讲稿(教学内容、步骤)

第7章 语法制导的语义计算

- 1. 语义处理的任务和功能
 - (1) **静态语义分析**: 收集或计算源程序的上下文相关信息,并将这些信息分配到相应的程序单元记录下来;同时审查程序的静态一致性和完整性(即静态语义检查)
 - ✓ 确定标识符的数据类型
 - ✓ 类型检查和转换:检查运算对象的数据类型是否合法,必要时进行类型转换
 - ✓ 一致性检查: 一个对象只能被声明一次
 - ✔ 作用域检查
 - ✓ 控制流检查:控制语句转到合法的地方继续执行
 - (2) 将通过静态语义检查的程序翻译成中间代码
- 2. 语义处理的方法
 - 语法制导的语义计算,又称为 语法制导的翻译
 - 其阶段包括:
 - ✓ 语法制导的静态语义分析
 - ✓ 语法制导的中间代码生成
 - 实现途径:
 - ✓ 首先,使用属性文法为工具,描述程序设计语言的语义规则。
 - ✓ 在语法分析时,每应用一个产生式(推导或归约),同时完成该产生式上所附的语义规则描述的动作,从而完成语义处理。
 - 语义计算模型包括:
 - ① 基于属性文法的语义计算模型
 - ② 基于翻译模式的语义计算模型
- 3. 基于属性文法的语义计算
 - (1) 属性文法
 - 什么是属性文法?
 - ◆ 是一种用于描述语义规则的文法。
 - ◆ 为文法符号关联有特定意义的属性(这些属性代表与文法符号相关的信息,如:类型、值、代码序列、符号表内容等),并为产生式关联相应的语义动作或条件谓词
 - ◆ 属性值可以在语法分析过程中进行计算和传递,计算和传递的过程就是语义的处理过程。

【举例】

例 1 语言 L={aⁿbⁿcⁿ | n≥1}, 写出其对应的 2 型文法

 $S \rightarrow ABC$

 $A \rightarrow Aa$

 $A \rightarrow a$

 $B \rightarrow Bb$

 $B \rightarrow b$

 $C \rightarrow Cc$

 $C \rightarrow c$

【讨论】该文法对应的语言是 aa*bb*cc*,无法保证|A|=|B|=|C|,如何解决?

解决: 采用属性文法,为每个产生式都关联一个语义计算规则的集合。

例1 语言 L={anbncn | n≥1}

属性文法

(1) S→ABC { if(A.num=B.num) and (B.num=C.num)

then print("Accepted!") else print("Refused!") }

- (2) $A \rightarrow A_1 a \{ A.num := A_1.num+1 \}$
- (3) A→a { A.num := 1 }
- (4) $B \rightarrow B_1 b \{ B.num := B_1.num + 1 \}$
- (5) $B \rightarrow b$ { B.num := 1 }
- (6) $C \rightarrow C_1 c \{ C.num := C_1.num+1 \}$
- (7) C→c { C.num := 1 }

其中,

- 综合属性: 对关联于 A→..... 的语义函数
 b:=f(c1,c2,...), 如果 b 是 左部 A 的某个属性,则
 称 b是A的一个综合属性。

计算综合属性是对父结点的属性进行赋值,是自底向上传递信息。例1中的num是综合属性

- 继承属性: 对关联于A→…X…的语义函数
 b:=f(c1,c2,…), 如果b是产生式右部某符号X的某个属性,则称 b是X的一个继承属性。

计算继承属性是对子结点的属性进行赋值,是自顶向下传递信息。参见例2:

【举例】

例2 L={anbncn | n≥1} 含有继承属性的属性文法

(1) S→ABC { B.in_num:=A.num; C.in_num:=A.num; if(B.num=0) and (C.num=0)

then print("Accepted!")
else print("Refused!")}

num为综合属性, 自底向上计算in_num为继承属性,

自顶向下计算

- (2) $A \rightarrow A_1 a \{ A.num := A_1.num + 1 \}$
- (3) A→a { A.num:=1 }
- (4) $B \rightarrow B_1 b$ { $B_1.in_num:=B.in_num; B.num:=B_1.num-1$ }
- (5) $B \rightarrow b$ { B.num:=B.in_num 1 }
- (6) $C \rightarrow C_1 c$ { $C_1.in_num:=C.in_num; C.num:=C_1.num-1$ }
- (7) C→c { C.num:=C.in_num-1 }

