

Curso de Ambientación y Articulación 2022 QUÍMICA

NOMENCLATURA

TABLA PERIÓDICA DE LOS ELEMENTOS

VALENCIA Y NÚMERO DE OXIDACIÓN

VALENCIA

Los elementos químicos se combinan para formar los compuestos. Cada elemento tiene una o varias capacidades de combinación.

Se toma la capacidad de combinación del hidrógeno (valencia) como unitaria y se compara la capacidad de combinación de los demás elementos con la capacidad de combinación del hidrógeno.

Así por ejemplo el calcio tiene el doble de capacidad de combinación que el hidrógeno, entonces, la valencia es 2.

VALENCIA Y NÚMERO DE OXIDACIÓN

NUMERO DE OXIDACIÓN

Representa la carga que tendría un átomo de un elemento, si se combinara con otro por transferencia de electrones (enlace iónico).

Un átomo perdería uno o varios electrones (cargándose positivamente) y el otro los aceptaría (cargándose negativamente).

Así, cada átomo adquiriría tantas cargas positivas o negativas como electrones ganados o cedidos.

Ejemplo: cloruro de sodio (NaCl); sodio tendría un número de oxidación +1 y el cloro de (-1). El valor absoluto del número de oxidación coincide con la valencia.

	N°oxidación	Elemento	Símbolo
	+1	Litio	Li
		Sodio	Na
		Potasio	К
		Cesio	Cs
		Plata	Ag
	+2	Berilio	Be
		Magnesio	Mg
		Calcio	Ca
		Estroncio	Sr
TI ST		Zinc	Zn
		Cadmio	Cd
		Bario	Ва
METALES	+3	Aluminio	Al
\	+1 +2	Cobre	Cu
		Mercurio	Hg
	+1 +3	Oro	Au
	+2 +3	Hierro	Fe
		Cobalto	Со
		Níquel	Ni
	+2 +4	Platino	Pt
		Plomo	Pb
		Estaño	Sn
	+2 +3 +6	Cromo	Cr
	+2 +3 +4 +6 +7	Manganeso	Mn

	-1	Flúor	F
NO METALES	+1 -1 +3 +5 +7	Cloro	CI
		Bromo	Br
		lodo	
	-2	Oxígeno	0
	<i>-</i> 2 +2 +4 +6	Azufre	5
		Selenio	Se
		Teluro	Te
Σ	+1 +2 +3 -3 +4 +5	Nitrógeno	N
NON	+3 -3 +5	Fósforo	Р
		Arsénico	As
		Antimonio	Sb
	+2 -2 +4	Carbono	С
	+4	Silicio	Si
	+3	Boro	В

NÚMERO DE OXIDACIÓN DE ELEMENTOS MAS USADOS

COMPUESTOS BINARIOS: Formados por dos elementos químicos distintos.

Hidrógeno + metal: Me H_x donde x es valencia del metal

Li +
$$\frac{1}{2}$$
 H₂ \rightarrow LiH Hidruro de litio
Ca + H₂ \rightarrow CaH₂ Hidruro de calcio

Hidrógeno (con n° de oxidación -1), se escribe a la derecha Metal (electropositivo), se escribe a la izquierda, pero se nombra al último (IUPAC)

Hidrógeno + no metal: H_xNoMe

x es valencia del no metal (1 o 2, según sea un halógeno, o un anfígeno como el S, Se y Te, respectivamente, sería la menor valencia de estos últimos.

Con reacción ácida: combinación con elementos F, Cl, Br, I, S, Se y Te

HCI Cloruro de hidrógeno (IUPAC)

Ácido clorhídrico (nomeclatura Clásica)

H₂S Sulfuro de hidrógeno (IUPAC)

Ácido sulfhídrico (nomeclatura Clásica)

Los halógenos con n° oxidación -1, el Hidrógeno con +1; azufre y selenio y teluro con -2

Hidrógeno + no metal Tienen nombres especiales

Sin reacción ácida o generalmente con propiedades básicas:

NH3 amoníaco

PH3 fosfina- fosfamina

SbH3 estibina o estibamina

AsH3 arsina o arsenamina

El no metal con su valencia 3, número de oxidación -3, el Hidrógeno +1

ÓXIDOS METÁLICOS

■ Metal + oxígeno

Generalmente con carácter básico

Na₂O óxido de sodio

Óxido de disodio

Al₂O₃ óxido de aluminio

Trióxido de aluminio

Cu₂O óxido de cobre (I)-monóxido de dicobre

Óxido cuprese

CuO óxido de cobre (II)-monóxido de cobre

Óxido cúprico

$Me_x O_y$

x valencia del Oxígeno.

y valencia del metal.

Se simplifica los subíndices a su menor expresión si son múltiplos.

Se escribe primero el metal.

