Outline

I. HDMI Introduction

- i. Overview
- ii. Data Path
- iii. Signal Flow

II. Firmware Flow

- i. Switch
- ii. Pre-detect
- iii. Scan
- iv. Measure

Outline

I. HDMI Introduction

- i. Overview
- ii. Data Path
- iii. Signal Flow
- II. Firmware Flow

HDMI Connector

- 4 TMDS Links
 - 3 data channels
 - 1 clock channel
- DDC channel
 - to EEPROM
 - to IC
- CEC channel
- Hot-plug pin

TMDS Link (1/3)

TMDS Link (2/3)

TMDS Link (3/3)

Data Channel

- transfer 10 bits per TMDS clock
 - 10-bit encoding
 - 3 data transferring period

Clock Channel

- pixel clock: 25M~340M (Hz)
- change with color depth

TMDS Encoding

Transition-Minimized Differential Signaling:

- transition minimized: fewer 0->1 & 1->0
- DC balanced: equal 0s & 1s

Encoding

- video data: 8b/10b
- packet data: 4b/10b
- control data: 2b/10b (transition maximized)

HDMI: Signal Format(1/3)

HDMI: Signal Format(2/3)

1. video data period

pixel data

2. data island period

- packet data (ex: audio, auxiliary data)
- associated error correction codes (BCH)

3. control period

- preamble
- HS/VS & CTLx

HDMI: Signal Format(3/3)

EX: 720x480p video frame

HDMI DDC Channel

HDMI Video Format

pixel encoding:

- RGB
- YCbCr 444/422

color depth

- 24 bits
- 30, 36, and 48 bits per pixel

Pixel Packing

24 bit mode: P (pixels/group) = 1 pixel; L (fragments/group) = 1 fragment (1 TMDS character). Standard HDMI format.

Fragment	Phase	Pixels	8 bit HDMI pixel data code (to encoder)							
			Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit							Bit 7
8P0	0	Α	A0	A1	A2	A3	A4	A5	A6	A7

30 bit mode: P = 4 pixels; L = 5 fragments

ob bit mode: 1 - 4 pixels, E - 5 magnitudes											
Fragment	Phase	Pixels	8 bit HDMI pixel data code (to encoder)								
			Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	
10P0	0	Α	A0	A1	A2	A3	A4	A5	A6	A7	
10P1	1	A+B	A8	A9	B0	B1	B2	B3	B4	B5	
10P2	2	B+C	B6	B7	B8	B9	C0	C1	C2	C3	
10P3	3	C+D	C4	C5	C6	C7	C8	C9	D0	D1	
10P4	4	D	D2	D3	D4	D5	D6	D7	D8	D9	

36 bit mode: P = 2 pixels; L = 3 fragments

The state of the s											
Fragment	Phase	Pixels	8 bit HDMI pixel data code (to encoder)								
		,	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	
12P0	0	Α	A0	A1	A2	A3	A4	A5	A6	A7	
12P1	1	A+B	A8	A9	A10	A11	B0	B1	B2	B3	
12P2	2	В	B4	B5	B6	B7	B8	B9	B10	B11	

48 bit mode: P = 1 pixel; L = 2 fragments

Fragment	Phase	Pixels	8 bit HDMI pixel data code (to encoder)								
			Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	
16P0	0	Α	A0	A1	A2	A3	A4	A5	A6	A7	
16P1	1	Α	A8	A9	A10	A11	A12	A13	A14	A15	

HDCP Encryption

HDCP cipher generates a new 24bit data for every pixel of HDCP content to be encrypted.

Outline

I. HDMI Introduction

- i. Overview
- ii. Data Path
- iii. Signal Flow
- II. Firmware Flow

Scaler Data Path

RTD2486 Chip Data Path Block Diagram

Z0

For each digital port:

TMDS Physical Layer

TMDS MAC Layer MAC output **CDR TMDS HDCP** data alignment decoder decipher output DE (video period) video period DE. packet header B-data data data island BCH(32,24) DEC <u>de</u> align packet body BCH(64,56) DEC bdata TMDS DEC data packet body BCH(64,56) DEC gdata G-data data interde packet body align rdata TERC4 DECE 10 BCH(64,56) DEC **HDCP** channel 10 packet body BCH(64,56) DEC data sync data R-data preample <u>de</u> align **8** BDATA 10 table **GDATA RDATA** 4 ctrl packet hs or DLY HS VS or o recognition packet info frame header packet info header audio data header info frame data classification MEM SPDIF [3:0] packet 12S DATA [3:0] body audio FIFO/ 12S MCLK/SCLK/WSCLK audio audio data audio CLK re-gen format

