United College of Engineering & Research, Prayagraj

Department of Computer Science & Engineering

Automata Theory(KCS-402)

Assignment-5

Q. No.	Question	СО	Bloom's level
	Section-A		
1	What do you understand by the Halting Problem?	CO6	L2
2	What are the features of Universal Turing Machine?	CO6	L2
3	Define the Turing Machine.	CO6	L1
4	What do you mean by Turing decidable language?	CO6	L2
5	Define PCP problem.	CO6	L1
	Section-B		
6	Design the Turing Machine for the following language L={a ⁿ b ⁿ c ⁿ ! n≥1}.	CO6	L4
7	Design a TM for the following language: $L = \{a^{n+2}b^n \mid n > 0\}$	CO6	L3
8	Design a TM to recognize all strings consisting of an odd number of α 's.	CO6	L2
9	Find any three solutions of the lists $X = (b, bab^3, ba)$ and $Y = (b^3, ba, a)$.	CO6	L3
10	Prove that single tape machines can simulate multi tape machines.	CO6	L2
11	Write short notes on the following:	CO6	L2
	(a) Halting Problem		
	(b) Turing Church's Thesis		
	(c) Recursively Enumerable languages.		
12	Construct Turing Machine for the language,	CO6	L3
	L = ={wcw w ∈{a,b}* }		
13	Design a TM that can compute proper subtraction function, it is defined as	CO6	L4
	f(m,n) = m-n , if m > n		
	= 0 , otherwise		
14	State True or False with reason:-	CO6	L2
	(a) Every language described by Regular Expression can be recognized by		
	DFA.		
	(b) Every Recursive Enumerable Language can be generated by CFL.		
	(c) The Halting Problem of TM is decidable.		
	(d) Complement of recursive enumerable language is also recursive		
	enumerable language. (e) Every CFL can be recognized by TM.		
15	Design a Turing machine to calculate function f(m,n)=m*n, where m and n	CO6	L4
12	are integers.	1	L4
	are integers.		

CO - Course Outcome

Bloom's Levels

1- Remembering 2-Understanding 3-Applying

4-Analyzing 5-Evaluating 6-Creating