VIBRATION ANALYSIS OF TAPERED TRUNCATED CANTILEVER BEAMS USING DEEP LEARNING

Naman Yadav

Asim Tewari

Department of Mechanical Engineering, IIT Bombay

- ➤ Motivation
- > Deep Learning Model
- ➤ Data Generation
- > Model Training
 - Training parameters and results
 - Percent deviations of predicted values
 - Graphical comparison with actual values
- > Extrapolation Analysis
 - Prediction ability over unseen data range
- ➤ Conclusion
- > Future Research

➤ Motivation

MOTIVATION

- ✓ Some problems are really difficult or impossible to solve theoretically.
- ✓In some cases these can be solved by fitting curve to some datapoints generated for special cases.
- ✓ Data driven approach:
 - 1. Removes necessity of field specific knowledge.
 - 2. There is a large amount of data present.
 - Highly optimized algorithms are there to process this data.
 - 3. Tremendous computational power available.

- ➤ Motivation
- ➤ Deep Learning Model

DEEP LEARNING MODEL

- 1. Training data was generated using MATLAB.
- 2. Neural network features:
 - 1. Activation function: PReLU
 - 2. Loss function: Mean squared percent error
 - 3. Optimizer: Adam optimizer
- 3. Training of Neural network was done on Python using PyTorch.

INPUT VARIABLES

• Variation in cross-sectional properties:

$$A = A_C \delta^{\eta}$$
$$I = I_C \delta^{\eta+2}$$

(where, $\delta = \frac{x}{L}$, $\delta \in [\delta_0, 1]$ and η is a non-negative real number)

• η and δ_0 are inputs to the neural network.

NEURAL NETWORK ARCHITECTURE

OUTPUT VARIABLES

- $\beta_1, \beta_2, \beta_3, \delta_{21}, \delta_{31}, \delta_{32}$ (6 variables)
 - β_1 , β_2 , β_3 are the natural frequency parameters
 - δ_{21} , δ_{31} , δ_{32} are the node locations

ACTUAL VARIATION OF OUTPUT VARIABLES

1. Euler-Bernoulli equation

$$\frac{\partial^2}{\partial x^2} \left(EI(x) \frac{\partial^2 y(x,t)}{\partial x^2} \right) + \rho A(x) \frac{\partial^2 y(x,t)}{\partial t^2} = 0$$

2. Using variable separation

$$y(x,t) = W(x)e^{i\omega t}$$

3. General solution of W(x)

$$W(\delta) = (L\delta)^{-\eta/2} \left[c_1 J_{\eta}(z) + c_2 Y_{\eta}(z) + c_3 I_{\eta}(z) + c_4 K_{\eta}(z) \right]$$

where,
$$z = 2\beta \delta^{1/2}$$
, $\beta = \omega^2 L^4 \left(\frac{\rho A_C}{EI_C}\right)$, $\delta = \frac{x}{L}$

 J_{η} and Y_{η} are η^{th} order Bessel Functions of first and second kind, respectively.

 I_{η} and K_{η} are modified η^{th} order Bessel Function of first and second kind, respectively.

4. Boundary conditions

$$\frac{\partial}{\partial \delta} \left(EI(\delta) \frac{\partial^2 W(\delta)}{\partial \delta^2} \right) = \frac{\partial^2 W(\delta)}{\partial \delta^2} = 0, at\delta = \delta_0$$

$$W(\delta) = \frac{\partial W(\delta)}{\partial \delta} = 0, at\delta = \delta_1 = 1$$

ACTUAL VARIATION OF OUTPUT VARIABLES

6. After applying boundary conditions we will get 4 linear equations:

$$\Delta = \begin{vmatrix} J_{\eta+1}(z_0) & Y_{\eta+1}(z_0) & I_{\eta+1}(z_0) & -K_{\eta+1}(z_0) \\ J_{\eta+2}(z_0) & Y_{\eta+2}(z_0) & I_{\eta+2}(z_0) & K_{\eta+2}(z_0) \\ J_{\eta}(z_1) & Y_{\eta}(z_1) & I_{\eta}(z_1) & K_{\eta}(z_1) \\ J_{\eta+1}(z_1) & Y_{\eta+1}(z_1) & -I_{\eta+1}(z_1) & K_{\eta+1}(z_1) \end{vmatrix} = 0$$

