ST2132

AY23/24 SEM 1

github/jovyntls

01. PROBABILITY

Expectation

discrete: (mass)
$$E(X) := \sum_{i=1}^{n} x_i p_i$$

continuous: (density)

$$E(X) := \sum_{i=1}^{n} x_i p_i \qquad E(X) := \int_{-\infty}^{\infty} x f(x) dx$$

expectation of a function h(X)

$$E\{h(X)\} = \begin{cases} \sum_{i=1}^n h(x_i) p_i & X \text{ is discrete} \\ \int_{-\infty}^{\infty} h(x) f(x) \, dx & X \text{ is continuous} \end{cases}$$

Variance

variance,
$$\operatorname{var}(X) := E\{(X - \mu)^2\}$$

= $E(X^2) - E(X)^2$

standard deviation, $SD(X) := \sqrt{\operatorname{var}(X)}$

useful cases

- $E\{X(X \mu)\} = E(X^2) \mu^2$
- var(X c) = var(X)
- · variance of sum = sum of variances $\operatorname{var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{var}(x_i)$

Law of Large Numbers

LLN: for a function h, as realisations $r \to \infty$,

$$\frac{1}{r} \sum_{i=1}^{r} h(x_i) \to E\{h(X)\}$$
$$\bar{x} \to E(X), \quad v \to \text{var}(X)$$

Monte Carlo approximation

simulate x_1, \ldots, x_r from X. by LLN, as $r \to \infty$, the approximation becomes exact

$$E\{h(X)\} \approx \frac{1}{r} \sum_{i=1}^{r} h(x_i)$$

Joint Distribution

(discrete) mass function:

$$P(X = x_i, Y = y_j) = p_{ij}$$

(continuous) density function:

$$f: \mathbb{R}^2 \to [0, \infty), \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

(expectation) for $h: \mathbb{R}^2 \to \mathbb{R}$,

$$\begin{split} E\{h(X,Y)\} &= \\ \begin{cases} \sum_{i=1}^{I} \sum_{j=1}^{J} h(x_i,y_j) p_{ij} & X \text{ is discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) \, dx \, dy & Y \text{ is continuous} \end{cases} \end{split}$$

Covariance

let $\mu_X = E(X), \mu_Y = E(Y).$

covariance

$$cov(X,Y) = E\{(X - \mu_X)(Y - \mu_Y)\}$$
$$= E(XY) - \mu_X \mu_Y$$
$$= cov(Y,X)$$

$$cov(W, aX + bY + c) = a cov(W, X) + b cov(W, Y)$$

variance

$$\operatorname{var}(X) = \operatorname{cov}(X, X)$$

$$\operatorname{var}(\sum_{i=1}^{N} a_i X_i) =$$

 $\sum_{i=1}^{N} a_i^2 \operatorname{var}(X_i) + 2 \sum_{1 \le i \le j \le N} a_i a_j \operatorname{cov}(X_i, X_j)$

$joint = marginal \times conditional distributions$

$$f(x,y) = f_X(x)f_Y(y|x)$$

= $f_Y(y)f_X(x|y), \quad x, y \in \mathbb{R}$

- f(x, y) is the joint density
- $f_X(x)$, $f_Y(y)$ are the marginal densities
- $f_X(\cdot|y)$ is the **conditional** density of X given Y=y
- for discrete case, density \equiv probability, $x \equiv x_i$, $y \equiv y_i$

Independence

- X, Y are independent $\iff \forall x, y \in \mathbb{R}$,
 - 1. $f(x,y) = f_X(x) f_Y(y)$
 - 2. $f_Y(y|x) = f_Y(y)$
 - 3. $f_X(x|y) = f_Y(x)$
- X, Y are independent \Rightarrow
 - E(XY) = E(X)E(Y)
 - cov(X, Y) = 0

(the converse does not hold)

Conditional expectation

discrete case

let $f_Y(\cdot|x_i)$ be the conditional pmf of Y given $X = x_i$.

$$E[Y|x_i] := \sum_{j=1}^{J} y_j f_Y(y_j|x_i)$$

$$var[Y|x_i] := \sum_{j=1}^{J} (y_j - E[Y|x_i])^2 f_Y(y_j|x_i)$$

 $E[Y|x_i]$ is like E(Y), with conditional distribution replacing marginal distribution $f_Y(\cdot)$. likewise, $var[Y|x_i]$ like var(Y).

continuous case

$$E[Y|x] := \int_{-\infty}^{\infty} y f_Y(y|x) \, dy$$

$$var[Y|x] := \int_{-\infty}^{\infty} (y - E[Y|x])^2 f_Y(y|x) \, dy$$
$$= E(Y^2|x) - \{E(Y|x)\}^2$$

Distributions

if X is iid with expectation μ , SD σ and $S_n = \sum_{i=1}^n X_i$,

${\bf distribution} \ {\bf of} \ X$	E(X)	var(X)
Bernoulli(p)	p	p(1-p)
Binomial(n,p)	np	np(1-p)
Geometric(n, p)	1/p	$(1-p)/p^2$
$Multinomial(n, \mathbf{p})$	$\begin{bmatrix} np_1 \\ np_2 \\ \vdots \\ np_k \end{bmatrix}$	$\begin{aligned} & \operatorname{var}(X_i) = np_i(1-p_i) \\ & \operatorname{var}(X) = \operatorname{covariance matrix} M \\ & \operatorname{with} m_{ij} = \\ & \left\{ \operatorname{var}(X_i) & \text{if } i=j \\ & \operatorname{cov}(X_i,X_j) & \text{if } i \neq j \\ \end{aligned} \right. \end{aligned}$

- binomial: n coin flips (bernoulli) with probability p
 - $X \sim Bin(n, p) \Rightarrow X_i \stackrel{i.i.d.}{\sim} Bernoulli(p)$ $P(X = k) = \binom{n}{k} p^k (1 p)^{n-k}$

 - $\operatorname{cov}(X, n X) = -\operatorname{var}(X)$
- multinomial: tally of k possible outcomes (n events)
 - $cov(X_i, X_i) < 0$
- $X_i \sim Bin(n, p_i)$
- $X_i + X_j \sim Bin(n, p_i + p_j)$

