MAT283 Notes

Arjun Vardhan

†

Created: 20th February 2022 Last updated: 5th May 2022

1 Notes

- A sample space is the set of all possible outcomes of a random experiment.
- If a sample space contains an at most countable number of elements, it is said to be a discrete sample space.
- An **event** is a subset of a sample space.
- A subset E of sample space S is an event if it belongs to a collection \mathbb{F} of subsets of S which satisfies the following:
 - 1. $S \in \mathbb{F}$.
 - 2. If $E \in \mathbb{F}$, then $E^c \in \mathbb{F}$.
 - 3. If $E_j \in \mathbb{F}$ for i = 1, 2, 3..., then $\bigcup_{i=1}^{\infty} E_i \in \mathbb{F}$.

The collection \mathbb{F} is then called an **event space**.

- Let S be the sample space of a random experiment. A **probability measure** $P : \mathbb{F} \to [0, 1]$ is a set function that assigns real values to events in S such that:
 - 1. $P(E) \ge 0$ for all $E \in \mathbb{F}$.
 - 2. P(S) = 1.
 - 3. If $E_1, E_2, ..., E_k, ...$ are mutually disjoint events in S, then $P(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} P(E_j)$.
- $P(\phi) = 0$.
- $P(E^c) = 1 P(E)$.
- $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2).$
- If A is an event in a discrete sample space S, then P(A) is the sum of the probabilities of the individual outcomes comprising A.
- If an experiment can result in any one of n equally likely outcomes, and if m of these outcomes together constitute event A, then $P(A) = \frac{m}{n}$.
- The **conditional probability** of an event A, given that an event B has already occurred, is defined as: $P(A|B) = \frac{P(A \cap B)}{P(B)}$, provided P(B) > 0.
- Two events A and B are called **independent** if and only if $P(A \cap B) = P(A)P(B)$.
- If two events are independent, then the occurrence or non-occurrence of one does not affect the probability of the other.
- If A and B are independent, then A and B^c are also independent.
- Two mutually exclusive (disjoint) events are always dependent.

- Let S be a set and let $\mathbb{P} = \{A_i\}_{i=1}^m$ be a collection of subsets of S. \mathbb{P} is called a partition of S if $S = \bigcup_{i=1}^m A_i$ and if $A_i \cap A_j = \phi$ whenever $i \neq j$.
- Law of Total Probability: If the events $\{B_i\}_{i=1}^m$ constitute a partition of the sample space S and if $P(B_i) \neq 0$ for i = 1, 2, 3..., m, then for any event A, $P(A) = \sum_{i=1}^m P(B_i)P(A|B_i)$.
- Baye's Theorem: If the events $\{B_i\}_{i=1}^m$ constitute a partition of the sample space S and if $P(B_i) \neq 0$ for i = 1, 2, 3, ..., m, then for any event A such that $P(A) \neq 0$, $P(B_k|A) = \frac{P(B_k)P(A|B_k)}{\sum_{i=1}^m P(B_i)P(A|B_i)}$, where k = 1, 2, 3, ..., m.
- Consider a random experiment with sample space S. A **random variable** X is a function from S to \mathbb{R} such that for each interval I in \mathbb{R} , the set $\{s \in S : X(s) \in I\}$ is an event in S.
- The set $R_X = \{x \in \mathbb{R} : x = X(s), s \in S\}$ is called the space of the random variable X.
- If R_X is at most countable, then X is called a discrete random variable.
- Let X be a discrete random variable. The function $f : \mathbb{R} \to \mathbb{R}$ where f(x) = P(X = x) is called the **probability mass function** of X.
- f can serve as the pmf of a discrete random variable X if and only if $f(x) \ge 0$ for all x within its domain, and if $\sum_{x} f(x) = 1$.
- If X is a discrete RV, then the function $F: \mathbb{R} \to \mathbb{R}$ defined by $F(x) = P(X \le x) = \sum_{t \le x} f(t)$ for $-\infty < x < \infty$, where f is the pmf of X, is called the **cumulative distribution function** of X.
- F can serve as the cdf of discrete RV X if and only if $F(-\infty) = 0$, $F(\infty) = 1$, and if a < b, then $F(a) \le F(b)$ for all $a, b \in \mathbb{R}$.
- If R_X consists of the values $x_1, x_2, ..., x_n$, where $x_1 < x_2 < ... < x_n$, then $f(x_1) = F(x_1)$, and $f(x_i) = F(x_i) F(x_{i-1})$ for i = 1, 2, 3, ..., n.
- An RV X is said to be continuous if and only if there exists a function $f_X : \mathbb{R} \to \mathbb{R}$ such that $f_X(x) \geq 0$ and $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and $P(a < x < b) = \int_a^b f_X(x) dx$ for any real a, b where $a \leq b$. $f_X(x)$ is called the **probability density function** of X.
- If X is a continuous RV, then $P(a \le x \le b) = P(a \le x < b) = P(a < x \le b) = P(a < x < b)$.
- If X is a continuous RV, then the function $F : \mathbb{R} \to \mathbb{R}$, defined by $F_X(x) = P(X \le x) = \int_{-\infty}^x f(t)dt$ for $-\infty < x < \infty$, is the cdf of X.
- If F is the cdf and f the pdf of X, then $\frac{d}{dx}F(x) = f(x)$.
- Let X be a random variable with space R_X and pdf/pmf f. The nth **moment** about the origin of X, denoted by $E(X^n)$, is defined as $\sum_{x \in R_X} x^n f(x)$ if X is discrete, and $\int_{-\infty}^{\infty} x^n f(x) dx$ if X is continuous, for n = 1, 2, 3, ..., provided the sum or integral converge absolutely.
- The mean or expected value of X, denoted E(X) or μ_X , is defined as $\sum_{x \in R_X} x f(x)$ if X is discrete, and $\int_{-\infty}^{\infty} x f(x) dx$ if X is continuous, for n = 1, 2, 3, ..., provided the sum or integral converge absolutely. So the expected value is nothing but the first moment about the origin.
- Let X be an RV and let Y = g(X). If X is discrete with pmf f, then $E(Y) = \sum_{x} g(x) f(x)$. If X is continuous with pdf f, then $E(Y) = \int_{-\infty}^{\infty} g(x) f(x) dx$.
- Let X be an RV, and let $a, b \in \mathbb{R}$. Then, E(aX + b) = aE(X) + b.

