Сверточные нейронные сети

Input $(32 \times 32 \times 1)$

Feature Map $(28 \times 28 \times 6)$

Feature Map $(14 \times 14 \times 6)$

Feature Map $(10 \times 10 \times 16)$

Feature Map $(5 \times 5 \times 16)$

120

Проблема: обработка изображений

- Много обучаемых параметров
- Отсутствие инвариантности к трансформациям
- Извлечение отдельных признаков

Решение: слой свертки (convolutional layers)

- Ограничение количества параметров
- Однородность трансформации

Решение: слой свертки (convolutional layers)

- Ограничение количества параметров

Подход – выделение признаков в каналы, поиск отдельных паттернов в отдельных каналах.

- Однородность трансформации

Alexnet 1st conv filters

ViT 1st linear embedding filters

RGB embedding filters (first 28 principal components)

Решение: слой пуллинга (pooling layers)

- Значительное уменьшение параметров
- Инвариантность к трансформациями

Выделение важных признаков из большого массива

Рычаги управления

- Последовательность слоев
- Шаг (stride)
- Набивка (padding)
- Размерность матриц
- Количество каналов

Как получить ответ?

Полносвязный слой (Fully Connected Layers)

- Много параметров
- Легко получить переобучение
- Уменьшение размерности параметров

Рассмотрим примеры архитектур

Проблемы

- Требуется много данных
- Дорогие вычисления
- Дорогое обучение