MOST ESSENTIAL LEARNING COMPETENCIES (MELC)

GRADE LEVEL : GRADE 12 SUBJECT: GENERAL PHYSICS 1

Quarter	Content Standard	Performance Standard			
			Most Essential Learning Competencies	Duration	Code
	The learners demonstrate	The learners should be able			
	understanding of	to			
1st	1. The effect of instruments	Solve, using experimental	Solve measurement problems involving	Week 1	STEM_GP12EU-la-1
	on	and theoretical	conversion of units, expression of		
	measurements	approaches, multi-	measurements in scientific notation		
	2. Uncertainties and	concept, rich-content	Differentiate accuracy from precision	Week 1	STEM_GP12EU-la-2
	deviations in measurement	problems involving			
	3. Sources and types of	measurement, vectors,	Differentiate random errors from systematic	Week 1	STEM_GP12EU-la-3
	error	motion in 1D and 2D,	errors		
		Newton's Laws, Work,	Estimate errors from multiple measurements of	Week 1	STEM_GP12EU-la-5
		Energy, Center of Mass,	a physical quantity using variance		
	Vectors and vector	momentum, impulse and	Differentiate vector and scalar quantities	Week 1	STEM_GP12V-la-8
	addition	collisions	Perform addition of vectors	Week 1	STEM_GP12V-la-9
			Rewrite a vector in component form	Week 1	STEM_GP12V-la-10
	1. Position, time,		Convert a verbal description of a physical	Week 2	STEM_GP12Kin-lb-12
	distance, displacement,		situation involving uniform acceleration in one		
	speed, average velocity,		dimension into a mathematical description		
	instantaneous velocity		Interpret displacement and velocity,	Week 2	STEM_GP12KIN- Ib-14
	2. Average acceleration,		respectively, as areas under velocity vs. time		
	and instantaneous acceleration		and acceleration vs. time curves		

3. Uniformly accelerated	Interpret velocity and acceleration, respectively,	Week 2	STEM_GP12KIN-
linear motion	as slopes of position vs. time and velocity vs.		lb-15
3. Free-fall motion	time curves		
4. 1D Uniform Acceleration	Construct velocity vs. time and acceleration vs.	Week 2	STEM_GP12KIN-
Problems	time graphs, respectively, corresponding to a given position vs. time-graph and velocity vs. time graph and vice versa		lb-16
	Solve for unknown quantities in equations involving one-dimensional uniformly accelerated motion, including free fall motion	Week 2	STEM_GP12KIN- Ib-17
	Solve problems involving one-dimensional motion with constant acceleration in contexts such as, but not limited to, the "tail-gating phenomenon", pursuit, rocket launch, and freefall problems	Week 2	STEM_GP12KIN- Ib-19
Relative motion 1. Position, distance, displacement, speed,	Describe motion using the concept of relative velocities in 1D and 2D	Week 3	STEM_GP12KIN-Ic- 20
average velocity, instantaneous velocity, average acceleration, and	Deduce the consequences of the independence of vertical and horizontal components of projectile motion	Week 3	STEM_GP12KIN-Ic- 22
instantaneous acceleration in 2- and 3- dimensions	Calculate range, time of flight, and maximum heights of projectiles	Week 3	STEM_GP12KIN-Ic- 23
2. Projectile Motion3. Circular Motion	Infer quantities associated with circular motion such as tangential velocity, centripetal acceleration, tangential acceleration, radius of curvature	Week 3	STEM_GP12KIN-Ic- 25
	Solve problems involving two dimensional motion in contexts such as, but not limited to ledge jumping, movie stunts, basketball, safe locations during firework displays, and Ferris wheels	Week 3	STEM_GP12KIN-Ic- 26
1. Newton's Law's of Motion	Define inertial frames of reference	Week 4	STEM_GP12N-Id- 28

2. Inertial Reference Frames	Identify action-reaction pairs	Week 4	STEM_GP12N-ld-
3. Action at a distance forces	Draw free-body diagrams	Week 4	STEM_GP12N-Id- 32
4. Types of contact forces: tension, normal force, kinetic and static friction, fluid resistance	Apply Newton's 1st law to obtain quantitative and qualitative conclusions about the contact and noncontact forces acting on a body in equilibrium	Week 4	STEM_GP12N-le- 33
5. Action-Reaction Pairs6. Free-Body Diagrams	· · · · · · · · · · · · · · · · · · ·	Week 4	STEM_GP12N-le- 34
7. Applications of Newton's Laws to single-body and multibody dynamics 8. Problem solving using Newton's Laws	Apply Newton's 2nd law and kinematics to obtain quantitative and qualitative conclusions about the velocity and acceleration of one or more bodies, and the contact and noncontact forces acting on one or more bodies	Week 5	STEM_GP12N-le- 36
		Week 5	STEM_GP12N-le- 38
 Dot or Scalar Product Work done by a force 	Calculate the dot or scalar product of vectors	Week 5	STEM_GP12WE-If- 40
Work-energy relation Kinetic energy	Determine the work done by a force acting on a system	Week 5	STEM_GP12WE-If- 41
5. Power 6. Conservative and	•	Week 6	STEM_GP12WE-If- 42
nonconservative forces 7. Gravitational potential energy	Interpret the work done by a force in one- dimension as an area under a Force vs. Position curve	Week 6	STEM_GP12WE-If- 43
8. Elastic potential energy 9. Equilibria and potential energy diagrams		Week 6	STEM_GP12WE-lg- 48
10. Energy Conservation, Work, and Power Problems	Relate the elastic potential energy of a system or object to the configuration of the system	Week 6	STEM_GP12WE-Ig- 49

