1 Cyclotomic Polynomials

Theorem 1.1. For prime p, we have $x^p - 1 = (x - 1)(x^{p-1} + \dots + 1)$ and $\mu_{\varepsilon_p}^{\mathbb{Q}} = x^{p-1} + \dots + 1$.

Definition 1 $(n^{\text{th}} \text{ cyclotomic polynomial}).$

$$\Phi_n(x) = \prod_{\substack{\varepsilon \in \sqrt[n]{1} \\ |\varepsilon| = n}} (x - \varepsilon) = \frac{x^n - 1}{\prod_{\substack{d \mid n, d < n}} \Phi_d(x)}$$

Theorem 1.2. Φ_n is irreducible over \mathbb{Q} .

Corollary 1. (a) $[\mathbb{Q}(\exp(\frac{2\pi i}{n})):\mathbb{Q}] = \varphi(n)$ (where φ is Euler's totient function);

- (b) $\left[\mathbb{Q}\left(\cos\left(\frac{2\pi}{n}\right)\right):\mathbb{Q}\right]=\frac{1}{2}\varphi(n)$. Furthermore, all algebraic conjugates of $\cos\frac{2\pi}{n}$ are $\cos\frac{2\pi k}{n}$ for $\gcd(k,n)=1$.
- (c) Let $c = \frac{a+bi}{a-bi} \in \sqrt[\infty]{1}$, where $a,b \in \mathbb{Z}$. Then $c \in \{\pm i,\pm 1\}$

Lemma 1.3. Let \mathbb{F} be a finite field. Then $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$ is a cyclic group.