לוגיקה - תרגול 4

השמות

הערה: מכאן ואילך נשמיט סוגריים 'מיותרים' מהפסוק על ידי הגדרת סדר קדימיות בין הקשרים:

- (הקשר בעל הקדימות הגבוהה ביותר) .1
 - \vee, \wedge .2
- (הקשר בעל הקדימות הנמוכה ביותר) ightarrow 3.

שימו לב: בשאלות הנוגעות לתחביר אין להשמיט סוגריים!

. השמה נקראת $v:\{p_0,p_1,p_2,\ldots\}\to \{{\rm F,T}\}$ נקראת פונקציה דוגמאות:

- $v_{\mathrm{F}}(p_i)=\mathrm{F}$ מתקיים $i\in\mathbb{N}$ מוגדרת כך שלכל v_{F} .1
- $v_{\mathrm{T}}(p_i)=\mathrm{T}$ מתקיים $i\in\mathbb{N}$ מוגדרת כך שלכל .2

<u>סימונים:</u>

- איא קבוצת כל ההשמות. Ass ●
- . כלשהו סבלת האמת של היא טבלת האמת TT_{\circ}

המוגדרת באינדוקציה: $\overline{v}: \mathrm{WFF} o \{\mathrm{F}, \mathrm{T}\}$ היא פונקציה השמה המוגדרת השמה v המוגדרת באינדוקציה:

. $\overline{v}\left(p_{i}
ight)=v\left(p_{i}
ight)$, $i\in\mathbb{N}$ בסיס: לכל

 $\alpha, \beta \in \mathrm{WFF}$ סגור: לכל

- $\overline{v}(\neg \alpha) = TT_{\neg}(\overline{v}(\alpha)) \bullet$
- $\overline{v}\left(\alpha\circ\beta\right)=TT_{\circ}\left(\overline{v}\left(\alpha\right),\overline{v}\left(\beta\right)\right)$, $\circ\in\left\{ \lor,\land,\rightarrow\right\}$ לכל

, אם α טאוטולוגיה, אם $v \models \alpha$ ונסמן α , ונסמן $v \models \alpha$ אם $\overline{v}(\alpha) = T$ אם $\alpha \in \mathrm{WFF}$. אם $v \in \mathrm{Ass}$ נסמן $\alpha \models \alpha$.

מתקיים p_i המופיע החלות הסופית: יהי פסוק α ושתי השמות v_1,v_2 אם לכל אטום v_i המופיע ב־ $\overline{v}_1(\alpha)=\overline{v}_2(\alpha)$ אז י $v_1(p_i)=v_2(p_i)$

מושגי יסוד סמנטיים

 $\overline{v}(\alpha)=\mathrm{T}$ הגדרה 4: נאמר כי פסוק α הוא ספיק אם קיימת השמה המספקת אותו (קיימת α כך ש

 $p_0 \lor p_1$, p_0 :דוגמאות

.($\overline{v}(lpha)=\mathrm{T}$,v נקרא נקרא כל השמה מספקת אותו (לכל ינקרא נקרא נקרא הגדרה 5: פסוק lpha

 $p_0 \lor \lnot p_0$, $p_0 \to p_0$:דוגמאות

.($\overline{v}(lpha)=\mathrm{F}$,v נקרא סתירה אם לא קיימת השמה המספקת אותו (לכל מקרא סתירה אם לא הגדרה 6: פסוק

 $p_0 \wedge \neg p_0$:דוגמה

<u>שימו לב</u>: אם פסוק אינו סתירה אז הוא ספיק (ולא בהכרח טאוטולוגיה).

. עסאוטולוגיה או β אם טאוטולוגיה או $\alpha \lor \beta$ טאוטולוגיה או $\alpha \lor \beta$ הפריכו: הפריכו

את β את ש־ α נאמר ש־ α נאמר ש־ α מספקת את המספקת אם כל השמה המספקת. אם כל השמה המספקת אם מספקת היהיו α נובע לוגית מ־ α), ונסמן α (או ביש מספקת ש־ α), ונסמן ש־ α

:טענות

- . אם β טאוטולוגיה ו־ $\beta \models \beta$, אז א טאוטולוגיה.
 - . אם eta סתירה ו־ $eta\models eta$, אז eta סתירה.
- $\alpha \models \beta$ מתקיים β מתקיים מחירה אז לכל פסוק .3
- $lpha \models eta$ טאוטולוגיה אז לכל פסוק lpha מתקיים 4.
 - .5 \models הוא יחס רפסלקסיבי וטרנזיטיבי (לא סימטרי).

