Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No	•

Faculty of Engineering End Sem (Odd) Examination Dec-2022

CS3CO27 Compiler Design

Branch/Specialisation: CSE Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

Q

	-	estions are compulsory. Internal choi should be written in full instead of or	-	O
Q.1	i.	A language L from a grammar G = (a) Set of symbols over VN	(b) Set of symbols over Σ	1
	ii.	(c) Set of symbols over P	•	1
	11.	A finite automaton recognizes	(b) Context Sensitive Language	J
		(a) Any Language	` '	
	iii.	(c) Context Free Language		1
	111.	(a) Syntax (b) Semantics	uage is a formal description of	J
	iv.	A grammar that produces more than	-	1
	IV.	is called	if one parse tree for some sentence	1
		(a) Ambiguous	(b) Unambiguous	
		(c) Regular	(d) None of these	
	*7	, ,		1
	V.	A bottom-up parser generates(a) Right most derivation	<u> </u>	1
		(b) Right most derivation in reverse		
		(c) Left most derivation		
		(d) Left most derivation in reverse		
	vi.	` '	parsing which will have unequal	1
	V1.	Consider LR(0) SLR, CLR, LALR number of states in LR items DFA?	parsing, which will have unequal	1
		(a) SLR and LALR	(b) CLR and LALR	
		(c) SLR and LR(0)	(d) LALR and LR (0)	
	vii.	In activation record, Which of the		1
	V11.	activation record of the caller proced	_	
		(a) Access Link	(b) Actual Parameters	
		(c) Control Link	(d) Temporaries	
		(-)	(· · / · · · · · · · · · · · · · · · ·	

P.T.O.

	viii.	An intermediate code form is	•	1
		(a) Postfix notation	(b) Syntax Trees	
		(c) Three Address code	(d) All of these	
	ix.	The best way to compare the different	nt implementations of symbol table	1
		is to compare the time required to _	·	
		(a) Add a new name		
		(b) Make an enquiry		
		(c) Add a new name and make an en	quiry	
		(d) All of these		
	X.	Peep hole optimization		1
		(a) Loop Optimization	(b) Local Optimization	
		(c) Constant folding	(d) Data Flow analysis	
Q.2	i.	Define cross compiler and bootstrap	ping.	4
	ii.	Explain the role of finite automata in	n lexical analysis.	6
OR	iii.	Explain different phases of compiler	with neat diagram.	6
Q.3	i.	Differentiate top down and bottom-u	up parsing technique.	3
	ii.	Create LL (1) parsing for following §	grammar and parse the string acdb\$	7
		with the help of parsing table.		
		$S \rightarrow aABb$		
		$A \rightarrow c \mid \varepsilon$		
		B -> $d \mid \varepsilon$		
OR	iii.	Remove left recursion and calculate	first and follow of given grammar,	7
		also state whether the given gramma	ar is ambiguous or not:	
		$S \to A$		
		$A \rightarrow aB / Ad$		
		$B \rightarrow b$		
		$C \rightarrow g$		
Q.4	i.	Elaborate Operator grammar.		3
	ii.	Create SLR parsing table for the giv	en grammar and also state whether	7
		the grammar is SLR grammar or not		
		S→E		
		$E \rightarrow E + T / T$		
		$T \rightarrow T * F / F$		
		$F \rightarrow id$		

OR	iii.	Construct LALR (1) parsing table for the given grammar. Also Find the canonical set of LR (1) items for the Grammar.	7
		C-> CC	
		C->cC	
		C->d	
Q.5	i.	Define L-attributed definition.	2
	ii.	Differentiate synthesised and inherited attributes.	3
	iii.	What is three address code? Convert the following expression into	5
		quadruple, triples, and indirect triples:	
		a=b*c+d*c	
OR	iv.	Generate the three-address code for the following program fragment-	5
		while (A< C and B> D) do	
		if $A==1$ then	
		C:=C+1	
		else	
		C: = C-1	
Q.6		Attempt any two:	
	i.	Explain basic block and flow graph with example.	5
	ii.	What is activation record? List out activation record fields with their	5
		purpose.	
	iii.	Explain different optimization techniques in detail.	5
		وله داره وارد وارد وارد وارد وارد وارد وارد وارد	

Marking Scheme CS3CO27 Compiler Design

Q.1	i)	b) Set of symbols over Σ	1
	ii)	d) Regular Language	1
	iii)	c) Structure	1
	iv)	a) Ambiguous	1
	v)	b) Right most derivation in reverse	1
	vi)	b) CLR and LALR	1
	vii)	c) Control link	1
	viii)	d) All of the mentioned	1
	ix)	c) Add a new name and make an enquiry	1
	x)	c) Constant folding	1
Q.2	i.	cross compiler- 2 Marks	4
		bootstrapping- 2 Marks	
	ii.	Role of automata in lexical analyser with example- 6 Marks	6
OR	iii.	For the explanation of different Phases of Compiler 4 marks,1	6
		marks for diagram	
0.2		2 1'66 1 1'66	12
Q.3	i.	3 differences, 1 mark for each difference	3
	ii.	First & follow calculation-3 marks	7
		Parsing table creation-2 marks String acceptance calculation-2marks	
OR	iii.	For left recursion removal: 2 Marks	7
OIC	111.	For First set calculation 2 Marks	'
		For Follow set calculation 2 Marks	
		For ambiguity: 1Marks	
Q.4	i.	Operator Grammar def/rules- 2 Marks	3
Q.4	1.	Example-1 Mark	3
	ii.	canonical set of items- 3 Marks	7
		Parsing table- 2 Marks	
		SLR grammar or not – 1 Mark	
OR	iii.	canonical set of LR (1) items-4 marks	7
		LALR parsing table-3 Marks	

Q.5	i.	L-attributed definition- 2 Marks	2
	ii.	3 differences between synthesised and inherited attributes -1	3
		mark each	
	iii.	Three address code definition-2 Marks	5
		Quadruples, triples and indirect tuples-3 Marks	
OR	iv.	Three address code conversion- 5marks	5
Q.6			
	i.	Basic block, flow graph – 2marks	5
		Creating basic block & flow graph of example – 3marks	
	ii.	Activation record definition-2 Marks	5
		Activation record fields with its explaination-3 Marks	
	iii.	optimization techniques with example- 5 Marks	5