02. PROBABILITY (2)

Mean Square Error (MSE)

$$MSE = E\{(Y - c)^2\}$$

= $var(Y) + \{E(Y) - c\}^2$

 $\min MSE = \operatorname{var}(Y) \text{ when } c = E(Y)$ if Y and X are correlated:

$$MSE = \text{var}[Y|x] + \{E[Y|x] - c\}^2$$

mean MSE

$$\frac{1}{n} \sum_{i=1}^{n} \text{var}[Y|x_i] \approx E\{\text{var}[Y|X]\}$$

random conditional expectations

- E[Y|X] is a r.v. which takes value E[Y|x] with probability/density $f_X(x)$
- var[Y|X] is a r.v. which takes value var[Y|x] with probability/density $f_X(x)$

$$E(E[X_2|X_1]) = E(X_2) var(E[X_2|X_1]) + E(var[X_2|X_1]) = var(X_2)$$

CDF (cumulative distribution function)

for r.v. X, let $F(x) = P(X \le x)$

• domain: \mathbb{R} ; codomain: [0,1]

$$F(x) = \int_{-\infty}^{\infty} f(x) \, dx$$

Standard Normal Distribution

$$Z \sim N(0,1)$$
 has density function $\phi(z) = rac{1}{\sqrt{2\pi}} \exp\{-rac{z^2}{2}\}, \quad -\infty < z < \infty$

$$E(Z) = 0$$
, $var(Z) = 1$

CDF,
$$\Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \phi(z) dz$$

• $E(Z^2) = 1$

general normal distribution

standardisation:
$$\frac{X-\mu}{\sigma} \sim N(0,1)$$

- density, $f_W(w) = \frac{d}{dw} F_W(w)$
- CDF, $F_W(w) = P(X < \frac{w-a}{l}) = \Phi(\frac{w-a}{l})$

Central Limit Theorem

CLT

as $n \to \infty$, the distribution of the standardised $S_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ converges to N(0,1)for large n, approximately $S_n \sim N(n\mu, n\sigma^2)$

Distributions

chi-square (χ^2)

let $Z \sim N(0,1)$. \Rightarrow then $Z^2 \sim \chi_1^2$ (1 degree of freedom)

• degrees of freedom = number of RVs in the sum

$$E(Z^2) = 1, \quad E(Z^4) = 3$$

 $var(Z^2) = E(Z^4) - \{E(Z^2)\}^2 = 2$

let
$$V_1,\dots,V_n$$
 be iid χ^2_1 RVs and $V=\sum_{i=1}^n V_i$. then
$$V\sim \chi^2_n$$

$$E(V)=n \quad {\rm var}(V)=2n$$

gamma

let shape parameter $\alpha > 0$, rate parameter $\lambda > 0$. The $Gamma(\alpha, \lambda)$ density is

$$\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}, \quad x>0$$

 $\Gamma(\alpha)$ is a number that makes density integrate to 1

$$E(X) = \frac{\alpha}{\lambda}, \quad \text{var}(X) = \frac{\alpha}{\lambda^2}$$

 $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$

• if $X_1 \sim Gamma(\alpha_1, \lambda)$ and $X_2 \sim Gamma(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim Gamma(\alpha_1 + \alpha_2, \lambda)$

t distribution

let $Z \sim N(0,1)$ and $V \sim \chi_n^2$ be independent.

$$\frac{Z}{\sqrt{V/n}} \sim t_n$$

has a t distribution with n degrees of freedom.

- t distribution is symmetric around 0
- $t_n \to Z$ as $n \to \infty$ (because $\frac{V}{r} \to 1$)

F distribution

let $V \sim \chi_m^2$ and $W \sim \chi_n^2$ be independent.

$$\frac{V/m}{W/n} \sim F_{m,n}$$

has an F distribution with (m, n) degrees of freedom.

• even if m=n, still two RVs V,W as they are independent

IID Random Variables

let X_1, \ldots, X_n be iid RVs with mean \bar{X} .

sample variance,
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$E(S^2) = \sigma^2 \quad \text{but} \quad E(S) < \sigma$$

more distributions:

$$\frac{\frac{(n-1)S^2}{\sigma^2}}{\sigma^2} \sim \chi^2_{n-1}$$
 \bar{X} and S^2 are independent

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

Multivariate Normal Distribution

let μ be a $k \times 1$ vector and Σ be a *positive-definite* symmetric $k \times k$ matrix.

> the random vector $\mathbf{X} = (X_1, \dots, X_k)'$ has a multivariate normal distribution $N(\mu, \Sigma)$ $E(X) = \mu$, $var(X) = \Sigma$

• two multinomial normal random vectors X_1 and X_2 , sizes h and k, are independent if $cov(X_1, X_2) = \mathbf{0}_{h \times k}$

03. POINT ESTIMATION

for a variable
$$v$$
 in population N ,
$$\mu = \frac{1}{N} \sum_{i=1}^N v_i \qquad \sigma^2 = \frac{1}{N} \sum_{i=1}^N (v_i - \mu)^2$$

• μ , σ^2 are **parameters** (unknown constants)

draws with replacement

random sample mean,
$$\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$$

$$E(\bar{X})=\mu, \, \mathrm{var}(\bar{X})=\frac{\sigma^2}{n}$$

$$E(X_i)=\mu, \qquad \mathrm{var}(X_i)=\sigma^2$$

- same distribution: x_i, X_i , population distribution
- the error in \bar{x} is $\mu \bar{x}$; it cannot be estimated

representativeness

- X_1, \ldots, X_n is **representative** of the population
- as n gets larger, \bar{X} gets closer to μ
- x_1, \ldots, x_n are *likely* representative of the population

Point estimation of mean

a population (size N) has unknown mean μ , variance σ^2 .

standard error

SE is a constant by definition: $SE = SD(\hat{X}) = \frac{\sigma}{\sqrt{n}}$

point estimation of mean: SE (\bar{x}) is estimated as $\frac{s}{\sqrt{x}}$

Simple random sampling (SRS)

n random draws without replacement from a population

for
$$i \neq j$$
, $\operatorname{cov}(X_i, X_j) = -\frac{\sigma^2}{N-1}$

• if n/N is relatively large, account for $cov(X_i, X_j)$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$$

