Übungen zur linearen Algebra - Vektorräume

- 1. Ist der Polynomring $\mathbb{R}[X]$ mit der Addition ein \mathbb{R} -Vektorraum?
- 2. Gegeben seien die folgenden Vektoren in \mathbb{C}^2

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} i \\ 0 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \vec{v}_4 = \begin{pmatrix} 0 \\ i \end{pmatrix}$$
 Zeigen Sie, daß die Vektoren über $K = \mathbb{C}$ linear abhängig sind aber über

 $K = \mathbb{R}$ linear unabhängig.

3. Ist U ein Untervektoraum von V? Warum oder warum nicht.

(a)
$$U = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 | x + 2y - z = 0 \}, \quad V = \mathbb{R}^3$$

(b)
$$U = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 | x + y^2 = 0 \}, \quad V = \mathbb{R}^2$$

- (c) $U = \{(a_n)_{n \in \mathbb{N}} \in V | a_i \neq 0, \text{für h\"ochstens endlich viele} \quad i \in \mathbb{N}\}$ $V = \{(a_n)_{n \in \mathbb{N}} | a_i \in \mathbb{R}, \forall i \in \mathbb{N}\}$
- (d) $U = \{f : \mathbb{R} \to \mathbb{R} | f(x) = f(-x), \quad \forall x \in \mathbb{R}\}, \quad V = Abb(\mathbb{R}, \mathbb{R})$
- 4. Gegeben sind die Vektoren in $V=\mathbb{R}^4$ (Achtung geändert !!!)

Teigen Sie , daß
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$$
 eine Basis von V ist.

Stellen Sie den Vektor $\vec{a} = \begin{pmatrix} 0 \\ 5 \\ 2 \\ 6 \end{pmatrix}$ in dieser Basis dar.