ÓXIDOS METÁLICOS

- Oxígeno posee número de oxidación de -2.
- Si tienen una sola valencia la nomenclatura IUPAC y clásica coinciden.
- Si tiene 2 valencias, en la nomenclatura CLÁSICA se agrega la terminación al metal de:
- -OSO a la menor
- -ICO a la mayor

HEMIOXIDOS: relación metal/oxígeno=2:1.

SESQUIÓXIDO: relación metal/oxígeno=2:3

| IUPAC: mono se sobre entiende.

Óxido cuproso: Cu₂ O

Óxido cúprico: Cu₂ O₂ CuO

Fe₂O₃

ÓXIDOS NO METÁLICOS

No Metal + oxígeno: Generalmente con carácter ácido.

1₂O óxido de iodo (I)- monóxido de diyodo

1203 óxido de iodo (III) – trióxido de diyodo

1,0, óxido de iodo (V)- pentóxido de diyodo

O₇ óxido de iodo (VII)- heptóxido de diyodo

N₂O óxido de nitrógeno (I) - monóxido de dinitrógeno-

hemióxido de nitrógeno-óxido nitroso

NoMex Oy

x valencia del oxígeno.

y valencia del metal.

Se simplifican subíndices múltiplos.

Se escribe primero el no metal.

NO óxido de nitrógeno (II) - monóxido de mononitrógeno, óxido nítrico

N₂O₃ óxido de nitrógeno (III) - trióxido de dinitrógeno-Sesquióxido de nitrógeno

N₂O óxido de nitrógeno (IV) - tetróxido de dinitrógeno

N₂O₅ óxido de nitrógeno (V) - pentóxido de dinitrógeno.

ÓXIDOS NO METÁLICOS

- Antiguamente se llamaban anhídridos: se nombraban con la palabra "anhidrido" y el nombre del nometal con la terminación oso para la menor valencia e ico para la mayor valencia. No metales con 4 valencias se usaba el prefijo hipo para la menor valencia y per para la mayor valencia. ESTA NOMENCLATURA ESTÁ EN DESUSO
- Se los llama óxido y entre paréntesis el numeral de Stock, o se los nombra por atomicidad.
- Sólo los óxidos NO y N₂O conservan la nomenclatura tradicional, se llamaron y llaman, según la IUPAC, óxido nítrico y nitroso.

SALES BINARIAS: Metal + No Metal

Proviene del ácido con terminación -hídrico; se nombran cambiando por -uro.

Clásica: Si el metal tiene 2 valencias: se usa terminación –OSO (menor) -ICO (mayor).

IUPAC: solo el nombre del metal y entre paréntesis un N° romano llamado numeral de Stock, que indica la valencia

KI ioduro de potasio

Mg S sulfuro de magnesio

Cu₂S sulfuro de cobre (I)-Sulfuro cuproso

CuS sulfuro de cobre (II) – Sulfuro cúprico

COMBINACIONES NO METAL + NO METAL

No metal más electronegativo con terminación -uro. No metal más electropositivo se escribe primero y se nombra al final

CS₂ Di sulf**uro** de carbono sulfuro de carbono

PCl₃ triclor**uro** de fósforo Cloruro de fósforo (III) Electronegatividad: es la capacidad de atraer los electrones del enlace, cuando forma parte de compuesto.

COMPUESTOS TERNARIOS: Formados por tres elementos químicos distintos HIDRÓXIDOS O BASES:

Óxido metálico + agua -> Hidróxido

 $Na_2O + H_2O \rightarrow 2 NaOH$ Hidróxido de sodio

CaO + H₂O → Ca(OH)₂ Hidróxido de cálcio

Fe(OH)₂ Hidróxido ferroso – Hidróxido de hierro (II)

Fe(OH)₃ Hidróxido férrico – Hidróxido de hierro (III)

HIDRÓXIDOS O BASES:

- ► Llevan en la fórmula el radical OH⁻ (oxhidrilo u hidroxilo), con nº de oxidación -1.
 Se escriben directamente primero el metal, luego el grupo OH⁻, se intercambian las valencias.
- Si el metal tiene una valencia, se nombra directamente: Hidróxido de y el nombre del metal. Si tiene dos valencias el nombre del metal terminará en -oso, para la menor; -ico, para la mayor;
- O bien entre paréntesis se indica la valencia del metal con nº romanos.

