D

CLAIMS

1. Monocyclic compounds having the general formula (I):

 R_{5} R_{1} R_{2} R_{6} X_{2} $(CH_{2})_{m}$ $(CH_{2})_{h}$ $(CH_{2})_{g}$ $(CH_{2})_{1}$ $(CH_{2})_{m}$ R_{4} $(CH_{2})_{g}$ R_{7} $(CH_{2})_{1}$ $(CH_{2})_{2}$ $(CH_{2})_{2}$ $(CH_{2})_{3}$ $(CH_{2})_{4}$ $(CH_{2})_{5}$ (CH_{2})

7 in which:

5 6

14

 X_1, X_2, X_3, X_4 , which may be the same or different from one another, represent a

group chosen from among -CONR/, -NRCO-, -OCO-, -COO-, -CH₂NR-, -NR-

10 CH_2 -, CH_2 - CH_2 , where R is H or a/ C_{1-3} alkyl or benzyl;

11 f, g, h, m, which may be the same or different from one another, represent a

number chosen from among 0, // or 2;

 R_1 and R_2 , which may be the same or different from one another, represent a

-(CH₂)_r-Ar group, where r = 0/71, 2 and where Ar is an aromatic group chosen

15 from among: benzene, naphthalene, thiophene, benzothiophene, pyridine,

quinoline, indole, furan, benzofuran, thiazole, benzothiazole, imidazole, and

benzo-imidazole, the said Ar group being possibly substituted with a maximum

of 2 residues chosen from among C₁₋₃ alkyl or halo-alkyl, C₁₋₃ alkoxyl, C₂₋₄

amino-alkoxyl, halogen, PH, NH₂, NR₁₃R₁₄ where R₁₃ and R₁₄, which may be the

same or different from one another, represent hydrogen or C₁₋₃ alkyl;

21 R₃ represents a group chosen from among:

22 - hydrogen

- linear or branched alkyl having the formula C_nH_{2n+1} , with n = 1-5, cyclo-alkyl or

24 alkylcyclo-alkyl groups having the formula C_nH_{2n-1} with n = 5-9

- $(CH_2)_r$ -Ar₁, where f = 0, 1, 2 and where Ar₁ is an aromatic group chosen from

among: benzene, naphthalene, thiophene, benzothiophene, pyridine, quinoline,

27 indole, furan, benzofuran, thiazole, benzothiazole, imidazole, and benzo-

imidazole, the said Ar, group being possibly substituted with a maximum of 2

residues chosen/from among C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or amino-

30 alkoxyl, halogen, OH, NH₂, NR₁₃R₁₄, where R₁₃ and R₁₄, which may be the same

or different from one another, represent hydrogen or C₁₋₃ alkyl;

- R₄ represents a group chosen from among:
- 33 hydrogen or C₁-6 alkyl
- 34 L-Q, where L is a chemical bond or a linear or branched C₁₋₆ alkyl residue and
- 35 Q is a group chosen from among:
- i) H, OH, OR₉, NH₂, NR₉R₁₀, guanidine, sulphate, phosphonate, phosphate,
- where R₉ and R₁₀, which may be the same of different from one another,
- represent a hydrogen, C₁₋₃ alkyl group, C₁₋₃hydroxyalkyl, C₁₋₃dihydroxyalkyl, C₁₋₃
- 39 3alkyl-CONHR₁₂, C₁₋₃alkyltetrazole, C₁₋₃alkyl-9OOH or wherein R₉R₁₀ joined
- 40 together form with the N-atom a saturated 4/6 membered heterocycle possibly
- containing a further heteroatom chosen in the group consisting of N, O, S and
- wherein R₁₂ is a mono-, di-, tri-glycosidic group possibly protected with one or
- 43 more C₁₋₃-acyl groups or substituted with amino-groups or C₁₋₃acylamino-
- 44 groups;
- ii) COOH, tetrazole, SO2NH2, SO2NHCOOR8, CONHR8, NHCOR8, where R8
- represents a linear or cyclic C_{1.6} alkyl/chain containing one or more polar groups
- chosen from among the group: OH, NH₂, NR₁₅R₁₆, COOH, CONHR₁₂, PO₃H,
- SO_3H , OR_{11} and where R_{15} and R_{16} , which may be the same or different from
- one another, represent a hydrogen or C_{1-3} alkyl group, and where R_{11} is a C_{1-3}
- alkyl or C₂₋₄ amino-alkyl chain, R₁₂ is a mono-, di-, tri-glycosidic group possibly
- protected with one or more C₁₋₃ acyl groups or substituted with amino-groups or
- 52 C₁₋₃acylamino-groups or R₁₅R₁₆ joined together form with the N-atom a
- saturated 4-6 membered heterocycle possibly substituted with C₁₋₃alkyl-groups
- or with saturated 4-6 membered heterocycle-groups containing at least an N-
- 55 atom;
- 56 iii) $COOR_{17}$, $CONHR_{12}$, OR_{12} where R_{12} is a mono-, di- or tri-glycoside group
- possibly protected with one or more C₁₋₃ acyl groups or substituted with amine
- or C_{1.3} acylamine group and R₁₇ is a group R₁₂ as above definined or a group
- 59 C₁₋₃alkyl, C₁₋₃alkylphenyl, wherein the phenyl-group can be substituted with a
- group OH, NO₂, NH₂, CN, CH₃, Cl, Br;
- R_5 , R_6 , R_7 , which may be the same or different from one another, represent a
- 62 hydrogen or C₁₋₃ alky group; with the proviso that when R₁ and R₂ are benzyl

