

Figure 47.2: The hyperplane H, perpendicular to z-b, separates the point b from $C = \text{cone}(\{a_1, a_2, a_3\})$.

Proof of the Farkas-Minkowski proposition. Let $C = \text{cone}(\{a_1, \ldots, a_m\})$ be a polyhedral cone (nonempty) and assume that $b \notin C$. By Proposition 44.2, the polyhedral cone is closed, and by Proposition 47.5 there is some $z \in C$ such that d(b, C) = ||b - z||; that is, z is a point of C closest to b. Since $b \notin C$ and $z \in C$ we have $u = z - b \neq 0$, and we claim that the linear hyperplane H orthogonal to u does the job, as illustrated in Figure 47.2.

First let us show that

$$\langle u, z \rangle = \langle z - b, z \rangle = 0.$$
 (*1)

This is trivial if z = 0, so assume $z \neq 0$. If $\langle u, z \rangle \neq 0$, then either $\langle u, z \rangle > 0$ or $\langle u, z \rangle < 0$. In either case we show that we can find some point $z' \in C$ closer to b than z is, a contradiction.

Case 1: $\langle u, z \rangle > 0$.

Let $z' = (1 - \alpha)z$ for any α such that $0 < \alpha < 1$. Then $z' \in C$ and since u = z - b,

$$z' - b = (1 - \alpha)z - (z - u) = u - \alpha z,$$

SO

$$||z' - b||^2 = ||u - \alpha z||^2 = ||u||^2 - 2\alpha \langle u, z \rangle + \alpha^2 ||z||^2.$$

If we pick $\alpha > 0$ such that $\alpha < 2\langle u, z \rangle / \|z\|^2$, then $-2\alpha \langle u, z \rangle + \alpha^2 \|z\|^2 < 0$, so $\|z' - b\|^2 < \|u\|^2 = \|z - b\|^2$, contradicting the fact that z is a point of C closest to b.

Case 2: $\langle u, z \rangle < 0$.

Let $z' = (1 + \alpha)z$ for any α such that $\alpha \ge -1$. Then $z' \in C$ and since u = z - b, we have $z' - b = (1 + \alpha)z - (z - u) = u + \alpha z$ so

$$||z' - b||^2 = ||u + \alpha z||^2 = ||u||^2 + 2\alpha \langle u, z \rangle + \alpha^2 ||z||^2$$