CS 188 Spring 2019

Introduction to Artificial Intelligence

Final Exam

- You have 170 minutes. The time will be projected at the front of the room. You may not leave during the last 10 minutes of the exam.
- Do NOT open exams until told to. Write your SIDs in the top right corner of every page.
- If you need to go to the bathroom, bring us your exam, phone, and SID. We will record the time.
- In the interest of fairness, we want everyone to have access to the same information. To that end, we will not be answering questions about the content. If a clarification is needed, it will be projected at the front of the room. Make sure to periodically check the clarifications.
- The exam is closed book, closed laptop, and closed notes except your three-page double-sided cheat sheet. Turn
 off and put away all electronics.
- We will give you two sheets of scratch paper. Please do not turn them in with your exam. Mark your answers ON THE EXAM IN THE DESIGNATED ANSWER AREAS. We will not grade anything on scratch paper.
- For multiple choice questions:
 - means mark ALL options that apply
 - O means mark ONE choice
 - When selecting an answer, please fill in the bubble or square COMPLETELY (● and ■)

First name	Ran
Last name	Liau
SID	3034504227
Student to the right (SID and Name)	3032021149 BRYAN 2HENG
Student to the left (SID and Name)	3034502732 Hayzhu

Q1.	Agent Testing Today!	/1
Q2.	Search	/12
Q3.	Pacman's Treasure Hunt	/14
Q4.	Inexpensive Elimination	/9
Q5.	Sampling	/10
Q6.	HMM Smoothing	/11
Q7.	Partying Particle #No Filter(ing)	/8
Q8.	Double Decisions and VPI	/11
Q9.	Naively Fishing	/11
Q10.	Neural Networks and Decision Trees	/13
	Total	/100

THIS PAGE IS INTENTIONALLY LEFT BLANK

Q1. [1 pt] Agent Testing Today!

It's testing time! Not only for you, but for our CS188 robots as well! Circle your favorite robot below.

Q2. [12 pts] Search

- (a) Consider the class of directed, $m \times n$ grid graphs as illustrated above. (We assume that m, n > 2.) Each edge has a cost of 1. The start state is A_{11} at top left and the goal state at A_{mn} is bottom right.
 - (i) [2 pts] If we run Uniform-Cost graph search (breaking ties randomly), what is the maximum possible size of the fringe? Write your answer in terms of m and n in big-O style, ignoring constants. For example, if you think the answer is $m^3n^3 + 2$, write m^3n^3 .

$$\sqrt{m^2+h^2}$$

(ii) [2 pts] If we run Depth-First graph search with a stack, what is the maximum possible size of the stack?

- (b) Now answer the same questions for *undirected* $n \times n$ grid graphs (i.e., the links go in both directions between neighboring nodes).
 - (i) [2 pts] Maximum fringe size for Uniform-Cost graph search?

(ii) [2 pts] Maximum stack size for Depth-First graph search?

- (c) The following questions are concerned with an *undirected* grid graph G and with Manhattan distance d((i, j), (k, l)) = |i k| + |j l|. Now the start and goal locations can be anywhere in the graph.
 - (i) [1 pt] True/False: Let G^+ be a copy of G with n extra links added with edge cost 1 that connect arbitrary non-adjacent nodes. Then Manhattan distance is an admissible heuristic for finding shortest paths in G^+ .
 - O True False
 - (ii) [1 pt] True/False: Let G^- be a copy of G with n arbitrarily chosen links deleted, and let $h^+(s,t)$ be the exact cost of the shortest path from location s to location t in G^+ . Then $h^+(\cdot,g)$ is an admissible heuristic for finding shortest paths in G^- when the goal is location g.
 - ♠ True False

(iii) (2 pts) Suppose that K robots are at K different locations (x_k, y_k) on the complete grid G, and can move simultaneously. The goal is for them all to meet in one location as soon as possible, subject to the constraint that if two robots meet in the same location en route, they immediately settle down together and cannot move after that. Define d_X to be the maximum x separation, i.e., $|\max\{x_1,\ldots,x_K\} - \min\{x_1,\ldots,x_K\}|$, with d_Y defined similarly. Which of the following is the most accurate admissible heuristic for this problem? (Select one only.)