- Let X be an RV with mean μ_X . Its **variance** is defined as $Var(X) = E((X \mu_X)^2)$. The positive square root of the variance is called the **standard deviation** of X and denoted σ_X .
- $Var(X) = E(X^2) E(X)^2$.
- If Var(X) exists and Y = a + bX, then $Var(Y) = b^2 Var(X)$.
- Chebyshev's Inequality: Let X be an RV with mean μ and standard deviation $\sigma > 0$. Then, $P(|X \mu| < k\sigma) \ge 1 \frac{1}{k^2}$ for any $k \in \mathbb{R}, k > 0$.
- Let X be an RV. A function $M: \mathbb{R} \to \mathbb{R}$ defined by $M(t) = E(e^{tX})$ is called the **moment** generating function of X if this expected value exists for all $t \in (-h, h)$ for some h > 0.
- If X is discrete, then $M(t) = \sum_{x \in R_X} e^{tx} f(x)$. If X is continuous, then $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$.
- A discrete RV X is said to have a **Discrete Uniform distribution** if and only if its pmf is of the form $f(x) = \frac{1}{k}$, where $R_X = \{x_1, x_2, ..., x_k\}$ and $x_i \neq x_j$ for $i \neq j$. This distribution represents a random experiment with a finite number of equally likely outcomes.
- A discrete RV X is said to have a **Bernoulli distribution** with parameter p if and only if its pmf is of the form $f(x) = p^x(1-p)^{1-x}$, where x = 0 or x = 1. If a random experiment has only two possible outcomes, success and failure, with probabilities p and 1-p respectively, then the random variable representing the number of successes has a Bernoulli distribution. Such an experiment is referred to as a Bernoulli trial.
- If X is a Bernoulli RV with parameter p, then E(X) = p, Var(X) = p(1-p) and $M_X(t) = (1-p) + pe^t$. All its moments about the origin are equal to p.
- A discrete RV X is said to have a **Binomial distribution** with parameters p and n if and only if its pmf is of the form $f(x) = \binom{n}{x} p^x (1-p)^{n-x}$, where x = 0, 1, 2, ..., n. In a random experiment consisting of n Bernoulli trials, this RV represents the total number of successes.
- If X is a Binomial RV, then E(X) = np, Var(X) = np(1-p) and $M_X(t) = ((1-p) + pe^t)^n$.
- A discrete RV X is said to have a **Geometric distribution** with parameter p if and only if its pmf is of the form $f(x) = (1-p)^{x-1}p$, where $x \in \mathbb{N}$. In a random experiment consisting of an infinite sequence of Bernoulli trials, this RV represents the number of the trial on which the first success occurs.
- If X is a Geometric RV, then $E(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$ and $M_X(t) = \frac{pe^t}{1-(1-p)e^t}$ if $t < \log(1-p)$.
- A discrete RV X is said to have a **Negative Binomial** or **Pascal distribution** with parameters p and r if and only if its pmf is of the form $f(x) = \binom{x-1}{r-1}(1-p)^{x-r}p^r$, where $x \in \mathbb{N}$. In a random experiment consisting of an infinite sequence of Bernoulli trials, this RV represents the number of the trial on which the rth success occurs.
- If X is a Negative Binomial RV, then $E(X) = \frac{pr}{1-p}$, $Var(X) = \frac{pr}{(1-p)^2}$ and $M_X(t) = \left(\frac{1-p}{1-pe^t}\right)^r$ for $t < -\log p$.
- A discrete RV X is said to have a **Poisson distribution** with parameter $\lambda > 0$ if and only if its pmf is of the form $f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$, where $x \in \mathbb{N}$. It can be used to approximate the Binomial RV when n is very large and p is very small.
- If X is a Poisson RV, then $E(X) = \lambda$, $Var(X) = \lambda$, and $M_X(t) = e^{\lambda(e^t 1)}$.
- A continuous RV X is said to have a **Uniform distribution** on the interval [a,b] if and only if its pdf is of the form $f(x) = \frac{1}{b-a}$, where $a \le x \le b$ and $a,b \in \mathbb{R}$.

