

Python [default] O

Building recommender system using machine learning algorithms.

author: bhavesh patel

There are many different models. Here are the few we will work on.

First and simplest: popularity model. This is where you see most popular items. It is not personalized.

Second: Recommendation based on past purchase history and other info like demographics etc.

Third: People who bought also bought. This is collaborative filtering model. This is where we build co-occurrence matrix

Fourth: Matrix factorization to find predict hidden values (e.g. people never bought that item). This works as long as somebody else bought the item.

Measuring performance of different models.

recall = number of items liked and recommended / Total number of items liked

Precision = number of items liked and recommended / total number of items recommended

Ideally, you want both recall and precision to be 1 (100%)

In reality, precision goes down as you try to recall more items as you have fewer data points.

We can compare recommender system by finding out AUC (Area under curve). More the better.

In [1]: import graphlab

In [2]: # Limit number of worker processes. This preserves system memory, which prevents hosted notebooks from crashing.
graphlab.set_runtime_config('GRAPHLAB_DEFAULT_NUM_PYLAMBDA_WORKERS', 4)

[INFO] graphlab.cython.cy_server: GraphLab Create v2.1 started. Logging: /tmp/graphlab_server_1479956553.log

This non-commercial license of GraphLab Create for academic use is assigned to bhaveshk8@gmail.com and will expire on October 17, 2017.

In [5]: #Load the data.

song_data = graphlab.SFrame('song_data.gl/')

In [7]: # review data.

song_data.head()

Out[7]:

user_id	song_id	listen_count	title	artist
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOAKIMP12A8C130995	1	The Cove	Jack Johnson
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOBBMDR12A8C13253B	2	Entre Dos Aguas	Paco De Lucia
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOBXHDL12A81C204C0	1	Stronger	Kanye West
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOBYHAJ12A6701BF1D	1	Constellations	Jack Johnson
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SODACBL12A8C13C273	1	Learn To Fly	Foo Fighters
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SODDNQT12A6D4F5F7E	5	Apuesta Por El Rock 'N' Roll	Héroes del Silencio
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SODXRTY12AB0180F3B	1	Paper Gangsta	Lady GaGa
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOFGUAY12AB017B0A8	1	Stacked Actors	Foo Fighters
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOFRQTD12A81C233C0	1	Sehr kosmisch	Harmonia
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	SOHQWYZ12A6D4FA701	1	Heaven's gonna burn your eyes	Thievery Corporation feat. Emiliana Torrini

song
The Cove - Jack Johnson

Entre Dos Aguas - Paco De Lucia ... Stronger - Kanye West Constellations - Jack Johnson ... Learn To Fly - Foo Fighters .. Apuesta Por El Rock 'N' Roll - Héroes del ... Paper Gangsta - Lady GaGa Stacked Actors - Foo Fighters ... Sehr kosmisch - Harmonia Heaven's gonna burn your eyes - Thievery ... [10 rows x 6 columns] In [8]: # make graph local. graphlab.canvas.set_target('ipynb') In [9]: song_data.show() listen_count title song_id artist user_id dtype: str dtype: str dtype: int dtype: str dtype: str num_unique num_unique (est.): 9,971 num_unique (est.): 276 num_unique (est.): 9,540 num_unique (est.): 3,371 66,019 (est.): num_undefined: num_undefined: num_undefined: 0 num_undefined: num_undefined: 0 min: frequent items: frequent items: frequent items: frequent items: 920 max: SOFRQTD12A81C233C0 Sehr kosmisch Coldplay No values appear with ≥ median: SOAUWYT12A81C206F1 Florence + The ... 0.01% occurrence. 3.291 SOBONKR12A58A7A7E0 You're The One Kings Of Leon std: 7.203 SOAXGDH12A8C13F8A1 Dog Days Are Over ... Justin Bieber distribution of values: SOSXLTC12AF72A7F54 The Black Keys Revelry SOEGIYH12A6D4FC0E3 Horn Concerto No. ... Jack Johnson SONYKOW12AB01849... Secrets Train SOFLJQZ12A6D4FADA6 Tive Sim Eminem SOLFXKT12AB017E3E0 Fireflies OneRepublic SODJWHY12A8C142C.. Hey_ Soul Sister Radiohead SOUVTSM12AC468F6A7 Drop The World SOUSMXX12AB0185C24 OMG Daft Punk In [10]: # number of records. len(song data) Out[10]: 1116609 In [11]: # first create training and test data set. train_data, test_data = song_data.random_split(0.8, seed=0) ### First recommendation model: Populatiry model Recsys training: model = popularity Warning: Ignoring columns song id, listen count, title, artist; To use one of these as a target column, set target = and use a method that allows the use of a target. Preparing data set. Data has 893580 observations with 66085 users and 9952 items. Data prepared in: 1.55758s 893580 observations to process; with 9952 unique items. In [18]: # let's check for the first user.