构造 aaabbbccc 带标注的语法分析树:

自底向上计算综合属性

自顶向下计算继承属性

自底向上计算综合属性

- (2) 遍历分析树进行语义计算
 - ① 构造输入串的语法分析树

【举例】例3 将二进制无符号小数转化成十进制小数的属性文法如下

```
N \rightarrow S_1.S_2 \{ N.val := S_1.val + S_2.val;
              S₁.f:=1;
              S<sub>2</sub>.f:=2-S2.len }
S→S<sub>1</sub>B { S<sub>1</sub>.f:=2S.f;
              B.f:=S.f:
              S.val:=S1.val+B.val;
              S.len:=S<sub>1</sub>.len+1 }
s→B
            { S.len:=1;
              S.val:=B.val;
              B.f:=S.f }
B \rightarrow 0
            { B.val:=0 }
B<del>→</del>1
          { B.val:=B.f }
```

构造输入串 10.01 的语法分析树:

构造依赖图

MIB CIMIB 构造依赖图的结点: 为分析树中所有结点的每个属性建立一个依赖图中的 结点,并给定一个标记序号。

● 构造依赖图的有向边:

for 结点 n 所用产生式对应 b:=f(c1,c2,...,ck)

for i=1 to k

}

从结点 ci 到结点 b 构造一条有向边

【举例】对上例的依赖图构造有向边

S→B B→0 B→1 3 计算属性值 サビ

若该依赖图是无圈的,则按此图结点的任意一种拓扑排序,对分析树进行遍历, 计算所有的属性值。

【举例】对上例计算属性值

假设结点拓扑是 3,5,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,<mark>5</mark>,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,<mark>2</mark>,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,2,6,<mark>10</mark>,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,2,6,10,8,<mark>9</mark>,7,11,4,15,12,13,16,20,18,21,19,17,14,1 假设结点拓扑是 3,5,2,6,10,8,9,<mark>7</mark>,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1 假设结点拓扑是 3,5,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

假设结点拓扑是 3,5,2,6,10,8,9,7,11,4,15,12,13,16,20,18,21,19,17,14,1

【讨论】"遍历分析树进行语义计算"存在的问题是什么? 遍历分析树进行属性计算有一定的通用性,但在语法分析之后再进行多次扫描。

解决方法:实际语法制导翻译采取单遍过程,在语法分析的同时完成语义动作。这需要对属性文法进行一定限制,两类受限的属性文法是: S-属性文法 和 L-属性文法。

(3) S-属性文法 和 L-属性文法

■ L-属性文法

如果对文法中的每一个产生式 $A \rightarrow X_1 X_2 \cdots X_n$, 其中每个语义 动作所涉及的属性要么是综合属性,要么是某个 X_i ($1 \le i \le n$) 的继承属性,并且这个继承属性的计算只能依赖于:

- X₁, X₂, ••• X_{i-1}的属性
- A的继承属性

(4) 基于 S-属性文法的语义计算

- S-属性文法是只包含综合属性(自底向上传递的属性)的文法。
- S-属性文法翻译器可以借助LR 分析器实现: LR 分析器中增加一个栈(语义值栈)用来存放综合属性的值,进行归约的同 时, 栈中正在归约的产生式右部符号的综合属性值弹栈, 并调用相应语义子程 序进行相应计算(完成属性文法中的语义规则),产生的新值入语义值栈。

【举例】对 2+3*5 进行 LR 分析和语义计算(IR 分析表参见 P167)

		状态栈	符号栈	语义栈	待分析串	动作
	1	0	#	- 0	2+3*5#	S 5
	2	05	#2	-2	+3*5#	r6
	3	03	#F	-2	+3*5#	r4
	4	02	#T _&	-2	+3*5#	r2
	5	01	#E	-2	+3*5#	S6
	6	016	#E+	-2-	3*5#	S5
	7	0165	#E+3	-2-3	*5#	r6
	8	0163	#E+F	-2-3	*5#	r4
	9	0169	#E+T	-2-3	*5#	S7
	10	01697	#E+T*	-2-3-	5# (S5
.80	11	016975	#E+T*5	-2-3-5	\&#</td><td>r6</td></tr><tr><td></td><td>12</td><td>01697<u>10</u></td><td>#E+T*F</td><td>-2-3-5</td><td>#</td><td>r3</td></tr><tr><td></td><td>13</td><td>0169</td><td>#E+T</td><td>-2-15</td><td>#</td><td>r1</td></tr><tr><td></td><td>14</td><td>01</td><td>#E</td><td>-17</td><td>#</td><td>acc</td></tr></tbody></table>	

