

## **User's Manual of**

Smart water sensor

PH/ORP digital water sensor

www.supmea.com

info@supmea.com

Supmea Automation Co.,Ltd.

Version

U-YDT603S-MYEN1

#### 1. Precautions

Please follow the operating procedures and precautions of this manual when using

- Do not power on before wiring is completed to avoid danger
- If you find that the instrument works abnormally or is damaged during use, please contact us instead of repairing it yourself
- In order to make the measurement more accurate, the meters must be calibrated frequently with sensors
- If your electrode has been purchased for nearly a year or there is a quality problem with the electrode, please replace it
- Please power on the instrument to warm up for 30 minutes before calibration
- If the product is updated, this manual may be changed, but we will not notice

## 2. Application

Aquaculture, water testing, informatization data collection, IoT water testing

#### 3. Features

- Isolated power supply design, data stability, strong anti-interference ability
- PH supports automatic/manual temperature compensation, (Automatically detect whether the temperature probe is disconnected or faulty, then switch to manual temperature compensation) The default is 25.0°C

- Support USA/NIST/custom pH calibration solution, and user-defined ORP standard solution
- Communication: RS485 interface\*1 (Modbus RTU protocol)

#### 4. Protocol function

- Protocol instructions support PH, ORP user-defined calibration solution
- Protocol commands can support ID modification (1-255)
- Protocol instructions support factory reset
- Other functions to be inquired

#### 5. Product Introduction

The PH digital sensor designed by our company for the aquaculture industry, with a digital interface (RS485\*1), can be used to measure changes in the pH/ORP value of the aqueous system within the range

It has a standard RS485 Modbus RTU protocol interface function, which can communicate with the host computer remotely

#### 6. Parameter

| Measurement     | PH or ORP                     |
|-----------------|-------------------------------|
| Measurement     | 0.00-14.00pH, ±1000.0mV       |
| range           |                               |
| Resolution      | 0.01pH,0.1mV                  |
| Temperature     | 0- 60℃@0.1℃                   |
| range           |                               |
| Transducer tyoe | pH electrode or ORP electrode |
| Accuracy        | 0.02pH   0.5℃                 |
|                 |                               |





|                        | 0.2mV                                           |
|------------------------|-------------------------------------------------|
| Output type            | RS485 interface*1                               |
| Communication protocol | Standard MODBUS-RTU protocol<br>RS485           |
| ID                     | 9600, 8, 1, N (default) 1-255                   |
|                        | Default ID: 01 (0x01)                           |
| Setting method         | RS485 remote setting calibration and parameters |
| Power supply           | 12VDC                                           |
| Power consumption      | 30mA @12VDC                                     |

# Ordering information [Please specify pH or ORP before ordering]

Standard: PH/ORP digital sensor\*1

Customized cable length: dedicated for cleaning the floating body (40cm), electrode cable length 5m

## 7. Intelligent module communication protocol

### Introduction

Communication interface RS485
Port setting 9600,N,8,1 (default)
Device address 0x01 (default)
Protocol Modbus RTU
Command support 0x03 read register
0x06 write register | 0x10 write register
continuously

#### Information frame format

| 0x03 Rea | d data [HEX]  |              |
|----------|---------------|--------------|
| 01       | 03            | ×× ××        |
| Address  | Function code | Date address |
|          | ×× ××         | ×× ××        |
|          | Data length   | Check code   |

| OXU6 VVrit | e data [HEX]                  |                               |
|------------|-------------------------------|-------------------------------|
| 01         | 06                            | ×× ××                         |
| Address    | Function code                 | Date address                  |
|            | $\times \times \times \times$ | $\times \times \times \times$ |
|            | Write data                    | Check date                    |

|           | Write data        | Check code         |
|-----------|-------------------|--------------------|
|           | ××××              | ××××               |
| n         | umber of register | rs Number of bytes |
|           | ×× ××             | ××                 |
| Address   | Function code     | Data address       |
| 01        | 10                | ×× ××              |
| 0x10 Writ | te data continuou | ısly [HEX]         |

