Homework 1

Group 56

 $March\ 23,\ 2025$

1 Introduction

System 1

In these calculations, we have:

$$K = 3$$
,

 $\mu_t = 0.416666667$, (service rate per server in System 1),

 $\lambda_A = 1$, (arrival rate in System 1),

 $p_c = 0.75$, (fraction transitioning to System 2),

B = 6, (capacity parameter in System 2),

 $\mu_b = 0.15625$, (service rate in System 2),

 $\lambda_C = \lambda_A \cdot p_c = 1 \times 0.75 = 0.75.$

2 Queueing System 1 (M/M/K)

2.1 Traffic Intensity

Traffic intensity, denoted ρ_1 , is:

$$\rho_1 = \frac{\lambda_A}{K \, \mu_t}.$$

With $\lambda_A = 1$, K = 3, $\mu_t = 0.416666667$:

$$\rho_1 = \frac{1}{3 \times 0.416666667} \approx 0.8.$$

2.2 Expected Number of Patients in the System

$$L = \frac{\rho_1 \ K \rho_1}{(1 - \rho_1) \ K!} \ P_0.$$

 $L = 1.6 \times 0.04975 \approx 0.0796.$

3 Queueing System 2 (M/M/B/B)

3.1 Traffic Intensity

For an **M/M/B/B** system, the traffic intensity is:

$$E = \frac{\lambda_C}{\mu_b}.$$

Substituting values:

$$E = \frac{0.75}{0.15625} = 4.8.$$

3.2 Blocking Probability

The blocking probability is given by Erlang's Loss Formula:

$$P_c = \frac{E^B / B!}{\sum_{n=0}^{B} E^n / n!}.$$

Substituting values:

$$P_c = \frac{(4.8)^6/6!}{\sum_{n=0}^6 (4.8)^n/n!}.$$

$$= \frac{110.592/720}{1+4.8+\frac{4.8^2}{2!}+\frac{4.8^3}{3!}+\frac{4.8^4}{4!}+\frac{4.8^5}{5!}+\frac{4.8^6}{6!}}$$

$$= \frac{0.15333}{95.083} \approx 0.177.$$

3.3 Expected Number of Busy Servers

$$L_s = B \cdot (1 - P_c).$$

Substituting values:

$$L_s = 6 \times (1 - 0.177).$$

$$L_s = 6 \times 0.823.$$

$$L_s \approx 4.939.$$

3.4 Expected Number of Patients in the System

Since this is an M/M/B/B loss system, the expected number of patients in the system is the same as the expected number of busy servers:

$$L = L_s \approx 4.939.$$

3.5 Average Number of Patients Treated at Home

AverageHome =
$$\lambda_A \times 0.25 + \lambda_C \times P_c$$
.

Substituting values:

Average
Home =
$$(1 \times 0.25) + (0.75 \times 0.177)$$
.
= $0.25 + 0.133$.
 ≈ 0.383 .

Thus, on average, 0.383 patients per hour are treated at home due to either the initial decision to stay home or the hospital reaching full capacity.