### Міністерство освіти і науки України Прикарпатський національний університет імені Василя Стефаника

Гой Т. П., Махней О. В.

# ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ

Навчальний посібник для студентів напрямів підготовки «інформатика», «прикладна математика» вищих навчальних закладів УДК 517.9 ББК 22.161.6 Г 59

Рекомендовано Вченою радою Прикарпатського національного університету імені Василя Стефаника як навчальний посібник для студентів напрямів підготовки «інформатика», «прикладна математика» (протокол № ? від ? ??? 2010 р.).

#### Рецензенти:

Iванчов M. I., доктор фізико-математичних наук, професор (Львівський національний університет імені Івана Франка),

Kаленгок П. I., доктор фізико-математичних наук, професор (Національний університет «Львівська політехніка»),

Г59 Гой Т. П. Диференціальні рівняння [Текст] : навчальний посібник / Гой Т. П., Махней О. В. — Івано-Франківськ : Видавничо-дизайнерський відділ Центру інформаційних технологій Прикарпатського національного університету імені Василя Стефаника, 2010. — 330 с.

Викладено основи теорії звичайних диференціальних рівнянь, а також деякі ідейно близькі питання (рівняння з частинними похідними першого порядку, основи стійкості). Автори намагались поєднати строгість викладу матеріалу теорії диференціальних рівнянь з прикладним спрямуванням її методів. У зв'язку з цим наведені численні приклади з природничих наук. Кожна тема супроводжується питаннями та завданнями для самостійного розв'язування. Наведено також приклади застосування пакета символьних обчислень Марlе для інтегрування диференціальних рівнянь.

Для студентів напрямів підготовки «інформатика», «прикладна математика». Може бути корисним для студентів технічних напрямів підготовки.

#### ISBN 978-966-640-195-6

- © Гой Т. П., Махней О. В., 2010.
- © Прикарпатський національний університет імені Василя Стефаника, 2010.

3MICT 3

## 3MICT

| передмова                                                       | 10  |
|-----------------------------------------------------------------|-----|
| Розділ 1. ЗВИЧАЙНІ ДИФЕРЕНЦІАЛЬНІ РІВ-<br>НЯННЯ ПЕРШОГО ПОРЯДКУ | 12  |
| Лекція 1. Поняття про диференціальні рівняння                   |     |
| та диференціальні моделі                                        | 12  |
| 1. Диференціальні рівняння та математичне моделю-               |     |
| вання                                                           | 12  |
| 2. Основні означення й поняття                                  | 18  |
| 3. Складання диференціальних рівнянь виключенням                |     |
| довільних сталих                                                | 20  |
| Питання до лекції 1                                             | 21  |
| Вправи до лекції 1                                              | 22  |
| Лекція 2. Диференціальні рівняння першого по-                   |     |
| рядку, розв'язані відносно похідної (за-                        |     |
| гальна теорія)                                                  | 22  |
| 1. Основні означення й поняття                                  | 23  |
| 2. Задача Коші. Умови існування та єдиності розв'яз-            |     |
| ку задачі Коші                                                  | 24  |
| 3. Класифікація розв'язків                                      | 26  |
| 4. Геометричне та механічне тлумачення диференці-               | 20  |
| ального рівняння першого порядку та його розв'язків             | 28  |
| Питання до лекції 2                                             | 32  |
| Вправи до лекції 2                                              | 33  |
| Лекція 3. Найпростіші диференціальні рівняння                   |     |
| першого порядку, інтегровні у квадра-                           |     |
| турах                                                           | 34  |
| 1. Рівняння з відокремлюваними змінними та звідні               | 0.4 |
| до них                                                          | 34  |
| 2. Однорідні рівняння                                           | 37  |
| 3. Рівняння, звідні до однорідних                               | 40  |
| Питання до лекції 3                                             | 44  |
| Вправи до лекції З                                              | 45  |
| Лекція 4. Лінійні диференціальні рівняння та зві-               |     |
| дні до них                                                      | 46  |
| 1. Лінійне рівняння та методи його розв'язування                | 46  |

4 3MICT

| 2. Властивості розв'язків лінійних рівнянь             | 49 |
|--------------------------------------------------------|----|
| 3. Рівняння Я. Бернуллі                                | 50 |
| 3. Рівняння Ріккаті                                    | 53 |
| Питання до лекції 4                                    | 55 |
| Вправи до лекції 4                                     | 56 |
| Лекція 5. Рівняння у повних диференціалах та           |    |
| звідні до них                                          | 57 |
| 1. Рівняння у повних диференціалах                     | 57 |
| 2. Інтегрувальний множник та деякі способи його зна-   |    |
| ходження                                               | 60 |
| 3. Теореми про існування, неєдиність та загальний ви-  |    |
| гляд інтегрувального множника                          | 63 |
| Питання до лекції 5                                    | 67 |
| Вправи до лекції 5                                     | 67 |
| Лекція 6. Неявні диференціальні рівняння першо-        |    |
| го порядку                                             | 68 |
| 1. Основні означення й поняття                         | 68 |
| 2. Задача Коші. Класифікація розв'язків                | 70 |
| 3. Рівняння степеня $n$                                | 75 |
| Питання до лекції 6                                    | 77 |
| Вправи до лекції 6                                     | 77 |
| Лекція 7. Неявні диференціальні рівняння першо-        |    |
| го порядку (продовження)                               | 77 |
| 1. Метод введення параметра                            | 78 |
| 2. Рівняння Лагранжа та рівняння Клеро                 | 80 |
| 3. Задача про ізогональні траєкторії                   | 82 |
| Питання до лекції 7                                    | 86 |
| Вправи до лекції 7                                     | 86 |
| Лекція 8. Основні властивості розв'язків дифе-         |    |
| ренціальних рівнянь першого порядку .                  | 87 |
| 1. Принцип стискуючих відображень                      | 87 |
| 2. Теорема існування та єдиності розв'язку задачі Коші | 90 |
| 3. Продовження розв'язку задачі Коші                   | 94 |
| 4. Коректність задачі Коші                             | 96 |
| Питання до лекції 8                                    | 97 |
| Вправи до лекції 8                                     | 98 |

3MICT 5

| Лекція 9. Диференціальні моделі                                                      | 99   |
|--------------------------------------------------------------------------------------|------|
| 1. Побудова диференціальних моделей природничих                                      |      |
| наук                                                                                 | 99   |
| 2. Розв'язування геометричних задач за допомогою                                     |      |
| диференціальних рівнянь                                                              | 105  |
| 3. Розв'язування задач за допомогою інтегральних                                     |      |
| рівнянь                                                                              | 106  |
| Питання до лекції 9                                                                  | 107  |
| Вправи до лекції 9                                                                   | 108  |
| Додаток до розділу 1. Застосування математично-                                      |      |
| го пакета Maple для інтегрування звичайних                                           |      |
| диференціальних рівнянь першого порядку.                                             | 108  |
| Розділ 2. ЗВИЧАЙНІ ДИФЕРЕНЦІАЛЬНІ РІВ-                                               |      |
| НЯННЯ ВИЩИХ ПОРЯДКІВ                                                                 | 118  |
| Лекція 10. Диференціальні рівняння вищих по-                                         | 110  |
| рядків                                                                               | 118  |
| 1. Основні поняття й означення. Задача Коші                                          | 118  |
| 2. Класифікація розв'язків                                                           | 121  |
| 3. Рівняння, яке містить тільки незалежну змінну і                                   | 121  |
| похідну порядку $n$                                                                  | 122  |
| Питання до лекції 10                                                                 | 128  |
| Вправи до лекції 10                                                                  | 128  |
|                                                                                      | 120  |
| Лекція 11. Диференціальні рівняння вищих порядків, які допускають зниження порядків, |      |
| рядків, які допускають зниження по-                                                  | 129  |
| 1. Рівняння, яке не містить шуканої функції та кіль-                                 | 149  |
| кох послідовних похідних                                                             | 129  |
| 2. Рівняння, яке не містить незалежної змінної                                       | 132  |
| 3. Рівняння, однорідне відносно шуканої функції та її                                | 102  |
| похідних                                                                             | 134  |
| 4. Рівняння з точними похідними                                                      | 134  |
| 4. Гівняння з точними похідними                                                      | 138  |
| Вправи до лекції 11                                                                  | 138  |
|                                                                                      | 190  |
| Лекція 12. Лінійні однорідні диференціальні рів-                                     | 120  |
| няння $n$ -го порядку                                                                | 139  |
| 1. Основні означення й поняття                                                       | -139 |

6 3MICT

| 2. Властивості розв'язків лінійного однорідного рівня- |     |
|--------------------------------------------------------|-----|
| ння                                                    | 141 |
| 3. Лінійно залежні та лінійно незалежні функції        | 142 |
| 4. Основна теорема                                     | 145 |
| 5. Формула Остроградського – Ліувілля                  | 147 |
| Питання до лекції 12                                   | 149 |
| Вправи до лекції 12                                    | 150 |
| Лекція 13. Лінійні однорідні диференціальні рів-       |     |
| няння <i>n</i> -го порядку зі сталими коефі-           |     |
| цієнтами                                               | 151 |
| 1. Основні означення й поняття                         | 151 |
| 2. Метод Ейлера. Випадок простих характеристичних      |     |
| чисел                                                  | 152 |
| 3. Метод Ейлера. Випадок кратних характеристичних      |     |
| чисел                                                  | 155 |
| 4. Диференціальні рівняння, звідні до рівнянь зі ста-  |     |
| лими коефіцієнтами                                     | 157 |
| Питання до лекції 13                                   | 160 |
| Вправи до лекції 13                                    | 161 |
| Лекція 14. Лінійні неоднорідні диференціальні          |     |
| рівняння $n$ -го порядку                               | 162 |
| 1. Структура загального розв'язку лінійного неодно-    |     |
| рідного рівняння                                       | 162 |
| 2. Метод варіації довільних сталих                     | 164 |
| 3. Метод Коші                                          | 166 |
| 4. Метод невизначених коефіцієнтів                     | 168 |
| Питання до лекції 14                                   | 173 |
| Вправи до лекції 14                                    | 173 |
| Лекція 15. Лінійні однорідні рівняння другого по-      |     |
| рядку                                                  | 174 |
| 1. Канонічна форма лінійного однорідного рівняння      |     |
| другого порядку                                        | 174 |
| 2. Побудова загального розв'язку у випадку, якщо ві-   |     |
| домий один частинний розв'язок                         | 177 |
| 3. Інтегрування лінійних рівнянь за допомогою степе-   |     |
| невих рядів                                            | 178 |
| Питання до лекції 15                                   |     |

3MICT 7

| Питання до лекції 15                                  | 185 |
|-------------------------------------------------------|-----|
| Лекція 16. Диференціальні моделі коливальних          |     |
| процесів                                              | 186 |
| 1. Застосування лінійних однорідних диференціаль-     |     |
| них рівнянь другого порядку до коливальних рухів      | 186 |
| 2. Застосування лінійних неоднорідних диференціаль-   |     |
| них рівнянь другого порядку до коливальних рухів      | 190 |
| 3. Диференціальна модель математичного маятника.      | 194 |
| Питання до лекції 16                                  | 196 |
| Лекція 17. Крайові задачі для диференціальних         |     |
| рівнянь другого порядку                               | 197 |
| 1. Основні означення й поняття                        | 197 |
| 2. Існування та єдиність розв'язку крайової задачі    | 198 |
| 3. Функція Ґріна крайової задачі                      | 200 |
| 4. Крайові задачі на власні значення                  | 204 |
| Питання до лекції 17                                  | 207 |
| Вправи до лекції 17                                   | 207 |
| Додаток до розділу 2. Застосування математично-       |     |
| го пакета Maple для інтегрування звичайних            |     |
| диференціальних рівнянь вищих порядків                | 208 |
| Розділ 3. СИСТЕМИ ЗВИЧАЙНИХ ДИФЕРЕН-                  |     |
| ЦІАЛЬНИХ РІВНЯНЬ                                      | 217 |
| Лекція 18. Системи звичайних диференціальних          |     |
| рівнянь (загальна теорія)                             | 217 |
| 1. Основні означення й поняття                        | 217 |
| 2. Механічне тлумачення нормальної системи та її      |     |
| розв'язків                                            | 221 |
| 3. Зведення диференціального рівняння $n$ -го порядку |     |
| до нормальної системи й обернена задача               | 224 |
| 4. Лінійні однорідні системи                          | 227 |
| Питання до лекції 18                                  | 229 |
| Вправи до лекції 18                                   | 229 |
| Лекція 19. Лінійні однорідні системи звичайних        |     |
| диференціальних рівнянь                               | 230 |
| 1. Лінійно залежні та лінійно незалежні сукупності    |     |
| функцій                                               | 230 |

8 3MICT

| 2. Формула Остроградського – Якобі                    | 232 |
|-------------------------------------------------------|-----|
| 3. Основна теорема                                    | 233 |
| 4. Лінійні однорідні системи зі сталими коефіцієнта-  |     |
| ми. Метод Ейлера                                      | 234 |
| Питання до лекції 19                                  | 242 |
| Вправи до лекції 19                                   | 242 |
| Лекція 20. Лінійні неоднорідні системи звичайних      |     |
| диференціальних рівнянь                               | 243 |
| 1. Структура загального розв'язку лінійної неоднорі-  |     |
| дної системи                                          | 243 |
| 2. Метод варіації довільних сталих                    | 245 |
| 3. Метод невизначених коефіцієнтів розв'язування лі-  |     |
| нійних систем зі сталими коефіцієнтами                | 248 |
| 4. Метод Д'Аламбера                                   | 251 |
| Питання до лекції 20                                  | 253 |
| Вправи до лекції 20                                   | 253 |
| Додаток до розділу 3. Застосування математично-       |     |
| го пакета Maple для інтегрування систем зви-          |     |
| чайних диференціальних рівнянь                        | 254 |
|                                                       |     |
| Розділ 4. ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ З                   |     |
| ЧАСТИННИМИ ПОХІДНИМИ ПЕР-                             |     |
| ШОГО ПОРЯДКУ                                          | 258 |
| Лекція 21. Лінійні однорідні рівняння з частинни-     |     |
| ми похідними першого порядку                          | 258 |
| 1. Зв'язок лінійного однорідного рівняння з частинни- |     |
| ми похідними першого порядку з відповідною си-        |     |
| стемою характеристик                                  | 258 |
| 2. Побудова загального розв'язку лінійного однорі-    |     |
| дного рівняння                                        | 262 |
| 3. Задача Коші для лінійного однорідного рівняння .   | 265 |
| Питання до лекції 21                                  | 267 |
| Вправи до лекції 21                                   | 268 |
| Лекція 22. Квазілінійні та нелінійні рівняння з ча-   |     |
| стинними похідними першого порядку                    | 268 |
| 1. Побудова загального розв'язку квазілінійного рів-  |     |
| няння першого порядку                                 | 268 |

3MICT 9

| 2. Задачі Коші для квазілінійного рівняння першого  |      |
|-----------------------------------------------------|------|
| порядку                                             | 271  |
| 3. Нелінійні рівняння з частинними похідними першо- | a= 1 |
| го порядку                                          | 274  |
| 4. Рівняння Пфаффа                                  | 277  |
| Питання до лекції 22                                | 279  |
| Вправи до лекції 22                                 | 280  |
| Додаток до розділу 4. Застосування математично-     |      |
| го пакета Maple для інтегрування диференці-         |      |
| альних рівнянь з частинними похідними пер-          |      |
| шого порядку                                        | 280  |
| Розділ 5. ЕЛЕМЕНТИ ТЕОРІЇ СТІЙКОСТІ                 | 285  |
| Лекція 23. Основи теорії стійкості розв'язків ди-   |      |
| ференціальних рівнянь                               | 285  |
| 1. Основні означення й поняття                      | 285  |
| 2. Дослідження на стійкість точок спокою            | 288  |
| 3. Стійкість за першим наближенням                  | 290  |
| 4. Критерії Рауса – Гурвіца, Л'єнара – Шипара       | 294  |
| Питання до лекції 23                                | 296  |
| Вправи до лекції 23                                 | 296  |
| Лекція 24. Метод функцій Ляпунова. Фазова пло-      |      |
| щина                                                | 297  |
| 1. Дослідження на стійкість за методом функцій Ля-  |      |
| пунова                                              | 297  |
| 2. Класифікація точок спокою автономної системи     | 300  |
| Питання до лекції 24                                | 310  |
| Вправи до лекції 24                                 | 310  |
| Додаток до розділу 5. Застосування математично-     |      |
| го пакета Maple для дослідження на стійкість        |      |
| розв'язків звичайних диференціальних рів-           |      |
| нянь та їх систем                                   | 311  |
| Список рекомендованої літератури                    | 320  |
| Короткі відомості про вчених, які згадуються у      |      |
| посібнику                                           | 322  |
| Предметний покажчик                                 | 328  |

10 ПЕРЕДМОВА

## ПЕРЕДМОВА

Диференціальні рівняння й методи дослідження їх розв'язків широко використовуються у різноманітних галузях і розділах сучасної науки й техніки. Саме тому навчальна дисципліна «Диференціальні рівняння» займає чільне місце у підготовці спеціалістів з інформатики, математики, прикладної математики тощо.

Пропонований посібник охоплює основну частину університетської програми з диференціальних рівнянь для студентів напрямів підготовки «інформатика», «прикладна математика», але може бути використаний також для студентів інженернотехнічних вищих навчальних закладів.

Метою посібника є ознайомлення студентів з основними поняттями, твердженнями, методами та застосуваннями теорії диференціальних рівнянь, сприяння глибокому засвоєнню теоретичного матеріалу за допомогою розв'язаних прикладів і задач різного рівня складності, підготовка їх до самостійної роботи з науковою літературою.

Посібник має вигляд курсу з 24 лекцій, які умовно можна поділити на 5 розділів: «звичайні диференціальні рівняння першого порядку», «звичайні диференціальні рівняння вищих порядків», «системи звичайних диференціальних рівнянь», «рівняння з частинними похідними першого порядку», «основи теорії стійкості».

Те, що авторами названо «лекціями», можна вважати ними умовно — передовсім через обсяг, який не завжди відповідає двом академічним годинам, а також через нерівномірно розподілений матеріал. Насправді, термін «лекція» — це радше певний тематично об'єднаний матеріал, який може бути основою для справжньої лекції та відповідного практичного заняття.

Важливі поняття, теореми, методи ілюструються прикладами. Кінець розв'язаних прикладів та задач позначається символом ■, але у тих випадках, де була можливість «загубити» відповідь серед тексту, її написано в кінці прикладу чи задачі.

Знак ▶ означає кінець доведення теореми.

Кожна лекція супроводжується питаннями для контролю

ПЕРЕДМОВА 11

та самоконтролю засвоєння матеріалу та вправами, які можуть бути основою для проведення практичних занять з певної теми (у поєднанні з іншими збірниками). Посібник може використовуватись і як довідник, чому сприяє детальний предметний покажчик.

У додатках до розділів для майже всіх розв'язаних у відповідних темах прикладів наводяться їх розв'язання за допомогою пакета символьних обчислень Maple.

У списку літератури читач знайде перелік літературних джерел, у яких питання, висвітлені у цьому посібнику, викладені по-іншому або більш повно.

Сподіваємось, що цей посібник допоможе студентам в оволодінні важливими розділами сучасної математики, а також буде корисним для викладачів під час роботи зі студентами.

Автори висловлюють щиру вдячність рецензентам професорам М. І. Іванчову, П. І. Каленюку, ???, за корисні критичні зауваження й методичні поради, які безумовно сприяли покращенню якості рукопису. Усі критичні зауваження, рекомендації й побажання з вдячністю будуть сприйняті авторами та враховані для покращення змісту наступних видань посібника, за адресою:

76018, м. Івано-Франківськ, вул. Шевченка, 57 Прикарпатський національний університет імені Василя Стефаника, кафедра диференціальних рівнянь і прикладної математики

# Розділ 1. ЗВИЧАЙНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ПЕРШОГО ПОРЯДКУ

### Лекція 1. Поняття про диференціальні рівняння та диференціальні моделі

#### План

- 1. Диференціальні рівняння та математичне моделювання.
- 2. Основні означення й поняття.
- 3. Складання диференціальних рівнянь виключенням довільних сталих.
- 1. Диференціальні рівняння та математичне моделювання. Досліджуючи різноманітні фізичні явища, технологічні процеси у багатьох галузях науки і техніки, деякі процеси, які виникають в економіці, екології та інших соціальних науках, не завжди вдається безпосередньо простежити залежність між величинами, що описують певний процес чи явище. Однак у багатьох випадках можна виявити функціональну залежність між визначальними характеристиками процесу (функціями), швидкостями їх зміни й часом, тобто знайти рівняння, які містять шукані функції та їх похідні. Такі рівняння називають диференціальними, а знаходження невідомої функції (розв'язку) інтегруванням диференціального рівняння.

Диференціальне рівняння, одержане у процесі дослідження деякого реального явища або процесу, називають диференціально моделлю цього явища або процесу. Диференціальні моделі називають ще динамічними математичними моделями описуваних ними реальних об'єктів. У таких моделях, крім шуканих залежних величин, містяться також похідні шуканих залежностей (швидкості, прискорення та ін.).

Диференціальні моделі допомагають зрозуміти досліджувані явища і процеси, дають можливість встановити якісні та кількісні характеристики їх станів, з їх використанням можна описати механізм розвитку процесу, а також передбачити його

подальший розвиток без натуральних експериментів, проведення яких часто є надто дорогим або просто неможливим.

Диференціальні моделі є важливою складовою математичного моделювання, яке включає в себе не тільки побудову і дослідження математичних моделей, але й створення обчислювальних алгоритмів і програм, що реалізують ці моделі на ЕОМ.

У процесі побудови диференціальних моделей важливе значення має знання законів тієї області науки, з якою пов'язана природа задачі, що вивчається. Наприклад, у механіці це може бути другий закон Ньютона (F = ma), де m - maca тіла, a - mpuckopehha pyxy, <math>F - cyma сил, що діють на тіло); у електротехніці — закон Кірхгофа (алгебрична сума сил струмів, які протікають у певній точці електричного кола, дорівнює нулю); у хімії — закон розчинення речовини (швидкість розчинення пропорційна наявній кількості нерозчиненої речовини та різниці концентрацій насиченого розчину і розчину у певний момент часу) тощо.

Питання про відповідність математичної моделі й реального явища вивчається на основі аналізу результатів досліду та їх порівняння з поведінкою розв'язку одержаного диференціального рівняння.  $^{2}$ 

Розглянемо декілька прикладних задач, які приводять до звичайних диференціальних рівнянь.

Задача 1. Знайти закон зростання інформаційних потоків у науці (зростання кількості наукових публікацій), якщо відомо, що швидкість зростання прямо пропорційна досягнутому рівню кількості публікацій. Визначити, за який час кількість публікацій подвоїться порівняно з початковою кількістю, якщо відносна швидкість зростання складає 7%.

**Розв'язання.** Нехай y(t) – кількість публікацій у момент часу  $t, y_0$  – початкова кількість публікацій, тобто  $y(0) = y_0$ . Швидкість зростання інформаційних потоків як швидкість зміни

 $<sup>^{1)}</sup>$ Бібліографічні дані про вчених, прізвища яких зустрічаються у посібнику, можна знайти на стор. 322.

<sup>&</sup>lt;sup>2)</sup> Детальніше про диференціальні моделі та методику їх складання йтиметься на лекції 9.

функції є похідною цієї функції. Отже, закон зростання інформаційних потоків можна записати у вигляді диференціального рівняння

$$y'(t) = k y(t), \tag{1.1}$$

де  $k>0,\ k$  – коефіцієнт пропорційності, що характеризує відгуки на публікації у певній галузі знань.

Диференціальне рівняння (1.1) разом з умовою  $y(0) = y_0$  є математичною моделлю зростання інформаційних потоків. Розв'яжемо це рівняння, враховуючи, що  $y'(t) = \frac{dy}{dt}$ :

$$\frac{dy}{dt} - ky = 0 \quad \Rightarrow \quad \frac{dy}{y} - kdt = 0 \quad \Rightarrow$$
$$d(\ln y - kt) = 0 \quad \Rightarrow \quad \ln y - kt = C_1 \quad \Rightarrow \quad y = e^{C_1 + kt},$$

де  $C_1$  – довільна стала. Якщо перепозначити  $e^{C_1}$  через C, то  $y(t)=Ce^{kt}$ . Оскільки  $y(0)=y_0$ , то  $C=y_0$ , тобто шуканий закон зростання інформаційних потоків у науці визначається формулою

$$y(t) = y_0 e^{kt}. (1.2)$$

Знайдемо тепер час T, за який потік наукової інформації у порівнянні з початковою кількістю збільшиться вдвічі. За умовою задачі відносна швидкість y'/y зростання інформаційних потоків складає 7%, а тому k=0,07. Оскільки  $y(T)=2y_0$ , то

$$y(T) = y_0 e^{kT} = 2y_0$$
  $\Rightarrow$   $T = \frac{\ln 2}{0.07} \approx 10$  років.  $\blacksquare$ 

Відзначимо, що при різких змінах зовнішніх умов експоненціальний характер зростання потоку наукової інформації через стримуючі фактори зберігатися не може. Зростання рівня обмежується певним його значенням і механізм зростання кількості публікацій виражатиметься диференціальним рівнянням

$$y' = ky(M - y),$$

де  $k > 0, \ 0 < y < M$ . Розв'яжемо це рівняння. Маємо

$$\begin{split} \frac{dy}{y(M-y)} &= kdt \quad \Rightarrow \quad \frac{1}{M} \left( \frac{1}{y} + \frac{1}{M-y} \right) dy - kdt = 0 \quad \Rightarrow \\ & \quad d \left( \ln y - \ln(M-y) - kMt \right) = 0 \quad \Rightarrow \\ & \quad \ln \frac{y}{M-y} = kMt + C_1 \quad \Rightarrow \quad y = \frac{Me^{Mkt + C_1}}{1 + e^{Mkt + C_1}} \quad \Rightarrow \\ & \quad y = \frac{M}{1 + Ce^{-Mkt}}, \end{split}$$

де позначено  $C = e^{-C_1}$ .

Криву, визначену останнім рівнянням, називають *логістичною кривою*. У початкові моменти часу, коли y значно менше M, вона практично співпадає з показниковою функцією  $y=Me^{Mkt}$ . Прямі y=M і y=0 є асимптотами логістичної кривої (на рис. 1.1 побудовано графік логістичної кривої при M=4C=8k).



Закон зростання інформаційних потоків, визначений формулою (1.2), є доволі універсальним. Ним можна скористатися для опису процесів радіоактивного та хімічного розпаду речовини, для розв'язування багатьох задач екології, задачі про ефективність реклами тощо. У банківській справі нарахування заборгованості за кредитом або доходів за вкладами також відбувається відповідно до цього закону, але у цих випадках час відраховується не неперервно, а через дискретні проміжки.

Задача 2. Човен сповільнюе свій рух під дією опору води, який пропорційний квадрату швидкості човна. Початкова швидкість човна 3 м/с, а його швидкість через 4 с складає 1 м/с. Через який час швидкість човна зменшиться до 1 см/с. Розв'язання. Згідно з другим законом Ньютона ma = F, де m — маса човна,  $a = \frac{dv}{dt}$  — його прискорення (похідна швидкості v(t) за часом t), F — сила опору води. За умовою задачі  $F = kv^2$ . Отже, маємо таке диференціальне рівняння:

$$m\frac{dv}{dt} = kv^2. (1.3)$$

З (1.3) одержуємо:

$$\frac{dv}{v^2} = \frac{k}{m}dt \quad \Rightarrow \quad d\left(-\frac{1}{v} - \frac{k}{m}t\right) = 0 \quad \Rightarrow \\ -\frac{1}{v} - \frac{k}{m}t = C \quad \Rightarrow \quad v = \frac{-m}{kt + Cm}.$$

3 умови v(0) = 3 знаходимо C = -1/3, а тому

$$v(t) = \frac{3m}{m - 3kt}. ag{1.4}$$

3 (1.4), враховуючи, що v(4)=1, одержуємо, що  $\frac{3m}{m-12k}=1$ ,  $\frac{m}{k}=-6$ , а отже,

$$v(t) = \frac{3m}{m - 3kt} = \frac{3\frac{m}{k}}{\frac{m}{k} - 3t} = \frac{3(-6)}{-6 - 3t} \implies v(t) = \frac{6}{t + 2}.$$
 (1.5)

Якщо тепер в (1.5) підставити t=T (T – шуканий час), а також v=0,01, то звідси знаходимо T=598 с.  $\blacksquare$ 

**Задача 3**. Визначити форму дзеркала, яке спрямований на нього потік паралельних променів збирає в одну точку.

**Розв'язання.** Зробимо переріз дзеркала площиною Oxy, щоб точка, в яку збираються промені (фокус), була початком координат, а вісь Ox — паралельною до променів, які падають на дзеркало. У перерізі одержуємо деяку криву y = f(x) (рис. 1.2).



Використаємо закон геометричної оптики, згідно з яким кут падіння променя дорівнює куту його відбиття (цей кут позначено через  $\alpha$ ). Нехай M(x,y) – довільна точка кривої y=f(x). Проведемо у цій точці дотичну MA. Трикутник MOA рівнобедрений. Оскільки  $y'=\operatorname{tg}\alpha$  (геометричний зміст похідної), то, вважаючи, що y>0, одержуємо

$$y' = \operatorname{tg} \alpha = \frac{MB}{AB} = \frac{y}{\sqrt{x^2 + y^2 + x}}$$

або, домножуючи чисельник і знаменник дробу на  $\sqrt{x^2+y^2}-x$ ,

$$y' = \frac{1}{y} \left( \sqrt{x^2 + y^2} - x \right). \tag{1.6}$$

Диференціальне рівняння (1.6) є диференціальною моделлю задачі. Воно описує форму перерізу дзеркала площиною Oxy. З (1.6) одержуємо:

$$\frac{x+yy'}{\sqrt{x^2+y^2}} = 1 \quad \Rightarrow \quad \frac{d}{dx}\left(\sqrt{x^2+y^2}\right) = 1 \quad \Rightarrow$$
$$\sqrt{x^2+y^2} = x + C,$$

де C — довільна стала. Отже, маємо рівняння осьового перерізу дзеркала площиною Oxy:  $y^2=2Cx+C^2$ . Одержали сім'ю парабол з вершинами у точках (-C/2;0), а тому поверхня дзеркала як поверхня обертання осьового перерізу навколо осі Ox має вигляд  $y^2+z^2=2Cx+C^2$ , тобто шукані форми дзеркала описуються сім'єю рівнянь параболоїдів обертання.

2. Основні означення й поняття. Звичайним диференціальним рівнянням називають співвідношення вигляду

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$
 (1.7)

між незалежною змінною x, шуканою функцією y = y(x) цієї змінної і похідними  $y', y'', \dots, y^{(n)}$ .

Позначення, використані у наведеному означенні, не є суттєвими: незалежна змінна може позначатися через t, шукана функція — через  $s,\,f,\,\varphi,\,F$  тощо.

**Порядком** звичайного диференціального рівняння називають порядок найвищої похідної невідомої функції, яка входить у рівняння.

У рівнянні n-го порядку (1.7) вважається, що похідна n-го порядку шуканої функції справді входить у це рівняння, тоді як наявність решти аргументів необов'язкова.

Наведемо приклади звичайних диференціальних рівнянь:

$$y = xy' + y'^3$$
,  $y' + |y'| = 0$ ,  $y'' + y = \cos x$ ,  
 $y^{IV} - 4y''' + 5y'' - 2y' + y = xe^x$ ,  $y^{(10)} = x$ .

Перші два з наведених рівнянь мають перший порядок, третє рівняння — другий порядок, четверте рівняння — четвертий порядок, п'яте — десятий порядок.

Якщо диференціальне рівняння містить частинні похідні невідомої функції від кількох незалежних змінних, то його називають *рівнянням з частинними похідними*. Наведемо приклади таких рівнянь:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \quad \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2},$$
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f(x, y, z).$$

Надалі, крім лекцій 21 і 22, розглядатимемо тільки звичайні диференціальні рівняння, причому як незалежну змінну, так і шукану функцію вважатимемо дійсними.

**Розв'язком** рівняння (1.7) на деякому інтервалі (a,b),  $-\infty \le a < b \le +\infty$ , називають функцію y=y(x), яка має на цьому інтервалі похідні до порядку n включно та задовольняє рівняння (1.7). Це означає, що для всіх  $x \in (a,b)$  справджується тотожність

$$F(x, y(x), y'(x), y''(x), \dots, y^{(n)}(x)) \equiv 0.$$

Наприклад, функція  $y=\cos 2x$  є розв'язком диференціального рівняння другого порядку y''+4y=0 на інтервалі  $(-\infty,+\infty)$ . Розв'язками цього рівняння, як легко перевірити, є також  $y=\sin 2x,\,y=3\cos 2x,\,y=\cos 2x-\sin 2x$  і, взагалі, всі функції  $y=C_1\cos 2x+C_2\sin 2x,\,$  де  $C_1,\,C_2$ — довільні сталі.

Пізніше буде встановлено, що звичайне диференціальне рівняння n-го порядку у загальному випадку має сім'ю розв'язків, залежну від n довільних сталих. Наприклад, усі розв'язки диференціального рівняння  $y^{(n)}=0$  містяться у формулі  $y=C_1x^{n-1}+C_2x^{n-2}+\ldots+C_{n-1}x+C_n$ , де  $C_1,\ldots,C_n$  — довільні сталі.

З геометричної точки зору розв'язку диференціального рівняння у прямокутній системі координат відповідає деяка крива, яку називають *інтегральною кривою*. Сукупність інтегральних кривих, залежну від довільних сталих, називають *сім'єю інтегральних кривих*. Наприклад, розв'язки рівняння y''=2 утворюють двопараметричну сім'ю парабол  $y=x^2+C_1x+C_2$ , кожна з яких є інтегральною кривою.

Процес знаходження розв'язків диференціального рівняння називають *інтегруванням* цього рівняння. Якщо при цьому всі розв'язки вдається виразити через елементарні функції або у *квадратурах* (коли розв'язки виражаються через інтеграли від елементарних функцій), то кажуть, що рівняння зінтегроване *у скінченному вигляді*. Розглядатимемо переважно саме такі рівняння, хоча значно більше диференціальних рівнянь не інтегруються у скінченному вигляді й для представлення їх розв'язків доводиться використовувати більш складний математичний апарат.

Основною задачею теорії інтегрування диференціального рівняння є знаходження всіх його розв'язків та дослідження

їх властивостей.

3. Складання диференціальних рівнянь виключенням довільних сталих. Нехай маємо рівняння сім'ї кривих, залежної від одного дійсного параметра C:

$$\Phi(x, y, C) = 0. \tag{1.8}$$

Побудуємо диференціальне рівняння сім'ї кривих (1.8), тобто рівняння, яке описує властивості, притаманні всім кривим цієї сім'ї. Для цього здиференціюємо за змінною x обидві частини рівності (1.8), враховуючи, що y=y(x):

$$\frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial y} \cdot \frac{dy}{dx} = 0. \tag{1.9}$$

Якщо співвідношення (1.9) не містить C, то воно буде виражати ту загальну властивість, яка притаманна усім кривим сім'ї (1.8) (наприклад, якщо y = x + C, то y' = 1). У загальному випадку рівність (1.9) залежатиме від параметра C. Тоді, виключаючи цей параметр із системи, складеної з рівнянь (1.8), (1.9), одержимо диференціальне рівняння першого порядку

$$F(x, y, y') = 0. (1.10)$$

Рівняння (1.10) називають  $\partial u \phi e penuiaльним рівнянням <math>cim"i" \kappa pu sux$  (1.8). Воно виражає спільну властивість кривих (1.8), незалежно від сталої C.

**Приклад 1**. Знайти диференціальне рівняння сім'ї парабол, які проходять через початок координат і мають осі симетрії, паралельні до осі ординат.

**Розв'язання.** Сім'ю парабол з умови задачі можна описати за допомогою формули  $y=x^2-Cx$ , де C — довільна стала. Складемо систему

$$\begin{cases} y = x^2 - Cx, \\ y' = 2x - C \end{cases}$$

і виключимо з неї сталу C. Для цього знайдемо C з першого рівняння системи і підставимо у друге:

$$C = \frac{x^2 - y}{x}$$
  $\Rightarrow$   $y' = 2x - \frac{x^2 - y}{x}$   $\Rightarrow$   $y' = \frac{x^2 + y}{x}$ .

 $Bi\partial no si\partial s: xy' = x^2 + y.$ 

Аналогічно, маючи сім'ю кривих  $\Phi(x,y,C_1,C_2,\ldots,C_n)=0$ , залежну від n довільних сталих, можна при певних умовах одержати диференціальне рівняння, для якого згадані криві будуть інтегральними. Для цього потрібно здиференціювати співвідношення  $\Phi(x,y,C_1,C_2,\ldots,C_n)=0$  n разів за змінною x і виключити з нього та отриманих внаслідок диференціювання n рівнянь сталі  $C_1,C_2,\ldots,C_n$ . У результаті одержимо диференціальне рівняння сім'ї кривих, яке виражатиме загальну властивість цих кривих.

**Приклад 2**. Знайти диференціальне рівняння сім'ї кривих  $(x - C_1)^2 + C_2 y^2 = 1$ .

**Розв'язання.** Двічі здиференціюємо за змінною x тотожність  $(x-C_1)^2+C_2y^2-1=0$ :

$$2(x - C_1) + 2C_2yy' = 0, \quad 1 + C_2(y'^2 + yy'') = 0.$$

Виключаючи з трьох рівностей сталі  $C_1$ ,  $C_2$ , після нескладних перетворень одержуємо диференціальне рівняння другого порядку  $y^3y'' + \left(y'^2 + yy''\right)^2 = 0$ .

**Рекомендована література**: [1, c. 15 - 23], [5, c. 3 - 13, 22 - 25], [6, c. 9 - 19], [8, c. 4 - 8], [16, c. 6 - 15].

#### Питання до лекції 1

- 1. Яке рівняння називають звичайним диференціальним рівнянням? Чим звичайні диференціальні рівняння відрізняються від рівнянь з частинними похідними?
  - 2. Як визначити порядок диференціального рівняння?
- 3. Яку функцію називають розв'язком диференціального рівняння? Як називають операцію знаходження розв'язків диференціального рівняння? Яку криву називають інтегральною кривою диференціального рівняння?
- 4. У чому полягає основна задача теорії інтегрування диференціального рівняння?
- 5. У чому полягає математичне моделювання реальних процесів і явищ, яка його роль у вивченні процесу? Що називають диференціальною моделлю? Наведіть декілька прикладних задач, які приводять до звичайних диференціальних рівнянь.
- 6. Який вигляд має рівняння сім'ї кривих, залежних від одного параметра (*n* параметрів)? Як знайти диференціальне рівняння заданої сім'ї однопараметричних кривих (*n*-параметричних кривих)?

#### Вправи до лекції 1

1. Перевірте, чи є функції

a) 
$$y = x \cdot \int_{0}^{x} \frac{\sin t}{t} dt$$
; 6)  $5x = \ln 5y$ ; B)  $y = 3x + \ln x + 2$ 

розв'язками відповідних диференціальних рівнянь

a) 
$$y' = \frac{y + x \sin x}{x}$$
; 6)  $y' = e^{xy'/y}$ ; B)  $x^2y'' \ln x = xy' - y$ .

- 2. Знайдіть криві, у яких кожний відрізок дотичної, що лежить між координатними осями, точкою дотику ділиться навпіл.
  - 3. Складіть диференціальне рівняння сім'ї кривих:

a) 
$$x^2 - y^2 = C$$
; 6)  $y = \sin(x + C)$ ; B)  $y = C_1 x^2 + C_2 e^x$ .

- 4. Складіть диференціальне рівняння:
- а) усіх кіл, які дотикаються до осі абсцис;
- б) усіх прямих на площині;
- в) парабол, які проходять через точку (1; 2) і мають вісь, паралельну до осі абсцис.
- 5. Знайдіть криві, нормалі до яких в усіх точках проходять через початок координат.

# Лекція 2. Диференціальні рівняння першого порядку, розв'язані відносно похідної (загальна теорія)

#### План

- 1. Основні означення й поняття.
- 2. Задача Коші. Умови існування та єдиності розв'язку задачі Коші.
  - 3. Класифікація розв'язків.
- 4. Геометричне та механічне тлумачення диференціального рівняння першого порядку та його розв'язків.

**1. Основні означення й поняття.** Диференціальне рівняння першого порядку в загальному випадку можна записати у вигляді

$$F(x, y, y') = 0,$$
 (2.1)

де x – незалежна змінна, y – невідома функція від x, F(x,y,y') – задана функція змінних x, y,  $y' = \frac{dy}{dx}$ .

Якщо рівняння (2.1) можна розв'язати відносно похідної, то його записуватимемо у вигляді

$$y' = f(x, y). (2.2)$$

Таку форму запису диференціального рівняння називають *нормальною*.

Найпростішим з диференціальних рівнянь у нормальній формі є рівняння y' = f(x). Якщо функція f(x) визначена і неперервна на деякому інтервалі (a,b), то, як відомо з математичного аналізу,  $y = \int f(x)dx + C$ , де C – довільна стала.

У багатьох випадках рівняння (2.2) зручно записувати у вигляді dy-f(x,y)dx=0, який є окремим випадком рівняння

$$M(x,y)dx + N(x,y)dy = 0, (2.3)$$

де M(x,y), N(x,y) – відомі функції (**коефіцієнти рівняння**). Рівняння (2.3) зручне тим, що змінні x і y у ньому рівноправні, тобто кожну з них можна розглядати як функцію від іншої.

**Розв'язком** диференціального рівняння (2.2) на інтервалі (a,b) називають неперервно диференційовну на цьому інтервалі функцію y=y(x), яка перетворює рівняння (2.2) у тотожність, тобто  $y'(x)\equiv f(x,y(x))$ .

Розв'язок рівняння (2.2) може бути заданий не тільки явно, тобто як y=y(x), але й у неявному вигляді  $\Phi(x,y)=0$  (у вигляді, не розв'язаному відносно y) або у параметричній формі:  $x=\varphi(t),\,y=\psi(t)$ . Наприклад, функція  $y=\sqrt{1-x^2},$  де  $x\in(-1;\,1),\,\varepsilon$  розв'язком рівняння y'=-x/y, однак цей самий розв'язок можна подати у неявному вигляді  $x^2+y^2=1,\,y>0,$  а також у параметричній формі  $x=\cos t,\,y=\sin t,\,0< t<\pi.$ 

**2.** Задача Коші. Умови існування та єдиності розв'язку задачі Коші. Вже зазначалось, що диференціальні рівняння зазвичай мають безліч розв'язків. Однак у багатьох задачах теоретичного і прикладного характеру серед усіх розв'язків диференціального рівняння (2.2) потрібно знайти такий розв'язок y = y(x), який задовольняє умову

$$y(x_0) = y_0, (2.4)$$

де  $x_0, y_0$  – задані числа, тобто розв'язок, який для заданого значення незалежної змінної  $x = x_0$  набуває заданого значення  $y_0$ .

Задачу відшукання розв'язку рівняння (2.2), який задовольняє умову (2.4), називають **задачею Коші** (або **початковою задачею**). Умову (2.4) називають **початковою**, а числа  $x_0$ ,  $y_0$  – **початковими даними** задачі (2.2), (2.4).

З геометричної точки зору задача Коші (2.2), (2.4) полягає у відшуканні інтегральної кривої рівняння (2.2), яка проходить через наперед задану точку  $(x_0, y_0)$  площини Oxy.

Відповідь на питання про те, за яких умов задача Коші (2.2), (2.4) має розв'язок, дає теорема Пеано, доведення якої можна знайти, наприклад, в [3, c. 34 - 35].

**Теорема 1 (Пеано).** Якщо функція f(x,y) неперервна в деякій області D площини Oxy, то існує неперервна разом зі своєю похідною першого порядку функція y = y(x), яка є розв'язком задачі  $Koui \ y' = f(x,y), \ y(x_0) = y_0, \ de \ (x_0,y_0) \in D.$ 

Однак для багатьох задач важливо знати не тільки факт існування розв'язку диференціального рівняння, але також і те, чи є цей розв'язок єдиним. Відповідь на це питання має виняткове значення як для самої теорії диференціальних рівнянь, так і для багатьох її застосувань. Справді, якщо знати, що розв'язок задачі Коші єдиний, то, знайшовши розв'язок, який задовольняє задані початкові умови, дослідник може бути впевненим, що інших розв'язків, які задовольняють ті самі початкові умови, немає. У задачах природознавства це приводить до одержання єдиного закону явища, який визначається тільки диференціальним рівнянням і початковими умовами. Ілюстрацією до цього можуть бути задачі з лекції 1.

Виявляється, що умова неперервності функції f(x,y) з теореми Пеано не гарантує єдиності розв'язку задачі Коші (2.2), (2.4). Розглянемо, наприклад, рівняння  $y'=2\sqrt{y}$ . Його права частина визначена і неперервна у верхній частині площини Oxy  $(y\geqslant 0)$ . За допомогою підстановки легко переконатись, що інтегральними кривими є півпараболи  $y=(x+C)^2$ , де  $x\geqslant -C$ , а також пряма y=0 (вісь Ox). Очевидно, що у кожній точці  $(x_0,0)$  осі Ox єдиність розв'язку порушується, бо через цю точку проходять дві інтегральні криві, а саме: парабола  $y=(x-x_0)^2$  і пряма y=0 (рис. 2.1).



Основною теоремою, яка забезпечує не тільки існування, але й єдиність розв'язку задачі Коші, є теорема Коші, яка у іншій постановці буде доведена на лекції 8.

**Теорема 2 (Коші).** Нехай функція f(x,y) визначена у прямокутнику

$$G = \{(x,y) : |x - x_0| \le a, |y - y_0| \le b\}, \quad a, b > 0$$

і задовольняє у ньому такі умови:

1) f(x,y) неперервна, а, отже, й обмежена, тобто

$$|f(x,y)| \leqslant M, \quad M > 0;$$

2) частинна похідна  $\frac{\partial f}{\partial y}$  існує та обмежена. Тоді задача Коші (2.2), (2.4) має единий розв'язок принаймні на відрізку  $|x-x_0|\leqslant h$ , де  $h=\min{(a,\,b/M)}$ .

За виконання умов теореми Коші можна гарантувати, що через кожну внутрішню точку області G проходить єдина інтегральна крива.

Теорема Коші має велике значення в теорії звичайних диференціальних рівнянь, бо дозволяє за виглядом правої частини рівняння (2.2) відповісти на питання про існування та єдиність розв'язку цього рівняння при заданих початкових умовах. Це особливо важливо у тих випадках, коли неможливо вказати точну формулу, що визначає розв'язок рівняння, а тому потрібно застосовувати методи наближеного розв'язування диференціального рівняння.

**3.** Класифікація розв'язків. Загальним розв'язком диференціального рівняння (2.2) у деякій області G площини Oxy називають функцію

$$y = y(x, C), \tag{2.5}$$

яка залежить від однієї довільної сталої C, якщо:

- 1) вона є розв'язком рівняння (2.2) для довільного фіксованого значення сталої C;
- 2) для довільної початкової умови (2.4), де  $(x_0, y_0) \in G$ , існує єдине значення сталої  $C = C_0$  таке, що функція  $y = y(x, C_0)$  задовольняє умову (2.4).

Якщо не можна знайти загальний розв'язок у вигляді (2.5), його шукають у неявному вигляді F(x,y,C)=0. Такий розв'язок називають загальним інтегралом диференціального рівняння. Часто загальний інтеграл одержують як  $\Psi(x,y)=C$ , тобто у вигляді, розв'язаному відносно довільної сталої C. Функцію  $\Psi(x,y)$  у цьому випадку називають інтегралом диференціального рівняння. Аналогічно визначають сім'ю інтегральних кривих (розв'язків) рівняння, залежну від довільної сталої C, у параметричній формі  $x=\varphi(t,C), y=\psi(t,C)$  як загальний розв'язок у параметричній формі.

Якщо у точці  $(x_0, y_0)$  порушуються умови теореми Коші, то через цю точку проходить декілька інтегральних кривих (розв'язок не єдиний) або не проходить жодної інтегральної кривої (розв'язок не існує). Такі точки називають особливими точками диференціального рівняння.

Шукати особливі точки потрібно серед точок, у яких мають розрив функція f(x,y) або її частинна похідна  $f_y'(x,y)$ , а потім, аналізуючи загальний розв'язок, необхідно перевірити, чи будуть ці точки особливими. Така перевірка обов'язкова, бо теорема Коші дає лише достатні умови, а отже, може існувати єдиний розв'язок задачі Коші (2.2), (2.4) навіть тоді, коли в точці  $(x_0, y_0)$  не виконується одна або обидві умови теореми.

Розглянемо приклади.

- 1.  $y' = y \cos x + e^{3x}$ . Функція  $f(x,y) = y \cos x + e^{3x}$  неперервна, а похідна  $f'_y = \cos x$  обмежена в усіх точках площини Oxy. Згідно з теоремою Коші через кожну точку площини Oxy проходить одна інтегральна крива.
- 2.  $y'=\sqrt{1-y^2}$ . Права частина визначена і неперервна в усіх точках площини Oxy, де  $-1\leqslant y\leqslant 1$ . Частинна похідна  $f_y'=-\frac{y}{\sqrt{1-y^2}}$  стає необмеженою, якщо  $y\to\pm 1$ . Легко переконатись, що кожна з функцій  $y=\sin(x+C)$  є розв'язком рівняння. Окрім того, маємо також розв'язки  $y=\pm 1$ . Таким чином, через кожну точку прямих  $y=\pm 1$  проходять принаймні дві інтегральні криві, а тому у точках цих прямих порушується єдиність розв'язку (рис. 2.2).



3.  $y'=y^{-4}$ . В усіх точках  $(x_0,0)$  осі Ox функції  $f(x,y)=y^{-4}$ ,  $f'_y=-4y^{-5}$  розривні й необмежені при  $y\to 0$ , але через кожну точку цієї осі проходить єдина інтегральна крива  $y=\sqrt[5]{5(x-x_0)}$ . Рисунок інтегральних кривих диференціального рівняння  $y'=y^{-4}$  пропонуємо читачам зробити самостійно.

**Частинним розв'язком** рівняння (2.2) в області G називають функцію  $y = y(x, C_0)$ , утворену з загального розв'язку (2.5) при певному значенні сталої  $C = C_0$ .

Якщо кожна точка розв'язку диференціального рівняння є особливою, то такий розв'язок називають ocoбливим. Особливий розв'язок не можна отримати з формули загального розв'язку (загального інтеграла) диференціального рівняння при жодному конкретному значенні сталої C.

З геометричної точки зору загальним розв'язком y=y(x,C) є сім'я інтегральних кривих на площині Oxy, яка залежить від однієї довільної сталої C, а частинний розв'язок — це одна інтегральна крива цієї сім'ї, що проходить через задану точку. Графіком особливого розв'язку є інтегральна крива, яка у кожній своїй точці має спільну дотичну з однією з інтегральних кривих. Таку інтегральну криву називають обвідною сім'ї інтегральних кривих. Наприклад, для рівняння  $y'=2\sqrt{y}$  обвідною є пряма y=0, тобто вісь Ox (рис. 2.1), а для рівняння  $y'=\sqrt{1-y^2}$  обвідними є прямі  $y=\pm 1$  (рис. 2.2).

4. Геометричне та механічне тлумачення диференціального рівняння першого порядку та його розв'язків. Якщо розглядати x і y як декартові координати точки, то диференціальне рівняння (2.2) встановлює зв'язок між координатами довільної точки M(x,y) площини і кутовим коефіцієнтом дотичної  $\frac{dy}{dx}$  до інтегральної кривої y цій точці (рис. 2.3):

$$\operatorname{tg} \alpha = \frac{dy}{dx} = f(x, y).$$

Якщо функція f(x,y) визначена в області G, то кожній точці M(x,y) цієї області відповідає деякий напрям, кутовий коефіцієнт якого дорівнює f(x,y). Вказуючи цей напрям вектором (для визначеності вважатимемо його одиничним) з початком у точці M, одержимо в області G **поле напрямів**, визначене рівнянням (2.2) (рис. 2.4).

Інтегральна крива, яка проходить через точку  $M(x,y) \in G$ , характерна тим, що у кожній її точці напрям дотичної збігається з напрямом поля у цій точці. Тому з геометричної точки

зору інтегрування диференціального рівняння (2.2) полягає у знаходженні кривих, дотичні до яких у кожній своїй точці збігаються з напрямом поля.



Якщо у деякій точці  $(x_0, y_0)$  функція f(x, y) стає нескінченно великою, то напрям поля буде паралельний до осі Oy. Якщо f(x, y) у точці  $(x_0, y_0)$  перетворюється в невизначеність 0/0, то через цю точку не проходить жодна інтегральна крива.

Для побудови поля напрямів диференціального рівняння зручно використовувати геометричні місця точок, у яких дотичні до інтегральних кривих мають сталий напрям. Такі лінії називають *ізоклінами*. Рівняння ізоклін диференціального рівняння (2.2) має вигляд

$$f(x,y) = k, (2.6)$$

де k — довільна стала. Змінюючи в (2.6) значення k, одержимо множину ізоклін в області G. За допомогою ізоклін і відомих сталих кутів  $\alpha$  ( $k=\operatorname{tg}\alpha$ ) нахилу дотичних до інтегральних кривих, які їх перетинають, можна схематично побудувати інтегральні криві диференціального рівняння. Такий метод дослідження диференціальних рівнянь називають методом ізоклін.

За допомогою методу ізоклін можна визначити також такі характерні лінії й області поля інтегральних кривих: області зростання (при k>0), спадання (k<0) інтегральних кривих

та лінії їх екстремумів (k=0). Якщо функція f(x,y) у рівнянні (2.2) диференційовна, то за допомогою другої похідної  $y''=f'_x+y'\cdot f'_y=f'_x+f\cdot f'_y$  можна визначити області опуклості та лінії точок перегину інтегральних кривих.

**Приклад 1.** За допомогою ізоклін наближено зобразити інтегральні криві рівняння y' = x(y-1).

**Розв'язання.** Згідно з (2.6) рівняння ізоклін має вигляд  $x(y-1)=k,\ k\in\mathbf{R}.$  Якщо k=0, то ізоклінами є прямі x=0 і y=1. Вздовж них  $y'=\operatorname{tg}\alpha=0.$  Якщо  $k\neq 0$ , то ізоклінами є гіперболи  $y=\frac{k}{x}+1.$  Якщо, наприклад,  $k=\pm 1$ , то  $\operatorname{tg}\alpha=\pm 1$ , а, отже,  $\alpha=\pm 45^\circ.$  Якщо  $k=\pm 0.5$ , то  $\alpha=\pm \operatorname{arctg}0.5\approx \pm 27^\circ$  і т. д. Поле напрямів диференціального рівняння y'=x(y-1) зображене на рис. 2.5.



Puc. 2.5

Якщо поле напрямів диференціального рівняння побудоване, то для того, щоб накреслити інтегральну криву рівняння, потрібно, як вже зазначалось, взяти на площині будь-яку точку і провести через неї криву так, щоб вона у кожній своїй точці збігалась з напрямом поля, тобто дотична до кривої у кожній точці повинна мати напрям вектора у цій точці. Інтегральні криві заданого рівняння схематично зображені на рис. 2.6.



Puc. 2.6

Розглянемо задачу про рух матеріальної точки P вздовж осі Ox. Позначимо швидкість точки P через v(t,x) – функцію, залежну від часу t і положення x, яке займає точка у момент часу t. Диференціальним рівнянням цього руху буде

$$\frac{dx}{dt} = v(t, x). (2.7)$$

Будь-який розв'язок x = x(t) рівняння (2.7) визначає певний закон руху (його називатимемо просто рухом). Задача Коші для рівняння (2.7) полягає у знаходженні такого руху x = x(t), який визначається рівнянням (2.7) і задовольняє початкову умову  $x(t_0) = x_0$ .

Руху x = x(t) відповідає на площині (t, x) крива  $M_0 M_1$ (рис. 2.7), яка зображує залежність x від t. Цю криву називають графіком руху (не треба плутати графік руху з траєкторією руху точки P – відрізком  $P_0P_1$  на рис. 2.7).



Розглянемо окремі випадки рівняння (2.7):

- 1) функція v(t,x) не залежить від x, тобто  $\frac{dx}{dt}=v(t)$ ;
- 2) функція v(t,x) не залежить від t, тобто

$$\frac{dx}{dt} = v(x). (2.8)$$

Рівняння (2.8) називають *стаціонарним* або *автономним*. У ньому швидкість залежить тільки від положення точки.

Якщо права частина рівняння (2.7) перетворюється в нуль при  $x=x_0$  для всіх значень t, що розглядаються, тобто швидкість руху у точці  $x_0$  в будь-який момент часу дорівнює нулю, то рівняння (2.7) має розв'язок  $x=x_0$  (рис. 2.8). Цьому руху відповідає *стан спокою*. Траєкторією цього руху є точка  $x_0$ , яку називають *точкою спокою* або *точкою рівноваги*.

**Рекомендована** література: [1, c. 24 - 37, 42 - 48], [3, c. 7 - 9, 31 - 37], [5, c. 14 - 22, 25 - 27, 97 - 104], [8, c. 8 - 25, 76 - 85], [15, c. 7 - 14].

#### Питання до лекції 2

- 1. Який загальний вигляд має звичайне диференціальне рівняння першого порядку? Яку функцію називають розв'язком цього рівняння на інтервалі (a,b)?
- 2. Яку форму звичайного диференціального рівняння першого порядку називають нормальною? Як звести рівняння M(x,y)dx + N(x,y)dy = 0 до нормальної форми?

- 3. Як формулюється задача Коші для диференціального рівняння першого порядку? Який її геометричний і механічний зміст?
- 4. Сформулюйте теорему Пеано про існування розв'язку задачі Коші для рівняння y'=f(x,y). Чи можуть інтегральні криві рівняння y'=f(x,y) з неперервною правою частиною перетинатися або дотикатися одна одної?
- 5. Чи гарантує неперервність функції f(x,y) існування єдиного розв'язку задачі Коші для рівняння y'=f(x,y)? Сформулюйте теорему Коші. Чи може існувати єдиний розв'язок цієї задачі при невиконанні будь-якої умови теореми Коші?
- 6. Дайте означення загального розв'язку диференціального рівняння y' = f(x,y) у деякій області існування та єдиності розв'язку задачі Коші. Який розв'язок називають загальним інтегралом? Що називають загальним розв'язком у параметричній формі?
- 7. Що таке частинний розв'язок рівняння y'=f(x,y)? Який розв'язок називають особливим? Дайте геометричне тлумачення цих розв'язків.
- 8. Який геометричний зміст мають рівняння y'=f(x,y) та його розв'язки? Як визначити нахил інтегральної кривої у заданій точці за виглядом правої частини рівняння? Як побудувати поле напрямів, визначене рівнянням y'=f(x,y)? У чому полягає геометричний зміст інтегрування цього рівняння?
- 9. Що таке ізокліна? Яким є рівняння ізоклін для диференціального рівняння y'=f(x,y)? Як знайти лінії екстремумів і лінії точок перегину інтегральних кривих цього рівняння? У чому полягає метод ізоклін наближеного розв'язування диференціального рівняння?
- 10. Який механічний зміст мають диференціальне рівняння y' = f(x,y) та його розв'язки? Як пов'язаний між собою графік руху (розв'язку), визначений цим рівнянням, і траєкторія цього руху? Який рух називають станом спокою, якими є графік і траєкторія цього руху?

#### Вправи до лекції 2

1. Розв'яжіть задачі Коші:

a) 
$$y' + x^3 = 1$$
,  $y(0) = 5$ ; 6)  $y' = \operatorname{ctg} x$ ,  $y(\frac{\pi}{2}) = 3$ ;  
B)  $y' = \ln x$ ,  $y(e) = 1$ .

2. Користуючись теоремою Коші, виділіть області, у яких диференціальні рівняння мають єдиний розв'язок:

a) 
$$y' = \cos y - 2x$$
; b)  $y' = \sqrt{x^2 - y} + x^3$ ; b)  $y' = 2y\sqrt{y} + e^x$ .

- 3. За допомогою методу ізоклін побудуйте поле напрямів диференціального рівняння  $y'=x^2+y^2-4$  та наближено зобразіть декілька інтегральних кривих.
  - 4. Напишіть рівняння, якому задовольняють:
- а) усі точки екстремуму інтегральних кривих рівняння  $y' = x^3 + y;$
- б) усі точки перегину інтегральних кривих рівняння  $y' = y^3 e^{3x} 9$ .

# Лекція 3. Найпростіші диференціальні рівняння першого порядку, інтегровні у квадратурах

#### План

- 1. Рівняння з відокремлюваними змінними та звідні до них.
- 2. Однорідні рівняння.
- 3. Рівняння, звідні до однорідних.
- **1. Рівняння з відокремлюваними змінними та звідні до них.** Розглянемо диференціальне рівняння першого порядку

$$M_1(x)N_1(y)dx + M_2(x)N_2(y)dy = 0,$$
 (3.1)

де кожен з коефіцієнтів біля диференціалів є добутком двох функцій, одна з яких залежить тільки від x, а інша — тільки від y. Рівняння (3.1) називають рівнянням з відокремлюваними змінними.

Для інтегрування рівняння (3.1) потрібно домогтися того, щоб коефіцієнт біля dx залежав тільки від x, а коефіцієнт біля dy – тільки від y. Це досягається діленням обох частин рівняння на добуток  $M_2(x)N_1(y)$ , причому вважаємо, звичайно, що  $M_2(x) \neq 0$  і  $N_1(y) \neq 0$ . Після цього одержуємо

$$\frac{M_1(x)}{M_2(x)}dx + \frac{N_2(y)}{N_1(y)}dy = 0. (3.2)$$

Рівняння (3.2) можна розглядати як рівність диференціалів, тому інтеграли від диференціалів відрізняються на сталу,

тобто

$$\int_{x_0}^{x} \frac{M_1(x)}{M_2(x)} dx + \int_{y_0}^{y} \frac{N_2(y)}{N_1(y)} dy = C,$$
(3.3)

де C – довільна стала,  $x_0, y_0$  – деякі числа з області неперервності коефіцієнтів рівняння (3.2). Співвідношення (3.3) є загальним інтегралом рівняння (3.1). Його можна записати також у вигляді

$$\int \frac{M_1(x)}{M_2(x)} dx + \int \frac{N_2(y)}{N_1(y)} dy = C,$$

бо визначені інтеграли зі змінної верхньою межею й невизначені інтеграли є первісними для одних і тих самих підінтегральних функцій, а тому відрізняються лише сталими, які можна включити в C.

Якщо a – розв'язок рівняння  $M_2(x) = 0$ , то x = a є розв'язком рівняння (3.1), бо dx = 0, а  $M_2(a) = 0$ . Так само, якщо b - aкорінь рівняння  $N_1(y) = 0$ , то y = b – корінь рівняння (3.1).

Диференціальне рівняння (3.2) можна записати у більш загальному вигляді:

$$M(x)dx + N(y)dy = 0. (3.4)$$

Рівняння (3.4) називають *рівнянням з відокремленими* **змінними**, а перехід від (3.1) до рівняння вигляду  $(3.4) - \epsilon i \partial$ окремленням змінних.

Загальним інтегралом рівняння (3.4) є

$$\int M(x) dx + \int N(y) dy = C.$$

Рівняння з відокремлюваними змінними можна записати також у вигляді

$$y' = f_1(x)f_2(y). (3.5)$$

Для інтегрування рівняння (3.5) потрібно поділити обидві його частини на  $f_2(y)$  (якщо  $f_2(y) \neq 0$ ) і помножити на dx (врахувавши, що dy = y'dx). Отже,

$$\frac{1}{f_2(y)}dy = f_1(x)dx,$$

а після інтегрування одержуємо загальний інтеграл рівняння (3.5):

$$\int \frac{dy}{f_2(y)} = \int f_1(x) \, dx + C.$$

Тут, як і для рівняння (3.1), якщо  $f_2(a) = 0$ , то y = a є розв'язком рівняння (3.5).

Приклад 1. Зінтегрувати рівняння

$$(y - x^2y)dy = (x - xy^2)dx.$$

Розв'язання. Рівняння можна записати у вигляді

$$y(1 - x^2)dy = x(1 - y^2)dx.$$

Для відокремлення змінних поділимо обидві частини рівняння на  $(1-x^2)(1-y^2)$ . Тоді

$$\frac{y}{1-y^2}dy = \frac{x}{1-x^2}dx \quad (x \neq \pm 1, \ y \neq \pm 1) \quad \Rightarrow$$

$$-\frac{1}{2}\int \frac{d(1-y^2)}{1-y^2} = -\frac{1}{2}\int \frac{d(1-x^2)}{1-x^2} \quad \Rightarrow$$

$$\ln|1-y^2| = \ln|1-x^2| + C \quad \Rightarrow$$

$$|1-y^2| = e^C|1-x^2| \quad \Rightarrow \quad 1-y^2 = C(1-x^2),$$

де, враховуючи довільність сталої C, перепозначено  $\pm e^C$  через C. Надалі у такій ситуації використовуватимемо знак :=, наприклад,  $C:=\pm e^C$ .

Отже, загальним інтегралом заданого рівняння є

$$y^2 = 1 + C(x^2 - 1). (3.6)$$

З'ясуемо можливість появи особливих розв'язків заданого рівняння. Легко перевірити, що функції x=-1, x=1, y=-1, y=1 є розв'язками рівняння, однак у загальному інтегралі містяться лише два останніх (їх можна отримати з формули (3.6), якщо C=0). Функції x=-1 і x=1 є особливими розв'язками. Відповідь:  $y^2=1+C(x^2-1), x=-1, x=1$ .

До рівняння з відокремлюваними змінними зводяться рівняння вигляду

$$y' = f(ax + by), (3.7)$$

де a, b – деякі сталі. Справді, якщо виконати заміну z = ax + by, ТО

$$y = \frac{z - ax}{b} \quad \Rightarrow \quad y' = \frac{1}{b}z' - \frac{a}{b}$$

і для знаходження функції г одержуємо рівняння з відокремлюваними змінними z' = bf(z) + a.

**Приклад 2.** Зінтегрувати рівняння  $y' = (4x + y + 5)^2$ . **Розв'язання.** Нехай z = 4x + y. Тоді

$$z' = 4 + y'$$
  $\Rightarrow$   $y' = z' - 4$   $\Rightarrow$   $z' - 4 = (z + 5)^2$   $\Rightarrow$   $z' = (z + 5)^2 + 4.$ 

Звідси, якщо  $(z+5)^2 + 4 \neq 0$ , то

$$\frac{dz}{(z+5)^2+4} = dx \quad \Rightarrow \quad \int \frac{d(z+5)}{(z+5)^2+4} = x+C \quad \Rightarrow$$

$$\frac{1}{2} \operatorname{arctg} \frac{z+5}{2} = x+C \quad \Rightarrow \quad \operatorname{arctg} \frac{4x+y+5}{2} = 2x+2C \quad \Rightarrow$$

$$4x+y+5 = 2\operatorname{tg}(2x+C) \quad (C:=2C).$$

Отже, загальним розв'язком  $\epsilon y = 2 \operatorname{tg}(2x + C) - 4x - 5$ .

Оскільки  $(z+5)^2+4\neq 0$  в множині дійсних чисел, то інших розв'язків немає.

**Відповідъ:**  $y = 2 \operatorname{tg}(2x + C) - 4x - 5$ .

**2.** Однорідні рівняння. Функцію f(x, y) називають одноpidнoo функцією виміру m, якщо для будь-яких x, y, tсправджується тотожність

$$f(tx, ty) = t^m f(x, y).$$

Наприклад,  $f_1(x,y) = \sqrt[3]{2x^3 + y^3}$ ,  $f_2(x,y) = \arcsin\frac{x^2 - y^2}{x^2 + y^2}$  є однорідними функціями вимірів 1 і 0 відповідно, бо

$$f_1(tx, ty) = \sqrt[3]{2(tx)^3 + (ty)^3} = t \cdot \sqrt[3]{2x^3 + y^3} = t^1 \cdot f_1(x, y),$$
  
$$f_2(tx, ty) = \arcsin\frac{(tx)^2 - (ty)^2}{(tx)^2 + (ty)^2} = \arcsin\frac{x^2 - y^2}{x^2 + y^2} = t^0 \cdot f_2(x, y).$$

Диференціальне рівняння

$$y' = f(x, y) \tag{3.8}$$

називають **однорідним**, якщо f(x,y) є однорідною функцією виміру 0.

Покажемо, що однорідне рівняння можна звести до рівняння з відокремлюваними змінними. Якщо права частина рівняння (3.8) — однорідна функція виміру 0, то за означенням f(tx,ty)=f(x,y). Якщо підставити t=1/x, то f(x,y)=f(x,y), а тому рівняння (3.8) можна записати у вигляді y'=f(1,y/x), звідки видно, що в однорідних рівняннях вигляду (3.8) права частина фактично залежить тільки від частки y/x. З огляду на це виконаємо заміну u=y/x, тобто

$$y = ux$$

де u = u(x) – нова шукана функція. Тоді

$$y' = u'x + u \implies u'x + u = f(1, u) \implies x\frac{du}{dx} = f(1, u) - u.$$

Одержали рівняння з відокремлюваними змінними. Зінтегруємо його:

$$\frac{du}{f(1,u) - u} = \frac{dx}{x} \quad (f(1,u) \neq u, \ x \neq 0) \quad \Rightarrow$$

$$\int \frac{du}{f(1,u) - u} = \ln|x| + C.$$

Якщо позначити  $F(u) \equiv \int \frac{du}{f(1,u)-u}$ , то загальний інтеграл однорідного рівняння (3.8) можемо записати у вигляді

$$F(y/x) = \ln|x| + C.$$

Розв'язками однорідного рівняння (3.8) можуть бути також функції  $y=ax\ (x\neq 0)$ , де f(1,a)=a та  $x=0\ (y\neq 0)$ , які могли бути втрачені при відокремленні змінних. Ці розв'язки можуть бути особливими.

**Приклад 3.** Зінтегрувати рівняння  $ydx + 2\sqrt{xy}dy = xdy$ . **Розв'язання.** Записавши рівняння у вигляді

$$ydx + (2\sqrt{xy} - x)dy = 0 \quad \Rightarrow \quad y' = \frac{y}{x - 2\sqrt{xy}} \quad (x \neq 0, \ y \neq \frac{x}{4}),$$

переконуємось, що воно є однорідним, бо його права частина є однорідною функцією виміру 0. Виконаємо заміну y = ux. Тоді y' = u'x + u і, підставляючи ці вирази для y і y' у рівняння, одержуємо

$$u'x + u = \frac{ux}{x - 2\sqrt{ux^2}} \implies u'x + u = \frac{u}{1 - 2\sqrt{u}} \implies$$

$$\frac{du}{dx}x = \frac{2u\sqrt{u}}{1 - 2\sqrt{u}} \implies \frac{(1 - 2\sqrt{u})du}{2u\sqrt{u}} = \frac{dx}{x} \quad (u \neq 0) \implies$$

$$\frac{1}{2}\int u^{-3/2}du - \int \frac{du}{u} = \int \frac{dx}{x} \implies$$

$$-\frac{1}{\sqrt{u}} - \ln|u| = \ln|x| + C \implies \sqrt{\frac{x}{y}} + \ln|y| + C = 0.$$

Якщо u = 0, то y = 0 – особливий розв'язок, крім того, x = 0 – теж особливий розв'язок заданого рівняння.

Bidnosidu: 
$$\sqrt{\frac{x}{y}} + \ln|y| + C = 0, y = 0, x = 0.$$

Якщо диференціальне рівняння першого порядку записане у вигляді

$$M(x,y)dx + N(x,y)dy = 0, (3.9)$$

то воно буде однорідним, якщо M(x, y), N(x, y) є однорідними функціями однакового виміру. Пропонуємо читачам самостійно переконатись, що диференціальні рівняння

$$(x+y)dx + (x-y)dy = 0, \quad 3xydx + (x^2+y^2)dy = 0$$

є однорідними.

Зауважимо, що диференціальне рівняння

$$y' = \frac{\sqrt{x^2 + y^2} - x}{y},\tag{3.10}$$

одержане на лекції 1 у задачі 3 про форму дзеркала, яке збирає паралельні промені в одну точку, є однорідним. Розв'яжемо його за допомогою заміни y=ux. Тоді

$$u'x + u = \frac{\sqrt{x^2 + u^2x^2} - x}{ux} \implies x\frac{du}{dx} = \frac{\sqrt{1 + u^2} - 1}{u} - u \implies \int \frac{u \, du}{\sqrt{1 + u^2} - 1 - u^2} = \int \frac{dx}{x} + C \implies \frac{1}{2} \int \frac{d(1 + u^2)}{\sqrt{1 + u^2} - 1 - u^2} = \ln|x| + C.$$

Оскільки

$$\int \frac{d(1+u^2)}{\sqrt{1+u^2}-1-u^2} = \left|1+u^2=p^2\right| = \int \frac{2p\,dp}{p-p^2} = 2\int \frac{dp}{1-p} = -2\ln|p-1| = -2\ln\left|\sqrt{1+u^2}-1\right|,$$

TO

$$-\ln\left|\sqrt{1+u^2} - 1\right| = \ln|x| + C \quad \Rightarrow$$

$$\sqrt{1+u^2} - 1 = C/x \quad \Rightarrow \quad u^2 = (C/x)^2 + 2C/x \quad \Rightarrow$$

$$\left(\frac{y}{x}\right)^2 = \frac{C^2 + 2Cx}{x^2} \quad \Rightarrow \quad y^2 = 2Cx + C^2.$$

Отже, загальним інтегралом рівняння (3.10) є  $y^2 = 2Cx + C^2$  (порівняйте з результатом, одержаним на лекції 1).

**3. Рівняння, звідні до однорідних.** Розглянемо диференціальне рівняння вигляду

$$y' = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2},\tag{3.11}$$

де  $a_1$ ,  $a_2$ ,  $b_1$ ,  $b_2$ ,  $c_1$ ,  $c_2$  – деякі сталі. Якщо  $c_1$  і  $c_2$  одночасно не дорівнюють нулю, то права частина рівняння (3.11) не є однорідною функцією виміру 0, а тому це рівняння не є однорідним. Однак, якщо

$$\Delta \equiv \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0 \quad \Rightarrow \quad a_1 b_2 \neq a_2 b_2, \tag{3.12}$$

то рівняння (3.11) можна звести до однорідного за допомогою замін

$$x = \xi + x_0, \quad y = \eta + y_0,$$
 (3.13)

де сталі  $x_0$  і  $y_0$  потрібно вибрати так, щоб

$$\begin{cases}
 a_1 x_0 + b_1 y_0 = -c_1, \\
 a_2 x_0 + b_2 y_0 = -c_2.
\end{cases}$$
(3.14)

Згідно з (3.12)  $\Delta \neq 0$ , а тому лінійна неоднорідна система (3.14) має єдиний розв'язок, який можна знайти, наприклад, за формулами Крамера. Підставляючи у (3.11) замість x і y відповідні вирази з (3.13), одержуємо рівняння

$$\frac{d\eta}{d\xi} = \frac{a_1\xi + b_1\eta + a_1x_0 + b_1y_0 + c_1}{a_2\xi + b_2\eta + a_2x_0 + b_2y_0 + c_2},$$

або, враховуючи (3.14),

$$\frac{d\eta}{d\xi} = \frac{a_1\xi + b_1\eta}{a_2\xi + b_2\eta}. (3.15)$$

Диференціальне рівняння (3.15) є, очевидно, однорідним.

Приклад 4. Зінтегрувати рівняння

$$(x - 2y + 3)y' = 1 - y - 2x.$$

**Розв'язання.** Запишемо рівняння у вигляді

$$y' = -\frac{2x+y-1}{x-2y+3}$$
  $(y \neq \frac{1}{2}(x+3)).$ 

Оскільки  $\Delta \neq 0$ , то виконаємо заміну  $x = \xi + x_0$ ,  $y = \eta + y_0$ , де числа  $x_0$  і  $y_0$  задовольняють систему рівнянь

$$\begin{cases} 2x_0 + y_0 = 1, \\ x_0 - 2y_0 = -3. \end{cases}$$

Легко знаходимо, що  $x_0 = -1/5$ ,  $y_0 = 7/5$ . Таким чином, після заміни  $x = \xi - 1/5$ ,  $y = \eta + 7/5$  одержуємо однорідне рівняння

$$\frac{d\eta}{d\xi} = -\frac{2\xi + \eta}{\xi - 2\eta}.$$

Hехай  $\eta = u\xi$ . Тоді

$$u'\xi + u = \frac{2+u}{2u-1} \implies \frac{du}{d\xi}\xi = \frac{-2u^2 + 2u + 2}{(2u-1)} \implies \frac{(2u-1)du}{u^2 - u - 1} = -2\frac{d\xi}{\xi} \quad (u^2 - u - 1 \neq 0).$$

Інтегруючи останнє рівняння, знаходимо:

$$\begin{split} \ln|u^2-u-1| &= C - 2\ln|\xi| \quad \Rightarrow \quad |u^2-u-1| = e^C/\xi^2 \quad \Rightarrow \\ \frac{\eta^2}{\xi^2} - \frac{\eta}{\xi} - 1 &= \frac{C}{\xi^2} \quad (C:=\pm e^C) \quad \Rightarrow \quad \eta^2 - \eta\xi - \xi^2 = C \quad \Rightarrow \\ \left(y - \frac{7}{5}\right)^2 - \left(y - \frac{7}{5}\right)\left(x + \frac{1}{5}\right) - \left(x + \frac{1}{5}\right)^2 = C \quad \Rightarrow \\ y^2 - x^2 - xy + x - 3y + 57/25 = C. \end{split}$$

Отже, загальним інтегралом заданого рівняння є  $y^2 - x^2 - xy + x - 3y = C$  (C := C - 57/25).

Якщо  $u^2-u-1=0$ , то  $u=\frac{1\pm\sqrt{5}}{2}$ , звідки  $\eta=\frac{1\pm\sqrt{5}}{2}\xi$ , тобто  $y=\frac{1+\sqrt{5}}{2}x+\frac{3}{2}+\frac{\sqrt{5}}{10}$  і  $y=\frac{1-\sqrt{5}}{2}x+\frac{3}{2}-\frac{\sqrt{5}}{10}$ . Безпосередньою підстановкою переконуємося у тому, що дві останні функції є розв'язками заданого диференціального рівняння. Нарешті, якщо  $\xi=0$ , то x=-1/5, але ця функція не є розв'язком заданого рівняння.

*Bi∂noei∂υ*: 
$$y^2 - x^2 - xy + x - 3y = C$$
,  $y = \frac{1+\sqrt{5}}{2}x + \frac{3}{2} + \frac{\sqrt{5}}{10}$ ,  $y = \frac{1-\sqrt{5}}{2}x + \frac{3}{2} - \frac{\sqrt{5}}{10}$ .

Якщо для коефіцієнтів рівняння (3.11) не виконується умова (3.12), тобто

$$a_1b_2 = a_2b_1, (3.16)$$

то  $a_1 = \lambda a_2, \, b_1 = \lambda b_2, \, \text{а тому з рівняння (3.11)}$  випливає, що

$$y' = \frac{\lambda(a_2x + b_2y) + c_1}{a_2x + b_2y + c_2} = f(a_2x + b_2y),$$

тобто одержали рівняння вигляду (3.7), яке зводиться до рівняння з відокремлюваними змінними за допомогою заміни  $z = a_2x + b_2y$ .

Зауважимо, що за виконання умови (3.16) для зведення рівняння (3.11) до рівняння з відокремлюваними змінними можна застосовувати також заміни  $z = a_1x + b_1y$ ,  $z = a_1x + b_1y + c_1$ або  $z = a_2 x + b_2 y + c_2$ .

Приклад 5. Зінтегрувати рівняння

$$y' = \frac{x - 2y + 3}{2x - 4y - 1}.$$

**Розв'язання.** Оскільки  $\Delta = 0$ , то виконаємо заміну z = x - 2y. Тоді  $y = \frac{x-z}{2}$ , а  $y' = \frac{1-z'}{2}$ , і, підставляючи у рівняння, одержуємо рівняння з відокремлюваними змінними:

$$\frac{1-z'}{2} = \frac{z+3}{2z-1} \quad \Rightarrow \quad z' = 1 - \frac{2z+6}{2z-1} \quad \Rightarrow \quad z' = \frac{-7}{2z-1} \quad \Rightarrow \quad (2z-1)dz = -7 dx.$$

Зінтегруємо його:

$$z^2 - z = -7x + C.$$

Замінивши z на x-2y, знаходимо загальний інтеграл у вигляді

$$(x-2y)^2 - (x-2y) = -7x + C \implies x^2 - 4xy + 4y^2 + 6x + 2y = C.$$

Аналогічно інтегруються рівняння більш загального вигляду

$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right),\tag{3.17}$$

де f(u) – неперервна функція свого аргументу.

Зауважимо, що деякі рівняння можна звести до однорідних за допомогою заміни  $y=z^m$ , де z=z(x) – нова функція, а m – деяке число. Такі рівняння називають узагальнено-однорід**ними**. Наприклад, у рівнянні  $y' = x + \frac{y^2}{x^3}$  зробимо згадану заміну  $y = z^m$  (тоді  $y' = mz^{m-1}z'$ ) і виберемо m таким, щоб одержане рівняння

$$mz^{m-1}z' = x + \frac{z^{2m}}{r^3} \quad \Rightarrow \quad mz' = \frac{x}{z^{m-1}} + \frac{z^{m+1}}{r^3}$$

було однорідним. Для цього потрібно, щоб права частина рівняння була однорідною функцією виміру 0, тобто число m повинне задовольняти рівняння m-1=1 і m+1=3, звідки m=2. Отже, за допомогою підстановки  $y=z^2$  задане рівняння вдалося звести до однорідного

$$2z' = \frac{x}{z} + \frac{z^3}{x^3},$$

зінтегрувати яке пропонуємо читачам самостійно.

**Рекомендована література**: [2, с. 11 - 39], [5, с. 28 - 33, 56 - 61], [8, с. 27 - 37], [15, с. 23 - 27], [16, с. 16 - 177].

#### Питання до лекції 3

- 1. Яке диференціальне рівняння називають рівнянням з відокремленими змінними? Як знайти загальний інтеграл такого рівняння?
- 2. Яке диференціальне рівняння називають рівнянням з відокремлюваними змінними? Як інтегрується таке рівняння? Які функції можуть виявитися особливими розв'язками?
- 3. За допомогою яких замін рівняння y' = f(ax + by + c) можна звести до рівняння з відокремлюваними змінними?
- 4. Коли функція f(x,y) буде однорідною виміру m? Наведіть приклади однорідних функцій виміру  $0,\ 1,\ 2,\ 3,\ a$  також приклади неоднорідних функцій.
- 5. Яке диференціальне рівняння першого порядку називають однорідним? За допомогою якої заміни шуканої функції таке рівняння зводиться до рівняння з відокремлюваними змінними?
- 6. Якою має бути права частина рівняння y' = f(x, y), щоб воно було однорідним?
- 7. Якщо функції  $M(x,y),\ N(x,y)$  однорідні, то чи досить цього для того, щоб рівняння M(x,y)dx+N(x,y)dy=0 було однорідним?
- 8. Якими повинні бути числа  $c_1$ ,  $c_2$ , щоб диференціальне рівняння (3.17) було однорідним?
- 9. Якими повинні бути числа  $a_1$ ,  $a_2$ ,  $b_1$ ,  $b_2$ , щоб рівняння (3.17) можна було звести до однорідного рівняння? Коли це рівняння можна звести відразу до рівняння з відокремлюваними змінними?
- 10. Які рівняння називають узагальнено-однорідними? Яка заміна використовується для інтегрування таких рівнянь?

#### Вправи до лекції 3

1. Зінтегруйте диференціальні рівняння з відокремлюваними змінними:

a) 
$$y'=e^{2x+y}$$
; 6)  $x\sqrt{1+y^2}+yy'\sqrt{1+x^2}=0$ ;  
B)  $(xy^2-y^2)y'=yx^2+x^2$ .

2. Знайдіть розв'язки задач Коші:

a) 
$$(1 + e^x)yy' = e^x$$
,  $y(0) = 1$ ; 6)  $y' \operatorname{tg} x = y + 3$ ,  $y(\frac{\pi}{2}) = 1$ .

3. Зінтегруйте диференціальні рівняння, звідні до рівнянь з відокремлюваними змінними:

a) 
$$y' = 2x + 3y + 10$$
; 6)  $(2x + y)y' = 1$ ; B)  $y' = \frac{x - 2y - 1}{4y - 2x + 6}$ .

4. Обґрунтуйте, що рівняння є однорідними, та зінтегруйте їх:

a) 
$$xdy = (y + \sqrt{x^2 + y^2})dx$$
; 6)  $y' = \frac{y}{x} + e^{y/x}$ ; b)  $y' = \frac{x + 2y}{2x + y}$ .

5. Зінтегруйте рівняння, звідні до однорідних рівнянь:

a) 
$$(x+1)y' + 3x + 2y + 5 = 0;$$
  
6)  $(7x - 3y + 2)dx + (4y - 3x - 5)dy = 0.$ 

# Лекція 4. Лінійні диференціальні рівняння та звідні до них

#### План

- 1. Лінійне рівняння та методи його розв'язування.
- 2. Властивості розв'язків лінійних рівнянь.
- 3. Рівняння Я. Бернуллі.
- 4. Рівняння Ріккаті.

