=> fil hcaplus
FILE 'HCAPLUS' ENTERED AT 08:53:26 ON 29 JUL 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

EIC Search

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on SIN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 29 Jul 2009 VOL 151 ISS 5
FILE LAST UPDATED: 28 Jul 2009 (20090728/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Jun 2009
USPIO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Jun 2009

HCAplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2009.

CAS Information Use Policies apply and are available at:

http://www.cas.org/legal/infopolicy.html

This file contains CAS Registry Numbers for easy and accurate substance identification.

The ALL, BIB, MAX, and SID display formats in the CA/CAplus family of databases have been updated to include new citing references information. This enhancement may impact record import into database management software. For additional information, refer to NEWS 22.

=> d 1113 bib abs hitind hitstr retable tot

- L113 ANSWER 1 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN
- AN 2004:934074 HCAPLUS Full-text
- DN 141:403330
- TI Polymeric electroluminescent device using an emitting
- layer of nanocomposites
- IN Kim, Young Chul; Kim, Jai Kyeong; Yu, Jae-woong; Park, O. Ok; Park, Jong Hyeok; Lim, Yong Taik
- PA Korea Institute of Science and Technology, S. Korea
- SO U.S. Pat. Appl. Publ., 8 pp. CODEN: USXXCO
- DT Patent
- LA English
- FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 20040217696	A1	20041104	US 2003-699119	20031031 <
	US 6995505	B2	20060207		
	KR 2004093531	A	20041106	KR 2003-27432	20030430 <
	JP 2004335438	A	20041125	JP 2003-327156	20030919 <

PRAI KR 2003-27432 20030430 <--A A polymeric electroluminescent device suppresses photo-oxidation and enhances luminous stability and efficiency by using a nanocomposite of a luminescent polymer and metal nanoparticles as its emitting layer.

ICM H05B0033-14 ICS H05B0033-00

INCL 313504000; X31-350.6

73-12 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 36, 76

polymeric electroluminescent device emitting layer

nanocomposite

Electrolominascent davices Luminescent substances

Nanocomposites

Nanoparticles Stability

(polymeric electroluminescent device using emitting

layer of nanocomposites)

Metals, properties Polymers, properties

Transition metals, properties

RL: CPS (Chemical process); DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(polymeric electroluminescent device using emitting layer of nanocomposites)

7439-89-6, Iron, properties 7440-02-0, Nickel, properties 7440-06-4, Platinum, properties 7440-22-4, Silver, properties 7440-48-4, Cobalt, properties 7440-56-4, Germanium, properties 7440-57-5, Gold, properties 96638-49-2, Poly(phenylenevinylene) 123863-98-9, Poly(9,9-dihexylfluorene) 123864-00-6. Poly(9,9-dioctylfluorene)

RL: CPS (Chemical process); DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(polymeric electroluminescent device using emitting layer of nanocomposites)

7440-06-4, Platinum, properties 123864-00-6,

Poly(9,9-dioctylfluorene)

RL: CPS (Chemical process); DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(polymeric electroluminescent device using emitting layer of nanocomposites)

7440-06-4 HCAPLUS RN

CN Platinum (CA INDEX NAME)

123864-00-6 HCAPLUS RN

9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME)

CM 1

DH

CRN 123863-99-0

CMF C29 H42

3

RETABLE

Referenced Author	Year VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File
	-+++	-+	-+
Anon	[2000]	KR 200046588	İ
Anon	2001	KR 200195437	
Duggal	2001	US 20010033135 A1	HCAPLUS
Duggal	[2003]	US 6515314 B1	HCAPLUS
Korgel	2003	US 20030003300 A1	HCAPLUS
McNulty	2003	US 20030111955 A1	HCAPLUS
Shi	1997	US 5677545 A	HCAPLUS

- L113 ANSWER 2 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN
- AN 2004:78554 HCAPLUS Full-text
- DN 140:154111
- TI Electrojuminescent device and methods for its production and use
- IN Kinlen, Patrick J.
- PA Crosslink Polymer Research, USA
- SO U.S. Pat. Appl. Publ., 22 pp., Cont.-in-part of U.S. Ser. No. 207,576. CODEN: USXXCO
- DT Patent
- LA English

P PAIN .	PA:	rent :						DATE			APPL						ATE		
PI	US	2004	0018	382		A1			0129							0030		<	
		7361																	
		2004									US 2	002-	2075	76		2	0020	729	<
		7029																	
											CA 2003-2493153								
	WO	0 2004011250																	
		W:									BB,								
											EC,								
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	NZ,	OM,	
			PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	ТJ,	TM,	TN,	
			TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	zw				
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,	
			KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
			FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,	
			BF,	BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG	
	AU	2003	2566	08		A1		2004	0216		AU 2	003-	2566	80		2	0030	718	<
	EP	1542	867			A1		2005	0622		EP 2003-771654					2	0030	718	<
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			IE.	SI.	LT.	LV.	FI,	RO,	MK,	CY,	AL,	TR.	BG,	CZ.	EE.	HU,	SK		
	JP	2005																718	<
PRAT	US	2003	-207	576		A2		2002	0729	<-	_								
	US	2003	-352	476		A		2003	0128	<-	_								
		2003																	

AB — A luminescent device is described comprises an electroluminescent phosphor in operative contact with a light-emitting material wherein excitation of the

10 / 516627 electroluminescent phosphor by an a.c. elec. field causes the emission of light by the light-emitting material, and wherein the electrodes may comprise an intrinsically conductive polymer. Methods of fabricating the device and using it in an electroluminescent display are also described. ICM H05B0033-14 ICS H05B0033-26 INCL 428690000; 428917000; 313503000; 313509000; 427066000 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties) Section cross-reference(s): 38, 74, 76

electroluminescent display device ac powered fabrication

TT Electroluminescent devices

Semiconductor device fabrication (a.c.-powered electroluminescent device and fabrication

method)

Polysulfides Polyvinyl butyrals

RL: DEV (Device component use); USES (Uses)

(binder polymer; electroluminescent phosphor coated with light-emitting material)

Electroluminescent devices

(displays; a.c.-powered electroluminescent device and fabrication method)

Polyacetylenes, uses

Polvanilines

Polythiophenylenes

RL: DEV (Device component use); USES (Uses)

(electrode; a.c.-powered electroluminescent device and fabrication method)

Phosphors

(electroluminescent phosphor coated with light-emitting material)

Luminescent screens

(electroluminescent; a.c.-powered electroluminescent

device and fabrication method)

Fluoropolymers, uses

Polvoxvalkvlenes, uses

RL: DEV (Device component use); USES (Uses)

(light-emitting material; a.c.-powered electroluminescent device and fabrication method)

9011-14-7, PMMA 39399-28-5, PVB

RL: DEV (Device component use); USES (Uses)

(binder polymer; electroluminescent phosphor coated with light-emitting material)

25067-58-7, Polyacetylene 25190-62-9, Poly-p-phenylene 25233-34-5, Polythiophene 26499-97-8, Poly-m-phenylene 51555-21-6, Polycarbazole RL: DEV (Device component use); USES (Uses)

(electrode; a.c.-powered electroluminescent device and fabrication method)

1303-11-3, Indium arsenide (InAs), uses 1306-24-7, Cadmium selenide (CdSe), uses 1314-98-3, Zinc sulfide (ZnS), uses 1315-09-9, Zinc selenide (ZnSe) 12402-02-7, Yttrium oxide sulfide (YOS) 12442-27-2, Cadmium zinc sulfide (CdZnS) 13708-63-9, Terbium fluoride (TbF3) 13778-59-1, Lanthanum phosphate (LaPO4) 66199-87-9, Terbium fluoride (TbF)

RL: DEV (Device component use); USES (Uses)

(electroluminescent phosphor; a.c.-powered

electroluminescent device and fabrication method)

7439-96-5, Manganese, uses 7440-00-8, Neodymium, uses 7440-10-0, Praseodymium, uses 7440-22-4, Silver, uses 7440-27-9, Terbium, uses

7440-50-8, Copper, uses 7440-52-0, Erbium, uses 7440-64-4, Ytterbium, uses RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses) (electroluminescent phosphor; a.c.-powered electroluminescent device and fabrication method) 81-88-9 91-64-5D, Coumarin, derivs. 92-24-0, Tetracene 92-83-1, Xanthene 120-12-7, Anthracene, uses 148-24-3, 8-Hydroxyquinoline, uses 1239-45-8, Ethidium bromide 2085-33-8, Alg3 2321-07-5, Fluorescein 9002-86-2 9002-89-5 7439-93-2D, Lithium, salt 9002-85-1 9003-53-6 9003-63-8 13558-31-1 13978-85-3, Bis(8-hydroxyquinolinato)zinc 14128-73-5 14284-95-8 17568-09-1 17904-83-5 17904-86-8 18130-95-5 24936-74-1 24937-16-4, Poly[imino(1-oxo-1,12-dodecanediyl)] 24937-78-8 24937-79-9 24979-70-2 24980-41-4 25013-01-8, Polypyridine 25014-41-9D, derivs. 25038-74-8 25067-59-8 25322-68-3 25535-16-4, Propidium iodide 26009-24-5, Poly-(p-phenylene vinylene) 26098-55-5 30604-81-0 69031-04-5 43070-85-5D, Hydroxycoumarin, derivs. 62555-84-4 75980-76-6, 4,6-Diamidino-2-phenylindole 94928-86-6 110981-38-9 110981-40-3 126213-51-2 133019-09-7. Poly(9,9-dihexyl-9H-fluorene-2,7-diyl) 138184-36-8, MEHPPV 142289-08-5 144810-07-1 157474-24-3 166534-30-1 170967-95-0 180179-60-6 184378-14-1 188201-14-1 195456-48-5. Poly(9,9-dioctyl-9H-fluorene-2,7-divl) 203806-96-6 229970-41-6 254445-51-7 313262-95-2 322727-85-5 338949-42-1 352546-68-0 452311-41-0 474975-19-4 474975-20-7 474975-21-8 354558-87-5 474975-24-1 474975-25-2 474975-22-9 474975-23-0 474975-26-3 475095-73-9 475095-75-1 475095-76-2 475095-77-3 475101-36-1 475102-03-5 475102-07-9 475102-09-1 475102-99-9 577705-40-9, Polv[2-(6-cvano-6-methylheptyloxy)-1,4-phenylene] RL: DEV (Device component use); USES (Uses) (light-emitting material; a.c.-powered electroluminescent device and fabrication method) 94928-86-6 188201-14-1 195456-48-5. Poly(9,9-didctyl-9H-fluorene-2,7-diyl)

RL: DEV (Device component use); USES (Uses)

(light-emitting material; a.c.-powered electroluminescent device and fabrication method)

RN 94928-86-6 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC]-, (OC-6-22)- (CA INDEX NAME)

188201-14-1 HCAPLUS RN

CN Poly[9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-diyl] (CA INDEX NAME)

$$\begin{bmatrix} \text{Et} & \text{Et} \\ \text{n-Bu} - \overset{\downarrow}{\text{CH}} - \text{CH}_2 & \text{CH}_2 - \overset{\downarrow}{\text{CH}} - \text{Bu} - \text{n} \end{bmatrix}_{n}$$

RN 195456-48-5 HCAPLUS

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

RETABLE					
Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
	+=====	-====	+=====	+	+
Abe	12002	ı	1	IUS 6406803 B1	IHCAPLUS
Albert	12002		İ	US 6392786 B1	İ
Albert	2004	ĺ	İ	US 20040217929 A1	HCAPLUS
Andriessen	2004		I	US 6706551 B2	HCAPLUS
Anon	1988	1	I	EP 0294061 A1	HCAPLUS
Anon	1998		1	WO 9853645	HCAPLUS
Anon	2002		1	1	
Anon	2002		I	I	1
Anon	2002		I	1	
Anon	2002	185	1	201st Meeting of the	
Anon	12006		19332	EP	
Application Sheet	2001		1	1	
Araki	2002		1	US 6489045 B1	HCAPLUS
Article	1			1	
Article	1998		221	1	
Article	1998		1823		
Article	2002		1147	Article in Advanced	
Article Published	1983		1954	1	
Article Published	1989		I	1	
Article Published	2001		1429	Article published in	
Article Published	1989		IC687	Article published in	
Article Published			1860	Article published in	
Article Published	1998		137	Article published in	
Article Published	1987		1389	J. Phys. D	
Article Published	12002		12357	Rev.	
Barnardo	12003		l	US 20030140768 A1	
Bayless	12003		I	US 6562460 B1	HCAPLUS
Bezner	11989		I	US 4855190 A	
Brese	11997		ļ.	US 5643496 A	HCAPLUS
Budd	11997		Į.	US 5593782 A	HCAPLUS
Burbank	11996		I	US 5583394 A	HCAPLUS
Burke	1998		I	US 5779346 A	1

7

Burrows	1999	US 5856031 A	HCAPLUS
Chadha	1997	US 5635110 A	HCAPLUS
Chiang	2003	US 20030099884 A1	HCAPLUS
Eguchi	1987	US 4672265 A	1
Epstein	1997	US 5663573 A	HCAPLUS
Epstein	2001	US 20010030325 A1	HCAPLUS
Fischer	1981	IUS 4263339 A	HCAPLUS
Friend	[1993	US 5247190 A	i
Friend	12002	IUS 6498049 B1	HCAPLUS
Han, J	11999 20	Korean Chem Soc	I I I I I I I I I I I I I I I I I I I
I-Components Website	12002 1	I I I I I I I I I I I I I I I I I I I	i
Ikeda			
	2003	JUS 6559449 B2	HCAPLUS
Ito	1997	JUS 5652067 A	!
Janusauskas	1999	US 5976613 A	HCAPLUS
Jones	2001	US 6198220 B1	HCAPLUS
Kang	1997	US 5675217 A	HCAPLUS
Karam	1994	US 5309071 A	HCAPLUS
Katayama	1997	US 5612591 A	HCAPLUS
Kawaguchi	2005	US 6936783 B2	1
Kershaw	2005	US 6893032 B2	1
Kreiling	1989	US 4857416 A	i i
Kunimoto	[2001]	IUS 6258954 B1	IHCAPLUS
LaPointe	11997	IUS 5598058 A	HCAPLUS
Lee	11999	IUS 5912533 A	HCAPLUS
Lee	12003	US 6610223 B2	HCAPLUS
Lehmann		IUS 2924732 A	
	1960		!
Mash	1962	US 3052810 A	1
Matsumoto	12003	US 6613455 B1	HCAPLUS
McNulty	2005	US 6903505 B2	HCAPLUS
Mueller	1997	US 5700592 A	HCAPLUS
Murasko	1995	US 5426792 A	1
Murasko	1996	US 5552679 A	1
Murasko	2001	US 20010035716 A1	HCAPLUS
Murasko	2001	US 20010042329 A1	HCAPLUS
Murasko	2001	US 6203391 B1	HCAPLUS
Murasko	[2002]	US 20020011786 A1	HCAPLUS
Murasko	12002	US 20020155214 A1	IHCAPLUS
Murasko	2002	US 20020157173 A1	1
Murasko	12002	IUS 20020159245 A1	HCAPLUS
Murasko	12002	IUS 20020159246 A1	I I I I I I I I I I I I I I I I I I I
Murasko	12002	IUS 6424088 B1	HCAPLUS
Murasko	12002	IUS 20030015962 A1	I IICAE EOS
Murasko		IUS 20030013962 A1	HCAPLUS
Namiki	1995	US 5457565 A	HCAPLUS
Okajima	1997	US 5700591 A	HCAPLUS
Onitsuka	[2000]	US 6023371 A	1
Pei	1997	US 5682043 A	HCAPLUS
Petersen	1997	US 5667724 A	HCAPLUS
Pope	2001	US 6218774 B1	HCAPLUS
Reddy	1997	US 5702643 A	HCAPLUS
Reddy	1998	JUS 5711898 A	HCAPLUS
Simopoulos	1989	US 4855189 A	HCAPLUS
Solanki	[1997]	US 5602445 A	HCAPLUS
Sun	11994	IUS 5309070 A	HCAPLUS
Sun	11997	US 5598059 A	HCAPLUS
Sun	11997	IUS 5677594 A	IHCAPLUS
Tonomura	11996	US 5554449 A	I I I I I I I I I I I I I I I I I I I
VanSlyke	11985	IUS 4539507 A	i
	11985	IUS 5543237 A	 HCAPLUS
Watanabe		IUS 6053795 A	
Whitney	2000	100 0003/95 A	1

Williams IUS 3621321 A LHCAPLUS 11971 I Zovko 12003 L 1 US 6611109 B2 OSC.G 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS)

L113 ANSWER 3 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2004:78550 HCAPLUS Full-text

DN 140:154092

TI Night-emitting phosphor particles and electroluminescent devices employing same

Kinlen, Patrick J.

