

# NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2021

**WISKUNDE: VRAESTEL II** 

#### **NASIENRIGLYNE**

Tyd: 3 uur 150 punte

Hierdie nasienriglyne is opgestel vir gebruik deur eksaminators en hulpeksaminators van wie verwag word om almal 'n standaardiseringsvergadering by te woon om te verseker dat die riglyne konsekwent vertolk en toegepas word by die nasien van kandidate se skrifte.

Die IEB sal geen bespreking of korrespondensie oor enige nasienriglyne voer nie. Ons erken dat daar verskillende standpunte oor sommige aangeleenthede van beklemtoning of detail in die riglyne kan wees. Ons erken ook dat daar sonder die voordeel van die bywoning van 'n standaardiseringsvergadering verskillende vertolkings van die toepassing van die nasienriglyne kan wees.

### **LET WEL:**

- Indien 'n kandidaat 'n vraag meer as een keer beantwoord, sien slegs die EERSTE poging na.
- Deurlopende akkuraatheid is op alle aspekte van die nasienmemorandum van toepassing.

### **AFDELING A**

### VRAAG 1

| (a) | A = -160,645<br>B = 21,505<br>y = -160,645 + 21,505x                                          | A = -160,645<br>B = 21,505<br>korrekte formule en<br>afronding |
|-----|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| (b) | y = -160,645 + 21,505(90)<br>y = 1774,81<br>Alternatief met sakrekenaar: R1774,79             | R1 774,81<br>Alt: R1 774,79                                    |
| (c) | Ekstrapolering het risiko's, d.w.s. wanneer buite die grense van die gegewe data gewerk word. | Ekstrapolering                                                 |
| (d) | r = 0,912                                                                                     | r = 0,912                                                      |
| (e) | Baie sterk positiewe korrelasie                                                               | Baie sterk positiewe korrelasie                                |

### **VRAAG 2**

| (a) | Korrekte houer-en-punt-stipping dienooreenkomstig                                                                                            | Vorm: houer-en-punt Min: 2 Maks: 68 Q1: 30 Q2: 44 Q3: 52 Maks. 2 indien houer-en-punt-stipping foute het |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (b) | Skeef na links / negatief skeef                                                                                                              | negatief skeef                                                                                           |
| (c) | Omdat variasiewydte A > variasiewydte B en IQR <sub>A</sub> > IQR <sub>B</sub> , is die hoogtes van die plante in Omgewing A meer verspreid. | soos beskryf                                                                                             |

| / \ |                                                                                                               |                                  |
|-----|---------------------------------------------------------------------------------------------------------------|----------------------------------|
| (a) | Lengte AB = $\sqrt{(x^2 - x_1)^2 + (y_2 - y_1)^2}$                                                            |                                  |
|     | Lengte AB = $\sqrt{(11-6)^2 + (12-16)^2}$                                                                     | $= \sqrt{(11-6)^2 + (12-16)^2}$  |
|     | Lengte AB = $\sqrt{25+16}$                                                                                    | Vervang in afstandsformule       |
|     | Lengte AB = $\sqrt{41}$                                                                                       | $=\sqrt{41}$                     |
| (b) | $m_{AB} = \frac{16-12}{6-11}$                                                                                 |                                  |
|     |                                                                                                               | Gradiënte                        |
|     | $m_{AB} = -\frac{4}{5}$                                                                                       | $m_{AB} = -\frac{4}{5}$          |
|     | o de la companya de | 5                                |
|     | $m_{DE} = \frac{-11+3}{6+4} = -\frac{8}{10}$                                                                  | $m_{DE}=-rac{4}{5}$             |
|     | $m_{DE} = -\frac{4}{5}$                                                                                       | $m_{DE} = -\frac{1}{5}$          |
|     | 9                                                                                                             |                                  |
| (c) | Gradiënte is gelyk : AB//DE<br>Vergelyking lyn DB: $y = mx + c$ vervang $(m_{DB} = 1)$                        |                                  |
|     | y = x + c vervang (-4; -3) of (11;12)                                                                         |                                  |
|     | -3 = -4 + c                                                                                                   | vervang $(m_{DB} = 1)$           |
|     | $C = 1$ $\therefore y = x + 1$                                                                                | c=1<br>x=6                       |
|     | Vir snypunt vervang $x=6$                                                                                     | $\therefore y = 7$               |
|     | $\therefore y = 7$                                                                                            |                                  |
|     | $\therefore k = 7$                                                                                            |                                  |
| (d) | $m_{AB} = -\frac{4}{5}$                                                                                       |                                  |
|     | $\tan \theta = m$                                                                                             |                                  |
|     | $\theta \approx 38.7^{\circ}$                                                                                 | $\theta \approx 38,7^{\circ}$    |
|     | ·                                                                                                             |                                  |
|     | $AE \perp x$ -as $\therefore \alpha = 90^{\circ}$                                                             | <i>AE</i> ⊥ <i>x</i> -as ∴ α=90° |
|     | $\stackrel{\wedge}{BAC} = 180^{\circ} - (90^{\circ} + 38,7^{\circ})$ (binne $\angle$ van $\triangle$ )        |                                  |
|     | BÂC=51,3°                                                                                                     | BÂC = 51,3°                      |
|     |                                                                                                               |                                  |

