DOKUMEN CD-1

PENGEMBANGAN SISTEM KENDALI KETINGGIAN AIR PADA COUPLED TANK MENGGUNAKAN METODE PID

Oleh:

M. Fadel Ashar/1102193245 Nadia Safa Fajriani/1102193121 Nurrahman Rizky/1102190010

PRODI S1 TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKTRO UNIVERSITAS TELKOM BANDUNG 2022

Dokumentasi Produk Capstone Design

Lembar Pengesahan Dokumen

Judul Capstone Design : Pengembangan Sistem Kendali Ketinggian Air Pada

Coupled Tank Menggunakan Metode PID

Jenis Dokumen : Usulan Gagasan dan Pemilihan Topik

Nomor Dokumen : FTE-CD-1

Nomor Revisi :

Tanggal Pengesahan

Fakultas : Fakultas Teknik Elektro Program Studi : S1 Teknik Elektro

Jumlah Halaman : 18 Halaman

Data Pemerik	saan dan P	ersetujuan		
Ditulis Oleh		: M. Fadel Ashar : 1102193245	Jabatan Tanda Tangan	: Mahasiswa
	Nama NIM	: Nadia Safa Fajriani : 1102193121	Jabatan Tanda Tangan	: Mahasiswa
	Nama NIM	: Nurrahman Rizky : 1102190010	Jabatan Tanda Tangan	: Mahasiswa
Diperiksa Oleh	Nama Tanggal	:	Jabatan Tanda Tangan	: Penguji 1
	Nama Tanggal	: :	Jabatan Tanda Tangan	: Penguji 2
Disetujui Oleh	Nama Tanggal	: M. Ridho Rosa, S.T., M.Sc	Jabatan Tanda Tangan	: Pembimbing 1 06/01/2025
	Nama Tanggal	: Erwin Susanto, S.T., Ph.D :	Jabatan Tanda Tangan	: Pembimbing 2

Timeline Revisi Dokumen

Versi, Tanggal	Revisi	Perbaikan yang dilakukan	Halaman Revisi
1, 13 Oktober 2022	Pembahasan model alat mohon disesuaikan dengan materi modul praktikum Sistem Kendali Dasar (SKD)	Pembahasan kebutuhan sudah di sesuaikan berdasarkan materi Sistem Kendali, seperti : 1. Solusi produk yang diusulkan disesuaikan dengan materi Sistem Kendali 2. Solusi produk yang diusulkan menyesuaikan dengan kebutuhan Laboratorium Sistem Kendali Dasar (pengembangan lebih lanjut dari modul yang sudah ada)	4, 5,6
2, 27 Oktober 2022	 Judul perancangan dirasa kurang tepat karena masih proses pengembangan gagasan pemilihan topik masalah dan solusinya solusi produk B kurang tepat bagian sistem kendalinya 	 Melakukan perbaikan terhadap judul menjadi : Pengembangan Sistem Kendali Ketinggian Air Pada Coupled Tank Menggunakan Metode PID Solusi produk B diralat menjadi sistem kendali motor dc 	halaman cover judul, 2, 5, 6
3, 17 Oktober 2022	Paragraf pertama latar belakang masalah tidak spesifik	 Membuat paragraf lebih ringkas terhadap gagasan masalah pengembangan sistem dua tangki untuk skala laboratorium 	2
	Belum ada penjelasan mengenai orde 1 dan orde 2 yang dimaksud.	 Memberikan penjelasan bagian orde 1 dan orde 2 pada 	
4, 05 Januari 2023	Lampiran perbandingan harga alat tidak ada di informasi pendukung	 Membuat paragraf baru pada informasi pendukung mengenai perbandingan alat 	3
	Aspek teknologi tidak sinkron dengan kebutuhan	 Mengubah aspek teknologi menjadi aspek performa sistem 	4

DAFTAR ISI

DAFTAR ISI	iii
1. Pengantar	1
1.1. Ringkasan Isi Dokumen	1
1.2. Tujuan Penulisan Dokumen	1
1.3. Referensi	1
1.4. Daftar Singkatan	1
1.5. Daftar Tabel	2
1.6. Daftar Gambar	2
2. Masalah	2
2.1. Latar Belakang Masalah	2
2.2. Informasi Pendukung	3
2.3. Constraint	4
2.3.1. Aspek Respon Sistem	4
2.3.2. Aspek Biaya	4
2.3.3. Aspek Performa	5
2.3.4. Aspek Pengalaman Pengguna	5
2.4. Kebutuhan Yang Harus Dipenuhi	5
2.4.1. Mission Statement	6
2.4.2. Interpretasi kebutuhan pengguna	6
2.4.3. Pengelompokkan Kebutuhan	7
2.4.4. Customer Requirements	7
2.4.5. Penyusunan Prioritas Kebutuhan	9
2.5. Tujuan	9
3. Kesimpulan dan Ringkasan	10
4. Lampiran	11

1. Pengantar

1.1. Ringkasan Isi Dokumen

Dokumen CD-1 ini akan menjelaskan gagasan masalah/isu yang diangkat. Keseluruhan dokumen ini akan memberikan penjelasan terhadap gagasan masalah yang harus dipecahkan sampai dengan pendataan kriteria bentuk sistem yang diinginkan oleh *consumer*. Dokumen ini akan selalu diperbaiki serta dikoreksi bila diperlukan, dan dokumen versi terakhir akan dijadikan acuan pengembangan solusi terbaik.

1.2. Tujuan Penulisan Dokumen

Dibuat sebagai salah satu rangka penyelesaian studi S1 Teknik Elektro dengan konsep Capstone Design Project pada mata kuliah Proposal Tugas Akhir (PTA) dan mata kuliah Tugas Akhir (TA). Penulisan dokumen ini bertujuan untuk mengabadikan seluruh proses pemecahan masalah Capstone Design Project yang sudah terformulasi dengan baik.

1.3. Referensi

- [1] F. Gunterus, Falsafah Dasar : Sistem Pengendalian Proses, Jakarta: PT Elex Media Komputindo, 1994.
- [2] D. Mursyitah, A. Faizal, and E. Ismaredah, "Level Control in Coupled Tank System Using PID-Fuzzy Tuner Controller," 2018 Electr. Power, Electron. Commun. Control. Informatics Semin. EECCIS 2018, pp. 293–298, 2018, doi: 10.1109/EECCIS.2018.8692846.
- [3] Schwab, Klaus, The Fourth Industrial Revolution. Great Britain: Penguin Random House, 2017.
- [4] Setiawan, Iwan, Kontrol PID untuk Proses Industri: Beragam Struktur dan Metode Tuning PID Praktis. Jakarta: Elex Media Komputindo, 2008.
- [5] H. Mudia, "Comparative Study of Mamdani-type and Sugeno-type Fuzzy Inference Systems for Coupled Water Tank," Indones. J. Artif. Intell. Data Min., vol. 3, no. 1, p. 42, 2020, doi: 10.24014/ijaidm.v3i1.9309.
- [6] H. Gouta, S. H. Said, N. Barhoumi, and F. M'Sahli, "Observer-Based Backstepping Controller for a State Coupled two-tank System", IETE Journal of Research, vol. 61, issue 3, 2015.
- [7] Bourden, Paul R. Methods for effective teaching, 2nd ed. Boston : Allyn and Bacon, 1998.
- [8] Aggarwal, Abhishek. Level Control Trainer 220 Volts, 0-30 cm [online]. Available: https://www.indiamart.com/proddetail/level-control-trainer-20499913291.html?pos=1 &pla=n

1.4. Daftar Singkatan

Singkatan	Arti
WEF	World Economic Forum
PID	Proportional Integral Derivative
GUI	Graphical User Interface
IOT	Internet of Things
SKD	Sistem Kendali Dasar

4

1.5. Daf	itar Tabel
Tabel 2.1	Susunan Kegiatan Praktikum Sistem Kend
Tabel 2.2	Mission Statement

dali Dasar	3
	6

- Tabel 2.3 Interpretasi kebutuhan pengguna 6
- Tabel 2.4 Pengelompokkan Kebutuhan 7
 Tabel 2.5 Customer Requirements 7
- Tabel 2.6 Penyusunan Prioritas Kebutuhan 9

1.6. Daftar Gambar

Gambar 2.1 Sistem dua tangki pada penelitian backstepping method

2. Masalah

2.1. Latar Belakang Masalah

Pada era revolusi industri 4.0 teknologi kontrol mengalami banyak kemajuan, kontrol otomatis merupakan salah satu bagian penting dalam bidang pengendalian instrumentasi, terdapat banyak besaran yang harus dikendalikan diantaranya suhu, tekanan, level air, tingkat keasaman dan sebagainya [1]. Sampai saat ini kontrol *Proporsional, Integral dan Derivative* (PID) merupakan alat kontrol utama yang banyak digunakan untuk pengontrolan suatu proses di bidang industri. Akibat fenomena tersebut, **menuntut metode pendidikan agar mampu memberikan kemudahan kepada peserta didik (Mahasiswa) menguasai kompetensi teknologi kontrol untuk menghadapi bonus demografi dalam mempersiapkan individu global pencetak tenaga kerja berkualitas.**

Sistem *Coupled tank* banyak diaplikasikan pada industri yang melibatkan proses pengolahan fluida yang melibatkan cairan. Fluida yang dikendalikan tersebut akan dipompa dan kemudian dialirkan dari satu tangki ke tangki lain untuk diolah. Proses tersebut melibatkan beberapa jenis tangki seperti *single tank* yaitu tangki yang tidak terhubung dengan tangki yang lain dan *coupled tank* yaitu tangki yang tersusun dan terhubung dengan tangki yang lain [2]. Pada Gambar 2.1 merupakan contoh sistem dua tangki [3].

Sistem kendali *coupled tank* merupakan kendali dinamis orde dua yang pengendaliannya *level fluida* pada tangki dua berasal dari masukan fluida tangki pertama, sehingga untuk menjaga *level fluida* agar sesuai dengan *setpoint* diperlukan kinerja kontrol PID yang baik. Sehingga diperlukan **Kontrol PID yang mampu membuat sistem dua tangki menjadi dinamik atau stabil** agar diperoleh respon yang cepat dengan *error steady state* <10%.

Hadirnya sistem kendali dua tangki ini akan sangat membantu praktikan dalam memahami sistem kendali dasar. Sistem kendali dua tangki akan memberikan eksperimen terhadap praktikan untuk mempelajari karakteristik respon sistem orde 1 dan orde 2 serta pengaruh kontrol PID terhadap plant (automatic control mode). Hal inilah yang menjadikan pemikiran untuk mengembangkan pengendalian sistem coupled tank untuk skala Laboratorium sebagai alat peraga praktikum.

Sebelum membahas pengembangan sistem kendali dua tangki ini kami mengamati keadaan modul praktikum yang sudah tersedia. Laboratorium Sistem Kendali Dasar (SKD) S1 Teknik Elektro memiliki beberapa modul praktikum yang digunakan untuk Praktikum Sistem Kendali Dasar, yaitu modul kecepatan motor DC, modul kontrol posisi motor DC, dan modul kontrol suhu menggunakan elemen pemanas. **Ketiga modul tersebut membutuhkan waktu 25-30 menit hanya untuk persiapan dan pengoperasiannya**, terlebih metode praktikumnya **hanya dengan diperagakan dan dijelaskan oleh asisten** sedangkan praktikan hanya dapat memperhatikan dan mengambil sampel data. Maka dari itu **kit dinilai kurang interaktif sehingga diragukan efektivitasnya**.

Selain itu, para asisten cenderung terburu-buru saat menjelaskan/memeragakan kit karena dikejar oleh batas waktu praktikum. Sehingga pengembangan sistem kendali dua tangki tidak akan memakan waktu lebih dari 45 menit (dengan toleransi ±5 menit) untuk dioperasikan, dimana rentang waktu tersebut untuk persiapan pengoperasian dan peragaan, pengambilan sampel data, analisa hasil data respon sistem seperti pada tabel 2.1 di poin 3-6. Yang mana waktu 45 menit tersebut memangkas total waktu ±10 menit.

Tabel 2.1 Susunan Kegiatan Praktikum Sistem Kendali Dasar

No.	Sesi Praktikum	Batas Waktu
1	Test Awal (TA)	10 menit
2	Asisten menjelaskan dasar teori	20 menit
3 Asisten memperagakan modul praktikum 25-30 menit		25-30 menit
5	Praktikan mengambil sampel data hasil modul	10 menit
6	Analisa hasil data dan pengerjaan jurnal	15 menit
7	Tanya jawab	5 menit
	Total waktu praktikum	± 90 menit

Salah satu solusi praktis untuk mengatasi permasalahan diatas adalah dengan membeli kit kontrol PID yang sudah tersedia dipasaran. Namun terdapat keterbatasan anggaran laboratorium untuk pengadaan sistem kendali dua tangki tidak bisa lebih dari Rp 7,000,000 berikut dengan penambahan safety factor 5%. Penambahan safety factor 5% ini adalah faktor keamanan mengenai tingkat kemampuan suatu bahan teknik pada perencanaan alat akan mengalami kenaikan harga.

Pada Capstone Design ini akan membahas mengenai pengembangan sistem kendali ketinggian air pada coupled tank menggunakan metode PID. Penambahan GUI (Graphical User Interface) pada sistem ini ditambahkan untuk memudahkan proses praktikum serta kebutuhan analisis praktikan. Sistem kendali dua tangki ini akan memberikan pengalaman baru untuk praktikan dengan dua mode kendali yaitu mode manual dan otomatis. Praktikan dapat bereksperimen pengaruh kendali PID terhadap plant serta pemahaman mengenai loop terbuka (automatic mode) dan loop tertutup (manual mode).

2.2. Informasi Pendukung

Melalui bukunya, The Fourth Industrial Revolution [3], Prof. Klaus Schwab menyatakan bahwa revolusi industri 4.0 secara fundamental dapat mengubah cara hidup, bekerja, dan berhubungan satu dengan yang lain. Dimana pabrik-pabrik nyaris tidak membutuhkan tenaga manusia lagi, selain itu akan banyak tenaga kerja yang diprediksi menjadi pengangguran karena terbatasnya peluang kerja dan perubahan industri yang membutuhkan standar kompetensi tinggi.

