Communicating automata

Communicating automata (CA)

- Simple formalism to describe asynchronous concurrent systems
- Allow the basic concepts studied in this course to be introduced
- Important notions:
 - System description using an automaton
 - Decomposition into communicating automata
 - automata product (parallelisation)
 - automata synchronisation
 - construction of the state graph

Example: car lights

dashboard

```
\begin{array}{c} V,\ V' \\ C,\ C' \\ P,\ P' \end{array} \begin{array}{c} \text{swith on/ off sidelight ($\it veilleuses$)} \\ \text{switch on / off dimmers ($\it codes$)} \\ \text{switch on / off high beam ($\it phares$)} \end{array} \begin{array}{c} V \in \{0,\ 1\} \\ C \in \{0,\ 1\} \\ D,\ D' \end{array} \begin{array}{c} \text{switch on / off left (gauche) turn signal} \\ \text{switch on / off right (droit) turn signal} \end{array} \begin{array}{c} k \in \{0,\ g,\ d\} \end{array}
```

State variables:

```
v = 1 iff sidelight on

c = 1 iff dimmers on

p = 1 iff high beam on

k \in \{g / d\} iff left/ right turn signal on
```

Modeling with a single automaton (1/2)

- states: (v, c, p, k)
- initial state: $\langle 0, 0, 0, 0 \rangle$ (all lights off)
- transitions labeled by commands (V, V',...)

12 states, 34 transitions

Modeling with a single automaton (2/2)

Remarks:

- Theoretical number of states (v, c, p, k):
 2 × 2 × 2 × 3 = 24
- There are only 12 states ⇒ some states are not reachable from the initial state due to the system constraints
- There is no sink state: all states have at least one successor
- From each state, the initial state is reachable (the system is reinitialisable)

Modeling with parallel automata (1/4)

Use the independance of subsystems VPC and GD

Automaton of subsystem 1: (state: (v, c, p))

$$\underbrace{\langle 0, 0, 0 \rangle}_{V'} \xrightarrow{V} \langle 1, 0, 0 \rangle \xrightarrow{C}_{C'} \langle 0, 1, 0 \rangle \xrightarrow{P}_{P'} \langle 0, 0, 1 \rangle$$

4 states, 6 transitions

Automaton of subsystem 2: (state: $\langle k \rangle$)

$$\langle g \rangle \xrightarrow{G} \langle 0 \rangle \xrightarrow{D} \langle d \rangle$$
 3 states, 4 transitions

Modeling with parallel automata (2/4)

Remarks:

 Complexities are added instead of multiplied (« divide and conquer »):

```
4 + 3 << 12 states
6 + 4 << 34 transitions
```

- Generally, a system can be decomposed into subsystems that are not completely independent by adding communications and synchronisations
- But then the decomposition can introduce consistency problems (e.g. deadlocks)

Modeling with parallel automata (3/4)

The modular decomposition...

- ... can be imposed at the physical level
 - Modeling physically distributed activities
 - Example: multiprocessor or multitask execution
- ... can be chosen at the logical level
 - Can simplify the system design
 - Better program structuration

Modeling with parallel automata (4/4)

Two notions to be distinguished:

- Parallelism of description (logic parallelism)
 - = conceptual means to decompose a system into subsystems
- Parallelism of implementation (physical parallelism)
 - = execution on several processors or a mutitask OS
- « Orthogonal » notions:
- A program containing parallelism of description can be implemented sequentially (e.g., Lustre, Esterel) or in a distributed way (e.g., Ada)
- A program without parallelism of description can be implemented in parallel (e.g., parallelisation of Fortran code)

Automata: definition

An automaton or Labeled Transition System (LTS) is a 4-tuple M = $\langle S, A, T, s_0 \rangle$, where:

- S is a set of *states*
- A is a set of labels (actions)
- T ⊂ S × A × S is the transition relation
- $s_0 \in S$ is the *initial state*

Notation:
$$(\forall s_1, s_2 \in S, a \in A)$$

$$(s_1, a, s_2) \in I$$
 \iff $(or s_1 -a-> s_2)$

 $(s_1, a, s_2) \in T$ \Leftrightarrow there exists a transition labeled by a that goes from s_1 to s_2 by a that goes from s₁ to s₂

