

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы упр	aon Houng)	
КАФЕДРА «Программное обеспечение С	ЭВМ и информационнь	ие технологии»
РАСЧЕТНО-ПОЯСН	НИТЕЛЬНАЯ	ЗАПИСКА
К ВЫПУСКНОЙ КВАЛІ	ИФИКАЦИОН	ННОЙ РАБОТЕ
HA	ТЕМУ:	
«Метод автоматического опр темпа цифровой музыкал	-	
байесовского иерарх		
1 1		1
Студент ИУ7-86Б	(Полина дата)	А. А. Петрова (И.О. Фамилия)
(Группа)	(Подпись, дата)	(н.о. фамилия)
Руководитель		К. А. Кивва
	(Подпись, дата)	(И.О. Фамилия)

РЕФЕРАТ

Расчетно-пояснительная записка ?? с., ? рис., ? табл., ?? ист., ? прил.

TODO

КЛЮЧЕВЫЕ СЛОВА

темп музыки, ритм музыки, bpm, вейвлет, марковская модель, байесовская модель, нейросети.

СОДЕРЖАНИЕ

PI	РЕФЕРАТ			3
Bl	ВЕДЕ	сние		6
1	Ана	литиче	еский раздел	7
	1.1	Темп,	ритм и метр	7
	1.2	Пробл	пема определения ритма и темпа	8
	1.3	Дискр	ретное вейвлет-преобразование	9
		1.3.1	Общие сведения	9
		1.3.2	Определение ритма и темпа	11
	1.4	Скрыт	гые модели Маркова	12
		1.4.1	Стохастическое моделирование	12
		1.4.2	Определение ритма	14
	1.5	Байес	овское иерархическое моделирование	14
		1.5.1	Общие сведения	14
		1.5.2	Определение темпа и ритма	15
	1.6	Испол	пьзование сверточных нейросетей	17
		1.6.1	Представление сигнала	17
		1.6.2	Архитектура сети	17
	1.7	Сравн	ление методов	19
2	Конструкторский раздел			
	2.1	Опред	целение переменного темпа	22
	2.2	Опред	целение переменного тактового размера	26
	2.3	Струк	туры данных	29
	2.4	Струк	тура ПО	29
3	Tex	нологи	ческий раздел	31

Cl	писс	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	34
ЗАКЛЮЧЕНИЕ			33
	3.4	Тестирование приложения	32
	3.3	Пользовательский интерфейс	32
	3.2	Детали реализации	31
	3.1	Выбор средств программной реализации	31

ВВЕДЕНИЕ

Автоматическая транскрипция музыки (ATM) — это процесс преобразования акустического музыкального сигнала в ту или иную форму нотной записи [1]. Данную задачу можно разделить на несколько подзадач, к которым в том числе относятся задачи выделения информации о ритме и темпе музыки. Несмотря на то, что задачу ATM для монофонических сигналов можно считать решенной [1], проблема создания автоматизированной системы, способной транскрибировать полифоническую (многоголосую) музыку без ограничений по степени полифонии или типу инструмента, остается открытой.

Цель данной работы — реализовать метод автоматического определения темпа и ритма музыки на основе байесовского иерархического моделирования.

Чтобы достигнуть поставленной цели, требуется решить следующие задачи:

- провести анализ предметной области и сформулировать проблему;
- проанализировать и сравнить основные методы определения темпа и ритма;
- разработать алгоритм решения поставленной задачи;
- спроектировать архитектуру разрабатываемого программного обеспечения;
- реализовать разработанный алгоритм;
- протестировать и сравнить результаты работы реализованного метода с результатами, полученными с помощью известных аналогов.

1 Аналитический раздел

1.1 Темп, ритм и метр

Темп – мера времени в музыке, упрощенно – «скорость исполнения музыки» [2].

Существует несколько способов измерения темпа. В классической музыке чаще всего используется словесное описание (как правило, на итальянском). Этот метод является неточным и дает лишь примерное представление о «скорости» исполнения музыкального произведения. Примеры такого описания: адажио, ленто (медленные темпы); анданте, модерато (средние темпы); аллегро, виво (быстрые темпы).

