FINAL

Intrinsic Remediation Treatability Study Addendum for Site ST-29

Patrick Air Force Base Florida

Prepared For

Air Force Center for Environmental Excellence Technology Transfer Division Brooks Air Force Base, Texas San Antonio, Texas

and

Approved for Public Release
Distribution Unlimited

Patrick Air Force Base Florida

September 1999

19991021 101

PARSONS

Parsons Engineering Science, Inc. • A Unit of Parsons Infrastructure & Technology Group Inc.

1700 Broadway, Suite 900 • Denver, Colorado 80290 • (303) 831-8100 • Fax: (303) 831-8208 • www.parsons.com

14 September 1999

Mr. Jerry Hansen Technical Program Manager AFCEE/ERT 3207 North Road, Bldg. 532 Brooks AFB, TX 78235-5363

Subject: Responses to AFCEE Comments on the Draft Intrinsic Remediation

Treatability Study for Site ST-29, Patrick AFB, Florida (Contract F41624-92-

D-8036-0025)

Dear Mr. Hansen:

Enclosed please find two copies of the September 1999 Final Intrinsic Remediation Treatability Study (TS) for Site ST-29, Patrick AFB, Florida. This report was prepared by Parsons Engineering Science, Inc. (Parsons ES) for the Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE/ERT) and Patrick Air Force Base (AFB).

The intent of the TS Addendum was to determine the role of natural attenuation in remediating fuel contamination in groundwater at Site ST-29. The draft TS Addendum was submitted to AFCEE in July 1999. Comments on the draft TS Addendum were received from AFCEE as reviewed by Jon Atkinson (dated 09 September 1999). Responses to these comments were prepared by Parsons ES and are attached to this letter.

If you have any questions or comments regarding this package, please do not hesitate to contact me at (303) 831-8100.

Sincerely,

PARSONS ENGINEERING SCIENCE, INC.

Bruce M. Henry, P.G.

Project Manager

Enclosures

c.c. Mr. Ed Worth – Patrick AFB (two copies)

Mr. Don Kampbell - USEPA NRMRL (two copies)

Responses to AFCEE Comments on the Draft Addendum to the Intrinsic Remediation Treatability Study for Site ST-29, Patrick AFB, Florida

GENERAL COMMENTS

- Comment 1) Page 5, Sec 2.0, Para 1, Sent 1: Manganese is listed but does not appear on Table 1A. This apparent discrepancy should be resolved.
- <u>Parsons ES Response:</u> Manganese was not analyzed for in January 1996. Section 2.0 will be amended to indicate that manganese was only analyzed for in 1998.
- Comment 2) Pages 5 and 6, Tables 1A and 1B: For the analyte "Alkalinity," the typo "Biocarbonate" should be corrected.
- <u>Parsons ES Response:</u> The tables will be corrected as indicated.
- Comment 3) Page 13, Table 4: Here, and throughout the document (e.g., p. 18, para 1) recommend reporting all analytical results to no more than three significant figures (e.g., 1,860 ug/L of toluene) to better reflect accuracy and certainty of these measurements.
- <u>Parsons ES Response:</u> Analytical results will be reported to three significant figures throughout the document.
- Comment 4) Page 16, Fig 3: For the January 1996 BTEX plume, the highest mapped concentration (50 ug/L) is two orders of magnitude lower than the highest mapped concentration (5,000 ug/L) for the other three depicted plumes. This apparent discrepancy should be resolved.
- Parsons ES Response: Agreed. Insufficient data was collected in January 1996 to determine the maximum BTEX concentrations within the groundwater plume (e.g., no data for monitoring point cluster CPT-03). Based on maximum concentrations of BTEX measured in 1994, 1995, and 1998, dashed (inferred) BTEX isopleths for 500 ug/L and 5,000 ug/L will be added to the January 1996 map.
- Comment 5) Page 20, Sec 2.2, Para 3: Recommend annotating the computer codes (e.g., BIOPLUME II, MODFLOW) that were used in the computer modeling efforts.
- <u>Parsons ES Response:</u> The computer code for BIOPLUME II was used in the modeling effort for the TS, and will be annotated in Section 2.2.

Responses to AFCEE Comments on the Draft Addendum to the Intrinsic Remediation Treatability Study for Site ST-29, Patrick AFB, Florida (Continued)

Comment 6) Page 21, Sec 2.3, Line 11: Recommend changing "may indicated" to "may indicate."

<u>Parsons ES Response:</u> The text will be changed as indicated.

Comment 7) Page 35, Sec 2.5, Para 1, Line 4: "sulfate" should be replaced by "methane."

Parsons ES Response: The text will be changed as indicated.

FINAL ADDENDUM TO THE INTRINSIC REMEDIATION TREATABILITY STUDY FOR SITE ST-29

 \mathbf{AT}

PATRICK AIR FORCE BASE FLORIDA

September 1999

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE BROOKS AIR FORCE BASE SAN ANTONIO, TEXAS

AND

PATRICK AIR FORCE BASE FLORIDA

Prepared by:

Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, Colorado 80290

TABLE OF CONTENTS

LIST (OF ACE	RONYMS AND ABBREVIATIONS	iii
1.0	INTRO	DDUCTION	1
	1.1	Facility Background	
	1.2	Operational and Site Investigation History	1
	1.3	Remedial Activities	
2.0	RESU	LTS	3
	2.1	Flow Direction and Gradient	4
	2.2	Dissolved BTEX Contamination	
	2.3	MTBE	18
	2.4	Chlorinated Volatile Organic Compounds	
	2.5	Inorganic Chemistry and Geochemical Indicators of Biodegradation	
3.0	CONC	LUSIONS	30
4.0		RENCES	
APPEI		a - ANALYTICAL DATA	

LIST OF TABLES

No.	Title	Page
1 A	Summary of Groundwater Analytical Methods - January 1996	5
1B	Summary of Groundwater Analytical Methods - March 1998	6
2	Monitoring Point Construction Summary	
3	Groundwater Elevation Data	9
4	Fuel Hydrocarbon Compounds Detected in Groundwater	
5	Groundwater Geochemical Data	20

LIST OF FIGURES

No.	Title	Page
1	Site Map	2
2	Groundwater Elevations	10
3	Dissolved BTEX in Groundwater	
4	Cross-Section of Dissolved BTEX in Groundwater	
5	Dissolved BTEX in Selected Wells Along the Plume Axis	
6	Oxidation-Reduction Potential in Groundwater	23
7	Oxidation-Reduction Potential Over Time March 1994 to March 1998	
8	Dissolved Oxygen in Groundwater	26
9	Cross-Section of Dissolved Oxygen in Groundwater	27
10	Ferrous Iron in Groundwater	29
11	Methane in Groundwater	

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L micrograms per liter
AFB Air Force Base

AFCEE Air Force Center for Environmental Excellence
AFESC Air Force Engineering and Services Center

AST aboveground storage tank bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CaCO₃ calcium carbonate

CVOCs chlorinated volatile organic compounds

DO dissolved oxygen

ES Engineering-Science, Inc.

ESE Environmental Science & Engineering, Inc.

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection

Fe²⁺ ferrous iron
Fe³⁺ ferric iron
ft/day feet per day
ft/ft foot/foot

ft amsl feet mean sea level

ft/yr feet per year

IRP Installation Restoration Program

LTM long-term monitoring
mg/L milligrams per liter
MOGAS motor vehicle gasoline
MTBE methyl tertiary-butyl ether

mV millivolts

NRMRL National Risk Management Research Laboratory

ORP oxidation/reduction potential
Parsons ES Parsons Engineering Science, Inc.
PCA Petroleum Contamination Assessment
ppmv parts per million, volume per volume

SVE soil vapor extraction
TMBs trimethylbenzenes
TOC total organic carbon
TS Treatability Study

TVPH total volatile petroleum hydrocarbons
USEPA US Environmental Protection Agency

UST underground storage tank

1.0 INTRODUCTION

This report was prepared for the Air Force Center for Environmental Excellence (AFCEE) by Parsons Engineering Science, Inc. (Parsons ES) as an addendum to the *Final Intrinsic Remediation Treatability Study (TS) for Site ST-29, Patrick Air Force Base (AFB), Florida (Parsons ES, 1995)*. The TS was conducted to evaluate the use of intrinsic remediation with long-term monitoring (LTM) for remediation of fuel hydrocarbon contamination dissolved in groundwater at Site ST-29. The Final TS included data for two sampling events conducted in March 1994 and March 1995. This addendum summarizes the results of two additional sampling events conducted in January 1996 and March 1998 by researchers from the US Environmental Protection Agency (USEPA) National Risk Management Research Laboratory (NRMRL) Subsurface Protection and Remediation Division. Additional data collected by CH2M Hill in May 1995 also are included in this analysis.

The main emphasis of this summary is to evaluate changes in dissolved benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations, BTEX plume extent, and natural attenuation mechanisms through time. Results, calculations, and predictions presented in the TS (Parsons ES, 1995) are used as the basis for comparison. Data collected in January 1996 and March 1998 are presented in Appendix A.

1.1 Facility Background

Patrick AFB lies on a narrow barrier island off the eastern coast of Florida in Brevard County. Site ST-29 is located in the north-central section of Patrick AFB, approximately 400 feet west of the northeastern end of the northeast/southwest runway. Site ST-29 consists of the BX Service Station, including a small food market (Building 736), a gasoline dispensing area, and a car wash facility (Building 737) (Figure 1). The BX Service Station has been in operation since 1954. Four 10,000-gallon fiberglass motor vehicle gasoline (MOGAS) underground storage tanks (USTs) and one 1,000-gallon waste oil aboveground storage tank (AST) are currently used to dispense or store petroleum products.

1.2 Operational and Site Investigation History

In 1973, five 5,000-gallon MOGAS USTs previously located northeast of Building 736 (the BX Service Station) were removed (Figure 1), and the excavations were backfilled with sand. In the same year, the MOGAS tanks were replaced with five 10,000-gallon fiberglass USTs. One of the 10,000-gallon MOGAS USTs and product lines from another of the 10,000-gallon fiberglass USTs were discovered to be leaking in 1985. Between 1985 and 1986, an estimated 700 gallons of unleaded gasoline was released into the subsurface as a result of the leaking lines and tank. In 1986, the leaking 10,000-gallon MOGAS UST was removed, leaving four MOGAS USTs in operation. A 500-gallon waste oil UST also was removed and replaced in February 1992 with a 1,000-gallon waste oil AST.

The Air Force Installation Restoration Program (IRP) was initiated at Patrick AFB in 1984 when the Air Force Engineering and Services Center (AFESC) retained

Environmental Science & Engineering, Inc. (ESE) to conduct a records search of previous Base activities (Phase I of the IRP) (ESE, 1984). Phase II (stage 1) IRP work at Patrick AFB began in 1985 and the BX Service Station (ST-29) was identified and added to the IRP for Phase II (stage 2) activities (ESE, 1988). Phase II (stage 2) work involved two monitoring events (November 1988 to January 1989 and October to November 1989) to determine fluctuations in groundwater levels at the site (ESE, 1991). A Phase II (stage 3) program at the BX Service Station was performed by O'Brien & Gere Engineers, Inc. (1992) in accordance with the Florida Department of Environmental Protection (FDEP) Petroleum Contamination Assessment (PCA) guidelines, as outlined in Chapters 17-770.600 and 17-770.630 of the Florida Administrative Code (FAC). The objective of the Phase II (stage 3) investigation was to evaluate the nature and extent of contamination at the site and to make remedial recommendations.

A soil gas survey was conducted by Engineering-Science, Inc (ES, now Parsons ES) at the BX Service Station in January 1993 (ES, 1993), prior to installation of a pilot bioventing system. A 20-foot by 20-foot grid was laid out in the area where previous sampling had determined that soil hydrocarbon contamination was present. Total volatile petroleum hydrocarbons (TVPH) exceeded 10,000 parts per million, volume per volume (ppmv) at locations adjacent to the north and east sides of the car wash (Building 737) at Site ST-29.

1.3 Remedial Activities

A pilot scale bioventing system consisting of one horizontal vent well and five soil gas monitoring points was installed and tested at the site in March 1993. The pilot-scale bioventing system was installed in an area north of Building 737 (Figure 1) to treat soil contaminated with residual BTEX. Due to high levels of TVPH in soil gas, a soil vapor extraction (SVE) pilot test was performed from October 1993 to January 1994. The pilot-scale air injection bioventing system was then run from January 1994 through July 1995. The pilot-scale system was expanded with a full-scale bioventing system in June 1995. The full-scale bioventing system was in operation at the site from June 1995 to July 1998, at which time confirmation sampling was performed. Based on results of the confirmation sampling, it was recommended that the bioventing system operation be discontinued. Details regarding the results of the bioventing system were presented in a confirmation sampling and analysis report (Parsons ES, 1999).

2.0 RESULTS

In January 1996 and March 1998, researchers from the USEPA NRMRL collected groundwater samples from 13 and 14 monitoring locations, respectively at Site ST-29. Locations CPT-4S, -4D, -09S, -12S, -16DD, -18S were sampled during both the January 1996 and March 1998 events.

Samples were analyzed in the field for oxidation/reduction potential (ORP), dissolved oxygen (DO), conductivity, temperature, pH, carbon dioxide, manganese (1998 only), sulfide and alkalinity. Additional sample volume was analyzed at the USEPA NRMRL in Ada, Oklahoma for nitrate+nitrite, ammonia, chloride, sulfate, methane, ethane, ethene, total organic carbon (TOC), BTEX, trimethylbenzenes (TMBs), and methyl tert-butyl

ether (MTBE). Samples were also analyzed for total fuel carbon, phenols and aliphatic acids, and chlorinated volatile organic compounds (CVOCs) in 1996. CVOCs were not detected in any groundwater samples collected in January 1996. The analytical methods used in January 1996 and March 1998 are summarized in Tables 1A and 1B. Copies of laboratory results and field notes are provided in Appendix A.

2.1 Flow Direction and Gradient

Depth to groundwater was measured at monitoring locations in March 1994 and January 1996. Groundwater elevations were not recorded in March/May 1995 or March 1998. Monitoring point construction details are summarized in Table 2, and groundwater elevation data collected at the site are summarized in Table 3. Groundwater elevation contour maps for March 1994 and January 1996 are shown on Figure 2.

Shallow groundwater at Site ST-29 is present at depths of 4 to 5 feet below ground surface (bgs). Groundwater at Site ST-29 generally flows to the west towards the Banana River (Parsons ES, 1995). The horizontal hydraulic gradient measured in March 1994 was approximately 0.002 foot per foot (ft/ft), with an average groundwater velocity calculated to be 0.43 foot per day (ft/day), or 157 feet per year (ft/yr). The water table in January 1996 was an average of 0.4 feet higher than in March 1994. The January 1996 data suggest a northwesterly groundwater flow direction. However, insufficient data were collected to accurately determine the flow direction and gradient during this sampling event.

Vertical hydraulic gradients measured in nested monitoring point pairs in 1994 range from approximately 0.004 ft/ft in a downward direction at CPT-22 and CPT-03, to approximately 0.0015 to 0.0123 ft/ft in an upward direction at CPT-04, CPT-26, and CPT-24. No vertical gradients were present at CPT-23 and CPT-25 in 1994. This information indicates the presence of a downward hydraulic gradient in or near the source area, with a transition to an upward gradient to the west of the source area in March 1994. A similar downward vertical gradient was observed in January 1996 at CPT-03, but the vertical gradient at CPT-04 shifted from upward in 1994 to downward in 1996.

2.2 Dissolved BTEX Contamination

Analytical results for fuel hydrocarbons detected at the site are provided in Table 4. In order to evaluate trends in dissolved BTEX concentrations and distribution through time, the areal distributions of dissolved BTEX for March 1994, March 1995, January 1996, and March 1998 are presented on Figure 3. Vertical distributions along the primary flow path of dissolved BTEX for each sampling event are presented on Figure 4. As defined by the 5 microgram per liter (µg/L) concentration isopleth, the March 1998 BTEX plume appears to be approximately 450 feet long, compared to approximately 650 feet long in March 1994 (Figure 3). Given an advective groundwater velocity of approximately 156 ft/yr and an estimated retardation coefficient for benzene of 2.6 (Parsons ES, 1995), the plume potentially could have migrated a minimum of 240 feet in the four years from March 1994 to March 1998 (not accounting for the effects of dispersion, which would elongate the plume even further). However, monitoring data indicate that the plume extents for March/May 1995, January 1996, and March 1998 are less than March 1994.

