ersistent Homology Persistence Modules Stability References

Persistence Modules and Stability

Mitchell Riley Supervisor: Ben Burton

17th October 2014

Singular Homology

Choose a dimension n, then

$$H_n(-): \mathbf{Top} \to \mathbf{Ab}$$

describes the *n*-dimensional 'holes'.

$$H_0(\mathbb{S}^1) = \mathbb{Z}$$

$$H_1(\mathbb{S}^1) = \mathbb{Z}$$

$$H_2(\mathbb{S}^1) = \{1\}$$

$$H_0(\mathbb{S}^1) = \mathbb{Z}$$

$$H_1(\mathbb{S}^1) = \mathbb{Z}$$

$$H_2(\mathbb{S}^1) = \{1\}$$

$$H_0(\mathbb{S}^2) = \mathbb{Z}$$

$$H_1(\mathbb{S}^2) = \{1\}$$

$$H_2(\mathbb{S}^2) = \mathbb{Z}$$

$$H_0(\mathbb{S}^1) = \mathbb{Z}$$

 $H_1(\mathbb{S}^1) = \mathbb{Z}$
 $H_2(\mathbb{S}^1) = \{1\}$

$$H_0(\mathbb{S}^2) = \mathbb{Z}$$

$$H_1(\mathbb{S}^2) = \{1\}$$

$$H_2(\mathbb{S}^2) = \mathbb{Z}$$

$$H_0(\mathbb{T}^2) = \mathbb{Z}$$

 $H_1(\mathbb{T}^2) = \mathbb{Z} \oplus \mathbb{Z}$
 $H_2(\mathbb{T}^2) = \mathbb{Z}$

Persistent Homology Persistence Modules Stability Reference

Singular Homology

Theorem

A continuous map $f: X \to Y$ induces a homomorphism $f_*: H_k(X) \to H_k(Y)$ for all k.

Singular Homology

$$H_n(-): \mathbf{Top} \to \mathbf{Ab}$$

Persistent Homology Persistence Modules Stability References

Singular Homology

 $H_n(-): \mathbf{Top} o \mathbf{Ab}$ $H_n(-;R): \mathbf{Top} o R ext{-}\mathbf{Mod}$ Persistent Homology Persistence Modules Stability References

Singular Homology

 $H_n(-): \mathsf{Top} o \mathsf{Ab}$

 $H_n(-;R): \mathbf{Top} \to R\mathbf{-Mod}$

 $H_n(-; \mathbf{k}) : \mathbf{Top} \to \mathbf{Vect_k}$

$$r = 2$$

$$H_0(X) = \mathbb{Z}$$

 $H_1(X) = \mathbb{Z}$

r = 0.3

r = 10

$$H_0(X) = \mathbb{Z}$$

$$H_1(X) = \{1\}$$

 X_1

$$X_1 \subset X_2$$

$$X_1 \subset X_2 \subset X_3$$

$$X_1 \subset X_2 \subset X_3 \subset X_4$$

$$X_1 \subset X_2 \subset X_3 \subset X_4 \subset X_5$$

We have a filtration:

$$X_1 \subset X_2 \subset X_3 \subset X_4 \subset X_5$$

This gives us a diagram of spaces with inclusion maps:

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5$$

Now find the homology of each space, giving a diagram of groups and homomorphisms:

$$H(X_1)
ightarrow H(X_2)
ightarrow H(X_3)
ightarrow H(X_4)
ightarrow H(X_5)$$

Persistent Homology Persistence Modules Stability References

Zomorodian and Carlsson (2005)

If the ground ring is a field \mathbf{k} , we have a diagram of \mathbf{k} -vector spaces.

Theorem

Any finite diagram of finite dimensional vector spaces decomposes into a sum of intervals.

$$H_0(X_1)
ightarrow H_0(X_2)
ightarrow H_0(X_3)
ightarrow H_0(X_4)
ightarrow H_0(X_5)$$
 \parallel
 $\mathbf{k}
ightarrow \mathbf{k}
ightarrow \mathbf{k}
ightarrow \mathbf{k}
ightarrow \mathbf{k}
ightarrow 0
ightarr$

$$H_1(X_1)
ightarrow H_1(X_2)
ightarrow H_1(X_3)
ightarrow H_1(X_4)
ightarrow H_1(X_5)$$
 \parallel
 $0
ightarrow \mathbf{k}
ightarrow \mathbf{k}
ightarrow \mathbf{k}
ightarrow 0
ightarrow 0$

$$\mathcal{B}_1 = \{[2,5), [2,3), [2,3), \dots\}$$

Persistent Homology Persistence Modules Stability References

Zomorodian and Carlsson (2005)

