Deep Learning - Foundations and Concepts Chapter 15. Discrete Latent Variables

nonlineark@github

April 1, 2025

Outline

M-means Clustering

2 Mixtures of Gaussians

Problem

Suppose we have a data set $\{x^1,\ldots,x^N\}$ consisting of N observations of a D-dimensional Euclidean variable x. Partition the data set into some number K of clusters, where we will suppose for the moment that the value of K is given.

Problem'

Find:

- K cluster centers: $\mu_1, \ldots, \mu_K \in \mathbb{R}^D$.
- N data point assignment: $r^1, \ldots, r^N \in \{e_1, \ldots, e_K\}$.

such that the error function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_k^n ||x^n - \mu_k||^2$$

which represents the sum of the squares of the distances of each data point to its assigned cluster center, is minimized.

We can do this through an iterative procedure:

- **①** Choose some initial values for the $\{\mu_k\}$.
- $oldsymbol{2}$ E step: Minimize J with respect to the $\{r_k^n\}$, keeping the $\{\mu_k\}$ fixed.
- $\ \, \ \, \ \,$ M step: Minimize J with respect to the $\{\mu_k\},$ keeping the $\{r_k^n\}$ fixed.
- Go to step 2 until convergence.

Consider the E step. It's easy to see that we should assign the nth data point to the closest cluster center:

$$r_k^n = \begin{cases} 1, & \text{if } k = \arg\min_j ||x^n - \mu_j||^2 \\ 0, & \text{otherwise} \end{cases}$$

For the M step:

$$\frac{\partial J}{\partial \mu_k} = 2 \sum_{n=1}^{N} r_k^n (x^n - \mu_k)^T$$
$$\mu_k = \frac{\sum_{n=1}^{N} r_k^n x^n}{\sum_{n=1}^{N} r_k^n}$$

so μ_k is equal to the mean of all the data points x_n assigned to cluster k.

Algorithm 1: K-means algorithm

```
\{r_h^n\} \leftarrow 0;
repeat
        \{ ^{\text{old}}r_k^n \} \leftarrow \{ r_k^n \};
        for n \leftarrow 1 to N do
               k \leftarrow \arg\min_{i} ||x^n - \mu_i||^2;
          \begin{vmatrix} r_k^n \leftarrow 1; \\ r_{i \neq k}^n \leftarrow 0; \end{vmatrix}
        end
        for k \leftarrow 1 to K do
            \mu_k \leftarrow \frac{\sum_{n=1}^N r_k^n x^n}{\sum_{n=1}^N r_k^n};
        end
until \{r_{k}^{n}\} = \{^{\text{old}}r_{k}^{n}\};
return \{\mu_k\}, \{r_k^n\};
```

When updating the prototype vectors, we can also derive a sequential update in which, for each data point x^n in turn, we update the nearest prototype μ_k using:

$$^{\text{new}}\mu_k = ^{\text{old}}\mu_k + \frac{1}{N_k}(x^n - ^{\text{old}}\mu_k)$$

where N_k is the number of data points that have so far been used to update μ_k .

Image segmentation

Using the K-means algorithm to perform (toy) image segmentation:

- Each pixel in an image is a point in a three-dimensional space comprising the intensities of the red, blue and green channels.
- We treat each pixel in the image as a separate data point.
- We can apply the K-means algorithm to these pixels, and redraw the image in which we replace each pixel by the center μ_k to which that pixel has been assigned.

Image segmentation

Figure: Application of the K-means clustering algorithm to image segmentation

Image segmentation

Using the K-means algorithm to perform lossy data compression:

- ullet For each of the N data points, we store only the identity k of the cluster to which it is assigned.
- We also store the values of the K cluster centers $\{\mu_k\}$.

This framework is often called vector quantization, and the vectors $\{\mu_k\}$ are called codebook vectors.

Mixtures of Gaussians

Formulation of Gaussian mixtures in terms of discrete latent variables:

- Let z be a K-dimensional binary random variable having a 1-of-K representation:
 - $p(z) = \prod_{k=1}^K \pi_k^{z_k}$, where $0 \le \pi_k \le 1$ and $\sum_{k=1}^K \pi_k = 1$.
- Let x be a random variable whose distribution given a particular value for z is a Gaussian:
 - $p(x|z) = \prod_{k=1}^K \mathcal{N}(x; \mu_k, \Sigma_k)^{z_k}$.

