ml-lab-5

April 17, 2024

```
[13]: import numpy as np
      import matplotlib.pyplot as plt
      from sklearn.datasets import load_breast_cancer
      from sklearn.model_selection import cross_val_predict, train_test_split
      from sklearn.metrics import confusion_matrix, classification_report,_
       →accuracy_score
      from sklearn.ensemble import RandomForestClassifier
[14]: breast_cancer = load_breast_cancer()
      X = breast_cancer.data
      y = breast_cancer.target
[15]: X_train, X_test, y_train, y_test = train_test_split( X, y, test_size = 0.2,__
       →random state=42)
[16]: rf = RandomForestClassifier(n_estimators=100)
[17]: rf.fit(X_train, y_train)
[17]: RandomForestClassifier()
[18]: y_pred = rf.predict(X_test)
[19]: accuracy = accuracy_score(y_test,y_pred)
      print("Accuracy:",accuracy)
     Accuracy: 0.9649122807017544
[20]: from sklearn import tree
      plt.figure(figsize=(20, 15))
      #for i in range(5):
          #plt.subplot(5,5, i +1)
      tree.plot_tree(rf.estimators_[75], filled=True, feature_names=breast_cancer.
       →feature_names, class_names=breast_cancer.target_names)
      plt.show()
```



```
[21]: y_pred_test = cross_val_predict(rf, X_test, y_test, cv=5)
    conf_mat = confusion_matrix(y_test, y_pred_test)
    class_report = classification_report(y_test, y_pred_test)

[22]: import seaborn as sns
    plt.figure(figsize=(7,5))
    sns.heatmap(conf_mat, annot=True)
    plt.xlabel('Predicted')
    plt.ylabel('Truth')
```

[22]: Text(58.2222222222214, 0.5, 'Truth')


```
[23]: print("Confusion Matrix:")
    print(conf_mat)
    print("\nClassification Report:")
    print(class_report)
```

Confusion Matrix:

[[38 5]

[3 68]]

Classification Report:

	precision	recall	f1-score	support
0	0.93	0.88	0.90	43
1	0.93	0.96	0.94	71
accuracy			0.93	114
macro avg	0.93	0.92	0.92	114
weighted avg	0.93	0.93	0.93	114

```
[24]: print("cross_val_predict ")
    print(cross_val_predict)

    cross_val_predict
    <function cross_val_predict at 0x7f1f33c34ee0>
[ ]:
```