Assignment I

Exercise 1 The logistic map is given by

$$x_{n+1} = \lambda x_n (1 - x_n)$$

with $x_0 \in [0, 1]$ and $\lambda \in [0, 4]$. Write a MATLAB-function which produces a picture of the "attractor" for a sequence of values $\lambda \in [\lambda_{\min}, \lambda_{\max}]$.

The attractor is (for fixed λ) the collection of limiting values of the sequence x_n for large n. The inputs are λ_{\min} , λ_{\max} and N, the number of values of λ between λ_{\min} and λ_{\max} for which the attractor is calculated. There is no output, but the function produces a picture with $\lambda \in [\lambda_{\min}, \lambda_{\max}]$ along the horizontal axis and values of x_n for "large" n along the vertical axis.

- 1. Which value of x_0 do you choose?
- 2. Which values of n do you use in the picture?
- 3. Check that the input satisfies $0 \le \lambda_{\min} \le \lambda_{\max} \le 4$.
- 4. Make sure the figure looks nice.
- 5. Make the input variable N optional: the function should also work if only λ_{\min} and λ_{\max} are given as input variables.