Optimisation et Recherche Opérationnelle M1 Informatique

Julien Ah-Pine (julien.ah-pine@univ-lyon2.fr)

Université Lyon 2 - ICOM

M1 Informatique 2016-2017

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 1

Recherche Opérationnelle

- ⇒ Qu'est-ce que la **Recherche Opérationnelle (RO)**?
- Voici la définition de la ROADEF (Société Française de Recherche Opérationnelle et d'Aide à la Décision) sur son site http://www.roadef.org/
 - ▶ La RO est la discipline des méthodes scientifiques utilisables pour élaborer de **meilleures décisions**. Elle permet de rationaliser, de simuler et d'**optimiser** l'architecture et le fonctionnement des systèmes de production ou d'organisation.
 - ▶ La RO apparaît comme une discipline carrefour associant les mathématiques, l'économie et l'informatique. Elle est par nature en prise directe sur l'industrie et joue un rôle-clé dans le maintien de la compétitivité.
 - ► Exemples d'application : organisation des lignes de production de véhicules, optimisation des portefeuilles bancaires, aide au séquençage de l'ADN, organisation des produits recyclables . . .
- Dans ce cours nous aborderons l'utilisation des **graphes en RO** et les problèmes permettant d'être résolus dans ce cadre.

Déroulement du cours

- 4 séances CM de 1h45
- 8 séances TD/TP de 1h45 (avec implémentation sur machine à l'aide du language R)
- Evaluation :
 - ▶ 1 dossier R par groupe de 2
 - ▶ 1 examen sur table individuel
- Les supports de cours peuvent être récupérés en rejoignant le groupe M1_INFO_RO-1617

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 2

Théorie des graphes et RO

- ⇒ Pourquoi les graphes et leurs applications en RO?
- Les graphes permettent de représenter de nombreux problèmes de manière intuitive et contribuent donc souvent à formaliser et résoudre ces derniers : "Un bon dessin vaut mieux qu'un long discours".
- Les graphes sont rencontrés dans de **nombreux domaines** et pour de nombreux problèmes d'optimisation : cartographie (plus cours chemins dans des réseaux routiers, réseaux de télécommunication,...), économie-gestion (planning de livraison, ordonnancement, ...), aide à la décision (aide multicritère à la décision, ...), ...
- Les objectifs du cours sont :
 - Présenter certains problèmes de le théorie des graphes trouvant des applications en RO.
 - ► Etudier et mettre en oeuvre des algorithmes résolvant exactement ou de façon approchée ces problèmes.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 3

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 4

Contenu du cours

- Eléments de la théorie des graphes
- 2 Quelques problèmes importants de l'étude d'un graphe
- 3 Problème du plus court chemin
- Problèmes de Flot

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 5

Exemple introductif

 A priori le premier problème résolu par la théorie des graphes (en 1736).

- La ville de Koenigsberg (aujourd'hui Kaliningrad) est traversée par le Pregel, qui coule de part et d'autre de l'île de Kneiphof et possède 7 ponts, comme le montre la figure ci-dessus. Un piéton désire se promener et visiter tous les quartiers en empruntant une et une seule fois chaque pont.
- Est-ce que le parcours désiré du piéton est réalisable?

Quelques références faisant partie des sources du cours

- F. Droesbeke, M. Hallin et Cl. Lefèvre, *Les graphes par l'exemple*, Ellipses, 1987
- M. Gondran et M. Minoux, Graphes et Algorithmes (4ème édition), Lavoisier, 2009
- R. Faure, B. Lemaire et Ch. Picouleau, *Précis de recherche opérationnelle (5ème édition)*, Dunod, 2000
- T. Cormen, Ch. Leiserson, R. Rivest, C. Stein, *Introduction à l'algorithmique (2ème édition)*, Dunod, 2004

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 6

Eléments de la théorie des graphes

Rappel du Sommaire

- Eléments de la théorie des graphes
- Quelques problèmes importants de l'étude d'un graphe
- 3 Problème du plus court chemin
- 4 Problèmes de Flot

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 7

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 8

Eléments de la théorie des graphes Définitions et généralités sur les graphes

Eléments de la théorie des graphes Définitions et généralités sur les graphes

Rappel du Sommaire

- Eléments de la théorie des graphes
 - Définitions et généralités sur les graphes
 - Matrices associées à un graphe
 - Connexité

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Eléments de la théorie des graphes Définitions et généralités sur les graphes

Exemple de graphe orienté

Définition. (Graphe orienté)

Graphes : concepts orientés

Un graphe G = [X, U] est déterminé par la donnée :

- 1 d'un ensemble X dont les éléments sont appelés des sommets (ou des **noeuds**). Si N = |X| est le nombre de sommets, on dit que le graphe G est d'ordre N.
- 2 d'un ensemble U dont les éléments $u \in U$ sont des couples ordonnés de sommets appelés des arcs. Si u = (i, j) est un arc de G, i est l'extrémité initiale et j l'extrémité terminale de u. On notera M = |U|le nombre d'arcs.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Eléments de la théorie des graphes

Définitions et généralités sur les graphes

Boucle et p-graphe

Définition. (Boucle)

Un arc u = (i, i) dont les extrémités coïncident est appelé une **boucle**.

Définition. (p-graphe)

Un p-graphe est un graphe dans lequel il n'existe jamais plus de p arcs de la forme (i, j) entre deux sommets quelconques i et j, pris dans cet ordre.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 11

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 12

Exemple de boucle et d'un 2-graphe

Ah-Pine (Univ-Lyon 2)

M1 Informatique 2016-2017 / 13

Eléments de la théorie des graphes Définitions et généralités sur les graphes

1-graphe et application multivoque

• Si G est un 1-graphe alors il est parfaitement déterminé par la donnée de l'ensemble X et de l'application multivoque Γ . On peut donc aussi noté $G = [X, \Gamma]$.

$$\Gamma_1 = \{2\}$$
 ; $\Gamma_2 = \{1,3\}$; $\Gamma_3 = \{4,5\}$.

Graphes et applications multivoques

Définition. (Ensemble de successeurs d'un sommet)

i est un successeur de i s'il existe un arc de la forme (i, i). L'ensemble **des successeurs** d'un sommet $i \in X$ est noté $\Gamma(i)$.

Définition. (Application multivoque)

L'application Γ qui, à tout élément de X, fait correspondre une partie de X ($\Gamma: X \to \mathcal{P}(X)$), est appelée une application multivoque.

Définition. (Ensemble de prédécesseurs d'un sommet)

j est un **prédecesseur** de i s'il existe un arc de la forme (j, i). L'ensemble **des prédecesseurs** d'un sommet $i \in X$ est noté $\Gamma^{-1}(i)$. (Γ^{-1} est alors l'application multivoque réciproque de Γ).

Ah-Pine (Univ-Lyon 2)

Eléments de la théorie des graphes Définitions et généralités sur les graphes

Graphes: concepts non orientés

Définition. (Graphe non orienté)

Un graphe G = [X, U] dont les éléments $u \in U$ ne sont pas ordonnés est dit non orienté. Les éléments u sont alors appelés arêtes.

- Il s'agit d'un graphe dont on ne s'intéresse pas à l'orientation des arcs. Dans ce cas, $(i,j) \in U$ est équivalent à $(j,i) \in U$.
- Dans la suite du cours :
 - L'utilisation du terme arc sous-entend que le graphe est orienté
 - L'utilisation du terme arête sous-entend que le graphe est non orienté

J. Ah-Pine (Univ-Lyon 2)

Multigraphe et Graphe simple

Définition. (Multigraphe)

Un multigraphe est un graphe pour lequel il peut exister plusieurs arêtes entre deux sommets i et j donnés.

Définition. (Graphe simple)

Un graphe sans boucle et ayant au plus une arête pour toute paire de sommets est appelé graphe simple.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 17

Eléments de la théorie des graphes Définitions et généralités sur les graphes

Définitions principales

Définition. (Arcs adjacents, arêtes adjacentes)

Deux arcs (deux arêtes) sont dit adjacents s'ils ont au moins une extrémité commune.

Définition. (Degré et demi-degré)

- le demi-degré extérieur du sommet i, noté $d_G^+(i)$ est le nombre d'arcs ayant i comme extrêmité initiale
- le demi-degré intérieur du sommet i, noté $d_G^-(i)$ est le nombre d'arcs ayant i comme extrêmité terminale
- le **degré** du sommet i, noté $d_G(i)$ est le nombre d'arcs (arêtes) ayant i comme extrémité et on a (pour les arcs) : $d_G(i) = d_G^+(i) + d_G^-(i)$

Exemple de multigraphe

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Eléments de la théorie des graphes

Définitions et généralités sur les graphes

Exemple

Sous-graphes, graphes partiels et graphes complémentaires

Définition. (Sous-graphes, graphes partiels et graphes complémentaires)

- Le sous-graphe induit par $A \subset X$ est le graphe G_A dont les sommets sont les éléments de A et dont les arcs sont les arcs de G ayant les deux extrémités dans A
- Soit G = [X, U] et soit $V \subset U$. Le graphe partiel engendré par Vest le graphe [X, V]
- Soit G = [X, U] et soient $A \subset X$, $V \subset U$. Le sous-graphe partiel engendré par A et V est le graphe partiel de G_A engendré par V
- Etant donné un 1-graphe G = [X, U], le graphe complémentaire de G, est le graphe $[X, \overline{U}]$ tel que : $(i,j) \in U \Rightarrow (i,j) \notin \overline{U}$ et $(i,j) \notin U \Rightarrow (i,j) \in \overline{U}$

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 21

Eléments de la théorie des graphes Matrices associées à un graphe

Matrice d'incidence sommets-arcs

Définition. (Matrice d'incidence sommets-arcs)

Soit G = [X, U] un graphe sans boucle. La matrice d'incidence de G est une matrice $A = (a_{iu}), i = 1, ..., N, u = 1, ..., M, à coefficients entiers$ dans $\{0,1,-1\}$ tel que chaque colonne correspond à un arc de G et chaque ligne à un sommet. Si $u = (i, j) \in U$ alors la colonne u contient des termes nuls sauf pour les suivants : $a_{iu} = 1$ et $a_{iu} = -1$.

Rappel du Sommaire

- Eléments de la théorie des graphes
 - Définitions et généralités sur les graphes
 - Matrices associées à un graphe
 - Connexité

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Eléments de la théorie des graphes Matrices associées à un graphe

Exemple de matrice d'incidence sommets-arcs

$$A = \begin{array}{ccccc} u_1 & u_2 & u_3 & u_4 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 4 & 0 & 0 & 0 & -1 \\ 5 & 0 & 0 & -1 & 0 \end{array}$$

J. Ah-Pine (Univ-Lyon 2)

Matrice d'incidence sommets-arêtes

Définition. (Matrice d'incidence sommets-arêtes)

Soit G = [X, U] un graphe non orienté sans boucle. La matrice d'incidence de G est une matrice $A = (a_{iu}), i = 1, ..., N, u = 1, ..., M, à coefficients$ entiers dans {0,1} telle que chaque colonne correspond à une arête de G et chaque ligne à un sommet. Si $u = (i, j) \in U$ alors la colonne u contient des termes nuls sauf pour les suivants : $a_{iu} = 1$ et $a_{ju} = 1$.

I. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 25

Eléments de la théorie des graphes Matrices associées à un graphe

Matrice d'adjacence sommets-sommets

Définition. (Matrice d'adjacence sommets-sommets)

Soit G = [X, U] un 1-graphe comportant éventuellement des boucles. La matrice d'adjacence de G est une matrice carrée $A = (a_{ii}), i = 1, ..., N$, j = 1, ..., N, à coefficients entiers dans $\{0, 1\}$ tel que chaque colonne correspond à un sommet de G et chaque ligne à un sommet de G et de terme général : $a_{ij} = 1 \Leftrightarrow (i,j) \in U \ (a_{ij} = 0 \ sinon).$

• Dans le cas non orienté, la matrice d'adjacence est symétrique.

Exemple de matrice d'incidence sommets-arêtes

J. Ah-Pine (Univ-Lyon 2)

M1 Informatique 2016-2017

Eléments de la théorie des graphes Matrices associées à un graphe

Exemple de matrice d'adjacence

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 4 & 0 & 0 & 0 & 0 & 1 \\ 5 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Rappel du Sommaire

Eléments de la théorie des graphes

- Définitions et généralités sur les graphes
- Matrices associées à un graphe
- Connexité

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 29

Eléments de la théorie des graphes

Exemple de matrice

- La chaîne $L = \{u_2, u_5, u_6\}$ de longueur 3, joint le sommet 2 et 3.
- La chaîne $L = \{u_1, u_5, u_6, u_3\}$ de longueur 4 est un cycle élémentaire.

Chaîne, chaîne élémentaire, cycle, cycle élémentaire

Définition. (Chaîne de longueur q et chaîne élélmentaire)

-Une chaîne de longueur q est une séquence de q arcs :

 $L = \{u_1, u_2, \dots, u_n\}$ telle que chaque arc u_r de la séquence $(2 \le r \le q-1)$ ait une extrémité commune avec l'arc u_{r-1} $(u_{r-1} \ne u_r)$ et l'autre extrémité commune avec l'arc u_{r+1} ($u_{r+1} \neq u_r$).

- -L'extrémité i de u_1 non adjacente à u_2 et l'extrémité j de u_a non adjacente à u_{a-1} sont appelées les extrémités de la chaîne L.
- -On appelle chaîne élémentaire une chaîne telle qu'en la parcourant, on ne rencontre pas deux fois le même sommet.

Définition. (Cycle et cycle élémentaire)

Un cycle est une chaîne dont les extrémités coincident (chaîne fermée). Un cycle élémentaire est un cycle minimal (pour l'inclusion) càd ne comprenant strictement aucun autre cycle. Dans un cycle élémentaire, on ne rencontre pas deux fois le même sommet (sauf l'origine).

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Eléments de la théorie des graphes Connexité

Chemin, chemin élémentaire, circuit, circuit élémentaire

Définition. (Chemin de longueur q et chemin élélmentaire)

-Un chemin de longueur q est une séquence de q arcs :

$$P = \{u_1, u_2, \dots, u_q\}$$
 avec

$$u_1 = (i_0, i_1); u_2 = (i_1, i_2); u_3 = (i_2, i_3); \dots; u_q = (i_{q-1}, i_q).$$
 (chaîne dont tous les arcs sont **orientés dans le même sens**.)

- -Les extrémités i₀ et i_a sont respectivement appelés extrémités **initiale** et terminale du chemin P.
- -On appelle chemin élémentaire un chemin tel qu'en le parcourant, on ne rencontre pas deux fois le même sommet.

Définition. (Circuit et circuit élémentaire)

Un circuit est un chemin dont les extrémités coincident (chemin fermée). Un circuit élémentaire est un circuit minimal (pour l'inclusion) càd ne comprenant strictement aucun autre circuit. Dans un circuit élémentaire, on ne rencontre pas deux fois le même sommet (sauf l'origine).

Eléments de la théorie des graphes

Parcours, parcours eulérien et hamiltonien

• Un parcours d'un graphe G est une chaîne, un cycle, un chemin ou un circuit.

Définition. (Parcours eulérien)

Un parcours d'un graphe G est dit eulérien s'il passe une et une seule fois par chaque arc ou arête de G (il peut passer plusieurs fois par un même sommet).

Définition. (Parcours hamiltonien)

Un parcours d'un graphe G est dit hamiltonien s'il passe une et une seule fois par chaque sommet de G (et donc au plus une fois par chaque arc ou arête).

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 33

Eléments de la théorie des graphes

Théorème d'Euler

Théorème. (Théorème d'Euler)

Un mulrigraphe G = [X, U] connexe admet un parcours eulérien ssi le nombre de sommets de degré impair est 0 ou 2. S'il y en a 0, alors il s'agit d'un cycle d'origine quelconque. S'il y en a 2 alors le parcours est une chaîne reliant ces deux noeuds.

Définition. (Graphe connexe)

Un graphe est dit connexe, si pour tout couple de sommets i et j, il existe une chaîne joignant i et j.

Définition. (Graphe orienté fortement connexe)

Un graphe orienté est dit fortement connexe, si pour tout couple de sommets ordonnés (i, j), il existe un chemin joignant i et j.

J. Ah-Pine (Univ-Lyon 2)

Connexité

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe

Rappel du Sommaire

- 1 Eléments de la théorie des graphes
- 2 Quelques problèmes importants de l'étude d'un graphe
- Problème du plus court chemin
- 4 Problèmes de Flot

Rappel du Sommaire

2 Quelques problèmes importants de l'étude d'un graphe

- Graphes sans circuit
- Noyau d'un graphe
- Stabilité et absorption d'un graphe non orienté
- Coloration des sommets
- Arbre partiel de poids minimum

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 37

Quelques problèmes importants de l'étude d'un graphe Graphes sans circuit

Niveaux d'un graphe sans circuit

• L'algorithme permettant de déterminer si un graphe est sans circuit repose sur la définition suivante et la propriété qui suit.

Définition. (Niveaux d'un graphe)

Soit G un graphe à N sommets, considérons les N+1 sous-ensembles de sommets, X(k), k = 0, ..., N, définis de la manière suivante :

- $X(0) = \{i | i \in X, \Gamma(i) = \emptyset\}$
- $X(1) = \{i | i \in X \setminus X(0), \Gamma(i) \subset X(0)\}$
- $X(2) = \{i | i \in X \setminus (X(0) \cup X(1)), \Gamma(i) \subset (X(0) \cup X(1))\}$
- $X(N) = \{i | i \in X \setminus (X(0) \cup X(1) \cup \ldots \cup X(N-1)), \Gamma(i) \subset X(N-1) \cup X(N-1) \}$ $(X(0) \cup X(1) \cup ... \cup X(N-1))$

Ces N+1 sous-ensembles sont disjoints (par construction) et représentent les niveaux du graphe.

Pourquoi déterminer si un graphe est sans circuit?

- L'absence de circuits est une condition nécessaire pour beaucoup d'algorithmes en théorie des graphes. Il est donc important de disposer de méthodes permettant de tester l'absence de circuit dans un graphe donné.
- Nous allons étudier :
 - ▶ Un algorithme permettant d'obtenir un circuit si le graphe en possède au moins un.
 - ▶ Un algorithme permettant d'obtenir les niveaux d'un graphe sans circuit.

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe Graphes sans circuit

Propriétés des niveaux d'un graphe sans circuit

Propriété.

Si G est sans circuit alors les niveaux constituent un recouvrement de X, c'est à dire que $X = X(0) \cup X(1) \cup ... \cup X(N)$. De plus, nous avons la propriété que X(k) est l'ensemble des sommets i de X tel que le chemin de longueur maximale issu de i contient k arcs.

Exemples

Optimisation et Recherche Opérationnelle

Quelques problèmes importants de l'étude d'un graphe Graphes sans circuit

Exemple

- 1 2 3 4 5 • Reprenons l'exemple 2 précédent : $A = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$
- Nous voyons que nous pouvons successivement enlever les lignes et colonnes:
 - **1** 5
 - **2** 4

 - **4** 2

Nous obtenons finalement $\tilde{A} = (0)$ ce qui indique l'absence de circuit.

Algorithme permettant de tester l'absence de circuit

• Soit A la matrice d'adjacence du graphe G = [X, U].

```
Input: A
1 \tilde{A} \leftarrow A
2 Tant que il existe une ligne i de \tilde{A} ne comportant que des 0 faire
            Enlever de \tilde{A} la ligne i et la colonne i
    Fin Tant que
   Si \tilde{A} = 0 faire
           Output: Absence de circuit
    Sinon faire
           Output: Existence d'un circuit
   Fin Si
```

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe Graphes sans circuit

Obtention d'un circuit

- Si à l'issue de l'algorithme précédent, $\tilde{A} \neq 0$ alors il existe un circuit et on peut en construire un à l'aide de l'algorithme suivant.
- Soit \tilde{A} la matrice d'adjacence en sortie de l'algorithme précédent.

```
Input : \tilde{A}
1 v \leftarrow i (sommet de \tilde{A} pris au hasard)
2 S \leftarrow \{v\}
3 Tant que il n'existe pas j \in S tel que \tilde{a}_{vj} = 1 faire
            Choisir k \notin S tel que \tilde{a}_{vk} = 1
              S \leftarrow append(S, \{k\})
              v \leftarrow k
7 Fin Tant que
```

- 8 **Output** : $\{j, k, ..., j\}$
- Dans cet algorithme, l'opération $append(S, \{k\})$ ajoute à la fin de la séquence de sommets S, le sommet k.

Exemple

	Reprenons l'exemple 1 précédent : $A =$	1	0 /	1	0	0	0 \
		2	1	0	1	0	0
•	Reprenons l'exemple 1 précédent : $A =$	3	0	0	0	1	1
		4	0	0	0	0	1
		5	$\sqrt{1}$	0	0	0	0/

• Dans ce cas $\tilde{A} = A$ car aucune ligne ne comporte que des 0 et il existe donc au moins un circuit.

Prenons au hasard le sommet 3 :

1 2 3 4 5

$$S = \{3\}$$

$$S = \{3, 5\}$$

$$S = \{3, 5, 1\}$$

$$S = \{3, 5, 1, 2\}$$

 $\tilde{a}_{21} = 1$ avec $1 \in S$ et donc $\{1,2,1\}$ est un circuit

M1 Informatique 2016-2017 / 45

Quelques problèmes importants de l'étude d'un graphe Graphes sans circuit

Algorithme d'obtention des niveaux d'un graphe sans circuit

Input: A

- 1 $k \leftarrow 0$
- Calculer X(k), l'ensemble des sommets correspondant aux lignes de A non marquées ne contenant que des 1 barrés ou des 0
- Tant que $X(k) \neq \emptyset$ faire
- Marquer les lignes de A correspondant aux éléments de X(k)4 et barrer les 1 des colonnes correspondantes
- $k \leftarrow k + 1$ 5
- Calculer X(k), l'ensemble des sommets correspondants aux lignes de A non marquées ne contenant que des 1 barrés ou des 0
- Fin Tant que
- **Output:** X(0),...,X(k-1) et $X(k) = ... = X(N) = \emptyset$

Niveaux d'un graphe sans circuit

• On suppose ici que le graphe est sans circuit.

