### Mathematics for Robotics (ROB-GY 6013 Section A)

- Week 7:
  - Norm(s)
  - Inner Product(s)

# **Review Complex Numbers**

### Inspiration: Length of a Vector

Pythagorean Theorem



### Inspiration: Length of a Vector

Pythagorean Theorem

$$x \in (\mathbb{R}^2, \mathbb{R})$$
 
$$\sqrt{x_1^2 + x_2^2}$$
 
$$\text{length}$$
 
$$a^2 + b^2 = c^2$$

- Properties of the length:
  - a) Length is non-negative and only zero when x is zero.
  - b) Length of the sum of two vectors ≤ sum of the lengths of the two vectors
  - c) Scaling the vector by  $\alpha$  also scales its length by  $\alpha$



#### **Definition: Norm**

• Let  $(X,\mathcal{F})$  be a vector space where the field  $\mathcal{F}$  is either  $\mathbb{R}$  or  $\mathbb{C}$ .

A function  $\|\cdot\|: \mathcal{X} \to \mathbb{R}$  is a norm if it satisfies:

- a) Non-negativity:  $||x|| \ge 0$ ,  $\forall x \in \mathcal{X}$  and  $||x|| = 0 \iff x = 0$
- b) Triangle inequality:  $||x + y|| \le ||x|| + ||y||$ ,  $\forall x, y \in \mathcal{X}$
- c) Scaling:  $\|\alpha x\| = |\alpha| \cdot \|x\|, \ \forall x \in \mathcal{X}, \ \alpha \in \mathcal{F}$

If  $\alpha \in \mathbb{R}$ ,  $|\alpha|$  means the absolute value If  $\alpha \in \mathbb{C}$ ,  $|\alpha|$  means the magnitude (modulus)  $z \cdot \overline{z} = |z|^2$ 

#### **Definition: Norm**

• Let  $(X,\mathcal{F})$  be a vector space where the field  $\mathcal{F}$  is either  $\mathbb{R}$  or  $\mathbb{C}$ .

A function  $\|\cdot\|: \mathcal{X} \to \mathbb{R}$  is a norm if it satisfies:

- a) Non-negativity:  $||x|| \ge 0$ ,  $\forall x \in \mathcal{X}$  and  $||x|| = 0 \iff x = 0$
- b) Triangle inequality:  $||x + y|| \le ||x|| + ||y||$ ,  $\forall x, y \in \mathcal{X}$
- c) Scaling:  $\|\alpha x\| = |\alpha| \cdot \|x\|, \ \forall x \in \mathcal{X}, \ \alpha \in \mathcal{F}$

If  $\alpha \in \mathbb{R}$ ,  $|\alpha|$  means the absolute value If  $\alpha \in \mathbb{C}$ ,  $|\alpha|$  means the magnitude (modulus)  $z \cdot \overline{z} = |z|^2$ 

- Is the Pythagorean Length a valid norm according to the above properties?
- Are there other norms?

### **Examples: Norms for n-tuples**

- Given the vector space  $(\mathcal{F}^n,\mathcal{F})$ , where  $\mathcal{F}$  is either  $\mathbb{R}$  or  $\mathbb{C}$ .
- Possible norms that satisfy our definition

$$||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$
 Euclidean norm or 2-norm extends Pythagorithms 
$$||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$
 If  $x_i \in \mathbb{R}$ ,  $|x_i|$  means the absolute value

**Euclidean norm** or 2-norm extends Pythagorean length to *n*-dimensional space

If  $x_i \in \mathbb{C}$ ,  $|x_i|$  means the magnitude (modulus)

### **Examples: Norms for n-tuples**

- Given the vector space  $(\mathcal{F}^n, \mathcal{F})$ , where  $\mathcal{F}$  is either  $\mathbb{R}$  or  $\mathbb{C}$ .
- Possible norms that satisfy our definition

$$||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$

 $||x||_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$  **Euclidean norm** or 2-**norm** extends Pythagorean length to *n*-dimensional space If  $x_i \in \mathbb{R}$ ,  $|x_i|$  means the absolute value