Второй, более точный способ измерения темпа — это число ударов в минуту (beats per minute, сокращенно bpm). Данный метод напрямую связан с частотой колебания маятника в метрономе (устройстве, предназначенном для точного ориентира темпа при исполнении музыки). Стандартным темпом считается 120 bpm, т. е. 2 Гц.

В данной работе будет использоваться второй способ измерения темпа (в bpm).

Ритм – организация музыки во времени [3]. Ритмическую структуру музыки образует последовательность длительностей – звуков и пауз.

Ритм в музыке принадлежит к числу терминов, дискуссии о которых ведутся в науке последние два столетия. Единого мнения по вопросу его определения нет. Чаще всего ритм определяется как регулярная, периодическая последовательность акцентов. Такое понимание ритма фактически идентично метру.

Метр в музыке — это чередование сильных и слабых долей в определенном темпе [2]. Обычно метр фиксируется с помощью тактового размера и тактовой черты (рис. 1.1).

Рис. 1.1 – Обозначение метра

Размер задает относительную длительность каждой доли. Например, размер «3/4» говорит о том, что в такте 3 доли, каждая из которых представлена четвертной нотой. Можно сказать, что размер — числовое представление метра с указанием длительности каждой доли. Такт в свою очередь — единица метра, начинающаяся с наиболее сильной доли и заканчивающаяся перед следующей равной ей по силе (рис. 1.1).

В данной работе не будут учитываться тонкости различия ритма и метра. Соответственно, для измерения ритма будет использоваться числовое представление метра в виде тактового размера.

1.2 Проблема определения ритма и темпа

Основной проблемой автоматического определения ритма и темпа музыки является наличие некоторых особенностей в музыкальных записях с живыми инструментами, затрудняющих это определение. Одна из таких особенностей—это нечеткое попадание инструмента в ритмическую сетку. Такие небольшие отклонения на живых записях присутствуют всегда [4]. Они не заметны для уха человека, но могут осложнять автоматическое распознавание.

Также в некоторых случаях темп и ритм может изменяться в течение музыкального произведения. Пример переменного темпа приведен на рис. 1.2 (темп

обозначается числами сверху в bpm). На рис. 1.3 приведен пример переменного ритма (размера).

Рис. 1.2 – Пример переменного темпа (System of a down «Aerials»)

Рис. 1.3 – Пример переменного размера (Metallica «Master of puppets»)

В качестве критериев сравнения рассматриваемых далее методов выделены следующие:

- точность результатов применения метода;
- возможность определения переменного темпа и ритма;
- ограничения на формат входного аудиофайла;
- размер использовавшегося для обучения датасета (если обучение необходимо).

1.3 Дискретное вейвлет-преобразование

1.3.1 Общие сведения

Так как преобразование Фурье не позволяет получить частотно-временное представление сигнала, оно подходит только для стационарных сигналов (т. е. сигналов, частотное наполнение которых не меняется во времени). Большинство же реальных аудио-сигналов являются нестационарными. Основная же проблема оконного преобразования Фурье (ОПФ) заключается в невозможности получить произвольно точное частотно-временное представление сигнала,

то есть нельзя определить для какого-то момента времени, какие спектральные компоненты присутствуют в сигнале. Эта проблема называется проблемой разрешения.

В качестве альтернативы ОПФ было разработано вейвлет-преобразование.

Основная идея вейвлет-преобразования — это разделение сигнала на высокие и низкие частоты с помощью фильтров [5]. После применения фильтров полученные низкие частоты снова пропускаются через два фильтра и т. д. При этом высокие частоты остаются неизменными. Эта операция называется декомпозицией.

На высоких частотах лучше разрешение по времени, а на низких - по частоте.

Фильтры для высоких и низких частот определяются следующими уравнениями [6]:

$$y_{high}[k] = \sum_{n = -\infty}^{\infty} x[n]g[2k - n], \tag{1}$$

$$y_{low}[k] = \sum_{n=-\infty}^{\infty} x[n]h[2k-n], \tag{2}$$

где x[n] – пропускаемый через фильтр сигнал (последовательность), h[n] и g[n] – импульсные характеристики (отклик на единичный импульс) низкочастотного и высокочастотного фильтров соответственно, k и n – целые числа, соответствующие отсчетам (теорема отсчетов [7]).

