# October 21, 2025

We need to test the a, b, c functions implemented. We test them by setting only one pair of values to a non-zero value.

| 1 | Fermi    | $(J_i =$        | 0:     | $I_{\rm f} =$    | 0)               |
|---|----------|-----------------|--------|------------------|------------------|
|   | 1 (11111 | $(\upsilon_i -$ | · U, U | , <sub>†</sub> — | $\mathbf{v}_{j}$ |

We first analyse the simpler case: a Fermi transition. Here we only need to consider a and b, as c should be always undefined (J=0) breaks the factor in c formula)

| CS  | ξ | $a_t$ | $b_t$ | $c_t$ | a  | b   | c   |
|-----|---|-------|-------|-------|----|-----|-----|
| CSP | 2 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CT  | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CTP | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CV  | 2 | 0     | cte   | NaN   | 0  | cte | NaN |
| CVP | 2 | 0     | 0     | NaN   | 0  | 0   | NaN |
| CA  | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CAP | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |

Table 1: Results of the test with CS as one of the variables. The first column is the second coupling constant, 2nd is  $\xi$ ; 3rd to 5th are the expectation from inspecting the function, 6th to 8th the values from the test

# 1.1 First Test: vs NaN vs cte vs $\neq$ cte

Since we need do characterise each pair and check if the values given are correct for the whole energy, we'd need to compare the output with a graph. To reduce the amount of graphs, we can inspect first if the functions will return 0, be undefined ( $\xi$  in the denominator of the expressions can be 0), return a non-zero constant value or a variable one. It is to note if  $C_S$ ,  $C_S'$ ,  $C_V$  or  $C_V'$  is non-zero, we get an extra constant term in 1. The expected value from the single variable parts is computed and checked

| CSP | ξ | $a_t$ | $b_t$ | $c_t$ | a  | b   | c   |
|-----|---|-------|-------|-------|----|-----|-----|
| СТ  | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CTP | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CV  | 2 | 0     | 0     | NaN   | 0  | 0   | NaN |
| CVP | 2 | 0     | cte   | NaN   | 0  | cte | NaN |
| CA  | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |
| CAP | 1 | -1    | 0     | NaN   | -1 | 0   | NaN |

## 1.1.1 Real Terms

For a first test, we set to +1 only the two constants we select in the pair, rest are set to 0. Here are the results.

| CT  | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c   |
|-----|---|-------|-------|-------|-----|-----|-----|
| CTP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |
| CV  | 1 | 1     | 0     | NaN   | 1   | 0   | NaN |
| CVP | 1 | 1     | 0     | NaN   | 1   | 0   | NaN |
| CA  | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |
| CAP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |

| CTP | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c   | CSP | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | С   |
|-----|---|-------|-------|-------|-----|-----|-----|-----|---|-------|-------|-------|------|---|-----|
| CV  | 1 | 1     | 0     | 0     | 1   | 0   | 0   | CT  | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |
| CVP | 1 | 1     | 0     | 0     | 1   | 0   | 0   | CTP | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |
| CA  | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN | CV  | 2 | 0     | 0     | NaN   | 0    | 0 | NaN |
| CAP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN | CVP | 2 | ≠cte  | 0     | NaN   | ≠cte | 0 | NaN |
|     |   |       |       |       |     |     |     | CA  | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |
|     |   |       |       |       |     |     | ĺ   | CAP | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |

b

NaN

| CV  | ξ | $a_t$ | $b_t$ | $c_t$ | a | b | c   |
|-----|---|-------|-------|-------|---|---|-----|
| CVP | 2 | 1     | 0     | NaN   | 1 | 0 | NaN |
| CA  | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |
| CAP | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |

| CVP | ξ | $a_t$ | $b_t$ | $c_t$ | a | b | c   |
|-----|---|-------|-------|-------|---|---|-----|
| CA  | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |
| CAP | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |

NaN

| CT  | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c   |
|-----|---|-------|-------|-------|-----|-----|-----|
| CTP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |
| CV  | 1 | 1     | 0     | NaN   | 1   | 0   | NaN |
| CVP | 1 | 1     | 0     | NaN   | 1   | 0   | NaN |
| CA  | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |
| CAP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |

|     | CTP | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c   |
|-----|-----|---|-------|-------|-------|-----|-----|-----|
|     | CV  | 1 | 1     | 0     | NaN   | 1   | 0   | NaN |
|     | CVP | 1 | 1     | 0     | NaN   | 1   | 0   | NaN |
| С   | CA  | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |
| NaN | CAP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |

