

Mestrado em Métodos Quantitativos para a Decisão Económica e Empresarial

U.C.: Simulação e Otimização

Capítulo 2:

Problemas de Otimização Combinatória:

Vehicle routing problem

Trabalho realizado por:

Acácio Rebocho nº48976

André Catarino nº56788

Dinis Duarte nº56540

Inês Caseiro nº48764

João Pinheiro nº50410

Novembro 2022

Enunciado para um problema de Vehicle Routing Problem:

A gelataria *Santini* pretende otimizar as rotas de transporte dos cones de gelado que são produzidos na fábrica da marca e transportados até às 7 lojas Santini, localizadas no distrito de Lisboa. Mediante fatores como as vendas, localização e dimensão da loja, e também a época do ano, o gerente de cada loja indica uma estimativa da necessidade de cones por loja numa semana, de forma a garantir a melhor qualidade do produto vendido.

Os cones são transportados da fábrica em caixas que contêm 100 unidades e por sua vez, em carrinhas da empresa que possuem uma capacidade máxima para 90 caixas. O objetivo da empresa passa pela minimização dos tempos de viagem das carrinhas, uma vez que necessita de contratar condutores que são remunerados por tempo de condução.

Para a primeira semana do mês de dezembro prevê-se uma necessidade total de 14 800 cones nas 7 lojas Santini. Na tabela seguinte encontra-se detalhada a informação relativa à localização da fábrica e das lojas, e respetivas necessidades quanto ao número de cones por loja.

ID Localização	Nome	Localização	Latitude (y)	Longitude (x)	Nº de cones a Entregar
0	Depósito	Fábrica Santini	38,7510112	-9,2021732	-
1	C1	Baixa Chiado	38,7125897	-9,1396093	1500
2	C2	Carcavelos	38,6897202	-9,3324395	2500
3	C3	Belém	38,6976516	-9,1989747	2000
4	C4	Telheiras	38,7616655	-9,1794410	3600
5	C5	Amoreiras	38,7237375	-9,1617219	1700
6	C6	Oeiras	38,7059570	-9,3017556	1300
7	C7	Cascais	38,7000026	-9,4191453	2200

Tabela 1: Informação relativa à localização das lojas e respetivo nº de cones necessários em cada uma das lojas para a primeira semana de dezembro de 2022

Com recurso ao VRP Solver, construiu-se a seguinte matriz de tempos, em minutos, com as respetivas distâncias entre os pontos de interesse:

	D	C1	<i>C2</i>	<i>C3</i>	C4	<i>C5</i>	<i>C6</i>	<i>C7</i>
D	-	18	17	15	9	11	13	28
C1	22	-	27	15	21	15	23	37
C2	16	22	-	19	18	15	8	20
<i>C3</i>	14	19	20	-	16	12	17	31
C4	9	17	19	16	-	11	16	30
C5	12	10	18	14	13	-	14	28
<i>C6</i>	13	19	10	17	15	13	-	21
<i>C7</i>	24	30	18	28	26	24	17	-

Tabela 2: Matriz de tempos, em minutos.

Alínea a) Utilize um algoritmo para obter uma Solução Admissível.

O Capacitated Vehicle Routing Problem (CVRP), consiste num problema de otimização combinatória, à semelhança do Vehicle Routing Problem (VRP), mas que difere do VRP por existirem veículos com capacidade de transporte limitada, que necessitam de satisfazer a procura e/ou oferta de n clientes num tempo ou custo total mínimo. Sendo necessário decidir que veículos satisfazem cada cliente e qual a sequência de clientes a visitar por cada veículo, sabendo que existe um ponto de partida e chegada comum para os veículos, o depósito.

Segundo o problema proposto pelo enunciado, a empresa pretende definir as rotas das suas 2 carrinhas, que possuem uma capacidade máxima de transporte de 90 caixas, e com partida e chegada à fábrica da empresa, que precisam de satisfazer as procuras de cones das 7 lojas Santini, num tempo total minímo.

Tendo em conta a tipologia do problema optámos pela aplicação do *Savings Algorithm* (Clarke and Wright) para a obtenção de uma solução admissível.

