Tema 5. Integrales sobre superficies

5.0. Contenido y documentación

- 5.0. Contenido y documentación
- 5.1. Superficies parametrizadas
- 5.2. Cálculo de áreas y volúmenes
 - 5.2.1. Áreas generales
- 5.3. Integrales de funciones escalares sobre superficies
- 5.4. Flujo de un campo vectorial
 - 5.4.1. Superficies orientables
- 5.5. Teoremas de Stokes y Gauss

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/0bff8148-0ab3-41d5-8ac0-0dc06c0 133bc/U5_IntegralesSuperficies.pdf

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/4c305fdd-0a14-43c2-8486-bc02d2 8e33ae/H9_IntegraleSuperficies.pdf

5.1. Superficies parametrizadas

Definición. Una superficie parametrizada es una aplicación continua $\Phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ que puede escribirse como $\Phi(u,v)=(x(u,v),y(u,v),z(u,v))$.

Nota. Decimos que la superficie es diferenciable si la aplicación $\Phi:D o\mathbb{R}^3$ es diferenciable.

Ejemplo 1. Dada la gráfica de la función $(x,y)\mapsto \sqrt{x^2+y^2}$, se puede parametrizar con la aplicación $\Phi(u,v)=(u\cos(v),u\sin(v),u)$, para $u\geq 0$.

Definición. Sea $S\subset\mathbb{R}^3$ una superficie definida por $\Phi:D\subset\mathbb{R}^3\to\mathbb{R}^3$. Los **vectores tangentes** a S en un punto $\phi(u,v)$ se denotan por T_u , T_v y se definen como $T_u=\frac{\partial\Phi}{\partial u}$, $T_v=\frac{\partial\Phi}{\partial v}$.

Definición. Decimos que una superficie S dada por $\phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ es **suave** o regular en un punto $\phi(u,v)$ si $T_u\times T_v\neq \vec{0}$.

Nota. $T_u imes T_v$ define el vector normal del plano tangente a la superficie S en el punto $\phi(u,v)$.

Definición. Sea S una superficie $\phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$, y sea $(u,v)\in D$ tal que la superficie es regular en $\phi(u,v)$:

- 1. El **plano tangente** a la superficie en el punto $\phi(u,v)$ es el plano con vector normal $T_u \times T_v$ y que contiene a $\phi(u,v)$.
- 2. El **vector normal unitario** a la superficie en $\phi(u,v)$ es el vector $\frac{T_u \times T_v}{\|T_u \times T_v\|}$.

Ejemplo 2. Dada la superficie $S=\{(x,y,z)\in\mathbb{R}^3:z=\sqrt{x^2+y^2},z\geq 0\}.$

1. Parametrizamos la superficie de la gráfica de S con coordenadas porlares mediante $\Phi_1(\theta,z)=(z\cos\theta,z\sin\theta,z)$, con $\theta\in[0,2\pi]$ y $z\geq0$; o a partir de la gráfica con $\Phi_2(x,y)=\left(x,y,\sqrt{x^2+y^2}\right)$, con $(x,y)\in\mathbb{R}^2$.

2. Estudiamos la regularidad de la superficie tomando la parametrización Φ_1 .

$$\vec{N}(\theta,z) = T_{\theta} \times T_z = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -z\sin\theta & z\cos\theta & 0 \\ \cos\theta & \sin\theta & 1 \end{vmatrix} = (z\cos\theta,z\sin\theta,-z).$$
 En $(0,0,0),z=0$ y $\theta\in[0,2\pi]\Rightarrow\vec{N}(\theta,0)=(0,0,0)=\vec{0}\Rightarrow S$ no es regular en $(0,0,0).$ En $(0,1,1),z=1$ y $\theta=\frac{\pi}{2}\Rightarrow\vec{N}\left(\frac{\pi}{2},1\right)=(0,1,-1)\neq\vec{0}\Rightarrow S$ es regular en $(0,1,1).$ 3. Hallamos el plano tangente a S en $(0,1,1).$ Usamos la gráfica de S y definimos $z=f(x,y)=\sqrt{x^2+y^2}.$ $z=f(0,1)+\frac{\partial f}{\partial x}(0,1)(x-0)+\frac{\partial f}{\partial y}(0,1)(y-1)=y\Rightarrow z=y.$

5.2. Cálculo de áreas y volúmenes

En el caso de las superficies en \mathbb{R}^2 bastará con calcular las integrales dobles del tipo $\iint_D 1 \ dx dy$.

En el caso de las superficies en \mathbb{R}^3 tomaremos una parametrización $\phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ de la superficie S y calcularemos la integral doble $\iint_D\|T_u imes T_v\|\ dudv.$

Ejemplo 3. Consideramos la región $D=\{(r,\theta): 0\leq \theta\leq 2\pi, 0\leq r\leq 1\}$, sea $\phi: D\subset \mathbb{R}^2\to \mathbb{R}^3$, $(r,\theta)\mapsto (r\cos\theta,r\sin\theta,r)$ y sea S la superficie correspondiente, hallamos el área de S.

