Chapter 1: A Special Case of Fermat's Conjecture

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 1.1-1.9: Define $N: \mathbb{Z}[i] \to \mathbb{Z}$ by $N(a+bi) = a^2 + b^2$.

Exercise 1.1 Verify that for all $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha\beta) = N(\alpha)N(\beta)$, either by direct computation or using the fact that N(a+bi) = (a+bi)(a-bi). Conclude that if $\alpha \mid \gamma$ in $\mathbb{Z}[i]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} .

Proof.

(1) Direct computation. Write $\alpha = a + bi$, $\beta = c + di$ where $a, b, c, d \in \mathbb{Z}$. Thus,

$$\begin{split} N(\alpha\beta) &= N((a+bi)(c+di)) \\ &= N((ac-bd) + (ad+bc)i) \\ &= (ac-bd)^2 + (ad+bc)^2 \\ &= (a^2c^2 - 2abcd + b^2d^2) + (a^2d^2 + 2abcd + b^2c^2) \\ &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2, \\ N(\alpha)N(\beta) &= N(a+bi)N(c+di) \\ &= (a^2+b^2)(c^2+d^2) \\ &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2. \end{split}$$

Therefore, $N(\alpha\beta) = N(\alpha)N(\beta)$. (Note that we also get the identity $(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$.)

(2) Using the fact that N(a+bi)=(a+bi)(a-bi), or $N(\alpha)=\alpha\overline{\alpha}$ for any $\alpha\in\mathbb{Z}[i]$. Thus,

$$N(\alpha\beta) = \alpha\beta\overline{\alpha}\overline{\beta}$$
$$= \alpha\beta\overline{\alpha}\overline{\beta}$$
$$= \alpha\overline{\alpha}\beta\overline{\beta}$$
$$= N(\alpha)N(\beta).$$

(3) Show that if $\alpha \mid \gamma$ in $\mathbb{Z}[i]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} . Write $\gamma = \alpha\beta$ for some $\beta \in \mathbb{Z}[i]$. So $N(\gamma) = N(\alpha)N(\beta) \in \mathbb{Z}$, or $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} .

Exercise 1.2 Let $\alpha \in \mathbb{Z}[i]$. Show that α is a unit iff $N(\alpha) = 1$. Conclude that the only unit are ± 1 and $\pm i$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. By Exercise 1.1, $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\iff) By Exercise 1.1, $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or by (1), we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions (± 1 and $\pm i$) are unit.)

Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$. \square

Exercise 1.3 Let $\alpha \in \mathbb{Z}[i]$. Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Show that the same conclusion holds if $N(\alpha) = p^2$, where p is a prime in \mathbb{Z} , $p \equiv 3 \pmod{4}$.

Proof.

- (1) Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Write $\alpha = \beta \gamma$. Then $N(\alpha) = N(\beta)N(\gamma)$ is a prime in \mathbb{Z} . Since each integer prime is irreducible, $N(\beta) = 1$ or $N(\gamma) = 1$. So that β is unit or γ is unit by Exercise 1.2. Hence, α is irreducible.
- (2) Show that α is irreducible in $\mathbb{Z}[i]$ if $N(\alpha) = p^2$, where p is a prime in \mathbb{Z} , $p \equiv 3 \pmod{4}$. Assume $\alpha = \beta \gamma$ were not irreducible. Similar to (1), $N(\alpha) = N(\beta)N(\gamma) = p^2$. Since β and γ are proper factors of α ,

$$N(\beta) = N(\gamma) = p.$$

Since any square $a^2 \equiv 0, 1 \pmod{4}$, any $N(a+bi) = a^2 + b^2 \equiv 0, 1, 2 \pmod{4}$. Especially, $N(\beta) \equiv 0, 1, 2 \pmod{4}$, contrary to $N(\beta) = p \equiv 3 \pmod{4}$ by the assumption. Therefore, α is irreducible in $\mathbb{Z}[i]$.

Supplement.

- (1) The prime 2 is reducible in $\mathbb{Z}[i]$ (Exercise 1.4).
- (2) Every prime $p \equiv 1 \pmod{4}$ is reducible in $\mathbb{Z}[i]$ (Exercise 1.8).

Exercise 1.4 Show that 1-i is irreducible in \mathbb{Z} and that $2=u(1-i)^2$ for some unit u.

Proof.

- (1) 1-i is irreducible. Since N(1-i)=2 is a prime in \mathbb{Z} , 1-i is irreducible by Problem 1.3.
- (2) $2 = i(1-i)^2$ where i is unit in \mathbb{Z} .

Exercise 1.5 Notice that (2+i)(2-i) = 5 = (1+2i)(1-2i). How is this consistent with unique factorization?

