Лекции по предмету "Вычислительная математика"

Тишкин Владимир Федорович

Содержание

Лекция №2

Лекция №2: Анализ устойчивости численных схем

Начнем разговор про устойчивость. У нас имеется последовательность, оператор $A_hu_h=f_h$. Тогда разница между точным решением и есть исходное уравнение Au=f. Если мы вычтем теперь точное уравнение из исходного, то мы получим условие $A_h(u_h-u_h^T)=r_h$, где u_h^T сеточная функция, которая соответствует значениям точного решения, $r_h=A_hu_h^T-f_h$. Тогда разница $z_h=u_h-u_h^T$ удовлетворяет уравнению $z_h=A^{-1}r_h$. Это все верно для линейных уравнений (т.к. для нелинейных мы вычитать одно из другого не можем, вернее можем, но получится все по другому). Тогда если норма оператора ограничена $||A_h^{-1}|| \leq M$, то тогда мы получим оценку погрешности приближенного и точного решения через величину невязки r_h .

Определение 1. Система называется устойчивой, все разностные схемы называются устойчивыми, если у нас исполнено условие:

$$||A_h^{-1}|| \le M \tag{1}$$

Если аппроксимация характеризует связь численного метода с исходным дифференциальным уравнением, то устойчивость внутренним свойством вычислительного метода. Оно не связанно с самим уравнением. Оно описывает лишь свойства разностных операторов.

Мы должны оценить норму $||A_h^{-1}||$.

Но прежде чем мы это сделаем поговорим о самосопряженных операторах. Самосопряженный оператор подразумевает, что у нас в пространстве имеется скалярное произведение, то есть содержится пространство кон функций, которые являются Гильбертовыми пространствами. Самосопряженные операторы имеют ортогональные базисы собственных векторов.

Приведем пример того, что такое собственный вектор линейного оператора: Если мы возьмем, например, качели и начнем рукой их раскачивать. Можем качать как угодно. Такие колебания называются вынужденными, а если поднимем вверх и отпустим, то такие колебания называются собственными. Теперь если посмотреть урав-

нение динамики, то задача нахождения собственных колебаний связана с задачей вычисления некоторого оператора $Ax = \lambda x$. Вот такие уравнения они позволяют найти собственные колебания. Вектор x ненулевой, называется собственным **вектором** оператора A, λ его собственным значением.

Покажем, что два собственных вектора, которые соответствуют разным собственным значениям ортогональны друг другу.

Теорема 1. Два собственных вектора, которые соответствуют разным собственным значениям ортогональны друг другу.

Доказательство. Пусть имеется два вектора x и y, которые являются собственными векторами самосопряженного оператора A_h .

$$A_x = \lambda_1 x \tag{2}$$

$$A_y = \lambda_2 y \tag{3}$$

Если мы теперь скалярно умножим (2) и (3):

$$(A_x, y) = \lambda_1(x, y) \tag{4}$$

$$(A_y, x) = \lambda_2(x, y) \tag{5}$$

Вычтем теперь из (4) (5):

$$0 = (\lambda_1 - \lambda_2)(x, y) \tag{6}$$

Но по условию $\lambda_1 \neq \lambda_2$, тогда (x,y) = 0.

Используя тот факт, что самосопряженный оператор обладает базисом из собственных векторов, то можно сделать вывод, что любой вектор z, принадлежащий нашему пространству, может быть разложен по элементам этого базиса: $z=\sum_i z_i x_i$, где x_i является собственным вектором матрицы A. Тогда $Az=\sum_i z_i x_i \lambda i$. Тогда:

$$||A_z|| = \sqrt{(A_z, A_z)} \tag{7}$$

$$(A_z, A_z) = \sum_i z_i^2 \lambda_i^2 = \sum_i z_i^2 \lambda_{\min}^2 = \lambda_{\max}^2 ||z||^2$$
 (8)

A норма
$$||z|| = (z,z) = \sum_i z_i^2$$
. Тогда справедливо утверждение:
$$||A_z|| \leq |\lambda_{\max}|^2 ||z||$$

Рассмотрим случай самосопряженного оператора A_h . Пусть $A_h = A_n^*$, тогда норма самосопряженного оператора