R 1

- or 4-hydroxybenzyl then R₃ and R₄ are not isopropyl, their pharmaceutically
- 64 acceptable salts, their enantiomers and mixture thereof.

- 2. Compounds according to Claim 1, in which:
- 2 f, g, h, m, which may be the same or different from one another, may be 0 or 1;
- 3 R₁ and R₂, which may be the same or different from/one another, represent the
- 4 side chain of a natural amino acid chosen from among tryptophan, phenyl
- alanine, tyrosine, histidine or the side chain of a non-natural amino acid chosen
- 6 in the group:
- 7 tryptophan and phenyl alanine, either mono or di-substituted with residues
- s chosen from among C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or amino-alkoxyl,
- 9 halogen, OH, NH₂, NR₁₃R₁₄, where R₁₃ and R₁₄, which may be the same or
- 10 different from one another, represent a hydrogen or C₁₋₃ alkyl group;
- 11 R₃ represents a group chosen from among:
- 12 linear or branched alkyl having the formula C_nH_{2n+1} , with n = 1-5 (chosen in the
- group consisting of methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl) cycloalkyl or
- 14 alkylcycloalkyl of formula C_nH_{2n-1} with n = 5-9 (chosen in the group consisting of
- cyclopentyl, cyclohexyl, methylcyclohexyl)
- 16 $(CH_2)_r$ -Ar₁, where r = 1 or 2 and where Ar₁ is an aromatic group chosen in the
- group consisting of: α -naphthyl, β -naphthyl, phenyl, indole, the said Ar₁ group
- being possibly substituted with/a maximum of 2 residues chosen in the group
- consisting of: C₁₋₃ alkyl, CF₃, G₁₋₃ alkoxyl, Cl, F, OH, NH₂;
- 20 R₄ represents an L-Q group where:
- 21 L is a chemical bond or CH₂, and
- 22 Q is a group chosen from among:
- 23 OH, NH₂, NR₉R₁₀, OR₁₁/and where R₉ and R₁₀, which may be the same or
- different from one another, represent a hydrogen or C₁₋₃ alkyl group, C₁₋₃hydroxy
- 25 alkyl, C₁₋₃dihydroxyalkyl C₁₋₃alkyl-CONHR₁₂ (wherein R₁₂ is a monoglycosidic
- group derived from D or L pentoses or hesoxes (chosen in the group consisting
- of ribose, arabinose, glucose, galactose, fructose, glucosamine, galactosamine
- 28 and their N-acetylated derivatives)), C₁₋₃alkyltetrazole, C₁₋₃alkyl-COOH or
- 29 wherein R₀R₁₀ are joined together to form with the N atom a morpholine or a
- piperidine ring and where R₁₁ is a C₁₋₃ alkyl chain, or a C₂₋₄ amino-alkyl chain;