Mixtures of Gaussians

We see that the marginal distribution for x is given by:

$$p(x) = \sum_{z} p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \Sigma_k)$$

which is a Gaussian mixture. We are now able to work with the joint distribution p(x,z) instead of the marginal distribution p(x), and this will lead to significant simplifications.

Mixtures of Gaussians

Let's calculate $\gamma(z_k) = p(z_k = 1|x)$:

$$p(z_k = 1 | x) = \frac{p(z_k = 1)p(x | z_k = 1)}{\sum_{k'=1}^{K} p(z_{k'} = 1)p(x | z_{k'} = 1)} = \frac{\pi_k \mathcal{N}(x; \mu_k, \Sigma_k)}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x; \mu_{k'}, \Sigma_{k'})}$$

We will view π_k as the prior probability of $z_k=1$, and the quantity $\gamma(z_k)$ as the corresponding posterior probability once we have observed x. $\gamma(z_k)$ can also be viewed as the responsibility that component k takes for explaining the observation x.

Likelihood function

Suppose we have a data set of observations $\{x^1,\ldots,x^N\}$, and we wish to model this data using a mixture of Gaussians. The log of the likelihood function is given by:

$$L = \sum_{n=1}^{N} \log(\sum_{k=1}^{K} \pi_k \mathcal{N}(x^n; \mu_k, \Sigma_k))$$

Likelihood function

We see that:

- Due to the presence of the summation over k that appears inside the logarithm, when maximizing this log likelihood function, we will no longer obtain a closed-form solution.
- The maximization of the log likelihood function is not a well-posed problem, because singularities will occur whenever one of the Gaussian components collapses onto a specific data point.
- Identifiability issue: For any given (non-degenerate) point in the space of parameter values, there will be a further K!-1 additional points all of which give rise to exactly the same distribution.

Maximum likelihood

Let's find the conditions that must be satisfied at a maximum of the log likelihood function:

$$0 = \frac{\partial L}{\partial \mu_k} = \sum_{n=1}^N \gamma(z_k^n) (x^n - \mu_k)^T \Sigma_k^{-1} \implies \mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_k^n) x^n$$

$$0 = \frac{\partial L}{\partial \Lambda_k} (H) = \frac{1}{2} \sum_{n=1}^N \gamma(z_k^n) \operatorname{tr}((\Sigma_k - (x^n - \mu_k)(x^n - \mu_k)^T) H)$$

$$\implies \Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_k^n) (x^n - \mu_k) (x^n - \mu_k)^T$$

$$\lambda = \frac{\partial L}{\partial \pi_k} = \frac{N_k}{\pi_k} \implies \pi_k = \frac{N_k}{N}$$

where $N_k = \sum_{n=1}^N \gamma(z_k^n)$. We can interpret N_k as the effective number of points assigned to cluster k.

Maximum likelihood

We can maximize the log likelihood function through an iterative procedure:

- Choose some initial values for the means, covariances and mixing coefficients.
- ② E step: Use the current values for the parameters to evaluate the posterior probabilities.
- M step: Use these probabilities to re-estimate the means, covariances and mixing coefficients.
- Go to step 2 until convergence.

Maximum likelihood

Algorithm 2: EM algorithm for a Gaussian mixture model

```
repeat
         for n \leftarrow 1 to N do
                   \begin{array}{c|c} \text{for } k \leftarrow 1 \text{ to } K \text{ do} \\ & \gamma(z_k^n) = \frac{\pi_k \mathcal{N}(x^n; \mu_k, \Sigma_k)}{\sum_{k'=1}^K \pi_{k'} \mathcal{N}(x^n; \mu_{k'}, \Sigma_{k'})}; \end{array} 
         end
          for k \leftarrow 1 to K do
         N_k \leftarrow \sum_{n=1}^N \gamma(z_k^n);
\mu_k \leftarrow \frac{1}{N_k} \sum_{n=1}^N \gamma(z_k^n) x^n;
         \sum_{k} \leftarrow \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_k^n) (x^n - \mu_k) (x^n - \mu_k)^T;
\pi_k \leftarrow \frac{N_k}{N};
         end
         L \leftarrow \sum_{n=1}^{N} \log(\sum_{k=1}^{K} \pi_k \mathcal{N}(x^n; \mu_k, \Sigma_k));
until convergence:
return \{\mu_k\}, \{\Sigma_k\}, \{\pi_k\};
```