UFV - Universidade Federal de Viçosa

CCE - Departamento de Matemática

1^a Lista de exercícios de MAT 147 - Cálculo II

2019-I

1. Determine os limites se existirem:

(a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{2x}\right)^{x^2}$$

(b)
$$\lim_{x \to 0} \frac{\sin x}{2x}$$

(c)
$$\lim_{x \to +\infty} \left(\frac{x+1}{x-1} \right)^x$$

(d)
$$\lim_{x \to +\infty} \frac{\arctan x}{\sqrt{x}}$$

(e)
$$\lim_{x \to 0} \frac{a^x - 1}{x}$$
, $(0 < a \neq 1)$

(f)
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \cot^2 x \right)$$

(g)
$$\lim_{x \to 5} \frac{\sqrt{x-1} - 2}{x^2 - 25}$$

(i)
$$\lim_{x \to 0} \frac{x^2 - 25}{2x^2 + 3x - 9}$$

(j) $\lim_{x \to 0} \frac{x^2 - 5x + 6}{2x^2 - x - 7}$
(j) $\lim_{x \to 0} \frac{\sin x - x}{\tan x - x}$

(i)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{2x^2 - x - 7}$$

(j)
$$\lim_{x \to 0} \frac{\sin x - x}{\tan x - x}$$

(k)
$$\lim_{x \to +\infty} \frac{x^2}{\ln x}$$

(1)
$$\lim_{x \to 0} \frac{e^{5x} - 1}{3x}$$

(m)
$$\lim_{x \to +\infty} \frac{x^2 + 4}{8^x}$$

(n)
$$\lim_{x \to 0} x \frac{1}{\ln x}$$

(o)
$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x, a \neq 0$$

(p)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{ax}, a \neq 0$$

(q)
$$\lim_{x\to 0} x e^{1/x}$$

(r)
$$\lim_{x\to 0} \cot 2x \cot \left(\frac{\pi}{2} - x\right)$$

(s)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$$

2. Calcule as seguintes integrais:

(a)
$$\int_0^{+\infty} e^{-x} \, dx,$$

(b)
$$\int_0^{+\infty} x e^{-x^2} dx$$

(c)
$$\int_0^{+\infty} \frac{1}{1+x^2} \, dx$$

(d)
$$\int_0^{+\infty} e^{-t} \sin t \, dt$$

(e)
$$\int_{2}^{+\infty} \frac{1}{x^2 - 1} dx$$

(f)
$$\int_{-\infty}^{-1} \frac{1}{x^5} dx$$

(g)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$

(h)
$$\int_{-\infty}^{\infty} \frac{1}{4+x^2} \, dx$$

3. Responda se é convergente ou divergente as seguintes integrais impróprias, e justifique.

(a)
$$\int_{1}^{+\infty} \frac{1}{x^5 + 3x + 1} dx$$

(b)
$$\int_{1}^{+\infty} \frac{\cos 3x}{x^3} dx$$

(c)
$$\int_{1}^{+\infty} \frac{x^2 + 1}{x^3 + 1} dx$$

(d)
$$\int_0^{+\infty} \frac{\arctan x}{x^2 + 1} dx$$

(e)
$$\int_{3}^{4} \frac{1}{\sqrt{x-3}} dx$$

(f)
$$\int_0^a \frac{1}{\sqrt{x(a-x)}} dx$$

*(g)
$$\int_0^{+\infty} e^{-st} dt$$

*(h)
$$\int_0^{+\infty} e^{-st} t^2 dt$$

*(i)
$$\int_{a}^{+\infty} e^{-st} \operatorname{sen}(at) dt$$

*(j)
$$\int_{0}^{+\infty} e^{-st} \cos(at) dt$$

^{*} Veremos, mais no final do curso, que os itens (g),(h),(i),(j) são as transformadas de Laplace das funções $1, t^2, \sin(at), \cos(at), \text{ respective mente.}$