(e)  $\frac{\text{Oppervlakte } \Delta ABC}{\text{Oppervlakte } \Delta EDC} = \frac{\frac{1}{2}(AB)(BC)\sin\hat{B}}{\frac{1}{2}(CD)(DE)\sin\hat{D}}$ 

 $\triangle ABC / / / \triangle EDC$  (gelykhoekig)

$$\therefore \frac{AB}{ED} = \frac{BC}{DC} = \frac{AC}{EC}$$

$$\hat{D} = \hat{B}$$
 (verw  $\angle e$ ; // lyne)

en 
$$\frac{AB}{DE} = \frac{BC}{DC}$$
 (///  $\Delta e$ , sye eweredig)

$$\therefore \frac{\mathsf{Oppervlakte} \ \Delta \mathsf{ABC}}{\mathsf{Oppervlakte} \ \Delta \mathsf{EDC}} = \frac{\left(\mathsf{AB}\right)^2}{\left(\mathsf{DE}\right)^2}$$

$$\therefore \frac{\text{Oppervlakte } \Delta \text{ABC}}{\text{Oppervlakte } \Delta \text{EDC}} = \frac{\left(\sqrt{41}\right)^2}{\left(2\sqrt{41}\right)^2}$$

$$\therefore \frac{\mathsf{Oppervlakte}\ \Delta\mathsf{ABC}}{\mathsf{Oppervlakte}\ \Delta\mathsf{EDC}} = \frac{1}{4}$$

### Alternatief 1:

$$\frac{\text{Oppervlakte }\Delta ABC}{\text{Oppervlakte }\Delta EDC} = \frac{\frac{1}{2}(AC)(AB)\sin\hat{A}}{\frac{1}{2}(CE)(ED)\sin\hat{E}}$$

$$\frac{\text{Oppervlakte }\Delta\text{ABC}}{\text{Oppervlakte }\Delta\text{EDC}} = \frac{9 \times \sqrt{41}}{18 \times 2\sqrt{41}} = \frac{1}{4}$$

### Alternatief 2:

$$\frac{\text{Oppervlakte } \Delta \text{ABC}}{\text{Oppervlakte } \Delta \text{EDC}} = \frac{\frac{1}{2}(\text{AC})(h_B)}{\frac{1}{2}(\text{CE})(h_D)}$$

$$\frac{\text{Oppervlakte } \Delta \text{ABC}}{\text{Oppervlakte } \Delta \text{EDC}} = \frac{9 \times 5}{18 \times 10} = \frac{1}{4} \quad \dots \quad h_B = 12 - 7$$

$$\frac{1}{2}(\text{AC})(h_B)$$

$$\frac{1}{2}(\text{CE})(h_D)$$

$$\frac{\text{Oppervlakte } \triangle ABC}{\text{Oppervlakte } \triangle EDC} = \frac{9 \times 5}{18 \times 10} = \frac{1}{4} \quad \dots \quad h_B = 12 - 7$$

$$=\frac{\frac{1}{2}(AB)(BC)sin\hat{B}}{\frac{1}{2}(CD)(DE)sin\hat{D}}$$

$$\hat{D} = \hat{B}$$
 (verw  $\angle e$ ; // lyne)

$$\frac{AB}{DE} = \frac{BC}{DC} \qquad (//\!/ \Delta e, \text{ sye eweredig})$$

$$\frac{\mathsf{Oppervlakte}\ \Delta\mathsf{ABC}}{\mathsf{Oppervlakte}\ \Delta\mathsf{EDC}} = \frac{\left(\mathsf{AB}\right)^2}{\left(\mathsf{DE}\right)^2}$$

