O Modelo Entidade-Relacionamento (ER)

Usando modelos de Dados de Alto Nível Conceitual para o projeto de um Banco de Dados

Levantamento e Análise de Requisitos

- Etapa onde são entrevistados os possíveis usuários do banco de dados para entender e documentar:
 - Os requisitos de dados do usuário.
 - Os requisitos funcionais (operações/transações que serão empregadas no banco de dados, incluindo recuperações e atualizações) conhecidos da aplicação.

Projeto conceitual

- Criação de um esquema conceitual para o banco de dados, utilizando um modelo de dados conceitual de alto nível.
 - Esquema conceitual Descrição dos requisitos de dados dos usuários, incluindo descrições detalhadas de tipos de entidade, relacionamento e restrições.
 - Com base nas operações básicas levantadas no modelo conceitual, são especificadas as operações de alto nível do usuário, identificadas durante a análise funcional.

Projeto Lógico (Mapeamento do Modelo de Dados)

- Implementação real do banco de dados em um SGBD comercial.
- O resultado dessa etapa é um esquema do Banco de Dados no modelo de dados de implementação do SGBD.

Projeto Físico

- Definição das estruturas de armazenamento interno, índices, caminhos de acesso e organizações de arquivo para os arquivos do BD.
- Realizada internamente pelo BD.

Uma aplicação exemplo de Banco de Dados

Empresa

A aplicação controlará os empregados, departamentos e projetos da empresa.

- A empresa está organizada em departamentos.
 Cada departamento tem um nome único, um único
 número e um empregado que o gerencia. Temos a
 data que o empregado começou a gerenciar o
 departamento. E este pode ter diversas localizações.
- Um departamento controla um número qualquer de projetos, cada qual com um único nome, um único número e uma única localização.

Empresa

- Armazenamos o nome de cada empregado, o CPF, endereço, salário, sexo e data de nascimento. Um empregado está alocado a um departamento, mas pode trabalhar em diversos projetos que não são controlados, necessariamente, pelo mesmo departamento. Controlamos o número de horas semanais que um empregado trabalha em cada projeto. Também controlamos o supervisor direto de cada empregado.
- Queremos ter o controle dos dependentes de cada empregado. Guardamos o primeiro nome, sexo, data de nascimento e parentesco dele com o empregado.

Tipos Entidade, Conjuntos de Entidade e Atributos-Chave

Entidades

- Objetos básicos representados pelo modelo ER.
- Representam "algo" do mundo real, com uma existência independente.
- Podem ser objetos com existência física (Ex.: Pessoas, carros, casas, funcionários) ou conceitual (empresas, trabalhos, cursos).
- Notação gráfica (Diagrama ER):

ENTIDADE

Atributos

- Propriedades particulares que descrevem as entidades.
- Ex.: a entidade Empregado pode ser descrita pelo nome do empregado, idade, endereço, salário e trabalho (função).
- Cada atributo pode receber um valor. Ex.:

Empregado	Nome	Endereço	Idade	Salário	Função
	João Manoel	Rua das Oliveiras	43	600,00	Zelador
	José Pedro	Rua dos Generais	35	750,00	Vendedor
	Pedro José	Rua aqui pertinho	27	900,00	Gerente
	Manoel João	Avenida das Alamedas	45	20000,00	Presidente

Notação Gráfica (DER):

Atributos Compostos vs. Simples

- Atributos Compostos Podem ser divididos em subpartes menores.
 - Ex.: Um atributo endereço, que pode ser dividido em EndereçoRua, Cidade, Estado e CEP, e receber os valores "Avenida Getúlio Vargas", "Picos", "PI", e "64600-000"
 - Podem formar uma hierarquia. Ex.: O atributo "EndereçoRua" pode se dividir em "Rua", "Número e "Complemento"
- Atributos Simples (atômicos) Atributos não divisíveis.
 - Ex. : Idade

