# CSAI 101: Fundamentals of Programming and Computer Science

Lecture 01: First Program



# Agenda

- Computer hardware and software
- How to write a program?
- Building our first program
- Memory
- Getting input / Displaying output
- Arithmetic expressions
- Sample programs



# **Computer Hardware**





### **Computer Hardware**

- Input Unit: accepts inputs from users, translates it, and transmits it to the processor (e.g. keyboard, joystick, microphone and mouse)
- Output Unit: display processed information to the outside world (e.g. monitors, printers (2D and 3D), speakers, and projectors)
- Arithmetic and Logic Unit: calculates arithmetic and logical expressions. It reads the
  operands from memory, perform the operation and store the resultant value in memory.
- Memory Unit: stores programs and data (two classes primary and secondary)
- Control unit: coordinates the operation of all other units. It is the nerve center that sends control signals to all units and senses their status.

Zewail University of Science and Technology

# Software Program

- A computer can perform a specific set of instructions, one at a time.
  - Get input (from keyboard to memory)
  - Display output (from memory to screen)
  - Compute an arithmetic expression (\*, /, +, -)
  - Compute a logical expression and branch selection
  - Repeat instructions

A software program is a sequence of such instructions



# How to write a software program?

- 1. Read the **problem** statement, and identify
  - The input and its range
  - The output
  - The relationship between the input and the output (how to compute the output) [Comprehend]
- 2. Write your thoughts as a sequence of steps. [Algorithm]
- 3. Convert these steps to Code. [Program]
- Test your code and compare your program result against a human result. [Testing]



#### Writing a Computer Program: The Role of Algorithms

- An algorithm is a set of steps that describes how a task can be performed (informal definition).
- Fundamental concept of computer science
- The word is derived from the famous mathematician Muḥammad ibn Musa al-Khwarizmi, one of the first Directors of the House of Wisdom (a major public academy and intellectual center), in Bagdad (9th century).
- Began as a subject in mathematics. The goal was to find a single set of directions that describes how all problems of a particular type could be solved.
- "If no algorithm exists for solving a problem, then the solution of that problem lies beyond the capabilities of machines."

Zewail University of Science and Technology

# **Algorithms: Formal Definition**

- An algorithm is an ordered set of unambiguous, executable steps that defines a terminating process.
  - Ordered: Steps are executed in a sequence. (In parallel algorithms, we may have more than one execution path)
  - **Unambiguous:** A single and unique interpretation. The information must be sufficient to determine uniquely and completely the required actions.
    - Branch if the value of x is large enough. Is it unambiguous?
    - Some algorithms (nondeterministic algorithms) do not conform to this restriction.
  - **Executable:** A step that can be done.
    - Make a list of all the positive integers. Is it executable
  - Terminating: the execution must lead to an end.
    - There are, however, some meaningful non-terminating processes such as monitoring the vital signs of a patient.



# **Algorithm Representation**

#### Pseudocode:

- An intuitive notational system in which ideas can be expressed informally.
- Less formal than target programming language.
- Flexible, less complex, and easy to understand compared to formal programming languages.

#### • Flowchart:

- A graphical representation of an algorithm.
- Provides a simple way to visualize transitions and analyze the execution paths.



#### Pseudocode: Examples

- Write an algorithm to calculate the area of a circle
- Determine inputs, outputs, and relation

- Step 1: Get Radius from user
- **Step 2:** Set Pi = 3.14
- Step 3: Calculate Area = Pi \* Radius \* Radius
- Step 4: Print Area



#### Pseudocode: Examples

- Write an algorithm to convert temperature from Fahrenheit to Celsius
- Determine inputs, outputs, and relation

$$T(^{\circ}C) = (T(^{\circ}F) - 32) \times 5/9$$

- Step 1: Get Temp in Fahrenheit (F) from user
- Step 2: Calculate C = 5/9 \* (F-32)
- Step 3: Print C



#### **Exercise**

- Find  $X^2$  and  $X^3$  of any given number X
- Determine inputs, outputs, and relation

- Step 1: Get X from user
- Step 2: Set XSquare = X \* X
- Step 3: Set XCube = XSquare \* X
- Step 4: Print XSquare. XCube



# Memory

Memory is divided into bytes

 Each byte has its own address represented by binary numbers

 4 or 8 bytes form a memory location to store integer or floating (Ex 10.2345) numbers

 Software programs use letters and numbers to name the memory location.





