Relazione Matlab. Richieste dell'esercitazione:

Studiare la soluzione numerica di un problema di diffusione del calore in una sbarretta di lunghezza 1 metro e spessore trascurabile i cui estremi vengono posti alle temperature di 0°C e di 100°C. Il profilo di temperatura iniziale è dato da T(x,0) = 100*sin $(\pi x/L)$.

In particolare si dovranno sviluppare i seguenti punti:

- 1) Analisi di convergenza della soluzione numerica alla soluzione analitica al variare del numero di intervalli di discretizzazione spaziale N=(10, 20, 30)
- 2) Analisi di convergenza della soluzione numerica alla soluzione analitica al variare del numero di intervalli di discretizzazione spaziale durante il transitorio N=(10, 20, 30)
- 3) Analisi della soluzione numerica al variare della lunghezza della sbarretta L=(0.5, 1, 1.5 m)
- 4) Analisi della soluzione numerica al variare del gradiente termico T = (10, 100, 1000°C)
- 5) Analisi della soluzione numerica al variare della diffusività termica del materiale (Argento, Ferro, Vetro)

La soluzione analitica rappresenta la distribuzione delle temperature nei nodi dopo il transitorio e si esprime attraverso la formula: $T=\frac{T_2-T_1}{l} \ \chi$

 T_2 e T_1 sono le temperature agli estremi, sono fisse e note, T_1 = 0°C e T_2 = 10/100/1000 °C;

/= lunghezza della sbarretta;

x = posizione del nodo.

La soluzione numerica a regime viene studiata attraverso il metodo esplicito, utilizzando la formula:

 $t_i = \frac{t_{i-1} - t_{i+1}}{2}$ (in cui la *i* indica il nodo su cui ci troviamo) e reiterandola fino a raggiungere la convergenza voluta.

La <u>soluzione numerica durante il transitorio</u> viene studiata attraverso il metodo esplicito, utilizzando la formula:

$$t_i^1 = t_{i-1}^0 \frac{D \Delta \tau}{\Delta x^2} + t_{i+1}^0 \frac{D \Delta \tau}{\Delta x^2} + t_i^0 (1 - 2 \frac{D \Delta \tau}{\Delta x^2})$$

In cui il pedice indica il nodo e l'apice indica l'iterazione.

 Δx è il passo.

Dè la diffusività termica del materiale.

 $\Delta \tau$ è l'intervallo di tempo, che è stato scelto come $\Delta \tau = \frac{\Delta x^2}{3D}$

Per studiare il problema utilizzo uno *scritp* in *Matlab*, usando le formule scritte sopra, inserendo i valori di diffusività termica dei vari materiali, utilizzando cicli *for* per spostarsi sui nodi e cicli *while* per iterare la soluzione finchè non raggiunge la convergenza (in cui l'errore ottenuto è minore all'errore tollerabile, impostato a 0.001) o finchè non arriva al numero massimo di iterazioni (impostato a 700), ossia:

- while (err > eps && n_iter < 700) soluzione numerica per il problema a regime
- while (err_tr > eps_tr && n_iter_tr < 700) soluzione numerica per il problema durante il transitorio

Per calcolarmi l'errore ho usato la *norma infinito* della differenza tra il vettore delle temperature nei nodi alla *n-esima* iterazione e il vettore delle temperature nei nodi alla soluzione analitica, cioè:

- err = norm(t new t an, inf) soluzione numerica per il problema a regime
- err tr = norm(t new tr t an, inf) soluzione numerica per il problema durante il transitorio

1) Analisi di convergenza della soluzione numerica alla soluzione analitica al variare del numero di intervalli di discretizzazione spaziale N = (10, 20, 30)

Analizzando la convergenza della soluzione numerica alla soluzione analitica al variare del numero di intervalli di discretizzazione spaziale N = (10, 20, 30), scegliendo come materiale il ferro, I = 1 m e $T_2 = 100$ °C, otteniamo:

• N = 20

Con l'aumentare del numero di nodi N aumenteranno il numero di iterazioni per arrivare alla convergenza della soluzione, e nel caso di N = 30 otteniamo il raggiungimento massimo delle iterazioni (700) in cui si esce dal ciclo *while* delle iterazioni.

Aumenterà anche il tempo di calcolo di Matlab per raggiungere la convergenza, visto che c'è un numero maggiore di nodi rispetto a cui calcolare le temperature a ogni iterazione.

