"I've been substituted"

Y13 UNIT 4 TEST 4

4.6 AROMATIC CHEMISTRY 4.7 AMINES

 $\r)$ y1vfz‡^tzr21

Answer all questions
Total 53 marks
Name:
Mark for Section A/43
Mark for Section B/11

Grade.....

Total:/53

SECTION A

(i)	Write an equation showing how a reactive species is formed from propene, aluminium chloride and hydrogen chloride.	
(ii)	Name the type of substitution reaction which follows the formation of the reactive species above and outline a mechanism for this substitution.	
	Type of substitution	
	Mechanism	
•	ain why propylbenzene, $C_6H_5CH_2CH_2CH_3$, is obtained only as a minor by-product in bove reaction.	
the a		
the a	bove reaction.	

1.

2.	(a)	cycle	mate a value for the enthalpy of hydrogenation of the hypothetical molecule ohexa-1,3,5-triene, given that the enthalpy of hydrogenation of cyclohexene 0.6 kJ mol ⁻¹ .	
				(2)
	(b)		enthalpy of hydrogenation of benzene is -208kJ mol^{-1} . Explain why this value on that you have obtained for cyclohexa-1,3,5-triene.	liffers
		•••••	(To	(2) otal 4 marks)
3.	(a)	Expl	lain why ethylamine is a Brønsted-Lowry base.	
	(b)	Why	y is phenylamine a weaker base than ethylamine?	(2)
				(2)
	(c)	Ethy	vlamine can be prepared from the reaction between bromoethane and ammonia	(=)
		(i)	Name the type of reaction taking place.	
		(ii)	Give the structures of three other organic substitution products which can be obtained from the reaction between bromoethane and ammonia.	
			Compound 1 Compound 2 Compound 3	

(d)		e an equation for the conversion of ethanenitrile into ethylamine and give one reason this method of synthesis is superior to that in part (c).
	Equa	ution
	Reas	on
		(2)
		(Total 10 marks)
	followi ylbenz	ing reaction scheme shows the formation of two amines, ${\bf K}$ and ${\bf L}$, from tene.
		$\begin{array}{c c} CH_3 & CH_3 \\ \hline \\ CH_3 & Step 2 \\ \hline \\ NO_2 & NH_2 \\ \hline \\ K \end{array}$
		$\begin{array}{c} \text{CH}_2\text{Cl} & \text{CH}_2\text{NH}_2 \\ \hline \\ \text{Step 4} & \hline \\ \\ \textbf{L} \end{array}$
(a)	(i)	Give the reagents needed to carry out Step 1. Write an equation for the formation from these reagents of the inorganic species which reacts with methylbenzene.
		Reagents

..... *Equation* Name and outline a mechanism for the reaction between this inorganic species (ii) and methylbenzene. Name of mechanism Mechanism

4.

			(7)
(b)	Give	e a suitable reagent or combination of reagents for Step 2.	
			(1)
(c)	(i)	Give the reagent for Step 4 and state a condition to ensure that the primary amine is the major product.	
		Reagent	
		Condition	
	(ii)	Name and outline a mechanism for Step 4.	
		Name of mechanism	
		Mechanism	
<i>(</i> 1)	г 1	. 1 . 77. 1 1 .1	(7)
(d)	Expl	ain why amine ${f K}$ is a weaker base than ammonia.	
	•••••		
	•••••		
	•••••		(2)
(e)		w the structure of the organic compound formed when a large excess of bromomethane as with amine L .	
			(1)
(f)		when the structure of the organic compound formed when ethanoyl chloride reacts with the ${\bf L}$ in an addition-elimination reaction.	
(f)			(1)

(1) (Total 19 marks)

SECTION B

5.	(a)	Outline a mechanism for the formation of ethylamine from bromoethane. State why the ethylamine formed is contaminated with other amines. Suggest how the reaction condition could be modified to minimise this contamination.				
			(6)			
	(b)	Suggest one reason why phenylamine cannot be prepared from bromobenzene in a similar way. Outline a synthesis of phenylamine from benzene. In your answer you should give reagents and conditions for each step, but equations and mechanisms are not required.				
		(Total 11 ma	(5) arks)			
••••	•••••		•••			
•••••			•••			
•••••	•••••		•••			
•••••	•••••		•••			
•••••	•••••		•••			
•••••	•••••		•••			
•••••			•••			
•••••	•••••		•••			
•••••	•••••		•••			
•••••	•••••		•••			
••••	•••••		•••			
••••	• • • • • • •		•••			
•••••	•••••		•••			
•••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••			
•••••	•••••		•••			
•••••	•••••		•••			
•••••	•••••		•••			
•••••			•••			
•••••	•••••		•••			
•••••	••••••		•••			
•••••	•••••		•••			
•••••	•••••		•••			