$\begin{array}{c} \mathrm{Part} \ \mathrm{I} \\ \mathbf{\acute{U}vod} \end{array}$

V celé práci budeme hledat různá řešení následujícího problému:

Mějme dva uživatele, Alici a Boba, kteří si chtějí po síti poslat tajnou zprávu m. V síti je také protivník, Eva, který komunikaci odposlouchává (může zprávu zachytit). Potřebujeme zařídit, aby Eva nemohla zjistit obsah zprávy m.¹

Velmi zjednodušeně můžeme popsat poslání zprávy Alice Bobovi takto: Alice upraví zprávu m (upravenou zprávu označíme c)² a pošle ji sítí Bobovi. Bob přijme c, upraví ji do původní podoby m a poté si ji přečte. Alice s Bobem využívají toho, že Eva neví jakým způsobem byla m upravena na c, a tudíž nemá jak získat m.

Tomu, co myslíme tím, že je zpráva upravována, se budeme věnovat dále.

Pro zjednodušení budeme nyní předpokládat následující:

- Eva není schopna modifikovat zachycenou zprávu. Bob tedy nebude muset kontrolovat, zda zprávu opravdu poslala Alice, a naopak. (tohoto předpokladu se zbavíme v kapitole III)
- Alice i Bob mají možnost si zprávu přečíst v bezpečném prostředí.

Základní způsob úpravy zprávy budeme nazývat sifrování. Proces úpravy zprávy m na c budeme nazývat sifrování a proces úpravy sifrování.

¹Jména Alice a Bob byla poprve použita v článku *A method for obtaining digital signatures and public-key cryptosystems* z roku 1978. Jméno Eva (z angl. *eavesdropper*) bylo jedno z dalších, které se v kryptografii objevilo. Jména nám pomáhají udržet přehlednější a jednodušší výklad.

²Použití písmena m a c plyne z angl. slov message a ciphered.

Part II

Symetrické šifrování

Symetrické šifrování je způsob šifrování, ve kterém je v procesu zašifrování zprávy použit stejný klíč k, jako v procesu dešifrování.³

Symetrická šifra pro nás bude uspořádaná dvojice $\mathcal{E} = (E, D)$, kde:

• E je funkce zašifrování (E z ang. encryption). E přijímá na vstupu klíč k a zprávu m. Jako výstup vrací zašifrovaný text c.

$$E: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$$

Kde \mathcal{K} je množina klíčů, \mathcal{M} je množina zpráv a \mathcal{C} je množina šifrovaných zpráv.

• D je funkce dešifrování (D z ang. decryption).

$$D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$$

Každá \mathcal{E} je tedy definována nad $(\mathcal{K}, \mathcal{M}, \mathcal{C})$.

Teď už můžeme konkrétněji formulovat postup poslání zprávy mezi Alicí a Bobem:

Alice zašifruje zprávu m (tedy sestrojí c = E(k, m)) a pošle c sítí Bobovi. Bob přijme c, rozšifruje ho (tedy získá m = D(k, c)), a zprávu si přečte.

Všimněme si teď několika věcí:

- 1. Přirozeně požadujeme, aby D(k, E(k, m)) = m. (Bob získá stejnou zprávu, jako poslala Alice.) Této podmínce budeme říkat podmínka korektnosti a nadále se budeme zabývat pouze takovými šiframi, které ji splňují.
- 2. Alice a Bob musí být předem domluveni na používaném klíči k.

³Písmeno k opět používáno kvůli anglickému key.

- 3. To, že si Eva přečte m nám nevadí (z c nejde snadno získat m)⁴.
- 4. Eva nesmí znát k, jinak by totiž z c mohla získat původní m.

Zkusme se zamyslet nad tím, jak bychom mohli zařídit bod 2, tedy jak by se Alice mohla s Bobem domluvit na klíči k, a přitom zajistit bod 4.

