

ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Introduction to Machine Learning and Data Mining

IT3190

Lecture: Probabilistic models

Contents

- Lecture 1: Introduction to Machine Learning & Data Mining
- Lecture 2: Data crawling and pre-processing
- Lecture 3: Linear regression
- Lecture 4+5: Clustering
- Lecture 6: Decision tree and Random forest
- Lecture 7: Neural networks
- Lecture 8: Support vector machines
- Lecture 9: Performance evaluation
- Lecture 10: Probabilistic models
- Lecture 11: Basics of data mining
- Lecture 12: Association rule mining
- Lecture 13: Regularization and advanced topics

Why probabilistic modeling?

- Inferences from data are intrinsically uncertain.
 (suy diễn từ dữ liệu thường không chắc chắn)
- Probability theory: model uncertainty instead of ignoring it!
- Inference or prediction can be done by using probabilities.
- Applications: Machine learning, Data Mining, Computer Vision, NLP, Bioinformatics, ...
- The goal of this lecture
 - Overview about probabilistic modeling
 - Key concepts
 - Application to classification

Data

- Let $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_M, \mathbf{y}_M)\}$ be a dataset with M instances.
 - □ Each \mathbf{x}_i is a vector in an *n*-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute.
 - □ y is the output (response), univariate
- Prediction: given data D, what can we say about y* at an unseen input x*?

- To make predictions, we need to make assumptions
- A model H (mô hình) encodes these assumptions, and often depends on some parameters θ, e.g.,

$$y = f(x|\theta)$$

Learning (estimation) is to find an H from a given D.

Uncertainty

- Uncertainty apprears in any step
 - Measurement uncertainty (D)
 - □ Parameter uncertainty (**θ**)
 - Uncertainty regarding the correct model (H)
- Measurement uncertainty
 - Uncertainty can occur in both inputs and outputs.
- How to represent uncertainty?
- → Probability theory

The modeling process

[Blei, 2012]

Basics of Probability Theory

Basic concepts in Probability Theory

- Assume we do an experiment with random outcomes, e.g., tossing a die.
- Space S of outcomes: the set of all possible outcomes of an experiment
 - \Box Ex: S = {1, 2, 3, 4, 5, 6} for tossing a die
- Event E: a subset of the outcome space S.
 - \Box Ex: E = {1} the event that the die appears 1.
 - \Box Ex: E = {1, 3, 5} the event that the die appears odd.
- Space W of events: the space of all possible events
 - Ex: W contains all possible tosses
- Random variable: represents a random event, and has an associated probability of occurrence of that event.

Probability visualization

- Probability represents the likelihood/possibility that an event A occurs.
 - Denoted by P(A).
- P(A) is the proportion of the subspace that A is true.

Binary random variables

- A binary (boolean) random variable can receive only value of either *True* or *False*.
- Some axioms:

$$0 \le P(A) \le 1$$

- □ P(true)= 1
- □ P(false)= 0

$$P(A \text{ or } B) = P(A) + P(B) - P(A, B)$$

Some consequences:

$$\Box$$
 P(not A) = P(~A)= 1 - P(A)

$$\Box$$
 P(A)= P(A, B) + P(A, ~B)

Multinomial random variables

• A multinomial random variable can receive one from K possible values of $\{v_1, v_2, ..., v_k\}$.

$$P(A = v_i, A = v_j) = 0 \text{ if } i \neq j$$

$$P\left(\bigcup_{n=1}^{m} (A = v_n)\right) = \sum_{n=1}^{m} P(A = v_n)$$

$$P\left(\bigcup_{n=1}^{k} (A = v_n)\right) = \sum_{n=1}^{k} P(A = v_n) = 1$$

Joint probability (1)

Joint probability:

- The possibility of A and B that occur simutaneously.
- □ P(A,B) is the proportion of the space in which both A and B are true.

• Ex:

- A: I will play football tomorrow.
- □ B: John will not play football.
- P(A,B): the probability that
 I will but John will not play football tomorrow.