popularity_model.recommend(users=[song_data['user_id'][0]]) Out[18]: user_id song score rank b80344d063b5ccb3212f76538 Undo - Björk 4227.0 1 f3d9e43d87dca9e ... b80344d063b5ccb3212f76538 You're The One - Dwight 3781.0 2 f3d9e43d87dca9e ... Yoakam ... b80344d063b5ccb3212f76538 Dog Days Are Over (Radio 3633.0 3 f3d9e43d87dca9e ... Edit) - Florence + The .. b80344d063b5ccb3212f76538 Revelry - Kings Of Leon 3527.0 4 f3d9e43d87dca9e ... b80344d063b5ccb3212f76538 3161.0 5 Horn Concerto No. 4 in E f3d9e43d87dca9e ... flat K495: II. Romance . b80344d063b5ccb3212f76538 Secrets - OneRepublic 3148.0 6 f3d9e43d87dca9e ... b80344d063b5ccb3212f76538 Hev Soul Sister - Train 2538.0 7 f3d9e43d87dca9e ... b80344d063b5ccb3212f76538 Fireflies - Charttraxx 2532.0 8 f3d9e43d87dca9e ... Karaoke .. b80344d063b5ccb3212f76538 Tive Sim - Cartola 2521.0 9 f3d9e43d87dca9e b80344d063b5ccb3212f76538 Drop The World - Lil 2053.0 10 f3d9e43d87dca9e ... Wayne / Eminem ... [10 rows x 4 columns] In [25]: # now let's for 1000th user. popularity_model.recommend(users=[song_data['user_id'][1000]]) Out[251: user id rank sona score 20d0638c7ada27ac12346b0ed Sehr kosmisch - Harmonia 4754.0 1 5ab99b39524291d ... 20d0638c7ada27ac12346b0ed Undo - Björk 4227.0 5ab99b39524291d ... 20d0638c7ada27ac12346b0ed You're The One - Dwight 3781.0 3 5ab99b39524291d ... Yoakam ... 20d0638c7ada27ac12346b0ed Dog Days Are Over (Radio 3633.0 4 5ab99b39524291d ... Edit) - Florence + The ... 20d0638c7ada27ac12346b0ed Revelry - Kings Of Leon 3527.0 5 5ab99b39524291d ... 20d0638c7ada27ac12346b0ed Horn Concerto No. 4 in E 3161.0 6 5ab99b39524291d ... flat K495: II. Romance ... 20d0638c7ada27ac12346b0ed 7 Secrets - OneRepublic 3148.0 5ab99b39524291d 20d0638c7ada27ac12346b0ed Hev Soul Sister - Train 2538.0 8 5ab99b39524291d ... Fireflies - Charttraxx 20d0638c7ada27ac12346b0ed 2532.0 9 5ab99b39524291d ... Karaoke .. 20d0638c7ada27ac12346b0ed Tive Sim - Cartola 2521.0 10 5ab99b39524291d ... [10 rows x 4 columns] In [20]: # as you can see above, it recommends same thing for both/any users. # That's because it uses popularity model, not personalized model. Second recommendation model: Based on past behaviour In [26]: past_behaviour_model = graphlab.item_similarity_recommender.create(train_data, user_id='user_id', item id='song') Recsys training: model = item similarity Warning: Ignoring columns song_id, listen_count, title, artist; To use one of these as a target column, set target = and use a method that allows the use of a target. Preparing data set.

Data has 893580 observations with 66085 users and 9952 items.

Data prepared in: 1.36127s

Training model from provided data.

