MATHEMATICS =

An Improvement of Convergence Rate Estimates in the Lyapunov Theorem

I. G. Shevtsova

Presented by Academician Yu.V. Prokhorov May 14, 2010

Received May 18, 2010

DOI: 10.1134/S1064562410060062

Let $X_1, X_2, ..., X_n$ be independent random variables defined on a probability space (Ω, \mathcal{A}, P) and satisfying the conditions

$$EX_i = 0$$
, $DX_i = \sigma_i^2 > 0$, $E|X_i|^3 = \beta_i < \infty$,
 $i = 1, 2, ..., n$, $\sum_{i=1}^n \sigma_i^2 = 1$.

The Berry-Esseen inequality gives an estimate for the rate of convergence of the distribution function F_n of the normalized sum $S_n = X_1 + X_2 + ... + X_n$ to the standard normal distribution function $\Phi(x)$, which has the form

$$\Delta_n = \sup_{x \in \mathbb{R}} |F_n(x) - \Phi(x)| \le C_0 \sum_{i=1}^n \beta_i, \tag{1}$$

where C_0 is an absolute constant. It is known that this constant C_0 is bounded as

$$0.4097 \approx \frac{\sqrt{10} + 3}{6\sqrt{2\pi}} \le C_0 \le 0.5606$$

(the lower bound was obtained by Esseen [6] and the upper bound, by Tyurin [4]). Our purpose in this paper is to obtain sharpened upper bounds for the constant C_0 . The method which we use is such that the obtained bounds monotonically increase in n; thus, we consider the absolute case (in which the bound for the constant is uniform in n) and the case of finite n separately.

Theorem 1. For any $n \ge 1$, the constant C_0 in inequality (1) is estimated as

$$C_0 \le 0.5600$$
.

Theorem 2. For $1 \le n \le 10$, the constant C(n) in the inequality

$$\Delta_n \le C(n) \sum_{i=1}^n \beta_i$$

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia e-mail: ishevtsova@cs.msu.su is bounded by the values given in Table 1.

The estimate for C(1) was obtained in [5] and is unimprovable. For $n \ge 11$, the constant C(n) is estimated by using Theorem 1 as $\sup_{n \ge 1} C(n) \le 0.5600$.

The proofs of Theorems 1 and 2 are based on a method of Zolotarev improved by using Prawitz' smoothing inequality [7] and estimates for characteristic functions obtained in [2, 4]. We describe only the main ideas and state the corresponding assertions as lemmas.

We set

$$f(t) = Ee^{itS_n} = \prod_{j=1}^n f_j(t), \quad f_j(t) = Ee^{itX_j},$$

$$r(t) = \left| f(t) - e^{-t^2/2} \right|, \quad t \in \mathbb{R}.$$

Lemma 1 (see [7]). For all $t_0 \in (0, 1]$ and T > 0,

$$\Delta_{n} \leq 2 \int_{0}^{t_{0}} |K(t)| \cdot r(Tt) dt + 2 \int_{t_{0}}^{1} |K(t)| \cdot |f(Tt)| dt$$

$$+ 2 \int_{0}^{t_{0}} |K(t)| - \frac{i}{2\pi t} e^{-T^{2}t^{2}/2} dt + \frac{1}{\pi} \int_{t_{0}}^{\infty} e^{-T^{2}t^{2}/2} dt,$$

where

Table 1

n	C(n)	n	C(n)
1	0.3704	6	0.5425
2	0.4857	7	0.5476
3	0.5111	8	0.5516
4	0.5259	9	0.5547
5	0.5356	10	0.5573

$$K(t) = \frac{1}{2}(1 - |t|) + \frac{i}{2} \left[(1 - |t|)\cot \pi t + \frac{\operatorname{sgn} t}{\pi} \right],$$

-1 \le t \le 1.

