Введение в математический анализ

Тюленев Александр Иванович (Конспектировал Иван-Чай) 12 лекция

Содержание

- 1 Предел композиции
- 2 Теорема об обратной функции
- 3 Непрерывность элементарных функций и первый замечательный предел

1 Предел композиции

Th (Предел композиции 2). *Пусть* $f: U_{\sigma_0} \to \mathbb{R}, y: \dot{U}_{\delta_0}(x_0) \to U_{\sigma_0}(y_0)$. *Пусть* f непрерывна в y_0 $u \lim_{x \to x_0} y(x) = y_0$ Тогда $\exists \lim_{x \to x_0} f_0 y(x) = \lim_{x \to x_0} f(y(x)) = f(y_0)$

Доказательство. .

$$\begin{cases} \forall \varepsilon > 0 & \exists \sigma(\varepsilon) \in (0, \delta_0) & \forall y \in U_{\delta(\varepsilon)}(y_0) \hookrightarrow |f(y) - f(y_0)| < \varepsilon \\ \forall \sigma > 0 & \exists \delta(\varepsilon) \in (0, \delta_0) & \forall x \in U_{\delta(\varepsilon)}(x_0) \hookrightarrow |y(x) - y_0| < \varepsilon \end{cases}$$

$$\forall \varepsilon > 0 \quad \exists \widetilde{\delta} = \delta(\sigma(\varepsilon)) \in (0, \delta_0).$$

$$\forall x \in \dot{U}$$
.

Там дальше было надо дотехать будет

2 Теорема об обратной функции

Lem 1. $f:X \to Y$ - обратима на $X \Leftrightarrow f$ - сюрьекция $\wedge f$ - интекция.

 \Leftarrow . Пусть f - инъекция и сюръекция.

Рассмотрим $y \in Y$, т.к. f - сюрьекция.

Но т.к. f - инъекция
$$x$$
 - единственный $\Rightarrow f^{-1}(y) = x$ (единств) $\exists x \in X : f(x) = y$

 \Rightarrow . Т.к. f обратимо, то $\exists f^{-1}: Y \to X \Rightarrow f$ – сюрьекция.

$$\forall y \in Y \quad \exists x = f^{-1}(y) : f(f^{-1}(y)) = f(x) = y.$$

Покажем, что f - инъекция. Неуспел затехать, сори

Lem 2. $\Pi ycmb\ X \subset \mathbb{R}, X \neq \emptyset$.

 $\Pi y cm \circ f: X \to \mathbb{R}$ - строго монотонна

Тогда f - обратима и f^{-1} строго возрастает, если f возрастает, иначе убывает. если f возрастает, иначе убывает.

Доказательство. В силу предыдущей доказаной леммы достаточно доказать, что $f: X \to f(x)$ - инъективно, но это следует из строгой монотонности.

Рассморим случай строгого возрастания на X, т.к. случай убывания аналогичен. $f^{-1}:f(x)\to X$ сущ в силу инъективности f. Покажем, что она строго возрастает.

 $y_1,y_2\in f(x)$ Пусть $y_2>y_1$ покажем, что $f^{-1}(y_2)>f^{-1}(y_1)$. Предположим противное. Т.к. f строго возрастает $y_2=f(f^{-1}(y_2))\leq f(f^{-1}(y_1))=y_1\Rightarrow y_2< y_1$

Th (Теорема об обратной функции). Пусть $f \in C([a,b])$ - строго монотонна на [a,b]. Тогда $\exists f^{-1} \in C([m,M])$ имеет характер монотонности тот же, что u f. $m = \min_{x \in [a,b]} f(x)$, $M = \max_{x \in [a,b]} f(x)$

Доказательство. Тот факт, что $\exists f^{-1}$ имеет тот же характер монотонности, что и f вытекает из предыдущей леммы. Осталось показать непрерывность f^{-1} в любой точке $y \in [m, M]$.

