JOHANNES KEPLER UNIVERSITY

Institut fur Stromungslehre und Warmeubertragung Department of Particulate Flow Modelling

Materials to Simulations to Applications

Supervisors:

Prof. D.I. Dr. Stefan Pirker D.I. Dr. Christoph Kloss

PhD Thesis of: Luca Benvenuti k1258320

Contents

Ι	Introduction	1
1	Motivation and insufficiency of the State of the Art	5
2	Aim	7
II	State of the Art	9
3	Discrete Element Method 3.1 Literature Values	13 13
4	Computational Fluid Dynamics	15
5	Artificial Neural Network	17
II	I Identification of DEM parameters	19
6	Numerical Simulation 6.1 Angle of Repose	23 23 23
7	Artificial Neural Network Training	25
8	Experimental Characterization 8.1 Particle Distribution	27 27 27 28 28 28
I	Wesults and Discussion	31
9	Validation	35
10	Influence of variations of input parameters	37
11	Influence of poly-dispersity	39

iv	Contents
V Applications	41
12 Sinter Plant	45
13 Blast Furnace	47
VI Conclusion	49
Bibliography	53

List of Figures

List of Tables

Abstract

Numerous industries process particles. In this work, we focused on how to efficiently picture the behaviour of particles by means of numerical simulations, laboratory experiments, and Artificial Neural Networks (ANNs).

Particle-particle contact laws and particles size distributions determine the macroscopic simulation results in Discrete Element Method (DEM). Commonly, contact laws depend on semi-empirical parameters which are difficult to obtain by direct microscopic measurements.

To clarify this aspect, we present the related elements of the DEM theory. The ANN theory is also introduced to demonstrate ANN effectiveness towards generalization.

Later, we describe the series of small scale DEM simulations with different sets of particle-based simulation parameters and particle distributions, which we performed. The macroscopic results of these simulations were used to train dedicated feed-forward ANNs by backward propagation reinforcement. Concurrently, the bulk behaviours of raw particles were characterized by means of macroscopic laboratory experiments. These particles were those commonly used by metallurgical industries (i.e., coke, iron ore, sinter, and limestone).

At this point, the relationship between macroscopic results and microscopic DEM simulation parameters could be investigated.

We subsequently utilized this artificial neural network to predict the macroscopic ensemble behaviour in relation to additional sets of particle-based simulation parameters and particle distributions. By this method, a comprehensive database was established, relating particle-based simulation parameters to macroscopic ensemble output. If compared to an experiment of a specific granular material, this database identifies valid sets of DEM parameters which lead to the same macroscopic results as observed in the experiments. Finally, we applied this method of DEM parameter identification to two industrial scale processes of steel production.

Part I Introduction

Motivation and insufficiency of the State of the Art

Aim

Part II State of the Art

Discrete Element Method

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.1 Literature Values

Computational Fluid Dynamics

Artificial Neural Network

Part III Identification of DEM parameters

Numerical Simulation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

6.1 Angle of Repose

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

6.2 Shear Cell

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et

lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Artificial Neural Network Training

Experimental Characterization

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

8.1 Particle Distribution

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

8.2 Angle of Repose (p-p) - Small Scale

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et

lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

8.3 Angle of Repose (p-p) - Large Scale

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

8.4 Schulze Ring Shear Cell tester (p-p)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

8.5 Jenike Shear Cell tester

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada

eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Part IV Results and Discussion

