

TECNOLOGIAS de INPUT e OUTPUT para XR

PPGCAP - Realidade Aumentada e Virtual Professor: Marcelo da Silva Hounsell Aluno: Antonio Castaño Moraes CCT - Joinville

Tecnologias de Entrada - Plataformas

- CAREN Simulador de Marcha 2000
- WiiFit WBB Wii Balance Board 2007
- **Birdly VR** 2015
- **Glider Sim** 2021
- WOBU-BBLE 2017 JOGO SÉRIO
 PARA O EQUILÍBRIO DINÂMICO DE PACIENTES COM HEMIPARESIA

CAREN - Simulador de Marcha

CAREN (sigla para Computer Assisted Rehabilitation Environment) é um sistema avançado utilizado para análise e reabilitação do movimento humano, especialmente no estudo da marcha (caminhada) e no treinamento de locomoção em ambientes virtuais. Ele é frequentemente usado em reabilitação física, pesquisa biomédica e treinamentos militares ou esportivos.

CAREN Simulador de Marcha

CAREN Simulador de Marcha

Componentes Principais

- Plataforma de movimento com múltiplos graus de liberdade (semelhante a um simulador).
- Esteira instrumentada para análise da marcha.
- Sistema de captura de movimento (geralmente com câmeras infravermelhas e marcadores).
- Ambiente de realidade virtual projetado em telas panorâmicas ou em realidade aumentada.
- Software de controle e feedback em tempo real.

Valor não divulgado publicamente, estimativas indicam que o valor do CAREN Extended pode variar entre US\$ 500.000 e US\$ 1.000.000,

CAREN Extended - Simulador de Marcha

- Permite a simulação de situações complexas, como andar em superfícies inclinadas, escorregadias ou com obstáculos.
- Pode ser utilizado com óculos de realidade virtual ou projeções em cúpula.

CAREN - Simulador de Marcha

Parâmetros de Caracterização dos Dispositivos		
A - Captura	Movimento corporal com câmeras , Forças e pressões com Sensores de força integrados na plataforma de movimento e Dados fisiológicos (opcional) como: Frequência cardíaca, atividade muscular e Ritmo respiratório (setup avançado)	
B - DOF	Total 6, sendo 3 Translações :X – lateral (esquerda/direita) Y – longitudinal (frente/trás) Z – vertical (cima/baixo) e 3 Rotações Pitch – rotação em torno do eixo X (inclinar frente/trás) Roll – rotação em torno do eixo Y (inclinar lados) Yaw – rotação em torno do eixo Z (girar para a esquerda ou direita, como virar a cabeça para os lados)	
C - Princípio básico de funcionamento	Triangulação , Aceleração linear (acelerômetro) Velocidade angular (giroscópio)	
D - Fonte dos Dados:	Corpo inteiro - com uso de marcadores refletivos	
E - Modo	Padrão é Entrada , mas pode ser configurado para Feedback háptico	
F - Controle	Predominantemente Biomecânico	
G. Referencial	Referencial Absoluto - mas também pode ser relativo (opcional)	
H. Latência/Lagging	Sistema completo 50–100 ms (total)	
I - Volume	Plataforma de movimentação (6 DoF) Cerca de 4 m x 4 m x 1,5 m (L x C x A) - Estrutura de projeção / telas imersivas Até 6 m x 6 m x 3 m (pode ser cilíndrica ou em 180°) Área de segurança ao redor Recomendado pelo menos 2 m de folga em cada lado / Altura mínima do teto 3,5 a 4 metros, para permitir movimentação segura e instalação dos sensores e projetores	
J - Lançamento	1° protótipo funcional (1999) - Comercial (2000)	
K - Venda Nacional	Entrar em contato com Motek Medical	
L - Limitações	Custo elevado / Espaço físico / Treinamento especializado	

WiiFit - Wii Balance Board (WBB)

O Wii Fit e a Wii Balance Board (WBB) são tecnologias desenvolvidas pela Nintendo para o console Nintendo Wii, originalmente voltadas para entretenimento e atividades físicas interativas, mas que também passaram a ser utilizadas em contextos clínicos e de reabilitação.

