Sentiment Analysis and ABSA

Sirapob Lurojruang - 2215107

Contents

1	Overview of dataset		
	1.1	Text cleaning	2
	1.2	Tokenize, Removing stop words and Lemmatization	2
	1.3	Exploring word token	3
2	Topic modelling		
	2.1	Calculate TFIDF	4
	2.2	Create DTM	5
	2.3	LDA and Topics	6
3	Sentiment Analysis		
	3.1	Lexicon	14
	3.2	Assign sentiment value to token	14
	3.3	Check sentiment on each aspect	15
4	Preditive model		
	4.1	Define predictive model	17
	4.2	Predicting	17
	4.3	Save result	23
5	Arc	hive (Do not use)	23
li li li li li li li li	brary brary brary brary brary brary brary brary brary	y(tokenizers) y(tidyverse) y(tidytext) y(topicmodels) y(textstem) y(tm) y(dplyr) y(qdapRegex) y(ggplot2) y(ggrepel) y(word2vec) y(sentimentr)	

```
library(lexicon)
library(SnowballC)
library(wordcloud)
library(RColorBrewer)
```

1 Overview of dataset

```
review <- read.csv(file = "Restaurant_Reviews.csv")
str(review)

## 'data.frame': 1000 obs. of 2 variables:
## $ Review: chr "Wow... Loved this place." "Crust is not good." "Not tasty and the texture was just:
## $ Liked : int 1 0 0 1 1 0 0 0 1 1 ...</pre>
```

1.1 Text cleaning

Remove entry with no comment

```
review <- review%>%
filter(Review != "")
```

Formatting

```
# Replace all html tags and non-alphanumeric characters
review$text1 <- str_remove_all(review$Review, "<.*?>") %>%
    str_replace_all("[^[:alnum:][:punct:]]", " ") %>%
    str_replace_all("\\s{2,}", " ")

# Remove all special characters, excluding apostrophe, using regex
review$text1 <- review$text1 %>%
    gsub("[^'[:alpha:][:space:]]", " ",.)

# remove extra spaces
review$text1 <- str_squish(review$text1)

# lowercase
review$text1 <- tolower(review$text1)</pre>
```

Create Index

```
# create review_id represent the unique identifier of each review
review <- review%>%
mutate(review_id = row_number())
```

1.2 Tokenize, Removing stop words and Lemmatization

```
# Define a regular expression pattern to match hyphenated words
hyphen_pattern <- "[[:alnum:]]+(?:[-'][[:alnum:]]+)*"
# Define a custom tokenization function using the hyphen_pattern
custom_tokenize <- function(x) {</pre>
  str_extract_all(x, hyphen_pattern)
}
# Decide to use stop words that only in 2 out of 3 lexicons
stop_words_use <- stop_words%>%
  group_by(word)%>%
  summarise(count = n())%>%
  filter(count > 2)
# Remove stop words, lemmetized and save data in token level
token <- review%>%
  unnest_tokens(text1,output=word_token,token=custom_tokenize)%>%
  anti_join(stop_words_use,by=c("word_token"="word"))%>%
  mutate(word_lemma = lemmatize_words(word_token)) %>%
  unnest(word_lemma)
```

1.3 Exploring word token

Visualise what is the top 30 words

```
token%>%
  group_by(word_lemma) %>%
  count() %>%
  arrange(desc(n))%>%
  head(30) %>%
  ggplot(.,aes(y=reorder(word_lemma,n),x=n))+geom_bar(stat='identity')+labs(x = "Count", y = "Words", t
```

Original Top 30 words

2 Topic modelling

2.1 Calculate TFIDF

Calculate count and TFIDF for each term

```
y_counts <- token %>%
  count(review_id, word_lemma, sort = TRUE) %>%
  ungroup() %>%
  rename(count=n) %>%
  arrange(desc(count))

y_tfidf <- y_counts %>%
bind_tf_idf(review_id, word_lemma, count)

head(y_tfidf)
```

```
## # A tibble: 6 x 6
     review_id word_lemma count
                                          idf tf_idf
##
         <int> <chr>
                          <int>
                                 <dbl> <dbl>
                                               <dbl>
## 1
           124 steak
                              4 0.222
                                         4.99
                                               1.11
## 2
                              3 0.273
                                         4.90
                                              1.34
           237 sauce
## 3
           237 say
                              3 0.115
                                         4.90 0.565
```

```
## 4 453 food 3 0.0236 4.90 0.116
## 5 538 great 3 0.0423 5.59 0.236
## 6 573 wait 3 0.103 7.39 0.764
```