- If X is a Uniform RV on [a, b], then $E(X) = \frac{b+a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$, and $M_X(t) = 1$ if x = 0 and $M_X(t) = \frac{e^{tb} e^{ta}}{t(b-a)}$ if $x \neq 0$.
- A continuous RV X is said to have an **Exponential distribution** with parameter $\theta > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$ if x > 0 and f(x) = 0 if $x \le 0$.
- If X is an Exponential RV, then $E(X) = \frac{1}{\theta}$ and $Var(X) = \frac{1}{\theta^2}$, and $M_X(t) = \frac{\theta}{\theta t}$ for $t < \theta$.
- A continuous RV X is said to have a **Normal** or **Gaussian distribution** with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$, where $-\infty < x < \infty$. Here, $f(\mu x) = f(\mu + x)$. f has a maximum at $x = \mu$.
- If X is a Normal RV, then $E(X) = \mu$, $Var(X) = \sigma^2$ and $M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.
- A Normal RV X is said to be **Standard Normal** RV if $\mu = 0$ and $\sigma = 1$. Its pdf is given by $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, where $-\infty < x < \infty$.
- If X is a Normal RV with parameters μ and σ , then $Z = \frac{X \mu}{\sigma}$ is a Standard Normal RV.
- The gamma function, denoted $\Gamma(z)$, is defined as $\Gamma(z) = \int_{-\infty}^{\infty} x^{z-1} e^{-x} dx$, where $z \in \mathbb{R}$, z > 0.
- $\Gamma(1) = 1$ and $\Gamma(n) = n!$ for all $n \in \mathbb{N}$.
- $\Gamma(z)$ satisfies the functional equation $\Gamma(z) = (z-1)\Gamma(z-1)$ for all $z \in \mathbb{R}, z > 1$.
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and $\Gamma(-\frac{1}{2}) = -2\sqrt{\pi}$.
- A continuous RV X is said to have a **Gamma distribution** with parameters $\alpha > 0$ and $\theta > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}}$.
- If X is a Gamma RV with $\alpha = 1$, then X is an Exponential RV.
- If X is a Gamma RV, then $E(X) = \theta \alpha$, $Var(X) = \theta^2 \alpha$ and $M_X(t) = \left(\frac{1}{1 \theta t}\right)^{\alpha}$, if $t < \frac{1}{\theta}$.
- Let α, β be any two positive real numbers. The **beta function**, denoted $B(\alpha, \beta)$, is defined as $B(\alpha, \beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1}$.
- $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$.
- $B(\alpha, \beta) = B(\beta, \alpha)$.
- A continuous RV X is said to have a **Beta distribution** with parameters $\alpha, \beta > 0$ if and only if its pdf is of the form $f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha 1} (1 x)^{\beta 1}$ if 0 < x < 1 and f(x) = 0 otherwise.
- If X is a Beta RV with $\alpha = \beta = 1$, then X is a Uniform RV.
- If X is a Beta RV, then $E(X) = \frac{\alpha}{\alpha + \beta}$, $Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.
- A discrete **bivariate** RV, (X,Y), is an ordered pair of discrete RVs. Its pmf $f: R_X \times R_Y \to \mathbb{R}$, called the **joint pmf** of X and Y, is given by f(x,y) = P(X = x, Y = y).
- Let X,Y be discrete RVs with joint pmf f. The **marginal pmf** of X is defined by $f_X(x) = \sum_{y \in R_Y} f(x,y)$. Similarly, $f_Y(y) = \sum_{x \in R_X} f(x,y)$.

