Week 7

Representations of the Symmetric Group

7.1 Specht Modules

- 11/6: Announcements.
 - Midterm description is on the Canvas page.
 - Review what he says to review, and then look at the PSets. The operator averaging stuff and S_4 , S_5 examples are most important.
 - New HW will be due next Friday (not this Friday).
 - New topic: Representations of S_n .
 - We will talk about these almost until the end of the course.
 - Very hard.
 - Any specialist in rep theory will still say that they know some approaches, but nobody understands this stuff completely.
 - We'll explore some phenomena, but if we feel after this course that we still don't understand everything about S_n , that's typical; if we think we understand everything, we're probably wrong.
 - Representation theory of $GL_n(\mathbb{F}_{p^k})$ is related but even worse.
 - Same with $O_n(\mathbb{F}_{p^k})$.
 - Recently, all this stuff was understood with something called linquistic (??) theory, but that's far beyond us.
 - $|S_n| = n!$, and the conjugacy classes are in bijection with cyclic structures of a permutation.
 - Our good understanding of the conjugacy classes of S_n is the only thing that makes this problem the slightest bit tractable.
 - Cyclic structures are also in bijection with the **partitions** of a number; recall that we briefly talked about these in MATH 25700!
 - Partition (of $n \in \mathbb{N}$): An ordered tuple satisfying the following constraints. Denoted by λ , $(\lambda_1, \ldots, \lambda_k)$.

 Constraints
 - 1. $\lambda_i \in \mathbb{N}$ for $i = 1, \dots, k$;
 - 2. $\lambda_1 \geq \cdots \geq \lambda_k$;
 - 3. $\lambda_1 + \cdots + \lambda_k = n$.

- Example: The partitions of the number "4" are (4), (3,1), (2,2), (2,1,1), and (1,1,1,1).
 - This is the same way we've been denoting representations!
- p(n): The number of possible partitions of n.
 - Hardy and Ramanujan helped understand the number p(n) of partitions of n, but they're still very hard to understand.
- One way to understand p(n) is through its encoding in the **generating function**

$$\sum_{n>1} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + \cdots$$

- We can think of the above generating function as an actual function of x if it converges for small x; of it doesn't converge, then we just think of it as a "meaningless" **formal power series**.
- To choose a partition, we need to choose a certain number of 1's, a certain number of 2's, a certain number of 3's, etc. all the way up to n.
- So let's look at

$$(1+x+x^2+\cdots)(1+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)(1+x^4+x^8+\cdots)\cdots$$

■ Formally, this is

$$\prod_{i=1}^{\infty} \left(\sum_{j=0}^{\infty} x^{ij} \right)$$

- This equals the generating function! It tells us that to compute $p(100)x^{100}$, we need only look at certain terms.
- Recall that we can write $1 + x + x^2 + \cdots = 1/(1-x)$. Doing similarly for other terms transforms the above product into

$$\frac{1}{1-x} \frac{1}{1-x^2} \frac{1}{1-x^3} \dots$$

- **Generating function**: An encoding of an infinite sequence of numbers as the coefficients of a formal power series.
- Formal power series: An infinite sum of terms of the form ax^n that is considered independently from any notion of convergence.
- The above discussion of p(n) as a generating function is only for our fun; Rudenko is not going to use this in any way.
 - It's just a pretty function.
 - Takeaway: We can write the generating function as something nice and then use it to prove something.
- We can visualize these partitions using something called a **Young diagram**.

Figure 7.1: Young diagrams for a partition of 20.

- Suppose we have the following partition of 20: (5, 4, 4, 3, 2, 1, 1).
- Then we draw 5 cages for 5 little birds, followed by 4 cages for 4 little birds, etc.
- Thus, the i^{th} row of boxes has length λ_i .
- The same way you can denote by λ the whole partition, you can denote by λ the whole diagram.
- This is just a way to visualize partitions.
- Recall the three partitions of S_3 , corresponding to its representations: (3), (2,1), (1,1,1).
- Moreover, these diagrams are actually meaningful!
- Inverse (of λ): The partition $(\lambda'_1, \ldots, \lambda'_k)$ defined as follows. Denoted by λ' . Given by

$$\lambda_i' = |\{\lambda_j \mid \lambda_j > i\}|$$

for all $i = 1, \ldots, k$.

