TD 1: Espaces Vectoriels

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 1.

Déterminer une base orthonormale directe dont le premier vecteur est colinéaire au vecteur (1,2,2)

Exercice 2.

Pour quelles valeurs de a les vecteurs (1,0,a), (a,1,0) et (0,a,1) sont ils coplanaires?

Exercice 3.

Soit u, v et w trois vecteurs de l'espace et $a \in \mathbb{R}$. On considère l'équation vectorielle d'inconnue $x: u \wedge x = v$.

- 1. Montrer que si l'équation admet une solution, alors u et v sont orthogonaux. On supposera dans la suite que u et v sont orthogonaux.
- 2. Déterminer toutes les solutions colinéaires à $u \wedge v$.
- 3. En déduire toutes les solutions de l'équation.
- 4. Déterminer les vecteurs solutions qui vérifient en outre $\langle x, w \rangle = a$

Exercice 4.*

Dans l'espace muni d'un repère orthonormal. On note \mathcal{D} la droite passant par A = (1, 3, -2) et de vecteur directeur u = (2, 1, 0), \mathcal{P} le plan d'équation 2x - 3y + 5z = 7 et M le point (1, 2, 3).

- 1. Calculer la distance de $M \ alpha \ \mathcal{D}$.
- 2. Calculer la distance de M à \mathcal{P} . Indication : remarquer que le point (1,0,1) appartient au plan \mathcal{P} .

Exercice 5.*

Déterminer la projection orthogonale Δ' de la droite Δ d'équation :

$$\begin{cases} x = 1 + 2\lambda \\ y = -1 + \lambda \\ z = 2 \end{cases}$$

dans le plan P d'équation x + y + z = 1.

Exercice 6.*

Calculer l'équation de la sphère de centre (1,1,1) et dont le plan tangent est x+y+z=2.