北京大学线性代数 B 期末试题

(2022-2023 学年第一学期)

1. (64分) 设 K 是一个数域. 令

- (i) 证明 \mathfrak{g} 是 $M_3(K)$ 的线性子空间,并给出 \mathfrak{g} 的维数和一组基.
- (ii) 证明 £, a, n 都是 g 的线性子空间,并分别给出它们的维数和一组基.
- (iii) 分别对 $S = \mathfrak{g}, \mathfrak{k}, \mathfrak{a}, \mathfrak{n}$ 证明: 若 $A, B \in S$, 则 $AB BA \in S$.
- (iv) 证明 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}$ (即证明 $\mathfrak{g}=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$ 且 $\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$ 是直和).
- (v) 设 $A \in \mathfrak{g}$. 定义变换

$$f_A:\mathfrak{g}\to\mathfrak{g}$$

为对 $X \in \mathfrak{g}$,有

$$f_A(X) = AX - XA.$$

证明对任意的 $A \in \mathfrak{g}$, f_A 是 \mathfrak{g} 上的线性变换.

- (vi) 分别对 (ii) 给出的 $\mathfrak a$ 的基中的元素 A,给出 $f_A:\mathfrak g\to\mathfrak g$ 在 (i) 给出的 $\mathfrak g$ 的基下的矩阵.
- (vii) 判断对于任意的 $A \in \mathfrak{a}$,线性变换 $f_A : \mathfrak{g} \to \mathfrak{g}$ 是否可以对角化.
- (viii) 设

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

对 1,2,3 的任意排列 i_1,i_2,i_3 ,定义矩阵 $P_{i_1i_2i_3}=(e_{i_1}\ e_{i_2}\ e_{i_3})$. 证明对任意的 $A\in\mathfrak{a}$,有 $P_{i_1i_2i_3}^{-1}AP_{i_1i_2i_3}\in\mathfrak{a}$.

- **2.** (10分) 证明:数域 K 上的两个方阵 A,B 相似的充要条件是 A,B 为 K 上 n 维线性空间 V 的某一个线性变换在 V 的某两组基下的矩阵.
- 3. (10分) 设 A 为 n 级实方阵. 证明:
- (i). 存在欧氏空间 \mathbb{R}^n 中一组正交基 $\alpha_1, \dots, \alpha_n$ 及 n 个实数 $\lambda_1, \dots, \lambda_n$ 满足 $A^T A \alpha_i = \lambda_i \alpha_i$ 且对于 r < j 有 $\lambda_j = 0$, 其中 r 为矩阵 A 的秩.
- (ii). $A\alpha_1, \dots, A\alpha_r$ 彼此正交.
- **4.** (10分) 设 V_1, V_2, V_3 为线性空间 V 的子空间, 证明:

$$\dim(V_1 \cap V_2) + \dim((V_1 + V_2) \cap V_3) = \dim(V_2 \cap V_3) + \dim((V_2 + V_3) \cap V_1).$$

5. (6分) 已知实二次型 $f(x_1, x_2, x_3) = 3x_1^2 + 4x_2^2 + 3x_3^2 + 2x_1x_3$. 证明: 对于任意实向量 v = (a, b, c), $\frac{f(v)}{v^2 v}$ 的最小值为 2.