If  $x_i \in \mathbb{C}$ ,  $|x_i|$  means the magnitude (modulus)

$$\|x\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
 for  $1 \le p < \infty$ ,  $p$ -norm

### **Examples: Norms for n-tuples**

- Given the vector space  $(\mathcal{F}^n, \mathcal{F})$ , where  $\mathcal{F}$  is either  $\mathbb{R}$  or  $\mathbb{C}$ .
- Possible norms that satisfy our definition

$$\|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$

 $\|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$  Euclidean norm or 2-norm extends Pythagorean length to *n*-dimensional space If  $x_i \in \mathbb{R}$ ,  $|x_i|$  means the absolute value

If  $x_i \in \mathbb{C}$ ,  $|x_i|$  means the magnitude (modulus)

$$\|x\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$
 for  $1 \le p < \infty$ ,  $p$ -norm

$$||x||_{\infty} := \max_{1 \le i \le n} |x_i|$$

 $\|x\|_{\infty} := \max_{1 \le i \le n} |x_i|$  max-norm, sup-norm or  $\infty$ -norm

- Given the vector space  $(X,\mathcal{F})$ , where  $\mathcal{F}$  is  $\mathbb{R}$ ,  $\mathcal{D} \subset \mathbb{R}$ ,  $\mathcal{D} := [a,b]$ ,  $-\infty < a < b < \infty$ , and  $\mathcal{X} := \{f \colon \mathcal{D} \to \mathbb{R} \mid f \text{ is continuous} \}$
- Possible norms that satisfy our definition:
  - Takes a function as input and gives a real value as output

- Given the vector space  $(X,\mathcal{F})$ , where  $\mathcal{F}$  is  $\mathbb{R}$ ,  $\mathcal{D} \subset \mathbb{R}$ ,  $\mathcal{D} := [a,b]$ ,  $-\infty < a < b < \infty$ , and  $\mathcal{X} := \{f \colon \mathcal{D} \to \mathbb{R} \mid f \text{ is continuous}\}$
- Possible norms that satisfy our definition:
  - Takes a function as input and gives a real value as output

$$||f||_2 := \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

- Given the vector space  $(X,\mathcal{F})$ , where  $\mathcal{F}$  is  $\mathbb{R}$ ,  $\mathcal{D} \subset \mathbb{R}$ ,  $\mathcal{D} := [a,b]$ ,  $-\infty < a < b < \infty$ , and  $\mathcal{X} := \{f : \mathcal{D} \to \mathbb{R} \mid f \text{ is continuous}\}$
- Possible norms that satisfy our definition:
  - Takes a function as input and gives a real value as output

$$||f||_2 := \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$||f||_p := \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}}$$

$$||f||_{\infty} := \max_{a \le t \le b} |f(t)|$$
 also written as  $||f||_{\infty} := \sup_{a \le t \le b} |f(t)|$ 

- Given the vector space  $(X,\mathcal{F})$ , where  $\mathcal{F}$  is  $\mathbb{R}$ ,  $\mathcal{D} \subset \mathbb{R}$ ,  $\mathcal{D} := [a,b]$ ,  $-\infty < a < b < \infty$ , and  $\mathcal{X} := \{f \colon \mathcal{D} \to \mathbb{R} \mid f \text{ is continuous}\}$  Closed interval avoids improper integrals, etc.
- Possible norms that satisfy our definition:
  - Takes a function as input and gives a real value as output

$$||f||_2 := \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$||f||_p := \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}}$$

$$\|f\|_{\infty} \coloneqq \max_{a \le t \le b} |f(t)|$$
 also written as  $\|f\|_{\infty} \coloneqq \sup_{a \le t \le b} |f(t)|$ 

## **Definition: Normed Space**

•  $(X, \mathcal{F}, \| \cdot \|)$  is called a **normed space**.

