

Click-through prediction with decision tree

2021.02.24 Data eXperience Lab, Winter Seminar 2018312824 Ryu Chaeeun

OUTLINE

1. Implementation of Decision Tree (Concept)

3. Click-Through prediction with decision tree classifier

2. Random Forest, Bagging, Boosting

Implementation of Decision Tree (Concept)

RandomForest, Boosting

- Bagging: Averaging Trees
- Random Forests: Cleverer Averaging of Trees
- Boosting: Cleverest Averaging of Trees

Ensemble

Ensemble: ML technique that **combines several base models** in order to produce one optimal predictive model. The main principle behind the ensemble model is that **a group of weak learners** come together to **form a strong learner.**

Bagging, Random Forest, Boosting are some of Ensemble methods.

Multiple classifiers

Recap: Properties of Trees

Properties of Trees

- <Advantages>
- O. Fast to train
- O. Small trees are easy to interpret
- O. Simple to understand
- O. robust to **noisy data** (outliers are prone to get pruned)
- <Disadvantages>
- X. large trees are hard to interpret
- X. Often, prediction performance is poor(high variance -> prone to **overfitting**)

Bagging (Bootstrap Aggregation)

- 1. Draw different sets of training samples randomly with replacement
- 2. Each set is used to train an individual classifier
- 3. Result of the classifiers are combined -> majority vote to make a final decision

Bagging Advantage

- High expressiveness: by using full trees, able to approximate complex functions and decision boundaries.

Bagging improves prediction accuracy at the expense of interpretability.

Bagging Advantage

- High expressiveness: by using full trees, able to approximate complex functions and decision boundaries.

Bagging Drawback

- When one or more features are strong indicators, each tree's output becomes highly correlated.
 - -> Aggregating multiple trees will **not make much difference** compared to one tree classifier.

Random Forest

Random Forest(Feature-based Bagging)

- : Bagging, but considers random subset of features when searching for best splitting point at each node
- -> at each tree split, a random sample of m features is drawn, and only those m features are considered for splitting.

Features: height, weight, race, gender

Random Forest

How to calculate performance of RF: Out-of-bag error rate

: the error calculated using the bootstrap sample left out.

Cease training RF when out-of-bag error stabilizes

Boosting

Boost

- Iteratively add simple weak classifiers(slightly better than random) to improve classification performance
- Assign each training example equal weights
- Train a weak classifier ->reweight (higher weight on mistakes, lower weight on correct ones)->repeat
- Add weak classifiers to final strong classifier(when adding, weighted in a way that is related to the weak learners' accuracy.

Python Libraries: LightGBM, XGBoost, AdaBoost

Click-through prediction with decision tree classifier

Bagging vs. Boosting

Bagging	Boosting
The simplest way of combining predictions that	A way of combining predictions that
belong to the same type.	belong to the different types.
Aim to decrease variance, not bias.	Aim to decrease bias, not variance.
Each model receives equal weight.	Models are weighted according to their
	performance.
Each model is built independently.	New models are influenced
	by the performance of previously built models.
Different training data subsets are randomly drawn with	Every new subset contains the elements that were
replacement from the entire training dataset.	misclassified by previous models.
Bagging tries to solve the over-fitting problem.	Boosting tries to reduce bias.
If the classifier is unstable (high variance), then apply	If the classifier is stable and simple (high bias) the
bagging.	apply boosting.
Example: The Random forest model uses Bagging.	Example: The AdaBoost uses Boosting techniques