COMS10013 - Resit Exam Questions

Ross Bowden

Summer 2025

Preface

NOTE(2025): This exam was done via Blackboard due to Covid, so the 'pool' system of questions is different to an in-person exam. The types of exam question are representative.

One question should be selected randomly from each of the following pools of questions.

- 1. (a) Consider the function $z(x, y) = \sin(x)\cos(e^{-y^2})$. Which of the following statements is true?
 - A. z has infinitely many local maxima.
 - B. *z* has infinitely many local minima.
 - C. z has infinitely many saddle points.
 - D. All of the above.
 - (b) Consider the function $z(x, y) = \cos(x)\cos(e^{-y^2})$. Which of the following statements is true?
 - A. z has infinitely many local maxima.
 - B. *z* has infinitely many local minima.
 - C. z has infinitely many saddle points.
 - D. All of the above.
 - (c) Consider the function $z(x, y) = \sin(y)\cos(e^{-x^2})$. Which of the following statements is true?
 - A. z has infinitely many local maxima.
 - B. *z* has infinitely many local minima.
 - C. z has infinitely many saddle points.
 - D. All of the above.
 - (d) Consider the function $z(x, y) = \cos(y) \cos(e^{-x^2})$. Which of the following statements is true?
 - A. z has infinitely many local maxima.
 - B. *z* has infinitely many local minima.
 - C. z has infinitely many saddle points.
 - D. All of the above.

Solution: Let $z(x, y) = \cos(x)\cos(e^{-y^2})$, the analysis is virtually the same for all variants. Solving $\nabla z(x, y) = 0$ gives $(x, y) = (n\pi, 0)$, so we have infinitely many stationary points. The Hessian at y = 0 gives $H = \begin{pmatrix} -\cos(x) & 0 \\ 0 & 2\cos(x)\sin(1) \end{pmatrix}$ which has negative determinant irrespective of x, hence all stationary points are saddle points.

- 2. (a) The function y(t) satisfies $\frac{d^2y}{dt^2} 3\frac{dy}{dt} + 2y = 0$, y(0) = 0, $y(\ln(2)) = -2$. Compute $y(\ln(3))$. Please write your answer as an integer, with no full stop at the end.
 - (b) The function y(t) satisfies $\frac{d^2y}{dt^2} 6\frac{dy}{dt} + 8y = 0$, y(0) = 0, $y(\ln(2)) = -12$. Compute $y(\ln(3))$. Please write your answer as an integer, with no full stop at the end.
 - (c) The function y(t) satisfies $\frac{d^2y}{dt^2} 9\frac{dy}{dt} + 18y = 0$, y(0) = 0, $y(\ln(2)) = -56$. Compute $y(\ln(3))$. Please write your answer as an integer, with no full stop at the end.
 - (d) The function y(t) satisfies $\frac{d^2y}{dt^2} 12\frac{dy}{dt} + 32y = 0$, y(0) = 0, $y(\ln(2)) = -240$. Compute $y(\ln(3))$. Please write your answer as an integer, with no full stop at the end.

Solution: The characteristic polynomial has the form $\lambda^2 - 3\lambda\alpha + 2\alpha^2 = (\lambda - \alpha)(\lambda - 2\alpha)$, so the general solution has the form $y(t) = e^{\alpha t}(A + Be^{\alpha t})$. The first IC gives A = -B. The second IC gives A = -B = 1, so $y(t) = e^{\alpha t}(1 + e^{\alpha t})$. The answer is then of the form $3^{\alpha}(1 - 3^{\alpha})$.

- (a) -6
- (b) -72
- (c) -702
- (d) -6480

- 3. (a) How many solutions are there to the equation $\bar{z} = z^2$ in the complex numbers? Please write your answer as an integer, with no full stop at the end.
 - (b) How many solutions are there to the equation $\bar{z} = z^3$ in the complex numbers? Please write your answer as an integer, with no full stop at the end.
 - (c) How many solutions are there to the equation $\bar{z} = z^4$ in the complex numbers? Please write your answer as an integer, with no full stop at the end.
 - (d) How many solutions are there to the equation $\bar{z} = z^5$ in the complex numbers? Please write your answer as an integer, with no full stop at the end.

