Fundamentos del Análisis Programático de Datos

Pensamiento algorítmico y exploración inicial

26 de agosto de 2025

Objetivos de la clase

- Comprender por qué programar para analizar datos
- Conocer los principios de datos ordenados (tidy data)
- Desarrollar pensamiento algorítmico y pseudocódigos
- Identificar las etapas iniciales del análisis de datos

¿Por qué programar para analizar datos?

Limitaciones de las herramientas tradicionales

- Reproducibilidad: Imposible documentar cada click en Excel
- Escalabilidad: Manejo limitado de grandes volúmenes
- Automatización: Procesos manuales propensos a errores
- Colaboración: Dificultad para compartir y versionar

Ventajas de la programación

- Documentación completa del proceso analítico
- Reproducibilidad total de los resultados
- Automatización de reportes y análisis recurrentes
- Control de versiones y trabajo colaborativo
- Flexibilidad para manejar datos complejos

Casos de uso en la práctica

Reportes automáticos

- Dashboard mensual de ventas
- Informes regulatorios
- Análisis de performance

Procesamiento a gran escala

- Millones de transacciones
- Múltiples fuentes de datos
- Análisis en tiempo real

Análisis complejos

- Modelos estadísticos avanzados
- Machine learning
- Simulaciones

Integración de sistemas

- APIs y bases de datos
- Pipelines de datos
- ETL automatizados

Datos ordenados (Tidy Data)

Principios de datos ordenados

Los tres principios fundamentales:

- 1. Cada variable forma una columna
- 2. Cada observación forma una fila
- 3. Cada valor ocupa una celda

¿Por qué importa?

- Facilita el análisis y la visualización
- Permite usar herramientas estándar de manera consistente
- Reduce la complejidad del código
- Mejora la comprensión de los datos

Ejemplo: datos desordenados

	Empresa		Q1_2024		Q2_2024		Q3_2024		Q4_2024	
-		- -		-		-		-		.
	ABC		100		120		110		130	
	XYZ		80		90		95		100	

Problemas:

- Los trimestres están en columnas (deberían ser valores)
- Dificulta calcular promedios por trimestre
- Complica la graficación temporal

Ejemplo: datos ordenados

	Empresa		Trimestre		Ventas	
-		- -		- -		-
	ABC		Q1_2024		100	
	ABC		Q2_2024		120	
	ABC		Q3_2024		110	
	ABC		Q4_2024		130	
	XYZ		Q1_2024		80	
	XYZ		Q2_2024		90	
	XYZ		Q3_2024		95	
	XYZ		Q4_2024		100	

Ventajas:

- Cada variable en su columna
- Fácil agrupación y análisis
- Compatible con herramientas de visualización

Ejercicio: ¿cómo ordenarías estos datos?

Datos de empleados por sucursal

Empleado	Sucursal_Norte_Venta	s Sucursal_Norte_Cliente	es Sucursal_Sur_Ven	tas Sucursal_Sur_Clien	tes
	-	-	-	-	· –
García	45000	120	0	0	
López	0	0	38000	95	
Martín	52000	140	28000	75	1
Silva	0	0	41000	88	

Pregunta

¿Qué problemas identificás en esta estructura? ¿Cómo la transformarías para que sea tidy?

Respuesta: datos ordenados

	Empleado		Sucursal		Metrica		Valor	
-		- -		-		- -		-
	García		Norte		Ventas		45000	
	García		Norte		Clientes		120	
	López		Sur		Ventas		38000	
	López		Sur		Clientes		95	
	Martín		Norte		Ventas		52000	
	Martín		Norte		Clientes		140	
	Martín		Sur		Ventas		28000	
	Martín		Sur		Clientes		75	
	Silva		Sur		Ventas		41000	
	Silva		Sur		Clientes		88	

Cambios realizados:

- Sucursal pasó de estar en nombres de columnas a ser una variable
- Métrica (Ventas/Clientes) también se convirtió en variable
- Se eliminaron los ceros (observaciones inexistentes)
- Ahora cada fila es una observación única

Convenciones de nomenclatura tidy

Estilo snake_case (recomendado)

Principios:

- Todo en minúsculas
- Palabras separadas por guión bajo (_)
- Nombres descriptivos y claros
- Sin espacios ni caracteres especiales

Ejemplos prácticos

NombreCliente fechaNacimiento Ventas-Totales ID CLIENTE región_país

Usar:

nombre_cliente
fecha_nacimiento
ventas_totales
id_cliente
region_pais

Aplicando nomenclatura a nuestros datos

Nombres de variables consistentes

Datos de ventas (versión tidy):

Datos de inventario (versión tidy):

Ventajas:

- Fácil lectura y escritura
- Compatible con tidyverse/pandas
- Evita errores de tipeo
- Facilita autocompletado en IDEs

Metodología de resolución de problemas

1. Entender el problema

- ¿Qué resultado necesitamos obtener?
- ¿Qué datos tenemos disponibles?
- ¿Qué restricciones o condiciones existen?

