

$$\delta^*(q_0, abab) = \delta^*(\delta(q_0, a), bab) =$$
 $\delta^*(q_1, bab) = \delta^*(\delta(q_1, b), ab) =$
 $\delta^*(q_2, ab) = \delta^*(\delta(q_2, a)b) =$
 $\delta^*(q_1, b) = \delta^*(\delta(q_1, b), \varepsilon) =$
 $\delta^*(q_2, \varepsilon) = q_2$

Linguagem aceita

Seja $\mathcal{M} = \{\Sigma, Q, \delta, q_0, F\}$ um AFD, a linguagem **aceita** por \mathcal{M} é denotada:

$$ACEITA(\mathcal{M})$$
 ou $L(\mathcal{M})$

é o conjunto de todas as palavras pertencentes a Σ^* aceitas por ${\mathcal M}$ a partir de q_0 , ou seja:

$$L(\mathcal{M}) = \{ w \mid \delta^*(q_0, w) \in F \}$$

Linguagem rejeitada

A linguagem **rejeitada** por \mathcal{M} é denotada por:

$$REJEITA(\mathcal{M})$$

é o conjunto de todas as palavras pertencentes a Σ^* rejeitadas por ${\cal M}$ a partir de q_0 , ou seja:

$$\textit{REJEITA}(\mathcal{M}) = \{w \mid \delta^*(q_0, w) \not\in F \text{ ou } \delta^*(q_0, w) \text{ \'e indefinida}\}$$

Como determinar se uma linguagem é regular?

Definição \rightarrow Linguagem Regular

Uma linguagem L é dita regular (ou Tipo 3) se existe pelo menos um AFD que aceita L. \Box

Exercícios (3): agora vamos tentar resolver algo ainda mais complexo. . .

Considerando o alfabeto $\Sigma=\{0,1\}$, crie um AFD que aceita a linguagem descrita a seguir.

Exercício (6): $L_{e4} = \{w : w \text{ possui } 1010 \text{ como subpalavra}\}$

🙇 Solução:

Exercícios (3): agora vamos tentar resolver algo ainda mais complexo. . .

Considerando o alfabeto $\Sigma=\{0,1\}$, crie um AFD que aceita a linguagem descrita a seguir.

Exercício (6): $L_{e4} = \{w : w \text{ possui } 1010 \text{ como subpalavra}\}$

✓ Solução:

- Linguagens regulares
- Sistemas de estados finitos
- 3 Autômato finito determinístico
 - Fita
 - A unidade de controle e a cabeça de leitura
 - Definição formal
 - Representando AFDs
 - Exemplo
 - Processamento
- 4 Estendendo a função programa
- Considerações finais

Considerações finais...

Na aula de hoje nós vimos:

- Autômatos finitos determinísticos;
 - tabela;
 - diagrama/grafo.
- Função de transição estendida.

Na próxima aula: autômatos finitos não-determinísticos.

Referências

- Chomsky, N. (1956). "Three models for the description of language". In: *IRE Transactions on Information Theory* 2.3, pp. 113–124.
- Menezes, Paulo Blauth (2002). *Linguagens Formais e Autômatos*. 3rd ed. Livros Didáticos do Instituto de Informática da UFRGS. Sagra Luzzatto, p. 165.
- (2011). Linguagens Formais e Autômatos. 6th ed. Livros Didáticos Informática da UFRGS. Bookman, p. 256.
- ©Próxima aula: exercício(s) sobre o conteúdo da aula de hoje! ©