# 1. Лінійне рівняння та методи його розв'язування.

**Лінійним** диференціальним рівнянням першого порядку називають рівняння вигляду

$$A(x)y' + B(x)y + C(x) = 0, (4.1)$$

де  $A(x),\ B(x),\ C(x)$  — неперервні функції. В області, де  $A(x)\neq 0,\ (4.1)$  рівносильне рівнянню

$$y' + p(x)y = q(x), \tag{4.2}$$

у якому позначено p(x) = B(x)/A(x), q(x) = -C(x)/A(x).

Якщо ж  $A(x_0)=0$ , то розв'язком рівняння (4.1), записаного у диференціальній формі A(x)dy+B(x)ydx+C(x)dx=0, є  $x=x_0$ , у чому легко переконатися за допомогою підстановки. Наприклад, розв'язками рівняння  $x(x-\pi)y'+\sin x\cdot y=\operatorname{tg} x$  є x=0 і  $x=\pi$ .

Якщо функції p(x) та q(x) у рівнянні (4.2) неперервні на деякому інтервалі (a,b), то згідно з теоремою Коші через кожну точку смуги  $a < a_1 \le x \le b_1 < b$ ,  $-\infty < y < +\infty$  проходить єдина інтегральна крива. Справді, якщо рівняння (4.2) записати у вигляді y' = q(x) - p(x)y, то його права частина f(x,y) = q(x) - p(x)y є, очевидно, неперервною функцією, а частинна похідна  $f'_y(x,y) = -p(x)$  обмежена у цій області. У цьому випадку рівняння (4.2) особливих розв'язків не має.

Якщо функція q(x) тотожно дорівнює нулю, то рівняння (4.2) називають *лінійним однорідним*, а якщо тотожно не дорівнює нулю, то *лінійним неоднорідним*.

Покажемо, що лінійне неоднорідне рівняння першого порядку завжди інтегрується у квадратурах. Розглянемо два способи інтегрування таких рівнянь.

Метод варіації довільної сталої (метод Лагранжа). Зінтегруємо спочатку лінійне однорідне рівняння

$$y' + p(x)y = 0, (4.3)$$

яке є водночає рівнянням з відокремлюваними змінними:

$$\frac{dy}{dx} = -p(x)y \quad \Rightarrow \quad \frac{dy}{y} = -p(x)dx \quad (y \neq 0) \quad \Rightarrow$$

$$\ln|y| = -\int p(x)dx + C \quad \Rightarrow$$

$$y = Ce^{-\int p(x)dx}. \tag{4.4}$$

Формула (4.4) описує всі розв'язки рівняння (4.3), бо розв'язок y=0, який міг бути втраченим при відокремленні змінних, міститься у формулі загального розв'язку (якщо C=0).

Розв'язок лінійного неоднорідного рівняння (4.2) шукатимемо у вигляді (4.4), замінивши довільну сталу C деякою функцією C(x), тобто у вигляді

$$y = C(x)e^{-\int p(x)dx}. (4.5)$$

Підставляючи (4.5) у рівняння (4.2), одержуємо

$$C'(x)e^{-\int p(x)dx} - C(x)p(x)e^{-\int p(x)dx} +$$

$$+ p(x)C(x)e^{-\int p(x)dx} = q(x) \quad \Rightarrow$$

$$C'(x) = q(x)e^{\int p(x)dx} \quad \Rightarrow \quad C(x) = \int q(x)e^{\int p(x)dx}dx + C,$$

де C — довільна стала. Підставляючи тепер знайдену функцію C(x) у (4.5), одержуємо формулу для загального розв'язку лінійного рівняння (4.2):

$$y = e^{-\int p(x)dx} \cdot \left( \int q(x)e^{\int p(x)dx}dx + C \right). \tag{4.6}$$

**Метод підстановки (метод Й. Бернуллі).** Розв'язок лінійного неоднорідного рівняння (4.2) шукатимемо у вигляді добутку двох диференційовних функцій u = u(x) і v = v(x), тобто

$$y = uv. (4.7)$$

Підставляючи (4.7) в (4.2), одержуємо

$$u'v + uv' + p(x)uv = q(x) \Rightarrow$$

$$u'v + u(v' + p(x)v) = q(x). \tag{4.8}$$

Користуючись довільністю функції v, виберемо її такою, щоб вона була розв'язком рівняння v'+p(x)v=0, звідки

$$v = Ce^{-\int p(x) dx}.$$

Знайдену функцію v при C=1 підставимо в (4.8). Тоді

$$u' \cdot e^{-\int p(x)dx} = q(x)$$
  $\Rightarrow$   $u = \int q(x) \cdot e^{\int p(x)dx} dx + C.$ 

Підставляючи знайдені функції u і v у (4.7), знову одержуємо формулу (4.6).

Приклад 1. Зінтегрувати рівняння

$$y' + 2xy = 2xe^{-x^2}.$$

**Розв'язання.** Метод варіації довільної сталої. Розв'яжемо відповідне лінійне однорідне рівняння:

$$y' + 2xy = 0 \implies \int \frac{dy}{y} = -\int 2x \, dx + C \implies$$
  
 $\ln|y| = -x^2 + C \implies y = Ce^{-x^2}.$ 

Розв'язок заданого лінійного неоднорідного рівняння шукаємо у вигляді  $y = C(x)e^{-x^2}$ . Підставляючи у рівняння, одержуємо:

$$C'(x)e^{-x^2} - 2xC(x)e^{-x^2} + 2xC(x)e^{-x^2} = 2xe^{-x^2} \Rightarrow$$
  
 $C'(x) = 2x \Rightarrow C(x) = x^2 + C \Rightarrow y = (x^2 + C)e^{-x^2}.$ 

Memod Бернуллі. Hexaй <math>y = uv. Тоді

$$u'v + uv' + 2xuv = 2xe^{-x^2}.$$

Для знаходження функцій u і v одержуємо систему

$$\begin{cases} v' + 2xv = 0, \\ u'v = 2xe^{-x^2}. \end{cases}$$

З першого рівняння системи знаходимо  $v = Ce^{-x^2}$ . Покладемо C = 1 і підставимо функцію v у друге рівняння. Тоді

$$u' = 2x \quad \Rightarrow \quad u = x^2 + C \quad \Rightarrow \quad y = (x^2 + C)e^{-x^2}. \blacksquare$$

Наведені методи розв'язування лінійних рівнянь можна застосовувати також до рівнянь вигляду  $(p(y)x+q(y))\cdot y'=1$ , якщо y прийняти за незалежну змінну, а x – за функцію цієї змінної. Наприклад, рівняння  $2yy'(e^{-y^2}-x)=1$  є нелінійним відносно функції y=y(x). Однак, якщо записати його у вигляді

$$y' = \frac{1}{2y(e^{-y^2} - x)} \Rightarrow \frac{1}{x'} = \frac{1}{2y(e^{-y^2} - x)} \Rightarrow x' + 2xy = 2ye^{-y^2},$$

то маємо лінійне відносно функції x=x(y) рівняння з прикладу 1.

**2. Властивості розв'язків лінійних рівнянь.** Наведемо деякі властивості розв'язків лінійних рівнянь, які можуть бути корисними для практичного розв'язування рівнянь.

**Властивість 1.** Якщо відомий деякий частинний розв'язок  $y_1(x)$  лінійного однорідного рівняння (4.3), то його загальний розв'язок знаходиться без квадратур.

Цим загальним розв'язком є  $y = Cy_1(x)$ , адже він задовольняє рівняння (4.2) і містить довільну сталу.

Властивість 2. Загальний розв'язок лінійного неоднорідного рівняння (4.2) є сумою його частинного розв'язку і загального розв'язку відповідного однорідного рівняння (4.3). Справді, відкриваючи дужки у формулі (4.6), маємо два доданки:  $Ce^{-\int p(x)dx}$  — загальний розв'язок відповідного однорідного рівняння (4.3) і  $e^{-\int p(x)dx}\int q(x)\,e^{\int p(x)dx}dx$  — розв'язок неоднорідного рівняння (4.2) (його одержуємо з формули загального розв'язку, якщо C=0). Отже, якщо відомий один частинний розв'язок  $y_1=y_1(x)$  лінійного неоднорідного рівняння, то його загальний розв'язок знаходиться за допомогою однієї квадратури:

$$y = y_1 + Ce^{-\int p(x) dx}.$$

**Властивість 3.** Якщо відомі два непропорційні частинні розв'язки  $y_1 = y_1(x)$  і  $y_2 = y_2(x)$  рівняння (4.2), то його загальний розв'язок одержуємо без квадратур за формулою

$$y = y_1 + C(y_2 - y_1). (4.9)$$

Справді, оскільки  $y'_1 + p(x)y_1 = q(x)$  і  $y'_2 + p(x)y_2 = q(x)$ , то

$$(y_1 - y_2)' + p(x)(y_1 - y_2) = 0,$$

звідки випливає, що  $y_1-y_2$  є частинним розв'язком лінійного однорідного рівняння (4.3). Загальним розв'язком рівняння (4.3) згідно з властивістю 1 буде  $C(y_1-y_2)$ , а формулу (4.3) остаточно одержуємо на підставі властивості 2.

#### 3. Рівняння Я. Бернуллі. Рівняння вигляду

$$y' + p(x)y = q(x)y^{m}, (4.10)$$

Для розв'язування рівняння Бернуллі, так само, як лінійного рівняння, використаємо метод варіації довільної сталої. Зінтегруємо спочатку рівняння y'+p(x)y=0. Його загальний розв'язок подається формулою (4.4):  $y=Ce^{-\int p(x)dx}$ .

Розв'язок рівняння Бернуллі шукаємо у вигляді

$$y = C(x)e^{-\int p(x)dx},\tag{4.11}$$

де C(x) – деяка функція. Підставляючи (4.11) у рівняння (4.10), одержуємо

$$C'(x)e^{-\int p(x)dx} - C(x)p(x)e^{-\int p(x)dx} + p(x)C(x)e^{-\int p(x)dx} =$$

$$= q(x)C^{m}(x)e^{-m\int p(x)dx} \implies$$

$$C'(x) = q(x)C^{m}(x)e^{(1-m)\int p(x)dx} \implies$$

$$\int \frac{dC(x)}{C^{m}(x)} = \int q(x)e^{(1-m)\int p(x)dx}dx + C_{1} \implies$$

$$\frac{C^{1-m}(x)}{1-m} = \int q(x)e^{(1-m)\int p(x)dx}dx + C_{1}.$$

Таким чином,

$$C(x) = \left( (1-m) \int q(x) e^{(1-m) \int p(x) dx} dx + C \right)^{\frac{1}{1-m}},$$

а підставляючи цю функцію C(x) у (4.11), одержуємо загальний розв'язок рівняння Бернуллі:

$$y = e^{-\int p(x) dx} \left( (1 - m) \int q(x) e^{(1 - m) \int p(x) dx} dx + C \right)^{\frac{1}{1 - m}}.$$

При цьому міг бути втрачений розв'язок y=0, якщо m>0. Для  $m\leqslant 0$  функція y=0 не є розв'язком рівняння Бернуллі.

Приклад 2. Зінтегрувати рівняння Бернуллі

$$y' + 2xy = 2xe^{x^2}y^2.$$

**Розв'язання.** Загальний розв'язок рівняння y' + 2xy = 0 був знайдений під час розв'язування прикладу 1:  $y = Ce^{-x^2}$ , а тому розв'язок заданого рівняння шукаємо у вигляді  $y = C(x)e^{-x^2}$ .

Підставляючи у рівняння, одержуємо:

$$\begin{split} C'(x)e^{-x^2} - 2xC(x)e^{-x^2} + 2xC(x)e^{-x^2} &= 2xe^{x^2}C^2(x)e^{-2x^2} \quad \Rightarrow \\ C'(x) &= 2xC^2(x) \quad \Rightarrow \quad \frac{dC(x)}{C^2(x)} = 2x\,dx \quad (C(x) \neq 0) \quad \Rightarrow \\ -\frac{1}{C(x)} &= x^2 + C \quad \Rightarrow \quad C(x) = -\frac{1}{x^2 + C} \quad \Rightarrow \\ y &= -\frac{e^{-x^2}}{x^2 + C}. \end{split}$$

Якщо C(x)=0, то y=0. Ця функція є особливим розв'язком заданого рівняння.

**Bidnosids:** 
$$y = -e^{-x^2}(x^2 + C)^{-1}, \ y = 0.$$

Зауважимо, що наведений метод можна застосовувати також до рівнянь вигляду  $(p(y)x+q(y)x^m)\cdot y'=1$ , якщо y прийняти за незалежну змінну, а x — за функцію цієї змінної. Наприклад, якщо рівняння  $2xy(xe^{y^2}-1)\,y'=1$  записати у вигляді

$$y' = \frac{1}{x'} = \frac{1}{2xy(xe^{y^2} - 1)} \Rightarrow x' + 2yx = 2ye^{y^2}x^2,$$

то маємо рівняння Бернуллі, розв'язане у прикладі 2 (якщо вважати, що x=x(y)).

Задача 1. Знайти криві, у яких довжина відрізку, який відтинає дотична на осі Оу, дорівнює квадрату ординати точки дотику.

**Розв'язання.** Нехай M(x,y) — довільна точка шуканої кривої y=f(x). У точці M проведемо дотичну до кривої y=f(x) і нехай A — точка перетину цієї дотичної з віссю Oy, B — проекція точки M на вісь Ox (рис. 4.1).

За умовою задачі  $OA=BM^2$ , причому BM=y. Відрізок OA знайдемо з рівняння дотичної  $Y-y=f'(x)\cdot (X-x)$ , у яке підставимо X=0. Тоді OA=Y=y-y'x.

Таким чином, одержали рівняння  $y-y'x=y^2$ , яке є рівнянням Бернуллі, у чому легко переконатися, якщо записати його у вигляді

$$y' - \frac{1}{x}y = -\frac{1}{x}y^2.$$



Зінтегруємо спочатку рівняння y' - y/x = 0:

$$\frac{dy}{y} = \frac{dx}{x}$$
  $\Rightarrow$   $\ln|y| = \ln|x| + C$   $\Rightarrow$   $y = Cx$ .

Розв'язок рівняння Бернуллі шукаємо у вигляді y = C(x) x. Підставляючи у рівняння, одержуємо:

$$C'(x) x + C(x) - C(x) = -C^{2}(x) x \Rightarrow$$

$$C'(x) = -C^{2}(x) \Rightarrow \int \frac{dC}{C^{2}} = -\int dx \Rightarrow$$

$$-\frac{1}{C(x)} = -x + C \Rightarrow C(x) = \frac{1}{x - C} \Rightarrow y = \frac{x}{x - C}.$$

Шуканими кривими є гіперболи y = x/(x - C).

**3. Рівняння Ріккаті.** До рівняння Бернуллі за певних умов зводиться *рівняння Ріккаті*. Так називають рівняння вигляду

$$y' = p(x)y^{2} + q(x)y + r(x), (4.12)$$

де функції p(x), q(x), r(x) неперервні на деякому інтервалі a < x < b. Рівняння (4.12) містить як окремі випадки вивчені раніше рівняння: якщо  $p(x) \equiv 0$ , то маємо лінійне рівняння, якщо  $r(x) \equiv 0$ , то рівняння Бернуллі.

Розглянемо деякі випадки інтегровності в квадратурах рівняння Ріккаті.

- 1. Якщо p, q і r сталі, то (4.12) рівняння з відокремлюваними змінними, а його загальний інтеграл виражається через елементарні функції.
- 2. Рівняння  $y' = \varphi(x) \cdot (ay^2 + by + c)$ , де a, b і c сталі і  $a^2 + b^2 \neq 0$ , рівняння з відокремлюваними змінними.
- 3. Рівняння  $y' = a\frac{y^2}{x^2} + b\frac{y}{x} + c$ , де  $a^2 + b^2 \neq 0$ , однорідне рівняння.
- 4. Рівняння  $y'=ay^2+b\frac{y}{x}+\frac{c}{x^2}$  узагальнено однорідне рівняння (m=-1). Після заміни  $y=zx^{-1}$  одержуємо рівняння з відокремлюваними змінними  $xz'=az^2+(b+1)z+c$ .

У загальному випадку рівняння Ріккаті не інтегрується квадратурах, хоча згідно з теоремою Коші воно має єдиний розв'язок для довільної початкової умови  $y(x_0) = y_0$ , де точка  $x = x_0$  належить інтервалу неперервності функцій p(x), q(x), r(x).

Якщо відомий деякий розв'язок рівняння Ріккаті, то це рівняння можна звести до рівняння Бернуллі. Справді, нехай  $y_1 = y_1(x)$  – розв'язок рівняння (4.12), тобто

$$y_1' = p(x)y_1^2 + q(x)y_1 + r(x). (4.13)$$

Зробимо заміну шуканої функції

$$y = y_1 + z,$$

де z=z(x) – нова функція. Тоді із врахуванням (4.13) маємо

$$y_1' + z' = p(x)y_1^2 + 2p(x)y_1z + p(x)z^2 + q(x)y_1 + q(x)z + r(x) \Rightarrow z' - (2p(x)y_1 + q(x))z = p(x)z^2.$$

Останнє рівняння є рівнянням Бернуллі відносно функції z, яке завжди інтегрується у квадратурах. Особливим розв'язком рівняння Ріккаті може бути функція  $y=y_1(x)$ .

Приклад 3. Зінтегрувати рівняння Ріккаті

$$y' = y^2 - \frac{y}{x} - \frac{4}{x^2}.$$

**Розв'язання.** Спочатку знайдемо деякий розв'язок  $y_1(x)$  заданого рівняння. Припустимо, що  $y_1(x) = a/x$ , де a – деяка стала. Підставляючи у задане рівняння, одержуємо, що

$$-\frac{a}{x^2} = \frac{a^2}{x^2} - \frac{a}{x^2} - \frac{4}{x^2} \implies a = \pm 2,$$

а отже, задане рівняння можна зінтегрувати у квадратурах за допомогою, наприклад, заміни y = z + 2/x. Тоді

$$z' - \frac{2}{x^2} = z^2 + \frac{4z}{x} + \frac{4}{x^2} - \frac{z}{x} - \frac{2}{x^2} - \frac{4}{x^2} \implies z' - \frac{3z}{x} = z^2.$$

Пропонуємо читачам самостійно переконатися у тому, що загальним розв'язком одержаного рівняння Бернуллі є  $z = \frac{-4x^3}{x^4 + C}$ . Tomy

$$y = \frac{-4x^3}{x^4 + C} + \frac{2}{x} \quad \Rightarrow \quad y = \frac{2C - 2x^4}{x(x^4 + C)}.$$

Розв'язок  $y_1(x) = 2/x$  не можна одержати з загального розв'язку при жодному значенні сталої, а тому він є особливим.  $\textbf{\textit{Bidnoвidu:}}\ y = \frac{2C-2x^4}{x(x^4+C)},\ y = \frac{2}{x}.$ 

**Bidnosids:** 
$$y = \frac{2C - 2x^4}{x(x^4 + C)}, \ y = \frac{2}{x}$$

**Рекомендована** література: [2, с. 39 – 52, 67 – 73], [5, c. 69 – 86], [6, c. 31 – 36, 40 – 42], [8, c. 37 – 46], [15, c. 28 – 33].

## Питання до лекції 4

- 1. Який загальний вигляд має лінійне диференціальне рівняння першого порядку? Яка різниця між лінійним неоднорідним і однорідним рівняннями?
- 2. Чи має лінійне неоднорідне рівняння з неперервними коефіцієнтами особливі розв'язки? Відповідь обґрунтуйте з використанням теореми Коші.
- 3. У чому полягає метод варіації довільної сталої інтегрування лінійного неоднорідного рівняння? За допомогою скількох квадратур у загальному випадку інтегрується це рівняння?
- 4. У чому полягає метод підстановки інтегрування лінійного неоднорідного рівняння?
- 5. Якими властивостями володіють лінійні диференціальні рівняння першого порядку?

- 6. Який загальний вигляд рівняння Бернуллі? У чому полягає метод варіації довільної сталої інтегрування цього рівняння? Чи може рівняння Бернуллі мати особливі розв'язки? Від чого це залежить?
- 7. Який вигляд має рівняння Ріккаті? За якої умови це рівняння інтегрується у квадратурах? До якого рівняння у цьому випадку зводиться рівняння Ріккаті?

## Вправи до лекції 4

1. Серед наведених рівнянь відшукайте лінійне рівняння та зінтегруйте його методом варіації довільної сталої і методом підстановки:

a) 
$$y' = (x - y)^2$$
; 6)  $xy' + 2y - xy^2 = 0$ ; B)  $y' = 4y + e^{2x}$ .

- 2. Доведіть, що рівняння  $f'(y)\,y'+p(x)f(y)=q(x)$  зводиться до лінійного рівняння за допомогою заміни z=f(y). Зінтегруйте таким способом рівняння  $\cos y\cdot y'+\frac{1}{x}\sin y=2x$ .
- 3. Доведіть, що рівняння  $y'+p(x)=q(x)e^{ny}$  зводиться до лінійного рівняння за допомогою заміни  $z=e^{-ny}$ . Зінтегруйте таким способом рівняння  $e^{-x}y'-e^{-x}=e^y$ .
- 4. Серед наведених рівнянь відшукайте рівняння Бернуллі та зінтегруйте його:

a) 
$$y' + xy = y^2 \sin x$$
; 6)  $y' + 2y = x^5$ ; B)  $y' = (x + y)^2$ .

- 5. Доведіть, що рівняння Бернуллі  $y'+p(x)y=q(x)y^m$  можна звести до лінійного рівняння за допомогою заміни  $z=y^{1-m}$ . Зінтегруйте цим способом рівняння  $xy'=y+x^2y^{-2}$ .
- 6. Зінтегруйте рівняння Ріккаті  $xy'-(2x+1)y+y^2=-x^2$ , знаючи, що воно має розв'язок вигляду  $y_1(x)=ax+b$ .

# Лекція 5. Рівняння у повних диференціалах та звідні до них

#### План

- 1. Рівняння у повних диференціалах.
- 2. Інтегрувальний множник та деякі способи його знаходження.
- 3. Теореми про існування, неєдиність та загальний вигляд інтегрувального множника.
- **1. Рівняння у повних диференціалах.** Диференціальне рівняння першого порядку

$$M(x,y) dx + N(x,y) dy = 0 (5.1)$$

називають pівнянням y nовних dиференціалах, якщо його ліва частина є повним диференціалом деякої функції U(x,y), тобто якщо

$$M(x,y) dx + N(x,y) dy = dU(x,y).$$
 (5.2)

З (5.1), (5.2) випливає, що рівняння (5.1) можна записати у вигляді dU=0, а тому загальним інтегралом рівняння у повних диференціалах є U(x,y)=C.

У загальному випадку складно безпосередньо з'ясувати, чи є задане рівняння рівнянням у повних диференціалах. Вкажемо ознаку, яка дозволить відповісти на це питання, а також наведемо один із способів знаходження функції U(x,y).

Припустимо, що функції M(x,y) і N(x,y) у рівнянні (5.1) неперервні у деякому прямокутнику з центром у точці  $(x_0,y_0)$ , і не перетворюються одночасно в нуль у цій точці. Окрім того, вважатимемо, що у згаданому прямокутнику існують неперервні частинні похідні  $\frac{\partial M}{\partial y}$  і  $\frac{\partial N}{\partial x}$ .

Припустимо, що справджується умова (5.2), тобто ліва частина рівняння (5.1) є повним диференціалом. Згідно з означенням диференціала функції двох змінних

$$dU(x,y) = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy,$$

а тому

$$\frac{\partial U}{\partial x} = M(x, y), \quad \frac{\partial U}{\partial y} = N(x, y).$$
 (5.3)

Оскільки функції M(x,y), N(x,y) мають неперервні частинні похідні, то мішані похідні функції U(x,y) не залежать від порядку диференціювання. Отже,

$$\frac{\partial M}{\partial y} = \frac{\partial^2 U}{\partial y \partial x}, \quad \frac{\partial N}{\partial x} = \frac{\partial^2 U}{\partial x \partial y}.$$

З теореми про рівність мішаних похідних одержуємо необхідну умову того, що (5.1) є рівнянням у повних диференціалах:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}. (5.4)$$

Покажемо, що умова (5.4) є також достатньою, тобто за виконання цієї умови ліва частина рівняння (5.1) є повним диференціалом деякої функції U(x,y). Згідно з (5.3) шукана функція U(x,y) повинна задовольняти умову  $\frac{\partial U}{\partial x} = M(x,y)$ . Усі такі функції можна описати формулою

$$U(x,y) = \int M(x,y) dx + C(y), \qquad (5.5)$$

де C(y) – довільна неперервно диференційовна функція від y. Оскільки функція U(x,y) повинна також задовольняти другу умову з (5.3), то

$$\frac{\partial}{\partial y} \int M(x,y) dx + C'(y) = N(x,y). \tag{5.6}$$

Для виконання умови (5.5) потрібно відповідним чином підібрати функцію C(y). Покажемо, що такий вибір за виконання умови (5.4) завжди можливий. Справді, з (5.5) маємо

$$C'(y) = N(x,y) - \frac{\partial}{\partial y} \int M(x,y) dx.$$

Ліва частина цієї рівності є функцією тільки від y, а отже, права частина не залежить від x, тобто похідна за змінною x

від правої частини повинна дорівнювати нулю. Переконаємося у цьому, враховуючи умову (5.4):

$$\begin{split} \frac{\partial}{\partial x} \left( N(x,y) - \frac{\partial}{\partial y} \int M(x,y) \, dx \right) &= \frac{\partial N(x,y)}{\partial x} - \\ &= -\frac{\partial}{\partial x} \left( \frac{\partial}{\partial y} \int M(x,y) \, dx \right) = \frac{\partial N(x,y)}{\partial x} - \\ &= -\frac{\partial}{\partial y} \left( \frac{\partial}{\partial x} \int M(x,y) \, dx \right) = \frac{\partial N(x,y)}{\partial x} - \frac{\partial M(x,y)}{\partial y} = 0. \end{split}$$

Наведене доведення достатності умов (5.4) дає водночас і спосіб відшукання функції U(x,y). Отже, спочатку потрібно знайти функцію U(x,y) за формулою (5.5), розглядаючи y як сталу, а потім з рівності (5.6) знайти C'(y), інтегруючи яке, отримаємо C(y). Підставляючи знайдену функцію C(y) у формулу (5.5), матимемо функцію U(x,y). Для одержання загального інтегралу рівняння у повних диференціалах (5.1), як було доведено раніше, функцію U(x,y) потрібно прирівняти до довільної сталої C.

Приклад 1. Зінтегрувати рівняння

$$(x + y^2 + \sin x) dx + (2xy + \cos y) dy = 0.$$

**Розв'язання.** Оскільки  $M(x,y)=x+y^2+\sin x,\ N(x,y)=2xy+\cos y,\ \text{то}\ \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}=2y,\ \text{тобто умова}\ (5.4)$  справджується. Для знаходження функції U(x,y) маємо систему

$$\frac{\partial U}{\partial x} = x + y^2 + \sin x, \quad \frac{\partial U}{\partial y} = 2xy + \cos y.$$

Знайдемо вираз для шуканої функції з першого рівняння системи і підставимо його у друге рівняння:

$$U(x,y) = \int (x+y^2 + \sin x) \, dx + C(y) \quad \Rightarrow$$

$$U(x,y) = \frac{x^2}{2} + xy^2 - \cos x + C(y) \quad \Rightarrow \quad \frac{\partial U}{\partial y} = 2xy + C'(y) \quad \Rightarrow$$

$$2xy + C'(y) = 2xy + \cos y \quad \Rightarrow \quad C'(y) = \cos y \quad \Rightarrow$$

$$C(y) = \sin y + C.$$

Зауважимо, що в останній формулі довільну сталу інтегрування можна прийняти рівною нулю, оскільки досить знайти одну функцію U(x,y), диференціал якої збігається з лівою частиною заданого рівняння.

Отже,  $U(x,y) = x^2/2 + xy^2 - \cos x + \sin y$ , а загальним інтегралом є  $x^2/2 + xy^2 - \cos x + \sin y = C$ .

**2.** Інтегрувальний множник та деякі способи його знаходження. У багатьох випадках рівняння (5.1), яке не є рівнянням у повних диференціалах (не виконується умова (5.4)), можна за допомогою множення на деяку функцію  $\mu(x,y)$  звести до рівняння у повних диференціалах. Функцію  $\mu(x,y)$  у цьому випадку називають *інтегрувальним множеником* рівняння (5.1).

Нехай для коефіцієнтів рівняння (5.1) не справджується умова (5.4) і припустимо, що  $\mu(x,y)$  – інтегрувальний множник цього рівняння. Тоді для коефіцієнтів рівняння

$$\mu(x,y)M(x,y) dx + \mu(x,y)N(x,y) dy = 0$$

повинна справджуватись умова

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x} \quad \Rightarrow \quad M \frac{\partial \mu}{\partial y} + \mu \frac{\partial M}{\partial y} = N \frac{\partial \mu}{\partial x} + \mu \frac{\partial N}{\partial x} \quad \Rightarrow \quad \mu \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = N \frac{\partial \mu}{\partial x} - M \frac{\partial \mu}{\partial y}. \tag{5.7}$$

Таким чином, інтегрувальний множник  $\mu(x,y)$  є розв'язком рівняння з частинними похідними (5.7), розв'язати яке у загальному випадку значно складніше, ніж звичайне диференціальне рівняння (5.1). Проте у окремих випадках знайти інтегрувальний множник вдається доволі легко. Розглянемо деякі з цих випадків.

**Випадок 1**. Нехай рівняння (5.1) має інтегрувальний множник, який залежить тільки від x, тобто  $\mu=\mu(x)$ . Тоді, враховуючи, що  $\frac{\partial \mu}{\partial y}=0, \frac{\partial \mu}{\partial x}=\frac{d\mu}{dx},$  з (5.7) маємо

$$\mu\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = N\frac{d\mu}{dx} \quad \Rightarrow \quad \frac{d\mu}{\mu} = \frac{1}{N} \cdot \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) dx.$$

Якщо функція в правій частині останнього рівняння залежить тільки від x, тобто

$$\frac{1}{N} \cdot \left( \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \varphi(x),$$

то, зінтегрувавши це рівняння, одержуємо

$$\mu(x) = e^{\int \varphi(x) \, dx}.\tag{5.8}$$

**Випадок 2**. Нехай рівняння (5.1) має інтегрувальний множник, який залежить тільки від y, тобто  $\mu=\mu(y)$ . Тоді  $\frac{\partial\mu}{\partial x}=0$ ,  $\frac{\partial\mu}{\partial y}=\frac{d\mu}{dy}$  і з (5.7) знаходимо

$$\mu\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=-M\frac{d\mu}{dy}\quad\Rightarrow\quad \frac{d\mu}{\mu}=\frac{1}{-M}\cdot\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)dy.$$

Якщо функція в правій частині останнього рівняння залежить тільки від y, тобто

$$\frac{1}{-M} \cdot \left( \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \psi(y),$$

то інтегрувальним множником є

$$\mu(y) = e^{\int \psi(y) \, dy}.\tag{5.9}$$

Випадок 3. Припустимо, що інтегрувальний множник рівняння (5.1) залежить від заданої функції  $\omega(x,y)$ , тобто  $\mu = \mu(\omega(x,y))$ . Тоді з (5.7) одержуємо:

$$\begin{split} N\,\frac{d\mu}{d\omega}\cdot\frac{\partial\omega}{\partial x}-M\,\frac{d\mu}{d\omega}\cdot\frac{\partial\omega}{\partial y}&=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)\cdot\mu(\omega)\quad\Rightarrow\\ \frac{d\mu(\omega)}{\mu(\omega)}&=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N\,\frac{\partial\omega}{\partial x}-M\,\frac{\partial\omega}{\partial y}}d\omega\qquad (N\frac{\partial\omega}{\partial x}-M\frac{\partial\omega}{\partial y}\neq0). \end{split}$$

Якщо позначити

$$\psi(\omega) = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N\frac{\partial \omega}{\partial x} - M\frac{\partial \omega}{\partial y}},$$
(5.10)

ТО

$$\mu(\omega) = e^{\int \psi(\omega) d\omega} \equiv f(\omega) = f(\omega(x, y)). \tag{5.11}$$

Очевидно, що інтегрувальні множники  $\mu(x)$  та  $\mu(y)$ , визначені формулами (5.8), (5.9), є окремими випадками стосовно випадку 3.

**Приклад 2.** Знайти інтегрувальний множник рівняння  $(2xy^2-y)\,dx+(y^2+x+y)\,dy=0$  та зінтегрувати його. **Розв'язання.** Очевидно, що  $\frac{\partial M}{\partial y}\neq \frac{\partial N}{\partial x}$ . Оскільки

$$-\frac{1}{M} \cdot \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right) = \frac{4xy - 1 - 1}{y - 2xy^2} = -\frac{2}{y} \equiv \psi(y),$$

то, скориставшись формулою (5.9), знаходимо інтегрувальний множник:

$$\mu(y) = e^{-2\int \frac{dy}{y}} = e^{-2\ln|y|} = y^{-2}.$$

Якщо помножити обидві частини заданого рівняння на  $\mu(y) = y^{-2}$ , то одержуємо рівняння у повних диференціалах  $(2x - 1/y) dx + (1 + x/y^2 + 1/y) dy = 0$ .

Справді,

$$\left(2x - \frac{1}{y}\right)dx + \left(1 + \frac{x}{y^2} + \frac{1}{y}\right)dy = d\left(x^2 - \frac{x}{y} + y + \ln|y|\right),$$

а отже, загальним інтегралом  $\varepsilon$ 

$$x^2 - x/y + y + \ln|y| = C$$
.

**Приклад 3.** Знайти інтегрувальний множник  $\mu(xy)$  рівняння  $(2x^3y^2-y) dx + (2x^2y^3-x) dy = 0$ .

**Розв'язання.** Оскільки  $\omega = xy$ , то згідно з (5.10)

$$\psi(xy) = \frac{\frac{\partial}{\partial y} (2x^3y^2 - y) - \frac{\partial}{\partial x} (2x^2y^3 - x)}{(2x^2y^3 - x)y - (2x^3y^2 - y)x} = \frac{4xy(x^2 - y^2)}{2x^2y^2(y^2 - x^2)} = -\frac{2}{xy}.$$

Тоді на підставі (5.11) маємо

$$\mu(xy) = \mu(\omega) = e^{\int \frac{-2d\omega}{\omega}} = \frac{1}{\omega^2} = \frac{1}{(xy)^2}.$$

Пропонуємо читачам переконатись, що інтегрувальний множник знайдено правильно, і за його допомогою зінтегрувати задане рівняння.  $\blacksquare$ 

Замість того, щоб користуватись складними для запам'ятовування формулами (5.8) - (5.11), можна шукати інтегрувальний множник, повторюючи міркування, наведені для випадків 1-3.

Знаючи інтегрувальний множник, можна знайти не тільки загальний інтеграл диференціального рівняння, але й усі його особливі розв'язки. Справді, нехай  $\mu=\mu(x,y)$  – інтегрувальний множник рівняння (5.1), тобто  $dU=\mu\left(M\,dx+N\,dy\right)$ . Тоді

$$\frac{1}{\mu}dU = M dx + N dy = 0 \quad \Rightarrow \quad dU = 0 \quad \text{afo} \quad \frac{1}{\mu} = 0.$$

Перше з одержаних рівнянь визначає загальний інтеграл рівняння (5.1) U=C, а друге— може привести до особливого розв'язку, яким може бути тільки такий розв'язок, вздовж якого інтегрувальний множник перетворюється в безмежність.

Звідси одержуємо *правило знаходження особливих розв'язків*:

- знайти лінії, вздовж яких функція  $\mu$  перетворюється в  $\infty$ ;
- перевірити, чи є знайдені лінії інтегральними кривими;
- перевірити, чи містяться знайдені розв'язки у формулі загального розв'язку.

Ті із знайдених розв'язків, які не містяться в загальному розв'язку, будуть особливими.

**3.** Теореми про існування, неєдиність та загальний вигляд інтегрувального множника. З'ясуємо деякі властивості інтегрувального множника і наведемо один загальний метод знаходження інтегрувального множника, який ґрунтується на використанні цих властивостей.

Оскільки функції M(x,y), N(x,y) неперервні разом зі своїми першими частинними похідними у деякій області G і у жодній точці цієї області не перетворюються в нуль, а інтегрувальний множник  $\mu(x,y)$  не перетворюється в нуль і має неперервні частинні похідні першого порядку, то у кожній точці області G

маємо єдиність розв'язку задачі Коші і, крім того, інтеграл U(x,y), який відповідає інтегрувальному множнику  $\mu(x,y)$ , має неперервні частинні похідні другого порядку. Це твердження випливає з того, що якщо  $dU = \mu \cdot (M(x,y) \, dx + N(x,y) \, dy)$ , то

$$\frac{\partial U}{\partial x} = \mu M, \quad \frac{\partial U}{\partial y} = \mu N,$$

і оскільки праві часини мають неперервні частинні похідні за змінними x і y, то похідні від лівих частин також існують і неперервні.

Доведемо, що за деяких умов, які гарантують існування загального інтегралу рівняння (5.1), існує також інтегрувальний множник цього рівняння.

**Теорема 1.** Якщо рівняння (5.1) має загальний інтеграл

$$U(x,y) = C, (5.12)$$

де функція U(x,y) — двічі неперервно диференційовна, то це рівняння має також інтегрувальний множник.

**Доведення.** Оскільки  $dU\equiv 0$ , тобто  $\frac{\partial U}{\partial x}\,dx+\frac{\partial U}{\partial y}\,dy\equiv 0$ , де dy визначається рівнянням (5.1), то dx і dy задовольняють систему рівнянь

$$\begin{cases} \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy = 0, \\ M dx + N dy = 0. \end{cases}$$

Оскільки диференціал незалежної змінної dx є довільним, то існує ненульовий розв'язок отриманої лінійної однорідної системи. Тому

$$\begin{vmatrix} \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} \\ M & N \end{vmatrix} \equiv 0 \quad \Rightarrow \quad \frac{1}{M} \frac{\partial U}{\partial x} = \frac{1}{N} \frac{\partial U}{\partial y} \equiv \mu(x, y). \tag{5.13}$$

Звідси  $\frac{\partial U}{\partial x} = \mu M$ ,  $\frac{\partial U}{\partial y} = \mu N$ , а отже,

$$\mu(M dx + N dy) = \mu M dx + \mu N dy = \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy = dU,$$

тобто після множення на функцію  $\mu$  з формули (5.13) ліва частина рівняння (5.1) є повним диференціалом функції U. Це й означає, що  $\mu$  є інтегрувальним множником рівняння (5.1).  $\blacktriangleright$ 

З означення інтегрувального множника  $\mu$  рівняння (5.1) випливає, що функція  $C\mu$  для довільного C також є інтегрувальним множником цього рівняння. З наступної теореми випливає, що існують інтегрувальні множники рівняння (5.1) більш загального вигляду, ніж  $C\mu$ .

**Теорема 2.** Якщо U(x,y) = C – загальний інтеграл рівняння (5.1), а  $\mu_0(x,y)$  – його інтегрувальний множник, то існує безліч інтегрувальних множників цього рівняння, які виражаються формулою

$$\mu(x,y) = \mu_0(x,y)\varphi(U(x,y)), \tag{5.14}$$

 $de\ \varphi$  – довільна функція, яка не дорівнює тотожно нулю і має неперервну похідну.

**Доведення.** Помножимо ліву частину рівняння (5.1) на функцію (5.14). Тоді

$$\mu_0 \varphi(U) \cdot (Mdx + Ndy) = \varphi(U) \cdot (\mu_0 (Mdx + Ndy)) =$$
$$= \varphi(U) dU = d \left( \int \varphi(U) dU \right),$$

тобто ліва частина рівняння (5.1) є повним диференціалом функції  $\int \varphi(U) \, dU$ . Отже, кожна функція  $\mu$ , визначена формулою (5.14), є інтегрувальним множником рівняння (5.1).  $\blacktriangleright$ 

Формула (5.14) містить у собі безліч інтегрувальних множників, породжених  $\mu_0$  і відповідним йому інтегралом. Виникає питання: чи всі інтегрувальні множники містяться у цій формулі? Відповідь на це питання дає така теорема, яку наведемо без доведення (доведення цієї теореми можна знайти, наприклад, у [4, с. 110–111]).

**Теорема 3.** Два довільні інтегрувальні множники  $\mu_1(x,y)$  і  $\mu_2(x,y)$  рівняння (5.1) пов'язані співвідношенням

$$\mu_2(x,y) = \mu_1(x,y) \varphi(U(x,y)).$$
 (5.15)

Теорему 3 можна використати для практичного відшукання інтегрувального множника рівняння (5.1). Припустимо, що це

рівняння можна записати у вигляді

$$(M_1 dx + N_1 dy) + (M_2 dx + N_2 dy) = 0,$$

причому для кожної групи можна знайти інтегрувальний множник. Нехай  $\mu_1$  і  $U_1=U_1(x,y)$  інтегрувальний множник і загальний інтеграл рівняння

$$M_1 dx + N_1 dy = 0,$$

а  $\mu_2$  і  $U_2 = U_2(x,y)$  — інтегрувальний множник і загальний інтеграл рівняння

$$M_2 dx + N_2 dy = 0.$$

Тоді згідно з (5.15) всі інтегрувальні множники першої групи містяться у формулі  $\mu=\mu_1\varphi(U_1)$ , а всі інтегрувальні множники другої групи – у формулі  $\mu=\mu_2\psi(U_2)$ . Якщо вдасться вибрати функції  $\varphi$  і  $\psi$  так, щоб

$$\mu_1 \varphi(U_1) = \mu_2 \psi(U_2),$$
 (5.16)

то функція  $\mu = \mu_1 \varphi(U_1) = \mu_2 \psi(U_2)$  буде інтегрувальним множником усього рівняння (5.1).

Часто вдається розбити рівняння на дві групи, у кожній з яких є рівняння з відокремлюваними змінними. Для рівняння з відокремлюваними змінними

$$M_1(x)N_1(y) dx + M_2(x)N_2(y) dy = 0$$

інтегрувальним множником, зокрема, є функція  $\frac{1}{M_2(x)N_1(y)}$ .

**Приклад 4.** Знайти інтегрувальний множник рівняння  $(y/x + 3x^2) dx + (1 + x^3/y) dy = 0.$ 

Розв'язання. Розіб'ємо ліву частину рівняння на дві групи:

$$\left(\frac{y}{x}dx + dy\right) + \left(3x^2 dx + \frac{x^3}{y} dy\right) = 0$$

і знайдемо для рівнянь

$$\frac{y}{x} dx + dy = 0$$

i

$$3x^2 dx + \frac{x^3}{y} dy = 0$$

інтегрувальні множники і відповідні інтеграли:

$$\mu_1 = x$$
,  $U_1 = xy$ ;  $\mu_2 = y$ ,  $U_2 = x^3y$ .

З (5.16) маємо, що  $x\varphi(xy)=y\psi(x^3y)$ . Візьмемо  $\varphi(U)=U^2,$   $\psi(U)=U,$  тоді  $x(xy)^2=y(x^3y)=x^3y^2.$  Отже,  $\mu(x,y)=x^3y^2.$ 

**Рекомендована література**: [4, с. 96 – 112], [5, с. 86 – 96], [6, с. 89 – 101], [8, с. 46 – 57], [15, с. 33 – 41].

#### Питання до лекції 5

- 1. Якими повинні бути функції M(x,y) і N(x,y), щоб рівняння M(x,y)dx+N(x,y)dy=0 було рівнянням у повних диференціалах? Як формулюється необхідна і достатня ознака того, щоб це рівняння було у повних диференціалах?
- 2. Як зінтегрувати рівняння у повних диференціалах? Який вигляд має загальний інтеграл такого рівняння?
- 3. Що називають інтегрувальним множником? Наведіть формули для знаходження інтегрувальних множників вигляду  $\mu(x)$ ,  $\mu(y)$ ,  $\mu(\omega(x,y))$ .
- 4. Як знайти особливі розв'язки рівняння, для якого  $\varepsilon$  відомим його інтегрувальний множник?
- 5. Чи кожне диференціальне рівняння M(x,y)dx + N(x,y)dy = 0 має інтегрувальний множник?
- 6. Яким співвідношенням пов'язані два інтегрувальні множники  $\mu_1$  і  $\mu_2$  рівняння M(x,y)dx+N(x,y)dy=0?

## Вправи до лекції 5

1. Серед наведених рівнянь відшукайте рівняння у повних диференціалах та зінтегруйте його:

a) 
$$(ye^x - e^y)dx = (xe^y - e^x)dy$$
; 6)  $3x^2e^ydx + (x^3e^y - x)dy = 0$ ;  
B)  $(y\sin 2x + x)dx + (y^2 - \cos 2x)dy = 0$ .

2. Знайдіть інтегрувальний множник лінійного неоднорідного рівняння y' + p(x)y = q(x) та розв'яжіть це рівняння за допомогою цього множника (метод Ейлера).

3. Зінтегруйте рівняння за допомогою інтегрувального множника  $\mu(\omega)$ :

a) 
$$\left(4xy - \frac{y^2}{x^2} + 3\right)dx + \left(x^2 - \frac{2y}{x}\right)dy = 0, \quad \omega = x;$$
  
6)  $(3x^2 - 1)dx + \frac{2x^3 - 2x + 3y}{y}dy = 0, \quad \omega = y;$   
B)  $(3y - 2x^2y^2)dx = (x^3y - x)dy, \quad \omega = xy.$ 

4. Знайдіть інтегрувальний множник рівняння, використовуючи метод розбиття на дві частини (п. 3):

a) 
$$y(x+y^2)dx + x^2(y-1)dy = 0$$
; 6)  $(x^2 - y)dx + x(y+1)dy = 0$ .

# Лекція 6. Неявні диференціальні рівняння першого порядку

#### План

- 1. Основні означення й поняття.
- 2. Задача Коші. Класифікація розв'язків.
- 3. Рівняння степеня n.
- 1. Основні означення й поняття. Неявним диференціальним рівнянням першого порядку (диференціальним рівнянням першого порядку, не розв'язаним відносно похідної) називають співвідношення вигляду

$$F(x, y, y') = 0, (6.1)$$

де функція F(x,y,z) неперервна в деякій області  $D \subset \mathbf{R}^3$ .

Функцію y=y(x), яка визначена і неперервно диференційовна на інтервалі (a,b), називають **розв'язком** рівняння (6.1), якщо на цьому інтервалі вона перетворює його у тотожність.

Якщо рівняння (6.1) можна розв'язати через елементарні функції відносно y', то одержимо одне або декілька рівнянь, розв'язаних відносно похідної:

$$y' = f_k(x, y), \quad k = 1, 2, \dots,$$
 (6.2)

де  $f_k(x,y)$  – дійсні функції, тобто інтегрування рівняння (6.1) зводиться до інтегрування кожного з рівнянь (6.2), основні типи яких розглядались на лекціях 2 – 5.

Приклад 1. Зінтегрувати рівняння  $y'^2 - 9\sqrt[3]{y^4} = 0$ . **Розв'язання.** Задане рівняння розпадається на два рівняння з відокремлюваними змінними:  $y' = 3\sqrt[3]{y^2}$  і  $y' = -3\sqrt[3]{y^2}$ .

Загальним розв'язком першого з них є  $y=(x+C)^3$ , а другого –  $y=-(x+C)^3$ . З геометричної точки зору це означає, що кожна з ліній  $y=(x+C)^3$  та  $y=-(x+C)^3$  є інтегральною кривою. Окрім того, розв'язком рівняння є y=0 (рис. 6.1).



Задане рівняння має також безліч розв'язків, які можна «склеїти» з частин наведених вище розв'язків. Наприклад, такими розв'язками будуть функції

$$y = \begin{cases} 0, & \text{якщо } x \leqslant 1, \\ (x-1)^3, & \text{якщо } x > 1, \end{cases}$$
 
$$y = \begin{cases} -(x+1)^3, & \text{якщо } x < -1, \\ 0, & \text{якщо } -1 \leqslant x \leqslant 1, \\ (x-1)^3, & \text{якщо } x > 1, \end{cases}$$

графіки яких зображені на рис. 6.2 і 6.3 відповідно. Однак надалі такі розв'язки ми не розглядатимемо.



**Відповідъ:** 
$$y = (x + C)^3$$
,  $y = -(x + C)^3$ ,  $y = 0$ .

Неявне диференціальне рівняння (6.1), так само, як і рівняння, розв'язане відносно похідної, визначає на площині Oxy деяке поле напрямів. Але тепер, як правило, у заданій точці  $(x_0, y_0)$  матимемо не один, а декілька напрямів поля, бо, розв'язуючи рівняння  $F(x_0, y_0, y') = 0$  відносно y', зазвичай одержуватимемо декілька дійсних розв'язків. Наприклад, рівняння з прикладу 1 визначає у кожній точці  $(x_0, y_0)$ , де  $y_0 > 0$ , два напрями поля:  $y' = 3\sqrt[3]{y_0^2}$  і  $y' = -3\sqrt[3]{y_0^2}$ . У кожній точці  $(x_0, 0)$  осі Ox це рівняння визначає тільки один напрям поля:  $y'|_{(x_0, 0)} = 0$ .

**2.** Задача Коші. Класифікація розв'язків. Задача Коші для рівняння (6.1) формулюється так само, як і для рівняння, розв'язаного відносно похідної: потрібно знайти розв'язок y = y(x) рівняння (6.1), який задовольняє початкову умову

$$y(x_0) = y_0. (6.3)$$

При цьому, якщо розв'язків, які задовольняють початкову умову (6.3), не більше, ніж кількість напрямів поля, визначеного рівнянням (6.1) у цій точці, тобто не більше кількості розв'язків  $y'_0$  рівняння  $F(x_0, y_0, y') = 0$ , то кажуть, що задача Коші (6.1), (6.3) має єдиний розв'язок. В інакшому випадку вважають, що єдиність розв'язку цієї задачі порушується.

Нехай  $y'_0$  – один з дійсних коренів рівняння (6.1). З'ясуємо умови, за яких існує єдина інтегральна крива цього рівняння,

що проходить через точку  $(x_0, y_0)$ , причому дотична до неї у цій точці утворює з додатнім напрямом Ox кут  $\alpha_0$ , тангенс якого дорівнює  $y_0'$ .

**Теорема 1.** *Нехай ліва частина рівняння* (6.1) *задовольняє такі умови*:

- 1) функція F(x,y,y') визначена і неперервна разом з частинними похідними  $\frac{\partial F}{\partial y}$ ,  $\frac{\partial F}{\partial y'}$  в деякому замкненому околі точки  $(x_0,y_0,y_0')$ ;
  - 2)  $F(x_0, y_0, y'_0) = 0;$
  - 3)  $\frac{\partial F}{\partial y'}\Big|_{(x_0,y_0,y_0')} \neq 0.$

Тоді рівняння (6.1) має единий розв'язок y = y(x), визначений і неперервно диференційовний у деякому околі точки  $x = x_0$ , який задовольняє початкову умову  $y(x_0) = y_0$ , і такий, що  $y'(x_0) = y'_0$ .

**Доведення.** Умови, накладені на функцію F(x,y,y'), гарантують існування неявної функції двох змінних. Тому рівняння (6.1) у деякому замкненому околі  $\overline{D}$  точки  $(x_0,y_0,y'_0)$  визначає y' як однозначну функцію

$$y' = f(x, y), \tag{6.4}$$

причому функція f(x,y) – неперервна разом із своїми частинними похідними першого порядку, причому

$$f(x_0, y_0) = y_0'.$$

Отже, f(x,y) – неперервна функція в  $\overline{D}$  і в цій замкненій області має обмежену похідну за змінною y. Тоді права частина рівняння (6.4) задовольняє умови теореми Коші про існування та єдиність розв'язку. Тому на деякому інтервалі існує єдиний розв'язок y=y(x) рівняння (6.4), а отже, і рівняння (6.1) такий, що

$$y(x_0) = y_0.$$

Покажемо тепер, що  $y'(x_0)=y_0'$ . Якщо в рівності (6.4) покласти  $x=x_0$ , то одержимо

$$y'(x_0) = f(x_0, y(x_0)) = f(x_0, y_0) = y'_0.$$

Припустимо, що рівняння (6.1) в околі точки  $(x_0, y_0)$  може бути розв'язане відносно похідної, тобто розпадається на сукупність рівнянь (6.2). Нехай кожне з цих рівнянь має загальний розв'язок

$$y = \varphi_k(x, C), \quad k = 1, 2, \dots,$$
 (6.5)

або загальний інтеграл

$$\Phi_k(x,y) = C, \quad k = 1, 2, \dots,$$
 (6.6)

де C — довільна стала. Тоді сукупність загальних розв'язків (6.5) (або сукупність загальних інтегралів (6.6)) називають загальним інтегралом рівняння (6.1).

**Частинним розв'язком** рівняння (6.1) називають функцію  $y=y(x,C_0)$ , утворену з якогось загального розв'язку (6.5) при певному значенні сталої  $C=C_0$ .

**Особливим розв'язком** називають розв'язок, у кожній точці якого порушується умова його єдиності. Особливий розв'язок не можна отримати з формули загального розв'язку (загального інтеграла) диференціального рівняння при жодному конкретному значенні сталої C.

З теореми 1 випливає, що особливі розв'язки можуть існувати лише у тих точках, де порушуються умови цієї теореми. Тобто, якщо F(x,y,y') неперервна і має неперервні частинні похідні першого порядку, то особливі розв'язки потрібно шукати серед тих точок, координати яких задовольняють систему

$$\begin{cases} F(x, y, p) = 0, \\ F'_p(x, y, p) = 0, \end{cases} \quad p = y'.$$

Якщо ця система сумісна, то виключаючи параметр p, отримаємо деяку множину точок  $\varphi(x,y)=0$ , яка може бути особливим розв'язком рівняння (6.1). Однак потрібно ще перевірити, чи геометричне місце точок  $\varphi(x,y)=0$  є розв'язком заданого рівняння, і чи у кожній його точці порушується властивість єдиності розв'язку (тобто чи знайдений розв'язок справді є особливим).

Крім наведеного способу знаходження особливого розв'язку диференціального рівняння (6.1) існує інший спосіб, що ґрунтується на понятті обвідної. Нагадаємо, що *обвідною* називають

інтегральну криву, яка у кожній точці має спільну дотичну з однією з інтегральних кривих, але на жодній ділянці не збігається з жодною з інтегральних кривих.

Виведемо необхідні умови існування обвідної. Нехай

$$\Phi(x, y, C) = 0 \tag{6.7}$$

 $\epsilon$  загальним розв'язком диференціального рівняння (6.1) і сім'я кривих (6.7) має обвідну, рівняння якої запишемо у параметричній формі

$$x = x(t), \quad y = y(t), \tag{6.8}$$

де x(t), y(t) – диференційовні функції на деякому проміжку  $(\alpha, \beta)$ . Оскільки обвідна для різних t дотикається до різних кривих із сім'ї (6.7), то величину C можна розглядати як функцію змінної t, тобто C = C(t). Припустимо, що  $C'(t) \neq 0$ ,  $t \in (\alpha, \beta)$ , оскільки інакше обвідна у кожній своїй точці буде дотикатися до однієї й тієї самої інтегральної кривої з сім'ї (6.7), а тому збігатиметься з цією кривою.

Підставимо (6.8) у (6.7) та здиференціюємо отриману тотожність  $\Phi(x(t), y(t), C(t)) = 0$  за змінною t:

$$\Phi'_x x'(t) + \Phi'_y y'(t) + \Phi'_C C'(t) = 0.$$
(6.9)

Кутовий коефіцієнт k дотичної до кривої із сім'ї (6.7) визначається формулою

$$k = -\frac{\Phi_x'}{\Phi_y'} \quad (\Phi_y' \neq 0),$$

а кутовий коефіцієнт  $k_1$  дотичної до обвідної як

$$k_1 = \frac{y'(t)}{x'(t)}.$$

Оскільки  $k=k_1$ , то

$$\Phi_x'x'(t) + \Phi_y'y'(t) = 0.$$

Тоді з (6.9) маємо

$$\Phi_C'(x(t), y(t), C(t)) = 0,$$

бо  $C'(t)\neq 0$ . Отже, якщо сім'я кривих (6.7) має обвідну і в кожній точці кривих з цієї сім'ї  $\Phi_x'(x,y,C)\neq 0$  або  $\Phi_y'(x,y,C)\neq 0$ , то умови

$$\begin{cases}
\Phi(x(t), y(t), C(t)) = 0, \\
\Phi'_{C}(x(t), y(t), C(t)) = 0
\end{cases}$$
(6.10)

є необхідними для того, щоб крива (6.8) була обвідною для сім'ї кривих (6.7).

Покажемо, що умови (6.10) у випадку, коли у кожній точці кривої (6.8)  $\Phi'_x$  і  $\Phi'_y$  одночасно не дорівнюють нулю, є також і достатніми для того, щоб ця крива була обвідною для сім'ї кривих (6.7).

Справді, нехай, наприклад,  $\Phi_y'(x(t), y(t), C(t)) \neq 0$ . Тоді, диференціюючи першу тотожність системи (6.10) за змінною t, матимемо (6.9). Звідси, згідно з другим рівнянням системи (6.10),

$$\Phi_x'x'(t) + \Phi_y'y'(t) = 0.$$

Отже,

$$\frac{y'(t)}{x'(t)} = -\frac{\Phi_x'}{\Phi_y'},$$

звідки й випливає потрібне твердження. Таким чином, одержали таке *правило відшукання обвідної*:

1) скласти систему рівнянь

$$\begin{cases}
\Phi(x, y, C) = 0, \\
\Phi'_C(x, y, C) = 0,
\end{cases}$$
(6.11)

де  $\Phi(x,y,C)=0$  – загальний інтеграл диференціального рівняння (6.1);

- 2) із системи (6.11) за допомогою виключення параметра C знайти криву  $\varphi(x,y)=0$ ;
- 3) з кривої  $\varphi(x,y)=0$  вилучити точки, де  $\Phi'_x$  і  $\Phi'_y$  одночасно дорівнюють нулю. Решта кривої  $\varphi(x,y)=0$  і буде обвідною заданої сім'ї інтегральних кривих.

**3. Рівняння степеня** *n.* Розглянемо деякі типи неявних диференціальних рівнянь вигляду (6.1), для яких існують загальні методи розв'язання. Диференціальне рівняння вигляду

$$(y')^n + a_1(x,y)(y')^{n-1} + \ldots + a_{n-1}(x,y)y' + a_n(x,y) = 0$$
 (6.12)

називають *рівнянням першого порядку степеня п.* Як відомо з алгебри, рівняння (6.12) визначає n значень для y'. Якщо не враховувати комплексні корені, то матимемо m ( $m \le n$ ) диференціальних рівнянь першого порядку, розв'язаних відносно похідної:

$$y' = f_1(x, y), y' = f_2(x, y), \dots, y' = f_m(x, y).$$
 (6.13)

Сукупність загальних розв'язків  $y=\varphi_k(x,C)$  або загальних інтегралів  $\Phi_k(x,y,C)=0,\ k=1,2,\ldots,m,$  рівнянь (6.13) є загальним інтегралом рівняння (6.12). Його можна записати також у вигляді

$$(y - \varphi_1(x, C)) \cdot (y - \varphi_2(x, C)) \cdot \dots \cdot (y - \varphi_m(x, C)) = 0$$

або

$$\Phi_1(x, y, C) \cdot \Phi_2(x, y, C) \cdot \ldots \cdot \Phi_m(x, y, C) = 0.$$

Якщо хоча б одне з рівнянь (6.13) має особливі розв'язки, то вони будуть також особливими розв'язками рівняння (6.12).

#### Приклад 2. Зінтегрувати рівняння

$$x^2y'^2 + 2xyy' + y^2 - 4x = 0.$$

**Розв'язання.** Маємо квадратне рівняння відносно y'. Його дискримінант  $D/4 = x^2y^2 - x^2(y^2 - 4x) = 4x^3$ . Розв'язуючи квадратне рівняння, одержуємо два лінійні диференціальні рівняння (лекція 4):

$$y' = -\frac{y}{x} + \frac{2}{\sqrt{x}}$$
 i  $y' = -\frac{y}{x} - \frac{2}{\sqrt{x}}$ .

Зінтегруємо перше з них, наприклад, методом Лагранжа. Загальним розв'язком відповідного однорідного рівняння

 $y' = -\frac{y}{x}$  є функція  $y = \frac{C}{x}$ . Отже, розв'язок лінійного неоднорідного рівняння шукаємо у вигляді  $y = \frac{C(x)}{x}$ . Підставивши цю функцію у рівняння, одержуємо:

$$\frac{C'(x)}{x} - \frac{C(x)}{x^2} = -\frac{C(x)}{x^2} + \frac{2}{\sqrt{x}} \quad \Rightarrow \quad C'(x) = 2\sqrt{x} \quad \Rightarrow$$

$$C(x) = \frac{4}{3}x\sqrt{x} + C \quad \Rightarrow \quad y = \frac{4}{3}\sqrt{x} + \frac{C}{x}.$$

Аналогічно можна показати, що загальним розв'язком рівняння  $y'=-\frac{y}{x}-\frac{2}{\sqrt{x}}$  є  $y=-\frac{4}{3}\sqrt{x}+\frac{C}{x}$ , де C – довільна стала. Відповідь:  $y=\pm\frac{4}{3}\sqrt{x}+\frac{C}{x}$ .

Легко інтегрується *рівняння, яке містить тільки похідну*, тобто рівняння вигляду

$$F(y') = 0. (6.14)$$

Це рівняння може, зокрема, бути окремим випадком рівняння (6.12). Нехай рівняння (6.14) має деяку (скінченну або нескінченну) кількість дійсних розв'язків  $y'=k_j,\,j=1,2,\ldots$ , де  $k_j$  сталі. Далі, оскільки

$$y' = k_j \quad \Rightarrow \quad y = k_j x + C \quad \Rightarrow \quad k_j = \frac{y - C}{x},$$

то одержуємо загальний інтеграл цього рівняння

$$F\left(\frac{y-C}{x}\right) = 0. ag{6.15}$$

**Приклад 3.** Зінтегрувати рівняння  $y'^3 - 5y'^2 + 7 = 0$ . **Розв'язання.** Згідно з формулою (6.15) одержуємо загальний інтеграл

$$\left(\frac{y-C}{x}\right)^3 - 5\left(\frac{y-C}{x}\right)^2 + 7 = 0 \implies (y-C)^3 - 5x(y-C)^2 + 7x^3 = 0. \blacksquare$$

**Рекомендована література**: [1, с. 71 – 78], [3, с. 41 – 47], [6, с. 125 – 126, 131 – 150], [8, с. 58 – 86], [15, с. 42 – 49].

#### Питання до лекції 6

- 1. Який загальний вигляд має неявне диференціальне рівняння першого порядку? Яку функцію називають розв'язком такого рівняння?
- 2. Як побудувати поле напрямів, задане неявним диференціальним рівнянням першого порядку?
- 3. Як формулюється задача Коші для неявного диференціального рівняння першого порядку? Коли розв'язок цієї задачі єдиний?
- 4. Як формулюється теорема про існування єдиного розв'язку задачі Коші для неявного диференціального рівняння першого порядку?
- 5. Яке неявне диференціальне рівняння називають рівнянням першого порядку степеня n? Як воно інтегрується?
  - 6. Який вигляд має загальний інтеграл рівняння F(y') = 0?

#### Вправи до лекції 6

1. Зінтегруйте рівняння та виділіть інтегральні криві, які проходять через задану точку:

a) 
$$y'^2 = 4y$$
,  $M(1,0)$ ; 6)  $yy'^2 - (xy+1)y' + x = 0$ ,  $M(1,1)$ .

2. Знайдіть за виглядом рівнянь криві, підозрілі на особливі розв'язки, і перевірте, чи будуть вони особливими розв'язками:

a) 
$$y'^2 = y^2$$
; 6)  $y'^2 - 2yy' + x^2 = 0$ .

3. Зінтегруйте рівняння, розв'язавши їх спочатку відносно похілної:

a) 
$$y'^2 - (2x + y)y' + 2xy = 0$$
; 6)  $y'^3 - y'e^{4x} = 0$ .

4. Зінтегруйте рівняння:

a) 
$$e^{y'} + 2y' = 1$$
; 6)  $y'^3 + 2y'^2 - y' + 3 = 0$ .

#### Лекція 7. Неявні диференціальні рівняння першого порядку (продовження)

#### План

- 1. Метод введення параметра.
- 2. Рівняння Лагранжа та рівняння Клеро.
- 3. Задача про ізогональні траєкторії.

**1. Метод введення параметра.** Нехай неявне диференціальне рівняння

$$F(x, y, y') = 0 (7.1)$$

можна розв'язати відносно y, тобто

$$y = f(x, y'). \tag{7.2}$$

Тоді можна використати *метод* введення параметра. Якщо позначити y' = p(x), то з (7.2) маємо співвідношення

$$y = f(x, p), \tag{7.3}$$

диференціюючи яке, одержуємо:

$$dy = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial p}dp \quad \Rightarrow \quad y'dx = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial p}dp \quad \Rightarrow$$

$$pdx = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial p}dp. \tag{7.4}$$

Припустимо, що вдалось знайти загальний розв'язок  $x=\varphi(p,C)$  рівняння (7.4). Тоді, підставляючи його у (7.3), одержуємо загальний розв'язок рівняння (7.2) у параметричній формі

$$x = \varphi(p, C), \quad y = f(\varphi(p, C), p).$$

Якщо вдасться знайти загальний розв'язок рівняння (7.4) у вигляді p = h(x,C), то, підставивши його у (7.3), отримаємо загальний розв'язок рівняння (7.2) у явному вигляді y = f(x,h(x,C)).

Якщо рівняння (7.4) має особливий розв'язок  $p=\psi(x)$ , то  $y=f\left(x,\psi(x)\right)$  може бути особливим розв'язком рівняння (7.2).

**Приклад 1.** Зінтегрувати рівняння  $y = {y'}^2 - 3xy' + 3x^2$ . **Розв'язання.** Нехай y' = p. Тоді

$$y = p^2 - 3xp + 3x^2. (7.5)$$

Здиференціюємо (7.5), враховуючи, що dy = y'dx = pdx:

$$dy = 2pdp - 3xdp - 3pdx + 6xdx \Rightarrow pdx = (2p - 3x)dp - (3p - 6x)dx \Rightarrow (2p - 3x)dp - 2(2p - 3x)dx = 0 \Rightarrow (2p - 3x)(dp - 2dx) = 0 \Rightarrow dp = 2dx \text{ afo } 2p - 3x = 0.$$

Отже, одержали два рівняння. З першого з них знаходимо p=2x+C. Підставляючи знайдене значення p у (7.5), одержуємо загальний розв'язок

$$y = (2x + C)^2 - 3x(2x + C) + 3x^2 \Rightarrow y = x^2 + Cx + C^2$$

3 рівняння 2p-3x=0 знаходимо p=3x/2, а тому  $y=3x^2/4$ . Цей розв'язок особливий.

**Bidnosids:**  $y = x^2 + Cx + C^2$ ,  $y = 3x^2/4$ .

Нехай рівняння (7.1) можна розв'язати відносно x, тобто воно має вигляд

$$x = f(y, y'). \tag{7.6}$$

Це рівняння також можна розв'язувати **методом введен- ня параметра**. Позначимо y'=p(y). Тоді, враховуючи, що  $dx=\frac{dy}{y'},$  маємо

$$x = f(y, p) \quad \Rightarrow \quad dx = \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial p} dp \quad \Rightarrow$$

$$\frac{dy}{p} = \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial p} dp. \tag{7.7}$$

Припустимо, що знайдено загальний розв'язок  $y = \varphi(p, C)$  рівняння (7.7). Підставляючи його у x = f(y, p), одержуємо загальний розв'язок рівняння (7.6) у параметричній формі

$$x = f(\varphi(p, C), p), \quad y = \varphi(p, C).$$

Якщо вдасться знайти загальний розв'язок рівняння (7.7) у вигляді p = h(y, C), то матимемо загальний розв'язок рівняння (7.6) у явному вигляді x = f(y, h(y, C)).

Якщо рівняння (7.7) має особливий розв'язок  $p = \psi(y)$ , то  $x = f(y, \psi(y))$  може бути особливим розв'язком рівняння (7.6).

**Приклад 2.** Зінтегрувати рівняння  $x = y'^4 + 2y'$ . **Розв'язання.** Нехай y' = p. Тоді  $x = p^4 + 2p$ . Далі маємо:

$$dx = 4p^{3}dp + 2dp \implies \frac{dy}{p} = 4p^{3}dp + 2dp \implies$$
$$dy = (4p^{4} + 2p)dp \implies y = \frac{4p^{5}}{5} + p^{2} + C.$$

**Bidnosids:**  $x = p^4 + 2p, \ y = 4p^5/5 + p^2 + C.$ 

**2. Рівняння Лагранжа та рівняння Клеро.** Окремим випадком рівняння (7.2) є рівняння вигляду

$$y = x\varphi(y') + \psi(y'). \tag{7.8}$$

Якщо функція  $\varphi(y')$  тотожно не збігається з y', то (7.8) називають *рівнянням Лагранжа*. Як бачимо, рівняння Лагранжа лінійне відносно x і y.

Нехай y' = p. Тоді

$$y = x\varphi(p) + \psi(p). \tag{7.9}$$

Здиференціюємо (7.9), беручи до уваги, що dy = pdx:

$$dy = \varphi(p)dx + x\varphi'(p)dp + \psi'(p)dp \implies (p - \varphi(p))dx = (x\varphi'(p) + \psi'(p))dp \quad (p \neq \varphi(p)) \implies \frac{dx}{dp} - \frac{x\varphi'(p)}{p - \varphi(p)} = \frac{\psi'(p)}{p - \varphi(p)}.$$

Останнє рівняння є лінійним відносно функції x(p). Інтегруючи його за формулою (4.6) з лекції 4, одержимо  $x=\omega(p,C)$ , що разом з (7.9) визначатиме загальний розв'язок рівняння Лагранжа у параметричній формі.

Якщо рівняння  $p=\varphi(p)$  має дійсні корені  $p=p_i$ , то, підставляючи їх у рівняння (7.8), одержуємо  $y=x\varphi(p_i)+\psi(p_i)$ . Ці розв'язки рівняння Лагранжа (з геометричної точки зору прямі) можуть бути особливими.

**Приклад 3.** Зінтегрувати рівняння  $y = 2xy' - \ln y'$ . **Розв'язання.** Нехай y' = p. Тоді

$$y = 2xp - \ln p \quad \Rightarrow \quad dy = 2xdp + 2pdx - \frac{1}{p}dp \quad \Rightarrow$$
$$pdx = (2x - \frac{1}{p})dp + 2pdx \quad \Rightarrow \quad pdx + (2x - \frac{1}{p})dp = 0 \quad \Rightarrow$$
$$\frac{dx}{dp} + \frac{2}{p}x = \frac{1}{p^2} \quad (p \neq 0).$$

Розв'язуючи одержане лінійне рівняння (лекція 4), знаходимо, що  $x = (p+C)/p^2$ . Підставляючи цей вираз x у рівність

 $y = 2xp - \ln p$ , знаходимо, що  $y = 2(p + C)/p - \ln p$ . Отже, загальним розв'язком у параметричній формі є

$$x = \frac{p+C}{p^2}, \quad y = \frac{2(p+C)}{p} - \ln p.$$

Якщо p = 0, то підставляючи його у  $y = 2xp - \ln p$ , переконуємось, що ця функція не є розв'язком, бо ln 0 не існує.

**Bidnoside:**  $x = (p+C)/p^2$ ,  $y = 2xp - \ln p$ .

Розглянемо окремий випадок рівняння Лагранжа, коли  $\varphi(y') \equiv y'$ :

$$y = xy' + \psi(y'). (7.10)$$

Рівняння (7.10) називають *рівнянням Клеро*. Інтегруючи його за тією самою схемою, що і рівняння Лагранжа, маємо:

$$y' = p \quad \Rightarrow \quad y = xp + \psi(p) \quad \Rightarrow$$
$$pdx = xdp + pdx + \psi'(p)dp \quad \Rightarrow$$
$$dp \cdot (x + \psi'(p)) = 0 \quad \Rightarrow \quad dp = 0 \quad \text{afo} \quad x + \psi'(p) = 0.$$

З першого рівняння знаходимо p = C і, підставляючи у формулу  $y = xp + \psi(p)$ , одержуємо загальний розв'язок рівняння Клеро:

$$y = xC + \psi(C). \tag{7.11}$$

Легко бачити, що з геометричної точки зору загальний розв'язок рівняння Клеро є однопараметричною сім'єю прямих, а для його одержання потрібно у рівнянні (7.10) замінити похідну y' на сталу C.

3 рівняння  $x + \psi'(p) = 0$  знаходимо  $x = -\psi'(p)$ . Підставляючи цей вираз у формулу  $y = xp + \psi(p)$ , одержуємо, що  $y = \psi'(p)p + \psi(p)$ . Таким чином, маємо розв'язок

$$\begin{cases} x = -\psi'(p), \\ y = \psi'(p) \cdot p + \psi(p). \end{cases}$$
 (7.12)

Розв'язок (7.12) зазвичай є особливим, і у цьому випадку з геометричної точки зору маємо обвідну сім'ї (7.11). Справді, відшукуючи криву, підозрілу на обвідну сім'ї (7.11), за правилом, вказаним наприкінці першого пункту цієї лекції, маємо систему

$$\begin{cases} y = xC + \psi(C), \\ 0 = x + \psi'(C), \end{cases}$$

друге рівняння якої одержане з першого диференціюванням за параметром C. Звідси легко знаходимо

$$\begin{cases} x = -\psi'(C), \\ y = -\psi'(C) C + \psi(C), \end{cases}$$

тобто систему, яка відрізняється від (7.12) тільки позначенням параметра.

**Приклад 4.** Зінтегрувати рівняння  $y = xy' - y'^3$ . **Розв'язання.** Нехай y' = p. Тоді

$$y = xp - p^3$$
  $\Rightarrow$   $dy = xdp + pdx - 3p^2dp$   $\Rightarrow$   $(x - 3p^2)dp = 0$   $\Rightarrow$   $dp = 0$  afo  $x - 3p^2 = 0$ .

3 рівняння dp=0 знаходимо, що p=C. Підставляючи p=C у рівність  $y=xp-p^3$ , одержуємо загальний розв'язок заданого рівняння  $y=Cx-C^3$ .

Якщо  $x=3p^2$ , то  $y=3p^3-p^3=2p^3$ . Таким чином, особливим розв'язком є  $x=3p^2,\ y=2p^3$ . Виключивши звідси параметр p, одержуємо особливий розв'язок у явному вигляді  $y=\pm 2\sqrt{\frac{x^3}{27}}$  або в неявній формі  $27y^2=4x^3$ .

**Bidnoeids:**  $y = Cx - C^3$ ,  $27y^2 = 4x^3$ .

**3.** Задача про ізогональні траєкторії. Як ще один приклад одного з багатьох геометричних застосувань диференціальних рівнянь першого порядку, розглянемо задачу про ізогональні траєкторії.

Якщо крива  $L_1$  перетинає усі криві L заданої сім'ї під одним і тим самим кутом  $\alpha$ , то її називають *ізогональною трає-кторією* цієї сім'ї (рис. 7.1). Якщо, зокрема,  $\alpha = \frac{\pi}{2}$ , то ізогональну траєкторію називають *ортогональною*.

 $<sup>^{1)}</sup>$ Кутом між двома кривими у точці їх перетину називають кут між дотичними до них у цій точці.



Знайдемо сім'ю ізогональних траєкторій заданої однопараметричної сім'ї кривих

$$\Phi(x, y, C) = 0, \tag{7.13}$$

де C – параметр. Для цього спочатку складемо диференціальне рівняння сім'ї (7.13) (п. 3 лекції 1), виключивши параметр C з системи

$$\begin{cases} \Phi(x, y, C) = 0, \\ \frac{\partial \Phi(x, y, C)}{\partial x} + \frac{\partial \Phi(x, y, C)}{\partial y} \cdot y' = 0. \end{cases}$$

У результаті одержимо диференціальне рівняння сім'ї (7.13) вигляду

$$F(x, y, y') = 0. (7.14)$$

Тепер визначимо співвідношення між кутовими коефіцієнтами дотичних до кривої сім'ї (7.14) і до ізогональної траєкторії в точці їх перетину. Нехай  $M(x_1, y_1)$  – довільна точка ізогональної траєкторії,  $\varphi$  і  $\varphi_1$  – кути, які утворюють з віссю Ox дотичні до деякої кривої сім'ї (7.14) в точці M і до ізогональної траєкторії в цій самій точці відповідно (рис. 7.1). Тоді

$$\varphi_1 = \varphi + \alpha,$$

причому

$$\operatorname{tg}\varphi_1 = \frac{dy_1}{dx_1}, \quad \operatorname{tg}\varphi = \frac{dy}{dx}.$$

Припустимо спочатку, що  $\alpha \neq \frac{\pi}{2}$  і позначимо tg  $\alpha$  через k. Маємо  $\varphi = \varphi_1 - \alpha$ . Тому

$$tg \varphi = tg(\varphi_1 - \alpha) = \frac{tg \varphi_1 - tg \alpha}{1 + tg \alpha tg \varphi_1}$$

або

$$\frac{dy}{dx} = \frac{\frac{dy_1}{dx_1} - k}{1 + k\frac{dy_1}{dx_1}}. (7.15)$$

Рівність (7.15) встановлює шуканий зв'язок між напрямом дотичної в будь-якій точці M траєкторії  $L_1$  і напрямом дотичної до кривої L сім'ї (7.14), що проходить через цю точку.

Тоді диференціальне рівняння сім'ї ізогональних траєкторій має вигляд

$$F\left(x_1, y_1, \frac{\frac{dy_1}{dx_1} - k}{1 + k \frac{dy_1}{dx_1}}\right) = 0$$

або, перепозначивши  $x_1$  і  $y_1$  відповідно через x і y,

$$F\left(x, y, \frac{y' - k}{1 + ky'}\right) = 0. (7.16)$$

Зінтегрувавши рівняння (7.16), знайдемо шукану сім'ю ізогональних траєкторій.

Якщо  $\alpha = \frac{\pi}{2}$ , то

$$\operatorname{tg} \varphi = \operatorname{tg} \left( \varphi_1 - \frac{\pi}{2} \right) = -\operatorname{tg} \left( \frac{\pi}{2} - \varphi_1 \right) = -\operatorname{ctg} \varphi_1 = -\frac{1}{\operatorname{tg} \varphi_1},$$

а отже, замість (7.15) маємо співвідношення:

$$\frac{dy}{dx} = -\frac{1}{\frac{dy_1}{dx_1}}.$$

Замінивши в (7.14) y' на  $-\frac{1}{\frac{dy_1}{dx_1}}$ , отримуємо диференціальне рівняння сім'ї ортогональних траєкторій

$$F\left(x_1, y_1, -\frac{1}{\frac{dy_1}{dx_1}}\right) = 0$$

або, перепозначивши  $x_1$  і  $y_1$  через x і y,

$$F\left(x, y, -\frac{1}{y'}\right) = 0. \tag{7.17}$$

Зінтегрувавши рівняння (7.17), знайдемо шукану сім'ю ортогональних траєкторій.

**Приклад 5.** Скласти диференціальне рівняння ізогональних траєкторій сім'ї кіл  $x^2+y^2=C$ , що перетинають їх під кутом  $\alpha=\frac{\pi}{4}$ .

**Розв'язання.** Складемо диференціальне рівняння заданої сім'ї кривих. Позначимо  $\Phi(x,y,C)\equiv x^2+y^2-C$ , тоді  $\Phi'_x+\Phi'_yy'\equiv \equiv 2x+2yy'$ . Виключаючи параметр C з системи

$$\begin{cases} x^2 + y^2 = C, \\ 2x + 2yy' = 0, \end{cases}$$

одержуємо диференціальне рівняння x + yy' = 0.

З формули (7.16) випливає, що шуканим диференціальним рівнянням ізогональних траєкторій є

$$x + y\frac{y' - 1}{1 + y'} = 0 \quad \Rightarrow \quad x + xy' + yy' - y = 0 \quad \Rightarrow$$
$$x - y + (x + y)y' = 0. \quad \blacksquare$$

**Приклад 6.** Скласти диференціальне рівняння ортогональних траєкторій сім'ї кіл  $x^2 + y^2 = C$ .

**Розв'язання.** Диференціальне рівняння x + yy' = 0 заданої сім'ї кривих було одержане у попередньому прикладі. З формули (7.17) випливає, що шуканим диференціальним рівнянням ізогональних траєкторій є

$$x + y\left(-\frac{1}{y'}\right) = 0 \quad \Rightarrow \quad xy' = y. \quad \blacksquare$$

**Рекомендована література**: [2, с. 73 – 81, 106 – 112], [4, с. 125 – 147], [5, с. 112 – 131], [8, с. 66 – 76, 86 – 89], [15, с. 42 – 49].

#### Питання до лекції 7

- 1. Яка заміна використовується для інтегрування рівняння y = f(x, y')? Чи може це рівняння мати особливі розв'язки?
- 2. Яка заміна використовується для інтегрування рівняння x = f(y, y')?
- 3. Який вигляд має рівняння Лагранжа? Яку заміну використовують для інтегрування цього рівняння? Які криві можуть бути його особливими розв'язками?
- 4. Який вигляд має рівняння Клеро? Як знайти загальний і особливий розв'язки цього рівняння?
- 5. Що таке ізогональна траєкторія заданої сім'ї кривих на площині? Як побудувати диференціальне рівняння сім'ї ізогональних траєкторій?
- 6. Що таке ортогональна траєкторія заданої сім'ї кривих на площині? Як побудувати диференціальне рівняння сім'ї ортогональних траєкторій?

#### Вправи до лекції 7

1. Зінтегруйте рівняння:

a) 
$$y = (y'-1)e^{y'}$$
; 6)  $x({y'}^2-1) = 2y'$ .

2. Серед наведених рівнянь відшукайте рівняння Лагранжа та зінтегруйте його:

a) 
$$y' = 2xy - 3y'^2$$
; 6)  $y = 2xy' - 3y'^2$ ; B)  $y = xy' - 3y'^2$ .

3. Серед наведених рівнянь відшукайте рівняння Клеро та зінтегруйте його:

a) 
$$y' = 2xy + 3y'^2$$
; 6)  $y = xy' + 3xy'^2$ ; B)  $y - xy' - \sqrt{1 - y'^2} = 0$ .

- 4. Знайдіть ізогональні траєкторії сім'ї прямих y=Cx, які перетинають ці прямі під кутом  $60^{\circ}$ .
  - 5. Знайдіть ортогональні траєкторії сім'ї прямих y = Cx.

### Лекція 8. Основні властивості розв'язків диференціальних рівнянь першого порядку

#### План

- 1. Принцип стискуючих відображень.
- 2. Теорема існування та єдиності розв'язку задачі Коші.
- 3. Продовження розв'язку задачі Коші.
- 4. Коректність задачі Коші.
- 1. Принцип стискуючих відображень. Метричним простором називають множину  $W = \{x\}$  елементів x довільної природи, якщо для будь-якої пари елементів  $x, y \in W$  за певним правилом введено метрику (відстань), тобто числову функцію  $\rho(x,y)$ , яка задовольняє такі властивості (аксіоми):
- $1)\ \rho(x,y)\geqslant 0,$ причому  $\rho(x,y)=0$ тоді і тільки тоді, коли x=y;
  - $2) \ \rho(x,y) = \rho(y,x);$
  - 3)  $\rho(x,y)\leqslant \rho(x,z)+\rho(z,y)$  (для будь-яких  $x,y,z\in W$ ).

Елементи метричного простору називатимемо також **точками** цього простору.

Наведемо два важливі приклади метричних просторів.

1. Сукупність дійсних n-вимірних векторів  $x = (x_1, x_2, \dots, x_n)$  з метрикою

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2}$$

є метричним простором. Його називають n-вимірним евклідовим простором і позначають  $\mathbf{R}^n$ .

2. Сукупність дійсних, неперервних на відрізку [a,b] функцій y(t) з метрикою

$$\rho\left(x(t), y(t)\right) = \max_{t \in [a,b]} |x(t) - y(t)|$$

також є метричним простором. Цей простір позначають C[a,b].

Для обох просторів властивості з означення метрики легко перевіряються.

Послідовність  $x_1, x_2, x_3, \ldots$  елементів метричного простору W називають **фундаментальною**, якщо  $\lim_{n\to\infty} \rho(x_n, x_{n+p}) = 0$  для довільного цілого p.

Метричний простір W називають **повним**, якщо у ньому будь-яка фундаментальна послідовність  $x_1, x_2, x_3, \ldots$  збігається до деякого елемента цього ж простору. Важливими прикладами повних просторів є простори  $\mathbf{R}^n$   $(n\geqslant 1)$  і C[a,b].

Нехай у повному метричному просторі W заданий onepamop (відображення, функція) A, який кожному елементу простору W ставить у відповідність елемент цього ж простору:

$$y = Ax, \quad x, y \in W.$$

Тоді кажуть, що оператор A відображає простір W у себе.

