Lösungsvorschläge zu Aufgabenblatt 5

(Restklassen)

Aufgabe 5.1

Zeigen Sie die folgenden Eigenschaften der Teiler-Relation:

- (1) Für alle $m, n, k \in \mathbb{Z}$ mit $k \neq 0$ gilt: $m|n \Leftrightarrow km|kn$.
- (2) Für alle $m, n_1, n_2, \ell_1, \ell_2 \in \mathbb{Z}$ gilt: $m|n_1 \wedge m|n_2 \Rightarrow m|(\ell_1 n_1 + \ell_2 n_2)$.
- (3) Für alle $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ gilt: $m_1 | n_1 \wedge m_2 | n_2 \Rightarrow m_1 m_2 | n_1 n_2$.

Lösung

(1) Seien $m, n, k \in \mathbb{Z}$ mit $k \neq 0$.

,,⇒": Es gelte m|n. Zu zeigen: km|kn.

Nach Voraussetzung existiert ein $a \in \mathbb{Z}$ mit n = ma, also gilt auch kn = kma, also gilt km|kn nach Definition.

 $, \Leftarrow$ ": Es gelte km|kn. Zu zeigen: m|n.

Nach Voraussetzung existiert ein $a \in \mathbb{Z}$ mit kn = kma. Wegen $k \neq 0$ folgt hieraus n = ma, also gilt m|n nach Definition.

(2) Seien $m, n_1, n_2, \ell_1, \ell_2 \in \mathbb{Z}$. Es gelte $m|n_1$ und $m|n_2$. Zu zeigen: $m|(\ell_1n_1 + \ell_2n_2)$.

Nach Voraussetzung existieren $a_1, a_2 \in \mathbb{Z}$ mit $n_1 = a_1 m$ und $n_2 = a_2 m$. Es folgt

$$\ell_1 n_1 + \ell_2 n_2 = \ell_1 a_1 m + \ell_2 a_2 m = \underbrace{(\ell_1 a_1 + \ell_2 a_2)}_{k:=} m = k m,$$

also gilt nach Definition auch $m|(\ell_1n_1 + \ell_2n_2)$.

(3) Seien $m_1, m_2, n_1, n_2 \in \mathbb{Z}$. Es gelte $m_1|n_1$ und $m_2|n_2$. Zu zeigen: $m_1m_2|n_1n_2$.

Nach Voraussetzung existieren $a_1, a_2 \in \mathbb{Z}$ mit $n_1 = a_1 m_1$ und $n_2 = a_2 m_2$. Es folgt

$$n_1 n_2 = (a_1 m_1)(a_2 m_2) = \underbrace{(a_1 a_2)}_{k = 1} m_1 m_2 = k m_1 m_2,$$

also gilt nach Definition auch $m_1m_2|n_1n_2$.

Aufgabe 5.2

Es seien $m \in \mathbb{N}$ und $a, b, c, d \in \mathbb{Z}$ mit $a \equiv_m b$ und $c \equiv_m d$. Zeigen Sie, dass dann auch gilt $a + c \equiv_m b + d$ und $a - c \equiv_m b - d$.

Hinweis: Sie können die Aussagen von Aufgabe 5.1 verwenden.

Lösung

Nach Voraussetzung gilt m|b-a und m|d-c. Wir wenden Teil (2) der vorherigen Aufgabe an und erhalten:

$$m|(b-a) + (d-c)$$
 und $m|(b-a) - (d-c)$.

Das heißt aber gerade m|(b+d)-(a+c), also $a+c\equiv_m b+d$, und m|(b-d)-(a-c), also $a-c\equiv_m b-d$.

Aufgabe 5.3

Bestimmen Sie für m=7 und m=10 und die Zahlen 145, 200 und 711 jeweils die zugehörige Restklasse $[r]_m$ mit $0 \le r < m$.

Lösung

Man erhält in allen Fällen das gesuchte r mithilfe von Teilen mit Rest. Dies liefert:

$$[145]_7 = [5]_7, [200]_7 = [4]_7, [711]_7 = [4]_7,$$

und

$$[145]_{10} = [5]_{10}, [200]_{10} = [0]_{10}, [711]_{10} = [1]_{10}.$$

Aufgabe 5.4 Es seien $m, n \in \mathbb{N}$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- $(1) \ \forall a \in \mathbb{Z} : [a]_m \subseteq [a]_n.$
- (2) $\exists a \in \mathbb{Z} : [a]_m \subseteq [a]_n$.
- (3) n|m.

Lösung

Es reicht zu zeigen: $(1)\Rightarrow(2)$ und $(2)\Rightarrow(3)$ und $(3)\Rightarrow(1)$ (vgl. Vorlesung).

- (1) (2)": Es gelte (1). Da $\mathbb{Z} \neq \emptyset$ ist, folgt dann auch (2), z.B. gilt $[0]_m \subseteq [0]_n$.
- "(2) \Rightarrow (3)": Es gelte (2). Wähle also $a \in \mathbb{Z}$ mit $[a]_m \subseteq [a]_n$. Nach Vorlesung gilt $[a]_m = a + m\mathbb{Z}$ und $[a]_n = a + n\mathbb{Z}$. Insbesondere ist $a + m = a + m \cdot 1 \in [a]_m$, also gilt auch $a + m \in [a]_n = a + n\mathbb{Z}$, es gibt also ein $k \in \mathbb{Z}$ mit $a + m = a + n \cdot k$. Es folgt $m = n \cdot k$, also $n \mid m$.
- "(3) \Rightarrow (1)": Es gelte n|m, wir finden also ein $k \in \mathbb{Z}$ mit $m = n \cdot k$. Sei $a \in \mathbb{Z}$. Zu zeigen ist $[a]_m \subseteq [a]_n$. Sei also $b \in [a]_m = a + m\mathbb{Z}$, dann gibt es ein $\ell \in \mathbb{Z}$ mit $b = a + m \cdot \ell$. Es folgt

$$b = a + m \cdot \ell = a + (n \cdot k) \cdot \ell = a + n \cdot \underbrace{(k \cdot \ell)}_{\in \mathbb{Z}} \in a + n\mathbb{Z} = [a]_n.$$