5

6

8

9

10

11

12

13

2

1

2

What is claimed is:

1.	A method for	providing	efficient state	transfer,	comprising:
----	--------------	-----------	-----------------	-----------	-------------

2	establishing a connection between a mobile node and a first network
3	element, wherein the mobile node has an associated reference state that is
4	updated in response to state changes sent by the mobile node;

- establishing a connection between the first network element and a second network element in response to a request from the mobile node;
- forwarding messages from the first network element to the mobile node via the second network element;
- sending an acknowledgment message from the first network element to the mobile node, wherein the acknowledgment message includes the updated reference state; and
- establishing a connection between the mobile node and the second network element, in accordance with the updated reference state.
- 2. The method of claim 1, wherein the acknowledgment message further comprises a header compression destination option.
- 3. A method for providing efficient state transfer in a mobile network, comprising:
- sending a router solicitation message from a mobile node to a next router;
- sending a router advertisement message from the next router to the mobile node in response to the router solicitation message, wherein the router advertisement message includes a header compression capability option;

6.

2

network, comprising:

6	sending a binding update message from the mobile node to a previous
7	router, wherein the binding update message includes a routing header
8	pointing to the next router and at least one destination option;
9	processing the binding update message in accordance with the routing
10	header and the destination option; and
11	sending a binding acknowledgment message from the previous router
12	to the mobile node, wherein the binding acknowledgment message includes a
13	routing header pointing to the next router.
1	4. A system for providing efficient state transfer, comprising:
2	means for establishing a connection between a mobile node and a first
3	network element, wherein the mobile node has an associated reference state
4	that is updated in response to state changes sent by the mobile node;
5	means for establishing a connection between the first network element
6	and a second network element in response to a request from the mobile node
7	means for forwarding messages from the first network element to the
8	mobile node via the second network element;
9	means for sending an acknowledgment message from the first network
0	element to the mobile node, wherein the acknowledgment message includes
1	the updated reference state; and
2	means for establishing a connection between the mobile node and the
3	second network element, in accordance with the updated reference state.
1	5. The method of claim 4, wherein the acknowledgment message
2	further comprises a header compression destination option.

A system for providing efficient state transfer in a mobile

to a request from the mobile node;

10

1	means for sending a router solicitation message from a mobile node to
2	a next router;
3	means for sending a router advertisement message from the next
4	router to the mobile node in response to the router solicitation message,
5	wherein the router advertisement message includes a header compression
6	capability option;
7	means for sending a binding update message from the mobile node to
8	a previous router, wherein the binding update message includes a routing
9	header pointing to the next router and at least one destination option;
10	means for processing the binding update message in accordance with
11	the routing header and the destination option; and
12	means for sending a binding acknowledgment message from the
13	previous router to the mobile node, wherein the binding acknowledgment
14	message includes a routing header pointing to the next router.
1	7. A computer program product comprising a computer usable
2	medium having computer readable code embodied thereon for providing
3	efficient state transfer, the computer program product comprising:
4	computer readable program code devices for establishing a connection
5	between a mobile node and a first network element, wherein the mobile node
· 6	has an associated reference state that is updated in response to state
7	changes sent by the mobile node;
8	computer readable program code devices for establishing a connection
9	between the first network element and a second network element in response

9

10

least one destination option;

11	computer readable program code devices for forwarding messages			
12	from the first network element to the mobile node via the second network			
13	element;			
14	computer readable program code devices for sending an			
15	acknowledgment message from the first network element to the mobile node,			
16	wherein the acknowledgment message includes the updated reference state;			
17	and			
18	computer readable program code devices for establishing a connection			
19	between the mobile node and the second network element, in accordance			
20	with the updated reference state.			
1	8. The computer program product of claim 7, wherein the			
2	acknowledgment message further comprises a header compression			
3	destination option.			
1	9. A computer program product comprising a computer usable			
2	medium having computer readable code embodied thereon for providing			
3	efficient state transfer, the computer program product comprising:			
1	computer readable program code devices for sending a router			
2	solicitation message from a mobile node to a next router;			
3	computer readable program code devices for sending a router			
4	advertisement message from the next router to the mobile node in response			
5	to the router solicitation message, wherein the router advertisement message			
6	includes a header compression capability option;			
7	computer readable program code devices for sending a binding update			
8	message from the mobile node to a previous router, wherein the binding			

update message includes a routing header pointing to the next router and at

- 11 computer readable program code devices for processing the binding 12 update message in accordance with the routing header and the destination 13 option; and
- computer readable program code devices for sending a binding acknowledgment message from the previous router to the mobile node, wherein the binding acknowledgment message includes a routing header pointing to the next router.