

Ciências Básicas para o Desenvolvimento Sustentável

IX Simpósio Integrado UNIFAL-MG

16 a 20 de outubro de 2023

COBERTURA E CONECTIVIDADE EM REDES DE SENSORES SEM FIO UTILIZANDO SENSORES HETEROGÊNEOS

Augusto Vieira de Oliveira, lago Augusto de Carvalho

UNIFAL-MG, Departamento de Ciência da Computação

1. Introdução

As redes de sensores sem fio têm desempenhado um papel crucial em diversas aplicações, como monitoramento ambiental, agricultura e detecção de ameaças. No entanto, maximizar e otimizar a cobertura da rede é um problema complexo.

Nosso objetivo principal é implementar uma versão aprimorada do algoritmo de Busca Harmônica para maximizar a cobertura da rede de sensores sem fio, garantindo eficiência na instalação de sensores, minimização de custos e conectividade entre eles.

2. Trabalhos Relacionados

Nosso trabalho foi influenciado por estudos relevantes, fundamentais para o desenvolvimento da pesquisa, como o de [Alia et al., 2016], que introduziu a metaheurística de Busca Harmônica para otimizar a cobertura em redes de sensores sem fio, superando algoritmos genéticos em eficiência, além do trabalho de [Bajaj & Manju, 2014], que estendeu o problema ao maximizar a cobertura com economia de energia, apresentando a Heurística de cobertura máxima com eficiência energética.

3. O Algoritmo

Nossa pesquisa implementou uma versão aprimorada do algoritmo de Busca Harmônica, adaptado para otimizar a instalação eficiente dos sensores, minimizar custos da rede e garantir a conectividade. Esse algoritmo se baseia na memória harmônica para armazenar soluções e incorpora melhorias locais e aleatórias na geração de novas soluções. A avaliação da qualidade das soluções leva em consideração o número de sensores, a cobertura da rede e a distância entre eles. Para representar as soluções, utilizamos dois vetores: o primeiro representa as posições dos sensores, e o segundo é um vetor binário que indica a ativação dos sensores.

4. Resultados

Os resultados obtidos demonstraram uma melhora significativa na cobertura da rede de sensores sem fio em relação ao algoritmo de Busca Harmônica da literatura,

indicando que a abordagem proposta é capaz de encontrar soluções mais próximas ao ótimo para o problema de maximização da cobertura, enquanto mantém a eficiência computacional. Desse modo, ao final do trabalho, o objetivo proposto inicialmente foi cumprido. Futuros trabalhos podem explorar ainda mais essa técnica e considerar variações do problema, como a utilização de sensores heterogêneos ou um ambiente tridimensional.

RESULTADOS DE SIMULAÇÃO DOS ALGORITMOS PROPOSTOS EM RELAÇÃO AO TAMANHO DA CÉLULA VERSUS FAIXA DE DETECÇÃO

Tamanho da célula vs Alcance do sensor	IC			HS-based Deployment		
	10 X 10	10 X 5	5 X 10	10 X 10	10 X 5	5 X 10
Melhor cobertura	100%	100%	93%	100%	96%	90%
Número de sensores usados	13	48	22	15	52	21
Número de sensores disponíveis	25	100	25	25	100	25
Proporção de sensores usados	52%	48%	88%	60%	52%	84%
Média de cobertura	89%	99%	88%	93%	91%	80%
Desvio padrão da cobertura	0.0663	0.0126	0.0270	0.0888	0.0465	0.0669

5. Referências

- . ALIA, Osama Moh'd; AL-AJOURI, Alaa. Maximizing Wireless Sensor Network Coverage With Minimum Cost Using Harmony Search Algorithm. IEEE Sensors Journal, vol. 17, no. 3, pp. 882-896, 2017.
- . BAJAJ, Dimple; MANJU. Maximum coverage heuristics (MCH) for target coverage problem in Wireless Sensor Network. IEEE International Advance Computing Conference (IACC), 2014, Gurgaon, p. 300-305.

Agradecimentos

Gostaria de expressar meu agradecimento ao Professor lago Augusto por proporcionar a oportunidade de realizar esta pesquisa de iniciação científica e a FAPEMIG, financiadora da minha bolsa, por seu apoio fundamental.