 $\lceil d_X/2 \rceil + \lceil d_Y/2 \rceil$

 $\begin{array}{c} d_X + d_Y \\ d_X + d_Y \\ [d_X/2] + [d_Y/2] + K/4 \\ \max\{[d_X/2], [d_Y/2], K/4\} \\ \max\{[d_X/2] + [d_Y/2], K/4\} \end{array}$

Q3. [14 pts] Pacman's Treasure Hunt

Pacman is hunting for gold in a linear grid-world-with cells A, B, C, D. Cell A contains the gold but the entrance to A is locked. Pacman can pass through if he has a key. The possible states are as follows: X_k means that Pacman is in cell X and has the key; X_{-k} means that Pacman is in cell X and does not have the key. The initial state is always C_{-k} .

In each state Pacman has two possible actions, left and right. These actions are deterministic but do not change the state if Pacman tries to enter cell A without the key or run into a wall (left from cell A or right from cell D). The key is in cell D and entering cell D causes the key to be picked up instantly.

If Pacman tries to enter cell A without the key, he receives a reward of -10, de. $R(B_{-k}, left, B_{-k}) = -10$. The "exit" action from cell A receives a reward of 100. All other actions have 0 reward.

Pacman does not have the key r = 100

(a) [2 pts] Consider the discount factor $\gamma = 0.1$ and the following policy:

State		A_k	B_k	C_k	D_{k}	A_{-k}	B_{-k}	C_{-k}	D_{-k}
Action	ı	exit	left	left	left	exit	left	right	right

Fill in $V^{\pi}(B_{-k})$ and $V^{\pi}(C_{-k})$ for this policy in the table below.

						lott	right	
State	A_k	B_k	C_{k}	D_k	A_{-k}	B_{-k}	C_{-k}	D_{-k}
$V^{\pi}(s)$	100	10	1	0.1	100	-102 9	0	0

(b) |3 pts] Now, we will redefine the MDP so that Pacman has a probability $\beta \in [0, 1]$, on each attempt, of crashing through the gate even without the key. So our transition function from B will be modified as follows:

$$T(B_{-k}, left, A_{-k}) = \beta$$
 and $T(B_{-k}, left, B_{-k}) = 1 - \beta$.

All other aspects remain the same. The immediate reward for attempting to go through the gate is -10 if Pacman fails to go through the gate, as before, and 0 if Pagman succeeds in crashing through gate. Which of the following are true? (Select one or more choices.)-

For any fixed $\gamma < 1$, there is some value $\beta < 1$ such that trying to crash through the gate is better than fetching the key.

For any fixed β , there is some value of $\gamma < 1$ such that trying to crash through the gate is better than fetching the key.

For $\beta = \frac{1}{2}$, there is some value of $\gamma < 1$ such that trying to crash through the gate is better than fetching the key.

None of the above $\beta - 1 + \beta + (1 - \beta) + (1 - \beta)$

(c) Thus far we've assumed knowledge of the transition function T(s, a, s'). Now let's assume we do not.

((i) 2 pts] Which of the following can be used to obtain a policy if we don't know the transition function?

☐ Value Iteration followed by Policy Extraction X

10(1-B)-B 20 Approximate Q-learning

TD learning followed by Policy Extraction/

Policy Iteration with a learned T(s, a, s')

(ii) 1 pt Under which conditions would one benefit from using approximate Q-learning over vanilla Qlearning? (Select one only)

When the state space is very high-dimensional

When the transition function is known

() When the transition function is unknown

O When the discount factor is small

(iii) [4 pts] Suppose we choose to use Q-learning (in absence of the transition function) and we obtain the following observations:

s_t	a	s_{t+1}	reward
C_k	left	B_k	0
B_k	left	A_k	0
A_k	exit	terminal	100
B_{-k}	left	B_{-k}	-10

What values does the Q-function attain if we initialize the Q-values to 0 and replay the experience in the table exactly two times? Use a learning rate, α , of 0.5 and a discount factor, γ , of 0.1.

