SPECIFICATION

MULTILAYER CHIP VARISTOR

TYPE: AVL 14K 02 200

July 3, 2001

AMOTECH CO., LTD.	DESIGNED	CHECKED	APPROVED	
17-2, JAMWON-DONG, SEOCHO-GU, SEOUL, KOREA				
TEL: 82-2-544-1383 FAX: 82-2-517-7183				

1. Electrical Specification

1-1 Test condition

Varistor voltage In = 1 mA DC Leakage current Vdc = 5 V DC Maximum clamping voltage Ic = 1 A

Rated peak single pulse transient current $8 / 20 \mu s$ waveform Capacitance f = 1 KHz, Vrms = 0.5 V

Insulation resistance after reflow soldering V = 3.6 V DC

Soldering paste: Tamura (Japan) RMA-20-21L

Stencil : SUS, 150 $\mu\mathrm{m}$ thickness

Reflow soldering condition Pad size: 0.5 (Width) x 0.6 (Length)

0.5 (Distance between pads)

Soldering profile : 230 $\,^{\circ}$ C, 5 sec.

1-2 Electrical specification

Maximum allowable continuous AC voltage at 50-60 Hz	11	V	
Maximum allowable continuous DC voltage	14	V	
Varistor voltage / nomial voltage / breakdown voltage	18	V	
Maximum clamping voltage	35	V	Maximum
Rated peak single pulse transient current	20	Α	Maximum
Nonlinearity coefficient	> 15		
Leakage current at continuous DC voltage	< 20	μ A	
Response time	< 1	ns	
Varistor voltage temperature coefficient	< 0.05	%/℃	
Capacitance measured at 1KHz	120	pF	Maximum
Insulation resistance after reflow soldering on PCB	> 10	$\mathbf{M}\Omega$	
Operating ambient temperature	-55 to +125	$^{\circ}\!\mathbb{C}$	
Storage temperature	-55 to +150	$^{\circ}\!\mathbb{C}$	

1-3 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement		
Pulse current capability	lmax 8/20 <i>μ</i> s	IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d Vn /Vn ≤ 10% No visible damage To meet Vn tolerance		
Environmental reliability	Thermal shock	IEC 68-2-14 Condition for 1 cycle Step 1 : Min40°C, 30±3 min. Step 2 : Max. +85°C, 30±3 min. Number of cycles: 50 times	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	High temperature	$\begin{array}{l} \underline{\text{IEC 68-2-3}} \\ \text{Place the chip at } 85\pm3^{\circ}\!$	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Low temperature	$\begin{array}{c} \underline{\text{IEC 68-2-1}} \\ \text{Place the chip at -40} \pm 3^{\circ}\!$	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Climatic sequence	IEC 1051-1, Test 4.17 a) Dry heat: 85℃, 16hrs b) Damp heat, cyclic, the first cycle: 55℃, 93%RH, 24hrs c) Cold: -40℃, 2hrs d) Damp heat cyclic, remaining 5 cycles: 55℃, 93%RH, 24hrs/cycle	d Vn /Vn ≤ 10% No visible damage To meet Vn tolerance		
	Heat resistance	IEC 68-2-3 Apply the rated voltage for $1000\pm48 hrs$ at $85\pm3\%$. Remove and place for $24\pm2 hrs$ at room temp. condition, then measure	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Humidity resistance	IEC 68-2-30 Place the chip at 40 ± 2 °C and 90 to 95% humidity for 500 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn≤10% No visible damage To meet Vn tolerance		
Mechanical Reliability	Solderability	$\frac{\text{IEC 68-2-20}}{\text{Solder bath method, } 230\pm5^{\circ}\!$	At least 95% of terminal electrode is covered by new solder		
•	Resistance to soldering heat	IEC 68-2-20 Solder bath method, $260\pm5^{\circ}\!$	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Bending strength	IEC 68-2-21 Warp:2mm, Speed:0.5mm/sec, Duration: 10sec.The measurement shall be made with board in the bent position	d Vn /Vn ≤ 10% No visible damage To meet Vn tolerance		
	Adhesive strength	IEC 68-2-22 Applied force on SMD chip by fracture from PCB	Strength > 10 N (1 kg) No visible damage		

2. Material Specification

Body ZnO based ceramics

Internal electrode Silver – Palladium

External electrode Silver – Platinum

3. Dimension Specification

Unit: mm

4. Package Specification

	Α	В	С	D	Е	F	G	Н	J	Т	T1
Spec.	0.62	1.12	8.00	3.50	1.75	2.00	2.00	4.00	1.50	0.60	0.1
Tolerance	±0.04	±0.04	±0.10	±0.05	±0.10	±0.05	±0.05	±0.10	+0.10	± 0.05	Max.

4-1 Material for package

4-1-1 Paper carrier tape

Laminated virgin pulp

4-1-2 Top tape

Polyester film

4-1-3 Bottom tape

Adhesive coated paper

4-1-4 Plastic reel

GPPS (General Purpose Poly Styrene) resin

4-1-5 Plastic bag

PE (Poly ethylene)

5. Soldering Recommendations

5-1 Soldering profile

5-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use Sn / Pb / Ag (62 / 36 / 2) or equivalent solder.
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

5-3 Solder pad layout

6. Storage condition

- Storage environment must be at an ambient temperature of 25~35 $\,^\circ\mathbb{C}$ and an ambient humidity of 40~60 $\,^\circ$ RH
- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.
 If 6 months of more have elapsed, check solderability before use.-

7. Description about package label

AMOTECH CO., LTD. 691-1, Kasan-Dong, Keumcheon-Gu, Seoul, Korea

Metal Oxide Varistor

Type: AVL 14K 02 200 Lot: F01033PD08

Quantity: 10,000 pcs Date: August 11, 2001

Type: AVL 14K 02 200

AVL: Series name

14: Maximum continuous working voltage - Vdc

K : Varistor voltage tolerance $-\pm 10\%$

02 : Chip size - 02 is 0402 (1.0 x 0.5 mm) size

200 : Maximum surge current – 200 means 20 x 10 ⁰ A

Lot: F01033PD08

F: Powder type – F means formulation powder

01: Production year - 2001

033 : Ceramic tape batch number

P: Production type – P means mass production

D: Production month - D means April

08: Production date

Qunatity: 10,000 pcs

- Quantity of shipping chip varistor

Date: August 11, 2001

- Shipping date