(5) 基于 L-属性文法的语义计算

L-属性文法可采用 **自顶向下 深度优先 从左至右** 遍历分析树, 计算出所有属性值。

function visit(n: node)

```
forn的每一个孩子m, 从左到右
{
      计算 m 的继承属性值;
      visit(m);
   }
   计算 n 的综合属性值;
}
```

CIMIPS CIMIPS 二进制无符号定点小数 0.101 转化为十进制小数。 【举例】例 7.6

```
N \rightarrow .S  { S.f:=1;
              print(S.v) }
S \rightarrow BS_1 \{ S_1.f := S.f + 1;
              B.f:=S.f;
              S.v:=B.v+S_1.v }
s→ε
            { S.v:=0 }
B \rightarrow 0
            { B.v:=0 }
            \{ B.v := 2^{-B.f} \}
B \rightarrow 1
```

利用倒序入栈的表驱动(预测)分析法,实现语法分析和语义分析。

- 4. 基于翻译模式的语义计算
 - (1) 翻译模式
 - 什么是翻译模式?
 - ✓ 形式上类似于属性文法,但语义动作允许出现在产生式右部的任意位置, 以此显式表达属性的计算次序。
 - ✓ 翻译模式是适合语法制导语义计算的另一种描述形式。

【举例】

属性文法	去:	翻译模式:	
N→.S	{ S.f:=1;	N→. {S.f:=1} S {print(S.v)}	
	print(S.v) }	₹\$	
s→Bs₁	{ S ₁ .f:=S.f + 1;	$S \rightarrow \{B.f:=S.f\}B\{S1.f:=S.f+1\}S_1\{S.v:=B.v+S_1.v\}$	
	B.f:=S.f;	\mathcal{S}	
	S.v:=B.v+ S ₁ ,v}		
s→ε	{ S.v:=0 }	S→E { S.v:=0 }	
B→0	{ B.v:=0 }	B→0 { B.v:=0 }	
B → 1	{ B.v:= 2-B.f }	B→1 { B.v:= 2-B.f }	
为什么需	需要翻译模式?		

- 为什么需要翻译模式?
 - ✓ 给出了使用语义规则进行计算的次序,可把某些实现细节表现出来。
 - 在语义分析过程中,为明确表达语义栈上的操作,可以将属性文法转化成 翻译模式。
- 翻译模式的类型
 - S-翻译模式: 仅涉及综合属性
 - L-翻译模式: 既可以包含综合属性, 又可以包含继承属性 【举例】

```
L-翻译模式:
N→. {S.f:=1} S {print(S.v)}
S→ {B.f:=S.f} B {S1.f:=S.f+1} S₁ {S.v:=B.v+S₁.v}
S→E { S.v:=0 }
B→0 { B.v:=0 }
B→1 { B.v:=2-B.f }
```

- (2) 基于 S-翻译模式的语义计算
 - S-翻译模式: 仅涉及综合属性, 通常与将语义动作置于相应的产生式右端末尾。
 - 将属性文法改写为 S-翻译模式的方法:
 假设语义栈由向量 v 表示,栈顶为 top,栈中存放对应的属性值。

x用v[i].x表示

```
① A→XY {A.a := f(X.x, Y.y); ... }
改为 A→XY {v[top-1].a:=f(v[top-1].x, v[top].y); ...}
② A→XYZ {A.a := f(X.x, Y.y, Z.z); ...}
改为A→XYZ {v[top-2].a := f(v[top-2].x, v[top-1].y, v[top].z); ...}
```

【举例】例 7.8 给出下列属性文法的 S-翻译模式

```
S→E { print(E.val) }
                                                                                                                                                                                                        { print(v[top].val) }
E \rightarrow E_1 + T\{E.val:=E_1.val+T.val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val] | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val\} | \{v[top-1].val:=v[top-1].val:=v[top-1].val] | \{v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[top-1].val:=v[t
                                                                                                                                                                                                                                                                                                    + v[top].val }
E→T { E.val:=T.val }
                                                                                                                                                                                                        { v[top].val:=v[top].val }
T \rightarrow T_1 * F \{ T.val := T1.val * F.val \}
                                                                                                                                                                                                        { v[top-1].val:=v[top-1].val
                                                                                                                                                                                                                                                                                                * v[top].val }
T \rightarrow F \{ T.val := F.val \}
                                                                                                                                                                                                        { v[top].val:=v[top].val }
F \rightarrow (E) \{ F.val := E.val \}
                                                                                                                                                                                                        { v[top].val:=v[top].val }
 F→d { F.val:=d.lexval }
                                                                                                                                                                                                         { v[top].val:=d.lexval }
                                  属性文法
                                                                                                                                                                                                                                                           S-翻译模式
```