 $Q(A_k, exit)$:

 $Q(B_k, left)$: O 10

O 5 3. $Q(C_k, left)$: O 10

4. $Q(B_{-k}, left)$: \bigcirc -10 \bigcirc 5 \bigcirc -2.5

cl- = 0.10+ cl-

- (d) Suppose we want to define the (deterministic) transition model using propositional logic instead of a table. States are defined using proposition symbols be A_t, B_t, C_t, D_t and K_t , where, e.g., A_t means that Pacman is in cell A at time t and K_t means that the Pacman has the key. The action symbols are Left, Right, Exit.
 - (i) [1 pt] Which of the following statements are correct formulations of the successor-state axiom for A_t ?
 - $\bigcirc A_t \Leftrightarrow (A_{t-1} \Rightarrow (\text{Left}_{t-1} \land B_{t-1} \land K_{t-1})$
 - $\bigcirc A_t \Leftrightarrow (A_t \land \mathsf{Left}_t) \lor (B_t \land \mathsf{Left}_{t-1} \land K_{t-1})$

 - $\bigcirc \quad A_t \Leftrightarrow (A_{t-1} \wedge \mathsf{Left}_{t-1}) \vee (B_t \not \sim \mathsf{Left}_t \wedge K_t)$
 - $\bigcirc A_t \Leftrightarrow (A_{t-1} \land \mathsf{Left}_{t-1}) \lor (B_{t-1} \land \mathsf{Left}_{t-1} \land \neg K_{t-1})$
 - (ii) [1 pt] Which of the following statements are correct formulations of the successor-state axiom for K_t ?
 - $\bigcirc K_t \Leftrightarrow K_{t-1} \wedge (C_{t-1} \vee Right_{t-1})$
 - $\bigcirc K_t \Leftrightarrow K_t \vee (\nearrow \wedge \operatorname{Right}_t)$
 - $K_t \Leftrightarrow K_{t-1} \lor (C_{t-1} \land Right_{t-1})$
 - \bigcirc $K_t \Leftrightarrow K_{t-1} \vee D_{t-1}$

Q4. [9 pts] Inexpensive Elimination

In this problem, we will be using the Bayes Net below. Assume all random variables are binary-valued.

(a) [1 pt] Consider using Variable Elimination to get P(C, G|D = d).

What is the factor generated if B is the first variable to be eliminated? Comma-separate all variables in the resulting factor, e.g., f(A, B, C), without conditioned and unconditioned variables. Alphabetically order variables in your answer. E.g., P(A) before P(B), and P(A|B) before P(A|C).

$$f(A,C,D,G) = \sum_{b} P(b|A) \cdot P(C|b) \cdot P(D|b) \cdot P(G|b)$$

(b) Suppose we want to find the *optimal* ordering for variable elimination such that we have the *smallest sum* of factor sizes. Recall that all random variables in the graph are binary-valued (that means if there are two factors, one over two variables and another over three variables, the sum of factor sizes is 4+8=12).

In order to pick this ordering, we consider using A* Tree Search. Our state space graph consists of states which represent the variables we have eliminated so far, and does not take into account the order which they are eliminated. For example, eliminating B is a transition from the start state to state B, then eliminating A will result in state AB. Similarly, eliminating A is a transition from the start state to state A, then eliminating B will also result in state AB. An edge represents a step in variable elimination, and has weight equal to the size of the factor generated after eliminating the variable.

(i) [2 pts] Yes/No: As the graph is defined, we have assumed that different elimination orderings of the same subset of random variables will always produce the same final set of factors. Does this hold for all graphs?

♦ Yes ○ No

(ii) 4 pts For this part, we consider possible heuristics h(s), for a generic Bayes Net which has N variables left to eliminate at state s. Each remaining variable has domain size D.

Let the set E be the costs of edges from state s (e.g. for s = A, E is the costs of edges from A to AE, and A to AB). Which of the following would be admissible heuristics?

(c) 2 pts] Now let's consider A* tree search on our Bayes Net for the query P(C, G|D=d), where d is observed evidence.

Fill in the edge weights (a) - (d) to complete the graph.

Start

8

B

AE

4

ABE

Q5. |10 pts| Sampling

Variables H, F, D, E and W denote the event of being health conscious, having free time, following a healthy diet, exercising and having a normal body weight, respectively. If an event does occur, we denote it with a +, otherwise -, e.g., +e denotes an exercising and -e denotes not exercising.

