

FIG. 1

FIG. 2

FIG. 3

FIG. 4a

TRANSMIT THE CARRIER WAVE IN ACCORDANCE WITH THE
DIGITAL MESSAGE SO AS TO TRANSMIT THE CARRIER
WAVE IN ACCORDANCE WITH EACH OCCURRENCE OF A
FIRST DIGITAL SIGNAL IN THE DIGITAL MESSAGE AND SO
AS NOT TO TRANSMIT THE CARRIER WAVE IN
ACCORDANCE WITH EACH OCCURRENCE OF A SECOND
DIGITAL SIGNAL IN THE DIGITAL MESSAGE

-450

POWER THE TRANSMISSION WITH ONLY BATTERY POWER

-460

REPEATEDLY TRANSMIT THE CARRIER WAVE IN
ACCORDANCE WITH THE DIGITAL MESSAGE

-470

FIG. 4b

FIG. 5

FIG. 6

CONFIGURE A RECEIVER TO RECEIVE A SIGNAL HAVING
A PREDETERMINED FREQUENCY

-710

DETECT A SIGNAL

-720

TAKE A FIRST SET OF SAMPLES OF THE SIGNAL AT
MULTIPLE INTERVALS DURING A FIRST TIME PERIOD
CORRESPONDING TO AT LEAST ONE CYCLE AT THE
FREQUENCY

-730

UTILIZE THE FIRST SET OF SAMPLES TO CALCULATE A
CHARACTERISTIC OF THE SIGNAL DURING THE FIRST
CYCLE

-740

TAKE A SECOND SET OF SAMPLES OF THE SIGNAL AT
MULTIPLE INTERVALS DURING A SUBSEQUENT TIME
PERIOD CORRESPONDING TO AT LEAST ONE CYCLE AT
THE FREQUENCY

-750

(a)

700

FIG. 7a

(a)

UTILIZE THE SECOND SET OF SAMPLES TO CALCULATE
THE CHARACTERISTIC OF THE SIGNAL DURING THE
SECOND CYCLE

-755

COMPARE THE CALCULATED CHARACTERISTIC OF THE
FIRST TIME PERIOD WITH THE CALCULATED
CHARACTERISTIC OF THE SUBSEQUENT TIME PERIOD SO
AS TO DETERMINE WHETHER THE FIRST CYCLE AND THE
SECOND CYCLE OF THE SIGNAL HAVE THE
PREDETERMINED FREQUENCY

-760

DETERMINE A DIGITAL MESSAGE FROM THE SIGNAL IF THE
SIGNAL IS RECEIVED AT THE PREDETERMINED
FREQUENCY

-770

UTILIZE THE DIGITAL MESSAGE TO TRANSMIT A
CORRECTION SIGNAL TO THE ANIMAL

-780

CALCULATE THE CHARACTERISTIC ACCORDING TO THE
FORMULA
 $PEAK_SIG = (a_0 - a_{180})^2 + (a_90 - a_{270})^2$

-790

FIG. 7b

FIG. 8

FIG. 9

FIG. 10a

(a)

VARY INITIATION OF SUCCESSIVE TRANSMISSIONS OF
THE CONTROL SIGNAL FROM THE FIRST AVOIDANCE
ZONE TRANSMITTER WITHIN SUCCESSIVE CONTROL
SIGNAL WINDOWS

1024

VARY INITIATION OF SUCCESSIVE TRANSMISSIONS OF THE
CONTROL SIGNAL FROM THE SECOND AVOIDANCE ZONE
TRANSMITTER WITHIN SUCCESSIVE CONTROL SIGNAL
WINDOWS

1028

FIG. 10b

GENERATE A CONTROL SIGNAL FOR TRANSMISSION TO AN ANIMAL CONTROL RECEIVER, WHEREIN THE CONTROL SIGNAL IS GENERATED FOR TRANSMISSION WITHIN A CONTROL SIGNAL WINDOW AND WHEREIN THE CONTROL SIGNAL WINDOW IS LONGER THAN THE CONTROL SIGNAL