A space

Joint probability (2)

- Denote S_A the space of A.
- Denote S_B the space of B.
- Denote S_{AB} the space of (A, B).

$$S_{AB} = S_A \times S_B$$

Then:

$$P(A,B) = |T_{AB}| / |S_{AB}|$$

A space

- \Box T_{AB} is the space in which both A and B are true.
- □ |X| denotes the volumn of the set X.

Conditional probability (1)

- Conditional probability:
 - P(A|B): the possibility that A happens given that B has already occurred.
 - P(A|B) is the proportion of the space in which A occurs, knowing that B is true.
- Ex:
 - A: I will play football tomorrow.
 - B: it will not rain tomorrow.
 - □ P(A|B): the probability that I will play football, provided that it will not rain tomorrow.
- What is different between joint and conditional probabilities?

Conditional probability (2)

We have:

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

Some consequences:

$$P(A,B) = P(A|B) \cdot P(B)$$

$$P(A|B) + P(\sim A|B) = 1$$

$$\sum_{i=1}^{k} P(A = v_i \mid B) = 1$$

Conditional probability (3)

- P(A|B, C) shows the probability of A given that B and C already has occurred.
- Ex:
 - A: I will wander over the near river tomorrow morning.
 - □ B: it will be very nice tomorrow morning.
 - □ C: I will wake up early tomorrow morning.
 - P(A|B, C): the probability that wander over the near river, provided that it will be very nice and I will wake up early tomorrow morning.

Statistical independence (1)

- Two events A and B are called Statistically Independent if the the probability that A occurs does not change with respect to the occurrence of B.
 - \Box P(A|B) = P(A).
- Ex:
 - A: I will play football tomorrow.
 - B: the pacific ocean contains many fishes.
 - P(A|B) = P(A): the fact that the pacific ocean contains many fishes does not affect my decision to play football tomorrow.

Statistical independence (2)

- Assume P(A|B) = P(A), we have:
 - $P(\sim A|B) = P(\sim A)$
 - P(B|A) = P(B)
 - P(A,B) = P(A). P(B)
 - $P(\sim A,B) = P(\sim A). P(B)$
 - $P(A, \sim B) = P(A). P(\sim B)$
 - $P(\sim A, \sim B) = P(\sim A)$. $P(\sim B)$.

Conditional independence

- Two events A and C are called Conditionally Independent given B if P(A|B, C) = P(A|B).
- Ex:
 - A: I will play football tomorrow.
 - B: the football match will happen in-house tomorrow.
 - □ C: it will not rain tomorrow.
 - \Box P(A|B, C) = P(A|B).

Some rules in probability theory

Chain rules:

• Independence:

- □ P(A|B) = P(A)
 if A and B are statistically independent.
- □ P(A,B|C) = P(A|C).P(B|C)
 if A and B are statistically independent, conditioned on C.

= P(A|B,C).P(B|C).

□ $P(A_1,...,A_n|C) = P(A_1|C)...P(A_n|C)$ if $A_1,...,A_n$ are statistically independent, conditioned on C.

Product and sum rules

- Consider x and y are discrete random variables.
 Their domains are X and Y respectively
- Product rule:

$$P(x,y) = P(x|y)P(y)$$

Sum rule

$$P(x) = \sum_{y \in Y} P(x, y)$$

 The summation (tổng) should be integration (tích phân) if y is continuous (tổng sẽ được thay bằng tích phân nếu biến y liên tục)

Bayes' rule

$$P(\boldsymbol{\theta}|\boldsymbol{D}) = \frac{P(\boldsymbol{D}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\boldsymbol{D})}$$

- $P(\theta)$: prior probability (xác suất tiên nghiệm) of the variable θ .
 - \Box Our uncertainty about θ before observing data.
- P(D): prior probability that we can observe data D.
- $P(\mathbf{D}|\boldsymbol{\theta})$: probability (*likelihood*) that we can observe data \mathbf{D} provided that $\boldsymbol{\theta}$ is known.
- $P(\theta|\mathbf{D})$: posterior probability (xác suất hậu nghiệm) of θ if we already have observed data \mathbf{D} .
 - Bayesian approach bases on this quatity.

