Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. An attacker intercepts the following ciphertext (hex encoded):

1/1 point

20814804c1767293b99f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

He knows that the plaintext is the ASCII encoding of the message "Pay Bob 100\$" (excluding the quotes). He also knows that the cipher used is CBC encryption with a random IV using AES as the underlying block cipher.

Show that the attacker can change the ciphertext so that it will decrypt to "Pay Bob 500\$". What is the resulting ciphertext (hex encoded)?

This shows that CBC provides no integrity.

20814804c1767293bd9f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

⊘ Correct

You got it!

2. Let (E,D) be an encryption system with key space K , message

1/1 point

space
$$\{0,1\}^n$$
 and ciphertext space $\{0,1\}^s$. Suppose (E,D)

provides authenticated encryption. Which of the following systems

provide authenticated encryption: (as usual, we use \parallel to denote

string concatenation)

$$D'(k,c) = egin{cases} D(k,c) & ext{if } D(k,c)
eq ot \ 0^n & ext{otherwise} \end{cases}$$

 $lacksquare E'(k,m)=E(k,m)igoplus 1^s$ and

$$D'(k,c) = D(k,c \bigoplus 1^s)$$

⊘ Correct

directly gives an attack on (E',D').

lacksquare $E'(k,m)=E(k,migoplus 1^n)$ and

$$D'(k,c) = egin{cases} D(k,c) igoplus 1^n & ext{if } D(k,c)
eq ot \ & ext{otherwise} \end{cases}$$

Correct

- \odot (E',D') provides authenticated encryption because an attack on (E',D') directly gives an attack on (E,D).
- $egin{array}{ccc} E'(k,m) = ig(E(k,m),\ 0ig) & ext{and} \ D'(k,\ (c,b)\) = D(k,c) \end{array}$
- If you need to build an application that needs to encrypt multiple
 messages using a single key, what encryption
 method should you use? (for now, we ignore the question of key generation
 and management)

 use a standard implementation of randomized
 - counter mode.
 - use a standard implementation of one of the authenticated encryption modes GCM, CCM, EAX or OCB.
 - implement OCB by yourself
 - use a standard implementation of CBC encryption with a random IV.
 - **⊘** Correct
- **4.** Let (E,D) be a symmetric encryption system with message space M (think of M as only consisting for short messages, say 32 bytes).

Define the following MAC (S,V) for messages in M:

$$S(k,m) := E(k,m) \quad ; \quad V(k,m,t) := egin{cases} 1 & ext{if } D(k,t) = m \ 0 & ext{otherwise} \end{cases}$$

What is the property that the encryption system $({\cal E},{\cal D})$ needs to satisfy

for this MAC system to be secure?

- ciphertext integrity
- perfect secrecy
- semantic security
- o semantic security under a chosen plaintext attack
 - Correct
 Indeed, ciphertext integrity prevents existential

1 / 1 point

1/1 point

5. In Key Derivation we discussed how to derive session keys

from a shared secret. The problem is what to do when the shared secret is non-uniform. In this question we show that using a PRF with a non-uniform key may result in non-uniform values. This shows that session keys cannot be derived by directly using a non-uniform secret as a key in a PRF. Instead, one has to use a key derivation function like HKDF.

Suppose k is a *non-uniform* secret key sampled from the key space $\{0,1\}^{256}$.

In particular, k is sampled uniformly from the set of all keys whose most significant

128 bits are all 0. In other words, k is chosen uniformly from a small subset of the key space. More precisely,

$$\text{for all } c \in \{0,1\}^{256}: \quad \Pr[k=c] = \begin{cases} 1/2^{128} & \text{if } \mathrm{MSB}_{128}(c) = 0^{128} \\ 0 & \text{otherwise} \end{cases}$$

Let F(k,x) be a secure PRF with input space $\{0,1\}^{256}$. Which

of the following is a secure PRF when the key k is uniform in the

key space $\{0,1\}^{256}$, but is insecure when the key is sampled from the *non-uniform*

distribution described above?

$$lacklacklack F'(k,x) = egin{cases} F(k,x) & ext{if MSB}_{128}(k)
eq 0^{128} \ 0^{256} & ext{otherwise} \end{cases}$$

$$egin{aligned} igcap_{F'(k,x)} &= egin{cases} F(k,x) & ext{if MSB}_{128}(k) = 0^{128} \ 0^{256} & ext{otherwise} \end{cases}$$

$$egin{aligned} igcap_{F'(k,x)} &= egin{cases} F(k,x) & ext{if MSB}_{128}(k)
eq 1^{128} \ 0^{256} & ext{otherwise} \end{cases}$$

$$egin{aligned} igcap_{F'(k,x)} & igcap_{F'(k,x)} & ext{if MSB}_{128}(k)
eq 1^{128} \ 0^{256} & ext{otherwise} \end{aligned}$$
 $igcap_{F'(k,x)} = egin{cases} F(k,x) & ext{if MSB}_{128}(k) = 0^{128} \ 1^{256} & ext{otherwise} \end{cases}$

✓ Correct

 $F^{\prime}(k,x)$ is a secure PRF because for a uniform key k the probability that $ext{MSB}_{128}(k) = 0^{128}$ is negligible.