2. Descomponer en pasos

- Dividir el problema en tareas más simples
- Identificar la secuencia lógica
- Considerar casos especiales

3. Identificar elementos clave

- Input: datos de entrada
- Proceso: transformaciones necesarias
- Output: resultado esperado

¿Qué es un pseudocódigo?

Definición

Descripción paso a paso de un algoritmo en lenguaje natural, pero con estructura lógica

Características

- Independiente del lenguaje de programación
- Enfoque en la lógica, no en la sintaxis
- Facilita la planificación antes de codificar
- Herramienta de comunicación entre analistas

Ejemplo simple

PARA calcular promedio de ventas por región:

- 1. CARGAR datos de ventas
- 2. AGRUPAR por región
- 3. CALCULAR promedio de cada grupo
- 4. MOSTRAR resultados

Ejemplo 1: análisis de satisfacción

Problema

Calcular el porcentaje de clientes satisfechos (rating ≥ 4) por sucursal

Pseudocódigo

INICIO

- 1. CARGAR datos de encuestas
- 2. FILTRAR solo ratings válidos (1-5)
- 3. CREAR variable satisfecho:
 SI rating ≥ 4 ENTONCES 1 SINO 0
- 4. AGRUPAR por sucursal
- 5. CALCULAR porcentaje de satisfechos
- 6. ORDENAR de mayor a menor
- 7. EXPORTAR tabla final

FIN

Datos de entrada

Cliente	Sucursal	Rating
		-
001	Norte	5
002	Norte	3
003	Sur	4
004	Centro	5
005	Norte	2

Resultado esperado

	Sucursal	1	% Satisfechos	
-		- -		
	Centro		100%	
-	Sur		100%	
-	Norte		33%	

Ejercicio 2: cálculo de comisiones

Problema

Los vendedores cobran comisión según sus ventas:

- **2%** si ventas < \$50,000
- **3%** si ventas ≥ \$50,000

Datos disponibles

	Vendedor		Ventas	
-		- -		-
	García		45000	
	López		65000	
	Martín		52000	
	Silva		38000	-

Consigna

Calculá la comisión de cada vendedor y ordenar los resultados por ventas (de mayor a menor)

Solución: cálculo de comisiones

Pseudocódigo

INICIO

- 1. CARGAR datos de ventas por vendedor
- 2. PARA cada vendedor:

```
SI ventas ≥ 50000 ENTONCES
  comision = ventas * 0.03
SINO
  comision = ventas * 0.02
```

- 3. CREAR columna comision
- 4. CALCULAR total comisiones
- 5. ORDENAR por ventas desc

FIN

Resultado esperado

Vendedor		Ventas		Comisión	
	- -		-		
López		65000		1950	
Martín		52000		1560	
García		45000		900	
Silva		38000		760	

Total comisiones: \$5,170

Ejercicio 3: control de inventario

Problema

La empresa necesita:

- Identificar productos con **stock crítico** (< 10 unidades)
- Calcular el valor total del inventario por producto
- Generar alertas para productos críticos

Datos disponibles

	Producto		Stock		Precio	
-		- -		- -		-
	A001		5		100	
	A002		25		50	
	A003		8		200	
	A004		15		75	

Consigna

¿Cómo estructurarías el proceso para obtener un reporte de productos críticos con sus valores?

Solución: control de inventario

Pseudocódigo

INICIO

- 1. CARGAR datos de inventario
- 2. CREAR variable valor_total:
 stock * precio_unitario
- 3. CREAR variable stock_critico:
 SI stock < 10 ENTONCES "Crítico"
 SINO "Normal"</pre>
- 4. FILTRAR productos críticos
- 5. CALCULAR valor total inventario
- 6. MOSTRAR alertas por categoría FIN

Resultado: productos críticos

	Producto		Stock		Estado		Valor	
-		-		-		-		-
	A001		5		Crítico		500	
	A003		8		Crítico		1600	

Resumen general

• Total inventario: \$4,000

• Productos críticos: 2 de 4

• Valor en riesgo: \$2,100

Primeros pasos en análisis de datos

El flujo típico de análisis

Importar → Explorar → Limpiar → Transformar → Analizar → Comunicar

- 1. Importar: cargar los datos al entorno de trabajo
- 2. Explorar: entender estructura y contenido
- 3. Limpiar: corregir errores y inconsistencias
- 4. Transformar: crear variables y reestructurar
- 5. Analizar: aplicar métodos estadísticos
- 6. **Comunicar**: presentar resultados

Exploración inicial: preguntas clave

Sobre la estructura

- ¿Cuántas filas y columnas tengo?
- ¿Qué tipo de variables hay?
- ¿Los nombres de columnas son claros?