- A person is health conscious with probability 0.8. P(4K) - O. K
- P(+f)= 814 • A person has free time with probability 0.4.
- If someone is health conscious, they will follow a healthy diet with probability 0.9. P(+d|+h) = 0.9
- If someone is health conscious and has free time, then they will exercise with probability 0.9. f(+e) + f(+e) = 0
- If someone is health conscious, but does not have free time, they will exercise with probability 0.4. p(+e | +| -+) = 0.
- If someone is not health conscious, but they do have free time, they will exercise with probability 0.3. (+e /-h, +f)=0.2
- If someone follows both a healthy diet and exercises, they will have a normal body weight with probability 0.9. (+1) (+1) (+1)
- If someone only follows a healthy diet and does not exercise, or vice versa, they will have a normal body weight
- with probability 0.5.

 If someone neither exercises nor has a healthy diet, they will have a normal body weight with probability 0.2.

 $(+\omega) + (-\omega) = (-\omega) + (-\omega) ($
- (a) [2 pts] Select the minimal set of edges that needs to be added to the following Bayesian network

 $H \to D$

 \square $H \to F$

- (b) Suppose we want to estimate the probability of a person being normal body weight given that they exercise (i.e. P(+w|+e)), and we want to use likelihood weighting. P(+w|+e) (i) 1 pt We observe the following sample: (-w, -d, +e, +f, -h). What is our estimate of P(+w|+e) given
 - this one sample? Express your answer in decimal notation rounded to the second decimal point, or express it as a fraction simplified to the lowest terms. D. 0'3

(ii) [2 pts] Now, suppose that we observe another sample: (+w, +d, +e, +f, +h) What is our new estimate for P(+w|+e)? Express your answer in decimal notation rounded to the second decimal point, or express it as a fraction simplified to the lowest terms.

sample counts as an iteration.

(iii) [1 pt] True/False: After 10 iterations, both rejection sampling and likelihood weighting would typically compute equally accurate probability estimates. Each sample counts as an iteration, and rejecting a

O True

False

- (c) Suppose we now want to use Gibbs sampling to estimate P(+w|+e)
 - (i) [2 pts] We start with the sample (+w, +d/+e)+h, +f), and we want to resample the variable W. What is the probability of sampling (-w, +d, +e/+h, +f)? Express your answer in decimal notation rounded to the second decimal point, or express it as a fraction simplified to the lowest terms.

(ii) [1 pt] Suppose we observe the following sequence of samples via Gibbs sampling:

$$(+w, +d, +e, +h, +f), (-\underline{w}, +d, +e, +h, +f), (-\underline{w}, -d, +e, +h, +f), (-\underline{w}, -d, +e, -h, +f)$$

What is your estimate of P(+w|+e) given these samples?

(iii) [1 pt] While estimating P(+w|+e), the following is a possible sequence of sample that can be obtained via Gibbs sampling:

Q6. [11 pts] HMM Smoothing

Consider the HMM with state variables X_t and observation variables E_t . The joint distribution is given by

$$P(X_{1:T}, E_{1:T} = e_{1:T}) = P(X_1) \prod_{t=1}^{T-1} P(X_{t+1}|X_t) \prod_{t=1}^{T} P(E_t = e_t|X_t).$$

where $X_{1:T}$ means $X_1, ..., X_T$ and $E_{1:T} = e_{1:T}$ means $E_1 = e_1, ..., E_T = e_T$. We learned about how the forward algorithm can be used to solve the filtering problem, which calculates $P(X_t|E_{1:t}=e_{1:t})$. We will now focus on the smoothing problem, which calculates $P(X_t|E_{1:T}=e_{1:T})$, where $1 \leq t < T$, for obtaining a more informed estimate of the past state X_t given all observed evidence $E_{1:T}$.