Určitě nás napadne, že by si Alice s Bobem mohli k poslat zprávou. Pokud ale Eva čte všechny zprávy v síti, určitě by si mohla k zapamatovat.

Mohli bychom tedy klíč k zašifrovat pomocí dalšího tajného klíče k_2 . Alice by tedy sestrojila $c = E(k_2, k)$ a c by poslala Bobovi. Bob by pomocí $D(k_2, c)$ získal k, který by Eva neznala. Tím bychom sice vyřešili náš původní problém, ale vytvořili bychom další: Jak se Alice s Bobem domluví na k_2 ? (Jistě nám dojde, že při použití stejného postupu by vznikal stále dokola ten samý problém.)

Potřebujeme, aby se Alice s Bobem na k domluvili v nějaké bezpečné síti, kterou Eva nemůže odposlouchávat. (Například by se mohli sejít v parku a k si tajně sdělit.)⁵

Kdyby ale existovala bezpečná síť, kterou by Eva nemohla odposlouchávat, jistě by mohli Alice s Bobem vést veškerou komunikaci rovnou přes ni. Tím pádem by se vůbec nepotřebovali domluvit na k, jelikož by nebylo potřeba zprávy šifrovat. Nebylo by tedy ani potřeba řešit problém, který byl představen v úvodu.

K tomu, jak se Alice s Bobem mohou domluvit na tajném klíči k i přes kanál, který Eva odposlouchává, se dostaneme později (konkrétně v kapitole 5). Budeme k tomu potřebovat širší aparát znalostí.

Nyní uvedeme některé základní příklady symetrických šifer.

1 Caesarova šifra

Caesarova šifra \mathcal{E} spadá do kategorie substitučních šifer.⁶ \mathcal{E} je definovaná nad $(\mathbb{N}_0, \Sigma^L, \Sigma^L)$, kde Σ je konečná množina symbolů a L je libovolně zvolená délka.

 $^{^4}$ Slovem snadno myslíme, že získání m z c je značně výpočetně náročné. Tomuto se ještě budeme konkrétněji věnovat později.

⁵To bude zřejmě problém, pokud se Alice s Bobem nachází na opačných koncích světa. ⁶Substituční šifra je druh šifry, při kterém dochází k záměně množiny symbolů za jinou množinu symbolů podle daného klíče.

Pokud bychom symboly v abecedě oindexovali (tedy $\Sigma = \{a_0, a_1, \ldots, a_n\}$), funkce zašifrování E by každý symbol zaměnila za symbol, který je v abecedě o k míst dále. Symboly na konci abecedy bychom posunovali ve smyslu mod (např.: E(2,y) = a, E(2,z) = b pro klasickou anglickou abecedu). Analogicky by funkce dešifrování D každý symbol zaměnila za symbol, který mu v abecedě o k míst předchází. Vidíme, že takto zvolená šifra splňuje podmínku korektnosti.

Formálně můžeme zapsat:

$$E(k, a_i) = a_l$$
, kde $l = (i + k) \mod |\Sigma|$
 $D(k, a_j) = a_m$, kde $m = (j - k) \mod |\Sigma|$

Je jasné, že kdybychom chtěli zašifrovat celou zprávu m, tak podle klíče k zašifrujeme všechny symboly jednotlivě na nové a jejich spojením vznikne zašifrovaná zpráva c.

Na okraj ještě uveďme, že se u klíčů můžeme omezit na podmnožinu přirozených čísel a pracovat pouze s $\mathcal{K} = \{n \in \mathbb{N}_0 \mid n < |\Sigma|\}$ bez újmy na obecnosti. Je zřejmé, že například pro množinu symbolů velikosti 2 by každý lichý klíč prohodil každý symbol na opačný a každý sudý klíč by nechal m beze změny. Mohli bychom se tedy omezit pouze na $k \in \{0,1\}$ aniž bychom jakkoliv změnili počet možností zašifrování zprávy m. Pro abecedu Σ tedy obecně existuje $|\Sigma|$ klíčů, které zprávu m zašifrují unikátním způsobem.

