## 树德中学高 2020 级高一上学期 10 月阶段性测试数学试题

一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目

1. 设全集 U=Z,集合  $A=\{1,3,5,7,9\}$ , $B=\{1,2,3,4,5\}$ ,则图中阴影部分 表示的集合是(



C. {7,9}

D. {2.4}



2. 函数 
$$f(x) = \frac{1}{\sqrt{x+1}} + \sqrt{4-2x}$$
的定义域为( )

A. [-1,2] B. (-1,2] C.  $[2, +\infty)$  D.  $[1, +\infty)$ 

$$3. (-1,2]$$

$$+\infty$$
) D.

3.二次函数  $f(x) = ax^2 + bx + c$ ,如果  $f(x_1) = f(x_2)$ (其中  $x_1 \neq x_2$ ),则  $f(\frac{x_1 + x_2}{2}) = ($ 

A. 
$$-\frac{b}{2a}$$

A. 
$$-\frac{b}{2a}$$
 B.  $-\frac{b}{a}$  C.  $c$  D.  $\frac{4ac-b^2}{4a}$ 

4. 设 $A = \{x \mid 0 \le x \le 2\}$ ,  $B = \{y \mid 1 \le y \le 2\}$ , 在下列各图中, 能表示从集合 A 到集合 B 的函数的是( )



- 5. 若函数  $f(x)=ax^2+bx+1$  是定义在 [-1-a,2a] 上的偶函数,则该函数的最大值为( )
  - A. 5 B. 4 C. 3 D. 2

6. 已知函数  $f(x) = \begin{cases} x^2 - 4x + 6, & x \ge 0, \\ x + 6, & x < 0, \end{cases}$ 则不等式 f(x) > f(1)的解集是(

- A.  $(-3,1) \cup (3, +\infty)$
- B.  $(-3,1) \cup (2, +\infty)$
- C.  $(-1,1) \cup (3, +\infty)$
- D.  $(-\infty, -3) \cup (1,3)$

7. 函数  $y = \frac{x-2}{x-1}$ 的图象是( )



8. 已知函数 y = f(-x+1)定义域是[-2020, 2023],则  $y = (x-1)^0 f(1-2x)$ 的定义域是(

A. 
$$[-1010,1) \cup \left(1, \frac{2023}{2}\right]$$

C. 
$$\left[-1010, \frac{2023}{2}\right]$$

A.  $[-1010,1) \cup \left(1,\frac{2023}{2}\right)$  B. [-2020,2023] C.  $\left|-1010,\frac{2023}{2}\right|$  D.  $[-1011,1) \cup \left(1,\frac{2021}{2}\right)$ 

9. 若函数  $f(x) = \begin{cases} \frac{a}{x} & x > 1 \\ x & & \text{是} R \text{上的减函数,则实数} a \text{的取值范围是} \end{cases}$  (2-3a)x+1  $x \le 1$ 

A. 
$$\left(\frac{2}{3},1\right)$$

A.  $\left(\frac{2}{3},1\right)$  B.  $\left[\frac{3}{4},1\right)$  C.  $\left(\frac{2}{3},\frac{3}{4}\right]$  D.  $\left(\frac{2}{3},+\infty\right)$ 

10. 函数 f(x) 的定义域为 R, 对任意的  $x_1, x_2 \in [1, +\infty)(x_1 \neq x_2)$ , 有  $\frac{f(x_2) - f(x_1)}{x_1 - x_2} < 0$ , 且函数 f(x+1)

为偶函数,则()

A. 
$$f(1) < f(-2) < f(3)$$

B. 
$$f(3) < f(-2) < f(1)$$

C. 
$$f(-2) < f(3) < f(1)$$

C. 
$$f(-2) < f(3) < f(1)$$
 D.  $f(-2) < f(1) < f(3)$ 

11. 对于函数  $y = f(x)(x \in I), y = g(x)(x \in I)$ , 若对于任意  $x \in I$ , 存在  $x_0$ , 使得  $f(x) \ge f(x_0)$ ,