Pixel Packing

Detect & Measure Blocks

Outline

I. HDMI Introduction

- i. Overview
- ii. Data Path
- iii. Signal Flow
- II. Firmware Flow

HDMI Signal Flow

Things need to be done before detecting / measuring:

- 1. Hot-plug detect → notify HDMI source
- 2. enable $Z0 \rightarrow allow TMDS$ signal in
- 3. HDCP handshaking → for MAC

Hot-Plug Operations (1/2)

Hot-Plug Operations (2/2)

Enabling ZO

HDCP Handshaking

- An, Aksv would be send anytime
- data needed during handshaking:
 - Bksv (will be reset after power isolation)
 - R0 (100ms after An, Aksv received)

Outline

I. HDMI Introduction

II. Firmware Flow

- i. Switch
- ii. Pre-detect
- iii. Scan
- iv. Measure

Signal to Timing: Steps

1. Port switching

switch to a specific digital port

2. Source pre-detection

detect the signal status by interrupts

3. Input port scan

get & set the input video formats

4. Timing measurement

measure HS, VS & DE

System Layer: Handlers

MODE STATUS

- 1. "switch / pre-detect" in:
 - power saving
 - no signal
 - no support
- 2. "scan / measure" in:
 - search

Outline

- I. HDMI Introduction
- II. Firmware Flow
 - i. Switch
 - ii. Pre-detect
 - iii. Scan
 - iv. Measure

Port Switch

- 1. switch digital ports by "search index"
 - updated by the source handler
- 2. initialize TMDS for HDMI

Port Switch: To Digital Ports

Enable digital port

- 1. switch digital PHY to HDMI (PB, E0[4])
- 2. enable TMDS clock Rx (PB, B4[3])
- 3. enable Z0
- 4. 2D switch (PB, B5[2])

Disable analog port

disable ADC/APLL

Port Switch: MAC Initial

- 1. disable TMDS output
- Set DE-only mode HS/VS
- set deep color autodetect
- 4. enable BCH detection
- 5. enable packet variation detect
- HDCP setting
 - select DDC channel
 - set HDCP feature

- 7. switch to HDMI
- 8. enable R, G, B, and clock input
- 9. swap ADC channel if needed
- 10. switch to DVI mode if no signal detected
- 11. Set DVI / HDMI detect conditions
- 12. enable error correction

Port Switch: Interrupt Setting

INT1

enabled with Z0

INTO

- enabled while initializing TMDS
- starts with "stable IRQ"
- measure the TMDS clock

Outline

- I. HDMI Introduction
- II. Firmware Flow
 - i. Switch
 - ii. Pre-detect
 - iii. Scan
 - iv. Measure

Pre-Detect

- 1. monitor TMDS clock stability (INT0)
- 2. monitor DDC channel behaviors (INT1)

Clock Detect: Stable or Not?

N_i = TMDS clock frequency, measure(i)

Frequency unstable, if not stable.

Clock Detect: Blocks

Clock Detect: Stability Check

the measured clock is stable if:

 $\forall i \in [1, \text{stabletimes}], N_i \in [\text{threshold}] \cap [N_0 \pm \text{var}]$

parameter	description	default setting			
upper bound	N. throobold	$1000 \times \frac{340 \text{M}}{f_{\text{Xtal}}} \frac{1 + 4\%}{1 - 10\%}$			
lower bound	N _i threshold	$1000 \times \frac{25\text{M}}{f_{\text{Xtal}}} \frac{1 - 4\%}{1 + 10\%}$			
offset	N _i variation	$\pm 127 \times \frac{f_{\text{Xtal}}}{1000} (\text{Hz})$			
stable times	duration before stable	$127 \times 1024 \times (f_{\text{Xtal}})^{-1} \approx 5 \text{ms}$			

interrupt quest types (bind to INT0)

- -stable IRQ (default) (enabled in P2, 0xEF[7])
- -unstable IRQ (enabled in P2, 0xE6[1])

Clock Detect: What For?

