Problem 29: Pierwszy do mety!

Punkty: 90

Autor: Matthew Schmeiser, Montreal, Québec, Kanada

Wprowadzenie

Tym razem trafiacie do fotela kierowcy! Musicie poprowadzić swój samochód po torze, unikając zderzeń ze ścianami i starając się osiągnąć jak najlepszy czas. Sukces będzie zależny od umiejętnego sterowania kierunkiem jazdy i prędkością samochodu.

Opis problemu

Wyścig jest przedstawiany w postaci siatki, która wskazuje pozycję początkową i obszar o wymiarach 3x3, który stanowi metę wyścigu. Wasza pozycja i prędkość w dowolnym punkcie może być reprezentowana przez parę liczb; w przypadku pozycji jest to położenie na osi X i Y (X,Y); w przypadku prędkości aktualna prędkość ruchu wzdłuż każdej osi (V_x,V_y). Na początku wyścigu wasza prędkość wynosi (0,0). Ta prędkość nie może przekroczyć wartości bezwzględnej 3 wzdłuż każdej osi.

Wasz samochód będzie się poruszał po torze wyścigowym krokami. W każdym kroku samochód wykona ruch odpowiednio do swojej prędkości. Przykładowo, jeśli wasza prędkość wynosi (1,-2), to samochód poruszy się o jedno miejsce w górę i dwa miejsca w lewo. Następnie macie wybór, czy zwiększyć czy zmniejszyć prędkość samochodu wzdłuż każdej z osi o jeden. Przykładowo, możecie zmienić prędkość samochodu na (0,-2) (zmniejszając prędkość wzdłuż osi X), (2,-3) (zwiększając prędkość ruchu do góry i w lewo) lub pozostawić ją bez zmian ((1,-2).

Jeśli w którymkolwiek momencie pozycja samochodu wykroczy poza tor wyścigowy lub pozycja samochodu jest zajmowana przez ścianę, to wasz samochód został rozbity. Jeśli pozycja samochodu znajdzie się na obszarze mety o wymiarach 3x3, udało się wam ukończyć wyścig. Waszym celem jest ustalenie najmniejszej liczby kroków potrzebnej do przeprowadzenia samochodu od pozycji początkowej do pozycji mieszczącej się na mecie.

Przykładowe dane wejściowe

Pierwszy wiersz danych wejściowych programu, otrzymanych przez standardowy kanał wejściowy, będzie zawierać dodatnią liczbę całkowitą oznaczającą liczbę przypadków testowych. Każdy przypadek testowy będzie zawierać:

- Wiersz zawierający dwie dodatnie liczby całkowite, Y i X, oddzielone spacjami, reprezentujące odpowiednio liczbę rzędów i kolumn toru wyścigowego.
- Y wierszy zawierających tor wyścigowy. Każdy wiersz zawiera X znaków i składa się z poniższych znaków:

- o # (oznaczające ściany)
- o Spacji (oznaczających tor dostępny do ruchu)
- o Wielkiej litery C (oznaczającej pozycję startową)
- o Dziewięciu symboli \$ w obszarze o wymiarach 3x3 (oznaczających metę)

```
2
10 10
##########
# C ######
    ######
    ######
#
    ######
#
    ######
#
      $$$#
#
      $$$#
#
      $$$#
##########
16 20
###############################
#######
#$$$
#$$$
          #######
#$$$
       ########
#################
#################
###############
##
            ###
                     #
#
                    ##
#
     ######
                ######
#
     ################
    ##################
    #################
# C ###############
######################
```

Przykładowe dane wyjściowe

W każdym przypadku testowym wasz program musi wyświetlić liczbę całkowitą odpowiadającą najmniejszej liczbie kroków, jakich wasz samochód potrzebuje, by dotrzeć do mety.

5 17