به نام خدا

پروژه درس سری زمانی

موضوع: بررسی و تحلیل مدل سری زمانی برای دادههای مجموع ماهانه مسافران خطوط هوایی ایالات متحده از سال ۱۹۴۹ تا ۱۹۶۰ با استفاده از نرم افزار SPSS

استاد درس: دكتر محمدرضا صالحي راد

پژوهشگر: علی شکارچی

تابستان ۱۴۰۳

مقدمه:

در این پژوهش الگوی سری زمانی برای دادههای مجموع ماهانه مسافران خطوط هوایی ایالات متحده از سال ۱۹۴۹ تا SPS (در مقیاس مناسب) به کمک نرم افزار SPS مورد بررسی واقع میشود. این مجموعه داده از مجموعه داده جهان به داخلی نرم افزار R به نام AirPassengers گرفته شده است. (که در سایت کگل بزرگترین انجمن علم داده جهان به درس AirPassengers قابل دریافت است.) به دلیل ماهیت ادرس AirPassengers قابل دریافت است.) به دلیل ماهیت تاریخی و جزئیات زمانی ثابت، مجموعه دادههای مسافران هوایی به عنوان یک منبع ارزشمند برای محققان و دانشجویان در زمینههای آمار، اقتصادسنجی و برنامهریزی حملونقل عمل می کند. این پژوهش به کمک مدلهای سری زمانی کلاسیک (نوع ACF) با تحلیلهایی بر موارد پایهای برازش این مدلها همچون تحلیل نمودارهای ACF و ACF و ACF و ACF این دادهها و ارائه روشی مناسب برای پیشبینی و روشهای سنتی براری براورد مولفه های سری زمانی به دنبال تحلیل این دادهها و ارائه روشی مناسب برای پیشبینی مقادیر اینده آنها است.

طرح پژوهش:

دادههای ثبتی مربوط به مجموع ماهانه مسافران خطوط هوایی ایالات متحده از سال ۱۹۴۹ تا ۱۹۴۰ (در مقیاس دادههای ثبتی مربوط به مجموع ماهانه مسافران را که از ماه اول سال ۱۹۴۹ ثبت شدهاند نشان میدهد. جدول دادهها با همین الگو اطلاعات را تا ماه آخر سال ۱۹۶۰ دربر دارد.

Month	Passengers
Jan-49	112
Feb-49	118
Mar-49	132
Apr-49	129
May-49	121
Jun-49	135
Jul-49	148
Aug-49	148
Sep-49	136
Oct-49	119
Nov-49	104
Dec-49	118
Jan-50	115
Feb-50	126
Mar-50	141
Apr-50	135
May-50	125
Jun-50	149
Jul-50	170

تحلیل و برازش مدل مناسب و پیشبینی مقادیر آینده سری زمانی دادهها در مراحل گام به گام در ادامه بررسی میشوند:

گام اول:

پس از وارد کردن دادهها در نرم افزار SPSS تاریخ متناظرهرداده با فرمت مناسب برای نرم افزار تعریف میشود تا تحلیل صحیح دادهها امکان پذیر باشد.

دستور: Data » Define data and time

	🚜 Month	♦				₽ DATE_
1	1949-01	rs 112	1949	1	1	JAN 1949
2	1949-02	118	1949	1		FEB 1949
3	1949-03	132	1949	1		MAR 1949
4	1949-04	129	1949	2	4	APR 1949
5	1949-05	121	1949	2	5	MAY 1949
6	1949-06	135	1949	2	6	JUN 1949
7	1949-07	148	1949	3	7	JUL 1949
8	1949-08	148	1949	3	8	AUG 1949
9	1949-09	136	1949	3	9	SEP 1949
10	1949-10	119	1949	4	10	OCT 1949
11	1949-11	104	1949	4	11	NOV 1949
12	1949-12	118	1949	4	12	DEC 1949
13	1950-01	115	1950	1	1	JAN 1950
14	1950-02	126	1950	1	2	FEB 1950
15	1950-03	141	1950	1	3	MAR 1950
16	1950-04	135	1950	2	4	APR 1950
17	1950-05	125	1950	2	5	MAY 1950
18	1950-06	149	1950	2	6	JUN 1950
19	1950-07	170	1950	3	7	JUL 1950
20	1950-08	170	1950	3	8	AUG 1950

گام دوم:

نمودار دادهها در مقابل زمان رسم میشود و به یک نتایج شهودی در مورد دادهها بررسی میشوند. دستور: Analyse » Forecasting » Sequence charts

ملاحظه میشود که دادهها به صورت شهودی از شرایط ایستایی (میانگین و واریانس ثابت) برخوردار نیستند، و یک روند رو به بالا در دادهها مشاهده میشود. همچنین یک عامل فصلی در دادهها قابل پیشبینی میباشد که در ادامه به آن پرداخته میشود.

و بنظر میرسد برای رسیدن به ایستایی تفاضل گیری راهکاری مناسب باشد.

