Namen: _____

Aufgabe	5.1	5.2	5.3	Z5.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 5

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer

Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 5.1 (Konvergenz von Produkt zweier Folgen)

5 Punkte

Sei (X, \mathcal{E}, μ) ein Maßraum. Seien $f_k, f: X \longrightarrow \mathbb{R}$ integrierbare Funktionen mit $f_k \to f$ in $L^1(X, \mu)$. Seien $g_k, g: X \longrightarrow \mathbb{R}$ messbare Funktionen mit $\sup_k \|g_k\|_{L^{\infty}(X, \mu)} < \infty$ und $g_k \to g$ punktweise μ -fast-überall. Zeigen Sie, dass $f_k g_k \to f g$ in $L^1(X, \mu)$.

Aufgabe 5.2 (Relation zwischen L^p -Räumen)

5 Punkte

Sei (X, \mathcal{E}, μ) ein Maßraum.

a) Zeigen Sie, dass $L^1(X,\mu) \cap L^\infty(X,\mu) \subset L^p(X,\mu)$ für alle 1 und dass

$$||f||_{L^p(X,\mu)} \le ||f||_{L^1(X,\mu)}^{\frac{1}{p}} ||f||_{L^{\infty}(X,\mu)}^{\frac{p-1}{p}}$$
 für alle $f \in L^1(X,\mu) \cap L^{\infty}(X,\mu)$. (2.1)

b) Sei $\mu(X) < \infty$ und $1 \le p \le q \le \infty$. Zeigen Sie, dass $L^q(X, \mu) \subset L^p(X, \mu)$, und dass eine Konstante C > 0 existiert, welche nur von p, q und $\mu(X)$ abhängt, so dass

$$||f||_{L^p(X,\mu)} \le C ||f||_{L^q(X,\mu)}$$
 für alle $f \in L^q(X,\mu)$. (2.2)

Ist $L^q(X,\mu) \subseteq L^p(X,\mu)$? Begründen Sie Ihre Antwort.

Aufgabe 5.3 (Konvergenzen)

5 Punkte

Sei (X, \mathcal{E}, μ) ein Maßraum. Seien $f_k, f: X \longrightarrow \mathbb{R}$ integrierbare Funktionen.

a) Sei $f_k \to f$ in $L^1(X,\mu)$. Zeigen Sie, dass dann

$$\int_{Y} f_k \, \mathrm{d}\mu \xrightarrow{k \to \infty} \int_{Y} f \, \mathrm{d}\mu, \qquad \int_{Y} |f_k| \, \mathrm{d}\mu \xrightarrow{k \to \infty} \int_{Y} |f| \, \mathrm{d}\mu. \tag{3.1}$$

- b) Sei $f_k \to f$ punktweise μ -fast-überall, und sei $g := \sup_k |f_k|$ integrierbar. Zeigen Sie, dass dann $f_k \to f$ in $L^1(X, \mu)$.
- c) Sei μ ein endliches Maß. Sei $f_k \to f$ im Maß μ und $\sup_k \|f_k\|_{L^{\infty}(X,\mu)} < \infty$. Dann gilt $f_k \to f$ in $L^1(X,\mu)$.

Tipp: Zu b): Konvergenzsätze erweisen sich als nützlich.

Zusatzufgabe 5.1 (Hölder Ungleichung)

3 Punkte

Sei (X, \mathcal{E}, μ) ein Maßraum. Sei $1 \leq p \leq \infty$ und $1 \leq p_j < \infty$ für alle $j \in \{1, \ldots, n\}$ mit

$$\sum_{i=1}^{n} \frac{1}{p_j} = \frac{1}{p}.\tag{4.1}$$

Sei $f_j \in L^{p_j}(X,\mu)$ für alle $j \in \{1,\ldots,n\}$. Zeigen Sie, dass $f := \prod_j f_j \in L^p(X,\mu)$ und dass

$$||f||_{L^p(X,\mu)} \le \prod_{j=1}^n ||f_j||_{L^{p_j}(X,\mu)}.$$
 (4.2)

Gilt die Hölderungleichung auch ohne die Annahme $p_j, p \ge 1$? Definieren Sie die Lebesgue Räume L^p für 0 analog und diskutieren Sie Eigenschften (Vollständigkeit, Normiertheit, etc.).