(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Batch: H2_1

Roll No.: 16010122151

Experiment No. 1

Title: Exploring R for Data Science

Aim: To understand basics of R - Operators, built-in functions, Data types, Data manipulation in R, R packages for Data Science

Expected Outcome of Experiment:

CO: Students should write

Books/ Journals/ Websites referred:

- 1. https://cran.r-project.org/
- 2. Students should write
- 3. Students should write

What is R?

- R is a scripting/programming language and environment for statistical computing, data science and graphics.
- R is a successor of the proprietary statistical computing programming language S.
- It is an important tool for computational statistics, visualization and data science.

Why R?

It provides techniques for various statistical analyses like classical tests and classification, time-series analysis, clustering, linear and non-linear modelling and graphical operations.

It has superior support for graphics.

Reasons for learning R:

- Free, Open source
- Great visualization
- Cross-platform compatibility
- Advanced statistics
- Integration with other programming languages
- Supportive open source community
- Easy extensibility via packages

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

1. Exploring the atomic datatypes supported by R-Logical, Numeric-integer, Character, Double, Complex, Raw

```
> age<-19
> class(age)
[1] "numeric"
> x<-9i+3
> class(x)
[1] "complex"
> y<-TRUE
> class(y)
[1] "logical"
> z=42L
> class(z)
[1] "integer"
> v <- charToRaw("yello")
> class(v)
[1] "raw"
```

2. Exploring data manipulation of different data objects of R- Vectors- Matrices, Factors, List, Array, Data Frames

Vectors:

```
> fruits<-c('apple', 'kiwi', 'grapes', 'watermelon')
> class(fruits)
[1] "character"
> rg<-5:13
> print(rg)
[1] 5 6 7 8 9 10 11 12 13
> class(rg)
[1] "integer"
> v <- 3.8:11.4
> print(v)
[1] 3.8 4.8 5.8 6.8 7.8 8.8 9.8 10.8
> print(seq(5,20, by=3))
[1] 5 8 11 14 17 20
```

Lists:

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

```
> thislist <- list("apple", "banana", "cherry")
> class(thislist)
[1] "list"
> thislist[2]
[[1]]
[1] "banana"
> length(thislist)
[1] 3
> rm(thislist)
> |
```

Array & Multiarray(Matrices):

```
> thisarray <- c(1:14)</p>
> print(thisarray)
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
> multiarray <- array(thisarray, dim = c(4, 3, 2))</pre>
> print(multiarray)
, , 1
    [,1] [,2] [,3]
    1 5 9
[1,]
      2
[2,]
           6 10
      3
          7 11
[3,]
[4,]
     4 8 12
, , 2
    [,1] [,2] [,3]
[1,]
     13
         3 7
[2,]
      14
          4
                8
[3,] 1 5 9
[4,] 2 6 10
```

Data Frames:

Factors:

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

```
> x <-c("female", "male", "male", "female", "NA")
> print(x)
[1] "female" "male" "female" "NA"
> gender <-factor(x)
> print(gender)
[1] female male male female NA
Levels: female male NA
> |
```

3. Exploring Operators and built-in functions and writing user-defined functions in R

Relational Operators:

```
> x<-c(2,4,6,8,10)
> y<-c(8,4,3,6,11)
> print(x>y)
[1] FALSE FALSE TRUE TRUE FALSE
> print(x<y)
[1] TRUE FALSE FALSE FALSE TRUE
> print(y<=x)
[1] FALSE TRUE TRUE TRUE FALSE
> print(y>=x)
[1] TRUE TRUE FALSE FALSE TRUE
> print(x==y)
[1] FALSE TRUE FALSE FALSE FALSE
> print(x!=y)
[1] TRUE FALSE TRUE TRUE TRUE
> |
```

Logical Operators:

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

```
> #LOGICAL OPERATORS
> a <- c(4,1,TRUE,2+3i)
> b <- c(4,2,FALSE,2+3i)
> print(a&b)
[1] TRUE TRUE FALSE TRUE
> x <- c(3,0,TRUE,2+2i)
> y <- c(4,0,FALSE,2+3i)
> print(x|y)
[1] TRUE FALSE TRUE TRUE
> k <- c(3,0,TRUE,2+2i)
> print(!k)
[1] FALSE TRUE FALSE FALSE
> V <- TRUE
> t <- TRUE
> result <- v && t
> print(result)
[1] TRUE
> m <- TRUE
> n <- FALSE
> result <- m || n
> print(result)
[1] TRUE
> |
```

Assignment Operators:

```
> v1 <- c(3,1,TRUE,2+3i)
> "r_Exxperiment" -> v2
> v3 = "kshitij"
> print(v1)
[1] 3+0i 1+0i 1+0i 2+3i
> print(v2)
[1] "r_Exxperiment"
> print(v3)
[1] "kshitij"
> |
```

