TD 15 Espaces vectoriels

Exercice 1: ***

Soit \mathcal{F} l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

On fixe a, b, c, d, k, p cinq réels. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathcal{F} ?

$$E_{1} = \{ f \in \mathcal{F} \mid f(a) = 0 \}$$

$$E_{2} = \{ f \in \mathcal{F} \mid f(a) = 1 \}$$

$$E_{3} = \{ f \in \mathcal{F} \mid f(a) \in \mathbb{R}^{+} \}$$

$$E_{5} = \{ f \in \mathcal{F} \mid f(a) = f(b) = 0 \}$$

$$E_{6} = \{ f \in \mathcal{F} \mid f(a) = 0 \text{ et } f(b) = 1 \}$$

$$E_{7} = \{ f \in \mathcal{F} \mid f(a) + f(b) = 0 \}$$

$$E_{8} = \{ f \in \mathcal{F} \mid f(a) = kf(b) \}$$

$$E_{11} = \{ f \in \mathcal{F} \mid f(a) + f(b) = kf(c) \}$$

$$E_{12} = \{ f : x \mapsto a | x | + bx \}$$

$$E_{13} = \{ f \in \mathcal{F} \mid f \text{ est périodique de période } p \}$$

Exercice 2: ***

Les ensembles F_i suivants sont-ils des sous-espaces vectoriels de l'espace vectoriel E des suites réelles muni de l'addition et de la multiplication par un réel?

- (1) F_1 est l'ensemble des suites (u_n) qui vérifient : $\forall n \in \mathbb{N}, u_{n+2} = 2u_{n+1} + 3u_n$.
- (2) F_2 est l'ensemble des suites (u_n) qui vérifient : $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n$ et $u_0 = 1$.

Exercice 3: ★★★

On se place dans E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2. On note $F = \{P \in E \mid 2P'(1) + P(0) = 0\}$.

- (1) Montrer que F est un sous espace vectoriel de E.
- (2) Soit $P: x \mapsto a + bx + cx^2$, avec a, b, c des réels.

Donner une condition nécessaire et suffisante sur a, b et c pour que $P \in F$.

Exercice 4: ★★★

Dans \mathbb{R}^3 , les familles de vecteurs suivantes forment-elle des familles génératrices, libres, des bases?

- (1) $u_1 = (1; 1; 1), u_2 = (0; 1; -1), u_3 = (2; 1; 1)$ et $u_4 = (0; 1; 1)$
- (2) $u_1 = (0; -1; 1), u_2 = (2; 3; 1), u_3 = (5; 0; 1)$

Exercice 5: ★★★

Soit E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 3. Les familles de polynômes suivantes forment-elles des familles libres, génératrices, des bases de E?

(1) (P_1, P_2, P_3, P_4) définies par

$$\forall x \in \mathbb{R}, \ P_1(x) = x^3, \ P_2(x) = x^2 + x, \ P_3(x) = -x^2 + 1, \ P_4(x) = x^2$$

(2) $(x \mapsto 3x^3 + x^2 - 4x + 6, x \mapsto x^3 + x^2 + 4x + 4, x \mapsto x^3 - 4x + 1)$

Exercice 6: ★★★

On se place dans $E = M_2(\mathbb{R})$. Les familles suivantes forment-elles une partie libre? génératrice de E?

$$(1) \ A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} D = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

(2)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Exercice 7: ★★★

Let $u, v, w \in \mathbb{R}^N$ defined by

$$\forall n \in \mathbb{N}, \ u_n = 2^n, v_n = 3^n, w_n = 4^n.$$

Show that u, v and w are linearly independent.

Exercice 8: ★★★

Soit E l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2, et F l'ensemble des fonctions polynômiales P de E telles que :

$$P(1) = 0 \text{ et } \int_0^1 P(t) dt = 0.$$

Montrer que F est un sous-espace vectoriel de E et en donner une base.

Exercice 9: ★★★

Dans \mathbb{R}^4 , on considère les sous-ensembles H_i définis ci-après.

