آزمایش میلیکال

اعظم ایرجی زاد بهار ۱۳۹۹

أزمايش ميليكان

هدف أزمايش:

بررسی کوانتایی بودن بار و اندازهگیری بار الکترون

سوالات آزمایش میلیکان

- 1- اهمیت آزمایش میلیکان چیست؟
- 2- قطرات روغن چگونه باردار می شوند؟
- 3- دربارهٔ نیروهای وارد بر قطرات روغن باردار توضیح دهید.
 - -4 به چه روش های دیگری می توان مقدار بار الکترون را مشخص کرد؟

$$\frac{4}{3}\pi r^3 \rho_i g - \frac{4}{3}\pi r^3 \rho_l g - 6\pi r \eta v_1 = 0$$

$$r = \left(\frac{9\eta v_1}{2(\rho_i - \rho_l)g}\right)^{\frac{1}{2}}$$

$$q = (v_1 + v_2) \frac{v_1^{1/2}}{V} \eta^{3/2} \frac{18\pi d}{\sqrt{2(\rho_i - \rho_l)g}}$$

مقدمه:

در سال ۱۹۰۹ رابرت میلیکان (R.A.Millikan) یک روش عملی برای اندازه گیری بار یونها گزارش کرد. این روش، مشاهده حرکت قطرات ریز روغن باردار در میدان الکتریکی و یا در سقوط آزاد بود. او متوجه شد که بار قطرات روغن همواره مضرب صحیحی از یک مقدار $(1.6 \times 10^{-19} \text{C})$ میباشد که همان بار الکترون است.

اگر قطرات روغن باردار وارد محفظه استوانهای شوند، در سقوط آزاد تحت تاثیر نیروهای جاذبه گرانش، نیروی ارشمیدس و نیروی مقاومت استوک قرار دارند. این نیروها عبارتند از:

نیروی ثقل $rac{4}{3}\pi r^3
ho_i g$ نیروی ثقل $rac{4}{3}\pi r^3
ho_l g$ نیروی ارشمیدس $6\pi r\eta v_1$ نیروی استوک

مقادیر ثابتهای مورد نیاز در دمای ۲۳ درجه سانتیگراد عبارتند از:

 $\eta = 1.82 \times 10^{-5} N sm^{-2}$ ضریب چسبندگی هوا:

 $ho_i = 875 \ kgm^{-3}$ جرم ویژه روغن:

 $ho_l=1.29~kgm^{-3}$ جرم ویژه هوا:

 $g = 9.81 \, ms^{-2}$ شتاب ثقل زمین:

d=6~mm فاصله بین دو صفحه:

در واقع ضریب چسبندگی هوا به دما T و فشار P بستگی دارد و از رابطه زیر تبعیت می کند:

$$\eta(P,T) = \eta_0(T) \left[1 + \frac{b}{aP} \right]^{-1}$$

که $\eta_0 = 6.17 \times 10^{-4} \; cmHgcm$ و a شعاع قطره است. منحنی η_0 بر حسب دما به فرم زیر است

دستگاه مورد نیاز

تصاوير:

شکل ۱. دستگاه میلیکان و اجزای آن

شکل ۳. دو زمان سنج

شکل ۲. منبع تغذیه و اجزای آن

شکل ٤. مدار مربوط به آزمایش

داده های آزمایش اول (حالت ایستا)

شماره قطره	S (m)	t(s)	U (V)	v (m/s)	r (m)	q (C)
1	0.0008	2.02	520			
2	0.00176	4.89	520			
3	0.001067	6.60	520			
4	0.000427	6.66	520			
5	0.00064	2.01	520			
6	0.000747	2.32	520			
7	0.00064	2.36	520			
8	0.000693	2.63	520			

• اندازه گیری بار قطرهٔ روغن ایستا در اثر اعمال میدان الکتریکی

رسم نمودا

- به دست آوردن بار قطرهٔ روغن در هر بار
- دسته بندی مقادیر در بازه های مختلف (اگر از نرم افزار رسم نمودار هیستوگرام مانند اکسل استفاده می کنید، به طور پیش فرض مقادیر را دسته بندی می کند و شما می توانید در تنظیمات، بازه های دلخواه را تعیین نمایید.)
 - میانگین گیری در هر بازه
 - تقسیم مقدار میانگین بر کوچکترین مقدار بار به دست آمده و گرد کردن عدد= N = عدد کردن عدد \bullet تقسیم میانگین بازه بر N = بار الکترون

داده های آزمایش دوم (حالت پویا)

شماره قطره	S ₁ (m)	t ₁ (s)	S ₂ (m)	t ₂ (s)	U (V)
1	0.000853	2.65	0.00064	1.00	520
2	0.0016	4.52	0.001867	0.67	530
3	0.00128	3.32	0.001227	6.3	530
4	0.001067	5.08	0.00176	9.4	540
5	0.0008	2.76	0.00192	3.15	550
6	0.00096	6.53	0.001067	6.32	580
7	0.001067	3.52	0.001333	16.9	600

• اندازه گیری بار قطرهٔ روغن که در اثر اعمال میدان الکتریکی خلاف جهت جاذبهٔ زمین با سرعت ثابت حرکت می کند.

پرسشها:

در زمان انجام آزمایش به سوالات زیر پاسخ دهید:

۱- رابطه ۳ را به دست آورید. درباره علامت بار قطره و جهت میدان مورد نیاز برای ثابت نگه داشتن آن، بحث کنید.

۲- رابطه ۴ را به دست آورید و جزئیات محاسبه آن را بنویسید.

پاسخ سوالات زیر را در جلسه بعد تحویل دهید.

۱- مقدار میانگین بار را برای هر دو روش اندازهگیری کنید.

۲- عوامل موثر در ایجاد خطاها را ذکر کنید.

۳- کدامیک از دو روش آزمایش خطای کمتری دارند. چرا؟

۴- چرا نباید در مدت زمان طولانی یک قطره را مطالعه کرد؟

۵- چگونه قطرات باردار میشوند.

۶- به چه روشهای دیگری میتوان بار الکتریکی الکترون را اندازه گیری کرد؟

سوالات آزمایش آشکارسازی و جذب اشعهٔ ایکس

- 1- نحوه ایجاد و کاربردهای اشعه X را توضیح دهید
 - 2- آشکارساز گایگر چگونه کار می کند؟
- 3- امواج الكترومغناطيسى طى چه فرآيندهايى با يك ورقة فلزى واكنش مى دهند؟
 - 4 شدت عبوری پرتو ایکس از ورقهٔ فلزی چه رابطه ای با فخامت و نوع آن ورقه دارد؟