

نام آزمون: ریاضی ۱فصل ۴

زمان برگزاری: ۳۶ دقیقه

کدام است؟
$$\left|rac{|x-1|}{ au}+1
ight| \leq 1$$
 کدام است؟

 $[-1\circ, F]$

[-۲,۴]

 $(-\infty, \mathbf{f}]$

 $[-\mathfrak{r},\mathfrak{r}]$

اگر $|\mathbf{r}-\mathbf{r}| = |rac{\mathsf{r} \cdot \mathbf{r}}{\mathsf{w}} - \mathbf{r}|$ باشد، مجموعهٔ همهٔ جوابهای نامعادلهٔ ۴ $|\mathbf{r}-\mathbf{r}|$ کدام است؟

[-7,11]

[-1,11]

[0,11]

 $[-\mathsf{r},\mathsf{l}\,ullet]$

در حل معادلهٔ $\mathfrak{a}=\mathfrak{a}=x^{\mathsf{r}}+\mathfrak{s}x^{\mathsf{r}}+\mathfrak{s}$ به روش مربع کامل، از چه عددی جذر گرفته میشود؟ $oldsymbol{\mathbb{T}}$

184 E

188

1×4 P

به کدام صورت است؟ $rac{\mathsf{r}x-\mathsf{r}}{x-1}< rac{\mathsf{r}}{x-1}$ مجموعه جواب نامعادلهٔ ۳

x<-۶ (۴)

x> f (P) $\mathbb{R}-[- extsf{f}, extsf{f}]$ (P) $\mathbb{R}-[- extsf{f}, extsf{f}]$ (1)

به مورت بازه، کدام است؟ $rac{{\sf v}x-{\sf A}}{x^{\sf Y}-x-{\sf Y}}>rac{x}{x-{\sf Y}}$ ، به مورت بازه، کدام است؟ Δ

(-1, 1) \bigcirc $(-1, 1) \cup (1, 1)$ \bigcirc

 (r,r) $(-\mathsf{r},\mathsf{r})\cup(\mathsf{r},\mathsf{r})$ (r,r)

ج الله اعداد طبیعی که فاصلهٔ جذر آنها از عدد ۱۶، کمتر از یک واحد است، کدام است؟

17 (F)

۶۷ (۳)

80 (Y)

۶۳ (۱)

کف اتاقی به ابعاد ۵imes متر، یک قالی به مساحت ۱۲ متر مربع پهن شده است. اگر فاصلهٔ لبههای قالی تا دیوار $oldsymbol{(V)}$ یکسان باشد، این فاصله چقدر است؟

1 P

1 (1)

در بازهٔ (a,b) منفی است، حداکثر مقدار $P=(x^{m{\epsilon}}-x^{m{ au}}+x^{m{ au}}-x)(x^{m{\epsilon}}+m{ au})$ کدام $m{\Lambda}$

است؟

۳ (۴)

4 (4)

۲

۲ (۳)

1 (1)

۵٫۵

معادلهٔ درجه دوم au= au + (m-1)x دارای یک ریشهٔ مضاعف است. مجموع مقادیر ممکن برای $oldsymbol{\P}$

کدام است؟ m

18 (4)

14 (4)

18 (Y)

17 (1)

بهازای چه محدودهای از m نمودار سهمی $x+y=mx^{\mathsf{r}}+ax+\mathsf{r}$ بهازای هر مقدار x، پایین نمودار خط $y=mx^{\mathsf{r}}+ax+\mathsf{r}$

است؟ y=x+۲

m هيچمقدار \mathfrak{P}

 $m < {}_{ullet}$

 $\circ < m < \mathsf{f}$

 $m > \mathfrak{r}$

اگر تعیین علامت عبارت $a\cdot b$ کدام است؛ $A=x^{\mathsf{r}}+ax+b$ کدام است؛ آگر تعیین علامت عبارت

A (Y)

-18 (1)

-A (F)

18 (4)

اگر جدول زیر برای عبارت $P(x)=(ax+ extsf{q})(x^{ extsf{r}}+x+ extsf{1})$ اگر جدول زیر برای عبارت $P(x)=(ax+ extsf{q})$

 $\frac{|\mathbf{r} - \mathbf{x}| - 1}{|\mathbf{r}(\mathbf{x})| - |\mathbf{r}|} \qquad \mathbf{r}$

-9 (P)

-m (Y)

9 (1)

و ax+b $B=rac{(b^{ t r}-x)({ t r}x+{ t 1})}{ax+b}$ و $A=({ t r}x+{ t 1})(x-{ t r})$ جدول تعیین علامت کاملًا $A=({ t r}x+{ t 1})(x-{ t r})$

یکسانی داشته باشند، حاصل a+b کدام است؟

-r (F)

۴

-r (P)

۲ (۱)

به ازای چه مقادیری از a، سهمی به معادلهٔ x=(a-1)x+1+y=(a-1)x+1 به ازای چه مقادیری از aناحیهٔ اول محورهای y=(a-1)x+1+y=1مختصات عبور نمی کند؟

ØF

 $(-\infty, 1)$

 $(-\infty, \circ]$

 $[\circ, +\infty)$

اگر رأس یک سهمی روی نیمساز ناحیهٔ اول باشد و محور xها را در نقطههایی به طول - و - قطع کند، آنگاه - اگر رأس یک سهمی روی نیمساز ناحیهٔ اول باشد و محور این سهمی محور yها را در نقطه ای با کدام عرض قطع می کند؟

<u>س</u> س

-r (F)

۳

 $-\frac{\kappa}{2}$

ماس باشد و محور xها را در $x=x^{\mathsf{r}}-\mathsf{A}$ قطع کند، $y=x^{\mathsf{r}}-\mathsf{A}$ ها را در $x=x^{\mathsf{r}}-\mathsf{A}$ قطع کند،

کدام می تواند باشد؟ a+c ک

۱۳ (۴)

17 (m)

11 (Y)

۴

-18 (4)