4. Calcule, se existir, a área das regiões abaixo, limitas pelas curvas y, e pelos intervalos indicados:

(a)
$$y = \frac{1}{(x-1)^2}$$
, de $0 \le x < 1$

(b)
$$y = \frac{1}{\sqrt{3-x}}$$
, de $0 \le x < 3$

(c)
$$y = \frac{1}{x}$$
, de $0 < x \le 1$

(d)
$$y = \sec^2 x$$
, de $0 \le x < \frac{\pi}{2}$

(e)
$$y = \frac{x}{\sqrt{4 - x^2}}$$
, de $-2 < x \le 0$

(f)
$$y = \frac{1}{(x+1)^{2/3}}$$
, de $-2 \le x \le 7$

(g)
$$y = \frac{1}{(x-3)^2}$$
, de $0 \le x < 4$

(h)
$$y = \frac{x-2}{x^2 - 5x + 4}$$
, de $2 \le x < 4$

(i)
$$y = \frac{1}{x^2 - x - 2}$$
, de $0 \le x \le 4$

(j)
$$y = \frac{1}{1 - \cos x}$$
, de $0 \le x < \frac{\pi}{2}$

(k)
$$y = x^{-4/3}$$
, de $-1 \le x \le 1$

5. Estude a convergência da integral imprópria $\int_1^{+\infty} \frac{1}{x^p} dx$, onde p é um número real qualquer.

6. Determine uma função f tal que $\lim_{t\to +\infty}\int_{-t}^t f(x)dx$ exista e $\int_{-\infty}^{+\infty}f(x)dx$ seja divergente.

7. Um circuito elétrico tem uma resistência de R ohms, uma indutância de L henrys e uma força eletromotriz de E volts, onde R, L e E são positivos. Se i ampères for a corrente passando no circuito t segundos depois que foi ligado, então $i = \frac{E}{R}(1 - e^{-Rt/L})$. Se t, E e L são constantes, ache $\lim_{R \to 0^+} i$

8. Numa progressão geométrica, se a for o primeiro termo, r for a razão comum a dois termos sucessivos e S for a soma dos n primeiros termos, então se $r \neq 1$, $S = \frac{a(r^n - 1)}{r - 1}$. Ache o $\lim_{r \to 1} S$. O resultado será consistente com a soma dos n primeiros termos se r = 1?

9. Dê o termo de ordem n das sequências abaixo e verifique quais sequências convergem. As convergentes, dê o limite. Escreva também o termo de ordem (n+1).

2

(a)
$$(1, 4, 7, 10, ...)$$

(b)
$$\left(1+\frac{1}{2},1+\frac{3}{4},1+\frac{7}{8},\cdots\right)$$

(c)
$$\left(1, \frac{1}{1 \cdot 3}, \frac{1}{1 \cdot 3 \cdot 5}, \frac{1}{1 \cdot 3 \cdot 5 \cdot 7}, \cdots\right)$$

(d)
$$\left(1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \cdots\right)$$

(e)
$$\left(\frac{\sqrt{1}}{3}, \frac{\sqrt{3}}{4}, \frac{\sqrt{5}}{5}, \frac{\sqrt{7}}{6}, \frac{\sqrt{9}}{7}, \dots\right)$$

$$(f) \ \left(2, \frac{2^2}{1 \cdot 2}, \frac{2^3}{1 \cdot 2 \cdot 3}, \frac{2^4}{1 \cdot 2 \cdot 3 \cdot 4}, \frac{2^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}, \cdots \right)$$

10. Verifique se as sequências abaixo convergem ou divergem. Se convergir, encontre seu limite:

(a)
$$a_n = \frac{n \operatorname{sen}^2 n}{n^5 + 1};$$

(b)
$$a_n = \sqrt[n]{n}$$
;

(c)
$$a_n = \frac{\left(\frac{1}{3n} - 4\right)}{\left(\frac{n+1}{n} - 1\right)};$$

(d)
$$a_n = \sqrt{2n+3} - \sqrt{2n-3}$$
;

