PHYSICS

1)	2.5 MHz આવૃત્તિવાળા કેરિયર 15 V અને લઘુત્તમ મૂલ્ય 10 V	તરંગનું મહત્તમ મૂલ્ય છે.	
	(A) 30%	(B) 20%	1/11
	(C) 10%	(D) 40%	

- 2) વ્યતિકરણ શલાકાઓ માટે નીચેનામાં શું ખોટું છે ?
 - (A) શલાકાઓ તરંગઅગ્રના મર્યાદિત ભાગને લીધે મળે છે.
 - (B) બધી જ પ્રકાશિત શલાકાઓ સમાન પ્રકાશિત હોય છે.
 - (C) બે ક્રમિક શલાકાઓ વચ્ચેનું અંતર અચળ હોય છે.
 - (D) શલાકાઓ સુસંબધ્ધ ઉદ્દગમોને લીધે મળે છે.
 - 3) અશુધ્ધ પાણીમાં ગતિ કરતું પ્રકાશનું કિરણ અશુધ્ધ પાણીમાં ડુબાડેલી વ્લાસ પ્લેટ પર આપાત થાય છે જ્યારે આપાતકોણ 51° નો બને છે ત્યારે પરાવર્તિત કિરણ સંપૂંણ તલઘુવીભૂત બને છે તો વ્લાસ (કાચ)નો વક્કીભવનાંક કેટલો ? અશુધ્ધ પાણીનો વક્કીભવનાંક = 1.4 લો.(tan 51° = 1.235)
 - (A) 1.64

(B) 1.34

(C) 1.53

(D) 1.73

- 4) 0.15 m² પૃષ્ઠ ક્ષેત્રફળ ધરાવતા એક ગૂંચળાના આંટાઓની સંખ્યા 200 છે ગૂંચળામાં પૃષ્ઠ સાથે સંકળાયેલ ગૂંચળાના સમતલને લંબ ચુંબકીયક્ષેત્રનું મૂલ્ય 0.2 T થી બદલાઈને 0.4s માં 0.6 T થતું હોય તો ગૂંચળામાં પ્રેરિત થતું સરેરાશ emf ______ V હશે.
 - (A) 45

(B) 30

(C) 15

- (D) 60
- એક સાઈન વિધેય અનુસાર બદલાતો A.C. પ્રવાહ 10 Ω અવરોધમાંથી પસાર કરવામાં આવે છે
 જો પ્રવાહનું મહત્તમ મૂલ્ય 2A હોય તો અવરોધમાં વ્યય થતો પાવર _____ W હશે.
 - (A) 30

(B) 20

(C) 10

- (D) 40
- 6) નીચેનામાંથી કયા ગેટનો આઉટપૂટ 1 થશે ?

	(A)	0.93	(B)	0.98	
	(C)	0.99	(D)	0.95	
		ja.			
8)	એક રે	ડિયો–એક્ટિવ તત્ત્વનો અર્ધઆયુ 10 hr હે	ોય તો	તેનો સરેરાશ જીવ <mark>નકાળ</mark>	= hr.
	(A)	1.44	(B)	6.93	
	(C)	14.4	(D)	0.693	
					11. (2)
9)		KeV ઉર્જા ધરાવતા ફોટોનની તરંગલંબાઈ		હશે.	
	(h=	$= 6.625 \times 10^{-34} \text{ J-s}, c = 3 \times 10^8 \text{ ms}$	⁻¹ , 1 e	$V = 1.6 \times 10^{-19} \text{ J}$).	
	(A)	35 × 10 ⁻¹² m	(B)	35 Å	
	(C)	3.5 nm	(D)	3.5 Å	
		10			6 352
10)		હક, વાહક અને અર્ધવાહક પદાર્થોની બેન્ડગે ગેપ વચ્ચેનો સંબંધ	ાપ અનુ	ક્રમે E _{g1} , E _{g2} અને E	્ર _ફ ુ છે આ ત્રણેય
	(A)	$E_{g1} > E_{g2} < E_{g3}$	(B)	$E_{g1} > E_{g2} > E_{g3}$	

(D) $E_{g1} < E_{g2} < E_{g3}$

7) એક ટ્રાન્ઝિસ્ટરનો β = 19 છે તો તેનો α = _____.