Definition

A barcode (or persistence diagram) is a multiset of points in the half plane

$$\mathcal{H} = \{(p,q) \in \mathbb{R}^2 : p < q\}$$

Definition

A barcode (or persistence diagram) is a multiset of points in the half plane

$$\mathcal{H} = \{ (p,q) \in \mathbb{R}^2 : p < q \}$$

Persistent Homology Persistence Modules Stability Reference

The Story So Far

▶ Begin with a data set $K \subset \mathbb{R}^n$

$$K = \{(0.125, 0.72), (0.627, 0.92), \dots\}$$

Persistent Homology Persistence Modules Stability Reference

The Story So Far

▶ Begin with a data set $K \subset \mathbb{R}^n$

$$K = \{(0.125, 0.72), (0.627, 0.92), \dots\}$$

▶ Construct a filtration $\{X_i\}$

$$X_1 \subseteq X_2 \subseteq \dots$$

The Story So Far

▶ Begin with a data set $K \subset \mathbb{R}^n$

$$K = \{(0.125, 0.72), (0.627, 0.92), \dots\}$$

ightharpoonup Construct a filtration $\{X_i\}$

$$X_1 \subseteq X_2 \subseteq \dots$$

Calculate homology of each space

$$H(X_1) \rightarrow H(X_2) \rightarrow \dots$$

The Story So Far

▶ Begin with a data set $K \subset \mathbb{R}^n$

$$K = \{(0.125, 0.72), (0.627, 0.92), \dots\}$$

ightharpoonup Construct a filtration $\{X_i\}$

$$X_1 \subseteq X_2 \subseteq \dots$$

Calculate homology of each space

$$H(X_1) \rightarrow H(X_2) \rightarrow \dots$$

Determine the barcode of this diagram of vector spaces

$$\mathcal{B} = \{[0,3),[2,5),\dots\}$$

The Story So Far

▶ Begin with a data set $K \subset \mathbb{R}^n$

$$K = \{(0.125, 0.72), (0.627, 0.92), \dots\}$$

▶ Construct a filtration $\{X_i\}$

$$X_1 \subseteq X_2 \subseteq \dots$$

Calculate homology of each space

$$H(X_1) \rightarrow H(X_2) \rightarrow \dots$$

Determine the barcode of this diagram of vector spaces

$$\mathcal{B} = \{[0,3),[2,5),\dots\}$$

Find features with long intervals

Persistent Homology Persistence Modules Stability References

Applications

- ► Analysis of treatment response in breast cancer patients (DeWoskin et al, 2010)
- Natural language processing (Zhu, 2013)
- Computer vision (Lamar-León et al, 2012)

ersistent Homology Persistence Modules Stability References

Persistence modules

Definition

A persistence module $\mathbb V$ over a poset P is a collection of vector spaces $\{V_i\}_{i\in P}$ and linear maps $\{v_s^t:V_s\to V_t\}_{s\le t}$ such that

$$v_r^t = v_s^t \circ v_r^s$$
 for all $r \leq s \leq t$

Here we are interested in persistence modules over the real numbers \mathbb{R} .

Sublevel persistence modules

Let $f: X \to \mathbb{R}$ be a function and define $X_a = f^{-1}((-\infty, a])$.

This gives us a filtration $\{X_a\}_{a\in\mathbb{R}}$, and therefore a persistence module \mathbb{V} with

$$V_t = H(X_t)$$
$$v_s^t = \eta_s^t$$

The spaces we created above can be defined this way. Let $X = \mathbb{R}^n$, and f(x) = distance from x to closest point in K.

ersistent Homology Persistence Modules Stability References

Persistence modules can be wild!

Example (Crawley-Boevey, 2012)

Consider the persistence module:

$$\mathbb{V} = \prod_{n=1}^{\infty} \mathbb{I}[0, \frac{1}{n}]$$

 $\mathbb V$ does not admit an interval decomposition.

We can still define a barcode when the module is 'q-tame', this is true in most settings.

Stability

We want a small change in data to cause a small change in barcode.

Stability

We want a small change in data to cause a small change in barcode.

LHS: distance between two functions $f,g:X\to\mathbb{R}$

Persistent Homology Persistence Modules **Stability** Reference

Stability

We want a small change in data to cause a small change in barcode.

LHS: distance between two functions $f,g:X\to\mathbb{R}$

RHS: distance between two barcodes $\mathcal{B}_1,\mathcal{B}_2\subset\mathcal{H}$

ersistent Homology Persistence Modules **Stability** References

Bottleneck distance

Definition

The bottleneck distance $d_b(\mathcal{A}, \mathcal{B})$ is the smallest $\delta \in \mathbb{R}$ such that there exists a partial matching $\mathcal{A} \longleftrightarrow \mathcal{B}$ where

- ▶ if $a \in \mathcal{A}$ and $b \in \mathcal{B}$ are matched, then $d^{\infty}(a,b) \leq \delta$;
- ▶ if $a \in A$ is unmatched, then $d^{\infty}(a, \Delta) \leq \delta$; and,
- ▶ if $b \in \mathcal{B}$ is unmatched, then $d^{\infty}(b, \Delta) \leq \delta$; and,

ersistent Homology Persistence Modules **Stability** References

The stability theorem – Chazal et al. (2009)

Theorem

Let $f,g:X\to\mathbb{R}$ be functions on a topological space X and let $\mathbb{U}=H(X^f), \mathbb{V}=H(X^g)$ be the sublevel persistence modules. If \mathbb{U} and \mathbb{V} are q-tame, then:

$$d_b(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \|f-g\|_{\infty}$$

- David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. "Stability of persistence diagrams". In: *Discrete & Computational Geometry* 37.1 (2007), pp. 103–120.
- Mikael Vejdemo-Johansson. "Sketches of a platypus: persistent homology and its algebraic foundations". In: arXiv preprint arXiv:1212.5398 (2012).
- Afra Zomorodian and Gunnar Carlsson. "Computing persistent homology". In: *Discrete & Computational Geometry* 33.2 (2005), pp. 249–274.