1

Assignment 15

AVVARU BHARAT - EE20MTECH11008

Download the latex-tikz codes from

 $https://github.com/Bharat437/Matrix_Theory/tree/master/Assignment15$

1 Problem

(UGC,JUNE 2015,68):

Let $\mathbf{F}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the function $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle$, where \langle , \rangle is the standard inner product of \mathbb{R}^n and \mathbf{A} is a $n \times n$ real matrix. Here D denotes the total derivative. Which of the following statements are correct?

- 1) $(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \langle \mathbf{A}\mathbf{u}, \mathbf{y} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle.$
- 2) $(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(0, 0) = 0.$
- 3) $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ may not exist for some $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n$.
- 4) $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ does not exist at $(\mathbf{x}, \mathbf{y}) = (0, 0)$.

2 EXPLANATION

Inner product	Inner product between two vectors x and y is defined as
	$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} \tag{2.0.1}$
	Where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
Total Derivative D	Total derivative is a linear transformation. For function $F(x, y)$, the total
	derivative is given as $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ which says that total derivative of
	function \mathbf{F} at (\mathbf{x}, \mathbf{y}) .

TABLE 1: Definitions and theorem used

3 Solution

Statement	Observations	
Given	Function $\mathbf{F}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, it is given as	
	$\mathbf{F}(\mathbf{x},\mathbf{y}) = \langle \mathbf{A}\mathbf{x},\mathbf{y} \rangle$	(3.0.1)
	where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, let	
	$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$	(3.0.2)
	Given matrix A is a $n \times n$ real matrix, Let it be as	

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
(3.0.3)

From (2.0.1),(3.0.1),(3.0.2) we get

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{A}^T \mathbf{y} \tag{3.0.4}$$

$$\Longrightarrow \mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \dots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
(3.0.5)

It is in quadratic form, On solving we get

$$\Longrightarrow \mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} a_{11}x_1 & a_{21}x_1 & \dots & a_{n1}x_1 \\ +a_{12}x_2 & +a_{22}x_2 & +a_{n2}x_2 \\ +\dots & +\dots & +\dots \\ +a_{1n}x_n & +a_{2n}x_n & +a_{nn}x_n \end{pmatrix}_{1 \times n} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
(3.0.6)

$$\Longrightarrow \mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \sum_{i=1}^{n} a_{1i} x_i & \sum_{i=1}^{n} a_{2i} x_i & \dots & \sum_{i=1}^{n} a_{ni} x_i \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
(3.0.7)

$$\implies \mathbf{F}(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} a_{1i} x_i\right) y_1 + \left(\sum_{i=1}^{n} a_{2i} x_i\right) y_2 + \dots + \left(\sum_{i=1}^{n} a_{ni} x_i\right) y_n \quad (3.0.8)$$

Total Derivative D Now we will calculate $DF(\mathbf{x}, \mathbf{y})$

$$D\mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \frac{\partial \mathbf{F}}{\partial x_1} & \frac{\partial \mathbf{F}}{\partial x_2} & \dots & \frac{\partial \mathbf{F}}{\partial x_n} & \frac{\partial \mathbf{F}}{\partial y_1} & \frac{\partial \mathbf{F}}{\partial y_2} & \dots & \frac{\partial \mathbf{F}}{\partial y_n} \end{pmatrix}_{1 \le n^2}$$
(3.0.9)

Lets represent DF(x, y) using block matrix as below

$$D\mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{S} & \mathbf{T} \end{pmatrix} \tag{3.0.10}$$

$$\mathbf{S} = \begin{pmatrix} \frac{\partial \mathbf{F}}{\partial x_1} & \frac{\partial \mathbf{F}}{\partial x_2} & \dots & \frac{\partial \mathbf{F}}{\partial x_n} \end{pmatrix}_{1 \times n}$$

$$\mathbf{T} = \begin{pmatrix} \frac{\partial \mathbf{F}}{\partial y_1} & \frac{\partial \mathbf{F}}{\partial y_2} & \dots & \frac{\partial \mathbf{F}}{\partial y_n} \end{pmatrix}_{1 \times n}$$
(3.0.11)

$$\mathbf{T} = \begin{pmatrix} \frac{\partial \mathbf{F}}{\partial y_1} & \frac{\partial \mathbf{F}}{\partial y_2} & \dots & \frac{\partial \mathbf{F}}{\partial y_n} \end{pmatrix}_{1 \times n}$$
(3.0.12)

