2. Question 2

2.1. Design code "Moore FSM gray counter"

```
module gray_counter_Moore_FSM (
       input clk, /* clock signal input */
       input arst, /* Active high asynchronous */
       output reg [1:0]y
   );
     parameter A = 2'b00;
     parameter B = 2'b01;
    parameter C = 2'b10;
     parameter D = 2'b11;
   reg [1:0]CS,NS; /* CS -> current state NS -> next state */
   // state memory
15 always @(posedge clk or posedge arst) begin
       if(arst)
           CS <= A;
       else
           CS <= NS;
   //next state logic
23 always @(CS) begin
       case(CS)
           A: NS = B;
           B: NS = C;
           C: NS = D;
           D: NS = A;
       endcase
  end
  // output logic depends only on Current state
  always @(CS) begin
       case(CS)
           A: y = 2'b00;
           B: y = 2'b01;
           C: y = 2'b11;
           D: y = 2'b10;
       endcase
  end
42 endmodule //gray_counter_Moore_FSM
```

2.2. Reference code "behavioral gray counter"

```
1 module gray_counter (clk,rst,gray_out);
2 input clk,rst;
3 output reg[1:0]gray_out;
4
5 reg [1:0]binary_counter;
6
7 always @(posedge clk or posedge rst) begin
8 if(rst)begin
9 binary_counter = 0;
10 gray_out =0;
11 end
12 else begin
13 binary_counter = binary_counter +1;
14 gray_out[0] = binary_counter[0]^binary_counter[1];
15 gray_out[1] = binary_counter[1];
16 end
17 end
18 endmodule
```

2.3. Testbench

```
module gray_counter_moore_FSM_tb();
      /*----*/
      reg clk;
      reg arst;
      /*----*/
      wire [1:0]y;
      wire [1:0]y_REF;
      /*---Instantiation of DUT and Ref---*/
      gray_counter_Moore_FSM DUT (.*);
      gray_counter REF (clk,arst,y_REF);
11
      // Clock generation
12
      initial begin
          c1k = 0;
          forever #5 clk = ~clk; // 10 ns period
      end
      /*----*/
      initial begin
          $display("start Simulation");
          //test the reset signal
          arst=1;
21
          #30;
          arst= 0;
24
          // wait 100ns to check the functionality
          #100;
          $display("End Simulation");
          $stop;
      /*----*/
      initial begin
          $monitor("Y_DUT = %b --- Y_REF = %b ",y,y_REF);
      end
   endmodule
```

2.4. QuestaSim Waveform

🧇 clk	1'h1											
🔷 arst	1'h0											
⊕- ∳ CS	2'b10	(00	(01	10	11	(00	01	10	11	(00	(01	(10
 → NS	2'b11	(01	(10	11	(00	(01	10	11	(00	(01	(10	(11
⊕- ∳ у	2'b11	(00	(01	(11	(10	(00	(01	(11	(10	(00	(01	(11
⊕- ◆ y_REF	2'b11	(00	(01	11	(10	(00	(01	11	(10	(00	(01	(11

2.5. Transcript

```
# start Simulation
# Y_DUT = 00 --- Y_REF = 00
# Y_DUT = 01 --- Y_REF = 01
# Y_DUT = 11 --- Y_REF = 11
# Y_DUT = 10 --- Y_REF = 10
# Y_DUT = 00 --- Y_REF = 00
# Y_DUT = 01 --- Y_REF = 01
# Y_DUT = 11 --- Y_REF = 11
# Y_DUT = 10 --- Y_REF = 10
# Y_DUT = 00 --- Y_REF = 10
# Y_DUT = 01 --- Y_REF = 01
# Y_DUT = 01 --- Y_REF = 01
# Y_DUT = 01 --- Y_REF = 01
# Y_DUT = 11 --- Y_REF = 11
# End Simulation
```

2.6. Constrains File

2.7. Elaboration

2.7.1. Messages Tab

2.7.2. Schematic

2.8. Synthesis

2.8.1. Messages Tab

2.8.2. Schematic

2.8.3. Report Timing summary

Design Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	8.617 ns	Worst Hold Slack (WHS):	0.139 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	2	Total Number of Endpoints:	2	Total Number of Endpoints:	3

