MSBM Project Documentation

Michael K. Davis

September 8, 2025

1 PINN Architecture

We are solving the 2D MSBM equations at steady state along the x-direction, so the solution is varies only along the y-direction. Furthermore, the y-direction velocity is zero at steady state. Thus, our only input is y, and our solution is u and ϕ , where u is the x-direction velocity and ϕ is the particle volume fraction.

We use two separate PINNs for u and ϕ , respectively, which are denoted in the style of [1] as

$$u(\theta_u, y) = \Gamma_u(\mathcal{M}_u(\theta_u, I_u(y))),$$

$$\phi(\theta_{\phi}, y) = \Gamma_{\phi}(\mathcal{M}_{\phi}(\theta_{\phi}, I_{\phi}(y))).$$

The input transformations are $I_u(y)$ and $I_{\phi}(y)$ for each PINN, where

$$I_u(y) = \frac{2y}{H} - 1$$

normalizes the input such that $I_u(y) \in [-1, 1]$; this range is beneficial for the choice of activation function, which are discussed later.

As for $I_{\phi}(y)$, we have

$$I_{\phi}(y) = \alpha_i \cdot \exp\left(-\beta_i \left(\kappa_i \left| \frac{2y}{H} - 1 \right| \right)^{(\gamma_i + 1)}\right),$$

where the input is still similarly normalized, but then passed through a modified Gaussian expansion for learnable parameters α_i , β_i , γ_i , $\kappa_i > 0$, $i \in [1, N_{\phi}]$, where N_{ϕ} is the number of neurons for ϕ 's PINN. The modified Gaussian expansion was chosen because its solution for y is similar in shape to the expected solution of ϕ , and it is modified by including $(\gamma_i + 1)$ rather than a simple square; this allows for a high-frequency solution for ϕ , but only where high-frequencies are expected. The +1 is included to prevent singularities, and can be any non-negative real number. The modified Gaussian expansion is more problem-specific and stable than a Fourier expansion.

As for the core neural networks themselves, $\mathcal{M}_u(\theta_u, I_u(y))$ and $\mathcal{M}_\phi(\theta_\phi, I_\phi(y))$ are

$$\mathcal{M}(\theta_u, I_u(y)) = \sigma \big(W_u^{(L_u)} \, \sigma \big(W_u^{(L_u-1)} \cdots \sigma \big(W_u^{(1)} \cdot I_u(y) + b_u^{(1)} \big) \cdots + b_u^{(L_u-1)} \big) + b_u^{(L_u)} \big),$$

$$\mathcal{M}(\theta_{\phi}, I_{\phi}(y)) = \sigma \big(W_{\phi}^{(L_{\phi})} \, \sigma \big(W_{\phi}^{(L_{\phi}-1)} \cdots \sigma \big(W_{\phi}^{(1)} \cdot I_{\phi}(y) + b_{\phi}^{(1)} \big) \cdots + b_{\phi}^{(L_{\phi}-1)} \big) + b_{\phi}^{(L_{\phi})} \big).$$

where the number of layers for each PINN is denoted as L_u and L_ϕ , and the weights and biases are collectively denoted as $\theta_u = \{W_u^{(l)}, b_u^{(l)}\}_{l=1}^{L_u}$ and $\theta_\phi = \{W_\phi^{(l)}, b_\phi^{(l)}\}_{l=1}^{L_\phi}$. The weights and biases are in this case matrices with sizes that depend on the number of neurons N_u and N_ϕ , respectively. Neurons contribute to PINN width, while layers contribute to PINN depth. As for the activation function, σ , it is the same hyperbolic tangent function for both PINNs.

$$\sigma = \tanh(\cdot) = \frac{e^{(\cdot)} - e^{-(\cdot)}}{e^{(\cdot)} + e^{-(\cdot)}}.$$

Lastly, the output transformations are $\Gamma_u(\cdot)$ and $\Gamma_\phi(\cdot)$, where

$$\Gamma_u(\cdot) = (\cdot) \cdot (1 + I_{\phi}(y)) \cdot (1 - I_{\phi}(y)),$$

$$\Gamma_{\phi}(\cdot) = \frac{\phi_m}{1 + e^{-(\cdot)}} \cdot (1 + I_{\phi}(y)) \cdot (1 - I_{\phi}(y)),$$

which serve to enforce the zero Dirichlet boundary conditions as hard constraints for both u and ϕ , and also bound the solution for ϕ such that $\phi \in [0, \phi_m]$.