Automata

- LTS is the class of automata studied in this course: the information (labels) is attached to transitions
- There are other classes of automata:
 - with information attached to states: Kripke structures
 - with actions structured in the form of input/outputs:
 Mealy and Moore automata
- Advantages of the LTS model:
 - simplicity
 - adapted to the description of systems based on actions,
 e.g., systems communicating by messages exchanged on a network

Product of automata

Objective:

Define an internal composition law

 $\otimes: \mathsf{LTS} \times \mathsf{LTS} \to \mathsf{LTS}$

which expresses the parallel composition of two automata LTS₁ and LTS₂

Synchronise LTS₁ and LTS₂ on one or several actions

Goal: To be able to analyse the system behaviour

Product of asynchrounous automata

 Principle: independent actions cannot be observed simultaneously [Milner-89]

$$\downarrow a \otimes \downarrow b \rightarrow b \qquad b \qquad a$$

interleaving semantics

- ⇒ expansion of parallelism into choice and sequence (Milner's *expansion theorem*)
- But some actions can be synchronized

$$\downarrow a \otimes \downarrow a \rightarrow \downarrow a$$
 if a is an action to be synchronized

Automata product: definition

Let
$$M_1 = \langle S_1, A_1, T_1, s_{01} \rangle$$
 $M_2 = \langle S_2, A_2, T_2, s_{02} \rangle$
 $L \subseteq A_1 \cap A_2$ a set of actions to be synchronized

 $M_1 \otimes_L M_2 = \langle S, A, T, s_0 \rangle$ where:

$$- S = S_1 \times S_2$$

-
$$A = A_1 \cup A_2$$

-
$$s_0 = \langle s_{01}, s_{02} \rangle$$

- T is defined by rules R₁, R₂ and R₃

$$M_1$$
 evolves alone: R_1
 $s_1 \xrightarrow{a} s_1' \land a \notin L$
 $\langle s_1, s_2 \rangle \xrightarrow{a} \langle s_1', s_2 \rangle$

$$M_2$$
 evolves alone: R_2

$$s_2 \xrightarrow{a} s_2' \land a \notin L$$

$$\langle s_1, s_2 \rangle \xrightarrow{a} \langle s_1, s_2' \rangle$$

Example

Remarks

- if L = Ø (no action to be synchronized):
 M₁ and M₂ evolve fully asynchronously
- ⊗_L may create nondeterminism (ND) if an action present in both LTS is not in L Example:

deterministic

nondeterministic for a

Concurrent systems are generally ND

Example of modeling by CA

The mutual exclusion (ME) problem:

Given two processes P_0 and P_1 with a shared memory, can the mutual exclusion of accesses to this memory be guaranteed?

Several solutions « at the software level » were proposed to resolve the ME problem: algorithms of Peterson, Dekker, Knuth, ...

M. Raynal, Algorithmique du parallélisme : le problème de l'exclusion mutuelle. Dunod Informatique, 1984.

Example: The Peterson algorithm

```
var d_0: bool := false{ read by P_1, written by P_0 }var d_1: bool := false{ read by P_0, written by P_1 }var t \in \{0, 1\} := 0{ read/written by P_0 and P_1 }
```

```
loop forever { P<sub>0</sub> }
1 : { snc0 }
2 : d<sub>0</sub> := true
3 : t := 0
4 : wait (d<sub>1</sub> = false or t = 1)
5 : { debutsc<sub>0</sub> }
6 : { finsc<sub>0</sub> }
7 : d<sub>0</sub> := false
endloop
```

```
loop forever { P<sub>1</sub> }
1 : { snc<sub>1</sub> }
2 : d<sub>1</sub> := true
3 : t := 1
4 : wait (d<sub>0</sub> = false or t = 0)
5 : { debutsc<sub>1</sub> }
6 : { finsc<sub>1</sub> }
7 : d<sub>1</sub> := false
endloop
```

G. L. Peterson. *Myths about the mutual exclusion problem*. Information Processing Letters 12(3):115-116, June 13, 1981

Peterson: Automata for P₀ and P₁

Peterson: Automata for d₀, d₁, and t

Automaton for d_0 :

Automaton for d₁:

Automaton for t:

Peterson: System architecture (1/2)

- synchronized actions: "d₀:= false", "d₀:= true", ..., "t = 0?",
 ...
- non-synchronized actions: snc₀, snc₁, debutsc₀, ...