اگر جدول تعیین علامت عبارت $P(x)=rac{bx(x-a)^{\mathsf{r}}}{ax^{\mathsf{r}}+bx+c}$ به صورت زیر باشد، آنگاه مجموعهٔ مقادیر ممکن $\frac{x -1 \circ y}{p(x) + + \circ - \circ -}$ برای b کدام است؟

$$\{\mathbf{r}, -\mathbf{r}\}$$
 (\mathbf{r}) $\{-\mathbf{r}\}$ (\mathbf{r})

m در ناحیهٔ چهارم دستگاه مختصات باشد، حدود $y=mx^{ extsf{r}}+ extsf{r}\sqrt{ extsf{r}x+m+ extsf{r}}$ اگر بالاترین نقطهٔ سهمی کدام است؟

است؟ حاصل
$$\sqrt{r} - \sqrt{r} = \sqrt{r} \sqrt{r} + \sqrt{r}$$
 کدام است؟

{ } **() **

1 (1)

۵ (۱)

$$x^{ extsf{ iny T}} + extsf{ iny T} x^{ extsf{ iny T}} - x - extsf{ iny T}$$

در چند نقطه تغییر علامت می دهد؟
$$P=rac{x^{ extsf{ iny P}}+ extsf{ iny X^{ extsf{ iny P}}-x- extsf{ iny Y}}{x^{ extsf{ iny P}}+x- extsf{ iny Y}}$$
عبارت

٣

روی خط
$$y=\mathsf{r}x$$
 قرار داد. این سهمی از کدام نواحی $y=-x^\mathsf{r}-\mathsf{r}a^\mathsf{r}x+b$ محورهای مختصات نمی گذرد؟

اگر سهمی
$$y=ax^{\mathsf{r}}-bx+c$$
 محور عرضها را در نقطهای به عرض $y=ax^{\mathsf{r}}-bx+c$ قطع کند و با محور طولها فقط در نقطهای به طول x مشترک باشد، x کدام است؟ (سهمی پایین محور x ها قرار دارد.)

$$-\frac{1}{r} \stackrel{\text{P}}{=} \qquad \qquad -\frac{1}{r} \stackrel{\text{N}}{=} \qquad \qquad -\frac{1$$

اگر قدرمطلق تفاضل جوابهای معادلهٔ
$$(x-1)^*=(k-1)^*$$
 برابر ۸ باشد، آن گاه حاصل ضرب مقادیر کتاف k کدام است؟

ہختلف
$$k$$
 کدام است؟

-r (Y)

$$\frac{|x|-r-1|}{|y|-r-1|}$$
 جدول تعیین علامت کدام یک از چندجملهای های زیر به صورت زیر میباشد؟

$$y=x^{f r}-{f r}x^{f r}+{f r}$$
 (F) $y=x^{f r}+{f r}x^{f r}-{f r}$ (F) $y=x^{f r}-x+{f r}$ (F) $y=x^{f r}+x-{f r}$ (1)

مىدھد؟

$$\begin{array}{c|c} x & -1 & 1 \circ \\ \hline y & - \circ + \circ - \end{array}$$

$$\begin{array}{c|cccc} x & -P & 11 \\ \hline y & - \phi + \phi - \end{array}$$

$$\begin{array}{c|c} x & -1 & 1 \circ \\ \hline y & + \circ - \circ + \end{array}$$

$$\begin{array}{c|c} x & -\mathbf{F} & \mathbf{1P} \\ \hline y & -\mathbf{0} + \mathbf{0} & - \end{array}$$

برابر با
$$f(x)=rac{|\mathsf{Y}x-\mathsf{F}|(x^\mathsf{Y}-\mathsf{Y}x+\mathsf{Y})}{(\mathsf{Y}x^\mathsf{Y}-\mathsf{Y}x+\mathsf{Y})(\mathsf{I}-x^\mathsf{Y})}> \circ$$
 باشد، کا اگر مجموعه جواب نامعادلهٔ و

ہقدار a-b کدام است؟

1

ور نمودار زیر خط d نمودار سهمی را در نقاط $A=(x_{_A}, {\mathfrak k})$ و B=(-1, -1) و قطع کرده است. مجموع کرده است. مجموع خول و عرض نقاط برخورد سهمی با محورهای مختصات کدام است؟

-r,0 (m)

ر کی جسم از بالای یک ساختمان که ۲۰ متر ارتفاع دارد، به هوا پرتاب میشود. اگر ارتفاع این جسم از سطح t محاسبه شود، در چه فاصلهٔ زمانی، ارتفاع توپ از سطح زمین در مسیر برگشت به سطح زمین بیشتر از ۳۵ متر خواهد بود؟

$$(1, Y)$$
 (\circ, Y) (Y)

(1, 4)

|x-lpha|<eta اگر اشتراک مجموعهٔ جواب دو نامعادلهٔ $x-1<\lambda$ و x-1< را به صورت lpha+eta بنویسیم، lpha+eta کدام است؟

-r (P)

-™ (1)

اگر مجموعهٔ جواب نامعادلهٔ $x^{m{ extsf{r}}}+m{ extsf{r}} \leq m{ extsf{r}} + x^{m{ extsf{r}}}$ به صورت $[a,b] \cup [c,d]$ باشد، آن گاه a+b+c+d

۲

CP3/middlesul

$$\left| rac{|x-\mathbf{1}|}{\mathbf{r}} + \mathbf{1}
ight| \leq \mathbf{r} \Rightarrow -\mathbf{r} \leq rac{|x-\mathbf{1}|}{\mathbf{r}} + \mathbf{1} \leq \mathbf{r}$$

$$\Rightarrow -\mathtt{M} \leq \frac{|x-\mathtt{I}|}{\mathtt{M}} \leq \mathtt{I} \Rightarrow -\mathtt{I} \leq |x-\mathtt{I}| \leq \mathtt{M} \Rightarrow |x-\mathtt{I}| \leq \mathtt{M}$$

$$\Rightarrow$$
 -Y \leq x - 1 \leq Y \Rightarrow -Y \leq x \leq F \Rightarrow x \in $[-$ Y, F $]$

$$A \leq \mathbf{f} \Rightarrow |\frac{\mathbf{f}x - \mathbf{1}}{\mathbf{f}} - \mathbf{f}| \leq \mathbf{f} \Rightarrow |\frac{\mathbf{f}x - \mathbf{1} \circ}{\mathbf{f}}| \leq \mathbf{f}$$

$$|\Rightarrow|$$
 | Y $x-$ | $|\circ|\leq|$ | Y $\Rightarrow-$ | Y \leq Y $x-$ | $|\circ|\leq|$ Y $x\leq|$ Y

$$\mathbf{F}x^{\mathbf{r}} + \mathbf{1}\mathbf{r}x = \mathbf{\Delta} \xrightarrow{\dot{\mathbf{F}}} x^{\mathbf{r}} + \frac{\mathbf{1}\mathbf{r}}{\mathbf{F}}x = \frac{\mathbf{\Delta}}{\mathbf{F}}$$

اکنون مربع نصف ضریب x را به دو طرف تساوی اضافه می کنیم، لذا داریم:

$$x^{r} + \frac{1r}{5}x + \frac{159}{156} = \frac{159}{156} + \frac{5}{5} \Rightarrow (x + \frac{1r}{15})^{r} = \frac{r \Lambda 9}{156}$$

پس برای حل این معادله لازم است که از $\frac{184}{3}$ جذر بگیریم.