Proof. Since 2+i=i(1-2i) and 2-i=(-i)(1+2i), the factorization is unique up to order and multiplication of primes by units. \Box

Exercise 1.6 Show that every nonzero, non-unit Gaussian integer α is a product of irreducible elements, by induction on $N(\alpha)$.

Proof. Induction on $N(\alpha)$.

- (1) n = 2. Given $\alpha \in \mathbb{Z}[i]$ with $N(\alpha) = 2$. Since $N(\alpha) = 2$ is a prime in \mathbb{Z} , α is irreducible (Exercise 1.3).
- (2) Suppose the result holds for $n \leq k$. Given $\alpha \in \mathbb{Z}[i]$ with $N(\alpha) = k + 1$. There are only two possible cases.
 - (a) α is irreducible. Nothing to do.
 - (b) α is reducible. Write $\alpha=\beta\gamma$ where neither factor is unit. Since $N(\alpha)=N(\beta)N(\gamma)$ and neither factor is unit,

$$2 \le N(\beta), N(\gamma) \le k$$
.

By the induction hypothesis, each factor of α (β and γ) is a product of irreducible elements. So that α again is a product of irreducible elements.

In any cases, α is a product of irreducible elements.

By induction, the result is established. \square

Exercise 1.7 Show that $\mathbb{Z}[i]$ is a principal ideal domain (PID); i.e., every ideal I is principal. (As shown in Appendix 1, this implies that $\mathbb{Z}[i]$ is a UFD.)

Suggestion: Take $\alpha \in I - \{0\}$ such that $N(\alpha)$ is minimized, and consider the multiplies $\gamma \alpha, \gamma \in \mathbb{Z}[i]$; show that these are the vertices of an infinite family of squares which fill up the complex plane. (For example, one of the squares has vertices $0, \alpha, i\alpha,$ and $(1+i)\alpha;$ all others are translates of this one.) Obviously I contains all $\gamma \alpha;$ show by a geometric argument that if I contains anything else then minimality of $N(\alpha)$ would be contradicted.

Proof (without geometric intuition). Define N on $\mathbb{Q}[i]$ by $N(a+bi)=a^2+b^2$ where $a+bi\in\mathbb{Q}[i]$ as usual.

- (1) Show that $\mathbb{Z}[i]$ is a Euclidean domain. Given $\alpha = a + bi \in \mathbb{Z}[i]$ and $\gamma = c + di \in \mathbb{Z}[i]$ with $\gamma \neq 0$. It suffices to show there exist δ and ρ such that the identity $\alpha = \gamma \delta + \rho$ holds and either $\rho = 0$ or $N(\rho) < N(\gamma)$.
 - (a) Pick $\delta \in \mathbb{Z}[i]$. (Intuition: Pick the 'integer part' of $\frac{\alpha}{\gamma}$ as we did in integer numbers.) Write $\frac{\alpha}{\gamma} = r + si \in \mathbb{Q}[i]$. Then we pick $\delta = m + ni \in \mathbb{Z}[i]$ such that $|r m| \leq \frac{1}{2}$ and $|s n| \leq \frac{1}{2}$. Therefore,

$$N\left(\frac{\alpha}{\gamma} - \delta\right) = (r - m)^2 + (s - n)^2$$

$$\leq \frac{1}{4} + \frac{1}{4}$$

$$= \frac{1}{2}.$$

(b) Pick $\rho \in \mathbb{Z}[i]$. Clearly we can pick $\rho = \alpha - \gamma \delta \in \mathbb{Z}[i]$. Therefore, $\rho = 0$ or

$$\begin{split} N(\rho) &= N(\alpha - \gamma \delta) \\ &= N\left(\gamma\left(\frac{\alpha}{\gamma} - \delta\right)\right) \\ &= N(\gamma)N\left(\frac{\alpha}{\gamma} - \delta\right) \\ &\leq \frac{1}{2}N(\gamma) \\ &< N(\gamma). \end{split}$$

- (2) Show that every Euclidean domain R is a PID. Given any ideal I of R. Take $\alpha \in I \{0\}$ such that $N(\alpha)$ is minimized.
 - (a) $R\alpha \subseteq I$ clearly.
 - (b) Conversely, for any $\beta \in I$, there are $\delta, \rho \in R$ such that $\beta = \alpha \delta + \rho$, where either $\rho = 0$ or $N(\rho) < N(\alpha)$. Since $\rho = \beta \alpha \delta \in I$, we cannot have $N(\rho) < N(\alpha)$ by the minimality of $N(\alpha)$. Therefore, $\rho = 0$ and $\beta = \alpha \delta \in R\alpha$, or $R\alpha \supseteq I$.

By (1)(2), $\mathbb{Z}[i]$ is a PID. \square

Exercise 1.9 Describe all irreducible elements in $\mathbb{Z}[i]$.