- Let X,Y be discrete RVs with joint pmf f. The joint cdf of X and Y is a function $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $F(x,y) = P(X \le x, Y \le y) = \sum_{s \le x} \sum_{t \le y} f(s,t)$.
- A bivariate RV (X,Y) is said to be continuous if there exists a function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f(x,y) > 0, $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$ and for any subset $A \subseteq \mathbb{R} \times \mathbb{R}$, $P((X,Y) \in A) = \int \int_{A} f(x,y) dx dy$. f is the **joint pdf** of X and Y.
- Let (X,Y) be a continuous bivariate RV, and let f be its joint pdf. The **marginal pdf** of X is $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$ and similarly for Y, $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$.
- Let (X,Y) be a continuous bivariate RV, and let f be its joint pdf. The joint cdf of X and Y is a function $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $F(x,y) = P(X \le x,Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) ds dt$. $f(x,y) = \frac{\partial^2 F}{\partial x \partial y}$, whenever this partial derivative exists.
- Let X and Y be any two RVs with joint pdf/pmf f and marginals f_X and f_Y . The **conditional pdf/pmf** g of X given Y = y, is defined as $g(x|y) = \frac{f(x,y)}{f_Y(y)}$, provided $f_Y(y) > 0$.
- Let X and Y be any two RVs with joint cdf F and marginals F_X and F_Y . X and Y are independent if and only if $F(x,y) = F_X(x)F_Y(y)$ for all $(x,y) \in \mathbb{R}^2$.
- Two discrete RVs X and Y are independent if and only if $P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i)$ for all $(x_i, y_i) \in R_X \times R_Y$.
- Two continuous RVs X and Y are independent if and only if $f(x,y) = f_X(x)f_Y(y)$, for all $(x,y) \in \mathbb{R}^2$.
- The RVs X and Y are said to be **independent and identically distributed (IID)** if and only if they are independent and have the same distribution.
- Let X and Y be RVs with joint pdf/pmf f. The **product moment** of X and Y about the origin, denoted E(XY), is defined as $\sum_{x \in R_X} \sum_{y \in R_Y} xyf(x,y)$ if X,Y are discrete and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y)dxdy$ if X,Y are continuous and provided $E(XY) < \infty$.
- The **covariance** between X and Y, denoted by Cov(X,Y) or σ_{XY} , is defined as $E((X \mu_X)(Y \mu_Y))$.
- For arbitrary RVs X and Y, the product moment and covariance may or may not exist. The covariance, unlike variance, can also be negative.
- Cov(X,Y) = E(XY) E(X)E(Y). Thus, Cov(X,X) = Var(X).
- Cov(aX + b, cY + d) = acCov(X, Y), where $a, b, c, d \in \mathbb{R}$.
- If X and Y are independent, then E(XY) = E(X)E(Y).
- If X and Y are independent, then Cov(X,Y) = 0.
- $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$, where $a, b \in \mathbb{R}$.
- $\operatorname{Var}(X + Y + Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) + \operatorname{Var}(Z) + 2\operatorname{Cov}(X, Y) + 2\operatorname{Cov}(Y, Z) + 2\operatorname{Cov}(Z, X)$.
- Let X and Y be two RVs with variances σ_X^2 and σ_Y^2 respectively. The **correlation coefficient** between X and Y, denoted ρ , is defined as $\frac{\text{Cov}(X,Y)}{\sigma_X\sigma_Y}$.
- If X and Y are independent, then the correlation coefficient between them is 0. The converse is not true. If $\rho = 0$, then X and Y are said to be **uncorrelated**.
- Let X be an RV. The standardization of X is defined as $X^* = \frac{X \mu_X}{\sigma_X}$.