Rappel:

- Dans ce cas, un sommet appartient à X(k) avec k = 0, ..., N, si le chemin de longueur maximale issu de ce sommet est de longueur k.
- De plus, les niveaux X(k) forment une partition de X et tout sommet de X(k) n'admet aucun successeur dans les niveaux X(l) avec $l \ge k$.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe Graphes sans circuit

Exemple

• Reprenons l'exemple 2 précédent :
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 & 0 & 1 \\ 5 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
• Nous voyons que nous pouvons successivement déterminer les n

- Nous voyons que nous pouvons successivement déterminer les niveaux suivants:
 - **1** $X(0) = \{5\}$
 - (2) $X(1) = \{3,4\}$
 - $X(2) = \{2\}$
 - $(3) X(3) = \{1\}$
- $X(4) = \emptyset$ puisque tous les sommets ont été marqués. On arrête donc l'algorithme.

Rappel du Sommaire

2 Quelques problèmes importants de l'étude d'un graphe

- Graphes sans circuit
- Noyau d'un graphe
- Stabilité et absorption d'un graphe non orienté
- Coloration des sommets
- Arbre partiel de poids minimum

Définition. (Noyau d'un graphe)

Soit G = [X, U] un graphe sans boucle, de matrice d'adjacence A. Un sous-ensemble Y de sommets est un noyau s'il satisfait aux deux conditions suivantes :

- $\forall i, j \in Y : (i, j) \notin U \land (j, i) \notin U$ (un ensemble Y vérifiant cette propriété est dit stable)
- $\forall i \in X \setminus Y, \exists j \in Y$ tel que $(i, j) \in U$ (un ensemble Y vérifiant cette propriété est dit absorbant)

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 49

Quelques problèmes importants de l'étude d'un graphe

Exemples

• Exemple 1 : $Y = \{2, 4, 5\}$; Exemple 2 : $\{1, 4, 5, 6\}$; Exemple 3 : $Y = \{1,3\}$ et $Y = \{2,4\}$; Exemple 4: $Y = \emptyset$.

J. Ah-Pine (Univ-Lyon 2)

Définition

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe Noyau d'un graphe

Théorème d'existence

• Il n'existe donc pas toujours un noyau étant donné un graphe.

Théorème.

Un 1-graphe sans circuit possède un et un seul noyau.

Propriété.

Dans un graphe sans circuit, tous les sommets n'ayant aucun successeur (les feuilles) sont des éléments du noyau.

Algorithme d'obtention d'un noyau d'un graphe sans circuit

Input: A (Matrice d'adjacence d'un graphe sans circuit)

 $Y \leftarrow \emptyset$ 1

Marquer une ligne j ne comportant que des 0

 $Y \leftarrow Y \cup \{j\}$

Dans la colonne j, barrer les lignes et colonnes i telles que $a_{ii} = 1$

Tant que il existe une ligne non marquée et non barrée ne comportant que des 1 barrés ou des 0 faire

Marquer une ligne i non marquée et non barrée ne 6 comprenant que des 1 barrés ou des 0

 $Y \leftarrow Y \cup \{j\}$

Dans la colonne j, barrer les lignes et colonnes itelles que $a_{ii} = 1$

Fin Tant que

10 Output : Y

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 53

Quelques problèmes importants de l'étude d'un graphe Noyau d'un graphe

Exemple pratique

- Le concept de noyau est important en théorie des graphes tant du point de vue théorique que du point de vue pratique. Il intervient notamment dans les problèmes de théorie des jeux et d'aide à la décision (cours d'agrégation de préférences en M2).
- Exemple concret : Un gouvernement a décidé de répartir 500 Millions d'Euros en vue de diminuer la mortalité sur les routes et propose dans ce cas cing alternatives :
 - Augmentation du nombre de gendarmes
 - Construction d'autoroutes
 - Mise en place de signaux lumineux à tous les carrefours
 - 4 Récompenses aux meilleurs conducteurs
 - Gratuité des transports publics

Exemple

• Nous voyons que nous pouvons successivement déterminer les éléments du noyau :

1 Itération 1 : $Y = \{5\}$

2 Itération 2 : $Y = \{2, 5\}$

• Puisque toutes les lignes sont soit marquées (en rouge) soit barrées, on arrête l'algorithme.

. Ah-Pine (Univ-Lyon 2)

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 /

Quelques problèmes importants de l'étude d'un graphe Noyau d'un graphe

Exemple pratique (suite)

• Il charge un groupe de receuillir les préférences du public et ce groupe parvient à établir le graphe suivant où les cinq sommets représentent les cinq alternatives et où un arc (i, j) est tracé s'il est certain que la population ne préfère pas i à j (autrement dit elle préfère j à i).

Détermination du noyau :

 $Y = \{autor, trans pub\}$

Ceci permet de justifier : (i) la non-subvention des éléments hors du noyau, (ii) la subvention des éléments du noyau, (iii) l'incomparabilité entre les deux éléments du noyau (50/50).

Rappel du Sommaire

2 Quelques problèmes importants de l'étude d'un graphe

- Graphes sans circuit
- Noyau d'un graphe
- Stabilité et absorption d'un graphe non orienté
- Coloration des sommets
- Arbre partiel de poids minimum

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 57

Quelques problèmes importants de l'étude d'un graphe Stabilité et absorption d'un graphe non orienté

Stabilité et absorption

Définition. (Sous-ensemble stable et absorbant)

Soit G = [X, U] un graphe non orienté.

- Un sous-ensemble $S \subset X$ est **stable** si deux sommets de S ne sont jamais adjacents : $\forall i, j \in S : (i, j) \notin U$
- Un sous-ensemble $T \subset X$ est **absorbant** a si toute arête de U possède au moins une extrémité dans $T: \forall u = (i, j) \in U: i \in T \lor j \in T$
- a. on dit également transversal pour les graphes non orientés

• Exemples de sous-ensembles stables:

$$S_1 = \{1,3\}, S_2 = \{2,5\}.$$

• Exemples de sous-ensembles absorbants:

$$T_1 = \{2,4,5\}, T_2 = \{1,3,4\}.$$

M1 Informatique 2016-2017 / 59

Rappel et définition

Définition. (Graphe non orienté)

Un graphe G = [X, U] dont les éléments $u \in U$ ne sont pas ordonnés est dit non orienté. Les éléments u sont alors appelés arêtes.

• Il s'agit d'un graphe dont on ne s'intéresse pas à l'orientation des arcs. Dans ce cas, $(i,j) \in U$ est équivalent à $(j,i) \in U$.

Définition. (Graphe biparti)

Un graphe G = [X, U] est biparti s'il est possible de partitionner X en deux sous-ensembles S et \overline{S} tels que chaque arête ait exactement une extrémité dans S et une extrémité dans S

• Exemple de graphe biparti:

. Ah-Pine (Univ-Lyon 2)

Quelques problèmes importants de l'étude d'un graphe Stabilité et absorption d'un graphe non orienté

Propriétés sur la stabilité et l'absorption

Propriété.

Le complément de tout sous-ensemble stable est absorbant et réciproquement.

• Dans l'exemple précédent on a par exemple : $T_1 = X \setminus S_1$ et $S_2 = X \setminus T_2$.

Propriété.

Dans un graphe biparti, les sous-ensembles X_1 et X_2 sont tout à la fois stables et absorbants.

Quelques problèmes importants de l'étude d'un graphe Stabilité et absorption d'un graphe non orienté

Nombres de stabilité et d'absorption

Définition.

Soit respectivement \mathbb{S} et \mathbb{T} , les familles des sous-ensembles stables et absorbants de X. On définit alors les nombres suivants :

- Nombre de stabilité : $\alpha(G) = \max_{S \in \mathbb{S}} |S|$
- Nombre d'absorption : $\tau(G) = \min_{T \in \mathbb{T}} |T|$

Remarque : $\alpha(G) + \tau(G) = |X|$.

• Dans l'exemple précédent : $\alpha(G) = 2$ et $\tau(G) = 3$.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 61

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Rappel du Sommaire

2 Quelques problèmes importants de l'étude d'un graphe

- Graphes sans circuit
- Noyau d'un graphe
- Stabilité et absorption d'un graphe non orienté
- Coloration des sommets
- Arbre partiel de poids minimum

Exemple d'application

• Soit une forteresse composée de 5 tours $\{1, \ldots, 5\}$ qui sont reliées par 5 murs $\{u_1, \ldots, u_5\}$ comme l'indique le graphe suivant :

• Un gardien placé sur une tour peut surveiller les deux murs adjacents à cette tour. Pour des raisons d'économie, on cherche a mobiliser le minimum de gardiens pour garder la forteresse. Quel est donc le nombre minimum de gardiens permettant de garder tous les murs de la forteresse?

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 62

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Coloration des sommets d'un graphe

- Colorer les sommets d'un graphe G = [X, U], consiste à leurs asssocier des couleurs (ou tout autre identificateur : numéros, noms, ...) de telle sorte que deux sommets adjacents n'aient pas la même couleur. Si k-couleur sont utilisées on parle de k-coloration.
- On vérifie directement qu'une k-coloration des sommets de G est équivalent à une partition de X en k sous-ensembles stables, chacun d'entre eux contenant les sommets de même couleur.

Nombre chromatique

Définition. (Nombre chromatique)

Le nombre chromatique d'un graphe G, noté $\gamma(G)$, est la plus petite valeur de k pour laquelle il existe une k-coloration. Une coloration des sommets en $\gamma(G)$ couleur est dite minimale.

• De nombreux problèmes concrets, tels que certains problèmes d'horaire et d'allocation de ressources, peuvent se ramener à la recherche d'une coloration minimale des sommets d'un graphe.

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 65

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Détermination du nombre chromatique d'un graphe

- La détermination du nombre chromatique d'un graphe G = [X, U]ainsi que l'obtention d'une coloration minimale des sommets de Gconstitue un problème complexe. Naïvement, on peut procéder de la manière suivante :
 - ► Enumérer tous les ensembles stables maximaux (au sens de l'inclusion).
 - ► Chercher un recouvrement des sommets formé d'un nombre minimum d'ensembles stables maximaux. Ce nombre est égal à $\gamma(G)$.
 - ▶ Déduire de ce recouvrement une partition de X en sous-ensembles stables et donc une coloration minimale de G.
- Cependant, le nombre d'ensembles stables maximaux sera souvent trop important pour que la procédure soit effectivement appllicable.
- ⇒ En pratique on a recours à des algorithmes de coloration heuristiques simples mais qui mènent à une coloration des sommets non nécessairement minimale.

