

Tagskiptur lambda-reikningur

Bjarki Baldursson Harksen

1. apríl 2023

1.1 Fallaforritun

Gildingarforritun

Hefðbundin forritun sem notar reiknirit og ástandsbreytingar.

- Auðvelt fyrir tölvur og mennskt fólk að skilja.
- ► Erfitt að halda utan um ástand villur spretta upp.

1117

1.1 Fallaforritun

Gildingarforritun

Hefðbundin forritun sem notar reiknirit og ástandsbreytingar.

- Auðvelt fyrir tölvur og mennskt fólk að skilja.
- Erfitt að halda utan um ástand villur spretta upp.

Fallaforritun

Forritun sem notar föll sem frumeiningu.

- ► Erfiðara að skilja.
- Lítið sem ekkert ástand færri villur.

1.1 Fallaforritun

Forrit sem finnur summu allra ferningstala sem eru minni en 1000:

Python

1.1 Fallaforritun

Forrit sem finnur summu allra ferningstala sem eru minni en 1000:

Python

Haskell

```
ghci> sumOfSquares = (sum . takeWhile (<1000) . map (^2)) [0..]
ghci> sumOfSquares
10416
```


7

1.2 Tagskiptingar

Tagskiptingar eru notaðar í forritun til þess að skera úr um mismunandi gerðir af gildum.

Python

```
def twice(n: int) -> int:
    return n * 2
```

Haskell

```
twice :: Int -> Int
twice n = n * 2
```


1.2 Tagskiptingar

Tagskiptingar eru notaðar í forritun til þess að skera úr um mismunandi gerðir af gildum.

Python

Haskell

1.3 Reikningslíkön og lambda-reikningur

Reikningur er torskilgreint fyrirbæri. Í staðinn eru skoðuð *reikningslíkön*:

1.3 Reikningslíkön og lambda-reikningur

Reikningur er torskilgreint fyrirbæri. Í staðinn eru skoðuð *reikningslíkön*:

Turing-vélar

- ► Grundvöllur tölva og gildingarforritunar.
- Stærðfræðilega frábrugðin gildingarmálum.
- Passa ekki vel við tagskiptingu.

1.3 Reikningslíkön og lambda-reikningur

Reikningur er torskilgreint fyrirbæri. Í staðinn eru skoðuð *reikningslíkön*:

Turing-vélar

- ► Grundvöllur tölva og gildingarforritunar.
- Stærðfræðilega frábrugðin gildingarmálum.
- Passa ekki vel við tagskiptingu.

Lambda-reikningur

- Grundvöllur fallaforritunar.
- Má hugsa um sem hið einfaldasta mögulega fallamál.
- Auðveld að gefa tagskiptingu.

2.1 Formlegt mál fyrir lambda-reikning

Skilgreining 2.1

Látum Σ vera mengi tákna. Formlegt mál $\mathcal L$ yfir stafrófið Σ er mengi endanlegra runa í Σ . Endanleg runa í Σ nefnist stæða, og ef hún er innihaldin í $\mathcal L$ nefnist hún einnig segð málsins $\mathcal L$, eða $\mathcal L$ -segð.

2.1 Formlegt mál fyrir lambda-reikning

Vandi

Hvað þýðir "x = y"?

- ► Táknrunan ('x', '=', 'y').
- ► Staðhæfingin "x er segð, y er segð, og x og y eru sama segðin."

1111

2.1 Formlegt mál fyrir lambda-reikning

Samkomulag

- Við notum einfaldar gæsalappir utan um tiltekin tákn og feitletraða lágstafi fyrir óþekkt tákn.
 - 'a' er ávallt fyrsti stafur stafrófsins.
 - Ef x er 'a', þá er x líka fyrsti stafur stafrófsins.
- Við notum einfaldar gæsalappir utan um tiltekna stæðu og feitletraða hástafi fyrir óþekkta stæðu.
 - 'abc' er ávallt stæða fyrstu þriggja stafa stafrófins.
 - Ef A er 'abc', þá er A líka stæða fyrstu þriggja stafa stafrófins.
- Við skrifum tákn og stæður hlið við hlið fyrir tilsvarandi samsetta stæðu.
 - Með x og A eins og að ofan er Axbc stæðan 'abcabc'.

