

校园遇到一个shy的男同学,他是Math Phd还是Business School的?

Q:

P (math | shy) 和 P (business | shy)

A:

P (shy | math) 和 P (shy | business)

(大部分同学比较了这两个概率)

A Puzzle:

校园遇到一个shy的男同学,他是Math Phd还是Business School的?

贝叶斯公式:
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$
 Posterior = $\frac{\text{likelihood x prior}}{\text{evidence}}$

似然 (likelihood)

极大似然估计 (MLE)

$$L(\theta|x)=P(X=x|\theta)$$

Maximum Likelihood Estimate (MLE): 找出参数Θ,使得从中抽样所得的观测数据的概率最大

$$(L\left(heta
ight) = L\left(x_{1}, x_{2}, \ldots, x_{n}; heta
ight) = \prod_{i=1}^{n} p\left(x_{i}; heta
ight)$$

贝叶斯公式应用I-分类器:

$$P(B|\underline{A}) = \frac{P(A|B)P(B)}{P(A)}$$

Posterior = likelihood x prior evidence

in order to categorize a signal. It asks the question: based on

my generation assumptions, which category is most likely to

生成模型对数据的生成方式进行建模。它提出一个问题:根据我的生成方式假设,哪个类别(y)最有可能产生当前的特征(x)?需要对P(x|x)进行建模。 判别模型不关心数据是如何生成的,它只是对给定的特征进行判别/分类。直接对P(y|x)进行建模。

贝叶斯公式应用 II - 医学诊断:

$$p(病因|症状) = \frac{p(症状|病因)p(病因)}{p(症状)}$$

	Well	Cold	Allergy
P(d)	0.9	0.05	0.05
P(sneeze d)	0.1	0.9	0.9
P(cough d)	0.1	0.8	0.7
P(fever d)	0.01	0.7	0.4

贝叶斯公式应用 II - 医学诊断:

$$p$$
(病因|症状) = $\frac{p(症状|病因)p(病因)}{p(症状)}$

早期AI:

An attempt to simplify probabilistic reasoning in 1960s medical diagnostic programs