IN

PA USA

SO U.S. Pat. Appl. Publ., 18 pp.

CODEN: USXXCO

DT Patent LA English

FAN.CNT 2

						KIND DATE			APPLICATION NO.									
PI	US 20040018379 US 7029763				A1	A1 20040129				US 2002-207576								
								20040129 US 2003-352476							20030128 <			
		7361					B2 20080422											
										CA 2003-2493153								
	WO																	718 <
		W:																CN,
																		GH,
									IS,									
									MG,									
		PG, PH, PL, TR, TT, TZ,													10,	111,	114,	
		RW:							SD,							AM.	A7.	BY.
									AT,									
									IT,									
			BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG
	AU	2003	2566	80		A1		2004	0216	AU 2003-256608					2	0030	718 <	
	EΡ	1542	867			A1		2005	0622		EP 2	003-	7716	54		20030718 <		
		R:																PT,
									MK,									
																		718 <
											05 2	006-	3449	34		2	0060	201 <
DD2.7		7303																
PRAI		2002																
		2003								<-	_							
			-			**		-000	0.10									

AB Phosphor particles are described which are coated with a light-emitting substance (e.g., a light-emitting polymer and/or a light-emitting small mol.). Methods of preparing the coated phosphors are described which entail coating phosphor particles with a light-emiting material. Electroluminescent displays employing the phosphors are also described. Methods for fabricating electroluminescent displays are described which entail formulating an ink by mixing phosphor particles with ≥1 binder polymer; depositing a conducting rear electrode onto a substrate in a pattern; depositing the ink onto the rear electrode to form a layer; optionally depositing a layer containing a lightemitting substance onto the layer; optionally depositing a transparent hole transporting electrode onto the layer; and depositing a front outlining electrode; and depositing connection leads to the rear electrode and the front outlining electrode.

ICM H05B0033-14 ICS C09K0011-00

INCL 428690000; X42-891.7; X31-350.3; X31-350.4; X31-350.9; X42-7 6.6;

X42-721.2

73-5 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 74, 76

phosphor particle luminescent coating; electroluminescent display phosphor particle luminescent coating

Electroluminescent devices

(displays; phosphor particles with light-emitting coatings and their preparation and electroluminescent displays employing them and their fabrication)

Luminescept screeps

(electroluminescent; phosphor particles with light-emitting coatings and their preparation and electroluminescent displays employing them and their fabrication)

Luminescent substances

Phosphors

Semiconductor device fabrication

(phosphor particles with light-emitting coatings and their preparation and electroluminescent displays employing them and their fabrication)

Fluoropolymers, uses

Poly(arylenealkenylenes)

Poly(arylenealkylenes)

Polyoxyalkylenes, uses

RL: DEV (Device component use); USES (Uses)

(phosphor particles with light-emitting coatings and their preparation and electroluminescent displays employing them and their fabrication)

91-64-5D, Coumarin, derivs. 92-83-1, Xanthene 92-83-1D, Xanthene, derivs. 148-24-3, 8-Hydroxyquinoline, uses 1239-45-8, Ethidium bromide 2085-33-8 2321-07-5, Fluorescein 9002-85-1 9002-86-2 9002-89-5 9003-39-8 9003-53-6 9003-63-8 9011-14-7 13558-31-1 13978-85-3 14128-73-5 14642-34-3 17904-83-5 18130-95-5 24936-74-1 24937-78-8 24937-79-9 24979-70-2 24980-41-4 25013-01-8, 25014-41-9 25038-74-8 25322-68-3 25535-16-4. Polypyridine Propidium iodide 26009-24-5, Poly(p-phenylene vinylene) 43070-85-5D, Hydroxycoumarin, derivs. 62555-84-4 75980-76-6, 4,6-Diamidino-2-phenylindole 94928-86-6 126213-51-2 133019-09-7, Poly(9,9-dihexyl-9H-fluorene-2,7-diyl) 138184-36-8, Poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) 142289-08-5 144810-07-1 180179-60-6 184378-14-1 188201-14-1 195456-48-5, Polv(9,9-dioctv1-9E-fluorene-2,7-div1) 203806-96-6 313262-95-2 322727-85-5 338949-42-1 352546-68-0 474975-19-4 474975-20-7 474975-21-8 474975-22-9 474975-23-0 474975-24-1 474975-25-2 474975-26-3 475095-73-9 475095-75-1 475095-76-2 475095-77-3 475101-36-1 475102-03-5 475102-07-9 475102-09-1 475102-99-9 577705-40-9, Poly(2-(6-cvano-6-methylheptyloxy)-1,4phenylene] RL: DEV (Device component use); USES (Uses)

(phosphor particles with light-emitting coatings and their preparation and electroluminescent displays employing them and their fabrication)

94928-86-6 188201-14-1 195456-48-5.

Poly(9,9-discty1-9H-fluorene-2,7-diyl)

RL: DEV (Device component use); USES (Uses)

(phosphor particles with light-emitting coatings and their preparation and electroluminescent displays employing them and their

fabrication)

94928-86-6 HCAPLUS RN

10

CN Iridium, tris[2-(2-pyridinyl-kN)phenyl-kC]-, (OC-6-22)- (CA INDEX NAME)

RN 188201-14-1 HCAPLUS

CN Poly[9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-diyl] (CA INDEX NAME)

195456-48-5 HCAPLUS RN

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year VC (RPY) (RV	L PG L) (RPG)	Referenced Work (RWK)	Referenced File
	++	+	-+	-+
Abe	12002	1	US 6406803 B1	HCAPLUS
Albert	2002	1	US 6392786 B1	1
Albert	2004	1	US 20040217929 A1	HCAPLUS
Andriessen	2004	1	US 6706551 B1	HCAPLUS
Anon	1 1	1		
Anon	1988	1	EP 0294061 A1	HCAPLUS
Anon	1998	1	WO 9853645	HCAPLUS
Anon	[2003]	1	International Appli	.c
Anon	12002	1	http://ncsr.csci-va	
Anon	1 1	1	http://www.geocitie	s
Anon	12002	1	http://www.i-compon	ie I

			10731	0027	
Araki	12002	1	1	US 6489045 B1	HCAPLUS
Ballard	11983	i	1954	J. Chem. Soc.	HCAPLUS
Barnardo	12003		ì	IUS 20030140768 A1	i
Bayless	12003	i	i	IUS 6562460 B1	HCAPLUS
Bradley		20	11389	J. Phys. D	HCAPLUS
Brese	11997	i	i	IUS 5643496 A	HCAPLUS
Budd	11997	i	i	IUS 5593782 A	HCAPLUS
Burbank	11996	i	i	US 5583394 A	HCAPLUS
Chadha	11997	i	i	IUS 5635110 A	HCAPLUS
Chiang	12003	i	i	IUS 20030099884 A1	IHCAPLUS
Duggal	12003	i	i	US 20030094626 A1	HCAPLUS
Duggal	12004	i	i	US 6777724 B1	HCAPLUS
Equchi	11987	ì	i	IUS 4672265 A	I I I I I I I I I I I I I I I I I I I
Epstein	12001	i	i	IUS 20010030325 A1	HCAPLUS
Fischer	11981	ì	i	IUS 4263339 A	HCAPLUS
Friend	11993	i	i	IUS 5247190 A	I I I I I I I I I I I I I I I I I I I
Friend	12002	i	i	IUS 6498049 B1	HCAPLUS
Friend		14	137	Journal of Molecular	
Han	11999			Bull. Korean Chem. S	
Hebbink		114	11147		
Ikeda	12002	1 4	11147	Advanced Materials US 6559449 B1	HCAPLUS
Janusauskas	11999	!	!	JUS 5976613 A	HCAPLUS
Jones	12001	!	!	US 6198220 B1	HCAPLUS
Kang	11997	!	!	JUS 5675217 A	HCAPLUS
Karam	11994	!	!	JUS 5309071 A	HCAPLUS
Katayama	11997	11100	10055	US 5612591 A	HCAPLUS
Kido		1102	12357	Chem. Rev.	HCAPLUS
Kinlen	12004	1	1000	US 20040018382 A1	HCAPLUS
Kojima		121	1860		HCAPLUS
Kreiling	11989	!	!	JUS 4857416 A	
Kunimoto	12001	1	1	US 6258954 B1	HCAPLUS
LaPointe	11997	1	1	US 5598058 A	HCAPLUS
Lee	11999	1	1	US 5912533 A	HCAPLUS
Lee	12003	1	1	US 6610223 B1	HCAPLUS
Lehmann	11960	1	1	US 2924732 A	1
Lieberman	12002	1	1	http://www.eetimes.c	
Mash	11962	1	1	US 3052810 A	1
Matsumoto	12003	1	1	US 6613455 B1	HCAPLUS
McNulty	12003	1	1	US 20030111955 A1	HCAPLUS
McNulty	12005	1	1	US 6903505 B1	HCAPLUS
Mueller	11997	1	1	US 5700592 A	HCAPLUS
Murasko	11995	1	1	US 5426792 A	1
Murasko	11996	1		US 5552679 A	1
Murasko	2001	1		US 20010035716 A1	HCAPLUS
Murasko	2001	1		US 20010042329 A1	HCAPLUS
Murasko	2001	1	1	US 6203391 B1	HCAPLUS
Murasko	12002	1	1	US 20020011786 A1	HCAPLUS
Murasko	12002	1	1	US 20020155214 A1	HCAPLUS
Murasko	12002	1	1	US 20020157173 A1	1
Murasko	12002	1	1	US 20020159245 A1	HCAPLUS
Murasko	12002	1	1	US 20020159246 A1	1
Murasko	12002	1	1	US 6424088 B1	HCAPLUS
Murasko	12003	1	1	US 20030015962 A1	I
Murasko	12003	1	1	US 20030032361 A1	HCAPLUS
Namiki	11995	İ	İ	US 5457565 A	HCAPLUS
Okajima	11997	i	i	US 5700591 A	HCAPLUS
Onitsuka	2000	į.	i	US 6023371 A	İ
Orgacon Conductive Tra	n 2001	i .	i	Patterning Orgacon F	1
Pei	1997	i .	i	US 5682043 A	HCAPLUS
Petersen	11997	İ	i	US 5667724 A	HCAPLUS

```
OSC.G 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD (5 CITINGS)
```

L113 ANSWER 4 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2003:972158 HCAPLUS Full-text

DN 140:33402

TI Phosphorescent and luminescent conjugated polymers and their use in electroluminescent assemblies

IN Marsitzky, Dirk; Heuer, Helmot-Werner; Wehrmann, Polf; Elschner, Andreas; Reuter, Knud; Sautter, Armin

PA H.C. Starck G.m.b.H., Germany

SO PCT Int. Appl., 119 pp.

CODEN: PIXXD2 DT Patent

LA German

FAN.CNT 1

	PATENT NO.					KIND DATE			APPLICATION NO.				DATE					
PI	WO 2003102109				A1 20031211				WO 2003-EP5699									
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,
			co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	KΡ,	KR,	ΚZ,	LC,	LK,	LR,
									MG,									
									SD,					ΤJ,	TM,	TN,	TR,	TT,
									VN,									
		RW:							SD,									
									ΑT,									
	FI, FR,																	
			BF,	ВJ,					GA,									
		1022								DE 2002-10224617								
						A1 20040930				DE 2003-10311767								
										AU 2003-238177						20030530 <		
	EP	1513	911			A1		2005	0316		EP 2	003-	7355	04		2	0030	530 <
		R:																PT,
				SI,					MK,									
		1671									CN 2	003-	8184	35		2	0030	530 <
		1003						2007										
		2005														20030530 <		
							us 2005-516627											
	HK	1083	347			A1		2008	0808		HK 2	006-	1033	18		2	0060	315 <

```
PRAI DE 2002-10224617 A
                              20020604 <--
    DE 2003-10311767
                        A
                              20030318 <--
     WO 2003-EP5699
                              20030530 <--
                        TAT
AB
     Phosphorescent or luminescent conjugated polymers are described whose emission
     is based on the phosphorescence of covalently bonded metal complexes,
     optionally combined with the fluorescence of the polymer chain. Method for
     producing the polymers are described which entail reacting an uncomplexed
     ligand polymer with an Ir(III), Pt(II), Os(II), or Rh (III) precursor complex.
     The use of the polymer complexes in electroluminescent assemblies.
     electroluminescent device employing the complexes, and methods for producing
     electroluminescent devices entailing applying a solution of a polymer(s) to an
     appropriate substrate are also described.
     ICM C09K0011-06
IC.
     ICS C08G0061-02; H05B0033-14; C07F0015-00; H01L0051-20
CC
    73-5 (Optical, Electron, and Mass Spectroscopy and Other Related
     Properties)
     Section cross-reference(s): 38, 76
    195456-48-50P, Poly(9,9-dioctyl-9H-fluorene-2,7-diyl),
    reaction products with metal complexes
     337526-80-4DP, reaction products with polymers
     343978-72-3DP, reaction products with polymers
     417705-49-8DP, reaction products with polymers
     439675-33-9DP, reaction products with metal
     complexes 603109-46-4DP, reaction products
     with polymers 632297-35-9DP, reaction
     products with polymers 632326-35-3DP, reaction
     products with polymers 633290-76-3DP, reaction
     products with metal complexes
     RL: DEV (Device component use); IMF (Industrial manufacture); PREP
     (Preparation); USES (Uses)
        (phosphorescent and luminescent conjugated polymers and their preparation
       use in electroluminescent devices and the devices and their
        fabrication)
     7440-04-2DP, Osmium, complexes, reaction
     products with polymers 7440-06-4DP, Platinum,
     complexes, reaction products with polymers
     7440-16-6DP, Rhodium, complexes, reaction products with polymers
     RL: IMF (Industrial manufacture); TEM (Technical or engineered material
     use); PREP (Preparation); USES (Uses)
        (phosphorescent and luminescent conjugated polymers and their preparation
       use in electroluminescent devices and the devices and their
        fabrication)
    195456-48-5DP, Polv(9,9-dioctvl-9H-fluorene-2,7-divl),
     reaction products with metal complexes
     337526-80-40P, reaction products with polymers
    343978-72-3DP, reaction products with polymers
     417705-49-8DP, reaction products with polymers
     439675-33-9DP, reaction products with metal
     complexes 603109-48-4DP, reaction products
     with polymers 632297-35-9DP, reaction
    products with polymers 632326-35-3DP, reaction
    products with polymers 633290-76-JDP, reaction
     products with metal complexes
     RL: DEV (Device component use); IMF (Industrial manufacture); PREP
     (Preparation); USES (Uses)
        (phosphorescent and luminescent conjugated polymers and their preparation
```

fabrication) RN 195456-48-5 HCAPLUS

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

use in electroluminescent devices and the devices and their

RN 337526-80-4 HCAPLUS

CN Iridium, tetrakis[2-(2-benzothiazolyl-κN3)phenyl-κC]di-μchlorodi-, stereoisomer (CA INDEX NAME)

