AMS 572 Data Analysis I Inference for one-way and two-way count data

Pei-Fen Kuan

Applied Math and Stats, Stony Brook University

Inference for one-way count data

Review: Multinomial Distribution

Multinomial experiment:

- 1. The experiment consists of n identical and independent trials.
- 2. The outcome of each trial falls into one of k class.
- 3. The probability that the outcome of a single trial will fall in a particular class, say class i is p_i , (i = 1, ..., k) and remains the same from trial to trial

$$p_1 + p_2 + \ldots + p_k = 1$$

4. The random variable X_i is equal to the number of trials in which the outcome falls in class i, i = 1, ..., k. Note that

$$X_1 + X_2 + \ldots + X_k = n$$

Review: Multinomial Distribution

The joint p.m.f. of X_1, X_2, \ldots, X_k is given by

$$p(n_1, n_2, \dots, n_k) = P(X_1 = n_1, X_2 = n_2, \dots, X_k = n_k)$$

$$= \frac{n!}{n_1! n_2! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$

where $\sum_{i=1}^{k} p_i = 1$ and $\sum_{i=1}^{k} n_i = n$.

The random variables X_1, X_2, \ldots, X_k are said to have a multinomial distribution with parameters n and p_1, p_2, \ldots, p_k .

Inference on k > 2 proportions

- ▶ Also known as inference for one way count data
- ▶ Suppose $H_0: p_1 = p_1^0, p_2 = p_2^0, \dots, p_k = p_k^0$ vs $H_a:$ At least one $p_i \neq p_i^0$
- Under H_0 , the expected count of category i is $e_i = np_i^0$, i = 1, ..., k
- ► Test statistic

$$W_0 = \sum_{i=1}^{k} \frac{(x_i - e_i)^2}{e_i}$$

where x_i is the observed number of observations in category i and $e_i = np_i^0$

- ▶ Under H_0 , W_0 converges to χ^2_{k-1}
- ▶ At significance level α , reject H_0 if $W_0 > \chi^2_{k-1,\alpha,U}$

4□ ト 4 億 ト 4 億 ト 4 億 ト 1 億 9 9 9 9

χ^2 test for inference on k > 2 proportions

- The null distribution of W_0 is approximately χ^2_{k-1} when sample size is large
- ▶ Rule of thumb: all $e_i \ge 1$ and no more than 1/5 of the $e_i < 5$.
- ▶ What happens if we have many cells with small counts?

χ^2 test for inference on k > 2 proportions

- Note that $H_0: p_1 = p_1^0, p_2 = p_2^0, \dots, p_k = p_k^0$ means we are testing how well a particular model fits the data
- ▶ Thus, this test is also known as the χ^2 goodness of fit test
- ➤ Rejecting the null implies the model does not provide an adequate fit to the data

Example: Gregor Mendel (1822-1884) was an Austrian monk whose genetic theory is one of the greatest scientific discovery of all time. In his famous experiment with garden peas, he proposed a genetic model that would explain inheritance. In particular, he studied how the shape (smooth or wrinkled) and color (yellow or green) of pea seeds are transmitted through generations. His model shows that the second generation of peas from a certain ancestry should have the following distribution. Conduct at test at $\alpha=0.05$ if his theoretical probabilities are correct.

	wrinkled-	wrinkled-	smooth-	smooth-
	green	yellow	green	yellow
Theoretical	$p_1 = \frac{1}{16}$	$p_2 = \frac{3}{16}$	$p_3 = \frac{3}{16}$	$p_4 = \frac{9}{16}$
probabilities				
Observed	31	102	108	315
counts				

Solution

	wrinkled-	wrinkled-	smooth-	smooth-
	green	yellow	green	yellow
Theoretical	$p_1 = \frac{1}{16}$	$p_2 = \frac{3}{16}$	$p_3 = \frac{3}{16}$	$p_4 = \frac{9}{16}$
probabilities				
Observed	$X_1 = 31$	$X_2 = 102$	$X_3 = 108$	$X_4 = 315$
count out of				
556				
Expected	$e_1 = 34.75$	$e_2 = 104.25$	$e_3 = 104.25$	$e_4 = 312.75$
counts				

@PF.Kuan

$$H_0: p_1 = \frac{1}{16}, p_2 = \frac{3}{16}, p_3 = \frac{3}{16}, p_4 = \frac{9}{16} H_a: H_0 \text{ not true}$$

 $T.S W_0 = \sum_{i=1}^k \frac{(x_i - e_i)^2}{e_i} \stackrel{H_0}{\sim} \chi_{k-1}^2$
 $\approx 0.604 < \chi_{3,0.05,upper}^2 = 7.815$