Berdasarkan survey, dijumpai bahwa 97% industri yang bergerak dalam bidang proses (seperti industri kimia, pulp, makanan, minyak dan gas) menggunakan PID sebagai komponen utama dalam pengontrolannya (Honeywell, dalam Setiawan, 2008) [4]. Kontrol PID (Proporsional Integral Derivatif) merupakan pengembangan dari kontrol konvensional yang bertujuan untuk memberikan efek kontrol terbaik pada suatu sistem kendali. Pada sistem pengendalian level tangki memiliki karakteristik non-linear dalam proses industri yang kompleks. Dimana sebagian besar keberhasilan performa sistem ditentukan oleh nilai steady state error, overshoot, rising time, dan settling time nya[5].

Pada gambar 2.1 merupakan contoh sistem dua tangki pada penelitian "Observer-Based Backstepping Controller for a State Coupled two-tank System" [6]. Penelitian ini membahas mengenai penstabilan pengendalian sistem dua tangki pada industri menggunakan metode *backstepping*.

Gambar 2.1 Sistem dua tangki pada penelitian backstepping method

Pengembangan *plant coupled tank* untuk skala Laboratorium sebagai modul praktikum dapat digunakan sebagai media pembelajaran bernilai ekonomis, menurut pernyataan Muhamad Ali [7] **Media pembelajaran dapat digunakan berulang-ulang sehingga biaya yang dikeluarkan untuk pembelajaran dapat lebih hemat.** Media interaktif memuat materi yang berisi benda asli dari lingkungan autentik yang dapat memberi pengalaman langsung kepada mahasiswa sehingga pengetahuan mahasiswa dapat bertahan lebih lama.

Terlebih modul sistem dua tangki yang tersedia di pasaran dengan harga INR 90,000 (Rp 17,321,000) [8], harga tersebut mencapai 2x lipat dari anggaran biaya yang disediakan oleh laboran laboratorium sistem kendali dasar. Perbedaan modul tersebut dengan solusi yang ingin kami kembangkan adalah tidak adanya User Interface untuk menampilkan grafik respon sistem secara realtime. Modul kit Level Control Trainer tersebut merupakan modul kit yang hampir menyerupai dengan desain sistem dua tangki yang ingin kami kembangkan, untuk spesifikasi ataupun keterangan tambahan modul terlampir pada dokumen ini.

2.3. Constraint

2.3.1. Aspek Respon Sistem

Sistem kendali ketinggian air pada *coupled tank* dapat bekerja dengan efektif. Maksud dari efektif tersebut adalah sistem memiliki performa yang baik dalam pengendaliannya. Sistem memiliki kinerja komponen kontroler PID yang baik dalam mereduksi sinyal kesalahan, yaitu perbedaan antara sinyal setting dan sinyal aktual. **Semakin cepat reaksi sistem mengikuti** *setpoint* yang telah ditentukan dan semakin kecil *error steady state* yang dihasilkan, semakin baiklah kinerja sistem kontrol yang diterapkan. Dengan demikian sistem secara cepat mengubah keluaran *plant* sampai diperoleh nilai *set point* dan nilai aktual yang akurat.

2.3.2. Aspek Biaya

Terdapat hal-hal yang harus diperhatikan dalam pembuatan alat Capstone Desain ini untuk menghindari hambatan dalam proses tersebut dan mempertimbangkan kesiapan manufakturnya. Desain yang dibuat akan memegang peran penting dalam proses pembuatan dan pemilihan bahan baku (perlengkapan). Mengingat solusi yang

ditawarkan perlu mempertimbangkan *total cost of production* **tidak melebihi Rp 7,000,000**. Sehingga perlu meminimalisir pengeluaran produksi.

2.3.3. Aspek Performa

Untuk menjaga level fluida agar sesuai dengan setpoint diperlukan kinerja kontrol PID yang baik. Untuk mendukung terlaksananya hal tersebut, performa sistem harus dapat diandalkan. Akurasi hasil kontrol PID akan terlihat terhadap perbandingan dengan respon sistem *real*nya. Artinya bahwa **tanggapan sistem memiliki kemiripan yang baik dengan setpoint yang telah ditentukan**. Selain efektifitas kontrol PID, sensor juga menjadi unsur penting dalam pengambilan data. Sehingga data yang diperoleh dapat dipertanggung jawabkan serta menghasilkan output yang akurat.

2.3.4. Aspek Pengalaman Pengguna

Berdasarkan hasil observasi peneliti terhadap laboratorium sistem kendali dasar, diperoleh informasi bahwa laboratorium sistem kendali dasar telah dilengkapi dengan modul kit praktikum. Hanya saja ketiga modul tersebut tidak bisa dioperasionalkan oleh praktikan secara mandiri. Hal ini menyulitkan praktikan untuk menganalisis dan bereksperimen terhadap aplikasi prosedur kerja dari kegiatan praktikum.

Sehingga pengembangan sistem kendali ketinggian air pada *coupled tank* menggunakan metode PID dapat memudahkan praktikan untuk memahami aplikasi perangkat sistem orde 2 yang dinamik (stabil) dalam sistem kendali ketinggian air pada *coupled tank* menggunakan metode PID. Desain dimensi alat peraga (60 x 50 x 150) cm akan **memudahkan pengguna untuk menganalisa sistem secara seksama dengan nyaman** (menggunakan GUI dan tidak memerlukan alat rekam/alat bantu).

2.4. Kebutuhan Yang Harus Dipenuhi

Berdasarkan analisis yang telah dilakukan, terdapat beberapa kebutuhan yang harus dipenuhi untuk menyelesaikan permasalahan antara lain sebagai berikut:

- 1. Biaya pengembangan sistem tidak melebihi Rp 7,000,000.
- 2. Sistem dapat merepresentasikan dua tangki terhubung (*coupled tank*) dalam kendali dinamis orde 2.
- 3. Kontrol PID mampu membuat sistem dua tangki menjadi dinamik atau stabil dengan parameter kontrol yang tepat.
- 4. Performa sistem dapat diandalkan, baik pada besarnya tingkat *error steady state* <10% (setelah penggunaan PID) dan pada akurasi tiap komponen sensor <1%.
- 5. Sistem tidak memakan waktu >45 menit untuk dioperasikan, karena perlu mempertimbangkan kemudahan pengguna dalam praktikum SKD.
- 6. Sistem memiliki GUI untuk visual grafik PID serta akses pengontrolan parameternya (Kp, Ki, Kd, dan *Setpoint*).
- 7. Dimensi sistem tidak melebihi ukuran (60 x 50 x 150) cm, karena perlu mempertimbangkan peletakannya di area laboratorium.

Sebelum menyusun kebutuhan tersebut peneliti melakukan beberapa analisis terhadap persyaratan konsumen yang perlu dipenuhi sebagai berikut :

2.4.1. Mission Statement

tabel 2.2 Mission Statement

Mission Statement : Pengembangan Sistem Kendali Ketinggian Air Pada Coupled Tank Menggunakan Metode PID		
Deskripsi Produk	 Media pembelajaran untuk penerapan pengendalian plant coupled tank menggunakan metode PID untuk skala Laboratorium. 	
Kelebihan yang diharapkan	 Mudah dioperasikan hanya >45 menit Terdapat tampilan proses sistem dengan GUI Setpoint dapat diatur 	
Key Business Goals	-	
Primary Market	Laboratorium Sistem Kendali Dasar S1 Teknik Elektro Universitas Telkom	
Secondary Markets	Seluruh civitas akademika Fakultas Teknik Elektro Universitas Telkom	
Assumptions	 Dapat menampilkan hasil grafik nilai output dan input pada sistem pada layar monitor. Setiap kontroler proporsional, integral dan derivatif dapat diatur oleh pengguna dalam mode <i>manual</i>. 	
Stakeholders	UserProduction	

2.4.2. Interpretasi kebutuhan pengguna

Hasil interpretasi ini berdasarkan hasil wawancara dengan pengguna untuk mendapatkan pendapat pengguna terhadap kebutuhan yang harus dipenuhi pada hasil akhir produk.

tabel 2.3 Interpretasi kebutuhan pengguna

	**************************************	, p - 1128	
Customer	: M. Ridho Rosa	Interviewer(s)	: Fadel, Nadia, Nurrahman
Address	: Universitas Telkom	Date	: 15 September 2022
Telephone	: +62 818 0222 8261	Currently Use	s:-
Email	: mridhorosa@telkomuniversity.ac.id	Type of user	: Dosen Laboran Lab. SKD
Willing to do	follow-up? Yes		

Questions	Customer Statement	Interpreted Need
Typical Uses	aplikasi kontrol PID pada sistem	Sistem dapat merepresentasikan dua tangki terhubung (coupled tank) dalam orde 2

Likes-current model	Respon sistem alat terhadap tiap masukkan dapat diperlihatkan	Menampilkan hasil grafik setiap kontroler proporsional, integral dan derivatif terhadap suatu sistem
	Perangkat lunak pada alat tersebut dapat mudah digunakan oleh praktikan maupun asisten laboratorium	Terdapat prosedur yang baik agar alat dapat dengan mudah dioperasikan dan dipelihara
Dislikes-current model	Rangkaian komponen alat sulit untuk digunakan	Alat memakan waktu yang cukup lama untuk dipersiapkan sampai ke kondisi <i>ready</i> untuk praktikum
	Alat tidak dapat membantu <i>user</i> untuk memahami pemodelan sistem kendali baik pada konsep perancangan maupun pemodelan matematisnya	Desain alat tidak memberikan kebebasan kepada <i>user</i> untuk mengubah parameter kontroler nya (pemodelan bersifat <i>fixed</i>)
Suggested improvement	Alat dapat terkoneksi dengan baik dengan <i>interface</i> nya	Menyambungkan hardware terhadap software untuk monitoring & controlling menggunakan GUI

2.4.3. Pengelompokkan Kebutuhan

Tabel 2.4 Pengelompokkan Kebutuhan

***Performa sistem dapat diandalkan	***Sistem merupakan investasi yang baik
**tanggapan sistem memiliki kemiripan yang baik dengan setpoint yang telah ditentukan *Sistem memiliki reaksi yang cepat untuk mengikuti setpoint yang telah ditentukan	**Umur pemakaian kit dapat diestimasikan >3tahun *Biaya perawatan ataupun perbaikan tiap komponen dapat dilakukan mandiri (tidak memerlukan vendor luar)
***Sistem mudah digunakan	***Biaya pengembangan sistem terjangkau
Sistem tidak memerlukan waktu <45 menit untuk dioperasikan *Dimensi sistem tidak terlalu besar atau kecil, mudah untuk dianalisis secara seksama	*Max. <i>Production Cost</i> < Rp 7,000,000

2.4.4. Customer Requirements

Berikut merupakan kebutuhan yang disyaratkan oleh pengguna.

Tabel 2.5 Customer Requirements

Customer Requirements	Engineering Requirements	Description
1, 2	Dimensi sistem tidak melebihi ukuran: (60 x 50 x 150) cm	Keseluruhan komponen pada sistem dapat ditempatkan dengan layak di Laboratorium SKD (tidak memakan banyak ruang)

		Dikarenakan terdapat fasilitas lab. yang sudah ada di ruangan tersebut.	
1-3	Keseluruhan sistem tidak membutuhkan waktu >45 menit untuk dioperasikan	>45 menit (dengan toleransi ±5 menit) dimana rentang waktu tersebut untuk persiapan pengoperasian dan peragaan, pengambilan sampel data, analisa hasil data respon sistem.	
4-6	Persentase tingkat <i>error</i> steady state >10% setelah sistem menggunakan PID		
		Tujuanya adalah agar praktikan paham bagaimana penerapan sistem setelah diberi kontroler PID.	
5	Komponen sensor sistem memiliki tingkat presentasi error tidak lebih dari 1%	Menguji hasil pembacaan sensor pada sistem dan melakukan kalibrasi untuk meminimalkan presentase error	
6	Max. Production Cost sistem < Rp 7,000,000 serta safety factor 5%	Perkiraan ini berdasarkan kemungkinan komponen pada desain sistem <i>coupled tank</i> di pasaran	
1,4	Sistem memiliki mode manual dan otomatis pengendaliannya. Grafik respon sistem dapat terlihat pada GUI.	Memiliki GUI untuk memudahkan aksi pengendalian baik pada mode manual dan otomatis untuk kemudahan analisis pengguna.	
	Parameter kontrol PID dan setpoint tidak bersifat fixed pada mode manual (dapat diinput oleh user).		

Customer Requirements:

- 1. Sistem harus mudah dioperasikan oleh pengguna
- 2. Dimensi sistem harus menyesuaikan dengan kondisi laboratorium
- 3. Sistem tidak memakan waktu yang lama untuk dipersiapkan untuk praktikum
- 4. Sistem dapat menjelaskan aplikasi kontrol PID
- 5. Performa sistem dapat diandalkan
- 6. Sistem bernilai ekonomis (low cost)

2.4.5. Penyusunan Prioritas Kebutuhan

Tabel 2.6 Penyusunan Prioritas Kebutuhan

Survey: Sistem Kendali Ketinggian Air Pada Coupled Tank

Untuk setiap fitur berikut, harap tunjukkan dalam skala 1 s/d 5 seberapa penting fitur tersebut bagi anda. Silahkan gunakan skala berikut :

- 1. Fitur tidak diinginkan. Saya tidak akan mempertimbangkan produk dengan fitur ini
- 2. Fitur tidak penting, tapi saya tidak keberatan jika memilikinya
- 3. Fitur dinilai berguna untuk dimiliki, tetapi tidak diperlukan
- 4. Fitur yang diinginkan, tetapi saya masih dapat mempertimbangkan produk tanpa nya
- 5. Fitur sangat penting. Saya tidak akan mempertimbangkan sebuah produk tanpa fitur ini

Tunjukkan juga dengan mencentang kotak di sebelah kanan jika menurut Anda fitur tersebut unik, menarik, dan/atau tidak terduga.

