Lecture-3

Q. 1.

Calculate the energy stored in the capacitor of the circuit to the right under DC conditions.

And from the voltage divider formed by the $1k\Omega$ and the $2k\Omega$ resistors the voltage v is 12Volts. Therefore the energy stored in the capacitor is

$$Ec = \frac{1}{2}Cv^2 = \frac{1}{2}1 \times 10^{-6} \times 12^2 = 72 \,\mu\text{Joules}$$

H.W.

If the capacitor is replaced by an inductor (lmH) then how much energy is stored by it.

Steady State I-V Characteristics of R

With DC Sources

Steady State I-V Characteristics of R, C and L

With AC Source

Basic Lissajous Curves

Lissajous figures are created by the combination of two sine waves

https://datagenetics.com/blog/april22015/index.html

Materials

Classification:- In terms of Electrical Conductivity

- Conductor
- Insulator
- Semiconductor

Si-crystal (semiconductor)

Intrinsic (pure):

Extrinsic (doped):

- p-type (trivalent doping ions e.g. B) and
- n-Type (pentavalent doping ions e.g. P)

Electron concentration gradient

- $n = n_{n0}$ (*n*-side) > $n = np_0$ (*p*-side)
- ⇒Electrons *diffuse* towards the left and enter the *p*-region and recombine with the holes (majority carriers)
- \Rightarrow The *p*-side near the junction becomes <u>depleted of majority carriers</u> and has exposed negative acceptors of concentration N_a .

Hole concentration gradient

- $p = p_{p0}$ (p-side) > $p = p_{n0}$ (n-side)
- ⇒Holes *diffuse* towards the right and enter the *n*-region and recombine with the electrons (majority carriers) in this region.
- \Rightarrow The *n*-side near the junction becomes <u>depleted of majority carriers</u> and has exposed positive donors of concentration N_d .

P-N Junction Diode