- (3) 基于 L-翻译模式的自顶向下语义计算
 - L-翻译模式: 既可以包含综合属性,又可以包含继承属性,但要满足两个条件:
 - ① 符号的**继承属性**必须位于**该符号之前**,语义动作仅访问它左**边符号的属性**,不访问位于它右边符号的属性;

- ② 产生式左部非终结符的综合属性的计算,只能在所用到的属性全部计算出 来之后进行,通常将这样的语义动作置于产生式的末尾。
- L-翻译模式规定好产生式右部文法符号和语义动作的处理次序。
- 语义计算通常基于自顶向下分析过程(如预测分析、递归下降分析)
- 递归下降中每个非终结符对应一个分析子函数,分析程序从开始符号对应的分 析子函数开始执行。
- 在自顶向下分析过程,根据所选产生式右部依次出现的符号设计其行为:
 - ① 遇到终结符 a: 首先将其综合属性 x 保存在专门为 a.x 声明的变量里: 然 后判断 a 是否与当前读入的单词符号匹配, 若匹配则继续读取下一个单词符号; 若不匹配,则报告语法错误。
 - ② 遇到非终结符 B: 利用 B 对应的子函数 ParseB 产生赋值语句 c:=ParseB(b1, b2, …, bk), 其中参量 b1, b2, …, bk 对应 B 的各继承属性, 变量 c 对应 B 的综 合属性。
 - ③ 遇到一个语义动作集合:直接复制其中每一个语义动作所对应的代码,只 需要注意将属性的访问替换成相应变量的访问。
- 经上述方法改造后的分析子函数称为语义计算子函数,改造后的递归下降分析 程序称为递归下降翻译程序。

【举例】例 7.9 对于如下 L-翻译模式,二进制无符号定点小数转换为十进制小 数,构造相应的递归下降翻译程序。

```
N \rightarrow . \{S.f.=1\} S \{print(S.v)\}
S \rightarrow \{B.f:=S.f\} B \{S_1.f:=S.f+1\} S_1 \{S.v:=B.v+S_1.v\}
S→E { S.v:=0 }
B\rightarrow 0 \{ B.v:=0 \}
B→1 { B.v:= 2-B.f }
```

	S→S { S.v:=0 }	
20.	B→0 { B.v:=0 } B→1 { B.v:= 2-B.f }	
	递归下降语法分析程序	递归下降翻译程序
CUMIB	<pre>void ParseN(){ MatchToken('.'); ParseS(); }</pre>	<pre>void ParseN(){ MatchToken('.'); Sf:=1; Sv:=ParseS();</pre>
CIMIT		print(Sv);
<u>√</u> S	void ParseS(){	float ParseS(int Sf){
	if(lookahead== ' 0 or	if(lookahead== ' 0 ' or
	lookahead== '1'){	lookahead== '1'){
	ParseB();	Bf:=Sf;

```
ParseS();
                                                        Bv:=ParseB(Bf);
       } else if(lookahead== '#' ){
                                                        S1f:=Sf+1;
                                                        S1v:=ParseS(S1f);
       } else {
                                                        Sv:=S1v+Bv:
              print( "syntax error");
                                                 }else if(lookahead== '#')
              exit(0);
                                                        Sv:=0:
                                                 else{
                                                        print( "syntax error");
                                                        exit(0);
                                                 }
                                                 return Sv:
float ParseB(){
                                         float ParseB(int Bf){
                                                 if(lookahead== '0'){
       if(lookahead== '0'){
              MatchToken( '0');
                                                        MatchToken( '0');
       }else if(lookahead== '1' )
                                                        Bv:=0;
                                                 }else if(lookahead== '1')
              MatchToken( '1');
                                                        MatchToken( '1');
       else{
                                                        Bv:=2^(-Bf);
              print( "syntax error");
                                                 else{
              exit(0);
                                                        print( "syntax error" );
       }
                                                        exit(0);
}
                                                 return Bv;
```