We observe the results agree with the predictions

NaN

NaN

# 1.1.2 Imaginary Terms

NaN

CA

CAP

0

For a second test, we give the pair the values  $c_1 =$ 0.8 + 0.6i,  $c_2 = 0.6 - 0.8i$ . These are chosen so that the modulus is 1, giving us integer values for  $\xi$ . The values are also chosen to prove only the imaginary terms, as  $c_1\overline{c_2} = (0.8 + 0.6i)(0.6 + 0.8i) = i$ , so any term on the real part will be zero. This also implies b = 0 in this test.

| CS  | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | c   |
|-----|---|-------|-------|-------|------|---|-----|
| CSP | 2 | -1    | 0     | NaN   | -1   | 0 | NaN |
| CT  | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |
| CTP | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |
| CV  | 2 | ≠cte  | 0     | NaN   | ≠cte | 0 | NaN |
| CVP | 2 | 0     | 0     | NaN   | 0    | 0 | NaN |
| CA  | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |
| CAP | 1 | -1    | 0     | NaN   | -1   | 0 | NaN |

| CV  | ξ | $a_t$ | $b_t$ | $c_t$ | a | b | c   |
|-----|---|-------|-------|-------|---|---|-----|
| CVP | 2 | 1     | 0     | NaN   | 1 | 0 | NaN |
| CA  | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |
| CAP | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |

| CVP | ξ | $a_t$ | $b_t$ | $c_t$ | a | b | c   |
|-----|---|-------|-------|-------|---|---|-----|
| CA  | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |
| CAP | 1 | 1     | 0     | NaN   | 1 | 0 | NaN |

| CA  | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c   |
|-----|---|-------|-------|-------|-----|-----|-----|
| CAP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN |

The results obtained match the predictions once more, confirming the function works

### 1.2 Second Test: correct numerical values

Out of the combinations selected as non-zero constant and variable, we do the computations to check the validity. In our test, we have used Z=14 and assumed the transition is  $\beta^-$ , that is betaType=+1, with  $Q=2000 {\rm keV}$ . There are few values we need to validate, as most have been checked already.

## 1.2.1 cs=cv=1;csp=cvp=1

Only non-zero is b, relevant term is

$$b = \frac{2\gamma |M_F|^2}{\xi} Re(C_S \overline{C_V} + C_S' \overline{C_V'}) = \gamma$$

With the values chosen we obtain 0.994768 up to 6 decimals, exactly as the value printed in terminal 0.994768

# 1.2.2 cs=0.6+0.8i,cv=0.8-0.6i; csp=0.6+0.8i,cvp=0.8-0.6i;

Only non-zero term is a, relevant term is

$$a = -\frac{2|M_F|^2 \alpha Z m_e}{\xi p_e} Im(C_S \overline{C_V} + C_S' \overline{C_V'})$$

we plot the result



Figure 1: Coeficients a with respect to energy of the electron for a Fermi Z = 14 Q = 2000 keV decay with non-zero coupling constants cs=0.8+0.6i,cv=0.6-0.8i.

# 2 Gamov Teller Decay $(J_i = 2, J_f = 1)$

We now consider a Gamov-Teller transition, to select the terms in a, b and c that are proportional to  $M_{GT}$ .

# 2.1 First Test: 0 vs NaN vs cte vs $\neq$ cte

We perform the same checks initially as in the pure Fermi case. We once more check the results of the maximum function (=0, =NaN (shown in the results as -1) or  $\neq$ 0) and the characterisation of the function (constant or variable) from the test.

### 2.1.1 Real Values

For a first test, we set to +1 only the two constants we select in the pair, rest are set to 0. As in the previous case, some NaN can be found. c is not automatically NaN. From the values  $\Lambda_{J_i,J_f}=1$  and the alignment is equal to  $J^2=4$ . This gives all the factors in front of c equal to -1. Equivalently, the factor in front of a is 1/3

| CS  | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b   | c   |
|-----|---|-------|-------|-------|------|-----|-----|
| CSP | 0 | NaN   | NaN   | NaN   | NaN  | NaN | NaN |
| CT  | 1 | 1/3   | 0     | -1    | 1/3  | 0   | -1  |
| CTP | 1 | 1/3   | 0     | -1    | 1/3  | 0   | -1  |
| CV  | 0 | NaN   | NaN   | NaN   | NaN  | NaN | NaN |
| CVP | 0 | NaN   | NaN   | NaN   | NaN  | NaN | NaN |
| CA  | 1 | -1/3  | 0     | 1     | -1/3 | 0   | 1   |
| CAP | 1 | -1/3  | 0     | 1     | -1/3 | 0   | 1   |