1.1 Bezpečnost Caesarovy šifry

Představme si nyní, že Alice a Bob spolu komunikují přes síť a využívají přitom Caesarovy šifry (pro zjednodušení uvažujme, že už jsou dohodnuti na společném klíči k). Je komunikace bezpečná?

Pokud Eva zašifrovanou zprávu c může číst, zřejmě její obsah nebude ihned zřetelný. Mohla by ale vyzkoušet všechny možnosti pro klíč k. Již jsme provedli úvahu o tom, že se s klíči můžeme omezit na $\{n \in \mathbb{N} \mid 0 \leq n < |\Sigma|\}$. Eva tedy může postupně vyzkoušet všechny tyto možnosti. Jedna z nich jistě bude správně dešifrovat c a Eva si m přečte.

Pokud by Alice například chtěla Bobovi poslat zprávu v anglickém jazyce, stačilo by Evě otestovat 26 možností, jelikož anglická abeceda má pouze 26

 $^{^7{\}rm Krajn\'i}$ případ, kdy m=cuznáme jako platný, ikdyž by zřejmě nebyl prakticky využitelný.

znaků. Kdyby Alice chtěla Bobovi poslat zprávu skládající se z libovolných znaků ASCII, stačilo by Evě otestovat 128 možností. Kdyby Alice například posílala tajný číselný kód (přirozené číslo), stačilo by Evě vyzkoušet 10 možností.

Obecně tedy k prolomení⁸ Caesarovy šifry stačí čas $O(|\Sigma|)$.⁹

K prolomení Caesarovy šifry lze také použít tzv. frekvenční analýzu, která umožňuje některé symboly odhadnout na základě jejich statistického výskytu v přirozeném jazyce.

Je vidět, že Caesarova šifra je pro malou množinu znaků velmi snadno prolomitelná a tím pádem pro praktické problémy nevyužitelná.

2 Vernamova šifra

Vernamova šifra (anglicky *one-time pad*) spočívá v posunu každého znaku zprávy o náhodně zvolený počet míst v abecedě. Oproti Caesarově šifře tedy nemusí být shodné symboly posunuty vždy o stejný počet míst.

Vernamova šifra \mathcal{E} je definována nad $(\{0,1,\ldots,|\Sigma|-1\}^L,\Sigma^L,\Sigma^L)$ pro zvolenou délku L. Klíč je tedy L-tice čísel, kde člen na pozici i určuje počet míst v abecedě, o které posuneme znak zprávy na pozici i.

Operace zašifrování a dešifrování jsou tedy definovány následovně: (Předpokládejme, že $m_i = a_r$ a $c_j = a_s$)

$$E(k_i, m_i) = a_l$$
, kde a $l = (r + k_i) \mod |\Sigma|$
 $D(k_j, c_j) = a_m$, kde $m = (s - k_j) \mod |\Sigma|$

Obdobně jako u Caesarovy šifry bude zašifrování celé zprávy probíhat tak, že podle klíče k zašifrujeme všechny znaky m jednotlivě na nové a jejich spojením vznikne zašifrovaná zpráva c.

Existuje i binární varianta Vernamovy šifry, ve které jsou odesílané zprávy pouze sekvence bitů. Binární je definována nad $(\{0,1\}^L,\{0,1\}^L,\{0,1\}^L)$. Fakt, že zprávy jsou sekvence bitů nás nijak neomezuje. Víme, že v praxi jsou všechny zprávy na nějaké úrovni reprezentovány sekvencí jedniček a nul.

 $^{^8}$ Intuitivně chápeme jako proces, díky kterému bude Eva schopna získat dešifrované zprávy.