关于递归下降翻译程序的一点说明:

如果文法不是 LL(1)文法,则不能使用 L-翻译模式,需要将基础文法消除左递 归和左公共因子,变成 LL(1)文法后,才可以构造 L-翻译模式,继而构造递归下降 翻译程序。

- (4) 基于 L-翻译模式的自底向上语义计算
 - L-翻译模式中既有继承属性,又有综合属性。
 - ✓ 情况 1: L-翻译模式只包含综合属性
 - ✓ 情况 2: L-翻译模式中包含继承属性(略,参见 P179-182)
 - 针对情况 1: L-翻译模式只包含综合属性(综合属性是自底向上传递信息) 处理方法:可以将 L-翻译模式处理成 S-翻译模式,然后利用 LR 分析,增加一 个语义栈,进行语义分析。(参见 7.2.2 基于 S-翻译模式的语义计算)

【举例】将 L-翻译模式处理成 S-翻译模式

```
L-翻译模式:
                                                S-翻译模式:
                                                E \rightarrow TR
E→TR
                                                R \rightarrow +T M R_1
R \rightarrow +T \{ print('+') \} R_1
                                                R ->-T N R1
R \rightarrow T \{ print('-') \} R_1
R→ε
                                                R→ε
                                                T-num { print(num.val) }
T→num { print(num.val) }
                                                M \rightarrow \varepsilon \{ print('+') \}
                                                N \rightarrow \varepsilon \{ print('-') \}
```

【课堂练习】

- 1、补充 1、补充 2、补充 3、补充 4、补充 5 (给出属性文法)
- 2、3、4 (构造语法分析树)
- (LR 分析和求值过程)
 - 1. 设计属性文法,可以计算出每个二值布尔表达式的 取值。例如「true / 「false/true,输出true.

```
{ print(S.val) }
s' →s
      { if(S<sub>1</sub>.val=true or T.val=true) S.val:=true
S \rightarrow S_1 \lor T
            else S.val:=false
S \rightarrow T
T \rightarrow T_1 \land S
T \rightarrow F
F \rightarrow \neg F_1
F>true
F-false
```

补充1. 构造下属文法的属性文法,它可以输出句子中括号的对数。

```
S' \rightarrow S \qquad \{ print(S.num) \}
S \rightarrow (L) \qquad \{ S.num := L.num + 1 \}
S \rightarrow a \qquad \{ S.num := 0 \}
L \rightarrow L_1, S \qquad \{ L.num := L_1.num + S.num \}
L \rightarrow S \qquad \{ L.num := S.num \}
```

补充2. 构造如下文法的属性文法,它可以输出句子中括号的对数。

```
S' \rightarrow S { print(S.num) }

S \rightarrow S_1(S_2)S_3 { S.num := S_1.num + S_2.num + S_3.num + S_3.num + S_4.
```

补充3. 构造如下文法的属性文法,它可以输出句子中括号的最大嵌套层数。

```
\begin{array}{ll} S' \rightarrow & \{ \ print(S.num) \} \\ S \rightarrow & \{ L) & \{ S.num := L.num + 1 \} \\ S \rightarrow & \{ S.num := 0 \} \\ L \rightarrow & \{ if (L_1.num > S.num) \\ L.num := L_1.num \\ else \\ L.num := S.num \} \\ L \rightarrow & \{ L.num := S.num \} \end{array}
```

补充4. 构造如下文法的属性文法,它可以输出句子中 括号的最大嵌套层数。

```
\begin{array}{ll} S' \rightarrow & \{ print(S.num) \} \\ S \rightarrow & \{ S_1(S_2)S_3 \mid \{ if (S_1.num > S_2.num+1 \text{ and } S_1.num > S_3.num) \\ & S.num := S_1.num \\ & else \ if (S_2.num+1 > S_3.num) \\ & S.num := S_2.num+1 \mid \} \\ & else \\ & S.num := S_3.num \\ & \} \\ S \rightarrow & \{ S.num := 0 \} \end{array}
```

补充5. 构造如下文法的属性文法,它可以输出算术表达式的值。

```
S' \rightarrow E \quad \{ print(E.val) \}
E \rightarrow E_1 + T \quad \{ E.val := E_1.val + T.val \}
E \rightarrow T \quad \{ E.val := T.val \}
T \rightarrow T_1 * F \quad \{ T.val := T_1.val * F.val \}
T \rightarrow F \quad \{ T.val := F.val \}
F \rightarrow (E) \quad \{ F.val := E.val \}
F \rightarrow d \quad \{ F.val := d.lexval \}
```