Explore what is top words for each review

```
# Group the y_tfidf dataframe by review_id
y_tfidf_grouped <- y_tfidf %>%
 group_by(review_id) %>%
 # Arrange the rows within each group by decreasing tf_idf values
 arrange(desc(tf idf)) %>%
 # Select the top 5 rows within each group
 slice_head(n = 5) \%
 # Unnest the word_token column
 unnest(word_lemma) %>%
 # Create a row number variable within each group
 group_by(review_id) %>%
 mutate(row_num = row_number()) %>%
 # Spread the top 5 words into separate columns, with row_num as the ID variable
 pivot_wider(id_cols = review_id, names_from = row_num, values_from = word_lemma, names_prefix = "word
# Select only the review id and word columns
top_5_words <- y_tfidf_grouped %>%
 select(review_id, starts_with("word_"))
# Rename the columns to remove the "word_" prefix
colnames(top_5_words) <- paste0("top_", 0:5)</pre>
colnames(top_5_words)[1] <- "review_id"</pre>
# Print the resulting dataframe
head(top_5_words)
## # A tibble: 6 x 6
## # Groups: review_id [6]
   review_id top_1 top_2 top_3 top_4 top_5
##
        <int> <chr>
##
                       <chr> <chr> <chr> <chr> <chr>
## 1
                                place <NA> <NA>
           1 wow
                      love
                      good
## 2
           2 crust
                               <NA> <NA> <NA>
                       texture tasty just <NA>
## 3
           3 nasty
## 4
            4 bank
                        holiday rick steve recommendation
## 5
           5 selection menu
                                price so
                                            great
                                     pho now
## 6
            6 angry
                      damn
                                be
```

2.2 Create DTM

Create count DTM

```
# Create DTM
dtm_count <- y_tfidf %>%
  cast_dtm(review_id,word_lemma,count)
dtm_count
```

```
## <<DocumentTermMatrix (documents: 1000, terms: 1612)>>
```

```
## Non-/sparse entries: 5649/1606351
## Sparsity
                     : 100%
## Maximal term length: 17
## Weighting
                     : term frequency (tf)
# Store DTM with sparse term removed separately (For further use)
dtm_count_sp <- removeSparseTerms(dtm_count,0.99)</pre>
dtm_count_sp
## <<DocumentTermMatrix (documents: 1000, terms: 95)>>
## Non-/sparse entries: 2452/92548
## Sparsity
## Maximal term length: 10
## Weighting
                     : term frequency (tf)
as.matrix((dtm_count[1:5,1:5]))
##
       Terms
## Docs steak sauce say food great
##
     124
            4
                  0 1
                           0
##
     237
            0
                  3 3
                           0
                 0 0 3
     453
                                 0
##
            0
                  0 0
##
     538
                                 3
            1
##
            0
                                 0
     573
```

2.3 LDA and Topics

2.3.1 Set-up LDA model

```
# Use LDA to calcualte Beta
set.seed(12345)
my_topic_model <- LDA(dtm_count,k = 4,method = "Gibbs")
topics <- tidy(my_topic_model, matrix = "beta")</pre>
```

2.3.2 Calculate perplexity

}

fitted <- LDA(dtm_count, k = i, method = "Gibbs")</pre>

perplexity_df[i,1] <- perplexity(my_topic_model,dtm_count)</pre>

```
perplexity(my_topic_model, newdata = dtm_count)

## [1] 642.3591

Finding the minimum perplexity value from 2 to 5 topics

set.seed(12345)
k_topics <- c(2:5)
perplexity_df <- data.frame(perp_value=numeric())
for (i in k_topics){</pre>
```

Plot the results « 4 is the best

```
g <- ggplot(data=perplexity_df, aes(x= as.numeric(row.names(perplexity_df)))) + labs(y="Perplexity",x="]
g <- g + geom_line(aes(y=perp_value), colour="green")
g</pre>
```

Warning: Removed 1 row containing missing values ('geom_line()').

