Frequent itemsets

Tiphaine Viard

2020 - 2021

What is the frequent itemset problem?

The market-basket model

A large set of **items**, a large set of **baskets**

A basket is a subset of the item set

```
items = apple, banana, cranberry, durian, elderberry b_1 = apple, banana, durian b_2 = apple, cranberry, elderberry b_3 = apple, durian b_4 = banana, elderberry b_5 = apple, cranberry, elderberry b_6 = apple, banana, durian, elderberry b_7 = banana, durian, elderberry b_8 = banana, durian What does frequent mean?
```

What is the frequent itemset problem?

The problem

```
Minimum number of baskets with item: \operatorname{support} = 3 \ (\in \mathbb{N}) items = apple, banana, cranberry, durian, elderberry b_1 = \operatorname{apple}, banana, durian b_2 = \operatorname{apple}, cranberry, elderberry b_3 = \operatorname{apple}, durian b_4 = \operatorname{banana}, elderberry b_5 = \operatorname{apple}, cranberry, elderberry b_6 = \operatorname{apple}, banana, durian, elderberry b_7 = \operatorname{banana}, durian, elderberry b_8 = \operatorname{banana}, durian
```

What are the frequent itemsets?

Quiz

```
Items = bread, milk, diaper, beer, eggs, coke
                                                            bread. milk
b_1
b<sub>2</sub>
                                              bread, diaper, beer, eggs
                                               milk, diaper, beer, coke
b<sub>3</sub>
bл
                                              bread, milk, diaper, beer
                                              bread, milk, diaper, coke
b_5
What are the frequent itemsets with support > 3?
A) {bread}, {milk}, {diaper}, {beer}
B) {milk, bread, diaper}
C) {bread}, {milk}, {diaper}, {beer}, {diaper, beer}, {milk,
bread}
```

D) {bread}, {milk}, {diaper}, {beer}, {coke}

Applications

- ► (Physical) marketing
- ► (Online) marketing
- ► Plagiarism detection
- ► Teaching planning
- Document mining
- **.**..

Infamous beer-diaper association

I = documents, B = sentences

Finding frequent itemsets

Typically, small baskets and many items

```
items = apple, banana, cranberry, durian, elderberry b_1 = apple, banana, durian b_2 = apple, cranberry, elderberry b_3 = apple, durian b_4 = banana, elderberry b_5 = apple, cranberry, elderberry b_6 = apple, banana, durian, elderberry b_7 = banana, durian, elderberry b_8 = banana, durian
```

Association rule: apple, durian implies banana

Confidence: $\frac{2}{3}$

Support and confidence are the two most important notions

Ouiz

```
Items = bread, milk, diaper, beer, eggs, coke
b_1
                                                                  bread. milk
b<sub>2</sub>
                                                  bread, diaper, beer, eggs
b<sub>3</sub>
                                                    milk, diaper, beer, coke
b_4
                                                  bread, milk, diaper, beer
b_5
                                                  bread, milk, diaper, coke
```

What is the confidence of these association rules?

- ightharpoonup beer \rightarrow diaper
- ightharpoonup milk, diaper ightharpoonup coke
- ightharpoonup milk ightharpoonup eggs

- A) 1; $\frac{2}{3}$; 0 B) 0; $\frac{1}{2}$; 1 C) $\frac{3}{6}$; $\frac{3}{6}$; $\frac{1}{6}$

Mining association rules

- 1. Find all sets with support at least $c \cdot s$
- 2. Find all sets with support at least s
- 3. If $\{i_0, i_1, ..., i_k, j\}$ has support at least $s_1 = cs$, see how many leave-one-out have support at least $s_2 \ge s$

Imagine j is missing

4. The rule is **acceptable** iff $s_2 \geq s$, $s_1 \geq cs$, i.e. $\frac{s_1}{s_2} \geq c$

This can be used to extract the rules once we have the frequent itemsets

Frequent items of size 2 (aka pairs)

Bottleneck: finding all frequent itemsets Finding pairs is **hard**

- Pairs are common (compared to triples)
- ► Support is high so few itemsets
- Let us start with pairs, then expand :)

Naïve approach

Read file, count pairs as you go

For each basket of k items, $\frac{k(k-1)}{2}$ pairs

Use k nested loops to generate sets of size up to k

OK if k small

Pros:

Darn easy to implement

Cons:

- ► This can fail quickly (number of items²)
- Typical datasets are huge

Computation model

How to store this data?

