# Theory of Constrained Optimization

Signal Processing Graduate Seminar III

Lucio Azzari

lucio.azzari@tut.fi

Tampere University of Technology

February 06, 2013

### Introduction

- Optimization problems are widely common in Signal Processing, as well as other fields (economics, etc.).
- It can occur the necessity to optimize some functions under some constrains, e.g., the minimization of a function that relates the temperature of a gas (under some hypothesis) to its pressure, and we want that the solution has to be found for  $t \ge -273.15^{\circ}$ .
- For constrained optimization we intend that the solution has to be found in a region arbitrarily decided, or, equivalently, that the solution has to satisfy the constrains in addition to the optimization.

## **Outline**

### Problem statement and basic definitions

### Equality constrain

First order conditions Second order conditions

Interpretation of Lagrange multipliers

## Inequality constrain

Kuhn-Tucker conditions Second order conditions

**Exercises** 

## Constrained optimization

We refer to optimization problems that can be expressed as

minimize 
$$f(\mathbf{x})$$
  
subject to  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ ,  $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ ,  $\mathbf{x} \in \Omega \subset \mathbb{R}^n$ , (1)

with 
$$\mathbf{h} = (h_1, h_2, \dots, h_m)$$
, and  $\mathbf{g} = (g_1, g_2, \dots, g_p)$ .

- **h**  $(\mathbf{x}) = \mathbf{0}$  are said *equality* constrains.
- ▶  $g(x) \le 0$  are said inequality constrains.
- A point  $\mathbf{x} \in \Omega$  is said *feasible* if it satisfies all the constraints.
- ▶ We consider  $h_i, g_i \in C^1$  (they are smooth).

# Equality constrain - Lagrange multipliers

### **Problem**

minimize 
$$f(\mathbf{x})$$
  
subject to  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ . (2)

#### Solution

Use of Lagrange multipliers.

We build, and solve the system of equations

$$\nabla_{\mathbf{x}} f(\mathbf{x}) + \nabla_{\mathbf{x}} \mathbf{h}(\mathbf{x}) \lambda = \mathbf{0},$$
  

$$\mathbf{h}(\mathbf{x}) = \mathbf{0}, \quad \text{with } \lambda = (\lambda_1, \dots, \lambda_m).$$
(3)

Being  $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ , and  $\mathbf{h}(\mathbf{x})$  composed by m equations, the total number of equations that we have is n+m, that is equal to the number of unknown.

# Geometrical interpretation of Lagrange multipliers

- A local minimum/maximum (without any constrains) of a function  $f(\mathbf{x})$  occurs when  $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \mathbf{0}$ .
- When considering a constrained min/max along the constrain  $h_1(\mathbf{x}) = 0$ , the min/max point satisfies the condition

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}|_{\hat{u}}} = \nabla_{\mathbf{x}} f(\mathbf{x}) \cdot \hat{u} = \mathbf{0}, \tag{4}$$

where  $\hat{u}$  is a versor pointing in any directions tangent to the curve  $h_1(\mathbf{x}) = 0$ .



# Geometrical interpretation of Lagrange multipliers

- From Equation (4) we have that if  $\mathbf{x}^*$  is a min/max point, then  $\nabla_{\mathbf{x}} f(\mathbf{x}^*) \perp \tan h_1(\mathbf{x}^*)$ .
- We know another vector that is *always* orthogonal to  $h_1(\mathbf{x})$ :

$$\nabla_{\mathbf{x}} h_1(\mathbf{x}) \perp \tan h_1(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega.$$

► Therefore, in a min/max point **x**\*

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) /\!/ \nabla_{\mathbf{x}} h_1(\mathbf{x}^*).$$

Imposing the condition

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \lambda_1 \nabla_{\mathbf{x}} h_1(\mathbf{x}),$$

with the constrain

$$h_1({\bf x})=0,$$

we can find the min/max point  $\mathbf{x}^*$ .