- If the TMDS clock is stable:
 - a valid input signal present
 - adjust CDR accordingly, if necessary

- If the TMDS clock is unstable:
 - no valid input signal
 - pre-detection & port scan fail

stable/unstable IRQ happens alternatively

Pre-Detect: INTO Timing

TMDS Analog PHY (1/2)

TMDS Analog PHY (2/2)

RESET PHY

- 1. measure current TMDS clock
 - reference clock: M2PLL/10 or IOSC
- 2. set pixel clock rate (unit: 0.1M Hz)
- 3. set EQ & CDR
 - according to pixel clock rate
- 4. reset PHY

INTO: TMDS Handler (1/2)

STABLE IRQ

If CDR clock unstable, set PHY.

STEPS

- 1. switch to "unstable IRQ"
- 2. if CDR clock unstable:
 - set PHY parameters
 - narrow the clock detect threshold(±1.5%)
- 3. flag "TMDS_PHY_SET"

INTO: TMDS Handler (2/2)

UNSTABLE IRQ

If TMDS clock unstable, reset the "clock detect" block.

STEPS

- 1. switch to "stable IRQ"
- 2. enlarge the clock detection range
- 3. clear "TMDS_PHY_SET" flag

Pre-Detect: DDC Interrupt

- trigger the "HDMI DDC IRQ"
 - 0xFFE5[3:2], bind to INT1
 - enable -> with Z0 enable
 - disable -> inside INT1 handler

WHAT FOR?

- catch the EDID read action
- recover the HDCP key

Pre-Detect: INT1 Timing (1/2)

Pre-Detect: INT1 Timing (2/2)

INT1: Bksv Recovery

TO DO

- reload Bksv for HDCP handshaking
- the faster, the better

STEPS

- reset MCU & Flash clock dividers to 1
- GDI isolation OFF
- reload Bksv from memory
- set HDCP features

Outline

- I. HDMI Introduction
- II. Firmware Flow
 - i. Switch
 - ii. Pre-detect
 - iii. Scan
 - iv. Measure

Port Scan

- 1. check clock stability (PHY)
- 2. decode pixel & packet data (MAC)

Port Scan: PHY Layer

- 1. check TMDS clock stability
 - scan fails if unstable

- 2. check CDR stability
 - if unstable:
 - scan fails
 - reset the clock detect configurations
 - switch to "stable IRQ"

Port Scan: MAC Layer

SCAN STEPS

- 1. detect signal format
 - HDMI or DVI
- 2. detect sync. format
 - RGBHV or DE-only
- 3. detect packet
 - check BCH error
 - video setting
 - deep color setting

AFTERWARDS

- 1. enable video output
- 2. enable RGB clock output

HDMI: AVI Info-frame (1/3)

VIDEO FORMAT

- quantization ranges
- aspect
- pixel repetition

COLOR FORMAT

- color space (RGB or YCbCr)
- pixel encoding / packing
- colorimetry

HDMI: AVI Info-frame (2/3)

Packet Byte #	EIA/CEA-861B Byte #	7	6	5	4	3	2	1	0	
PB0	N. A.	Checksum								
PB1	Data Byte 1	Rsvd (0)	Y1	Y0	A0	B1	B0	S1	S0	
PB2	Data Byte 2	C1	C0	M1	MO	R3	R2	R1	R0	
PB3	Data Byte 3	Reserved (0)					SC1	SC0		
PB4	Data Byte 4	Rsvd (0)	VIC6	VIC5	VIC4	VIC3	VIC2	VIC1	VIC0	
PB5	Data Byte 5	Reserved (0) PR3 PR2						PR1	PR0	
PB6	Data Byte 6	Line Number of End of Top Bar (lower 8 bits)								
PB7	Data Byte 7	Line Number of End of Top Bar (upper 8 bits)								
PB8	Data Byte 8		Line Number of start of Bottom Bar (lower 8 bits)							
PB9	Data Byte 9	Line Number of start of Bottom Bar (upper 8 bits)								
PB10	Data Byte 10	Pixel Number of End of Left Bar (lower 8 bits)								
PB11	Data Byte 11	Pixel Number of End of Left Bar (upper 8 bits)								
PB12	Data Byte 12	Pixel Number of End of Right Bar (lowe			lower 8 bit	ts)				
PB13	Data Byte 13	Pixel Number of End of Right Bar (upper 8 bits)			ts)					
PB14-PB27	Data Bytes 14-27	7 Reserved (0)								

