1 SM2加密算法软硬件划分

1.1 实验目的

SM2加密算法每个步骤所需软硬件执行时间、面积及功耗如表,依据这些数据,系统要求最大硬功耗P=4.5mw,最大硬件面积S=12mm²,最大执行时间T=110s,使用线性规划方法进行软硬件划分,使得执行时间、硬件面积以及功耗的系统整体最小化,以及系统单个性能指标最小化,并求出相应的软硬件划分结果及其性能指标。

数据模块	软时间/s	硬时间/s	硬面积/mm²	硬功耗/mw
点加 AddP	11.861	1. 467	3. 524	1. 338
倍点 DoubleP	11.055	1. 038	1. 881	1. 002
模逆 Invmod	48. 949	0. 958	0. 293	0. 078
模乘 Mulmod	42. 293	0. 536	0. 271	0. 123
预处理 MODN	23. 478	0. 342	0. 109	0. 033
点乘 Q=[k]P	32. 456	1. 231	5. 581	2. 2
模加减 Addmod&Submod	10.020	0. 995	5. 426	2. 231

1.2 实验环境

• LINGO

1.3 实验过程

- 设变量 x_{ij} (i=0...6,j=0,1),分别对应点加、倍点、模逆、模乘、预处理、点乘、模加减,j=0 表示软实现,j=1 表示硬实现,表示第 i 个任务是软实现还是硬实现,t 表示时间,s 表示硬面积,p 表示硬功耗, $x_{ij} \in \{0,1\} (i=0...6,j=0/1)$
- 变量空间: $x_{i0} + x_{i1} = 1$ 是变量 x_{ij} 约束条件
- 约束条件: $t \leq 110$, $s \leq 12$, $p \leq 4.5$
- 整体最小化
 - o model: min = t + s + p;

```
t = 11.861*x00 + 1.476*x01 + 11.055*x10 + 1.038*x11 + 48.949*x20 +
0.958*x21 + 42.293*x30 + 0.536*x31 + 23.478*x40 + 0.342*x41 + 32.456*x50
+ 1.231*x51 + 10.020*x60 + 0.995*x61;
s = 3.524*x01 + 1.881*x11 + 0.293*x21 + 0.271*x31 + 0.109*x41 +
5.581*x51 + 5.426*x61;
p = 1.338*x01 + 1.002*x11 + 0.078*x21 + 0.123*x31 + 0.033*x41 + 2.2*x51
+ 2.231*x61;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
x60 + x61 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
@bin(x60);
@bin(x61);
p <= 4.5;
s <= 12;
t <= 110;
end
```

• 执行时间最小化

```
model:
min = t;
t = 11.861*x00 + 1.476*x01 + 11.055*x10 + 1.038*x11 + 48.949*x20 +
0.958*x21 + 42.293*x30 + 0.536*x31 + 23.478*x40 + 0.342*x41 + 32.456*x50
+ 1.231*x51 + 10.020*x60 + 0.995*x61;
s = 3.524 \times x01 + 1.881 \times x11 + 0.293 \times x21 + 0.271 \times x31 + 0.109 \times x41 +
5.581*x51 + 5.426*x61;
p = 1.338*x01 + 1.002*x11 + 0.078*x21 + 0.123*x31 + 0.033*x41 + 2.2*x51
+ 2.231*x61;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
x60 + x61 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
```

```
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
@bin(x60);
@bin(x61);
p <= 4.5;
s <= 12;
t <= 110;
end</pre>
```

• 硬面积最小化

```
model:
min = s;
t = 11.861*x00 + 1.476*x01 + 11.055*x10 + 1.038*x11 + 48.949*x20 +
0.958*x21 + 42.293*x30 + 0.536*x31 + 23.478*x40 + 0.342*x41 + 32.456*x50
+ 1.231*x51 + 10.020*x60 + 0.995*x61;
s = 3.524*x01 + 1.881*x11 + 0.293*x21 + 0.271*x31 + 0.109*x41 +
5.581*x51 + 5.426*x61;
p = 1.338*x01 + 1.002*x11 + 0.078*x21 + 0.123*x31 + 0.033*x41 + 2.2*x51
+ 2.231*x61;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
x60 + x61 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
@bin(x60);
@bin(x61);
p <= 4.5;
s <= 12;
t <= 110;
end
```