O pseudocódigo do algoritmo é o seguinte:

Passo 0: Inicialização;

Considerar que cada cliente é servido isoladamente, ou seja, uma rota por cada cliente.

Passo 1: Calcular o saving de juntar cada par de clientes igual a: $s_{ij} = c_{i0} + c_{0j} - c_{ij}$.

Passo 2: Ordenar os savings por ordem decrescente numa lista L.

Passo 3: Selecionar as subrotas associada à junção de maior saving (1ª da lista L)

Se a junção das rotas identificadas for possível (Q),

- 1. Juntar as rotas respetivas;
- 2. Atualizar *L*, recalculando os savings necessários da junção de rotas;
- 3. Voltar a 2;

C.c., retirar a junção de L;

Passo 4: Se ainda há savings positivos em L, voltar a 2,

c.c. FIM

Com auxílio do Excel para aplicação do algoritmo, foi encontrada a seguinte solução admissível: r_1 = (0,2,6,7,0), que serve 3 gelatarias com duração de 67 minutos, e r_2 = (0,4,5,1,3,0), que serve 4 gelatarias com duração de 59 minutos, sendo r_1 a rota correspondente ao veículo 1 e r_2 a rota do veículo 2. Esta solução garante que todas as gelatarias são visitadas uma única vez e que a capacidade das carrinhas nunca é excedida. As duas rotas têm uma duração total de 126 minutos (z_{SA} = 126), sendo este valor um majorante para o valor ótimo da função objetivo (z_{SA} = 126) z_1 2.

Figura 1: Grafo da solução admissível obtida através do Savings Algorithm

Alínea b) Proponha um modelo para o problema (com um número exponencial de restrições) e uma sua relaxação (cuja solução não seja admissível para o problema inicial). Com base na relaxação proposta determine um minorante para o problema.

Sabendo que se trata de um CVRP orientado, caracterizado por ser um problema de otimização combinatória, com |K| veículos de capacidade fixa que irão servir n clientes, apenas uma vez, cada um com uma procura conhecida, definindo |K| rotas, que para que sejam admissíveis devem ter como local de partida e chegada um mesmo local, definido como depósito, e devem satisfazer a procura total dos clientes, sem que nenhum veículo, em algum momento, supere a sua capacidade, e no menor espaço de tempo possível.

Propomos o seguinte modelo:

Seja o grafo G = (V, A) orientado, formado pelo conjunto de vértices $V = \{0,1,2,3,4,5,6,7\}$ e ligados por arcos $A = \{(i,j): i,j \in V, i \neq j\}$.

Notação:

V – conjunto de lojas e fábrica da Santini, tal que V = $\{0,1,2,3,4,5,6,7\}$ = $N \cup \{0\}$

N – conjunto de lojas, tal que N = {1,2,3,4,5,6,7}, 0 – Fábrica Santini

i, j – local (loja/Fábrica Santini) de partida ou de chegada do veículo da empresa

(i = 0,1,2,3,4,5,6,7; j = 0,1,2,3,4,5,6,7)

K – conjunto de veículos (homogéneos), com capacidade limitada, tal que $K = \{1,2\}$

Q – capacidade de cada veículo, onde Q = 90

 c_{ij} – tempo, em minutos, para percorrer o arco (i, j), com $i \neq j$, tal que (i, $j \in V$)

 q_i – número de caixas a entregar na loja i, tal que $(i \in N)$

 δ^+ (i) – número de arcos a sair de $i \in V$ (grau externo)

 $\delta^-(i)$ – número de arcos a entrar em $i \in V$ (grau interno)

 $\delta^+(S)$ – número de arcos a sair de $S \subset V$

 $\delta^-(S)$ – número de arcos a entrar de $S \subset V$

z – tempo total, em minutos, de deslocação de |K| veículos

Rota – sequência de vértices, com início e fim no depósito, $r = (0, i_1, i_2, ..., i_s, 0)$ que visita um subconjunto de clientes, $S = \{i_1, i_2, ..., i_s\} \subseteq N$.

