Stærðfræðimynstur í tölvunarfræði

Vika 3

Skýrsla vefkerfis

Táknun falla

- Skilgreina má föll á ýmsa vegu
 - ► Upptalning fallsgilda þannig að sérhvert stak formengis hafi skilgreint fallsgildi
 - ► Reiknanleg segð
 - f(x) = x + 1
 - **►** Tölvuforrit
 - ▶T.d. Java forrit sem, fyrir gefna heiltölu n reiknar ntu Fibonacci töluna (sjá t.d. kafla 5)

Spurningar

Ímynd (fallsgildi) d?

Formengi f?

Bakmengi f?

Formynd y?

f(A) = ?

Formynd(ir) z er(u)?

Formengi, bakmengi, varpmengi, imynd (fallsgildi) Möggu Magg, formynd 9

Föll og mengi

► Ef $f: A \rightarrow B$ er fall og $S \subseteq B$ þá skilgreinum við

$$f(S) = \{ f(s) \mid s \in S \}$$

$$f({a,b,c})$$
 er?

$$f(\{c,d\})$$
 er?

Föll og mengi

► Ef $f: A \rightarrow B$ er fall og $S \subseteq B$ þá skilgreinum við

$$f(S) = \{ f(s) \mid s \in S \}$$

$$f({a,b,c}) \text{ er? } {y,z}$$

$$f(\{c,d\})$$
 er?

Föll og mengi

► Ef $f: A \to B$ er fall og $S \subseteq A$ þá skilgreinum við

$$f(S) = \{ f(s) \mid s \in S \}$$

$$f({a,b,c}) \text{ er? } {y,z}$$

$$f(\{c,d\})$$
 er? $\{z\}$

Eintæk föll (injective, one-to-one)

- Fall er sagt vera eintækt ef fyrir öll a_1 og a_2 í formenginu gildir að ef $f(a_1) = f(a_2)$ þá er $a_1 =$ a_2 .
- Sem sagt: Hver imynd hefur i mesta lagi eina formynd.
- Dæmi: Hver einkunn hefur í mesta lagi einn nemanda.

Átæk föll (surjective, onto)

- Fall er sagt vera átækt ef fyrir öll b í bakmenginu gildir að til er a í formenginu þannig að f(a) = b.
- Sem sagt: Sérhvert stak í bakmenginu er ímynd a.m.k. eins staks í formenginu.
- Dæmi: Hver einkunn hefur að minnsta kosti einn nemanda.

Gagntæk föll (bijective, one-to-one and onto)

- Fall er sagt vera gagntækt ef það er bæði eintækt og átækt.
- Sem sagt: Sérhvert stak í bakmenginu er ímynd nákvæmlega eins staks í formenginu.
- Dæmi: Hver einkunn hefur að nákvæmlega einn nemanda.

Hvernig sýnum við að fall sé eintækt eða átækt?

- ▶ Gerum ráð fyrir (G.r.f.) að $f: A \rightarrow B$ sé fall.
- Til að sýna að f sé eintækt þurfum við að sanna að ef $f(a_1)=f(a_2)$ þá er $a_1=a_2$
- Til að sýna að f sé ekki eintækt þurfum við að finna tvö mismunandi gildi a_1 og a_2 í A þannig að $f(a_1)=f(a_2)$
- ► Til að sýna að f sé átækt íhugum við almennt gildi $b \in B$ og sýnum að til sé $a \in A$ þannig að f(a) = b
- ► Til að sýna að f sé ekki átækt finnum við gildi $b \in B$ þannig að fyrir öll $a \in A$ gildi að $f(a) \neq b$

Andhverfur falla

Skilgreining: Látum $f: A \to B$ vera gagntækt fall. Þá er andhverfa f, táknað með f^{-1} , fall $f^{-1}: B \to A$ sem skilgreint er með

$$f^{-1}(y) = x$$
 þá og því aðeins að $f(x) = y$

 \blacktriangleright Þessi skilgreining virkar aðeins ef f er gagntækt fall

Andhverfur falla

- Skilgreinum $f: \mathbb{R} \to \mathbb{R}$ með $f(x) = x^2$
- ► Er *f* andhverfanlegt (gagntækt) og ef svo, hver er andhverfan?
- ► Svar: ?