### **Definition: Normed Space**

- $(X, \mathcal{F}, \| \cdot \|)$  is called a **normed space**.
- Often we will say normed vector space is a vector space equipped with a norm

### **More Definitions: Normed Space**

- $(X, \mathcal{F}, \| \cdot \|)$  is called a **normed space**.
- Often we will say normed vector space is a vector space equipped with a norm

• For  $x, y \in \mathcal{X}$ , d(x, y) := ||x - y|| is called the **distance from** x **to** y.

### **More Definitions: Normed Space**

- $(X, \mathcal{F}, \| \cdot \|)$  is called a **normed space**.
- Often we will say normed vector space is a vector space equipped with a norm

• For  $x, y \in \mathcal{X}$ , d(x, y) := ||x - y|| is called the **distance from** x **to** y.

- How about distance from x to some subset of X?
  - Think about the distance from a point to a line.



• Let  $S \subset \mathcal{X}$  be a subset.

$$d(x,S) := \inf_{y \in S} ||x - y||$$

Recall infimum is the greatest lower bound.



$$d(x,S) := \inf_{y \in S} ||x - y||$$

- Recall infimum is the greatest lower bound.
- Can we find  $x^*$  such that  $d(x,S) = ||x-x^*||$ ?



$$d(x,S) := \inf_{y \in S} ||x - y||$$

- Recall infimum is the greatest lower bound.
- Can we find  $x^*$  such that  $d(x,S) = ||x-x^*||$ ? (Existence)



• Let  $S \subset \mathcal{X}$  be a subset.

$$d(x,S) := \inf_{y \in S} ||x - y||$$





• Then  $x^*$  is the **best approximation of** x **by elements in** S.



$$d(x,S) := \inf_{y \in S} ||x - y||$$





- Then  $x^*$  is the **best approximation of** x **by elements in** S.
  - Is x\* unique? (Uniqueness)



$$d(x,S) := \inf_{y \in S} ||x - y||$$





- Then  $x^*$  is the **best approximation of** x **by elements in** S.
  - Is x\* unique? (Uniqueness)

• Then you may write 
$$x^* := \underset{y \in S}{\arg \min} ||x - y||$$



$$d(x,S) := \inf_{y \in S} ||x - y||$$





- Then  $x^*$  is the **best approximation of** x **by elements in** S.
  - Is x\* unique? (Uniqueness)

• Then you may write 
$$x^* := \underset{y \in S}{\arg \min} ||x - y||$$



### Ideas

• Approximation: Least-squares fitting, etc.

$$x^* := \underset{y \in S}{\operatorname{arg\,min}} \left\| x - y \right\|_2^2$$

• Orthogonality:  $(x^*-x)$  is a vector perpendicular to S

$$(x^*-x)\perp S$$

Often S is not just any subset, but a **subspace** 



## **Inspiration: Dot Product**

- Familiar to you  $x, y \in \mathbb{R}^n$ ,  $x \cdot y = \sum_{i=1}^n x_i y_i$
- Possibly less familiar

$$x^T y = \sum_{i=1}^n x_i y_i$$

- Properties:
  - a) Commutativity:  $x \cdot y = y \cdot x$
  - **b)** Linearity:  $(\alpha_1 x + \alpha_2 x_2) \cdot y = \alpha_1 (x_1 \cdot y) + \alpha_2 (x_2 \cdot y)$
  - c) Non-negativity:  $x \cdot x \ge 0$  for all x, and  $x \cdot x = 0$  when x is zero

Extra:  $x \cdot y = 0$  means **orthogonality**  $x \perp y$ 

### **Definition: Inner Product (Real)**

• Let  $(X, \mathcal{F})$  be a vector space where  $\mathcal{F} = \mathbb{R}$ .

