一、 填空题 (每小题 2 分, 共 12 分)

- 1. 已知空间中四个点 A(0,0,0), B(1,1,1) C(1,2,2), D(1,2,3), 则四面体 ABCD 的体积=
- 2. 已知两向量 β_1 , β_2 线性无关_, $a\beta_1 \beta_2$, $b\beta_2 \beta_1$ 线性相关,则a, b满足
- 3. 当 λ 满足条件______时,齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$ 只有零解。 $\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + \lambda x_3 = 0 \end{cases}$
- 4. 设 A 为三阶实对称矩阵, R(A) = 2, 且 $A \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$, 则

$$A = \underline{\hspace{1cm}}$$

- 5. 在空间直角坐标系中,方程 $2x^2 + 6v^2 = z$ 表示的几何图形是_______
 - 6. 母线平行于 x 轴,且通过曲线 $\begin{cases} x^2 + y^2 + 2z^2 = 1 \\ x^2 y^2 + z^2 = 0 \end{cases}$ 的柱面方程是_______.

二、 选择题 (每小题 2 分, 共 12 分)

- 1. 设 $A \in R^{m \times n}$, $b \in R^m$, AX = 0 是 AX = b 的导出组,则下列命题正确的是______
 - (A) 如果 AX = 0 只有零解,则 AX = b 必有唯一解
 - 'B) 如果 AX = b 有两个不同的解,则 AX = 0 必有非零解
 - (C) 如果 AX = 0 有非零解,则 $A^TY = 0$ 也有非零解
 - (D) 如果 R(A) = r = n , 则 AX = b 必有唯一解
- 2. 与矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}$ 合同的矩阵是______.

(A)
$$\begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$$
 (B)
$$\begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix}$$
 (D)
$$\begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$$

- 3. 下列关于矩阵正定的命题中, 不正确的是______
 - (A) 设A 是实对称矩阵,若 $A^2 = E$,则A + E 是正定矩阵
 - (B) 设A, B是n阶正定矩阵, k, l是正数,则kA+lB是正定矩阵
 - (C) 设 A是正定矩阵,则 A^{-1} , A^{\bullet} 均为正定矩阵

(D) 矩阵
$$A = \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 2 \end{pmatrix}$$
 是正定矩阵

- 4. 下列命题中正确的是_____
 - (A) β 不能由 a_1, a_2, \dots, a_s 线性表示,则 $a_1, a_2, \dots, a_s, \beta$ 线性无关
 - (B) 如果 k_1, k_2, \dots, k_s 不全为 0 时,使 $k_1a_1 + k_2a_2 + \dots + k_sa_s \neq 0$,则 a_1, a_2, \dots, a_s 线性无关
 - (C) 若 a_1, a_2, a_3 线性无关,则 $a_1 a_2, a_2 a_3, a_3 a_1$ 也线性无关
 - (D) 如 $R(a_1, a_2, a_3) = R(a_1, a_2, a_3, a_4)$,则 a_4 必可由 a_1, a_2, a_3 线性表示
- 5. 下列矩阵中不可以相似对角化的为_____

(A)
$$\begin{pmatrix} 1 & -3 & -3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
 (B) $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 4 \\ 0 & 4 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}$

- (D) 三阶矩阵 A 的三个特征值为 -2, -2, 4, 且 R(A+2E)=1
- 6. $\psi \varepsilon_1, \varepsilon_2 \cdots \varepsilon_n$ 和 $\eta_1, \eta_2 \cdots \eta_n$ 是 n 维欧式空间 V 的两组基,则下列选项正确的是______
 - (A) $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 到 $\eta_1, \eta_2, \cdots, \eta_n$ 的过渡矩阵是正交矩阵
 - (B) 若 $\varepsilon_1, \varepsilon_2 \cdots \varepsilon_n$ 是规范正交基,且有 $(\eta_1, \eta_2 \cdots \eta_n) = (\varepsilon_1, \varepsilon_2 \cdots \varepsilon_n) A$,则 $\eta_1, \eta_2 \cdots \eta_n$ 是规范正交基的充要条件为 A 是正交矩阵
 - (C) 若 $\varepsilon_1, \varepsilon_2 \cdots \varepsilon_n$ 是规范正交基, V 中两个向量 a, β 在该基下的坐标为: $X = (x_1, x_2, \cdots x_n)^T$, $Y = (y_1, y_2, \cdots y_n)^T$,则 $|a| = |\beta|$ 当且仅当X = Y
 - (D) 若 $\varepsilon_1, \varepsilon_2 \cdots \varepsilon_n$ 是规范正交基,V中两个向量 a, β 在该基下的坐标为: $X = (x_1, x_2, \cdots x_n)^T$, $Y = (y_1, y_2, \cdots y_n)^T, \quad \text{则}(a, \beta) \neq (X, Y)$

四、

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$
, 运用相似对角化计算 A'' .

四、 (本题 5 分)

三阶实对称矩阵 A 满足 R(A+2E)=1 且 |A+3E|=0,

- (1) 求 A 的所有特征值;
- (2) 求 A*的所有特征值。

五、 (本题 6 分)

线性方程组

$$\begin{cases} x_1 + x_2 + (a-1)x_3 = 1 \\ x_1 + ax_3 = 2 \\ (a+1)x_1 + x_2 + ax_3 = 3 \end{cases}$$

中, a为何值时无解、有唯一解和无穷多解? 有解时, 写出通解。

六、 (本题5分)

三阶实方阵 $A = (a_1, a_2, a_3)$ 满足如下条件:

(a)
$$a_1 + 2a_2 + a_3 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
; (b) $A = D = \begin{pmatrix} -3 \\ 1 \\ -4 \end{pmatrix}$ $\triangle = \mathbb{R}$;

- (c) |A+2E|=0; (d) $AA^{T}=4E$.
- (1) 记矩阵 A 对应的二次型为 f , 问 $f(x_1, x_2, x_3) = 1$ 表示何种曲面.
- (2) 求一个正交变换 X = PY 将二次型 $f(X) = X^T AX$ 化为标准形.

七、(本题5分)

已知矩阵

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix},$$

- (1) 求所有可能的 4 维列向量 X, 使得 $X^TA=0$;
- (2) 证明二次型 $f(Y) = Y^T(A^TA)Y$ 为正定二次型.