Travaux Dirigés de LOGIQUE

STI 3ème année

TD 5 : Logique des Prédicats

P. Clemente

1 Syntaxe

1.1 Variables libres ou liées

Soit le langage \mathcal{L} de signature $\{a,b,x,y,z,f,g,Q,R,=\}$ constitué de 2 symboles = et R de relations (prédicat) binaires, d'1 symbole Q de relation unaire, de 2 symboles de fonctions unaires f et g, de 3 symboles de variables x,y,z, et de deux symboles de constante a et b. Soit les formules suivantes :

- 1. $\exists y (R(x, f(y), z) \Rightarrow (Q(b) \lor R(a, g(b))))$
- 2. $(\forall x \ Q(x)) \lor (\exists y \ (f(x) = y))$
- 3. $\forall x \, \forall y \, (x = y \Rightarrow f(x) = f(y))$

Question 1.1.1. Donner la structure de chacune des formules suivantes.

Question 1.1.2. Pour chaque formule, dire quelles sont les occurrences de variables ou liées, et dire quelles sont variables liées et libres.

Question 1.1.3. Dire quelles formules sont closes.

1.2 Modélisation

On considère le langage $\mathcal{L}=\{a,b,A,J,=,X,C,Q\}$ constitué de 2 symboles =, A de relation binaire, d'un symbole J de relation unaire et de deux symboles de constante a et b. \mathcal{L} contient également un symbole X représentant l'ensemble des variables $\{x,y,z,\ldots,x_1,x_2,\ldots\}$, un symbole X représentant l'ensemble des 5 connecteurs logiques classiques et d'un symbole X représentant l'ensemble des quantificateurs $\{\exists,\forall\}$,

On travaille dans un domaine constitué d'individus, et dans lequel on interprète A(x,y) par "x apprécie y", x=y par "x et y sont la même personne", J(x) par "x porte une cravate jaune", et les constantes a par Alice, et b par Bob.

Question 1.2.1. Formaliser par un énoncé de $\mathcal L$ chacune des phrases suivantes :

- 1. Bob n'apprécie que lui-même.
- 2. Alice apprécie tout le monde, à l'exception de ceux qui portent des cravates jaunes.
- 3. Tous ceux qui portent des cravates jaunes s'apprécient mutuellement.
- 4. Au plus trois personnes portent des cravates jaunes.
- 5. Au moins deux personnes portent des cravates jaunes et n'apprécient personne.

6. Il existe une personne qui apprécie quelqu'un qui n'apprécie pas ceux qui portent des cravates jaunes.

2 Sémantique

2.1 Interprétations

Dans cet exercice, on considère un langage \mathcal{L} du calcul des prédicats contenant les constantes $c_0, c_1, ..., c_8$, aucun symbôle de fonction et 5 prédicats unaires : P_1, P_2, P_3, P_4, P_5 . On utilisera ce langage pour décrire des propriétés d'un carré constitué de 9 points (0, 1, 2, 3, 4, 5, 6, 7, 8) disposés ainsi :

Par *ligne* du carré on entend un *ensemble* de 3 points alignés (horizontalement, verticalement ou diagonalement). Par exemple $\{0, 4, 8\}$ est une ligne.

On considère l'interprétation \mathcal{I}_1 suivante de \mathcal{L} :

- L'univers de discours (domaine d'interprétation) est $\mathcal{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$;
- Pour tout j tel que $0 \le j \le 8, \mathcal{I}_1(c_i) = j$;
- Pour tout i tel que $1 \le i \le 5$, $\mathcal{I}_1(P_i)$ s'évalue en V sur les éléments de l'ensemble : $\{n | n \in \mathcal{D} \text{ et } n \text{ est exactement sur } i \text{ lignes du carré de la figure } 1\}$.

Question 2.1.1. Pour chacune des expressions suivantes, indiquer si elle est vraie ou fausse par rapport à l'interprétation \mathcal{I}_1 ; justifiez de façon rapide et informelle.

- (a) $\forall x (P_1(x) \lor P_2(x) \lor P_3(x) \lor P_4(x) \lor P_5(x))$
- (b) $\exists x (P_1(x) \land P_2(x) \land P_3(x) \land P_4(x) \land P_5(x))$
- (c) $\forall x P_1(x) \lor \forall x P_2(x) \lor \forall x P_3(x) \lor \forall x P_4(x) \lor \forall x P_5(x)$
- (d) $\exists x P_1(x) \Rightarrow \exists x P_5(x)$

Question 2.1.2. Existe-t-il une interprétation \mathcal{I}_2 ayant le même univers de discours que \mathcal{I}_1 et telle que toutes les formules ci-dessus soient vraies ? Si oui l'indiquer, sinon expliquer pourquoi.

Question 2.1.3. Existe-t-il une interprétation \mathcal{I}_3 ayant le même univers de discours que \mathcal{I}_1 et telle que toutes les formules ci-dessus soient fausses? Si oui l'indiquer, sinon expliquer pourquoi.

Question 2.1.4. Existe-t-il une interprétation \mathcal{I}_4 ayant le même univers de discours que \mathcal{I}_1 et telle que les formules (a) et (d) ci-dessus soient fausses mais les deux autres soient vraies? Si oui l'indiquer, sinon expliquer pourquoi.

Logique 2 TD n°5