A function  $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$  is an inner product if:

- a) Commutativity:  $\langle x, y \rangle = \langle y, x \rangle$ ,
- **b)** Linearity:  $\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$ ,  $\forall x_1, x_2 \in \mathcal{X}, \forall \alpha_1, \alpha_2 \in \mathbb{R}$
- c) Non-negativity:  $\langle x, x \rangle \ge 0$

and 
$$\langle x, x \rangle = 0 \iff x = 0$$
.

$$\forall x, y \in \mathcal{X}$$

$$\forall x_1, x_2 \in \mathcal{X}, \forall \alpha_1, \alpha_2 \in \mathbb{R}$$

$$\forall x \in \mathcal{X}$$

## **Definition: Inner Product (Complex)**

• Let  $(X, \mathcal{F})$  be a vector space where  $\mathcal{F} = \mathbb{C}$ .

A function  $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$  is an inner product if:

a) 
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
,

$$\forall x, y \in \mathcal{X}$$

**b)** Linearity: 
$$\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$$
,  $\forall x_1, x_2 \in \mathcal{X}$ ,  $\forall \alpha_1, \alpha_2 \in \mathbb{C}$ 

$$\forall x_1, x_2 \in \mathcal{X}, \forall \alpha_1, \alpha_2 \in \mathbb{C}$$

c) Non-negativity: 
$$\langle x, x \rangle \ge 0$$

$$\forall x \in \mathcal{X}$$

and 
$$\langle x, x \rangle = 0 \iff x = 0$$
.

 $\langle x, x \rangle$  is always real!

### **Definition: Inner Product (Complex)**

• Let  $(X, \mathcal{F})$  be a vector space where  $\mathcal{F} = \mathbb{C}$ .

A function  $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$  is an inner product if:

a) 
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
,

$$\forall x, y \in \mathcal{X}$$

 $\forall x \in \mathcal{X}$ 

**b)** Linearity: 
$$\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$$
,  $\forall x_1, x_2 \in \mathcal{X}, \forall \alpha_1, \alpha_2 \in \mathbb{C}$ 

$$\forall x_1, x_2 \in \mathcal{X}, \forall \alpha_1, \alpha_2 \in \mathbb{C}$$

c) Non-negativity: 
$$\langle x, x \rangle \ge 0$$

and 
$$\langle x, x \rangle = 0 \iff x = 0$$
.

 $\langle x, x \rangle$  is always real!

### **Definition: Inner Product (Complex)**

• Let  $(X,\mathcal{F})$  be a vector space where  $\mathcal{F} = \mathbb{C}$ .

A function  $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$  is an inner product if:

a) 
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
,  $\forall x, y \in \mathcal{X}$   
b) Linearity:  $\langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$ ,  $\forall x_1, x_2 \in \mathcal{X}$ ,  $\forall \alpha_1, \alpha_2 \in \mathbb{C}$ 

$$\langle x, \beta_1 y_1 + \beta_2 y_2 \rangle = \overline{\langle \beta_1 y_1 + \beta_2 y_2, x \rangle}$$

$$= \overline{\beta_1 \langle y_1, x \rangle + \beta_2 \langle y_2, x \rangle}$$

$$= \overline{\beta_1} \overline{\langle y_1, x \rangle + \overline{\beta_2} \overline{\langle y_2, x \rangle}}$$

$$= \overline{\beta_1} \overline{\langle x, y_1 \rangle + \overline{\beta_2} \overline{\langle x, y_2 \rangle}}$$

### **Examples: Inner Products**

• 
$$(\mathbb{C}^n, \mathbb{C})$$
  $\langle x, y \rangle = x^T \overline{y}$ 

$$\bullet \quad (\mathbb{R}^n, \mathbb{R}) \qquad \langle x, y \rangle = x^T y$$

$$(\mathbb{R}^{n\times m},\mathbb{R}) \qquad \langle A,B\rangle = \operatorname{tr}(A^TB)$$

• 
$$(\mathcal{X}, \mathbb{R})$$
  $\langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt$ 

Given the vector space  $(X, \mathbb{R})$ , where  $\mathcal{D} \subset \mathbb{R}$ ,  $\mathcal{D} := [a, b]$ ,  $-\infty < a < b < \infty$ , and  $\mathcal{X} := \{f : \mathcal{D} \to \mathbb{R} \mid f \text{ is continuous}\}$ 

# **Definition: Inner Product Space**

•  $(X, \mathcal{F}, \langle \cdot, \cdot \rangle)$  is called an **inner product space**.