Оператор A називають cmucкуючим, якщо існує таке число  $\alpha,\ 0\leqslant \alpha<1$ , що для будь-яких елементів  $x,y\in W$ 

$$\rho(Ax, Ay) \leqslant \alpha \rho(x, y). \tag{8.1}$$

Число  $\alpha$  з цього означення називають коефіцієнтом стиснення.

Елемент  $\varphi \in W$  називають **перухомою точкою** оператора A, якщо  $A\varphi = \varphi$ . Інакше кажучи, нерухомі точки — це розв'язки рівняння Ax = x.

Відзначимо, що багато питань, пов'язаних з існуванням та єдиністю розв'язків рівнянь різних типів, можна звести до питання про існування нерухомої точки деякого відображення А метричного простору у себе. Однією з найважливіших умов існування нерухомої точки є принцип стискуючих відображень, вперше сформульований С. Банахом. Цей принцип є теоретичною основою методу послідовних наближень (методу ітерацій), який широко використовується для наближеного розв'язування диференціальних, інтегральних та алгебричних рівнянь.

**Теорема 1 (принцип стискуючих відображень).** Якщо стискуючий оператор A відображає повний метричний простір W у себе, то існує єдина нерухома точка  $\varphi$  цього оператора. Її можна знайти за формулою

$$\varphi = \lim_{n \to \infty} x_n \quad (x_n = Ax_{n-1}, \ n = 1, 2, \dots),$$

причому елемент  $x_0$  у просторі W можна вибрати довільно. Доведення. Візьмемо довільний елемент  $x_0 \in W$  і побудуємо послідовність елементів

$$x_0, \quad x_1 = Ax_0, \quad x_2 = Ax_1 = A(Ax_0) = A^2x_0, \quad \dots,$$

$$x_n = Ax_{n-1} = A^nx_0, \quad \dots$$
(8.2)

Покажемо, що ця послідовність фундаментальна. Для цього, використовуючи (8.1), оцінимо спочатку відстані між сусідніми елементами простору W:

$$\rho(x_{2}, x_{1}) = \rho(Ax_{1}, Ax_{0}) \leqslant \alpha \rho(x_{1}, x_{0}), 
\rho(x_{3}, x_{2}) = \rho(Ax_{2}, Ax_{1}) \leqslant \alpha \rho(x_{2}, x_{1}) \leqslant \alpha^{2} \rho(x_{1}, x_{0}), 
\dots, 
\rho(x_{n+1}, x_{n}) = \rho(Ax_{n}, Ax_{n-1}) \leqslant 
\leqslant \alpha \rho(x_{n}, x_{n-1}) \leqslant \dots \leqslant \alpha^{n} \rho(x_{1}, x_{0}), \dots$$
(8.3)

Використовуючи оцінки (8.3), а також p-1 разів властивість 3 з означення метрики, одержуємо

$$\rho(x_n, x_{n+p}) \leqslant 
\leqslant \rho(x_n, x_{n+1}) + \rho(x_{n+1}, x_{n+2}) + \dots + \rho(x_{n+p-1}, x_{n+p}) \leqslant 
\leqslant (\alpha^n + \alpha^{n+1} + \dots + \alpha^{n+p-1}) \rho(x_1, x_0) = 
= \frac{\alpha^n - \alpha^{n+p}}{1 - \alpha} \rho(x_1, x_0) \leqslant \frac{\alpha^n}{1 - \alpha} \rho(x_1, x_0)$$

для достатньо великого n. Отже,

$$\rho(x_n, x_{n+p}) \leqslant \frac{\alpha^n}{1 - \alpha} \rho(x_1, x_0). \tag{8.4}$$

Оскільки  $0 \leqslant \alpha < 1$ , то з (8.4) випливає, що для досить великих n величина  $\rho(x_n, x_{n+p})$  є як завгодно малою, тобто  $\rho(x_n, x_{n+p}) \leqslant \varepsilon$ , а отже,  $x_1, x_2, x_3, \ldots$  — фундаментальна послідовність. Оскільки W — повний простір, то ця послідовність має границю, яку позначимо  $\varphi = \lim_{n \to \infty} x_n$ .

Із співвідношень

$$\rho(A\varphi,\varphi) \leqslant \rho(A\varphi,x_n) + \rho(x_n,\varphi) = \rho(A\varphi,Ax_{n-1}) + \rho(x_n,\varphi) \leqslant$$
$$\leqslant \alpha\rho(\varphi,x_{n-1}) + \rho(x_n,\varphi) \underset{n \to \infty}{\to} 0$$

випливає, що  $\rho(A\varphi,\varphi)=0$ , а отже,  $A\varphi=\varphi$ , тобто  $\varphi$  є нерухомою точкою відображення A.

Для доведення єдиності нерухомої точки припустимо, що існує ще одна нерухома точка  $\psi$  відображення A, тобто  $A\psi=\psi$ . Тоді

$$\rho(\varphi, \psi) = \rho(A\varphi, A\psi) \leqslant \alpha \rho(\varphi, \psi) \implies \rho(\varphi, \psi)(1 - \alpha) \leqslant 0 \implies \rho(\varphi, \psi) = 0.$$

З рівності  $\rho(\varphi,\psi)=0$ , враховуючи першу властивість метрики, одержуємо, що  $\psi=\varphi$ , тобто  $\varphi$  – єдина нерухома точка відображення A.  $\blacktriangleright$ 

Елементи  $x_0, x_1, x_2, \dots$  у формулі (8.2) називають **послі- довними наближеннями** нерухомої точки  $\varphi$ .

Наголошуємо, що вибір початкового наближення  $x_0 \in W$  є довільним і впливає лише на швидкість збіжності послідовності  $x_1, x_2, x_3, \ldots$  до своєї границі  $\varphi$ .

**2.** Теорема існування та єдиності розв'язку задачі Коші. Використовуючи принцип стискуючих відображень, доведемо теорему про існування та єдиність розв'язку задачі Коші для диференціального рівняння першого порядку, розв'язаного відносно похідної<sup>1)</sup>:

$$y' = f(x, y), \tag{8.5}$$

$$y(x_0) = y_0. (8.6)$$

**Теорема 2 (Коші).** Нехай функція f(x,y) визначена у прямокутнику

$$D = \{(x, y): x_0 - a \leqslant x \leqslant x_0 + a, y_0 - b \leqslant y \leqslant y_0 + b\},\$$

 $\partial e \ a, b > 0$ , *i* задовольняе у ньому такі умови:

- 1) f(x,y) неперервна, а отже, й обмежена  $(|f(x,y)| \leq M)$ ;
- 2) частинна похідна  $\frac{\partial f}{\partial y}$  існує та обмежена  $\left(\left|\frac{\partial f}{\partial y}\right| \leqslant L\right)$ .

 $<sup>^{1)}</sup>$ Ця теорема без доведення наведена у п. 2 лекції 2.

Тоді задача Коші (8.5), (8.6) має единий розв'язок y = y(x) принаймні на відрізку  $G = \{x : x_0 - h \le x \le x_0 + h\}$ , де

$$h < \min\left(a, \frac{b}{M}, \frac{1}{L}\right).$$

**Доведення.** Покажемо спочатку, що задача Коші (8.5), (8.6) рівносильна інтегральному рівнянню<sup>1)</sup>

$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt.$$
 (8.7)

Справді, якщо неперервна функція y(x) є розв'язком інтегрального рівняння (8.7), то, диференціюючи (8.7), одержуємо, що  $y'=f\left(x,y(x)\right)$  і, очевидно,  $y(x_0)=y_0$ . Таким чином, функція y(x) є розв'язком задачі Коші (8.5), (8.6).

Навпаки, нехай y(x) – розв'язок задачі (8.5), (8.6), тобто  $y'(x) \equiv f(x,y(x))$  і  $y(x_0) = y_0$ . Тоді, інтегруючи цю тотожність у межах від  $x_0$  до x, одержуємо

$$\int_{x_0}^{x} y'(t) dt = \int_{x_0}^{x} f(t, y(t)) dt \quad \Rightarrow \quad y(x) - y_0 = \int_{x_0}^{x} f(t, y(t)) dt,$$

тобто y(x) є розв'язком інтегрального рівняння (8.7).

Надалі досліджуватимемо рівняння (8.7).

Позначимо через W множину неперервних функцій y=y(x), які задані на відрізку G і задовольняють на ньому нерівність  $|y(x)-y_0|\leqslant b$ . На множині W введемо метрику

$$\rho(y,z) = \max_{x \in G} |y(x) - z(x)|, \quad y, z \in W.$$

Таким чином, W — метричний простір. Цей простір є повним. Справді, якщо послідовність функцій  $y_n = y_n(x), y_n \in W$ , є фундаментальною, то, як відомо з математичного аналізу, ця послідовність збігається рівномірно на відрізку G до деякої

<sup>&</sup>lt;sup>1)</sup>Інтегральне рівняння – це рівняння, в якому невідома функція знаходиться під знаком інтеграла.

неперервної на цьому відрізку функції y = y(x). Для функцій  $y_n \in W$  виконується нерівність

$$|y_n(x) - y_0| \le b$$
,  $x \in G$ ,  $n = 1, 2, \dots$ 

яка зберігається після переходу до границі при  $n \to \infty$ , тобто  $|y(x)-y_0| \le b$ . Але тоді  $y \in W$ , звідки випливає, що W – повний простір.

Праву частину інтегрального рівняння (8.7) природно розглядати як деяке інтегральне перетворення неперервної функції y(x). Рівність

$$z(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt$$
 (8.8)

ставить у відповідність кожній функції  $y \in W$  деяку функцію  $z \in W$ . Справді, якщо  $y \in W$ , то y(x) неперервна функція, графік якої належить прямокутнику

$$D_1 = \{(x, y): x_0 - h \leqslant x \leqslant x_0 + h, y_0 - b \leqslant y \leqslant y_0 + b\},\$$

тому на підставі неперервності функції f(x,y) в  $D_1$  права частина рівняння (8.8) є неперервною функцією від x, тобто z(x) неперервна функція на відрізку G. Далі, використовуючи відому з математичного аналізу нерівність

$$\left| \int_{a}^{b} g(x) \, dx \right| \leqslant \left| \int_{a}^{b} |g(x)| \, dx \right|,\tag{8.9}$$

одержуємо, що

$$|z(x) - y_0| \leqslant \left| \int_{x_0}^x f(t, y(t)) dt \right| \leqslant \left| \int_{x_0}^x |f(t, y(t))| dt \right| \leqslant$$
$$\leqslant M |x - x_0| \leqslant Mh \leqslant M \cdot \frac{b}{M} = b,$$

звідки випливає, що  $z \in W$ .

Отже, кожній неперервній функції y(x) формула (8.8) ставить у відповідність неперервну функцію z(x). Результат виконання цього перетворення позначимо через Ay:

$$Ay \equiv y_0 + \int_{x_0}^x f(t, y(t)) dt.$$

Таким чином, можемо вважати, що рівність (8.8) визначає оператор

$$z = Ay \quad (y, z \in W),$$

який переводить повний простір W у себе (такий оператор називають iнтегральним оператором  $\Phi$ редгольма). Покажемо, що цей оператор є стискуючим. Справді, якщо  $z_1=Ay_1,$   $z_2=Ay_2$   $(y_1,y_2\in W)$ , то, використовуючи (8.8), (8.9), умову теореми про обмеженість частинної похідної  $\frac{\partial f}{\partial y}$ , а також теорему Лагранжа про скінченні прирости, одержуємо

$$|z_{1} - z_{2}| = \left| y_{0} + \int_{x_{0}}^{x} f(t, y_{1}(t)) dt - y_{0} - \int_{x_{0}}^{x} f(t, y_{2}(t)) dt \right| \leq$$

$$\leq \left| \int_{x_{0}}^{x} |y_{1}(t) - y_{2}(t)| \cdot \left| f'_{y}(t, \omega(t)) \right| dt \right| \leq \left| \int_{x_{0}}^{x} \rho(y_{1}, y_{2}) L dt \right| \leq$$

$$\leq \rho(y_{1}, y_{2}) L |x - x_{0}| \leq L h \rho(y_{1}, y_{2}) = \alpha \rho(y_{1}, y_{2}), \qquad (8.10)$$

де  $\omega \in [y_1, y_2]$ , а число  $\alpha = Lh$  задовольняє нерівність  $0 \leqslant \alpha < 1$  (за умовою h < 1/L).

З (8.10) випливає, що

$$\rho(z_1, z_2) = \max_{x \in G} |z_1(x) - z_2(x)| \leqslant \alpha \rho(y_1, y_2),$$

а отже, згідно з принципом стискуючих відображень (теорема 1) у просторі W існує єдина функція (нерухома точка)  $y \in W$ , для якої y = Ay, інакше кажучи, функція, яка є розв'язком рівняння (8.7), а отже, й розв'язком задачі Коші (8.5), (8.6).  $\blacktriangleright$ 

**Зауваження 1.** Застосовуючи метод послідовних наближень, можна отримати наближений розв'язок задачі Коші (8.5), (8.6):

$$y_n(x) = Ay_{n-1}(x) = y_0 + \int_{x_0}^x f(t, y_{n-1}(t)) dt, \quad n = 1, 2, \dots,$$

де  $y_0 \in W$ .

**Зауваження 2.** Умову теореми 2 про обмеженість частинної похідної  $\frac{\partial f}{\partial u}$  можна замінити *умовою Ліпшіца*:

$$|f(x, y_1) - f(x, y_2)| \le L |y_1 - y_2|,$$

де  $(x,y_1),(x,y_2)\in D,\, L$  – стала Ліпшіца. Покажемо, що з обмеженості частинної похідної  $\frac{\partial f}{\partial y}$  в області D випливає виконання умови Ліпшіца. Справді, нехай  $\left|\frac{\partial f}{\partial y}\right|\leqslant L$ . Тоді, використовуючи формулу Лагранжа про скінченні прирости, одержуємо

$$|f(x,y_1)-f(x,y_2)|=\left|f_y'(x,\omega(x))\right|\cdot|y_1-y_2|\leqslant L\,|y_1-y_2|,$$
 де  $\omega\in[y_1,y_2].$ 

Якщо виконуються умови теореми 2 і в деякому околі точки  $(x_0,y_0)$  функція f(x,y) має неперервні похідні до k-го порядку включно, то розв'язок y(x) задачі Коші (8.5), (8.6) неперервно диференційовний (k+1) разів. Справді, оскільки функція f(x,y(x)) неперервно диференційовна, то з (8.5) випливає, що  $y'' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f \equiv f_1(x,y)$ . За умовою  $\frac{\partial f}{\partial x}$  і  $\frac{\partial f}{\partial y}$  неперервно диференційовні, тому  $y''' = \frac{\partial f_1}{\partial x} + \frac{\partial f_1}{\partial y} f = f_2(x,y)$  також неперервно диференційовна функція. Повторюючи аналогічні міркування k разів, одержимо, що  $y^{(k+1)} = f_k(x,y)$  – неперервна функція.

3. Продовження розв'язку задачі Коші. Нехай Q – деяка область у  $\mathbf{R}^2$  і функція f(x,y) неперервна у цій області. Для довільної точки  $(x_0,y_0)$  прямокутника D теорема Пеано (лекція 2) встановлює існування розв'язку задачі Коші (8.5), (8.6) на деякому, можливо досить малому, відрізку з центром у точці  $x_0$ . Інакше кажучи, теорема Пеано – це локальна теорема існування розв'язку диференціального рівняння (8.5). Для її застосування параметри a і b прямокутника D (вони можуть залежати від  $x_0, y_0$ ), центр якого розташований у точці  $(x_0, y_0)$ , потрібно вибрати такими, щоб  $D \subset Q$ . Після цього можна визначити число  $h = h(x_0, y_0)$  і відповідний відрізок G, на якому існує розв'язок задачі (8.5), (8.6).

Кінцеві точки графіка розв'язку задачі (8.5), (8.6), існування якого гарантує теорема Пеано, лежать в області Q. Розглядаючи їх як нові початкові дані, можна знову застосувати

теорему Пеано й розширити область існування цього розв'язку. Це випливає з наступного твердження.

**Теорема 3.** Нехай функція f(x,y) неперервна в області Q, а функції  $y_1(x)$  і  $y_2(x)$  – неперервні розв'язки рівняння (8.5) на відрізках  $[x_0,x_1]$  і  $[x_1,x_2]$  відповідно, причому  $y_1(x_1)=y_2(x_1)$ . Тоді функція

$$y(x) = \begin{cases} y_1(x), & \text{якщо } x \in [x_0, x_1], \\ y_2(x), & \text{якщо } x \in (x_1, x_2] \end{cases}$$

 $\epsilon$  розв'язком рівняння (8.5) на відрізку  $[x_0, x_2]$ .

**Доведення.** Очевидно, що так визначена функція y(x) задовольняє рівняння (8.5) як на проміжку  $[x_0, x_1)$ , так і на  $(x_1, x_2]$ . Лівостороння і правостороння похідні функції y(x) у точці  $x_1$  існують і набувають значень  $f(x_1, y_1(x_1))$  і  $f(x_1, y_2(x_1))$  відповідно. Але з умови теореми випливає, що ці значення збігаються з  $f(x_1, y(x_1))$ , а тому y(x) – розв'язок рівняння (8.5) на всьому відрізку  $[x_0, x_2]$ .  $\blacktriangleright$ 

Можливо, що інтегральну криву не можна буде продовжити через наближення до точки, у якій порушені умови теореми Коші (існування та єдиності розв'язку), або інтегральна крива наблизиться до асимптоти, яка паралельна до осі Oy. Ці випадки проілюструємо прикладами:

1) xdx + ydy = 0, y(0) = 3. Інтегруючи рівняння і використовуючи початкову умову, одержуємо:

$$\frac{x^2}{2} + \frac{y^2}{2} = C_1, \quad y(0) = 3 \quad \Rightarrow \quad y = \sqrt{C^2 - x^2}, \quad C = 3 \quad \Rightarrow \quad y = \sqrt{9 - x^2}.$$

Розв'язок не можна продовжити за межі інтервалу -3 < x < 3 (рис. 8.1). У межових точках (-3,0) і (3,0) права частина рівняння  $y' = -\frac{x}{y}$  розривна. Умови теореми Пеано (існування розв'язку) порушені.



2)  $y' = y^2$ , y(1) = 1/2. Інтегруючи рівняння та використовуючи початкову умову, одержуємо:

$$\frac{dy}{y^2} = dx, \ y(1) = \frac{1}{2} \quad \Rightarrow \quad y = -\frac{1}{x-3}.$$

Інтегральну криву можна продовжити лише до асимптоти  $x = 3 \ (-\infty < x < 3)$  (рис. 8.2).

4. Коректність задачі Коші. У реальних прикладних задачах, що моделюються й розв'язуються за допомогою диференціальних рівнянь вигляду (8.5), початкові умови, а також права частина — функція f, як правило, відомі з деяким наближенням. Окрім того, функція f може залежати від одного або кількох параметрів (маси, температури, заряду тощо), які характеризують природу задачі й завжди вимірюються з деякою похибкою, тобто наближено. Тому важливими є питання про існування та єдиність розв'язку задачі Коші, а також про те, як змінюється цей розв'язок на скінченному проміжку за малих змін (збурень) початкових значень, параметрів і самої функції f. Вимоги існування та єдиності розв'язку, його неперервної залежності від початкових умов, параметрів і функції f на скінченному проміжку становлять зміст поняття корежиності задачі f

Використовуючи теорему 2 про існування та єдиність розв'язку задачі Коші, розглянемо теореми, що описують якісну поведінку розв'язків.

**Теорема 4 (про неперервну залежність розв'язків від параметру).** Якщо права частина диференціального рівняння

$$y' = f(x, y, \mu) \tag{8.11}$$

неперервна за змінною  $\mu$ ,  $\mu \in [\mu_1, \mu_2]$ , і для кожного фіксованого  $\mu$  задовольняє умови теореми 2 з тими самими сталими a, b, L, M, то розв'язок  $y=y(x,\mu)$  рівняння (8.11), який задовольняє початкову умову  $y(x_0)=y_0$ , неперервно залежить  $6i\partial \mu$ .

Доведення. Оскільки члени послідовності

$$y_n(x,\mu) = y_0 + \int_{x_0}^x f(t, y_{n-1}(t,\mu)) dt$$

є неперервними функціями змінних x і  $\mu$ , а стала  $\alpha = Lh < 1$  не залежить від  $\mu$ , то послідовність  $y_1(x,\mu), y_2(x,\mu), \ldots$  збігається до  $y(x,\mu)$  рівномірно по  $\mu$ . Як відомо з математичного аналізу, рівномірно збіжна послідовність неперервних функцій збігається до неперервної функції, тобто  $y=y(x,\mu)$  — функція, неперервна за аргументом  $\mu$ .

Теорема 5 (про неперервну залежність від початкових умов). Нехай виконані умови теореми 2. Тоді розв'язок задачі Коші (8.5), (8.6)  $y = y(x, x_0, y_0)$  неперервно залежить від початкових умов.

**Доведення.** Якщо зробити заміни  $z = y(x, x_0, y_0) - y_0$  і  $t = x - x_0$ , то відносно функції z(t) одержимо диференціальне рівняння  $z' = f(t + x_0, z + y_0)$  з нульовими початковими умовами. Згідно з теоремою 4 маємо неперервну залежність розв'язків від  $x_0, y_0$  як від параметрів.  $\blacktriangleright$ 

**Рекомендована література**: [1, с. 27 – 45], [3, с. 27 – 41], [6, с. 63 – 78], [7, с. 35 – 43, 58 – 74], [15, с. 71 – 90].

#### Питання до лекції 8

- 1. Що називають метричним простором? Які властивості задовольняє метрика такого простору? Наведіть приклади метричних просторів.
- 2. Яку послідовність елементів метричного простору називають фундаментальною? Який метричний простір називають повним?
- 3. Що таке оператор, заданий у повному метричному просторі? Коли оператор відображає метричний простір у себе? Який оператор називають стискуючим? Що називають нерухомою точкою оператора?

- 4. Як формулюється принцип стискуючих відображень? Яке його практичне значення?
- 5. Як формулюється теорема Коші про існування та єдиність розв'язку задачі Коші для диференціального рівняння першого порядку, розв'язаного відносно похідної? Наведіть основні ідеї доведення цієї теореми.
- 6. Як, використовуючи метод послідовних наближень, можна знайти наближений розв'язок задачі Коші для диференціального рівняння першого порядку, розв'язаного відносно похідної?
- 7. Чи можна продовжити розв'язок задачі Коші за межі відрізку, визначеного теоремою Коші? Наведіть приклади.
- 8. Що становить зміст поняття коректність задачі Коші? Наведіть теореми про неперервну залежність розв'язків від параметру та про неперервну залежність від початкових умов. У чому практична важливість цих теорем?

#### Вправи до лекції 8

- 1. Побудуйте послідовні наближення  $y_0, y_1, y_2$  до розв'язку задачі Коші  $y' = x^3 2y^3, \ y(0) = 0.$
- 2. Вкажіть який-небудь відрізок, на якому існує розв'язок задачі Коші  $y' = 3x + y^4, \ y(0) = 0.$
- 3. Користуючись якою-небудь достатньою умовою єдиності, виділіть на площині Oxy ті точки, через які проходить єдиний розв'язок рівняння  $y' = 5 + \sqrt[3]{2y + x}$ .
- 4. Чи можуть графіки двох розв'язків рівняння  $y' = x + y^3$  перетинатися (дотикатися) в деякій точці?
  - 5. Скільки похідних мають розв'язки рівнянь:

a) 
$$y' = x^2 + y^{8/3}$$
; 6)  $y' = 2x|x| - y^2$ .

#### Лекція 9. Диференціальні моделі

#### План

- 1. Побудова диференціальних моделей природничих наук.
- 2. Розв'язування геометричних задач за допомогою диференціальних рівнянь.
  - 3. Розв'язування задач за допомогою інтегральних рівнянь.

# 1. Побудова диференціальних моделей природничих наук. На лекції 1 зазначалось, що диференціальні рівняння є одним з найбільш ефективних засобів математичного моделювання багатьох прикладних задач. Особливо широко вони використовуються у теоретичній механіці, фізиці, а також інших природничих науках.

Розв'язуючи задачі фізики, механіки, хімії чи інших природничих наук за допомогою диференціальних рівнянь, виділяють такі три етапи:

- а) побудова диференціального рівняння;
- б) інтегрування цього рівняння;
- в) дослідження отриманого розв'язку.

При цьому рекомендуємо дотримуватись такої послідовності дій:

- 1) встановити величини, які змінюються у заданому явищі, і виявити закони (формули) відповідної науки, які ці величини пов'язують;
- 2) вибрати незалежну змінну і функцію цієї змінної, яку потрібно знайти;
- 3) виходячи з умов задачі, визначити початкові або інші умови, які накладаються на шукану функцію;
- 4) виразити усі величини з умови задачі через незалежну змінну, шукану функцію та її похідні;
- 5) виходячи з умови задачі та закону, який описує задане явище, скласти диференціальне рівняння;
  - 6) зінтегрувати одержане диференціальне рівняння;
- 7) якщо задані початкові чи крайові умови, знайти частинний розв'язок;
  - 8) провести дослідження одержаного розв'язку.

У багатьох випадках побудова диференціального рівняння першого порядку ґрунтується на так званій «лінійності процесу у малому», тобто на диференційовності функцій, які виражають залежність величин. Як правило, можна рахувати, що всі величини, які беруть участь у певному процесі протягом малого проміжку часу, змінюються зі сталою швидкістю. Це дозволяє застосувати відомі закони, які описують явища, що протікають рівномірно, для утворення співвідношення між значеннями  $t, t+\Delta t$ , тобто величинами, які беруть участь у процесі, та їх приростами. У результаті одержимо рівність, яка має лише наближений характер, бо величини змінюються навіть за короткий проміжок часу, взагалі кажучи, нелінійно. Однак якщо поділити обидві частини одержаної рівності на  $\Delta t$  і перейти до границі, коли  $\Delta t \to 0$ , то отримаємо точну рівність. Ця рівність міститиме час t, залежні від часу величини та їх похідні, тобто буде диференціальним рівнянням, яке описує задане явище. Те саме рівняння у диференціальній формі можна отримати, якщо замінити приріст  $\Delta t$  на диференціал dt, а прирости функцій – відповідними диференціалами.

Таким чином, складаючи диференціальне рівняння, ми робимо ніби «миттєвий кадр» процесу у заданий момент часу, а потім, розв'язуючи рівняння, відновлюємо перебіг процесу. Отже, у процесі розв'язування прикладних задач наведеним методом лежить загальна ідея *лінеаризації* — заміни функцій на малих проміжках зміни аргумента лінійними функціями. І хоча зустрічаються процеси (наприклад, броунівський рух), для яких лінеаризація неможлива, тому що не існує швидкості зміни деяких величин у заданий момент часу, у переважній більшості випадків метод диференціальних рівнянь діє безвідмовно.

Задача 1. У дні вертикальної циліндричної посудини висоти H і радіуса основи R, заповненої водою, зроблено невеликий отвір площею S (рис. 9.1). Через який час через отвір витече уся вода, якщо третина води витікає через  $t_1$  с.

Розв'язання. Якщо б витікання води відбувалось рівномірно, то вся вода витекла б з посудини за  $3t_1$  с. Однак досліди показують, що зі зменшенням рівня води у посудині швидкість витікання воли зменшується. Тому потрібно врахувати залежність між швидкістю витікання v і висотою h стовпа води над отвором. Згідно з законом Торрічеллі

$$v = k\sqrt{2gh},$$

де q — прискорення вільного падіння, k – коефіцієнт, який залежить від в'язкості рідини та фор-



Puc. 9.1

ми отвору (для води у випадку круглого отвору k = 0.6).

Розглянемо досліджуваний процес на відрізку  $[t; t+\Delta t]$ . Нехай v момент часу t висота води на отвором складала h, а через  $\Delta t$  с вона зменшилась і стала  $h + \Delta h$ , де  $\Delta h$  – приріст висоти (очевидно,  $\Delta h < 0$ ). Тоді об'єм води, який витік з посудини, дорівнює об'єму відповідного циліндра, тобто

$$\Delta V = -\pi R^2 \Delta h.$$

Вода з посудини виливається у вигляді циліндричного струменя, площа основи якого S, а висота дорівнює шляху, який пройшла вода за проміжок часу  $[t; t + \Delta t]$ . На початку цього відрізку швидкість витікання згідно з законом Торрічеллі дорівнювала  $k\sqrt{2gh}$ , а наприкінці дорівнювала  $k\sqrt{2g(h+\Delta h)}$ . Якщо  $\Delta t$  досить мале, то  $\Delta h(t)$  також мале і тому отримані вирази для швидкості майже однакові. Тому шлях, пройдений водою за проміжок часу  $[t; t + \Delta t]$ , виражається формулою  $\left(k\sqrt{2gh}+\alpha(\Delta t)\right)\Delta t$ , де  $\lim_{\Delta t\to 0}\alpha(\Delta t)=0$ . Значить, об'єм рідини, яка виллється за проміжок часу  $[t; t + \Delta t]$ , можна знайти за формулою

 $\Delta V = \left(k\sqrt{2gh} + \alpha(\Delta t)\right)S\Delta t.$ 

Прирівнюючи два одержані вирази для об'єму рідини, яка вилилась з посудини за проміжок часу  $[t;t+\Delta t]$ , одержуємо рівняння

$$-\pi R^2 \Delta h = \left(k\sqrt{2gh} + \alpha(\Delta t)\right) S \Delta t. \tag{9.1}$$

Поділимо обидві частини рівняння (9.1) на  $\Delta t$  перейдемо до границі при  $\Delta t \to 0$ . Оскільки  $\lim_{\Delta t \to 0} \alpha(\Delta t) = 0$ , а  $\lim_{\Delta t \to 0} \frac{\Delta h(t)}{\Delta t} = h'(t)$ , то одержуємо диференціальне рівняння першого порядку

$$-\pi R^2 h'(t) = k\sqrt{2gh} S. \tag{9.2}$$

Отримати рівняння (9.2) можна й інакше. Досліджуючи процес протягом нескінченно малого проміжку часу dt, можна вважати, що за цей проміжок часу швидкість витікання води є незмінною. Тому замість наближеного рівняння (9.1) відразу одержуємо рівняння

$$-\pi R^2 dh = k\sqrt{2gh} \, Sdt,\tag{9.3}$$

яке, очевидно,  $\epsilon$  просто іншою формою запису рівняння (9.2).

Рівняння (9.3) — рівняння з відокремлюваними змінними. Зінтегруємо його:

$$dt = \frac{-\pi R^2}{\sqrt{2g}kS} \frac{dh}{\sqrt{h}} \quad \Rightarrow \quad t = \frac{-\sqrt{2\pi}R^2}{\sqrt{g}kS} \sqrt{h} + C \quad \Rightarrow$$

$$t = C - A\sqrt{h}, \tag{9.4}$$

де стала  $A=\frac{\sqrt{2}\pi R^2}{\sqrt{g}kS}$  залежить від розмірів і форми отвору, в'язкості рідини та деяких інших фізичних параметрів, а стала C є довільною (це стала інтегрування). Знайдемо ці сталі.

За умовою задачі h(0)=H (на початку відліку висота стовпа води у посудині дорівнювала H). Підставляючи у (9.4) t=0 і h=H, знаходимо сталу  $C=A\sqrt{H}$ .

Сталу A знайдемо з умови задачі  $h(t_1) = \frac{2}{3}H$ . Звідси

$$t_1 = A\sqrt{H} - A\sqrt{\frac{2H}{3}} \quad \Rightarrow \quad A = (3 + \sqrt{6})\frac{t_1}{\sqrt{H}}.$$

Підставляючи знайдені значення сталих A і C у формулу (9.4), одержуємо закон зміни часу витікання від висоти стовпа води:

$$t = (3 + \sqrt{6})\frac{\sqrt{H} - \sqrt{h}}{\sqrt{H}}t_1. \tag{9.5}$$

 $3\ (9.5)$  легко знаходимо час T повного витікання рідини з посудини:

$$h(T) = 0 \quad \Rightarrow \quad T = (3 + \sqrt{6}) t_1. \quad \blacksquare$$

Зауважимо, що знайдене значення T приблизно у 1,82 рази більше значення  $3t_1$ , яке одержали у припущенні, що рідина з посудини витікає рівномірно.

Звичайно, розв'язок, одержаний у задачі 1, не є точним, адже ми знехтували, наприклад, явищем капілярності (а воно є суттєвим, якщо діаметр отвору малий), завихреннями рідини та деякими іншими факторами.

У багатьох задачах складання диференціальних моделей полегшується тим, що відповідний закон науки пов'язує між собою значення деякої величини і швидкості її зміни або пов'язує значення величини, швидкості її зміни чи прискорення. Наведемо декілька таких законів:

- другий закон Ньютона (F=ma, де m маса тіла, a прискорення руху, F сума сил, що діють на тіло) і похідні від нього закони збереження енергії, кількості руху, імпульсу тощо;
- закон всесвітнього тяжіння ( $F = k \frac{m_1 m_2}{r^2}$ , де  $m_1$ ,  $m_2$  маси двох тіл, r відстань між ними, k коефіцієнт пропорційності);
- закон розчинення речовини (швидкість розчинення пропорційна наявній кількості нерозчиненої речовини та різниці концентрацій насиченого розчину і розчину у певний момент часу);
- закон Кірхгофа (алгебрична сума сил струмів, які протікають у певній точці електричного кола, дорівнює нулю);
- закон Фур'є  $(q=-\lambda(T)\frac{dT}{dx},$  де q питомий потік теплоти,  $\lambda(T)$  коефіцієнт теплопровідності середовища,  $\frac{dT}{dx}$  швид-кість зміни температури T) і аналогічний закон Нернста про дифузію речовини;

- закон Ньютона про охолодження тіла (швидкість охолодження тіла прямо пропорційна різниці температур тіла та оточуючого середовища);
- закон Гука (сила пружності пружини пропорційна її видовженню) тощо.

Питання про відповідність диференціальної моделі й реального явища вивчається на основі аналізу результатів досліду та їх порівняння з поведінкою розв'язку одержаного диференціального рівняння.

Задача 2. Тіло, яке в початковий момент часу мае температуру  $T_0$ , помістили в середовище, в якому підтримується температура  $T_1$ . Визначити закон зміни температури тіла. Розв'язання. Нехай T(t) — температура тіла в момент часу t. За законом Ньютона про охолодження тіла функція T(t) повинна задовольняти рівняння

$$\frac{dT}{dt} = -k(T(t) - T_1),\tag{9.6}$$

де k>0 — коефіцієнт пропорційності (знак «мінус» у правій частині рівняння (9.6) відповідає експериментальним даним: якщо  $T(t)>T_1$ , то температура тіла зменшується і швидкість її зміни від'ємна, і навпаки).

Зінтегруємо рівняння (9.6) за допомогою заміни  $u(t) = k(T_1 - T(t))$  (це рівняння вигляду y' = f(ax + by + c), яке вивчалось на лекції 3). Маємо

$$T' = k(T_1 - T) \quad \Rightarrow \quad -\frac{u'}{k} = u \quad \Rightarrow \quad \frac{du}{u} = -kdt \quad \Rightarrow$$
$$\ln|u| = -kt + C \quad \Rightarrow \quad u = Ce^{-kt}$$
$$T(t) = T_1 - Ce^{-kt}, \tag{9.7}$$

де C — довільна стала.

Врахувавши початкову умову  $T(0) = T_0$ , з (9.7) знаходимо, що  $C = T_1 - T_0$ , а отже, остаточно виводимо закон зміни температури тіла залежно від часу:

$$T(t) = T_1 + (T_0 - T_1)e^{-kt}$$
.

2. Розв'язування геометричних задач за допомогою диференціальних рівнянь. У багатьох задачах геометричної оптики, картографії та інших областей науки виникає необхідність у знаходженні кривих за певними властивостями проведених до них дотичних. Оскільки кутовий коефіцієнт дотичної до графіку функції дорівнює значенню похідної цієї функції у точці дотику, то такі задачі зручно розв'язувати за допомогою диференціальних рівнянь.

Розв'язуючи геометричні задачі за допомогою диференціальних рівнянь рекомендуємо дотримуватись такого алгоритму:

- 1) зробити рисунок і ввести позначення;
- 2) відокремити умови, які справджуються в довільній точці шуканої лінії, від умов, які справджуються лише у окремих точках, тобто початкових умов;
- 3) виразити всі величини задачі через координати довільної точки і через значення похідної у цій точці, враховуючи геометричний зміст похідної;
- 4) за умовою задачі скласти диференціальне рівняння, якому задовольняє шукана крива;
- 5) знайти загальний розв'язок цього рівняння і отримати з нього певний частинний розв'язок, який задовольняє початкові умови.

Задача 3. Знайти криву, у якої відстань від довільної дотичної до початку координат дорівнює абсиисі точки дотику.



**Розв'язання.** Нехай M(x,y) – довільна точка кривої y=f(x). Проведемо у цій точці дотичну MA,  $y'=\operatorname{tg}\alpha$  (геометричний зміст похідної) (рис. 9.2). Трикутники OCM і OBM рівні (за умовою OC=OB, а гіпотенуза OM спільна), а тому  $\angle MOB=$  =  $\angle MOC$ . Оскільки  $\angle AOC=\frac{\pi}{2}-\alpha$ , то  $\angle MOB=\frac{1}{2}\left(\frac{\pi}{2}+\alpha\right)=$  =  $\frac{\pi}{4}+\frac{\alpha}{2}$ . Тепер з трикутника OBM маємо

$$\frac{y}{x} = \operatorname{tg}\left(\frac{\pi}{4} + \frac{\alpha}{2}\right) = \frac{1 + \operatorname{tg}\frac{\alpha}{2}}{1 - \operatorname{tg}\frac{\alpha}{2}} \quad \Rightarrow \quad \operatorname{tg}\frac{\alpha}{2} = \frac{y - x}{y + x}.$$

Нарешті, використовуючи формулу  $\operatorname{tg} \alpha = \frac{2\operatorname{tg} \frac{\alpha}{2}}{1-\operatorname{tg}^2 \frac{\alpha}{2}}$ , і співвідношення  $\operatorname{tg} \alpha = y'$ , одержуємо диференціальне рівняння

$$y' = \frac{y^2 - x^2}{2xy}.$$

Оскільки це рівняння однорідне (лекція 3), то виконуючи заміну y = ux, одержуємо:

$$\frac{dx}{x} + \frac{2udu}{u^2 + 1} = 0 \quad \Rightarrow \quad \ln|x| + \ln(u^2 + 1) = \ln 2|C| \quad \Rightarrow$$
$$x^2 + y^2 = \pm Cx \quad \Rightarrow \quad (x \pm C)^2 + y^2 = C^2.$$

Отже, наведеною в умові задачі властивістю володіє кожне коло з центром у точці  $(\pm C; 0)$  і радіусом C.

3. Розв'язування задач за допомогою інтегральних рівнянь. У деяких випадках розв'язування задач приводить до рівнянь, які містять шукану функцію під знаком інтеграла, тобто *інтегральних рівнянь*. Інтегральні рівняння виникають, зокрема, коли використовується геометричний зміст визначеного інтеграла як площі криволінійної трапеції та інші інтегральні формули (довжини дуги, площі поверхні, об'єму тіла тощо). У простіших випадках після диференціювання інтегральні рівняння вдається звести до диференціальних.

Задача 4. Знайти криву, для кожної точки M якої абсииса центра ваги криволінійної трапеції, обмеженої осями координат, дугою цієї кривої і відрізком, що з'єднує точку M з її проекцією на вісь абсиис, дорівнює третині абсииси цієї точки.

**Розв'язання.** Відомо, що абсциса центра ваги утвореної криволінійної трапеції (рис. 9.3) виражається формулою

$$x_0 = \frac{\int\limits_0^x ty(t) dt}{\int\limits_0^x y(t) dt},$$

де t – змінна інтегрування, а y=y(t) – рівняння шуканої кривої.

За умовою задачі  $x_0 = \frac{x}{3}$ , тобто



$$\int_{0}^{x} ty(t) dt = \frac{x}{3} \int_{0}^{x} y(t) dt.$$

Здиференціюємо обидві частини одержаного інтегрального рівняння за змінною x:

$$xy(x) = \frac{xy(x)}{3} + \frac{1}{3} \int_{0}^{x} y(t) dt \quad \Rightarrow \quad 2xy(x) = \int_{0}^{x} y(t) dt.$$

Диференціюючи ще один раз, одержуємо диференціальне рівняння

$$2xy' + y = 0.$$

Це рівняння з відокремлюваними змінними, його загальним розв'язком є  $y=\frac{C}{\sqrt{x}}$ .

**Рекомендована література**: [5, с. 37 – 56], [9, с. 9 – 26], [13, с. 8 – 44], [14, с. 71 – 88], [16, с. 5 – 226].

#### Питання до лекції 9

- 1. Якими є основні етапи розв'язування задач природничих наук за допомогою диференціальних рівнянь?
- 2. Наведіть приклади законів фізики, які використовуються при побудові диференціальних моделей.
- 3. Як за допомогою диференціальних рівнянь розв'язувати геометричні задачі?

#### Вправи до лекції 9

- 1. Кількість світла, що поглинає шар води малої товщини, пропорційна до кількості світла, що падає на нього, і товщині шару. Шар води товщиною 35 см поглинає половину світла, що падає на нього. Яку частину світла поглинає шар товщиною 2 м?
- 2. Куля, рухаючись зі швидкістю  $v_0=350~{\rm m/c}$ , пробиває стіну товщиною  $h=0,25~{\rm m}$  і вилітає з неї зі швидкістю  $v_1=90~{\rm m/c}$ . Вважаючи, що сила опору стіни пропорційна квадрату швидкості кулі, знайти тривалість руху кулі у стіні.
- 3. Визначте криву, всі дотичні до якої проходять через початок координат.
- 4. Визначте криву, кожна дотична до якої утворює з осями координат трикутник площею  $2a^2$ .
- 5. Визначте криву, яка проходить через точки (0;0) і (1;1) і обмежує криволінійну трапецію з основою [0;x] і площею, яка пропорційна  $y^4$ .

#### Додаток до розділу 1.

## Застосування математичного пакета Maple для інтегрування звичайних диференціальних рівнянь першого порядку

На сьогоднішній день є чимало спеціальних математичних пакетів комп'ютерних програм, які дозволяють розв'язувати різноманітні математичні задачі. Математичний пакет MathCad орієнтований, перш за все, на здійснення числових розрахунків. Пакети MATLAB, Scilab, Octave і FreeMat створені, у першу чергу, для роботи з числовими матрицями і векторами. Математичні пакети Марle, Mathematica, Maxima і MuPAD розраховані на здійснення символьних (тобто аналітичних) обчислень.

Практично всі ці пакети дозволяють розв'язувати диференціальні рівняння числовими (наближеними) методами. Але остання група математичних пакетів дозволяє також знайти точний (аналітичний) розв'язок у тих випадках, коли рівняння інтегруються у скінченному вигляді.

Одним з найбільш популярних і потужних є пакет аналітичних обчислень і числових розрахунків Maple. Ми розглянемо

застосування саме його до розв'язування диференціальних рівнянь.

Для розв'язування звичайних диференціальних рівнянь у пакеті Maple використовують команду

Параметр «невідома» визначає невідому функцію диференціального рівняння, а необов'язковий параметр «опції» — форму подання розв'язку і методи його відшукання.

Для задання похідної у диференціальному рівнянні можна використовувати команду diff() або оператор D, причому саму функцію треба записувати з явним вказуванням незалежної змінної, наприклад, y(x). Оператор D має наступний синтаксис:

У цьому записі n — порядок похідної. Якщо n=1, то замість першого виразу у дужках можна писати просто D. Команда dsolve(), як правило, знаходить лише загальний розв'язок і не завжди наводить особливі. Згенеровані величини  $_{C1}$ ,  $_{C2}$  і т. д. позначають довільні сталі.

Якщо потрібно розв'язати задачу Коші, то першим параметром команди dsolve() повинна бути множина, яка складається з рівняння і початкових умов (через кому у фігурних дужках).

Продемонструємо використання Maple для розв'язування прикладів, розглянутих у цьому розділі. У деяких випадках Maple дає розв'язки, які зводяться до отриманих вище відповідей шляхом перетворень.

**Приклад 1.** Знайти загальний розв'язок рівняння з відокремлюваними змінними  $(y-x^2y)dy=(x-xy^2)dx$  (приклад 1 лекції 3, стор. 36):

> dsolve( $(y(x)-x^2*y(x))*D(y)(x)=x-x*y(x)^2,y(x)$ );

$$y(x) = \sqrt{1 - C1 + C1 x^2}, \quad y(x) = -\sqrt{1 - C1 + C1 x^2}.$$

**Приклад 2.** Зінтегрувати рівняння  $y' = (4x + y + 5)^2$  (приклад 2 лекції 3, стор. 37):

> dsolve(D(y)(x)= $(4*x+y(x)+5)^2,y(x)$ );

$$y(x) = -5 - 4x - 2 \tan(-2x + 2 C1).$$

Приклад 3. Знайти загальний розв'язок однорідного рівняння  $ydx + 2\sqrt{xy}dy = xdy$  (приклад 3 лекції 3, стор. 39): > dsolve(y(x)+2\*sqrt(x\*y(x))\*D(y)(x)=x\*D(y)(x),y(x));

$$\ln(y(x)) + \frac{x}{\sqrt{xy(x)}} - C1 = 0.$$

Приклад 4. Розв'язати однорідне рівняння

$$y' = \frac{y}{\sqrt{x^2 + y^2} + x}$$

з лекції 3 (стор. 39), це рівняння було отримане при розв'язуванні задачі про форму дзеркала (задача 3 лекції 1, стор. 17): > dsolve(D(y)(x)=y(x)/(sqrt(x^2+(y(x))^2)+x),y(x));

$$2\frac{\sqrt{x^2 + (y(x))^2}}{(y(x))^2} + 2\frac{x}{(y(x))^2} - C1 = 0.$$

Розв'яжемо останнє рівняння відносно y(x): > isolate(%,y(x));

$$y\left(x\right) = -2\frac{\sqrt{1 + C1 x}}{C1}.$$

**Приклад 5.** Зінтегрувати рівняння (x-2y+3)y' = 1-y-2x (приклад 4 лекції **3**, стор. **41**):

> dsolve((x-2\*y(x)+3)\*D(y)(x)=1-y(x)-2\*x,y(x));

$$y(x) = \frac{7}{5} - \frac{-\frac{(5x+1)_{-}C1}{2} + \frac{\sqrt{5(5x+1)^{2}_{-}C1^{2}+4}}{2}}{5C1}.$$
 (1)

Переконаємось, що отримана функція задовольняє загальний інтеграл цього рівняння  $y^2 - x^2 - xy + x - 3y = C$ , знайдений на стор. 42. Для цього підставимо її у його ліву частину, скориставшись командою simplify():

>  $y:=7/5-1/5*(-1/2*(5*x+1)*_C1+1/2*(5*(5*x+1)^2*_C1^2+4)^(1/2))/_C1: simplify(y^2-x^2-x*y+x-3*y);$ 

$$-\frac{55\_C1^2-1}{25\_C1^2}.$$

Отриманий вираз справді є сталою. Оскільки загальний інтеграл є многочленом другого степеня відносно y, то повинен бути ще один розв'язок, який відрізнятиметься від (1) знаком перед квадратним коренем. Цей розв'язок, як і два особливих розв'язки рівняння  $(y=\frac{1+\sqrt{5}}{2}x+\frac{3}{2}+\frac{\sqrt{5}}{10},\,y=\frac{1-\sqrt{5}}{2}x+\frac{3}{2}-\frac{\sqrt{5}}{10}),$  Марlе відшукати не зміг.

**Приклад 6.** Знайти загальний розв'язок рівняння  $y' = \frac{x-2y+3}{2x-4y-1}$  (приклад 5 лекції 3, стор. 43):

> dsolve(D(y)(x)=(x-2\*y(x)+3)/(2\*x-4\*y(x)-1),y(x));

$$y(x) = -\frac{1}{4} + \frac{x}{2} - \frac{\sqrt{1 - 28x + 28C1}}{4},$$
  
$$y(x) = -\frac{1}{4} + \frac{x}{2} + \frac{\sqrt{1 - 28x + 28C1}}{4}.$$

Зрозуміло, що отримані функції – розв'язки відносно змінної y квадратного рівняння  $x^2-4xy+4y^2+6x+2y=C$ , яке є зна-йденим на стор. 43 загальним інтегралом заданого диференціального рівняння. У цьому легко переконатись, розв'язавши загальний інтеграл відносно змінної y за допомогою команди solve():

> solve(x^2-4\*x\*y+4\*y^2+6\*x+2\*y=C,y);

$$-\frac{1}{4} + \frac{x}{2} - \frac{\sqrt{1 - 28x + 4C}}{4}, \quad y(x) = -\frac{1}{4} + \frac{x}{2} + \frac{\sqrt{1 - 28x + 4C}}{4}.$$

**Приклад 7.** Зінтегрувати лінійне рівняння  $y'+2xy=2xe^{-x^2}$  (приклад 1 лекції 4, стор. 48):

>  $dsolve(D(y)(x)+2*x*y(x)=2*x*exp(-x^2),y(x));$ 

$$y(x) = (x^2 + C1)e^{-x^2}$$
.

**Приклад 8.** Знайти загальний розв'язок рівняння Бернуллі  $y' + 2xy = 2xe^{x^2}y^2$  (приклад 2 лекції 4, стор. 51):

>  $dsolve(D(y)(x)+2*x*y(x)=2*x*exp(x^2)*y(x)^2,y(x));$ 

$$y(x) = \frac{e^{-x^2}}{-x^2 + C1}.$$

Приклад 9. Знайти рівняння кривих з задачі 1 лекції 4. На стор. 52 було отримано диференціальне рівняння шуканої сім'ї кривих  $y' - y/x = -y^2/x$ . Зінтегруємо його: > dsolve(D(y)(x)-y(x)/x=-y(x)^2/x,y(x));

$$y(x) = \frac{x}{x + C1}.$$

Приклад 10. Знайти загальний розв'язок рівняння Ріккаті  $y'=y^2-\frac{y}{x}-\frac{4}{x^2}$  (приклад 3 лекції 4, стор. 54): > dsolve(D(y)(x)=y(x)^2-y(x)/x-4/x^2,y(x));

$$y(x) = \frac{2x^4 + 2 C1}{x(C1 - x^4)}.$$

**Приклад 11.** Зінтегрувати рівняння у повних диференціалах  $(x + y^2 + \sin x) dx + (2xy + \cos y) dy = 0$  (приклад 1 лекції 5, стор. 59):

>  $dsolve(x+y(x)^2+sin(x)+(2*x*y(x)+cos(y(x)))*D(y)(x)=0,y(x));$ 

$$\frac{x^2}{2} + y(x)^2 x - \cos(x) + \sin(y(x)) + C1 = 0.$$

Приклад 12. Знайти загальний розв'язок рівняння  $(2xy^2 - y) dx + (y^2 + x + y) dy = 0$  (приклад 2 лекції 5, стор. 62): > dsolve(2\*x\*y(x)^2-y(x)+(y(x)^2+x+y(x))\*D(y)(x),y(x), implicit);

$$x^{2} - \frac{x}{y(x)} + \ln(y(x)) + y(x) + C1 = 0.$$

Додаткова опція implicit дозволяє знаходити розв'язок у неявній формі. Відсутність модуля в аргументу логарифма не є помилкою, бо всі обчислення у Maple за замовчуванням здійснюються у полі комплексних чисел, знайдений розв'язок теж

може бути комплекснозначним. Підібравши відповідним чином довільну сталу, яка може бути комплексною, легко виділити дійснозначний розв'язок. Знайдемо також інтегрувальний множник цього рівняння, скориставшись командою intfactor() з пакета DEtools:

> DEtools[intfactor](2\*x\*y(x)^2-y(x)+(y(x)^2+x+y(x))\*
D(y)(x));

$$\frac{1}{y(x)^2}$$
.

**Приклад 13.** Зінтегрувати рівняння  $(2x^3y^2 - y) dx + (2x^2y^3 - x) dy = 0$  (приклад 3 лекції 5, стор. 62):

> dsolve( $2*x^3*y(x)^2-y(x)+(2*x^2*y(x)^3-x)*D(y)(x)=0$ , y(x),implicit);

$$-C1 + x^2 + \frac{1}{y(x)x} + y(x)^2 = 0.$$

Знайдемо також інтегрувальний множник цього рівняння:

> DEtools[intfactor](2\*x^3\*y(x)^2-y(x)+(2\*x^2\*y(x)^3x)\*D(y)(x)=0);

$$\frac{1}{y(x)^2x^2}$$
,  $\frac{1}{x(1+xy(x)^3+x^3y(x))y(x)}$ .

Програма знайшла два інтегрувальних множника.

Приклад 14. Знайти інтегрувальний множник рівняння  $(y/x + 3x^2)dx + (1 + x^3/y)dy = 0$  (приклад 4 лекції 5, стор. 66): > DEtools[intfactor](y(x)/x+3\*x^2+(1+x^3/y(x))\*D(y)(x)=0);

$$\frac{1}{2y(x) + 3x^3}.$$

У цьому випадку програма навела інтегрувальний множник, який відрізняється від інтегрувального множника, знайденого у прикладі 4. Але це й не дивно, бо інтегрувальний множник не є єдиним (теорема 2 лекції 5).

**Приклад 15.** Зінтегрувати неявне рівняння  $y'^2 - 9\sqrt[3]{y^4} = 0$  (приклад 1 лекції 6, стор. 69):

> dsolve(D(y)(x) $^2-9*y(x)^(4/3)=0,y(x)$ );

$$y(x)^{\left(\frac{1}{3}\right)} - x - C1 = 0, \quad y(x)^{\left(\frac{1}{3}\right)} + x - C1 = 0.$$

Знайшовши з останніх рівностей y(x), отримаємо загальний розв'язок прикладу 1. Особливий розв'язок y=0 програма не знайшла.

**Приклад 16.** Зінтегрувати неявне рівняння  $x^2y'^2 + 2xyy' + y^2 - 4x = 0$  (приклад 2 лекції 6, стор. 75):

> dsolve( $x^2*D(y)(x)^2+2*x*y(x)*D(y)(x)+y(x)^2-4*x=0$ , y(x));

$$y(x) = -\frac{4\sqrt{x}}{3} + \frac{-C1}{x}, \quad y(x) = \frac{4\sqrt{x}}{3} + \frac{-C1}{x}.$$

Пропонуємо читачам самостійно зінтегрувати рівняння  $y'^3 - 5y'^2 + 7 = 0$  з прикладу 3 лекції 6 (стор. 76) за допомогою пакета Maple і пересвідчитись, що програма шукає розв'язок у явному вигляді навіть при використанні опції implicit.

**Приклад 17.** Зінтегрувати рівняння  $y = y'^2 - 3xy' + 3x^2$  (приклад 1 лекції 7, стор. 78):

>  $dsolve(y(x)=D(y)(x)^2-3*x*D(y)(x)+3*x^2,y(x));$ 

$$\begin{split} y(x) &= \frac{3\,x^2}{4}, \ \ y(x) = \frac{-C1^2x^2 + -C1(x_-C1 + 2)x + 2}{2_-C1^2}, \\ y(x) &= \frac{-C1^2x^2 + -C1(x_-C1 - 2)x + 2}{2_-C1^2}, \\ y(x) &= \frac{x^2}{2} - \frac{(-x - 2_-C1)x}{2} + -C1^2, \\ y(x) &= \frac{x^2}{2} - \frac{(-x + 2_-C1)x}{2} + -C1^2. \end{split}$$

На перший погляд тут є п'ять різних розв'язків, але насправді всі, крім першого, розв'язки шляхом нескладних перетворень і перепозначення сталих можна звести один до одного. У цьому легко переконатись за допомогою команди simplify():

> simplify({%});

$$\begin{cases} y(x) = x^2 - x_{-}C1 + _{-}C1^2, & y(x) = \frac{3x^2}{4}, \\ y(x) = \frac{_{-}C1^2x^2 - x_{-}C1 + 1}{C1^2}, & y(x) = x^2 + x_{-}C1 + _{-}C1^2, \end{cases}$$

$$y(x) = \frac{-C1^2x^2 + x_{-}C1 + 1}{-C1^2} \bigg\}.$$

**Приклад 18.** Зінтегрувати рівняння  $x = y'^4 + 2y'$  (приклад 2 лекції 7, стор. 79).

Скористаємося опціями implicit i parametric:

> dsolve(x=D(y)(x)^4+2\*D(y)(x),y(x),implicit,
 parametric);

$$x(_T) = _T^4 + 2_T, \ y(_T) = \frac{4}{5} - T^5 + _T^2 + _C1.$$

Величина  $\_T$  позначає параметр (розв'язок знайдено у параметричній формі).

**Приклад 19.** Знайти загальний розв'язок рівняння Лагранжа  $y = 2xy' - \ln y'$  (приклад 3 лекції 7, стор. 80).

Скористаємося опцією implicit:

> dsolve(y(x)=2\*x\*D(y)(x)-ln(D(y)(x)),y(x),implicit);

$$x(_T) = \frac{T + C1}{T^2}, \ y(_T) = 2\frac{T + C1}{T} - \ln(_T).$$

**Приклад 20.** Зінтегрувати рівняння Клеро  $y = xy' - y'^3$  (приклад 4 лекції 7, стор. 82):

>  $dsolve(y(x)=x*D(y)(x)-(D(y)(x))^3,y(x));$ 

$$y(x) = -\frac{2}{9}\sqrt{3}x^{\frac{3}{2}}, \ y(x) = \frac{2}{9}\sqrt{3}x^{\frac{3}{2}}, \ y(x) = x\_C1 - \_C1^3.$$

**Приклад 21.** Розв'язати задачу про зростання кількості наукових публікацій (задача 1 лекції  $\frac{1}{1}$ ).

На стор. 14 отримали диференціальне рівняння, яке описує зростання кількості наукових публікацій:

$$y'(t) = k y(t).$$

Зінтегруємо це рівняння, враховуючи початкову умову  $y(0) = y_0$ :

>  $dsolve({D(y)(t)=k*y(t),y(0)=y0},y(t));$ 

$$y(t) = y\theta e^{kt}$$
.

Знайдемо тепер за допомогою команди solve() невідомий час T з додаткової умови  $y(T)=2y_0$ , якщо коефіцієнт k=0.07: > solve(y0\*exp(0.07\*T)=2\*y0,T);

9.902102579.

Приклад 22. Зінтегрувати рівняння y' = ky(M - y) (приклад після прикладу 1 лекції 1, стор. 14): > dsolve(D(y)(t)=k\*y(t)\*(M-y(t)),y(t));

$$y(t) = \frac{M}{1 + e^{-kMt} C1 M}.$$

**Приклад 23.** Розв'язати задачу про рух човна (задача 2 лекції 1).

На стор. 16 було отримано диференціальне рівняння, яке описує рух човна:

$$m\frac{dv}{dt} = kv^2.$$

Зінтегруємо його, врахувавши початкову умову v(0) = 3: > dsolve({m\*D(v)(t)=k\*v(t)^2,v(0)=3},v(t));

$$v(t) = -\frac{3m}{3kt - m}.$$

Знайдемо тепер невідоме співвідношення між m і k з додаткової умови v(4)=1:

> solve(-3\*m/(3\*k\*4-m)=1,m);

$$-6k$$
.

Тоді невідомий час T з умови v(T)=0.01 визначити легко: > m:=-6\*k:solve(-3\*m/(3\*k\*T-m)=0.01,T);

598.

**Приклад 24.** Наближено побудувати інтегральні криві рівняння y' = x(y-1) (приклад 1 з лекції 2, стор. 30).

Побудуємо поле напрямів, визначене цим рівнянням, та сім інтегральних кривих, які задовольняють початкові умови y(0) = -1, y(0) = 0, y(0) = 0.5, y(0) = 1, y(0) = 1.5, y(0) = 2,

y(0)=3. Для цього потрібно скористатись командою DEplot з пакета DEtools:



Читач може спробувати самостійно зінтегрувати наведені вище інші рівняння за допомогою пакета Maple.

# Розділ 2. ЗВИЧАЙНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ВИЩИХ ПОРЯДКІВ

# Лекція 10. Диференціальні рівняння вищих порядків

#### План

- 1. Основні поняття й означення. Задача Коші.
- 2. Класифікація розв'язків.
- 3. Рівняння, яке містить тільки незалежну змінну і похідну порядку n.
- 1. Основні поняття й означення. Задача Коші. Розглянемо звичайне диференціальне рівняння n-го порядку

$$F(x, y, y', \dots, y^{(n)}) = 0.$$
 (10.1)

Якщо рівняння (10.1) можна розв'язати відносно старшої похідної, то його записуватимемо у вигляді

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$$
 (10.2)

Функцію y = y(x), яка визначена і неперервно диференційовна n разів на інтервалі (a,b), називають **розв'язком** рівняння (10.2) на цьому інтервалі, якщо вона для всіх  $x \in (a,b)$  перетворює це рівняння у тотожність.

Для рівняння (10.2) задача Коші формулюється так: серед усіх розв'язків цього рівняння знайти такий розв'язок y=y(x), який для  $x=x_0$  задовольняє умови

$$y(x_0) = y_0, \quad y'(x_0) = y_0', \quad \dots, \quad y^{(n-1)}(x_0) = y_0^{(n-1)}, \quad (10.3)$$

де  $x_0, y_0, y_0', \ldots, y_0^{(n-1)}$  – задані числа, які називають **поча- тковими даними розв'язку** y=y(x). Число  $x_0$  називають

початковим значенням незалежної змінної x, сукупність чисел  $x_0, y_0, y_0', \ldots, y_0^{(n-1)}$  – **початковими даними рівняння** (10.2), а умови (10.3) – **початковими умовами**.

Зокрема, для рівняння другого порядку

$$y'' = f(x, y, y') (10.4)$$

задача Коші полягає у знаходженні розв'язку y=y(x) цього рівняння, який задовольняє початкові умови

$$y(x_0) = y_0, \ y'(x_0) = y'_0.$$
 (10.5)

З геометричної точки зору задача Коші (10.4), (10.5) полягає у знаходженні такої інтегральної кривої, яка проходить через точку  $(x_0,y_0)$  і має у цій точці заданий напрям дотичної  $y_0'$ , тобто tg  $\alpha_0=y_0'$ .

Зауважимо, що єдиність розв'язку задачі Коші для рівняння n-го порядку (10.2) не означає, що через точку ( $x_0, y_0$ ) проходить тільки одна інтегральна крива, як це було для рівняння першого порядку, розв'язаного відносно похідної (лекція 2). Наприклад, єдиність розв'язку задачі Коші (10.4), (10.5) означає, що через кожну точку ( $x_0, y_0$ ) проходить єдина інтегральна крива рівняння (10.4), дотична до якої у цій точці утворює з додатним напрямом осі Ox кут  $\alpha_0$ , для якого tg  $\alpha_0 = y_0'$ . Водночас, крім цієї інтегральної кривої через точку ( $x_0, y_0$ ) можуть проходити й інші інтегральні криві, але з іншим нахилом дотичної у цій точці.

**Приклад 1.** Знайти розв'язок задачі Коші y'' + y = 0,  $y(0) = 1, \ y'(0) = 0$ .

**Розв'язання.** Можна довести, що всі розв'язки рівняння містяться в формулі

$$y = C_1 \cos x + C_2 \sin x,$$

де  $C_1$  і  $C_2$  – довільні сталі. Звідси  $y'=-C_1\sin x+C_2\cos x$ . Виберемо  $C_1$  і  $C_2$ , щоб задовольнити початкові умови. Очевидно, що  $C_1=1,\ C_2=0$ . Отже, шуканим розв'язком є  $y=\cos x$ . Цей розв'язок єдиний. Однак через точку (0,1), окрім кривої

 $y=\cos x$ , проходить безліч інших інтегральних кривих, які можна описати формулою  $y=\cos x+C_2\sin x$ , де  $C_2$  — довільна стала, відмінна від нуля, але жодна з дотичних до них у точці (0,1) не збігається з дотичною до кривої  $y=\cos x$  у цій точці.

Розглянемо питання про механічне трактування диференціального рівняння другого порядку, його розв'язків та задачі Коші. Нехай матеріальна точка маси m рухається по прямій, яку приймемо за вісь Ox, під дією сили  $F\left(t,x,\frac{dx}{dt}\right)$ , залежної від часу t, положення x і швидкості  $\frac{dx}{dt}$  у момент часу t. Згідно з другим законом Ньютона

$$m\frac{d^2x}{dt^2} = F\left(t, x, \frac{dx}{dt}\right),$$

де  $\frac{d^2x}{dt^2}$  — прискорення точки в момент часу t, або

$$\frac{d^2x}{dt^2} = f\left(t, x, \frac{dx}{dt}\right),\tag{10.6}$$

де f = F/m.

Кожному розв'язку x = x(t) рівняння (10.6) відповідає певний *закон руху*, тому часто розв'язок x = x(t) називають *рухом*, який визначений рівнянням (10.6). Задача інтегрування рівняння (10.6) полягає у знаходженні всіх рухів, визначених цим рівнянням, та у вивченні їх властивостей.

З механічної точки зору задача Коші для рівняння (10.6) полягає у знаходженні такого руху x=x(t), який задовольняє початкові умови

$$x(t_0) = x_0, \quad x'(t_0) = x'_0,$$

тобто в початковий момент часу  $t=t_0$  точка повинна займати задане положення  $x_0$  і мати задану швидкість  $x_0'$ .

Достатня умова існування розв'язку задачі Коші для диференціального рівняння першого порядку поширюється і на випадок рівняння *n*-го порядку: для існування (неперервного разом з похідними до порядку п включно) розв'язку задачі Коші (10.2), (10.3) досить припустити, щоб права частина рівняння

(10.2) була неперервною в околі початкових даних (**теорема Пеано**).

Відповідь на питання про існування єдиного розв'язку задачі Коші (10.2), (10.3) дає така теорема [8, c. 93 - 99].

**Теорема (Коші).** Якщо функція  $f(x,y,y',\ldots,y^{(n-1)})$  з рівняння (10.2) у деякому околі точки  $(x_0,y_0,y'_0,\ldots,y_0^{(n-1)})$  неперервна за всіма аргументами і має обмежені частинні похідні за змінними  $y,y',\ldots,y^{(n-1)},$  то існує єдиний розв'язок задачі Коші (10.2), (10.3), який визначений і неперервний разом з похідними до порядку п включно на деякому відрізку  $|x-x_0|\leqslant h$ .

**2.** Класифікація розв'язків. Загальним розв'язком рівняння (10.2) називають сім'ю розв'язків цього рівняння, залежну від n довільних сталих:

$$y = \varphi(x, C_1, C_2, \dots, C_n).$$

З геометричної точки зору маємо сім'ю інтегральних кривих на площині (x,y), залежну від n параметрів  $C_1,C_2,\ldots,C_n$ , причому рівняння цієї сім'ї розв'язане відносно y.

Загальний розв'язок рівняння (10.2) у неявному вигляді  $\Phi(x,y,C_1,\ldots,C_n)=0$  називають *загальним інтегралом* цього рівняння.

У деяких випадках, інтегруючи рівняння (10.1), шукають сім'ю інтегральних кривих, яка залежить від n довільних сталих  $C_1, C_2, \ldots, C_n$ , у параметричному вигляді

$$\begin{cases} x = \varphi(p, C_1, C_2, \dots, C_n), \\ y = \psi(p, C_1, C_2, \dots, C_n). \end{cases}$$

Таку сім'ю інтегральних кривих називають *загальним роз-* в'язком у параметричній формі.

Поняття частинних та особливих розв'язків для диференціальних рівнянь вищих порядків вводяться аналогічно, як і для рівняння першого порядку.

Розв'язок y = y(x) рівняння (10.2) називають **частинним**, якщо у кожній його точці зберігається єдиність розв'язку задачі Коші, тобто для кожної точки  $(x_0, y(x_0))$  на інтегральній

кривій y=y(x) не існує іншого розв'язку  $y=y_1(x)$ , який би задовольняв початкові умови

$$y_1(x_0) = y(x_0), \ y_1'(x_0) = y'(x_0), \dots, \ y_1^{(n-1)}(x_0) = y^{(n-1)}(x_0).$$

Кожний розв'язок, який можна одержати з формули загального розв'язку для певних допустимих числових значень сталих  $C_1, C_2, \ldots, C_n$ , буде, очевидно, частинним.

Розв'язок, у кожній точці якого порушується єдиність розв'язку задачі Коші, називають ocoбливим. Такий розв'язок не можна одержати з формули загального розв'язку для жодних значень сталих  $C_1, C_2, \ldots, C_n$ .

Зауважимо, що диференціальне рівняння n-го порядку може мати сім'ю особливих розв'язків, залежну від довільних сталих, кількість яких може бути n-1. Проілюструємо це на прикладі.

Приклад 2. Зінтегрувати рівняння  $y''=2\sqrt{y'}$ . **Розв'язання.** Зробимо заміну y'=z, де z=z(x) – нова шукана функція. Тоді

$$z' = 2\sqrt{z} \quad \Rightarrow \quad \int \frac{dz}{2\sqrt{z}} = \int dx \quad (z \neq 0) \quad \Rightarrow$$
$$\sqrt{z} = x + C_1 \quad \Rightarrow \quad z = (x + C_1)^2 \quad \Rightarrow \quad y' = (x + C_1)^2.$$

Інтегруючи, знаходимо загальний розв'язок

$$y = \frac{1}{3}(x + C_1)^3 + C_2.$$

Особливому розв'язку z=0 рівняння  $z'=2\sqrt{z}$  відповідає сім'я особливих розв'язків рівняння y=C. Кожен з них є особливим.

**Bidnoeidb:** 
$$y = (x + C_1)^3/3 + C_2, y = C.$$

**3.** Рівняння, яке містить тільки незалежну змінну і похідну порядку n. У цьому пункті лекції, а також на наступній лекції вивчатимемо деякі класи звичайних диференціальних рівнянь n-го порядку, загальний розв'язок (загальний інтеграл) яких можна знайти за допомогою квадратур. Зведення

до квадратур виконується або за допомогою спеціальних прийомів, або шляхом попереднього зниження порядку рівняння (якщо отримане при цьому рівняння інтегрується у квадратурах).

Розглянемо спочатку рівняння, яке містить тільки незалежну змінну і похідну порядку n, тобто рівняння вигляду

$$F\left(x, y^{(n)}\right) = 0. \tag{10.7}$$

Розглянемо два можливі випадки.

**Випадок 1.** *Рівняння* (10.7) можна розв'язати відносно  $y^{(n)}$ . Тоді

$$y^{(n)} = f(x). (10.8)$$

Для рівняння (10.8) з неперервною функцією f(x) завжди можна знайти загальний розв'язок у квадратурах, послідовно зменшуючи порядок рівняння на одиницю. Справді, інтегруючи обидві частини цього рівняння, маємо

$$y^{(n-1)} = \int f(x) \, dx + C_1.$$

Аналогічно одержуємо

$$y^{(n-2)} = \iint f(x) dx dx + C_1 x + C_2,$$

$$y^{(n-3)} = \iiint f(x) dx dx dx + \frac{C_1}{2} x^2 + C_2 x + C_3,$$

$$\dots \dots \dots$$

$$y = \iiint_{n \text{ pasib}} f(x) dx dx \dots dx + \frac{C_1}{(n-1)!} x^{n-1} + \frac{C_2}{(n-2)!} x^{n-2} + \dots + C_{n-1} x + C_n,$$
(10.9)

де  $C_1, C_2, \ldots, C_n$  – довільні сталі. Формула (10.9) визначає загальний розв'язок рівняння (10.8).

**Приклад 3.** Зінтегрувати рівняння  $y''' = \sin^2 x$ .

**Розв'язання.** Права частина рівняння неперервна для всіх значень x. Двічі послідовно інтегруючи обидві частини рівняння, одержуємо

$$y'' = \int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} dx = \frac{x}{2} - \frac{\sin 2x}{4} + C_1,$$
$$y' = \int \left(\frac{x}{2} - \frac{\sin 2x}{4} + C_1\right) dx = \frac{x^2}{4} + \frac{\cos 2x}{8} + C_1 x + C_2.$$

Інтегруючи ще один раз, знаходимо загальний розв'язок:

$$y = \frac{x^3}{12} + \frac{\sin 2x}{16} + C_1 x^2 + C_2 x + C_3,$$

де  $C_1$ ,  $C_2$ ,  $C_3$  – довільні сталі,  $C_1 := C_1/2$ .

**Bidnosids:** 
$$y = \frac{x^3}{12} + \frac{\sin 2x}{16} + C_1 x^2 + C_2 x + C_3.$$

Інтегруючи послідовно рівняння (10.8), можна замість невизначених інтегралів використовувати визначені інтеграли зі змінною верхньою межею, беручи в якості нижньої межі довільне число  $x_0$  з інтервалу неперервності правої частини цього рівняння. Тоді загальний розв'язок рівняння (10.8) запишеться у вигляді

$$y = \underbrace{\int_{x_0 x_0}^{x} \dots \int_{x_0}^{x} f(x) dx dx \dots dx}_{n \text{ pasib}} + \frac{C_1}{(n-1)!} x^{n-1} + \frac{C_2}{(n-2)!} x^{n-2} + \dots + C_{n-1} x + C_n,$$

де  $C_1, C_2, \ldots, C_n$  — довільні сталі. Перший доданок у цій формулі містить n квадратур (інтегралів), але їх можна замінити однією квадратурою згідно з формулою Kowi ([4, с. 164 — 165])

$$\int_{x_0}^{x} \int_{x_0}^{x} \dots \int_{x_0}^{x} f(x) dx dx \dots dx = \frac{1}{(n-1)!} \int_{x_0}^{x} f(t) (x-t)^{n-1} dt.$$

Тому загальний розв'язок рівняння (10.8) можемо записати у вигляді

$$y = \frac{1}{(n-1)!} \int_{x_0}^{x} f(t)(x-t)^{n-1} dt + C_1 x^{n-1} + \dots + C_{n-1} x + C_n,$$
(10.10)

де  $C_1, C_2, \ldots, C_n$  – довільні (перепозначені) сталі.

Приклад 4. Знайти розв'язок рівняння  $y''' = e^{x^2}$ , який задовольняє нульові початкові умови.

**Розв'язання.** Права частина рівняння неперервна для всіх  $x \in \mathbb{R}$ . Використовуючи формулу (10.10), у якій беремо  $x_0 = 0$ , знаходимо загальний розв'язок заданого рівняння:

$$y = \frac{1}{2} \int_{0}^{x} e^{t^{2}} (x - t)^{2} dt + C_{1}x^{2} + C_{2}x + C_{3},$$

де  $C_1$ ,  $C_2$ ,  $C_3$  – довільні сталі.

З того, що y(0)=y'(0)=y''(0)=0, знаходимо сталі  $C_1=C_2=C_3=0$ , а тому шуканим розв'язком

$$y = \frac{1}{2} \int_{0}^{x} e^{t^2} (x - t)^2 dt$$
.

Випадок 2. Рівняння (10.7) не можна розв'язати в елементарних функціях відносно  $y^{(n)}$  або вираз для  $y^{(n)}$  е надто складним. Такі рівняння можна розв'язувати методом введення параметра. Припустимо, що у цьому випадку існують такі функції

$$x = \varphi(t), \quad y^{(n)} = \psi(t), \tag{10.11}$$

де t – деякий параметр, що  $F(\varphi(t), \psi(t)) \equiv 0$ .

Виразимо у через параметр t. Оскільки

$$dy^{(n-1)} = y^{(n)}dx = \psi(t)\varphi'(t)dt,$$

TO

$$y^{(n-1)} = \int \psi(t)\varphi'(t) dt + C_1 \equiv \psi_1(t, C_1).$$

Далі, враховуючи, що

$$dy^{(n-2)} = y^{(n-1)} dx = \psi_1(t, C_1) \varphi'(t) dt,$$

знаходимо

$$y^{(n-2)} = \int \psi_1(t, C_1) \varphi'(t) dt + C_2 \equiv \psi_2(t, C_1, C_2).$$

Міркуючи аналогічно, врешті-решт зможемо знайти

$$y = \psi_n(t, C_1, C_2, \dots, C_n).$$

Отже, загальним розв'язком у параметричній формі рівняння (10.7)  $\varepsilon$ 

$$x = \varphi(t), \quad y = \psi_n(t, C_1, C_2, \dots, C_n).$$

Відзначимо, що особливо легко знайти функції  $\varphi(t)$  і  $\psi(t)$  з (10.11) у тому випадку, коли рівняння (10.7) можна розв'язати відносно незалежної змінної, тобто якщо

$$x = \varphi(y^{(n)}).$$

У цьому випадку замість  $y^{(n)}$  можна взяти довільну неперервну функцію  $\psi(t)$  і тоді  $x=\varphi(\psi(t))$ . Зокрема, якщо  $\psi(t)=t$ , то  $x=\varphi(t),\,y^{(n)}=t.$ 

Приклад 5. Зінтегрувати рівняння  $x\sqrt{1+y''^2}=y''$ . Розв'язання. Покладемо  $y''=\operatorname{tg} t$ . Тоді

$$x = \frac{\operatorname{tg} t}{\sqrt{1 + \operatorname{tg}^2 t}} = \frac{\sin t |\cos t|}{\cos t} = \pm \sin t,$$

причому знак плюс беремо тоді, коли  $\cos t > 0$ , а знак мінус – коли  $\cos t < 0$ .

Виразимо y через параметр t. Нехай  $\cos t > 0$ . Тоді

$$dy' = y'' dx = \operatorname{tg} t d(\sin t) = \sin t dt \quad \Rightarrow \quad y' = -\cos t + C_1;$$

$$dy = y' dx = (-\cos t + C_1) \cos t dt \quad \Rightarrow$$

$$y = -\int \cos^2 t dt + C_1 \int \cos t dt \quad \Rightarrow$$

$$y = -\frac{t}{2} - \frac{\sin 2t}{4} + C_1 \sin t + C_2.$$

Отже, якщо  $\cos t>0$ , то загальним розв'язком (у параметричній формі) заданого рівняння є

$$x = \sin t$$
,  $y = -\frac{t}{2} - \frac{\sin 2t}{4} + C_1 \sin t + C_2$ .

Аналогічно можна показати, що якщо  $\cos t < 0$ , то загальним розв'язком  $\varepsilon$ 

$$x = -\sin t$$
,  $y = -\frac{t}{2} - \frac{\sin 2t}{4} - C_1 \sin t + C_2$ .

**Відповідъ:**  $x=\sin t,\,y=-\frac{t}{2}-\frac{\sin 2t}{4}+C_1\sin t+C_2$ , якщо  $\cos t>0;\,x=-\sin t,\,y=-\frac{t}{2}-\frac{\sin 2t}{4}-C_1\sin t+C_2$ , якщо  $\cos t<0$ .

У динаміці матеріальної точки рівняння вигляду x'' = f(t), де t – час, x = x(t), зустрічається при вивченні прямолінійного руху, якщо сила, що діє на точку, залежить тільки від часу.

Задача 1. Знайти закон руху x(t) матеріальної точки маси т, яка рухається по прямій під дією сили, що змінюється за формулою  $F=k\,e^{-pt},$  де p>0, якщо початкові положення та швидкість руху дорівнюють нулю.

**Розв'язання.** Згідно з другим законом Ньютона

$$mx'' = k e^{-pt}$$
  $\Rightarrow$   $x'' = \frac{k}{m}e^{-pt}$ ,

тобто маємо рівняння вигляду x'' = f(t). Двічі послідовно інтегруючи, одержуємо:

$$x' = -\frac{k}{mp}e^{-pt} + C_1 \quad \Rightarrow \quad x = \frac{k}{mp^2}e^{-pt} + C_1t + C_2.$$

Оскільки за умовою задачі  $x(0)=0,\ v(0)=x'(0)=0,\$ то  $C_1=\frac{k}{mp},\ C_2=-\frac{k}{mp^2},$  а тому

$$x = \frac{k}{mp^2}e^{-pt} + \frac{k}{mp}t - \frac{k}{mp^2} \quad \Rightarrow \quad x(t) = \frac{k}{mp^2}\left(e^{-pt} + pt - 1\right).$$

Зауважимо, що оскільки  $\lim_{t\to +\infty}e^{-pt}=0$ , то для великих значень t знайдений рух наближається до рівномірного руху

$$x(t) = \frac{k}{mp}t - \frac{k}{mp^2}.$$

$$\pmb{Bidnosidu:}\ x(t) = rac{k}{mp^2}\left(e^{-pt} + pt - 1
ight).$$

**Рекомендована література**: [4, с. 148 – 168], [5, с. 136 – 151], [8, с. 91 – 108], [12, с. 65 – 72], [15, с. 15 – 17, 50 – 53].

#### Питання до лекції 10

- 1. Який загальний вигляд має диференціальне рівняння n-го порядку, розв'язане відносно старшої похідної? Що називають розв'язком цього рівняння на деякому інтервалі?
- 2. Як формулюється задача Коші для диференціального рівняння n-го порядку? Яка достатня умова існування розв'язку такої задачі? Наведіть теорему Коші про існування та єдиність розв'язку задачі Коші.
- 3. Який геометричний і механічний зміст диференціального рівняння другого порядку, його розв'язків та відповідних задач Коші?
- 4. Що називають загальним розв'язком (загальним інтегралом) диференціального рівняння *n*-го порядку? Який розв'язок називають частинним, особливим? Чи може диференціальне рівняння *n*-го порядку мати безліч особливих розв'язків?
- 5. Який вигляд має загальний розв'язок рівняння  $y^{(n)} = f(x)$  з неперервною правою частиною? Яка формула дозволяє цей розв'язок записати через одну квадратуру?
- 6. Як можна зінтегрувати рівняння, яке містить лише незалежну змінну та n-ту похідну шуканої функції, якщо розв'язати його відносно похідної шуканої функції неможливо?

### Вправи до лекції 10

1. Зінтегруйте рівняння:

a) 
$$y'' = 2^x$$
; 6)  $y''' = \frac{1}{x}$ ; B)  $y^{IV} = \sin x^2$ .

- 2. Знайдіть частинний розв'язок рівняння  $y''' = \cos x$ , який задовольняє початкові умови y(0) = -5, y'(0) = 1, y''(0) = 4.
  - 3. Зінтегруйте рівняння, не розв'язані відносно старшої похідної:

a) 
$$e^{y''} - y''^2 = x$$
; 6)  $x = \sin y'' + 2y''$ .

# Лекція 11. Диференціальні рівняння вищих порядків, які допускають зниження порядку

#### План

- 1. Рівняння, яке не містить шуканої функції та кількох послідовних похідних.
  - 2. Рівняння, яке не містить незалежної змінної.
- 3. Рівняння, однорідне відносно шуканої функції та її похідних.
  - 4. Рівняння з точними похідними.
- 1. Рівняння, яке не містить шуканої функції та кількох послідовних похідних. Розглянемо диференціальне рівняння n-го порядку

$$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0,$$
 (11.1)

де  $1 \leqslant k < n$ . Введемо нову невідому функцію z = z(x) за формулою

$$y^{(k)} = z. (11.2)$$

3 (11.1), (11.2) випливає, що функція z є розв'язком рівняння

$$F(x, z, z', \dots, z^{(n-k)}) = 0.$$
 (11.3)

Звичайно, не можна стверджувати, що рівняння (11.2) можна зінтегрувати у скінченному вигляді, але його порядок на k менший від порядку рівняння (11.1). Таким чином, за допомогою заміни (11.2) вдалося знизити порядок рівняння (11.1) на k одиниць. Якщо  $z=\omega\left(x,C_1,C_2,\ldots,C_{n-k}\right)$  — загальний розв'язок або  $\Phi(x,z,C_1,C_2,\ldots,C_{n-k})=0$  — загальний інтеграл рівняння (11.3), то для знаходження функції y одержуємо рівняння k-го порядку

$$y^{(k)} = \omega(x, C_1, \dots, C_{n-k}),$$

або

$$\Phi(x, y^{(k)}, C_1, C_2, \dots, C_{n-k}) = 0,$$

які вивчались на лекції 10 (це окремі випадки рівнянь вигляду  $y^{(n)} = f(x)$  і  $\Phi(x, y^{(n)}) = 0$  відповідно).

**Приклад 1.** Зінтегрувати рівняння xy''' = y'' - xy''. **Розв'язання.** Зробимо заміну y'' = z. Тоді для знаходження функції z = z(x) маємо рівняння з відокремлюваними змінними

$$xz' = z(1-x).$$

Зінтегруємо це рівняння:

$$\frac{dz}{z} = \frac{1-x}{x} dx \quad (z \neq 0, \ x \neq 0) \quad \Rightarrow \quad \ln|z| = \ln|x| - x + C_1 \quad \Rightarrow \\ z = C_1 x e^{-x} \quad (C_1 := e^{C_1}) \quad \Rightarrow \quad y'' = C_1 x e^{-x}.$$

Одержали диференціальне рівняння вигляду y'' = f(x). Двічі інтегруючи частинами, знаходимо

$$y' = C_1 \int x e^{-x} dx + C_2 = -C_1 (x e^{-x} + e^{-x}) + C_2 \implies$$

$$y = -C_1 \int x e^{-x} dx + C_1 e^{-x} + C_2 x + C_3 \implies$$

$$y = C_1 (x+2) e^{-x} + C_2 x + C_3.$$

Якщо z=0, то y''=0, тобто  $y=\tilde{C}_1x+\tilde{C}_2$ . Ця функція є розв'язком заданого рівняння, але він включається в загальний розв'язок при  $C_1=0$ . Функція x=0 не є розв'язком заданого рівняння.

