

PODS Project Proposals

- What UV/Optical/IR objectives are optimal?
 - Refractive
 - Standard Spheres
 - Anomalous Dispersion / Aspheres
 - GRIN & Voxel GRIN
 - Reflective
 - Axial Spheres
 - Unobscured / Aspheres
 - Freeform
 - Catadioptric
 - Diffractive / MODE

- End goal a design space!
- Evaluate all designs w/ a tolerance analysis to determine cost

Collective Approach

- Start w/simple designs, decide on "best by group" each week to add to design space
- Spend several weeks on more complex designs

Competitive Approach

- Team Reflective v.s. Team Refractive (etc.)
- Two teams develop a single design
- We would need 4 on each team tho for things to be fair

What Payload Size? 2U/3U/3U+

References

- 1) Guillaume Druart, Renaud Allioux, Philippe Perrault, Vincent Lefranc, Nathan Cariou, Laurent Rousset-Rouvière, "Study of infrared optical payloads to be integrated in a nanosat," Proc. SPIE 10690, Optical Design and Engineering VII, 106900N (5 June 2018); https://doi.org/10.1117/12.2309789
- 2) J. B. Breckinridge, J. E. Harvey, R. Irvin, R. Chipman, M. Kupinski, J. Davis, D-W. Kim, E. Douglas, C. F. Lillie, T. Hull, "ExoPlanet Optics: conceptual design processes for stealth telescopes," Proc. SPIE 11115, UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts IX, 111150H (9 September 2019); https://doi.org/10.1117/12.2528825
- Plus avengers stuff

Idea 1: Adjustable Aperture Add-on for Smart Phone Camera

- Many companies have been designing smart phone lens add-ons that enhance smart phone camera capabilities
- Not many allow adjustable aperture stop
- Could we design a compact lens add-on with an adjustable aperture stop?
 - Edmund Optics has imaging lenses for cameras with adjustable aperture stop

Smart phone "Telephoto" lens add-or

Edmund Optics imaging lens for cameras (f/2.2 - f/22)

Idea 2: Zemax Macro for creating an Off-Axis Parabola

- Creating an OAP in Zemax can be tricky
- What if there was a Zemax macro or Python/MATLAB function that allowed you to input OAP parameters and create an OAP in Zemax?
- This could make life easier for people
- This idea could be extended to another complicated optic

Macro: Grocery store scanner that can scan all items at once!

Micro: Design a lens system that can image the barcodes of foods on a grocery store conveyor belt.

Novelty: Speed up checkout process. Can also be applied to taking inventory or any situation where multiple objects with barcodes must be processed.

Anticipated difficulty: imaging different sized barcodes (high spatial frequency) in a wide field of view.

Considerations:

Where would something like this be mounted? What are possible object orientations?

Considerations:

Where would something like this be mounted?

What are possible object orientations?

Possible barcode shapes...?

OSC Optics

Optical system in the shape of the OSC Logo

Based on IODC 2017

Lens Design and Illumination Design Problems

The Centennial Lens -> The OSC Lens

The Centennial Illuminator -> The OSC Illuminator

EXTREME SOLAR IMAGER

EXTREME SOLAR IMAGER

Solar space telescope for direct observation of the Sun

- Clever optical design may eliminate the need for restrictive occulter, sun shield, baffles
- Improve on the ESA Solar Orbiter optical design
- No idea how to get started with this one (Koshel has thoughts)

Freeform Index Optics

- 3D Printed Optics are starting to become real (ish?!)
- Allows for insertion of different materials within a bulk optical element, non-circular apertures, minimal post processing
- Potential for 1 or 2 elements to replace multi component systems
- Many designs possible (achromat, telephoto, beam expanders, Aberration correction, AR/VR...?)
 - >>8 possible to go around ©
- Some methods could be modelled Sequentially
 - · Likely need non-sequential ultimately
- Interesting Stray-Light analysis
- See papers in <u>GitHub</u>

Design Constraints

- We wanna design stuff that's not crazy right?
 - SiO2 doped with wt % off...
 - GeO2
 - TiO2
 - Other stuff that's possible? (I'll ask)
 - Feature size
 - 100um now. 10um future.
 - Element size
 - 1in now, 2-3in future
 - Maybe not suitable for PODS, but still cool!

$n^2(\lambda) - 1 =$	2 I	$\frac{SA_i + X(GA_i)}{-[SL_i + X(GA_i)]}$	$-SA_i)]\lambda^2$
n (n) - 1 =	$\sum_{i=1}^{\infty} \lambda^2$	$-[SL_i + X(C)]$	$[SL_i - SL_i)]^2$

Sellmeier coefficients	SIOz	GeO2
A ₁	0.6961663	0.80686642
L_1	0.0684043	0.068972606
A ₂	0.4079426	0.71815848
L_{η}	0.1162414	0.15396606
A ₂	0.8974794	0.85416831
L_2	9.896161	11.841931

Telescope Setup

- Two binocular channels are aligned and parallel to each other.
- A commonly used objective lens focuses the ray bundles into the object point.
- The main objective lens is used by both channels off-axis, which may cause some problems in non-symmetrical residual aberrations.
 - Special requirements are distortion, lateral chromatic aberration, and flatness of the field.

Any Others?

- VOTING ROUND 1 (in-person)
 - Vote for top 2 projects!
- VOTING ROUND 2 (on slack!)
 - Vote for top project of those remaining
- Voting w/ Yanqi^