- Skilgreinum $f: \mathbb{R} \to \mathbb{R}$ með $f(x) = x^2$
- ► Er *f* andhverfanlegt (gagntækt) og ef svo, hver er andhverfan?
- Svar: f er ekki eintækt því f(1) = 1 = f(-1). f er ekki átækt því ekki er til x þannig að f(x) = -1. f er því alls ekki gagntækt.

- Skilgreinum $f: \mathbb{R}^+ \to \mathbb{R}^+$ með $f(x) = x^2$
- ► Er *f* andhverfanlegt (gagntækt) og ef svo, hver er andhverfan?
- Svar: ?

- Skilgreinum $f: \mathbb{R}^+ \to \mathbb{R}^+$ með $f(x) = x^2$
- ► Er f andhverfanlegt (gagntækt) og ef svo, hver er andhverfan?
- Svar: Já, f er gagntækt og $f^{-1}(y) = \sqrt{y}$

Samsett föll

Skilgreining: Látum $f: B \to C$ og $g: A \to B$, þá er samsetta fallið $f \circ g: A \to C$ skilgreint með $f \circ g(x) = f(g(x))$

Samsett föll

► Ef $f(x) = x^2$ og g(x) = 2x + 1 þá er

$$f \circ g(x) = f(g(x)) = ?$$

og

$$g \circ f(x) = g(f(x)) = ?$$

► Ef $f(x) = x^2$ og g(x) = 2x + 1 þá er

$$f \circ g(x) = f(g(x)) = (2x + 1)^2$$

og

$$g \circ f(x) = g(f(x)) = ?$$

► Ef $f(x) = x^2$ og g(x) = 2x + 1 þá er

$$f \circ g(x) = f(g(x)) = (2x + 1)^2$$

og

$$g \circ f(x) = g(f(x)) = 2x^2 + 1$$

Gröf falla

▶ Látum $f: A \to B$ vera fall. *Graf* fallsins er þá mengið $\{(a, b) \mid a \in A, f(a) = b\}$, þ.e. $\{(a, f(a)) \mid a \in A\}$.

Grafið fyrir
$$f(n) = 2n + 1$$
,
 $f: \mathbb{Z} \to \mathbb{Z}$

Grafið fyrir
$$f(x) = x^2$$
,
 $f: \mathbb{Z} \to \mathbb{Z}$

Nokkur mikilvæg föll

Fallið *floor*, táknað

$$f(x) = \lfloor x \rfloor$$

er stærsta heiltala minni en eða jöfn x

Fallið *ceiling*, táknað

$$f(x) = [x]$$

er minnsta heiltala stærri en eða jöfn x

- Dæmi
 - [3.5] = 3, [3.5] = 4
 - [-1.5] = -2, [-1.5] = -1

Gröfin fyrir floor og ceiling

Gagnlegt um floor og ceiling

x er rauntala, n er heiltala

(1a)
$$\lfloor x \rfloor = n$$
 þá og því aðeins að $n \le x < n+1$

(1b)
$$[x] = n$$
 þá og því aðeins að $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 þá og því aðeins að $x - 1 < n \le x$

(1d)
$$[x] = n$$
 þá og því aðeins að $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$[-x] = -[x]$$

