Summary of Logarithm Properties

Limits:

$$\begin{aligned} 0 &< a < 1 \implies \lim_{x \to \infty} \log_a x = -\infty & \lim_{x \to 0^+} \log_a x = \infty \\ a &> 1 \implies \lim_{x \to \infty} \log_a x = \infty & \lim_{x \to 0^+} \log_a x = -\infty \\ & \lim_{x \to \infty} \ln x = \infty & \lim_{x \to 0^+} \ln x = -\infty \\ & \lim_{x \to \infty} \ln x = \infty & \lim_{x \to 0^+} \ln x = -\infty \end{aligned}$$

Core Properties:

$$\log_a bc = \log_a b + \log_a c \qquad \ln bc = \ln b + \ln c$$
$$\log_a b^c = c \log_a b \qquad \qquad \ln b^c = c \ln b$$
$$\log_a b = \frac{\ln b}{\ln a}$$

$$b > 0 \implies b = e^{\ln b} = a^{\log_a b}$$

Values:

$$\log_a a = 1$$
, $\log_a 1 = 0$, $\log_a \left(\frac{1}{a}\right) = -1$

Derivatives :

$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a} \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$
$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$$

Other Derivatives:

$$\frac{d}{dx}a^{x} = a^{x} \ln a \qquad \frac{d}{dx} \ln \left(ax\right) = \frac{1}{x} \qquad \frac{d}{dx} \ln \left(x^{p}\right) = \frac{p}{x}$$

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

Logarithm Practice Problems:

1. Use logarithms to find the value of t in the following equations:

a)
$$e^{3t} = 8^2$$

b)
$$3e^{2t+1} = 27$$

c)
$$3^{2t} = 2^t$$

d)
$$2e^{3t} - 1 = 4$$

a)
$$e^{3t} = 8^2$$
 b) $3e^{2t+1} = 27$ **c)** $3^{2t} = 2^t$ **d)** $2e^{3t} - 1 = 4$ **e)** $\frac{200}{1 - e^{2t}} = 100$

2. Given $\log a = 0.34$ and $\log b = 0.17$, evaluate the expressions:

b)
$$\log\left(\frac{a}{b}\right)$$

a)
$$\log ab$$
 b) $\log \left(\frac{a}{b}\right)$ **c)** $\log(a^3\sqrt{b})$ **d)** $\log_b a$

- **3.** Use the laws of logarithms to rewrite the following as single logarithmic expressions:

a)
$$2 \ln x - \ln(x-1)$$

b)
$$3\log_2 x + \log_2 y$$

c)
$$\ln(x+1) - \ln(x-1)$$

d)
$$2+3 \ln x + \ln y - \ln z$$

e)
$$\frac{1}{2} \ln a - \ln b + \frac{3}{2} \ln a$$

d)
$$2+3 \ln x + \ln y - \ln z$$
 e) $\frac{1}{2} \ln a - \ln b + \frac{3}{2} \ln c$ **f)** $\frac{1}{3} \ln (x^2) + \frac{1}{4} \ln(x+1)$

g)
$$4 \ln (\sin x) - 5 \ln(\cos x) + 1$$

h)
$$\ln(x+1) + c \ln(y^2-1) + a$$

g)
$$4 \ln(\sin x) - 5 \ln(\cos x) + 1$$
 h) $\ln(x+1) + c \ln(y^2 - 1) + d$ **i)** $\log_a(\sin^2 x + 2) - 3\log_a(y \tan y)$

4. Expand and simplify the following logarithms:

a)
$$ln(2x)$$

b)
$$\ln(\sqrt{x})$$

b)
$$\ln(\sqrt{x})$$
 c) $\ln(3x\sqrt{x})$ **d)** $\ln(10^x)$

d)
$$ln(10^x)$$

f)
$$\ln(x(x-1)(x-2))$$
 g) $\ln\left(\frac{x+5}{\pi x}\right)$ **h)** $\ln(x^2-4)$ **i)** $\ln(2^{\sin x})$ **j)** $\ln\left(\frac{x}{2^x}\right)$