• if $n \ll N$, then SRS is like sampling with replace*ment* (treat the data as IID RVs X_1, \ldots, X_n)

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

estimating proportion p

- the estimate of σ is $\hat{\sigma}$, not s
- unbiased estimator \hat{p}

•
$$E(\hat{p}) = p$$
, $var(\hat{p}) = \frac{p(1-p)}{n}$, $SE = SD(\hat{p})$

04. ESTIMATION (SE, bias, MSE)

for random draws X_1, \ldots, X_n with replacement

MSE and bias

suppose measurements were from a population with mean w + b where b is a constant: $x_i = w + b + \epsilon_i$

- $E(\bar{X}) = w + b$, $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
 - $SE=rac{\sigma}{\sqrt{n}}$ measures how far $ar{x}$ is from w+b, not w
- if $b \neq 0$, then \bar{x} is a biased estimate for w
- $MSE = E\{(\bar{X} w)^2\} = \frac{\sigma^2}{r} + b^2$

general case

let θ be a parameter and $\hat{\theta}$ be an estimator (RV). $SE = SD(\hat{\theta}), \quad \text{bias} = E(\hat{\theta}) - \theta,$ $MSE = E\{(\hat{\theta} - \theta)^2\} = SE^2 + bias^2$ as $n \to \infty$, $MSE \to b^2$

05. INTERVAL ESTIMATION

let x_1, \ldots, x_n be realisations of IID RVs X_1, \ldots, X_n with unknown $\mu = E(X_i)$ and $\sigma^2 = \text{var}(X_i)$.

point estimation: $\mu \approx \bar{x} \pm \frac{s}{\sqrt{n}}$

interval estimation: interval contains μ with some

interval estimation works well if

- X_i has a normal distribution, for any n>1
- X_i has any other distribution but n is large

normal "upper-tail quantile" z_p

let $Z \sim N(0,1)$. let z_p be the (1-p)-quantile of Z. $p = \Pr(Z > z_n)$

(case 1) normal distribution with known σ^2

$$\begin{array}{l} X_1,\dots,X_n \overset{i.i.d.}{\sim} N(0,1) \text{ with known } \sigma^2. \\ \text{for } 0 < \alpha < 1, \ \Pr(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}) = 1 - \alpha \end{array}$$

confidence interval for μ : the random interval

$$\left(\bar{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right)$$
 contains μ with probability (confidence level) $1-\alpha$

(case 2) normal distribution with unknown σ^2

replace σ with S and use t distribution:

for
$$0< p<1$$
, let $t_{p,n}$ be such that $\Pr(t_n>t_{p,n})=p$ as $n\to\infty,\ t_{n,p}\to z_p$

the random interval
$$\left(\bar{X}-t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}}\right)$$
 contains μ with probability $1-\alpha$.

(case 3) general distribution with unknown σ^2

- CLT: for large n, approximately $\frac{S_n n\mu}{\sqrt{n}\sigma} \sim N(0,1)$
- since $\frac{S_n n\mu}{\sqrt{n}\sigma} = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$,

for large n, the random interval $\left(\bar{X}-z_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}},\bar{X}+z_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}}\right)$ contains μ with probability $\approx 1 - \alpha$

- for SRS, multiply SE by correction factor $\sqrt{\frac{N-n}{N-1}}$
- contains μ with probability $< 1 \alpha$
- probability $\rightarrow 1 \alpha$ as $n \rightarrow \infty$
- exception: for Bernoulli, $\sigma = \sqrt{p(1-p)}$ is not estimated by s, but by replacing p with the sample proportion

06. METHOD OF MOMENTS

modified notation of mass/density functions:

- bernoulli: $f(x|p) = p^x(1-p)^{1-x}, x = 0, 1$ • parameter space is (0, 1)
- poisson: $f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$ • parameter space is \mathbb{R}_{+}

parameter estimation

assuming data x_1, \ldots, x_n are realisations of IID RVs X_1, \ldots, X_n with mass/density function $f(x|\theta)$, where θ is unknown in parameter space Θ .

- 2 methods to estimate θ :
 - · method of moments (MOM)
- method of maximum likelihood (MLE)
- the estimate of θ is a realisation of an estimator $\hat{\theta}$
- parameter space Θ : set of values that can be used to estimate the real parameter value θ
 - e.g. for $N(\mu, \sigma^2)$, parameter space $\Theta = \mathbb{R} \times \mathbb{R}_+$

Moments of an RV

the
$$k$$
-th moment of an RV X is $\mu_k = E(X^k), \quad k = 1, 2, \dots$

estimating moments

let X_1, \ldots, X_n be IID with the same distribution as X.

the
$$k$$
-th sample moment is
$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

$$E(\hat{\mu}_k) = E(\frac{1}{n} \sum_{i=1}^n x_i^k) = \mu_k \quad \Rightarrow \text{unbiased!}$$

MOM: general

let $X \sim Distribution(\theta)$. to obtain \bar{x} and SE:

- 1. $\mu = \mu_1$, $\sigma^2 = \mu_2 \mu_1^2$
- 2. express parameters in terms of moments
- 3. estimate MOM estimator using sample mean \bar{x} : $\hat{\theta} = \hat{\mu}_1 = \bar{X}$
- 4. obtain $SE = SD(\hat{\theta}) = \sqrt{\operatorname{var}(\hat{\theta})} = \sqrt{\frac{1}{\pi} \operatorname{var}(X)}$ $\theta \approx \bar{x} \pm \sqrt{\frac{\operatorname{var}(X)}{x}}$

07. MLE

Likelihood function

let x_1, \ldots, x_n be realisations of iid rvs X_1, \ldots, X_n with density $f(x|\theta), \ \theta \in \Theta \subset \mathbb{R}^k$.

likelihood function $L:\Theta\to\mathbb{R}_+$ is

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$
$$= f(x_1|\theta) \times \dots \times f(x_n|\theta)$$

loglikelihood function $\ell:\Theta\to\mathbb{R}$ is

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_n | \theta)$$

(can omit additive constants (ℓ) /constant factors (L))