Exemple d'un graphe biparti

• Nombre chromatique du graphe : $\gamma(G) = 2$.

Propriété.

Un graphe G est biparti ssi il est bichromatique.

Optimisation et Recherche Opérationnelle

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Algorithme de coloration de Welsh et Powell

Input: A (matrice d'adjacence de G)

- Ranger les sommets par ordre de degrés non croissant
- $k \leftarrow 0$
- $B \leftarrow$ liste des sommets rangés par ordre de degrés non croissant
- **Tant que** toutes les lignes de *B* ne sont pas colorées **faire**
 - $k \leftarrow k + 1$
- Tant que $B \neq \emptyset$ faire
- Colorer dans A par la couleur c_k la 1ère ligne non colorée dans B ainsi que la colonne correspondante
- $B \leftarrow$ liste des lignes non colorées ayant un zéro dans toutes les colonnes de A de couleur c_k
- Fin Tant que
- $B \leftarrow$ liste des sommets non colorés rangés par 10 ordre de degrés non croissant
- Fin Tant que
- **Output:** k-coloration de G

Exemple

Matrice d'adjacence A:

Degré des sommets :

J. Ah-Pine (Univ-Lyon 2)

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 69

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Exemple (1ère itération : k = 1)

6
$$k \leftarrow 1$$

7 $B \leftarrow \{1, 2, ..., 8\}$

Matrice d'adjacence
$$A$$
:

$$\begin{array}{ll} 10 & B \leftarrow \{4,5,8\} \\ 10 & B \leftarrow \emptyset \end{array}$$

Exemple (initialisation)

Input : A

- 1 Les sommets sont déjà ordonnés
- 2 A ne change pas
- 3 $k \leftarrow 0$
- 4 $B \leftarrow \{1, 2, \dots, 8\}$

Matrice d'adjacence A:

. Ah-Pine (Univ-Lyon 2)

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Exemple (2ème itération : k = 2)

6
$$k \leftarrow 2$$

7
$$B \leftarrow \{2, 3, 5, 6, 7, 8\}$$

Matrice d'adjacence A:

10
$$B \leftarrow \{6,8\}$$

10
$$B \leftarrow \{8\}$$

 $B \leftarrow \emptyset$

Exemple (3ème itération : k = 3)

6
$$k \leftarrow 3$$

7 $B \leftarrow \{3, 5, 7\}$

Matrice d'adjacence A:

10
$$B \leftarrow \{5,7\}$$

10 $B \leftarrow \{7\}$
10 $B \leftarrow \emptyset$

M1 Informatique 2016-2017 / 73

Quelques problèmes importants de l'étude d'un graphe Coloration des sommets

Borne pour le nombre chromatique

- Attention : l'algorithme de Welsh et Powell est une heuristique et donc la k-coloration obtenue n'est pas nécessairement minimale. Le nombre chromatique est en général inconnu.
- En revanche, il existe des bornes pour $\gamma(G)$:
 - ► Bornes inférieures :
 - $\star \gamma(G) \geq \frac{N}{N \min_i(d_G(i))}$
 - * $\gamma(G) \geq \frac{N}{\alpha(G)}$
 - * $\gamma(G) \geq \omega(G)$ où $\omega(G)$ est le cardinal de la plus grande clique de
 - ► Bornes supérieures :
 - $\star \gamma(G) \leq \max_i(d_G(i)) + 1$
 - $\star \gamma(G) < N+1-\alpha(G)$
 - ★ $\gamma(G) \le k$ où k est le nombre de couleurs obtenu à l'issue de l'algorihtme de Welsh et Powell

Exemple (fin de l'algorithme)

- Toutes les lignes sont colorées
- On obtient une 3-coloration :

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe

Exemple

Degré des sommets :

1 2 3 4 5 6 7 8 $d_G(i)$ (4 4 4 3 3 2 2 2)

Calcul des bornes :

- Bornes inférieures :
 - $\gamma(G) \ge \frac{N}{N \min_i(d_G(i))} = \frac{8}{6}$ $\gamma(G) \ge \frac{N}{\alpha(G)} = \frac{8}{3}$

 - $ho \gamma(G) \geq \omega(G) = 3$
- Bornes supérieures :
 - $ightharpoonup \gamma(G) \leq \max_i (d_G(i)) + 1 = 5$
 - ▶ $\gamma(G) \le N + 1 \alpha(G) = 6$
 - ▶ $\gamma(G) < k = 3$

Donc pour l'exemple : $\gamma(G) = 3$.

Rappel du Sommaire

2 Quelques problèmes importants de l'étude d'un graphe

- Graphes sans circuit
- Noyau d'un graphe
- Stabilité et absorption d'un graphe non orienté
- Coloration des sommets
- Arbre partiel de poids minimum

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 77

Quelques problèmes importants de l'étude d'un graphe Arbre partiel de poids minimum

Arbres

Définition. (Arbres et forêts)

Un arbre est un graphe non orienté simple, connexe et sans cycle. Une forêt est un graphe non orienté simple et sans cyle. Une forêt peut être vue comme un ensemble d'arbres.

- Exemples d'application : réseaux de télécommunications, hiérarchies, taxonomies...
- Exemples d'arbres :

Préambule : Graphes valués

Définition. (Graphe valué)

Etant donné un graphe G = [X, U], on associe à chaque arête u un nombre $p(u) \in \mathbb{R}$ appelé poids de arête. On dit que G est valué ou pondéré par les valeurs p(u). Si u = (i, j), on utilisera également la notation pii pour désigner le poids de l'arête u.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017

Quelques problèmes importants de l'étude d'un graphe

Poids d'un graphe partiel

Définition. (Poids d'un graphe partiel)

Soit G = [X, U] un graphe valué simple et soit $U' \subset U$. Le poids du graphe partiel G' = [X, U'] est le nombre :

$$p(U') = \sum_{u \in U'} p(u)$$

J. Ah-Pine (Univ-Lyon 2)

Problème de l'arbre partiel de poids minimum

Définition. (Problème de l'arbre partiel de poids minimum)

Soit G = [X, U] un graphe valué simple et connexe. Un graphe partiel sans cycles de G (donc un arbre admettant X pour ensemble de sommets) est appelé arbre partiel de G. Notons par A l'ensemble de tous les arbres partiels de G. L'arbre partiel de poids minimum a est l'arbre G' = [X, U'] qui minimise p(U') sur \mathbb{A} :

$$\forall G'' = [X, U''] \in \mathbb{A} : p(U') \le p(U'')$$

- a. on parle aussi d'arbre couvrant de poids ou de longueur minimum
- La construction d'un arbre partiel de poids minimum dans un graphe a de nombreuses applications notamment dans certains problèmes de distribution et de télécommunication. Par ailleurs, en fouille de données, et en classification automatique en particulier, la résolution du problème aboutit à une méthode de classification hiérarchique.

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 81

Quelques problèmes importants de l'étude d'un graphe Arbre partiel de poids minimum

Obtention d'un arbre partiel de poids minimal : algorithme de Kruskal

```
Input : G = [X, U]
     Ranger les arêtes de U par ordre de poids croissants
     U' \leftarrow \{u_1\}; k \leftarrow 1
     Tant que |U'| \neq N-1 faire
4
            k \leftarrow k + 1
            Tant que il existe un cycle dans U' \cup \{u_k\} faire
                   k \leftarrow k + 1
            Fin Tant que
7
            U' \leftarrow U' \cup \{u_k\}
     Fin Tant que
     Output: G' = [X, U'] est l'arbre partiel de poids minimum
```

• On ajoute successivement à U' les arêtes dont les poids sont les plus bas pourvu que ces ajouts n'entraînent pas l'apparition d'un cycle.

Obtention d'un arbre partiel de poids minimal : propriétés de l'algorithme de Kruskal

- Il existe plusieurs algorithmes d'obtention d'un arbre partiel de poids minimum dans un graphe valué simple et connexe G = [X, U]. Nous présentons ici l'algorithme de Kruskal. Il repose sur les propriétés suivantes:
 - La solution du problème est unique si les poids des arêtes sont tous distincts. Nous supposons cette condition satisfaite dans la suite.
 - La solution du problème est invariante pour les transformations monotones croissantes des poids : elle ne dépend donc que du rang des arêtes lorsque celles-ci sont classées par poids croissants.
 - Notons U_Y avec $Y \subset X$, l'ensemble des arêtes de G = [X, U] ayant une extrémité dans Y et l'autre dans $X \setminus Y$. Si G' = [X, U'] est un arbre partiel de poids minimum alors pour tout $Y \subset X$, l'arête de valeur minimum de U_Y appartient à U'.
 - Le graphe G = [X, U] étant supposé simple et connexe, tout arbre partiel de G est un arbre à N-1 arêtes et N sommets.

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 /

Quelques problèmes importants de l'étude d'un graphe Arbre partiel de poids minimum

Exemple

Ranger les arêtes de U par ordre de poids croissants

(i,j)	p _{ij}	u _k
(1,4)	1	u_1
(2,4)	2	<i>u</i> ₂
(2,3)	4	из
(1,3)	5	и4
(1, 2)	6	и5
(3,4)	7	и ₆
(2,5)	8	и7
(1,5)	10	и8

Exemple (suite)

(i,j)	p_{ij}	u _k
(1, 4)	1	u_1
(2,4)	2	<i>u</i> ₂
(2,3)	4	из
(1, 3)	5	U 4
(1, 2)	6	и5
(3, 4)	7	и ₆
(2,5)	8	и 7
(1,5)	10	и ₈

2	U' =	= { 11	1 } · k	i = 1

$$|U'| = 1$$

$$4 k = 2$$

8
$$U' = \{u_1, u_2\}$$

$$|U'| = 2$$

$$4 k = 3$$

8
$$U' = \{u_1, u_2, u_3\}$$

$$|U'| = 3$$

$$4 k = 4$$

6
$$k = 5$$

6
$$k = 6$$

$$4 k = 7$$

8
$$U' = \{u_1, u_2, u_3, u_7\}$$

$$|U'| = 4$$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 85

Problème du plus court chemin

Rappel du Sommaire

- Eléments de la théorie des graphes
- 2 Quelques problèmes importants de l'étude d'un graphe
- 3 Problème du plus court chemin
- 4 Problèmes de Flot

Exemple (suite)

• Arbre partiel de poids minimum : G' = [X, U'] avec

$$U' = \{u_1, u_2, u_3, u_7\}$$

 $p(U') = p(u_1) + p(u_2) + p(u_3) + p(u_7) = 15$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 86

Problème du plus court chemin

Exemples d'applications

- Les problèmes de cheminement dans les graphes sont parmi les problèmes les plus anciens de la théorie des graphes. Le problème du plus court chemin est, parmi ceux-ci, le plus typique et possède de nombreuses applications :
 - Problèmes de tournées
 - ▶ Problèmes d'optimisation de réseaux (routiers, télécommunications)
 - ▶ certains problèmes d'investissements et de gestion de stocks
 - certains problèmes en intelligence artificielle
 - **.** . . .