Solution: We can take the modulus to obtain $|z| = z^n$, so |z| = 1 or z = 0. Multiplying the original equation by z, we then obtain $z^{n+1} = 1$, which has n+1 solutions. Hence, we have n+2 total.

- (a) 4
- (b) 5
- (c) 6
- (d) 7

- 4. (a) Let $f(x) = \frac{2}{(1-x)^2}$. The Taylor series for f(x) around $x_0 = 0$ is of the form $\sum_{n=0}^{\infty} a_n x^n$ for some sequence a_n . By computing a formula for a_n in terms of n, or otherwise, compute a_{10} . Please write your answer as an integer, with no full stop at the end.
 - (b) Let $f(x) = \frac{3}{(1-x)^2}$. The Taylor series for f(x) around $x_0 = 0$ is of the form $\sum_{n=0}^{\infty} a_n x^n$ for some sequence a_n . Compute a formula for a_n , in terms of n and hence compute a_{10} . Please write your answer as an integer, with no full stop at the end.
 - (c) Let $f(x) = \frac{4}{(1-x)^2}$. The Taylor series for f(x) around $x_0 = 0$ is of the form $\sum_{n=0}^{\infty} a_n x^n$ for some sequence a_n . Compute a formula for a_n , in terms of n and hence compute a_{10} . Please write your answer as an integer, with no full stop at the end.
 - (d) Let $f(x) = \frac{5}{(1-x)^2}$. The Taylor series for f(x) around $x_0 = 0$ is of the form $\sum_{n=0}^{\infty} a_n x^n$ for some sequence a_n . Compute a formula for a_n , in terms of n and hence compute a_{10} . Please write your answer as an integer, with no full stop at the end.

Solution: In the case $f(x) = \frac{c}{(1-x)^2}$, we have $a_n = c(n+1)$.

- (a) 22
- (b) 33
- (c) 44
- (d) 55

- 5. (a) Consider the differential equation $\frac{dy}{dx} + 10y^2 = e^x$. Which of the following correctly describes this differential equation?
 - A. First-order, linear, inhomogeneous, with constant coefficients
 - B. First-order, non-linear, inhomogeneous, with constant coefficients
 - C. First-order, non-linear, homogeneous, with constant coefficients
 - D. First-order, non-linear, inhomogeneous, with non-constant coefficients
 - (b) Consider the differential equation $\left(\frac{dy}{dx}\right)^2 + 10y = e^x$. Which of the following correctly describes this differential equation?
 - A. First-order, linear, inhomogeneous, with constant coefficients
 - B. First-order, non-linear, inhomogeneous, with constant coefficients
 - C. First-order, non-linear, homogeneous, with constant coefficients
 - D. First-order, non-linear, inhomogeneous, with non-constant coefficients
 - (c) Consider the differential equation $\frac{dy}{dx} + 10xy = e^x$. Which of the following correctly describes this differential equation?
 - A. First-order, non-linear, inhomogeneous, with non-constant coefficients
 - B. First-order, linear, inhomogeneous, with non-constant coefficients
 - C. First-order, linear, homogeneous, with non-constant coefficients
 - D. First-order, linear, inhomogeneous, with constant coefficients
 - (d) Consider the differential equation $x \frac{dy}{dx} + 10y = e^x$. Which of the following correctly describes this differential equation?
 - A. First-order, non-linear, inhomogeneous, with non-constant coefficients
 - B. First-order, linear, inhomogeneous, with non-constant coefficients
 - C. First-order, linear, homogeneous, with non-constant coefficients
 - D. First-order, linear, inhomogeneous, with constant coefficients