Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d'opérateur adjoint

*

18 mars 2008

1 Généralités sur les opérateurs

1.1 Définitions

Soient H et H' deux espaces de Hilbert sur \mathbb{C} .

Définition 1.1: Toute application linéaire continue $T: H \to H'$ s'appelle un opérateur. L'espace vectoriel $\mathcal{L}(H, H')$ des applications linéaires continues de H dans H' est l'espace des opérateurs de H dans H'.

Notations: 1) Pour alléger les écritures, l'image d'un vecteur $x \in H$ par l'opérateur $T \in \mathcal{L}(H, H')$ sera généralement notée Tx mais la notation traditionnelle T(x) sera parfois utilisée également.

2) La norme de T est le nombre

(1)
$$|||T||| = \sup_{||x||_{H} \le 1} ||Tx||_{H'};$$

c'est la norme usuelle assujettie aux normes de H et H'.

- 3) On notera KerT le noyau de l'opérateur T i.e. $KerT = \{x \in H; Tx = 0\}$.
- 4) ImT désignera le sous-espace de H' image de H par T. On le notera aussi T(H).

Remarque: KerT (resp. ImT) est un sous-espace vectoriel de H (resp. de H'). On notera que KerT est toujours un sous-espace fermé de H mais ImT n'est pas forcément fermé¹ dans H' (des exemples seront vus en TD).

1.2 Composé de plusieurs opérateurs

Soient H, H' et H'' des espaces de Hilbert et $T_1 \in \mathcal{L}(H, H')$ et $T_2 \in \mathcal{L}(H', H'')$ des opérateurs. Considèrons l'opérateur composé $T_2 \circ T_1 \in \mathcal{L}(H, H'')$.

Proposition 1.2: On a $|||T_2 \circ T_1||| \le |||T_2|||.|||T_1|||$.

^{*}Notes du cours sur les espaces de Hilbert de M. L. Gallardo, Licence 3-ième année, Université de Tours, année 2007-2008. Les démonstrations sont données dans le cours oral.

¹ceci ne peut arriver que si $dimH' = +\infty$ car si $dimH' < +\infty$ tous ses sous-espaces sont fermés.

Remarque : Dans le résultat précédent les normes d'opérateur sont toujours celles définies en (1) c'est-à-dire les normes assujetties aux normes des espaces de Hilbert concernés par les opérateurs.

Application : Soit $U \in \mathcal{L}(H, H)$ un opérateur de l'espace de Hilbert H dans lui même. On définit les puissances de l'opérateur U comme étant les opérateurs de H dans H définis de la manière suivante :

 $U^0=I(\text{l'opérateur identité}),\ U^1=U,\ U^2=U\circ U,\dots,\ U^n=U\circ U^{n-1}=U^{n-1}\circ U\ (n\geq 1).$

Corollaire 1.3 : $\forall n \in \mathbb{N}, |||U^n||| \le |||U|||^n$.

Corollaire 1.4 : La série $\sum_{n=0}^{+\infty} \frac{1}{n!} U^n$ converge dans $\mathcal{L}(H,H)$. Sa somme est un opérateur de H dans H appelé exponentielle de l'opérateur U et noté e^U ou $\exp U$. Sa norme vérifie :

(2)
$$||| \exp U ||| \le \exp (|||U|||).$$

1.3 Inverse d'un opérateur

Soient H et H' des espaces de Hilbert et $A \in \mathcal{L}(H, H')$ un opérateur.

Définition 1.5 : On dit que A est inversible s'il existe $B \in \mathcal{L}(H', H)$ tel que

(3)
$$A \circ B = I_{H'}, \quad et \quad B \circ A = I_H,$$

où I_H (resp. $I_{H'}$) est l'opérateur identité de H (resp. de H'). Un tel opérateur B (lorsqu'il existe) est unique. On l'appelle opérateur inverse de A ou plus simplement inverse de A et on le note $B:=A^{-1}$.