TABLE 1A SUMMARY OF GROUNDWATER ANALYTICAL METHODS JANUARY 1996

INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29

PATRICK AFB, FLORIDA

Analyte	Method	Field (F) or Fixed-Base Laboratory (L)
Oxidation\Reduction Potential	Direct Reading Meter	F
Dissolved Oxygen	Direct Reading Meter	F
Conductivity	Direct Reading Meter	F
Temperature	Direct Reading Meter	F
pH	Direct Reading Meter	F
Ferrous Iron	Colorimetric, Hach Method 8146 or equivalent	F
Hydrogen Sulfide	Colorimetric, Hach Method 8131 or equivalent	F
Alkalinity (Carbonate [CO ₃ ²⁻]	Titrimetric, Hach Method 8221 or equivalent	F
and Bicarbonate [HCO ₃])	1	
Nitrate + Nitrite	EPA Method 353.1	L
Conductivity	EPA Method 120.1	ī.
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane and Ethene	RSKSOP-175 ^a / and RSKSOP-147	L
Total Organic Carbon	RSKSOP-102	L
BTEXb', TMBsc', and Total	RSKSOP-133	L
Fuel Carbon		ь
CVOCs ^{d'} , MTBE ^{e'} , and	RSKSOP-148	L
1,2-Dibromoethane		D
Phenols and Aliphatic Acids	RSKSOP-177	L

a/ RSKSOP = Robert S. Kerr Laboratory (now known as NRMRL) standard operating procedure.

b/ BTEX = benzene, toluene, ethylbenzene, and xylenes.

^{c/} TMBs = trimethylbenzenes.

d CVOCs = chlorinated volatile organic compounds.

e/ MTBE = methyl tertiary-butyl ether.

TABLE 1B SUMMARY OF GROUNDWATER ANALYTICAL METHODS MARCH 1998

INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29

PATRICK AFB, FLORIDA

Analyte	Method	Field (F) or Fixed-Base Laboratory (L)
Oxidation\Reduction Potential	Direct Reading Meter	F
Dissolved Oxygen	Direct Reading Meter	F
Conductivity	Direct Reading Meter	F
Temperature	Direct Reading Meter	F
pH	Direct Reading Meter	F
Ferrous Iron	Colorimetric, Hach Method 8146 or equivalent	F
Carbon Dioxide	Titrimetric, Hach Method 1436-01 or equivalent	F
Manganese	Colorimetric, HACH Method 8034, or equivalent	F
Sulfide	Colorimetric, Hach Method 8131 or equivalent	F
Alkalinity (Carbonate [CO ₃ ²] and Bicarbonate [HCO ₃ ⁻])	Titrimetric, Hach Method 8221 or equivalent	F
Nitrate + Nitrite	Lachat FIA Mehod 10-107-04-2-A	L
Ammonia	Lachat FIA Mehod 10-107-06-1	L
Chloride	Waters Capillary Electrophoresis Method N-601	L
Sulfate	Waters Capillary Electrophoresis Method N-601	L
Methane, Ethane and Ethene	RSKSOP-175 ^{al} and RSKSOP-194	L
Total Organic Carbon	RSKSOP-102	L
BTEX ^b , TMBs ^c , and MTBE ^d	RSKSOP-122	L

a/ RSKSOP = Robert S. Kerr Laboratory (now known as NRMRL) standard operating procedure.

b/ BTEX = benzene, toluene, ethylbenzene, and xylenes.

^{c/} TMBs = trimethylbenzenes.

d MTBE = methyl tertiary-butyl ether.

TABLE 2 MONITORING POINT CONSTRUCTION SUMMARY $^{\mathrm{al}}$ Intrinsic remediation treatability study addendum

SITE ST-29 PATRICK AFB, FLORIDA

Well			Ground	Total	Bottom of	Top of	Top of	Bottom of	Bottom of	Screen
Location			Elevation	Depth	Well	Screen	Screen	Screen	Screen	Midpoint
П	Easting	Northing	(ft amsl) ^{b/}	(ft btoc) ^{c/}	(ft amsl)	(ft bgs) ^{d/}	(ft amsl)	(ft bgs)	(ft amsl)	(ft ams1)
CPT-01	1423363	626491	7.02	8.28	-1.26	5.00	2.02	8.28	-1.26	0.38
CPT-02D	1423346	626455	7.07	13.42	-6.35	10.14	-3.07	13.42	-6.35	4.71
CPT-02S	1423346	626455	7.07	7.65	-0.58	4.37	2.70	7.65	-0.58	1.06
CPT-03D	1423319	626420	6.55	19.04	-12.49	15.76	-9.21	19.04	-12.49	-10.85
CPT-03M	1423319	626420	6.55	14.10	-7.55	10.82	-4.27	14.10	-7.55	-5.91
CPT-03S	1423319	626420	6.55	7.87	-1.32	4.59	1.96	7.87	-1.32	0.32
CPT-04D	1423133	626443	6.57	11.54	-4.97	8.26	-1.69	11.54	4.97	-3.33
CPT-04S	1423133	626443	6.57	9.92	-3.35	6.64	-0.07	9.92	-3.35	-1.71
CPT-05S	1423266	626423	6.26	8.00	-1.74	4.72	1.54	8.00	-1.74	-0.10
CPT-06S	1423248	626381	6.26	8.00	-1.74	4.72	1.54	8.00	-1.74	-0.10
CPT-07S	1423235	626354	6.36	NA e	NA	NA	NA	NA	NA	NA
CPT-08S	1423262	626343	6.48	8.00	-1.52	4.72	1.76	8.00	-1.52	0.12
CPT-09D	1423240	626428	6.35	15.00	-8.65	11.72	-5.37	15.00	-8.65	-7.01
CPT-09S	1423240	626428	6.35	8.00	-1.65	4.72	1.63	8.00	-1.65	-0.01
CPT-10S	1423271	626454	6.26	8.00	-1.74	4.72	1.54	8.00	-1.74	-0.10
CPT-11S	1423247	626464	6.37	8.00	-1.63	4.72	1.65	8.00	-1.63	0.01
CPT-12D	1423203	626433	6.43	16.00	-9.57	12.72	-6.29	16.00	-9.57	-7.93
CPT-12S	1423203	626433	6.43	8.00	-1.57	4.72	1.71	8.00	-1.57	0.07
CPT-13S	1423223	626442	6.41	17.49	-11.08	14.21	-7.80	17.49	-11.08	-9.44
CPT-14D	1423213	626415	6.36	16.73	-10.37	13.45	-7.09	16.73	-10.37	-8.73
CPT-16DD	1423300	626427	6.14	45.00	-38.86	41.72	-35.58	45.00	-38.86	-37.22
CPT-16S	1423300	626427	6.14	8.00	-1.86	4.72	1.42	8.00	-1.86	-0.22
CPT-18D	1423051	626448	6.58	16.00	-9.42	12.72	-6.14	16.00	-9.42	-7.78
CPT-18DD	1423051	626448	6.58	40.00	-33.42	36.72	-30.14	40.00	-33.42	-31.78
CPT-18S	1423051	626448	6.58	8.00	-1.42	4.72	1.86	8.00	-1.42	0.22
CPT-19D	1422983	626457	6.39	16.00	-9.61	12.72	-6.33	16.00	-9.61	-7.97
CPT-19S	1422983	626457	6.39	8.00	-1.61	4.72	1.67	8.00	-1.61	0.03

022/729691/PATRICK/2.xls TABLE 2

INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM MONITORING POINT CONSTRUCTION SUMMARY^{2/} TABLE 2 (Continued)

PATRICK AFB, FLORIDA SITE ST-29

					•					
Well			Ground	Total	Bottom of	Top of	Top of	Bottom of	Bottom of	Screen
Location			Elevation	Depth	Well	Screen	Screen	Screen	Screen	Midpoint
Œ	Easting	Northing	(ft amsl) ^{b/}	(ft btoc) ^{c/}	(ft amsl)	(ft bgs) ^{d/}	(ft amsl)	(ft bgs)	(ft amsl)	(ft amsl)
CPT-20D	1423034	626345	6.40	16.00	-9.60	12.72	-6.32	16.00	09.6-	-7.96
CPT-20S	1423034	626345	6.40	8.00	-1.60	4.72	1.68	8.00	-1.60	0.04
CPT-21D	1423226	626518	6.49	15.30	-8.81	12.02	-5.53	15.30	-8.81	-7.17
CPT-21S	1423226	626518	6.49	8.00	-1.51	4.72	1.77	8.00	-1.51	0.13
CPT-22D	1423328	626362	6.75	13.45	-6.70	10.17	-3.42	13.45	-6.70	-5.06
CPT-22S	1423328	626362	6.75	8.05	-1.30	4.77	1.98	8.05	-1.30	0.34
CPT-23D	1423151	626319	6.57	13.50	-6.93	10.22	-3.65	13.50	-6.93	-5.29
CPT-23S	1423151	626319	6.57	7.00	-0.43	3.72	2.85	7.00	-0.43	1.21
CPT-24D	1422903	626386	5.89	13.00	-7.11	9.72	-3.83	13.00	-7.11	-5.47
CPT-24S	1422903	626386	5.89	6.50	-0.61	3.22	2.67	6.50	-0.61	1.03
CPT-25D	1423761	626129	99:9	13.00	-6.40	9.72	-3.12	13.00	-6.40	4.76
CPT-25S	1423761	626129	09.9	6.50	0.10	3.22	3.38	6.50	0.10	1.74
CPT-26D	1423180	626387	6.47	13.50	-7.03	10.22	-3.75	13.50	-7.03	-5.39
CPT-26S	1423180	626387	6.47	7.00	-0.53	3.72	2.75	7.00	-0.53	1.11
MW-1/PPOL2-1	1423390	626502	6.92	13.40	NA	NA	NA	NA	NA	NA
MW-2	NA	NA	NA	13.40	NA	NA	NA	NA	NA	NA
MW-4	NA	NA	NA	12.30	NA	NA	NA	NA	NA	NA
MW-5	NA	NA	NA	12.70	NA	NA	NA	NA	NA	NA
MW-6/PPOL2-6	1423352	626515	6:39	54.90	NA	NA	NA	NA	NA	NA
MW-11/PB5	NA	NA	7.39	15.45	-8.06	NA	NA	NA	NA	NA
PPOL2-5	NA	NA	NA	12.51	NA	NA	NA	NA	NA	NA
Onstruction summary data is not available for the following wells: MW 3	sary data is not ava-	ilable for the follow	ming malle. MW 2	7 9 0 10 13	1 001 101 100 1	103				

- 8 -

² Construction summary data is not available for the following wells: MW-3,-7,-8,-9,-10,-12,-100,-101,-102,-103.

³ H amsl = feet above mean sea level.

 $^{o'}$ ft btoc = feet below top of casing.

 d ft bgs = feet below ground surface.

c' NA = not available.

TABLE 3
GROUNDWATER ELEVATION DATA
INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM
SITE ST-29
PATRICK AFB, FLORIDA

	Datum ^{a/}		Depth	Groundwater
Sample	Elevation	Sample	to Water	Elevation
Location	(ft amsl) ^{b/}	Date	(ft btoc) ^{c/}	(ft amsl)
CPT-02S	6.61	3/27/1994	4.93	1.68
		1/30/1996	4.48	2.13
CPT-03S	6.26	3/27/1994	4.57	1.69
		1/30/1996	4.11	2.15
CPT-03D	6.23	3/27/1994	4.59	1.64
		1/30/1996	4.16	2.07
CPT-04S	5.99	3/27/1994	4.46	1.53
		1/30/1996	4.06	1.93
CPT-04D	6.01	3/27/1994	4.46	1.55
		1/30/1996	4.11	1.90
CPT-09S	6.13	3/27/1994	4.35	1.78 ^{d/}
		1/30/1996	4.00	2.13
CPT-12S	5.90	3/27/1994	4.40	1.50
		1/30/1996	4.06	1.84
CPT-16DD	NA ^{e/}	1/30/1996	3.86	NA
CPT-18S	6.11	3/27/1994	4.69	1.42
		1/30/1996	4.38	1.73
CPT-18DD	NA	1/30/1996	4.55	NA
CPT-22S	6.35	3/27/1994	4.50	1.85
CPT-22D	6.32	3/27/1994	4.49	1.83
CPT-23S	5.94	3/27/1994	4.30	1.64
CPT-23D	5.84	3/27/1994	4.20	1.64
CPT-24S	5.49	3/27/1994	4.52	0.97
CPT-24D	5.44	3/27/1994	4.46	0.98
CPT-25S	6.43	3/27/1994	5.66	0.77
CPT-25D	6.49	3/27/1994	5.72	0.77
CPT-26S	5.89	3/27/1994	4.25	1.64 ^{d/}
CPT-26D	5.79	3/27/1994	4.13	1.66
MW-1/PPOL2-1	7.47	3/25/1994	5.33	2.14
MW-6/PPOL2-6	6.64	3/25/1994	4.93	1.71
MW-11/PB5	10.86	3/23/1994	8.75	2.11
PPOL2-5	7.48	3/25/1994	5.36	2.12

^a/ Datum is top of well casing.

b' ft amsl = feet above mean sea level.

c' ft btoc = feet below top of casing.

^d Data are suspect and not used for contouring groundwater elevations.

e/NA = not available.

- 111 -

TABLE 4 FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29

	RIDA
ì	3, FLO
	ICK AFB,
	PATRI

											ı			
Sample	Sample	Benzene	Toluene	Ethylbenzene	p-Xylene	m-Xylene	o-Xylene	Total Xylene	Total Xylene Total BTEX" 1,3,5 TMBb/	1,3,5 TMB ^{b/}	1,2,4 TMB	1,2,3 TMB	Fuel Carbon	MTBE
Location	Date	(μg/L) ^{d/}	(µg/L)	(ng/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
CPT-01	Mar-94	<ا م	2.42	>	\ 	▽	7	√	2.42		<	7	NA ⁶	NA
CPT-02S	Mar-94	375	18.9	165	991	353	119	638	1,200	71.2	NA	86.3	NA	NA
	Mar-95	167	6.25	133	7:56	156	8.58	260	999	44.0	203	89.2	NA	NA
	Mar-95 (Dup) ^{g/}	156	6.37	135	107	168	9:36	285	583	48.0	202	0.06	NA	NA
	Jan-96	64.3	5.20	53.3	4.40	8.40	3.50	16.3	139	1.50	45.5	37.9	1,500	514
CPT-02D	Mar-94	1.50	1.70	1.10	1.40	2.60	1.40	5.40	9.70	⊽	NA	1.30	NA	NA
CPT-03S	Mar-94	724	737	823	1,220	2,410	1,390	5020	7,304	347	NA	403	ΑΝ	NA
	Mar-95	1,500	1,530	2,250	2,860	3,470	2,500	8,820	14,100	777	2,900	158	ΝΑ	NA
	Jan-96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	101
	Jan-96 (Dup)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	128
	Mar-98	692	1,860	3,960	5,150	6,470	4,320	15,900	22,450	1,250	4,860	942	NA	▽
CPT-03M	Mar-94	207	15.6	40.5	42.2	24.0	7.50	73.7	337	2.80	NA	16.0	NA	NA
	Mar-95	134	14.0	21.8	58.2	32.4	32.1	123	293	7.75	30.7	18.6	NA	NA
	Jan-96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N	NA	7.60
	Mar-98	215	240	1,050	1,510	1,060	1,040	3,610	5,110	374	1,590	276	NA	3.50
CPT-03D	Mar-94	1.80	1.10	▽	⊽	1.40	⊽	1.40	4.30		NA		NA	NA
	Mar-95	31.0	⊽	10.5	22.5	2.96	1.39	26.8	68.3	1.40	1.97	2.87	NA	NA
	Mar-95 (Dup)	30.3	66.0	10.4	17.8	1.12	2.05	21.0	62.6	1.42	1.64	3.26	NA	NA
	Jan-96	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.9
	Mar-98	1.50	⊽	⊽	⊽	⊽	$ND^{\mathbb{N}}$	\	1.50	\	<1		NA	⊽
CPT-04S	Mar-94	7	9.00	▽	⊽	∇	$\overline{\vee}$	⊽	9009	⊽	⊽	⊽	NA	NA
	Mar-95	⊽	0.97	⊽	1.06	1.22	1.30	3.58	4.55	1.27	Q	1.84	NA	NA
	Mar-95 (Dup)	⊽	ND	∇	$\overline{\vee}$	66.0	ND	0.99	0.99	QN	1.70	1.42	NA	NA
	Jan-96	Ω	ND	∇	⊽	⊽	⊽	⊽	ND	ND	ND Q	N	⊽	1.40
	Mar-98	⊽	⊽	3.70	3.20	2.20	⊽	5.40	9.10	<1	1.80	<1	NA	1.20
CPT-04D	Mar-94	⊽ .	3.70	⊽	⊽ :	▽ ¹	⊽	⊽	3.70	⊽	√1	⊽	NA	NA
	Mar-95	⊽ 5	9. E	⊽ 9	1.06 6	E 13	1.35	3.54	4.54 U	II (2 5	1.98	A A	NA S
	Mar-98	1.30	2.30	Q Q	1,170	<u>8</u> 8	4.80	1,180	U,180	2.00 2.00	10.2	1.80	N N	2.50
CPT-05S	Mar-94	\	1.20	⊽	⊽	⊽	⊽	▽	1.20	⊽	NA	⊽	NA	NA
CPT-06S	Mar-94	⊽	11.1	⊽	1.30	2.30	<1	3.60	14.7	<1	NA	₽	NA	NA
CPT-07S	Mar-94	7	3.90	\ 	>	1.00	<1	1.00	4.90	<1	NA	⊽	NA	NA
CPT-08S	Mar-94	⊽	2.80	⊽	⊽	⊽		<	2.80	<1	<1	\	NA	NA
CPT-09S	Mar-94	2.00	4.00	⊽	⊽	⊽	⊽	⊽	00:9	⊽	▽	∇	NA	NA
	Mar-95	1.09	⊽	1.29	1.82	1.73	1.45	5.00	7.38	1.09	2.46	3.60	NA	NA
	Jan-96	ND	NΩ	ND	ND	ND	ND	ON	ND	ND	ND	QN	ND	QN
	Mar-98	⊽	ΩN	⊽	>	⊽	▽	⊽	ND	QN	ND	7	NA	2.80

