STAT 3100 Lecture Note

Week Four (Sep 27 & 29, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/28 21:38:32

Estimating equations

Parametric models

- A parametric model is a set of distributions indexed by unknown $\theta \in \Theta \subset \mathbb{R}^p$ with small or moderate p Say $\{f(\cdot \mid \theta) : \theta \in \Theta \subset \mathbb{R}^p\}$, where f is either a pdf or a pmf and Θ is the set of all the possible values of θ
- Believed that the true parameter (vector) $\boldsymbol{\theta}_0$ ($\in \boldsymbol{\Theta} \subset \mathbb{R}^p$) is fixed
 - Rather than making $\boldsymbol{\theta}_0$ random in the Bayesian philosophy

Method of moments (MOM, CB Sec 7.2.1)

- Procedure
 - 1. Equate raw moments to their empirical counterparts.
 - 2. Solve the resulting simultaneous equations for $\theta = (\theta_1, \dots, \theta_p)$.
- Features
 - Easy implementation
 - Start point for more complex methods
 - No constraint
 - Not uniquely defined
 - No guarantee on optimality

Exercise Lec7.1

- Let X_1, \ldots, X_n iid follow the following distributions. Find MOM estimators for (θ_1, θ_2) .
 - a. $N(\theta_1, \theta_2), (\theta_1, \theta_2) \in \mathbb{R} \times \mathbb{R}^+$.
 - b. $Binom(\theta_1, \theta_2)$ with pmf

$$p_X(x \mid \theta_1, \theta_2) = \binom{\theta_1}{x} \theta_2^x (1 - \theta_2)^{\theta_1 - x} \mathbf{1}_{\{0, \dots, \theta_1\}}(x), \quad (\theta_1, \theta_2) \in \mathbb{Z}^+ \times (0, 1).$$

Exercise Lec7.2

- Let X_1, \ldots, X_n iid follow pdf $f(x \mid \theta) = \theta x^{\theta-1} \mathbf{1}_{[0,1]}(x), \theta > 0$.
 - a. Find an MOM estimator of θ .
 - b. Can we employ the second (raw) moment instead of the first one?

Maximum Likelihood Estimator (MLE, CB Sec 7.2.2)

• Likelihood function: $L: \Theta \to \mathbb{R}$ such that, given x (a realization of X),

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \boldsymbol{x}) = f_{\mathbf{X}}(\boldsymbol{x} \mid \boldsymbol{\theta}),$$

where $f_{\mathbf{X}}$ is the joint pdf or pmf.

• For each x, let $\hat{\theta}(x)$ be the maximizer of $L(\theta;x)$ (or log-likelihood $\ell(\theta;x) = \ln L(\theta;x)$) with respect to $\boldsymbol{\theta}$ constrained in $\boldsymbol{\Theta}$, i.e.,

$$\hat{\boldsymbol{\theta}}(\boldsymbol{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell(\boldsymbol{\theta}; \boldsymbol{x}).$$

Then the statistic $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{X})$ is the MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$.

- Invariance property of MLE (CB Thm 7.2.10): As long as $\hat{\theta}$ is the MLE of θ , for ANY function q, the $g(\hat{\boldsymbol{\theta}})$ is teh MLE of $g(\boldsymbol{\theta})$.
- If ℓ is differetiable, the score funtion **S** is defined as its gradient

$$\mathbf{S}(oldsymbol{ heta}) = \mathbf{S}(oldsymbol{ heta}; oldsymbol{x}) = \left[rac{\partial}{\partial heta_1} \ell(oldsymbol{ heta}; oldsymbol{x}), \ldots, rac{\partial}{\partial heta_p} \ell(oldsymbol{ heta}; oldsymbol{x})
ight]^ op.$$

• If ℓ is twice differentiable, we have hessian of $\ell(\theta; x)$

$$\mathbf{H}(oldsymbol{ heta}) = \mathbf{H}(oldsymbol{ heta}; oldsymbol{x}) = \left[rac{\partial^2}{\partial heta_i \partial heta_j} \ell(oldsymbol{ heta}; oldsymbol{x})
ight]_{p imes p}.$$

- Maximizing twice-differentiable ℓ
 - 1. Find out stationary points, i.e., solutions to simultaneous equations $S(\theta) = 0$
 - 2. Screen out (interior) local maximizers, i.e., stationary points with negative definite Hessian matrix
 - 3. Determine the global maximizer within Θ : by comparing values of likelihood (or log-likelihood) evaluated at local maximizers and boundary points of Θ

Exercise Lec7.3

- Suppose X_1, \ldots, X_n are iid as the following distributions. Find MLEs for corresponding parameters.
 - a. $N(\mu, \sigma^2), (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^+$.

