BirdNet

Experiments in Classifying Birds

Gleb Promokhov Gregory Goh

Introduction

Explore how neural networks are used classification tasks

How we could reduce complexity while maintaining classification accuracy

Data

- Caltech-UCSD Birds-200-2011
- 200 bird species with 11,788 images
- Binary image segmentations and several labeled points

Crested_Auklet_0005_794922.jpg

Data Reduction

What's the minimal amount of the image needed to distinguish between birds?

Classifier

Dataset augmented with image jitter

No correct way to organize a neural net

Balance between number of layers and complexity

Results

Model	Testing Accuracy%	Training Time
Baseline	0.50	N/A
Un-segmented images	N/A	Way to long
Segmented images	18.75	2:52:53
Segmented, heads only	7.85	2:22:12

300x300px image input 100 training epochs 50/25/25% train/validation/test split

Challenges

- Bird positions not normalized, couldn't figure out if (x, y) position of the bird learned as a feature
- A saliency test shows a lot of attention given to the 'nape-throat' edge, not desirable

Future Work

- Attribute Classifier
- Ensemble Learning

Thanksl

Any questions?

It's a free-for-owl

https://github.com/glebpro/computervisionproject2018