

INTRODUCTION TO DATA ANALYSIS

HYPOTHESIS TESTING PART II

LEARNING GOALS

- get more intimate with p-values
 - \blacktriangleright distribution under true H_0
 - relation to confidence intervals
- develop a basic sense of how clever math (e.g., Central Limit Theorem) helps approximate sampling distributions
 - we don't aim for perfect understanding of this math in this course!
- become able to interpret & apply some statistical tests
 - Pearson's χ^2 -tests
 - > z-test
 - one-sample t-test

RECAP

BAYESIAN PARAMETER ESTIMATION

- model M captures prior beliefs about data-generating process
 - prior over latent parameters
 - likelihood of data
- \blacktriangleright Bayesian posterior inference using observed data $D_{\rm obs}$
- compare posterior beliefs to some parameter value of interest

FREQUENTIST HYPOTHESIS TESTING

- model M captures a hypothetically assumed data-generating process
 - fix parameter value of interest
 - likelihood of data
- single out some aspect of the data as most important (test statistic)
- look at distribution of test statistic given the assumed model (sampling distribution)
- \blacktriangleright check likelihood of test statistic applied to the observed data $D_{\rm obs}$

P-VALUE

$$p(D_{\text{obs}}) = P(T^{|H_0|} \ge^{H_{0,a}} t(D_{\text{obs}}))$$

RELATION OF P-VALUES AND CONFIDENCE INTERVALS

- assumptions:
 - p-value and Cl are constructed / approximated in the same way
 - two-sided test with H_0 : $\theta = \theta_0$ and alternative H_a : $\theta \neq \theta_0$
- correspondence result:

$$p(D) < \alpha \text{ iff } \theta_0 \notin Cl(D)$$

approximating sampling distributions

LAW OF LARGE NUMBERS

Theorem 10.2 (Law of Large Numbers) Let X_1, \ldots, X_n be a sequence of n differentiable random variables with equal mean, such that $\mathbb{E}_{X_i} = \mu_X$ for all $1 \le i \le n$. As the number of samples n goes to infinity the mean of any tuple of samples, one from each X_i , convergences almost surely to μ_X :

$$P\left(\lim_{n o\infty}rac{1}{n}\sum_{i=1}^nX_i=\mu_X
ight)=1$$

```
# sample from a standard normal distribution (mean = 0, sd = 1)
samples <- rnorm(100000)
# collect the mean after each 10 samples & plot
tibble(
    n = seq(100, length(samples), by = 10)
    ) %>%
    group_by(n) %>%
    mutate(
    mu = mean(samples[1:n])
) %>%
    ggplot(aes(x = n, y = mu)) +
    geom_line()
```


CENTRAL LIMIT THEOREM

Theorem 10.3 (Central Limit Theorem) Let X_1, \ldots, X_n be a sequence of n differentiable random variables with equal mean $\mathbb{E}_{X_i} = \mu_X$ and equal finite variance $\mathrm{Var}(X_i) = \sigma_X^2$ for all $1 \leq i \leq n$. The random variable S_n which captures the distribution of the sample mean for any n is:

$$S_n = rac{1}{n} \sum_{i=1}^n X_i$$

As the number of samples n goes to infinity the random variable $\sqrt{n}(S_n - \mu_X)$ converges in distribution to a normal distribution with mean 0 and standard deviation σ_X .

CLT gives us information about the distribution of estimated means, e.g., as when we estimate repeatedly in different (hypothetical experiments).

Pearson's χ^2 -tests

PEARSON χ^2 -TESTS

- tests for categorical data (with more than two categories)
- two flavors:
 - test of goodness of fit
 - test of independence
- > sampling distribution is a χ^2 -distribution

> standard normal random variables:

$$X_1, \ldots X_n$$

derived RV:

$$Y = X_1^2 + \ldots + X_n^2$$

it follows (by construction) that:

$$y \sim \chi^2$$
-distribution(n)


```
BLJM_associated_counts <- data_BLJM_processed %>%
  select(submission_id, condition, response) %>%
  pivot_wider(names_from = condition, values_from = response) %>%
                                                                     30-
  # drop the Beach-vs-Mountain condition
  select(-BM) %>%
                                                                                                                                        baseline expectation
  dplyr::count(JM,LB)
BLJM_associated_counts
                                                                     20 -
## # A tibble: 4 x 3
         LB
     <chr> <chr> <int>
                                                                     10-
## 1 Jazz Biology
## 2 Jazz Logic
## 3 Metal Biology
## 4 Metal Logic
                                                                      0 -
                                                                                                                       Logic-Jazz
                                                                              Biology-Jazz
                                                                                                  Biology-Metal
                                                                                                                                           Logic-Metal
                                                                                                            category
```

Is it conceivable that each category (= pair of music+subject choice) has been selected with the same flat probability of 0.25?

FREQUENTIST MODEL FOR PEARSON'S χ^2 -TEST [GOODNESS OF FIT]

$$\overrightarrow{n} \sim \text{Multinomial}(\overrightarrow{p}, N)$$

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

FACT:

The sampling distribution of χ^2 is approximately:

$$\chi^2 \sim \chi^2$$
-distribution $(k-1)$


```
# observed counts
n <- counts_BLJM_choice_pairs_vector</pre>
# proprortion predicted
p < - rep(1/4,4)
# expected number in each cell
e \leftarrow sum(n)*p
# chi-squared for observed data
chi2_observed <- sum((n-e)^2 *1/e)
chi2_observed
```

[1] 9.529412

p_value_BLJM <- 1 - pchisq(chi2_observed, df = 3)</pre> 0.25 -0.20 observed value **density** 0.15of test statistic tail area = 0.02302 0.05-0.00-15


```
counts_BLJM_choice_pairs_vector <- BLJM_associated_counts %>% pull(n)
chisq.test(counts_BLJM_choice_pairs_vector)
```

```
##
## Chi-squared test for given probabilities
##
## data: counts_BLJM_choice_pairs_vector
## X-squared = 9.5294, df = 3, p-value = 0.02302
```


How to interpret / report the result:

Observed counts deviated significantly from what is expected if each category (here: pair of music+subject choice) was equally likely (χ^2 -test, with $\chi^2\approx 9.53$, df=3 and $p\approx 0.023$).

