4. előadás

2020. szeptember 28.

SPECIÁLIS FÜGGVÉNYEK 2.

Trigonometrikus függvények

• Előzetes megjegyzések a trigonometrikus függvényekről

A középiskolában már megismerkedtünk tetszőleges $x \in \mathbb{R}$ esetén a sin x, a cos x, valamint alkalmas $x \in \mathbb{R}$ esetén a tg x és a ctg x számok szemléletes definícióival, amiket **érdemes felidézni** és megjegyezni. Ezekből kiindulva értelmeztük a trigonometrikus függvényeket, és megállapítottuk számos érdekes és fontos tulajdonságaikat. A szóban forgó értelmezésekhez a következő megjegyzéseket fűzzük: Egyrészt ezek a definíciók még utalást sem adnak a függvényértékek (akárcsak közelítő) kiszámolására. Másrészt az egyszerű geometriai fogalmakon túl szerepelnek viszonylag bonyolult és definiálatlan fogalmak is, így a valós számoknak a kör kerületére való "felmérése" vagy a körív hossza. A π számot az egységsugarú kör kerületének a felével definiáltuk, amelyről megtudtuk, hogy az egy irracionális szám, század pontossággal 3,14.

Az Analízis 1-ben a **szinusz-** és a **koszinuszfüggvényt** hatványsor összegfüggvényeként értelmeztük. Egyáltalán nem nyilvánvaló, hogy ezek ekvivalensek a középiskolai definíciókkal. Néhány már megismert összefüggés azonban jelzi a hasonlóságot. A kétféle bevezetés ekvivalenciájának az igazolását majd az integrálszámítás alkalmazásainak a tárgyalásánál fejezzük be, amikor is értelmezzük a körív hosszát, és meghatározzuk a kör kerületét. A hatványsoros definíció alapján kapott szinusz- és koszinuszfüggvény jelölésére a jelzett ekvivalencia miatt használtuk a "szokásos" sin és cos szimbólumokat.

A trigonometrikus függvényekkel kapcsolatos alapvető fogalom a következő: Az f valós-valós függvény **periodikus**, ha van olyan p > 0 valós szám, hogy minden $x \in \mathcal{D}_f$ elemre $x \pm p \in \mathcal{D}_f$ és

$$f(x+p) = f(x).$$

A p számot f **periódusának**, az f függvényt pedig p **szerint priodikus** függvénynek nevezzük. Ha az f függvény p szerint periodikus, akkor bármely $x \in \mathcal{D}_f$, $k \in \mathbb{Z}$ esetén $x \pm kp \in \mathcal{D}_f$ és

$$f(x + kp) = f(x).$$

Vagyis, ha p az f függvénynek periódusa, akkor minden $k = 1, 2, \ldots$ esetén kp is periódusa f-nek. Egy függvény periódusának megadásán általában a legkisebb (pozitív) periódus megadását értjük, amennyiben ilyen létezik.

Nem minden periodikus függvénynek van legkisebb periódusa. Az

$$f(x) := \begin{cases} 0, & \text{ha } x \in \mathbb{Q} \\ 1, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet-függvénynek minden racionális szám periódusa, és ezek között nyilván nincs legkisebb pozitív szám.

• A sin és a cos függvény

A szinusz- és a koszinuszfüggvénnyt az egész \mathbb{R} -en konvergens hatványsor összegfüggvényeként értelmeztük:

$$\sin x := \sin(x) := x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \qquad (x \in \mathbb{R})$$

$$\cos x := \cos(x) := 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} x^{2k} \qquad (x \in \mathbb{R}).$$

Most összefoglaljuk azokat az állításokat, amelyeket korábban már megismertünk:

- 1º A sin függvény páratlan, azaz $\sin(-x) = -\sin x \quad (x \in \mathbb{R}),$ a cos függvény páros, vagyis $\cos(-x) = \cos x \quad (x \in \mathbb{R}).$
- 2° Addíciós képletek: minden $x, y \in \mathbb{R}$ esetén

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

 3^{o} Érdemes megjegyezni azt a tényt, hogy két szinusz, illetve koszinusz összege és különbsége szorzattá alakítható. A következő azonosságok az addíciós képletek egyszerű következményei. Tetszőleges $x, y \in \mathbb{R}$ esetén

(1)
$$\sin x + \sin y = 2 \cdot \sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2}, \qquad \sin x - \sin y = 2 \cdot \sin \frac{x-y}{2} \cdot \cos \frac{x+y}{2},$$
$$\cos x + \cos y = 2 \cdot \cos \frac{x+y}{2} \cdot \cos \frac{x-y}{2}, \qquad \cos x - \cos y = -2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2}.$$

Az igazolásukhoz legyen $\alpha:=\frac{x+y}{2}$ és $\beta:=\frac{x-y}{2}$. Ekkor $x=\alpha+\beta$ és $y=\alpha-\beta$. Az első esetben azt kapjuk, hogy

$$\sin x + \sin y = \sin (\alpha + \beta) + \sin (\alpha - \beta) = 2 \sin \alpha \cdot \cos \beta = 2 \cdot \sin \frac{x + y}{2} \cdot \cos \frac{x - y}{2}.$$

A többi azonosság hasonlóan látható be.

