1 Full report

1.1 Input data

Input file name:

UPO.txt

File contents:

#mathmatical symbols used in rate constant names (e.g. k-1) must be escaped with a prece

```
E, k1; [A], EA/EP
EA/EP, k_-1, E
EA/EP, k2, E*
E*, k_-2, EA/EP
E*, k3; [B], E*B/EQ
E*B/EQ, k_-3, E*
E*B/EQ, k6, E
E, k_-6; [Q], E*B/EQ
E*, k4; [A], E*A/EPR
E*A/EPR, k_-4, E*
E*A/EPR, k7, E
E, k_-7; [P], E*A/EPR
E, k8; [B], EB
EB, k_-8, E
=+: E*B/EQ, k6,
=-: E, k_-6; [Q],
=0: k_-6, k_-7, [P], [Q], k_-2
subsymbols: k_ib, k_ma, k_ma2, k_mb
subs:k8, k_-8/k_ib
subs:k1, (k_-1 + k2)/k_ma
subs:k4, (k_-4+k7)/k_ma2
subs:k3, (k_-3+k6)/k_mb
```

1.2 Parsed reactions

Reactions after parsing:

E	$\xrightarrow{k_1[A]}$	EA/EP
EA/EP	$\xrightarrow{k_{-1}}$	E
EA/EP	$\xrightarrow{k_2}$	E*
E*	$\xrightarrow{k_{-2}}$	EA/EP
E*	$\xrightarrow{k_3[B]}$	E*B/EQ
E*B/EQ	$\xrightarrow{k_{-3}}$	E*
E*B/EQ	$\xrightarrow{k_6}$	E
E	$\xrightarrow{k_{-6}[Q]}$	E*B/EQ
E*	$\xrightarrow{k_4[A]}$	E*A/EPR
E*A/EPR	$\xrightarrow{k_{-4}}$	E*
E*A/EPR	$\xrightarrow{k_7}$	E
E	$\xrightarrow{k_{-7}[P]}$	E*A/EPR
E	$\xrightarrow{k_8[B]}$	EB
EB	$\xrightarrow{k_{-8}}$	E

$1.3 \quad Linear graph \ matrix$

	0	1	2	3	4	5
0		$\frac{k_{-1}}{k_1[A]}$		$\frac{k_{-6}[Q]}{k_6}$	$\frac{k_{-7}[P]}{k_7}$	$\frac{k_{-8}}{k_8[B]}$
1	$\frac{k_{-1}}{k_1[A]}$		$\frac{k_{-2}}{k_2}$	I.	I.	
2	k e[O]	$\frac{k_{-2}}{k_2}$	k o	$\frac{k_{-3}}{k_3[B]}$	$\frac{k_{-4}}{k_4[A]}$	
3	$\frac{k_{-6}[Q]}{k_6}$ $\frac{k_{-7}[P]}{}$		$\frac{k_{-3}}{k_3[B]}$ $\frac{k_{-4}}{k_4[A]}$			
$\frac{4}{5}$	$\frac{\frac{k_7}{k_7}}{\frac{k_{-8}}{k_8[B]}}$		$\overline{k_4[A]}$			
	$\overline{k_8[B]}$					

1.4 Kinetic matrix

	0	1	2	3	4	5
0		$k_1[A]$		$k_{-6}[Q]$	$k_{-7}[P]$	$k_8[B]$
$\frac{1}{2}$	k_{-1}	k_{-2}	k_2	$k_3[B]$	$k_4[A]$	
3	k_6	N=Z	k_{-3}	3[2]	74[11]	
4	k_7		k_{-4}			
5	k_{-8}					

