Homework 8

Clearly describe the reasoning behind the work done in each problem.

Problem 1:

Given the amplifier transfer characteristics curve on the right:

- a. Determine whether a single or dual power supply is being used.
- b. Determine the power supply voltage.
- c. Calculate the voltage amplification.
- d. Calculate the power amplification in dB.
- e. Plot the output for $v_{in}(t) = 4 \cos(100t) \, mV$.
- f. Plot the output for $v_{in}(t) = 8 \cos(100t) \, mV$.
- g. Determine the maximum output sinusoidal voltage possible without clipping.

Problem 2:

An amplifier with a power gain of 80dB is using a dual power supply voltage of ±10V.

- a. Calculate the voltage gain of the amplifier.
- b. Sketch the transfer characteristics curve of the amplifier.
- c. Determine the peak to peak value of the largest input signal that can be amplified without clipping.
- d. Determine the peak to peak value of the largest output signal that the amplifier can produce without clipping.
- e. Determine the DC offset of the output signal found in part d.

Problem 3:

The input and output of an amplifier is plotted on the right. Plot the transfer characteristics curve of the amplifier. Hint: To do this you need to know gain, single or dual power, max/min output voltages, and inverting or non-inverting.

Problem 4:

The frequency response of a particular amplifier is shown below. Given the input: $v_{in}(t) = [20 + 25\cos(2\pi 1000t + \pi/4) - 15\cos(2\pi 2000t) + 5\cos(2\pi 3000t - \pi/4)] \, mV$

- a. Plot the power spectrum of the input in dBW.
- b. Determine the total normalized signal power of the input.
- c. Find the power gain and each input frequency.
- d. Plot the power spectrum of the output signal.
- e. Determine the total normalized signal power of the output.
- f. Calculate the overall amplification of the signal in dB [10 log(e/b)].
- g. Plot the magnitude spectrum of the output signal.
- h. Write an expression for $v_{out}(t)$. Note: since you do not have the phase information of the amplifier, leave the phase as θ_1 , θ_2 , and θ_3 .

Problem 5:

The frequency response of an amplified sinusoid is shown below. Given the input was a 100 Hz sinusoid, determine the range of cutoff frequencies for a low pass filter to block the harmonics. Was this amplifier powered by a single or dual power supply and why?

$$V_{a+Ew3} = 6000 + 4000 \cos(100 t)$$
 $V_{a+Ev3} = 6 + 4 \cos(100 t)$
 $100 = 2\pi f$
 $T = \frac{50}{\pi}$
 $V_{a+ew3} = 6000 + 8000 \cos(100 t)$
 $V_{a+Ew3} = 6000 + 8000 \cos(100 t)$
 $V_{a+Ew3} = 6000 + 8000 \cos(100 t)$
 $V_{a+Ev3} = 6000 + 8000 \cos(100 t)$

$$V_{n+} = 5 \cos(2\pi \cos t)$$

$$S\cos(2\pi \cot t) = A_{V} \cos(2\pi \cot t)$$

$$A_{V} = \frac{5}{0.5}$$

$$= 10$$

$$V_{ox}(V)$$

$$4 + \frac{1}{0.4}$$

$$V_{tin}(V)$$

FCHZI	VEMVI	Vrva	Vyms[V]	PEWJ	PEdBWJ	
0			0.02	400 e-b		
1000	25	0.025	17.68e3	312.5e-6		
2000	-15	-0.01s	10. 6le3	112.5e-6	-39.488	
3000	5			12.5 e-6		
2000					•	

Problem 4d	
	_
Pin (dBW) (7 (dB) Peut (dBW) -33.979 (C) -33.979	+
-33.979 0 -33.979	_
-35.051 IS -20.05) -39.488 30 -9.488	_
-39.488 30 -9.488	
-49.031 30 -19.031	
Peut = Pin + C7	
	_
P(dBW)	_
1000 2000 3000 > \(\flat{1}{2}\)	_
-10- <mark>-</mark>	
-20-	
-30-	+
	_
Problem 4e	_
P (ID)(C) P () 1	
-2> a79 so- a1 (+
-20 cc 0 9 802 -2	
-01 x00 112 512 -2	_
Peut CdBW) Pat (w) -33.979 400.04e-6 -20.05) 9.883e-3 -9.488 112.512e-3 -19.031 12.500e-3	_
171.081 112.500 8-3	+
Peut [w] = 135, 30 e-3 W	
leut LW 1 - 15 1, 90 E 5 VV	+

Problem 47

Av=10 los (
$$\frac{135.30 \text{ e}^{-3}}{837.5 \text{ e}^{-6}}$$
)

= 22.083

Problem 4g

P(ABW)

ADDA-6+

12.5e-3+

Publem 4 h

VarEv1 = 400.4e-6+ 9.883e-3 cos (2π 1000t+0,)
+ 112.5e-3 cos (2π 300ct+0,)
+ 12.5e-3 cos (2π 300ct+0,)
+ 12.5e-3 cos (2π 300ct+0,)

chl	4W	1	5																
T	ho	la	3.1.		NZ .	free-	.41.4	4.40	V a	. >	ed.	La	1.	1	le	41			
4	icla.	yc _1	ing	e c	Ľ.	ova	vevi	נונים החנים	10	Inv	~C.	to 30	V.	12	X	IN	41/2	٠.	
	2 NO			12			16	10	112	,	U	10	ייט	12) (1)	7	
	7																		
T	he	100	WW	Su	mal	Y	3	a	SiV	sle	DU	wV	Su	<i>xle</i>	SI	ומשי	, /	L CU	vs
41	vh		S (x d	6	101	ve.	I	f.	the	I Sv	ur pply nav		N US	0	1	luce		
Su	vool:	Y	the	(Ac	(cs	M PCI	nut	· S	hal	1	nav	e	be	r h	0			
	rı e	-																	
						1													