Sobre el contenido

- ¿Hay valores faltantes?
- ¿Existen datos atípicos o errores evidentes?
- ¿Los rangos de valores son razonables?

Sobre la calidad

- ¿Los datos están completos?
- ¿La información es consistente?
- ¿Hay duplicados?

Funciones de exploración inicial

En R

```
head(datos)  # Primeras filas

tail(datos)  # Últimas filas

str(datos)  # Estructura

summary(datos)  # Resumen estadístico

dim(datos)  # Dimensiones

names(datos)  # Nombres de columnas
```

En Python (pandas)

```
datos.head()  # Primeras filas
datos.info()  # Información general
datos.describe()  # Estadísticas descriptivas
datos.shape  # Dimensiones
datos.columns  # Nombres de columnas
```

Funciones principales: de Excel a programación

Operaciones que ya conocés de Excel

En Excel hacés:

- Filtros: Data > Filtro > Seleccionar valores
- Columnas: Seleccionar columnas A, C, E
- **Fórmulas**: =PROMEDIO(A:A) por grupo
- Tabla dinámica: Arrastrar campos a filas/columnas
- Ordenar: Data > Ordenar por columna
- Nueva columna: =SI(A1>100, "Alto", "Bajo")

En programación es similar:

- Filtrar: datos %>% filter(ventas > 1000)
- Seleccionar: datos %>% select(cliente, ventas)
- Resumir: datos %>% group_by(region) %>%
 summarise(promedio = mean(ventas))
- **Agrupar**: datos %>% group_by(vendedor)
- Ordenar: datos %>% arrange(desc(ventas))
- Crear: datos %>% mutate(categoria = ifelse(ventas > 100, "Alto", "Bajo"))

Comparación práctica: análisis de ventas

En Excel (pasos manuales):

- 1. Filtrar datos \rightarrow Click en filtro, seleccionar criterios
- 2. **Seleccionar columnas** → Click y arrastrar para elegir rangos
- 3. **Crear columna nueva** → Escribir fórmula =SI(C2>1000, "Grande", "Chica")
- 4. **Tabla dinámica** → Insertar > Tabla dinámica > Arrastrar campos
- 5. **Copiar resultados** → Ctrl+C, Ctrl+V a otra hoja
- 6. Repetir todo \rightarrow Si llegan datos nuevos, empezar de nuevo

En programación (código reproducible):

Ventajas de la programación vs Excel

Excel

Ventajas:

- Visual e intuitivo
- Rápido para análisis simples
- Familiar para la mayoría

X Limitaciones:

- Proceso no documentado
- Errores al copiar fórmulas
- Límite de 1M filas
- Difícil automatización
- Pérdida de pasos intermedios

Programación

Ventajas:

- Proceso completamente documentado
- Reproducible con datos nuevos
- Sin límites de tamaño
- Automatización total
- Control de versiones
- Menos propenso a errores

X Desafios:

- Curva de aprendizaje inicial
- Menos visual al principio

Las 6 operaciones fundamentales

1. Seleccionar columnas

```
Excel: Click en columnas A, C, E
Programación: select(cliente, ventas, region)
```

2. Filtrar filas

```
Excel: Data > Filtro > Criterios
Programación: filter(ventas > 1000, region = "Norte")
```

3. Crear nuevas variables

```
Excel: =C2*0.1 en columna nueva
Programación: mutate(comision = ventas * 0.1)
```

Las 6 operaciones fundamentales (cont.)

4. Agrupar por categorías

Excel: Tabla dinámica con campo en "Filas"
Programación: group_by(vendedor, region)

5. Resumir/Calcular estadísticas

Excel: Función en tabla dinámica (SUMA, PROMEDIO)
Programación: summarise(total = sum(ventas), promedio = mean(ventas))

6. Ordenar resultados

Excel: Data > Ordenar por columna

Programación: arrange(desc(ventas)) O arrange(cliente)

En la próxima clase veremos la implementación práctica de estas operaciones

Síntesis

Puntos clave de la clase

Programación vs. herramientas tradicionales

Reproducibilidad, escalabilidad y automatización

Datos ordenados (tidy data)

• Una estructura estándar que facilita el análisis

Pensamiento algorítmico

- Descomponer problemas en pasos lógicos
- Pseudocódigos como herramienta de planificación

Exploración inicial

- Primer paso fundamental: conocer nuestros datos
- Funciones básicas para entender estructura y calidad

Introducción práctica a tidyverse/pandas

Implementación de las funciones principales

¿Preguntas?