 $g(x) \ge g(x_0)$  且  $f(x_0) = g(x_0)$  , 则 称 f(x), g(x) 为 " 兄 弟 函 数 ". 己 知 函 数

 $f(x) = x^2 + px + q(p, q \in R), g(x) = \frac{x^2 - x + 1}{x}$ 是定义在区间  $x \in [\frac{1}{2}, 2]$ 上的"兄弟函数",那么函数 f(x)

在区间 $x \in [\frac{1}{2}, 2]$ 上的最大值为 ( )

A. 
$$\frac{3}{2}$$
 B. 2 C. 4 D.  $\frac{5}{4}$ 

12.已知函数  $f(x) = ax^2 + bx + c$  且 a > b > c, a + b + c = 0,集合  $A = \{m \mid f(m) < 0\}$  则(

A. 对任意 $m \in A$ ,都有f(m+3) > 0

B. 对任意 $m \in A$ ,都有f(m+3) < 0

C. 存在 $m_0 \in A$ ,使得 $f(x_0+3)=0$ 

D. 存在 $m_0 \in A$ ,使得 $f(x_0+3) < 0$ 

## 二、填空题(本题共4小题,每小题5分,共20分)

13.已知全集为**R** , 集合  $M = \{-1, 1, 2, 3, 4\}$  ,  $N = \{x | x^2 + 2x > 3\}$  , 则  $M \cap N = \underline{\hspace{1cm}}$ 

14. 已知  $f(x) = x^5 + ax^3 + bx - 10$  且 f(-2) = 10,那么 f(2) =\_\_\_\_\_.

15. 已知函数 $f(x) = x^2 - (2a - 1)x + 3, x \in [1,4]$ 图像上任意两点连线都与x轴不平行,则实数a的取值范围是

16. 已知定义在 R 上的奇函数 f(x) 满足: x < 0 时,  $f(x) = -\frac{1}{3}x^2 - \frac{2}{3}x$  ,且关于 x 的不等式

f(bx-2) > f(1)在区间[1,2]上恒成立,则实数b的取值范围为\_\_\_\_\_.

- 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
- 17. (本小题满分 10 分) 已知 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{3, 4, 5\}, B = \{4, 7, 8\}, B = \{4, 7, 8\},$

求:  $A \cup B, A \cap B$ ,  $(C_U A) \cup (C_U B)$ 

- 18. (本小题满分 12 分) 设全集是实数集 R,  $A = \{x | 2x^2 7x + 3 \le 0\}$ ,  $B = \{x | x^2 + a < 0\}$ .
- (1)当a=-4时,求 $A\cap B$ 和 $A\cup B$ ;
- (2)若 $(C_RA)\cap B=B$ , 求实数 a 的取值范围.

- 20. (本小题满分 12 分)已知 f(x)是定义在 R 上的奇函数,且  $f(x) = \frac{x+m}{x^2+nx+1}$ .
- (1)求 m, n 的值, 并用定义证明 f(x)在(-1,1)上为增函数;
- (2)若  $f(x) \le \frac{a}{3}$ 对  $x \in \left[-\frac{1}{3}, \frac{1}{3}\right]$ 恒成立,求 a 的取值范围.

- 21. (本小题满分 12 分) 定义在  $I = (-2, 0) \cup (0, )$  上的函数 f(x) ,对任意  $x, y \in I$  ,都有 f(xy) = f(x) + f(y) 2,且当0 < x < 1时,f(x) > 2.
- (1)求f(1)与f(-1)的值;
- (2)证明 f(x) 为偶函数:
- (3)判断 y = f(x) 在(0,2)上的单调性, 并求解不等式 f(2x-1) < 2.

- 22. (本小题满分 12 分)函数 f(x) = (x-a)(x-2a), a 为参数,
- (1)解关于x的不等式f(x) > 0;
- (2)当 $x \in [-1,1], f(x)$ 最大值为M,最小值为m,若 $M-m \le 4$ ,求参数a的取值范围;
- (3)若a > 0且 $a \ne 1$ ,g(x) = f(x) a在区间[5a 3, 5a 1]上与x轴有两个交点,求a的取值范围.

