Introduction to Neural Network

Dr. Paisit Khanarsa

Outline

- Introduction to Neural Network
- Neuron and artificial neural network
- Neural network decision boundary

Introduction to Neural Network

Human neuron cell

Biological neuron

Brain's computational unit

Human neuron interaction

Neuron and artificial neural network

Biological neuron

Artificial neuron

Feature

Activation function

Feature

Weights (parameters)

Sum of weights * features

Activation function

Feature

Weights (parameters)

Sum of weights * features

Sigmoid function

$$S(x) = \frac{1}{1 + e^{-x}}$$

- *Domain*: $x \in \mathbb{R}$ (Real Number)
- $Range: S(x) \in (0,1)$
- $x \to -\infty$ then $S(x) \to 0$
- $x \to \infty$ then $S(x) \to 1$

ReLu function

Softmax function

identity

Neural network

A network of single neuron units. Engineers must define **network architecture** they want to use. How many layers the network will have and how units each layer will have

Neural network

A network of single neuron units. Engineers must define **network architecture** they want to use. How many layers the network will have and how units each layer will have

Bias units

Bias units allows us to add any constant to the computation of each layer.

In regression, this is similar to the term $heta_0$.

This provides a baseline for activity of neurons in each layer

Linear regression

Bias units

Bias units allows us to add any constant to the computation of each layer.

In regression, this is similar to the term $heta_0$.

This provides a baseline for activity of neurons in each layer

$$egin{aligned} a_1 &= f(w_{01}^1 x_0 + w_{11}^1 x_1 + w_{21}^1 x_2) \ a_2 &= f(w_{02}^1 x_0 + w_{12}^1 x_1 + w_{22}^1 x_2) \ y &= f(w_{01}^2 a_0 + w_{11}^2 a_1 + w_{21}^2 a_2) \end{aligned}$$

Neural network

Neural network decision boundary

2-layer neural network fits a linear decision boundary. It is called "Linear Classifier". For high-dimension, you might think of it as a decision hyperplane.

2-layer neural network fits a linear decision boundary. It is called "Linear Classifier". For high-dimension, you might think of it as a decision hyperplane.

$$egin{aligned} y &= f(x_0w_0 + x_1w_1 + x_2w_2) \ &= f(w_0 + x_1w_1 + x_2w_2) \ f: Sigmoid\ function \end{aligned}$$

2-layer neural network fits a linear decision boundary. It is called "Linear Classifier". For high-dimension, you might think of it as a decision hyperplane.

Live demo

2-layer perceptron cannot fit nonlinear decision boundary.

Live Demo: A Neural Network Playground

Exercise

- Try picking nonlinear model
- Try adding an extra with 2 neurons in the hidden layer
- Make hidden layer with 5 neurons
- Make two hidden layers

Linear Separable

Linear Non- Separable

Linear Separable

Linear Non- Separable

Linear Separable

Linear Non- Separable

Multilayer perceptron

Classification 3

 x_3

 x_4

 x_1

Classification 4

 x_3

 x_4

 x_1

 x_4

Multilayer perceptron

Multilayer perceptron

Classification 3

Classification 4

Network of neurons can understand anything

Facial Recognition

Input
Let's start to feed
the face images
into the neural
networks.

Layer 1-2
The computer
learns to identify
edge and simple
shapes.

Layer 3-4
The computer
learns to identify
more complex
shapes and objects.

Layer 5-7
The computer learns
which shapes and
objects can be used to
define a human face.

Good luck 😉