(3b)
$$[-x] = -[x]$$

(4a)
$$|x + n| = |x| + n$$

(4b)
$$[x + n] = [x] + n$$

Dæmi um sönnun eiginleika skyldra falla

- Dæmi: Viljum sanna að ef x er rauntala þá er $[2x] = [x] + [x + \frac{1}{2}]$
- Sönnun: Gerum, án takmarkana, ráð fyrir að $x=n+\epsilon$, þar sem n er heiltala og $0 \le \epsilon < 1$.
 - ► Tilfelli 1: $0 \le \epsilon < \frac{1}{2}$
 - ▶ $2x = 2n + 2\epsilon$ og $\lfloor 2x \rfloor = 2n$ þar eð $0 \le \epsilon < 1$. Einnig er $\lfloor x + \frac{1}{2} \rfloor = n$ þar eð $x + \frac{1}{2} = n + (\frac{1}{2} + \epsilon)$ og $0 \le \frac{1}{2} + \epsilon < 1$. Þarmeð er $\lfloor 2x \rfloor = 2n$ og einnig er $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = n + n = 2n$.
 - ► Tilfelli 2: $\frac{1}{2} \le \epsilon < 1$
 - ▶ $2x = 2n + 2\epsilon = (2n + 1) + (2\epsilon 1)$ og $\lfloor 2x \rfloor = 2n + 1$ þar eð $0 \le 2\epsilon 1 < 1$. Einnig er $\lfloor x + \frac{1}{2} \rfloor = \lfloor n + (\frac{1}{2} + \epsilon) \rfloor = \lfloor n + 1 + (\epsilon \frac{1}{2}) \rfloor = n + 1$ þar eð $0 \le \epsilon \frac{1}{2} < 1$. Þar með er $\lfloor 2x \rfloor = 2n + 1$ og einnig er $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = n + (n + 1) = 2n + 1$.

Hrópmerkt

- Skilgreining: Fallið $f: \mathbb{N} \to \mathbb{Z}^+$, táknað með f(n) = n! er margfeldi fyrstu n jákvæðu heiltalnanna, þar sem n er ekki-neikvæð heiltala.
 - ► $f(n) = 1 \cdot 2 \cdots (n-1) \cdot n, f(0) = 1$ Eða
 - $f(n) = \sum_{i=1}^{n} i$
- Dæmi:
 - f(0) = 0! = 1
 - $f(2) = 2! = 1 \cdot 2 = 2$
 - $f(6) = 7! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$
 - f(30) = 8159152832478977343456112695961158942720000000000

Formúla Stirlings:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Þar sem $f(n) \sim g(n)$ þýðir

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Hlutskilgreind föll

- Skilgreining: Hlutskilgreint fall $f: A \to B$ er hlutmengi i $A \times B$ sem uppfyllir það skilyrði að fyrir sérhvert stak $a \in A$ er i mesta lagi til eitt par $(a,b) \in f$. Ef slíkt par er til þá telst f vera skilgreint fyrir a og við skrifum f(a) = b. Annars segjum við að f sé óskilgreint fyrir a.
- ▶ Dæmi: Fallið $f: \mathbb{Z} \to \mathbb{R}$ þar sem $f(n) = \sqrt{n}$, fyrir $n \ge 0$, en óskilgreint annars.
- Hlutskilgreind föll eru líka mikilvæg þegar við íhugum forrit sem kannski skila gildi en kannski ekki.
- Föll sem eru skilgreind á öll gildi í sínu formengi eru kölluð fullskilgreind föll og ef annað er ekki tekið fram þá munum við gera ráð fyrir að föll séu fullskilgreind.

Runur og summur

- Runur (sequences)
 - Mismunarunur (arithmetic sequences)
 - ► Hlutfallsrunur (geometric sequences)
- Rakningarvensl (recurrence relations)
 - ▶ Dæmi: Fibonacci runan
- Summur (sums)
 - ► Stundum kallaðar *raðir*

Inngangur

- Runur eru gildi í ákveðinni röð
 - **1**,1,2,3,5,8
 - **▶** 1,3,9,27,81,...
- Runur koma oft fyrir í stærðfræði, tölvunarfræði og ýmsum öðrum greinum svo sem grasafræði og tónlist
- ▶ Við munum sjá þann orðaforða sem notaður er til að ræða runur og summur

Runur

- ▶ Runa er fall frá hlutmengi heiltalnanna (oftast mengið {1,2,3, ... } eða mengið {1,2,3, ... }) í eitthvert mengi S
- ► Rithátturinn a_n er notaður til að tákna ímynd heiltölunnar n. Við getum hugsað um a_n sem ígildi f(n) þar sem $f:\{0,1,2,...\} \rightarrow S$. Við köllum a_n lið í rununni