- We can see that $\lambda'_1 \geq \cdots \geq \lambda'_k$.
- We can also see that the sum will still be n.
- Moreover, if we do this twice, we'll get back to λ , i.e., $(\lambda')' = \lambda$.
- We can prove $(\lambda')' = \lambda$ combinatorially, too, (that is, without Young diagrams) but that gets pretty complicated.
- Example: If $\lambda = (5, 4, 4, 3, 2, 1, 1)$ as above, then $\lambda' = (7, 5, 4, 3, 1)$.
 - See Figure 7.1b.
 - Moreover, the Young diagrams are related by a flip akin to matrix transposition.
 - Notice how the definition of inversion exactly specifies this flip in the picture: The number of λ_j 's that have length at least 1 is all the first column of Figure 7.1a, the number of length at least 2 is all the second column, etc.
- Onto the next question, which is the main miracle.
 - Main miracle: There exists a natural (i.e., canonical) bijection between the conjugacy classes and irreducible representations of S_n .
 - We've explored a duality for general finite groups G, before, but never a bijection.
 - In S_n , there is this natural bijection.
 - If you understand why intuitively, you will have started to understand the representation theory of S_n .
- If we define $\lambda \mapsto n$ (??), then there is some irrep V_{λ} corresponding to λ . We will look at the **Specht** module construction of V_{λ} .
 - Some of the proofs Rudenko will present, he stole from Etingof et al. (2011), and some of the proofs he invented himself.
 - This is by far the best construction, even though it's exceedingly rare in the literature.
- The usual construction.
 - Take $\mathbb{C}[S_n]$ with coefficients a_{λ}, b_{λ} , etc. similar over conjugacy classes and do something with it??
 - "Just say NO!" to this construction.
- Here is the better idea.
 - Consider an algebra of polynomials with rational coefficients: $\mathbb{Q}[x_1,\ldots,x_n]$.
 - We could also do real or complex, but rational is nice.

- For symmetric groups, all representations will be integers, etc.??
- One thing to emphasize about this algebra: It is a **graded** algebra.
 - If represented by A, then it equals $A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ where

$$A_m = \left\{ \sum_{k_1 + \dots + k_n = m} a_{k_1 \dots k_n} x_1^{k_1} \dots x_n^{k_n} \right\}$$

- \succ I.e., A_m is the sum of all polynomials with degree equal to m.
- \geq Example: If we take $1 + x_1^2 x_2^3 + x_1 x_2 + x_1^{100} + x_1 x_2^{99}$, we can then break this polynomial up into polynomials of degree 1, 5, 2, and 100.
- We also have $A_{m_1} \cdot A_{m_2} \subset A_{m_1+m_2}$.
 - ightharpoonup Exmaple: $x_1 x_2^2 \cdot (x_1 + x_2) = x_1^2 x_2^2 + x_1 x_2^3$.
- With this algebra in hand, we may let $S_n \subset \mathbb{Q}[x_1,\ldots,x_n]$ via

$$\sigma P(x_1, \dots, x_n) = P(x_{\sigma_{-1}(1)}, \dots, x_{\sigma^{-1}(n)})$$

- In other words, σ is transposing polynomials.
- Example: $(12)(x_1^2 + x_2^3 + x_3) = x_2^2 + x_1^3 + x_3$.
- Thus, we call as A_1 the representation V_{perm}^* .
 - This is because $A_1 = \operatorname{span}(x_1 + \cdots + x_n)$, and permuting these is much like permuting the basis of a vector space, as the typical permutation representation does.
 - It could technically be the isomorphic representation V_{perm} , but the dual fits better here for reasons??
- Then $A_2 = S^2 V^*$.
 - So if A_1 had basis e^1, \ldots, e^m , A_2 has basis $e^i e^j$.
 - Why are we choosing these sets??
- Continuing, $A_3 = S^3V^*$.
- It follows that the representation of the overall thing is

$$\bigoplus_{m\geq 0} (S^m V_{\mathrm{perm}}^*)$$

- This is called the **symmetric algebra**.
- Graded (algebra): An algebra for which the underlying additive group is a direct sum of abelian groups A_i such that $A_iA_j \subset A_{i+j}$.
- So how do we construct representations?
 - For S_2 , $x_1 x_2$ changes sign when we apply S_2 .
 - For S_3 ...
 - The trivial's polynomial is 1 and tableaux.
 - The standard is (2,1). When we apply S_3 to (x_1-x_2) , we get

$$\langle (x_1-x_2), (x_2-x_1), (x_1-x_3), (x_3-x_1), (x_2-x_3), (x_3-x_2) \rangle$$

