Mini Problems 11

- 1. Consider the function $F: \mathbb{R}^2 \to \mathbb{R}$ given by $F(x,y) = xy^2 + 1$. Use the implicit function theorem to determine which of the level sets of F are locally graphs of C^1 functions of a single variable. Prove your answer (that is, prove that the left-over level sets are *not* locally graphs of single variable functions). [Recall that the level sets of F are the sets $\{(x,y) \in \mathbb{R}^2 : F(x,y) = c\}$ for $c \in \mathbb{R}$].
 - **2.** Recall the cylindrical coordinate system in \mathbb{R}^3 :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z. \end{cases}$$

Near which points in \mathbb{R}^3 can we solve for r, θ and z in terms of the Cartesian coordinates x, y, z? As well as a proof, give a geometric reason for your answer.

- **3.** Consider the curve C defined by F(x,y) = 0 in \mathbb{R}^2 where $F(x,y) = x^2 y^3$. Observe that (0,0) lies on C and that $F_y(0,0) = 0$. Yet show that it is possible to describe C as the graph of a function y = f(x). Does this contradict the implicit function theorem?
 - 4. Consider the system of equations

$$\begin{cases} x_1 y_2^2 - 3x_2 y_3 & = -1 \\ x_1 y_1^5 + 3x_2 y_2 - 4y_2 y_3 & = 13 \\ x_2 y_1 + 3x_1 y_3^2 & = -27. \end{cases}$$

(i) Show that near the point (-1,0,-1,-1,3) it is possible to solve for y_1,y_2,y_3 as functions of x_1 and x_2 . (ii) Find $\frac{\partial y_1}{\partial x_1}(-1,0)$, $\frac{\partial y_2}{\partial x_1}(-1,0)$ and $\frac{\partial y_3}{\partial x_1}(-1,0)$.