Выражение 2k-n в формулах 1 и 2 позволяет обрезать сигнал, тем самым увеличив его масштаб в два раза (т. к. половина частот удаляется в результате фильтрации) [5].

Само ДВП (дискретное вейвлет-преобразование) описывается формулой:

$$W(j,k) = \sum_{j} \sum_{k} x(k) 2^{-j/2} \psi(2^{-j}n - k), \tag{3}$$

где $\psi(t)$ – функция преобразования, называемая материнским вейвлетом, j и k связаны с параметрами сдвига τ (местоположение окна) и масштаба s (величина, обратная частоте). $s=s_0^j, \tau=ks_0^j\tau_0$. В данном случае $s_0=2, \tau_0=1$.

1.3.2 Определение ритма и темпа

Алгоритм определения ритма с помощью ДВП основан на обнаружении наиболее заметных периодов сигнала.

Сигнал сначала раскладывается на несколько частотных полос с помощью ДВП. Для этого сигнал «делится» пополам на высокие и низкие частоты, после чего низкие частоты снова разделяются пополам и т. д. Так продолжается до тех пор, пока не останутся два отсчета. Эта операция необходима, т. к. для высоких частот можно точнее указать их временную позицию, а для низких – их значение частоты [5]. После этого огибающая амплитуды во временной области каждой полосы извлекается отдельно. Это достигается за счет фильтрации нижних частот каждой полосы, применения полноволнового выпрямления и понижения частоты дискретизации [6]. Затем огибающие каждой полосы суммируются и вычисляется автокорреляционная функция. Пики автокорреляционной функции соответствуют различным периодам огибающей сигнала.

Фильтрация нижних частот:

$$y[n] = (1 - \alpha)x[n] - \alpha y[n], \tag{4}$$

где $\alpha = 0,99$.

Полноволновое выпрямление:

$$y[n] = abs(x[n]). (5)$$

Понижение частоты дискретизации:

$$y[n] = x[kn]. (6)$$

Нормализация в каждой полосе (удаление среднего значения) для исключения аномальных данных:

$$y[n] = x[n] - E[x[n]], \tag{7}$$

где E[x[n]] – среднее значение последовательности x[n].

Автокорреляция:

$$y[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k].$$
 (8)

Из результата берутся первые пять пиков автокорреляционной функции, после чего рассчитываются и добавляются в гистограмму соответствующие им периодичности в bpm. Этот процесс повторяется в процессе прохождения по сигналу. Периодичность, соответствующая наиболее заметному пику конечной гистограммы, является предполагаемым темпом аудиофайла в bpm.

Основными недостатками рассмотренного метода определения темпа являются неточные (в некоторых случаях даже ошибочные) результаты на музыке определенных жанров (например, на классической музыке), а также невозможность определить переменный темп.

1.4 Скрытые модели Маркова

1.4.1 Стохастическое моделирование

Как уже было упомянуто выше, практически во всех музыкальных записях имеет место небольшое отклонение нот от ритмической сетки. Рассматриваемый метод рассчитан именно на работу с такими случаями. Также в данном методе подразумевается, что входные данные представлены в формате MIDI (Musical Instrument Digital Interface, стандарт обмена данными между цифровыми музыкальными инструментами). В MIDI файлах указывается информация о высоте ноты, ее длительности и силе нажатия [8].

Исследования показывают, что отклонения нот можно смоделировать с помощью распределения Гаусса относительно их идеальной длительности [9].

Тогда, если i — идеальная длительность ноты («намерение») в момент времени t, то ее исполненная длительность x_t моделируется функцией плотности вероятности $f_i(x_t)$.

Пусть $Q=\{q_1,q_2,...,q_N\}$ — последовательность «намерений» в соответствующие моменты времени. Тогда наблюдаемая последовательность длительностей $X=\{x_1,x_2,...,x_N\}$ определяется как:

$$P(X|Q) = \prod_{t=1}^{N} f_{q_t}(x_t).$$
 (9)

В данном методе используются два типа моделей генерации ритмических рисунков для получения возможных ритмов:

- п-граммная модель (длина ноты предсказывается исходя из предыдущих
 п-1 нот в вероятностном смысле. Эта модель охватывает любые ритмические рисунки и может выдавать точную вероятность);
- «ритмический словарь» (состоит из всех известных ритмических рисунков за единицу времени. Хорошо представляет известные ритмические рисунки, в то время как неизвестные заменяются аналогичными существующими ритмами).