- 19. (本小题满分 12 分) 画出下列函数的图象,并写出它们的值域和单调区间.
- (1)y = |x+1|;
- (2)y=(x+3)|x-1|.

树德中学高 2020 级高一上学期 10 月阶段性测试数学试题 (参考答案)

一、选择题(本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目 要求的)

- 1. 解析: 题图中所示阴影表示的集合是( $C_{I/A}$ )∩B={2,4}. 答案: D
- 2. 解析: 选 B 解法一: 要使函数  $f(x) = \frac{1}{\sqrt{x+1}} + \sqrt{4-2x}$ 有意义,则 $\begin{cases} x+1>0, \\ 4-2x>0. \end{cases}$  解得 $-1 < x \le 2$ ,故选 B.

解法二: 因为  $x\neq -1$ ,排除 A; 取 x=3,则 4-2x=4-6=-2<0,所以  $x\neq 3$ ,排除 C、D,

【解析】由
$$f(x_1) = f(x_2)$$
得 $\frac{x_1 + x_2}{2} = -\frac{b}{2a}$ ,所以 $f(\frac{x_1 + x_2}{2}) = f(-\frac{b}{2a}) = \frac{4ac - b^2}{4a}$ ,故选D.

- 4. 解析:选项 A 和选项 B 中 y 的取值范围不是[1,2],不合题意,故 A 和 B 都不成立;选项 C,集合 A 中在[0.2)内的一个元素对应集合 B 中的两个元素,不成立;根据定义,选项 D 中的图符合函数的定义.答
- 5. 解析: 选 A 因为函数  $f(x) = ax^2 + bx + 1$  是定义在[-1 a, 2a]上的偶函数,所以-1 a + 2a = 0,所以 a=1,所以函数定义域为[-2,2]. 因为函数图象的对称轴为 x=0,所以 b=0,所以  $f(x)=x^2+1$ ,所以 x= ±2 时函数取得最大值,最大值为 5.
- 6. 解析: 选 A 画出函数 f(x)的图象如图所示, 令 f(x) = f(1), 得 x = -3,1,3,
- 所以当 f(x)>f(1)时,必有  $x \in (-3,1) \cup (3, +\infty)$ . 故选 A.

  7. 解析: 选 B 函数的定义域为 $\{x|x\neq 1\}$ ,排除 C、D,当 x=2 时,y=0,排除 A、故选 B





- $\begin{cases} a>0\\ 2-3a<0 & \frac{2}{3}< a \leq \frac{3}{4}.$  9. 【答案】C【解析】因为f(x)是R上的减函数,故  $3-3a\geq a$ ,故 3
- 10. 【答案】C【详解】因为对任意的 $x_1, x_2 \in [1, +\infty)(x_1 \neq x_2)$ ,有 $\frac{f(x_2) f(x_1)}{x_2 x_1} < 0$ ,

所以对任意的 $x_1, x_2 \in [1, +\infty)(x_1 \neq x_2)$ ,  $x_2 - x_1 = f(x_2) - f(x_1)$  均为异号,所以f(x)在 $[1, +\infty)$ 上单调 递减,

又函数 f(x+1) 为偶函数,即 f(x+1) = f(1-x) ,所以 f(-2) = f(4) ,所以

$$f(-2) = f(4) < f(3) < f(1)$$
.

故选: C.

11. B

12. 解: · · 函数  $f(x) = ax^2 + bx + c$ , 且 a > b > c, a + b + c = 0. 故有 a > 0. 目 c < 0





又 f(1) = a + b + c = 0,故  $\mathbf{x} = 1$  为 f(x) 的一个零点.由根与系数的关系可得,另一零点为  $\frac{c}{a} < 0$ ,所以有:  $A = \{m \mid \frac{c}{a} < m < 1\}$  所以.  $m + 3 > \frac{c}{a} + 3 > 1$  ,所以有 f(m + 3) > 0 恒成立,

所以 A 选项是正确的. 二、填空题(本题共4小题,每小题5分,共20分)

13.【解析】因为 $N = \{x \mid x^2 + 2x > 3\} = \{x \mid x < -3$ 或 $x > 1\}$ ,所以 $M \cap N = \{2,3,4\}$ . 【答案】 $\{2,3,4\}$ 

14. 【解析】【分析】设 f(2) = M ,再结合 f(-2) = 10 ,分别代入解析式,两式相加即可求解.