⁹Tímto myslíme časovou složitost v nejhorším případě. Eva samozřejmě může v (pro ni) nejlepším případě klíč uhádnout hned na první pokus. Tomu samozřejmě nezabráníme žádnou šifrou. Můžeme pouze počtem klíčů snížit pravděpodobnost, že se to stane.

Operace šifry jsou pak definovány takto:

$$E(k,m) = k \oplus m$$
$$D(k,c) = k \oplus c$$

(symbol

značí operaci XOR aplikovanou po bitech)

Obě verze šifry zřejmě splňují podmínku korektnosti (u binární varianty si stačí uvědomit, že $x \oplus x = 0^L$ pro každé $x \in \{0, 1\}^L$).

2.1 Bezpečnost Vernamovy šifry

Pokud chceme zjistit, jak je Vernamova šifra bezpečná, zamysleme se nad tím, jak těžké ji bude prolomit. Eva by k získání původní zprávy m z c potřebovala zjistit klíč. Počet možných klíčů je počet binárních kódů délky L (těch je $|\Sigma|^L$).

K prolomení Vernamovy šifry je tedy potřeba čas $O(|\Sigma|^L)$. (Při použití binární varianty pro zprávu o velikosti 1 MB existuje $2^{8\times 10^6}$ možných klíčů.)

Platí také, že Vernamova šifra je odolná vůči frekvenční analýze, pokud pro zašifrování každé další zprávy vybereme náhodně nový klíč. Za předpokladu, že klíč k je vybrán dokonale náhodně, a že klíč není použit opakovaně, je Vernamova šifra tzv. $dokonale\ bezpečná$.

3 Bezpečnost v teorii a praxi

Je jasné, že pro zajištění bezpečnosti šifry je nutné, aby byl k vybrán z dostatečně velké množiny \mathcal{K} . Potom bude totiž pro Evu těžší zjistit použitý klíč k.

Klíč k musí být z množiny \mathcal{K} vybrán dokonale náhodně (pravděpodobnost výběru každého z klíčů musí být stejná). Pokud by tomu tak nebylo, Eva by přirozeně nejprve vyzkoušela nejvíce pravděpodobné klíče.

Je také nutné, aby c byla nezávislá na m a nijak s ní nesouvisela. Případná souvislost by Evě mohla zjednodušit získání m.

Dokonalé zabezpečení

Jako zlatý standard, nebo ideál bezpečnosti se uvádí takzvané dokonalé $zabezpečení.^{10}$

¹⁰V anglicky psané literatuře se nejčastěji používá pojem perfect security.

Definice 3.1 Dokonalé zabezpečení

Nechť $\mathcal{E} = (E, D)$ je šifra definovaná nad trojicí $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. Uvažujme pravděpodobnostní experiment, ve kterém je náhodná proměnná \mathbf{k} rovnoměrně rozdělena na \mathcal{K} . Pokud pro každé $m_0, m_1 \in \mathcal{M}$, a každé $c \in \mathcal{C}$ platí:

$$\Pr[E(\mathbf{k}, m_0) = c] = \Pr[E(\mathbf{k}, m_1) = c]$$

 $nazýváme~\mathcal{E}~dokonale~bezpečnou~šifrou.$

Za předpokladu, že \mathcal{E} je dokonale bezpečná a že každý klíč k má stejnou pravděpodobnost výběru z \mathcal{K} lze ukázat, že zpráva c = E(k, m) bude nezávislá na m, což jak víme, je žádoucí.

Věta 3.1 Vernamova šifra je dokonale bezpečná.

Když tedy máme šifru, která je dokonale bezpečná, k čemu potřebujeme šifry ostatní? Důvodem je praxe.

Prvním problémem je dokonale náhodný výběr klíče. Současné generátory nejsou dokonale náhodné, ale pouze pseudonáhodné. To nám ale pro potřeby bezpečnosti nestačí. (Eva by mohla využít pseudonáhodnosti k snazšímu uhádnutí klíče.)

