Homework 1

Walker Bagley

January 30, 2024

1. Prove or disprove that $\log(x^2+1)$ and $\log(x)$ are of the same order (Θ) .

Proof. Assume $\log(x^2+1)$ and $\log(x)$ are of the same order. Then $\log(x^2+1) \in O(\log(x))$ and $\log(x) \in O(\log(x^2+1))$.

To show $\log(x^2+1)\in O(\log(x))$, we can start by rewriting $\log(x^2+1)=\log(x^2(1+\frac{1}{x^2}))$. And since $\frac{1}{x^2}\leq 1$ for $x\geq 1$, we know that $1+\frac{1}{x^2}\leq 2$. So we have that $\log(x^2+1)\leq \log(2x^2)=\log(x^2)+\log(2)=2\log(x)+\log(2)$. And for $x\geq 2$, $\log(2)\leq \log(x)$, so $\log(x^2+1)\leq 2\log(x)+\log(2)\leq 2\log(x)+\log(x)=3\log(x)$ in this domain. So for $x\geq 2$ and c=3 we have that $\log(x^2+1)\in O(\log(x))$.

To show $\log(x) \in O(\log(x^2+1))$, we simply follow the idea that $\log(n) \leq \log(m)$ when $n \leq m$ since log is always increasing. Considering x and x^2+1 , we know that $x \leq x^2+1$ for $x \in \mathbb{R}$. So, $\log(x) \leq \log(x^2+1)$ for all x. Taking c=1 leaves $\log(x) \in O(\log(x^2+1))$.

- $\begin{aligned} \text{2.} &\quad \text{a. } \lg^k(n) \in O(n^\epsilon), \, \lg^k(n) \not\in \Omega(n^\epsilon), \, \lg^k(n) \not\in \Theta(n^\epsilon) \\ &\quad \text{b. } n^k \in O(c^n), \, n^k \not\in \Omega(c^n), \, n^k \not\in \Theta(c^n) \\ &\quad \text{f. } \lg(n!) \in O(\lg(n^n)), \, \lg(n!) \not\in \Omega(\lg(n^n)), \, \lg(n!) \not\in \Theta(\lg(n^n)) \end{aligned}$
- 3. (n+1)!: This is equivalent to (n+1)n! n!: Factorials grow faster than exponents $2^{2^{n+1}}$: This is equivalent to $2^{2\cdot 2^n}=4^{2^n}$ 2^{2^n} $n\cdot 2^n$: Multiply 2^n by an increasing amount 2^n $(3/2)^n$: $2^n=(4/3)^n\cdot (3/2)^n$ n^3 n^2 $n\lg(n)$ $\lg(n!)$ $(\lg(n))^{\lg(n)}, \, n^{\lg(\lg(n))}$: The two logarithms causes these to grow much slower n $(\lg(n))!$ $4^{\lg(n)}$ $2^{\lg(n)}$ $1^{g^2}(n)$ $n^{1/\lg(n)}$

4. Closed form solution for Tower of Hanoi problem with forwards substitution.

$$H_{i} = \begin{cases} 2H_{i-1} + 1 & i > 1\\ 1 & i = 1 \end{cases}$$

$$H_{2} = 2 * H_{1} + 1 = 2 * 1 + 1 = 2^{1} + 2^{0}$$

$$H_{3} = 2 * H_{2} + 1 = 2(2^{1} + 2^{0}) + 2^{0} = 2^{2} + 2^{1} + 2^{0}$$

$$H_{4} = 2 * H_{3} + 1 = 2(2^{2} + 2^{1} + 2^{0}) + 2^{0} = 2^{3} + 2^{2} + 2^{1} + 2^{0}$$

$$H_{n} = \sum_{i=0}^{n-1} 2^{i} = \frac{1 * 2^{n-1+1} - 1}{2 - 1} = \frac{2^{n} - 1}{1}$$

$$= 2^{n} - 1$$

5. Prove for a positive integer n that $f_0f_1 + f_1f_2 + \ldots + f_{2n-1}f_{2n} = (f_{2n})^2$

Base case:
$$n = 1$$

 $f_0 f_1 + f_1 f_2 = 0 * 1 + 1 * 1 = 1 = 1^2 = (f_2)^2$

Inductive Step: assume that
$$f_0 f_1 + f_1 f_2 + \ldots + f_{2n-1} f_{2n} = (f_{2n})^2$$

$$f_0 f_1 + \ldots + f_{2n-1} f_{2n} + f_{2n} f_{2n+1} + f_{2n+1} f_{2n+2} = (f_0 f_1 + \ldots + f_{2n-1} f_{2n}) + f_{2n} f_{2n+1} + f_{2n+1} f_{2n+2}$$

$$= (f_{2n})^2 + f_{2n} f_{2n+1} + f_{2n+1} f_{2n+2}$$

$$= f_{2n} (f_{2n} + f_{2n+1}) + f_{2n+1} f_{2n+2}$$

$$= f_{2n} f_{2n+2} + f_{2n+1} f_{2n+2}$$

$$= f_{2n+2} f_{2n+2}$$

$$= (f_{2n+2})^2$$