Обе модели можно представить в виде вероятностных сетей перехода состояний, где каждое состояние связано с предполагаемой длительностью ноты. Вероятность того, что номер состояния изменится в последовательности $Q = \{q_1, q_2, ..., q_N\}$ определяется как $P(Q) = p_{q_0} \prod_{t=1}^N a_{q_{t-1}q_t}$, где p_i – вероятность изначального нахождения в состоянии i, а a_{ij} – вероятность перехода из состояния i в состояние j.

Колеблющиеся длительности и возможные последовательности нот могут быть объединены в рамках скрытой модели Маркова как вероятности перехода $A = \{a_{ij}\}$ и наблюдаемые вероятности $B = \{b_i(x_t)\}$ соответственно. В таком случае вероятность наблюдения последовательности длительностей X определяется как:

$$P(X) = P(X|Q)P(Q). (10)$$

1.4.2 Определение ритма

Задача заключается в том, чтобы найти временную последовательность Q номеров состояний, которая дает максимальную апостериорную вероятность P(Q|X) при заданной последовательности наблюдаемых длительностей X [9]. По теореме Байеса:

$$P(Q|X) = \frac{P(X|Q)P(Q)}{P(X)}. (11)$$

Значит, максимизация апостериорной вероятности эквивалентна нахождению argmaxP(X|Q)P(Q) среди всех возможных Q.

Оптимальная последовательность состояний находится с помощью алгоритма Витерби для поиска наилучшего пути в вероятностной сети переходов.

Основной недостаток представленного метода заключается в необходимости входных данных быть в формате MIDI. Также к недостаткам можно отнести периодические неточности в результатах. Например, музыкальные фрагменты с разным темпом (к примеру, 116 bpm и 127 bpm) могут быть определены как имеющие одинаковый темп (в данном случае 120 bpm [9]).

1.5 Байесовское иерархическое моделирование

1.5.1 Общие сведения

Байесовская иерархическая модель - это метод статистического анализа, который использует байесовский подход для оценки параметров. Она состоит из нескольких уровней, где каждый уровень описывает определенный аспект данных [10].

Для каждого уровня иерархии определяются соответствующие параметры, которые описывают данные. Для оценки параметров используются априорные распределения, которые описывают предположения об этих параметрах до получения данных. Затем с помощью формулы 11 оцениваются парамет-

ры модели, учитывая как данные (P(X|Q)), так и априорные распределения (P(Q)). Таким образом, байесовская иерархическая модель позволяет учитывать неопределенность в данных и параметрах модели, а также учитывать различные уровни влияния на данные.

Термин P(X|Q) играет две роли в статистике, в зависимости от контекста [11]. Когда она рассматривается как функция от X для известного Q, то она называется функцией массы вероятности. Функция массы вероятности описывает вероятность любого исхода X при заданном значении Q. Но этот термин также можно рассматривать как функцию параметра Q для фиксированного X. В этом случае она называется функцией правдоподобия и описывает вероятность определенного значения параметра Q при заданном фиксированном значении X. В теореме Байеса используется апостериорное распределение (P(Q|X)) как функция параметра Q. Следовательно, P(X|Q) рассматривается как правдоподобие параметра Q, а не масса вероятности X.

Член P(X) является константой по отношению к Q и служит нормирующим числом, которое гарантирует, что апостериорная вероятность не превышает 1.

Чтобы выполнить байесовский анализ, необходимо выбрать априорное распределение P(Q). Этот выбор отражает мнение о возможных значениях Q до сбора данных.

Когда априорная и апостериорная вероятность относятся к одному и тому же распределению, они называются **сопряженными** [11]. Сопряженные значения удобны, они часто облегчают получение апостериорных распределений. Однако сопряженность вовсе не обязательна для байесовского анализа.

1.5.2 Определение темпа и ритма

В случае с темпом музыки формула 11 принимает вид:

$$P(t|d) = \frac{P(d|t)P(t)}{P(d)},\tag{12}$$

где d – это собранные данные с известным темпом (датасет), а t – искомый темп.

