Esta lista pode ser desenvolvida em grupos de até dois alunos, seguindo as especificações contidas no arquivo <code>00_ProcListas2.pdf</code> disponível na pasta de arquivos do Teams. A entrega ao professor deverá ocorrer até o dia **01 de julho de 2025**.

1) Entre as tentativas de se avaliar o grau de adiposidade de um corpo existe o chamado Índice de Adiposidade Corporal (IAC), que é calculado com base em duas medidas: a circunferência do quadril e a altura da pessoa. O resultado indica aproximadamente o percentual de gordura no corpo. A fórmula (aproximada) é dada por:

IAC = Circunferência do quadril (em cm) - 18

Altura (em m) *
$$\sqrt{\text{Altura (em m)}}$$

Com base no percentual calculado através da fórmula e no sexo da pessoa, podemos determinar a sua classificação, conforme mostra a tabela a seguir.

Classificação	Homem	Mulher			
Excesso de gordura	Maior que 25%	Maior que 30%			
Moderada	De 19% a 25%	De 26% a 30%			
Ideal	De 15% a 18,99%	De 20% a 25,99%			
Baixa	De 11% a 14,99%	De 16% a 19,99%			
Excepcionalmente baixa	De 6% a 10,99%	De 10% a 15,99%			

Faça um programa que recebe o sexo ('M' para masculino, 'F' para feminino), altura e circunferência do quadril de diversas pessoas e exibe, para cada uma, qual a sua classificação conforme o IAC. Encerrar o processamento quando for informada uma pessoa com o sexo 'X'. Utilizar uma função para determinar o IAC e outra para imprimir o resultado.

Exemplos:

Valor informado	Resultado a ser exibido				
M 94 1.7	Moderada				
F 85 1.6	Ideal				
F 90 1.8	Baixa				
M 90 1.8	Moderada				
F 94 1.7	Ideal				
M 102 1.73	Excesso de gordura				
F 102 1.73	Moderada				
M 85 1.6	Moderada				
M 70 1.65	Ideal				
F 70 1.65	Excepcionalmente baixa				

2) Adapte o programa do problema 08 da atividade prática 06 para que valide as datas informadas, conforme indicado na atividade prática 08 e determine o dia da semana conforme descrito mais à frente neste enunciado. O programa deverá receber várias datas e, para as datas válidas, imprimir o nome do dia da semana, conforme mostrado no exemplo. Caso uma data inválida seja informada, voltar a receber uma nova data, sem emitir mensagem de erro. Encerrar a execução do programa quando a data 00/00/0000 for informada. Para a função DiaSemana() deve ser considerado o exposto a seguir.

O dia da semana para uma data válida qualquer pode ser calculado pela seguinte fórmula:

```
Dia da semana = RESTO (TRUNCA (2.6 \times M - 0.1) + D + A + QUOCIENTE (A, 4) + QUOCIENTE (S, 4) - 2 \times S, 7)
```

onde:

- M representa o número do mês. Janeiro e fevereiro são os meses 11 e 12 do ano precedente, marco é o mês 1 e dezembro é o mês 10.
- D representa o dia do mês.
- A representa o número formado pelos dois últimos algarismos do ano.
- S representa o número formado pelos dois primeiros algarismos do ano.

Os dias da semana são numerados de zero a seis; domingo corresponde a 0, segunda a 1, e assim por diante. Faça então um programa que:

- Leia um conjunto de datas (dia, mês, ano), conforme os exemplos apresentados a seguir. Encerrar o processamento quando for informado a data dia 0 mês 0 ano 0, que não deverá ser processada.
- Para cada data válida lida, determine o dia da semana correspondente, segundo o método especificado anteriormente.
- Escreva, para cada data lida, o dia, o mês, o ano e o nome do dia da semana calculado pelo seu programa, no formato indicado nos exemplos.

Dicas:

- O resto da divisão do número inteiro x pelo número inteiro y é um inteiro dado, em linguagem C, por x % y.
- O quociente da divisão do número inteiro x pelo número inteiro y é um inteiro dado, em linguagem C, por x / y. Se um dos operandos (x ou y ou ambos) for de tipo real (float ou double), então o resultado será um número real.
- Para truncar um número real, descartando sua parte fracionária e convertendo o resultado para inteiro, basta colocar a expressão (int) antes do número ou variável real. Por exemplo, (int) 3.1415 produz o valor 3; (int) vInfo produz o valor 10, caso a variável real vInfo possua o valor 10.424397.
- Use uma *struct* para armazenar a data.

Exemplos:

Valor informado	Resultado a ser exibido						
31 3 1991	31/03/1991:	Domingo					
5 12 1984	31/03/1991: 05/12/1984:	Quarta-Feira					
8 5 1998	08/05/1998:	Sexta-Feira					
0 0 0							

- **3)** Faça um programa que recebe 15 números do tipo inteiro e os armazena em um vetor. Em seguida imprima na tela os seguintes valores:
 - **a)** A média aritmética simples dos valores, com duas casas depois da vírgula, que é dada pela fórmula

$$m = \frac{\sum x}{N}$$

onde *N* é a quantidade de elementos e *x* é o conjunto de valores contidos no vetor.

b) A variância (populacional) dos valores presentes no vetor, com duas casas depois da vírgula. A variância populacional é dada pela seguinte fórmula

$$V = \frac{\sum (x - m)^2}{N}$$

onde *N* é a quantidade de elementos e *m* é a média aritmética simples dos valores.

- **c)** O desvio padrão (populacional) dos valores presentes no vetor, com duas casas depois da vírgula. O desvio padrão populacional é dado pela raiz quadrada da variância populacional.
- **d)** A moda dos valores, ou seja, o valor (inteiro) que aparece com mais frequência. Caso haja mais de um valor com a maior ocorrência, imprima o maior deles.

Utilizar uma função para computar cada indicador requerido nos itens a) até d), ou seja, uma função para a média, outra para a variância, outra para o desvio padrão e outra, ainda, para a moda. Os valores referentes aos itens a) até c) devem ser reais de precisão dupla.

Exemplo:

Vetor

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6	21	1	4	18	29	18	-4	9	14	3	22	25	29	18

Media: 14.20
Desvio padrao: 10.11
Variancia ...: 102.29
Moda: 18

4) A função de Ackerman é definida recursivamente sobre os inteiros não negativos, como segue:

```
ack(m, n) = n + 1, se m = 0

ack(m, n) = ack(m - 1, 1), se m \ne 0 e n = 0

ack(m, n) = ack(m - 1, ack(m, n - 1)), se m \ne 0 e n \ne 0
```

Implemente um programa em C que recebe diversos pares de inteiros m ($0 \le m < 4$) e n ($0 \le n \le 12$) informados pelo usuário e imprime na tela o valor correspondente produzido pela função de Ackerman definida acima. Encerrar o processamento quando for informado m = 0 e n = 0.