Oppervlakte ∆ABC  $\frac{1}{\text{Oppervlakte }\Delta \text{EDC}} = \frac{1}{4}$ 

$$\frac{\frac{1}{2}(AC)(AB)\sin \hat{A}}{\frac{1}{2}(CE)(ED)\sin \hat{E}}$$
Kansellering
$$\frac{9 \times \sqrt{41}}{18 \times 2\sqrt{41}}$$

$$=\frac{1}{4}$$

$$\frac{\frac{1}{2}(AC)(h_{\scriptscriptstyle B})}{\frac{1}{2}(CE)(h_{\scriptscriptstyle D})}$$

Lood hoogte 5 en 10 Waardes 9 en 18

$$\frac{9 \times 5}{18 \times 10}$$

$$= \frac{1}{4}$$

| (a)(1) | Lengte AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                                                           |                                                                                                                                 |
|--------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|        | Lengte AB = $\sqrt{(2-1)^2 + (8+1)^2}$                                                                                       | $= \sqrt{(2-1)^2 + (8+1)^2}$                                                                                                    |
|        | Lengte AB = $\sqrt{1+81}$                                                                                                    | Vervang in afstandsformule                                                                                                      |
|        | Lengte AB = $\sqrt{82}$                                                                                                      | $=\sqrt{82}$                                                                                                                    |
|        | Lengte AD = V02                                                                                                              |                                                                                                                                 |
|        | Alternatief:                                                                                                                 |                                                                                                                                 |
|        | $ AB  = \sqrt{82}$                                                                                                           | $ AB  = \sqrt{82}$                                                                                                              |
| (2)(2) | AR is 'n middellyn: Vir middelnynt:                                                                                          |                                                                                                                                 |
| (a)(2) | AB is 'n middellyn: Vir middelpunt:                                                                                          | (37)                                                                                                                            |
|        | Midpt AB $\left(\frac{2+1}{2}; \frac{8-1}{2}\right)$                                                                         | Midpt AB $\left(\frac{3}{2}, \frac{7}{2}\right)$                                                                                |
|        | Midpt AB $\left(\frac{3}{2}, \frac{7}{2}\right)$                                                                             | _                                                                                                                               |
|        | (2,5)                                                                                                                        | $r=\frac{\sqrt{82}}{2}$                                                                                                         |
|        | <u> </u>                                                                                                                     | 2                                                                                                                               |
|        | $r = \frac{\sqrt{82}}{2}$                                                                                                    | $\left(x-\frac{3}{2}\right)^2+\left(y-\frac{7}{2}\right)^2=\frac{41}{2}$                                                        |
|        | $\left(x - \frac{3}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 = \frac{41}{2}$                                             | $\left  \begin{pmatrix} x - \overline{2} \end{pmatrix} + \begin{pmatrix} y - \overline{2} \end{pmatrix} \right  = \overline{2}$ |
|        | $\left  \begin{pmatrix} x - \frac{1}{2} \end{pmatrix} + \begin{pmatrix} y - \frac{1}{2} \end{pmatrix} \right  = \frac{1}{2}$ |                                                                                                                                 |
|        |                                                                                                                              |                                                                                                                                 |
| (a)(3) | $m_{middellyn} = \frac{8+1}{2-1}$ : $m_{middellyn} = 9$                                                                      | $m_{middellyn} = \frac{8+1}{2-1}$ : $m_{middellyn} = 9$                                                                         |
|        | $\therefore m_{raaklyn} = -\frac{1}{9}$                                                                                      | $\therefore m_{raaklyn} = -\frac{1}{9}$                                                                                         |
|        |                                                                                                                              | 9                                                                                                                               |
|        | $y = -\frac{1}{9}x + c$ vervang (2;8)                                                                                        |                                                                                                                                 |
|        | $c=8\frac{2}{9}$                                                                                                             | $c=8\frac{2}{9}$                                                                                                                |
|        | $y = -\frac{1}{9}x + 8\frac{2}{9}$                                                                                           |                                                                                                                                 |
|        |                                                                                                                              | 9y = -x + 74                                                                                                                    |
| (b)    | 9y = -x + 74 Konstrueer AO                                                                                                   |                                                                                                                                 |
|        | ∴ AO=10 eenhede Radius                                                                                                       | AO=10 eenhede                                                                                                                   |
|        | AO⊥AM Raaklyn ⊥ Radius                                                                                                       | AO $\perp$ AMRaaklyn $\perp$ Radius                                                                                             |
|        | $(AM)^2 = (13)^2 - (10)^2$ Pythag                                                                                            | $(AM)^2 = (13)^2 - (10)^2$                                                                                                      |
|        | $AM = \sqrt{69}$                                                                                                             | $(AM)^2 = (13)^2 - (10)^2$ $AM = \sqrt{69}$                                                                                     |
|        |                                                                                                                              | $AM = \sqrt{69}$                                                                                                                |
|        |                                                                                                                              |                                                                                                                                 |



