# Vector Coplanarity and Perpendicularity Check

Al25BTECH11034 - Sujal Chauhan

2.10.23

#### Question

The vector(s) which is/are coplanar with the vectors

$$\hat{i} + \hat{j} + 2\hat{k}, \quad \hat{i} + 2\hat{j} + \hat{k}$$

and perpendicular to vector

$$\hat{i} + \hat{j} + \hat{k}$$

is/are:

- a)  $\hat{\mathbf{j}} \hat{\mathbf{k}}$
- b)  $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
- c)  $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- d)  $\hat{\mathbf{j}} + \hat{\mathbf{k}}$

### Given Vectors

| Variable | Vector                                      |
|----------|---------------------------------------------|
| Ã        | $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ |
| B        | $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ |
| Ĉ        | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ |

## Options as vectors $\vec{D_i}$ :

| Input               | Vector                                       |
|---------------------|----------------------------------------------|
| $ec{D_1}$           | $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ |
| $ec{\mathcal{D}_2}$ | $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$  |
| $ec{\mathcal{D}_3}$ | $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ |
| $ec{\mathcal{D}_4}$ | $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$  |

# **Checking Coplanarity**

#### Condition:

$$(\vec{A}\times\vec{B})^T\vec{D_i}=0$$

$$\vec{A} \times \vec{B} = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}, \quad (\vec{A} \times \vec{B})^T = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix}$$

| Vector      | $(\vec{A} \times \vec{B})^T \vec{D_i}$ | Coplanar? |
|-------------|----------------------------------------|-----------|
| $\vec{D_1}$ | 0                                      | Yes       |
| $\vec{D_2}$ | <b>-1</b>                              | No        |
| $\vec{D_3}$ | -4                                     | No        |
| $\vec{D_4}$ | 2                                      | No        |

# **Checking Perpendicularity**

#### Condition:

$$\vec{C}^T \vec{D_i} = 0, \quad \vec{C}^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

| Vector      | $\vec{C}^T \vec{D_i}$ | Perpendicular? |
|-------------|-----------------------|----------------|
| $\vec{D_1}$ | 0                     | Yes            |
| $\vec{D_2}$ | 3                     | No             |
| $\vec{D_3}$ | 0                     | Yes            |
| $\vec{D_4}$ | 2                     | No             |

# Figures (1/2)





# Figures (2/2)

Plane with A, B and D vector — A (1,1,2) - B (1,2,1) C(1,1,1) D[1, -1, 0]



Plane with A, B and D vector



#### Final Answer

The vectors satisfying both conditions is:

