

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

ПРАКТИЧЕСКАЯ РАБОТА №2

по дисциплине «Теория принятия решений» Метод Электра II

 Студент группы: ИКБО-04-22
 Арефьев А.М (Ф. И.О. студента)

 Преподаватель
 Железняк Л.М. (Ф.И.О. преподавателя)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 МЕТОД ЭЛЕКТРА II	
1.1 Выбор лучшего варианта	
1.2 Веса предпочтений	
1.3 Вывод	19
1.4 Результат работы программы	
ЗАКЛЮЧЕНИЕ	21
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	23
ПРИЛОЖЕНИЯ	24

ВВЕДЕНИЕ

Основу методологии решающих правил основанных на порогах чувствительности составляют методы класса ЭЛЕКТРА, которые были разработана коллективом французских ученых, возглавляемым профессором Б. Руа. В настоящее время разработан ряд методов семейства ЭЛЕКТРА.

ЭЛЕКТРА I позволяет из множества вариантов исключить неэффективные варианты. В основе данного метода лежит попарное сравнение отдельных вариантов.

ЭЛЕКТРА II служит для упорядочения индифферентных классов вариантов.

ЭЛЕКТРА III отличается от метода ЭЛЕКТРА 2 способом задания порогов чувствительности.

В данных подходах принято различать 2 этапа: 1) этап разработки, на котором строятся один или несколько индексов попарного сравнения альтернатив; 2) этап исследования, на котором построенные индексы используются для ранжирования (или классификации) заданного множества альтернатив.

На первом этапе определяется множество решений и для каждого из N критериев определяется вес – число, характеризующее важность соответствующего критерия.

На втором этапе исследуется матрица и граф предпочтений для ранжирования альтернатив.

Увеличивая порог C, можно добиться уменьшения количества и устранения малозначащих связей, а также петель.

1 МЕТОД ЭЛЕКТРА II

1.1 Выбор лучшего варианта

Составлена таблица критериев, по которым оцениваются проекты (Таблица 1).

Таблица 1 – Таблица критериев для оценки альтернатив

Критерии	Вес критерия	Шкала	Код	Стремление
		До 2 млн р.	5	
Цена	4	2-3 млн р.	10	min
		3+ млнр	15	
		Большой	15	
Расход топлива	3	Средний	10	min
		Маленький	5	
		Большая	15	
Надежность	5	Средняя	10	max
		Маленькая	5	
		Большой	15	
Комфорт	5	Средний	10	max
		Маленький	5	
П	2	Есть	10	may.
Полный привод	2	Нету	5	max

Составлена таблица оценок выбора лучшего Автомобиля. Для 10-ти альтернатив заполнена Таблица 2.

Таблица 2 – Таблица оценок по критериям

Tuon	Критерии									
Nº	Варианты решений	Цена	Расход топлива	Надежность	Комфорт	Полный привод				
1	Skoda Kodiaq	10	10	15	15	10				
2	Vw tiguan	10	10	15	10	5				
3	Hyundai	5	5	5	5	5				
1	creta	5	1 🗆	5	10	10				
5	Tank 300 Kia carnival	5 15	15 10	10	10 15	10 5				
6	Toyota rav4	15	10	10	10	10				
7	Kia seltos	5	5	10	10	5				
8	Bmw x3	15	15	15	15	5				
9	Omoda c5	15	10	5	5	5				
10	mitsubishi outlander	10	10	15	10	10				
	Bec	4	3	5	5	2				
(Стремление	min	min	max	max	max				

1.2 Веса предпочтений

Рассмотрим альтернативы 1 и 2

P = 7

N = 0

D = inf

Рассмотрим альтернативы 1 и 3

P = 12

N = 7

D = 1.7142857142857142

Рассмотрим альтернативы 1 и 4

P = 13

N = 4

D = 3.25

```
P = 11
N = 0
D = inf
Рассмотрим альтернативы 1 и 6
P = 14
N = 0
D = inf
Рассмотрим альтернативы 1 и 7
P = 12
N = 7
D = 1.7142857142857142
Рассмотрим альтернативы 1 и 8
P = 9
N = 0
D = inf
Рассмотрим альтернативы 1 и 9
P = 12
N = 0
D = inf
Рассмотрим альтернативы 1 и 10
P = 5
N = 0
D = inf
Рассмотрим альтернативы 2 и 1
P = 0
N = 7
D = 0.0
Рассмотрим альтернативы 2 и 3
P = 10
```

Рассмотрим альтернативы 1 и 5

```
N = 7
D = 1.4285714285714286
Рассмотрим альтернативы 2 и 4
P = 8
N = 6
Рассмотрим альтернативы 2 и 5
P = 9
N = 5
D = 1.8
Рассмотрим альтернативы 2 и 6
P = 9
N = 2
D = 4.5
Рассмотрим альтернативы 2 и 7
P = 5
N = 7
D = 0.7142857142857143
Рассмотрим альтернативы 2 и 8
P = 7
N = 5
D = 1.4
Рассмотрим альтернативы 2 и 9
P = 10
N = 0
D = inf
Рассмотрим альтернативы 2 и 10
P = 0
N = 2
D = 0.0
```

```
P = 7
N = 12
Рассмотрим альтернативы 3 и 2
P = 7
N = 10
D = 0.7
Рассмотрим альтернативы 3 и 4
P = 3
N = 7
D = 0.42857142857142855
Рассмотрим альтернативы 3 и 5
P = 7
N = 10
D = 0.7
Рассмотрим альтернативы 3 и 6
P = 7
N = 12
Рассмотрим альтернативы 3 и 7
P = 0
N = 10
D = 0.0
Рассмотрим альтернативы 3 и 8
P = 7
N = 10
D = 0.7
Рассмотрим альтернативы 3 и 9
P = 7
```

Рассмотрим альтернативы 3 и 1

```
N = 0
D = inf
Рассмотрим альтернативы 3 и 10
P = 7
N = 12
Рассмотрим альтернативы 4 и 1
P = 4
N = 13
D = 0.3076923076923077
Рассмотрим альтернативы 4 и 2
P = 6
N = 8
D = 0.75
Рассмотрим альтернативы 4 и 3
P = 7
N = 3
Рассмотрим альтернативы 4 и 5
P = 6
N = 13
D = 0.46153846153
Рассмотрим альтернативы 4 и 6
P = 4
N = 8
D = 0.5
Рассмотрим альтернативы 4 и 7
P = 2
N = 8
```

D = 0.25

```
P = 6
N = 10
D = 0.6
Рассмотрим альтернативы 4 и 9
P = 11
N = 3
D = 3.6666666666665
Рассмотрим альтернативы 4 и 10
P = 4
N = 8
D = 0.5
Рассмотрим альтернативы 5 и 1
P = 0
N = 11
D = 0.0
Рассмотрим альтернативы 5 и 2
P = 5
N = 9
D = 0.55555555555556
Рассмотрим альтернативы 5 и 3
P = 10
N = 7
D = 1.4285714285714286
Рассмотрим альтернативы 5 и 4
P = 13
N = 6
D = 2.16666666666665
Рассмотрим альтернативы 5 и 6
P = 5
```

Рассмотрим альтернативы 4 и 8

```
N = 2
D = 2.5
Рассмотрим альтернативы 5 и 7
P = 5
N = 7
D = 0.7142857142857143
Рассмотрим альтернативы 5 и 8
P = 3
N = 5
D = 0.6
Рассмотрим альтернативы 5 и 9
P = 10
N = 4
D = 2.5
Рассмотрим альтернативы 5 и 10
P = 5
N = 11
D = 0.45454545454545453
Рассмотрим альтернативы 6 и 1
P = 0
N = 14
D = 0.0
Рассмотрим альтернативы 6 и 2
P = 2
N = 9
D = 0.2222222222222
Рассмотрим альтернативы 6 и 3
P = 12
N = 7
```

D = 1.7142857142857142

```
P = 8
N = 4
D = 2.0
Рассмотрим альтернативы 6 и 5
P = 2
N = 5
D = 0.4
Рассмотрим альтернативы 6 и 7
P = 2
N = 7
D = 0.2857142857142857
Рассмотрим альтернативы 6 и 8
P = 5
N = 10
D = 0.5
Рассмотрим альтернативы 6 и 9
P = 12
N = 4
D = 3.0
Рассмотрим альтернативы 6 и 10
P = 0
N = 9
D = 0.0
Рассмотрим альтернативы 7 и 1
P = 7
N = 12
Рассмотрим альтернативы 7 и 2
P = 7
```