- 12 -

TABLE 4 (Continued) FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29 PATRICK AFB, FLORIDA

Sample Location CPT-09D	Sample Date Mar-94	Benzene (µg/L) ^{d/}	Toluene (µg/L)	Ethylbenzene (ug/L)	p-Xylene	m-Xylene (μg/L)	0-Xylene	Total Xylene	Total Xylene Total BTEX	<u>.</u>	1,2,4 TMB	1,2,3 TMB (ug/L)	Fuel Carbon (ug/L)	MIBE (ug/L)
Location CPT-09D	Mar-94	(µg/L)	(ng/L)	(ng/L)	(1/20)	(μg/L)	(1/20)	(1/2)	(N)	(1/211)	(/	(mg/L)	(IIo/L)	(mg/L)
CPT-09D	Mar-94			(Liai.)	(µg/L)		(14g/L1)	(µg/L)	(µg/L)	(µg/r)	(1/gn)	, 61	/- A.J.	V-0.
	Mar-05	427	14.1	2.90	11.7	12.1	9.70	33.5	478	⊽	NA	9.40	NA	NA
	CC-miai	44.8	4.35	86.0	4.81	4.01	5.36	14.2	64.3	1.38	1.45	7.26	NA	NA
	Jan-96	28.9	10.4	1.90	6.20	5.50	6.50	18.2	59.4	1.20	1.20	7.80	914	353
	Mar-98	14.1	06.9	<1	4.40	7.50	90.9	17.9	38.9	▽	1.20	5.80	NA	31.3
CPT-10S	Mar-94	⊽	3.10	- -		\ 	□	<1	3.10	ightharpoons	<1	<1	NA	NA
CPT-11S	Mar-94	1>	1.00	<1	<1	<1	>	<1	1.00	∨	<1	<1	NA	NA
CPT-12S	Mar-94		1.10	√	▽	1.20	⊽	1.20	2.30	⊽	NA	⊽	NA	NA
	Mar-95	∇	ND	⊽	⊽	1.08	$\overline{\vee}$	1.08	1.08	N	QN	1.27	NA	NA
	Jan-96	ND	ND	ND	ΩN	ND	ND	QN	QN	QN	ND	QN	ND	QN Q
	Mar-98	ND	ND	ND	 -	ND	ND	ND	ND	ND	ND	ND	ND	ND
CPT-12D	Mar-94	93.5	5.90	⊳	8.40	7.00	3.70	19.1	119	▽	NA	4.10	NA	NA
	Mar-95	∇	⊽	⊽	1.21	1.33	66.0	3.53	3.53	1.15	1.33	2.75	NA	NA
	Jan-96	5.00	5.20	ND	8.90	5.20	5.00	1.61	29.3	∇	1.60	5.40	625	348
	Mar-98	5.00	6.80	7	14.9	6.70	4.90	26.5	38.3	⊽	⊽	4.10	NA	68.4
CPT-13S	Mar-94	<1	8.40	<1	10.4	5.40	3.10	18.9	29.3	₽	NA	6.70	NA	NA
CPT-14D	Mar-94	096	9.91	11.5	39.2	36.8	44.2	120	1,110	15.3	NA	23.0	NA	NA
CPT-16S	Mar-94	1.00	1.90	<1	<1	<1	▽	<1	2.90	▽	<1	√1	NA	NA
CPT-16DD	Mar-94	⊽	1.90	⊽	⊽	. □	⊽	⊽	1.90	⊽	⊽	⊽	NA	NA
	Mar-95	⊽	⊽	∇	∇	1.03	⊽	1.03	1.03	ND	QN	ND	NA	NA
	Jan-96	ND	ND	ΩN	ND	ND	ND	ND	QN	QN	ND	QN	ND	ND
	Mar-98	ON	ND	7	⊽	$\overline{\vee}$	▽	⊽	QN	ON	⊽	ND	NA	ND
CPT-18S	Mar-94	⊽	1.70	2.30	3.80	09.9	4.00	14.4	18.4	1.40	NA	1.60	NA	NA
	Mar-95	ND	ND	QN	ND	ND	QN	ND ND	ND	QN	ND	ND	NA	NA
	Jan-96	QN	QN	ΩN	QN	ND	QN	ND	N	QN	ND	ND	ND	ΩN
	Mar-98	ND	ND		⊽	⊽	QN	⊽	ND	QN	▽	ND	NA	ND
CPT-18D	Mar-94	8.30	2.10	⊽	∇	⊽	⊽	⊽	10.4	⊽	⊽	⊽	NA	NA
	Mar-95	ON	ND	QN QN	∇	⊽	N	∇	ND	QN	N	ND	NA	NA
	Mar-98	⊽	7	1.20	1.30	1.10	⊽	2.40	3.60	QN	⊽	ND	NA	ND
CPT-18DD	Mar-94	⊽	3.50	⊽	⊽	⊽	⊽	⊽	3.50	∇	⊽	⊽	ΝΑ	NA
	Mar-95	ND	QN	ND	Q.	ND	Q	ND	ND	QN	ND	QN	NA	NA
	Jan-96	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	QN	ND	QN
CPT-19S	Mar-94	⊽	⊽	1.10	1.50	2.70	⊽	4.20	5.30	⊽	NA	⊽	NA	NA
CPT-19D	Mar-94	1.50	⊽	⊽	⊽	⊽	⊽	⊽	1.50	⊽	⊽	⊽	NA	NA
CPT-20S	Mar-94	⊽	2.10	⊽	1.50	2.70	1.80	00.9	8.10	⊽	NA	1.00	NA	NA
CPT-20D	Mar-94	▽	! >		∀	<1	⊽	7	QN	⊽	⊽	7	NA	NA

TABLE 4 (Concluded) FUEL HYDROCARBON COMPOUNDS DETECTED IN GROUNDWATER INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29 PATRICK AFB, FLORIDA

Sample	Samule	Benzene	Toluene	Ethylhenzene	n-Xvlene	m-Xvlene	o-Xvlene	Total Xvlene	Total Xvlene Total BTEX ^{a/}	1.3.5 TMB ^{b/}	1,2,4 TMB	1,2,3 TMB	Fuel Carbon	MTBE
Location	Date	(μg/L) ^{d/}	(μg/L)	μg/L)	(μg/L)	(µg/L)	μg/L)	μg/L)	(µg/L)		(µg/L)	(μg/L)	(µg/L)	(μg/L)
CPT-21S	Mar-94	NA	5.10	⊽	⊽	⊽	7	⊽	5.10	⊽	NA	⊽	NA	NA
	Mar-95	S	Q	ND	QN	ND	ND	ND	ND	ND	ND	N N	NA	NA
CPT-21D	Mar-94	NA	⊽	⊽	⊽	√1	7	₩	QN	∇	$\overline{\lor}$	⊽	NA	NA
	Mar-95	Q.	QN	ND	QN	ND	ND	ND	ND	ND	ND	ND	NA	NA
CPT-22S	Mar-94	NA	1.90	⊽	⊽	<1	<1	<1	1.90	∀	⊽	⊽	NA	NA
CPT-22D	Mar-94	1.50	⊽	⊽	⊽		\	 >	1.50	₽	⊽	⊽	NA	NA
CPT-23S	Mar-94	⊽	⊽	⊽	∀	1.70	1>	1.70	1.70	⊽	NA	⊽	NA	NA
CPT-23D	Mar-94	⊽	⊽	⊽	⊽	1>		⊽	ND	<1	< 1	<1	NA	NA
CPT-24S	Mar-94	⊽	∀	⊽	⊽	⊽	! >	1>	ND		7	▽	NA	NA
CPT-24D	Mar-94	⊽	⊽	⊽	⊽	⊽	⊽	⊽	ND	<1	<1	<1	NA	NA
CPT-25S	Mar-94	⊽	2.10	2.30	4.10	6.90	3.50	14.5	18.9	1.70	NA	1.50	NA	NA
CPT-25D	Mar-94	⊽	1.00	⊽	⊽	1.40	\	1.40	2.40	<1	NA		NA	NA
MW-1/PPOL	Mar-94	⊽	∀	⊽	⊽	1.40	>	1.40	1.40	7	∀	⊽	NA	NA
MW-4	May-95	Q.	QN	ΩN	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA
MW-6/PPOL	Mar-94	⊽	⊽	⊽	√	- 1>	∀	⊽	ND	⊽	⊽	⊽	NA	NA
9-MM	May-95	N	ND	N ON	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA
MW-7	May-95	QN	QN	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA
MW-8	May-95	140	85.0	270	NA	NA	NA	2,450	2,950	NA	NA	NA	NA	NA
MW-9	May-95	37.0	QN	46.0	NA	NA	NA	NA	83.0	NA	NA	NA	NA	NA
	Mar-98	$\overline{\vee}$	⊽	⊽	⊽	7	⊽	⊽	ND	⊽	∇	⊽	ΝΑ	ND
	Mar-98 (Dup)	⊽	QN	, ▽	⊽	▽	∨	<1	ND	√ \	⊽		ΝΑ	ND
MW-10	May-95	180	Q.	360	. NA	NA	NA	NA	540	NA	NA	NA	NA	NA
MW-11/PB5	Mar-94	∀	⊽	⊽	▽	<1	7	7	ND	⊽	⊽	⊽	NA	NA
	May-95	Q.	Ω	QN	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA
MW-12	Mar-94	⊽	⊽	⊽		⊽	7		ND	 		7	NA	ΝΑ
	May-95	210	Ω	700	NA	NA	NA	2,310	3,220	NA	NA	NA	NA	NA
MW-100	Mar-94	4.10	⊽	⊽	1.10	1.00	1	2.10	6.20	⊽	⊽	7	NA	NA
	Mar-95	ND	ND	ND	ND	QV.	ΩN	QN	QN	ND	ND	ΩN	NA	NA
MW-101	Mar-94	<1	<1	<1	<1	√1	⊽	⊽	ND	7	⊽		NA	NA
MW-102	Mar-94	1>	∀	1>	<1	<1	7	7	ND	⊽	⊽	7	NA	NA
MW-103	Mar-94	\ 	7	[>	7	<1	 	1>	ND	⊽	⊽	⊽	NA	NA
^{a'} BTEX = Ber	WBTEX = Benzene, Toluene, Ethylbenzene, and Xylenes.	Ethylbenzen	e, and Xyler	nes.				" NA = Data n	NA = Data not available or sample not analyzed for this parameter.	ample not anal	yzed for this pa	ırameter.		
2								- /6						

b' TMB = Trimethylbenzene.

c' MTBE = Methyl tert-butyl ether.

 $^{b^\prime}$ Dup = Duplicate Sample. $^{b^\prime}$ ND = Compound not detected at the method detection limit.

 $^{d'} \mu g/L = micrograms$ per liter. $^{o'} < l = Below limit of quantitation (1 <math display="inline">\mu g/L).$

Plume shrinkage provides strong evidence supporting the occurrence of biodegradation, particularly along the perimeter of the plume.

The cross-sectional representations of the total BTEX plume in Figure 4 show the changes in vertical and horizontal distribution of the plume along the primary flow path between 1994 and 1998. Due to the limited data available for January 1996, no contour lines are presented for this date. The total BTEX concentration at CPT-04D has increased from 1.2 μ g/L in 1994 to 1,180 μ g/L in 1998, indicating downgradient migration of the plume core (Figure 4). The plume core appears to travel beneath monitoring points CPT-09D and CPT-14D before migrating upward toward CPT-04D.

The vertical extent of the March 1998 BTEX plume is defined near the source area by the well screen intervals of monitoring cluster CPT-03. Groundwater sampled from CPT-03D decreased in BTEX concentration from $68.3 \,\mu\text{g/L}$ to $1.5 \,\mu\text{g/L}$ between March 1995 and March 1998. The vertical extent of the BTEX plume appears to be decreasing in the area of CPT-03, although monitoring points at CPT-03 were not sampled during January 1996. The vertical extent of the BTEX plume in the downgradient direction is indicated by the monitoring point cluster at CPT-18. While low concentrations (less than or equal to $3.6 \,\mu\text{g/L}$) of BTEX have been detected in CPT-18DD, BTEX concentrations at CPT-18S and CPT-18D were not detected in 1998.

Figure 5 is a plot of temporal changes in dissolved BTEX concentrations in monitoring points sampled along the approximate longitudinal centerline of the dissolved BTEX plume. Figure 5 illustrates that dissolved BTEX concentrations have increased from 1994 to 1998 along the center line of the plume at monitoring points CPT-03S, CPT-03M, and CPT-04D. In March 1998, the highest dissolved BTEX concentration detected was in monitoring point CPT-03S at a concentration of 22,400 μ g/L (Table 4). Monitoring point CPT-03S is located approximately 100 feet downgradient from the UST area at Site ST-29 (Figure 3). The dissolved BTEX concentration detected at well CPT-03S in March 1998 represents an increase from March 1994 and March 1995, when concentrations of 7,300 μ g/L and 14,100 μ g/L, respectively, were detected.

Dissolved BTEX concentrations near the source area are increasing, indicating that residual fuel hydrocarbons still exist in source area soils. Residual soil contamination may persist within the capillary fringe or saturated smear zone, which is unaffected by bioventing. The increase in average groundwater elevation of 0.4 foot from March 1994 to January 1996 (Section 2.1) would increase the volume of saturated soil in the source area, decrease the volume of unsaturated soil subject to the effects of bioventing, and result in increased dissolution of BTEX into the groundwater.

In the downgradient direction there has been a notable increase in total BTEX at monitoring point CPT-04D. BTEX at CPT-04D increased from low levels (less than 5 μ g/L) in 1994, 1995, and 1996 to 1,180 μ g/L in March 1998. Although the overall extent of the BTEX plume has not increased since 1994, concentrations of BTEX within the plume have increased. This increase in concentrations could potentially result in future expansion of the plume.