(C) $E_{g1} < E_{g2} > E_{g3}$

14)	અણુન	ી ધ્રુવીયતા (polariz	zabity) નો એક	મ	છે.			
	(A)	$C^2m^1N^{-1}$						
	(B)	$C^{-2}m^{-1}N^{1}$				19.4	17	
	(C)	$C^{-2}m^1N^{-1}$	(1)				1.	
	(D)	$C^2m^{-1}N^{-1}$						
		1			40.			(R
15)	વિદ્યુત	ં ાડાઈપોલની અ ક્ષ પરન	તા અને વિષુવરે ખ	ા પરના કોઈ પ	ણ બિંદુ પાસે		<u>.</u> .	
	(A)	બંને પર V ≠ 0	r Verker			135		
	(B)	બંને પર V=0			-16.7 (A.).	2 (1		į.
	(C)	અક્ષ પર $V=0$ અ	ને વિષુવરેખા પર	V ≠ 0	e gi ya		i.	
	(D)	અક્ષ પર V ≠ 0 ચ	નને વિષુવરેખા પ	V = 0	V			
						125	134	
16)	એક	વાહક તારનું તાપમાન	ન વધારવામાં અ	ાવે તો તેની વ	ાહકતા અને વ	ત્રવરોધક ત	ાનો ગુણ	ગોત્તર
								(t:
	(A)	અચળ રહે						
	(B)	વધે						
	(C)	ઘટે				4.00	1.11	

(D) વધે અથવા ઘટે

17)	 તમને 10 અવરોધો આપેલા છે દરેકનો અવરોધ 2Ω છે પ્રથમ તેમને શક્ય લધુત્તમ અવરોધ મેળવવા માટે જોડવામાં આવે છે અને ત્યાર બાદ તેમને શક્ય મહત્તમ અવરોધ મેળવવા માટે જોડવામાં આવે છે આ રીતે મેળવેલ મહત્તમ અને લઘુત્તમ અવરોધોનો ગુણોત્તર છે. 					
	·(A)	100	(B)	10		
	(C)	2.5	(D)	25		
18)	મોબિ	લિટીનું પારિમાણિક સૂત્ર				
	(A)	$M^{-1}L^1T^2A^1$	(B)	M ¹ L ⁰ T ⁻² A ⁻¹		
	(C)	$M^{1}L^{-1}T^{-2}A^{-1}$	(D)	$M^{-1}L^0T^2A^1$		
19)	9.1 × 10 ⁻³¹ Kg દળ અને 1.6 × 10 ⁻¹⁹ C વીજભાર તથા 10 ⁶ ms ⁻¹ નો વેગ ધરાવતો ઈલેક્ટ્રોન ચુંબકીય ક્ષેત્ર ધરાવતા વિસ્તારમાં પ્રવેશે છે જો તેના વર્તુળમાર્ગની ત્રિજ્યા 0.2m હોય, તો ચુંબકીય ક્ષેત્રની તીવ્રતા × 10 ⁻⁵ T હશે.					
	(A)	14.4	(B)	5.65		
	(C)	2.84	(D)	1.32		
20)	 50Ω અવરોધ ધરાવતા ગેલ્વેનોમિટરમાંથી 10 મિલિએમ્પિયર પ્રવાહ પસાર કરતા તે પૂર્ણસ્કેલ આવર્તન દર્શાવે છે આ ગેલ્વેનોમિટરને 100 V ક્ષમતાવાળા વોલ્ટમિટરમાં ફેરવવા માટે તેની સાથે શ્રેણીમાં ઓહમ મૂલ્યનો અવરોધ જોડવામાં આવે છે. 					
	(A)	9950	(B)	10025		
	(C)	10000	(D)	9975		
				50 .62 555 3,		

