NUSRI Summer Programme 2016

RI3004A 3D Graphics Rendering

Lecture 5 Viewing

School of Computing National University of Singapore

Objectives

- Specifying camera position and orientation
 - View transformation
- Projection
 - Orthographic
 - Perspective

Elements of Image Formation

- Objects ✓
 - We have learned how to define objects' geometry and put them in the world coordinate frame
- Viewer
 - This lecture

- Light source(s)
- Materials

Synthetic Camera Model

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
 - converge at a center of projection
 - are parallel
- Such projections preserve lines
 - but not necessarily angles
- Nonplanar projection surfaces are needed for applications such as map construction

Perspective vs Parallel

Orthographic Projection

- Special case of parallel projection
 - Projectors are orthogonal to projection surface
- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals

Perspective Projection

Projectors converge at center of projection

 Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution)

Looks more realistic

 Equal distances along a line are not projected into equal distances (nonuniform foreshortening)

Angles preserved only in planes parallel to the projection plane

Computer Viewing

Computer Viewing

- There are three aspects of the viewing process, all of which are implemented in the pipeline
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Perspective or orthographic
 - Clipping
 - Setting the view volume
 - Only some part of the world appears in viewport

The OpenGL Camera

- The camera has a local coordinate frame, called the camera coordinate frame
 - Camera is located at the origin
 - Looking in negative z direction
 - +y-axis is the "up-vector"
- All projections are w.r.t. the camera frame
- Initially the world and camera frames are the same
 - Default model-view matrix is an identity

Default Projection

- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

View Transformation

Positioning the Camera

Moving the Camera Frame

 By default, the camera coordinate coincides with the world coordinate frame

Often, we want to put the camera at other location and

orientation

14

View Transformation

- In order to do projection and clipping later, all points in the world frame must be expressed w.r.t. the camera frame
 - This is called view transformation
 - Can be performed using a 4x4 matrix
 - It is made up of a translation first, then a rotation
 - $\bullet \mathbf{M}_{\text{view}} = \mathbf{R} \mathbf{T}$
 - The translation T moves the camera position back to the world origin
 - The rotation R rotates the axes of the camera frame to coincide with the corresponding axes of the world frame
 - Multiply all points in the world frame by M_{view} and they will be expressed w.r.t. to the camera frame

View Transformation

Suppose the camera has been moved to the location $[e_x, e_y, e_z]^T$, and its x_c , y_c , z_c axes are the unit vectors \mathbf{u} , \mathbf{v} , \mathbf{n} , respectively, then

$$\mathbf{M}_{\text{view}} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Note that $[e_x, e_y, e_z]^T$ and \mathbf{u} , \mathbf{v} , \mathbf{n} are all specified w.r.t. to the world frame

View Transformation in OpenGL

In OpenGL, the view transformation matrix is normally the last transformation in the model-view matrix

```
glMatrixMode( GL_MODELVIEW ):
glLoadIdentity();
// specify view transformation matrix here;
...
```

- The GLU library contains the function gluLookAt() to form the required view transformation matrix through a simple interface
 - Conceptually, it positions the camera at the required location and orientation
 - Internally, it generates a view transformation matrix and post-multiplies it to the current model-view matrix

Using the gluLookAt() Function

```
gluLookAt( eyex, eyey, eyez,
                  atx, aty, atz,
                  upx, upy, upz);
                                   (at_x, at_y, at_z)
          (up_x, up_y, up_z)_{\bullet}
                       (eye<sub>x</sub>, eye<sub>y</sub>, eye<sub>z</sub>)
```

The gluLookAt() Function

- Note that it does not directly specify the camera frame axes vectors u, v, n
- The "up-vector" may not be perpendicular to the view direction
- The vectors **u**, **v**, **n** can be derived as follows
 - $\mathbf{n} = \text{normalize}(\mathbf{eye} \mathbf{at})$
 - $\mathbf{u} = \text{normalize}(\mathbf{up}) \times \mathbf{n}$
 - \square $\mathbf{v} = \mathbf{n} \times \mathbf{u}$

Projection

Defining the View Volume

OpenGL Projections

- In OpenGL, after a vertex is multiplied by the model-view matrix, it is then multiplied by the projection matrix
- The projection matrix is a 4x4 matrix that defines the type of projection
- The projection matrix can be specified by first defining a view volume (or clipping volume) in the camera frame
 - For orthographic projection, use glortho()
 - For perspective projection, use glfrustum()