- ightharpoonup If we let $a=x_1-x_2$, $b=x_2-x_3$, then some elements equal a+b. This is another way to think about the action.
- What about the alternating representation? We have $(x_1 x_2)(x_2 x_3)(x_1 x_3) = \Delta_{123}$, which changes sign when we apply any element with sign -1!
- For S_4 ...

- **■** (4) is 1.
- \blacksquare (3,1) is $S_4(x_1-x_2)=\Delta_{12}$.
- $\blacksquare (1,1,1,1) \text{ is } (x_1-x_2)(x_1-x_3)(x_1-x_4)(x_2-x_3)(x_2-x_4)(x_3-x_4) = \Delta_{1234}.$
- \blacksquare (2,1,1) is $(x_1-x_2)(x_1-x_3)(x_2-x_3)$.
 - \succ We got this polynomial by guessing; the same way $(x_1 x_2)$ worked in multiple cases, maybe this one does too! And it does.
 - ➤ Something to check is that $\Delta_{123} \Delta_{124} \Delta_{134} \Delta_{234} = 0$.
- \blacksquare (2,2) is $(x_1-x_2)(x_3-x_4)$.
 - > Something related we can prove is that

$$(x_1 - x_2)(x_3 - x_4) - (x_1 - x_3)(x_2 - x_4) - (x_1 - x_4)(x_2 - x_3) = 0$$

- ➤ This formula appears in **cross ratios**, which we can discuss in Rudenko's algebraic geometry course next quarter.
- For $\lambda = (4,3,1)$, we have $\Delta_{123}\Delta_{45}\Delta_{67}$, and we act by S_8 upon this! Explicitly, we have $S_8(x_1 x_2)(x_1 x_3)(x_2 x_3)(x_1 x_2)(x_6 x_7)$.
- Takeaway: It all depends on column length!
- These polynomials are called **Vandermonde determinants**; those are the little Δ things with subscripts. We'll talk about these next times.
- We need to prove reducibility and not pairwise isomorphic to make sure that this construction is valid, but that's easy!

7.2 Vandermonde Determinants

- 11/8: Announcements.
 - OH tonight at 6:00 PM.
 - Consider S_n .
 - Recall the symmetric algebra $R = \mathbb{Q}[x_1, \dots, x_n]$, which is a graded ring $\bigoplus_{d>0} R_d$ where $R_d = S^d V_{\text{perm}}^*$.
 - The action of $S_n \subset \mathbb{Q}[x_1,\ldots,x_n]$ is $\sigma P(x_1,\ldots,x_n) = P(x_{\sigma^{-1}(1)},\ldots,x_{\sigma^{-1}(n)})$.
 - With the definitions of last class behind us, we can now look at the **space of invariants** R^{S_n} , isotypical components of which σ acts on trivially.

$$R^{S_n} := \{ P(x_1, \dots, x_n) \mid \forall \ \sigma \in S_n, \ P(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = P(x_1, \dots, x_n) \}$$

- This is the ring of symmetric polynomials.
- Example: If n = 3, then $x_1^3 + x_2^3 + x_3^3 3x_1x_2x_3 \in \mathbb{Z}^{S_3}$.
- We now define some stuff to help us prove a major result: The n elementary symmetric polynomials.
 - $\sigma_1 = x_1 + \dots + x_n = \sum_{1 < i < n} x_i.$
 - $-\sigma_2 = x_1 x_2 + \dots + x_1 x_n + x_2 x_3 + \dots = \sum_{1 \le i < j \le n} x_i x_j.$
 - $\sigma_k = \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \cdots x_{i_k}.$
 - $\sigma_n = x_1 \cdots x_n.$
- With these definitions, we can say that