【详解】 
$$f(x) = x^5 + ax^3 + bx - 10 \, \text{B} \, f(-2) = 10$$
,  $\mathbb{Q}(-2)^5 + a(-2)^3 + b(-2) - 10 = 10$ , ①

设 f(2) = M ,则  $2^5 + a \cdot 2^3 + b \cdot 2 - 10 = M$  ,②

①+②可得: -20=10+M, 解得M=-30, 即 f(2)=-30.故答案为: -30

【答案】-30

15. 解:函数 $f(x) = x^2 - (2a - 1)x + 3, x ∈ [1,4]$ 图像上任意两点连线都与x轴不平行,即函数 f(x) 在

区间
$$[1,4]$$
上单调,所以, $\frac{2a-1}{2} \le 1$ 或 $\frac{2a-1}{2} \ge 4 \Rightarrow a \le \frac{3}{2}$ 或 $a \ge \frac{9}{2}$ 

16.【解析】【分析】根据函数的对称性求出a的值,求出f(x)的解析式,画出图象,问题转化为bx-2>1①或 $-1-\sqrt{2} < bx-2 < 1$ ②在区间[1, 2]上恒成立,分离b,求出b的范围即可.

解: f(x) 是奇函数,可得  $f(x) = \begin{cases} \frac{1}{3}x^2 - \frac{2}{3}x, x \ge 0 \\ -\frac{1}{3}x^2 - \frac{2}{3}x, x \ge 0 \end{cases}$  , 画出函数 f(x) 的图象,如图示:,由  $f(1) = -\frac{1}{3}$ 

得 
$$x < 0$$
 时,  $-\frac{1}{3}x^2 - \frac{2}{3}x = -\frac{1}{3}$ ,解得:  $x = -1 - \sqrt{2}$ ,  $x > 0$  时,  $\frac{1}{3}x^2 - \frac{2}{3}x = -\frac{1}{3}$ ,解得:  $x = 1$ ,

若关于x的不等式f(bx-2) > f (1) 在区间[1, 2]上恒成立,

则 bx-2>1①或  $-1-\sqrt{2} < bx-2 < 1$ ②在区间[1, 2]上恒成立,

x 由①得: bx>3,  $b>\frac{3}{x}$ 在[1, 2]恒成立,则b>3,

曲②得:  $1-\sqrt{2} < bx < 3$ ,  $\frac{1-\sqrt{2}}{x} < b < \frac{3}{x}$ 在[1, 2]恒成立,则 $\frac{1-\sqrt{2}}{2} < b < \frac{3}{2}$ ,

综上,  $b \in (\frac{1-\sqrt{2}}{2}, \frac{3}{2}) \cup (3, +\infty)$ , 故答案为:  $\left(\frac{1-\sqrt{2}}{2}, \frac{3}{2}\right) \cup (3, +\infty)$ .

三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)

17. 
$$\mathbb{M}$$
:  $A \cup B = \{3, 4, 5, 7, 8\}$ ,  $A \cap B = \{4\}$ ;  $(C_U A) \cup (C_U B) = \{1, 2, 3, 5, 6, 7, 8\}$ 

18. 
$$\#: (1)A = \left\{ x/\frac{1}{2} \le x \le 3 \right\}, \quad \text{if } a = -4 \text{ if }, \quad B = \left\{ x/-2 \le x \le 2 \right\}, \quad A \cap B = \left\{ x/\frac{1}{2} \le x \le 2 \right\}, \quad A \cup B = \left\{ x/-2 \le x \le 3 \right\}.$$

$$(2)$$
 $C_R A = \left\{ x/x < \frac{1}{2}$ 或 $x > 3 \right\}$ ,当 $(C_R A) \cap B = B$ 时, $B \subseteq C_R A$ ,即 $A \cap B = \emptyset$ .

