Problem on Array

You are given an array of integers A_{1..N} of N elements.

A function F(i) of A returns the largest index j of array A such that all A_k where i < k < j are smaller than both A_i and A_j . By convention, j = N if i = N. Consider the following example. Let $A_{1..6} = \{5, 2, 3, 6, 4, 5\}$; then, function F(i) for i = 1..6 will return $\{4, 3, 4, 6, 6, 6\}$. Notice that:

- For i = 1, the largest j is 4. $A_1 = 5$, $A_4 = 6$, and $A_{2...3} = \{2, 3\}$; therefore, F(1) = 4.
- For i = 2, the largest j is 3. $A_2 = 2$, $A_3 = 3$, and $A_{\emptyset} = \{ \}$ —there are no integer k such that 2 < k < 3; therefore, F(2) = 3.
- For i = 3, the largest j is 4. $A_3 = 3$, $A_4 = 6$, and $A_{\emptyset} = \{ \}$; therefore, F(3) = 4.
- For i = 4, the largest j is 6. $A_4 = 6$, $A_6 = 5$, and $A_{5..5} = \{4\}$; therefore, F(4) = 6.
- For i = 5, the largest j is 6. $A_5 = 4$, $A_6 = 5$, and $A_\emptyset = \{\}$; therefore, F(5) = 6.
- For i = 6, j = 6 (by convention); therefore, F(6) = 6.

A function G(i) of A is defined as F(i) - i. Thus, in the previous example, G(i) for i = 1..6 is $\{3, 1, 1, 2, 1, 0\}$.

Your task in this problem is to output the largest G(i) and the sum of G(i) for all i given array A. In the previous example, the largest G(i) is 3, while the sum of all G(i) is 3 + 1 + 1 + 2 + 1 + 0 = 8.

As the sum of all G(i) can be very large, you should modulo the output by 1,000,000,007.

Input

Input begins with an integer: T ($1 \le T \le 20$) denoting the number of cases.

Each case contains the following input block: Each case begins with an integer N (1 \leq N \leq 500,000) denoting the array size. The next line contains N integers A_i (1 \leq A_i \leq 1,000,000,000) representing the array's element.

The sum of all N in input is no larger than 1,000,000.

Output

For each case, output in a line "Case #X: Y Z" where X is the case number (starts from 1), Y is the largest G(i), and Z is the sum of all G(i) modulo 1,000,000,007 for the respective case.

Examples

```
input
                                                                           Example #1
5 2 3 6 4 5
1 2 3 4 5
5 4 3 2 1
100 130 125 147
output
Case #1: 3 8
Case #2: 1 4
Case #3: 1 4
Case #4: 2 4
explanation
Case 1: This is the example given in the problem statement.
Case 2: F(i) = \{2, 3, 4, 5, 5\}; G(i) = \{1, 1, 1, 1, 0\}.
Case 3: F(i) = \{2, 3, 4, 5, 5\}; G(i) = \{1, 1, 1, 1, 0\}.
Case 4: F(i) = \{2, 4, 4, 4\}; G(i) = \{1, 2, 1, 0\}.
```