### **Definition: Inner Product Space**

•  $(X, \mathcal{F}, \langle \cdot, \cdot \rangle)$  is called an **inner product space**.

• Two vectors x and y are **orthogonal** if  $\langle x, y \rangle = 0$ . **Notation:**  $x \perp y$ 

### **Definition: Inner Product Space**

•  $(X, \mathcal{F}, \langle \cdot, \cdot \rangle)$  is called an **inner product space**.

- Two vectors x and y are **orthogonal** if  $\langle x, y \rangle = 0$ . **Notation:**  $x \perp y$
- We would like to make a connection between the inner product and the norm.
- In fact, we can create a norm of a vector with the inner product of the vector with itself:

$$||x|| := \langle x, x \rangle^{1/2} = \sqrt{\langle x, x \rangle}$$

- We will verify that the above is a norm.
  - Already satisfies non-negativity and easy to show scaling.
  - Harder to show the triangle inequality.

### **Cauchy-Schwarz Inequality**

• Let  $(X, \mathbb{R}, \langle \cdot, \cdot \rangle)$  be an **inner product space**, with  $\mathcal{F}$  either  $\mathbb{R}$  or  $\mathbb{C}$ . Then, for all  $x, y \in \mathcal{X}$ 

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$$

• Thm 3.14 in main text. See proof.

### **Cauchy-Schwarz Inequality**

• Let  $(X, \mathbb{R}, \langle \cdot, \cdot \rangle)$  be an **inner product space**, with  $\mathcal{F}$  either  $\mathbb{R}$  or  $\mathbb{C}$ . Then, for all  $x, y \in \mathcal{X}$ 

$$|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$$

- Thm 3.14 in main text. See proof.
- Stepping stone to triangle equality.
- Show that every inner product *induces* a norm.

$$||x|| := \langle x, x \rangle^{1/2} = \sqrt{\langle x, x \rangle}$$

But not every norm gives rise to an inner product!

# **Triangle Inequality**

•  $\forall x, y \in \mathcal{X}$ , does  $||x|| := \langle x, x \rangle^{1/2} = \sqrt{\langle x, x \rangle}$  satisfy  $||x + y|| \le ||x|| + ||y||$ ?

### **Proof: Triangle Inequality (Real)**

**Corollary 3.15** *Let*  $(\mathcal{X}, \mathcal{F}, \langle \cdot, \cdot \rangle)$  *be an inner product space, with*  $\mathcal{F}$  *either*  $\mathbb{R}$  *or*  $\mathbb{C}$ . *Then,* 

$$||x|| := \langle x, x \rangle^{1/2} = \sqrt{\langle x, x \rangle}$$

is a **norm**.

**Proof:** As before, for clarity of exposition, we first assume  $\mathcal{F} = \mathbb{R}$ . We will only check the triangle inequality  $||x+y|| \le ||x|| + ||y||$ , which is equivalent to showing  $||x+y||^2 \le ||x||^2 + ||y||^2 + 2||x|| \cdot ||y||$ . The other parts are left as an exercise.

$$||x+y||^2 := \langle x+y, x+y \rangle$$

$$= \langle x, x+y \rangle + \langle y, x+y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$

$$\leq ||x||^2 + ||y||^2 + 2|\langle x, y \rangle|$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| \cdot ||y||$$

where the last step uses the Cauchy-Schwarz inequality.

