EXERCICIS DE CÀLCUL DIFERENCIAL EN DIVERSES VARIABLES Primer quadrimestre del curs 2012-2013

Llista 1: L'espai \mathbb{R}^n

- 1. Trobeu l'angle que formen els vectors $a=\left(1,1/\sqrt{2},1/\sqrt{2}\right)$ i $b=\left(1,-1/\sqrt{2},1/\sqrt{2}\right)$.
- 2. Trobeu la projecció ortogonal de a sobre b, on a = (0, 1, 2) i b = (1, -1, 0).
- 3. Trobeu analíticament i representeu gràficament tots els vectors unitaris de \mathbb{R}^3 que formen un angle de $\pi/3$ radiants amb el vector (0,1,1). Quina figura geomètrica representen?
- 4. Utilitzant la designaltat de Cauchy-Schwarz $|u \cdot v| \leq ||u|| ||v||$, proveu que si $x_1, \dots, x_n \in \mathbb{R}$, llavors es compleix

$$\frac{x_1+\dots+x_n}{n} \le \sqrt{\frac{x_1^2+\dots+x_n^2}{n}}.$$

- 5. Donat el conjunt $A = \{(x, y) \in \mathbb{R}^2 : 4x^2 + y^2 2y \le 3\}$
 - (a) Representeu-lo gràficament.
 - (b) Proveu que (0,2) és un punt interior a A.
 - (c) Proveu que (1,2) és un punt exterior a A.
 - (d) Proveu que (1,1) és un punt de la frontera de A.
 - (e) Trobeu dos punts interiors a A, dos d'exteriors i dos de la frontera.
- 6. Trobeu l'adherència, l'interior i la frontera dels conjunts següents, representeu-los gràficament i digueu si són oberts, tancats o ni una cosa ni l'altre.
 - (a) $\mathbb{R} \times \{0\}$ en \mathbb{R}^2 .
 - (b) \mathbb{Q}^n en \mathbb{R}^n .
 - (c) $(0,1] \times [1,2)$ en \mathbb{R}^2 .

 - (d) $\{(x,y) \in \mathbb{R}^2 : y > x^3\}$ en \mathbb{R}^2 . (e) $\{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}$ en \mathbb{R}^2 . (f) $\{(x,y) \in \mathbb{R}^2 : x + y > 2, x y \le 1\}$ en \mathbb{R}^2 .
- 7. Quins conjunts de l'exercici anterior són compactes? Quins la seva adherència és compacte?