A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EM	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Let p be a prime number. A finite group G is called a p-group if the order of every element x in G is a power p. (The orders of different elements may be different powers of p.) If H is a subgroup of any finite group G, and H is a p-group, we call H a p-subgroip of G. Finally, if K is a p-subgroup of G, and G is maximal (in the sense that G is not contained in any larger G subgroup of G), then G is called a G subgroup of G.

Prove that S^* is a p-subgroup of G (use Exercise D3, Chapter 15). Then explain why $S^* = K$, and why it follows that Ka = K.

Step-by-step solution

Step 1 of 3

Suppose that G is a p-group, so order of each element x in G will be the power of p. Let K is a p-Sylow subgroup of G and N = N(K) be the normalizer of K.

Assume that $a \in N$, and the order of coset Ka in N/K is a power of p. Let $S = \langle Ka \rangle$ is the cyclic subgroup of N/K generated by Ka. Then N has a subgroup S^* such that S^*/K is a p-group.

Objective is to prove that S^* is a p-subgroup of G. Then $S^* = K$, and also Ka = K.

Since S^*/K is a p-group, therefore it will be well defined. So, K will form a subgroup of S^* . Since, K and S^*/K both are p-groups, therefore |K| and $|S^*/K|$ will be equal to some power of p. Then,

$$|S^*| = \frac{|S^*|}{|K|} \times |K|$$
$$= \frac{|S^*|}{K} \times |K|.$$

This implies that, S^* is also a power of p. And hence, S^* is a p-subgroup of G.

Comment

Step 2 of 3

Since K is a p-Sylow subgroup of G, so it is not contained in any larger p-group, because K is the maximal p-group. So, only possibility is of equality, that is,

$$S^* = K$$

Note that, S^* is the set of all elements n of N such that $Kn = Ka^p$, so $K = S^*$ includes a. This similar argument can be make for arbitrary $a \in N$ such that

Order of $Ka = p^{j}$.

Since $a \in K$, therefore by the coset property Ka = K as desired.

Comment

Step 3 of 3

Hence, S^* is a p-subgroup of G, with $S^* = K$, and Ka = K.

Comment