Рассмотрим случай $y_0 \in (m, M)$

Т.к. $y_0 \in (m, M)$, то $x_0 \in (a, b)$

Фиксируем $\varepsilon > 0 : U_{\varepsilon}(x_0) \in (a, b)$

Рассмотрим отрезок $[x_0-\varepsilon,x_0+\varepsilon]\subset (a,b)$. f - строго возрастает и непрерывно $\Rightarrow f$ - осуществляет биекцию $[x_0-\varepsilon,x_0+\varepsilon]$ на $[f(x_0-\varepsilon),f(x_0+\varepsilon)]$. $\delta(\varepsilon)=$

 $min\{f(x_0)-f(x_0-\varepsilon),f(x_0+\varepsilon)-f(x_0)\}$. Рассмотрим интервал $(f(x_0)-\delta(\varepsilon),f(x_0)+\delta(\varepsilon))\subset (f(x_0-\varepsilon),f(x_0+\varepsilon))$

$$(f(x_0) - \delta(\varepsilon), f(x_0) + \delta(\varepsilon)) \subset (f(x_0 - \varepsilon), f(x_0 + \varepsilon)).$$

1

$$\forall y \in (f(x_0) - \delta(\varepsilon), f(x_0) + \delta(\varepsilon)) \hookrightarrow f^{-1}(y) \in U_{\varepsilon}(x_0)) = U_{\varepsilon}(f^{-1}(y_0)).$$

Cl .1. Пусть $f \in C((a,b))$ и строго монотонна. Тогда $\exists f^{-1} \in C((m,M))$ и строго монотонна с тем же характером, что и f

$$m = \inf_{x \in (a,b)} f(x) \in \overline{\mathbb{R}}.$$

$$M = \sup_{x \in (a,b)} f(x) \in \overline{\mathbb{R}}.$$

 $T.\kappa.\ f$ - строго монотонна, то $\exists f^{-1}$ имеющая тот же характер монотонности. Покажем, что f((a,b))=(m,M)

В силу обобщения о промежуточном значении $(m,M) \subset f((a,b)),$ но m и M не принимаются.

Действительно, если $\exists x^* \in (a,b): M = f(x^*) \Rightarrow \exists x^{**} \in (x^*,b): f(x^{**}) > f(x^*) = M$ - противоречие.

Отсюда $f((a,b)) \subset (m,M) \Rightarrow f((a,b)) = (m,M)$. Далее непрерывность доказывается как в предыдущей теореме.

3 Непрерывность элементарных функций и первый замечательный предел

Def 1. Длина кривой - супремум множества длин всех вписаных в нее ломаных, но мы этого пока не знаем.

П

Lem 3. $\sin x < x < \operatorname{tg} x \quad \forall \pi \in (0, \frac{\pi}{2}).$

Доказательство. Ну там кружочки, треугольнички порисуйте и методом площадей, я не в силах это затехать. \Box

Тh (Первый замечательный предел).

$$\exists \lim_{x \to 0} \frac{\sin x}{x} = 0.$$

Доказательство. В силу принципа локализации рассмотрим на $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\setminus\{0\}$ Для x>0:

$$\frac{\sin x}{\operatorname{tg} x} < \frac{\sin x}{x} < 1.$$

$$\downarrow \downarrow$$

$$\cos x < \frac{\sin x}{x} < 1.$$

Для в силу четности: $\cos x < \frac{\sin x}{x} < 1$ на $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\setminus\{0\} \Rightarrow \exists \lim_{x\to x_0} \frac{\sin x}{x} = 1$ \square

Th 1. $\sin x, \cos x$ - непрерывны.

Доказательство. Докажем для $\sin x$, т.к. $\cos x = \sin \left(x + \frac{\pi}{2} \right)$

$$\left|\sin x_1 - \sin x_2\right| = \left|2\sin\frac{x_1 - x_2}{2}\cos\frac{x_1 + x_2}{2}\right| \le 2\left|\sin\frac{x_1 - x_2}{2}\right| \le 2\frac{\left|x_1 - x_2\right|}{2} = \left|x_1 - x_2\right|.$$