Oppgaver Løsningsforslag - SOK3023

Maskinlæring for økonomer Laget av Markus J. Aase

January 30, 2025

Dette dokumentet inneholder oppgaver studentene i SOK-3023 kan jobbe med etter tredje uka av kurset. En del av svarene vil dere kunne finne fra de fysiske forelesningene og/eller kompendiet. Mens noen spørsmål krever at dere oppsøker informasjonen selv i dokumentasjon til Tensorflow eller andre sted på internett.

1. Kostfunksjon vs. Loss-funksjon

- (a) Forskjellen mellom kostfunksjon og loss-funksjon Løsning:
 - En loss-funksjon (loss function) måler feilen for en enkelt observasjon i datasettet. Den kvantifiserer hvor langt en prediksjon $\hat{y_i}$ er fra den sanne verdien y_i .
 - En **kostfunksjon** (cost function) er en aggregert verdi av loss-funksjonen over hele datasettet. Vanligvis beregnes dette ved å ta gjennomsnittet av alle individuelle tap (loss values) i treningssettet.

Matematisk kan vi skrive:

Loss-funksjon: $L(y_i, \hat{y_i})$

Kostfunksjon:
$$C(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

hvor $C(\theta)$ er kostfunksjonen for parametrene θ , basert på alle n datapunktene.

- (b) Eksempler på kostfunksjoner for ulike typer maskinlæringsproblemer Løsning:
 - For **regresjon**: Vanlige kostfunksjoner inkluderer Mean Squared Error (MSE) og Mean Absolute Error (MAE):

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
,

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$
.

• For **klassifikasjon**: En vanlig kostfunksjon er kryssentropi (Cross-Entropy Loss):

$$C(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) \right].$$

NB: Vit at man bruker ulike varianter av Cross-Entropy, avhengig om man gjør binær klassifikasjon (altså, 0 eller 1) eller multiklasse-klassifikasjon (f.eks. hund, katt, esel eller hest).

2. Hensikten med en kostfunksjon

(a) Hva er hovedformålet med en kostfunksjon i maskinlæring?

Løsning: En kostfunksjon måler hvor godt eller dårlig en modell presterer ved å kvantifisere differansen mellom de sanne verdiene y_i og de predikerte verdiene $\hat{y_i}$. Målet med en kostfunksjon er å gi modellen en numerisk verdi å minimere under trening.

(b) Hvordan hjelper en godt definert kostfunksjon en modell med å forbedre seg over tid?

Løsning: Ved å minimere kostfunksjonen under trening kan modellen gradvis justere parametrene sine for å forbedre prediksjonene. Gradient descent eller andre optimaliseringsalgoritmer brukes til å finne de beste parametrene (altså, vekter og biaser: w_1, w_2, \ldots, w_n, b) som gir lavest mulig kost. Samtidig er det viktig at man definerer en kostfunksjon som passer med dataene og ønsket output (avhengig om man driver med regresjon eller klassifikasjon).

(c) Hvordan kan valg av kostfunksjon påvirke en modells ytelse?

Løsning: Valg av kostfunksjon påvirker hvordan modellen håndterer ulike typer feil. For eksempel:

- MSE straffer store feil mer enn MAE, noe som kan gjøre den mer følsom for "uteliggere" (outliers).
- Kryssentropi fungerer godt for klassifikasjonsproblemer ved å skille mellom sannsynligheter.
- Huber-loss kombinerer fordelene med MSE og MAE ved å være robust mot outliers.

• ...

3. Gradient Descent – Grunnleggende Konsept

(a) Hva er gradient descent og hvorfor brukes det i maskinlæring?

Gradient descent er en optimaliseringsalgoritme som brukes til å minimere en loss-funksjon ved å justere modellens parametere gradvis, altså vektene og biasene. Algoritmen beregner gradienten (den deriverte) av loss-funksjonen og oppdaterer modellens parametere i retningen som reduserer feilen mest. Altså, minimerer kost-funksjonen.

I maskinlæring brukes gradient descent fordi:

- Det er en effektiv metode for å finne optimale parametere i modeller med mange variabler.
- Det muliggjør iterativ læring, noe som er nødvendig for komplekse modeller som nevrale nettverk.
- Det hjelper med å minimere feilen mellom modellens prediksjoner og de faktiske verdiene.

Oppdateringsregelen for gradient descent er gitt ved:

$$\mathbf{w} := \mathbf{w} - \alpha \cdot \nabla C(\mathbf{w})$$

hvor:

- w er modellens parametere.
- α er læringsraten, som bestemmer steglengden for oppdateringene.
- $\nabla C(\mathbf{w})$ er gradienten av loss-funksjonen.