گام سوم:

در این گام به کمک نمودارهای ACF و PACF شرایط رسیدن به ایستایی برای سری زمانی بررسی میشود. ابتدا این نمودارها برای دادههای اصلی رسم و تحلیل مناسب از روی نمودار انجام میشود.

دستور: Analyse » Forecasting » Autocorrelation

ملاحظه میشود که نمودار ACF بسیار کند کاهش پیدا میکند و همانطور که از قبل انتظار میرفت سری زمانی ایستا نبوده و نیاز به تفاضل گیری دارد.

با انجام یک مرحله تفاضل گیری دوباره دو نمودار برای سری رسم و تحلیل میشوند.

دستور: Analyse » Forecasting » Autocorrelation

با کمی دقت در حرکت نوسان دار دو نمودار مشخص میشود که یک روند فصلی در ایجاد ناایستایی برای سری مورد انتظار است که در ادامه با یک تفاضل گیری فصلی این مورد بررسی و صحت ان تایید میشود.

با یک مرحله تفاضل گیری فصلی دو نمودار برای سری رسم و تحلیل میشوند. Analyse » Forecasting » Autocorrelation

اینک مشخص شد با مرتبه اول تفاضل گیری از دادههای اصلی و مرتبه اول تفاضل گیری فصلی، دادههای سری به ایستایی میرسد و تنها یک مقدار معناداردر فاصله زمانی یکم در نمودار ACF (که از بازه اطمینان ۹۵ درصد خارج است) مشاهده میشود. که در برازش مدل سری زمانی ARMA حاصل از تفاضل گیریها میتواند نشان دهنده پارامتر q=1 باشد.

برای بررسی صحت ادعای فوق نمودار حاصل از دو تفضل گیری دادههای اصلی و تفاضل گیری فصلی رسم میشود. Analyse » Forecasting » Sequence charts

Transforms: difference(1), seasonal difference(1, period 12)

ملاحظه میشود تا حد بسیار قابل قبولی دادهها به شرایط ایستایی (ثابت بودن میانگین و واریانس) نزدیک شدند.

گام چهارم:

اینک به بررسی نمودارهای براوردهای مولفههای سری زمانی به روشهای سنتی یعنی براوردهای مرکب از مولفه روند $Z_t=(e_t)$ مولفه فصلی (S_t) و مولفههای نامنظم (P_t) پرداخته میشود. با فرض استقلال و جمع پذیری مولفههای $P_t+S_t+e_t$ برقرار است.

محاسبه این مولفهها و براوردهایشان به کمک دستور زیر صورت میگیرد و مقادیر براورد شده در ستونهایی جدید به جدول دادهها اضافه میشوند.

دستور: Analyse » Forecasting » Seasonal Decomposition

ابتدا اثر مولفههای نامنظم سری (e_t) یعنی نوفهها یا همان عوامل تصادفی که ناشی از اختلاف مقدار نظری و تجربی هستند با اجرای دستور زیر برای متغیر خطا که پس از دستور بالا ایجاد شد اجرا میشود و نمودار حاصل نشان داده میشود.

دستور: Analyse » Forecasting » Sequence charts

سپس نمودار سری فصلی تعدیل شده (که حاصل از حذف براورد نوسانات فصلی است. $\widehat{N}_t = Z_t - \widehat{S}_t$) با اجرای دستور زیر برای متغیر دادههای تعدیل شده که پس از دستور Seasonal Decomposition ایجاد شد اجرا میشود و نمودار حاصل نشان داده میشود.

دستور: Analyse » Forecasting » Sequence charts

در این قسمت نمودار سری براورد مولفه فصلی (\widehat{S}_t) با دوره فصلی \mathbf{s} =12 با اجرای دستور زیر برای متغیر براورد مولفه فصلی که پس از دستور Decomposition Seasonal ایجاد شد اجرا میشود و نمودار حاصل نشان داده میشود. دستور: Analyse » Forecasting » Sequence charts

و در آخر نمودار سری براورد مولفه روند (\widehat{P}_t) که با استفاده از روش میانگین متحرک براورد میشود با اجرای دستور زیر برای متغیر براورد مولفه روند که پس از دستور Decomposition Seasonal ایجاد شد اجرا میشود و نمودار حاصل نشان داده میشود.

دستور: Analyse » Forecasting » Sequence charts

گام آخر:

expert) مدل برای دادههای سری زمانی را دارد (SPSS توانایی یافتن مناسبترین مدل برای دادههای سری زمانی را دارد (SPSS با SPSS)، در اینجا ازاین قابلیت مطابق دستور زیراستفاده میشود و مناسب ترین مدل پیشنهادی نرم افزار SPSS با مدل کشف شده با کمک تحلیلهای گام به گام نمودارهای ACF و ACF که در گامهای قبل پیشبینی شدند مقایسه میشود.

