Лабораторная работа №2. Табулирование функций

Постройте таблицу значений функции f(x) на сегменте [a,b] с шагом δ (краткие сведения о цилиндрических функциях и определительные формулы для них см. в [1]):

- 1. $f(x) = J_0(x)$ функция Бесселя первого рода нулевого порядка, $a = 0, b = 1, \delta = 10^{-5}$;
- 2. $f(x) = J_1(x)$ функция Бесселя первого рода, $a = 0, b = 2, \delta = 10^{-5}$;
- 3. $f(x) = J_2(x)$ функция Бесселя первого рода, $a = 0, b = 2, \delta = 10^{-5}$;
- 4. $f(x) = Y_1(x)$ функция Бесселя второго рода (функция Неймана), $a = 1, b = 3, \delta = 10^{-5}$:
- 5. $f(x) = Y_2(x)$ функция Бесселя второго рода (функция Неймана), $a = 1, b = 3, \delta = 10^{-5}$;
- 6. $f(x) = I_1(x)$ модифицированная функция Бесселя первого рода, $a = 0, b = 1, \delta = 10^{-5}$;
- 7. $f(x) = I_2(x)$ модифицированная функция Бесселя первого рода, $a = 0, b = 1, \delta = 10^{-5}$;
- 8. $f(x) = K_1(x)$ модифицированная функция Бесселя второго рода (функция Макдональда), $a = 1, b = 2, \delta = 10^{-5}$.

Пример решения варианта №1.

Функции Бесселя $J_{\nu}(x)$ первого рода, где $\nu \in \mathbb{R}$, удовлетворяют дифференциальному уравнению

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - \nu^{2})y = 0.$$

Воспользуемся известным разложением в степенной ряд [1] (список цитированной литературы см. в конце файла):

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{4^{k} k! \Gamma(\nu + k + 1)},$$

где $\Gamma(x)$ — гамма-функция (напомним, что $\Gamma(n)=(n-1)!$ для натуральных значений аргумента).

Для частного случая функции Бесселя нулевого порядка степенной ряд является рядом Тейлора в окрестности x=0 и имеет более простой вид:

$$J_0(x) = \sum_{k=0}^{\infty} a_k x^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{4^k (k!)^2} x^{2k}.$$

Полученное соотношение позволяет вычислить значения $J_0(x)$. Естественно, в вычислительной программе имеется возможность суммирования только конечного числа слагаемых в выражении

$$\sum_{k=0}^{\infty} a_k x^{2k} = (a_0 + a_1 x^2 + \ldots + a_{k_{\text{max}}} x^{2k_{\text{max}}}) + \sum_{k=k_{\text{max}}+1}^{\infty} a_k x^{2k}.$$

Заметим, что погрешность вычисления знакопеременного ряда легко оценить — она не превышает по абсолютной величине $a_{k_{\max}}$, т. е. заключительного учтённого слагаемого. Это следствие теоремы Лейбница о знакочередующихся рядах [2].

Следует отметить, что хотя ряд Тейлора
$$\sum_{k=0}^{\infty} a_k x^{2k}$$
 для функции $J_0(x)$

сходится при всех $x \in \mathbb{R}$, члены данного ряда возрастают с ростом индекса k при значениях k до $k \sim |x|$. Недостаточно быстрая сходимость приводит к необходимости учитывать не менее $k_{\max} \gg |x|$ слагаемых степенного ряда для вычисления функции Бесселя $J_0(x)$.

На практике пользуются следующим удобным критерием достижения требуемой точности: разложение продолжают до тех пор, пока текущий член знакопеременного степенного ряда не станет по абсолютной величине меньшим заранее заданной константы — точности вычислений.

Программа табулирования функции $J_0(x)$ организована следующим образом. Точность вычисления значений функции обозначена через символическую константу EPSILON и принимается равной 10^{-14} . Левая и правая границы сегмента a, b, а также шаг вычислений δ задаются в исходном файле input.txt, расположенном в текущем каталоге. Количество точек, в которых требуется вычислить значение функции, на единицу больше целой части отношения длины сегмента b-a к шагу δ .

Функция BesselJ0 с помощью ряда Тейлора вычисляет $J_0(x)$ в конкретной точке x. Коэффициенты $a_k = \frac{(-1)^k}{4^k (k!)^2}$ в сумме для $J_0(x)$ удовлетворяют, как легко видеть, рекуррентному соотношению

$$\begin{cases} a_k = -\frac{1}{4k^2} a_{k-1}, & k \geqslant 1, \\ a_0 = 1. \end{cases}$$

Основной вычислительный цикл перебирает точки интервала [a,b] и заполняет массив **res** величинами $J_0(x)$. Поскольку итерации цикла независимы, применение директивы

#pragma omp parallel for schedule(guided) распределяет итерации по доступным нитям ансамбля. Окончательно таблица значений функции Бесселя нулевого порядка, записанных в массив res, выводится в файл output.txt.

Листинг 2.

```
1 #include <stdio.h>
2 #include <stdlib.h>
3 | #include < math.h >
4 | #include < omp.h>
6 #define EPSILON 1.0e-14 // точность вычисления
                               // значений функции
  double BesselJO(double);
9
  int main()
10
  {
11
12
    double a, b, delta;
                               // объявление массива
    double *res;
13
                               // значений функции
14
15
    int N;
16
    FILE *fp;
17
18
```