1 Auswertung

1.1 Zählrohr-Charakteristik

In Abbildung 1 sind die im Versuch gemessenen Werte aufgetragen. Die Werte für die Zählrate wurden aus Tabelle 1 entnommen und dafür durch die Messzeit von 60 s geteilt. Der Begin und das Ende des Plateau-Bereiches wurde aus den Messwerten entnommen.

Abbildung 1: Charakteristik des Geiger-Müller-Zählrohrs

Das Plateau liegt in dem Bereich von $340\,\mathrm{V}$ bis $650\,\mathrm{V}$. In Abbildung 2 ist der Plateau-Bereich aufgetragen und es wurde eine lineare Regression

Tabelle 1: Gemessene Werte für die Spannung, Zählrate und den Strom

$\mathrm{U/V}$	$N/\frac{1}{\min}$	$\bar{I}/\mu\mathrm{A}$
310	12443	0,2
310	13282	0,2
330	13400	0,2
340	13647	0,2
350	13371	0,2
360	13655	0,2
370	13613	0,2
380	13671	0,3
390	13910	0,3
400	13659	0,4
410	13686	0,4
420	13894	0,4
430	13783	0,4
440	14058	0,4
450	13954	0,5
460	13752	0,6
470	13802	0,6
480	13659	0,6
490	13907	0,6
500	13858	0,6
510	14033	0,7
520	13722	0,7
530	13912	0,8
540	13872	0,8
550	14125	0,8
560	14188	0,8
570	14223	0,8
580	14231	0,8
590	13926	0,9
600	14324	0,9
610	14042	1,0
620	14326	1,0
630	14142	1,0
640	14380	1,0
650	14367	1,1
660	14553	1,1
670	14578	1,2
680	14745	1,2
690	14741	1,2
700	14802	1,2

 mit

$$\frac{N}{\varDelta t} = a \cdot U + b$$

Dabei ist N die Zählrate pro $60\,\mathrm{s}.$ Die Parameter der Regression lauten:

Abbildung 2: Plateau mit linearer Regression

$$a = (0,039 \pm 0,004) \frac{1}{\text{Vs}}$$

 $b = (213,1 \pm 2,2) \frac{1}{\text{s}}$

In Prozent entspricht das einer Steigung von $3,89\,\%$.

1.2 Messung der Totzeit mit zwei unterschiedlichen Methoden

1.2.1 Bestimmung mit Hilfe des Oszillographen

Zunächst wird die Totzeitbestimmung über den Oszillographen durchgeführt. Die Werte sind in Tabelle 2 zu finden.

Tabelle 2: Totzeit und Erholungszeit

U/V	Totzeit/ μ s	Erholungszeit/ms
500	200	0,86
520 540	$210 \\ 230$	1,28 1,08

Die Totzeit hat somit einen Wert von

$$T = (2, 13 \pm 0, 08) \cdot 10^{-4} \,\mathrm{s}$$

Die Erholungszeit wird ebenfalls mi den Werten aus Tabelle 2 bestimmt und hat einen Wert von

$$E_z = (1,073 \pm 0,121) \, \mathrm{ms}$$

Die Formel für die Standartabweichung lautet

$$\frac{1}{3}\sqrt{\frac{1}{2}\cdot\sum\left(x_{T,E_{z}}-\bar{x}_{T,E_{z}}\right)^{2}}$$

1.2.2 Bestimmung mit der zwei-Quellen-Methode

Für diese Methode wurden zunächst die Zählraten $N_1,\,N_2$ und N_{1+2} aufgenommen. Die Werte sind in Tabelle 3 aufgelistet. Die Bedingung

Tabelle 3: Totzeit und Erholungszeit

	$N/\frac{1}{\min}$	$N/\frac{1}{s}$	ΔN
N_1	13703	228,383	1,95
N_2	17646	294,1	$2,\!21$
N_{1+2}	30720	512	2,92

$$N_{1+2} < N_1 + N_2$$

ist somit erfüllt. Die Totzeit T kann nährungsweise geschrieben werden als

$$T \approx \frac{N_1 + N_2 - N_{1+2}}{2N_1N_2}$$

$$T \approx (7, 8 \pm 3.4) \cdot 10^{-5} \,\mathrm{s}$$

Der Fehler berechnet sich mit

$$\sigma T = \sqrt{\left(\frac{N_1^2 + N_2 N_{1+2}}{2N_1^2 N_2^2}\right)^2 + \left(\frac{-N_2^2 + 2N_1 N_{1+2}}{2N_1^2 N_2^2}\right)^2 + \left(-\frac{1}{2N_1 N_2}\right)^2}$$

