Week 3

1

Theorem 1 (Birkhoff Ergodic Theorem). Let $T: X \to X$ be a measure-preserving transformation on a measure space (X, \mathcal{B}, μ) . Let $f \in L^1(X, \mu)$. Then

$$\frac{1}{n}\sum_{i=0}^{n-1}f(T^ix)$$

converges for almost every $x \in X$. The limit function \tilde{f} is integrable and T-invariant, i.e., $\tilde{f}(Tx) = \tilde{f}(x)$ for almost every $x \in X$. If $\mu(X) < \infty$, then

$$\int_X f \, \mathrm{d}\mu = \int_X \tilde{f} \, \mathrm{d}\mu.$$

Proof. We may assume that f is real-valued, since we can apply the theorem to the real and imaginary parts of f separately.

Yang: To be continued...

Theorem 2 (Maximal Ergodic Theorem). Let $U:L^1_{\mathbb{R}}\to L^1_{\mathbb{R}}$ be a linear operator such that

- (a) $||Uf||_1 \le ||f||_1$ for all $f \in L^1$;
- (b) $Uf \geq_{a.e.} 0 \text{ if } f \geq_{a.e.} 0.$

Let N>0 and $f\in L^1_\mathbb{R}(X,\mu)$. Define $f_0=0$ and $f_n=Uf_{n-1}+f$ for $n\geq 1$. Let $F_N=\max_{0\leq n\leq N}f_n$ and $E=\{x\in X:F_N(x)>0\}$. Then

$$\int_{E} f \, \mathrm{d}\mu \ge 0.$$

| Proof. Yang: To be continued...

2 Ergodic

Definition 3. A measure-preserving transformation $T: X \to X$ on a measure space (X, \mathcal{B}, μ) is said to be *ergodic* if it has no nontrivial invariant sets, i.e., for every $A \in \mathcal{B}$ such that $T^{-1}A = A$, we have $\mu(A) = 0$ or $\mu(X \setminus A) = 0$.

Theorem 4. Let (X, \mathcal{B}, μ) be a probability space and $T: X \to X$ be a measure-preserving transformation. Then the following statements are equivalent:

- (a) T is ergodic;
- (b) for each measurable set A, $m((T^{-1}A)\Delta A)=0$ iff $\mu(A)=0$ or $\mu(X\setminus A)=0$;

- (c) for each measurable set A with $\mu(A)>0$, we have $\mu\left(\bigcup_{n=0}^{\infty}T^{-n}A\right)=1$;
- (d) for each measurable sets A, B with $\mu(A)\mu(B) > 0$, there exists $n \in \mathbb{Z}^+$ such that $\mu(T^{-n}A \cap B) > 0$.

Theorem 5. Let (X, \mathcal{B}, μ) be a measure space with $\mu(X) < \infty$ and $T: X \to X$ be a measure-preserving transformation. Then TFAE:

- (a) T is ergodic;
- (b) for each measurable function f which is T-invariant, f is constant almost everywhere;
- (c) for each $f \in L^1(X, \mu)$ which is T-invariant, f is constant almost everywhere;
- (d) for each $f \in L^2(X, \mu)$ which is T-invariant, f is constant almost everywhere.

Proof. Yang: To be continued...

We show that $(a) \Rightarrow (b)$.

Example 6. Let $X = \mathbb{N}$ and $\mathcal{B} = \mathcal{P}(\mathbb{N})$ with the counting measure. Define $T : \mathbb{N} \to \mathbb{N}$ by Tx = x+1. Then T is measure-preserving and ergodic.

Example 7. Let $X = \mathbb{N}$ and $\mathcal{B} = \mathcal{P}(\mathbb{N})$ with the counting measure. Define $T : \mathbb{N} \to \mathbb{N}$ by Tx = x + 2. Then T is measure-preserving but not ergodic.

Example 8. Let $X = \mathbb{R}$ and $\mathcal{B} = \mathcal{B}(\mathbb{R})$ with the Lebesgue measure. Define $T : \mathbb{R} \to \mathbb{R}$ by Tx = x + 1. Then T is measure-preserving but not ergodic.

Example 9. Let $X = S^1 = \{z \in \mathbb{C} : |z| = 1\}$ and $\mathcal{B} = \mathcal{B}(S^1)$ with the Lebesgue measure. Define $T: S^1 \to S^1$ by $Tx = e^{2\pi i\theta}x$ where $\theta \in \mathbb{R}$. Then T is measure-preserving. Moreover, T is ergodic iff θ is irrational.