(e)
$$a_n = (-1)^n \frac{n^3}{1 + 2n^4}$$
;

(f)
$$a_n = \frac{1}{n} \operatorname{sen}\left(\frac{3\pi}{n^2 + 1}\right);$$

(g)
$$a_n = \ln \sqrt{n^3 - n^2}$$
;

(h)
$$a_n = (-1)^n \frac{n}{n+1}$$
;

(i)
$$a_n = n^2 \left(1 - \cos \frac{a}{n} \right)$$
, para $a > 0$;

(j)
$$a_n = \frac{a^n}{n!}$$
, para $a \in \mathbb{R}$.

11. Considere a sequência $a_n = \int_1^n \frac{1}{x^p} dx$.

(a) Mostre que (a_n) não é limitada se $p \leq 1$.

- (b) Mostre que $a_n \longrightarrow \frac{1}{n-1}$ se p > 1.
- 12. Use o teorema da convergência monótona para mostrar que a sequência $\left(\frac{n!}{n^n}\right)$ é convergente. Em seguida, determine o limite desta sequência.
- 13. Considere a sequência de termo geral dado por $a_n = \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}$. Faça o que se pede:
 - (a) Exprima a_{n+1} em função de a_n ;
 - (b) Mostre que (a_n) é estritamente decrescente;
 - (c) Mostre que (a_n) é convergente.
- 14. Considere a sequência dada por

$$a_1 = 2$$
 e $a_{n+1} = \frac{1}{2}(a_n + 4), n \ge 1.$

- (a) Determine os cinco primeiros termos desta sequência e o 101º termo.
- (b) A sequência é monótona? Justifique!
- (c) A sequência é convergente? Justifique!
- 15. Considere a série $\sum_{n=1}^{+\infty} \frac{1-n}{2^{n+1}}$ para resolver os itens abaixo.
 - (a) Encontre os três primeiros termos da sequência das somas parciais.
 - (b) Determine os números reais A, B que nos permite escrever

$$\frac{1-n}{2^{n+1}} = \frac{n+A}{2^{n+1}} + \frac{B\,n}{2^n}.$$

- (c) Ache uma fórmula para a sequência das somas parciais $\{S_n\}$.
- (d) Calcule $\lim_{n\to\infty} S_n$.
- (e) A série converge? Justifique. Caso afirmativo, qual é a sua soma?
- 16. Faça o que se pede:
 - (a) A sequência $\left\{\frac{(-1)^{n+1}}{\ln n}\right\}_{n\geq 2}$ é convergente ou divergente. Caso seja convergente, determine seu limite.
 - (b) A série $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{\ln n}$ é absolutamente convergente, condicionalmente convergente ou divergente?
- 17. Justifique as seguintes igualdades:

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$
 (b) $\sum_{n=1}^{+\infty} \frac{2n+1}{n^2(n+1)^2} = 1$ (c) $\sum_{n=2}^{+\infty} \frac{1}{n^2-1} = \frac{3}{4}$

(c)
$$\sum_{n=2}^{+\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$$

- 18. Escreva as frações decimais $0,412412412\cdots$ e $0,021343434343\cdots$ como:
 - (a) uma série infinita;

- (b) encontre a soma da série e a escreva como o quociente de dois inteiros.
- 19. Determine se a série dada converge ou diverge:

(a)
$$\sum_{n=1}^{+\infty} \frac{2 + sen3n}{n};$$

(b)
$$\sum_{n=1}^{+\infty} \sqrt[n]{n!};$$

(c)
$$\sum_{n=1}^{+\infty} \frac{3}{n^2 + n}$$
.