Wii Fit - o jogo - promove exercícios físicos como ioga, alongamento, equilíbrio, treino muscular e aeróbico.

Wii Balance Board - Plataforma sensorial (parecida com uma balança).

WiiFit - Wii Balance Board (WBB)

- Mede a distribuição de peso e o centro de gravidade do corpo,
- Detecta movimentos posturais,
- Usa sensores de pressão em cada canto da prancha.

WiiFit - Wii Balance Board (WBB)

Parâmetros de Caracterização dos Dispositivos		
A - Captura	Posição: através do deslocamento do centro de pressão Inclinação / Orientação: detecta alterações no eixo de inclinação corporal Força / Pressão: mede a força exercida pelo corpo sobre cada um dos quatro sensores	
B - DOF	Total 2 DOF - Correspondem aos seguintes eixos no plano horizontal: Eixo X (anterior-posterior): deslocamentos para frente e para trás. Eixo Y (medial-lateral): deslocamentos para os lados (esquerda-direita).	
C - Princípio básico de funcionamento	Utiliza um conjunto de quatro células de carga (strain gauge load cells), localizadas nos quatro cantos da plataforma	
D - Fonte dos Dados:	Dados gerados a partir das forças aplicadas pelos pés - representam o comportamento global do corpo	
E - Modo	Padrão é Entrada	
F - Controle	Controle biomecânico baseado em força e posição corporal (plataforma de pressão)	
G. Referencial	Referencial relativo (Todos os dados captados são relativos à posição dos pés sobre a prancha)	
H. Latência/Lagging		
I - Volume	Comprimento: 50,5 cm Largura: 35,0 cm Altura: 6,0 cm - PESO - aproximadamente 2,2 kg.	
J - Lançamento	Lançada pela Nintendo em 2007 - No Brasil em 2008 /	
K - Venda Nacional	Descontinuado Nintendo Wii	
L - Limitações	não oferece alta precisão - projetada para ser usada com o Nintendo Wii	

O **Birdly VR** é uma plataforma de simulação de voo imersiva que permite aos usuários experimentar a sensação de voar como um pássaro. Desenvolvido pela empresa suíça Somniacs

O usuário deita-se em uma plataforma projetada para simular as asas de um pássaro. Com os braços estendidos e fixados em painéis móveis, o participante pode controlar o voo movendo as mãos e os braços, imitando o movimento das asas. Um headset de realidade virtual proporciona uma visão panorâmica do ambiente virtual, enquanto ventiladores simulam o vento, criando uma sensação tátil realista. Além disso, sons e odores ambientais são incorporados para aumentar a imersão.