2.8.4. Utilization Report Summary

Summary Resource Utilization Available Utilization % 0.01 LUT 2 20800 FF 2 41600 0.00 10 4 106 3.77 LUT 1% FF 1% 10 -4% 25 50 75 100 Utilization (%)

2.9. Implementation

2.9.1. Device Schematic

2.9.2. Report Timing Summary

Design	Timing	Summary	•

etup		Hold		Pulse Width		
Worst Negative Slack (WNS):	8.019 ns	Worst Hold Slack (WHS):	0.367 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	2	Total Number of Endpoints:	2	Total Number of Endpoints:	3	

2.10. Utilization Report Summary

2.11. Generate Bitstream

impl 1			
> Design Initialization (init_design)			
> Opt Design (opt_design)			
> Power Opt Design (power_opt_design)			
∨ Place Design (place_design)			
impl_1_place_report_io_0	Report information about all the IO sites on the device (report_io)	8/2/24 5:45 AM	72.1 K
impl_1_place_report_utilization_0	Report on utilization of resources on the targeted device (report_utilization)	8/2/24 5:45 AM	8.5 H
impl_1_place_report_control_sets_0	Report the unique control sets in design (report_control_sets)	8/2/24 5:45 AM	2.9 k
impl_1_place_report_incremental_reuse_0	Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse)		
impl_1_place_report_incremental_reuse_1	Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse)		
impl_1_place_report_timing_summary_0	Report timing summary (report_timing_summary)		
> Post-Place Power Opt Design (post_place_power_opt_de	sign)		
> Post-Place Phys Opt Design (phys_opt_design)			
∨ Route Design (route_design)			
impl_1_route_report_drc_0	Report on error or violations against a set of design rule checks (report_drc)	8/2/24 5:45 AM	1.4 k
impl_1_route_report_methodology_0	Report on error or violations against a set of methodology checks (report_methodology)	8/2/24 5:45 AM	2.1 k
impl_1_route_report_power_0	Report power analysis details (report_power)	8/2/24 5:45 AM	7.6 k
impl_1_route_report_route_status_0	Report on status of the routing. (report_route_status)	8/2/24 5:45 AM	0.6 P
impl_1_route_report_timing_summary_0	Report timing summary (report_timing_summary)	8/2/24 5:45 AM	25.3 k
impl_1_route_report_incremental_reuse_0	Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse)		
impl_1_route_report_clock_utilization_0	Report information about clock nets in design (report_clock_utilization)	8/2/24 5:45 AM	10.5 k
impl_1_route_report_bus_skew_0	Report on calculated bus skew among the signals constrained by set_bus_skew (report_bus_skew)	8/2/24 5:45 AM	1.0 k
impl_1_route_implementation_log_0	Vivado Implementation Log	8/2/24 5:50 AM	28.8 F
> Post-Route Phys Opt Design (post_route_phys_opt_desi	gn)		
→ Write Bitstream (write_bitstream)			
impl_1_bitstream_report_webtalk_0	Webtalk Report	8/2/24 5:50 AM	20.4 F
impl_1_bitstream_implementation_log_0	Vivado Implementation Log	8/2/24 5:50 AM	28.8

2.12. Netlist generation

project_gray_counter_moore_fsm.edn	8/2/2024 6:57 AM	Extensible Data N	7 KB
project_gray_counter_moore_fsm.v	8/2/2024 6:57 AM	V File	3 KB

2.12.1. Snippet from netlist file

```
// Copyright 1986-2018 Xilins, Inc. All Rights Reserved.

// Copyright 1986-2018 Xilins, Inc. All Rights Reserved.

// Tool Version: Vivade v.2012.2 (close) build 225866 The Jun 14 18:00:12 PDT 2018

// Tool Version: Vivade v.2012.2 (close) build 225866 The Jun 14 18:00:12 PDT 2018

// Detain: Youseff running 64-bit major release (duild 2020)

// Commond: vertice.verling (0:/Other)plopmes/Digital (volume flower) (duild 2020)

// Commond: vertice.verling (0:/Other)plopmes/Digital (volume flower) (volume fl
```