1.3 Bestimmung der pro Teilchen vom Zählrohr freigesetzten Ladungsmenge

Um die Ladungsmenge bestimmen zu können werden die Werte für den mittleren Zählerstrom benötigt. Diese werden aus Tabelle 1 entnommen. Die Ladungsmenge besttimmt sich mit Formel:

$$\bar{I} = \frac{\Delta Q}{\Delta t} \cdot Z$$

$$\varDelta Q = \frac{\bar{I} \cdot \varDelta t}{Z}$$

Z ist die Teilchenzahl. ΔQ ist die Transportierte Ladungsmenge pro $\Delta t = 60\,s$ Die Ergebnisse sind in Tabelle ?? dargestellt.

Tabelle 4: Freigesetzte Ladungsmenge

U/V	$N/\frac{1}{\min}$	$\bar{I}/\mu\mathrm{A}$	$\frac{\Delta Q}{e_0}$
310	12443	0,2	$6,01929675 \cdot 10^9$
310	13282	0,2	$5,63906863 \cdot 10^9$
330	13400	$0,\!2$	$5,58941116 \cdot 10^9$
340	13647	$0,\!2$	$5,48824720\cdot 10^9$
350	13371	$0,\!2$	$5,60153388 \cdot 10^9$
360	13655	0,2	$5,48503182 \cdot 10^9$
370	13613	0,2	$5,50195471 \cdot 10^9$
380	13671	0,3	$8,21791853 \cdot 10^9$
390	13910	0,3	$8,07671921 \cdot 10^9$
400	13659	0,4	$1,09668511 \cdot 10^{10}$
410	13686	0,4	$1,09452155 \cdot 10^{10}$
420	13894	0,4	$1,07813602 \cdot 10^{10}$
430	13783	0,4	$1,08681868 \cdot 10^{10}$
440	14058	0,4	$1,06555854 \cdot 10^{10}$
450	13954	0,5	$1,34187526 \cdot 10^{10}$
460	13752	0,6	$1,63390291 \cdot 10^{10}$
470	13802	0,6	$1,62798383 \cdot 10^{10}$
480	13659	0,6	$1,64502766 \cdot 10^{10}$
490	13907	0,6	$1,61569230 \cdot 10^{10}$
500	13858	0,6	$1,62140517 \cdot 10^{10}$
510	14033	0,7	$1,86804948 \cdot 10^{10}$
520	13722	0,7	$1,91038758 \cdot 10^{10}$
530	13912	0,8	$2,15348216 \cdot 10^{10}$
540	13872	0,8	$2,15969174 \cdot 10^{10}$
550	14125	0,8	$2,12100841 \cdot 10^{10}$
560	14188	0,8	$2,11159034 \cdot 10^{10}$
570	14223	0,8	$2,10639414 \cdot 10^{10}$
580	14231	0,8	$2,10521002 \cdot 10^{10}$
590	13926	0,9	$2,42023189 \cdot 10^{10}$
600	14324	0,9	$2,35298445 \cdot 10^{10}$
610	14042	1,0	$2,66693169 \cdot 10^{10}$
620	14326	1,0	$2,61406218 \cdot 10^{10}$
630	14142	1,0	$2,64807345 \cdot 10^{10}$
640	14380	1,0	$2,60424581 \cdot 10^{10}$
650	14367	1,1	$2,86726249 \cdot 10^{10}$
660	14553	1,1	$2,83061638 \cdot 10^{10}$
670	14578	1,2	$3,08264959 \cdot 10^{10}$
680	14745	1,2	$3,04773589 \cdot 10^{10}$
690	14741	1,2	$3,04856290 \cdot 10^{10}$
700	14802	1,2	$3,03599957 \cdot 10^{10}$

2 Diskussion

Im ersten Versuchsteil wurde die Charakteristik des Zählrohres bestimmt. Die Parameter für die durchgeführte Regression weisen