EE 330 Lecture 10

IC Fabrication Technology

- Oxidation
- Epitaxy
- Polysilicon
- Planarization
- Contacts, Interconnect, and Metallization

IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Ion Implantation
- Etching
- Diffusion
- Oxidation
 - Epitaxy
 - Polysilicon
 - Contacts, Interconnect and Metalization
 - Planarization

- SiO₂ is widely used as an insulator
 - Excellent insulator properties
- Used for gate dielectric
 - Gate oxide layers very thin
- Used to separate devices by raising threshold voltage
 - termed field oxide
 - field oxide layers very thick
- Methods of Oxidation
 - Thermal Growth (LOCOS)
 - Consumes host silicon
 - x units of SiO₂ consumes .47x units of Si
 - Undercutting of photoresist
 - Compromises planar surface for thick layers
 - Excellent quality
 - Chemical Vapor Deposition
 - Needed to put SiO₂ on materials other than Si

Thermally Grown SiO₂ - desired growth

Thermally Grown SiO₂ - actual growth

Thermally Grown SiO₂ - actual growth

After Planarization

p⁻ Silicon

IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
 - Polysilicon
 - Planarization
 - Contacts, Interconnect and Metalization

Epitaxy

- Single Crystaline Extension of Substrate Crystal
 - Commonly used in bipolar processes
 - CVD techniques
 - Impurities often added during growth
 - Grows slowly to allow alignmnt with substrate

Epitaxy

Question: Why can't a diffusion be used to create the same effect as an epi layer?

IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
 - Planarization
 - Contacts, Interconnect and Metalization

Polysilicon

- Elemental contents identical to that of single crystaline silicon
 - Electrical properties much different
 - If doped heavily makes good conductor
 - If doped moderately makes good resistor
 - Widely used for gates of MOS devices
 - Widely used to form resistors
 - Grows fast over non-crystaline surface
 - Patterned with Photoresist/Etch process
 - Silicide often used in regions where resistance must be small
 - Refractory metal used to form silicide
 - Designer must indicate where silicide is applied (or blocked)

Polysilicon

Polysilicon

Single-Crystaline Silicon

IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
- Planarization
 - Contacts, Interconnect and Metalization

Planarization

 Planarization used to keep surface planar during subsequent processing steps

Important for creating good quality layers in

subsequent processing steps

- Mechanically planarized

IC Fabrication Technology

- Crystal Preparation
- Masking
- Photolithographic Process
- Deposition
- Etching
- Diffusion
- Ion Implantation
- Oxidation
- Epitaxy
- Polysilicon
- Planarization
- Contacts, Interconnect and Metalization

Contacts, Interconnect and Metalization

- Contacts usually of a fixed size
 - All etches reach bottom at about the same time
 - Multiple contacts widely used
 - Contacts not allowed to Poly on thin oxide in most processes
 - Dog-bone often needed for minimum-length devices

Acceptable Contact

Design Rule Violation

Common Circuit Connection

Standard Interconnection

Buried Contact

Can save area but not allowed in many processes

Metalization

- Aluminum widely used for interconnect
- Copper often replacing aluminum in recent processes
- Must not exceed maximum current density
 - around 1ma/u for aluminum and copper
- Ohmic Drop must be managed
- Parasitic Capacitances must be managed
- Interconnects from high to low level metals require connections to each level of metal
- Stacked vias permissible in some processes

Metalization

Aluminum

- Aluminum is usually deposited uniformly over entire surface and etched to remove unwanted aluminum
- Mask is used to define area in photoresist where aluminum is to be removed

Copper

- Plasma etches not effective at removing copper because of absence of volatile copper compounds
- Barrier metal layers needed to isolate silicon from migration of copper atoms
- Damascene or Dual-Damascene processes used to pattern copper

Metal Applied to Entire Surface

Copper Interconnects

Limitations of Aluminum Interconnects

- Electromigration
- Conductivity not real high

Relevant Key Properties of Copper

- Reduced electromigration problems at given current level
- Better conductivity

Challenges of Copper Interconnects

- Absence of volatile copper compounds (does not etch)
- Copper diffuses into surrounding materials (barrier metal required)

