Cap. 16 (Grimaldi)

• Un grupo (G) es un conjunto de elementos con una operación binaria (.) que satisface cuatro propiedades o axiomas y una propiedad extra, conmutativa

Properties

Group

• Definición 16.1

- Si G es un conjunto no vacío y ° es una operación binaria en G, entonces (G, °) es un grupo si cumple las siguientes condiciones.
 - 1) G es cerrado mediante ° Para todo a, b E G, a°b E G
 - 2) Propiedad asociativa Para todo a, b, c \in G, a°(b °c) = (a°b)°c.
 - 3) Existencia de un elemento identidad o neutro Existe un e ε G tal que $a^{\circ}e = e^{\circ}a = a$, para todo a ε G.
 - 4) Existencia de inversos.

 Para a É G existe un elemento b É G tal que a°b=b °a=e.
 - 5) Grupo conmutativo abeliano Si, a°b=b °a para todo a,b € G.

• Ejemplo: $G=(\{a,b,c,d\},.)$

•	а	b	c	d
а	а	b	С	d
b	b	c	d	а
c	С	d	а	b
d	d	а	b	С

Cerradura:

Asociatividad: (a+b) + c = a+(b+c)

Conmutativa: a+b=b+a (Grupo abeliano)

Elemento Identidad: a

Existencia de inversos: (a,a), (b,d), (c,c)

• Ejemplo: $G = \{e,a,b,c\}$

0	e	a	b	C
e	e	a	b	C
a	a	b	C	e
b	b	C	e	a
С	C	e	a	b

Elemento Identidad:

Existencia de inversos:

Grupo abeliano:

• Ejemplo: $(Z_6, +)$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Elemento Identidad:

Existencia de inversos:

Grupo abeliano:

• Ejemplo: Si p es primo $(Z*_7, .)$

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Elemento Identidad:

Existencia de inversos:

Grupo abeliano:

- Para n \mathcal{E} Z⁺, n>1, (Zn,+) es un grupo abeliano.
- Si p es primo $(Z*_p, .)$ es un grupo abeliano.
- Definición 16.2:
 - Para cualquier grupo G, el número de elementos de G es el orden de G que se denota con |G|.
- Ejemplo:
 - Para cualquier n $\mathcal{E}[Z^+, |(Z_n, +)| = n]$
 - Para cualquier p primo $|(Z*_p, .)| = p-1$

- Ejemplo:
 - $(Z_9, +,.)$
 - $U_9 = \{a \in Z_9 \mid a \text{ es una unidad en } Z_9\} = \{a \in Z_9 \mid a^{-1} \text{ existe}\}$

• $U_9 = \{1,2,4,5,7,8\} = \{a \in Z + \mid 1 \le a \le 8 \text{ y mcd}(a,9) = 1\}$

•	1	2	4	5	7	8
1	1	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8	7	2	1	5
5	5	1	2	7	8	4
7	7	5	1	8	4	2
8	8	7	5	4	2	1

Elemento Identidad:

Existencia de inversos:

Grupo abeliano:

Orden

U9=Grupo de unidades del anillo

U9= es cerrado mediante la operación binaria de multiplicación módulo n.

- Teorema 16.1: Para cualquier grupo G.
 - a) El neutro o identidad de G es único.
 - b) El inverso de cada elemento de G es único.
 - c) Si a,b,c $\mathbf{\mathcal{E}}$ G y ab=ac, entonces b=c.

(Propiedad cancelativa por la izquierda).

d) Si a,b,c $\mathbf{\mathcal{E}}$ G y ba=ca, entonces b=c.

(Propiedad cancelativa por la derecha)

- Definición 16.3:
 - Sea G un grupo y Ø ≠ H incluido G. Si H es un grupo mediante la operación binaria de G, entonces H es un subgrupo de G.
- Ejemplo:
 - Sea $G = (Z_5, +)$. Si $H = \{0, 2, 4\}$, entonces H es un subconjunto no vacío de G.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

+	0	2	4
0	0	2	4
2	2	4	0
4	4	0	2

SUB-GRUPO

- Teorema 16.3
 - Si G es un grupo y Ø≠H incluido G, con H finito, entonces H es un **Subgrupo** de G si y solo si H es cerrado mediante la operación binaria G.

SUB-GRUPOS

- Un subconjunto H de un grupo G es un sub-grupo de G si H es grupo con respecto a la operación en G.
 - Si a y b son miembros de ambos grupos, entonces c=a*b es también miembro de ambos grupos.
 - El grupo comparte el mismo elemento identidad.
 - Si a es un elemento de ambos grupos, la inversa de a es también miembro de ambos grupos
 - El grupo obtenido del elemento identidad de G, H=<[e],*> es un sub-grupo de G.
 - Cada grupo es un sub-grupo de si mismo.

SUB-GRUPOS

• Es el grupo $H=(Z_{10},+)$ un subgrupo del grupo $G(Z_{12},+)$?

- Ejemplo:
 - $G = \{e,a,b,c\}$
 - $H = \{e,b\}$

•	e	b
e	e	b
b	b	e

Operación binaria cerrada.