DISSOLVED BTEX IN SELECTED WELLS ALONG THE PLUME AXIS INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM **MARCH 1994 TO MARCH 1998** FIGURE 5

Two groundwater model simulations were completed using the Bioplume II modeling code during the TS (Parsons ES, 1995). A conservative model that did not consider reductions in the source concentrations (worst-case scenario), predicted that the BTEX plume would stabilize approximately 30 years after 1994 (2024) with the leading edge approximately 1,400 feet beyond the source area (or approximately 700 to 800 feet beyond the toe of the 1994 BTEX plume).

The second model simulation assumed that BTEX loading rates were significantly reduced by bioventing over a three year period. This model was used to simulate the expected reduction due to operation of the full-scale bioventing system installed at the site in June 1995. Model results, as described in the TS report, indicate that after 3 years of bioventing, the plume front would only migrate about 100 feet downgradient from the 1994 plume extent. After 5 years of bioventing, the model predicts that the plume front would retreat to the 1994 plume extent. Model results indicate that the BTEX plume would be completely degraded seven years after bioventing begins.

Actual monitoring results indicate that the models underestimated the maximum concentration of dissolved BTEX that would be present in the plume over time, but that the downgradient extent of the plume is conservatively overestimated by both models (especially the no-source-reduction model). While the extent of the BTEX plume has not increased, the bioventing system does not appear to have a significant impact on total dissolved BTEX concentrations. While bioventing is effective in reducing soil BTEX concentrations in the vadose zone, the lack of an impact on dissolved BTEX concentrations suggests that a residual source of BTEX (i.e., a smear zone) persists, most likely within the capillary fringe or saturated zone.

2.3 MTBE

All groundwater samples collected in January 1996 and March 1998 were analyzed for MTBE (Figure 4). MTBE is a fuel oxygenate used to enhance fuel octane rating and to reduce emissions. The maximum MTBE concentration detected was at monitoring point CPT-02S (514 µg/L) in January 1996. Monitoring point CPT-02S was not sampled in 1998. With the exception of CPT-09S, MTBE concentrations decreased at monitoring points sampled in both 1996 and 1998. For example, MTBE concentrations at sampling location CPT-09D decreased from 353 µg/L in January 1996 to 31.1 µg/L in March 1998. Likewise, MTBE concentrations at CPT-12D decreased from 348 µg/L in January 1996 to 68.4 µg/L in 1998. The decrease in MTBE concentrations may indicate that MTBE is naturally attenuating at the site. Conversely, because MTBE is often recalcitrant, the observed concentration decreases may indicate that the contaminant source is being preferentially depleted of MTBE due to its high solubility.

2.4 Chlorinated Volatile Organic Compounds

All groundwater samples collected in January 1996 were analyzed for CVOCs. In no instances were any CVOCs detected in the thirteen samples collected during this sampling event (Appendix A). Samples collected during the March 1998 sampling event were not analyzed for CVOCs.

2.5 Inorganic Chemistry and Geochemical Indicators of Biodegradation

As discussed in the TS, microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous oxidation/reduction reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors at Site ST-29 are natural organic carbon and fuel hydrocarbon compounds. Fuel hydrocarbons are completely degraded or detoxified if they are utilized as the primary electron donor for microbial metabolism (Bouwer, 1992). Electron acceptors are elements or compounds that occur in relatively oxidized states and include oxygen, nitrate, manganese, ferrous iron, sulfate, and carbon dioxide. Microorganisms preferentially utilize electron acceptors while metabolizing fuel hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. After the DO is consumed, anaerobic microorganisms use electron acceptors in the following order of preference: nitrate, manganese, ferric iron, sulfate, and finally carbon dioxide. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane, solubilization of iron, and reduction of nitrate and sulfate (Cozzarelli et al., 1990; Wilson et al., 1990).

Oxidation-Reduction Potential

ORP, a measure of the relative tendency of a solution to accept or transfer electrons, was measured at 13 monitoring locations during the January 1996 sampling event and at 12 locations during the March 1998 sampling event. The dominant electron acceptor being reduced by microbes during BTEX oxidation can be correlated to the ORP of the groundwater. Site ORPs from 1994 to 1998 are summarized on Table 5. In January 1996, the ORP measured at Site ST-29 ranged from -154 millivolts (mV) at CPT-03M, to -45 mV at CPT-16DD. In general, the ORPs measured in March 1998 were lower than in previous sampling periods, ranging from -313 mV (CPT-03S) to -110 mV (CPT-18D). ORP data suggest that dissolved BTEX at the site may be subjected to a variety of biodegradation processes, including aerobic respiration, denitrification, iron reduction, and sulfate reduction. However, many authors have noted that field ORP data alone cannot be used to reliably predict the electron acceptors that may be operating at a site, because the platinum electrode probes are not sensitive to some ORP couples (e.g., sulfate/sulfide) (Stumm and Morgan, 1981; Godsey, 1994; Lovley et al., 1994).

The areal distributions of ORP at the site in 1994, 1995, 1996, and 1998 are presented on Figure 6. Comparison of Figure 3 with Figure 6 illustrates that areas with elevated total BTEX concentrations have lower ORP, with the lowest ORP values occurring in the core of the plume. The correlation between decreased ORP and elevated BTEX concentrations is a strong indication that biodegradation of the BTEX compounds is occurring.

Temporal changes in ORP at several monitoring locations from March 1994 to March 1998 are plotted on Figure 7. The monitoring locations plotted on Figure 7 are located along the approximate longitudinal centerline of the dissolved BTEX plume. In general, ORP decreased from March 1994 to March 1995, increased from March 1995 to January 1996, and then decreased again from January 1996 to March 1998. Comparison of Figure 5 and Figure 7 show that changes in ORP measured at monitoring locations are generally

TABLE 5
GROUNDWATER GEOCHEMICAL DATA
INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM
SITE ST-29
PATRICK AFB, FLORIDA

Comple	Samule	ORPª	Oxygen	Nitrite	Ammonia	Manganese	Iron	Sulfate	Sulfide	Diovide	Methane	Pthylene	Fthane	TOCE	(as CaCO.º)	Chlorides	Temperature	ه.	Conductivity
Location		_π (MN)	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(C) ₈	Hd	/ _в (ms/cm)
CPT-01	-	NAM	0.4	0.13	NA	NA	NA	4.37	NA	NA	4.99	NA	NA	14.0	NA	44.4	24.7	NA	ΑN
CPT-02S	Mar-94	-156	0.2	0.12	NA	NA	1.6	<0.5"	0.2	NA	15.0	NA	NA	16.9	498	42.6	24.7	6.7	1,060
	Mar-95	-231	0.1	90.0	3.83	<0.1	Π	1.13	NA	420	12.8	NA	NA	14.9	404	62.7	NA	6.54	866
	Mar-95 (Dup)	-225	0.1	0.07	3.79	<0.1	1.1	1.08	NA	416	14.2	NA	NA	16.3	407	7.79	NA	6.53	995
	Jan-96	-60	0.2	<0.05	NA	NA	1.2	<0.5	0.5	NA	NA	NA	NA	14.9	480	NA	24.7	7.5	870
CPT-02D	Mar-94	-190	9.0	0.13	NA	NA	0.4	<0.5	0.4	NA	5.95	NA	NA	8.9	330	45.7	24.7	7.1	771
CPT-03S	Mar-94	-208	0.1	14.8	NA	NA	1.2	118	0.1	NA	14.0	NA	NA	63.1	520	132	26.4	6.7	1,730
	Mar-95	-357	<0.1	<0.05	18.2	<0.1	0.1	7	NA	780	15.5	NA	NA	182	920	129	NA	6.72	2,010
	Jan-96	-152	<0.1	<0.05	NA	NA	9.0	10.0	30	NA	NA	NA	NA	611	200	NA	NA	NA	1,270
	Mar-98	-313	<0.1	0.25	1.29	0.1	0.1	12.6	35	130	22.1	ND	0.019	30.7	240	64.5	23.3	7.5	NA
CPT-03M	Mar-94	-50	0.2	0.11	NA	NA	0.3	2.52	0	NA	3.16	NA	NA	10.9	398	40.7	26.4	7.1	868
	Mar-95	-343	<0.1	90.0	6.13	<0.1	<0.05	9.61	NA	338	12.4	NA	NA	35.8	447	42.6	NA	6.77	1,020
	Jan-96	-145	0.1	<0.05	NA	NA	< 0.1	15.7	9	Z	NA	NA	NA	10.4	290	NA	25.1	6.9	999
	Mar-98	-276	<0.1	<0.1	3.91	<0.1	0.1	46.4	8	105	16.8	ND	0.010	24.2	320	40.9	24.4	7.0	NA
CPT-03D	Mar-94	-255	NA	0.12	NA	NA	0.4	<0.5	-	NA	1.63	NA	NA	5.4	315	41.6	NA	7.3	721
	Mar-95	-348	0.1	80.0	1.18	<0.1	<0.05	15.7	5	144	2.57	NA	NA	13.8	341	46.5	NA	7.02	787
	Mar-95 (Dup)	-347	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.04	786
	Jan-96	-154	0.1	<0.05	NA	NA	< 0.1	16.5	9	NA	NA	NA	NA	9.1	280	N.A	26.4	7.2	599
	Mar-98	-306	0.1	<0.1	1.36	0.1	0.1	5.53	5	75	3.42	QV.	<0.002	11.9	260	33.9	25.5	7.2	NA
	Mar-98 (Dup)	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.40	QN	QN	NA	NA	NA	NA	NA	ΝA
CPT-04S	Mar-94	-286	0.3	0.19	NA VA	NA.	9.0	<0.5	0.5	NA.	7.66	NA Y	Y S	9.9	215	12.5	26.9	6.9	469
	Mar-95 (Dun)	-263 NA	. Z) A	0. Z	7. N	. Z	NA N	- X	0 Z	10.6	K X	Z Z	ر د کر	7 A Z	o. S. A	Z Z	O.9 AN	G Z
	Jan-96	-124	0.3	<0.05	Y A	N A	< 0.1	4.26	7 7	N A	NA.	. A	V	4.2	170	Ϋ́	24.8	7.1	522
	Mar-98	-288	0.2	<0.1	2	<0.1	<0.1	6.21	3	70	11.1	ND	ND	5.23	220	15.4	25.1	7.2	464
CPT-04D	Mar-94	-266	0.2	60.0	NA	NA	9.0	1.47	0.2	NA	3.76	NA	NA	9.6	212	12.4	26.1	7.2	457
	Mar-95	-325	<0.1	0.07	2.53	<0.1	0.1	2.98	5	06	5.10	NA	NA	7.8	259	18.4	NA	7.04	540
	Jan-96	-114	0.1	<0.05	NA	NA	0.2	21.5	12	NA	NA	NA	NA	4.9	260	NA	25.2	6.9	654
	Mar-95 (Dup)	NA	NA	NA	NA	NA	NA	21.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Mar-98	-286	0.1	<0.1	2.11	0.1	0.2	12.7	5	70	8.50	QN	QN	6.21	200	17	25.4	8.0	497
CPT-05S	Mar-94	-160	11	0.17	NA	NA	0.1	98.9	0.1	NA	4.86	NA	NA	12	215	23.6	26.4	7.3	488
CPT-06S	Mar-94	-278	0.2	0.13	NA	NA	0.3	7.03	1.5	NA	9.90	NA	NA	3.8	148	47.8	25.1	7.6	437
CPT-07S	Mar-94	-250	0.2	0.12	NA	NA	1	2.52	1.2	NA	6.34	NA	NA	3.4	254	30.2	25.3	7.2	577
CPT-08S	Mar-94	09-	0.2	0.1	NA	NA	1.9	8.51	0	NA	1.74	NA	NA	10.1	420	44.7	25.0	7.1	974
CPT-04D	Mar-94	-266	0.2	0.09	NA	NA	9.0	1.47	0.2	NA	3.76	NA	NA	9.9	212	12.4	26.1	7.2	457
	Mar-95	-325	<0.1	0.07	2.53	<0.1	0.1	2.98	ς.	06	5.10	NA	NA	7.8	259	18.4	NA	7.04	540
	Jan-96	-114	0.1	<0.05	NA	NA	0.2	21.5	12	NA	NA	NA	NA	4.9	260	NA	25.2	6.9	654
	Jan-96 (Dup)	NA	NA	NA	NA	NA	NA	21.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Mar-98	-286	0.1	<0.1	2.11	0.1	0.2	12.7	5	70	8.50	NA	NA	6.21	200	17	25.4	8.0	497
CPT-05S	Mar-94	-160	11	0.17	NA	NA	0.1	98.9	0.1	NA	4.86	NA	NA	12	215	23.6	26.4	7.3	488

- 21 -

TABLE 5 (Continued) GROUNDWATER GEOCHEMICAL DATA INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29 PATRICK AFB, FLORIDA