Now define the following vectors of probabilities:

- $\alpha(X_t) \equiv P(E_{1:t} = e_{1:t}, X_t)$, the probability of seeing evidence $E_1 = e_1$ through $E_t = e_t$ and being in state X_t ;
- $\beta(X_t) \equiv P(E_{t+1:T} = e_{t+1:T} | X_t)$, the probability of seeing evidence $E_{t+1} = e_{t+1}$ through $E_T = e_T$ having started B(XT-1) = P(E+++T-1 = e+++-T-1 / XT-1)
- (a) [2 pts] Let us consider $\beta(X_{T-1})$. Which of the following are equivalent to $P(E_T = e_T | X_{T-1})$? (Select one or

$$\sum_{T} P(X_T = x_t | X_{T-1}) P(E_T = e_T | X_T = x_t)$$

$$\sum_{T} P(X_T = x_t | X_{T-1}) P(E_T = e_T | X_T = x_t, X_{T-1})$$

$$P(X_T = x_t | X_{T-1}) P(E_T = e_T | X_T = x_t)$$

$$P(X_T = x_t | X_{T-1}) P(E_T = e_T | X_T = x_t, X_{T-1})$$

(b) 4 pts In lecture we covered the forward recursion for filtering. An almost identical algorithm can be derived for computing the sequence $\alpha(X_1), \ldots, \alpha(X_T)$. For β , we need a backward recursion. What is the appropriate expression for $\beta(X_t)$ to implement such a recursion? The expression may have up to four parts, as follows:

$$P(E_{t+1} = e_{t+1}, ..., E_T = e_T | X_t) =$$
 (i) (ii) (iii) (iv)

For/each blank (i) through (iv), mark the appropriate subexpression. If it is possible to write the expression $for/\beta(X_t)$ without a particular subexpression, mark "None."

(1) [1 pt]
$$\bigcirc \sum_{x} \downarrow_1 \bigcirc \sum_{x} \bigcirc \bigvee_{x} \bigvee_{x} \bigcirc \bigvee_{x} \bigvee$$

(i) [1 pt]
$$\bigcirc \sum_{x_{t-1}} \bigcirc \sum_{x_{t}} \bigcirc \sum_{x_{t}} \bigcirc \sum_{x_{t+1}} \bigcirc \text{None}$$

(ii) [1 pt] $\bigcirc \alpha(X_{t-1} \neq x_{t-1}) \bigcirc \alpha(X_{t} \neq x_{t}) \bigcirc \alpha(X_{t+1} = x_{t+1})$
 $\bigcirc \beta(X_{t-1} \neq x_{t-1}) \bigcirc \beta(X_{t+1} = x_{t+1}) \bigcirc \text{None}$

(iii) [1 pt]
$$\bigcirc P(X_t = x_t | X_{t-1})$$
 $\bigcirc P(X_{t+1} = x_{t+1} | X_t)$ $\bigcirc P(X_{t+1} | x_{t-1})$ $\bigcirc P(X_{t+1} | x_t)$ $\bigcirc P(X_{t+1} | x_t)$ None

(iii) [1 pt]
$$\bigcirc P(X_t = x_t | X_{t-1})$$
 $\bigcirc P(X_{t+1} = x_{t+1} | X_t)$ $\bigcirc P(X_{t+1} = x_{t+1} | X_t)$ $\bigcirc P(X_{t+1} | X_t = x_t)$ $\bigcirc P(X_{t+1} | X_t = x_t)$ None

(iv) [1 pt] $\bigcirc P(E_{t-1} = e_{t+1} | X_{t-1})$ $\bigcirc P(E_{t-1} = e_{t+1} | X_{t-1})$ $\bigcirc P(E_{t} = e_{t} | X_t = x_t)$ $\bigcirc P(E_{t+1} = e_{t+1} | X_{t+1} = x_{t+1})$ $\bigcirc P(E_{t+1} = e_{t+1} | X_{t+1} = x_{t+1})$ $\bigcirc P(E_{t+1} = e_{t+1} | X_{t+1} = x_{t+1})$

(c) [1 pt] If the number of values that each X_t can take on is K and the number of timesteps is T, what is the total computational complexity of calculating $\beta(X_t)$ for all t, where $1 \le t \le T$?

$$\bigcirc$$
 $O(K)$ \bigcirc $O(T)$ \bigcirc $O(K^2T)$ \bigcirc $O(KT^2)$ \bigcirc $O(K^2T^2)$ \bigcirc None

- (d) [2 pts] Which of the following expressions are equivalent to $P(X_t = x_t | E_{1:T} = e_{1:T})$? (Select one or more.)