			ıemperat	
Material ≑	ρ (Ω·m) at 20 °C	σ (S/m) at 20 °C	coefficient [[] (K ⁻¹)	
Carbon (graphene)	1.00 × 10 ⁻⁸	1.00 × 10 ⁸	-0.0002	
Silver	1.59 × 10 ⁻⁸	6.30 × 10 ⁷	0.0038	
Copper	1.68 × 10 ⁻⁸	5.96 × 10 ⁷	0.003862	
Annealed copper ^[note 2]	1.72 × 10 ⁻⁸	5.80 × 10 ⁷	0.00393	
Gold ^[note 3]	2.44 × 10 ⁻⁸	4.10 × 10 ⁷	0.0034	
Aluminium ^[note 4]	2.82 × 10 ⁻⁸	3.50 × 10 ⁷	0.0039	
Calcium	3.36 × 10 ⁻⁸	2.98 × 10 ⁷	0.0041	
Tungsten	5.60 × 10 ⁻⁸	1.79 × 10 ⁷	0.0045	
Zinc	5.90 × 10 ⁻⁸	1.69 × 10 ⁷	0.0037	
Nickel	6.99 × 10 ⁻⁸	1.43 × 10 ⁷	0.006	
Lithium	9.28 × 10 ⁻⁸	1.08 × 10 ⁷	0.006	
Iron	9.71 × 10 ⁻⁸	1.00 × 10 ⁷	0.005	
Platinum	1.06 × 10 ⁻⁷	9.43 × 10 ⁶	0.00392	
Tin	1.09 × 10 ⁻⁷	9.17 × 10 ⁶	0.0045	
Carbon steel (1010)	1.43 × 10 ⁻⁷	6.99 × 10 ⁶		

Source: Sept 13, 2017

Lead	2.20 × 10 ⁻⁷	4.55 × 10 ⁶	0.0039
Titanium	4.20 × 10 ⁻⁷	2.38 × 10 ⁶	0.0038
Grain oriented electrical steel	4.60 × 10 ⁻⁷	2.17 × 10 ⁶	
Manganin	4.82 × 10 ⁻⁷	2.07 × 10 ⁶	0.000002
Constantan	4.90 × 10 ⁻⁷	2.04 × 10 ⁶	0.000008
Stainless steel ^[note 5]	6.90 × 10 ⁻⁷	1.45 × 10 ⁶	0.00094
Mercury	9.80 × 10 ⁻⁷	1.02 × 10 ⁶	0.0009
Nichrome ^[note 6]	1.10 × 10 ⁻⁶	6.7 × 10 ⁵	0.0004
GaAs	1.00×10^{-3} to 1.00×10^{8}	1.00×10^{-8} to 10^3	
Carbon (amorphous)	5.00×10^{-4} to 8.00×10^{-4}	1.25×10^3 to 2×10^3	-0.0005
Carbon (graphite) ^[note 7]	2.50×10^{-6} to 5.00×10^{-6} basal plane 3.00×10^{-3} basal plane	2.00×10^5 to 3.00×10^5 basal plane 3.30×10^2 \text{ _basal plane}	
PEDOT:PSS	2×10^{-6} to 1×10^{-1}	1 × 10 ¹ to 4.6 × 10 ⁵	?
Germanium ^[note 8]	4.60 × 10 ⁻¹	2.17	-0.048
Sea water ^[note 9]	2.00 × 10 ⁻¹	4.80	
Swimming pool water ^[note 10]	3.33×10^{-1} to 4.00×10^{-1}	0.25 to 0.30	

Silicon ^[note 8]	6.40 × 10 ²	1.56 × 10 ⁻³	-0.075
Wood (damp)	1.00×10^3 to 1.00×10^4	10 ⁻⁴ to 10 ⁻³	
Deionized water ^[note 12]	1.80 × 10 ⁵	5.50 × 10 ⁻⁶	
Glass	1.00×10^{11} to 1.00×10^{15}	10 ⁻¹⁵ to 10 ⁻¹¹	?
Hard rubber	1.00 × 10 ¹³	10 ⁻¹⁴	?
Wood (oven dry)	1.00×10^{14} to 1.00×10^{16}	10 ⁻¹⁶ to 10 ⁻¹⁴	
Sulfur	1.00 × 10 ¹⁵	10 ⁻¹⁶	?
Air	1.30×10^{14} to 3.30×10^{14}	3×10^{-15} to 8×10^{-15}	
Carbon (diamond)	1.00 × 10 ¹²	~10 ⁻¹³	
Fused quartz	7.50 × 10 ¹⁷	1.30 × 10 ⁻¹⁸	?
PET	1.00 × 10 ²¹	10 ⁻²¹	?
Teflon	1.00×10^{23} to 1.00×10^{25}	10 ⁻²⁵ to 10 ⁻²³	?