## 8. Register data format

| Address | s Data name                                 | Transform coefficient    | Status |
|---------|---------------------------------------------|--------------------------|--------|
| 0       | temperature                                 | [0.1℃]                   | R      |
| 1       | pH                                          | [0.01pH]                 | R      |
| 2       | pH.mV                                       | [0.1mV]                  | R      |
| 3       | PH. Zero point                              | [0.1mV]                  | R      |
| 4       | PH. Slope                                   | [0.1%S]                  | R      |
| 5       | PH. Calibration points                      | -                        | R      |
| 6       | system status .01                           | format 4*bits<br>0xFFFF  | R      |
| 7       | system status 02<br>User command<br>address | format 4*<br>bits 0xFFFF | R/W    |
| 8       | User command.<br>Result                     | -                        | R      |
| 9       | ORP                                         | [0.1mV]                  | R      |
| 11      | ORP. drift                                  | [0.1mV]                  | R      |

### Remarks

Each address data is a 16-bit signed integer with a length of 2 bytes

Actual result = register data \* Transform coefficient Status: R = read only R/W = read/write

## 9. Parameter settings

| Address | Data name                         | Setting range                                                                              |  |
|---------|-----------------------------------|--------------------------------------------------------------------------------------------|--|
| 11      | RS485.address                     | 1-255 (Default: 0x01)                                                                      |  |
| 12      | RS485. Baud rate                  | 4800, 9600 (Default) ,<br>14400 ,19200                                                     |  |
| 13      | RS485.<br>Communication<br>format | 0 = N81(Default)<br>1 = N82<br>2 = E81, 3 = O81                                            |  |
| 14      | ORP.<br>Customized                | ± 10000<br>± 0.1mV                                                                         |  |
| 15      | PH.<br>Customized                 | 0 - 1400<br>± 0.01pH                                                                       |  |
| 16      | PH. Calibration type              | 0 = USA (Default)<br>1 = NIST<br>2 = USA Custom,<br>3 = NIST.Custom                        |  |
| 17      | Temperature.<br>Drift             | ±50 @ 0.1℃                                                                                 |  |
| 18      | Temperature.MT<br>C               | -200 ~ + 600 @ 0.1℃                                                                        |  |
| 19      | Temperature.<br>Type              | Manual= 0  <br>NTC=1(Default)                                                              |  |
| 20      | Temperature<br>Unit               | Unit.C = 0 (Default) Unit.F = 1 Address 0 numerical display different types of temperature |  |



## 10. Common instruction set [HEX]

## Read temperature, pH, pH.mV

[Send Tx]: 01 03 00 00 00 03 05 CB [Receive Rx]: 01 03 06 00 FA 02 BC 00 06 B9 3F Temperature =  $00FA = 250 * 0.1^{\circ}C = 25.0^{\circ}C$ pH = 02BC = 700 \* 0.01pH = 7.00 pH pH.mV = 0006 = 6 \* 0.1mV= 0.6 mV

#### Set RS485 address

The original address is: 0x01 needs to be modified to: 0x02 [Send Tx]: 01 06 00 0B 00 02 79 C9

[Receive Rx]: 01 06 00 0B 00 02 79 C9 (Set

successfully)

## Query the RS485 address (stand-alone mode)

The device address is unknown, you can use the address 0x00 to send the 03 command [Send Tx]: 00 03 00 00 00 03 04 1A [Receive Rx]: 01 03 06 00 FA 02 BC 00 06 B9 3F Current device address = 0x01

#### Electrode calibration

successful.

command to address 0x07 to complete the operation pH7.00 | [Send Tx]: 01 06 00 07 00 0D F9 CE pH4.00 | [Send Tx]: 01 06 00 07 00 0B 79 CC pH10.00 | [Send Tx]: 01 06 00 07 00 0F 78 0F [Receive Rx] returns the same command as [Send Tx], which means the calibration is

Please use the user command set to write a

When calibrating, please put the electrode into the standard liquid, wait for the signal to stabilize before performing the calibration operation

## 11. Restore factory default settings

Please use the user command set to write the command to address 0x07 to complete the operation restore the factory default | TX: 01 06 00 07 00 D2 B8 56

[Receive Rx] returns the same command as [Send Tx], which means the recovery is successful.

