Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Кафедра прикладной математики и информатики

Математическая статистика

Отчет по лабораторной работе №3

Выполнил студент гр. 5030102/20202

Тишковец С.Е.

Преподаватель

Баженов А.Н.

Санкт-Петербург

2025

Оглавление

1.	Постановка задачи	3
2.	Теоретическая информация	3
2.1.	. Двумерное нормальное распределение	3
2.2.	. Корреляционный момент и коэффициент корреляциц	3
2.3.	Выборочный коэффициент корреляции Пирсона	4
2.4.	Выборочный квадрантный коэффициент корреляции	4
2.5.	. Выборочный коэффициент ранговой корреляции Спирмена	4
2.6.	Эллипсы рассеивания	4
3.	Результаты исследования	5
3.1.	. Графики	5
3 2	Таблины	9

1. Постановка задачи

- 2. Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.
- 3. Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x, y) = 0.9N(x, y, 0, 0, 1, 1, 0.9) + 0.1N(x, y, 0, 0, 1, 1, -0.9).$$

4. Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

2. Теоретическая информация

2.1. Двумерное нормальное распределение

Двумерная случайная величина (X, Y) называется распределенной нормально (или просто нормальной), если ее плотность вероятности определена формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \\ \times ex \, p\left(-\frac{1}{2(1-p^2)} \left[\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} \right] \right)$$

Компоненты X, Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями \overline{x} , \overline{y} и средними квадратическими отклонениями σ_x , σ_v соответственно.

Параметр ρ называется коэффициентом корреляции.

2.2. Корреляционный момент и коэффициент корреляциц

Корреляционный момент (ковариация) двух случайных величин X, Y:

$$K = cov(X, Y) = M[(X - \overline{x})(Y - \overline{y})]$$

Коэффициент корреляции ρ двух случайных величин X, Y:

$$\rho = \frac{K}{\sigma_x \sigma_y}$$

2.3. Выборочный коэффициент корреляции Пирсона

$$r = \frac{\frac{1}{n}\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n^2}\sum(x_i - \bar{x})^2(y_i - \bar{y})^2}} = \frac{K}{s_X s_Y}$$

K, ${s_X}^2$, ${s_Y}^2$ —выборочные ковариация и дисперсии случайных величин X, Y.

2.4. Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n}$$

где n_1, n_2, n_3 и n_4 — количества точке с координатами (x_i, y_i) , попавшими соответственно в I, II, III и IV квадранты декартовой системы с о сями x'=x-medx, y'=y-medy.

2.5. Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, — через v.

$$r_{S} = \frac{\frac{1}{n} \sum (u_{i} - \bar{u})(v_{i} - \bar{v})}{\sqrt{\frac{1}{n^{2}} \sum (u_{i} - \bar{u})^{2} (v_{i} - \bar{v})^{2}}}$$

где $\bar{u}=\bar{v}=\frac{1+2+\cdots+n}{n}=\frac{n+1}{2}$ — среднее значение рангов.

2.6. Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость хОу:

$$\frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x \sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2} = const$$

Центр эллипса находится в точке с координатами (\bar{x}, \bar{y}) . Оси симметрии эллипса составляют с осью Ох углы, определяемые уравнением

$$\tan 2\alpha = \frac{2\rho\sigma_x\sigma_y}{{\sigma_x}^2 - {\sigma_y}^2}$$

3. Результаты исследования

3.1. Графики

Нормальное распределение с параметрами n=20, ρ =0.0

Нормальное распределение с параметрами n=20, ρ =0.5

Нормальное распределение с параметрами n=20, ρ =0.9

Нормальное распределение с параметрами n=60, ρ =0.0

Нормальное распределение с параметрами n=60, ρ =0.5

Нормальное распределение с параметрами n=60, ρ =0.9

Нормальное распределение с параметрами n=100, ρ =0.0

Нормальное распределение с параметрами n=100, ρ =0.5

Нормальное распределение с параметрами n=100, ρ =0.9

Смесь нормальных распределений, n=20

Смесь нормальных распределений, n=60

Смесь нормальных распределений, n=100

3.2. Таблицы

	r	r_{S}	r_Q	
	ρ	= 0	•	
E(z)	-0.0006	-0.0028	0.0022	
$E(z^2)$	0.0236	0.0335	0.0507	
D(z)	0.0537	0.0529	0.0601	
	ho =	0.5		
E(z)	0.4937	0.4662	0.3711	
$E(z^2)$	0.2733	0.2495	0.1528	
D(z)	0.0296	0.0332	0.0459	
ho=0.9				
E(z)	0.8931	0.8642	0.7001	
$E(z^2)$	0.8002	0.7516	0.5182	
D(z)	0.0028	0.0051	0.0283	

Таблица характеристик распределения для n = 20

	r	r_{S}	r_Q		
	ρ	= 0	-		
E(z)	0.0048	-0.0059	0.0018		
$E(z^2)$	0.0159	0.0161	0.0162		
D(z)	0.0292	0.0265	0.0234		
	ho=0.5				
E(z)	0.4992	0.4759	0.3329		
$E(z^2)$	0.2589	0.2381	0.1361		
D(z)	0.0099	0.0115	0.0261		
ho=0.9					
E(z)	0.9031	0.8852	0.7121		
$E(\mathbf{z}^2)$	0.8102	0.7816	0.5158		
D(z)	0.0008	0.0011	0.0093		

Таблица характеристик распределения для n = 60

	r	r_s	r_Q	
	ρ	= 0		
E(z)	0.0006	0	0.0011	
$E(z^2)$	0.0094	0.0093	0.0088	
D(z)	0.0101	0.0124	0.0112	
ho=0.5				
E(z)	0.4947	0.4732	0.3225	
$E(z^2)$	0.2503	0.2302	0.1164	
D(z)	0.0066	0.0087	0.0097	
ho=0.9				
E(z)	0.8989	0.8867	0.7123	
$E(\mathbf{z}^2)$	0.8032	0.7868	0.5132	
D(z)	0.0003	0.0012	0.0056	

Таблица характеристик распределения для n = 100

	r	$r_{\scriptscriptstyle S}$	r_Q
E(z)	0.7181	0.6955	0.5596
$E(z^2)$	0.5617	0.5131	0.3469
D(z)	0.0463	0.0325	0.0336

Смесь распределений, n = 20

	r	$r_{\mathcal{S}}$	r_Q
E(z)	0.7203	0.7021	0.5636
$E(\mathbf{z}^2)$	0.5317	0.5124	0.3309
D(z)	0.0263	0.0107	0.0119

Смесь распределений, n = 60

	r	$r_{\mathcal{S}}$	r_Q
E(z)	0.7153	0.7007	0.5601
$E(z^2)$	0.5227	0.5094	0.3289
D(z)	0.0093	0.0077	0.0071

Смесь распределений, n = 100