姓名:王博奕

系級:財金四

學號:B07302230

Homework 9

Question 1

a. What is the original yield to maturity?

YTM 為到期收益率,也就是購買債券的 IRR。假設本題為平價發行的債券,我們可以畫出以下表格呈現債券的現金流,並且使用 IRR 的公式得到5%。由於當初假設的平價發行,因此剛好等於 coupon rate。

Year		CF	Year	CF
	0	- 100.00	6	5
	1	5.00	7	5
	2	5.00	8	5
	3	5.00	9	5
	4	5.00	10	105
	5	5.00	IRR	0.05

▲ Calculation of YTM (Unit: M)

b. What is the yield to call?

由於有些債券可以贖回,因此多一個 YTC 指標來衡量收益。實際概念仍與 YTM 很像,差別在算實際現金流的情形來推算。

Year		CF		
	0	-	100.00	
	1		5.00	
	2		5.00	
	3		100.00	
IRR			6.56%	

▲ Calculation of YTC (Unit: M)

c. Assuming no issuing cost, what is the highest market rate that the firm should buy back the bond?

由於要找一個最高的 market rate 來買回,因此要**使用 Excel 中的 Goal Seek 即可達到目標**,也就是讓最後一列的 Price=105,結果如下圖。可以發現在三年後,當 issue cost 為 0 時,只要 market rate 達到 4.162%時就該贖回。另外再多加一個比較,當 issue cost 為 2 時,market rate 則要達到 3.841%才該贖回。這結果也合理,因為發行多額外成本,因此要有更低的利率才能 cover 發行成本。

highest rate	4.162%	highest rate	3.841%
issue cost	0	issue cost	2
Year	CF	Year	CF
1		1	
2		2	
3		3	
4	5	4	5
5	5	5	5
6	5	6	5
7	5	7	5
8	5	8	5
9	5	9	5
10	105	10	105
Price	\$105.00	Price	\$105.00

▲ Calculation of highest market rate that the firm should buy back

d. Please complete the following table for the lender's cost of capital

本題要以 lender 的角度出發,因此在第三年時由於債券發行者決定提早收回債券,因此在第三年就有 110 的現金流,值得注意的是這裡第 3 年的 10 是等於 110+issue cost-100。在接下來的年之後考慮到預期以外突然得到的 100 元可以拿去市場賺錢,所以固定每年的 CF 會是 100*market rate。而最後一期再加回來原本預計那時候要拿到的 100 元。

		Year	CF	
		0	-100	-100
		1	5	5
		2	5	5
		3	5	10
		4	5	0.5
		5	5	0.5
		6	5	0.5
issue cost	0	7	5	0.5
	0.5000/	8	5	0.5
market rate	0.500%	9	5	0.5
IRR	2.499%	10	105	100.5

▲ 先假設一組 issue cost 和 market rate 方便進行敏感性分析

有了 2.499%即可利用 data table 來算出各種情形,但要注意說超過 5%就將應該為 5%,否則就繼續持有債券就好。

2.50%	0	2	4	6	8	10
0.5%	2.499%	2.726%	2.955%	3.186%	3.420%	3.655%
1.0%	2.855%	3.082%	3.312%	3.543%	3.777%	4.014%
1.5%	3.207%	3.435%	3.665%	3.897%	4.131%	4.368%
2.0%	3.555%	3.783%	4.014%	4.246%	4.481%	4.718%
2.5%	3.900%	4.128%	4.359%	4.591%	4.826%	5.064%
3.0%	4.240%	4.469%	4.700%	4.933%	5.168%	5.405%
3.5%	4.577%	4.806%	5.037%	5.270%	5.506%	5.743%
4.0%	4.910%	5.139%	5.371%	5.604%	5.840%	6.078%
4.5%	5.240%	5.469%	5.701%	5.935%	6.170%	6.408%

▲ 敏感性分析結果

Question 2

a. Calculate duration.