OpenGL Projections

- A projection matrix is then computed such that it maps points in the view volume to a canonical view volume
 - ⁿ The canonical view volume is the 2 x 2 x 2 cube defined by the planes $x = \pm 1$, $y = \pm 1$, $z = \pm 1$
 - Also called the *Normalized Device Coordinates* (NDC)
- The canonical view volume is then mapped to the viewport (*viewport transformation*)

Orthographic Projection

OpenGL Orthographic Projection

 Can be specified by defining a view volume (in the camera frame) using

```
glOrtho( left, right, bottom, top, near, far );
```


OpenGL Orthographic Projection

- The glortho() function then generates a matrix that linearly maps the view volume to the canonical view volume, where
 - □ (left, bottom, –near) is mapped to (–1, –1, –1)
 - □ (right, top, far) is mapped to (1, 1, 1)

Orthographic Projection Matrix

- The mapping can be found by
 - First, translating the view volume to the origin
 - Then, scaling the view volume to the size of the canonical view volume

$$\mathbf{M}_{\text{ortho}} = \mathbf{S} \left(\frac{2}{right - left}, \frac{2}{top - bottom}, \frac{2}{near - far} \right) \cdot \mathbf{T} \left(\frac{-(right + left)}{2}, \frac{-(top + bottom)}{2}, \frac{(far + near)}{2} \right)$$

PNote that z = -near is mapped to z = -1, and z = -far to z = +1

Orthographic Projection Matrix

$$\mathbf{M}_{\text{ortho}} = \begin{bmatrix} \frac{2}{\textit{right} - \textit{left}} & 0 & 0 & \frac{-(\textit{right} + \textit{left})}{\textit{right} - \textit{left}} \\ 0 & \frac{2}{\textit{top} - \textit{bottom}} & 0 & \frac{-(\textit{top} + \textit{bottom})}{\textit{top} - \textit{bottom}} \\ 0 & 0 & \frac{-2}{\textit{far} - \textit{near}} & \frac{-(\textit{far} + \textit{near})}{\textit{far} - \textit{near}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Viewport Transformation

 The canonical view volume is then mapped to the viewport (from NDC to window coordinates)

$$\frac{x_{\text{NDC}} - (-1)}{2} = \frac{x_{\text{win}} - x_{\text{vp}}}{w} \implies x_{\text{win}} = x_{\text{vp}} + \frac{w(x_{\text{NDC}} + 1)}{2}$$

$$\frac{y_{\text{NDC}} - (-1)}{2} = \frac{y_{\text{win}} - y_{\text{vp}}}{h} \implies y_{\text{win}} = y_{\text{vp}} + \frac{h(y_{\text{NDC}} + 1)}{2}$$

$$z_{\text{win}} = \frac{z_{\text{NDC}} + 1}{2}$$

- By default, z_{win} is between 0 and 1
- It is needed for z-buffer hidden surface removal

Perspective Projection

Simple Perspective Projection

- Center of projection at the origin
- Projection plane is z = d, d < 0

Perspective Equations

Consider top and side views

Using Matrix Multiplication

• Consider p = Mq where

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z / d \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \qquad \mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{q} = \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

Perspective Division

- However $w \neq 1$, so we must divide by w to return from homogeneous coordinates
- This perspective division yields

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} \qquad \text{perspective division} \qquad \mathbf{p'} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ \frac{d}{d} \\ 1 \end{bmatrix}$$

the desired perspective equations

This is one reason why 3D graphics API uses homogeneous coordinates

OpenGL Perspective Projection

Can be specified by defining a view volume (view frustum) in the camera frame using

```
glFrustum( left, right, bottom, top, near, far );
```


OpenGL Perspective Projection

■ The glfrustum() function then generates a matrix that maps the view frustum to the canonical view volume, where

OpenGL Perspective Projection

Perspective Projection Matrix

$$\mathbf{M}_{persp} = \begin{bmatrix} \frac{2 \cdot near}{right - left} & 0 & \frac{right + left}{right - left} & 0 \\ 0 & \frac{2}{top - bottom} & \frac{top + bottom}{top - bottomt} & 0 \\ 0 & 0 & \frac{-(far + near)}{far - near} & \frac{-2 \cdot far \cdot near}{far - near} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Projection Using Field of View

- The glFrustum() function allows non-symmetric view
- More often, we want to specify a symmetric view volume
- We can use

gluPerspective(fovy, aspect, near, far);

The OpenGL Transformation Stages

End of Lecture 5