Chapitre 3: Espaces vectoriels

1 Espace vectoriel réel

1.1 Structure d'espace vectoriel réel

Exemple 1

Soient n et p deux entiers naturels non nuls.

- $\mathbb{R}^n = \{(x_1, ..., x_n) \mid x_1 \in \mathbb{R}, ..., x_n \in \mathbb{R}\}.$
- $\mathcal{M}_{n,p}(\mathbb{R})$ est l'ensemble des matrices à n lignes et p colonnes à coefficients réels.
- $\mathbb{R}[X]$ est l'ensemble des polynômes à une variable à coefficients réels.
- $\mathbb{R}_n[X]$ est l'ensemble des polynômes à une variable à coefficients réels de degré inférieur ou égal à n.
- Si D est une partie de \mathbb{R} , \mathbb{R}^D est l'ensemble des applications de D dans \mathbb{R} .
- En particulier, $\mathbb{R}^{\mathbb{N}}$ est l'ensemble des suites réelles.

Test 1 (Voir la solution.)

Dans chaque cas, calculer u + 3v.

- 1. Dans \mathbb{R}^3 , avec u = (1, -1, 0) et v = (3, -2, 5).
- 2. Dans $\mathcal{M}_{2,2}(\mathbb{R})$ avec $u = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $v = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- 3. Dans $\mathbb{R}[X]$ avec $u = 3X^3 X + 1$ et $v = X^5 2X^3 + X^2 + 2$

Les ensembles de l'exemple 1, aussi différents les uns des autres soient-ils, possèdent une structure commune : ils peuvent tous être munis d'une « addition » et d'une « multiplication par un nombre réel ». L'objet de ce chapitre est de donner un cadre formel et unifié à l'étude des ensembles ayant une telle structure. Ainsi, les résultats généraux que l'on obtiendra s'appliqueront aussi bien aux matrices qu'aux fonctions, aux polynômes . . .

Définition 1 (Loi de composition interne, loi de composition externe)

Soit E un ensemble non vide.

- Une **loi de composition interne sur** E est une application de $E \times E$ dans E.
- Une **loi de composition externe sur** E est une application de $\mathbb{R} \times E$ dans E

Exemple 2

Soient n et p deux entiers naturels non nuls.

- 1. Dans \mathbb{R}^n .
 - L'addition de deux *n*-uplets de réels est une loi de composition interne :

$$+: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

 $((x_1, \dots, x_n), (y_1, \dots, y_n)) \longmapsto (x_1 + y_1, \dots, x_n + y_n)$

• La multiplication d'un n-uplet de réels par un nombre réel est une loi de composition externe :

$$: \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

 $(\lambda, (x_1, \dots, x_n)) \longmapsto (\lambda x_1, \dots, \lambda x_n)$

- 2. Dans $\mathcal{M}_{n,p}(\mathbb{R})$.
 - L'addition de deux matrices est une loi de composition interne :

$$+: \mathcal{M}_{n,p}(\mathbb{R}) \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$$

$$(A.B) \longmapsto A + B$$

$$Rappel: si \ \mathbf{A} = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}} \ \text{et} \ \mathbf{A} = (\mathbf{B}_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}} \ \text{alors} \ \mathbf{A} + \mathbf{B} = (a_{i,j} + b_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$$

• La multiplication d'une matrice par un nombre réel est une loi de composition externe :

$$: \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$$

 $(\lambda, A) \longmapsto \lambda \cdot A$

Rappel:
$$si A = (a_{i,j})_{1 \le i \le n}$$
 alors $\lambda \cdot A = (\lambda \cdot a_{i,j})_{1 \le i \le n}$ $1 \le j \le p$

- 3. Dans $\mathbb{R}[X]$.
 - L'addition de deux polynômes est une loi de composition interne :

$$+: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$

 $(P, Q) \longmapsto P + Q$

Rappel: $si P = \sum_{k=0}^{p} a_k X^k$ et $Q = \sum_{k=0}^{q} b_k X^k$ alors $P + Q = \sum_{k=0}^{\max(p,q)} (a_k + b_k) X^k$ avec pour convention que $a_k = 0$ pour $k \ge p$ et $b_k = 0$ pour $k \ge q$.

• La multiplication d'un polynôme par un nombre réel est une loi de composition externe :

$$\cdot : \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$$
$$(\lambda, P) \longmapsto \lambda \cdot P$$

Rappel:
$$\operatorname{si} P = \sum_{k=0}^{p} a_k X^k$$
 alors $\lambda \cdot P = \sum_{k=0}^{p} \lambda \cdot a_k X^k$.

- 4. Dans \mathbb{R}^{D} où D est une partie de \mathbb{R} .
 - L'addition de deux fonctions est une loi de composition interne :

$$+: \mathbb{R}^{\mathcal{D}} \times \mathbb{R}^{\mathcal{D}} \longrightarrow \mathbb{R}^{\mathcal{D}}$$

 $(f,g) \longmapsto f + g$

Rappel: f + g est la fonction définie sur D par: $\forall x \in D$, (f + g)(x) = f(x) + g(x).

