Practical Issues of Classification

Dr. Faisal Kamiran

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

	_	
Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	- -	+) –	+	+	
Threshol	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Instance Based Classifiers

Dr. Faisal Kamiran

Instance-Based Classifiers

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Test Record

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Distance Measures ...

- Choosing the correct distance function is essential
 - Eucledian, Minkowski
 - Simple Matching Coefficient
 - Jaccard measure
 - Cosine Measure

- Example: distance measure for strings
 - Edit distance

Edit Distance

- Distance between two strings: minimal number of operations to transform one into another
 - Insert a character
 - Delete a character
 - Replace a character with another
- Example:
 - Hello □ Jello distance = 1
 - Good □ Goodbye distance = 3

Bayes Classifiers

Bayes Classifier

- A probabilistic framework for solving classification problems

• Conditional Probability:
$$P(C \mid X) = \frac{P(X,C)}{P(X)}$$

$$P(X \mid C) = \frac{P(X,C)}{P(C)}$$

Bayes theorem:

Posterior probability

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

probability

Towards Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n attribute vector X = (x₁, x₂, ..., x_n)
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Derivation of Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical: P(x_k|C_i) is the # of tuples in C_i having value x_k for A_k divided by |C_{i, D}| (# of tuples of C_i in D)
- If A_k is continous-valued: $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ $g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

and
$$P(x_k|C_i)$$
 is

$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class: $P(C) = N_c/N$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{ck}$$

- where |A_{ik}| is number of instances having attribute
 A_i and belongs to class C_k
- Examples:

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretization:
 - Replace the attribute with discrete intervals
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi} (54.54)} e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Naïve Bayesian Classifier: Training Dataset

Class:

C1:buys_computer = 'yes

C2:buys_computer = 'no'

Data sample
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)

		1		
age	income	student	<mark>credit ratino</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$
- P(Buy=Yes|X) = [P(X|Buy=yes) P(P(buy=yes)]/P(X)
- P(Buy=No|X) = [P(X|Buy=No) P(P(buy=No)]/P(X)

200	income	std	c rating	buy
age	IIICOITIE	<u>siu</u>		buy
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$
- P(Buy=Yes|X) = [P(X|Buy=yes) P(P(buy=yes)]/P(X)
- P(Buy=No|X) = [P(X|Buy=No) P(P(buy=No)]/P(X)

P(X) would be same for both cases

200	incomo	std	c rating	buy
age	income	Siu	C raung	buy
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$
- P(Buy=Yes|X) = P(X|Buy=yes) P(buy=yes)
- P(Buy=No|X) = P(X|Buy=No) P(buy=No)
- $P(C_i)$: P(buy = "yes") = 9/14 = 0.643P(buy = "no") = 5/14 = 0.357

age	income	std	c rating	buy
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$ • C = {Yes, No}
- P(Buy=Yes|X) = P(X|Buy=yes) P(buy=yes)
- P(Buy=No|X) = P(X|Buy=No) P(buy=No)
- $P(C_i)$: P(buy = yes) = 9/14 = 0.643P(buy = no) = 5/14 = 0.357
- Compute P(X|Buy = yes) for each class
 - P(age = "<=30" | buys computer = "yes")</p>
 - P(income = "medium" | buys computer = "yes")
 - P(student = "yes" | buys_computer = "yes)
 - P(credit_rating = "fair" | buys_computer = "yes")

- Naïve Bayes Classifier $P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$ • C = {Yes, No}
- P(Buy=Yes|X) = P(X|Buy=yes) P(buy=yes)
- P(Buy=No|X) = P(X|Buy=No) P(buy=No)
- $P(C_i)$: P(buy = yes) = 9/14 = 0.643P(buy = no) = 5/14 = 0.357
- Compute P(X|Buy = yes) for each class
 - P(age = "<=30" | buys computer = "yes")</p>
 - P(income = "medium" | buys computer = "yes")
 - P(student = "yes" | buys_computer = "yes)
 - P(credit rating = "fair" | buys computer = "yes")
- Compute P(X|Buy = No) same as above

- $P(C_i)$: P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class
 P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222
 P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

```
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.4 44...40 P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
```

```
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
```

```
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```


- $P(C_i)$: P(buys_computer = "yes") = 9/14 = 0.643 P(buys computer = "no") = 5/14 = 0.357
- Compute P(X|C_i) for each class

```
P(age = "<=30" | buys computer = "yes") = 2/9 = 0.222
P(age = "<= 30" | buys\_computer = "no") = 3/5 = 0.6
```

P(income = "medium" | buys_computer = "yes") =
$$4/9 = 0.444$$

P(student = "yes" | buys computer = "yes) =
$$6/9 = 0.667$$

X = (age <= 30, income = medium, student = yes, credit rating = fair)

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
          P(X|buys\_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019
```

$$P(X|C_i)*P(C_i) : P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

age

<=30

<=30

>40

>40

>40

31...40

31...40

<=30

<=30

<=30

31...40

31...40

>40

income

medium

medium

medium

medium

medium

medium

high

high

high

high

low

low

low

low

std

no

no

no

no

ves

yes

ves

no

yes

yes

yes

no

yes

c rating

excellent

excellent

excellent

excellent

excellent

excellent

fair

fair

fair

fair

fair

fair

fair

fair

buy

no

no

yes

yes

ves

no

yes

no

yes

yes

yes

yes

yes

no

Avoiding the 0-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income=medium (990), and income = high (10),
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayesian Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - ◆E.g., hospitals: patients: Profile: age, family history, etc.

 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks

Rule Based Classifiers

Dr. Faisal Kamiran

Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: $(Condition) \rightarrow y$
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule antecedent or condition
 - RHS: rule consequent
 - Examples of classification rules:
 - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No

Rule-based Classifier (Example)

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) ∧ (Blood Type = warm) → Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

Application of Rule-Based Classifier

 A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) → No Coverage = 40%, Accuracy = 50%

How does Rule-based Classifier Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Characteristics of Rule-Based Classifier

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule

- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules Can Be Simplified

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Initial Rule: (Refund=No) ∧ (Status=Married) → No

Simplified Rule: (Status=Married) → No

Ordered Rule Set

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

```
R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
```

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) ∧ (Blood Type = warm) → Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
turtle	cold	no	no	sometimes	?

Rule Ordering Schemes

- Size based ordering
 - High priority to the rules with toughest requirement
 - Toughness is measured by the size of antecedent
- Rule-based ordering
 - Individual rules are ranked based on their quality, i.e., accuracy, coverage, size and advice from the domain experts.
- Class-based ordering
 - Priority to the rules with most prevalent classes or most rare classes

Building Classification Rules

- Direct Method:
 - Extract rules directly from data
 - e.g.: RIPPER, CN2, Holte's 1R

- Indirect Method:
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5 rules

Direct Method: Sequential Covering

- Start from an empty rule
- Grow a rule using the Learn-One-Rule function
- 3. Remove training records covered by the rule
- Repeat Step (2) and (3) until stopping criterion is met

Example of Sequential Covering

(i) Original Data

Example of Sequential Covering

(i) Original Data

(ii) Step 1

Example of Sequential Covering...

Example of Sequential Covering...