HUST hust.edu.vn f fb.com/dhbkhn

Probabilistic models

Model, inference, learning

Probabilistic model

- Our assumption on how the data were generated
 (giả thuyết của chúng ta về quá trình dữ liệu đã được sinh ra như thế
 nào)
- Example: how a sentence is generated?
 - We assume our brain does as follow:
 - First choose the topic of the sentence
 - ❖ Generate the words one-by-one to form the sentence
- How will TIM be drawn?

ПО-

drawinghowtodraw.com

Probabilistic model

- A model sometimes consists of
 - ❖ Observed variable (e.g., x) which models the observation (data instance) (biến quan sát được)
 - Hidden variable which describes the hidden things (e.g., z, φ)
 (biến ẩn)

- \star Local variable (e.g., z, x) which associates with one data instance
- * Global variable (e.g., ϕ) which is shared across the data instances, and is the representative of the model
- Relations between the variables
- Each variable follows some probability distribution (mỗi biến tuân theo một phân bố xác suất nào đó)

Different types of models

- Probabilistic graphical model (PGM):
 - Graph + Probability Theory (mô hình đồ thị xác suất)
 - Each vertex represents a random variable, grey circle means "observed", white circle means "latent"
 - Each edge represents the conditional dependence between two variables

- Directed graphical model: each edge has a direction
- Undirected graphical model: no direction in the edges
- Latent variable model: a PGM which has at least one latent variable
- Bayesian model: a PGM which has a prior distribution on its parameter

Univariate normal distribution

- We wish to model the height of a person
 - We had collected a dataset from 10 people in Hanoi:
 D={1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}
- Let x denote the random variable that represents the height of a person
- Assumption: x follows a Normal distribution (Gaussian) with the following probability density function (PDF)

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- \Box where $\{\mu, \sigma^2\}$ are the mean and variance
- Note:
 - $\square \mathcal{N}(x|\mu,\sigma^2)$ represents the class of normal distributions
 - \Box This class is parameterized by $\theta = (\mu, \sigma^2)$
- **Learning:** we need to know specific values of $\{\mu, \sigma^2\}$

1.75

1.70

Univariate Gaussian mixture model (1)

- We wish to model the height of a person
 - We had collected a dataset from 10 people in Hanoi + 10 people in Sydney
 D={1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62, 1.75, 1.80, 1.85, 1.65, 1.91, 1.78, 1.88, 1.79, 1.82, 1.81}
- Let x denote the random variable that represents the height
- If we use Normal distribution:
 - Blue curve models the height in Hanoi
 - Orange curve models the height in Sydney
 - Green curve models the whole D
- Univariate Gaussian does not model well the underlying distribution
 - Mixture model? (mô hình hỗn hợp)

Univariate Gaussian mixture model (2)

 Assumption: the data are generated from two different Gaussians, and each instance is generated from one of the two Gaussians.
 Generative process:

- * Pick the conponent index: $z \sim Multinomial(z|\phi)$
- * Generate sample $x \sim Normal(x \mid \mu_z, \sigma_z^2)$
- This is Gaussian mixture model (GMM) (mô hình hỗn hợp Gauss)
 - \Box (μ_1, σ_1^2) represents the first Gaussian
 - μ_2, σ_2^2 represents the second Gaussian
 - $\phi \in [0,1]$ is the parameter of the Multinomial distribution, $P(z=1|\phi)=\phi=1-P(z=2|\phi)$
- Density of the GMM:

$$\phi \mathcal{N}(x|\mu_1, \sigma_1^2) + (1 - \phi) \mathcal{N}(x|\mu_2, \sigma_2^2)$$

Note: "~" means "follows" (tuân theo)

GMM: Multivariate case

- Consider the case each x belongs to the n-dimensional space.
- GMM: we assume that the data are samples from K different Gaussian distributions.
- Each instance x is generated from one of those
 K Gaussians by the following generative process:
 - * Take the component index $z \sim Multinomial(z|\phi)$
 - * Generate $x \sim Normal(x \mid \mu_z, \Sigma_z)$
- The density function is

$$p(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\phi}) = \sum_{k=1}^{K} \phi_k \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