• La multiplication d'une fonction par un nombre réel est une loi de composition externe :

$$: \mathbb{R} \times \mathbb{R}^{D} \longrightarrow \mathbb{R}^{D}$$
$$(\lambda, f) \longmapsto \lambda \cdot f$$

Rappel: $\lambda \cdot f$ est la fonction définie sur D par: $\forall x \in D$, $(\lambda \cdot f)(x) = \lambda \times f(x)$.

- 5. Dans $\mathbb{R}^{\mathbb{N}}$.
 - L'addition de deux suites est une loi de composition interne :

$$+: \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$$
$$((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}) \longmapsto (u_n + v_n)_{n \in \mathbb{N}}$$

• La multiplication d'une suite par un nombre réel est une loi de composition externe :

$$: \mathbb{R} \times \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$$
$$(\lambda, (u_n)_{n \in \mathbb{N}}) \longmapsto (\lambda u_n)_{n \in \mathbb{N}})$$

Test 2 (Voir la solution.)

- 1. (a) Soit $n \in \mathbb{N}^*$ et soit $(P,Q) \in \mathbb{R}_n[X]^2$. Montrer que $P + Q \in \mathbb{R}_n[X]$.
 - (b) En déduire que l'addition de polynômes est une loi de composition interne sur $\mathbb{R}_n[X]$.
- 2. Soit E l'ensemble des polynômes de degré **exactement** égal à n. L'addition des polynôme est-elle une loi de composition interne sur E?

2

Définition 2 (Espace vectoriel réel)

Soit E un ensemble non vide muni d'une loi de composition interne, notée +, et d'une loi de composition externe, notée \cdot .

On dit que E est un **espace vectoriel réel** (ou un \mathbb{R} -espace vectoriel) si

- 1. la loi + vérifie les conditions suivantes :
 - i) $\forall (x, y) \in E^2$, x + y = y + x (commutativité)
 - ii) $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z) (associativité)
 - iii) il existe un élément, noté 0_E et appelé **élément neutre**, tel que :

$$\forall x \in E, \ x + 0_E = x = 0_E + x$$

- iv) pour tout $x \in E$, il existe un élément, noté -x et appelé **symétrique de** x, tel que : $x + (-x) = (-x) + x = 0_E$
- 2. la loi · vérifie les conditions suivantes :

i)
$$\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$$
, $(\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x) = \mu \cdot (\lambda \cdot x)$

- ii) $\forall x \in E, 1 \cdot x = x$
- iii) $\forall (x, y) \in E^2 \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y \ (distributivité)$
- iv) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$, $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$.

Remarque 1 (Vocabulaire et notation)

- 1. Attention, par abus, on note avec le même symbole + l'addition dans E et dans R.
- 2. Les éléments de E sont appelés des **vecteurs** et sont parfois notés avec une flèche (par exemple, \overrightarrow{u}) et parfois sans. Au concours, il est recommandé de s'aligner sur la notation du sujet!
- 3. Les éléments de \mathbb{R} qui interviennent dans la loi externe sont parfois appelés des **scalaires**.
- 4. On écrira souvent λu au lieu de $\lambda \cdot u$.
- 5. On place toujours les scalaires devant le vecteur.

Proposition 1

Soit E un ensemble muni de deux lois + et · en faisant un espace vectoriel.

- 1. L'élément neutre pour la loi + est unique.
- 2. pour tout $x \in E$, le symétrique de x est unique.

Proposition 2 (Exemples de référence)

Soient n et p deux entiers non nuls. Les ensembles suivants, munis des lois + et \cdot définies dans l'exemple 2, sont des espaces vectoriels réels :

$$\mathbb{R}^n$$
 , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[\mathrm{X}]$, $\mathbb{R}_n[\mathrm{X}]$, $\mathbb{R}^\mathbb{N}$, \mathbb{R}^D

où D est une partie de $\mathbb R$

Remarque 2

Par abus, on dira souvent «E (ou \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, ...) est un espace vectoriel réel » en omettant la référence aux lois + et ·.

Exemple 3

Soient n et p deux entiers naturels non nuls.

Espace vectoriel E	Neutre	Élément	Symétrique
\mathbb{R}^n	(0,, 0)	(x_1,\ldots,x_n)	$(-x_1,\ldots,-x_n)$
$\mathcal{M}_{n,p}(\mathbb{R})$	$(0)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$	$\mathbf{A} = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$	$(-a_{i,j})_{1 \leqslant i \leqslant n, \ 1 \leqslant j \leqslant p} = -\mathbf{A}$
\mathbb{R}^{D} , D partie de \mathbb{R}	$x \in D \mapsto 0$	$f: D \to \mathbb{R}$	$x \in D \mapsto -f(x)$

Test 3 (Voir la solution.)

- 1. Déterminer l'élément neutre de l'addition de $\mathbb{R}[X]$. Soit $P = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{R}[X]$, déterminer son symétrique.
- 2. Déterminer l'élément neutre de l'addition de $\mathbb{R}^{\mathbb{N}}$. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$, déterminer son symétrique.

