Test 5(Week 13)

Discrete Mathematics 2

1. The chromatic number of K_4 is , the chromatic number of $K_{3,2}$ is and the chromatic number of C_4 is.

2. G是n个顶点的简单图,满足e=C(n-1,2)+2,证明G是哈密顿图

3.10个相同的方块,2个红色、3个黄色、2个蓝色、3个绿色,排成一列,求方法数.

4. 1,2,3,4,5组成的四位数有多少;不含重复字符的四位数有

5. 工人8小时做了40个零件,第一小时做了6个,第8小时4个,证明:存在连续两个小时做了10个零件.

Probability Theory and Mathematical Statistics

- 1. 设 X_1, X_2, \cdots, X_n 是总体 $N\left(0, \sigma^2\right)$ 的样本, 则 () 可以作为 σ^2 的无偏估计量.
 - $(A) \frac{1}{n} \sum_{i=1}^{n} X_i^2;$
 - (B) $\frac{1}{n-1} \sum_{i=1}^{n} X_i^2$;
 - $(C) \frac{1}{n} \sum_{i=1}^{n} X_i;$
 - (D) $\frac{1}{n-1} \sum_{i=1}^{n} X_i$.
- 2. 设 X_1,X_2,X_3 相互独立, 且均服从参数为 λ 的泊松分布, 令 $Y=\frac{1}{3}(X_1+X_2+X_3)$, 则 Y^2 的数学期望为 ()
 - $(A) \frac{1}{3} \lambda;$
 - $(B) \lambda^2;$
 - $(C) \frac{1}{3}\lambda + \lambda^2;$
 - $(D) \frac{1}{3}\lambda^2 + \lambda.$
- 3. 设总体 X 的概率密度为

$$f(x, heta) = egin{cases} rac{1}{ heta} x^{(1- heta)/ heta} & 0 < x < 1 \ 0 &$$
其它

 X_1, X_2, \ldots, X_n 是来自总体 X 的容量为 n 的样本, 则 θ 的最大似然估计量 =

- 4. 按以往某课程考试结果分析, 努力学习的学生有 90\%的可能考试及格, 不努力学习的学生有 90%的可能考试不及格.据调查, 学生中有 80% 的人是努力学习的, 试问:
 - (1) 考试及格的学生有多大可能是不努力学习的人?
 - (2) 考试不及格的学生有多大可能是努力学习的人?

Data structure

1. 给定一组关键字 $\{20, 30, 50, 52, 60, 68, 70\}$, 给出创建一棵3阶B树的过程.

2. 对如下图所示的3阶B树,依次执行下列操作,画出各步操作的结果. 1)插入90 2)插入25 3)插入45 4)删除60 5)删除80

3. 在一棵高度为2的五阶B树中, 所含关键字的个数至少是() A.5 B.7 C.8 D.14

4. 0在一棵有15个关键字的4阶B树中,含有关键字的节点个数最多是() A.5 B.6 C.10 D.15

Computer organization and structure

1. 中断周期前是什么阶段? 中断周期后又是什么阶段? 在中断周期CPU应完成什么操作?

2. 什么是指令周期、机器周期和时钟周期? 三者有何关系?

3. 某CPU的主频为10MHz,若已知每个机器周期平均包含4个时钟周期,该机的平均指令执行速度为1 MIPS,试求该机的平均指令周期及每个指令周期含几个机器周期?若改用时钟周期为0.4μs的CPU芯片,则计算机的平均指令执行速度为多少MIPS?若要得到平均每秒80万次的指令执行速度,则应采用主频为多少的CPU芯片?

- 4. 设CPU内有下列部件: PC、IR、SP、AC、MAR、MDR和CU。采用单总线连接。
 - (1) 画出完成间接寻址的取数指令LDA@X(将主存某地址单元X的内容取至AC中)的数据流(从取指令开始)。
 - (2) 画出中断周期的数据流。

- 5. 设CPU内部结构如图所示,此外还设有R1~R4四个寄存器,它们各自的输入和输出端都与内部总线相通,并分别受控制信号控制(如R2i为寄存器R2的输入控制;R2o为R2的输出控制)。要求从取指令开始,写出完成指令
 - SUB R1,@mem; ((R1)-((mem)) -> R1, 存储器间接寻址) 所需的全部微操作和控制信号。

