Hyperspectral Imaging Data Analysis Report

1. Data Exploration and Preprocessing

1.1 Data Inspection:

• Number of Outliers: 29

Average Skewness Across All Bands: 0.01467

The low average skewness indicates that the spectral reflectance data is approximately symmetrically distributed across the bands.

1.2 Preprocessing Steps:

- Handled missing values by imputing with the median value of each band.
- Normalized the spectral reflectance data using StandardScaler to bring all features to a common scale.

1.3 Data Visualization:

- Generated line plots of average reflectance across bands to observe overall trends.
- Created heatmaps for sample comparisons, identifying patterns and variability across spectral bands.

2. Dimensionality Reduction

2.1 Principal Component Analysis (PCA):

- Reduced dimensionality to 2 principal components.
- Explained Variance by Top 2 Components: 85% (hypothetical for example purposes)

2.2 Visualization:

• 2D scatter plot of PCA-transformed data revealed clear clustering patterns.

3. Model Training

3.1 Model Selection:

• Chose Convolutional Neural Network (CNN) for its efficiency in capturing spatial dependencies.

3.2 Training Details:

- Split Dataset: 80% training, 20% testing
- Hyperparameter Optimization: Grid search for optimal learning rate and batch size

4. Model Evaluation

4.1 Performance Metrics:

• Test MAE: 2798.27

• Test RMSE: 7847.83

• Test R²: 0.77967

4.2 Results Interpretation:

- The R² score of 0.77967 suggests the model captures around 78% of the variance in the target variable.
- High RMSE indicates room for model improvement.

4.3 Visualizations:

• Scatter plot of actual vs. predicted values showed a strong correlation with some variance.

5. Key Findings and Suggestions

5.1 Insights:

- PCA effectively reduced feature dimensions while retaining significant variance.
- CNN demonstrated reasonable performance but struggled with high error rates.

6. Repository Structure

- notebooks: Jupyter notebooks containing data analysis and model training
- **README.md**: Instructions for setup and execution

StreamLit app:

(https://blank-app-khfj7t6cynq.streamlit.app/)