Estimates for characteristic functions are given by the following lemmas. Let $\theta_0 \approx 3.995895$ be the unique root of the equation

$$\theta^{2} + 2\theta \sin \theta + 6(\cos \theta - 1) = 0, \quad \pi \le \theta \le 2\pi,$$

$$\kappa = \sup_{x > 0} \frac{\left|\cos x - 1 + \frac{x^{2}}{2}\right|}{x^{3}} \approx 0.09916.$$

It can be shown that the maximum is attained at the point $x = \theta_0$. For $t \in \mathbb{R}$ and $\varepsilon > 0$, consider the function

$$\psi(t,\varepsilon) = \begin{cases}
\frac{t^2}{2} - \kappa \varepsilon |t|^3, & \varepsilon |t| < \theta_0 \\
\frac{1 - \cos(\varepsilon t)}{\varepsilon^2}, & \theta_0 \le \varepsilon |t| \le 2\pi \\
0, & \varepsilon |t| > 2\pi.
\end{cases}$$

It is easy to show that the function $\psi(t, \varepsilon)$ monotonically decreases in ε for each fixed $t \in \mathbb{R}$. We also introduce the notation

$$\ell_n = \sum_{i=1}^n \beta_i.$$

Lemma 2. For any $n \ge 1$ and any $t \in \mathbb{R}$,

$$|f(t)| \le \left[1 - \frac{2}{n}\psi(t, 2\ell_n)\right]^{n/2} \le \exp\{-\psi(t, 2\ell_n)\}.$$

The second (exponential) estimate for |f(t)| was proved in [8]; the proof of the first (power) estimate is similar.

Lemma 3. For any $n \ge 1$ and $t \in \mathbb{R}$,

$$r(t) \leq 2e^{-t^{2}/2} \int_{0}^{|t|} \sin\left(\frac{u\ell_{n}}{4} \wedge \frac{\pi}{2}\right)$$

$$\times ue^{u^{2}/2} \frac{\left[1 - \frac{2}{n}\left(\frac{u^{2}}{2} - 2\kappa\ell_{n}u^{3}\right)\right]^{n/2}}{\sqrt{1 - 2g(u\ell_{n}^{1/3} \wedge (6\kappa)^{-1})}} du,$$

$$r(t) \leq 2e^{-t^{2}/2} \int_{0}^{|t|} \sin\left(\frac{u\ell_{n}}{4} \wedge \frac{\pi}{2}\right)$$

 $\times u \exp\left\{2\kappa \ell_n u^3 + g(u \ell_n^{1/3} \wedge (6\kappa)^{-1})\right\} du,$

where $g(u) = \frac{u^2}{2} - 2\kappa u^3$ for $u \ge 0$; moreover, g(u) monotonically increases for $0 \le u \le (6\kappa)^{-1}$.

The proof of this lemma uses estimates obtained in [2, 3].

Lemma 4 (see [1]). For any distribution function F with mean 0 and variance 1,

$$\sup_{x \in \mathbb{R}} |F(x) - \Phi(x)| \le \sup_{x > 0} \left(\Phi(x) - \frac{x^2}{1 + x^2} \right) = 0.54093...$$

Lemma 4 allows us not to consider the domain of values $\ell_n \ge \frac{0.541}{0.56} \approx 0.966$ in the proof of Theorem 1 and

the domains $\ell_n \ge \frac{0.541}{C(n)}$ in the proof of Theorem 2.

Lemma 5 (see [9]). If $(1 - \max_{1 \le k \le n} \sigma_k^2)^{-3/2} \ell_n \le 0.1$,

then

$$\Delta_n \le 0.5151 \cdot \ell_n (1 - \max_{1 \le k \le n} \sigma_k^2)^{-3/2}.$$

Since $\sigma_k^2 \le \beta_k^{3/2} \le \ell_n^{3/2}$ for all $0 \le k \le n$, it follows from Lemma 5 that $\Delta_n \le 0.5532\ell_n$ for $\ell_n \le 0.01$, which allows us not to consider the domain $\ell_n \le 0.01$ in the proof of Theorem 1.

