Class 3 Review Notes

AI & Machine Learning Fall 2023 - Laurie Ye

3 KNN Classification and Regression

3.1 Introduction

We can't always have an infinite number of observations (or very large datasets). In this case, we can specify a number k and use the k nearest neighbors. Hence the name k-NN.

3.2 k-NN Binary Classification

- For a particular set of x-variables (features), estimate $P(Y = 1 \mid \text{features})$ as the proportion of the k nearest neighbors (to the set of x-variables) that take the value of 1.
- Call this probability $\hat{p}(k, \mathbf{x})$, where \mathbf{x} is the vector of features for which the classification is desired.
- \bullet Compare this probability to the threshold probability $p_{\mathrm{threshold}}$.
- Classify as 1 if

$$\hat{p}(k, \mathbf{x}) \geq p_{\text{threshold}}$$

- Note: $p_{\text{threshold}}$ can be varied to produce ROC curves and the AUC.
- Often the criterion is majority rule:

$$p_{\text{threshold}} = 0.5$$

3.3 k-NN Classification in General & Regression

- For a particular set of x-variables (features), estimate the probability of each class as the proportion of the k nearest neighbors (to the set of x-variables) that are members of that class.
- Use a similar voting scheme, with the class with the most "votes" determining the predicted class (the classification).
- For a particular set of x-variables (features), estimate the \hat{Y} by the average of the Y values of the k nearest neighbors (to the set of x-variables).

Note 1. k-NN classification and regression is based on a very simple and intuitive idea. All of the "action" is in determining which observations are close to a particular set of x-variables. So notions of "distance" or "similarity" are important.

3.4 Euclidean Distance (L2 Norm)

The Euclidean distance, also known as the L2 norm, is defined as the length of the difference between two vectors (enforce 0 as coefficient). For two vectors \mathbf{x} and \mathbf{y} , the Euclidean distance is given by:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix}$$

The distance $d(\mathbf{x}, \mathbf{y})$ is calculated as:

$$d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}) = ||\mathbf{x} - \mathbf{y}|| = ||\mathbf{y} - \mathbf{x}||$$

$$= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2}$$

$$= \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

3.5 Properties of Distance

The properties of distance are closely related to the properties of length.

- $d(\mathbf{x}, \mathbf{y}) \ge 0$
- $d(\mathbf{x}, \mathbf{x}) = 0$
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
- $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$
- $d(c\mathbf{x}, c\mathbf{y}) = |c| \cdot d(\mathbf{x}, \mathbf{y})$

3.6 L1 Norm (Manhattan Distance)

The L1 norm, or Manhattan Distance, between two vectors \mathbf{x} and \mathbf{y} is defined as:

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_p - y_p|$$

$$=\sum_{i=1}^{p}|x_i-y_i|$$

$3.7 \quad L \infty \text{ Norm}$

The $L\infty$ norm (Chebyshev distance) between two vectors **x** and **y** is defined as:

$$d(\mathbf{x}, \mathbf{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|, \dots, |x_p - y_p|\}$$

$$= \max_{i} |x_i - y_i|$$

3.8 Standardize

- Most distance measures are very sensitive to the scale of the variables.
- One approach is to standardize each variable.
- Think **X** data matrix like in regression:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

• For each x-variable j, compute

$$z_{ij} = \frac{x_{ij} - \bar{x}_j}{s_j}$$

where

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

and

$$s_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}$$

3.9 Collaborative Filtering

- Collaborative filtering is a term used in recommender systems for an idea that is very similar to k-NN classification.
- In this context, "collaborate" is used to refer to the set of similar users.
- To make a prediction for the focal user for a possible item to recommend, all similar users (collaborators) that have rated the item must be found and a prediction based on their ratings made. This is the "filtering" process.

3.10 Reference

Goizueta Business School-Emory University: Professor George S. Easton