Maximum Likelihood Estimation (MLE)

- **maximiser** of $L \to \text{the maximum likelihood estimate of } \theta$ (a realisation of the MLEstimator $\hat{\theta}$)
 - maximiser of loglikelihood $\ell = \log L$ over Θ

find the value of θ that maximises (log)likelihood:

- 1. calculate likelihood L, loglikelihood ℓ
- 2. differentiate loglikelihood ℓ : $\ell'(\theta) = 0$
- 3. confirm max point: $\ell''(\theta) < 0$

ML vs MOM

- MOM estimates can always be written in terms of the data (sample moments)
 - ML uses *
- · ML has better (smaller) SE and bias than MOM
- · MOM/ML estimates are asymptotically unbiased
 - as $n \to \infty$, $E(\hat{\theta}_n) \to \theta$

Kullback-Liebler divergence (KL)

let $\mathbf{q} = (q_1, \dots, q_k)$ and $\mathbf{p} = (p_1, \dots, p_k)$ be strictly positive probability vectors.

the KL divergence between q and p is

$$d_{KL}(\mathbf{q}, \mathbf{p}) = \sum_{i=1}^{k} q_i \log(\frac{q_i}{p_i})$$

- $d_{KL}(\mathbf{q}, \mathbf{p}) \ge 0$ (equality $\iff \mathbf{q} = \mathbf{p}$) • $d_{KL}(\mathbf{q}, \mathbf{p}) \neq d_{KL}(\mathbf{p}, \mathbf{q})$
- used to maximise ℓ to find MLE for multinomial
- let q be the MOM estimate for p. for any p,

$$\ell(\mathbf{q}) - \ell(\mathbf{p}) = \sum_{i=1}^{k} x_i \log q_i - \sum_{i=1}^{k} x_i \log p_i$$
$$= n d_{KL}(\mathbf{q}, \mathbf{p}) \ge 0$$

•
$$\ell(\mathbf{q}) - \ell(\mathbf{p}) = 0 \iff \mathbf{p} = \mathbf{q} = \frac{\mathbf{x}}{n}$$

Hardy-Weinberg equilibrium (HWE)

let θ be the proportion of a.

the population is in **HWE** if $f(aa) = \theta^2$, $f(aA) = 2\theta(1-\theta)$, $f(AA) = (1-\theta)^2$

- (e.g. genotypes) Under HWE, the number of a alleles in an individual has a $Binom(2, \theta)$ distribution
- for n randomly chosen people, number of a alleles $(AA, Aa, aa) \sim Multinomial(n, \theta)$

Multinomial ML estimation

for $(X_1, X_2, X_3) \sim Multinomial(n, \mathbf{p})$

- where $p_1 = (1 \theta)^2$, $p_2 = 2\theta(1 \theta)$, $p_3 = \theta^2$ $L(\theta) = p_1^{x_1} p_2^{x_2} p_3^{x_3} = 2^{x_2} (1 \theta)^{2x_1 + x_2} \theta^{x_2 + 2x_3}$ • $\ell(\theta) = x_2 \log 2 + (2x_1 + x_2) \log(1 - \theta) + (x_2 + 2x_3) \log \theta$
- ML estimator: $\hat{\theta} = \frac{X_2 + 2X_3}{2n}$
- SE estimation: $\sqrt{\frac{\theta(1-\theta)}{2n}}$
 - $X_2 + 2X_3$ is the number of a alleles: $Binom(2n, \theta)$ $\Rightarrow \operatorname{var}(\hat{\theta}) = \frac{\theta(1-\theta)}{2\pi}$

08. LARGE-SAMPLE DISTRIBUTION OF MLEs

asymptotic normality of ML estimator

let $\hat{\theta}_n$ be the ML estimator of $\theta \in \Theta \subset \mathbb{R}$, based on iid RVs X_1, \ldots, X_n with density $f(x|\theta)$.

> for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{1})$

Fisher Information

let X have density $f(x|\theta)$, $\theta \in \Theta \subset \mathbb{R}^p$.

the **Fisher information** is the $p \times p$ matrix $\mathcal{I}(\theta) = -E \left[\frac{d^2 \log f(X|\theta)}{d\theta^2} \right]$

- $\mathcal{I}(\theta)$ is symmetric, with (ij)-entry $-E\left[\frac{\delta^2 \log f(X|\theta)}{\delta \theta_i \delta \theta_i}\right]$
- $\mathcal{I}(\theta)$ measures the information about θ in one sample X.

Asymptotic normality: Bernoulli

 $X \sim Bernoulli(p): f(x|p) = p^{x}(1-p)^{1-x}, x = 0, 1$

Fisher information

- $\log f(X|p) = X \log p + (1-X) \log(1-p)$ differentiate $\frac{d}{dp}$: $\frac{X}{p} \frac{1-X}{1-p}$

- $\begin{array}{l} \bullet \text{ differentiate } \frac{d^2}{dp^2} \colon -\frac{X}{p^2} \frac{1-X}{(1-p)^2} \\ \bullet \ \mathcal{I}(p) = -E(\frac{d^2\log f(X|p)}{dp^2}) = \frac{1}{p(1-p)} \\ \bullet \ \text{ differentiate } \frac{1}{p(1-p)} \end{array}$
- minimised at p=0.5

Asymptotic normality

for X_1, \ldots, X_n iid Bernoulli(p) RVs,

Fisher information in each X_i : $\mathcal{I}(p) = \frac{1}{p(1-p)}$

- ML estimator $\hat{p} = \bar{X}$
- for large $n, \hat{p} \approx N\left(p, \frac{p(1-p)}{n}\right)$
- $E(\hat{p}) = p$, $var(\hat{p}) = \frac{p(1-p)}{p}$