Elemento neutro:

Inverso:

EJERCICIOS

- Cuál de los siguientes sub-conjuntos (H) de G Z_{13} son grupos con la operación de multiplicación?
 - $H = \{1,3,5,7,9,11\}$
 - $H = \{1,2,3,4,5,6,8,9,10,11\}$
 - $H = \{1,3,5,8,9\}$
 - $H = \{1,5,8,12\}$

GRUPO FINITO

- Grupo Finito
 - Un grupo es llamado de finito si el conjunto tiene un número finito de elementos, de lo contrario es un grupo infinito.

Grupo cíclico

- Definición 16.6
 - Un grupo G es cíclico si existe un elemento $x \in G$ tal que a $\in G$, $a = x^n$ para algún $n \in Z$. Nota: $a^0 = e$
- $G = \langle Z6, + \rangle$

$$0^0 \bmod 6 = 0$$

```
1^{0} \mod 6 = 0

1^{1} \mod 6 = 1

1^{2} \mod 6 = (1 + 1) \mod 6 = 2

1^{3} \mod 6 = (1 + 1 + 1) \mod 6 = 3

1^{4} \mod 6 = (1 + 1 + 1 + 1) \mod 6 = 4

1^{5} \mod 6 = (1 + 1 + 1 + 1) \mod 6 = 5
```

$$2^{0} \mod 6 = 0$$

 $2^{1} \mod 6 = 2$
 $2^{2} \mod 6 = (2 + 2) \mod 6 = 4$

$$3^0 \mod 6 = 0$$

 $3^1 \mod 6 = 3$

$$4^0 \mod 6 = 0$$

 $4^1 \mod 6 = 4$
 $4^2 \mod 6 = (4 + 4) \mod 6 = 2$

$$5^{0} \mod 6 = 0$$

 $5^{1} \mod 6 = 5$
 $5^{2} \mod 6 = 4$
 $5^{3} \mod 6 = 3$
 $5^{4} \mod 6 = 2$
 $5^{5} \mod 6 = 1$

Grupo cíclico

- Elemento generador
 - Si g es un generador, los elementos en un finito grupo cíclico puede ser escrito como:

$$\{e, g, g^2, \dots, g^{n-1}\}\$$
, where $g^n = e$

Denotado por G (g)

•
$$G = \langle Z6, + \rangle = Z6 = \langle [1] \rangle, \langle [5] \rangle$$

Grupo cíclico

- Definición 16.7: Orden de un elemento

 - $G = \langle Z6, + \rangle$
 - $\mathring{\mathbf{o}}(0) = 1$
 - $\mathring{\mathbf{o}}(1) = 6$
 - $\dot{o}(2) = 3$
 - $\dot{o}(3) = 2$
 - $\mathring{o}(4) = 3$
 - $\mathring{o}(5) = 6$

Sub-Grupos cíclicos

• Si un sub-grupo de un grupo puede ser generador usando la potencia de un elemento, el sub-grupo es llamado sub-grupo cíclico

$$a^n \to a \bullet a \bullet \dots \bullet a \quad (n \text{ times})$$

Sub-Grupos cíclicos: Ejemplo

• 4 subgrupos cíclicos pueden obtenerse del grupo

•
$$G = \langle Z6, + \rangle$$
.

- $H1 = <\{0\}, +>,$
- $H2 = <\{0, 2, 4\}, +>,$
- $H_3 = <\{0, 3\}, +>,$
- H4 = G.

Sub-Grupos cíclicos: Ejemplo

- $G = \langle Z10*, \times \rangle$.
 - G has only four elements: 1, 3, 7, and 9.
 - Los subgrupos cíclicos son
 - $H1 = <\{1\}, \times>,$
 - $H2 = <\{1, 9\}, \times>,$
 - H3 = G

$$1^0 \mod 10 = 1$$

$$3^0 \mod 10 = 1$$

 $3^1 \mod 10 = 3$
 $3^2 \mod 10 = 9$
 $3^3 \mod 10 = 7$

$$7^0 \mod 10 = 1$$
 $7^1 \mod 10 = 7$
 $7^2 \mod 10 = 9$
 $7^3 \mod 10 = 3$

$$9^0 \mod 10 = 1$$

 $9^1 \mod 10 = 9$

Teorema de Lagrange

- Asume que si G es un grupo, y H es un sub-grupo. Si el orden de G y H son |G| y |H|, entonces |H| divide |G|.
- $G = \langle Z_6, + \rangle$.
 - $|Z_6| = 6$
 - |H1| = 1
 - |H2| = 3
 - |H3| = 2
 - |H4| = 6
- Dado un grupo G de | G | , los ordenes de los sub-grupos potencias se determinan si los divisores de G pueden ser encontrados
- $G = \langle Z_{17}, + \rangle$.
 - $|Z_{17}| = 17$. Los divisores son 1 y 17. Tiene dos sub-grupos H1=identidad y H2=G

HOMOMORFISMO, ISOMORFISMO

- Definición 16.4:
 - Si $(G,^{\circ})$, $(H,^{*})$ son grupos y f: $G \rightarrow H$, entonces f es un homomorfismo de grupos si para todos a,b $\in G$,
 - $f(a \circ b) = f(a) * f(b)$
- Teorema 16.5
 - Sean (G,°), (H,*) grupos con neutros respectivos eg y eh. Si f:
 G→H es un homomorfismo, entonces:
 - $f(e_g) = e_h$
 - $f(a^{-1}) = [f(a)]^{-1}$ par todo a **C** G.
 - $f(a_n)=[f(a)]^n$ para todo a E G y todo n E Z.
 - f(S) es un subgrupo de H para cada subgrupo S de G.

