

In [57]: In [58]:	<pre>Prestatiematrix plot_confusion_matrix(cls1, x_test, y_test) C:\Users\Sener\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.</pre>
Out[58]:	warnings.warn(msg, category=FutureWarning)
	-40 -30
	M - 2 45 M - 10 Predicted label
<pre>In [59]: Out[59]:</pre>	<pre>#Prestatiematrix plot_confusion_matrix(cls1, x_train, y_train) C:\Users\Sener\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarning: Function plot_confus ion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator. warnings.warn(msg, category=FutureWarning) <sklearn.metricsplot.confusion_matrix.confusionmatrixdisplay 0x1ef6f450ac0="" at=""></sklearn.metricsplot.confusion_matrix.confusionmatrixdisplay></pre>
	B - 290 0 - 200
	M - 0 165
In [60]:	#Uit de verschillende prestatiemaxtrixen, is te zien dat er een duidelijk verschil is tussen de aantal waardes #Zichtbaar is, dat de testdata beschikt over meerdere fouten ten opzichte van de train data. Dat is te zien in #Dit is opvallend, omdat de train data over meer gegevens beschikt, maar minder waardes in de paarse vlakken he #We hebben voor deze prestatiematrix gekozen (random forrest), omdat we al onderzocht hadden dat een random for #Een RFC kan goed voorspellen of het schatten van kansen op gebeurtenissen, dat is precies wat we doen in deze
In [61]: In [62]:	<pre>[[65 2] [2 45]] #K-FOLD analyse from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4) model = DecisionTreeClassifier()</pre>
In [63]: In [64]:	<pre>model.fit(X_train, y_train) result = model.score(X_test, y_test) print(result) 0.9035087719298246 from sklearn.model_selection import KFold model=DecisionTreeClassifier() kfold_validation=KFold(10) import numpy as np from sklearn.model_selection import cross_val_score results=cross_val_score(model, X, y, cv=kfold_validation)</pre>
In [65]:	print(results) print(np.mean(results)) [0.94736842 0.9122807 0.87719298 0.94736842 0.89473684 0.96491228 0.9122807 0.92982456 0.96491228 0.94642857] 0.9297305764411028 #Voor de K-fold analyse hebben we voor K de waarde 10 gegeven, omdat we deze waarde vaak terug zagen komen bij #Er is een duidelijk verschil te zien in de test en train data met dezelfde waarde voor K. #Testwaarde = 90,6%, Trainwaarde = 93,7% Underfit en overfit model
In [66]: In [67]:	<pre>from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) #Hier laten we de zien hoe precies het model is print('Accuracy KNN(1): ', knn.score(X_test, y_test)) Accuracy KNN(1): 0.8771929824561403</pre>
	<pre>test_accuracy = np.empty(len(neighbors)) # Loop verschillende waardes van K for i, k in enumerate(neighbors): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) train_accuracy[i] = knn.score(X_train, y_train) test_accuracy[i] = knn.score(X_test, y_test) plt.figure(figsize=(12,7)) sns.set_context('notebook', font_scale=1.5) plt.title('Curve Test / Train data met over/under fitting', size=20) plt.plot(neighbors, test_accuracy, marker ='o', label = 'Testing Accuracy')</pre>
	plt.plot(neighbors, train_accuracy, marker ='o', label = 'Training Accuracy') plt.legend(prop={'size':15}) plt.xlabel('M/B', size=15) plt.ylabel('Accuracy', size=15) plt.annotate('Over-fitting', xy=(0.5, 0.94), xytext=(0.3, 0.935), size=15, color='red') plt.annotate('Under-fitting', xy=(0.5, 0.94), xytext=(18, 0.93), size=15, color='red') plt.xticks(np.arange(min(neighbors), max(neighbors)+1, 1.0)); Curve Test / Train data met over/under fitting 1.00 Testing Accuracy Training Accuracy Training Accuracy
	0.98 - 0.96 - Over-fitting Under-fitting 0.92 - Over-fitting
In [68]:	#Dit gaat over hoe precies de set is.
In [69]: In [70]:	<pre>rf_grid = {"n_estimators":np.arange(10, 1000, 20),</pre>
In [71]:	<pre>"min_samples_leaf":np.arange(1, 20, 2)} random_rf = RandomizedSearchCV(RandomForestClassifier(),</pre>
In [73]:	<pre>print(f"Test score: {random_rf.score(X_test, y_test)}") Train score: 0.9868131868131869 Test score: 0.9385964912280702 #Er is gekozen voor deze parameters, omdat het verschil in test en train data nu goed wordt weergegeven. #Hier is de score per set af te lezen, er is een significant verschil in beide sets, met een percentageverschil random_rf.best_params_ {'n_estimators': 70, 'min_samples_split': 8, 'min_samples_leaf': 3, 'min_samples_leaf': 3, 'min_samples_leaf': 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</pre>
	<pre>'max_features': 'log2', 'max_depth': 5} # Use parameters for the best model best_rf = RandomForestClassifier() best_rf.set_params(**random_rf.best_params_) # Fit best model best_rf.fit(x_train, y_train) # Score best model best_rf.score(x_test, y_test) 0.6403508771929824</pre>
Out[74]: In [75]:	