Pentingnya fitur dalam skala 1 s/d 5	Centang kotak jika fitur unik, menarik, dan/atau tidak terduga
_5_Sistem dilengkapi dengan antarmuka GUI	\checkmark
<u>1</u> Pemodelan sistem bersifat <i>fixed</i> , <i>user</i> tidak bisa mengubah parameter pemodelan PID ataupun <i>setpoint</i>	
$\underline{5}$ Sistem memiliki reaksi yang cepat untuk mengikuti $setpoint$ yang ditentukan	
<u>5</u> Sensor memiliki akurasi yang baik terhadap tingkatan <i>noise</i> riak permukaan air	

2.5. Tujuan

Berdasarkan penjelasan kebutuhan diatas, maka terdapat beberapa tujuan dalam solusi sistem yang diusulkan yaitu :

- 1. Untuk mencari solusi pemecahan masalah pendidikan Bidang Kendali khususnya untuk Laboratorium Sistem Kendali Dasar S1 Teknik Elektro yang menyesuaikan dengan kebutuhan.
- 2. Untuk menentukan solusi kit praktikum sistem kendali dasar khususnya pada topik bahasan aplikasi kontrol PID yang merepresentasikan orde 1 dan orde 2.
- 3. Untuk menentukan rancangan solusi sistem yang diusulkan terformulasi dengan baik berikut dengan karakteristik produk sistem yang diharapkan.

3. Kesimpulan dan Ringkasan

Transformasi revolusi industri 4.0 pada teknologi kontrol menuntut perubahan industri yang membutuhkan standar kompetensi tinggi karena terbatasnya peluang kerja. Penguasaan kontrol PID menjadikan kompetensi yang wajib dimiliki oleh Mahasiswa Program Studi S1 Teknik Elektro Universitas Telkom.

Sistem *Coupled tank* merupakan tangki yang tersusun dan terhubung dengan tangki lain. Sistem kendali *coupled tank* merupakan kendali dinamis orde dua yang pengendaliannya *level fluida* pada tangki dua berasal dari masukan fluida tangki pertama. Hadirnya sistem kendali dua tangki ini akan sangat membantu praktikan dalam memahami sistem kendali dasar.

Pengembangan sistem kendali ketinggian air pada *coupled tank* menggunakan metode PID untuk skala laboratorium akan memberikan pengalaman baru kepada praktikan untuk berinteraksi secara langsung terhadap eksperimen pengaruh setiap parameter PID dalam mode manual maupun otomatis. Kemudahan yang ditawarkan dan performa yang dapat diandalkan mampu menjadikan sistem dua tangki sebagai solusi terhadap gagasan masalah tersebut.

4. Lampiran

Lampiran 1:

Curriculum Vitae 1

PERSONAL INFORMATION

Full Name : M. Fadel Ashar

Gender : Male

Birth Place and Date: Makassar, 28th April 2001

Nationality : Indonesia Religion : Islam

Phone Number : +6282 393 393 143 Email : mfadelashar@gmail.com

ACADEMIC STATUS

University: Universitas Telkom Major : Electrical Engineering

Semester: 7

EDUCATION

Institutions	City and Province	Year
SMAN 2 Pangkajene	Pangkep, South Sulawesi	July 2016 – June 2019
Universitas Telkom	Bandung, West Java	August 2019 – Present

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
KMMI - Internet of Things Based Project	October 2021	Online Course

ORGANIZATIONAL EXPERIENCE

Organizations	Title	Period	Descriptions
UKM Bola Telkom University	Member	2019 – 2020	Player for Telkom University Futsal Team
Ikatan Keluarga Mahasiswa Pangkep (IKEMAP) Bandung	HR Division Coordinator	2021 – 2022	Created training programs to help all members develop both hard and soft skill
Keluarga Mahasiswa Teknik Elektro Telkom University	Staff of Research & Development Department	2022 – Present	Create an interest and atmosphere research culture for all the disciplines in Electrical Engineering Undergraduate Program members

WORKING EXPERIENCE

Work	Year	Description
Automation and Instrumentation Engineer Intern at PT. Semen Bosowa Maros	2022	Work experience for designing, installing, and maintaining equipment which is used to control process
Lab Assistant in Laboratorium Dasar Teknik Elektro	2020-2022	Assistant in Elementary Physics Laboratory.
Lab Assistant in Laboratorium Dasar	2022 -	Assistant in Basic Control System
Teknik Elektro	present	Laboratory

SKILLS AND HOBBIES

Language Skills : Indonesian (Native), English (Elementary) Computer Skills : C, Python, MATLAB, Microsoft Office

Hobbies and interests: Football, Learn to operate components used by electrical engineers

Others: Interested in doing field project or research related to system control

and automation.

Lampiran 2:

Curriculum Vitae 2

PERSONAL INFORMATION

Full Name : Nadia Safa Fajriani

Gender : Female

Birth Place and Date: Jakarta, 26 January 2001

Nationality : Indonesia Religion : Islam

Phone Number : +62821 1519 1285 Email : nadiasafajr@gmail.com

ACADEMIC STATUS

University: Universitas Telkom Major : Electrical Engineering

Semester: 7

EDUCATION

Institutions	City and Province	Year
SMAN 54 Jakarta	East Jakarta, DKI	July 2016 – June 2019
Universitas Telkom	Bandung, West Java	August 2019 – present

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
Basic Programing : Python Fundamental	March 2022	Online Google Course

ORGANIZATIONAL EXPERIENCE

Organizations	Title	Period	Descriptions
Basic Computer Laboratory	Senior Staff of Rules and Discipline Committee	2020 – 2022	Improve for the overall administration and coordination procedures to ensure a safe, disciplined learning environment
Student Association of Electrical Engineering Program (KMTE)	Staff of Research & Development Department	2022 – present	Create an interest and atmosphere research culture for all the disciplines in Electrical Engineering Undergraduate Program members

WORKING EXPERIENCE

Work	Year	Description
Lab Assistant at Basic Computing Laboratory	2020 – 2022	Teaching the theoretical aspects of programming include the basic concepts of algorithms, the development techniques and analysis of algorithm based on C language.
Instrument Maintenance Engineer Intern at PT. Petrokimia Gresik	2022	Practical learning of maintenance department I role to minimize asset breakdowns and ensures all plant (Factory Unit IA) assets are in good working condition.
Process Engineering Intern at PT. Kirana Megatara	2022	Assist the team in the work of process engineers to implementing the application of best practices specifically in Crumb-rubber Industry to improve process design efficiency and reduce cost. Project: Pengembangan Sistem Penentuan Kadar Patokan sebagai Pengendalian Susut DRC (Dried Rubber Content)

SKILLS AND HOBBIES

Language Skills : Indonesian (Native), English (Intermediate)

Computer Skills : C Language, Python, Design (Canva & PPT based illustrator),

Microsoft Office

Hobbies and interests: Cooking, Watching movies especially in medical serial

Others : Interested in doing field project or research that leads to a strong

predilection towards Industrial Technologies Design and Sustainability.

Lampiran 3:

Curriculum Vitae 3

PERSONAL INFORMATION

Full Name : Nurrahman Rizky

Gender : Male

Birth Place and Date : Sungai Penuh, 11 October 2001

Nationality : Indonesia Religion : Islam

Phone Number : +62812 3954 5756

Email : rizkyoktober@student.telkomunivesity.ac.id

ACADEMIC STATUS

University: Universitas Telkom Major : Electrical Engineering

Semester: 7

EDUCATION

Institutions	City and Province	Year
SMAN 1	Sungai Penuh, Jambi	July 2016 – June 2019
Universitas Telkom	Bandung, West Java	August 2019 – present

SUPPORTING ACTIVITIES AND TRAININGS

Activities and Trainings	Period	Place
Webinar Strategi Keamanan Siber dan Pertumbuhan Ekonomi Digital	January 2021	Online Seminar
Solar Energy Basics	March 2022	Online Course
Introduction to the Internet of Things and Embedded Systems	Apr 2022	Online Course
Foundations of Project Management	March 2022	Online Course
Technical Support Fundamentals	June 2022	Online Course

ORGANIZATIONAL EXPERIENCE

ONGANIZATIONAL EXI ENGENCE				
Organizations	Title	Period	Descriptions	
UKM Band Telkom University	Member	2019 – 2020	Band Community for Telkom University Student	
Electro Premiere League	Streaming Operator	2020 – 2021	Responsible for filming and. Support all functions related to operating live video capture during live broadcasts.	
Keluarga Mahasiswa Teknik Elektro Telkom University	Staff of Professional Department	2022 – present	Provide education and information about the professional world for KMTE	

WORKING EXPERIENCE

Work	Year	Description
Lab Assistant at Electronics and Industrial Automation Teknik Elektro Telkom University	2022 – present	Research and Practicum Assistant who discusses and learns about Industrial Automation especially Programmable Logic Controller and The Internet of Things
Maintenance Engineer Intern at PT.Petrokimia Gresik	2022	Internship as Maintenance Engineer or specifically learn about Instrumentation at Petrokimia Gresik Plant
Maintenance Engineer Intern at Pako Group	2022	Internship as Maintenance Engineer at Pako Group (Wheel Manufacture) spesifically learn and contribute to Maintenance Management System, Total Productive Maintenance, Utility and Flow Process

SKILLS AND HOBBIES

: Indonesian (Native), English (Intermediate)

Computer Skills
Hobbies : C, PLC Ladder Diagram, Python, PVSyst, Microsoft Office Hobbies and interests: Musics, Sports, Tech Enthusiast, leadership, Management

: Interested in doing Data Analyze, Renewable Energy and

Maintenance Management System

Lampiran 4:

Referensi biaya kit Level Control Trainer pada laman

https://www.indiamart.com/proddetail/level-control-trainer-20499913291.html?pos=1&pla=n

https://www.indiamart.com/prod.detail/level-control-trainer-20499913291.html?pos=1&pla=national.edu. www.indiamart.com/prod.detail/level-control-trainer-20499913291.html?pos=1&pla=national.edu. www.indiamart.com/prod.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-20499991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-20499991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-2049991.html.detail/level-control-trainer-204999991.html.detail/level-control-trainer-20499991.html.detail/level-control-trainer-204999991.html.detail/level-control-trainer-204

DOKUMEN CD-2

PENGEMBANGAN SISTEM KENDALI KETINGGIAN AIR PADA COUPLED TANK MENGGUNAKAN METODE PID

Oleh:

M. Fadel Ashar/1102193245 Nadia Safa Fajriani/1102193121 Nurrahman Rizky/1102190010

PRODI S1 TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKTRO UNIVERSITAS TELKOM BANDUNG 2022

Dokumentasi Produk Capstone Design

Lembar Pengesahan Dokumen

Judul Capstone Design : Pengembangan Sistem Kendali Ketinggian Air Pada

Coupled Tank Menggunakan Metode PID

Jenis Dokumen : Desain Konsep Solusi

Nomor Dokumen : FTE-CD-2 Nomor Revisi : 3

Nomor Revisi : Tanggal Pengesahan :

Fakultas : Fakultas Teknik Elektro
Program Studi : S1 Teknik Elektro
Jumlah Halaman : 12 Halaman

Data Pemer	iksaan dan P	ersetujuan		
Ditulis	Nama	: M. Fadel Ashar	Jabatan	: Mahasiswa
Oleh	NIM	: 1102193245	Tanda Tangan	Jul
	Nama NIM	: Nadia Safa Fajriani : 1102193121	Jabatan Tanda Tangan	: Mahasiswa
	Nama NIM	: Nurrahman Rizky : 1102190010	Jabatan Tanda Tangan	: Mahasiswa
Diperiksa Oleh	Nama Tanggal	: :	Jabatan Tanda Tangan	: Penguji 1
	Nama Tanggal	: :	Jabatan Tanda Tangan	: Penguji 2
Disetujui Oleh	Nama Tanggal	: M. Ridho Rosa, S.T., M.Sc :	Jabatan Tanda Tangan	: Pembimbing 1
	Nama Tanggal	: Erwin Susanto, S.T., Ph.D :	Jabatan Tanda Tangan	Pembimbing 2 7/1/2023

Timeline Revisi Dokumen

Versi, Tanggal	Revisi	Perbaikan yang dilakukan	Halaman Revisi
1, 14 November 2022	Pembahasan spesifikasi performa alat seharusnya juga tidak melupakan tingkat akurasi kontrol PID nya	Melakukan perbaikan pada bagian spesifikasi performa alat dengan uji <i>error steady state</i> nya	4,6-7
	Pada engineering requirement dirasa terlalu lama jika maks. set up alat 2 jam	Melakukan perbaikan pada maks. set up alat menjadi 1 jam saja	8
2, 17 November 2022	Pada bagian kebutuhan yang harus dipenuhi, masih terdapat beberapa permasalahan yang belum tercantumkan	Melakukan perbaikan pada bagian tabel 2.1 agar memenuhi seluruh permasalahan pada topik	2
	Bagian spesifikasi terdapat hal yang belum dijelaskan (ambigu).	Melakukan perbaikan pada tabel 2.1 poin 1 menjadi: Biaya pengembangan sistem tidak melebihi Rp 7,000,000 berikut dengan safety factor 5%.	2
		Melakukan penjelasan terhadap apa itu <i>safety factor</i> pada spesifikasi <i>economy</i>	3,
		Melakukan penjelasan terhadap mengapa sistem dapat dipersiapkan >45 menit pada bagian spesifikasi <i>usability</i>	4
3, 05 Januari 2023	Bagian verifikasi tidak memenuhi seluruh customer requirements pada lampiran	Melakukan perubahan terhadap seluruh verifikasi dan menyatakan tiap ukuran spek yang tercantum pada customer requirements	5-8

DAFTAR ISI

DAFTAR ISI	
1. Pengantar	1
1.1. Ringkasan Isi Dokumen	1
1.2. Tujuan Penulisan Dokumen	1
1.3. Referensi	1
1.4. Daftar Singkatan	1
1.5. Daftar Tabel	2
1.6 Daftar Gambar	2
2. Spesifikasi	2
2.1. Spesifikasi Produk	3
2.1.1. Spesifikasi Economy	3
2.1.2. Spesifikasi Functionality	3
2.1.3. Spesifikasi Performance	3
2.1.4. Spesifikasi Usability	4
2.1.5. Spesifikasi Geometry	4
2.2. Verifikasi	6
2.2.1. Spesifikasi Economy	6
2.2.2. Spesifikasi Functionality	6
2.2.3. Spesifikasi Performance	6
2.2.4. Spesifikasi Usability	7
2.2.5. Spesifikasi Geometry	8
3. Lampiran	9

1. Pengantar

1.1. Ringkasan Isi Dokumen

Dokumen CD-2 ini akan menjelaskan mengenai desain konsep solusi. Dokumen akan menghasilkan penjelasan spesifikasi yang dibutuhkan untuk tahap implementasi solusi yang telah diajukan pada dokumen CD-1. Penjelasan desain konsep solusi berupa karakteristik spesifikasi berdasarkan taksonomi nya beserta verifikasi dan pengujian kinerja untuk tiap item taksonomi tersebut.