21)	$5A$ જેટલો વિદ્યુતપ્રવાહનું વહન કરતા બે અતિ લાંબા સુરેખ સમાંતર તારો વચ્ચેનું અંતર $1m$ છે જે વિદ્યુત પ્રવાહો એક જ દિશામાં વહેતા હોય તો તેમની એકમ લંબાઈ દીઠ તેમના પર લાગતું વિદ્યુતબળ N/m . ($\mu_0 = 4 \pi \times 10^{-7} \text{ SI}$)					
	(A) 5 × 10 ⁻⁵ , আর্ডর্থপু	(B) 5 × 10 ⁻⁶ , આકર્ષણ				
	(C) 5 × 10⁻⁵,અપાકર્ષણ	(D) 5 × 10 ⁻⁶ , અપાકર્ ષણ				
22)		કતારમાંથી I જેટલો વિદ્યુત પ્રવાહ પસાર થઈ રહ્યો છે i a <r) b="" td="" ~<="" ક્ષેત્રની="" ચુંબકીય="" તિવ્રતા=""><td></td></r)>				
	(A) a ²	(B) $\frac{1}{a^2}$				
	(C) 1/a	(D) a				
23)	જ્યારે એક પદાર્થને અનિયમિત ચુંબકીય (નબળુ) પરિણામી બળ અનુભવે છે તો	ક્ષેત્રમાં મૂકવામાં આવે ત્યારે તે પ્રબળ ચુંબકીય ક્ષેત્ર તરફ તે પદાર્થ છે.				
	(A) ફેરોમેગ્રેટિક	(B) ડાયામેમ્રેટિક				
	(C) પેરામેગ્રેટિક	(D) આમાંથી એક પણ નહીં				
24)	B,, B,, અને B વચ્ચેનો સાચો સંબંધ _	- Konsu - S				
	$(A) B = \sqrt{B_h^2 + B_v^2}$	(B) $B = B_{\mu} \cdot B_{\nu}$				
	(C) $B = \frac{B_v}{B_h}$	$(D) B = \frac{B_h}{B_v}$				

	પાવર છે.	
	(A) $\frac{1}{\sqrt{f_1 f_2}}$	$(B) \frac{f_1 + f_2}{2}$
	(C) $\frac{f_1 f_2}{f_1 + f_2}$	(D) $\frac{f_1 + f_2}{f_1 f_2}$
	31 38	
26)		શની તરંગલંબાઈ 8000 Å થી ઘટાડી 4000 Å કરતા પ્રકેરિ રેત પ્રકાશની તીવ્રતા કરતા ગણી થશે.
	(A) 2	(B) 4
	(A) 2 (C) 16	(B) 4 (D) 8
27)	(C) 16	
27)	(C) 16 1.6 વક્કીભવનાંક ધરાવતા એક	(D) 8
27)	(C) 16 1.6 વક્કીભવનાંક ધરાવતા એક પ્રિઝમકોણ છે.	(D) 8 - નાના પ્રિઝમકોણવાળા પ્રિઝમ વડે 3.6° વિચલન મળતું હોય, લ
27)	(C) 16 1.6 વક્કીભવનાંક ધરાવતા એક પ્રિઝમકોણ છે. (A) 7° (C) 5°	(D) 8 નાના પ્રિઝમકોણવાળા પ્રિઝમ વડે 3.6° વિચલન મળતું હોય, લ (B) 6°
	(C) 16 1.6 વક્કીભવનાંક ઘરાવતા એક પ્રિઝમકોણ છે. (A) 7° (C) 5°	(D) 8 નાના પ્રિઝમકોણવાળા પ્રિઝમ વડે 3.6° વિચલન મળતું હોય, લ (B) 6° (D) 8° - બર્હિગોળ લેન્સની વક્કસપાટીની વક્કતા ત્રિજ્યા 60 cm. હે