Calculamos
$$T_r imes T_{ heta} = egin{array}{cccc} ec{i} & ec{j} & ec{k} \ \cos heta & \sin heta & 1 \ -r \sin heta & r \cos heta & 0 \ \end{bmatrix} = (-r \cos heta, -r \sin heta, r)$$
. De forma que $\|T_r imes T_r imes T_r$

$$T_{ heta} \| = r \sqrt{2}$$
.

Luego Área
$$(S)=\iint_D \|T_r imes T_{ heta}\|\ dr d heta=\sqrt{2}\int_0^1\int_0^{2\pi} r\ d heta dr=2\pi\sqrt{2}\int_0^1 r\ dr=\pi\sqrt{2}.$$

5.2.1. Áreas generales

Para algunos casos existen fórmulas generales que nos permiten calcular la integral concreta para cada uno.

1. **Gráficas**. Para superficies parametrizadas de la forma (x,y,z)=(u,v,f(u,v)) tenemos que Área $(S)=\iint_D\sqrt{1+\left(\frac{\partial f}{\partial u}\right)^2+\left(\frac{\partial f}{\partial v}\right)^2}\,dudv.$

2. Superficies de revolución. Para superficies parametrizadas como
$$(x,y,z)=(u,f(u)\cos v,f(u)\sin v)$$
, con $f\geq 0$, $u\in [a_0,a_1]$, $v\in [0,2\pi]$ tenemos que Área $(S)=\int_0^{2\pi}\int_{a_0}^{a_1}f(u)\sqrt{f'(u)^2+1}\ dudv=\int_{a_0}^{a_1}2\pi f(u)\sqrt{f'(u)^2+1}\ du.$

Ejemplo 4. Dado el cono de revolución definido por la recta y=x, hallamos el área del cono para $x\in[0,1]$, A_1 , y el área de la región tronco-cónica para $x\in[1,2]$, A_2 .

$$egin{align} A_1 &= 2\pi \int_0^1 u\sqrt{2} \; du = 2\pi\sqrt{2} \left[rac{u^2}{2}
ight]_0^1 = \pi\sqrt{2}. \ A_2 &= 2\pi \int_1^2 u\sqrt{2} \; du = 2\pi\sqrt{2} \left[rac{u^2}{2}
ight]_1^2 = 3\pi\sqrt{2}. \end{align}$$

5.3. Integrales de funciones escalares sobre superficies

Definición. Sea S una superficie en el espacio parametrizada por $\Phi:D\subset\mathbb{R}^2 o\mathbb{R}^3$. Sea $f:U\subset$ $\mathbb{R}^3 o \mathbb{R}$ una función continua con $U \supset S$. Definimos la **integral de** f **sobre** S como $\iint_{\mathbb{R}} f(x,y,z) \ dA = \iint_{\mathbb{R}} f(\Phi(u,v)) \|T_u imes T_v\| \ du dv.$

Teorema. Sea S una superficie en \mathbb{R}^3 y sean Φ_1 , Φ_2 parametrizaciones de Scualesquiera. Entonces, para cualquier función continua $f:U\subset\mathbb{R}^3 o\mathbb{R}$ con $U\supset S$ tenemos $\iint_{\mathbb{R}} f\ dA=\iint_{\mathbb{R}} f\ dA.$

5.4. Flujo de un campo vectorial

Definición. Sea S una superficie en el espacio parametrizada por $\Phi:D\subset\mathbb{R}^2 o\mathbb{R}^3$. Sea $F:U\subset$ $\mathbb{R}^2 o\mathbb{R}^3$ un campo vectorial continuo con $U\supset S$. Definimos la **integral de** F **sobre** S como $\iint F\cdot$ $dA = \iint_{\Gamma} F(\Phi(u,v)) \cdot (T_u imes T_v) \ du dv.$

Ejemplo 5. Dada la semiesfera definida como $S=\{(x,y,z): x^2+y^2+z^2=1, z>0\}$, calculamos $\iint_{C} z \ dA$.

1. Parametrizamos con coordenadas esféricas como $\Phi_1(\theta,\varphi)=(\sin\varphi\cos\theta,\sin\varphi\sin\theta,\cos\varphi)$, de forma que $dA=\sinarphi\;d heta darphi$, con $(heta,arphi)\in[0,2\pi] imes[0,2/\pi]$.

Luego,
$$\iint_S z\ dA = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos\varphi \sin\varphi\ d\theta d\varphi = \left[2\pi \frac{1}{2}\sin^2\varphi\right]_0^{\frac{\pi}{2}} = \pi.$$
2. Parametrizamos utilizando la gráfica como $\Phi_2(u,v) = \left(u,v,\sqrt{1-u^2-v^2}\right)$, con $u^2+v^2 \leq 1$, de

forma que
$$dA=\left(\sqrt{1-u^2-v^2}\right)^{-1}$$
. Luego, $\iint_S z\ dA=\iint_{u^2+v^2\leq 1} \frac{\sqrt{1-u^2-v^2}}{\sqrt{1-u^2-v^2}}\ dudv=\int_{u^2+v^2\leq 1} 1\ dudv=\pi$.

