Tentamen - Vektorfält och klassisk fysik (FFM234)

Tid och plats: Tisdagen den 7 januari 2020 klockan 08.30-

12.30, Johanneberg.

Lösningsskiss: Christian Forssén.

1. Svara på följande delfrågor (endast svar skall ges):

- (a) Vad är $\int_{-\pi/2}^{\pi/2} \delta(-2x) (x^2 x + 2) dx$
- (b) En platta av stor utsträckning begränsas av planen x=0 och x=d (där d är plattans tjocklek). Begränsningsytan vid x=0 är värmeisolerad medan den vid x=d hålls vid en konstant temperatur T_d . Det finns inga värmekällor inne i plattan. Bestäm den stationära temperaturfördelningen i plattans inre.
- (c) Beräkna kurvintegralen $\int_C \vec{F} \cdot d\vec{r}$ där fältet ges av $\vec{F} = \hat{\varphi}/\rho$ och kurvan C parametriseras av $x = \cos(4\pi t)$, $y = \sin(4\pi t)$ och z = t med kurvparametern $0 \le t \le 1$.

(3 poäng per korrekt besvarad deluppgift, 10 poäng för alla tre.)

Lösning:_

- (a) Integralen kan skrivas $\frac{1}{2} \int_{-\pi}^{\pi} \delta(z) \left(\frac{z^2}{4} + \frac{z}{2} + 2 \right) dz = 1.$
- (b) Randvillkoren T'(0) = 0 och $T(d) = T_d$ ger att stationärlösningen blir $T(x) = T_d$.
- (c) Fältet är en virveltråd längs z-axeln med styrkan $J=2\pi$. Kurvan går två varv i positiv riktning runt virveltråden vilket gör att kurvintegralen blir 4π .
- 2. Låt S vara ytan $y^2+z^2=1,\;-1\leq x\leq 1,\;z\geq 0$ vars normalvektor har icke-negativ z-komponent $(n_z\geq 0)$. Beräkna $\int_S \vec{F}\cdot d\vec{S},\; \mathrm{där}$ $\vec{F}=x\hat{x}+x^2z^2\hat{y}+z\hat{z}.\;(10\;po\ddot{a}ng)$

Lösning:_

- Ytan är en halv cylinder (endast övre halvplanet) med radie $\rho=1$ och z-axeln som symmetriaxel.
- Vi använder Gauss sats och stänger volymen med de annars öppna begränsningsytorna som är halvcirklar vid $x = \pm 1$ $(S_{x=\pm 1})$ samt en rektangel vid z = 0 $(S_{z=0})$.
- Divergensen blir $\vec{\nabla} \cdot \vec{F} = 2$ vilket gör att volymsintegralen $\int_V \vec{\nabla} \cdot \vec{F} dV = 2\frac{\pi}{2}2 = 2\pi$, där $\partial V = S + S_{x=+1} + S_{x=-1} + S_{z=0}$.
- Vi noterar att $\vec{F} \perp \hat{z}$ vid z=0 så att $\int_{S_{z=0}} \vec{F} \cdot d\vec{S} = 0$.

- Begränsningsytorna vid $x=\pm 1$ har normalriktningar $\pm \hat{x}$ vilket sammanfaller med vektorfältets x-komponent på dessa ytor så att integralerna blir $\int_{S_{x=+1}} \vec{F} \cdot d\vec{S} = \int_{S_{x=-1}} \vec{F} \cdot d\vec{S} = \pi/2$.
- Sammantaget blir den sökta integralen $\int_S \vec{F} \cdot d\vec{S} = 2\pi \frac{\pi}{2} \frac{\pi}{2} = \pi.$
- 3. Härled kontinuitetsekvationen för elektrisk laddningstäthet $\rho(\vec{r},t)$ och elektrisk strömtäthet $\vec{\jmath}(\vec{r},t)$. Använd denna för att motivera förskjutningsströmmen i Amperes lag med tidsberoende fält

$$\nabla \times \vec{B} = \mu_0 \vec{\jmath} \text{ (elektrostatik)} \quad \Rightarrow \quad \nabla \times \vec{B} - \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{\jmath}.$$

(10 poäng)

Lösning:

Kontinuitetsekvationen för elektrisk laddning

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{\jmath},$$

härleds förslagsvis med hjälp av Gauss sats (se avsnitt 4.2 i kompendiet med den konserverade storheten *laddning* istället för *massa*).

Från Amperes lag (utan tidsberoende) har vi

$$\nabla \cdot \vec{\jmath} = \frac{1}{\mu_0} \nabla \cdot \left(\nabla \times \vec{B} \right) = 0,$$

enligt räknereglerna för vektoroperatorerna. Detta skulle betyda att

$$\frac{\partial \rho}{\partial t} = 0,$$

vilket är orimligt, för det betyder att det inte går att flytta en elektrisk laddning.

Med ytterligare en term (förskjutningsströmmen) i Amperes lag

$$\nabla \times \vec{B} - \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{\jmath},$$

stämmer kontinuitetsekvationen vilket man ser efter insättning.

4. Använd indexnotation för att visa följande:

- (a) om T_{ij} är en tensor så är T_{ii} en skalär.
- (b) δ_{ij} är en invariant tensor.

