MB590-012 Microbiome Analysis ANOVA & Permutation Tests

Dr. Christine Hawkes

NC STATE UNIVERSITY

Today's outline

- Review of factorial designs and ANOVA
- Microbiome data and permANOVA
- Overview of today's datasets
- How to build ANOVA/permANOVA tables

Factorial designs

- Factors or categorical variables
- Levels selected to test hypotheses
- Can be natural or controlled

General linear models

- OLS regression from last week
- Analysis of variance (ANOVA)
- Use ordinary least squares approach to estimate model parameters
- Assume residuals are normally distributed, no correlation between samples, constant variance
- How to apply to high dimensional data?
 - Permutation ANOVA (permANOVA) with GLS today

Analysis of Variance (ANOVA) & hypothesis testing

• Linear model of the form:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + ... + \epsilon_{ijk}$$

- Y_{ijk} = individual outcome
- μ = grand mean; average over all individuals
- α_i , β_i = treatment effects; average over all individuals in groups i, j
- $\alpha\beta_{ii}$ = interaction effect; average over all individuals in groups ij
- ε_{iik} = random errors associated with individual k (residuals)
- Testing hypothesis (H1) against null (H0)
 - H1 = All groups do not have the same mean value ($\mu_{trt} \neq \mu_{control}$)
 - H0 = All groups have the same mean value (μ_{trt} = $\mu_{control}$)

ANOVA Parameters

- Degrees of Freedom (df)
 - number of independent observations in the data that are free to vary as parameters are estimated
- Sums of Squares (SS)
 - sum of squared differences from the mean
 - total SS = treatment SS + error SS
 - treatment SS compares group mean to grand mean for treatment ("between")
 - error SS compares individual responses to group mean ("within")
- Mean Squares (MS)
 - ratio of SS to df ("average SS")
 - describes the variability within treatments
 - MS-error estimates variation in residual errors around group means
- F statistic
 - ratio of MS treatment to MS error
 - tests whether variability between group means is larger than the variability of the observations within the groups

SS Types

Type I = Sequential

- Fits models according to the order of terms entered
- Not appropriate for factorial designs
- Sometimes used to remove effects of specific terms first (e.g., nested factors)

• Type II = Hierarchical

- Tests each model term after all other model terms
- Assumes no interactions
- Not appropriate for factorial designs (although sometimes used for unbalanced designs)

Type III = Partial or Orthogonal

- Model terms are tested in light of every other term
- Includes interactions
- Appropriate for balanced factorial designs

Fixed and Random Effects

Fixed Effects

- Factors whose levels are experimentally determined or where interest lies in the specific effects of each level
- If experiment was repeated, levels would be the same

Random Effects

- Factors whose levels are sampled from a larger population, or where interest lies in the variation among them rather than at specific levels
- If experiment was repeated, specific levels would vary
- Accounting for random effects allow us to better account for variation within groups in order to test for differences among treatments

Fixed Effects ANOVA

Hypothesis Testing!

	Fixed or Random	df	SS	MS	F-ratio
A	Fixed	(a-1)	SS _A	SS _A /df _A	MS _A /MS _e
В	Fixed	(b-1)	SS _B	SS _B /df _B	MS _B /MS _e
AxB		(a-1)(b-1)	SS _{AB}	SS _{AB} /df _{AB}	MS _{AB} /MS _e
Residual (error)	Random	ab(n-1)	SS _e	SS _e /df _e	
TOTAL		abn-1			

Random Effects - Blocks

- Block effects are those that apply equally to all individuals within a group, leading to a single level of correlation within groups
- Blocks are typically created to account for random variation when a fully randomized design cannot be applied
- Randomized complete block design (RCBD) is common in agriculture, where complete set of treatments is randomized in every block and there are no within-block replicates

Random Effects – Block examples

Spatial

- Resource gradients
- Animals in a pen/cage
- Temporal
 - Planting, harvesting
 - Feeding, sampling
- Experimental artifacts
 - Individuals collecting data
 - Sample runs on equipment

Mixed Effects ANOVA

	Fixed or Random	df	SS	MS	F-ratio
A	Fixed	(a-1)	SS _A	SS _A /df _A	MS _A /MS _{AB}
В	Random	(b-1)	SS _B	SS _B /df _B	MS _B /MS _e
AxB		(a-1)(b-1)	SS _{AB}	SS _{AB} /df _{AB}	MS _{AB} /MS _e
Residual	Random	ab(n-1)	SS _e	SS _e /df _e	
TOTAL		abn-1			

Other Common Random Effects

Nested

- Random effects that are hierarchically structured
- Hierarchical structure means certain groups of lower-level factor only found in certain groups of higher-level factor