Tím druhým je paměťová náročnost. Pokud by si Alice s Bobem chtěli například poslat zprávu m o velikosti 1 GB, museli by být předem domluveni na klíči k stejné velikosti. Museli by tedy mít k uložený někde v paměti. Vzhledem k tomu, že by pro každou zprávu Alice s Bobem potřebovali nový klíč, není nutnost takové velikosti vhodná.

Následující věta nám ukazuje, že pokud chceme dosáhnout dokonalé bezpečnosti, musíme volit klíče alespoň stejné velikosti, jako jsou jimi šifrované zprávy. Tedy nedokážeme najít "stejně bezpečnou" šifru, která by využívala klíče efektivněji než Vernamova šifra.

Věta 3.2 Shannonova

Nechť $\mathcal{E} = (E, D)$ je šifra definovaná nad $(K, \mathcal{M}, \mathcal{C})$. Je-li \mathcal{E} dokonale bezpečná, potom $|K| \geq |\mathcal{M}|$.

Díky předchozí větě můžeme snadno tvrdit, že Caesarova šifra není dokonale bezpečná.

Zejména kvůli těmto dvěma problémům se v praxi vzdáváme jisté míry bezpečnosti za cenu toho, že jsme schopni zprávy šifrovat efektivněji.

4 Modulární aritmetika

[obsah doplním následně po DH a RSA dle použitého obsahu, kterému tuto kapitolu přizpůsobím]

$$\mathbb{F}_p^* = \mathbb{Z}/p\mathbb{Z} \ (2 \le g \le p-2)$$

5 Diffieho-Hellmanova výměna klíčů

V úvodu k symetrickému šifrování jsme zmínili, že výměna (respektive domluva) tajného klíče k mezi Alicí a Bobem tak, aby jej nezískala Eva není jednoduchý úkol.

S pomocí některých znalostí, které jsme uvedli v sekci 4, zmíníme protokol, pomocí kterého to bude možné.

Jeho idea stojí na myšlence jednosměrných funkcí. Jednosměrná funkce F je taková funkce, že pro každý vstup x lze snadno spočítat F(x), ale z F(x) nelze snadno zjistit původní x. Jinými slovy, není snadné k funkci F najít inverzní funkci F^{-1} .

Celý protokol pak bude probíhat obecně takto:

- Alice náhodně vygeneruje svůj tajný klíč α a spočítá $H(\alpha)$. To stejné provede Bob se pro svůj tajný klíč β .
- Alice a Bob si přes síť vymění $H(\alpha)$ a $H(\beta)$.
- Alice i Bob si s pomocí svého tajného klíče a zašifrovaného klíče toho druhého vypočítají $C(\alpha, \beta)$.
- Alice a Bob v komunikaci použijí $k = C(\alpha, \beta)$ jako jejich společný tajný klíč.

Aby protokol fungoval korektně a efektivně, požadujeme následující:

- 1. Pro každý vstup x lze H(x) snadno spočítat.
- 2. Z α a $H(\beta)$ lze snadno spočítat $C(\alpha, \beta)$.

¹¹Jako praktický příklad se často uvádí smíchání dvou barev. Zřejmě lze dvě různé barvy snadno smíchat a zjistit barvu, která vznikne. Z výsledné barvy samotné ale zřejmě není jednoduché zjistit barvy, jejichž smícháním vznikla.

- 3. Z β a $H(\alpha)$ lze snadno spočítat $C(\alpha, \beta)$.
- 4. Z $H(\alpha)$ a $H(\beta)$ nelze snadno spočítat $C(\alpha, \beta)$.

Tyto podmínky implikují to, že H musí být jednosměrná funkce. Za splnění těchto podmínek platí, že Alice i Bob s pomocí protokolu efektivně získají stejný klíč k (to plyne přímo z podmínky 2 a 3).