HOMOMORFISMO, ISOMORFISMO

- Definición 16.5:
 - Si f: G→H es un homomorfismo, f es un isomorfismo si es inyectiva y sobre. En este caso, G y H son grupos isomorfos.

HOMOMORFISMO, ISOMORFISMO

- Ejemplo:
 - Sea G el grupo de números complejos {1,-1,i,-i} mediante el producto. Si $H=(Z_4,+)$, consideremos la función f: $G \rightarrow H$ dada por

$$f(1) = [0]$$

$$f(-1) = [2]$$

$$f(-1) = [2]$$
 $f(i) = [1]$ $f(-i) = [3]$

•	1	-1	i	-i
1	1	- 1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Grupo: Permutación

- Conjunto de datos: Permutaciones
- Operación: Composición: una permutación después de otra

Grupo: Permutación

- Conjunto de datos: Permutaciones
- Operación: Composición: una permutación después de otra

0	[1 2 3]	[1 3 2]	[2 1 3]	[2 3 1]	[3 1 2]	[3 2 1]
[1 2 3]	[1 2 3]	[1 3 2]	[2 1 3]	[2 3 1]	[3 1 2]	[3 2 1]
[1 3 2]	[1 3 2]	[1 2 3]	[2 3 1]	[2 1 3]	[3 2 1]	[3 1 2]
[2 1 3]	[2 1 3]	[3 1 2]	[1 2 3]	[3 2 1]	[1 3 2]	[2 3 1]
[2 3 1]	[2 3 1]	[3 2 1]	[1 3 2]	[3 1 2]	[1 2 3]	[2 1 3]
[3 1 2]	[3 1 2]	[2 1 3]	[3 2 1]	[1 2 3]	[2 3 1]	[1 3 2]
[3 2 1]	[3 2 1]	[2 3 1]	[3 1 2]	[1 3 2]	[2 1 3]	[1 2 3]

• Considere el triángulo equilátero

• Considere el triángulo equilátero

• Considere el triángulo equilátero

Movimientos rígidos del triángulo: Conservan fijo el centro y preservan la forma.

• Reflejar el triángulo a lo largo de un eje que pasa por un vértice y por el punto medio del lado opuesto.

- Sea $G = \{\Pi_0, \Pi_2, \Pi_3, r_1, r_2, r_3, \}$
- G un grupo que define el movimiento rígido $\alpha\beta$ \in G, como el movimiento obtenido de aplicar primero α y después β .

•	По	П ₁	П2	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3
Π_0						
Π_1				r_3		
Π_2						
r ₁						
r_2						
r_3						

$$\Pi_{1} \mathbf{r}_{1} \\
1 \rightarrow 3 \rightarrow 3 \\
2 \rightarrow 1 \rightarrow 2 \\
3 \rightarrow 2 \rightarrow 1$$

$$\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}$$

- Sea $G = \{\Pi_0, \Pi_2, \Pi_3, r_1, r_2, r_3, \}$
- G un grupo que define el movimiento rígido $\alpha\beta$ \in G, como el movimiento obtenido de aplicar primero α y después β .

•	По	Π ₁	П ₂	\mathbf{r}_1	\mathbf{r}_2	\mathbf{r}_3
Π_0	По	Π_1	Π_2	\mathbf{r}_1	r_2	r_3
Π_1	Π_1	Π_2	По	r_3	\mathbf{r}_1	r_2
Π_2	Π_2	По	Π_1	r_2	r_3	\mathbf{r}_1
r ₁	\mathbf{r}_1	r_2	r_3	Π_0	Π_1	Π_2
r_2	r_2	r_3	\mathbf{r}_1	Π_2	По	Π_1
r_3	r_3	\mathbf{r}_1	r_2	Π_1	Π_2	По

Elemento neutro:

Inversa:

Abeliano:

Ejercicios Grimaldi

- Ejercicios 16.1
- Ejercicios 16.2

Referencias

• Discrete and Combinatorial Matemathics. 5ta ed. Ralph P. Grimaldi. Ch. 16 Groups, Coding, Theory, and Polya's Method of enumeration

- Algebra Abstracta Primer Curso John B. Fraleigh Caps.
 2,3,4,5,6 y 7
- Cryptography and Network Security (Behrouz Forouzan)
 Mathematics of Cryptography. Ch. 4