Cas particulier où H=H': Soit $T\in\mathcal{L}(H,H)$. Dans le cas où H est de dimension finie, on sait que l'inversibilité de T a plusieurs aspects équivalents. Plus précisément, rappelons l'important résultat suivant²:

Théorème 1.6 : $Si \dim H < +\infty$, les propriétés suivantes sont équivalentes :

- 1) T est inversible.
- 2) T est injectif.
- 3) T est surjectif.
- 4) T admet un inverse à droite (i.e. il existe $U \in \mathcal{L}(H, H)$ tel que $T \circ U = I_H$).
- 5) T admet un inverse à gauche (i.e. il existe $V \in \mathcal{L}(H, H)$ tel que $V \circ T = I_H$).

Remarque et contre-exemple : Attention si dim $H=+\infty$, les propriétés équivalentes du théorème précédent ne sont plus vraies :

Soit $H = \ell^2$, l'espace des suites de nombres complexes de carré sommable, muni de sa norme $||x||_2 = \left(\sum_{n=1}^{+\infty} |x|^2\right)^{1/2} (x = (x_n)_{n\geq 1})$. Considérons l'application $S: \ell^2 \to \ell^2$ définie pour tout $x = (x_n)_{n\geq 1}$, par $Sx = y = (y_n)_{n\geq 1}$ où

(4)
$$y_1 = 0 \ y_2 = x_1, \dots, y_n = x_{n+1}, \dots (n \ge 1).$$

Autrement dit Sx est la suite qui commence par 0 et qui ensuite est composée des mêmes termes que la suite x mais décalés d'un rang. L'application S est linéaire de ℓ^2 dans lui même et c'est une isométrie puisque $||Sx||_2 = ||x||_2$.

²voir les cours de L1 et L2.

Donc $S \in \mathcal{L}(\ell^2, \ell^2)$. On appelle S l'opérateur de décalage³ dans ℓ^2 . On voit alors facilement que :

- 1) S est injective (car isométrique),
- 2) S n'est pas surjective.
- 3) S admet un inverse à gauche $T: x = (x_n)_{n\geq 1} \mapsto Tx = (x_{n+1})_{n\geq 1}$ (c'est l'opérateur qui «efface» la première coordonnée donc on a clairement $T \circ S = I_{\ell^2}$).
- 4) L'opérateur T n'est pas inverse à droite de l'opérateur S.

Le seul résultat simple valable quelle que soit la dimension de H est le suivant :

Théorème 1.7: $SiT \in \mathcal{L}(H,H)$ est tel que |||T||| < 1, alors la série $\sum_{n=0}^{+\infty} T^n$ est convergente dans $\mathcal{L}(H,H)$, l'opérateur I-T est inversible et

(5)
$$(I-T)^{-1} = \sum_{n=0}^{+\infty} T^n.$$

Remarque 1: Le résultat précédent est vrai aussi si H est remplacé par un espace de Banach quelconque.

Remarque 2 : Il convient de savoir utiliser le résultat du théorème sous la forme suivante : Si $T \in \mathcal{L}(H, H)$ est tel que ||I - T||| < 1, alors T est inversible et on a $T^{-1} = \sum_{n=0}^{+\infty} (I - T)^n$.

1.4 Adjoint d'un opérateur

Soient H et H' des espaces de Hilbert. On va généraliser la notion d'adjoint d'une application linéaire de \mathbb{C}^d dans lui même, qu'on étudie généralement en L2.

Théorème 1.8 : Soit $T \in \mathcal{L}(H, H')$. Alors il existe un unique opérateur $T^* \in \mathcal{L}(H', H)$ tel que

(6)
$$\forall x \in H, \ \forall y \in H', \ < Tx, y >_{H'} = < x, T^*y >_H.$$

L'opérateur T^* s'appelle l'adjoint de T.

Définition 1.9 : $Si\ T \in \mathcal{L}(H,H)$ est tel que $T=T^*$, on dit que l'opérateur T est autoadjoint (ou hermitien).

