SÉRIES TEMPORELLES

Master I : Maths.Appliq& Stat —- Home work n° 4

Le 13 mai 2022 à 8:04

- EXERCICE 2 : Soit le processus suivant, supposé stationnaire, avec ε_t un bruit blanc de variance σ^2 : $y_t = \sum_{k=1}^p a_k y_{t-k} + \varepsilon_t$
 - 1)- Quel est le nom de ce processus ? Donner la formule de sa fonction d'autocovariance $\gamma(h)$ et celle de sa fonction d'autocorrélation $\rho(h)$.
 - 2)- Vérifiez si les deux processus suivants sont stationnaires puis calculer les autocorrélations et autocorrélations partielles d'ordre 1, 2, et 3 pour ces processus.

$$y_t = 0.7y_{t-1} - 0.49y_{t-2} + \varepsilon_t$$
 , $y_t = 0.8y_{t-1} + \varepsilon_t$

- EXERCICE 3 : (Marche aléatoire). Soit $X=(X_t)_{t\in N}$ une marche aléatoire de dérive μ : $X_t=\mu+X_{t-1}+Z_t$ pour tout t=1, où $X_0=0$ et où $(Z_t)_{t\in N}$ est un bruit blanc fort.
 - 1. Calculer la fonction d'autocovariance γ_X de X. Est-ce que X est stationnaire?
 - 2. Le processus $(\Delta X_t)_{t \in N}$ est-il stationnaire?
- EXERCICE 4 : Estimation des paramètres à partir les équations YULL-WALKER (YW)

 On considère un échantillon contenant 1000 observations d'une variable. L'estimation de la ACF de cette série est donnée dans le tableau suivant :

On sait que cette série suit un modèle AR(3). Donner une estimation des paramètres de ce modèle.

EXERCICE 5 : Soit $Z \sim BB(0, \sigma^2)$. et l'équation ARMA(1, 2) $X_t - 3X_{t-1} = Z_t - \frac{10}{3}Z_{t-1} + Z_{t-2}$

- 1. Préciser les polynômes Φ et Θ de l'équation ARMA(1, 2) et montrer qu'il existe une unique solution stationnaire;
- 2. Cette solution est-elle causale ? Est-ce que Φ s'annule sur le disque unité ?
- 3. Calculer explicitement cette solution en fonction de Z?
- 4. Cette solution est-elle inversible?

EXERCICE 6 : Soit le processus AR(2) défini comme la solution stationnaire de

$$X_t - \phi X_{t-1} - \phi^2 X_{t-2} = Z_t, \quad Z_t \sim WN(0, \sigma^2).$$

- a) Pour quelles valeurs de ϕ une solution stationnaire existe-t-elle?
- b) Les estimateurs des moments suivants ont été obtenus après l'observation $\text{de}X_1,...,X_{200}$:

$$\gamma(0) = 6,06, \rho(1) = 0,687, \rho(2) = 0,610.$$

Trouver des estimateurs de ϕ et σ^2 à l'aide des équations de Yule–Walker. (Si vous trouvez plus d'une solution, retenir celle qui est stationnaire.)

EXERCICE 7 : Soient $X = (X_t)_{t \in Z}$ et $Y = (Y_t)_{t \in Z}$ deux processus liés par la relation suivante

$$Y_t = \phi Y_{t-1} + X_t + \varepsilon_t;$$

$$X_t = \psi X_{t-1} + \eta_t; t \in Z;$$

- où $\varepsilon=(\varepsilon_t)_{t\in Z}$ et $\eta=(\eta_t)_{t\in Z}$ sont deux bruit blancs faibles décorrélés (C'est-à-dire pour tous $s,t\in Z$, on a $E[\varepsilon_t\eta_s]=0$)., de variance 1, et ϕ et ψ sont deux réels distincts dans]0,1[.
 - 1) Montrer que *X* est bien défini et stationnaire.
 - 2) Montrer que $W=(W_t)_{t\in Z}$ défini par $W_t=X_t+\varepsilon_t$; $t\in Z$ est stationnaire. En déduire que Y est bien défini et stationnaire

On note B l'opérateur retard, défini par $BX_t = X_{t-1}$ pour $t \in Z$.

- 3) Montrer que $Z=(Z_t)_{t\in Z}$ défini par $Z_t=(1-\phi B)(1-B)Y_t; t\in Z;$ est stationnaire et calculer sa fonction d'autocovariance.
- 4) En déduire que Z est un processus MA(1), c'est-à-dire qu'il vérifie $Z_t = \zeta_t + \vartheta \zeta_{t-1}; t \in Z$; où $\zeta = (\zeta_t)_{t \in Z}$ est un bruit blanc de variance $\sigma^2 > 0$ et $\vartheta \in R$.
- 5) En déduire que Y est un processus ARMA(p, q) dont on précisera les ordres p et q.
- 6) On suppose $\vartheta + \phi \neq 0$ et $\vartheta + \psi \neq 0$,

Montrer sans calcul qu'il existe une représentation causale de Y.

7) Montrer que l'on a la décomposition en éléments simples

$$\frac{1}{(1-\phi x)(1-\psi x)} = \frac{1}{\phi - \psi} \left(\frac{\varphi}{1-\phi x} - \frac{\psi}{1-\psi x} \right)$$

8) En déduire la représentation causale $Y_t = \sum_{\ell \geq 0} a_\ell \zeta_{t-\ell}$ pour une suite $(a_\ell)_{\ell \in Z}$ que l'on explicitera.