| (a)    | Konstruksie: B deur middelpunt O Bewys: $\hat{O}_1 = \hat{A} + \hat{B}_1$ (buite $\angle$ van $\Delta$ ) $\hat{A} = \hat{B}_1$ (Gelykbenige $\Delta$ / Radii) Net so in die ander driehoek: $\hat{O}_1 = 2 \times \hat{B}_1$ $\hat{O}_2 = 2 \times \hat{B}_2$ $\therefore A \hat{O}C = 2 \times A \hat{B}C$ | B deur middelpunt O $\hat{O}_1 = \hat{A} + \hat{B}_1  \text{(buite} \angle \text{ van } \Delta\text{)}$ $\hat{A} = \hat{B}_1  \text{(Gelykb } \Delta \text{ / Radii)}$ $\hat{O}_1 = 2 \times \hat{B}_1$ $\hat{O}_2 = 2 \times \hat{B}_2$ $\therefore \hat{AOC} = 2 \times \hat{ABC}$ |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)(1) | $\hat{C}_1 = \hat{A}_1$ (Raaklyn van pt / gelykbenige $\Delta$ ) $2\hat{A}_1 + \hat{T} = 180^\circ$ $\hat{A}_1 = 59^\circ$ (Binne $\angle$ e van $\Delta$ )                                                                                                                                                 | $\hat{A}_1 = 59^\circ$ (raaklyn van pt / gelykb $\Delta$ ) (Binne $\angle$ e van $\Delta$ )                                                                                                                                                                                          |
| (b)(2) | $\hat{A}_1 + \hat{A}_2 = 90^\circ$ (radius $\perp$ raaklyn) $\hat{A}_2 = 90^\circ - 59^\circ$ $\hat{A}_2 = 31^\circ$ $\hat{A}_2 = \hat{C}_2$ (gelykbenige $\Delta$ ; CO=AO radii) $\therefore \hat{O}_1 = 118^\circ$ (binne $\angle$ e van $\Delta$ )                                                       | $\hat{A}_1 + \hat{A}_2 = 90^\circ$<br>(radius $\perp$ raaklyn)<br>$\hat{A}_2 = 90^\circ - 59^\circ$<br>$\hat{A}_2 = 31^\circ$<br>$\hat{A}_2 = \hat{C}_2$<br>$\therefore \hat{O}_1 = 118^\circ$<br>(binne $\angle$ e van $\Delta$ )                                                   |
|        | ALTERNATIEF: $ \hat{A}_1 = \hat{B}  \text{(raaklyn-koord-stelling)} $ $ \hat{A}_1 = 59^\circ \text{ (Uit (b)(1))} $ $ \therefore \hat{O}_1 = 118^\circ  (\angle \text{ by middelpunt} = 2 \text{ X} \angle \text{ by sirkel)} $                                                                             | $\hat{A}_1 = \hat{B}$ (raaklyn-koord)<br>$\hat{A}_1 = 59^{\circ}$ (Uit (b)(1))<br>$\therefore \hat{O}_1 = 118^{\circ}$<br>( $\angle$ by midpt = 2 X $\angle$ by sir)                                                                                                                 |