4º Négyzetes összefüggés:

$$\sin^2 x + \cos^2 x = 1 \quad (x \in \mathbb{R}).$$

 $\boxed{\mathbf{5}^{o}}$ A sin és a cos függvény differenciálható (tehát folytonos is) \mathbb{R} -en, és

$$\sin'(x) = \cos(x), \quad \cos'(x) = -\sin(x) \quad (x \in \mathbb{R}).$$

Most a sin és a cos függvények hatványsoros definícióiból kiindulva, a differenciálszámítás eszköztárát felhasználva bevezetjük az egész matematika egyik fontos állandóját, a π számot.

Tétel. A cos függvénynek a [0,2] intervallumban pontosan egy zérushelye van, azaz [0,2]-nek pontosan egy ξ pontjában áll fenn a cos $\xi = 0$ egyenlőség. Ennek a ξ számnak a kétszereseként értelmezzük a π számot:

$$\pi := 2\xi$$
.

Bizonyítás. A Bolzano-tételt alkalmazzuk. Világos, hogy $\cos \in C[0,2]$ és $\cos 0 = 1$. Másrészt

$$\cos 2 = 1 - \frac{2^2}{2!} + \frac{2^4}{4!} - \frac{2^6}{6!} + \frac{2^8}{8!} - \frac{2^{10}}{10!} + \frac{2^{12}}{12!} - \dots =$$

$$= 1 - 2 + \frac{2}{3} - \frac{2^6}{6!} \left(1 - \frac{2^2}{7 \cdot 8} \right) - \frac{2^{10}}{10!} \left(1 - \frac{2^2}{11 \cdot 12} \right) - \dots <$$
< (a zárójeleken belüli számok nyilván pozitívak) < $-\frac{1}{3}$ < 0.

A Bolzano-tétel feltételei tehát teljesülnek, ezért $\exists \xi \in [0,2]$: $\cos \xi = 0$.

A ξ pont egyértelműsége következik abból, hogy cos \downarrow a [0,2] intervallumban. Ez az állítás a szigorú monoton csökkenésre vonatkozó elégséges feltétel, a cos' = $-\sin$ képlet, valamint a

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = x \left(1 - \frac{x^2}{2 \cdot 3} \right) + \frac{x^5}{5!} \left(1 - \frac{x^2}{6 \cdot 7} \right) + \dots > 0 \quad \left(x \in (0, 2) \right)$$

egyenlőtlenség következménye.

Megjegyzések.

 1^o A Bolzano-tétel bizonyításánal alkalmazott Bolzano-féle felezési eljárással π közelítő értékei meghatározhatók. Világos, hogy $0 < \pi < 4$. Az is megmutatható, hogy

$$3,141 < \pi < 3,142,$$

ezért hasznáhatjuk a $\pi \approx 3.14$ közelítést.

- 2^o Igazolható, hogy π irracionális és transzcendens szám, továbbá $\pi=3,14159265\ldots$
- 3^o Az addíciós képletek, valamint a négyzetes összefüggés felhasználásával a sin és a cos függvény számos helyen vett helyettesítési értékeit pontosan ki tudjuk számolni. Például: $\sin\frac{\pi}{2}=1,\,\cos\pi=-1,\,\sin\frac{\pi}{4}=\cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}.$
- 4^o Az integrálszámítás alkalmazásainál értelmezni fogjuk a körív hosszát, és megmutatjuk, hogy az egységsugarú kör kerülete 2π . Ez azt jelenti, hogy az előző tételben definiált π szám valóban megegyezik a korábbi tanulmányainkban megismert π számmal.

Az addíciós képletekből adódik, hogy a sin és a cos függvények között a következő kapcsolat áll fenn:

(2)
$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right), \quad \cos x = \sin\left(\frac{\pi}{2} - x\right) = \sin\left(x + \frac{\pi}{2}\right) \quad (x \in \mathbb{R}).$$

Tétel. A sin és a cos függvény 2π szerint periodikus, azaz

$$\sin(x+2\pi) = \sin x, \qquad \cos(x+2\pi) = \cos x \qquad (x \in \mathbb{R}),$$

és 2π mindegyik függvénynek a legkisebb periódusa. Így

$$\sin x = \sin (x + 2k\pi), \qquad \cos x = \cos (x + 2k\pi) \quad (x \in \mathbb{R}, \ k \in \mathbb{Z}).$$

Bizonyítás. Meggondolható.

Most a sin és a cos függvény "alaki" tulajdonságait tanulmányozzuk. A periodicitást, valamint a paritást figyelembe véve, a vizsgálatokat elég egy π hosszú intervallumon elvégezni. Legyen ez az intervallum $[0, \pi]$.

Az (2) azonosságok alapján egyszerűen igazolható

$$\cos x > 0 \ \left(x \in (0, \frac{\pi}{2}) \right), \quad \cos x < 0 \ \left(x \in (\frac{\pi}{2}, \pi) \right) \quad \text{és} \quad \sin x > 0 \ (x \in (0, \pi))$$

egyenlőtlenségeket, a deriváltakra vonatkozó már ismert

$$\sin' x = \cos x$$
, $\cos' x = -\sin x$, $\sin'' x = -\sin x$, $\cos'' x = -\cos x$ $(x \in \mathbb{R})$

képleteket, továbbá a monotonitás, illetve a konvexitás-konkávitás és a derivált kapcsolatára vonatkozó eredményeket felhasználva kapjuk a következő állításokat.