۴) ۳ ۴ ۱۱ روش اول:

هر نامعادله را جداگانه حل کرده و از جوابها اشتراک می گیریم.

$$\frac{\mathbf{r}x-\mathbf{r}}{x+\mathbf{1}}<\mathbf{r}\to\frac{\mathbf{r}x-\mathbf{r}}{x+\mathbf{1}}-\mathbf{r}<\mathbf{0}\quad\to\frac{-x-\mathbf{r}}{x+\mathbf{1}}<\mathbf{0}$$

$$ightarrow x < -$$
۶ يا $x > -$ ۱ (II)

است. $\mathbb{R}-[-\mathbf{arepsilon},\mathbf{lpha}]$ از اشتراک (I) و (II) به جواب $x>\mathbf{lpha}$ یا $x<-\mathbf{lpha}$ میرسیم که همان

روش دوم:

به روش عددگذاری حل میکنیم.

$$x=\mathtt{A}
ightarrow \mathtt{I} < \dfrac{\mathtt{V}}{\mathtt{F}} < \mathtt{W}$$
: درست o درست خذف می شوند

$$x=-$$
اکزینهٔ سوم حذف می شود o درست au درست کازینهٔ سوم حذف می شود کازینهٔ سوم حذف می شود

۵ ۴ ۲ ۲ ۱ روش اول:

$$egin{aligned} rac{\mathbf{Y}x-\mathbf{A}}{x^{\mathbf{Y}}-x-\mathbf{Y}} > rac{x}{x-\mathbf{Y}}
ightarrow rac{\mathbf{Y}x-\mathbf{A}}{(x-\mathbf{Y})(x+\mathbf{1})} - rac{x}{x-\mathbf{Y}} > \mathbf{0} \end{aligned}$$

$$ightarrow rac{\mathbf{Y}x - \mathbf{A} - x^{\mathbf{Y}} - x}{(x - \mathbf{Y})(x + \mathbf{I})} > \circ
ightarrow rac{-x^{\mathbf{Y}} + \mathbf{F}x - \mathbf{A}}{(x - \mathbf{Y})(x + \mathbf{I})} > \circ$$

$$ightarrow rac{x^{f r}-f r x+f \Lambda}{(x-f r)(x+f 1)}< \circ
ightarrow rac{(x-f r)(x-f r)}{(x-f r)(x+f 1)}< \circ$$

$$ightarrow rac{x-\mathbf{f}}{x+\mathbf{1}} < \circ
ightharpoonup rac{x}{\mathbf{1}} = x + \mathbf{1}
ightharpoonup rac{x-\mathbf{f}}{\mathbf{1}} = x + \mathbf{1}
ightharpoonup rac{x-\mathbf{f}}{\mathbf{1}} = x + \mathbf{1}
ightharpoonup rac{x-\mathbf{f}}{\mathbf{1}} = x + \mathbf{1}
ightharpoonup - \mathbf{1} = x + \mathbf{1}
ightharpoonup -$$

$$o$$
 $-$ ا $\leq x <$ ۲ کیا $x < x <$ ۴ $x \in (-$ ۱, ۲ $) \cup (x, +)$

روش دوم:

به روش عددگذا*ر*ی حل میکنیم.

$$x=\circ orule rac{-oldsymbol{\Lambda}}{-oldsymbol{\Upsilon}}>\circ :$$
 درست $x=\circ orule rac{-oldsymbol{\Lambda}}{-oldsymbol{\Upsilon}}$ کزینهٔ دوم حذف میشود

$$x= extbf{r}\longrightarrow rac{ extbf{1} extbf{r}}{ extbf{r}}> extbf{r}:$$
 کرینه های اول و چهارم حذف می شوند

۶ سال این استفاده میکنیم: برای نشان دادن فاصله از قدر مطلق استفاده میکنیم.

$$|$$
 1 f $-\sqrt{x}|<$ 1 $\Rightarrow -$ 1 $<$ 1 f $-\sqrt{x}<$ 1 $\Rightarrow -$ 1 V $<$ $-\sqrt{x}<$ $-$ 1 δ

$$\Rightarrow$$
 10 $<$ \sqrt{x} $<$ 17 \Rightarrow 270 $<$ x $<$ 719 \Rightarrow 275 \leq x \leq 2711

تعداد اعضاء: ۲۸۸ - ۲۲۶ + ۱ = ۶۳

 $(\Delta - \Upsilon x)(\Upsilon - \Upsilon x) = \Gamma \Upsilon \Rightarrow \Upsilon \Upsilon - \Gamma \Lambda x + \Upsilon \circ = \Gamma \Upsilon$

$$\Rightarrow$$
 $\mathbf{f}x^{\mathbf{r}} - \mathbf{l} \mathbf{A}x + \mathbf{A} = \mathbf{o} \Rightarrow \mathbf{r}x^{\mathbf{r}} - \mathbf{q}x + \mathbf{f} = \mathbf{o}$

$$\Delta =$$
 a 1 $-$ f(Y)(f) $=$ a 1 $-$ TY $=$ f9 \Rightarrow $\sqrt{\Delta} =$ Y

$$x_1, = rac{ extsf{9} \pm extsf{V}}{ extsf{Y}(extsf{Y})} \Rightarrow egin{dcases} x_1 = rac{ extsf{19}}{ extsf{F}} = extsf{F} & extsf{i.i.j.} &$$