7. After solving $\Delta = 0$, we can get values of $\beta = \beta_r$, where, r is the mode number. From which, we can compute ω_r and z_r using following relations,

$$\omega_r = \left(\frac{\beta_r}{L}\right)^2 \sqrt{\frac{EI_C}{\rho A_C}}, \ z_r = 2\beta_r \delta^{1/2}$$

8. Finally, mode shapes can be obtained as follows,

$$W(\delta) = (L\delta)^{-\eta/2} [c_1 J_{\eta}(z_r) + c_2 Y_{\eta}(z_r) + c_3 I_{\eta}(z_r) + c_4 K_{\eta}(z_r)]$$

ACTUAL VARIATION OF OUTPUT VARIABLES

Output Values vs δ_0 for different values of η

Output Values vs η for different values of δ_0

- ➤ Motivation
- ➤ Deep Learning Model
- ➤ Data Generation

DATA GENERATION

- **1.** $\eta \in [0, 3], \delta_0 \in [2e-3, 0.56] => 301*15,000 datapoints.$
- **2.** $\eta \in [3, 10], \delta_0 \in [7e-2, 0.56] => 701*15,000 datapoints.$
- 3. For $\eta \in [0, 10]$, data from the two cases was merged:
 - $\eta \in [0, 3], \delta_0 \in [2e-3, 0.56] \Rightarrow 301*15,000 = 4,515,000.$
 - $\eta \in (3, 10], \delta_0 \in [7e-2, 0.56] => 700*15,000 = 10,500,000.$
- ► In total 15,015,000 datapoints were generated.
- ▶But only a fraction was used for training.

- ➤ Motivation
- ➤ Deep Learning Model
- ➤ Data Generation
- ➤ Model Training

MODEL TRAINING

- Training and validation data
 - Generated data was shuffled.
 - Few data points were sampled from shuffled data to train the neural network.
 - Some datapoints for validation were also selected.
- Test data
 - A separate data set was created by randomly sampling points.
- Results
 - Trained model was evaluated over the unseen test dataset to report the results.

- ➤ Motivation
- ➤ Deep Learning Model
- ▶ Data Generation
- ➤ Model Training
 - Training parameters and results

TRAINING PARAMETERS

Table 1: Deep Learning model training parameters				
	SD (Small Dataset)	BD (Big Dataset)		
# Training datapoints	$2*2^{11}$	$20*2^{11}$		
# Validation datapoints	1,000			
# Iterations	30,000			
Initial Learning Rate	0.0	1		
Update period	5,000			
Update factor	5			

TRAINING RESULTS

	SD (Small Dataset)	BD (Big Dataset)
# Training datapoints	2*211	20*211
L1	3	7
N1	173	207
N2	3	3

SN (Small Network)

BN (Big Network)

Mean squared percent error vs number of iterations on log10 scale

TRAINING RESULTS

Training set- 99th percentile percent deviation vs number of iterations

- ➤ Motivation
- ➤ Deep Learning Model
- ➤ Data Generation
- ➤ Model Training
 - Training parameters and results
 - Percent deviations of predicted values

PERCENT DEVIATIONS

Table 2: For $\eta \in [0, 3]$, $\delta_0 \in [2e-3, 0.56]$			Table 3: For η ε [3, 10], δ_0 ε [7e-2, 0.56]						
Mean Percent dev. Max. Percent dev.			Mean Percent dev. Max. Percent dev.						
Output	SD-SN	BD-BN	SD-SN	BD-BN	Output	SD-SN	BD-BN	SD-SN	BD-BN
$oldsymbol{eta_1}$	0.022	0.011			$oldsymbol{eta_1}$	0.019	0.011		
$oldsymbol{eta_2}$	0.020	0.008	0.110	0.071	$oldsymbol{eta_2}$	0.018	0.010	0.130	0.046
eta_3	0.021	0.009			eta_3	0.019	0.010		
δ_{21}	0.016	0.012	0.172	0.101	$oldsymbol{\delta_{21}}$	0.013	0.009	0.090	0.050
δ_{31}	0.024	0.013			δ_{31}	0.019	0.009		
δ_{32}	0.012	0.007	0.159	0.083	δ_{32}	0.010	0.005	0.055	0.037