		Explain the properties and the effects of conservative forces	Week 6	STEM_GP12WE-Ig- 50
		Use potential energy diagrams to infer force; stable, unstable, and neutral equilibria; and turning points	Week 7	STEM_GP12WE-Ig- 53
		Solve problems involving work, energy, and power in contexts such as, but not limited to, bungee jumping, design of roller-coasters, number of people required to build structures such as the Great Pyramids and the rice terraces; power and energy requirements of human activities such as sleeping vs. sitting vs. standing, running vs. walking.	Week 7	STEM_GP12WE-Ih- i- 55
	 Center of mass Momentum 	Differentiate center of mass and geometric center	Week 7	STEM_GP12WE-Ih- i- 56
	Impulse Impulse-momentum relation	Relate the motion of center of mass of a system to the momentum and net external force acting on the system	Week 7	STEM_GP12MMIC- Ih- 57
	5. Law of conservation of momentum	Relate the momentum, impulse, force, and time of contact in a system	Week 8	STEM_GP12MMIC- Ih- 58
	6. Collisions 7. Center of Mass, Impulse,	Compare and contrast elastic and inelastic collisions	Week 8	STEM_GP12MMIC- li- 60
	Momentum, and Collision Problems	Apply the concept of restitution coefficient in collisions	Week 8	STEM_GP12MMIC- li- 61
		Solve problems involving center of mass, impulse, and momentum in contexts such as, but not limited to, rocket motion, vehicle collisions, and ping-pong.	Week 8	STEM_GP12MMIC- li- 63
2nd	Moment of inertia Angular position, angular	Calculate the moment of inertia about a given axis of single-object and multiple-object systems	Week 1	STEM_GP12RED- IIa-1
	velocity, angular acceleration 3. Torque	Calculate magnitude and direction of torque using the definition of torque as a cross product	Week 1	STEM_GP12RED- Ila-3
	4. Static equilibrium5. Rotational kinematics	Describe rotational quantities using vectors	Week 1	STEM_GP12RED- Ila-4

6. Work done by a torque	Determine whether a system is in static equilibrium or not	Week 1	STEM_GP12RED- IIa-5
	Apply the rotational kinematic relations for systems with constant angular accelerations	Week 1	STEM_GP12RED- Ila-6
	Determine angular momentum of different systems	Week 1	STEM_GP12RED- IIa-9
	Apply the torque-angular momentum relation	Week 1	STEM_GP12RED- IIa- 10
	Solve static equilibrium problems in contexts but not limited to see-saws, cable-hinge-strut-system, leaning ladders, and weighing a heavy	Week 1	STEM_GP12RED- IIa-8
	suitcase using a small bathroom scale		
Newton's Law of Universal Gravitation Gravitational field Gravitational potential	Use Newton's law of gravitation to infer gravitational force, weight, and acceleration due to gravity	Week 2	STEM_GP12G-IIb- 16
energy 4. Orbits	Discuss the physical significance of gravitational field	Week 2	STEM_GP12Red- IIb- 18
5. Kepler's laws of planetary motion	Apply the concept of gravitational potential energy in physics problems	Week 2	STEM_GP12Red- IIb- 19
	Calculate quantities related to planetary or satellite motion	Week 2	STEM_GP12Red- IIb- 20
	For circular orbits, relate Kepler's third law of planetary motion to Newton's law of gravitation and centripetal acceleration	Week 3	STEM_GP12G-IIc- 22
 Periodic Motion Simple harmonic motion: spring-mass system, simple 	Relate the amplitude, frequency, angular frequency, period, displacement, velocity, and acceleration of oscillating systems	Week 3	STEM_GP12PM- IIc-24
pendulum 3. Damped and Driven	Recognize the necessary conditions for an object to undergo simple harmonic motion	Week 3	STEM_GP12PM- IIc-25
oscillation 4. Periodic Motion	Calculate the period and the frequency of spring mass, simple pendulum, and physical pendulum	Week 3	STEM_GP12PM- IIc-27
experiment 5. Mechanical waves	Differentiate underdamped, overdamped, and critically damped motion	Week 4	STEM_GP12PM- IId-28