Miscellaneous Operators:

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

```
> x <- 2:6
> print(x)
[1] 2 3 4 5 6
> v1 <- 8
> v2 <- 12
> t <- 1:11
> print(v1 %in% t)
[1] TRUE
> print(v2 %in% t)
[1] FALSE
> # Create a matrix M
> M <- matrix(c(2, 6, 5, 1, 10, 4), nrow = 2, ncol = 3, byrow = TRUE)
> # Calculate the product of M and its transpose
> t <- M %*% t(M)
> # Print the result
> print(t)
    [,1] [,2]
[1,] 65 82
[2,]
       82 117
```

4. Using Looping constructs in R

For Loop:

```
> fruits <- list("apple", "banana", "cherry")
>
> for (x in fruits) {
+    print(x)
+ }
[1] "apple"
[1] "banana"
[1] "cherry"
> |
```

While Loop:

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

```
> i <- 1
> while (i < 6) {
+   print(i)
+   i <- i + 1
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5</pre>
```

Repeat Loop:

5. Exploring any Packages in R (any graphic package)

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

installed.packages()

base	"base"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
boot	"boot"	"C:/Program Files/R/R-4.3.2/library"	"1.3-28.1"
class	"class"	"C:/Program Files/R/R-4.3.2/library"	"7.3-22"
cluster	"cluster"	"C:/Program Files/R/R-4.3.2/library"	"2.1.4"
codetools	"codetools"	"C:/Program Files/R/R-4.3.2/library"	"0.2-19"
compiler	"compiler"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
datasets	"datasets"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
foreign	"foreign"	"C:/Program Files/R/R-4.3.2/library"	"0.8-85"
graphics	"graphics"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
grDevices	"grDevices"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
grid	"grid"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
KernSmooth	"KernSmooth"	"C:/Program Files/R/R-4.3.2/library"	"2.23-22"
lattice	"lattice"	"C:/Program Files/R/R-4.3.2/library"	"0.21-9"
MASS	"MASS"	"C:/Program Files/R/R-4.3.2/library"	"7.3-60"
Matrix	"Matrix"	"C:/Program Files/R/R-4.3.2/library"	"1.6-1.1"
methods	"methods"	"C:/Program Files/R/R-4.3.2/library"	"4.3.2"
mgcv	"mgc∨"	"C:/Program Files/R/R-4.3.2/library"	"1.9-0"
nlme	"nlme"	"C:/Program Files/R/R-4.3.2/librarv"	"3.1-163"

search()

```
> search()
[1] ".GlobalEnv" "tools:rstudio" "package:stats" "package:graphics"
[5] "package:grDevices" "package:utils" "package:datasets" "package:methods"
[9] "Autoloads" "package:base"
> |
```

library()

(A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

anytime BH	Anything to 'POSIXct' or 'Date' Converter Boost C++ Header Files		
MASS	Support Functions and Datasets for Venables and Ripley's MASS		
Rcpp	Seamless R and C++ Integration		
sm	Smoothing Methods for Nonparametric Regression and		
	Density Estimation		
vioplot	Violin Plot		
Z00	S3 Infrastructure for Regular and Irregular Time Series (Z's Ordered Observations)		
Packages in library 'C:/Program Files/R/R-4.3.2/library':			
base	The R Base Package		
boot	Bootstrap Functions (Originally by Angelo Canty for S)		
class	Functions for Classification		
cluster	"Finding Groups in Data": Cluster Analysis Extended		
	Rousseeuw et al.		
codetools	Code Analysis Tools for R		
compiler	The R Compiler Package		
datasets	The R Datasets Package		
foreign	Read Data Stored by 'Minitab', 'S', 'SAS', 'SPSS',		
	'Stata', 'Systat', 'Weka', 'dBase',		
graphics	The R Graphics Package		
grDevices	The R Graphics Devices and Support for Colours and Fonts		
grid	The Grid Graphics Package		
KernSmooth	Functions for Kernel Smoothing Supporting Wand & Jones (1995)		
lattice	Trellis Graphics for R		
MASS	Support Functions and Datasets for Venables and Ripley's MASS		
Matrix	Sparse and Dense Matrix Classes and Methods		
methods	Formal Methods and Classes		
mgcv	Mixed GAM Computation Vehicle with Automatic Smoothness		
	Estimation		
nlme	Linear and Nonlinear Mixed Effects Models		
nnet	Feed-Forward Neural Networks and Multinomial Log-Linear Models		
parallel	Support for Parallel Computation in R		
rpart	Recursive Partitioning and Regression Trees		

Conclusion:

By this experiment we understood various data frames and the application of vectors and matrices in R programming we also got and idea about the lists and various data types and various functions.