33)	એક કે હશે.	ત્પેસિટર C ને D.C. પ્રાપ્તિસ્થાન સાથે જો	ડેલ છે	તો કેપેસિટરનું રિએક
	(A)	શૂન્ય ાત કરા કરા	(B)	ઊંચો
	(C)	નીચો	(D)	અનંત
34)	$\mu_0 \in$	₀ નું પારિમાણિક સૂત્ર છે.		000
	(A)	$M^0L^{-2}T^2$	(B)	M ⁰ L ² T ⁻²
	(C)	M ⁰ L ¹ T ⁻¹	(D)	M ⁰ L ⁻¹ T ¹
35)	યોગ્ય	રીતે કોલમ I સાથે કોલમ II <mark>જોડો.</mark>		
57	કોલમ	I	કોલમ	II
	(i)	વ્યતિકરણ	(P)	સુસંબધ્ધ ઉદ્દ્ગમો
	(ii)	બ્રુસ્ટરનો નિયમ	(Q)	$\mu = \frac{1}{\sin C}$
	(iii)	માલસનો નિયમ	(R)	$\mu = \tan \theta_p$
	(iv)	પૂર્ણ આંતરિક પરાવર્તન	(S)	$I = I_0 \cos^2 \theta$
	(A)	$i \rightarrow P, ii \rightarrow S, iii \rightarrow R, iv \rightarrow Q$		
	(B)	$i \rightarrow P$, $ii \rightarrow R$, $iii \rightarrow S$, $iv \rightarrow Q$		
	(C)	$i \rightarrow Q$, $ii \rightarrow S$, $iii \rightarrow R$, $iv \rightarrow P$		
	(D)	$i \rightarrow R$, $ii \rightarrow Q$, $iii \rightarrow S$, $iv \rightarrow P$		

36)	જુદા જુદા વિકિરણોની આવૃતિઓ	. નીચે મુજબ છે.	· /- (
	$f_{\scriptscriptstyle u}$ $ ightarrow$ દશ્ય પ્રકાશ		•
	$f_r ightarrow$ રેડિયો તરંગો		i ya
	$f_{ extsf{uv}} ightarrow$ અલ્ટ્રાવાયોલેટ તરંગો		11.
	તો આપેલ વિકલ્પો પૈકી કયો વિક	કલ્પ સાચો છે ?	
	(A) $f_{UV} < f_{v} < f_{r}$	(B) $f_r < f_v < f_{UV}$	
	(C) $f_{\nu} < f_{r} < f_{\text{UV}}$	(D) $f_{\text{UV}} < f_r < f_v$	
37)	લાક્ષણિક X-ray ની તરંગલંબાઇ	ઈ ટાર્ગેટની કઈ લાક્ષણિકતા પર આધાર રાખે છે ?	
	(A) A	(B) Z	
	(C) ગલનબિંદુ	(D) આપેલ બધા	915
38)	ન્યૂક્લિયર વિખંડન પ્રક્રિયામાં ઉત	ત્સર્જાતા ઝડપી ન્યૂટ્રોનની ઉર્જા લગભગ	_ હોય છે
	(A) 2 MeV	(B) 2 KeV	
	(C) 10 MeV	(D) 20 MeV	

39) રેડિયો એક્ટિવ રૂપાંતરણ

$${}_z^{\Lambda}X \xrightarrow{\rho^{\Gamma}} {}_{Z+1}^{\Lambda}X_1 \xrightarrow{} {}_{Z+2}^{\Lambda}X_2 \xrightarrow{} {}_z^{\Lambda-4}X_3 \xrightarrow{} {}_{Z+1}^{\Lambda-4}X_4$$

માં કયા રેડિયો–એક્ટિવ વિકિરણ ક્રમશઃ ઉત્સર્જન પામે છે ?

- (A) β^- , β^- , β^- , α
- (B) β^- , β^- , β^+ , α
- (C) β^- , β^- , α , α
- (D) β̄, β̄, α, β̄
- 40) CE ટ્રાન્ઝિસ્ટર એમ્પ્લિફાયરમાં કલેક્ટર<mark>-જં</mark>ક્શન ____ બાયસ અને એમિટર જંક્શન ____ બાયસ સ્થિતિમાં હોય છે.
 - (A) રિવર્સ, રિવર્સ

(B) ફોરવર્ડ, ફોરવર્ડ

(C) રિવર્સ, ફોરવર્ડ

(D) ફોરવર્ડ, રિવર્સ