Atributos Monovalorados vs. Multivalorados

- Monovalorados Possuem um valor único para uma dada entidade.
 - Ex.: Idade
- Multivalorados Podem possuir um conjunto de valores.
 - Ex.: Títulos acadêmicos. Uma pessoa pode possuir 0 (zero), um ou mais.
- Notação Gráfica (DER):

Atributos Armazenados vs. Derivados

- Os atributos **derivados** podem ser obtidos através de atributos **armazenados**.
 - Ex.: Idade pode ser obtido a partir de DatadeNascimento.
- Os atributos também pode derivar de atributos armazenados em entidades relacionadas.
 - Ex.: NumerodeEmpregados pode ser derivado de uma contagem dos cadastros da entidade Empregados

Valores Nulls (Nulos)

- Utilizados quando um atributo não possui valor aplicável.
 - Ex.: O campo "TelefoneComercial" do registro de uma pessoa que não possua emprego.

Atributos Complexos

Aninhamento de atributos compostos e multivalorados

 Ex.: Imagine uma pessoa com mais de uma residência, cada uma com múltiplos telefones.

 {EnderecoFone ({Fone (CodigoArea, NumeroFone)}, Endereco (EnderecoRua (Numero, Rua, Apartamento), Cidade, Estado, CEP))}

^{*} Os atributos compostos estão representados entre parênteses (), e os multivalorados estão representados entre chaves {}

Tipos Entidade e Conjuntos de Entidades

- Tipo Entidade Define uma coleção (ou conjunto) de entidades que possuem os mesmos atributos.
- Conjunto de entidades (ou extensão do tipo entidade) – A coleção de todas as entidades de um tipo entidade em particular.
 - O Tipo Entidade descreve o conjunto de entidades.
 - No modelo Relacional, o tipo entidade equivale às relações (tabelas), enquanto as entidades equivalem às tuplas (registros)

Tipos Entidade e Conjuntos de Entidades

Nome do Tipo Entidade

EMPREGADO Nome, Idade, Salário EMPRESA Nome, Sede Administrativa, Presidente

e1_• (John Smith, 55, 80k)

e2 • (Fred Brown, 40, 30k)

e3 • (Judy Clark, 25, 20k)

C1. (Sunco Oil, Houston, John Smith)

(Fast computer, Dallas, Bob King)

.

Conjunto de Entidade (Extensão)

Tipos Entidade e Conjuntos de Entidades

CONJUNTO DE ENTIDADES

Atributos Chave de um Tipo Entidade

- Atributo-Chave (restrição de unicidade) Atributo cujo valor deve ser distinto para cada uma das entidades do conjunto de entidade.
- Seus valores podem ser usados para identificar cada entidade univocamente. (é proibido repetir valores no atributo chave).
- Chave composta Ocorre quando a entidade possui mais de um atributo chave, que sozinho não pode ser chave, mas que pode possuir várias combinações distintas que funcionem como tal.
- Entidade Fraca Entidade que não possui chave.
- Notação Gráfica (DER):

 Atributo Chave
 ENTIDADE

Atributos Chave de um Tipo Entidade

Ex.: Atributo chave:

EMPREGADO

<u>CPF</u>, Nome, Endereco, Funcao

Chave composta:

CARRO

Registro (NumeroRegistro, Estado), Idveiculo, Marca, Modelo, Ano, {Cor}

Conjunto de valores (Domínios) de Atributos

- Determina o conjunto de valores válidos para os atributos de cada entidade.
- São determinados pelos tipos de dados, e não são mostrados nos diagramas ER
- Ex.:
 - Idade do empregado Inteiros entre 16 e 70
 - Nome String

Projeto conceitual do BD EMPRESA

DEPARTAMENTO

Nome, Numero, {Localizacoes}, Gerente, DatalnicioGerencia

PROJETO

Nome, Numero, Localizacao, DepartamentoControle

EMPREGADO

Nome (PNome, InicialM, Unome), <u>CPF</u>, Sexo, Endereco, Salario, DataNascimento, Departamento, Supervisor, {TrabalhaEm (Projeto, Horas)}