Montrer que chaque H_i est un sous-espace vectoriel de \mathbb{R}^4 , et en donner une base.

(1)
$$H_1 = \{(x; y; z; t) \in \mathbb{R}^4 \mid x - y = 0\}$$

(2)
$$H_2 = \{(x; y; z; t) \in \mathbb{R}^4 \mid x + y + z + t = 0 \text{ et } x - y - z + t = 0\}$$

Exercice 10: ★★★★

Let $E = \mathbb{R}^R$, F the subspace of E generated by the maps $x \mapsto \cos(nx)$ $(n \in \mathbb{N})$ and $\hat{G}^the subspace generated by <math>x \mapsto \cos^n x$ $(n \in \mathbb{N})$. Show that F = G.

Exercice 11: ★★★★

Partie 1

Notons E le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} de classe C^{∞} . Soient $f_1:t\mapsto e^t,\ f_2:t\mapsto e^{-t/2}\sin\left(\frac{t\sqrt{3}}{2}\right)$ et $f_3:t\mapsto e^{-t/2}\cos\left(\frac{t\sqrt{3}}{2}\right)$. Nous noterons $\mathscr{B}=(f_1,f_2,f_3)$ et G le sous-espace vectoriel de E engendré par \mathscr{B} .

Nous allons montrer que \mathscr{B} est une famille libre de vecteurs de E. Soient a, b, c des réels tels que $af_1 + bf_2 + cf_3$ soit la fonction nulle.

- (1) L'étudiante Antoinette observe que $af_1(t) + bf_2(t) + cf_3(t) = 0$ pour tout réel t. Elle choisit (adroitement) trois valeurs de t, obtient un système de trois équations aux trois inconnues a, b et c, qu'elle résout; il ne lui reste plus qu'à conclure. Faites comme elle!
- (2) L'étudiante Lucie propose d'exploiter le développement limité à l'ordre 2 de la fonction $af_1 + bf_2 + cf_3$ au voisinage de 0. Faites comme elle!
- (3) L'étudiante Nicole décide de s'intéresser au comportement de $af_1(t) + bf_2(t) + cf_3(t)$ lorsque t tend vers $+\infty$. Faites comme elle!

La famille \mathscr{B} est donc une base de G.

- (4) Montrez que pour tout $f \in G$, $f' \in G$.
- (5) Explicitez les coordonnées dans la base \mathscr{B} des vecteurs f'_1 , f'_2 et f'_3 .

Partie 2

Nous nous intéressons dans cette partie à l'équation différentielle y'''=y, que nous noterons (\mathscr{E}) . Une solution sur \mathbb{R} de (\mathscr{E}) est une fonction f définie et trois fois dérivable sur \mathbb{R} vérifiant f'''(t)=f(t) pour tout $t\in\mathbb{R}$.

- (1) Montrez que toute solution f de (\mathscr{E}) est C^{∞} .
- (2) Montrez que la fonction nulle est la seule solution polynomiale de (\mathcal{E}) .

On note \mathscr{S} l'ensemble des solutions de (\mathscr{E}) .

(3) Montrez que $\mathscr S$ est un sous-espace vectoriel de E et que $G\subset \mathscr S.$

Nous allons étabir l'inclusion inverse; ainsi G sera exactement l'ensemble des solutions de (\mathscr{E}) . Soit f une solution de (\mathscr{E}) ; nous noterons g = f + f' + f''.

- (4) Montrez que g est solution de l'équation différentielle y' = y.
- (5) Décrivez rapidement l'ensemble des solutions de l'équation différentielle y' y = 0.
- (6) Résolvez l'équation différentielle y'' + y' + y = 0; vous donnerez une base de l'ensemble des solutions.
- (7) Soit $\lambda \in \mathbb{R}$. Décrivez l'ensemble des solutions de l'équation différentielle $y'' + y' + y = \lambda e^t$.
- (8) Et maintenant, concluez!