Clase 2

Las Preferencias del Consumidor

Comportamiento del Consumidor: Lo que está detrás de la Demanda

Veremos el comportamiento del consumidor en tres pasos:

- 1. Las Preferencias del Consumidor
 - Cómo y por qué la gente prefiere un bien sobre otro
- 2. Restricción Presupuestaria
 - La gente tiene recursos (ingresos) limitados
- 3. Dadas las preferencias y un nivel de ingreso, cuáles y cuántos bienes se compran?
 - Qué combinación de bienes se debe comprar para maximizar el nivel de satisfacción?
 - Esta decisión determina la demanda de un bien.

Preferencias y utilidad

- Suponemos que los indivudos eligen entre las canastas de consumos en las que pueden escoger, de acuerdo a sus preferencias, que les permite definir cual es la mejor canasta disponible.
- Consideraremos la relación binaria ≥ , tal que si a y a' son dos canastas de consumo, entonces a≥a' se lee como "la canasta a es al menos tan preferida como la canasta a' "

Preferencias del Consumidor – Axiomas

 Se definen características de las preferencias que describen un comportamiento "racional" y que permiten un análisis matemático "amigable"

Preferencias del Consumidor – Axiomas

1. Reflexividad

$$a \succeq a \ \forall a \in A$$

2. Completitud

$$a \succeq a' \vee a' \succeq a \quad \forall a, a' \in A$$

3. Transitividad

$$a \succeq a' \land a' \succeq a'' \implies a \succeq a'' \quad \forall a, a', a'' \in A$$

4. Continuidad

$$\{a': a' \succeq a\} y \{a': a' \preceq a\} son cerrados \ \forall a \in A$$

5. No-saciedad

Preferencias del Consumidor – Axiomas: Continuidad

$$\{a': a' \succeq a\} y \{a': a' \preceq a\} soncerrados \ \forall a \in A$$

- $\{a': a' \succeq a\}$: es el conjunto de canastas al menos tan preferidas como a.
- {a': a' ≤ a}:es el conjunto de canastas no mejores que a.
- Por lo tanto el axioma implica que un cambio pequeño en la canasta no puede implicar un gran cambio en el bienestar que la canasta entrega al consumidor.
- Este supuesto servirá para estudiar el efecto de pequeños cambios en precios/ingresos

Preferencias del Consumidor – Axiomas: No Saciedad

- Para toda canasta a, existe una canasta a' en su vecindad tal que a' > a.
 - Implica que no hay "zonas de indiferencia", por lo que el conjunto indiferente debe ser necesariamente una curva.

Preferencias del Consumidor – Axiomas: No Saciedad

Función de Utilidad

Una función u: ℜⁿ₊ → ℜ es una función de utilidad que representa la relación de preferencias ≥ si:

$$a \succeq a' \Leftrightarrow u(a) \ge u(a') \ \forall a, a' \in A$$

- Por lo tanto, la función de utilidad ordena las canastas de bienes de acuerdo a las preferencias.
- Notar que asume que cualquier cosa distinta a las canastas (actitud psicológica, grupo social etc es constante)

Curva de Indiferencia

 Una curva de indiferencia está formada por todas las combinaciones de bienes que den un mismo nivel de utilidad.

Curvas de Indiferencia Un Ejemplo

- Comparado a A, las canastas B y D tienen más de un bien pero menos del otro
 - Se necesita más información para hacer el "ranking"
- Un consumidor podría ser indiferente entre A, B y D
 - Al unir esos puntos con una línea se genera una curva de indiferencia
 - Igualmente, se puede trazar una curva de indiferencia para la canasta E y otra para G.

Curvas de Indiferencia Un Ejemplo

Pendiente de la Curva de Indiferencia

 Las curvas de indiferencia tienen pendiente negativa

- \rightarrow
- De tener pendiente positiva se violaría el supuesto de "más es mejor"
 - Se sería indiferente entre canastas con más de ambos bienes y otras con menos de ambos bienes
- Las curvas de indiferencia no se cortan entre si
 - De lo contrario se violaría el supuesto de transitividad

Pendiente de la Curva de Indiferencia

 Las curvas de indiferencia tienen pendiente negativa

- \rightarrow
- De tener pendiente positiva se violaría el supuesto de "más es mejor"
 - Se sería indiferente entre canastas con más de ambos bienes y otras con menos de ambos bienes
- Las curvas de indiferencia no se cortan entre si
 - De lo contrario se violaría el supuesto de transitividad

