6.66 a. The Central Limit Theorem states that the sampling distribution of \overline{y} is approximately normally distributed with a mean of $\mu_{\overline{y}} = \mu = 0.53$ and $\sigma_{\overline{y}} = \sigma / \sqrt{n} = 0.193 / \sqrt{50} = 0.02729$.

6.68 **Handrubbing**

$$\mu_{\bar{y}} = \mu = 35$$
, $\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}} = \frac{59}{\sqrt{50}} = 8.344$

Handwashing

$$\mu_{\overline{y}} = \mu = 69$$
, $\sigma_{\overline{y}} = \frac{\sigma}{\sqrt{n}} = \frac{106}{\sqrt{50}} = 14.991$

6.76 a. The definition of a chi-square random variable states: If x_i has a χ^2 distribution with 1 degree of freedom, then $\mu=1$ and $\sigma^2=2$. Using the modification of Theorem 6.9, the sampling distribution of $\sum_{i=1}^n x_i$ is approximately normal with mean $\mu_{\sum x_i} = n\mu = n$ and $\sigma_{\sum x_i}^2 = n\sigma^2 = 2n$. Thus, for $y = \sum x_i$, the distribution of y is approximately normal with mean $\mu = n$ and standard deviation $\sigma = \sqrt{2n}$.