Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

1 Febbraio 2021 - 9:00 ESAME ONLINE

1.

- a) Scrivere la function Matlab Usolve.m che implementa il metodo delle sostituzioni all'indietro per risolvere un sistema lineare con matrice dei coefficienti triangolare superiore.

 Punti: 2.5
- b) Scrivere la function Matlab metodoQR.m che, presi in input due vettori contenenti rispettivamente le ascisse e le ordinate dei punti da approssimare ai minimi quadrati, determini i coefficienti del polinomio di approssimazione di grado n risolvendo un opportuno sistema lineare tramite chiamata della function Usolve.

 Punti: 5.5

Si considerino i punti del piano di coordinate

x	y
1900	76
1910	92
1920	106
1930	123
1940	132
1950	151
1960	179
1970	203
1980	226
1990	249
2000	281
2010	305

Scrivere lo script Matlab es1.m in cui:

c) Si utilizzi la function Matlab metodoQR per determinare i polinomi di approssimazione ai minimi quadrati di grado 1, 2 e 3 dei dati assegnati in tabella, e si rappresentino in uno stesso grafico i dati (x_i, y_i) , $i = 1, \dots, 12$ e i tre polinomi determinati.

Punti: 4.5

d) Quale tra le tre approssimazioni ottenute al punto precedente risulta migliore? Confrontare gli errori

$$E_j = \sum_{i=1}^{12} (f_j(x_i) - y_i)^2, \quad j = 1, 2, 3$$

dove f_1 , f_2 e f_3 denotano i polinomi di approssimazione di grado 1, 2 e 3 determinati al punto c).

Punti: 3.5

Totale: 16