			Dissolved	Nitrate+			Ferrous		Hydrogen	Carbon					Alkalinity				
Sample	Sample	ORP^{ω}	Oxygen	Nitrite	Ammonia	Manganese	Iron	Sulfate	Sulfide	Dioxide	Methane	Ethylene	Ethane	TOC ^{b'}	(as CaCO ₃ ")	Chlorides	Temperature		Conductivity
Location	Date	_φ (MV)	(mg/L) ^{e/}	(mg/L)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(°C) ⁰	ЬH	(μs/cm) ^{g/}
CPT-07S	Mar-94	-250	0.2	0.12	NA	NA	_	2.52	1.2	NA	6.34	NA	NA	3.4	254	30.2	25.3	7.2	577
CPT-08S	Mar-94	09-	0.2	0.1	NA	NA	1.9	8.51	0	NA	1.74	NA	NA	10.1	420	44.7	25.0	7.1	974
CPT-09S	Mar-94	-24	0.2	0.1	NA	NA	0.2	6.64	0	NA	3.80	NA	NA	10.2	340	14.3	27.3	7.3	530
	Mar-95	-279	0.1	0.07	1.71	<0.1	0.1	1.52	-	80	5.82	NA	NA	ĸ	180	9.46	ΝΑ	7.38	391
	Jan-96	-130	0.2	<0.05	NA	NA	0.1	1.45	16	NA	NA	N A	NA	1.5	170	NA	24.0	6.9	386
	Mar-98	-234	<0.1	<0.1	1.09	<0.1	0.1	7.88	2	25	4.50	QN	ND	3.12	130	7.64	24.2	7.2	312
CPT-9M	Jan-96	-142	0.2	<0.05	NA	NA	0.1	1.71	18	NA	NA	NA	NA	26.7	350	NA	25.3	7.2	902
CPT-09D	Mar-94	-200	0.3	0.11	NA	NA	0.2	15.3	9.0	NA	4.24	NA :	NA S	12	422	34.7	27.8	7.1	938
	Mar-95	-293	0.1	0.06	3.85	- - - - -	0.05	2.23	v c	284	9.84	A C	AN O	21.8	320	38.7	NA	8,78	577
	Mar-98 (Dup)	NA NA	NA NA	NA NA	2.32 NA	NA V	V V	NA NA	۷ Z	N A	10.4	2 2	0.008	NA.	NA S	NA.	NA	NA	NA.
CPT-10S	Mar-94	09-	0.1	0.13	NA	NA	0.2	9.5	0	NA	3.49	NA	NA	21.3	192	26.6	26.0	7.3	460
CPT-11S	Mar-94	-35	0.1	0.15	NA	NA	0.4	15.9	0	NA	4.24	NA	NA	NA	210	12.7	25.9	7.2	508
CPT-12S	Mar-94	30	6.0	0.1	NA	NA	0.1	8.38	0	NA	5.37	NA	NA	10.5	597	15.2	27.3	7	564
	Mar-95	-306	<0.1	0.07	4.04	<0.1	0.3	0.98	-	142	12.3	NA	NA	6.1	220	14.4	NA	7.05	498
	Jan-96	-120	0.1	<0.05	NA	NA	0.2	<0.5	0.2	NA	NA	NA	NA	1.7	180	NA	24.4	7	474
CPT-12D	Mar-94	10	0.4	0.12	NA	NA	0.1	3.86	0.1	NA	0.983	NA	NA	8.1	329	28.1	27.1	7.2	715
	Mar-95	-340	<0.1	0.05	2.37	<0.1	<0.05	49.7	5	202	0.882	NA	NA	6.01	359	56.9	NA	6.93	946
	Jan-96	-136	0.1	<0.05	NA	NA	0.1	2.85	14	NA	NA	NA	NA	14.8	320	NA	26.0	7.1	940
	Mar-98	-275	<0.1	<0.1	2.13	<0.1	<0.1	7.7	7	06	7.64	ND	900.0	12.4	360	47.2	26.0	7.8	NA
CPT-13S	Mar-94	-230	0.1	0.12	NA	NA	0.3	6.94	9.0	NA	2.04	NA	NA	7.2	362	35.5	25.7	7.3	801
CPT-14D	Mar-94	-240	0.3	0.11	NA	NA	0.3	3.68	9.0	NA	8.79	NA	NA	12.8	460	34.6	25.5	7	906
CPT-16S	Mar-94	-190	0.1	0.13	NA	NA	9.4	8.23	0.1	NA	0.781	NA	NA	9.4	231	37.9	25.5	7	776
CPT-16DD	Mar-94	NA	2.7	NA A	NA	NA	NA	ZA	0.3	NA	NA	NA	NA	NA	NA	NA	26.7	NA	YZ
	Mar-95	-288	0.1	<0.05	16.9	<0.1	<0.05	1200	NA	238	0.074	NA	NA	4.6	307	9,830	NA	7.13	26,900
	Jan-96 Mar-98	-45 -184	0.2	<0.05 -0.05	NA 17	NA P	< 0.1	278 1020	0.3	NA 110	NA 0.023	A N	Υ S Q	4.2 6.99	380 360	NA 10,000	26.9 25.9	7.2	8,700 NA
CPT-16S	Mar-94	-190	0.1	0.13	NA	NA	0.4	8.23	0.1	NA	0.781	NA	NA	9.4	231	37.9	25.5	7	776
CPT-16DD	Mar-94	NA	2.7	NA	NA	NA	NA	NA	0.3	NA	NA	NA	NA	NA	NA	NA	26.7	NA	NA
	Mar-95	-288	0.1	<0.05	16.9	<0.1	<0.05	1200	NA	238	0.074	NA	NA	4.6	307	9,830	NA	7.13	26,900
	Jan-96	-45	0.2	<0.05	Ν.	NA	< 0.1	278	0.3	NA St.	NA 200	¥ Z	Y S	4.2	380	NA 000	26.9	7.2	8,700
201 Ta	Mar-98	-184	0.0	<0.1 0 13	\\	1.0 NA	7.0	0701	7.07	OI N	0.023 NA	AN AN	NA AN	7.8	286	36.6	26.6	6.0	834
CF1-185	Mar-95	-287	2 °0.	0.07	0.35	6.1 6.1	0.5	59.6	0.7	110	3.38	Z Z	N A	5 4	276	18.3	N A	6.85	675
	Jan-96	-85	0.3	<0.05	NA	NA	0.3	43.3	9.0	NA	NA	NA	NA	3.3	220	NA	24.7	6.9	551
	Mar-98	NA	NA	<0.1	0.47	<0.1	<0.1	10.8	0.4	70	4.09	QN Q	ND	6.82	240	10.3	NA	7.8	NA
CPT-18D	Mar-94	09-	0.3	0.11	NA	NA	0.3	1.85	0.2	NA	4.56	NA	NA	5.6	294	15	26.1	7.1	620
	Mar-95	-316	0.1	0.07	1.52	<0.1	0.1	1.08	2	86	6.12	NA A	NA	5.8	289	29.6	NA	6.87	652
	Mar-98	-262	<0.1	<0.1	1.4	<0.1	0.1	2.05	2.5	50	7.56	S	ND QN	6.47	220	20.4	26.1	7.5	740

022/729691/PATRICK/2.xls TABLE 5

TABLE 5 (Concluded) GROUNDWATER GEOCHEMICAL DATA INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM SITE ST-29 PATRICK AFB, FLORIDA

Nationarry Nat				Dissolved	Nitrate+			Ferrous		Hydrogen	Carbon					Alkalinity				
Marcolo (mov)	Sample	Sample	ORP*	Oxygen	Nitrite	Ammonia		Iron	Sulfate	Sulfide	Dioxide	Methane	Ethylene	Ethane	TOC ^{b'}	(as CaCO ₃ ")	Chlorides	Temperatu	ıre	Conductivity
Mary	Location	Date	(mV)	(mg/L) ^{e/}	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(C) ₀		(μs/cm) ^{g/}
Marcology 1-10 1	CPT-18DD	Mar-94	NA	2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.3		NA
Marcola 155		Mar-95	-171	0.2	<0.05	16.2	<0.1	0.1	296	<0.1	276	0.068	NA	NA	4.2	335	080'6	NA	7.19	26,500
Marcoll 1		Jan-96	-55	0.3	<0.05	NA	NA	0.1	245	0.1	Ν	NA	NA	NA	5.3	270	NA	26.7	7.5	11,000
Macholis (Ling) Macholis (Mar-98	-110	<0.1	<0.1	16.8	<0.1	0.1	1040	0.1	100	0.030	NA	NA	6.74	340	8,900	27.4	7.8	260
Miles 4 11 NA 0.11 NA NA 0.1 8.85 0 NA 0.244 NA NA 0.13 3.53 3.74 NA 7.74 NA NA NA NA NA NA NA N		Mar-98 (Dup)	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.029	Q	QN Q	Ν	NA	NA	NA	NA	NA
Mar-94 23 0.1 N.A N.A 0.2 1.51 0.2 N.A 1.28 N.A N.A 7.3 3.93 3.13 2.66 7.1 Mar-94 24 0.2 0.07 N.A N.A N.A 0.2 0.25 0.1 N.A 1.11 N.A N.A 3.6 3.80 3.80 3.50 3.7 7.1 Mar-94 2.0 0.2 0.07 0.07 N.A N.A 0.2 0.25 0.1 N.A 1.11 N.A N.A 3.6 3.80 3.80 3.20 3.7 7.1 Mar-94 2.0 0.2 0.04 N.A N.A 0.2 0.25 0.1 N.A 1.11 N.A N.A 3.6 3.80 3.80 3.80 3.7 3.1 Mar-94 2.0 0.2 0.14 N.A N.A 0.2 0.25 0.1 N.A 1.11 N.A N.A 3.6 3.80 3.80 3.80 3.80 3.80 3.80 Mar-94 2.13 0.07 0.14 N.A N.A 0.2 0.13 0.14 N.A 0.14	CPT-19S	Mar-94	41	NA	0.11	NA	NA	0.1	8.85	0	NA	0.924	NA	NA	10.3	335	37.4	NA	7	800
Mary	CPT-19D	Mar-94	-50	0.2	0.1	NA	NA	0.2	1.51	0.2	NA	2.14	NA	NA	7.3	328	33.7	26.6	7.1	744
Marcolooper	CPT-20S	Mar-94	23	1.5	0.1	AN	NA	0.3	25.5	0	NA AA	1.28	NA	NA	3.6	148	9.83	25.0	7	368
Mary 20 0.1	CPT-20D	Mar-94	-44	0.3	0.07	NA	NA	0.2	<0.5	0.1	ΝΑ	=:1	NA	NA	8.6	380	52	25.7	7.1	842
Miles 2.59 0.1 0.08 2.94 NA 0.6 0.52 0.14 NA 0.6 0.82 NA NA 0.4 NA 0.4 NA 0.4 NA NA 0.4 NA NA 0.4 NA NA NA 0.4 NA NA NA NA NA NA NA N	CPT-21S	Mar-94	20	3.2	0.29	ΥN	NA	0.2	25.5	0	NA	2.41	AN	NA NA	7.6	245	26.6	26.0	7.1	610
Mar-94 -250 -02 -014 NA NA -02 -133 -01 NA NA 046 NA NA NA 84 -29 -28		Mar-95	-239	0.1	0.08	2.94	NA	9.0	0.52	0.7	190	98.6	NA	NA	4.9	177	12.3	NA	6.92	381
Miscolori Misc	CPT-21D	Mar-94	-20	0.2	0.14	NA	NA	0.2	13.3	0.1	NA	0.46	NA	NA	6.1	304	29.8	26.4	7.2	716
Mire94 153 0.0 0.0 NA NA 0.1 1.0 1.0 0.0 NA 0.86 NA NA 1.0 4.50 6.6 5.5 6.8 Mire94 2.287 0.12 NA NA 0.1 0.1 NA 0.2 0.2 NA 0.866 NA NA 1.14 415 0.15 NA 5.9 6.9 Mire94 2.287 0.12 NA NA 0.1 0.2 0.1		Mar-95	-307	<0.1	0.07	0.47	NA	0.1	38.8	. 2	96	0.749	NA	NA	NA	287	28.2	NA	7.18	674
Mar-94 346 348 3	CPT-22S	Mar-94	-153	0.3	0.07	NA	NA	1.2	128	0	NA	3.22	NA	NA	10	450	9.99	25.5	6.8	1,270
Mar-94 54 35 012 NA NA 02 045 045 NA 199 NA NA 64 346 346 234 265 599 NA NA NA NA NA NA NA	CPT-22D	Mar-94	-287	0.1	0.12	NA	NA	0.2	NA	5	NA	998.0	NA	NA	11.4	415	Ϋ́	25.4	6.9	936
Mar-94 -167 0.4 0.1 NA NA 0.2 1.49 0.2 NA 0.2 2.8 NA NA 8.2 3.6 3.6 3.6 3.6 7.7 Mar-94 3.0 0.1 0.12 NA NA 0.1	CPT-23S	Mar-94	54	3.5	0.12	NA	NA	0.2	<0.5	0	NA	1.99	NA	NA	6.4	346	23.4	26.5	6.9	757
Mat-94 30 117 012 NA NA 011 615 O14 O15 O15 O14 O15 O15 O14 O15 O15	CPT-23D	Mar-94	-167	0.4	0.1	NA	NA	0.2	1.49	0.2	NA	2.28	NA	NA	8.2	332	36.1	26.7	7.1	977
Mar-94 -60 0.3 0.1 NA NA 0.1 3.61 0.1 NA 0.686 NA NA 2.8 192 5.46 2.60 7.5 Mar-94 2.3 0.1 NA 0.12 NA 0.05 5.19 0 NA 0.147 NA NA 15.7 15.7 3.7 3.7 3.7 Mar-94 2.2 NA 0.12 NA 0.04 0.15 0.14 NA 0.15 NA NA 1.56 NA NA 1.57 1.7 3.7 3.7 3.7 Mar-94 2.2 0.12 NA 0.14 0.3 0.3 0.12 0.04 0.7 1.01 0.3 0.3 0.12 0.04 0.1 0.0 0.04 0.1 0.0 0.04 0.04 0.	CPT-24S	Mar-94	30	1.7	0.12	NA	NA	0.1	<0.5	0	NA	2.20	NA	NA	5.6	061	6.63	25.7	7	358
Mar-94 53 3.7 0.12 NA 0.05 519 0 NA 0.147 NA 157 </td <td>CPT-24D</td> <td>Mar-94</td> <td>09-</td> <td>0.3</td> <td>0.1</td> <td>NA</td> <td>NA</td> <td>0.1</td> <td>3.61</td> <td>0.1</td> <td>NA</td> <td>989.0</td> <td>NA</td> <td>NA</td> <td>2.8</td> <td>192</td> <td>5.46</td> <td>26.0</td> <td>7.5</td> <td>376</td>	CPT-24D	Mar-94	09-	0.3	0.1	NA	NA	0.1	3.61	0.1	NA	989.0	NA	NA	2.8	192	5.46	26.0	7.5	376
Mar-94 62 NA	CPT-25S	Mar-94	53	3.7	0.12	NA	NA	<0.05	51.9	0	NA	0.147	NA	NA	15.7	157	28	25.0	7.3	664
2.2 0.12 NA NA 3.57 NA 3.57 NA 3.57 NA 3.57 NA 3.64 15.1 26.0 7.6 0.1 0.11 NA NA 1.24 0.04 1.84 9.04 NA NA 8.7 1.91 2.6 1.0 NA 8.7 1.22 NA 6.87 0.1 0.04 NA 0.04 1.04 1.04 1.04 8.8 31.2 44.9 5.0 7.8 0.1 0.06 2.61 -6.0 -6.0 0.048 ND ND 1.0 6.8 NA 8.8 31.9 1.0 8.8 0.2 0.1 -6.1 1.63 0.2 NA NA NA NA 1.8 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	CPT-25D	Mar-94	62	NA	0.12	NA	NA	<0.05	91.9	0	NA	1.56	NA	NA	15.7	371	54.7	NA	7.1	892
0.2 0.11 NA NA 0.24 0.14 NA NA 0.44 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 NA NA 0.14 0.04 0.04 0.04 NA 0.04 0.04 0.04 0.04 NA 0.04 0.04 NA 0.04 0.0	CP1-26S	Mar-94 Mar-95	-269	2.2	0.12	Y Z	V Ş	0.3	1.22	0 0	A 2	3.57	V X	Y X	v į	264	15.1	26.0	7.6	558
0.1 0.06 2.61 <0.05 3.31 5 3.76 NA NA 9.5 357 3.77 3.72 NA 6.88 0.3 <0.1	CPT-26D	Mar-94	-293	0.2	0.11	NA	NA VA	0.4	19.8	3	Y A	2.96	NA NA	V V	5.4 8.3	311	77.0	79C	7	751
6.3 6.01 6.01 6.01 8.0 0.048 ND ND 130 2.68 119 7.6 7.6 6.05 0.12 NA 0.12 NA 2.82 NA 186 331 24.9 25.9 7.2 6.01 0.07 0.23 6.01 16.3 16.2 NA NA NA 186 331 24.9 25.9 7.2 6.02 0.02 6.02 1.03 182 NA NA NA NA 186 31.9 24.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 NA NA NA NA NA 1.0 8.0 NA NA NA NA 1.0 8.0 1.0 NA NA 1.0 1.0 1.0 1.0 1.0 1.0 NA NA NA NA NA NA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		Mar-95	-342	0.1	90.0	2.61	<0.1	<0.05	3.31	5	192	3.76	NA	NA	9.5	357	51.2	NA	. 98.9	837
65 0.12 NA NA 2.82 NA NA 186 3.43 186 3.13 26.9 17.9 7.2 <0.1	MW-9	Mar-98	-115	0.3	<0.1	<0.1	<0.1	0.1	4	<0.1	50	0.048	ON	QN	2.9	130	2.68	21.9	7.6	NA
«0.1 0.07 0.23 «0.1 0.3 132 NA NA NA NA NA NA 132 NA NA 3.3 205 15.2 NA 7.32 0.3 0.13 NA 0.13 NA 0.14 NA 2.14 NA 0.1 2.16 2.0 2.16 2.16 2.16 2.16 2.16 2.16 2.17 2.16 2.17	MW-100	Mar-94	-241	0.5	0.12	NA	NA	0.1	16.3	0.2	NA	2.82	NA	NA	18.6	331	24.9	25.9	7.2	209
0.3 0.13 NA 0.13 NA 2.31 NA 2.31 NA 2.31 NA 2.31 NA 3.26 NA NA 7.6 2.87 21.6 25.8 7.2 0.1 0.1 NA 0.1 4.69 1 NA 5.29 NA NA 1.0 2.8 7.3 7.4		Mar-95	-253	<0.1	0.07	0.23	<0.1	0.3	10	0.3	132	NA	NA	NA	3.3	205	15.2	NA	7.32	429
02 0.12 NA NA 0.1 3.51 0.5 NA NA NA 3.26 NA NA 7.6 25.9 17.9 25.8 7.2 0.1 0.1 NA 0.1 4.69 1 NA 5.29 NA NA 2.6 209 12.5 25.4 7.4 0.2 0.1 NA NA 4.41 NA 4.41 NA NA 1.1 2.6 209 15.4 7.4 7.4 0.1 <0.05	MW-101	Mar-94	-247	0.3	0.13	NA	NA	0.1	5.75	8.0	NA	2.31	NA	NA	6	287	21.6	26.5	7.2	533
0.1 NA NA 0.1 NA 6.01 NA 6.02 0.2 NA NA 5.29 NA NA 6.02 1.25 25.4 7.4 7.4 0.2 0.1 NA NA 0.0 4.41 NA 4.41 NA NA 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 1.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0	MW-102	Mar-94	-281	0.2	0.12	NA NA	NA	0.1	3.51	0.5	NA	3.26	NA	NA	9.7	250	17.9	25.8	7.2	523
02 0.1 NA A0.05 4.45 NA A.41 NA A.41 NA 4.41 NA 4.41 NA 4.41 NA 4.41 NA A.41 NA A.41 NA A.41 NA A.41 NA A.41 NA A.41 NA NA A.41 NA NA A.41	MW-103	Mar-94	-271	0.1	0.11	ΝΑ	NA	0.1	4.69	-	NA	5.29	NA	NA	2.6	209	12.5	25.4	7.4	445
01 <0.05 NA NA 0.3 NA S33 NA NA NA 5.33 NA NA NA 2.33 7.1 0.2 <0.05	PB5/MW-11	Mar-94	-140	0.2	0.1	AN	NA	<0.05	4.45	NA	NA	4.41	NA	NA	NA	291	51.4	24.9	7.1	743
0.2 <0.05 NA NA NA 1,150 0.8 NA 0.034 NA NA NA 334 10,200 27.2 7 "mg/L = milligrams per liter. "o C = Degrees Celsius. "" S/cm = microsienens per centimeter.	PPOL2-1/M	Mar-94	-220	0.1	<0.05	NA	NA	9.0	3.2	0.7	NA	5.33	ΝΑ	NA	NA	305	44	26.3	7.1	747
$^{o'}$ mg/L = milligrams per liter . $^{B'}$ c C = Degrees Celsius . $^{B''}$ s cm = microsiemens per centimeter .	PPOL2-6/M	Mar-94	-230	0.2	<0.05	NA	NA	NA	1,150	8.0	NA	0.034	NA	NA	NA	334	10,200	27.2	7	30,100
$^{B^{\prime}A}C=Degrees\ Celsius.$ $^{B^{\prime}}S_{0}cm=microsiemens\ per\ centimeter.$	$^{a'}$ ORP = Oxic	lation Reductic	n Potential.				$^{\prime\prime}$ mg/L = milli	grams per l	iter .				i' "<" = anal	/te detected a	it a concenti	ration less than o	quantitation li	mit.		
	b' TOC = Tota	d Organic Cart	on.			-	, °C = Degree:	s Celsius.					$^{j\prime}$ Dup = Dup	licate sample	e;					
	$CaCO_3 = C_3$	alcium Carbona	ite.			w	y μs/cm = micr	rosiemens pu	er centimeter											