①当 $B=\emptyset$ ,即a>0时,满足 $B\subseteq C_RA$ ;

② $\exists B \neq \emptyset$ , 即 a < 0 时,  $B = \{x | -\sqrt{-a} < x < \sqrt{-a}\}$ ,

要使  $B \subseteq C_R A$ ,只须 $\sqrt{-a} \le \frac{1}{2}$ ,解得 $-\frac{1}{4} \le a < 0$ .综上可得,实数 a 的取值范围是 $\left\{ a/a \ge -\frac{1}{4} \right\}$ 

19. 解: (1):
$$y=|x+1|$$
,  $\therefore y=\begin{cases} -x-1, & x \le -1, \\ x+1, & x > -1. \end{cases}$  其图象如图所示:

19. 解: (1) · y = |x+1|, · · · y = |x+1|, x > -1. 由图象可得函数的值域为[0,  $+\infty$ ).  $(-\infty, -1]$ 

为函数的单调递减区间; [-1, +∞)为函数的单调递增区间.

$$(2)f(x) = \begin{cases} x+3 & x-1, & x \ge 1, \\ -x+3 & x-1, & x < 1, \end{cases} \quad \text{If } f(x) = \begin{cases} x+1 & ^2-4, & x \ge 1, \\ -x+1 & ^2+4, & x < 1. \end{cases}$$

象如图所示。

结合图象可知,f(x)在 $(-\infty, -1)$ 上是单调增函数,在[-1,1]上是单调减函数,在 $[1, +\infty)$ 上是单调增函数. 函数的值域是 [-1,1] R.

20. 解: (1)因为奇函数 f(x)的定义域为 R, 所以 f(0)=0.

故有 
$$f(0) = \frac{0+m}{0^2+n \times 0+1} = 0$$
,解得  $m=0$ .所以  $f(x) = \frac{x}{x^2+nx+1}$ .由  $f(-1) = -f(1)$ .

即
$$\frac{-1}{-1}$$
= $-\frac{1}{1^2+n\times 1+1}$ , 解得  $n=0$ .所以  $m=n=0$ .

证明: 由(1)知  $f(x) = \frac{x}{x^2 + 1}$ , 任取  $-1 < x_1 < x_2 < 1$ .

$$\begin{array}{ccc} x_1 - x_2 & 1 - x_1 x_2 \\ \hline x_1^2 + 1 & x_2^2 + 1 \end{array}$$

因为 $-1 < x_1 < 1$ , $-1 < x_2 < 1$ ,所以 $-1 < x_1 x_2 < 1$ .故 $1 - x_1 x_2 > 0$ ,又因为 $x_1 < x_2$ ,所以 $x_1 - x_2 < 0$ ,

故  $f(x_1)-f(x_2)<0$ , 即  $f(x_1)< f(x_2)$ , 所以函数 f(x)在(-1,1)上为增函数.

(2)由(2)知 f(x)在(-1,1)上为增函数,所以函数 f(x)在 $\left[-\frac{1}{3}, \frac{1}{3}\right]$ 上为增函数,

故最大值为 $f(\frac{1}{3}) = \frac{3}{10}$ :由题意可得 $\frac{a}{3} \ge \frac{3}{10}$ ,解得  $a \ge \frac{9}{10}$ :故 a 的取值范围为 $\left[\frac{9}{10}, +\infty\right]$ 

21 
$$\text{M}$$
: (1)  $\Leftrightarrow x = y = 1$ ,  $\text{M}$   $f(1) = 2 \Leftrightarrow x = y = -1$ ,  $\text{M}$   $f(-1) = 2$ 

(2)令 y = -1, 则 f(-x) = f(x) + f(-1) - 2 = f(x), ∴ f(x) 为偶函数.