5.4.1. Superficies orientables

Definición. Se dice que S es una **superficie orientable** si posee dos caras, cada una de ellas determinada por un vector normal continuo.

Nota. Si $\vec{\eta}_1$ y $\vec{\eta}_2$ son dichos vectores, entonces necesariamente $\vec{\eta}_1 = -\vec{\eta}_2$.

Decimos que dos parametrizaciones Φ_1, Φ_2 de una misma superficie orientable tienen la misma orientación si el vector $T_u imes T_v$ para Φ_1 sigue la misma orientación que el vector $T_{u'} imes T_{v'}$ para Φ_2 , en todo punto.

Teorema. Sea S una superficie en \mathbb{R}^3 y sean Φ_1 , Φ_2 dos parametrizaciones de S. Sea F un campo vectorial continuo definido sobre $U \supset S$. Entonces $\iint_{\mathbb{R}} F \cdot dA = \pm \iint_{\mathbb{R}} F \cdot dA$, teniendo el mismo signo si Φ_1 y Φ_2 tienen la misma orientación o distinto, de lo contrario.

5.5. Teoremas de Stokes y Gauss

Teorema de Stokes. Sea S una superficie orientable en \mathbb{R}^3 definida por una parametrización $\Phi:D\subset\mathbb{R}^2\to S$, donde D es una región en la que se cumple el <u>Teorema de Green</u>. Sea ∂S la frontera orientada de S y sea $F:U\subset\mathbb{R}^3\to\mathbb{R}^3$ un campo vectorial de clase \mathcal{C}^1 sobre $U\supset S$. Entonces $\iint_S (\nabla\times F)\cdot dA=\int_{\partial S} F\cdot ds$.

Nota. Si S no tiene frontera, $\partial S = \emptyset$, entonces la integral vale 0.

Nota. La orientación que se debe tomar para ∂S es la que induce la regla de la mano derecha teniendo en cuenta el vector normal a S.

Ejemplo 6. Dada la superficie S con frontera $\partial S=\{(x,y):x^2+y^2=1\}$ y orientación en sentido antihorario, queremos hallar $\iint_S (\nabla \times F) \cdot dA$, con $F=(y,-x,e^{xz})$.

Parametrizamos ∂S como $\sigma(\theta)=(\cos\theta,\sin\theta,0)$, de forma que $\iint_S(\nabla\times F)\cdot dA=\int_{\partial S}F\cdot ds=\int_0^{2\pi}(\sin\theta,-\cos\theta,e^0)\cdot(-\sin\theta,\cos\theta,0)\ d\theta=-\int_0^{2\pi}1\ d\theta=-2\pi.$

Teorema de la divergencia de Gauss. Sea Ω un subconjunto de \mathbb{R}^3 compacto y tal que su frontera topológica $\partial\Omega$ se puede parametrizar por una función diferenciable con la normal exterior. Sea $F:U\subset\mathbb{R}^3\to\mathbb{R}^3$ un campo vectorial de clase \mathcal{C}^1 sobre $U\supset\Omega$. Entonces, $\iiint_\Omega(\nabla\cdot F)\,dV=\iint_{\partial\Omega}F\cdot dA=\iint_{\partial\Omega}(F\cdot\vec{\eta})\,dA$.

Ejemplo 7. Dado el cilindro $\Omega: x^2+y^2=1$, calculamos $\iint_S F\cdot dA$, con $F(x,y,z)=(xy^2,x^2y,y)$, donde S es la superficie de Ω acotada por los planos z=-1, z=1 e incluyendo los discos $x^2+y^2\leq 1$ para $z=\pm 1$.

Para el cálculo de la integral aplicamos el teorema de Gauss. Calculamos $\nabla \cdot F = \frac{\partial (xy^2)}{\partial x} + \frac{\partial (x^2y)}{\partial x} + \frac{\partial y}{\partial x} + \frac{\partial y}{$

 $\frac{\partial (x^2y)}{\partial y}+\frac{\partial y}{\partial z}=y^2+x^2$. De forma que $\iiint_{\Omega}(\nabla\cdot F)\ dV=\iiint_{\Omega}(x^2+y^2)\ dV$. Hacemos un cambio de variables a coordenadas cilíndricas como $(x,y,z)=(r\cos\theta,r\sin\theta,z)$, con r como jacobiano.

Así,
$$\iint_S F \cdot dA = \int_{-1}^1 \int_0^{2\pi} \int_0^1 r^3 \ dr d\theta dz = 4\pi \int_0^1 r^3 \ dr = 4\pi \left[\frac{r^4}{4} \right]_0^1 = \pi.$$