

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

FACULDADE DE CIÊNCIAS FARMACÊUTICAS

DEPARTAMENTO DE ENGENHARIA DE BIOPROCESSOS E BIOTECNOLOGIA

CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS

MARCEL OTAVIO CERRI

MARCEL.CERRI@UNESP.BR

REAÇÃO QUÍMICA

Velocidade de reação

$$1A + 1B \rightarrow 1C + 1D$$

$$\dot{r} = f(T, Concentração)$$

$$r = k. C_A. C_B$$

$$r = \left[\frac{Quantidade\ de\ matéria}{Volume.\ tempo}\right]$$

$$C_A = \left[rac{Quantidade\ de\ matéria}{Volume}
ight]$$

Svante August Arrhenius
Prêmio Nobel de Química 1903

Temperatura (K)	k (L/mol.s)
280	0.000145
285	0.000268
289	0.000432
297	0.001780
306	0.002849
312	0.005279

$$k = A.e^{-\frac{E_a}{R.T}}$$

k – Constante de velocidade de reação

A – Fator de Frequência ou constante pré-exponencial

E_a – Energia de ativação

R – Constante dos gases

T - Temperatura

$$\ln(k) = \ln(A) - \frac{E_a}{R} \cdot \frac{1}{T}$$

numpy.polyfit(x, y, deg)

Least squares polynomial fit.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a vector of coefficients p that minimises the squared error in the order deg, deg-1, ... 0.

Linearização da Equação de Arrhenius

Coeficiente
Coeficiente

Coeficiente

Angular

$$E_{a}$$
 E_{a}
 E_{a}

$$k = A.e^{-\frac{E_a}{R.T}}$$

scipy.optimize.curve_fit(f, xdata, ydata)

Use non-linear least squares to fit a function, f, to data.

The model function, f(x, ...). It must take the independent variable as the first argument and the parameters to fit as separate remaining arguments.

the algorithm uses the Levenberg-Marquardt

REAÇÃO QUÍMICA $1A + 1B \rightarrow 1C + 1D$

Temperatura -297 Kk = 0.001078 L/mol.s

Ea = 86,6 KJ/mol

Conc A inicial = 7 mols/L

Conc B inicial = 6 mols/L

Conc C inicial = 1 mol/L

Conc D inicial = 0 mol/L

REAÇÃO QUÍMICA $1A + 1B \rightarrow 1C + 1D$

Temperatura -306 K k =0.002849 L/mol.s

Ea = 86,6 KJ/mol

Conc A inicial = 7 mols/L

Conc B inicial = 6 mols/L

Conc C inicial = 1 mol/L

Conc D inicial = 0 mol/L

REAÇÃO QUÍMICA $1A + 1B \rightarrow 1C + 1D$

 $k = A.e^{-\frac{E_a}{R.T}}$

Temperatura (K)	k (L/mol.s)
280	0.000145
285	0.000268
289	0.000432
297	0.001780
306	0.002849
312	0.005279

REAÇÃO QUÍMICA

1A + 1B -

 $k = A \cdot e^{-\frac{E_a}{R \cdot T}}$

Ea (J/mol)	k (L/mol.s)
81610	0.001078
80000	0.002069
78000	0.004651
76000	0.010456
75000	0.015676
74000	0.023503

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

FACULDADE DE CIÊNCIAS FARMACÊUTICAS

DEPARTAMENTO DE ENGENHARIA DE BIOPROCESSOS E BIOTECNOLOGIA

MATERIAL DA AULA

https://github.com/marcelcerri/Arrhenius_model

MARCEL OTAVIO CERRI

MARCEL.CERRI@UNESP.BR