DEPENDENTE

Empregado, NomeDependente, Sexo, DataNascimento, Parentesco

Atividade

- Elabore 5 exemplos de tipos entidades, com seus respectivos atributos.
 - Escolha um atributo chave para o tipo entidade
 - Tente utilizar os conceitos de atributos monovalorados/multivalorados e simples/compostos, assim como atributos complexos.
 - Delimite o domínio de cada atributo

Tipos Relacionamento, Conjuntos de Relacionamentos, Papéis e Restrições Estruturais

Tipo Relacionamento

Define um conjunto de associações (relacionamentos) entre as entidades. _{TRABALHA_PARA}

Grau de um Tipo Relacionamento

- Número de entidades que participam do relacionamento
 - Grau dois (Binário) Duas entidades participantes
 - Grau três (ternário) Três entidades participantes
 - ... E assim sucessivamente
- Os relacionamentos mais comuns são os de grau dois
- Notação gráfica de relacionamento (DER):

Exemplo de Relacionamento Ternário

FORNECEDOR FORNECE PROJETO PRODUTO

Nomes de Papéis e Relacionamentos Recursivos

- Cada tipo entidade em um tipo relacionamento executa um papel.
- O nome do papel significa o papel que uma entidade participante executa em cada instância de relacionamento.
- O conceito de nome do papel é importante quando o mesmo tipo entidade aparece mais de uma vez em um tipo relacionamento em papéis diferentes (relacionamentos recursivos).

Restrições em Tipos Relacionamento

- Os tipos relacionamento podem possuir restrições que limitam a possibilidade de combinações de entidades que podem participar do conjunto de relacionamentos correspondente.
 - Estas restrições são determinadas pela situação do minimundo que os relacionamentos representam.
 - Ex.: A empresa exemplo pode definir que um funcionário tem que trabalhar para exatamente um departamento.
- Existem dois tipos principais de restrição:
 - Restrição de cardinalidade
 - Restrição de participação

Restrição de cardinalidade

- Especifica o número máximo de instâncias de relacionamento em que uma entidade pode participar
- São possíveis as seguintes cardinalidades:
 - 1:1 (um-para-um)
 - 1:N (um-para-muitos)
 - N:1 (muitos-para-um)
 - M:N (muitos-para-muitos)

Um relacionamento 1:1

Um relacionamento M:N

Restrição de cardinalidade

RELACIONAMENTO 1:1

- UM COORDENADOR COORDENA NO MÁXIMO UM CURSO
- UM CURSO POSSUI NO MÁXIMO UM COORDENADOR

RELACIONAMENTO 1:N (OU N:1, SE QUISER INVERTER AS ENTIDADES ©)

- UM ALUNO POSSUI VÁRIOS LIVROS
- UM LIVRO PERTENCE A UM ÚNICO ALUNO

Restrição de cardinalidade

RELACIONAMENTO M:N

- UM ALUNO PODE CURSAR VÁRIAS DISCIPLINAS
- UMA DISCIPLINA POSSUI VÁRIOS ALUNOS MATRICULADOS

Restrição de participação (Restrição de cardinalidade mínima)

É o número mínimo de ocorrências de entidade que são associadas a uma ocorrência da mesma (auto-relacionamento) ou de outra(s) entidade(s) através de um relacionamento.

- Determina se a existência de uma entidade depende de sua existência relacionada à outra entidade, pelo tipo relacionamento.
- Determina também o número mínimo de instâncias de relacionamento em que cada entidade pode participar.
- Restrição estrutural (min, max) da participação de E em R (Notação gráfica no DER):

Restrição de participação (Restrição de cardinalidade mínima)

- Há dois tipos de restrição de participação: total e parcial
 - Total (cardinalidade mínima 1) Cada entidade de um conjunto de entidades deve participar de pelo menos uma instância do relacionamento com outra entidade.
 - Parcial (cardinalidade mínima 0) Algumas partes do conjunto das entidades estão relacionadas a outras entidades, mas não necessariamente todas elas.

