Robotics and Machine Learning Project: RRP Manipulator

1 Introduction

This project integrates robotics and machine learning to study the kinematics of an RRP (Revolute-Revolute-Prismatic) robotic manipulator. The focus is on computing forward kinematics to determine the end-effector position (x, y, z) based on joint angles and displacement, and applying machine learning to learn this relationship. The goal is to achieve a prediction accuracy of at least 99% while avoiding overfitting, as per the project requirements.

2 Robot Description

2.1 Robot Type

• RRP Manipulator: Comprises two revolute joints and one prismatic joint, enabling motion in 3D space.

2.2 Fixed Measurements

- Length of the first link (I_{c1}) : 5.0 units.
- Length of the second link (L_2) : 3.0 units.

2.3 Variables

- First joint angle (θ_1): Range [0°, 360°].
- Second joint angle (θ_2): Range [0°, 360°].
- Prismatic displacement (d3): Range [0, 10 units].

3 Kinematics

3.1 Type of Kinematics

• Forward Kinematics: Calculates the end-effector position (x, y, z) given joint angles (θ_1, θ_2) and displacement (d_3) .

3.2 Equations

The forward kinematics equations are:

$$x = L_1 \cos(\theta_1) + L_2 \cos(\theta_1 + \theta_2) \tag{1}$$

$$y = L_1 \sin(\theta_1) + L_2 \sin(\theta_1 + \theta_2) \tag{2}$$

$$z = d_3 \tag{3}$$

where:

- θ_1, θ_2 : Joint angles in radians.
- L_1, L_2 : Link lengths.
- *d*₃: Prismatic joint displacement.

4 Code and Implementation

4.1 Main Steps in the Code

The implementation, written in Python using the provided Jupyter Notebook (machrob (2) (1).ipynb), includes:

- 1. **Data Generation**: Generated a dataset of **5000 samples** with random distributions for θ_1 , θ_2 , and d_3 .
 - Computed end-effector positions (x, y, z) using the forward_kinematics function.
- 2. **Robotics Visualization:** Created a 3D plot of the manipulator using the plot_3d_arm function for a configuration (e.g., $\theta_1 = 45 \cdot$, $\theta_2 = 60 \cdot$, $d_3 = 4$). See Figure 1 for a schematic representation.
 - Generated an animation of the arm's motion along a trajectory using the animate_trajectory function, saved as robot_animation.gif (see Attachments).

3. Machine Learning Application:

- Split the dataset into:
 - **Training**: 4000 samples (80%).
 - **Testing**: 1000 samples (20%).
- Applied models including Linear Regression, Random Forest Regressor, Gradient Boosting Regressor, Support Vector Regressor (SVR), and Polynomial Regression (degree 2).
- Combined models using a **Voting Regressor** and tuned hyperparameters with GridSearchCV.

4. Model Saving:

• Saved the best models for each coordinate as best_model_X.joblib, best model Y.joblib, and best model Z.joblib.

5 Robotics Visualization

ThenotebookincludeskeyvisualizationstoillustratetheRRPmanipulator'skinematics:

- 3D Manipulator Plot: Figure 1 shows a schematic of the manipulator with $\theta_1 = 45 \cdot , \theta_2 = 60 \cdot , d_3 = 4$. The plot highlights the base, joints, and endeffector, with coordinates computed as:
 - $-x \approx 5\cos(45^{\circ}) + 3\cos(105^{\circ}) \approx 3.536 + (-0.776) \approx 2.76$
 - $-y \approx 5\sin(45^{\circ}) + 3\sin(105^{\circ}) \approx 3.536 + 2.898 \approx 6.434$
 - -z = 4
- TrajectoryAnimation: Theanimation(robot_animation.gif)showsthe arm's motion as θ_1 , θ_2 , and d_3 vary, demonstrating the kinematic behavior. End-Effector

Figure 1: Schematic of the RRP Manipulator with $\theta_1 = 45 \cdot$, $\theta_2 = 60 \cdot$, $d_3 = 4$, showing the base, joints, end-effector, and coordinates (approximated from the notebook's plot_3d_arm output).

6 Model Evaluation

6.1 Dataset Size

• Total Samples: 5000

• Training Samples: 4000

• Test Samples: 1000

6.2 Evaluation Metrics

Models were evaluated using:

• R² Score: Measures goodness of fit.

• Mean Squared Error (MSE): Quantifies prediction error.

• Cross-Validation: 5-fold cross-validation for stability.

• Error Analysis: Maximum Error and Mean Absolute Error.

6.3 Results

The performance report from the generate report function is:

Table 1: Performance Metrics for the Best Models

6.3.1 Analysis of Results

• R²: Achieved ≥99.95%, exceeding the 99% requirement.

• MSE: Very low for X and Y, zero for $Z(z = d^3)$.

• Cross-Validation: High mean R², low standard deviation.

Coordinate	Model Type	R²	MSE	Mean R ² (CV)	Std R ² (CV)	ax Erro
X	VotingRegressor	0.99958	0.00315	0.99947	0.00011	0.31163
Y	VotingRegressor	0.99954	0.00347	0.99943	0.00012	0.32214
Z	VotingRegressor	1.00000	0.00000	1.00000	0.00000	0.00000

• Errors: Minimal maximum and mean absolute errors.

• **Z** Coordinate: Perfect $R^2 = 1.0$ due to linear mapping.

7 Learning Curve

The learning curve, generated by the learning_curve function, is shown in Figure 2. It illustrates:

• **Performance Improvement**: R² increases with training samples.

• No Overfitting: Small gap between training and validation scores.

• Sufficient Data: 4000 samples ensure stability.

Figure 2: Learning Curve for the X coordinate (similar curves for Y and Z), showing training and validation R² scores versus training set size (approximated from the notebook's learning curve output).

8 Discussion

8.1 Strengths

- High Accuracy: R² ≥ 99.95% exceeds requirements.
- No Overfitting: Confirmed by cross-validation and learning curves.
- Robotics Visualization: 3D plots and animations clarify kinematics.
- Ensemble Models: Voting Regressor improved performance.

8.2 Challenges

- **Model Complexity**: Random Forest and Gradient Boosting are computationally intensive.
- Synthetic Data: Random distributions may not reflect real-world scenarios.

8.3 Recommendations

- Test with real-world data.
- Explore neural networks for complex cases.
- Enhance animations with diverse trajectories.

9 Conclusion

The project achieved:

- Accurate forward kinematics computation.
- Machine learning models with $R^2 \ge 99.95\%$.

- No overfitting, verified by cross-validation and learning curves.
- Clear visualizations of the manipulator's motion.

This work integrates robotics and machine learning, with potential for extensions to inverse kinematics.

10 Attachments

- Code: machrob (2) (1).ipynb
- Models: best model X.joblib, best model Y.joblib, best model Z.joblib
- Animation: robot animation.gif
- Report: This document

11 Additional Notes

- Overfitting was avoided.
- Accuracy ≥99.95% exceeds the 99% requirement (98% would be acceptable).
- Implemented in Python with numpy, matplotlib, scikit-learn.