Mains.2.B.1-14

ai24btech11030 - Shiven Bajpai

Section - B

- 1) z and w are two nonzero complex numbers such that |z| = |w| and $Arg(z) + Arg(w) = \pi$ then z equals [2002]
 - (a) $\overline{\omega}$ (b) $-\overline{\omega}$ (c) ω (d) $-\omega$
- 2) If |z-4| < |z-2|, its solution is given by [2002]
 - (a) Re(z) > 0 (b) Re(z) < 0(c) Re(z) > 3 (d) Re(z) > 2
- 3) The locus of the centre of a circle which touches the circle $|z - z_1| = a$ and $|z - z_2| = b$ externally $(z, z_1, z_2 \text{ are complex numbers})$ will [2002]
 - (a) an ellipse (b) a hyperbola
 - (c) a circle (d) none of these
- 4) If z and w are two non-zero complex numbers such that |zw| = 1 and $Arg(z) - Arg(w) = \frac{\pi}{2}$ then $\overline{z}w$ is equal to

[2003]

(a)
$$-\iota$$
 (b) 1 (c) -1 (d) ι

- 5) Let Z_1 and Z_2 be two roots of the equation $Z^2 + aZ + b = 0$, Z being complex. Further assume that the origin, Z_1 and Z_2 form an equilateral triangle. Then [2003]
 - (a) $a^2 = 4b$ (b) $a^2 = b$ (c) $a^2 = 2b$ (d) $a^2 = 3b$
- 6) If $\left(\frac{1-\iota}{1+\iota}\right)^{x} = 1$ then [2003]
 - (a) x = 2n + 1, where n is any positive integer
 - (b) x = 4n, where n is any positive integer
 - (c) x = 2n, where n is any positive integer
 - (d) x = 4n + 1, where n is any positive integer
- 7) Let z and w be complex numbers such that $\overline{z} + \iota \overline{w} = 0$ and $arg(zw) = \pi$ then arg(z) equals

[2004]

(a)
$$\frac{5\pi}{4}$$
 (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$ (d) $\frac{\pi}{4}$

8) If $z = x - \iota y$ and $z^{\frac{1}{3}} = p + \iota q$, then $\frac{\frac{A}{p} + \frac{\iota}{q}}{n^2 + a^2}$ is equal to

[2004]

$$(a) -2 (b) -1 (c) 2 (d) 1$$

- 9) If $|z^2 1| = |z|^2 + 1$, then z lies on [2004]
 - (a) an ellipse (b) the imaginary axis
 - (c) a circle (d) the real axis
- 10) If the cube roots of unity are 1, ω , ω^2 then the roots of the equation $(x-1)^3 + 8 = 0$, are [2004]

$$(a)$$
 -1 , $-1 + 2\omega$, $-1 - 2\omega^2$

$$(b)$$
 $-1, -1, -1$

$$(c)$$
 -1, 1 - 2 ω , 1 - 2 ω ²

$$(d) -1, 1 + 2\omega, 1 + 2\omega^2$$

11) If z_1 and z_2 are two non-complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then $\arg(z_1)$ $arg(z_2)$ is equal to [2005]

(a)
$$\frac{\pi}{2}$$
 (b) $-\pi$ (c) 0 (d) $\frac{\pi}{2}$

- 12) If $\omega = \frac{\zeta}{z \frac{1}{2}\iota}$ and $|\omega| = 1$, then z lies on [2005]
 - (a) an ellipse
- (b) a circle
- (c) a straight line (d) a parabola
- 13) The value of $\sum_{k=1}^{10} \left(sin\left(\frac{2k\pi}{11}\right) + \iota cos\left(\frac{2k\pi}{11}\right) \right)$ is [2006]
 - (a) ι (b) 1 (c) $-\iota$ (d) -1
- 14) If $z^2 + z + 1 = 0$, where z is a complex number, then the value of

$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^2$$

is [2006]

(a) 18 (b) 54 (c) 6 (d) 12