Visualizing the Knowledge Space of Music

Glenn Henshaw, Fan Yun

April 24, 2017

Goal: Map the knowledge space of a given field

- How can the field be divided into subfields?
- What are the principle subfields?
- What are the emerging subfields?
- How do these subfields connect/interact?
 - Internally
 - externally

Goal: Map the knowledge space of a given field

Although Experts have deep insight into their specialty, they tend to be bias towards their own subfield. Also, expert surveys tend to be costly endeavors.

Goal: Map the knowledge space of a given field

- Co-Word Analysis attempts to map the knowledge space of a given field by measuring and analyzing the strength of the associations between terms (keywords, indexed terms, or words from a corpus)
- ► The **strength** of the association between terms is based on how frequently they co-appear in documents.
- ▶ We use the results of co-word analysis to hierarchically cluster the terms.
- We visualize the clusters with dendrograms, weighted graphs, and strategic diagrams.

Visualization techniques

- ▶ **Dendrograms:** detailed information on the relationship between terms and clustering.
- ▶ Weighted graphs: detailed of each cluster
- ▶ Strategic Diagram: Local and global view of the clusters

What is music scholarship?

Examples:

- ► Musicology: Richard Wagners opposition to animal experimentation: A visionary social critic
- ► Ethnomusicology: A bird tradition in the west of the Balkan Peninsula
- Music pedagogy: From Mississippi hot dog to Arizona cactus
- Music therapy The use of music with chronic food refusal: A case study
- ► Popular music studies Crossing cinematic and sonic bar lines: T-Pains Cant believe it

What is RILM?

- A comprehensive music bibliography featuring
 - abstracts and citations
 - 143 languages
 - ▶ 1967 present
 - ▶ 875,000 records
- ▶ RILM indexing represents hierarchical relationships with broader and narrower topics.

The Data

	year	ac	class1	Ivi1	cat1	Ivi2	cat2	lvl3	cat3	lang	code
0	2013	6647	29	performing organizations	Т	Germany	G	Berlin	G	Russian	2013-6647
1	2013	6648	29	Kopatchinskaja Patricia	N	interviews	М	NaN	NaN	Russian	2013-6648
2	2013	6648	29	performersviolin	Т	Kopatchinskaja, Patricia	N	NaN	NaN	Russian	2013-6648
3	2013	6651	29	Gounod Charles	N	performances	М	<faust></faust>	W	Russian	2013-6651
4	2013	6651	29	performing organizations	Т	Russia	G	Sankt-Peterburg	G	Russian	2013-6651

- ► Almost all academic music articles (2000-2015)
- ▶ 263,656 Rows
- ▶ 59,908 Articles
- 25,297 distinct terms (lvl1)

15 Most common terms

	count
pedagogy	5499
China	5084
instrumentskeyboard (organ family)	3011
popular music	2388
aesthetics	2037
singing	2024
songpopular and traditional	1886
pedagogues	1844
performing organizations	1836
religious institutions	1788
instrument buildersorgan	1773
sound recordings	1734
academic institutions	1657
instrumentskeyboard (piano family)	1639
psychology	1608

Co-occurrence

Definition

For two terms, i and j, their co-occurrence is defined as

 $C_{i,j} = \text{How often } i \text{ and } j \text{ appear in the same article}$

Example

The terms 'aesthetics' and 'popular music' apear together in 123 articles.

 $C_{\text{`aesthetics','popular music'}} = 123$

From matrix to graph using the matrix C

- Dots (nodes) are terms.
- ▶ Lines between terms indicate that C > 4.
- ► Colors indicate terms that are highly interconnected (clusters).

From matrix to graph using the matrix C

Despite its beauty, we could not obtain valuable information from this graph!

From matrix to graph using the matrix C

▶ High frequency terms dominate the connections.

Term-vectors and cosine similarity

Definition

- ► Fix an arbitrary ordering on the 59,908 articles under study.
- Associate each term, with a 59,908 dimensional vector of 1s and 0s.
 - ▶ If the term indexes the *i*th article then the *i*th entry is a 1.
 - Otherwise the *i*th entry is 0.
- ▶ Two terms with vectors i, j have cosine-similarity (CS),

$$CS(i,j) = \frac{i \cdot j}{\sqrt{i \cdot i} \sqrt{j \cdot j}}.$$
 (1)

Term-vectors and cosine similarity

Example

	Terms
Article 1	animal, food
Article 2	food, death and dying
Article 3	film and videos

```
'Animal' = (1,0,0)
```

'food' =
$$(1, 1, 0)$$

'death and dying' =(0,1,0)

'film and videos' = (0,0,1)

Term-vectors and cosine similarity

```
Example 'animal' = (1,0,0) 'food' = (1,1,0) 'death and dying' = (0,1,0) 'film and videos' = (0,0,1)
```

$$\begin{aligned} \mathsf{CS} \; (\mathsf{'food','animal''}) &= \frac{(1,1,0) \cdot (1,0,0)}{\sqrt{(1,1,0) \cdot (1,1,0)} \sqrt{(1,0,0) \cdot (1,0,0)}} \\ &= \frac{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 0}{\sqrt{1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0} \sqrt{1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0}} \\ &= \frac{1}{\sqrt{2}} \end{aligned}$$

Another way to calculate cosine similarity

$$CS(i,j) = \frac{i \cdot j}{\sqrt{i \cdot i} \sqrt{j \cdot j}}$$

$$= \sqrt{\frac{C_{ij}^2}{C_{ii} C_{jj}}}$$

$$= \sqrt{\frac{C_{ij}}{C_{jj}} \frac{C_{ji}}{C_{ii}}}$$

$$= \sqrt{P(i \mid j)P(j \mid i)}$$

Where P(i | j) is the probability of finding term i in an article given that it had term j.

Example

Let

$$i =$$
 'China' $j =$ 'popular music' $k =$ 'mathematics' $l =$ 'scales'.

Then,

$$C_{ij} = 151$$
 $CS(i,j) = \sqrt{151^2/(5084 \cdot 2388)}$ = .04
 $C_{kl} = 15$ $CS(k,l) = \sqrt{15^2/(309 \cdot 303)}$ = .05.

Hierarchical Clustering (a rough sketch)

- ▶ Distance between individual terms: d(i,j) = 1 CS(i,j).
- ▶ At the start, each term, t_i , is contained in its own cluster $c_i = \{t_i\}$.
- ▶ Define distance between clusters $D(c_i, c_j)$.
 - Many ways to do this

Repeat until there is only one cluster:

- Find two clusters of minimal distance, i.e. min $D(c_i, c_j)$.
- Merge the clusters c_i and c_j into a cluster c_{i&j}.
- ▶ Delete the clusters c_i and c_i.

We visualize Hierarchical clustering with a dendrogram.

Dendrogram

Clusters: Theory

Clusters: Performance

Clusters: Rock

Clusters: Black Studies and United States

Clusters: Jazz

Clusters: Iconography

Clusters: Religious Music

Clusters: Dance

Clusters: Organ Music and Restoration

Density and Centrality

For each cluster we calculate:

- Density Average strength of all the connections within a cluster
- ► Centrality The square root of the sum of the squares of all connections to outside clusters

Thank You!