Рассмотрим альтернативы 6 и 4

```
N = 5
D = 1.4
Рассмотрим альтернативы 7 и 3
P = 10
N = 0
D = inf
Рассмотрим альтернативы 7 и 4
P = 8
N = 2
D = 4.0
Рассмотрим альтернативы 7 и 5
P = 7
N = 5
D = 1.4
Рассмотрим альтернативы 7 и 6
P = 7
N = 2
D = 3.5
Рассмотрим альтернативы 7 и 8
P = 7
N = 10
D = 0.7
Рассмотрим альтернативы 7 и 9
P = 17
N = 0
D = inf
Рассмотрим альтернативы 7 и 10
P = 7
N = 7
D = 1.0
```

```
P = 0
N = 9
D = 0.0
Рассмотрим альтернативы 8 и 2
P = 5
N = 7
D = 0.7142857142857143
Рассмотрим альтернативы 8 и 3
P = 10
N = 7
D = 1.4285714285714286
Рассмотрим альтернативы 8 и 4
P = 10
N = 6
Рассмотрим альтернативы 8 и 5
P = 5
N = 3
D = 1.666666666666667
Рассмотрим альтернативы 8 и 6
P = 10
N = 5
D = 2.0
Рассмотрим альтернативы 8 и 7
P = 10
N = 7
D = 1.4285714285714286
Рассмотрим альтернативы 8 и 9
P = 10
```

Рассмотрим альтернативы 8 и 1

```
N = 7
D = 1.4285714285714286
Рассмотрим альтернативы 8 и 10
P = 5
N = 9
D = 0.55555555555556
Рассмотрим альтернативы 9 и 1
P = 0
N = 12
D = 0.0
Рассмотрим альтернативы 9 и 2
P = 0
N = 10
D = 0.0
Рассмотрим альтернативы 9 и 3
P = 0
N = 7
D = 0.0
Рассмотрим альтернативы 9 и 4
P = 3
N = 11
D = 0.2727272727272727
Рассмотрим альтернативы 9 и 5
P = 4
N = 10
D = 0.4
Рассмотрим альтернативы 9 и 6
P = 4
N = 12
```

```
P = 0
N = 17
D = 0.0
Рассмотрим альтернативы 9 и 8
P = 7
N = 10
D = 0.7
Рассмотрим альтернативы 9 и 10
P = 0
N = 12
D = 0.0
Рассмотрим альтернативы 10 и 1
P = 0
N = 5
D = 0.0
Рассмотрим альтернативы 10 и 2
P = 2
N = 0
D = \inf
Рассмотрим альтернативы 10 и 3
P = 12
N = 7
D = 1.7142857142857142
Рассмотрим альтернативы 10 и 4
P = 8
N = 4
D = 2.0
Рассмотрим альтернативы 10 и 5
P = 11
```

Рассмотрим альтернативы 9 и 7

$$N = 5$$

$$D = 2.2$$

Рассмотрим альтернативы 10 и 6

P = 9

N = 0

D = inf

Рассмотрим альтернативы 10 и 7

P = 7

N = 7

D = 1.0

Рассмотрим альтернативы 10 и 8

P = 9

N = 5

D = 1.8

Рассмотрим альтернативы 10 и 9

P = 12

N = 0

D = inf

Матрица предпочтений:

Составлена матрица предпочтений с внесенными и принятыми значениями D (Таблица 3).

Таблица 3 – Полная матрица предпочтений альтернатив.

	1	2	3	4	5	6	7	8	9	10
1	X	inf	12	13	inf	inf	12	inf	inf	inf
2	-	X	10	8	9	9	-	7	inf	-
3	-	-	X	-	-	_	-	-	inf	-
4	-	-	7	X	-	-	-	-	11	-
5	-	-	10	13	X	5	-	-	10	-
6	-	-	12	8	0	X	-	-	12	-
7	-	7	inf	8	9	9	X	-	inf	7
8	-	-	10	10	5	10	10	X	10	-
9	-	-	-	-	-	-	-	-	X	_
10	-	inf	12	8	11	inf	7	9	inf	X

По матрице построен граф предпочтений (Рисунок 1).

