Application 1

Dynamique du véhicule – Segway de première génération★ – Corrigé

Frédéric SOLLNER – Lycée Mermoz – Montpellier.

Objectif

L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Question 1 Exprimer la vitesse, notée $\overline{V(G_E/\Re_0)}$, du point G_E dans son mouvement par rapport à \Re_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire $V_L = ||\overline{V(G_E/\Re_0)}||$ du véhicule en fonction de R_C et $\dot{\theta}$.

On a $\overrightarrow{V(G_E/\Re_0)} = -R_C \dot{\theta} \overrightarrow{x_1}$. On a alors $V_L = R_C \dot{\theta}$.

Question 2 Exprimer l'accélération, notée $\Gamma(G_E/\Re_0)$, du point G_E dans son mouvement par rapport à \Re_0 en fonction de $\dot{\theta}$ et R_C .

$$\overrightarrow{\Gamma(G_E/\mathcal{R}_0)} = \left[\frac{\overrightarrow{dV(G_E/\mathcal{R}_0)}}{\overrightarrow{dt}} \right]_{\mathcal{R}_0} = -R_C \overrightarrow{\theta} \overrightarrow{x_1} - R_C \dot{\theta}^2 \overrightarrow{y_1} = -R_C \dot{\theta}^2 \overrightarrow{y_1} \ (\dot{\theta} \text{ est constant}).$$

Question 3 Exprimer les conditions d'adhérence liant T_A , T_B , N_A , N_B et f traduisant le non glissement du véhicule. En déduire une inéquation liant $T_A + T_B$ à f et $N_A + N_B$.

Correction

La direction des efforts normaux et tangentiels est donnée. En utilisant les lois de Coulomb, on a donc, $T_A \le fN_A$ et $T_B \le fN_B$. En sommant les inégalités, on a donc $T_A + T_B \le f(N_A + N_B)$.

Question 4 Isoler *E* et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{z_0}$.

Correction

E étant un ensemble indéformable, on a : $\overrightarrow{R_d(E/\Re_0)} = -m_E R_C \dot{\theta}^2 \overrightarrow{y_1}$ (pas de projection sur $\overrightarrow{z_0}$. On isole E et les roues et on réalise le BAME :

- \triangleright pesanteur sur E;
- action du sol sur les roues.

En appliquant le TRD en projection sur $\overrightarrow{z_{01}}$, on a donc : $N_A + N_B - m_E g = 0$.

Question 5 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{y_1}$. En déduire une inéquation donnant la vitesse limite V_L de passage

dans un virage qui ne provoque pas le dérapage.

Correction

En appliquant le TRD en projection sur $\overrightarrow{y_1}$, on a : $-T_A - T_B = -m_E R_C \dot{\theta}^2 \Leftrightarrow T_A + T_B = m_E R_C \dot{\theta}^2$. En utilisant les résultats de la question précédente, $m_E R_C \dot{\theta}^2 \leq f m_E g$. En notant $V_L = R_C \dot{\theta}$ la vitesse limite avant dérapage, on a $\frac{V_L^2}{R_C} \leq f g$. On a donc $V_L \leq \sqrt{R_C f g}$.

Question 6 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Correction

La vitesse limite est donc de $10 \,\mathrm{m\,s^{-1}}$ soient $36 \,\mathrm{km\,h^{-1}}$ ce qui satisfait le cahier des charges.

Étude du renversement en virage du véhicule Segway

Question 7 Calculer le torseur dynamique du système matériel E en G_E dans son mouvement par rapport au référentiel $\Re_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$. Exprimer ses composantes dans la base $\Re_1 = \left(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$.