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} = (x - x_{1}) \cdot \dots \cdot (x - x_{n})$$

where

$$a_{n-1} = -\sigma_1 \qquad \qquad a_{n-2} = \sigma_2 \qquad \qquad \dots \qquad \qquad a_0 = (-1)^n \sigma_n$$

- Fundamental theorem.
 - Basic statement: Every polynomial is a polynomial in these polynomials.
 - A more precise statement follows.
- Theorem (Fundamental theorem of symmetric polynomials): We have that

$$\mathbb{Q}[x_1,\ldots,x_n]^{S_n} = \mathbb{Q}[\sigma_1,\ldots,\sigma_n]$$

- Before we prove the fundamental theorem, there are a few points we need to discuss.
- Example:
 - $\text{ Take } x^2 + px + q = 0.$
 - If it has two roots x_1, x_2 , then $\sigma_1 = x_1 + x_2 = -p$ and $\sigma_2 = x_1 x_2 = q$.
 - Then $x_1^2 + x_2^2 = \sigma_1^2 2\sigma_2^2 = p^2 2q$.
 - Thus, if we take $(x_1 x_2)^2 = (x_1 + x_2)^2 4x_1x_2 = \sigma_1^2 4\sigma_2 = p^2 4q$, which is the discriminant.
 - In general, $x_1^n + x_2^n$ has an expression as a polynomial in σ_1, σ_2 . This will be a homework problem.
 - What is going on here?? Is $x^2 + px + q$ even in $\mathbb{Q}[x]^{S_n}$? If so, why do we factor it into σ_1, σ_2 instead of just σ ? What are the other examples about?
- Lexicographic order (on monomials): An ordering of monomials based on the following rule. Denoted by ≻. Given by

$$x_1^{a_1}\cdots x_n^{a_n} \succ x_1^{b_1}\cdots x_n^{b_n}\dots$$

- 1. If $a_1 > b_1 \text{ OR...}$
- 2. If $a_1 = b_1$ and $a_2 > b_2$ OR...
- 3. $a_1 = b_1$ and $a_2 = b_2$ and $a_3 > b_3$ OR...
- 4. So on and so forth.
- Notes on the lexicographic ordering
 - Don't think of this order like an ordering on integers.
 - This allows us to define the key notion for a number of proofs we'll see in the coming days.
 - Although it may seem counterintuitive, the lexicographic ordering is still determined for polynomials such as σ_1 . For example, we may look at

$$\sigma_1 = x_1 + \dots + x_n$$

and think, "Wait a second — all these terms have the same order: They all have the same exponent of 1." However, we would be discounting the fact that the lexicographic ordering views σ_1 as

$$\sigma_1 = x_1^1 x_2^0 \cdots x_n^0 + \cdots + x_1^0 \cdots x_{n-1}^0 x_n^1$$

From here, we can see that $LM(\sigma_1) = x_1^1 x_2^0 \cdots x_n^0 = x_1$.

- Largest monomial (of $P \neq 0$); The monomial in $P(x_1, \ldots, x_n) \neq 0$ that is the largest lexicographically. Denoted by LM(P).
- $C_{LM}(P)$: The coefficient of LM(P).
- Example: Consider the polynomial $P = x_1^2 + x_1^3 x_2 x_3 7x_1^3 x_2 x_3^{100}$.
 - Then $LM(P) = x_1^3 x_2 x_3^{100}$ and $C_{LM}(P) = -7$.
- Properties.

- 1. $P, Q \neq 0$ implies that LM(PQ) = LM(P)LM(Q).
 - Using inductive reasoning, try multiplying the example above by $Q = x_1^2 + x_2^2 + x_3^2$!
 - Rudenko will not give rigorous proofs of any of these properties; they will just confuse us.
 It's better to do everything intuitively here.
- Lemma: If $P \in \mathbb{Q}[x_1, \dots, x_n]^{S_n}$ and $LM(P) = x_1^{a_1} \cdots x_n^{a_n}$, then $a_1 \geq \dots \geq a_n$.