Asymptotic normality: Geometric

 $X \sim Geometric(p): f(x|p) = p(1-p)^{1-x}$

Fisher information

- $\log f(X|p) = \log p + (X-1)\log(1-p)$ differentiate $\frac{d}{dp}$: $\frac{1}{p} \frac{X-1}{1-p}$
- differentiate $\frac{d^2}{dn^2}$: $-\frac{1}{n^2} \frac{X-1}{(1-n)^2}$
- $\mathcal{I}(p) = -E(\frac{d^2 \log f(X|p)}{dp^2}) = \frac{1}{p(1-p)} + \frac{1}{p^2} = \frac{1}{p^2(1-p)}$

Asymptotic normality

for X_1, \ldots, X_n iid Geometric(p) RVs, Fisher information in each X_i , $\mathcal{I}(p) = \frac{1}{n^2(1-p)}$

- ML estimator $\hat{p} = \frac{1}{4}$
- for large $n, \hat{p} \approx N\left(p, \frac{p^2(1-p)}{n}\right)$
 - $E(\hat{p}) > p$ since $E(\hat{p}) = E(\frac{1}{X}) > \frac{1}{E(X)} = p$
 - likely $var(\hat{p}) \neq \frac{p^2(1-p)}{p}$

Asymptotic normality: Normal

Fisher information

$$X \sim N(\mu, \sigma^2), \theta = (\mu, \sigma).$$

$$f(x|p) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}, \quad x \in \mathbb{R}$$

- $\log f(X|p) = \frac{1}{2} \log 2\pi \log \sigma \frac{(x-\mu)^2}{2\sigma^2 n}$ $=c-\log\sigma-\frac{(X-\mu)^2}{2\sigma^2}$
- $\mbox{ differentiate } \frac{d}{dp} \colon \quad \frac{\delta}{\delta \mu} = \frac{X \mu}{\sigma^2}, \quad \frac{\delta}{\delta \sigma} = -\frac{1}{\sigma} + \frac{(X \mu)^2}{\sigma^3}$
- $\begin{array}{ll} \bullet \text{ differentiate } \frac{d^2}{dp^2} \colon \begin{bmatrix} \frac{\delta^2}{\delta \mu^2} & \frac{\delta^2}{\delta \mu \delta \sigma} \\ \frac{\delta^2}{\delta \sigma \delta \mu} & \frac{\delta^2}{\delta \sigma^2} \end{bmatrix} \\ \end{array}$
- $\mathcal{I}(p) = -E(\frac{d^2 \log f(X|\theta)}{d\theta^2}) = \begin{bmatrix} \frac{\overline{1}}{\sigma^2} & 0\\ 0 & \frac{2}{\sigma^2} \end{bmatrix}$

Asymptotic normality

for X_1, \ldots, X_n iid $N(\mu, \sigma^2)$ RVs, $\theta = (\mu, \sigma)$,

Fisher information in each $X_i: \mathcal{I}(\theta) = \begin{bmatrix} \frac{1}{\sigma^2} & 0 \\ 0 & \frac{2}{\sigma^2} \end{bmatrix}$

- ML estimator $\hat{\theta} = \begin{bmatrix} X \\ \hat{\sigma} \end{bmatrix}$
- for large n, $\hat{\theta} \approx N \left(\begin{bmatrix} \mu \\ \sigma \end{bmatrix}, \begin{bmatrix} \frac{\sigma^2}{n} & 0 \\ 0 & \frac{\sigma^2}{2n} \end{bmatrix} \right)$

are expectation and variance exact?

- a random variable cannot be exactly normal! (cannot be negative)
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ $\hat{\sigma} \sim N(\sigma, \frac{\sigma^2}{2n})$ approximately; $E(\hat{\sigma}) \neq \sigma$

for x_1, \ldots, x_n IID $N(\mu, \sigma^2)$ RVs with large n, ML estimates of μ and σ are $\bar{x} = \dots$ and $\hat{\sigma} = \dots$

• for approximate variance $\begin{bmatrix} \frac{\sigma^2}{n} \\ 0 \end{bmatrix}$

 $\sigma: \left(\hat{\sigma} - z_{\frac{\alpha}{2}}, \frac{\hat{\sigma}}{\sqrt{2\pi}}, \hat{\sigma} + z_{\frac{\alpha}{2}}, \frac{\hat{\sigma}}{\sqrt{2\pi}}\right)$

SEs of \bar{x} and $\hat{\sigma}$ are estimated as $\frac{\hat{\sigma}}{\sqrt{n}}$ and $\frac{\hat{\sigma}}{\sqrt{2n}}$

• approximate $(1 - \alpha)$ -CI: $\mu:\left(\bar{x}-z_{\frac{\alpha}{2}},\frac{\hat{\sigma}}{\sqrt{n}},\bar{x}+z_{\frac{\alpha}{2}},\frac{\hat{\sigma}}{\sqrt{n}}\right)$

Gamma distribution

 $X \sim Gamma(\alpha, \lambda),$

 $f(x|\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \ x>0$

 $\log f(X) = \alpha \log \lambda - \log \Gamma(\alpha) + (\alpha - 1) \log X - \lambda X$ let $\psi(\alpha) = \frac{d}{d\alpha} \log \Gamma(\alpha)$:

 $(\psi(\alpha) = \text{digamma function}, \psi'(\alpha) = \text{trigamma function})$

- $\frac{\delta \log f(X)}{\epsilon} = \log \lambda \psi(\alpha) + \log X$

- $\frac{\delta \log f(X)}{\delta \alpha} = \log \lambda \psi(\alpha) + \log \frac{\delta}{\delta \alpha}$ $\frac{\delta \log f(X)}{\delta \lambda} = \frac{\alpha}{\lambda} X$ $\frac{\delta^2 \log f(X)}{\delta \alpha^2} = -\psi'(\alpha)$ $\frac{\delta^2 \log f(X)}{\delta \lambda^2} = -\frac{\alpha}{\lambda^2}$ $\frac{\delta^2 \log f(X)}{\delta \alpha \delta \lambda} = \frac{\delta^2 \log f(X)}{\delta \lambda \delta \alpha} = \frac{1}{\lambda}$

$$\mathcal{I}(\alpha,\lambda) = \begin{bmatrix} \psi'(\alpha) & -\frac{1}{\lambda} \\ -\frac{1}{\lambda} & \frac{\alpha}{\lambda^2} \end{bmatrix}$$

