Subsurface warming of West Antarctica during El Niño

Maurice F. Huguenin^{1,2,*}, Ryan M. Holmes^{3,4}, Paul Spence^{5,6} and Matthew H. England²

¹Climate Change Research Centre and ARC Centre of Excellence in Climate Extremes, University of New South Wales, Sydney, New South Wales, New South Sydney, New South Wales, Australia, ³School of Geosciences, University of Sydney, Sydney, New South Wales, Australia, ⁵Institute for Marine and Antarctic Studies and ARC Australian Centre for Excellence in Antarctic Science, University of Tasmania, Tasmania, Australia, ⁶Australian Antarctic Partnership Program, University of Tasmania, Tasmania, Australia

- Even though West Antarctic shelf temperatures are dominated by decadal-scale climate variability, ENSO also likely impacts shelf temperatures and basal melting of the ice shelves
- However, investigating the isolated role of ENSO is tricky because it can be masked by other modes of variability (SAM, zonal wave-3 variations, the IPO, tides, storms, ...)

Isolating the ENSO signal on the West Antarctic shelf

- ACCESS-OM2-01 Kiss et al. (2020)
 - 1/10° global ocean-sea ice model with 75 z* levels
- forced by JRA55-do, atmospheric reanalysis Tsujino et al. (2018)
- investigate warming and cooling on the shelf during ENSO

Idealised simulations

climatological repeat-year forcing[x,y,t] + ENSO anomalies

(time series[t] \times spatial pattern[x,y])

What drivers shelf temperature changes during El Niño & La Niña?

Take Home

- El Niño: weaker Amundsen Sea Low & weaker coastal easterlies → reduced poleward Ekman transport of cold surface waters → advection of warm Circumpolar Deep Water onto shelf
- La Niña: response inhibited by stronger Amundsen Sea Low & stronger surface easterlies

Fig. 2. a, b, Peak event depth-averaged shelf temperature response (°C). **c-f**, Mean across-shelf temperature responses averaged over the regions outlined in a, b (°C). Black lines are climatological isopycnals.

Fig. 3. *a, b,* Time series of mean shelf temperature responses (10²⁰ J). c, d, Poleward Ekman anomalies at the 1000 m isobath location (Sv).

e, f, Main West Antarctic subsurface heat budget terms (1019 J).