OXIDATION-REDUCTION POTENTIAL OVER TIME
MARCH 1994 TO MARCH 1998
INTRINSIC REMEDIATION TREATABILITY STUDY ADDENDUM
SITE ST-29

inversely correlated to changes in BTEX concentration over the same time period (i.e., increases in ORP correspond to decreases in BTEX concentration, and vice versa). While the measurement of ORP in the field is sensitive to sampling protocol and equipment, an increase in ORP could be interpreted to be a result of decreased microbial activity due to decreasing dissolved BTEX concentrations, and vice-versa.

Dissolved Oxygen

DO data collected at the site from 1994 to 1998 are summarized in Table 5. The areal distributions of DO at the site in 1994, 1995, 1996, and 1998 are presented on Figure 8, and the vertical distributions of DO within the plume core in 1994, 1995, 1996, and 1998 are plotted on Figure 9. DO concentrations range from less than 0.1 milligram per liter (mg/L) within the core of the BTEX plume to as high as 3.7 mg/L (CPT-25S in March 1994) outside of the BTEX plume. Comparison of Figures 3 and 4 with Figures 8 and 9 shows graphically that areas with elevated total BTEX concentrations have decreased DO concentrations. The correlation between depleted DO and elevated BTEX concentrations is a strong indication that aerobic biodegradation of the BTEX compounds has occurred at the site. The greatest aerobic activity is expected to occur at the upgradient perimeter of the source area and along the fringes of the plume, because these are areas where BTEX-contaminated groundwater interacts with groundwater containing measurable concentrations of DO.

Nitrate+Nitrite

After DO has been depleted in a microbiological treatment zone, nitrate may be used as an electron acceptor for anaerobic biodegradation of organic carbon via denitrification. Nitrate concentrations below background in areas with high organic carbon and low DO concentrations are indicative of denitrification. Nitrate plus nitrite (as nitrogen) data collected from monitoring locations at the site from 1994 to 1998 are summarized in Table 5. All nitrate concentrations in January 1996 were less than the detection limit of 0.05 mg/L. In March 1994, the highest nitrate+nitrite concentrations were detected within the BTEX plume. In contrast, the lowest concentrations of nitrate+nitrite detected in March 1995 and March 1998 were detected within the BTEX plume, suggesting that some BTEX degradation via denitrification was occurring. In any event, the overall lack of nitrate in groundwater at Site ST-29 indicates that denitrification is not contributing significantly to BTEX attenuation.

Manganese

Manganese data collected at the site from 1995 and 1998 are summarized in Table 5. Groundwater samples collected at the site during the March 1994 and January 1996 sampling events were not analyzed for manganese. A correlation between depleted manganese and elevated BTEX concentrations is an indication of the biodegradation of BTEX compounds by the process of manganese reduction. However, all manganese concentrations detected in samples from monitoring wells at Site ST-29 were 0.1 mg/L or less. Therefore, the lack of manganese in groundwater at Site ST-29 indicates that manganese reduction is not contributing significantly to BTEX attenuation.

Ferrous Iron

Dissolved ferrous iron (Fe⁺²) is the reduced form of iron and is a byproduct of the oxidation of organic carbon (e.g., BTEX) via ferric iron (Fe⁺³) reduction. Ferrous iron data collected at the site from 1994 to 1998 are summarized in Table 5. The areal distributions of ferrous iron at the site in 1994, 1995, 1996, and 1998 are presented on Figure 10. Comparison of Figure 3 with Figure 10 shows that areas with elevated total BTEX concentrations have elevated ferrous iron concentrations, with the highest ferrous iron concentrations occurring in the core of the dissolved BTEX plume, particularly in and around the source area. The continuing correlation between elevated ferrous iron and elevated BTEX concentrations is a strong indication that anaerobic biodegradation of the BTEX compounds has occurred over time at the site. However, ferrous iron concentrations in March 1998 were relatively low, suggesting that the process was less prominent at that time. The data are insufficient to ascertain whether this is a continuing trend.

The greatest anaerobic activity is expected to occur within the core of the plume, because this is the area where BTEX-contaminated groundwater is likely to be depleted of DO. Several sources suggest that the reduction of ferric iron to ferrous iron cannot proceed without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993); therefore, the presence of ferrous iron in the plume core strongly suggests that ferric iron is being used as an electron acceptor at the site during biodegradation of BTEX compounds.

Sulfate

Sulfate may also be used as an electron acceptor during microbial degradation of natural or anthropogenic organic carbon under anaerobic conditions (Grbic-Galic, 1990). This ORP reaction is commonly called sulfate reduction, which results in a decrease in groundwater sulfate concentrations. Sulfate concentration data measured at the site between 1994 and 1998 are summarized in Table 5. The TS report (Parsons ES, 1995) concluded that sulfate concentrations did not exhibit an inverse relationship with BTEX concentrations, and that sulfate concentrations were elevated in areas containing elevated BTEX concentrations. These conclusions are generally supported by the more recent sampling data collected in 1995, 1996, and 1998. Sulfate concentrations in contaminated areas are generally similar to or higher than sulfate concentrations detected in upgradient and cross-gradient areas in 1994. For example, the sulfate concentrations at CPT-03S in March 1998 (12.6 mg/L) was higher than the concentration at CPT-03D (5.53 mg/L), despite the fact that the dissolved BTEX concentrations in CPT-03S and -03D were 22,400 μg/L and 1.5 μg/L, respectively. Similarly, the March 1998 sulfate concentration at CPT-04D (12.7 mg/L) (BTEX = 1,180 μ g/L) was higher than at CPT-04S (6.2 mg/L) (BTEX = 9.1 μ g/L). The background sulfate concentration in March 1994 was generally less than 5 mg/L.

The sulfate data do suggest that sulfate reduction may be occurring in very localized areas. For example, the January 1996 sulfate concentration at CPT-02S (BTEX = 139 μ g/L) was less than 0.5 mg/L.

Methane

The presence of methane in BTEX-contaminated groundwater indicates that anaerobic biodegradation of BTEX is occurring via the microbially mediated process of methanogenesis (carbon dioxide reduction). Methane data collected at the site between 1994 and 1998 are summarized in Table 5. The areal distributions of methane at the site in March 1994, March 1995, and March 1998 are presented on Figure 11. Groundwater samples were not analyzed for methane during 1996. Comparison of Figure 3 with Figure 11 shows graphically that areas with elevated total BTEX concentrations have elevated methane concentrations, with the highest methane concentrations occurring in the core of the dissolved BTEX plume immediately downgradient from the USTs. The continued correlation between elevated methane and elevated BTEX concentrations is a strong indication that anaerobic biodegradation of the BTEX compounds continues to occur at the site. The greatest methanogenic activity is expected to occur within the core of the plume, because this is the area where BTEX-contaminated groundwater is more likely to be depleted of DO and other electron acceptors (e.g., ferric iron and sulfate). Comparison of methane concentrations over time at five sampling locations that were sampled in 1994, 1995, and 1998 (CPT-03S, CPT-09D, CPT18D, CPT-04S, CPT-04D) indicate that concentrations have been stable to increasing, indicating that the occurrence of methanogenesis has not diminished over time.

Alkalinity

Alkalinity is a measure of the ability of groundwater to buffer changes in pH caused by the addition of biologically generated acids. Total alkalinity (measured as calcium carbonate [CaCO₃]) of groundwater samples collected at the site from 1994 to 1998 is summarized in Table 5. Groundwater contaminated by fuel hydrocarbons often exhibits total alkalinity that is higher than that of groundwater in background areas. An increase in alkalinity relative to background concentrations suggests that additional buffering capacity was generated to address acids produced during biodegradation of BTEX. Increases in alkalinity above background concentrations can be observed at Site ST-29. Alkalinities generally are below 300 mg/L in areas with low or non-detectable concentrations of dissolved BTEX, while more highly contaminated areas generally have alkalinity greater than 300 mg/L. The highest concentration of alkalinity detected at Site ST-29 was 920 mg/L at CPT-03S (March 1995). CPT-03S is located approximately 100 ft downgradient from the suspected source area, and has been the most contaminated well at the site. Groundwater from this monitoring point also had the highest alkalinity measured during the 1994 and 1996 sampling events. The data indicate that the alkalinity is sufficient to continue buffering the groundwater pH against the effects of biologically mediated BTEX oxidation reactions.

3.0 CONCLUSIONS

Results from groundwater monitoring conducted during January 1996 and March 1998 indicate that natural attenuation of BTEX continues at Site ST-29. The areal extent of the BTEX plume migration does not appear to have increased since 1994; rather, the plume extent appears to be stable or diminishing slightly. The distribution of electron acceptors/metabolic byproducts that are involved in biologically mediated redox reactions

indicate that microbially-mediated redox reactions are continuing to occur within the BTEX plume. Data suggest that degradation of dissolved BTEX at the site is occurring via the biodegradation processes of aerobic respiration, methanogenesis, and to a lesser extent, iron reduction. Sulfate reduction also appears to be occurring, but only in very localized portions of the plume.

Monitoring results indicate that the Bioplume II models presented in the TS report (Parsons ES, 1995) underestimated the maximum concentration of dissolved BTEX that would be present in the plume over time, but that the downgradient extent of the plume is conservatively overestimated by both models. While the extent of the BTEX plume has not increased, the bioventing system does not appear to have had a significant impact on total dissolved BTEX concentrations. Although bioventing is effective in reducing soil BTEX concentrations in the vadose zone, the continued presence of elevated dissolved BTEX concentrations suggests that a residual source of BTEX persists within the capillary fringe or saturated zone (i.e., a smear zone). An increase in the average groundwater elevation of 0.4 foot from March 1994 to January 1996 further has increased the volume of saturated soil in the source area, decreased the volume of unsaturated soil subject to the effects of bioventing, and enhanced the dissolution of BTEX into the groundwater.

LTM should be continued to confirm stabilization of the dissolved BTEX plume and to document the continuing occurrence of microbially mediated biodegradation. LTM also is required to assess the effect of increasing dissolved BTEX concentrations with time along the center line of the plume (monitoring points CPT-03S, CPT-03M, and CPT-04D) on plume stability. If more rapid remediation is required, the engineering remediation of contaminated soils below the average water table (e.g., via biosparging) is recommended.

4.0 REFERENCES

- Bouwer, E.J., 1992, Bioremediation of Subsurface Contaminants, In R. Mitchell, editor, Environmental Microbiology, Wiley-Liss, New York, New York.
- CH2M Hill, 1995, Field data shared by CH2M Hill personnel (March).
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990, Transformation of Monoaromatic Hydrocarbons to Organic Acids in Anoxic Ground Water Environment. *Environmental and Geological Water Science*, 16.
- Engineering-Science, Inc., 1993, Bioventing Test Work Plan and Interim Results Report for Three Bioventing Sites at Patrick Air Force Base and Cape Canaveral Air Force Station, Florida. Prepared for the Air Force Center for Environmental Excellence and Patrick Air Force Base, Florida.
- Environmental Science and Engineering, Inc., 1984, Installation Restoration Program, Phase I: Records Search, Eastern Space & Missile Center: Patrick Air Force Base, Florida. Vols. I and II.

- Environmental Science and Engineering, Inc., 1988, Installation Restoration Program, Phase II: Confirmation/Quantification, Stage I, Patrick Air Force Base, Florida. Vol. I X.
- Environmental Science and Engineering, Inc., 1991, Installation Restoration Program, Phase II, Stage 2: Remedial Investigation/Feasibility Study, Patrick Air Force Base, Florida. Vol. I X.
- Godsey, E.M. 1994. Microbiological and Geochemical Degradation Processes, In: Symposium on Intrinsic Bioremediation in Ground Water. Denver, Colorado. August 30 September 1. P.35-40.
- Grbic'-Galic', D., 1990, Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments, In: Bollag, J.M., and Stotzky, G., eds.: Soil Biochemistry: Marcel Dekker, Inc., New York, NY. p. 117-189.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.
- Lovley, D.R., Chapelle, F.H., and Woodward, J.C. 1994. Use of dissolved $\rm H_2$ concentrations to determine distribution of microbially catalyzed ORP reactions in anoxic groundwater. Environmental Science and Technology, v. 28, no. 7., p. 1205-1210.
- O'Brien and Gere Engineers, Inc., 1992, ST-29 (PPOL-2) Draft Final Report, Patrick Air Force Base, Florida.
- Parsons Engineering Science, Inc., 1999, Final Confirmation Sampling and Analysis Report for the BX Service Station, Facility 736, Site ST-29, Patrick Air Force Base, Florida. Prepared for the Air Force Center for Environmental Excellence, Brooks AFB, Texas, and 42 CES/CEV, Patrick Air Force Base, Florida, March.
- Parsons Engineering Science, Inc., 1995, Final Intrinsic Remediation Treatability Study for Site ST-29, Patrick Air Force Base, Florida. Prepared for the Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks AFB, Texas, and Patrick Air Force Base, Florida, US Air Force Contract F41624-92-D-8036, August.
- Stumm, W. and Morgan, J.J. 1981. Aquatic Chemistry. John Wiley & Sons, New York, NY.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., Bledsoe, B.E., and Armstrong, J.M., 1990, Biotransformation of Monoaromatic and Chlorinated Hydrocarbons at an Aviation Gasoline Spill Site. *Geomicrobiology Journal*, 8:225-240.

