Parciális törtekre bontás

1.

(a)
$$\int \frac{1}{x(x+2)} dx$$
, (b) $\int \frac{x-3}{(x-1)(x+1)} dx$,
(c) $\int \frac{x-5}{(x-1)(x+1)^2} dx$, (d) $\int \frac{2x-4}{(x+2)x^2} dx$
(e) $\int \frac{4}{(x+1)(x^2+1)} dx$ (f) $\int \frac{5}{(x-1)(x^2+4)} dx$.

Improprius integrál

Legyen $f:I\to \mathbf{R}$ lokálisan integrálható függvény (azaz I minden korlátos és zárt részintervallumán f Riemann-integrálható) és $F:I\to \mathbf{R}$ az f bármelyik integrálfüggvénye. Ekkor f improprius integrálja konvergens, ha léteznek és végesek a $\lim_{\inf I} F$ és $\lim_{\sup I} F$ határértékek és ekkor az improprius integrálja

$$\int_{I} f = \lim_{\sup I} F - \lim_{\inf I} F.$$

máskor divergens.

2.

(a)
$$\int_{x=0}^{1} \frac{1}{x^2} dx$$
, (b) $\int_{x=0}^{1} \frac{1}{x} dx$, (c) $\int_{x=0}^{1} \frac{1}{\sqrt{x}} dx$
(d) $\int_{x=1}^{\infty} \frac{1}{x^2} dx$, (e) $\int_{x=1}^{\infty} \frac{1}{x} dx$, (f) $\int_{x=1}^{\infty} \frac{1}{\sqrt[3]{x}} dx$
(g) $\int_{x=1}^{\infty} \frac{1}{(1+x^2)\arctan^3 x} dx$, (h) $\int_{x=2}^{\infty} \frac{1}{x \ln^4 x} dx$, (i) $\int_{x=0}^{1} \ln x dx$, (j) $\int_{x=0}^{\infty} e^{-x} \sin x dx$, (k) $\int_{x=0}^{\infty} x e^{-x} dx$, (l) $\int_{x=0}^{1} x \ln x dx$.

Improprius integrálok ekvikonvergenciája

Legyen $f, g: [a, b) \to \mathbf{R}$ $[f, g: (a, b] \to \mathbf{R}]$ két nem negatív értékű függvény, amelyek lokálisan integrálhatók és $\lim_b f/g = p > 0$ $[\lim_a f/g = p > 0]$. Ekkor f és g improprius integráljai egyszerre konvergensek vagy divergensek.

3. Konvergensek vagy sem a következő improprius integrálok?

(a)
$$\int_{0}^{1} \frac{1}{\sin x} dx$$
, (b) $\int_{1}^{\infty} \sin\left(\frac{1}{x^{2}}\right) dx$, (c) $\int_{1}^{\infty} 1 - \cos\left(\frac{1}{x}\right) dx$, (d) $\int_{0}^{1} \frac{1}{\sqrt{e^{x} - 1}} dx$, (e) $\int_{1}^{\infty} \ln\left(1 + \frac{1}{x^{2}}\right) dx$, (f) $\int_{1}^{\infty} e^{-x} dx$.