**Bidnoeids:**  $y = C_1(x+2)e^{-x} + C_2x + C_3$ .

Задача 1. Точка маси т рухаеться по прямій під дією сили, яка змінюється за формулою  $F_1 = A \sin \omega t$ . Вважаючи, що опір середовища пропорційний швидкості точки, тобто  $F_2 = -kv$ , вивести закон руху x(t) точки, якщо її початкові положення та швидкість дорівнюють нулю.

**Розв'язання.** За умовою задачі  $F = F_1 + F_2$ . Згідно з другим законом Ньютона

$$ma = A\sin\omega t - kv$$
,

а оскільки v = x', a = x'', то одержуємо диференціальне рівняння вигляду (11.1):

$$mx'' + kx' = A\sin\omega t.$$

Початковими умовами є x(0) = 0, x'(0) = 0 (за умовою задачі початкові положення та швидкість точки дорівнюють нулю).

Вводимо нову функцію x' = u (тоді x'' = u') і одержуємо лінійне рівняння першого порядку

$$u' + \frac{k}{m}u = \frac{A}{m}\sin\omega t$$

з початковою умовою u(0) = 0. Розв'язок цього рівняння можна знайти за формулою (4.6) з лекції 4. Пропонуємо читачам самостійно переконатися в тому, що

$$u = C_1 e^{-\frac{k}{m}t} + \frac{Am}{k^2 + \omega^2 m^2} \left(\frac{k}{m} \sin \omega t - \omega \cos \omega t\right).$$

3 умови u(0)=0 знаходимо  $C_1=\frac{Am\omega}{k^2+\omega^2m^2},$  а тому

$$u = \frac{Am}{k^2 + \omega^2 m^2} \left( \omega e^{-\frac{k}{m}t} + \frac{k}{m} \sin \omega t - \omega \cos \omega t \right).$$

Оскільки u = x', то функція x(t) є розв'язком рівняння

$$x' = \frac{Am}{k^2 + \omega^2 m^2} \left( \omega e^{-\frac{k}{m}t} + \frac{k}{m} \sin \omega t - \omega \cos \omega t \right),$$

інтегруючи яке, знаходимо

$$x(t) = \frac{Am}{k^2 + \omega^2 m^2} \left( -\frac{m\omega}{k} e^{-\frac{k}{m}t} - \frac{k}{m\omega} \cos \omega t - \sin \omega t \right) + C_2.$$

Оскільки x(0) = 0, то

$$C_2 = \frac{Am}{k^2 + \omega^2 m^2} \left( \frac{m\omega}{k} + \frac{k}{m\omega} \right) \quad \Rightarrow \quad C_2 = \frac{A}{k\omega}.$$

Таким чином,

$$x(t) = \frac{A}{k\omega} - \frac{Am}{k^2 + \omega^2 m^2} \left( \frac{m\omega}{k} e^{-\frac{k}{m}t} + \frac{k}{m\omega} \cos \omega t + \sin \omega t \right). \blacksquare$$

**2. Рівняння, яке не містить незалежної змінної.** Розглянемо рівняння

$$F(y, y', y'', \dots, y^{(n)}) = 0.$$
 (11.4)

Покажемо, що порядок цього рівняння можна знизити на одиницю. Для цього введемо нову функцію z за формулою

$$y'=z$$
,

вважаючи y новою незалежною змінною, тобто z=z(y). Виразимо похідні  $y'', y''', \ldots, y^{(n)}$  через функцію z та її похідні за змінною y:

$$y'' = \frac{dy'}{dx} = \frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = z'z,$$

$$y''' = \frac{dy''}{dx} = \frac{d}{dx} \left(\frac{dz}{dy} \cdot z\right) = \frac{d}{dy} \left(\frac{dz}{dy} \cdot z\right) \frac{dy}{dx} = (z''z + z'^2)z,$$

$$\dots \dots \dots$$

$$y^{(n)} = \omega \left(z, z', \dots, z^{(n-1)}\right).$$

Отже, для знаходження функції z одержали диференціальне рівняння (n-1)-го порядку

$$F(y, z, z'z, \dots, \omega(z, z', \dots, z^{(n-1)})) = 0.$$
 (11.5)

Якщо вдасться знайти загальний розв'язок рівняння (11.5):

$$z = \varphi\left(y, C_1, C_2, \dots, C_{n-1}\right),\,$$

то загальний інтеграл рівняння (11.4) зможемо знайти, зінтегрувавши рівняння з відокремлюваними змінними

$$y' = \varphi(y, C_1, C_2, \dots, C_{n-1}),$$

а саме:

$$\int \frac{dy}{\varphi(y, C_1, C_2, \dots, C_{n-1})} = x + C_n.$$

Зауважимо, що приймаючи y за незалежну змінну, можна втратити розв'язки рівняння (11.4) вигляду y=C. Безпосередньою підстановкою у рівняння (11.4) легко з'ясувати, чи має воно такі розв'язки.

**Приклад 2.** Зінтегрувати рівняння  $yy'' = y'^2 - y'^3$ .

**Розв'язання.** Оскільки рівняння явно не містить x, то зробимо заміну y'=z(y). Тоді y''=z'z і, підставляючи в рівняння, маємо:

$$yz\frac{dz}{dy} = z^2 - z^3 \quad \Rightarrow \quad z\left(y\frac{dz}{dy} - z + z^2\right) = 0 \quad \Rightarrow$$

$$z = 0 \quad \text{afo} \quad y\frac{dz}{dy} = z - z^2.$$

З першого рівняння випливає, що y'=0, а отже, y=C, а з другого:

$$y\frac{dz}{dy} = z - z^{2} \quad \Rightarrow \quad \int \frac{dz}{z - z^{2}} = \int \frac{dy}{y} \quad \left(z - z^{2} \neq 0, \ y \neq 0\right) \quad \Rightarrow$$
$$\int \left(\frac{1}{1 - z} + \frac{1}{z}\right) dz = \int \frac{dy}{y} \quad \Rightarrow$$
$$\ln|z| - \ln|1 - z| = \ln|y| + C_{1} \quad \Rightarrow \quad \frac{z}{1 - z} = C_{1}y \quad \Rightarrow$$
$$z = \frac{C_{1}y}{1 + C_{1}y}.$$

Оскільки z = y', то

$$y' = \frac{C_1 y}{1 + C_1 y} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{C_1 y}{1 + C_1 y} \quad \Rightarrow$$
$$\frac{1 + C_1 y}{y} dy = C_1 dx \quad (y \neq 0) \quad \Rightarrow$$

$$\int \left(\frac{1}{y} + C_1\right) dy = C_1 x + C_2 \quad \Rightarrow \quad \ln|y| + C_1 y = C_1 x + C_2.$$

Якщо  $z-z^2=0$ , то z=0 або z=1. Випадок z=0 вже розглянуто, а якщо z=1, то  $y'=1,\ y=x+C$ . Усі ці прямі є особливими розв'язками.

**Bidnosids:**  $\ln |y| + C_1 y = C_1 x + C_2, \ y = x + C, \ y = C.$ 

## 3. Рівняння, однорідне відносно шуканої функції та її похідних. Диференціальне рівняння

$$F(x, y, y', \dots, y^{(n)}) = 0$$
 (11.6)

називають *однорідним* відносно шуканої функції та її похідних, якщо його ліва частина для довільного  $t \neq 0$  справджує умову

$$F(x, ty, ty', \dots, ty^{(n)}) = t^m \cdot F(x, y, y', \dots, y^{(n)}),$$
 (11.7)

де число m — вимір однорідності функції F. Покажемо, що за допомогою підстановки

$$z = \frac{y'}{y} \quad \Rightarrow \quad y = e^{\int z(x) dx},$$
 (11.8)

де z=z(x) – нова невідома функція, порядок рівняння (11.6) можна знизити на одиницю. Справді, оскільки

$$y' = yz, \quad y'' = y'z + yz' = y(z^2 + z'),$$
$$y''' = y \cdot (z'' + 3zz' + z^3), \dots, \quad y^{(n)} = y \cdot \psi(z, z', \dots, z^{(n-1)}),$$

то, підставляючи ці вирази в (11.6), маємо співвідношення

$$F(x, y, y z, y \cdot (z^2 + z'), \dots, y \cdot \psi(z, z', \dots, z^{(n-1)})) = 0,$$

яке, враховуючи (11.7), можемо записати у вигляді

$$y^m \cdot F(x, 1, z, z^2 + z', \dots, \psi(z, z', \dots, z^{(n-1)})) = 0.$$

Після скорочення на  $y^m$  ( $y \neq 0$ ), одержуємо диференціальне рівняння (n-1)-го порядку:

$$F(x, 1, z, z^{2} + z', \dots, \psi(z, z', \dots, z^{(n-1)})) = 0.$$
 (11.9)

Якщо  $z = \varphi(x, C_1, C_2, \dots, C_{n-1})$  – загальний розв'язок рівняння (11.9), то, беручи до уваги (11.8), знаходимо загальний розв'язок однорідного рівняння (11.6):

$$y = C_n \cdot e^{\int \varphi(x, C_1, C_2, \dots, C_{n-1}) dx}.$$

де  $C_1, C_2, \ldots, C_n$  – довільні сталі.

Інтегруючи рівняння (11.6), ми припускали, що  $y \neq 0$ . Функція y = 0 теж є розв'язком цього рівняння, але її можна отримати з формули загального розв'язку при  $C_n = 0$ .

Приклад 3. Зінтегрувати рівняння  $yy''-y'^2-30\sqrt{x}y^2=0$ . **Розв'язання.** Легко переконатися, що ліва частина рівняння є однорідною функцією (виміру 2), а тому задане рівняння є однорідним. Нехай y'=yz. Тоді  $y''=(z'+z^2)\,y$  і, підставляючи у рівняння, одержуємо:

$$y^{2}(z'+z^{2}) = y^{2}z^{2} + 30\sqrt{x}y^{2} \quad \Rightarrow \quad z' = 30\sqrt{x} \quad (y \neq 0) \quad \Rightarrow$$
$$z = 20x\sqrt{x} + C_{1} \quad \Rightarrow \quad \frac{y'}{y} = 20x\sqrt{x} + C_{1} \quad \Rightarrow$$
$$\ln|y| = 8x^{2}\sqrt{x} + C_{1}x + C_{2} \quad \Rightarrow \quad y = C_{2}e^{8x^{2}\sqrt{x} + C_{1}x}.$$

Функція y = 0 є, очевидно, частинним розв'язком.

**Bidnosids:**  $y = C_2 e^{8x^2\sqrt{x} + C_1x}$ .

**4. Рівняння з точними похідними.** Так називають рівняння вигляду

$$F(x, y, y', \dots, y^{(n)}) = 0,$$
 (11.10)

ліва частина якого  $\epsilon$  точною (повною) похідною деякої функції, тобто

$$F\left(x, y, y', \dots, y^{(n)}\right) = \frac{d}{dx} \Phi\left(x, y, y', \dots, y^{(n-1)}\right).$$

При цьому одержуємо рівняння

$$\Phi(x, y, y', \dots, y^{(n-1)}) = C_1,$$
 (11.11)

де  $C_1$  – довільна стала, тобто порядок рівняння (11.10) вдалося знизити на одиницю.

Рівність (11.11) називають  $nepuum\ iнmerpaлом$  рівняння (11.10).

Приклад 4. Зінтегрувати рівняння

$$\frac{xy'' - y'}{x^2} - yy' = 0.$$

**Розв'язання.** Ліву частину рівняння можемо записати як

$$\left(\frac{y'}{x} - \frac{1}{2}y^2\right)' = 0,$$

звідки знаходимо перший інтеграл рівняння:

$$\frac{y'}{x} - \frac{1}{2}y^2 = C_1. (11.12)$$

Співвідношення (11.12) – це рівняння з відокремлюваними змінними, тому

$$\frac{dy}{y^2 + C_1} = \frac{x}{2}dx \quad (C_1 := 2C_1) \quad \Rightarrow \quad \int \frac{dy}{y^2 + C_1} = \frac{x^2}{4} + C_2,$$

причому інтеграл залежить від сталої  $C_1$ , яка може набувати значення різних знаків.

Якщо  $C_1 = 0$ , то одержуємо особливі розв'язки

$$-\frac{1}{y} = \frac{x^2}{4} + C_2 \quad \Rightarrow \quad y = -\frac{4}{x^2 + C} \quad (C := 4C_2).$$

Якщо  $C_1 > 0$ , то

$$\frac{1}{\sqrt{C_1}} \arctan \frac{y}{\sqrt{C_1}} = \frac{x^2}{4} + C_2 \implies y = 4C_1 \operatorname{tg}(C_1 x^2 + C_2) \quad \left(C_1 := \sqrt{C_1}/4, \ C_2 := C_2 \sqrt{C_1}\right).$$

Якщо  $C_1 < 0$ , то

$$\frac{1}{2\sqrt{|C_1|}} \ln \left| \frac{y - \sqrt{|C_1|}}{y + \sqrt{|C_1|}} \right| = \frac{x^2}{4} + C_2 \quad \Rightarrow$$

$$\frac{2}{C_1} \ln \left| \frac{y - C_1}{y + C_1} \right| = x^2 + C_2 \quad \left( C_1 := \sqrt{|C_1|}, \ C_2 := 4C_2 \right).$$

**Bidnoeids:** 
$$y = 4C_1 \operatorname{tg}(C_1 x^2 + C_2), \ \frac{2}{C_1} \ln \left| \frac{y - C_1}{y + C_1} \right| = x^2 + C_2,$$
  
 $y = -\frac{4}{x^2 + C}.$ 

Якщо (11.10) не  $\epsilon$  рівнянням з точними похідними, то у багатьох випадках вдається знайти таку функцію

$$\mu = \mu \left( x, y, y', \dots, y^{(n-1)} \right),$$

після множення на яку ліва частина цього рівняння буде точною похідною. Функцію  $\mu$  називають iнтегрувальним множеником рівняння (11.10). Потрібно пам'ятати, що виконуючи множення на інтегрувальний множник, можна отримати зайві розв'язки (розв'язки рівняння  $\mu=0$ ), а також втратити деякі розв'язки (розв'язки, вздовж яких функція  $\mu$  перетворюється у нескінченність).

Ми не розглядатимемо питання про знаходження інтегрувального множника у загальному випадку (це надзвичайно складно), а обмежимося розглядом прикладу.

Приклад 5. Зінтегрувати рівняння  $yy'' - y'^2 = y'$ .

**Розв'язання.** Інтегрувальним множником цього рівняння є функція  $y^{-2}$ . Справді, поділивши обидві частини рівняння на  $y^2 \ (y \neq 0)$ , одержуємо:

$$\frac{yy'' - y'^2}{y^2} - \frac{y'}{y^2} = 0 \quad \Rightarrow \quad \left(\frac{y'}{y} + \frac{1}{y}\right)' = 0 \quad \Rightarrow$$

$$\frac{y'}{y} + \frac{1}{y} = C_1 \quad \Rightarrow \quad y' = C_1 y - 1 \quad \Rightarrow \quad \frac{dy}{C_1 y - 1} = dx.$$

Отримали рівняння з відокремленими змінними. Якщо  $C_1 \neq 0$ , то маємо загальний розв'язок:

$$y = C_2 e^{C_1 x} + \frac{1}{C_1}.$$

Якщо  $C_1=0$ , то одержуємо особливі розв'язки y=-x+C. Крім того, особливим розв'язком є функція y=0.

**Bidnosids:** 
$$y = C_2 e^{C_1 x} + \frac{1}{C_1}, \ y = -x + C, \ y = 0.$$

За допомогою інтегрувального множника легко зінтегрувати рівняння

$$y'' = f(y), (11.13)$$

яке є окремим випадком (11.4). Справді, помножимо обидві частини рівняння (11.13) на  $\mu=2y'$ . Тоді

$$2y'y'' = 2f(y)y' \quad \Rightarrow \quad \frac{d}{dx}(y'^2) = \frac{d}{dx}\left(2\int f(y)dy\right) \quad \Rightarrow$$
$$y'^2 = 2\int f(y)dy + C_1.$$

Отже, загальний розв'язок рівняння (11.13) можемо записати у вигляді

$$\int \frac{dy}{\sqrt{2\int f(y)\,dy} + C_1} = \pm x + C_2.$$

*Рекомендована література*: [2, с. 114 – 135], [4, с. 168 – 179], [5, с. 143 – 146, 151 – 161], [8, с. 107 – 113], [16, с. 227 – 287].

### Питання до лекції 11

- 1. За допомогою якої заміни можна знизити порядок диференціального рівняння *n*-го порядку, що не містить шуканої функції, і рівняння, що не містить шуканої функції та послідовних перших похідних? Запишіть загальний вигляд таких рівнянь.
- 2. Який загальний вигляд має диференціальне рівняння n-го порядку, яке не містить незалежної змінної? За допомогою якої заміни можна знизити порядок цього рівняння?
- 3. Яку умову має справджувати ліва частина диференціального рівняння  $F(x,y,y',\ldots,y^{(n)})=0$ , щоб воно було однорідним відносно шуканої функції та її похідних? Яка заміна виконується у такому рівнянні?
- 4. Як можна знизити порядок рівняння  $F(x, y, y', \dots, y^{(n)}) = 0$ , якщо його ліва частина є точною похідною деякої функції? Що називають першим інтегралом? Яку функцію називають інтегрувальним множником такого рівняння?

### Вправи до лекції 11

1. Визначте тип рівнянь та зінтегруйте їх:

a) 
$$xy'' + xy'^2 + y' = 0$$
; 6)  $y' + y''^2 = xy'$ ; B)  $4\sqrt{y}y'' = 1$ .

2. Знайдіть розв'язок рівнянь, які задовольняють задані початкові умови, дослідивши попередньо питання про існування та єдиність шуканого розв'язку:

a) 
$$y'' = (1 + y'^2)^{3/2}$$
,  $y(0) = 1$ ,  $y'(0) = 0$ ;  
6)  $4y' + y''^2 = 4xy''$ ,  $y(0) = 0$ ,  $y'(0) = -1$ .

3. Відшукайте рівняння, однорідне відносно шуканої функції та її похідних, та зінтегруйте його:

a) 
$$x^2y^2 - y''^2 + yy'^2 = 0$$
; 6)  $xyy'' + yy' = xy'^2 + y^2$ ;  
B)  $xyy'' + xy'^2 - \sqrt{y}y' = 0$ .

- 4. Знайдіть інтегральну криву рівняння  $yy'' + y'^2 = 1$ , яка проходить через точку (0,1) і дотикається у цій точці до прямої y = 1 x. Обґрунтуйте єдиність такої інтегральної кривої.
  - 5. Зінтегруйте рівняння з точними похідними:

a) 
$$yy'' + y'^2 = 1$$
; 6)  $y'' - xy' = y + 1$ .

6. Доведіть, що рівняння другого порядку y'' + p(x)y' + q(x)y = f(x) буде рівнянням з точними похідними, тоді і тільки тоді, коли q(x) = p'(x). Зінтегруйте рівняння  $y'' + \cos x \cdot y' - \sin x \cdot y = 0$ .

# Лекція 12. Лінійні однорідні диференціальні рівняння n-го порядку

#### План

- 1. Основні означення й поняття.
- 2. Властивості розв'язків лінійного однорідного рівняння.
- 3. Лінійно залежні та лінійно незалежні функції.
- 4. Основна теорема.
- 5. Формула Остроградського Ліувілля.
- 1. Основні означення й поняття. У багатьох прикладних задачах функції, що вивчаються, та їх похідні набувають настільки малих значень, що їх квадратами, кубами і вищими степенями можна знехтувати. Це дозволяє замінити довільні

залежності між величинами залежностями лінійними (див. також лекцію 9, п. 1). Застосовуючи операцію лінеаризації до диференціальних рівнянь, що описують певний процес чи явище, одержують диференціальні рівняння, в які шукана функція та її похідні входять лінійно. Такі рівняння називають лінійними.

 $\it Лінійним \ duференціальним \ pівнянням \ n$ -го  $\it nopsd-кy$  називають рівняння вигляду

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x).$$
 (12.1)

Якщо  $f(x) \equiv 0$  на інтервалі (a,b), то рівняння (12.1) називають *лінійним однорідним*. Воно має вигляд

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$$
 (12.2)

Якщо функція f(x) тотожно відмінна від нуля на інтервалі (a,b), то рівняння (12.1) називають *лінійним неоднорідним*.

Розглянемо питання про існування розв'язку рівняння (12.1). Розв'язавши його відносно старшої похідної, маємо:

$$y^{(n)} = f(x) - p_1(x)y^{(n-1)} - \dots - p_{n-1}(x)y' - p_n(x)y.$$
 (12.3)

Якщо функції  $p_1(x), p_2(x), \ldots, p_n(x)$  (коефіцієнти рівняння) і f(x) неперервні на деякому інтервалі (a,b), то права частина рівняння (12.3) є неперервною функцією на інтервалі (a,b) і має неперервні, а отже, й обмежені на відрізку  $[a_1,b_1] \subset (a,b)$  частинні похідні за змінними  $y,y',\ldots,y^{(n-1)}$  (ними є функції  $-p_n(x),-p_{n-1}(x),\ldots,-p_1(x)$  відповідно). Отже, з теореми Коші (лекція 10) випливає, що для будь-яких початкових умов

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \dots, \ y^{(n-1)}(x_0) = y_0^{(n-1)},$$

де  $x_0 \in (a,b)$ , рівняння (12.1) має єдиний розв'язок y=y(x). Цей розв'язок n разів диференційовний на інтервалі (a,b). Особливих розв'язків рівняння (12.1) не має.

Для скорочення записів позначимо ліву частину рівняння (12.1) через L[y]:

$$L[y] \equiv y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y.$$
 (12.4)

Таким чином, L[y] — це результат виконання над функцією y операцій, вказаних у правій частині формули (12.4), а саме: знаходження похідних функції y до порядку n включно, множення  $y, y', y'', \ldots, y^{(n)}$  на коефіцієнти рівняння й додавання отриманих добутків. Сукупність цих операцій позначимо через L:

$$L \equiv \frac{d^n}{dx^n} + p_1(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + p_{n-1}(x)\frac{d}{dx} + p_n(x)$$

i називатимемо *лінійним диференціальним оператором* n-го  $nop nd \kappa y$ .

Відзначимо основні властивості оператора L.

**Властивість 1.** Сталий множник можна винести за знак лінійного диференціального оператора, тобто для довільної сталої C

$$L[Cy] = CL[y].$$

Властивість 2. Лінійний диференціальний оператор від суми функцій дорівнює сумі лінійних диференціальних операторів від доданків, тобто

$$L[y_1 + y_2] = L[y_1] + L[y_2].$$

Використовуючи оператор L, лінійне неоднорідне рівняння (12.1) і лінійне однорідне рівняння (12.2) можна записувати відповідно як L[y] = f(x) і L[y] = 0.

Очевидно, кожне лінійне однорідне рівняння (12.2) має нульовий розв'язок  $y \equiv 0$ , який називають *тривіальним*.

2. Властивості розв'язків лінійного однорідного рівняння. Пізніше буде показано, що знання частинних розв'язків лінійного однорідного рівняння спрощує процес побудови загального розв'язку, а іноді дозволяє повністю розв'язати задачу інтегрування цього рівняння. Це є можливим завдяки тому, що частинні розв'язки лінійного однорідного рівняння мають низку цікавих властивостей, які сформулюємо у вигляді теорем.

**Теорема 1.** Якщо  $y_1$  – частинний розв'язок лінійного однорідного рівняння (12.2), то  $y = Cy_1$ , де C – довільна стала, також є розв'язком цього рівняння.

**Доведення.** Оскільки  $L[y_1] \equiv 0$ , a < x < b, то згідно з властивістю 1 оператора L (п. 1)  $L[Cy_1] = CL[y_1] \equiv 0$ , а отже,  $Cy_1$  є розв'язком рівняння (12.2).  $\blacktriangleright$ 

Таким чином, знаючи один частинний розв'язок рівняння (12.2), можемо без квадратур одержати відразу сім'ю розв'язків цього рівняння, залежну від одного параметра (сталої C).

**Теорема 2.** Якщо  $y_1$  і  $y_2$  – два частинні розв'язки лінійного однорідного рівняння (12.2), то їх сума  $y_1 + y_2$  також є розв'язком цього рівняння.

**Доведення.** Оскільки  $L[y_1] \equiv 0$ ,  $L[y_2] \equiv 0$ , то за властивістю 2 оператора L маємо:  $L[y_1 + y_2] = L[y_1] + L[y_2] \equiv 0$ .

3 теорем 1, 2 випливає таке твердження.

**Теорема 3.** Якщо  $y_1, y_2, \ldots, y_n$  – частинні розв'язки лінійного однорідного рівняння (12.2), то

$$y = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n,$$

 $\partial e\ C_1,\ C_2,\ \dots,\ C_n$  — довільні сталі, також  $e\ pозв'язком$  цього рівняння.

Розглянемо, наприклад, рівняння y''+y=0. Воно, як легко переконатись, має розв'язки  $y_1=\cos x,\ y_2=\sin x,$  а тому згідно з теоремою 3 його розв'язком є також кожна функція сім'ї  $y=C_1\cos x+C_2\sin x,$  де  $C_1,$   $C_2$  – довільні сталі.

Природно виникає питання: якими повинні бути n частинних розв'язків  $y_1, y_2, \ldots, y_n$  рівняння (12.2), щоб їх лінійна комбінація  $y = C_1y_1 + C_2y_2 + \ldots + C_ny_n$ , яка містить n довільних сталих, була загальним розв'язком цього рівняння? Для відповіді на це важливе питання введемо поняття лінійної залежності (лінійної незалежності) функцій.

3. Лінійно залежні та лінійно незалежні функції. Функції  $y_1 = y_1(x), y_2 = y_2(x), \ldots, y_n = y_n(x)$ , визначені на інтервалі (a,b), називають *лінійно незалежними* на цьому інтервалі, якщо співвідношення

$$\alpha_1 y_1 + \alpha_2 y_2 + \ldots + \alpha_n y_n \equiv 0, \tag{12.5}$$

де  $\alpha_1, \alpha_2, \ldots, \alpha_n$  – сталі, виконується для всіх  $x \in (a, b)$  тільки тоді, коли всі  $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$ . Якщо у співвідношенні

(12.5) хоча б одна із сталих  $\alpha_1, \alpha_2, \ldots, \alpha_n$  відмінна від нуля, то функції  $y_1, y_2, \ldots, y_n$  називають *лінійно залежними* на інтервалі (a, b).

Розглянемо приклади.

- 1. Функції  $y_1=1,\ y_2=x,\ \dots,\ y_n=x^{n-1}$  лінійно незалежні на інтервалі  $(-\infty,+\infty)$ . Справді, рівність  $\alpha_1\cdot 1+\alpha_2x+\dots+\alpha_nx^{n-1}=0$ , в якій не всі  $\alpha_j$  дорівнюють нулю, не може виконуватись тотожно, бо є алгебричним рівнянням (n-1)-го степеня, яке не може мати більше n-1 різних коренів.
- 2. Функції  $y_1 = \cos x$ ,  $y_2 = \sin x$  лінійно незалежні на будьякому інтервалі, бо співвідношення  $\alpha_1 \cos x + \alpha_2 \sin x = 0$ , де  $\alpha_1$  і  $\alpha_2$  одночасно не дорівнюють нулю, не може виконуватись тотожно на жодному інтервалі.
- 3. Функції  $y_1=\sin^2 x,\,y_2=\cos^2 x,\,y_3=3$  лінійно залежні на інтервалі  $(-\infty,+\infty)$ , бо  $3\cdot\sin^2 x+3\cdot\cos^2 x+(-1)\cdot 3\equiv 0$ .

Для встановлення ознак лінійної залежності та лінійної незалежності функцій  $y_1, y_2, \ldots, y_n$  розглянемо визначник, складений з цих функцій та їх похідних до порядку n-1 включно:

$$W(x) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}.$$
 (12.6)

Визначник (12.6) називають визначником Вронського або вронскіаном функцій  $y_1, y_2, \ldots, y_n$ .

Теорема 4 (необхідна умова лінійної залежності n функцій). Якщо функції  $y_1, y_2, \ldots, y_n$  лінійно залежні на деякому інтервалі (a,b), то їх вронскіан тотожно дорівнює нулю на цьому інтервалі.

**Доведення.** Згідно з умовою теореми для a < x < b маємо

$$\alpha_1 y_1 + \alpha_2 y_2 + \ldots + \alpha_n y_n \equiv 0, \tag{12.7}$$

де не всі числа  $\alpha_1, \alpha_2, \dots, \alpha_n$  дорівнюють нулю. Диференціюючи співвідношення (12.7) n-1 разів, одержуємо лінійну одно-

рідну систему відносно  $\alpha_1, \alpha_2, \ldots, \alpha_n$ :

$$\begin{cases}
\alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_n y_n = 0, \\
\alpha_1 y_1' + \alpha_2 y_2' + \dots + \alpha_n y_n' = 0, \\
\dots \dots \dots \dots \\
\alpha_1 y_1^{(n-1)} + \alpha_2 y_2^{(n-1)} + \dots + \alpha_n y_n^{(n-1)} = 0.
\end{cases} (12.8)$$

Оскільки хоча б одне число  $\alpha_j$  відмінне від нуля, то система (12.8) має ненульовий розв'язок. Отже, визначник цієї системи, який є вронскіаном функцій  $y_1, y_2, \ldots, y_n$ , дорівнює нулю в кожній точці інтервалу (a, b).

З теореми 4 випливає важливе твердження: якщо  $W(x) \neq 0$  хоча б в одній точці інтервалу (a,b), то функції  $y_1, y_2, \ldots, y_n$  є лінійно незалежними на цьому інтервалі.

Наголошуємо, що тотожність  $W(x) \equiv 0$  є тільки необхідною умовою лінійної залежності функцій  $y_1, y_2, \ldots, y_n$ , тобто з того, що  $W(x) \equiv 0$ , взагалі кажучи, не випливає, що ці функції лінійно залежні (див. вправу 7 до лекції). Однак, якщо функції  $y_1, y_2, \ldots, y_n$  є частинними розв'язками лінійного однорідного рівняння (12.2), то справджується таке твердження.

Теорема 5 (необхідна умова лінійної незалежності n розв'язків лінійного однорідного рівняння n-го порядку). Якщо розв'язки  $y_1, y_2, \ldots, y_n$  лінійного однорідного рівняння (12.2) лінійно незалежні на інтервалі (a,b), то їх вронскіан відмінний від нуля в усіх точках цього інтервалу. Доведення. Припустимо, що  $W(x_0) = 0$ , де  $x_0$  – деяка точка з інтервалу  $x_0 \in (a,b)$ . Складемо систему рівнянь, вважаючи числа  $C_j$  за невідомі:

Визначником системи (12.9) є  $W(x_0)$ , а оскільки за припущенням  $W(x_0)=0$ , то ця система має ненульовий розв'язок. Позначимо цей розв'язок через  $C_1=\tilde{C}_1,\,C_2=\tilde{C}_2,\,\ldots,\,C_n=\tilde{C}_n$  і

складемо лінійну комбінацію розв'язків  $y_1, y_2, \ldots, y_n$ :

$$y = \tilde{C}_1 y_1 + \tilde{C}_2 y_2 + \ldots + \tilde{C}_n y_n. \tag{12.10}$$

Згідно з теоремою 3 функція (12.10) є розв'язком рівняння (12.2), а з системи (12.9) випливає, що у точці  $x=x_0$  розв'язок (12.10) перетворюється в нуль разом з усіма похідними до порядку n-1 включно. Але ці самі умови задовольняє також тривіальний розв'язок  $y\equiv 0$  рівняння (12.2), а отже, згідно з теоремою Коші (про єдиність розв'язку) обидва розв'язки збігаються, тобто

$$\tilde{C}_1 y_1 + \tilde{C}_2 y_2 + \ldots + \tilde{C}_n y_n \equiv 0,$$

причому не всі числа  $\tilde{C}_j$  дорівнюють нулю. Це означає, що функції  $y_1, y_2, \ldots, y_n$  лінійно залежні на інтервалі (a, b), що суперечить умові теореми. Отже, наше припущення хибне, а тому  $W(x_0) \neq 0, x_0 \in (a, b)$ .

З теорем 4, 5 випливає ознака лінійної незалежності n частинних розв'язків рівняння (12.2): для того, щоб n розв'язків лінійного однорідного рівняння (12.2) були лінійно незалежними на інтервалі (a,b), необхідно і достатньо, щоб їх вронскіан не перетворювався в нуль у жодній точці цього інтервалу.

**4.** Основна теорема. Будь-яку сукупність n розв'язків лінійного однорідного рівняння (12.2), визначених і лінійно незалежних на інтервалі (a,b), називають  $\phi y h \partial a$ ментальною системою розв'язків цього рівняння на інтервалі (a,b).

Наприклад, функції  $y_1=\cos x,\ y_2=\sin x$  утворюють фундаментальну систему розв'язків рівняння y''+y=0 на інтервалі  $(-\infty,+\infty)$ , бо вони є розв'язками цього рівняння і лінійно незалежні на  $(-\infty,+\infty)$ . Але це рівняння має й інші фундаментальні системи розв'язків, наприклад, кожна пара функцій  $y_1=k\cos x,\ y_2=k\sin x,\$ де k- довільна стала, відмінна від нуля, також буде фундаментальною системою розв'язків.

Можна довести (див., наприклад, [8, c. 118 - 119]), що кожне лінійне однорідне диференціальне рівняння має фундаментальну систему розв'язків, а як видно з наведеного прикладу, таке

рівняння може мати безліч фундаментальних систем розв'язків.

Знання фундаментальної системи розв'язків дає можливість побудувати розв'язок рівняння (12.2), який містить n довільних сталих, причому цей розв'язок буде загальним.

**Теорема 6 (Основна теорема).** Якщо  $y_1, y_2, \ldots, y_n$  – фундаментальна система розв'язків лінійного однорідного рівняння (12.2), то загальний розв'язок цього рівняння визначаеться формулою

$$y = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n, \tag{12.11}$$

де  $C_1, C_2, \ldots, C_n$  – довільні числа.

**Доведення.** Покажемо, що сталі  $C_1, C_2, \ldots, C_n$  завжди можна вибрати так, щоб формула (12.11) визначала розв'язок рівняння (12.2), який задовольняє будь-які наперед задані початкові умови:

$$y(x_0) = y_0, \ y'(x_0) = y'_0, \dots, \ y^{(n-1)}(x_0) = y_0^{(n-1)}.$$
 (12.12)

Для визначення  $C_1, C_2, \ldots, C_n$  одержуємо неоднорідну систему лінійних алгебричних рівнянь

визначником якої якої є  $W(x_0)$ . Згідно з теоремою 5  $W(x_0) \neq 0$ , а отже, система (12.13) має єдиний розв'язок  $\tilde{C}_1, \, \tilde{C}_2, \, \dots, \, \tilde{C}_n$ . Функція (12.11) є розв'язком рівняння (12.2) згідно з теоремою 3. Вираз (12.11), в якому  $C_i = \tilde{C}_i, \, i = 1, 2, \dots, n$ , очевидно, задовольняє початкові умови (12.12).  $\blacktriangleright$ 

Розглянемо, наприклад, рівняння y'' + y = 0. Раніше було показано, що функції  $y_1 = \cos x$ ,  $y_2 = \sin x$  утворюють фундаментальну систему розв'язків на інтервалі  $(-\infty, +\infty)$ , а тому згідно з теоремою 6  $y = C_1 \cos x + C_2 \sin x$  є загальним розв'язком наведеного рівняння.

**5.** Формула Остроградського — Ліувілля. Нехай маємо n лінійно незалежних частинних розв'язків  $y_1, y_2, \ldots, y_n$  лінійного однорідного рівняння (12.2). Тоді це рівняння можна записати у вигляді

$$\begin{vmatrix} y_1 & y_2 & \cdots & y_n & y \\ y'_1 & y'_2 & \cdots & y'_n & y' \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} & y^{(n-1)} \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} & y^{(n)} \end{vmatrix} = 0,$$
 (12.14)

бо рівняння (12.14) має ті самі лінійно незалежні розв'язки, що й (12.2). Справді, якщо підставити в (12.14) замість y одну з функцій  $y_1, y_2, \ldots, y_n$ , то одержимо визначник, який має два однакові стовпці і тому тотожно рівний нулю. Звідси випливає, що загальні розв'язки рівнянь (12.2) і (12.14) однакові, а самі рівняння відрізняються лише множником. Розкладаючи визначник з (12.14) за елементами останнього стовпця, запишемо рівняння (12.14) у вигляді

$$\Delta_0(x)y^{(n)} - \Delta_1(x)y^{(n-1)} + \Delta_2(x)y^{(n-2)} - \dots$$
  
 
$$\dots + (-1)^k \Delta_k(x)y^{(n-k)} + \dots + (-1)^n \Delta_n(x)y = 0, \qquad (12.15)$$

де  $\Delta_i(x)$  – визначник, утворений викреслюванням останнього стовпця і (n+1-i)-го рядка у визначнику з (12.14).

Оскільки рівняння (12.15) збігається з рівнянням (12.2), то прирівнюючи коефіцієнти біля однакових похідних і враховуючи, що  $\Delta_0(x) = W(x)$ , одержуємо

$$p_1(x) = -\frac{\Delta_1(x)}{W(x)}, \quad p_2(x) = \frac{\Delta_2(x)}{W(x)}, \quad \dots, \quad p_n(x) = (-1)^n \frac{\Delta_n(x)}{W(x)}.$$
(12.16)

Здиференціюємо тепер вронскіан (12.6), використовуючи таке правило диференціювання: похідна від визначника n-го порядку дорівнює сумі n визначників, які одержуємо з нього почерговою заміною елементів першого, другого, ..., n-го рядка їх похідними. Усі ці визначники, крім останнього, дорів-

нюють нулю (вони мають два однакові рядки), а тому

$$W'(x) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \cdots & \cdots & \cdots & \cdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n)} & y_2^{(n)} & \cdots & y_n^{(n)} \end{vmatrix}.$$

Легко бачити, що  $W'(x) = \Delta_1(x)$ , а якщо врахувати першу формулу з (12.16), то

$$\frac{W'(x)}{W(x)} = -p_1(x),$$

звідки, інтегруючи, знаходимо

$$W(x) = W(x_0) \cdot e^{-\int_{x_0}^x p_1(x) dx}, \qquad (12.17)$$

де  $x = x_0$  – довільна точка з інтервалу (a,b). Формулу (12.17) називають формулою Остроградського – Ліувілля. Вона дозволяє знайти вронскіан фундаментальної системи розв'язків рівняння (12.2), не маючи самої системи.

- З формули Остроградського Ліувілля випливають такі властивості вронскіана розв'язків лінійного однорідного рівняння:
- 1. Якщо вронскіан п розв'язків  $y_1, y_2, \ldots, y_n$  рівняння (12.2) дорівнює нулю в деякій точці  $x_0 \in (a,b)$ , то він дорівнює нулю в усіх точках цього інтервалу.
- 2. Якщо вронскіан n розв'язків рівняння (12.2) відмінний від нуля хоч в одній точці  $x_0 \in (a,b)$ , то він відмінний від нуля в усіх точках цього інтервалу.

Формулу (12.14) можна використовувати для побудови диференціального рівняння, якщо відомою є його фундаментальна система розв'язків.

**Приклад 1.** Побудувати диференціальне рівняння, яке має фундаментальну систему розв'язків  $y_1(x) = x^2, y_2(x) = x + 1.$ 

**Розв'язання.** Скористаємось формулою (12.14):

$$\begin{vmatrix} x^2 & x+1 & y \\ 2x & 1 & y' \\ 2 & 0 & y'' \end{vmatrix} = 0.$$

Розкладемо визначник за елементами третього стовпця:

$$y \begin{vmatrix} 2x & 1 \\ 2 & 0 \end{vmatrix} - y' \begin{vmatrix} x^2 & x+1 \\ 2 & 0 \end{vmatrix} + y'' \begin{vmatrix} x^2 & x+1 \\ 2x & 1 \end{vmatrix} = 0 \implies (x^2 + 2x)y'' - 2(x+1)y' + 2y = 0. \blacksquare$$

**Рекомендована література**: [4, с. 363 – 389], [5, с. 174 – 197], [7, с. 82 – 88], [8, с. 113 – 121], [15, с. 91 – 102].

### Питання до лекції 12

- 1. Який вигляд має лінійне диференціальне рівняння n-го порядку? Чим лінійне однорідне рівняння відрізняється від лінійного неоднорідного?
- 2. Що називають лінійним диференціальним оператором n-го порядку і які його основні властивості? Як можна записати лінійні однорідне і неоднорідне рівняння з використанням лінійного диференціального оператора?
- 3. Чи є лінійна комбінація зі сталими коефіцієнтами частинних розв'язків лінійного однорідного рівняння розв'язком цього ж рівняння?
- 4. Які функції називають лінійно незалежними та лінійно залежними на інтервалі? Наведіть приклади таких функцій.
  - 5. Що називають вронскі<br/>аном функцій  $y_1, y_2, \dots, y_n$ ?
- 6. Як формулюється необхідна умова лінійної залежності функцій  $y_1, y_2, \ldots, y_n$ ? Як формулюється необхідна і достатня умова лінійної незалежності n частинних розв'язків лінійного однорідного рівняння?
- 7. Що таке фундаментальна система розв'язків лінійного однорідного рівняння? Як побудувати загальний розв'язок лінійного однорідного рівняння, знаючи його фундаментальну систему розв'язків?
- 8. Який вигляд має формула Остроградського Ліувілля? Наведіть властивості вронскіана розв'язків лінійного однорідного рівняння, які випливають з цієї формули.

### Вправи до лекції 12

- 1. Знайдіть  $L[e^x], L[e^{2x}], L[x^2],$  якщо L лінійний диференціальний оператор, заданий формулою  $L\equiv \frac{d^2}{dx^2}-4\frac{d}{dx}+3$ . 2. З'ясуйте, розв'язком якого рівняння є функція  $y=x^2e^x$ :

a) 
$$y''' - 2y'' = xe^x$$
; 6)  $y''' - 3y'' + 3y' - y = 0$ ;  
B)  $y'' - 2y' + y = x^2e^x$ .

3. Знайдіть вронскіан функцій:

a) 
$$y_1 = e^x$$
,  $y_2 = 4e^x$ ; 6)  $y_1 = \cos^2 x$ ,  $y_2 = \cos 2x$ ,  $y_3 = 1$ .

Чи можна, знаючи вронскіан функцій, зробити висновок про їх лінійну залежність чи лінійну незалежність?

4. Дослідіть на лінійну залежність функції:

a) 
$$y_1 = e^{2x}$$
,  $y_2 = x^2$ ; 6)  $y_1 = 3x + 5$ ,  $y_2 = 9x + 15$ ;  
B)  $y_1 = 2^x$ ,  $y_2 = 3^x$ ,  $y_3 = 4^x$ .

- 5. Доведіть, що якщо серед функцій  $y_1, y_2, \ldots, y_n$  хоч одна тотожно дорівнює нулю, то вони лінійно залежні.
- 6. Запишіть лінійне однорідне диференціальне рівняння другого порядку, яке має фундаментальну систему розв'язків:

a) 
$$y_1 = \sin x$$
,  $y_2 = \cos 2x$ ; 6)  $y_1 = e^x$ ,  $y_2 = e^{2x}$ .

7. Доведіть, що вронскіан функцій

$$y_1(x) = \begin{cases} 0, & \text{якщо } x \in [-1, 0], \\ x^2, & \text{якщо } x \in [0, 1], \end{cases} \quad y_2(x) = \begin{cases} x^2, & \text{якщо } x \in [-1, 0], \\ 0, & \text{якщо } x \in [0, 1] \end{cases}$$

тотожно дорівнює нулю, але вони лінійно незалежні на відрізку [-1,1].

## Лекція 13. Лінійні однорідні диференціальні рівняння *n*-го порядку зі сталими коефіцієнтами

### План

- 1. Основні означення й поняття.
- 2. Метод Ейлера. Випадок простих характеристичних чисел.
- 3. Метод Ейлера. Випадок кратних характеристичних чисел.
- 4. Диференціальні рівняння, звідні до рівнянь зі сталими коефіцієнтами.
- 1. Основні означення й поняття. Лінійні рівняння зі сталими коефіцієнтами важливий клас звичайних диференціальних рівнянь. Їх розв'язки виражаються через елементарні функції або у квадратурах. Такі рівняння часто є диференціальними моделями багатьох прикладних задач, зокрема з теоретичної механіки і електрики.

Розглянемо лінійне диференціальне рівняння n-го порядку

$$L[y] \equiv y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = f(x),$$

де коефіцієнти  $a_1, a_2, \ldots, a_n$  — дійсні числа, а права частина f(x) неперервна на інтервалі (a,b) функція (зокрема, вона може бути й сталою на цьому інтервалі).

Вивчимо спочатку питання про побудову загального розв'язку відповідного однорідного рівняння, тобто рівняння

$$L[y] = 0. (13.1)$$

Для знаходження загального розв'язку рівняння (13.1) потрібно знати хоча б одну фундаментальну систему розв'язків  $y_1(x), y_2(x), \ldots, y_n(x)$  цього рівняння. Тоді згідно з Основною теоремою (теорема 6 з лекції 12) загальним розв'язком цього рівняння є

$$y = C_1 y_1(x) + C_2 y_2(x) + \ldots + C_n y_n(x),$$

де  $C_1, C_2, \ldots, C_n$  – довільні сталі.

Легко переконатися, що лінійне однорідне рівняння першого порядку y' + ay = 0, де a — дійсна стала, має частинний розв'язок  $y_1 = e^{-ax}$ . Спробуємо й для лінійного однорідного рівняння n-го порядку (13.1) частинний розв'язок відшукати у виглялі

$$y = e^{kx}, (13.2)$$

де k — деяке, поки що невизначене, число (дійсне або комплексне). Підставляючи (13.2) в ліву частину рівняння (13.1), одержуємо:

$$L(e^{kx}) = (k^n + a_1k^{n-1} + a_2k^{n-2} + \dots + a_{n-1}k + a_n) \cdot e^{kx}.$$
 (13.3)

3 (13.3) випливає, що функція (13.2) буде розв'язком диференціального рівняння (13.1) тоді і тільки тоді, коли число k є коренем алгебричного рівняння

$$P(k) \equiv k^n + a_1 k^{n-1} + a_2 k^{n-2} + \dots + a_{n-1} k + a_n = 0.$$
 (13.4)

Многочлен P(k) називають xарактеристичним многочленом, рівняння (13.4) — xарактеристичним pівнянним, яке відповідає рівнянню (13.1), а його корені — xарактеристичними uucnamu рівняння (13.1). Легко бачити, що складаючи характеристичне рівняння, потрібно в (13.1) похідні різних порядків замінити відповідними степенями k.

**2.** Метод Ейлера. Випадок простих характеристичних чисел. Структура фундаментальної системи розв'язків, а отже, і загального розв'язку рівняння (13.1) залежить від характеристичних чисел. Припустимо, що всі характеристичні числа  $k_1, k_2, \ldots, k_n$  дійсні та прості (різні). Тоді згідно з (13.2) функції

$$y_1 = e^{k_1 x}, \quad y_2 = e^{k_2 x}, \quad \dots, \quad y_n = e^{k_n x}$$
 (13.5)

 $\epsilon$  частинними розв'язками рівняння (13.1). Переконаємося, що вони  $\epsilon$  лінійно незалежними. Для цього обчислимо вронскіан функцій (13.5):

$$W(x) = \begin{vmatrix} e^{k_1 x} & e^{k_2 x} & \cdots & e^{k_n x} \\ k_1 e^{k_1 x} & k_2 e^{k_2 x} & \cdots & k_n e^{k_n x} \\ \vdots & \vdots & \ddots & \vdots \\ k_1^{n-1} e^{k_1 x} & k_2^{n-1} e^{k_2 x} & \cdots & k_n^{n-1} e^{k_n x} \end{vmatrix} =$$

$$= e^{(k_1 + k_2 + \dots + k_n) x} \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 \\ k_1 & k_2 & \cdots & k_n \\ \vdots & \vdots & \ddots & \vdots \\ k_1^{n-1} & k_2^{n-1} & \cdots & k_n^{n-1} \end{vmatrix}.$$

Визначник у правій частині останньої рівності є визначником Вандермонда і, як відомо з курсу алгебри, дорівнює добутку всіх множників вигляду  $k_j - k_i$ , де  $1 \le i < j \le n$ . За припущенням  $k_j \ne k_i$   $(j \ne i)$ , а тому  $W(x) \ne 0$ . Таким чином, функції (13.5) утворюють фундаментальну систему розв'язків рівняння (13.1), а тому згідно з Основною теоремою функція

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x} + \ldots + C_n e^{k_n x}, \tag{13.6}$$

де  $C_1, C_2, \ldots, C_n$  – довільні сталі, є загальним розв'язком рівняння (13.1).

Приклад 1. Зінтегрувати рівняння y'' - 3y' + 2y = 0. Розв'язання. Характеристичним рівнянням є  $k^2 - 3k + 2 = 0$ , а його коренями — числа  $k_1 = 1$  і  $k_2 = 2$ . Згідно з формулою (13.6) загальним розв'язком рівняння є  $y = C_1 e^x + C_2 e^{2x}$ , де  $C_1, C_2$  — довільні сталі.  $\blacksquare$ 

**Приклад 2.** Зінтегрувати рівняння y''' - 4y'' - 5y' = 0. **Розв'язання.** Характеристичне рівняння  $k^3 - 4k^2 - 5k = 0$  має прості корені  $k_1 = 0$ ,  $k_2 = -1$ ,  $k_3 = 5$ . Отже, загальним розв'язком є  $y = C_1 + C_2 e^{-x} + C_3 e^{5x}$ , де  $C_1$ ,  $C_2$ ,  $C_3$  – довільні сталі.  $\blacksquare$ 

Розглянемо випадок, коли всі характеристичні числа різні, але серед них є комплексні. У цьому випадку для відшукання дійсних розв'язків (13.1) зручно знати його комплексні розв'язки.

Комплексну функцію  $y(x)=u(x)+i\,v(x)$ , де  $i=\sqrt{-1}$ , дійсної змінної x називають **комплексним розв'язком** рівняння (13.1) на інтервалі (a,b), якщо її підстановка перетворює це рівняння у тотожність  $L[y]\equiv 0$  для всіх  $x\in (a,b)$ .

Нехай a+bi — характеристичне число рівняння (13.1). Відомо, що коли алгебричне рівняння з дійсними коефіцієнтами має комплексний корінь, то воно має також і спряжений з ним корінь. Отже, характеристичне рівняння (13.4) у випадку, який розглядаємо, має також спряжений комплексний корінь a-bi.

Загальний розв'язок рівняння (13.1) можна знайти за формулою (13.6), але функція y(x) буде комплекснозначною. Покажемо, як побудувати дійсний загальний розв'язок цього рівняння.

Згідно з (13.2) характеристичним числам a+bi, a-bi відповідають комплексні розв'язки  $y_1=e^{(a+bi)x}$  і  $y_2=e^{(a-bi)x}$  рівняння (13.1). Використовуючи формулу Ейлера, ці розв'язки можна записати у вигляді

$$y_1 = e^{ax}(\cos bx + i\sin bx), \quad y_2 = e^{ax}(\cos bx - i\sin bx).$$

З наступної теореми випливає, що якщо комплексна функція y(x) є розв'язком рівняння (13.1), то її дійсна та уявна частини є дійсними розв'язками цього ж рівняння.

**Теорема 1.** Якщо функція y(x) = u(x) + i v(x) е розв'язком рівняння (13.1), то кожна з функцій u(x) та v(x) також є розв'язком цього рівняння.

**Доведення.** Оскільки за умовою теореми  $L[y] \equiv 0$ , то використовуючи властивості оператора L (лекція 12), одержуємо: L[y] = L[u+iv] = L[u]+iL[v] = 0, а отже,  $L[u] \equiv 0$ ,  $L[v] \equiv 0$ , що й потрібно було довести.  $\blacktriangleright$ 

Згідно з теоремою 1 характеристичне число a+bi породжує два дійсні розв'язки рівняння (13.1): дійсну та уявну частини функції  $y_1$ , тобто функції  $e^{ax}\cos bx$ ,  $e^{ax}\sin bx$  є розв'язками рівняння (13.1), причому вони є лінійно незалежні на  $(-\infty, +\infty)$  (пропонуємо самостійно переконатися, що їх вронскіан відмінний від нуля).

Очевидно, що характеристичне число a - bi нових лінійно незалежних частинних розв'язків рівняння (13.1) не дає.

Таким чином, якщо всі характеристичні числа різні, але серед них є комплексні, то кожному дійсному кореню k відповідає розв'язок  $e^{kx}$ , а кожній парі спряжених комплексних коренів  $a\pm bi$  відповідають два дійсні лінійно незалежні частинні розв'язки вигляду  $e^{ax}\cos bx$  і  $e^{ax}\sin bx$ . Всього матимемо n дійсних частинних розв'язків вигляду

$$e^{kx}$$
,  $e^{ax}\cos bx$ ,  $e^{ax}\sin bx$ , (13.7)

які утворюють фундаментальну систему розв'язків. Згідно з Основною теоремою (лекція 12) загальний розв'язок рівняння (13.1) одержимо у вигляді лінійної комбінації усіх частинних розв'язків (13.7) з довільними сталими  $C_1, C_2, \ldots, C_n$ .

Приклад 3. Зінтегрувати рівняння  $y^{IV} - 6y''' + 12y'' + 6y'' - 13y = 0$ .

**Розв'язання.** Розв'язками характеристичного рівняння  $k^4-6k^3+12k^2+6k-13=0$  є два дійсні і два комплексно спряжені корені:  $k_1=-1,\ k_2=1,\ k_3=3+2i,\ k_4=3-2i,$  а тому загальний розв'язок заданого рівняння можемо записати у вигляді  $y=C_1e^{-x}+C_2e^x+C_3e^{3x}\cos 2x+C_4e^{3x}\sin 2x.$ 

**3.** Метод Ейлера. Випадок кратних характеристичних чисел. У цьому випадку число різних характеристичних чисел буде менше n, а тому частинних розв'язків вигляду  $e^{k_j x}$  рівняння (13.1) буде також менше n. Покажемо, як можна знайти решту частинних розв'язків.

Нехай  $k_1$  – дійсне або комплексне характеристичне число кратності s. Тоді, як відомо з алгебри,

$$P(k_1) = P'(k_1) = \dots = P^{(s-1)}(k_1) = 0, \quad P^{(s)}(k_1) \neq 0, \quad (13.8)$$

де P(k) – характеристичний многочлен, визначений формулою (13.4).

Для знаходження розв'язків, які відповідають характеристичному числу  $k_1$ , здиференціюємо тотожність (13.3), записану у вигляді

$$L(e^{kx}) = P(k) \cdot e^{kx},$$

m разів за змінною k, використовуючи формулу Лейбніца для m-ї похідної від добутку двох функцій:

$$(uv)^{(m)} = \sum_{j=0}^{m} C_m^j u^{(j)} v^{(m-j)},$$

де  $C_m^j = \frac{m!}{(m-j)!j!}$  — кількість сполучень з m елементів по j. Будемо мати:

$$L(x^m e^{kx}) = \sum_{j=0}^m C_m^j P^{(j)}(k) x^{m-j} e^{kx}.$$

Тепер, враховуючи (13.8), приходимо до висновку, що

$$L(x^m e^{k_1 x}) \equiv 0, \quad m = 0, 1, \dots, s - 1.$$

Це означає, що функції

$$e^{k_1 x}, x e^{k_1 x}, x^2 e^{k_1 x}, \dots, x^{s-1} e^{k_1 x}$$
 (13.9)

є розв'язками рівняння (13.1). Вони, як легко показати, є лінійно незалежними на інтервалі  $(-\infty, +\infty)$ . Якщо при цьому число  $k_1$  є дійсним, то функції (13.9) також будуть дійсними. Таким чином, кожному дійсному характеристичному числу  $k_1$  кратності s відповідає s дійсних лінійно незалежних розв'язків вигляду (13.9).

Якщо маємо комплексне характеристичне число a+bi кратності s, то характеристичним числом тієї ж кратності буде також спряжене число a-bi. Згідно з (13.9) числу a+bi відповідає s комплексних розв'язків:

$$e^{(a+ib)x}$$
,  $xe^{(a+ib)x}$ ,  $x^2e^{(a+ib)x}$ , ...,  $x^{s-1}e^{(a+ib)x}$ .

Виділяючи у них дійсні та уявні частини, одержуємо 2s дійсних розв'язків:

$$\begin{cases} e^{ax}\cos bx, & xe^{ax}\cos bx, \dots, & x^{s-1}e^{ax}\cos bx, \\ e^{ax}\sin bx, & xe^{ax}\sin bx, \dots, & x^{s-1}e^{ax}\sin bx. \end{cases}$$
(13.10)

Нескладно довести, що ці розв'язки лінійно незалежні на  $(-\infty, +\infty)$ .

Так само, як і для випадку простого комплексного характеристичного числа, кратне характеристичне число a-bi не породжує нових дійсних лінійно незалежних частинних розв'язків. Таким чином, кожній парі комплексно-спряжених характеристичних чисел  $a\pm bi$  кратності s відповідають 2s дійсних лінійно незалежних розв'язків вигляду (13.10).

Приклад 4. Зінтегрувати рівняння y'''-7y''+15y'-9y=0. Розв'язання. Характеристичне рівняння  $k^3-7k^2+15k-9=0$  має один простий корінь  $k_1=1$  і один кратний корінь  $k_2=k_3=3$ . Цим кореням відповідають розв'язки  $e^x$ ,  $e^{3x}$ ,  $xe^{3x}$ , а  $y=C_1e^x+C_2e^{3x}+C_3xe^{3x}$  є загальним розв'язком.

Приклад 5. Зінтегрувати рівняння y''' + 3y'' + 3y' + y = 0. Розв'язання. Характеристичне рівняння  $k^3 + 3k^2 + 3k + 1 = 0$  має кратний дійсний корінь  $k_1 = k_2 = k_3 = -1$ . Отже, задане рівняння має три лінійно незалежні розв'язки  $e^{-x}$ ,  $xe^{-x}$ ,  $x^2e^{-x}$ , а його загальним розв'язком є  $y = C_1e^{-x} + C_2xe^{-x} + C_3x^2e^{-x}$ .

Приклад 6. Зінтегрувати рівняння  $y^{\rm V}-y^{\rm IV}+8y'''-8y''+16y'-16y=0.$ 

**Розв'язання.** Відповідне характеристичне рівняння має один простий корінь  $k_1=1$  і два кратні комплексно-спряжені корені  $k_2=k_3=2i,\ k_4=k_5=-2i.$  Отже, загальним розв'язком є  $y=C_1e^x+C_2\cos 2x+C_3x\cos 2x+C_4\sin 2x+C_5x\sin 2x.$ 

4. Диференціальні рівняння, звідні до рівнянь зі сталими коефіцієнтами. Розглянемо деякі лінійні диференціальні рівняння зі змінними коефіцієнтами, які за допомогою заміни незалежної змінної або шуканої функції можна звести до рівнянь зі сталими коефіцієнтами.

 ${\it Piвнянням}~{\it Eŭnepa}$  називають диференціальне рівняння вигляду

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy' + a_{n}y = 0, (13.11)$$

де  $a_1,\ a_2,\ \dots,\ a_n$  — сталі дійсні числа. Побудуємо загальний розв'язок рівняння Ейлера для x>0 (якщо x<0, то в усіх наступних викладках потрібно замінити x на -x). Зробимо заміну незалежної змінної за формулою

Тоді

$$y'_{x} = y'_{t} \cdot t'_{x} = y'_{t} \cdot \frac{1}{x'_{t}} = y'_{t} \cdot e^{-t},$$

$$y''_{x^{2}} = (y''_{t^{2}} \cdot e^{-t} - y'_{t} \cdot e^{-t})e^{-t} = (y''_{t^{2}} - y'_{t})e^{-2t},$$

$$y'''_{x^{3}} = (y'''_{t^{3}} - 3y''_{t^{2}} + 2y'_{t})e^{-3t}, \dots,$$

$$y^{(n)}_{x^{n}} = (y^{(n)}_{t^{n}} + \dots + (-1)^{n-1}(n-1)!y'_{t})e^{-nt}.$$

Підставляючи знайдені вирази для  $y'_x, y''_{x^2}, \ldots, y^{(n)}_{x^n}$ , а також  $x=e^t$ , у (13.11), одержимо лінійне однорідне рівняння n-го порядку зі сталими коефіцієнтами. Знайшовши загальний розв'язок цього рівняння і підставивши у нього  $t=\ln x$ , матимемо загальний розв'язок рівняння Ейлера.

Приклад 7. Зінтегрувати рівняння  $x^2y'' - 2xy' + 2y = 0$ . **Розв'язання.** Зробимо заміну незалежної змінної за формулою  $x = e^t$  (тоді  $t = \ln x$ ). Тоді  $y_x' = y_t'e^{-t}$ ,  $y_{x^2}'' = (y_{t^2}'' - y_t')e^{-2t}$ . Підставляючи ці вирази у вихідне рівняння, для знаходження функції y = y(t) одержуємо рівняння:

$$e^{2t}(y''-y')e^{-2t}-2e^ty'e^{-t}+2y=0 \Rightarrow y''-3y'+2y=0.$$

Звідси, враховуючи результати прикладу 1, знаходимо

$$y(t) = C_1 e^t + C_2 e^{2t} \Rightarrow y(x) = C_1 e^{\ln x} + C_2 e^{2 \ln x} \Rightarrow y = C_1 x + C_2 x^2. \blacksquare$$

Узагальненням рівняння Ейлера є рівняння

$$(ax+b)^{n}y^{(n)} + (ax+b)^{n-1}p_{1}y^{(n-1)} + \dots$$
$$\dots + (ax+b)p_{n-1}y' + p_{n}y = 0,$$
 (13.12)

де  $a, b, p_1, p_2, \ldots, p_n$  – сталі. Якщо використати підстановку ax + b = q і позначити  $q = e^t$ , або відразу зробити заміну незалежної змінної за формулою  $ax + b = e^t$ , то рівняння (13.12) зведеться до лінійного рівняння зі сталими коефіцієнтами. Рівняння (13.12) називають *рівнянням Лагранэєа*.

До рівняння зі сталими коефіцієнтами зводиться також *рівняння* **Чебишова**, тобто рівняння

$$(1 - x2)y'' - xy' + n2y = 0. (13.13)$$

Точки  $x=\pm 1$  є особливими точками цього рівняння. На кожному з інтервалів  $(-\infty,-1),\ (-1,1),\ (1,+\infty)$  виконуються умови теореми Коші. Побудуємо загальний розв'язок рівняння Чебишова на інтервалі (-1,1). Зробимо заміну незалежної змінної за формулою

$$t = \arccos x \quad (x = \cos t).$$

Тоді

$$\begin{split} y'_x &= y'_t \cdot t'_x = y'_t \cdot \frac{1}{x'_t} = -y'_t \frac{1}{\sin t}, \\ y''_{x^2} &= -\left(y''_{t^2} \frac{1}{\sin t} - y'_t \frac{\cos t}{\sin^2 t}\right) \left(-\frac{1}{\sin t}\right) = y''_{t^2} \frac{1}{\sin^2 t} - y'_t \frac{\cos t}{\sin^3 t}. \end{split}$$

Підставляючи знайдені вирази для  $y'_x$  і  $y''_{x^2}$ , а також  $x = \cos t$ , у рівняння (13.13), для знаходження функції y = y(t) маємо диференціальне рівняння другого порядку зі сталими коефіцієнтами:

$$y'' + n^2 y = 0. (13.14)$$

Загальним розв'язком рівняння (13.14) є  $y = C_1 \cos nt + C_2 \sin nt$ , а після повернення до змінної x одержуємо

$$y = C_1 \cos(n \arccos x) + C_2 \sin(n \arccos x).$$

Можна показати [8, c. 158 - 159], що лінійне однорідне рівняння

$$y^{(n)} + p_1(x)y^{(n-1)} + \ldots + p_{n-1}(x)y' + p_n(x)y = 0$$

зводиться перетворенням незалежної змінної до лінійного рівняння зі сталими коефіцієнтами тільки за допомогою підстановки

$$t = \alpha \int \sqrt[n]{p_1(x)} \, dx,$$

де  $\alpha$  – деяка стала. З цієї формули легко одержати застосовані вище підстановки для рівнянь Ейлера, Лагранжа та Чебишова.

Математичною моделлю багатьох процесів математичної фізики є *рівняння Бесселя*, тобто рівняння

$$x^2y'' + xy' + (x^2 - \nu)y = 0,$$

де  $\nu$  – довільне стале число. Покажемо, що при  $\nu=\frac{1}{4}$  рівняння Бесселя зводиться до рівняння зі сталими коефіцієнтами та інтегрується у квадратурах. Для цього у рівнянні

$$x^{2}y'' + xy' + \left(x^{2} - \frac{1}{4}\right)y = 0, (13.15)$$

виконаємо заміну шуканої функції

$$y = \frac{z}{\sqrt{x}}. (13.16)$$

Тоді

$$y' = \frac{z'}{\sqrt{x}} - \frac{1}{2} \frac{z}{\sqrt{x^3}}, \quad y'' = \frac{z''}{\sqrt{x}} - \frac{z'}{\sqrt{x^3}} + \frac{3}{4} \frac{z}{\sqrt{x^5}}.$$

Підставляючи вирази для y, y' і y'' у рівняння (13.15), після нескладних перетворень одержимо рівняння зі сталими коефіцієнтами z'' + z = 0. Загальним розв'язком цього рівняння є  $z = C_1 \cos x + C_2 \sin x$ , а враховуючи (13.16), остаточно одержуємо загальний розв'язок рівняння Бесселя (13.15):

$$y = C_1 \frac{\cos x}{\sqrt{x}} + C_2 \frac{\sin x}{\sqrt{x}}.$$

*Рекомендована література*: [4, с. 398 – 408, 423 – 430], [5, с. 220 – 243], [6, с. 180 – 192], [8, с. 131 – 138, 158 – 162], [15, с. 129 – 137].

## Питання до лекції 13

- 1. Який вигляд має лінійне диференціальне рівняння n-го порядку зі сталими коефіцієнтами?
- 2. Що називають характеристичним рівнянням, яку назву мають корені характеристичного рівняння?

- 3. Який вигляд має формула загального розв'язку лінійного однорідного рівняння n-го порядку у випадку простих дійсних характеристичних чисел?
- 4. Які два дійсні лінійно незалежні частинні розв'язки лінійного однорідного рівняння відповідають парі комплексних характеристичних чисел  $a\pm bi$ ?
- 5. Які дійсні лінійно незалежні розв'язки лінійного однорідного рівняння відповідають дійсному характеристичному числу k кратності s?
- 6. Який вигляд має рівняння Ейлера? За допомогою якої заміни незалежної змінної його можна звести до рівняння зі сталими коефіцієнтами?
- 7. Який вигляд має рівняння Лагранжа? За допомогою якої заміни його можна звести до рівняння зі сталими коефіцієнтами?
- 8. Який вигляд має рівняння Чебишова? За допомогою якої заміни його можна звести до рівняння зі сталими коефіцієнтами?
- 9. Який загальний вигляд має рівняння Бесселя? Коли це рівняння можна звести до рівняння зі сталими коефіцієнтами? За допомогою якої заміни це можна зробити?

### Вправи до лекції 13

1. Зінтегруйте лінійні однорідні рівняння другого порядку:

a) 
$$y'' - 6y' + 8y = 0$$
; 6)  $y'' + 2y' + 2y = 0$ ; B)  $y'' - 2y' = 0$ .

2. Зінтегруйте лінійні однорідні рівняння:

a) 
$$y''' - y'' = 0$$
; 6)  $y''' - 6y'' + 12y' - 8y = 0$ ; B)  $y^{IV} - y = 0$ .

3. Знайдіть розв'язки задач Коші:

a) 
$$y''-2y'+y=0, \ y(2)=1, \ y'(2)=-2;$$
   
 6)  $y'''-y'=0, \ y(0)=3, \ y'(0)=-1, \ y''(0)=1.$ 

4. Зінтегруйте рівняння Ейлера та Лагранжа:

a) 
$$x^2y'' + 2xy' - 12y = 0$$
; 6)  $2x^2y'' - xy' - 2y = 0$ ;  
B)  $(2x+3)^2y'' + (4x+6)y' - 4y = 0$ .

- 5. Для яких значень p і q усі розв'язки рівняння y'' + py' + qy = 0 будуть обмежені на півосі  $x \geqslant 0$ ?
- 6. Складіть лінійне однорідне рівняння зі сталими коефіцієнтами якомога меншого порядку, яке має задані частинні розв'язки:

a) 
$$y_1 = xe^x$$
; 6)  $y_1 = x^2e^{2x}$ ; B)  $y_1 = x$ ,  $y_2 = \sin x$ .

# Лекція 14. Лінійні неоднорідні диференціальні рівняння n-го порядку

#### План

- 1. Структура загального розв'язку лінійного неоднорідного рівняння.
  - 2. Метод варіації довільних сталих.
  - 3. Метод Коші.
  - 4. Метод невизначених коефіцієнтів.
- 1. Структура загального розв'язку лінійного неоднорідного рівняння. Розглянемо лінійне неоднорідне диференціальне рівняння

$$L[y] \equiv y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots$$
  
 
$$\dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
 (14.1)

і відповідне однорідне рівняння

$$L[y] = 0. (14.2)$$

Виявляється, що загальний розв'язок лінійного неоднорідного рівняння (14.1) завжди можна знайти, якщо відомі загальний розв'язок рівняння (14.2) і будь-який частинний розв'язок рівняння (14.1). Це випливає з такого твердження.

Теорема 1. Загальний розв'язок лінійного неоднорідного рівняння (14.1) дорівнює сумі будь-якого його частинного розв'язку та загального розв'язку однорідного рівняння (14.2). Доведення. Нехай Y = Y(x) — відомий частинний розв'язок рівняння (14.1), тобто  $L[Y] \equiv f(x)$ . Виконаємо заміну y = z + Y, де z = z(x) — нова шукана функція. Підставляючи її у (14.1) та враховуючи лінійність оператора L, одержуємо, що L[y] = L[z + Y] = L[z] + L[Y] = f(x). Оскільки L[Y] = f(x), то

$$L[z] = 0,$$
 (14.3)

тобто z — розв'язок лінійного однорідного рівняння (14.2). Тоді згідно з Основною теоремою (лекція 12) загальним розв'язком

рівняння (14.3) є  $z=C_1y_1+C_2y_2+\ldots+C_ny_n$ , де  $y_1,y_2,\ldots,y_n$  – деяка фундаментальна система розв'язків цього рівняння, а  $C_1,C_2,\ldots,C_n$ , – довільні сталі. Таким чином,

$$y = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n + Y. \tag{14.4}$$

Покажемо, що формула (14.4) визначає загальний розв'язок рівняння (14.1). Згідно з означенням загального розв'язку диференціального рівняння n-го порядку для цього потрібно показати, що з (14.4) при належному виборі сталих  $C_1, C_2, \ldots, C_n$  можна одержати розв'язок, який задовольняє довільні початкові умови

$$y(x_0) = y_0, \quad y'(x_0) = y_0', \dots, \ y^{(n-1)}(x_0) = y_0^{(n-1)}.$$

Послідовно диференціюючи (14.4), знаходимо

$$\begin{cases} y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n + Y, \\ y' = C_1 y_1' + C_2 y_2' + \dots + C_n y_n' + Y', \\ \dots & \dots \\ y^{(n-1)} = C_1 y_1^{(n-1)} + C_2 y_2^{(n-1)} + \dots + C_n y_n^{(n-1)} + Y^{(n-1)}. \end{cases}$$

Підставляючи в цю систему  $x=x_0$ , матимемо неоднорідну систему n лінійних рівнянь з n невідомими  $C_1, C_2, \ldots, C_n$ , визначником якої є  $W(x_0)$ . Оскільки  $y_1, y_2, \ldots, y_n$  — фундаментальна система розв'язків, то  $W(x_0) \neq 0$ . Таким чином, сталі  $C_1, C_2, \ldots, C_n$  з отриманої системи визначаються однозначно, а тому розв'язок (14.4) справді є загальним.  $\blacktriangleright$ 

**Теорема 2.** Нехай права частина лінійного неоднорідного рівняння (14.1) є сумою двох доданків, тобто

$$L[y] = f_1(x) + f_2(x). (14.5)$$

Якщо  $y_1$  – частинний розв'язок рівняння  $L[y] = f_1(x)$ , а  $y_2$  – частинний розв'язок рівняння  $L[y] = f_2(x)$ , то  $y_1 + y_2$  е частинним розв'язком рівняння (14.5).

Доведення теореми випливає з того, що

$$L[y_1 + y_2] = L[y_1] + L[y_2] \equiv f_1(x) + f_2(x).$$

**2.** Метод варіації довільних сталих. Розглянемо загальний метод знаходження частинних розв'язків неоднорідного рівняння (14.1) — метод варіації довільних сталих (метод Лагранжа).

Нехай маємо загальний розв'язок лінійного однорідного рівняння (14.2):

$$z = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n, \tag{14.6}$$

де  $y_1, y_2, \ldots, y_n$  – деяка фундаментальна система розв'язків цього рівняння, а  $C_1, C_2, \ldots, C_n$  – довільні сталі.

Частинний розв'язок рівняння (14.1) шукаємо у вигляді (14.6), вважаючи  $C_1, C_2, \ldots, C_n$  не сталими, а невідомими функціями від x, тобто

$$y = C_1(x)y_1 + C_2(x)y_2 + \ldots + C_n(x)y_n.$$
 (14.7)

Виберемо тепер функції  $C_1(x)$ ,  $C_2(x)$ , ...,  $C_n(x)$  так, щоб функція (14.7) була розв'язком рівняння (14.1). Диференціюючи (14.7), одержуємо

$$y' = C_1 y_1' + C_2 y_2' + \ldots + C_n y_n' + C_1' y_1 + C_2' y_2 + \ldots + C_n' y_n.$$

Накладемо умову, що  $C'_1y_1 + C'_2y_2 + \ldots + C'_ny_n = 0$ . Тоді

$$y' = C_1 y_1' + C_2 y_2' + \ldots + C_n y_n'.$$

Диференціюючи ще один раз, одержуємо:

$$y''=C_1y_1''+C_2y_2''+\ldots+C_ny_n''+C_1'y_1'+C_2'y_2'+\ldots+C_n'y_n'.$$
 Нехай  $C_1'y_1'+C_2'y_2'+\ldots+C_n'y_n'=0$ , тоді
$$y''=C_1y_1''+C_2y_2''+\ldots+C_ny_n''.$$

Продовжуючи диференціювати і вибираючи функції  $C_1$ ,  $C_2$ , ...,  $C_n$  так, щоб  $C_1'y_1^{(n-2)}+C_2'y_2^{(n-2)}+\ldots+C_n'y_n^{(n-2)}=0$ , одержуємо  $y^{(n-1)}=C_1y_1^{(n-1)}+C_2y_2^{(n-1)}+\ldots+C_ny_n^{(n-1)}$ . І, нарешті,

$$y^{(n)} = C_1 y_1^{(n)} + C_2 y_2^{(n)} + \dots + C_n y_n^{(n)} + C_1' y_1^{(n-1)} + C_2' y_2^{(n-1)} + \dots + C_n' y_n^{(n-1)}.$$

Підставимо тепер у рівняння (14.1) вирази для y та її похідних:

$$C_1\left(y_1^{(n)} + p_1(x)y_1^{(n-1)} + \dots + p_{n-1}(x)y_1' + p_n(x)y_1\right) +$$

$$+ C_2\left(y_2^{(n)} + p_1(x)y_2^{(n-1)} + \dots + p_{n-1}(x)y_2' + p_n(x)y_2\right) + \dots$$

$$\dots + C_n\left(y_n^{(n)} + p_1(x)y_n^{(n-1)} + \dots + p_{n-1}(x)y_n' + p_n(x)y_n\right) +$$

$$+ C_1'y_1^{(n-1)} + C_2'y_2^{(n-1)} + \dots + C_n'y_n^{(n-1)} = f(x).$$

Множники в дужках тотожно дорівнюють нулю, бо функції  $y_1, y_2, \ldots, y_n$  є частинними розв'язками рівняння (14.2). Отже, останнє рівняння запишеться так:

$$C_1'y_1^{(n-1)} + C_2'y_2^{(n-1)} + \ldots + C_n'y_n^{(n-1)} = f(x).$$

Таким чином, функції  $C_1(x), C_2(x), \dots, C_n(x)$  задовольняють систему

$$\begin{cases} C'_1 y_1 + C'_2 y_2 + \ldots + C'_n y_n = 0, \\ C'_1 y'_1 + C'_2 y'_2 + \ldots + C'_n y'_n = 0, \\ \vdots \\ C'_1 y_1^{(n-2)} + C'_2 y_2^{(n-2)} + \ldots + C'_n y_n^{(n-2)} = 0, \\ C'_1 y_1^{(n-1)} + C'_2 y_2^{(n-1)} + \ldots + C'_n y_n^{(n-1)} = f(x). \end{cases}$$

Маємо неоднорідну систему n лінійних алгебричних рівнянь з n невідомими  $C_1'(x), C_2'(x), \ldots, C_n'(x)$ . Оскільки визначником цієї системи є відмінний від нуля вронскіан функцій  $y_1, y_2, \ldots, y_n$ , то вона має єдиний розв'язок  $C_1'(x), C_2'(x), \ldots, C_n'(x)$ . Інтегруючи, знайдемо функції  $C_1(x), C_2(x), \ldots, C_n(x)$ , після чого залишиться підставити їх у формулу (14.7).

Приклад 1. Зінтегрувати рівняння y'' + y = x. **Розв'язання.** Загальним розв'язком  $y_0 = y_0(x)$  відповідного однорідного рівняння є  $y_0 = C_1 \cos x + C_2 \sin x$ .

Нехай тепер  $C_1 = C_1(x)$ ,  $C_2 = C_2(x)$ . З системи

$$\begin{cases} C_1'(x)\cos x + C_2'(x)\sin x = 0, \\ -C_1'(x)\sin x + C_2'(x)\cos x = x \end{cases}$$

знаходимо  $C_1'(x) = -x \sin x$ ,  $C_2'(x) = x \cos x$ , а отже,  $C_1(x) = x \cos x - \sin x + C_1$ ,  $C_2(x) = x \sin x + \cos x + C_2$ ,

$$y = (x\cos x - \sin x + C_1)\cos x + (x\sin x + \cos x + C_2)\sin x \implies$$
$$y = C_1\cos x + C_2\sin x + x. \blacksquare$$

**3.** Метод Коші. Розглянемо ще один спосіб знаходження частинного розв'язку лінійного неоднорідного рівняння (14.1) у випадку, коли відома фундаментальна система розв'язків відповідного однорідного рівняння.

Нехай  $y_1, y_2, \ldots, y_n$  – фундаментальна система розв'язків лінійного однорідного рівняння (14.2). Використовуючи формулу (14.6), побудуємо розв'язок рівняння (14.2), який задовольняє початкові умови

$$z(s) = 0, \ z'(s) = 0, \dots, \ z^{(n-1)}(s) = 1,$$
 (14.8)

де x=s – довільна точка з інтервалу (a,b). Цей розв'язок позначимо через  $z=\varphi(x,s)$  (він залежить від s як від параметра). Оскільки  $z=\varphi(x,s)$  як функція змінної x є розв'язком однорідного рівняння (14.2) для кожного  $s\in(a,b)$ , то

$$L[\varphi] \equiv 0, \quad a < x < b, \quad a < s < b.$$

Крім того, з (14.8) випливає, що функція  $\varphi(x,s)$  як функція змінної x задовольняє такі умови:

$$\varphi(s,s) = 0, \ \varphi'(s,s) = 0, \dots, \ \varphi^{(n-2)}(s,s) = 0, \ \varphi^{(n-1)}(s,s) = 1,$$
(14.9)

де через  $\varphi^{(j)}(s,s)$  позначено  $\frac{d^j \varphi(x,s)}{dx^j}\Big|_{x=s}$ . Функцію  $\varphi(x,s)$ , яка має вказані властивості, називають **функцією Коші**.

Розглянемо тепер функцію

$$Y(x) = \int_{x_0}^{x} \varphi(x, s) f(s) ds$$
 (14.10)

де  $x_0 \in (a,b)$  – довільна точка, і покажемо, що вона є частинним розв'язком рівняння (14.1), який задовольняє нульові початкові умови

$$Y(x_0) = 0, Y'(x_0) = 0, \dots, Y^{(n-1)}(x_0) = 0.$$
 (14.11)

Для цього спочатку знайдемо похідні  $Y', Y'', \ldots, Y^{(n)}$ , використовуючи формулу диференціювання визначеного інтеграла за параметром<sup>1)</sup>:

$$\frac{d}{dx}\left(\int_{x_0}^x f(x,s)\,ds\right) = \int_{x_0}^x f_x'(x,s)ds + f(x,x).$$

Враховуючи, що  $\varphi(x,s)$  задовольняє умови (14.9), послідовно знаходимо

$$Y'(x) = \int_{x_0}^{x} \varphi'(x, s) f(s) ds + \varphi(x, x) f(x) = \int_{x_0}^{x} \varphi'(x, s) f(s) ds,$$
  
$$Y''(x) = \int_{x_0}^{x} \varphi''(x, s) f(s) ds + \varphi'(x, x) f(x) = \int_{x_0}^{x} \varphi''(x, s) f(s) ds,$$

$$Y^{(n-1)}(x) = \int_{x_0}^x \varphi^{(n-1)}(x,s) f(s) ds,$$
$$Y^{(n)}(x) = \int_{x_0}^x \varphi^{(n)}(x,s) f(s) ds + f(x).$$

Тепер очевидно, що функція Y(x) задовольняє умови (14.11). Підставляючи знайдені вирази для  $Y, Y', \ldots, Y^{(n)}$  у (14.1), одержуємо рівняння

$$L[Y] = \int_{x_0}^{x} L[\varphi]f(s)ds + f(x).$$

Звідси, оскільки  $L[\varphi] \equiv 0$ , то L[Y] = f(x), a < x < b, тобто функція Y(x) з (14.10) є частинним розв'язком неоднорідного рівняння (14.1).

Формулу (14.10) називають **формулою Коші**. З її допомогою загальний розв'язок лінійного неоднорідного рівняння (14.1) можна записати у вигляді

$$y = z + \int_{x_0}^{x} \varphi(x, s) f(s) ds,$$

<sup>&</sup>lt;sup>1)</sup>Використовуємо формулу  $\frac{d}{dx} \left( \int\limits_{\varphi(x)}^{\psi(x)} f(x,s) ds \right) = \int\limits_{\varphi(x)}^{\psi(x)} \frac{\partial f(x,s)}{\partial x} ds + f(x,\psi(x)) \frac{d\psi}{dx} - f(x,\varphi(x)) \frac{d\varphi}{dx}.$ 

де z – загальний розв'язок відповідного однорідного рівняння.

**Приклад 2.** Зінтегрувати рівняння y'' + y' - 2y = x методом Коші.

**Розв'язання.** Загальним розв'язком відповідного однорідного рівняння є  $y_0 = C_1 e^{-2x} + C_2 e^x$ . Тому функцію Коші  $\varphi(x,s)$  шукаємо у вигляді

$$\varphi(x,s) = C_1(s)e^{-2x} + C_2(s)e^x,$$

де функції  $C_1(s)$ ,  $C_2(s)$  згідно з (14.11) задовольняють систему

$$\begin{cases} C_1(s)e^{-2s} + C_2(s)e^s = 0, \\ -2C_1(s)e^{-2s} + C_2(s)e^s = 1. \end{cases}$$

Звідси легко знаходимо  $C_1(s)=-\frac{1}{3}\,e^{2s},\,C_2(s)=\frac{1}{3}\,e^{-s},$  а отже,

$$\varphi(x,s) = -\frac{1}{3}e^{2(s-x)} + \frac{1}{3}e^{x-s}.$$

Тоді за формулою (14.10) знаходимо частинний розв'язок заданого рівняння (беручи  $x_0 = 0$ )

$$Y(x) = \frac{1}{3} \int_0^x \left( -e^{2(s-x)} + e^{x-s} \right) s \, ds = -\frac{1}{2} x - \frac{1}{4} - \frac{1}{12} e^{-2x} + \frac{1}{3} e^x,$$

а загальним розв'язком  $y=y_0+Y$  після перепозначення сталих  $(C_1:=C_1-1/12,\,C_2:=C_2+1/3)$  є

$$y = C_1 e^{-2x} + C_2 e^x - \frac{1}{2}x - \frac{1}{4}. \quad \blacksquare$$

**4. Метод невизначених коефіцієнтів.** Розглянемо лінійне неоднорідне рівняння n-го порядку зі сталими коефіцієнтами:

$$L[y] \equiv y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x), \quad (14.12)$$

де  $a_1, a_2, \ldots, a_n$  – дійсні числа, функція f(x) неперервна на деякому інтервалі (a,b).

Якщо права частина рівняння (14.12) має спеціальний вигляд, то для відшукання частинного розв'язку цього рівняння

можна використовувати *метод невизначених коефіцієнтів*.

Розглянемо окремі випадки, пов'язані з виглядом правої частини рівняння (14.12).