Préambule : Graphes valués

Définition. (Rappel : Graphe valué)

Etant donné un graphe G = [X, U], on associe à chaque arc u un nombre $I(u) \in \mathbb{R}$ appelé "longueur de l'arc" ou poids de l'arc (comme précédemment). On dit que G est valué par les longueurs I(u). Si u = (i, j), on utilisera également la notation l_{ii} pour désigner la longueur de l'arc u.

Ah-Pine (Univ-Lyon 2)

M1 Informatique 2016-2017 / 89

Problème du plus court chemin Algorithme de Moore-Dijkstra

Rappel du Sommaire

- 3 Problème du plus court chemin
 - Algorithme de Moore-Dijkstra
 - Algorithme de Ford-Bellman

Problème du plus court chemin

Définition. (Problème du plus court chemin)

Le problème du plus court chemin entre deux sommets i et i sera de trouver un chemin $\mu(i,j)$ de i à j dont la longueur totale :

$$I(\mu) = \sum_{u \in \mu(i,j)} I(u)$$
 soit minimum

• La longueur d'un chemin est la somme des longueurs des arcs le consituant.

. Ah-Pine (Univ-Lyon 2)

M1 Informatique 2016-2017

Problème du plus court chemin

Algorithme de Moore-Diikstra

Algorithme de Moore-Dijkstra

- Détermination du plus court chemin du sommet s aux autres sommets dans un graphe valué dont les longueurs sont positives càd $\forall u \in U : I(u) \geq 0.$
- Exemples de longueurs positives ou nulles :
 - ► Temps (en minutes, en heures, ...)
 - ► Coûts (en euros, ...), ...
- Posons $X = \{1, 2, ..., N\}$ et soit I_{ii} la longueur de l'arc $(i, j) \in U$.
- Définissons $\pi^*(i)$ comme la longueur du plus court chemin de s à i. Nous avons $\pi^*(s) = 0$.
- L'algorithme utilise la représentation du graphe par Γ. Il procède en N-1 itérations. Au début de chaque itération, l'ensemble X est partitionné en deux sous-ensembles, S et $\overline{S} = X \setminus S$ avec $s \in S$.
- Chaque sommet i de X est affecté d'une étiquette $\pi(i)$ qui vérifie la propriété suivante :
 - ightharpoonup si $i \in S, \pi(i) = \pi^*(i)$
 - \blacktriangleright si $i \in \overline{S}, \pi(i) = \min_{i \in S, j \in \Gamma^{-1}(i)} (\pi(j) + l_{ii})$

Pseudo code de l'algorithme de Moore-Dijkstra

```
Input : G = [X, U], s
        \pi(s) \leftarrow 0; \overline{S} \leftarrow \{1, 2, \dots, N\} \setminus \{s\}
         Pour tout i \in \overline{S} faire
                    Si i \in \Gamma(s) faire
                               \pi(i) \leftarrow I_{si}
                     Sinon faire
                               \pi(i) \leftarrow +\infty
                     Fin Si
         Fin Pour
         Tant que \overline{S} \neq \emptyset faire
                     Sélectionner i^* \in \overline{S} tel que \pi(i^*) = \min_{i \in \overline{S}} \{\pi(i)\}
10
11
                    \overline{S} \leftarrow \overline{S} \setminus \{i^*\}
                     Pour tout i \in \Gamma(i^*) \cap \overline{S} faire
12
                               \pi(i) \leftarrow \min(\pi(i), \pi(i^*) + l_{i^*i})
13
                     Fin Pour
14
15
         Fin Tant que
        Output : \pi
```

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 93

Problème du plus court chemin Algorithme de Moore-Dijkstra

Déroulement de l'algorithme


```
Initialisation : S = \{1\}, \pi = (0, 7, 1, +\infty, +\infty, +\infty)
1-8
10
           i^* = 3
          S = \{1, 3\}
11
12-14 \Gamma_3 \cap \overline{S} = \{2, 5, 6\}
          \pi(2) = \min(7, 1+5) = 6, \ \pi(5) = \min(+\infty, 1+2) = 3,
          \pi(6) = \min(+\infty, 1+7) = 8
```

Exemple : cas d'un graphe orienté

• Calcul du plus court chemin entre 1 et les autres sommets.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 94

Problème du plus court chemin

Algorithme de Moore-Dijkstra

Déroulement de l'algorithme

Valeur courante : $S = \{1, 3\}, \pi = (0, 6, 1, +\infty, 3, 8)$

10 $i^* = 5$

 $S = \{1, 3, 5\}$

12-14 $\Gamma_5 \cap \overline{S} = \{2, 4\}$ $\pi(2) = \min(6, 3+2) = 5, \ \pi(4) = \min(+\infty, 3+5) = 8$

Déroulement de l'algorithme

- Valeur courante : $S = \{1, 3, 5\}, \pi = (0, 5, 1, 8, 3, 8)$ 9
- 10 $i^* = 2$
- $S = \{1, 2, 3, 5\}$ 11
- 12-14 $\Gamma_2 \cap \overline{S} = \{4, 6\}$

$$\pi(4) = \min(8, 5 + 4) = 8$$
, $\pi(6) = \min(8, 5 + 1) = 6$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 97

Problème du plus court chemin Algorithme de Moore-Dijkstra

Déroulement de l'algorithme

- Valeur courante : $S = \{1, 2, 3, 5, 6\}, \pi = (0, 5, 1, 8, 3, 6)$
- $i^* = 4$
- 11 $S = \{1, 2, 3, 4, 5, 6\}$
- 12 $\Gamma_4 \cap \overline{S} = \emptyset$

Déroulement de l'algorithme

- Valeur courante : $S = \{1, 2, 3, 5\}, \pi = (0, 5, 1, 8, 3, 6)$
- 10 $i^* = 6$
- 11 $S = \{1, 2, 3, 5, 6\}$
- 12 $\Gamma_6 \cap \overline{S} = \emptyset$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 98

Problème du plus court chemin

Algorithme de Moore-Dijkstra

Résultat de l'algorithme

• Les plus courts chemins de 1 vers les autres sommets du graphe sont de longueurs : $\pi^* = (0, 5, 1, 8, 3, 6)$

Optimisation et Recherche Opérationnelle

Exemple : cas d'un graphe non orienté

• Calcul du plus court chemin entre 1 et les autres sommets.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 101

Problème du plus court chemin Algorithme de Moore-Dijkstra

Déroulement de l'algorithme

9 Valeur courante :
$$S = \{1, 2\}, \pi = (0, 3, 9, 5, 10, 7)$$

10
$$i^* = 4$$

11
$$S = \{1, 2, 4\}$$

12-14
$$\Gamma_4 \cap \overline{S} = \{5\}$$

 $\pi(5) = \min(10, 5+1) = 6$

Déroulement de l'algorithme

1-8 Initialisation :
$$S = \{1\}$$
, $\pi = (0, 3, 10, +\infty, +\infty, +\infty)$
10 $i^* = 2$
11 $S = \{1, 2\}$
12-14 $\Gamma_2 \cap \overline{S} = \{3, 4, 5, 6\}$
 $\pi(3) = \min(10, 3 + 6) = 9$, $\pi(4) = \min(+\infty, 3 + 2) = 5$,

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

 $\pi(5) = \min(+\infty, 3+7) = 10, \pi(6) = \min(+\infty, 3+4) = 7$

M1 Informatique 2016-2017 / 102

Problème du plus court chemin

Algorithme de Moore-Dijkstra

Déroulement de l'algorithme

9 Valeur courante :
$$S = \{1, 2, 4\}, \pi = (0, 3, 9, 5, 6, 7)$$

10
$$i^* = 5$$

11
$$S = \{1, 2, 4, 5\}$$

12-14
$$\Gamma_5 \cap \overline{S} = \{6\}$$

 $\pi(6) = \min(7, 6+2) = 7$

Déroulement de l'algorithme

Valeur courante : $S = \{1, 2, 4, 5\}, \pi = (0, 3, 9, 5, 6, 7)$ 9

10 $i^* = 6$

 $S = \{1, 2, 4, 5, 6\}$ 11

12-14 $\Gamma_5 \cap \overline{S} = \{3\}$ $\pi(3) = \min(9, 7+3) = 9$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 105

Problème du plus court chemin Algorithme de Moore-Dijkstra

Résultat de l'algorithme

• Les plus courts chemins de 1 vers les autres sommets du graphe sont de longueurs : $\pi^* = (0, 3, 9, 5, 6, 7)$.

Déroulement de l'algorithme

Valeur courante : $S = \{1, 2, 4, 5, 6\}, \pi = (0, 3, 9, 5, 6, 7)$

10 $i^* = 3$

11 $S = \{1, 2, 3, 4, 5, 6\}$

12 $\Gamma_5 \cap \overline{S} = \emptyset$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 106

Problème du plus court chemin Algorithme de Moore-Dijkstra

Propriétés des plus courts chemins

Propriété. (Principe d'optimalité)

Tout sous-chemin d'un plus court chemin est un court chemin.

Démonstration.

A faire.

Bien fondé de l'algorithme de Moore-Dijkstra

Propriété.

L'algorithme calcule successivement les sommets les plus proches de s : le sommet ajouté à l'ensemble S à l'itération k = 1, ..., N-1 de l'étape (9-15), est le kème sommet le plus proche de s.

Ah-Pine (Univ-Lyon 2)

M1 Informatique 2016-2017 / 109

Problème du plus court chemin Algorithme de Moore-Dijkstra

Complexité de l'algorithme de Moore-Dijkstra

- Soit N le nombre de sommets et M le nombre d'arcs. A chaque itération de l'étape (9-15), il y a deux opérations : une opération de sélection et une opération de mise à jour.
- Le nombre d'opérations de sélection à l'itération k = 1, ..., N-1 est N-k d'où au total $\frac{N(N-1)}{2}$ opérations de sélection $(O(N^2))$.
- Le nombre d'opérations de mise à jour à l'itération k est le nombre de successeurs du sommet sélectionné d_{i*}^+ . Donc au total, nous avons au plus $\sum_{i \in X} d_i^+ = M$ opérations de mise à jour (O(M)).

Propriété.

Le temps requis par l'algorithme de Moore-Dijkstra est en $O(N^2)$.

• Remarque : si le graphe est peu dense (M petit), on peut utiliser des structures de données particulières pour améliorer la complexité de $O(N^2)$ à $O(M \log N)$.

Démonstration.

Notons S_k l'ensemble S à l'itération k et $\overline{S}_k = X \setminus S_k$.