(b) Forskjellen mellom batch gradient descent, stokastisk gradient descent (SGD) og mini-batch gradient descent

Det finnes tre hovedvarianter av gradient descent, basert på hvor mange treningsdata som brukes i hver oppdatering:

- Batch Gradient Descent: Bruker hele treningssettet til å beregne gradienten og oppdaterer vektene én gang per epoch.
 - Fordeler: Presise gradientberegninger, jevn konvergens.
 - **Ulemper:** Treg/ineffektiv for store datasett, krever mye minne.
- Stokastisk Gradient Descent (SGD): Oppdaterer vektene etter hver enkelt datapunkt i treningssettet.
 - Fordeler: Krever lite minne, raskere oppdateringer, kan unngå lokale minimum.
 - **Ulemper:** Kan være ustabil, større variasjon i gradientene.
- Mini-Batch Gradient Descent: En mellomting mellom batch GD og SGD bruker en liten delmengde (batch) av dataene per oppdatering.
 - Fordeler: Balanse mellom effektivitet og stabilitet, fungerer godt med GPU-er.
 - Ulemper: Mindre nøyaktig enn batch GD, men mer stabil enn SGD.

Oppsummering:

• Batch Gradient Descent: Bruker hele datasettet, gir presise oppdateringer, men er tregt og krever mye minne. Da kan vi skrive

• SGD: Oppdaterer etter hvert enkelt datapunkt, raskt men ustabilt.

• Mini-Batch Gradient Descent: Kombinerer fordelene ved begge, og brukes oftest i praksis.

En ofte brukt 'optimizer' vi bruker i TensorFlow er ADAM - Adaptive Moment Estimation. Som vi ofte skriver i før 'model.fit', slik:

Les mer om ADAM og versjoner av Gradient Descent i Tensorflow sin dokumentasjon.

4. Gradient Descent – Regneoppgave

Gitt funksjonen:

$$C(w_1, w_2) = w_1^2 + 2w_1w_2 + w_2^2$$

1. Gradientberegning

Gradienten av C(w) er gitt ved:

$$\nabla C = \begin{bmatrix} \frac{\partial C}{\partial w_1} \\ \frac{\partial C}{\partial w_2} \end{bmatrix} = \begin{bmatrix} 2w_1 + 2w_2 \\ 2w_2 + 2w_1 \end{bmatrix}$$

2. Ett steg med gradient descent

Vi starter med de initielle verdiene til $w^{(0)}$, og læringsraten α :

$$w^{(0)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \alpha = 0.1.$$

Beregning av gradient:

$$\nabla C(2,-1) = \begin{bmatrix} 2 \cdot 2 + 2 \cdot -1 \\ 2 \cdot -1 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Oppdatering av vektene:

$$w^{(1)} = w^{(0)} - \alpha \cdot \nabla C(w^{(0)})$$
$$= \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 0.1 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 - 0.2 \\ -1 - 0.2 \end{bmatrix} = \begin{bmatrix} 1.8 \\ -1.2 \end{bmatrix}$$

Svar: Etter ett steg med gradient descent er de oppdaterte vektene:

$$w_1^{(1)} = 1.8, \quad w_2^{(1)} = -1.2.$$

Gjenta prosessen flere ganger, så vil det gå mot et lokalt eller globalt minimum. Prøv å gjøre det et par steg selv, tegn opp grafen i et 3D verktøy - så kan du visualisere selv hva som faktisk skjer her!

5. Tilbakepropagering (Backpropagation) - for den interesserte

1. Hva er tilbakepropagering, og hvorfor er det viktig i nevrale nettverk?

Tilbakepropagering er en algoritme som brukes til å trene nevrale nettverk ved å justere vektene basert på feilen mellom prediksjoner og sanne verdier.

Hvorfor viktig?

- Det gjør læring mulig ved å beregne hvordan hver vekt påvirker feilen.
- Effektiv for å optimalisere nevrale nettverk ved hjelp av gradient descent.
- En metode som beregner en meget komplisert gradient av kostfunksjonen, $\nabla C(\mathbf{w})$,som ofte kan ha flere tusen parametere (altså vekter og biaser).