- $\varphi = (\phi_1, ..., \phi_K)$ represents the weights of the Gaussians
- □ Each multivariate Gaussian has density $\mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2}(\boldsymbol{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} \boldsymbol{\mu})\right]$

Ζ

PGM: some well-known models

- Gaussian mixture model (GMM)
 - Modeling real-valued data
- Latent Dirichlet allocation (LDA)
 - Modeling the topics hidden in textual data
- Hidden Markov model (HMM)
 - Modeling time-series, i.e., data with time stamps or sequential nature
- Conditional Random Field (CRF)
 - for structured prediction
- Deep generative models
 - Modeling the hidden structures, generating artificial data

Probabilistic model: two problems

- ullet Inference for a given instance x_n
 - * Recovery of the local variable (e.g., z_n), or
 - * The distribution of the local variables (e.g., $P(z_n, x_n | \phi)$)
 - * Example: for GMM, we want to know z_n indicating which Gaussian did generate x_n

Learning (estimation)

- Given a training dataset, estimate the joint distribution of the variables
 - \star E.g., estimate $P(\phi, z_1, ..., z_n, x_1, ..., x_n | \alpha)$
 - * E.g., estimate $P(x_1, ..., x_n | \alpha)$
 - E.g., estimate α
 - Inference of local variables is often needed

Inference and Learning MLE, MAP

Some inference approaches (1)

- Let D be the data, and h be a hypothesis
 - hypothesis: unknown parameter, hidden variables, ...
- Maximum Likelihood Estimation (MLE, cực đại hoá khả năng) $h^* = \arg \max_{h \in H} P(D|h)$
 - □ Finds h* (in the hypothesis space **H**) that maximizes the likelihood of the data.
 - Other words: MLE makes inference about the model that is most likely to have generated the data.
- **Bayesian inference** (suy diễn Bayes) considers the transformation of our prior knowledge P(h), through the data D, into the posterior knowledge P(h|D).
 - □ Remember the Bayes'rule: P(h|D) = P(D|h)P(h)/P(D). So $P(h|D) \propto P(D|h) * P(h)$

(Posterior ∝ Likelihood * Prior)

Some inference approaches (2)

- In some cases, we may know the prior distribution of h.
- Maximum a Posterior Estimation (MAP, cực đại hoá hậu nghiệm)

$$h^* = \arg\max_{h \in \boldsymbol{H}} P(h|\boldsymbol{D}) = \arg\max_{h \in \boldsymbol{H}} P(\boldsymbol{D}|h) P(h) / P(\boldsymbol{D}) = \arg\max_{h \in \boldsymbol{H}} P(\boldsymbol{D}|h) P(h)$$

- □ Finds h* that maximizes the posterior probability of h.
- □ MAP finds a point (posterior mode), not a distribution → point estimation
- MLE is a special case of MAP, when using uniform prior over h.
- Full Bayesian inference tries to estimate the full posterior distribution $P(h|\mathbf{D})$, not just a point h^* .
- Note:
 - MLE, MAP, or full Bayesian approaches can be applied to both learning and inference.

MLE: Gaussian example (1)

- We wish to model the height of a person, using the dataset
 D = {1.6, 1.7, 1.65, 1.63, 1.75, 1.71, 1.68, 1.72, 1.77, 1.62}
 - Let x be the random variable representing the height of a person.
 - □ **Model**: assume that x follows a Gaussian distribution with **unknown** mean μ and variance σ^2
 - \Box **Learning:** estimate (μ, σ) from the given data $\mathbf{D} = \{x_1, \dots, x_{10}\}$.
- Let $f(x|\mu,\sigma)$ be the density function of the Gaussian family, parameterized by (μ,σ) .
 - $\neg f(x_n|\mu,\sigma)$ is the likelihood of instance x_n .
 - $\neg f(\mathbf{D}|\mu,\sigma)$ is the likelihood function of **D**.
- Using MLE, we will find

$$(\mu_*, \sigma_*) = \arg \max_{\mu, \sigma} f(\mathbf{D}|\mu, \sigma)$$

MLE: Gaussian example (2)