	Define mechanical wave, longitudinal wave, transverse wave, periodic wave, and sinusoidal wave	Week 4	STEM_GP12PM- IId-31
	From a given sinusoidal wave function infer the speed, wavelength, frequency, period, direction, and wave number	Week 4	STEM_GP12PM- IId-32
1. Sound2. Wave Intensity3. Interference and beats	Apply the inverse-square relation between the intensity of waves and the distance from the source	Week 4	STEM_GP12MWS- IIe- 34
4. Standing waves 5. Doppler effect	Describe qualitatively and quantitatively the superposition of waves	Week 5	STEM_GP12MWS- IIe- 35
	Apply the condition for standing waves on a string	Week 5	STEM_GP12MWS- IIe- 36
	Relate the frequency (source dependent) and wavelength of sound with the motion of the source and the listener	Week 5	TEM_GP12MWS- IIe- 37
 Specific gravity Pressure 	Relate density, specific gravity, mass, and volume to each other	Week 5	STEM_GP12FM-IIf- 40
3. Pressure vs. Depth Relation	Relate pressure to area and force	Week 6	STEM_GP12FM-IIf- 41
4. Pascal's principle5. Buoyancy and	Relate pressure to fluid density and depth	Week 6	STEM_GP12FM-IIf- 42
Archimedes' Principle 6. Bernoulli's principle	Apply Pascal's principle in analyzing fluids in various systems	Week 6	STEM_GP12FM-IIf- 43
	Apply the concept of buoyancy and Archimedes' principle	Week 6	STEM_GP12FM-IIf- 44
	Apply Bernoulli's principle and continuity equation, whenever appropriate, to infer relations involving pressure, elevation, speed, and flux	Week 7	STEM_GP12FM-IIf- 46
Zeroth law of thermodynamics and Temperature measurement	Explain the connection between the Zeroth Law of Thermodynamics, temperature, thermal equilibrium, and temperature scales	Week 7	STEM_GP12TH-IIg- 49

Thermal expansion Heat and heat capacity	Convert temperatures and temperature differences in the following scales: Fahrenheit, Celsius, Kelvin	Week 7	STEM_GP12TH-IIg- 50
	Define coefficient of thermal expansion and coefficient of volume expansion	Week 7	STEM_GP12TH-IIg- 51
	Calculate volume or length changes of solids due to changes in temperature	Week 7	STEM_GP12TH-IIg- 52
	Solve problems involving temperature, thermal expansion, heat capacity, heat transfer, and thermal equilibrium in contexts such as, but not limited to, the design of bridges and train rails using steel, relative severity of steam burns and water burns, thermal insulation, sizes of stars, and surface temperatures of planets	Week 7	STEM_GP12TH-IIg- 53
I. Ideal gas law Internal energy of an	Enumerate the properties of an ideal gas	Week 8	STEM_GP12GLT- IIh- 57
ideal gas 3. Heat capacity of an ideal gas	Solve problems involving ideal gas equations in contexts such as, but not limited to, the design of metal containers for compressed gases	Week 8	STEM_GP12GLT- IIh- 58
4. Thermodynamic systems	Interpret PV diagrams of a thermodynamic process	Week 8	STEM_GP12GLT- IIh- 60
5. Work done during volume changes	Compute the work done by a gas using dW=PdV	Week 8	STEM_GP12GLT- IIh- 61
6. 1st law of thermodynamics 7. Thermodynamic	State the relationship between changes internal energy, work done, and thermal energy supplied through the First Law of Thermodynamics	Week 8	STEM_GP12GLT- IIh- 62
processes: adiabatic, isothermal, isobaric, isochoric 8. Heat engines	Differentiate the following thermodynamic processes and show them on a PV diagram: isochoric, isobaric, isothermal, adiabatic, and cyclic	Week 8	STEM_GP12GLT- IIh- 63
9. Engine cycles 10. Entropy	Calculate the efficiency of a heat engine	Week 8	STEM_GP12GLT- IIi-67
11. 2nd law of Thermodynamics	Describe reversible and irreversible processes	Week 8	STEM_GP12GLT- IIi-68

12. Reversible and irreversible processes	Explain how entropy is a measure of disorder	Week 8	STEM_GP12GLT- IIi-69
	State the 2nd Law of Thermodynamics	Week 8	STEM_GP12GLT- IIi-70
	Calculate entropy changes for various processes e.g., isothermal process, free expansion, constant pressure process, etc.	Week 8	STEM_GP12GLT- IIi-71