Elementary logic exercises (Prep Camp 2020)

Sebastiano Tronto (uni.lu)

September 6, 2020

1 Logical operations

Exercise 1.1. Determine if the following statement are true or false:

- 1. "Today is Tuesday or Germany has more inhabitants than Luxembourg"
- 2. "7 is odd and 2 + 2 = 5"
- 3. Every number of the form $2^{2^n} + 1$, for n = 1, 2, 3..., is prime.

Exercise 1.2. What is the negation of the sentence "I payed attention in class and I did not do my homework"?

Exercise 1.3. Simplify the following logical expressions using the properties of logical operations (where A, B and C are statements):

- 1. $A \wedge (A \vee B)$
- 2. $A \vee (B \wedge A)$
- 3. $(A \lor B) \land \neg A$
- 4. $A \vee (\neg A \wedge B)$
- 5. $(\neg (A \lor \neg B)) \land ((A \lor C) \land \neg C)$

2 Implication

Exercise 2.1. Fill in the following truth table:

A	B	C	$ \neg (A \implies B) $	$(A \Longrightarrow B) \Longrightarrow C$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Exercise 2.2 (Transitivity). Prove that the following statement is true for any statements A, B and C:

$$((A \Longrightarrow B) \land (B \Longrightarrow C)) \Longrightarrow (A \Longrightarrow C)$$

Exercise 2.3. What is the contrapositive of "If this table is not reserved, we sit here"?

3 Quantifiers

Exercise 3.1. There is another quantifier that we did not cover in the lecture, namely \exists ! (read "there exists exactly one"). For example, the sentence "there exists exactly one natural number x such that x+2=5" can be written in symbols as " \exists ! $x \in \mathbb{N}$, x+2=5. In this exercise, your task is to give a formal definition of this quantifier using the logical symbols that we have defined in class. In particular, you will need the following:

- the universal (\forall) and existential (\exists) quantifier
- \bullet the conjunction \wedge
- the implication \Longrightarrow

Moreover, you will need the equality symbol = between two elements of a set (if a and b are two elements of the same set, "a = b" is a mathematical statement and it is **true** if and only if they are the same element).

Warning: your definition must depend on a set S and on a "variable statement" A(x), as the existential and universal quantifiers.

4 Proofs

Exercise 4.1. Is the following statement true or false? Give a proof of your answer.

$$\forall n \in \mathbb{N}, n^2 - 4n + 5 > n$$

Exercise 4.2. Do the last point of Exercise 1.1 again, but this time give a proof of your answer.