TUTORIAL-10

PRE-TUTORIAL ASSIGNMENT- SOLUTION

Solution:

Let inputs be x_1 and x_0 . x_1 is MSB. Four outputs are required. Let the outputs be y_3 , y_2 , y_1 and y_0 . y_3 is MSB and y_0 is LSB

Input	S	Outpu	ıts		
x_1	\mathcal{X}_0	y_3	y_2	\mathcal{Y}_1	y_0
0	0	0	0	0	0
0	1	0	0	0	1
1	0	0	1	0	0
1	1	1	0	0	1

$$\therefore y_0 = \overline{x_1} x_0 + x_1 x_0 = x_0$$

$$y_1 = 0$$
; $y_2 = x_1 \overline{x_0}$; $y_3 = x_1 x_0$

Logic diagram: -

TUTORIAL-10: SOLUTIONS

Solution-1:

No. of inputs = 3

Maximum value of the output obtained is $7 \times 3 = 21$

To represent 21 in binary 5 outputs are required

Let $\,x_{\!\scriptscriptstyle 2}\,$, $\,x_{\!\scriptscriptstyle 1}\,$, $\,x_{\!\scriptscriptstyle 0}\,$ are the inputs with $\,x_{\!\scriptscriptstyle 0}\,$ as LSB and $\,x_{\!\scriptscriptstyle 2}\,$ as MSB

 $\mathbf{y_4}$, $\mathbf{y_3}$, $\mathbf{y_2}$, $\mathbf{y_1}$, $\mathbf{y_0}$ are output with $~\mathbf{y_0}$ being LSB and $~\mathbf{y_4}$ being MSB

Truth table

Inputs			Outputs				
x_2	x_1	\mathcal{X}_0	y_4	y_3	y_2	y_1	\mathcal{Y}_0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1
0	1	0	0	0	1	1	0
0	1	1	0	1	0	0	1
1	0	0	0	1	1	0	0
1	0	1	0	1	1	1	1
1	1	0	1	0	0	1	0
1	1	1	1	0	1	0	1

$$y_0 = \sum m(1,3,5,7)$$

 $\therefore y_0 = x_0$ This can also be obtained by the observation

x_0 x_2	<i>x</i> ₁	00	01	11	10
0					
1		1	1	1	1

$$y_1 = \sum m(1, 2, 5, 6)$$

$$y_2 = \sum m(2,4,5,7)$$

x_0 x_2x_1	00	01	11	10
0		1		1
1			1	1

$$\therefore y_2 = \overline{x_2} x_1 \overline{x_0} + x_2 \overline{x_1} + x_2 x_0$$

$$y_3 = \sum m(3,4,5)$$

x_0 x_2x_2	00	01	11	10
0				1
1		1		1

$$\therefore y_3 = \overline{x_2} x_1 x_0 + x_2 \overline{x_1}$$

$$y_4 = \sum m(6,7)$$

$$\therefore y_4 = x_2 x_1$$

Solution-2:

Let the inputs of full adder are x, y, z and outputs are S and C.

We know that

If x and y are inputs of first half adder the outputs $S = x \oplus y$ and C = xy ----- (2) Using (1) and (2), we can obtain the following realization

Solution-3:

Voltage induced in a coil due to a current in the second coil will have its +ve polarity at the dotted terminal, if the current enters into the dotted terminal at the second coil. Similarly, the induced voltage will have –ve polarity if the current leaves the dotted terminal.

(a) Applying KVL in the loop 134521,
$$v - 5 \frac{di}{dt} + 3 \frac{di}{dt} - 2 \frac{di}{dt} + 3 \frac{di}{dt} = 0 \implies v - \frac{di}{dt} = 0$$
Leg = 1 H

(b)
$$1 \xrightarrow{i} 3 \xrightarrow{i_1} 1H$$

$$+ \xrightarrow{5H} 4 \xrightarrow{i-i_1} 4H$$

$$V \equiv 4 \xrightarrow{2H} i \xrightarrow{2H} 2$$

Applying KVL in the loop 134521,

$$V - 5 \frac{d(i-i_1)}{dt} + 3 \frac{di}{dt} - 2 \frac{di}{dt} + 3 \frac{d(i-i_1)}{dt} = 0 \implies V - \frac{di}{dt} + 2 \frac{di_1}{dt} = 0$$
 (1)

$$-\frac{di_1}{dt} - 4\frac{di_1}{dt} + 5\frac{d(i-i_1)}{dt} - 3\frac{di}{dt} = 0 \implies \frac{di_1}{dt} = \frac{1}{5}\frac{di}{dt} - ----(2)$$

Replacing the value of $\frac{di_1}{dt}$ from (2) in equation (1)

$$V - \frac{di}{dt} \left(1 - \frac{2}{5} \right) = 0 \implies L_{eq} = \frac{3}{5} H$$

(c)

$$V - 5\frac{di}{dt} + 3\frac{d(i-i_1)}{dt} - 2\frac{d(i-i_1)}{dt} + 3\frac{di}{dt} = 0 \implies v - \frac{di}{dt} + \frac{di_1}{dt} = 0 --- (1)$$

$$-4\frac{di_1}{dt} - 2\frac{di_1}{dt} + 2\frac{d(i-i_1)}{dt} - 3\frac{di}{dt} = 0 \implies -8\frac{di_1}{dt} - \frac{di}{dt} = 0 \implies \frac{di_1}{dt} = -\frac{1}{8}\frac{di}{dt} - (2)$$

$$V - \frac{di}{dt}\left(1 - \frac{1}{8}\right) = 0 \implies L_{eq} = \frac{7}{8} \text{ H}$$

(d)
$$V - \frac{di}{dt} + \frac{di_1}{dt} = 0$$
 ------ (1)
 $-\frac{di_1}{dt} - 2\frac{di_1}{dt} + 2\frac{d(i-i_1)}{dt} - 3\frac{d(i-i_1)}{dt} + 5\frac{d(i-i_1)}{dt} - 3\frac{d(i-i_1)}{dt} = 0$
 $\Rightarrow \frac{di_1}{dt} = \frac{1}{4}\frac{di}{dt}$ ----- (2)

$$V - \frac{di}{dt} \left(1 - \frac{1}{4} \right) = 0 \Longrightarrow L_{eq} = \frac{3}{4} H$$

Solution-4:

When current enters into a dotted terminal, it will induce a voltage in the other coil where the positive polarity of the induced voltage will be the corresponding dotted terminal.

$$V_{AD} = 20 \frac{di_{s1}(t)}{dt} + 4 \frac{di_{s2}(t)}{dt}$$

$$= 20 \times 4 + 4 \times 10 = 120 V$$

$$V_{CD} = -6 \frac{di_{s1}(t)}{dt} = -6 \times 4 = -24V$$

$$V_{BD} = V_{BC} + V_{CD} = 3 \frac{di_{s2}(t)}{dt} + 4 \frac{di_{s1}(t)}{dt} - 6 \frac{di_{s1}(t)}{dt}$$

$$= 3 \times 10 + 4 \times 4 - 6 \times 4 = 22V$$