Table 2: Results of the test with CS as one of the variables. The first column is the second coupling constant, 2nd is  $\xi$ ; 3rd to 5th are the expectation from inspecting the function, 6th to 8th the values from the test

| ĺ | CSP | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c t   | the modulus is 1, giving us integer values for $\xi$ . The                   |
|---|-----|---|-------|-------|-------|-----|-----|-------|------------------------------------------------------------------------------|
| Ì | СТ  | 1 | 1/3   | 0     | -1    | 1/3 | 0   |       |                                                                              |
| Ì | CTP | 1 | 1/3   | 0     | -1    | 1/3 | 0   | -1 t  | terms, as $c_1\overline{c_2} = (0.8 + 0.6i)(0.6 + 0.8i) = i$ , so any        |
| Ì | CV  | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN t | term on the real part will be zero. This also implies                        |
| Ì | CVP | 0 | NaN   | NaN   | NaN   | NaN | NaN | NaN l | b = 0 in this test.                                                          |
| Ì | CA  | 1 | -1/3  | 0     | 1     | 1/3 | 0   | -1    | 1                                                                            |
| ı | CAP | 1 | 1/3   | 0     | 1     | 1/3 | 0   | 1     | $\top CS \mid \xi \mid a_{+} \mid b_{+} \mid c_{+} \mid a \mid b \mid c_{-}$ |

| CT  | ξ | $a_t$ | $b_t$ | $c_t$ | a   | b   | c  |
|-----|---|-------|-------|-------|-----|-----|----|
| CTP | 2 | 1/3   | 0     | -1    | 1/3 | 0   | -1 |
| CV  | 1 | 1/3   | 0     | -1    | 1/3 | 0   | -1 |
| CVP | 1 | 1/3   | 0     | -1    | 1/3 | 0   | -1 |
| CA  | 2 | 0     | cte   | 0     | 0   | cte | 0  |
| CAP | 2 | 0     | 0     | 0     | 0   | 0   | 0  |

| CSP         0         NaN         NaN |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTP         1         1/3         0         -1         1/3         0         -1           CV         0         NaN         NaN         NaN         NaN         NaN         NaN           CVP         0         NaN         NaN         NaN         NaN         NaN         NaN           CA         1         -1/3         0         1         -1/3         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CV         0         NaN         NaN         NaN         NaN         NaN         NaN           CVP         0         NaN         NaN         NaN         NaN         NaN         NaN           CA         1         -1/3         0         1         -1/3         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CVP         0         NaN         NaN         NaN         NaN         NaN         NaN           CA         1         -1/3         0         1         -1/3         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CA 1 -1/3 0 1 -1/3 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{bmatrix} CAD & 1 & 1/2 & 0 & 1 & 1/2 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CAI   1   -1/3   0   1   -1/3   0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| CTP | ξ | $a_t$ | $b_t$ | $c_t$ | a | b | c |
|-----|---|-------|-------|-------|---|---|---|
| CV  | 1 | 1/3   | 0     | -1    |   |   |   |
| CVP | 1 | 1/3   | 0     | -1    |   |   |   |
| CA  | 2 | 0     | 0     | 0     |   |   |   |
| CAP | 2 | 0     | cte   | 0     |   |   |   |

Table 3: Results of the test with CS as one of the variables. The first column is the second coupling constant, 2nd is  $\xi$ ; 3rd to 5th are the expectation from inspecting the function, 6th to 8th the values from the test

|     |   |       |       |       |      |     |     | CT         | 1 | 1/3   | 0     | -1    | 1/3   | 0     | -1    |
|-----|---|-------|-------|-------|------|-----|-----|------------|---|-------|-------|-------|-------|-------|-------|
| CV  | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b   | c   | $\Gamma$   | 1 | 1/3   | 0     | -1    | 1/3   | 0     | -1    |
| CVP | 0 | NaN   | NaN   | NaN   | NaN  | NaN | NaN | CV         | 0 | NaN   | NaN   | NaN   | NaN   | NaN   | NaN   |
| CVF | U | man   | man   | man   | man  | man | man | CVD        | 0 | NT NT |
| CA  | 1 | -1/3  | 0     | 1     | -1/3 | 0   | 1   | CVP        | U | NaN   | NaN   | NaN   | NaN   | NaN   | NaN   |
|     | _ |       | 0     | _     | ,    | -   | _   | -CA        | 1 | -1/3  | 0     | 1     | 1/3   | 0     | -1    |
| CAP | I | -1/3  | 0     | I     | -1/3 | 0   | 1   |            | - | /     | Ü     |       | /     |       |       |
|     |   | /     |       |       | /    |     |     | $^{J}$ CAP | 1 | -1/3  | 0     | 1     | 1/3   | 0     | -1    |