Théorème 1.10 (Propriétés de l'adjoint) :

1) Pour tout $A \in \mathcal{L}(H, H')$, on a

(7)
$$(A^*)^* = A \quad et \quad |||A^*||| = |||A|||.$$

2) Si $A \in \mathcal{L}(H, H')$ et $B \in \mathcal{L}(H', H)$, alors

$$(8) (B \circ A)^* = A^* \circ B^*.$$

4) Pour tout $A_1, A_2 \in \mathcal{L}(H, H')$ et tout $\lambda, \mu \in \mathbb{C}$, on a

(9)
$$(\lambda A_1 + \mu A_2)^* = \bar{\lambda} A_1^* + \bar{\mu} A_2^*.$$

³ou «shift» en anglais.

1.4.1 Exemples d'opérateurs adjoint

Exemple 1: Soit $H = L^2([a,b])$ (a < b) l'espace des classes de fonctions x: $[a,b] \to \mathbb{C}$ de carré sommable avec le produit scalaire $< x,y >= \int_a^b x(t)\overline{y(t)}dt$ et soit $f:[a,b] \to \mathbb{C}$ une fonction continue fixée. L'application T qui à la fonction $x \in H$ fait correspondre la fonction Tx définie sur [a,b] par

$$(Tx)(t) = f(t)x(t)$$

est un opérateur $T \in \mathcal{L}(H, H)$ appelé opérateur de multiplication par f. L'opérateur $T^* \in \mathcal{L}(H, H)$ est alors l'opérateur de multiplication par la fonction \bar{f} .

Exemple 2: Soit $k:[c,d] \times [a,b] \to \mathbb{C}$ (c < d, a < b) une fonction continue de deux variables réelles. On considère l'application $K: L^2([a,b]) \to L^2([c,d])$ telle que pour tout $x \in L^2([a,b])$, Kx est la fonction définie par

(10)
$$\forall t \in [c, d], \quad (Kx)(t) = \int_a^b k(t, s) x(s) ds.$$

K est un opérateur de $L^2([a,b])$ dans $L^2([c,d])$ qu'on appelle opérateur intégral de noyau k(t,s). On abrège souvent en disant que K est un opérateur à noyau (égal à k).

L'opérateur adjoint K^* est aussi un opérateur à noyau. C'est l'opérateur intégral de $L^2([c,d])$ dans $L^2([a,b])$ dont le noyau est la fonction $(s,t) \mapsto \overline{k(s,t)}$ de $[a,b] \times [c,d]$ dans $\mathbb C$ (attention les intervalles sont maintenant dans l'ordre inverse!) i.e. pour tout $y \in L^2([c,d])$, $K^*y \in L^2([a,b])$ est la fonction définie par

(11)
$$\forall s \in [a, b], \quad (K^*y)(s) = \int_a^d \overline{k(s, t)} y(t) dt.$$

Dans le cas particulier où [a,b] = [c,d], l'opérateur $K: L^2([a,b]) \to L^2([a,b])$ est autoadjoint si le noyau k satisfait la condition de symétrie hermitienne

(12)
$$\forall (s,t) \in [a,b]^2, \ k(s,t) = \overline{k(t,s)}.$$

1.4.2 Vecteurs propres et valeurs propres d'un opérateur autoadjoint

Les opérateurs autoadjoints ont des propriétés particulièrement importantes que nous allons maintenant examiner. Soit H un espace de Hilbert et $T \in \mathcal{L}(H, H)$ un opérateur.

Théorème 1.11 (Norme d'un opérateur autoadjoint) : Si T est autoadjoint (i.e. $T = T^*$), alors

(13)
$$|||T||| = \sup_{||x||=1} | \langle Tx, x \rangle |$$

Définition 1.12 (Rappel): On dit qu'un nombre $\lambda \in \mathbb{C}$ est une valeur propre de T s'il existe un vecteur $x \in H$, $x \neq 0$, tel que $Tx = \lambda x$. Un tel vecteur x est alors appelé vecteur propre associé à la valeur propre λ .

Remarque : Soit λ une valeur propre de T. Alors l'ensemble V_{λ} de tous⁴ les vecteurs $x \in H$ tels que $Tx = \lambda x$ est un sous-espace **fermé** (exercice) de H. On l'appelle le sous-espace propre associé à la valeur propre λ .