RN 343978-72-3 HCAPLUS

CN Iridium, di- μ -chlorotetrakis[2-(2-pyridinyl- κ N)benzo[b]thien-3-yl- κ C]di- (CA INDEX NAME)

RN 417705-49-8 HCAPLUS

CN Iridium, di- μ -chlorotetrakis[5-fluoro-2-(2-pyridinyl- κ N)phenyl- κ C]di- (CA INDEX NAME)

RN 439675-33-9 HCAPLUS

CN Poly[2-[(2-ethylhexyl)oxy]-1,4-phenylene] (CA INDEX NAME)

RN 603109-48-4 HCAPLUS

CN Iridium, di-μ-chlorotetrakis[2-(2-pyridinyl-κN)phenyl-κC]di-(CA INDEX NAME)

RN 632297-35-9 HCAPLUS

CN Iridium, di- μ -chlorotetrakis[2-[5-(trifluoromethyl)-2-pyridinyl- κ N]benzo[b]thien-3-yl- κ C]di- (9CI) (CA INDEX NAME)

RN 632326-35-3 HCAPLUS

CN Iridium, di-μ-chlorotetrakis[2-(2-pyridiny1-κN)-3-thienyl-κC]di- (9CI) (CA INDEX NAME)

RN 633290-76-3 HCAPLUS

CN Poly[pyridinediyl(9,9-dioctyl-9H-fluorene-2,7-diyl)] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 7440-04-2DP, Osmium, complexes, reaction

products with polymers 7440-06-4DP, Platinum,

complexes, reaction products with polymers

RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(phosphorescent and luminescent conjugated polymers and their preparation use in electroluminescent devices and the devices and their fabrication)

RN 7440-04-2 HCAPLUS

CN Osmium (CA INDEX NAME)

Os

RN 7440-06-4 HCAPLUS

CN Platinum (CA INDEX NAME)

Pt

```
RETABLE
   Referenced Author | Year | VOL | PG | Referenced Work | Referenced
     (RAU) | (RPY) | (RVL) | (RPG) | (RWK)
                                                                       | File
Ng, P | 1997 | 18 | 1009 | MACROMOLECULAR: RAPI | HCAPLUS

        Sumitomo Chemical Co
        | 2001 |
        | EP 1138746 A
        | HCAPLUS

        Sumitomo Chemical Co
        | 2002 |
        | EP 1245659 A
        | HCAPLUS

        Takeuchi, M
        | 2003 |
        | W0 03001616 A
        | HCAPLUS

Takeuchi, M
                          | 1999 | 11 | 455 | ADVANCED MATERIALS | HCAPLUS | 12002 | 35 | 3506 | MACROMOLECULES | HCAPLUS
Wong, C
Wong, W
OSC.G 7 THERE ARE 7 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITINGS)
L113 ANSWER 5 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN
AN 2003:875368 HCAPLUS Full-text
DN 139:365744
TI Solution-processable phosphorescent materials
IN Holmes, Andrew; Sandee, Albertus; Williams, Charlotte; Koehler, Anna;
PA Cambridge University Technical Services Limited, UK
SO PCT Int. Appl., 79 pp.
     CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 1
      PATENT NO. KIND DATE APPLICATION NO. DATE
                           ----
      _____
                                                  _____
                                                                             _____
     WO 2003091355 A2 20031106 WO 2003-GB1765 20030424 <---
WO 2003091355 A3 20040304
PΙ
          W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
               CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
               GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
               LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
               PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ,
               UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
          RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
               KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
               FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR,
               BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
      AU 2003227881 A1 20031110 AU 2003-227881 20030424 <--
EP 1501907 A2 20050202 EP 2003-725341 20030424 <--
          R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
               IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
      JP 2005524725 T 20050818 JP 2003-587896 20030424 <--
JP 2005524725 T 20050818 JP 2003-587896 20030424 <--
CN 1662628 A 20050831 CN 2003-8814689 20030424 <--
CN 100355856 C 20071219
CN 101230263 A 20080730 CN 2007-10167956 20030424 <--
CN 101230264 A 20080730 CN 2007-10167957 20030424 <--
US 20060063026 A1 20080730 US 2005-511954 20050711 <--
HK 1081984 A1 20080822 HK 2006-102082 20060217 <--
CN 2003-814689 A3 20030424 <--
WO 2003-814689 A3 20030424 <--
WO 2003-681765 W 20030424 <--
```

AB A material capable of luminescence comprising: a polymer or oligomer; and an organometallic group characterized in that the polymer or oligomer is at least partially conjugated and the organometallic group is covalently bound to the polymer or oligomer and the nature, location and/or proportion of the polymer or oligomer and of the organometallic group in the material are selected so

18

that the luminescence predominantly is phosphorescence. The phosphorescent materials are useful for GLED (organic light-emitting diodes), etc.

IC ICM C09K

37-3 (Plastics Manufacture and Processing)

Section cross-reference(s): 29, 73, 76

ST OLED phosphorescent material conjugated polymer organometallic compd luminescence

IT Electroluminescent devices

Electroluminescent devices

Fluorescence

(manufacture of solution-processable phosphorescent materials useful for $\mathtt{OLED})$

IT 7439-88-5DP, Iridium, conjugated polymer complexes

63996-36-1DP, 2-(4-Bromophenyl)pyridine, conjugated polymer

terminated products with, Ir complexes 92220-65-05P, conjugated polymer terminated products 195456-48-5DP

conjugated polymer terminated products 195456-48-5DP

, Foly(9,9-dioctyl-9H-fluorene-2,7-diyl), pyridyphenyl-terminated, iridium complex 198964-76-0DP, 2,7-Dl(4,4,5,5-tetramethyl-1,3,2-dioxaboronate)-9,9-dioctvlfluorene-2,7-dibromo-9,9-dioctvlfluorene-conol/umer.

pyridyphenyl-terminated, iridium complex 620624-90-0DF,

conjugated polymer terminated products

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(manufacture of solution-processable phosphorescent materials useful for OLED)

II 63996-36-1P, 2-(4-Bromophenyl)pyridine 80389-85-1P

620624-90-0P 620624-92-2P 620624-96-6P 620624-98-8P

620625-01-6P 620625-03-8P 620625-05-0P 620625-07-2P 620625-09-4P

620625-10-7P 620625-11-8P 620625-12-9P 620625-13-0P RE: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); EACT (Reactant or reagent)

(manufacture of solution-processable phosphorescent materials useful for OLED)

IT 92220-65-0DP, conjugated polymer terminated products

195456-48-5DP, Poly(9,9-dioctyl-9H-fluorene-2,7-diyl),

pyridyphenyl-terminated, iridium complex 620624-90-0DP,

conjugated polymer terminated products

RL: IMF (Industrial manufacture); PRP (Properties); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(manufacture of solution-processable phosphorescent materials useful for OLED)

RN 92220-65-0 HCAPLUS

CN Iridium, di-μ-chlorotetrakis[2-(2-pyridinyl-κN)phenyl-κC]di-, stereoisomer (CA INDEX NAME)

, Stereoisomer (CA INDEA NAME

- RN 195456-48-5 HCAPLUS
- CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

- RN 620624-90-0 HCAPLUS
- CN Iridium, bis[5-bromo-2-(2-pyridinyl-κN)phenyl-κC](2,4-pentanedionato-κO,κO')- (9CI) (CA INDEX NAME)

- IIT 80389-85-IP 620624-90-0P 620625-10-7P
 RL: IMF (Industrial manufacture); PCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
 (manufacture of solution-processable phosphorescent materials useful for
- OLED)
- RN 80389-85-1 HCAPLUS
- CN Iridium, tetrakis[4-bromo-2-(2-pyridinyl-κN)phenyl-κC]di-μchlorodi-, stereoisomer (CA INDEX NAME)

- RN 620624-90-0 HCAPLUS
- CN Iridium, bis[5-bromo-2-(2-pyridiny1-κN)pheny1-κC](2,4-pentanedionato-κΟ,κΟ')- (9CI) (CA INDEX NAME)

RN 620625-10-7 HCAPLUS

CN Iridium, di-µ-chlorotetrakis[5-(9,9-dihexyl-9H-fluoren-2-yl)-2-(2-pyridinyl-kN)phenyl-kC]di- (CA INDEX NAME)

PAGE 1-B

RETABLE

Referenced Author	Year	VOL	PG	-	Referenced	Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	1	(RWK)		File
	=+====	+====	+====	=+=			
Anon	1	1	1	W	O 0231896 F	A2	HCAPLUS

Anon			1	1	1	IWO	03001616 A2	HCAPLUS
Anon			- 1	- 1	1	IWO	03018653 A1	HCAPLUS
Anon			- 1	- 1	1	EP	1138746 A1	HCAPLUS
Anon			- 1	- 1	1	EP	1245659 A1	HCAPLUS
Anon			- 1	- 1	1	US	20010019782 A1	1
Anon			- 1	1	1	JUS	5442021 A	HCAPLUS
OSC.G	4	THERE	ARE 4	CAPLUS	RECORDS	THAT	CITE THIS RECORD	(8 CITINGS)

L113 ANSWER 6 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2003:850364 HCAPLUS Full-text

DN 140:43028

TI Energy transfer and triplet exciton confinement in polymeric

electrophosphorescent devices

AU Chen, Fang-Chung; Chang, Shun-Chi; He, Gufeng; Pyo, Seungmoon; Yang, Yang; Kurotaki, Masayuki; Kido, Junji

CS Department of Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA

SO Journal of Polymer Science, Part B: Polymer Physics (2003), 41(21), 2681-2690

CODEN: JPBPEM; ISSN: 0887-6266

PB John Wiley & Sons, Inc.

DT Journal

LA English

AB

Energy transfer and triplet exciton confinement in polymer /phosphorescent dopant systems were investigated. Various combinations of host-guest systems were studied, consisting of 2 host polymers, poly(vinylcarbazole) (PVK) and poly[9,9-bis(octyl)-fluorens-2,7-diyl] (PF), blended with 5 different phosphorescent iridium complexes with different triplet energy levels. These combinations of hosts and dopants provide an ideal situation for studying the movement of triplet excitons between the host polymers and dopants. The excitons either can be confined at the dopant sites or can flow to the host polymens, subject to the relative position of the triplet energy levels of the material. For PF, because of its low triplet energy level, the exciton can flow back from the dopants to PF when the dopant has a higher triplet energy and subsequently quench the device efficiency. In contrast, efficient electrophosphorescence was observed in doped PVK films because of the high triplet energy level of PVK. Better energy transfer from PVK to the dopants, as well as triplet exciton confinement on the dopants, leads to higher device performance than found in PF devices. Efficiencies as high as 16, 8.0, and 2.6 cd/A for green, yellow, and red emissions, resp., can be achieved when PVK is selected as the host polymer. The results in this study show that the energy transfer and triplet exciton confinement have a pronounced influence on the device performance. In addition, this study also provides material design and selection rules for the efficient phosphorescent polymer light-emitting diodes.

