SI040: Computação Gráfica

Aula 9 – Quantização

Vicente H. F. Batista

Sistemas de Informação Faculdade Paraíso do Ceará Juazeiro do Norte, 2011

Andamento do curso

- Introdução à Computação Gráfica
- Fundamentos de cor
- Sistemas e dispositivos gráficos
- Representação vetorial e matricial
- Introdução ao processamento de imagens digitais
- Geometria euclideana,

- afim e projetiva
- Representação de objetos gráficos
- Modelos de iluminação
- Traçado de raios
- Visualização
- Recorte
- Visibilidade
- Rasterização
- Métodos de colorização
- Mapeamento de textura

Andamento do curso

- Introdução à Computação Gráfica
- Fundamentos de cor
- Sistemas e dispositivos gráficos
- Representação vetorial e matricial
- Introdução ao processamento de imagens digitais
- Geometria euclideana,

- afim e projetiva
- Representação de objetos gráficos
- Modelos de iluminação
- Traçado de raios
- Visualização
- Recorte
- Visibilidade
- Rasterização
- Métodos de colorização
- Mapeamento de textura

Motivação

Motivação 1. Dados dois dispositivos A e B com resoluções iguais a n e m, n > m, respectivamente, como poderíamos exibir uma imagem de A em B, ou seja, como reduzir sua resolução de cor de n para m?

Motivação 2. Seja $f: U \to \mathbb{R}^3$ uma imagem tricromática. Será que é possível comprimir f por meio de uma redução de sua resolução de cor, sem causar maiores prejuízos à percepção de f?

Vamos quantizar

Seja $R_k = \{p_1, p_2, \dots, p_k\}$ um subconjunto finito de \mathbb{R}^d

Vamos quantizar

Seja $R_k = \{p_1, p_2, \dots, p_k\}$ um subconjunto finito de \mathbb{R}^d

Definição 1 (versão contínua). Uma quantização de k níveis é uma transformação sobrejetiva $q\colon \mathbb{R}^d \to R_k$

Observação 1. Se $k=2^m$, então R_k pode ser codificado com $\lg k=m$ bits

O conjunto R_k é o codebook de q e cada p_i é um nível de quantização

Vamos quantizar

Agora, sejam $R_j=\{p_1,p_2,\ldots,p_j\}$ e $R_k=\{p_1,p_2,\ldots,p_k\}$ subconjuntos finitos de \mathbb{R}^d , com $j=2^n>k=2^m$

Definição 2 (versão finita). Uma transformação sobrejetiva $q:R_j\to R_k$ é uma quantização de n para m bits

Dada $q: \mathbb{R}^d \to R_k$, a cada nível de quantização $p_i \in R_k$ corresponde uma *célula de quantização*:

$$C_i = \{c \in \mathcal{C} : q(c) = p_i\}$$

A família de $\{C_i\}$ é uma partição do espaço de cor \mathbb{R}^d , i.e., $C_i \cap C_j = \emptyset$ se $i \neq j$

O erro de quantização de uma cor c em uma célula C_i é:

$$|e_q| = |c - q(c)| = |c - p_i|$$

Quantização unidimensional.

- A função de quantização é dada por $q\colon \mathbb{R} \to R_k$
- ullet As células de quantização C_i são intervalos de cores

Quantização unidimensional.

- A função de quantização é dada por $q\colon \mathbb{R} \to R_k$
- As células de quantização C_i são intervalos de cores

Quantização unidimensional.

- A função de quantização é dada por $q\colon \mathbb{R} \to R_k$
- As células de quantização C_i são intervalos de cores

Quantização unidimensional.

- A função de quantização é dada por $q\colon \mathbb{R} \to R_k$
- As células de quantização C_i são intervalos de cores

Quantização multidimensional.

- Função de quantização é dada por $q\colon \mathbb{R}^d o R_k$
- ullet As células de quantização C_i assumem formas variadas

Quantização unidimensional.

- A função de quantização é dada por $q\colon \mathbb{R} o R_k$
- As células de quantização C_i são intervalos de cores

Quantização multidimensional.

- Função de quantização é dada por $q\colon \mathbb{R}^d o R_k$
- ullet As células de quantização C_i assumem formas variadas

Quantização Escalar × Vetorial.