2. Hvordan brukes kjerneregelen (chain rule) for å beregne gradientene?

Kjerneregelen brukes til å beregne hvordan endringer i vektene påvirker feilverdien ved å ta deriverte gjennom de ulike lagene i nettverket.

$$\frac{\partial C_0}{\partial w^{(L)}} = \frac{\partial z^{(L)}}{\partial w^{(L)}} \cdot \frac{\partial a^{(L)}}{\partial z^{(L)}} \cdot \frac{\partial C_0}{\partial a^{(L)}}$$

- C_0 er tapet (loss), som representerer forskjellen mellom modellens prediksjoner og de faktiske resultatene.
- \bullet $w^{(L)}$ er vektene i det L-te laget, som bestemmer styrken på forbindelsene mellom nevronene i laget.
- $z^{(L)}$ er den lineære kombinasjonen av inputtene og vektene i laget L, dvs. $z^{(L)} = W^{(L)}a^{(L-1)} + b^{(L)}$, hvor $a^{(L-1)}$ er aktiveringsverdiene fra forrige lag, og $b^{(L)}$ er bias.
- $a^{(L)}$ er aktiveringen i laget L, beregnet ved å bruke en aktiveringsfunksjon (for eksempel ReLU, sigmoid eller tanh) på $z^{(L)}$.

3. Hvordan oppdateres vektene i et nevralt nettverk?

Vektene oppdateres ved å bruke gradient descent:

$$\mathbf{w} := \mathbf{w} - \alpha \cdot \nabla C(\mathbf{w})$$

hvor α er læringsraten.

Tilbakepropagering beregner gradienten av tapsfunksjonen $(\nabla C(\mathbf{w}))$ med hensyn til vektene i nettverket for et enkelt input-output-eksempel. Dette gjøres på en effektiv måte ved å beregne gradienten lag for lag, ved å iterere baklengs fra det siste laget for å unngå unødvendige beregninger av mellomliggende termer i kjerneregelen. Denne prosessen utledes oftest ved hjelp av dynamisk programmering, og er noe Tensorflow løser for oss.

Steg for tilbakepropagering:

- (a) Beregn feilen i utgangslaget.
- (b) Bruk kjerneregelen til å spre feilen bakover.
- (c) Oppdater vektene basert på gradientene.

Dette gjentas over flere *epochs* til modellen lærer. En intuitiv, dypere forklaring, kan finnes i *anbefalte læringsressurser*, lenke her: https://www.3blue1brown.com/lessons/backpropagation-calculus

6. Forstå Keras-kode

Nedenfor er en kode for å definere en sekvensiell modell i TensorFlow's Keras API. Beskriv hva hver linje gjør og hvorfor den er viktig.

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dropout, Dense
import tensorflow as tf

model = Sequential([
    tf.keras.Input(shape=(28, 28)),
    Flatten(),
    Dense(128, activation='relu'),
    Dropout(0.25),
    Dense(10, activation='softmax')
])
```

1. Hva er hensikten med Flatten()-laget?

Flatten() lager en 1D-vektor (av lengde 784, i dette tilfelle) fra den 2D-inngangen (for eksempel et 28x28 bilde). Dette er nødvendig før et fullt tilkoblet (dense) lag, som krever en vektor som input.

2. Hvorfor brukes Dropout() i modellen?

Dropout() er en regulariseringsteknikk som tilfeldig setter noen av nevronene til null under trening, for å forhindre overtilpasning (overfitting). Dette tvinger modellen til å lære mer robuste representasjoner.

3. Hva gjør Dense(10, activation='softmax') i denne modellen?

Dense(10, activation='softmax') er det siste laget i modellen. Det har 10 nevroner (én for hver klasse i en 10-klasses klassifisering), og bruker softmax for å beregne sannsynlighetene for hver klasse.

7. Endre og tilpasse modellen

1. Hvordan ville du modifisert modellen slik at den har to skjulte lag med henholdsvis 256 og 128 nevroner?

Du kan modifisere modellen som følger:

```
model = Sequential([
    tf.keras.Input(shape=(28, 28)),
    Flatten(),
    Dense(256, activation='relu'),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])
```

Her er to skjulte lag lagt til med 256 og 128 nevroner, begge med relu som aktiveringsfunksjon.

2. Endre aktiveringsfunksjonen i det første skjulte laget fra relu til sigmoid. Hvordan påvirker dette modellens evne til å lære?

Bytt activation='relu' til activation='sigmoid' i det første skjulte laget. Sigmoid gir et utgangsområde mellom 0 og 1, mens ReLU kan ha større gradienter, noe som kan føre til raskere læring. Bruken av sigmoid kan gjøre treningen langsommere og vanskelige å lære i noen tilfeller, spesielt ved dype nettverk på grunn av problemer som forsvinnende gradienter. Dette kalles *vanishing gradient*, men det er ikke pensum i dette kurset.

3. Hva skjer hvis vi fjerner dropout-lagene? Hvordan kan det påvirke modellens ytelse?

Hvis Dropout()-lagene fjernes, kan modellen lettere overtilpasse treningsdataene, spesielt på små datasett eller komplekse modeller. Dette kan føre til dårlig generalisering på nye data (lavere ytelse på testsettet).