Normalisierung

Gegeben sei folgende Datenbank für Wareneingänge eines Warenlagers. Die Primärschlüssel-Attribute sind unterstrichen.

ZulieferungsNr	ArtikelNr	Datum	Artikelname	Menge
1	1	01.01.2009	Handschuhe	5
1	2	01.01.2009	Mütze	10
2	3	05.01.2009	Schal	2
2	1	05.01.2009	Handschuhe	18
3	4	06.01.2009	Jacke	2

(a) Erläutern Sie, inwiefern obiges Schema die 3. Normalform verletzt.

text

(b) Geben Sie für obige Datenbank alle vollen funktionalen Abhängigkeiten (einschließlich der transitiven) an.

Exkurs: Voll funktionale Abhängigkeit

Eine vollständig funktionale Abhängigkeit liegt dann vor, wenn dass Nicht-Schlüsselattribut nicht nur von einem Teil der Attribute eines zusammengesetzten Schlüsselkandidaten funktional abhängig ist, sondern von allen Teilen eines Relationstyps. Die vollständig funktionale Abhängigkeit wird mit der 2. Normalform (2NF) erreicht. a

^adatenbank-verstehen.de

Exkurs: Transitive Abhängigkeit

Eine transitive Abhängigkeit liegt dann vor, wenn Y von X funktional abhängig und Z von Y, so ist Z von X funktional abhängig. Diese Abhängigkeit ist transitiv. Die transitive Abhängigkeit wird mit 3. Normalform (3NF) erreicht. a

^adatenbank-verstehen.de

- { ZulieferungsNr } \rightarrow { Datum }
- $\{ ArtikelNr \} \rightarrow \{ Artikelname \}$
- $\{$ ZulieferungsNr, ArtikelNr $\} \rightarrow \{$ Menge $\}$
- (c) Überführen Sie das obige Relationenschema in die 3. Normalform. Erläutern Sie die dazu durchzuführenden Schritte jeweils kurz.

text