Gathering per-item and per-user statistics.

| Elapsed Time (Item Statistics) | % Complete | 1.586ms | 1.5 | 100 61.882ms Setting up lookup tables. Processing data in one pass using dense lookup tables. +-----+ | Elapsed Time (Constructing Lookups) | Total % Complete | Items Processed | +-----+ 390.942ms 0 0 2.22s 100 +-----+

Finalizing lookup tables.

Generating candidate set for working with new users.

Finished training in 2.36233s

In [27]: # now let's see how this fared against our previous model for the same users.

past_behaviour_model.recommend(users=[song_data['user_id'][0]])

Out[27]:

user_id	song	score	rank
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Meadowlarks - Fleet Foxes	0.0248072429707	1
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Quiet Houses - Fleet Foxes	0.0240329645182	2
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Heard Them Stirring - Fleet Foxes	0.0203885561542	3
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Tiger Mountain Peasant Song - Fleet Foxes	0.0199806752958	4
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Your Protector - Fleet Foxes	0.0193978893129	5
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Oliver James - Fleet Foxes	0.0190611293441	6
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Great Indoors - John Mayer	0.0149489750988	7
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	Innocent Son - Fleet Foxes	0.0148925859677	8
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	White Winter Hymnal - Fleet Foxes	0.0148194040123	9
b80344d063b5ccb3212f76538 f3d9e43d87dca9e	City Love - John Mayer	0.0138473055865	10

[10 rows x 4 columns]

In [28]: # for another users - 1000th user.

past_behaviour_model.recommend(users=[song_data['user_id'][1000]])

Out[28]:

user_id	song	score	rank
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Lights & Music - Cut Copy	0.00933748483658	1
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Oh! - Boys Noize	0.00898901266711	2
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Waters Of Nazareth (album version) - Justice	0.00894576098238	3
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Strangers In The Wind - Cut Copy	0.00881623370307	4
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Auto-Dub - Skream	0.00863063548292	5
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Thrills - LCD Soundsystem	0.00838310803686	6
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Clock - Simian Mobile Disco	0.00832954687732	7
20d0638c7ada27ac12346b0ed 5ab99b39524291d	On Repeat - LCD Soundsystem	0.00831711079393	8
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Lava Lava - Boys Noize	0.00791249317782	9

20d0638c7ada27ac12346b0ed Shine Shine - Boys Noize 0.00781313436372 10 5ab99b39524291d ...

[10 rows x 4 columns]

Third recommendation model: People who bought also bought

Recsys training: model = ranking_factorization_recommender

Preparing data set.

Data has 893580 observations with 66085 users and 9952 items.

Data prepared in: 2.88614s

Training ranking_factorization_recommender for recommendations.

| Parameter | Description | Value |

num_factors | Factor Dimension | 32

regularization | L2 Regularization on Factors | 1e-09 | solver | Solver used for training | adagrad |

In [33]: # now let's see how this fared against our previous model for the same users.

also_bought_model.recommend(users=[song_data['user_id'][0]])

Out[33]:

	user_id	song	score	rank
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Invalid - Tub Ring	0.182793350734	1
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Drop The World - Lil Wayne / Eminem	0.179032795042	2
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Undo - Björk	0.177632327762	3
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Can't Help But Wait (Album Version) - Trey	0.171274764003	4
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Horn Concerto No. 4 in E flat K495: II. Romance	0.170224094969	5
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Ain't Misbehavin - Sam Cooke	0.168632497922	6
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Catch You Baby (Steve Pitron & Max Sanna Radio	0.164428076157	7
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Paradise & Dreams - Darren Styles	0.161302347033	8
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Lucky (Album Version) - Jason Mraz & Colbie	0.159779645527	9
b80	0344d063b5ccb3212f76538 f3d9e43d87dca9e	Who Can Compare - Foolish Things	0.158943212951	10

[10 rows x 4 columns]

In [34]: # for another users - 1000th user.

also_bought_model.recommend(users=[song_data['user_id'][1000]])