Proposition 3 (Règles de calcul)

Soit E un espace vectoriel réel. Alors

- 1. $\forall x \in E, 0 \cdot x = 0_E$.
- 2. $\forall \lambda \in \mathbb{R}, \lambda.0_E = 0_E$.
- 3. $\forall x \in E \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot x = 0_E \iff (\lambda = 0 \ \text{ou} \ x = 0_E).$
- 4. $\forall x \in E, (-1) \cdot x = -x.$

1.2 Combinaisons linéaires

Définition 3 (Combinaison linéaire de vecteurs)

Soit E un espace vectoriel et soient $x_1,...,x_p$ des vecteurs de E. Un vecteur x est dit **combinaison linéaire** des vecteurs $x_1,...,x_p$ s'il existe des réels $\lambda_1,...,\lambda_p$ tels que

$$x = \lambda_1 x_1 + \dots + \lambda_p x_p.$$

Exemple 4

1. Dans \mathbb{R}^3 , u = (1,4,1) est combinaison linéaire des vecteurs v = (1,0,1) et w = (0,1,0) car :

$$u=v+4\,w$$

- 2. Dans $\mathbb{R}_3[X]$, $P = 3X^2 + 2X 1$ est naturellement écrit comme une combinaison linéaire des monômes 1, X et X^2
- 3. Dans $\mathcal{M}_2(\mathbb{R})$, soient $A = \begin{pmatrix} 3 & 2 \\ 3 & 6 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. A est-elle une combinaison linéaire de B et de I_2 ?

 On cherche λ et μ tels que $A = \lambda B + \mu I_2$ soit

$$\begin{pmatrix} 3 & 2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} \lambda + \mu & 2\lambda \\ 3\lambda & 4\lambda + \mu \end{pmatrix}$$

Par identification, on obtient $\lambda = 1$ et $\mu = 2$, qui conviennent bien. Ainsi

$$A = B + 2I_2$$

 $4. \ \ Dans \ tout \ espace \ vectoriel \ E, \ 0_E \ est \ combinaison \ linéaire \ de \ n'importe \ quelle famille \ de \ vecteurs :$

$$\forall n \in \mathbb{N} \ \forall (x_1, \dots, x_n) \in \mathbb{E}^n \ , \ 0_{\mathbb{E}} = 0 \cdot x_1 + \dots + 0 \cdot x_n.$$

Remarque 3

En pratique, pour montrer qu'un vecteur x est combinaison linéaire des vecteurs $x_1, ..., x_p$, on cherche les scalaires $\lambda_1, ..., \lambda_p$ tels que $x = \lambda_1 x_1 + \cdots + \lambda_p x_p$ en résolvant un système linéaire.

Test 4 (Voir la solution.)

- 1. Dans $\mathcal{M}_{3,1}(\mathbb{R})$, on pose $e_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. Écrire les vecteurs $u = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$ comme combinaison linéaire des vecteurs e_1 , e_2 et e_3 .
- 2. Dans $\mathbb{R}[X]$, montrer que le polynôme $X^2 + 1$ est combinaison linéaire des polynômes $(X + 1)^2$, X + 1 et 1.
- 3. Dans $\mathcal{M}_2(\mathbb{R})$, la matrice $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ est-elle combinaison linéaire des matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$?

Test 5 (Voir la solution.)

- 1. On considère les trois polynômes suivants : $P = X^2 + 2X$, $Q = -X^2 + 1$ et $R = 4X^2 + 6X 1$. Déterminer tous les triplets de réels (a, b, c) tels que aP + bQ + cR = 0.
- 2. Dans \mathbb{R}^4 , on considère les vecteurs x = (1, 2, -1, 4) et y = (2, 4, -2, 4). Déterminer tous les couples de réels (a, b) tels que ax + by = 0.

2 Sous-espaces vectoriels

2.1 Sous-espace vectoriel

Définition 4 (Sous-espace vectoriel)

Soit E un espace vectoriel et soit $F \subset E$. On dit que F est un sous-espace vectoriel de E lorsque

- 1. F est non vide,
- 2. $\forall x \in F \ \forall y \in F$, $x + y \in F$ (stabilité par addition),
- 3. $\forall x \in F \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot x \in F \ (stabilité par multiplication par un scalaire)$

Remarque 4

En combinant les points 2 et 3 avec un raisonnement par récurrence, on voit qu'un sous-espace vectoriel est stable par combinaison linéaire.

Exemple 5

- 1. Quelque soit l'espace vectoriel E, $\{0_E\}$ et E sont des sous-espaces vectoriels de E.
- 2. $\{(x, y) \in \mathbb{R}^2 \mid x = 2y\}$ est un sous-espace vectoriel de \mathbb{R}^2 . En effet
 - (a) C'est un ensemble non vide.
 - (b) Il est stable par addition.
 - (c) Il est stable par multiplication par un scalaire.

Proposition 4

Un sous-espace vectoriel d'un espace vectoriel E est un espace vectoriel (pour les lois induites par celles de E).

5

Tout sous-espace vectoriel d'un espace vectoriel E contient 0_E.

Proposition 5 (Caractérisation des sous-espaces vectoriels)

Soit E un espace vectoriel et soit $F \subset E$. Alors F est un sous-espace vectoriel de E si et seulement si

- 1. F est non vide,
- 2. $\forall (x, y) \in F^2 \ \forall \lambda \in \mathbb{R}, \ x + \lambda y \in F.$

Méthode 1

- 1. Pour montrer qu'un ensemble est un espace vectoriel, on montre souvent que c'est un sous-espace d'un espace vectoriel de référence à l'aide de la caractérisation ci-dessus car cela demande beaucoup moins de vérifications que la définition d'espace vectoriel.
- 2. Pour montrer que F est non vide, on montre souvent que $0_E \in F$.

