Machine Learning

Squad Rapidminer

Francisco Ávila

Rubén Tenreiro

Marco Hernani

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

01

Introducción

EDA

Preprocesado

Modelos

https://archive.ics.uci.edu/ml/datasets/Census+Income

Variables cuantitativas

age	Edad					
fnlwgt	Número que el censo cree que la entrada representa					
education_num	Un número relacionado con el nivel de educación (sin un orden específico)					
capital_gain	Capital ganado con inversiones					
capital_loss	Capital perdido en inversiones					
hours_per_week	Horas trabajadas por semanas					

Variables cualitativas

work_class	Clase en la que se categoriza el trabajo de la persona					
education	Nivel más alto de educación de la persona					
marital_status	Estado civil de la persona					
occupation	Trabajo de la persona					
relationship	Tipo de relación que tiene esa persona					
race	Raza de la persona					
native_country	País de nacimiento de la persona					
sex	Sexo de la persona					

target

Variable objetivo que contiene un valor binario en función de si
una persona gana o no más de 50K

Dataframe

df = pd.read_csv("adult.data", header = None, names = columnas)
df.head()

	age	work_class	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain	capital_loss	hours_per_week	native_country	target
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United-States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

Resumen variables numéricas

1 df.describ	df.describe().T											
	count	mean	std	min	25%	50%	75%	max				
age	32561.0	38.581647	13.640433	17.0	28.0	37.0	48.0	90.0				
fnlwgt	32561.0	189778.366512	105549.977697	12285.0	117827.0	178356.0	237051.0	1484705.0				
education_num	32561.0	10.080679	2.572720	1.0	9.0	10.0	12.0	16.0				
capital_gain	32561.0	1077.648844	7385.292085	0.0	0.0	0.0	0.0	99999.0				
capital_loss	32561.0	87.303830	402.960219	0.0	0.0	0.0	0.0	4356.0				
hours_per_week	32561.0	40.437456	12.347429	1.0	40.0	40.0	45.0	99.0				

Scatter Matrix

capital_gain

capital_loss

education_num

fnlwgt

Preprocesado

Agrupamos

work_class

"Private", "Other"

race

"White", "Other"

native_country

"United-States", "Other"

OneHotEncodeamos

education

marital_status

occupation

relationship

Matriz de correlación

Train y Test split

```
y = df_final['>50K']
X = df_final.drop('>50K', axis= 1)
X_train_sn, X_test_sn, y_train_sn, y_test_sn = train_test_split(X, y, train_size=0.8, random_state=1729)
```

StandardScaler()

```
X_train_std, X_test_std, y_train_std, y_test_std = train_test_split(X_std, y_std, train_size=0.8, random_state=1729)

scaler = preprocessing.StandardScaler().fit(X_train_std[columns_name])

x_train_std[columns_name] = scaler.transform(X_train_std[columns_name])

scaler = preprocessing.StandardScaler().fit(X_test_std[columns_name])

x_test_std[columns_name] = scaler.transform(X_test_std[columns_name])
```


Dos datasets

Sin estandarizar

Estandarizado

Regresión Logística

Regresión logística SN train

Regresión logística SN test

Regresión Logística

Regresión logística STD train

Regresión logística STD test

KNN not normalized

KNN Normalized

Decision Tree not normalized

Decision Tree normalized

Decision Tree

Curvas ROC

Comparación de Resultados

Preguntas