- i.i.d assumption: we assume that the data are independent and identically distributed (dữ liệu được sinh ra một cách độc lập)
 - □ As a result, we have $P(\mathbf{D}|\mu,\sigma) = P(x_1,...,x_{10}|\mu,\sigma) = \prod_{i=1}^{10} P(x_i|\mu,\sigma)$
- Using this assumption, MLE will be

$$(\mu_*, \sigma_*) = \arg \max_{\mu, \sigma} \prod_{i=1}^{10} f(x_i | \mu, \sigma) = \arg \max_{\mu, \sigma} \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

$$= \arg \max_{\mu, \sigma} \log \prod_{i=1}^{10} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

$$= \arg \max_{\mu, \sigma} \sum_{i=1}^{10} \left(-\frac{1}{2\sigma^2} (x_i - \mu)^2 - \log \sqrt{2\pi\sigma^2} \right)$$
Log trick, $\log \stackrel{\text{def } \ln}{=} \ln$

• Using gradients (w.r.t μ , σ), we can find

$$\mu_* = \frac{1}{10} \sum_{i=1}^{10} x_i = 1.683, \qquad \sigma_*^2 = \frac{1}{10} \sum_{i=1}^{10} (x_i - \mu_*)^2 \approx 0.0015$$

MAP: Gaussian Naïve Bayes (1)

- Consider the classification problem
 - Training data $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$ with M instances, C classes.
 - Each \mathbf{x}_i is a vector in the *n*-dimensional space \mathbb{R}^n , e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$.
- Gaussian Naive Bayes (GNB): we assume there are C different Gaussian distributions that generate the data in D, and each instance is generated by the following generative process:
 - Pick a class index $c \sim Cat(\phi)$
 - Generate $x \sim Normal(\mu_c, \Sigma_c)$

A class is dominated by a Normal distribution

• Where μ_c is the mean vector, Σ_c is the covariance matrix of size $n \times n$, $Cat(\phi)$ is the Categorical distribution with parameter $\phi = (\phi_1, ..., \phi_C) \ge 0$ so that $||\phi||_1 = 1$.

MAP: Gaussian Naïve Bayes (2)

- Learning: estimate the model with parameter $\theta = (\phi, \mu_1, \Sigma_1, ..., \mu_C, \Sigma_C)$
- Let c be the random variable to represent the class label for each \mathbf{x} . $P(y_1, ..., y_M | \mathbf{D}, \boldsymbol{\theta})$ denotes the posterior $P(c = y_1, ..., c = y_M | \mathbf{D}, \boldsymbol{\theta})$
- Following MAP, we find

$$\boldsymbol{\theta}_* = \arg \max_{\boldsymbol{\theta}} P(y_1, ..., y_M | \boldsymbol{D}, \boldsymbol{\theta})$$

Using Bayes rule, i.i.d, log trick, and some reformulations:

$$\boldsymbol{\theta}_* = \arg \max_{\boldsymbol{\theta}} \sum_{k=1}^{C} \sum_{\boldsymbol{x} \in \boldsymbol{D}_{k}} \log P(\boldsymbol{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{k=1}^{C} |\boldsymbol{D}_k| \log \phi_k$$

• Where D_k contains all the training examples in class k and has size $|D_k|$.

MAP: Gaussian Naïve Bayes (3)

$$\boldsymbol{\theta}_* = \arg \max_{\boldsymbol{\theta}} \sum_{k=1}^{C} \sum_{\boldsymbol{x} \in \boldsymbol{D}_k} \log P(\boldsymbol{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{k=1}^{C} |\boldsymbol{D}_k| \log \phi_k$$

• To find ϕ , we need to solve

$$\max_{\phi} \sum_{k=1}^{C} |\boldsymbol{D}_{k}| \log \phi_{k} \text{ such that } \sum_{k=1}^{C} \phi_{k} = 1 \text{ and } \phi_{k} \geq 0, \forall k$$