HDMI: AVI Info-frame (3/3)

•	Y0, Y1	RGB or YC _B C _R indicator. See EIA/CEA-861B table 8 for details.
•	A0	Active Information Present. See EIA/CEA-861B table 8 for details.
•	B0, B1	Bar Info data valid. See EIA/CEA-861B table 8 for details.
•	S0, S1	Scan Information (i.e. overscan, underscan). See EIA/CEA-861B table 8 for details.
•	C0, C1	Colorimetry (ITU BT.601, BT.709 etc.). See EIA/CEA-861B table 9 for details.
•	M0, M1	Picture Aspect Ratio (4:3, 16:9). See EIA/CEA-861B table 9 for details.
•	R0R3	Active Format Aspect Ratio. See EIA/CEA-861B table 10 and Annex H for details.
•	VIC0VIC6	Video Format Identification Code. See EIA/CEA-861B table 13 for details.
•	PR0PR3	Pixel Repetition factor. See EIA/CEA-861B table 14 for details.
•	SC1, SC0	Non-uniform Picture Scaling. See EIA/CEA-861B table 11 and paragraph on page 58.

Port Scan: Video Setting

- 1. set "pixel repetition auto" mode
- 2. set "color space auto" mode
- 3. extract from received packet:
 - set color space
 - set extended colorimetry
- 4. set background color

HDMI: General Control Packet

Byte \ Bit #	7	6	5	4	3	2	1	0	
SB0	0	0	0	Clear_AVMUTE	0	0	0	Set_AVMUTE	
SB1	PP3	PP2	PP1	PP0	CD3	CD2	CD1	CD0	
SB2	0	0	0	0	0	0	0	Default_Phase	
SB3	0	0	0	0	0	0	0	0	
SB4	0	0	0	0	0	0	0	0	
SB5	0	0	0	0	0	0	0	0	
SB6	0	0	0	0	0	0	0	0	

- Set_AVMUTE [1 bit] Set the AVMUTE flag. (See description below).
- Clear_AVMUTE [1bit] Clear the AVMUTE flag. (See description below).
- PP [4 bits] Pixel Packing Phase. (See description in section 6.5.3.)
- CD [4 bits] Color Depth. (See description in section 6.5.3.)
- Default_Phase [1 bit] Default Phase. (See description in section 6.5.3.)

Deep Color: Setting

DEEP COLOR BLOCK

- 1. set color depth & pixel clock rate
- 2. enable deep color PLL block
- 3. enable deep color block (P2, B5[7])

Port Scan: Finish

- 1. set source type to "_SOURCE_HDMI".
- 2. Measure input timing info in the Mode Handler.

Outline

I. HDMI Introduction

II. Firmware Flow

- i. Switch
- ii. Pre-detect
- iii. Scan
- iv. Measure

Timing Measurement

- sync processor measure (HS/VS)
- 2. auto-function measure (active region)

Timing: Measure Initial

From the "Mode handler":

- 1. initial VGIP input by-pass
- 2. enable on-line sync processor
 - VS timeout: 4096×512×(Xtal)⁻¹
 - from capture window
- 3. disable VS invert
- 4. measure source set to TMDS (0x49)

HS/VS Measure: Types

MEASURE LIST

- from analog:
 - HS/VS polarity
 - HS/VS width
 - H/V frequency
 - V total
- from digital:
 - H total

MODE

- analog
 - HS: by crystal clock
 - VS: by HS
- digital
 - HS: by pixel clock
 - VS: by DE

Input Timing: HS & VS

HS/VS Measure: Steps

- 1. enable on-line measure (0x52[7])
- 2. measure fails if:
 - i. measuring one-frame timeout (0x50[7])
 - ii. HS period measure overflow (0x52[4])
 - iii. VS period measure overflow or timeout (0x54[5:4])
- 3. pop-out results (0x52[6])

Active Region Measure

MEASURE LIST

- H/V start
- H width
- V height

STEPS

- 1. set H / V boundary
 - 0x0002 to H/V total

- 2. start auto-function measure (0x7D)
 - digital mode

3. return measured data

Input Timing: Active Region

