MATH 1081 – Discrete Mathematics

Assignment 1 (draft)

Q1. Consider the following sets:

$$A = \{60n - 31 \mid n \in \mathbb{Z}\}$$
 $B = \{12n + 5 \mid n \in \mathbb{Z}\}$
 $C = \{10n - 1 \mid n \in \mathbb{Z}\}$

- (a) Show that A is a proper subset of B.
- (b) Show that A is a proper subset of C.
- (c) Show that there is no containment relation between \boldsymbol{B} and \boldsymbol{C} .
- (a) We begin by assuming that $x \in B$. This means that we can write x = 12n + 5, for some $n \in \mathbb{Z}$.

We will prove that $x \in A$, that is, we will show that there exists some integer $k \in \mathbb{Z}$, such that x = 60k - 31.

$$12n + 5 = 12(5k - 3) + 5$$
, where $n = 5k - 3$
= $60k - 36 + 5$
= $60k - 31$.

Hence, we have proven that for every element $x \in B$, x can be represented as 60k - 31, and thus $x \in A$. This means that $A \subseteq B$.

For A to be a proper subset of B, $A \subseteq B$, but $B \nsubseteq A$, or $A \subset B$. There must be some $x \in B$, such that $x \notin A$.

We know
$$5 \in B$$
 as $12(0) + 5 = 5$, and $0 \in \mathbb{Z}$, but for $5 \in A$,
$$5 = 60n - 31,$$

$$60n = 36,$$

$$n=\frac{36}{60}=\frac{3}{5}\notin\mathbb{Z},$$

thus $5 \notin A$.

Hence $A \subset B$.

(b) We begin by assuming that $x \in C$. This means that we can write x = 10n - 1, for some $n \in \mathbb{Z}$.

We will prove that $x \in A$, that is, we will show that there exists some integer $k \in \mathbb{Z}$, such that x = 60k - 31.

$$10n - 1 = 10(6k - 3) - 1$$
, where $n = 6k - 3$
= $60k - 30 - 1$
= $60k - 31$.

Hence, we have proven that for every element $x \in C$, x can be represented as 60k-31, and thus $x \in A$. This means that $A \subseteq C$.

For A to be a proper subset of C, $A \subseteq C$, but $C \nsubseteq A$, or $A \subseteq C$. There must be some $x \in C$, such that $x \notin A$.

We know
$$-1 \in \mathcal{C}$$
 as $10(0)-1=-1$, and $0 \in \mathbb{Z}$, but for $-1 \in A$,
$$-1=60n-31,$$

$$60n=30,$$

$$n=\frac{30}{60}=\frac{1}{2} \notin \mathbb{Z},$$

thus, $-1 \notin A$.

Hence $A \subset C$.

(c) Containment relations are \subseteq , \supseteq , =.

 $B \subseteq C$:

For element x to be in B, x=12n+5, $n\in\mathbb{Z}$ and for x to be in A, x=10k+1, $k\in\mathbb{Z}$, but 12n+5 can only be expressed as 10k+1 if $n=\frac{10k-1}{12}$, such that

$$12\left(\frac{10k-1}{12}\right) = 10k-1,$$

but $n = \frac{10k-1}{12} \notin \mathbb{Z}$, when $k \in \mathbb{Z}$.

Thus $B \nsubseteq C$.

 $B \supseteq C$ or $C \subseteq B$:

For element x to be in C, x=10n-1, $n\in\mathbb{Z}$ and for x to be in B, x=12k+5, $k\in\mathbb{Z}$, but 10n-1 can only be expressed as 12k+5 if $n=\frac{12k+5}{10}$, such that

$$10\left(\frac{12k+5}{10}\right) = 12k+5,$$

but $n = \frac{12k+5}{10} \notin \mathbb{Z}$, when $k \in \mathbb{Z}$.

Thus $B \not\supseteq C$ or $C \not\subseteq B$.

B = C:

Since we have proven that $B \nsubseteq C$ and $C \nsubseteq B$, $B \neq C$.

Thus, since $B \nsubseteq C$, $C \nsubseteq B$, and $B \neq C$, there is no containment relation between the sets B and C.

Q2. A relation \leq is defined on \mathbb{R} by

 $x \le y$ if and only if $x = 7^k y$ for some non-negative integer k.

Prove that \leq is a partial order.

We know from the definition of a partial order that for a relation to be a partial order, the relation must be reflexive, antisymmetric and transitive. We will prove these properties for the relation ≼.

Reflexive:

We can see that

$$x = 7^{0}x$$

and since 0 is a non-negative number, $x \leq x$.

Thus, $(x, x) \in \leq$ or relation \leq is reflexive.

Antisymmetric:

We know that if $x \leq y$,

$$x = 7^k y, (1)$$

and if $y \leq x$,

$$y = 7^l x$$

for non-negative integers k and l.

From (1),

$$y = 7^l 7^k y,$$

$$y = 7^{l+k}y,$$

thus, $7^{l+k} = 1$, so l + k = 0, but we know from the definition of the relation that l and k are non-negative, thus l = k = 0.

From (1), $x = 7^0 y$, and so x = y.

Hence, we have proven that if $x \le y$ and $y \le x$, then x = y, so the relation \le is said to be antisymmetric.

Transitive:

We know that if $x \leq y$,

$$x = 7^k y, (2)$$

and if $y \leq z$,

$$y = 7^l z$$
,

for non-negative integers k and l.

From (2),

$$x = 7^k 7^l z,$$
$$x = 7^{k+l} z,$$

and since k and l are non-negative integers, k+l is also a non-negative integer, thus we can say $x \le z$ or that if $x \le y$ and $y \le z$, we have proven that $x \le z$. Hence the relation \le is transitive.

Since relation \leq is reflexive, antisymmetric, and transitive, \leq is a partial order.

Q3. Prove $\sqrt[3]{56}$ is irrational.

Let us assume that $\sqrt[3]{56}$ is rational.

The definition of a rational number implies that $\sqrt[3]{56}$ can be expressed as a ratio of integers p and q, where $q \neq 0$, and GCD(p,q) = 1, or

$$\sqrt[3]{56} = \frac{p}{q}, \quad p, q \in \mathbb{Z}, \ q \neq 0,$$

$$56 = \frac{p^3}{q^3},$$

$$56q^3 = p^3.$$
(1)

Since 56 is a multiple of 7, p^3 , and therefore p must also be a multiple of 7, or 7 | p, and thus p may be written as 7r, where r is an arbitrary integer.

(1) now becomes

$$56q^3 = 7^3r^3,$$
$$8q^3 = 7^2r^3.$$

This implies that $7 \mid 8q^3$, and since $7 \nmid 8$, $7 \mid q^3$, and therefore, $7 \mid q$. Thus, we know that $7 \mid p$ and $7 \mid q$. This contradicts our initial assumption that the GCD(p,q)=1 as 7 is a common divisor of p and q are q and q a

Hence, $\sqrt[3]{56}$ must be irrational.