NVIC中断

NVIC和处理器内核紧密相连,用于总体管理异常,称之为"内嵌向量中断控制器: Nested Vectored Interrupt Controller (NVIC)"。

CM3/4内核支持256个中断,其中包含了16个内核中断和240个核外中断。 具有256级的可编程中断设置。

STM32F4并没有使用CM4内核的全部中断,而是只用了它的一部分。\

- -STM32F40xx/STM32F41xx总共有92个中断。\
- -STM32F42xx/STM32F43xx则总共有96个中断(包括10个内核中断和82个可屏蔽中断,具有16级可编程的中断优先级,而我们常用的就是这82个可屏蔽中断。)

NVIC中断优先级分组

分组(在寄存器SCB->AIRCR中配置)->对每个中断设置抢断优先级和响应优先级

抢断优先级和响应优先级的区别

较高优先级的抢占优先级中断,可以打断正在进行的较低抢占优先级的中断;\ 抢占优先级相同的中断,较高响应优先级不可以打断较低响应优先级的中断;\ 抢占优先级相同的中断,当两个中断同时发生的情况下,哪个响应优先级高,哪个先执行;\ 抢占优先级和响应优先级都是一样的话,则看哪个中断先发生就先执行。

组	AIRCR[10: 8]	IP bit[7:4]分 配情况	分配结果	优先级数
0	111	0:4	0位抢占优先级,4位响 应优先级	响应优先级0-15
1	110	1:3	1位抢占优先级,3位响 应优先级	抢占优先级0-1;响应优 先级0-7
2	101	2:2	2位抢占优先级,2位响 应优先级	抢占优先级0-3;响应优 先级0-3
3	100	3:1	3位抢占优先级,1位响 应优先级	抢占优先级0-7;响应优 先级0-1
4	011	4:0	4位抢占优先级,0位响 应优先级	抢占优先级0-15

中断优先级设置

中断优先级控制的寄存器组:IP[240] 全称:Interrupt Priority Registers;240个8位寄存器,每个中断使用一个寄存器来确定优先级。

STM32F40x系列一共82个可屏蔽中断,使用IP[81]~IP[0]。

每个IP寄存器的高4位[7:4]用来设置抢占优先级和响应优先级(根据分组),低4位[3:0]没有用到。

外部中断

STM32F4的每个IO都可以作为外部中断输入。stm32f4的中断控制器支持23个

外部中断请求:\

EXTI线0~15:对应外部IO口的输入(IN)中断。\

EXTI线16:连接到PVD输出。\

EXTI线17:连接到RTC闹钟事件。\

EXTI线18:连接到USB OTG FS唤醒事件。\

EXTI线19:连接到以太网唤醒事件。\

EXTI线20:连接到USB OTG HS(在FS中配置)唤醒事件。\

EXTI线21:连接到RTC入侵和时间戳事件。\

EXTI线22:连接到RTC唤醒事件。\

这些均在stm32内部产生!STM32F4供IO使用的中断线只有16个。

RM0090 中断和事件

外部中断/事件线映射 10.2.5

多达 140 个 GPIO(STM32F405xx/07xx 和 STM32F415xx/17xx)通过以下方式连接到 16 个 外部中断/事件线:

外部中断/事件 GPIO 映射 图 33.

GPIOx.0映射到EXTI0 GPIOx.1映射到EXTI1

GPIOx.15映射到EXTI15

void SYSCFG_EXTILineConfig(uint8_t EXTI_PortSourceGPIOx, uint8_t EXTI_PinSourcex);

//设置IO口与中断线的映射关系

SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOE, EXTI_PinSource2); exp:

8.2.4 SYSCFG 外部中断配置寄存器 1 (SYSCFG_EXTICR1)

SYSCFG external interrupt configuration register 1

偏移地址: 0x08 复位值: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
							Rese	erved											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	EXTI3[3:0]				EXTI3[3:0] EXTI2[3:0]								EXTI	1[3:0]		EXTI0[3:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw				

位 31:16 保留, 必须保持复位值。

位 15:0 **EXTIx**[3:0]: EXTIx 配置 (x = 0 到 3) (EXTIx configuration (x = 0 to 3)) 这些位通过软件写入,以选择 EXTIx 外部中断的源输入。 0000: PA[x] 引脚 0001: PB[x] 引脚 0010: PC[x] 引脚 0011: PD[x] 引脚 0100: PE[x] 引脚 0100: PE[x] 引脚 0110: PF[C] 引脚 0111: PH[x] 引脚 0111: PH[x] 引脚

SYSCFG 外部中断配置寄存器 2 (SYSCFG_EXTICR2)

1000: PI[x] 引脚

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXTI7[3:0]				7[3:0] EXTI6[3:0]						5[3:0]		EXTI 4[3:0]			
rw	rw	rw	rw	ıw	rw	rw	rw	rw	ıw	rw	rw	rw	IW	rw	rw

SYSCFG 外部中断配置寄存器 3 (SYSCFG EXTICR3)

31	30	29	28	2/	20	20	24	23	22	21	20	19	18	1/	10
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI11[3:0]				EXTI11[3:0] EXTI10[3:0]							EXTI8[3:0]			
iw	rw	rw	rw	ıw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

SYSCFG 外部中断配置寄存器 4 (SYSCFG_EXTICR4)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
							Rese	erved										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	EXTI 15[3:0]				EXTI15[3:0] EXTI14[3:0]								EXTI1	3[3:0]		EXTI 12[3:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw			

编程格式

作业

总结下列知识点:(独立思考,以书面资料形式总结好)

STM32F407 有多少个中断?向量表?中断名字?服务程序名字?NVIC等优先级管理模式? 相关寄存器和配置函数?(设置哪些内容?)NVIC优先级设置步骤? 外部中断(EXTI)共有几个?EXTIx如何配置GPIOx引脚?EXTI还可以有哪些配置?EXTIx中断的编程步骤?

