The Well-Rounded Retract and the Voronoi Polyhedron (UNCG)

Presenter: Mark McConnell, Notes by Michael Reed

May 30, 2017

 $G = GL_n(\mathbb{R}) = \{n \times n \text{ matrices, invertible}\} = \text{space of lattice bases, by row vectors.}$ $GL_n(\mathbb{Z}) = \{n \times n, \text{ in } \mathbb{Z}, \text{ invertible}\} \iff \det \gamma = \pm 1. GL_n(\mathbb{Z}) \setminus G = \text{space of lattices.}$ Consider two lattices equivalent (\sim) if they differ by

- orthogonal transformation (rotation/reflection). $\mathcal{O}_n(\mathbb{R})$
- scaling by positive real numbers (<u>homotheties</u>) \mathbb{R}^+ .

Let $X = G/\mathbb{R}_+ \cdot \mathcal{O}_n(\mathbb{R}) = \text{space of lattice bases} \mod \sim GL_n(\mathbb{Z})\backslash X = \text{space of lattices}.$

Remark. Can rescale ?in?to? homothety so $g \in G$ has $\det g = \pm 1$. y to $\mathcal{O}_n(\mathbb{R})$, can get $\det g = \pm 1 \implies G = SL_n(\mathbb{R})$. $X = SL_n(\mathbb{R})/SO_n(\mathbb{R})$, both with $\det = 1$. $SL_n(\mathbb{Z})\backslash X$.

Remark. $\Gamma(N) = \{ \gamma \in SL_n(\mathbb{Z}) \mid \gamma \equiv I \mod N \}$. $\Gamma_0(N,k) = \{ \gamma \in SL_n(\mathbb{Z}) \mid \gamma \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod N \}$. [?canonincal? $\Gamma_0(N) \subseteq SL_2(\mathbb{Z})$ is $\Gamma_0(N,1)$].

Remark. Can do this for any semisimple Lie group G. G has a manifold compact subgroup K. X = G/K. Riemannian symmetric space. $\Gamma \setminus X$ locally symmetric space.

Let $\Gamma \subseteq SL_n(\mathbb{Z})$ any arithmetic group.

Remark. $X = \mathfrak{h}$ for SL_2 .

Hecke Correspondence

1. Pick $g \in SL_n(\mathbb{R})$. lattice with basis g. Fix prime l. Fix $k = \{1, ..., n\}$. There are only finitely many sublattices $M \subseteq L$ such that $L/M \cong (\mathbb{Z}/l\mathbb{Z})^k$.

Definition 1. The Hecke correspondence T(l,k) sending $\Gamma \setminus X \to \Gamma \setminus X$ is the one-to-many function $L \mapsto \text{set of those } M$.

2. Let
$$t = \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & l \end{bmatrix}$$
. The l block is $k \times k$ and the 1 block is $n - k \times n - k$. Two maps:

 $\Gamma \cap \Gamma_0(l,k) \setminus X \xrightarrow{r} \Gamma \setminus X$ and $\Gamma \cap \Gamma_0(l,k) \setminus X \xrightarrow{s} \Gamma \setminus X$. $\Gamma \cap \Gamma_0(l,k) \cdot g \xrightarrow{r} \Gamma \cdot g$ and $\Gamma \cap \Gamma_0(l,k) \cdot g \xrightarrow{s} \Gamma \cdot tg$.

Definition 2. The Hecke correspondence T(l,k) is $\mathcal{A} \circ r^{-1}$, r^{-1} is preimage.

Why did $\Gamma_0(l,k)$ appear? Could do $X \stackrel{\tau}{\to} \Gamma \backslash X$ and $X \stackrel{s}{\to} \Gamma \backslash X$. Γg lifts in X to $\{g,\gamma_0g,\gamma_1g,\ldots\}$. $s(\gamma_0g) = s(\gamma_1g)$ if and only if $t\gamma_0g$ and $t\gamma_1g$ (\leftarrow right action) are in the same Γ -coset. iff $\exists \gamma_2 \in \Gamma$ so $\gamma_2 = t\gamma_0gg^{-1}\gamma_1^{-1}t^{-1}$, where $\gamma_0gg^{-1}\gamma_1^{-1} \in \Gamma$. iff $\gamma_0\gamma_1^{-1} \in \Gamma \cap [t^{-1}\Gamma t]$, where Γ is Γ iff Γ

Definition 3. The Hecke operator T(l,k) sending $H_*(\Gamma \backslash X) \mapsto H_*(\Gamma \backslash X)$ is $s_* \circ r^*$.