- (1) Store everything as a list of triples i, j, c
- (2) Store everything in a triangular matrix i,j
 ightarrow c

- (1) requires 4 bytes / pair
- (2) requires 12 bytes / pair that occurs
 - (2) better if $\leq \frac{1}{3}$ of pairs occur

We measure an algorithm efficiency in number of *passes* Be careful about what you store for each such set!

Key idea: monotonicity

$$X$$
 frequent $\Longrightarrow X' \subseteq X$ frequent X not frequent $\Longrightarrow X' \supseteq X$ not frequent

$$\forall X, X' : (X' \subseteq X) \implies s(X) < s(X')$$

Key idea: monotonicity

X frequent $\Longrightarrow X' \subseteq X$ frequent X not frequent $\Longrightarrow X' \supseteq X$ not frequent

$$\forall X, X' : (X' \subseteq X) \implies s(X) < s(X')$$

Pass 1: count occurrences of each item

Pass 2: Construct each pair, and count occurrences

Thanks to monotonicity, (2) is a lot faster than (1)!

Overhead: need to renumber items between steps Combination of filter - build steps

$$C_1 \to F \to L_1 \to B \to C_2 \dots$$

```
Items = bread, milk, diaper, beer, eggs, coke
  b_1
  b<sub>2</sub>
  b<sub>3</sub>
  b_4
  b_5
Pass 1
bread
coke
milk
beer
diaper
eggs
```

bread, milk bread, diaper, beer, eggs milk, diaper, beer, coke bread, milk, diaper, beer bread, milk, diaper, coke

```
Items = bread, milk, diaper, beer, eggs, coke
  b_1
  b<sub>2</sub>
  b<sub>3</sub>
  b_4
  b_5
Pass 1
bread
coke
milk
beer
diaper
eggs
```

bread, milk bread, diaper, beer, eggs milk, diaper, beer, coke bread, milk, diaper, beer bread, milk, diaper, coke

Items =	bread, milk,	diaper, beer, eggs,	coke
b_1			bread, milk
b_2			bread, diaper, beer, eggs
b_3			milk, diaper, beer, coke
b_4			bread, milk, diaper, beer
b_5			bread, milk, diaper, coke
Pass 1		Pass 2	
bread	4	bread, milk	3
coke	2	bread, beer	2
milk	4	bread, diaper	3
beer	3	milk, beer	2
diaper	4	milk, diaper	3
eggs	1	beer, diaper	3

Items =	bread, milk, o	diaper, beer, eggs,	coke
b_1			bread, milk
b_2			bread, diaper, beer, eggs
b_3			milk, diaper, beer, coke
b_4			bread, milk, diaper, beer
b_5			bread, milk, diaper, coke
Pass 1		Pass 2	
bread	4	bread, milk	3
coke	2	bread, beer	2
milk	4	bread, diaper	3
beer	3	milk, beer	2
diaper	4	milk, diaper	3
eggs	1	beer, diaper	3

Items =	bread, milk,	diaper, beer, eggs,	coke	
b_1				bread, milk
b_2			bread	d, diaper, beer, eggs
b_3			mill	k, diaper, beer, coke
b_4			bread	d, milk, diaper, beer
b_5			bread	d, milk, diaper, coke
Pass 1		Pass 2		Pass 3
bread	4	bread, milk	3	bread, milk, diaper
coke	2	bread, beer	2	2
milk	4	bread, diaper	3	
beer	3	milk, beer	2	
diaper	4	milk, diaper	3	
eggs	1	beer, diaper	3	