1.2. Tujuan Penulisan Dokumen

Dibuat sebagai salah satu rangka penyelesaian studi S1 Teknik Elektro dengan konsep Capstone Design Project pada mata kuliah Proposal Tugas Akhir (PTA) dan mata kuliah Tugas Akhir (TA). Penulisan dokumen CD-2 ini bertujuan untuk mengabadikan seluruh proses pengembangan desain konsep solusi dengan berfokus pada spesifikasi sistem yang dirancang.

1.3. Referensi

- [1] Setiawan, Iwan, Kontrol PID untuk Proses Industri: Beragam Struktur dan Metode Tuning PID Praktis. Jakarta: Elex Media Komputindo, 2008.
- [2] Shneiderman, B., & Plasant, C., Designing User Interface. United States of America: Pearson Education Inc., 2005.
- [3] Bauer, D. T., Guerlain, S., & Brown, P. (2010, July 1st). The design and evaluation of a graphical display for laboratory data [online]. Available: https://www.semanticscholar.org/paper/The-design-and-evaluation-of-a-graphical-display-Bauer-Guerlain/1d107716bf9dfe8485bb752707469b9e46f8536a
- [4] Darajat, U. A., & Istiqphara, S., "Sistem Kontrol Ketinggian Air pada Sistem Dua Tanki dengan Menggunakan Metode Proporsional Integral (PI) Adaptif", JTEV Vol. 7, No. 1, 2021
- [5] Ljung, Lennart, System Identification, Theory for the User. Prentice Hall, Inc. USA, 1987.
- [6] Johnson, Rolf, System Modeling And Identification. Prentice Hall, Inc. USA, 1993
- [7] Septiani, A. N., Ravy, U. J., Wardhana, S. A., & Dewi, K. A., "Analisis Stabilitas Sistem Pengendalian Level Pada Fine Liquor Evaporator Dengan Metode Root Locus dan Nyquist di PT. XYZ Blora", SNTEM Vol. 1, June, 2021.

1.4.Daftar Singkatan

Singkatan	Arti	
SKD	Sistem Kendali Dasar	
PID	Proportional Integral Derivative	
INR	India Rupee	
IDR	Indonesia Rupiah	

5

1.5. Daftar Tabel	
Tabel 2.1 Daftar kebutuhan	2
Tabel 2.2 Susunan Kegiatan Praktikum Sistem Kendali Dasar	4
Tabel 2.3 Rangkuman kebutuhan dan kaitannya terhadap spesifikasi	5
Tabel 2.4 Verifikasi biaya pengembangan sistem	6
Tabel 2.5 Verifikasi sistem orde 1 dan orde 2	6
Tabel 2.6 Verifikasi performa model sistem dinamik	6
Tabel 2.7 Verifikasi performa sistem dalam error steady state	7
Tabel 2.8 Verifikasi performa sistem dalam akurasi sensor	7
Tabel 2.9 Verifikasi waktu operasi sistem	7
Tabel 2.10 Verifikasi ukuran dimensi sistem	8
Tabel 2.11 Lampiran Customer Requirements	9
1.6 Daftar Gambar	
Gambar 2.1 Sketsa ukuran sistem	5

2. Spesifikasi

Gambar 2.2 Sketsa toleransi geometri

Tabel berikut adalah kebutuhan yang harus dipenuhi (sub-bab 2.4) pada dokumen CD-1). Kebutuhan dibawah ini disusun berdasarkan *customer requirements* yang terlampir pada lampiran 1 dokumen CD-2 ini.

Tabel 2.1 Daftar kebutuhan

	Tabel 2.1 Dattai Redutahan		
No	Kebutuhan yang harus dipenuhi		
1	Biaya pengembangan sistem tidak melebihi Rp 7,000,000 dengan toleransi safety		
	factor 5%.		
2	Sistem dapat merepresentasikan dua tangki terhubung (coupled tank) dalam		
	kendali dinamis orde 2.		
3	Kontrol PID mampu membuat sistem dua tangki menjadi dinamik atau stabil		
	dengan parameter kontrol yang tepat.		
4	Performa sistem dapat diandalkan, baik pada besarnya tingkat error steady state		
	<10% (setelah penggunaan PID) dan pada akurasi tiap komponen sensor <1%.		
5	Sistem tidak memakan waktu >45 menit untuk dioperasikan, karena perlu		
	mempertimbangkan kemudahan pengguna dalam praktikum SKD.		
6	Sistem memiliki GUI untuk visual grafik PID serta akses pengontrolan		
	parameternya (Kp, Ki, Kd, dan Set point).		
7	Dimensi sistem tidak melebihi ukuran (60 x 50 x 150) cm, karena perlu		
	mempertimbangkan letaknya di area laboratorium.		

2.1. Spesifikasi Produk

2.1.1. Spesifikasi Economy

Berdasarkan lampiran 2 bahwa kit *Level Control Trainer* 220V (sistem kendali level air pada satu tanki) dengan harga INR 90,000 (IDR 17,321,000). Referensi harga dari Kit praktikum tersebut sangat melampaui batas anggaran laboratorium SKD. Untuk memenuhi *customer requirements* yang menyatakan bahwa anggaran untuk biaya produksi sistem harus bernilai ekonomis.

Sehingga hal tersebut tidak bisa menjadi jalan keluar dikarenakan harganya yang cukup mahal serta tidak memiliki spesifikasi fitur yang sesuai dengan kebutuhan. Solusi sistem yang diberikan mampu menekan *cost* tersebut. Berdasarkan perkiraan untuk rancangan kami, maximum **Pengeluaran Produksi alat peraga hanya akan mencapai** < **Rp 7,000,000 berikut dengan penambahan** *safety factor* 5%. Penambahan *safety factor* 5% ini adalah toleransi faktor keamanan untuk tingkat kemampuan suatu bahan teknik pada alat mengalami kenaikan harga.

2.1.2. Spesifikasi Functionality

Untuk memenuhi pencapaian hasil pembelajaran kontroler PID pada praktikum SKD, maka alat peraga harus merepresentasikan orde 1 dan orde 2 dengan baik. Sistem orde 1 ditandai dengan model dinamik sistem berupa persamaan diferensial dengan turunan tertinggi pangkat satu. Sementara sistem orde 2 berupa sistem yang memiliki model persamaan dengan turunan tertinggi berpangkat dua. Selain itu sistem orde 1 dan 2 ditandai dengan jumlah pole pada bentuk fungsi transfernya. Sistem orde 1 memiliki satu buah pole dengan ciri adanya nilai gain dan konstanta waktu, sementara sistem orde 2 memiliki dua buah pole dengan ciri khas adanya nilai redaman dan frekuensi natural terhadap respon sistem.

Diharapkan dengan adanya spesifikasi sistem yang merepresentasikan sistem orde 1 dan orde 2, praktikan dapat memahami bentuk respon sistem baik orde 1 dan orde 2 di kondisi transient maupun saat *steady state*. Hal tersebut juga akan membantu praktikan memahami pengaruh nilai gain, konstanta waktu, redaman, dan frekuensi natural yang dimiliki oleh sistem.

Selain harus merepresentasikan orde 1 dan orde 2, alat juga mesti dilengkapi dengan kontroler PID yang nilai **parameter kp, ki, dan kd nya bisa diubah-ubah**. Hal ini dikarenakan keperluan alat yang nantinya berguna untuk memberi wawasan ke pengguna atau praktikan mengenai manfaat penggunaan kontroler PID. Setelah alat diberi parameter PID yang tepat, maka **respon sistem haruslah lebih baik dibanding sebelum menggunakan PID controller**.

2.1.3. Spesifikasi Performance

Performa sistem harus bisa diandalkan terutama pada hasil parameter PID nya. Tingkat persentase tingkat error steady state tidak boleh melebihi 10% setelah sistem menggunakan PID. Jika sistem menggunakan kontroler PID dengan hasil tuning yang tepat, maka kondisi error steady state nya akan bernilai kecil. Artinya bahwa tanggapan sistem memiliki kemiripan yang baik dengan set point yang telah ditentukan.

Selain itu untuk mendukung terlaksananya pemantauan terus menerus (*realtime*) dan akurasi hasil respon sistem, sensor menjadi unsur penting dalam pengambilan data sehingga data yang diperoleh dapat dipertanggung jawabkan. Sebagai jaminan mutu sensor, kami menetapkan bahwa batas akurasi sensor <1%. Untuk evaluasi terhadap hasil pembacaan sensor dapat dilakukan dengan menghitung error relatif pembacaan sensor dan melakukan kalibrasi ulang sampai mencapai error relatif <1%.

Model sistem dinamis dapat menjadi alat pendukung untuk menguji performa sistem. Teknik identifikasi sistem menjadi awal mengestimasi model dinamik sebuah objek kontrol (plant) [5,6]. Pemilihan parameter waktu (gain) proportional, integral, dan derivative pada kontrol PID secara praktis akan sangat mempengaruhi dinamika keluaran variabel output proses yang sedang dikontrol. Jika parameter (P, I, dan D) ditentukan dengan tepat, maka respon yang didapat akan optimal (sesuai setpoint) [7].

2.1.4. Spesifikasi Usability

Pada proses praktikum, praktikan tidak dapat memiliki kesempatan untuk ikut aktif mengoperasikan sistem. Hal ini dikarenakan ketiga modul yang tersedia di laboratorium begitu kompleks sehingga hanya asisten yang mampu mengoperasikannya, selain itu apabila ada kerusakan pada modul akan sulit untuk diperbaiki (hanya bisa diperbaiki oleh vendor pencipta modul tersebut). Maka, sistem pada solusi alat yang diberikan tidak akan memakan waktu lebih dari 45 menit (dengan toleransi ±5 menit) dimana rentang waktu tersebut untuk persiapan pengoperasian dan peragaan, pengambilan sampel data, analisa hasil data respon sistem. Waktu 45 menit tersebut dianggap sangat efektif dari keseluruhan total waktu praktikum selama 90 menit. Sisa waktu 45 menit dapat alokasikan untuk TA, penjelasan dasar teori dan tanya jawab seperti pada penjelasan tabel 2.2 berikut.

Tabel 2.2 Susunan Kegiatan Praktikum Sistem Kendali Dasar

No.	Sesi Praktikum	Batas Waktu	
1	Test Awal (TA)	10 menit	
2	Asisten menjelaskan dasar teori	25 menit	
3	Asisten memperagakan modul praktikum	25-30 menit	
5	Praktikan mengambil sampel data hasil modul	10 menit	
6	Analisa hasil data dan pengerjaan jurnal	15 menit	
7	Tanya jawab	10 menit	
	Total waktu praktikum ± 90 menit		

Alat juga akan dilengkapi dengan GUI yang dapat membantu praktikan untuk menampilkan hasil respon sistem. **GUI pada sistem memiliki fungsi untuk** *monitoring* dan *controlling*. *Monitoring* disini berfungsi untuk visualisasi grafik nilai output dan input pada sistem, sedangkan pada *controlling* disini berfungsi untuk mengatur parameter kestabilan sistem menggunakan metode PID seperti parameter Ki, Kp, Kd, *Setpoint*, PID *Value*. Sehingga dengan adanya GUI ini dapat mempermudah praktikan untuk mengambil sampel data dan memahami konsep kontrol PID terhadap objek di titik kerja yang diharapkan (set point).

2.1.5. Spesifikasi Geometry

Agar alat dapat dioperasikan secara efektif dan efisien dalam ruang laboratorium, kami membatasi **ukuran keseluruhan alat tidak melebihi dimensi (60 x 50 x 150) cm**. Hal ini agar alat dapat mencapai tujuan spesifik dengan baik oleh pengguna (asisten dan praktikan). Mengingat tujuan utama ini adalah untuk mengembangkan kit praktikum sistem kendali dasar. Dimana faktor penting yang perlu dipertimbangkan adalah **pengalaman pengguna ketika berinteraksi dengan produk agar mudah dioperasikan**.

Apabila tinggi dimensi produk >150cm, pengguna akan kesulitan untuk menganalisis kinerja sistem (mengambil sampel data) bahkan alat juga akan sulit untuk dimobilisasi ke dalam ruangan laboratorium. Apabila panjang dan lebar alat melebihi (60 x 50) cm, alat tidak akan proporsional dengan ruangan praktikum yang sudah terisi oleh meja dan bangku praktikum. Ruangan praktikum sendiri berukuran (7,5 x 6,4) m² yang dilengkapi dengan 4 meja, dengan setiap meja dilengkapi 6 buah bangku untuk praktikan.

Gambar 2.1 Sketsa ukuran sistem

Gambar 2.2 Sketsa Toleransi Geometri

Tabel 2.3 Rangkuman kebutuhan dan kaitannya terhadap spesifikasi

No	Kebutuhan	Spesifikasi
1	Biaya pengembangan sistem tidak melebihi Rp 7,000,000 dengan toleransi <i>safety factor</i> 5%.	Spesifikasi 1
2	Sistem dapat merepresentasikan dua tangki terhubung (coupled tank) dalam kendali orde 2.	Spesifikasi 2
3	Kontrol PID mampu membuat sistem dua tangki menjadi stabil	Spesifikasi 3
4	Performa sistem dalam tingkat <i>error steady state</i> <10% Performa sistem untuk akurasi komponen sensor <1%	Spesifikasi 3
5	Waktu operasi sistem >45 menit	Spesifikasi 4
6	Dilengkapi dengan GUI	Spesifikasi 4
7	Dimensi sistem (60 x 50 x 150) cm	Spesifikasi 5

2.2. Verifikasi

Tuliskan rincian bagaimana spesifikasi produk yang hendak dirancang akan diverifikasi dan diukur kinerjanya. Bagian-bagian yang diverifikasi, harus sesuai dengan spesifikasi produk yang dituliskan pada bagian 2.1 dokumen ini. Berikan secara rinci metode pengukuran dan prosedur pengujian setiap poin spesifikasi.