| (a) | DO = 3 eenhede<br>AD:DO = 4:3<br>$\frac{AD}{DO} = \frac{AE}{EC} = \frac{AF}{FB}$ (eweredigheidstelling – DE//OC en EF//CB)<br>$\therefore$ AF: FB = 4:3                                                                           | AD:DO = 4:3 $\frac{AD}{DO} = \frac{AE}{EC} = \frac{AF}{FB} \text{ met rede}$ $\therefore AF : FB = 4:3$                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| (b) | $\triangle AHF /// \triangle AGB$ (gelykhoekig) $\therefore \frac{AH}{AG} = \frac{HF}{GB} = \frac{AF}{AB}$ (gelykvormige driehoeke, sye eweredig) $AB = 7x$ $\therefore \frac{HF}{GB} = \frac{4x}{7x}$ $\therefore GB: HF = 7: 4$ | $\triangle$ AHF /// $\triangle$ AGB met rede  ∴ $\frac{AH}{AG} = \frac{HF}{GB} = \frac{AF}{AB}$ met rede  ∴ GB:HF = 7:4 |
| (c) | AE:EC = 4:3 (eweredigheidstelling)<br>EG = GC = $1\frac{1}{2}k$<br>$\therefore$ AE: EG = 4: $\frac{3}{2}$ of 8:3                                                                                                                  | AE:EC = 4:3<br>(eweredigheidstelling)  EG = GC = $1\frac{1}{2}k$ $\therefore$ AE: EG = 4: $\frac{3}{2}$ of 8:3          |

#### AFDELING B

(a) 
$$\sin 3x = -\frac{3}{4}$$
  
 $3x = -48,6^{\circ} + k360^{\circ}$ ;  $k \in \mathbb{Z}$   
 $x = -16,2^{\circ} + k120^{\circ}$ ;  $k \in \mathbb{Z}$   
of  $3x = 180 - (-48,6^{\circ}) + k360^{\circ}$ ;  $k \in \mathbb{Z}$   
 $x = 76,2^{\circ} + k120^{\circ}$ ;  $k \in \mathbb{Z}$   
 $x = \{-16,2^{\circ}, -43,8^{\circ}\}$   
(b)  $\tan x = \sin 2x$   
 $\sin x = 2\sin x\cos x$   
 $\sin x = 2\sin x\cos^2 x$   
 $2\sin x\cos^2 x - \sin x = 0$   
 $(2\cos^2 x - 1) = 0$   
 $\cos 2x = 0$   
 $2x = \pm 90^{\circ} + k360^{\circ}$ ;  $k \in \mathbb{Z}$   
 $\therefore x = \pm 45^{\circ} + k180^{\circ}$ ;  $k \in \mathbb{Z}$   
 $\tan x = \sin 2x$   
 $\sin x = 2\sin x\cos x$   
 $\sin x = 2\sin x\cos x$   

| (a) | $\sin\left(\hat{C}-\hat{D}\right) = \sin\hat{C}.\cos\hat{D} - \cos\hat{C}.\sin\hat{D}$ $= \left(\frac{12}{13}\right)\left(\frac{3}{5}\right) - \left(\frac{5}{13}\right)\left(-\frac{4}{5}\right)$ $= \frac{56}{65}$                                                                                                 | $= \sin \hat{C}.\cos \hat{D} - \cos \hat{C}.\sin \hat{D}$ $\left(\frac{12}{13}\right)$ $\left(\frac{3}{5}\right)$ $\left(\frac{5}{13}\right)$ $\left(-\frac{4}{5}\right)$ $= \frac{56}{65}$ |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | $cos(90^{\circ} + 60^{\circ}).cos 28^{\circ} + cos 60^{\circ}.cos 62^{\circ}$<br>$cos(60^{\circ} + 62^{\circ})$<br>$cos 122^{\circ}$<br>$= cos(180^{\circ} - 58^{\circ})$<br>$= -cos 58^{\circ}$<br>= -k                                                                                                             | $cos(90^{\circ} + 60^{\circ})$<br>$cos(60^{\circ} + 62^{\circ})$<br>$= cos(180^{\circ} - 58^{\circ})$<br>$= -cos58^{\circ}$<br>= -k                                                         |
|     | ALTERNATIEF: $-\sin 60^{\circ}\cos 28^{\circ} + \cos 60^{\circ}\sin 28^{\circ}$ $= -\sin (60^{\circ} - 28^{\circ})$ $= -\sin 32^{\circ}$ $= -\cos 58^{\circ}$ $= -k$ ALTERNATIEF: $-\cos 30^{\circ}\cos 28^{\circ} + \sin 30^{\circ}\sin 28^{\circ}$ $= -\cos (30^{\circ} + 28^{\circ})$ $= -\cos 58^{\circ}$ $= -k$ |                                                                                                                                                                                             |