Tétel.

 $1^{\circ} \sin \uparrow [0, \frac{\pi}{2}] - en, \downarrow [\frac{\pi}{2}, \pi] - n$ és szigorúan konkáv $[0, \pi] - n$.

 $2^{\circ}\cos\downarrow[0,\pi]$ -n, szigorúan konkáv $[0,\frac{\pi}{2}]$ -en és szigorúan konvex $[\frac{\pi}{2},\pi]$ -n.

A sin függvény páratlan, ezért a grafikonja szimmetrikus az origóra. A következő ábrán szemléltetjük a sin függvény grafikonját a $[-\pi,\pi]$ intervallumon, majd felsoroljuk a függvény néhány fontos tulajdonságát:

A sin függvény

- 0 inflexiós pont.

A cos függvény páros, ezért a grafikonja szimmetrikus az y-tengelyre. A következő ábrán a cos függvény grafikonját szemléltetjük a $[-\pi,\pi]$ intervallumon, majd felsoroljuk a függvény néhány fontos tulajdonságát:

A cos függvény

- \uparrow $[-\pi, 0]$ -n és \downarrow $[0, \pi]$ -n;
- szigorúan konvex $[-\pi, -\frac{\pi}{2}]$ -en, szigorúan konkáv $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ -en, szigorúan konvex $\left[\frac{\pi}{2}, \pi\right]$ -n,
- $\pm \frac{\pi}{2}$ inflexiós pontok.

Az alábbi ábrán a sin és a cos függvény grafikonjait szemléltetjük:

A sin és a cos függvények grafikonjai a

$$\cos x = \sin \left(x + \frac{\pi}{2}\right)$$
, illetve a $\sin x = \cos \left(x - \frac{\pi}{2}\right)$ $(x \in \mathbb{R})$

azonosságok alapján egymásból eltolással származtathatók.

Megjegyzés. Emlékeztetünk arra, hogy ha $f, g \in \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}$ és f(x) := g(x + a) $(x \in \mathcal{D}_g)$, akkor az f függvény grafikonját g grafikonjának x tengely irányú eltolásával kapjuk meg úgy, hogy a > 0 esetén az eltolást a egységgel "balra", a < 0 esetén pedig a egységgel "jobbra" végezzük. \square

Az előzőekből már következnek a sin és a cos függvény **zérushelyeire** vonatkozó alábbi állítások:

$$\sin x = 0 \iff x = k\pi \ (k \in \mathbb{Z}),$$
$$\cos x = 0 \iff x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z}).$$

Az (1) azonosságokat és a fent egyenlőségeket felhasználva egyszerűen bebizonyíthatjuk, hogy

$$\sin x = \sin y \iff x - y = 2k\pi \text{ vagy } x + y = (2l + 1)\pi \ (k, l \in \mathbb{Z}),$$
$$\cos x = \cos y \iff x - y = 2k\pi \text{ vagy } x + y = 2l\pi \ (k, l \in \mathbb{Z}).$$

• A tg és a ctg függvény

A tangensfüggvényt így értelmezzük:

$$\operatorname{tg} x := \operatorname{tg}(x) := \frac{\sin x}{\cos x} \qquad \left(x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} \right).$$

A sin és a cos függvények tulajdonságait felhasználva adódnak a következő állítások:

- (a) a tg páratlan függvény, azaz tg $(-x) = -\text{tg } x \ (x \in \mathcal{D}_{\text{tg}});$
- (b) a tg függvény π szerint periodikus, azaz tg $(x + k\pi) = \operatorname{tg} x \ (x \in \mathcal{D}_{\operatorname{tg}}, \ k \in \mathbb{Z});$
- (c) tg függvény zérushelyei:

$$tg x = 0 \iff \sin x = 0 \iff x = k\pi \ (k \in \mathbb{Z});$$

(d) Mivel

$$\operatorname{tg} x - \operatorname{tg} y = \frac{\sin x}{\cos x} - \frac{\sin y}{\cos y} = \frac{\sin x \cdot \cos y - \cos x \cdot \sin y}{\cos x \cdot \cos y} = \frac{\sin (x - y)}{\cos x \cdot \cos y},$$

5

ezért

$$\operatorname{tg} x = \operatorname{tg} y \iff \sin(x - y) = 0 \iff x = y + k\pi \ (k \in \mathbb{Z}).$$

Ezek alapján a tg. függvény "alaki tulajdonságait" elég egy π hosszú intervallumon, mondjuk $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ -en megállapítani. Mivel t
g $\in D^{\infty}\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, és például

$$\operatorname{tg}' x = \frac{1}{\cos^2 x}, \qquad \operatorname{tg}'' x = 2 \frac{\sin x}{\cos^3 x} \qquad \left(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right),$$

ezért a monotonitási, illetve a konvexitási tulajdonságok egyszerűen megállapíthatók. Meg kell azonban vizsgálnunk a t
g függvény $\pm \frac{\pi}{2}$ pont körüli viselkedését. Mivel

$$\lim_{x\to\pm\frac{\pi}{2}}\sin x=\sin\left(\pm\frac{\pi}{2}\right)=\pm1,\ \text{ \'es}$$

$$\lim_{x\to\pm\frac{\pi}{2}}\cos x=\cos\left(\pm\frac{\pi}{2}\right)=0,\ \text{ tov\'abb\'a}\ \cos x>0,\ \text{ha }x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),$$

ezért

$$\lim_{x\to -\frac{\pi}{2}+0}\operatorname{tg} x = -\infty \quad \text{\'es} \quad \lim_{x\to \frac{\pi}{2}-0}\operatorname{tg} x = +\infty\,.$$

