Exercices sur les Limites

Exercice 1. Étudier les limites suivantes.

- 1. $\lim_{x \to +\infty} \sin \frac{\pi}{x}$
- $2. \lim_{x \to \infty} x \sin \frac{\pi}{x}$
- $3. \lim_{x \to -\infty} \sqrt{\frac{2x^2}{1-x}}$
- $4. \lim_{x \to +\infty} \left(x \sqrt{x} + \frac{1}{x} \right)^3$
- $5. \lim_{x \to +\infty} x \left(\sqrt{\frac{x}{x+1} 1} \right)$

Exercice 2. Calculer la limite suivante. $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$

En déduire:

$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{4 + \cos x} - 2}{\cos x}$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{4 + \sin x} - 2}{x}$$

/

Exercice 3. On considère la fonction f définie sur $[2, +\infty[$ par $f(x) = \frac{3x + \sin x}{x - 1}$

Montrer que, pour tout $x \ge 2$, $|f(x) - 3| \le \frac{4}{x - 1}$. En déduire la limite de f en $+\infty$?.

Exercice 4. Soit la fonction f définie par : $f: x \mapsto x^2 \sin\left(\frac{1}{x}\right) + 1 \quad \forall x \in \mathbb{R}^*$

- 1. Montrer que $\forall x \in \mathbb{R}^* \ 1 x^2 \le f(x) \le 1 + x^2$
- 2. En déduire:
 - (a) $\lim_{x \to 0} f(x)$
 - (b) $\lim_{x \to +\infty} \frac{f(x)}{r^3}$
 - (c) $\lim_{x\to 0} \frac{f(x)-1}{x}$.

Exercice 5. Soi f une fonction définie sur $\mathbb{R} \setminus \{-1\}$ telle que : $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -1^-} f(x) = +\infty$ et $\lim_{x \to -1^+} f(x) = -\infty$.

- 1. Interpréter graphiquement ces limites.
- 2. En déduire les limites suivantes.

(a)
$$\lim_{x \to +\infty} f(\sqrt{x})$$

(b)
$$\lim_{x \to +\infty} f\left(-1 + \frac{1}{x}\right)$$

(c)
$$\lim_{x \to 0^-} f\left(\frac{1}{x}\right)$$

(d)
$$\lim_{x \to -\infty} \left(\frac{f(x) - 1}{2f(x) + 1} \right)^2$$

Exercice 6. Étudier les limites suivantes.

1.
$$\lim_{x \to 1} \frac{x^{10} - 1}{x - 1}$$

2.
$$\lim_{x \to -1} \frac{x\sqrt{x+2}+1}{x+1}$$

3.
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin x - 1}{6x - \pi}$$

4.
$$\lim_{x \to 0} \frac{\cos^5 x + \sin 2x - 1}{x}$$