What about the lecturer's conjecture that (colorfully speaking) logic + metal =?

STOCHASTIC INDEPENDENCE

- lacktriangle events A and B are stochastically independent iff
 - intuitively: learning one does not change beliefs about the other;
 - formally: $P(A \mid B) = P(A)$
- notice that $P(A \mid B) = P(A)$ entails that $P(B \mid A) = P(B)$ (see web-book)

STOCHASTIC INDEPENDENCE

Proposition 7.1 (Probability of conjunction of stochastically independent events)

For any pair of events A and B with non-zero probability:

$$P(A \cap B) = P(A) P(B)$$
 [if A and B are stoch. independent]

Proof. By assumption of independence, it holds that $P(A \mid B) = P(A)$. But then:

$$P(A \cap B) = P(A \mid B) P(B)$$
 [def. of conditional probability]
= $P(A) P(B)$ [by ass. of independence]

Table 7.2: Joint probability table for a flip-and-draw scenario where the coin has a bias of 0.8 towards heads and where each of the two urns hold 3 black and 7 white balls.

	heads	tails	Σ rows
black	$0.8 \times 0.3 = 0.24$	$0.2 \times 0.3 = 0.06$	0.3
white	$0.8\times0.7=0.56$	$0.2 \times 0.7 = 0.14$	0.7
Σ columns	0.8	0.2	1.0

PEARSON'S χ^2 -TEST [INDEPENDENCE]


```
BLJM_table <- BLJM_associated_counts %>%
    select(-category) %>%
    pivot_wider(names_from = LB, values_from = n)
BLJM_table
```

```
## # A tibble: 2 x 3
## JM Biology Logic
## <chr> <int> <int>
## 1 Jazz 38 26
## 2 Metal 20 18
```

Is it conceivable that the an outcome in each cell is given by independent choices of row and column options?

Hence: is the probability of a choice of cell the product of the probability of row- and column choices?

$$\overrightarrow{p}$$
 = vec. of outer product \overrightarrow{r} & \overrightarrow{c}

$$\overrightarrow{n} \sim \text{Multinomial}(\overrightarrow{p}, N)$$

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

FACT:

The sampling distribution of χ^2 is approximately:

$$\chi^2 \sim \chi^2$$
-distribution $((k_r - 1) \cdot (k_c - 1))$


```
# number of observations in total
N <- sum(counts_BLJM_choice_pairs_matrix)</pre>
# marginal proportions observed in the data
# the following is the vector r in the model graph
row_prob <- counts_BLJM_choice_pairs_matrix %>% rowSums() / N
# the following is the vector c in the model graph
col_prob <- counts_BLJM_choice_pairs_matrix %>% colSums() / N
# table of expected observation under independence assumption
# NB: %0% is the outer product of vectors
BLJM_expectation_matrix <- (row_prob %o% col_prob) * N
BLJM_expectation_matrix
```

```
## Jazz 36.39216 27.60784
## Metal 21.60784 16.39216
```



```
chi2_observed <- sum(
  (counts_BLJM_choice_pairs_matrix - BLJM_expectation_matrix)^2 /
   BLJM_expectation_matrix
  )
p_value_BLJM <- 1-pchisq(q = chi2_observed, df = 1)
round(p_value_BLJM,5)</pre>
```

$$(n_i - np_i)^2$$

[1] 0.50615

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$


```
chisq.test(
    # supply data as a matrix, not as a vector, for test of independence
    counts_BLJM_choice_pairs_matrix,
    # do not use a the default correction (because we didn't introduce it)
    correct = FALSE
)
```

```
##
## Pearson's Chi-squared test
##
## data: counts_BLJM_choice_pairs_matrix
## X-squared = 0.44202, df = 1, p-value = 0.5061
```


How to interpret / report the result:

A χ^2 -test of independence did not yield a significant test result (χ^2 -test, with $\chi^2 \approx 0.44$, df=1 and $p\approx 0.5$). Therefore, we cannot claim to have found any evidence for the research hypothesis of dependence.

FREQUENTIST MODEL FOR A Z-TEST [ONE-SAMPLE]

- metric variable \overrightarrow{x} with samples from normal distribution
 - \rightarrow unknown μ
 - \blacktriangleright known σ [usually unrealistic!]

FREQUENTIST MODEL FOR A Z-TEST [ONE-SAMPLE]

$$x_i \sim \text{Normal}(\mu, \sigma)$$

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{N}}$$

FACT:

With known σ , the distribution of z is:

 $z \sim \text{Normal}(0,1)$

FREQUENTIST T-TEST MODEL [ONE-SAMPLE]

$$x_i \sim \text{Normal}(\mu_0, \sigma)$$

$$t = \frac{\bar{x} - \mu_0}{\hat{\sigma}_x / \sqrt{n}}$$

FACT:

Irrespective of σ , the distribution of t is:

$$t \sim \text{Student-t}(\nu = n - 1)$$