APPENDIX A ANALYTICAL DATA

MANTHAMANT TECH MATATA

Ref: 96\LB16

February 9, 1996

Dr.: Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift 5

Dear Don:

Please find attached the analytical results for Service Request SF-2-186 requesting the analysis of Patrick AFB groundwater samples to be analyzed by purge-and-trap/GC-FID:PID for Benzene, Toluene, Ethylbenzene, p-, m-, & o-Xylene, 1,3,5-, 1,2,4-, & 1,2,3-Trimethylbenzene, and Total Fuel Carbon. We obtained your 10 groundwater samples in duplicate, in capped, 40 mL VOA autosampler vials on February 5, 1996, and they were analyzed on February 7-8, 1996. Samples were stored at 4°C until analyzed. All samples were acquired and processed using the Millennium data system. A 5 place (1-500 ppb) external standard curve was used to quantitate, the samples for the compounds of interest.

RSKSOP-133, "Simultaneous Analysis of Aromatics and Total Fuel Carbon by Dual Column-Dual Detector for Ground Water Samples" was used for these analyses. Autosampling was performed using a Dynatech Precision autosampler system in line with a Tekmar LSC 2000 concentrator.

Sincerely,

Lisa R. Black

G.B. Smith
J.T. Wilson
J.L. Seeley

SampleName	BENZENE	TOLUENE	ETHYLBENZENE	p-XYLENE	m-XYLENE o-XYLENE	o-XYLENE	1,3,5-TMB	1,2,4-TMB	1,2,3-TMB	Fuel Carbon
24.11.ppbB CPT-2S CPT-86-4D CPT-86-16DD CPT-86-18D CPT-86-12S CPT-86-12S CPT-86-12S CPT-86-12S CPT-86-9S CPT-86-9M QC, OBSERVED, PPB QC, OBSERVED, PPB	9.9 84.3 ND ND N	9.7 5.2 N D N D N D N D N D N D N D N D N D N D	9.5 53.3 ON ON O	9.7 4.4 ND ND ND ND ND ND ND ND 8.9 6.2 6.2 6.2	9.5 8.4 ND BLQ ND ND ND ND ND ND S.2 5.2 8.5 5.5	9.6 N N D N O O O O O O O O O O O O O O O O	9.5 1.5 ND ND N	9.5 45.5 ND ND ND ND ND ND ND ND ND ND ND ND ND	9.6 37.9 ND ND ND ND ND ND ND ND ND ND ND ND ND	NA ND ND ND ND ND NA NA NA N

ND = None Detected; BLQ = Below Limit of Quantitation, 1 ppb; N/A = Not Analyzed

Ref: 96-JH10/vq

February 14, 1996

DISSOLVED

Dr. Don Kampbell

National Risk Management Research Laboratory Subsurface Protection & Remediation Division

U.S. Environmental Protection Agency

P.O. Box 1198

Ada; OK 74820

THRU: 'S.A. Vandegrift 5V

Dear Don:

Find attached results for methane, ethylene and ethane on samples received February 5, 1996 under Service Request #SF-2-186 mod. 1: Samples were prepared and calculations done as per RSKSOP-175. Analyses were performed as per RSKSOP-147.

If you have any questions concerning this data, please contact me.

Sincerely,

Jeff Hickerson

xc: R.L. Cosby

G.B. Smith

J.L. Seeley

Patrick AFB - 1996 daTa

SR# SF-2-186 MOD 1

ANALYSIS PER	FORMED 2-8	-96	
SAMPLE		ETHYLENE	ETHANE
LAB BLANK	BLQ	ND	ND
EPA-83-1	9.48	ND	ND
EPA-83-2	16.19	ND	BLQ
EPA-83-3	3.75	ND	BLQ
EPA-83-4	11.68	ND	BLQ
"LAB DUP .	10.71	ND	ND
EPA-83-7	7.50	ND	ND
" FIELD DUP	7.38	ND	ND
10 PPM CH4	10.00	NA	NA
100 PPM CH4	100.11	NA	NA
1000 PPM CH4	999.93	NA	NA
1% CH4	1.02	NA	NA
10% CH4	10.00	· NA	NA
20% CH4	20.28	NA	NA
10 PPM C2H4	NA	10.21	NA
100 PPM C2H4	NA	99.98	NA
10 PPM C2H6	NA	NA	10.24
100 PPM C2H6	NA	NA	99.98

LIMITS OF QUANTITATION.

METHANE ETHYLENE ETHANE

0.001 0.003 0.002

SAMPLE UNITS ARE mg/L. STANDARDS UNITS CORRESPOND TO THE SAMPLE COLUMN.

BLQ DENOTES BELOW LIMIT OF QUANTITATION. ND DENOTES NONE DETECTED. NA DENOTES NOT ANALYZED.

Ref: 96-TH4/vg 96-JRD5/vg

February 12, 1996

WORGANICS

Dr. Don Kampbell

National Risk Management Research Laboratory Subsurface Protection & Remediation Division

U.S. Environmental Protection Agency

P.O. Box 1198

Ada, OK 74820

THRU: S.A. Vandegrift 5

Dear Don:

Attached are the results of 13 Patrick AFB samples submitted to MERSC as part of Service Request #SF-2-186. The samples were received February 5, 1996 and analyzed immediately. The methods used for analysis were EPA Methods 353.1 for NO₂ and NO₃, 120.1 for Conductivity and Waters capillary electrophoresis Method for N-601 for SO₄. Quality assurance measures performed on this set of samples included spikes, duplicates, known AQC samples and blanks.

If you have any questions concerning these results, please feel free to contact us.

Sincerely,

Tim Hensley

Justin Daniel

xc: R.L. Cosby

G.B. Smith

J.L. Seeley

Sample	Conductivity	mg/1_NO ₂ +NO ₃ (N)	$mg/1_SO_4^{-2}$	
CPT-3D	693	<.05	16.5	
CPT-3D Dup	692			
CPT-3I	695	<.05	15.7	
CPT-3S	1675	<.05	10.0	•
CPT-2S	928	<.05	<.5	
CPT-86-4D	660	<.05	21.5	•
CPT-86-4D Dup			21.9	
CPT-86-4S	482	<.05	4.26	
CPT-86-9M	990	<.05	1.71	
CPT-86-9M Dup	990			
CPT-86-9S	378	<.05	1.45	
CPT-86-12M	988	<.05	2.85	
CPT-86-12S	465	<.05	<.5	
CPT-86-12S Dup		<.05		
CPT-86-16DD	28,600	<.05	278	
CPT-86-18DD	26,200	<.05	245	
CPT-86-18S	633	<.05	43.3	
		. •		
Blank		<.05	<.5	
AQC	,	5.96	54.2	
AQC T.V.		6.00	52.0	
Spike Rec.		97%	105%	
•			. ,	
	•			
			•	
•				
		•		•

Ref: 96/JAD20

atory Winds Winds Williams Wil

Dr. Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency

P.O. Box 1198 Ada, OK 74820

THRU: S.A. Vandegrifts

Dear Don:

As requested in Service Request # SF-2-186, headspace GC/MS analysis of 13 Patrick AFB water samples for Clorinated volatile organics, MTBE and 1,2-Dibromoethane was completed. The samples were received on February 5, 1996 and analyzed on March 19, 1996. RSKSOP-148 (Determination of Volatile Organic Compounds in Water by Automated Headspace Gas Chromatography/Mass Spectrometry (Saturn II Ion Trap Detector) was used for this analysis.

An internal standard calibration method was established for the 12 compounds. The standard curves were prepared from 1.0 to 200 ppb. The lower calibration limits were 1.0 ppb.

The method detection limit (MDL) for 1,2-Dibromoethane for these analyses was determined, according to RSKSOP-148, to be 0.09 ppb.

A dilution corrected quantitation report for the samples, lab duplicates, field duplicates, QC standards and lab blanks is presented in table 1-2.

If you should have any questions, please feel free to contact me.

John Allen Daniel

xc: R.L. Cosby

G.B. Smith

D.D. Fine

J.L. Seeley 📈

J.T. Wilson

Table 1. Quantitation Report for S.R.# SF-2-186 from Patrick AFB.

Concentration = ppb

CPT-86 9)/(D	999: 99999999	QC0319E 20 ppb	21.7 20.8 20.8 20.8 20.3 20.3 15.4 15.4
CPT-86 9S	<u>999999999999</u>	OC0319D 50 ppb	ND ***
CPT-86 4D	88888888888888888888888888888888888888	CPT-86 1800	S S S S S S S S S S S S S S S S S S S
CPT-86 4S	88848 888888 888888	CPT-86 18S	Not in Section 2008 Section 200
CPT-3D	88888888888888888888888888888888888888	CPT-86 16DD	# 999999999999999999999999999999999999
CPT-3	999299999999	CPT-86 12MD 1/2 DII	Field Dup ND
CPT-3S 1/40 Dil Field Dup	9998999999999	CPT-86 12MD	ND ND ND ND ND ND ND ND ND ND ND ND ND N
CPT-3S	5 6655666666	CPT-86 12S Lab Dup	
CPT-2S 1/4 Dil Field Dup	8884888888888888888888888888888888888	CPT-86 125	NO N
CPT-2S	999* 999999999 **	CPT-86 9MD 1/4 Dil	Field Dup ND
Compound	VINYL CHLORDE 1,1—DICHLOROETHENE T—1,2—DICHLOROETHENE 1,1—DICHLOROETHANE C—1,2—DICHLOROETHANE CARBON TETRACHLORDE 1,2—DICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE 1,2—DICHLOROETHANE 1,2—DICHLOROETHANE 1,2—DIBROMOETHANE	•	WNYL CHLORDE 1,1-DICHLOROETHENE T-1,2-DICHLOROETHENE METHYL-Tert-BUTYL ETHER 1,1-DICHLOROETHANE C-1,2-DICHLOROETHANE CARBON TETRACHLORDE 1,2-DICHLOROETHANE TRCHLOROETHENE TRCHLOROETHENE TRCHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROETHENE 1,2-DIBROMOETHANE

Quantitation Report for S.R. # SF-2-186 from Patrick AFB Table 2.

Concentration = ppb

BL0319B	999999999999
BL0319A	999999999999
QC0319K 100 ppb	102 93.4 92.7 ** 106 96.5 91.3 120 100 77.4
QC0319J 200 ppb	175 * * * * * * * * 175 177 203
QC0319 20 ppb	23.5 23.7 21.0 23.7 23.1 22.1 22.2 25.4 16.9 4.8
QC0319H 50 ppb	522 * * * * * * 50.9 * * * * * * 50.9 * * * * * * 50.9
OC0319G 100 ppb	96.7 98.9 89.6 ** 96.2 90.7 98.7 91.1 110 76.4
QC0319F 200 ppb	* * * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	1
Compound	WINYL CHLORDE 1,1-DICHLOROETHENE T-1,2-DICHLOROETHENE METHYL-tort-BUTYL-ETHE 1,1-DICHLOROETHANE C-1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORDE 1,2-DICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE TRICHLOROETHANE

ND = None Detected ** = Not in QC QC = Quality Control Std BL = Blank

MANTELIANI TECHNOLOGY

Ref: 96-SH10/vg

February 13, 1996

Dr. Don Kampbell

National Risk Management Research Laboratory Subsurface Protection & Remediation Division

U.S. Environmental Protection Agency

P.O. Box 1198

Ada, OK 74820

THRU: S.A. Vandegrift 5

Dear Don:

Attached are TOC results for 14 liquids submitted February 9, 1996 under Service Request #SF-2-186. Sample analysis was begun and completed February 12, 1996 using RSKSOP-102.

Blanks, duplicates and AQC samples were analyzed along with your samples, as appropriate, for quality control. If you have any questions concerning this data, please feel free to ask me.

Sincerely,

Sharon Hightower

xc: R.L. Cosby ..

G.B. Smith

J.L. Seeley

KAMPBELL--PATRICK--SF-2-186

SAMPLE	MG/L TOC
CPT-2S CPT-3D REP 2 CPT-3I CPT-3S REP 1 CPT-3S REP 1 DUP CPT-3S REP 2 CPT-86-4D CPT-86-4S CPT-86-9M CPT-86-9S CPT-86-12M CPT-86-12S CPT-86-16D CPT-86-18S WPO34-II	14.9 9.1 10.4 119 119 141 4.9 4.2 26.7 1.5 14.8 1.7 4.2 5.3 3.3 6.1

WPO34-II t.v.=6.30

, ;

Dr. Don Kampbell National Risk Management Research Laboratory Subsurface Protection and Remediation Division U.S. Environmental Protection Agency
P.O. Box 1198

Ada, OK 74820

THRU: S.A. Vandegrift SV

Dear Don:

As requested in Service Request SF-2-186, GC/MS analysis for phenols and aliphatic/aromatic acids was done on water samples from well sites, CPT-86-3S and -3D, at Patrick AFB. Derivatization of the sample was done by Amy Zhao on Feb. 8, 1995. The extract was analyzed by GC/MS on Feb. 23, 1996. RSKERL SOP 177 was used for the extraction, derivatization and GC/MS analysis of the samples.

Table I provides the concentrations of the phenols and aliphatic/aromatic acids found in the Patrick AFB samples. derivative and extraction blank and a 50 ppb spiked extraction blank are also included. 3,4- and 3,5-dimethyl benzoic acid were found at the highest concentration at 670 and 262 ppb, respectfully. Methybenzoic acids, dimethylphenols and cresols were found in the sample and are quantified in Table I. Please note that 2-ethylhexanoic acid was present in one of the extraction blanks at levels higher than found in the samples.

Enclosed please find chromatograms of the PFB derivative of compounds found in water sample CPT-86-3S. Each of the peaks listed in Table I are labelled in the chromatogram. Other chromatograms show ions characteristic of C7, C8, C9, and C10 aliphatic acids.

If you should have any questions, please feel free to contact me. Sincerely,

Table I. Quantitative Report and QC Data for Phenois and Allpha to and Aromatic Acids for Samples from Patrick AFB (Service Request SF-2-186).

