Singularities and removability: If f is analytic on $D^{*}(R) = D(R) - \{0\}$, we can express f as a laurent seils $\sum_{n=1}^{\infty} a_n z^n$.

- 1) If there are no negative powers of z (ie. $a_n = 0$ $\forall n < 0$), f is a processies and the singularly at 0 is removable, ie. can extend f to an analytic function on D(R) 30, with $f(0) = a_0$. If $N = \min\{n/a_n \neq 0\} > 0$, then $f(z) = z^N(a_N + ...)$ has a zero of order N at z = 0.
- 2) If there are Rintely many negative powers of z in the series: let -N=min {n/anf0}<0 then $f(z) = \sum_{n=-N}^{\infty} a_n z^n = \frac{1}{z^N} (a_{-N} + ...) = \frac{g(z)}{z^N}$, g analytic with $g(0) = a_N \neq 0$. We say I has a pole of order N at O.
- 3) If the negative part of the series has so many terms: we say f has an essential singularity at 0 (= non-removable singularity other than a pole). \underline{Ex} : $\exp(1/z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n}$ exactial singularly at 0.

The qualitative differences between the 3 cases can also be undertood without involving Laurest series.

Thon; I f analytic on D'(R):

- 1) the singularity at 0 is removable iff f(z) is bounded on a neighborhood of 0.
- 2) f has a pole at 0 iff $|f(z)| \rightarrow \infty$ as $z \rightarrow 0$
- 3) f has an essertial singularly iff $\forall \varepsilon > 0$, $f(D(\varepsilon))$ is dense in \mathbb{C} (equivalently: $\forall y \in \mathbb{C} \cup \{\infty\}$, $\exists z_n \rightarrow 0 \text{ st. } f(z_n) \rightarrow y$).

Pf (without miny lowest series!)

1) assume f bounded on D'(r). Since f is continuous on S'(r), we have seen that $g(z) = \frac{1}{2\pi i} \int_{S'(r)} \frac{f(\omega) d\omega}{\omega - z}$ is analytic in D(r). By Cauchy's formula, if

$$0 < \varepsilon < \frac{1}{2}, \text{ then } \frac{1}{2\pi i} \int_{\partial D} \frac{f(\omega)d\omega}{\omega - z} = \frac{1}{2\pi i} \left(\int_{S(r)} - \int_{S^1(z,\varepsilon)} \int_{S^1(0,\varepsilon)} \frac{1}{S^1(0,\varepsilon)} \right)$$

$$= g(z) - f(z) - \frac{1}{2\pi i} \int_{S^1(0,\varepsilon)} \frac{f(\omega)d\omega}{\omega - z} = 0$$

$$g(z) - f(z) - \frac{1}{2\pi i} \int_{S'(0,z)} \frac{f(\omega) d\omega}{\omega - z} = 0$$

but the last integral - , O as e - O since the integrand is bounded and length (5'(E)) - O. So: g is analytic in D(r) and $g(z)=f(z) \forall z \in D(r)-\{0\}$.

ie - the simplary at 0 is removable.

(Conversely, it is clear that I is brunked near O if the sing is removable).

2) assume $|f(-100 \text{ as } z\to 0)$, then $h(z)=\frac{1}{f(z)}$ is analytic and bounded in a neighborhood $(z)=\frac{1}{f(z)}$ of 0, here has a removable singularity, i.e. \exists analytic extension which we denote again by h. Since $|h|\to 0$ as $z\to 0$, h has an (isolated) zero at z=0, where it vanishes to finite order; $\exists n\ge 1$ and k(z) analytic, $k(0)\ne 0$ st- $h(z)=z^nk(z)$. Hence $f(z)=\frac{1}{h(z)}=\frac{g(z)}{z^n}$ where $g(z)=\frac{1}{k(z)}$ is analytic on a hid. of 0: f has a pole of order n.

Conversely if $f(z) = \frac{g(z)}{z^n}$, $n \ge 1$, g analytic, $g(0) \ne 0$ then $\exists c > 0 \text{ st}$. $|g(z)| \ge c > 0$ over a neighborhood of 0, and $|f(z)| \ge \frac{c}{|z|^n} \to \infty$ as $z \to 0$.

3) if $f(D(\xi))$ isn't donse in C, then $\exists c \ st$. $h(z) = \frac{1}{f(z)-c}$ is bounded near 0, hence has a removable singularity; we deark the extension ove 0 by h again. If h(0) = 0 then, as in the previous care, h has a zero of finite order $n \ge 1$, $\frac{1}{h(z)}$ has a pole of order n, and $f(z) = c + \frac{1}{h(z)}$ also has a pole of order n. If $h(0) \ne 0$ then $f(z) = c + \frac{1}{h(z)}$ extends ove 0, the singularity is removable. So: essential singularity $\Rightarrow f(D'(\xi))$ is dense in C $\forall \xi > 0$.