دستور: Analyse » Forecasting » Create Traditional Models

Model Description

		Model Type			
Model ID	Passengers	Model_1	ARIMA(0,1,1)(0,1,1)		

Μ	OC	lel	St	at	ist	ics

		Model Fit					
		statistics	Lj	ung-Box Q(18	3)		
	Number of	Stationary R-				Number of	
Model	Predictors	squared	Statistics	DF	Sig.	Outliers	
Passengers-Model_1	0	.324	12.571	16	.704		0

ملاحظه میشود که مدل پیشنهادی نرم افزار با مدل پیشبینی شده از تحلیل نمودارها کاملا مطابقت دارد و نتیجه میدهد تحلیلها به درستی انجام شده و مدل سری زمانی مناسب برای دادههای مجموع ماهانه مسافران خطوط هوایی ایالات متحده از سال ۱۹۴۹ تا ۱۹۶۰ مدل ARIMA(0,1,1)(0,1,1) است.

همچنین با توجه به اطلاعات جدول Model Statistics و آماره (Ljung-Box Q(18) و آماره (0.05) همبستگی معناداری در خطاها است که باقمانده های مدل آزمون میکند، طبق اینکه (0.05) 0.05 نشانده همبستگی معناداری در خطاها است که نشانه ای از ضعف مدل مورد برازش است، با توجه به مقدار این آماره در مدل برازش داده شده یعنی 0.05. که بسیار بالاتر از 0.05 است احتمالا هیچ ارتباطی بین باقیمانده ها در 0.05 تاخیر وجود ندارد. همچنین تعداد پیشبینی کننده و تعداد نقاط پرت هر دو صفر هستند که به ترتیب بیانگر ساده بودن مدل (مقادیر آینده فقط بر اساس مقادیر گذشته خود سری پیشبینی میشوند.) و عدم وجود مشاهدات بیرونی در سری زمانی مورد مطالعه است.

و لازم به ذکر است یکی از قابلیتهای قسمت Create Traditional Models نرم افزار SPSS پیشبینی مقادیر آینده سری زمانی مطابق با مدل سری زمانی برازش داده شده در بازه زمانی دلخواه است. با استفاده از دستور زیر برای بازه زمانی ۴ ساله مطابق با مدل سری زمانی برازش داده شده پیشبینی صورت میگیرد.

Analyse » Forecasting » Create Traditional Models(options) دستور:

این پیشبینی به طور شهودی نیز مورد تایید است چرا که روند رو به بالا(رو به رشد) تعداد مسافران خطوط هوایی و اثر روند فصلی سری زمانی در پیشبینی انجام شده به وضوح قابل درک است.

و در آخر یکی دیگر از قابلیتهای شایان توجه نرم افزار SPSS در قسمت Create Traditional Models افزودن ستونهای جدید به جدول دادهها شامل مواردی چون دادههای مورد پیشبینی مطابق با مدل برازش داده شده، تعیین کران بالا و پایین برای هر پیشبینی(با اطمینان ۹۵ درصد) و تعیین مقدار نوفه برای هر داده میباشد که موارد نامبرده با اجرای دستور زیر به جدول دادهها اضافه میشوند.

دستور: Analyse » Forecasting » Create Traditional Models(save)

	∂a Month	Passenge rs				♣ DATE_	Predicted Passen ers_Mode		UCL_Pas sengers_ Model_1	NResidua
2	1949-02	118	1949	1	2	FEB 1949				
3	1949-03	132	1949	1	3	MAR 1949				
4	1949-04	129	1949	2	4	APR 1949				
5	1949-05	121	1949	2	5	MAY 1949				
6	1949-06	135	1949	2	6	JUN 1949				
7	1949-07	148	1949	3	7	JUL 1949				
8	1949-08	148	1949	3	8	AUG 1949				
9	1949-09	136	1949	3	9	SEP 1949				
10	1949-10	119	1949	4	10	OCT 1949				
11	1949-11	104	1949	4	11	NOV 1949				
12	1949-12	118	1949	4	12	DEC 1949				
13	1950-01	115	1950	1	1	JAN 1950				
14	1950-02	126	1950	1	2	FEB 1950	121	111	133	0
15	1950-03	141	1950	1	3	MAR 1950	139	128	151	0
16	1950-04	135	1950	2	4	APR 1950	137	126	149	0
17	1950-05	125	1950	2	5	MAY 1950	128	117	139	0
18	1950-06	149	1950	2	6	JUN 1950	141	129	153	0
19	1950-07	170	1950	3	7	JUL 1950	160	147	173	0
20	1950-08	170	1950	3	8	AUG 1950	166	152	180	0
21	1950-09	158	1950	3	9	SEP 1950	155	142	168	0
22	1950-10	133	1950	4	10	OCT 1950	137	126	149	0
23	1950-11	114	1950	4	11	NOV 1950	118	108	128	0
24	1950-12	140	1950	4	12	DEC 1950	131	120	142	0
25	1951-01	145	1951	1	1	JAN 1951	134	123	145	0

مشاهده میشود که موارد ذکر شده به جدول اضافه شدند. همچنین عدم وجود پیشبینی برای ۱۳ داده اول سری به دلیل یک مرتبه تفاضل گیری دادههای اصلی و یک مرتبه تفاضل گیری فصلی میباشد.