- If X^* and Y^* are standardizations of the RVs X and Y, then the correlation coefficient between X and Y is equal to the correlation coefficient between X^* and Y^* .
- For any RVs X and Y, $-1 \le \rho \le 1$. If $\rho = \pm 1$, then Y = aX + b where $a, b \in \mathbb{R}$, $a \ne 0$.
- Let X and Y be two RVs. A function $M : \mathbb{R}^2 \to \mathbb{R}$ defined by $M(s,t) = E(e^{sX+tY})$, is called the **joint moment generating function** of X and Y if this expected value exists for all s in some interval (-h, h) and for all t in some interval (-k, k).
- $M(s,0) = E(e^{sX})$ and $M(0,t) = E(e^{tY})$.
- $E(X^k) = \frac{\partial^k M(s,t)}{\partial s^k}$, $E(Y^k) = \frac{\partial^k M(s,t)}{\partial t^k}$, and $E(XY) = \frac{\partial^2 M(s,t)}{\partial s \partial t}$ for $k \in \mathbb{N}$, evaluated at (0,0).
- If X and Y are independent then $M_{aX+bY}(t) = M_X(at)M_Y(bt)$, where $a, b \in \mathbb{R}$.
- The conditional mean or conditional expected value of X given Y = y is defined as $\mu_{X|y} = E(X|y) = \sum_{x \in R_X} xg(x|y)$ if X is discrete and $\int_{-\infty}^{\infty} xg(x|y)dx$ if X is continuous.
- E(Y|x) is a function of x. $E_X(E(Y|x)) = E_Y(Y)$.
- Let X and Y be two RVs. If E(Y|x) is a linear function of x, then $E(Y|x) = \mu_Y + \rho \frac{\sigma_X}{\sigma_Y}(x \mu_X)$, where ρ is the correlation coefficient of X and Y.
- Let X and Y be two RVs and let h(y|x) be the conditional pdf of Y given X = x. The **conditional** variance of Y given X = x, is defined as $Var(Y|x) = E(Y^2|x) (E(Y|x))^2$.
- Let X and Y be two RVs. If E(Y|x) is a linear function of x, then $E(Var(Y|x)) = (1-p^2)Var(Y)$.
- A discrete bivariate RV is said to have a **Bivariate Bernoulli distribution** with parameters p_1, p_2 if and only if its joint pmf is of the form $f(x, y) = \frac{1}{x!y!(1-x-y)!}p_1^xp_2^y(1-p_1-p_2)^{1-x-y}$ if $x, y \in \{0, 1\}$ and f(x, y) = 0 otherwise. Here, $p_1, p_2 > 0$ and $p_1 + p_2 < 1$ and $x + y \le 1$.
- Let (X,Y) be a Bivariate Bernoulli RV with parameters p_1, p_2 . Then, $E(X) = p_1$, $E(Y) = p_2$, $Var(X) = p_1(1-p_1)$, $Var(Y) = p_2(1-p_2)$, $Cov(X,Y) = -p_1p_2$, and $M(s,t) = 1 p_1 p_2 + p_1e^2 + p_2e^t$.
- A discrete bivariate RV (X,Y) is said to have a **Bivariate Binomial distribution** with parameters n, p_1, p_2 if and only if its joint pmf is of the form $f(x,y) = \frac{n}{x!y!(n-x-y)!}p_1^xp_2^y(1-p_1-p_2)^{n-x-y}$ if $x,y \in \{0,1,2,...,n\}$ and f(x,y) = 0 otherwise. Here, $p_1, p_2 > 0$, $p_1 + p_2 < 1$ and $x+y \le n$.
- Let (X,Y) be a Bivariate Binomial RV. Then, $E(X) = np_1$, $E(Y) = np_2$, $Var(X) = np_1(1 p_1)$, $Var(Y) = np_2(1 p_2)$, $Cov(X,Y) = -np_1p_2$, and $M(s,t) = (1 p_1 p_2 + p_1e^2 + p_2e^t)^n$.
- A continuous bivariate RV (X,Y) is said to have a **Bivariate Normal distribution** with parameters $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ if and only if its joint pdf is of the form $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{\frac{1}{2}Q(x,y)}$ if $x,y\in(0,\infty)$ and f(x,y)=0 otherwise. Here, $Q(x,y)=\frac{1}{1-\rho^2}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2-2\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right)+\left(\frac{y-\mu_2}{\sigma_2}\right)^2\right], \ \mu_1,\mu_2\in\mathbb{R},\ \sigma_1,\sigma_2\in(0,1),$ and $\rho\in(-1,1).$
- If $X_1, X_2, ..., X_n$ are continuous RVs, and $Y = u(X_1, X_2, ..., X_n)$, there are three methods to find the cdf and pdf/pmf of Y:
 - 1. **Distribution Function Method:** The pdf of Y can be found by getting its CDF, $P(Y \le y) = P(u(X_1, X_2, ..., X_n) \le y)$ and then differentiating it to obtain the pdf.
 - 2. Transformation Method (Univariate Case): Let f be the pdf of X and let Y = u(X). If u is differentiable and monotonic for all values within R_X such that $f(x) \neq 0$, then we can find the inverse of u, say w, such that x = w(y). Then the pdf of Y is given by g(y) = f(w(y))|w'(y)|, provided $u'(x) \neq 0$, and elsewhere, g(y) = 0.

