LIN úkol 8

Hynek Kydlíček

29. listopadu 2020

1 Dcv. 1

Postupujme sporem, předpokládejme, že existují alespoň 2 řešení soustavy a zárověň jsou sloupce LN. Existují 2 řešení (r_1, r_2) říká, že existují 2 různé lin. kombiace sloupců dávají vektor b. Tedy

$$\sum_{i=1}^{n} r_{2i} * s_i = b.$$

a

$$\sum_{i=1}^{n} r_{1i} * s_i = b.$$

A tedy

$$\sum_{i=1}^{n} r_{2i} * s_i = \sum_{i=1}^{n} r_{1i} * s_i$$
$$\sum_{i=1}^{n} (r_{2i} - r_{1i}) * s_i = 0$$

Avšak $r_2 \neq r_1 \implies (\exists i \in n) \ r_{1i} \neq r_{2i}$. To je ale spor s LN sloupců, protože jsme právě našli netriviální lin. kombinaci dávající nulový vektor.

2 Dcv. 2

Implikace zleva doprava

 $v_1 \dots v_n \in V$ LN $\implies v_1, v_1 + v_2, \sum_{i \in [n]} v_i$ jsou LN. Ukážeme, že linearní kombinace vektorů $v_1, v_1 + v_2, \sum_{i \in [n]} v_i$ rovnající se 0 musí být triviální.

$$\sum_{i=1}^n (\sum_{k=1}^i v_i * \alpha_i) = 0 \text{ lze přepsat jako} \sum_{i=1}^n (v_i * \sum_{k=i}^n \alpha_k) = 0.$$

Z předpokladu:

$$v_1 \dots v_n$$
 jsou LN $\implies \sum_{i=1}^n \beta_i * v_i = 0$ pouze pro $\beta_i = 0$.

Tedy pouze pokud $\sum_{k=i}^{n} \alpha_k = \beta_i = 0$ pro každe $i \in n$ pak je lin. kombinace = 0. Pokud bychom si takovoto soustavu zapsali do matice

$$A^{n,n} = \begin{pmatrix} 1 & 1 & \dots & 1 & 0 \\ 0 & 1 & \dots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Vidíme, že matice je v REF a má právě jedno řešení (Máme n pivotů a n řadků neboli matice je regularní) ($\forall i \in n$) $\alpha_i = 0$. A tedy pouze triviální kombinace vektorů je rovna nule. A tedy vektory musí být LN.

2.2 implikace zprava doleva

Dokážeme obrácenou implikaci. $v_1 \dots v_n \in V$ jsou LZ $\implies v_1, v_1 + v_2, \sum_{i \in [n]} v_i$ jsou LZ.

Ukážeme, že existuje netriviální linearní kombinace vektorů $v_1, v_2 \dots v_n$ rovnající se 0.

$$\sum_{i=1}^n (\sum_{k=1}^i v_i * \alpha_i) = 0 \text{ lze přepsat jako} \sum_{i=1}^n (v_i * \sum_{k=i}^n \alpha_k) = 0.$$

Z předpokladu platí, že:

$$v_1 \dots v_n$$
 jsou LZ $\implies \sum_{i=1}^n \beta_i * v_i = 0$ existuje alespoň jedno i, $\beta_i \neq 0$.

Tedy pokud $\sum_{k=i}^n \alpha_k = \beta_i,$ pro každe $i \in n$ pak lin. kombinace = 0. Zapíšeme soustavu jako matici

$$A^{n,n} = \begin{pmatrix} 1 & 1 & \dots & 1 & \beta_1 \\ 0 & 1 & \dots & 1 & \beta_2 \\ \vdots & \vdots & \ddots & \vdots & \beta_3 \\ 0 & 0 & 0 & 1 & \beta_n \end{pmatrix}, \text{ kde alespň jedno } \beta_i \neq 0.$$

Vidíme, že matice je v REF a má právě jedno řešení(znovu máme regularní matici),
takové řešení určite nebude ($\forall i \in n$) $\alpha_i = 0$. To by znamenalo, že
 ($\forall i \in n$) $\beta_i = 0$. Což není pravda. Tedy alespoň jedno $\alpha_i \neq 0$. A tedy existuje netriviální kombinace vektorů rovna nule. A tedy vektory musí být LZ.

3 Dcv. 1

Úloha můžeme formulovat také tak, kdy má rovnice

$$\alpha_1 * \begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix} + \alpha_2 * \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} * \alpha_3 * \begin{pmatrix} 2 \\ 2 \\ a \end{pmatrix} = 0$$

právě jedno řešení(triviální). Soustavu si přepíšeme do matice.

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 & 0 \\ a & 1 & 2 & 0 \\ 1 & 1 & a & 0 \end{array}\right) \sim \left(\begin{array}{ccc|c} 1 & 1 & 2 & 0 \\ 0 & 1-a & 2-2*a & 0 \\ 0 & 0 & a-2 & 0 \end{array}\right)$$

Pro a=2 dostáváme matici

$$\begin{pmatrix}
1 & 1 & 2 & 0 \\
0 & -3 & -2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(1)

Matice má určitě více než jedno řešení
(má jeden sloupec nebazický).

Pro a=1

$$\begin{pmatrix}
1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & 2 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(2)

Matice má určitě více než jedno řešení(má jeden sloupec nebazický).

Pro $a \in R \setminus \{1,2\}$, dostávé řešení: $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Tedy vektory jsou LN pro $a \in R \setminus \{1,2\}$