Exemple 6

Montrons que $F = \mathscr{C}(\mathbb{R}, \mathbb{R})$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.

- La fonction nulle est continue donc F est non vide.
- Soient f et g deux éléments de F et $\lambda \in \mathbb{R}$. Alors $f + \lambda g$ est continue comme combinaison linéaire de fonctions continues. Ainsi $f + \lambda g \in F$

Donc F *est un sous-espace vectoriel de* $\mathbb{R}^{\mathbb{R}}$.

Exemple 7

Montrons que $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

- $(0,0,0) \in F$ donc F est non vide.
- Soient u = (x, y, z) et v = (x', y', z') deux éléments de F et $\lambda \in \mathbb{R}$. Alors

$$u + \lambda v = (x + \lambda x', y + \lambda y', z + \lambda z')$$

et

$$2(x + \lambda x') + y + \lambda y' = 2x + y + \lambda(2x' + y') = 0 + \lambda \cdot 0 = 0.$$

Ainsi $u + \lambda v \in F$

Donc F est un sous-espace vectoriel de \mathbb{R}^3 .

Exemple 8

Plus généralement, l'ensemble des solutions d'un système linéaire **homogène** à n variables est un sous-espace vectoriel de \mathbb{R}^n . En effet, considérons un système

(E) =
$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{p,1}x_1 + \dots + a_{p,n}x_n = 0 \end{cases}$$

Un n-uplet de réels $(x_1, ..., x_n)$ est solution de (E) si et seulement si

$$A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$

où $A = (a_{i,j})_{1 \le i \le p, \ 1 \le j \le n}$. L'ensemble des solutions est donc

$$F = {}^tX \mid AX = 0 \text{ et } X \in \mathcal{M}_{n,1}(\mathbb{R})$$
.

Alors

•
$$(0,\ldots,0) \in \mathbf{F} \operatorname{car} \mathbf{A} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = 0.$$

• Soient $(x, y) \in F^2$ et $\lambda \in \mathbb{R}$. Alors

$$A^{t}(x + \lambda y) = A(^{t}x + \lambda^{t}y) = A^{t}x + \lambda A^{t}y = 0$$

 $donc x + \lambda y \in F$.

Donc F est un sous-espace vectoriel de \mathbb{R}^n .

Exemple 9

Soit $(n, m) \in \mathbb{N}^2$ avec $n \leq m$.

- 1. $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}_m[X]$ et de $\mathbb{R}[X]$.
- 2. L'ensemble des suites réelles convergeantes est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Test 6 (Voir la solution.)

Parmi les espaces suivants, lesquels sont des sous-espaces vectoriels de l'espace considéré?

- 1. $F = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}.$
- 2. $G = \{P \in \mathbb{R}[X] \mid P'(0) = 0\}$
- 3. $H = \{ f \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \mid \lim_{x \to +\infty} f(x) = 1 \}$

Test 7 (Voir la solution.)

Montrer que les ensembles suivants sont des espaces vectoriels

- 1. $E = \{M \in \mathcal{M}_3(\mathbb{R}) \mid {}^tM = 2M\}.$
- 2. $F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + 2u_n\}.$

2.2 Sous-espace vectoriel engendré

Définition 5 (Sous-espace vectoriel engendré)

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E.

L'ensemble des combinaisons linéaires de $u_1, ..., u_n$ est un sous-espace vectoriel de E appelé **sous-espace** vectoriel **engendré** par les vecteurs $u_1, ..., u_n$. On le note

$$Vect(u_1, ..., u_n)$$

On dit que $(u_1,...,u_n)$ est une **famille génératrice** de Vect $(u_1,...,u_n)$.

Remarque 5

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E.

$$Vect(u_1, ..., u_n) = \{\lambda_1 u_1 + \cdots + \lambda_n u_n \mid (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n\}$$

Exemple 10

1. $Dans \mathbb{R}[X]$, $Vect(1,X,X^2)$ est égal à $\mathbb{R}_2[X]$. En effet, pour tout $P \in \mathbb{R}[X]$

$$P \in Vect(1, X, X^2) \Longleftrightarrow \exists (\lambda_0, \lambda_1, \lambda_2) \in \mathbb{R}^3, \quad P = \lambda_0 \cdot 1 + \lambda_1 \cdot X + \lambda_2 \cdot X^2 \Longleftrightarrow P \in \mathbb{R}_2[X]$$

Plus généralement, pour tout $n \in \mathbb{N}$, Vect $(1, X, ..., X^n)$ est égal à $\mathbb{R}_n[X]$.

2. Soit E un espace vectoriel et $x \in E$. Alors $Vect(x) = \{tx \mid t \in \mathbb{R}\}$ (si $x \neq 0_E$, on dit que Vect(x) est la droite vectorielle engendrée par x).

Dans \mathbb{R}^2 , représenter Vect((2,1)).