- Propriété vraie pour k = 1 (S_1 contient le plus proche voisin de s)
- Supposons que la propriété est vraie pour k > 1 (S_k contient les kplus proches voisins de s) et montrons qu'elle est vraie pour k+1:
 - Observation : à l'issue de l'itération k, $\forall i \in \overline{S}_k, \pi_k(i) = \min_{i \in S_k, i \in \Gamma^{-1}(i)} (\pi^*(j) + l_{ii}). \ \pi_k(i)$ est le plus court chemin entre s et i parmi ceux passant par des sommets de S_k .
 - A l'itération k+1, on sélectionne i^* tel que $\pi_k(i^*) = \min_{i \in \overline{S}_k} \pi_k(i)$. Montrons que celui-ci est le k+1 ème plus proche voisin de \hat{s} en montrant que pour tout autre chemin $\mu(s, i^*)$, $I(\mu(s, i^*)) \geq \pi_k(i^*)$.
 - Posons $\mu(s, i^*) = \{\mu(s, h), \mu(h, i^*)\}$ où h est le **premier** sommet rencontré dans $\mu(s, i^*)$ qui appartienne à \overline{S}_k .
 - On a $I(\mu(s,h)) \geq \pi_k(h)$ (par définition), puis $I(\mu(s,h)) + I(\mu(h,i^*)) \ge \pi_k(h)$ car $I(\mu(h,i^*)) \ge 0$ et donc $I(\mu(s,i^*)) \geq \pi_k(h)$. Or $\pi_k(h) \geq \pi_k(i^*)$ (par définition). On en déduit que $I(\mu(s, i^*)) \ge \pi_k(i^*)$.

Problème du plus court chemin Algorithme de Moore-Dijkstra

Cas des graphes valués quelconques

- Soit G = [X, U] un graphe valué tel que $\forall u \in U : I(u) \in \mathbb{R}$.
- Conditions d'existence de plus courts chemins : Soit $\mu(i,j)$ un chemin de i à j comprenant un circuit ω comme illustré ci-dessous :

- Soit $\mu'(i,j)$ un chemin de i à j ne comprenant pas le circuit ω . On a : $I(\mu) = I(\mu') + I(\omega)$. Ainsi :
 - ▶ Si $I(\omega)$ < 0, il n'existe pas de plus court chemin de i à j (ω est un circuit absorbant)
 - ▶ Si $I(\omega) > 0$ alors $I(\mu') < I(\mu)$ et dans la recherche d'un plus court chemin on peut se restreindre aux chemins élémentaires.
- Dans la suite on supposera qu'il n'y a pas de circuit de longueur négative.

Rappel du Sommaire

- 3 Problème du plus court chemin
 - Algorithme de Moore-Dijkstra
 - Algorithme de Ford-Bellman

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 113

Problème du plus court chemin Algorithme de Ford-Bellman

Pseudo code de l'algorithme de Ford-Bellman

```
Input : G = [X, U], s
     \pi(s) \leftarrow 0
      Pour tout i \in \{1, 2, ..., N\} \setminus \{s\} faire
3
               \pi(i) \leftarrow +\infty
4
      Fin Pour
5
      Répéter
               Pour tout i \in \{1, 2, ..., N\} \setminus \{s\} faire
6
                       \pi(i) \leftarrow \min(\pi(i), \min_{i \in \Gamma^{-1}(i)} \pi(j) + I_{ii});
8
               Fin Pour
      Tant que une des valeurs \pi(i) change dans la boucle Pour
10
      Output: \pi
```

Algorithme de Ford-Bellman

- Détermination du plus court chemin du sommet s aux autres sommets dans un graphe valué dont les longueurs sont quelconques càd $\forall u \in U : I(u) \in \mathbb{R}$ mais pour lequel il n'y a pas de circuit de longueur négative.
- Comme précédemment, $\pi^*(i)$ est la longueur du plus court chemin de s à i et nous avons $\pi^*(s) = 0$.
- L'algorithme utilise la représentation du graphe par Γ^{-1} . L'algorithme affine successivement une borne supérieure de la longueur du plus court chemin entre s et tous les autres sommets jusqu'à atteindre la longueur minimale.

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 114

Problème du plus court chemin Algorithme de Ford-Bellman

Complexité de l'algorithme de Ford-Bellman

• Soit N le nombre de sommets et M le nombre d'arcs. L'étape (5-9)demande chaque fois M opérations d'additions et de comparaisons. Par ailleurs, il y a au plus N itérations de l'étape (5-9) (car les chemins élémentaires sont de longueur inférieure ou égale à N).

Propriété.

Le temps requis par l'algorithme de Ford-Bellman est en O(NM).

• Remarque : L'ordre dans lequel les sommets sont parcourus à l'étape (5-9) est important puisqu'il influence le nombre de fois que cette étape est itérée (avant convergence).

Problème du plus court chemin

Exemple d'application : cas d'un graphe valué de longueur quelconque

• Calcul du plus court chemin entre 1 et les autres sommets.

Problème du plus court chemin

Déroulement de l'algorithme

- Avec l'ordre suivant : 2, 3, 4, 5, 6.
- Valeur courante $\pi = (0, 7, 8, 11, 8, 9)$

Itération 2 (6-8)
$$\begin{cases} \pi(2) = \min(\pi(2), \pi(1) + l_{12}, \pi(3) + l_{32}) = 7 \\ \pi(3) = \min(\pi(3), \pi(1) + l_{13}, \pi(5) + l_{53}) = 6 \\ \pi(4) = \min(\pi(4), \pi(2) + l_{24}, \pi(5) + l_{54}) = 10 \\ \pi(5) = \min(\pi(5), \pi(2) + l_{25}, \pi(6) + l_{65}) = 8 \\ \pi(6) = \min(\pi(6), \pi(2) + l_{26}, \pi(3) + l_{36}) = 8 \end{cases}$$

Déroulement de l'algorithme

- Avec l'ordre suivant : 2, 3, 4, 5, 6.
- Initialisation (1-4) $\pi = (0, +\infty, +\infty, +\infty, +\infty, +\infty)$

$$\begin{cases} \pi(2) = \min(\pi(2), \pi(1) + l_{12}, \pi(3) + l_{32}) = 7 \\ \pi(3) = \min(\pi(3), \pi(1) + l_{13}, \pi(5) + l_{53}) = 8 \\ \pi(4) = \min(\pi(4), \pi(2) + l_{24}, \pi(5) + l_{54}) = 11 \\ \pi(5) = \min(\pi(5), \pi(2) + l_{25}, \pi(6) + l_{65}) = 8 \\ \pi(6) = \min(\pi(6), \pi(2) + l_{26}, \pi(3) + l_{36}) = 9 \end{cases}$$

Problème du plus court chemin

Déroulement de l'algorithme

- Avec l'ordre suivant : 2, 3, 4, 5, 6.
- Valeur courante $\pi = (0, 7, 6, 10, 8, 8)$

$$\begin{cases} \pi(2) = \min(\pi(2), \pi(1) + l_{12}, \pi(3) + l_{32}) = 7 \\ \pi(3) = \min(\pi(3), \pi(1) + l_{13}, \pi(5) + l_{53}) = 6 \\ \pi(4) = \min(\pi(4), \pi(2) + l_{24}, \pi(5) + l_{54}) = 10 \\ \pi(5) = \min(\pi(5), \pi(2) + l_{25}, \pi(6) + l_{65}) = 8 \\ \pi(6) = \min(\pi(6), \pi(2) + l_{26}, \pi(3) + l_{36}) = 8 \end{cases}$$

Résultat de l'algorithme

• Les plus courts chemins de 1 vers les autres sommets du graphe sont de longueurs : $\pi^* = (0, 7, 6, 10, 8, 8)$.

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 121

Problème du plus court chemin Algorithme de Ford-Bellman

Pseudo code de l'identification des chemins de longueurs minimales

- Identification d'un chemin de longueur minimale entre s et i étant donné π^* et les longueurs des arcs du graphe valué G.
- On part de l'extrémité finale i et on remonte progressivement vers s.

Input:
$$G = [X, U]$$
 et π^*

1 $k \leftarrow i$;

2 $\mu \leftarrow \{\}$;

3 Tant que $k \neq s$ faire

4 Rechercher j tel que $\pi^*(j) = \pi^*(k) - l_{jk}$

5 $\mu \leftarrow (j, k) \cup \mu$

6 $k \leftarrow j$

- Fin Tant que
- Appliquer l'algorithme à l'exemple précédent pour retrouver les chemins de longueurs minimales donnés en bleu.

Identification d'un chemin de longueur minimale

• Etant donné un graphe valué G = [X, U] et le vecteur, π^* , des longueurs des plus courts chemins entre s et les autres sommets. Comment déterminer les chemins correspondants à ces longueurs minimales?

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 /

Problèmes de Flot

Rappel du Sommaire

- Eléments de la théorie des graphes
- 2 Quelques problèmes importants de l'étude d'un graphe
- 3 Problème du plus court chemin
- 4 Problèmes de Flot

Problèmes de Flot

Exemples d'applications

Les problèmes de flots constitutent un très important domaine de la théorie des graphes. Sous leur forme la plus simple, ils consistent à organiser de façon optimale, sous diverses contraintes, les mouvements de certaines quantités d'un bien dans un réseau.

- Ces mouvements concernent par exemple :
 - ▶ l'acheminement d'un produit depuis les centres de production vers les centres de distribution (réseau géographique)
 - ▶ la répartition des communications téléphoniques entre les différents centres de gestion (réseau téléphonique)
 - ▶ l'organisation de la circulation routière entre plusieurs villes (réseau routier)
 - ► la distribution des tâches au sein d'un ensemble de personnes (problèmes d'affectation)

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 125

Problèmes de Flot

Réseaux avec capacités

Définition. (Réseau avec capacités)

Soit G = [X, U] un 1-graphe orienté antisymétrique conportant N sommets. Nous supposons qu'il existe dans X deux sommets particuliers s (sommet entrée ou "source") et p (sommet sortie ou "puits") tels que $\Gamma^{-1}(s) = \emptyset$ et $\Gamma(p) = \emptyset$. On associe à chaque arc u une quantité $c(u) \in \mathbb{N}$ a appelé "capacité de l'arc". Si u = (i,j), on utilisera également la notation c_{ij} pour désigner la capacité de l'arc u et on dénote $C = \{c_{ij}, (i,j) \in U\}$. On dit que G = [X, U, C] est un réseau avec capacités.

a. Ensemble des entiers naturels

Exemples d'applications (suite)

- Caractéristiques des réseaux selon le domaine d'application :
 - Caractéristiques physiques : capacité de débit, d'écoulement, et de réception. . .
 - Caractéristiques économiques : coût unitaire du mouvement ou de l'attente...
- Les problématiques relatives à ces applications sont :
 - ▶ les quantités maximales pouvant ête produites, livrées, stockées; des capacités des lignes et des routes existantes...
 - ▶ les coûts de pénurie, de livraison et de stockage; les frais de communication et de déplacement...