• 硬功耗最小化

```
o model:
```

```
min = p;
t = 11.861*x00 + 1.476*x01 + 11.055*x10 + 1.038*x11 + 48.949*x20 +
0.958*x21 + 42.293*x30 + 0.536*x31 + 23.478*x40 + 0.342*x41 + 32.456*x50
+ 1.231*x51 + 10.020*x60 + 0.995*x61;
s = 3.524*x01 + 1.881*x11 + 0.293*x21 + 0.271*x31 + 0.109*x41 +
5.581*x51 + 5.426*x61;
p = 1.338*x01 + 1.002*x11 + 0.078*x21 + 0.123*x31 + 0.033*x41 + 2.2*x51
+ 2.231*x61;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
x60 + x61 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
@bin(x60);
@bin(x61);
p <= 4.5;
s <= 12;
t <= 110;
end
```

1.4 实验结论

• 整体最小化:

```
o 划分解: x_{00} = x_{11} = x_{21} = x_{31} = x_{41} = x_{51} = x_{60} = 1, x_{01} = x_{10} = x_{20} = x_{30} = x_{40} = x_{50} = x_{61} = 0
```

■ 软件实现:任务0、6,对应点加、模加减

■ 硬件实现:任务1、2、3、4、5,对应倍点、模逆、模乘、预处理、点乘

。 划分效果: t=25.986, s=8.135, p=3.436, min=t+s+p=37.557

• 执行时间最小化:

```
・ 划分解: x_{01}=x_{10}=x_{21}=x_{31}=x_{41}=x_{51}=x_{60}=1, x_{00}=x_{11}=x_{20}=x_{30}=x_{40}=x_{50}=x_{61}=0
```

■ 软件实现:任务1、6,对应倍点、模加减

■ 硬件实现:任务0、2、3、4、5,对应点加、模逆、模乘、预处理、点乘

。 划分效果: t=25.618 , s=9.778 , p=3.772 , min=t=25.618

• 硬面积最小化:

```
・ 划分解: x_{00}=x_{10}=x_{21}=x_{30}=x_{41}=x_{50}=x_{60}=1, x_{01}=x_{11}=x_{20}=x_{31}=x_{40}=x_{51}=x_{61}=0
```

■ 软件实现:任务0、1、3、5、6,对应点加、倍点、模乘、点乘、模加减

■ 硬件实现:任务2、4,对应模逆、预处理

。 划分效果: t=108.985 , s=0.402 , p=0.111 , min=s=0.402

• 硬功耗最小化:

・ 划分解: $x_{00}=x_{10}=x_{21}=x_{30}=x_{41}=x_{50}=x_{60}=1$, $x_{01}=x_{11}=x_{20}=x_{31}=x_{40}=x_{51}=x_{61}=0$

■ 软件实现:任务0、1、3、5、6,对应点加、倍点、模乘、点乘、模加减

■ 硬件实现: 任务2、4, 对应模逆、预处理

。 划分效果: t=108.985 , s=0.402 , p=0.111 , min=p=0.111

2 车辆自动变道系统

2.1 实验目的

● 矩形分别代表车辆A、B、C(每辆上装有通讯设备和用于信息采集的传感器),车身长度为图中所示两条红线之间的距离。当车辆A要向右进行变道时,先向车辆B、C发送变道请求,打开右转向灯,并收集车辆B、C此时的车速、加速度、线段AB、AC与平行法线的夹角和距车辆A的距离(即线段AB和AC),若车辆B、C成功收到请求并将收到信息成功反馈给车辆A,则车辆A查看此时道路环境是否满足变道要求,若满足则进行变道,否则重新发送请求。车辆A进行变道时,该系统会控制车辆B不能减速,车辆C不能加速。该自动变道系统由信息采集模块、信息处理模块、车灯控制模块、车速控制模块、信息接收模块、信息发送模块组成。每个模块有软件执行功耗、硬件执行功耗和硬件执行面积。使用线性规划方法给出两种解决方案:第一种在硬件面积不超过1.5mm²、1.8mm²、2.0mm²前提下功耗最小解决方案;第二种在整体功耗不超过2mw、2.2mw、2.5mw前提下,硬件面积最小的解决方案。