Perplexity

2.3.3 Inspect Topics and Probabilities

Inspect the topics and their probabilities for each document using the posterior function from the topic models package.

```
topics_prob <- posterior(my_topic_model)$topics
terms <- terms(my_topic_model, 5)
terms_all <- terms(my_topic_model)
colnames(topics_prob) <- apply(terms, 2, paste, collapse = ",")
head(topics_prob)</pre>
```

```
## good,really,so,love,bad place,back,come,service,great go,get,time,will,eat
## 124 0.3307692 0.2384615 0.2230769
## 237 0.2279412 0.1985294 0.2720588
## 453 0.2692308 0.2384615 0.2230769
```

```
0.2500000
## 538
                                                      0.2672414
                                                                            0.2327586
## 573
                      0.2358491
                                                      0.2547170
                                                                            0.2735849
## 624
                      0.2500000
                                                      0.2045455
                                                                            0.2348485
##
       food,like,place,service,great
## 124
                            0.2076923
## 237
                            0.3014706
## 453
                            0.2692308
## 538
                            0.2500000
## 573
                            0.2358491
## 624
                            0.3106061
```

Plot chart based on beta of term on each topics

```
top_terms <- topics %>%
  group_by(topic) %>%
  slice_max(beta, n = 15) %>%
  ungroup() %>%
  arrange(topic, desc(beta))

top_terms %>%
  mutate(term = reorder_within(term, beta, topic)) %>%
  ggplot(aes(beta, term, fill = factor(topic))) +
   geom_col(show.legend = FALSE) +
   facet_wrap(~ topic, scales = "free") +
   scale_y_reordered()
```


2.3.4 Assign each term to a topic

```
#Assign each term to each topics
assignments <- augment(my_topic_model, data = dtm_count)</pre>
# Store mapping between term and topics
map_top_terms <- assignments%>%
 group_by(term)%>%
  summarise(topic = max(.topic), freq = sum(count))
# Check top terms based on freq
assignments%>%
  group_by(term)%>%
  summarise(topic = max(.topic), freq = sum(count))%>%
 group_by(topic)%>%
 slice_max(freq, n = 5)%>%
  arrange(topic,desc(freq))
## # A tibble: 21 x 3
## # Groups: topic [4]
##
     term topic freq
     <chr> <dbl> <dbl>
##
## 1 good
                1 156
## 2 so
                 1
                      66
## 3 bad
                1
                      36
                1 36
## 4 really
## 5 love
                1 31
## 6 place
                 2 112
## 7 back
                 2 61
## 8 come
                 2 41
## 9 friendly
                2 27
## 10 don't
## # i 11 more rows
# Check distribution of the topics
map_top_terms%>%
 group_by(topic)%>%
 summarise(total = sum(freq))%>%
 ggplot()+
   geom_col(mapping = aes(x = topic, y = total))
```


Get the top terms for each topics

2.3.5 Name the Topics

Extract top terms of each topics to help the naming

```
k = max(top_terms$topic)
for (n in 1:k){
topic_name <- paste0("t",n)
result <- assign(topic_name,top_terms%>%
   filter(topic == n)%>%
   select(term))

my_string <- paste0(result$term,collapse = ",")
print(my_string)
}</pre>
```

- ## [1] "good, really, so, love, bad, one, ever, make, price, definitely, star, steak, flavor, restaurant, always"
- $\verb| ## [1] "place, back, come, service, great, friendly, don't, never, so, think, amaze, time, pretty, chicken, i've, feel and the service of the service o$
- ## [1] "go,get,time,will,eat,order,disappoint,experience,i'm,won't,salad,first,try,taste,staff"
- ## [1] "food, like, place, service, great, nice, just, say, wait, pizza, server, much, minute, also, way"

According to Chat GPT Topic 1: Overall Dining Experience Topic 2: Atmosphere and Service Topic 3: Dining Out Experience Topic 4: Food and Service Quality

Create word clouds to help name the topics based on frequency

Final naming of aspect

```
# Name each aspect based on GPT and Word clouds
map_top_terms <- map_top_terms%>%
  mutate(aspect = case_when(
    topic == 1 ~ "Value-to-money",
    topic == 2 ~ "Atmosphere",
    topic == 3 ~ "Experience",
    topic == 4 ~ "Food and Service"
))
```

Final topics selection 1. Value-to-money 2. Atmosphere 3. Experience 4. Food and Service