Out[34]:

user_id		song	score	rank
20d0638c7ada27ac1234 5ab99b39524291d		Sehr kosmisch - Harmonia	0.175580286274	1
20d0638c7ada27ac1234 5ab99b39524291d		Can't Help But Wait (Album Version) - Trey	0.172968190983	2
20d0638c7ada27ac1234 5ab99b39524291d		I'm On A Boat - The Lonely Island / T-Pain	0.170508792145	3
20d0638c7ada27ac1234 5ab99b39524291d		Drop The World - Lil Wayne / Eminem	0.170295738144	4
20d0638c7ada27ac1234 5ab99b39524291d		Paradise & Dreams - Darren Styles	0.16467718148	5
20d0638c7ada27ac1234 5ab99b39524291d	00000	Make Love To Your Mind - Bill Withers	0.16379823765	6
20d0638c7ada27ac1234 5ab99b39524291d		Invalid - Tub Ring	0.162964197315	7
20d0638c7ada27ac1234 5ab99b39524291d		Recado Falado (Metrô Da Saudade) - Alceu Vale	0.162591481517	8
20 10000 7 1 07 100		0.17 5. 0	0.40405004700	_

20d0638c7ada27ac12346b0ed 5ab99b39524291d	Catch You Baby (Steve Pitron & Max Sanna Radio	0.161659921738	9
20d0638c7ada27ac12346b0ed 5ab99b39524291d	Undo - Björk	0.161299519582	10

[10 rows x 4 columns]

In [35]: # now let's compare the models.

model_performance = graphlab.compare(test_data, [popularity_model, past_behaviour_model, also_bought_model], user_sample

 ${\tt compare_models:}$ using 2931 users to estimate model performance PROGRESS: Evaluate model ${\tt MO}$

recommendations finished on 1000/2931 queries. users per second: 10861.5

recommendations finished on 2000/2931 queries. users per second: 12495.1

Precision and recall summary statistics by cutoff

+	+	+
cutoff	mean_precision	mean_recall
1	0.0310474240873	0.00864231725286
2	0.0279767997271	0.016270962727
3	0.0251336290231	0.0208536161325
4	0.0237973387922	0.0254220609246
5	0.022176731491	0.0307244388985
6	0.0210963266235	0.0351415114578
7	0.0197397280304	0.0384487959319
8	0.0184663937223	0.0412952159739
9	0.01770347625	0.0445078634803
10	0.0168543159331	0.0480589959976
4		

[10 rows x 3 columns]

PROGRESS: Evaluate model M1

recommendations finished on 1000/2931 queries. users per second: 9017.78

recommendations finished on 2000/2931 queries. users per second: 10091.7

Precision and recall summary statistics by cutoff

+	+	++
cutoff	mean_precision	mean_recall
+	+	++
1	0.186625725009	0.0596278086938
2	0.163937222791	0.100715287499
3	0.140452632776	0.124928678358
4	0.124360286592	0.144016652346
5	0.112998976459	0.161185270383
6	0.104799272148	0.178368400002
7	0.0970902178681	0.191659779005
8	0.0902848857045	0.203655789836
9	0.0852572121764	0.216180337392
10	0.0809280109178	0.226882091095
+	+	++

[10 rows x 3 columns]

PROGRESS: Evaluate model M2

recommendations finished on 1000/2931 queries. users per second: 1444.17

recommendations finished on 2000/2931 queries. users per second: 1472.62

Precision and recall summary statistics by cutoff

+	+	++
cutoff	mean_precision	mean_recall
T		т
1	0.0122824974411	0.00356601300818
1 2	0.0116001364722	0.00653617867026
	0.0110001304722	0.00033017007020
3	0.0105765950188	0.00902808240321
4	0.00989423404981	0.0115177522163
5	0.00900716479017	0.0127300052198
6	0.00847264869783	0.014323940872
7	0.00828581176585	0.0161457278269
, ,	0.00020301170303	0.0101437270203
8	0.00793244626407	0.0181685760882
j 9	0.0077334243148	0.0196126360277
1		
10	0.00736949846469	0.0209222546096

[10 rows x 3 columns]

Model compare metric: precision_recall

In [36]: graphlab.show_comparison(model_performance,[popularity_model, past_behaviour_model, also_bought_model])

0.2 0.15

--- past_behaviour_model --- popularity_model --- also_bought_model

In [37]: # Conclusion:

As expected, popularly model did not perform well compare to personalized model based on past behaviour.
In this case of songs, past behaviour is a better predictor than watching other users with also bought.
Also bought is more useful when you have missing data. For example, when we want to recommend new items
to a user.