Validation

Influence of variations of input parameters

the influence of variations (distributions) of input parameters

Influence of poly-dispersity

the influence of variations (distributions) of poly-dispersity

Part V Applications

Sinter Plant

Blast Furnace

Part VI Conclusion

- [1] Jun Ai et al. "Assessment of rolling resistance models in discrete element simulations". In: *Powder Technology* 206.3 (2011), pp. 269–282.
- [2] Andreas Aigner et al. "Comparison of simulation and experimental results of a simplified jenike shear tester". In: Colorado School of Mines, 2013.
- [3] Andreas Aigner et al. "Determining the coefficient of friction by shear tester simulation". In: 2013, pp. 335–342.
- [4] A. Alenzi et al. "DEM validation using an annular shear cell". In: *Powder Technology* 248.0 (Nov. 2013), pp. 131–142.
- [5] S. J. Antony, C. H. Zhou, and X. Wang. "An integrated mechanistic-neural network modelling for granular systems". In: *Applied Mathematical Modelling* 30.1 (Jan. 2006), pp. 116–128.
- [6] D. Aole, M. K. Jain, and M. Bruhis. "New characterization methods for powder die fill process for producing powder metallurgical components". In: *Powder Technology* 232.0 (Dec. 2012), pp. 7–17.
- [7] International ASTM. ASTM D6128 06 Standard Test Method for Shear Testing of Bulk Solids Using the Jenike Shear Cell. 2013.
- [8] International ASTM. ASTM D6773 02 Standard Shear Test Method for Bulk Solids Using the Schulze Ring Shear Tester. 2013.
- [9] Reza Barati, Seyed Ali Akbar Salehi Neyshabouri, and Goodarz Ahmadi. "Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: An evolutionary approach". In: *Powder Technology* 257.0 (May 2014), pp. 11–19.
- [10] Dana Barrasso, Ashutosh Tamrakar, and Rohit Ramachandran. "A reduced order PBM-ANN model of a multi-scale PBM-DEM description of a wet granulation process". In: *Chemical Engineering Science* 0 ().
- [11] Gabriel K. P. Barrios et al. "Contact parameter estimation for DEM simulation of iron ore pellet handling". In: *Powder Technology* 248.0 (Nov. 2013), pp. 84–93.
- [12] Niranjana Behera et al. "Modeling and analysis of dilute phase pneumatic conveying of fine particles". In: *Powder Technology* 249.0 (Nov. 2013), pp. 196–204.
- [13] R. J. Berry and M. S. A. Bradley. "Investigation of the effect of test procedure factors on the failure loci and derived failure functions obtained from annular shear cells". In: *Powder Technology* 174.1-2 (2007), pp. 60–63.

[14] Tathagata Bhattacharya and J. J. McCarthy. "Chute flow as a means of segregation characterization". In: *Powder Technology* 256.0 (Apr. 2014), pp. 126–139.

- [15] Giuseppe Boccignone. Computazione per interazione naturale: Regressione lineare Bayesiana.
- [16] L. J. Briggs. "Methods for measuring the coefficient of restitution and the spin of a ball". In: *Journal of Research of the National Bureau of Standards* 34 (1945).
- [17] Chris Brown and Randal Nelson. Fitting Experimental Data. 2011.
- [18] Petra Bubakova, Martin Pivokonsky, and Petr Filip. "Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state". In: *Powder Technology* 235.0 (Feb. 2013), pp. 540–549.
- [19] Jeffrey W. Bullard and Edward J. Garboczi. "Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions". In: *Powder Technology* 249.0 (Nov. 2013), pp. 241–252.
- [20] Aykut Canakci, Sukru Ozsahin, and Temel Varol. "Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks". In: *Powder Technology* 228.0 (Sept. 2012), pp. 26–35.
- [21] John W. Carson and Harald Wilms. "Development of an international standard for shear testing". In: *Powder Technology* 167.1 (2006), pp. 1–9.
- [22] A. Lumin Chen, B. Zhen Chen, and C. Ansheng Feng. "Image analysis algorithm and verification for on-line molecular sieve size and shape inspection". In: Advanced Powder Technology 0 ().
- [23] Sebastian Chialvo, Jin Sun, and Sankaran Sundaresan. "Bridging the rheology of granular flows in three regimes". In: *Phys.Rev.E* 85.2 (2012), p. 021305. URL: http://link.aps.org/doi/10.1103/PhysRevE.85.021305.
- [24] Arthur Christopoulos and Michael J. Lew. "Beyond eyeballing: fitting models to experimental data". In: *Critical reviews in biochemistry and molecular biology* 35.5 (2000), pp. 359–391.
- [25] Paul W. Cleary, Rob Morrisson, and Steve Morrell. "Comparison of DEM and experiment for a scale model SAG mill". In: *International Journal of Mineral Processing* 68.1-4 (Jan. 2003), pp. 129–165.
- [26] Paul W. Cleary and Mark L. Sawley. "DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge". In: Applied Mathematical Modelling 26.2 (Feb. 2002), pp. 89–111.
- [27] C. J. Coetzee and R. G. Nel. "Calibration of discrete element properties and the modelling of packed rock beds". In: *Powder Technology* 264.0 (Sept. 2014), pp. 332–342.
- [28] Kevin D. Costa, Steven Kleinstein, and Uri Hershberg. *Model Fitting and Error Estimation*. 2010.

