Lycée Jean Perrin PCSI - Colle de Chimie

2.2 Correction Planche 2

Exercice : Dosage spectrophotométrique et équilibre de complexation

Partie 1 : Étalonnage

1. Loi de Beer-Lambert

La loi de Beer-Lambert s'écrit :

$$A = \varepsilon \cdot \ell \cdot c$$

où:

- A est l'absorbance (sans unité)
- ε est le coefficient d'absorption molaire (L·mol⁻¹·cm⁻¹)
- ℓ est la longueur de la cuve (cm)
- c est la concentration (mol·L⁻¹)

2. Vérification de la loi de Beer-Lambert

En traçant $A = f([Fe^{2+}])$, on constate que les points sont alignés et passent par l'origine. La loi de Beer-Lambert est donc vérifiée.

3. Coefficient d'absorption molaire

La pente de la droite d'étalonnage vaut : $p = \varepsilon \cdot \ell$

Calcul de la pente entre deux points (par exemple (0;0,00) et (10,0;0,89)):

$$p = \frac{0.89 - 0.00}{10.0 - 0.0} = 0.089 \text{ L} \cdot \text{mmol}^{-1} \cdot \text{cm}^{-1} = 89 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$$

Avec $\ell = 1.0 \text{ cm}$:

$$\varepsilon = \frac{p}{\ell} = \frac{89}{1.0} = 89 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$$

$$\varepsilon = 89 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$$

4. Concentration de la solution inconnue

D'après la loi de Beer-Lambert :

$$[\text{Fe}^{2+}] = \frac{A}{\varepsilon \cdot \ell} = \frac{0.63}{89 \times 1.0} = 7.08 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

$$[\text{Fe}^{2+}] = 7.1 \text{ mmol} \cdot \text{L}^{-1}$$

Partie 2 : Complexation et équilibre

5. Concentrations initiales après dilution

Utilisation de la relation de dilution : $C_iV_i = C_fV_f$

Pour Fe^{2+} :

$$[\text{Fe}^{2+}]_0 = \frac{C_1 \times V_1}{V_{tot}} = \frac{0.020 \times 10.0}{100} = 2.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

Pour L:

$$[L]_0 = \frac{C_2 \times V_2}{V_{tot}} = \frac{0,030 \times 15,0}{100} = 4,5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

$$[\text{Fe}^{2+}]_0 = 2.0 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1} \quad ; \quad [L]_0 = 4.5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

6. Tableau d'avancement volumique

$\text{mol} \cdot \text{L}^{-1}$	$\mathrm{Fe^{2+}(aq)}$ +	3 L(aq) =	$[\mathrm{FeL_3}]^{2+}(\mathrm{aq})$
État initial	2.0×10^{-3}	4.5×10^{-3}	0
En cours	$2.0 \times 10^{-3} - x$	$4.5 \times 10^{-3} - 3x$	x
État final	$2.0 \times 10^{-3} - x_{eq}$	$4.5 \times 10^{-3} - 3x_{eq}$	x_{eq}

7. Expression de Q_r et K^o

Pour la réaction $Fe^{2+}(aq) + 3L(aq) = [FeL_3]^{2+}(aq)$:

$$Q_r = \frac{a_{\rm [FeL_3]^{2+}}}{a_{\rm Fe^{2+}} \times a_L^3} = \frac{[[{\rm FeL_3]^{2+}}]/C^o}{([{\rm Fe^{2+}}]/C^o) \times ([L]/C^o)^3}$$

Avec
$$C^o = 1 \text{ mol} \cdot L^{-1}$$
:
$$Q_r = \frac{[[\text{FeL}_3]^{2+}]}{[\text{Fe}^{2+}] \times [L]^3}$$

À l'équilibre : $K^o = Q_r^{eq}$

8. Avancement volumique à l'équilibre

D'après le tableau d'avancement :

$$[Fe^{2+}]_{eq} = [Fe^{2+}]_0 - x_{eq}$$

Donc:

$$x_{eq} = [\text{Fe}^{2+}]_0 - [\text{Fe}^{2+}]_{eq} = 2.0 \times 10^{-3} - 5.0 \times 10^{-4}$$

$$x_{eq} = 1.5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

9. Concentrations à l'équilibre

$$[\mathrm{Fe^{2+}}]_{eq} = 5.0 \times 10^{-4} \text{ mol} \cdot \mathrm{L^{-1}} \text{ (donn\'e)}$$
$$[L]_{eq} = 4.5 \times 10^{-3} - 3 \times 1.5 \times 10^{-3} = 0 \text{ mol} \cdot \mathrm{L^{-1}}$$
$$[[\mathrm{FeL_3}]^{2+}]_{eq} = x_{eq} = 1.5 \times 10^{-3} \text{ mol} \cdot \mathrm{L^{-1}}$$

$$[\text{Fe}^{2+}]_{eq} = 5.0 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1} \quad ; \quad [L]_{eq} = 0 \quad ; \quad [[\text{FeL}_3]^{2+}]_{eq} = 1.5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

10. Constante d'équilibre

Problème: $[L]_{eq} = 0$, ce qui rend le calcul impossible directement!

Cela signifie que le ligand L est le réactif limitant et que la réaction est quasi-totale. En réalité, il reste toujours une très faible quantité de L à l'équilibre (en dessous de la limite de détection).

Si on suppose que la réaction est totale et que L est limitant : - $x_{max} = \frac{[L]_0}{3} = \frac{4,5 \times 10^{-3}}{3} = 1,5 \times 10^{-3}$ mol·L⁻¹ - On retrouve bien $x_{eq} = x_{max}$, donc réaction totale

$$K^o \gg 10^4$$
 (réaction quantitative)

11. Favoriser la formation du complexe

Deux méthodes:

Méthode 1 : Ajouter un excès de ligand L - Augmente [L] donc diminue Q_r - Comme $Q_r < K^o$, le système évolue dans le sens direct

Méthode 2 : Retirer le complexe $[FeL_3]^{2+}$ au fur et à mesure - Diminue le numérateur de Q_r - Donc $Q_r < K^o$ et formation favorisée

Ajouter un excès de L ou retirer le complexe formé