2.2.1. Spesifikasi Economy

Tabel 2.4 Verifikasi biaya pengembangan sistem

Rincian	Biaya pengembangan sistem tidak melebihi Rp 7,000,000 dengan toleransi <i>safety factor</i> 5%.	
Metode Pengukuran	Membuat perkiraan RAB (Rancangan Anggaran Biaya) untuk total cost production < Rp 7,000,000 (safety factor 5%)	
Prosedur Pengujian	 Mendata seluruh material barang dan jasa yang dibutuhkan dalam proses pengerjaan. Menghitung volume kebutuhan item material barang dan jasa berdasarkan <i>design</i> ukuran alat Mendata harga pasar tiap unit item material Menghitung total biaya 	

2.2.2. Spesifikasi Functionality

Tabel 2.5 Verifikasi sistem orde 1 dan orde 2

Dinata	D	
Rincian	Desain dan spesifikasi sistem merepresentasikan orde 1	
	dan orde 2	
Metode Pengujian	Membandingkan respon sistem riilnya dan respon sistem	
	saat dimodelkan ke Simulink Matlab	
Prosedur Pengujian	1. Menyiapkan sistem riil dan menyiapkan bentuk	
	transfer function di Simulink Matlab untuk orde 1	
	dan orde 2	
	2. Memberikan input step berupa laju aliran air yang	
	masuk ke tangki sebesar 17-20 L/menit untuk	
	sistem riil maupun bentuk sistem di Simulink	
	3. Melihat dan membandingkan grafik respon	
	diantara keduanya, jika grafik respon sistem riil dan sistem di simulink berbeda jauh maka terdapat	
	kesalahan di fungsi transfer.	
	4. Jika bentuk grafik respon antara keduanya mirip, lanjutkan dengan verifikasi bahwa bentuk responnya merupakan orde 1 atau orde 2 dengan	
	melihat teori yang sudah ada.	

Tabel 2.6 Verifikasi respon sistem setelah diberikan PID

racer 2.0 verrinkasi respent sistemi setelah albertikan 1 12		
Rincian	Sistem mampu memperbaiki responya setelah tuning PID	
Metode Pengujian	Mengatur nilai Kp, Ki, dan Kd dan melihat respon sistem melalui GUI	
Prosedur Pengujian	Jalankan sistem dan lihat responnya bila belum menggunakan PID.	

T T	
	2. Lakukan tuning PID untuk menencari nilai Kp, Ki,
	dan Kd.
	3. Substitusi nilai PID yang didapat melalui GUI.
	4. Bandingkan respon sistem sebelum dengan
	sesudah tuning PID. Tuning dianggap berhasil
	apabila respon sistem lebih baik setelah diberi
	nilai PID yang tepat.
	Catatan: Pengujian ini bisa dilakukan apabila sistem
	(sensor, aktuator, dan kontroller) bekerja dengan baik dan
	akurat.

2.2.3. Spesifikasi Performance

Tabel 2.7 Verifikasi performa sistem dalam error steady state

Rincian	Performa sistem dalam tingkat <i>error steady state</i> <10%	
Metode Pengujian	Menghitung error steady state setelah PID di tuning	
Prosedur Pengujian	1. Melakukan <i>tuning</i> PID untuk mencari parameter Kp,	
	Ki, dan Kd.	
	2. Menginput hasil <i>tuning</i> ke kontroler	
	3. Sistem diberi input step	
	4. Ukur nilai respon <i>steady state</i> untuk mencari besar	
	error steady state dengan rumus berikut:	
	Ess = (nilai steady state - set point) x 100%	

Tabel 2.8 Verifikasi performa sistem dalam akurasi sensor

140C1 2:0 VC111	140C1 2.0 VCIIIIKUSI PCITOTIIIU SISTEIII UUUUIII UKUTUSI SEIISOI		
Rincian	Performa sistem untuk akurasi komponen sensor <1%		
Metode Pengujian	Menghitung tingkat <i>error relatif</i> komponen sensor		
Prosedur Pengujian	1. Sensor dipasang pada bagian atas tangki dan membaca ketinggian dari tangki (50 CM)		
	2. Mencatat 10-20 sampel hasil bacaan sensor		
	3. Menghitung <i>error relatif</i> hasil bacaan sensor terhadap objek menggunakan rumus berikut :		
	$\%error\ relatif = \frac{(Xobjek - Xsensor)}{Xobjek}\ x\ 100\%$		
	4. Jika hasil <i>error relatif</i> >5%, maka lakukan kalibrasi sensor		

2.2.4. Spesifikasi Usability

Tabel 2.9 Verifikasi waktu operasi sistem

	1	
Rincian	Waktu operasi sistem >45 menit (dengan toleransi max.	
	±5 menit)	
Metode Pengujian	Pengukuran waktu kerja sistem menggunakan stopwatch	
Prosedur Pengujian	Dengan menggunakan teknik observasi peneliti mengumpulkan data dengan melakukan pengamatan langsung terhadap sistem.	
	Perhitungan waktu kerja sistem akan dimulai dari kondisi off (mati):	

1	. Mempersiapkan untuk memulai stopwatch
	. User mulai menghubungkan kabel power ke stop
	kontak
3	. Memastikan semua komponen hidup dan tersambung
	dengan baik
4	. <i>User</i> menghubungkan Mikrokontroler dengan PC
5	. Membuka GUI pada PC
6	. Nyalakan pompa dan menentukan setiap setpoint dan
	parameter kontrol PID
7	Pastikan kedua tangki sudah mencapai ketinggian
	sesuai dengan setpoint
8	. Pastikan hasil grafik respon I/O sistem pada GUI
	berjalan dengan baik
9	. Stopwatch berhenti
1	0. Catat hasil pengukuran waktu

2.2.5. Spesifikasi Geometry

Tabel 2.10 Verifikasi ukuran dimensi sistem

Rincian	Ukuran dimensi sistem (60 x 50 x 150) cm	
Metode Pengujian	Mengukur dimensi keseluruhan sistem (P x L x T) cm	
Prosedur Pengujian	Mencari dimensi ukuran sistem menggunakan alat ukur	
	meteran.	
	Sistem akan diukur baik panjang, lebar dan tingginya	
	dengan unit SI cm. Toleransi geometri/bentuk sistem	
	dilakukan seperti pada gambar 2.2 diatas.	

3. Lampiran

Lampiran 1 : Customer Requirements

Tabel 2.11 Lampiran Customer Requirements

Customer	Tabel 2.11 Lampiran Customer I	
Requirements	Engineering Requirements	Description
1, 2	Dimensi sistem tidak melebihi ukuran: (60 x 50 x 150) cm	Keseluruhan komponen pada sistem dapat ditempatkan dengan layak di Laboratorium SKD (tidak memakan banyak ruang) Dikarenakan terdapat fasilitas lab. yang sudah ada di ruangan tersebut.
1-3	Keseluruhan sistem tidak membutuhkan waktu >45 menit untuk dioperasikan	
4-6	Persentase tingkat <i>error</i> steady state >10% setelah sistem menggunakan PID	Jika sistem menggunakan kontroler PID dengan hasil tuning yang tepat, maka kondisi error <i>steady state</i> nya harus kecil, artinya tanggapan sistem mirip dengan set point yang diinginkan. Tujuanya adalah agar praktikan paham bagaimana penerapan sistem setelah diberi kontroler PID.
5	Komponen sensor sistem memiliki tingkat presentasi error tidak lebih dari 1%	Menguji hasil pembacaan sensor pada sistem dan melakukan kalibrasi untuk meminimalkan presentase error
6	Max. Production Cost sistem < Rp 7,000,000 serta safety factor 5%	Perkiraan ini berdasarkan kemungkinan komponen pada desain sistem <i>coupled tank</i> di pasaran
1,4	Sistem memiliki mode manual dan otomatis pengendaliannya. Grafik respon sistem dapat terlihat pada GUI.	Memiliki GUI untuk memudahkan aksi pengendalian baik pada mode manual dan otomatis untuk kemudahan analisis pengguna.

Parameter kontrol PID dan *setpoint* tidak bersifat *fixed* pada mode manual (dapat diinput oleh *user*).

Customer Requirements:

- 1. Sistem harus mudah dioperasikan oleh pengguna
- 2. Dimensi sistem harus menyesuaikan dengan kondisi laboratorium
- 3. Sistem tidak memakan waktu yang lama untuk dipersiapkan untuk praktikum
- 4. Sistem dapat menjelaskan aplikasi kontrol PID
- 5. Performa sistem dapat diandalkan
- 6. Sistem bernilai ekonomis (low cost)

Lampiran 2:

Referensi biaya kit Level Control Trainer pada laman

https://www.indiamart.com/proddetail/level-control-trainer-20499913291.html?pos=1&pla=n

https://www.indiamart.com/prod.detail/level-control-trainer-20499913291.html?pos=1&pla=n

DOKUMEN CD-3

PENGEMBANGAN SISTEM KENDALI KETINGGIAN AIR PADA COUPLED TANK MENGGUNAKAN METODE PID

Oleh:

M. Fadel Ashar/1102193245 Nadia Safa Fajriani/1102193121 Nurrahman Rizky/1102190010

PRODI S1 TEKNIK ELEKTRO FAKULTAS TEKNIK ELEKTRO UNIVERSITAS TELKOM BANDUNG 2022

Dokumentasi Produk Capstone Design

Lembar Pengesahan Dokumen

Judul Capstone Design : Pengembangan Sistem Kendali Ketinggian Air Pada

Coupled Tank Menggunakan Metode PID

Jenis Dokumen : Desain Rancangan Solusi

Nomor Dokumen : FTE-CD-3

Nomor Revisi :

Tanggal Pengesahan

Fakultas : Fakultas Teknik Elektro
Program Studi : S1 Teknik Elektro
Jumlah Halaman : 20 Halaman

Data Pemeri	ksaan dan Pe	ersetujuan		
Ditulis	Nama	: M. Fadel Ashar	Jabatan	: Mahasiswa
Oleh	NIM	: 1102193245	Tanda Tangan	Juit
	Nama NIM	: Nadia Safa Fajriani : 1102193121	Jabatan Tanda Tangan	: Mahasiswa
	1 12.12			Inellia
	Nama	: Nurrahman Rizky	Jabatan	: Mahasiswa
	NIM	: 1102190010	Tanda Tangan	Mã
Diperiksa	Nama	:	Jabatan	: Penguji 1
Oleh	Tanggal	;	Tanda Tangan	
	Nama	:	Jabatan	: Penguji 2
	Tanggal	:	Tanda Tangan	
Disetujui	Nama	: M. Ridho Rosa, S.T., M.Sc	Jabatan	: Pembimbing 1
Oleh	Tanggal	:	Tanda Tangan	06/01/2023 Selv
	Nama Tanggal	: Erwin Susanto, S.T., Ph.D :	Jabatan Tanda Tangan	: Pembimbing 2

DAFTAR REVISI DOKUMEN CD-3

Timeline Revisi Dokumen

Versi, Tanggal	Revisi	Perbaikan yang dilakukan	Halaman Revisi
1, 05 Januari 2023	Input pada diagram fungsi diperjelas (apakah value atau nilai), jangan menggunakan bahasa 'user'	adalah <i>setpoint</i> dan parameter	3
	alternatif solusi belum boleh menuliskan memakai komponen apa	Pada gambar 2.2 telah diperbaiki. Tiap konsep tidak mengandung komponen/perangkat keras, melainkan menggambarkan gambaran konsep solusi	4-5
	Bagian pemilihan komponen dibuat jelas tiap perbandingannya	Melakukan perbaikan dengan tabel perbandingan tiap komponen berdasarkan harga dan keterangan spec	16-17
	Gantt Chart dibuat harus memperlihatkan PIC dengan jelas	Melakukan perbaikan terhadap tabel <i>Gantt Chart</i> dengan menambahkan presentase <i>workload</i>	18

DAFTAR ISI

DAFTAR ISI	iii
1. Pengantar	1
1.1. Ringkasan Isi Dokumen	1
1.2. Tujuan Penulisan Dokumen	1
1.3. Referensi	1
1.4. Daftar Singkatan	1
1.5. Daftar Tabel	1
1.6 Daftar Gambar	2
2. Konsep Solusi	2
2.1 Diagram Fungsi	2
2.2. Alternatif Solusi Sistem yang Diusulkan	3
2.2.1. Karakteristik Solusi	3
2.2.2. Usulan Solusi dan Skenario Penggunaan	3
A. Konsep 1	4
B. Konsep 2	5
C. Konsep 3	5
3. Pemilihan Sistem	6
3.1. Kriteria Pemilihan Sistem	6
3.1.1. Ekonomis	6
3.1.2. Akurasi Sensor	6
3.1.3. Visual GUI	6
3.1.4. Perawatan	7
3.1.5. Ketersediaan Komponen	7
3.2. Matriks Keputusan (Decision Matrix)	7
3.3. Sistem terpilih yang akan dikembangkan	8
4. Rencana Desain Sistem	8
4.1. Perancangan Sistem	10
4.1.1. Perangkat Keras (Mekanik & Elektronik)	10
4.1.2. Kendali PID	11
4.1.3. Perangkat Lunak (GUI)	13
4.2. Diagram Blok	15
5. Pemilihan Komponen	16
5.1. Mikrokontroler	16
5.2. Sensor Ultrasonik	17
5.3. Motor Driver	17
6. Jadwal Pengerjaan	18
7. Lampiran	19

1. Pengantar

1.1. Ringkasan Isi Dokumen

Dokumen CD-3 ini akan menghasilkan proses perancangan teknis terhadap solusi alat yang diberikan. Pada dokumen ini akan ditunjukan berbagai alternatif solusi alat dan juga pemilihan secara rasional dan sistematis dari berbagai alternatif tersebut.

