第 22 讲 恒等式的乐趣

1. 假设 f(z) = p(z)/q(z) 是有理函数, 满足 $\deg(q) \ge \deg(p) + 2$. 证明

$$\sum_{n \in \mathbb{Z}, f(n) \neq \infty} (-1)^n f(n) = -\sum_{f(q) = \infty} \operatorname{Res}(f(z) \cdot \pi \operatorname{csc}(\pi z), q).$$

要求逻辑严谨, 步骤详细.

2. 假设 p,q 都是多项式, $\deg(q) \ge \deg(p) + 2$, q 的零点都是单零点. 证明 Abel 公式

$$\sum_{a: a(a)=0} \frac{p(a)}{q'(a)} = 0.$$

附加题 (不做要求)

请将解答发至 wxg688@163.com. 无截止日期.

问题 2.3. 假设 f 是 d 次首一多项式, 次数至少为 1. 记 $A = f^{-1}(\overline{\mathbb{D}})$, 证明 $||f'||_{\partial A} \geq d$, 等号成立的充要条件是 $f(z) = (z-a)^d$.

问题 2.4. 假设 f,g 都是首一多项式, 次数至少为 1. 记 $A = f^{-1}(\overline{\mathbb{D}}), B = g^{-1}(\overline{\mathbb{D}}).$ 证明不可能发生 $A \subset B$ 且 $A \neq B$ 的情况.

问题 2.5. 假设 f 是 d 次首一多项式, 所有的根都在 $\overline{\mathbb{D}}$ 中. 证明 $f^{-1}(\mathbb{D})$ 至多有 d-1 个连通分支.