AVL: insertion - cas 1.

- Cas 1: équilibre de a devient -2, et équilibre de b (fils gauche) devient -1
- · Une rotation droite en a suffit.

AVL: insertion - cas 2.

AVL: insertion - cas 1 inverse.

- Cas 1 inverse: équilibre de a devient +2, et équilibre de b (fils gauche) devient +1
- Une rotation gauche en a suffit.

AVL: insertion - cas 2 inverse.

- Cas 2 inverse: équilibre de a devient +2, et équilibre de b devient -1
- Une double rotation droite-gauche en a est nécessaire:
 - O Rotation droite en b (== SAD(a))
 - o Rotation gauche en a

18

SUPPRESSION:

AVL: suppression - cas 1.

- Cas 1: équilibre de a devient -2, et équilibre de b (fils gauche) est -1
- Une rotation droite en a suffit.

AVL: suppression - cas 2.

- Cas 1: équilibre de a devient -2, et équilibre de b (fils gauche) est 0
- Une rotation droite en a suffit.

Les cas inverses sont obtenus par symétrie

AVL: suppression - cas 3.

- Cas 2: équilibre de a devient -2, et équilibre de b (fils gauche) est 1
- Une double rotation gauche-droite en a est nécessaire:
 - O Rotation gauche en b (== SAG(a))
 - O Rotation droite en a

Arbre ARN: INSERTION

- Étape 1 : insertion classique dans un ABR
 - Le nouveau nœud est rouge -> règle 3 vérifiée
- Étape 2 : règle 2 peut ne plus être vérifiée
 - 。 Si le père du nouveau nœud est rouge
 - faire des rotations
 - o 3 cas possibles:
 - le père est la racine
 - le frère du père est rouge
 - le frère du père est noir

ARN - insertion - cas 1

- Cas 1 : le père est la racine
 - Le père devient noir

- Seul cas où la hauteur noire augmente
 - pour tous les chemins!

ARN - insertion - cas 3

- Cas 3 : le frère f du père p est noir
 - o Cas 3a: n est le fils gauche
 - rotation droite sur gp, gp devient rouge
 - p devient noir

ARN - insertion - cas 2

- Cas 2 : le frère f du père p est rouge
 - o Le père et son frère deviennent noir
 - o Le grand père gp devient rouge

• gp et son père peuvent être rouges

ARN - insertion - cas 3

- Cas 3 : le frère f du père p est noir
 - Cas 3a: n est le fils gauche
 - o Cas 3b: n est le fils droit
 - double rotation gauche droite sur p
 - **gp** devient rouge, **n** devient noir

ARN - insertion - recap

- Cas 1 : le père est la racine
 - o le père devient noir
- Cas 2 : le frère f du père p est rouge
 - o le père et son frère deviennent noir
 - o le grand père gp devient rouge
- Cas 3 : le frère f du père p est noir
 - o Cas 3a: n est le fils gauche
 - rotation droite sur gp, gp devient rouge
 - p devient noir
 - o Cas 3b : n est le fils droit
 - double rotation gauche droite sur p
 - gp devient rouge, n devient noir

SUPPRESSION:

- On considère que le nœud s à supprimer porte une couleur noire supplémentaire
 - 。 S'il est rouge, il devient noir
 - o S'il est noir, il devient doublement noir
 - > Il faut supprimer le nœud (doublement) noir
- Plusieurs cas
 - o Cas 1 : s est la racine de l'arbre
 - o Cas 2 : le frère f de s est noir
 - o Cas 3 : le frère f de s est rouge

ARN - suppression

- Cas 1: s est la racine de l'arbre
 - s devient simplement noir
 - Toutes les contraintes sont alors respectées

ARN - suppression

- Cas 2 : le frère f de s est noir
 - Cas 2a: les fils de f sont noirs
 - s devient simplement noir, f devient rouge
 - p devient noir s'il était rouge, doublement noir s'il était noir

。 Symétrie si **s** est le fils droit de **p**

ARN - suppression

- Cas 2 : le frère f de s est noir
 - o Cas 2b : le fils droit d de f est rouge
 - rotation gauche sur p
 - f prend la couleur de p
 - s, p et d deviennent noirs

Symétrie si s est le fils droit de p

ARN - suppression

- Cas 2 : le frère f de s est noir
 - o Cas 2c : le fils droit d de f est noir, g est rouge
 - rotation droite sur f, et f devient rouge, g devient noir

Symétrie si s est le fils droit de p

ARN - suppression

- Cas 3 : le frère f de s est rouge
 - o rotation gauche sur **p**
 - o p devient rouge, f devient noir
 - on revient au cas 2

• Symétrie si s est le fils droit de p

ARN - suppression - recap

- Cas 1 : s est la racine de l'arbre
 - o s devient simplement noir
- Cas 2 : le frère f de s est noir
 - o Cas 2a : les fils de f sont noirs
 - s devient noir, f devient rouge
 - o Cas 2b : le fils droit d de f est rouge

 - rotation gauche sur p
 f prend la couleur de p, s, p et d deviennent noirs
 - $\circ \quad \text{ Cas 2c : le fils droit } \textbf{d} \text{ de } \textbf{f} \text{ est noir, } \textbf{g} \text{ est rouge} \\$
 - rotation droite sur f, et f devient rouge
 on se retrouve dans le cas précédent (2b)
- Cas 3 : le frère f de s est rouge
 - o rotation gauche sur p
 - o p devient rouge, f devient noir
 - o on revient au cas 2