Variáveis:

$$x_{ij} = \begin{cases} 1, & \text{se o veículo 1 viaja de i} \in V \text{ para j} \in V \\ 0, & caso contrário \end{cases}$$

Modelo (Caso Orientado):

 $\min z = \sum_{(i,i) \in A} c_{i,i} x_{i,i}$

$$s. a \begin{cases} \sum_{j \in \delta^{+}(i)} x_{ij} = 1 & \forall i \in \mathbb{N} \\ \sum_{k \in \delta^{-}(i)} x_{ki} = 1 & \forall i \in \mathbb{N} \\ \sum_{j \in \delta^{+}(i)} x_{0j} = |K| & \forall i \in \mathbb{N} \\ \sum_{j \in \delta^{+}(i)} x_{ij} \geq \left\lceil \frac{q(s)}{Q} \right\rceil & \forall S \subseteq \mathbb{N}, S \neq \emptyset \end{cases}$$
(1)

$$\sum_{k \in \delta^{-}(i)} x_{ki} = 1 \qquad \forall i \in N$$
 (2)

$$s. a \left\{ \sum_{j \in \delta^+(i)}^{K \in \mathcal{S}} x_{0j} = |K| \quad \forall i \in \mathbb{N} \right.$$
 (3)

$$\sum_{j \in \delta^{+}(i)} x_{ij} \ge \left\lceil \frac{q(s)}{Q} \right\rceil \quad \forall S \subseteq N, S \neq \emptyset \quad (4)$$
$$x_{ij} \in \{0,1\} \quad \forall (i,j) \in A$$

A função objetivo minimiza o tempo total, em minutos, utilizado pelo conjunto das 2 rotas.

As restrições (1) garantem que o veículo sai 1 vez de cada loja.

As restrições (2) garantem que o veículo chega 1 vez a cada loja.

A restrição (3) garante que são usados K=2 veículos.

As restrições (4) garantem a eliminação de subcircuitos ilegais e garantem que a capacidade dos veículos é respeitada.

Em seguida, é apresentada a formulação do modelo para o problema relaxado. Neste modelo não se consideram as restrições de eliminação de subcircuitos ilegais e de capacidade (4) que aumentam em número exponencial.

Modelo Relaxado:

$$\min z = \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\sum_{j\in\delta^+(i)} x_{ij} = 1 \qquad \forall i\in N \qquad (1)$$

$$\sum_{k\in\delta^-(i)} x_{ki} = 1 \qquad \forall i\in N \qquad (2)$$

$$\sum_{j\in\delta^+(i)} x_{0j} = |K| \qquad \forall i\in N \qquad (3)$$

$$x_{ij} \in \{0,1\} \ \forall \ (i,j)\in A$$

Relativamente ao número de restrições contabilizam-se 7 restrições (1), 7 restrições (2) e 1 restrição (3), que perfazem um total de 15 restrições. Quanto ao número de variáveis, este corresponde a n(n+1), o que equivale a 56 variáveis x_{ij} .

Com recurso ao Excel obteve-se uma solução do problema relaxado, sendo esta constituída pelas rotas r_1 = (0,4,0), que abastece uma gelataria em 18 minutos, r_2 = (0,5,1,3,0), rota que serve 3 gelarias em 50 minutos e s_3 = (2,7,6,2), subcircuito que serve 3 gelatarias em 47 minutos. Esta solução perfaz um tempo total de 115 minutos (z_{RL} = 115), representando um minorante para o valor ótimo do problema inicial.

A solução obtida não é admissível, notando-se um problema de conexidade observável pela Figura 2, uma vez que revela a existência de um subcircuito ilegal, nomeadamente um subcircuito que não tem ligação à fábrica, formado pelas lojas S2, S7 e S6 (S = {2,7,6}).

O enquadramento do valor ótimo do problema inicial pode ser dado por:

$$\underline{z} = z_{RL} = 115 \le z^* \le 126 = z_{SA} = \overline{z}.$$

Alínea c) Introduza um corte na relaxação proposta para tentar melhorar o valor do minorante.