模块 信息采集 信息处理 信息接收信息发送 车灯控制 | 车速控制 性能 软件功耗 mw 0.55 0.23 0.22 0.37 0.45 0.39 硬件功耗 mw 0.34 0.38 0.17 0.57 0.33 0.27 硬件面积 mm 0.413 0.531 0.216 0.330 0.363 0.424

2.2 实验环境

• LINGO

2.3 实验过程

- 设变量 x_{ij} (i=0...5,j=0,1),分别对应信息采集、信息处理、车灯控制、车速控制、信息接受、信息发送,j=0 表示软实现,j=1 表示硬实现,表示第i 个任务是软实现还是硬实现,s 表示硬件面积,p 表示功耗, $x_{ij}\in\{0,1\}(i=0...5,j=0/1)$
- 变量空间: $x_{i0}+x_{i1}=1$ 是变量 x_{ij} 约束条件
- 约束条件: $t \leq 110$, $s \leq 12$, $p \leq 4.5$
- 硬件面积
 - 。 不超过1.5mm²,功耗最小

```
model:

min = p;

p = 0.55*x00 + 0.34*x01 + 0.23*x10 + 0.38*x11 + 0.22*x20 + 0.17*x21

+ 0.37*x30 + 0.57*x31 + 0.45*x40 + 0.33*x41 + 0.39*x50 + 0.27*x51;
```

```
s = 0.413*x01 + 0.531*x11 + 0.216*x21 + 0.330*x31 + 0.363*x41 +
0.424*x51;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
s <= 1.5;
end
```

。 不超过1.8mm², 功耗最小

```
model:
min = p;
p = 0.55*x00 + 0.34*x01 + 0.23*x10 + 0.38*x11 + 0.22*x20 + 0.17*x21
+ 0.37*x30 + 0.57*x31 + 0.45*x40 + 0.33*x41 + 0.39*x50 + 0.27*x51;
s = 0.413*x01 + 0.531*x11 + 0.216*x21 + 0.330*x31 + 0.363*x41 +
0.424*x51;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
s <= 1.8;
end
```

。 不超过2.0mm², 功耗最小

```
model:
```

```
min = p;
p = 0.55*x00 + 0.34*x01 + 0.23*x10 + 0.38*x11 + 0.22*x20 + 0.17*x21
+ 0.37*x30 + 0.57*x31 + 0.45*x40 + 0.33*x41 + 0.39*x50 + 0.27*x51;
s = 0.413*x01 + 0.531*x11 + 0.216*x21 + 0.330*x31 + 0.363*x41 +
0.424*x51;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
s \ll 2.0;
end
```

• 整体功耗

o 不超过2mw,硬件面积最小

```
model:
min = s;
p = 0.55*x00 + 0.34*x01 + 0.23*x10 + 0.38*x11 + 0.22*x20 + 0.17*x21
+ 0.37*x30 + 0.57*x31 + 0.45*x40 + 0.33*x41 + 0.39*x50 + 0.27*x51;
s = 0.413*x01 + 0.531*x11 + 0.216*x21 + 0.330*x31 + 0.363*x41 +
0.424*x51;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
p \ll 2;
end
```

。 不超过2.2mw, 硬件面积最小

```
model:
min = s;
p = 0.55*x00 + 0.34*x01 + 0.23*x10 + 0.38*x11 + 0.22*x20 + 0.17*x21
+ 0.37*x30 + 0.57*x31 + 0.45*x40 + 0.33*x41 + 0.39*x50 + 0.27*x51;
s = 0.413*x01 + 0.531*x11 + 0.216*x21 + 0.330*x31 + 0.363*x41 +
0.424*x51;
x00 + x01 = 1;
x10 + x11 = 1:
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
p <= 2.2;
end
```