Restrição de participação (Restrição de cardinalidade mínima)

Atributos de Tipos Relacionamento

- Similares aos dos tipos entidade
 - Ex.: em um relacionamento TRABALHA_EM, pode ser interessante registrar as horas trabalhadas por um empregado em um determinado projeto.

Atributos de Tipos Relacionamento

- Em relacionamentos 1:1, esse atributo pode ser migrado para algum dos tipos entidade participantes.
- Em relacionamentos 1:N, os atributos do relacionamento somente podem ser migrados para o tipo entidade do lado N do relacionamento.
- Em relacionamentos M:N, alguns atributos são determinados pela combinação de entidades participantes de uma instância de relacionamento. Esses atributos devem ser especificados como atributos de relacionamento.

Tipo Entidade Fraca

Tipo Entidade Fraca

- Tipos entidade que não possuem seus próprios atributos chave.
 - Antônimo: tipo entidade regular.
- São identificadas por estarem relacionadas (relacionamento identificador) a entidades específicas de outro tipo entidade (tipo entidade identificador ou tipo entidade proprietária), por meio da combinação com valores de seus atributos.

Tipo Entidade Fraca

- Sempre possuem restrição de participação total em relação ao tipo entidade identificador.
- Possui um conjunto de atributos que identifica, de modo exclusivo, as entidades fracas que estão associadas a uma mesma entidade proprietária.

Diagramas ER, Convenções de nomenclatura e Decisões de Projeto

Notação para Diagramas ER

Razão de cardinalidade 1:N para $E_1:E_2$ em R

Denominação dos Construtores dos Esquemas

- Tipos entidade Geralmente nomeados como substantivos, no singular
 - Atributos geralmente surgem de substantivos adicionais
- Relacionamentos Geralmente se usam verbos para nomeá-los.
 - É interessante utilizar nomes que facilitem a leitura da esquerda para a direita, e de cima para baixo.

Decisões de Projetos para o Projeto Conceitual ER

- Como saber se um determinado conceito deve ser mapeado como um tipo entidade, um atributo ou um tipo relacionamento?
- O projeto do esquema deve ser considerado um processo iterativo de refinamento.
- Um conceito pode iniciar como um atributo, e se tornar um tipo entidade. E vice-versa.
 Relacionamentos também podem mudar para outro tipo de conceito.

Modelagem com Entidade-Relacionamento Estendido

Classes e Subclasses

- Classe conjunto ou coleção de entidades.
- Subclasse Uma subclasse S é uma classe cujas entidades devem ser sempre um subconjunto das entidades de outra classe, chamada superclasse C do relacionamento superclasse/subclasse. (S ⊆ C)
 - As subclasses também são consideradas tipos entidade.
 - O conjunto de entidades de cada subgrupo é um subconjunto do conjunto de entidades do tipo entidade imediatamente superior (superclasse).

Subclasse

- Uma entidade não pode existir em um banco apenas por ser membro de uma subclasse; Ela precisa ser também membro de uma superclasse.
- A subclasse deve possuir valores para seus atributos específicos, bem como para seus atributos como membro da superclasse.
 - A subclasse herda todos os atributos e relacionamentos da superclasse.

Notação EER para subclasses/especialização

Um "d" representa subclasses disjuntas (um tipo entidade pode ser membro de no máximo uma subclasse), e um "o", subclasses sobrepostas (a entidade pode constar em mais de uma subclasse.