在計算 Duration 前,我們必須先找到債券的 Par Value。題目一開始沒有提供,但有提供債券價格,因此我們可以從此來推算。**運用的方式是使用 EXCEL 的 goal seek**: 起初的 Par Value 先設 100,再來計算假設 Par Value 是 100 的話債券價格是多少,最後再用 Goal Seek,最後即可得到 Par Value。

Coupon rate	Market yields	maturity	price	par
12%	9%	6 years	107.3043	94.57643

▲ Calculation of Par Value

Duration 的分母是每期 Cash Flow (CF)的 NPV, 其中 rate 是 Market yield (9%),而分子則是每期 CF 再乘上時間做為 weight,再換成 NPV。在此我再多算 Modified Duration 方便算下一題,結果如下:

Time	CF	CF*time
1	11.34917213	11.34917213
2	11.34917213	22.69834426
3	11.34917213	34.0475164
4	11.34917213	45.39668853
5	11.34917213	56.74586066
6	105.9256066	635.5536394
NPV	\$107.30	\$503.81
Duration		4.695139903
Modified D	4.307467801	

▲ Calculation of duration

b. <u>Use duration calculated at a to estimate the bond price when market interest rate changes 10 basis points and -10 basis points.</u>

根據 Modified Duration 的定義,本題只要將原本的 Price 再乘上(1±0.01* Modified Duration)即可得到答案,而結果如下。分析下表可以發現**隨著** market yield 上升時 Price 將下降。

	market y Price	
+10bp	9.10%	\$106.842
-10bp	8.90%	\$107.767

 \triangle Market interest rate changes $\pm 10bp$

c. Use bond pricing model to calculate the actual bond price when market interest rate changes 10 basis points and -10 basis points. Compare results of b and c.

 $Bond\ price = \sum_{t=1}^T \frac{c}{(1+i)^t} + \frac{FV}{(1+i)^T}$,因此我們可使用 excel 中 NPV 的公式來計算債券價格,結果如下。分析下表可以發現**隨著 market yield 的上升債券價格會下降**。另外,也可以發現這結果與 b 小題略不一樣,原因是因為用 Modified Duration 計算的方式是**近似值,面對越大的利率變化將使這估計越不**准。

Time	CF
1	11.34917
2	11.34917
3	11.34917
4	11.34917
5	11.34917
6	105.9256
Bond Price	\$107.304
+10bp	\$106.843
-10bp	\$107.768

Calculation of bond price

d. Run sensitivity analysis of market yields on duration.

本題使用 Data-table 即可完成 sensitivity analysis of market yields on duration。

▲ 敏感性分析表格(僅擷取一半作為展示)與圖表結果

Question 3

若要完成 Exact matching program,需要讓每期現金的 inflow 足夠去償還每期的 liabilty。以下是下表會用到的代號:

- 1. L(t) as the liabilities at time t
- 2. C(t,i) as the cash flows in period t from bond i
- 3. P(i) as the price of bond i
- 4. N(i) as the number of bond i purchased.

那在知道每期 inflow 足夠 cover liability 後,我們把這關係寫成數學式: $\sum_{i=1}^{N} N(i)C(t,i) \geq L(t)$ 。同時,我們希望能用最少的成本來達到這個目標,意即:min $\sum_{i=1}^{N} N(i)P(i)$ 。有了各個關係式後我們就能使用 Solver 來達成我們的目標,下表即為運算結果。

year	liability	Bond A	Bond B	Bond C	Bond D	inflow
1	100	50	45	60	70	617.39
2	380	50	35	0	50	380
3	600	50	28	60	50	600
4	400	50	100	0	20	400
5	200	300	230	60	60	2409
6	700	0	300	100	400	700
P(i)		369	471	222	437	
N(i)		6.80698	0.50919	3.72607	0.43659	
P(i)N(i)	3769.58	2511.77	239.83	827.188	190.788	