# **Memory Location Name (Variables)**

Variable: a named space for storing a value

radius

- Valid names:
  - Must start with a letter or '\_',
  - Can contain any combination of letters, digits, or '\_'.
- Use meaningful variable names (avoid reserved words).
- Python (as well as most others) is case sensitive (area and Area are different)
- Exercise

Xyz 3xyz x-y ab2cd a12345 myvar AbCdE1234



#### Integer:

```
* x = 4
* y = x * 2
* Using substitution, y = ?
* type(x)
* type(y)
* type(y * 2)
* Again follow substitution
```

#### Float/decimal:

```
* x = 4.0

* y = x * 2

* Using substitution, y = ?

* type(x)

* type(y)

* type(x * 2)
```

#### String:

```
\mathbf{x} = \mathbf{A}'
x = abc'
x = 4.0'
x*2
x + 3'
type(x + '3')
\mathbf{x} + 3
```

#### Conversions:

```
int('4')
int(4.5)
float('4.2')
float('4')
str(4.2)
'Area=' + str(4.2)
```

### **Get Input from User**



Enter height: 5

### **Get Input from User**



h 5

Enter height: 5

? Write a Python statement to take the circle radius from the user and store it in 'R'.



### Display to Screen



? 5



? 102





#### Display to Screen

```
print('Height = ' + str(h))
```

- Print('Height =', h)
- Property Height = 5

Note regarding separating by a comma:

- No type conversion needed
- Automatically inserts space between the elements

Property Height = 5 and area = 102





# **Arithmetic Expressions**

#### **Operations**

```
** Exponentiation (5**2 is 25)
*, /, // Multiplication, division, and floor division
+, - Addition and subtraction
```

#### **Examples**

$$x=4$$
;  $y=3.5$ ;  $z=2$   
 $a = x + y - 5 / (3+z)$   
 $b = a + x / 2$ 

(semicolon can be used to separate multiple lines)

Operations are executed only one at a time according to their precedence. We will study it further in future lectures



# How to write a software program?

- 1. Read the **problem** statement, and identify
  - The input and its range
  - The output
  - The relationship between the input and the output (how to compute the output) [Comprehend]
- 2. Write your thoughts as a sequence of steps. [Algorithm]
- 3. Convert these steps to Code. [Program]
- Test your code and compare your program result against a human result. [Testing]



# Calculate Area of a Rectangle

#### (Problem 2 Algorithm)

- How a computer can solve this problem?
- I get the values of the height and the width from you and I store them in my memory.

- Get height as h
- Get width as w

 Then I multiply them in my brain and store the result in my memory Calculate area = h\*w

- And inform you about the resultant value.
- Print area



# Calculate Area of a Rectangle

#### (Algorithm 2 Program)

```
Get width as w w = int(input('Enter width: '))
```

```
Calculate area = h^*w area = h^*w
```

Print area print(area)



#### Calculate Area of a Rectangle

#### (Program and Testing)

```
h=int(input('Enter height: '))
w=int(input('Enter width: '))
area = h * w
print(area)
```

Enter height: 5

Enter width: 4

20





#### Calculate Area of a Circle

#### (Algorithm, Program, Testing)

```
import math
```

- 1. Get radius r
- 2. Calculate area = pi\*r\*\*2
- 3. Print area

r = int(input('Enter radius:'))

area = math.pi\*r\*\*2

print(area)

radius 5
area 78.5398

Enter radius: 5

78.5398





#### Calculate Number of Buses to Transfer Students

#### (Algorithm)

- 1.Get number of students as numS
- 2.Get the bus capacity as busC
- 3. Calculate num of buses as

numB = numS/busC (round up)

4. Print numB



#### Calculate Number of Buses to Transfer Students

#### (Program)

```
import math
numS = int(input('Enter number of students:'))
busC = int(input('Enter bus capacity:'))
numB = numS/busC
                          numB = math.ceil(numS/busC)
print(numB)
```

If numS=60 and busC = 50 then numB = 60/50 = 1.2??? But it should be 2

```
math.ceil(1.2) = 2
                           ceil rounds up to nearest integer
math.floor(1.2) = 1
                           floor rounds down to nearest integer
```



#### Calculate Number of Dozens and Remainder

#### (Algorithm)

- 1.Get a number as N
- 2. Calculate dozen = N/12 (no fraction)
- 3. Calculate the remainder (r) of dividing N by 12
- 4. Print dozen
- 5. Print r



#### Calculate Number of Dozens and Remainder

#### (Program)

N // 12 is the same as math.floor(N / 12)

