

ACTOR	Devoir surveille					
ESPIT Se former autrement	Semestre:	Semestre: 1 2				
HONORIS UNITED UNIVERSITIES	Session : Pr	rincipale Rattrapage				
Unité d'enseignement : UP embaro	qué					
Module : Architecture des microco	ontrôleurs					
Classe(s): 2A, 2P	Nombre de pages : ENONCE (4 pages) +ANNEXE (1 pages)					
Documents autorisés : Oui	Non	Calculatrice autorisé :	Oui Non			
Date: 06/04/2024		Heure: 09H00	Durée : 1H			

QCM (10 points): Cocher la ou les bonne(s) réponse(s):

- 1. Quand est-il possible d'accéder à un bit à partir de la banque "0" dans le mode d'adressage direct des PIC?
 - A. Uniquement lorsque le bit RPO du registre STATUS est à "zéro".
 - B. Uniquement lorsque le bit RPO du registre STATUS est réglé sur "1".
 - C. Uniquement lorsque le bit RPO du registre STATUS est utilisé avec les 7 bits inférieurs du code d'instruction.
 - D. Aucune réponse
- 2. Le PIC 16F84 possède un registre de travail interne W :
 - A. De taille 14 bits permettant de coder les instructions.
 - B. De taille 13 bits, permet de stocker l'adresse de retour suite à l'exécution d'un sous-programme.
 - C. De taille 8 bits, joue le rôle d'accumulateur pour le chargement des résultats intermédiaires.
 - D. De taille 16 bits car le microcontrôleur est de famille mid range.
- 3. On a un programme qui nécessite 0.5 µs (CI) pour exécuter une instruction. Déterminer la fréquence du microcontrôleur $F_{\mu c}$ et le temps nécessaire pour exécuter ce programme TE, sachant que le nombre de cycle d'instruction NB = 250.
 - A. $F_{\mu c} = 4 \text{ MHz}$; $T_E = 250 \,\mu\text{s}$
 - B. $F_{\mu c} = 11 \text{ MHz}$; $T_E = 90 \mu s$
 - C. $F_{\mu c} = 8 \text{ MHz}$; $T_E = 125 \mu s$
 - D. Aucunes réponses

4. Quelle est la taille de la mémoire de programme qu'on a le droit de manipuler du pic16F84

- A. 2^{13} mots $\times 14$ bits
- B. 2^{10} mots \times 13 bits
- C. $1024 \text{ mots} \times 14 \text{ bits}$
- D. 2^{10} mots \times 14 bits

5. Quelle est la fonction du registre PC (Program Counter) dans le microcontrôleur Pic 16F84?

- A. Stocker le résultat des opérations arithmétiques et logiques
- B. Stocker l'adresse de la prochaine instruction à exécuter
- C. Stocker les constantes numériques
- D. Stocker les données d'entrée

6. La réalisation d'une opération logique par le processeur de notre microcontrôleur pic16F84 a un effet sur :

- A. Le bit Carry
- B. Le bit Digit Carry
- C. Le bit Zéro
- D. Toutes les réponses sont correctes.

7. Nous avons le bout de code suivant :

```
Unsigned char A, B, Somme;
A = 158;
B = 98;
Somme = A + B;
```

Cochez-la ou les proposition(s) correcte (s):

- A. C=0; Z=0; Somme = 256
- B. C=1 et Z=1; Somme = 0
- C. Elle n'affecte pas le registre STATUS
- D. C=1 et Z=1; Somme =256

8. Nous avons le bout de code suivant :

Au bout de 4 itérations de la boucle while :

- A. Z = 0, C = 0, b = 258
- B. Z = 1, C = 1, b = 2.
- C. Z = 0, C = 1, b = 2
- D. Z =0, C=1, b= 258

Problème (10 points):

Dans une cabine d'ascenseur conçue pour accueillir jusqu'à 4 personnes, **la présence de ces 4 occupants est nécessaire pour démarrer**. Nous souhaitons réaliser un système de gestion intégré permettant aux utilisateurs de connaître le nombre de places disponibles avant de choisir l'étage souhaité.

