

Calcular I y V. Considere que los diodos son ideales.

Seminarios 3-01a

Seminarios 3-01a

$$5 + V = 0$$

$$V = -5$$

$$-5-5+V_R=0$$

$$I_{D} = I$$

$$-5 - 5 + I_{D} R = 0$$

$$I_D = \frac{10}{R} > 0$$

Hipótesis correcta

se cumple la condición

Corriente ánodo a cátodo

Solución

$$\int I_D = 1 \, mA$$

$$V_D = 0 \, V$$

Tensión ánodo cátodo

Seminarios 3-01b

Seminarios 3-01b

$$5 + V_D + V = 0$$

$$V = -5 - (-10) = 5 V$$

Otra opción ...

$$-5 + V_R + V = 0$$

$$V = 5$$

2 LTK Ohm I = 0 $-5 - 5 + V_R - V_D = 0$ $-5 - 5 + 0 - V_D = 0$

$$V_D = -10 < 0$$

Hipótesis correcta

Corriente ánodo a cátodo

Seminarios 3-01c

5 V

Seminarios 3-01c

LTK

$$I_D = \frac{10}{R} > 0$$

Hipótesis correcta

Corriente ánodo a cátodo

Solución para el diodo $egin{array}{c} I_D = 1 \ mA \ V_D = 0 \ V \ \end{array}$

Tensión ánodo cátodo

Seminarios 3-01d

Seminarios 3-01d

$$5 - V_R + V = 0$$

$$5 - 0 + V = 0$$

$$V = -5$$

Otra opción ...

$$-5 - V_D + V = 0$$

$$V = 5 + (-10) = -5$$

V = -5 V

Ohm

$$-5 - 5 - V_D + V_R = 0$$

$$-5 - 5 - V_D + 0 = 0$$

$$I = 0$$

$$V_R = IR = 0$$

$$V_D = -10 < 0$$

Hipótesis correcta

Corriente ánodo a cátodo

Solución para el diodo

$$I \downarrow I_D \uparrow \stackrel{-}{\uparrow} V_D$$

$$\int I_D = 0 \, mA$$

$$I_D = -I$$

$$V_D = -10 \, V$$

Tensión ánodo cátodo

Seminarios 3-02a

Calcular la corriente y la tensión por el diodo considerando que es ideal.

Seminarios 3-02b

Calcular la corriente y tensión por el diodo considerando que es ideal.

$$-12 + 0 \qquad -V_D = 0$$

$$V_D = -12 < 0$$

3
$$I_D = 0 \text{ A}$$
 Solución: $V_D = -12 \text{ V}$

Calcular las corrientes y tensiones por los diodos considerando que son diodos ideales.

Calcular la corriente y tensión por el diodo considerando que es un diodo ideal.

$$-10 + V_{R_{equi}} = 0$$

$$-10 + I_D R_{equi} = 0$$

$$I_D = \frac{10 V}{10 \Omega} > 0$$

Hipótesis correcta

se cumple la condición

Serie de las

dos resistencias

Solución: $V_D = 0 V$

$$V_D = 0$$

$$I_D = 1 A$$

Determine el valor de la corriente I_D por el diodo zéner.

Calcular la tensión de salida V_{AB} para $I_L=0~A$

Calcular la tensión de salida V_{AB} para $I_L = 0 A$

Calcular la tensión de salida V_{AB} para $I_L = 0 A$

$$-15 + V_{R1} + V_Z = 0$$

$$-15 + I_z R_1 + 10 = 0$$

$$I_z = \frac{15 V - 10 V}{100 \Omega} = 50 mA > 0$$

15 *V*

Hipótesis correcta

se cumple la condición

 $V_{AB} = 10 V$

Hipótesis	Zener
1	Conduce en inversa

Calcular la tensión de salida V_{AB} para $I_L = 0$ A

$$-15 + V_{R1} + V_Z = 0$$

$$-15 + I_z R_1 + 10 = 0$$

$$I_z = \frac{15 V - 10 V}{100 \Omega} = 50 mA > 0$$

15 *V*

Hipótesis correcta

se cumple la condición

 $|V_D|$

Calcular la tensión V_{AB} para $I_L = 100 \ mA$

Hipótesis Zener

1 Conduce en inversa

Calcular la tensión de salida V_{AB} para $I_L = 100 \ mA$

$$I_{R1} = V_{R1}/R_1$$

$$I_{R1} = I_Z + 100mA$$

$$50mA = I_Z + 100mA$$

$$I_z = 50mA - 100mA = -50 mA < 0$$

no se cumple la condición

Contradicción

15 V

1

Hipótesis	Zener
2	No conduce

 $V_D + V_{AB} = 0$

 $V_{AB} = -V_D = 5 V$

Solución

pedida:

Calcular la tensión de salida V_{AB} para $I_L = 100 \ mA$

$$-15 + V_{R1} - V_D = 0$$

$$-15 + I_{R1}R_1 - V_D = 0$$

$$-15 + (100 \, mA)100\Omega - V_D = 0$$

$$V_D = -15 + 10 = -5 V$$

$$-10 V < -5 V < 0 V$$

se cumple la condición

Hipótesis correcta

Hipótesis	Zener
2	No conduce

Calcular la tensión de salida V_{AB} para $I_L = 100 \ mA$

$$-15 + V_{R1} - V_D = 0$$

$$-15 + I_{R1}R_1 - V_D = 0$$

$$-15 + (100 \, mA)100\Omega - V_D = 0$$

$$V_D = -15 V + 10 V = -5 V$$

$$-10 V < -5 V < 0 V$$

se cumple la condición

Hipótesis correcta

 I_D

(-5 V, 0)

 V_D

punto de

trabajo