2. 给定 S-属性文法,输入串(a,(a))的语法分析树和 对应的带标注语法树如下,试标出空缺属性值。

 $S \rightarrow (L) \{ S.num := L.num + 1 \}$

3. 给定 S-属性文法, 试给出 3*(5+4) 的带标注语法分析树。

4. 给定 L-属性文法, 试给出 3+4-5 的带标注语法分析树。

5. 题2给定的 S-属性文法,LR分析表如下表,请补全输入串(a,(a))的语法分析和求值过程。

				CUMIP)			
	状态栈	符号栈	语义栈	待分析串	动作			
1	0	#	- ~	(a,(a))#	S3			
2	02	#(-W	a,(a))#	S3			
3	023	#(a	<i>JBI</i>	,(a))#	r2			
4	025	#(S	0	,(a))#	r4			
5	024	#(L	0	,(a))#	S7			
6	0247	#(L,	0 -	(a))#	S2			
7	02472	#(L,(0	a))#	S3			
8	024723	#(L,(a	0))#	r2			
9	024725	#(L,(S	00))#	r4			
10	024724	#(L,(L	00))#	S6			
11	0247246	#(L,(L)	00-)#	r1			
12	02478	#(L,S	0 - 1)#	r3			
13	024	#(L	1)#				
k	大态栈	符号栈	 语义栈	——————— 待分析串		动作		
0		#	-	(a,(a))	#	S2		

		9 024725	#(L,(S	00))#	r4	
		10 024724	#(L,(L	00))#	S6	
		11 0247246		00-)#	r1	
		12 02478	#(L,S	0-1)#	r3	
		13 024	#(L	1)#		
答:							
		状态栈	符号栈	语义栈	待分析串	动作	
	1	0	#	-	(a,(a))	# S2	
CUMIE	2	02	#(0	a,(a))	# S3	
	3	023	#(a		,(a)) ;	# r2	
	4	025	#(S	0	,(a)) ;	# r4	
28	5	024	#(L	0	,(a)) ;	# S7	
	6	0247	#(L,	-0 -	(a)) ;		
,	7	02472	#(L,(O0	a)) ;	# S3	
,	8	024723	#(L,(a	0));	# r2	
	9	024725	#(L,(S	00));	# r4	
,	10	024724	#(L,(L	00));	# S6	
,	11	0247246	#(L,(L)	00-);	# r1	
,	12	02478	#(L,S	0 - 1);	# r3	
	13	024	#(L	1)7	# S6	
,	14	0246	#(L)	1 -	7	# r1\%	
	15	01	#S	- 2	į	# acc	
8 Miles							
Cillin							
MIR CIMIR				CUMIII CUMIII			
.00							
				24			
		2					

【课后作业】

3(构造语法分析树)、5(LR分析和求值过程)

补充1(给出属性文法)、补充3(给出属性文法)、补充6(给出属性文法) THE CHILLS CHILLS

3. 给定 S-属性文法, 试给出 3*(5+4) 的带标注语法 分析树。

答:

5. 题2给定的 S-属性文法, LR分析表如下表, 请补全 输入串(a,(a))的语法分析和求值过程。

① S→ (L) { S.num := L.num + 1}

{ S.num := 0 } ② S**→**a

(3) L \rightarrow L₁, S {L.num := L₁.num + S.num}

人		1	Actio	n		Go	oto
状态	а	,	()	#	S	L
0	S3		S2			1	
1					acc		
2	S3		S2			5	4
3		r2		r2	r2		
4		S7		S6			
5		r4		r4			
6		r1		r1	r1		
7	S3		S2				
8		r3		r3			

