MA40042 Measure Theory and Integration

Lecture 3

Measures

- Definition of measure
- Examples of measures
- Basic properties and continuity of measure
- Probability, finite, and σ-finite measures

3.1 Definition

Recall from Lecture 0 the properties we wanted a measure to have:

- A measure is a function μ from measurable subsets of X to $[0,\infty]$. (Here, $[0,\infty]:=[0,\infty)\cup\{\infty\}$.)
- $\bullet \ \mu(\varnothing) = 0.$
- For a finite or countably infinite sequence of disjoint measurable sets, $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$.
- For a finite or countably infinite sequence of measurable sets, $\mu(\bigcup_n A_n) \le \sum_n \mu(A_n)$.
- $\mu(A) + \mu(A^{c}) = \mu(X)$.

We take some of these as a definition, and prove the rest as properties later.

Definition 3.1. Let (X, Σ) be a measurable space. Then a function $\mu \colon \Sigma \to [0, \infty]$ is a *measure* on (X, Σ) if

- 1. $\mu(\emptyset) = 0;$
- 2. μ is countably additive, in that if A_1, A_2, \ldots , is a countably infinite sequence of disjoint sets in Σ , then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

The triple (X, Σ, μ) is called a measure space.

Recall that a sequence (A_n) of sets is disjoint (or 'pairwise disjoint') if $A_i \cap A_j$ for $i \neq j$.

3.2 Examples

The following are measures. (Checking they really are measures is a homework problem.)

- Let X be a nonempty set, and let Σ be its powerset. For $A \in \Sigma$, the counting measure # is given by setting #(A) to be the cardinality of A. (Recall that a set A has cardinality n if its elements can be enumerated as $A = \{a_1, a_2, \ldots, a_n\}$, and has cardinality ∞ otherwise. The empty set has cardinality 0.)
- Let (X, Σ) be a measurable space, and let $x \in X$. Then the *Dirac measure* (or δ measure or point measure) at x of a set $A \in \Sigma$ is given by

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

• Let X be a countable set, and let Σ be its powerset. Associate with each $x \in X$ a 'weight' $w_x \in [0, \infty]$. Then the associated discrete measure is

$$\mu(A) = \sum_{x \in A} w_x = \sum_{x \in X} w_x \delta_x(A).$$

• Let X be a nonempty set, and let Σ be the σ -algebra of countable and cocountable sets. Then we can set

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is countable,} \\ \infty & \text{otherwise} \end{cases}$$

• The Lebesgue measure on \mathbb{R} is the unique measure λ on the measurable space $(\mathbb{R}, \mathcal{B})$ such that $\lambda([a,b)) = b - a$. Showing that this measure exists and is unique is highly nontrivial (and will take about four lectures' work).

3.3 Properties

Let's start with some simple properties.

Theorem 3.2. Let (X, Σ, μ) be a measure space. Then we have the following properties:

(Finite additivity) For A_1, A_2, \ldots, A_N a finite sequence of disjoint sets in Σ , we have

$$\mu\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{N} \mu(A_n).$$

(Monotonicity) For $A, B \in \Sigma$ with $A \subset B$, we have $\mu(A) \leq \mu(B)$.

(Countable subadditivity) For A_1, A_2, \ldots, a countably infinite sequence of sets in Σ , we have

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n).$$

(Finite subadditivity) For A_1, A_2, \ldots, A_N a finite sequence of sets in Σ , we have

$$\mu\left(\bigcup_{n=1}^{N} A_n\right) \le \sum_{n=1}^{N} \mu(A_n).$$

Also, for $A \in \Sigma$, we have $\mu(A) + \mu(A^{c}) = \mu(X)$.

Proof. Most of these are left for homework, but let's do monotonicity (assuming finite additivity) for an example.

We can write $B = A \cup (B \setminus A)$, where the set difference $B \setminus A$ was shown to be measurable in Lecture 1. Note also that the A and $B \setminus A$ are disjoint. Hence by finite additivity we have $\mu(B) = \mu(A) + \mu(B \setminus A)$. But $\mu(B \setminus A) \geq 0$, as $\mu \colon \Sigma \to [0, \infty]$. Hence $\mu(B) \geq \mu(A)$.

This proof illustrates a general rule: to prove a statement about measures, turn it into a statement about disjoint unions.

The following properties are known as 'continuity of measure', by analogy with the usual definition of continuity, that

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

For the 'limit' of a sequence of sets, we can think of the union of a sequence of expanding sets (an 'upward limit'), or the intersection of a sequence of contracting sets (a 'downward limit').

Theorem 3.3. Let (X, Σ, μ) be a measure space. Then we have the following properties:

(Upward continuity) For $A_1 \subset A_2 \subset \cdots$ a countably infinite 'expanding' sequence of sets in Σ , we have

$$\lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right).$$

(Downward continuity) For $A_1 \supset A_2 \supset \cdots$ a countably infinite 'contracting' sequence of sets in Σ with $\mu(A_1) < \infty$, we have

$$\lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcap_{n=1}^{\infty} A_n\right).$$

Proof. We'll prove upward continuity, and leave downward continuity for homework.

Write $B_1 = A_1$, and $B_n = A_n \setminus A_{n-1}$ for $n \geq 2$. Then

$$\bigcup_{n=1}^{N} B_n = A_N \quad \text{and} \quad \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n,$$

with the unions being disjoint. So by finite additivity we have

$$\mu(A_N) = \mu\left(\bigcup_{n=1}^{N} B_n\right) = \sum_{n=1}^{N} \mu(B_n).$$

Hence, by countable additivity,

$$\mu(A_N) = \sum_{n=1}^N \mu(B_n) \to \sum_{n=1}^\infty \mu(B_n) = \mu\left(\bigcup_{n=1}^\infty B_n\right) = \mu\left(\bigcup_{n=1}^\infty A_n\right)$$

as $N \to \infty$.

3.4 Probability measures

A probability measure fulfils the definition of a measure, but also 'adds up to 1'. **Definition 3.4.** Let (X, Σ, μ) be a measure space.

- If $\mu(X) = 1$, then we call μ a probability measure, and (X, Σ, μ) a probability space.
- If $\mu(X) < \infty$, then we call μ a finite measure.
- If X can be written as a countable union of sets in Σ with finite measure, then we call μ a σ -finite measure.

A probability space is usually written as $(\Omega, \mathcal{F}, \mathbb{P})$. Note that it follows from Theorem 3.2 that $\mathbb{P}(A) \leq 1$ and $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$ for all $A \in \mathcal{F}$.

Probability measures are well-behaved, and your intuition is useful in dealing with them. Finite measure behave essentially the same as probability measures, and σ -finite measures are fairly well-behaved too. Measures that are not σ -finite can be pretty weird.