Linear Regression: Frequentist vs. Bayesian approaches

May 6, 2025

Prof. Gwendolyn Eadie

Terminology used in statistics and for regression

- X values can be called...
 - Covariates
 - Predictors
 - Explanatory variables
 - Independent variables
 - Features (computer science/machine learning)
- Y values can be called
 - Response variable
 - Dependent variable

Regression

- Estimate functional relationships
- Many types!
 - Linear regression, generalized linear models (GLMs), lasso regression, Poisson regression, logistic regression, ...
- "standard" regression assumes X is fixed without error
- Linear regression does not imply we are fitting a line
 - E.g. "linear" regression means *linear in the parameters*

Concept of Regression

Estimating functional relationships

$$E[Y|X] = f(X,\theta) + \epsilon$$

- Note the asymmetry in most regression analysis. This is not a fit to the joint distribution of (Y,X)
- Homoscedastic errors: ϵ is an n-vector with σ^2
- Heteroscedastic errors: ϵ is an n-vector with σ_i^2 (known or unknown)
- Errors-in-Variables models assume X has error as well

Are these models linear or non-linear?

Example

Linear or Non-Linear?

•
$$Y = \beta_0 + \beta_1 X + \beta_2 e^X + \epsilon$$

•
$$Y = \left(\frac{X}{\beta_0}\right)^{-\beta_1} + \epsilon$$

•
$$Y = \beta_0 + \beta_1 \sin(X) + \beta_2 \cos(X) + \epsilon$$

•
$$Y = \beta_0 e^{-\beta_1 X} + \epsilon$$

Conditions for linear regression

- Nearly normal residuals
 - Residuals should be normally distributed about 0
 - No trends in residuals
 - No major outlier(s) or "influential points" (we'll get to this!)
- Constant variability
 - Variability above/below least squares line shouldn't change as x changes
- Independent observations
 - o e.g., typically don't apply to time series data

Frequentist: Fitting a line using Ordinary Least Squares (OLS) Regression

- Useful when the relationship between two quantities can be summarized by a straight line
- Correlation describes the *strength* of the correlation between x and y, whereas the regression line is used to describe the relationship between x and y
- The regression line is a model which follows the equation:

Frequentist: Fitting a line using Ordinary Least Squares (OLS) Regression

 A regression line can tell you something about the effect of the predictor or independent variable on the response variable

• Slope of a regression line is related to the correlation of the points:

• Intercept of a regression line is:

Relationship between correlation and slope (for simple L.R.)

Correlation r between x and y:

(always between -1 and 1)

- r tells you about the strength of the relationship
- Slope tells you change in Y per unit change in X

Frequentist: How we find the least squares line

• The least squares line minimizes the sum of squared residuals:

Linear Regression more generally

$$Y = X\beta + \epsilon$$

Dimensions of each:

It helps to visualize:

Equivalently:

More concisely:

Review of Linear Regression

Model

$$y = X\beta + \epsilon$$

- X often called the "design matrix"
- X is an $n \times p$ matrix of covariates/explanatory variables. These could be
 - Measurements
 - Fixed by design
 - Introduced to increase model flexibility
- In practice, the intercept β_0 may be encoded in X:

Least Squares estimators for β

• If the linear regression model is $Y = \beta_0 + \beta_1 X + \epsilon$, then the OLS estimator minimizes the *residual sums of squares (RSS):*

• Least squares estimator of β :

$$\hat{\beta}_{LS} = \operatorname{argmin}_{\beta} \sum_{i}^{n} (y_i - x_i^T \beta)^2$$

Maximum Likelihood Estimator (MLE) for β

function

Assuming normally-distributed, independent errors

If we assume that $y_i \sim N(x_i^T \beta, \sigma^2)$, then we can write out the likelihood

14

Likelihood function

$$y_i|X \sim N(X\beta, \sigma^2 I)$$

The likelihood function is

$$L(\beta, \sigma^2; y) = \frac{1}{\left(\sqrt{2\pi\sigma^2}\right)^n} \exp\left\{-\frac{1}{2}(y - X\beta)^T (y - X\beta)\right\}$$

The log-likelihood is then

And now we can do maximum likelihood estimation ...

Maximum likelihood estimate of β

$$\ell(\beta, \sigma^2; y) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta)$$

Take derivative w.r.t β and set equal to zero:

M.L.E. of
$$\beta$$
: $\hat{\beta}_{ML} = (X^T X)^{-1} X^T Y = \hat{\beta}_{LS}$

Slope and Intercept Estimators

• Under the assumption that ϵ are i.i.d., then the slope and intercept estimators are unbiased and asymptotically distributed as:

assuming σ is known.

• When the true variance is unknown, the distributions of the estimators are not known (because we don't know β_1 nor σ^2)

Uncertainties in the line

• Because we know that $\widehat{\beta_1} \sim N(\beta_1, \frac{\sigma^2}{s})$, then

And we can use this to construct confidence intervals for Y at each X using

do this for a range of x-values, and you will get confidence bands about the best-fit (OLS) line that are hyperbolas.

Point Estimates vs. Bayesian Inference

- The estimators for β_0 , β_1 , etc. In previous slides are *point* estimates
- A maximum likelihood estimate is also a point estimate of a parameter
- In Bayesian inference...
 - We try to infer the *distribution* for a parameter
 - We get a posterior distribution
 - o The posterior distribution encodes all the information from
 - Prior assumptions
 - Model assumptions
 - Data
 - We report the whole posterior distribution in our results
 - We can report credible intervals to express uncertainty

Linear Regression in Bayesian context

• The model for y is

• The likelihood under this model is

• We must set priors on the parameters