 - $\frac{\alpha(X_t = x_t)\beta(X_t = x_t)}{\sum_{x_t'} \alpha(X_t = x_t')\beta(X_t = x_t')}$
- (e) [2 pts] If the number of values that each X_t can take on is K and the number of timesteps is T, what is the lowest total computational complexity of calculating $P(X_t|E_{1:T}=e_{1:T})$ for all t, where $1 \le t \le T$?
 - \bigcirc O(K) \bigcirc O(T) 9 $O(K^2T)$ \bigcirc $O(KT^2)$ \bigcirc $O(K^2T^2)$ \bigcirc None

k2T + k2T + k2T

Q7. [8 pts] Partying Particle #No Filter(ing)

Algorithm 1 Particle Filtering					
1: procedure Particle Filtering(T 2: $x \leftarrow \text{sample } N \text{ particles from ini}$ 3: for $t \leftarrow 0$ to $T - 1$ do 4: $x_i \leftarrow \text{sample particle from } P$ 5: $w_i \leftarrow P(E_{t+1} X_{t+1} = x_i)$ for 6: $x \leftarrow \text{resample } N \text{ particles acc}$ 7: end for 8: return x 9: end procedure	itial state distribution $P(X_0)$ $(X_{t+1} X_t=x_i)$ for $i=1,\ldots,N$)	time steps, N : numl $ ightharpoonup X_t$: hidden state	E_t : o \triangleright Time \triangleright 1	▶ Initialize
Algorithm 1 outlines the particle filter particles, while w is a list of N weights (a) Here, we consider the unweighted	for those particles.			repres	sents a list of N
(i) [1 pt] After executing line 4,					
	$\bigcirc P(X_1; \bigvee_{t=1}^{t} E_{1:t})$			0	None
(ii) [1 pt] After executing line 6,	`				
	$\bigcirc P(X_{1:t+1} E_{1:t+1})$			0	None
 (b) The particle filtering algorithm shows P(X_T E_{1:T}). The algorithm is consistent as N → ∞. In this question, we provide the algorithm is still consistent to be more accurate in general in distribution to be closer to the transitrary precision arithmetic. (i) [2 pts] We modify line 6 to satisfy (as opposed to a fixed number) 	consistent if and only if the present several modifications at or not consistent, and if it terms of its estimate of $P(\text{que one})$ or less accurate.	approto A it is $X_T \mid$ Assuwith	eximation converges algorithm 1. For each consistent, indicate $E_{1:T}$) (i.e., you wou ame unlimited composite equal probability p :	to the h modi e wheth ld experience utation = 0.5 for	true distribution fication, indicate her you expect it ect the estimated hal resources and or each time step
and states. This algorithm is	:				
Consistent and More Consistent and Less		0	Not Consistent		
 (ii) [1 pt] Replace lines 4-6 as fol 4': Compute a tabular repres 5': Use the forward algorithm 6': Set x to be a sample of N This algorithm is: 	sentation of $P(X_t = s E_{1:t})$ in to calculate $P(X_{t+1} E_{1:t+1})$	1) exa			
Consistent and More Consistent and Less		0	Not consistent		
(iii) [1 pt] At the start of the algebra and 6 with the following multiples of the start of the algebra and 6 with the following multiples of the start of the algebra and the start of the start	tiplicative update: $ X_{t+1} = x_i $. he T iterations, we resample	le x a	according to the cun		
Consistent and MoreConsistent and Less		Ø	Not Consistent		

- (c) [2 pts] Suppose that instead of particle filtering we run the following algorithm on the Bayes net with T time steps corresponding to the HMM:
 - 1. Fix all the evidence variables $E_{1:T}$ and initialize each X_t to a random value x_t .
 - 2. For i = 1, ..., N do
 - Choose a variable X_t uniformly at random from X_1, \ldots, X_T .
 - Resample X_t according to the distribution $P(X_t|X_{t-1}=x_{t-1},X_{t+1}=x_{t+1},E_t=e_t)$.
 - Record the value of X_T as a sample.

Finally, estimate $P(X_T = s | E_{1:T} = e_{1:T})$ by the proportion of samples with $X_T = s$. This algorithm is:

Consistent

O Not Consistent

Q8. [11 pts] Double Decisions and VPI

In both parts of this problem, you are given a decision network with two decision nodes: D_1 and D_2 . Your total utility is the sum of two subparts: $U_{\text{total}} = U_1 + U_2$, where U_1 only depends on decision D_1 and U_2 only depends on decision D_2 .

