75.03 Organización del Computador

U5 – COMPONENTES DE UN COMPUTADOR MEMORIA

- Memoria
 - Componente complejo (Sistema de memoria)
 - Formado por elementos con distintas cualidades:
 - Tecnología
 - Organización
 - Performance
 - Costo
 - Jerarquía de subsistemas de memoria
 - Internos al sistema (accedidos directamente por el procesador)
 - Externos al sistema (accedidos por el procesador a través de un módulo de E/S)

- Jerarquía de memoria
 - Tres características a tener en cuenta
 - Capacidad
 - Tiempo de acceso
 - Costo
 - Subsistemas de memoria con relación de compromiso entre estas características => No se usa un solo componente de memoria

Jerarquía de memoria

- Jerarquía de memoria
 - A medida que se baja de la pirámide:
 - Costo por bit decreciente
 - Capacidad creciente
 - Tiempo de acceso creciente
 - Frecuencia de acceso de la memoria por parte de procesador decreciente

- Sistema de memoria
 - Características
 - Locación
 - Interna
 - Registros
 - Memoria interna para unidad de control
 - Memoria Cache
 - Externa
 - Dispositivos de almacenamiento periféricos (discos, cintas, etc.)

- Sistema de memoria
 - Características
 - Capacidad
 - Bytes / Palabras (memoria interna)
 - Bytes (memoria externa)
 - Unidad de transferencia
 - Número de líneas eléctricas del módulo de memoria, típicamente el tamaño de palabra o 64,128 o 256 bits (memoria interna)
 - Bloques (memoria externa)

- Sistema de memoria
 - Características
 - Métodos de acceso de unidades de datos
 - Acceso secuencial
 - Unidades de datos: registros (records)
 - Acceso lineal en secuencia
 - Se deben pasar y descartar todos los registros intermedios antes de acceder al registro deseado
 - Tiempo de acceso variable
 - Ej. cintas magnéticas

- Sistema de memoria
 - Características
 - Métodos de acceso de unidades de datos
 - Acceso directo
 - Dirección única para bloques o registros basada en su posición física
 - Tiempo de acceso variable
 - Ej. discos magnéticos

- Sistema de memoria
 - Características
 - Métodos de acceso de unidades de datos
 - Acceso aleatorio
 - Cada posición direccionable de memoria tiene un mecanismo de direccionamiento cableado físicamente
 - Tiempo de acceso constante, independiente de la secuencia de accesos anteriores
 - Ej. memoria principal y algunas memorias cache

- Sistema de memoria
 - Características
 - Métodos de acceso de unidades de datos
 - Acceso asociativo
 - Tipo de acceso aleatorio por comparación de patrón de bits
 - La palabra se busca por una porción de su contenido en vez de por su dirección
 - Cada posición de memoria tiene un mecanismo de direccionamiento propio
 - Tiempo de acceso constante, independiente de la secuencia de accesos anteriores o su ubicación
 - Ej. memorias cache

- Sistema de memoria
 - Características
 - Parámetros de performance
 - Tiempo de acceso (latencia)
 - Memorias de acceso aleatorio: tiempo necesario para hacer una operación de lectura o escritura
 - Memorias sin acceso aleatorio: tiempo necesario para posicionar el mecanismo de lectura/escritura en la posición deseada
 - Tiempo de ciclo de memoria
 - Memorias de acceso aleatorio: tiempo de acceso más el tiempo adicional necesario para que una nueva operación pueda comenzar

- Sistema de memoria
 - Características
 - Parámetros de performance
 - Tasa de transferencia
 - Tasa con la cual los datos son transferidos dentro o fuera de la unidad de memoria
 - Memorias de acceso aleatorio: 1/Tiempo de ciclo de memoria
 - Memorias sin acceso aleatorio:

$$T_n = T_A + n/R$$

donde

 T_n = Tiempo promedio para leer o escribir n bits

 T_A = Tiempo promedio de acceso

n = Número de bits

R =Tasa de transferencia, en bits por segundo (bps)

- Sistema de memoria
 - Características
 - Tipos físicos
 - Memorias semiconductoras (memoria principal y cache)
 - Memorias de superficie magnética (discos y cintas)
 - Memorias ópticas (medios ópticos)

- Sistema de memoria
 - Características
 - Características físicas
 - Memorias volátiles: se pierde su contenido ante la falta de energía eléctrica (Ej. algunas memorias semiconductoras)
 - Memorias no volátiles: no se necesita de energía eléctrica para mantener su contenido (Ej. memorias de superficie magnéticas y algunas memorias semiconductoras)
 - Memorias de solo lectura: (ROM Read Only Memory) no se puede borrar su contenido (Ej. algunas memorias semiconductoras)