3 Sentiment Analysis

3.1 Lexicon

Download bing lexicon

3.2 Assign sentiment value to token

```
# Attached Sentiment to tokens
token sen <- token%>%
  left_join( bing_dictionary_v, by = c("word_lemma" = "word"))
# Attached Sentiment and topics to tokens
token_top_sen <- token%>%
  left_join(map_top_terms, by = c("word_lemma" = "term"))%>%
  left join(bing dictionary v, by = c("word lemma" = "word"))
# Sentiment Analysis as input
df_sen <- token_sen%>%
 group_by(review_id,Liked)%>%
  summarise(sentiment = round(mean(sentiment, na.rm=TRUE),3))%>%
 dplyr::mutate(sentiment = replace_na(sentiment,0))
## 'summarise()' has grouped output by 'review_id'. You can override using the
## '.groups' argument.
# ABSA as input
df_top_sen <- token_top_sen%>%
  group_by(review_id,aspect,Liked)%>%
  summarise(sentiment = round(sum(sentiment, na.rm=TRUE),3))%>%
  dplyr::mutate(sentiment = replace_na(sentiment,0))%>%
 pivot_wider(names_from = aspect, values_from = sentiment)
## 'summarise()' has grouped output by 'review_id', 'aspect'. You can override
## using the '.groups' argument.
0 -> df_top_sen[is.na(df_top_sen)] # Impute NA with 0
```

3.3 Check sentiment on each aspect

```
gridExtra::grid.arrange(
token_top_sen%>%
  mutate(sentiment_group = case_when(sentiment == 1 ~ "Positive",
                                     sentiment == -1 ~ "Negative",
                                     sentiment == 0 ~ "Negative",
                                     is.na(sentiment) ~ "Neutral"))%>%
  group by (aspect, sentiment group) %>%
  summarise(count = n_distinct(word_lemma))%>%
  ggplot(aes(x = aspect,y = count, fill = sentiment_group))+
   geom_col(stat = "identity")+
   labs(title = "All terms")+
   theme(legend.position = "bottom"),
token_top_sen%>%
  mutate(sentiment_group = case_when(sentiment == 1 ~ "Positive",
                                     sentiment == -1 ~ "Negative",
                                     sentiment == 0 ~ "Negative",
                                     is.na(sentiment) ~ "Neutral"))%>%
```

```
group_by(aspect,sentiment_group)%>%
summarise(count = n_distinct(word_lemma))%>%
filter(sentiment_group != "Neutral")%>%
ggplot(aes(x = aspect,y = count, fill = sentiment_group))+
    geom_col(stat = "identity",position = position_dodge())+
    labs(title = "Postive and Negative terms")+
    theme(legend.position = "bottom")
, ncol =2)
```

```
## 'summarise()' has grouped output by 'aspect'. You can override using the
## '.groups' argument.

## Warning in geom_col(stat = "identity"): Ignoring unknown parameters: 'stat'

## 'summarise()' has grouped output by 'aspect'. You can override using the
## '.groups' argument.

## Warning in geom_col(stat = "identity", position = position_dodge()): Ignoring
## unknown parameters: 'stat'
```


- Above chart shows that "Neutral" words dominates all 4 aspects.
- Overall, there are many terms expressing negative sentiment for atmosphere and value where people are more postive towards experience. People having mixed sentiment towards Food & Service

4 Preditive model

4.1 Define predictive model

```
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
# SVM radial model
svm_rad_model <- function (data_train)</pre>
 set.seed(12345)
  ctrl <- trainControl(method="repeatedcv", # 10fold cross validation
                                        # do 5 repetitions of cv
                     repeats=5,
                     summaryFunction=twoClassSummary, # Use AUC to pick the best model
                     classProbs=TRUE,
                     savePredictions = T)
  return(caret::train(Liked~.,
                   data = data_train,
                   method = "svmRadial", tuneLength = 5, # 5 values of the cost function
                   preProc = c("center", "scale"), # Center and scale data
                   metric="ROC",
                  trControl=ctrl))
 }
```