Аналогично и с ритмом (тактовым размером).

Однако темп музыки имеет также некоторую корреляцию с жанром. Поэтому в таком случае лучше всего применять иерархический вариант рассмотренной выше байесовской модели. Тогда на первом уровне будут располагаться так называемые **гипераприорные** распределения [10] для темпа и для жанра (P(t) и P(g) соответственно). На основе этих распределений вычисляются параметры, располагающиеся на втором уровне и необходимые для задания распределения функции правдоподобия (likelihood_params) (см. рис. 1.4). На третьем же уровне находится функция правдоподобия, которая задается на основе вычисленных ранее параметров.

Рис. 1.4 – Схема иерархической байесовской модели

Таким образом, байесовское иерархическое моделирование позволяет немного увеличить точность определения ритма по сравнению с марковскими моделями (примерно на 2% [12]). Однако главным недостатком байесовского моделирования является возможное неправильное задание априорного распределения. Также к недостаткам можно отнести определение только постоянного темпа и ритма.

1.6 Использование сверточных нейросетей

1.6.1 Представление сигнала

Сигнал представляется в виде спектрограммы по шкале мела, чтобы снизить объем данных, который должен быть обработан нейросетью (мел, от слова «мелодия», - психофизическая (субъективная) единица высоты звука [13]). Шкала мела выбрана вместо линейной шкалы из-за ее связи с человеческим восприятием и диапазонами частот инструментов.

Чтобы создать спектрограмму, сигнал конвертируется в моно, его дискретизация понижается до 11025 Гц, после чего используются полуперекрывающиеся окна из 1024 отсчетов [14]. Это эквивалентно частоте кадров 21,5 Гц, что (согласно теореме отсчетов) достаточно для представления темпа до 646 bpm. Каждое окно преобразуется в 40-полосный спектр в шкале мел, охватывающий диапазон от 20 до 5000 Гц. В качестве длины спектрограммы выбрано 256 кадров, что примерно равняется 11,9 с.

1.6.2 Архитектура сети

Архитектура рассматриваемой сети представлена на рис. 1.5.

Сначала входные данные обрабатываются тремя сверточными слоями, каждый из которых состоит из 16 фильтров размера 1х5. С помощью этих фильтров сопоставляется ритмическая структура сигнала.

После этого идут четыре модуля с несколькими фильтрами. Каждый из модулей состоит из среднего слоя пулинга («avg pooling»), шести параллельных сверточных слоев с фильтрами разных размеров (от 1х32 до 1х256), слоя конкатенации и т. н. «узкого» («bottle-neck») слоя, предназначенного для уменьшения размерности. С помощью этих модулей достигаются две цели:

- 1) Пулинг по оси частот для суммирования диапазонов мел.
- 2) Сопоставление сигнала с различными фильтрами, способными обнаруживать длительные временные зависимости.

Рис. 1.5 – Схема архитектуры нейросети

Чтобы классифицировать свойства, полученные из сверточных слоев, добавляются два полносвязных слоя (по 64 единицы каждый), за которыми следует выходной слой с 256 единицами. Выходной слой использует softmax в качестве функции активации, а все остальные слои используют ELU [15]. Каждому сверточному или полносвязному слою предшествует пакетная нормализация [16]. Первому полносвязному слою также предшествует слой отсева с

p = 0, 5 («dropout») для противодействия переобучению.

Всего сеть имеет 2921042 обучаемых параметра.

В результате выбирается один из 256 вариантов темпа от 30 до 285 bpm.

Таким образом, сверточные нейросети позволяют определять темп с достаточно высокой точностью (процент правильных оценок с допустимой погрешностью в 4%) (до 92% на основе комбинированной выборки, состоящей из аудиофайлов различных жанров с темпом от 44 до 216 bpm [14]). Также данный метод можно использовать и при определении глобального темпа, не только для фрагментов. Но он по-прежнему не позволяет определить переменный темп, а также не предназначен для определения ритма. Помимо этого нейросетевые методы имеют такие недостатки, как необходимость обучающих датасетов больших объемов, зависимость от исходных данных и долгое время обучения.

1.7 Сравнение методов

По результатам рассмотрения перечисленных выше методов была составлена таблица 1.1.

