Что такое линейные операции? Это умножение элемента на скаляр и сложение двух элементов вместе. Подобные операции можно было уже много раз увидеть в курсе матанализа.

Сложение векторов

Сложение векторов - линейная операция над двумя и более векторами. Складывая два вектора мы получим новый вектор, началом которого является начало одного из векторов операции, а концом - конец вектора, равного другому, начало которого приведено в конец первого вектора.

Вектора складываются покоординатно. Пусть вектора \overline{a} и \overline{b} записаны в некотором базисе, тогда:

$$egin{aligned} \overline{a}(a_1;a_2;\ldots), \overline{b}(b_1;b_2;\ldots) \ \overline{a}+\overline{b} &= (a_1+b_1;a_2+b_2;\ldots) \end{aligned}$$

"Доказательство" заключается при разложении векторов по базису:

$$\overline{a}+\overline{b}=\sum_{i=1}^n a_ie_i+\sum_{i=1}^n b_ie_i=\sum_{i=1}^n (a_i+b_i)e_i$$

Сумма трёх векторов - результат сложения двух векторов и оставшегося. Аналогично, операция распространяется на любое количество векторов.

Свойства сложения:

- ullet Сложение коммутативно: $\overline{a}+\overline{b}=\overline{b}+\overline{a}$
- ullet Сложение ассоциативно: $\overline{a}+(\overline{b}+\overline{c})=(\overline{a}+\overline{b})+\overline{c}$
- Существование нейтрального элемента: для сложения, это нулевой вектор: $\overline{a} + \overline{0} = \overline{a}$
- Существование обратного элемента: для вектора \overline{a} существует вектор $-\overline{a}$, что в сумме дает нулевой вектор: $\overline{a}+(-\overline{a})=\overline{0}$

Умножение вектора на скаляр

Произведение вектора на число - линейная операция над вектором, результатом которой является вектор, коллинеарный исходному. Длина полученного вектора будет равна произведению длины на **модуль** числового множителя (длина всегда неотрицательна).

Сонаправленность с исходным вектором зависит от знака числового множителя (если число положительно - получаем сонаправленный исходному вектор, если отрицательно - противонаправленный, если 0 - нулевой вектор).

В координатом разложении произведение выглядит следующим образом: $\overline{a}(a_1;a_2;\ldots),\,C\in\mathbb{R}$

$$C \cdot \overline{a} = (Ca_1; Ca_2; \ldots)$$

"Доказательство" следует из дистрибутивности суммы:

$$C \cdot \overline{a} = C \cdot \sum_{i=1}^n a_i e_i = \sum_{i=1}^n (Ca_i) e_i$$

Свойства умножения:

• Умножение (на скаляр) ассоциативно:

$$n \cdot (k \cdot \overline{a}) = (n \cdot k) \cdot \overline{a} = k \cdot (n \cdot \overline{a})$$

- Умножение дистрибутивно относительно чисел: $\overline{n}(a+b)=\overline{n}a+\overline{n}b$
- Умножение дистрибутивно относительно векторов:

$$n(\overline{a}+\overline{b})=n\overline{a}+n\overline{b}$$

- Существование нейтрального элемента единицы: $\overline{a} \cdot 1 = \overline{a}$
- Существование нулевого элемента ноль. Тогда при умножении получается нулевой вектор: $\overline{a} \cdot 0 = \overline{0}$

Условие коллинеарности векторов через умножение

Если вектор \overline{a} коллинеарен вектору \overline{b} , то найдется такое число n, что $n\cdot \overline{a}=\overline{b}$.

Доказательство:

- при $\overline{b}=\overline{0},\,n$ будет равно нулю, как следует из свойства существоваиня нулевого элемента.
- при $\overline{a}=\overline{0}$ подойдет любое число n, ведь нулевой вектор коллинеарен любому вектору.
- Если \overline{b} сонаправлен \overline{a} , рассмотрим $n=|\overline{b}|/|\overline{a}|$: его произведение на \overline{a} даёт вектор, сонаправленный \overline{a} , т.к. n>0 (а значит и \overline{b}) и равный по длине \overline{b} ($|n|\cdot |\overline{a}|=|\overline{b}|/|\overline{a}|\cdot |\overline{a}|=|\overline{b}|$), что по определению есть вектор, равный \overline{b} .

Если \overline{b} противонаправлен \overline{a} , рассмотрим $n=-|\overline{b}|/|\overline{a}|$: его произведение на \overline{a} даёт вектор, противонаправленный \overline{a} , т.к. n<0 (а значит сонаправленный вектору \overline{b}) и равный по длине \overline{b} (

 $|n|\cdot |\overline{a}|=|\overline{b}|/|\overline{a}|\cdot |\overline{a}|=|\overline{b}|$), что по определению есть вектор, равный \overline{b} .

Пример задачи

Условие: при заданных векторах $\overline{a}(5;3),\overline{b}(8;-2),\overline{c}(-2;4),$ решите уравнение относительно вектора \overline{x} :

$$4\overline{a}-7\overline{b}+2\overline{x}=-\overline{c}$$

Решение:

$$egin{aligned} 2\overline{x} &= 7\overline{b} - 4\overline{a} - \overline{c} \ 2\overline{x} &= 7(8;-2) - 4(5;3) - (-2;4) \ 2\overline{x} &= (56;-14) - (20;12) - (-2;4) \ 2\overline{x} &= (56 - 20 + 2; -14 - 12 - 4) \ \overline{x} &= rac{(38;-30)}{2} \ \overline{x} &= (19;-15) \end{aligned}$$