 \therefore At significance level 0.05, we cannot reject H_0

←□ ▶ ←□ ▶ ← □ ▶ ← □ ▶ ← □ ● ← ○

```
DATA GENE;
INPUT COLOR $ NUMBER;
DATALINES;
YELLOWSMOOTH 315
YELLOWWRINKLE 102
GREENSMOOTH
           108
GREENWRINKLE 31
PROC FREQ DATA=GENE ORDER=DATA;
WEIGHT NUMBER;
TITLE3 'GOODNESS OF FIT ANALYSIS';
TABLES COLOR / CHISQ NOCUM TESTP=(0.5625 0.1875 0.1875 0.0625);
RUN;
```

SAS Output

GOODNESS OF FIT ANALYSIS

The FREQ Procedure

COLOR	Frequency	Percent	Test Percen
YELLOWSM	315	56.65	56.25
YELLOWWR	102	18.35	18.75
GREENSMO	108	19.42	18.75
GREENWRI	31	5.58	6.25

Chi-Square Test for Specified Proportions

Chi-Square 0.6043 DF 3 Pr > ChiSq 0.8954

Sample Size = 556

R Code and Output

```
> obs <- c(315,102,108,31)
> null.prob <- c(9/16,3/16,3/16,1/16)
> chisq.test(obs,p=null.prob)

Chi-squared test for given probabilities

data: obs
X-squared = 0.6043, df = 3, p-value = 0.8954
```

Inference for two-way count data

Contingency Tables

▶ Two-way $(r \times c)$ contingency table:

► Notation:

$$n_{i.} = \sum_{j=1}^{c} n_{ij}$$
 $n_{.j} = \sum_{i=1}^{r} n_{ij}$

Contingency Tables

- ightharpoonup Two scenarios where $r \times c$ table arise
 - Sample from a single population and measure two characteristics, say X and Y

$$\Pr[X = i, Y = j] = p_{ij} \; ; \; \sum_{i=1}^{r} \sum_{j=1}^{c} p_{ij} = 1$$

In this case, the total sample size is fixed

2. Each row corresponds to a sample from a different population

$$\sum_{j=1}^{c} p_{ij} = 1$$

In this case, the row totals are fixed

Contingency Table: Example

▶ A survey of physicians asked about the size of community in which they were reared and the size of the community in which they practice

Practice							
Reared	<5k	$5\text{-}49\mathrm{k}$	50-99k	100k +	Total		
<5k	40	38	32	37	147		
5 - 49 k	26	42	35	33	136		
50-99k	24	26	34	31	115		
100k +	30	39	53	60	182		
	120	145	154	161	580		

Contingency Table: Example

▶ A case-control study was conducted to investigate the relationship between age at first birth and breast cancer

Age at 1st birth

	<20	20-24	25 - 29	30-34	≥ 35	Total
Case	320	1206	1011	463	220	3220
Control	1422	4432	2893	1092	406	10245
	1742	5638	3904	1555	626	13465

Contingency Tables

▶ Physician's example H_0 : size of place of practice is independent of size of place of rearing

$$H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$$

► Test of independence

$$\Pr[X=i,Y=j] = \Pr[X=i] \Pr[Y=j]$$
 for $i=1,\ldots,r; \ j=1,\ldots,c$

Contingency Tables

▶ Breast cancer example H_0 : distribution of age at 1st birth is the same for cases and controls

$$H_0: p_{ij} = p_{i'j}; j = 1, 2, \dots, c$$

► Test of homogeneity/association

Test of Independence or No Association

▶ Under either H_0 , the estimated expected frequency in the (i, j) cell is

$$E_{ij} = \frac{n_i \cdot n_{\cdot j}}{N}$$

- Consider breast cancer example
 - ▶ If H_0 is true, would expect the proportion of women < 20 to be

$$\frac{n_{11} + n_{21}}{N} = \frac{n_{\cdot 1}}{N}$$

 \triangleright There are n_1 cases, so we would expect

$$E_{11} = n_1 \cdot \frac{n_{\cdot 1}}{N} = \frac{n_1 \cdot n_{\cdot 1}}{N}$$

cases to be < 20 years old

Test of Independence or Association

▶ Under H_0 , the expected frequency in the (i, j) cell is

$$E_{ij} = \frac{n_i \cdot n_{\cdot j}}{N}$$

► Let

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

i.e.