Possiamo comunque notare che tutti i grafici della soluzione a regime sembrano molto simili ai grafici delle temperature finali con la soluzione analitica, visto che abbiamo inserito un errore tollerabile molto piccolo.

2) Analisi di convergenza della soluzione numerica alla soluzione analitica al variare del numero di intervalli di discretizzazione spaziale durante il transitorio N = (10, 20, 30)

Analizzando la convergenza della soluzione numerica durante il transitorio alla soluzione analitica al variare del numero di intervalli di discretizzazione spaziale N=(10,20,30), scegliendo come materiale il ferro, I=1 m e $T_2=100$ °C, otteniamo:

• N = 10: Tempo di convergenza durante il transitorio = 2.9078e+04 s; Intervallo di tempo $\Delta \tau$ = 177.3050 s

nodi

nodi

• N = 20: Tempo di convergenza durante il transitorio = 2.9122e+04 s; Intervallo di tempo $\Delta \tau$ = 44.3262 s

• N = 30: Tempo di convergenza durante il transitorio = 1.3790e+04 s; Intervallo di tempo $\Delta \tau$ = 19.7006 s

Il calcolo della temperatura in ogni nodo non dipende più dalla media tra le due temperature del nodo precedente e di quello successivo, ma dipende dalle temperature del nodo precedente e successivo, da D, da Δx , da $\Delta \tau$ e dalla temperatura presente nel nodo stesso alla iterazione precedente.

3) Analisi della soluzione numerica al variare della lunghezza della sbarretta L=(0.5, 1, 1.5 m)

Scegliendo come materiale il ferro, N = 10 e T_2 = 100 °C:

• L = 0.5 m

Tempo di convergenza durante il transitorio = 7.2695e+03 s Intervallo di tempo $\Delta \tau$ = 44.3262 s

• L = 1 m

Tempo di convergenza durante il transitorio = 2.9078e+04 s Intervallo di tempo $\Delta \tau$ = 177.3050 s

• L = 1.5 m

Tempo di convergenza durante il transitorio = 6.5426e+04 s Intervallo di tempo $\Delta \tau = 398.9362$ s

4) Analisi della soluzione numerica al variare del gradiente termico T = (10, 100, 1000 °C)

Scegliendo come materiale il ferro, I = 1 m e N = 10:

• $T_2 = 10 \, ^{\circ}\text{C}$

Tempo di convergenza durante il transitorio = 3.2979e+04 s

• $T_2 = 100 \, ^{\circ}\text{C}$

Tempo di convergenza durante il transitorio = 2.9078e+04 s

• $T_2 = 1000 \, ^{\circ}\text{C}$

Tempo di convergenza durante il transitorio = 3.9716e+04 s

Il tempo di convergenza durante il transitorio non aumenta proporzionalmente con T_2 , ma dipende dalla distribuzione iniziale sinusoidale delle temperature nei nodi e dalla T_2 .

5) Analisi della soluzione numerica al variare della diffusività termica del materiale (Argento, Ferro, Vetro)

Scegliendo $T_2 = 100$ °C, I = 1 m e N = 10:

• Argento:

Diffusività termica = 1.6560e-04 $\frac{m^2}{s}$ Tempo di convergenza durante il transitorio = 3.3011e+03 s Intervallo di tempo $\Delta \tau$ = 20.1288 s

Ferro:

Diffusività termica = $1.8800e-05\frac{m^2}{s}$ Tempo di convergenza durante il transitorio = 2.9078e+04 s Intervallo di tempo $\Delta \tau = 177.3050$ s

Vetro:

Diffusività termica = 3.4000e-07 $\frac{m^2}{s}$ Tempo di convergenza durante il transitorio = 1.6078e+06 s Intervallo di tempo $\Delta \tau$ = 9.8039e+03 s

L'intervallo di tempo $\Delta \tau$ aumenta al diminuire della diffusività termica D dei materiali, visto che sono inversamente proporzionali.

Il tempo di convergenza durante il transitorio aumenta al diminuire della diffusività termica D dei materiali, visto che i materiali più isolanti per raggiungere la distribuzione finale delle temperature data dalla soluzione analitica (che non dipende dal tipo di materiale), impiegheranno più tempo rispetto a quelli meno isolanti.