① STM32F407 有多少个中断?

答:STM32F40xx/STM32F41xx的92个中断里面,包括10个内核中断和82个可屏蔽中断,具有16级可编程的中断优先级,而我们常用的就是这82个可屏蔽中断。

② 向量表?中断名字?服务程序名字?(自己列出所有名字和向量表中位置)

提示:中断名字,查看中文参考手册,表45,(具体列出。。。。。); 服务程序名字:(查看工程中这个文件),内核中断XXX_Handler(),可屏蔽中断XXX_IRQHandler() (具体列出。。。。。);

③ NVIC等优先级管理模式?

答:首先,对STM32中断进行分组,组0~4。 然后,对每个中断设置:一个抢占优先级、和一个响应优先级。

- ④ 相关寄存器和配置函数?(设置哪些内容?)
 - ◆ 对于每个中断怎么设置优先级?

中断优先级控制的寄存器组: IP[240] 全称是: Interrupt Priority Registers

240个8位寄存器,每个中断使用一个寄存器来确定优先级。 STM32F40x系列一共82个可屏蔽中断,使用IP[81]~IP[0]。

每个IP寄存器的高4位[7:4]用来设置抢占优先级和响应优先级(根据分组),低4位[3:0]没有用到。

◆ MDK (编译系统) 中NVIC寄存结构体

```
typedef struct
 IO uint32 t ISER[8]:
                           //中断使能寄存器组
   uint32 t RESERVED0[24];
 IO uint32 t ICER[8];
                           //中断失能寄存器组
   uint32 t RSERVED1[24];
 IO uint32 t ISPR[8];
                           //中断挂起寄存器组
   uint32 t RESERVED2[24];
  IO uint32 t ICPR[8];
                            //中断解挂寄存器组
   uint32 t RESERVED3[24];
 IO uint32 t IABR[8];
                            //中断激活标志位寄存器组
   uint32 t RESERVED4[56];
 IO uint8 t IP[240];
                            //中断优先级控制的寄存器组
   uint32 t RESERVED5[644];
  O uint32 t STIR;
                            //软件触发中断寄存器
NVIC Type;
```

```
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
设置一次中断分组。
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct);
void NVIC_SetPendingIRQ(IRQn_Type IRQn);
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn);
void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
uint32_t NVIC_GetActive(IRQn_Type IRQn)
```

⑤ NVIC优先级设置步骤?

◆ 中断优先级编程步骤: (初始化、操作)

- ① 系统运行后先设置中断优先级分组。调用函数:

 void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup);
 整个系统执行过程中,只设置一次中断分组。
- ② 针对每个中断,设置对应的抢占优先级和响应优先级: void NVIC Init(NVIC InitTypeDef* NVIC InitStruct);
- ③ 如果需要挂起/解挂,查看中断当前激活状态,分别调用相关函数即可。
- ⑥ 外部中断(EXTI)共有几个?
 - ◆ 并不是16个中断线就可以分配16个中断服务函数
 - ◆ IO 口外部中断在中断向量表中只分配了7个中断向量,即只能使用7个中断服务函数。

(
	位置	优先级	优先级类型	名称	说明	地址
	6	13	可设置	EXTI0	EXTI线0中断	0x0000 0058H
	7	14	可设置	EXTI1	EXTI线1中断	0x0000 005CH
	8	15	可设置	EXTI2	EXTI线2中断	0x0000 0060H
١	9	16	可设置	EXTI3	EXTI线3中断	0x0000 0064H
	10	17	可设置	EXTI4	EXTI线4中断	0x0000 0068H
	23	30	可设置	EXTI9_5	EXTI线[9:5]中断	0x0000 009CH
	40	47	可设置	EXTI15_10	EXTI线[15:10]中断	0x0000 00E0H

◆ 从表中可以看出: 外部中断线 5 ~ 9分配一个中断向量,共用一个中断服务函数 外部中断线10~15分配一个中断向量,共用一个中断服务函数。

⑦ EXTIx如何配置GPIOx引脚?

⑧ EXTI还可以有哪些配置?

⑨ EXTIx中断的编程步骤

7 外部中断一般配置过程

① 使能SYSCFG时钟:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);

② 初始化IO口为输入。

GPIO Init();

③ 设置IO口与中断线的映射关系。 SYSCFG EXTILineConfig();

④ 初始化线上中断,设置触发条件等。

EXTI Init();

⑤ 配置中断分组 (NVIC) ,并使能中断。 NVIC Init();

⑥ 编写中断服务函数。

EXTIx_IRQHandler();

⑦ 清除中断标志位

EXTI_ClearITPendingBit();