Verificando-se a existência de um subciruito ilegal, nomeadamente um subcircuito que não inclui o depósito, introduzimos um corte nos vértices do subcircuito ilegal formado pelas lojas S2, S6 e S7 (S = {2,7,6}). O objetivo do corte introduzido consiste em garantir que se visita as lojas mencionadas com o número mínimo de veículos necessários para satisfazer a procura das lojas mencionadas.

Desta forma, foi analisado o seguinte conjunto de restrições para implementar o pretendido:

$$\sum_{j \in \delta^{+}(S)} x_{i,j} \ge \left\lceil \frac{q(S)}{Q} \right\rceil \ \forall S \subseteq N, S \ne \emptyset$$

Foi assim incluída a seguinte restrição no modelo, para S = {2,7,6}:

$$x_{20} + x_{21} + x_{23} + x_{24} + x_{25} + x_{70} + x_{71} + x_{73} + x_{74} + x_{75} + x_{60} + x_{61} + x_{63} + x_{64} + x_{65} \ge \left[\frac{60}{90} \right]$$

Figura 3: Grafo referente à solução do problema relaxado após introdução do 1º corte

Ao introduzir o corte no problema relaxado foi obtido uma solução cujo tempo total corresponde a 119 minutos, sendo esta $r_1=(0,4,0), r_2=(0,6,0), s_3=(1,3,5,1)\ e\ s_4=(2,7,2).$ Solução que também não é admissível, visto que continuam a existir problemas de conexidade, como demonstrado pela Figura 3.

Com este aumento, o valor do minorante, dado até agora por $\underline{z}=z_{RL}$ = 115, sofre uma atualização para 119 minutos. Assim, $\underline{z}=z_{corte}$ = 119 $\leq z^*$.

O enquadramento do valor ótimo do problema inicial passa a ser dado por:

$$\underline{z} = z_{corte} = 119 \le z^* \le 126 = z_{SA} = \overline{z}$$

Alínea d) Utilizando o modelo com variáveis e restrições MTZ, para impedir subcircuitos ilegais, resolva o problema.

Nova Variável:

 $\triangleright u_i$ – Número de caixas de cones entregues quando o veículo chega a $i \in N$

Novas Restrições:

- P Quebra de Subcircuitos ilegais: $u_i u_j + Qx_{ij} \le Q q_j \quad \forall (i,j) \in A$
- ightharpoonup Capacidade: $q_i \le u_i \le Q \quad \forall i \in N$

Modelo MTZ:

$$\min z = \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\begin{cases} \sum_{j \in \delta^{+}(i)} x_{ij} = 1 & \forall i \in N \\ \sum_{k \in \delta^{-}(i)} x_{ki} = 1 & \forall i \in N \\ \sum_{k \in \delta^{-}(i)} x_{0j} = |K| & \forall i \in N \\ u_{i} - u_{j} + Q x_{ij} \leq Q - q_{j} & \forall (i,j) \in A \\ q_{i} \leq u_{i} \leq Q & \forall i \in N \\ x_{ij} \in \{0,1\} \ \forall \ (i,j) \in A \end{cases}$$

$$(1)$$

$$\begin{cases} \sum_{j \in \delta^{+}(i)} x_{0j} = 1 & \forall i \in N \\ \forall i \in N \\ q_{i} \leq u_{i} \leq Q & \forall i \in N \\ x_{ij} \in \{0,1\} \ \forall \ (i,j) \in A \end{cases}$$

$$(2)$$

As restrições (4) garantem a eliminação de subcircuitos ilegais.

As restrições (5) garantem que a capacidade máxima dos veículos é respeitada de forma que quando um dos veículos passa pelo local i, ainda tem produto para abastecer o local na totalidade.

Este problema é constituído por 63 variáveis, 7 variáveis u_i e 56 variáveis x_{ij} .

Relativamente ao número de restrições, contam-se 7 restrições (1), 7 restrições (2), 1 restrição (3), 56 restrições (4) e 14 restrições (5), totalizando 85 restrições.