Vect((2,1)) =
$$\{\lambda \cdot (2,1) \in \mathbb{R}^2 \mid \lambda \in \mathbb{R}\}\$$

= $\{(2\lambda,\lambda) \in \mathbb{R}^2 \mid \lambda \in \mathbb{R}\}\$
= $\{(x,y) \in \mathbb{R}^2 \mid 2y = x\}\$

3. Dans \mathbb{R}^3 , représenter Vect((1,0,0), (1,2,0)).

Vect((1,0,0), (1,2,0)) = $\{\lambda \cdot (1,0,0) + \mu \cdot (1,2,0) \in \mathbb{R}^3 \mid (\lambda,\mu) \in \mathbb{R}^2\}$ = $\{(\lambda + \mu, 2\mu, 0) \in \mathbb{R}^3 \mid (\lambda,\mu) \in \mathbb{R}^2\}$ = $\{(x,y,0) \in \mathbb{R}^3 \mid (x,y) \in \mathbb{R}^2\}$

Proposition 6

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E. Tout sous-espace vectoriel de E contenant $u_1, ..., u_n$ contient $\text{Vect}(u_1, ..., u_n)$.

Proposition 7

Soit E un espace vectoriel et soit $(u_1, ..., u_n)$ une famille de vecteurs de E.

- 1. Si un vecteur u est combinaison linéaire de u_1, \ldots, u_n alors $\text{Vect}(u_1, \ldots, u_n) = \text{Vect}(u_1, \ldots, u_n, u)$.
- 2. On a

$$\forall i \in \{1, ..., n\}, \forall j \neq i, \text{Vect}(u_1, ..., u_n) = \text{Vect}(u_1, ..., u_i + u_j, ..., u_n).$$

3. Si $\lambda_1, ..., \lambda_n$ sont des scalaires **tous non nuls** alors $\text{Vect}(u_1, ..., u_n) = \text{Vect}(\lambda_1 u_1, ..., \lambda_n u_n)$.

Remarque 6

- 1. En particulier, $Vect(u_1, ..., u_n) = Vect(u_1, ..., u_n, 0_E)$.
- 2. En combinant les points 2 et 3, on voit que si on ajoute un multiple d'un vecteur de la famille à un autre vecteur de la famille, la nouvelle famille obtenue engendre le même sous-espace vectoriel :

$$\forall i \in \{1, ..., n\}, \forall j \neq i, \ \forall \lambda \in \mathbb{R}, \ \text{Vect}(u_1, ..., u_n) = \text{Vect}(u_1, ..., u_i + \lambda u_j, ..., u_n).$$

Exemple 11

1. Dans $\mathcal{M}_{3,1}(\mathbb{R})$, simplifions $F = Vect \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} \end{pmatrix}$.

Cherchons à déterminer si l'un des trois vecteurs est combinaison linéaire des deux autres. Une façon de faire est de chercher s'il existe des scalaires x, y, z non tous nuls tels que

$$x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + z \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Soit $(x, y, z) \in \mathbb{R}^3$

$$x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + z \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff
 \begin{cases}
 x + 2y + 4z = 0 \\
 2x + 2y + 6z = 0 \\
 -x + y - z = 0
 \end{cases}$$

$$\iff
 \begin{cases}
 x + 2y + 4z = 0 \\
 -2y - 2z = 0 \\
 3y + 3z = 0
 \end{cases}$$

$$\iff
 \begin{cases}
 x + 2y + 4z = 0 \\
 -2y - 2z = 0 \\
 3y + 3z = 0
 \end{cases}$$

$$\iff
 \begin{cases}
 x + 2y + 4z = 0 \\
 z = -y
 \end{cases}$$

Ainsi,

$$2\begin{pmatrix} 1\\2\\-1 \end{pmatrix} + \begin{pmatrix} 2\\2\\1 \end{pmatrix} - \begin{pmatrix} 4\\6\\-1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$

ou encore

$$\begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.$$

 $Donc F = Vect \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$. De plus, on ne peut pas simplifier plus car $Vect \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ et $Vect \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ sont strictement inclus dans F (le vérifier).

2. Dans $\mathbb{R}[X]$, déterminons $F = \text{Vect}(X^2 + 1, X + 2, 1)$. On a

$$\begin{split} F &= \operatorname{Vect}(X^2 + 1, X + 2, -1) & d'après \ le \ point \ 3 \ de \ la \ proposition \\ &= \operatorname{Vect}(X^2 + 1 - 1, X + 2, -1) & d'après \ le \ point \ 2 \ de \ la \ proposition \\ &= \operatorname{Vect}(X^2, X + 2, -1) \\ &= \operatorname{Vect}(X^2, X + 2, -2) & d'après \ le \ point \ 3 \ de \ la \ proposition \\ &= \operatorname{Vect}(X^2, X + 2 - 2, -2) \ d'après \ le \ point \ 2 \ de \ la \ proposition \\ &= \operatorname{Vect}(X^2, X, -2) \\ &= \operatorname{Vect}(X^2, X, 1) & d'après \ le \ point \ 3 \ de \ la \ proposition \\ &= \mathbb{R}_2[X] \end{split}$$

Test 8 (Voir la solution.)

Donner une expression la plus simple possible des sous-espaces vectoriels suivants.

- 1. Dans \mathbb{R}^2 , F = Vect((1,2),(2,4)).
- 2. Dans $\mathbb{R}[X]$, $F = \text{Vect}(1 + X, X, X X^2, 1 + 2X + X^2)$.

Méthode 2

Pour montrer qu'un ensemble F est un (sous-)espace vectoriel, on peut aussi montrer que c'est l'espace engendré par une famille de vecteurs.

