Index LVL 2

Tema 0: Introducción e historia

- Dos grandes revoluciones en la física en el SXX: QM y GR.
- Al juntarlas se desarrolla la QED:

Tema 1: Ecuaciones de Klein-Gordon y de Dirac

1.0 Roadmap

- 1.1 Repaso: ¿Qué es una ecuación de onda?
 - Ecuación de Schrödinger de una partícula no relativista

- o General, vale para cuiaquier sistema cuántico
- o EqSchrö para cada partícula lleba a una ecuación de onda
- Las "instancias" de la ecuacion de Schrödinger suelen llamarse ecuaciones de onda
- Un sistema físico se describe por un ket perteneciente al espacio dde estados del sistema
- La ecolución temporal del estado se obtiene con la actuación del operador de Hamilton
- Lo que cambia del caso no relativista al relativista es el espacio de estados y la forma del hamiltoniano
- Eg: Particula no relativista en una dimensión
 - Al ser cuántico recurrimos a las reglas de cuantización canónicas:
- Espacio de estados del sistema

1.2 Ecuación de Klein-Gordon

- Sistema natural de unidades
- Ecuación de onda de Klein-Gordon
 - Autoestados del Hamiltoniano
 - Espacio de Minkowski + SdR inercial
 - Métrica de Minkowski
 - Componentes covariantes
 - Klein-Gordon relativista partícula libre spin 0
 - D'Alambertiano
 - Soluciones
 - Energía positiva y negativa
 - Forma covariante de la ecuación de continuidad
- Generalizaciones de Klein-Gordon al caso de interacciones electromagnéticas
 - Ecuaciones de Maxwell
 - Cuadrivector potencial
 - Dinámica relativista
 - Acción
 - Momento canónico conjugado
 - Hamiltoniano
 - Operador cuadrimomento
 - Derivada covariante
 - Cuadrivector densidad de carga eléctrica

1.3 Ecuación de Dirac

- Propiedades/condiciones
 - Espinores
 - Hamiltoniano de Dirac
 - Cuadriespinor
- Ecuación de Dirac compacta
 - Notación de Feynmann
 - Matrices gamma
- Representaciones
 - o De Dirac

- Matrices de Pauli
- o De Weyl
- Propiedades de la matriz de Dirac
 - Conjugado de Dirac
 - o Conservación de la 4corriente
- Teoría de Maxwell-Dirac
 - Densidad lagrangiana
 - Ecuación de Maxwell-Dirac
- Límite no relativista de la ecuación de Dirac
 - Espinores
 - o Funciones de evolución lenta
 - o Reducción no relativista de la ecuación de Dirac
 - Matrices de espín
- Ecuación de Pauli
 - Momento magnético de espín
 - Radio giromagnético
- Átomo de hidrógeno
 - Estructura fina
 - o Potencial del átomo de hidrógeno
 - o Corrección relativista
 - Efecto Lamb e hiperfina
- Ecuación de Dirac en el caso general
 - o Representación de Weyl
 - Onda plana
 - Ansatz
 - Biespinor
 - Soluciones
 - Problemas de las soluciones
 - Helicidad
 - Operadores
- Solución de la ecuación de Dirac para partícula libre
 - Estados de energia negativa
 - Mar de Dirac

Tema 2 : Cuantización del campo electromagnético.

2.1 Cuantización canónica

- Formalismo lagrangiano
- Formalismo Hamiltoniano
- Cuantización
- El oscilador armónico cuántico

2.2 Cuantización del campo electromagnético

- Campo electromagnético clásico
- Campo electromagnético en una cavidad
- Cuantización

2.3 Emisión y absorción de fotones por átomos

- Estado estacionario
- Base de Estados
- Absorción y Emisión de un fotón

2.4 Teoría de perturbaciones dependientes del tiempo

- Hamiltoniano de interacción
- Elementos de Matriz
- Aplicaciones: Emisión espontánea

Tema 3: Cuantización canónica covariante de un campo escalar.