3. Transformation Method (Bivariate Case): Let X, Y have joint pdf f and let U = Q(X,Y) and V = R(X,Y). If Q(x,y) and R(x,y) have single valued inverses, that is, X = S(U,V) and Y = T(U,V), then the joint pdf of U and V is given by the Jacobian, which is

$$S(U,V)$$
 and $Y = T(U,V)$, then the joint pdf of U defined as $J = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$.

- 4. **MGF Method:** If X and Y are independent, then the distribution of X + Y can be found by $M_{X+Y}(t) = M_X(t)M_Y(t)$.
- Let there be a random experiment whose outcome is represented by the RV X with pdf/pmf f. Suppose the experiment is repeated n times and that X_k is the RV associated with the kth repetition. Then the collection of RVs $\{X_1, X_2, ..., X_n\}$ is called a **random sample** of size n. $X_1, X_2, ..., X_n$ are independent and identically distributed with common pdf f.
- Given a random sample $\{X_1, X_2, ..., X_n\}$, functions such as the **sample mean** $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and the **sample variance** $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$, are called **statistics**.
- If $X_1, X_2, ..., X_n$ are mutually independent RVs with respective means $\mu_1, \mu_2, ..., \mu_n$ and respective variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$, then the mean and variance of $Y = \sum_{i=1}^n a_i X_i$, where $a_i \in \mathbb{R}$, is given by $\mu_Y = \sum_{i=1}^n a_i \mu_i$ and $\sigma_Y^2 = \sum_{i=1}^n a_i^2 \sigma_i^2$.
- Let $X_1, X_2, ..., X_n$ be observations from a random sample of size n with distribution f. Let $X_{(1)}$ denote the smallest of $\{X_1, X_2, ..., X_n\}$, and similarly let $X_{(2)}$ denote the second smallest of them, and so on. Then the random variables $X_{(1)}, X_{(2)}, ..., X_{(n)}$ are called the **order statistics** of the sample $X_1, X_2, ..., X_n$. In particular, $X_{(r)}$ is called the rth order statistic of $X_1, X_2, ..., X_n$.
- Let $X_1, X_2, ..., X_n$ be a random sample of size n with pdf f. Then the pdf of $X_{(r)}$ is given by $g(x) = \frac{n!}{(r-1)!(n-r)!} (F(x))^{r-1} f(x) (1-F(x))^{n-r}, \text{ where } F \text{ is the cdf of } f.$
- Let $p \in (0,1)$. A 100pth **percentile** of the distribution of a random variable X is any real number q satisfying $P(X \le q) \le p$ and $P(X > q) \le 1 p$.
- The 25th and 75th percentiles of any distribution are called the first and third **quartiles**, respectively. The 50th percentile is called the **median**.
- A **mode** of the distribution of the continuous RV X is the value of x where the pdf of X attains a relative maximum. An RV can have more than one mode.
- Let $X_1, X_2, ..., X_n$ be a random sample. The **sample median** is defined as $M = X_{(\frac{n+1}{2})}$ if n is odd, and $M = \frac{1}{2}(X_{(\frac{n}{2})} + X_{(\frac{n+2}{2})})$ if n is even.
- The 100pth sample percentile is defined as $\pi_p = X_{([np])}$ if p < 0.5, $\pi_p = M$ if p = 0.5, $\pi_p = X_{(n+1-[n(1-p)])}$ if p > 0.5. Here [x] denotes the nearest integer to x, M is the sample median and n is the size of the sample.
- The first quartile is also called the lower quartile, and the third quartile is also called the upper quartile. The difference between them is called the **interquartile range**.
- Let $X_1, X_2, ..., X_n$ be a random sample, with distribution f. Then the joint pdf of the sample is given by $f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$.
- Given a random sample $X_1, X_2, ..., X_n$ with pdf $f(x, \theta)$, where θ is a parameter, a statistic is a function T of $x_1, x_2, ..., x_n$ that is independent of the parameter θ .
- The probability distribution of the statistic T is called the sampling distribution of T.

