Harmony in Complexity: Unveiling Mathematical Unity Across Logistic Regression, Artificial Neural Networks and Computer Vision

Liliang Chen

Freddie Mac

chenliliang@gmail.com

Agenda

- Basics of Logistic Regression
- Understand $w^T x$ from the Sum of Vectors
- Geometric Interpretation of a Logistic Regression
- Goal of an Activation Function
- Logistic Regression vs. Neural Network: One-Layer, Two Layer, Hidden Layer
- Back-propagation of Error vs. Forward Activation
- Application of Convolutional Neural Network (CNN) in Computer Vision
- CNN vs. Neural Network
- CNN's Back-propagation

Basics of Logistic Regression

Binary Classification: $y \in \{0, 1\}$

Predict the probability of being in a particular class: $P(y = 1 \mid x; w)$

Could fit a linear model: $f(x, w) = w^T x$

Use the sigmoid function to force the output to lie in [0,1] range:

$$f(x, w) = Activation(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

Understand $w^T x$ from Geometry (the Sum of Vectors)

$$\vec{w} = \vec{A} + \vec{B} = w_1 \vec{x_1} + w_2 \vec{x_2} = w \vec{X}$$

$$\vec{w} = \langle w_1, w_2 \rangle$$

$$||w|| = \sqrt{w_1^2 + w_2^2}$$

 W_1

$$\vec{C} = \vec{A} + \vec{B} = w_1 \vec{x_1} + w_2 \vec{x_2} = w_c \vec{x_c}$$

$$\vec{w} = \vec{C} + \vec{D} = w_c \vec{x_c} + w_3 \vec{x_3} = w_1 \vec{x_1} + w_2 \vec{x_2} + w_3 \vec{x_3} = w \vec{X}$$

$$\vec{w} = \langle w_1, w_2, w_3 \rangle$$

$$||w|| = \sqrt{w_1^2 + w_2^2 + w_3^2}$$

 χ_1

We can think of $\mathbf{w}^T\mathbf{x}$ as tranforming from multiple independent vectors into a single vector with a deterministic direction and magnitude

Understanding the linear model shape $w^T x = 0$ from geometry

 $w^TX=0$ defines a line in a two-dimension space vs a hyper-plane in a three-dimension space. The unit vector normal to the line/plane has the same direction as the sum of vectors based on individual vectors.

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

The unit vector normal to this line is $\frac{\langle w_1, w_2 \rangle}{\|w\|}$

$$w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 = 0$$

The unit vector normal to this plane is

$$\frac{\langle w_1, w_2, w_3 \rangle}{\|w\|}$$

Geometric Interpretation of a Logistic Regression

Decision Boundary as a line in 2D

Decision Boundary as a hyperplane in 3D

Logistic regression seeks the decision boundary to perfect linear separate positive and negative points; Classification depends on comparing relative distance from the origin to the data points vs. the decision boundary.

 $w \cdot \vec{X} = c$ (the point lies on the decision boundary)

 $w \cdot \vec{X} > c$ (positive classification)

 $w \cdot \vec{X} < c$ (negative classification)

Goal of an Activation Function

Activation function translates a line into a nonlinear decision boundary in a 2D space; Logistic regression normally choose sigmoid function as its activation function:

$$Activation(z) = \frac{1}{1 + e^{-z}}$$

Decision Boundary in a Hyper-dimension Space

Activation function translates a hyperplane into a complex decision boundary in a higher dimension space

^{*}Source: Deep Learning: Feed Forward Neural Networks (FFNNS) ---- Medium

Understand logistic Regression from a One-layer Neural Network

One-layer neural network can be formulated as

$$F(x) = Activation(w_0 + w_1x_1 + w_2x_2 + \dots + w_nx_n)$$

Rewrite using vectorized form, we get

$$F(x) = Activation(w^T X)$$

which has the same mathematical formula as a logistic regression.

Logistic regression uses below sigmoid activation function:

$$Activation(z) = \frac{1}{1 + e^{-z}}$$

while a neural network can have more activation function variation.

A logistic regression can be thought of a special case of one-layer neural network.

Two-layer Neural Networks

Input

Hidden Layer

Output

$$\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} w_{11}x_1 + w_{21}x_2 \\ w_{12}x_1 + w_{22}x_2 \\ w_{13}x_1 + w_{23}x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

 $Y = Activation(w_x^T X)$

 $Z = Activation(w_{y}^{T}Y)$

Adding a layer will add the complexity of the networks, but the general forward activation form is the same

The Necessity of One Hidden Layer

A hidden layer is needed since the decision boundaries could be nonlinear; We use the combination of different decision boundaries to construct the final decision boundary; Different decision boundaries require us to adopt hidden layers with different feature space.

Two Hidden-layer Neural Networks

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \quad w_x^T = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1n} \\ w_{21} & w_{22} & \dots & w_{2n} \\ \dots & \dots & \dots & \dots \\ w_{m1} & w_{m2} & \dots & w_{mn} \end{bmatrix} \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

 $Y = Activation(w_x^T X)$

 $Z = Activation(w_y^T Y)$

 $H = Activation(w_z^T T)$

With more hidden layers, we have more freedom to transform between different spaces.