$$\mathbf{g)} \quad \ln\left(\frac{x+5}{\pi x}\right)$$

h)
$$\ln(x^2 - 4)$$

i)
$$ln(2^{\sin x})$$

$$\mathbf{j)} \ \ln \left(\frac{x}{2^x} \right)$$

$$\mathbf{k)} \, \ln \left(e^2 x \right)$$

1)
$$\ln(3^{3x}(x-1))$$

$$\mathbf{m)} \, \ln \left(x e^{-x^2} \right)$$

k)
$$\ln(e^2x)$$

1) $\ln(3^{3x}(x-1))$ m) $\ln(xe^{-x^2})$
n) $\ln(e^{2x}/x)$ o) $\ln(\frac{e^x}{1-e^x})$

$$\mathbf{o)} \ \ln \left(\frac{e^x}{1 - e^x} \right)$$

$$\mathbf{p)} \ \log_2 \left(\frac{\sqrt{x-1}}{x+2} \right)$$

$$\mathbf{p)} \ \log_2\left(\frac{\sqrt{x-1}}{x+2}\right) \qquad \mathbf{q)} \ \ln\left(e^{x^2\sin(x)\sqrt{x+1}}\right) \qquad \mathbf{r)} \ \ln\left(\frac{\sqrt{x-1}}{\sqrt[3]{x^2+1}}\right)$$

$$\mathbf{r)} \quad \ln \left(\frac{\sqrt{x-1}}{\sqrt[3]{x^2+1}} \right)$$

5. Use logarithms & logarithm properties to find the value of x in the following equations:

a)
$$ln(2x) = 1$$

a)
$$\ln(2x) = 1$$
 b) $\ln\left(\frac{5\pi}{x^2}\right) + 2 = 0$ **c)** $\ln\left(\frac{x}{x+1}\right) = 0$ **d)** $\ln 3 + \ln(x+1) = 0$

$$\mathbf{c)} \, \ln \left(\frac{x}{x+1} \right) = 0$$

d)
$$\ln 3 + \ln(x+1) = 0$$

e)
$$2 \ln x = 0$$

e)
$$2 \ln x = 0$$
 f) $\frac{1}{2} \ln(2x) - \frac{1}{2} \ln(x^2 + 1) = 0$ g) $\ln(x+1) + \ln(-4x) = 0$

g)
$$\ln(x+1) + \ln(-4x) = 0$$

h)
$$2e^{3x} = 1$$

$$i) \frac{e^x - 1}{x} = 0$$

h)
$$2e^{3x} = 1$$
 i) $\frac{e^x - 1}{x} = 0$ **j)** $\frac{4e^{2x} - 9}{\sqrt{\sin x + x^2 + \ln x}} = 0$ **k)** $\frac{1 + e^x}{1 - e^x} = 4$

k)
$$\frac{1+e^x}{1-e^x} = 4$$

1)
$$2e^{x^2} = 8$$

m)
$$2^x = 5^{3x}$$

n)
$$xe^{x} = 0$$

1)
$$2e^{x^2} = 8$$
 m) $2^x = 5^{3x}$ n) $xe^x = 0$ o) $(x^2 - 1)e^{2x - 3} = 0$ p) $\sqrt{x + 2} \ln x = 0$

$$\mathbf{p)} \ \sqrt{x+2} \ln x = 0$$

Logarithm Practice Solutions:

1. **a)**
$$t = 2 \ln 2$$

b)
$$t = \ln 3 - \frac{1}{2}$$

$$\mathbf{c)} \ \ t = 0$$

1. a)
$$t = 2 \ln 2$$
 b) $t = \ln 3 - \frac{1}{2}$ c) $t = 0$ d) $t = \frac{1}{3} \ln \left(\frac{5}{2} \right)$ e) No Solution

