1. Logistic Regression

A statistical model used for binary classification. It uses the sigmoid function to map linear combinations of input features to probabilities between 0 and 1.

2. Binary Classification

A task that involves classifying data into two distinct classes (e.g., purchase or not). Logistic regression is commonly used for such tasks.

3. Supervised Learning

A machine learning paradigm where the model learns from labeled data. In this case, the label is whether the user purchased the product or not.

4. Feature Scaling (StandardScaler)

Standardization of data to have mean = 0 and standard deviation = 1. This ensures all features contribute equally during model training.

5. Model Training (fit() method)

The process where the algorithm learns the relationship between features and labels from the training data.

6. Model Prediction (predict() method)

Using the trained model to predict labels for new/unseen data.

7. Train-Test Split

Dividing data into training and testing subsets to evaluate the model's performance on unseen data.

8. Sigmoid Function

Used in logistic regression to convert the linear output into a probability value. Formula:

$$\sigma(z)=11+e-z \cdot (z)=1+e-z1$$

9. Confusion Matrix

A matrix showing the counts of:

- True Positives (TP)
- False Positives (FP)
- True Negatives (TN)
- False Negatives (FN)
 Used to evaluate classification performance.

10. Accuracy

Proportion of total predictions that are correct. Formula:

```
Accuracy=TP+TNTP+FP+TN+FN\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}Accuracy=TP+FP+TN+FNTP+TN
```

11. Precision

Indicates how many predicted positives were actually positive.

12. Recall (Sensitivity / TPR)

Measures how many actual positives were captured.

Recall=TPTP+FN\text{Recall} = \frac{TP}{TP + FN}Recall=TP+FNTP

13. Specificity (TNR)

Measures how many actual negatives were correctly identified.

Specificity=TNTN+FP\text{Specificity} = \frac{TN}{TN +
FP}Specificity=TN+FPTN

14. Error Rate

Shows how many predictions were wrong.

Error Rate=FP+FNTotal\text{Error Rate} = \frac{FP + FN}{Total}Error Rate=TotalFP+FN

15. False Positive Rate (FPR)

Shows the proportion of actual negatives incorrectly classified as positive.

FPR=FPFP+TN\text{FPR} = \frac{FP}{FP + TN}FPR=FP+TNFP

16. Classification Report

Summarizes precision, recall, f1-score, and support for each class. Helpful for quick evaluation of classification performance.

17. Evaluation Metrics in ML

Includes precision, recall, F1-score, accuracy, ROC-AUC, etc., to assess model quality beyond just accuracy.

18. Data Preprocessing

Cleaning data (like checking for nulls), selecting features, encoding labels, and scaling to prepare for ML modeling.

19. scikit-learn Library

A powerful Python ML library used for data preprocessing, model training, prediction, and evaluation.

20. Data Visualization (Matplotlib)

Used for visualizing the confusion matrix and performance insights for easier interpretation.