Proof. Let i < j. Suppose for the sake of contradiction that $a_j > a_i$. Let $\sigma = (ij) \in S_n$. Since P is symmetric, $\sigma P = P$. But then in particular, the monomial $\sigma LM(P)$ in P is lexicographically larger than LM(P). Thus, LM(P) is not the lexicographically largest monomial in P, a contradiction.

Here's a simple example to illustrate the idea behind this proof: Let $P = x^2y + xy^2 \in \mathbb{Q}[x,y]^{S_n}$. Suppose we pick $LM(P) = xy^2$ (obviously this is the wrong choice, but that's the contradiction we'll see). We observe that $2 = a_2 > a_1 = 1$ in this case. Let $\sigma = (12)$. Then $\sigma LM(P) = yx^2 = x^2y \succ xy^2 = LM(P)$. So $\sigma LM(P) \succ LM(P)$. Thus, LM(P) is not the lexicographically largest monomial in P, and we have formally proven that our initial choice of LM(P) was incorrect.

- We now have everything we need to prove the fundamental theorem. As such, we will restate and prove it.
- Theorem (Fundamental theorem of symmetric polynomials): We have that

$$\mathbb{Q}[x_1,\ldots,x_n]^{S_n} = \mathbb{Q}[\sigma_1,\ldots,\sigma_n]$$

Proof. We will prove this theorem using the well-ordering principle (every set of natural numbers has a smallest element), which is equivalent to induction. Let's begin.

Suppose for the sake of contradiction that there exists a symmetric polynomial that cannot be expressed via $\sigma_1, \ldots, \sigma_n$. Given this counterexample, factor out as many terms as we want (successively reducing the degree) until it ceases to be a counterexample, thus yielding the counterexample of smallest degree. Similarly, get to the counterexample with smallest LM. Call this counterexample $P(x_1, \ldots, x_n)$. Let

$$P(x_1, \dots, x_n) = C_{LM}(P) \underbrace{x_1^{a_1} \cdots x_n^{a_n}}_{LM(P)} + \text{smaller monomials}$$

Since P is symmetric and the term above is the lexicographically largest monomial, the Lemma implies that $a_1 \geq \cdots \geq a_n$. We now construct a polynomial Q out of the σ_i such that LM(P) = LM(Q). To begin, note that

$$LM(\sigma_1) = x_1$$
 $LM(\sigma_2) = x_1 x_2$ \cdots $LM(\sigma_n) = x_1 \cdots x_n$

Now consider $\sigma_n^{a_n}$. This clearly divides LM(P) since a_n is minimal. Now multiply by $\sigma_{n-1}^{a_{n-1}-a_n}$. Continuing on, we get

$$Q = \sigma_n^{a_n} \sigma_{n-1}^{a_{n-1} - a_n} \sigma_{n-2}^{a_{n-2} - a_{n-1}} \cdots \sigma_1^{a_1 - a_2}$$

Now it follows that

$$LM(P - C_{LM}(P) \cdot Q) \prec LM(P)$$

Since $C_{LM}(P) \in \mathbb{Q}$ and $Q \in \mathbb{Q}[x_1, \dots, x_n]^{S_n}$, it also follows that $P - C_{LM}(P) \cdot Q \in \mathbb{Q}[x_1, \dots, x_n]^{S_n}$. But then by the assumption that P was the counterexample with smallest LM, we know that $P - C_{LM}(P) \cdot Q \in \mathbb{Q}[\sigma_1, \dots, \sigma_n]$. It follows that $P \in \mathbb{Q}[\sigma_1, \dots, \sigma_n]$, a contradiction.

- Note: This is an effective proof; we can write an algorithm to do this for us, and it's actually pretty fast and efficient.
- ?? (word in blackboard picture) to show: $\sigma_1, \ldots, \sigma_n$ are algebraically independent $P(\sigma_1, \ldots, \sigma_n) = 0$ implies that P = 0.