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 126

Problèmes de Flot

Exemple

Flot et valeur d'un flot

Définition. (Flot dans un réseau avec capacités)

On appelle **flot** dans un réseau avec capacités G = [X, U, C], tout ensemble de quantités non négatives $\varphi = \{\varphi_{ii}, (i,j) \in U\}$. Ce flot est réalisable s'il satisfait aux contraintes suivantes :

- Contraintes de capacités : $\forall (i,j) \in U : \varphi_{ii} \leq c_{ii}$
- Contraintes de conservations du flux :

$$\forall i \in X \setminus \{s, p\} : \sum_{j \in \Gamma^{-1}(i)} \varphi_{ji} = \sum_{j \in \Gamma(i)} \varphi_{ij}$$

$$\sum_{j\in\Gamma(s)}\varphi_{sj}=\sum_{j\in\Gamma^{-1}(p)}\varphi_{jp}=V(\varphi)$$

où $V(\varphi)$, appelé valeur du flot, est le volume total que met en circulation le flot réalisable φ dans le réseau.

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 129

Flot de valeur maximale

Rappel du Sommaire

Flot de valeur maximale

Illustrations (lois de Kirchhoff)

$$\sum_{j\in\Gamma^{+}(i)}\varphi_{ij}=\sum_{j\in\Gamma^{-}(i)}\varphi_{ij}\qquad\sum_{j\in\Gamma^{+}(s)}\varphi_{sj}=V(\varphi)\qquad\sum_{j\in\Gamma^{-}(p)}\varphi_{jp}=V(\varphi)$$

$$\sum_{j\in\Gamma^+(s)}arphi_{sj}=V(arphi)$$

$$\sum_{j\in\Gamma^{-}(p)}\varphi_{jp}=V(\varphi)$$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 130

Problème du flot de valeur maximale

Définition. (Problème du flot de valeur maximale)

Soit G = [X, U, C] un réseau avec capacité. Le flot de valeur maximale φ^* est, parmi l'ensemble des flots réalisables \mathbb{F} , celui qui maximise la quantité $V(\varphi)$:

$$orall arphi \in \mathbb{F} : V(arphi^*) \geq V(arphi)$$

- Remarque :
 - Un flot de valeur maximale n'est pas nécessairement unique.
 - Ce problème peut-être modélisé par programmation linéaire.
 - Mais les caractéristiques de celui-ci permettent d'élaborer des algorithmes de résolutions exactes plus efficaces : algorithmes de Ford-Fulkerson.

Principes de l'algorithme de Ford-Fulkerson

- 1 On part d'un flot réalisable initial $\varphi = \{\varphi_{ii}, (i,j) \in U\}$ de valeur $V(\varphi)$.
- 2 A chaque itération, on essaie d'accroître le flot par le marquage de certains sommets (pas tous, cf conditions ci-après) :
 - s porte une marque permanente $m_s = (\infty, +)$ indiquant qu'il peut engendrer un flot arbitrairement grand.
 - A un sommet $i \neq s$ est associé une marque m_i avant la forme $m_i = (i, \alpha_i, \pm)$ où :
 - \star $m_i(1) = i$ représente le sommet à partir duquel i a été marqué,
 - \star $m_i(2) = \alpha_i > 0$ est la modification maximale possible, en valeur absolue, du flot φ_{ii} circulant entre i et j,
 - ★ $m_i(3) = +$ indique que $i \in \Gamma^{-1}(i)$ dans ce cas $\alpha_i = \min\{\alpha_i, r_{ij} = c_{ij} - \varphi_{ij}\}$ $m_i(3) = -$ indique que $i \in \Gamma(i)$ dans ce cas $\alpha_i = \min\{\alpha_i, r_{ii} = \varphi_{ii}\}.$

Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 133

M1 Informatique 2016-2017 / 135

```
Problèmes de Flot Flot de valeur maximale
        Input : G = [X, U, C], s, p et \varphi un flot réalisable
        m_s \leftarrow (\infty, +) \text{ et } S = \{s\}
         Tant que \exists (j \in \overline{S}, i \in S) : (c_{ii} - \varphi_{ii} > 0) \lor (\varphi_{ii} > 0) faire
3
                      Si c_{ii} - \varphi_{ii} > 0 faire
                                  m_i \leftarrow (i, \alpha_i, +) \text{ avec } \alpha_i = \min\{\alpha_i, c_{ii} - \varphi_{ii}\}\
5
                      Sinon Si \varphi_{ii} > 0 faire
6
                                  m_i \leftarrow (i, \alpha_i, -) avec \alpha_i = \min\{\alpha_i, \varphi_{ii}\}
                      Fin Si
8
                      S \leftarrow S \cup \{j\}
9
                      Si j = p faire
                                  V(\varphi) \leftarrow V(\varphi) + \alpha_p
10
11
                                  Aller en 14
12
                      Fin Si
13
        Fin Tant que
14
        Si p \in S faire
15
                      Tant que i \neq s faire
16
                                  Si m_i(3) = + faire
17
                                              \varphi_{m_i(1)j} \leftarrow \varphi_{m_i(1)j} + \alpha_p
18
                                  Sinon Si m_i(3) = - faire
19
                                              \varphi_{jm_i(1)} \leftarrow \varphi_{jm_i(1)} - \alpha_p
20
                                  Fin Si
21
                                  j \leftarrow m_i(1)
22
                      Fin Tant que
23
                      Aller en 1
24
        Sinon faire
25
                      Output : \varphi
```

Principes de l'algorithme de Ford-Fulkerson (suite)

- 3 Si le sommet p a été marqué, la quantité α_p représente l'accroissement de la valeur du flot réalisable à cette étape. Pour réaliser cet accroissement :
 - ▶ On construit, grâce aux marques, la chaîne allant de s à p qui a permis le marquage de p. Cette chaîne est constituée d'arcs tels que l'une des deux conditions est vérifiée :
 - a) $(i,j) \in U$ avec $r_{ii} = c_{ii} \varphi_{ii} > 0$ et $m_i = (i,r_{ii},+)$ b) $(j,i) \in U$ avec $r_{ij} = \varphi_{ji} > 0$ et $m_i = (i,r_{ij},-)$
 - ightharpoonup On en déduit un nouveau flot réalisable φ de valeur strictement supérieure (de α_p) à celle du flot initial et de composants :
 - * $\varphi_{ii} \leftarrow \varphi_{ii} + \alpha_p$ si (i,j) est un arc de la chaîne dans le cas a)
 - * $\varphi_{ii} \leftarrow \varphi_{ii} \alpha_p$ si (j, i) est un arc de la chaîne dans le cas b)
 - ★ φ reste inchangé pour les autres arcs $(i, j) \in U$
 - ▶ On utilise ce nouveau flot comme flot initial pour une nouvelle itération.
- 4 Si p ne peut être marqué, le flot φ obtenu à la fin de l'étape précédente est un flot de valeur maximale.

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 134

Problèmes de Flot Flot de valeur maximale

Exemple (1ère itération)

Input : $G = [X, U, C], \varphi = \{\varphi_{ii} = 0, (i, j) \in U\}$

- 1 $m_s = m_1 = (\infty, +)$ et $S = \{1\}$
- 2 $(i = 2 \in \overline{S}, i = 1 \in S)$ est tel que $c_{12} \varphi_{12} = 5 > 0$
- 4 $m_2 = (1, \alpha_2, +)$ avec $\alpha_2 = \min\{\infty, 5\} = 5$
- $S = \{1, 2\}$

Exemple (suite - 1ère itération)

2
$$(j = 3 \in \overline{S}, i = 1 \in S)$$
 est tel que $c_{13} - \varphi_{13} = 8 > 0$

- 4 $m_3 = (1, \alpha_3, +)$ avec $\alpha_3 = \min\{\infty, 8\} = 8$
- $S = \{1, 2, 3\}$
- 2 $(i = 4 \in \overline{S}, i = 2 \in S)$ est tel que $c_{24} \varphi_{24} = 4 > 0$
- 4 $m_4 = (2, \alpha_4, +)$ avec $\alpha_4 = \min\{5, 4\} = 4$
- $S = \{1, 2, 3, 4\}$

M1 Informatique 2016-2017 / 139

Exemple (suite - 1ère itération)

- 2 $(j = 7 \in \overline{S}, i = 4 \in S)$ est tel que $c_{47} \varphi_{47} = 7 > 0$
- 4 $m_7 = (4, \alpha_7, +)$ avec $\alpha_7 = \min\{4, 7\} = 4$
- $S = \{1, 2, 3, 4, 5, 6, 7\}$
- i = 7 = p
- 10 $V(\varphi) = 4$
- 11 Aller en 14

Exemple (suite - 1ère itération)

2
$$(j=5\in\overline{S}, i=2\in S)$$
 est tel que $c_{25}-\varphi_{25}=2>0$

4
$$m_5 = (2, \alpha_5, +)$$
 avec $\alpha_5 = \min\{5, 2\} = 2$

8
$$S = \{1, 2, 3, 4, 5\}$$

2
$$(j = 6 \in \overline{S}, i = 3 \in S)$$
 est tel que $c_{36} - \varphi_{36} = 2 > 0$

4
$$m_6 = (3, \alpha_6, +)$$
 avec $\alpha_6 = \min\{8, 2\} = 2$

8
$$S = \{1, 2, 3, 4, 5, 6\}$$

Optimisation et Recherche Opérationnelle

Exemple (suite - 1ère itération)

14
$$p \in S$$

15-22
$$\varphi_{47} = 4, \varphi_{24} = 4, \varphi_{12} = 4$$

23 Aller en 1

Exemple (suite - 2ème itération)

- 1 $m_1 = (\infty, +)$ et $S = \{1\}$
- 2 $(j = 2 \in \overline{S}, i = 1 \in S)$ est tel que $c_{12} \varphi_{12} = 1 > 0$
- 4 $m_2 = (1, \alpha_2, +)$ avec $\alpha_2 = \min\{\infty, 1\} = 1$
- 8 $S = \{1, 2\}$
- $(j=3\in\overline{S}, i=1\in S)$ est tel que $c_{13}-\varphi_{13}=8>0$
- 4 $m_3 = (1, \alpha_3, +)$ avec $\alpha_3 = \min\{\infty, 8\} = 8$
- 8 $S = \{1, 2, 3\}$

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 141

Problèmes de Flot Flot de valeur maximale

Exemple (suite - 2ème itération)

Optimisation et Recherche Opérationnelle

- $(j = 7 \in \overline{S}, i = 5 \in S)$ est tel que $c_{57} \varphi_{57} = 3 > 0$
- 4 $m_7 = (5, \alpha_7, +)$ avec $\alpha_7 = \min\{1, 3\} = 1$
- $S = \{1, 2, 3, 5, 6, 7\}$
- i = 7 = p
- 10 $V(\varphi) = 5$
- Aller en 14

Exemple (suite - 2ème itération)

- 2 $(j = 5 \in \overline{S}, i = 2 \in S)$ est tel que $c_{25} \varphi_{25} = 2 > 0$
- 4 $m_5 = (2, \alpha_5, +)$ avec $\alpha_5 = \min\{1, 2\} = 1$
- 8 $S = \{1, 2, 3, 5\}$
- 2 $(i = 6 \in \overline{S}, i = 3 \in S)$ est tel que $c_{36} \varphi_{36} = 2 > 0$
- 4 $m_6 = (2, \alpha_6, +)$ avec $\alpha_6 = \min\{8, 2\} = 2$
- 8 $S = \{1, 2, 3, 5, 6\}$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 142

