10.6

Una sbarra orizzontale di lunghezza b=20~cm, sezione Σ , densità $\delta=3*10^3 \frac{kg}{m^3}$, resistività $\rho=2*10^{-5}\Omega m$ può scivolare senza attrito su due guide parallele, separate dalla distanza b e inclinate di un angolo $\alpha=30$ rispetto al piano orizzontale.

Le due guide, di resistenza trascurabile, sono collegate ad un generatore di f.e.m. ε . Il sistema è immerso in un campo magnetico uniforme B=0.3~T diretto secondo la verticale.

Calcolare il valore di ε affinché la sbarra rimanga ferma, la velocità limite v_{∞} con cui la sbarra scende se il generatore viene sostituito da un corto circuito, la potenza dissipata nella sbarra quando essa scende con velocità v_{∞} . (per quest'ultima domanda si assuma $\Sigma = 1 \ cm^2$).

Formule utilizzate

Soluzione punto a

Sulla sbarra agiscono due forze: la forza peso e quella associata al conduttore percorso da corrente in una regione in cui è presente un campo magnetico. La sbarra sarà ferma quando le componenti tangenti al piano sono uguali e opposte (con i che fluisce in verso antiorario): $\frac{\varepsilon}{R}Bb \cos\alpha = mg \sin\alpha$ Ovvero quando: $\varepsilon = R\frac{Rmg}{bB}tan\alpha = \frac{\rho b\delta b\Sigma g}{\Sigma bB}tan\alpha = \frac{\rho \delta bg}{B}tan\alpha = 0.226 V$ Se il generatore viene sostituito da un corto circuito, la barra comincia a muoversi e si produce una fem che dalla regola del flusso tagliato vale $\varepsilon = Bb \cos\alpha v$ cui corrisponde una forza "viscosa" frenante la cui componente

parallela al piano è: $F_{viscosa}=\frac{B^2b^2cos^2\alpha}{R}v$ opposta alla direzione del moto. A regime, detta v_{∞} la velocità limite: $\frac{B^2b^2cos^2\alpha}{R}v_{\infty}=mg~sin\alpha$ Da cui si calcola la velocità con cui scende la sbarra $v_{\infty}=\frac{mR}{b^2}\frac{g}{R^2}\frac{sin\alpha}{cos^2\alpha}=\frac{\rho\delta g}{R^2}\frac{sin\alpha}{cos^2\alpha}=4.36~\frac{m}{s}$ Infine la potenza dissipata: $P=\vec{F_g}~\vec{v}=mg~sin\alpha~v_{\infty}=\delta\Sigma bgsin\alpha v_{\infty}=1.28~W$

Soluzione punto b