Filtrage fréquentiel

pierre-louis.frison@u-pem.fr

$$I(x,y)$$
 image originale

$$F(u,v) = TF[I(x,y)]$$

$$R(x,y)$$
 image filtrée

$$G(u,v) = TF[R(x,y)]$$

H(u,v): filtre

fonction de transfert du filtre

exemples:

Filtre passe-haut idéal

$$H(u,v) = \begin{cases} 0 & si D(u,v) < D_0 \\ 1 & si D(u,v) \ge D_0 \end{cases}$$

Filtre passe-bas idéal

$$H(u,v) = \begin{cases} 1 & si D(u,v) < D_0 \\ 0 & si D(u,v) \ge D_0 \end{cases}$$

Image originale

Spectre d'amplitude

© Photo Bernard Barrière

Image filtrée

filtre «passe-bas »

Filtres de Butterworth:

passe-bas:
$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}}$$

passe-haut:
$$H(u,v) = \frac{1}{1 + (D_0/D(u,v))^{2n}}$$

Filtres gaussiens:

passe-bas:
$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

passe-haut: $H(u,v)=1-e^{-D^2(u,v)/2D_0^2}$

Filtres « rejet de bande »

$$id\acute{e}al: \qquad H(u,v) = \begin{cases} 1 & si \ D(u,v) < D_0 - \frac{W}{2} \\ 0 & si \ D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \\ 1 & si \ D_0 - \frac{W}{2} < D(u,v) \end{cases}$$

Butterworth:
$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)W}{D^2(u,v) - D_0^2}\right]^{2n}}$$

gaussien:
$$H(u,v)=1-e^{-\frac{1}{2}\left[\frac{D^2(u,v)-D_0^2}{D(u,v)W}\right]}$$

Image bruitée

Image du bruit

Spectre d'amplitude

Spectre du bruit

Image bruitée

Spectre filtré

Image originale

Image filtrée