3.1 Teoría clásica de campos relativista

- Espacio de Minkowski
 - Elemento de volumen
 - Principio de mínima acción
 - o Condiciones en la frontera
 - Teorema de Gauss
- Ejemplos
 - 1. Campo escalar real
 - 2. Campo escalar complejo
 - 3. Campo electromagnético
 - 0
- 4.
- 5. Cuadriespinor de Dirac
- Ecuación de Dirac de una partícula cargada

3.2 Campo escalar real

• Momento canónico Conjugado

- Densidad hamiltoniana
- Hamiltoniano clásico
- Relaciones de conmutación
- Evolución en representación de Heisemberg
- Solución general de la ecuación de Klein-Gordon
- Invarianza Lorentz
- Lorentz Invariant Phase Space de una partícula
- Relaciones de conmutación de creación y destrucción
- Estado vacío vs estado nulo
- Interpretación heurística de la delta de Dirac
- Espacio de estados
 - Conexión espín-estadística
- Valor esperado de la energía en el vacío
 - o Transformada de Fourier
 - Densidad de partículas con momento k
- Órden normal de un operador
 - Producto cronológico
 - Propagador o función de Green
 - Teorema de función de Green
 - Integración por residuos
 - Teorema de Cauchy
 - Integral de Feynman
- Más sobre el operador campo

3.3 Campo escalar complejo

- Momento canónico Conjugado
- Densidad hamiltoniana
- Campo complejo + Electromagnetismo
 - o Derivada covariante
- Solución de Klein-Gordon para un campo complejo escalar
 - Conmutadores
 - Partículas y antipartículas
 - Operador carga eléctrica
 - Observables simultáneos
- Repaso de Representaciones
 - Imagen de Schrödinger
 - o Imagen de Heisenberg
 - Imagen de interacción o de Dirac
 - Operador evolución libre
- Ecuación de Schrödinger dependiente del tiempo
 - Método de Von-Neumann
 - Notas de normalización

Tema 4: Matriz S, secciones eficaces y vidas medias.

- Densidad de probabilidad
 - Operador de scattering
 - Elementos de matriz
 - Matriz de reacción
- Casos
 - Desintegración de Partículas
 - Anchura de Desintegración
 - Nota sobre anchuras
 - Promedio de Estados
 - Canal de Desintegración
 - Fracción de Desintegración o Branching Ratio
 - Colisión de dos Partículas
 - Sección eficaz
 - Sección eficaz diferencial
 - Caso cuántico General
 - Sección eficaz no polarizada
 - Complicaciones
 - Varios estados de espín
 - Varios canales de Desintegración
- Colisiones y desintegraciones a dos cuerpos
 - Anchura a dos cuerpos
 - Caso particular: Colisión elástica
 - o Amplitudes de dispersión y teoría de perturbaciones
 - Amplitud de probabilidad de transición
 - Término de autointeracción
 - Contracción
 - Función de Green de dos puntos
 - o Cambio de variables: Coordenadas relativistas
- Diagramas de Feynman
 - Variables de
 - Reglas de Feynman
 - Flujo de carga
 - Flujo de momento
 - Diagramas de aniquilación
 - Vértices

Tema 5: Cuantización canónica de campos fermiónicos.

• Campos fermiónicos libres

5.1 Cuantización canónica

- Relaciones de conmutación y anticonmutación
- Soluciones de la ecuación de Dirac en función de operadores de creación y destrucción
- Operadores número de particulas y antipartículas
- Espacio de Fock
 - Principio de exclusión de Pauli
- La función de dos puntos o Propagador

Tema 6: Electrodinámica cuántica.

- Lagrangiano clásico Maxwell-Dirac
- Invarianza Gauge
 - Teoría de perturbaciones
 - o Campo Fermiónico
 - o Operadores de campo
 - o Relaciones de conmitación
 - Funciones de dos puntos
 - Propagador del fotón
- Amplitudes de dispersión en electrodinámica cuántica
- Dispersión Moller
- Dispersión Bhaba
- Reglas de Feynman en electrodinámica cuántica
- Dispersión Compton
- Propiedades importantes
- Secciones eficaces no polarizadas
 - Dispersión Moller
 - Capa de masas
- Límites de una teoría relativista
 - No relativistas
 - Ultrarrelativista
- Dispersión Bhaba
- Dispersión Compton

Capitulo 1: Introducción: Producción por pares en la aniquilación e-e+

Capitulo 2: El campo de Klein-Gordon

- 2.1 La necesidad del punto de vista de Campos
- 2.2 Elementos de la teoría clásica de Campos
 - Teoría de campos lagrangiana
 - Teoría de campos hamiltoniana
 - Teorema de Noether
- 2.3 El campo de Klein-Gordon como osciladores armónicos
- 2.4 El campo de Klein-Gordon en el espaciotiempo
 - Causalidad: El propagador de Klein-Gordon
 - Creación de partículas por una fuente clásica

Capitulo 3: El campo de Dirac

- 3.1 Invariancia Lorentz de las ecuaciones de Onda
- 3.2 La ecuación de Dirac
 - Espinores de Weyl
- 3.3 Soluciones de partículas libres de la ecuación de Dirac
 - Suma de espines
- 3.4 Matrices de Dirac y campos de Dirac bilineales
- 3.5 Cuantización del campo de Dirac
 - Espín y estadística: El propagador de Dirac
- 3.6 Simetrías discretas de la teoría de Dirac
 - Paridad, inversión temporal y conjugación de carga