[29] Shyamal C. Das et al. "Importance of particle size and shape on the tensile strength distribution and de-agglomeration of cohesive powders". In: *Powder Technology* 249.0 (Nov. 2013), pp. 297–303.

- [30] Niklas Engblom et al. "Segregation of powder mixtures at filling and complete discharge of silos". In: *Powder Technology* 215-216.0 (Jan. 2012), pp. 104–116.
- [31] Zhi-Gang Feng and Samuel Gem Musong. "Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed". In: *Powder Technology* 262.0 (Aug. 2014), pp. 62–70.
- [32] P. Frankowski et al. "Material characterisation for Discrete Element Modelling calibration". In: *III International Conference on Particle-based Methods* Fundamentals and Applications PARTICLES 2013 (2013).
- [33] V. Ganesan, K. A. Rosentrater, and K. Muthukumarappan. "Flowability and handling characteristics of bulk solids and powders, a review with implications for DDGS". In: *Biosystems Engineering* 101.4 (Dec. 2008), pp. 425–435.
- [34] D. Geldart, E. C. Abdullah, and A. Verlinden. "Characterisation of dry powders". In: Powder Technology 190.1-2 (2009), pp. 70–74.
- [35] LaTosha M. Gibson et al. "Image analysis measurements of particle coefficient of restitution for coal gasification applications". In: *Powder Technology* 247.0 (Oct. 2013), pp. 30–43.
- [36] Christoph Goniva et al. "Influence of rolling friction on single spout fluidized bed simulation". In: *Particuology* 10.5 (Oct. 2012), pp. 582–591.
- [37] Yan Grasselli and Hans J. Herrmann. "On the angles of dry granular heaps". In: *Physica A: Statistical Mechanics and its Applications* 246.3-4 (1997), pp. 301–312.
- [38] Yan Grasselli et al. "Effect of impact energy on the shape of granular heaps". English. In: 2.2 (2000). journal: Granular Matter, pp. 97–100. URL: http://dx.doi.org/10.1007/s100350050039.
- [39] Pierre A. Gremaud, John V. Matthews, and Meghan O'Malley. "On the computation of steady Hopper flows: II: von Mises materials in various geometries". In: *Journal of Computational Physics* 200.2 (2004), pp. 639–653.
- [40] Pierre A. Gremaud, John V. Matthews, and David G. Schaeffer. "On the computation of steady hopper flows III: Model comparisons". In: *Journal of Computational Physics* 219.1 (2006), pp. 443–454.
- [41] A. P. Grima and P. W. Wypych. "Investigation into calibration of discrete element model parameters for scale-up and validation of particle-structure interactions under impact conditions". In: *Powder Technology* 212.1 (2011), pp. 198–209.
- [42] Richard F. Grossman and R. J. Del Vecchio. "Chapter 22: Design of Experiments". In: Handbook of Vinyl Formulating. Wiley Interscience, 2008, p. 515.

[43] Jie Guo, Alan W. Roberts, and Jan-Dirk Prigge. "Experimental investigation of wall pressure and arching behavior under surcharge pressure in mass-flow hoppers". In: *Powder Technology* 258.0 (May 2014), pp. 272–284.

- [44] V. K. Gupta and Shivani Sharma. "Analysis of ball mill grinding operation using mill power specific kinetic parameters". In: Advanced Powder Technology 0 ().
- [45] K. Gurney. An Introduction to Neural Networks. Taylor and Francis, 2003. ISBN: 9780203451519. URL: http://books.google.com.pk/books?id=sn6oBHq8qQQC.
- [46] G. Gustafsson et al. "Determination of bulk properties and fracture data for iron ore pellets using instrumented confined compression experiments". In: *Powder Technology* 241.0 (June 2013), pp. 19–27.
- [47] Kevin J. Hanley et al. "Application of Taguchi methods to DEM calibration of bonded agglomerates". In: *Powder Technology* 210.3 (2011), pp. 230–240.
- [48] Johannes Hartl and Jin Y. Ooi. "Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments". In: *Powder Technology* 212.1 (2011), pp. 231–239.
- [49] S. S. Haykin. Neural Networks and Learning Machines. v. 10. 2008034079. Prentice Hall, 2009. ISBN: 9780131471399. URL: http://books.google.com.pk/books?id=K7P361KzI_QC.
- [50] Jon Hilden et al. "Note on the interpretation of powder shear test data". In: *Powder Technology* 182.3 (2008), pp. 486–492.
- [51] M. Hirota et al. "Proposal of an approximation equation for the yield locus to evaluate powder properties". In: *Advanced Powder Technology* 18.3 (2007), pp. 287–302.
- [52] D. Hohner, S. Wirtz, and V. Scherer. "A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method". In: *Powder Technology* 226.0 (Aug. 2012), pp. 16–28.
- [53] Richard G. Holdich. Fundamentals of Particle Technology. Midland Information, Technology, and Publishing, 2002.
- [54] Etienne Horn. The Calibration of Material Properties for Use in Discrete Element Models. 2012.
- [55] S. Humby, U. Tuzun, and A. B. Yu. "Prediction of hopper discharge rates of binary granular mixtures". In: *Chemical Engineering Science* 53.3 (Feb. 1998), pp. 483–494.
- [56] Kazuyoshi Iwashita and Masanobu Oda. "Rolling Resistance at Contacts in Simulation of Shear band Development by DEM". In: *Journal of Engineering Mechanics* 124.3 (1998), pp. 285–292.
- [57] R. J. M. Janssen, M. J. Verwijs, and B. Scarlett. "Measuring flow functions with the Flexible Wall Biaxial Tester". In: *Powder Technology* 158.1-3 (2005), pp. 34–44.