**Випадок 1.** Нехай функція f(x) є добутком многочлена на експоненціальну функцію, тобто

$$L[y] = R_m(x) e^{\alpha x}, \qquad (14.13)$$

де  $R_m(x) = r_0 x^m + r_1 x^{m-1} + \ldots + r_{m-1} x + r_m$  – многочлен з дійсними коефіцієнтами (зокрема, це може бути стала),  $\alpha$  – дійсне або комплексне число.

Нехай  $\alpha$  не є характеристичним числом, тобто  $P(\alpha) \neq 0$   $(P(\alpha)$  – характеристичний многочлен, див. лекцію 12). Тоді частинний розв'язок Y=Y(x) рівняння (14.13) шукаємо у вигляді

$$Y = Q_m(x)e^{\alpha x},\tag{14.14}$$

де  $Q_m(x) = q_0 x^m + q_1 x^{m-1} + \ldots + q_{m-1} x + q_m$  – многочлен m-го степеня з невизначеними коефіцієнтами.

Коефіцієнти многочлена  $Q_m(x)$  можна знайти, підставляючи (14.14) у рівняння (14.13) і прирівнюючи коефіцієнтів біля однакових степенів x у обох частинах отриманої рівності. Переконаємось, що коефіцієнти  $q_0, q_1 \ldots, q_m$  у цьому випадку знайдуться однозначно. Справді, враховуючи властивості оператора L, одержуємо:

$$L[Y] = L[(q_0x^m + q_1x^{m-1} + \dots + q_{m-1}x + q_m) \cdot e^{\alpha x}] =$$

$$= q_0L[x^m e^{\alpha x}] + q_1L[x^{m-1}e^{\alpha x}] + \dots + q_{m-1}L[xe^{\alpha x}] +$$

$$+ q_mL[e^{\alpha x}] = (r_0x^m + r_1x^{m-1} + \dots + r_{m-1}x + r_m)e^{\alpha x}.$$

Використаємо тепер виведені у п. 3 лекції 12 формули  $L[e^{\alpha x}] = P(\alpha) e^{\alpha x}$  і  $L[x^s e^{\alpha x}] = \sum_{j=0}^s C_s^j P^{(j)}(\alpha) x^{s-j} e^{\alpha x}$ . Скоро-

чуючи на  $e^{\alpha x}$ , маємо

$$q_0 \sum_{j=0}^{m} C_m^j P^{(j)}(\alpha) x^{m-j} + q_1 \sum_{j=0}^{m-1} C_{m-1}^j P^{(j)}(\alpha) x^{m-1-j} + \dots$$

$$\dots + q_{m-1} \sum_{j=0}^{1} C_1^j P^{(j)}(\alpha) x^{1-j} + q_m P(\alpha) =$$

$$= r_0 x^m + r_1 x^{m-1} + \dots + r_{m-1} x + r_m.$$

Прирівняємо коефіцієнти біля однакових степенів x:

$$\begin{vmatrix}
x^{m} \\
x^{m-1} \\
x^{m-1} \\
q_{0} m P'(\alpha) + q_{1} P(\alpha) = r_{1}, \\
\dots \\
x^{0} \\
q_{0} P^{(m)}(\alpha) + q_{1} P^{(m-1)}(\alpha) + \dots + q_{m-1} P'(\alpha) + \\
+ q_{m} P(\alpha) = r_{m}.
\end{vmatrix} (14.15)$$

Оскільки  $P(\alpha) \neq 0$ , то з (14.15) можна однозначно знайти всі коефіцієнти многочлена  $Q_m(x)$ , наприклад  $q_0 = r_0/P(\alpha)$ ,  $q_1 = (r_1 - q_0 m P'(\alpha))/P(\alpha)$  і т. д.

Нехай  $\alpha$  є характеристичним числом кратності k, тобто  $P(\alpha)=P'(\alpha)=\ldots=P^{(k-1)}(\alpha)=0$ , але  $P^{(k)}(\alpha)\neq 0$ . У цьому випадку частинний розв'язок Y у вигляді (14.12) не побудувати, бо  $P(\alpha)=0$ . Тепер шукатимемо його у вигляді

$$Y = x^k Q_m(x)e^{\alpha x}, (14.16)$$

де  $Q_m(x)$  – многочлен m-го степеня з невизначеними коефіцієнтами. Підставляючи (14.16) у (14.13), одержуємо, що

$$L[Y] = L[x^{k}Q_{m}(x)e^{\alpha x}] = \sum_{j=0}^{m} q_{j}L[x^{k+m-j}e^{\alpha x}] =$$

$$= \sum_{j=0}^{m} q_{j} \sum_{s=k}^{k+m-j} C_{k+m-j}^{s} P^{(s)}(\alpha)x^{k+m-j-s}e^{\alpha x} = \sum_{j=0}^{m} r_{j}x^{m-j}e^{\alpha x}$$

або після скорочення на  $e^{\alpha x}$ :

$$\sum_{j=0}^{m} q_j \sum_{s=0}^{m-j} C_{k+m-j}^{k+s} P^{(k+s)}(\alpha) x^{m-j-s} = \sum_{j=0}^{m} r_j x^{m-j}.$$

Прирівнюючи коефіцієнти біля однакових степенів x, одержуємо систему:

з якої, оскільки  $P^{(k)}(\alpha) \neq 0$ , можна однозначно визначити всі коефіцієнти  $q_0, q_1, \ldots, q_m$ .

Випадок 2. Нехай права частина рівняння (14.13) має вигляд

$$f(x) = e^{ax} \left( R_m^{(1)}(x) \cos bx + R_m^{(2)}(x) \sin bx \right), \tag{14.17}$$

де  $R_m^{(1)}(x)$  та  $R_m^{(2)}(x)$  — многочлени степенів не вищих від m, причому хоча б один з них має степінь m (вони можуть бути й сталими числами, один з них може бути тотожно рівним нулю).

Оскільки  $\cos bx=\frac{e^{ibx}+e^{-ibx}}{2},\ \sin bx=\frac{e^{ibx}-e^{-ibx}}{2i},\ \text{то}\ (14.17)$  можемо записати у вигляді

$$f(x) = R_m^{(1)}(x) e^{ax} \frac{e^{ibx} + e^{-ibx}}{2} + R_m^{(2)}(x) e^{ax} \frac{e^{ibx} - e^{-ibx}}{2i} =$$

$$= \widetilde{R}_m^{(1)}(x) e^{(a+ib)x} + \widetilde{R}_m^{(2)}(x) e^{(a-ib)x},$$

де  $\widetilde{R}_m^{(1)}(x),\,\widetilde{R}_m^{(2)}(x)$  – многочлени степеня m, тобто f(x) є сумою двох доданків, які розглядались у випадку 1.

Нехай a+bi не є характеристичним числом рівняння (14.13). Тоді згідно з теоремою 2 частинний розв'язок цього рівняння можна знайти у вигляді  $Y(x) = \widetilde{Q}_m^{(1)}(x)\,e^{(a+ib)x} + \widetilde{Q}_m^{(2)}(x)\,e^{(a-ib)x},$  де  $\widetilde{Q}_m^{(1)}(x)$  і  $\widetilde{Q}_m^{(2)}(x)$  — многочлени степеня m з невизначеними коефіцієнтами. Перейшовши до дійснозначних функцій, одержуємо остаточне правило знаходження частинного розв'язку рівняння (14.13) з правою частиною вигляду (14.17): якщо a+bi

не є характеристичним числом, то частинний розв'язок потрібно шукати у вигляді

$$Y(x) = e^{ax} \left( Q_m^{(1)}(x) \cos bx + Q_m^{(2)}(x) \sin bx \right),$$

 $\partial e \ Q_m^{(1)}(x) \ i \ Q_m^{(2)}(x)$  — многочлени степеня m з невизначеними коефіцієнтами.

Припустимо, що a+bi є k-кратним характеристичним числом рівняння (14.13). Тоді частинний розв'язок цього рівняння потрібно шукати у вигляді

$$Y(x) = x^k \left( \widetilde{Q}_m^{(1)}(x) e^{(a+ib)x} + \widetilde{Q}_m^{(2)}(x) e^{(a-ib)x} \right)$$

або

$$Y(x) = x^k e^{ax} \Big( Q_m^{(1)}(x) \cos bx + Q_m^{(2)}(x) \sin bx \Big).$$

В обох випадках коефіцієнти многочленів  $Q_m^{(1)}(x)$  і  $Q_m^{(2)}(x)$  визначаються після підстановки Y(x) у рівняння (14.13).

Зауважимо, що схема знаходження частинного розв'язку Y(x) не зміниться, якщо  $R_m^{(1)}(x)\equiv 0$  або  $R_m^{(2)}(x)\equiv 0$ . А якщо  $f(x)=f_1(x)+f_2(x)+\ldots+f_k(x)$ , де  $f_1(x),\,f_2(x),\,\ldots,\,f_k(x)$  мають вигляд (14.14) або (14.17) з різними  $\alpha,\,a+bi$ , то згідно з теоремою 2  $Y=Y_1+Y_2+\ldots+Y_k$ , де  $Y_j=Y_j(x)$  — частинний розв'язок рівняння  $L[y]=f_j(x),\,j=1,2,\ldots,k$ .

Приклад 3. Зінтегрувати рівняння  $y''' - 2y'' = x^2 - e^x$ . **Розв'язання.** Характеристичними числами відповідного однорідного рівняння є  $k_1 = k_2 = 0$ ,  $k_3 = 2$ , а тому загальний розв'язок цього рівняння має вигляд  $y_0 = C_1 + C_2 x + C_3 e^{2x}$ .

Праву частину заданого рівняння запишемо у вигляді  $f(x) = f_1(x) + f_2(x)$ , де  $f_1(x) = x^2$ ,  $f_2(x) = -e^x$ .

Оскільки  $\alpha=0$  є характеристичним числом кратності 2, а  $\alpha=1$  не є характеристичним числом, то частинний розв'язок заданого рівняння шукаємо у вигляді

$$Y = x^{2}(Ax^{2} + Bx + C) + De^{x} = Ax^{4} + Bx^{3} + Cx^{2} + De^{x}.$$

Підставляючи У у задане рівняння, одержуємо тотожність

$$-24Ax^{2} + (24A - 12B)x + (6B - 4C) - De^{x} \equiv x^{2} - e^{x}$$

з якої, прирівнюючи коефіцієнти біля однакових степенів x, знаходимо невизначені коефіцієнти A, B, C, D:

$$\begin{array}{c|c} x^2 \\ x^1 \\ x^0 \\ x^0 \\ e^x \end{array} | \begin{array}{c} -24A = 1, \\ 24A - 12B = 0, \\ 6B - 4C = 0, \\ -D = -1 \end{array} \Rightarrow A = -\frac{1}{24}, B = -\frac{1}{12}, C = -\frac{1}{8}, D = 1.$$

Отже,  $Y = -\frac{x^4}{24} - \frac{x^3}{12} - \frac{x^2}{8} + e^x$ , а загальним розв'язком є

$$y = C_1 + C_2 x + C_3 e^{2x} - \frac{x^4}{24} - \frac{x^3}{12} - \frac{x^2}{8} + e^x$$
.

*Рекомендована література*: [3, с. 97 – 100, 107 – 110], [4, с. 389 - 397, 408 – 417], [5, с. 243 – 261], [8, с. 125 – 130, 138 – 144], [15, с. 103 – 108, 138 – 148].

#### Питання до лекції 14

- 1. Яку структуру має загальний розв'язок лінійного неоднорідного рівняння n-го порядку?
- 2. Який вигляд має частинний розв'язок лінійного неоднорідного рівняння, якщо його права частина є сумою декількох доданків?
- 3. У чому полягає метод варіації довільних сталих інтегрування лінійного неоднорідного рівняння n-го порядку?
- 4. У чому полягає метод Коші відшукання частинних розв'язків лінійного неоднорідного рівняння n-го порядку? Який вигляд має формула Коші?
- 5. У чому полягає метод невизначених коефіцієнтів знаходження частинних розв'язків лінійного неоднорідного рівняння *n*-го порядку зі сталими коефіцієнтами? Якого вигляду має бути права частина рівняння, щоб можна було використати цей метод?

### Вправи до лекції 14

Зінтегруйте лінійні неоднорідні рівняння методом варіації довільних сталих:

a) 
$$y'' + 3y' + 2y = \frac{4}{e^x + 1}$$
, 6)  $y'' + 4y = \frac{\operatorname{tg}^2 x + 1}{2 \operatorname{tg} x}$ .

2. Зінтегруйте лінійні неоднорідні рівняння методом невизначених коефіцієнтів:

a) 
$$y'' - y = x^2 + x$$
; 6)  $y'' + y' = \sin x + 3x \cos x$ .

3. Знайдіть розв'язки задач Коші:

a) 
$$y'' + y = e^x$$
,  $y(0) = 1$ ,  $y'(0) = -2$ ;  
6)  $y'' - 2y' - 3y = xe^{-x}$ ,  $y(0) = 0$ ,  $y'(0) = 0$ .

4. Зінтегруйте рівняння методом Коші:

a) 
$$y'' + y = \frac{1}{x+1}$$
; 6)  $y'' - y = x$ .

5. Для кожного рівняння запишіть частинний розв'язок з невизначеними коефіцієнтами, не шукаючи їх:

a) 
$$y'' - 2y' + 2y = 5x^2e^x + 2\cos x$$
; 6)  $y'' + 7y' + 10y = xe^{-2x}\sin 5x$ .

## Лекція 15. Лінійні однорідні рівняння другого порядку

#### План

- 1. Канонічна форма лінійного однорідного рівняння другого порядку.
- 2. Побудова загального розв'язку у випадку, якщо відомий один частинний розв'язок.
- 3. Інтегрування лінійних рівнянь за допомогою степеневих рядів.
- 1. Канонічна форма лінійного однорідного рівняння другого порядку. Лінійні диференціальні рівняння другого порядку часто використовуються як диференціальні моделі різноманітних прикладних задач механіки, фізики, біології та інших наук.

Розглянемо лінійне однорідне рівняння другого порядку

$$a(x)y'' + b(x)y' + c(x)y = 0, (15.1)$$

де a(x), b(x), c(x) — неперервні функції на деякому інтервалі (a,b).

Якщо  $a(x) \neq 0$  на інтервалі (a,b), то рівняння (15.1) можна записати у вигляді

$$y'' + p(x)y' + q(x)y = 0, (15.2)$$

де p(x) = b(x)/a(x), q(x) = c(x)/a(x). Покажемо, що рівняння (15.2) можна звести до рівняння, яке не містить першої похідної. Для цього запровадимо заміну

$$y = \alpha(x) z, \tag{15.3}$$

де z=z(x) – нова шукана функція,  $\alpha(x)$  – поки що невідома функція. Підставляючи (15.3) в (15.2), одержуємо:

$$\alpha''(x)z + 2\alpha'(x)z' + \alpha(x)z'' + + p(x)\left(\alpha'(x)z + \alpha(x)z'\right) + q(x)\alpha(x)z = 0 \Rightarrow z'' + \left(\frac{2\alpha'(x)}{\alpha(x)} + p(x)\right) \cdot z' + \left(\frac{\alpha''(x)}{\alpha(x)} + p(x)\frac{\alpha'(x)}{\alpha(x)} + q(x)\right) \cdot z = 0.$$

$$(15.4)$$

Виберемо тепер функцію  $\alpha(x)$  так, щоб коефіцієнт біля z' перетворився у нуль, тобто  $\frac{2\alpha'(x)}{\alpha(x)} + p(x) = 0$ . Звідси, інтегруючи, знаходимо функцію  $\alpha(x)$ :

$$\alpha(x) = e^{-\frac{1}{2}\int p(x)dx}. (15.5)$$

Враховуючи, що

$$\alpha'(x) = -\frac{p(x)}{2}e^{-\frac{1}{2}\int p(x)dx},$$

$$\alpha''(x) = \left(-\frac{p'(x)}{2} + \frac{p^2(x)}{4}\right)e^{-\frac{1}{2}\int p(x)dx},$$

надамо рівнянню (15.4) вигляду

$$z'' + \left(-\frac{p'(x)}{2} - \frac{p^2(x)}{4} + q(x)\right)z = 0.$$

Таким чином, з (15.3) і (15.5) випливає, що заміна шуканої функції за формулою

$$y = e^{-\frac{1}{2}\int p(x)dx} \cdot z$$

зводить рівняння (15.2) до рівняння

$$z'' + I(x)z = 0, (15.6)$$

де позначено

$$I(x) = -\frac{p'(x)}{2} - \frac{p^2(x)}{4} + q(x).$$

Рівняння (15.6) називають *канонічною формою* рівняння (15.2), а функцію I(x) – *інваріантом* рівняння (15.2). Очевидно, що коли рівняння (15.6) інтегрується у квадратурах, то інтегрується у квадратурах також рівняння (15.2). Так, наприклад, буде, якщо I(x) = C,  $I(x) = \frac{C}{x^2}$  або  $I(x) = \frac{C}{(ax+b)^2}$ . У першому випадку рівняння (15.6) буде лінійним рівнянням зі сталими коефіцієнтами, у другому – рівнянням Ейлера, у третьому – рівнянням Лагранжа (див. лекцію 13). Зауважимо, що для лінійного рівняння другого порядку зі сталими коефіцієнтами інваріантом є взятий з протилежним знаком дискримінант відповідного характеристичного рівняння.

Приклад 1. Зінтегрувати рівняння

$$x^2y'' + xy' + (x^2 - 0, 25)y = 0.$$

**Розв'язання.** Існування та єдиність розв'язку гарантовані на інтервалах  $(-\infty,0)$  і  $(0,\infty)$ ; x=0 — особлива точка заданого рівняння. Оскільки  $p(x)=1/x, \, q(x)=1-0, 25/x^2,$  то, як легко перевірити, I(x)=1. Враховуючи тепер (15.6), для відшукання функції z=z(x) маємо рівняння z''+z=0, загальним розв'язком якого є

$$z = C_1 \cos x + C_2 \sin x.$$

Оскільки  $y=e^{-\frac{1}{2}\int \frac{dx}{x}}z=\frac{z}{\sqrt{x}},$  то остаточно одержуємо:

$$y = C_1 \frac{\cos x}{\sqrt{x}} + C_2 \frac{\sin x}{\sqrt{x}}. \quad \blacksquare$$

**2.** Побудова загального розв'язку у випадку, якщо відомий один частинний розв'язок. Нехай відомий один нетривіальний частинний розв'язок  $y_1 = y_1(x)$  рівняння (15.2). Покажемо, що запровадивши заміну

$$y = y_1 \int u \, dx,\tag{15.7}$$

де u = u(x) — нова невідома функція, рівняння (15.2) можна звести рівняння з відокремлюваними змінними. Справді, підставляючи (15.7) у (15.2), одержуємо:

$$y_1'' \int u \, dx + 2y_1' u + y_1 u' +$$

$$+ p(x) \left( y_1' \int u \, dx + y_1 u \right) + q(x) y_1 \int u \, dx = 0 \quad \Rightarrow$$

$$\left( y_1'' + p(x) y_1' + q(x) y_1 \right) \cdot \int u \, dx + \left( 2y_1' + p(x) y_1 \right) u + y_1 u' = 0.$$

Оскільки  $y_1$  – розв'язок рівняння (15.7), то

$$y_1'' + p(x)y_1' + q(x)y_1 = 0,$$

а тому

$$y_1 u' + (2y_1' + p(x)y_1) u = 0 \implies u' + (2\frac{y_1'}{y_1} + p(x)) u = 0.$$

Загальним розв'язком отриманого рівняння, як легко переконатися, є  $u=C_1y_1^{-2}e^{-\int p(x)dx}$ . Підставляючи тепер функцію u у (15.7), одержуємо загальний розв'язок (15.2)

$$y = y_1 \left( C_1 \int \frac{e^{-\int p(x) dx}}{y_1^2} dx + C_2 \right). \tag{15.8}$$

Формулу (15.8) називають формулою Абеля.

Приклад 2. Зінтегрувати рівняння

$$(x^2 + 1)y'' - 2xy' + 2y = 0.$$

**Розв'язання.** Легко перевірити, що  $y_1(x) = x$  є частинним розв'язком заданого рівняння. Оскільки  $p(x) = -\frac{2x}{x^2+1}$ , то, використовуючи формулу Абеля, одержуємо:

$$y = x \left( C_1 \int \frac{e^{\int \frac{2x dx}{x^2 + 1}}}{x^2} dx + C_2 \right) \implies$$

$$y = x \left( C_1 \int \frac{e^{\ln(x^2 + 1)}}{x^2} dx + C_2 \right) \implies$$

$$y = x \left( C_1 \int \frac{x^2 + 1}{x^2} dx + C_2 \right) \implies y = C_1(x^2 - 1) + C_2 x. \blacksquare$$

Якщо відомий нетривіальний частинний розв'язок  $y_1(x)$  рівняння (15.2), то це рівняння можна зінтегрувати також, використовуючи формулу Остроградського — Ліувілля (лекція 12).

Згідно з теоремою 6 (лекція 12) для того, щоб знайти загальний розв'язок рівняння (15.2), потрібно знати фундаментальну систему розв'язків цього рівняння. Нехай  $y_2(x)$  — такий розв'язок рівняння (15.2), що  $y_1(x)$ ,  $y_2(x)$  утворюють фундаментальну систему розв'язків. Використовуючи формулу Остроградського — Ліувілля у вигляді  $W(x) = C_1 \cdot e^{-\int p(x) dx}$  (формула (12.17) з лекції 12)), одержуємо:

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = C_1 e^{-\int p(x) dx} \implies$$

$$y_1 y_2' - y_1' y_2 = C_1 e^{-\int p(x) dx} \implies \frac{y_1 y_2' - y_1' y_2}{y_1^2} = \frac{C_1}{y_1^2} e^{-\int p(x) dx} \implies$$

$$\left(\frac{y_2}{y_1}\right)' = \frac{C_1}{y_1^2} e^{-\int p(x) dx} \implies y = y_1 \left(C_1 \int \frac{e^{-\int p(x) dx}}{y_1^2} dx + C_2\right).$$

Таким чином, знову одержали формулу Абеля (15.8).

**3.** Інтегрування лінійних рівнянь за допомогою степеневих рядів. Відомо, що розв'язки лінійного диференціального рівняння другого порядку зі змінними коефіцієнтами не завжди виражаються через елементарні функції, а інтегрування таких рівнянь рідко зводиться до квадратур.

Ще один метод інтегрування зазначених рівнянь полягає у зображенні шуканого розв'язку у вигляді степеневого ряду. Нагадаємо деякі поняття і факти, що стосуються степеневих рядів.

Функцію f(x), яка визначена на інтервалі (a,b), називають аналітичною в точці  $x_0 \in (a,b)$ , якщо її можна розвинути в степеневий ряд, збіжний у деякому околі точки  $x_0$ . Кажуть, що функція f(x) аналітична на інтервалі (a,b), якщо вона в кожній точці  $x_0 \in (a,b)$  може бути розвинена в степеневий ряд, що збігається в деякому околі точки  $x_0$ . Зокрема, якщо ряд

$$f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$$

має радіус збіжності r > 0, то функція f(x) аналітична на інтервалі  $(x_0 - r, x_0 + r)$ .

Розглянемо диференціальне рівняння (15.2), в якому функції p(x) і q(x) аналітичні на інтервалі  $(x_0 - a, x_0 + a)$ , тобто їх можна розвинути у степеневі ряди

$$p(x) = \sum_{k=0}^{\infty} p_k \cdot (x - x_0)^k, \quad q(x) = \sum_{k=0}^{\infty} q_k \cdot (x - x_0)^k,$$

які збігаються на інтервалі  $(x_0 - a, x_0 + a)$ .

**Теорема 1.** Якщо у рівнянні (15.2) функції p(x) і q(x) аналітичні на інтервалі  $(x_0 - a, x_0 + a)$ , то будь-який розв'язок цього рівняння є аналітичною функцією при  $x \in (x_0 - a, x_0 + a)$ , тобто може бути розвинений у степеневий ряд

$$y(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k, \tag{15.9}$$

що збігається для  $(x_0 - a, x_0 + a)$ .

Доведення цієї теореми можна знайти, наприклад, в [6, c. 284 - 286].

Точку  $x = x_0$  називають **точкою аналітичності** рівняння (15.2). В околі точки аналітичності розв'язок рівняння

(15.2) шукають у вигляді ряду (15.9), де числа  $c_0, c_1, c_2, \dots$  підлягають визначенню.

**Приклад 3.** За допомогою степеневих рядів зінтегрувати рівняння y'' + xy = 0.

**Розв'язання.** Відзначимо, що задане рівняння не інтегрується у квадратурах. Його розв'язок шукаємо у вигляді ряду

$$y(x) = \sum_{k=0}^{\infty} c_k x^k,$$
 (15.10)

вважаючи  $c_k$ ,  $k=0,1,\ldots$  невизначеними коефіцієнтами. Покажемо, що ці коефіцієнти можна однозначно визначити і при цьому ряд (15.10) збігатиметься в деякому околі точки x=0.

Двічі здиференціюємо ряд (15.10) і підставимо його разом з рядом для y'' у задане рівняння. Одержимо тотожність

$$\sum_{k=2}^{\infty} k(k-1)c_k x^{k-2} + \sum_{k=0}^{\infty} c_k x^{k+1} \equiv 0 \quad \Rightarrow \\ \sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2} x^k \equiv -\sum_{k=1}^{\infty} c_{k-1} x^k.$$

Прирівнюючи коефіцієнти біля однакових степенів x, знаходимо, що

$$c_2 = 0$$
,  $c_{k+2} = -\frac{1}{(k+1)(k+2)}c_{k-1}$ ,  $k \ge 1$ .

Отже,

$$c_{3m} = \frac{(-1)^m c_0}{3m(3m-1)(3m-3)(3m-4) \cdot \dots \cdot 3 \cdot 2},$$

$$c_{3m+1} = \frac{(-1)^m c_1}{(3m+1)3m(3m-2)(3m-3) \cdot \dots \cdot 4 \cdot 3}, \quad c_{3m+2} = 0,$$

де  $m=1,2,\ldots,$  а коефіцієнти  $c_0$  і  $c_1$  залишаються невизначеними (довільними).

Покладаючи  $c_0=1,\ c_1=0,$  що рівносильно початковим умовам  $y(0)=1,\ y'(0)=0,$  знаходимо ряд

$$y_1(x) = 1 + \sum_{m=1}^{\infty} \frac{(-1)^m x^{3m}}{3m(3m-1)(3m-3)(3m-4) \cdot \dots \cdot 3 \cdot 2}.$$
 (15.11)

Покладаючи  $c_0=0,\,c_1=1,$  що рівносильно початковим умовам  $y(0)=0,\,y'(0)=1,$  одержуємо ряд

$$y_2(x) = x + \sum_{m=1}^{\infty} \frac{(-1)^m x^{3m+1}}{(3m+1)3m(3m-2)(3m-3)\cdots 4\cdot 3}. (15.12)$$

Використовуючи ознаку Д'Аламбера, легко показати, що ряди (15.11), (15.12) збігаються для всіх  $x \in (-\infty, +\infty)$ , а тому їх можна диференціювати на  $(-\infty, +\infty)$ . Підставляючи (15.11), (15.12) у рівняння (15.2), переконуємось, що  $y_1(x)$ ,  $y_2(x)$  — розв'язки рівняння (15.2). Більш того, ці розв'язки лінійно незалежні на  $(-\infty, +\infty)$ , бо їх вронскіан відмінний від нуля у точні x=0:

$$W(0) = \begin{vmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1.$$

Отже, загальним розв'язком заданого рівняння є

$$y = C_1 y_1(x) + C_2 y_2(x),$$

де  $y_1(x), y_2(x)$  визначені формулами (15.11), (15.12), а  $C_1, C_2$  – довільні сталі.  $\blacksquare$ 

Зазначимо, що метод степеневих рядів можна використовувати також для розв'язування лінійних неоднорідних рівнянь другого порядку y'' + p(x)y' + q(x)y = f(x), якщо p(x), q(x) і f(x) – аналітичні функції в деякому околі точки  $x = x_0$ .

Розглянемо тепер випадок, коли p(x) і q(x) – коефіцієнти рівняння (15.2) – не є аналітичними в околі точки  $x=x_0$ . Точку  $x=x_0$ , для якої  $\lim_{x\to x_0}p(x)=\infty$  або  $\lim_{x\to x_0}q(x)=\infty$ , називають особливою точкою рівняння (15.2).

Нехай коефіцієнти рівняння (15.2) можна подати формулами  $p(x) = \frac{p_1(x)}{x-x_0}, \ q(x) = \frac{q_1(x)}{(x-x_0)^2}, \ де \ p_1(x), \ q_1(x)$  – аналітичні функції на інтервалі  $(x_0-a,x_0+a)$ , тобто

$$p_1(x) = \sum_{k=0}^{\infty} p_{1k}(x - x_0)^k, \quad q_1(x) = \sum_{k=0}^{\infty} q_{1k}(x - x_0)^k.$$

Тоді рівняння (15.2) зручно записати у вигляді

$$(x - x_0)^2 y'' + (x - x_0)p_1(x)y' + q_1(x)y = 0, \quad x \neq x_0.$$

Якщо  $x=x_0$  – особлива точка рівняння (15.2) (це буде, якщо хоча б одне з чисел  $p_{10}$ ,  $q_{10}$ ,  $q_{11}$  відмінне від нуля), то її називають **регулярною особливою точкою**. В околі регулярної особливої точки  $x=x_0$  розв'язки рівняння (15.2), взагалі кажучи, можуть не зображатись у вигляді степеневого ряду вигляду (15.9). Наприклад, обидва розв'язки  $y_1=x^{1/2}$  і  $y_2=x^{-2}$  рівняння Ейлера  $2x^2y''+5xy'-2y=0$  не можна розвинути у степеневі ряди вигляду (15.9), тобто у ряди за цілими додатними степенями x.

У цьому випадку розв'язок рівняння потрібно шукати у вигляді *узагальненого степеневого ряду* 

$$y(x) = (x - x_0)^r \sum_{k=0}^{\infty} c_k (x - x_0)^k,$$

де числа  $r, c_0, c_1, \ldots$  підлягають визначенню.

Приклад 4. Знайти загальний розв'язок рівняння

$$xy'' + 2y' + xy = 0. (15.13)$$

**Розв'язання.** Точка  $x_0=0$  є особливою, бо  $p(x)=\frac{2}{x}\to\infty$  при  $x\to 0$ . Тому розв'язок шукаємо у вигляді узагальненого степеневого ряду

$$y(x) = x^r \sum_{k=0}^{\infty} c_k x^k.$$

Тоді

$$y'(x) = \sum_{k=0}^{\infty} (k+r)c_k x^{k+r-1},$$
$$y''(x) = \sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r-2}.$$

Підставляючи знайдені вирази для y, y', y'' у (15.13), одержуємо, що

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r-1} + 2\sum_{k=0}^{\infty} (k+r)c_k x^{k+r-1} + \sum_{k=0}^{\infty} c_k x^{k+r+1} = 0$$

або після скорочення на  $x^r$ :

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k-1} + 2\sum_{k=0}^{\infty} (k+r)c_k x^{k-1} + \sum_{k=0}^{\infty} c_k x^{k+1} = 0.$$

Оскільки збіжні степеневі ряди є абсолютно збіжні всередині інтервалу збіжності, то попередній рівності можна надати такого вигляду:

$$(r^{2}+r)c_{0}x^{-1} + (r^{2}+3r+2)c_{1}x^{0} + (c_{0}+(r^{2}+5r+6)c_{2})x +$$

$$+ (c_{1}+(r^{2}+7r+12)c_{3})x^{2} + (c_{2}+(r^{2}+9r+20)c_{4})x^{3} + \dots = 0$$
(15.14)

Звідси випливає, що усі коефіцієнти узагальненого степеневого ряду (15.14) дорівнюють нулю, тобто

$$\begin{cases}
(r^{2} + r)c_{0} = 0, \\
(r^{2} + 3r + 2)c_{1} = 0, \\
c_{0} + (r^{2} + 5r + 6)c_{2} = 0, \\
c_{1} + (r^{2} + 7r + 12)c_{3} = 0, \\
c_{2} + (r^{2} + 9r + 20)c_{4} = 0, \\
\dots \dots \dots
\end{cases} (15.15)$$

Нехай  $c_0 \neq 0$ , тоді з першого рівняння системи (15.15) одержуємо, що r=0 або r=-1. Якщо r=0 і, наприклад,  $c_0=1$ , то з (15.15) знаходимо

$$c_1 = 0$$
,  $c_2 = -\frac{1}{3!}$ ,  $c_3 = 0$ ,  $c_4 = \frac{1}{5!}$ , ...,  
 $c_{2k-1} = 0$ ,  $c_{2k} = \frac{(-1)^k}{(2k+1)!}$ , ...

Таким чином, функція

$$y_1(x) = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots = \frac{1}{x} \left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right) = \frac{\sin x}{x}$$

є розв'язком рівняння (15.13).

Нехай тепер r=-1. Тоді, вважаючи, що  $c_0=1,\ c_1=0,\ з$  (15.15) знаходимо

$$c_2 = -\frac{1}{2!}$$
,  $c_3 = 0$ ,  $c_4 = \frac{1}{4!}$ , ...,  $c_{2k-1} = 0$ ,  $c_{2k} = \frac{(-1)^k}{(2k)!}$ , ...,

а отже, функція

$$y_2(x) = \frac{1}{x} - \frac{x}{2!} + \frac{x^3}{4!} - \dots = \frac{1}{x} \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \right) = \frac{\cos x}{x}$$

також є розв'язком рівняння (15.13). Оскільки знайдені функції  $y_1(x)$  і  $y_2(x)$  лінійно незалежні (пропонуємо у цьому переконатися самостійно), то згідно з Основною теоремою (лекція 12) загальним розв'язком рівняння (15.13) є

$$y = C_1 \frac{\sin x}{x} + C_2 \frac{\cos x}{x}. \quad \blacksquare$$

*Рекомендована література*: [3, с. 95, 172 – 185], [6, с. 269 – 273, 283 – 294], [8, с. 120 – 122, 150 – 158], [15, с. 202 – 219], [16, с. 363 – 404, 412 – 435].

## Питання до лекції 15

- 1. За допомогою якої підстановки лінійне однорідне рівняння другого порядку можна звести до рівняння, яке не містить першої похідної? Як називають таку форму рівняння?
- 2. Що називають інваріантом лінійного однорідного рівняння другого порядку? Якого вигляду має бути інваріант, щоб відповідне лінійне однорідне рівняння другого порядку можна було зінтегрувати у квадратурах?
- 3. Як, маючи один частинний розв'язок лінійного однорідного рівняння другого порядку, зінтегрувати це рівняння у квадратурах? Який вигляд має формула Абеля?

- 4. Як можна використати формулу Остроградського Ліувілля для інтегрування лінійного однорідного рівняння другого порядку?
- 5. Як знайти загальний розв'язок лінійного однорідного рівняння другого порядку за допомогою степеневих рядів? У якому випадку розв'язок цього рівняння потрібно шукати у вигляді узагальненого степеневого ряду?

#### Питання до лекції 15

1. Зведіть рівняння до канонічної форми та зінтегруйте їх:

a) 
$$y'' + \frac{2}{x}y' + y = 0$$
; 6)  $x^2y'' + 2x^2y' + (x^2 - 2)y = 0$ .

2. Зінтегруйте рівняння, знаючи їх частинні розв'язки  $y_1(x)$ :

a) 
$$(2x+1)y'' + 4xy' - 4y = 0$$
,  $y_1(x) = e^{-2x}$ ;  
6)  $x(x-1)y'' - xy' + y = 0$ ,  $y_1(x) = x$ .

3. Зінтегруйте рівняння методом степеневих рядів:

a) 
$$y'' + xy' + y = 0$$
; 6)  $y'' = ye^x$ .

4. Зінтегруйте рівняння методом узагальнених степеневих рядів:

a) 
$$xy'' - (x+1)y' + y = 0$$
; 6)  $9x^2y'' - (x^2 - 2)y = 0$ .

# Лекція 16. Диференціальні моделі коливальних процесів

### План

- 1. Застосування лінійних однорідних диференціальних рівнянь другого порядку до коливальних рухів.
- 2. Застосування лінійних неоднорідних диференціальних рівнянь другого порядку до коливальних рухів.
  - 3. Диференціальна модель математичного маятника.
- 1. Застосування лінійних однорідних диференціальних рівнянь другого порядку до коливальних рухів. Припустимо, що матеріальна точка маси m прямолінійно рухається вздовж осі Ox під впливом трьох сил:
- 1) сили  $F_1$ , що притягує точку до початку координат; цю силу вважатимемо пропорційною віддалі x точки від початку координат, тобто  $F_1 = -ax$ , де a > 0;
- 2) сили  $F_2$  опору середовища, яку припускатимемо пропорційною швидкості руху точки (це припущення близьке до дійсності для незначних швидкостей), тобто  $F_2 = -bx'$ , де  $b \geqslant 0$ ;
- 3) збурювальної (зовнішньої) сили, що спрямована вздовж осі Ox і дорівнює  $F_3(t)$  у момент часу t.

Тоді згідно з другом законом Ньютона

$$F = ma$$
,

де  $F = F_1 + F_2 + F_3$ , a = x''(t), маємо диференціальне рівняння руху матеріальної точки:

$$mx'' = -ax - bx' + F_3(t)$$

або

$$x'' + 2p x' + q^2 x = f(t), (16.1)$$

де

$$p = \frac{b}{2m} \geqslant 0, \quad q = \sqrt{\frac{a}{m}} > 0, \quad f(t) = \frac{F_3(t)}{m}.$$

Число p називають **коефіцієнтом опору**, а число q – **коефіцієнтом відхилення**. Диференціальне рівняння (16.1) — лінійне неоднорідне рівняння другого порядку зі сталими коефіцієнтами. Зінтегрувавши його, знайдемо закон руху матеріальної точки.

Оскільки найбільший інтерес становлять випадки, коли рух, який визначений рівнянням (16.1), є коливанням точки біля положення x=0, то рівняння (16.1) називають pівняння ням коливань. При цьому, якщо збурювальна сила відсутня, тобто  $f(t)\equiv 0$ , то це рівняння називають pівнянням вільних коливань; воно має вигляд

$$x'' + 2p x' + q^2 x = 0. (16.2)$$

Диференціальне рівняння (16.1), у якому права частина тотожно відмінна від нуля, називають *рівнянням вимушених коливань*.

Розглянемо рівняння (16.2) і з'ясуємо, як коефіцієнти p, q впливають на характер руху матеріальної точки. Проаналізуємо окремі випадки рівняння (16.2).

**Випадок 1.** Рух відбувається у середовищі без опору (p=0). Тоді рівняння руху має вигляд

$$x'' + q^2 x = 0. (16.3)$$

Рівняння (16.3) описує вертикальні рухи тіла, підвішеного на пружині, під впливом сили пружності пружини і сили ваги, малі коливання маятника, коливання повітря в акустичному резонаторі та інші явища коливної природи. Це рівняння називають ще *рівнянням гармонічного осцилятора*.

Рівняння (16.3) — лінійне однорідне рівняння зі сталими коефіцієнтами. Його характеристичне рівняння  $k^2+q^2=0$ , а характеристичні числа — комплексно-спряжена пара  $k_1=qi$ ,  $k_2=-qi$ , а тому загальним розв'язком цього рівняння є

$$x = C_1 \cos qt + C_2 \sin qt.$$

Для з'ясування фізичного змісту отриманого розв'язку зручно звести його до іншої форми, ввівши замість довільних сталих  $C_1, C_2$  нові сталі A і  $\varphi$  (A > 0) за формулами  $C_1 = A \sin \varphi$ ,

 $C_2 = A\cos\varphi$ . Тоді

$$A = \sqrt{C_1^2 + C_2^2}, \quad \varphi = \operatorname{arctg} \frac{C_1}{C_2} \quad (C_2 \neq 0),$$

$$x = A \sin \varphi \cos qt + A \cos \varphi \sin qt \quad \Rightarrow$$

$$x(t) = A \sin(qt + \varphi). \tag{16.4}$$

Рух, який описується формулою (16.4), називають *гармо- нічним коливанням*. Він є періодичним рухом з *періодом*  $T = 2\pi/q$  і *частотою* q. Число A називають *амплітудою коливання* (16.4) (це максимальне відхилення точки від стану рівноваги). Величину  $qt + \varphi$  називають *фазою коливання*. Значення фази коливання при t = 0, тобто кут  $\varphi$  називають *початковою фазою* коливання (16.4).

З формули (16.4) випливає, що всі рухи, визначені рівнянням (16.3), обмежені, бо при  $t \to +\infty$   $|x(t)| \leqslant A$ . Графік кожного конкретного руху можна одержати за допомогою елементарних перетворень графіка функції  $x = \sin t$  (рис. 16.1).



Puc. 16.1

Будь-яким початковим умовам

$$x(0) = x_0, \quad x'(0) = x_0'$$

згідно з теоремою про існування та єдиність розв'язку задачі Коші для лінійного рівняння n-го порядку (лекція 10) відповідає єдиний рух з формули (16.4). Знайдемо цей рух. Оскільки  $x' = Aq\cos(qt + \varphi)$ , то відповідні значення амплітуди A і початкової фази  $\varphi$  одержуємо з системи

$$\begin{cases} A\sin\varphi = x_0, \\ Aq\cos\varphi = x_0' \end{cases} \Rightarrow A = \frac{1}{q} \sqrt{q^2 x_0^2 + {x_0'}^2}, \quad \varphi = \operatorname{arctg} \frac{qx_0}{x_0'}.$$

**Випадок 2.** Рух відбувається у середовищі з опором p>0. Характеристичним рівнянням для (16.2) є  $k^2+2pk+q^2=0$ , а характеристичними числами —

$$k_1 = -p + \sqrt{p^2 - q^2}$$
 i  $k_2 = -p - \sqrt{p^2 - q^2}$ .

Якщо  $p^2 - q^2 < 0$ , то, позначивши  $p^2 - q^2 = -h^2$ , загальний розв'язок рівняння (16.2) можемо записати як

$$x = e^{-pt}(C_1\cos ht + C_2\sin ht),$$

де  $h=\sqrt{q^2-p^2},$  або, враховуючи позначення, які використовувались при виведенні формули (16.4), у вигляді

$$x(t) = Ae^{-pt}\sin(ht + \varphi). \tag{16.5}$$

Рух точки, який описується формулою (16.5), називають згасаючим гармонічним коливанням з періодом  $T=\frac{2\pi}{h}$ , частотою h, амплітудою  $Ae^{-pt}$ , початковою фазою  $\varphi$  (рис. 16.2). На відміну від гармонічного коливання (16.4) тепер амплітуда є величиною змінною. Але вона обмежена, бо  $Ae^{-pt} \leqslant A$ , і прямує до нуля при  $t \to +\infty$ . Число A називають початковою амплітудою, а p – коефіцієнтом згасання. Множник  $e^{-pt}$  характеризує швидкість згасання коливання.



Puc. 16.2

Якщо  $p^2-q^2>0$ , то, позначивши  $p^2-q^2=h^2$ , загальний розв'язок рівняння (16.2) запишемо у вигляді

$$x(t) = C_1 e^{(h-p)t} + C_2 e^{-(h+p)t}.$$
 (16.6)

Оскільки h < p, то  $x(t) \to 0$  при  $t \to +\infty$ . Нарешті, якщо  $p^2 - q^2 = 0$ , то  $k_1 = k_2 = -p$ , а загальним розв'язком є

$$x(t) = e^{-pt}(C_1 + C_2 t), (16.7)$$

причому знову  $x(t) \to 0$  при  $t \to +\infty$ .

Рухи, які описуються формулами (16.6) і (16.7), називають аперіодичними згасаючими рухами. Із зростанням t відхилення x(t) асимптотично наближається до нуля і коливань навколо положення x=0 немає. Усі розглянуті рухи називають вільними або власними коливаннями.

Таким чином, наявність опору середовища (p>0) видозмінює характер коливань, причому, якщо опір p порівняно невеликий (p< q), то рухи залишаються періодичними, згасаючи при  $t\to +\infty$ , а при великому опорі середовища  $(p\geqslant q)$  рухи стають аперіодичними.

2. Застосування лінійних неоднорідних диференціальних рівнянь другого порядку до коливальних рухів. Розглянемо диференціальне рівняння вимушених коливань (16.1)  $(f(t) \neq 0)$ . Згідно з теоремою про структуру загального розв'язку лінійного неоднорідного рівняння (лекція 14) усі рухи, які визначаються рівнянням (16.1), утворюються з сукупності усіх рухів, визначених відповідним однорідним рівнянням (рівнянням вільних коливань точки), і будь-якого одного руху, визначеного неоднорідним рівнянням (16.1).

Розглянемо випадок, коли збурювальна сила f(t) періодична і має синусоїдальний характер (у застосуваннях це трапляється досить часто).

**Випадок 1.** Рух відбувається у середовищі без опору (p=0). Тоді рівняння руху має вигляд

$$x'' + q^2 x = M \sin \omega t. \tag{16.8}$$

Власні коливання  $x_0(t)$ , які визначаються відповідним однорідним рівнянням  $x''+q^2x=0$ , є гармонічними (див. формулу (16.4)):

$$x_0(t) = A\sin(qt + \varphi). \tag{16.9}$$

Залишається знайти частинний розв'язок рівняння (16.8). Вигляд цього розв'язку залежить від того, чи є число  $a+ib=i\omega$  коренем характеристичного рівняння  $k^2+q^2=0$ . Оскільки  $k_{1,2}=\pm iq$ , то все залежить від того, чи збігається частота збурювальної сили з частотою власних коливань (резонансний випадок), чи маємо незбіг цих частот (нерезонансний випадок).

Розглянемо спочатку нерезонансний випадок, тобто коли  $\omega \neq q$ . Частинний розв'язок рівняння (16.8) X(t) шукаємо у виглялі

$$X(t) = A_1 \cos \omega t + B_1 \sin \omega t,$$

де  $A_1$  і  $B_1$  – деякі сталі, які визначимо згодом. Тоді

$$X'(t) = -A_1 \omega \sin \omega t + B_1 \omega \cos \omega t,$$
  
$$X''(t) = -A_1 \omega^2 \cos \omega t - B_1 \omega^2 \sin \omega t$$

і, підставляючи в (16.8), одержуємо рівняння

$$-A_1\omega^2\cos\omega t - B_1\omega^2\sin\omega t + q^2(A_1\cos\omega t + B_1\sin\omega t) = M\sin\omega t.$$

З нього, прирівнюючи коефіцієнти біля  $\cos \omega t$ ,  $\sin \omega t$  відповідно, маємо:

$$\begin{cases}
-A_1\omega^2 + A_1q^2 = 0, \\
-B_1\omega^2 + B_1q^2 = M
\end{cases} \Rightarrow A_1 = 0, B_1 = \frac{M}{q^2 - \omega^2}.$$

Таким чином,

$$X(t) = \frac{M}{q^2 - \omega^2} \sin \omega t,$$

а загальний розв'язок рівняння (16.8) має вигляд

$$x(t) = \frac{M}{q^2 - \omega^2} \sin \omega t + A \sin(qt + \varphi).$$

Вимушені коливання, визначені цим загальним розв'язком, називають *накладеними гармонічними коливаннями*.

Розглянемо рівняння вимушених коливань

$$x'' + q^2 x = M \sin qt, (16.10)$$

яке є окремим випадком рівняння (16.8), коли  $\omega = q$ , тобто коли частота збурювальної сили збігається з частотою власних коливань (pesohahc). У цьому випадку частинний розв'язок має вигляд

$$X(t) = t(A_1 \cos qt + B_1 \sin qt),$$

бо iq є простим характеристичним числом. Тоді

$$X'(t) = A_1 \cos qt + B_1 \sin qt + tq(-A_1 \sin qt + B_1 \cos qt),$$
  
$$X''(t) = -2A_1 q \sin qt + 2B_1 q \cos qt - tq^2(A_1 \cos qt + B_1 \sin qt)$$

і, підставляючи в (16.10), одержуємо рівняння

$$-2A_1q\sin qt + 2B_1q\cos qt - q^2t(A_1\cos qt + B_1\sin qt) +$$

$$+ q^2t(A_1\cos qt + B_1\sin qt) = M\sin qt \quad \Rightarrow$$

$$-2A_1q\sin qt + 2B_1q\cos qt = M\sin qt.$$

Звідси, прирівнюючи коефіцієнти біля  $\cos qt$ ,  $\sin qt$  відповідно, знаходимо, що  $A_1=-\frac{M}{2q},\ B_1=0.$  Таким чином,

$$X(t) = -\frac{M}{2q}t\cos qt. \tag{16.11}$$

Частинний розв'язок (16.11) є вимушеним коливанням і має необмежену амплітуду при  $t \to +\infty$ . Графік цього коливання розташований між прямими  $x = \frac{M}{2q}t$  і  $x = -\frac{M}{2q}t$  (рис. 16.3).



Puc. 16.3

У реальних фізичних системах коливання ніколи не можуть зростати необмежено, бо коливання з необмеженою амплітудою або стримуються опором, або призводять до руйнування системи.

Загальним розв'язком рівняння (16.10) є

$$x(t) = A\sin(qt + \varphi) - \frac{M}{2q}t\cos qt.$$

Вимушені коливання, визначені цим розв'язком, утворюються накладанням гармонійних коливань (16.9) і коливань з необмеженою амплітудою (16.11).

**Випадок 2.** Рух відбувається в середовищі з малим опором (p < q). Припустимо, що збурювальна сила має синусоїдальний характер. Тоді рівнянням руху є

$$x'' + 2p x' + q^2 x = M \sin \omega t. \tag{16.12}$$

Згідно з (16.5) власні коливання  $x_0(t)$  мають вигляд

$$x_0(t) = Ae^{-pt}\sin\left(\sqrt{q^2 - p^2}t + \varphi\right).$$

Частинний розв'язок X(t) рівняння (16.12) шукаємо у вигляді

$$X(t) = A_1 \cos \omega t + B_1 \sin \omega t, \qquad (16.13)$$

де сталі  $A_1$ ,  $B_1$  знайдемо, підставляючи (16.13) в (16.12):

$$-A_{1}\omega^{2}\cos\omega t - B_{1}\omega^{2}\sin\omega t + 2p(-A_{1}\omega\sin\omega t + B_{1}\omega\cos\omega t) + q^{2}(A_{1}\cos\omega t + B_{1}\sin\omega t) = M\sin\omega t \implies (-A_{1}\omega^{2} + 2pB_{1}\omega + A_{1}q^{2})\cos\omega t + + (-B_{1}\omega^{2} - 2pA_{1}\omega + q^{2}B_{1})\sin\omega t = M\sin\omega t \implies \begin{cases} A_{1}(q^{2} - \omega^{2}) + 2p\omega B_{1} = 0, \\ -2pA_{1}\omega + (q^{2} - \omega^{2})B_{1} = M \end{cases} \implies A_{1} = \frac{-2p\omega M}{(\omega^{2} - q^{2})^{2} + 4p^{2}\omega^{2}}, \quad B_{1} = \frac{M(q^{2} - \omega^{2})}{(\omega^{2} - q^{2})^{2} + 4p^{2}\omega^{2}}.$$

Отже,

$$X(t) = \frac{-2p\omega M}{(\omega^2 - q^2)^2 + 4p^2\omega^2}\cos\omega t + \frac{M(q^2 - \omega^2)}{(\omega^2 - q^2)^2 + 4p^2\omega^2}\sin\omega t,$$
(16.14)

а загальний розв'язок рівняння (16.12) має вигляд

$$\begin{split} x(t) &= \frac{-2p\omega M}{(\omega^2 - q^2)^2 + 4p^2\omega^2}\cos\omega t + \frac{M(q^2 - \omega^2)}{(\omega^2 - q^2)^2 + 4p^2\omega^2}\sin\omega t \ + \\ &\quad + Ae^{-pt}\sin\left(\sqrt{q^2 - p^2}\,t + \varphi\right). \end{split}$$

Оскільки при  $t \to +\infty$  останній доданок прямує до нуля, то для достатньо великих t можна вважати, що

$$x(t) = \frac{-2p\omega M}{(\omega^2 - q^2)^2 + 4p^2\omega^2}\cos \omega t + \frac{M(q^2 - \omega^2)}{(\omega^2 - q^2)^2 + 4p^2\omega^2}\sin \omega t,$$

тобто власними (згасаючими) коливаннями можна знехтувати.

Амплітуда A вимушеного коливання (16.14) виражається формулою

$$A = \frac{M}{\sqrt{(\omega^2 - q^2)^2 + 4p^2\omega^2}},$$

а якщо опір p дуже малий, то  $A \approx \frac{M}{|\omega^2 - q^2|}$ . Звідси випливає, що при наближенні  $\omega$  до q амплітуда A є доволі значною навіть для малого M.

**3.** Диференціальна модель математичного маятника. Математичним маятником називають матеріальну точку M маси m, яка під дією сили тяжіння рухається по колу L радіуса r, розташованому у вертикальній площині. Величину r називають довжиною маятника.

Припустимо, що коливання маятника відбувається у середовищі без опору. На колі L введемо кутову координату, взявши за початок координат найнижчу точку O кола L (рис. 16.4). Змінну координату точки M позначимо через  $\psi=\psi(t)$ . На точку M діє сила тяжіння P=mg, де g – прискорення вільного падіння.

Тоді маятник коливається під дією сили  $\vec{F}$ , яка діє у бік зменшення кута  $\psi$ ,

$$F = -mg\sin\psi$$
.

Якщо за час t довільна точка M пройшла вздовж дуги кола L шлях S, то  $S=r\psi$ . Звідси швидкість v руху точки, яка спрямована вздовж дотичної до дуги кола, визначається за формулою

$$v = \frac{dS}{dt} = r\frac{d\psi}{dt}.$$
 (16.15)



Puc. 16.4

Тому рівнянням руху маятника є

$$m\frac{dv}{dt} = -mg\sin\psi$$

або, з урахуванням (16.15),

$$r\frac{d^2\psi}{dt^2} + g\sin\psi = 0. ag{16.16}$$

Рівняння (16.16) нелінійне, однак якщо величина кута  $\psi$  досить мала, то  $\sin \psi \approx \psi$ , і замість нелінійного можна розглядати лінійне однорідне рівняння

$$\psi'' + q^2\psi = 0,$$

де  $q^2 = \frac{g}{r}$ , тобто маємо рівняння вигляду (16.3).

Таким чином, математичний маятник при малому відхиленні від положення рівноваги здійснюватиме гармонічні коливання за законом

$$\psi(t) = A\sin(qt + \varphi),$$

де

$$q = \sqrt{\frac{g}{r}}, \quad T = 2\pi\sqrt{\frac{r}{g}},$$

$$A = \sqrt{x_0^2 + \frac{x_0'^2 r}{g}}, \quad \varphi = \arctan\left(\frac{x_0}{x_0'} \sqrt{\frac{g}{r}}\right).$$

**Рекомендована література**: [8, с. 144 – 150], [14, с. 88 – 96], [15, с. 387 – 391], [16, с. 288 – 362], [18, с. 163 – 182].

### Питання до лекції 16

- 1. Як інтегрується рівняння вільних коливань у середовищі без опору? Який вигляд має загальний розв'язок цього рівняння? Що називають гармонічним коливанням, його амплітудою, періодом, частотою і початковою фазою? Як залежать амплітуда і початкова фаза від початкових значень шуканої функції та її похідної?
- 2. Як інтегрується рівняння вільних коливань у середовищі з опором? Що називають згасаючим гармонічним коливанням, його періодом, частотою, амплітудою і початковою фазою? Яка поведінка амплітуди при  $t \to +\infty$ ? Як впливає наявність опору середовища на характер коливань?
- 3. Який вигляд має рівняння вимушених коливань у середовищі без опору у випадку періодичної збурювальної сили синусоїдального характеру? Як інтегрується це рівняння? Який вигляд має загальний розв'язок у нерезонансному і резонансному випадках?
- 4. Як інтегрується рівняння вимушених коливань у середовищі з малим опором у випадку періодичної збурювальної сили синусої-дального характеру? Який вигляд має графік частинного розв'язку цього рівняння?
- 5. Що називають математичним маятником? Який вигляд має диференціальна модель його руху? Якими є період, частота, амплітуда та початкова фаза коливання математичного маятника?

# Лекція 17. Крайові задачі для диференціальних рівнянь другого порядку

#### План

- 1. Основні означення й поняття.
- 2. Існування та єдиність розв'язку крайової задачі.
- 3. Функція Ґріна крайової задачі.
- 4. Крайові задачі на власні значення.
- 1. Основні означення й поняття. У задачі Коші умови, за допомогою яких можна виділити певний частинний розв'язок диференціального рівняння, задаються в одній (початковій) точці. Проте у багатьох прикладних задачах умови на невідому функцію та її похідні часто задаються у двох точках, наприклад, на кінцях відрізка, де шукається розв'язок задачі. Такі умови називають крайовими. Задачу відшукання розв'язку диференціального рівняння, що задовольняє крайові умови, називають крайовою.

Крайові задачі виникають як диференціальні моделі багатьох прикладних задач (коливання струни, коливання валів, поширення тепла у провіднику тощо). Наприклад, у задачі про рух матеріальної точки маси m під дією заданої сили F у багатьох випадках потрібно знайти закон руху s(t), якщо у початковий момент часу  $t=t_0$  вона знаходилась у точці  $M_1$ , а в момент часу  $t=t_1$  повинна потрапити у точку  $M_2$ . Використовуючи закон Ньютона F=ma, де  $a=\frac{d^2s}{dt^2}$  — прискорення, ця задача зводиться до відшукання розв'язку диференціального рівняння другого порядку

$$ms'' = F(t, s, s'),$$

який задовольняє крайові умови  $s(t_0) = s_0$ ,  $s(t_1) = s_1$ .

Надалі обмежимось розглядом крайових задач тільки для диференціальних рівнянь другого порядку. Для рівняння

$$y'' + p(x)y' + q(x)y = f(x), (17.1)$$

де p(x), q(x), f(x) — неперервні на відрізку [a,b] функції, крайові умови означимо наступним чином:

$$\begin{cases} \alpha_1 y'(a) + \beta_1 y(a) = y_0, \\ \alpha_2 y'(b) + \beta_2 y(b) = y_1, \end{cases}$$
 (17.2)

де  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$ ,  $y_0$ ,  $y_1$  – задані числа, причому  $\alpha_1$ ,  $\beta_1$ , а також  $\alpha_2$ ,  $\beta_2$  одночасно не дорівнюють нулю. Якщо  $y_0 = y_1 = 0$ , тобто

$$\begin{cases} \alpha_1 y'(a) + \beta_1 y(a) = 0, \\ \alpha_2 y'(b) + \beta_2 y(b) = 0, \end{cases}$$
 (17.3)

то такі крайові умови називають однорідними.

Якщо f(x) тотожно не дорівнює нулю, то задачу (17.1), (17.2) називають неоднорідною крайовою задачею, а якщо  $f(x) \equiv 0$  і  $y_0 = y_1 = 0$ , — однорідною крайовою задачею.

**Розв'язком** крайової задачі (17.1), (17.2) називають функцію y(x), яка двічі неперервно диференційовна на (a,b), неперервно диференційовна на [a,b] і задовольняє рівняння (17.1) на (a,b) та крайові умови (17.2).

**2.** Існування та єдиність розв'язку крайової задачі. Як відомо, розв'язок задачі Коші для рівняння (17.1) з початковими умовами

$$y(x_0) = y_0, \ y'(x_0) = y_1, \ x_0 \in [a, b],$$

де p(x), q(x) – неперервні на [a,b], згідно з теоремою Коші (лекція 10) існує та єдиний на всьому відрізку [a,b]. Для крайової задачі (17.1), (17.2) це зовсім не обов'язково, тобто її розв'язок може не існувати або не бути єдиним. Для детальнішого розгляду цього питання позначимо через  $\varphi_1(x)$ ,  $\varphi_2(x)$  фундаментальну систему розв'язків відповідного однорідного рівняння

$$y'' + p(x)y' + q(x)y = 0, (17.4)$$

а через Y(x) – частинний розв'язок рівняння (17.1). Згідно з теоремою про структуру загального розв'язку лінійного неоднорідного рівняння (лекція 14, п. 1) загальним розв'язком рівняння (17.1)  $\varepsilon$ 

$$y = C_1 \varphi_1(x) + C_2 \varphi_2(x) + Y(x), \tag{17.5}$$

де  $C_1$ ,  $C_2$  — довільні сталі. Для отримання розв'язку крайової задачі (17.1), (17.2) сталі  $C_1$ ,  $C_2$  необхідно визначити з крайових умов (17.2). Підставляючи (17.5) в (17.2), одержуємо систему лінійних алгебричних рівнянь:

$$\begin{cases} (\alpha_1 \varphi_1'(a) + \beta_1 \varphi_1(a)) C_1 + (\alpha_1 \varphi_2'(a) + \beta_1 \varphi_2(a)) C_2 = \\ = -\alpha_1 Y'(a) - \beta_1 Y(a) + y_0, \\ (\alpha_2 \varphi_1'(b) + \beta_2 \varphi_1(b)) C_1 + (\alpha_2 \varphi_2'(b) + \beta_2 \varphi_2(b)) C_2 = \\ = -\alpha_2 Y'(b) - \beta_2 Y(b) + y_1. \end{cases}$$

Позначимо через U і  $\tilde{U}$  матрицю та розширену матрицю цієї системи, а через  $\Delta$  — визначник матриці U. Використовуючи відому з курсу алгебри теорему Кронекера — Капеллі про розв'язність лінійної системи алгебричних рівнянь, одержуємо важливий результат.

**Теорема 1.** Розв'язок крайової задачі (17.1), (17.2):

- існує та единий, якщо  $\Delta \neq 0$ ;
- не існує, якщо  $\Delta=0$  і ранг матриці U не дорівнює рангу розширеної матриці  $\tilde{U};$
- існує, але не єдиний, якщо  $\Delta=0$  і ранг матриці U дорівнює рангу матриці  $\tilde{U}.$

Ранг матриці U називають **рангом крайової задачі** (17.1), (17.2). Однорідна крайова задача (17.4), (17.3) має лише тривіальний розв'язок, якщо ранг матриці U дорівнює двом, і безліч розв'язків, визначених з точністю до сталого множника, якщо ранг матриці U дорівнює одиниці.

**Приклад 1.** Дослідити на розв'язність крайову задачу  $y'' + y = 0, \ y(0) = 0, \ y(a) = y_0, \ a \neq 0.$ 

**Розв'язання.** Загальним розв'язком рівняння є  $y=C_1\cos x+C_2\sin x$ . З крайової умови y(0)=0 знаходимо  $C_1=0$ , а з умови  $y(a)=y_0$  одержуємо рівняння  $C_2\sin a=y_0$ . Якщо  $\sin a\neq 0$ , тобто  $a\neq k\pi$ ,  $k\in {\bf Z}$ , то  $C_2=\frac{y_0}{\sin a}$  і маємо єдиний розв'язок задачі  $y=\frac{y_0}{\sin a}\cdot\sin x$ .

Якщо  $\sin a = 0$ , тобто  $a = k\pi$ ,  $k \in \mathbb{Z}$ , то можливі два випадки. Якщо  $y_0 \neq 0$ , то рівняння  $C_2 \sin a = y_0$ , а значить, і задана крайова задача розв'язків немає. Якщо  $y_0 = 0$ , то рівняння  $C_2 \sin a = y_0$  перетворюється у тотожність і задана крайова задача має безліч розв'язків вигляду  $y = C_2 \sin x$ , де  $C_2$  – довільна стала.

Зауважимо, що крайові умови можуть мати також граничий вигляд, а числа a або b можуть бути невласними. Можна, наприклад, розглядати такі крайові умови:

$$\begin{cases} \alpha_1 \lim_{x \to a} y'(x) + \beta_1 \lim_{x \to a} y(x) = 0, \\ \alpha_2 \lim_{x \to \infty} y'(x) + \beta_2 \lim_{x \to \infty} y(x) = 0. \end{cases}$$

**Приклад 2.** Знайти розв'язок рівняння  $x^2y''-6y=0$ , який задовольняє умови  $y(1)=1, \lim_{x\to\infty}y'(x)=0.$ 

**Розв'язання.** Маємо рівняння Ейлера (лекція 13). Зробимо заміну  $x=e^t$   $(t=\ln x)$ , тоді  $y_x'=y_t'e^{-t}$ ,  $y_{x^2}'=(y_{t^2}''-y_t')e^{-2t}$ . Підставляючи у рівняння, для знаходження функції y=y(t) одержуємо лінійне однорідне рівняння зі сталими коефіцієнтами y''-y'-6y=0, загальним розв'язком якого є

$$y = C_1 e^{-2t} + C_2 e^{3t}$$
  $\Rightarrow$   $y = C_1 e^{-2\ln x} + C_2 e^{3\ln x}$   $\Rightarrow$   $y = \frac{C_1}{x^2} + C_2 x^3$ .

Виберемо сталі  $C_1$ ,  $C_2$  так, щоб справджувались крайові умови. З умови y(1)=1 випливає, що  $C_1+C_2=1$ . З умови  $\lim_{x\to\infty}y'(x)=0$ , враховуючи, що  $y'=-2\,C_1/x^3+3C_2x^2$ , знаходимо  $C_2=0$ , а отже,  $C_1=1$ . Таким чином, розв'язком заданої крайової задачі є функція  $y=1/x^2$ .

**3.** Функція Ґріна крайової задачі. Надалі розглядатимемо тільки однорідні крайові умови, бо для неоднорідних крайових умов розв'язок y(x) задачі (17.1), (17.2) можна шукати у вигляді  $y(x) = \bar{y}(x) + z(x)$ , де  $\bar{y}(x)$  — довільна двічі неперервно диференційовна на відрізку [a,b] функція, яка задовольняє неоднорідні крайові умови. Тоді для функції z(x) одержуємо крайову задачу з однорідними крайовими умовами і правою частиною  $f(x) - L(\bar{y})$ .

Наприклад, неоднорідні крайові умови  $y(a)=y_0,\,y(b)=y_1$  за допомогою заміни

$$z = y - \frac{y_1 - y_0}{b - a}(x - a) - y_0$$

зводимо до однорідних крайових умов z(a) = 0, z(b) = 0.

Покажемо, що розв'язок рівняння (17.1), який задовольняє однорідні крайові умови (17.3), при певних умовах однозначно виражається через так звану функцію Ґріна крайової задачі.

**Функцією Ґріна** крайової задачі (17.1), (17.3) називають функцію G(x,s), яка визначена для довільних  $x,s\in [a,b]$  і задовольняє такі три умови:

- 1) для кожного фіксованого  $s \in [a,b]$  G(x,s) як функція змінної x на кожному з проміжків [a,s) і (s,b] є розв'язком лінійного однорідного рівняння (17.4);
- 2) G(x,s) за змінною x задовольняє однорідні крайові умови (17.3);
- 3) G(x,s) неперервна функція для всіх  $x,s\in [a,b]$ , а її частинна похідна  $\frac{\partial G}{\partial x}$  має при x=s розрив першого роду зі стрибком

$$\frac{\partial G(s+0,s)}{\partial x} - \frac{\partial G(s-0,s)}{\partial x} = 1.$$

**Теорема 2.** Якщо однорідна крайова задача (17.4), (17.3) має лише тривіальний розв'язок, то функція Ґріна неоднорідної крайової задачі (17.1), (17.3) існує та єдина.

**Доведення.** Нехай  $\varphi_1(x)$  – розв'язок рівняння (17.4) з початковими умовами  $y(a) = \alpha_1, \ y'(a) = -\beta_1, \ a \ \varphi_2(x)$  – розв'язок рівняння (17.4) з початковими умовами  $y(b) = \alpha_2, \ y'(b) = -\beta_2.$  Очевидно, що функції  $\varphi_1(x), \ \varphi_2(x)$  тотожно не дорівнюють нулю на [a,b], причому  $\varphi_1(x)$  задовольняє першу крайову умову, а  $\varphi_2(x)$  – другу крайову умову з (17.3). Крім того, функції  $\varphi_1(x)$  і  $\varphi_2(x)$  лінійно незалежні на [a,b], бо інакше  $\varphi_2(x) = C\varphi_1(x), C \neq 0$ , і тоді  $\varphi_2(x)$  задовольняла б обидві крайові умови (17.3), що суперечить припущенню про те, що крайова задача (17.4), (17.3) має лише тривіальний розв'язок. Таким чином, функції  $\varphi_1(x)$  і  $\varphi_2(x)$  утворюють фундаментальну систему розв'язків рівняння (17.4).

Функцію Ґріна G(x,s) крайової задачі (17.1), (17.3) шукаємо у вигляді

$$G(x,s) = \begin{cases} c_1(s)\varphi_1(x), & a \leqslant x < s, \\ c_2(s)\varphi_2(x), & s < x \leqslant b. \end{cases}$$

За побудовою функцій  $\varphi_1(x)$  і  $\varphi_2(x)$  функція G(x,s) задовольняє пункти 1, 2 означення функції Ґріна. Для того, щоб вона задовольняла пункт 3 цього означення, залишається знайти  $c_1(s), c_2(s)$  з системи

$$\begin{cases} c_2(s)\varphi_2(s) - c_1(s)\varphi_1(s) = 0, \\ c_2(s)\varphi_2'(s) - c_1(s)\varphi_1'(s) = 1. \end{cases}$$
 (17.6)

Ця система однозначно розв'язна відносно  $c_1(s)$ ,  $c_2(s)$ , бо її визначник відмінний від нуля на [a,b] (ним є вронскіан W(s) функцій  $\varphi_1(s)$ ,  $\varphi_2(s)$ ). Остаточно одержуємо:

$$G(x,s) = \begin{cases} \frac{\varphi_2(s)\,\varphi_1(x)}{W(s)}, & a \leqslant x \leqslant s, \\ \frac{\varphi_1(s)\,\varphi_2(x)}{W(s)}, & s \leqslant x \leqslant b. \end{cases}$$
 (17.7)

З формули (17.7) випливає, що функція Ґріна є симетричною функцією своїх аргументів, тобто G(x,s)=G(s,x).

Функцію Ґріна крайової задачі (17.1), (17.3) можна будувати методом, який використовувався при доведенні теореми 2.

**Приклад 3.** Побудувати функцію Ґріна крайової задачі  $y'' - y = f(x), \ y'(0) = 0, \ y'(2) + y(2) = 0.$ 

**Розв'язання.** Загальним розв'язком відповідного однорідного рівняння y''-y=0 є  $y=C_1e^{-x}+C_2e^x$ . Частинний розв'язок  $\varphi_1(x)=e^x+e^{-x}$  задовольняє першу крайову умову, а розв'язок  $\varphi_2(x)=e^{-x}$  – другу. Тому функцію Ґріна шукаємо у вигляді

$$G(x,s) = \begin{cases} c_1(s) \cdot (e^x + e^{-x}), & 0 \le x < s, \\ c_2(s) \cdot e^{-x}, & s < x \le 2. \end{cases}$$
 (17.8)

Система (17.6) для знаходження функцій  $c_1(s),\ c_2(s)$  має вигляд

$$\begin{cases} c_1(s)(e^s + e^{-s}) - c_2(s) \cdot e^{-s} = 0, \\ c_1(s)(e^{-s} - e^s) - c_2(s) \cdot e^{-s} = 1. \end{cases}$$

Її розв'язком є

$$c_1(s) = -\frac{e^{-s}}{2}, \quad c_2(s) = -\frac{e^s + e^{-s}}{2}.$$

Підставляючи знайдені  $c_1(s)$ ,  $c_2(s)$  у (17.8), одержуємо функцію Ґріна заданої крайової задачі:

$$G(x,s) = \begin{cases} -e^{-s} \cdot \frac{e^x + e^{-x}}{2}, & 0 \leqslant x \leqslant s, \\ -\frac{e^s + e^{-s}}{2} \cdot e^{-x}, & s \leqslant x \leqslant 2 \end{cases} \Rightarrow$$

$$G(x,s) = \begin{cases} -e^{-s} \operatorname{ch} x, & 0 \leqslant x \leqslant s, \\ -e^{-x} \operatorname{ch} s, & s \leqslant x \leqslant 2. \end{cases} \blacksquare$$

Теорема 3. Якщо однорідна крайова задача (17.4), (17.3) має лише тривіальний розв'язок, то розв'язок неоднорідної крайової задачі (17.1), (17.3) існує, єдиний і задається формулою

$$y(x) = \int_{a}^{b} G(x,s) \cdot f(s) ds, \qquad (17.9)$$

 $\partial e\ G(x,s)$  – функція Ґріна крайової задачі (17.1), (17.3). **Доведення.** Запишемо формулу (17.9) у вигляді

$$y(x) = \int_{a}^{x} G(x,s) \cdot f(s) ds + \int_{x}^{b} G(x,s) \cdot f(s) ds.$$

На кожному з проміжків [a,x) і (x,b] функції G(x,s) і  $\frac{\partial G(x,s)}{\partial x}$  неперервні, а тому кожний з інтегралів можна здиференціювати за змінною  $x^{-1}$ ). Тоді

$$y'(x) = \int_{a}^{x} \frac{\partial G(x,s)}{\partial x} \cdot f(s) ds + G(x,x-0)f(x) + \int_{x}^{b} \frac{\partial G(x,s)}{\partial x} \cdot f(s) ds - G(x,x+0)f(x).$$

<sup>&</sup>lt;sup>1)</sup>Використовуємо формулу  $\frac{d}{dx} \left( \int\limits_{\varphi(x)}^{\psi(x)} f(x,s) ds \right) = \int\limits_{\varphi(x)}^{\psi(x)} \frac{\partial f(x,s)}{\partial x} ds + f(x,\psi(x)) \frac{d\psi}{dx} - f(x,\varphi(x)) \frac{d\varphi}{dx}.$ 

Оскільки функція G(x,s) неперервна при s=x, то неінтегральні доданки взаємознищуються, а тому

$$y'(x) = \int_{a}^{x} \frac{\partial G(x,s)}{\partial x} \cdot f(s) \, ds + \int_{x}^{b} \frac{\partial G(x,s)}{\partial x} \cdot f(s) \, ds. \tag{17.10}$$

Рівність (17.10) ще один раз здиференціюємо за змінною x:

$$y''(x) = \int_{a}^{x} \frac{\partial^{2}G(x,s)}{\partial x^{2}} \cdot f(s) ds + \frac{\partial G(x,x-0)}{\partial x} f(x) +$$

$$+ \int_{x}^{b} \frac{\partial^{2}G(x,s)}{\partial x^{2}} \cdot f(s) ds - \frac{\partial G(x,x+0)}{\partial x} f(x) =$$

$$= \int_{a}^{b} \frac{\partial^{2}G(x,s)}{\partial x^{2}} \cdot f(s) ds + \left(\frac{\partial G(x+0,x)}{\partial x} - \frac{\partial G(x-0,x)}{\partial x}\right) f(x).$$

Використовуючи пункт 3 з означення функції G(x,s), останню формулу можемо записати у вигляді

$$y''(x) = \int_{a}^{b} \frac{\partial^{2} G(x,s)}{\partial x^{2}} \cdot f(s) ds + f(x).$$
 (17.11)

З формул (17.9) — (17.11), враховуючи властивості функції G(x,s), одержуємо, що (17.9) — розв'язок крайової задачі (17.1), (17.3). Цей розв'язок єдиний, бо якщо припустити існування іншого розв'язку  $\tilde{y}(x)$ , то функція  $z(x)=y(x)-\tilde{y}(x)$  буде нетривіальним розв'язком однорідної крайової задачі, що суперечить умові теореми.  $\blacktriangleright$ 

**4. Крайові задачі на власні значення.** Часто виникає необхідність знайти розв'язки крайової задачі

$$y'' + p(x)y' + q(x)y = \lambda y, \quad x \in (a, b),$$
 (17.12)

$$\begin{cases} \alpha_1 y'(a) + \beta_1 y(a) = 0, \\ \alpha_2 y'(b) + \beta_2 y(b) = 0, \end{cases}$$
(17.13)

де  $\lambda$  – дійсний або комплексний параметр, функції p(x), q(x) – неперервні на відрізку  $[a,b], \alpha_1^2 + \beta_1^2 \neq 0, \alpha_2^2 + \beta_2^2 \neq 0.$ 

Задачу знаходження значень параметра  $\lambda$ , для яких крайова задача (17.12), (17.13) має нетривіальні розв'язки, називають крайовою задачею на власні значення.

Значення параметра  $\lambda$ , для яких крайова задача (17.12), (17.13) має нетривіальні розв'язки, називають *власними значеннями*, а відповідні їм нетривіальні розв'язки – *власними функціями* крайової задачі на власні значення.

Кількість лінійно незалежних розв'язків крайової задачі (17.12), (17.13) для заданого власного значення  $\lambda$  називають **кратністю** цього власного значення.

Можна довести, що для задачі (17.12), (17.13) справджується тільки одне з таких тверджень:

- 1. Крайова задача (17.12), (17.13) не має власних значень.
- 2. Крайова задача (17.12), (17.13) має не більше зчисленної множини власних значень, які при цьому не можуть мати скінченної граничної точки.
- 3. Кожне число  $\lambda$  є власним значенням крайової задачі (17.12), (17.13).

**Приклад 4.** Знайти власні значення та власні функції задачі  $y'' = \lambda y, \ y(0) = 0, \ y(b) = 0, \ b \neq 0.$ 

**Розв'язання.** Нехай  $\lambda>0$  або  $\lambda$  – комплексне. Тоді задача не має нетривіальних розв'язків, бо, підставляючи загальний розв'язок рівняння  $y''-\lambda y=0$ 

$$y = C_1 e^{\sqrt{\lambda}x} + C_2 e^{-\sqrt{\lambda}x}$$

у крайові умови, одержуємо

$$\begin{cases} C_1 + C_2 = 0, \\ C_1 e^{\sqrt{\lambda} b} + C_2 e^{-\sqrt{\lambda} b} = 0 \end{cases} \Rightarrow C_1 = C_2 = 0 \Rightarrow y(x) \equiv 0.$$

Нехай  $\lambda=0$ . Тоді, підставляючи загальний розв'язок  $y=C_1x+C_2$  у крайові умови, одержуємо

$$\begin{cases} C_2 = 0, \\ C_1 b + C_2 = 0 \end{cases} \Rightarrow C_1 = C_2 = 0 \Rightarrow y(x) \equiv 0,$$

тобто і у цьому випадку задача має тільки тривіальний розв'язок.

Нехай тепер  $\lambda < 0$ . Тоді загальним розв'язком рівняння  $y'' - \lambda y = 0$  є

$$y = C_1 \cos(x\sqrt{-\lambda}) + C_2 \sin(x\sqrt{-\lambda}),$$

а, враховуючи крайові умови, одержуємо:

$$\begin{cases} C_1 = 0, \\ C_1 \cos(b\sqrt{-\lambda}) + C_2 \sin(b\sqrt{-\lambda}) = 0 \end{cases} \Rightarrow C_1 = 0, \quad C_2 \sin(b\sqrt{-\lambda}) = 0.$$

Якщо y тотожно не дорівнює нулю, то  $C_2 \neq 0$  і, отже,  $\sin(b\sqrt{-\lambda}) = 0$ .

Звідси маємо формулу для всіх власних значень задачі:

$$\lambda_k = -\left(\frac{\pi k}{b}\right)^2, \quad k = 1, 2, \dots$$

Їм відповідають власні функції

$$y_k = c_k \sin \frac{\pi kx}{h}, \quad k = 1, 2, \dots,$$

де  $c_k$  – довільні сталі, відмінні від нуля.  $\blacksquare$ 

Важливим окремим випадком задачі на власні значення є задача Штурма – Ліувілля:

$$(p(x)y')' - q(x)y + \lambda \rho(x)y = 0, \quad x \in (a, b),$$
$$\begin{cases} \alpha_1 y'(a) + \beta_1 y(a) = 0, \\ \alpha_2 y'(b) + \beta_2 y(b) = 0, \end{cases}$$

де функції p(x), p'(x), q(x),  $\rho(x)$  – неперервні на відрізку [a,b], p(x)>0,  $\rho(x)>0$ ,  $x\in[a,b]$ ,  $\alpha_1^2+\beta_1^2\neq 0$ ,  $\alpha_2^2+\beta_2^2\neq 0$ . Детальніше з задачею Штурма – Ліувілля, властивостями її власних значень і власних функцій можна ознайомитись, наприклад, у [15, c. 189-201].

**Рекомендована література**: [1, с. 283 – 302], [3, с. 189 – 197], [5, с. 303 – 319], [7, с. 116 – 140], [15, с. 166 – 201].

## Питання до лекції 17

- 1. Що таке крайові умови, крайова задача для звичайного диференціального рівняння? Який вигляд мають крайові умови для лінійного диференціального рівняння другого порядку?
- 2. Чим відрізняються неоднорідні крайові умови від однорідних? Чому, розглядаючи крайову задачу, можна обмежитись однорідними крайовими умовами?
- 3. Яку функцію називають розв'язком крайової задачі для лінійного диференціального рівняння другого порядку?
- 4. Коли розв'язок крайової задачі для лінійного диференціального рівняння другого порядку існує та єдиний, не існує, існує, але неєдиний?
- 5. Що таке функція Ґріна крайової задачі? Яка її роль у побудові розв'язку неоднорідної крайової задачі? Коли існує єдина функція Ґріна крайової задачі? Як можна побудувати функцію Ґріна?
- 6. Що називають крайовою задачею на власні значення? Що таке власні значення, власні функції такої задачі? Як формулюється задача Штурма Ліувілля?

## Вправи до лекції 17

1. Знайдіть розв'язки крайових задач:

a) 
$$y'' + 9y = 1$$
,  $y(0) = 0$ ,  $y'(\pi) = 1$ ;  
6)  $y'' - 2y' - 3y = 0$ ,  $y(0) = 1$ ,  $\lim_{x \to +\infty} y'(x) = 2$ .

2. Побудуйте функції Ґріна крайових задач:

a) 
$$y'' + y = f(x)$$
,  $y(0) = 0$ ,  $y(1) = 0$ ;  
6)  $xy'' - y' = f(x)$ ,  $y'(1) = 0$ ,  $y(2) = 0$ .

3. Знайдіть власні значення й власні функції задач:

a) 
$$y'' = \lambda y$$
,  $y'(0) = 0$ ,  $y'(b) = 0$ ,  $b \neq 0$ ;  
6)  $x^2y'' + \frac{y}{4} = \lambda y$ ,  $y(1) = 0$ ,  $y(b) = 0$ ,  $b \neq 1$ .

# Додаток до розділу 2.

Застосування математичного пакета Maple для інтегрування звичайних диференціальних рівнянь вищих порядків

Приклад 1. Знайти розв'язок задачі Коші y'' + y = 0, y(0) = 1, y'(0) = 0 (приклад 1 лекції 10, стор. 119): > dsolve({(D@@2)(y)(x)+y(x)=0,y(0)=1,D(y)(0)=0},y(x));

$$y(x) = \cos(x).$$

Приклад 2. Зінтегрувати диференціальне рівняння  $y'' = 2\sqrt{y'}$  (приклад 2 лекції 10, стор. 122): > dsolve((D@@2)(y)(x)=2\*sqrt(D(y)(x)),y(x));

$$y(x) = \frac{1}{3}x^3 + C1x^2 + C1^2x + C2.$$

Сім'ю особливих розв'язків y=C за допомогою пакета Maple знайти не вдалось.

**Приклад 3.** Зінтегрувати рівняння  $y''' = \sin^2 x$  (приклад 3 лекції 10, стор. 123):

>  $dsolve((D@@3)(y)(x)=sin(x)^2,y(x));$ 

$$y(x) = \frac{1}{16}\sin(2x) + \frac{x}{8} + \frac{x^3}{12} + \frac{-C1x^2}{2} + -C2x + -C3.$$

Цей розв'язок перепозначенням сталих зводиться до розв'язку, отриманого на стор. 124.

**Приклад 4.** Знайти розв'язок рівняння  $y''' = e^{x^2}$ , який задовольняє нульові початкові умови (приклад 4 лекції 10, стор. 125):

> dsolve({(D@03)(y)(x)=exp(x^2),y(0)=0,D(y)(0)=0, (D@02)(y)(0)=0},y(x),useInt);

$$y(x) = \int_0^x \int_0^{-z1} \int_0^{-z1} e^{-z1^2} d_z z_1 d_z z_1 d_z z_1.$$

Опція useInt використана для того, щоб розв'язок заданої задачі Коші був представлений у квадратурах, а не за допомогою спеціальних функцій (такі інтеграли через елементарні функції не виражаються).

Приклад 5. Зінтегрувати неповне диференціальне рівняння  $x\sqrt{1+y''^2}=y''$  (приклад 5 лекції 10, стор. 126): > dsolve(x\*sqrt(1+(D@@2)(y)(x)^2)=(D@@2)(y)(x),y(x)) assuming x>-1 and x<1;

$$y(x) = -\frac{1}{2}\arcsin(x) - \frac{1}{2}x\sqrt{-x^2 + 1} + C1x + C2.$$

Тут конструкцією assuming x>-1 and x<1 накладено обмеження -1 < x < 1, бо, як видно з самого рівняння, дійсний розв'язок існує лише на цьому інтервалі. Без цього обмеження був би вибраний більший проміжок |x|>1 і знайдений комплексний розв'язок.

Як бачимо, у цьому випадку використано інший метод, аніж той, який запропонований на стор. 126: спочатку рівняння розв'язано відносно y'', а потім отримане рівняння (вигляду y''=f(x)) двічі зінтегровано. Це дозволило знайти розв'язок у явному вигляді, а не у параметричній формі.

