Lecture 16

Recap...

Two-Stage Least Squares:

Consider the model:

$$y_1 = \alpha_0 + \alpha_1 y_2 + \alpha_2 x_1 + u$$

$$y_2 = \beta_0 + \beta_1 y_1 + \beta_2 x_2 + \beta_3 x_3 + v$$

• Endog.: y_1, y_2 ;

• Exog.: const., x_1, x_2, x_3 .

First question: Is it identified?

- In the first equation, the number of omissions (x_2, x_3) is greater than the number of endogenous variables in the system (G) minus one \rightarrow It is over identified.
- In the second equation, the number of omissions is equal to $G-1 \to \mathsf{lt}$ is identified.

Step 1: Find instrumental variables (IV) for y_1 and y_2 .

- Regress y_1 on constant, x_1,x_2,x_3 : find $\hat{y}_1=\hat{\lambda}_0+\hat{\lambda}_1x_1+\hat{\lambda}_2x_2+\hat{\lambda}_3x_3.$
- Regress y_2 on constant, x_1,x_2,x_3 : find $\hat{y}_2=\hat{\gamma}_0+\hat{\gamma}_1x_1+\hat{\gamma}_2x_2+\hat{\gamma}_3x_3$.
- \hat{y}_1 and \hat{y}_2 are IVs (they depend only on the x's').

Step 2: Estimate the system using the instrumental variables.

Multicollinearity

Say you have x_1, \ldots, x_k .

If
$$\exists \ \lambda_i \ (i=1,\ldots,k): \sum_{i=1}^k \lambda_i x_i = 0 o extsf{Perfect}$$
 Multicollinearity.

$$ullet$$
 E.g.: $x_1=rac{1}{\lambda_1}ig(\lambda_2x_2+\ldots+\lambda_kx_kig)$.

If $\lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_k x_k = v_t$, where v_t is a random error \to **Imperfect** Multicollinearity.

Example:

x_2	x_3	x_3^*
10	50	52
15	75	74
18	90	97
24	120	109
30	150	153

 $\bullet \ \ x_3=5x_2 \ ; \ x_3^*=5x_2+v.$

- Using both x_2, x_3 : perfect multicollinearity (cannot regress).
- Using both x_2, x_3^* : imperfect multicollinearity (might regress).

Summarizing:

- If there is perfect multicollinearity:
 - \circ $\hat{\beta}_i$ undefined;
 - $\circ \operatorname{Var}(\hat{\beta}_i) \to \infty.$
- If there is imperfect multicollinearity
 - It is possible to estimate;
 - \circ However, ${
 m Var}(\hat{eta}_i)$ will increase (and the t statistics decrease) as the x's are more and more correlated.

Estimation under imperfect multicollinearity:

- 1. Unbiased, consistent (only perfect multicollinearity violates Gauss-Markov);
 - OLS is still BLUE (Best Linear Unbiased Estimator).
- 2. The std. errors are big, but correctly estimated.
- 3. It is hard to get a small std. error (a small t) when the x's are highly correlated.
 - A small number of observations will produce the same problem.
 - The solution is the same: Get more data!
- 4. Estimators can be sensitive to small changes in data.
 - That, too, can apply to small samples.

Diagnostic:

- When individual t-statistics are insignificant, but the F-test of the joint significance is significant (R^2 usually high).
 - For a model $y = \beta_1 + \beta_2 x_2 + \beta_3 x_3 + u$:
 - lacksquare t-tests: $H_0:eta_2=0$, $H_0:eta_3=0 o {\sf low}\,|t|$'s.
 - F-test: $H_0: \beta_2=\beta_3=0 \to F$ -statistic greater than critical value.
- High pair-wise correlation (say, $\rho > 0.8$).
 - o If some variable x_2 has high correlation, not with other variables individually, but with a linear combination of them (say, ax_3+bx_4), that can be found by regressing x_2 on x_3 and x_4 .
 - If \hat{a} and \hat{b} are significant, there is most likely multicollinearity.

What to do?

- 1. Do nothing: it is a data (small sample) problem, not a model problem;
- 2. Collect more data;
- 3. Drop a variable;
- 4. Transform the data (log, square, differencing etc).

LM test for adding variables:

For a **restricted** model $y = \beta_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$.

• Test against unrestricted model: $y = \beta_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \beta_{k+1} x_{k+1} + u$.

Step 1: Estimate restricted model: save \hat{u}_i 's.

<u>Step 2</u>: Regress \hat{u}_i on all regressors: $\hat{u}_i = \alpha_1 + \alpha_2 x_2 + \ldots + \ldots + \alpha_k x_k + \alpha_{k+1} x_{k+1} + v_i$.

Step 3: $N\cdot R^2\sim \chi^2(\mathrm{df})$, where $N\cdot R^2$ is the sample size times the coefficient of determination and df, the number of restrictions.