Using (3.0.8), (3.0.11), (3.0.12) we get

$$\mathbf{S} = \begin{pmatrix} a_{11}y_1 & a_{12}y_2 & \dots & a_{1n}y_n \\ +a_{21}y_2 & +a_{22}y_2 & & +a_{2n}y_2 \\ +\dots & +\dots & & +\dots \\ +a_{n1}y_n & +a_{n2}y_n & & +a_{nn}y_n \end{pmatrix}_{1 \times n}$$
(3.0.13)

$$\implies \mathbf{S} = \left(\sum_{i=1}^{n} a_{i1} y_{i} \quad \sum_{i=1}^{n} a_{i2} y_{i} \quad \dots \quad \sum_{i=1}^{n} a_{in} y_{i}\right)_{1 \times n}$$

$$\mathbf{T} = \left(\sum_{i=1}^{n} a_{1i} x_{i} \quad \sum_{i=1}^{n} a_{2i} x_{i} \quad \dots \quad \sum_{i=1}^{n} a_{ni} x_{i}\right)_{1 \times n}$$
(3.0.14)

TABLE 2: Observations

Option	Solution	True/ False
1	First we calculate $(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v})$ Here $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, Let	
	$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \qquad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} $ (3.0.16)	
	Using (3.0.10), (3.0.16) and block matrix multiplication we get	
	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \begin{pmatrix} \mathbf{S} & \mathbf{T} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} $ (3.0.17)	
	$\implies (D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \mathbf{S}\mathbf{u} + \mathbf{T}\mathbf{v} $ (3.0.18)	
	Now substituting (3.0.14), (3.0.15),(3.0.16) we get	
	$(D\mathbf{F}(\mathbf{x},\mathbf{y}))(\mathbf{u},\mathbf{v}) = \begin{pmatrix} \sum_{i=1}^{n} a_{i1}y_i & \sum_{i=1}^{n} a_{i2}y_i & \dots & \sum_{i=1}^{n} a_{in}y_i \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$	
	$+ \left(\sum_{i=1}^{n} a_{1i} x_{i} \sum_{i=1}^{n} a_{2i} x_{i} \dots \sum_{i=1}^{n} a_{ni} x_{i} \right) \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{pmatrix} $ (3.0.19)	
	$(D\mathbf{F}(\mathbf{x},\mathbf{y}))(\mathbf{u},\mathbf{v}) = \left(\sum_{i=1}^n a_{i1}y_i\right)u_1 + \left(\sum_{i=1}^n a_{i2}y_i\right)u_2 + \dots + \left(\sum_{i=1}^n a_{in}y_i\right)u_n$	
	$+ \left(\sum_{i=1}^{n} a_{1i}x_i\right)v_1 + \left(\sum_{i=1}^{n} a_{2i}x_i\right)v_2 + \dots + \left(\sum_{i=1}^{n} a_{ni}x_i\right)v_n (3.0.20)$	
	Now we will calculate	
	$\langle \mathbf{A}\mathbf{u}, \mathbf{y} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{A}^T \mathbf{y} + \mathbf{x}^T \mathbf{A}^T \mathbf{v} $ (3.0.21)	
	lets, first Consider $\mathbf{u}^T \mathbf{A}^T \mathbf{y}$ and calculate by substituting (3.0.3),(3.0.2), (3.0.16) we get	

$$\mathbf{u}^{T}\mathbf{A}^{T}\mathbf{y} = \begin{pmatrix} u_{1} & u_{2} & \dots & u_{n} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \dots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$(3.0.22)$$

$$\Rightarrow \mathbf{u}^{T} \mathbf{A}^{T} \mathbf{y} = \begin{pmatrix} u_{1} & u_{2} & \dots & u_{n} \end{pmatrix} \begin{pmatrix} a_{11}y_{1} + a_{21}y_{2} + \dots + a_{n1}y_{n} \\ a_{12}y_{1} + a_{22}y_{2} + \dots + a_{n2}y_{n} \\ & \vdots \\ a_{1n}y_{1} + a_{2n}y_{2} + \dots + a_{nn}y_{n} \end{pmatrix}_{n \times 1}$$
(3.0.23)

