KET/CHH 6. přednáška Ing. Martin Sýkora, Ph.D

Opakování z minulé přednášky...

Vliv vibrací na člověka

- Možnosti šíření, mezní hodnoty a modelování
- · Legislativa v oblasti vlivu vibrací na člověka

Měření vibrací mechanických soustav

- Vibrodiagnostika
- Analýza soustav a signálů
- Modální analýza

KET/CHH 6.přednáška

Část zaměřená na hluk

Co je to hluk?

- · Druh zvuku
- "Hluk je takový zvuk, který má negativní účinky na člověka a životní prostředí"

Věda, která se zabývá zvukem - Akustika

- · Z lat. [akuó] slyším ...
- Akustika má mnoho odvětví (stavební akustika, prostorová akustika, elektroakustika, fyziologická akustika)
- Řeší se mnoho problémů z mnoha úhlů pohledu

KET/CHH 6.přednáška

Zvuk

Co je to zvuk?

- · Je mechanické kmitání plynů, kapalin nebo pružných pevných médií
- Vibrující objekt předá část své energie částicím ve svém okolí dochází k rozkmitání těchto částic
- Kmitající částice naráží do dalších částic prostředí a vychyluje je z rovnovážné polohy – dochází k šíření zvuku prostředím

Nutné podmínky pro vznik a šíření zvuku

- Kmitající (vibrující) předmět tedy mechanický pohyb
- Částicové prostředí

KET/CHH 6.přednáška

Funkce zvuku ve společnosti

Zvuk má v životě několik důležitých úloh

- Slouží jako nástroj dorozumívání a komunikace, případně funkci získávání informací
- Má varovnou funkci (umělé signály, či zvukové projevy přírodních jevů)
- · Pomáhá v prostorové orientaci
- · V určité formě (hudba, umění) slouží k relaxaci
- Diagnostické využití zjištění stavu strojů, prostředí, ...

KET/CHH 6.přednáška

Význam zvuku

Sluch

- Jeden ze smyslů vnímání zvuku
- · Mnoho funkcí zvuku velký význam sluchu

Význam akustiky a potlačování hluku

- · Potlačení negativních projevů hluku na člověka a životní prostředí
- Ochrana zdraví, v prvé řadě sluchu, ale hluk může mít i jiné projevy
- · Naopak zlepšení žádoucích funkcí zvuku

KET/CHH 6.přednáška

Hluk

Hluk je definován jako zvuk který:

- · Má negativní účinky na člověka a životní prostředí
- Je člověku nepříjemný

Různé aspekty hodnocení

- Objektivní
 - Vliv hluku na biologické funkce člověka, resp. na životní prostředí
- Subjektivní
 - · Hodnocení nepříjemnosti
 - Různé vnímání konkrétními jedinci
 - · Stejné problémy jako u vnímání vibrací

KET/CHH 6.přednáška

Měření hluku

Nezbytnost kvantifikovat vlastnosti a účinky hluku

- Nutnost měření
- · Měření hluku = stejné postupy jako měření zvuku
- · Nejčastěji měření akustického tlaku

Využití měření hlučnosti

- · Zlepšení vlastností výrobků, strojů či staveb
- · Výzkum působení hluku či zvuku na člověka a další organismy
- Součást postupů pro obecné snižování hlučnosti
 - · Omezení vzniku hluku
 - · Omezení cest šíření hluku
 - · Potlačení/utlumení existujícího hluku

KET/CHH 6.přednáška

Akustický tlak

Pohyb a vzájemné interakce částic

- · V důsledku vzniku shluků částic dochází ke změnám tlaku
- · Zřeďování či zhušťování média
- · Změny tlaku odpovídají chvění "akustický tlak"
- · Změna tlaku existuje již určitý tlak, který se mění
- · Roste či klesá jeho okamžitá hodnota
- Akustický tlak je (v případě vzduchu) superponován na tlak atmosférický
- · Jednotky akustického tlaku Pascal [Pa]

KET/CHH 6.přednáška

Akustická rychlost

· Akustická rychlost resp. rychlost pohybu částice

$$\frac{p}{u} = \rho \cdot c$$

- Poměr mezi akustickým tlakem (p) a akustickou rychlostí (u) je konstanta prostředí tzv. vlnový odpor nebo impedance prostředí
- · Neplést s rychlostí šíření