Peterson: System architecture (2/2)

The architecture can be expressed in several ways

$$\left(\begin{array}{cccc} (\mathsf{P}_0 \ \otimes_{\varnothing} \mathsf{P}_1) \ \otimes_{\mathsf{D}0 \ \cup \ \mathsf{D}1 \ \cup \ \mathsf{T}} \ (\mathsf{d}_0 \ \otimes_{\varnothing} \ \mathsf{d}_1 \ \otimes_{\varnothing} \ \mathsf{t}) \end{array}\right)$$

$$\left((P_0 \; \otimes_{\varnothing} \; P_1) \; \otimes_{D0 \; \cup \; D1} \left(d_0 \; \otimes_{\varnothing} \; d_1 \right) \right) \; \otimes_T \; t$$

Beware that \otimes_{l} is not an associative operator:

if
$$L \neq L'$$
 then $(\exists P_1, P_2, P_3)$ $(P_1 \otimes_L P_2) \otimes_{L'} P_3 \neq P_1 \otimes_L (P_2 \otimes_{L'} P_3)$

Building the product automaton

Adopted method: exhaustive enumeration of states

- Construction of the state space by exploring the transition relation forward from the initial state (forward reachability)
- Transitions are generated using R₁, R₂, and R₃
- When a new state is reached, one must verify whether it was already met; in this case, one must loop back to the existing state
- Various exploration strategies exist: breadth-first, depth-first, guided by a criterion, ...

Peterson: Product automaton

S = { f, t } × { f, t } × { 0, 1 } × { 1...7 } × { 1...7 }
A = {
$$snc_0$$
, snc_1 , ..., " d_0 := true", ... }
 s_0 = \langle f, f, 0, 1, 1 \rangle = ff011
T =

Remarks

The product automaton of the system is finite:

$$|S| \leq 2 \times 2 \times 2 \times 7 \times 7 = 392$$

- Often, the set of states that are reachable from the initial state is much smaller than the cartesian product of variable values (forbidden transitions due to synchronization constraints)
 Peterson: ~50 states, ~110 transitions
- There are tools to build the product automaton and/or explore the transition relation automatically

Exercise

Compute the following product:

Solution

Verification

Once the product automaton is generated, various properties of the system can be verified automatically (model checking).

For the Peterson algorithm:

- deadlock freeness: every state has (at least) one sucessor
- mutual exclusion: for i, j ∈ { 0, 1 }
 every sequence from debutsc_i to debutsc_j contains finsc_i
- starvation freeness: no process can monopolize the critical section indefinitely
- independent progress: each process can access the critical section if the other processes « do nothing »

Various forms of choice

Classically, one distinguishes between:

external choice (the environnement decides which branch will be taken)

the branch proposed by the environment will be chosen (if a and b are proposed: ND)

• *internal choice* (the system decides)

if the environment proposes action a, the system chooses a branch in a ND way

Comparison of LTS

Due to ND, beware when comparing two LTS The coffee machine example

3 actions: p = the custommer introduces a coin t / c = the custommer chooses tea / coffee

$$M_1 = t$$
 p
 $M_2 = t$
 p
 t
 p
 c

- M₁ and M₂ define the same language { p.t, p.c }
- Only M₁ is correct: possibility to choose t or c
- Equivalences stronger than language equivalence are necessary: bisimulations

Strong bisimulation

- Goal: build a relation between states that have
 « the same behaviour »
- Strong bisimulation is the strongest of such relations
- A relation R is a strong bisimulation if for all s₁, s₂
 ∈ S and a ∈ A:

Solid line: universal quantification, dashed line: existential quantification

Strong bisimulation: formal definition

- R is a strong bisimulation if \forall (s₁, s₂) \in R:
 - 1. $(\forall s_1-a->s_1') (\exists s_2') s_2-a->s_2' \text{ and } (s_1', s_2') \in R$
 - 2. $(\forall s_2-a->s_2') (\exists s_1') s_1-a->s_1' \text{ and } (s_1', s_2') \in R$
- Two states s_1 and s_2 are strong bisimilar ($s_1 \approx s_2$) iff there exists a strong bisimulation R st. (s_1, s_2) $\in R$
- Two LTS are strong bisimilar iff their initial states are strong bisimilar
- Without condition 2, the relation R is a strong simulation: s₁ is simulated by s₂ (s₂ simulates s₁), written s₁ ≤ s₂