	Ecotypes									
	Α	A B C D								
Species1	1	1	0	0						
Species2	0	0	1	1						

Repeated measures

- Multiple measures of the same subject made over time
- Both end up further partitioning the within-groups SS

	Date								
	J	J F M A							
Subject1	5	5	4	3					
Subject2	2	2	2	2					
Subject3	4	5	6	7					

Mixed Effects ANOVA with single Nested Random Effect

	Fixed or Random	df	SS	MS	F-ratio
A	Fixed	(a-1)	SS _A	SS _A /df _A	$MS_A/MS_{B(A)}$
B(A)	Random	(b-1)a	SS _{AB}	SS _{AB} /df _{AB}	MS _{B(A)} /MS _e
Residual	Random	ab(n-1)	SS _e	SS _e /df _e	
TOTAL		abn-1			

Microbiome Data

- High p (OTUs) relative to n (samples)
- Typically violates assumptions of: linearity, normality, heteroscedasticity, error independence
- Invalidates parametric tests and the F-distribution for hypothesis testing
- Requires nonparametric tests (& transformation) via
 - Permutation tests resampling approach
 - Generalized linear models likelihood approach

permANOVA with RRPP::lm.rrpp

- Non-parametric, handles cases where #ASVs>>#samples
- Dependent var can be raw data or distance matrix (uses inter-observation distances)
- Type I, II, or III SS
- OLS or GLS models
 - OLS assumes no correlation between samples and constant variance
 - GLS (or weighted least squares) modifies OLS by accounting for inequality of variance across groups
 - GLS in RRPP requires you to provide a covariance matrix (i.e., matrix giving covariance between each pair of elements – see R::cov)
 - We will focus on OLS today to save on computation time
- For mixed models, specify MS error terms for each parameter (otherwise assumes residuals)

RRPP Resampling Procedures

 Calculate SS, MS, F from inter-observation distances in multivariate space

RRPP Resampling Procedures

- Repeatedly randomizes residuals from null models to create a null distribution for comparison to full models (null+effect)
- Resample by shuffling data
 - Raw data: Resample rows
 - Distance matrix: Resample rows and columns jointly
- Can control # iterations with rrpp::iter
- Compare F stat to distribution of resampled F statistics

	ASV2	ASV3	ASV4	ASV5	ASV6	ASV7	ASV8	ASV9	ASV10
M1551P81	22	65	13679	92	1980	5123	7079	82	79
M1551P29	2	4	2496	183	781	1278	2699	449	0
M1551P90	2	70	2428	292	2273	401	2870	90	14
M1551P48	59	41	1323	305	2570	498	5123	40	76
M1551P52	3	2	6919	2	13	29029	33	29	14
M1551P31	5	472	1597	439	1158	525	3039	75	706
M1551P77	7	33	1175	297	6852	259	3353	1068	301
M1551P37	3	90	2750	509	3796	950	5668	35	80

	P81	P29	P90	P48	P52	P31	P77	P37
P81	1							
P29	0.6	1						
P90	0.0	0.9	1					
P48	0.6	0.6	0.2	1				
P52	0.6	0.6	0.8	0.6	1			
P31	0.7	0.5	0.2	0.8	0.7	1		
P77	0.0	0.8	0.7	0.2	0.3	0.9	1	
P37	0.0	0.8	0.6	0.8	1.0	0.4	0.4	1

permANOVA with RRPP::lm.rrpp

permANOVA Alternatives in R

Distance-based methods

- ANOSIM sensitive to heterogeneity of variance
- adonis2 limited model specification options

Model-based methods

- mvabund –fits separate GLMs to each species; useful for unbalanced designs; LASSO penalty; no mixed model except via multi-model comparisons; computationally intensive
- gllvm uses latent variables

See Collyer & Adams 2018 Appendix 3 Table S1 for more details

Today's data — Erland et al. 2017 DOI:10.1111/mec.14576

- Treatment upland vs. lowland common gardens (fixed)
- Spp 14 willow species (random)
- Plot a spatial block for treatment (random); (note: unbalanced, might actually be nested in Garden.Location)

Today's coding exercise data

- Wagner et al. 2016 Nature Communications (also wk3) https://www.nature.com/articles/ncomms12151
- Root and leaf samples (Type, n=2)
- Genotypes (n=5)
- Sites (n=5)
- Block nested in Site (n=6 per site)
- Limited to one cohort and one experiment

How to build the ANOVA table?