Violación del supuesto de No Saciedad

Pendiente de la Curva de Indiferencia

 Las curvas de indiferencia tienen pendiente negativa

- \rightarrow
- De tener pendiente positiva se violaría el supuesto de "más es mejor"
 - Se sería indiferente entre canastas con más de ambos bienes y otras con menos de ambos bienes
- Las curvas de indiferencia no se cortan entre si
 - De lo contrario se violaría el supuesto de transitividad

Violación del supuesto de Transitividad

Tasa Marginal de Sustitución (TMS)

- La tasa marginal de sustitución entre x_i y x_j muestra el número de unidades del bien j que un consumidor estaría dispuesto a entregar por una unidad del bien i, manteniendo el mismo nivel de utilidad.
- Es la valoración marginal relativa entre los bienes.

Pendiente de la Curva de Indiferencia = -Tasa Marginal de Sustitución (TMS)

TMS: Equación matemática

- La curva de indiferencia: $U(x, y) = \overline{U}$
- La pendiente se calcula diferenciando totalmente y reordenando:

$$\frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy = 0$$

$$\Leftrightarrow \frac{\partial U}{\partial y} dy = -\frac{\partial U}{\partial x} dx$$

$$\Leftrightarrow \frac{dy}{dx} = -\frac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}} = -\frac{U_x}{U_y} = -TMS_{x,y}$$

$$Donde\ TMgS_{x,y} = \frac{U_x}{U_y}$$

$$\frac{\partial TMS}{\partial x} = \frac{(U_{xx} + U_{xy} \frac{\partial y}{\partial x}) * U_{y} - (U_{yx} + U_{yy} \frac{\partial y}{\partial x}) * U_{x}}{(U_{y}^{2})}$$

$$pero \frac{\partial y}{\partial x} = -\frac{U_{x}}{U_{y}}, reemplazando:$$

$$\frac{\partial TMS}{\partial x} = \frac{(U_{xx} - U_{xy} \frac{U_{x}}{U_{y}}) * U_{y} - (U_{yx} - U_{yy} \frac{U_{x}}{U_{y}}) * U_{x}}{(U_{y}^{2})} \Leftrightarrow$$

$$\frac{\partial TMS}{\partial x} = \frac{U_{xx}U_{y} - U_{xy}U_{x} - U_{yx}U_{x} + U_{yy} \frac{U_{x}^{2}}{U_{y}}}{(U_{y}^{2})} \Leftrightarrow$$

$$\frac{\partial TMS}{\partial x} = \frac{U_{xx}U_{y} - U_{xy}U_{x} - U_{yx}U_{x} + U_{yy}\frac{U_{x}^{2}}{U_{y}}}{\left(U_{y}^{2}\right)} \Leftrightarrow \frac{\partial TMS}{\partial x} = \frac{U_{xx}U_{y} - U_{xy}U_{x} - U_{yx}U_{x} + U_{yy}\frac{U_{x}^{2}}{U_{y}}}{\left(U_{y}^{2}\right)}$$

$$\frac{\partial TMS}{\partial x} = \frac{U_{xx}U_y - 2U_{xy}U_x + U_{yy}\frac{U_x^2}{U_y}}{\left(U_y^2\right)}$$

$$\frac{\partial TMS}{\partial x} = \frac{U_{xx}U_{y} - U_{xy}U_{x} - U_{yx}U_{x} + U_{yy}\frac{U_{x}^{2}}{U_{y}}}{\left(U_{y}^{2}\right)} \Leftrightarrow dado \ que \ U_{xy} = U_{yx}$$

$$\frac{\partial TMS}{\partial x} = \frac{U_{xx}U_y - 2U_{xy}U_x + U_{yy}\frac{U_x^2}{U_y}}{\left(U_y^2\right)}$$

El signo depende del numerador.

$$\frac{\partial TMS}{\partial x} = \frac{U_{xx}U_{y} - 2U_{xy}U_{x} + U_{yy}\frac{U_{x}^{2}}{U_{y}}}{\left(U_{y}^{2}\right)}$$

- El signo depende del numerador.
- Se puede demostrar que si la función de utilidad U(x,y) es cuasi-cóncava, el númerador es negativo→ La TMS disminuye cuando x aumenta (equivalente a decir que la curva de indifernecia es convexa).