(a) Consider the following decision network:

For each subpart below, select all comparison relations that are true or could be true.

(b) Now consider the following decision network:

For each subpart below, select all comparison relations that are true or could be true.

- (c) [2 pts] Select all statements that are true. For the first two statements, consider the decision network above.
 - If A, B are independent, then VPI(B) = 0
 - If A, B are guaranteed to be dependent, then VPI(B) > 0
 - ☐ In general, Gibbs Sampling can estimate the probabilities used when calculating VPI X In general, Particle Filtering can estimate the probabilities used when calculating VPI

Q9. [11 pts] Naively Fishing

Pacman has developed a hobby of fishing. Over the years, he has learned that a day can be considered fit or unfit for fishing Y which results in three features: whether or not Ms. Pacman can show up M, the temperature of the day T, and how high the water level is W. Pacman models it as the following Naive Bayes classification problem, shown below:

(a) We wish to calculate the probability a day is fit for fishing given features of the day. Consider the conditional probability tables that Pacman has estimated over the years:

								1	ľ	P(1 1)
		M	Y	P(M Y)	W	Y	P(W Y)	cold	yes	0.2
Y	P(Y)	yes	yes	0.5	high	yes	0.1	warm	yes	0.2
yes	0.1	no	yes	0.5	low	yes	0.9	hot	yes	0.5
no	0.9	yes	no	0.2	high	no	0.5	cold	no	0.1
		no	no	0.8	low	no	0.5	warm	no	0.2
			•					hot	no	0.6

(i) [1 pt] Using the method of Naive Bayes, what are these conditional probabilities, calculated from the conditional probability tables above? Fill in your final, decimal answer in the boxes below.

$$P(Y = \text{yes}|M = \text{yes}, T = \text{cold}, W = \text{high}) = 0$$

$$P(Y = \text{no}|M = \text{yes}, T = \text{cold}, W = \text{high}) = 0$$

(ii) [1 pt] Using the method of Naive Bayes, do we predict that the day is fit for fishing if Ms. Pacman is available, the weather is cold, and the water level is high?

Fit for fishing

Not fit for fishing

(b) Assume for this problem we do not have estimates for the conditional probability tables, and that Pacman is still using a Naive Bayes model. Write down an expression for each of the following queries. Express your solution using the conditional probabilities P(M|T), P(T|Y), P(W|Y), and P(Y) from the Naive Bayes model.

(i) [1 pt] Pacman now wishes to find the probability of Ms. Pacman being available or not given that the temperature is hot and the water level is low. Select all expressions that are equal to P(M|T,W).

$$\sum_{f} \frac{\sum_{f} P(f) P(M|f) P(T|f) P(W|f)}{\sum_{f} P(f) P(W|f) P(T|f)} \quad \square \quad \sum_{f} P(M|f) \quad \text{above} \quad \sum_{f} \frac{P(M|f) P(T|f) P(W|f)}{P(T|f) P(W|f)} \quad \square \quad \text{None of the above}$$

(ii) [2 pts] Pacman now wants to now choose the class that gives the maximum P(features|class), that is, choosing the class that maximizes the probability of seeing the features. Write an expression that is equal to P(M, T, W|Y).

$$P(M,T,W|Y) = \frac{P(Y) \cdot P(W|Y) \cdot P(W|Y)}{P(Y) \cdot P(W|Y) \cdot P(W|Y)}$$

(iii) [2 pts] Assume that Pacman is equally likely to go fishing as he is to not, i.e. P(Y = yes) = P(Y = no). Which method would give the correct Naive Bayes classification of whether a day is a good day for fishing if Pacman observes values for M, T, and W?

$$\square$$
 arg $\max_y P(M, T, W|Y = y)$ arg $\max_y P(Y = y|M, T, W)$ \square None of the above

(c) Assume Pacman now has the underlying Bayes Net model, and the conditional probability tables from the previous parts do not apply. Recall that predictions are made under the Naive Bayes classification using the conditional probability, P(Y|W,T,M), and the Naive Bayes assumption that features are independent given the class. We wish to explore if the Naive Bayes model is guaranteed to be able to able to represent the true distribution.

