Packaging Evolution: From Basics to 3D Integration

Module 5: Package Design and Modelling – Building a Semiconductor Package from Scratch

Objective: To model a complete wire bond semiconductor package cross-section using Ansys Electronics Desktop (AEDT), including all major components such as die, substrate, die attach, bond pads, wires, and Mold compound.

5.1 - Introduction to Cross-Section Modelling in AEDT

This hands-on lab is not focused on simulation but on **physical geometry creation** of a package in **Q3D Extractor**. The package stack includes:

- Die
- Die attach layer
- Substrate
- Bond pads
- Bond wires
- Mold compound

Package Specifications

Component	Material	Dimensions	Thickness/Height
Die	Silicon	3 mm x 3 mm	0.2 mm
Substrate	FR4	5 mm x 5 mm	0.5 mm
Die Attach Layer	Modified Epoxy	3 mm x 3 mm	0.1 mm
Die Bond Pads	Copper	0.2 mm x 0.2 mm	0.005 mm
Substrate Bond Pads	Copper	0.2 mm x 0.2 mm	0.01 mm
Bond Wire	Gold	JEDEC 4-point	-
Mold Compound	Ероху	5 mm x 5 mm	1.2 mm

5.2 – Creating the Die and Substrate in AEDT

Step 1: Launch AEDT

• Select Q3D Layout Design.

Step 2: Set Units

• Modeler \rightarrow Units \rightarrow mm (or μ m for finer control)

Step 3: Create Die

- Draw \rightarrow Rectangle \rightarrow 3 mm \times 3 mm at (0, 0, 0)
- Modeler → Surface → Thicken Sheet → 0.2 mm
- Rename as **Die**, set **Material** = Silicon

Step 4: Create Substrate

- Draw rectangle \rightarrow 5 mm \times 5 mm
- Position at (-1, -1, -0.1)
- Thicken Sheet $\rightarrow -0.5$ mm
- Rename as **Substrate**; set **Material** = FR4

5.3 – Add Die Attach and Bond Pads

Step 5: Die Attach Layer

• Rectangle: $3 \text{ mm} \times 3 \text{ mm at } (0, 0, 0)$

• Thickness: -0.1 mm

• Set material: Modified Epoxy

• Colour it for easier distinction

Step 6: Bond Pads

• **Die Pad**: $0.2 \text{ mm} \times 0.2 \text{ mm} \times 0.005 \text{ mm}$

o Position: (0.2, 0.2, 0.2)

o Material: Copper

• **Substrate Pad**: $0.2 \text{ mm} \times 0.2 \text{ mm} \times 0.01 \text{ mm}$

o Position: (0.2, -0.7, -0.1)

o Material: Copper

5.4 – Wire Bond Creation

Step 7: Draw Bond Wires

- Draw → Bondwire Tool
- Connect center of die pad to substrate pad
- Select **JEDEC 4-point** wire shape
- Assign Material: Gold
- Repeat for all required pad connections

5.5 - Mold Compound Enclosure

Step 8: Add Mold

• Draw rectangle: 5 mm × 5 mm

• Position: (-1, -1, -0.1)

• Thickness: 1.2 mm (covers die and wires)

• Material: Epoxy Moulding Compound

• Leave margin for laser marking or surface engraving

Visual Guide

• Use color-coded materials to distinguish components