(10 poäng)

Lösning:

- (a) Transformationen av tensorn T_{ij} ges av $T'_{ij} = L_{ik}L_{jl}T_{kl}$. Detta betyder att dess spår, T_{ii} , är en skalär eftersom den är invariant under koordinattransformation: $T'_{ii} = L_{ik}L_{il}T_{kl} = \delta_{kl}T_{kl} = T_{kk}$, där vi har utnyttjat ortonormaliteten hos transfomationsmatrisen \mathbf{L} .
- (b) Vi betraktar koordinattransformationen $\delta'_{ij} = L_{ik}L_{jl}\delta_{kl} = L_{ik}L_{jk} = \delta_{ij}$, där vi återigen har utnyttjat ortonormaliteten hos transfomationsmatrisen **L**. Kroneckers delta är därför en invariant tensor.
- 5. Betrakta vektorfältet $\vec{E}(\vec{r}) = \frac{\mu}{4\pi r^3} (2\cos\theta \hat{r} + \sin\theta \hat{\theta})$, där μ är en konstant. Bestäm ekvationen för den fältlinje till $\vec{E}(\vec{r})$ som går genom punkten $(r,\theta,\varphi)=(2,\pi/4,\pi/2)$. Rita också denna fältlinje i rummet tillsammans med xyz-axlarna och indikera riktningen på vektorfältet vid några punkter längs fältlinjen. (10 poäng)

Lösning:

Fältlinjer bestäms ur sambandet $\frac{d\vec{r}}{d\tau} = C\vec{E}$. Här väljer vi $C = 4\pi/\mu$ och vi använder sfäriska koordinater så att $d\vec{r} = \hat{r}dr + r\hat{\theta}d\theta + r\sin\theta\hat{\varphi}d\varphi$.

I detta fall får vi den separabla differentialekvationen $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{2r}{\tan\theta}$ med lösningen $r = A\sin^2\theta$. Integrationskonstanten bestäms från den givna punkten till A = 4.

Detta är fältet från en dipol. Just denna fältlinje ligger i zy-planet (x = 0) med start och slut i origo. I punkten $\theta = \pi/2$, dvs (x, y, z) = (0, 4, 0) pekar vektorfältet i riktningen $\hat{\theta} = -\hat{z}$. Se figur.

6. Bestäm p och ℓ så att

$$\phi(\vec{r}) = \phi_0 \left(\frac{r}{a}\right)^p \sin^\ell \theta \cos(2\varphi),$$

är en icke-singulär lösning till Laplaces ekvation i området r < a.

(10 poäng)

Lösning:_

Laplaces ekvation $\Delta \phi$ skall gälla i hela området. Vi behöver inte inkludera den konstanta faktorn ϕ_0/a^p nedan.

Vi skriver Laplaces ekvation i sfäriska koordinater

$$-\frac{1}{r^2}\partial_r\left(r^2\partial_r\right)r^p\sin^\ell(\theta)\cos(2\varphi) = r^{p-2}\left[\frac{1}{\sin\theta}\partial_\theta\left(\sin\theta\partial_\theta\right) + \frac{1}{\sin^2\theta}\partial_\varphi^2\right]\sin^\ell(\theta)\cos(2\varphi).$$

Vinkelberoendet i VL är $\sin^{\ell}(\theta)\cos(2\varphi)$ vilket betyder att det måste vara detsamma i HL för att likheten skall gälla överallt. Detta betyder i sin tur att fältets vinkelberoende måste vara en egenfunktion till operatorn i hakparantesen HL.

Vi utför derivatorna i HL och finner att

$$\left[\frac{1}{\sin \theta} \partial_{\theta} \left(\sin \theta \partial_{\theta}\right) + \frac{1}{\sin^{2} \theta} \partial_{\varphi}^{2}\right] \sin^{\ell}(\theta) \cos(2\varphi) = \dots$$
$$= \left[\frac{\ell^{2} - 4}{\sin^{2} \theta} - \ell(\ell + 1)\right] \sin^{\ell}(\theta) \cos(2\varphi).$$

Vi har alltså en egenfunktion, med egenvärde $-\ell(\ell+1)$,om $\ell^2-4=0$, dvs $\ell=\pm 2$. En negativ exponent skulle dock göra fältet singulärt längs z-axeln (där $\theta=0,\pi$) så vi måste ha $\ell=+2$.

Vi kan nu förkorta bort vinkelberoendet från bägge leden. Återstår gör den radiella ekvationen

$$-\frac{1}{r^2}\partial_r (r^2 \partial_r) r^p \sin^{\ell}(\theta) \cos(2\varphi) = -r^{p-2}\ell(\ell+1),$$

vilket leder till att $p(p+1)=\ell(\ell+1)=\{\ell=2\}=6$. Av de två lösningarna, p=2 och p=-3, ger enbart den förra ett icke-singulärt fält.

Följande icke-singulära skalärfält är därmed en lösning till Laplaces ekvation inuti $r < a \,$

$$\phi(\vec{r}) = \phi_0 \left(\frac{r}{a}\right)^2 \sin^2 \theta \cos(2\varphi).$$