Programación Paralela

Utilización de la memoria cache

Organización de memoria en Intel Xeon

Organización de la memoria cache

La transferencia de datos entre memoria principal y memoria cache es a través de bloques de datos

Ejemplo Core i5-9400

```
Machine (7834MB total)
Package L#0
NUMANode L#0 (P#0 7834MB)
L3 L#0 (9216KB)

L2 L#0 (256KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (256KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1 + PU L#1 (P#1)
L2 L#2 (256KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (256KB) + L1d L#3 (32KB) + L1i L#3 (32KB) + Core L#3 + PU L#3 (P#3)
L2 L#4 (256KB) + L1d L#4 (32KB) + L1i L#4 (32KB) + Core L#4 + PU L#4 (P#4)
L2 L#5 (256KB) + L1d L#5 (32KB) + L1i L#5 (32KB) + Core L#5 + PU L#5 (P#5)
```

lscpu | grep cache

getconf -a | grep CACHE

L1d cache: 192KB
L1i cache: 192KB
L2 Cache: 1.5MB
L3 Cache: 9MB

LEVEL1_DCACHE_SIZE LEVEL1_DCACHE_ASSOC LEVEL1_DCACHE_LINESIZE	32768 8 64
LEVEL2_CACHE_SIZE LEVEL2_CACHE_ASSOC LEVEL2_CACHE_LINESIZE	262144 4 64
LEVEL3_CACHE_SIZE LEVEL3_CACHE_ASSOC LEVEL3_CACHE_LINESIZE	9437184 12 64

Condiciones de borde para el análisis

La línea de la cache es de 64B (V)

Cache no puede almacenar múltiples líneas (F)

Consecuencias

Los datos siempre deben estar en zonas contiguas de memoria

Caso matrices 2d: Pedir una zona lineal de memoria

Creación

double* M = new double[nfil * ncol]

Acceso al componente M_{i,j} :

M[i*ncol+j] //con $0 \le i < nfil$, $0 \le j < ncol$

Ejemplo: Multiplicación de matrices

Ejemplo: Multiplicación de matrices

Caso 1)


```
for(size_t i=0; i < filas(a); i++) {
  for(size_t j=0; j < columnas(b); j++) {
    for(size_t k=0; k < columnas(a); k++) {
      c[i][j] += a[i][k] * b[k][j];
    }
}</pre>
```

Tasa de pérdidas de la caché

a=0.125; b=1; c=0

Ejemplo: Multiplicación de matrices

Caso 2)


```
for(size_t k=0; k < columnas(a); k++) {
  for(size_t i=0; i < filas(a); i++) {
    float r = a[i][k]
    for(size_t j=0; j < columnas(b); j++) {
       c[i][j] += r * b[k][j];
    }
}</pre>
```

Tasa de pérdidas de la caché

a=0; b=0.125; c=0.125

Menor tasa de pérdidas

Mejor desempeño

Menor tiempo de ejecución