A tg függvény grafikonja a $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ intervallumon, és alapvető tulajdonságai:

A tg függvény

- páratlan,
- π szerint periodikus,
- $\uparrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ -en,
- szigorúan konkáv $\left(-\frac{\pi}{2},0\right)$ -n, szigorúan konvex $(0, \frac{\pi}{2})$ -en,
- 0 inflexiós pont,
- $\lim_{x \to -\frac{\pi}{2} + 0} \operatorname{tg} x = -\infty \text{ és } \lim_{x \to \frac{\pi}{2} 0} \operatorname{tg} x = +\infty.$

A kotangensfüggvényt így értelmezzük:

$$\operatorname{ctg} x := \operatorname{ctg}(x) := \frac{\cos x}{\sin x} \qquad (x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}) .$$

A ct
g függvény páratlan és π szerint periodikus, továbbá

$$\begin{bmatrix} \operatorname{ctg} x = 0 & \iff & \cos x = 0 & \iff & x = \frac{\pi}{2} + k\pi & (k \in \mathbb{Z}), \end{bmatrix}$$

$$\operatorname{ctg} x = \operatorname{ctg} y & \iff & \sin (x - y) = 0 & \iff & x = y + k\pi & (k \in \mathbb{Z}).$$

$$\operatorname{ctg} x = \operatorname{ctg} y \iff \sin(x - y) = 0 \iff x = y + k\pi \ (k \in \mathbb{Z}).$$

A tg és a ctg függvények között a következő kapcsolat áll fenn:

(3)
$$\operatorname{ctg} x = \frac{1}{\operatorname{tg} x}, \quad \operatorname{ctg} x = -\operatorname{tg} \left(x - \frac{\pi}{2} \right), \quad \operatorname{tg} x = -\operatorname{ctg} \left(x - \frac{\pi}{2} \right)$$
$$\left(x \in \mathcal{D}_{\operatorname{tg}} \cap \mathcal{D}_{\operatorname{ctg}} = \mathbb{R} \setminus \left\{ k \frac{\pi}{2} \mid k \in \mathbb{Z} \right\} \right).$$

A ct
g függvény tulajdonságait elég egy π hosszú intervallumon, mond
juk $(0,\pi)$ -n megvizsgálni. Mivel ct
g $\in D^{\infty}(0,\pi)$, és

$$\operatorname{ctg}' x = -\frac{1}{\sin^2 x}, \qquad \operatorname{ctg}'' x = 2 \cdot \frac{\cos x}{\sin^3 x} \qquad (x \in (0, \pi)),$$

ezért a monotonitási, illetve a konvexitási tulajdonságok egyszerűen megállapíthatók.

A ctg függvény 0 és π pont körüli viselkedésére a következők teljesülnek:

$$\lim_{x\to 0+0}\operatorname{ctg} x = +\infty, \qquad \qquad \lim_{x\to \pi-0}\operatorname{ctg} x = -\infty\,.$$

A ctg függvény grafikonja a $(0,\pi)$ intervallumon, és néhány tulajdonsága:

A ctg függvény

- páratlan,
- π szerint periodikus,
- $\downarrow (0, \pi)$ -n,
- szigorúan konvex $(0, \frac{\pi}{2})$ -en, szigorúan konkáv $(\frac{\pi}{2}, \pi)$ -n,
- $\frac{\pi}{2}$ inflexiós pont,
- $\lim_{x\to 0+0} \operatorname{ctg} x = +\infty$ és $\lim_{x\to \pi-0} \operatorname{ctg} x = -\infty$.

Az alábbi ábrán a tg és a ctg függvények grafikonjait szemléltetjük:

A t
g és a ctg függvények grafikonjai a egymásból az x tengely
re vonatkozó tükrözéssel és eltolással származtathatók.

Trigonometrikus függvények inverzei (arkuszfüggvények)

Megjegyzés. A trigonometrikus függvények mindegyike periodikus, ezért egyikük sem invertálható. Mind a négy függvénynek vannak azonban olyan alkalmas intervallumra vonatkozó leszűkítéseik, amelyeken a függvények szigorúan monotonok, ezért invertálhatók. Ki fogunk

választani egy-egy ilyen intervallumot, és ezekre vonatkozó leszűkítéseket invertáljuk. Az így kapott függvényeket **arkuszfüggvényeknek** nevezzük. (Az arcus szó — latinul ívet jelent — azt jelzi, hogy a függvények helyettesítési értékei bizonyos körív hosszával hozható kapcsolatba.)

