

第4部 RTシステム構築実習

宮本 信彦

国立研究開発法人産業技術総合研究所 ロボットイノベーション研究センター ロボットソフトウェアプラットフォーム研究チーム

資料

- USBメモリで配布
 - 「WEBページ」フォルダのHTMLファイルを開く
 - チュートリアル(EV3、第3部) _ OpenRTM-aist.html
- もしくはRTミドルウェア講習会のページからリンクをクリック
 - チュートリアル(第2部、Windows)
 - チュートリアル(第2部、Ubuntu)

プログラム

10:00 -10:50	第1部:RTミドルウエアで始めるロボットプログラミング 担当:安藤慶昭氏 (産業技術総合研究所) 概要:国際標準準拠のロボット用ミドルウエアであるOpenRTM-aistの概要について説明します。OpenRTM-aistを使うと何が出来るのか、何が便利になるのか、また実際にどのように開発するのかといった基本的内容から、コンポーネントの基本機能や開発の実際、各種ツールの利用方法など技術的内容について解説します。
11:00 -11:50	第2部:RTコンポーネント作成入門 担当:宮本信彦氏(産総研) 概要:RTC設計ツールRTCBuilderとRTシステム構築ツールRTSystemEditorの利用方法を解説 するとともに、移動ロボットシミュレータを用いた実習によりRTCの開発手順、動作確認手順 を学習します。 チュートリアル(第2部、Windows) チュートリアル(第2部、Ubuntu)
11:50 -12:00	質疑応答・意見交換
12:00 -12:30	RTミドルウェア普及貢献賞授賞式
12:00 -13:00	昼食
13:00 -16:30	第3部: RTシステム構築実置 担当: 宮本信彦 氏 (産総研) 移動ロボット実機を複数台用いたシステムの構築実習により、ネットワークに複数接続されたロボットを用いたRTシステムの構築方法を学習します。 チュートリアル(第3部)

複数台のEV3が連携するシステムの構築

• アクセスポイントのEV3にノートPCと別のEV3を接続する

EV3配布

• EV3の番号を確認

2部で使用したEV3の 次の番号のEV3を使う

- Educator Vehicleの組立て
 - 2部と同じ手順

EV3(2台目の接続)

- 電源投入
 - 中央のボタンを押す

- スクリプトファイル実行(RTCの起動)
 - ボタン操作で「File Browser」→「scripts」→「start_rtcs.sh」を選択

EV3(2台目の接続)

- ネームサーバーの接続
 - EV3の画面上に表示されたIPアドレスを入力する

動作確認

- データポートの接続
 - ↓ אד 192.168.0.1
 - EducatorVehicle0|rtc

- TT 192.168.11.118
 - EducatorVehicle1|rtc
- ∡ א⊤ localhost
 - > ii openr cxt

1台目のEV3制御コンポーネントの名前はEducatorVehicle02台目のEV3制御コンポーネントの名前はEducatorVehicle1

EducatorVehicle1(2台目)の現在の速度出力をEducatorVehicle0(1台目)の目標速度入力に接続する。

EducatorVehicle1のアウトポートを
EducatorVehicle0のインポートに接続する AIST)

動作確認

• RTCをアクティブ化する

EV3(2台目)を手で押すと、 EV3(1台目)が追従して走行する

おわりに

- これで実習は一通り終了です。
- 時間が余った場合は、以下のような課題に挑戦してみてください。
 - EV3(2台目)のタッチセンサのオンオフでEV3(1台目)を操作
 - ジョイスティックコンポーネントで2台同時に操作
 - EV3をしゃべらせる
 - 各種センサの利用(カラーセンサ、超音波センサ、ジャイロセンサ)
- 実習を終了する際について
 - タッチセンサなどの実習中に取り付けた部品は、取り外して実習前の状態で返却してください
 - EV3の電源をオフにして返却してください