Cu (OH)₂ Cu OH Me(OH)_y y: valencia del metal. No se encierra entre paréntesis el OH- si la valencia del metal es 1

Óxido No metálico + agua ightarrow Oxoácido

 SO_2 + $H_2O \rightarrow H_2SO_3$ ácido sulfur**oso** Óxido de azufre(IV) + agua sulfato (IV) de hidrógeno

 SO_3 + $H_2O \rightarrow H_2SO_4$ ácido sulfúr**ico** Oxido azufre(VI) + agua sulfato (VI) de hidrógeno

COMPUESTOS TERNARIOS

OXOÁCIDOS

 $Br_2O + H_2O \rightarrow HBrO$ ácido **hipo**brom**oso** Oxido **de bromo(I)** + agua \rightarrow bromato (I) de Hidrógeno

 $Br_2O_3 + H_2O \rightarrow 2HBrO_2$ ácido bromoso Oxido de bromo(III)+ agua \rightarrow bromato (III) de Hidrógeno

Br2O5 + H2O \rightarrow 2 HBrO3 ácido bróm**ico** Oxido bromo(V)+ agua \rightarrow bromato (V) de Hidrógeno

Br2O7 + H2O → 2 HBrO4 ácido perbrómico Oxido de bromo (VII)+ agua → bromato (VII) de Hidrogeno

COMPUESTOS TERNARIOS

OXOÁCIDOS

$$P_2O_3+H_2O \rightarrow 2 HPO_2$$
 ácido metafosforoso

$$P_2O_3 + 3H_2O \rightarrow 2 H_3PO_3$$
 ácido ortofosforoso - ácido fosforoso

$$P_2O_5 + H_2O \rightarrow 2 HPO_3$$
 ácido metafosfórico

$$P_2O_5 + 2H_2O \rightarrow H_4P_2O_7$$
 ácido pirofosfórico

$$P_2O_5 + 3H_2O \rightarrow 2 H_3PO_4$$
 ácido ortofosfórico-
ácido fosfórico

$$B_2O_3+H_2O \rightarrow 2 \ HBO_2$$

ácido metabórico

$$B_2O_3+3H_2O \rightarrow 2H_3BO_3$$
 ácido bórico

$$As_2O_3 + 3H_2O \rightarrow 2 H_3AsO_3$$

ácido arsenioso

$$As_2O_5 + H_2O \rightarrow 2HAsO_3$$

ácido metarsénico

$$As_2O_5 + 2H_2O \rightarrow H_4As_2O_7$$

ácido piroarsénico

$$As_2O_5 + 3H_2O \rightarrow 2 H_3AsO_4$$

ácido arsénico

H₂MnO₄ ácido mangánico

HMnO₄ ácido permangánico

H₂CrO₄ ácido crómico

H₂Cr₂O₇ ácido dicrómico

Para escribir la fórmula directamente del ácido:

NO METAL CON VALENCIA PAR: H₂CO₃

- Valencia del no metal (IV) se suma 2 para llevar al próximo nº par (4+2=6) y el número que se suma es el subíndice del H
- El resultado de la suma se divide en 2(valencia del O) (6:2=3) y es el subíndice del O

NO METAL CON VALENCIA IMPAR: HNO₃

-Valencia del no metal (V) se suma 1 para llevar al par próximo (subíndice del hidrógeno=1) 5+1=6; se divide en 2 y dá el subíndice de oxígeno.

SALES DE OXACIDOS

$$H_2SO_3 + 2 NaOH \rightarrow Na_2SO_3 + 2 H_2O$$

ácido + hidróxido \rightarrow sulfito de sodio + agua
sulfuroso de sodio

Se obtienen al reemplazar los hidrógenos de un ácido por un metal.

Se nombran cambiando la terminación "oso" del ácido por "ito" y la terminación "ico" por "ato".

La valencia del radical está dada por el número de hidrógenos **reemplazables**. Se intercambian las valencias del metal y del radical

SALES DE OXACIDOS

 $HBrO_2 + Fe (OH)_3 \rightarrow Fe (BrO_2)_3 + H_2O$ ác brom**oso** + Hidróx férrico \rightarrow brom**ito** férrico

SALES ÁCIDAS

Ácidos polipróticos, cuando no todos los hidrógenos del ácido han sido reemplazados por metales, el nombre de la sal comienza con la palabra hidrógeno o dihidrógeno, según el tipo de sal que forme, dando sales ácidas.

H₂SO₄ + NaOH → NaHSO₄ Hidrógeno sulfato de sodio

SALES ÁCIDAS

NaHSO₄ Hidrógeno sulfato de sodio

Ca(HSO₄)₂ Hidrógeno sulfato de calcio

NaHSO₃ Hidrógeno sulfito de sodio

NaHCO₃ Hidrógeno carbonato de sodio

Na₄P₂O₇ Pirofosfato de sodio

Na₂H₂P₂O₇ dihidrógeno pirofosfato de sodio

NaH₂PO₄ dihidrógeno fosfato de sodio - fosfato monosódico

Na₂HPO₄ Hidrógeno fosfato de sodio - fosfato disódico

Na₃PO₄ Fosfato de sodio - fosfato trisódico