Automatic Construction and Natural-Language Description of Nonparametric Regression Models

James Robert Lloyd¹, David Duvenaud¹, Roger Grosse²,

Joshua Tenenbaum², Zoubin Ghahramani¹

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

A SYSTEM FOR AUTOMATIC DATA ANALYSIS

AN ENTIRELY AUTOMATIC ANALYSIS

Four additive components have been identified in the data

A linearly increasing function

A smooth function

An approximately periodic function with a period of 1.0 years with linearly increasing amplitude

Uncorelated noise with linearly increasing standard deviation

NATURAL LANGUAGE DESCRIPTIONS OF MODELS

Compositionally constructed statistical models

Compositionally constructed natural-language descriptions

DEFINING A LANGUAGE OF MODELS

- ▶ Define probability distributions on functions
- ► Used to perform Bayesian (nonlinear) regression

- ► Define probability distributions on functions
- ▶ Used to perform Bayesian (nonlinear) regression

- ► Define probability distributions on functions
- ▶ Used to perform Bayesian (nonlinear) regression

- ► Define probability distributions on functions
- ▶ Used to perform Bayesian (nonlinear) regression

- ► Define probability distributions on functions
- ▶ Used to perform Bayesian (nonlinear) regression

- ► Define probability distributions on functions
- ▶ Used to perform Bayesian (nonlinear) regression

- ► Define probability distributions on functions
- ▶ Used to perform Bayesian (nonlinear) regression

THE ATOMS OF OUR LANGUAGE

Five base kernels...

...encoding for the following types of functions

THE COMPOSITION RULES OF OUR LANGUAGE

► Two main operations: addition, multiplication

AUTOMATIC TRANSLATION OF MODELS

SUMS OF KERNELS ARE SUMS OF FUNCTIONS

If $f_1 \sim GP(0, k_1)$ and independently $f_2 \sim GP(0, k_2)$ then

$$f_1 + f_2 \sim \text{GP}(0, \frac{k_1}{k_1} + \frac{k_2}{k_2})$$

e.g.

We can therefore describe each component separately

- ▶ Properties of individual kernels well understood
- ► Can be described with standard noun phrase

$$\underbrace{SE}_{\text{approximately}} \times \underbrace{PER}_{\text{periodic function}}$$

- ► Multiplying by each kernel has a consistent effect
- ► Can be described with consistent adjectives / modifiers

$$\underbrace{SE}_{approximately} \times \underbrace{PER}_{periodic function} \times \underbrace{LIN}_{with linearly growing amplitude}$$

- ▶ Multiplying by each kernel has a consistent effect
- ► Can be described with consistent adjectives / modifiers

$$\underbrace{\text{SE}}_{\text{approximately}} \times \underbrace{\text{PER}}_{\text{periodic function}} \times \underbrace{\text{LIN}}_{\text{with linearly growing amplitude}} \times \underbrace{\boldsymbol{\sigma}}_{\text{until 1700}}$$

- ► Multiplying by each kernel has a consistent effect
- ► Can be described with consistent adjectives / modifiers

VISIT OUR WEBSITE - TRY THE (SIMPLER) DEMO

www.automaticstatistician.com

James Robert Lloyd 15/1.