# General formula for Lagrange multipliers

► Considering multiple equality constrains  $\mathbf{h} = (h_1, h_2, \dots, h_m) = \mathbf{0}$ 

$$\nabla_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} \nabla_{\mathbf{x}} h_{i}(\mathbf{x}) = \nabla_{\mathbf{x}} f(\mathbf{x}) + \nabla_{\mathbf{x}} \mathbf{h}(\mathbf{x}) \lambda = \mathbf{0}.$$

It is possible to express the system of equations in a compact form using the Lagrangian

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \mathbf{h}(\mathbf{x}) \lambda$$

in the following way:

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = \mathbf{0}, 
\nabla_{\lambda} L(\mathbf{x}, \lambda) = \mathbf{0}.$$
(5)

### Second order conditions

### **Problem**

If  $f(\mathbf{x})$  is not *convex* or *concave* in the set of points  $\mathbf{x} \in \Omega$ :  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ ,  $\mathbf{x}^*$  can be a *minimum*, *maximum*, or a *saddle*.

We need information about the extremum.

### Solution

We introduce the second order conditions in order to determinate weather an extremum is a minimum, a maximum or neither.

In practice we exploit the information about the second derivative (similarly to the unconstrained optimization), in order to determine the nature of  $\mathbf{x}^*$ .

# Second derivative of the Lagrangian

Let us denote the  $n \times n$  Hessian of  $f(\mathbf{x})$  as

$$(F(\mathbf{x}))_{i,j} = \left[\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}\right], \quad i,j = 1, \ldots, n.$$

The constraining part of the Lagrangian can be expressed as

$$(H(\mathbf{x},\lambda))_{i,j} = \sum_{k=1}^{m} \frac{\partial^2 h_k(\mathbf{x})}{\partial x_i \partial x_j} \lambda_k, \quad i,j=1,\ldots,n.$$

 We can finally introduce the second partial derivative of the Lagrangian

$$\mathbf{L}(\mathbf{x}) = F(\mathbf{x}) + H(\mathbf{x}, \lambda). \tag{6}$$

## Condition for minimum/maximum

#### Theorem

If  $\mathbf{x}^*$  satisfies  $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$ , and there is a  $\lambda$  such that

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) + \nabla_{\mathbf{x}} \mathbf{h}(\mathbf{x}^*) \lambda = \mathbf{0},$$

and there is a matrix  $L(\mathbf{x}^*, \lambda)$  that is positive definite in the tangent plane P of  $h(\mathbf{x})$  at  $\mathbf{x}^*$ , then  $\mathbf{x}^*$  is a strict local minimum of  $f(\mathbf{x}^*)$ . On the contrary, if  $L(\mathbf{x}^*, \lambda)$  is negative definite,  $\mathbf{x}^*$  is a maximum of  $f(\mathbf{x}^*)$ .

### Reminder

$$\frac{d}{d\xi}f(\mathbf{x}(\xi)) = \frac{df(\mathbf{x})}{d\mathbf{x}}\frac{d\mathbf{x}(\xi)}{d\xi} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\frac{dx_{i}}{d\xi} = (\nabla_{\mathbf{x}}f(\mathbf{x}))^{\mathsf{T}}\dot{\mathbf{x}}.$$

$$\frac{d^{2}}{d\xi^{2}}f(\mathbf{x}(\xi)) = \frac{d}{d\xi}\left(\frac{d}{d\xi}f(\mathbf{x}(\xi))\right) = \frac{d}{d\xi}\left(\frac{df(\mathbf{x})}{d\mathbf{x}}\frac{d\mathbf{x}(\xi)}{d\xi}\right) = \frac{df(\mathbf{x})}{d\mathbf{x}}\dot{\mathbf{x}} + \frac{d}{d\xi}\left(\frac{df(\mathbf{x})}{d\mathbf{x}}\right)\dot{\mathbf{x}} = (\nabla_{\mathbf{x}}f(\mathbf{x}))^{\mathsf{T}}\ddot{\mathbf{x}} + \dot{\mathbf{x}}^{\mathsf{T}}F\dot{\mathbf{x}}.$$

## Condition for minimum/maximum

### Proof.

Let  $\mathbf{x}(\xi)$  be a curve on the surface  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ , with  $\mathbf{x}(0) = \mathbf{x}^*$ . We can write the Taylor series of  $\mathbf{f}(\mathbf{x})$  and  $h_i(\mathbf{x})$ , i = 1, ..., m, around  $\mathbf{x}^*$ :

$$f(\mathbf{x}(\xi)) = f(\mathbf{x}^*) + \xi(\nabla_{\mathbf{x}}f(\mathbf{x}(0)))^{\mathsf{T}}\dot{\mathbf{x}} + \frac{\xi^2}{2} \left[ (\nabla_{\mathbf{x}}f(\mathbf{x}^*))^{\mathsf{T}}\ddot{\mathbf{x}}(0) + \dot{\mathbf{x}}(0)^{\mathsf{T}}F\dot{\mathbf{x}}(0) \right] + o(\xi^2).$$