4.2 Predicting

Testing out different models

```
# Turn input into Matrix
data_sen <- as.data.frame(as.matrix(df_sen))%>%ungroup()%>%select(-review_id)
data_top_sen <- as.data.frame(as.matrix(df_top_sen))%>%ungroup()%>%select(-review_id)

# Split the dataset into training and testing sets
set.seed(12345)
idx <- sample(1:nrow(data_sen), size = 0.8 * nrow(data_sen), replace = FALSE)

data_sen$Liked <- as.factor(ifelse(data_sen$Liked == "1","Like","Not_like"))
data_sen_train<-data_sen[idx,]
data_sen_test<-data_sen[-idx,]

data_top_sen$Liked <- as.factor(ifelse(data_top_sen$Liked == "1","Like","Not_like"))
data_top_sen_train<-data_top_sen[idx,]</pre>
```

```
data_top_sen_test<-data_top_sen[-idx,]</pre>
# Build models for each input
Base_SVM <- svm_rad_model(data_sen_train)</pre>
ABSA_SVM <- svm_rad_model(data_top_sen_train)
# Store confusion matrix
Base_SVM_con <- confusionMatrix(predict(Base_SVM, data_sen_test),data_sen_test$Liked,
                                mode = "everything",
                                 positive = "Like")
ABSA_SVM_con <- confusionMatrix(predict(ABSA_SVM, data_top_sen_test),data_top_sen_test$Liked,
                                mode = "everything",
                                 positive = "Like")
# Check result
Base_SVM_con
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Like Not_like
##
    Like
                72
##
     Not_like
                25
                         79
##
                  Accuracy: 0.755
##
##
                    95% CI: (0.6894, 0.8129)
       No Information Rate: 0.515
##
##
       P-Value [Acc > NIR] : 2.755e-12
##
##
                     Kappa: 0.5094
##
   Mcnemar's Test P-Value : 1
##
##
##
               Sensitivity: 0.7423
##
               Specificity: 0.7670
            Pos Pred Value: 0.7500
##
            Neg Pred Value: 0.7596
##
##
                 Precision: 0.7500
##
                    Recall: 0.7423
##
                        F1: 0.7461
##
                Prevalence: 0.4850
            Detection Rate: 0.3600
##
      Detection Prevalence: 0.4800
##
##
         Balanced Accuracy: 0.7546
##
##
          'Positive' Class : Like
##
ABSA_SVM_con
## Confusion Matrix and Statistics
##
##
             Reference
```

```
## Prediction Like Not_like
##
    Like
                75
                         77
     Not like
                22
##
##
##
                  Accuracy: 0.76
##
                    95% CI: (0.6947, 0.8174)
##
       No Information Rate: 0.515
       P-Value [Acc > NIR] : 9.305e-13
##
##
##
                     Kappa: 0.5201
##
##
    Mcnemar's Test P-Value : 0.665
##
##
               Sensitivity: 0.7732
##
               Specificity: 0.7476
##
            Pos Pred Value: 0.7426
##
            Neg Pred Value: 0.7778
##
                 Precision: 0.7426
                    Recall : 0.7732
##
                        F1: 0.7576
##
##
                Prevalence: 0.4850
##
            Detection Rate: 0.3750
##
      Detection Prevalence : 0.5050
##
         Balanced Accuracy: 0.7604
##
##
          'Positive' Class : Like
##
Plotting charts
library(MLeval)
res <- evalm(list(Base_SVM,ABSA_SVM),gnames= c('Base(SVM)','ABSA(SVM)'))
## ***MLeval: Machine Learning Model Evaluation***
## Input: caret train function object
## Averaging probs.
## Group 1 type: repeatedcv
## Group 2 type: repeatedcv
## Observations: 1600
## Number of groups: 2
## Observations per group: 800
## Positive: Not_like
```

Negative: Like

Group: Base(SVM)

Positive: 397

Negative: 403

Group: ABSA(SVM)

Positive: 397

Negative: 403

Performance Metrics

- ## Base(SVM) Optimal Informedness = 0.595202230125444
- ## ABSA(SVM) Optimal Informedness = 0.587795563500447
- ## Base(SVM) AUC-ROC = 0.75
- ## ABSA(SVM) AUC-ROC = 0.77

4.3 Save result

```
result_top_sen <- data_top_sen_test%>%
  mutate(pred = predict(ABSA_SVM, data_top_sen_test),review_id = df_top_sen[-idx,]$review_id)%>%
  left_join(review,by = 'review_id')
```