Remark

 To prove bisimilarity: build a relation R and show that each of its elements satisfies conditions 1 and
 2

 To prove non-bisimilarity: find states that should verify the conditions but do not

Example

and

are bisimilar

Proof:

R = { $(s_0, t_0), (s_1, t_1), (s_1, t_1'), (s_2, t_2), (s_2, t_3)$ } is a bisimulation because:

- For the pair (s_0, t_0) :
 - s_0 -p-> s_1 and there exists t_0 -p-> t_1 st. $(s_1, t_1) \in R$ t_0 -p-> t_1 and there exists s_0 -p-> s_1 st. $(s_1, t_1) \in R$ t_0 -p-> t_1 ' and there exists s_0 -p-> s_1 st. $(s_1, t_1') \in R$
- For the pair (s₁, t₁): similar check...
- etc.

Proof:

- Assume $s_0 \approx t_0$
- Then, following action p, we must also have s₁ ≈ t₁ and s₁ ≈ t₁'
- To have s₁ ≈ t₁, t₁ should have an outgoing transition labeled by c,
 which is not the case
- (a similar argument with t allows s₁ ≈ t₁' to be disproved)
- This disproves $s_0 \approx t_0$ QED

Exercise

Are the following LTS bisimilar?

Solution

The answer is: yes

 $R = \{ (s_0, t_0), (s_0, t_1), (s_1, t_2) \}$ is a strong bisimulation (homework: prove it)

Exercise

1. Are the following LTS strong bisimilar?

2. Does the leftmost LTS simulate the rightmost LTS, and vice-versa?

Solution

- 1. The answer is no: s_1 and t_1 are not bisimilar, so neither are s_0 and t_0
- 2. The answer is yes in both cases
 If two LTS are bisimilar then each one simulates the other
 This exercise shows that the converse is false

Minimization

- To every LTS corresponds a unique LTS that is equivalent for strong bisimulation and whose number of states and transitions is minimal
- There exists an automated procedure allowing this minimal representative to be computed: minimization
- Example: Opp

is the minimal representative of

Internal action

- Special action, traditionally written τ
- Occurs in the LTS but « non observable » or « hidden » (non synchronizable)
- Possibility to abstract away (= rename into τ) the actions of the system that we do not need to observe, to fight against state space explosion
- Equivalences
 - Strong bisimulation: τ is handled as any other action
 - Weaker equivalences (e.g., branching bisimulation): transition s $-\tau$ -> s' can be compressed if s and s' lead to the same choices of visible actions

Example: The alternating-bit protocol

The alternating-bit protocol


```
( sender \otimes_{\emptyset} receiver ) \otimes_{\S} SDT0, SDT1, RDT0, RDT1, RACK0, RACK1, SACK0, SACK1 } ( medium1 \otimes_{\emptyset} medium2 )
```

Automata

Product of sender and medium1

LTS of the full system

270 states, 773 transitions

LTS minimized for strong bisimulation

112 states, 380 transitions

Action hiding

hide SDT0, SDT1, RDT0, RDT1, RACK0, RACK1, SACK0, SACK1 in (sender \otimes_{α} receiver)

 \otimes { SDT0, SDT1, RDT0, RDT1, RACK0, RACK1, SACK0, SACK1 } (medium1 \otimes_{α} medium2)

Action hiding and branching bisimulation

 « hide » renames a visible action « a » into the internal action « i » (or « τ »)

 After hiding and minimization for branching bisimulation, we get the following LTS for the alternating-bit protocol:

Synthesis on CA (1/2)

Advantages:

- Simple model to describe concurrency
- Introduce many concepts that we will use later on in this course
- Available CA handling tools:
 - Altarica (Université de Bordeaux, Labri)
 - CADP (http://cadp.inria.fr)
- Many industrial applications

Synthesis on CA (2/2)

Limitations:

- Risk of state space explosion when generating the product automaton (minimisation can help)
- Low-level model, difficult to read and maintain
- Limited modeling expressiveness
 - Static architecture: no dynamic creation or destruction of automata
 - Difficult to express: A then (B | | C) then D
 - No modeling of data (one variable = one automaton): not acceptable for complex data types (int, list, struct,...)