Рисунок 1 – Вид графа предпочтений

Назначен порог отбора предпочтений C = 10 (это соответствует тому, что учитываются только более сильные связи в графе).

Таким образом, матрица разрежается. В ней остаются только самые сильные связи (Таблица 4).

Таблица 4 – Матрица предпочтений проектов, при пороге C=10

orally : 112ampular recent mental reportation, repair report of 10										
	1	2	3	4	5	6	7	8	9	10
1	X	inf	12	13	inf	inf	12	inf	inf	inf
2	-	X	-	-	-	-	-	-	Inf	-
3	-	-	X	-	-	-	-	-	inf	-
4	-	-	-	X	-	-	-	-	11	-
5	-	-	-	13	X	-	-	-	-	-
6	-	-	12	-	-	X	-	-	12	-
7	-	-	inf	-	-	-	X	-	inf	-
8	-	-	-	-	-	-	-	X	-	-
9	-	_	-	-	_	-	-	_	X	_
10	-	inf	12	_	11	inf	_	-	inf	X

По этой матрице построен граф предпочтений (Рисунок 2).

Рисунок 2 – Вид графа предпочтений для случая порога принятия решений С = 10

1.3 Вывод

Решение говорит нам о том, что лучший проект 1, а худший 9. Промежуточные можно даже не рассматривать.

1.4 Результат работы программы

‡	123 \$	123 \$	123 H \$	<u>123</u> Ta ‡	<u>123</u> Kia ‡	123 \$	123 ‡	123 \$	123 \$	123 \$
Skoda Kodiag	0.0	inf	12.0	13.0	inf	···	12.0	inf	inf	inf
Vw tiguan	-1.0	0.0	10.0	8.0	9.0	9.0	-1.0	7.0	inf	-1.0
Hyundai creta	-1.0	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	-1.0	inf	-1.0
Tank 300	-1.0	-1.0	7.0	0.0	-1.0	-1.0	-1.0	-1.0	11.0	-1.0
Kia carnival	-1.0	-1.0	10.0	13.0	0.0	5.0	-1.0	-1.0	10.0	-1.0
Toyota rav4	-1.0	-1.0	12.0	8.0	-1.0	0.0	-1.0	-1.0	12.0	-1.0
Kia seltos	-1.0	7.0	inf	8.0	7.0	7.0	0.0	-1.0	inf	7.0
Bmw x3	-1.0	-1.0	10.0	10.0	5.0	10.0	10.0	0.0	10.0	-1.0
Omoda c5	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	0.0	-1.0
Mitsubishi outlander	-1.0	inf	12.0	8.0	11.0	inf	7.0	9.0	inf	0.0

Рисунок 3 – Результат работы программы. Вывод матрицы предпочтений.

Skoda Kodiaq	NaN	12.0	inf	13.0	inf	inf	12.0	inf	inf	inf
Vw tiguan	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	inf	NaN
Hyundai creta	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	inf	NaN
Tank 300	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	11.0	NaN
Kia carnival	NaN	NaN	NaN	13.0	NaN	NaN	NaN	NaN	NaN	NaN
Toyota rav4	NaN	12.0	NaN	NaN	NaN	NaN	NaN	NaN	12.0	NaN
Kia seltos	NaN	inf	NaN	NaN	NaN	NaN	NaN	NaN	inf	NaN
Bmw x3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Omoda c5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Mitsubishi outlander	NaN	12.0	inf	NaN	11.0	inf	NaN	NaN	inf	NaN

Рисунок 4 – Результат работы программы. Вывод матрицы после ограничения

ЗАКЛЮЧЕНИЕ

Был выбран оптимальный автомобиль, при помощи более лучшего метода Электра.

Плюсы метода Электра II:

- 1. **Простота и понятность:** Метод Электра II является относительно простым в понимании и применении. Он не требует сложных математических выкладок и легко интерпретируется.
- 2. **Учет предпочтений:** Электра II позволяет учитывать предпочтения принимающего решение, что делает его более гибким и адаптивным к различным ситуациям.
- 3. **Способность работы с нечеткой информацией:** Метод Электра II позволяет работать с нечеткой, неполной или неопределенной информацией, что может быть важным при принятии решений в реальных условиях, когда данные не полностью известны или недостаточны.
- 4. **Возможность использования различных типов критериев:** Метод Электра II может применяться с критериями различных типов: количественными, качественными, дискретными или непрерывными.

