A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 3EB

Bookmark

Show all steps: ON

Problem

Let G be a group. The symbol $H \subset G$ is commonly used as an abbreviation of "H is a *normal*" subgroup of G." A normal series of G is a finite sequence $H_0, H_1, ..., H_n$ of subgroups of G such

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$$

Such a series is called a *solvable series* if each quotient group H_{i+1}/Hi is abelian. G is called a solvable group if it has a solvable series.

Use the remark immediately preceding Theorem 2 to prove that $J_0, ..., J_n$ is a solvable series of K.

Step-by-step solution

Step 1 of 4

Here, objective is to prove that J_0, J_1, \dots, J_n is a solvable series of K.

Comment

Step 2 of 4

A group G is solvable, if there exist a finite chain of successive subgroups $1 = G_0 \le G_1 \le G_2 \le \dots \le G_n$ having the following properties.

 G_i is the normal subgroup of G_{i+1} ; $\forall 0 \le i \le n-1$

 $\frac{G_{i+1}}{G_i}$ is an Abelian group $\forall 0 \le i \le n-1$

Theorem:

Any homomorphic image of solvable group is a solvable group.

Step 3 of 4

Consider J_0, J_1, \dots, J_n is a normal series of K.

Where,
$$J_0 = K \cap H_0, \dots, J_n = K \cap H_n$$

Comment

Step 4 of 4

Let $f: K \to X$ is a homomorphism from K on to group X.

Then $f(J_0), f(J_1), \dots, f(J_n)$ are subgroups of X and it is clear that $f(J_0) \subseteq f(J_1) \subseteq \dots \subseteq f(J_n) = X$

For each i, we have, if $f(a) \in f(J_i)$, then $a \in f(J_i), x \in f(J_{i+1})$

Hence, $xax^{-1} \in J_i$. Therefore $f(x)f(a)f(x^{-1}) \in f(J_i)$

So, $f(J_i)$ is a normal subgroup of $f(J_{i+1})$ trivially.

Hence, $\frac{J_{i+1}}{J_i}$ is a abelian group $\forall 0 \le i \le n-1$

Therefore, $J_0 J_1, \dots, J_n$ is a solvable series of K.

Hence, proved

Comment