Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм конструктора класса Test	10
3.2 Алгоритм деструктора класса Test	10
3.3 Алгоритм метода input класса Test	10
3.4 Алгоритм метода sum класса Test	11
3.5 Алгоритм метода metod1 класса Test	12
3.6 Алгоритм метода metod2 класса Test	12
3.7 Алгоритм конструктора класса Test	13
3.8 Алгоритм конструктора класса Test	13
3.9 Алгоритм функции main	14
3.10 Алгоритм функции func	15
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	16
5 КОД ПРОГРАММЫ	21
5.1 Файл main.cpp	21
5.2 Файл Test.cpp	21
5.3 Файл Test.h	23
6 ТЕСТИРОВАНИЕ	24
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	25

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. По значению параметра определяется размерность целочисленного массива из закрытой области. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива

с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса Test предназначен для;
- функция fun для Функция вызывается metod2, далее выводит сумму элементов массива с новой строки.;
- Объект стандартного потока ввода с клавиатуры cin;
- Объект стандартного потока вывода на экран cout;
- Условный оператор if..else;
- Оператор цикла for.

Класс Test:

- свойства/поля:
 - о поле Размер массива:
 - наименование n;
 - тип int;
 - модификатор доступа private;
 - о поле Указатель на массив:
 - наименование mass;
 - тип int*;
 - модификатор доступа private;
- функционал:
 - о метод Test Конструктор стандартный;
 - о метод Test Конструктор параметризированный;
 - о метод Test Конструктор копии;
 - о метод ~Test Деструктор;
 - о метод input Ввод массива;
 - о метод sum Подсчет суммы элементов массива;

- о метод metod1 Суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение;
- о метод metod2 Умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение..

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Test

Функционал: Конструктор стандартный.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Test

N₂	Предикат	Действия	N₂
			перехода
1		Вывод на экран "Default constructor"	Ø

3.2 Алгоритм деструктора класса Test

Функционал: Деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса Test

N₂	Предикат	Действия	No
			перехода
1		Удаление из памяти массива по адресу mass	2
2		Вывод на экран "Destructor"	Ø

3.3 Алгоритм метода input класса Test

Функционал: Ввод массива.

Параметры: нет.

Возвращаемое значение: Ничего.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода input класса Test

N₂	Предикат	Действия	No
			перехода
1		Объявление целочисленной переменной і и	2
		инициализация 0	
2	$i \le n$	Ввод с клавиатуры значения ячейки с адресом	3
		mass[i]	
			Ø
3		Увеличение і на 1	2

3.4 Алгоритм метода sum класса Test

Функционал: Подсчет суммы элементов массива.

Параметры: нет.

Возвращаемое значение: Целочисленной значение суммы элементов массива.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода sum класса Test

N₂	Предикат	Действия	No
			перехода
1		Объявление целочисленной переменной summ и	2
		инициализация 0	
		Объявление целочисленной переменной і и	
		инициализация 0	
2	$i \le n$	Переменная summ увеличивается на значение	2
		ячейки mass[i]	
		Вернуть значение summ	Ø

3.5 Алгоритм метода metod1 класса Test

Функционал: Суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение.

Параметры: нет.

Возвращаемое значение: Целочисленное значение суммы элементов массива.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода metod1 класса Test

N₂	Предикат	Действия	No
			перехода
1		Объявление целочисленной переменной і и	2
		инициализация 0	
2	i < n	Значение ячейки с адресом mass[i] увеличивается	2
		на значение ячейки mass[i+1]	
		Увеличение і на 1	
		Вернуть результат метода sum	Ø

3.6 Алгоритм метода metod2 класса Test

Функционал: Умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение..

Параметры: нет.

Возвращаемое значение: Целочисленое значение суммы элеметов массива.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода metod2 класса Test

N₂	Предикат	Действия	No
			перехода
1		Объявление целочисленной переменной і и	2
		инициализация 0	
2	i < n	Значение ячейки с адресом mass[i] умножается на	2
		значение ячейки mass[i+1]	
		Увеличение і на 1	
		Вернуть результат метода sum	Ø

3.7 Алгоритм конструктора класса Test

Функционал: Параметризированный конструктор.

Параметры: Целочисленная переменная х для ввода размера массива.

Алгоритм конструктора представлен в таблице 7.