- 20. Assinale V ou F, justificando suas respostas:
 - () Se $\sum_{n=1}^{+\infty}a_n$ converge e $a_n>0, \ \forall n\in\mathbb{N},$ então $\sum_{n=1}^{+\infty}\sqrt{a_n}$ converge.
 - () Se $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são divergentes, então $\sum_{n=1}^{+\infty} (a_n b_n)$ é divergente.
 - () Seja (S_n) a sequência de somas parciais de a_n . Se (S_n) é convergente, então $\lim_{n\to+\infty}a_n=0$.
 - () Suponha que $a_n > 0$, $\forall n \in \mathbb{N}$ e que $\lim_{n \to +\infty} a_n = 1$, então $\sum_{n=1}^{+\infty} a_n$ diverge.
 - () Sejam p(x) e q(x) polinômios com coeficientes inteiros em x, com $q(n) \neq 0$. Se o grau de p for menor que de q, então $\sum_{i=1}^{+\infty} \frac{p(n)}{q(n)}$ converge.
- 21. Considere a série $\sum_{n=1}^{+\infty} a_n$, sendo que:

$$a_1 = 1$$
 e $a_{n+1} = \left(\frac{1 + \arctan n}{n}\right) \cdot a_n$.

Determine se a série $\sum_{n=1}^{+\infty} a_n$ converge ou diverge.

22. Mostre que, para qualquer valor de x, temos:

$$\operatorname{sen} x - \frac{1}{2} \operatorname{sen}^2 x + \frac{1}{4} \operatorname{sen}^3 x - \frac{1}{8} \operatorname{sen}^4 x + \dots + (-1)^n \frac{1}{2^n} \operatorname{sen}^{n+1} x + \dots = \frac{2 \operatorname{sen} x}{2 + \operatorname{sen} x}.$$

- 23. Para k > 1, determine se a série $\sum_{n=1}^{+\infty} (-1)^n \frac{sen\left(\frac{1}{n^k}\right)}{n}$ converge ou diverge. Justifique!
- 24. Seja (a_n) uma sequência infinita tal que $\lim_{n\to+\infty}a_n=L$. Mostre que $\sum_{n=1}^{+\infty}(a_n-a_{n+1})=a_1-L$.
- 25. Se $\sum_{n=1}^{+\infty} a_n = S \neq 0$, mostre que

$$\sum_{n=1}^{+\infty} (a_n + a_{n+1}) = 2S - a_1.$$

26. Verifique se são convergentes:

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt[n]{n}}$$

(c)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt[n]{10}}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{2n^3+3}}$$

(b)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt[3]{n^2 + 3}}$$

(d)
$$\sum_{n=1}^{+\infty} \frac{\cos n + 3}{6^n}$$

(f)
$$\sum_{n=1}^{+\infty} \frac{1}{n^5 + \pi}$$

(g)
$$\sum_{n=2}^{+\infty} \frac{n}{\ln n}$$

(j)
$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{1+n^2}+n}$$

(m)
$$\sum_{n=1}^{+\infty} \frac{3 + (-1)^n}{3^n}$$

(h)
$$\sum_{n=1}^{+\infty} \operatorname{sen} n$$

$$(k) \sum_{n=1}^{+\infty} \left(\frac{1}{5^n} + n \right)$$

$$(n) \sum_{n=1}^{+\infty} \frac{1}{n2^n}$$

(i)
$$\sum_{n=3}^{+\infty} 2^{-n} + 5^{-n}$$

(l)
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2}$$

(o)
$$\sum_{n=1}^{+\infty} \sin^2\left(\frac{\pi}{n}\right)$$

- 27. Se $f(n) \to L$, então prove que $\sum_{n=1}^{+\infty} [f(n) f(n+1)] = f(1) L$.
- 28. Prove que:

(a)
$$\sum_{k=1}^{+\infty} \frac{3^k + 5^k}{15^k} = \frac{3}{4}$$

$$\frac{k}{3^{k-1}} - \frac{k+1}{3^k}$$

(b)
$$\frac{1}{3} + \frac{2}{3^2} + \frac{1}{3^3} + \frac{2}{3^4} + \frac{1}{3^5} + \frac{2}{3^6} + \dots = \frac{5}{8}$$

(e)
$$\sum_{n=2}^{+\infty} \frac{1}{2^n} = \frac{1}{2}$$

(c)
$$\sum_{k=1}^{+\infty} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k^2 + k}} = 1$$

