5. Exercises 175

have detected |k| as the order of $SH_1(L_k)$, whereas all $M_{k,-k}$ have the same homology and we have used a more subtle invariant to distinguish them.

Finally, we construct an (orientation-reversing) diffeomorphism from $M_{k,\ell}$ to $M_{-k,-\ell}$ by mapping $D^4 \times S^3$ to $D^4 \times S^3$ via $(x,y) \mapsto (\bar{x},y)$ and $-D^4 \times S^3$ to $-D^4 \times S^3$ via $(x,y) \mapsto (\bar{x},y)$. Thus we conclude:

Theorem 18.6. Two Milnor manifolds $M_{k,-k}$ and $M_{r,-r}$ are diffeomorphic if and only if |k| = |r|.

5. Exercises

- (1) Let E be a complex vector bundle over S^{4k} . Give a formula for the Pontrjagin class $p_k(E)$ in terms of $c_{2k}(E)$.
- (2) Let E be a 2k-dimensional oriented vector bundle. Prove that $p_k(E) = e(E) \smile e(E)$.
- (3) Let E be a not necessarily oriented 2k-dimensional vector bundle. Prove that the class represented by $p_k(E)$ in $\mathbb{Z}/2$ -cohomology is equal to $w_{2k}(E) \smile w_{2k}(E)$.
- (4) Prove that $\langle p_k(E), [S^{4k}] \rangle$ is even for all vector bundles E over S^{4k} . You can use (or better prove it as an application of Sard's theorem) that an r-dimensional vector bundle over S^n with r > n is isomorphic to $F \oplus (S^n \times \mathbb{R}^{r-n})$ for some n-dimensional vector bundle F.