Изотермическое растяжение резины. Изменение энтропии. Зависимость растяжения от силы. Оценка модуля Юнга.

Леонид Пилюгин, Б02-212

20 февраля 2023 г.

1 Параметры установки

- 1. Длина нерастянутой резинки $l_0 = 11 \pm 0.1 \, \mathrm{cm}$
- 2. Ширина нерастянутой резинки $d_0 = 12 \pm 0.5 \, \mathrm{mm}$
- 3. Толщина нерастянутой резинки $h_0 = 1{,}75 \pm 0{,}05\,\mathrm{mm}$
- 4. $g = 9.8155 \,\mathrm{kg/m} \cdot \mathrm{c}^2$

2 Теория

Внутренняя жнергия резины определяется только температурой, а её работа равна

$$\delta A = -fdl$$

Тогда при изотермическом растяжении

$$\delta Q = TdS = -fdl$$

$$f = -\left(\frac{\partial Q}{\partial l}\right)_T = -T\left(\frac{\partial S}{\partial l}\right)_T = T\left(\frac{\partial f}{\partial T}\right)_I$$

Это возможно только если сила прямо пропорциональна температуре:

$$f(T,l) = \frac{T}{T_0}\overline{f}\left(\frac{l}{l_0}\right)$$

Вид функции \overline{f} определятеся эмперическими и полуэмперическими моделями. В наиболее удачной

$$\Delta S = -\operatorname{const} \cdot \left(\lambda^2 + \frac{2}{\lambda}\right)$$

$$f(\lambda) = \frac{1}{3} s_0 E\left(\lambda - \frac{1}{\lambda^2}\right)$$

3 Измеряемые данные

3.1 Зависимость $f(\lambda)$

- 1. Наклон $k = 11.7 \pm 0.9 \,\mathrm{H}$
- 2. Модуль Юнга $E = \frac{k}{d_0 h_0} = 0.56 \pm 0.08\,\mathrm{M}\Pi\mathrm{a}$

3.2 Зависимость $f(\lambda - 1/\lambda^2)$

- 1. Наклон $k = 8.5 \pm 0.9 \,\mathrm{H}$
- 2. Модуль Юнга $E=3\frac{k}{d_0h_0}=1,2\pm0,2\,{\rm M}\Pi{\rm a}$

Таблица 1: Измеряемые данные

$L, \pm 0.05$ cm	т, г
14,8	287,8
15,2	389,6
15,7	466,0
16,2	567,8
16,8	744,6
17,1	813,0
17,6	846,4
18,3	919,4
19,0	989,7
19,4	1021,2
20,7	1122,6
22,0	1224,4
23,6	1325,4
24,8	1427,2

Рис. 1: Зависимость $f(\lambda)$

Рис. 2: Зависимость $f(\lambda-1/\lambda^2)$