M2 SAR - ASTRE Année 2020-2021

TD 1 : LTL

Exercice 1

Exprimez chacune des phrases ci-dessous en une formule LTL (les propositions atomiques existantes pour chaque cas sont données entre parenthèses). À chaque fois, donnez une trace satisfaisant la formule que vous avez écrite, et une trace la violant.

- (a) La propriété p arrive un jour $(AP = \{p\})$
- (b) La propriété p est toujours vraie $(AP = \{p\})$
- (c) La propriété p est vraie à l'instant 1 $(AP = \{p\})$
- (d) La propriété p est stable (si elle arrive, elle demeure) $(AP = \{p\})$
- (e) Toute requête sera un jour satisfaite $(AP = \{\text{request}, \text{grant}\})$.
- (f) Toute requête sera un jour satisfaite et aucune requête supplémentaire n'arrive avant la satisfaction de cette requête ($AP = \{\text{request}, \text{grant}\}\)$
- (g) À chaque fois que de l'argent a été retiré, le bon code pin a été fourni auparavant (AP : {cash_withdraw, pin_ok}).
- (h) Deux processus ne sont jamais en section critique en même temps $(AP = \{ crit1, crit2 \})$.
- (i) À chaque fois qu'un processus demande l'accès à la section critique, il l'obtiendra un jour dans le futur ($AP = \{ask_crit, acc_crit\}$).
- (j) Une fois que le feu est vert, il ne peut pas devenir rouge immédiatement après $(AP = \{red, green\})$.
- (k) À chaque fois que le feu est rouge, il deviendra vert un jour dans le futur $(AP = \{red, green\})$.
- (1) Lorsque le feu est vert, il deviendra rouge après avoir été orange $(AP = \{\text{red}, \text{green}, \text{orange}\})$.
- (m) Lorsque le feu est vert, il ne deviendra rouge qu'après avoir été orange $(AP = \{\text{red}, \text{green}, \text{orange}\})$.

Exercice 2

On considère le préfixe de trace suivant :

$$\emptyset, \{p\}, \{p,q\}, \{q\}, \{p\}, \emptyset, \{p,q\}$$

Déterminez, pour chaque position de ce préfixe de trace, si les formules suivantes sont vérifiées ou non :

- (a) $p \wedge q$
- (b) $F(p \wedge q)$
- (c) p U q
- (d) $\mathsf{F} p \wedge \mathsf{F} q$
- (e) $G(p \vee q)$

Exercice 3

Les équivalences suivantes sont-elles vraies? Si oui, démontrez-le, sinon donnez une trace contre-exemple.

- (a) $G(Fp \wedge Fq)$ et $GFp \wedge GFq$
- (b) $F(Gp \wedge Gq)$ et $FGp \wedge FGq$
- (c) $\mathsf{G}(\mathsf{F}\,p\vee\mathsf{F}\,q)$ et $\mathsf{GF}\,p\vee\mathsf{GF}\,q$.
- (d) $F(Gp \vee Gq)$ et $FGp \vee FGq$.

- (e) $\mathsf{GF}(p \wedge q)$ et $\mathsf{GF}\, p \wedge \mathsf{GF}\, q$
- (f) $\mathsf{GF}(p \vee q)$ et $\mathsf{GF}\, p \vee \mathsf{GF}\, q$
- (g) $\mathsf{FG}(p \land q)$ et $\mathsf{FG}\,p \land \mathsf{FG}\,q$
- (h) $\mathsf{FG}(p \lor q)$ et $\mathsf{FG}\, p \lor \mathsf{FG}\, q$

Exercice 4

On considère le préfixe de trace suivant :

$${q}{q}{p}{p}{r}{q,r}{q}{p}{r}{r}$$

- (a) Déterminer quelles sont les formules qui sont vraies sur le préfixe de trace ci-dessus :
 - 1. $\mathsf{G}\,p \vee \mathsf{G}\,\neg p$
 - 2. $\mathsf{F}\,p \wedge \mathsf{F}\,\neg p$
 - 3. $F(p \wedge Xq)$
 - 4. $\mathsf{F}\,p \wedge \mathsf{X}\,q$
 - 5. $(\mathsf{G}(p \to q)) \to \mathsf{G} r$
- (b) Pour chacune des traces ci dessus, proposez deux traces modèles de cette formule.

Exercice 5

On introduit un nouvel opérateur, B, pour Before, défini ainsi : $t, i \models \varphi B \psi$ ssi pour tout $j \geq i$ tel que $t, j \models \psi$, il existe $i \leq k < j$ tel que $t, k \models \varphi$.

- (a) Donnez une trace (ou un préfixe de trace) qui satisfait pBq.
- (b) Donnez une trace t (ou un préfixe de trace) tel qu'il existe $i \ge 0$ tel que $t, i \models q$ mais qui ne satisfait pas pBq.
- (c) Exprimez une formule équivalente à $\varphi B \psi$, en n'utilisant que des opérateurs LTL définis en cours. Prouvez que les deux formules sont bien équivalentes.

Exercice 6

(*) Prouvez la loi d'expansion $\varphi_1 R \varphi_2 \equiv \varphi_2 \wedge (\varphi_1 \vee \mathsf{X}(\varphi_1 R \varphi_2))$