MA 361 HOMEWORK-5

03.09.2024

Instruction: The homework is due on 11:30 am, 10.09.2024. You can either submit a hard copy in the beginning of the class or send a soft copy to sudeshnab@iisc.ac.in. Only submit the blue coloured problems for grading. No submission after the deadline will be accepted.

Problem 1. (1) (5 points): If X is a random variable distributed as N(0,1) then show that $\mathbf{E}(e^{\theta X}) = \exp\left(\frac{\theta^2}{2}\right)$.

(2) (5 points): Use the above to show that for all t > 0, $\mathbf{P}(X \ge t) \le \exp\left(-\frac{t^2}{2}\right)$.

Problem 2. (10 points): If $\mathbf{E}[|X|] < \infty$, then $\mathbf{E}[|X|\mathbf{1}_{\{|X|>A\}}] \to 0$ as $A \to \infty$.

Problem 3. Show that if X is a non-negative integrable random variable then

$$\lim_{t \to \infty} t \mathbf{P}(X \ge t) \to 0.$$

(Remark: Note that this is stronger than Markov's inequality. Markov's inequality just gives an upper bound of the left hand side.)

Problem 4. Suppose (X,Y) has the standard bivariate normal distribution with density $f(x,y) = (2\pi)^{-1} \exp\{-\frac{x^2+y^2}{2}\}$. Find the density of X/Y.

Problem 5. For any integrable random variable X having CDF F, show that

$$\mathbf{E}[X] = \int_0^\infty (1 - F(x) - F(-x)) dx.$$

Problem 6. Let X be a non-negative random variable. If $\mathbf{E}[X]$ is finite, show that $\sum_{n=1}^{\infty} \mathbf{P}\{X \ge an\}$ is finite for any a > 0. Conversely, if $\sum_{n=1}^{\infty} \mathbf{P}\{X \ge an\}$ is finite for some a > 0, show that $\mathbf{E}[X]$ is finite.

Problem 7. Let $\mu_n, \mu \in \mathcal{P}(\mathbb{R}^n)$. Show that $\mu_n \stackrel{d}{\to} \mu$ if and only if $\int f d\mu_n \to \int f d\mu$ for every $f \in C_b(\mathbb{R})$. [Hint: for the non-trivial direction approximate the indicator functions $1_{\{X_n \leq x\}}$ both from above and below by continuous functions which are bounded and piece-wise linear.]

Problem 8. (1) If f_n be measurable functions such that $f_n \leq 1$ for all n the prove that

$$\limsup_{n\to\infty} \int f_n \le \int \limsup_{n\to\infty} f_n.$$

(2) Let $\mu_n, \mu \in \mathcal{P}(\mathbb{R}^n)$ having densities f_n, f with respect to Lebesgue measure. If $f_n \to f$ a.e. (w.r.t. Lebesgue measure), show that $\mu_n(A) \stackrel{d}{\to} \mu(A)$ for all Borel set A.

Problem 9 (Moment matrices). Let $\mu \in \mathcal{P}(\mathbb{R})$ and let $\alpha_k = \int x^k d\mu(x)$ (assume that all moments exist). Then, for any $n \geq 1$, show that the matrix $(\alpha_{i+j})_{0 \leq i,j \leq n}$ is non-negative definite. [Suggestion: First solve n = 1].

Problem 10. Let X be a non-negative random variable. If $\mathbf{E}[X] \leq 1$, then show that $\mathbf{E}[X^{-1}] \geq 1$.