3. a)
$$\ln\left(\frac{x^2}{x-1}\right)$$
 b) $\log_2 x^3 y$ c) $\ln\left(\frac{x+1}{x-1}\right)$ d) $\ln\left(\frac{x^3 y e^2}{z}\right)$

b)
$$\log_2 x^3 y$$

c)
$$\ln\left(\frac{x+1}{x-1}\right)$$

d)
$$\ln \left(\frac{x^3 y e^2}{z} \right)$$

e)
$$\ln\left(\frac{\sqrt{ac^3}}{b}\right)$$

f)
$$\ln\left(x^{\frac{2}{3}}(x+1)^{\frac{1}{4}}\right)$$

$$\mathbf{g)} \ln \left(\frac{e \cdot \sin^4 x}{\cos^5 x} \right)$$

e)
$$\ln\left(\frac{\sqrt{ac^3}}{b}\right)$$
 f) $\ln\left(x^{\frac{2}{3}}(x+1)^{\frac{1}{4}}\right)$ g) $\ln\left(\frac{e \cdot \sin^4 x}{\cos^5 x}\right)$ h) $\ln\left((x+1)(y^2-1)^c e^d\right)$

$$i) \quad \log_a \left(\frac{\sin^2 x + 2}{y^3 \tan^3 y} \right)$$

4. a)
$$\ln 2 + \ln x$$

b)
$$\frac{1}{2} \ln x$$

b)
$$\frac{1}{2} \ln x$$
 c) $\ln 3 + \frac{3}{2} \ln(x)$ **d)** $x \ln 10$

d)
$$x \ln 10$$

e)
$$\ln(5) + \ln(\sin x)$$

e)
$$\ln(5) + \ln(\sin x)$$
 f) $\ln(x) + \ln(x-1) + \ln(x-2)$ g) $\ln(x+5) - \ln \pi - \ln x$

g)
$$\ln(x+5) - \ln \pi - \ln x$$

h)
$$\ln(x-2) + \ln(x+2)$$
 i) $\ln 2 \cdot \sin x$ **j)** $\ln x - x \ln 2$ **k)** $2 + \ln x$

i)
$$\ln 2 \cdot \sin x$$

$$\mathbf{j}$$
) $\ln x - x \ln 2$

k)
$$2 + \ln x$$

1)
$$3x \ln 3 + \ln(x-1)$$

m)
$$\ln(x) - x^2$$

n)
$$\pi^2 - \ln x$$

1)
$$3x \ln 3 + \ln(x-1)$$
 m) $\ln(x) - x^2$ n) $\pi^2 - \ln x$ o) $x - \ln(1 - e^x)$

p)
$$\frac{1}{2}\log_2(x-1) - \log_2(x+2)$$
 q) $x^2 \sin x \sqrt{x+1}$ **r)** $\frac{1}{2}\ln(x-1) - \frac{1}{3}\ln(x^2+1)$

$$\mathbf{q)} \quad x^2 \sin x \sqrt{x+1}$$

r)
$$\frac{1}{2}\ln(x-1) - \frac{1}{3}\ln(x^2+1)$$

5. a)
$$x = \frac{3}{2}$$
 b)

$$\mathbf{b)} \quad x = \pm \sqrt{5\pi} e^{-2}$$

5. a)
$$x = \frac{e}{2}$$
 b) $x = \pm \sqrt{5\pi}e$ c) No Solution d) $x = -\frac{2}{3}$

d)
$$x = -\frac{2}{3}$$

e)
$$x = 1$$
 (only!) **f)** $x = 1$ **g)** $x = -\frac{1}{2}$

f)
$$x = 1$$

g)
$$x = -\frac{1}{2}$$

h)
$$x = -\frac{1}{3} \ln 2$$

i)
$$x = 0$$

h)
$$x = -\frac{1}{3}\ln 2$$
 i) $x = 0$ **j)** $x = \ln\left(\frac{3}{2}\right)$ **k)** $x = \ln\left(\frac{3}{5}\right)$

$$\mathbf{k)} \ x = \ln\left(\frac{3}{5}\right)$$

1)
$$x = \pm \sqrt{2 \ln 2}$$
 m) $x = 0$ n) $x = 0$ o) $x = \pm 1$ p) $x = -2$ or 1

$$\mathbf{m)} \ \ x = 0$$

$$x = 0$$

p)
$$x = -2 \ or$$

For additional logarithm property problems, and derivative problems, see the course text, Stewart's Calculus: Early Transcendentals 7th ed.

Basic Properties: 1.6 #35-41, 51-54

3.6 #1-16, 23, 24, 25, 27-34 **Derivatives:**

(And for additional reading and examples, read the parts of sections 1.6 on ln(x), and 3.6 on derivatives of ln/log. Leave *logarithmic differentiation for later lectures!*)