1.2. Tujuan Penulisan Dokumen

Dibuat sebagai salah satu rangka penyelesaian studi S1 Teknik Elektro dengan konsep *Capstone Design Project* pada mata kuliah Proposal Tugas Akhir (PTA) dan mata kuliah Tugas Akhir (TA). Penulisan dokumen CD-3 ini bertujuan untuk mengabadikan seluruh proses pengembangan desain konsep solusi dengan berfokus pada keputusan pemilihan alternatif solusi untuk direalisasikan.

1.3. Referensi

Penulisan referensi mohon disesuaikan dengan standar IEEE

- [1] Dieter, G. E., Engineering Design. New York: McGraw-Hill, 1991.
- [2] Abidin, Z., Maryanto, I., & Sutikno, P., "Perancangan, Pembuatan dan Pengujian Sistem Kendali Tangki Ganda Untuk Alat Peraga Kuliah Sistem Kendali", Jurnal Teknik Mesin Vol. 9, No. 3.
- [3] Pahl, G., and Beitz, W., Engineering Design: A Systematic Approach, Springer Verlag, 1988.
- [4] Arjin N., "Design of-DOF PI Controller with Decoupling for Coupled-Tank Process," International Conference on Control, Pathumwan Institute of Technology, 2007.
- [5] Risal, A., "Mikrokontroler dan Interface". Makasar : Universitas Negri Makasar, November 2017

1.4. Daftar Singkatan

Singkatan	Arti
PID	Propotional, Integral, and Derivative
GUI	Graphical User Interface
PC	Personal Computer
I/O	Input Output
ADC	Analog to Digital Converter

1.5. Daftar Tabel

Tabel 2.1 Bobot dalam Kriteria Seleksi	7
Tabel 2.2 Decision Matrix Scoring	8
Tabel 2.3 Alternatif yang Terpilih	8
Tabel 4.1 Diagram Blok Level 0	15
Tabel 4.2 Diagram Blok Level 1	16
Tabel 5.1 Pilihan Mikrokontroler Arduino	16
Tabel 5.2 Pilihan Sensor Ultrasonik	17
Tabel 5.3 Pilihan Motor Driver	17
Tabel 6.1 Gantt Chart	18
Tabel 7.1 Rancangan Anggaran Biaya	19

1.6 Daftar Gambar

Gambar 2.1 Diagram Fungsi	2
Gambar 2.2 Alternatif solusi konsep untuk tiap fungsi	4
Gambar 4.1 Konstruksi Sistem Coupled Tank	9
Gambar 4.2 Skema Setup Garis Besar	10
Gambar 4.3 Wiring Diagram	10
Gambar 4.4 Diagram Alir Perangkat Keras	11
Gambar 4.5 Diagram alir kendali PID (Controller Mode)	12
Gambar 4.6 Diagram alir komunikasi PID dengan GUI (Monitoring)	13
Gambar 4.7 Diagram Alir Antarmuka	14
Gambar 4.8 Rancangan Antarmuka 1	14
Gambar 4.9 Rancangan Antarmuka 2	14
Gambar 4.10 Diagram Blok Level 0	15
Gambar 4.11 Diagram Blok Level 1	15

2. Konsep Solusi

2.1 Diagram Fungsi

Berikut merupakan bentuk diagram fungsi yang mengulas konsep solusi sistem kendali ketinggian air pada dua tangki menggunakan metode PID. Pada diagram fungsi dibawah ini juga memperlihatkan input, proses, dan output dari sistem dua tangki nantinya.

Gambar 2.1 Diagram Fungsi

Pada pengembangan sistem kendali ketinggian air pada *coupled* tank terdapat **tiga subsistem yang ditunjukkan dengan garis putus-putus** gambar 2.1 di atas. **Subsistem GUI** berfungsi dalam *monitoring* dan *controlling* sistem kendali ketinggian air, input yang diberikan berupa *setpoint* ketinggian air. Selanjutnya pada **Subsistem Kontrol**

PID Dinamik bertindak sebagai kontroler agar tanggapan sinyal keluaran sistem (tinggi air pada tangki) terhadap masukan (hasil bacaan sensor) sesuai sebagaimana yang diinginkan. Dikatakan dinamik karena pemilihan parameter PID akan mempengaruhi dinamika keluaran variabel output proses agar memiliki kemiripan yang baik (akurat). Sedangkan pada Subsistem Sistem 2 tangki dan Water basin adalah objek fisik yang dikendalikan kondisinya, dimana terdapat pompa air untuk menaikkan air dari water basin menuju tangki satu dan tangki dua. Sebelum menuju tangki satu, air akan melewati valve yang mana bukaan nya akan berdasarkan nilai masukan masukan (hasil bacaan ketinggian tangki) yang diproses pada Mikrokontroler.

Sehingga dapat dilihat pada gambar 2.1 ketiga panah di kiri dan satu panah dibawah menunjukan **input** apa saja pada sistem *coupled tank* (*setpoint*, parameter PID, *water*; dan *power*). Garis kotak besar yang mengelilingi kotak-kotak lainnya menggambarkan **proses yang terjadi** pada sistem *coupled tank* dan yang terakhir satu panah di ujung kanan menunjukan **output** yang dihasilkan sistem (tampilan grafik hasil respon sistem).

2.2. Alternatif Solusi Sistem yang Diusulkan

Bagian ini menjelaskan tentang usulan solusi yang ditawarkan terhadap permasalahan pengadaan implementasi pengendalian *plant coupled tank* untuk skala Laboratorium untuk modul praktikum sistem kendali dasar.

2.2.1. Karakteristik Solusi

• Fitur Utama:

- Dapat menghasilkan media pembelajaran terhadap penerapan pengendalian *plant coupled tank* menggunakan metode PID untuk skala Laboratorium.
- Desain sistem dapat memberikan kebebasan pengguna untuk mengubah *setpoint* dan parameter kontrol PID untuk kebutuhan praktikum.

• Fitur Dasar:

- O Sistem yang dirancang dapat merepresentasikan kerja sistem kendali dinamis orde 2 pada dua tangki terhubung (*coupled tank*).
- Kontrol PID pada sistem mampu menjadikan sistem dua tangki terhubung (coupled tank) menjadi dinamik atau stabil untuk menjaga level air sesuai dengan setpoint.
- Parameter kontrol PID dan nilai *setpoint* dapat dikendalikan pada GUI secara *real-time* dengan satu buah komputer PC (*Personal Computer*) serta dapat menampilkan semua nilai dan grafik hasil yang diperoleh pada layar monitor.
- Dimensi alat peraga tidak menyulitkan pengguna untuk menganalisa respon sistem yang terjadi, sehingga dapat diamati secara seksama dengan nyaman (tanpa bantuan alat perekam ataupun alat bantu seperti tangga tambahan).

• Fitur Tambahan:

- Sensor pendeteksi *level* air mampu bekerja secara efisien terhadap tingkat *noise* yang mungkin dihasilkan oleh gerakan riak permukaan air saat proses pengisian air.
- Keseluruhan alat peraga akan dilengkapi dengan *Manual Book* berisikan instruksi instalasi, perawatan, dan seluruh desain sistem untuk kemudahan pengguna dalam menyelesaikan masalah tanpa bantuan peneliti di kemudian hari.

2.2.2. Usulan Solusi dan Skenario Penggunaan

Merancang merupakan langkah pemecahan terhadap suatu masalah yang sudah dipecahkan dengan cara lain [1]. Untuk mendapatkan usulan solusi terbaik, mula-mula perlu dikumpulkan beberapa alternatif alat peraga yang mungkin dibuat. Beberapa alternatif konsep tersebut digambarkan pada gambar 2.2 dibawah ini.

Konsep Fungsi	Konsep 1	Konsep 2	Konsep 3
Display GUI	PC Monitor	LCD Touchscreen	LCD Mikrokontroler
Perangkat Input GUI	source : freepik.com	source : vectorstock.com	source : freepik.com source : freepik.com
	Kursor + Pad	Touchscreen	Knob + Push Button
Metode deteksi ketinggian air	ultrasonik	ultrasonik	pressure

Gambar 2.2 Alternatif solusi konsep untuk tiap fungsi

Setelah mengumpulkan beberapa alternatif terhadap fungsi-fungsi pada sistem *couple tank*, langkah selanjutnya adalah membentuk usulan solusi yang tersusun dari beberapa alternatif fungsi pada gambar 2.2 diatas. Terdapat tiga buah usulan solusi untuk sistem pengendalian ketinggian air pada *couple tank*. Sistem tersebut dimodelkan dengan 2 buah tangki berbeda yakni tangki 1 (atas) dan tangki 2 (bawah). Berikut adalah skenario ketiga alternatif solusi yang sudah dibuat:

A. Konsep 1

Pada solusi ini *display* GUI menggunakan PC Monitor dengan konsep input kursor dan pad untuk mengedit value parameter PID serta Setpoint nya. Deteksi ketinggian air akan menggunakan pengukuran sinyal ultrasonik. Saat GUI terlihat pada PC maka seluruh pengendaliannya dapat menggunakan kursor untuk klik pop-up menu GUI, kemudian untuk edit value/input value menggunakan konsep pad. Pad yang dimaksud merupakan perangkat keras tambahan pada komputer (bisa berupa keypad, touch pad, dsb).

Adapun skenario penggunaannya adalah sebagai berikut:

- 1. Sensor dengan metode pengukuran sinyal ultrasonik akan dipasang pada dinding tangki bagian atas dan menghadap kebawah. Masing-masing tangki akan memiliki satu sensor.
- 2. Mikrokontroler yang memproses nilai dari sensor tersebut akan dihubungkan dengan PC sebagai media display GUI.
- 3. GUI yang ada pada PC akan menampilkan grafik I/O respon sistem serta nilai parameter PID nya.
- 4. Apabila user ingin mengubah nilai parameter PID ataupun setpoint nya dapat menggunakan kursor serta pad.
- 5. Kursor dapat diarahkan ke pop-up menu GUI dan pad berfungsi untuk menginput/edit value.

B. Konsep 2

Pada solusi ini *display* GUI menggunakan LCD *Touchscreen* dengan konsep input secara *touchscreen* untuk mengedit value parameter PID serta *Setpoint* nya. Deteksi ketinggian air akan menggunakan pengukuran sinyal ultrasonik. Saat GUI terlihat pada LCD maka dapat diakses secara *touchscreen* untuk klik pop-up menu GUI ataupun untuk edit value/input value nya.

Adapun skenario penggunaannya adalah sebagai berikut:

- 1. Sensor dengan metode pengukuran sinyal ultrasonik akan dipasang pada dinding tangki bagian atas dan menghadap kebawah. Masing-masing tangki akan memiliki satu sensor.
- 2. Mikrokontroler yang memproses nilai dari sensor tersebut akan dihubungkan dengan LCD *Touchscreen* sebagai media display GUI.
- 3. Pastikan komponen LCD Touchscreen kompatibel dengan mikrokontrolernya.
- 4. GUI akan menampilkan grafik I/O respon sistem serta nilai parameter PIDnya pada LCD tersebut.
- 5. Apabila user ingin mengubah nilai parameter PID ataupun *setpoint* nya dapat diakses secara *touchscreen* pada LCD.

C. Konsep 3

Pada solusi ini *display* GUI menggunakan LCD Mikrokontroler dengan konsep input dengan *radio button*, sedangkan untuk mengedit value parameter PID serta *Setpoint* nya dengan *pushbutton*. Deteksi ketinggian air akan menggunakan pengukuran *pressure* air. Saat GUI terlihat pada PC maka seluruh pengendaliannya dapat menggunakan konsep *push button* untuk klik pop-up menu GUI, kemudian untuk edit value/input value menggunakan konsep *radio button*. *Radio button* disini

Adapun skenario penggunaannya adalah sebagai berikut:

- 1. Sensor dengan metode pengukuran *pressure* air yang akan dipasang pada bagian dasar tangki. Masing-masing tangki akan memiliki satu sensor.
- 2. Mikrokontroler yang memproses nilai dari sensor tersebut akan dihubungkan **dengan LCD sebagai media** *display* **GUI** yang hanya menampilkan nilai saja.
- 3. Pastikan komponen LCD kompatibel dengan mikrokontrolernya.
- 4. GUI hanya menampilkan nilai parameter PIDnya pada LCD tersebut.
- 5. Apabila user ingin mengubah nilai parameter PID ataupun *setpoint* nya dapat diakses menggunakan *knob*.
- 6. Setiap variasi posisi kontak knob akan disesuaikan dengan range nilai parameter PID dan *setpoint* yang dibutuhkan.

3. Pemilihan Sistem

3.1. Kriteria Pemilihan Sistem

Tentukan kriteria yang akan digunakan untuk menganalisis konsep sistem terpilih. Kriteria apa saja yang digunakan untuk pemilihan konsep sistem (contoh: kriteria ekonomi, kriteria teknis, ukuran sistem, ketersediaan komponen, *reliability*, dst)

3.1.1. Ekonomis

Mengingat anggaran dana maksimal untuk pengadaan alat ini sebesar ± Rp 7,000,000. Maka perlu memperhatikan mengenai alokasi dana tersebut sebagai alat bantu dalam membuat keputusan pemilihan desain konsep solusi dengan harapan pengeluaran produksi yang dapat ditekan sekecil mungkin.

Memanfaatkan komponen yang sudah tersedia di lapangan (laboratorium SKD) juga dapat meminimalisir pengeluaran. Seperti dalam pernyataan Zainal dan Priyono [2] bahwa "dalam merancang tidaklah semua komponennya harus baru, tetapi dapat saja menggunakan komponen yang sudah ada". Tujuan dari analisis ini adalah untuk meminimalisir total pengeluaran produksi serta menghindari agar nilai ekonomi alat peraga tidak melebihi proporsi fungsionalitasnya.

