Iris Dataset

Hypothesis

```
In [7]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
```

Loading data in Pandas Dataframe

```
In [8]:
```

```
data=pd.read_csv('Iris.csv')
data
```

Out[8]:

		осраничасноги	Petailenguicm	PetalWidthCm	Species
0 1	5.1	3.5	1.4	0.2	Iris-setosa
1 2	4.9	3.0	1.4	0.2	Iris-setosa
2 3	4.7	3.2	1.3	0.2	Iris-setosa
3 4	4.6	3.1	1.5	0.2	Iris-setosa
4 5	5.0	3.6	1.4	0.2	Iris-setosa
145 146	6.7	3.0	5.2	2.3	Iris-virginica
146 147	6.3	2.5	5.0	1.9	Iris-virginica
147 148	6.5	3.0	5.2	2.0	Iris-virginica
148 149	6.2	3.4	5.4	2.3	Iris-virginica
149 150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Feature Extraction and Test-Train-Split

```
In [9]:
```

```
data = data.replace(['Iris-versicolor','Iris-virginica','Iris-setosa'],[0, 1, 2])
data
```

Out[9]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	2
1	2	4.9	3.0	1.4	0.2	2
2	3	4.7	3.2	1.3	0.2	2
3	4	4.6	3.1	1.5	0.2	2

4	lģ	SepalLength@m	SepalWidth@ng	PetalLengthGma	PetalWidth@n2	Species
145	146	6.7	3.0	5.2	2.3	1
146	147	6.3	2.5	5.0	1.9	1
147	148	6.5	3.0	5.2	2.0	1
148	149	6.2	3.4	5.4	2.3	1
149	150	5.9	3.0	5.1	1.8	1

150 rows × 6 columns

```
In [10]:
```

```
X = data.drop("Species",axis=1)
Χ
```

Out[10]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

In [11]:

```
y = data["Species"]
У
Out[11]:
0
      2
      2
1
2
      2
3
      2
      2
4
      . .
     1
145
     1
146
     1
147
     1
148
149
Name: Species, Length: 150, dtype: int64
In [12]:
```

```
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
```

In [13]:

```
X train
```

Out[13]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
96	97	5.7	2.9	4.2	1.3
105	106	7.6	3.0	6.6	2.1
66	67	5.6	3.0	4.5	1.5
0	1	5.1	3.5	1.4	0.2
122	123	7.7	2.8	6.7	2.0
71	72	6.1	2.8	4.0	1.3
106	107	4.9	2.5	4.5	1.7
14	15	5.8	4.0	1.2	0.2
92	93	5.8	2.6	4.0	1.2
102	103	7.1	3.0	5.9	2.1

100 rows × 5 columns

Importing Models (Algorithms)

```
In [14]:
labels names = ['I.setosa', 'I.versicolor', 'I.virginica']
In [15]:
labels_names
Out[15]:
['I.setosa', 'I.versicolor', 'I.virginica']
In [16]:
clf=SVC()
clf.fit(X_train, y_train)
Out[16]:
SVC()
In [17]:
pred = clf.predict(X test)
pred
Out[17]:
array([0, 2, 1, 0, 0, 2, 0, 1, 0, 0, 1, 2, 2, 2, 2, 0, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 2, 2, 1, 0, 2, 2, 2, 1, 0, 0, 2,
        2, 0, 1, 1, 0, 1])
In [18]:
metrics.accuracy score(y test, pred)
Out[18]:
1.0
In [19]:
metrics.accuracy score(y test, pred)
O11+ [1 Ω1.
```

```
Out[IJ]:
In [20]:
print(metrics.classification_report(
   y_test, pred, target_names=labels_names))
            precision recall f1-score
                                        support
               1.00 1.00
1.00 1.00
                                  1.00
                                            15
   I.setosa
                                 1.00
                                            16
I.versicolor
                        1.00
                                 1.00
                                            19
I.virginica
               1.00
                                  1.00
                                            50
   accuracy
macro avg
weighted avg
               1.00 1.00
                                 1.00
                                            50
               1.00
                        1.00
                                 1.00
                                            50
In [ ]:
In [ ]:
```