Théorème 1.13 Si T est autoadjoint, les valeurs propres de T sont réelles et les vecteurs propres correspondant à des valeurs propres distinctes sont deux à deux orthogonaux⁵.

Dans le cas de la dimension finie, on déduit le résultat bien connu suivant

Corollaire 1.14 : $Si \dim H < +\infty$ et $si T \in \mathcal{L}(H, H)$ est autoadjoint, alors T est diagonalisable

Pour la démonstration on a besoin du lemme suivant que nous signalons car il est très utile en général :

Lemme 1.15 : Soit $T \in \mathcal{L}(H, H)$ un opérateur et soit V un sous-espace vectoriel fermé de H invariant par T (i.e. $\forall x \in V, Tx \in V$). Alors le sous-espace V^{\perp} est invariant par l'adjoint T^* .

1.4.3 Matrice d'un opérateur dans une base hilbertienne

Soit H un espace de Hilbert séparable et $(e_n)_{n\in\mathbb{N}^*}$ une base hilbertienne de H. Soit T un opérateur de H dans lui même. Pour tout $j\geq 1$, on peut écrire

(14)
$$Te_{j} = \sum_{i=1}^{+\infty} \langle Te_{j}, e_{i} \rangle e_{i}.$$

Nous allons voir que les coefficients $a_{ij} := \langle Te_j, e_i \rangle ((i,j) \in \mathbb{N}^* \times \mathbb{N}^*)$ déterminent entièrement l'opérateur T:

Pour tout $x \in H$, posons $x_j = \langle x, e_j \rangle$, on a alors $x = \sum_{j=1}^{+\infty} x_j e_j$ et

(15)
$$Tx = \sum_{j=1}^{+\infty} x_j Te_j,$$

car l'opérateur T est continu. D'autre part, la décomposition de Tx sur la base hilbertienne (e_n) donne

(16)
$$Tx = \sum_{i=1}^{+\infty} \langle Tx, e_i \rangle e_i.$$

Mais d'après (15) et grâce à la continuité du produit scalaire, on a

(17)
$$\langle Tx, e_i \rangle = \sum_{j=1}^{+\infty} x_j \langle Te_j, e_i \rangle = \sum_{j=1}^{+\infty} x_j a_{ij}.$$

D'après (16), on a donc

(18)
$$Tx = \sum_{i=1}^{+\infty} \left(\sum_{j=1}^{+\infty} a_{ij} x_j\right) e_i.$$

⁴incluant le vecteur 0 (qui n'est pas un vecteur propre par définition).

⁵Autrement dit les sous-espaces propres V_{λ_1} et V_{λ_2} correspondant à des valeurs propres $\lambda_1 \neq \lambda_2$, sont orthogonaux.

La formule (17) montre alors que le *i*-ième coefficient (de Fourier) de Tx sur la base hilbertienne (e_n) , s'obtient comme en dimension finie en faisant le «produit» de la *i*-ième ligne de la matrice (a_{ij}) par la colonne des coefficients de Fourier de x.

Définition 1.16 : La matrice $A = (a_{ij})_{(i,j) \in \mathbb{N}^* \times \mathbb{N}^*}$ à une infinité de lignes et de colonnes, est appelée matrice de l'opérateur T dans la base hilbertienne (e_n) .

On notera que puisque $a_{ij} := \langle Te_j, e_i \rangle$, la *j*-ième colonne de la matrice A est constituée des coefficients du vecteur Te_j comme en dimension finie.

Remarque : Nous ne développerons pas le calcul matriciel en dimension infinie car il présente certaines difficultés techniques liées essentiellement à des problèmes de convergence de séries.

Exercice : Si $A = (a_{ij})_{(i,j) \in \mathbb{N}^* \times \mathbb{N}^*}$ est la matrice d'un opérateur T dans une base hilbertienne de H, quelle est la matrice de l'opérateur adjoint T^* ?