# **Proof: Triangle Inequality (Complex)**

We'll now quickly do the changes required to handle  $\mathcal{F} = \mathbb{C}$ . The triangle inequality is  $||x+y|| \le ||x|| + ||y||$ , which is equivalent to showing  $||x+y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$ . Brute force computation yields,

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$= \overline{\langle x + y, x \rangle} + \overline{\langle x + y, y \rangle}$$

$$= \overline{\langle x, x \rangle} + \overline{\langle y, x \rangle} + \overline{\langle x, y \rangle} + \overline{\langle y, y \rangle}$$

$$= \langle x, x \rangle + \langle x, y \rangle + \overline{\langle x, y \rangle} + \langle y, y \rangle$$

$$= ||x||^2 + ||y||^2 + 2\operatorname{Re}\{\langle x, y \rangle\}$$

where  $\text{Re}\{\langle x,y\rangle\}$  denotes the real part of the complex number  $\langle x,y\rangle$ . However, for any complex number  $\alpha$ ,  $\text{Re}\{\alpha\} \leq |\alpha|$ , and thus we have

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\{\langle x, y \rangle\}$$

$$\leq ||x||^2 + ||y||^2 + 2|\langle x, y \rangle|$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y||,$$

where the last inequality is from the Cauchy-Schwarz Inequality.

#### **Definition: Orthogonal and Orthonormal vectors**

• Two vectors x and y are **orthogonal** if  $\langle x, y \rangle = 0$ . **Notation:**  $x \perp y$ 

A set of vectors S is orthogonal if

$$\forall x,y \in S, x \neq y \Rightarrow \langle x,y \rangle = 0 \text{ (i.e. } x \perp y)$$

If in addition, ||x|| = 1 for all  $x \in S$ , then S is an **orthonormal set**.

#### **Orthogonal Bases with Inner Products**

- Use the inner product to construct an orthonormal basis out a set of linearly independent vectors:
  - Gram-Schmidt Process
- Orthogonal Polynomial Bases

#### **Gram Schmidt Process**

• Let  $(X, \mathcal{F}, \langle \cdot, \cdot \rangle)$  be an inner product space,  $\{y^1, \dots, y^k\}$  a linearly independent set and  $\{v^1, \dots, v^{k-1}\}$  an orthogonal set satisfying

$$\operatorname{span}\{v^1, \ldots, v^{k-1}\} = \operatorname{span}\{y^1, \ldots, y^{k-1}\}$$

Define

$$v^{k} = y^{k} - \sum_{i=1}^{k-1} \frac{\left\langle y^{k}, v^{j} \right\rangle}{\left\| v^{j} \right\|^{2}} \cdot v^{j}$$

• where  $||v^j||^2 = \langle v^j, v^j \rangle$ . Then  $\{v^1, \dots, v^k\}$  is **orthogonal** and

$$\mathrm{span}\{v^1,\ldots,v^k\}=\mathrm{span}\{y^1,\ldots,y^k\}$$

#### **Gram Schmidt Process**

• Let  $(X, \mathcal{F}, \langle \cdot, \cdot \rangle)$  be an inner product space,  $\{y^1, \dots, y^k\}$  a linearly independent set and  $\{v^1, \dots, v^{k-1}\}$  an orthogonal set satisfying

$$span\{v^{1}, ..., v^{k-1}\} = span\{y^{1}, ..., y^{k-1}\}$$

Define

$$v^k = y^k - \sum_{i=1}^{k-1} \frac{\left\langle y^k, v^j \right\rangle}{\left\| v^j \right\|^2} \cdot v^j$$

• where  $||v^j||^2 = \langle v^j, v^j \rangle$ . Then  $\{v^1, \dots, v^k\}$  is **orthogonal** and

$$span\{v^{1}, ..., v^{k}\} = span\{y^{1}, ..., y^{k}\}$$

 This is a recipe for "growing" an orthogonal set out of a linearly independent set of vectors

Orthogonalize then normalize

**Example 3.21** Given the following data in  $(\mathbb{R}^3, \mathbb{R})$ ,

$$\{y^1, y^2, y^3\} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\},$$

and inner product  $\langle p, q \rangle := p^T q = \sum_{i=1}^3 p_i q_i$ , apply Gram-Schmidt to produce an orthogonal basis. Normalize to produce an orthonormal basis.