Parâmetros de Caracterização dos Dispositivos		
A - Captura	Posição e Movimento (óculos e a plataforma física)	
B - DOF	Total 6 DOF - Translação: Eixo X (frente/ trás) — Eixo Y (cima / baixo) — Eixo Z (esqu/direita) Rotação: Pitch (inclinação para cima e para baixo) Yaw (guinada, rotação lateral) . Roll (rolamento, rotação em torno do próprio eixo)	
C - Princípio básico de funcionamento	Combina: Sensores de movimento (como acelerômetros e giroscópios) Plataforma mecatrônica com atuadores Sistema de rastreamento de posição Headset de realidade virtual Simuladores de vento e feedback tátil	
D - Fonte dos Dados:	Cabeça com Headset VR com sensores inerciais + ópticos Controle da visão e da direção de voo (girar, olhar para os lados), Tronco/Peito Acelerômetro/Giroscópio - Detecta inclinação do corpo para frente/trás e lados (pitch/roll), Braços/Asa Sensores de posição embutidos nos apoios de braço - Movimentos de bater asas, inclinar, estabilizar.	
E - Modo	Utiliza Entrada (Input): O corpo do usuário envia comandos à simulação por meio de movimentos físicos (tronco, braços, cabeça). OBS: Sistema de Feedback Háptico (Output): A plataforma e periféricos devolvem sensações físicas ao usuário (movimento, vento, inclinação),	
F - Controle	O controle principal é biomecânico, pois ele mede parâmetros físicos objetivos do corpo em movimento.(Posição com sensores, velocidade e aceleração angular com giroscópio, Força e Peso através da plataforma física.	
G. Referencial	Referencial absoluto para interpretar os movimentos do usuário em relação ao ambiente virtual.	
H. Latência/Lagging	Baixa latência = geralmente possuem latências entre 20 ms e 40 ms	
I - Volume	Tamanho / Dimensões físicas - Comprimento: 2,2 m Largura: 1,5 m Altura: 1,2 m - Área necessária para operação: pelo menos 3 x 3 metros livres ao redor (por segurança e espaço de manobra) - Peso Aproximadamente 200–250 kg	
J - Lançamento	Oficialmente em 2015, desenvolvido pela empresa suíça Insomniacs - empresa criada a partir de pesquisas, inovações ou conhecimentos desenvolvidos dentro da Universidade de Zurique	
K - Venda Nacional	Atualmente, o Birdly VR não possui revendedores oficiais no Brasil - Oferece opções de compra e aluguel internacional.	
L - Limitações	Uso individual, custo de aquisição: Estimado entre US\$ 25.000 e US\$ 50.000, Peso e requer um espaço dedicado	

WOBU-BBLE - Jogos Sérios

Wobu-bble auxilia na reabilitação do equilíbrio dinâmico de

pacientes com Hemiparesia.

Hemiparesia: Uma condição neurológica que causa problemas de equilíbrio corporal, frequentemente após um AVC.

Dissertação apresentada pelo PPGCAP UDESC - Rafaela Bosse Schroeder Orientador: Marcelo da Silva Hounsell

WOBU-BBLE - Jogos Sérios

A prancha de equilíbrio utilizada no **Wobu-bble**, também conhecida como **Wobble Board**, é um dispositivo projetado para desafiar o equilíbrio do usuário, promovendo o fortalecimento dos músculos estabilizadores e melhorando a propriocepção.

WOBU-BBLE - Jogos Sérios

Parâmetros de Caracterização dos Dispositivos			
A - Captura	Posição em relação a Prancha, Inclinação/Orientação, Movimento/Velocidade (refletidos na inclinação da prancha)		
B - DOF	Total 2 , X – lateral (esquerda/direita) Y – longitudinal (frente/trás)		
C - Princípio básico de funcionamento	Os sensores da prancha rastreiam o centro de pressão do usuário, que é a base para a interação no jogo.		
D - Fonte dos Dados:	Pressão nos pés relativa ao equilíbrio do corpo		
E - Modo	Entrada		
F - Controle	Biomecânico		
G. Referencial	Referencial Relativo		
H - Volume	A prancha tem 5 cm de altura / 50 cm de largura		
I - Lançamento	UDESC 2017		

Glider Sim - Simulador de Vôo

Glider Sim é considerado um dos simuladores mais realistas de voo livre em VR, ideal tanto para entusiastas quanto para pilotos experientes

Glider Sim - Simulador de Vôo

É um jogo de realidade virtual disponível para o Meta Quest (incluindo os modelos Quest 2, Quest 3 e Quest Pro). Ele oferece uma experiência imersiva de voo livre, permitindo que você pratique parapente, asa-delta e outras modalidades em ambientes realistas.