| (a) | In $\triangle AEC$ $\frac{EC}{\sin 60^{\circ}} = \frac{80}{\sin 45^{\circ}}$ $EC = \frac{80 \sin 60^{\circ}}{\sin 45^{\circ}}$ $EC \approx 98 \text{ m}$ In $\triangle EDC$ :                                                                                                                                                         | $\frac{EC}{\sin 60^{\circ}} = \frac{80}{\sin 45^{\circ}}$ $EC = \frac{80 \sin 60^{\circ}}{\sin 45^{\circ}}$ $EC \approx 98 \text{ m}$                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\hat{CED} = 135^{\circ}$ (aangrensende $\angle$ e op reguitlyn) $(CD)^2 = (53)^2 + (97,98)^2 - 2(53)(97,98) \times \cos 135^{\circ}$ $CD = 140,54499$ m $CD \approx 140,5$ m                                                                                                                                                         | $\hat{CED} = 135^{\circ}$ $(CD)^{2} = (53)^{2} + (97,98)^{2}$ $-2(53)(97,98) \times \cos 135^{\circ}$ $CD = 140,5 \text{ m}$                               |
| (b) | In $\triangle ACB$ : $tan 37^{\circ} = \frac{BC}{AC}$ BC = 80 $tan 37^{\circ}$ BC = 60, 284 m  Laat M die middelpunt van BC wees:  In $\triangle DMC$ : $MC = \frac{1}{2}BC$ $\therefore MC = 30,142$ m $tan CDM = \frac{MC}{CD}$ $tan CDM = \frac{30,142}{140,55}$ $CDM \approx 12,1^{\circ}$ Die hoogtehoek van M vanaf D is 12,1°. | In $\triangle ACB$ : $tan 37^{\circ} = \frac{BC}{AC}$ $BC = 60,284 \text{ m}$ $tan CDM = \frac{MC}{CD}$ $MC = 30,142 \text{ m}$ $CDM \approx 12,1^{\circ}$ |

| (a) | Sirkel met middelpunt P:                                                                                |                                                         |
|-----|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|     | $x^2 - 6x + y^2 - 12y = -41$                                                                            | $(x-3)^2 + (y-6)^2 = 4$                                 |
|     | $(x-3)^2 + (y-6)^2 = 4$<br>Middelpunt: P(3; 6)                                                          | P(3;6)                                                  |
|     | Radius: 2 eenhede                                                                                       | Radius: 2 eenhede                                       |
| (p) | Middelpunt: Q(9;3)                                                                                      |                                                         |
|     | Afstand PQ = $\sqrt{(9-3)^2 + (3-6)^2}$                                                                 | $= \sqrt{(9-3)^2 + (3-6)^2}$                            |
|     | Afstand PQ = $\sqrt{45}$                                                                                | $=3\sqrt{5}$                                            |
|     | Afstand PQ = $3\sqrt{5}$                                                                                | ,                                                       |
|     |                                                                                                         | $\therefore 3\sqrt{5} - (2+2)$                          |
|     | $\therefore 3\sqrt{5} - (2+2)$                                                                          |                                                         |
|     | =2,7                                                                                                    |                                                         |
| (c) | Volume van blok = $lbh-2\times(\pi r^2h)$                                                               | $= lbh - 2 \times (\pi r^2 h)$                          |
|     | = $(20 \times 14 \times 10) - 2(\pi(4)(20))$<br>= $2800 - 160\pi$<br>$\approx 2297,3 \text{ eenhede}^3$ | = $2800 - 160\pi$<br>$\approx 2297,3 \text{ eenhede}^3$ |

(a) 
$$\bar{x} = \frac{5a+5b}{10}$$
  
 $\bar{x} = \frac{a+b}{2}$   
(b)  $\sigma^2 = \frac{5\left[a - \frac{a+b}{2}\right]^2 + 5\left[b - \frac{(a+b)}{2}\right]^2}{10}$   
 $\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{b-a}{2}\right)^2}{2}$   
 $\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{b-a}{2}\right)^2}{2}$   
 $\sigma^2 = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2}{2}$   
 $\sigma = \frac{\left(\frac{a-b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2}{2}$ 

| , , | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | Laat: $\hat{O}_1 = 2x$<br>$\therefore \hat{D} = x$ ( $\angle$ by middelpunt = 2x)<br>$\therefore \hat{A}_1 = x$ (verwisselende $\angle$ e; AC//BC)<br>$\therefore \hat{C} = x$ ( $\angle$ in dieselfde segment)<br>In $\triangle CAE$ : $\hat{E}_1 = 180^\circ - 2x$ (binne $\angle$ e van $\triangle$ )<br>$\therefore \hat{E}_2 = 2x$ (aangrensende $\angle$ e op reguitlyn)<br>$\therefore \hat{E}_2 = 2x = \hat{O}_1$<br>En hulle word onderspan deur AB.<br>Dus AEOB koordevierhoek ( $\angle$ e in dieselfde segment =) | $\hat{D} = x \ (\angle \text{ by middelpt} = 2x)$ $\therefore \hat{A}_1 = x  (\text{verw } \angle e; \text{AC}//\text{BC})$ $\hat{C} = x \ (\angle \text{ in dieselfde segment})$ $\hat{E}_2 = 2x \ (\text{aangr } \angle e \text{ op reguitlyn})$ En hulle word onderspan deur AB, dus is AEOB koordevierhoek ( $\angle e$ in dieselfde segment =) |
| (b) | Laat: $\hat{D}_1 = x$<br>$\therefore \hat{B}_2 = x$ gelyke koorde onderspan = $\angle e$<br>Laat: $\hat{E}_1 = y$<br>$\therefore \hat{B}_1 = y$ buite $\angle$ koordevh = oorst binne<br>$\therefore \hat{A}_1 = y - x$ buite $\angle \Delta$ = som oorst binne<br>$\therefore \hat{B}_1 - \hat{B}_2 = \hat{A}_1$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                     |
| (c) | Trek loodlyn van P na SQ<br>Noem loodlyn PU<br>$: UQ = 5 - 3$ $UQ = 2 \text{ cm}$ $: PQ = 3 + 5$ $PQ = 8 \text{ cm}$ $(PU)^2 = (PQ)^2 - (UQ)^2  \text{Pythag}$ $(PU)^2 = (8)^2 - (2)^2  \text{Pythag}$ $PU = \sqrt{60}$ $PU = 7,7 \text{ cm}$ $PU = RS \text{ (reghoek)}$ $: RS = 7,7 \text{ cm}$                                                                                                                                                                                                                             | Trek loodlyn van P na SQ $UQ = 2 \text{ cm}$ $PQ = 8 \text{ cm}$ $(PU)^{2} = (8)^{2} - (2)^{2} \text{ Pythag}$ $PU = \sqrt{60}$ $PU = RS \text{ (reghoek)}$                                                                                                                                                                                         |

| (a) | In ΔBOC:                                                                                                  |                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|     | $\hat{C} = 90^{\circ} - \theta$ (Gelykb $\Delta$ ; Radii; Binne $\angle$ e $\Delta$ ) In $\triangle$ OCF: | $:: \hat{C} = \theta$                                             |
|     | $\therefore \hat{\mathbf{C}} = \mathbf{\Theta}$                                                           | CF=8cosθ                                                          |
|     | $\frac{CF}{8} = \cos \theta$                                                                              | OF = 8sinθ                                                        |
|     | $CF = 8\cos\theta$                                                                                        | $\therefore P = 2 \times CF + 4 \times OF$                        |
|     | OF = 8sinθ                                                                                                |                                                                   |
|     | $P = 2 \times CF + 4 \times OF$<br>$P = 16\cos\theta + 32\sin\theta$                                      |                                                                   |
| (b) | $P = 16\cos\theta + 32\sin\theta$ en<br>$P = 16\sqrt{5}\sin(\theta + \alpha)$                             |                                                                   |
|     | $P = 16\sqrt{5}\sin\theta.\cos\alpha + 16\sqrt{5}\cos\theta.\sin\alpha$                                   | $16\sqrt{5}\sin\theta.\cos\alpha+16\sqrt{5}\cos\theta.\sin\alpha$ |
|     | $\therefore 16\sqrt{5}\sin\alpha = 16$                                                                    | ∴16√5 sinα = 16                                                   |
|     | en $16\sqrt{5}\cos\alpha = 32$                                                                            | $16\sqrt{5}\cos\alpha = 32$                                       |
|     | $\alpha \approx 26,6^{\circ}$                                                                             | $\alpha \approx 26,6^{\circ}$                                     |

Totaal: 150 punte