Binomial Theorem Cheatsheet (Exercise 8.3, Class 11)

1. Binomial Series Formula

For $(1+x)^n$, where n is a negative integer or fraction:

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$

Condition of Validity: |x| < 1 or as specified for modified forms.

Example: Expand $(1-x)^{1/2}$ up to 4 terms.

$$(1-x)^{1/2} = 1 + \frac{1}{2}(-x) + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}(-x)^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}(-x)^3$$
$$= 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + \cdots$$

Valid if |x| < 1.

2. General Form for $(a + bx)^n$

Rewrite as:

$$(a+bx)^n = a^n \left(1 + \frac{bx}{a}\right)^n$$

1

Apply binomial series to $\left(1 + \frac{bx}{a}\right)^n$.

Example: Expand $(4-3x)^{1/2}$ up to 4 terms.

$$(4-3x)^{1/2} = 4^{1/2} \left(1 - \frac{3x}{4}\right)^{1/2} = 2\left[1 + \frac{1}{2}\left(-\frac{3x}{4}\right) + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}\left(-\frac{3x}{4}\right)^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}\left(-\frac{3x}{4}\right)^3\right]$$
$$= 2 - \frac{3x}{4} - \frac{9x^2}{64} - \frac{27x^3}{512} + \cdots$$

Valid if $\left|\frac{3x}{4}\right| < 1 \implies |x| < \frac{4}{3}$.

3. Product of Binomial Expansions

For expressions like $\frac{(a+bx)^p}{(c+dx)^q}$, expand each term separately:

$$(a+bx)^p(c+dx)^{-q}$$

Multiply the series and collect terms up to the required degree.

Example: Expand $\frac{(1-x)^{-1}}{(1+x)^2}$ up to 4 terms.

$$(1-x)^{-1}(1+x)^{-2} = (1+x+x^2+x^3)(1-2x+3x^2-4x^3)$$
$$= 1-x+2x^2-2x^3+\cdots$$

Valid if |x| < 1.

4. Approximations (Neglecting Higher Powers)

When x is small, neglect x^2 or x^3 and higher powers for approximations.

Example: Show $\frac{1-x}{\sqrt{1-x}} \approx 1 - \frac{3}{2}x$ (neglect x^2 and higher).

$$(1-x)(1-x)^{-1/2} = (1-x)\left(1+\frac{1}{2}x\right) = 1+\frac{1}{2}x-x = 1-\frac{3}{2}x$$

5. Coefficient of x^n

Use general term: $T_{r+1} = \binom{n}{r} x^r$, or expand and multiply for composite expressions.

Example: Coefficient of x^n in $\frac{(1+x)^2}{(1-x)^2}$.

$$(1+x)^{2}(1-x)^{-2} = (1+2x+x^{2})(1+2x+3x^{2}+\cdots+(n+1)x^{n})$$

Coefficient of x^n : (n+1) + 2n + (n-1) = 4n.

6. Numerical Approximations

Use binomial expansion to approximate roots or powers.

Example: Find $\sqrt{99}$ to three decimal places.

$$\sqrt{99} = (100 - 1)^{1/2} = 10\left(1 - \frac{1}{100}\right)^{1/2} \approx 10\left(1 - \frac{1}{200} - \frac{1}{8000}\right) = 9.950$$

7. Series Identification

Identify series as $(1+x)^n$ by comparing terms to find n and x, then compute the sum.

Example: Sum $1 - \frac{1}{2} \left(\frac{1}{4} \right) + \frac{1 \cdot 3}{2! \cdot 4} \left(\frac{1}{4} \right)^2 - \cdots$.

$$n = -\frac{1}{2}, x = \frac{1}{4} \implies \left(1 + \frac{1}{4}\right)^{-1/2} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}.$$

8. Proofs with Small Differences

For $x \approx 1$ or small differences, use x = 1 + h and neglect higher powers.

Example: Prove $px^p - qx^q \approx (p - q)x^{p+q}$ if $x \approx 1$.

$$x = 1 + h$$
, $px^p - qx^q \approx p(1 + ph) - q(1 + qh) = (p - q)(1 + (p + q)h)$.