Compare Similarity of back-propagation of error with the Forward Activation

Input Hidden Laver The error of each neuron is proportional to its weight:

$$E(x_1) = \frac{w_{11}}{w_{11} + w_{21}} E(y_1) + \frac{w_{12}}{w_{12} + w_{22}} E(y_2) + \frac{w_{13}}{w_{13} + w_{23}} E(y_3)$$

$$E(x_2) = \frac{w_{21}}{w_{11} + w_{21}} E(y_1) + \frac{w_{22}}{w_{12} + w_{22}} E(y_2) + \frac{w_{23}}{w_{13} + w_{23}} E(y_3)$$

$$\longrightarrow \begin{bmatrix} E(x_1) \\ E(x_2) \end{bmatrix} = \begin{bmatrix} \frac{w_{11}}{w_{11} + w_{21}} & \frac{w_{12}}{w_{12} + w_{22}} & \frac{w_{13}}{w_{13} + w_{23}} \\ \frac{w_{21}}{w_{11} + w_{21}} & \frac{w_{22}}{w_{12} + w_{22}} & \frac{w_{23}}{w_{13} + w_{23}} \end{bmatrix} \begin{bmatrix} E(y_1) \\ E(y_2) \\ E(y_3) \end{bmatrix}$$

Normalize above equation to simplify it as:

$$\begin{bmatrix} E(x_1) \\ E(x_2) \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix} \begin{bmatrix} E(y_1) \\ E(y_2) \\ E(y_3) \end{bmatrix}$$

Forward activation has same multiplier

Below is a general equation of the back-propagation algorithm

$$Y = w^T X \longrightarrow E_n = w^T E_{n+1}$$

Adjust weight based on

$$w_i^n = w_i^n - \alpha \frac{\partial E_n}{\partial w_i^n}$$

Application of Convolutional Neural Network (CNN) in Computer Vision

- Convolutional Neural Networks (CNN) are a type of neural network
- widely used in images recognition, images classifications, and objects detections
- Computer reads images as pixels and expresses them as matrix
- Three basic components: Convolution layer, Flatten layer, Fully connected layer
- Filter (Kernel) is worked as the weight

=

Input Image

Filter

Feature Map

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9
\end{array}$$

$$\begin{array}{c|c} w_1 & w_2 \\ \hline w_3 & w_4 \\ \hline \end{array}$$

The forward pass of the convolutional layer

$$y_1 = w_1 x_1 + w_2 x_2 + w_3 x_4 + w_4 x_5$$

=

Input Image

Kernel

Feature Map

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9
\end{array}$$

$$\begin{array}{c|c} w_1 & w_2 \\ \hline w_3 & w_4 \\ \end{array}$$

$$\begin{array}{c|c} \mathbf{y}_1 & \mathbf{y}_2 \\ \hline \mathbf{y}_3 & \mathbf{y}_4 \end{array}$$

The forward pass of the convolutional layer

$$y_2 = w_1 x_2 + w_2 x_3 + w_3 x_5 + w_4 x_6$$

=

Input Image

Kernel

Feature Map

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \\ \hline \end{array}$$

$$\begin{array}{c|c} w_1 & w_2 \\ \hline w_3 & w_4 \\ \hline \end{array}$$

The forward pass of the convolutional layer

$$y_3 = w_1 x_4 + w_2 x_5 + w_3 x_7 + w_4 x_8$$

=

Input Image

 $\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9
\end{array}$

Kernel

Feature Map

$$\begin{array}{c|c} w_1 & w_2 \\ \hline w_3 & w_4 \end{array}$$

$$\begin{array}{c|c} \mathbf{y}_1 & \mathbf{y}_2 \\ \mathbf{y}_3 & \mathbf{y}_4 \end{array}$$

The forward pass of the convolutional layer

*

$$y_4 = w_1 x_5 + w_2 x_6 + w_3 x_8 + w_4 x_9$$

If we generalize the forward pass:

$$Y = conv(w * X)$$

Convolutional Multiply

Comparison of Neural Networks vs Convolutional Neural Networks

y_1	y_2	y_3	y_4
		<i>V O</i>	7 T

x_1	w_{11}	<i>w</i> ₁₂	w_{13}	w_{14}
x_2	w_{21}	w_{22}	w_{23}	w_{24}
x_3	w_{31}	w_{32}	w_{33}	w_{34}
x_4	w_{41}	<i>w</i> ₄₂	<i>w</i> ₄₃	W_{44}
x_5	<i>w</i> ₅₁	w ₅₂	w ₅₃	<i>w</i> ₅₄
x_6	<i>w</i> ₆₁	w ₆₂	<i>w</i> ₆₃	<i>w</i> ₆₄
x_7	w ₇₁	w ₇₂	w ₇₃	w_{74}
x_8	W ₈₁	w ₈₂	w ₈₃	W ₈₄
χ_9	W ₉₁	w ₉₂	W ₉₃	W ₉₄