• Dada uma função de quantização unidimensional $q' \colon \mathbb{R} \to R_k$, defina $q \colon \mathbb{R}^d \to R_k \times \cdots \times R_k$ por:

$$q(x_1, x_2, \dots, x_d) = (q'(x_1), q'(x_2), \dots, q'(x_d))$$

Então, q é uma quantização denominada escalar.

ullet Caso não haja tal decomposição para q, então ela é uma quantização denominada vetorial

Caso crítico: dois níveis

A quantização para 1 *bit*, ou seja, em dois níveis, é tida como um caso crítico, porque esta não permite a representação de gradientes de cor

Ao contrário do que se poderia pensar, esta situação acontece frenquentemente (e.g., durante a impressão P&B sobre papel, em máquinas copiadoras, etc)

Solução ingênua: fixar um valor de corte

Exemplo:

Solução melhorada: aplicar técnicas de dithering

Percepção

Observação 2. Dadas duas células C_i e C_j de uma partição induzida por uma quantização q, se a diferença entre q_i e q_j for acentuada, a curva da fronteira entre as células será perceptível ao olho humano

24 bits, RGB

Percepção

Observação 2. Dadas duas células C_i e C_j de uma partição induzida por uma quantização q, se a diferença entre q_i e q_j for acentuada, a curva da fronteira entre as células será perceptível ao olho humano

24 bits, RGB

8 níveis

Classificação quanto à geometria das células

Uniforme

 Divide o espaço de cor em células de quantização congruentes, i.e.,

$$|c_{i-1}+c_i|=$$
 constante

Não-uniforme

Considera a frequência de cada cor

Frequência de cada cor levada em conta

Construção de uma quantização

Uma quantização $q\colon \mathbb{R}^d \to R_k$ pode ser construída:

 A partir dos níveis de quantização: neste caso precisamos apenas calcular as células:

$$q(c) = c_i' \iff d(c, c_i') \le d(c, c_j'),$$

com $j \in \{1, 2, \dots, k\}$, $j \neq i$, onde $d(\cdot, \cdot)$ é uma métrica

• A partir das células de quantização C_i : restando-nos apenas escolher um nível de quantização c_i' em cada C_i

Métodos de quantização

Os métodos de quantização de cor podem ser agrupados em três categorias:

- Métodos de subdivisão espacial: células → níveis
- Métodos de seleção direta: níveis → células
- Métodos híbridos

Algoritmo de populosidade

- Constrói o histograma de frequência da imagem
- Escolhe para os k níveis as k cores com maior frequência (cores mais "populosas")
- Dada uma cor c, definimos a função de quantização como anteriormente:

$$q(c) = c_i' \iff d(c, c_i') \le d(c, c_j'),$$

com
$$j \in \{1, 2, ..., k\}, j \neq i$$

Algoritmo de populosidade

Prós.

- Simplicidade
- Baixo custo computacional
- Satisfatório para imagens com distribuição uniforme de cor

Contra.

• Ignora cores com baixa frequência (por exemplo, *highlights* tedem a desaparecer)

Emprega uma subdivisão recursiva do espaço de cor

Ideia: garantir que cada nível de quantização seja utilizado pelo mesmo número de *pixels*

É equivalente a equalizar o histograma de frequência utilizando sua *mediana*

Dado $C = \{c_1 \le c_2 \le \cdots, \le c_{n-1} \le c_n\}$, sua mediana é:

$$\begin{cases} c_{(n+1)/2} & \text{se n \'e impar} \\ (c_{n/2}+c_{n/2+1})/2 & \text{se n \'e par} \end{cases}$$

Observação 3. Devemos levar em conta a frequência de cada elemento c_i de C

 $G \blacktriangle$

- 1) Partição do espaço de cor
- 2) Determinação dos níveis de quantização

Características.

- Fácil de implementar
- Eficiente
- Fornece bons resultados na quantização de 24 para 8 bits

Poderíamos fazer melhor?

Mesmo para um número fixo de níveis, existirão infinitos modos de particionar o espaço de cor

Seria possível calcular um particionamento ótimo?

Dada uma cor c e uma função de quantização q, o erro introduzido pela quantização é $e_q=d(c,q(c))$

O erro total em uma quantização com k níveis pode ser calculado levando em conta a frequência de cada cor:

$$E = \sum_{1 \le i \le k} \sum_{c \in C_i} p(c)d(c, q_i)$$

Problema de otimização: minimize ${\cal E}$