- NHCOR₈ wherein R₈ is a cyclohexane containing from 2 to 4 OH groups, a C₁₋₆
- 32 alkylchain containing a polar group (chosen in the group consisting of NH₂,
- 33 COOH, CONHR₁₂ (wherein R₁₂ is as hereabove define) or [1,4']bipiperidine)
- COOH, COOR₁₇ or CONHR₁₂, wherein R₁₂ is as he reabove defined and R₁₇ is
- as R₁₂ or a group 4-nitrobenzyl.
- 36 R₅, R₆, R₇ are H.
- in which the carbon atom that carries the substituents R₃ and R₇ has
- 38 configuration R.
- 3. Compounds according to Claim 2, as specified below:
- 2 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₅)-C H_2 -NH-]}
- 3 Cyclo{-Suc-Trp-Phe-[(S)-NH-CH(CH₂C₆H₅)- \not CH₂-NH-]}
- 4 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₁₁ \not -CH₂-NH-]}
- 5 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄(4-OCH₃))-CH₂-NH-]}
- 6 Cyclo{-Suc-Trp(5F)-Phe-[(R)-NH-CH(CH/ C_6H_5)-CH₂-NH-]}
- 7 Cyclo{-Suc-Trp(Me)-Phe-[(R)-NH-CH($C_1H_2C_6H_5$)-CH₂-NH-]}
- 8 Cyclo{-Suc-Phe(3,4-Cl)-Phe-[(R)-NH-QH(CH₂C₆H₅)-CH₂-NH-]}
- 9 Cyclo{-Suc-Trp-Phe(3,4-Cl)-[(R)-NH- ϕ H(CH₂C₆H₅)-CH₂-NH-]}
- 10 Cyclo{-Suc-Trp-Tyr-[(R)-NH-CH(CH₂ c_6H_5)-CH₂-NH-]}
- 11 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(C $/_1$ 2C₆H₃-3,4-diCl)-CH₂-NH-]}
- 12 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(Q'H₂C₆H₄-4-OH)-CH₂-NH-]}
- Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(\rlap/C H₂-CH₂-C₆H₅)-CH₂-NH-]}
- 14 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH/CH₂-2-naphthyl)-CH₂-NH-]}
- 15 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH/(CH₂-indol-3-yl)-CH₂-NH-]}
- 16 Cyclo{-Suc-Trp-Phe-[(R)-NH-C/H(CH₂-5-F-indol-3-yl)-CH₂-NH-]}
- 17 Cyclo{-Suc-Trp-Phe-[(R)-NH- ϕ H(CH₂C₆H₄-3-F)-CH₂-NH-]}
- 18 Cyclo{-Suc-Trp-Phe-[(R)NH- \not CH(CH₂-C₆H₃-3,4-diF-CH₂-NH]-}
- 19 Cyclo{-Suc-Trp-Phe-[(R)NH/CH(CH₂-C₆H₄-4-CF₃ -CH₂-NH]-}
- 20 Cyclo{-Suc-Trp-Phe-[(R)-NH-CH₂-CH(CH₂C₆H₅)-NH-]}
- $21 \qquad \text{Cyclo}\{-\text{Suc-Trp-Phe-[(S)-NH-CH}_2\text{-CH(CH}_2\text{C}_6\text{H}_5)\text{-NH-]}\}$
- Cyclo{-Trp-Phe-[(R)-NH-QH(CH₂-C₆H₅)-CH₂-NH-]-(CH₂)₃CO-}
- 23 Cyclo {-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-N(CH₃)]-(CH₂)₃CO-}
- Cyclo{-Suc[1(S)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}

- 25 Cyclo{-Suc[1(R)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- $26 \qquad \text{Cyclo}\{-\text{Suc}[2(S)-\text{NH}_2]-\text{Trp-Phe-}[(R)\text{NH-CH}(\text{CH}_2-\text{C}_6\not\text{H}_5)-\text{CH}_2\text{NH}]-\}$
- 27 Cyclo{-Suc[2(R)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂- C_6H_5)-CH₂NH]-}
- $28 \qquad \text{Cyclo}\{-\text{Suc}[1(\text{S})-\text{NH}(\text{CH}_3)]-\text{Trp-Phe-}[(\text{R})\text{NH-CH}/\text{CH}_2-\text{C}_6\text{H}_5)-\text{CH}_2\text{NH}]-\}$
- $29 \qquad \text{Cyclo} \{-\text{Suc}[1-\text{COO}(\text{CH}_2-\text{C}_6\text{H}_4-4-\text{NO}_2)]-\text{Trp-Ph/e}-[(\text{R})\text{NH-CH}(\text{CH}_2-\text{C}_6\text{H}_5)-\text{CH}_2\text{NH}]-\}$
- $30 \qquad \text{Cyclo}\{-\text{Suc}(\text{1-COOH})-\text{Trp-Phe-}[(\text{R})-\text{NH-CH}(\not \text{C}\text{H}_2-\text{C}_6\text{H}_5)-\text{CH}_2-\text{NH}_]\}$
- 31 Cyclo{-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH/(CH₂-C₆H₅)-CH₂-NH_.]}
- 32 Cyclo{-Suc(1-OH)-Trp-Phe-[(R)-NH-CH($\not CH_2$ - C_6H_5)-CH₂-NH-]}
- Cyclo{-Suc(2-COOH)-Trp-Phe-[(R)-NH $_7$ CH(CH $_2$ -C $_6$ H $_5$)-CH $_2$ -NH-]}
- $34 \quad \text{Cyclo}\{-\text{Suc}(2\text{-OH})-\text{Trp-Phe-}[(R)-\text{NH-C}/\text{H}(CH_2-C_6H_5)-\text{CH}_2-\text{NH-}]\}$
- 35 Cyclo{-Suc[1(S)-(2H-tetrazolyl-5-ylmethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-
- 36 C₆H₅)-CH₂-NH]-}.TFA
- Cyclo{-Suc[1(S)-(morpholin-4-yl)]-/Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-
- 38 }.TFA
- 39 Cyclo{-Suc[1(S)-N(CH₃)₂]-Trp-P/ne-[(R)-NH-CH(CH₂-C₆H₅)-CH₂NH]-}.TFA
- Cyclo{-Suc[1(S)-(piperidin-4-y/)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂NH]-}.TFA
- 41 Cyclo{-Suc[1(S)-(N(CH₂CH₂ \cancel{O} H)₂)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-
- 42 NH]}.TFA
- Cyclo{-Suc[1(S)-(N(CH₂CH/(OH)CH₂OH))]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-
- 44 NH]-}.TFA
- Cyclo{-Suc[1(S)-(3-carb ϕ xypropanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-
- 46 CH₂-NH]-}.
- Cyclo{-Suc[1(S)-[3-N'- β -D-glucopiranos-1-yl)-carboxamidopropanoyl]amino]-
- 48 Trp-Phe- $[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-$
- Cyclo{-Suc[1(S)-[(carboxymethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-
- 50 NH]-} TFA
- 51 Cyclo{-Suc[1(S)-[N]/-(β-D-glucopiranos-1-yl)-carboxyamidomethyl]amino]-Trp-
- 52 Phe-[(R)-NH-CH(\rlap/C_1H_2 - \rlap/C_6H_5)-CH₂-NH]-} TFA
- Cyclo{-Suc[1(S)-(ϕ hinyl)amine]-Trp-Phe-[(R)-NH-CH(CH₂-C_{θ}H₅)-CH₂-NH]-}
- Cyclo{-Suc[1(S)-/4-aminobutanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-
- 55 NH]-} TFA