Definíció. A szigorúan monoton

$$\sin_{\lfloor [-\frac{\pi}{2}, \frac{\pi}{2}]}, \quad \cos_{\lfloor [0,\pi]}, \quad \operatorname{tg}_{\lfloor (-\frac{\pi}{2}, \frac{\pi}{2})}, \quad \operatorname{ctg}_{\lfloor (0,\pi)}$$

függvények inverzeit rendre arkuszszinusz-, arkuszkoszinusz, arkusztangens-, arkuszkotangens-függvényeknek nevezzük és így jelöljük:

$$\begin{aligned} & \arcsin \ := \left(\sin_{|[-\frac{\pi}{2}, \frac{\pi}{2}]} \right)^{-1}, \qquad & \arccos \ := \left(\cos_{|[0, \pi]} \right)^{-1}, \\ & \operatorname{arc} \operatorname{tg} \ := \left(\operatorname{tg}_{|(-\frac{\pi}{2}, \frac{\pi}{2})} \right)^{-1}, \qquad & \operatorname{arc} \operatorname{ctg} \ := \left(\operatorname{ctg}_{|(0, \pi)} \right)^{-1}. \end{aligned}$$

Emlékeztetünk arra, hogy ha egy invertálható függvényt és annak inverzét egy koordinátarendszerben ábrázoljuk (feltéve azt, hogy a tengelyeken az egységek egyenlő hosszúak), akkor a szóban forgó függvények grafikonjai egymás tükörképei az y=x egyenletű szögfelező egyenesre vonatkozóan. Következésképpen mindegyik arkuszfüggvény grafikonját a neki megfelelő trigonometrikus függvény (már ismert) grafikonjából kapjuk meg.

Az arc sin **függvény** definíciójából következik, hogy tetszőleges $x \in [-1, 1]$ esetén arc sin x az a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ intervallumba eső y szög, amelynek a szinusza x-szel egyenlő, azaz

Az arc sin függvény folytonos [-1,1]-en (l. az "inverz függvény folytonosságára" vonatkozó tételt), a függvény deriválhatósága pedig egyszerűen adódik az inverz függvény deriválási szabályából: Legyen $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ és $\sin y = x \in [-1,1]$, azaz $y = \arcsin x$. Mivel $\sin' y = \cos y > 0$, ha $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, ezért minden $x \in (-1,1)$ esetén arc $\sin \in D\{x\}$ és

$$\arcsin' x = \frac{1}{\sin' y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}},$$

azaz

(4)
$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \quad (x \in (-1, 1)).$$

A következő ábrán szemléltetjük az arc sin függvény grafikonját, és felsoroljuk néhány fontos tulajdonságát:

Az arc sin függvény

- $\mathcal{D}_{\mathrm{arc\ sin}} = [-1, 1], \ \mathcal{R}_{\mathrm{arc\ sin}} = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$
- folytonos [-1, 1]-en,
- deriválható (-1, 1)-en, és $\arcsin' x = \frac{1}{\sqrt{1 x^2}} \quad (x \in (-1, 1)),$
- \uparrow [-1, 1]-en,
- szigorúan konkáv [-1,0]-n, szigorúan konvex [0,1]-en,
- 0 inflexiós pont.

Az arc cos függvény definíciójából következik, hogy

Az (2) azonosságok felhasználásával igazolható, hogy

Az inverz függvény folytonosságára vonatkozó tétel alapján az arc cos függvény folytonos [-1,1]-en. A (5) és a (4) képletekből pedig az következik, hogy minden $x \in (-1,1)$ esetén arc cos $\in D\{x\}$ és

$$arc \cos' x = -\frac{1}{\sqrt{1-x^2}} \quad (x \in (-1,1))$$
.

A következő ábrán szemléltetjük az arc cos függvény grafikonját, és felsoroljuk néhány fontos tulajdonságát:

Az arc cos függvény

- $\mathcal{D}_{\text{arc cos}} = [-1, 1], \ \mathcal{R}_{\text{arc cos}} = [0, \pi],$
- folytonos [-1, 1]-en,
- deriválható (-1,1)-en, és $\arccos' x = -\frac{1}{\sqrt{1-x^2}} \ \big(x \in (-1,1) \big),$
- \downarrow [-1,1]-en,
- szigorúan konvex [-1, 0]-n, szigorúan konkáv [0, 1]-en,
- 0 inflexiós pont.

Az arc tg függvény definíciójából és a korábbi eredményeinkből azonnal következik, hogy

$$\mathcal{D}_{\mathrm{arc\ tg}} = \mathbb{R}, \quad \mathcal{R}_{\mathrm{arc\ tg}} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \quad \mathrm{arc\ tg} \uparrow \text{ \'es folytonos } \mathbb{R}\text{-en},$$

$$\operatorname{arc} \operatorname{tg} x = y \iff \operatorname{tg} y = x,$$

$$\left(x \in \mathbb{R} \right) \quad \left(y \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

továbbá

$$\lim_{x \to -\infty} \arctan \operatorname{tg} x = -\frac{\pi}{2} \quad \text{és} \quad \lim_{x \to +\infty} \arctan \operatorname{tg} x = +\frac{\pi}{2}.$$

Az utóbbi két állítás azt jelenti, hogy az $y=-\frac{\pi}{2}$ (illetve az $y=\frac{\pi}{2}$) egyenletű egyenes az arc tg függvény aszimptotája a $(-\infty)$ -ben (illetve a $(+\infty)$ -ben).