2.1 Formlegt mál fyrir lambda-reikning

Samkomulag

- ▶ Við notum einfaldar gæsalappir utan um tiltekin tákn og feitletraða lágstafi fyrir óþekkt tákn.
 - 'a' er ávallt fyrsti stafur stafrófsins.
 - Ef x er 'a', þá er x líka fyrsti stafur stafrófsins.
- Við notum einfaldar gæsalappir utan um tiltekna stæðu og feitletraða hástafi fyrir óþekkta stæðu.
 - 'abc' er ávallt stæða fyrstu þriggja stafa stafrófins.
 - Ef **A** er 'abc', þá er **A** líka stæða fyrstu þriggja stafa stafrófins.
- Við skrifum tákn og stæður hlið við hlið fyrir tilsvarandi samsetta stæðu.
 - Með x og A eins og að ofan er Axbc stæðan 'abcabc'.

Við leyfum okkur að nota '=' til að miðla samsemd, þ.e. $\mathbf{A}=\mathbf{B}$ þýðir að \mathbf{A} og \mathbf{B} eru sama segðin.

2.1 Formlegt mál fyrir lambda-reikning

Skilgreining 2.3

- (i) Stæða af gerðinni x þar sem x er breyta er λ -segð.
- (ii) Ef M er λ -segð og x er breyta, þá er $(\lambda x. M) \lambda$ -segð.
- (iii) Ef M og N eru λ -segðir, þá er (MN) λ -segð.

2.2 Einföldun λ -segða

Mismunandi λ -segðir geta "táknað" sama hlutinn.

₩

2.2 Einföldun λ -segða

Mismunandi λ -segðir geta "táknað" sama hlutinn.

α -jafngildi

Ef $f(x) = x^2$ og $g(y) = y^2$, þá eru f og g sama fallið. Við viljum eins að ' $(\lambda x. x)$ ' og ' $(\lambda y. y)$ ' séu jafngildar λ -segðir.

1

2.2 Einföldun λ -segða

Mismunandi λ -segðir geta "táknað" sama hlutinn.

α -jafngildi

Ef $f(x) = x^2$ og $g(y) = y^2$, þá eru f og g sama fallið. Við viljum eins að ' $(\lambda x. x)$ ' og ' $(\lambda y. y)$ ' séu jafngildar λ -segðir.

β -einföldun

Ef $f(x) = 2x^2 + 3$, þá er $f(1) = 2 \cdot 1^2 + 3 = 5$. Við viljum eins að ' $((\lambda x. x) y)$ ' einfaldist í 'y'.

2.2 Reikningur λ -segða

Skilgreining 2.6

Látum M, N vera λ -segðir. Ef til eru stæður A, B þannig að rita megi M = ANB, þá nefnist N *hlutsegð* í M.

2.2 Reikningur λ -segða

Skilgreining 2.6

Látum M, N vera λ -segðir. Ef til eru stæður A, B þannig að rita megi M = ANB, þá nefnist N *hlutsegð* í M.

Ef breyta x kemur fyrir í hlutsegð í M af gerðinni $(\lambda x. P)$, þá segjum við að breytan x sé *bundin* í M á þeim stað. Ef x kemur einhvers staðar fyrir á stað sem er ekki hluti af slíkri hlutyrðingu í M, þá segjum við að x sé *frjáls* í M á þeim stað.

2.2 Reikningur λ -segða

Skilgreining 2.6

Látum M, N vera λ -segðir. Ef til eru stæður A, B þannig að rita megi M = ANB, þá nefnist N *hlutsegð* í M.

Ef breyta x kemur fyrir í hlutsegð í M af gerðinni $(\lambda x. P)$, þá segjum við að breytan x sé *bundin* í M á þeim stað. Ef x kemur einhvers staðar fyrir á stað sem er ekki hluti af slíkri hlutyrðingu í M, þá segjum við að x sé *frjáls* í M á þeim stað.

Látum nú \mathbf{Q} vera λ -segð og \mathbf{x} vera breytu. Við segjum að \mathbf{Q} sé innsetjanleg fyrir \mathbf{x} í \mathbf{M} ef fyrir hverja frjálsa breytu \mathbf{y} í \mathbf{Q} innihaldi \mathbf{M} enga hlutsegð af gerðinni ($\lambda \mathbf{y}$, \mathbf{P}), þannig að \mathbf{x} komi fyrir frjáls í \mathbf{P} .

