Engineering Mathematics I-(BAS-103)

Unit 2 Differential Calculus I

Tutorial 1

Que 1. Find the n^{th} derivative of

(i)
$$y = \frac{x}{x^2 + a^2}$$
 (ii) $y = e^x \sin x \cos x$ (iii) $y = x^2 e^x$ (iv) $y = \frac{x^2}{(x+2)(2x+3)}$. (v) $y = \frac{ax+b}{cx+d}$ (vi) $y = \frac{x^{n-1}}{x-1}$ (vii) $y = \log \sqrt{\frac{(2x+1)}{(x-3)}}$ (viii) $y = x^{n-1} \log x$. [2017-18]

Que 2.If $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$ then show that $y_n = (-1)^{n-1} n - 1! \sin^n \theta \sin n\theta$ where $\theta = \tan^{-1}\frac{1}{x}$

Que 3.If $u = \sin nx + \cos nx$ then show that $u_r = n^r \{1 + (-1)^r \sin 2nx\}^{\frac{1}{2}}$ where u_r is the r^{th} differential

coefficient of
$$u$$
 w.r.t. x . Hence show that $u_8(\pi) = \left(\frac{1}{2}\right)^{\frac{31}{2}}$ when $n = \frac{1}{4}$ [2017-18]

Que 4. If
$$I_n = \frac{d^n}{dx^n} (x^n \log x)$$
, then show that $I_n = nI_{n-1} + n - 1!$ [2016-17]

Que 5. If
$$y = \cos^{-1} x$$
, prove that $(1 - x^2)y_2 - xy_1 = 0$. [2022-23]

Que 6. If
$$y = e^{tan^{-1}x}$$
 then show that $(1+x^2)y_{n+2} + [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0$ [2020-21], [2017-18]

Que 7. If
$$y = e^{mcos^{-1}x}$$
 then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$.
Hence find y_n at $x=0$ [2019-20]

Hence find
$$y_n$$
 at $x=0$ [2019-20]
Que 8. If $y = [x + \sqrt{x^2 + 1}]^m$ then find $y_n(0)$ [2017-18], [2021-22]

Que 9. If
$$y = \sin(m\sin^{-1}x)$$
 then find $y_n(0)$ [2020-21], [2018-19]

Que 10. If
$$y\sqrt{x^2-1} = \log[x+\sqrt{x^2-1}]$$
 then prove that $(x^2-1)y_{n+1} + (2n+1)xy_n + n^2y_{n-1} = 0$ [2022-23]

Que 11. If
$$sin^{-1}y = 2\log(x+1)$$
 then show that $(x+1)^2 y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0$ [2018-19]

Que 12. If
$$y^{1/m} + y^{-1/m} = 2x$$
, Prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ [2014-15]

Que13. If
$$y = \left(\frac{1+x}{1-x}\right)^{1/2}$$
 prove that $(1-x^2)y_n - [2(n-1)x+1]y_{n-1} - (n-1)(n-2)y_{n-2} = 0$

Que14. If
$$y = \cos(m\sin^{-1}x)$$
 then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.
Also find $y_n(0)$ [2023-24]

Answers

1. (i)
$$y_n = \frac{(-1)^n n!}{a^{n+1}} \sin^{n+1}\theta \cos(n+1)\theta$$
 where $\theta = \tan^{-1}\frac{a}{x}$

1. (*ii*)
$$y_n = \frac{1}{2} 5^{\frac{n}{2}} e^x \sin(2x + n \tan^{-1} 2)$$

1. (iii)
$$y_n = e^x[x^2 + 2nx + n(n-1)]$$

1. (iii)
$$y_n = e^x[x^2 + 2nx + n(n-1)]$$

1. (iv) $y_n = \frac{(-1)^n n!}{2} \left[\frac{9 \cdot 2^n}{(2x+3)^{n+1}} - \frac{8}{(x+2)^{n+1}} \right]$

1.
$$(v)y_n = \frac{(-1)^n n! (bc-ad) c^{n-1}}{(cx+d)^{n+1}}$$

$$\mathbf{1}.\left(\boldsymbol{v}\boldsymbol{i}\right)\,\boldsymbol{y}_{n}=\mathbf{0}$$

1. (*vii*)
$$y_n = \frac{(-1)^{n-1} \ n-1!}{2} \left[\frac{2^n}{(2x+1)^n} - \frac{1}{(x-2)^n} \right]$$

1. (*viii*)
$$y_n = \frac{(n-1)!}{r}$$

1.
$$(viii)$$
 $y_n = \frac{(n-1)!}{x}$
7. $y_n(0) = \begin{cases} -m e^{\frac{m\pi}{2}} (1^2 + m^2)(3^2 + m^2) \dots ((n-2)^2 + m^2) \text{, when n is odd} \\ m^2 e^{\frac{m\pi}{2}} (2^2 + m^2)(4^2 + m^2) \dots ((n-2)^2 + m^2) \text{, when n is even} \end{cases}$

8.
$$y_n(0) = \begin{cases} m (m^2 - 1^2)(m^2 - 3^2) \dots (m^2 - (n-2)^2), \text{ when } n \text{ is odd} \\ m^2 (m^2 - 2^2)(m^2 - 4^2) \dots (m^2 - (n-2)^2), \text{ when } n \text{ is even} \end{cases}$$

9.
$$y_n(0) = \begin{cases} m & (1^2 - m^2)(3^2 - m^2) \dots ((n-2)^2 - m^2) \text{, when n is odd} \\ 0 & \text{, when n is even} \end{cases}$$

14.
$$y_n(0) = \begin{cases} 0 & \text{, when n is odd} \\ (-1)^{\frac{n}{2}} m^2 (m^2 - 2^2)(m^2 - 4^2) \dots (m^2 - (n-2)^2), \text{ when n is even} \end{cases}$$