

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu



# Types of materials

## Monocrystalline



Polycrystalline



#### Amorphous











- Crystalline structures can be understood by considering atoms as a hard spheres.
- These hard spheres can be situated at Imaginary point in a space used to describe position of atom/ion/molecule.
- These imaginary points are called as Lattice Points.
- The smallest repeating unit of lattices is called as Unit Cell.
- A lattice is formed by repeating unit cells.
- 1-D lattice Linear lattice
- 2-D lattice Space lattice
- 3-D lattice Crystal lattice











Unit cell



### 7 Different types of unit cells



| Crystal System | Lengths | Angles                   |
|----------------|---------|--------------------------|
| Cubic          | a=b=c   | α=β=γ=90                 |
| Trigonal       | a=b=c   | a=β=γ<120, ≠90           |
| Hexagonal      | a=b≠c   | $a=\beta=90, \gamma=120$ |
| Tetragonal     | a=b≠c   | $a=\beta=\gamma=90$      |
| Orthorhombic   | a≠b≠c   | $a=\beta=\gamma=90$      |
| Monoclinic     | a≠b≠c   | a=β=90≠γ                 |
| Triclinic      | a≠b≠c   | a≠β≠γ                    |







A Lattice with only lattice point



Sharing in a unit cell 1/4 \* 4 = 1



In a cubic unit cell (Try it yourself)



| No. of. corners:       | 8  |
|------------------------|----|
| No. of edges:          | 12 |
| No. of Faces:          | 6  |
| No. of Body Diagonals: | 4  |
| No. of Face Diagonals: | 12 |





A Lattice with only lattice point



Sharing in a unit cell 1/8 \* 8 = 1



There are only 14 ways of arranging lattice so that environment looks same from each point





#### Summary

- 1. Single crystalline or monocrystalline materials have periodic arrangement of atoms throughout.
- 2. A polycrystalline material consists of many single crystallite with a boundary.
- 3. Amorphous materials have random arrangement of atoms.
- 4. There are 7 crystal systems and 14 Bravais lattices.
- 5. The atom sitting in the unit cell can share different part depending upon its location.
- 6. A primitive lattice has only one lattice point in the unit cell.



# Assignments

- 1. Why a 2-D pentagon lattice is not possible?
- 2. Which crystal systems are the least and most symmetric. Explain the reason.
- 3. Show that FCT does not exist in Bravais Lattice list.
- 4. Find out the number of lattice points in SC, BCC and FCC lattices.
- 5. Write down types of bonds present in different materials.
- 6. Find out 2-D primitive lattices in following pictures.