- This will be a homework problem; hint, it's pretty easy.
- Back to representation theory.
- Antisymmetric (polynomial): A polynomial $P(x_1, \ldots, x_n)$ such that

$$\sigma P = (-1)^{\sigma} P$$

• Example.

$$-n = 2: x_1 - x_2.$$

- $n = 3: (x_1 - x_2)(x_1 - x_3)(x_2 - x_3).$

- These main examples are the Vandermode determinant from last time!
- Vandermonde determinant:

$$\Delta(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

- Exercise: $\Delta(x_1,\ldots,x_n)$ is antisymmetric.
- One of the nicest definitions of sign comes from these determinants!

$$(-1)^{\sigma} = \frac{\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)})}{\prod_{i < j} (x_i - x_j)}$$

- Theorem: If $P \in \mathbb{Q}[x_1, \dots, x_n]^{\text{alt}}$ (i.e., $P \in \mathbb{Q}[x_1, \dots, x_n]$ and P is antisymmetric), then $P = P'\Delta(x_1, \dots, x_n)$ where P' is symmetric (i.e., $P' \in \mathbb{Q}[x_1, \dots, x_n]^{S_n}$).
- Corollary: If P is antisymmetric and deg(P) < n(n-1)/2, then P = 0.
 - We'll use this many times, this fact that "antisymmetric polynomials have a smallest possible degree."
- We now prove the Theorem.

Proof. Let P be antisymmetric. Then (12)P = -P. It follows that $P(x_1, \ldots, x_n)\big|_{x_1=x_2} = 0$. Now, rewrite P as a polynomial in one variable where all of the coefficients are polynomials in other variables. In particular, let

$$P = P_d(x_1 - x_2)^d + P_{d-1}(x_1 - x_2)^{d-1} + \dots + P_0$$

where each $P_i \in \mathbb{Q}[x_1,\ldots,x_d]$. What is d?? (Less than n, I'm assuming, but any other constraints?) Plugging in $x_1 = x_2$ once again, we get $0 = P = P_0$. But this implies that $P_0 = 0$. Thus, P is divisible by $x_1 - x_2$. Similarly, for all i < j, $(x_i - x_j) \mid P$. But since the $x_i - x_j$ are irreducible polynomials, we have that $\prod_{i < j} (x_j - x_i) \mid P$. This is justified because we are in a unique factorization domain (how is this relevant??). Thus, we have that $P = P' \cdot \Delta(x_1, \ldots, x_n)$. Lastly, it follows that $P' \in \mathbb{Q}[x_1, \ldots, x_n]^{S_n}$ because under any sign -1 permutation, $\Delta(x_1, \ldots, x_n)$ will flip signs and P will still be equal, so P' had better just stay itself under this permutation (i.e., be symmetric).

- Remark: Where does the name Vandermonde determinant come from?
 - We have that

$$\Delta(x_1, \dots, x_n) = \begin{vmatrix} 1 & & 1 \\ x_1 & & x_n \\ \vdots & & \vdots \\ x_1^{n-1} & & x_n^{n-1} \end{vmatrix}$$

- Final reminder before the final.
 - Don't forget our awesome central construction!
 - If $\lambda = (\lambda_1, \dots, \lambda_k)$ is a partition with $\lambda_1 \geq \dots \geq \lambda_k$, then we can draw a Young Diagram and construct an associated representation $V_{\lambda} \in \mathbb{C}[x_1, \dots, x_n]$.
 - But what we do is $V_{\lambda} = \mathbb{C}[S_n]\Delta_{\lambda}$, where

$$\Delta_{\lambda'} = \Delta(x_1, \dots, x_{\lambda'_1}) \Delta(x_{\lambda'_1+1}, \dots, x_{\lambda'_1+\lambda'_2}) \cdots$$

- Example: For $\lambda = (2, 2, 1)$, we have $V_{(2,2,1)} = \mathbb{C}[S_n](x_1 x_2)(x_1 x_3)(x_2 x_3)(x_4 x_5)$.
- Next time, we'll prove that $V_{(2,2,1)}$ is irreducible.
- This Specht construction is in a tiny footnote of Fulton and Harris (2004), but that's about it!