Problèmes de Flot Flot de valeur maximale

Exemple (suite - 2ème itération)

- $p \in S$ 14
- 15-22 $\varphi_{57} = 1, \varphi_{25} = 1, \varphi_{12} = 5$
- 23 Aller en 1

Exemple (suite - 3ème itération)

1
$$m_1 = (\infty, +)$$
 et $S = \{1\}$

2
$$(j=3\in\overline{S}, i=1\in S)$$
 est tel que $c_{13}-\varphi_{13}=8>0$

4
$$m_3 = (1, \alpha_3, +)$$
 avec $\alpha_3 = \min\{\infty, 8\} = 8$

8
$$S = \{1, 3\}$$

2
$$(j=5\in\overline{S}, i=3\in S)$$
 est tel que $c_{35}-\varphi_{35}=5>0$

4
$$m_5 = (3, \alpha_5, +)$$
 avec $\alpha_5 = \min\{8, 5\} = 5$

8
$$S = \{1, 3, 5\}$$

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 145

M1 Informatique 2016-2017 / 147

Exemple (suite - 3ème itération)

Optimisation et Recherche Opérationnelle

2
$$(j = 7 \in \overline{S}, i = 5 \in S)$$
 est tel que $c_{57} - \varphi_{57} = 2 > 0$

4
$$m_7 = (5, \alpha_7, +)$$
 avec $\alpha_7 = \min\{5, 2\} = 2$

8
$$S = \{1, 3, 5, 6, 2, 7\}$$

9
$$i = 7 = p$$

10
$$V(\varphi) = 7$$

Exemple (suite - 3ème itération)

2
$$(j = 6 \in \overline{S}, i = 3 \in S)$$
 est tel que $c_{36} - \varphi_{36} = 2 > 0$

4
$$m_6 = (3, \alpha_6, +)$$
 avec $\alpha_6 = \min\{8, 2\} = 2$

8
$$S = \{1, 3, 5, 6\}$$

2
$$(j=2\in\overline{S}, i=5\in S)$$
 est tel que $\varphi_{25}=1>0$

4
$$m_2 = (5, \alpha_2, -)$$
 avec $\alpha_2 = \min\{5, 1\} = 1$

8
$$S = \{1, 3, 5, 6, 2\}$$

Optimisation et Recherche Opérationnelle

Problèmes de Flot Flot de valeur maximale

Exemple (suite - 3ème itération)

14
$$p \in S$$

15-22
$$\varphi_{57} = 3, \varphi_{35} = 2, \varphi_{13} = 2$$

23 Aller en 1

Exemple (suite - 4ème itération)

1
$$m_1 = (\infty, +)$$
 et $S = \{1\}$

2
$$(j=3\in\overline{S}, i=1\in S)$$
 est tel que $c_{13}-\varphi_{13}=6>0$

4
$$m_3 = (1, \alpha_3, +)$$
 avec $\alpha_3 = \min\{\infty, 6\} = 6$

8
$$S = \{1, 3\}$$

2
$$(j=5\in\overline{S}, i=3\in S)$$
 est tel que $c_{35}-\varphi_{35}=3>0$

4
$$m_5 = (3, \alpha_5, +)$$
 avec $\alpha_5 = \min\{6, 3\} = 3$

8
$$S = \{1, 3, 5\}$$

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 149

Problèmes de Flot Flot de valeur maximale

Exemple (suite - 4ème itération)

2
$$(j = 7 \in \overline{S}, i = 6 \in S)$$
 est tel que $c_{67} - \varphi_{67} = 3 > 0$

4
$$m_7 = (6, \alpha_7, +) \text{ avec } \alpha_7 = \min\{2, 3\} = 2$$

8
$$S = \{1, 3, 5, 6, 2, 7\}$$

9
$$i = 7 = p$$

10
$$V(\varphi) = 9$$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 151

Exemple (suite - 4ème itération)

2
$$(j=6\in\overline{S}, i=3\in S)$$
 est tel que $c_{36}-\varphi_{36}=2>0$

4
$$m_6 = (3, \alpha_6, +)$$
 avec $\alpha_6 = \min\{6, 2\} = 2$

8
$$S = \{1, 3, 5, 6\}$$

2
$$(j=2\in\overline{S}, i=5\in S)$$
 est tel que $\varphi_{25}=1>0$

4
$$m_2 = (5, \alpha_2, -)$$
 avec $\alpha_2 = \min\{3, 1\} = 1$

8
$$S = \{1, 3, 5, 6, 2\}$$

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 150

Problèmes de Flot Flot de valeur maximale

Exemple (suite - 4ème itération)

14
$$p \in S$$

15-22 $\varphi_{67} = 2, \varphi_{36} = 2, \varphi_{13} = 4$

23 Aller en 1

Exemple (suite - 5ème itération)

1
$$m_1 = (\infty, +)$$
 et $S = \{1\}$

2
$$(j=3\in\overline{S}, i=1\in S)$$
 est tel que $c_{13}-\varphi_{13}=4>0$

4
$$m_3 = (1, \alpha_3, +)$$
 avec $\alpha_3 = \min\{\infty, 4\} = 4$

8
$$S = \{1, 3\}$$

2
$$(i = 5 \in \overline{S}, i = 3 \in S)$$
 est tel que $c_{35} - \varphi_{35} = 3 > 0$

4
$$m_5 = (3, \alpha_5, +)$$
 avec $\alpha_5 = \min\{4, 3\} = 3$

8
$$S = \{1, 3, 5\}$$

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 153

Problèmes de Flot Flot de valeur maximale

Bien fondé de l'algorithme de Ford-Fulkerson

- Pourquoi l'algorithme de Ford-Fulkerson solutionne le problème de manière exacte?
- Quelques définitions et propriétés en préambule :

Définition. (Coupe)

Une coupe K dans le réseau, est une partition de X en deux sous-ensembles S et \overline{S} tels que $s \in S$ et $p \in \overline{S}$. La capacité d'une coupe est définie par :

$$c(K) = \sum_{(i,i) \in U : i \in S \land i \in \overline{S}} c_{ij}$$

Exemple (suite - 5ème itération)

2
$$(i = 2 \in \overline{S}, i = 5 \in S)$$
 est tel que $\varphi_{25} = 1 > 0$

4
$$m_2 = (5, \alpha_2, -)$$
 avec $\alpha_2 = \min\{3, 1\} = 1$

8
$$S = \{1, 3, 5, 2\}$$

Output : φ

Optimisation et Recherche Opérationnelle

Problèmes de Flot Flot de valeur maximale

Bien fondé de l'algorithme de Ford-Fulkerson (suite)

Propriété.

Pour toute coupe $K = \{S, \overline{S}\}\$ et tout flot φ , on a :

$$V(\varphi) = \sum_{i \in S, j \notin S} \varphi_{ij} - \sum_{i \in S, j \notin S} \varphi_{ji}$$

Démonstration.

$$V(\varphi) = \sum_{j \in \Gamma(s)} \varphi_{sj} + \sum_{i \in S: i \neq s} \left(\sum_{j \in \Gamma(i)} \varphi_{ij} - \sum_{j \in \Gamma^{-1}(i)} \varphi_{ji} \right)$$

s n'ayant pas de prédécesseur donc $\sum_{j\in\Gamma^{-1}(s)} \varphi_{js} = 0$ et nous avons :

$$V(\varphi) = \sum_{i \in S} \left(\sum_{j \in \Gamma(i)} \varphi_{ij} - \sum_{j \in \Gamma^{-1}(i)} \varphi_{ji} \right)$$

Considérons maintenant la coupe $K = \{S, \overline{S}\}\$, nous avons :

$$V(\varphi) =$$

$$\sum_{i \in S} \left(\sum_{j \in \Gamma(i) \cap S} \varphi_{ij} + \sum_{j \in \Gamma(i) \cap \overline{S}} \varphi_{ij} - \sum_{j \in \Gamma^{-1}(i) \cap S} \varphi_{ji} - \sum_{j \in \Gamma^{-1}(i) \cap \overline{S}} \varphi_{ji} \right)$$

En simplifiant nous obtenons : $V(\varphi) = \sum_{i \in S, j \in \Gamma(i) \cap \overline{S}} \varphi_{ij} - \sum_{i \in S, j \in \Gamma^{-1}(i) \cap \overline{S}} \varphi_{ji}$

J. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

Bien fondé de l'algorithme de Ford-Fulkerson (suite)

Propriété.

Pour toute coupe $K = \{S, \overline{S}\}\$ et tout flot φ , on a :

$$c(K) \ge V(\varphi)$$

Démonstration.

Pour tout arc $(i,j) \in U$, nous avons : $0 \le \varphi_{ij} \le c_{ij}$ d'où :

$$c(K) = \sum_{i \in S, j \notin S} c_{ij}$$

$$\geq \sum_{i \in S, j \notin S} \varphi_{ij}$$

$$\geq \sum_{i \in S, j \notin S} \varphi_{ij} - \sum_{i \in S, j \notin S} \varphi_{ji}$$

$$\geq V(\varphi)$$

. Ah-Pine (Univ-Lyon 2)

Optimisation et Recherche Opérationnelle

M1 Informatique 2016-2017 / 157

Problèmes de Flot Flot de valeur maximale

Illustration sur l'exemple précédent

- $S = \{1, 3, 5, 2\}$ et $\overline{S} = \{4, 6, 7\}$ (lors de la 5ème itération)
- Tout $(i, j) \in U$ tel que $i \in S \land j \in \overline{S}$ sont saturés (car sinon $j \in \overline{S}$ aurait été marqué)
- Tout $(j, i) \in U$ tel que $i \in S \land j \in \overline{S}$ sont tels que $\varphi_{ii} = 0$ (idem)
- Des obervations précédentes, nous en déduisons que $c(\lbrace S, \overline{S} \rbrace) = \sum_{i \in S, i \in \overline{S}} c_{ij} = \sum_{i \in S, i \in \overline{S}} \varphi_{ij} - \sum_{i \in S, i \in \overline{S}} \varphi_{ji} = V(\varphi)$

Bien fondé de l'algorithme de Ford-Fulkerson (suite)

• Le résultat théorique sur lequel repose la recherche d'un flot de valeur maximale est le théorème de Ford-Fulkerson :

Théorème.

Soit G = [X, U, C] un réseau avec capacités, soit \mathbb{F} la famille des flots réalisables de G et soit $\mathbb K$ la famille des coupes dans G. Notons :

$$lacksymbol{V}_{\mathcal{M}} = V(arphi^*) = \mathsf{max}_{arphi \in \mathbb{F}} \{V(arphi)\}$$

$$c_m = \min_{K \in \mathbb{K}} \{c(K)\}$$

Alors
$$V_M = c_m$$
.

J. Ah-Pine (Univ-Lyon 2)