Approximate CI with ML estimate

 $\hat{\theta}_n$ is the ML estimator of $\theta \in \Theta \subset \mathbb{R}$ based on iid RVs X_1,\ldots,X_n . $0<\alpha<1$

• for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{2})$. for $0 < \alpha < 1$,

$$1 - \alpha \approx \Pr\left(-z_{\frac{\alpha}{2}} \le \frac{\hat{\theta}_n - \theta}{\sqrt{\mathcal{I}(\theta)^{-1}/n}} \le z_{\frac{\alpha}{2}}\right)$$

 $\left(\hat{\theta}_n - z_{\frac{\alpha}{2}}\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}, \hat{\theta}_n + z_{\frac{\alpha}{2}}\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}\right)$

$$\left(\theta_n - z_{\frac{\alpha}{2}}\sqrt{\frac{z(\delta)}{n}}, \theta_n + z_{\frac{\alpha}{2}}\sqrt{\frac{z(\delta)}{n}}\right)$$

covers θ with probability $\approx 1 - \alpha$

- MLE: ML estimate of θ , SE: $\sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}$ with θ replaced by
- approxiate $(1 \alpha) CI$ for θ is $(MLE - z_{\frac{\alpha}{2}}SE, MLE + z_{\frac{\alpha}{2}}SE)$

Scope of asymptotic normality of ML estimators

- for iid normal RVs, let $\hat{\sigma}$ be the ML estimator of σ . then $\hat{\sigma}^2$ is the ML estimator of σ^2
 - both $\hat{\sigma}$ and $\hat{\sigma}^2$ are asymptotically normal
 - \frac{1}{2} is also asymptotically normal
- let $\hat{\theta}^n$ be the ML estimator of θ . For strictly increasing or strictly decreasing $h: \Theta \to \mathbb{R}$, $h(\hat{\theta}^n)$ is the ML estimator of $h(\theta)$.
 - for large n, $h(\hat{\theta}^n)$ is approximately normal

population mean vs parameter

for n random draws with replacement from a population with mean μ and variance σ^2 .

•			
Estimator	E	var	Distribution
random sample mean, $\hat{\mu}$	μ	$\frac{\sigma^2}{n}$.	pprox normal
ML estimator, $\hat{ heta}_n$	$\approx \theta$	$\approx \frac{\mathcal{I}(\theta)^{-1}}{n}$	\approx normal

 $\hat{\theta}_n$ is not normal (but may approach normal for large n)

summary

let X have density $f(x|\theta), \theta \in \Theta \subset \mathbb{R}^k$. The **Fisher information** at θ in X is the $k \times k$ matrix $-E\left[\frac{d^2\log f(X|\theta)}{d\theta^2}\right]$

let $\hat{\theta}_n$ be the ML estimator of θ based on iid RVs X_1, \ldots, X_n with density $f(x|\theta)$.

For large n, the distribution of $\hat{\theta}_n$ is approximately

$$N\left(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n}\right)$$

- ⇒ SE can be estimated without monte carlo ⇒ accurate CIs are available skipped: Fisher information in IID samples; binomial fisher
- information, MLE; HWE trinomial fisher information $E(\frac{d\log f(X|\lambda)}{d\lambda}) = 0$

09. HYPOTHESIS TESTING

let x_1, \ldots, x_n be realisations of IID $N(\mu, \sigma^2)$ RVs X_1, \ldots, X_n where μ is a parameter and σ is known.

null hypothesis, $H_0: \mu = \mu_0$

alternative hypothesis, $H_1: \mu = \mu_1$

It is believed that $\mu = \mu_0$, but it might be μ_1 . 2 methods to test if H_0 should be rejected in favour of H_1 using \bar{x} :

- if \bar{x} falls inside the **rejection region**, we reject H_0
 - based on a choice of α (type I error)
- P value \rightarrow the probability that \bar{X} is more extreme than \bar{x} , assuming H_0 is true. (if small, doubt H_0)
- based on an observed test statistic

if σ is unknown or $x_1, \ldots, x_n \not\sim N(\mu, \sigma^2)$, we can use CLT

Rejection region

 x_1, \ldots, x_n are from IID $N(\mu, \sigma^2)$ RVs, with σ known

One-tailed test

$$H_0: \mu = \mu_0, \quad H_1: \mu = \mu_1 > \mu_0$$

$$\begin{array}{c} \text{ under } H_0, \\ \bar{X} \sim N(\mu_0, \frac{\sigma^2}{n}), \quad \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1) \end{array}$$

$$\alpha = P_{H_0}(\bar{X} > \mu_0 + c) = \Pr(Z > \frac{c}{\sigma/\sqrt{n}}) \quad \Rightarrow c = z_{\alpha}$$

- reject H_0 if $\bar{x} \mu_0 > c$ (for some c > 0)
 - \bar{x} is the test statistic
 - interval $(\mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}, \infty)$ is the **rejection region**
 - for a test of size α , $c=z_{\alpha}\frac{\sigma}{\sqrt{n}}$

Hypothesis $\bar{x} < \mu_0 + c$ $H_0: \mu = \mu_0$ $\times (I)$ reject H_0 \checkmark not reject H_0 $H_1: \mu = \mu_1 \mid \times (II)$ not reject H_0 \checkmark reject H_0

- type I error: rejecting H_0 when it is true
- type II error: not rejecting H_0 when it is false

Size and power

- **size** of a test \rightarrow probability of a Type I error
 - $\alpha := P_{H_0}(\bar{X} > \mu_0 + c)$
- **power** of a test $\rightarrow 1-$ probability of a Type II error
 - $\beta := P_{H_1}(\bar{X} > \mu_0 + c) \Rightarrow \mathsf{power} = 1 \beta$
 - as $n \to \infty$, power $\to 1$
 - increasing power of rejecting H_0
- α and β are both about the same event (\bar{X} is in the rejection region), but calculated under different hypotheses (H_0, H_1)
- $\uparrow c: \downarrow \alpha, \downarrow \beta$ (\downarrow type *I* error, \uparrow type *II* error)
- commonly $\alpha = 0.05$
 - keep α small since H_0 is the default hypothesis