Compatível com vários simuladores e opção de construir seu próprio

Glider Sim - Simulador de Vôo

Parâmetros de Caracterização dos Dispositivos		
A - Captura	Posição – Para saber onde o usuário ou objeto está no espaço 3D. Inclinação/Orientação – Para registrar para onde o usuário está olhando ou a inclinação do "planador".	
B - DOF	Total 3 DOF Apenas orientação rotação em três eixos: Pitch (inclinar para cima/baixo) Yaw (girar para os lados) Roll (girar lateralmente)	
C - Princípio básico de funcionamento	Acelerômetros Medem aceleração linear (mudança de velocidade). São usados para detectar movimentos iniciais e inércia. Giroscópios Medem velocidade angular (rotação nos eixos X, Y e Z). São responsáveis por captar a orientação do dispositivo. Magnetômetro Funciona como uma bússola digital, ajudando a corrigir o desvio de rotação acumulado	
D - Fonte dos Dados:	Cabeça (Headset VR) – para rastrear posição e orientação da cabeça, ou seja, para onde o usuário está olhando. Mãos (Controladores VR)	
E - Modo	Entrada (Input) - OBS: <u>feedback háptico simples:</u> vibrações que simulam sensação de vento, resistência ou impacto	
F - Controle	Biomecânico o sistema detecta posição, velocidade, força e aceleração dos controladores e do headset	
G. Referencial	Referencial relativo os movimentos são relacionados ao espaço virtual e à perspectiva do jogador	
H - Volume	Tamanho / Dimensões físicas do Headset Metaquest 2 - Tamanho da tela: 5,46 polegadas de cada lado, com uma resolução de 3664 x 1920 pixels (1832 x 1920 por olho). Peso: Aproximadamente 503 gramas. Meta Quest 3: Tamanho da tela: O Meta Quest 3 tem uma tela melhorada, mas o tamanho exato da tela não foi amplamente especificado. Ele tem uma resolução total de 2064 x 2208 pixels por olho. Peso: Aproximadamente 515 gramas.	
I - Lançamento	Lançado em 2022	
J- Venda Nacional	O jogo pela steam U\$29,99	

Tecnologias de Saída - Plataformas

- Lente de Contato iEye (Univ. Washington)
- Display de Retina Magic Leap One
- Lente de Contato Mojo Vision

iEye - Pesquisas Iniciais (Univ. Washington)

Artigo Publicado em 2011 - título: "Um visor de lente de contato sem fio de pixel único"

iEye - Pesquisas Iniciais (Univ. Washington)

O artigo discute o design, construção e testes de uma lente de contato com display alimentada sem fio. Detalha todo o processo de Montagem e Moldagem.

O Magic Leap One é um dispositivo de realidade aumentada (AR) criado para integrar objetos digitais ao mundo real por meio de um display transparente de alta tecnologia.

Oficialmente lançado em 8 de agosto de 2018.

Tecnologia Waveguides são guias de ondas (ou "guias de luz") feitos de materiais transparentes que controlam a direção da luz. A luz do microdisplay é direcionada por esses waveguides até os olhos do usuário.

Composto por três partes principais:

- Óculos (display)
- Computador vestível
- Controlador manual

Não projeta a imagem diretamente sobre a retina. Em vez disso, ele utiliza uma display com lentes especiais que direcionam a luz até seus olhos, criando a ilusão de uma imagem no espaço à sua frente, como se estivesse vendo algo "flutuando" no mundo real.

Parâmetros de Caracterização dos Dispositivos		
A - Imagem da Apresentação	Projetada	
B - Plano de Projeção:	Forward projection	
C - Visada Direta	Optical See-Through (transparente)	
D - Uso	Individual	
E - Flickering (tremulação)	Pode ocorrer leve flickering dependendo da cena, brilho e transições rápidas.	
F - Blur/Ghosting Desfoque/imagem fantasma	Ocorrer blur ou ghosting em movimento rápido da cabeça	
G - Lagging	Baixa probabilidade.	
H - FoV-h, FoV-v	FoV-h (horizontal): 40°	
Campo de Visão Horizontal Campo de Visão Vertical	FoV-v (vertical): 30°	
I - Brilho e Contraste	O brilho não é ajustável de forma ampla, e o contraste sofre em ambientes muito iluminados.	
J - Tecnologia	Display projetado via waveguides ópticos	
K - Vende no Brasil	Não disponível	
M - Uso	Visualização do mundo real + sobreposição digital.	

