Demonstracja kodowania Huffmana

Autorzy: Paweł Nogieć i Michał Janecki

I. WSTEP

Celem projektu było opracowanie demonstratora kodowania Huffmana z czytelnym interfejsem graficznym.

Zrealizowane funkcjonalności:

- 1. Funkcja konstrukcji kodu (2 rodzaje kodowania za pomocą słownika, standardowe kodowanie i dekodowanie)
- 2. Obliczanie entropii kodu, efektywności kodowania oraz długości zakodowanego ciągu
- 3. Wyświetlanie zakodowanych znaków w formie słownika z podanym prawdopodobieństwem wystąpienia znaku oraz sposobem jego zakodowania.
- 4. Skonstruowana przejrzysta i elegancka szata graficzna, pozwalająca na przyjazną pracę z programem.

Z powodu różnic w wersji Matlaba jak i wbudowanych funkcji zmuszeni byliśmy dołączyć kilka dodatkowych takich właśnie funkcji. Są to "isCellString", "isString", "strescape", "strjoin", "strsplit".

II. WSTĘP TEORETYCZNY

Kodowanie Huffmana jest jedną z najprostszych metod kompresji bezstratnej. Znajduje zastosowanie w szczególności tam, gdzie występują znaczne różnice pomiędzy ilością poszczególnych znaków. Polega ono na zastąpieniu symboli występujących w ciągu do zakodowania specjalnymi sekwencjami bitów stanowiących tzw. słowa kodowe. Symbolom o największym prawdopodobieństwie wystąpienia przypisywane są słowa kodowe o najmniejszej liczbie bitów, a symbolom o mniejszym prawdopodobieństwa – słowa składające się z większej liczby bitów. Kod Huffmana jest kodem prefiksowym, co oznacza, że żadne słowo kodowe nie może być poczatkiem innego.

III. OPIS DZIAŁANIA APLIKACJI

Aby zakodować dany ciąg znaków, należy go wpisać w pole u góry interfejsu a następnie wcisnąć przycisk "Generuj kod". Pojawi się wtedy zakodowany ciąg, słownik wyświetlający jakie słowa kodowe zostały

wygenerowane dla poszczególnych symboli, obliczona i wypisana w odpowiednim polu zostanie efektywność, entropia i długość kodu. W przypadku wciśnięcia przycisku "Generuj kod z użyciem słownika v1", ciąg zostanie zakodowany na podstawie predefiniowanych słów kodowych obliczonych na podstawie wystapień poszczególnych znaków w języku angielskim. Uzyskany w ten sposób kod będzie prawdopodobniej mniej efektywny i dłuższy od wygenerowanego poprzednia metodą, jednak proces jego stworzenia jest mniej obciążający dla sprzetu. Nie zostanie jednak podana entropia ani efektywność takiego kodowania, ponieważ prawdopodobieństwa wystąpienia poszczególnych znaków zostały predefiniowane i niezależnie od wpisanego ciągu kodowego uzyskane wyniki byłby takie same. Aby skorzystać z generowania z użyciem własnego słownika – przycisk "Generuj kod z użyciem słownika v2" należy najpierw podać znaki odpowiadające ciągowi, który chcemy zakodować wraz z ich prawdopodobieństwami. Po wpisaniu znaku i jego prawdopodobieństwa należy nacisnać przycisk "Dodai znak" i powtórzyć proces dla wszystkich znaków. Należy pamiętać, aby suma prawdopodobieństw wpisanych przez nas znaków była równa 1. Po zdefiniowaniu naszego własnego słownika możemy zakodować ciąg znaków w polu u góry interfejsu naciskając przycisk "Generuj kod z użyciem słownika v2".

Za każdym razem uprzednio zakodowany ciąg jest też odkodowywany. Nasze testy wykazały, że funkcja ta działa bezbłędnie – uzyskany ciąg znaków pokrywa się z tym, który został wcześniej podany.

IV. BIBLIOGRAFIA

Przy tworzeniu naszej aplikacji korzystaliśmy przede wszystkim ze strony głównej Matlaba (http://www.mathworks.com/) a w celu uzyskania informacji teoretycznych dotyczących samego kodowania i sprawdzenia poprawności działania programu ze stron:

http://huffman.ooz.ie/

http://en.wikipedia.org/wiki/Huffman_coding
Informacje o częstotliwości występowania
poszczególnych znaków uzyskaliśmy ze strony:
http://www.docstoc.com/docs/31970728/Case-SensitiveLetter-Frequency-20-Table-1-Raw-case-sensitive