Capitulo 4: Campos en interacción y diagramas de Feynman

- 4.1 Teoría de perturbaciones: Filosofía y ejemplos
- 4.2 Expansión perturbativa de las funciones de correlación
- 4.3 Teorema de Wick

- 4.4 Diagramas de Feynman
- 4.5 Sección eficaz y la matriz S
- 4.6 Calculando los elementos de matriz de S con diagramas de Feynman
- 4.7 Reglas de Feynman para Fermiones
 - Teoría de Yukawa
- 4.8 Reglas de Feynman para electrodinámica cuántica
 - El potencial de Coulomb

Capitulo 5: Procesos elementales en electrodinámica cuántica

5.1
$$\$e^+e^- \rightarrow \mu^+\mu^-\$$$
: Introducción

- Trazas
- Sección eficaz no polarizada

a+ a

 $e^+e^- o \$\$ Hadrones$

5.2
$$\$e^+e^- \to \mu^+\mu^-\$$$
: Helicidad

5.3
$$\$e^+e^- \rightarrow \mu^+\mu^-\$$$
: Límite no relativista

- Estados acoplados
- Producción y decaimientos de vector meson

5.4 Simetria cruzada

- Escattering electrón-muón
- Variables de Mandelstam

5.5 Escattering Compton

- Suma de polarizaciones
- La fórmula de Klein-Nishima
- Comportamiento a altas energías
- Aniquilación por pares a fotones

Capitulo 1: Física de particulas y relatividad especial

- 1.1 Relatividad especial
- 1.2 Un repaso rápido a la fisica de parrtículas

1.3 Partículas elementales 1.4 El mecanismo de Higgs 1.5 Gran unificación 1.6 Supersimetría 1.7 Teoría de cuerdas Capitulo 2: Teoría de campos lagrangiana 2.1 Mecánica langrangiana básica 2.2 La acción y las ecuaciones de movimiento 2.3 Momento canónico y el Hamiltoniano 2.4 Teoría de campos lagrangiana 2.5 Simetrias y leyes de Conservación 2.6 Corrientes conservadas 2.7 El campo electromagnético

2.8 Transformaciones Gauge

Capitulo 3: Una Introducción a la teoría de grupos

- 3.1 Representación de un grupo
- 3.2 Parámetros de un grupo
- 3.3 Grupos de Lie
- 3.4 El grupo de rotaciones
- 3.5 Representando a las rotaciones
- $3.6 \, SO(N)$
- 3.7 Grupos unitarios
- 3.8 Operadores de Casimir

Capitulo 4: Simetrías discretas y números cuánticos

- 4.1 Numeros cuánticos aditivos y multiplicativos
- 4.2 Paridad
- 4.3 Conjugación de la carga

- 4.4 Violación de CP
- 4.5 El Teorema CPT

Capitulo 5: La ecuación de Dirac

- 5.1 El campo de Dirac clásico
- 5.2 Añadiendo la cuántica
- 5.3 La forma de las matrices de Dirac
- 5.4 Algunas propiedades tediosas de las matrices de Dirac
- 5.5 Operadores autoadjuntos y propiedades de transformación
- 5.6 Notación slash
- 5.7 Soluciones de la ecuación de Dirac
- 5.8 Soluciones en el espacio libre (vacío)
- 5.9 Boosts, rotaciones y helicidad
- 5.10 Espinores de Weyl

Capitulo 6: Campos escalares

- 6.1 Llegando a la ecuación de Klein-Gordon
- 6.2 Reinterpretando el campo
- 6.3 Cuantización de campos escalares
- 6.4 Estados en QFT
- 6.5 Descomposición en frecuencias positivas y negativas
- 6.6 Operadores número
- 6.7 Normalización de los estados
- 6.8 Estadística de Bose-Einstein
- 6.9 Productos normales y ordenación temporal
- 6.10 El campo escalar complejo

Capitulo 7: Las reglas de Feynman

- 7.1 La representación de interacción
- 7.2 Teoría de perturbaciones

- 7.3 Lo básico de las reglas de Feynman
- 7.4 Calculando amplitudes
- 7.5 Pasos para construir una amplitud
- 7.6 Tasa de descomposición y tiempos de vida

Capitulo 8: Electrodinámica cuántica

- 8.1 Otro repaso de la electrodinámica clásica
- 8.2 El campo electromagnético cuantizado
- 8.3 Invariancia gauge y QED
- 8.4 Reglas de Feynman para QED