Mivel minden $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ esetén t
g'y = $\frac{1}{\cos^2 y} > 0$, ezért minden $x = \operatorname{tg} y \in \mathbb{R}$ pontban az arc t
g függvény deriválható és az inverz függvény deriválási szabálya alapján

$$\operatorname{arc} \operatorname{tg}' x = \frac{1}{\operatorname{tg}' y} = \cos^2 y = \frac{1}{1 + \operatorname{tg}^2 y} = \frac{1}{1 + x^2},$$

azaz

$$\boxed{\operatorname{arc} \operatorname{tg}' x = \frac{1}{1 + x^2} \quad (x \in \mathbb{R})}.$$

A következő ábrán szemléltetjük az arc tg függvény grafikonját, és felsoroljuk néhány fontos tulajdonságát:

Az arc tg függvény

- $\mathcal{D}_{\mathrm{arc\ tg}} = \mathbb{R}, \ \mathcal{R}_{\mathrm{arc\ tg}} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$
- folytonos \mathbb{R} -en,
- deriválható R-en, és

$$\operatorname{arc} \operatorname{tg}' x = \frac{1}{1 + r^2} \ (x \in \mathbb{R}),$$

- szigorúan konvex $(-\infty, 0]$ -n, szigorúan konkáv $[0, +\infty)$ -en,
- 0 inflexiós pont,
- $y = \pm \frac{\pi}{2}$ aszimptota a $(\pm \infty)$ -ben.

Az arc ctg függvény definíciójából és a korábbi eredményeinkből azonnal következik, hogy

$$\mathcal{D}_{\mathrm{arc\ ctg}} = \mathbb{R}, \quad \mathcal{R}_{\mathrm{arc\ ctg}} = (0, \pi), \quad \mathrm{arc\ ctg} \quad \downarrow \text{ \'es folytonos } \mathbb{R}\text{-en},$$

$$\mathcal{D}_{\mathrm{arc\ ctg}} = \mathbb{R}, \quad \mathcal{R}_{\mathrm{arc\ ctg}} = (0,\pi)\,, \quad \mathrm{arc\ ctg} \ \downarrow \text{ \'es folytonos } \mathbb{R}\text{-en},$$

$$\boxed{ \text{arc\ ctg}\,x \ = \ y \ \iff \ \text{ctg}\,y = x,} \\ \left(x \in \mathbb{R}\right) \quad \left(y \in (0,\pi)\right) }$$

továbbá

$$\lim_{x \to -\infty} \operatorname{arc} \operatorname{ctg} x = \pi \quad \text{\'es} \quad \lim_{x \to +\infty} \operatorname{arc} \operatorname{ctg} x = 0.$$

Az utóbbi két állítás azt jelenti, hogy az $y = \pi$ (illetve az y = 0) egyenletű egyenes az arc ctg függvény aszimptotája $(-\infty)$ -ben (illetve $(+\infty)$ -ben).

A (3) azonosságokból következik, hogy az arc tg és az arc ctg függvény között a következő összefüggés áll fenn:

$$\boxed{\operatorname{arc} \operatorname{tg} x + \operatorname{arc} \operatorname{ctg} x = \frac{\pi}{2} \quad (x \in \mathbb{R})},$$

ezért arc ctg $\in D(\mathbb{R})$, és

$$\left[\operatorname{arc}\operatorname{ctg}'x = -\frac{1}{1+x^2} \quad (x \in \mathbb{R})\right].$$

Most szemléltetjük az arc ctg függvény grafikonját, és felsoroljuk néhány fontos tulajdonságát:

Az arc ctg függvény

- $\mathcal{D}_{\text{arc ctg}} = \mathbb{R}, \ \mathcal{R}_{\text{arc ctg}} = (0, \pi),$
- folytonos \mathbb{R} -en,
- deriválható \mathbb{R} -en, és arc ctg' $x = -\frac{1}{1+x^2}$ $(x \in \mathbb{R})$,
- $\downarrow \mathbb{R}$ -en,
- szigorúan konkáv $(-\infty, 0]$ -n, szigorúan konvex $[0, +\infty)$ -en,
- 0 inflexiós pont,
- $y = \pi$ aszimptota a $(-\infty)$ -ben,
- y = 0 aszimptota a $(+\infty)$ -ben.

Hiperbolikus függvények és inverzeik

• Hiperbolikus függvények

Emlékeztetünk arra, hogy a **szinuszhiberbolikusz-** és a **koszinuszhiberbolikusz-függvényt** az egész \mathbb{R} -en konvergens hatványsor összegfüggvényeként értelmeztük:

$$\operatorname{sh} x := \operatorname{sh}(x) := x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!} \quad (x \in \mathbb{R}),$$

$$\operatorname{ch} x := \operatorname{ch}(x) := 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} \quad (x \in \mathbb{R}).$$

Az exp függvény

$$e^x := \exp(x) := 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{k=0}^{+\infty} \frac{x^k}{k!} \quad (x \in \mathbb{R})$$

definíciójából közvetlenül következnek az alábbi fontos formulák:

(6)
$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}, \quad \operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \quad (x \in \mathbb{R}).$$

A hiperbolikus függvények sok rokon vonást mutatnak a trigonometrikus függvényekkel, ezekre utalnak az elnevezések. Az (6) formulák, valamint az

$$e^{x+y} = e^x \cdot e^y \qquad (x, y \in \mathbb{R})$$

alapvető képlet felhasználásával egyszerűen bizonyíthatók a trigonometrikus függvényekhez hasonló alábbi állítások:

1º A sh páratlan, a ch pedig páros függvény.