CC 37-5 (Plastics Manufacture and Processing)

Section cross-reference(s): 73

ST electroluminescent device polymeric energy transfer triplet exciton confinement; polyvinylcarbazole LED energy transfer triplet exciton confinement; polydioctylfluorene LED energy transfer triplet exciton confinement

IT Electric current-potential relationship

HOMO (molecular orbital)

LUMO (molecular orbital)

Luminescence

luminescence, electroluminescence

Oxidation potential

Reduction potential

Triplet state

(energy transfer and triplet exciton confinement in polymeric

22

electrophosphorescent devices)

- Electroluminescent devices
- (polymeric; energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices)
- IT Exciton
 - (triplet; energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices)
- - RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses) (dopant; energy transfer and triplet exciton confinement in polymeric electrophosphorascent devices)
- polymeric electrophosphorescent devices)
 II 25067-59-8, Poly(vinylcarbazole) 195456-48-5,
- Poly[9,9-dioctyl-9H-fluorene-2,7-diyl]
 - RL: DEV (Device component use); POF (Polymer in formulation); PRP (Properties); USES (Uses)
 - (doped; energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices)
- IT 94928-86-6, Tris(2-phenylpyriddine) iridium 337526-85-9 , Acetylacetonatobis[2-(2-pyridyl)phenyl]iridium 337526-89-2 343978-79-9 474948-25-9
 - RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses) (dopant; energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices)
- RN 94928-86-6 HCAPLUS
- CN Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC]-, (OC-6-22)- (CA INDEX NAME)

- RN 337526-85-9 HCAPLUS
- CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)phenyl- κ C]-, (OC-6-33)- (CA INDEX NAME)

- RN 337526-88-2 HCAPLUS
- CN Iridium, bis[2-(2-benzothiazoly1- κ N3)pheny1- κ C](2,4-pentanedionato- κ O2, κ O4)-, (OC-6-33)- (CA INDEX NAME)

- RN 343978-79-0 HCAPLUS
- CN Iridium, (2,4-pentanedionato-κ02,κ04)bis[2-(2-pyridinyl-κN)benzo[b]thien-3-yl-κC]-, (OC-6-33)- (CA INDEX NAME)

- RN 474948-25-9 HCAPLUS
- CN Iridium, tris[4-octyl-2-(2-pyridinyl- κ N)phenyl- κ C]- (CA INDEX NAME)

RL: DEV (Device component use); POF (Polymer in formulation); PRP (Properties); USES (Uses)

(doped; energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices)

195456-48-5 HCAPLUS RN CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

RET.	ABL	Ε

Referenced Author	Year VO		Referenced Work	Referenced
			+================	
Adachi, C	12001 179	12082	Appl Phys Lett	HCAPLUS
Adachi, C	2001 90	15048	J Appl Phys	HCAPLUS
Baldo, M	11999 175	14	Appl Phys Lett	HCAPLUS
Baldo, M	1998 395	151	Nature	HCAPLUS
Baldo, M	1999 60	14422	Physical Review B	HCAPLUS
Baldo, M	12000 62	110958	Physical Review B	HCAPLUS
Chang, S	2001 79	12088	Appl Phys Lett	HCAPLUS
Chen, F	2003 82	11006	Appl Phys Lett	HCAPLUS
Chen, F	1 1	1	J Phys Chem B, to be	e
Dexter, D	1953 21	1836	J Chem Phys	HCAPLUS
Forster, T	1959 27	17	Discuss Faraday Soc	1
Guo, T	2001 1	15	Org Electron	1
Itaya, A	1998 146		Chem Phys Lett	1
Janietz, S	1998 73	2453	Appl Phys Lett	HCAPLUS
Kawamura, Y	2002 92		J Appl Phys	HCAPLUS
King, K	1985 107		J Am Chem Soc	1
Kolosov, D	2002 124		J Am Chem Soc	HCAPLUS
Kwong, R	2000 12		Adv Matter	HCAPLUS
Lamansky, S	2001 40		Inorg Chem	HCAPLUS
Lamansky, S	2001 123		J Am Chem Soc	HCAPLUS
Lamansky, S	2001 2	153	Org Electron	HCAPLUS
Lane, P	2001 63		Phys Rev B	
Lee, C	2000 77		Appl Phys Lett	HCAPLUS
O'Brien, D	2001 116		Synth Met	HCAPLUS
Rippen, G	1980 52		Chem Phys	HCAPLUS
Rothe, C	12002 165		Physical Review B	
Shaheen, S	1999 85		J Appl Phys	HCAPLUS
Shoustikov, A	1998 4	13	IEEE J Sel Top Quant	
Shuai, Z	2000 84	131	Phys Rev Lett	HCAPLUS
Turro, N	1991	1	Modern Molecular Pho	
Vaeth, K	12002 192	13447	J Appl Phys	HCAPLUS
Wilson, J	2001 413		Nature	HCAPLUS
Wohlgenannt, M	2001 409		Nature	HCAPLUS
Wu, C	1997 44		IEEE Trans Electron	
Yang, M	[2000 [39	L828	Jpn J Appl Phys	HCAPLUS
OSC.G 67 THERE	ARE 67 CAPLUS	RECORDS	THAT CITE THIS RECORD	(67 CITINGS)

L113 ANSWER 7 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

```
2003:200759 HCAPLUS Full-text
AN
DN 138:245292
TI Organic electrolominéscent devices
IN Tsuge, Hodaka; Komatsuzaki, Akihiro
PA
    Honda Motor Co., Ltd., Japan
SO
    Jpn. Kokai Tokkyo Koho, 18 pp.
    CODEN: JKXXAF
    Patent
LA
    Japanese
FAN.CNT 1
                       KIND
                                         APPLICATION NO.
     PATENT NO.
                               DATE
                                                              DATE
     -----
                        ----
                               -----
                                           _____
PI JP 2003077673
                         A
                               20030314
                                         JP 2001-297338
                                                                  20010927 <--
PPAI JP 2001-185486
                        A
                               20010619 <--
    The devices comprise: a glass substrate; an ITO electrode; and a hole
     transport, a phosphor, an electron transport, and a metal electrode layer,
     where the phosphor layer comprises a dopant and a conductive polymer host
     poly(9-R, 9-R-9H-carbazol-2, 7-diyl) and/or poly(9-R-9H-carbazol-3, 6-diyl) (R =
     H, aliphatic or aromatic hydrocarbon, ether, heterocyclic group).
     ICM H05B0033-14
     ICS C09K0011-06; H05B0033-10; H05B0033-22; C07D0213-16; C07D0277-66;
         C07D0409-14
    73-5 (Optical, Electron, and Mass Spectroscopy and Other Related
     Properties)
ST
    org electroluminescent device
ΙT
    Anodes
     Cathodes
     Doping
     Electronics
     Phosphorescence
       (organic electroluminescent devices)
ΙT
    Polymers, uses
     RL: DEV (Device component use); USES (Uses)
       (organic electroluminescent devices)
     Aromatic hydrocarbons, reactions
     RL: RCT (Reactant); RACT (Reactant or reagent)
        (organic electroluminescent devices)
     2085-33-8, Tris(8-quinolinolato)aluminum 4733-39-5 15082-28-7
     25067-59-8, 9H-Carbazole, 9-ethenyl-, homopolymer 50926-11-9,
     ITO 94928-86-6 195456-48-5,
     Polv(9,9-dioctyl-9H-fluorene-2,7-divl) 330649-87-1,
     Poly(9,9-diphenyl-9H-fluorene-2,7-diyl) 483306-63-4
                                                           483306-68-9
     501355-43-7, Poly(9-phenyl-9H-carbazole-3,6-divl) 501355-44-8
     501355-45-9 501355-46-0 501355-47-1 501355-48-2,
     Poly(9,9-dicarboxy-9H-fluorene-2,7-diyl) 501355-49-3,
    Poly(9-propoxy-9H-carbazole-3,6-diyl) 501355-50-6,
Poly(9-butoxy-9H-carbazole-3,6-diyl) 501355-51-7 501355-52-8
     501355-53-9 501355-54-0 501355-55-1,
     Poly(9-carboxy-9H-carbazole-3,6-diyl)
     RL: DEV (Device component use); USES (Uses)
        (organic electroluminescent devices)
    56-23-5, Tetrachloromethane, reactions 75-05-8, Acetonitrile, reactions
     75-52-5, Nitromethane, reactions 79-24-3, Nitroethane 90-11-9,
     α-Bromonaphthalene 100-41-4, Ethylbenzene, reactions 108-38-3,
     m-Xvlene, reactions 108-87-2, Methylcvclohexane 109-66-0, n-Pentane,
     reactions 110-54-3, Hexane, reactions 110-82-7, Cyclohexane, reactions
     111-65-9, n-Octane, reactions 124-18-5, n-Decane 142-82-5, Heptane,
     reactions 540-54-5, 1-Chloropropane 872-05-9, 1-Decene
     RL: RCT (Reactant); RACT (Reactant or reagent)
       (organic electroluminescent devices)
```

IT 94928-86-6 195456-48-5, Poly(9,9-diootyl-98-fluorene-2,7-diyl) RL: DEV (Device component næ); USES (Uses) (organic electroluminescent devices)

RN 94928-86-6 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC]-, (OC-6-22)- (CA INDEX NAME)

RN 195456-48-5 HCAPLUS

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

OSC.G 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L113 ANSWER 8 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:954416 HCAPLUS Full-text

DN 138:114713

TI High-Efficiency Red-Light Emission from Polyfluorenes Grafted with

Cyclometalated Iridium Complexes and Charge Transport Moiety

AU Chen, Xiwen; Liao, Jin-Long; Liang, Yongmin; Ahmed, M. O.; Tseng, Hao En; Chen, Show An

CS Chemical Engineering Department, National Tsing-Hua University, Hsinchu, 30013, Taiwan

SO Journal of the American Chemical Society (2003), 125(3), 636-637 CODEN: JACSAT; ISSN: 0002-7863

PB American Chemical Society

DT Journal

LA English

AB

The authors report a new route for the design of electroluminescent polymers by grafting high-efficiency phosphorescent organometallic complexes adopants and charge transport moieties onto alkyl side chains of fully conjugated polymers for polymer light-emitting diodes (PLED) with single layer/single polymers. The polymer system studied involves polyfluorene (PF) as the base conjugated polymer, carbazole (C2) as the charge transport moiety and a source for green emission by forming an electroplex with the PF main chain, and cyclometalated Ir complexes as the phosphorescent dopant. Energy transfer from the green Ir complexe or an electroplex formed between the fluorene main

chain and side-chain carbazole moieties, in addition to that from the RF main chain, to the red Ir complex can significantly enhance the device performance, and a red light-emitting device with the high efficiency 2.8 cd/A at 7 V and 65 cd/m2, comparable to that of the same Ir complex-based OLED, and a broadband light-emitting device containing blue, green, and red peaks (2.16 cd/A at 9 V) were obtained.

73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

51555-21-6D, reaction products with iridium pentanedionatophenyl complex 195456-48-50, Poly(9,9-dioctv1-9H-fluorene-2,7-div1),

reaction products with iridium pentanedionatophenyl

complex 337527-01-2D, reaction products

343978-79-0D, reaction with polyfluorenes

products with polyfluorenes

RL: DEV (Device component use); PRP (Properties); USES (Uses)

(high-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety)

195456-48-5D, Poly(9,9-dioctyl-9H-fluorene-2,7-diyl), reaction products with iridium pentanedionatophenyl

complex 337527-01-2D, reaction products with polyfluorenes 343978-79-00, reaction

products with polyfluorenes

RL: DEV (Device component use); PRP (Properties); USES (Uses)

(high-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety)

195456-48-5 HCAPLUS RN

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

RN 337527-01-2 HCAPLUS

CN Iridium(1+), (2,4-pentanedionato-κ0,κ0')bis[2-(2-pyridinylκN)phenyl-κC]-, (OC-6-33)- (9CI) (CA INDEX NAME)

RN 343978-79-0 HCAPLUS

Iridium, (2,4-pentanedionato-kO2,kO4)bis[2-(2-pyridinylκN)benzo[b]thien-3-y1-κC]-, (OC-6-33)- (CA INDEX NAME)

RETABLE

Referenced Author	Year VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)		File
	-+++	-+	+
Adachi, C	2000 77 904	Appl Phys Lett	HCAPLUS
Adachi, C	2001 78 1622	Appl Phys Lett	HCAPLUS
Adachi, C	2001 90 5048	J Appl Phys	HCAPLUS
Baldo, M	1999 75 4	Appl Phys Lett	HCAPLUS
Baldo, M	1998 395 151	Nature	HCAPLUS
Baldo, M	2000 403 750	Nature	HCAPLUS
Chen, F	2002 80 2308	Appl Phys Lett	HCAPLUS
D'Andrade, B	2002 14 147	Adv Mater	HCAPLUS
Gong, X	2002 14 581	Adv Mater	HCAPLUS
Granlund, T	1997 81 8097	J Appl Phys	HCAPLUS
Jiang, X	2002 91 6717	J Appl Phys	HCAPLUS
Kawamura, Y	2002 92 87	J Appl Phys	HCAPLUS
Lamansky, S	2001 123 4304	J Am Chem Soc	HCAPLUS
Lamansky, S	2001 2 53	Org Electron	HCAPLUS
Lee, C	2000 77 2280	Appl Phys Lett	HCAPLUS
Lee, Y	2001 123 2296	J Am Chem Soc	HCAPLUS
Peng, K	2001 123 11388	J Am Chem Soc	HCAPLUS
Zhu, W	2002 80 2045	Appl Phys Lett	HCAPLUS
OSC.G 203 THERE AR	E 203 CAPLUS RECORD	S THAT CITE THIS RE	CORD (203 CITINGS)

L113 ANSWER 9 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:849341 HCAPLUS Full-text

DN 137:377516

Electroluminescent devices fabricated with encapsulated light

emitting polymer particles

IN Murasko, Matthew; Kinlen, Patrick J.; St. John, Brent PA Lumimove, Inc., USA

SO

PCT Int. Appl., 21 pp. CODEN: PIXXD2

DT Patent

LA English FAN.CNT 1

	PA:	TENT	NO.			KIN	D	DATE			APPL	ICAT:	ION	NO.		D,	ATE		
							_												
PI	WO	2002	0873	80		A2		2002	1107		WO C	002-1	JS13	547		2	0020	430 <	
	WO	2002	0873	80		A3		2003	0501										
		W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			CO	CR	CH	CZ.	DE	DK	DM	DZ	EC	EE	ES	FT	GB	GD	GE	GH	

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,

```
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT,
            RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ,
            VN, YU, ZA, ZW
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
            KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB,
            GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA,
            GN, GQ, GW, ML, MR, NE, SN, TD, TG
    CA 2473969
                            20021107 CA 2002-2473969
                                                              20020430 <--
                       A1
    AU 2002259077
                       A1
                            20021111 AU 2002-259077
                                                              20020430 <--
    US 20030032361
                            20030213 US 2002-135599
                                                              20020430 <--
                       A1
    US 7001639
                       B2 20060221
    US 20060251798
                      A1
P
                           20061109
                                       US 2005-260738
                                                          20051027 <--
PPAI US 2001-287321P
                            20010430 <--
    OS 2001-287612P
                      P
                            20010430 <--
    08 2002-135599
                      A3 20020430 <--
    WO 2002-US13547
                      W
                            20020430 <--
    Methods for fabricating electroluminescent display devices are described which
```

AB entail encapsulating organic light-emitting material particles with a conductive polymer; formulating an ink by mixing the encapsulated particles with binder polymers; depositing a conducting rear electrode onto a substrate in a pattern; depositing the ink onto rear electrode patterns to form a lightemitting layer; depositing a transparent hole transporting electrode onto the light-emitting layer; depositing a front outlining electrode onto the hole transporting electrode; and depositing connection leads to the rear electrode

and the front outlining electrode.