Runur

▶ Dæmi:

 \blacktriangleright Íhugið rununa $\{a_n\}$ þar sem

$$a_n = \frac{1}{n},$$
 $\{a_n\} = \{a_1, a_2, a_3, \dots\}$

► Runan er

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \dots$$

Hlutfallsrunur

Skilgreining: Hlutfallsruna er runa á sniðinu

$$a$$
, ar , ar^2 , ar^3 , ..., ar^n , ...

þar sem a kallast **frumliðurinn** og r kallast **hlutfallið** sem hvort tveggja eru tölur (oftast rauntölur)

- Dæmi:
 - 1. Látum a=1 og r=-1 þá fæst runan $\{b_n\}=\{b_0,b_1,b_2,...\}=\{1,-1,1,-1,1,...\}$
 - 2. Látum a=2 og r=5 þá fæst runan $\{c_n\}=\{c_0,c_1,c_2,...\}=\{2,10,50,250,1250,...\}$
 - 3. Látum a = 6 og r = 1/3 þá fæst runan

$${d_n} = {d_0, d_1, d_2, \dots} = {6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots}$$

Mismunarunur

Skilgreining: Mismunaruna er runa á sniðinu

$$a, a + d, a + 2d, a + 3d, ..., a + nd, ...$$

þar sem a kallast **frumliðurinn** og d kallast **mismunurinn** sem hvort tveggja eru tölur (oftast rauntölur)

Dæmi:

- 1. Látum a=-1 og d=4 þá fæst runan $\{s_n\}=\{s_0,s_1,s_2,...\}=\{-1,3,7,11,15,...\}$
- 2. Látum a=7 og d=-3 þá fæst runan $\{t_n\}=\{t_0,t_1,t_2,...\}=\{7,4,1,-2,-5,...\}$
- 3. Látum a=1 og d=2 þá fæst runan $\{u_n\}=\{u_0,u_1,u_2,...\}=\{1,3,5,7,9,...\}$

Strengir

- Skilgreining: Strengur er endanleg runa stafa úr endanlegu mengi (kallað stafrófið)
 - Stafrófið getur verið hvaða endanlegt mengi sem er, sérhvert stak í stafrófinu kallast stafur
- Runur stafa eða bita eru mikilvægar í tölvunarfræði
- Tómi strengurinn er táknaður með λ í þessu námskeiði (í öðrum námskeiðum er hann stundum táknaður með ϵ
- Tómi strengurinn hefur lengd 0
- Strengurinn abcde hefur lengd 5

Rakningarvensl

- Skilgreining: *Rakningarvensl* fyrir runu $\{a_n\}$ er jafna sem skilgreinir a_n sem fall af einum eða fleiri fyrri liðum rununnar, þ.e. fall af einhverjum eða öllum af a_0, a_1, \dots, a_{n-1} fyrir öll $n > n_0$, þar sem n_0 er ekki-neikvæð heiltala
- Runa er kölluð *lausn* á rakningarvenslunum ef liðir rununnar uppfylla rakningarvenslin
- Frumskilyrði rununnar tilgreina liðina sem eru fyrir framan fyrsta liðinn sem rakningarvenslin skilgreina

Spurningar um rakningarvensl

- ▶ Dæmi 1: Látum $\{a_n\}$ vera runu sem uppfyllir rakningarvenslin $a_n = a_{n-1} + 3$ fyrir n = 1,2,3,4,... og gerum ráð fyrir að $a_0 = 2$. Hvað eru þá a_1, a_2 og a_3 ? (Hér er $a_0 = 2$ frumskilyrðið)
- > Svar: Við sjáum af rakningarvenslunum að