[58] M. J. Jiang, H. S Yu, and D. Harris. "A novel discrete model for granular material incorporating rolling resistance". In: *Computers and Geotechnics* 32.5 (July 2005), pp. 340–357.

- [59] Kerry Johanson. "Effect of particle shape on unconfined yield strength". In: *Powder Technology* 194.3 (2009), pp. 246–251.
- [60] Mohammad Khalilitehrani, Per J. Abrahamsson, and Anders Rasmuson. "The rheology of dense granular flows in a disc impeller high shear granulator". In: *Powder Technology* 249.0 (Nov. 2013), pp. 309–315.
- [61] A. H. Kharaz, D. A. Gorham, and A. D. Salman. "Accurate measurement of particle impact parameters". In: *Measurement Science and Technology* 10.1 (1999), p. 31. URL: http://stacks.iop.org/0957-0233/10/i=1/a=009.
- [62] A. H. Kharaz, D. A. Gorham, and A. D. Salman. "An experimental study of the elastic rebound of spheres". In: *Powder Technology* 120.3 (2001), pp. 281–291.
- [63] JuHyeon Kim and SangHwan Lee. "Modeling drag force acting on the individual particles in low Reynolds number flow". In: *Powder Technology* 261.0 (July 2014), pp. 22–32.
- [64] Christoph Kloss and Christoph Goniva. *LIGGGHTS Manual*. URL: http://www.cfdem.com/.
- [65] Christoph Kloss et al. "Models, algorithms and validation for opensource DEM and CFDDEM". In: *Progress in Computational Fluid Dynamics, an International Journal* 12.2 (2012), pp. 140–152. URL: http://dx.doi.org/10.1504/PCFD.2012.047457.
- [66] R. Kobylka and M. Molenda. "DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction". In: *Powder Technology* 256.0 (Apr. 2014), pp. 210–216.
- [67] Matthew Krantz, Hui Zhang, and Jesse Zhu. "Characterization of powder flow: Static and dynamic testing". In: *Powder Technology* 194.3 (2009), pp. 239–245.
- [68] H. Kruggel-Emden, S. Wirtz, and V. Scherer. "An analytical solution of different configurations of the linear viscoelastic normal and frictional-elastic tangential contact model". In: *Chemical Engineering Science* 62.23 (Dec. 2007), pp. 6914–6926.
- [69] M. Kheiripour Langroudi et al. "An investigation of frictional and collisional powder flows using a unified constitutive equation". In: *Powder Technology* 197.1-2 (2010), pp. 91–101.
- [70] M. Lashkarbolooki, B. Vaferi, and M. R. Rahimpour. "Comparison the capability of artificial neural network (ANN) and EOS for prediction of solid solubilities in supercritical carbon dioxide". In: *Fluid Phase Equilibria* 308.1-2 (2011), pp. 35–43.
- [71] H. Li, G. R. McDowell, and I. S. Lowndes. "A laboratory investigation and discrete element modeling of rock flow in a chute". In: *Powder Technology* 229.0 (Oct. 2012), pp. 199–205.

[72] Stefan Luding. "Introduction to Discrete Element Methods, Basics of Contact Force Models and how to perform the MicroMacro Transition to Continuum Theory". In: *EJECE* 12 (2008), pp. 785–826.