Как видно из таблицы, ни один метод в своем изначальном варианте не предполагает определение переменного темпа и ритма. Однако метод скрытых марковских моделей при небольшой модификации может позволить определить переменный темп и ритм [9].

Также стоит заметить, что все методы, кроме ДВП, содержат обучаемые параметры. В скрытых марковских моделях – это множество $\{a_{ij}\}$, а в байесовском иерархическом моделировании – множество $\{\pi_{kk'}\}$. В обоих методах обучение происходит с помощью статистической оценки. Размеры датасетов в таблице были указаны исходя из данных, использовавшихся для обучения соответствующих моделей в исследованиях.

Таблица 1.1 – Сравнение рассмотренных методов

Метод	Точность ре-	Переменный	Формат	Размер ис-
	зультатов	темп и ритм	входного	пользовавше-
			аудиофайла	гося датасета
				(кол-во
				аудиофайлов)
ДВП	Примерно	Не определя-	Нет ограни-	Обучение не
	65% (13 вер-	ются	чений	требуется
	ных из 20) [6]			
Скрытые	Примерно	Могут опре-	MIDI	88 [9]
марковские	80% (при	деляться при		
модели	допустимой	модификации		
	погрешности	метода		
	4%)			
Байес	Примерно	Не определя-	Нет ограни-	100 [12]
	82%	ются	чений	
Сверточная	До 92%	Не определя-	Нет ограни-	8596 [14]
нейросеть		ются	чений	

Выводы

В этом разделе была проанализирована предметная область и сформулирована проблема. А также была проведена классификация и сравнение основных существующих методов решения поставленной задачи.

Таким образом, необходимо разработать метод определения переменного ритма и переменного темпа музыки на основе байесовского иерархического моделирования. Для этого требуется составить модели, которые будут использовать статистические данные о музыке, такие как темп и тактовый размер. Модель для определения темпа должна также учитывать жанр анализируемой му-

зыки. Составленные модели должны быть обучены на наборе данных, включающих в том числе различные жанры [17]. После обучения моделей, они должны быть протестированы на новых данных, чтобы оценить их точность и эффективность.

Входные данные:

- аудиофайл;
- жанр музыки (строка).

Выходные данные:

- набор темпов (целые числа, в BPM);
- набор тактовых размеров (обыкновенные дроби в формате «a/b»).

Оба набора выходных данных должны сопровождаться временем, соответствующим каждому темпу или размеру.

Ограничения:

- загружаемые аудиофайлы должны быть в формате mp3;
- знаменатель тактового размера принимается равным 4.

Рис. 1.6 – IDEF0 нулевого уровня для поставленной задачи

2 Конструкторский раздел

2.1 Определение переменного темпа

На рисунках 2.7 – 2.10 приведены IDEF0-диаграммы для алгоритма определения переменного темпа музыки.

Рис. 2.7 – IDEF0 нулевого уровня

Для адаптации используемого метода к определению переменного темпа музыки анализируемый аудиофайл разделяется на равные фрагменты. Опытным путем было выявлено, что оптимальной длиной фрагментов является 5 секунд. Если взять более короткие фрагменты, то методу начинает не хватать данных для определения темпа из-за слишком маленькой длины аудио. При этом если разделять на более крупные фрагменты, то увеличивается риск пропуска изменений темпа.

При реализации байесовской иерархической модели в качестве априорного распределения темпа анализируемой музыки было выбрано равномерное распределение с границами от минимального возможного темпа до максимального. Границы темпа выбираются на основе указанного жанра музыки. Такое

Рис. 2.8 – Определение переменного темпа

распределение было выбрано, так как предполагается, что все темпы в указанных пределах равновероятны для указанного аудиофайла.

Коэффициенты жанров необходимы для корректировки получаемой оценки темпа в зависимости от жанра музыки. Если коэффициент отрицательный, то темп должен быть уменьшен, если положительный — увеличен. В качестве априорного распределения коэффициентов для всех жанров было выбрано нормальное распределение с математическим ожиданием, равным 0, и дисперсией, равной 1.