• Lorsque l'ensemble est donné sous forme paramétrique.

Exemple 12

Dans chaque cas, montrons que F est un espace vectoriel et donnons une famille génératrice de F.

1.
$$F = \{(x, y, -3x + y) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}^2\}$$

On a

$$\begin{split} \mathbf{F} &= \left\{ (x,y,-3x+y) \in \mathbb{R}^3 \mid (x,y) \in \mathbb{R}^2 \right\} = \left\{ (x,0,-3x) + (0,y,y) \in \mathbb{R}^3 \mid (x,y) \in \mathbb{R}^2 \right\} \\ &= \left\{ x(1,0,-3) + y(0,1,1) \in \mathbb{R}^3 \mid (x,y) \in \mathbb{R}^2 \right\} \\ &= \mathrm{Vect}((1,0,-3),(0,1,1)) \end{split}$$

2.
$$F = \left\{ \begin{pmatrix} \lambda & \lambda + \mu \\ \lambda - \mu & 2\lambda \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}.$$

$$\begin{split} F &= \left\{ \begin{pmatrix} \lambda & \lambda + \mu \\ \lambda - \mu & 2\lambda \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\} = \left\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & 2\lambda \end{pmatrix} + \begin{pmatrix} 0 & \mu \\ -\mu & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\} \\ &= \left\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} + \mu \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\} \\ &= \operatorname{Vect} \left(\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) \end{split}$$

Test 9 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(2a+c, a+3b, 2b+c) \in \mathbb{R}^3 \mid (a, b, c) \in \mathbb{R}^3 \}.$$

2.
$$F = \{(c-a)X^3 + aX^2 + (2a-b)X + c \in \mathbb{R}[X] \mid (a, b, c) \in \mathbb{R}^3\}$$

• Lorsque l'ensemble est décrit à l'aide d'équations.

Exemple 13

On considère $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \text{ et } x + 2y - 3z = 0\}.$

1. Écrire les conditions sous lesquelles un vecteur appartient à F sous forme d'un système. Soit $(x, y, z) \in \mathbb{R}^3$. Alors

$$(x, y, z) \in \mathcal{F} \Longleftrightarrow \begin{cases} x + y + z = 0 \\ x + 2y - 3z = 0 \end{cases}$$

2. Obtenir un système triangulaire équivalent.

$$\begin{cases} x + y + z = 0 \\ x + 2y - 3z = 0 \end{cases} \iff \begin{cases} x + y + z = 0 \\ y - 4z = 0 \end{cases}$$

3. Exprimer les inconnues principales en fonctions des autres.

Rappel: sur chaque ligne, l'inconnue principale est la première inconnue avec un coefficient non nul.

$$\begin{cases} x + y + z = 0 \\ y - 4z = 0 \end{cases} \Longleftrightarrow \begin{cases} x = -y - z \\ y = 4z \end{cases} \Longleftrightarrow \begin{cases} x = -5z \\ y = 4z \end{cases}$$

4. Faire apparaître la famille génératrice et conclure.

Finalement,
$$(x, y, z) \in \mathbb{F} \iff \begin{cases} x = -5z \\ y = 4z \end{cases}$$
. Donc

$$F = \{(-5z, 4z, z) \in \mathbb{R}^3 \mid z \in \mathbb{R}\} = \{z(-5, 4, 1) \in \mathbb{R}^3 \mid z \in \mathbb{R}\} = \text{Vect}((-5, 4, 1)).$$

Test 10 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid -x - y + z = 0 \text{ et } 2x + y - 5z = 0\}.$$

- 2. $G = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 0\}.$
- 3. $H = \{(x, y, z) \in \mathbb{R}^3 \mid 2x = y \quad et \quad y = 3z\}$

Test 11 (Voir la solution.)

Soit $E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \ u_{n+2} = u_{n+1} + 6u_n\}$

- 1. Rappeler la forme de l'expression du terme général d'un élément de E.
- 2. En déduire que E est un espace vectoriel et en donner une famille génératrice.

Méthode 3

Inversement, étant donné un espace vectoriel sous forme de « Vect » vous devez savoir en déterminer des équations qui le décrivent.

Exemple 14

Déterminons un système d'équations caractérisant les éléments de F = Vect((1,2,1),(-1,1,0)).

1. Écrire la condition pour qu'un vecteur appartienne à F sous forme d'un système (non-homogène). Soit $(x, y, z) \in \mathbb{R}^3$. Alors

$$(x, y, z) \in F \iff \exists (\lambda, \mu) \in \mathbb{R}^2, \quad (x, y, z) = \lambda(1, 2, 1) + \mu(-1, 1, 0) \iff \exists (\lambda, \mu) \in \mathbb{R}^2, \quad (S) \begin{cases} \lambda - \mu = x \\ 2\lambda + \mu = y \\ \lambda = z \end{cases}$$

Ainsi

$$(x, y, z) \in F \iff (S)$$
 possède au moins une solution.

Il faut voir ce système comme un système d'inconnues λ et μ et de paramètres x, y et z. L'objectif est de déterminer les conditions sur x, y, z pour que ce système admette des solutions.