ICM H05B IC

CC 74-13 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)

Section cross-reference(s): 73, 76

electroluminescent display fabrication polymer

encapsulated light emitting particle

IT Electroluminescent devices

(displays; electroluminescent display fabrication using

polymer-encapsulated light-emitting particles)

Semiconductor device fabrication

(electroluminescent display fabrication using polymer

-encapsulated light-emitting particles) Fluoropolymers, uses

Poly(arylenealkenylenes)

Polyamides, uses

Polvanilines

Polycarbonates, uses

Polvesters, uses

Polyoxyalkylenes, uses

Polysulfones, uses

Polyvinyl butyrals

RL: DEV (Device component use); USES (Uses)

(electroluminescent display fabrication using polymer

-encapsulated light-emitting particles)

Luminescent screens

(electroluminescent; electroluminescent display

fabrication using polymer-encapsulated light-emitting

particles)

2085-33-8, Tris(8-hydroxyquinolato)aluminum 9002-85-1, Poly(vinylidene chloride) 9002-86-2, Poly(vinylchloride) 9002-89-5, Poly(vinylalcohol) 9003-39-8, Poly(vinylpyrrolidone) 9003-53-6, Polystyrene 9003-63-8, Poly(butylmethacrylate) 9004-34-6D, Cellulose, esters 9004-34-6D, Cellulose, ethers 9011-14-7, Poly(methylmethacrylate) 13978-85-3. Bis(8-hydroxyguinolinato)zinc 14128-73-5 17904-83-5 18130-95-5 24936-74-1 24937-16-4, Nylon 12 24937-78-8, Ethylene-vinylacetate

copolymer 24937-79-9, Poly(vinylidene fluoride) 24979-70-2, Poly(4-vinylphenol) 24980-41-4, Poly(caprolactone) 25013-01-8, Polypyridine 25014-41-9, Poly(acrylonitrile) 25038-74-8 25067-59-8, Poly(vinylcarbazole) 25248-42-4, Poly[oxy(1-oxo-1,6-hexanediyl)] 25322-68-3 26009-24-5, Poly(p-phenylene vinylene) 26098-55-5 30604-81-0, Polypyrrole 32131-17-2, Nylon 6,6, uses 50926-11-9, Indium tin oxide 62555-84-4 94928-86-6 126213-51-2. 133019-09-7, Polv(3,4-ethylenedioxythiophene) Polv(9,9-dihexv1-9H-fluorene-2,7-div1) 138184-36-8, Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] 142289-08-5 144810-07-1 180179-60-6, Poly(methyloctadecylsiloxane) 184378-14-1 188201-14-1 195456-48-5. Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) 203806-96-6 313262-95-2 322727-85-5 338949-42-1 352546-68-0 474975-19-4 474975-20-7 474975-21-8 474975-22-9 474975-23-0 474975-24-1 474975-25-2 474975-26-3 475095-73-9 475095-75-1 475095-76-2 475095-77-3 475101-36-1 475102-03-5 475102-07-9 475102-09-1 475102-99-9 RL: DEV (Device component use); USES (Uses) (electroluminescent display fabrication using polymer -encapsulated light-emitting particles) 94928-86-6 183201-14-1 195456-48-5. Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) RL: DEV (Device component use); USES (Uses) (electroluminescent display fabrication using polymer -encapsulated light-emitting particles)

RN 94928-86-6 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC]-, (OC-6-22)- (CA INDEX NAME)

RN 188201-14-1 HCAPLUS

CN Poly[9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-diyl] (CA INDEX NAME)

RN 195456-48-5 HCAPLUS

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

RETABLE

| Referenced Author | Year | VOL | PG | Referenced Work | Referenced | RAU| | (RPY) | (RVL) | (RPG) | (RWK) | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File | | File

L113 ANSWER 10 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:827899 HCAPLUS Full-text

DN 137:343707

TI Organic electroluminescent element

IN Tsuge, Hodaka; Komatsuzaki, Akihiro

PA Honda Motor Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 16 pp. CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

FAN.CNT 1 PATENT N

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PΙ	JP 2002319488	A	20021031	JP 2001-123343	20010420 <
PR	U JP 2001-123343		20010420	<	

- AB The invention refers to an organic electroluminescent multilayer laminate wherein the organic material comprising the hole block layer is soluble in a solvent which does not solvate the material in the luminescent layer adjacent to the hole block layer.
- IC ICM H05B0033-10
 - ICS C09K0011-06; H05B0033-14; H05B0033-22
- CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
- ST org electroluminescent device solvent lamination
- IT Electroluminescent devices

Lamination

Solvents

(organic electroluminescent element)

IT 15082-28-7, PBD 25067-59-8, PVK 94928-86-6 148044-16-0 153936-48-3 337526-65-9 337526-98-2 337526-98-4 343978-77-8 343978-97-9 343978-98-9 405289-74-9 468732-33-4 468732-34-5 RL: DEV (Device component use); USES (Uses) (organic electroluminaccent element)

TT 56-23-5, Tetrachloromethane, uses 75-05-8, Acetonitrile, uses 75-52-5, Nitromethane, uses 79-01-6, Trichloroethylene, uses 79-24-3, Nitroethane 90-11-9, α-Bromonaphthalene 100-41-4, Ethylbenzene, uses 107-06-2, 1,2-Dichloroethane, uses 110-82-7, Cyclohexane, uses 111-84-2, n-Nonane 540-54-5, 1-Chloropropane 872-05-9, 1-Decene 123864-60-6 137939-26-5 140191-32-8 177838-23-2,

Poly(N-dodecyl carbazole) 473916-86-8

RL: TEM (Technical or engineered material use); USES (Uses)

32

(organic electroluminescent element)
17 54928-63-6 153828-48-3 337526-85-9
337526-88-2 43379-78-9 343978-79-0
495289-78-9 488732-34-5
RL: DBY (Device component use); USES (Uses)

(organic electroluminescent element)

RN 94928-86-6 HCAPLUS

CN Iridium, tris[2-(2-pyridiny1-κN)pheny1-κC]-, (OC-6-22)- (CA INDEX NAME)

RN 153838-48-3 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-κN)-3-thienyl-κC]-, (OC-6-22)-(9CI) (CA INDEX NAME)

RN 337526-85-9 HCAPLUS

CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)phenyl- κ C]-, (OC-6-33)- (CA INDEX NAME)

CN Iridium, bis[2-(2-benzothiazoly1-κN3)pheny1-κC](2,4-pentanedionato-κO2,κO4)-, (OC-6-33)- (CA INDEX NAME)

- RN 343978-78-9 HCAPLUS
- CN Iridium, (2,4-pentanedionato-κ02,κ04)bis[2-(2-pyridinyl-κN)-3-thienyl-κC]-, (OC-6-33)- (CA INDEX NAME)

- RN 343978-79-0 HCAPLUS
- CN Iridium, (2,4-pentanedionato- κ O2, κ O4)bis[2-(2-pyridinyl- κ N)benzo[b]thien-3-y1- κ C]-, (OC-6-33)- (CA INDEX NAME)

CN Iridium, tris[2-(2-pyridinyl-κN)benzo[b]thien-3-yl-κC]- (CA INDEX NAME)

RN 468732-34-5 HCAPLUS

CN Iridium, tris[2-(2-benzothiazolyl-κN3)phenyl-κC]- (CA INDEX NAME)

ΙT 123864-00-6

RL: TEM (Technical or engineered material use); USES (Uses) (organic electrolominescent element)

123864-00-6 HCAPLUS

RN CN 9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 123863-99-0

CMF C29 H42

```
L113 ANSWER 11 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN
AN 2002:827898 HCAPLUS Full-text
DN 137:343706
TI Organic electroluminescent laminate production method
IN Tsuge, Hodaka; Komatsusaki, Akihiro
PA Honda Motor Co., Ltd., Japan
SO
    Jpn. Kokai Tokkyo Koho, 15 pp.
    CODEN: JKXXAF
DT Patent
LA
    Japanese
FAN.CNT 1
     PATENT NO.
                  KIND
                              DATE APPLICATION NO. DATE
                                         _____
                              -----
    TP 2002319487
                    A
                             20021031 JP 2001-123287
                                                               20010420 <--
PRAI JP 2001-123287
                             20010420 <--
    The invention refers to a production method of an organic electroluminescent
     multilayer laminate wherein the luminescent layer is coated onto the anode,
     and an organic material dissolved in a solvent which does not dissolve the
     material in the luminescent layer is used to laminate the hole block layer
     onto the luminescent layer.
TC.
     ICM H05B0033-10
     ICS H05B0033-14; H05B0033-22
    73-11 (Optical, Electron, and Mass Spectroscopy and Other Related
    Properties)
ST
    org electroluminescent device solvent lamination
ΙT
    Electroluminescent devices
        (organic electroluminescent element)
ΙT
    Lamination
     Solvents
       (production method of organic electroluminescent element laminate)
    15082-28-7, PBD 25067-59-8, PVK 94928-86-6
     123864-00-6 140191-32-8 153838-48-3
     337526-85-9 337526-88-2 337526-98-4
                                           343978-77-8
     343978-78-9 343978-79-0 343978-94-9
     405289-74-9 468732-34-5 473916-86-8
    RL: DEV (Device component use); USES (Uses)
       (production method of organic electroluminescent element laminate)
ΙT
     56-23-5, Tetrachloromethane, uses 75-05-8, Acetonitrile, uses 75-52-5,
    Nitromethane, uses 78-87-5, 1,2-DiChloropropane 79-24-3, Nitroethane
     90-11-9, α-Bromonaphthalene 100-41-4, Ethylbenzene, uses
     107-06-2, 1,2-Dichloroethane, uses 108-38-3, m-Xvlene, uses 108-87-2,
    Methylcvclohexane 110-82-7, Cyclohexane, uses 111-84-2, n-Nonane
     137939-26-5 148044-16-0
     RL: TEM (Technical or engineered material use); USES (Uses)
       (production method of organic electroluminescent element laminate)
    468732-33-4
     RL: DEV (Device component use); USES (Uses)
       (reproduction method of organic electroluminescent element laminate)
     94928-86-6 123864-00-6 153838-48-3
     337526-85-9 337526-88-2 343978-78-9
     343978-79-0 405289-74-9 468732-34-5
     RL: DEV (Device component usa); USES (Uses)
       (production method of organic electroluminescent element laminate)
RM
    94928-86-6 HCAPLUS
CN
    Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC]-, (OC-6-22)- (CA
     INDEX NAME)
```


RN 123864-00-6 HCAPLUS

CN 9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 123863-99-0 CMF C29 H42

Me— (CH2) 7 (CH2) 7—Me

RN 153838-48-3 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-κN)-3-thienyl-κC]-, (OC-6-22)-(9CI) (CA INDEX NAME)

RN 337526-85-9 HCAPLUS

CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)phenyl- κ C]-, (0C-6-33)- (CA INDEX NAME)

RN 337526-88-2 HCAPLUS

CN Iridium, bis[2-(2-benzothiazoly1-κN3)pheny1-κC](2,4-pentanedionato-κO2,κO4)-, (OC-6-33)- (CA INDEX NAME)

RN 343978-78-9 HCAPLUS

CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)-3-thienyl- κ C]-, (OC-6-33)- (CA INDEX NAME)

RN 343978-79-0 HCAPLUS

CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)benzo[b]thien-3-y1- κ C]-, (OC-6-33)- (CA INDEX NAME)

RN 405289-74-9 HCAPLUS

CN Iridium, tris[2-(2-pyridiny1-κN)benzo[b]thien-3-y1-κC]- (CA INDEX NAME)

RN 468732-34-5 HCAPLUS

CN Iridium, tris[2-(2-benzothiazoly1-κN3)pheny1-κC]- (CA INDEX NAME)

L113 ANSWER 12 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:626723 HCAPLUS Full-text

DN 137:330812

TI High performance polymer light-emitting diodes

39

Yang, Yang; Chen, Fang-Chung; Thompson, Mark E. ΑU

CS Department of Materials Science and Engineering, University of California at Los Angeles, USA

SO Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (2002), 43(2), 497-498 CODEN: ACPPAY; ISSN: 0032-3934

PB American Chemical Society, Division of Polymer Chemistry

Journal; (computer optical disk) DT

LA English

Backwards excitation energy transfer from the phosphorescent dopants to the AB semiconducting polymer is investigated. A series of Ir complexes with different triplet energy levels were used as the dopants for phosphorescent polymer LEDs. The triplet energy of these metal complexes can be finely tuned by modifying the chemical structures of ligands. Except for triplet energies, these dopant mols. have similar photophys, properties, such as metal-to-ligand energy transfer absorption energies and transfer excitation lifetime. They provide a suitable system to investigate the influence of dopant excitation energy on the performance of phosphorescent polymer LEDs. The confinement of triplet excitons in important to achieve high efficiency of phosphorescent polymer LEDs.

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related

Properties)

ST phosphorescent polymer electroluminescent device

triplet exciton energy transfer doping

ΙT Doping

Electroluminescent devices

Energy transfer

Excited triplet state

Luminescence

Phosphorescence

(high performance polymer light-emitting diodes)

ΙT Exciton

(triplet; high performance polymer light-emitting diodes)

337526-85-9 337527-04-5 343978-79-0

RL: DEV (Device component use); MOA (Modifier or additive use); PRP (Properties); USES (Uses)

(high performance polymer light-emitting diodes)

123864-00-6

RL: DEV (Device component use); PRP (Properties); USES (Uses) (high performance polymer light-emitting diodes)

337526-85-9 337527-04-5 343978-79-0

RL: DEV (Device component use); MOA (Modifier or additive use); PRP (Properties); USES (Uses) (high performance polymer light-emitting diodes)

RN 337526-85-9 HCAPLUS

CN Iridium, (2,4-pentanedionato-κ02,κ04)bis[2-(2-pyridinylκN)phenyl-κC]-, (OC-6-33)- (CA INDEX NAME)

- RN 337527-04-5 HCAPLUS
- CN Iridium(1+), bis[2-(2-benzothiazolyl-κN3)phenyl-κC](2,4-pentanedionato-κO,κO')-, (OC-6-33)- (9CI) (CA INDEX NAME)

- RN 343978-79-0 HCAPLUS
- CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)benzo[b]thien-3-y1- κ C]-, (OC-6-33)- (CA INDEX NAME)

- IT 123864-00-6
- RL: DEV (Device component use); PRP (Properties); USES (Uses) (high performance polymer light-emitting diodes)
- RN 123864-00-6 HCAPLUS
- CN 9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME)
 - CM 1
 - CRN 123863-99-0
 - CMF C29 H42

41

RETAE	BLE
-------	-----

Referenced Author	Year VOL F	RPG) (RWK)	Referenced
(RAU)	(RPY) (RVL) (F		File
Adach, C Adach, C Adachi, C			 HCAPLUS
Baldo, M Baldo, M Baldo, M	1999 75 4 1999 74 44	Appl Phys Lett	HCAPLUS
Chang, S Guo, T Lamansky, S	2001 79 20 2001 1 15		HCAPLUS
Lamansky, S	2001 2 53	Org Electronics	HCAPLUS
Lane, P	2001 63 23	S5206 Phys Rev B	
Lee, C	2001 116 37	280 Appl Phys Lett	HCAPLUS
O'Brien, D		79 Synth Met	HCAPLUS
Rothe, C		73201 Phys Rev B	

L113 ANSWER 13 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:540102 HCAPLUS Full-text

DN 137:101238

TI Luminescent device and method of manufacturing same

IN Seo, Satoshi; Yamazaki, Shunpei

PA Japan

O U.S. Pat. Appl. Publ., 35 pp. CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	API	PLICATION NO.	DATE
PI	US 20020093283	A1	20020718	US	2002-43786	20020110 <
	TW 518909	В	20030121	TW	2001-90132586	20011227 <
	SG 102026	A1	20040227	SG	2002-37	20020104 <
	CN 1366354	A	20020828	CN	2002-101695	20020117 <
	CN 1269231	С	20060809			
	JP 2002289352	A	20021004	JP	2002-9296	20020117 <
	JP 3986829	B2	20071003			
	CN 1881564	A	20061220	CN	2006-10091522	20020117 <
	US 20050170737	A1	20050804	US	2005-69235	20050302 <
	US 7550173	B2	20090623			
	JP 2005235783	A	20050902	JP	2005-110754	20050407 <
	JP 4198695	B2	20081217			
PRAI	JP 2001-9544	A	20010117	<		
	US 2002-43786	A3	20020110	<		
	CN 2002-101695	A3	20020117	<		
	JP 2002-9296	A3	20020117	<		

AB luminescent devices are described which comprise an organic luminescent element comprising: an anode; a cathode; and an organic compound layer interposed between the anode and the cathode, comprising \$2 compds. selected from the group of a hole injection compound which receives holes from the anode, an electron injection compound which receives electrons from the cathode, a hole transport compound, an electron transport compound, a blocking compound and a luminescent compound, which demonstrates light emission, wherein one of the two compds. is at least a high-mol. weight compound, and wherein a mixed region in which the two compds. are mixed is located apart from the anode and the cathode. Methods of fabricating the devices in which the organic compds. are deposited from solns. are also described.