By using Lagrange multiplier method, we can obtain

$$\phi_k^* = \frac{|\boldsymbol{D}_k|}{\mathsf{M}}$$

• To find (μ_c, Σ_c) , we can solve for:

$$(\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}) = \arg \max_{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}} \sum_{\boldsymbol{x} \in \boldsymbol{D}_{c}} \log P(\boldsymbol{x} | \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c})$$

MAP: Gaussian Naïve Bayes (4)

Note

$$\begin{split} &(\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}) = \arg\max_{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}} \sum_{\boldsymbol{x} \in \boldsymbol{D}_{c}} \log \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}) \\ &= \arg\max_{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}} \sum_{\boldsymbol{x} \in \boldsymbol{D}_{c}} \log \left[\frac{1}{\sqrt{\det(2\pi\boldsymbol{\Sigma}_{c})}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{c})^{T} \boldsymbol{\Sigma}_{c}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{c})\right) \right] \\ &= \arg\max_{\boldsymbol{\mu}_{c}, \boldsymbol{\Sigma}_{c}} \sum_{\boldsymbol{x} \in \boldsymbol{D}_{c}} \left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{c})^{T} \boldsymbol{\Sigma}_{c}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{c}) - \log \sqrt{\det(2\pi\boldsymbol{\Sigma}_{c})} \right] \end{split}$$

• Using gradients (w.r.t μ_c , Σ_c), we can arrive at

$$\mu_{c*} = \frac{1}{|D_c|} \sum_{x \in D_c} x, \qquad \Sigma_{c*} = \frac{1}{|D_c|} \sum_{x \in D_c} (x - \mu_{c*}) (x - \mu_{c*})^T$$

• So, after training we obtain the $(\mu_{c*}, \Sigma_{c*}, \phi_c^*)$ for each class c.

MAP: Gaussian Naïve Bayes (5)

- Trained model: $(\mu_{c*}, \Sigma_{c*}, \phi_c^*)$ for each class c
- Prediction for a new instance z by finding the class label that has the highest posterior probability:

$$c_{z} = \arg \max_{c \in \{1, \dots, C\}} P(c|\mathbf{z}, \boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}, \boldsymbol{\phi}_{c}^{*}) = \arg \max_{c \in \{1, \dots, C\}} P(\mathbf{z}|\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}) P(c|\boldsymbol{\phi}_{c}^{*})$$

$$= \arg \max_{c \in \{1, \dots, C\}} [\log P(\mathbf{z}|\boldsymbol{\mu}_{c*}, \boldsymbol{\Sigma}_{c*}) + \log P(c|\boldsymbol{\phi}_{c}^{*})] \qquad \qquad \text{Bayes' rule}$$

$$= \arg \max_{c \in \{1, \dots, C\}} \left[-\frac{1}{2} (\mathbf{z} - \boldsymbol{\mu}_{c*})^{T} \boldsymbol{\Sigma}_{c*}^{-1} (\mathbf{z} - \boldsymbol{\mu}_{c*}) - \log \sqrt{\det(2\pi \boldsymbol{\Sigma}_{c*})} + \log \boldsymbol{\phi}_{c}^{*} \right]$$

• If using MLE, we do not need to use/estimate the prior P(c)

MAP: Multinomial Naïve Bayes (1)

- Consider the text classification problem (dữ liệu có thuộc tính rời rạc)
 - Training data $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_M, y_M)\}$ with M documents, C classes.
 - TF: each document \mathbf{x}_i is represented by a vector of V dimensions, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{iV})^T$, each x_{ij} is the *frequency* of term j in document \mathbf{x}_i
- Multinomial Naive Bayes (MNB): we assume there are C different Multinomial distributions that generate the data in D, and each instance is generated by the following generative process:
 - Pick a class index $c \sim Cat(\phi)$
 - Generate $x \sim Multinomial(\theta_c)$

A class is dominated by a Multinomial distribution

• $Cat(\phi)$ is the Categorical distribution with parameter $\phi = (\phi_1, ..., \phi_C) \ge \mathbf{0}$ s.t. $\|\phi\|_1 = 1$.