$$\implies \mathbf{u}^T \mathbf{A}^T \mathbf{y} = \begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix} \begin{pmatrix} \sum_{i=1}^n a_{i1} y_i \\ \sum_{i=1}^n a_{i2} y_i \\ \vdots \\ \sum_{i=1}^n a_{in} y_i \end{pmatrix}$$
(3.0.24)

$$\implies \mathbf{u}^T \mathbf{A}^T \mathbf{y} = \left(\sum_{i=1}^n a_{i1} y_i\right) u_1 + \left(\sum_{i=1}^n a_{i2} y_i\right) u_2 + \dots + \left(\sum_{i=1}^n a_{in} y_i\right) u_n \qquad (3.0.25)$$

Now we will calculate $\mathbf{x}^T \mathbf{A}^T \mathbf{v}$ by substituting (3.0.3), (3.0.2), (3.0.16)

$$\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{v} = \begin{pmatrix} x_{1} & x_{2} & \dots & x_{n} \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \dots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{pmatrix}$$
(3.0.26)

$$\Rightarrow \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{v} = \begin{pmatrix} a_{11} x_{1} & a_{21} x_{1} & \dots & a_{n1} x_{1} \\ +a_{12} x_{2} & +a_{22} x_{2} & +a_{n2} x_{2} \\ +\dots & +\dots & +\dots \\ +a_{1n} x_{n} & +a_{2n} x_{n} & +a_{nn} x_{n} \end{pmatrix}_{1 \times n} \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{pmatrix}$$
(3.0.27)

$$\implies \mathbf{x}^T \mathbf{A}^T \mathbf{v} = \begin{pmatrix} \sum_{i=1}^n a_{1i} x_i & \sum_{i=1}^n a_{2i} x_i & \dots & \sum_{i=1}^n a_{ni} x_i \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
(3.0.28)

$$\implies \mathbf{x}^T \mathbf{A}^T \mathbf{v} = \left(\sum_{i=1}^n a_{1i} x_i\right) v_1 + \left(\sum_{i=1}^n a_{2i} x_i\right) v_2 + \dots + \left(\sum_{i=1}^n a_{ni} x_i\right) v_n \qquad (3.0.29)$$

Now substitute (3.0.25) and (3.0.29) in (3.0.21) we get

$$\langle \mathbf{A}\mathbf{u}, \mathbf{y} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle = \left(\sum_{i=1}^{n} a_{i1} y_{i} \right) u_{1} + \left(\sum_{i=1}^{n} a_{i2} y_{i} \right) u_{2} + \dots + \left(\sum_{i=1}^{n} a_{in} y_{i} \right) u_{n} + \left(\sum_{i=1}^{n} a_{1i} x_{i} \right) v_{1} + \left(\sum_{i=1}^{n} a_{2i} x_{i} \right) v_{2} + \dots + \left(\sum_{i=1}^{n} a_{ni} x_{i} \right) v_{n}$$
 (3.0.30)

From (3.0.20) and (3.0.30) we can say that

	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(\mathbf{u}, \mathbf{v}) = \langle \mathbf{A}\mathbf{u}, \mathbf{y} \rangle + \langle \mathbf{A}\mathbf{x}, \mathbf{v} \rangle $ (3.0.31)	True
2.	Using (3.0.18) and (3.0.20), if $\mathbf{u} = 0$ and $\mathbf{v} = 0$ then we can get	
	$(D\mathbf{F}(\mathbf{x}, \mathbf{y}))(0, 0) = 0 \tag{3.0.32}$	True
3.	Since from (3.0.10), (3.0.14), (3.0.15) we can say that $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ will exist for	
	any $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^n$.	False
4.	From (3.0.10), (3.0.14), (3.0.15), if $(\mathbf{x}, \mathbf{y}) = (0, 0)$ we get	
	$D\mathbf{F}(\mathbf{x}, \mathbf{y}) _{(0,0)} = 0 \tag{3.0.33}$)
	Therefore we can say that $D\mathbf{F}(\mathbf{x}, \mathbf{y})$ will exist at $(\mathbf{x}, \mathbf{y}) = (0, 0)$.	False

TABLE 3: Solution