- Kriteria ekonomis memiliki penilaian bobot sebesar 16%

3.1.2. Akurasi Sensor

Performa sistem harus bisa diandalkan terutama jika mempengaruhi hasil kontrol PID nya. Selain itu untuk mendukung terlaksananya pemantauan terus menerus (realtime) dan akurasi hasil respon sistem, sensor menjadi unsur penting dalam pengambilan data sehingga data yang diperoleh dapat dipertanggung jawabkan.

Salah satunya adalah **pemilihan komponen sensor yang tepat** agar menghasilkan bacaan input *level* air yang akurat. Apabila bacaan sensor tidak sesuai dengan ketinggian aktual air pada tangki, hal tersebut akan berdampak terhadap bukaan *valve* dan mempengaruhi performa sistem.

- Kriteria performa memiliki penilaian bobot sebesar 8%

3.1.3. Visual GUI

Hasil desain alat peraga akan digunakan pada praktikum sistem kendali dasar, dimana peneliti perlu menitikberatkan kemudahan pengguna. Alat peraga ini akan digunakan oleh dua pengguna yaitu **Asisten Praktikum** dan **Praktikan**. Pada spesifikasi *usability* di dokumen CD-2 telah dijelaskan bahwa sistem pada solusi alat yang diberikan tidak memakan waktu lebih dari 45 menit (dengan toleransi ±5 menit). Dimana dalam rentang waktu tersebut digunakan untuk :

- Persiapan alat peraga
- Pengoperasian alat peraga
- Pengambilan sampel data (nilai dan grafik hasil sistem)

Sehingga perlu mempertimbangkan **kinerja** *hardware display* **untuk sistem GUI** yang berfungsi **sebagai visualisasi semua nilai dan grafik hasil yang diperoleh** dan akses pengendalian untuk nilai *setpoint* dan parameter PID nya (Kp, Ki dan Kd).

- Kriteria visual pengguna memiliki penilaian bobot sebesar 12%

3.1.4. Perawatan

Pemilihan komponen sensor yang tepat juga akan mempermudah asisten praktikum untuk memperbaikinya. Mengingat konsep pemasangan pada tiap-tiap sensor tidak terletak di posisi yang sama. Selain itu, beberapa sensor mungkin memiliki tingkat akurasi yang baik, namun **sulit untuk dikalibrasi** ataupun pada saat **penggantian komponen yang memerlukan** *mounting* **ulang**.

- Kriteria kemudahan perawatan memiliki penilaian bobot sebesar 7%

3.1.5. Ketersediaan Komponen

Alat peraga diharapkan mampu menjadi investasi yang baik untuk laboratorium. Sehingga perlu mempertimbangkan umur pemakaiannya. Salah satu cara untuk memperpanjang umur pemakaian alat peraga adalah melakukan perawatan dan perbaikan jika diperlukan. Penggantian dan perawatan komponen wajib dilakukan untuk menjaga performa sistem.

Penentuan desain solusi akan mempengaruhi daftar komponen penyusunnya. Sehingga perlu memastikan bahwa bahan baku yang akan digunakan mudah didapatkan dipasaran. Sehingga jadwal perawatan atau perbaikan dapat dilakukan dengan lancar.

- Kriteria kemudahan perawatan memiliki penilaian bobot sebesar 6%

Tabel 2.1 Bobot dalam Kriteria Seleksi

No.	Kriteria Seleksi	Bobot
1	Ekonomis	22%
2	Akurasi Sensor	21%
3	Visual GUI	19%
4	Perawatan	21%
5	Ketersediaan Komponen	17%
Total Bobot		100%

3.2. Matriks Keputusan (Decision Matrix)

Setelah menentukan kriteria pemilihan sistem maka langkah selanjutnya adalah menggunakan Matriks Keputusan sebagai alat bantu dalam pemilihan desain solusi yang paling cocok. Tabel Matriks keputusan berisi penilaian tentang desain solusi alat peraga dalam memenuhi syarat kriteria.

Menurut metode Pahl dan Beitz [3] penentuan alternatif terbaik harus didasarkan pada tabel evaluasi yang berisi tentang penilaian dan bobot untuk masing-masing faktor. Nilai bobot didapatkan berdasarkan perhitungan antara rating yang diberikan dan besar persentase bobotnya. Rating yang dipakai pada matriks keputusan disini adalah -1, 0, 1. Berikut ulasan mengenai arti dari tiap rating tersebut :

Rating -1 : BurukRating 0 : NetralRating 1 : Baik

Tabel 2.2 Decision Matrix Scoring

		Solusi A		Solusi B		Solusi C	
Kriteria Seleksi	Bobot	Rating	Nilai Bobot	Rating	Nilai Bobot	Rating	Nilai Bobot
Ekonomis	22%	0	0	-1	-0,22	1	0,22
Akurasi sensor	21%	0	0	-1	-0,21	1	0,21
Visual GUI	19%	1	0,19	0	0	-1	-0,19
Perawatan	21%	1	0,21	0	0	-1	-0,21
Ketersediaan komponen	17%	0	0	-1	-0,17	1	0,17
Total Nilai		0	,4	-(),6	0	,2
Peringkat			1		3		2
Lanjutkan ?		Υ	Ά	TII	DAK	TIC)AK

3.3. Sistem terpilih yang akan dikembangkan

Berdasarkan *Decision Matrix Scoring*, Solusi A memiliki nilai tertinggi dengan total nilai 0,4 dibandingkan dengan Solusi B dengan total nilai -0,6 dan Solusi C dengan total nilai -0,2. **Solusi A dipilih untuk dilanjutkan berdasarkan penilaian baik pada kriteria Visual GUI dan Kemudahan perawatan komponen serta cukup pada kriteria Ekonomis, Akurasi sensor dan Ketersediaan komponen.**

Solusi B tidak dilanjutkan dikarenakan harga komponen yang mahal dan Perawatan yang tidak mudah serta ketersediaan komponen yang tidak mudah dicari sedangkan pada Solusi C tidak dilanjutkan dikarenakan Akurasi sensor yang tidak cukup baik dibandingkan solusi A dan B serta kemampuan Visual GUI yang terbatas.

Tabel 2.3 Alternatif yang Terpilih

Alternatif Terpilih	Konsep 1
Display GUI	PC Monitor
Perangkat Input GUI	source : freepik.com Kursor + Pad
Metode deteksi ketinggian air	ultrasonik

4. Rencana Desain Sistem

Sistem *coupled tank* tersusun atas dua buah tangki yang dihubungkan oleh sebuah pipa atau saluran [4]. Konstruksi dari sistem *coupled* tank disajikan pada Gambar 4.1 Sistem terdiri atas tangki 1 (bagian atas), tangki 2 (bagian bawah), *water basin* (wadah sumber air), pompa air, *control valve*, dan *panel box*. Yang mana dua buah tangki berlaku sebagai *plant* yang akan dikontrol ketinggian airnya dan satu buah *water basin* sebagai wadah sumber air.

Gambar 4.1 Konstruksi Sistem Coupled Tank

Pengguna dapat memilih ingin mengontrol ketinggian air di tangki 1 atau tangki 2. Setelah menentukan pilihan tangki yang akan dikendalikan, maka level air di tangki tersebut akan dideteksi oleh sensor ultrasonik. Selanjutnya untuk mengatur laju aliran air yang masuk ke tangki, maka terdapat *valve* yang dikontrol oleh kontroler PID pada arduino. Apabila level air pada tangki yang dikontrol sudah mendekati set pointnya maka terdapat motor stepper yang memperkecil bukaan *valve*, begitu pun sebaliknya. Jika *setpoint* masih berbeda jauh maka *valve* akan terbuka penuh.

Gambar 4.2 Skema Setup Garis Besar

4.1. Perancangan Sistem

Sistem *coupled tank* tersusun dari Perangkat Keras (Mekanik & Elektronik), Kontroler (PID) dan Perangkat Lunak (Arduino IDE dan GUI).

4.1.1. Perangkat Keras (Mekanik & Elektronik)

Sistem kendali ketinggian air pada *coupled tank* dirancang menggunakan perangkat keras sebagai alat peraga dalam skala laboratorium. Konstruksi perangkat keras sistem dapat dilihat pada Gambar 4.1 diatas. Sistem akan dirancang menggunakan dua buah tangki dengan diameter 20 cm dan tinggi 50 cm. Sedangkan pada *water basin* sebagai wadah sumber dapat menampung air sebanyak 50L. Air akan dihisap oleh pompa dari *water basin* menuju tangki 1. Selanjutnya mengalir menuju tangki 2 dan akan kembali lagi ke *water basin*.

Gambar 4.3 Wiring Diagram

Modul relay pada sistem terhubung dengan mikrokontroler yang berfungsi sebagai saklar untuk mengatur mati/hidupnya pompa. Relay akan disambungkan dengan *Magnetic Contactor* dimana *Magnetic Contactor* akan bekerja untuk memutuskan dan menyambungkan *supply* listrik AC ke pompa. Saat sistem bekerja, data ketinggian air yang diperoleh dari sensor ultrasonik akan dikirimkan ke mikrokontroler untuk ditampilkan pada GUI dan diproses pada Kontroler PID yang mempengaruhi dari bukaan valve. Pada Gambar 4.4 dibawah menjelaskan diagram alir kerja pada perangkat keras.

Gambar 4.4 Diagram Alir Perangkat Keras

4.1.2. Kendali PID

Kendali PID pada sistem tangki *coupled tank* diperlukan untuk menjaga ketinggian air di tangki dan mempercepat sistem mencapai level air yang diinginkan. Kendali PID akan memaksa nilai umpan balik sesuai dengan set pointnya, dengan cara meminimalkan nilai *error output*. Jadi pengguna menentukan level air yang diinginkan dan kontroler PID akan meminimalkan selisih ketinggian saat level air diukur dengan set point yang ditentukan. Keakuratan untuk mengolah nilai error tersebut tergantung dari parameter kendali PID yang berupa Kp, Ki, dan Kd. Ketiga parameter tersebut dihasilkan melalui proses tuning manual. Jika tuning dilakukan dengan benar maka kontroler PID akan bekerja dengan baik pula dalam mengontrol valve agar level air di tangki sesuai dengan set pointya. Agar lebih jelas maka dipaparkan dalam bentuk *flowchart* berikut:

Gambar 4.5 Diagram alir kendali PID (Controller Mode)

Selain bekerja untuk mencapai serta menjaga level air di tangki, kontroler PID juga harus dikomunikasikan ke suatu kontrol yang bekerja dalam menjalankan GUI. Pengguna nantinya menginput parameter kendali dan set point melalui GUI, dimana seluruh input tersebut harus diteruskan ke kontroler PID untuk mengeksekusi proses sesuai parameter kendali yang ditentukan. Nantinya terdapat sensor yang membaca input berupa flow air dan output berupa level air. Kedua nilai tersebut diterima oleh kontroler yang bekerja sebagai PID dan akan diteruskan ke GUI agar ditampilkan dalam bentuk grafik. Dengan demikian terjadi komunikasi antara kontroler PID dengan kontroler GUI. Diagram alir komunikasi PID dengan GUI ditampilkan pada Gambar 4.6.

Gambar 4.6 Diagram alir komunikasi PID dengan GUI (Monitoring)

4.1.3. Perangkat Lunak (GUI)

Perangkat lunak yang digunakan pada sistem terdiri dari dua bagian, yaitu Arduino IDE yang berfungsi untuk merancang program yang akan ditanamkan pada mikrokontroler agar sistem dapat bekerja dan GUI yang berfungsi untuk merancang program antarmuka *monitoring* sistem. Diagram alir algoritma perangkat lunak ditampilkan pada Gambar 4.7.

Sistem kendali *coupled tank* memiliki 2 mode yaitu mode *manual* dan mode *automatic*. Perangkat antarmuka akan memberikan *pop up* pilihan menu sistem bekerja pada mode *manual* atau *automatic*. Pada mode *automatic* maka akan berlaku sistem *monitoring*, perangkat antarmuka akan mengaktifkan sistem. Data *setpoint* ketinggian air dan parameter PID (Kp, Ki, dan Kd) sudah ditentukan dan sistem berjalan mengikuti masukan yang telah ditentukan tadi. Sedangkan pada mode *manual* maka akan berlaku sistem *controlling*, perangkat antarmuka terlebih dahulu akan meminta *setpoint* ketinggian air dan parameter PID (Kp, Ki, dan Kd).

Gambar 4.7 Diagram Alir Antarmuka

Sistem dalam mode manual akan memberikan kebebasan kepada *user* untuk mengubah parameter kontrolernya, sehingga dapat memudahkan *user* untuk memahami pengaruh nilai parameter PID terhadap *plant*. Selain itu, durasi pengisian juga ditampilkan dalam bentuk *timer*, status nyala/hidup pompa dalam bentuk indikator, menu export untuk mengunggah hasil respon sistem kedalam bentuk file dan indikator besar bukaan valve. Gambar 4.8 dibawah ini akan menyajikan rancangan konsep *window* antarmuka untuk menu *controller* dan pada Gambar 4.9 menyajikan rancangan konsep *window* antarmuka untuk plottingan grafik I/O respon sistem.

Gambar 4.8 Rancangan Antarmuka 1

Gambar 4.9 Rancangan Antarmuka 2

4.2. Diagram Blok

Berikut merupakan diagram perencanaan desain alat yang terpilih. Pada gambar 4.10 merupakan diagram blok level 0 yang menggambarkan tingkatan level 0 sistem mengenai bentuk sederhana control unit serta input dan outputnya. Sedangkan pada gambar 4.11 menggambarkan pada tingkat level 1 yaitu *break down* dari gambar 4.11 untuk menjelaskan lebih *detail* bagian proses *control unit* nya.

Gambar 4.10 Diagram Blok Level 0

Tabel 4.1 Diagram Blok Level 0

Modul	Control Unit Sistem Kendali Ketinggian Air Pada Coupled Tank
Inputs	- Setpoint - Water Level
Outputs	Sinyal respon I/O sistemControl valve
Fungsi	Sistem kendali ketinggian air pada <i>coupled tank</i> dirancang untuk mengendalikan ketinggian permukaan air dalam suatu tangki agar sesuai dengan nilai <i>setpoint</i> ketinggian yang telah di input. Hasil dari sistem ini adalah keluaran sinyal respon I/O sistem berupa grafik dan bukaan <i>control valve</i> untuk mengatur aliran air menuju tangki.