1 P P F (A)

$$(x^{ extsf{F}}-x^{ extsf{F}}+x^{ extsf{F}}-x)(x^{ extsf{F}}+ extsf{F})< ullet \left(x^{ extsf{F}}(x^{ extsf{F}}-x)+(x^{ extsf{F}}-x)
ight)\left(x^{ extsf{F}}+ extsf{F}
ight)< ullet$$

$$\Rightarrow (x^{ extsf{r}}-x)(x^{ extsf{r}}+1)(x^{ extsf{r}}+1)< \circ \Rightarrow x(x-1)(x^{ extsf{r}}+1)(x^{ extsf{r}}+1)< \circ$$

			• 1		
Ī	Х	- (+	+	
	x-1	-	- 0	+	
	x ^r +1	+	+	+	$f\Rightarrow x\in (extsf{0}, extsf{1})\Rightarrow extsf{1}-ullet= extsf{1}$
	x *+ m	+	+	+	
	P	+ (- (+	

٩) ۴ 省 🗥 می دانیم:

اگر دلتای $(\Delta = b^{r} - \epsilon ac)$ معادلهٔ درجه دوم $(\Delta = b^{r} - \epsilon ac)$ صفر باشد، معادله ریشهٔ مضاعف دار د.

- frac = \circ \Rightarrow (m - extstyle extstyle extstyle m imes extstyle extst

$$\Rightarrow \Delta = \left(-1 extbf{f}
ight)^{ extsf{r}} - extbf{f} imes 1 imes 1 = 19 extsf{f} - extbf{f} = 19 extsf{f} \Rightarrow m_1 + m_{ extsf{f}} = 1 extsf{f} = rac{1 extsf{f} + \sqrt{19 extsf{f}}}{ extsf{f}} \Rightarrow m_1 + m_{ extsf{f}} = 1 extsf{f} = rac{1 extsf{f} - \sqrt{19 extsf{f}}}{ extsf{f}}$$

🕞 🏲 🕆 🗅 برای آن که نمودار سهمی دادهشده پایین نمودار خط دادهشده باشد باید:

$$mx^{\mathsf{r}} + \Delta x + \mathsf{r} < x + \mathsf{r} \Rightarrow mx^{\mathsf{r}} + \mathsf{r} x + \mathsf{r} < \mathsf{o}$$
 (*)

میدانیم برای اینکه عبارت درجهٔ دوم $ax^{
m r}+bx+c$ همواره مقدار منفی داشته باشد باید $a<\circ$ و $a<\circ$ باشد. نامعادلهٔ (*) بهازای هر x منفی است؛ داریم:

$$\begin{cases} \Delta = b^{\mathsf{Y}} - \mathsf{F}ac = \mathsf{I} \mathsf{F} - \mathsf{F}(m)(\mathsf{I}) < \circ \Rightarrow \mathsf{I} \mathsf{F} - \mathsf{F}m < \circ \Rightarrow \mathsf{I} \mathsf{F} < \mathsf{F}m \Rightarrow \mathsf{F} < m & (\mathsf{I}) \\ m < \circ & (\mathsf{Y}) \\ \hline \longrightarrow \{\} \end{cases}$$

با توجه به جدول تعیین علامت، عبارت A ، یک عبارت درجهٔ دوم همواره نامنفی است، پس - دارد.

$$\left\{egin{aligned} y=(x+\mathbf{1})^\mathbf{1}=x^\mathbf{1}+\mathbf{1}x+\mathbf{1}\ y=x^\mathbf{1}+ax+b \end{aligned}
ight. \Rightarrow a=\mathbf{1},b=\mathbf{1}$$

$$\Rightarrow ab = \mathbf{f} imes \mathbf{f} = \mathbf{1}\mathbf{f}$$

صفر می شود: P(x) صفر می شود: ۲ صفر می شود: و مانی که P(x) صفر می شود:

$$x = \mathtt{T}: P(\mathtt{T}) = \circ \Rightarrow (\mathtt{T}a + \mathtt{I})(\mathtt{IT}) = \circ \Rightarrow a = -\mathtt{T}$$

$$A = (\mathbf{Y}x + \mathbf{1})(x - \mathbf{f}) = \mathbf{0} \Rightarrow \begin{cases} \mathbf{Y}x + \mathbf{1} = \mathbf{0} \Rightarrow \mathbf{Y}x = -\mathbf{1} \Rightarrow x = rac{-\mathbf{1}}{\mathbf{Y}} \\ x - \mathbf{f} = \mathbf{0} \Rightarrow x = \mathbf{f} \end{cases}$$

آکادمی آموزشی انگیزشی رویش 🌳

$$B = rac{(b^{f r} - x)({f r} x + {f l})}{(ax + b)} \Rightarrow \left\{egin{align*} b^{f r} - x = {f \circ} & \stackrel{x = {f r}}{\longrightarrow} b^{f r} - {f r} = {f \circ} \Rightarrow b = \pm {f r} \ a = {f \circ} \end{array}
ight.$$

دقت کنید اگر مخرج ریشه داشته باشد، عبارت در آن تعریف نشده خواهد بود، بنابراین لازم است مخرج کسر فاقد ریشه باشد تا جدول تعیین علامت یکسان با عبارت A داشته باشد.

با توجه به مخرج (b)؛ علامت b باید منفی باشد تا به ازای x> عبارت مثبت باشد.

$$b= extsf{Y}
ightarrow a+b= extsf{Y}$$

نمودار سهمی مورد نظر باید به یکی از دو صورت مقابل باشد:

$$a-1 < \circ \Rightarrow a < 1$$
 (1)

پس اولاً ضریب x^{r} باید منفی باشد:

$$y=(a-1)x^{\mathsf{Y}}+(\mathsf{Y} a-1)x+a= ullet$$

طول محل برخورد نمودار با محور xها را به دست می آوریم:

$$\Delta = (\mathbf{Y}a - \mathbf{I})^{\mathbf{Y}} - \mathbf{Y}(a - \mathbf{I})a = \mathbf{I}$$

$$x = rac{-(Ya - I) \pm I}{Y(a - I)} \Rightarrow \left\{egin{array}{l} x = -I \ x = rac{a}{I - a} \end{array}
ight.$$

$$rac{a}{1-a} \leq \circ \Rightarrow a \leq \circ$$
 پا $a > 1$ (۲)

طبق نمودار سهمی باید، $\dfrac{a}{a-1}$ نامثبت باشد پس داریم:

$\stackrel{({ t 1})\cap ({ t Y})}{\longrightarrow} a \leq { t o}$

۱۵ ۴ ۳ ۳ ۱ می دانیم:

.در سهمی به معادلهٔ
$$S(rac{-b}{\mathsf{r}a},rac{-\Delta}{\mathsf{r}a})$$
 رأس سهمی نقطهٔ $y=ax^\mathsf{r}+bx+c$ است

$$x_S = rac{x_1 + x_1}{\mathbf{r}}$$
: نقاط برخورد سهمی با محور x ها باشد، محور تقارن سهمی برابر است با x_1, x_2

 $S(x,x)\,$ رأس سهمی و نیمساز ربع اول منطبق است بنابراین داریم:

$$x_S = \frac{{\color{blue} {\mathsf{r}}} - {\color{blue} {\mathsf{l}}}}{{\color{blue} {\mathsf{r}}}} = \frac{{\color{blue} {\mathsf{r}}}}{{\color{blue} {\mathsf{r}}}} = {\color{blue} {\mathsf{l}}}$$

سهمی محور xها را در نقاط ۳ و - قطع کرده؛ بنابراین داریم:

رأس سهمی: S(۱ , ۱)
ightarrow y = a(x- ۱ $)^{ extsf{r}}+$ ۱

. در سهمی صدق میکند:
$$a({\tt m}-{\tt l})^{{\tt r}}+{\tt l}\Rightarrow {\tt o}={\tt f}a+{\tt l}\Rightarrow {\tt f}a=-{\tt l}\Rightarrow a=-rac{{\tt l}}{{\tt f}a}$$

$$y = -\frac{1}{\mathbf{F}}(x - 1)^{\mathbf{F}} + 1 \xrightarrow{x = 0} y = \frac{-1}{\mathbf{F}}(-1)^{\mathbf{F}} + 1 = \frac{-1}{\mathbf{F}} + 1 = \frac{\mathbf{F}}{\mathbf{F}}$$

مى دانيم:

.در سهمی به معادلهٔ
$$y=ax^{ extsf{r}}+bx+c$$
 است. $y=ax^{ extsf{r}}+bx+c$ است.

باتوجه به اینکه خط y=-۴ بر سهمی مماس است، پس از رأس سهمی عبور می کند.

عرض رأس سهمی:
$$rac{-\Delta}{{\mathfrak r} a}=-{\mathfrak r}\Rightarrow \Delta=$$
 ۱۶ $a\Rightarrow b^{\mathsf r}-{\mathfrak r} ac=$ ۱۶ $a\Rightarrow$ ۶۴ $-$ ۴ $ac=$ ۴ a

$$\Rightarrow$$
 18 $-ac$ = Fa \Rightarrow 18 = Fa $+ac$ \Rightarrow 18 $=a$ (F $+c$) (I)

سهمی محور xها را در x=1 قطع می کند؛ بنابراین داریم:

$$(\mathbf{Y},ullet): \mathbf{F}a-\mathbf{I}\mathbf{F}+c=ullet\Rightarrow \mathbf{F}a+c=\mathbf{I}\mathbf{F}\Rightarrow c=\mathbf{I}\mathbf{F}-\mathbf{F}a \quad (II)$$

$$\xrightarrow{(I),(II)}$$
 18 = $a(\mathbf{f}+\mathbf{18}-\mathbf{f}a)$ \Rightarrow Y $\circ a-\mathbf{f}a^{\mathsf{r}}=\mathbf{18}$ \Rightarrow F $a^{\mathsf{r}}-\mathbf{Y} \circ a+\mathbf{18}=\circ$

$$\Rightarrow a^{\mathsf{r}} - \Delta a + {\mathsf{r}} = \circ \Rightarrow (a - \mathsf{I})(a - {\mathsf{r}}) = \circ$$

$$\Rightarrow \left\{ \begin{aligned} a &= \mathbf{1} \\ a &= \mathbf{f} \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} c &= \mathbf{1}\mathbf{F} - \mathbf{f}a = \mathbf{1}\mathbf{T} \\ c &= \mathbf{1}\mathbf{F} - \mathbf{f}a = \mathbf{o} \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} a + c &= \mathbf{1}\mathbf{f} \\ a + c &= \mathbf{f} \end{aligned} \right.$$

تابع در اطراف ریشه های ساده و مکرّر مرتبهٔ فرد، تغییر علامت می دهد. و در اطراف ریشه های مضاعف و مکرّر مرتبهٔ زوج، تغییر علامت نمی دهد.

۱۷) ۴ ۳ ۲ میدانیم:

$$\begin{array}{c|c} x & -1 & \circ & Y \\ \hline p(x) & + & + & \circ & - & - \\ \hline \end{array}$$

از جدول تعیین علامت چنین برداشت می شود که ه و ۲ ریشه های صورت کسر و ۱ — ریشهٔ مضاعف مخرج کسر .

باشد، درنتیجه Δ در مخرج کسر صفر است، پس: P(x)

$$egin{cases} a = \mathbf{Y} \ a - b + c = \mathbf{o} \ \Delta = b^{\mathbf{Y}} - \mathbf{F}ac = \mathbf{o} \end{cases} \Rightarrow egin{cases} c = b - \mathbf{Y} \ (I) \ b^{\mathbf{Y}} - \mathbf{A}c = \mathbf{o} \end{cases} \Rightarrow b^{\mathbf{Y}} - \mathbf{A}b + \mathbf{I}\mathbf{F} = \mathbf{o} \Rightarrow (b - \mathbf{F})^{\mathbf{Y}} = \mathbf{o} \end{cases}$$

$$\Rightarrow b = \mathbf{f} \overset{(I)}{\longrightarrow} c = \mathbf{f}$$

$$\Rightarrow P(x) = rac{\mathbf{f} x (x - \mathbf{f})^{\mathbf{f}}}{\mathbf{f} (x + \mathbf{f})^{\mathbf{f}}}$$

درنتیجه بهازای $x>\circ$ ماصل عبارت مثبت و بهازای $x<\circ$ ماصل عبارت منفی است، پس علامت P(x) به دست آمده مغایر با علامتهای مندرج در جدول تعیین علامت است. پس مقداری برای a وجود ندارد.

