

Data Stream

Prepared by Raymond Wong Presented by Raymond Wong raywong@cse

Data Mining over Static Data

- Association
- 2. Clustering
- 3. Classification

Data Mining over **Data Streams**

- 1. Association
- 2. Clustering
- 3. Classification

Data Streams

Data Streams

	Traditional Data Mining	Data Stream Mining
Data Type	Static Data of Limited Size	Dynamic Data of Unlimited Size (which arrives at high speed)
Memory	Limited	Limited → More challenging
Efficiency	Time-Consuming	Efficient
Output	Exact Answer	Approximate (or Exact) Answer

Entire Data Streams

Entire Data Streams

Data Streams

- Entire Data Streams
- Data Streams with Sliding Window

Entire Data Streams

- Association
- Clustering
- Classification

Frequent pattern/item

Frequent Item over Data Streams

- Let N be the length of the data streams
- Let s be the support threshold (in fraction)
 (e.g., 20%)
- Problem: We want to find all items with
 frequency >= sN
 Each point: a transaction

Data Streams

	Traditional Data Mining	Data Stream Mining
Data Type	Static Data of Limited Size	Dynamic Data of Unlimited Size (which arrives at high speed)
Memory	Limited	Limited → More challenging
Efficiency	Time-Consuming	Efficient
Output	Exact Answer	Approximate (or Exact) Answer

COMP5331 11

False Positive/Negative

- E.g.
 - Expected Output
 - Frequent item
 - I₁
 - Infrequent item
 - I₂
 - I₃
 - Algorithm Output
 - Frequent item
 - I₁
 - I₃
 - Infrequent item
 - I₂

False Positive

- -The item is classified as frequent item
- -In fact, the item is infrequent

Which item is one of the false positives? I_3

More? No.

No. of false positives = 1

If we say:

The algorithm has no false positives.

All true infrequent items are classified as infrequent items in the algorithm output.

False Positive/Negative

- E.g.
 - Expected Output
 - Frequent item
 - I₁
 - I₃
 - Infrequent item
 - I₂
 - Algorithm Output
 - Frequent item
 - I₁
 - Infrequent item
 - I₂
 - I₃

False Negative

- -The item is classified as infrequent item
- -In fact, the item is frequent

Which item is one of the false negatives? I_3

More? No.

No. of false negatives = 1

No. of false positives = 0

If we say:

The algorithm has no false negatives.

All true frequent items are classified as frequent items in the algorithm output.

Data Streams

	Traditional Data Mining	Data Stream Mining
Data Type	Static Data of Limited Size	Dynamic Data of Unlimited Size (which arrives at high speed)
Memory	Limited	Limited → More challenging
Efficiency	Time-Consuming	Efficient
Output	Exact Answer	Approximate (or Exact)

We need to introduce an input error parameter $\boldsymbol{\epsilon}$

ε-deficient synopsis

- Let N be the current length of the stream (or total no. of occurrences of items)
- Let ε be an input parameter (a real number from 0 to 1)
- An algorithm maintains an ε-deficient synopsis if its output satisfies the following properties
 - Condition 1: There is no false negative.

All true frequent items are classified as frequent items in the algorithm output.

18

- Condition 2: The difference between the estimated frequency and the true frequency is at most εN.
- Condition 3: All items whose true frequencies less than (s-ε)N are classified as infrequent items in the algorithm output

Frequent Pattern Mining over Entire Data Streams

- Algorithm
 - Sticky Sampling Algorithm >
 - Lossy Counting Algorithm
 - Space-Saving Algorithm

Sticky Sampling Algorithm

- The sampling rate r varies over the lifetime of a stream
- Confidence parameter δ (a small real number)

• Let
$$t = \lceil 1/\epsilon \ln(s^{-1}\delta^{-1}) \rceil$$

Data No.	r (sampling rate)
1 ~ 2t	1
2t+1 ~ 4t	2
4t+1 ~ 8t	4
	• • •

Sticky S e.g. s = 0.02

$$s = 0.02$$

$$\varepsilon = 0.01$$

$$\delta$$
= 0.1

The samply a stream

$$t = 622$$

gorithm

over the lifetime of

- Confidence parameter δ (a small real number)
 Let t = \[1/ε \ln(s⁻¹δ⁻¹) \]

1 1244	Data No.	r (sampling rate)
1~1244	1 ~ 2*622	1
1245~2488	2*622+1 ~ 4*622	2
2489~4976	4*622+1 ~ 8*622	4
COMP533	1	

Sticky S | e.g. s = 0.5

e.g.

$$s = 0.5$$

 $\epsilon = 0.35$
 $\delta = 0.5$

The samply a stream

$$t = 4$$

gorithm

over the lifetime of

- Confidence parameter δ (a small real number)
 Let t = \[1/ε \ln(s⁻¹δ⁻¹) \]

	Data No.	r (sampling rate)
1~8	<u> </u>	1
9~16	2*4+1 ~ 4*4	2
17~32	4*4+1 ~ 8*4	4
		•••
COMP5331		

Sticky Sampling Algorithm

- S: empty list → will contain (e, f)
- 2. When data e arrives,
 - if e exists in S, increment f in (e, f)
 - if e does not exist in S, add entry (e, 1) with prob. 1/r (where r: sampling rate)

