Milling and Welding Todo

Team: Ana Siesto Pérez and Xavier Marti Llull G11-A

Link: https://drive.matlab.com/sharing/c2cb0355-515d-4b92-8937-bf8df3fe7add

Table of Contents

Plotting the robot to initial position	1
Constructing the welding zone	
Positioning a frame of reference on our welding region's center	
Acquiring weld (x,y,z) positions and giving orientation to end effector	
Plotting the trajectory to be followed with end efector's reference frame examples	
Jsing inverse kinematics to plot robot's pose in all the trajectory	

See the video: https://youtu.be/cVZWm9ORY30

As you can see in the video a Robot Arm perform three task. Only two tasks are shown:

- 1. Make a hole in a cylinder by drilling it. Observe that the tool mantain the same orientation during the drilling task.
- 2. Insertion of a smaller cylinder not recorder here.
- 3. Welding the two cylinder. Observe that the tool always form a 45° with respect to red cylinder axis

Plotting the robot to initial position

```
mdl_puma560
p560.tool=transl(0,0,0.15)
p560.plot(qn,'zoom',2.5,'workspace', [-1.5 1.5 -1.5 1.5 -0.5 1],'view',[20 20] );
hold on
```


Constructing the welding zone

(Based on reference frames from figure 6 Hint cue for welding task)

Positioning a frame of reference on our welding region's center

```
% We've chosen a radius=0.25 and placed our weling region's center in
% (0.5,0.5,0.0).

radi=0.25;
reference_frame=transl(0.5,0.5,0.0)*trotz(-pi/4)*trotx(pi/4)
trplot(reference_frame, 'length',0.2)
```


Acquiring weld (x,y,z) positions and giving orientation to end effector

```
% We displace the points to be painted to (0.5,0.5,0.0) and then we % orient them so they will be placed correctly to weld the tube. After % that, we take advantage of function [r*cos(a);r*sin(a);abs(r*cos(a))] % (which describes the welding trajectory) to finally place the points % well and at last, we rotate its reference frames in a way that only % applying trotz(2*pi*i/100)*trotx(-135*pi/180) we will always have the z % axis forming a 45 degree angle with respect to the z axis from the
```

Plotting the trajectory to be followed with end efector's reference frame examples

```
cir=transl(Weld_Pos)'
plot3(cir(1,:), cir(2,:), cir(3,:),'r','LineWidth',3);

axis equal
trplot(Weld_Pos(:,:,1), 'length',0.2)
trplot(Weld_Pos(:,:,25), 'length',0.2)
trplot(Weld_Pos(:,:,50), 'length',0.2)
trplot(Weld_Pos(:,:,75), 'length',0.2)
```


Using inverse kinematics to plot robot's pose in all the trajectory

```
Q= p560.ikine6s(Weld_Pos, 'run');
p560.plot(Q,'view',[20 20], 'zoom',1.5,'workspace', [-1.5 1.5 -1.5 1.5 -0.5 1],...
'trail','-','jaxes','zoom',2)
```

