Politecnico di Bari

Complementi di Analisi Matematica

Laurea Ingegneria Informatica e Automazione

Laurea Ingegneria Elettronica e Telecomunicazioni

A.A. 2015/2016

Appello 16 giugno 2016

Traccia A

Cognome	Nome	Nº Matricola
Programma:	precedente AA 2014/2015 \square	da AA 2014/2015 in poi \square
1) Usando la trasformata di Laplace, determinare il segnale che risolve		
	$\begin{cases} y'' + 2y' + y = t^2, \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$	t > 0

Per gli anni accademici precedenti al 2014/2015, si sostituisca l'esercizio 1) con il seguente:

1) Studiare convergenza puntuale e uniforme della serie di potenze:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n e^{-n}}{n+1} (x-2)^n.$$

7 pts.

7 pts.

2) Sia f la funzione data da

$$f(z) = e^{\bar{z}}.$$

Determinare l'immagine mediante f dell'insieme $A=\{z\in\mathbb{C}: \mathrm{Im}z=\frac{\pi}{2}\}$ e disegnarla sul piano.

4 pts.

3) Enunciare la I Formula di rappresentazione di Cauchy.

Calcolare poi

$$\int_{C^+(0,2)} \frac{(z-i)(z-2i)(z-3i)}{(z+i)^4} dz,$$

dove $C^+(0,2)$ è la circonferenza di centro 0 e raggio 2 orientata in senso antiorario.

7 pts.

4) Dare la definizione di residuo.

Calcolare poi il residuo in 0 della funzione $f(z)=ze^{-i/(3z)}$.

6 pts.

5) Enunciare e dimostrare il I Teorema dei residui.

5 pts.

6) Usare l'identità di Parseval con la funzione f(x) = x - 1, $x \in [1, 3)$, estesa per periodicità con periodo 2 su \mathbb{R} , per dimostrare che $\sum_{k=1}^{+\infty} \frac{1}{k^2 \pi^2} = \frac{1}{6}$.