Lente de Contato - Mojo Vision

A Mojo Vision, desenvolveu as **Mojo** Lens, lentes de contato inteligentes que integram realidade aumentada (AR) de forma invisível ao usuário. As lentes trazem uma tela de 14.000 pixel por polegada (ppi), processador ARM, bateria, GPU e conexão sem fio, tudo embutido em um dispositivo minúsculo. Elas podem exibir informações úteis (como direções ou dados esportivos) e são controladas por movimentos oculares. Embora ainda em fase de testes e sem data oficial de lançamento.

Lente de Contato - Mojo Vision

Parâmetros de Caracterização dos Dispositivos			
A - Imagem da Apresentação	Emitida diretamente por uma microtela (MicroLED) embutida na lente		
B - Plano de Projeção:	Não se aplica		
C - Visada Direta	Optical See-Through (transparente)		
D - Uso	Individual		
E - Flickering (tremulação)	Não perceptível - opera em frequências muito altas, superiores ao limiar de percepção humana para cintilação.		
F - Blur/Ghosting Desfoque/imagem fantasma	Blur e ghosting são minimizados ao extremo: A tela está muito próxima ao olho e com foco calibrado, a imagem é emitida diretamente ao campo visual com rastreamento ocular		
G - Lagging	Não perceptível		
H - FoV-h, FoV-v Campo de Visão Horizontal Campo de Visão Vertical	A Mojo Lens fornece um campo de visão de 15°, que pode ser ajustado com o movimento ocular.		
I - Brilho e Contraste	Ajustável automático		
J - Tecnologia	MicroLED - Cada pixel é um led		
K - Vende no Brasil	Não está a venda		
L - Frequência de exploração (frame rate)	não disponível por enquanto		
M - Uso	A Mojo Lens é principalmente voltada para a Realidade Aumentada (RA), já que seu foco é sobrepor informações digitais (como direções, notificações e dados de saúde) ao mundo real.		

Referências

SCHROEDER, Rafaela Bosse. WOBU-BBLE – JOGO SÉRIO PARA O EQUILÍBRIO DINÂMICO DE PACIENTES COM HEMIPARESIA. 2017. Dissertação (Mestrado em Computação Aplicada) - Universidade do Estado de Santa Catarina, Joinville

MOJO VISION. Mojo Lens - Tecnologia de realidade aumentada com MicroLED. Mojo Vision. Disponível em: https://www.mojo.vision/technology. Acesso em: 3 maio 2025.

LINGLEY, A. R. et al. A single-pixel wireless contact lens display. Journal of Micromechanics and Microengineering, Bristol: IOP Publishing, v. 21, n. 12, p. 125014, 2011. DOI: 10.1088/0960-1317/21/12/125014.

VENTURA, Felipe.. Magic Leap One: óculos de realidade aumentada. Tecnoblog, 2018. Disponível em: https://tecnoblog.net/noticias/magic-leap-one-creators-edition/. Acesso em: 5 maio 2025.

Motek Medical. CAREN – Computer Assisted Rehabilitation Environment. Disponível em: https://www.motekmedical.com/solution/caren/. Acesso em: 2 maio 2025.

SOMNIACS AG. Birdly – Simulador de voo em realidade virtual. Disponível em: https://birdly.com/. Acesso em: 3 maio 2025.

5D Realities. Glider Sim – Simulador de voo livre e parapente. Disponível em: https://5drealities.com/games/GliderSim.aspx. Acesso em: 1 maio 2025.

Obrigado

UDESC — Universidade do Estado de Santa Catarina

Antonio Castaño Moraes

www.udesc.br