47	2.7	4.7	
y_1	${\mathcal Y}_2$	y_3	y_4

			4
w_1			
w_2	w_1		
0	w_2		
W_3	0	w_1	
W_4	w_3	w_2	w_1
	W_4	0	W_2
		w_3	0
		W_4	w_3
			W_4

 x_8

 $Y = Activation(w^T X)$

$$Y = conv(w * X)$$

- Difficult to understand
- Can be visually understandable
- More weight parameter •
- Fewer weight due to weight sharing
- Global impact from input •
- Localized impact from input

Convolutional Neural Network Back-propagation

Input Image

Kernel

Feature Map

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \\ \hline \end{array}$$

$$\begin{array}{c|c} w_1 & w_2 \\ \hline w_3 & w_4 \\ \end{array}$$

=

$$\begin{array}{c|c} \mathbf{y}_1 & \mathbf{y}_2 \\ \hline \mathbf{y}_3 & \mathbf{y}_4 \end{array}$$

Weight adjustment is:

$$w_i^n = w_i^{n-1} - \alpha \frac{\partial L}{\partial w_i}$$

The loss gradient based on the chain rule

$$\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial w_i} = \frac{\partial L}{\partial y_1} \frac{\partial y_1}{\partial w_i} + \frac{\partial L}{\partial y_2} \frac{\partial y_2}{\partial w_i} + \frac{\partial L}{\partial y_3} \frac{\partial y_3}{\partial w_i} + \frac{\partial L}{\partial y_4} \frac{\partial y_4}{\partial w_i}$$

Convolutional Neural Network Back-propagation

Convolutional function of forward pass

$$y_1 = w_1 x_1 + w_2 x_2 + w_3 x_4 + w_4 x_5$$

$$y_2 = w_1 x_2 + w_2 x_3 + w_3 x_5 + w_4 x_6$$

$$y_3 = w_1 x_4 + w_2 x_5 + w_3 x_7 + w_4 x_8$$

$$y_4 = w_1 x_5 + w_2 x_6 + w_3 x_8 + w_4 x_9$$

Loss gradient w.r.t the filter

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y_1} x_1 + \frac{\partial L}{\partial y_2} x_2 + \frac{\partial L}{\partial y_3} x_4 + \frac{\partial L}{\partial y_4} x_5$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y_1} x_1 + \frac{\partial L}{\partial y_2} x_3 + \frac{\partial L}{\partial y_3} x_5 + \frac{\partial L}{\partial y_4} x_6$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y_1} x_4 + \frac{\partial L}{\partial y_2} x_5 + \frac{\partial L}{\partial y_3} x_7 + \frac{\partial L}{\partial y_4} x_8$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y_1} x_5 + \frac{\partial L}{\partial y_2} x_6 + \frac{\partial L}{\partial y_3} x_8 + \frac{\partial L}{\partial y_4} x_9$$

Local gradient w.r.t the filter

$\frac{\partial y_1}{\partial w_1} = x_1$	$\frac{\partial y_1}{\partial w_2} = x_2$	$\frac{\partial y_1}{\partial w_3} = x_4$	$\frac{\partial y_1}{\partial w_4} = x_5$
$\frac{\partial y_2}{\partial w_1} = x_2$	$\frac{\partial y_2}{\partial w_2} = x_3$	$\frac{\partial y_2}{\partial w_3} = x_5$	$\frac{\partial y_2}{\partial w_4} = x_6$
$\frac{\partial y_3}{\partial w_1} = x_4$	$\frac{\partial y_3}{\partial w_2} = x_5$	$\frac{\partial y_3}{\partial w_3} = x_7$	$\frac{\partial y_3}{\partial w_4} = x_8$
$\frac{\partial y_4}{\partial w_1} = x_5$	$\frac{\partial y_4}{\partial w_2} = x_6$	$\frac{\partial y_4}{\partial w_3} = x_8$	$\frac{\partial y_4}{\partial w_4} = x_9$

Rewrite using convolutional operator

$$\frac{\partial L}{\partial w} = \text{Conv}\left(\frac{\partial L}{\partial Y} * X\right)$$

Conclusion

	Similarity		
Logistic regression vs. Neural Network	Logistic Regression $F(x, w) = Activation(w^{T}x)$ $= \frac{1}{1 + e^{-w^{T}x}}$	Neural Network $F(x) = Activation(w^T x)$	
Neural Network back- propagation vs. forward activation	back-propagation $E_{n-1} = w^T E_n$	forward activation $Y = w^T X$	
Neural Network vs. CNN	Neural Network $F(x) = Activation(w^T X)$	CNN forward activation $Y = conv(w * X)$	
CNN back-propagation vs. forward activation	CNN back -propagation $\frac{\partial L}{\partial w} = \text{Conv}\left(\frac{\partial L}{\partial Y} * X\right)$	CNN forward activation $Y = conv(w * X)$	