Le système fonctionne à base d'un PIC16F84 et dispose de :

- Un bouton INCRE permettant d'incrémenter le nombre de personnes disponibles dans la cabine.
- **Deux lampes LEDs: LED_R & LED_V**, permettant d'indiquer l'état de la cabine (pleine ou pas encore).
- Trois boutons (ETAGE_A, ETAGE_B et ETAGE_C) permettant de sélectionner l'étage choisi.
- Un bouton **VALIDER** permettant de valider le choix de l'étage sélectionné.
- Un afficheur BCD indiquant :
 - Le nombre de personnes disponibles dans la cabine
 - L'étage sélectionné

Le montage ci-dessous décrit les composants du système :

Fonctionnement:

- Au départ, lorsque le système s'active, il affiche le nombre de personnes présentes dans la cabine. À ce stade, la valeur de la variable « **NbPers** » est **nulle**. La LED rouge s'allume tandis que la LED verte s'éteint, signalant ainsi qu'aucune personne n'est présente dans la cabine et qu'elle n'est pas encore pleine.
- Le bouton INCRE simule l'entrée d'une personne dans la cabine, ce qui entraîne l'incrémentation de la variable « NbPers » qui est constamment affichée sur le BCD. Si le nombre de personnes dans la cabine atteint la valeur 4, la LED_V s'allume et la LED_R s'éteint.
- Une fois que l'ascenseur est plein, l'une des personnes disponibles peut sélectionner l'étage désiré en appuyant sur l'un des 3 boutons (ETAGE_A, ETAGE_B et ETAGE_C). Dès qu'elle appuie sur l'un de ces boutons, cela déclenche l'affichage de la lettre correspondant à l'étage choisi. Notons que chaque appui sur un bouton envoie un signal logique de 1.
- Pour valider ce choix, il suffit d'appuyer sur le bouton (VALIDER=0). Cette action entraîne immédiatement le clignotement des deux LEDs verte et rouge 4 fois, d'une durée totale de 2 secondes. Ensuite, le système revient à son état de départ.

Travail demandé:

Réaliser le code C qui correspondent au fonctionnement du système tout en passant par les étapes suivantes :

- A. Les directives : (1 point)
 - Defines (0.5 point)
 - Macros (0.5 point)
- B. La fonction principale main : (5 points)
 - La configuration des entrées / sorties. (1 point)
 - La configuration de l'interruption. (1 point)
 - L'initialisation. (1 point)
 - Le programme principal. (2 points)
- C. La fonction d'interruption (4 points)
 - La sélection de l'étage (2 points)
 - La validation du choix (2 points)

NB: nous disposons d'une fonction **delay_ms**() qui assure les attentes.

BON TRAVAIL

Annexe

REGISTER 2-2: OPTION REGISTER (ADDRESS 81h)

			RAV-1	R/W-1	
G TOCS	TOSE	PSA	PS2	PS1	PSO
H	G TOCS	G TOCS TOSE	G TOCS TOSE PSA	G TOCS TOSE PSA PS2	G TOCS TOSE PSA PS2 PS1

bit 7 RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit bit 6

1 = Interrupt on rising edge of RB0/INT pin

0 = Interrupt on falling edge of RB0/INT pin

bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

bit 4 TOSE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin

0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1 - 4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	RW-0	RAV-0	RAV-0	R/W-0	R/W-x
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTE	RBIF
bit 7					•		bit (

bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

bit 6 EEIE: EE Write Complete Interrupt Enable bit

> 1 = Enables the EE Write Complete interrupts 0 = Disables the EE Write Complete interrupt

bit 5 TOIE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt

bit 4 INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

bit 3 RBIE: RB Port Change Interrupt Enable bit.

1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt

bit 2 TOIF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

INTF: RB0/INT External Interrupt Flag bit bit 1

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

bit 0 RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state