2º Addíciós képletek:

$$\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y \qquad (x, y \in \mathbb{R}),$$

$$\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y \qquad (x, y \in \mathbb{R}).$$

3º Négyzetes összefüggés:

$$\operatorname{ch}^{2} x - \operatorname{sh}^{2} x = 1 \qquad (x \in \mathbb{R}).$$

Megjegyzés. A négyzetes összefüggés geometriai tartalma a következő:

Minden $t \in \mathbb{R}$ valós szám esetén az $(x,y) = (\operatorname{ch} t, \operatorname{sh} t)$ síkbeli pont rajta van az $x^2 - y^2 = 1$ (x > 0) egyenletű hiperbolaágon (innen származik a szóban forgó függvények nevében szereplő "hiperbolikus" jelző).

 ${f 4^o}$ A sh és a ch függvény differenciálható (tehát folytonos is) ${\Bbb R}$ -en, és sh' = ch, ch' = sh.

A differenciálszámítás eszköztárának a felhasználásával vizsgálhatjuk a sh és a ch függvény analitikus és "alaki" tulajdonságait. Most a részletek mellőzésével felsoroljuk ezeknek a függvényeknek a tulajdonságait, majd azok felhasználásával ábrázoljuk a grafikonjaikat.

A sh függvény

• deriválható \mathbb{R} -en, és sh' $x = \operatorname{ch} x \ge 1 > 0 \ (x \in \mathbb{R}),$ sh' $0 = \operatorname{ch} 0 = 1,$

• szigorúan konkáv $(-\infty, 0]$ -n, szigorúan konvex $[0, +\infty)$ -en,

• 0 inflexiós pont.

A ch függvény

•
$$\mathcal{D}_{ch} = \mathbb{R}, \ \mathcal{R}_{ch} = [1, +\infty),$$

• deriválható \mathbb{R} -en, és $\operatorname{ch}' x = \operatorname{sh} x \ (x \in \mathbb{R})$, $\operatorname{ch}' 0 = \operatorname{sh} 0 = 0$,

•
$$\downarrow$$
 $(-\infty,0)$ -n, \uparrow $(0,+\infty)$ -en,

$$ullet$$
 szigorúan konvex \mathbb{R} -en,

Megjegyzés. A ch függvény képét **láncgörbének** is nevezik, mert egy homogén, hajlékony, nyúlásmentes, két végén felfüggesztett fonal (lánc) ilyen alakot vesz fel.

A tangenshiperbolikusz- és a kotengenshiperbolikusz-függvényeket a tg és a ctg függvények mintájára értelmezzük:

$$\operatorname{th} x := \operatorname{th}(x) := \frac{\operatorname{sh} x}{\operatorname{ch} x} \left(x \in \mathbb{R} \right), \qquad \operatorname{cth} x := \operatorname{cth}(x) := \frac{\operatorname{ch} x}{\operatorname{sh} x} \left(x \in \mathbb{R} \setminus \{0\} \right).$$

(A definícióknál figyelembe vettük azt, hogy minden $x \in \mathbb{R}$ -re ch $x \neq 0$, és sh $x = 0 \Longleftrightarrow x = 0$.)

Mindkét függvény páratlan, ezért a tulajdonságaikat elég a $(0,+\infty)$ intervallumon megállapítani. Meg kell még vizsgálni a $\lim_{+\infty}$ th, a $\lim_{+\infty}$ th és a \lim_{0+0} th határértékeket. Mivel

$$th x = \frac{\sinh x}{\cosh x} \stackrel{\text{(6)}}{=} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}, \quad \lim_{x \to +\infty} e^{-2x} = 0, \quad \coth x = \frac{1}{\tanh x} \quad \text{és} \quad \lim_{x \to 0+0} \sinh x = 0,$$

ezért

$$\lim_{x\to +\infty} \operatorname{th} x = 1, \quad \lim_{x\to +\infty} \operatorname{cth} x = 1 \quad \text{\'es} \quad \lim_{x\to 0+0} \operatorname{cth} x = +\infty.$$

A th függvény

•
$$\mathcal{D}_{\mathrm{th}} = \mathbb{R}, \ \mathcal{R}_{\mathrm{th}} = (-1, 1),$$

$$\bullet$$
deriválható $\mathbb{R}\text{-en,}$ és

$$\operatorname{th}' x = \frac{1}{\operatorname{ch}^2 x} \ (x \in \mathbb{R}), \operatorname{th}' 0 = 1,$$

•
$$\uparrow$$
 \mathbb{R} -en,

- szigorúan konvex $(-\infty, 0]$ -n, szigorúan konkáv $[0, +\infty)$ -en,
- 0 inflexiós pont,
- $y = \pm 1$ aszimptota $(\pm \infty)$ -ben.