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

 $a_2 = 5 + 3 = 8$
 $a_3 = 8 + 3 = 11$

Spurningar um rakningarvensl

- ▶ Dæmi 2: Látum $\{a_n\}$ vera runu sem uppfyllir rakningarvenslin $a_n = a_{n-1} a_{n-2}$ fyrir n = 2,3,4,... og gerum ráð fyrir að $a_0 = 3$ og $a_1 = 5$. Hvað eru þá a_2 og a_3 ? (Hér eru $a_0 = 3$ og $a_1 = 5$ frumskilyrðin)
- Svar: Við sjáum af rakningarvenslunum að

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

 $a_3 = a_2 - a_1 = 2 - 5 = -3$

Fibonacci runan

- Skilgreining: Fibonacci runan $f_0, f_1, f_2, ...$ er skilgreind með:
 - Frumskilyrði: $f_0 = 0$, $f_1 = 1$
 - ► Rakningarvensl: $f_n = f_{n-1} + f_{n-2}$
- ▶ Dæmi: Finnið f_2 , f_3 , f_4 , f_5 og f_6
- Svar:

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2$
 $f_4 = f_3 + f_2 = 2 + 1 = 3$
 $f_5 = f_4 + f_3 = 3 + 2 = 5$
 $f_6 = f_5 + f_4 = 5 + 3 = 8$

Lausnir rakningarvensla

- Að finna segð (formúlu) fyrir n-ta lið runu sem skilgreind er með rakningarvenslum er kallað að *leysa rakningarvenslin*
- Slík segð segð er sögð vera á lokuðu sniði (ef hún inniheldur aðeins grunnaðgerðir og föll, ekki t.d. summumerki eða heildunarmerki)
- Ein aðferð sem getur virkað ef við erum getspök er að giska á rétta segð og sanna hana síðan með þrepun
- ▶ Við munum e.t.v. seinna sjá fleiri aðferðir til að leysa sum rakningarvensl (kafli 8)

Dæmi 1

- ▶ G.r.f. að rakningarvensl fyrir rununa $\{f_n\}$ séu $f_n = f_{n-1} + 2$ með frumskilyrði $f_0 = 1$. Þá er runan 1,3,5,7,...
- Við sjáum að mismunur liða er ávallt 2 og giskum á að lausnin sé $f_n=2n+1$
- Þrepasönnun
 - ▶ Grunnur, gildir fyrir n = 0: $f_0 = 1 = 2 \cdot 0 + 1$, sem passar
 - Þrepun:
 - ▶ Prepunarforsenda: G.r.f. að $f_k = 2k + 1$ gildi fyrir öll k < n
 - ▶ Prepunarskref: Þá er, samkvæmt rakningarvenslunum, $f_n = f_{n-1} + 2$, sem er samkvæmt þrepunarforsendu jafnt 2(n-1) + 1 + 2 = 2n 2 + 1 + 2 = 2n + 1

Dæmi 2

- ▶ G.r.f. að rakningarvensl fyrir rununa $\{f_n\}$ séu $f_n=2f_{n-1}$ með frumskilyrði $f_0=1$. Þá er runan 1,2,4,8,...
- Við sjáum að hlutfallið milli liða er ávallt 2 og giskum á að lausnin sé $f_n=2^n$
- Þrepasönnun
 - ▶ Grunnur, gildir fyrir n = 0: $f_0 = 1 = 2^0$, sem passar
 - Þrepun:
 - ▶ Prepunarforsenda: G.r.f. að $f_k = 2^k$ gildi fyrir öll k < n
 - ▶ Prepunarskref: Þá er, samkvæmt rakningarvenslunum, $f_n = 2f_{n-1}$, sem er samkvæmt þrepunarforsendu jafnt $2 \cdot 2^{n-1} = 2^n$

Gagnlegar runur (sequences)

Nokkrar runur			
n-ti liður	Fyrstu 10 liðir		
n^2	1,4,9,16,25,36,49,64,81,100,		
n^3	1,8,27,64,125,216,343,512,729,1000,		
n^4	1,16,81,256,625,1296,2401,4096,6561,10000,		
2^n	2,4,8,16,32,64,128,256,512,1024,		
3^n	3,9,27,81,243,729,2187,6561,19683,59049,		
n!	1,2,6,24,120,720,5040,40320,362880,3628800,		
f_n	1,1,2,3,5,8,13,21,34,55,89,		

