14. Random Variables (rvs)

Expectation of sums of random variables [Ross S4.9]

Recall, a random variable X is a function X(s) of the outcome s of a random experiment.

We can have two functions of the same outcome s, say X(s) and Y(s).

Example 14.1: Flip a coin 5 times.

Let X = # heads in first 3 flips; Y = # heads in last 2 flips.

Since X and Y are numbers, we can add them: Z(s) = X(s) + Y(s).

In other words, Z is also a random variable.

Here, Z = # of heads in all 5 flips.

Now, for each $s \in S$, let $p(s) = P[\{s\}]$.

Then
$$P[A] = \sum_{s \in A} p(s)$$

Let
$$X \in \mathcal{X} = \{x_1, \dots, x_n\}$$

 $A_k = \{s \in S \mid X(s) = x_k\}$

Then
$$E[X] = \sum_{k=1}^{n} x_k P[X = x_k]$$

$$= \sum_{k=1}^{n} x_k P[A_k]$$

$$= \sum_{k=1}^{n} x_k \sum_{s \in A_k} p(s)$$

$$= \sum_{k=1}^{n} \sum_{s \in A_k} x_k p(s)$$

$$= \sum_{k=1}^{n} \sum_{s \in A_k} X(s) p(s)$$

$$= \sum_{k=1}^{n} X(s) p(s)$$

Example 14.2: Two independent flips of a fair coin are made.

Let X = # heads.

Then
$$P[X = 0] = 1/4$$

 $P[X = 1] = 1/2$
 $P[X = 2] = 1/4$

So
$$E[X] = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1.$$

Also, $S = \{tt, th, ht, hh\}$, and each outcome has probability 1/4.

So
$$E[X] = X(tt) \times \frac{1}{4} + X(th) \times \frac{1}{4} + X(ht) \times \frac{1}{4} + X(hh) \times \frac{1}{4}$$

= $0 \times \frac{1}{4}$ + $1 \times \frac{1}{4}$ + $1 \times \frac{1}{4}$ + $2 \times \frac{1}{4}$
= 1

Why is this interpretation useful?

Let Z(s) = X(s) + Y(s). What is E[Z]?

$$\begin{split} E[Z] &= \sum_{s \in S} Z(s) p(s) \\ &= \sum_{s \in S} (|X(s) + Y(s)|) p(s) \\ &= \sum_{s \in S} X(s) p(s) + \sum_{s \in S} Y(s) p(s) \\ &= E[X] + E[Y] \end{split}$$

This result can be generalized.

Proposition 14.1 For random variables X_1, X_2, \ldots, X_n :

$$E[X_1 + \dots + X_n] = E[X_1] + \dots + E[X_n]$$

Why?

Let $Z = X_1 + \cdots + X_n$. Then

$$E[Z] = \sum_{s \in S} Z(s)p(s)$$

$$= \sum_{s \in S} (X_1(s) + \dots + X_n(s))p(s)$$

$$= \sum_{s \in S} X_1(s)p(s) + \dots + \sum_{s \in S} X_n(s)p(s)$$

$$= E[X_1] + \dots + E[X_n]$$

Example 14.3: Let X_1, X_2, \dots, X_n be outcomes of n independent Bernoulli(p) trials. Then

$$X = X_1 + \cdots + X_n$$

counts the number of 1's in the n trials. So $X \sim \mathsf{Binomial}(n,p)$.

Also:

$$E[X] = E[X_1 + \dots + X_n]$$

$$= E[X_1] + \dots + E[X_n]$$
 [by Proposition 14.1]
$$= p + \dots + p$$

$$= np$$

$$E[X^{2}] = E\left[\left(\sum_{k=1}^{n} X_{k}\right) \left(\sum_{\ell=1}^{n} X_{\ell}\right)\right]$$

$$= E\left[\sum_{k=1}^{n} \sum_{\ell=1}^{n} X_{k} X_{\ell}\right]$$

$$= \sum_{k=1}^{n} \sum_{\ell=1}^{n} E\left[X_{k} X_{\ell}\right]$$
 [by Proposition 14.1]

$$=\sum_{k=1}^{n}E\left[X_{k}^{2}\right]+\sum_{k=1}^{n}\sum_{\substack{\ell=1\\\ell\neq k}}^{n}E\left[X_{k}X_{\ell}\right]$$

Now
$$P[X_k^2=1]=P[X_k=1]=p$$

$$P[X_kX_\ell=1]=P[X_k=1,X_\ell=1] \qquad \text{[for } k\neq\ell\text{]}$$

$$=P[X_k=1]P[X_\ell=1] \quad \text{[since trials are independent]}$$

$$=p^2$$

So
$$E[X^2] = np + n(n-1)p^2$$

Properties of CDFs [Ross 4.10]

Recall
$$F_X(x) = P[X \le x]$$

Therefore:

1)
$$0 \le F_X(x) \le 1$$

2) If
$$a < b$$
 then $\{X \le a\} \subset \{X \le b\}$
 $\Rightarrow P[X \le a] \le P[X \le b]$
 $\Rightarrow F_X(a) \le F_X(b)$
or, $F_X(x)$ is non-decreasing in x .

It can also be show that:

3)
$$\lim_{x \to \infty} F_X(x) = 1$$

4)
$$\lim_{x \to -\infty} F_X(x) = 0$$

5)
$$\lim_{x \downarrow b} F_X(x) = F_X(b)$$

[i.e., $F_X(x)$ is continuous from the right]

6) $\lim_{x \uparrow b} F_X(x)$ exists

[i.e., $F_X(x)$ has left limits]

A function with properties 5) and 6) is called **càdlàg** [continue à droite, limite à gauche].

Example 14.4:

Here:

$$\lim_{x \downarrow a} F_X(x) = F_X(a)$$
$$\lim_{x \uparrow a} F_X(x) = c \neq F_X(a)$$