2.2 Einföldun λ -segða

Skilgreining 2.8

Látum M, N_1, \ldots, N_m vera λ -segðir og $\mathbf{x}_1, \ldots, \mathbf{x}_m$ vera ólíkar breytur þannig að N_i sé innsetjanleg fyrir \mathbf{x}_i í M fyrir öll $i=1,\ldots,m$. Við táknum með $M_{\mathbf{x}_1,\ldots,\mathbf{x}_m}[N_1,\ldots,N_m]$ þá λ -segð sem fæst frá M með því að setja N_i í stað \mathbf{x}_i alls staðar sem \mathbf{x}_i kemur fyrir frjáls í M, samtímis fyrir $i=1,\ldots,m$.

2.2 Einföldun λ -segða

Skilgreining 2.10

Látum $A(\lambda x. M)B$ vera λ -segð og gerum ráð fyrir að breyta y sé innsetjanleg fyrir x í M. Við ritum þá

$$A(\lambda x. M)B \twoheadrightarrow_{\alpha} A(\lambda y. M_{x}[y])B$$

og skilgreinum þannig vensl $\twoheadrightarrow_{\alpha}$ yfir λ . Við segjum að $A(\lambda y. M_x[y])B$ fáist með α -umskipti frá $A(\lambda x. M)B$.

1111

2.2 Einföldun λ -segða

Skilgreining 2.10

Látum $A(\lambda x. M)B$ vera λ -segð og gerum ráð fyrir að breyta y sé innsetjanleg fyrir x í M. Við ritum þá

$$A(\lambda x. M)B \twoheadrightarrow_{\alpha} A(\lambda y. M_{x}[y])B$$

og skilgreinum þannig vensl $\twoheadrightarrow_{\alpha}$ yfir λ . Við segjum að $A(\lambda y. M_x[y])B$ fáist með α -umskipti frá $A(\lambda x. M)B$.

Við skilgreinum auk þess vensl \sim_{α} yfir λ þannig að $\mathbf{P} \sim_{\alpha} \mathbf{Q}$ ef og aðeins ef til er runa $\mathbf{A}_0, \ldots, \mathbf{A}_n$ af λ -segðum, þannig að

$$\mathsf{P}=\mathsf{A}_0\twoheadrightarrow_{\alpha}\cdots\twoheadrightarrow_{\alpha}\mathsf{A}_n=\mathsf{Q}.$$

Við segjum þá að P og Q séu α -jafngildar. Við köllum rununa $\mathbf{A}_0, \dots, \mathbf{A}_n$ útleiðslu venslanna.

2.2 Einföldun λ -segða

Skilgreining 2.13

Látum $A((\lambda x. M) N)B$ vera λ -segð og gerum ráð fyrir að N sé innsetjanleg fyrir x í M. Við ritum þá

$$A((\lambda x. M) N)B \rightarrow_{\beta} A M_{x}[N] B$$

og skilgreinum þannig vensl $\twoheadrightarrow_{\beta}$ yfir λ . Við segjum að $\mathbf{A} \, \mathbf{M_x[N]} \, \mathbf{B}$ fáist með β -einföldun frá $\mathbf{A}((\lambda \mathbf{x}, \mathbf{M}) \, \mathbf{N}) \mathbf{B}$.

7

2.2 Einföldun λ -segða

Skilgreining 2.15

Setjum

Við skilgreinum vensl wo og \sim_{eta} yfir λ þannig að

$$P \twoheadrightarrow Q \text{ ef } P = A_0 \twoheadrightarrow_{\alpha,\beta} \cdots \twoheadrightarrow_{\alpha,\beta} A_n = Q$$
og $P \sim_{\beta} Q \text{ ef } P = A_0 \ll_{\alpha,\beta} \cdots \ll_{\alpha,\beta} A_n = Q.$

Við köllum þá rununa $\mathbf{A}_0, \dots, \mathbf{A}_n$ útleiðslu tilsvarandi vensla.

Ef $P \rightarrow Q$ segjum við að P einfaldist í Q, og ef $P \sim_{\beta} Q$ segjum við að P og Q séu β -jafngild.

2.2 Einföldun λ -segða

Setning 2.12

Venslin \sim_{α} eru jafngildisvensl.

Setning 2.17

Venslin \sim_{β} eru jafngildisvensl.

Skilgreining 2.18

Við segjum að λ -segð **P** sé á β -staðalformi ef ekki eru til λ -segðir **P**', **Q** bannig að **P** \sim_{α} **P**' $\twoheadrightarrow_{\beta}$ **Q**.

Ef P er á β -staðalformi, og M \sim_{β} P, þá er M sögð hafa P sem β -staðalform.