7.3 Midterm Review Sheet

- The following definitions and results will be useful in solving the midterm problems.
 - Group representation: A group homomorphism $\rho: G \to GL(V)$ for G a finite group, V a finite-dimensional vector space over some field \mathbb{F} with basis $\{e_1, \ldots, e_n\}$, and GL(V) the set of isomorphic linear maps $L: V \to V$.
 - Morphism (of G-representations): A map $f: V \to W$ such that...
 - 1. f is linear;
 - 2. For every $g \in G$, $\rho_W(g) \circ f = f \circ \rho_V(g)$.
 - To remember this rule, draw out the commutative diagram!
 - Theorem (complete reducibility): Any finite-dimensional representation can be decomposed into a direct sum of irreducible representations via

$$V = V_1^{n_1} \oplus \cdots \oplus V_k^{n_k}$$

- Lemma (Schur's Lemma): Let G be a finite group, let V, W be irreducible representations over \mathbb{C} , and let $f \in \operatorname{Hom}_G(V, W)$. Then...
 - 1. If $V \ncong W$, then f = 0. If $V \cong W$, then f is an isomorphism of G-representations.
 - 2. If $f: V \to V$, then $f(v) = \lambda v$.
- Algebraic integer: A number $x \in \mathbb{C}$ for which there exist $a_0, \ldots, a_{n-1} \in \mathbb{Z}$ such that

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{0} = 0$$

• Character (of ρ): The function $\chi_{\rho}: G \to \mathbb{C}$ defined by

$$\chi_{\rho}(g) = \operatorname{tr}(\rho(g))$$

• First orthogonality relation: If χ_1, χ_2 are the characters of irreducible representations, then

$$\sum_{g \in G} \chi_1(g) \overline{\chi_2(g)} = \begin{cases} 0 & \chi_1 \neq \chi_2 \\ |G| & \chi_1 = \chi_2 \end{cases}$$

- Follows from the fact that the characters form an orthonormal set within the space of class functions, and the definition of the inner product on this space.

• Second orthogonality relation: If $C_G(g)$ is the number of elements in the conjugacy class of g, then

$$\sum_{\chi} \chi(g_1) \overline{\chi(g_2)} = \begin{cases} 0 & g_1 \nsim g_2 \\ \frac{|G|}{|C_G(g_1)|} & g_1 \sim g_2 \end{cases}$$

• **Permutational representation**: The representation $\rho: S_n \to \mathbb{C}^n (=V_{perm})$ defined by

$$\rho(\sigma): (x_1,\ldots,x_n) \mapsto (x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

- Character: Compute $Fix(\sigma)$ for each type of σ .
- Class function: A function that is constant on the conjugacy classes of G. Explicitly, for all $s, t \in G$,

$$f(tst^{-1}) = f(s)$$

- Group algebra: The complex vector space with basis $\{e_g\}$ corresponding to the elements of group G, plus the definition $e_g \cdot e_h = e_{gh}$.
- Semisimple module: A module M that satisfies any of the following three conditions.
 - 1. $M = \bigoplus_{i \in I} S_i$, where each S_i is a simple module and I is an indexing set.
 - 2. $M = \sum_{i \in I} S_i$.
 - 3. For all submodules $N \subset M$, there exists N' such that $M = N \oplus N'$.
- Additional notes on semisimple modules.
 - Simple module: A module that is nonzero and has no nonzero proper submodules.
- **Division algebra**: An algebra D such that for all nonzero $x \in D$, there exists a $y \in D$ such that xy = 1.
- Semisimple algebra: An algebra for which every finite-dimensional A-module is semisimple.
- Wedderburn-Artin theorem: If A is a finite-dimensional semisimple associative algebra, then

$$A \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_k}(D_k)$$

- Schur's Lemma (over an arbitrary field): Let A be a finite-dimensional algebra, and let M_1, M_2 be simple A-modules. Then...
 - 1. If $f: M_1 \to M_2$ is a nonzero morphism of A-modules, f is isomorphic;
 - 2. If M is simple, $\operatorname{Hom}_A(M, M)$ is a division algebra.
- Center (of A): The following set.

$$Z(A) = \{a \in A \mid xa = ax \ \forall \ x \in A\}$$

• **Jacobson radical**: The finite-dimensional A-algebra defined as follows.

$$\operatorname{Rad}(A) = \{ a \in A \mid aS = 0 \text{ for any simple module } S \}$$

- Here's an outline of what to remember for the problems.
- Strategies for computing the following things from the character table of a group.
 - 1. Tensor products.
 - Multiply corresponding characters.