- ➤ Motivation
- ➤ Deep Learning Model
- ➤ Data Generation
- ► Model Training
 - Training parameters and results
 - Percent deviations of predicted values
 - Graphical comparison with actual values

COMPARISON BETWEEN ACTUAL AND PREDICTED VALUES

Output Values vs η for different values of δ_0

COMPARISON BETWEEN ACTUAL AND PREDICTED VALUES

Output Values vs δ_0 for different values of η

Output Values vs η for different values of δ_0

- ➤ Motivation
- > Deep Learning Model
- ▶ Data Generation
- > Model Training
 - Training parameters and results
 - Percent deviations of predicted values
 - Graphical comparison with actual values
- > Extrapolation Analysis

EXTRAPOLATION ANALYSIS

• Data was then split back into two parts as generated:

Part 1: $\eta \in [0, 3], \delta_0 \in [2e-3, 0.56]$

Part 2: $\eta \in [3, 10], \delta_0 \in [7e-2, 0.56]$

• Models corresponding to SD and BD mentioned earlier were trained on one part and then evaluated on the other to see its extrapolation capabilities.

- ➤ Motivation
- ➤ Deep Learning Model
- ➤ Data Generation
- > Model Training
 - Training parameters and results
 - Percent deviations of predicted values
 - Graphical comparison with actual values
- > Extrapolation Analysis
 - Prediction ability over unseen data range

TRAINED ON PART 1 EVALUATED OVER PART 2

Table 4: Trained over $\eta \in [0, 3]$ and evaluated over $\eta \in [3, 10]$					
	Mean Percent dev.		Max. Percent dev.		
Output	SD-SN	BD-BN	SD-SN	BD-BN	
eta_1	12.922	19.327			
eta_2	7.082	12.582	19.416	31.156	
eta_3	3.737	8.609			
δ_{21}	1.866	8.318	7.643	21.166	
δ_{31}	2.919	7.453			
δ_{32}	1.331	4.310	3.593	11.100	

PERCENT DEVIATION VARIATION

TRAINED ON PART 2 EVALUATED OVER PART 1

Table 5: Trained over $\eta \in [3, 10]$ and evaluated over $\eta \in [0, 3]$					
	Mean Percent dev.		Max. Percent dev.		
Output	SD-SN	BD-BN	SD-SN	BD-BN	
$oldsymbol{eta_1}$	10.620	4.630			
eta_2	6.181	1.808	58.538	19.544	
eta_3	4.826	1.361			
δ_{21}	7.060	3.664	121.945	80.435	
δ_{31}	9.475	4.975		134.401	
δ_{32}	3.174	1.408	43.375	27.963	

PERCENT DEVIATION VARIATION

- ➤ Motivation
- > Deep Learning Model
- ➤ Data Generation
- > Model Training
 - Training parameters and results
 - Percent deviations of predicted values
 - Graphical comparison with actual values
- > Extrapolation Analysis
 - Prediction ability over unseen data range
- ➤ Conclusion

CONCLUSION

- ➤ Motivation
- ➤ Deep Learning Model
- ➤ Data Generation
- > Model Training
 - Training parameters and results
 - Percent deviations of predicted values
 - Graphical comparison with actual values
- > Extrapolation Analysis
 - Prediction ability over unseen data range
- ➤ Conclusion
- > Future Research

FUTURE RESEARCH

- These models can also be trained on data for beams subjected to other boundary conditions.
 - Due to similar underlying equations, we can expect reasonably high accuracy in predictions.
- Other better models could be developed to improve the extrapolation accuracy of the neural network far away from trained range.
 - Challenging part in doing this is the complex nature of Bessel functions, which contain integrations of factorial, factorials in denominator, etc.

THANK YOU

Questions?