For any spaces S_1, S_2 and continuous maps $f: S_1 \to S_2$, \exists natural $f_*: H_i(S_1) \to H_i(S_2)$. In general, there is no f^* back the other way. But there is if f has finitely many sheets.

Example 1. f is a covering map with finitely many sheets.

$$(N)$$
 is torsion-free for $N \geq 3 \implies (\Gamma(N) \cap \Gamma_0(l,k)) \setminus X \to \Gamma(N) \setminus X = Y(N)$ is a covering map.

Well-Rounded Retract

This is a subset $W \subseteq X$. \exists a deformation retraction $X \to W$. Furthermore, the retraction is $GL_n(\mathbb{Z})$ equivariant \implies ?? to a retraction $\Gamma \setminus X \to \Gamma \setminus W$. $G(3) \setminus \mathfrak{h}$.

Example 2. SL_2 , Y(3). Graph 4 vertices, 6 edges dual to tetrahedron. $\Gamma(3)\backslash W$ is the graph $\Gamma(3)\backslash X=Y(3)$ retracts onto the graph.

How to do the WR retraction: fix g, L = its lattice.

- 1. find the shortest non-geo retraction in L, fix the line V_1 through that vector, rescale in the n-1direction $\perp V_1$.
- 2. eventually some linear independent vector becomes tied for shortest, fix space V_2 spanned by those two, rescale (shrink) $\perp V_2$.
- 3. ... etc.

STOP: a bunch of vectors all tied for shortest. def well-rounded

 $G = SL_n(\mathbb{R}) = \text{space of bases of } \mathbb{R}^n$. $X = G/K = \text{space of bases of } \mathbb{R}^n \mod \text{rotation}$. $g \in G$. $L = G/K = \text{space of bases of } \mathbb{R}^n \mod \text{rotation}$ lattice spanned by $g = \{\vec{y} = \vec{y}g \mid \vec{x} \in \mathbb{Z}^n\}.$

Definition 4. The <u>arithmetic minimum</u> of L is $\min\{||\vec{y}|| \mid \vec{y} \in L, \vec{y} \neq \vec{0}\}$. The <u>minimal vectors</u> of L are the \vec{y} where the arithmetic minimum is attained.

Definition 5. L is well-rounded if its minimal vectors span \mathbb{R}^n .

Definition 6. $qK \in X$ is well-rounded if its lattice L is well-rounded. $W \subset X$ is the set of well-rounded points.

Theorem 1 (Ash 1984). 1. W is a deformation retract of X.

- 2. The retraction is $GL_n(\mathbb{Z})$ -equivariant \implies descends to a deformation retraction $\Gamma \setminus X \to \Gamma \setminus W$.
- 3. W is a locally finite regular cell complex. $GL_n(\mathbb{Z})$ acts on cells. $\Gamma\backslash W$ is a finite cell complex.

A 0-cell and a 1-cell makes S^1 , irregular. Two 0-cell's and two 1-cells also makes S^1 , regular. Corollary 1. Can compute $H_*(\Gamma \backslash X)$ by $\cong H_*(\Gamma \backslash W)$.