-1104

DETERMINE A FIRST POINT IN TIME WITHIN THE CONTROL SIGNAL WINDOW TO BEGIN TRANSMISSION OF THE CONTROL SIGNAL, WHEREIN THE FIRST POINT IN TIME WITHIN THE CONTROL SIGNAL WINDOW ALLOWS FOR TRANSMISSION OF THE CONTROL SIGNAL WITHIN THE CONTROL SIGNAL WINDOW

-1108

INITIATE TRANSMISSION OF THE CONTROL SIGNAL AT THE FIRST POINT IN TIME

-1112

GENERATE THE CONTROL SIGNAL FOR TRANSMISSION TO THE ANIMAL CONTROL RECEIVER WITHIN A SECOND CONTROL SIGNAL WINDOW HAVING THE SAME PERIOD AS THE FIRST CONTROL SIGNAL WINDOW

-1116

DETERMINE A SECOND POINT IN TIME WITHIN THE SECOND CONTROL SIGNAL WINDOW TO BEGIN TRANSMISSION OF THE CONTROL SIGNAL, WHEREIN THE SECOND POINT IN TIME WITHIN THE SECOND CONTROL SIGNAL WINDOW ALLOWS FOR TRANSMISSION OF THE CONTROL SIGNAL WITHIN THE SECOND CONTROL SIGNAL WINDOW

-1120

FIG. 11a

(a)

1100

FIG. 11b

RECEIVE A FIRST CONTROL SIGNAL FROM AN ANIMAL
CONTROL TRANSMITTER

1204

INITIATE A ROUTINE FOR CONTROLLING AT LEAST ONE
CORRECTION SIGNAL TO THE ANIMAL IN RESPONSE TO
THE RECEIVING THE FIRST CONTROL SIGNAL FROM THE
ANIMAL CONTROL TRANSMITTER

1208

ESTABLISH A CONTROL SIGNAL WINDOW FOR RECEIPT OF
A SECOND CONTROL SIGNAL FROM THE ANIMAL CONTROL
TRANSMITTER

1212

CHECK FOR THE SECOND CONTROL SIGNAL WITHIN THE
CONTROL SIGNAL WINDOW SO AS TO ALLOW THE SECOND
CONTROL SIGNAL TO BE TRANSMITTED AT A DIFFERENT
INITIATION POINT RELATIVE TO THE CONTROL SIGNAL
WINDOW FROM THE INITIATION POINT OF THE FIRST
CONTROL SIGNAL

1216

TERMINATE THE ROUTINE FOR CONTROLLING THE AT
LEAST ONE CORRECTION SIGNAL IF THE SECOND
CONTROL SIGNAL IS NOT RECEIVED WITHIN THE CONTROL
SIGNAL WINDOW

1220

a

1200

FIG. 12a

FIG. 12b

FIG. 13

FIG. 14

FIG. 15

RECEIVE AN ANIMAL CONTROL SIGNAL FROM A
TRANSMITTER, WHEREIN THE ANIMAL CONTROL SIGNAL
IS RECEIVED WITHOUT THE RECEIVER TRANSMITTING A
SIGNAL TO INDICATE TO THE TRANSMITTER THE
PRESENCE OF THE ANIMAL IN A TARGET ZONE

-1610

STORE AN IDENTIFIER IN A MEMORY, WHEREIN THE
IDENTIFIER IS ASSOCIATED WITH ONE OF A PLURALITY OF
ANIMALS

-1620

PROVIDE A PROCESSOR CONFIGURED TO INITIATE A
ROUTINE FOR APPLICATION OF THE CORRECTION SIGNAL
TO THE ANIMAL IF THE ANIMAL CONTROL SIGNAL
RECEIVED FROM THE TRANSMITTER MATCHES THE
IDENTIFIER

-1630

GENERATE A CORRECTION SIGNAL FOR USE BY THE
ROUTINE

-1640

1600

FIG. 16

F16. 17

FIG. 18a

(a)

RANDOMLY SELECT THE TIME INTERVALS BETWEEN
CORRECTION SIGNALS IN THE SECOND SEQUENCE OF
CORRECTION SIGNALS

1824

RANDOMLY SELECT A SIGNAL MAGNITUDE FOR SIGNALS
IN THE SECOND SEQUENCE OF CORRECTION SIGNALS

1828

FIG. 18b

FIG. 19

FIG. 20

FIG. 21