Resolvendo o problema com recurso ao Excel, obtivemos a solução com as seguintes rotas:

 $r_1=(0,2,7,6,0)$ e $r_2=(0,4,5,1,3,0)$. O valor ótimo obtido foi de 126 minutos (z^* =126). Sendo que a duração da rota 1 é de 67 minutos e a rota 2 tem duração de 59 minutos, sendo de notar que esta solução já tinha sido previamente apontada como solução admissível pelo algoritmo "Savings" aplicado na alínea a), revelando-se a solução ótima do problema inicial. Temos assim: $z^*=126=\bar{z}=z_{54}$.

Figura 4: Grafo referente à solução obtida através do Modelo MTZ

Alínea e) Utilize o VRP Solver para obter uma solução e compare-a com as geradas nas alíneas anteriores.

A solução obtida pelo VRP Solver é a seguinte: $r_1=(0,4,5,1,3,0)$, com uma duração de 59 minutos (tabela 3) e $r_2=(0,6,2,7,0)$, com uma duração de 1 hora e 7 minutos (tabela 4). O tempo total das duas rotas é de 2 horas e 6 minutos, sendo a última entrega realizada às 8:07 horas. Na figura 5 é possível visualizar as duas rotas no mapa.

Comparando esta solução obtida através do VRP Solver e a solução obtida tanto pelo modelo MTZ e pelo algoritmo "Savings", uma vez que são iguais, podemos afirmar que estamos perante 2 soluções ótimas alternativas, que resultam no mesmo tempo total.

A rota (0,4,5,1,3) é comum não só à solução obtida no VRP Solver, mas também à solução admissível obtida pelo *Savings Algorithm* e à solução ótima pelo modelo com variáveis e restrições MTZ. A diferença ocorre na ordem de chegada às lojas na rota (0,6,2,7,0), uma vez que pela solução obtida pelo VRP Solver visita-se primeiramente a loja C6, seguindo posteriormente para C2 e C7, contrariamente à solução ótima obtida nas alíneas a) e d), em que se visita primeiramente a loja C2, e de seguida C7 e C6, para depois regressar ao depósito. Esta alternativa poderá ser útil para uma situação em que a ligação entre o depósito e C6 esteja hipoteticamente cortada ou congestionada, podendo-se optar pela rota alternativa que demorará o mesmo tempo total.

Sendo estas as rotas mais eficientes em tempo segundo o VRP Solver, e sendo que a empresa terá que suportar custos associados aos tempos de condução dos 2 condutores. Se optar por estas rotas, terá então um custo associado ao tempo de condução de 2 horas e 6 minutos.

Analisando o funcionamento do VRP Solver, o algoritmo implementado é uma adaptação do "Savings Algorithm" (Clarke and Wright) em que se introduz aleatoriedade no processo de escolha das rotas para se obter uma solução admissível inicial, e são posteriormente aplicadas heurísticas melhorativas à solução inicial, pelo que se houvesse mais lojas no problema seria mais provável que a solução obtida pelo VRP Solver diferisse da solução ótima.

Figura 5: Visualização da Solução obtida pelo VRP Solver

Veículo:	V1 (r1)	Paragens:	5			
Paragem	Nome da localização	Distância percorrida (km)	Tempo de condução	Hora de chegada	Hora de partida	Carga
0	Depósito	0,00	0:00		07:00	88
1	C4	4,85	0:09	07:09	07:09	52
2	C5	13,69	0:20	07:20	07:20	35
3	C1	16,51	0:30	07:30	07:30	20
4	C3	22,94	0:45	07:45	07:45	0
5	Depósito	31,60	0:59	07:59		0

Tabela 3: Solução obtida pelo VRP Solver para o Veículo 1

Veículo:	V2 (r2)	Paragens:	4			
Paragem	Nome da localização	Distância percorrida (km)	Tempo de condução	Hora de chegada	Hora de partida	Carga
0	Depósito	0,00	0:00		07:00	60
1	C6	14,38	0:13	07:13	07:13	47
2	C2	18,73	0:23	07:23	07:23	22
3	C7	28,26	0:43	07:43	07:43	0
4	Depósito	53,84	1:07	08:07		0

Tabela 4: Solução obtida pelo VRP Solver para o Veículo 2