Algoritmos y Programación Paralela

Dra. Ing. Ana Cori Morón

EL PROBLEMA DEL PRODUCTOR CONSUMIDOR

• Es un problema común en sistemas operativos, un proceso productor genera información que es utilizada por un proceso consumidor

Figura 4.1. Esquema de trabajo del productor y el consumidor.

PROCESOS PRODUCTOR-CONSUMIDOR

```
process productor
                                                 process consumidor
         begin
                                                   begin
          repeat
                                                    repeat
                                                       protocolo de entrada;
             producir elemento;
             protocolo de entrada;
                                                       extraer elemento en el buffer;
             insertar elemento en el buffer;
                                                       protocolo de salida;
Sección crítica
             protocolo de salida;
                                                      consumir elemento;
                                                    forever
          forever
                                                   end;
         end;
```

Sección crítica

Qué variables utilizaremos

- Para dar solución a este problema usaremos los siguientes semáforos:
 - mutex: permitirá el acceso en exclusión mutua al buffer.
 - ocupados: permitirá conocer la cantidad de posiciones ocupadas. Se inicializará a 0.
 - libres: permitirá conocer la cantidad de posiciones vacías en el buffer. Se inicializará a n.
 - n: tamaño del buffer.

Consideraciones

- Bloquear al proceso consumidor cuando no haya elementos para consumir (es decir cuando el buffer esté vacío, o cuando el semáforo ocupados = 0)
- Bloquear al proceso productor cuando no haya espacio en el buffer para colocar los elementos producidos (es decir cuando el buffer esté lleno, o cuando el semáforo libres = 0)

Para dar solución a este problema usaremos los siguientes semáforos:

mutex: permitirá el acceso en exclusión mutua al buffer.

ocupados: permitirá conocer la cantidad de posiciones ocupadas. Se inicializará a 0.

libres: permitirá conocer la cantidad de posiciones vacías en el buffer. Se inicializará a n.

n: tamaño del buffer.

```
Process productor
begin
 repeat
   producir elemento;
   wait(libres);
   wait(mutex);
   cola[final]=elemento;
   final=(final+1) mod n
   signal(mutex);
   signal(ocupados);
 forever
end;
```

```
process consumidor
begin
 repeat
   wait(ocupados);
   wait(mutex);
   elemento=cola[frente];
   frente=(frente+1) mod n
   signal(mutex);
   signal(libres);
   consumir elemento;
 forever
end;
```

Inicializar:
Initial(mutex,1)
Initial(ocupados,0)
Initial(libres,n)

Diagrama de flujo

Generar un numero aleatorio random (10)

Inicializar:
Initial(mutex,1)
Initial(ocupados,0)
Initial(libres,n)

EJECUCIÓN

Producir elemento puede ser generar un numero aleatorio entre 0 y 10

Suponiendo que inicia la ejecución el proceso consumidor

n=3

Tiempo	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
libres	3	3	3	2	2	2	2	2	2						
mutex	1	1	1	1	0	0	0	1	1						
ocupad os	0	Blq	Dblq												
cola[final]						7	7	7	7						
final	3	3	3	3	3	3	1	0	0						
frente	0	0	0	0	0	0	0	0	0						
elemento			7	7	7	7	7	7	7						
Pprod			1	2	3	4	5	6	7						
Pcons		1								2					

EJECUCIÓN

Suponiendo que inicia la ejecución el proceso productor

Producir elemento puede ser generar un numero aleatorio entre 0 y 10

Tiempo	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
libres	3	3	2	2	2	2	2	2	2	2	2	2	1	1	
mutex	1	1	1	0	0	0	1	1	0	0	0	1	1	1	
ocupad	0	Blq	Blq	Blq	Bl	Blq	Blq	Dbl	0	0	0	0	0	0	
os					q										
cola[final]					7	7	7	7	7						
final	2	2	2	2	2	0	0	0	0						
frente	0	0	0	0	0	0	0	0	0						
elemento	7					7	7	7	7						
Pprod	1		2	3	4	5	6	7							
Pcons		1							2						

n=3

EJERCICIOS

 Implementar para varios procesos productores y varios procesos consumidores con variables tipo proceso

https://www.youtube.com/watch?v=pE8R5zypLLY