Приклад 6. Розв'язати задачу про рух матеріальної точки (задача 1 лекції 10). На стор. 127 отримали диференціальне рівняння руху матеріальної точки  $x''(t) = \frac{k}{m}e^{-pt}$ . Зінтегруємо це рівняння, враховуючи початкові умови x(0) = 0, x'(0) = 0: > dsolve({(D@@2)(x)(t)=k/m\*exp(-p\*t),x(0)=0,D(x)(0)=0}, x(t));

$$x(t) = \frac{ke^{-pt}}{p^2m} + \frac{kt}{pm} - \frac{k}{p^2m}.$$

**Приклад 7.** Зінтегрувати неповне рівняння xy''' = y'' - xy'' (приклад 1 лекції 11, стор. 130):

> dsolve(x\*(D@@3)(y)(x)=(D@@2)(y)(x)-x\*(D@@2)(y)(x), y(x));

$$y(x) = (2+x)_{C1} e^{-x} + C2x + C3.$$

**Приклад 8.** Розв'язати задачу про рух матеріальної точки при наявності опору середовища (задача 1 лекції 11). На стор. 131 отримали диференціальне рівняння руху матеріальної точки  $mx'' + kx' = A\sin\omega t$ . Зінтегруємо це рівняння, враховуючи початкові умови  $x(0) = 0, \ x'(0) = 0$ :

> simplify(dsolve( $\{m*(D@@2)(x)(t)+k*D(x)(t)=A*sin(omega*t),x(0)=0,D(x)(0)=0\},x(t))$ );

$$x(t) = -\frac{\left(k^2\cos(\omega t) - k^2 + m\sin(\omega t)k\omega + \omega^2 m^2 e^{-\frac{kt}{m}} - \omega^2 m^2\right)A}{\left(k^2 + \omega^2 m^2\right)k\omega}$$

Команду simplify() використано для спрощення розв'язку, інакше відповідь була б у дуже громіздкій формі (у вигляді «багатоповерхового» дробу).

**Приклад 9.** Зінтегрувати неповне рівняння  $yy'' = y'^2 - y'^3$  (приклад 2 лекції 11, стор. 133):

> dsolve(y(x)\*(D@@2)(y)(x)=D(y)(x)^2-D(y)(x)^3,y(x), implicit);

$$y(x) = C1, \quad y(x) + C1 \ln(y(x)) - x - C2 = 0.$$

Перепозначенням сталої  $C_1 := 1/C_1$  відповідь прикладу 2 зводиться до відповіді, знайденої програмою. Зауваження щодо відсутності модуля в аргументу логарифма див. у прикладі 12 на стор. 112. Без опції implicit програма знайшла б розв'язок у явному вигляді, але через спеціальні функції, вивчення яких не передбачене у курсі «диференціальні рівняння».

**Приклад 10.** Зінтегрувати однорідне рівняння  $yy'' - y'^2 - 30\sqrt{x}y^2 = 0$  (приклад 3 лекції 11, стор. 135):

> dsolve(y(x)\*(D@@2)(y)(x)-D(y)(x)^2-30\*sqrt(x)\*y(x)^2= 0,y(x));

$$y(x) = 0$$
,  $y(x) = \frac{\left(e^{x^{5/2}}\right)^8 - C2}{e^{-C1}x}$ .

Цього разу Мар<br/>le навів також розв'язок y=0, який, очевидно, є частинним.

**Приклад 11.** Зінтегрувати рівняння другого порядку в точних похідних

$$\frac{xy'' - y'}{r^2} - yy' = 0$$

(приклад 4 лекції 11, стор. 135):

> dsolve((x\*(D@@2)(y)(x)-D(y)(x))/ $x^2-y(x)*D(y)(x)=0$ , y(x));

$$y(x) = -\tanh\left(\frac{1}{4} - C1\sqrt{2}x^2 + \frac{1}{2} - C1\sqrt{2} - C2\right) - C1\sqrt{2}.$$

Пропонуємо читачам самостійно переконатись, що знайдений програмою розв'язок є неповним. Функція tanh позначає гіперболічний тангенс, тобто

$$th x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

**Приклад 12.** Зінтегрувати неповне рівняння  $yy'' - y'^2 = y'$  (приклад 5 лекції 11, стор. 137):

 $> dsolve(y(x)*(D@@2)(y)(x)-D(y)(x)^2=D(y)(x),y(x));$ 

$$y(x) = \frac{e^{-C1} x e^{-C2} - C1 + 1}{C1}.$$

Розв'язки y=-x+C і y=0 за допомогою пакета Марlе не знайдені. Знайдемо також інтегрувальний множник цього рівняння:

> DEtools[intfactor]( $y(x)*(D@@2)(y)(x)-D(y)(x)^2=D(y)(x)$ ;

$$\frac{1}{y(x)^2}$$
,  $\frac{1}{\left(\frac{d}{dx}y(x)+1\right)y(x)}$ .

Приклад 13. Побудувати диференціальне рівняння, яке має фундаментальну систему розв'язків  $y_1(x) = x^2$ ,  $y_2(x) = x+1$  (приклад 1 лекції 12, стор. 148). Для цього використаємо команди wronskian() і det() пакета linalg:

> linalg[wronskian]([x^2,x+1,y(x)],x);

$$\begin{bmatrix} x^2 & x+1 & y(x) \\ 2x & 1 & \frac{d}{dx}y(x) \\ 2 & 0 & \frac{d^2}{dx^2}y(x) \end{bmatrix},$$

> linalg[det](%)=0;

$$-x^2 \frac{d^2}{dx^2} y(x) - 2 x \frac{d^2}{dx^2} y(x) + 2 \left( \frac{d}{dx} y(x) \right) x + 2 \frac{d}{dx} y(x) - 2 y(x) = 0.$$

**Приклад 14.** Зінтегрувати лінійне однорідне рівняння зі сталими коефіцієнтами y'' - 3y' + 2y = 0 (приклад 1 лекції 13, стор. 153):

> dsolve((D@@2)(y)(x)-3\*D(y)(x)+2\*y(x)=0,y(x));

$$y(x) = C1 e^x + C2 e^{2x}$$
.

**Приклад 15.** Зінтегрувати рівняння y''' - 4y'' - 5y' = 0 (приклад 2 лекції 13, стор. 153):

> dsolve((D@@3)(y)(x)-4\*(D@@2)(y)(x)-5\*D(y)(x)=0,y(x));

$$y(x) = C1 + C2 e^{5x} + C3 e^{-x}$$
.

**Приклад 16.** Зінтегрувати рівняння  $y^{IV} - 6y''' + 12y'' + 6y' - 13y = 0$  (приклад 3 лекції 13, стор. 155):

> dsolve((D@04)(y)(x)-6\*(D@03)(y)(x)+12\*(D@02)(y)(x)+ 6\*D(y)(x)-13\*y(x)=0,y(x);

$$y(x) = C1 e^{x} + C2 e^{-x} + C3 e^{3x} \sin(2x) + C4 e^{3x} \cos(2x).$$

**Приклад 17.** Зінтегрувати рівняння y''' - 7y'' + 15y' - 9y = 0 (приклад 4 лекції 13, стор. 157):

> dsolve((D@@3)(y)(x)-7\*(D@@2)(y)(x)+15\*D(y)(x)-9\*y(x)= 0,y(x);

$$y(x) = C1 e^{x} + C2 e^{3x} + C3 e^{3x}x.$$

**Приклад 18.** Зінтегрувати рівняння y''' + 3y'' + 3y' + y = 0 (приклад 5 лекції 13, стор. 157):

> dsolve((D@03)(y)(x)+3\*(D@02)(y)(x)+3\*D(y)(x)+y(x)=0, y(x));

$$y(x) = C1 e^{-x} + C2 e^{-x}x + C3 e^{-x}x^{2}.$$

**Приклад 19.** Зінтегрувати рівняння  $y^{V} - y^{IV} + 8y''' - 8y'' + 16y' - 16y = 0$  (приклад 6 лекції 13, стор. 157):

> dsolve((D@05)(y)(x)-(D@04)(y)(x)+8\*(D@03)(y)(x)-8\*(D@02)(y)(x)+16\*D(y)(x)-16\*y(x)=0,y(x));

$$y(x) = _C1 e^x + _C2 \sin(2 x) + _C3 \cos(2 x) + + _C4 \sin(2 x) x + _C5 \cos(2 x) x.$$

**Приклад 20.** Зінтегрувати рівняння Ейлера  $x^2y'' - 2xy' + 2y = 0$  (приклад 7 лекції 13, стор. 158):

>  $dsolve(x^2*(D@@2)(y)(x)-2*x*D(y)(x)+2*y(x)=0,y(x));$ 

$$y(x) = C1 x + C2 x^2.$$

**Приклад 21.** Зінтегрувати рівняння Чебишова  $(1-x^2)y'' - -xy' + n^2y = 0$  (лекція 13, стор. 159):

> dsolve( $(1-x^2)*(D@@2)(y)(x)-x*D(y)(x)+n^2*y(x)=0$ , y(x));

$$y(x) = C1 \sin (n \arcsin(x)) + C2 \cos (n \arcsin(x)).$$

**Приклад 22.** Зінтегрувати рівняння Бесселя  $x^2y'' + xy' + (x^2 - 1/4)y = 0$  (лекція 13, стор. 160 та приклад 1 лекції 15, стор. 176):

> dsolve( $x^2*(D@@2)(y)(x)+x*D(y)(x)+(x^2-1/4)*y(x)=0$ , y(x));

$$y(x) = \frac{-C1\sin(x)}{\sqrt{x}} + \frac{-C2\cos(x)}{\sqrt{x}}.$$

**Приклад 23.** Зінтегрувати лінійне неоднорідне рівняння зі сталими коефіцієнтами y'' + y = x (приклад 1 лекції 14, стор. 165):

> dsolve((D@@2)(y)(x)+y(x)=x,y(x));

$$y(x) = \sin(x) C2 + \cos(x) C1 + x.$$

**Приклад 24.** Зінтегрувати рівняння y'' + y' - 2y = x (приклад 2 лекції 14, стор. 168):

> dsolve((D@02)(y)(x)+D(y)(x)-2\*y(x)=x,y(x));

$$y(x) = e^{x} C2 + e^{-2x} C1 - \frac{1}{4} - \frac{x}{2}$$

**Приклад 25.** Зінтегрувати рівняння  $y''' - 2y'' = x^2 - e^x$  (приклад 3 лекції 14, стор. 172):

> dsolve((D@03)(y)(x)-2\*(D@02)(y)(x)= $x^2-\exp(x)$ ,y(x));

$$y(x) = -\frac{x^4}{24} - \frac{x^3}{12} + e^x + \frac{1}{4}e^{2x} - C1 - \frac{x^2}{8} + -C2x + -C3.$$

**Приклад 26.** Зінтегрувати лінійне однорідне рівняння зі змінними коефіцієнтами  $(x^2+1)y''-2xy'+2y=0$  (приклад 2 лекції 15, стор. 177):

> dsolve(( $x^2+1$ )\*(D@@2)(y)(x)-2\*x\*D(y)(x)+2\*y(x)=0, y(x));

$$y(x) = C1 x + C2 (x^2 - 1).$$

Приклад 27. Зінтегрувати за допомогою степеневих рядів лінійне рівняння y'' + xy = 0 (приклад 3 лекції 15, стор. 180): > dsolve((D@@2)(y)(x)+x\*y(x)=0,y(x),type=series);

$$y(x) = y(0) + D(y)(0)x - \frac{1}{6}y(0)x^3 - \frac{1}{12}D(y)(0)x^4 + O(x^6).$$

Вирази y(0) і D(y)(0) означають значення функції y(x) та її похідної в точці x=0, тобто виконують роль довільних сталих, а сам розв'язок заданий лише кількома першими членами степеневого ряду (до  $x^5$ ). Знайдемо ще розв'язки задач Коші  $y''+xy=0,\ y(0)=1,\ y'(0)=0$  і  $y''+xy=0,\ y(0)=0,\ y'(0)=1$  за допомогою степеневих рядів, але з точністю до  $x^{14}$ :

> Order:=15:dsolve({(D@02)(y)(x)+x\*y(x)=0,y(0)=1, D(y)(0)=0},y(x),type=series);

$$y(x) = 1 - \frac{1}{6}x^3 + \frac{1}{180}x^6 - \frac{1}{12960}x^9 + \frac{1}{1710720}x^{12} + O(x^{15}), (1)$$

> dsolve({(D@@2)(y)(x)+x\*y(x)=0,y(0)=0, D(y)(0)=1},y(x),type=series);

$$y(x) = x - \frac{1}{12}x^4 + \frac{1}{504}x^7 - \frac{1}{45360}x^{10} + \frac{1}{7076160}x^{13} + O(x^{15}). (2)$$

Тут спочатку системній змінній Order присвоєно число, яке визначає точність наближення розв'язку. Легко бачити, що отримано по п'ять перших членів рядів (15.11) і (15.12) відповідно. Зрозуміло, що формули (1) і (2) дають коректне наближення розв'язку лише в околі точки x=0.

Додатково побудуємо графік розв'язку першої задачі Коші. Це можна зробити, побудувавши графік функції (1), але для значень x, які суттєво відрізняються від 0, його поведінка не відповідатиме справжній:

> plot(1-1/6\*x^3+1/180\*x^6-1/12960\*x^9+1/1710720\*x^12, x=-2.3..4.2,scaling=constrained);



Puc. 1

Тому краще побудувати графік, знайшовши спочатку наближений розв'язок заданої задачі Коші числовими методами (для цього використовуємо опцію type=numeric команди dsolve(). Для побудови самого графіка призначена команда odeplot() пакета plots:

> F:=dsolve({(D@@2)(y)(x)+x\*y(x)=0,y(0)=1,D(y)(0)=0},
 y(x),type=numeric);

$$F := \operatorname{proc}(x_rkf45)$$
 ... end proc

> plots[odeplot](F,x=-2.3..15,numpoints=200,scaling= constrained);



Puc. 2

**Приклад 28.** Знайти загальний розв'язок лінійного однорідного рівняння другого порядку зі змінними коефіцієнтами xy'' + 2y' + xy = 0 (приклад 4 лекції 15, стор. 182):

> dsolve(x\*(D@@2)(y)(x)+2\*D(y)(x)+x\*y(x),y(x));

$$y(x) = \frac{-C1\sin(x)}{x} + \frac{-C2\cos(x)}{x}.$$

Приклад 29. Розв'язати крайову задачу y'' + y = 0, y(0) = 0,  $y(a) = y_0$ ,  $a \neq 0$  (приклад 1 лекції 17, стор. 199): > dsolve({(D@@2)(y)(x)+y(x)=0,y(0)=0,y(a)=y0},y(x));

$$y(x) = \frac{y\theta \sin(x)}{\sin(a)}.$$

Випадок, коли  $\sin a = 0$ , залишився поза увагою пакета Марle. **Приклад 30.** Знайти розв'язок крайової задачі

$$x^2y'' - 6y = 0$$
,  $y(1) = 1$ ,  $\lim_{x \to \infty} y'(x) = 0$ 

(приклад 2 лекції 17, стор. 200):

> dsolve({x^2\*(D@@2)(y)(x)-6\*y(x)=0,y(1)=1, D(y)(infinity)=0},y(x));

$$y(x) = \frac{1}{x^2}.$$

Пропонуємо читачам самостійно зінтегрувати диференціальні рівняння, наведені після кожної лекції розділу 2.

# Розділ 3. СИСТЕМИ ЗВИЧАЙНИХ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ

# Лекція 18. Системи звичайних диференціальних рівнянь (загальна теорія)

#### План

- 1. Основні означення й поняття.
- 2. Механічне тлумачення нормальної системи та її розв'язків.
- 3. Зведення диференціального рівняння *n*-го порядку до нормальної системи й обернена задача.
  - 4. Лінійні однорідні системи.
- 1. Основні означення й поняття. Розв'язуючи багато прикладних задач, доводиться визначати відразу декілька невідомих функцій з відповідної кількості диференціальних рівнянь, тобто мати справу з системою диференціальних рівнянь. Сукупність співвідношень вигляду

де  $y_1, y_2, \ldots, y_n$  – шукані функції незалежної змінної x, називають системою звичайних диференціальних рівнянь першого порядку.

Якщо (18.1) можна розв'язати відносно похідних усіх функцій, то одержимо систему

$$\begin{cases} y'_1 = f_1(x, y_1, y_2, \dots, y_n), \\ y'_2 = f_2(x, y_1, y_2, \dots, y_n), \\ \dots & \dots \\ y'_n = f_n(x, y_1, y_2, \dots, y_n), \end{cases}$$
(18.2)

яку називають нормальною.

**Розв'язком системи** (18.2) на деякому інтервалі (a,b) називають впорядковану сукупність функцій

$$y_1 = y_1(x), y_2 = y_2(x), \dots, y_n = y_n(x),$$
 (18.3)

визначених і неперервно диференційовних на цьому інтервалі, якщо вона кожне рівняння системи (18.2) перетворює у тотожність, яка справджується для всіх значень  $x \in (a,b)$ . Криву в (n+1)-вимірному просторі  $(x,y_1,y_2,\ldots,y_n)$ , яка відповідає розв'язку (18.3), називають *інтегральною кривою* системи (18.2).

 $\it 3adaчa~Komi$  для системи (18.2) формулюється так: серед усіх розв'язків цієї системи знайти розв'язок (18.3), який задовольняє умови

$$y_1(x_0) = y_{10}, \quad y_2(x_0) = y_{20}, \dots, \quad y_n(x_0) = y_{n0},$$
 (18.4)

де  $x = x_0$  – деяка точка з інтервалу (a, b), а  $y_{10}, y_{20}, \ldots, y_{n0}$  – довільні задані дійсні числа (їх називають **початковими даними розв'язку**). Сукупність чисел  $x_0, y_{10}, y_{20}, \ldots, y_{n0}$  називають **початковими даними системи** (18.2), а умови (18.4) – **початковими умовами** системи (18.2).

З геометричної точки зору задача Коші полягає у відшуканні серед усіх інтегральних кривих системи (18.2) такої кривої, яка проходить через задану точку  $(x_0, y_{10}, y_{20}, \ldots, y_{n0})$ .

Виявляється, що для існування неперервно диференційовного розв'язку задачі Коші (18.2), (18.4) досить припустити, щоб праві частини системи (18.2) були неперервними в деякому околі початкових даних (теорема Пеано). Наступна теорема гарантує існування єдиного розв'язку задачі Коші (18.2), (18.4) (доведення цієї теореми можна знайти, наприклад, в [8, с. 93 – 99]).

**Теорема (Коші).** Нехай праві частини системи (18.2) визначені в (n+1)-вимірному паралелепіпеді

$$G = \{(x, y_1, y_2, \dots, y_n) : |x - x_0| \le a, |y_j - y_{j0}| \le b, j = 1, 2, \dots, n\}$$

і задовольняють у ньому такі умови:

- 1) функції  $f_i(x, y_1, y_2, ..., y_n)$  неперервні, а, отже, й обмежені, тобто  $|f_j(x, y_1, y_2, \dots, y_n)| \leq M, \ j = 1, 2, \dots, n, \ M > 0;$
- 2) частинні похідні  $\frac{\partial f_j}{\partial y_k},\ j,k=1,2,\ldots,n,$  існують та обмежені. Тоді задача Коші (18.2), (18.4) має единий розв'язок принаймні на відрізку  $|x-x_0| \leqslant h$ , де  $h = \min(a, b/M)$ .

Нехай G – це область простору зміни змінних  $x, y_1, \dots, y_n$ , у кожній точці якої задача Коші (18.2), (18.4) має єдиний розв'язок. Сукупність функцій

$$y_j = \varphi_j(x, C_1, C_2, \dots, C_n), \quad j = 1, 2, \dots, n,$$
 (18.5)

які визначені в деякій області зміни  $x, C_1, C_2, \ldots, C_n$  і мають неперервні частинні похідні за змінною x, називають загаль**ним розв'язком** системи (18.2) в області G, якщо:

1) систему (18.5) можна розв'язати в області G відносно довільних сталих  $C_1, C_2, \ldots, C_n$ , тобто

$$C_j = \psi_j(x, y_1, y_2, \dots, y_n), \quad j = 1, 2, \dots, n;$$
 (18.6)

2) для всіх значень  $(x, y_1, \dots, y_n) \in G$  формули (18.6) визначають такі значення  $C_1, C_2, \ldots, C_n$ , для яких сукупність функцій (18.5) є розв'язком системи (18.2).

Розв'язок системи (18.2), у кожній точці якого виконується умова єдиності розв'язку задачі Коші, називають частинним. З означення загального розв'язку випливає, що всі розв'язки, які утворюються з нього для конкретних значень довільних сталих  $C_1, C_2, \ldots, C_n$ , є частинними. Розв'язок системи, у кожній точці якого порушується умова єдиності розв'язку задачі Коші для цієї системи, називають особливим.

Неперервно диференційовну  $\psi(x, y_1, y_2, \dots, y_n) \neq \text{const на-}$ зивають *інтегралом* системи (18.2), якщо вона тотожно перетворюється у сталу вздовж довільного частинного розв'язку цієї системи. Тоді  $d\psi = 0$  внаслідок системи (18.2), тобто

$$d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y_1} dy_1 + \dots + \frac{\partial \psi}{\partial y_n} dy_n =$$
$$= \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y_1} f_1 dx + \dots + \frac{\partial \psi}{\partial y_n} f_n dx \equiv 0.$$

Рівність  $\psi(x, y_1, y_2, \dots, y_n) = C$ , де C – довільна стала, називають *першим інтегралом* системи (18.2). Наприклад, кожна з рівностей (18.6) є першим інтегралом системи (18.2).

Сукупність n перших інтегралів системи (18.2)

$$\psi_j(x, y_1, y_2, \dots, y_n) = C_j, \quad j = 1, 2, \dots, n,$$

називають загальним інтегралом цієї системи, якщо інтеграли  $\psi_1,\,\psi_2,\,\ldots,\,\psi_n$  є незалежними, тобто між  $\psi_1,\,\psi_2,\,\ldots,\,\psi_n$  не існує співвідношення вигляду  $F(\psi_1,\psi_2,\ldots,\psi_n)=0$  для жодної функції F. З математичного аналізу відомо, що для незалежності в області G функцій  $\psi_1,\,\psi_2,\ldots,\,\psi_n,$  які мають частинні похідні  $\frac{\partial \psi_j}{\partial y_k},\,j,k=1,2,\ldots,n,$  необхідно і достатньо, щоб в області G

$$\begin{vmatrix} \frac{\partial \psi_1}{\partial y_1} & \dots & \frac{\partial \psi_1}{\partial y_n} \\ \dots & \dots & \dots \\ \frac{\partial \psi_n}{\partial y_1} & \dots & \frac{\partial \psi_n}{\partial y_n} \end{vmatrix} \neq 0.$$

Можна показати, що нормальна система n рівнянь не може мати більше, ніж n незалежних інтегралів системи (18.2).

Будь-які n перших інтегралів називають **незалежними**, якщо відповідні їм інтеграли незалежні. Отже, задача побудови загального інтеграла системи буде розв'язаною, якщо знайдено n незалежних перших інтегралів.

Загального способу знаходження перших інтегралів не існує. Однак у багатьох випадках вдається знайти перший інтеграл шляхом деяких перетворень системи, у результаті чого отримується диференціальне рівняння, яке легко інтегрується. Кожне таке рівняння називають *інтегровною комбінацією*. Кожна інтегровна комбінація породжує перший інтеграл. Однак серед них можуть виявитись і залежні інтеграли, а тому, одержуючи новий перший інтеграл, потрібно перевірити, чи буде від незалежним з раніше отриманими.

**Приклад 1.** Зінтегрувати систему<sup>1)</sup>

$$\begin{cases} y' = z(y-z)^{-2}, \\ z' = y(y-z)^{-2}. \end{cases}$$

 $<sup>^{1)}</sup>$ Якщо у системі дві невідомі функції, то позначатимемо їх через  $y,\,z.$ 

Розв'язання. Поділивши перше рівняння системи на друге, одержуємо інтегровну комбінацію  $\frac{dy}{dz} = \frac{z}{y}$ , звідки, відокремлюючи змінні, знаходимо

$$\frac{dy}{dz} = \frac{z}{y} \quad \Rightarrow \quad ydy - zdz = 0 \quad \Rightarrow$$
$$y^2 - z^2 = C_1. \tag{18.7}$$

Віднімаючи від другого рівняння заданої системи перше, одержимо ще одну інтегровну комбінацію  $\frac{d(z-y)}{dx} = \frac{-1}{z-u}$ , звідки

$$(z-y)^2 = -2x + C_2. (18.8)$$

Кожне із співвідношень (18.7), (18.8) є першим інтегралом, а оскільки вони є незалежними (у цьому пропонуємо переконатися самостійно), то їх сукупність є загальним інтегралом системи.

**Bidnosids:** 
$$y^2 - z^2 = C_1$$
,  $(z - y)^2 = -2x + C_2$ .

2. Механічне тлумачення нормальної системи та її розв'язків. Нормальній системі (18.2) та її розв'язкам можна надати механічне тлумачення. Розглянемо систему

$$\begin{cases} x'_1 = f_1(t, x_1, x_2, \dots, x_n), \\ x'_2 = f_2(t, x_1, x_2, \dots, x_n), \\ \dots \dots \dots \dots \\ x'_n = f_n(t, x_1, x_2, \dots, x_n), \end{cases}$$
(18.9)

де t – час,  $x_1, x_2, \ldots, x_n$  – координати точки n-вимірного простору. Цей простір називають **фазовим**. Для n=1 фазовим простором є вісь t (фазова пряма), для n = 2 – площина (t, x), яку називають фазовою.

Кожний розв'язок (інтегральна крива)

$$x_1 = x_1(t), \quad x_2 = x_2(t), \quad \dots, \quad x_n = x_n(t)$$
 (18.10)

системи (18.9) виражає закон руху точки у фазовому просторі. Тому розв'язок (18.10) називатимемо pyxom у n-вимірному просторі  $\mathbb{R}^n$ , визначеним системою (18.9), а криву, яку описує рухома точка у фазовому просторі, - траєкторією руху.

Ліві частини системи (18.9) є складовими (за осями координат) швидкості руху точки, тому кажуть, що ця система задає поле швидкостей рухів, тобто точка може проходити у момент часу t через положення  $(x_1, x_2, \ldots, x_n)$  тільки з заданою швидкістю.

Якщо швидкість, з якою точка проходить через положення  $(x_1, x_2, \ldots, x_n)$ , не залежить від моменту часу проходження, тобто система (18.9) має вигляд

$$\begin{cases} x'_1 = f_1(x_1, x_2, \dots, x_n), \\ x'_2 = f_2(x_1, x_2, \dots, x_n), \\ \dots \\ x'_n = f_n(x_1, x_2, \dots, x_n), \end{cases}$$
(18.11)

то її називають автономною (cmauioнaphoo), а рух, що описуються такою системою, – ycmanehum.

Якщо у деякій точці  $(x_{10},x_{20},\ldots,x_{n0})$  праві частини системи (18.11) дорівнюють нулю для всіх значень часу t, тобто  $f_j(t,x_{10},x_{20},\ldots,x_{n0})\equiv 0,\ j=1,2,\ldots,n,$  то ця система має розв'язок

$$x_1 \equiv x_{10}, \ x_2 \equiv x_{20}, \ \dots, \ x_n \equiv x_{n0},$$
 (18.12)

адже, підставляючи його в (18.9), одержимо тотожності. Рух (18.12) називають *станом спокою*. Траєкторією цього руху є точка  $(x_{10}, x_{20}, \ldots, x_{n0})$ , яку називатимемо *точкою спокою*.

Задача Коші для системи (18.9) полягає у знаходженні руху (18.10), який задовольняє початкові умови

$$x_1(t_0) = x_{10}, \ x_2(t_0) = x_{20}, \dots, \ x_n(t_0) = x_{n0},$$

де  $t_0, x_{10}, x_{20}, \ldots, x_{n0}$  — задані числа (*початкові дані*), тобто шукається такий рух (18.10), при якому рухома точка знаходиться у заданій точці ( $x_{10}, x_{20}, \ldots, x_{n0}$ ) фазового простору у заданий момент часу t. При цьому ( $x_{10}, x_{20}, \ldots, x_{n0}$ ) називають *початковою точкою руху* (18.10). Зауважимо, що якщо початковою точкою руху (18.10) є точка спокою ( $x_{10}, x_{20}, \ldots, x_{n0}$ ), то одним з розв'язків задачі Коші буде стан спокою (18.12).

Системи диференціальних рівнянь є моделями різноманітних прикладних задач. Розглянемо одну з них.

Задача. Визначити траскторію руху гарматного снаряду, який вилітає з початковою швидкістю  $v_0$  під кутом  $\alpha$  до горизонту. Опір повітря пропорційний швидкості руху.

Розв'язання. Складемо диференціальну модель цієї задачі. За початок координат візьмемо точку вильоту снаряда (рис. 18.1). На снаряд діє сила ваги P = mq, складова якої на осі x дорівнює нулю, бо сила перпендикулярна до цієї осі. Тоді диференціальними рівняннями руху вздовж координатних осей є

$$m\frac{d^2x}{dt^2} = -mk\frac{dx}{dt}, \quad m\frac{d^2y}{dt^2} = -mg - mk\frac{dy}{dt}.$$



Puc. 18.1

Якщо знехтувати опором повітря, то ці рівняння після скорочення на т матимуть вигляд:

$$\frac{d^2x}{dt^2} = 0, \quad \frac{d^2y}{dt^2} = -g. \tag{18.13}$$

Отже, задача звелася до інтегрування системи двох диференціальних рівнянь. Інтегруючи кожне рівняння системи (18.13), одержуємо:

$$v_x \equiv \frac{dx}{dt} = C_1, \quad v_y \equiv \frac{dy}{dt} = -gt + C_2,$$
 (18.14)

де  $v_x$ ,  $v_y$  – складові швидкості v = v(x, y) на осях. У початковий момент часу  $t_0 = 0$  компонентами швидкості є  $v_x = v_0 \cos \alpha$ ,  $v_y = v_0 \sin \alpha$ , а отже,  $C_1 = v_0 \cos \alpha$ ,  $C_2 = v_0 \sin \alpha$ . Враховуючи ці формули, з (18.14) знаходимо

$$x = v_0 t \cos \alpha + C_3$$
,  $y = -gt^2/2 + v_0 t \sin \alpha + C_4$ ,

але оскільки x(0)=y(0)=0, то  $C_3=C_4=0.$  Остаточно маємо  $x=v_0t\cos\alpha,\quad y=-gt^2/2+v_0t\sin\alpha.$ 

Виключаючи звідси t, одержуємо траєкторію руху – параболу

$$y = -\frac{gx^2}{2v_0^2 \cos^2 \alpha} + x \operatorname{tg} \alpha.$$

Дальність  $x_1$  польоту снаряда знайдемо з рівняння y = 0:

$$x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha} = 0 \quad \Rightarrow \quad x_1 = \frac{v_0^2 \sin 2\alpha}{g}.$$

Максимальною дальність польоту буде тоді, коли  $\sin 2\alpha = 1$ , звідки знаходимо відповідний кут вильоту  $\alpha = \pi/4$ .

3. Зведення диференціального рівняння n-го порядку до нормальної системи й обернена задача. Диференціальне рівняння n-го порядку

$$y^{(n)} = f\left(x, y, y', \dots, y^{(n-1)}\right)$$
 (18.15)

завжди можна звести до нормальної системи n диференціальних рівнянь. Для цього позначимо  $y=y_1,\,y'=y_2,\,y''=y_3,\,\ldots,\,y^{(n-1)}=y_n.$  Тоді

$$y'_1 = y' = y_2, \quad y'_2 = y'' = y_3, \dots, \quad y'_{n-1} = y^{(n-1)} = y_n,$$
  
$$y'_n = y^{(n)} = f(x, y_1, y_2, \dots, y_n),$$

тобто функції  $y_1, y_2, \ldots, y_n$  задовольняють нормальну систему диференціальних рівнянь

$$\begin{cases} y'_1 = y_2, \\ y'_2 = y_3, \\ \dots \\ y'_{n-1} = y_n, \\ y'_n = f(x, y_1, y_2, \dots, y_n). \end{cases}$$
 (18.16)

Система (18.16) рівносильна диференціальному рівнянню (18.15). Зведення одного диференціального рівняння n-го порядку, розв'язаного відносно старшої похідної, до рівносильної

нормальної системи рівнянь у багатьох випадках спрощує задачу знаходження загального розв'язку або розв'язку задачі Коші.

Розглянемо обернену задачу, тобто задачу про зведення нормальної системи (18.2), у якій  $f_i - (n-1)$  разів диференційовні функції, до одного диференціального рівняння. Для цього послідовно здиференціюємо (n-1) разів одне з рівнянь системи (18.2) (наприклад, перше), замінюючи після кожного диференціювання похідні  $y_1', y_2', \dots, y_n'$  виразами для них з системи (18.2), і виключимо з першого рівняння цієї системи і отриманих (n-1)-го рівняння функції  $y_2, y_3, \ldots, y_n$ . При цьому для знаходження функції  $y_1$  одержимо рівняння n-го порядку вигляду

 $y_1^{(n)} = f(x, y_1, y_1', \dots, y_1^{(n-1)}),$ 

і якщо вдасться знайти його загальний розв'язок, то функції  $y_2, y_3, \ldots, y_n$  знайдуться без квадратур.

Метод розв'язування нормальної системи рівнянь зведенням її до одного диференціального рівняння, розв'язаного відносно старшої похідної, називають методом виключення.

У деяких випадках зведення нормальної системи до одного рівняння можна здійснювати з відхиленням від описаної загальної схеми.

Приклад 2. Зінтегрувати систему

$$\begin{cases} y' = 2y + z, \\ z' = 3y + 4z. \end{cases}$$

**Розв'язання.** З першого рівняння виразимо z через y і підставимо у друге рівняння системи:

$$z = y' - 2y \implies (y' - 2y)' = 3y + 4(y' - 2y) \implies y'' - 6y' + 5y = 0 \implies y = C_1 e^x + C_2 e^{5x}.$$

Підставляючи вираз для у у перше рівняння системи, маємо

$$z = (C_1 e^x + C_2 e^{5x})' - 2(C_1 e^x + C_2 e^{5x}) = -C_1 e^x + 3C_2 e^{5x}.$$

**Bidnoeids:**  $y = C_1 e^x + C_2 e^{5x}$ ,  $z = -C_1 e^x + 3C_2 e^{5x}$ .

Приклад 3. Зінтегрувати систему

$$\begin{cases} y_1' = -y_2 + y_3 + 2y_1, \\ y_2' = y_1 + 2y_2 - y_3, \\ y_3' = y_1 - y_2 + 2y_3. \end{cases}$$

**Розв'язання.** Здиференціюємо третє рівняння системи і підставимо замість  $y'_1$ ,  $y'_2$  відповідні вирази із заданої системи:

$$y_3'' = y_1' - y_2' + 2y_3' = 2y_1 - y_2 + y_3 - (y_1 + 2y_2 - y_3) + 2(y_1 - y_2 + 2y_3) = 3y_1 - 5y_2 + 6y_3.$$

Диференціюючи отримане співвідношення і знову використовуючи рівняння системи, одержуємо рівняння

$$y_3''' = 3y_1' - 5y_2' + 6y_3' = 7y_1 - 19y_2 + 20y_3.$$

Із системи

$$\begin{cases} y_3' = y_1 - y_2 + 2y_3, \\ y_3'' = 3y_1 - 5y_2 + 6y_3, \\ y_3''' = 7y_1 - 19y_2 + 20y_3 \end{cases}$$

виключимо  $y_1$  і  $y_2$ . Для цього достатньо, наприклад, розв'язати систему, утворену з першого і другого рівнянь, відносно  $y_1$  і  $y_2$ .

$$\begin{cases} y_3' = y_1 - y_2 + 2y_3, \\ y_3'' = 3y_1 - 5y_2 + 6y_3 \end{cases} \Rightarrow \begin{cases} y_1 - y_2 = y_3' - 2y_3, \\ 3y_1 - 5y_2 = y_3'' - 6y_3 \end{cases} \Rightarrow$$
$$y_1 = -\frac{1}{2}y_3'' + \frac{5}{2}y_3' - 2y_3, \quad y_2 = -\frac{1}{2}y_3'' + \frac{3}{2}y_3'.$$

Підставивши  $y_1$ ,  $y_2$  у третє рівняння системи, одержуємо диференціальне рівняння  $y_3'''-6y_3''+11y_3'-6y_3=0$ . Оскільки характеристичними числами цього рівняння є  $k_1=1$ ,  $k_2=2$ ,  $k_3=3$ , то  $y_3=C_1e^x+C_2e^{2x}+C_3e^{3x}$ . Після цього знаходимо функції  $y_1$ ,  $y_2$ :  $y_1=C_2e^{2x}+C_3e^{3x}$ ,  $y_2=C_1e^x+C_2e^{2x}$ . Відповідь:  $y_1=C_2e^{2x}+C_3e^{3x}$ ,  $y_2=C_1e^x+C_2e^{2x}$ ,  $y_3=C_1e^x+C_2e^{2x}+C_3e^{3x}$ .

4. Лінійні однорідні системи. Лінійною системою диференціальних рівнянь першого порядку називають систему

$$\begin{cases} y'_{1} = p_{11}(x)y_{1} + p_{12}(x)y_{2} + \dots + p_{1n}(x)y_{n} + f_{1}(x), \\ y'_{2} = p_{21}(x)y_{1} + p_{22}(x)y_{2} + \dots + p_{2n}(x)y_{n} + f_{2}(x), \\ \dots \dots \dots \\ y'_{n} = p_{n1}(x)y_{1} + p_{n2}(x)y_{2} + \dots + p_{nn}(x)y_{n} + f_{n}(x), \end{cases}$$
(18.17)

яку скорочено можна записати у вигляді

$$y'_k = \sum_{j=1}^n p_{kj}(x)y_j + f_k(x), \quad k = 1, 2, \dots, n.$$

Вважатимемо, що всі функції  $p_{kj}(x)$  (коефіцієнти систе- $\mathbf{M}\mathbf{u}$ ), а також  $f_k(x)$  неперервні на деякому інтервалі (a,b). Тоді згідно з теоремою Коші (п. 1) система (18.17) має єдиний розв'язок (18.3), який задовольняє початкові умови (18.4). Цей розв'язок буде визначений на деякому відрізку  $[a_1, b_1] \subset (a, b)$ . Особливих розв'язків система (18.17) не має.

Якщо на інтервалі (a,b) всі  $f_k(x) \equiv 0$ , то систему (18.17) називають *лінійною однорідною*. Вона має вигляд

$$y'_k = \sum_{j=1}^n p_{kj}(x)y_j, \quad k = 1, 2, \dots, n.$$
 (18.18)

Якщо у системі (18.17) не всі функції  $f_k(x)$  тотожно дорівнюють нулю, то її називають *лінійною неоднорідною*.

Очевидно, лінійна однорідна система має нульовий розв'язок  $y_1 = 0, y_2 = 0, \dots, y_n = 0$ , який називають *тривіальним*.

Розв'язки лінійної однорідної системи (18.18) мають деякі характерні властивості, які аналогічні до відповідних властивостей розв'язків лінійного однорідного рівняння n-го порядку (лекція 12, п. 2).

Властивість 1. Якщо  $y_1 = \varphi_1(x), y_2 = \varphi_2(x), \ldots, y_n =$  $= \varphi_n(x) - pозв'язок однорідної системи (18.18), то$ 

$$y_1 = C\varphi_1(x), \quad y_2 = C\varphi_2(x), \quad \dots, \quad y_n = C\varphi_n(x),$$

 $\partial e\ C\ -\ \partial o e i$ льна стала, також  $\epsilon$  розв'язком цe i системи.

Властивість 2. Якщо задано т розв'язків системи (18.18):

1-й розв'язок:  $y_{11}, y_{12}, \ldots, y_{1n},$ 

2-й розв'язок:  $y_{21}, y_{22}, \dots, y_{2n},$ 

m-й розв'язок:  $y_{m1}, y_{m2}, \ldots, y_{mn},$ 

то їх лінійна комбінація з довільними сталими  $C_1, C_2, \ldots, C_m$ 

$$y_1 = C_1 y_{11} + C_2 y_{21} + \ldots + C_m y_{m1},$$
  

$$y_2 = C_1 y_{12} + C_2 y_{22} + \ldots + C_m y_{m2},$$
  

$$\vdots$$
  

$$y_n = C_1 y_{1n} + C_2 y_{2n} + \ldots + C_m y_{mn},$$

або, скорочено,

$$y_k = \sum_{i=1}^m C_i y_{ik}, \quad k = 1, 2, \dots, n,$$
 (18.19)

також  $\epsilon$  розв'язком системи (18.18).

Доведення. Підставляючи (18.19) в (18.18), одержуємо

$$\left(\sum_{i=1}^{m} C_{i} y_{ik}\right)' = \sum_{j=1}^{n} p_{kj}(x) \left(\sum_{i=1}^{m} C_{i} y_{ij}\right) \implies \sum_{i=1}^{m} C_{i} y'_{ik} = \sum_{i=1}^{m} C_{i} \sum_{j=1}^{n} p_{kj}(x) y_{ij}, \quad k = 1, 2, \dots, n.$$

Доведення властивості випливає з тотожностей

$$y'_{ik} \equiv \sum_{j=1}^{n} p_{kj}(x)y_{ij}(x), \quad k = 1, 2, \dots, n, \quad i = 1, 2, \dots, m,$$

які одержуємо, підставляючи i-й розв'язок у систему (18.18).  $\blacktriangleright$ 

**Рекомендована література**: [1, с. 115 – 118, 134 – 135], [5, с. 322 – 340], [8, с. 93 – 99, 164 – 179], [12, с. 109 – 112, 131 – 152], [15, с. 18 – 22, 65 – 70, 91 – 92].

### Питання до лекції 18

- 1. Який загальний вигляд має система звичайних диференціальних рівнянь першого порядку? Що називають розв'язком цієї системи на деякому інтервалі?
- 2. Який вигляд має нормальна система диференціальних рівнянь першого порядку? Як формулюється задача Коші для такої системи? Який її геометричний та механічний зміст? Яку нормальну систему називають автономною?
- 3. Який механічний зміст має нормальна система та її розв'язок? Що таке фазовий простір, фазова площина, фазова пряма? Як пов'язані між собою рух, який описується системою диференціальних рівнянь, та його траєкторія? Який рух називають станом спокою, якою є його траєкторія?
- 4. Як формулюється теорема Коші про достатні умови існування та єдиності неперервно диференційовного розв'язку задачі Коші для нормальної системи диференціальних рівнянь?
- 5. Що називають загальним розв'язком (інтегралом) нормальної системи диференціальних рівнянь у деякій області існування та єдиності розв'язків задачі Коші? Що називають частинним та особливим розв'язками нормальної системи диференціальних рівнянь? Як вони пов'язані з загальним розв'язком системи?
- 6. Що таке інтегровні комбінації і як вони використовуються для знаходження загального інтеграла?
- 7. Як диференціальне рівняння n-го порядку, розв'язане відносно старшої похідної, можна звести до рівносильної йому нормальної системи диференціальних рівнянь?
- 8. Який вигляд має лінійна система диференціальних рівнянь? Чим відрізняється лінійна неоднорідна система від однорідної? Які властивості мають розв'язки лінійної однорідної системи?

# Вправи до лекції 18

1. Зінтегруйте системи, використовуючи інтегровні комбінації:

a) 
$$\begin{cases} y' = 2(y^2 + z^2)x, \\ z' = 4yzx; \end{cases}$$
 6) 
$$\begin{cases} y' = \sin y \cos z, \\ z' = \cos y \sin z. \end{cases}$$

2. Зінтегруйте системи методом виключення:

a) 
$$\begin{cases} y' = 10y - 6z, \\ z' = 18y - 11z; \end{cases}$$
 6) 
$$\begin{cases} y' = y - 2z - xe^x, \\ z' = 5y - z - (x+1)e^x; \end{cases}$$
 B) 
$$\begin{cases} y'_1 = -2y_1 + 2y_2 - y_3, \\ y'_2 = -6y_1 + 2y_2 - 2y_3, \\ y'_3 = -6y_1 - 2y_2 - y_3. \end{cases}$$

# Лекція 19. Лінійні однорідні системи звичайних диференціальних рівнянь

#### План

- 1. Лінійно залежні та лінійно незалежні сукупності функцій.
  - 2. Формула Остроградського Якобі.
  - 3. Основна теорема.
- 4. Лінійні однорідні системи зі сталими коефіцієнтами. Метод Ейлера.
- 1. Лінійно залежні та лінійно незалежні сукупності функцій. Нехай задано *m* сукупностей функцій

$$\begin{cases}
 y_{11}, \ y_{12}, \dots, \ y_{1n}, \\
 y_{21}, \ y_{22}, \dots, \ y_{2n}, \\
 \vdots & \vdots & \vdots \\
 y_{m1}, \ y_{m2}, \dots, \ y_{mn},
 \end{cases}$$
(19.1)

у кожній з яких n функцій, визначених і неперервних на деякому інтервалі (a,b). Сукупності функцій (19.1) називають n**і**нійно незалежними на інтервалі (a,b), якщо тотожності

де  $\alpha_1, \ \alpha_2, \ \ldots, \ \alpha_m$  — сталі, виконуються тільки тоді, коли  $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$ . В іншому випадку сукупності функцій (19.1) називають *лінійно залежними* на інтервалі (a,b).

Встановимо необхідну умову лінійної залежності довільних n сукупностей функцій. Отже, нехай маємо n сукупностей функцій

$$\begin{cases}
 y_{11}, \ y_{12}, \dots, \ y_{1n}, \\
 y_{21}, \ y_{22}, \dots, \ y_{2n}, \\
 \dots \dots \dots \\
 y_{n1}, \ y_{n2}, \dots, \ y_{nn}.
 \end{cases}$$
(19.2)

Визначником Вронського або вронскіаном сукупностей функцій (19.2) називають визначник

$$W(x) = \begin{vmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{vmatrix}.$$
 (19.3)

Теорема 1 (необхідна умова лінійної залежності nсукупностей функцій). Якщо п сукупностей функцій (19.2) лінійно залежні на інтервалі (a,b), то  $W(x) \equiv 0$  на цьому інтервалі.

**Доведення.** Оскільки n сукупностей функцій (19.2) лінійно залежні, то за означенням

$$\sum_{i=1}^{n} \alpha_i y_{ik} = 0, \quad k = 1, 2, \dots, n, \quad a < x < b, \tag{19.4}$$

де не всі  $\alpha_i$  дорівнюють нулю. Розглядаючи (19.4) як однорідну лінійну систему алгебричних рівнянь відносно  $\alpha_1, \alpha_2, \ldots, \alpha_n$ бачимо, що вона має ненульовий розв'язок, а тому визначник цієї системи дорівнює нулю. Цим визначником є вронскіан, отже  $W(x) \equiv 0$  в усіх точках інтервалу (a, b).

Теорему 1 можна сформулювати й інакше: якщо вронскіан n сукупностей функцій (19.2) на деякому інтервалі (a,b) відмінний від нуля, то ці сукупності функцій лінійно незалежні на цьому інтервалі.

Нехай тепер кожна з сукупностей функцій (19.2) є розв'язком лінійної однорідної системи

$$y'_k = \sum_{j=1}^n p_{kj}(x)y_j, \quad k = 1, 2, \dots, n,$$
 (19.5)

коефіцієнти  $p_{kj}(x), k, j = 1, 2, \ldots, n$ , якої неперервні на деякому інтервалі (a, b).

Теорема 2 (необхідна умова лінійної незалежності nрозв'язків лінійної однорідної системи n рівнянь). Якщо n розв'язків (19.2) системи (19.5) лінійно незалежні на інтервалі (a,b), то їх вронскіан не перетворюється в нуль у жодній точці цього інтервалу.

**Доведення** теореми проведемо від супротивного. Нехай для деякої точки  $x_0 \in (a,b)$  маємо  $W(x_0)=0$ . Складемо систему n алгебричних рівнянь

$$\sum_{i=1}^{n} C_i y_{ik}(x_0) = 0, \quad k = 1, 2, \dots, n.$$
 (19.6)

Оскільки визначник однорідної системи (19.6) дорівнює нулю (ним є  $W(x_0)$ ), то вона має ненульовий розв'язок  $C_1=C_1^{(0)},$   $C_2=C_2^{(0)},\ldots,\,C_n=C_n^{(0)}.$  Побудуємо розв'язок

$$y_k = \sum_{i=1}^n C_i^{(0)} y_{ik}, \quad k = 1, 2, \dots, n.$$
 (19.7)

Оскільки  $C_i^{(0)}$  задовольняють систему (19.6), то розв'язок (19.7) має нульові початкові значення у точці  $x=x_0$ , тобто  $y_1(x_0)=0,\ y_2(x_0)=0,\ \dots,\ y_n(x_0)=0.$  Але ці самі початкові умови задовольняє також тривіальний розв'язок, тому згідно з теоремою Коші (лекція 18, п. 1) ці розв'язки збігаються, тобто

$$\sum_{i=1}^{n} C_i^{(0)} y_{ik} \equiv 0, \quad k = 1, 2, \dots, n,$$

де не всі  $C_i^{(0)}$  дорівнюють нулю. Отримали, що розв'язки (19.2) лінійно залежні на (a,b), що суперечить умові теореми.  $\blacktriangleright$ 

З теорем 1 і 2 випливає: для того, щоб п розв'язків системи (19.5) були лінійно незалежними на інтервалі (a,b), **необхідно і достатньо**, щоб їх вронскіан не перетворювався в нуль у жодній точці цього інтервалу.

**2.** Формула Остроградського — Якобі. Ця формула дозволяє з точністю до сталого множника виразити вронскіан розв'язків лінійної однорідної системи (19.5) через діагональні коефіцієнти цієї системи, а саме

$$W(x) = W(x_0) \cdot e^{\int_{0}^{x} \left(p_{11}(x) + p_{22}(x) + \dots + p_{nn}(x)\right) dx},$$
 (19.8)

де  $x = x_0$  – довільна точка інтервалу (a, b). Формулу (19.8) називають формулою Остроградського - Якобі. Для доведення формули (19.8) знайдемо похідну від вронскіана (19.3), диференціюючи його за стовпцями. У цьому випадку похідна від визначника n-го порядку дорівнює сумі n визначників, які отримуються з нього почерговою заміною елементів першого, другого, ..., n-го стовиця їх похідними, тобто

$$W'(x) = \sum_{k=1}^{n} \begin{vmatrix} y_{11} & y_{12} & \cdots & y_{1,k-1} & y'_{1k} & y_{1,k+1} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2,k-1} & y'_{2k} & y_{2,k+1} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{n,k-1} & y'_{nk} & y_{n,k+1} & \cdots & y_{nn} \end{vmatrix}.$$

Замінимо похідні  $y'_{1k}, y'_{2k}, \ldots, y'_{nk}$  їх виразами з (19.5). Тоді

$$W'(x) = \sum_{k=1}^{n} \begin{vmatrix} y_{11} & y_{12} & \cdots & y_{1,k-1} & \sum_{j=1}^{n} p_{kj} y_{1j} & y_{1,k+1} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2,k-1} & \sum_{j=1}^{n} p_{kj} y_{2j} & y_{2,k+1} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{n,k-1} & \sum_{j=1}^{n} p_{kj} y_{nj} & y_{n,k+1} & \cdots & y_{nn} \end{vmatrix}.$$

Якщо розкласти кожен з визначників справа на суму n визначників, то всі вони дорівнюватимуть нулю (кожен з них матиме два пропорційні стовпці), крім визначників, які відповідають j = k. У цьому випадку k-й визначник справа дорівнює  $p_{kk}(x)W(x)$ , а тому  $W'(x) = \sum_{k=1}^{n} p_{kk}(x)W(x)$ , звідки, інтегруючи, отримуємо формулу (19.8).

- **3. Основна теорема.** Сукупність n розв'язків лінійної однорідної системи (19.5), визначених і лінійно незалежних на інтервалі (a,b), називають **фундаментальною системою** *розв'язків* на цьому інтервалі.
- З п. 1, 2 лекції випливає, що сукупність п розв'язків лінійної однорідної системи (19.5) буде фундаментальною системою розв'язків на інтервалі (a, b) тоді і тільки тоді, коли вронскіан цих розв'язків відмінний від нуля хоч в одній точці iнтервалу (a,b).

Знання фундаментальної системи розв'язків лінійної однорідної системи (19.5) дає можливість побудувати загальний розв'язок цієї системи.

**Теорема 3**. Якщо сукупності функцій (19.2) утворюють фундаментальну систему розв'язків лінійної однорідної системи (19.5) на інтервалі (a,b), то формули

$$y_{1} = C_{1}y_{11} + C_{2}y_{21} + \dots + C_{n}y_{n1}, y_{2} = C_{1}y_{12} + C_{2}y_{22} + \dots + C_{n}y_{n2}, \dots \dots \dots y_{n} = C_{1}y_{1n} + C_{2}y_{2n} + \dots + C_{n}y_{nn},$$

$$(19.9)$$

 $\partial e\ C_1,\ C_2,\ \ldots,\ C_n$  —  $\partial o$ вільні сталі, визначають загальний розв'язок цієї системи в усій її області задання.

**Доведення.** Систему (19.9) можна розв'язати відносно сталих  $C_1, C_2, \ldots, C_n$ , бо вона є лінійною, причому її визначник відмінний від нуля (ним є W(x)). Крім того, сукупність функцій (19.9) є розв'язком системи (19.5) для всіх значень довільних сталих  $C_1, C_2, \ldots, C_n$  (властивість 2 з п. 4 лекції 18). Тому згідно з означенням загального розв'язку нормальної системи диференціальних рівнянь сукупність функцій (19.9) є загальним розв'язком системи (19.5).  $\blacktriangleright$ 

4. Лінійні однорідні системи зі сталими коефіцієнтами. Метод Ейлера. Розглянемо лінійну однорідну систему

$$\begin{cases}
y'_1 = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n, \\
y'_2 = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n, \\
\dots \dots \dots \dots \\
y'_n = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n.
\end{cases} (19.10)$$

де  $a_{ij},\ i,j=1,2,\ldots,n,$  – дійсні сталі, і покажемо, що її завжди можна зінтегрувати у скінченному вигляді (тобто через елементарні функції або у квадратурах).

Згідно з теоремою 3 для побудови загального розв'язку системи (19.10) досить знайти хоча б одну її фундаментальну систему розв'язків. Частинний розв'язок системи (19.10) шукаємо у вигляді

$$y_1 = \gamma_1 e^{kx}, \quad y_2 = \gamma_2 e^{kx}, \quad \dots, \quad y_n = \gamma_n e^{kx},$$
 (19.11)

де  $\gamma_1, \gamma_2, \ldots, \gamma_n$  і k – деякі сталі, причому  $\gamma_1, \gamma_2, \ldots, \gamma_n$  не дорівнюють одночасно нулю (інакше матимемо очевидний тривіальний розв'язок, який не може належати фундаментальній системі розв'язків). Якщо підставити (19.11) в систему (19.10), скоротити  $e^{kx}$  і перенести усі доданки у ліву частину, то одержуємо однорідну систему алгебричних рівнянь

$$\begin{cases}
(a_{11} - k)\gamma_1 + a_{12}\gamma_2 + \dots + a_{1n}\gamma_n = 0, \\
a_{21}\gamma_1 + (a_{22} - k)\gamma_2 + \dots + a_{2n}\gamma_n = 0, \\
\dots \dots \dots \dots \dots \\
a_{n1}\gamma_1 + a_{n2}\gamma_2 + \dots + (a_{nn} - k)\gamma_n = 0.
\end{cases} (19.12)$$

Ненульовий розв'язок системи (19.12) існує лише тоді, коли її визначник дорівнює нулю. Позначивши його через  $\Delta(k)$ , маємо

$$\Delta(k) \equiv \begin{vmatrix} a_{11} - k & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - k & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - k \end{vmatrix} = 0.$$
 (19.13)

Рівняння (19.13) називають характеристичним рівнянням системи (19.10), його корені – *характеристичними* числами, а  $\Delta(k)$  – характеристичним визначником.

Нехай усі характеристичні числа  $k_1, k_2, \ldots, k_n$  прості. Тоді, як відомо з алгебри,  $\Delta(k_i) = 0, \ \Delta'(k_i) \neq 0, \ j = 1, 2, \dots, n.$ 

Покажемо, що ранг матриці

$$A = \begin{pmatrix} a_{11} - k_j & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - k_j & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - k_j \end{pmatrix},$$

складеної з коефіцієнтів системи, яку одержуємо з (19.12) після заміни у ній k на  $k_j$ , дорівнює n-1. Для цього знайдемо  $\Delta'(k)$ :

$$\Delta'(k) = \begin{vmatrix} -1 & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} - k & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & a_{n2} & \cdots & a_{nn} - k \end{vmatrix} +$$

$$+ \begin{vmatrix} a_{11} - k & 0 & \cdots & a_{1n} \\ a_{21} & -1 & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & 0 & \cdots & a_{nn} - k \end{vmatrix} + \cdots$$

$$+ \begin{vmatrix} a_{11} - k & a_{12} & \cdots & 0 \\ a_{21} & a_{22} - k & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & -1 \end{vmatrix} =$$

$$= -\Delta_{11}(k) - \Delta_{22}(k) - \cdots - \Delta_{nn}(k), \qquad (19.14)$$

де  $\Delta_{jj}(k)$  – алгебричне доповнення елемента  $a_{jj}-k$  визначника  $\Delta(k)$ . Оскільки  $\Delta'(k_j) \neq 0, j=1,2,\ldots,n$ , то з (19.14) випливає, що хоча б один з визначників  $\Delta_{jj}(k_i)$  (а це визначники (n-1)-го порядку), відмінний від нуля. Отже, ранг матриці A дорівнює n-1, а тому одне з рівнянь системи (19.12) є наслідком інших і ця система має ненульовий розв'язок, який визначається з точністю до довільного множника  $P_i$ :

$$\gamma_{i1} = P_i m_{i1}, \ \gamma_{i2} = P_i m_{i2}, \dots, \ \gamma_{in} = P_i m_{in}, \ i = 1, 2, \dots, n.$$
(19.15)

Якщо у формулах (19.15) зафіксувати множник  $P_i$ , то одержимо конкретний розв'язок системи (19.12). Підставляючи у (19.11) замість k послідовно характеристичні числа  $k_1, k_2, \ldots, k_n$ , а замість  $\gamma_1, \gamma_2, \ldots, \gamma_n$  — відповідні їм розв'язки системи (19.12), визначені формулами (19.15) при фіксованих множниках  $P_i$ , одержуємо n розв'язків системи (19.10)

$$\begin{cases} y_{11} = \gamma_{11}e^{k_1x}, & y_{12} = \gamma_{12}e^{k_2x}, \dots, & y_{1n} = \gamma_{1n}e^{k_nx}, \\ y_{21} = \gamma_{21}e^{k_1x}, & y_{22} = \gamma_{22}e^{k_2x}, \dots, & y_{2n} = \gamma_{2n}e^{k_nx}, \\ \dots & \dots & \dots \\ y_{n1} = \gamma_{n1}e^{k_1x}, & y_{n2} = \gamma_{n2}e^{k_2x}, \dots, & y_{nn} = \gamma_{nn}e^{k_nx}. \end{cases}$$
(19.16)

Легко показати, що ці розв'язки лінійно незалежні на  $(-\infty, +\infty)$ . Якщо при цьому всі числа  $k_1, k_2, \ldots, k_n$  дійсні, то розв'язки (19.16) також будуть дійсними.

Таким чином, для простих дійсних характеристичних чисел система (19.10) має n дійсних лінійно незалежних частинних

розв'язків вигляду (19.16). Тому згідно з теоремою 3 формули

$$y_{1} = C_{1}\gamma_{11}e^{k_{1}x} + C_{2}\gamma_{21}e^{k_{2}x} + \dots + C_{n}\gamma_{n1}e^{k_{n}x},$$
  

$$y_{2} = C_{1}\gamma_{12}e^{k_{1}x} + C_{2}\gamma_{22}e^{k_{2}x} + \dots + C_{n}\gamma_{n2}e^{k_{n}x},$$
  

$$\dots \dots \dots$$
  

$$y_{n} = C_{1}\gamma_{1n}e^{k_{1}x} + C_{2}\gamma_{2n}e^{k_{2}x} + \dots + C_{n}\gamma_{nn}e^{k_{n}x}$$

визначають загальний розв'язок системи (19.10).

Припустимо, що характеристичні числа  $k_1, k_2, \ldots, k_n$  прості, але серед них є комплексні. Нехай a+ib і a-ib — пара комплексно-спряжених характеристичних чисел. Числу a+ibзгідно з (19.11) відповідає розв'язок

$$y_1 = \gamma_1 e^{(a+ib)x}, \quad y_2 = \gamma_2 e^{(a+ib)x}, \quad \dots, \quad y_n = \gamma_n e^{(a+ib)x},$$

де  $\gamma_1, \, \gamma_2, \, \ldots, \, \gamma_n$  – комплексні числа. Покладаючи

$$\gamma_1 = \gamma_{11} + i\gamma_{21}, \quad \gamma_2 = \gamma_{12} + i\gamma_{22}, \dots, \quad \gamma_n = \gamma_{1n} + i\gamma_{2n},$$

одержуємо комплексний розв'язок

$$y_1 = (\gamma_{11} + i\gamma_{21})e^{(a+ib)x}, \ y_2 = (\gamma_{12} + i\gamma_{22})e^{(a+ib)x}, \dots,$$
  
$$y_n = (\gamma_{1n} + i\gamma_{2n})e^{(a+ib)x}.$$

Відокремлюючи у цьому розв'язку дійсні та уявні частини, маємо два лінійно незалежні на інтервалі  $(-\infty, +\infty)$  дійсні розв'язки:

$$y_{11} = e^{ax} (\gamma_{11} \cos bx - \gamma_{21} \sin bx),$$
  

$$y_{12} = e^{ax} (\gamma_{12} \cos bx - \gamma_{22} \sin bx), \dots,$$
  

$$y_{1n} = e^{ax} (\gamma_{1n} \cos bx - \gamma_{2n} \sin bx)$$

i

$$y_{21} = e^{ax} (\gamma_{11} \sin bx + \gamma_{21} \cos bx),$$
  

$$y_{22} = e^{ax} (\gamma_{12} \sin bx + \gamma_{22} \cos bx), \dots,$$
  

$$y_{2n} = e^{ax} (\gamma_{1n} \sin bx + \gamma_{2n} \cos bx).$$

Очевидно, що спряжений корінь a - ib не породжує нових дійсних лінійно незалежних частинних розв'язків.

Приклад 1. Зінтегрувати систему  $\begin{cases} y' = 5y + 4z, \\ z' = 4u + 5z. \end{cases}$ 

Розв'язання. Розв'язуючи характеристичне рівняння

$$\begin{vmatrix} 5-k & 4 \\ 4 & 5-k \end{vmatrix} = 0 \implies k^2 - 10k + 9 = 0,$$

знаходимо характеристичні числа  $k_1 = 1$  і  $k_2 = 9$ .

Складемо систему для знаходження чисел  $\gamma_1$  і  $\gamma_2$ , які відповідають числу  $k_1$ . Матрицю коефіцієнтів цієї системи отримуємо з матриці  $\begin{pmatrix} 5-k & 4 \\ 4 & 5-k \end{pmatrix}$  заміною k на  $k_1$ . Отже, шуканою системою є  $\begin{cases} 4\gamma_1+4\gamma_2=0,\\ 4\gamma_1+4\gamma_2=0, \end{cases}$  звідки випливає, що  $\gamma_1=-\gamma_2.$  Нехай  $\gamma_1 = 1$ , тоді  $\gamma_2 = -1$ . Таким чином, характеристичному числу  $k_1 = 1$  відповідає розв'язок  $y_1 = e^x$ ,  $z_1 = -e^x$ .

Аналогічно, розв'язуючи систему  $\begin{cases} -4\gamma_1 + 4\gamma_2 = 0, \\ 4\gamma_1 - 4\gamma_2 = 0, \end{cases}$  яка відповідає  $k_2=9$ , знаходимо, що  $\gamma_1=\gamma_2$ . Якщо взяти  $\gamma_1=1$ , то  $\gamma_2=1$ , а тому числу  $k_2$  відповідає розв'язок  $y_2=e^{9x},\, z_2=e^{9x}.$ Загальний розв'язок записуємо згідно з теоремою 3:

$$y = C_1 e^x + C_2 e^{9x}, \quad z = -C_1 e^x + C_2 e^{9x}.$$

Приклад 2. Зінтегрувати систему  $\begin{cases} y' = 2y - z, \\ z' = y + 2z. \end{cases}$ 

Розв'язання. Характеристичне рівняння

$$\left| \begin{array}{cc} 2-k & -1 \\ 1 & 2-k \end{array} \right| = 0,$$

тобто  $k^2 - 4k + 5 = 0$ , має комплексно-спряжені корені  $k_1 =$  $k_1 = 2 + i, k_2 = 2 - i$ . Розв'язок, який відповідає  $k_1$ , має вигляд  $y=\gamma_1 e^{(2+i)x},\, z=\gamma_2 e^{(2+i)x},$  де числа  $\gamma_1,\, \gamma_2$  знайдемо з системи

$$\begin{cases} -i\gamma_1 - \gamma_2 = 0, \\ \gamma_1 - i\gamma_2 = 0. \end{cases}$$

Покладаючи  $\gamma_1 = 1$ , знаходимо  $\gamma_2 = -i$ , а тому шуканим розв'язком є  $y = e^{(2+i)x}$ ,  $z = -i e^{(2+i)x}$ . Відокремлюючи у цьому розв'язку дійсні та уявні частини, одержуємо два дійсні розв'язки:  $y_1=e^{2x}\cos x,\ z_1=e^{2x}\sin x$  і  $y_2=e^{2x}\sin x,\ z_2=$   $=-e^{2x}\cos x.$  Ці розв'язки утворюють фундаментальну систему розв'язків, а тому загальним розв'язком є

$$y = e^{2x}(C_1 \cos x + C_2 \sin x), \quad z = e^{2x}(C_1 \sin x - C_2 \cos x).$$

Якщо серед коренів характеристичного рівняння є кратні, то метод, викладений вище, застосовувати не можна. Однак і у цьому випадку вдається побудувати фундаментальну систему розв'язків через елементарні функції. Зауважимо перш за все, що якщо  $k_1$  – просте характеристичне число, то, незалежно від того, чи будуть серед інших характеристичних чисел зустрічатися кратні чи ні, йому завжди відповідає один частинний розв'язок вигляду  $y_1 = \gamma_1 e^{k_1 x}, \ y_2 = \gamma_2 e^{k_1 x}, \dots, \ y_n = \gamma_n e^{k_1 x},$  де  $\gamma_1, \ \gamma_2, \ \dots, \ \gamma_n$  — деякі сталі, які визначаються з точністю до сталого множника.

Таким чином, задача зводиться до того, щоб знайти частинні розв'язки, які відповідають кратному кореню. При цьому, так само, як і для лінійного однорідного рівняння n-го порядку, виявляється, що одному характеристичному числу кратності s відповідає s лінійно незалежних частинних розв'язків.

**Теорема 4.** Якщо  $k_1$  – характеристичне число кратності s, то йому відповідає розв'язок системи (19.10)

$$y_1 = P_1(x)e^{k_1x}, \quad y_2 = P_2(x)e^{k_1x}, \dots, \quad y_n = P_n(x)e^{k_1x}, \quad (19.17)$$

де  $P_1(x)$ ,  $P_2(x)$ , ...,  $P_n(x)$  — многочлени степеня не вищого, ніж s-1, які мають у сукупності s довільних коефіцієнтів. Доведення теореми можна знайти, наприклад, в [3, с. 119—126].

З практичної точки зору розв'язок, що відповідає характеристичному числу  $k_1$ , потрібно шукати у вигляді (19.17), вважаючи  $P_1(x), P_2(x), \ldots, P_n(x)$  многочленами (s-1)-го степеня з невизначеними коефіцієнтами і, підставляючи їх в (19.10), виразити всі коефіцієнти через s з них, які залишаються довільними. Покладаючи по черзі один з цих довільних коефіцієнтів

рівним одиниці, а решта рівними нулю, побудуємо s лінійно незалежних розв'язків, які відповідають характеристичному числу  $k_1$ . Усі ці частинні розв'язки будуть утворені з добутків функції  $e^{k_1x}$  на многочлени від x, степені яких не перевищують s-1. Якщо многочлени  $P_1(x), P_2(x), \ldots, P_n(x)$  у формулі (19.17) вироджуються у сталі, то одержимо s лінійно незалежних частинних розв'язків такого ж вигляду, як і для випадку простого характеристичного числа.

Якщо  $k_1$  – дійсне характеристичне число, то побудовані s лінійно незалежних розв'язків будуть дійсними.

Якщо система (19.10) має комплексне характеристичне число a+bi кратності s, то вона має також спряжене характеристичне число a-bi тієї ж кратності. Побудувавши s лінійно незалежних комплексних розв'язків, які відповідають числу a+bi, і відокремивши в них дійсні та уявні частини, одержимо 2s дійсних лінійно незалежних частинних розв'язків.

Приклад 3. Зінтегрувати систему 
$$\begin{cases} y' = 6y + z, \\ z' = -16y - 2z. \end{cases}$$

**Розв'язання.** Легко переконатися, що характеристичні числа є дійсні і кратні:  $k_1=k_2=2$ . Згідно з теоремою 4 загальний розв'язок шукаємо у вигляді

$$y = (Ax + B)e^{2x}, \quad z = (Cx + D)e^{2x}.$$

Оскільки  $y' = (2Ax + 2B + A)e^{2x}$ ,  $z' = (2Cx + 2D + C)e^{2x}$ , то, підставляючи їх у задану систему, для знаходження невизначених коефіцієнтів одержуємо систему:

$$\begin{cases} (2Ax + 2B + A)e^{2x} = 6(Ax + B)e^{2x} + (Cx + D)e^{2x}, \\ (2Cx + 2D + C)e^{2x} = -16(Ax + B)e^{2x} - 2(Cx + D)e^{2x} \end{cases} \Rightarrow \begin{cases} (4A + C)x - A + 4B + D = 0, \\ (16A + 4C)x + 16B + 4D + C = 0 \end{cases} \Rightarrow \begin{cases} 4A + C = 0, \\ -A + 4B + D = 0, \\ 16A + 4C = 0, \\ 16B + 4D + C = 0 \end{cases}$$

В одержаній системі є лише два лінійно незалежних рівняння, наприклад, перше і друге. Вважатимемо у них вільними

невідомими, приміром, А і В і надамо їм довільних значень:  $A = C_1, B = C_2$ . Тоді  $C = -4C_1, D = C_1 - 4C_2$ , а загальним розв'язком є  $y = (C_1x + C_2)e^{2x}$ ,  $z = (-4C_1x + C_1 - 4C_2)e^{2x}$ .

Приклад 4. Зінтегрувати систему

$$\begin{cases} y_1' = y_2 + y_3, \\ y_2' = y_1 + y_3, \\ y_3' = y_1 + y_2. \end{cases}$$

**Розв'язання.** Знаходимо характеристичні числа системи:

$$\begin{vmatrix} -k & 1 & 1 \\ 1 & -k & 1 \\ 1 & 1 & -k \end{vmatrix} = 0 \implies k_1 = 2, k_{2,3} = -1.$$

Числу  $k_1 = 2$  відповідає система двох рівнянь (третє є наслідком двох перших):

$$\begin{cases} -2\gamma_1 + \gamma_2 + \gamma_3 = 0, \\ \gamma_1 - 2\gamma_2 + \gamma_3 = 0. \end{cases}$$

Один з її розв'язків  $\gamma_1=1,\ \gamma_2=1,\ \gamma_3=1.$  Тому  $y_1^{(1)}=e^{2x},$  $y_2^{(1)} = e^{2x}, y_3^{(1)} = e^{2x}$  є розв'язком заданої системи.

Характеристичним числам  $k_{2,3} = -1$  відповідає одне рівняння (друге і третє збігаються з ним):  $\gamma_1 + \gamma_2 + \gamma_3 = 0$ . Виберемо два лінійно незалежні розв'язки цього рівняння, наприклад,  $\gamma_1=1,\ \gamma_2=0,\ \gamma_3=-1$ і  $\gamma_1=0,\ \gamma_2=-1,\ \gamma_3=1.$  Кожному з них відповідає розв'язок  $y_1^{(2)}=e^{-x},\ y_2^{(2)}=0,\ y_3^{(2)}=-e^{-x}$ і  $y_1^{(3)}=0,\,y_2^{(3)}=-e^{-x},\,y_3^{(3)}=\stackrel{-}{e^{-x}}$  відповідно.

Оскільки вронскіан знайдених трьох розв'язків відмінний від нуля (W(x) = -3), то вони утворюють фундаментальну систему розв'язків, а загальним розв'язком є

$$y_1 = C_1 e^{2x} + C_2 e^{-x}, \quad y_2 = C_1 e^{2x} - C_3 e^{-x},$$
  
 $y_3 = C_1 e^{2x} - C_2 e^{-x} + C_3 e^{-x}. \quad \blacksquare$ 

**Рекомендована** література: [3, с. 84 – 90, 115 – 127], [4, c. 477 - 485, 494 - 502], [5, c. 341 - 356], [8, c. 198 - 205, 210 -214, 222 – 227], [15, c. 91 – 102, 109 – 128].

# Питання до лекції 19

- 1. Які сукупності функцій називають лінійно незалежними (лінійно залежними) на деякому інтервалі? Наведіть приклади таких сукупностей функцій.
- 2. Що таке вронскіан розв'язків лінійної однорідної системи n рівнянь? Як за допомогою вронскіана визначити, чи є задані n сукупностей функцій лінійно незалежними?
- 3. Як формулюється необхідна умова лінійної незалежності n розв'язків лінійної однорідної системи n диференціальних рівнянь? Сформулюйте необхідну і достатню умову лінійної незалежності на інтервалі (a,b) n розв'язків лінійної однорідної системи.
- 4. Який вигляд має формула Остроградського Якобі? Які властивості випливають з цієї формули?
- 5. Що називають фундаментальною системою розв'язків лінійної однорідної системи на деякому інтервалі? Яка її роль у побудові загального розв'язку лінійної однорідної системи?
- 6. Який вигляд має лінійна однорідна система диференціальних рівнянь із сталими коефіцієнтами? Що називають характеристичним визначником, характеристичним рівнянням, характеристичними числами такої системи?
- 7. У чому полягає метод Ейлера інтегрування лінійних однорідних систем зі сталими коефіцієнтами? Як залежить структура фундаментальної системи розв'язків такої системи від вигляду характеристичних чисел?

# Вправи до лекції 19

1. Зінтегруйте системи методом Ейлера:

a) 
$$\begin{cases} y' = -2y - 3z, \\ z' = 6y + 7z; \end{cases}$$
 6)  $\begin{cases} y' = -5y - 4z, \\ z' = 10y + 7z; \end{cases}$ 

B) 
$$\begin{cases} y_1' = y_1 - y_2 - y_3, \\ y_2' = -2y_1 + 2y_2 + y_3, \\ y_3' = 4y_1 + 2y_2 + 3y_3; \end{cases} \Gamma) \begin{cases} y_1' = y_1 + 2y_2 + 2y_3, \\ y_2' = 2y_1 + y_2 + 2y_3, \\ y_3' = 2y_1 + 2y_2 + y_3. \end{cases}$$

# Лекція 20. Лінійні неоднорідні системи звичайних диференціальних рівнянь

#### План

- 1. Структура загального розв'язку лінійної неоднорідної системи.
  - 2. Метод варіації довільних сталих.
- 3. Метод невизначених коефіцієнтів розв'язування лінійних неоднорідних систем зі сталими коефіцієнтами.
  - 4. Метод Д'Аламбера.
- 1. Структура загального розв'язку лінійної неоднорідної системи. Розглянемо лінійну неоднорідну систему

$$\begin{cases} y'_1 = p_{11}(x)y_1 + p_{12}(x)y_2 + \dots + p_{1n}(x)y_n + f_1(x), \\ y'_2 = p_{21}(x)y_1 + p_{22}(x)y_2 + \dots + p_{2n}(x)y_n + f_2(x), \\ \dots & \dots \\ y'_n = p_{n1}(x)y_1 + p_{n2}(x)y_2 + \dots + p_{nn}(x)y_n + f_n(x) \end{cases}$$
(20.1)

або, у скороченому записі:

$$\frac{dy_k}{dx} = \sum_{j=1}^{n} p_{kj}(x)y_j + f_k(x), \quad k = 1, 2, \dots, n.$$
 (20.2)

Припустимо, що нам відомий деякий частинний розв'язок цієї системи

$$y_1 = y_1^{(1)}, \quad y_2 = y_2^{(1)}, \quad \dots, \quad y_n = y_n^{(1)},$$

а отже,

$$\frac{dy_k^{(1)}}{dx} \equiv \sum_{j=1}^n p_{kj}(x)y_j^{(1)} + f_k(x), \quad k = 1, 2, \dots, n.$$
 (20.3)

Введемо нові невідомі функції  $z_1=z_1(x),\ z_2=z_2(x),\ \dots,$   $z_n=z_n(x)$  за формулами

$$y_k = y_k^{(1)} + z_k, \quad k = 1, 2, \dots, n.$$
 (20.4)

Підставляючи функції (20.4) в систему (20.1), одержуємо

$$\frac{dy_k^{(1)}}{dx} + \frac{dz_k}{dx} =$$

$$= \sum_{j=1}^n p_{kj}(x)y_j^{(1)} + \sum_{j=1}^n p_{kj}(x)z_j + f_k(x), \quad k = 1, 2, \dots, n. \quad (20.5)$$

Враховуючи (20.3), з (20.5) для знаходження функцій  $z_1$ ,  $z_2, \ldots, z_n$  отримуємо лінійну однорідну систему

$$\frac{dz_k}{dx} = \sum_{j=1}^{n} p_{kj}(x)z_j, \quad k = 1, 2, \dots, n.$$
 (20.6)

Однорідну систему (20.6) називають відповідною неоднорідній системі (20.2).

Згідно з теоремою 3 (лекція 19) загальний розв'язок системи (20.6) визначається формулою

$$z_k = \sum_{j=1}^n C_j z_{jk}, \quad k = 1, 2, \dots, n,$$
 (20.7)

де  $z_{jk}=z_{jk}(x),\ j,k=1,2,\ldots,n,$  – деяка фундаментальна система розв'язків системи (20.6), а  $C_j,\ j=1,2,\ldots,n,$  – довільні сталі.

Підставляючи (20.7) у (20.4), одержуємо, що

$$y_k = y_k^{(1)} + \sum_{j=1}^n C_j z_{jk}, \quad k = 1, 2, \dots, n.$$
 (20.8)

Формула (20.8) визначає загальний розв'язок системи (20.1) в усій області її задання.

Таким чином, для знаходження загального розв'язку неоднорідної системи (20.1) достатньо знайти будь-який її частинний розв'язок і додати до нього загальний розв'язок відповідної однорідної системи (20.6). 2. Метод варіації довільних сталих. Для знаходження частинного розв'язку, а разом з тим і загального розв'язку лінійної неоднорідної системи у випадку, коли вдається зінтегрувати відповідну однорідну систему, часто використовують метод варіації довільних сталих (метод Лагранэса).

Розв'язок лінійної неоднорідної системи (20.1) шукаємо у вигляді

$$y_k = \sum_{j=1}^n C_j(x)z_{jk}, \quad k = 1, 2, \dots, n,$$
 (20.9)

де  $z_{jk}=z_{jk}(x),\ j,k=1,2,\ldots,n,$  — деяка фундаментальна система розв'язків однорідної системи (20.6), а  $C_j(x),\ j=1,2,\ldots,n,$  — деякі неперервно диференційовні функції.

Виберемо у (20.9) функції  $C_j(x)$  так, щоб ця формула визначала розв'язок системи (20.1). Підставляючи (20.9) в (20.1), одержуємо:

$$\sum_{j=1}^{n} C'_{j}(x)z_{jk} + \sum_{j=1}^{n} C_{j}(x)z'_{jk} =$$

$$= \sum_{l=1}^{n} p_{kl}(x) \sum_{j=1}^{n} C_{j}(x)z_{jl} + f_{k}(x), \quad k = 1, 2, \dots, n, \quad \Rightarrow$$

$$\sum_{j=1}^{n} C'_{j}(x)z_{jk} + \sum_{j=1}^{n} C_{j}(x)z'_{jk} =$$

$$= \sum_{j=1}^{n} C_{j}(x) \sum_{l=1}^{n} p_{kl}(x)z_{jl} + f_{k}(x), \quad k = 1, 2, \dots, n, \quad \Rightarrow$$

$$\sum_{j=1}^{n} C'_{j}(x)z_{jk} + \sum_{j=1}^{n} C_{j}(x) \left(z'_{jk} - \sum_{l=1}^{n} p_{kl}(x)z_{jl}\right) =$$

$$= f_{k}(x), \quad k = 1, 2, \dots, n. \quad (20.10)$$

Оскільки  $z_{jk}$  – фундаментальна система розв'язків однорідної системи (20.6), то вираз у дужках у формулі (20.10) дорівнює нулю, а тому для знаходження функцій  $C_j(x)$ ,  $j=1,2,\ldots,n$ ,

маємо систему:

$$\sum_{j=1}^{n} C'_{j}(x)z_{jk} = f_{k}(x), \quad k = 1, 2, \dots, n.$$
(20.11)

Визначник системи (20.11) відмінний від нуля для всіх  $x \in (a,b)$  (ним є вронскіан W(x)), а тому вона має єдиний розв'язок, який можна знайти, наприклад, за формулами Крамера:

$$C'_{j}(x) = \sum_{k=1}^{n} \frac{W_{kj}(x)}{W(x)} f_{k}(x), \quad j = 1, 2, \dots, n,$$
 (20.12)

де  $W_{kj}(x)$  — алгебричне доповнення елемента  $z_{kj}$  вронскіана W(x). Інтегруючи (20.12), знаходимо

$$C_j(x) = \sum_{k=1}^n \int_{x_0}^x \frac{W_{kj}(x)}{W(x)} f_k(x) dx + C_j, \quad j = 1, 2, \dots, n,$$

де  $C_j$  — довільні сталі, а  $x_0$  — довільна точка з інтервалу (a,b). Підставляючи знайдені вирази для  $C_j(x)$  у формулу (20.9), одержуємо

$$y_k = \sum_{j=1}^n z_{jk} \sum_{s=1}^n \int_{x_0}^x \frac{W_{sj}(x)}{W(x)} f_s(x) dx + \sum_{j=1}^n C_j z_{jk}, \quad k = 1, 2, \dots, n.$$
(20.13)

Якщо в (20.13) підставити  $C_1=C_2=\ldots=C_n=0$ , то маємо частинний розв'язок

$$y_k^{(1)} = \sum_{j=1}^n z_{jk} \sum_{s=1}^n \int_{x_0}^x \frac{W_{sj}(x)}{W(x)} f_s(x) dx, \quad k = 1, 2, \dots, n,$$

а тому (20.13) можна записати у вигляді (20.8). Отже, розв'язок, визначений формулою (20.13), є загальним розв'язком лінійної неоднорідної системи (20.1).

**Приклад 1.** За допомогою методу варіації довільних сталих зінтегрувати систему

$$\begin{cases} y' = 2y - z, \\ z' = -y + 2z + 4xe^x. \end{cases}$$

**Розв'язання.** Відповідну однорідну систему зінтегруємо методом виключення (лекція 18):

$$\begin{cases} y' = 2y - z, \\ z' = -y + 2z \end{cases} \Rightarrow y = 2z - z',$$
$$2z' - z'' = 2(2z - z') - z \Rightarrow z'' - 4z' + 3z = 0.$$

Оскільки характеристичними числами є  $k_1 = 1$ ,  $k_2 = 3$ , то

$$z_0 = C_1 e^x + C_2 e^{3x} \Rightarrow y_0 = 2(C_1 e^x + C_2 e^{3x}) - (C_1 e^x + 3C_2 e^{3x}) \Rightarrow y_0 = C_1 e^x - C_2 e^{3x}.$$

Розв'язок заданої неоднорідної системи шукаємо у вигляді

$$y = C_1(x)e^x - C_2(x)e^{3x}, \quad z = C_1(x)e^x + C_2(x)e^{3x},$$
 (20.14)

де функції  $C_1(x)$ ,  $C_2(x)$  знайдемо з системи вигляду (20.11):

$$\begin{cases} C_1'(x)e^x - C_2'(x)e^{3x} = 0, \\ C_1'(x)e^x + C_2'(x)e^{3x} = 4xe^x \end{cases} \Rightarrow$$

$$C_1'(x) = 2x, \quad C_2'(x) = 2xe^{-2x} \quad \Rightarrow$$

$$C_1(x) = x^2 + C_1, \quad C_2(x) = -xe^{-2x} - \frac{1}{2}e^{-2x} + C_2.$$

Підставляючи знайдені функції  $C_1(x)$ ,  $C_2(x)$  у (20.14), одержуємо загальний розв'язок заданої системи:

$$y = (x^{2} + C_{1})e^{x} - (-xe^{-2x} - 0.5e^{-2x} + C_{2})e^{3x} =$$

$$= C_{1}e^{x} - C_{2}e^{3x} + (x^{2} + x + 0.5)e^{x},$$

$$z = (x^{2} + C_{1})e^{x} + (-xe^{-2x} - 0.5e^{-2x} + C_{2})e^{3x} =$$

$$= C_{1}e^{x} + C_{2}e^{3x} + (x^{2} - x - 0.5)e^{x}.$$

Після зведення подібних доданків і перепозначення сталої  $(C_1 := C_1 + 0.5)$ , маємо

$$y = C_1 e^x - C_2 e^{3x} + (x^2 + x)e^x,$$
  
$$z = C_1 e^x + C_2 e^{3x} + (x^2 - x - 1)e^x. \blacksquare$$

3. Метод невизначених коефіцієнтів розв'язування лінійних систем зі сталими коефіцієнтами. У п. 1 цієї лекції встановлено, що інтегрування лінійної неоднорідної системи диференціальних рівнянь зводиться до необхідності побудови фундаментальної системи розв'язків відповідної однорідної системи. Тому особливий інтерес становлять такі лінійні неоднорідні системи, у яких фундаментальна система розв'язків відповідної однорідної системи виражається через елементарні функції. До таких систем відносяться, передовсім, системи зі сталими коефіцієнтами.