。 不超过2.5mw, 硬件面积最小

```
model:
min = s;
p = 0.55*x00 + 0.34*x01 + 0.23*x10 + 0.38*x11 + 0.22*x20 + 0.17*x21
+ 0.37*x30 + 0.57*x31 + 0.45*x40 + 0.33*x41 + 0.39*x50 + 0.27*x51;
s = 0.413*x01 + 0.531*x11 + 0.216*x21 + 0.330*x31 + 0.363*x41 +
0.424*x51;
x00 + x01 = 1;
x10 + x11 = 1;
x20 + x21 = 1;
x30 + x31 = 1;
x40 + x41 = 1;
x50 + x51 = 1;
@bin(x00);
@bin(x01);
@bin(x10);
@bin(x11);
@bin(x20);
@bin(x21);
@bin(x30);
@bin(x31);
@bin(x40);
@bin(x41);
@bin(x50);
@bin(x51);
```

2.4 实验结论

- 硬件面积
 - 。 不超过1.5mm²,功耗最小
 - 划分解: $x_{01} = x_{10} = x_{21} = x_{30} = x_{41} = x_{51} = 1$, $x_{00} = x_{11} = x_{20} = x_{31} = x_{40} = x_{50} = 0$
 - 软件实现:任务1、3,对应信息处理、车速控制
 - 硬件实现:任务0、2、4、5,对应信息采集、车灯控制、信息接受、信息发送
 - 划分效果: s = 1.416, p = 1.71, min = p = 1.71
 - 不超过1.8mm², 功耗最小
 - 划分解: $x_{01} = x_{10} = x_{21} = x_{30} = x_{41} = x_{51} = 1$, $x_{00} = x_{11} = x_{20} = x_{31} = x_{40} = x_{50} = 0$
 - 软件实现:任务1、3,对应信息处理、车速控制
 - 硬件实现:任务0、2、4、5,对应信息采集、车灯控制、信息接受、信息发送
 - 划分效果: s = 1.416, p = 1.71, min = p = 1.71
 - 不超过2.0mm², 功耗最小
 - 划分解: $x_{01} = x_{10} = x_{21} = x_{30} = x_{41} = x_{51} = 1$, $x_{00} = x_{11} = x_{20} = x_{31} = x_{40} = x_{50} = 0$
 - 软件实现:任务1、3,对应信息处理、车速控制
 - 硬件实现:任务0、2、4、5,对应信息采集、车灯控制、信息接受、信息发送
 - 划分效果: s=1.416, p=1.71, min=p=1.71
- 整体功耗
 - o 不超过2mw,硬件面积最小
 - 划分解: $x_{01} = x_{10} = x_{20} = x_{30} = x_{40} = x_{50} = 1$, $x_{00} = x_{11} = x_{21} = x_{31} = x_{41} = x_{51} = 0$
 - 软件实现:任务1、2、3、4、5,对应信息处理、车灯控制、车速控制、信息接受、信息发送
 - 硬件实现:任务0,对应信息采集
 - 划分效果: s = 0.413, p = 2, min = s = 0.413
 - 不超过2.2mw, 硬件面积最小
 - 划分解: $x_{00} = x_{10} = x_{21} = x_{30} = x_{40} = x_{50} = 1$, $x_{01} = x_{11} = x_{20} = x_{31} = x_{41} = x_{51} = 0$
 - 软件实现:任务0、1、3、4、5,对应信息采集、信息处理、车速控制、信息接受、信息发送
 - 硬件实现:任务2,对应车灯控制
 - 划分效果: s = 0.216, p = 2.16, min = s = 0.216
 - 。 不超过2.5mw, 硬件面积最小
 - 划分解: $x_{00} = x_{10} = x_{20} = x_{30} = x_{40} = x_{50} = 1$, $x_{01} = x_{11} = x_{21} = x_{31} = x_{41} = x_{51} = 0$
 - 软件实现:任务0、1、2、3、4、5,对应信息采集、信息处理、车灯控制、车速 控制、信息接受、信息发送

- 硬件实现: 无任务
- 划分效果: s=0 , p=2.21 , min=s=0