Skilgreining 2.18

Við segjum að λ-segð **P** sé á β -staðalformi ef ekki eru til λ-segðir **P**', **Q** bannig að **P** \sim_{α} **P**' $\twoheadrightarrow_{\beta}$ **Q**.

Ef P er á β -staðalformi, og M \sim_{β} P, þá er M sögð hafa P sem β -staðalform.

Segð P er á β -staðalformi ef og aðeins ef P inniheldur enga hlutsegð af gerðinni $((\lambda x. M) N)$.

Setning 2.21 (Church-Rosser)

Ef P woheadrightarrow M og P woheadrightarrow N, þá er til λ -segð Q þannig að M woheadrightarrow Q og N woheadrightarrow Q.

Setning 2.21 (Church-Rosser)

Ef $P \twoheadrightarrow M$ og $P \twoheadrightarrow N$, þá er til λ -segð Q þannig að $M \twoheadrightarrow Q$ og $N \twoheadrightarrow Q$.

Fylgisetning 2.22

Ef P woheadrightarrow M og M og N eru á β -staðalformi, þá gildir N \sim_{α} M.

Setning 2.21 (Church-Rosser)

Ef $P \twoheadrightarrow M$ og $P \twoheadrightarrow N$, þá er til λ -segð Q þannig að $M \twoheadrightarrow Q$ og $N \twoheadrightarrow Q$.

Fylgisetning 2.22

Ef P o M og P o N og M og N eru á β -staðalformi, þá gildir N \sim_{α} M.

Fylgisetning 2.23

Ef $M \sim_{\beta} N$, þá er til λ -segð Q þannig að $M \twoheadrightarrow Q$ og $N \twoheadrightarrow Q$.

Meira um λ -reikning

2.4 Fastapunktsfléttir

- ightharpoonup Sérhver λ -segð hefur fastapunkt.
- ightharpoonup Sérhverja jöfnu að λ -segðum má leysa.
- Endurkvæm föll.

Meira um λ -reikning

2.4 Fastapunktsfléttir

- \triangleright Sérhver λ -segð hefur fastapunkt.
- \triangleright Sérhverja jöfnu að λ -segðum má leysa.
- Endurkvæm föll.

2.5 Hlutrakin föll

Á fjórða áratugnum komu fram þrjú mismunandi reikningslíkön.

- ► Turing-vélar (Alan Turing, 1936)
- Lambda-reikningur (Alonzo Church, 1936)
- ► Hlutrakin föll (Kurt Gödel, 1933)

Öll þrjú líkön eru jafngild.

3.1 Einföld tagskipting

Einföld tagskipting

- Einfaldasta tagskipting lambda-reiknings sem vert er að skoða.
- Inniheldur einungis grunntög og tög fyrir föll.
- ► Tvær útgáfur eru ráðandi:
 - Church-útgáfa: tög eru tilgreind hjá bindandi breytum í λ -segðum.
 - Curry-útgáfa: tög koma ekki fyrir í λ -segðum.

THE T

3.1 Einföld tagskipting

Skilgreining 3.1

Formlegt mál \mathcal{S} fyrir einföld tög er skilgreint yfir stafrófið $\mathcal{V} \cup \{' \rightarrow ', '(', ')'\}$, þar sem \mathcal{V} er teljanlega óendanlegt mengi tagbreyta. Við köllum segðir þess (einföld) tög, og eru þær gefnar með eftirfarandi myndunarreglum.

- (i) Stæða af gerðinni a þar sem a er tagbreyta er einfalt tag.
- (ii) Ef σ og τ eru einföld tög, þá er $(\sigma \to \tau)$ einfalt tag

Skilgreining 3.1

Formlegt mál \mathcal{S} fyrir einföld tög er skilgreint yfir stafrófið $\mathcal{V} \cup \{`\to`,`(`,`)'\}$, þar sem \mathcal{V} er teljanlega óendanlegt mengi tagbreyta. Við köllum segðir þess (einföld) tög, og eru þær gefnar með eftirfarandi myndunarreglum.

- (i) Stæða af gerðinni a þar sem a er tagbreyta er einfalt tag.
- (ii) Ef σ og τ eru einföld tög, þá er $(\sigma \to \tau)$ einfalt tag

Skammstöfun

Við ritum $(\alpha \to \beta \to \gamma)$ í stað $(\alpha \to (\beta \to \gamma))$.

Skilgreining 3.4

Látum P vera λ -segð og τ vera einfalt tag. Segð af gerðinni P: τ er kölluð *úthlutun*. Sagt er að úthlutunin *gefi* P tagið τ .