- Jerarquía de memoria
 - Principio de localidad de referencia
 - "Durante la ejecución de un programa, las referencias a memoria que hace el procesador tanto para instrucciones como datos tienden a estar agrupadas"
 (Ej. loops, subrutinas, tablas, vectores)

- Memoria Cache
 - Memoria semiconductora más rápida (y costosa) que la principal
 - Se ubica entre el procesador y la memoria principal
 - Permite mejorar la performance general de acceso a memoria principal
 - Contiene una copia de porciones de memoria principal

Memoria Cache

- Memoria Cache
 - Cómo funciona
 - CPU trata de leer una palabra de la memoria principal
 - Se chequea primero si existe en la memoria cache.
 - Si es así se la entrega al CPU
 - Sino se lee un bloque de memoria principal (número fijo de palabras), se incorpora a la cache y la palabra buscada se entrega al CPU
 - Por el principio de localidad de referencia es probable que próximas palabras buscadas estén dentro del bloque de memoria subido a la cache

Memoria Cache

- Memoria Cache
 - Estructura sistema cache/memoria principal
 - Memoria principal
 - 2ⁿ palabras direccionables (dirección única de n-bits para cada una)
 - Bloques fijos de K palabras cada uno (M bloques)
 - Cache
 - m bloques llamados líneas
 - Cada línea contiene:
 - K palabras
 - Tag (conjunto de bits para indicar qué bloque está almacenado, usualmente una porción de la dirección de memoria principal)
 - Bits de control (Ej. bit para indicar si la línea se modificó desde la última vez que se cargó en la cache)

- Memoria Cache
 - Ejemplos (1/2)

Table 4.3 Cache Sizes of Some Processors

Processor	Туре	Year of Introduction	L1 Cache ^a	L2 Cache	L3 Cache
IBM 360/85	Mainframe	1968	16-32 kB	N-3	3
PDP-11/70	Minicomputer	1975	1 kB	7-2	* *= **
VAX 11/780	Minicomputer	1978	16 kB	-	-
IBM 3033	Mainframe	1978	64 kB	3-2	<u> </u>
IBM 3090	Mainframe	1985	128-256 kB	-	8
Intel 80486	PC	1989	8 kB	-	-
Pentium	PC	1993	8 kB/8 kB	256-512 kB	<u> </u>
PowerPC 601	PC	1993	32 kB		=
PowerPC 620	PC	1996	32 kB/32 kB		5
PowerPC G4	PC/server	1999	32 kB/32 kB	256 kB to 1 MB	2 MB
IBM S/390 G6	Mainframe	1999	256 kB	8 MB	-

Notes:

^a Two values separated by a slash refer to instruction and data caches.

^b Both caches are instruction only; no data caches.

- Memoria Cache
 - Ejemplos (2/2)

Table 4.3 Cache Sizes of Some Processors

Processor	Туре	Year of Introduction	L1 Cache ^a	L2 Cache	L3 Cache
Pentium 4	PC/server	2000	8 kB/8 kB	256 kB	_
IBM SP	High-end server/ supercomputer	2000	64 kB/32 kB	8 MB	-
CRAY MTAb	Supercomputer	2000	8 kB	2 MB	
Itanium	PC/server	2001	16 kB/16 kB	96 kB	4 MB
Itanium 2	PC/server	2002	32 kB	256 kB	6 MB
IBM POWER5	High-end server	2003	64 kB	1.9 MB	36 MB
CRAY XD-1	Supercomputer	2004	64 kB/64 kB	1 MB	_
IBM POWER6	PC/server	2007	64 kB/64 kB	4 MB	32 MB
IBM z10	Mainframe	2008	64 kB/128 kB	3 MB	24-48 MB
Intel Core i7 EE 990	Workstation/ server	2011	6×32 kB/ 32 kB	1.5 MB	12 MB
IBM zEnterprise 196	Mainframe/ server	2011	24×64 kB/ 128 kB	24×1.5 MB	24 MB L3 192 MB L4

Notes:

^a Two values separated by a slash refer to instruction and data caches.

b Both caches are instruction only; no data caches.

- Memoria Cache
 - Intel Core i7

Referencias

- "Computer Organization and Architecture Designing for Perfomance"
 9na edición. William Stallings
 (http://williamstallings.com/ComputerOrganization/)
- "Structured Computer Organization" 6ta edición. Andrew Tanenbaum / Todd Austin

(http://www.pearsonhighered.com/educator/product/Structured-Computer-Organization-6E/9780132916523.page)