Summur (sums) og raðir (series)

- Summur liða a_m , a_{m+1} , ..., a_n úr rununni $\{a_n\}$
- Ritháttur fyrir $a_m + a_{m+1} + \cdots + a_n$:

$$\sum_{j=m}^{n} a_j$$

eða

$$\sum_{j=m}^{n} a_j$$

eða

$$\sum_{n \le j \le n} a_j$$

eða

$$\sum_{m \le j \le n} a_j$$

- ▶ *j* kallast *hlaupabreyta* eða *vísir* samlagningarinnar
- Athugið: Hvað ef m > n? Þá erum við að reikna summu núll liða, sem er núll

Summur

Almennar, fyrir mengi S:

$$\sum\nolimits_{j\in S}a_{j}$$

Dæmi:

$$r^{0} + r^{1} + r^{2} + \dots = \sum_{j=0}^{\infty} r^{j}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{j=1}^{n} \frac{1}{j}$$

▶ Ef $S = \{2,5,7,10\}$ þá er $\sum_{j \in S} a_j = a_2 + a_5 + a_7 + a_{10}$

Margfeldi

- Margfeldi þátta a_m, a_{m+1}, \dots, a_n úr rununni $\{a_n\}$
- Ritháttur fyrir $a_m \cdot a_{m+1} \cdot \dots \cdot a_n$: $\prod_{i=m}^n a_i$

► Athugið: Hvað ef m > n? Þá erum við að reikna margfeldi núll þátta, sem er **einn**

Raðir (series)

- ► Ef við höfum talnarunu $\{a_i\}$, þar sem i hleypur í gegnum \mathbb{N} þá getum við skilgreind aðra runu $\{\sum_{j=0}^i a_j\}$
- Runan $\{\sum_{j=0}^{i} a_j\}$ kallast einnig **röð**

Jafnhlutfallaröð (geometric series)

Setning: Summa liða úr hlutfallsrunu er

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & \text{ef } r \neq 1\\ (n+1)a & \text{ef } r = 1 \end{cases}$$

Sönnun: Látum $S_n = \sum_{j=0}^n ar^j$, margföldum síðan báðum megin jafnaðarmerkis með r og fáum

$$rS_n = r\sum_{j=0}^n ar^j = \sum_{j=0}^n ar^{j+1} = \sum_{j=1}^{n+1} ar^j = \sum_{j=0}^n ar^j - a + ar^{n+1} = S_n + (ar^{n+1} - a)$$

- $\blacktriangleright \quad \text{Sem sagt: } rS_n = S_n + (ar^{n+1} a)$
- \blacktriangleright Einangrum síðan S_n :

$$S_n = \frac{ar^{n+1} - a}{r-1} \quad ef \ r \neq 1$$

$$S_n = (n+1)a$$
 ef $r = 1$

N I	1 1		
NO	kkra	r sun	nmur

NOKKTAT SUMMUT			
Summa	Lokuð segð		
$\sum_{k=0}^{n} ar^k \qquad (ef \ r \neq 1)$	$\frac{ar^{n+1}-a}{r-1}$		
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$		
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$		
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$		
$\sum_{k=0}^{\infty} x^k (ef x < 1)$	$\frac{1}{1-x}$		
$\sum_{k=1}^{\infty} kx^{k-1} (ef x < 1)$	$\frac{1}{(1-x)^2}$		

Nokkrar summur

Summa	Lokuð segð
$\sum_{k=0}^{n} ar^k \qquad (ef \ r \neq 1)$	$\frac{ar^{n-1}-a}{r-1}$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k (ef x < 1)$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1} (ef x < 1)$	$\frac{1}{(1-x)^2}$

Vorum að sanna þetta

Náskylt

Skissum sannanir fyrir þetta á töflunni í fyrirlestri, ef tími vinnst til (auðvelt!)