2. Mettre le système sous forme triangulaire.

$$(S) \Longleftrightarrow \begin{cases} \lambda - \mu = x \\ 2\lambda + \mu = y \iff \begin{cases} \lambda - \mu = x \\ 3\lambda = y + x \\ \lambda = z \end{cases}$$

3. Faire apparaître les équations et conclure

$$(S) \Longleftrightarrow \begin{cases} \lambda - \mu = x \\ 3\lambda = y + x \Longleftrightarrow \begin{cases} \lambda - \mu = x \\ \lambda = z \end{cases} \\ \lambda = z \end{cases}$$

Le système (S) possède des solutions si et seulement si 3z = y + x (par exemple, $(\lambda, \mu) = (z, z - x)$ est solution lorsque 3z = y + x). Ainsi

$$(x, y, z) \in F \iff 3z = y + x.$$

4. S'il n'y a pas de condition, c'est que le système admet des solutions pour tout vecteur de l'espace, cela signifie que $F = \mathbb{R}^3$.

Test 12 (Voir la solution.)

Décrire les espaces vectoriels suivants à l'aide d'équations.

- 1. $F_1 = Vect((1, 2, -1, 2), (1, 1, 1, 1))$.
- 2. $F_2 = Vect((1,1,1),(1,2,3),(1,4,9))$.
- 3. $F_3 = Vect((2,1,-3),(1,1,-2)).$

3 Objectifs

- 1. Avoir compris les notions d'espace vectoriel et de sous-espace vectoriel.
- 2. Connaître par coeur les définitions de combinaison linéaire, sous-espace engendré par une famille.
- 3. Savoir montrer qu'un ensemble est un espace vectoriel ou un sous-espace vectoriel avec la caractérisation des sous-espaces vectoriels.
- 4. Savoir montrer qu'un ensemble est un sous-espace vectoriel en en déterminant une famille génératrice.
- 5. Savoir décrire un sous-espace vectoriel engendré par une famille à l'aide d'équations.
- 6. Savoir manipuler la notation Vect.

4 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

1.
$$u + 3v = (1, -1, 0) + 3(3, -2, 5) = (10, -7, 15)$$
.

2.
$$u+3v=\begin{pmatrix}1&2\\3&4\end{pmatrix}+3\begin{pmatrix}1&1\\0&1\end{pmatrix}=\begin{pmatrix}4&5\\3&7\end{pmatrix}$$
.

3.
$$u + 3v = 3X^3 - X + 1 + 3(X^5 - 2X^3 + X^2 + 2) = 3X^5 - 3X^3 + 3X^2 - X + 7$$

Correction du test 2 (Retour à l'énoncer.)

- 1. (a) On a deg(P + Q) \leq max(deg P, deg Q) \leq n donc P + Q \in $\mathbb{R}_n[X]$
 - (b) L'addition de polynômes $+: \mathbb{R}_n[X] \times \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ est donc bien définie. C'est une loi de composition interne par définition.
- 2. L'addition des polynôme n'est pas une loi de composition interne sur E car la somme de deux polynômes de degré exactement n n'est pas nécessairement de degré exactement n. Par exemple, avec n=1, P=X et Q=-X+1, on a

$$deg P = deg Q = 1$$
 mais $deg(P + Q) = 0$ car $P + Q = 1$.

Correction du test 3 (Retour à l'énoncer.)

1. On a

$$\forall P \in \mathbb{R}[X], \quad P+0=0+P=P.$$

Par unicité, le polynôme nul est donc l'élément neutre de l'addition de $\mathbb{R}[X]$.

On a

$$P + (-P) = (-P) + P = 0$$
,

où
$$-P = -a_0 - a_1 X - \cdots - a_n X^n$$
. Par unicité, $-P$ est donc le symétrique de P .

2. On a

$$\forall (u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}},\quad (u_n)_{n\in\mathbb{N}}+(0)_{n\in\mathbb{N}}=(u_n+0)_{n\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}.$$

Par unicité, la suite constante égale à 0 est donc l'élément neutre de l'addition de $\mathbb{R}^{\mathbb{N}}$.

On a

$$(u_n)_{n\in\mathbb{N}} + (-u_n)_{n\in\mathbb{N}} = (0)_{n\in\mathbb{N}} = (-u_n)_{n\in\mathbb{N}} + (u_n)_{n\in\mathbb{N}}.$$

Par unicité, $(-u_n)_{n\in\mathbb{N}}$ est donc le symétrique de $(u_n)_{n\in\mathbb{N}}$.

Correction du test 4 (Retour à l'énoncer.)

1. On cherche $(x, y, z) \in \mathbb{R}^3$ tel que

$$u = xe_1 + ye_2 + ze_3$$
.

Cela revient à résoudre le système

(S)
$$\begin{cases} x + y + 2z = 3 \\ x + 2y - z = -1 \\ x + 3y + z = 3 \end{cases}$$

Or

$$(S) \Longleftrightarrow \begin{cases} x + y + 2z = 3 \\ y - 3z = -4 \\ 2y - z = 0 \end{cases}$$

$$\iff \begin{cases} x + y + 2z = 3 \\ y - 3z = -4 \\ 5z = 8 \end{cases}$$

$$\iff z = \frac{8}{5} \quad y = \frac{4}{5} \quad x = -1$$

Donc

$$u = -e_1 + \frac{4}{5}e_2 + \frac{8}{5}e_3.$$

De même pour v, on cherche $(x, y, z) \in \mathbb{R}^3$ tel que

$$v = xe_1 + ye_2 + ze_3.$$

Cela revient à résoudre le système

(S)
$$\begin{cases} x + y + 2z = 1 \\ x + 2y - z = -2 \\ x + 3y + z = 5 \end{cases}$$

Or

(S)
$$\iff$$

$$\begin{cases} x + y + 2z = 1 \\ y - 3z = -3 \\ 2y - z = 4 \end{cases}$$
$$\iff$$

$$\begin{cases} x + y + 2z = 1 \\ y - 3z = -3 \\ 5z = 10 \end{cases}$$
$$\iff$$
 $z = 2 \quad y = 3 \quad x = -6$

Donc

$$v = -6e_1 + 3e_2 + 2e_3$$
.