$$v^{1} = y^{1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\|v^{1}\|^{2} = (v^{1})^{T}v^{1} = 2;$$

$$v^{2} = y^{2} - \frac{\langle v^{1}, y^{2} \rangle}{\|v^{1}\|^{2}}v^{1}$$

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \underbrace{\frac{1}{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 3 \end{bmatrix}$$

$$\|v^{2}\|^{2} = 9\frac{1}{2} = \frac{19}{2};$$

$$v^{3} = y^{3} - \frac{\langle v^{1}, y^{3} \rangle}{\|v^{1}\|^{2}} v^{1} - \frac{\langle v^{2}, y^{3} \rangle}{\|v^{2}\|^{2}} v^{2}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \frac{1}{2} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix} - \begin{bmatrix} -\frac{7}{38} \\ \frac{7}{38} \\ \frac{21}{12} \end{bmatrix} = \begin{bmatrix} -\frac{6}{19} \\ \frac{6}{19} \\ -\frac{2}{19} \end{bmatrix}.$$

· Normalize at the end

$$\tilde{v}_1 = \frac{v^1}{\|v^1\|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$

$$\tilde{v}_2 = \frac{v^2}{\|v^2\|} = \begin{bmatrix} \frac{-1}{\sqrt{38}} \\ \frac{1}{\sqrt{38}} \\ 3\sqrt{\frac{2}{19}} \end{bmatrix}$$

$$\tilde{v}_3 = \frac{v^3}{\|v^3\|} = \frac{19}{\sqrt{76}} \begin{bmatrix} -\frac{6}{19} \\ \frac{6}{19} \\ -\frac{2}{19} \end{bmatrix}$$

### **Chebyshev Polynomials (of the first kind)**

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) \frac{dt}{\sqrt{1-t^2}}$$

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4 x^3 - 3 x$$

$$T_4(x) = 8 x^4 - 8 x^2 + 1$$

$$T_5(x) = 16 x^5 - 20 x^3 + 5 x$$



#### **Laguerre Polynomials**

$$\langle f, g \rangle = \int_0^\infty f(t)g(t)e^{-t}dt$$

$$L_0(x) = 1$$

$$L_1(x) = -x + 1$$

$$L_2(x) = \frac{1}{2}(x^2 - 4x + 2)$$

$$L_3(x) = \frac{1}{6} \left( -x^3 + 9 x^2 - 18 x + 6 \right)$$



#### You've seen them before

$$T_0(x) = 1$$
  
 $T_1(x) = x$   
 $T_2(x) = 2 x^2 - 1$   
 $T_3(x) = 4 x^3 - 3 x$   
 $T_4(x) = 8 x^4 - 8 x^2 + 1$   
 $T_5(x) = 16 x^5 - 20 x^3 + 5 x$ 

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) \frac{dt}{\sqrt{1-t^2}}$$

$$u := \{1, -t+1, t^2 - 4t + 2, -t^3 + 9t^2 - 18t + 6\}$$
$$v := \{1, t, 2t^2 - 1, 4t^3 - 3t\}$$

$$L_0(x) = 1$$

$$L_1(x) = -x + 1$$

$$L_2(x) = \frac{1}{2} (x^2 - 4x + 2)$$

$$L_3(x) = \frac{1}{6} (-x^3 + 9x^2 - 18x + 6)$$

 $\langle f, g \rangle = \int_0^\infty f(t)g(t)e^{-t}dt$ 

# **Pythagorean Theorem**

• If  $x \perp y$ , then

# **Pythagorean Theorem**

• If  $x \perp y$ , then

$$||x + y||^2 = ||x||^2 + ||y||^2$$

#### **Pythagorean Theorem**

• If  $x \perp y$ , then

$$||x + y||^2 = ||x||^2 + ||y||^2$$

• **Proof:** From the proof of the triangle inequality

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle.$$

Once we note that  $\langle x, y \rangle = 0$  because  $x \perp y$ , we are done.

#### **Next Week**

- Numerical Issues with the Gram-Schmidt Process
- Projection Theorem