- [73] G. Lumay et al. "Measuring the flowing properties of powders and grains". In: *Powder Technology* 224.0 (July 2012), pp. 19–27.
- [74] Tankeo M., Richard P., and Canot E. "Analytical solution of the muirheology for fully developed granular flows in simple configurations". In: *ArXiv e-prints* (2013). 1309.2267; Provided by the SAONASA Astrophysics Data System. URL: httpadsabs.harvard.eduabs2013arXiv1309.2267T.
- [75] Mohan Medhe, B. Pitchumani, and J. Tomas. "Flow characterization of fine powders using material characteristic parameters". In: *Advanced Powder Technology* 16.2 (2005), pp. 123–135.
- [76] J. Mellmann, T. Hoffmann, and C. Furll. "Flow properties of crushed grains as a function of the particle shape". In: *Powder Technology* 249.0 (Nov. 2013), pp. 269–273.
- [77] Hiroshi Mio et al. "Validation of Particle Size Segregation of Sintered Ore during Flowing through Laboratory-scale Chute by Discrete Element Method".
 In: ISIJ International 48.12 (2008). journal: ISIJ International, pp. 1696–1703.
- [78] B. K. Mishra and Raj K. Rajamani. "The discrete element method for the simulation of ball mills". In: *Applied Mathematical Modelling* 16.11 (Nov. 1992), pp. 598–604.
- [79] Paul A. Moysey, Nadella V. Rama Rao, and Malcolm H. I. Baird. "Dynamic coefficient of friction and granular drag force in dense particle flows: Experiments and DEM simulations". In: *Powder Technology* 248.0 (Nov. 2013), pp. 54–67.
- [80] Patric Muller et al. "Complex Velocity Dependence of the Coefficient of Restitution of a Bouncing Ball". In: *Phys.Rev.Lett.* 110.25 (2013), p. 254301. URL: http://link.aps.org/doi/10.1103/PhysRevLett.110.254301.
- [81] Emilia Nowak et al. "Measurements of contact angle between fine, non-porous particles with varying hydrophobicity and water and non-polar liquids of different viscosities". In: *Powder Technology* 250.0 (Dec. 2013), pp. 21–32.
- [82] W. L. Oberkampf and C. J. Roy. Verification and Validation in Scientific Computing. Cambridge University Press, 2010. ISBN: 9781139491761. URL: http://books.google.com.pk/books?id=7d26zLEJ1FUC.
- [83] J. R. Pillai, M. S. A. Bradley, and R. J. Berry. "Comparison between the angles of wall friction measured on an on-line wall friction tester and the Jenike wall friction tester". In: *Powder Technology* 174.1-2 (2007), pp. 64–70.
- [84] Sophie L. Pirard et al. "Motion of carbon nanotubes in a rotating drum: The dynamic angle of repose and a bed behavior diagram". In: *Chemical Engineering Journal* 146.1 (2009), pp. 143–147.
- [85] S. J. Plimpton. "Fast Parallel Algorithms for Short-Range Molecular Dynamics". In: *J Comp Phys* 117 (1995), pp. 1–19.

[86] Yury V. Polezhaev and I. V. Chircov. "DRAG COEFFICIENT". In: *Thermopedia* (2011). URL: http://www.thermopedia.com/content/707/.

