Deep learning approaches for forecasting the global spread of influenza

Berthin Bitja¹

¹Supervisor : Prof. Stephane Arris-Brossou Department of Biology University of Ottawa

TAC - Meeting, 2017

Outline

- Introduction
- 2 Background
- Objectives
- 4 Methodology
- 5 Timeline

Influenza

Overview

 $\textbf{credit}: \mathsf{http://what-when-how.com/wp-content/uploads/2012/05/tmpBC35.jpg} \quad \blacktriangleleft \quad \Rightarrow \quad \blacktriangleleft \\ \begin{tabular}{l} \bullet \quad \bullet \quad & \begin{tabular}{l} \bullet \quad$

Background

Influenza forecasting methods

credit: http://onlinelibrary.wiley.com/doi/10.1111/irv.12226/fullirv12226-fig-0001

Deep Learning

Structure of artificial neuron

Deep Learning

credit: https://hackernoon.com/log-analytics-with-deep-learning-and-machine-learning-20a1891ff70e

The goal of this thesis is to assess if Deep Learning approaches produce good prediction for influenza activities.

The goal of this thesis is to assess if Deep Learning approaches produce good prediction for influenza activities.

• Design the architecture of a neural network

The goal of this thesis is to assess if Deep Learning approaches produce good prediction for influenza activities.

- Design the architecture of a neural network
- Pipeline to automate the data retrieval process

The goal of this thesis is to assess if Deep Learning approaches produce good prediction for influenza activities.

- Design the architecture of a neural network
- Pipeline to automate the data retrieval process
- Asses the overall performance

Methodology

Data acquisition

Dataset

Data acquisition

Preprocessing

Convolutional Neural Networks

Convolutional Neural Networks

Recurrent Neural Network

Training and Implementation

Machine Learning Phases

credit :http://adilmoujahid.com/images/machine-learning-training-prediction-2.png

Training and Implementation

Gradient Descent

observed data
$$\rightarrow y = b_0 + b_1 x + \varepsilon$$
 predicted data $\rightarrow y' = b_0 + b_1 x$ error $\rightarrow \varepsilon = y - y'$

Training and Implementation

Tensorflow

With TensorFlow

credit: https://image.slidesharecdn.com/iispublic-160102031649/95/google-tensorflow-tutorial-4-638.jpg?cb=1451704817

Timeline

Summary

The motivation of this research is to expand the knowledge on predictive methods based on DL approaches for surveillance and forecasting of infectious diseases and explores the relevance of using DL in application to influenza forecasting