Homework Sheet 1

Author: Abdullah Oğuz Topçuoğlu

Problem 1

(1.)

The given definition of antisymmetry is not sensible because it implies that for any elements $a, a' \in A$, if $(a, a') \in R$, then $(a', a) \notin R$. When I hear "antisymmetric" i think of something that is the opposite of symmetric and symmetric means if $(a, a') \in R$ then $(a', a) \in R$. And opposite of that would be if $(a, a') \in R$, then $(a', a) \notin R$ as in the question but with a difference that it only applies when $a \neq a'$. Because otherwise in the current definition if we plug in a = a', we get $(a, a) \in R \iff (a, a) \notin R$ which is a contradiction.

(2.)

(a) True.

If $f: A \to B$ and $g: B \to C$ are bijective functions.

To prove that $g \circ f$ is bijective, we need to show that it is both injective and surjective.

Since f and g are injective their composition is also injective. And since f and g are surjective their composition is also surjective.

Therefore, $g \circ f$ is bijective.

(b) False.

Let $A = \{1, 2\}, B = \{1, 2\}, C = \{1\}.$

Define $f: A \to B$ by f(1) = 1, f(2) = 2 (which is injective) and $g: B \to C$ by g(1) = 1, g(2) = 1 (which is surjective).

Then, $g \circ f(1) = g(f(1)) = g(1) = 1$.

Also, $g \circ f(2) = g(f(2)) = g(2) = 1$.

Therefore $g \circ f$ is not injective since $g \circ f(1) = g \circ f(2)$.

(c) False.

Consider this example: Let $A = \{1\}, B = \{1, 2\}, C = \{1, 2\}.$

Define $f:A\to B$ by f(1)=1 (which is injective) and $g:B\to C$ by g(1)=1,g(2)=2 (which is surjective).

In this configuration there is no element in A that maps to 2 in C through $g \circ f$. Thus, $g \circ f$ is not surjective.

Problem 2

(1.)

 B^A is set of all functions from A to B. And a function is a relation on $A \times B$ such that for every $a \in A$ there is exactly one $b \in B$ such that (a, b) is in the relation. So $|B^A|$ is just how many different ways to find such a relation. For every element in A we have |B| choices to map it to an element in B. Which is $|B| \times |B| \times ... \times |B|$ (|A| times) = $|B|^{|A|}$.

Thats what we wanted to show.

(2.)

Fix a set A and $a \in A$ and $k \in \mathbb{N}$. We need to find a bijection between:

$$\binom{A}{k} \leftrightarrow \binom{A \setminus \{a\}}{k} \cup \binom{A \setminus \{a\}}{k-1}$$

Define a function $f:\binom{A}{k} \to \binom{A\setminus\{a\}}{k} \cup \binom{A\setminus\{a\}}{k-1}$ as follows:

$$f(S) = \begin{cases} S & \text{if } a \notin S \\ S \setminus \{a\} & \text{if } a \in S \end{cases}$$

In the first case $S \in \binom{A \setminus \{a\}}{k}$ and in the second case $S \setminus \{a\} \in \binom{A \setminus \{a\}}{k-1}$. Now we need to show that this function is bijective by showing that it is both injective. tive and surjective.

Injective: Assume $f(S_1) = f(S_2)$ for some $S_1, S_2 \in \binom{A}{k}$. We need to show that

If $a \notin S_1$ and $a \notin S_2$, then $f(S_1) = S_1$ and $f(S_2) = S_2$. Thus, $S_1 = S_2$.

If $a \in S_1$ and $a \in S_2$, then $f(S_1) = S_1 \setminus \{a\}$ and $f(S_2) = S_2 \setminus \{a\}$. Thus, $S_1 \setminus \{a\} = S_2 \setminus \{a\}$ which implies $S_1 = S_2$.

If $a \in S_1$ and $a \notin S_2$, then $f(S_1) = S_1 \setminus \{a\}$ and $f(S_2) = S_2$. This leads to a contradiction since $S_1 \setminus \{a\}$ has size k-1 while S_2 has size k.

Similarly, if $a \notin S_1$ and $a \in S_2$, we reach a contradiction.

Thus, f is injective.

Surjective: Let $T \in \binom{A \setminus \{a\}}{k} \cup \binom{A \setminus \{a\}}{k-1}$. We need to find $S \in \binom{A}{k}$ such that f(S) = T.

If $T \in \binom{A \setminus \{a\}}{k}$, then let S = T. Then, f(S) = S = T. If $T \in \binom{A \setminus \{a\}}{k-1}$, then let $S = T \cup \{a\}$. Then, $f(S) = S \setminus \{a\} = T$.

Thus, f is surjective.

Since f is both injective and surjective, it is bijective.

Thats what we wanted to show.

Problem 3

We want to show that $|B^A| > |A|$.

If A and B are finite sets then we can use the coclusion from Problem 2.1 that $|B^A| = |B|^{|A|}$. And since |B| > 1 we have $|B|^{|A|} > |A|$.

In other cases,

Assume for the sake of contradiction that there exists a surjective function $f:A\to B^A$. This means that for every function $g:A\to B$, there exists an element $a\in A$ such that f(a)=g.

Now, we can construct a function $h: A \to B$ such that for each $a \in A$, h(a) is different from f(a)(a). This is possible since B has more than one element.

However, by construction, h cannot be equal to f(a) for any $a \in A$, which is a contradiction.

Therefore, there is no surjective mapping from $A \to B^A$, and thus $|B^A| > |A|$.