Week 4 Summary: Preferences and utility. Expected utility maximization. $\,$ 02.229 - Decision Theory and Practice, 2019 Jan-April

Yustynn Panicker

February 18, 2019

Contents

1	Ter	minolog	y																														1
2	Tad	elis Ch1	L																														2
	2.1	Comple	teness A	Ax	ior	n i	in	Pr	efe	ere	enc	ce	R	ela	$\operatorname{ati}_{}$	on.	S		 														2
	2.2	Rationa																															2
			Assumpt				_																										2
			Meaning																														2
			Homo Ec	_																													2
			2.2.3.1																														3
3	Тъд	elis Ch2) 1) ?	1	D	ot	or	·c0	n	C	П	1	1		4 '	2	1 (3															3
J	3.1	Simple a																															3
	5.1	-		•																													3
			Meaning Compose																														3
	2.0		Compou																														
	3.2	Backwa																															3
	0.0		Relation			-					_	_				_																	3
	3.3	Maximi		_																													3
			Units																														3
			Keyne's																														4
	3.4	Axioma																															4
		3.4.1	Axioms		•									•						•		 •		 •	•			•	•		•		4
	3.5																																4
			de mini					_														_											4
		3.5.2	Two-Env																														4
			3.5.2.1	S	Set	U	$^{J}\mathrm{p}$												 														4
		•	3.5.2.2	(Cho	oic	æ.												 														4
		•	3.5.2.3	7	Γhe	еŢ	oar	ad	OX										 														5
		•	3.5.2.4	(Coi	mr	me	nts	3										 					 									5

1 Terminology

Term	Definition/Explanation	Notes
Terminal node	Decision tree, the leafs where payoffs are at-	
	tached	
Payoff function	Function that maintains transitivity of pre-	
	existing preference relations	

Continued on next page

Continued from previous page

Term	Definition/Explanation	Notes
Degenerate lottery	A deterministic situation (probably pointlessly)	Probabilities of states arising based
	modelled as a lottery	off chosen actions would be 1 or 0
Intensity	Essentially, magnitude	E.g. intensity of preference is not in-
		variant to positive monotonic trans-
		forms (it's cardinal, not ordinal)
Risk neutral	Indifferent between a lottery and sure situation	
	given that the expected payout is the same	
Risk averse	Strictly prefers a sure situation to a lottery, given	
	that the expected payout is the same	
Risk loving	Strictly prefers a lottery to a sure situation,	Not as ridiculous at it seems prima
	given that the expected payout is the same	facie. In situations where you're
		wealthy/have nothing substantial to
		lose, risk is fun.
Risk neutral	Indifferent between a lottery and sure situation	
	given that the expected payout is the same	
Degenerate lottery	A deterministic situation (probably pointlessly)	Probabilities of states arising based
	modelled as a lottery	off chosen actions would be 1 or 0

2 Tadelis Ch1

2.1 Completeness Axiom in Preference Relations

Complete iff any two outcomes can be ranked by preference relation

2.2 Rational Choice Paradigm

2.2.1 Assumptions

Full understanding of the following:

- 1. All possible acts
- 2. All possible outcomes
- 3. Mappings for every state/outcome pair
- 4. His rational preferences (payoffs) over outcomes

2.2.2 Meaning

Rational if payoff-maximizing.

Manner of maximization is unclear in the text (is it expectation maximization?) but various methods were covered in Week 2.

2.2.3 Homo Economicus

Means "economic man". Essentially, the perfect rational agent.

2.2.3.1 Fun Facts

- Wikipedia describes this as a "caricature" and "mythical species", although in a way that seems to be a tool, rather than pejoratively
- Oppositionally, see homo reciprocans ("reciprocating man").
 - "cooperative actors who are motivated by improving their environment."
- Sometimes used by non-economists to critique economic approaches (distilled down to the "people aren't rational" argument)

3 Tadelis Ch2.1-2.3 + Peterson CH4.1 - 4.3, 4.6

3.1 Simple and Compound Lotteries

3.1.1 Meaning of Simple Lottery

- Stochastic state distribution
- Probability of states are contingent upon performed acts, which suggest that acts are not necessarily seen as independent of states. This is different from what we learnt in class (assumption of causal independence)

3.1.2 Compound Lotteries

- A simple lottery after a simple lottery (multi-level decision tree)
- Can be transformed into a simple lottery (take each path as a single decision, then consider terminal nodes only)

3.2 Backward Induction

It's easiest to work backwards then dealing with multi-stage decisions trees.

3.2.1 Relation to Dynamic Programming

It's one strategy for it, but certainly not the only one (e.g. you could just as easily work forwards in shortest path problems)

3.3 Maximizing Expectation

3.3.1 Units

Unit	Explanation/Notes
Monetary value	\$\$\$
Value	Monetary value, adjusted for diminishing marginal 'value' of money to the agent
${f Utility}$	Yes. Not well defined, but POV is important. Allows for non-monetary evaluation

Utility, value, monetary value, payoff

3.3.2 Keyne's Objection

"In the long run we are all dead".

Essentially, a criticism of relying on LLN.

3.4 Axiomatic Approach

Arrives at the principle of maximizing utility without using LLN (thereby sidestepping Keynes' problem).

3.4.1 Axioms

- 1. If all outcomes of an act have utility u, then the utility of the act is u
- 2. For acts, utility relations follow dominance relations (e.g. strict dominance implies higher utility)
- 3. Every decision probable can be transformed into a rival formalization with equiprobable (possibly repeated) states, which maintain the utilities of all acts
- 4. Setup: 1) two equiprobable outcomes 2) The better outcome is made slightly worse Claim) Overall utility of act can be preserved by adding some amount of utility to the other outcome

These 4 axioms lead to the following conclusion: the utility of an act = its expected utility

3.5 Misc

3.5.1 de minimis Principle as a Solution to the St Petersburg Paradox

Roughly put, sufficiently improbable outcomes should be ignored

3.5.2 Two-Envelope Paradox (infinite swapping reasoning)

- No established solution exists.
- This is **not** the same as the Monty Hall problem

3.5.2.1 Set Up

- Two seemingly identical envelopes (A and B)
- 1 envelope contains twice as much as the other
- You don't know which is which, can only choose 1

3.5.2.2 Choice

- Make a decision
- Given chance to swap decision

3.5.2.3 The paradox

- $\mathbb{E}[swap] = \frac{1}{2} \cdot 2x + \frac{1}{2} \cdot \frac{x}{2} = \frac{5}{4}x$, so logically, swap
- Given choice again just before picking
- $\mathbb{E}[swap] = \frac{1}{2} \cdot 2y + \frac{1}{2} \cdot \frac{y}{2} = \frac{5}{4}y$, so logically, swap
- Given choice again, just before picking
- Repeat ad infinitum

3.5.2.4 Comments The problem is not to find an alternate formulation of the given situation. The problem is to find the issue with this current formulation, which gives nonsensical results.