However, for the *non-uniform* key k this PRF always outputs 0

and is therefore completely insecure. This PRF cannot be used as a

key derivation function for the distribution of keys described in the problem.

6. In what settings is it acceptable to use deterministic authenticated

	encryption (DAE) like SIV?	
	to encrypt many records in a database with a single key when the same record may repeat multiple times.	
	when a fixed message is repeatedly encrypted using a single key.	
	to individually encrypt many packets in a voice conversation with a single key.	
	when messages have sufficient structure to guarantee that all	
	messages to be encrypted are unique.	
	 Correct Deterministic encryption is safe to use when the message/key pair 	
	is never used more than once.	
7.	Let $E(k,x)$ be a secure block cipher. Consider the following	1/1 point
	tweakable block cipher:	
	$E'ig((k_1,k_2),t,xig) = \ E(k_1,x)igoplus E(k_2,t).$	
	Is this tweakable block cipher secure?	
	lacktriangledown no because for $t eq t'$ we have	
	$E'((k_1,k_2),t,0) igoplus E'((k_1,k_2),t,1) = E'((k_1,k_2),t',0) igoplus E'((k_1,k_2),t',1)$	
	igcirc no because for $t eq t'$ we have	
	$E'((k_1,k_2),t,0) igoplus E'((k_1,k_2),t',1) = E'((k_1,k_2),t',1) igoplus E'((k_1,k_2),t',0)$	
	\bigcirc no because for $x eq x'$ and $t eq t'$ we have	
	$E'((k_1,k_2),t,x) igoplus E'((k_1,k_2),t',x) = E'((k_1,k_2),t,x') igoplus E'((k_1,k_2),t',x)$	
	\bigcirc no because for $x eq x'$ we have	
	$E'((k_1,k_2),0,x) igoplus E'((k_1,k_2),0,x) = E'((k_1,k_2),0,x') igoplus E'((k_1,k_2),0,x')$	
	$igcup \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	\bigcirc Correct since this relation holds, an attacker can make 4 queries to E'	
	and distinguish E^\prime from a random collection of one-to-one functions.	
8.	In <u>Format Preserving Encryption</u> we discussed format preserving encryption	1/1 point

8. In Format Preserving Encryption we discussed format preserving encryption which is a PRP on a domain $\{0,\ldots,s-1\}$ for some pre-specified value of s.

Recall that the construction we presented worked in two steps, where the second step worked by iterating the PRP until the output

fell into the set $\{0,\dots,s-1\}$. Suppose we try to build a format preserving credit card encryption system from AES using *only* the second step. That is, we start with a PRP with domain $\{0,1\}^{128}$ from which we want to build a PRP with domain 10^{16} . If we only used step (2), how many iterations of

AES would be needed in expectation for each evaluation of the PRP

with domain 10^{16} ?

- $igotimes 2^{128}/10^{16} pprox 3.4 imes 10^{22}$
- $\bigcirc 10^{16}$
- O 2
- $\bigcirc 2^{128}$
 - ✓ Correct

On every iteration we have a probability of $10^{16}/2^{128}$ of falling into the set $\{0,\ldots,10^{16}\}$ and therefore in expectation we will need $2^{128}/10^{16}$ iterations. This should explain why step (1) is needed.

9. Let (E,D) be a secure tweakable block cipher.

1/1 point

Define the following MAC (S,V):

$$S(k,m) := E(k,m,0) \quad ; \quad V(k,m, ag) := egin{cases} 1 & ext{if } E(k,m,0) = ext{tag} \ 0 & ext{otherwise} \end{cases}$$

In other words, the message m is used as the tweak and the plaintext given to E is always set to 0.

Is this MAC secure?

- it depends on the tweakable block cipher.
- yes
- O no
 - ✓ Correct

A tweakable block cipher is indistinguishable from a collection of random permutations. The chosen message attack on the MAC gives the attacker the image of 0 under a number of the permutations in the family. But that tells the attacker nothing about the image of 0 under some other member of the family.

Consider a system that implements MAC-then-encrypt where encryption is done using CBC with a random IV using AES as the block cipher. Suppose the system is vulnerable to a padding oracle attack. An attacker intercepts a 64-byte ciphertext c (the first 16 bytes of c are the IV and the remaining 48 bytes are the encrypted payload). How many chosen ciphertext queries would the attacker need *in the worst case* in order to decrypt the entire 48 byte payload? Recall that padding oracle attacks decrypt the payload one byte at a time.

•	12288
0	16384
0	48
0	256
0	1024

⊘ Correct

Correct. Padding oracle attacks decrypt the payload one byte at a time. For each byte the attacker needs no more than 256 guesses in the worst case. Since there are 48 bytes total, the number queries needed is $256 \times 48 = 12288$.