На основе информации из датасета было выявлено, что распределение темпов различной музыки близко к нормальному. Поэтому в качестве распределения функции правдоподобия темпа было выбрано нормальное распределение. Математическое ожидание для каждого жанра для этого распределения рассчитывается на основе мат. ожидания и дисперсии априорного распределения темпа и априорных распределений коэффициентов жанров по формуле:

$$\mu = \mu_{\text{prior}} + \text{coef} * \sigma_{\text{prior}}. \tag{13}$$

В качестве дисперсии при этом используется дисперсия априорного распределения темпа.

Рис. 2.9 – Байесовское моделирование

Важно заметить, что байесовская модель считается до разделения аудиофайла на фрагменты. В результате получаются апостериорные распределения темпа и коэффициентов жанров.

После моделирования для каждого фрагмента аудиофайла рассчитывается примерный диапазон возможных темпов. Этот диапазон «накладывается» на полученное распределение темпа и получается наиболее вероятный темп (максимум плотности распределения) в данном диапазоне (tempo) (рис. 2.11).

После этого среди апостериорных распределений коэффициентов жанров находится распределение для указанного жанра. В этом распределении ищется наиболее вероятный коэффициент (coef). После чего применяется формула:

$$result = tempo + coef * \sigma_{prior}.$$
 (14)

Рис. 2.10 – Применение результатов к фрагментам аудио

Рис. 2.11 — Нахождение наиболее вероятного темпа

2.2 Определение переменного тактового размера

На рисунках 2.12 – 2.15 приведены IDEF0-диаграммы для алгоритма определения переменного ритма (тактового размера) музыки.

Рис. 2.12 – IDEF0 нулевого уровня

По аналогии с определением темпа в качестве априорного распределения тактового размера в байесовской модели выбрано равномерное распределение. А в качестве распределения функции правдоподобия размера — нормальное распределение с математическим ожиданием, равным мат. ожиданию априорного, и дисперсией, также равной априорной.

Рис. 2.13 – Определение переменного ритма

Для задания априорного распределения необходимо определить границы размера. Для этого во всем аудиофайле находятся пики амплитуды и последовательность «ударов» (на основе темпа) во временной области. После чего эти две последовательности «накладываются» друг на друга и получается последовательность сильных «ударов» (долей) (предположительные начала тактов). Количество «ударов» между сильными долями и есть тактовый размер. Таким образом определяются примерные границы размеров рассматриваемого аудиофайла.

Остальное аналогично определению темпа. Считается модель. Далее аудиофайл разделяется на фрагменты по 5 секунд, для каждого фрагмента рассчитывается диапазон размеров по принципу, описанному выше. После чего полученное в результате моделирования апостериорное распределение размеров применяется к данному диапазону, и ищется максимум функции плотности, т. е. наиболее вероятный тактовый размер фрагмента.

Рис. 2.14 – Определение границ размера

Рис. 2.15 – Байесовское моделирование

2.3 Структуры данных

Результаты работы программы будут представлены в виде словарей, где в качестве ключей — время от начала аудиофайла в секундах, а в качестве значений — темпы или тактовые размеры соответственно.

Все распределения, значения из датасета, последовательности «ударов» и пики амплитуды будут представлены в виде одномерных массивов. Массивы «ударов» и пиков амплитуды представляют собой последовательность секунд от начала аудиозаписи, в которые происходят «удары» или пики амплитуды соответственно.

2.4 Структура ПО

На рисунке 2.16 показана структура приложения, из которой наглядно видно, как происходит взаимодействие компонентов.

Рис. 2.16 – Структура приложения

Модуль оценки темпа и ритма включает в себя применение результатов байесовского моделирования к фрагментам заданного аудиофайла.

Выводы

На основе теоретических данных, полученных в аналитическом разделе, был разработан метод определения переменного темпа и ритма музыки. Также были приведены IDEF0-диаграммы, схема структуры приложения и описаны основные структуры данных.

3 Технологический раздел

3.1 Выбор средств программной реализации

В таблице 3.2 произведено сравнение наиболее популярных СУБД, которые могут быть использованы для реализации хранения данных в разрабатываемом программном продукте.

