$$\vdash \varphi \to \varphi$$

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Dem.:

(1)
$$\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

(A2) (cu φ , $\psi := \varphi \to \varphi$, $\chi := \varphi$) și Propoziția 1.40.(i)

(2)
$$\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$$

(A1) (cu $\varphi, \ \psi := \varphi \rightarrow \varphi$) și Propoziția 1.40.(i)

(3)
$$\vdash (\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

(1), (2) și Propoziția 1.40.(iii). Scriem de obicei (MP): (1), (2)

(4)
$$\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$$

(A1) (cu $\varphi, \ \psi := \varphi$) și Propoziția 1.40.(i)

(5)
$$\vdash \varphi \rightarrow \varphi$$
 (MP): (3), (4)

Teorema deducției 1.49

Fie $\Gamma \subseteq \mathit{Form}\ \mathsf{si}\ \varphi, \psi\ \in \mathit{Form}.$ Atunci

$$\Gamma \cup \{\varphi\} \vdash \psi \; \mathsf{ddac} \; \Gamma \vdash \varphi \to \psi.$$

Dem.: " \Leftarrow " Presupunem că $\Gamma \vdash \varphi \rightarrow \psi$.

- (1) $\Gamma \vdash \varphi \rightarrow \psi$ ipoteză
- (2) $\Gamma \cup \{\varphi\} \vdash \varphi \rightarrow \psi$ Propoziția 1.42.(i)
- (3) $\Gamma \cup \{\varphi\} \vdash \varphi$ Propoziția 1.40.(ii)
- (4) $\Gamma \cup \{\varphi\} \vdash \psi$ (MP): (2), (3).

Teorema deducției

$$\Sigma := \{ \psi \in \mathit{Form} \mid \Gamma \vdash \varphi \to \psi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma \cup \{\varphi\}) \subseteq \Sigma$. O facem prin inducție după $\Gamma \cup \{\varphi\}$ -teoreme.

• Fie ψ o axiomă sau o formulă din Γ . Atunci

(1)
$$\Gamma \vdash \psi$$
 Propoziția 1.40.(i), (ii)

(2)
$$\Gamma \vdash \psi \rightarrow (\varphi \rightarrow \psi)$$
 (A1) și Propoziția 1.40.(i)

(3)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 (MP): (1), (2).

Aşadar $\psi \in \Sigma$.

• Fie $\psi=\varphi$. Atunci $\varphi \to \psi=\varphi \to \varphi$ este teoremă, conform Propoziției 1.48, deci $\Gamma \vdash \varphi \to \psi$. Așadar $\psi \in \Sigma$.

 Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\psi, \psi \to \chi \in \Sigma$ și trebuie să arătăm că $\chi \in \Sigma$. Atunci

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 ipoteza inducție
(2) $\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \chi)$ ipoteza inducție

(3)
$$\Gamma \vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$
 (A2) și P. 1.40.(i)

(4)
$$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$$
 (MP): (2), (3).

(5)
$$\Gamma \vdash \varphi \rightarrow \chi$$
 (MP): (1), (4).

5)
$$\Gamma \vdash \varphi \rightarrow \chi$$
 (MP): (1), (4).

Aşadar $\chi \in \Sigma$.

Teorema deducției este unul din cele mai utile instrumente pentru a arăta că o formulă e teoremă.

Propoziția 1.50

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (1)

Dem.: Folosind teorema deducției observăm că

$$\vdash \frac{(\varphi \to \psi)}{(\varphi \to \psi)} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{(\psi \to \chi)} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \varphi \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

(1)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$
 Propoziția 1.40.(ii)

(2)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$
 Propoziția 1.40.(ii)

(3)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)

(4)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$
 Propoziția 1.40.(ii)

(5)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$$
 (MP): (3), (4).

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \text{ si } \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$
 (2)

Dem :

Dem.:		
(1)	$\Gamma \vdash \varphi \to \psi$	ipoteză
(2)	$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$	P. 1.50 și P. 1.42.(ii)
(3)	$\Gamma \vdash (\psi \to \chi) \to (\varphi \to \chi)$	(MP): (1), (2)
(4)	$\Gamma \vdash \psi \to \chi$	ipoteză
(5)	$\Gamma \vdash \varphi \rightarrow \chi$	(MP): (3), (4).

Pentru orice formule φ, ψ ,

$$\{\psi, \neg \psi\} \vdash \varphi$$
 (3)

$$\vdash \neg \psi \to (\psi \to \varphi) \tag{4}$$

$$\vdash \neg \neg \varphi \to \varphi \tag{5}$$

$$\vdash \varphi \to \neg \neg \varphi \tag{6}$$

$$\{\psi, \neg \varphi\} \vdash \neg (\psi \to \varphi).$$
 (7)

Dem.: Exercițiu.

Propoziția 1.53

Pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \text{ si } \Gamma \cup \{\neg \psi\} \vdash \varphi \ \Rightarrow \ \Gamma \vdash \varphi. \tag{8}$$

Dem.: Exercițiu.

SINTAXA și SEMANTICA

Teorema de corectitudine (Soundness Theorem) 1.54

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \implies \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ și $\Gamma \subseteq Form$.

Dem.: Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. O facem prin inducție după Γ -teoreme.