Gambar 4.11 Diagram Blok Level 1

Tabel 4.2 Diagram Blok Level 1

Modul	Control Unit Sistem Kendali Ketinggian Air Pada <i>Coupled Tank</i>
Inputs	SetpointParameter PID (Kp, Ki,Kd)Water Level
Outputs	Sinyal respon I/O sistemControl valve
Fungsi	Pada level 1 akan terlihat lebih jelas kemana input akan diproses. Input pertama yaitu <i>setpoint</i> akan dibaca oleh GUI dan dikirimkan ke mikrokontroler. Data <i>setpoint</i> dan Parameter PID selanjutnya akan dipadukan dengan hasil bacaan <i>water level</i> untuk menghasilkan bukaan <i>control valve</i> untuk mengatur aliran air yang keluar, tahap akhir akan menampilkan sinyal respon I/O sistem melalui GUI.

5. Pemilihan Komponen

Bagian ini menjelaskan bagaimana rencana dan desain komponen dilakukan untuk tiap blok fungsi kinerja sistem.

5.1. Mikrokontroler

Mikrokontroler adalah sebuah komputer kecil ("special purpose computers") di dalam satu IC yang berisi CPU, memori, timer, saluran komunikasi serial dan paralel, Port input/output, ADC. Mikrokontroler digunakan untuk suatu tugas dan menjalankan suatu program [5]. Pada sistem coupled tank akan memanfaatkan Arduino sebagai mikrokontrolernya. Bahasa yang dipakai dalam Arduino bukan assembler yang relatif sulit, tetapi bahasa C yang disederhanakan dengan bantuan pustaka-pustaka (libraries) Arduino.

Tabel 5 1 Pilihan Mikrokontroler Arduino

Nama Komponen	Harga	Flash Memory	I/O	ADC	Chip	
Arduino Mega	Rp229.000,00	256 KB(8KB bootloader)	8 KB	54 pin(15 sebagai output PWM)	16 pin	Atmega256
Arduino Uno R3	Rp75.000,00	32 KB (0,5 bootloader)	2 KB	14 pin(6 sebagai output PWM)	6 pin	Atmega328 P
Raspberry Pi	Rp1.123.750,00	32 KB(4KB bootloader)	2 KB	22(6 sebagai output PWM)	6 pin	Atmega328

Microcontroller yang cocok digunakan pada sistem ini adalah Arduino Atmega 2596 dan Arduino UNO R3. Arduino Atmega dipilih karena banyaknya pin I/O karena akan berfungsi sebagai Arduino (*Slave*) yang nantinya akan menerima data dari sensor, menggerakkan control valve, dan mengirimkan atau menerima informasi dari Arduino Uno (*Master*) yang terhubung dengan GUI serta biaya yang tidak terlalu mahal.

5.2. Sensor Ultrasonik

Ultrasonic Sensor adalah sebuah sensor yang bekerja dengan cara mengukur gelombang yang dipantulkan kepada suatu objek. Pada sistem ini ultrasonic sensor digunakan untuk mengukur ketinggian air pada dua tangki. Ultrasonic sensor dipilih juga karena kompatibel dengan mikrokontroler yang digunakan harga yang terjangkau dan pemasangan yang mudah.

Tabel 5.2 Pilihan Sensor Ultrasonik

Nama	Harga	Spesifikasi							
HC-SR04 Sensor Ultrasonik	Rp12.000,00	- Sudut Sensor: < 15d - Jarak deteksi : 2cm-400cm. - Akurasi : 0.4cm							
HY-SRF05 Ultrasonic	Rp18.500,00	- Sudut Sensor: < 15d - Jarak deteksi : 1cm-450cm. - Akurasi : 0.2cm							
JSN-SR04T Waterproof	Rp95.000,00	- Sudut Sensor: < 75d - Jarak deteksi : 30cm-600cm. - Akurasi : 0.5cm							

Sensor Ultrasonic yang dipilih berdasarkan perbandingan diatas adalah sensor ultrasonic tipe HY-SRF05 karena jarak deteksi dan akurasi sensor yang baik diantara ketiga pilihan tersebut dikarenakan sensor akan bekerja untuk mengukur ketinggian air dimana untuk mengukur ketinggian air sendiri perlu sebuah sensor yang memiliki akurasi yang baik dan jarak deteksi minimum yang cocok dengan posisi sensor terhadap tangki

5.3. Motor Driver

Pada sistem ini Motor Driver digunakan untuk mengatur kecepatan dan arah gerak dari sebuah motor stepper yang dimounting ke valve sehingga menjadi sebuah control valve.

Tabel 5.3 Pilihan Motor Driver

Nama	Harga	Spesifikasi
Motor Driver TB6600	Rp78.000,00	Microstep resolution = full, 1/2, 1/4, 1/8, 1/16 and 1/32
Motor Driver TB6560	Rp60.500,00	Microstep resolution = full, 1/2, 1/8 and 1/16

Motor Driver TB6600 dan Motor Driver TB6560 memiliki spesifikasi yang cukup berbeda. Namun pada sistem ini Motor Driver TB6600 dipilih karena memiliki Microstep resolution yang lebih besar dan cocok untuk diimplementasikan pada control valve karena akan menghasilkan gerakan yang lebih halus.

6. Jadwal Pengerjaan

Tabel 6.1 Gantt Chart

GANTT CHART CAPSTONE DESIGN: PENGEMBANGAN SISTEM KENDALI KETINGGIAN AIR PADA COUPLED TANK MENGGUNAKAN METODE PID

TASK NAME		PIC		PERCENT	SE	PTEMBER			OKTOBE	R		NOVE	MBER		DI	ESEMBE	R		JAN	UARI			FEBRU/	ARI		N	MARET			APRIL			- 1	MEI
TASK NAME	M. Fadel Ashar	Nadia Safa Fajriani	Nurrahman Rizky	COMPLETE	V1 W2	W3 W	4 W5	wı w	2 W3	w4 ws	5 W1	w2 w	V3 W4	W5	W1 W2	W3	W4 W5	5 W1	w2 v	V3 W4	1 W5	wı w	/2 W3	w4 v	N5 W1	w2	W3 W4	1 W5	wı w	2 W3	w4 w	/5 W1	W2	ws w
APSTONE DESIGN - 1																																		
Pemilihan Topik	30,00%	35,00%	35,00%	100,00%																								1 /						
Riset Latar Belakang	20,00%	50,00%	30,00%	100,00%																													-	
Perumusan Masalah dan Gagasan Topik	35,00%	30,00%	35,00%	100,00%																													-	
Pengamatan Laboratorium Sistem Kendali Dasar	40,00%	30,00%	30,00%	100,00%																														
Bimbingan bersama Dosen sebagai User	35,00%	30,00%	35,00%	100,00%																														
Review dan Revisi Dokumen	25,00%	50,00%	25,00%	100,00%																	1 1							\top					\neg	$\overline{}$
CAPSTONE DESIGN - 2					,								,	' '	'					,			'		,		,	تسنا	,					
Perumusan Spesifikasi	35,00%	30,00%	35,00%	100,00%					$\overline{}$				T			Т	\neg				\top						\neg	T	-	\top	-	\top	\Box	\neg
Menentukan Metode Verifikasi	30,00%	40,00%	30.00%	100,00%																								-						-
Bimbingan bersama Dosen sebagai User	35,00%	30,00%		100,00%	\neg				+								-				+						$\overline{}$	+	-	+	-	_	$\overline{}$	$\overline{}$
Review dan Revisi Dokumen	30,00%	40,00%		100,00%					1												1 1							+		_	-	_	$\overline{}$	\rightarrow
APSTONE DESIGN - 3	30,0070	40,0070	30,007	200,0070	-		-		-	- 1	-				-	1 1	-	-					-	-	-	-	,		- '		- 1			
Perumusan Karakteristik Sistem	40,00%	30,00%	30.00%	100,00%					1 1												1 1							T		T				$\overline{}$
Riset Terhadap Alternatif Desain Solusi	35,00%	30,00%		100,00%	_				_										_		1 1							+		+	-	_	$\overline{}$	$\overline{}$
Pemilihan Solusi Terhadap Kriteria	35,00%	30,00%		100,00%	-		_		+	-						+			-		+		_				-	+	-	+	-	_	$\overline{}$	+
Bimbingan bersama Dosen sebagai User	40,00%	20,00%		100,00%	_		_		+	_			_						-	_	+ +		_				_	+	_	+	_	_	-	+
Review dan Revisi Dokumen	30,00%	50,00%		100,00%	_		_		+	_									_	_	+ +		_				_	+	_	+	_	_	-	+
APSTONE DESIGN - 4	30,00%	30,0070	20,007	100,00%	-		-		1	- 1			- 1			1 1							-		-		- 1		- 1		- 1		_	_
Rancangan Pemodelan Sistem Coupled Tank	35,00%	25,00%	40.0086	100,00%	1		1		1 1	- 1						1 1	- 1	1 1			1 1			L				T	- 1	1 1	- 1			
Implementasi Sub - sistem : Kendali PID	95,00%	0,00%		100,00%	_		_		+	_			_		_	+	_										_	+	_	+	-	_	-+	+
Implementasi Sub - sistem : Rendan Pib Implementasi Sub - sistem : Elektronika dan Kerangka Alat	10,00%	5,00%		100,00%	-		+		+	_			_			+	-		-		_		_			+	_	+	-	+	-	_	-+	+
Implementasi Sub - sistem : Software GUI	0.00%	95.00%	5,00%		-		_		+	-			_			+	-		-		+						-	+	-	+	-	_	$\overline{}$	+
Evaluasi Terhadap Integrasi kesatuan Sistem	35,00%	30,00%	35,00%		-				+	-						+	-				+							+	-	+	-		-	-
Bimbingan bersama Dosen sebagai User	40,00%	30,00%	30,00%																														\Box	
Review dan Revisi Dokumen	25,00%	50,00%	25,00%	100,00%																														
APSTONE DESIGN - 5	1														'																			
Pengujian Spesifikasi I	15,00%	20,00%		100,00%																														
Pengujian Spesifikasi II	60,00%	20,00%	20,00%	100,00%																														
Pengujian Spesifikasi III	20,00%	20,00%	60,00%	100,00%																														
Pengujian Spesifikasi IV	20,00%	60,00%	20,00%	100,00%																													-	
Pengujian Spesifikasi V	30,00%	10,00%	60,00%	100,00%																													\Box	
Analisis Hasil Pengujian	30,00%	40,00%	30,00%	100,00%																														
Evaluasi Sistem	35,00%	30,00%	35,00%	100,00%																														
Hasil Akhir - Dokumentasi Pengujian	25,00%	50,00%		100,00%																														
Penulisan Jurnal : Sistem Kendali PID	100,00%	0,00%	0,00%	100,00%																														
Penulisan Jurnal : Elektronika dan Kerangka Alat	0,00%	0,00%		100,00%																	\neg							\top						
Penulisan Jurnal : Software GUI	0,00%	100,00%		100,00%																	$\neg \neg$							\top						
Bimbingan bersama Dosen sebagai User	35,00%	30,00%		100,00%																	+													
Review dan Revisi Dokumen	25,00%	50,00%	25,00%	-																	+													
otal Percentage	32,29%	34,00%	33,71%				-																											

7. Lampiran

Lampirkan dokumen pendukung yang terkait, misalnya dokumen standard yang terkait produk ini serta dokumen rujukan biaya.

Tabel 7.1 Rancangan Anggaran Biaya

	Tabel				
NO	NAMA BARANG	QTY	UNIT	HARGA SATUAN (Rp.)	TOTAL HARGA (Rp.)
1	HC-SR04 Sensor Ultrasonik	2	UNIT	Rp12.000,00	Rp24.000,00
2	PS-128 BIT	1	UNIT	Rp479.500,00	Rp479.500,00
3	Arduino Uno R3	1	UNIT	Rp126.500,00	Rp126.500,00
4	STEP DOWN LM2596 voltmeter	1	UNIT	Rp20.000,00	Rp20.000,00
5	Akrilik 20x20x50 tebal 5mm	2	UNIT	Rp450.000,00	Rp900.000,00
6	Pipa 1inc	2,5	METER	Rp43.000,00	Rp107.500,00
7	Elbow 1inc	4	UNIT	Rp4.700,00	Rp18.800,00
8	Container box 50L	1	UNIT	Rp90.000,00	Rp90.000,00
Q I	Control Valve (Motor Stepper Mounting)	1	UNIT	Rp650.000,00	Rp650.000,00
10	Stepper Driver TB6600 4A 9-40VDC	1	UNIT	Rp77.000,00	Rp77.000,00
11	Terminal Block 4 poles	3	PCS	Rp12.000,00	Rp36.000,00
12	Kabel jumper	5	METER	Rp25.000,00	Rp125.000,00
13	Skun kabel	1	SET	Rp20.000,00	Rp20.000,00
14	Relay 5V	1	UNIT	Rp5.600,00	Rp5.600,00
15	Contactor 220v Schneider	1	UNIT	Rp175.000,00	Rp175.000,00
16	Pompa SHIMIZU PS 128 BIT	1	UNIT	Rp445.000,00	Rp445.000,00
17	Junction Box	1	UNIT	Rp433.143,00	Rp433.143,00
	Power Supply 12v	1	UNIT	Rp80.000,00	Rp80.000,00
	Baut	1	SET	Rp8.000,00	Rp8.000,00
	Ducting Kabel	3	METER	Rp5.000,00	Rp15.000,00
71	Kabel Usb type A to type B Arduino 1,5 M	1	PCS	Rp10.000,00	Rp10.000,00
22	Arduino Mega	1	PCS	Rp229.000,00	Rp229.000,00
73	DC JACK MALE POWER ADAPTER	1	PCS	Rp1.750,00	Rp1.750,00
24	MCB	1	PCS	Rp53.000,00	Rp53.000,00
(GRAND TOTAL COST				Rp4.129.793,00