$$h_{i}(\mathbf{x}(\xi)) = h_{i}(\mathbf{x}^{*}) + \xi(\nabla_{\mathbf{x}}h_{i}(\mathbf{x}(0)))^{\mathsf{T}}\dot{\mathbf{x}} + \frac{\xi^{2}}{2}[(\nabla_{\mathbf{x}}h_{i}(\mathbf{x}^{*}))^{\mathsf{T}}\ddot{\mathbf{x}}(0) + \dot{\mathbf{x}}(0)^{\mathsf{T}}H_{i}\dot{\mathbf{x}}(0)] + o(\xi^{2}).$$

We now multiply  $h_i(\mathbf{x}(\xi))$  by their respective  $\lambda_i$ , and then sum them to  $f(\mathbf{x}(\xi))$ .

Taking into account that the sum of the first derivatives is zero (by hypothesis), we obtain

$$f(\mathbf{x}(\xi)) - f(\mathbf{x}^*) = \frac{\xi^2}{2} \dot{\mathbf{x}}(0)^\mathsf{T} \mathbf{L}(\mathbf{x}^*) \dot{\mathbf{x}}(0) + o(\xi^2).$$

Being **L** positive definite,  $f(\mathbf{x}^*)$  is a local minimum.

## Tangent plane P

P is defined as

$$P = \left\{ \mathbf{y} : \nabla \mathbf{h} (\mathbf{x}^*)^T \mathbf{y} = 0 \right\}.$$

- ► The product Ly in general light not be in P. Therefore, we have to project Ly into P.
- ▶ We can find a orthonormal basis for  $P e_1, e_2, ..., e_{n-m}$ , and we can define the matrix  $E = [e_1, e_2, ..., e_{n-m}]$ .
- ▶ Any point **y** can be written as  $\mathbf{y} = E\mathbf{z}$ , for some  $\mathbf{z} \in \mathbb{R}^{n-m}$ .
- ► The projection of **Ly** on *P* is

$$EE^{T}Ly = EE^{T}LEz$$
.

 $E^{T}LE$  gives the coordinates of the projection in terms of basis E.

The positive or negative definiteness of L can be determined by finding the eigenvalues of E<sup>T</sup>LE.

## Interpretation of Lagrange multipliers

### **Problem**

We want to investigate the relation between the function to minimize and the constrains.

### Solution

Let us consider the constrain as  $\mathbf{h}(\mathbf{x}) = \mathbf{c}$ , and the optimal solution  $\mathbf{x}^*$  is found when  $\mathbf{c} = \mathbf{0}$ , with the respective Lagrange multipliers  $\lambda^*$ .

For  $\mathbf{c}$  sufficiently small around  $\mathbf{0}$ , we can consider the solution to the min/max problem continuously dependent of  $\mathbf{c}$ . Let us denote this solution with  $\mathbf{x}(\mathbf{c})$ .

We want to compute the derivative of  $f(\mathbf{x})$  respect to the variable  $\mathbf{c}$ , in order to study the *sensitivity* of the minimum/maximum respect to some *relaxation* of the constrains.

# Computation of $\nabla_{\mathbf{c}}\mathbf{h}\left(\mathbf{x}\left(\mathbf{c}\right)\right)$

Let us note that  $\nabla_{\mathbf{c}}\mathbf{h}\left(\mathbf{x}\left(\mathbf{c}\right)\right)=I$ .

1

$$\nabla_{\mathbf{c}} h_{i}\left(\mathbf{x}\left(\mathbf{c}\right)\right) = \begin{bmatrix} \sum\limits_{i=1}^{m} \frac{\partial}{\partial x_{k}} h_{i}\left(\mathbf{x}\left(\mathbf{c}\right)\right) \frac{\partial x_{k}}{\partial c_{1}} \\ \vdots \\ \sum\limits_{i=1}^{m} \frac{\partial}{\partial x_{k}} h_{i}\left(\mathbf{x}\left(\mathbf{c}\right)\right) \frac{\partial x_{k}}{\partial c_{m}} \end{bmatrix} = \begin{bmatrix} \Delta_{c_{1}}(\mathbf{x}\left(\mathbf{c}\right))^{T} \nabla_{\mathbf{x}} h_{i}\left(\mathbf{x}\left(\mathbf{c}\right)\right) \\ \vdots \\ \Delta_{c_{m}}(\mathbf{x}\left(\mathbf{c}\right))^{T} \nabla_{\mathbf{x}} h_{i}\left(\mathbf{x}\left(\mathbf{c}\right)\right) \end{bmatrix},$$

with the notation  $\Delta_{c_i}(\mathbf{x}(\mathbf{c}))^T = \left[\frac{\partial x_1}{\partial c_i}, \dots, \frac{\partial x_n}{\partial c_i}\right]$ .