Two-tailed test

 x_1,\dots,x_n are from iid $N(\mu,\sigma^2)$ RVs, σ known $H_0:\mu=\mu_0,\quad H_0:\mu=\mu_0,H_1:\mu=\mu_1\neq\mu_0$

• reject H_0 if $|\bar{x} - \mu_0| > c$, for some c > 0

• rejection region: $(-\infty, \ \mu_0 - c)$ and $(\mu_0 + c, \infty)$

•
$$\alpha = P_{H_0}(|\bar{X} - \mu_0| > c) = \Pr\left(|Z| > \frac{c}{\sigma/\sqrt{n}}\right)$$

= $2\Pr\left(Z > \frac{c}{\sigma/\sqrt{n}}\right)$

• $c = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

• rejection region: $(-\infty, \mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) \land (\mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \infty)$

Composite hypothesis

- simple hypothesis \rightarrow specify a single value $(H_0: \mu = \mu_0, H_1: \mu = \mu_1)$
- composite hypothesis → range of values
- one-tailed test: $H_0: \mu=\mu_0, \ H_1: \mu>\mu_0$ rejection region: $(\mu_0+z_{\alpha}\frac{\sigma}{\sqrt{n}}, \ \infty)$
- \Rightarrow no change since it doesn't involve μ_1
- two-tailed test: $H_0: \mu=\mu_0, \ H_1: \mu\neq\mu_0$
 - rejection region:

$$\begin{array}{l} (-\infty,\,\mu_0-z_{\frac{\alpha}{2}}\,\frac{\sigma}{\sqrt{n}})\,\wedge\,(\mu_0+z_{\frac{\alpha}{2}}\,\frac{\sigma}{\sqrt{n}},\infty)\\ \Rightarrow \text{no change since it doesn't involve }\mu_1 \end{array}$$

• if \bar{x} falls *outside* the rejection region, i.e. $\mu_0 - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq \bar{x} \leq \mu_0 + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

• then H_0 is NOT rejected at level α • μ_0 lies in the $(1 - \alpha)$ -CI for μ

• as $n \to \infty$, power $\to 1$

Hypothesis testing and CI

the $(1-\alpha)$ -CI for μ , $\left(\bar{x}-z_{\frac{\alpha}{2}}\frac{\hat{\sigma}}{\sqrt{n}},\bar{x}+z_{\frac{\alpha}{2}}\frac{\hat{\sigma}}{\sqrt{n}}\right)$ consists of the values μ_0 for which the test $H_0:\mu=\mu_0,\ H_1:\mu\neq\mu_0$ is not rejected at level α .

P-value

- P-value → the probability under H₀ that the random test statistic is more extreme than the observed test statistic
 small p-value = more "extreme" (more doubt)
- reject H_0 at level $\alpha \iff P < \alpha$
- generally, P-value for two-tailed test is double that of one-tailed test

formulae for P-value

$$\begin{split} H_1 : \mu > \mu_0 \\ P &= P_{H_0}(\bar{X} > \bar{x}) = \Pr\left(Z > \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}\right) \\ H_1 : \mu < \mu_0 \\ P &= P_{H_0}(\bar{X} < \bar{x}) = \Pr\left(Z < \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}\right) \\ H_1 : \mu \neq \mu_0 \\ P &= P_{H_0}(|\bar{X} - \mu_0| > |\bar{x} - \mu_0|) = \Pr\left(|Z| > \frac{|\bar{x} - \mu_0|}{\sigma / \sqrt{n}}\right) \end{split}$$

10. GOODNESS-OF-FIT

- **likelihood ratio** (LR) test \rightarrow based on the ratio of likelihoods
 - P-value can be approximated using χ^2 distribution for a large sample size

multinomial

let $X \sim Trinomial(n,\mathbf{p})$. by HWE, \mathbf{p} is a function of θ as follows: $p_1 = (1-\theta)^2, \; p_2 = 2\theta(1-\theta), \; p_3 = \theta^2$ let L_1 and L_0 be the maximum likelihood value for the general model $(Trinomial(n,\mathbf{p}))$ and the HWE.

- $L_1 \geq L_0$ (L_0 is the maximum over a subset of L_1)
 - general trinomial
 - likelihood, $L(\mathbf{p}) = p_1^{x_1} p_2^{x_2} p_3^{x_3}$
 - ML estimate of \mathbf{p} is $\frac{\mathbf{x}}{2}$
 - $\log L_1 = x_1 \log(\frac{x_1}{n}) + x_2 \log(\frac{x_2}{n}) + x_3 \log(\frac{x_3}{n})$
 - HWE:
 - likelihood, $L(\theta) = p_1(\theta)^{x_1} p_2(\theta)^{x_2} p_3(\theta)^{x_3}$
 - ML estimate of θ is $\frac{x_2+2x_3}{2\pi}$
- larger $L_1/L_0 \Rightarrow$ poorer fit for HWE

LR test

• null hypothesis: HWE holds

$$H_0: p_1 = (1-\theta)^2, \ p_2 = 2\theta(1-\theta), \ p_3 = \theta^2$$

- LR test statistic: $2\log\left(\frac{L_1}{L_0}\right) = 2(\log L_1 \log L_0)$
- degree of freedom = difference in the number of parameters between the models
 - general model has 2 params, HWE has 1 param
- P-value = $\Pr\left(\chi_1^2 > 2\log(\frac{L_1}{L_0})\right)$

Nested models

the set of all $Trinomial(n,\mathbf{p})$ distributions can be represented by

$$\Omega_1 = \left\{ (p_1, p_2, p_3) : p_i > 0, \sum_{i=1}^3 p_i = 1 \right\}$$
 which has dimension 2 $(\dim \Omega_1 = 2)$

- by HWE, p is in the subset $\Omega_0 = \left\{ ((1-\theta)^2, 2\theta(1-\theta), \theta^2) : 0 < \theta < 1 \right\}$ (dim $\Omega_0 = 1$)
- Ω_0 is **nested** in Ω_1
- measure goodness-of-fit of HWE by testing $H_0: \mathbf{p} \in \Omega_0$