MAP: Multinomial Naïve Bayes (2)

• A multinomial distribution, which is parameterized by θ_c , has probability mass function

$$f(x_1, ..., x_V | \theta_{c1}, ..., \theta_{cV}) = \frac{\Gamma(\sum_{j=1}^V x_j + 1)}{\prod_{j=1}^V \Gamma(x_j + 1)} \prod_{k=1}^V \theta_{ck}^{x_k}$$

- $\theta_{cj} = P(x = j | \theta_{cj})$ is the probability that term $j \in \{1, ..., V\}$ appears, satisfying $\sum_{k=1}^{V} \theta_{ck} = 1$. Γ is the gamma function.
- Learning MNB: we can do similarly with Gaussian Naïve Bayes to estimate $\theta_c = (\theta_{c1}, \dots, \theta_{cV})$ and ϕ_c for each class c.

Homework ?

MAP: Multinomial Naïve Bayes (3)

- Trained model: (θ_{c*}, ϕ_c^*) for each class c
- Prediction for a new instance $\mathbf{z} = (z_1, \dots, z_V)^T$ by

$$c_{z} = \arg \max_{c \in \{1, \dots, C\}} P(c|\mathbf{z}, \boldsymbol{\theta}_{c*}) = \arg \max_{c \in \{1, \dots, C\}} P(\mathbf{z}|\boldsymbol{\theta}_{c*}, c) P(c)$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log P(\mathbf{z}|\boldsymbol{\theta}_{c*}) + \log P(c) \qquad (\text{MNB.1})$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \frac{\Gamma(\sum_{j=1}^{V} Z_{j} + 1)}{\prod_{j=1}^{V} \Gamma(z_{j} + 1)} \prod_{k=1}^{V} \theta_{ck*}^{Z_{k}} + \log \phi_{c}^{*}$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \prod_{k=1}^{V} \theta_{ck*}^{Z_{k}} + \log \phi_{c}^{*}$$

$$= \arg \max_{c \in \{1, \dots, C\}} \log \prod_{k=1}^{V} P(z_{k}|\boldsymbol{\theta}_{ck*}) + \log \phi_{c}^{*} \qquad (\text{MNB.2})$$

Note: we implicitly assume that *the attributes are conditionally independent*, as shown in equations (MNB.1) and (MNB.2). (ta ngầm giả thuyết rằng các thuộc tính độc lập với nhau)

46

Difficult situations

- No closed-form solution for the learning/inference problem?
 (không tìm được ngay công thức nghiệm)
 - The examples before are easy cases, as we can find solutions in a closed form by using gradient.
 - Many models (e.g., GMM) do not admit a closed-form solution.
- No explicit expression of the density/mass function?
 (không có công thức tường minh để tính toán)
- Intractable inference (bài toán suy diễn không khả thi)
 - Inference in many probabilistic models is NP-hard.
 [Sontag & Roy, 2011; Tosh & Dasgupta, 2019]

Reference

- Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for statisticians." *Journal of the American Statistical Association* 112, no. 518 (2017): 859-877.
- Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. "Weight Uncertainty in Neural Network." In *International Conference on Machine Learning (ICML)*, pp. 1613-1622. 2015.
- Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." In *International Conference on Machine Learning*, pp. 1050-1059, 2016.
- Ghahramani, Zoubin. "Probabilistic machine learning and artificial intelligence." *Nature* 521, no. 7553 (2015): 452-459.
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." In *International Conference on Learning Representations* (ICLR), 2014.
- Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects." *Science* 349, no. 6245 (2015): 255-260.
- Tosh, Christopher, and Sanjoy Dasgupta. "The Relative Complexity of Maximum Likelihood Estimation, MAP Estimation, and Sampling." In *Proceedings of the 32nd Conference on Learning Theory, in PMLR* 99:2993-3035, 2019.
- Sontag, David, and Daniel Roy, "Complexity of inference in latent dirichlet allocation" in: Proceedings of Advances in Neural Information Processing System, 2011.

THANK YOU!