 $lpha\equiv eta$ ונסמן eta שקולים לוגית ונסמן $\overline{v}(lpha)=\overline{v}(eta)$ מתקיים ש־מתקיים אם לכל השמה v מתקיים לוגית ונסמן $\overline{v}(lpha)=\overline{v}(eta)$

 $etaeta \models lpha$ וגם $lpha \models eta$ משפט 2: lpha ווגם eta שקולים לוגית אמ"מ

מושגים סמנטיים עבור קבוצות פסוקים

 $v \vDash \Sigma$ ונסמן בי את מספקת ער כי נאמר כי מספקת את מספקת את גברה פונסמן בי מספקת את גברה פונסמן $\Sigma \subseteq \mathrm{WFF}$

 $v_{\mathrm{T}} \models \{p_1, p_2\}$:דוגמה

 Σ את מספקת שרים כך ש־v כך אם קיימת השמה בקיה אם נקראת מספקת את בוצת פסוקים בוצת מספקת את בוצת מספקת את

 α את אם כל השמה המספקת את Σ מספקת גם את α נאמר כי Σ בוררת לוגית את Σ את Σ (או Σ נובע לוגית מ־ Σ) ונסמן Σ ונסמן Σ .

 $\{p_0, p_1\} \models p_0 \land p_1$ דוגמה:

 $\{p_0,p_1\}\equiv\{p_0\wedge p_1\}$ דוגמה:

<u>תרגיל 3:</u>

. ספיקה בהכרח Σ בהכרח מפיק. ספיק. מניח שכל פסוק כניח $\Sigma\subseteq \mathrm{WFF}$

<u>תרגיל 4:</u>

יהיו ספיקה בהכרח $\Sigma \cup \{\neg \alpha\}$ ופסוקים ספיקה. האם האט $\Sigma \cup \{\alpha\}$ ופסוקים ופסוקים יהיו קבוצת יהיו שי

 $TT_{\rightarrow}: \{T, F\} \times \{T, F\} \rightarrow \{T, F\}$ $TT_{\rightarrow}(\alpha, \beta)$

(, -)		
α	β	$\alpha \to \beta$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	T

$$v(p_i) = \begin{cases} F & i = 1 \\ T & \text{else} \\ p_0 \to (\neg p_1) \\ v \end{cases}$$

$$\overline{v}(p_0 \to (\neg p_1)) =$$

$$TT_{\rightarrow}(\overline{v}(p_0),\overline{v}(\neg p1))$$

$$TT_{\rightarrow}(v(p_0), TT_{\neg}(\overline{v}(p_1)))$$

$$TT_{\rightarrow}(T, TT_{\neg}(v(p_1)))$$

$$TT_{\rightarrow}(T, TT_{\neg}(F))$$

$$TT_{\rightarrow}(T,T) = T.$$

$$\overline{v}(p_0 \to (\neg p_1)) = T$$

$$p_0 \vee, \neg p_0$$

	$P0^{\dagger}$, $P0$
	p_0
$\neg p_0$	$p_0 \vee \neg p_0$
Т	Т
T2	T

$$\beta\alpha \models \beta\alpha$$

$$\alpha \vee \beta = p_0 \vee \neg p_0 \beta = \neg p_0 \ \alpha = p_0$$

*p*₀ F Т

$$p_0 \vee \neg p_0$$

$$p_0$$

$$\beta = \neg p_0$$

$$\overline{v}_T(\beta) = \overline{v}_T(\neg p_0) = TT_{\neg}(v_T(p_0)) = TT_{\neg}(T) = F$$

$$\Sigma = \{p_0, \neg p_0\}$$
$$\neg p_0, p_0$$
$$\Sigma \Sigma$$
$$\Sigma vv$$

$$\overline{v}(p_0) = T$$

$$\overline{v}(\neg p_0) = T$$

$$\overline{v}(\neg p_0) = TT_{\neg}(\overline{v}(p_0)) = TT_{\neg}(T) = F$$

$$\neg \alpha = \neg p_0 \alpha = p0\Sigma = \emptyset$$