Таблица 3.2 – Особенности различных СУБД

Особен-	MySQL	PostgreSQL	MS SQL	Oracle
ность			Server	Database
Open source	GNU GPL c от-	Открытый	Коммерче-	Коммерче-
	крытым исход-	исходный	ская	ская
	ным кодом	код		
Соответ-	Частичное	Полное	Полное	Полное
ствие ACID	(зависит от			
	версии) [?]			
NoSQL /	Поддержка	JSON,	JSON,	JSON,
JSON	некоторых	NoSQL	NoSQL	NoSQL
	функций			
Поддержка	Да	Нет	Да	Да
MERGE				

Таким образом, для реализации проекта в качестве СУБД будет использоваться PostgreSQL, так как он является свободно распространяемым и удовлетворяет всем необходимым требованиям в рамках поставленной задачи.

3.2 Детали реализации

В приложениях A- B представлен пример реализации frontend части приложения.

В приложении В представлена реализация соединения с базой данных в соответствии с ролевой моделью.

Помимо этого, на уровне базы данных была реализована процедура, необходимая для удаления реп. базы (приложения $\Gamma - \mathcal{I}$).

3.3 Пользовательский интерфейс

На рисунках ниже представлен основной интерфейс приложения.

TODO

3.4 Тестирование приложения

Выводы

В данном разделе были выбраны СУБД, язык программирования и среда разработки.

В качестве СУБД выбрана PostgreSQL, так как она:

- свободно распространяемая;
- полностью соответствует требованиям ACID;
- поддерживает все необходимые в рамках поставленной задачи функции (такие, как вложенные селекты, транзакции, триггеры, процедуры).

В качестве языка программирования был выбран Python, так как он:

- поддерживает работу с PostgreSQL;
- объектно-ориентированный;
- обладает необходимыми расширениями для работы с графическим интерфейсом.

В качестве среды разработки был выбран РуCharm, так как он:

- имеет свободно распространяемую версию;
- содержит множество удобств для написания и отладки кода, а также для работы с СУБД.

Помимо этого, в данном разделе был разработан и протестирован исходный код программы. Программа тестировалась в соответствии с этапами, приведёнными в разделе 2.4. Все тесты были успешно пройдены.

ЗАКЛЮЧЕНИЕ

TODO

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Benetos E. / Automatic music transcription: challenges and future directions
 / Benetos E., Dixon S., Giannoulis D., Kirchhoff H., Klapuri A. // Journal of
 Intelligent Information Systems. 2013. C. 407-434.
- 2. Музыкальный словарь Гроува. // Mосква. 2007. C. 858.
- 3. Чехович Д. О. Ритм музыкальный // Большая российская энциклопедия. Москва. – 2015. – Том 28. – С. 541.
- 4. Cemgil A. T., Desain P., Kappen B. Rhythm quantization for transcription // Computer Music Journal. 2000. C. 60-76.
- 5. Polikar R. The wavelet tutorial // 2-е изд. -2001.-67 с.
- 6. Tzanetakis G., Essl G., Cook P. Audio analysis using the Discrete Wavelet Transform. 2001.
- 7. Биккенин Р. Р., Чесноков М. Н. Теория электрической связи. -2010.-329 с.
- 8. Pleshkova S., Panchev K., Bekyarski A. Development of a MIDI synthesizer for test signals to a wireless acoustic sensor network. 2020.
- 9. Takeda H., Saito N., Otsuki T. Hidden Markov model for automatic transcription of MIDI signals. 2002. C. 428-431.
- 10. Kübler R. Bayesian Hierarchical Modeling in PyMC3. 2021.
- 11. Rouder J. N., Lu J. An introduction to Bayesian hierarchical models with an application in the theory of signal detection // Psychonomic Bulletin & Review. 2005. C. 573-604.

- 12. Nakamura E., Itoyama K., Yoshii K. Rhythm transcription of MIDI performances based on Hierarchical Bayesian Modelling of repetition and modification of musical note patterns. 2016.
- 13. Stevens S.S., Volkmann J., Newman E.B. A scale for the measurement of the psychological magnitude pitch // Acoustical Society of America. 1937. C. 188.
- 14. Schreiber H., Muller M. A single-step approach to musical tempo estimation using a convolutional neural network // 2018. C. 98-105.
- 15. Clevert D.A., Unterthiner T., Hochreiter S. Fast and accurate deep network learning by exponential linear units (elus). 2015.
- 16. Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015.
- 17. Spotify Tracks Dataset [Электронный ресурс]. Режим доступа: https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset (15.05.2023).