Stacking these together we have

$$\nabla_{\mathbf{c}} \mathbf{h} \left( \mathbf{x} \left( \mathbf{c} \right) \right) = \left[ \begin{array}{ccc} \Delta_{c_1} (\mathbf{x} \left( \mathbf{c} \right))^T \nabla_{\mathbf{x}} h_1 \left( \mathbf{x} \left( \mathbf{c} \right) \right) & \cdots & \Delta_{c_1} (\mathbf{x} \left( \mathbf{c} \right))^T \nabla_{\mathbf{x}} h_m \left( \mathbf{x} \left( \mathbf{c} \right) \right) \\ \vdots & \ddots & \vdots \\ \Delta_{c_m} (\mathbf{x} \left( \mathbf{c} \right))^T \nabla_{\mathbf{x}} h_1 \left( \mathbf{x} \left( \mathbf{c} \right) \right) & \cdots & \Delta_{c_m} (\mathbf{x} \left( \mathbf{c} \right))^T \nabla_{\mathbf{x}} h_m \left( \mathbf{x} \left( \mathbf{c} \right) \right) \end{array} \right].$$

We can conclude that

$$\Delta_{c_i}(\mathbf{x}\left(\mathbf{c}
ight))^{\mathsf{T}}
abla_{\mathbf{x}}h_i\left(\mathbf{x}\left(\mathbf{c}
ight)
ight)=\delta_{i,i}.$$

# Computation of $\nabla_{\mathbf{c}} f(\mathbf{x}(\mathbf{c}))$

► The *i*-th derivative can be expressed as

$$\left[\nabla_{\mathbf{c}}f(\mathbf{x}(\mathbf{c}))\right]_{i} = \sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} f(\mathbf{x}(\mathbf{c})) \frac{\partial x_{k}}{\partial c_{i}} = \Delta_{c_{i}}(\mathbf{x}(\mathbf{c}))^{\mathsf{T}} \nabla_{\mathbf{x}} f(\mathbf{x}(\mathbf{c})).$$

Using the constrain

$$\left[ 
abla_{\mathbf{c}} f\left(\mathbf{x}\left(\mathbf{c}\right)
ight) 
ight]_{i} = -\Delta_{c_{i}} \left(\mathbf{x}\left(\mathbf{c}\right)
ight)^{T} 
abla_{\mathbf{x}} \mathbf{h}\left(\mathbf{x}\left(\mathbf{c}\right)
ight) \lambda.$$

As shown in the previous slide

$$\Delta_{c_i}(\mathbf{x}(\mathbf{c}))^T \nabla_{\mathbf{x}} \mathbf{h}(\mathbf{x}(\mathbf{c})) = \mathbf{e}_i,$$

where  $\mathbf{e}_i$  is a zero vector with one 1 in the *i*-th position.

Finally

$$\nabla_{\mathbf{c}} f(\mathbf{x}(\mathbf{c})) = -\lambda.$$

This means that the Lagrange multipliers indicates the variation rate of the minimum/maximum when the constrains are slightly changed from their optimal values.

## Kuhn-Tucker conditions

### **Problem**

Let us now consider the inequality constrained minimization

minimize 
$$f(\mathbf{x})$$
  
subject to  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ ,  $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ ,

with m equality and p inequality constrains.

Only active constrains affect directly the solution.

## Solution (Kuhn-Tucker conditions)

Let  $\mathbf{x}^*$  be a local minimum that satisfies the above conditions, then there are a  $\lambda \in \mathbb{R}^m$ , and a  $\mu \in \mathbb{R}^p$ , for which

$$\mu \ge \mathbf{0},$$
 (7)

$$\mathbf{g}(\mathbf{x}^*)^T \boldsymbol{\mu} = 0, \tag{8}$$

$$\nabla f(\mathbf{x}^*) + \nabla \mathbf{h}(\mathbf{x}^*) \lambda + \nabla \mathbf{g}(\mathbf{x}^*) \mu = \mathbf{0}. \tag{9}$$

Equation (8) is called *complementary* condition:  $\mu_i$  is zero when the constrain is not (when the constrain is inactive).