KET/CHH 6.přednáška

Rychlost šíření zvuku

· Rychlost šíření zvuku v plynech závisí na jejich vlastnostech

$$c = k \cdot \sqrt{\frac{E}{\rho}}$$

Kde **c** je rychlost šíření [m·s⁻¹] E je modul pružnosti prostředí [kg·m⁻¹·s⁻²] ρ je hustota prostředí [kg·m⁻³]

Teplotní závislost rychlosti šíření zvuku ve vzduchu

$$c = 331,6 \cdot \sqrt{1 + \frac{\delta}{273}}$$

δ je teplota vzduchu [°C]

KET/CHH 6.přednáška

Hladinové vyjádření, decibely

Rozsah akustických tlaků 10-5 až 102

- Nutno zobrazovat velký rozsah hodnot přechod k logaritmickému vyjádření
- · Navíc lidský sluch pracuje rovněž přibližně logaritmicky
- · Zavedení poměrných logaritmických jednotek decibely

KET/CHH 6.přednáška

Hladinové vyjádření, decibely

Veličina	Definiční vztah	Referenční hodnota
Hladina akustického výkonu	$L_W = 10 \cdot \log \frac{W}{W_0}$	$W_0 = 1.10^{-12} [W]$
Hladina akustické intenzity	$L_I = 10 \cdot \log \frac{I}{I_0}$	I ₀ =1·10 ⁻¹² [W·m ⁻²]
Hladina akustického tlaku	$L_p = 20 \cdot \log \frac{p}{p_0}$	p ₀ =2:10 ⁻⁵ [Pa]

KET/CHH 6.přednáška

Hladinové vyjádření, odvození vztahu pro tlak

Mezi akustickým tlakem a intenzitou platí vztah

$$I = p \cdot u$$

Kde I je akustická intenzita

p je akustický tlak

u je akustická rychlost

A dále platí

$$u = \frac{p}{\rho \cdot c}$$

Kde u je akustická rychlost

p je akustický tlak

ρ je hustota prostředí

c je rychlost šíření

KET/CHH 6.přednáška

Hladinové vyjádření, odvození vztahu pro tlak

Potom můžeme dosadit

$$I = p \cdot u = p \cdot \frac{p}{\rho \cdot c} = \frac{p^2}{\rho \cdot c}$$

ρ ·c je konstanta prostředí

Dále můžeme dosadit

$$L_{I} = 10 \cdot \log \frac{I}{I_{0}} = 10 \cdot \log \frac{\frac{p^{2}}{\rho \cdot c}}{\frac{p_{0}^{2}}{\rho \cdot c}} = 10 \cdot \log \frac{p^{2}}{p_{0}^{2}}$$

KET/CHH 6.přednáška

Hladinové vyjádření, odvození vztahu pro tlak

Hladina akustického tlaku

Angl. výraz Sound Pressure Level (SPL)

$$L_I = 20 \cdot \log \frac{p}{p_0}$$

KET/CHH 6.přednáška

Lidský sluch

Fyziologická akustika

Zabývá se lidským sluchem a vnímáním zvuku

Vlastnosti lidského sluchu

- · Zjišťovány postupně experimentálně
- Různé vnímání jednotlivých druhů zvuku/hluku
- Omezený frekvenční rozsah
- Omezený dynamický rozsah

KET/CHH 6.přednáška

Lidský sluch – mezní a prahové hodnoty

Frekvenční rozsah

- 20 Hz 20 kHz
- · Závisí na věku, aktuálním zdravotním stavu
- Pod 20 Hz infrazvuk, vnímání celým tělem
- Nad 20 kHz ultrazvuk

Dynamický rozsah

- Práh slyšení 0 dB, což odpovídá 20 μPa
- · Stanoven experimentálně, zvolen jako referenční hodnota
- · Práh bolesti 130 dB

KET/CHH 6.přednáška

Křivky stejné hlasitosti

Fletcher - Munsonovy křivky

- · Ukazují různou citlivost sluchu na různé frekvence
- · Ač hladina je různá, vjem je stejný
- Referenční hladina prahu slyšení 20 μPa platí při 1 kHz

Jejich určení

- Již v minulosti experimentálně
- · Velký vzorek různých lidí
- V bezodrazovém prostředí
- Pro poslech oběma ušima
- Hladina akustického tlaku se měří v místě posluchače bez jeho přítomnosti
- Poslední revize práh slyšení není 0 dB, ale cca. 4,2 dB

KET/CHH 6.přednáška