(3) 
$$\Leftrightarrow xy = x_1$$
,  $x = x_2$ ,  $⊗ 0 < x_1 < x_2 < 2$ ,  $⊗ y = \frac{x_1}{x_2} ⊗ 0 < y < 1$ :  $f(x_1) - f(x_2) = f(\frac{x_1}{x_2}) - 2$ 

$$\therefore f(x_1) > f(x_2)$$
  $\therefore y = f(x)$  在  $(0,2)$  上单调递减又  $\therefore f(x)$  为偶函数

∴ -2 < 2x -1 < -1 或1 < 2x -1 < 2 ∴ 
$$-\frac{1}{2}$$
 < x < 0 或1 < x <  $\frac{3}{2}$  ∴  $\left\{x \mid -\frac{1}{2}$  < x < 0 或1 < x <  $\frac{3}{2}$  \right\}

22. 解: (1) 由题意可得: f(x) = (x-a)(x-2a) > 0,

当 a > 0 时,不等式的解集为  $\{x \mid x < a \vec{\cup} x > 2a\}$ ; 当 a = 0 时,不等式的解集为  $\{x \mid x \in R \exists x \neq 0\}$ ; 当 a < 0 时,不等式的解集为  $\{x \mid x < 2a \vec{\cup} x > a\}$ 。

(2) 曲题意: 
$$f(x) = (x-a)(x-2a) = x^2 - 3ax + 2a^2 = \left(x - \frac{3}{2}a\right)^2 - \frac{1}{4}a^2$$
,

即 f(x) 是开口向上,以  $x = \frac{3}{2}a$  为对称轴的二次函数,当  $\left|\frac{3}{2}a\right| \le 1$  时,即  $-\frac{2}{3} \le a \le \frac{2}{3}$  时,

满足 
$$\begin{cases} f(1) - f\left(\frac{3}{2}a\right) \le 4 \\ f(-1) - f\left(\frac{3}{2}a\right) \le 4 \end{cases}, \quad \mathbb{D} \begin{cases} 1 - 3a + \frac{9}{4}a^2 \le 4 \\ 1 + 3a + \frac{9}{4}a^2 \le 4 \end{cases}, \quad \mathbb{M} \left\{ \frac{3}{2}a \le \frac{2}{3}; \quad \mathbb{E} \left| \frac{3}{2}a \right| > 1 \text{ B} \right\},$$

即|a|> $\frac{2}{3}$ 时,有|f(1)-f(-1)|≤4,可得|a|≤ $\frac{2}{3}$ ,故a不存在;综上可得参数a的取值范围 $\left[-\frac{2}{3},\frac{2}{3}\right]$ ;

(3) 由题意: g(x) = f(x) - a, a > 0且 $a \neq 1$ ,

且 f(x) > 0,解得  $x \le a$  或 x > 2a,由因为 f(x) 的对称轴为  $x = \frac{3}{2}a$ ,

故可得f(x)在 $(-\infty,a)$ 上单调递减,在 $(2a,\infty)$ 上单调递增,

故当[5a-3,5a-1]  $\subseteq$   $(-\infty,a)$  或[5a-3,5a-1]  $\subseteq$   $(2a,+\infty)$  时,g(x)=0 不可能有两解,

故
$$\begin{cases} 5a-3 < a \\ 5a-1 > 2a \end{cases}$$
,解得 $\frac{1}{3} < a < \frac{3}{4}$ ...①

由 g(x)=0 有两解,可得 f(x)=a 有两解,由 f(x) 是开口向上,以  $x=\frac{3}{2}a$  为对称轴的二次函数可知,

只需
$$\begin{cases} f(5a-3) \ge a \\ f(5a-1) \ge a \end{cases}$$
 .... ②联立①②求得:  $\frac{1}{2} \le a \le \frac{11-\sqrt{13}}{12}$ , 故 $a$  的取值范围为 $\left[\frac{1}{2}, \frac{11-\sqrt{13}}{12}\right]$