- IC ICM H05B0033-14
- INCL 313504000
- 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties) Section cross-reference(s): 76
- org electroluminescent device mixed org layer fabrication
- ΙT Semiconductor device fabrication
 - (organic electroluminescent devices with mixed organic layers and their fabrication)
- Electroluminescent devices
 - (organic; organic electroluminescent devices with mixed organic layers and their fabrication)
- 26009-24-5, Poly(1,4-phenylene-1,2-ethenediyl) 26009-24-5D, Poly(1,4-phenylene-1,2-ethenediyl), derivs. 123864-00-6
- RL: DEV (Device component use); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PYP (Physical process); PROC (Process); USES (Uses)
 - (organic electroluminescent devices with mixed organic layers and their fabrication)
- 2085-33-8, Tris(8-hydroxyquinolinato)aluminum 7429-90-5, Aluminum, uses 7440-06-4D, Platinum, compds. 7440-41-7D, Beryllium., compds.
 - 7440-64-4, Ytterbium, uses 7440-66-6D, Zinc, compds. 7440-70-2, Calcium, uses 25067-59-8, Polyvinylcarbazole 50926-11-9, Indium tin 124729-98-2, 4,4',4''-Tris[N-(3-methylphenyl)-N
 - oxide phenylaminoltriphenylamine 337526-85-9
 - RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 - (organic electroluminescent devices with mixed organic layers and their fabrication)
- 50851-57-5
 - RL: DEV (Device component use); MOA (Modifier or additive use); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PYP (Physical process); PROC (Process); USES (Uses) (polyethylene dioxythiophene doped with; organic
 - electroluminescent devices with mixed organic layers and their fabrication)
- 126213-51-2, Poly(3,4-ethylenedioxythiophene)
 - RL: DEV (Device component use); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PYP (Physical process); PROC (Process); USES (Uses)
 - (polystyrene sulfonate-doped; organic electroluminescent devices with mixed organic layers and their fabrication)
- 123864-00-6
 - RL: DEV (Device component use); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PYP (Physical process); PROC (Process); USES (Uses)
 - (organic electroluminescent devices with mixed organic layers and their fabrication)
- RM 123864-00-6 HCAPLUS
- CN 9H-Fluorene, 9,9-dioctvl-, homopolymer (CA INDEX NAME)
 - CM
 - CRN 123863-99-0
 - 1 CMF C29 H42

7440-06-4D, Platinum, compds. 337526-85-9 RL: DEV (Device component use); PEP (Physical, engineering or chemical

process); PYP (Physical process); PROC (Process); USES (Uses) (organic electroluminescent devices with mixed organic layers and their fabrication)

RN 7440-06-4 HCAPLUS

Platinum (CA INDEX NAME) CN

RN 337526-85-9 HCAPLUS

CN Iridium, (2,4-pentanedionato-κ02,κ04)bis[2-(2-pyridinylκN)phenyl-κC]-, (OC-6-33)- (CA INDEX NAME)

OSC.G THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITINGS)

L113 ANSWER 14 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:290668 HCAPLUS Full-text

DN 136:316680

ΤТ luminescent ink for printing of organic luminescent devices

Li, Xiao-Chang Charles

Canon Kabushiki Kaisha, Japan PA

SO U.S., 13 pp.

CODEN: USXXAM

DT Patent

T.A English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6372154	B1	20020416	US 1999-476396	19991230 <
PRAI	US 1999-476396		19991230	<	

AB Organic luminescent ink (L-ink) is disclosed for use in printing thin films of organic luminescent material. The L-ink is particularly useful in fabricating organic optoelectronic devices, e.g. organic luminescent devices. The L-ink

contains 21 organic luminescent material mixed with a solvent and other functional additives to provide the necessary optical, electronic and morphol properties for light-emitting devices (LEDs). The additives play an important role either for enhanced thin film printing or for better performance of the optoelectronic device. The functional additives may be chemical bound to the luminescent compds, or polymers. Luminescent organic compds, oligomers, or polymers with relatively low solution viscosity, good thin film formability, and good charge transporting properties, are preferred. The L-inks can be cross-linked under certain conditions to enhance thin film properties. The L-ink can be used in various printing methods, such as screen printing, stamp printing, and preferably ink-jet printing (including bubble-jet printing).

IC ICM H01L0051-40 ICS C09K0011-06

INCL 252301160

CC 73-5 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 35, 36, 74

ST luminescent ink printing org electroluminescent device

IT Amines, uses

RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(aromatic; luminescent ink for printing of organic luminescent devices)

I Optical imaging devices

(flat panel displays; luminescent ink for printing of organic luminescent devices)

Crosslinking agents

Electrochromic imaging devices

Electroluminescent devices

Ink-jet printing Inks

Multilavers

Phosphors

Photoelectric devices

Screen printing

Solar cells

Thin film transistors

(luminescent ink for printing of organic luminescent

devices)

IT Porphyrins

RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(luminescent ink for printing of organic luminescent devices)

IT Polyoxyalkylenes, uses

RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PROC (Process); USES (Uses)

(luminescent ink for printing of organic luminescent devices)

IT 147-14-8, Copper phthalocyanine 2085-33-8, Alq3 RL: CPS (Chemical process); DEV (Device component use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(luminescent ink for printing of organic luminescent devices)

T 195456-48-5, Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) 412045-84-2

RL: CPS (Chemical process); DEV (Device component use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); POF

(Polymer in formulation); PROC (Process); USES (Uses) (luminescent ink for printing of organic luminescent devices)

IT 81-88-9, Rhodamine B

RL: CPS (Chemical process); MOA (Modifier or additive use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(luminescent ink for printing of organic luminescent devices)

64-17-5, Ethanol, uses 67-56-1, Methanol, uses 67-63-0, Isopropanol, uses 67-66-3, Chloroform, uses 86-74-8, Carbazole 95-50-1, 1,2-Dichlorobenzene 107-06-2, 1,2-Dichloroethane, uses 108-88-3, Toluene, uses 109-99-9, Tetrahydrofuran, uses 110-02-1, Thiophene 110-86-1, Pyridine, uses 120-12-7, Anthracene, uses 123-91-1, Dioxane, uses 517-51-1, Rubrene 852-38-0, PBD 872-50-4, N-Methyl-2-pyrrolidone, uses 1330-20-7, Xylene, uses 1450-63-1, 1,1,4,4-Tetraphenv1-1,3-butadiene 1608-30-6 25321-22-6, Dichlorobenzene 31248-39-2 35296-72-1, Butanol 38215-36-0, 3-(2-Benzothiazolv1)-7-(diethvlamino)coumarin 58328-31-7 65181-78-4, TPD 94928-86-6, Tris(2-phenylpyridine) iridium RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (luminescent ink for printing of organic luminescent devices)

IT 9033-83-4D, Poly (phenylene), derivs. 25067-59-8, Poly(N-vinylcarbazole) 25233-34-5, Polythiophene 25322-68-3, Polyethylene glycol 95270-88-5, Polyfluorene 96638-49-2, Poly(phenylene vinylene) RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PROC (Process); USES (Uses)

(luminescent ink for printing of organic luminescent devices)

IT 138184-36-8, MEH-PPV

RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PROC (Process); USES (Uses)

(luminescent polymer; luminescent ink for printing of organic luminescent devices)

IT 7732-18-5, Water, uses

RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(solvent; luminescent ink for printing of organic

luminescent devices)

IT 195456-48-5, Poly(9,9-dioctyl-9H-fluorene-2,7-diyl)

RL: CPS (Chemical process); DEV (Device component use); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); POF (Polymer in formulation); PROC (Process); USES (Uses)

(luminescent ink for printing of organic luminescent devices)

RN 195456-48-5 HCAPLUS

CN Poly(9,9-dioctyl-9H-fluorene-2,7-diyl) (CA INDEX NAME)

- II 94923-88-6, Tris(2-phenylpyridine) iridium RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (luminescent ink for printing of organic luminescent devices)
- RN 94928-86-6 HCAPLUS
- CN Iridium, tris[2-(2-pyridiny1-κN)pheny1-κC]-, (OC-6-22)- (CA INDEX NAME)

RETABLE

Referenced Author	Year VOL PG	Referenced Work Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK) File
	+++	-+
Baldo, M	1999 4	Very High-Efficiency HCAPLUS
Cao	1999	US 5965281 A HCAPLUS
Cao, Y	1998 10 917	Adv Mater HCAPLUS
Chang	1999 11 734	Adv Mater HCAPLUS
Garnier, F	1994 265 1684	Science
O'Brien, D	1999 74 442	Applied Physics Lett HCAPLUS
Pei	1997	US 5682043 A HCAPLUS
Shun-Chi Chang, C	1998 73 253	Appl Phys Lett
Sturm	[2000]	US 6087196 A HCAPLUS
Tang, C	51 913	Appl Phys Lett HCAPLUS
Thompson	2000	US 6013982 A HCAPLUS
Wachtel	1980	US 4186020 A HCAPLUS
Xiao-Chang, L	1995 2211	J Chem, Soc, Chem Co
Zabiak	1979	US 4153593 A HCAPLUS
OSC.G 20 THERE AF	RE 20 CAPLUS RECORDS	THAT CITE THIS RECORD (20 CITINGS)

- L113 ANSWER 15 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN
- AN 2002:243794 HCAPLUS <u>Full-text</u> DN 137:85571
- TI High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex
- AU Chen, Fang-Chung; Yang, Yang; Thompson, Mark E.; Kido, Junji
- CS Department of Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA

47

SO Applied Physics Letters (2002), 80(13), 2308-2310 CODEN: APPLAB; ISSN: 0003-6951

PB American Institute of Physics

DT Journal

LA English

AB High efficiency was achieved in polymer LEDs (PLEDs) exhibiting red emission by doping a fluorescence host material, poly(vinyloarbazole) (PVK), with an Ir([II] complex, bis[2-(2'-benzothienyl)-pyridinato-

N,C3']iridlum(acetylacetonate) (BtpIr). The electroluminescence has a maximum λ = 614 nm. The highest external quantum efficiency is 3.3%. Due to its

short triplet excited lifetime (.apprx.5 μ s), the quenching of the triplet exciton in BtpIr-doped PVK PLEDs is suppressed compared to Pt(II)-2,8,12,17-tetraethly-13,7,13,18-tetramethly-porphyrin-doped PVK PLEDs. 65% Of the peak efficiency can be sustained at high-c.d. and at the high brightness of 1350 cd/m2. Probably both triplet-triplet annihilation and polaron-triplet annihilation involves exciton quenching.

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related

Properties)

Section cross-reference(s): 38, 76

ST polymer light emitting diode doped red phosphorescent iridium complex

IT Electroluminescent devices

(high-performance polymer LEDs doped with red phosphorescent iridium complex)

IT laminescence, electroluminescence

(of high-performance polymer LEDs doped with red phosphorescent iridium complex)

IT Exciton

(triplet; of high-performance polymer LEDs doped with red phosphorescent iridium complex)

25067-59-8, Poly(vinylcarbazole) 123864-00-6

RL: DEV (Device component use); USES (Uses)
(high-performance LEDs doped with red phosphorescent iridium complex)

IT 343978-79-0 RL: PRP (Properties)

(high-performance polymer LEDs doped with red phosphorescent)

T 15082-28-7, ButylPBD 126213-51-2, PEDOT RL: DEV (Device component use); USES (Uses)

(high-performance polymer LEDs doped with red phosphorescent iridium complex and)

IT 123864-00-6

RL: DEV (Device component use); USES (Uses)

(high-performance LEDs doped with red phosphorescent iridium complex)

RN 123864-00-6 HCAPLUS

CN 9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 123863-99-0 CMF C29 H42

- IT 343978-79-0
 - RL: PRP (Properties)

(high-performance polymer LEDs doped with red phosphorescent)

- RN 343978-79-0 HCAPLUS
- CN Iridium, (2,4-pentanedionato- κ 02, κ 04)bis[2-(2-pyridinyl- κ N)benzo[b]thien-3-yl- κ C]-, (0C-6-33)- (CA INDEX NAME)

DETABLE		

Referenced Author (RAU)	Year VOL (RPY) (RVL)	PG Referenced Work Referenced
		-++
Adachi, C	2000 77	904 Appl Phys Lett HCAPLUS
Adachi, C	2001 78	1622 Appl Phys Lett HCAPLUS
Adachi, C	2000 87	8049 J Appl Phys HCAPLUS
Baldo, M	1999 75	4 Appl Phys Lett HCAPLUS
Baldo, M	1999 60	14422 Phys Rev B HCAPLUS
Baldo, M	2000 62	10967 Phys Rev B HCAPLUS
Chang, S	2001 79	2088 Appl Phys Lett HCAPLUS
Chang, S	1 1	unpublished
Friend, R	1999 397	121 Nature (London) HCAPLUS
Guo, T	2001 1	15 Org Electron
Ikai, M	2001 79	156 Appl Phys Lett HCAPLUS
Itaya, A	1988 146	570 Chem Phys Lett HCAPLUS
Kido, J	1994 65	2124 Appl Phys Lett HCAPLUS
Lamansky, S	2001 123	4304 J Am Chem Soc HCAPLUS
Lamansky, S	2001 2	53 Org Electron HCAPLUS
Lane, P	2001 63	235206 Phys Rev B
O'Brien, D	2001 116	379 Synth Met HCAPLUS
Shoustikov, A	11998 4	3 IEEE J Sel Top Quant HCAPLUS
OSC.G 132 THERE AF	E 132 CAPLUS	RECORDS THAT CITE THIS RECORD (134 CITIN

L113 ANSWER 16 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

- AN 2002:227363 HCAPLUS Full-text
- DN 137:69875
- TI Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes
- AU Zhu, Weiguo; Mo, Yueqi; Yuan, Min; Yang, Wei; Cao, Yong
- CS Institute of Polymer Optoelectronic Material and Devices, South China University of Technology, Canton, 510640, Peop. Rep. China
- SO Applied Physics Letters (2002), 80(12), 2045-2047
- CODEN: APPLAB; ISSN: 0003-6951 PB American Institute of Physics
- DT Journal
- LA English