	9	-1,-	1111.		1					acc	
	④ L→	S {L.num	:= S.num }		2	S3		S2			5
					3		r2		r2	r2	
					4		S7		S6		
					5		r4		r4		
					6		r1		r1	r1	
					7	S3	-0	S2	-0		
					8		r3		r3		
No. of the second secon		状态栈	符号栈	ŭ	吾义村	戈	待	分析	串	动	l/F
	1	0	#	-				(a,(a))#	S	
	2	02	#(a,(a))#	S	3
.95	3	023	#(a					,(a))#	r:	2
	4	025	#(S	0)),	a))#	r4	4
$C_{[j]\mu_{i}}$	5	024	#(L	0				,(a))#	S	7
	6	0247	#(L,	0	-			(a))#	S	2
(A)	7	02472	#(L,(0	5-				a))#	S	3
	8	024723	#(L,(a	1-1-0))#	r.	2
	9	024725	#(L,(S) 0	()))#	r-	4
	10	024724	#(L,(L	0	()))#	S	6
	11	0247246	#(L,(L)	0	() -)#	r	1
	12	02478	#(L,S	0	- 1)#	r	3
	13	024	#(L	1)#		

	0	0247	#(L,	0-	(a))# S	2		
	7	02472	#(L,(0	a))# S	3		
	8	024723	#(L,(a	14-0))# r:	2		
	9	024725	#(L,(S	00))# r-	4		
	10	024724	#(L,(L	00))# S	66		
	11	0247246	#(L,(L)	00-)# r	1		
	12	02478	#(L,S	0 - 1)# r	3		
	13	024	#(L	1)#			
答:		状态栈	———— 符号栈		待分析串	动作		
	1	0	#	-	(a,(a))#			
-	2	02	#(a,(a))#			
	3	023	#(a		,(a))#	r2		
0,	4	025	#(S	0	,(a))#	r4		
9	5	024	#(L	0	,(a))#	S7		
	6	0247	#(L,	0 -	(a))#	S2		
-	7	02472	#(L,(0	a))#	S3		
-	8	024723	#(L,(a	0))#	r2		
	9	024725	#(L,(S	00))#	r4		
	10	024724	#(L,(L	00))#	S6		
-	11	0247246	#(L,(L)	-00-)#	r1		
	12	02478	#(L,S	0-1)#	r3		
	13	024	#(L	1)#	S6		
-	14	0246	#(L)	1-	#			
-	15	01	#S	- 2	#	acc		
			-1////					

补充1. 构造下属文法的属性文法,它可以输出句子中 括号的对数。

```
s' →s
S→ (L)
S→a
L\rightarrow L_1, S
L->S
```

{ print(S.num) } s' **→**s $\{ S.num := L.num + 1 \}$ S**→** (L) ${ S.num := 0 }$ S**→**a $\{L.num := L_1.num + S.num\}$ $L \rightarrow L_1$, S { L.num := S.num } L**→**S

补充3. 构造如下文法的属性文法,它可以输出句子中 括号的最大嵌套层数。

```
S' →S
S-> (L)
S→a
L\rightarrow L_1, S
L→S
```

```
CIMILES CIMILES CIMILES
           { print(S.num) }
s' →s
S→ (L)
           \{ S.num := L.num + 1 \}
           \{ S.num := 0 \}
S→a
           \{ if (L_1.num > S.num) \}
L \rightarrow L_1, S
               L.num := L_1.num
            else
               L.num := S.num 
L→S
           { L.num := S.num }
```

补充6. 将二进制无符号小数转化成十进制小数。

```
N'→N
                                   N \rightarrow S_1.S_2
                                   S \rightarrow S_1B
                                   S \rightarrow B
                                   B \rightarrow 0
                                   B \rightarrow 1
                                             { print(N.val)
                                N'→N
                                             \{ N.val := S_1.val + S_2.val * 2^{-S2.len}; \}
                                N \rightarrow S_1.S_2
                                             \{ S.val := 2*S_1.val + B.val; \}
                                S \rightarrow S_1B
                               S.len := S_1.len + 1
MIB CHILLS
```

【本章小结】

- 1. 语义处理的任务:
 - (1) 静态语义分析
 - (2) 翻译
- 2. 语义处理的实现途径:

首先,使用属性文法为工具,描述程序设计语言的语义规则。在语法分析时,每应用一 个产生式(推导或归约),同时完成该产生式上所附的语义规则描述的动作,从而完成 语义处理。

- 3. 语义计算模型:
 - (1) 基于属性文法的语义计算模型
 - (2) 基于翻译模式的语义计算模型
- 属性文法 (综合属性、继承属性)
- 遍历分析树进行语义计算
 - (1) 构造分析树
 - (2) 构造依赖图
 - (3) 计算属性值
- 6. S-属性文法、基于 S-属性文法的自底向上语义计算
- 7. L-属性文法、基于 L-属性文法的自顶向下语义计算