A cth függvény

•
$$\mathcal{D}_{cth} = \mathbb{R} \setminus \{0\},$$

 $\mathcal{R}_{cth} = (-\infty, -1) \cup (1, +\infty),$

- páratlan függvény,
- deriválható, és

$$cth' x = -\frac{1}{\sinh^2 x} \quad (x \in \mathbb{R} \setminus \{0\}),$$

•
$$\downarrow$$
 $(-\infty, 0)$ -n és \downarrow $(0, +\infty)$ -en,

- szigorúan konkáv $(-\infty, 0]$ -n, szigorúan konvex $[0, +\infty)$ -en,
- $y = \pm 1$ aszimptota $(\pm \infty)$ -ben.

• Hiperbolikus függvények inverzei (areafüggvények)

Definíció. $A \operatorname{sh}, \operatorname{ch}_{\mid [0,+\infty)}, \operatorname{th}, \operatorname{cth} f \ddot{u} g g v \acute{e} n y e k invert \'{a}lhat \acute{o} k.$ $Az inverzeiket rendre areaszinuszhiperbolikusz-, areakoszinuszhiperbolikusz-, areatangenshiperbolikusz-, areakotangenshiperbolikusz-f \ddot{u} g g v \acute{e} n y e k n e k v e z z \ddot{u} k \acute{e} s \acute{e} g y jel \"{o} lj \ddot{u} k$:

$${\rm ar \; sh \; := \; sh^{\; -1}, \quad ar \; ch \; := \; \left(ch_{\; | \; [0,+\infty)} \right)^{-1}, \quad ar \; th \; := \; th^{\; -1}, \quad ar \; cth \; := \; cth^{\; -1}.}$$

Megjegyzés. Az inverz hiperbolikus függvények nevében megjelenő area=terület szó azt jelzi, hogy az ar chu mennyiség egy bizonyos síkidom területével egyenlő. Pontosabban: Legyen $u \geq 1$ és $v = \sqrt{u^2 - 1}$. Jelölje A_u azt a tartományt, amelyet az origót az (u, v) és (u, -v) pontokkal összekötő két szakasz, valamint az $x^2 - y^2 = 1$ hiperbolának az (u, v) és (u, -v) pontok közötti íve határol. Meg lehet mutatni, hogy az A_u tartomány területe éppen ar chu-val egyenlő. Ezt szemlélteti a következő ábra

Az inverz függvény deriválási szabályából következik, hogy mindegyik areafüggvény az értelmezési tartományának minden belső pontjában deriválható, és

$$\operatorname{ar} \operatorname{sh}' x = \frac{1}{\sqrt{x^2 + 1}} \quad (x \in \mathbb{R}), \qquad \operatorname{ar} \operatorname{ch}' x = \frac{1}{\sqrt{x^2 - 1}} \quad (x \in (1, +\infty)),$$

$$\operatorname{ar} \operatorname{th}' x = \frac{1}{1 - x^2} \quad (x \in (-1, 1)), \qquad \operatorname{ar} \operatorname{cth}' x = \frac{1}{1 - x^2} \quad (|x| > 1).$$

Az areafüggvények alábbi ábrákon szemléltetett analitikus és geometriai tulajdonságai a korábbiakhoz hasonlóan állapíthatók meg.

A hiperbolikus függvényeket ki lehet fejezni az exp függvénnyel. Az exp függvény inverze az ln függvény, ezért nem meglepő, hogy az areafüggvényeket az ln segítségével is fel tudjuk írni.

Tétel. A következő azonosságok teljesülnek:

$$\operatorname{ar} \operatorname{sh} x = \ln\left(x + \sqrt{x^2 + 1}\right) \qquad (x \in \mathbb{R}),$$

$$\operatorname{ar} \operatorname{ch} x = \ln\left(x + \sqrt{x^2 - 1}\right) \qquad (x \in [1, +\infty)),$$

$$\operatorname{ar} \operatorname{th} x = \frac{1}{2} \cdot \ln\left(\frac{1 + x}{1 - x}\right) \qquad (x \in (-1, 1)),$$

$$\operatorname{ar} \operatorname{cth} x = \frac{1}{2} \cdot \ln\left(\frac{x + 1}{x - 1}\right) \qquad (|x| > 1).$$

Bizonyítás. A bizonyítások hasonlók, ezért csak az első azonosság igazolását részletezzük.

Legyen $x \in \mathbb{R}$ és $y := \operatorname{ar} \operatorname{sh} x$, azaz $x = \operatorname{sh} y = \frac{e^y - e^{-y}}{2}$. Bevezetve a $t := e^y$ jelölést, t-re a $t^2 - 2tx - 1 = 0$ másodfokú egyenletet kapjuk. Mivel t > 0, ezért $t = e^y = x + \sqrt{x^2 + 1}$, azaz

$$y = \operatorname{ar} \operatorname{sh} x = \ln \left(x + \sqrt{x^2 + 1} \right) \qquad (x \in \mathbb{R}). \blacksquare$$

Megjegyzés. A fenti képletek jelentősége a következő: Ha az ln függvény helyettesítési értékeit ki tudjuk számolni, akkor az areafüggvények helyettesítési értékei is számolhatók.