- AB Iridium complexes with alkyl substituted 2-phenylpyridine, Ir(Bu-PPy)3, were synthesized. Polymer light emitting diodes with Ir complexes as the guest materials and the substituted polyphenylenes as the host were fabricated. Ir(Bu-PPy)3-doped Poly(2-(6-cyano-6-methyl)-heptyloxy-1,4-phenylene) (CNPPP) device showed generally higher quantum efficiency (QE) than that of Ir(PEy)3-doped device for a given dopant concentration More importantly, the addition of Bu group into phenylpyridine lighand significantly suppresses the decay of device efficiency at high c.d. For instance, for devices made with Ir(Bu-PPy)3-doped CNPP: the maximum external quantum efficiency, QE, and luminance efficiency reached 5.1% ph/el and 12 cd/A, resp., at 800 cd/m2 and maintained at 4.2% ph/el and 10 cd/A, resp., at 2500 cd/m2.
- CC 73-5 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

Section cross-reference(s): 38, 76, 78

- ST electrophosphorescent device iridium phenylpyridine butyl complex conjugated polymer
- IT Polymers, properties

RL: DEV (Device component use); PRP (Properties); USES (Uses)

(conjugated; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

IT Doping

(effect of doping concentration; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

IT Phosphorescent substances

(electro-; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

IT Electroluminescent devices

Luminescence, electroluminescence

 (highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

IT Luminescence

(of tris(2-phenylpyridine)iridium-doped CNPPP films)

IT Substituent effects

(t-Bu; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

II 94928-86-6, Tris(2-phenylpyridine)iridium 359014-76-9

RL: DEV (Device component use); MOA (Modifier or additive use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(film, polymer doped with; highly efficient

electrophosphorescent devices based on conjugated polymers doped with inidium complexes)

IT 25067-59-8, 9H-Carbazole, 9-ethenyl-, homopolymer

RL: DEV (Device component use); PRP (Properties); USES (Uses) (hole-injection layer, host material; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(iridium complex-doped host material; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium completes)

IT 123863-98-9, Polv(9,9;-dihexvlfluorene)

RL: DEV (Device component use); PRP (Properties); USES (Uses) (iridium complex-doped host material; highly efficient electrophosphorescent devices based on conjugated polymers

doped with iridium complexes)

IT 94928-36-6, Tris(2-phenylpyridine)iridium 359014-76-9
RL: DEV (Device component use); MOA (Modifier or additive use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(film, polymer doped with; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

RN 94928-86-6 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-kN)phenyl-kC]-, (OC-6-22)- (CA INDEX NAME)

RN 359014-76-9 HCAPLUS

CN Iridium, tris[5-(1,1-dimethylethyl)-2-(2-pyridinyl-KN)phenyl-KC]- (CA INDEX NAME)

IT 439675-33-9

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical process); PROC (Process); USES (Uses)

(iridium complex-doped host material; highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes)

RN 439675-33-9 HCAPLUS

CN Polv[2-[(2-ethvlhexvl)oxv]-1,4-phenvlene] (CA INDEX NAME)

RETABLE

(RAU)	(RPY) (RVL) (RPG)	Referenced Work (RWK)	File
			+	
Adachi, C			Appl Phys Lett	HCAPLUS
Baldo, M	1999 75			HCAPLUS
Baldo, M			Nature (London)	HCAPLUS
Baldo, M	2000 403	1750	Nature (London)	HCAPLUS
Cao, Y	2000 88	3618	J Appl Phys	HCAPLUS
Guo, T	2000 1	15	Organic Electronics	HCAPLUS
Kido, J	1994 65	12124	Appl Phys Lett	HCAPLUS
Lee, C	12000 177	12280	Appl Phys Lett	HCAPLUS
Ma, Y	1998 94	1245	Synth Met	HCAPLUS
McGehee, M	1999 11	1349	Adv Mater	HCAPLUS
O'Brien, D	1999 74	1442	Appl Phys Lett	HCAPLUS
O'Brien, D	2001 116	1379	Synth Met	HCAPLUS
Watanabe, T	2001 122	1203	Synth Met	HCAPLUS
Wittmann, H	1994 101	12693	J Chem Phys	HCAPLUS
Yang, Y	1996 79	1934	J Appl Phys	HCAPLUS
Zhang, Y	1991 30	11685	Inorg Chem	1
OSC.G 110 THERE	ARE 110 CAPLUS	RECORD	S THAT CITE THIS RECO	RD (110 CITING

L113 ANSWER 17 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2002:119732 HCAPLUS Full-text

DN 136:191469

TI Organic electroluminescent component

IN Hirai, Hiroyuki

PA Fuji Photo Film Co., Ltd., Japan

Jpn. Kokai Tokkyo Koho, 9 pp. SO

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.	1	

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2002050482	A	20020215	JP 2000-237154	20000804 <
PRAI	JP 2000-237154		20000804	<	

The invention refers to an electroluminescent component, suitable for use in full color displays, back-lit planar light sources, and light source arrays, wherein the organic luminescent layer contains a orthometal complex first layer, and a second layer comprising polymeric luminescent material, wherein preferable applications use an Ir complex, the orthogetal complex comprises 1 - 20% of the luminescent layer, the first luminescent layer contains a host compound, the spectra of the two luminescent layers are different and the layers are formed by a wet method, in order to produce a device with multiple luminescence, high efficiency and brightness low power consumption and a simple production process.

ICM H05B0033-14

ICS C09K0011-06; H05B0033-10; H05B0033-12

73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

electroluminescent device iridium orthometal complex

TT Electroluminescent devices Optical imaging devices

(organic electroluminescent component)

15082-28-7, 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole 25067-59-8, Poly(N-vinylcarbazole) 26009-24-5D, PPV 02, derivs. 94928-86-6. Tris(2-phenylpyridine) iridium 123864-00-6 , Polv(9,9-dioctvlfluorene) 153838-48-3 337526-86-0 337526-98-4 397313-78-9 RL: DEV (Device component use); USES (Uses) (organic electroluminescent component)

TТ 94928-86-6, Tris(2-phenylpyridine) iridium 123864-00-6 , Poly(9,9-dioctylfluorene) 153838-48-3 337526-86-0 RL: DEV (Davice component use); USES (Uses) (organic electroluminescent component)

RN 94928-86-6 HCAPLUS

CN Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC]-, (OC-6-22)- (CA INDEX NAME)

RN 123864-00-6 HCAPLUS

9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME) CN

CM 1

CRN 123863-99-0 CMF C29 H42

153838-48-3 HCAPLUS RN

Iridium, tris[2-(2-pyridinyl-κN)-3-thienyl-κC]-, (OC-6-22)-CN (9CI) (CA INDEX NAME)

337526-86-0 HCAPLUS RN

Iridium, bis[5-methyl-2-(2-pyridinyl-κN)phenyl-κC](2,4-CN pentanedionato-kO2,kO4)-, (OC-6-33)- (CA INDEX NAME)

L113 ANSWER 18 OF 18 HCAPLUS COPYRIGHT 2009 ACS on STN

2001:5 HCAPLUS Full-text AN

DN 134:49000

ΤI Organic opto-electronic device

IN Burroughes, Jeremy Henley; Devine, Peter Cambridge Display Technology Limited, UK

so Brit. UK Pat. Appl., 18 pp.

CODEN: BAXXDU

DT Patent LA English

FAN.CNT 1

AB

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	GB 2348316	A	20000927	GB 1999-7118	19990326 <
PRAI	GB 1999-7118		19990326	<	

Optoelectronic devices (e.g., devices for emitting or detecting light) comprising an anode; a light-transmissive cathode; and an organic active region are described in which the cathode includes a conductive layer and a spacing layer comprising an elec. nonconductive material, the spacing layer being located between the elec. conductive layer and the active region and being sufficiently thin to allow charge to flow through it between the elec. conductive layer and the active region. Methods for fabricating the devices are described which entail depositing an anode electrode; depositing over the anode electrode a region of an active material; depositing over the region of active material an elec. nonconductive material 0.5-20 nm thick to form a first cathode layer; and depositing over the first cathode layer an elec. conductive layer to form a second cathode layer.

IC ICM H01L0051-20

54

73-11 (Optical, Electron, and Mass Spectroscopy and Other Related CC Properties) Section cross-reference(s): 76

Cathodes

Electric contacts

ElectroJuminescent devices

Optical detectors

Optoelectronic semiconductor devices

Semiconductor device fabrication

(organic optoelectronic devices with multilayer cathode structures)

IT 7429-90-5, Aluminum, uses 7440-06-4, Platinum, uses 7440-22-4, Silver, uses 7440-50-8, Copper, uses 13400-13-0, Cesium fluoride 50926-11-9, Indium tin oxide 123864-00-6 210347-52-7 220797-16-0

RL: DEV (Device component use); USES (Uses)

(organic optoelectronic devices with multilayer cathode structures)

тт 7440-06-4, Platinum, uses 123864-00-6 RL: DEV (Device component use); USES (Uses)

(organic optoelectronic devices with multilayer cathode structures)

7440-06-4 HCAPLUS

CN Platinum (CA INDEX NAME)

RN 123864-00-6 HCAPLUS

CN 9H-Fluorene, 9,9-dioctyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 123863-99-0

CMF C29 H42

osc.G THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS) 2

=> => d bib abs hitstr tot

L120 ANSWER 1 OF 2 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2008:202440 HCAPLUS Full-text

DN 148:390325

TI First Inidium Complex End-Capped Polyflucrese: Improving Device

Performance for Phosphorescent Polymer Light-Emitting Diodes

ATT Zhang, Kai; Chen, Zhao; Yang, Chuluo; Zou, Yang; Gong, Shaolong; Qin, Jingui; Cao, Yong

Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, Peop. Rep.

Journal of Physical Chemistry C (2008), 112(10), 3907-3913 SO

CODEN: JPCCCK; ISSN: 1932-7447

American Chemical Society

DT Journal

PΒ

AB

LA English

Two types of fluorene-based copolymers, with 1-phenylisoquinoline-Ir complexes incorporated into the polyfluorene main chain by either embedding (P1 and P2) or end-capping (P3) manners via ancillary ligand B-diketonate were synthesized by the Suzuki polycondensation reaction and characterized by 1H NMR, 13C NMR, elemental anal., and GPC. The electrochem. study reveals that the HOMO and LUMO energy levels of the monomeric Ir complexes fall within those of the parent polyfluorene, implying that the Ir complexes in the polymers could function as traps for both electrons and holes under elec, excitation. The different connection manners between the Ir complex and polyfluorene backbone have a significant effect on their photophys. and electroluminescent properties. The absorption spectra of P1-P3 are mostly characteristic of the polyfluorene backbone. The PL spectra of P1 and P2 are dominated by emission from the Ir complex at 625 nm, whereas for P3 the emission at 425 nm from the polyfluorene backbone is more intense than the emission at 622 nm from the Ir complex. The PL decay measurements show that P3 has a longer triplet lifetime at 1.05 µs with monoexponential mode than those of P1 and P2 with biexponential mode. Polymer light-emitting diodes with the configuration of ITO/PEDOT/PVK/ P1, P2, or P3/Ba/Al were fabricated. The EL spectra of all of the devices show exclusively phosphorescent emission at 626-633 nm dominated by the charge-trapping mechanism. The device using P3 as the emitting layer displays significantly higher efficiency than those based on P1 and P2, which is attributed mainly to the fact that P3 suffers much less from triplet exciton back-transfer from the Ir complex to the polyfluorene backbone than P1 and P2. A red-emitting polymer light-emitting diode with an emission peak at 633 nm, a maximum external quantum efficiency of 1.70% at a c.d. (J) of 3.58 mA/cm2, and a maximum luminance of 706 cd/m2 at 18 V was achieved.

1013633-39-0P

RL: PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (first iridium complex end-capped polyfluorene: improving device

performance for phosphorescent polymer light-emitting diodes)

RN 1013633-39-0 HCAPLUS

CN Poly(9,9-dihexyl-9H-fluorene-2,7-diyl),
a,o-bis[4-[1,3-di(oxo-KO)butyl]phenyl]-, complex with
bis[2-(1-isoquinolinyl-KN)phenyl-KC]iridium (1:2) (CA INDEX
NAME)

PAGE 1-A

56

PAGE 1-B

THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS) OSC.G RE.CNT 54 THERE ARE 54 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L120 ANSWER 2 OF 2 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2007:705885 HCAPLUS Full-text

DN 147:119025

TI Electroluminescent polyfluorene end-capped with phosphorescent organometallic complex, light-emitting element and light-emitting device

Hsu, Steve Lien-Chung; Lee, Po-I.

PA National Cheng Kung University Chi Mei Optoelectronics Corp., Taiwan

U.S. Pat. Appl. Publ., 12pp. SO

CODEN: USXXCO

DT Patent

English FAN.CNT 1

T.A

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 20070148491	A1	20070628	US 2005-313938	20051222
	CN 1995271	A	20070711	CN 2006-10156214	20061221
PRAI	US 2005-313938	A	20051222		

AB An electroluminescent material comprises a conjugated polymer endcapped with two phosphorescent organometallic complexes, i.e. Re-complex, Ru-complex, or Ir-complex. A 3-bromopyridine end-capped polyfluorene (intermediate) is reacted with 2,2-bipyridyl(tricarbonyl)rhenium(I) chloride. The polyfluorene has controlled mol. weight and incorporates phosphorescent metal complexes without the phase separation problem between the metal and polymer.

942627-79-49

RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(electroluminescent conjugated polymer end-capped with phosphorescent organometallic complex of controlled mol. weight and no phase separation for LED)

RN 942627-79-4 HCAPLUS

Poly(9,9-dioctyl-9H-fluorene-2,7-diyl), α , ω -bis([2,2'-bipyridin]-5-yl- κ N1, κ N1')-, bis[bis(2,2'-bipyridine-KN1,KN1)iridium(3+)] complex, perchlorate (1:6) (CA INDEX NAME)

CM 1

CRN 942627-78-3

CMF (C29 H40)n C60 H46 Ir2 N12

CCI CCS, PMS

СМ 2

CRN 14797-73-0

CMF C1 O4

=> => d bib abs hitstr tot

L130 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2009 ACS on STN

2008:250377 HCAPLUS Full-text AN

DN 148:427324

ΤТ Iridium-functionalized polyfluorenes: advantages and limitations of the Suzuki and Yamamoto approaches

AU Langecker, Jens; Rehahn, Matthias

CS Ernst-Berl-Institute for Chemical Engineering and Macro-Molecular Science, Darmstadt University of Technology, Darmstadt, D-64287, Germany

Macromolecular Chemistry and Physics (2008), 209(3), 258-271 SO

CODEN: MCHPES; ISSN: 1022-1352

Wiley-VCH Verlag GmbH & Co. KGaA PB

Journal

LA English

AB Four synthetic pathways leading toward iridium-functionalized polyfluorenes are compared: the metallopolymers were synthesized via Suzuki and Yamamoto polycondensation reactions, and precursor routes and direct routes were tested for both coupling protocols. The direct Yamamoto synthesis, an appropriately

58

functionalized iridium-complex as comonomer, is the most efficient method. The three competing routes produce the desired polymers too, but the materials are either lower in mol. weight or less regular in mol. structure. Exploratory anal. of the optical properties shows that the polyfluorene moleties dominate absorption and photoluminescence in dilute solution, while luminescence originates mainly from the iridium complexes in the solid-state.

