HOMEWORK 3 SOLUTIONS - MATH 4341

Problem 1. Suppose \mathcal{B} is a basis for a topology on a set X. Let \mathcal{T} be the intersection of all topologies on X that contain \mathcal{B} . Show that

- (a) \mathcal{T} is a topology on X,
- (b) \mathcal{T} is equal to $\mathcal{T}_{\mathcal{B}}$, the topology generated by \mathcal{B} .

Proof. (a) Let **S** be the set of all topologies on X that contain \mathcal{B} . Then

$$\mathcal{T} = \bigcap_{\mathcal{S} \in \mathbf{S}} \mathcal{S}.$$

We will check 3 conditions for \mathcal{T} to be a topology.

- (T1): Any topology on X contains both \emptyset and X. Since \mathcal{T} is the intersection of a family of topologies on X, it also contains both \emptyset and X.
- (T2): Suppose $\{U_i\}_{i\in I}$ is an indexed family of elements of \mathcal{T} . Since $U_i \in \mathcal{T}$, for any $\mathcal{S} \in \mathbf{S}$ we have $U_i \in \mathcal{S}$. Since \mathcal{S} is a topology, $(\bigcup_{i\in I} U_i) \in \mathcal{S}$. This holds true for all $\mathcal{S} \in \mathbf{S}$. Hence $(\bigcup_{i\in I} U_i) \in (\bigcap_{\mathcal{S}\in \mathbf{S}} \mathcal{S}) = \mathcal{T}$.
- (T3): Suppose U_1, \dots, U_n are elements of \mathcal{T} . Since $U_1, \dots, U_n \in \mathcal{T}$, for any $\mathcal{S} \in \mathbf{S}$ we have $U_1, \dots, U_n \in \mathcal{S}$. Since \mathcal{S} is a topology, $(U_1 \cap \dots \cap U_n) \in \mathcal{S}$. This holds true for all $\mathcal{S} \in \mathbf{S}$. Hence $(U_1 \cap \dots \cap U_n) \in (\bigcap_{\mathcal{S} \in \mathbf{S}} \mathcal{S}) = \mathcal{T}$.
- (b) Since \mathcal{T} be the intersection of all topologies on X that contain \mathcal{B} and $\mathcal{T}_{\mathcal{B}}$ is a topology on X containing \mathcal{B} , we have $\mathcal{T} \subset \mathcal{T}_{\mathcal{B}}$.

Take any $U \in \mathcal{T}_{\mathcal{B}}$. Since \mathcal{B} is a basis for $\mathcal{T}_{\mathcal{B}}$ we can write $U = \bigcup_{i \in I} B_i$ for some $B_i \in \mathcal{B}$. Since $B_i \in \mathcal{B} \subset \mathcal{T}$ and \mathcal{T} is closed under taking unions (\mathcal{T} is a topology on X by part (a)), we have $U = \bigcup_{i \in I} B_i \in \mathcal{T}$. This implies that $\mathcal{T}_{\mathcal{B}} \subset \mathcal{T}$. Hence $\mathcal{T} = \mathcal{T}_{\mathcal{B}}$ as desired. \square

Problem 2. Let (X, d) be a metric space and

$$\mathcal{B} = \{ B_d(x, 2^{-n}) \mid x \in X, n \in \mathbb{N} \}.$$

Show that

- (a) \mathcal{B} is a basis for a topology on X,
- (b) the topology generated by \mathcal{B} is equal to the metric topology on X.

Proof. We will apply Lemma 2.4 in the lecture notes to prove both (a) and (b). Recall that the metric topology \mathcal{T}_d is generated by the basis consisting of all open balls $B_d(x, r)$ where $x \in X$ and r > 0. Clearly, we have $\mathcal{B} \subset \mathcal{T}_d$.

For any $U \in \mathcal{T}_d$ and $x \in U$, there exists r > 0 such that $B_d(x,r) \subset U$. Since $\lim_{n\to\infty} 2^{-n} = 0 < r$, we can choose $n_0 \in \mathbb{N}$ such that $2^{-n_0} < r$. Then $B_d(x,2^{-n_0}) \subset B_d(x,r) \subset U$. Hence, by Lemma 2.4 in the lecture notes, \mathcal{B} is a basis for \mathcal{T}_d . This means that both (a) and (b) hold true.

Problem 3. If $f: X \to Y$ is a function between two sets and $A \subset Y$ is a subset, we define the *preimage* of A to be

$$f^{-1}(A) = \{ x \in X \mid f(x) \in A \}.$$

Show that:

(1) If $f: X \to Y$ and $\{A_i\}_{i \in I}$ is a family of subsets of Y, then

$$f^{-1}\Big(\bigcup_{i\in I}A_i\Big)=\bigcup_{i\in I}f^{-1}(A_i)$$
 and $f^{-1}\Big(\bigcap_{i\in I}A_i\Big)=\bigcap_{i\in I}f^{-1}(A_i).$

- (2) If $A \subset Y$, then $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$.
- (3) If $g: Y \to Z$ is another map and $B \subset Z$, then

$$(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B)).$$

Proof. (1) We have $x \in f^{-1}(\bigcup_{i \in I} A_i) \Leftrightarrow f(x) \in \bigcup_{i \in I} A_i \Leftrightarrow (\exists i \in I : f(x) \in A_i) \Leftrightarrow (\exists i \in I)$

 $I: x \in f^{-1}(A_i)) \Leftrightarrow x \in \bigcup_{i \in I} f^{-1}(A_i). \text{ Hence } f^{-1}\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f^{-1}(A_i).$ $\text{We have } x \in f^{-1}\left(\bigcap_{i \in I} A_i\right) \Leftrightarrow f(x) \in \bigcap_{i \in I} A_i \Leftrightarrow \left(\forall i \in I: f(x) \in A_i\right) \Leftrightarrow \left(\forall i \in I: x \in f^{-1}(A_i)\right) \Leftrightarrow x \in \bigcap_{i \in I} f^{-1}(A_i). \text{ Hence } f^{-1}\left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} f^{-1}(A_i).$ $(2) \text{ We have } x \in f^{-1}(Y \setminus A) \Leftrightarrow f(x) \in Y \setminus A \Leftrightarrow f(x) \notin A \Leftrightarrow x \notin f^{-1}(A) \Leftrightarrow x \in f^{-1}(A_i).$

- $X \setminus f^{-1}(A)$. Hence $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$.
- (3) We have $x \in (g \circ f)^{-1}(B) \Leftrightarrow (g \circ f)(x) \in B \Leftrightarrow g(f(x)) \in B \Leftrightarrow f(x) \in g^{-1}(B) \Leftrightarrow g(f(x)) \in B \Leftrightarrow f(x) \in g^{-1}(B) \Leftrightarrow g(f(x)) \in B \Leftrightarrow g(f(x)) \in$ $x \in f^{-1}(q^{-1}(B))$. Hence $(q \circ f)^{-1}(B) = f^{-1}(q^{-1}(B))$.