- A continuous RV X is said to have **Chi-square distribution** with r degrees of freedom if its pdf is of the form $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-\frac{x}{2}}$ when $0 \le x < \infty$ and f(x,r) = 0 otherwise. Here, r > 0. It is denoted $X \sim \chi^2(r)$.
- The Chi-square distribution is equivalent to the Gamma distribution when $\alpha = \frac{r}{2}$ and $\theta = 2$.
- If $r \to \infty$, then the Chi-square distribution tends to the normal distribution.
- If X is a Chi-square RV, then E(X) = r and Var(X) = 2r.
- If $X \sim N(\mu, \sigma^2)$, then $\left(\frac{X \mu}{\sigma}\right)^2 \sim \chi^2(1)$.
- If $X \sim N(\mu, \sigma^2)$ and $X_1, X_2, ..., X_n$ is a random sample from population X, then $\sum_{i=1}^n \left(\frac{X_i \mu}{\sigma}\right)^2 \sim \chi^2(n)$.
- If $X \sim N(\mu, \sigma^2)$ and $X_1, X_2, ..., X_n$ is a random sample from population X, then $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is the sample variance.
- A continuous RV X is said to have a **t-distribution** with ν degrees of freedom if its pdf is of the form $f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})(1+\frac{x^2}{\nu})^{(\frac{\nu+1}{2})}}$, where $x \in \mathbb{R}$, $\nu > 0$. It is denoted $X \sim t(\nu)$.
- If $\nu \to \infty$, then the t-distribution tends to the standard normal distribution.
- If $X \sim t(\nu)$, then E(X) = 0 if $\nu \geq 2$. E(X) does not exist if $\nu = 1$. $Var(X) = \frac{\nu}{\nu 2}$ if $\nu \geq 3$. Var(X) does not exist if $\nu = 1$ or $\nu = 2$.
- If $Z \sim N(0,1)$ and $V \sim \chi^2(\nu)$, and if Z and V are independent, then $W = \frac{Z}{\sqrt{\frac{V}{\nu}}} \sim t(\nu)$.
- If $X \sim N(\mu, \sigma^2)$ and $X_1, X_2, ..., X_n$ is a random sample from population X, then $\frac{\overline{X_n} \mu}{\frac{S_n}{\sqrt{n}}} \sim t(n-1)$.
- If $X_1, X_2, ..., X_n$ are mutually independent random variables such that $X_i \sim N(\mu_i, \sigma_i^2)$, then the random variable $Y = \sum_{i=1}^n a_i X_i$ is normal RV with mean $\mu_Y = \sum_{i=1}^n a_i \mu_i$ and variance $\sigma_Y^2 = \sum_{i=1}^n a_i^2 \sigma_i^2$.
- A continuous RV X is said to have an **F-distribution** with ν_1 and ν_2 degrees of freedom if its pdf is of the form $f(x) = \frac{\Gamma(\frac{\nu_1+\nu_2}{2})(\frac{\nu_1}{\nu_2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})(1+\frac{\nu_1}{\nu_2}x)^{(\frac{\nu_1+\nu_2}{2})}}$ if $0 \le x < \infty$ and f(x) = 0 otherwise, where $\nu_1, \nu_2 > 0$. It is denoted $X \sim F(\nu_1, \nu_2)$.
- F-distribution tends to the normal distribution when ν_1 and ν_2 become very large.
- If $X \sim F(\nu_1, \nu_2)$, then $E(X) = \frac{\nu_2}{\nu_2 2}$ if $\nu_2 \geq 3$ and E(X) does not exist if $\nu_2 = 1, 2$. $Var(X) = \frac{2\nu_2^2(\nu_1 + \nu_2 2)}{\nu_1(\nu_2 2)^2(\nu_2 4)}$ if $\nu_2 \geq 5$ and Var(X) does not exists if $\nu_2 = 1, 2, 3, 4$.
- If $X \sim F(\nu_1, \nu_2)$, then $\frac{1}{X} \sim F(\nu_2, \nu_1)$.
- If $U \sim \chi^2(\nu_1)$ and $V \sim \chi^2(\nu_2)$, and if U and V are independent, then $\frac{\frac{U}{\nu_1}}{\frac{V}{\nu_2}} \sim F(\nu_1, \nu_2)$.
- Let $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_m$ be random samples of size n and m, where $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$. Then the statistic $\frac{S_1^2}{\sigma_2^2} \sim F(n-1, m-1)$. Here, S_1^2 and S_2^2 are the sample variances of the first and second sample respectively.

