EKFMONOSLAM FOR THE INTELLITABLE ROBOT

HARRY JACKSON

1. Introduction	1
2. Quick Set-up	1
3. Analysis	1
3.1. Processing speed considerations	1
3.2. Average mahalanobis distance	1
4. Transfer to the intelliTable	1
5. Next steps	1
References	2

Contents

1. Introduction

The EKFmonoSLAM uses a EKF SLAM algorithm originally designed by Joan Sola [1].

2. Quick Set-up

This section outlines the steps that need to be taken to set up the SLAM algorithm software in MATLAB. This set-up assumes you have MATLAB already installed.

The software for running the SLAM algorithm is publicly available online¹.

3. Analysis

3.1. Processing speed considerations.

3.2. Average mahalanobis distance.

4. Transfer to the intelliTable

5. Next steps

At this current stage, the algorithm has been adapted to work with a camera attached to the robot, but the robot's navigation needs to be implemented as well.

¹https://github.com/HJackson3/intelliTable-SLAM

References

[1] Joan Sola, Teresa Vidal-Calleja, Javier Civera, and José María Martínez Montiel. Impact of landmark parametrization on monocular ekf-slam with points and lines. *International journal of computer vision*, 97(3):339–368, 2012.