Estimated frequency

- 3. Just after r changes,
 - For each entry (e, f),
 - Repeatedly toss a coin with P(head) = 1/r until the outcome of the coin toss is head
 - If the outcome of the toss is tail,
 - Decrement f in (e, f)
 - If f = 0, delete the entry (e, f)
- 4. [Output] Get a list of items where $f + \varepsilon N >= sN$

Analysis

ε-deficient synopsis

• Sticky Sampling computes an ϵ -deficient synopsis with probability at least 1- δ

Memory Consumption

• Sticky Sampling occupies at most $\lceil 2/\epsilon \ln(s^{-1}\delta^{-1}) \rceil$ entries on average

Frequent Pattern Mining over Entire Data Streams

- Algorithm
 - Sticky Sampling Algorithm
 - Lossy Counting Algorithm >
 - Space-Saving Algorithm

Lossy Counting Algorithm

N: current length of stream

element

Maguithus

Frequency of element since this entry was inserted into D

- 1. D: Empty set
 - Will contain (e', f, Δ)
- Max. possible error in f

- 2. When data e arrives,
 - If e exists in D,
 - Increment f in (e, f, Δ)
 - If e does not exist in D,
 - Add entry (e, 1, b_{current}-1)
- 3. Remove some entries in D whenever

 $N \equiv 0 \mod w$

(i.e., whenever it reaches the bucket boundary)

The rule of deletion is:

(e, f,
$$\Delta$$
) is deleted if $f + \Delta \le b_{current}$

4. [Output] Get a list of items where

$$f + \varepsilon N >= sN$$

Lossy Counting Algorithm

ε-deficient synopsis

 Lossy Counting computes an ε-deficient synopsis

Memory Consumption

■ Lossy Counting occupies at most $\lceil 1/\epsilon \log(\epsilon N) \rceil$ entries.

e.g. s = 0.02 $\epsilon = 0.01$ $\delta = 0.1$ N = 1000

Memory = 1243

	ε-deficient synopsis	Memory Consumation
Sticky Sampling	1- δ confidence	$\lceil 2/\varepsilon \ln(s^{-1}\delta^{-1}) \rceil$
Lossy Counting	100% confidence	$\lceil 1/\epsilon \log(\epsilon N) \rceil$

Memory = 231

e.g. s = 0.02 $\epsilon = 0.01$ $\delta = 0.1$ N = 1,000,000

Memory = 1243

-	ε-deficient synopsis	Memory Consum
Sticky Sampling	1-δ confidence	$\lceil 2/\epsilon \ln(s^{-1}\delta^{-1}) \rceil$
Lossy Counting	100% confidence	「1/ε log(εN)

Memory = 922


```
e.g.

s = 0.02

\epsilon = 0.01

\delta = 0.1

N = 1,000,000,000
```

Memory = 1243

	ε-deficient synopsis	Memory Consum
Sticky Sampling	1- δ confidence	$\lceil 2/\varepsilon \ln(s^{-1}\delta^{-1}) \rceil$
Lossy Counting	100% confidence	1/ε log(εN)

Memory = 1612

Frequent Pattern Mining over Entire Data Streams

- Algorithm
 - Sticky Sampling Algorithm
 - Lossy Counting Algorithm
 - Space-Saving Algorithm

Sticky Sampling Algorithm

Lossy Counting Algorithm

Space-Saving Algorithm

 M: the greatest number of possible entries stored in the memory

COMP5331

38

Space-Saving

element

Frequency of element since this entry was inserted into D

- 1. D: Empty set
 - Will contain (é, f, △)

Max. possible error in f

- 2. $p_e = 0$
- 3. When data e arrives,
 - If e exists in D,
 - Increment f in (e, f, Δ)
 - If e does not exist in D,
 - If the size of D = M
 - $p_e \leftarrow \min_{e \in D} \{f + \Delta\}$
 - Remove all entries e where $f + \Delta \le p_e$
 - Add entry (e, 1, p_e)
- **4.** [Output] Get a list of items where $f + \Delta >= sN$

Space-Saving

Greatest Error

 Let E be the greatest error in any estimated frequency.

$$E \leq 1/M$$

ε-deficient synopsis

• Space-Saving computes an ϵ -deficient synopsis if E $\leq \epsilon$

Comparison $\delta = 0.1$

e.g. s = 0.02 $\epsilon = 0.01$ $\delta = 0.1$ N = 1,000,000,000

Memory = 1243

	ε-deficient synopsis	Memory Consumation
Sticky Sampling	1-δ confidence	$\lceil 2/\epsilon \ln(s^{-1}\delta^{-1}) \rceil$
Lossy Counting	100% confidence	「1/ε log(εN)
Space-Saving	100% confidence where E \leq = ϵ	Memory = 1612

Memory = 1612

Memory can be very large (e.g., 4,000,000) Since E <= 1/M

→ the error is very small

Data Streams

- Entire Data Streams
- Data Streams with Sliding Window

Data Streams with Sliding Window

Association

Frequent pattern/itemset

- Clustering
- Classification

Sliding Window

Mining Frequent Itemsets in a sliding window

To find frequent itemsets in a sliding window

Sliding Window

Last 4 batches

Sliding Window