2. On cherche $(a, b, c) \in \mathbb{R}^3$ tel que

$$X^{2} + 1 = a(X + 1)^{2} + b(X + 1) + c = aX^{2} + (2a + b)X + a + b + c$$

Par identification, cela revient à résoudre le système

(S)
$$\begin{cases} a = 1 \\ 2a + b = 0 \\ a + b + c = 1 \end{cases}$$

On trouve que l'unique solution de (S) est (1, -2, 2) donc

$$X^{2} + 1 = (X + 1)^{2} - 2(X + 1) + 2$$

3. La matrice $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ est combinaison linéaire des matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ si et seulement si il existe des réels a et b tels que

$$\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & b \\ b & a+b \end{pmatrix}.$$

On peut identifier les coefficients des matrices de chaque membre et résoudre le système de quatre équations à deux inconnues comme précédemment. On peut aussi remarquer qu'une condition nécessaire pour qu'une matrice soit combinaison linéaire de $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ est que ses deux coefficients diagonaux soient

égaux. Ainsi, $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ *n'est pas combinaison linéaire des matrices* $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ *et* $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Correction du test 5 (Retour à l'énoncer.)

1. Soit $(a, b, c) \in \mathbb{R}^3$. On a

$$aP + bQ + cR = (a - b + 4c)X^{2} + (2a + 6c)X + b - c$$

donc

$$aP + bQ + cR = 0 \Longleftrightarrow \begin{cases} a - b + 4c = 0 \\ 2a + 6c = 0 \\ b - c = 0 \end{cases} \Longleftrightarrow \begin{cases} a = -3c \\ b = c \end{cases}$$

L'ensemble des solutions est donc $\{(-3c, c, c) \mid c \in \mathbb{R}\}$

2. Soit $(a, b) \in \mathbb{R}^2$.

$$ax + by = 0 \Longleftrightarrow \begin{cases} a + 2b = 0 \\ 2a + 4b = 0 \\ -a - 2b = 0 \end{cases} \Longleftrightarrow \begin{cases} a + 2b = 0 \\ 4a + 4b = 0 \end{cases} \Longleftrightarrow \begin{cases} a = 0 \\ b = 0 \end{cases}$$

L'unique solution est (0,0).

Correction du test 6 (Retour à l'énoncer.)

- 1. On a $(1,0) \in F$ et $(0,1) \in F$ mais $(1,0) + (0,1) \notin F$. Ainsi, F n'est pas stable par addition et ce n'est donc pas un sous-espace vectoriel de \mathbb{R}^2 .
- 2. G est non vide car $0 \in G$. Soient $(P,Q) \in G^2$ et $\lambda \in \mathbb{R}$. Alors par linéarité de la dérivation, on a

$$(P + \lambda Q)'(0) = P'(0) + \lambda Q'(0) = 0.$$

Ainsi $P + \lambda Q \in G$. D'après la caractérisation des sous-espaces vectoriels, G est un sous-espace vectoriel de $\mathbb{R}[X]$.

3. La fonction f constante égale à 1 appartient à H mais $2f \notin H$. Ainsi, H n'est pas stable par multiplication par un scalaire et ce n'est donc pas un sous-espace vectoriel de $\mathscr{C}(\mathbb{R},\mathbb{R})$.

Correction du test 7 (Retour à l'énoncer.)

On va montrer que ce sont des sous-espaces vectoriels d'un espace vectoriel de référence.

1. L'ensemble E est non vide car contient la matrice nulle. Soient $(M,N) \in E^2$ et $\lambda \in \mathbb{R}$. Par linéarité de la transposition on a

$$^{t}(M + \lambda N) = ^{t}M + \lambda^{t}N = 2M + \lambda 2N = 2(M + \lambda N).$$

Ainsi $M + \lambda N \in E$. D'après la caractérisation des sous-espaces vectoriels, E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. En particulier, E est un espace vectoriel.

2. L'ensemble F est non vide car contient la suite nulle. Soient $(u, v) \in F^2$ et $\lambda \in \mathbb{R}$ et posons $w = u + \lambda v$. On a

$$\begin{split} w_{n+2} &= u_{n+2} + \lambda v_{n+2} = u_{n+1} + 2u_n + \lambda (v_{n+1} + 2v_n) \\ &= u_{n+1} + \lambda v_{n+1} + 2(u_n + \lambda v_n) \\ &= w_{n+1} + 2w_n \end{split}$$

Ainsi $w \in F$. D'après la caractérisation des sous-espaces vectoriels, F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. En particulier, F est un espace vectoriel.