Групповой проект. Этап 3

Рост дендритов

Дорук Мерич, Мухамедиар Адиль, Яссин Мохамад Аламин, Акуленко Максим

Цели и задачи группового проекта

Цели и за	дачи гру	ппового	проекта

Цель проекта: На основе построения модели роста дендритов, изучить принципы математического моделирования.

Цели и задачи группового проекта

Задачи проекта:

- 1. изучить теоретическую информацию о дендритах и о моделях их роста;
- 2. разработать алгоритмы
- 3. написать программу, взяв в основу разработанные ранее алгоритмы;
- 4. проанализировать полученные результаты.

Основные понятия и уравнения

- $\cdot \, M$ Количество итераций(шагов)
- x удельная теплота плавления на единицу массы
- $\cdot y$ теплоемкость при постоянном давление (также на единицу массы)
- $\cdot \, \, k$ коэфицент теплопроводности
- · T_m температура плавления
- $T_{\infty} < T_m$
- \cdot ω Коэффициент, учитывающий влияние диагональных соседей
- $\cdot \, \, h$ Расстояние между узлами по вертикали и горизонтали
- \cdot δ Шаг по времени
- · $\,c_p$ Теплоемкость при постоянном давлении на единицу массы
- $\cdot \, \, L$ Удельная теплота плавления на единицу массы
- $\cdot \; Grad$ Массив для хранения температурного градиента
- $\cdot Cal-grad-tem$ Вычисляет температурный градиент в каждой ячейке (интерация по всем, кроме границ + для каждого

Рис. 1: Codeblock 1

Рис. 2: Codeblock 2

Рис. 3: Codeblock 3

Рис. 4: Codeblock 4

Рис. 5: Codeblock 5

Рис. 6: Codeblock 6

```
function upd temp
  input Integer x;
  input Integer y;
  input Real Dend[rows, cols];
  input Real Temp[rows, cols];
  input Real Grad[rows, cols];
  output Real Temp_out[rows, cols];
  Real delta T:
  Real sum not diagonal;
  Real sum_diagonal;
algorithm
 if y < N then
    if x < M then
     delta T := (deltaT * k) / (cp * 1 * Dend[x, v]);
      sum not diagonal := Grad[x-1, y] + Grad[x, y-1] + Grad[x+1, y] + Grad[x, y+1];
     sum diagonal := Grad[x-1, y-1] + Grad[x-1, y+1] + Grad[x+1, y-1] + Grad[x+1, y+1];
     Temp_out[x, y] := Temp[x, y] + delta_T * (sum_not_diagonal + w * sum_diagonal);
     cal_grad_tem(1, y+1, Dend, Temp, Grad, S, nu);
end upd temp:
```

Рис. 7: Codeblock 7

Рис. 8: Codeblock 8

Рис. 9: График 1

Рис. 10: График 2

Рис. 11: График 3

Рис. 12: График 4

Рис. 13: График 5

Вывод

На данном этапе рассмотрели алгоритм по созданию и росту дендритов Изучили каждый из его этапов и построили схему.