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - n_{i} \cdot n_{.j}/N)^{2}}{n_{i} \cdot n_{.j}/N}$$

Test of Independence

▶ Under H_0 ,

$$X^2 \sim \chi^2_{(r-1)(c-1)}$$

▶ Physician's Example:

$$(r-1)(c-1) = 3 \times 3 = 9$$

Rejection Region = $C_{0.05} = \{X^2 : X^2 > \chi^2_{0.05,9,U} = 16.92\}$

Physician's Example

► Expected values

Practice								
Reared	<5k	$5\text{-}49\mathrm{k}$	50-99k	100k +	Total			
<5k	30.4	36.8	39.0	40.8	147			
5 - 49 k	28.1	34.0	36.1	37.8	136			
50-99k	23.8	28.8	30.5	31.9	115			
100k +	37.7	45.5	48.3	50.5	182			
	120	145	154	161	580			

Physician's Example

► Calculate test statistic

$$X^{2} = \frac{(40 - 30.4)^{2}}{30.4} + \frac{(38 - 36.8)^{2}}{36.8} + \dots + \frac{(60 - 50.5)^{2}}{50.5} = 12.76$$

- ▶ Do not reject H_0 .
- ▶ There is insufficient evidence to conclude that place of practice and place of rearing are dependent; the data are consistent with the null hypothesis that place of practice and place of rearing are independent

```
data physician;
input reared $ practice $ count;
datalines;
less5k less5k 40
5to49k less5k 26
50to99k less5k 24
100k less5k 30
. . .
100k 50to99k 53
less5k 100k 37
5to49k 100k 33
50to99k 100k 31
100k 100k 60
run:
proc freq data=physician;
tables reared*practice/chisq;
weight count;
run;
```

SAS Output

GOODNESS OF FIT ANALYSIS

The FREQ Procedure

Table of reared by practice

reared	practice						
Frequency Percent Row Pct Col Pct		50to99k	5to49k	less5k	Total		
100k	60	53	39	30	182		
	10.34	9.14	6.72	5.17	31.38		
	32.97	29.12	21.43	16.48			
	37.27	34.42	26.90	25.00			
50to99k	31	34	26	24	115		
	5.34	5.86	4.48	4.14	19.83		
	26.96	29.57	22.61	20.87			
	19.25	22.08	17.93	20.00			
5to49k	33	35	42	26	136		
	5.69	6.03	7.24	4.48	23.45		
	24.26	25.74	30.88	19.12			
	20.50	22.73	28.97	21.67			
less5k	37	32	38	40	147		
	6.38	5.52	6.55	6.90	25.34		
	25.17	21.77	25.85	27.21			
	22.98	20.78	26.21	33.33	4 □ ▶		

SAS Output

Statistics for Table of reared by practice

Statistic	DF	Value	Prob
Chi-Square Likelihood Ratio Chi-Square Mantel-Haenszel Chi-Square Phi Coefficient Contingency Coefficient	9 9 1	12.7632 12.5264 8.0532 0.1483 0.1467	0.1736 0.1852 0.0045
Cramer's V		0.0856	

Sample Size = 580

R Code and Output

```
> physician <- matrix(c(40,38,32,37,26,42,35,33,
24,26,34,31,30,39,53,60),nrow = 4,byrow=T,
dimnames = list(Practice = c("v5k","v5to49k","v50to99k","v100k")
Reared = c("v5k","v5to49k","v50to99k","v100k")))</pre>
```

> physician

Reared
Practice v5k v5to49k v50to99k v100k
v5k 40 38 32 37
v5to49k 26 42 35 33
v50to99k 24 26 34 31
v100k 30 39 53 60

> chisq.test(physician)

Pearson's Chi-squared test

data: physician

X-squared = 12.7632, df = 9, p-value = 0.1736

▶ Underlying probabilities

Αę	ge	at
1st	b	irth

	<20	20-24	25-29	30-34	≥ 35	Total
Case	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	1
Control	p_{21}	p_{22}	p_{23}	p_{24}	p_{25}	1

▶ Null hypothesis

$$H_0: p_{1j} = p_{2j} \text{ for } j = 1, 2, 3, 4, 5$$

► Can use same statistic

$$X^{2} = \sum_{i=1}^{2} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

► Expected frequencies

Age at 1st birth							
	-00			20.24	> 25	l m . 1	
		20-24					
Case						3220	
Control	1325.4	4289.7	2970.4	1183.1	476.3	10245	
	1742	5638	3904	1555	626	13465	

► Test statistic

$$X^{2} = \frac{(320 - 416.6)^{2}}{416.6} + \dots + \frac{(406 - 476.3)^{2}}{476.3} = 130.3$$

► Rejection region

$$C_{0.05} = \{X^2 : X^2 > \chi^2_{0.05,4,U} = 9.49\}$$

- ightharpoonup Reject H_0
- ▶ The age distributions are not the same

Asymptotic Approximation

- Note the χ^2 distribution for X^2 is an approximation
- ▶ The approximation works well for if $E_{ij} \ge 5$ for all i, j

Read Chapter 10

34