Notação EER para subclasses/especialização

O símbolo do subconjunto em cada linha conectando a subclasse ao círculo indica a direção do relacionamento superclasse/subclasse

Especialização

- Uma **especialização** Z é um subconjunto de classes que têm a mesma superclasse G. ($Z = \{S_1, S_2, ..., S_n\}$)
- Processo de definir o conjunto de subclasses de um tipo entidade (tipo entidade superclasse).
 - Abordagem top-down.
 - Ex.: Criação de subclasses para o tipo entidade
 EMPREGADO, baseada nas diferentes características que as definem.
- Bastante útil quando apenas um subconjunto do conjunto de entidades utiliza determinado atributo ou participa de determinado relacionamento com outro tipo entidade.

Generalização

- Processo de supressão das diferenças entre diversos tipos entidade, identificação de suas características comuns, e união dessas características em uma superclasse.
 - Abordagem bottom-up.
 - Ex.: A partir das características comuns entre os tipos entidade CARRO e CAMINHAO, criar a superclasse VEICULO

Características e restrições da especialização e generalização

Restrições na Especialização e Generalização

- Especialização definida por predicado as entidades que vão participar de uma subclasse são definidas baseado no valor de algum atributo da superclasse.
- Especialização definidas por atributo todas as entidades que vão participar de uma subclasse são definidas com base no valor de um mesmo atributo da superclasse.
- Especialização definida pelo usuário Não existe uma condição para que uma entidade seja membro de uma subclasse. Esse membro é definido pelo usuário na operação que adiciona a entidade à subclasse.

Restrições na Especialização e Generalização

- Restrição de disjunção (disjointness) especifica que as subclasses na especialização devem ser mutuamente exclusivas.
 - Caso as subclasses não estejam condicionadas a ser disjuntas, seus conjuntos de entidades podem sobrepor-se (overlap).
- Restrições de integralidade:
 - Total toda entidade na superclasse deve ser membro de pelo menos uma subclasse.
 - Representada por uma linha dupla no diagrama ER.
 - Parcial algumas entidades na superclasse podem não pertencer a nenhuma subclasse.
- Estas duas restrições podem ser combinadas (disjunção total, disjunção parcial, sobreposição total e sobreposição parcial).

Especialização Sobreposta

O símbolo do subconjunto em cada linha conectando a subclasse ao círculo indica a direção do relacionamento superclasse/subclasse

Algumas regras de especialização/generalização

- Deletar uma entidade de uma superclasse implica que ela seja excluída das subclasses às quais pertence.
- Inserir uma entidade em uma superclasse implica que ela seja inserida, obrigatoriamente, em todas as subclasses definidas por predicado ou por atributo, para as quais a entidade satisfizer a definição por predicado
- Inserir uma entidade em uma superclasse de especialização total implica que a entidade seja, obrigatoriamente, inserida em pelo menos uma das subclasses da especialização.

Hierarquias e reticulados de Especialização e Generalização

Conceitos provenientes da possibilidade de uma subclasse possuir outras subclasses, que herdam atributos das superclasses predecessoras até a raiz da hierarquia/reticulado.

- Hierarquia de especialização restringe todas as subclasses a participarem de apenas um relacionamento classe/subclasse (cada subclasse tem apenas um pai)
- Especialização reticulada uma subclasse pode participar de mais de um relacionamento classe/subclasse, herdando os atributos e relacionamentos de múltiplas superclasses (herança múltipla).

Reticulado de especialização (classe GERENTE_ENGENHARIA compartilhada)

Tipos União (Categorias)

- Ocorrem quando surge a necessidade de modelar um relacionamento subclasse/superclasse que possua várias superclasses.
- A Herança funciona mais seletivamente em categorias que no reticulado, permitindo que uma categoria herde características de uma superclasse individual.
- Categorias podem ser:
 - Totais controla a união de todas as entidades em uma superclasse. (equivale à especialização total).
 Representadas por uma linha dupla conectando a categoria ao circulo
 - Parciais controla um subconjunto da união.
 Representada por uma linha simples.