Execute user commands

Users can write commands to address 0x07 to perform corresponding device operations.

| Serial<br>number | User command              | Decimal | Hexadeci<br>mal |
|------------------|---------------------------|---------|-----------------|
| 01               | Calibration<br>PH4.00     | 11      | 0x000B          |
| 02               | Calibration<br>PH6.86     | 12      | 0x000C          |
| 03               | Calibration<br>PH7.00     | 13      | 0x000D          |
| 04               | Calibration<br>PH9.18     | 14      | 0x000E          |
| 05               | Calibration<br>PH10.01    | 15      | 0x000F          |
| 06               | Calibration<br>PH.Custom  | 16      | 0x0010          |
| 07               | Calibration ORP.Custom    | 21      | 0x0015          |
| 80               | Restore factory default   | 210     | 0x00D2          |
| 09               | Select baud rate<br>4800  | 4800    | 0x12C0          |
| 10               | Select baud rate<br>9600  | 9600    | 0x2580          |
| 11               | Select baud rate<br>14400 | 14400   | 0x3840          |
| 12               | Select baud rate<br>19200 | 19200   | 0x4B00          |

Note: According to the 16 address PH. Calibration type, choose to support different standard solution types

USA standard solution: pH 4/7 / 10.01 NIST standard

solution: PH 4.00 / 6.86 / 9.18

USA. Custom: pH 7 / pH. Custom NIST. Custom:

6.86 / pH. Custom

#### 12. User command error code returned

## For example:

|        | Addres | Return | Error | Check code |
|--------|--------|--------|-------|------------|
|        | S      | code   | code  |            |
| Error  | 01     | 86     | 02    | C3 A1      |
| return |        |        |       |            |

| Error | Description                             |  |  |
|-------|-----------------------------------------|--|--|
| code  |                                         |  |  |
| 0x01  | Invalid command or current command is   |  |  |
|       | not available                           |  |  |
| 0x02  | The content of this address cannot be   |  |  |
|       | written into data, such as executing    |  |  |
|       | commands,                               |  |  |
|       | It means that the current sensor status |  |  |
|       | cannot perform this operation.          |  |  |
| 0x03  | The current input data is invalid and   |  |  |
|       | exceeds the input range                 |  |  |

### other instructions

Command 0x03 Error return command: 0x83 Command 0x06 Error return command: 0x86 Command 0x10 Error return command: 0x90



#### Device status code

System status.01 Address: 0x06, content format: 4\*4bit, 0xFFFF

| [HEX]            | Err.04                | ERR.03            | ERR.02 | ERR.01      |
|------------------|-----------------------|-------------------|--------|-------------|
| Serial<br>number | 3                     | 2                 | 1      | 0           |
| Description      | System<br>Reservation | DO<br>Calibration | DO     | Temperature |

System status.02 Address: 0x07, content format: 4\*4bit, 0xFFFF

| Description | System      | ORP         | ORP  | Operating |
|-------------|-------------|-------------|------|-----------|
|             | reservation | Calibration | Orti | mode      |

# 13. PH/ORP digital electrode preservation and maintenance

## electrode preservation:

When the electrode is not in use for a short time, please use the rubber sleeve protective cover + wet sponge to ensure that the electrode is in a wet state. The protective cover and sponge are used to protect the electrode, please do not discard.

## Parts replacement cycle

Electrode: The electrode is recommended to be replaced in 12 months

Electrode slope: <70%Slope is recommended to be replaced

## Maintenance - cleaning the old sensor

Observe the glass measuring part of the electrode head. If the glass contact surface is covered, use a moistened cotton swab to gently wipe the surface until it is clean.

## Maintenance - pH before use

Observe whether there is liquid in the bulb of the pH electrode sensitive membrane. If it is not filled with liquid or there are bubbles, shake the electrode gently to fill the bulb with liquid without bubbles.

## Maintenance - pH repair - unable to calibrate / after a long time dry

If the sensor is left dry for a long time or its performance is reduced, you can try to soak it in pH4.00 buffer for a few minutes, and then soak it in pH 7.00 buffer for a few minutes before attempting calibration

## Maintenance - pH calibration

Please pay attention to the buffer used during calibration. Place the electrode in the buffer for 1 minute before subsequent operations. After rinsing the electrode, only use a soft tissue to absorb the water.

## **▶** Do not rub the pH sensitive membrane

# 14. Digital PH/ORP sensor wiring definition instructions

Please check the color and wiring definition carefully before wiring. If wiring is wrong, the sensor may be damaged.

Sensor power supply
Working current
communication interface
communication format
baud rate

12VDC
25mA
RS485
RS485

communication protocol Modbus-RTU

## Wiring definition

| Color       | Red  | Black | Green | White |  |
|-------------|------|-------|-------|-------|--|
| description | 12V+ | GND   | 485A  | 485B  |  |