Correction

Au centre d'inertie de
$$E$$
, on a $\overrightarrow{\delta(G_E, E/\Re_0)} = \left[\frac{d\overrightarrow{\sigma(G_E, E/\Re_0)}}{dt}\right]_{\Re_0}$. On a $\overrightarrow{\Omega(E/\Re_0)} = \dot{\theta}\overrightarrow{z_0}$. On a donc, $\overrightarrow{\sigma(G_E, E/\Re_0)} = -E\dot{\theta}\overrightarrow{x_1} - D\dot{\theta}\overrightarrow{y_1} + C\dot{\theta}\overrightarrow{z_{01}}$. On a donc $\overrightarrow{\delta(G_E, E/\Re_0)} = -E\dot{\theta}^2\overrightarrow{y_1} + D\dot{\theta}^2\overrightarrow{x_1}$. En conséquence, $\{\Re(E/\Re_0)\} = \left\{\begin{array}{c} -m_E R_C \dot{\theta}^2 \overrightarrow{y_1} \\ -E\dot{\theta}^2 \overrightarrow{y_1} + D\dot{\theta}^2 \overrightarrow{x_1} \end{array}\right\}_{G_E}$.

Question 8 Calculer $\overrightarrow{\delta(B, E/\Re_0)} \cdot \overrightarrow{x_1}$ le moment dynamique au point B de l'ensemble (E) dans son mouvement par rapport au référentiel $\Re_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ en projection sur $\overrightarrow{x_1}$.

Correction
$$\overline{\delta(B, E/\Re_0)} = \overline{\delta(G_E, E/\Re_0)} + \overline{BG_E} \wedge \overline{R_d(B/E)} = -E\dot{\theta}^2 \overline{y_1} + D\dot{\theta}^2 \overline{x_1} + \left(h\overline{z_0} - l\overline{y_1}\right) \wedge \left(-m_E R_C \dot{\theta}^2 \overline{y_1}\right) = -E\dot{\theta}^2 \overline{y_1} + D\dot{\theta}^2 \overline{x_1} + hm_E R_C \dot{\theta}^2 \overline{x_1}. \ \overline{\delta(B, E/\Re_0)} \cdot \overline{x_1} = (D + hm_E R_C) \dot{\theta}^2.$$

Question 9 En appliquant le théorème du moment dynamique au point B à l'ensemble E et les roues dans leur mouvement par rapport à \mathcal{R}_0 , en projection sur $\overrightarrow{x_1}$, écrire l'équation scalaire qui donne N_A en fonction de $\overline{\delta(B,E/\mathcal{R}_0)} \cdot \overrightarrow{x_1}$ et des données du problème.

Correction

On a:

$$\blacktriangleright \ \overrightarrow{BG_E} \wedge -m_E g \overrightarrow{\overline{z_{01}}} = \left(-l \overrightarrow{y_1} + h \overrightarrow{z_0} \right) \wedge -m_E g \overrightarrow{\overline{z_{01}}} = l m_E g \overrightarrow{x_1};$$

►
$$\overrightarrow{BA} \wedge \left(-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1}\right) = -2l \overrightarrow{y_1} \wedge \left(-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1}\right) = -2l N_A \overrightarrow{x_1}.$$

En appliquent le TMD en B suivant $\overrightarrow{x_1}$, on a : $lm_E g - 2l N_A = (D + hm_E R_C) \dot{\theta}^2.$
Au final, $N_A = \frac{lm_E g - (D + hm_E R_C) \dot{\theta}^2}{2l}.$

Question 10 Écrire la condition de non renversement du véhicule.

Correction

Pour qu'il y ait non renversement, N_A doit rester positif ou nul.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 11 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Correction

$$\begin{split} N_A &\simeq \frac{lm_E g - hm_E R_C \dot{\theta}^2}{2l} \geq 0. \text{Ce qui est positif (pas de basculement)}. \\ N_A &\geq 0 \Rightarrow \frac{lm_E g - (D + hm_E R_C) \dot{\theta}^2}{2l} \geq 0 \Rightarrow lg - hR_C \dot{\theta}^2 \geq 0 \Rightarrow lg - hV_L^2/R_C \geq 0 \\ \Rightarrow lg \geq hV_L^2/R_C \Rightarrow \sqrt{\frac{2l}{R_C lg}} \geq V_L \Rightarrow V_L \leq 6,38\,\text{m}\,\text{s}^{-1} = 22,9\,\text{km}\,\text{h}^{-1}. \text{ CDCF Valid\'e}. \end{split}$$