General Multinomial LR test

let $(X_1, \ldots, X_k) \sim Multinomial(n, \mathbf{p})$. then $\mathbf{p} \in \Omega_1$, the set of all positive probability vectors of length k.

to test if p is in a subspace

$$\Omega_0 = \{ (p_1(\theta), \dots, p_k(\theta)) : \theta \in \Theta \subset \mathbb{R}^h \}$$
 with $\dim \Omega_0 < \dim \Omega_1 = k - 1$

let L_j be the maximum likelihood value under Ω_j . To test $H_0: \mathbf{p} \in \Omega_0$, we use the **LR statistic**,

$$G = 2\log(\frac{L_1}{L_2})$$

• for Ω_1 : $\log L_1 = \sum_{i=1}^k X_i \log(\frac{X_i}{n})$

• for Ω_0 : $\log L_0 = \sum_{i=1}^k X_i \log p_i(\hat{\theta})$

$$G = 2\sum_{i=1}^{k} X_i \log \left(\frac{X_i}{np_i(\hat{\theta})}\right)$$

given data (x_1,\ldots,x_n) , let g be a realisation of G. P-value $P_{H_0}(G>g)$ is approximately $\Pr(\chi^2_{k-1-\dim\Omega_0}>g)$ for large n.

- to compute q, replace
 - X_i with observed count x_i
 - $np_i(\hat{\theta})$ with expected count, calculated using ML estimate of θ

Test of independence

for a population with attributes q and r, let p_{ij} be the population proportion of people with $q=q_i$ and $r=r_j$. for any $i,j,p_{ij}=q_i\times r_i$.

- let $(X_{ij}, 1 \le i \le I, 1 \le j \le J) \sim Multinomial(n, \mathbf{p}).$ $\mathbf{p} \in \Omega_1$, where $\dim \Omega_1 = IJ - 1 = k - 1.$
- ullet H_0 : the two categories q,r are independent
 - if q,r are independent, then \exists positive numbers $\sum_{i=1}^{I}q_i=\sum_{j=1}^{J}r_j=1$ such that $p_{ij}=q_i imes r_j$, $1\leq i\leq I, 1\leq j\leq J$
- dim $\Omega_0 = (I-1) + (J-1) = I + J 2$
- dim Ω_1 dim $\Omega_0 = (I-1)(J-1)$
- under independence (H_0) , for large n, approximately $G \sim \chi^2_{(I-1)(J-1)}$

G statistic

for any i, let $X_{i+} = \sum_{j=1}^{J} X_{ij}$. for any j, let $X_{+j} = \sum_{i=1}^{I} X_{ij}$.

- $\Omega_1 : \log L_1 = \sum_{ij} X_{ij} \log \left(\frac{X_{ij}}{n} \right)$
- Ω_0 :

$$\log L_0 = \sum_i X_{i+1} \log \left(\frac{X_{i+1}}{n} \right) + \sum_{j} X_{+j} \log \left(\frac{X_{+j}}{n} \right)$$

- $G = 2(\log L_1 \log L_0) = 2\sum_{ij} X_{ij} \log \left(\frac{X_{ij}}{X_{i+}X_{+j}/n}\right)$
- the data x_{ij} are the observed counts
- ullet the data $x_{i+}x_{+j}/n$ are the expected counts
- P-value = $\Pr\left(\chi^2_{(I-1)(J-1)} > g\right)$

General LR test

we have n iid RVs with density defined by $\theta\in\Omega_1$ of dimension k_1 ; nested in Ω_1 is a smaller model Ω_0 of dimension k_0 .

$$\begin{array}{c} H_0:\theta\in\Omega_0 & H_1:\theta\in\Omega_1\backslash\Omega_0\\ \text{to test } H_0:\theta\in\Omega_0, \text{ we use LR statistic}\\ G=2\log\left(\frac{L_1}{L_0}\right) \end{array}$$

where L_j is the maximum likelihood value over Ω_j for large n, the P-value can be approximately computed, because:

if
$$\theta \in \Omega_0$$
, as $n \to \infty$, the distribution of G converges to $\chi^2_{k_1 = k_0}$

Normal LR test

 x_1,\ldots,x_n are form iid $N(\mu,\sigma^2)$ RVs. to test $H_0:\mu=0$:

σ	Ω_1	k_1	Ω_0	k_0	
known	\mathbb{R}	1	{0}	0	
unknown	$\mathbb{R} \times \mathbb{R}_+$	2	$\{0\} \times \mathbb{R}_+$	1	

under H_0 , for large n, approximately $G \sim \chi_1^2$

- case 1: σ known
- $\Omega_1: \log L_1 = -\frac{n\hat{\sigma}^2}{2\sigma^2}$
- Ω_0 : $\log L_0 = -\frac{n\hat{\mu}^2}{2\sigma^2}$
- $G=2(\log L_1-\log L_0)=\frac{n\bar{X}^2}{\sigma^2}$ • if H_0 holds $(\mu=0)$, then $\bar{X}\sim N(0,\frac{\sigma^2}{n})$. for
 - if H_0 holds ($\mu = 0$), then $X \sim N(0, \frac{\sigma}{n})$ any $n, G \sim \chi_1^2$ exactly.
- case 2: σ unknown
 - $\Omega_1 : \log L_1 = -\frac{n}{2} \log \hat{\sigma}^2 \frac{n}{2}$ • $\Omega_0 : \log L_0 = -\frac{n}{2} \log \hat{\mu}_2 - \frac{n}{2}$
- $G = 2(\log L_1 \log L_0) = n \log(\frac{\hat{\mu}_2}{\hat{\sigma}^2})$

• if H_0 holds ($\mu=0$), for large $n,G\sim\chi_1^2$ approximately

Summary

- LR test applies when the investigator wants to know the goodness-of-fit of a model relative to a larger model, of dimensions $k_0 < k_1$.
- test statistic, $G = 2\log\left(\frac{L_1}{L_0}\right)$
 - L_0, L_1 are the maximum likelihood value under the small and large models
- if n is large, the P-value $\Pr(G > g)$ (computed provided H_0 is true) can be approximated by a $\chi^2_{k_1-k_0}$ distribution