

Contents

1. IoT – LPWAN

2. Machine Learning examples

3. Lab: Geolocation

1

IoT - LPWAN

IoT market size worldwide

Source: Machina Research

The Internet of Things needs its Twitter!

loT applications need

- √ small messages
- ✓ low cost
- ✓ low battery

2G, 3G and 4G are not optimized for IoT

Small bandwidth is optimized for small messages

Small messages...

√ 6 bytes: GPS coordinates

Location report with below 3m precision (GPS technical accuracy is above 3m)

✓ 2 bytes: temperature reporting
Lab thermometer with -100°/+200° range, 0.004° precision

✓ **1/8 byte**: object state reporting

Switch report like set in day/night, hot/cold, on/off

✓ **0 byte**: Request for duplex operation

Do you have some information for me?

Low Power Wide Area Network

Ultra low power
Ultra long range
Energy efficient
Cost effective

So, how is it possible?

Ultra Narrow Band signal

100-600 Hz per message

Space & Frequency & Time diversity

- ✓ High noise resilience
- ✓ Very low energy
- ✓ Long range capabilities

Use of free ISM band (868 MHz in Europe)

So, how is it possible?

Very **Efficient** protocol

- ✓ Low redundancy to transfer a message
- ✓ No negotiation
- ✓ No Handover
- ✓ Bi-directional

12 bytes / message
Up to 140 messages / day

A device can work up to **20 years** off two AA batteries

Today present in 53 countries & regions

Currently covering 1 Billion people

November 2018

countries & regions covered nationwide

- Belgium
- Czech Republic
- Denmark
- Finland
- France
- Italy
- Ireland

- Japan
- Luxembourg
- Malta
- Mauritius
- New Zealand
- Oman
- Portugal

- Réunion
- Singapore
- Slovakia
- South Africa
- Spain
- Taiwan
- The Netherlands

Visible stuff

Smart parking

Less visible stuff

Home Alarm System

Challenge

Secure better households

SYSTEME D'ALARME

Votre Freebox vous alerte en cas d'anomalie

Sirène 105 dB

sigfox

Stolen Car Recovery

Challenge

Locate and recover stolen assets through a small and discrete GPS tracking device.

Connected Boilers

Challenge

Create an affordable solution to monitor boilers and create new services for customers.

2

Machine Learning exemples

Data Science - Little Big Data

- Data Collection / storage
- Data knowledge / Analytics
- Data Intelligence / Machine learning

Data Science - Little Big Data

Data Intelligence / Machine learning

Little Big Data

Data type

- Machine learning using data in the network
 - Payload data: the value of the transported data
 - Temperature, pressure, position,...
 - Metadata: all about data except its value
 - Reception date
 - Reception level
 - •

Little Big Data

Data Intelligence / Machine learning

Anomaly detection /
Predictive Maintenance

Little Big Data

Data Intelligence / Machine learning

Geolocation

Geolocation business case: Louis Vuitton

The Geolocation Challenge

Need for a location solution without GPS:

- Low cost module
- High battery life
- Precision target ~ 1km

The Geolocation Challenge

Network based geolocation

Geolocation state of the art – Time of flight

Calculate signal Time of Flight

- Use of TDOA
- Estimate distances BS Device
- Solve equation system: device area

Geolocation state of the art – Time of flight

Calculate signal Time of Flight

- Use of TDOA
- Estimate distances BS Device
- Solve equation system: device area

Drawbacks for LPWAN

- UNB not well suited for precise TDOA
- Need network synchronization time domain (~μs).
- Multipath channel destroy perfs

Network based geolocation—RSSI

Received Signal Strength Indicator

- Use the received signal power
- Try to make a link between RSSI and device position
- No need for synchronized network
- Hard to link distance RSSI in multipath environment
- BS Locations
- Coverage Map of each BS
- RSSI @ each BS

3

Lab: Geolocation

Geolocation Train Set

Inpu	t: Message Id	Base statio	on Id De	evice Id		Base station positi	ion (Lat, Lng)	_
	messid	bsid	did	nseq	Rssi (dBm)	time_ux (ms)	bs_lat	bs_Ing
0	573bf1d9864fce1a9af8c5c9	2841	473335	0.5	-121.5	1.463546e+12	39.617794	-104.954917
1	573bf1d9864fce1a9af8c5c9	3526	473335	2.0	-125.0	1.463546e+12	39.677251	-104.952721
2	573bf3533e952e19126b256a	2605	473335	1.0	-134.0	1.463547e+12	39.612745	-105.008827
3	573c0cd0f0fe6e735a699b93	2610	473953	2.0	-132.0	1.463553e+12	39.797969	-105.073460
4	573c0cd0f0fe6e735a699b93	3574	473953	1.0	-120.0	1.463553e+12	39.723151	-104.956216

Output: device position

	lat	Ing
0	39.606690	-104.958490
1	39.606690	-104.958490
2	39.637741	-104.958554
3	39.730417	-104.968940
4	39.730417	-104.968940

How to apply ML techniques to Geolocation

What kind of ML problems do we have?

What is the feature matrix / Ground truth?

What kind of algorithm will we use?

Goals

- Build feature matrix
- Build ground truth
- Plot error cumulative probability
- Compute prediction criterion: error @ 80%
- Extract prediction for the test set
 - Save result in csv file
- Build a « leave 1 device out » predictor

Send me your results before 12/01/2017: Olivier.lsson@gmail.com Groups of 3-4 people

- 1. Python code used to generate previous goals
- 2. Predicted position for test set in csv format: pred_pos_test_list.csv
- 3. Short explanation of your approach and your choices: ~ 1-2 pages, can be included into the notebook or a separate document

https://www.sensit.io/

Thank You