	Source →	T	S	P	е
	Fix or Rand →	F	R	R	R
	Levels →	а	b	С	n
	Subscript→	i	j	k	I
Source					
T _i	(a-1)				
S _j	(b-1)				
P _k	(c-1)				
TS _{ij}	(a-1)(b-1)				
e _{l(ijk)}	abc(n-1)				

- First, set up table with each factor in the model and residual error
 - Treatment (T), Spp (S), and Plot (P), Treatment*Spp (TS), Error (e)
- For each factor indicate:
 - Fixed or random
 - Levels
 - Subscripts for replication
- Calculate df
 - num levels for subscripts inside ()
 num levels -1 for subscripts outside ()

Rule 1: If term in row has column's subscript and

- (a) column subscript is not in brackets (not nested)
 - (i) enter 0 if column subscript represents a fixed factor
 - (ii) enter 1 if column subscript represents a random factor
- (b) column subscript is in brackets (nested) enter 1

	Source →	Т	S	P	е
	Fix or Rand →	F	R	R	R
	Levels →	а	b	С	n
	Subscript→	i	j	k	ı
Source					
T _i	(a-1)	0			
S _j	(b-1)		1		
P _k	(c-1)			1	
TS _{ij}	(a-1)(b-1)	0	1		
e _{l(ijk)}	abc(n-1)	1	1	1	1

Rule 1: If term in row has column's subscript and

- (a) column subscript is not in brackets (not nested)
 - (i) enter 0 if column subscript represents a fixed factor
 - (ii) enter 1 if column subscript represents a random factor
- (b) column subscript is in brackets (nested) enter 1

Rule 2: if term in row does not have column's subscript, enter the # levels of the factor

	Source →	Т	S	P	е
	Fix or Rand >	F	R	R	R
	Levels →	а	b	С	n
	Subscript→	i	j	k	1
Source					
T _i	(a-1)	0	b	С	n
S_{j}	(b-1)	a	1	С	n
P _k	(c-1)	а	b	1	n
TS _{ij}	(a-1)(b-1)	0	1	С	n
e _{l(ijk)}	abc(n-1)	1	1	1	1

Rule 3: for each row, identify components that belong in the MS (rows that share the subscript)
Rule 4: multiply each component by the product of all row entries that represent that
component, omitting columns with that subscript
Rule 5: in the residual row, the multiplier is always 1

	Source →	Т	S	P	е	MS Estimate
	Fix or Rand \rightarrow	F	R	R	R	
	Levels →	a	b	С	n	
	Subscript→	i	j	k	ı	
Source						
T _i	(a-1)	0	b	С	n	$\sigma_{e}^{2} + cn\sigma_{TS}^{2} + bcn\sigma_{T}^{2}$
S _j	(b-1)	а	1	С	n	
P _k	(c-1)	а	b	1	n	
TS _{ij}	(a-1)(b-1)	0	1	С	n	
e _{l(ijk)}	abc(n-1)	1	1	1	1	

Rule 3: for each row, identify components that belong in the MS (rows that share the subscript)
Rule 4: multiply each component by the product of all row entries that represent that
component, omitting columns with that subscript
Rule 5: in the residual row, the multiplier is always 1

	Source →	Т	S	P	е	MS Estimate
	Fix or Rand →	F	R	R	R	
	Levels →	a	b	С	n	
	Subscript→	i	j	k	1	
Source						
Ti	(a-1)	0	b	С	n	$\sigma_{e}^{2} + cn\sigma_{TS}^{2} + bcn\sigma_{T}^{2}$
S _j	(b-1)	a	1	С	n	$\sigma_{e}^{2} + acn\sigma_{S}^{2}$
P _k	(c-1)	a	b	1	n	$\sigma_{e}^{2} + abn\sigma_{P}^{2}$
TS _{ij}	(a-1)(b-1)	0	1	С	n	$\sigma_e^2 + cn\sigma_{TS}^2$
e _{l(ijk)}	abc(n-1)	1	1	1	1	

Finally identify the MS error term for F-ratio denominator as the term that contains all the other components except the target factor itself (and the residual error)

	Source →	Т	S	P	е	MS Estimate	F-ratio denom
	Fix or Rand \rightarrow	F	R	R	R		
	Levels →	a	b	С	n		
	Subscript→	i	j	k	ı		
Source							
T _i	(a-1)	0	b	С	n	$\sigma_{e}^{2} + cn\sigma_{TS}^{2} + bcn\sigma_{T}^{2}$	TS
S _j	(b-1)	a	1	С	n	$\sigma_{e}^{2} + acn\sigma_{S}^{2}$	Residual
P _k	(c-1)	а	b	1	n	σ_{e}^{2} + abn σ_{P}^{2}	Residual
TS _{ij}	(a-1)(b-1)	0	1	С	n	$\sigma_{e}^{2} + cn\sigma_{TS}^{2}$	Residual
e _{l(ijk)}	abc(n-1)	1	1	1	1		

Let's practice! Switch to html