Deepfake Classification

Команда 61

Тимонин Андрей Сергеевич Рябков Иван Юрьевич

Куратор

Блуменау Марк Ильич

Постановка задачи

Требуется реализовать приложение для классификации фейковых изображений*.

Цели по проекту на первое полугодие:

Провести EDA на выбранном наборе данных.

Построить бейзлайн с использованием линейных моделей и постараться его улучшить.

Реализовать сервис на FastApi и web-приложение на Streamlit для нашей задачи.

*Фейковое изображение - это изображение, отредактированное или созданное с помощью нейронных сетей, либо других инструментов для обработки изображений.

Фейковые изображения делятся на две группы, а именно:

→ Изображения, <u>не относящиеся</u> к классу человеческих лиц (a.k.a. Fake Image)

Датасет для обучения. EDA

CIFAKE 120k Images

⇒ 60k реальных изображений были взяты из датасета СІFAR-10.

⇒ 60k синтетических изображений были сгенерированы с помощью Stable Diffusion v1.4.

Примеры изображений из датасета CIFAKE

>	EDA	Mean			Std			Average
	(CIFAKE)	Red	Green	Blue	Red	Green	Blue	Image Size
	Train	0.472	0.463	0.418	0.238	0.237	0.266	32 x 32
	Test	0.473	0.464	0.419	0.238	0.237	0.266	32 x 32
	ImageNet	0.485	0.456	0.406	0.299	0.244	0.225	469 x 387

Выволы

EDA показал отсутствие выбросов в разрезе цветовых профилей в CIFAKE.

EDA показал, что цветовой профиль датасета CIFAKE близок к цветовому профилю датасета ImageNet.

Архитектура бейзлайна

LogReg	Accuracy, %	Log Loss
Train (15 epoch)	76.54	0.478
Test (15 epoch)	76.17	0.483
Train (+finetune, 15 epoch)	80.46	0.454
Test (+finetune, 15 epoch)	80.24	0.457

Метрика качества - Ассигасу. Баланс классов 50/50

SVM	Accuracy, %	Hinge Loss
Train (15 epoch)	38.44	0.538
Test (15 epoch)	37.95	0.549
Train (+finetune, 10 epoch)	41.51	0.508
Test (+finetune, 10 epoch)	40.62	0.519

Реализация сервиса

Backend (FastApi)

POST /fit — обучение HC на основе изображений, подаваемых клиентом на вход модели

POST /set — установка модели (среди тех, что были обучены через /fit) в качестве модели для инференса

POST /predict – предсказание метки класса (REAL/FAKE) для изображения моделью для инференса

GET /models — вывод списка обученных моделей с подробной информацией о них, а именно: значения гиперпараметров, ассигасу, вид предобученной модели, функция активации на последнем слое

GET /eda — расчет профиля данных, подаваемых клиентом на вход модели

Распределение работы в команде

	Анализ подходов к решению задачи классификации фейковых изображений.	
Тимочии Амирой Соргоории	Изучение релевантных датасетов. EDA.	
Тимонин Андрей Сергеевич	Построение бейзлайна и его последующее улучшение.	
	Реализация backend и frontend части web-приложения. Докеризация приложения.	
Dagraan Haari IOni anyu	Анализ подходов к решению задачи классификации фейковых изображений.	
Рябков Иван Юрьевич	Изучение релевантных датасетов. EDA.	

Планы на второе полугодие

- 1. Проверить гипотезу о том, что модель, обучаясь на фейковых изображениях, сгенерированных одной моделью, не способна классифицировать фейковые изображения, созданные другой моделью.
- 2. Реализовать метод классификации фейковых изображений на основе «отпечатков (fingerprints)» генеративных моделей.
- 3. Реализовать приложение в Telegram-боте.

Спасибо за внимание!