Set Theory

Donald Kong dkkl1137@gmail.com

 $:\!\! D$

Contents

1	Introduction	2
	1.1 Naivety	3
2	Naive Set Theory	3

1 Introduction

Notation (Set Notation and Definitions). To specify sets, we denote:

- \bullet \varnothing for the empty set, the set having no elements.
- $\{a, b, c, d\}$ for small sets by listing its members; otherwise
- $\{x|\phi(x)\}\$ the set of things satisfying the condition ϕ . We read: the set of all x such that $\phi(x)$.

By convention, we denote sets with capital letters A, B, \ldots , and objects or elements belonging to those sets with lowercase letters a, b, \ldots

- If an object a belongs to a set A, we denote $a \in A$ with the set-membership relation \in .
- If every element in A is also an element of B, we say A is a subset of B, and denote $A \subset B$ (Inclusion relation \subset).
- If $A \subseteq B \land A \neq B$, we say A is a proper subset of B, and denote $A \subsetneq B$ (Proper inclusion relation \subsetneq).
- $\mathcal{P}(A)$ denotes the powerset of A, the set of all subsets of A.
- $\bullet \ A \cup B = \{x | x \in A \lor x \in B\}$
- $\bullet \ A \cap B = \{x | x \in A \land x \in B\}.$

Definition (Ordered Pairs). Sets are in themselves unordered. To implement ordered pairs such that $\langle a,b\rangle = \langle a',b'\rangle \iff a=a' \land b=b'$, we define: $\langle a,b\rangle = \{\{a,b\},\{a\}\}\}$, and $\langle a,b,c\rangle = \langle \langle a,b\rangle,c\rangle$, ...

Definition (Cartesian Product). $\mathbb{A} \times \mathbb{B} = \{\langle x, y \rangle | x \in \mathbb{A} \land y \in \mathbb{B} \}$. The set whose members are all the ordered pairs whose first member is in \mathbb{A} and whose second member is in \mathbb{B} .

Relations For a binary relation R between members of set \mathbb{A} and \mathbb{B} , the extension of R is the set of ordered pairs $\{\langle x,y\rangle | x \text{ is } R \text{ to } y\} \subseteq \mathbb{A} \times \mathbb{B}$. In general, the extension of a n-place relation is the set of n-tuples standing in that relation. The unary property P defined over some set \mathbb{A} is the set of members of \mathbb{A} which are P.

Functions For a unary function $f : \mathbb{A} \to \mathbb{B}$, the extension (or graph) of f is the set of ordered pairs $\{\langle x,y\rangle | f(x)=y\}$. Similarly for n-place functions.

For most purposes, we can identify a relation or function with its extension.

Cardinality Two sets have the same cardinality $\iff \exists$ exists a bijection between the set. A set is countably infinite if they have the same cardinality with \mathbb{N} .

Postulate (Axiom of Choice). Given an infinite family of sets, there exists a choice function, which chooses a single member from each set in the family.

1.1 Naivety

Definition (Normal). A set that is not a member of itself is normal.

Is there a set R whose members are all, and only the normal sets? No!

Proof. Suppose not. The set R is normal $\iff R \in R$. Hence R is not normal. Then $R \in R$. A contradiction. There is no set R whose members are all, and only the normal sets.

Naive set theory is a theory which makes the assumption that all properties has a extension, or set theory developed without rigorous axiomatisation. We build our foundations in naive set theory, first and foremost.

2 Naive Set Theory