Items —	bread milk	diaper, beer, eggs,	coke	
b_1	bread, mint,	anaper, beer, eggs,	conc	bread, milk
b_2			bread	d, diaper, beer, eggs
b_3			mill	k, diaper, beer, coke
b_4			bread	d, milk, diaper, beer
b_5			bread	d, milk, diaper, coke
Pass 1		Pass 2		Pass 3
bread	4	bread, milk	3	bread, milk, diaper
coke	2	bread, beer	2	2
milk	4	bread, diaper	3	
beer	3	milk, beer	2	
diaper	4	milk, diaper	3	
eggs	1	beer, diaper	3	

Items =	bread, milk,	diaper, beer, eggs	, coke	
b_1				bread, milk
b_2			bread	d, diaper, beer, eggs
b_3			mill	k, diaper, beer, coke
b_4			brea	d, milk, diaper, beer
b_5			bread	d, milk, diaper, coke
Pass 1		Pass 2		Pass 3
bread	4	bread, milk	3	bread, milk, diaper
coke	2	bread, beer	2	2
milk	4	bread, diaper	3	
beer	3	milk, beer	2	
diaper	4	milk, diaper	3	
eggs	1	beer, diaper	3	
$\binom{6}{1} + \binom{6}{2}$	$+\binom{6}{3} = 6 +$	15 + 20 = 41 vs		
$\binom{\overline{6}}{1} + \binom{\overline{4}}{2}$	+1 = 6 + 6	+1 = 13		

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.

```
1: k = 1
2: F_{i} = \{ i \mid i \in I \land \sigma(\{i\}) > N \times minsup \}. {Find all frequent 1-itemsets}
3: repeat
      k = k + 1.
     C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate candidate itemsets}
      for each transaction t \in T do
       C_t = \text{subset}(C_k, t). {Identify all candidates that belong to t}
 7.
         for each candidate itemset c \in C_t do
            \sigma(c) = \sigma(c) + 1. {Increment support count}
10:
         end for
       end for
11:
       F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}. {Extract the frequent k-itemsets}
13: until F_{\nu} = \emptyset
14: Result = \prod F_k.
```


Improving A-priori

Park-Chen-Yu algorithm

Key idea: 1st pass does not use a lot of memory, so keep a hashtable of pairs as well as frequent items

Have buckets contain counts of pairs that hash to said bucket

Hashing = not perfect; nothing in the bucket can be eliminated But, items hashing \rightarrow "bad" buckets can be eliminated

Store $\{0,1\}$ bitmap to recover frequent buckets

Pass 2: only count pairs that hash to frequent buckets

Count all (i,j) that are candidates, *i.e.* i,j freq items + (i,j) maps to a frequent bucket

FP-growth algorithm

What is costly: candidate generation; can we skip it?

Use divide and conquer approach:

- Sort items by frequency
- ▶ Iteratively (on baskets) build FP-tree
- Projecting the trees per item allows to build every pair

Build trees

FBAED, BCE, ABDE, ABCE, ABCDE, BCD Counts: B: 6, E: 5, A: 4, C: 4, D:4

Build trees

FBAED, BCE, ABDE, ABCE, ABCDE, BCD Counts: B: 6, E: 5, A: 4, C: 4, D:4

FBAED	BCE	ABDE	ABCE	ABCDE	BCD
B(1) E(1) A(1) D(1)	B(2) E(2) C(1) A(1) D(1)	B(3) E(3) C(1) A(2) D(2)	B(4) E(4) C(1) A(3) C(1)	B(5) E(5)	B(6) E(5)

Get patterns

Conclusion

Finding association rules is easy, if we have the frequent itemsets

Both A-priori and FP-growth are "basic" building blocks to find frequent itemsets

There are countless improvements:

- Multistage
- Dynamic FP-growth
- Approximate methods
- ► FP-bonsai
- **.**..

The simplicity allows these algorithms to scale

Generalisation: Formal concept analysis