Example 3 (n = 2). $\vec{y} \in L$ have the form $\vec{y} = \vec{x}g$ for $\vec{x} \in \mathbb{Z}^n$. $||\vec{y}||^2 = \vec{x}gg^T\vec{x}^T$, gg^T symmetric matrix. Write $gg^T = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$. Problem: Find the lows of $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ where $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are minimal vectors. (multiply by homothety so arithmetic minimum = 1.). $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \implies a = 1$. $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} a^b \\ b & c \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 \implies$

 $c=1. \ \begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}1 & b \\ b & 1\end{bmatrix}\begin{bmatrix}1 \\ 1\end{bmatrix} \geq 1 \text{ is } 2+2b \geq 1 \text{ or } 2b \geq -1 \text{ or } -\frac{1}{2} \leq b. \ \begin{bmatrix}-1 & 1\end{bmatrix} \text{ yields } b \leq \frac{1}{2}. \text{ So } |b| \leq \frac{1}{2}.$

Lemma. When $|b| \leq \frac{1}{2}$, $\forall \begin{bmatrix} k \\ q \end{bmatrix} = \vec{x} \in \mathbb{Z}^2$, $\vec{x} \neq \vec{0}$, $\begin{bmatrix} k & q \end{bmatrix} \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} \begin{bmatrix} k \\ q \end{bmatrix} \geq 1$.

Proof. Complete the square. Use method of Exer. 0.1.2.

matrix = dot product of rows i and j of g. Up to roration, $g = \begin{bmatrix} 1 & 0 \\ \cos \theta & \sin \theta \end{bmatrix}$ and $\cos \theta = b$ and $|b| \leq \frac{1}{2}$. $60^{\circ} \le \theta \le 120^{\circ}$ are the angles of the points of radius one half from the origin of the fundamental domain.

An algorithm for Hecke Operators for SL in higher rank

Computing W as a whole is a(n infinite) linear programming (LP) problem. Fix bound r. Look at all $[p \ q] \in \mathbb{Z}^2$, $|| [p \ q] || \le r$. Set up a LP like the previous exercise. Ask software to solve \implies some bounded subset of W. Well-rounded retract for SL_n is based on work of Voronoi (1998). modern: Voronoi polyhedron.

Why computing Hecke operators with W might be hard.

Example 4. SL_2 , T(2,1). For $z \in \mathfrak{h}$, the Hecke correspondence T(2,1) sends it to three points $2z, \frac{z}{2}, \frac{z+1}{2}$ or $X = \{ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \}$. The arcs arcs are split at the center (breaking cells).

Manin had a Hecke algorithm for n=2. It used <u>unimodular</u> symbols to avoid the problem of breaking cells. Ash-Rudolph generalized Manin's algorithm to $SL_n \, \forall n$, but only in the top non-vanishing degree of H_* or H^* . Top degree $= \frac{n(n+1)}{2} - n = \dim W$. To compute degree $(\dim W) - 1$, Gunnel's algorithm.

The Well-Tempered Complex

(MacPherson-McConnel 1994-95, 2014, 2016-present) An algorithm to compute T(l,k) on $H_i(\Gamma \backslash W)$, $\forall SL_n$, $\forall i$. Fix $l,k \in \{1,\ldots,n\}$. Fix $L=g \cdot K$. Let $M \subseteq L$ be one of the sublattices where $L/M \cong (\mathbb{Z}/l\mathbb{Z})^k$. Recall. T(l,k) correspondence is the map $L \mapsto$ (set of all such M).

Definition 7. Let t be a continuously varying real parameter, $t \geq 1$. The <u>tempered length</u> of $\vec{y} \in L$ is $\begin{cases} ||\vec{y}|| & \text{if } \vec{y} \in M \\ t \cdot ||\vec{y}|| & \text{if } \vec{y} \in L, \vec{y} \notin M \end{cases}$. For a given t, let W_t be the image of the WR retraction done using the tempered length.

Remark. After $t \geq l$, all $W_t = W_l$ because $l \cdot L \subseteq M$. Stops at t = l.

Definition 8. The well-tempered complex \tilde{W} is the subset of $X \times [1, l]$ that has value W_t over t in 2nd coordinate.

Theorem 2 (M-M 2016). 1. \tilde{W} is a def. retract of $X \times [1, l]$

- 2. retract is $\Gamma_0(l,k)$ -equivariant \implies descends $(\Gamma \cap \Gamma_0(l,k)) \setminus \tilde{W}$.
- 3. \tilde{W} is a loc. finite ?alg.? cell complex, computable by LP (set $\mu = \frac{1}{t^2}$, it's <u>linear</u> in μ, a, b, c, \ldots).