 - b. Bernoulli(θ): $p(x \mid \theta) = \theta^x (1 \theta)^{1-x} \mathbf{1}_{\{0,1\}}(x), \ \theta \in [0, 1/2].$ c. Two-parameter exponential: $f(x \mid \alpha, \beta) = \beta^{-1} \exp\{-(x \alpha)/\beta\} \mathbf{1}_{(\alpha,\infty)}(x), \ (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^+.$

Other examples of estimating equations

- Least-squares estimator
- Generalized estimating equations (GEE)
- M-estimator

Evaluating estimators

Mean squared error (MSE)

- Univariate: $E(\hat{\theta} \theta_0)^2 = \{E(\hat{\theta}) \theta_0\}^2 + var(\hat{\theta})$
- Multivariate: $E\{(\hat{\boldsymbol{\theta}} \boldsymbol{\theta}_0)^{\top}(\hat{\boldsymbol{\theta}} \boldsymbol{\theta}_0)\} = \{E(\hat{\boldsymbol{\theta}}) \boldsymbol{\theta}_0\}^{\top}\{E(\hat{\boldsymbol{\theta}}) \boldsymbol{\theta}_0\} + \text{cov}(\hat{\boldsymbol{\theta}})$

- Best unbiased estimator (a.k.a. (uniform) minimum variance unbiased estimator, abbr. UMVUE/MVUE): if $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{X})$ satisfies that
 - $-\hat{\boldsymbol{\theta}}$ is unbiased for $\boldsymbol{\theta}$, i.e., $E(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}$;
 - $-\operatorname{var}(\hat{\boldsymbol{\theta}}) < \operatorname{var}(\hat{\boldsymbol{\theta}}^*)$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and all $\hat{\boldsymbol{\theta}}^*$ such that $\operatorname{E}(\hat{\boldsymbol{\theta}}^*) = \boldsymbol{\theta}$.
- UMVUE is unique (CB Thm 7.3.19)

Cramer-Rao lower bound (CB Thm 7.3.9 & Lemma 7.3.11)

- Only consider the univariate case, i.e., one-dimensional unknown parameter θ
- Fisher information: $I(\theta) = \text{var}(S(\theta; \mathbf{X})) = \mathbb{E}[\{S(\theta; \mathbf{X})\}^2] = -\mathbb{E}[\{H(\theta; \mathbf{X})\}^2]$
 - score function $S(\theta; \mathbf{X})$ and Hessian $H(\theta; \mathbf{X})$ both scalar
- Cramer-Rao lower bound: $var(\hat{\theta}) \geq \{(d/d\theta)E(\hat{\theta})\}^2/I(\theta) \text{ for } \hat{\theta} \text{ satisfying regularity conditions}$
 - Proof: Cauchy-Schwarz inequality (CB Thm 4.7.3) \Rightarrow covariance inequality (CB Example 4.7.4)
- (CB Coro 7.3.15) $\hat{\theta}$ attains the lower bound $\Leftrightarrow \exists a(\theta) \text{ s.t. } S(\theta; \mathbf{X}) = a(\theta) \{ \hat{\theta} \mathbf{E}(\hat{\theta}) \}$
- The unbiased $\hat{\theta}$ attaining the lower bound is UMVUE.

Example Lec8.1

- Find the lower bound for unbiased estimators for σ^2 in the following cases.
 - a. $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with known μ and unknown σ^2 . b. $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with unknown (μ, σ^2) .

Sufficiency (CB Sec 6.2.1)

- A statistic $\mathbf{T} = \mathbf{T}(\mathbf{X})$ is sufficient for $\boldsymbol{\theta} = (\theta_1, \dots, \theta_p) \Leftrightarrow$ the distribution of \mathbf{X} conditioning on \mathbf{T} and θ , say $f_{\mathbf{X}|\mathbf{T},\theta}(\boldsymbol{x} \mid \boldsymbol{t}, \boldsymbol{\theta})$, is free of θ .
- Fisher-Neyman factorization theorem (CB Thm 6.2.6; HMC Thm 7.2.1): T is sufficient for $\theta \Leftrightarrow$ the likelihood function can be factored into two parts, one of them not depending on θ , i.e.,

$$L(\boldsymbol{\theta}; \boldsymbol{x}) = h(\boldsymbol{x})g(\mathbf{T}(\boldsymbol{x}), \boldsymbol{\theta}),$$

for all the possible values of x and θ .

- (HMC Thm 7.3.2) If **T** is sufficient for θ and $\hat{\theta}$ is the unique MLE of θ , then $\hat{\theta}$ must be a function of **T**.
- Nonuniqueness
 - Trivial examples
 - * X is always sufficient.
 - * $(X_{(1)},\ldots,X_{(n)})$ is always sufficient if X_i 's are iid, with $X_{(1)}\leq\cdots\leq X_{(n)}$.
 - **T** is sufficient and $g(\cdot)$ is a one-to-one mapping $\Rightarrow g(\mathbf{T})$ is also sufficient.
- Minimal sufficiency: a sufficient statistic that is a function of all the other sufficient statistics.
 - How to find a minimal sufficient sufficient statistic (CB Thm 6.2.13):
 - 1. Find the sufficient and necessary condition for $L(\theta; x)/L(\theta; y)$ to be free of θ ;
 - 2. If the condition is of the form T(x) = T(y), then T(X) is a minimal sufficient statistic for θ .

Example Lecs.2

- Find the minimal sufficient statistics in the following scenarios.
 - a. $X_1, \ldots, X_n \sim \text{Unif}(1, \ldots, \theta)$ with unknown positive integer θ .
 - b. $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ with unknown μ and σ^2 .