(f)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$$

(d)
$$\sum_{k=1}^{+\infty} \frac{2k-1}{3^k} = 1$$

(g)
$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}$$

- Sugestão: $2k 1 = 3k (k + 1) \Rightarrow \frac{2k 1}{3^k} =$ (g) $\sum_{n=1}^{+\infty} \frac{1}{(2n 1)(2n + 1)} = \frac{1}{2}$
- 29. Classifique as afirmações abaixo como verdadeira (V) ou falsa (F) dando uma demonstração ou um contraexemplo.
 - (a) () Toda sequência limitada é convergente;
 - (b) () Toda sequência limitada é monótona;
 - (c) () Toda sequência monótona é limitada;
 - (d) () Toda sequência divergente é não monótona;
 - (e) () Toda sequência convergente é monótona;
 - (f) () Toda sequência divergente é não limitada;
 - (g) () Se (a_n) e (b_n) são sequências tais que $\lim_{n\to+\infty}a_n=0$, então a (a_nb_n) é convergente;
 - (h) () A sequência (a_n) definida por $a_1 = 1$ e $a_{n+1} = \frac{na_n}{n+1}$ é convergente;
 - (i) () Se $a_n \leq b_n$, $\forall n$, tal que (b_n) é convergente, então (a_n) é convergente;
 - (j) () Se $(|a_n|)$ é convergente, então (a_n) é convergente;
 - (k) () Se $\sum_{n=0}^{+\infty} a_n$ converge e $a_n \ge 0$, $\forall n$, então $\sum_{n=0}^{+\infty} \sqrt{a_n}$ converge;
 - (l) () Se $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty} b_n$ divergem, então $\sum_{n=0}^{+\infty} (a_n + b_n)$ diverge;
 - (m) () Se $\sum_{n=100}^{+\infty} a_n$ converge, então $\sum_{n=100}^{+\infty} a_n$ converge;
 - (n) () Se $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty} b_n$ divergem, então $\sum_{n=0}^{+\infty} (a_n b_n)$ converge;
 - (o) () Se $\sum_{n=0}^{+\infty} a_n$ diverge, então $\lim_{n\to+\infty} a_n = L \neq 0$;

- (p) () Se $\sum_{n=1}^{+\infty} a_n$ diverge, então $\sum_{n=1}^{+\infty} a_n^{\ 2}$ diverge;
- (q) () Se $\sum_{n=1}^{+\infty} a_n$ diverge e $a_n \neq 0, \forall n \geq 1$, então $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ converge;
- (r) () Se (a_n) é uma sequência constante, então $\sum_{n=1}^{+\infty} a_n$ diverge;
- (s) () Se $\lim_{n\to+\infty}\frac{a_n}{b_n}=0$ e $\sum_{n=1}^{+\infty}b_n$ diverge, então $\sum_{n=1}^{+\infty}a_n$ diverge.
- (t) () Se $\lim_{n\to+\infty} \frac{a_n}{b_n} = +\infty$ e $\sum_{n=1}^{+\infty} b_n$ converge, então $\sum_{n=1}^{+\infty} a_n$ converge.
- 30. Seja (a_n) uma sequência de números reais e seja (s_n) a sequência definida por $s_n = a_1 + a_2 + \cdots + a_n$. Considere as afirmativas abaixo:
 - I se (s_n) é convergente, então $\lim_{n \to +\infty} a_n = 0$;
 - II se $\lim_{n\to+\infty} a_n = 0$, então (s_n) é convergente;
 - III $\sum_{n=1}^{+\infty} a_n$ é convergente se, e somente se, $\sum_{n=p}^{+\infty} a_n$ é convergente para todo $p \in \mathbb{N}$.
 - A(s) afirmativa(s) verdadeira(s) é(são):
 - (a) apenas I.

(d) apenas III.

- (b) apenas $I \in III$.
- (c) $I, II \in III$.

(e) apenas II e III.