- [87] Thorsten Poschel and Thomas Schwager. Computational Granular Dynamics. Springer, 2004.
- [88] C J Reagle et al. "Measuring the coefficient of restitution of high speed microparticle impacts using a PTV and CFD hybrid technique". In: *Measurement Science and Technology* 24.10 (2013), p. 105303. URL: http://stacks.iop.org/0957-0233/24/i=10/a=105303.
- [89] Alberto Di Renzo and Francesco Paolo Di Maio. "Comparison of contactforce models for the simulation of collisions in DEMbased granular flow codes". In: *Chemical Engineering Science* 59.3 (Feb. 2004), pp. 525–541.
- [90] Rudiger Schmitt and Hermann Feise. "Influence of Tester Geometry, Speed and Procedure on the Results from a Ring Shear Tester". In: *Particle and Particle Systems Characterization* 21.5 (2004), pp. 403–410.
- [91] Dietmar Schulze. Flow Properties of Powders and Bulk Solids. 2011.
- [92] Dietmar Schulze. Powders and bulk solids: behavior, characterization, storage and flow. Springer, 2008.
- [93] Dietmar Schulze, H. Heinrici, and H. Zetzener. "The Ring Shear Tester as a Valuable Tool for Silo Design and Powder Characterization". In: *Powder Handling and Processing* 13.19-26 (2001).
- [94] Jorg Schwedes. "Measurement of flow properties of bulk solids". In: *Powder Technology* 88.3 (Sept. 1996), pp. 285–290.
- [95] Jorg Schwedes. "Review on testers for measuring flow properties of bulk solids". English. In: 5.1 (2003). journal: Granular Matter, pp. 1–43. URL: http://dx.doi.org/10.1007/s10035-002-0124-4.
- [96] A. Schweiger and I. Zimmermann. "A new approach for the measurement of the tensile strength of powders". In: *Powder Technology* 101.1 (1999), pp. 7–15.
- [97] Abd-Krim Seghouane, Yassir Moudden, and Gilles Fleury. "Regularizing the effect of input noise injection in feedforward neural networks training". English. In: *Neural Computing and Applications* 13.3 (2004). J2: Neural Comput and Applic, pp. 248–254. URL: http://dx.doi.org/10.1007/s00521-004-0411-6.
- [98] Erdem Simsek et al. "Influence of particle diameter and material properties on mixing of monodisperse spheres on a grate: Experiments and discrete element simulation". In: *Powder Technology* 221.0 (May 2012), pp. 144–154.
- [99] U. Sindel and I. Zimmermann. "Measurement of interaction forces between individual powder particles using an atomic force microscope". In: *Powder Technology* 117.3 (2001), pp. 247–254.
- [100] Dale M. Snider. "Three fundamental granular flow experiments and CPFD predictions". In: *Powder Technology* 176.1 (2007), pp. 36–46.

[101] R. Sondergaard, K. Chaney, and C. E. Brennen. "Measurements of Solid Spheres Bouncing Off Flat Plates". In: *Journal of Applied Mechanics* 112.3 (1990), p. 694. URL: http://resolver.caltech.edu/CaltechAUTHORS: SONjam90.

- [102] Jin Sun and Sankaran Sundaresan. "Radial hopper flow prediction using a constitutive model with microstructure evolution". In: *Powder Technology* 242.0 (July 2013), pp. 81–85.
- [103] K. Takenaka et al. "Shape Effects of the Yield Locus on the Rankine Coefficient". In: Advanced Powder Technology 19.1 (2008), pp. 25–37.
- [104] Gabriel I. Tardos. "A fluid mechanistic approach to slow, frictional flow of powders". In: *Powder Technology* 92.1 (June 1997), pp. 61–74.
- [105] Jose' M. Torralba et al. "Development of high performance powder metallurgy steels by high-energy milling". In: Advanced Powder Technology 24.5 (Sept. 2013), pp. 813–817.
- [106] B. Vaferi et al. "Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes". In: *Powder Technology* 267.0 (Nov. 2014), pp. 1–10.
- [107] Temel Varol, Aykut Canakci, and Sukru Ozsahin. "Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024-B4C composites produced by powder metallurgy". In: Composites Part B: Engineering 54.0 (Nov. 2013), pp. 224–233.
- [108] Loc Vu-Quoc and Xiang Zhang. "An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations". In: Mechanics of Materials 31.4 (Apr. 1999), pp. 235–269.
- [109] C. M. Wensrich and A. Katterfeld. "Rolling friction as a technique for modelling particle shape in DEM". In: *Powder Technology* 217.0 (Feb. 2012), pp. 409–417.
- [110] C. M. Wensrich and A. Katterfeld. "Rolling friction as a technique for modelling particle shape in DEM". In: *Powder Technology* 217.0 (Feb. 2012), pp. 409–417.
- [111] Wikipedia. Discrete element method. URL: http://en.wikipedia.org/wiki/Discrete_element_method.
- [112] M. Wojcik, J. Tejchman, and G. G. Enstad. "Confined granular flow in silos with inserts Full-scale experiments". In: *Powder Technology* 222.0 (May 2012), pp. 15–36.
- [113] Hideto Yoshida et al. "Particle size measurement of reference particle candidates and uncertainty region of count and mass based cumulative distribution". In: Advanced Powder Technology 0 ().
- [114] Y. C. Zhou et al. "An experimental and numerical study of the angle of repose of coarse spheres". In: *Powder Technology* 125.1 (2002), pp. 45–54.