Combinational & Sequential Logic Design

Chapter 1

What is multiplexer?

 In electronics, a multiplexer (or mux; spelled sometimes as multiplexor), also known as a data selector, is a device that selects between several analog or digital input signals and forwards the selected input to a single output line.

- A multiplexer is a combinational circuit that has 2ⁿ input lines and a single output line.
- Simply, the multiplexer is a multi-input and single-output combinational circuit.
- The binary information is received from the input lines and directed to the output line.
- On the basis of the values of the selection lines, one of these data inputs will be connected to the output.

- Unlike encoder and decoder, there are n selection lines and 2ⁿ input lines.
- So, there is a total of 2^N possible combinations of inputs.
- A multiplexer is also treated as Mux.

2×1 Multiplexer

- In 2×1 multiplexer, there are only two inputs, i.e., A₀ and A₁, 1 selection line, i.e., S₀ and single outputs, i.e., Y.
- On the basis of the combination of inputs which are present at the selection line S⁰, one of these 2 inputs will be connected to the output.
- The block diagram and the truth table of the 2×1 multiplexer are given below.

Block diagram

Truth Table

INPUTS	Output
So	Υ
0	Ao
1	A ₁

- The logical expression of the term Y is as follows:
- $Y=S_0'.A_0+S_0.A_1$
- Logical circuit of the above expression is given below:

Circuit diagram

4×1 Multiplexer

- In the 4×1 multiplexer, there is a total of four inputs, i.e., A₀, A₁, A₂, and A₃, 2 selection lines, i.e., S₀ and S₁ and single output, i.e., Y.
- On the basis of the combination of inputs that are present at the selection lines S⁰ and S₁, one of these 4 inputs are connected to the output.
- The block diagram and the truth table of the 4×1 multiplexer are given below.

Block Diagram

Truth Table

INP	Output	
S ₁	So	Υ
0	0	A ₀
0	1	A ₁
1	0	A ₂
1	1	Аз

- The logical expression of the term Y is as follows:
- $Y=S_1'S_0'A_0+S_1'S_0A_1+S_1S_0'A_2+S_1S_0A_3$
- Logical circuit of the above expression is given below:

Circuit diagram

8 to 1 Multiplexer

- In the 8 to 1 multiplexer, there are total eight inputs,
- i.e., A_0 , A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , and A_7 ,
- 3 selection lines, i.e., S₀, S₁ and S₂
- and single output, i.e., Y.
- On the basis of the combination of inputs that are present at the selection lines S^0 , S^{1} , and S_2 , one of these 8 inputs are connected to the output.
- The block diagram and the truth table of the 8×1 multiplexer are given below.

Block Diagram

Truth Table

		Output	
S ₂	S ₁	S ₀	Y
0	0	0	Ao
0	0	1	A ₁
0	1	0	A ₂
0	1	1	A ₃
1	0	0	A ₄
1	0	1	A ₅
1	1	0	A ₆
1	1	1	A ₇

- The logical expression of the term Y is as follows:
- $Y=S_0'.S_1'.S_2'.A_0+S_0.S_1'.S_2'.A_1+S_0'.S_1.S_2'.A_2+S_0.S_1.S_2'.A_3+S_0'.S_1'.S_2 A_4+S_0.S_1'.S_2 A_5+S_0'.S_1.S_2 .A_6+S_0.S_1 .S_3.A_7$

Logical circuit of the above expression is given below:

8 ×1 multiplexer using 4×1 and 2×1 multiplexer

- We can implement the 8×1 multiplexer using a lower order multiplexer.
- To implement the 8×1 multiplexer, we need two 4×1 multiplexers and one 2×1 multiplexer.
- The 4×1 multiplexer has 2 selection lines, 4 inputs, and 1 output.
- The 2×1 multiplexer has only 1 selection line.

- For getting 8 data inputs, we need two 4×1 multiplexers.
- The 4×1 multiplexer produces one output. So, in order to get the final output, we need a 2×1 multiplexer.
- The block diagram of 8×1 multiplexer using 4×1 and 2×1 multiplexer is given below.

16 to 1 Multiplexer

- In the 16 to 1 multiplexer, there are total of 16 inputs, i.e., A₀, A₁, ..., A₁₆, 4 selection lines, i.e., S₀, S₁, S₂, and S₃ and single output, i.e., Y.
- On the basis of the combination of inputs that are present at the selection lines S⁰, S¹, and S₂, one of these 16 inputs will be connected to the output.
- The block diagram and the truth table of the 16×1

INPUTS				Output
So	S ₁	S ₂	S ₃	Y
0	0	0	0	A ₀
0	0	0	1	A ₁
0	0	1	0	A ₂
0	0	1	1	A ₃
0	1	0	0	A ₄
0	1	0	1	A ₅
0	1	1	0	A ₆
0	1	1	1	A ₇
1	0	0	0	A ₈
1	0	0	1	A ₉
1	0	1	0	A ₁₀
1	0	1	1	A ₁₁
1	1	0	0	A ₁₂
1	1	0	1	A ₁₃
1	1	1	0	A ₁₄
1	1	1	1	A ₁₅

Truth Table:

The logical expression of the term Y is as follows:

- Y=A₀.S₀'.S₁'.S₂'.S₃'+A₁.S₀'.S₁'.S₂'.S₃+
- $A_2.S_0'.S_1'.S_2.S_3'+A_3.S_0'.S_1'.S_2.S_3+$
- $A_4.S_0'.S_1.S_2'.S_3'+A_5.S_0'.S_1.S_2'.S_3+$
- $A_6.S_1.S_2.S_3'+A_7.S_0'.S_1.S_2.S_3+$
- $A_8.S_0.S_1'.S_2'.S_3'+A_9.S_0.S_1'.S_2'.S_3+$
- $A_{10}.S_0.S_1'.S_2.S_3' + A_{11}.S_0.S_1'.S_2.S_3 +$
- $A_{12}S_0.S_1.S_2'.S_3'+A_{13}.S_0.S_1.S_2'.S_3+$
- $A_{14}.S_0.S_1.S_2.S_3'+A_{15}.S_0.S_1.S_2'.S_3$

Logical circuit of the above expression is given below:

16×1 multiplexer using 8×1 and 2×1 multiplexer

- We can implement the 16×1 multiplexer using a lower order multiplexer.
- To implement the 8×1 multiplexer, we need two 8×1 multiplexers and one 2×1 multiplexer.
- The 8×1 multiplexer has 3 selection lines, 4 inputs, and 1 output.
- The 2×1 multiplexer has only 1 selection line.

- For getting 16 data inputs, we need two 8 ×1 multiplexers.
- The 8×1 multiplexer produces one output. So, in order to get the final output, we need a 2×1 multiplexer.
- The block diagram of 16×1 multiplexer using 8×1 and 2×1 multiplexer is given below.