الم السبح المن المال سهمي در ربع چهارم واقع شده است. بنابراين: المال المال المال المال المال المال المال المال

رأس:
$$S \begin{vmatrix} x_S > \circ \Rightarrow \frac{-b}{\operatorname{ra}} = \frac{-\operatorname{r}\sqrt{\operatorname{r}}}{\operatorname{rm}} = \frac{-\sqrt{\operatorname{r}}}{m} > \circ \Rightarrow m < \circ \\ y_S < \circ \Rightarrow f(\frac{-b}{\operatorname{ra}}) = f(\frac{-\sqrt{\operatorname{r}}}{m}) = m(\frac{-\sqrt{\operatorname{r}}}{m})^{\operatorname{r}} + \operatorname{r}\sqrt{\operatorname{r}}(\frac{-\sqrt{\operatorname{r}}}{m}) + (m+\operatorname{r}) < \circ \end{cases}$$

سهمي

$$\overset{m<\mathfrak{o}}{-\!\!\!-\!\!\!-\!\!\!-} m^{\mathbf{r}} + \mathbf{r}m - \mathbf{r} > \mathfrak{o} \Rightarrow (m+\mathbf{r})(m-\mathbf{1}) > \mathfrak{o} \Rightarrow \left\{ \begin{array}{l} m+\mathbf{r} = \mathfrak{o} \Rightarrow m = -\mathbf{r} \\ m-\mathbf{1} = \mathfrak{o} \Rightarrow m = \mathbf{1} \end{array} \right.$$

$$rac{-}{m^{ extsf{H}}-}$$
ي $m^{ extsf{H}}+$ $m^{ extsf{H}}+$ $m^{ extsf{H}}+$ $m^{ extsf{H}}+$ $m^{ extsf{H}}+$ $m^{ extsf{H}}+$ $m^{ extsf{H}}+$

1 (4) (4) (19)

$$\left\{egin{array}{l} A = \sqrt[{f v}]{f a}\sqrt{{f r}+{f v}} \ B = \sqrt[{f v}]{f a}\sqrt{{f r}-{f v}} \end{array}
ight.
ight.
ight.
ightarrow A - B = C \stackrel{ ext{purical problem}}{\longrightarrow} \left(A-B
ight)^{f v} = C^{f v}$$

$$\Rightarrow A^{r} - B^{r} - rAB(A - B) = C^{r}$$

$$\Rightarrow (\texttt{a}\sqrt{\texttt{r}} + \texttt{v}) - (\texttt{a}\sqrt{\texttt{r}} - \texttt{v}) - \texttt{r}(\texttt{a}\sqrt{\texttt{r}} + \texttt{v})(\texttt{a}\sqrt{\texttt{r}} - \texttt{v})(C) = C^{\texttt{r}}$$

$$\Rightarrow$$
 14 - $\mathbf{P}(\mathbf{1})(C) = C^{\mathbf{P}} \Rightarrow C^{\mathbf{P}} + \mathbf{P}C = \mathbf{14} \quad (*)$

پیدا کردن مقدار $\, C \,$ از معادلهٔ (st) به دو روش زیر ممکن است:

آزمایش گزینهها در معادله: $C=\mathsf{T}$

حل معادله به روش تجزیه:
$$C^{m m}+m mC-m 1m F=m o \ \Rightarrow C^{m m}+m mC-m A-m F=m o$$

$$\Rightarrow (C-\mathsf{r})(C^{\mathsf{r}}+\mathsf{r}C+\mathsf{r})+\mathsf{r}(C-\mathsf{r})= \circ \quad \Rightarrow (C-\mathsf{r})(C^{\mathsf{r}}+\mathsf{r}C+\mathsf{r}+\mathsf{r})= \circ$$

$$(C-1)(C^1+1)=0$$
 $\Rightarrow egin{cases} C=1 & C=1 \ & C = 1 \ & C^1+1 & C^2=0 & \longrightarrow 1 \end{cases}$ جو اب حقیقی ندار د.

1 P F (Yo

$$P = \frac{x^{\mathsf{r}} + \mathsf{r} x^{\mathsf{r}} - x - \mathsf{r}}{x^{\mathsf{r}} + x - \mathsf{r}} = \frac{x^{\mathsf{r}} (x + \mathsf{r}) - (x + \mathsf{r})}{(x + \mathsf{r})(x - \mathsf{l})} = \frac{(x + \mathsf{r})(x^{\mathsf{r}} - \mathsf{l})}{(x + \mathsf{r})(x - \mathsf{l})} = \frac{(x + \mathsf{r})(x - \mathsf{l})(x + \mathsf{l})}{(x + \mathsf{r})(x - \mathsf{l})}$$

$$\displaystyle = rac{x
eq -1}{x
eq 1} x + 1 = oldsymbol{\circ} \Rightarrow x = -1$$

 x^{r} ورد می شور می کند و گزینه های x^{r} منفی است، پس سهمی از نواحی سوم و چهارم عبور می کند و گزینه های x^{r} و است. پس سهمی با x^{r} ست. پس سهمی با x^{r} ست. پس سهمی با x^{r} و است. با طول x^{r} است. پس سهمی با x^{r} و المان رأس به طول x^{r} و المان رأس به به یکی از دو صورت زیر خواهد بود:

$$(a
eq \circ)$$

$$(a = \circ)$$

بنابراین سهمی از ناحیه های اول و دوم عبور نمی کند.