Skilgreining 3.4

Látum P vera λ -segð og τ vera einfalt tag. Segð af gerðinni P: τ er kölluð *úthlutun*. Sagt er að úthlutunin *gefi* P tagið τ .

Látum Γ vera mengi úthlutana sem gefa aðeins breytum tög, og gerum ráð fyrir að ef $\mathbf{x}: \sigma, \mathbf{x}: \tau \in \Gamma$, þá sé $\sigma = \tau$. Við köllum þá Γ samhengi.

777

3.1 Einföld tagskipting

Skilgreining 3.4

Látum \mathbf{P} vera λ -segð og τ vera einfalt tag. Segð af gerðinni \mathbf{P} : τ er kölluð *úthlutun*. Sagt er að úthlutunin *gefi* \mathbf{P} tagið τ . Látum Γ vera mengi úthlutana sem gefa aðeins breytum tög, og gerum ráð fyrir að ef \mathbf{x} : σ , \mathbf{x} : $\tau \in \Gamma$, þá sé $\sigma = \tau$. Við köllum þá Γ samhengi. Sagt er að Γ leiði af sér úthlutunina A og ritað $\Gamma \vdash A$ ef þetta má leiða út með því að beita eftirfarandi útleiðslureglum endanlega oft:

- (i) Ef $x: \sigma \in \Gamma$, þá $\Gamma \vdash x: \sigma$.
- (ii) Ef Γ , \mathbf{x} : $\sigma \vdash \mathbf{M}$: τ , þá $\Gamma \vdash (\lambda \mathbf{x}$. $\mathbf{M})$: $(\sigma \rightarrow \tau)$.
- (iii) Ef $\Gamma \vdash M : (\sigma \to \tau)$ og $\Gamma \vdash N : \sigma$, þá $\Gamma \vdash (M N) : \tau$.

Skilgreining 3.7

Látum P vera λ -segð og látum $\mathbf{x}_1, \ldots, \mathbf{x}_n$ vera upptalningu frjálsa breyta sem koma fyrir í P. Sagt er að P sé *taganleg* ef til eru tög $\sigma_1, \ldots, \sigma_n, \tau$ bannig að

$$\mathbf{x}_1 : \sigma_1, \ldots, \mathbf{x}_n : \sigma_n \vdash \mathbf{P} : \tau.$$

3.2 Stöðlunarsetningin

Skilgreining 3.8

Sagt er að λ -segð P sé *veikt staðlandi* ef hún á sér β -staðalform. Sagt er að P sé *strangt staðlandi* ef sérhver runa P_1, P_2, \ldots sem uppfyllir $P \twoheadrightarrow P_1 \twoheadrightarrow P_2 \twoheadrightarrow \cdots$ inniheldur segð á β -staðalformi.

3.2 Stöðlunarsetningin

Setning 3.15 (Stöðlunarsetningin)

Sérhver taganleg λ -segð er strangt staðlandi.

Höfuðtagsreikniritið

Nota má höfuðtagsreikniritið til þess að finna "almennasta" tag sérhverrar taganlegrar λ -segðar, eða ákvarða að hún sé ekki taganleg.

Höfuðtagsreikniritið

Nota má höfuðtagsreikniritið til þess að finna "almennasta" tag sérhverrar taganlegrar λ -segðar, eða ákvarða að hún sé ekki taganleg.

Útfærslu þess í Haskell má finna á GitHub:

https://github.com/mrbjarksen/principal-type.

Skilgreining 3.16

Látum $\mathbf{a}_1,\ldots,\mathbf{a}_n$ vera ólíkar tagbreytur og $\tau,\sigma_1,\ldots,\sigma_n$ vera einföld tög. Við táknum með $\tau_{\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n]$ það einfalt tag sem fæst með því að setja tagið σ_i inn fyrir tagbreytuna \mathbf{a}_i fyrir $i=1,\ldots,n$ samtímis.