- 2. Wedge/symmetric squares.
 - If χ is the character of a representation $\rho: G \to GL(V)$, then the characters χ^2_{σ} of the symmetric square S^2V of V and χ^2_{α} of the alternating square Λ^2V of V are given by the following for each $s \in G$.

$$\chi_{\sigma}^{2}(s) = \frac{1}{2} \left(\chi(s)^{2} + \chi(s^{2}) \right) \qquad \qquad \chi_{\alpha}^{2}(s) = \frac{1}{2} \left(\chi(s)^{2} - \chi(s^{2}) \right)$$

- Note that just like $V^{\otimes 2} = S^2V + \oplus \Lambda^2V$, we have $\chi^2 = \chi^2_{\sigma} + \chi^2_{\sigma}$.
- 3. Decomposing permutational representations into irreducibles.
 - If the representation of interest is χ_V , we find the coefficients n_i of its decomposition

$$\chi_V = \sum n_i \chi_{V_i}$$

via the inner product

$$n_i = \langle \chi_V, \chi_{V_i} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \overline{\chi_{V_i}(g)}$$

- 4. More.
- Strategies for computing the following things given a small group (e.g., the quaternion group).
 - 1. Conjugacy classes.
 - Take an element, conjugate it by everything, round up the products. Then move onto another elements.
 - 2. Character table.
 - Find the conjugacy classes and put them at the top of the table. This also tells us how many irreps we need to get to.
 - Start with the trivial, alternating, and standard representations.
 - Tensor products of representations with 1D representations (e.g., the alternating) are often linearly independent.
 - We can recover the standard as the difference of the permutation and trivial.
 - We can solve for representations as components of the regular representation via

$$V_R = \bigoplus_{i=1}^k V_i^{\dim V_i}$$

- We can calculate the degrees of remaining representations via the sums of the squares of the dimensionalities.
- We can fill in final representations with the orthogonality relations, especially the second one.
- 3. Decomposing representations into a sum of isotypical components.
 - Use the inner product/decomposition formula from above.
- 4. Diagonalizing an endomorphism.
 - Start with its matrix A.
 - Find the characteristic polynomial by computing $\det(A \lambda I)$.
 - Solve for the eigenvalues.
 - Find, by inspection or by solving systems of equations, elements of the null space of $A \lambda I$ for each λ . Beware eigenvalues with multiplicity greater than one!
- 5. More.
- Strategies for solving an abstract problem about characters.

- reread notes
- Strategies for solving an abstract problem about representations.
 - reread notes
- Other misc. concepts that are probably good to remember (my own ideas).
- Left A-module: A pair (M, ρ) where (M, +) is an abelian group and $\rho : A \to \operatorname{End}(M)$ is the ring homomorphism defined as follows, where A is a ring: For all $a \in A$, $\rho(a) : M \to M$ is given by $\rho(a)v = av$ for all $v \in M$ and satisfies the following constraints.
 - 1. $\rho(a): M \to M$ is a group homomorphism on (M, +).
 - 2. ρ is a ring homomorphism
 - That is to say, $\rho(a+b) = \rho(a) + \rho(b)$, $\rho(ab) = \rho(a)\rho(b)$, and $\rho(1_A) = 1_{\text{End}(M)}$.
- Lemma (Gauss's Lemma): If $f, g \in R[X]$ are both nonzero polynomials with coefficients in the ring R, then c(fg) = c(f)c(g).
 - Note that c(f) denotes the **content** of f, which is the gcd of its coefficients.
 - Use: If p is reducible in a fraction field, then it's reducible in the native UFD.
- A is semisimple iff Rad(A) = 0.
- Formulas for the decomposition of the regular representation/misc. formulas from IChem.
 - Sum of the squares of the dimensionalities (from the second orthogonality relation):

$$|G| = \sum_{i=1}^{k} (\dim V_i)^2$$

- Sum of the squares of an irrep's characters (from the first orthogonality relation):

$$|G| = \sum_{g \in G} \chi(g)^2$$