Convolutional Neural Networks for Sentence Classification

Yoon Kim

EMNLP 2014

Index

- 1. Introduction
- 2. Terminology
- 3. Model Framework
- 4. Experiments
- 5. Conclusion

Introduction

Abstract

Abstract

We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.

이미 pretrained된 word vector와 CNN을 활용해 sentence classification task를 수행.

Word Vector를 task-specific하게 finetuning 시켜 성능을 향상시킬 수 있음.

기존 Static Word Vector와 Task Specific Word Vector 둘 다 사용하는 새롭고 간단한 아키텍처 제안

7개의 benchmark dataset에 대해 높은 정확도를 가지며 그 중 4개의 dataset에서는 SOTA를 가짐

Terminology

Terminology: Convolution Neural Networks (CNNs)

Terminology: Convolution Neural Networks (CNNs)

Terminology: Convolution Neural Networks (CNNs)

Model Framework

Model Framework

Model Framework : Input

wait for the video and don't rent it

$$\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n$$

※ 단어벡터 : *xⁱ*

※ 단어 벡터 길이 : k

※ 문장 길이 : n

Model Framework : Convolution

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$$

$$\mathbb{X}$$
 Window(Filter) Size : h $c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b)$ $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}]$

$$h = 2$$

$$h = 3$$

Model Framework : Convolution

% Window(Filter) Size : h

h = 2Stride = 1

Model Framework : Convolution

$$\hat{c} = \max\{\mathbf{c}\}$$

$$\mathbf{z} = [\hat{c}_1, \dots, \hat{c}_m]$$

Model Framework: Fully Connected Layer and Regularization

Number of filters used: m

Experiments

Experiments : Datasets

- MR: Movie reviews with one sentence per review (Label: positive / negative)
- SST-1: Stanford Sentiment Treebank (Label: very positive, positive, neutral, negative, very negative)
- SST-2 : Stanford Sentiment Treebank (Label : positive, negative)
- Subj : Subjectivity dataset (Label : subjective / objective)
- TREC: TREC question dataset (Label: abbreviation, entity, description, human, location, numeric)
- CR: Customer review of various products (Label: positive, negative)
- MPQA: Opinion polarity detection subtask of the MPQA dataset (Label: positive, negative, neutral, both)

Experiments: Hyperparameters and Training

- Activation function: ReLU
- Filter window (h):
 - 3 with 100 feature maps
 - 4 with 100 feature maps
 - 5 with 100 feature maps
- Dropout rate (p): 0.5
- L2 Constraint (s): 3
- Mini batch size: 50

• Experiments : Hyperparameters and Training

모델	Input vector 초기화	학습 중 변경되는지 여부
CNN-rand	랜덤하게	О
CNN-static	word2vec	X
CNN-non-static	word2vec	О
CNN-multichannel	두 개의 채널 (CNN-static + CNN-non-static)	하나는 X, 하나는 O

• Experiments : Hyperparameters and Training

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	_	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_	_	_	_	95.0	_	

• Experiments : Static vs Non-Static Representations

static

non-static

• Experiments : Static vs Non-Static Representations

	Most Similar Words for			
	Static Channel	Non-static Channel		
bad	good	terrible		
	terrible	horrible		
	horrible	lousy		
	lousy	stupid		
good	great	nice		
	bad	decent		
	terrific	solid		
	decent	terrific		
n't	os	not		
	ca	never		
	ireland	nothing		
	wo	neither		
	2,500	2,500		
!	entire	lush		
	jez	beautiful		
	changer	terrific		
,	decasia	but		
	abysmally	dragon		
	demise	a		
	valiant	and		

Conclusion

Conclusion

- 다양한 필터 사이즈와 여러 개의 Feature map을 사용할수록 모델의 성능이 좋아진다.
- 다른 단어 벡터들의 variance와 유사하게 word2vec에 없는 단어 벡터들을 초기화하면 성능을 향상시킬 수 있다.
- Word2Vec을 사용했을 때, 다른 pretrained word vector를 사용한 것보다 성능이 좋은 것을 통해 universal한 feature extractor임을 확인할 수 있다.