IT 1017835-77-6P RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (comparison of Suzuki and Yamamoto coupling polymerization routes in preparation of iridium complex containing photoluminescent polyfluorenes)

RN 1017835-77-6 HCAPLUS

CN Iridium, [5-bromo-2-(5-bromo-2-pyridinyl-KN)phenyl-KC]bis[2-(2-pyridinyl-KN)phenyl-KC]-, (OC-6-43)-, polymer with 2,7-dibromo-9,9-bis[2-eth/hexyl)-9h-fluorene (CA INDEX NAME)

CM 1

CRN 1030852-54-0 CMF C33 H22 Br2 Ir N3

CM

CRN 188200-93-3 CMF C29 H40 Br2

OSC.G 6 THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITINGS)

RE.CNT 49 THERE ARE 49 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L130 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2008:113146 HCAPLUS Full-text

DN 148:356188

TI Pure white-light-emitting diodes from phosphorescent single polymer systems

AU Lee, Po-I.; Hsu, Steve Lien-Chung; Lee, Jung-Feng

59

CS Department of Materials Science and Engineering, Frontier Material and Micro/Nano Science and Technology Center, National Cheng-Kung University, Tainan, 701-01, Taiwan

SO Journal of Polymer Science, Part A: Polymer Chemistry (2007), Volume Date 2008, 46(2), 464-472 CODEN: JPACEC, ISSN: 0887-624X

PB John Wiley & Sons, Inc.

DT Journal

LA English

Mittel light-emitting diodes from phosphorescent single polymer systems were developed using a blue-light-emitting fluorene monomer copolymd. With a red-light-emitting phosphorescent dye, and end-capped with a green-light-emission dye. All of the copolymers have good thermal stability with 5% weight loss temperature 380-413° and plass transition temperature of 75-137°. White-light-emission devices were fabricated by adjusting the molar ratio of comonomers with a structure of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/polyvinylcarbazole (PVK)/emission layer/Ca/Ag. The highest brightness of the device configuration was 300 cd/m2 at a c.d. of 2900 A/m2 with high white color quality (Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.34)).

IT 1009641-99-9P

RL: PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (preparation of iridium bromophenylbenzothiazole-fluorene phosphorescent copolymer and performance in white-light-emitting diodes)

RN 1009641-99-9 HCAPLUS

CN Iridium, bis[2-(2-benzothiazolyl-kN3)-5-bromophenyl-kC](2,4-pentanedionato-kO2, kO4)-, polymer with 2.7-dibromo-9.9-dioctyl-9H-fluorene (CA INDEX NAME)

CM I

CRN 913266-99-6

CMF C31 H21 Br2 Ir N2 O2 S2

CCI CCS

CM 2

CRN 198964-46-4

CMF C29 H40 Br2

OSC.G 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS) RE.CNT 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

L130 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2009 ACS on STN

AN 2007:847519 HCAPLUS Full-text

DN 149:65778

TI Polyfluorene-based iridium complex polymers for organic light-emitting diodes

AU Langecker, Jens; Rehahn, Matthias

CS Ernst-Berl-Institute for Chemical Engineering and Macromolecular Science, Darmstadt University of Technology, Darmstadt, D-64287, Germany

SO Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (2007), 48(2), 591-592

CODEN: ACPPAY; ISSN: 0032-3934
PB American Chemical Society, Division of Polymer Chemistry

DT Journal; (computer optical disk)

LA English

AB The suitability of polyfluorene-based iridium complex polymers as components for organic light emitting diodes (OLEDs) was investigated. The iridium-containing polyfluorenes were synthesized using the Suzuki and Yamamoto protocols. For precursor routes, both polycondensation reactions proved to be of similar efficiency. For direct routes, i.e., when iridium-containing monomers are used, the Yamamoto protocol was clearly the method of choice. This is presumably due to the limited stability of iridium complexes under the Suzuki conditions.

IT 1017835-77-6P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (polyfluorene-based iridium complex polymers for organic light-emitting diodes)

RN 1017835-77-6 HCAPLUS

CN Iridium, [5-bromo-2-(5-bromo-2-pyridinyl-kN)phenyl-kC]bis[2-(2-pyridinyl-kN)phenyl-kC]-, (0-6-43)-, polymer with 2,7-dibromo-9,9-bis(2-ethylhexyl)-9H-fluoreme (CA INDEX NAME)

CM 1

CRN 1030852-54-0 CMF C33 H22 Br2 Ir N3 CCI CCS


```
CM 2
```

CRN 188200-93-3 CMF C29 H40 Br2

RE.CNT 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> d his

```
(FILE 'HOME' ENTERED AT 07:12:41 ON 29 JUL 2009)
SET COST OFF
```

FILE 'HCAPLUS' ENTERED AT 07:13:09 ON 29 JUL 2009

L2 29 S E2,E4,E5

E HEUER/AU

E HEUER H/AU

115 S E3,E10,E17-E19 E HUER/AU

E WEHRMANN/AU

L4 5 S E3

E WEHRMANN R/AU L5 142 S E3.E10.E11

E WEHRMAN/AU 3 S E3,E16,E18

L6 3 S E3,E16,E18 E ELSCHNER/AU L7 113 S E4,E5

113 S E4,E5 E REUTER/AU

L8 1 S E3

E REUTER K/AU L9 175 S E3-E7,E28

E SAUTTER/AU

10 24 S E4,E6

24 S E4,E6 E HC S/CO

1 S E4/CO,PA,CS E H C S/CO

L12 404 S E10-E27/CO,PA,CS

E E10+ALL L13 510 S E2+RT OR E2-E16/PA,CS

E HERMAN/CO

L14 96 S E69-E74/CO,PA,CS E BAYER/CO

E BAYER/CO E E10+ALL

L15 56709 S E2+RT OR E234-E239 OR E2-E239/PA,CS

L16 4106 S BAYER?/CO,PA,CS NOT L15

1.17 1 S L1 AND L2-L16 SEL RN FILE 'REGISTRY' ENTERED AT 07:19:29 ON 29 JUL 2009 L18 12 S E1-E12 L19 55 S SC4/ES AND PMS/CI AND DODECYL AND 1/NR L20 13 S L19 AND 3/ELC.SUB L21 1 S L20 AND C16H26S L22 1 S L18 AND C29H40 E "(C29H4O)N"/MF E "(C29H40)N"/MF L23 5 S E3 AND C5-C6-C6/ES SEL RN 1 4 5 T.24 3 S E1-E3 L25 2 S C20H34O2S AND SC4-OC2OC2/ES E "(C20H32O2S)N"/MF 1.26 1 S L18 AND C14H20O E "(C14H20O)N"/MF 1.27 7 S E3 AND C6/ES L28 6 S L27 NOT L26 E "(C22H36O2)N"/MF L29 2 S E3 AND C6/ES L30 1 S L29 NOT DECANEDIYL E C5-C5-C6-C6-C6-C6/ES 163 S E3 AND PMS/CI AND 1/NC L31 42 S L31 AND 6/NR L32 39 S L32 AND SPIRO? L33 1.34 27 S L33 NOT BR/ELS L35 23 S L34 NOT (SI OR CL)/ELS L36 12 S L35 AND (C33H300 OR C45H54O4 OR C45H54O2 OR C57H78O4 OR C25H1 L37 11 S L36 NOT 195063-91-3 L38 5 S C16H28S AND SC4/ES AND PMS/CI AND 1/NC AND 1/NR SEL RN 3 5 2 S E1-E2 L39 4 S C29H42 AND C5-C6-C6/ES AND PMS/CI AND 3/NR AND 1/NC L40 L41 3 S L40 NOT 123864-11-9 L42 0 S C20H32O2S AND SC4-OC2OC2/ES AND PMS/CI AND 2/NR AND 1/NC L43 10 S C14H22O AND 46.150.18/RID AND PMS/CI AND 1/NC AND 1/NR L44 2 S C22H38O2 AND 46.150.18/RID AND PMS/CI AND 1/NC AND 1/NR L45 2 S 213822-49-2 OR 67399-94-4 L46 174 S C22H38O2/MF AND 46.150.18/RID AND 1/NR L47 148 S L46 NOT PHENOL L48 88 S L47 NOT BENZENEDIOL 1.49 55 S L48 NOT (ETHOXY OR METHOXY) L50 1 S L49 AND "BENZENE, 1,4-BIS(OCTYLOXY)-"/CN L51 1 S L49 AND 1 4 BIS AND ETHYLHEXYL OXY E 9841.9.1/RID 1.52 34 S E3 AND (IR OR PT OR OS OR GA)/ELS L53 440 S E3 AND PMS/CI NOT L52 L54 272 S L53 NOT (B OR SI)/ELS L55 84 S E3 AND CCS/CI L56 16 S L21, L22, L24, L25, L26, L30, L39, L41, L45, L50, L51 L57 5 S 104934-52-3 OR 123863-99-0 OR 138396-00-6 OR 67399-94-4 OR 36 L58 20 S L56.L57 SAV TEMP L58 YAMIN516A/A

FILE 'HCAPLUS' ENTERED AT 08:10:22 ON 29 JUL 2009 L60 1844 S L58

SEL RN

74 S E1-E20/CRN

L59

```
7 S L60 AND L1-L17
1.61
L62
             43 S L60 AND L58 (L) REACT?
L63
             25 S L62 AND L58 (L) REACT? (L) PRODUCT?
1.64
            18 S L62 NOT L63
            713 S L60 AND PY<=2003 NOT P/DT
L65
1.66
            197 S L60 AND (PD<=20030530 OR PRD<=20030530 OR AD<=20030530) NOT L
L67
            911 S L61, L65, L66
     FILE 'REGISTRY' ENTERED AT 08:13:25 ON 29 JUL 2009
     FILE 'HCAPLUS' ENTERED AT 08:13:25 ON 29 JUL 2009
L68
                TRA L67 1- RN :
                                   3444 TERMS
     FILE 'REGISTRY' ENTERED AT 08:13:43 ON 29 JUL 2009
           3444 SEA L68
L69
L70
             35 S L69 AND IR/ELS
             4 S L69 AND PT/ELS
L72
              1 S L69 AND OS/ELS
L73
             7 S L69 AND GA/ELS
L74
             1 S L71 AND PT/MF
L75
             1 S L73 AND GA/MF
L76
             3 S L72, L74, L75
L77
             8 S L70-L76 AND L18
L78
            29 S L70 NOT L77
L79
            26 S L78 NOT 2/IR
L80
            19 S L79 AND CCS/CI NOT C5-C6-C6/ES
L81
             14 S L80 NOT (C90H108IRN3 OR C39H24IRN3O3 OR C39H24IRN3 OR C31H17F
1.82
             7 S L79 NOT L80
L83
             3 S L78 NOT L79
L84
             17 S L83, L81
L85
             25 S L77, L84
                SAV TEMP L85 YAMIN516B/A
L86
             71 S L69 AND CCS/CI NOT L70-L85
     FILE 'HCAPLUS' ENTERED AT 08:26:55 ON 29 JUL 2009
1.87
             22 S L85 AND L67
L88
             2 S L87 AND L61-L63
L89
             2 S L87 AND (L58 OR L85) (L) REACT? (L) PRODUCT?
L90
             2 S L88, L89
L91
             20 S L87 NOT L90
L92
             16 S L91 AND ?POLYM?
L93
             8 S L91 AND POLYM?/SC,SX,CW,CT
L94
            16 S L91 AND POLYM?/IT.BI.OBI
1.95
            16 S L92-L94
L96
             4 S L91 NOT L95
L97
            16 S L95, L96 AND ?LUMINESC?
L98
             9 S L95, L96 AND LUMINESC?/CW.CT.IT
1.99
             2 S L96 AND C09K011/IPC, IC, ICM, ICS, EPC
L100
            20 S L91-L99
L101
             6 S L100 AND SEMICONDUCT?/CW,CT,IT,BI,OBI
L102
            15 S L100 AND (ELECTROLUMINESCENT DEVICES+OLD, NT OR OPTOELECTRONIC
L103
             5 S L100 AND SEMICONDUCTOR DEVICE FABRICATION+OLD.NT/CT
L104
             20 S L100-L103
                SEL DN 15 17 19 20
L105
             16 S L104 NOT E21-E24
L106
             18 S L90, L105
                SEL RN
```

FILE 'REGISTRY' ENTERED AT 08:42:22 ON 29 JUL 2009 L107 254 S E25-E278

```
L108
          225 S L107 NOT L58, L85
L109
           2 S L108 AND L18
L110
            1 S L109 NOT RH/ELS
L111
          223 S L108 NOT L109, L110
    FILE 'HCAPLUS' ENTERED AT 08:53:07 ON 29 JUL 2009
L112 1 S L110 AND L106
L113
           18 S L106, L112
    FILE 'HCAPLUS' ENTERED AT 08:53:26 ON 29 JUL 2009
    FILE 'REGISTRY' ENTERED AT 08:54:17 ON 29 JUL 2009
L114
         2097 S PMS/CI AND (IR OR PT OR OS OR GA)/ELS
          129 S L114 AND (2/IR OR 2/PT OR 2/OS OR 2/GA)
T.115
            3 S L115 AND (C29H40 OR C25H32)
L116
L117
            1 S L114 AND IR/ELS AND (PT OR OS OR GA)/ELS
1.118
            0 S L114 AND PT/ELS AND (OS OR GA)/ELS
            0 S L114 AND OS/ELS AND GA/ELS
L119
    FILE 'HCAPLUS' ENTERED AT 09:00:11 ON 29 JUL 2009
            2 S L116
   FILE 'REGISTRY' ENTERED AT 09:00:50 ON 29 JUL 2009
L121
          176 S L114 AND C5-C6-C6/ES
L122
           52 S L114 AND SC4/ES
L123
            2 S L114 AND SC4-OC2OC2/ES
L124
            11 S L114 AND C5-C5-C6-C6-C6-C6/ES
T.125
          229 S L121-L124 NOT L116
L126
          118 S L125 NOT (B OR SI)/ELS
L127
            6 S L126 AND (C20H40 OR C29H40BR2)
            4 S L127 AND 2/NC
L128
L129
            2 S L128 AND IR/ELS
```

FILE 'HCAPLUS' ENTERED AT 09:06:54 ON 29 JUL 2009 L130 3 S L129

=>