



## **Project Initialization and Planning Phase**

| Date          | 18 July 2024               |  |
|---------------|----------------------------|--|
| Team ID       | SWTID1721319573            |  |
| Project Title | Blueberry Yield Prediction |  |
| Maximum Marks | 3 Marks                    |  |

## **Project Proposal (Proposed Solution) template**

| <b>Project Overview</b>  |                                                                                                                                                                                                                     |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective                | To create a machine learning model that predicts blueberry yield based on factors like weather, insect populations, and soil conditions, aiding farmers in optimizing their crop management.                        |  |
| Scope                    | This project includes data collection, preprocessing, model training, evaluation, and deploying the solution via a Flask web application. It does not cover real-time data integration or field validation.         |  |
| Problem Statemen         | t                                                                                                                                                                                                                   |  |
| Description              | Farmers face difficulties predicting blueberry yield due to variable weather, insect populations, and soil conditions, impacting their harvest planning and resource management.                                    |  |
| Impact                   | Solving this issue will enable precise yield predictions, helping farmers optimize harvesting schedules, reduce waste, and improve profitability and resource management.                                           |  |
| <b>Proposed Solution</b> |                                                                                                                                                                                                                     |  |
| Approach                 | Develop a predictive model using historical data, perform preprocessing and exploratory analysis, train multiple machine learning algorithms, and integrate the best-performing model into a Flask web application. |  |
| Key Features             | <ul> <li>Accurate Predictions: Employ advanced machine learning to forecast yield reliably.</li> <li>User-Friendly Interface: Provide an intuitive web interface for easy data input and result display.</li> </ul> |  |





## **Resource Requirements**

| Resource Type           | Description                             | Specification/Allocation                                                                   |  |
|-------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|--|
| Hardware                |                                         |                                                                                            |  |
| Computing Resources     | CPU/GPU specifications, number of cores | 2 x NVIDIA V100 GPUs                                                                       |  |
| Memory                  | RAM specifications                      | 8 GB                                                                                       |  |
| Storage                 | Disk space for data, models, and logs   | 1 TB SSD                                                                                   |  |
| Software                |                                         |                                                                                            |  |
| Frameworks              | Python frameworks                       | Flask                                                                                      |  |
| Libraries               | Additional libraries                    | scikit-learn, pandas, numpy                                                                |  |
| Development Environment | IDE, version control                    | Jupyter Notebook, Git                                                                      |  |
| Data                    |                                         |                                                                                            |  |
| Data                    | Source, size, format                    | Kaggle dataset, Historical agricultural data on blueberry yield (size varies, format: CSV) |  |