Copper Interconnects

Practical methods of realizing copper interconnects took many years to develop

Copper interconnects widely used in some processes today

Damascene Process

Damascene Process

W has excellent conformality when formed from WF₆

Applied with CVD $WF_6+3H_2 \rightarrow W+6HF$

Chemical-Mechanical Planarization (CMP)

- Polishing Pad and Wafer Rotate in non-concentric pattern to thin, polish, and planarize surface
- Abrasive/Chemical polishing
- Depth and planarity are critical

Acknowledgement:

http://en.wikipedia.org/wiki/Chemical-mechanical_planarization

Damascene Process

After first CMP Step

Damascene Process

After first CMP Step

Oxidation

Damascene Process

Photoresist Patterned with Metal Mask Defines Trench

Damascene Process

Damascene Process

(Barrier metal added before copper to contain the copper atoms)

Damascene Process

Damascene Process

Copper is deposited or electroplated (Barrier Metal Used for Electroplating Seed)

Damascene Process

Dual-Damascene Process

(Barrier Metal added before copper but not shown)

Dual-Damascene Process

Copper is deposited or electroplated (Barrier Metal Used for Electroplating Seed)

Both Damascene Processes Realize Same Structure

Damascene Process

Two Dielectric Deposition Steps

Two CMP Steps

Two Metal Deposition Steps

Two Dielectric Etches

W-Plug

Dual-Damascene Process

One Dielectric Deposition Steps

One CMP Steps

One Metal Deposition Steps

Two Dielectric Etches

Via formed with metal step

Multiple Level Interconnects

3-rd level metal connection to n-active without stacked vias

Multiple Level Interconnects

3-rd level metal connection to n-active with stacked vias

Interconnect Layers May Vary in Thickness or Be Mostly Uniform

Layer	t (nm)	w (nm)	s(nm)	AR		
6	1720	860	860	2.0		†
	1000					
5	1600	800	800	2.0		
	1000				LAG E 500	
4	1080	540	540	2.0		12 511
	700					12.5µ
3	700	320	320	2.2	ПП	
	700					
2	700	320	320	2.2		
	700					
1	480	250	250	1.9	88	
	800				**************************************	\
	1				Substrate	

Fig 4.31 Layer stack for 6-metal Intel 180 nm process

Interconnects

- Metal is preferred interconnect
 - Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
- Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
- Diffusion used for short interconnects
 - Parasitic capacitances are high

Interconnects

- Metal is preferred interconnect
 - Because conductivity is high
- Parasitic capacitances and resistances of concern in all interconnects
 - Polysilicon used for short interconnects
 - Silicided to reduce resistance
 - Unsilicided when used as resistors
 - Diffusion used for short interconnects
 - Parasitic capacitances are high

H << W and H << L in most processes Interconnect behaves as a "thin" film Sheet resistance often used instead of conductivity to characterize film

$$R_{\Box} = \rho/H$$

$$R=R_{\square}[L/W]$$

$$R=R_{\square}[L/W]$$

The "Number of Squares" approach to resistance determination in thin films

The "squares" approach is not exact but is good enough for calculating resistance in almost all applications

In this example:

$$N_S$$
=12+.55+.7=13.25

Example:

The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is $40 \ \Omega/\Box$, determine the resistance between nodes A and B.

Solution

$$N_S = 9 + 9 + 3 + 2(.55) = 22.1$$

$$R_{AB} = R_{\Box} N_{S} = 40x22.1 = 884\Omega$$

Resistance in Interconnects (can be used to build resistors!)

- Serpentine often used when large resistance required
- Polysilicon or diffusion often used for resistor creation
- Effective at managing the aspect ratio of large resistors
- May include hundreds or even thousands of squares

Resistance in Interconnects (can be used to build resistors!)

End of Lecture 10