Таблица 7 – Алгоритм конструктора класса Test

N₂	Предикат	Действия	No
			перехода
1		Вывод на экран "Constructor set"	2
2		Закрытой переменной п присваивается значение параметра х	3
3		Указателю mass присваивается адрес массива размерностью n	Ø

3.8 Алгоритм конструктора класса Test

Функционал: Конструктор копии.

Параметры: Объект класса Test.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса Test

N₂	Предикат	Действия	No
			перехода
1		Вывод на экран "Copy constructor"	2

N₂	Предикат	Действия	No
			перехода
2		Закрытой переменной п присваивается значение	3
		переменной п исходного объекта	
3		Указателю mass присваивается значение массива с	4
		размерностью п	
		Объявление целочисленной переменной і и	
		инициализация 0	
4	i < n	Ячейке с адресом mass[i] присваивается значение	4
		ячейки с адресом mass[i] исходного объекта	
		Увеличение і на 1	
			Ø

3.9 Алгоритм функции main

Функционал: Выполнение действий, описанных в задаче.

Параметры: нет.

Возвращаемое значение: Целочисленное значение.

Алгоритм функции представлен в таблице 9.

Таблица 9 – Алгоритм функции таіп

N₀	Предикат	Действия	N₂
	_		перехода
1		Инициализация целочисленной переменной х	2
2		Ввод с клавиатуры значения х	3
3	х>2 и х%2=0	Вывод "(х)"	4
		Вывод "(х)?"	Ø
4		Объявление объекта obj класса Test с параметром	5
		X	
5		Вызов метода input объекта obj класса Test	6
6		Вызов функции func с параметром obj	7
7		Вызов метода metod1 объекта obj класса Test	8

N₂	Предикат	Действия	No
			перехода
8		Вывод результата на экран	Ø

3.10 Алгоритм функции func

Функционал: Работа с копией объекта класса Test.

Параметры: Объект ob_local класса Test для создания копии.

Возвращаемое значение: Ничего.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции func

No	Предикат	Действия	No
			перехода
1		Вызов metod2 объекта ob_local класса Test	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-5.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "Test.h"
using namespace std;
void func(Test ob_local)
   cout << ob_local.metod2() << endl;</pre>
int main()
   int x;
   cin >> x;
   if (x > 2 \&\& x \% 2 == 0) {
      cout << x << endl;</pre>
      Test obj(x);
      obj.input();
      func(obj);
      cout << obj.metod1() << endl;</pre>
   }
   else {
      cout << x << "?";
      exit(0);
   }
}
```

5.2 Файл Test.cpp

```
#include "Test.h"
```

```
using namespace std;
Test::Test()
  cout << "Default constructor" << endl;</pre>
Test::Test(int x)
  cout << "Constructor set" << endl;</pre>
  n = x;
  mass = new int[n];
}
Test::Test(const Test & ob)
  cout << "Copy constructor" << endl;</pre>
  n = ob.n;
  mass = new int[n];
  for(int i = 0; i < n; i++) {
     mass[i] = ob.mass[i];
  }
}
void Test::input()
  for(int i = 0; i < n; i++) {
     cin >> mass[i];
}
int Test::sum()
{
  int summ = 0;
  for (int i = 0; i < n; i++) {
     summ += mass[i];
  return(summ);
}
int Test::metod1()
  for (int i = 0; i < n; i += 2) {
     mass[i] += mass[i + 1];
  return sum();
}
int Test::metod2()
  for (int i = 0; i < n; i += 2) {
     mass[i] *= mass[i + 1];
  return sum();
```

```
Test::~Test()
{
    delete[] mass;
    cout << "Destructor" << endl;
}</pre>
```

5.3 Файл Test.h

Листинг 3 – Test.h

```
#ifndef __TEST__H
#define __TEST__H
#include <iostream>
using namespace std;
class Test
{
private:
int n;
int* mass;
public:
Test();
Test(int x);
Test(const Test & ob);
void input();
int sum();
int metod1();
int metod2();
~Test();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
8 1 2 3 4 5 6 7 8	8 Constructor set Copy constructor 120 Destructor 56 Destructor	8 Constructor set Copy constructor 120 Destructor 56 Destructor
5 5 6 7 8 9	5?	5?
2 1 2	2?	2?
6 4 5 6 7 8 9	6 Constructor set Copy constructor 155 Destructor 60 Destructor	6 Constructor set Copy constructor 155 Destructor 60 Destructor
8 8 8 8 8 8 8 8	8 Constructor set Copy constructor 288 Destructor 96 Destructor	8 Constructor set Copy constructor 288 Destructor 96 Destructor

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).