# Interpretation of inequality constrains



- An inactive constrain has  $\mu = 0$ .
- In order to be active, the gradient of the constrain has to have opposite sign of the gradient of f(x):

$$\nabla f(x) + \mu \nabla g(x) = 0,$$

therefore  $\mu \geq 0$ .

## Procedure

The solution is found using various combinations of active constrains:

- 1. Set one or more coefficients  $\mu_i = 0$ ;
- 2. Solve the system of equations and find the other  $\mu_k$ ,  $k \neq i$ ;
- 3. If  $\mu \ge 0$  we found a solution, otherwise go to point 1 and zero other coefficients.

# Example

minimize 
$$f(x_1, x_2) = 3x_1^2 + 4x_2^2 + 6x_1x_2 - 6x_1 - 8x_2$$
  
subject to  $g_1(x_1, x_2) = x_1^2 + x_2^2 - 9 \le 0,$   
 $g_2(x_1, x_2) = 2x_1 - x_2 - 4 \le 0.$ 

- ► Trying  $g_1$  active  $(\mu_1 > 0)$  and  $g_2$  inactive  $(\mu_2 = 0)$  leads to negative value for  $\mu_1$ .
- Analogously  $\mu_2 < 0$  if we set  $\mu_1 = 0$ .
- If consider both active  $(\mu_i > 0)$ , we find that both are negative.
- We can conclude that are both inactive!
- We set both equal to zero and we find the unconstrained minimum.



Figure: It is possible to notice that the minimum of the function is already in the feasible region.

# Second order inequality conditions

#### Theorem

Let  $\mathbf{x}^*$  be a regular point of  $\mathbf{h}$  and the active constrains in  $\mathbf{g}$ , and let P be the tangent space of the active constrains at  $\mathbf{x}^*$ .

Then, if  $\mathbf{x}^*$  is a local minimum of f,

$$\mathbf{L}\left(\mathbf{x}^{*}\right)=F\left(\mathbf{x}^{*}\right)+\mathbf{H}\left(\mathbf{x}^{*},\lambda\right)+\mathbf{G}\left(\mathbf{x}^{*},\mu\right)$$

is positive semidefinite on the tangent subspace of the active constrains. In the above notation

$$\begin{aligned} [\mathbf{H}(\mathbf{x}^*, \lambda)]_{\forall i,j} &= \sum_{k=1}^m \frac{\partial^2 h_k(\mathbf{x}^*)}{\partial x_i \partial x_i} \lambda_k, \\ [\mathbf{G}(\mathbf{x}^*, \mu)]_{\forall i,j} &= \sum_{k=1}^p \frac{\partial^2 g_k(\mathbf{x}^*)}{\partial x_i \partial x_j} \mu_k. \end{aligned}$$

## **Exercise**

### **Problem**

Let us suppose to have n transmission channels, each one corrupted by WGN with different variance  $(N_1, N_2, ..., N_n)$ .

How can we distribute the available power P along each channel in an optimal way?

## Solution (1/2)

Knowing that the capacity of a channel *i* is

$$\frac{1}{2}\log\left(1+\frac{P_i}{N_i}\right),\,$$

we have the following constrained optimization problem of the form

$$L = \sum_{i=1}^{n} \frac{1}{2} \log \left( 1 + \frac{P_i}{N_i} \right) + \lambda \left( \sum_{i=1}^{n} P_i - P \right) + \sum_{i=1}^{n} \mu_i P_i.$$

## **Exercise**

## Solution (2/2)

If  $P_i > 0$  (inactive constrain), then  $\mu_i = 0$ ,

$$\frac{\partial L}{\partial P_i} = \frac{1}{2} \frac{1}{N_i + P_i} + \lambda = 0,$$

that gives

$$P_i + N_i = -\frac{1}{2\lambda}.$$

If  $P_i = 0$  (active constrain),  $\mu_i \leq 0$ ,

$$N_i = -\frac{1}{2(\lambda + \mu_i)} \quad \Rightarrow \quad N_i \ge -\frac{1}{2\lambda}$$
,

with the constrain  $\sum_{i=active} P_i = P$ .



Figure: *Waterfall* solution to the maximization problem.