Senior Test 1

April Camp 2019

Time: $4\frac{1}{2}$ hours

1. Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$ satisfying

$$f\left(x^2 f(y)^2\right) = f(x)^2 f(y)$$

for all $x, y \in \mathbb{Q}_{>0}$.

- 2. Let n > 1 be a positive integer. Each cell of an $n \times n$ table contains an integer. Suppose that the following conditions are satisfied:
 - (i) Each number in the table is congruent to 1 modulo n;
 - (ii) The sum of numbers in any row, as well as the sum of numbers in any column is congruent to n modulo n^2 .

Let R_i be the product of the numbers in the *i*-th row, and C_j be the product of the numbers in the *j*-th column. Prove that the sums $R_1 + \cdots + R_n$ and $C_1 + \cdots + C_n$ are congruent modulo n^4 .

3. A point T is chosen inside a triangle ABC. Let A_1 , B_1 , and C_1 be the reflections of T in BC, CA, and AB, respectively. Let Ω be the circumcircle of the triangle $A_1B_1C_1$. The lines A_1T , B_1T , and C_1T meet Ω again at A_2 , B_2 , and C_2 , respectively. Prove that the lines AA_2 , BB_2 , and CC_2 are concurrent on Ω .