مشترک است، یعنی یک ریشه x=-۲ سهمی موردنظر با محور x فقط در نقطهای به طول x=-۲ مشترک است، یعنی یک ریشه مضاعف دارد و معادلهٔ آن به شکل زیر است:

$$y = a(x + Y)^Y$$

 $rac{oldsymbol{lpha}}{b}$ سهمی، محور عرضها را در $rac{oldsymbol{oldsymbol{\psi}}}{b}$ قطع می کند.

$$egin{aligned} x = \circ &\Rightarrow y = \mathbf{f} a = -rac{\mathbf{f}}{b} \Rightarrow b = -rac{\mathbf{I}}{a} \ y = a(x + \mathbf{f})^{\mathbf{f}} = ax^{\mathbf{f}} + \mathbf{f} ax + \mathbf{f} a = ax^{\mathbf{f}} - bx + c \Rightarrow \mathbf{f} a = -b \end{aligned}
ight.$$

$$\Rightarrow$$
 $m{r}a=-(-rac{1}{a})$ \Rightarrow $a^{m{r}}=rac{1}{m{r}}$ \Rightarrow $a=\pmrac{1}{m{r}}$ $\stackrel{(a)}{\longrightarrow}$ $a=-rac{1}{m{r}}$

$$(x-\mathbf{r})^{\mathbf{r}}=(k-\mathbf{l})^{\mathbf{r}}\Rightarrow x-\mathbf{r}=\pm(k-\mathbf{l})^{\mathbf{r}}\Rightarrow x=\pm(k-\mathbf{l})^{\mathbf{r}}+\mathbf{r}$$

قدر مطلق تفاضل جواب ها $=|((k-1)^{\mathsf{Y}}+\mathsf{Y})-(-(k-1)^{\mathsf{Y}}+\mathsf{Y})|=|\mathsf{Y}(k-1)^{\mathsf{Y}}|=\mathsf{A}$

$$\Rightarrow (k-1)^{\mathsf{r}} = \mathsf{r} \Rightarrow k-1 = \pm \mathsf{r} \Rightarrow egin{cases} k-1 = \mathsf{r} \Rightarrow k = \mathsf{r} \ k-1 = -\mathsf{r} \Rightarrow k = -\mathsf{r} \end{cases}$$

پس حاصل ضرب مقادیر ممکن k برابر با - است.

تابع در اطراف ریشه های ساده و مکرّر مرتبهٔ فرد، تغییر علامت می دهد. و در اطراف ریشه های مضاعف و مکرّر مرتبهٔ زوج، تغییر علامت نمی دهد.

مى دانيم:

بنابراین x=- ریشهٔ مضاعف و x=1 ریشهٔ ساده است و داریم:

$$y=(x+ extsf{r})^{ extsf{r}}(x- extsf{l})=(x^{ extsf{r}}+ extsf{f}x+ extsf{f})(x- extsf{l})=x^{ extsf{r}}+ extsf{f}x^{ extsf{r}}+ extsf{f}x-x^{ extsf{r}}- extsf{f}x- extsf{f}$$

$$\Rightarrow y = x^{r} + rx^{r} - r$$

است. $y=a(x-b)^{\mathsf{r}}+h$ بهصورت S(b,h) بهصورت $y=a(x-b)^{\mathsf{r}}+b$ بست.

(رأس سهمی) $S({\mathfrak k},{\mathsf A}):\ y=a(x-{\mathsf k})^{\mathsf k}+{\mathsf A}$

در معادلهٔ سهمی صدق میکند: ۶ $=a(\circ-f)^{r}+\lambda\Rightarrow$ ۶=۱۶ $a+\lambda\Rightarrow$ ۱۶ $a=-r\Rightarrow a=rac{-1}{\lambda}$

$$y=rac{-1}{\Lambda}(x-\mathbf{f})^{\mathbf{f}}+\Lambda
ightarrow y=\circ\stackrel{ imes\Lambda}{\longrightarrow} -(x-\mathbf{f})^{\mathbf{f}}+\mathbf{f}\mathbf{f}=\circ\Rightarrow (x-\mathbf{f})^{\mathbf{f}}=\mathbf{f}\mathbf{f}$$

$$\Rightarrow \left\{ \begin{array}{l} x - \mathbf{f} = \mathbf{A} \Rightarrow x = \mathbf{I} \, \mathbf{f} \\ x - \mathbf{f} = -\mathbf{A} \Rightarrow x = -\mathbf{f} \end{array} \right.$$

پس ریشههای معادلهٔ y=0 برابر با x=-۴ و ۱۲x=1 است. باتوجه به نمودار واضح است گزینهٔ x=-۱ پاسخ است.

همواره نامنفی است کسر داده شده را تعیین علامت میکنیم (برای تعیین علامت، |7x-4| همواره نامنفی است کسر داده شده ا ریشههای صورت و مخرج را بهدست می آوریم.)

$$x^{f r}-{f r}x+{f r}=ullet \ \Rightarrow (x-{f l})(x-{f r})=ullet \ \Rightarrow igg\{ egin{array}{c} x={f l} \ x={f r} \end{array}$$

$$extstyle x^{ extstyle r} - extstyle x + extstyle r = oldsymbol{\circ} \ \Rightarrow \Delta = b^{ extstyle r} - extstyle ac = extstyle - extstyle (r) = - extstyle r \circ c$$

و > > و a > ، پس عبارت x + 1 همواره مثبت است. $\Delta < \circ$

$$(\mathbf{1}-x^{\mathbf{r}})=\mathbf{0} \ \Rightarrow (\mathbf{1}-x)(\mathbf{1}+x)=\mathbf{0} \ \Rightarrow x=\pm \mathbf{1}$$

جدول تعیین علامت زیر را رسم میکنیم:

$$\Rightarrow (b-a) = \mathbf{Y} - (-\mathbf{I}) = \mathbf{Y}$$

عبور میکند، معادلهٔ خط B=(-1,-1) و B=(-1,-1) عبور میکند، معادلهٔ خط B=(-1,-1)به صورت $y=\mathsf{r} x$ است. طول نقطهٔ A را به دست می آوریم:

$$y = \operatorname{Y} x \xrightarrow{y_A = \operatorname{Y}} x_{_A} = \operatorname{Y}$$

 $C=(- au, {f r})$ ، B=(- au, - au) اگر معادلهٔ سهمی را بهصورت $y=ax^{f r}+bx+c$ در نظر بگیریم، سه نقطهٔ و $A=({ t Y},{ t F})$ در این معادله صدق می کند:

بنابراین:

$$egin{array}{ll} egin{array}{ll} a-b+c=-&
ightarrow &\stackrel{ ext{id}}{\longrightarrow} & \lambda a-\mathbf{1}b=\mathbf{5} \ \mathbf{1}a-\mathbf{1}b+c=\mathbf{5} & \longrightarrow & \lambda a-\mathbf{1}b=\mathbf{5} \ \mathbf{1}a-\mathbf{1}b+c=\mathbf{5} & \longrightarrow & b=\mathbf{1} \ \mathbf{1}c=-\mathbf{1}c & \longrightarrow & b=\mathbf{5} \ \mathbf{1}c & \longrightarrow & b=\mathbf{5} \ \mathbf{1$$