${\bf 1.5}\quad {\bf King\text{-}Altman\ Patterns}$

	0	1	2	3	4
0	$\frac{k_{-1}}{k_1[A]}$	$\frac{k_{-2}}{k_2}$	$\frac{k_{-6}[Q]}{k_6}$	$\frac{k_{-7}[P]}{k_7}$	$\frac{k_{-8}}{k_8[B]}$
1	$\frac{\kappa_{-1}}{k_1[A]}$	$\frac{k_{-2}}{k_2}$	$\frac{k_{-6}[Q]}{k_6}$	$\frac{k_{-4}}{k_4[A]}$	$\frac{k_{-8}}{k_8[B]}$
2	$\frac{k_{-1}}{k_1[A]}$	$\frac{k_{-2}}{k_2}$	$\frac{k_{-3}}{k_3[B]}$	$\frac{k_{-7}[P]}{k_7}$	$\frac{\kappa_{-8}}{k_{\circ}[B]}$
3	$\frac{\overset{-}{k}_{-1}}{k_1[A]}$	$\frac{k_{-2}}{k_2}$	$\frac{\kappa_{-3}}{k_3[B]}$	$\frac{k_{-4}}{k_4[A]}$	$\frac{k_{-8}}{k_8[B]}$
4	$\frac{k_{-6}[Q]}{k_6}$	$\frac{k-1}{k_1[A]}$	$\frac{\vec{k}_{-3}}{k_3[B]}$	$\frac{k_{-7}[P]}{k_7}$	$\frac{\kappa_{-8}}{k_{\circ}[B]}$
5	$\frac{k_{-6}[Q]}{k_6}$	$\frac{k_{-1}}{k_1[A]}$	$\frac{\overset{3}{k_{-3}}}{\overset{3}{k_3}[B]}$	$\frac{k_{-4}}{k_4[A]}$	$\frac{k_{-8}}{k_8[B]}$
6	$\frac{k_{-6}[Q]}{k_6}$	$\frac{k_{-2}}{k_2}$	$\frac{\overset{\sim}{k_{-3}}}{k_3[B]}$	$\frac{k_{-7}[P]}{k_7}$	$\frac{k_{-8}}{k_8[B]}$
7	$\frac{k_{-6}[Q]}{k_{6}}$	$\frac{k_{-2}}{k_2}$	$\frac{\overset{\sim}{k_{-3}}}{k_3[B]}$	$\frac{k_{-4}}{k_4[A]}$	$\frac{k_{-8}}{k_8[B]}$
8	$\frac{k_{-7}[P]}{k_7}$	$\frac{k_2}{k_1[A]}$	$\frac{k_{-6}[Q]}{k_6}$	$\frac{k_4[A]}{k_4[A]}$	$\frac{\frac{k_8[D]}{k_{-8}}}{k_8[B]}$
9	$\frac{k_{-7}[P]}{k_7}$	$\frac{k_{-1}}{k_1[A]}$	$\frac{k_{-3}}{k_3[B]}$	k_{-4}	k_{-8}
10	$k_{-7} P $	k_{-2}	$\frac{\overset{\kappa_3[B]}{k_{-6}[Q]}}{\overset{k_6}{k_6}}$	$\frac{\overline{k_4[A]}}{\overline{k_4[A]}}$	$\frac{k_8[B]}{k_{-8}}$
11	$\frac{\frac{1}{k_7}}{\frac{k_{-7}[P]}{k_7}}$	$\frac{\overline{k_2}}{\overline{k_2}}$	$\frac{k_{-3}}{k_3[B]}$	$\frac{\overline{k_4[A]}}{\frac{k_{-4}}{k_4[A]}}$	$\frac{\overline{k_8[B]}}{\overline{k_8[B]}}$

1.6 Directed Patterns

	0	1	2	3	4
0	$k_8[B]$	k_{-1}	k_6	k_7	k_{-2}
1	$k_8[B]$	k_{-1}	k_6	k_{-2}	k_{-4}
2	$k_8[B]$	k_{-1}	k_7	k_{-2}	k_{-3}
3	$k_8[B]$	k_{-1}	k_{-2}	k_{-3}	k_{-4}
4	$k_8[B]$	k_6	k_{-1}	k_7	$k_3[B]$
5	$k_8[B]$	k_6	k_{-1}	$k_3[B]$	k_{-4}
6	$k_8[B]$	k_6	k_7	$k_3[B]$	k_2
7	$k_8[B]$	k_6	$k_3[B]$	k_2	k_{-4}
8	$k_8[B]$	k_7	k_{-1}	k_6	$k_4[A]$
9	$k_8[B]$	k_7	k_{-1}	$k_4[A]$	k_{-3}
10	$k_8[B]$	k_7	k_6	$k_4[A]$	k_2
11	$k_8[B]$	k_7	$k_4[A]$	k_2	k_{-3}