Розглянемо лінійну неоднорідну систему диференціальних рівнянь зі сталими коефіцієнтами

$$\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n + f_1(x), \\ y_2' = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n + f_2(x), \\ \dots & \dots \\ y_n' = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n + f_n(x) \end{cases}$$

або, у скороченому записі:

$$\frac{dy_k}{dx} = \sum_{j=1}^n a_{kj} y_j + f_k(x), \quad k = 1, 2, \dots, n.$$
 (20.15)

Якщо функції  $f_k(x)$  у системі (20.15) складаються з сум і добутків многочленів  $P_m(x) = p_0 + p_1 x + \ldots + p_m x^m$  та функцій  $e^{\alpha x}$ ,  $\cos \beta x$ ,  $\sin \beta x$ , то її розв'язок можна шукати **методом невизначених коефіцієнтів**. Це робиться за такими ж правилами, що і для одного лінійного диференціального рівняння зі сталими коефіцієнтами (лекція 14), але з певними змінами. Зокрема, якщо

$$f_k(x) = P_{m_k}(x)e^{\alpha x},$$

де  $P_{m_k}(x)$  – многочлен степеня  $m_k$ , то частинний розв'язок системи (20.15) потрібно шукати не у вигляді  $x^sQ_m(x)e^{\alpha x}$  (як це було для лінійного рівняння), а як

$$y_i = Q_{m+s}^{(i)}(x)e^{\alpha x}, \quad i = 1, 2, \dots, n,$$
 (20.16)

де  $Q_{m+s}^{(i)}(x), i=1,2,\ldots,n$ , – многочлени степеня m+s з невідомими коефіцієнтами,  $m=\max(m_1,m_2,\ldots,m_k); s=0$ , якщо

 $\alpha$  — не є характеристичним числом, і s дорівнює кратності цього числа, якщо  $\alpha$  є характеристичним числом (якщо точніше, число m+s на m одиниць більше найвищого зі степенів многочленів, на які множаться експоненти  $e^{\alpha x}$  у загальному розв'язку відповідної однорідної системи).

Невідомі коефіцієнти многочленів  $Q_{m+s}^{(i)}(x)$  визначають прирівнюванням коефіцієнтів біля відповідних доданків після підставляння (20.16) у систему (20.15).

Аналогічно визначаються степені многочленів у випадках, коли функції  $f_k(x)$  у системі (20.15) містять функції  $e^{\alpha x}\cos\beta x$  і  $e^{\alpha x}\sin\beta x$ , а число  $\alpha+\beta i$  є або не є характеристичним.

**Приклад 2.** Зінтегрувати систему методом невизначених коефіцієнтів:

$$\begin{cases} y' = y - 2z + e^x, \\ z' = y + 4z + e^{2x}. \end{cases}$$

**Розв'язання.** Використовуючи метод Ейлера (лекція 19), знайдемо спочатку загальний розв'язок відповідної однорідної системи

$$\begin{cases} y' = y - 2z, \\ z' = y + 4z. \end{cases}$$

Характеристичне рівняння

$$\left| \begin{array}{cc} 1-k & -2 \\ 1 & 4-k \end{array} \right| = 0$$

має корені  $k_1=2,\,k_2=3.$  Характеристичному числу  $k_1=2$  відповідає система

$$\begin{cases} -\gamma_1 - 2\gamma_2 = 0, \\ \gamma_1 + 2\gamma_2 = 0, \end{cases}$$

звідки, наприклад,  $\gamma_1=2,\ \gamma_2=-1.$  Числу  $k_1=3$  відповідає система

$$\begin{cases} -2\gamma_1 - 2\gamma_2 = 0, \\ \gamma_1 + \gamma_2 = 0, \end{cases}$$

звідки  $\gamma_1=1,\,\gamma_2=-1.$  Отже, загальним розв'язком однорідної системи  $\epsilon$ :

$$y_0 = 2C_1e^{2x} + C_2e^{3x}, \quad z_0 = -C_1e^{2x} - C_2e^{3x}.$$

Враховуючи вигляд функцій  $f_1(x)=e^x$  і  $f_2(x)=e^{2x}$ , частинний розв'язок  $y_1, z_1$  неоднорідної системи через невизначені коефіцієнти запишемо у вигляді

$$y_1 = Ae^x + (Bx + C)e^{2x}, \quad z_1 = De^x + (Ex + F)e^{2x}.$$
 (20.17)

Підставляючи (20.17) у задану систему, одержуємо:

$$Ae^{x} + 2(Bx + C)e^{2x} + Be^{2x} =$$

$$= Ae^{x} + (Bx + C)e^{2x} - 2De^{x} - 2(Ex + F)e^{2x} + e^{x},$$

$$De^{x} + 2(Ex + F)e^{2x} + Ee^{2x} =$$

$$= Ae^{x} + (Bx + C)e^{2x} + 4De^{x} + 4(Ex + F)e^{2x} + e^{2x}.$$

Прирівнюючи коефіцієнти біля  $e^x$ ,  $e^{2x}$  і  $xe^{2x}$  в обох частинах цих тотожностей, одержуємо відповідно:

Звідси

$$A = -\frac{3}{2}$$
,  $B = 2$ ,  $C = 0$ ,  $D = \frac{1}{2}$ ,  $E = -1$ ,  $F = -1$ ,

а тому частинним розв'язком неоднорідної системи є

$$y_1 = -\frac{3}{2}e^x + 2xe^{2x}, \quad z_1 = \frac{1}{2}e^x - (x+1)e^{2x},$$

а загальним розв'язком –

$$y = 2C_1e^{2x} + C_2e^{3x} - \frac{3}{2}e^x + 2xe^{2x},$$
$$z = -C_1e^{2x} - C_2e^{3x} + \frac{1}{2}e^x - (x+1)e^{2x}. \blacksquare$$

Приклад 3. Записати частинний розв'язок з невизначеними коефіцієнтами (не шукаючи їх) системи

$$\begin{cases} y' = 4y - z + xe^{3x} + e^{3x}\sin x, \\ z' = y + 2z + xe^{3x}\cos x. \end{cases}$$
 (20.18)

**Розв'язання.** Знайдемо характеристичні числа відповідної однорідної системи:

$$\begin{vmatrix} 4-k & -1 \\ 1 & 2-k \end{vmatrix} = 0 \implies k^2 - 6k + 9 = 0 \implies k_1 = k_2 = 3.$$

У системі (20.18) для функцій  $xe^{3x}$ ,  $e^{3x}\sin x$ ,  $xe^{3x}\cos x$  числа  $\alpha+\beta i$  відповідно дорівнюють 3, 3+i, 3+i. Тому окремо знайдемо частинні розв'язки систем

$$\begin{cases} y' = 4y - z + xe^{3x}, \\ z' = y + 2z \end{cases}$$
 (20.19)

i

$$\begin{cases} y' = 4y - z + e^{3x} \sin x, \\ z' = y + 2z + xe^{3x} \cos x. \end{cases}$$
 (20.20)

Для системи (20.19)  $\alpha + \beta i = k_1 = k_2 = 3, s = 2, m = 1$ . Згідно з (20.16) її частинний розв'язок потрібно шукати у вигляді

$$y_1 = (ax^3 + bx^2 + cx + d)e^{3x},$$
  
 $z_1 = (fx^3 + gx^2 + hx + p)e^{3x}.$ 

Для системи (20.20)  $\alpha+\beta i=3+i\neq k_{1,2},\ s=0,\ m=1,\ a$ тому її частинний розв'язок має вигляд

$$y_2 = (Ax + B)e^{3x} \sin x + (Cx + D)e^{3x} \cos x,$$
  
 $z_2 = (Ex + F)e^{3x} \sin x + (Gx + H)e^{3x} \cos x.$ 

Тоді частинний розв'язок системи (20.18) запишеться у вигляді:

$$y = y_1 + y_2, \quad z = z_1 + z_2. \blacksquare$$

**4. Метод Д'Аламбера.** Розглянемо лінійну неоднорідну систему двох диференціальних рівнянь зі сталими коефіцієнтами

$$\begin{cases} y' = a_{11}y + a_{12}z + f_1(x), \\ z' = a_{21}y + a_{22}z + f_2(x). \end{cases}$$
 (20.21)

Помножимо друге рівняння цієї системи на деяке число  $\lambda$  і додамо почленно до першого рівняння:

$$(y + \lambda z)' = (a_{11} + \lambda a_{21})y + (a_{12} + \lambda a_{22})z + f_1(x) + \lambda f_2(x) \Rightarrow (y + \lambda z)' = (a_{11} + \lambda a_{21}) \left(y + \frac{a_{12} + \lambda a_{22}}{a_{11} + \lambda a_{21}}z\right) + f_1(x) + \lambda f_2(x).$$
(20.22)

Користуючись довільністю числа  $\lambda$ , виберемо його таким, щоб

$$\frac{a_{12} + \lambda a_{22}}{a_{11} + \lambda a_{21}} = \lambda,$$

тобто

$$a_{21}\lambda^2 + (a_{11} - a_{22})\lambda - a_{12} = 0. (20.23)$$

Тоді рівняння (20.22) запишемо у вигляді:

$$(y + \lambda z)' = (a_{11} + \lambda a_{21})(y + \lambda z) + f_1(x) + \lambda f_2(x).$$
 (20.24)

Рівняння (20.24) є лінійним диференціальним рівнянням першого порядку з шуканою функцією  $y + \lambda z$ . Інтегруючи його (формула (4.6) з лекції 4), одержуємо:

$$y + \lambda z = e^{(a_{11} + \lambda a_{21})x} \left( \int (f_1(x) + \lambda f_2(x)) e^{-(a_{11} + \lambda a_{21})x} dx + C \right).$$
(20.25)

Якщо корені  $\lambda_1$  і  $\lambda_2$  квадратного рівняння (20.23) різні і дійсні, то маємо систему

$$\begin{cases} y + \lambda_1 z = e^{(a_{11} + \lambda_1 a_{21})x} \left( \int (f_1(x) + \lambda_1 f_2(x)) e^{-(a_{11} + \lambda_1 a_{21})x} dx + C_1 \right), \\ y + \lambda_2 z = e^{(a_{11} + \lambda_2 a_{21})x} \left( \int (f_1(x) + \lambda_2 f_2(x)) e^{-(a_{11} + \lambda_2 a_{21})x} dx + C_2 \right), \end{cases}$$

розв'язуючи яку відносно y і z, знайдемо загальний інтеграл системи (20.21).

Якщо корені рівняння (20.23) кратні, тобто  $\lambda_1 = \lambda_2 = \lambda$ , то з (20.25) одержуємо тільки одне рівняння:

$$y + \lambda z = e^{(a_{11} + \lambda a_{21})x} \left( \int (f_1(x) + \lambda f_2(x)) e^{-(a_{11} + \lambda a_{21})x} dx + C \right),$$

але у цьому випадку, підставляючи вираз для y, знайдений звідси, у друге рівняння системи (20.21), одержимо лінійне рівняння першого порядку з невідомою функцією z.

**Рекомендована** література: [3, с. 90 – 91, 127 – 131], [5, с. 370 – 385], [8, с. 206 – 210], [15, с. 103 – 107, 138 – 144], [16, с. 436 – 455, 495 – 528].

### Питання до лекції 20

- 1. Як знайти загальний розв'язок лінійної неоднорідної системи, якщо відомий її частинний розв'язок і загальний розв'язок відповідної однорідної системи?
- 2. У чому полягає метод варіації довільних сталих знаходження загального розв'язку лінійної неоднорідної системи?
- 3. У чому полягає метод невизначених коефіцієнтів інтегрування лінійних неоднорідних систем зі сталими коефіцієнтами? Чи для кожної лінійної системи його можна використати?
- 4. У чому полягає метод Д'Аламбера інтегрування лінійних систем зі сталими коефіцієнтами?

### Вправи до лекції 20

1. Зінтегруйте системи методом варіації довільних сталих:

a) 
$$\begin{cases} y' = 4y - 8z + 2 \operatorname{tg} 4x, \\ z' = 4y - 4z; \end{cases}$$
 6) 
$$\begin{cases} y' = 3y - 2z, \\ z' = 2y - z + 2\sqrt{x}e^x. \end{cases}$$

2. Зінтегруйте системи методом невизначених коефіцієнтів:

a) 
$$\begin{cases} y' = 2y - z, \\ z' = -2y + z - 3x; \end{cases}$$
 6) 
$$\begin{cases} y' = 3y + 2z + e^x, \\ z' = -3y - 2z - 2e^x; \end{cases}$$
 B) 
$$\begin{cases} y' = 5y - z + 5\sin x, \\ z' = 4y + z + 2\cos x. \end{cases}$$

3. Зінтегруйте системи методом Д'Аламбера:

a) 
$$\begin{cases} y' = -2y - z + 12x, \\ z' = -4y - 5z; \end{cases}$$
 6) 
$$\begin{cases} y' = 5y + 4z + e^x, \\ z' = 4y + 5z + 1. \end{cases}$$

### Додаток до розділу 3.

# Застосування математичного пакета Maple для інтегрування систем звичайних диференціальних рівнянь

**Приклад 1.** Зінтегрувати лінійну однорідну систему зі сталими коефіцієнтами

$$\begin{cases} y' = 2y + z, \\ z' = 3y + 4z \end{cases}$$

(приклад 2 лекції 18, стор. 225):

> dsolve( $\{D(y)(x)=2*y(x)+z(x),D(z)(x)=3*y(x)+4*z(x)\},$  $\{y(x),z(x)\}$ );

$$\left\{ y(x) = -C1 e^{x} + \frac{1}{3} - C2 e^{5x}, \quad z(x) = -C1 e^{x} + -C2 e^{5x} \right\}.$$

Приклад 2. Зінтегрувати систему

$$\begin{cases} y' = 5y + 4z, \\ z' = 4y + 5z \end{cases}$$

(приклад 1 лекції 19, стор. 238):

> dsolve( $\{D(y)(x)=5*y(x)+4*z(x),D(z)(x)=4*y(x)+5*z(x)\},$  $\{y(x),z(x)\}$ );

$${y(x) = \_C1 e^{9x} - \_C2 e^x, z(x) = \_C1 e^{9x} + \_C2 e^x}.$$

Приклад 3. Зінтегрувати систему

$$\begin{cases} y' = 2y - z, \\ z' = y + 2z \end{cases}$$

(приклад 2 лекції <mark>19</mark>, стор. <mark>238</mark>):

> dsolve( $\{D(y)(x)=2*y(x)-z(x),D(z)(x)=y(x)+2*z(x)\},$  $\{y(x),z(x)\}\};$ 

$$\{y(x) = e^{2x} (\_C1 \cos(x) - \_C2 \sin(x)), z(x) = e^{2x} (\_C1 \sin(x) + \_C2 \cos(x))\}.$$

Приклад 4. Зінтегрувати систему

$$\begin{cases} y' = 6y + z, \\ z' = -16y - 2z \end{cases}$$

(приклад 3 лекції 19, стор. 240):

> dsolve( $\{D(y)(x)=6*y(x)+z(x),D(z)(x)=-16*y(x)-2*z(x)\},$  $\{y(x),z(x)\}$ );

$$\left\{ y(x) = -\frac{1}{16} e^{2x} (4 C1 + 4 C2 x + C2), \\ z(x) = e^{2x} (C1 + C2 x) \right\}.$$

**Приклад 5.** Зінтегрувати лінійну однорідну систему зі сталими коефіцієнтами

$$\begin{cases} y_1' = -y_2 + y_3 + 2y_1, \\ y_2' = y_1 + 2y_2 - y_3, \\ y_3' = y_1 - y_2 + 2y_3 \end{cases}$$

(приклад 3 лекції 18, стор. 226):

> dsolve( $\{D(y1)(x)=-y2(x)+y3(x)+2*y1(x),D(y2)(x)=y1(x)+2*y2(x)-y3(x),D(y3)(x)=y1(x)-y2(x)+2*y3(x)\},\{y1(x),y2(x),y3(x)\});$ 

$$\{y1(x) = _C3 e^{2x} + e^{3x}_C1, \quad y2(x) = _C2 e^x + _C3 e^{2x}, y3(x) = _C2 e^x + _C3 e^{2x} + e^{3x}_C1\}.$$

Приклад 6. Зінтегрувати систему

$$\begin{cases} y_1' = y_2 + y_3, \\ y_2' = y_1 + y_3, \\ y_3' = y_1 + y_2 \end{cases}$$

(приклад 4 лекції <del>19</del>, стор. <del>241</del>):

> dsolve( $\{D(y1)(x)=y2(x)+y3(x),D(y2)(x)=y1(x)+y3(x),D(y3)(x)=y1(x)+y2(x)\},\{y1(x),y2(x),y3(x)\}\}$ ;

$$\{y1(x) = C2 e^{2x} + C3 e^{-x},$$
  

$$y2(x) = C2 e^{2x} + C3 e^{-x} + e^{-x} C1,$$
  

$$y3(x) = C2 e^{2x} - C3 e^{-x} - e^{-x} C1\}.$$

Приклад 7. Зінтегрувати лінійну неоднорідну систему

$$\begin{cases} y' = 2y - z, \\ z' = -y + 2z + 4xe^x \end{cases}$$

(приклад 1 лекції 20, стор. 246):

> dsolve( $\{D(y)(x)=2*y(x)-z(x),D(z)(x)=-y(x)+2*z(x)+4*x*exp(x)\},\{y(x),z(x)\}$ );

$$\{y(x) = e^{3x} C2 + C1 e^x + xe^x + x^2e^x,$$

$$z(x) = -e^{3x} C2 + C1 e^x - xe^x - e^x + x^2e^x \}.$$

Приклад 8. Зінтегрувати лінійну неоднорідну систему

$$\begin{cases} y' = y - 2z + e^x, \\ z' = y + 4z + e^{2x} \end{cases}$$

(приклад 2 лекції 20, стор. 249):

> dsolve( $\{D(y)(x)=y(x)-2*z(x)+exp(x),D(z)(x)=y(x)+4*z(x)+exp(2*x)\},\{y(x),z(x)\}$ );

$$\begin{cases} y(x) = -2 C2 e^{2x} - e^{3x} C1 + 2xe^{2x} - \frac{3}{2}e^{x}, \\ z(x) = C2 e^{2x} + e^{3x} C1 - xe^{2x} + \frac{1}{2}e^{x} - e^{2x} \end{cases}.$$

Приклад 9. Зінтегрувати систему

$$\begin{cases} y' = 4y - z + xe^{3x} + e^{3x} \sin x, \\ z' = y + 2z + xe^{3x} \cos x \end{cases}$$

(приклад 3 лекції **20**, стор. **250**):

> dsolve( $\{D(y)(x)=4*y(x)-z(x)+x*exp(3*x)*sin(x), D(z)(x)=y(x)+2*z(x)+x*exp(3*x)*cos(x)\},\{y(x),z(x)\}\}$ ;

$$\{y(x) = -e^{3x}(-C2 - xC1 + \sin(x) + 2\cos(x) + x\sin(x)),$$
  

$$z(x) = e^{3x}(C2 + xC1 - C1 - 2\sin(x) - \cos(x) + x\cos(x))\}.$$

Приклад 10. Знайти розв'язок задачі Коші

$$\frac{d^2x}{dt^2} = 0, \quad \frac{d^2y}{dt^2} = -g,$$

$$x(0) = 0, \quad x'(0) = v_0 \cos \alpha, \quad y(0) = 0, \quad y'(0) = v_0 \sin \alpha$$

(задача 1 лекції 18, стор. 223):

> dsolve({(D@@2)(x)(t)=0,(D@@2)(y)(t)=-g,x(0)=0,y(0)=0,D(x)(0)=v0\*cos(alpha),D(y)(0)=v0\*sin(alpha)}, $\{x(t),y(t)\}$ );

$$\left\{ x(t) = v\theta \cos(\alpha)t, \quad y(t) = -\frac{gt^2}{2} + v\theta \sin(\alpha)t \right\}.$$

### Розділ 4. ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ З ЧАСТИННИМИ ПОХІДНИМИ ПЕРШОГО ПОРЯДКУ

Лекція 21. Лінійні однорідні рівняння з частинними похідними першого порядку

#### План

- 1. Зв'язок лінійного однорідного рівняння з частинними похідними першого порядку з відповідною системою характеристик.
- 2. Побудова загального розв'язку лінійного однорідного рівняння.
  - 3. Задача Коші для лінійного однорідного рівняння.
- 1. Зв'язок лінійного однорідного рівняння з частинними похідними першого порядку з відповідною системою характеристик. Багато моделей різноманітних процесів і явищ техніки та математичної фізики (коливання струни і мембрани, теплопередача, дифузія, газова динаміка та інші) приводять до диференціальних рівнянь з частинними похідними.

Ми обмежимося викладом найпростіших відомостей теорії рівнянь з частинними похідними першого порядку, маючи за мету показати зв'язок таких рівнянь з системами звичайних диференціальних рівнянь і навести методи побудови загального розв'язку та розв'язку задачі Коші, які ґрунтуються на цьому зв'язку. Рівняння з частинними похідними другого та вищих порядків інтегруються іншими методами, які вивчатимуться у курсі «Рівняння математичної фізики».

Диференціальним рівнянням з частинними noxiдними називають співвідношення, яке містить невідому функцію від декількох змінних, незалежні змінні та частинні похідні невідомої функції за незалежними змінними. Порядок старшої частинної похідної, яка входить у рівняння, називають no**рядком** рівняння. Наприклад, диференціальне рівняння з частинними похідними першого порядку має такий загальний вигляд:

$$\Phi\left(x_1, x_2, \dots, x_n, u, \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n}\right) = 0, \tag{21.1}$$

де  $u=u(x_1,x_2,\ldots,x_n)$  – шукана функція,  $\frac{\partial u}{\partial x_1},\frac{\partial u}{\partial x_2},\ldots,\frac{\partial u}{\partial x_n}$  – її частинні похідні,  $\Phi$  – задана неперервно диференційовна функція в деякій області  $G\subset \mathbf{R}^{2n+1}$ , причому в рівняння (21.1) принаймні одна частинна похідна входить обов'язково.

Багато фізичних явищ описуються рівняннями з частинними похідними першого порядку. Наприклад, у газовій динаміці важливу роль відіграє рівняння Хопфа  $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$ , де u = u(t,x), а в оптиці вивчається рівняння

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = f(x, y, z),$$

де u = u(x, y, z), яке описує поширення світлових променів у неоднорідному середовищі з показником заломлення f(x, y, z).

**Розв'язком** рівняння (21.1) називають неперервно диференційовну функцію  $u=u(x_1,x_2,\ldots,x_n)$ , яка перетворює рівняння (21.1) у тотожність для кожної точки  $(x_1,x_2,\ldots,x_n)\subset G$ .

Якщо  $u=u(x_1,x_2,\ldots,x_n)$  – розв'язок рівняння (21.1), то його графік – поверхню  $u=u(x_1,x_2,\ldots,x_n)$  у просторі (n+1)-ї змінної  $x_1,x_2,\ldots,x_n,u$  – називають *інтегральною поверхнею* рівняння (21.1).

Розглянемо декілька простих прикладів відшукання розв'язків рівняння (21.1).

Приклад 1. Зінтегрувати рівняння  $\frac{\partial z}{\partial y}=x-2y+1,\ \partial e$  z=z(x,y).

**Розв'язання.** Інтегруючи обидві частини за змінною y, одержуємо

$$z = \int (x - 2y + 1)dy = xy - y^{2} + y + \varphi(x),$$

де  $\varphi(x)$  – довільна диференційовна функція змінної x.

Приклад 2. Зінтегрувати рівняння  $\frac{\partial^2 z}{\partial x \partial y} = 1$ .

**Розв'язання.** Інтегруючи за змінною x, маємо  $\frac{\partial z}{\partial y} = x + \varphi(y)$ , де  $\varphi(y)$  – довільна диференційовна функція. Інтегруючи тепер останню рівність за змінною y, одержуємо, що

$$z = \int (x + \varphi(y)) dy = xy + \varphi_1(y) + \varphi_2(x),$$

де  $\varphi_1(y) = \int \varphi(y) \, dy$ ,  $\varphi_2(x)$  – довільні диференційовні функції.  $\blacksquare$ 

З наведених прикладів випливає, що розв'язки диференціального рівняння з частинними похідними першого порядку можуть залежати від однієї довільної функції, а розв'язки рівняння другого порядку — від двох довільних функцій. Пізніше буде показано, що розв'язки рівняння (21.1) можуть залежати від однієї неперервно диференційовної функції, кількість аргументів якої (n-1).

Якщо у рівнянні (21.1) функція  $\Phi$  залежить лінійно від частинних похідних шуканої функції, то його називають *лінійним*. Лінійне рівняння можна записати у вигляді

$$f_1(x_1, x_2, \dots, x_n, u) \frac{\partial u}{\partial x_1} + f_2(x_1, x_2, \dots, x_n, u) \frac{\partial u}{\partial x_2} + \dots$$

$$\dots + f_n(x_1, x_2, \dots, x_n, u) \frac{\partial u}{\partial x_n} = R(x_1, x_2, \dots, x_n, u). \quad (21.2)$$

Якщо права частина рівняння (21.2) тотожно дорівнює нулю, а коефіцієнти  $f_1, f_2, \ldots, f_n$  не залежать від шуканої функції u, то маємо рівняння

$$f_1(x_1, x_2, \dots, x_n) \frac{\partial u}{\partial x_1} + f_2(x_1, x_2, \dots, x_n) \frac{\partial u}{\partial x_2} + \dots$$
$$\dots + f_n(x_1, x_2, \dots, x_n) \frac{\partial u}{\partial x_n} = 0, \tag{21.3}$$

яке називають лінійним однорідним рівнянням з частинними похідними першого порядку. Вважаємо, що коефіцієнти  $f_1, f_2, \ldots, f_n$  цього рівняння визначені та неперервні разом з частинними похідними за змінними  $x_1, x_2, \ldots, x_n$  у деякому околі заданої точки  $(x_{10}, x_{20}, \ldots, x_{n0})$  і що у цій

точці вони одночасно не перетворюються у нуль, наприклад,  $f_n(x_{10}, x_{20}, \ldots, x_{n0}) \neq 0$ . Очевидно, що рівняння (21.3) має розв'язок u = c, де c – довільна стала.

Одночасно з рівнянням (21.3) розглядатимемо систему звичайних диференціальних рівнянь

$$\frac{dx_1}{f_1(x_1, x_2, \dots, x_n)} = \frac{dx_2}{f_2(x_1, x_2, \dots, x_n)} = \dots = \frac{dx_n}{f_n(x_1, x_2, \dots, x_n)},$$
(21.4)

яка складається з (n-1)-го рівняння. Систему (21.4) називають *системою характеристик* (*характеристичною системою*). Систему характеристик можна записати також у вигляді:

$$\frac{dx_1}{dx_n} = \frac{f_1}{f_n}, \quad \frac{dx_2}{dx_n} = \frac{f_2}{f_n}, \quad \dots, \quad \frac{dx_{n-1}}{dx_n} = \frac{f_{n-1}}{f_n}.$$
(21.5)

Доведемо дві теореми, які встановлюють зв'язок між рівнянням (21.3) і відповідною системою характеристик (21.4).

**Теорема 1.** Кожний інтеграл системи (21.4) e розв'язком рівняння (21.3).

**Доведення.** Нехай  $\psi(x_1, x_2, \ldots, x_n)$  – інтеграл системи (21.4), визначений у деякому околі точки  $(x_{10}, x_{20}, \ldots, x_{n0})$ . Тоді згідно з означенням інтеграла (лекція 18, п. 1) повний диференціал функції  $\psi$  внаслідок системи (21.4) тотожно дорівнює нулю, тобто

$$d\psi = \frac{\partial \psi}{\partial x_1} dx_1 + \frac{\partial \psi}{\partial x_2} dx_2 + \ldots + \frac{\partial \psi}{\partial x_n} dx_n \equiv 0,$$

де диференціали  $dx_1, dx_2, \ldots, dx_{n-1}$  потрібно замінити виразами, які випливають з (21.5):

$$dx_1 = \frac{f_1}{f_n} dx_n$$
,  $dx_2 = \frac{f_2}{f_n} dx_n$ , ...,  $dx_{n-1} = \frac{f_{n-1}}{f_n} dx_n$ .

Таким чином,

$$\left(\frac{\partial \psi}{\partial x_1} \cdot \frac{f_1}{f_n} + \frac{\partial \psi}{\partial x_2} \cdot \frac{f_2}{f_n} + \dots + \frac{\partial \psi}{\partial x_n}\right) \cdot dx_n \equiv 0 \quad \Rightarrow$$

$$f_1 \cdot \frac{\partial \psi}{\partial x_1} + f_2 \cdot \frac{\partial \psi}{\partial x_2} + \dots + f_n \cdot \frac{\partial \psi}{\partial x_n} \equiv 0,$$

звідки випливає, що функція  $u = \psi(x_1, x_2, \dots, x_n)$  є розв'язком рівняння (21.3).  $\blacktriangleright$ 

**Теорема 2.** Кожний розв'язок рівняння (21.3) e інтегралом системи (21.4).

**Доведення.** Нехай  $u = \psi(x_1, x_2, \dots, x_n)$  – розв'язок рівняння (21.3), причому  $u \neq \text{const.}$  Тоді

$$f_1 \cdot \frac{\partial \psi}{\partial x_1} + f_2 \cdot \frac{\partial \psi}{\partial x_2} + \ldots + f_n \cdot \frac{\partial \psi}{\partial x_n} \equiv 0.$$
 (21.6)

Знайдемо диференціал функції  $\psi$  внаслідок системи (21.4):

$$d\psi = \frac{\partial \psi}{\partial x_1} dx_1 + \frac{\partial \psi}{\partial x_2} dx_2 + \dots + \frac{\partial \psi}{\partial x_n} dx_n =$$

$$= \left( \frac{\partial \psi}{\partial x_1} \frac{f_1}{f_n} + \frac{\partial \psi}{\partial x_2} \frac{f_2}{f_n} + \dots + \frac{\partial \psi}{\partial x_n} \right) dx_n =$$

$$= \frac{1}{f_n} \left( f_1 \frac{\partial \psi}{\partial x_1} + f_2 \frac{\partial \psi}{\partial x_2} + \dots + f_n \frac{\partial \psi}{\partial x_n} \right) dx_n,$$

звідки, враховуючи (21.6), маємо, що  $d\psi \equiv 0$ , тобто  $\psi$  є інтегралом системи (21.4).  $\blacktriangleright$ 

Розглянемо, наприклад, рівняння з частинними похідними

$$x\frac{\partial u}{\partial x} + 2y\frac{\partial u}{\partial y} - 3z\frac{\partial u}{\partial z} = 0.$$

Йому відповідає система характеристик

$$\frac{dx}{x} = \frac{dy}{2y} = \frac{dz}{-3z},$$

яка має інтеграли  $\psi_1=x^3z,\ \psi_2=x/\sqrt{y}.$  Отже, функції  $u_1=x^3z,\ u_2=x/\sqrt{y}$  є розв'язками наведеного рівняння з частинними похідними.

**2.** Побудова загального розв'язку лінійного однорідного рівняння. Наступна теорема визначає спосіб побудови загального розв'язку лінійного однорідного рівняння (21.3).

Теорема 3. Нехай

$$\psi_1(x_1, x_2, \dots, x_n), \ \psi_2(x_1, x_2, \dots, x_n), \ \dots, \ \psi_{n-1}(x_1, x_2, \dots, x_n)$$

е незалежними інтегралами системи (21.4). Тоді функція

$$u = \Phi(\psi_1, \psi_2, \dots, \psi_{n-1}),$$
 (21.7)

 $\partial e \Phi - \partial o e i n b h a \phi y h \kappa u i s, я ка ма e h e n e p e p e h i n o x i d h i за змін$  $ними <math>\psi_1, \psi_2, \dots, \psi_{n-1}, e$  p o зв'я зком р i в н я н н я (21.3).

**Доведення.** Підставляючи (21.7) у рівняння (21.3) і беручи до уваги, що функції  $\psi_1,\,\psi_2,\,\ldots,\,\psi_{n-1}$  є розв'язками рівняння (21.3), отримуємо:

$$f_{1}\frac{\partial\Phi}{\partial x_{1}} + f_{2}\frac{\partial\Phi}{\partial x_{2}} + \dots + f_{n}\frac{\partial\Phi}{\partial x_{n}} =$$

$$= f_{1}\sum_{i=1}^{n-1} \frac{\partial\Phi}{\partial\psi_{i}}\frac{\partial\psi_{i}}{\partial x_{1}} + f_{2}\sum_{i=1}^{n-1} \frac{\partial\Phi}{\partial\psi_{i}}\frac{\partial\psi_{i}}{\partial x_{2}} + \dots + f_{n}\sum_{i=1}^{n-1} \frac{\partial\Phi}{\partial\psi_{i}}\frac{\partial\psi_{i}}{\partial x_{n}} =$$

$$= \sum_{i=1}^{n-1} \frac{\partial\Phi}{\partial\psi_{i}} \left( f_{1}\frac{\partial\psi_{i}}{\partial x_{1}} + f_{2}\frac{\partial\psi_{i}}{\partial x_{2}} + \dots + f_{n}\frac{\partial\psi_{i}}{\partial x_{n}} \right) \equiv 0,$$

а це й означає, що функція (21.7) є розв'язком рівняння (21.3).  $\blacktriangleright$ 

Формулу (21.7) називають *загальним розв'язком* рівняння (21.3). Звертаємо увагу, що загальний розв'язок рівняння з частинними похідними першого порядку містить довільну функцію, а не довільні сталі, як це було для звичайних диференціальних рівнянь.

Приклад 3. Зінтегрувати рівняння

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0.$$

**Розв'язання**. Складемо відповідну систему характеристик

$$\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$$

і зінтегруємо її:  $y/x=C_1,\ z/x=C_2,\$ а тому інтегралами є  $\psi_1=y/x,\ \psi_2=z/x.$  Отже, загальним розв'язком заданого рівняння є

 $u = \Phi\left(\frac{y}{x}, \frac{z}{x}\right),$ 

де  $\Phi$  — довільна неперервно диференційовна функція від часток y/x і z/x, тобто u є довільною неперервно диференційовною однорідною функцією нульового виміру змінних  $x,\ y,\ z.$  Наприклад, розв'язками заданого рівняння є функції

$$u_1 = \frac{y}{x}$$
,  $u_2 = \frac{3y}{x} + \frac{z}{x}$ ,  $u_3 = \left(\frac{y}{x}\right)^2$ ,  $u_4 = \cos\frac{z}{x}$ ,  $u_5 = 2^{x/z}$ .

**Відповідъ:**  $u = \Phi(y/x, z/x)$ .

З теореми 3 випливає, що задача про побудову загального розв'язку рівняння (21.3) рівносильна задачі про відшукання n-1 незалежних інтегралів відповідної йому системи характеристик (21.4).

У випадку двох незалежних змінних, позначивши шукану функцію через z(x,y), маємо рівняння

$$f_1(x,y)\frac{\partial z}{\partial x} + f_2(x,y)\frac{\partial z}{\partial y} = 0.$$
 (21.8)

Відповідна система характеристик вироджується в одне диференціальне рівняння

$$\frac{dx}{f_1(x,y)} = \frac{dy}{f_2(x,y)}. (21.9)$$

Якщо  $\psi(x,y)$  – інтеграл рівняння (21.9), то  $z = \Phi(\psi(x,y))$ , де  $\Phi(\psi)$  – довільна неперервно диференційовна функція від змінної  $\psi$ , буде загальним розв'язком рівняння (21.8).

Приклад 4. Зінтегрувати рівняння  $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=0$ . **Розв'язання.** Відповідна система характеристик вироджується у рівняння з відокремлюваними змінними:  $\frac{dx}{y}=\frac{dy}{-x}$ , інтегралом якого є  $\psi=x^2+y^2$ . Згідно з теоремою 3 загальний розв'язок заданого рівняння має вигляд

$$z = \Phi(x^2 + y^2).$$

З геометричної точки зору маємо сім'ю поверхонь обертання з віссю обертання Oz. Таким чином, задане рівняння є

диференціальним рівнянням усіх поверхонь обертання з віссю обертання Oz. Інтегральними поверхнями є поверхні обертання  $z=\Phi(x^2+y^2)$ . Окремими випадками цих поверхонь є  $z=x^2+y^2$  (параболоїд обертання),  $z=\sqrt{R^2-x^2-y^2}$  (півсфера),  $z=\sqrt{x^2+y^2}$  (конус), z=c (площина).  $Bidnosidv: z=\Phi(x^2+y^2)$ .

3. Задача Коші для лінійного однорідного рівняння. Задача Коші для рівняння (21.3) полягає у знаходженні розв'язку  $u = u(x_1, x_2, \ldots, x_n)$ , який для фіксованого значення однієї з незалежних змінних, наприклад  $x_n$ , перетворюється у задану неперервно диференційовну функцію решти змінних, тобто задовольняє *початкову умову*:

$$u|_{x_n=x_{n0}} = \varphi(x_1, x_2, \dots, x_{n-1}).$$
 (21.10)

У випадку, коли шукана функція залежить від двох незалежних змінних, тобто для рівняння (21.8), задача Коші полягає у відшуканні такого розв'язку z=f(x,y), який задовольняє початкову умову

$$z|_{x=x_0} = \varphi(y),$$

де  $\varphi(y)$  — задана функція. Геометрично це означає, що серед усіх інтегральних поверхонь, які визначаються рівнянням (21.8), шукається така поверхня z=f(x,y), яка проходить через задану криву  $z=\varphi(y)$ , яка лежить у площині  $x=x_0$  (ця площина паралельна до площини Oyz).

Згідно з теоремою 3 загальний розв'язок рівняння (21.3) задається формулою (21.7), тобто

$$u = \Phi(\psi_1, \psi_2, \dots, \psi_{n-1}).$$

Підставляючи цю функцію в (21.10), бачимо, що розв'язок задачі Коші (21.3), (21.10) зводиться до визначення вигляду функції  $\Phi$ , яка задовольняє умову

$$\Phi(\psi_1, \psi_2, \dots, \psi_{n-1})|_{x_n = x_{n0}} = \varphi(x_1, x_2, \dots, x_{n-1}).$$

Таким чином, одержуємо *правило розв'язування задачі* Komi (21.3), (21.10):

1) скласти відповідну систему характеристик і знайти iiin - 1 незалежних інтегралів:

$$\psi_1(x_1, x_2, \dots, x_n), \quad \psi_2(x_1, x_2, \dots, x_n), \quad \dots, \quad \psi_{n-1}(x_1, x_2, \dots, x_n);$$

2) замінити у знайдених інтегралах незалежну змінну  $x_n$  її початковим значенням  $x_n = x_{n0}$ :

$$\begin{cases}
\psi_1(x_1, x_2, \dots, x_{n-1}, x_{n0}) = \bar{\psi}_1, \\
\psi_2(x_1, x_2, \dots, x_{n-1}, x_{n0}) = \bar{\psi}_2, \\
\dots \dots \dots \\
\psi_{n-1}(x_1, x_2, \dots, x_{n-1}, x_{n0}) = \bar{\psi}_{n-1}
\end{cases} (21.11)$$

i розв'язати систему (21.11) відносно  $x_1, x_2, \ldots, x_{n-1},$  тобто знайти

$$x_1 = \omega_1(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_{n-1}), \quad x_2 = \omega_2(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_{n-1}), \quad \dots,$$
  
$$x_{n-1} = \omega_{n-1}(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_{n-1});$$

3) побудувати функцію

$$u = \varphi(\omega_1(\psi_1, \psi_2, \dots, \psi_{n-1}), \, \omega_2(\psi_1, \psi_2, \dots, \psi_{n-1}), \, \dots, \\ \omega_{n-1}(\psi_1, \psi_2, \dots, \psi_{n-1})),$$

яка і буде розв'язком задачі Коші.

Приклад 5. Знайти розв'язок задачі Коші

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0, \quad u|_{x=3} = y+z.$$

**Розв'язання.** Інтегралами відповідної системи характеристик є  $\psi_1 = y/x$ ,  $\psi_2 = z/x$  (див. приклад 3). Оскільки

$$|\psi_1|_{x=3} = \bar{\psi}_1 = \frac{y}{3}, \quad |\psi_2|_{x=3} = \bar{\psi}_2 = \frac{z}{3},$$

то  $y=3\bar{\psi}_1,\,z=3\bar{\psi}_2,\,$ а тому шуканим розв'язком є

$$u = 3\psi_1 + 3\psi_2 \quad \Rightarrow \quad u = 3\frac{y+z}{x}. \quad \blacksquare$$

### Приклад 6. Знайти інтегральну поверхню рівняння

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0,$$

яка при x=0 проходить через криву  $z=y^2$ .

**Розв'язання.** Оскільки  $\psi(x,y)=x^2+y^2$  (див. приклад 4), то  $\bar{\psi}=\psi|_{x=0}=y^2.$  Звідси  $y=\pm\sqrt{\bar{\psi}},$  а тому шуканою інтегральною поверхнею є

$$z = \psi(x, y) \quad \Rightarrow \quad z = x^2 + y^2.$$

З геометричної точки зору маємо параболоїд обертання.

**Рекомендована література**: [1, с. 325 – 328], [3, с. 198 – 202], [5, с. 458 – 463], [8, с. 247 – 281], [15, с. 275 – 280].

#### Питання до лекції 21

- 1. Що називають диференціальним рівнянням з частинними похідними? Як визначити порядок такого рівняння?
- 2. Що називають розв'язком рівняння з частинними похідними? Який геометричний зміст має розв'язок рівняння з двома незалежними змінними?
- 3. Яке рівняння називають лінійним рівнянням з частинними похідними першого порядку? У якому випадку його називають однорідним?
- 4. Який вигляд має система характеристик для лінійного однорідного рівняння з частинними похідними першого порядку? Який зв'язок між лінійним однорідним рівнянням з частинними похідними першого порядку та відповідною системою характеристик?
- 5. Як формулюється задача Коші для рівняння з частинними похідними першого порядку? Який геометричний зміст вона має у випадку двох незалежних змінних?
- 6. Як побудувати загальний розв'язок лінійного однорідного рівняння з частинними похідними першого порядку? Як розв'язується задача Коші для цього рівняння?

### Вправи до лекції 21

1. Перевірте, чи є вказані функції розв'язками заданих рівнянь з частинними похідними:

a) 
$$2\sqrt{x}\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0$$
,  $z = \sqrt{x} + \ln y$ ;  
6)  $(x^2 + y^2)\frac{\partial u}{\partial x} + 2xy\frac{\partial u}{\partial y} + xz\frac{\partial u}{\partial z} = 0$ ,  $u = \frac{x^2 - y^2}{z^2} + 3$ ;  
B)  $\left(x + \frac{z^4}{y}\right)\frac{\partial u}{\partial x} + 2y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$ ,  $u = \frac{z^2 + z^3}{y} + 2xz$ .

2. Зінтегруйте однорідні рівняння з частинними похідними:

a) 
$$(x+2y)\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0;$$
 6)  $x\frac{\partial u}{\partial x} + yz\frac{\partial u}{\partial z} = 0;$   
B)  $(x^2y - x^2y^2)\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$ 

3. Розв'яжіть задачі Коші:

a) 
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0$$
,  $z|_{y=1} = 2x$ ; 6)  $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 2 \frac{\partial u}{\partial z} = 0$ ,  $u|_{x=1} = yz$ .

## Лекція 22. Квазілінійні та нелінійні рівняння з частинними похідними першого порядку

### План

- 1. Побудова загального розв'язку квазілінійного рівняння першого порядку.
- 2. Задачі Коші для квазілінійного рівняння першого порядку.
- 3. Нелінійні рівняння з частинними похідними першого порядку.
  - 4. Рівняння Пфаффа.
- 1. Побудова загального розв'язку квазілінійного рівняння першого порядку. Рівняння вигляду

$$f_1(x_1, x_2, \dots, x_n, u) \frac{\partial u}{\partial x_1} + f_2(x_1, x_2, \dots, x_n, u) \frac{\partial u}{\partial x_2} + \dots$$

$$\dots + f_n(x_1, x_2, \dots, x_n, u) \frac{\partial u}{\partial x_n} = F(x_1, x_2, \dots, x_n, u)$$
(22.1)

називають лінійним неоднорідним рівнянням з частинними похідними першого порядку або квазілінійним рівнянням. До цього ж типу будемо відносити й рівняння, у яких  $F \equiv 0$ , але хоча б один з коефіцієнтів  $f_j$  залежить від u. Вважаємо, що функції  $f_1, f_2, \ldots, f_n, F$  неперервно диференційовні в деякому околі заданої точки  $(x_{10}, x_{20}, \ldots, x_{n0}, u_0)$ . Нехай, крім того,  $f_n(x_{10}, x_{20}, \ldots, x_{n0}, u_0) \neq 0$ .

Розв'язок рівняння (22.1) шукаємо у неявному вигляді:

$$V(x_1, x_2, \dots, x_n, u) = 0, (22.2)$$

де функція V має неперервні частинні похідні за усіма аргументами принаймні в деякій області зміни  $x_1, x_2, \ldots, x_n, u$ , причому  $V'_u(x_{10}, x_{20}, \ldots, x_{n0}, u_0) \neq 0$  (це гарантує те, що в цій області рівняння (22.2) визначає u як неявну функцію від  $x_1, x_2, \ldots, x_n$ ).

Здиференціювавши (22.2) за змінною  $x_k$ , яка входить у (22.2) явно і неявно через функцію u, одержуємо:

$$\frac{\partial V}{\partial x_k} + \frac{\partial V}{\partial u} \cdot \frac{\partial u}{\partial x_k} = 0, \quad k = 1, 2, \dots, n \quad \Rightarrow 
\frac{\partial u}{\partial x_k} = -\frac{\partial V}{\partial x_k} \cdot \left(\frac{\partial V}{\partial u}\right)^{-1}, \quad k = 1, 2, \dots, n. \tag{22.3}$$

Підставляючи вирази для частинних похідних  $\frac{\partial u}{\partial x_k}$  з (22.3) у (22.1), після простих перетворень відносно невідомої функції V одержуємо лінійне однорідне рівняння з частинними похідними

$$f_1(x_1, x_2, \dots, x_n, u) \frac{\partial V}{\partial x_1} + f_2(x_1, x_2, \dots, x_n, u) \frac{\partial V}{\partial x_2} + \dots$$
$$\dots + f_n(x_1, x_2, \dots, x_n, u) \frac{\partial V}{\partial x_n} + F(x_1, x_2, \dots, x_n, u) \frac{\partial V}{\partial u} = 0. (22.4)$$

Щоб зінтегрувати рівняння (22.4), утворимо відповідну *систему характеристик* (п. 1 лекції 21):

$$\frac{dx_1}{f_1} = \frac{dx_2}{f_2} = \dots = \frac{dx_n}{f_n} = \frac{du}{F}$$
 (22.5)

і припустимо, що нам вдалося відшукати n незалежних інтегралів цієї системи:

$$\psi_1 = \psi_1(x_1, x_2, \dots, x_n, u), \quad \psi_2 = \psi_2(x_1, x_2, \dots, x_n, u), \dots$$
  
$$\psi_n = \psi_n(x_1, x_2, \dots, x_n, u).$$

Згідно з теоремою 3 попередньої лекції загальний розв'язок рівняння (22.4) можна записати у вигляді

$$V = \Phi(\psi_1, \, \psi_2, \, \dots, \psi_n), \tag{22.6}$$

де  $\Phi$  — довільна неперервно диференційовна функція своїх аргументів.

Враховуючи (22.2), одержуємо шуканий розв'язок рівняння (22.1) у неявному вигляді

$$\Phi(\psi_1, \psi_2, \dots, \psi_n) = 0. \tag{22.7}$$

Співвідношення (22.7), де  $\Phi$  – довільна неперервно диференційовна функція, називають *загальним розв'язком* рівняння (22.1). Якщо (22.7) вдасться розв'язати відносно u, то одержимо загальний розв'язок у явному вигляді:  $u = u(x_1, x_2, \dots, x_n)$ , де u – неперервно диференційовна функція.

Систему (22.5) називають *системою характеристик* квазілінійного рівняння (22.1).

Таким чином, для знаходження загального розв'язку рівняння (22.1) потрібно утворити відповідну систему характеристик, знайти п незалежних інтегралів цієї системи і прирівняти до нуля довільну диференційовну функцію цих інтегралів. Отримана при цьому рівність вигляду (22.7) буде загальним розв'язком рівняння (22.1) у неявному вигляді. Розв'язуючи його відносно и (якщо це можливо), можна знайти загальний розв'язок у явному вигляді.

Приклад 1. Зінтегрувати рівняння  $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=u$ . **Розв'язання.** Складемо відповідну систему характеристик:  $\frac{dx}{x}=\frac{dy}{y}=\frac{dz}{z}=\frac{du}{u}$  і знайдемо її інтеграли:  $\psi_1=y/x,\ \psi_2=z/x,\ \psi_3=u/x$ . Отже, загальним розв'язком є

$$\Phi\left(\frac{y}{x}, \frac{z}{x}, \frac{u}{x}\right) = 0. \tag{22.8}$$

Розв'язуючи (22.8) відносно u/x, одержуємо:

$$\frac{u}{x} = f\left(\frac{y}{x}, \frac{z}{x}\right) \quad \Rightarrow \quad u = x \cdot f\left(\frac{y}{x}, \frac{z}{x}\right),$$

де f — довільна функція, а отже, розв'язком заданого рівняння є довільна однорідна неперервно диференційовна функція виміру 1.  $\blacksquare$ 

Приклад 2. Зінтегрувати рівняння  $e^x \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = ye^x$ . **Розв'язання.** Запишемо відповідну систему характеристик:

$$\frac{dx}{e^x} = \frac{dy}{y^2} = \frac{dz}{ye^x}.$$

3 рівняння  $\frac{dx}{e^x} = \frac{dy}{y^2}$  (це рівняння з відокремленими змінними) знаходимо перший інтеграл  $y^{-1} - e^{-x} = C_1$ , а з рівняння  $\frac{dy}{y^2} = \frac{dz}{ye^x}$ , враховуючи, що  $e^x = \frac{y}{1-yC_1}$ , маємо ще один перший інтеграл  $z - \frac{\ln|y| - x}{e^{-x} - y^{-1}} = C_2$ . Таким чином, загальним інтегралом заданого рівняння є  $\Phi\left(\frac{1}{y} - e^{-x}, \frac{\ln|y| - x}{e^{-x} - y^{-1}}\right) = 0$ , а загальним розв'язком —

$$z = \frac{\ln|y| - x}{e^{-x} - y^{-1}} + \varphi\left(\frac{1}{y} - e^{-x}\right)$$
.

**2.** Задачі Коші для квазілінійного рівняння першого порядку. Задача Коші для квазілінійного рівняння (22.1), так само, як і для лінійного однорідного рівняння, полягає у знаходженні такого розв'язку  $u=u(x_1,x_2,\ldots,x_n)$  цього рівняння, який задовольняє початкову умову:

$$u|_{x_n=x_{n0}} = \varphi(x_1, x_2, \dots, x_{n-1}),$$
 (22.9)

де  $\varphi$  – задана неперервно диференційовна функція.

Покажемо, як знайти розв'язок задачі Коші для рівняння (22.1), знаючи його загальний розв'язок (22.7). Як і для однорідного рівняння, все зводиться до визначення вигляду функції  $\Phi$ . Якщо записати початкову умову (22.9) у вигляді

$$u(x_1, x_2, \dots, x_{n-1}, x_{n0}) - \varphi(x_1, x_2, \dots, x_{n-1}) = 0$$

і порівняти її з (22.7), то бачимо, що функцію  $\Phi$  потрібно вибрати так, щоб

$$\Phi(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_{n-1}) = u(x_1, x_2, \dots, x_{n-1}, x_{n0}) - \\
- \varphi(x_1, x_2, \dots, x_{n-1}), \tag{22.10}$$

де через  $\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n$  позначено функції, які отримуємо з інтегралів системи (22.5) заміною  $x_n$  початковим значенням  $x_{n0}$ , тобто

$$\bar{\psi}_j = \psi_j(x_1, x_2, \dots, x_{n-1}, x_{n0}, u), \quad j = 1, 2, \dots, n.$$
 (22.11)

Розв'язуючи систему (22.11) відносно  $x_1, x_2, \ldots, x_{n-1}, u$ , одержуємо:

$$x_j = \omega_j(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n), \ j = 1, 2, \dots, n - 1;$$
  
 $u = \omega(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n).$ 

Якщо тепер в якості функції  $\Phi$  взяти функцію

$$\Phi(\psi_1, \psi_2, \dots, \psi_n) = \omega(\psi_1, \psi_2, \dots, \psi_n) - \varphi(\omega_1(\psi_1, \psi_2, \dots, \psi_n), \dots, \omega_{n-1}(\psi_1, \psi_2, \dots, \psi_n)),$$

то умова (22.10), очевидно, справджується. Отже, формула

$$\omega(\psi_1, \psi_2, \dots, \psi_n) - -\varphi(\omega_1(\psi_1, \psi_2, \dots, \psi_n), \dots, \omega_{n-1}(\psi_1, \psi_2, \dots, \psi_n)) = 0 \quad (22.12)$$

визначає розв'язок задачі Коші (22.1), (22.9) у неявному вигляді. Якщо (22.12) можна розв'язати відносно u, то одержимо розв'язок задачі Коші у явному вигляді, тобто у вигляді  $u=u(x_1,x_2,\ldots,x_n)$ .

Таким чином, приходимо до такого *правила розв'язування задачі Коші* для квазілінійного рівняння (22.1):

1) утворити відповідну систему характеристик і знайти n ii незалежних інтегралів:

$$\psi_j(x_1, x_2, \dots, x_{n-1}, x_n, u), \quad j = 1, \dots, n;$$
 (22.13)

2) замінити в інтегралах (22.13) незалежну змінну  $x_n$  її заданим значенням  $x_n = x_{n0}$ :

$$\begin{cases}
\psi_1(x_1, x_2, \dots, x_{n-1}, x_{n0}, u) = \bar{\psi}_1, \\
\psi_2(x_1, x_2, \dots, x_{n-1}, x_{n0}, u) = \bar{\psi}_2, \\
\dots \\
\psi_{n-1}(x_1, x_2, \dots, x_{n-1}, x_{n0}, u) = \bar{\psi}_{n-1}
\end{cases} (22.14)$$

i розв'язати систему (22.14) відносно  $x_1, x_2, \ldots, x_{n-1}, u$ :

$$x_j = \omega_j(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n), \ j = 1, \dots, n; \quad u = \omega(\bar{\psi}_1, \bar{\psi}_2, \dots, \bar{\psi}_n);$$

3) утворити співвідношення

$$\omega(\psi_1, \psi_2, \dots, \psi_n) - -\varphi(\omega_1(\psi_1, \psi_2, \dots, \psi_n), \dots, \omega_{n-1}(\psi_1, \psi_2, \dots, \psi_n)) = 0, (22.15)$$

яке й визначатиме шуканий розв'язок задачі Коші (22.1), (22.9) у неявному вигляді. Розв'язуючи (22.15) відносно и (якщо це можсливо), одержимо розв'язок задачі Коші у явному вигляді.

Приклад 3. Знайти інтегральну поверхню рівняння

$$x\frac{\partial z}{\partial x} - 2y\frac{\partial z}{\partial y} = x^2 + y^2$$

яка проходить через лінію  $y=2, z=x^2$ .

**Розв'язання.** Запишемо відповідну систему характеристик:

$$\frac{dx}{x} = \frac{dy}{-2y} = \frac{dz}{x^2 + y^2}.$$

Першими інтегралами цієї системи, як легко перевірити, є

$$yx^2 = C_1$$
 i  $x^2/2 - y^2/4 - z = C_2$ .

Отже, загальний інтеграл рівняння можна записати у вигляді  $\Phi(yx^2,\ x^2/2-y^2/4-z)=0,$  а загальним розв'язком є

$$z = x^2/2 - y^2/4 + \varphi(yx^2). \tag{22.16}$$

Функція  $\varphi$  згідно з початковою умовою задовольняє рівняння

$$x^2 = x^2/2 - 1 + \varphi(x^2)$$
 при  $\varphi(t) = t/2 + 1$ .

Отже,  $\varphi(yx^2)=yx^2/2+1$ , а з (22.16) знаходимо розв'язок заданої задачі Коші:

$$z = \frac{x^2}{2} - \frac{y^2}{4} + \frac{yx^2}{2} + 1. \quad \blacksquare$$

**3.** Нелінійні рівняння з частинними похідними першого порядку. Розглянемо нелінійне рівняння з частинними похідними першого порядку з двома незалежними змінними. У загальному випадку таке рівняння можна записати у вигляді

$$F(x, y, z, p, q) = 0, (22.17)$$

де z=z(x,y) – шукана функція,  $p=\frac{\partial z}{\partial x},\,q=\frac{\partial z}{\partial y},\,F$  – задана неперервно диференційовна функція своїх аргументів у деякому околі початкової точки  $(x_0,y_0,z_0,p_0,q_0)$ , яка залежить від p і q нелінійно.

Виявляється, що задача інтегрування одного рівняння вигляду (22.17) є складнішою, ніж інтегрування системи двох сумісних рівнянь вигляду (22.17).

Розглянемо систему

$$\begin{cases} F(x, y, z, p, q) = 0, \\ G(x, y, z, p, q) = 0 \end{cases}$$

і припустимо, що у деякій області зміни  $x,\,y,\,z,\,p,\,q$  цю систему можна розв'язати відносно p і q, тобто

$$\begin{cases}
p = A(x, y, z), \\
q = B(x, y, z),
\end{cases}$$
(22.18)

де функції A і B – неперервно диференційовні в деякому околі початкової точки  $(x_0, y_0, z_0)$ .

Знайдемо необхідну умову сумісності системи (22.18). Припустимо, що розв'язок z=z(x,y) цієї системи має неперервні частинні похідні  $\frac{\partial z}{\partial x}, \; \frac{\partial z}{\partial y}, \; \frac{\partial^2 z}{\partial x \partial y}, \; \frac{\partial^2 z}{\partial y \partial x}$  у деякому околі точки  $(x_0,y_0)$ .

Диференціюючи рівняння системи (22.18) за змінними y і x відповідно, одержуємо:

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial A}{\partial y} + \frac{\partial A}{\partial z} \cdot \frac{\partial z}{\partial y} \quad \Rightarrow \quad \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial A}{\partial y} + \frac{\partial A}{\partial z} \cdot B,$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial B}{\partial x} + \frac{\partial B}{\partial z} \cdot \frac{\partial z}{\partial x} \quad \Rightarrow \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial B}{\partial x} + \frac{\partial B}{\partial z} \cdot A.$$

Прирівнюючи обидва вирази для другої мішаної похідної (результат не залежить від порядку диференціювання), одержуємо *необхідну умову сумісності системи* (22.18):

$$\frac{\partial A}{\partial y} + B \frac{\partial A}{\partial z} - \frac{\partial B}{\partial x} - A \frac{\partial B}{\partial z} = 0. \tag{22.19}$$

Рівність (22.19) перетвориться у тотожність, якщо замість z підставити розв'язок z(x,y) системи (22.18). Якщо умова (22.19) не виконується тотожно, то (22.19) – рівняння з трьома змінними x, y, z, яке визначає z як функцію від x і y, z = z(x,y), і попередні міркування показують, що розв'язок системи (22.18), якщо він існує, не може бути іншим, ніж цією функцією. Чи є функція z = z(x,y) розв'язком системи (22.18), легко перевірити за допомогою підстановки.

З'ясуємо, за яких умов система (22.18) має безліч розв'язків, тобто через кожну точку  $(x_0,y_0,z_0)$  деякої області простору проходить інтегральна поверхня, яка відповідає певному розв'язку. У цьому випадку умова (22.19) повинна виконуватись у кожній точці згаданої області, тобто тотожно для (x,y,z).

Отже, тотожне виконання умови (22.19) необхідне для того, щоб система (22.18) мала безліч розв'язків, які залежать принаймні від однієї довільної сталої. Можна показати, що тотожне виконання умови (22.19) є також достатнім для сумісності системи (22.18), тобто за виконання цієї умови знаходження спільних розв'язків системи (22.18) зводиться до інтегрування двох звичайних диференціальних рівнянь.

Приклад 4. Зінтегрувати систему рівнянь

$$\frac{\partial z}{\partial x} = z + yz, \quad \frac{\partial z}{\partial y} = z^2 + 2xz.$$

**Розв'язання.** Вираз для лівої частини рівності (22.19):

$$\frac{\partial A}{\partial y} + B \frac{\partial A}{\partial z} - \frac{\partial B}{\partial x} - A \frac{\partial B}{\partial z} =$$

$$= z + (z^2 + 2xz)(1+y) - 2z - (z+yz)(2z+2x) = -z(1+z+yz)$$

не дорівнює тотожно нулю. Прирівнюючи його до нуля, одержуємо, що z=0 і  $z=-\frac{1}{1+y}$ . За допомогою підстановки переконуємось, що тільки функція z=0 є розв'язком системи. Відповідь: z=0.

Приклад 5. Зінтегрувати систему рівнянь

$$\frac{\partial z}{\partial x} = y^2, \quad \frac{\partial z}{\partial y} = \frac{1}{y^2} + \frac{2z}{y} - y^2.$$

**Розв'язання.** Умова сумісності (22.19) виконується тотожно:

$$\frac{\partial A}{\partial y} + B \frac{\partial A}{\partial z} - \frac{\partial B}{\partial x} - A \frac{\partial B}{\partial z} = 2y - \frac{2}{y} \cdot y^2 \equiv 0.$$

Інтегруючи перше рівняння заданої системи за змінною x, знаходимо

$$z = \int y^2 dx = xy^2 + u(y), \qquad (22.20)$$

де u(y) – довільна диференційовна функція змінної y.

Підставляючи в друге рівняння системи, одержуємо:

$$2xy + u'(y) = \frac{1}{y^2} + 2xy + \frac{2u}{y} - y^2 \quad \Rightarrow \quad u'(y) - \frac{2u}{y} = \frac{1}{y^2} - y^2.$$

Маємо лінійне рівняння першого порядку відносно невідомої функції u. Його загальним розв'язком є  $u=-\frac{1}{3y}-y^3+Cy^2$ , де C — довільна стала. Підставляючи цей вираз для u у (22.20), одержуємо загальний розв'язок системи:

$$z = xy^2 - y^3 - \frac{1}{3y} + Cy^2$$
.

### **4.** Рівняння Пфаффа. Рівнянням Пфаффа називають рівняння вигляду

$$P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0.$$
 (22.21)

У рівняння (22.21) змінні x, y, z входять рівноправно, а отже, будь-яку з них можна прийняти за шукану функцію. Припустимо, що коефіцієнти P, Q, R визначені та неперервні разом з частинними похідними першого порядку в околі початкової точки  $(x_0, y_0, z_0)$  і у цій точці одночасно не перетворюються в нуль. Нехай, наприклад,  $R(x_0, y_0, z_0) \neq 0$ . Тоді рівняння (22.21) можна записати у вигляді

$$dz = -\frac{P}{R}dx - \frac{Q}{R}dy.$$

Знайдемо умову, за якої рівняння Пфаффа має сім'ю розв'язків (інтегральних поверхонь), залежну від однієї довільної сталої. Оскільки на кожній інтегральній поверхні z=z(x,y) справджується співвідношення  $dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy$ , то

$$\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -\frac{P}{R}dx - \frac{Q}{R}dy.$$

Звідси, враховуючи незалежність диференціалів dx і dy, одержуємо, що шукані інтегральні поверхні повинні задовольняти систему рівнянь

$$\frac{\partial z}{\partial x} = -\frac{P}{R}, \quad \frac{\partial z}{\partial y} = -\frac{Q}{R}.$$
 (22.22)

Таким чином, рівняння Пфаффа (22.21) рівносильне системі (22.22) і, отже, необхідно з'ясувати умови повної інтегровності цієї системи.

Записуючи умову (22.19) для системи (22.22), маємо:

$$\begin{split} &-\frac{1}{R}\frac{\partial P}{\partial y}+\frac{P}{R^2}\frac{\partial R}{\partial y}+\left(-\frac{1}{R}\frac{\partial P}{\partial z}+\frac{P}{R^2}\frac{\partial R}{\partial z}\right)\left(-\frac{Q}{R}\right)=\\ &=-\frac{1}{R}\frac{\partial Q}{\partial x}+\frac{Q}{R^2}\frac{\partial R}{\partial x}+\left(-\frac{1}{R}\frac{\partial Q}{\partial z}+\frac{Q}{R^2}\frac{\partial R}{\partial z}\right)\left(-\frac{P}{R}\right). \end{split}$$

Домножуючи обидві частини на  $\mathbb{R}^2$  і згрупувавши доданки відносно  $P,\,Q$  і  $R,\,$  одержуємо, що

$$P\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) + Q\left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) + R\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) = 0. \quad (22.23)$$

Для зручності запам'ятовування умову (22.23) можна записати у вигляді умовної рівності

$$\begin{vmatrix} P & Q & R \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = 0,$$

якщо визначник умовно розкласти за елементами першого рядка.

Якщо умова (22.23) виконується тотожно, то її називають *умовою повної інтегровності рівняння Пфаффа*. За виконання цієї умови інтегрування рівняння Пфаффа зводиться до інтегрування системи (22.22). При цьому існує сім'я розв'язків, яка містить одну довільну сталу.

Приклад 6. Зінтегрувати рівняння Пфаффа

$$(2x^2 + 2xz + 2xy^2 - 1)dx - 2y dy - dz = 0.$$

**Розв'язання.** Оскільки умова (22.23) повної інтегровності виконується тотожно:

$$(2x^2 + 2xz + 2xy^2 - 1) \cdot (0 - 0) + (-2y) \cdot (2x - 0) + (-1) \cdot (0 - 4xy) \equiv 0,$$

то задане рівняння має сім'ю інтегральних поверхонь, залежну від довільної сталої. Вважаючи шуканою функцією z=z(x,y), замінимо задане рівняння рівносильною системою

$$\frac{\partial z}{\partial x} = 2x^2 + 2xz + 2xy^2 - 1, \quad \frac{\partial z}{\partial y} = -2y \tag{22.24}$$

і перевіримо для неї виконання умови сумісності (22.19):

$$4xy + 2x(-2y) - 0 - 0 \cdot (2x^2 + 2xz + 2xy^2 - 1) \equiv 0.$$

Отже, систему (22.24) можна зінтегрувати. Перше з рівнянь у (22.24) лінійне відносно z (якщо зафіксувати y). Інтегруючи його (за формулою (4.6) з лекції 4), знаходимо

$$z = e^{x^2} \left( \int (2x^2 + 2xy^2 - 1)e^{-x^2} dx + C(y) \right),$$

де C(y) – довільна диференційовна функція змінної y. Оскільки

$$\int (2x^2 + 2xy^2 - 1)e^{-x^2} dx = -y^2 e^{-x^2} + \int 2x^2 e^{-x^2} dx - \int e^{-x^2} dx =$$

$$= -y^2 e^{-x^2} - xe^{-x^2} + \int e^{-x^2} dx - \int e^{-x^2} dx = -(y^2 + x)e^{-x^2},$$

ТО

$$z = e^{x^2} \Big( C(y) - (y^2 + x)e^{-x^2} \Big) \quad \Rightarrow \quad z = C(y)e^{x^2} - y^2 - x.$$

Виберемо тепер C(y) так, щоб функція z задовольняла друге рівняння з (22.24). Диференціюючи  $z=C(y)e^{x^2}-y^2-x$  за змінною y, маємо:

$$\frac{\partial z}{\partial y} = C'(y)e^{x^2} - 2y \quad \Rightarrow \quad C'(y)e^{x^2} - 2y = -2y \quad \Rightarrow$$
$$C(y) = C \quad \Rightarrow \quad z = Ce^{x^2} - y^2 - x. \quad \blacksquare$$

**Рекомендована література**: [3, с. 202 – 213], [5, с. 463 – 470], [8, с. 282 – 300], [12, с. 325 – 344], [15, с. 280 – 305].

### Питання до лекції 22

- 1. Яке рівняння з частинними похідними першого порядку називають квазілінійним?
- 2. Який вигляд має система характеристик для квазілінійного рівняння з частинними похідними першого порядку?
- 3. Як побудувати загальний розв'язок квазілінійного рівняння з частинними похідними першого порядку?
- 4. Як формулюється задача Коші для квазілінійного рівняння з частинними похідними першого порядку? Як знайти розв'язок задачі Коші для квазілінійного рівняння з частинними похідними першого порядку?

- 5. Який загальний вигляд має система нелінійних рівнянь з частинними похідними першого порядку з двома незалежними змінними? Як інтегруються така система?
- 6. Що називають рівнянням Пфаффа? Якій системі рівносильне це рівняння? Якою є умова повної інтегровності рівняння Пфаффа?

### Вправи до лекції 22

1. Зінтегруйте квазілінійні рівняння:

a) 
$$xy\frac{\partial z}{\partial x} - y^2\frac{\partial z}{\partial y} = x^2$$
; 6)  $xz^3\frac{\partial z}{\partial x} + yz^3\frac{\partial z}{\partial y} = x^2y^2$ .

2. Знайдіть інтегральні поверхні рівнянь, які проходять через задані лінії:

a) 
$$y^2 \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = x$$
,  $x = 0$ ,  $z = y^2$ ;  
6)  $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z - xy$ ,  $x = 2$ ,  $z = y^2 + 1$ .

- 3. Знайдіть поверхні, які задовольняють рівняння Пфаффа:
- a) (x-y)dx + z dy x dz = 0; 6) 3yz dx + 2xz dy + xy dz = 0.

### Додаток до розділу 4.

Застосування математичного пакета Maple для інтегрування диференціальних рівнянь з частинними похідними першого порядку

Для інтегрування рівнянь з частинними похідними в Maple використовується команда pdsolve().

**Приклад 1.** Зінтегрувати рівняння з частинними похідними першого порядку  $\frac{\partial z}{\partial y} = x - 2y + 1$ , де z = z(x,y) (приклад 1 лекції 21, стор. 259):

> pdsolve(diff(z(x,y),y)=x-2\*y+1);

$$z(x,y) = -y^2 + yx + y + F1(x).$$

Приклад 2. Зінтегрувати рівняння з частинними похідними другого порядку  $\frac{\partial^2 z}{\partial x \partial y} = 1$  (приклад 2 лекції 21, стор. 260): > pdsolve(diff(z(x,y),y,x)=1);

$$z(x,y) = _F2(x) + _F1(y) + yx.$$

**Приклад 3.** Зінтегрувати лінійне однорідне рівняння з частинними похідними першого порядку  $y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0$  (приклад 4 лекції 21, стор. 264):

> pdsolve(y\*diff(z(x,y),x)-x\*diff(z(x,y),y)=0);

$$z(x,y) = _F1(x^2 + y^2).$$

**Приклад 4.** Зінтегрувати лінійне однорідне рівняння з частинними похідними першого порядку  $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$  (приклад 3 лекції 21, стор. 263):

> pdsolve(x\*diff(u(x,y,z),x)+y\*diff(u(x,y,z),y)+
z\*diff(u(x,y,z),z)=0);

$$u(x, y, z) = _{F1}\left(\frac{y}{x}, \frac{z}{x}\right).$$

**Приклад 5.** Зінтегрувати квазілінійне рівняння з частинними похідними першого порядку  $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = u$  (приклад 1 лекції 22, стор. 270):

> pdsolve(x\*diff(u(x,y,z),x)+y\*diff(u(x,y,z),y)+
 z\*diff(u(x,y,z),z)=u(x,y,z));

$$u(x, y, z) = _{F1}\left(\frac{y}{x}, \frac{z}{x}\right)x.$$

**Приклад 6.** Зінтегрувати квазілінійне рівняння з частинними похідними першого порядку  $e^x \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = y e^x$  (приклад 2 лекції 22, стор. 271):

> pdsolve(exp(x)\*diff(z(x,y),x)+y^2\*diff(z(x,y),y)=
 y\*exp(x)) assuming real;

$$z(x,y) = -\frac{y\mathrm{e}^x x}{y-\mathrm{e}^x} - \frac{y\mathrm{e}^x \ln\left(y^{-1}\right)}{y-\mathrm{e}^x} + _F1\left(-\frac{\left(y-\mathrm{e}^x\right)\mathrm{e}^{-x}}{y}\right).$$

Конструкція assuming real вжита для того, щоб програма зробила деякі спрощення розв'язку в припущенні, що всі змінні і функції є дійсними. Зауваження щодо відсутності модуля в аргументу логарифма див. на стор. 112 у прикладі 12.

Приклад 7. Знайти інтегральну поверхню лінійного однорідного рівняння з частинними похідними першого порядку  $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=0,$  яка при x=0 проходить через криву  $z=y^2$ 

(приклад 6 лекції 21, стор. 267). За допомогою математичного пакета Марlе не можна знайти розв'язок задачі Коші для рівняння з частинними похідними в аналітичному вигляді (у вигляді формули). Але команда PDEplot() з пакета PDEtools дозволяє побудувати відповідну інтегральну поверхню наближеними методами:

> PDEtools[PDEplot](y\*diff(z(x,y),x)-x\*diff(z(x,y),y)=
0,[0,y,y^2],y=-1..1,scaling=constrained);



Puc. 1

Чорна лінія на рис. 1 — це парабола  $z=y^2$ , побудована у площині x=0. Рисунок цілком узгоджується з відповіддю до прикладу 6 лекції 21 — отримана поверхня справді є параболоїдом.

**Приклад 8.** Знайти інтегральну поверхню квазілінійного рівняння  $x\frac{\partial z}{\partial x}-2y\frac{\partial z}{\partial y}=x^2+y^2$ , яка при y=2 проходить через криву  $z=x^2$  (приклад 3 лекції 22, стор. 273). Для побудови шуканої інтегральної поверхні знову використаємо команду PDEplot() з пакета PDEtools:

> PDEtools[PDEplot](x\*diff(z(x,y),x)-2\*y\*diff(z(x,y),y)
=x^2+y^2,[x,2,x^2],x=-3..3,y=1..10);



Чорна лінія на рис. 2 – це крива з початкових умов, через яку проходить інтегральна поверхня.

**Приклад 9.** Зінтегрувати систему рівнянь з частинними похідними першого порядку

$$\frac{\partial z}{\partial x} = z + yz, \quad \frac{\partial z}{\partial y} = z^2 + 2xz$$

(приклад 4 лекції 22, стор. 275):

> pdsolve({diff(z(x,y),x)=z(x,y)+y\*z(x,y),
 diff(z(x,y),y)=z(x,y)^2+2\*x\*z(x,y)});

$$\{z(x,y)=0\}.$$

**Приклад 10.** Зінтегрувати систему рівнянь з частинними похідними

$$\frac{\partial z}{\partial x} = y^2, \quad \frac{\partial z}{\partial y} = \frac{1}{y^2} + \frac{2z}{y} - y^2$$

(приклад 5 лекції 22, стор. 276):

> pdsolve( $\{diff(z(x,y),x)=y^2,diff(z(x,y),y)=1/y^2+2*z(x,y)/y-y^2\}$ );

$$\{z(x,y) = \frac{-1 - 3y^4 + (3x + 3 C1)y^3}{3y}\}.$$

### Розділ 5. ЕЛЕМЕНТИ ТЕОРІЇ СТІЙКОСТІ

# Лекція 23. Основи теорії стійкості розв'язків диференціальних рівнянь

#### План

- 1. Основні означення й поняття.
- 2. Дослідження на стійкість точок спокою.
- 3. Стійкість за першим наближенням.
- 4. Критерії Рауса Гурвіца, Л'єнара Шипара.
- 1. Основні означення й поняття. Створюючи прилади чи конструкції, які відповідають певним умовам, необхідно знати, як вестиме себе об'єкт при невеликих перерозподілах сил або при зміні початкових умов. Той об'єкт, експлуатаційні параметри якого не реагують на ці зміни, називають стійким.

Взагалі, створюючи диференціальну модель деякої прикладної задачі, зазвичай цікавляться не загальним, а частинним розв'язком диференціального рівняння, тобто розв'язком, який задовольняє певні початкові умови. Останні, як правило, беруться з досліду чи експерименту, а тому за їх абсолютну точність ручатися не можна. Маючи це на увазі, деколи припускають, що незначні зміни початкових умов викликають незначну зміну самого розв'язку, інакше кажучи, що розв'язок неперервно залежить від початкових умов. Але часто незначні зміни початкових умов зумовлюють істотні відхилення розв'язків. Такі розв'язки називають нестійкими. Вони навіть наближено не описують явище чи процес, які розглядаються. Отже, одним з основних є питання про так звану стійкість розв'язків диференціальних рівнянь щодо різного роду збурень їх вхідних даних, тобто неточностей задання цих даних (початкових даних, правих частин рівнянь тощо).

Питання стійкості розв'язків диференціальних рівнянь — предмет *теорії стійкості розв'язків*. Теорія стійкості застосовується у багатьох областях науки і природознавства, наприклад, механіці, екології, біології, економіці та інших науках.

Перейдемо до викладення основних понять теорії стійкості більш строго. Позначимо через  $y_1 = y_1(t), y_2 = y_2(t), \ldots, y_n = y_n(t)$  дійсні функції, які характеризують стан механічного, електромеханічного чи іншого явища або процесу. Так можуть, наприклад, позначатися координати, швидкості, сили струмів, величини напруг, температури або функції цих величин. Припустимо, що процес зміни величин  $y_1, y_2, \ldots, y_n$  з часом t описується нормальною системою диференціальних рівнянь

$$\frac{dy_j}{dt} = f_j(t, y_1, y_2, \dots, y_n), \quad j = 1, 2, \dots, n,$$
(23.1)

з початковими умовами

$$y_1(t_0) = y_{10}, \quad y_2(t_0) = y_{20}, \quad \dots, \quad y_n(t_0) = y_{n0}.$$
 (23.2)

Якщо розглядати  $y_1, y_2, \ldots, y_n$  як координати рухомої точки, то кожний розв'язок задачі (23.1), (23.2) називатимемо pyxom.

Якщо систему (23.1) розглядати на скінченному проміжку  $|t-t_0| < T$ , то відповідь на питання про вплив малих змін початкових умов (23.2) на відхилення розв'язків системи дає теорема 5 з лекції 8. Але у практичних задачах аргумент (ним, як правило, є час) може необмежено зростати. Тоді ця теорема не гарантує неперервної залежності розв'язків від початкових умов, тобто незначна зміна початкових умов може викликати істотні зміни у поведінці розв'язку при необмеженому зростанні значення аргумента. Отже, надалі вважатимемо, що  $t \in [T, +\infty)$ , тобто час може необмежено зростати.

Розв'язок  $y_j=\varphi_j(t),\ j=1,2,\ldots,n,\ t\in[T,+\infty),$  системи (23.1) називають  $cmiй\kappa u_{\mathcal{M}},$  якщо для будь-яких  $\varepsilon>0$  і  $t_0\geqslant T$  існує число  $\delta=\delta(\varepsilon)>0$  таке, що довільний інший розв'язок  $y_j=y_j(t),\ j=1,2,\ldots,n,$  цієї ж системи, початкові значення  $y_j(t_0)$  якого задовольняють нерівності

$$|y_j(t_0) - \varphi_j(t_0)| < \delta, \quad j = 1, 2, \dots, n,$$
 (23.3)

визначений для всіх  $t\geqslant t_0$  і справджуються нерівності

$$|y_j(t) - \varphi_j(t)| < \varepsilon, \quad j = 1, 2, \dots, n, \quad t \geqslant t_0. \tag{23.4}$$

Іншими словами, розв'язок  $y_j=\varphi_j(t),\ j=1,2,\ldots,n,$  системи (23.1) є стійким, якщо кожний розв'язок  $y_j=y_j(t),$   $j=1,2,\ldots,n,$  системи (23.1) з початковими умовами з  $\delta$ -околу точки  $\varphi_j(t_0),\ j=1,2,\ldots,n,$  при  $t_0\leqslant t<+\infty$  існує і не виходить з  $\varepsilon$ -околу графіка розв'язку  $y_j=\varphi_j(t),\ j=1,2,\ldots,n.$ 

Розв'язок  $y_j = \varphi_j(t), j = 1, 2, \dots, n$ , називають **асимпто- тично стійким**, якщо:

- 1) він стійкий;
- 2) усі розв'язки  $y_j=y_j(t),\ j=1,2,\ldots,n,$  системи (23.1) з достатньо близькими початковими умовами при  $t\to+\infty$  необмежено наближаються до  $\varphi_j(t),\ j=1,2,\ldots,n,$  тобто з нерівності (23.3) випливає, що

$$\lim_{t \to +\infty} |y_j(t) - \varphi_j(t)| = 0, \quad j = 1, 2, \dots, n.$$
 (23.5)

Зауважимо, що умови 1 і 2 цього означення незалежні: з умови 1 не випливає умова 2 (бо з (23.4) не випливає (23.5)), а з умови 2 означення не завжди випливає умова 1.

Розв'язок  $y_j=\varphi_j(t),\ j=1,2,\ldots,n,$  системи (23.1) називають **нестійким**, якщо він не є стійким. Це означає, що існує таке  $\varepsilon>0$ , що для будь-якого як завгодно малого  $\delta>0$  знайдеться розв'язок системи (23.1)  $y_j=y_j(t),\ j=1,2,\ldots,n,$  для якого при виконанні нерівностей (23.3) принаймні для одного значення j матимемо, що  $|y_j(t)-\varphi_j(t)|\geqslant \varepsilon$  для деякого  $t\geqslant t_0.$ 

Як правило, для доведення нестійкості розв'язку користуються необмеженістю різниці  $|y_j(t)-\varphi_j(t)|$  на інтервалі  $[t_0,+\infty)$  або тим, що ця різниця прямує до  $+\infty$ , якщо  $t\to +\infty$ .

Розв'язок (рух), який відповідає початковим даним  $t_0, y_{10}, y_{20}, \ldots, y_{n0}$ , називають **незбуреним**, а розв'язок зі зміненими початковими даними  $t_0, \, \tilde{y}_{10}, \, \tilde{y}_{20}, \, \ldots, \, \tilde{y}_{n0} -$ **збуреним** розв'язком (рухом).

**Приклад 1.** Дослідити на стійкість розв'язки задачі Коші  $y'=ky,\;y(t_0)=y_0.$ 

**Розв'язання.** Загальним розв'язком рівняння є  $y(t) = Ce^{kt}$ , а розв'язком заданої задачі —

$$y(t) = y_0 e^{k(t-t_0)}. (23.6)$$

Задамо іншу початкову умову  $\tilde{y}(t_0) = \tilde{y}_0$ . Тоді розв'язком цієї задачі (збуреним розв'язком) є

$$\tilde{y}(t) = \tilde{y}_0 e^{k(t-t_0)}.$$
 (23.7)

Оцінимо різницю розв'язків (23.6) і (23.7):

$$|y(t) - \tilde{y}(t)| = |y_0 e^{k(t-t_0)} - \tilde{y}_0 e^{k(t-t_0)}| = e^{k(t-t_0)} |y_0 - \tilde{y}_0|.$$
 (23.8)

Якщо k<0, то  $e^{k(t-t_0)}<1$  для всіх  $t\geqslant t_0$ . Отже, якщо  $|y_0-\tilde{y}_0|<\delta=\varepsilon$ , то з (23.8) маємо, що  $|y(t)-\tilde{y}(t)|<|y_0-\tilde{y}_0|<<\varepsilon$ , тобто розв'язок стійкий. У цьому випадку розв'язок також асимптотично стійкий, оскільки

$$\lim_{t \to +\infty} |y(t) - \tilde{y}(t)| = \lim_{t \to +\infty} |y_0 - \tilde{y}_0| e^{k(t - t_0)} = 0.$$

Якщо k>0, то розв'язок (23.6) нестійкий, бо яким би не було  $t_0$ , для  $t\geqslant t_0$ ,  $y_0\neq \tilde{y}_0$ , різниця розв'язків (23.6) і (23.7) при зростанні t стає нескінченно великою, оскільки  $\lim_{t\to +\infty}|y_0-\tilde{y}_0|e^{k(t-t_0)}=+\infty$ .

Якщо k=0, то розв'язок  $y=y_0$  стійкий, але не асимптотично стійкий, бо вираз  $|y_0-\tilde{y}_0|$  не прямує до нуля, коли  $t\to +\infty$ . **Відповідъ:** Розв'язок стійкий, якщо  $k\leqslant 0$ , у тому числі асимптотично стійкий, якщо k<0, і нестійкий, якщо k>0.