For each of the following true distributions, select 1) if the Naive Bayes modeling assumption holds and 2) if the Naive Bayes model is guaranteed to be able to represent the true conditional probability, P(Y|W,T,M).

(i) [2 pts]

Does the Naive Bayes modeling assumption hold here?

🔾 Yes 🍪 No

Can the Naive Bayes model represent the true conditional distribution P(Y|W,T,M)?

Yes O No

(ii) [2 pts]

Does the Naive Bayes modeling assumption hold here?

🔾 Yes 🍪 No

Can the Naive Bayes model represent the true conditional distribution P(Y|W,T,M)?

Yes W No

Q10. [13 pts] Neural Networks and Decision Trees

- (a) Given the Boolean function represented by the truth table on the right, indicate which of the models can perfectly represent this function for some choice of parameters. Where no constraints are stated on the architecture (e.g. the number of neurons, activation function), answer yes if there exists *some* architecture which could represent the function.
 - (i) [2 pts] $f(x,y) = x \oplus y$ can be modelled by:

A neural network with a single layer (no hidden lay		A neural	network wi	th a single	layer (no	hidden	layer
---	--	----------	------------	-------------	-----------	--------	-------

A neural network with two layers (a single hidden layer)

A decision tree of depth one

A decision tree of depth two

- (ii) [2 pts] $f(x,y) = \neg(x \lor y)$ can be modelled by:
 - A neural network with a single layer (no hidden layer)
 - A neural network with two layers (a single hidden layer)
 - A decision tree of depth one
 - A decision tree of depth two

- $\begin{array}{c|cccc} x & y & x \oplus y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
- $\begin{array}{c|ccc} x & y & \neg (x \lor y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
- (b) Ada is training a single layer (no hidden layer) neural network to predict a one-dimensional value from a one-dimensional input:

$$f(x) = g(Wx + b)$$

where g(y) = relu(y) = max(0, y). She initializes her weight and bias parameters to be:

$$W=-1, \quad b=0.$$

(i) [1 pt] The derivative of the ReLU function takes the form:

$$\operatorname{relu}'(y) = \begin{cases} s & y \ge u, \\ t & y < u. \end{cases}$$

Select the appropriate choice of s, t and u below.

s is equal to:

t is equal to:

u is equal to:

$$b t = 0.$$

$$\bigcirc u = -1.$$

$$s = 1$$

$$\bigcirc \quad t=1.$$

$$\mathbf{a} = \mathbf{0}$$

$$\bigcirc$$
 $s=y$.

$$\cdot \bigcirc t = y.$$

$$\bigcap u = 1$$

(ii) [2 pts] Compute the following partial derivatives of f with respect to the weight W assuming the same parameters W and b as above.

$$\left.\frac{\partial f}{\partial W}\right|_{T=-1} = \underline{\hspace{1cm}}$$

(iii) [2 pts] For inputs x > 0, what range of values will $\frac{\partial f}{\partial W}$ take on for the current values of W and b?

	(iv)	trai acti	ot] Suppose we now use gradient descent to train W and b to minimize a squared loss. Assume the ning data consists only of inputs $x > 0$. For the given weight initialization, which of the following vation functions will result in the loss decreasing over time? You may find your answer to (b)(iii) of ul.
			Rectified Linear Unit: $g(y) = relu(y)$.
			Hyperbolic Tangent: $g(y) = \tanh y$.
			Sigmoid Function: $g(y) = \sigma(y)$.
(c)			ppose you have found a learning rate α_b that achieves low loss when using batch gradient descent. A rate α_s for stochastic gradient descent that achieves similarly low loss would be expected to be:
	0	Hig	her than for batch gradient descent: $\alpha_s > \alpha_b$
	@	Low	ver than for batch gradient descent: $\alpha_s < \alpha_b$
(d)			and Alex is training a deep neural network, AlexNet, to classify images. He observes that the training w, but that loss on a held-out validation dataset is high. Validation loss can be improved by:
	(i)	[1 p	pt]
		Ø	Decreasing the number of layers.
		0	Increasing the number of layers.
	(ii)	[1 p	ot]
			Decreasing the size of each hidden layer.
		0	Increasing the size of each hidden layer.