ن در نتیجه معادلهٔ سهمی بهصورت x-x-y-y است. اکنون برای بهدست آوردن مختصات محل تلاقی سهمی با $y=x^{\mathsf{r}}+x-y$ محورهای مختصات داریم:

$$\stackrel{y=\circ}{\longrightarrow} x^{ extsf{r}} + x - extsf{r} = \circ \ \Rightarrow (x + extsf{r})(x - extsf{l}) = \circ \ \Rightarrow x = - extsf{r}, x = extsf{l}$$

۲۸ 👚 👚 🕦 ابتدا چون میخواهیم فاصلهٔ جسم از زمین بیشتر از ۳۵ متر باشد، داریم:

$$egin{aligned} h > \mathbf{r}\mathbf{d} &\Rightarrow -\mathbf{d}t^{\mathbf{r}} + \mathbf{r} \circ t + \mathbf{r} \circ > \mathbf{r}\mathbf{d} &\Rightarrow -\mathbf{d}t^{\mathbf{r}} + \mathbf{r} \circ t - \mathbf{1}\mathbf{d} > \circ &\Rightarrow t^{\mathbf{r}} - \mathbf{r}t + \mathbf{r} < \circ \\ &\Rightarrow (t-\mathbf{1})(t-\mathbf{r}) < \circ \\ &\frac{t \mid \mathbf{1} \quad \mathbf{r}}{h \mid + \quad - \quad +} \Rightarrow \mathbf{1} < t < \mathbf{r} \end{aligned}$$

حال میبایست دقت کنیم جسم از نقطهٔ رأس سهمی به بعد در حال برگشت به سطح زمین است، پس زمان مربوط به نقطهٔ رأس را میباییم.

رأس سهمى :
$$t_S=rac{-b}{{ extsf{r}}a}=rac{-{ extsf{r}}\circ}{{ extsf{r}} imes(-{ extsf{a}})}=rac{-{ extsf{r}}\circ}{-{ extsf{1}}\circ}={ extsf{r}}$$

پس زمانی که فاصلهٔ توپ از سطح زمین بیشتر از ۳۵ و توپ در مسیر بازگشت است.

$$extsf{Y} < t < extsf{Y} \ \Rightarrow t \in (extsf{Y}, extsf{Y})$$

1 7 7 7

$$extsf{r} x - extsf{I} < extsf{A} \Rightarrow extsf{r} x < extsf{q} \Rightarrow x < extsf{r} \quad (I)$$

$$-\mathsf{Y} < \mathsf{Y} x - \mathsf{I} \Rightarrow \mathsf{Y} x + \mathsf{I} > \circ \Rightarrow \mathsf{Y} x > -\mathsf{I} \Rightarrow x > \frac{-\mathsf{I}}{\mathsf{Y}} \quad (II)$$

$$(I) \wedge (II) : \ rac{-1}{ extstyle extstyle au} < x < extstyle rac{-rac{-1}{ extstyle au}}{ extstyle au} < x - rac{ extstyle au}{ extstyle au} < rac{ au}{ extstyle au} \Rightarrow |x - rac{ extstyle au}{ extstyle au}| < rac{ au}{ extstyle au}$$

$$\begin{cases} \alpha = \frac{\mathfrak{r}}{\mathfrak{r}} \\ \beta = \frac{\mathfrak{d}}{\mathfrak{r}} \end{cases} \Rightarrow \alpha + \beta = \frac{\mathfrak{r}}{\mathfrak{r}} + \frac{\mathfrak{d}}{\mathfrak{r}} = \frac{\mathfrak{q}}{\mathfrak{r}} = \mathfrak{r}$$

1 P P P P

$$x^{m{ extsf{F}}} + m{ extsf{F}} \leq m{ extsf{F}} x^{m{ extsf{F}}} + x^{m{ extsf{F}}} \Rightarrow x^{m{ extsf{F}}} - m{ extsf{F}} x^{m{ extsf{F}}} - x^{m{ extsf{F}}} + m{ extsf{F}} \leq oldsymbol{\circ} \Rightarrow x^{m{ extsf{F}}} (x^{m{ extsf{F}}} - m{ extsf{F}}) - (x^{m{ extsf{F}}} - m{ extsf{F}}) \leq oldsymbol{\circ}$$

$$\Rightarrow (x^{\mathsf{r}} - \mathsf{f})(x^{\mathsf{f}} - \mathsf{I}) \leq \circ \Rightarrow (x - \mathsf{f})(x + \mathsf{f})(x^{\mathsf{f}} - \mathsf{I})(x^{\mathsf{f}} + \mathsf{I}) \leq \circ$$

$$\Rightarrow egin{cases} x-1=\circ \Rightarrow x=1 \ x+1=\circ \Rightarrow x=-1 \ x^{1}-1=\circ \Rightarrow x^{1}=1 \Rightarrow x=\pm 1 \ x^{1}+1=\circ \Rightarrow x=\pm 1 \end{cases}$$
 (همواره مثبت است و ریشه ندارد.)

	-	- ۲	1 1		۲	
x - ۲	-	_	_	_ (+	
x + Y	_ (+	+	+	+	
x - 1	+	+ 4	- 0	+	+	
x + 1	+	+	+	+	+	
A	+ (} _ (+ (} _ (+	

$$\Rightarrow x \in [-\mathbf{Y}, -\mathbf{I}] \cup [\mathbf{I}, \mathbf{Y}]$$

$$\Rightarrow egin{cases} a = -\mathbf{Y} \ b = -\mathbf{I} \ c = \mathbf{I} \ d = \mathbf{Y} \end{cases} \Rightarrow a + b + c + d = \mathbf{0}$$

Gybralizaty

9 1 7 7

1Y 1 4 4 6

(10) 1 P P P

71776

14 14 4

(19)

19 1 1 1 1 1

(YY) () (P) (F)

F 1 1 7 7 F

17 1 7 7 6

(Yo) () (P) (P) (P)

LY 1 L & &

(A) (1) (P) (P)

17 17 7 14 1 6 77 17 47

(Y9) () (P) (P) (mo) 1 P P F

9 1 4 4 Y 1 P P F

(A) (1) (P) (P)

10 1 7 7 6

19 1 7 7

(TT) (1 T) (F)

(YF) 1 P F