

IIC2223 — Teoría de autómatas y lenguajes formales — 2'2020

CONTROL 1

Indicaciones

- La duración del control es 1 hora y 30 minutos.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital de cada pregunta por el buzón del curso, antes de las 23:59 horas del día del control.
- Debe preocuparse que la copia digital y su calidad sea legible. En caso de hacerla con papel y lápiz, se recomienda usar hojas blancas y un lápiz oscuro que sea visible en la versión digital. En caso de no ser legible, no podrá ser evaluada su solución.
- En caso de hacer el control fuera del horario, se recomienda tomar el tiempo (1 hora y 30 minutos) y entregarlo justo después de concluido el tiempo.
- Durante la evaluación puede hacer uso de sus apuntes o slides del curso.
- Esta es una evaluación estrictamente individual y, por lo tanto, no puede compartir información con sus compañeros o usar material fuera de sus apuntes o slides del curso. En caso de hacerlo, el control no reflejará su progreso en el curso, viéndose perjudicada su formación personal y profesional.
- Al comienzo de cada pregunta debe escribir la siguiente oración y firmarla:

"Doy mi palabra que la siguiente solución de la pregunta X fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad."

En caso de no escribir la oración o no firmarla, su solución no será evaluada.

Pregunta 1

Una autómata finito no-determinista (NFA) $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se dice no-ambiguo, si para toda palabra $w \in \mathcal{L}(\mathcal{A})$ existe exactamente un ejecución de aceptación de \mathcal{A} sobre w. Por ejemplo, un autómata finito determinista es un NFA no-ambiguo, pero existen autómatas que no son deterministas, pero si no-ambiguos.

- 1. [3 puntos] Para $i \geq 0$, considere el lenguaje L_i de todas las palabras $w = a_1 \dots a_n$ sobre $\{a,b\}$ con $n \geq i$ tal que $a_{n-i} = b$. Demuestre que para cada L_i existe un NFA no-ambiguo \mathcal{A} con menos de i+2 estados.
- 2. Demuestre que para todo lenguaje regular L con $\epsilon \notin L$, existe un NFA no-ambiguo $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ tal que |I| = 1, |F| = 1 y $L = \mathcal{L}(\mathcal{A})$.
 - [1 punto] por la construcción de \mathcal{A} y demostrar que \mathcal{A} es correcto y [2 puntos] por demostrar que \mathcal{A} es no-ambiguo.

Pregunta 2

Sea Σ un alfabeto finito y sea R una expresión regular sobre Σ . Se define el operador:

$$R^{\downarrow\downarrow}$$

tal que $w \in \mathcal{L}(R^{\parallel})$ si, y solo si, existe una palabra $w' \in \mathcal{L}(R)$ que se puede descomponer como $w' = u_1v_1u_2v_2\dots u_kv_k$ para algún $k \geq 1$ y con $u_i, v_i \in \Sigma^*$, y tal que $w = u_1u_2\dots u_k$.

Demuestre que para toda expresión regular R, el resultado de $R^{\downarrow\downarrow}$ define un lenguaje regular.

 $[4~{\rm puntos}]$ por la construcción de $R^{\downarrow\downarrow}$ y $[2~{\rm puntos}]$ por demostrar que es correcto.