| CVP | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | $\mathbf{c}$ |
|-----|---|-------|-------|-------|------|---|--------------|
| CA  | 1 | -1/3  | 0     | 1     | -1/3 | 0 | 1            |
| CAP | 1 | -1/3  | 0     | 1     | -1/3 | 0 | 1            |

| CA  | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | c |
|-----|---|-------|-------|-------|------|---|---|
| CAP | 2 | -1/3  | 0     | 1     | -1/3 | 0 | 1 |

| CT  | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | c    |
|-----|---|-------|-------|-------|------|---|------|
| CTP | 2 | 1/3   | 0     | -1    | 1/3  | 0 | -1   |
| CV  | 1 | 1/3   | 0     | -1    | 1/3  | 0 | -1   |
| CVP | 1 | 1/3   | 0     | -1    | 1/3  |   |      |
| CA  | 2 | ≠cte  | 0     | ≠cte  | ≠cte | 0 | ≠cte |
| CAP | 2 | 0     | 0     | 0     |      |   |      |

All results agreed already from the first implementation

#### Complex Values 2.1.2

For a second test, we give the pair the values  $c_1 =$  $0.8+0.6i,\,c_2=0.6-0.8i.$  These are chosen so that

| CTP | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | c    |
|-----|---|-------|-------|-------|------|---|------|
| CV  | 1 | 1/3   | 0     | -1    | 1/3  | 0 | -1   |
| CVP | 1 | 1/3   | 0     | -1    | 1/3  | 0 | -1   |
| CA  | 2 | 0     | 0     | 0     | 1/3  | 0 | -1   |
| CAP | 2 | ≠cte  | 0     | ≠cte  | ≠cte | 0 | ≠cte |

| CV  | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b   | c   |
|-----|---|-------|-------|-------|------|-----|-----|
| CVP | 0 | NaN   | NaN   | NaN   | NaN  | NaN | NaN |
| CA  | 1 | -1/3  | 0     | 1     | -1/3 | 0   | 1   |
| CAP | 1 | -1/3  | 0     | 1     | -1/3 | 0   | 1   |

| CVP | ξ | $a_t$ | $b_t$ | $c_t$ | a    | b | c |
|-----|---|-------|-------|-------|------|---|---|
| CA  | 1 | -1/3  | 0     | 1     | -1/3 | 0 | 1 |
| CAP | 1 | -1/3  | 0     | 1     | -1/3 | 0 | 1 |

| 1 | CVP | ζ | $a_t$ | $  o_t  $ | $c_t$ | l a  | ы | C |
|---|-----|---|-------|-----------|-------|------|---|---|
| ſ | CA  | 1 | -1/3  | 0         | 1     | -1/3 | 0 | 1 |
| ſ | CAP | 1 | -1/3  | 0         | 1     | -1/3 | 0 | 1 |
|   |     |   |       |           |       |      |   |   |
|   |     |   |       |           |       |      |   |   |

| Par | $     10^{0}     10^{-1}     10^{-2}     0     -10^{-2}     -10^{-1}     -10^{0} $ |                                                              | × a Code — a Theory × c Code — c Theory |
|-----|------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
|     |                                                                                    | 500 750 1000 1250 1500 1750 2000 2250 2500<br><i>E</i> (keV) |                                         |

-1/30

Figure 2: Coeficients a and c with respect to energy of the electron for a Fermi Z = 14 Q =2000 keV decay with non-zero coupling constants ct=0.8+0.6i, ca=0.6-0.8i.

### 2.2Second Test: correct numerical values

 $\overline{\mathrm{CA}}$ 

CAP

### ct=ca=1;ctp=cap=1

Only non-zero is b, relevant term is

$$b = \frac{2\gamma |M_{GT}|^2}{\xi} Re(C_T \overline{C_A} + C_T' \overline{C_A'}) = \gamma$$

With the values chosen we obtain 0.994768 up to 6 decimals, exactly as the value printed in terminal 0.994768

### 2.2.2ct=0.6+0.8i,ca0.8-0.6i;ctp=0.6+0.8i, cap=0.8-0.6i;

Only both a and c are non-zero, relevant term is

$$a = \frac{2|M_{GT}|^2 \alpha Z m_e}{3\xi p_e} Im(C_T \overline{C_A} + C_T' \overline{C_A'})$$

$$c = \frac{2|M_{GT}|^2 \alpha Z m_e}{\xi p_e} Im(C_T \overline{C_A} + C_T' \overline{C_A'}) \Lambda_{J_i,J_f} \frac{J(J+1) - 3 \left\langle (\mathbf{J} \cdot \mathbf{j})^2 \right\rangle}{J)(2J-1)}$$