We claim:

1

2

3

2

1	1(previously presented). Process for manufacturing expanded metal
2	provided with a coating, comprising: applying the coating to a closed metal foil
3	and converting the closed metal foil into expanded metal only after applying
4	the coating.
1	2(previously presented). Process in accordance with claim 1, wherein
2	the coating is a coating that improves at least one of adhesiveness of the
3	expanded metal to an electrode material and electron conductivity on a
4	surface of the expanded metal.
1	3(previously presented). Process in accordance with claim 1, wherein
2	the coating contains at least one of graphite, another carbon material together
3	with a binder that improves the adhesiveness and one of an organic and
4	inorganic-organic polymer, which is graphitized after the application to the
5	metal.
1	4(previously presented). Process in accordance with claim 1, wherein
	the metal comprises one of copper and aluminum.
4	ше тека сотривев оне от соррег ана аштинит.
3	5(previously presented). Process in accordance with claim 1, wherein
4	the metal foil is subjected to a corona discharge surface treatment before it is
5	coated.

6(previously presented). Process in accordance with claim 1, wherein when the metal foil is converted into said expanded metal, with a short diagonal length of up to 1 mm and a long diagonal length of up to 2 mm.

7(previously presented). Process in accordance with claim 1, wherein the coating is applied by means of at least one of a printing technique, spin

1	9(withdrawn). Expanded metal provided with a coating, obtained
2	according to a process in accordance with claim 1.
1	10(withdrawn). Expanded metal provided with a coating in accordance with claim 2.
2	accordance with claim 2.
1 2	11(withdrawn). Expanded metal provided with a coating in accordance with claim 3.
1	12(currently amended). A method, comprising: The method of
2	elaim 2, further comprising
3	applying a coating to a closed metal foil, wherein the coating is a
4	coating that improves at least one of adhesiveness of the expanded
5	metal to an electrode material and electron conductivity on a surface;
6	converting the closed metal foil into expanded metal only after
7	applying the coating; and
8	collecting a current by use of said expanded metal as a current
9	collector associated with one of an anode foil and a cathode foil.
1	13(currently amended). The method of claim 12, further comprising
2	laminating together the current collector and one of in said anode foil and said
3	cathode foil.
1	14(currently amended). The method of claim 12, wherein the at
2	<u>least one said</u> anode foil and the cathode foil <u>is</u> are prepared without using a
3	plasticizing agent.

coating, rolling, application with a doctor blade, dip coating, electrostatic

manufactured according to a process in accordance with claim 1.

Expanded metal provided with a coating,

powder coating and by means of a plasma process.

8(withdrawn).

3

1

2

5	least one of adhesiveness and electron conductivity;
6	converting the closed metal foil into expanded metal only after
7	applying the coating, thereby providing a current collector;
8	laminating the expanded metal with an anode foil;
9	applying a coating to an additional closed metal foil, the coating
10	improving at least one of adhesiveness and electron conductivity;
11	converting the additional closed metal foil into expanded metal
12	only after applying the coating, thereby providing an additional current
13	collector;
14	laminating the expanded metal from the additional closed metal
15	foil with a cathode foil;
16	providing a separator foil and laminating together the current
17	collector with the anode foil, the separator foil and the current collector
18	with the cathode foil.
1	16(currently amended). The method of claim 15, wherein the
2	electrochemical cell is configured as battery is a lithium battery.
1	17(currently amended). The method of claim 16, wherein at least
2	one of said anode foil and said cathode foil is prepared without using a
3	the battery was manufactured according to a technique that does not require
4	addition of plasticizing agent and its subsequent washing out.

15(currently amended). A method for manufacturing The method

applying a coating to a closed metal foil, the coating improving at

of claim 2, further comprising using the expanded metal in an electrochemical

cell , especially a battery, comprising:

1

2

3