

Report No.:C170707R02

Page 1 of 3

# RADIO FREQUENCY EXPOSURE

### LIMIT

According to §15.247(i) and §15.407(f), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b) of this chapter.

### **EUT Specification**

| EUT                        | YDS.1117                                                                                                                                                                                                                                                  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Frequency band (Operating) | <ul> <li>◯ WLAN: 2.412GHz ~ 2.462GHz</li> <li>◯ WLAN: 5.15GHz ~ 5.25GHz</li> <li>◯ WLAN: 5.25GHz ~ 5.35GHz</li> <li>◯ WLAN: 5.47GHz ~ 5.725GHz</li> <li>◯ WLAN: 5.725GHz ~ 5.85GHz</li> <li>◯ Bluetooth: 2.402GHz ~ 2.480GHz</li> <li>◯ Others</li> </ul> |  |  |  |  |  |
| Device category            | <ul><li>☐ Portable (&lt;20cm separation)</li><li>☐ Mobile (&gt;20cm separation)</li><li>☐ Others</li></ul>                                                                                                                                                |  |  |  |  |  |
| Exposure classification    | <ul> <li>☐ Occupational/Controlled exposure (S = 5mW/cm²)</li> <li>☐ General Population/Uncontrolled exposure (S=1mW/cm²)</li> </ul>                                                                                                                      |  |  |  |  |  |
| Antenna diversity          | <ul> <li>Single antenna</li> <li>Multiple antennas</li> <li>☐ Tx diversity</li> <li>☐ Rx diversity</li> <li>☐ Tx/Rx diversity</li> </ul>                                                                                                                  |  |  |  |  |  |
| Peak<br>Transmit Power:    | WIFI:2.412-2.462GHz<br>IEEE 802.11b mode: 20.14dBm<br>IEEE 802.11g mode:25.33dBm<br>IEEE 802.11n HT20 mode: 24.82dBm                                                                                                                                      |  |  |  |  |  |
| Antenna gain (Max)         | FPC Antenna Gain: 3.1 dBi                                                                                                                                                                                                                                 |  |  |  |  |  |
| Evaluation applied         | <ul><li></li></ul>                                                                                                                                                                                                                                        |  |  |  |  |  |

### Remark:

- 1. The maximum output power is <u>25.33dBm (341.19mW) at 2412MHz (with 2.042 numeric antenna</u> gain.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.
- 4. All two antennas are completely uncorrelated with each other.

Report No.:C170707R02

Page 2 of 3

## **TEST RESULTS**

No non-compliance noted.

## Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where

E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

*d* = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$ 

# **Maximum Permissible Exposure**

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$ 



Report No.:C170707R02

Page 3 of 3

| Modulation Mode     | Frequency<br>band<br>(MHz) | Max. tune up<br>power(dBm) | Antenna<br>gain (dBi) | Distance<br>(cm) | Power<br>density<br>(mW/cm2) | Limit<br>(mW/cm2) |
|---------------------|----------------------------|----------------------------|-----------------------|------------------|------------------------------|-------------------|
| IEEE802.11 b        | 2412-2462                  | 20.14                      | 3.1                   | 20               | 0.0420                       | 1                 |
| IEEE802.11 g        | 2412-2462                  | 25.33                      | 3.1                   | 20               | 0.1386                       | 1                 |
| IEEE802.11 n(20MHz) | 2412-2462                  | 24.82                      | 3.1                   | 20               | 0.1233                       | 1                 |

### Note:

Only WLAN can transmit, the formula of calculated the MPE is:  $\begin{array}{l} \text{CPD1 / LPD1 + CPD2 / LPD2 + .....etc.} < 1 \\ \text{CPD = Calculation power density} \\ \text{LPD = Limit of power density} \\ \text{WLAN 2.4G=0.1386 mW/cm}^2 \end{array}$ 

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)