5 Archive (Do not use)

```
# X_sen <- as.data.frame(as.matrix(df_sen%>%ungroup()%>%select(sentiment,0)))
# predictors <- names(X_sen)[!(names(X_sen) %in% "Liked")]
#
# Y_sen <- as.data.frame(as.matrix(df_sen%>%ungroup()%>%select(Liked)))
# Y_sen$Liked <- as.factor(ifelse(Y_sen$Liked == "1", "Like", "Not_like"))
# SVMmodel(X_sen,Y_sen)
#
# X_top_sen <- as.data.frame(as.matrix(df_top_sen%>%ungroup()%>%select(-review_id,-Liked)))
# Y_top_sen <- as.data.frame(as.matrix(df_top_sen%>%ungroup()%>%select(Liked)))
# Y_top_sen$Liked <- as.factor(ifelse(Y_top_sen$Liked == "1", "Like", "Not_like"))
# SVMmodel(X_top_sen,Y_top_sen)</pre>
```

```
data <- as.data.frame(as.matrix(df_sen))%>%ungroup%>%select(-review_id)
data$Liked <- as.factor(ifelse(data$Liked == "1","Like","Not_like"))</pre>
# Split the dataset into training and testing sets
set.seed(8882)
idx <- sample(1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)</pre>
data_train<-data[idx,]</pre>
data_test<-data[-idx,]</pre>
ctrl <- trainControl(method="repeatedcv", # 10fold cross validation
                     repeats=5,
                                        # do 5 repetitions of cv
                     summaryFunction=twoClassSummary, # Use AUC to pick the best model
                     classProbs=TRUE,
                     savePredictions = T)
# run SVM
svm_Base <- train(Liked~.,</pre>
                   data = data,
                   method = "svmRadial", tuneLength = 5, # 5 values of the cost function
                   preProc = c("center", "scale"), # Center and scale data
                   metric="ROC",
                  trControl=ctrl)
# make predictions on the test set
pred <- predict(svm_Base, data_test)</pre>
# evaluate performance
confusionMatrix(pred, data_test$Liked)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Like Not_like
##
    Like
              120
                         33
     Not like
                        106
##
               41
##
                  Accuracy: 0.7533
##
##
                    95% CI : (0.7005, 0.8011)
       No Information Rate: 0.5367
##
##
       P-Value [Acc > NIR] : 8.027e-15
##
##
                     Kappa: 0.5059
##
   Mcnemar's Test P-Value: 0.4158
##
##
##
               Sensitivity: 0.7453
##
               Specificity: 0.7626
            Pos Pred Value: 0.7843
##
##
            Neg Pred Value: 0.7211
                Prevalence: 0.5367
##
##
            Detection Rate: 0.4000
##
      Detection Prevalence: 0.5100
##
         Balanced Accuracy: 0.7540
##
##
          'Positive' Class : Like
```

```
##
```

```
data <- as.data.frame(as.matrix(df_top_sen))%>%ungroup%>%select(-review_id)
data$Liked <- as.factor(ifelse(data$Liked == "1","Like","Not_like"))</pre>
# Split the dataset into training and testing sets
set.seed(8882)
idx <- sample(1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)
data_train<-data[idx,]</pre>
data_test<-data[-idx,]</pre>
ctrl <- trainControl(method="repeatedcv", # 10fold cross validation</pre>
                     repeats=5,
                                         # do 5 repetitions of cv
                     summaryFunction=twoClassSummary, # Use AUC to pick the best model
                     classProbs=TRUE,
                     savePredictions = T)
# run SVM
svm_ABSA <- train(Liked~.,</pre>
                   method = "svmRadial",tuneLength = 5, # 5 values of the cost function
                   preProc = c("center", "scale"), # Center and scale data
                   metric="ROC",
                  trControl=ctrl)
# make predictions on the test set
pred <- predict(svm_ABSA, data_test)</pre>
# evaluate performance
confusionMatrix(pred, data_test$Liked)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Like Not_like
    Like
               121
                        108
##
     Not_like
               40
##
##
                  Accuracy : 0.7633
                    95% CI : (0.7111, 0.8103)
##
##
       No Information Rate: 0.5367
       P-Value [Acc > NIR] : 3.969e-16
##
##
##
                     Kappa: 0.5262
##
   Mcnemar's Test P-Value: 0.3424
##
##
##
               Sensitivity: 0.7516
##
               Specificity: 0.7770
##
            Pos Pred Value: 0.7961
##
            Neg Pred Value: 0.7297
##
                Prevalence: 0.5367
##
            Detection Rate: 0.4033
##
      Detection Prevalence : 0.5067
##
         Balanced Accuracy: 0.7643
##
```

'Positive' Class : Like

##