AI That Benefits Humanity Is All You Need

Boris Chen*

Department of Computer Science The University of Hong Kong cz1322553126@gmail.com

Abstract

Ever since I was young, I have been dreaming of building a platform that allows more people to access useful information and knowledge they need, breaking down information barriers. I was greatly inspired when I saw the mission Elon Musk assigned to xAI. On March 17, 2024, xAI was open-sourced. ² I think it's time for me to take the first step and delve deep into the AI industry, and make my dream come true. And now, it's time to go!

Contents

Ι	Paper Reading	1
1	ImageNet Classification with Deep Convolutional Neural Networks (AlexNet)	2
2	Deep Residual Learning for Image Recognition (ResNet)	2
II	Mathematical Principles	2
3	Support Vector Machine	2
4	Normal Equation	2
5	Why Gradient	2

^{*}Thanks for *Mao Tse-Tung*, Elon Musk and Eminem. You guys gave me the drive to move forward.

²xAI is a new company working on building artificial intelligence to accelerate human scientific discovery.

Part I

Paper Reading

- 1 ImageNet Classification with Deep Convolutional Neural Networks (AlexNet)
- 2 Deep Residual Learning for Image Recognition (ResNet)

Part II

Mathematical Principles

- **3 Support Vector Machine**
- 4 Normal Equation

To minimize $||\beta - Ax||$ is to get the distance of β to W.

5 Why Gradient

If f is differentiable at (x_0, y_0) , then the directional derivative exists for any direction $\vec{v} = (\cos \alpha, \sin \alpha)$, and is given by:

$$\frac{\partial f}{\partial v}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \cos \alpha + \frac{\partial f}{\partial y}(x_0, y_0) \sin \alpha$$

The derivation is:

$$\frac{\partial f}{\partial v}(x_0, y_0) = \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \sin \alpha) - f(x_0, y_0)}{t}$$

$$= \lim_{t \to 0^+} \frac{\frac{\partial f}{\partial x}(x_0, y_0) \cos \alpha + \frac{\partial f}{\partial y}(x_0, y_0) \sin \alpha + o(t)}{t}$$

$$= \frac{\partial f}{\partial x}(x_0, y_0) \cos \alpha + \frac{\partial f}{\partial y}(x_0, y_0) \sin \alpha$$

The definition of gradient is $\mathbf{grad} f(x_0, y_0) = f_x(x_0, y_0) \mathbf{i} + f_y(x_0, y_0) \mathbf{j}$

References

References follow the acknowledgments.

- [1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), *Advances in Neural Information Processing Systems* 7, pp. 609–616. Cambridge, MA: MIT Press.
- [2] Bower, J.M. & Beeman, D. (1995) *The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System.* New York: TELOS/Springer-Verlag.
- [3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. *Journal of Neuroscience* **15**(7):5249-5262.