- Let a population be described by random variable X with pdf $f(x;\theta)$. A random sample is a portion of the population and has the same distribution as the population. The data obtained after sampling, i.e, $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$ is called the **sample data**. A **statistical inference** is a statement about the population based on the sample data.
- The three types of statistical inferences are point estimation, hypothesis testing and prediction.
- In **point estimation**, we attempt to find the parameter θ of the distribution function $f(x;\theta)$ from the sample information. The form of the distribution is assumed to be known and only the unknown parameter is estimated.
- Let X be a population with pdf $f(x;\theta)$. The set of all admissible values of θ is called a **parameter** space and is denoted by Ω . $\Omega = \{\theta \in \mathbb{R}^m : f(x;\theta) \text{ is a pdf}\}$, for some $m \in \mathbb{N}$.
- Any statistic that can be used to guess θ is called an **estimator** of θ . The numerical value of this statistic is called an **estimate** of θ . The estimator is denoted by $\widehat{\theta}$.
- There are several methods for finding an estimator of θ :
 - 1. **Moment Method:** Let $X_1, X_2, ..., X_n$ be a random sample from population X with pdf $f(x; \theta_1, \theta_2, ..., \theta_m)$. Let $E(X^k) = \int_{-\infty}^{\infty} f(x; \theta_1, \theta_2, ..., \theta_m) dx$ be the kth **population moment** about 0. Let $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ be the kth **sample moment** about 0. The estimator for $\theta_1, \theta_2, ..., \theta_m$ is found by equating the first m population moments to the first m sample moments, i.e, $M_1 = E(X), M_2 = E(X^2)$, and so on.
 - 2. Maximum Likelihood Method: Let $X_1, X_2, ..., X_n$ be a random sample from population X with pdf $f(x;\theta)$. The likelihood function of the sample is given by $L(\theta) = \prod_{i=1}^n f(x_i;\theta)$, for $\theta \in \Omega$. The value of θ that maximises $L(\theta)$ is called the maximum likelihood estimator of θ and denoted $\widehat{\theta}$.
- Let $\widehat{\theta}$ be a maximum likelihood estimator of θ and let $g(\theta)$ be a function of θ . Then the maximum likelihood estimator of $g(\theta)$ is given by $g(\widehat{\theta})$.
- An estimator of θ is said to be an **unbiased estimator** if and only if $E(\widehat{\theta}) = \theta$. If $\widehat{\theta}$ is not unbiased, it is called a biased estimator.
- Let $\widehat{\theta}_1$ and $\widehat{\theta}_2$ be two unbiased estimators of θ . $\widehat{\theta}_1$ is said to more efficient than $\widehat{\theta}_2$ if $Var(\widehat{\theta}_1) < Var(\widehat{\theta}_2)$. The ratio $\eta(\widehat{\theta}_1, \widehat{\theta}_2) = \frac{Var(\widehat{\theta}_1)}{Var(\widehat{\theta}_2)}$ is called the **relative efficiency** of $\widehat{\theta}_1$ with respect to $\widehat{\theta}_2$.
- An unbiased estimator $\widehat{\theta}$ of θ is said to be a uniform minimum variance unbiased estimator of θ if and only if $\operatorname{Var}(\widehat{\theta}) < \operatorname{Var}(\widehat{T})$ for any unbiased estimator \widehat{T} of θ .
- If $\widehat{\theta}$ is unbiased then $Var(\widehat{\theta}) = E((\widehat{\theta} \theta)^2)$.
- Alternatively, $\hat{\theta}$ is a uniform minimum variance unbiased estimator of θ if it minimises the variance $E((\hat{\theta} \theta)^2)$.

•