Substituting estimates for |f(t)| and |r(t)| given by Lemmas 2 and 3 into the right-hand side of Prawitz' smoothing inequality from Lemma 1, we obtain a function $D(n, \ell, t_0, T)$ (or $D(\ell, t_0, T)$, if n-uniform estimates are used), which majorizes the uniform distance Δ_n for all $t_0 \in (0, 1]$, T > 0, and $\ell_n = \ell > 0$ (and

$$n \ge 1$$
). Observing that $\ell_n \ge \sum_{i=1}^n \sigma_i^3 \ge \frac{1}{\sqrt{n}}$ provided that

 $\sum_{i=1}^{n} \sigma_{i}^{2} = 1$, we conclude that the constants C(n) and C_{0}

can be sought in the form

$$C(n) = \max_{n^{-1/2} \le \ell \le 0.541/C(n)} \tilde{C}(n, \ell),$$

$$C_0 = \max_{0.01 \le \ell \le 0.97} \lim_{n \to \infty} \tilde{C}(n, \ell),$$

$$\tilde{C}(n, \ell) = \inf_{t_0, T} \frac{D(n, \ell, t_0, T)}{\ell}.$$

The monotonicity of the majorants for |f(t)| and r(t) with respect to ℓ_n implies that the function $\ell \tilde{C}(n, \ell)$ is monotonically nondecreasing with respect to $\ell > 0$ for each $n \ge 1$; therefore,

$$\tilde{C}(n,\ell) \leq \tilde{C}(n,\ell_2) \frac{\ell_2}{\ell_1}, \quad \ell_1 \leq \ell \leq \ell_2, \quad n \geq 1,$$

and $\sup_{\ell} \tilde{C}(n, \ell)$ can be estimated by using values at finitely many points.

All computations were performed in the Matlab R2006b environment. It has turned out the function $\lim_{n\to\infty} \tilde{C}(n,\ell)$ attains its extremum value 0.55998 at $\ell \approx$

Table 2

n	ℓ	t_0	T
2	0.790	0.4313	3.8762
3	0.702	0.4052	4.3370
4	0.655	0.3898	4.6361
5	0.626	0.3804	4.8442
6	0.606	0.3732	4.9995
7	0.591	0.3677	5.1238
8	0.580	0.3638	5.2188
9	0.569	0.3591	5.3202
10	0.564	0.3577	5.3640

0.5085 ($t_0 \approx 0.4203$, $T \approx 5.9603$), which proves Theorem 1. For finite n, the extremum values of ℓ and the corresponding optimum values of the parameters t_0 and T are given in Table 2. The extremum values of $\tilde{C}(n, \ell)$ do not exceed those specified above, which proves Theorem 2.

ACKNOWLEDGMENTS

The author sincerely thanks Academician Yu.V. Prokhorov for support and V.Yu. Korolev for attention.

This work was supported by the Russian Foundation for Basic Research (project nos. 08-01-00563, 08-01-00567, 08-07-00152, and 09-07-12032-ofi-m), by the Ministry of Education and Science (state contract nos. P1181, P779, and P958), and by the program for support of young candidates of sciences (project no. MK-581,2010.1).

REFERENCES

- 1. R. N. Bhattacharyya and R. Rao, *Normal Approximation and Asymptotic Expansions* (New York, Wiley, 1976; Nauka, Moscow, 1982).
- 2. V. Korolev and I. Shevtsova, *An Improvement of the Berry-Esseen Inequality with Applications to Poisson and Mixed Poisson Random Sums*, Scand. Actuar. J. (2010), http://www.informaworld.com/10.1080/03461238. 2010.485370, 4 June 2010.
- 3. I. S. Tyurin, Dokl. Math. **80**, 840–843 (2009) [Dokl. Akad. Nauk **429**, 312–316 (2009)].
- 4. I. Tyurin, Usp. Mat. Nauk **65** (3(393)), 201–202 (2010).
- V. Bentkus and K. Kirsha, Litov. Mat. Sb. 29, 657–673 (1989).
- C.-G. Esseen, Skand. Aktuar. Tidsskr. 39, 160–170 (1956).
- H. Prawitz, Scand. Aktuar. Tidsskr., No. 2, 138–154 (1972).
- 8. H. Prawitz, Scand. Actuar. J., No. 1, 21–28 (1975).
- 9. H. Prawitz, Scand. Actuar. J., No. 3, 145–156 (1975).