Nota: fn cóncava y q-cóncava

Función cóncava:

$$U(\lambda x^A + (1 - \lambda)x^B) \ge \lambda U(x^A) + (1 - \lambda)U(x^B)$$

Función cuasi-cóncava:

$$U(\lambda x^A + (1 - \lambda)x^B) \ge \min \left\{ U(x^A), U(x^B) \right\}$$

Donde x^A y x^B son canastas y lambda está entre 0 y 1.

TMS Decreciente

- La pendiente de la curva de indiferencia va disminuyendo en la medida que aumenta x:
 - Los individuos están cada vez menos dispuestos a renunciar a una unidad de y para obtener x.
 - ○Ej. La TMS es 6, 4, 2,1.
- La convexidad → preferencia por canastas balanceadas.

Casos especiales

- Sustitutos Perfectos
 - 2 bienes son sustitutos perfectos si la TMS entre ellos es siempre constante
 - La función de utilidad es lineal en los dos argumentos: U(x,y)=ax+by

Preferencias del Consumidor

Preferencias del Consumidor

- Complementos Perfectos
 - Dos bienes son complementos perfectos si sus curvas de indiferencia son ángulos rectos
 - Ejemplo: Si se tiene 1 zapato izquierdo y 1 derecho, da igual tener otro zapato izquierdo
 - Se debe tener 1 izquierdo por cada derecho
 - \bigcirc U(x,y)=min{ax,by}

Preferencias del Consumidor

Funciones de Utilidad

- Función de Utilidad Ordinal
 - Hace un ranking de las canastas de consumo de las menos preferidas a las más preferidas, pero no indica por cuánto más se prefiere una canastra a otra.
- Función de Utilidad Cardinal
 - Sí permite decir por cuánto más una cansta es preferida a otra.
- Un ranking ordinal es suficiente para explicar la mayoría de las decisiones de consumo de un individuo.

La Restricción de Presupuesto

- Sea C el número de unidades de comida comprado, y R el de Ropa
- Precio 1 unidad de comida = P_C
- Precio 1 unidad de Ropa = P_R
- Luego P_CC es la cantidad de dinero que se gasta en comida y P_RR la cantidad gastada en ropa
- Si no hay ahorro u otros bienes de consumo, la curva de presupuesto es:

$$P_R R + P_C C = m$$

La Curva de Presupuesto

- Diferentes combinaciones de comida y ropa pueden ser compradas usando el mismo ingreso
 - Estas combinaciones son la curva de presupuesto
- Ejemplo:
 - OResuelva la curva de presupuesto para R:

$$R = m/P_R - (P_C/P_R)C$$

OSi el Ingreso es \$80/semana y P_C = \$1 y P_R = \$2

La Pendiente de la Curva de Presupuesto

La Curva de Presupuesto

- A medida que se mueve sobre la curva de presupuesto, un consumidor gasta más en un bien y menos en otro.
- La pendiente mide el costo relativo entre comida y ropa.
- La pendiente es igual al negativo de la razón de precios de los dos bienes.
- La pendiente indica la tasa a la cual se sustituye un bien por otro usando siempre la misma cantidad de dinero (ingreso).

La Restricción de Presupuesto

- Cambios en precios e ingreso afectan la restricción de presupuesto.
- A mayor (menor) ingreso se puede comprar más (menos) de ambos bienes
- Dados unos precios, aumento (reducción) del ingreso desplaza la linea de presupuesto hacia afuera (adentro) en forma paralela.

Efectos del cambio en Precios

- OSi el precio de un bien aumenta, la curva de presupuesto se mueve hacia adentro rotando sobre el intercepto del otro bien.
- OSi el precio de 1 unidad de comida aumenta y el consumidor sólo compra comida (intercepto con el eje x), el consumo de comida se reduce necesariamente (el intercepto con el eje x es ahora menor).
- OSi solo se compra ropa (intercepto con el eje y), se puede comprar la misma cantidad de ropa.
- Lo contrario ocurre si el precio de la comida disminuye.

Efectos del cambio en Precios

- Si los dos bienes aumentan de precio pero la razon entre ellos es igual, la pendiente no cambia.
 - Sin embargo, la linea de presupuesto se desplaza de forma paralela hacia adentro.
- Reducción en precios que mantiene los precios relativos constantes desplaza la linea de presupuesto hacia afuera de forma paralela.