Teď jen stačí nalézt vhodné funkce H a C tak, aby splňovaly podmínky. Zvolme:

$$H(x) = g^x$$

$$C(x, y) = (q^x)^y$$

(kde g je vhodně zvolený generátor)

Tyto funkce už zřejmě splňují podmínky 1–3. Ke splnění podmínky 4 musí platit to, že operace inverzní k H je obtížná. Zároveň, abychom předešli tomu, že vygenerovaný klíč bude příliš velký (což jak víme není vhodné), budeme pracovat s adekvátní konečnou algebraickou doménou. Nyní můžeme kompletně popsat algoritmus výměny klíče.

5.1 Protokol D-H

Alice a Bob se nejprve musí domluvit na velkém prvočísle p a generátoru g grupy \mathbb{F}_p^* . Nalezení generátoru g grupy není obecně jednoduchý úkol. Můžeme ale předpokládat, že je to parametr sdílený všemi uživateli v síti.

- 1. Alice pošle Bobovi velké prvočíslo p a generátor g. Domluvit se můžou i nezabezpečenou komunikací přes síť. Nevadí nám, že Eva p a g zachytí.
- 2. Alice náhodně vybere velké číslo $\alpha \in \mathbb{N}$, vypočítá $A = g^{\alpha} \mod p$ a A pošle po síti Bobovi.
- 3. Bob náhodně vybere velké číslo $\beta \in \mathbb{N}$, vypočítá $B = g^{\beta} \mod p$ a B pošle po síti Alici.
- 4. Alice vypočítá $k = B^{\alpha} \mod p$.
- 5. Bob vypočítá $k = A^{\beta} \mod p$.

Všimněme si, že $B^{\alpha} \equiv g^{\beta\alpha} \pmod{p}$ a $A^{\beta} \equiv g^{\alpha\beta} \pmod{p}$. Z vlastnosti násobení plyne, že $g^{\beta\alpha} = g^{\alpha\beta}$. Z těchto vlastností vyplývá, že Alice a Bob nezávisle na sobě získají stejný klíč k.

5.2 Bezpečnost D-H výměny klíčů

Celou komunikaci na síti poslouchá Eva. Z návrhu našeho protokolu víme, že Eva zachytila p, g, A (tedy g^{α}) a B (tedy g^{β}). Jestliže chce Eva šifrované zprávy dešifrovat, musí získat k. Musí tedy zjistit $g^{\alpha\beta}$ z g, g^{α}, g^{β} (aniž by znala $\alpha nebo\beta$). Tomuto problému budeme říkat Diffieho-Hellmanův problém (zkráceně DHP).

Platí, že Eva je schopna vyřešit DHP, pokud umí vyřešit tzv. problém diskrétního logaritmu. Ikdyž opačná implikace zatím nebyla dokázána, panuje shoda, že oba zmíněné problémy jsou ekvivalentní.

Bezpečnost D-H výměny klíčů se tedy výrazně opírá o složitost řešení problém diskrétního logaritmu. Tomu, za jakých podmínek považujeme problém diskrétního logaritmu jako dostatečně bezpečný pro naše potřeby, se budeme věnovat v kapitole 6

V kapitole I jsme uvedli, že Eva umí komunikaci proudící po síti pouze číst. Eva tedy nemůže zprávy posílat, mazat, ani modifikovat. Pokud se v síti nachází protivník, který takové schopnosti má, stává se námi uvedený protokol snadno napadnutelným. Protivníka, který bude mít schopnost posílat, mazat a modifikovat zprávy v síti, nazveme Mallory. 12

Ukažme si, jak by Mallory mohl komunikaci mezi Alicí a Bobem napadnout:

[todo posloupnost]

1. Alice pošle Mallorymu klíč

6 Problém diskrétního logaritmu

Part III

Asymetrické šifrování

 $^{^{12}}$ Jméno Mallory (z angl. $malicious\ attacker$) se nejčastěji používá jako označení útočníka, který je (oproti Evě) aktivní.