Intégration et théorie

de la mesure Structure des mesures

Question 1/9

Mesure complexe

Réponse 1/9

$$\nu: \mathcal{A} \to \mathbb{C} \text{ v\'erifiant}$$

$$\nu(\varnothing) = 0$$
Pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ v\'erifiant
$$i \neq j \Rightarrow A_i \cap A_j = \varnothing, \ \nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$$
et cette s\'erie converge absolument

Question 2/9

Mesure positive associée à une mesure ν

Réponse 2/9

$$|\nu| \text{ définie par}$$

$$|\nu|(A) = \sup \left\{ \sum_{n=0}^{+\infty} |\nu(A_n)|, A = \bigsqcup_{n=0}^{+\infty} A_n \right\}$$
C'est la plus petite mesure positive μ qui vérifie $|\nu(A)| \leq \mu(A)$

Question 3/9

 ν est absolument continue par rapport à la mesure positive μ $\nu \ll \mu$

Réponse 3/9

$$\forall A \in \mathcal{A}, \ \mu(A) = 0 \Rightarrow \nu(A) = 0$$

Ou de manière équivalente, $\forall A \in \mathcal{A},$
 $\mu(A) = 0 \Rightarrow |\nu|(A) = 0$

Question 4/9

Mesure signée

Réponse 4/9

$$\nu: \mathcal{A} \to \mathbb{R} \text{ v\'erifiant}$$

$$\nu(\varnothing) = 0$$
Pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ v\'erifiant
$$i \neq j \Rightarrow A_i \cap A_j = \varnothing, \ \nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$$
et cette s\'erie converge absolument

Question 5/9

$$\nu = f\mu \text{ avec } f \in L^1$$

Réponse 5/9

$$\forall A \in \mathcal{A}, \ \nu(A) = \int_{A} f \, \mathrm{d}\mu$$

Question 6/9

Théorème de Radon-Nikodym

Réponse 6/9

Si (X, \mathcal{A}) est un espace mesurable, μ et ν deux mesures positives σ -finies, alors $\nu \ll \mu$ si et seulement s'il existe $f:(X, \mathcal{A}) \to \mathbb{R}_+$ mesurable telle que $\nu = f\mu$ Une telle fonction f est unique μ -pp

Question 7/9

Théorème de décomposition de Lebesgue

Réponse 7/9

Si (X, \mathcal{A}) est un espace mesuré, μ une mesure positive σ -finie et ν une mesure (positive, signée ou complexe) σ -finie alors il existe un unique couple (ν_a, ν_s) de mesures (positives, signées ou complexes) telles que $\nu = \nu_a + \nu_s$, $\nu_a \ll \mu \text{ et } \nu_s \perp \mu$

Question 8/9

Deux mesures positives μ et $\widetilde{\mu}$ sont étrangères $\mu \perp \widetilde{\mu}$

Réponse 8/9

$$\exists A \in \mathcal{A}, \, \mu(A) = 0 \wedge \widetilde{\mu}(A^{\complement}) = 0$$

Question 9/9

Mesure vectorielle

Réponse 9/9

$$\nu: \mathcal{A} \to \mathbb{R}^d \text{ v\'erifiant}$$

$$\nu(\varnothing) = 0$$
Pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ v\'erifiant
$$i \neq j \Rightarrow A_i \cap A_j = \varnothing, \ \nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$$
et cette s\'erie converge normalement