Concentration ppb

	•		Conc	entration ppb				
•	PROPANOIC ACID PFB	CPT-86-3S	CPT-86~30	Extraction	Extraction	Standard	_	
	2 2-METHYLPROPANOIC ACID - PFB	16		Blank	Blank	Black	Standard Blank	Star
	3 TRIMETHYLACETIC ACID - PFB	14		6	61		46	
	4 SUMPLICACIO - PFB	a	***	***	***	•••	•	
	4 BUTYRICACIO - PFB	15		***	***	•••	20	
	5 2-METHYLBUTYRICACID - PFB		5	16	***	. 14	12	
	6 3-METHYLBUTYRICACID - PFB	10	•••	***	***	***	40	
-	7 3,3-DIMETHYLBUTYRIC ACID - PFB	0	***	***	***	•••	•••	
	8 PENTANOIC ACID - PFB	19	•••	***	NF.			
	9 2,3-OIMETHYLBUTYRIC ACID - PFB	20	12	64	9	NF.	•••	
	TO 2-ETHYLBUTYRIC ACID - PER	***	***	***	NF.	47	15	
	11 2-METHY PENTANOIC ACID - PFB	•••	NF.	***		NF.	•••	
	12 J-METHTLPENTANOIC ACD - PFB	***	NF.	***	NF.	NF.	NF.	
•	13 4-METHYLPENTMOC ACD - PFB	5	***	•••	***	NF.	NF.	
	14 HEXANOC ACD - PFB	***	NF.		MF.	NF.	***	
	15 2-METHY HEYANGE	31		•••	NF.	NF.	NF.	
,	15 2-METHYLHEXANOIC ACID - PFB 16 PHENCL - PFB	***	18	75	25	29		,
		31	NF.	***	NF.	NF.	18	
	OF OCCUPANT AND CARBOXYLIC ACID - DCG		7	***	***	***	NF.	N
	3-METHYCHEXMODIACD - DED	10	NF.	NF.	NF.	NF.	NF.	•
	- G-CPESOL - PFB	***	NF.	MF.	NF.	-	NF.	•
	20 2-ETHYLHEXANOIC ACID - PFB	9	NF.	NF.	NF.	NF.	NF.	N
	HEPTANOIC ACIO - PEB	367	261	47	-	N.F.	NF.	N
	22 m-CRESCI-PFB	8	•••	19	5	24	70	5
23		***	NF.	N.F.	<u>0</u>	5	12	1
24		43	NF.	N.F.	NF.	NF.	NF.	N
25	5 O-ETHALPHENCL - PFB	•••	NF.		NF.	NF.	NF.	N.P.
26		7	NF.		· NF.	NF.	NF.	
27	7 2.6-DIMETHYLPHENOL - PFB	*** .	-	NF.	NF.	NF.	NF.	
28	25-DIVET IN PINCL - PFB	21 .	NF.	NF.	NF.	NF.	NF.	N.F
20	- O IME INTURENCE - DCD		NF.	NF.	NF.	NF.	· ·	NF
30		45	NF.	NF.	NF.	NF.	NF.	NF
31			NF.	NF.	NF.	NF.	NF.	NF
	THE NEXT SPEE	***	NF.	NF.	NF.	-	NF.	***
32	3,5-DIMETHYLPHENOL & M-ETLING	37	NF.	NF.	NF.	NF.	NF.	NF.
33		25	NF.	NF.	NF.	NF.	NF.	NF.
34	2,3-DIMETHYLPHENCL - PFB	***	***	10	5	NF.	NF.	NF.
33	P-ETHYLPHENOL - PFB	154	***	NF.		***	7	. 8
38	BENZOIC ACIO - PFB	· 7	***	NF.	NF.	NF.	NF.	NF.
37	J.4-DIMETHYLPHENCL - PFB	19	71	7	N.F.	NF.	NF.	NF.
es .	M-METHYLBENZOIC ACID - PFB	18	NF.	NF.	8	5	5	6
9	1-CYCLOHEXENE_1 CLCCC	45	NF.		N.F.	NF.	NF.	NF.
0 0	1-CYCLOHEXENE-1-CARBOXYLICACID - PFB	NF.	NF.	***	NF.	NF.	NF.	NF.
1 2	CYCLOHEXANEACETICACID - PFB 2-PHENY PSOCIALIDACID - PFB	***		NF.	NF.	NF.	NF.	
2 0	2-PHENYLPROPANOIC ACID - PFB	***	NF.	NF.	NF.	NF.	NF.	NF.
	O-METHYLBENZOIC ACID - PFB		NF.	NF.	NF.	NF.		NF.
	PHENYLACETIC ACID - PFB		NF.	NF.	•	NF.	NF.	NF.
·	M-TOLYLACETIC ACID - PFB	49	***	***	***	***	NF.	***
-0.	- TOLYLACETIC ACID - PER	27	NF.	NF.	NF.		•••	***
2,	2.6-DIMETHYLBENZOIC ACID - PFB	5	NF.	NF.	NF.	NF.	NF.	NF.
- بر	PER	14	NF.	NF.		NF.	NF.	NF.
ρ-	-METHYLBBNZOC ACD - PER	, 26	***	NF.	NF.	NF.	. NF.	NF.
3-	-PHENYLPROPANOIC ACID - PFB	135	***	NF.	NF.	NF.	NF.	NF.
۷,۵	-3-DIMETHYLBENZOIC ACID	5	NF.	NF.	NF.	NF.	NF.	•••
0E	ECANOIC ACID - PFB	· 21	NF.		NF.	NF.	NF.	·NF.
2,4	4-DIMETHYLBENZOK ACID PFB	•••	***	. ***	NF.	NF.	NF.	NF.
3,5	5-DIMETHY BENZOIC - PEB	NF.	•••	5	***	***	10	MP.
22	5-DIMETHYLSENZOIC ACID - PFB	262 ,	•••	NF.	NF.	NF.	NF.	
	3-DIMETHYLBENZOIC ACID - PFB	2		NF.	NF.	NF.		***
4-6	ETHYLBENZOIC ACIO - PER	79	NF.	NF.	NF		NF.	NF.
2,4,5	A-TRIMETHYLBENZOIC ACIO - PFB	40	NF.	NF.	NF.	NF.	NF.	NF.
3,4-	-DIMETHYLBENZOK ACID - PFB	92	o			NF.	NF.	NF.
2,45	5-TRIVETUM POUR	670	•••	NF.	NF.	NF.	NF.	NF.
بم	S-TRIMETHYLBENZOC, ACID - PFB	67	NF.	NF.	NF.	NF.	NF.	NF.

 $^{^{\}circ \leftrightarrow}$ indicates concentration of extract was below lowest calibration standard (5 ppb) . N.F. indicates not found.

Į.	Patri	ck A	FB	SF-2	-186	Waj	er Saw	iples	1/301	196
ŝ	Sample	V, Toc	D, O.	Temp.	PH		Fe#	HZS		Cond.
	CPT-86-16DD	3.86	0,7_	26,9	7 <u>, z</u>	-45			386	
	-25	4.48_	0,2	24,7	7,5	-60	1,2	0.5	490	870
	-3 5	4,]]	_0,0	23,6	6,9	-152	0,6	30,	500	1270
	-3 D	4,16	0, j	26,4	7. 2	-154	ار>	6,0	280	599
	-3M	Ν. М.	0.1	25,1	6.9	-145	۷.)	6.0	796	662
	- 195	4,38	0,3	24.7	6.9	-85	0.3	0,6	220	551
	-1800	4,55	0,3	26.7	7.5	-55	0, j	0,1	270	11000
	<u> -라</u> 5 나 5	4,06	0,3	24 8	7.1	-124	۷,)	2,0	170	522
	-4D	4,1)	0,1	25,2	6,9	-114	0.2	12,	260	657
	-12.5	4,06	0,1	24,4	7.0	-120	0,2	0,2	130	474
<i>**</i> **********************************	~12,11	N.M.	0,1	26.0	7.1	-136	0,1	14,	320	940
	-95	4,00	0,2	24.0	6.4	-130	0.1	16.	.170	386
	-9M	N,M.	0,2	25.3	7, 2	-142	O, j	18,	350	706
								* * **********************************	10-10-10-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
8										
	· · · · · · · · · · · · · · · · · · ·									<u> </u>
·	***************************************									.,
										·

Continued From Page_

⁻ Signed

Date

Oate

Signed

Ref: 98-MB20 March 20, 1998

Dr. Don Kampbell

National Risk Management Research Laboratory Subsurface Protection and Remediation Division

U.S. Environmental Protection Agency

P.O. Box 1198

Ada, OK 74820

THRU: Steve Vandegrift 9

Dear Don:

Please find attached the analytical results for Service Request SF-4-312 requesting the analysis of aqueous samples from Patrick AFB, FL to be analyzed for MTBE, BTEXXX and TMBs. The 14 samples were received in capped, 40 mL VOA vials on March 17, 1998. The samples were analyzed on March 18 and 19, 1998. All samples were acquired using the Millennium data system. A 6 point (1-1200 ppb) external calibration curve was used to determine the concentration for all compounds.

RSKSOP-122 "Analysis of Volatile Aromatic Hydrocarbons with Separation of Xylene Isomers by Purge & Trap Gas Chromatography" was used for these analyses. Auto-sampling was performed using a Dynatech Precision autosampler system in line with a Tekmar LSC 2000 concentrator.

Sincerely,

Mark Blankenship

xc: R.L. Cosby

J.L. Seeley

G.B. Smith

Units = ng/mi Analyst M. Blankenship

AUDI E NAME	MTBE	BENZENE	TOLUENE	ETHYLBENZENE	p-XYLENE	m-XYLENE	o-XYLENE	1,3,5-TMB	1,2,4-TMB	1,2,3-TMB
C, OBSERVED, 20 PPB C, TRUE VALUE, 20 PPB O PPB STD C LAB BLANK PT-46 PT-40 PT-40 PT-180 PT-1	21.3 20.0 100.8 ND ND 1.5 ND ND N	22.0 20.0 107.1 ND 1.1.3 11.3 11.3 10.9.0 ND ND N	21.9 20.0 112.6 ND BLQ BLQ ND ND N	21.8 20.0 113.3 ND BLO BLO ND 3.7 1.2 BLO	21.7 20.0 112.5 ND BLQ 1170.4 3.2 1.3 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ	21.4 20.0 102.7 ND BLO BLO BLO BLO BLO BLO BLO BLO BLO BLO	22.6 20.0 114.0 ND ND 4.8 BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ	23.0 20.0 103.5 ND BLQ BLQ ND ND ND BLQ BLQ BLQ 1098.0 ND ND ND ND ND ND ND ND ND 1098.0 ND ND ND 1098.0 ND ND ND ND ND ND ND ND ND ND ND ND ND	22.4 20.0 106.3 ND BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ BLQ	19.5 20.0 113.5 ND BLQ ND ND ND ND BLQ 8.8 1100.0 ND 8.8 1100.0 ND 8.8 94.0

ND = None Detected; BLQ = Below Limit of Quantitation, 1ppb

March 31, 1998

Dr. Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74821-1198

THRU: S.A. Vandegrift \(\sqrt{\frac{1}{2}} \rightarrow \)

Dear Don:

Attached are the results of 14 field samples from Patrick AFB submitted to MERSC as part of S.R. #SF-4-312. The samples were received 3/18/98 and analyzed 3/19/98. The methods used for analysis were Lachat FIA methods 10-107-06-1-A for NH₃, 10-107-04-2-A for NO₂ + NO₃, and Waters capillary electrophoresis method N-601 for Cl and SO₄.

Quality assurance measures performed on this set of samples included spikes, duplicates, known AQC samples, and blanks.

If you have any questions concerning these results, please feel free to contact us.

Sincerely,

Mark White

Mark White

Mark Months

Brad Scroggins

xc: R.L. Cosby
J.L. Seeley

PATRICK AFB

Sample	mg/L <u>Cl'</u>	mg/L SO ₄ -2	mg/L NO ₂ +NO ₃ (N)	mg/L <u>NH₃(N)</u>
CPT-4D	17.0	12.7	<.1	2.11
CPT-45	15.4	6.21	<.1	2.00
-CPT-86-3S	64.5	12.6	.25	1.29
CPT-86-3M	40.9	46.4	<.1	3.91
CPT-86-3D	33.9	5.53	<.1	1.36
CPT-18S	10.3	10.8	<.1	.47
CPT-18M	20.4	2.05	(<.1)(<.1)	(1.38)(1.42)
CPT-18D	8900	1040	< 1	16.8
CPT-86-16DD	10,000	1020	<.1	17.0
MW-9	2.68	4.00	<.1	<.1
CPT-9S	7.64	7.88	<.1	1.09
CPT-9D	38.7	3.69	<.1	2.32
CPT-12S	NS	NS .	NS	NS
CPT-12D	47.2	7.70	<.1	2.13
BLANK	<.05	<.05	<.1	<.1
AQC	34.7	45.0	.60	.26
TRUE VALUE	34.8	44.0	.62	.26
-SPIKE REC.	103%	104%	104%	101%

NS= NO SAMPLE

Ref: 98-LH25

March 27, 1998

Dr. Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection and Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift SV

Dear Don:

As requested in Service Request #SF-4-312, gas analysis was performed for methane, ethylene, and ethane on samples from Patrick AFB. The samples were received on March 17, 1998. The analyses were performed on March 17 and 18, 1998. These analyses were performed as per RSKSOP-194, and the calculations were done as per RSKSOP-175.

If you should have any questions, please feel free to contact me.

Sincerely,

Lisa Hopkins

xc: R.L. Cosby

J.T. Wilson

K. Hurt

G.B. Smith

J.L. Seeley

SF-4-312 03/17/98 Patrick AFB

Sample	Methane	Ethylene	Ethane
100ppm CH4	92.2	**	**
100ppm C2H4	** .	105.1	神秘
100ppm C2H6	**	**	110.9
HPHe	**	** ,	**
Lab Blank	**	**	**
CPT-4S	11.1	**	**
CPT-4D	8.50	**	**
CPT-86-3S	22.1	**	0.019
CPT-86-3M	16.8	**	0.010
CPT-86-3D	3.42	##	*
CPT-86-3D	3.40	**	**
Lab Dup			
MW-9	0.048	**	**
CPT-9S	4.50	**	**
CPT-9D	10.1	**	800.0
CPT-9D	10.4	**	800.0
Field Dup			
10ppm C2H6	**	strate	10.4
100ppm CH4	92.3	sirak	**
100ppm C2H4	**	90.2	**
100ppm C2H6	, **	**	101.9

Lower Limit of Quantitation

0.001 0.003 0.002

Units for the samples are mg/L dissolved in water. Units for the standards are parts per million.

^{**} denotes None Detected.

^{*} denotes Below Limit of Quantitation.

SF-4-312 03/18/98 Patrick AFB

Sample	Methane	Ethylene	Ethane
100ppm CH4	96.5	**	**
100ppm C2H4	**	106.7	**
100ppm C2H6	**	**	109.7
HPHe	**	**	**
Lab Blank	**	**	**
CPT-12D	7.64	**	0.006
CPT-86-16DD	0.023	**	**
CPT-18S	4.09	**	**
CPT-18Mo	7.56	**	**
CPT-18DD	0.030	**	**
CPT-18DD	0.029	**	**
Field Dup			
10ppm CH4	10.4	**	**
100ppm CH4	93.3	**	**
100ppm C2H4	**	99.0	**
100ppm C2H6	**	**	105.3
Lower Limit of C	Quantitation	ı	

0.001 0.003 0.002

Units for the samples are mg/L dissolved in water. Units for the standards are parts per million.

^{**} denotes None Detected.

^{*} denotes Below Limit of Quantitation.

Ref: 98-SH23

March 23, 1998

Dr. Don Kampbell
National Risk Management Research Laboratory
Subsurface Protection & Remediation Division
U.S. Environmental Protection Agency
P.O. Box 1198
Ada, OK 74820

THRU: S.A. Vandegrift $\lesssim \sqrt{}$

Dear Don:

Attached are TOC results for 13 Patrick liquids submitted March 19, 1998 under Service Request #SF-4-312. Sample analysis was begun March 19, 1998 and completed March 19, 1998 using RSKSOP-102.

Blanks, duplicates, and AQC samples were analyzed along with your samples, as appropriate, for quality control. If you have any questions concerning this data, please feel free to ask me.

Sincerely,

xc: R.L. Cosby

G.B. Smith

J.L. Seeley

KAMPBELL PATRICK SF-4-312

SAMPLE	MG/L TOC	
CPT-4D CPT-4S CPT86-3S CPT86-3M CPT86-3D CPT18S CPT18M D CPT18Dp CPT-86-16DD MW-9 CPT-9S CPT-9D CPT-12D WS38	6.21 5.23 30.7 24.2 11.9 6.82 6.47 6.74 6.99 2.90 3.12 16.9 12.4 5.07	

WATER QUALITY ANAL YSES PATRICK AIR FORCE BASE

Šample	Date	D.0.	Redox	Conductivity	Fe#	CO ₂	Alkalinity	Sulfide	Manganese	Hď	Temp
Patrick AFB	ST-29	mg/L	mV	zyS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	ns	၁့
CTP-4D	3-6-68	0.1	-286	497	0.2	70	200	5.0	0.1	8.0	25.4
CPT-86-3D	3-6-68	0.1	-306	N.D.	0.1	22	260	5.0	0.1	7.2	25.5
CPT-4S	3-9-98	0.2	-288	464	\ \ \ .1	70	220	3.0	<.1	7.2	25.1
CPT-3S	3-9-98	0.0	-313	N.D.	0.1	130	240	35.	0.1	7.5	23.3
CPT-18D	3-6-68	0.0	-110	260	0.1	100	340	0.1	<.1	7.8	27.4
CPT-86-3M	3-9-98	0.0	-276	N.D.	0.1	105	320	8.0	<.1	7.0	24.4
CPT-18M	3-9-98	0.0	-262	740	0.1	50	220	2.5	<.1	7.5	26.1
CPT-8S	3-9-98	N.D.	N.D.	N.D.	<.1	0/	240	0.4	<.1	7.8	N.D.
CPT-86-16DD	3-9-98	0.0	-184	N.D.	0.2	110	360	<.1	0.1	7.8	25.9
WW-9	3-6-68	0.3	-115	N.D.	0.1	20	130	<.1	<.1	7.6	21.9
CPT-9D	3-6-68	0.0	-260	775	<.1	70	320	2.0	\ <u>`</u>	8.2	25.2
CPT-9S	3-9-98	0.0	-234	312	<.1	25	130	2.0	\ <u>`</u>	7.2	24.2
CPT-12D	3-9-98	0.0	-275	N.D.		06	360	7.0		7.8	26.0
CPT-12S	No Sample Dry Well										