- Axiomele sunt în Σ (exerciţiu).
- ▶ Evident, $\Gamma \subseteq \Sigma$.
- ▶ Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Conform Propoziției 1.31.(i), obținem că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Notații

Pentru orice variabilă $v \in V$ și orice evaluare $e: V \to \{0,1\}$,

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulțime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

^T Propoziția 1.55

Fie $e:V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Dem.: Prin inducție după formule. Avem următoarele cazuri:

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ și $e^+(v) = e(v)$.
 - Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$.
 - Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.
- $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

Dacă $e^+(\varphi) = 0$, atunci $e^+(\psi) = 1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$.

Deoarece $\vdash \psi \to \neg \neg \psi$ ((6) din Propoziția 1.52), putem aplica (MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi = \neg \varphi$.

• $\varphi = \psi \to \chi$. Atunci $Var(\varphi) = Var(\psi) \cup Var(\chi)$, deci $Var(\psi)^e$, $Var(\chi)^e \subseteq Var(\varphi)^e$.

Dacă
$$e^+(\psi \to \chi) = 0$$
, atunci $e^+(\psi) = 1$ și $e^+(\chi) = 0$. Avem $Var(\psi)^e \vdash \psi$ ipoteza de inducție pentru ψ $Var(\chi)^e \vdash \neg \chi$ ipoteza de inducție pentru χ

$$Var(\varphi)^e \vdash \{\psi, \neg \chi\}$$
 $Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e \text{ și P.1.42.(i)}$

$$\{\psi, \neg \chi\} \vdash \neg(\psi \rightarrow \chi)$$
 (7) din Propoziția 1.52

$$Var(\varphi)^e \vdash \neg(\psi \rightarrow \chi)$$
 Propoziția 1.42.(iv).

Sintaxă și semantică

Dacă
$$e^+(\psi \to \chi) = 1$$
, atunci fie $e^+(\psi) = 0$, fie $e^+(\chi) = 1$.

În primul caz, obținem

$$Var(\psi)^e \vdash \neg \psi$$
 ipoteza de inducție pentru ψ $Var(\psi)^e \vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$ (4) din P. 1.52 și P.1.42.(ii) $Var(\psi)^e \vdash \psi \rightarrow \chi$ (MP) $Var(\psi)^e \vdash \psi \rightarrow \chi$ $Var(\psi)^e \subset Var(\varphi)^e$ si P.1.42.(i).

În al doilea caz, obținem

$$Var(\chi)^e \vdash \chi$$
 ipoteza de inducție pentru χ $Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$ (A1) și Propoziția 1.40.(i) $Var(\chi)^e \vdash \psi \rightarrow \chi$ (MP) $Var(\varphi)^e \vdash \psi \rightarrow \chi$ $Var(\chi)^e \subseteq Var(\varphi)^e$ și P.1.42.(i).

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui φ sau $\neg \varphi$ din premizele $Var(\varphi)^e$.

Teorema 1.56 (Teorema de completitudine)

Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\vDash \varphi$.

Dem.: " \Rightarrow " Se aplică Teorema de corectitudine 1.54 pentru $\Gamma = \emptyset$. " \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \leq n$$
, pentru orice $e: V \to \{0,1\}$, $\{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k=0. Fie $e:V\to\{0,1\}$. Deoarece φ este tautologie, $e^+(\varphi)=1$. Aplicând Propoziția 1.55, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

Teorema de completitudine

 ${}^{\prime}k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Așadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ și

$$e'(x_{n-k}) = egin{cases} 0 & \operatorname{dacreve{a}} e(x_{n-k}) = 1 \ 1 & \operatorname{dacreve{a}} e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, ..., n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e și e', obținem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 1.53 cu $\Gamma:=\{x_1^e,\ldots,x_{n-k-1}^e\}$ și $\psi:=x_{n-k}$ pentru a conclude că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi.$

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Dem.: Observăm că

$$\begin{array}{cccc} \varphi \sim \psi &\iff& \models \varphi \rightarrow \psi \text{ \sharp} \models \psi \rightarrow \varphi \\ & \text{ (conform Propoziției 1.18)} \\ &\iff& \vdash \varphi \rightarrow \psi \text{ \sharp} \vdash \psi \rightarrow \varphi \\ & \text{ (conform Teoremei de completitudine)}. \end{array}$$

"⇒" Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \to \psi$, rezultă din Propoziția 1.42.(ii) că $\Gamma \vdash \varphi \to \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

Fie Γ o mulțime de formule și φ o formulă.

Notații

```
\begin{array}{lll} \Gamma \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este } \Gamma\text{-teorem} \\ \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este teorem} \\ \Gamma \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este consecin} ; a lui } \Gamma \\ \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este tautologie}. \end{array}
```


Definiția 1.58

Fie Γ o mulțime de formule.

- ▶ Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- ▶ Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație

Fie Γ, Δ mulțimi de formule a.î. $\Gamma \subseteq \Delta$.

- Dacă Δ este consistentă, atunci şi Γ este consistentă.
- Dacă Γ este inconsistentă, atunci şi Δ este inconsistentă.

- (i) ∅ este consistentă.
- (ii) Mulțimea teoremelor este consistentă.

Dem.:

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine 1.54, ar rezulta că ⊨ ⊥, o contradicție. Așadar ⊬ ⊥, deci ∅ este consistentă.
- (ii) Aplicând Propoziția 1.42.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ , $\vdash \varphi$ ddacă $Thm \vdash \varphi$.
 - Din (i) rezultă că Thm este consistentă.