Evolução Darwinana e os **Algortimos Genéticos**

Prof. Dr. Gustavo Luís Soares

Fevereiro 2013

Computação Evolucionária

Os Algoritmos Genéticos, uma espécie de "ramo" da área "Vida Artificial, tem como ideias estruturais a evolução Darwinana, sem levar em conta as origens ou evolução.

Evolução Biológica

Algumas refêrencias ...

- Charles Darwin 'On the Origin of Species'
- John Maynard Smith 'The Theory of Evolution'
- Richard Dawkins 'The Selfish Gene'
- Mark Ridley 'Evolution'

Fevereiro 2013

Fevereiro 2013

Computação Evolucionária

Evolução

O contexto da evolução é uma população (de organismos, objetos, agentes ...) que sobrevivem por um tempo limitado (geralmente) e depois morrem. Para ter sucesso gerações, os "mais aptos" tendem a produzir mais decendentes.

Ao final de muitas gerações, a população é composta por indivíduos que estão mais adaptados às condições do ambiente de sobrevivência.

Computação Evolucionária

Fevereiro 2013 Computação Evolucionária

Requisitos Evolutivos

- ✓ Herança os decendentes contêm características dos pais.
- ✓ Variabilidade possibilitar mudança de característica.
- ✓ Seleção filtrar, de forma probabilística, os mais aptos para contribuir com a nova geração.

Fevereiro 2013

Computação Evolucionária

5

Fevereiro 2013

Computação Evolucionária

neo-darwinismo = Darwin + Mendel + alguma matemática

Neo-Darwinismo

Darwin inventou a teoria da evolução, sem qualquer noção moderna da genética (por exemplo, Mendel)

Discussão

- Variabilidade é geralmente aleatória e sem direção.
- Seleção é geralmente não aleatória e dirigida.
- Na evolução natural a "direção" da Seleção não implica em diretor consciente.
- Na evolução artificial, muitas vezes você é o diretor!

Analogia entre sistemas naturais e artificiais

Genética Natural	Genética Artificial
gene	caractere
alelo	valor do caractere
cromossomo	cadeia de caracteres
locus	posição do gene na cadeia de caracteres
genótipo	estrutura, indivíduo
fenótipo	conjunto de parâmetros, ponto solução, estrutura decodificada
epistasia	não linearidade

Computação Evolucionária

Fevereiro 2013

Computação Evolucionária

Fevereiro 2013

Pag. 2 de 7

Algoritmo Genético

Fevereiro 2013 Computação Evolucionária

Fevereiro 2013

Recombinação

Tipicamente, 2 pais recombinam para produzir 02 descendentes

Pais descendentes

Cruzamento 01 ponto de corte

Cruzamento 02 ponto de corte

Fevereiro 2013 Computação Evolucionária

Ciclo Evolutivo

Computação Evolucionária

Mutação

Mutação, tipicamente, é uma perturbação em algum locus mudando o valor do alelo, com dada probabilidade.

Fevereiro 2013 Computação Evolucionária 12

Pag. 3 de 7

10

SGA (Algoritmo Genético Simples)

```
Algoritmo Genético Simples {
    Definindo {
        função desempenho
            formação do indivíduo e tamanho da população
            probabilidade dos operadores
    }
    Inicializar população aleatória
    Enquanto não alcançar critério de convergência faça {
        avaliar os indivíduos da população
            executar seleção
            executar cruzamento e mutação
    }
}
```

Fevereiro 2013

Computação Evolucionária

Exemplo SGA

Problema: maximize ff(x)=2x; $0 \le x \le 31$

Figura 1 : ff(x)=2x, valor máximo em x=31.

Decisões de projeto e parâmetros

- Função desempenho: ff(x)=2x
- Codificação: binária
- Comprimento da cadeia de caracteres: 5 bits
- Tamanho da população: 4 indivíduos
- Seleção: roleta
- Cruzamento: 1 ponto de corte
- Mutação: 1 bit
- Critério de parada: número máx. de gerações

Fevereiro 2013

Computação Evolucionária

População Inicial

01101, 11000, 10010, 00101

Fevereiro 2013

Computação Evolucionária

Seleção: roleta

Estatística usada pelo método da roleta.

número	indivíd	ivíd x f _i =f		$f_i/\Sigma f(\%)$
	uo			
1	01101	13	26	21.67
2	11000	24	48	40.00
3	10010	18	36	30.00
4	00101	5	10	08.33
Soma	-	-	120	100.00
Média	-	-	30	25.00
Máximo	-	-	48	40.00

Seleção: roleta

número	indivíduo
1	01101
2	11000
3	10010
4	11000

Fevereiro 2013

Computação Evolucionária

Seleção: roleta

Girando a roleta quatro vezes, poder-se-ia ter a seguinte escolha:

1°- giro: indivíduo 2 2°- giro: indivíduo 3 3°- giro: indivíduo 2 4°- giro: indivíduo 1

Após a seleção...

número	indivíd uo	Х	f _i =f(x)	f _i /Σf(%)	f_i/f_{med}	inteiro(f _i /f _{med})
1	01101	13	26	21.67	0.87	1
2	11000	24	48	40.00	1.60	2
3	10010	18	36	30.00	1.20	1
4	00101	5	10	08.33	0.33	0
Soma	-	-	120	100.00	4.00	4
Média	-	-	30	25.00	1.00	1
Máximo	-	-	48	40.00	1.60	2

Fevereiro 2013

Computação Evolucionária

Cruzamento

Após o sorteio, os indivíduos 1 e 4 foram escolhidos para formarem o primeiro casal, enquanto que os indivíduos 2 e 3 o segundo.

Para as duas duplas, considere ainda a posição de corte situada entre os *locus* 2 e 3.

População Inicial após o cruzamento.

casal	corte entre os locus	indivíduo	novos indivíduos
1	2 e 3	01 101	01 <i>000</i>
		11 <i>000</i>	11 101
2	2 e 3	11 000	11 <i>010</i>
		10 <i>010</i>	10 000

Depois do cruzamento...

Fim da geração inicial.

número	indivíd uo	Х	$f_i = f(x)$	$f_i/\Sigma f(\%)$	f_i/f_{med}	inteiro(f _i /f _{med})
1	01000	8	16	10.13	0.41	0
2	11101	29	58	36.71	1.47	1
3	11010	26	52	32.91	1.32	1
4	10000	16	32	20.25	0.81	1
Soma	-	-	158	100.00	4.01	3
Média	-	-	39.5	25.00	1.00	0.75
Máximo	-	-	58	36.71	1.47	1

Avaliando o SGA...

Frase evolutiva

Através da procura por semelhanças na codificação em indivíduos de bom desempenho, os GAs caminham na direção a região de otimalidade.

Fevereiro 2013

Computação Evolucionária

Para casa

- Implementar a codificação binária para representar números reais, dado intervalo e o número de bits;
- Implementar a decodificação de indivíduos, dado o intervalo e o número de bits;
- Implementar 2 funções (pág. do grupo)
- Testar codificação e decodificação nas funções teste.