1

4 5

> 6 7

8

9

10 11

15

17

20

- Cyclo{-Suc[1(S)-[(1,4')bipiperidin-1-yl]acetamido]-Trp-Phe-[(R)-NH-CH(CH₂-56
- C₆H₅)-CH₂-NH]-} TFA 57
- Cyclo{-Suc[1-N-(β-D-glucopiranos-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-58
- CH(CH₂-C₆H₅)-CH₂-NH]-} 59
- Cyclo{-Suc[1(S)-[N'-(2-N-acetyl-β-β-glucopiranos-1-yl)-carboxyamido]-Trp-Phe-60
- [(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH/-}. 61
 - 4. Process for the synthesis of a compound of general formula (I), where $X_1,\,X_2,\,$
- X_3 , X_4 are CONH and the other substituents are as defined in Claim 1, where: 2
- a) the suitably protected amino acids (1), (2) and (4) 3

$$R_1$$
 R_5
 R_2
 R_6
 R_2
 R_7
 R_7
 R_7
 R_1
 R_7
 R_7

are made to react, as shown in the diagram, with the derivative of the protected succinic acid (7)

thus obtaining the linear compound (8) 16

17
18
19
$$PG_2OC - (CH_2)_g$$
 R_4
 R_1
 R_5
 R_2
 R_6
 R_3
 R_7
 $CONH - (CH_2)_m$
 R_7
 $CONH - (CH_2)_m$
 R_7
 R_7

b) the linear compound 8, is deprotected and cyclicized to yield the final 21 monocyclic compound (19)

of form wa (1) 22

2

5. Pharmaceutical compositions containing as active principle the compounds of general formula (I) according to Claim 1 in combination with pharmaceutically acceptable carriers or excipients.

6. Pharmaceutical compositions according to Claim 5, to be used as tachykinin antagonists.

7. Pharmaceutical compositions according to Claim 6, to be used as antagonists of the human NK-2 receptor.

8. Pharmaceutical compositions according to Claim 7, to be used in the

2 treatment of the bronchospastic and inflammatory component of asthma,

3 coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract,

4 local spasms of the bladder and of the ureter during cystitis, and kidney

5 infections and colics.

9. Pharmaceutical compositions according to Claim 7, to be used as anxiolytics.

10. Use of a compound according to Claim 1 as tachykinin antagonist.

1 11. Use of a compound according to Claim 1 as NK-2 antagonist.

1 12. Use of a compound according to Claim 1 in the treatment of the

2 bronchospastic and inflammatory component of asthma, coughing, pulmonary

3 irritation, intestinal spasms, spasms of the biliary tract, local spasms of the

bladder and of the ureter during cystitis, and kidney infections and colics.

1 13. Use of a composition according to Claim 1 as an NK-2 antagonist for the

2 treatment of anxiety syndromes.

14. Method for the treatment of the bronchospastic and inflammatory component of asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and of the ureter during cystitis, and kidney infections and colics, in which quantities of between 0.02 and 10 mg/kg of body weight of active principle consisting of products of formula (I), according to Claim 1, are administered to the patient.