**2.** Дослідження на стійкість точок спокою. Дослідження на стійкість заданого розв'язку  $\varphi_1(t), \ldots, \varphi_n(t)$  системи (23.1) можна звести до дослідження на стійкість тривіального (нульового) розв'язку деякої іншої системи. Для цього у системі (23.1) перейдемо до нових невідомих функцій

$$x_j(t) = y_j(t) - \varphi_j(t), \quad j = 1, 2, \dots, n.$$
 (23.9)

Отже, невідомі функції  $x_j(t), j=1,2,\ldots,n$ , — це відхилення старих невідомих функцій від функцій, які входять у розв'язок, що досліджується на стійкість. Величини  $x_j(t), j=1,2,\ldots,n$ , називають *збуреннями*. Підставляючи (23.9) в (23.1), маємо

$$y'_{j}(t) = x'_{j}(t) + \varphi'_{j}(t) = f_{j}(t, x_{1}(t) + \varphi_{1}(t), \dots, x_{n}(t) + \varphi_{n}(t)) \Rightarrow x'_{j} = f_{j}(t, x_{1} + \varphi_{1}, \dots, x_{n} + \varphi_{n}) - f_{j}(t, \varphi_{1}, \dots, \varphi_{n}),$$
 (23.10)

де  $j=1,2,\ldots,n$ . Рівняння (23.10) називають диференціальними рівняннями збуреного руху. Кожному рухові системи (23.1) відповідає частинний розв'язок системи (23.10). Зокрема, незбуреному рухові системи (23.1) відповідає тривіальний розв'язок

$$x_j(t) \equiv 0, \quad j = 1, 2, \dots, n,$$
 (23.11)

системи (23.10). Розв'язок (23.11) характерний тим, що точка  $(x_1(t),\ldots,x_n(t))$  не рухається зі зміною t, а знаходиться на місці. Тривіальний розв'язок системи (23.10) і точку  $(0,0,\ldots,0)$  у цьому випадку називають *положенням рівноваги* системи (23.10) або *точкою спокою*.

Отже, задача дослідження стійкості (асимптотичної стійкості, нестійкості) точки спокою системи (23.10) рівносильна задачі дослідження стійкості (асимптотичної стійкості, нестійкості) розв'язку системи (23.1). З урахуванням цього означення стійкості та асимптотичної стійкості можемо сформулювати інакше.

Нехай у системі (23.1)  $f_j(t,0,\ldots,0)=0,$   $j=1,2,\ldots,n$ . Тривіальний розв'язок  $\varphi_j(t)\equiv 0,$   $j=1,2,\ldots,n$ , системи (23.1) називають cmiйким, якщо для довільного  $\varepsilon>0$  існує  $\delta(\varepsilon)>0$  таке, що кожний розв'язок  $y_j=y_j(t),$   $j=1,2,\ldots,n$ , тієї ж системи, початкові значення  $y_j(t_0)$  якого задовольняють нерівності  $|y_j(t_0)|<\delta,$   $j=1,2,\ldots,n$ , визначений для всіх  $t\geqslant t_0$  і виконуються нерівності  $|y_j(t)|<\varepsilon,$   $j=1,2,\ldots,n$ , для  $t\geqslant t_0$ . Якщо, крім того,  $\lim_{t\to +\infty}|y_j(t)|=0,$   $j=1,2,\ldots,n$ , то тривіальний розв'язок  $\varphi_j(t)\equiv 0,$   $j=1,2,\ldots,n$ , асимптотично стійкий.

Отже, стійкість тривіального розв'язку означає, що траєкторія довільного руху, початкова точка якої знаходиться у деякому  $\delta$ -околі початку координат фазового простору  $(y_1, y_2, \ldots, y_n)$  системи (23.1), для  $t \geqslant t_0$  не виходить за межі довільного  $\varepsilon$ -околу точки спокою.

Легко показати, що це означення стійкості можна замінити таким: для кожного  $\varepsilon>0$  знайдеться  $\delta>0$  таке, що з нерівності  $y_1^2(t_0)+y_2^2(t_0)+\ldots+y_n^2(t_0)<\delta^2$  випливатиме нерівність  $y_1^2(t)+y_2^2(t)+\ldots+y_n^2(t)<\varepsilon^2$  для всіх  $t\geqslant t_0$ .

Приклад 2. Дослідити на стійкість тривіальний розв'язок системи x' = -y, y' = x, який при  $t = t_0 = 0$  набуває значення  $x = \tilde{x}_0$ ,  $y = \tilde{y}_0$ .

**Розв'язання.** Розв'язуючи систему і враховуючи початкові умови, знаходимо  $x=\tilde{x}_0\cos t-\tilde{y}_0\sin t,\,y=\tilde{x}_0\sin t+\tilde{y}_0\cos t,$  звідки  $x^2+y^2=\tilde{x}_0^2+\tilde{y}_0^2$ . Для будь-якого заданого  $\varepsilon>0$  досить взяти  $\delta\leqslant\varepsilon$ , адже як тільки  $\tilde{x}_0^2+\tilde{y}_0^2<\delta^2$ , то  $x^2+y^2<\varepsilon^2$  для всіх t>0. Отже, розв'язок x=y=0 є стійким.

**Приклад 3.** Дослідити на стійкість точку спокою системи  $x' = y, y' = 2x + y, x(0) = \tilde{x}_0, y(0) = \tilde{y}_0.$ 

**Розв'язання.** Розв'язуючи систему, знаходимо  $x = C_1 e^{2t} + C_2 e^{-t}$ ,  $y = 2C_1 e^{2t} - C_2 e^{-t}$ . Враховуючи початкові умови, одержуємо, що  $C_1 = (\tilde{x}_0 + \tilde{y}_0)/3$ ,  $C_2 = (2\tilde{x}_0 - \tilde{y}_0)/3$ , а тому

$$x = \frac{\tilde{x}_0 + \tilde{y}_0}{3}e^{2t} + \frac{2\tilde{x}_0 - \tilde{y}_0}{3}e^{-t}, \quad y = \frac{2}{3}\left(\tilde{x}_0 + \tilde{y}_0\right)e^{2t} - \frac{2\tilde{x}_0 - \tilde{y}_0}{3}e^{-t}.$$

Покладемо  $\tilde{y}_0=2\tilde{x}_0$ . Тоді, яким би малим не було число  $\tilde{x}_0$ , функції |x| та |y| необмежено зростатимуть при  $t\to +\infty$ , а тому розв'язок x=y=0 є нестійким.  $\blacksquare$ 

**3.** Стійкість за першим наближенням. У прикладах 1 — 3 диференціальні рівняння або системи можна зінтегрувати через елементарні функції. У таких випадках дослідити стійкість розв'язків можна без особливих труднощів. Але з практичної точки зору важливо вміти досліджувати на стійкість розв'язки системи (23.10), не маючи її загального розв'язку.

Припустимо, що праві частини системи (23.1) неперервні разом з частинними похідними до другого порядку включно. Нехай  $y_j(x)\equiv 0,\ j=1,2,\ldots,n,$  — точка спокою системи (23.1), тобто  $f_j(t,0,\ldots,0)=0,\ j=1,2,\ldots,n.$  Використовуючи формулу Тейлора в околі початку координат, систему (23.1) можемо записати у вигляді:

$$\frac{dy_j}{dt} = f_j(t, 0, \dots, 0) + \frac{\partial f_j}{\partial y_1} \Big|_{(t, 0, \dots, 0)} \cdot y_1 + \frac{\partial f_j}{\partial y_2} \Big|_{(t, 0, \dots, 0)} \cdot y_2 + \dots$$
$$\dots + \frac{\partial f_j}{\partial y_n} \Big|_{(t, 0, \dots, 0)} \cdot y_n + R_j(t, y_1, \dots, y_n), \quad j = 1, 2, \dots, n,$$

де  $R_j(t,y_1,\ldots,y_n)$  містять доданки не нижче другого порядку відносно  $y_1,\ y_2,\ \ldots,\ y_n$ . Якщо позначити  $\frac{\partial f_j}{\partial y_i}\Big|_{(t,0,\ldots,0)}=a_{ji}(t)$  і врахувати, що  $f_j(t,0,\ldots,0)=0$ , то остаточно маємо систему

$$y'_{j} = a_{j1}(t)y_{1} + a_{j2}(t)y_{2} + \dots + a_{jn}(t)y_{n} + R_{j}(t, y_{1}, \dots, y_{n}), \quad j = 1, 2, \dots, n.$$
(23.12)

Систему рівнянь

$$y'_{i} = a_{i1}(t)y_{1} + a_{i2}(t)y_{2} + \ldots + a_{in}(t)y_{n}, \quad j = 1, 2, \ldots, n, \quad (23.13)$$

називають *системою першого наближення*, а задачу на стійкість точки спокою цієї системи— задачею на стійкість розв'язку в першому наближені.

Зауважимо, що дослідження на стійкість точки спокою для лінійної системи (23.13) є досі не розв'язаною проблемою, бо не існує загального способу інтегрування системи лінійних диференціальних рівнянь з довільними змінними коефіцієнтами.

Розглянемо окремий випадок системи (23.13), коли її коефіцієнтами є сталі:

$$y'_{j} = a_{j1}y_1 + a_{j2}y_2 + \dots + a_{jn}y_n, \quad j = 1, 2, \dots, n,$$
 (23.14)

і дослідимо питання про стійкість тривіального розв'язку системи (23.14). Нагадаємо (лекція 19), що розв'язки цієї системи мають вигляд  $y_1 = A_1 e^{k_1 t}, \ y_2 = A_2 e^{k_2 t}, \dots, \ y_n = A_n e^{k_n t},$  де  $k_1, \ k_2, \dots, \ k_n$  – характеристичні числа системи (23.14), а для існування нетривіальних розв'язків необхідно й досить, щоб

$$\begin{vmatrix} a_{11} - k & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - k & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - k \end{vmatrix} = 0.$$
 (23.15)

Розглянемо окремі випадки, пов'язані з виглядом коренів рівняння (23.15) (характеристичних чисел системи (23.14)).

1. Якщо всі характеристичні числа системи (23.14) мають від'ємні дійсні частини (тобто або вони дійсні від'ємні числа, або комплексні числа, дійсні частини яких від'ємні), то тривіальний розв'язок системи (23.14) асимптотично стійкий. Припустимо, що усі характеристичні числа

 $k_1,k_2,\ldots,k_n$  прості і дійсні. Оскільки  $k_j<0$ , то всі функції  $y_{ij}=A_{ij}e^{k_jt}$  прямують до нуля при  $t\to+\infty$ . Якщо  $k_j=\alpha_j+i\beta_j,\ i=\sqrt{-1},\ \alpha_j<0$ , то, подавши  $e^{k_jt}$  у тригонометричній формі  $e^{k_jt}=e^{\alpha_jt}(\cos\beta_jt+i\sin\beta_jt)$ , переконуємось, що при  $t\to+\infty$  функції  $y_{ij}=A_{ij}e^{k_jt}\to 0$  (якщо  $\alpha_j<0$ , то  $\lim_{t\to+\infty}e^{\alpha_jt}=0$ ). Ці висновки не зміняться, якщо деякі з характеристичних чисел (або всі) є кратними. Справді, якщо число  $k_j$  має кратність s, то йому відповідають розв'язки  $P_{s-1}(t)e^{k_jt}$ , де  $P_{s-1}(t)$  — многочлен степеня, не вищого за s-1, і  $\lim_{t\to+\infty}e^{k_jt}P_{s-1}(t)=0$ , бо  $k_j<0$ , а показникова функція зростає пвидше, ніж степенева.

- 2. Якщо хоча б одне характеристичне число системи (23.14) мае додатну дійсну частину (тобто або це число додатне, або комплексне з додатною дійсною частиною), то тривіальний розв'язок системи (23.14) нестійкий. Справді, у цьому випадку принаймні одна з функцій  $e^{k_1t}$ ,  $e^{k_2t}$ , ...,  $e^{k_nt}$  необмежено зростає за модулем при  $t \to +\infty$  і тому загальний розв'язок системи необмежено зростає при зростанні t. Отже, розв'язки, близькі до точки спокою  $y_j = 0, j = 1, 2, \ldots, n$ , за початковими даними, зі зростанням t необмежено від неї віддалятимуться.
- 3. Якщо серед характеристичних чисел системи (23.14) немае чисел з додатними дійсними частинами, але є прості числа з нульовою дійсною частиною, то тривіальний розв'язок системи (23.14) є стійким, але не асимптотично стійким. У цьому випадку всі  $y_j(t)$  обмежені за модулем для будь-якого  $t>t_0$ , якими б не були початкові значення цих функцій. Отже, для будь-якого  $\varepsilon>0$  знайдеться таке  $\delta>0$ , що при виборі  $|\tilde{y}_{j0}|<\delta,\ j=1,2,\ldots,n$ , будемо мати  $|y_j(t)|<\varepsilon$  для всіх  $t>t_0$ . Значить, тривіальний розв'язок системи (23.14) є стійким. Але він не асимптотично стійкий, бо для довільних  $\tilde{y}_{j0}$  не будуть одночасно прямувати до нуля всі функції  $y_i(t)$  при  $t\to+\infty$ .
- 4. Якщо серед характеристичних чисел системи (23.14) немає чисел з додатними дійсними частинами, але є кратні числа з нульовими дійсними частинами, то можливі як стійкі, так і нестійкі тривіальні розв'язки.

Повернімось до системи першого наближення (23.12).

**Теорема 1 (Ляпунова).** Нехай функції  $R_j(t, y_1, ..., y_n)$ , j = 1, 2, ..., n, у системі (23.12) неперервні за сукупністю змінних і нескінченно малі вище першого порядку при  $y_i \to 0$ , i = 1, 2, ..., n, тобто для всіх  $t \geqslant t_0$  і  $|y_i| < d, j = 1, 2, ..., n$ ,

$$|R_j(t, y_1, \dots, y_n)| \le M (|y_1|^{1+\alpha} + |y_2|^{1+\alpha} + \dots + |y_n|^{1+\alpha}),$$

або

$$|R_j(t, y_1, \dots, y_n)| \le \omega(y)|y|, \ j = 1, 2, \dots, n,$$

 $\partial e \ |y| = \sqrt{y_1^2 + y_2^2 + \ldots + y_n^2}, \ \alpha, M - \partial o \partial amhi \ cmani, \ \omega(y) \to 0$   $npu \ |y| \to 0$ . Нехай, крім того,  $a_{jk}(t) = a_{jk}, j, k = 1, 2, \ldots, n, \partial e$   $a_{jk}$  – сталі. Тоді якщо характеристичні числа системи (23.14) мають від'ємні дійсні частини, то тривіальний розв'язок системи (23.1) асимптотично стійкий; якщо хоча б одне характеристичне число має додатну дійсну частину, то тривіальний розв'язок системи (23.1) нестійкий.

Якщо дійсні частини всіх характеристичних чисел недодатні, причому дійсна частина хоча б одного з них дорівнює нулю, то дослідження на стійкість за першим наближенням, взагалі кажучи, неможливе (починають впливати нелінійні члени  $R_i$ ).

**Приклад 4.** Дослідити на стійкість за першим наближенням тривіальний розв'язок системи

$$\begin{cases} x' = \sqrt{1 + 4y} - e^{3(x+y)}, \\ y' = \sin x + \ln(1 - y). \end{cases}$$

**Розв'язання.** Використовуючи формулу Тейлора для функції f(x,y) двох змінних з залишковим членом у формі Пеано і обмежившись похідними першого порядку:

$$f(x,y) = f(0,0) + f'_x(0,0) \cdot x + f'_y(0,0) \cdot y + o(\rho),$$

де  $\rho=\sqrt{x^2+y^2},\ o(\rho)$  – нескінченно мала величина при  $\rho\to 0$  більш високого порядку, ніж  $\rho$ , виділимо лінійні частини правих частин системи:

$$\sqrt{1+4y} - e^{3(x+y)} = -3x - y + R_1(x,y),$$
  

$$\sin x + \ln(1-y) = x - y + R_2(x,y),$$

де функції  $R_j(x,y) = o(\sqrt{x^2 + y^2}), j = 1, 2$ , задовольняють умови теореми 1.

Знайдемо характеристичні числа відповідної системи першого наближення

$$\begin{cases} x' = -3x - y, \\ y' = x - y. \end{cases}$$

Маємо

$$\begin{vmatrix} -3-k & -1 \\ 1 & -1-k \end{vmatrix} = 0 \implies k^2 + 4k + 4 = 0 \implies k_{1,2} = -2.$$

Оскільки дійсні частини чисел  $k_{1,2}$  від'ємні, то тривіальний розв'язок заданої системи асимптотично стійкий.

# 4. Критерії Рауса – Гурвіца, Л'єнара – Шипара.

Як випливає з пункту 3 лекції, розв'язуючи задачі на стійкість для систем диференціальних рівнянь зі сталими коефіцієнтами, важливо знати знаки дійсних частин характеристичних чисел.

Розглянемо алгебричне рівняння

$$a_0k^n + a_1k^{n-1} + \dots + a_{n-1}k + a_n = 0, \quad a_0 > 0.$$
 (23.16)

Нагадаємо деякі твердження, доведення яких можна знайти у підручниках з лінійної алгебри.

Необхідною умовою того, що всі дійсні частини коренів рівняння (23.16) від'ємні, є нерівності  $a_i > 0, j = 0, 1, \ldots, n$ .

Тепер наведемо необхідні і достатні умови, за виконання яких дійсні частини характеристичних чисел будуть від'ємними. Позначимо

$$\Delta_{1} = a_{1}, \quad \Delta_{2} = \begin{vmatrix} a_{1} & a_{0} \\ a_{3} & a_{2} \end{vmatrix}, \quad \Delta_{3} = \begin{vmatrix} a_{1} & a_{0} & 0 \\ a_{3} & a_{2} & a_{1} \\ a_{5} & a_{4} & a_{3} \end{vmatrix}, \quad \dots,$$

$$\Delta_{n} = \begin{vmatrix} a_{1} & a_{0} & 0 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & a_{0} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{2n-1} & a_{2n-2} & a_{2n-3} & a_{2n-4} & \dots & a_{n} \end{vmatrix},$$

 $\partial e \ a_j = 0$ , якщо j > n.

**Теорема 2 (критерій Рауса** — **Гурвіца).** Дійсні частини коренів рівняння (23.16) від'ємні тоді і тільки тоді, коли  $\Delta_i > 0, j = 1, 2, \dots, n$ .

**Теорема 3 (критерій Л'єнара** — Шипара). Дійсні частини коренів рівняння (23.16) від'ємні тоді і тільки тоді, коли  $a_i > 0, j = 0, 1, \ldots, n, i$ 

$$\Delta_{n-1} > 0$$
,  $\Delta_{n-3} > 0$ ,  $\Delta_{n-5} > 0$ , ...

**Приклад 5.** Дослідити на стійкість точку спокою рівняння  $y^{\rm IV}+5y'''+13y''+19y'+10y=0.$ 

**Розв'язання.** Скористаємося критерієм Рауса — Гурвіца. Оскільки

$$\Delta_1 = 5 > 0, \quad \Delta_2 = \begin{vmatrix} 5 & 1 \\ 19 & 13 \end{vmatrix} > 0,$$

$$\Delta_3 = \begin{vmatrix} 5 & 1 & 0 \\ 19 & 13 & 5 \\ 0 & 10 & 19 \end{vmatrix} > 0, \quad \Delta_4 = \begin{vmatrix} 5 & 1 & 0 & 0 \\ 19 & 13 & 5 & 1 \\ 0 & 10 & 19 & 13 \\ 0 & 0 & 0 & 10 \end{vmatrix} = 10 \cdot \Delta_3 > 0,$$

то точка спокою асимптотична стійка.

Приклад 6. Дослідити на стійкість точку спокою рівняння  $y^{\rm V}+4y^{\rm IV}+16y'''+25y''+13y'+9y=0.$ 

**Розв'язання.** Оскільки всі коефіцієнти характеристичного рівняння  $k^5+4k^4+16k^3+25k^2+13k+9=0$  додатні і

$$\Delta_2 = \left| \begin{array}{ccc} 4 & 1 \\ 25 & 16 \end{array} \right| > 0, \qquad \Delta_4 = \left| \begin{array}{cccc} 4 & 1 & 0 & 0 \\ 25 & 16 & 4 & 1 \\ 9 & 13 & 25 & 16 \\ 0 & 0 & 9 & 13 \end{array} \right| > 0,$$

то згідно з критерієм Л'єнара — Шипара точка спокою заданого рівняння асимптотична стійка.  $\blacksquare$ 

**Рекомендована література**: [3, с. 156 – 171], [5, с. 390 – 416], [7, с. 141 – 152], [8, с. 229 – 241], [15, с. 231 – 252].

#### Питання до лекції 23

- 1. Що вивчає теорія стійкості розв'язків диференціальних рівнянь? Чому так важливо з практичної точки зору знати, чи є розв'язок диференціального рівняння або системи стійким?
- 2. Який розв'язок системи диференціальних рівнянь є стійким, асимптотично стійким, нестійким? Дайте геометричні трактування цих понять.
- 3. Який розв'язок системи диференціальних рівнянь називають незбуреним (збуреним)?
- 4. Що називають положенням рівноваги (точкою спокою) системи?
- 5. У чому полягає основна ідея дослідження на стійкість розв'язку в першому наближенні?
- 6. Як дослідити на стійкість точку спокою нормальної системи зі сталими коефіцієнтами? Коли точка спокою є асимптотично стійкою, стійкою, але не асимптотично стійкою, нестійкою? Якими повинні бути характеристичні числа, щоб система могла мати як стійкі, так і нестійкі тривіальні розв'язки?
- 7. Як формулюються критерії Рауса Гурвіца і Л'єнара Шипара про невід'ємність дійсних частин характеристичних чисел? Як ці критерії використовують для дослідження на стійкість розв'язків лінійних рівнянь (систем) зі сталими коефіцієнтами?

#### Вправи до лекції 23

1. Використовуючи означення стійкості, дослідіть на стійкість розв'язки задач Коші рівнянь і систем:

a) 
$$y' = 2x(1+y)$$
,  $y(0) = 0$ ; 6)  $y' = y + x$ ,  $y(0) = 1$ ;  
B) 
$$\begin{cases} y' = -y - 9z, & y(0) = 0, \\ z' = y - z, & z(0) = 0. \end{cases}$$

2. Дослідіть на стійкість точку спокою систем:

a) 
$$\begin{cases} y'_1 = -y_1 + y_2 + 5y_3, \\ y'_2 = -2y_1 + y_3, \\ y'_3 = -3y_3; \end{cases}$$
 6) 
$$\begin{cases} y'_1 = -2y_1 - y_2, \\ y'_2 = y_1 - 2y_2, \\ y'_3 = y_1 + 3y_2 - y_3. \end{cases}$$

3. Дослідіть на стійкість за першим наближенням точку спокою систем:

a) 
$$\begin{cases} y' = 3yz - y + z, \\ z' = 4y^4 + z^3 + 2y - 3z; \end{cases}$$
 6) 
$$\begin{cases} y' = -y + z + y^2 \sin z, \\ z' = -y - 4z + 1 - \cos z^2. \end{cases}$$

4. Використовуючи критерії Рауса – Гурвіца або Л'єнара – Шипара, дослідіть на стійкість тривіальний розв'язок рівнянь:

a) 
$$y''' - 3y' + 5y = 0$$
; 6)  $y^{\text{IV}} + 4y''' + 7y'' + 6y' + 2y = 0$ ;  
B)  $y^{\text{V}} + 4y^{\text{IV}} - 5y''' + 15y'' - 3y' + 12y = 0$ .

## Лекція 24. Метод функцій Ляпунова. Фазова площина

#### План

- 1. Дослідження на стійкість за методом функцій Ляпунова.
- 2. Класифікація точок спокою автономної системи.
- 1. Дослідження на стійкість за методом функцій Ляпунова. На попередній лекції вивчались деякі питання, пов'язані з дослідженням на стійкість розв'язків нелінійних систем диференціальних рівнянь. При цьому використовувалась відповідна система першого наближення. Але заміна нелінійної системи (23.12) лінійною системою (23.13) є фактично заміною однієї проблеми іншою і між ними може не бути нічого спільного. Можна навести приклади таких систем диференціальних рівнянь, дослідження яких за першим наближенням дає стійкість незбуреного руху, хоча насправді він нестійкий, і навпаки. Водночас відомі приклади, коли перше наближення повністю розв'язує проблему стійкості.

Наступна теорема дає відповідь на питання про стійкість (асимптотичну стійкість) тривіального розв'язку  $y_j(t) \equiv 0, j = 1, 2, \ldots, n$ , нормальної нелінійної системи

$$y'_j = f_j(t, y_1, \dots, y_n), \quad j = 1, 2, \dots, n.$$
 (24.1)

**Теорема 1 (Ляпунова).** Якщо існує диференційовна функція  $V = V(y_1, \dots, y_n)$ , яка задовольняє умови:

- 1)  $V \ge 0$  i V = 0 тільки тоді, коли  $y_1 = ... = y_n = 0$ ;
- 2) повна похідна функції V вздовж фазової траєкторії (тобто вздовж розв'язку  $y_i(t), j = 1, 2, \dots, n,$  системи (24.1))

недодатна, тобто

$$\frac{dV}{dt} = \sum_{j=1}^{n} \frac{\partial V}{\partial y_j} \cdot \frac{dy_j}{dt} = \sum_{j=1}^{n} \frac{\partial V}{\partial y_j} \cdot f_j(t, y_1, \dots, y_n) \leqslant 0$$

для  $t \geqslant t_0$ , то тривіальний розв'язок системи (24.1) стійкий. Якщо замість умови 2) виконується нерівність

$$\frac{dV}{dt} \leqslant -\beta < 0$$

для  $t \geqslant t_1 > t_0$  і  $0 < \delta_1 \leqslant y_1^2 + \ldots + y_n^2 \leqslant \delta_2$ , де  $\delta_1$ ,  $\delta_2$ ,  $\beta$  – сталі, то тривіальний розв'язок системи (24.1) асимптотично стійкий.

Доведення цієї теореми можна знайти, наприклад, в [3, с. 163 - 165].

Функцію V з теореми 1 називають функцією Ляпунова. Загального способу побудови функції Ляпунова немає. Її рекомендується шукати у вигляді  $V = \sum_{i,j=1}^n a_{ij}y_iy_j$ . З умови 1) теореми 1 випливає, що квадратична форма V повинна бути додатно визначеною. Яким чином вибрати коефіцієнти  $a_{ij}$ , щоб форма V була додатно визначеною, вказується у критерії Сильвестра, відомому з курсу алгебри: потрібно, щоб

$$a_{11} > 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} > 0.$$

У простіших випадках функцію Ляпунова шукають у вигляді  $V(x,y)=ax^2+by^2,\,V(x,y)=ax^4+by^4,\,V(x,y)=ax^4+by^2,$  де  $a>0,\,b>0$ , тощо.

**Приклад 1.** Дослідити на стійкість тривіальний розв'язок системи

$$x' = -x^5 - y$$
,  $y' = x - y^3$ .

**Розв'язання.** Розглянемо функцію  $V(x,y)=x^2+y^2$ . Вона задовольняє обидві умови теореми 1. Справді,  $V\geqslant 0$  і V=0

тільки тоді, коли x = y = 0; вздовж розв'язку x, y системи

$$\frac{dV}{dt} = \frac{\partial V}{\partial x}\frac{dx}{dt} + \frac{\partial V}{\partial y}\frac{dy}{dt} = 2x(-x^5 - y) + 2y(x - y^3) =$$
$$= -2(x^6 + y^4) \le 0.$$

Згідно з теоремою 1 тривіальний розв'язок системи стійкий. А оскільки поза околом початку координат  $(x^2+y^2\geqslant\delta>0)$  маємо  $\frac{dV}{dt}\leqslant -\beta<0$ , де  $\beta$  — мінімум функції  $2(x^6+y^4)$  поза колом  $x^2+y^2=\delta$ , то розв'язок  $x=y\equiv 0$  асимптотично стійкий.  $\blacksquare$ 

Приклад 2. Дослідити на стійкість тривіальний розв'язок системи

$$x' = 2y^3 - x^5$$
,  $y' = -x - y^3 - y^5$ .

**Розв'язання.** Шукаємо функцію Ляпунова у вигляді  $V(x,y) = V_1(x) + V_2(y)$ . Тоді

$$\frac{dV}{dt} = \frac{\partial V}{\partial x} \cdot f_1(x, y) + \frac{\partial V}{\partial y} \cdot f_2(x, y) =$$

$$= V_1'(x)(2y^3 - x^5) + V_2'(y)(-x - y^3 - y^5) =$$

$$= -x^5 V_1'(x) - (y^3 + y^5) V_2'(y) + 2y^3 V_1'(x) - x V_2'(y).$$

Нехай, наприклад,  $2y^3V_1'(x) - xV_2'(y) \equiv 0$ . Тоді

$$\frac{V_1'(x)}{x} \equiv \frac{V_2'(y)}{2y^3} \quad \Rightarrow \quad \frac{V_1'(x)}{x} = \mu, \quad \frac{V_2'(y)}{2y^3} = \mu \quad (\mu = \text{const}) \quad \Rightarrow \quad V_1(x) = \frac{\mu}{2}x^2, \quad V_2(y) = \frac{\mu}{2}y^4.$$

Нехай  $\mu=2$ . Тоді  $V(x,y)=x^2+y^4,$  V(x,y)>0, якщо  $x^2+y^2\neq 0$  і V(0,0)=0. Окрім того,

$$\frac{dV}{dt} = \frac{\partial V}{\partial x} \cdot f_1(x, y) + \frac{\partial V}{\partial y} \cdot f_2(x, y) = -(2x^6 + 4y^6 + 4y^8) \leqslant -\beta < 0,$$

де  $\beta$  – мінімум функції  $f(x,y)=2x^6+4y^6+4y^8$  поза колом з центром у початку координат. З теореми 1 випливає асимптотична стійкість тривіального розв'язку системи.

Пропонуємо читачам самостійно переконатися у тому, що дати однозначну відповідь про стійкість тривіальних розв'язків систем з прикладів  $1,\,2$  за першим наближенням не можна.

## 2. Класифікація точок спокою автономної системи.

Розглянемо поведінку на фазовій площині  ${f R}^2$  фазових траєкторій автономної системи рівнянь

$$\begin{cases} \frac{dx}{dt} = P(x, y), \\ \frac{dy}{dt} = Q(x, y), \end{cases}$$
 (24.2)

де  $P(x,y),\,Q(x,y)$  – неперервно диференційовні в деякій області (або в усій площині  ${f R}^2)$  функції. Система (24.2) може мати лише три типи фазових траєкторій: точка, замкнена траєкторія (цикл) і незамкнена траєкторія. Розв'язок, траєкторією якого є точка  $(x_0,y_0)$  (положення рівноваги), є сталим  $x(t)=x_0,$   $y(t)=y_0$  (для будь-якого  $t\in {\bf R}$ ). Замкненій траєкторії відповідає періодичний розв'язок, незамкненій – неперіодичний.

Основною задачею якісного дослідження системи (24.2) є одержання *фазового портрету* системи, тобто картини розбиття фазової площини  $\mathbf{R}^2$  на траєкторії.

Для того, щоб побудувати фазовий портрет системи (24.2), потрібно знати поведінку траєкторій в околах так званих особливих траєкторій: положень рівноваги, граничних циклів і деяких незамкнених кривих, які відділяють сім'ї траєкторій одну від одної. *Граничним циклом* системи (24.2) називають такий цикл, деякий окіл якого цілком заповнений траєкторіями, вздовж яких точка (x(t), y(t)) необмежено наближається до нього при  $t \to +\infty$  або  $t \to -\infty$ .

Розглянемо випадок, коли система (24.2) є лінійною:

$$\begin{cases} \frac{dx}{dt} = a_{11}x + a_{12}y, \\ \frac{dy}{dt} = a_{21}x + a_{22}y, \end{cases}$$
 (24.3)

де  $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$  – невироджена матриця з дійсними сталими елементами ( $\Delta \equiv \det A \neq 0$ ).

Системі (24.3) відповідає одне рівняння з дробово-лінійною правою частиною

$$\frac{dy}{dx} = \frac{a_{21}x + a_{22}y}{a_{11}x + a_{12}y},\tag{24.4}$$

тобто всі інтегральні криві рівняння (24.4) є траєкторіями системи (24.3). Але цим не вичерпуються всі траєкторії системи (24.3), бо вона допускає рух  $x(t) \equiv 0$ ,  $y(t) \equiv 0$ , траєкторією якого є точка x = y = 0 (точка спокою).

Французький математик А. Пуанкаре показав, що можливими є кілька випадків, кожен з яких відповідає за розташування інтегральних кривих в околі особливої точки (0,0) або, що те саме, за розташування траєкторій системи (24.3) в околі точки спокою (0,0). Ці випадки називають *типами Пуанкаре*.

Позначимо через  $k_1$  і  $k_2$  – корені характеристичного рівняння

$$\begin{vmatrix} a_{11} - k & a_{12} \\ a_{21} & a_{22} - k \end{vmatrix} = k^2 - (a_{11} + a_{22})k + \Delta = 0.$$
 (24.5)

Оскільки  $\Delta \neq 0$ , то з (24.5) випливає, що k=0 не є характеристичним числом.

**Випадок 1.**  $k_1$  *і*  $k_2$  *дійсні та різні*. Нехай  $\alpha=(\alpha_1,\alpha_2),\,\beta=$  $=(\beta_1,\beta_2)$  – власні вектори матриці A, що відповідають кореням  $k_1$  і  $k_2$ , тобто

$$\begin{cases} (a_{11} - k_1)\alpha_1 + a_{12}\alpha_2 = 0, \\ a_{21}\alpha_1 + (a_{22} - k_1)\alpha_2 = 0, \end{cases} \begin{cases} (a_{11} - k_2)\beta_1 + a_{12}\beta_2 = 0, \\ a_{21}\beta_1 + (a_{22} - k_2)\beta_2 = 0. \end{cases}$$
(24.6)

Згідно з теоремою 3 лекції 12 загальним розв'язком системи (24.3)  $\epsilon$ 

$$x = C_1 \alpha_1 e^{k_1 t} + C_2 \beta_1 e^{k_2 t}, \quad y = C_1 \alpha_2 e^{k_1 t} + C_2 \beta_2 e^{k_2 t},$$
 (24.7)

де  $C_1$ ,  $C_2$  – довільні сталі.

Якщо  $k_1 < 0$ ,  $k_2 < 0$ , то з (24.7) випливає, що точка спокою x = y = 0 є асимптотично стійкою. Справді, якщо, наприклад,  $t_0 = 0$ , то розв'язок (24.7), який проходить через точку  $(x_0, y_0)$ , у момент часу  $t_0$  визначається сталими  $C_1$  і  $C_2$ , які знаходяться з системи

$$x_0 = C_1 \alpha_1 + C_2 \beta_1, \quad y_0 = C_1 \alpha_2 + C_2 \beta_2,$$

де  $\alpha_1\beta_2 - \alpha_2\beta_1 \neq 0$ . Але тоді  $C_1 = Ax_0 + By_0$ ,  $C_2 = Dx_0 + Ey_0$ , де A, B, D, E – деякі сталі. Враховуючи, що  $|e^{k_1t}| \leq 1$ ,  $|e^{k_2t}| \leq 1$ 

для  $k_1 < 0, k_2 < 0,$  маємо оцінки

$$|x| \le |Ax_0 + By_0| \cdot |\alpha_1| + |Dx_0 + Ey_0| \cdot |\beta_1|,$$
  
 $|y| \le |Ax_0 + By_0| \cdot |\alpha_2| + |Dx_0 + Ey_0| \cdot |\beta_2|.$ 

Звідси випливає, що для довільного  $\varepsilon>0$  знайдеться  $\delta>0$  таке, що як тільки  $|x_0|<\delta,\,|y_0|<\delta,\,$  то  $|x|<\varepsilon,\,|y|<\varepsilon$  (t>0), тобто точка спокою (0,0) стійка. Окрім того, оскільки  $e^{k_jt}\to 0$   $(k_j<0)$  при  $t\to +\infty,$  то з (24.7) випливає, що точка (0,0) також асимптотично стійка. Якщо виключити аргумент t з системи (24.7), то одержана при цьому функція y=f(x) визначатиме траєкторію руху в системі координат Oxy.

Матеріальна точка, яка знаходиться у початковий момент часу  $t=t_0$  в  $\delta$ -околі початку координат, для досить великих t переходить у точку, яка належить  $\varepsilon$ -околу початку координат і при  $t\to +\infty$  прямує до початку координат. Таку точку спокою називають cmiйким comium comium



На рис. 24.1 зображено розташування траєкторій, яке відповідає цьому випадку. Стрілками вказаний напрям руху по

траєкторії при  $t \to +\infty$ . Усі траєкторії, крім однієї, в точці (0,0) мають спільну дотичну.

Якщо  $|k_1|<|k_2|$ , то кутовий коефіцієнт дотичної дорівнює  $\alpha_2/\alpha_1$ . Справді, з (24.3) і (24.7) маємо  $(C_1\neq 0,\,\alpha_1\neq 0)$ :

$$\frac{dy}{dx} = \frac{a_{21} \left( C_1 \alpha_1 e^{k_1 t} + C_2 \beta_1 e^{k_2 t} \right) + a_{22} \left( C_1 \alpha_2 e^{k_1 t} + C_2 \beta_2 e^{k_2 t} \right)}{a_{11} \left( C_1 \alpha_1 e^{k_1 t} + C_2 \beta_1 e^{k_2 t} \right) + a_{12} \left( C_1 \alpha_2 e^{k_1 t} + C_2 \beta_2 e^{k_2 t} \right)} =$$

$$= \frac{a_{21} \left( C_1 \alpha_1 + C_2 \beta_1 e^{(k_2 - k_1) t} \right) + a_{22} \left( C_1 \alpha_2 + C_2 \beta_2 e^{(k_2 - k_1) t} \right)}{a_{11} \left( C_1 \alpha_1 + C_2 \beta_1 e^{(k_2 - k_1) t} \right) + a_{12} \left( C_1 \alpha_2 + C_2 \beta_2 e^{(k_2 - k_1) t} \right)} \xrightarrow[t \to +\infty]{} \xrightarrow[t \to +\infty]{} \frac{a_{21} C_1 \alpha_1 + a_{22} C_1 \alpha_2}{a_{11} C_1 \alpha_1 + a_{12} C_1 \alpha_2} = \frac{a_{21} \alpha_1 + a_{22} \alpha_2}{a_{11} \alpha_1 + a_{12} \alpha_2} = \frac{k_1 \alpha_2}{k_1 \alpha_1} = \frac{\alpha_2}{\alpha_1},$$

бо згідно з (24.6)  $a_{21}\alpha_1 + a_{22}\alpha_2 = k_1\alpha_2, \ a_{11}\alpha_1 + a_{12}\alpha_2 = k_1\alpha_1.$  Якщо  $\alpha_1 = 0$ , то аналогічно одержуємо, що  $\frac{dx}{dy} \underset{t \to +\infty}{\longrightarrow} \frac{\alpha_1}{\alpha_2} = 0.$ 

Якщо  $C_1=0$ , то з (24.7) одержуємо одну траєкторію – пряму  $y=\frac{\beta_2}{\beta_1}x$ , дотична до якої має кутовий коефіцієнт  $\beta_2/\beta_1$ .

Таким чином, дотична до траєкторій, в яких  $C_1 \neq 0$ , паралельна до власного вектора  $\alpha = (\alpha_1, \alpha_2)$ , який відповідає найменшому за модулем характеристичному числу  $k_1$  (якщо  $\alpha_1 = 0$ , то вектор направлений вздовж осі Oy). Крім того, при  $C_1 = 0$  є одна траєкторія — пряма  $y = \frac{\beta_2}{\beta_1} x$ , яка паралельна до другого власного вектора  $\beta = (\beta_1, \beta_2)$ , що відповідає більшому за модулем характеристичному числу  $k_2$ .

Якщо тепер  $k_1 > 0$ ,  $k_2 > 0$ , то з (24.7) випливає, що точка спокою x = y = 0 нестійка, бо  $e^{k_j t} \to +\infty$  при  $t \to +\infty$ . Таку точку спокою називають **нестійким вузлом**. Цей випадок отримуємо з попереднього заміною t на (-t), а тому рух точки по траєкторії відбувається у протилежному напрямі (рис. 24.2).



Нарешті, якщо  $k_1<0,\ k_2>0$  або  $k_1>0,\ k_2<0$ , то точка спокою нестійка, бо  $e^{k_2t}\to +\infty$  або  $e^{k_1t}\to +\infty$  при  $t\to +\infty$ . Точки, які розташовані в  $\delta$ -околі початку координат, по траєкторії  $x=C_2\beta_1e^{k_2t},\ y=C_2\beta_2e^{k_2t}$  рухаються у нескінченність. Однак у цьому випадку є траєкторія, по якій рух точки відбувається у напрямі до початку координат при  $t\to +\infty$ , а саме

$$x = C_1 \alpha_1 e^{k_1 t}, \quad y = C_1 \alpha_2 e^{k_1 t}. \tag{24.8}$$

Цією траєкторією є пряма  $\alpha_1 y - \alpha_2 x = 0$ , яку легко одержати з (24.8), виключивши змінну t. Таку точку спокою називають  $ci\partial nom$  (рис. 24.3).



Випадок 2.  $k_1$  і  $k_2$  комплексно-спряжені:  $k_{1,2}=p\pm iq$ ,  $q\neq 0$ . Загальний розв'язок системи (24.3) можна записати у вигляді (24.7), де вектори  $\alpha=(\alpha_1,\alpha_2)$  і  $\beta=\bar{\alpha}=(\bar{\alpha}_1,\bar{\alpha}_2)$  мають комплексні координати. Тоді розв'язок системи (24.3) можна записати у вигляді

$$x = e^{pt}(C_1 \cos qt + C_2 \sin qt), \quad y = e^{pt}(a \cos qt + b \sin qt), \quad (24.9)$$

де  $C_1$ ,  $C_2$  – довільні сталі, a і b – лінійні комбінації цих сталих. Якщо p=0, то траєкторії (24.9) для різних  $C_1$ ,  $C_2$  (на підставі періодичності множників у дужках) є замкненими кривими – еліпсами з центрами у точці (0,0) (рис. 24.4). Цю точку називають **центром**. Якщо p=0, то точка (x(t),y(t)) рухається по одному з еліпсів вказаної сім'ї, обходячи його безліч разів. Вона, очевидно, не прямує до жодної границі при  $t \to +\infty$ , тобто точка спокою (0,0) не асимптотично стійка (але вона стійка).



Нехай тепер p<0. З (24.9) випливає, що у цьому випадку точка (x,y) при  $t\to +\infty$  прямує до початку координат – точки  $x=0,\ y=0,\$ яку називають cmiйким фокусом. Наявність множника  $e^{pt}\to 0$   $(t\to +\infty)$  перетворює замкнені криві у спіралі, які асимптотично наближаються при  $t\to +\infty$  до початку координат (рис. 24.5). Точки, які розташовані при  $t=t_0$  у довільному  $\delta$ -околі початку координат, для достатньо великого t потрапляють у заданий  $\varepsilon$ -окіл початку координат.

Траєкторії, які прямують до фокуса, мають таку властивість, що дотичні до них при  $t \to +\infty$  не прямують до жодної границі. Цим фокус відрізняється від вузла.

У випадку p < 0 точка x = 0, y = 0 асимптотично стійка.

Якщо дійсна частина p чисел  $k_1$  і  $k_2$  додатна, то цей випадок переходить у попередній після заміни t на -t. Отже, траєкторії зберігають таку ж форму, як на рис. 24.5, однак рух точки відбуватиметься у протилежному напрямі. Оскільки  $e^{pt} \to +\infty$  при  $t \to +\infty$ , то точки, які знаходяться у початковий момент часу в околі початку координат, потім переходять у нескінченність. Таку точку спокою називають *нестійким фокусом* (рис. 24.6).



Випадок 3.  $k_1=k_2$ . Тоді  $k_1,\,k_2$  – дійсні, а загальний розв'язок системи (24.3) має вигляд  $x=(A+Bt)e^{k_1t},\,y=(C+Dt)e^{k_1t},$  де  $A,\,B,\,C,\,D$  – сталі, пов'язані між собою двома лінійними рівняннями, які можна одержати, якщо підставити функції  $x(t),\,y(t)$  у систему (24.3) і скоротити на  $e^{k_1t}$ .

Якщо  $k_1 < 0$ , то  $e^{k_1 t} \to 0$ ,  $t e^{k_1 t} \to 0$  при  $t \to +\infty$  і, отже, точка спокою x = y = 0 асимптотично стійка. Її називають *стійким вузлом*. Якщо  $k_1 > 0$ , то точка спокою нестійка, її називають *нестійким вузлом*.

Детальніше про випадок  $k_1 = k_2$  можна прочитати, наприклад, в [3, с. 144 – 148].

Наведені випадки отримані у припущенні, що визначник  $\Delta$  системи (24.3) відмінний від нуля. Припустимо, що  $\Delta=0$ . Тоді характеристичними числами є  $k_1=0$  і  $k_2=a_{11}+a_{22}$ . Якщо  $k_2\neq 0$ , то загальний розв'язок системи (24.3) має вигляд

$$x = C_1 \alpha_1 + C_2 \beta_1 e^{k_2 t}, \quad y = C_1 \alpha_2 + C_2 \beta_2 e^{k_2 t}, \tag{24.10}$$

де  $C_1, C_2$  – довільні сталі і  $a_{11}\alpha_1 + a_{12}\alpha_2 = 0, -a_{22}\beta_1 + a_{12}\beta_2 = 0.$  Виключаючи з (24.10) параметр t, одержуємо сім'ю паралельних прямих  $y - C_1\alpha_2 = \frac{\beta_2}{\beta_1}(x - C_1\alpha_1).$ 

Якщо  $k_2 < 0$ , то при  $t \to +\infty$  на кожній траєкторії (на одному з паралельних променів) точки наближаються до точки спо-

кою (рис. 24.7)

$$x = C_1 \alpha_1, \ y = C_1 \alpha_2 \quad \Rightarrow \quad y = \frac{\alpha_2}{\alpha_1} x.$$

Точка спокою x=y=0, так само, як і довільна точка прямої  $y=\alpha_2 x/\alpha_1$ , при  $k_2<0$  стійка, але не асимптотично стійка. Якщо  $k_2>0$ , то точка спокою нестійка.



Якщо  $k_1 = k_2$ , то можливі два випадки:

- 1. Загальний розв'язок системи (24.3) має вигляд  $x = C_1$ ,  $y = C_2$  (це буде тоді, коли матриця A нульова). Тоді точка спокою стійка, але не асимптотично стійка. Усі точки площини (x, y) є стійкими точками спокою.
- 2. Загальним розв'язком системи (24.3) є  $x=C_1+C_2t,$  y=a+bt. Тоді точка спокою нестійка. У цьому випадку  $a_{22}=-a_{11},\,a_{12}\,a_{21}<0.$

Приклад 3. Дослідити характер точки спокою системи

$$x' = 5y - x, \quad y' = -2y.$$

Накреслити інтегральні криві системи на площині (x,y). **Розв'язання.** Оскільки характеристичні числа системи –  $k_1=-1,\ k_2=-2,$  то точка спокою x=y=0 є стійким вузлом.

Числу  $k_1 = -1$  відповідає власний вектор  $\alpha = (1,0)$ , а числу  $k_2 = -2$  – вектор  $\beta = (-5,1)$ . Похідна  $\frac{dy}{dx}$  у точці початку координат дорівнює  $\alpha_2/\alpha_1 = 0$ . Отже, дотичні до інтегральних кривих у початку координат є горизонтальними, а самі криві можна побудувати, наприклад, як на рис. 24.8.



Приклад 4. Дослідити характер точки спокою системи

$$x' = \alpha x + y, \quad y' = -x + \alpha y$$

залежно від значення параметра  $\alpha$ .

Розв'язання. Характеристичними числами є  $k_{1,2} = \alpha i$ . Якщо  $\alpha = 0$ , то точка спокою є центром. У цьому випадку система набирає вигляду  $\frac{dx}{dt} = y$ ,  $\frac{dy}{dt} = -x$ . Звідси  $x^2 + y^2 = C$ , тобто фазовими траєкторіями є концентричні кола з центром у точці (0,0). Якщо  $\alpha \neq 0$ , то точка спокою є фокусом: стійким, якщо  $\alpha < 0$  і нестійким, якщо  $\alpha > 0$ . Фазовими траєкторіями є спіралі, які «накручуються» на точку (0,0). Якщо  $\alpha < 0$ , то точка (x(t),y(t)) рухається по спіралях у напрямі точки спокою, а для  $\alpha > 0$  — у напрямі від неї. ■

**Рекомендована література**: [1, с. 251 – 281], [3, с. 132 – 149, 163 – 168], [5, с. 417 – 453], [8, с. 216 – 222, 241 – 245], [15, с. 253 – 274].

#### Питання до лекції 24

- 1. Як формулюється теорему Ляпунова про стійкість (асимптотичну стійкість) нормальної нелінійної системи?
- 2. Які властивості має функція Ляпунова? У якому вигляді рекомендується шукати функцію Ляпунова?
- 3. Що називають фазовим портретом нормальної системи? Як побудувати фазовий портрет системи?
- 4. Як пов'язані між собою автономна лінійна однорідна система двох диференціальних рівнянь (24.3) і рівняння першого порядку з однорідною дробово-лінійною правою частиною (24.4)?
- 5. Дайте класифікацію Пуанкаре точок спокою автономної системи диференціальних рівнянь. У якому випадку точка спокою є стійкою, асимптотично стійкою, нестійкою?

#### Вправи до лекції 24

1. Дослідіть на стійкість тривіальний розв'язок системи, знаючи функцію Ляпунова:

a) 
$$\begin{cases} x'=y-x^3,\\ y'=-x-3y^3, \end{cases} V=x^2+y^2;$$
 6) 
$$\begin{cases} x'=-x-2y+x^2y^2,\\ y'=x-\frac{y}{2}-\frac{x^3y}{2}, \end{cases} V=x^2+2y^2.$$

2. Дослідіть особливі точки рівнянь. Накресліть інтегральні криві на площині (x,y):

a) 
$$\frac{dy}{dx} = \frac{2x+y}{x+2y}$$
; 6)  $\frac{dy}{dx} = \frac{-x+2y}{2x-y}$ .

3. Дослідіть особливі точки систем. Накресліть траєкторії на площині (x,y):

a) 
$$\begin{cases} x' = y, \\ y' = -x; \end{cases}$$
 6)  $\begin{cases} x' = x + 5y, \\ y' = -x - 3y. \end{cases}$ 

## Додаток до розділу 5.

Застосування математичного пакета Maple для дослідження на стійкість розв'язків звичайних диференціальних рівнянь та їх систем

Приклад 1. Дослідити на стійкість тривіальний розв'язок системи x' = -y, y' = x (приклад 2 лекції 23, стор. 290). Для цього побудуємо поле напрямів цієї системи та одну інтегральну криву за допомогою команди DEplot() з пакета DEtools: > DEtools[DEplot]( $\{D(x)(t)=-y(t),D(y)(t)=x(t)\},\{x(t),y(t)\},t=0..2*Pi,[[x(0)=1,y(0)=1]],x=-2..2,y=-2..2, linecolor=black);$ 



З розташування стрілок можна зробити висновок, що тривіальний розв'язок системи стійкий, але не  $\varepsilon$  асимптотично стій-

ким. Інтегральні криві утворюють концентричні кола з центрами у початку координат. Одне з них (з початковими умовами  $x(0)=1,\ y(0)=1)$  зображене на рис. 1.

**Приклад 2.** Дослідити на стійкість тривіальний розв'язок системи  $x'=y,\,y'=2x+y$  (приклад 3 лекції 23, стор. 290). Для цього побудуємо поле напрямів цієї системи та дві інтегральні криві за допомогою команди DEplot() з пакета DEtools:

> DEtools[DEplot]( $\{D(x)(t)=y(t),D(y)(t)=2*x(t)+y(t)\}$ ,  $\{x(t),y(t)\}$ , t=0..5, [[x(0)=0.2,y(0)=-0.15],[x(0)=0.5, y(0)=-0.5]], x=-1.5..1.5, y=-1.5..1.5, linecolor=black);



З рис. 2 видно, що тривіальний розв'язок системи нестійкий. Хоча кожен розв'язок, який починається на прямій y=-x, прямує до точки (0,0) при зростанні t (на рисунку побудовано таку інтегральну криву з початковими умовами

x(0) = 0.5, y(0) = -0.5), розв'язок, який починається навіть досить близько до початку координат, але не лежить на прямій y = -x, віддаляється від нього зі зростанням t (на рисунку побудовано таку інтегральну криву з початковими умовами x(0) = 0.2, y(0) = -0.15).

**Приклад 3.** Дослідити на стійкість тривіальний розв'язок системи

$$\begin{cases} x' = \sqrt{1 + 4y} - e^{3(x+y)}, \\ y' = \sin x + \ln(1 - y) \end{cases}$$

(приклад 4 лекції 23, стор. 293). Для цього побудуємо поле напрямів цієї системи та три інтегральні криві (які задовольняють початкові умови:  $x(0)=0.5,\ y(0)=0.5;\ x(0)=0.5,\ y(0)=-0.1;\ x(0)=-0.2,\ y(0)=-0.2)$ :

- > DEtools[DEplot]({D(x)(t)=sqrt(1+4\*y(t))-exp(3\*(x(t)+y(t))),D(y)(t)=sin(x(t))+ln(1-y(t))},{x(t),y(t)},
  t=0..10,[[x(0)=0.5,y(0)=0.5],[x(0)=0.5,y(0)=-0.1],
  [x(0)=-0.2,y(0)=-0.2]],x=-0.7..0.7,y=-0.3..1.1,
  stepsize=0.01,scaling=constrained,linecolor=black);
- 3 рис. 3 добре видно, що тривіальний розв'язок системи асимптотично стійкий. Поле напрямів за межами полоси -0.25 < y < 1 не побудовано (чому?).

**Приклад 4.** Дослідити на стійкість точку спокою рівняння  $y^{\text{IV}}+5y'''+13y''+19y'+10y=0$  (приклад 5 лекції 23, стор. 295). Зробити це за допомогою команди DEplot() не можна, бо маємо рівняння четвертого порядку. Звичайно, команда DEplot() побудує розв'язок задачі Коші для заданого рівняння, але вона не дозволяє побудувати поле напрямів, породжене диференціальним рівнянням. Знайдемо характеристичні числа — корені рівняння  $k^4+5k^3+13k^2+19k+10=0$ :

$$> solve(k^4+5*k^3+13*k^2+19*k+10=0,k);$$

$$-2$$
,  $-1$ ,  $-1+2I$ ,  $-1-2I$ .

Оскільки дійсні частини всіх характеристичних чисел від'ємні, то точка спокою заданого рівняння асимптотично стійка (теорема 1 лекції 23, стор. 293).



Puc. 3

Приклад 5. Дослідити на стійкість точку спокою рівняння  $y^{\rm V}+4y^{\rm IV}+16y'''+25y''+13y'+9y=0$  (приклад 6 лекції 23, стор. 295). Знайдемо характеристичні числа – корені рівняння  $k^5+4k^4+16k^3+25k^2+13k+9=0$  (яке у радикалах командою solve() не розв'язується) за допомогою команди fsolve() з опцією complex (стор.):

> fsolve( $k^5+4*k^4+16*k^3+25*k^2+13*k+9=0,k,complex$ );

$$-1.691606943, \quad -.9910128055 - 3.159244286\,I,$$
 
$$-.9910128055 + 3.159244286\,I, \quad -.1631837228 - .6772576111\,I,$$
 
$$-.1631837228 + .6772576111\,I.$$

Оскільки дійсні частини всіх характеристичних чисел від'ємні, то точка спокою заданого рівняння асимптотично стійка.

Приклад 6. Дослідити на стійкість тривіальний розв'язок системи  $x' = -x^5 - y$ ,  $y' = x - y^3$  (приклад 1 лекції 24, стор. 298). Для цього побудуємо поле напрямів системи та одну інтегральну криву, яка задовольняє початкові умови x(0) = -1, y(0) = -2:

> DEtools[DEplot]( $\{D(x)(t)=-x(t)^5-y(t),D(y)(t)=x(t)$  $y(t)^3$ , {x(t), y(t)}, t=0..100, [[x(0)=-1, y(0)=-2]], x(t)=-2..2,y(t)=-2..2,stepsize=0.1,linecolor=black);



Puc. 4

З поля напрямів на рис. 4 видно, що тривіальний розв'язок – стійкий; побудована інтегральна крива показує, що цей розв'язок є асимптотично стійким, бо довільна інтегральна крива по спіралі наближається до нього, хоча і дуже повільно. Якщо збільшити верхню межу діапазону для t до 1000, то інтегральна крива повністю заповнить видимий окіл початку координат

(переконайтесь самостійно!).

**Приклад 7.** Дослідити на стійкість тривіальний розв'язок системи  $x'=2y^3-x^5,\ y'=-x-y^3-y^5$  (приклад 2 лекції **24**, стор. **299**). Для цього побудуємо поле напрямів системи та одну інтегральну криву, яка задовольняє початкові умови  $x(0)=-1,\ y(0)=-2$ :

> DEtools[DEplot]( $\{D(x)(t)=2*y(t)^3-x(t)^5,D(y)(t)=-x(t)-y(t)^3-y(t)^5\},\{x(t),y(t)\},t=0..100,[[x(0)=-1,y(0)=-2]],x(t)=-2..2,y(t)=-2..2,stepsize=0.01,linecolor=black);$ 



.

З поля напрямів на рис. 5 видно, що тривіальний розв'язок – стійкий; побудована інтегральна крива показує, що цей розв'язок є асимптотично стійким, бо довільна інтегральна крива по спіралі наближається до нього.

#### Приклад 8. Дослідити характер точки спокою системи

$$x' = 5y - x, \quad y' = -2y$$

(приклад 3 лекції 24, стор. 308). Для цього побудуємо поле напрямів системи та вісім інтегральних кривих (які задовольняють початкові умови:  $x(0)=2,\ y(0)=-0.5;\ x(0)=2,\ y(0)=-1.5;\ x(0)=2,\ y(0)=-1;\ x(0)=1.5,\ y(0)=-2;\ x(0)=-2,\ y(0)=0.5;\ x(0)=-2,\ y(0)=1.5)$ :

> DEtools[DEplot]( $\{D(x)(t)=5*y(t)-x(t),D(y)(t)=-2*y(t)\},\{x(t),y(t)\},t=0..5,[[x(0)=2,y(0)=-0.5],[x(0)=2,y(0)=-1.5],[x(0)=2,y(0)=-1],[x(0)=1.5,y(0)=-2],[x(0)=-2,y(0)=0.5],[x(0)=-2,y(0)=1.5],[x(0)=-2,y(0)=1],[x(0)=-1.5,y(0)=2]],x(t)=-2..2,y(t)=-2..2,stepsize=0.1,linecolor=black);$ 



Puc. 6

З рис. 6 видно, що точка спокою системи є стійким вузлом. **Приклад 9.** Дослідити характер точки спокою системи

$$x' = \alpha x + y, \quad y' = -x + \alpha y$$

залежно від значення параметра  $\alpha$  (приклад 4 лекції 24, стор. 309). Розглянемо три випадки:  $\alpha=0,\ \alpha=1,\ \alpha=-1.$  Для  $\alpha=0$  побудуємо поле напрямів системи та інтегральну криву, яка задовольняє початкові умови  $x(0)=1,\ y(0)=0$ :

> alpha:=0:DEtools[DEplot]({D(x)(t)=alpha\*x(t)+y(t),
D(y)(t)=-x(t)+alpha\*y(t)},{x(t),y(t)},t=0..2\*Pi,
[[x(0)=1,y(0)=0]],x(t)=-2..2,y(t)=-2..2,
stepsize=0.1,linecolor=black);



Puc. 7

Отже, якщо  $\alpha=0$ , то точка  $x=0,\,y=0$  є центром.

У випадку  $\alpha=1$  побудуємо поле напрямів системи та інтегральну криву, яка задовольняє початкові умови x(0)=0.01, y(0)=0.01:

> alpha:=1:DEtools[DEplot]( $\{D(x)(t)=alpha*x(t)+y(t), D(y)(t)=-x(t)+alpha*y(t)\}, \{x(t),y(t)\}, t=0..10, [[x(0)=0.01,y(0)=0.01]],x(t)=-2..2,y(t)=-2..2, stepsize=0.1,linecolor=black);$ 



Puc. 8

Отримали нестійкий фокус.

Випадок, коли  $\alpha = -1$ , пропонуємо розглянути читачам самостійно.

# СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

#### ОСНОВНА ЛІТЕРАТУРА

- 1. Агафонов С. А. Дифференциальные уравнения / С. А. Агафонов, А. Д. Герман, Т. В. Муратова. М.: Изд-во МГТУ им. Н. Э. Баумана, 2004. 352 с.
- 2. Боярчук А. К. Справочное пособие по высшей математике. Т. 5: Дифференциальные уравнения в примерах и задачах / А. К. Боярчук, Г. П. Головач. М.: Едиториал УРСС, 2001. 384 с.
- 3. Лавренюк С. П. Курс диференціальних рівнянь / С. П. Лавренюк. Львів: Вид-во наук.-техн. л-ри, 1997. 216 с.
- 4. Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений / Н. М. Матвеев. М.: Высшая школа, 1967.-564 с.
- 5. Самойленко А. М. Диференціальні рівняння у задачах / А. М. Самойленко, С. А. Кривошея, М. О. Перестюк. К.: Либідь, 2003. 504 с.
- 6. Самойленко А. М. Диференціальні рівняння / А. М. Самойленко, М. О. Перестюк, І. О. Парасюк. К.: Либідь,  $2003.-600~\rm c.$
- 7. Тихонов А. Н. Дифференциальные уравнения / А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников. М.: ФИЗМАТЛИТ, 2005. 256 с.
- 8. Шкіль М. І. Диференціальні рівняння / М. І. Шкіль, В. М. Лейфура, П. Ф. Самусенко. К.: Техніка, 2003. 368 с.

#### ДОДАТКОВА ЛІТЕРАТУРА

9. Амелькин В. В. Дифференциальные уравнения в приложениях / В. В. Амелькин. – М.: Едиториал УРСС, 2003. – 208 с.

- 10. Говорухин В. Компьютер в математическом исследовании: Maple, MATLAB, LaTeX / В. Говорухин, Б. Цибулин. СПб.: Питер, 2001. 624 с.
- 11. Дьяконов В. П. Мар<br/>le 9.5/10 в математике, физике и образовании / В. П. Дьяконов М.: СОЛОН-Пресс<br/>, 2006. 720 с.
- 12. Егоров А. И. Обыкновенные дифференциальные уравнения с приложениями / А. И. Егоров. М.: ФИЗМАТЛИТ, 2005. 384 с.
- 13. Журавлев С. Г. Дифференциальные уравнения: примеры и задачи экономики, экологии и других социальных наук / С. Г. Журавлев, В. В. Аниковский. М.: Экзамен, 2005.-128 с.
- 14. Ибрагимов Н. Х. Практический курс дифференциальных уравнений и математического моделирования / Н. Х. Ибрагимов. Н. Новгород: Изд-во Нижегород. гос. ун-та, 2007. 421 с.
- 15. Кривошея С. А. Диференціальні та інтегральні рівняння / С. А. Кривошея, М. О. Перестюк, В. М. Бурим. К.: Либідь, 2004.-408 с.
- 16. Пономарев К. К. Составление и решение дифференциальных уравнений / К. К. Пономарев. Минск: Выш. школа, 1973.-560 с.
- 17. Эрроусмит Д. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями / Д. Эрроусмит, К. Плейс. М.: Мир, 1986. 243 с.
- 18. Braun M. Differential equations and their applications. 3rd edition / Braun Martin New York: Springer-Verlag, 1983. 546, [11] p. (Applied Mathematical Sciences; v. 15). ISBN 0-387-90806-4.
- Chicone C. Ordinary differential equations with applications / Chicone Carmen. New York: Springer-Verlag, 1999. XV, 562 p. (Texts in applied mathematics; 34). ISBN 0-387-98535-2.

# КОРОТКІ ВІДОМОСТІ ПРО ВЧЕНИХ, ЯКІ ЗГАДУЮТЬСЯ У ПОСІБНИКУ

**АБЕЛЬ Нільс Генрік** (Abel Niels Henrik; 1802-1829) — норвезький математик. Автор важливих відкриттів в алгебрі та математичному аналізі. Встановив нерозв'язність загального алгебричного рівняння степеня n>5, одержав ознаки збіжності числових та функціональних рядів. Займався також диференціальними рівняннями, одним з перших почав вивчати інтегральні рівняння.

**БАНАХ Стефан** (Banach Stefan; 1892 – 1945) – польський і український математик, професор Львівського університету. Один із творців сучасного функціонального аналізу і львівської математичної школи.

**БЕРНУЛЛІ Даниїл** (Bernoulli Daniel; 1700 – 1782) – швейцарський математик, механік, фізик. Син Й. Бернуллі. Найбільш відомий працями з математичної фізики та теорії диференціальних рівнянь – його разом з Д'Аламбером і Ейлером вважають творцем математичної фізики. Як фізик збагатив кінетичну теорію газів, гідродинаміку, аеродинаміку, теорію пружності. Йому належить одне з перших формулювань закону збереження енергії, а також (одночасно з Ейлером) перше формулювання закону збереження моменту кількості руху.

**БЕРНУЛЛІ Йоганн** (Bernoulli Johann; 1667 – 1748) – швейцарський математик. Молодший брат Я. Бернуллі, батько Д. Бернуллі. Дав перше систематичне викладення диференціального та інтегрального числення, автор деяких методів інтегрування звичайних диференціальних рівнянь (розробив метод відокремлення змінних та метод підстановки інтегрування лінійних рівнянь першого порядку). Один з творців варіаційного числення, зокрема сформулював класичну задачу про геодезичні лінії та знайшов характерну геометричну властивість цих ліній. Йому належать також вагомі дослідження з механіки, зокрема з теорії удару, руху тіл у середовищі з опором.

**БЕРНУЛЛІ Якоб** (Bernoulli Jacob; 1654 – 1705) – швейцарський математик. Автор видатних праць з аналітичної геометрії, математичного аналізу, теорії ймовірностей, диференціальних рівнянь (рівняння Бернуллі). Разом з братом Йоганном заклав основи варіаційного числення. При цьому особливе значення мали ізопериметрична задача і знайдений ним розв'язок сформульованої Й. Бернуллі задачі про брахістохрону. Працював також у різних галузях фізики (визначення центру кочення тіл, опору тіл різної форми, які рухаються у рідині).

БЕССЕЛЬ Фрідріх Вільгельм (Bessel Friedrich Wilhelm;

1784 — 1846) — німецький астроном і математик. Праці присвячені теорії диференціальних рівнянь і небесній механіці. У математиці його ім'я носять так звані циліндричні функції першого роду (функції Бесселя) і диференціальне рівняння, яке вони задовольняють (рівняння Бесселя).

**ВАНДЕРМОНД Александр Теофіл** (Vandermonde Alexandre Theophill; 1735 — 1796) — французький математик. Відомий працями з алгебри, зокрема дав логічний виклад теорії визначників, де відомий визначник Вандермонда.

ВРОНСЬКИЙ (ГЕНЕ-ВРОНСЬКИЙ) Юзеф Марія (Ноёпе-Wrocski Jozef Maria; 1778 — 1853) — польський математик і філософ. Одержав цікаві результати в алгебрі, математичному аналізі, теорії диференціальних рівнянь. Уперше ввів функціональний визначник, який має велике значення в теорії лінійних диференціальних рівнянь (визначник Вронського або вронскіан).

**ГРІН** Джордж (Green George; 1793 – 1841) – англійський математик і фізик. Основоположник школи математичної фізики в Кембриджі. Одержав вагомі результати в математичній фізиці, розвинув теорію електрики й магнетизму, спираючись на знайдені ним формули теорії потенціалу.

**ГУК Роберт** (Hooke Robert; 1635 – 1703) – англійський природознавець, член Лондонського королівського товариства. Основні праці у різноманітних галузях фізики і астрономії. Один з творців математичної теорії пружності.

**ГУРВІЦ Адольф** (Hurwitz Adolf; 1859 – 1919) – німецький математик. Відомий працями з математичного аналізу, алгебри (критерій Гурвіца), теорії чисел. З 1892 р. професор Політехнічної школи у Цюріху, де серед його студентів був Альберт Ейнштейн.

Д'АЛАМБЕР Жан Лерон (D'Alembert Jean Le Rond; 1717 – 1783) — французький математик, механік і філософ. Автор фундаментальних праць з механіки, математичної фізики, теорії диференціальних рівнянь. Вперше сформулював загальні правила складання диференціальних рівнянь руху будь-яких матеріальних систем (принцип Д'Аламбера). Основні математичні праці стосуються теорії диференціальних рівнянь, де він запропонував метод розв'язування рівнянь другого порядку з частинними похідними, які виражають малі коливання нескінченно тонкої однорідної струни (хвильових рівнянь). Його роботи, а також наступні роботи Л. Ейлера і Д. Бернуллі заклали основу математичної фізики.

**ЕЙЛЕР Леонард** (Euler Leonhard; 1707 – 1783) – видатний математик, механік, фізик, астроном. За походженням швейцарець, але майже півжиття провів у Росії, 15 років працював у Німеччині. Ав-

тор майже 850 наукових праць з математичного аналізу, диференціальної геометрії, наближених методів обчислень, небесної механіки, математичної фізики, оптики, балістики та ін. Систематично розвиваючи нові прийоми інтегрування диференціальних рівнянь та ввівши низку основних понять у цій області, Ейлер створив як самостійну дисципліну теорію звичайних диференціальних рівнянь і заклав основи теорії рівнянь з частинними похідними.

**КАПЕЛЛІ Альфредо** (Capelli Alfredo; 1855 – 1910) – італійський математик. Розвинув теорію квадратичних форм та теорію алгебричних рівнянь. Довів необхідну і достатню умову існування розв'язку довільної лінійної системи алгебричних рівнянь.

**КІРХГОФ Густав Роберт** (Kirchhoff Gustav Robert; 1824 – 1887) — німецький фізик. Основні праці з оптики, електродинаміки і механіки. Розв'язав задачу про розподіл електричних струмів у розгалужених електричних колах (правила Кірхгофа). Математичні дослідження відносяться головно до математичної фізики (метод наближеного розв'язування задач дифракції коротких хвиль, формули Кірхгофа в теорії потенціалу, представлення електричної схеми у вигляді графа).

**КЛЕРО Алексіс Клод** (Clairaut Alexis Claude; 1713 – 1765) – французький математик, механік і астроном. Ввів поняття повного диференціала функції кількох змінних, загального та частинного розв'язків диференціального рівняння. Відомий також працями з геометрії, аналітичної механіки, геодезії, астрономії.

**КОІШ Огюстен Луї** (Cauchy Augustin Louis; 1789 – 1857) – французький математик. Опублікував понад 800 праць із теорії чисел, алгебри, математичного аналізу, теоретичної механіки, математичної фізики. Дав чітке означення неперервної функції, основних понять теорії збіжних рядів (ознака Коші, критерій Коші), розвинув основи теорії аналітичних функцій. У теорії диференціальних рівнянь довів основну теорему існування розв'язку початкової задачі (задачі Коші). Розробив методи інтегрування рівнянь з частинними похідними першого порядку.

**КРАМЕР Габрієль** (Cramer Gabriel; 1704 – 1752) – швейцарський математик. Один з творців лінійної алгебри, учень Й. Бернуллі. Запропонував метод розв'язування систем лінійних алгебричних рівнянь (метод Крамера). Отримав нові результати також у геометрії, теорії ймовірностей, небесній механіці. Займався історією математики.

**КРОНЕКЕР Леопольд** (Kronecker Leopold; 1823 – 1891) – німецький математик. Написав понад 120 наукових праць з алгебри і теорії чисел. Був прихильником «арифметизації» математики, яка,

на його думку, повинна зводитись до арифметики цілих чисел.

**ЛАГРАНЖ Жозеф Луї** (Lagrange Joseph Louis; 1736 – 1813) – французький математик і механік. Найбільш важливі праці відносяться до варіаційного числення і механіки. Йому належать також видатні дослідження з різних питань математичного аналізу (формула залишкового члена ряду Тейлора, формула скінченних приростів – формула Лагранжа, теорія умовних екстремумів – метод множників Лагранжа), диференціальних рівнянь (теорія особливих розв'язків, метод варіації довільних сталих для лінійного рівняння *n*-го порядку) та ін.

**ЛЕЙБНІЦ Готфрід Вільгельм** (Leibniz Gottfried Wilhelm; 1646 – 1716) – німецький математик, фізик, філософ. Один із творців диференціального та інтегрального числень, їхніх понять і символіки. Йому належать терміни «диференціал», «диференціальне числення», «диференціальне рівняння», «функція», «координати» та ін. У фізиці відкрив закон збереження енергії, висловив ідею про перетворення одних видів енергії в інші. Йому належить низка відкриттів у спеціальних розділах фізики: в теорії пружності, теорії коливань та ін.

**ЛІПШЩ Рудольф Отто Сигізмунд** (Lipschitz Rudolf Otto Sigismund; 1832 – 1903) – німецький математик. Автор важливих праць з математичного аналізу, теорії чисел, диференціальних рівнянь (умова Ліпшіца), теоретичної механіки.

**ЛІУВІЛЛЬ Жозеф** (Liouville Joseph; 1809 – 1882) – французький математик. Автор важливих праць з комплексного аналізу, теорії чисел, диференціальних рівнянь (формула Остроградського – Ліувілля). Першим строго довів неінтегровність у квадратурах деяких класів диференціальних рівнянь. Разом зі Ж. Штурмом розробив теорію крайових задач на власні значення для лінійних диференціальних рівнянь другого порядку (задача Штурма – Ліувілля). Довів одну з фундаментальних теорем механіки – теорему про інтегрування канонічних рівнянь динаміки.

**ЛЯПУНОВ Олександр Михайлович** (1857 – 1918) – російський математик і механік, дійсний член Петербурзької Академії наук, професор Харківського, Одеського університетів. Засновник математичної теорії стійкості руху, автор важливих досліджень про фігури рівноваги рідини, що рівномірно обертається. Зробив вагомий внесок у теорію ймовірностей та теорію потенціалу.

**НЬЮТОН Ісаак** (Newton Isaac; 1643 – 1727) – англійський фізик, математик, механік, астроном. Заклав теоретичні основи механіки і астрономії, відкрив закон всесвітнього тяжіння, разом із Лейбніцем вважається творцем диференціального та інтегрально-

го числень. Винайшов метод інтегрування диференціальних рівнянь розвиненням їх розв'язків у степеневі ряди. На основі закону всесвітнього тяжіння дав математичне обґрунтування першого закону Кеплера.

ОСТРОГРАДСЬКИЙ Михайло Васильович (1801—1862)— український і російський математик (родом з Полтавщини), член Петербурзької Академії наук та багатьох закордонних академій наук. Розв'язав низку важливих задач математичної фізики, теорії звичайних диференціальних рівнянь (формула Остроградського—Ліувілля), варіаційного числення, теоретичної механіки. Запропонував спосіб зведення неоднорідної крайової задачі до однорідної.

**ПЕАНО** Джузеппе (Peano Giuse; 1858 – 1932) – італійський математик. Запропонував систему аксіом арифметики, довів теорему існування розв'язку задачі Коші для диференціального рівняння з неперервною правою частиною, першим побудував неперервну криву, яка цілком заповнює квадрат (крива Пеано).

ПУАНКАРЕ Анрі Жюль (Poincare Henri Jules; 1854 – 1912) – французький математик, фізик, астроном і філософ. Автор понад 1000 праць з диференціальних рівнянь, теорії потенціалів, математичної фізики, небесної механіки. Один з засновників якісної теорії диференціальних рівнянь.

**ПФАФФ Йоганн Фрідріх** (Pfaff Johann Friedrich; 1765 – 1825) — німецький математик і астроном. Відомий дослідженнями з теорії диференціальних рівнянь (рівняння Пфаффа).

РАУС Едвард Джон (Routh Edward John; 1831 – 1907) – англійський механік і математик. Відомий працями з теоретичної механіки. Займався проблемами стійкості рівноваги і руху (критерій Рауса – Гурвіца). Встановив спеціальний алгоритм для визначення кількості коренів алгебричного рівняння, які мають додатні дійсні частини (теорема Рауса).

**РІККАТІ Джакопо Франческо** (Riccati Jacopo Francesco; 1676 – 1754) – італійський математик та інженер. Основні праці стосуються інтегрального числення й диференціальних рівнянь, зокрема він автор дослідження про інтегровність у квадратурах одного класу диференціальних рівнянь першого порядку (спеціальне рівняння Ріккаті).

**СИЛЬВЕСТР** Джеймс Джозеф (Sylvester James Joseph; 1814—1897)— англійський математик. Основні праці з алгебри (критерій Сильвестра), теорії чисел, теорії ймовірностей, механіки і математичної фізики.

**ТЕЙЛОР Брук** (Taylor Brook; 1685 – 1731) – англійський математик. Вивів загальну формулу (формула Тейлора) розвинення

функцій у степеневі ряди (ряди Тейлора), започаткував математичну теорію коливання струни. Автор робіт, присвячених перспективі, взаємодії магнітів, капілярності та ін.

**ФРЕДГОЛЬМ Ерік Івар** (Fredholm Erik Ivar; 1866 – 1927) – шведський математик. Засновник загальної теорії лінійних інтегральних рівнянь (рівняння Фредгольма, теореми Фредгольма).

ФУР'Є Жан Батист Жозеф (Fourier Jean Baptiste Joseph; 1768 — 1830) — французький математик. Найвагоміші результати отримав у математичній фізиці. Зокрема, вивів диференціальне рівняння теплопровідності, розробив метод розв'язування цього рівняння при певних крайових умовах (метод Фур'є). Його ідеї стали потужним інструментом математичного дослідження найрізноманітніших задач, пов'язаних з хвилями і коливаннями (астрономія, акустика, радіотехніка та ін.).

**ХОПФ Хейнц** (Hopf Heinz; 1894 – 1971) – німецький і швейцарський математик. Основні роботи стосуються топології, топологічних питань диференціальної геометрії і теорії диференціальних рівнянь.

ШТУРМ Жак Шарль Франсуа (Sturm Jacques Charles François; 1803 — 1855) — швейцарський математик. Основні праці присвячені задачам математичної фізики та пов'язаним з ними крайовим задачам на власні значення для звичайних диференціальних рівнянь (задача Штурма — Ліувілля). Заклав основи теорії коливності розв'язків лінійних диференціальних рівнянь. Автор важливих робіт з оптики і механіки.

**ЯКОБІ Карл Густав Якоб** (Jacobi Carl Gustav Jacob; 1804 – 1851) – німецький математик. Йому належать відкриття в теорії чисел, алгебрі, варіаційному численні, інтегральному численні та теорії диференціальних рівнянь. Досліджував диференціальні рівняння динаміки, розробив нові методи їх розв'язування.

# ПРЕДМЕТНИЙ ПОКАЖЧИК

| ан) 143, 231  - характеристичний 235 Вронскіан (визначник Вронського) 143, 231 Вузол нестійкий 303, 307  - стійкий 302, 307                                                                                                                                              | Коректність задачі Коші 90 Крива інтегральна 19, 218 — логістична 15 Критерій Л'єнара— Шипара 295 — Рауса— Гурвіца 295 — Сильвестра 298 Лінеаризація 100                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Графік руху 31 Дані початкові 24, 118, 218, 222 Задача Копі 24, 70, 118, 218, 222, 265, 271  – крайова 197  – на власні значення 205  – неоднорідна 198  – однорідна 198  – початкова (задача Копі) 24  – Штурма – Ліувілля 206 Залежність лінійна 143, 230 Збурення 288 | Маятник математичний 194 Метод Бернуллі 48  – варіації довільних сталих 47, 164, 245  – введення параметра 78, 79, 125  – виключення 225  – відокремлення змінних 35  – Д'Аламбера 251  – Ейлера 67, 234  – ізоклін 29  – ітерацій (послідовних наближень) 88 |
| Значення власне 205  Ізокліна 29 Інваріант 176 Інтеграл диференціального рівняння 26 — загальний 26, 72, 121, 220 — незалежний 220 — перший 135, 220 — незалежний 220 — системи 219                                                                                      | Пагранжа 47, 164, 245     невизначених коефіцієнтів 169, 248     підстановки 48     послідовних наближень (ітерацій) 88     степеневих рядів 178 Метрика 87 Многочлен характеристичний 152 Множник інтегрувальний 60, 137                                     |
| Коефіцієнт рівняння 23, 140  – стиснення 88  Коливання вільне 190  – власне 190  – гармонічне 188  – згасаюче 189  – гармонічне накладене 191                                                                                                                            | Наближення послідовні 90<br>Обвідна 28, 72<br>Оператор 88<br>– інтегральний Фредгольма 93<br>– лінійний диференціальний 141<br>– стискуючий 88                                                                                                                |

шого порядку 260

Поверхня інтегральна 259 – зі сталими коефіцієнтами 151, Поле напрямів 28 169 Положення рівноваги 289 – неоднорідне *n*-го порядку 140 Портрет фазовий 300 – – з частинними похідними Порядок рівняння 18 першого порядку 269 – з частинними похідними 258 – – першого порядку 46 - звичайного диференціального - – однорідне n-го порядку 140 18, 140 – – з частинними похідними Правило відшукання обвідної 74 першого порядку 260 Принцип стискуючих відобра-– – першого порядку 46 жень 88 – першого порядку 46 Простір метричний 87 неявне 68 – п-вимірний евклідовий 87 – , яке містить тільки похідну 76 повний 88 –, не розв'язане відносно похідної – фазовий 221 68 Пряма фазова 221 – однорідне 38, 134 Ранг крайової задачі 199 - першого порядку степеня n 75Резонанс 192 Пфаффа 277 Рівняння автономне 32 Ріккаті 53 Бернуллі 50 стаціонарне 32 Бесселя 160 – у повних диференціалах 57 - гармонічного осцилятора 187 узагальнено-однорідне 43 – диференціальне 12 характеристичне 152, 235 – з частинними похідними 18, Чебищова 159 258 Розв'язок звичайного диференці-– звичайне 18 ального рівняння 19, 23, 68, − − сім'ї кривих 20 118 – з точними похідними 135 – загальний 26, 121 Ейлера 157 – – у параметричній формі 26, – з відокремленими змінними 35 121 - з відокремлюваними змінними – комплексний 154 34 -- особливий 28, 72, 122– інтегральне 106 – тривіальний 141 квазілінійне 269 – – у квадратурах <mark>19</mark> - Клеро 81 - – частинний 28, 72, 121 коливань 187 - рівняння з частинними похі-– вимушених 187, 190 – вільних 187 дними 259 - – загальний 263, 270 Лагранжа 80, 158 крайової задачі 198 лінійне другого порядку 174 – з частинними похідними пер-системи звичайних диференці-

альних рівнянь 218

нерухома 88

```
Розв'язок системи асимптотично
                                   – особлива 26, 181
   стійкий 287, 289

– регулярна 182

                                   простору 87

– загальний 219

– збурений 287

    рівноваги 32

– незбурений 287

                                   – руху початкова <mark>222</mark>

– нестійкий 287

                                   спокою 32, 222, 289

– особливий 219

                                   Траєкторія ізогональна 82

– стійкий 286, 289

– ортогональна 82

– тривіальний 227, 288

    – pyxy 221

– частинний 219

                                   Умова Ліпшіна 94
Pyx 31, 120, 221, 286

    необхідна і достатня ліній-

– аперіодичний згасаючий 190

                                      ної незалежності функцій 145,
усталений 222
                                      232
Ряд степеневий 178

– лінійної залежності функцій

– узагальнений 182

                                      143, 231
Система автономна 222
                                   --- незалежності розв'язків 144,
   звичайних диференціальних
                                      231

– сумісності системи неліній-

   рівнянь першого порядку 217

– лінійна 227

                                      них рівнянь з частинними по-
– неоднорідна 227
                                      хідними першого порядку 275
– однорідна 227

повної інтегровності рівняння

нормальна 217
                                      Пфаффа 278

першого наближення 291

                                   Умови крайові 197

    розв'язків фундаментальна

– однорідні 198

   145, 233
                                   початкові 24, 119, 218, 265, 271

стаціонарна 222

                                   Фокус нестійкий 306
характеристик 261, 269, 270

стійкий 306

характеристична 261

                                   Формула Абеля 177
Сідло 304
                                   – Ейлера <del>154</del>
Сім'я інтегральних кривих 19
                                   – Komi 124, 167
Стан спокою 32, 222

    Остроградського – Ліувілля

Теорема Коші 25, 90, 121, 218
                                      148
– Ляпунова 293, 297

Остроградського – Якобі 233

– Пеано 24, 121, 218
                                   Функція аналітична 179
- про неперервну залежність роз-

власна 205, 259

   в'язків від параметру 96

    Гріна 201

- про неперервну залежність роз-
                                   – Komi 166
   в'язків від початкових умов

    – Ляпунова 298

   97

    однорідна 37

Типи Пуанкаре 301
                                   Центр 305
Точка
        аналітичності рівняння
                                   Цикл граничний 300
   179
                                   Число характеристичне 152, 235
```