Höfuðtagsreikniritið 3.3

Skilgreining 3.16

Látum $\mathbf{a}_1, \dots, \mathbf{a}_n$ vera ólíkar tagbreytur og $\tau, \sigma_1, \dots, \sigma_n$ vera einföld tög. Við táknum með $\tau_{\mathbf{a}_1,\dots,\mathbf{a}_n}[\sigma_1,\dots,\sigma_n]$ það einfalt tag sem fæst með því að setja tagið σ_i inn fyrir tagbreytuna \mathbf{a}_i fyrir $i=1,\ldots,n$ samtímis. Fyrir samhengi $\Gamma = \{\mathbf{x}_1 : \tau_1, \dots, \mathbf{x}_m : \tau_n\}$ ritum við einnig

$$\Gamma_{\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n] := \{\mathbf{x}_i : \tau_{i\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n] \mid i=1,\ldots,m\}.$$

111

3.3 Höfuðtagsreikniritið

Skilgreining 3.16

Látum $\mathbf{a}_1,\ldots,\mathbf{a}_n$ vera ólíkar tagbreytur og $\tau,\sigma_1,\ldots,\sigma_n$ vera einföld tög. Við táknum með $\tau_{\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n]$ það einfalt tag sem fæst með því að setja tagið σ_i inn fyrir tagbreytuna \mathbf{a}_i fyrir $i=1,\ldots,n$ samtímis. Fyrir samhengi $\Gamma=\{\mathbf{x}_1:\tau_1,\ldots,\mathbf{x}_m:\tau_n\}$ ritum við einnig

$$\Gamma_{\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n] := \{\mathbf{x}_i : \tau_{i\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n] \mid i=1,\ldots,m\}.$$

Ef sett er $\mathfrak{S}:=\{(\mathbf{a}_1,\sigma_1),\ldots,(\mathbf{a}_n,\sigma_n)\}$ leyfum við okkur einnig að rita $\tau[\mathfrak{S}]$ og $\Gamma[\mathfrak{S}]$ í stað $\tau_{\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n]$ og $\Gamma_{\mathbf{a}_1,\ldots,\mathbf{a}_n}[\sigma_1,\ldots,\sigma_n]$, og köllum þá \mathfrak{S} innsetningasafn. Tvennd (\mathbf{a},σ) úr \mathfrak{S} nefnist þá jafnframt innsetning tagsins σ fyrir \mathbf{a} .

1

3.3 Höfuðtagsreikniritið

Skilgreining 3.17

Látum $\mathbf{x}_1, \dots, \mathbf{x}_n$ vera upptalningu frjálsa breyta λ -segðar \mathbf{M} , og gerum ráð fyrir að eftirfarandi skilyrði séu uppfyllt:

- (i) Við höfum $\mathbf{x}_1 : \sigma_1, \dots, \mathbf{x}_n : \sigma_n \vdash \mathbf{M} : \tau$.
- (ii) Ef $\mathbf{x}_1 : \sigma'_1, \dots, \mathbf{x}_n : \sigma'_n \vdash \mathbf{M} : \tau'$, þá er til innsetningasafn \mathfrak{S} þannig að $\sigma'_i = \sigma_i[\mathfrak{S}]$ fyrir öll $i = 1, \dots, n$, og $\tau' = \tau[\mathfrak{S}]$.

Við segjum þá að tagið τ sé *höfuðtag* segðarinnar **M**, og að parið (Γ, τ) , með $\Gamma := \{\mathbf{x}_1 : \sigma_1, \dots, \mathbf{x}_n : \sigma_n\}$, sé *höfuðpar* hennar.

Setning 3.25

Að gefinni λ -segð **M** skilar höfuðtagsreikniritið höfuðpari (Γ, τ) fyrir **M** ef **M** er taganleg, og \bot ef hún er það ekki.

Frekari efni

Fjölmóta tög (e. polymorphic types, System F)

- Eins og einföld tög, nema líka með reglunni
 (iii) Ef σ er fjölmóta tag og a er tagbreyta, þá er (∀a. σ) fjölmóta tag.
- ightharpoonup Fjölmóta tag λ -segðar er óákvarðanlegt engin ályktun.

Frekari efni

Fjölmóta tög (e. polymorphic types, System F)

- Eins og einföld tög, nema líka með reglunni
 (iii) Ef σ er fjölmóta tag og a er tagbreyta, þá er (∀a. σ) fjölmóta tag.
- ightharpoonup Fjölmóta tag λ -segðar er óákvarðanlegt engin ályktun.

Hindley-Milner tagskipting

- Útvíkkar lambda-reikning með myndunarreglunni
 (iv) Ef M og N eru segðir og x er breyta, þá er (let x ← N in M) segð.
- Skilgreinir tagmynstur eins og fjölmóta tög, nema ∀ má bara vera yst.
- Tagmynstur segðar er ákvarðanlegt, t.d. með reikniriti W.