Минусы метода Электра II:

- 1. **Отсутствие учета важности критериев:** В методе Электра II критерии рассматриваются как равнозначные, что может быть недостаточным для отражения реальной важности каждого критерия в процессе принятия решений.
- 2. **Сложность определения весов критериев:** При использовании метода Электра II может возникнуть сложность определения весов (значимости) критериев, что может привести к субъективным оценкам и искажению результатов.
- 3. **Чувствительность к выбору пороговых значений:** Результаты метода Электра II могут сильно зависеть от выбора пороговых значений, что требует тщательного подбора этих значений для получения достоверных

результатов.

4. **Недостаточная устойчивость к изменениям:** Метод Электра II может быть недостаточно устойчивым к изменениям входных данных или предпочтений принимающего решение, что может привести к нестабильности результатов.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Болотова Л. С. Многокритериальная оптимизация. Болотова Л. С., Сорокин А. Б. [Электронный ресурс] / Метод. указания по вып. курсовой работы М.: МИРЭА, 2015.
- 2. Сорокин А. Б. Методы оптимизации: гибридные генетические алгоритмы. Сорокин А. Б. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2016.
- 3. Сорокин А. Б. Линейное программирование: практикум. Сорокин А. Б., Бражникова Е. В., Платонова О. В. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2017.

приложения

Приложение A – Код реализации метода Электра II на языке Python.

Приложение А

Код реализации метода Электра II на языке Python.

Листинг А.1. Реализация метода Электра II.

```
import numpy as np
import pandas as pd
crits = {
     "Цена": {"weight": 4, "direction": "min"},
     "Расход топлива": {"weight": 3, "direction": "min"},
     "Надежность": {"weight": 5, "direction": "max"},
     "Комфорт": {"weight": 5, "direction": "max"},
"Полный привод": {"weight": 2, "direction": "max"}
}
alternatives = {
     "Skoda Kodiaq": [10, 10, 15, 15, 10],
    "Vw tiguan": [10, 10, 15, 10, 5],
"Hyundai creta": [5, 5, 5, 5, 5],
"Tank 300": [5, 15, 5, 10, 10],
"Kia carnival": [15, 10, 10, 15, 5],
"Toyota rav4": [15, 10, 10, 10, 10],
"Kia seltos": [5, 5, 10, 10, 5],
     "Bmw x3": [15, 15, 15, 15, 5],
     "Omoda c5": [10, 10, 5, 5, 5],
"Mitsubishi outlander": [10, 10, 15, 10, 10]
preference_matrix = pd.DataFrame(np.zeros((len(alternatives),
len(alternatives))),
                                        index=alternatives.keys(),
columns=alternatives.keys())
def calculate_P_N_D(alt1, alt2, crits):
     P, N = 0, 0
     for i, crit in enumerate(criteria):
          weight = crits[crit]["weight"]
         direction = crits[crit]["direction"]
          a1, a2 = alt1[i], alt2[i]
          if a1 != a2:
               if (direction == "max" and a1 > a2) or (direction == "min" and a1 <
a2):
                   P += weight
               else:
                   N += weight
     D = P / N \text{ if } N != 0 \text{ else np.inf}
     return P, N, D
for i, alt1 in enumerate(alternatives.keys(), start=1):
     for j, alt2 in enumerate(alternatives.keys(), start=1):
          if alt1 != alt2:
              P, N, D = calculate_P_N_D(np.array(alternatives[alt1]),
np.array(alternatives[alt2]), criteria)
              value_to_input = None
               if D>=1 and D != np.inf:
                   value_to_input = P
               elif D == np.inf:
                    value_to_input = np.inf
               else:
                    value_to_input = -1
```

```
preference_matrix.at[alt1, alt2] = value_to_input

preference_matrix

preference_matrix = preference_matrix.applymap(lambda x: np.nan if isinstance(x, (int, float)) and x <= 10 else x)
preference_matrix</pre>
```