(The convexe is clear too: f(D'(E)) dense \Rightarrow f isn't bounded and |f|+sas, so neither removable nor pole). \Box

Def: If f is analytic in $U - \{P_1, ..., P_n\}$ and has poles at $p_1 ... P_n$ (no essential sings) then we say f is meromorphic in U.

If $f: U - \{p_i\} \to \mathbb{C}$ is meromorphic with polls at p_i , then $|f(z)| \to \infty$ as $z \to p_i$, so 1/f has a removable singularity at p_i , where it has a zero (of order - pole order of f). Hence f extends to $\hat{f}: U \to S = \mathbb{C} \cup \{\infty\}$ Riemann sphere by setting $\hat{f}(p_i) = \infty$, and \hat{f} is continuous and analytic, in the sense that

- away from the poles $\{p_i\} = \hat{f}'(\infty)$, \hat{f} takes values in C and is analytic - away from the zeros, $\frac{1}{\hat{f}(z)}$ takes values in C and is analytic extension of $\frac{1}{f}$ over the remarkle singular p_i).

• These considerations tell us:

-> zeros and poleo of Iron-idestically zero) meromorphic functions are isolated.

-s if f and g are analytic on U, $g \neq 0$, then f/g is meromaphic on U.

if f and g have no comma zeros, f/g has zeros = zeros of f, poles = zeros of g.

if there's a common zero, highest order wins (Factor or 2 powers of $(z-z_0)$).

→ another perpective on this: Laurent series with finite negative part are the field 3 of fractions of power series (q, +a, ≥+... has an invest in I[[2]]) iff q, ≠0, and otherwise (an ≥*+...)' = 1/(1+...)), so q ratio of two nontrivial power series gives such a Laurent series hence defines a meromorphic function.

— The converse is actually time (worth prove): every meromorphic function is a quotient flag of analytic functions. So: meromorphic functions are the field of fractions of the ring of analytic functions.

Assure f is mesmorphic on all $\mathbb C$ (ie. f analytic on $\mathbb C$ - $\{p_i\}$, $\mathbb C$) poles at p_i). If |f(z)| is either bounded or $\to \infty$ as $|z| \to \infty$, then he function $g(w) = f(1/\omega)$ has a removable singularly or a pole at $\omega = 0$, so it is mesmorphic near 0. \Rightarrow can extend \hat{f} to the Riemann sphere by setting $\hat{f}(\infty) = \hat{g}(0)$. Thus: if f(z) and $f(\frac{1}{z})$ are mesmorphic, get an analytic extension $\hat{f}: S \to S$ to the whole Riemann sphere!

. In fact, such f is necessarily a rational function. Indeed:

Theorem: If f is an analytic entire function $f: \mathbb{C} \to \mathbb{C}$ and $|f(z)| \leq M|z|^n$ near $|z| \to \infty$ then f is a polynomial of degree at most n.

This follows from Carely's bound for deirakine: $f^{(n)}(z)$ is a bounded entire furtion and hence contract (thomework!!)

Conllay: If $f: S \to S$ is analytic (ie. f(z) and $f(\frac{1}{z})$ are necomorphic) then f is a rational function.

<u>Proof</u>: the fact that $g(w)=f(\frac{1}{w})$ is meanwhic near 0 gives a bound of the form $|g(u)| \leq \frac{C}{|w|^n}$ for $u \to 0$, i.e. $|f(z)| \leq C |z|^n$ for $z \in \mathbb{C}$, $z \to \infty$

of isn't an entire function, it does have poles - but only finitely many of them (poles of f are zeros of 1/p here isolated, and 5 is compact).

So: $\exists \text{ polynomial } P(z) = \Pi(z-p_i)^{n_i}$ (p. poles of f, n. order) st. P(z)f(z) extends to an entire function on C, also satisfying a bound $|P(z)f(z)| \leq C' |z|^{n+deg P}$ as $z \to \infty$. By the previous that, P(z)f(z) is a polynomial. \square

Local behavior of analytic functions; maximum principle and open mapping principle. * Cauchy's integral formula can be viewed as a mean value formula: $\frac{|D_{rm}|}{|D_{rm}|} \| \text{ If } f \text{ is analytic on } U \Rightarrow \overline{B_{r}(z)} \text{ Ken } f(\overline{z}) \text{ is the average value of } f \text{ on } S'(\overline{z},r).$

 $\frac{\text{Pf:}}{\text{by Canhy,}} f(z) = \frac{1}{2\pi i} \int_{S'(z,r)}^{R(\omega)} \frac{f(\omega)}{\omega - z} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z + re^{i\theta})}{re^{i\theta}} d(re^{i\theta}) = \frac{1}{2\pi i} \int_{0}^{2\pi} f(z + re^{i\theta}) d\theta$ Conlay: the maximum pinciple Thm: If f is analytic on UCI & nonconstant, then |f| doesn't achieve its maximum open connected anywhere in U. In particular, if f is analytic on U and continuous on U, U conjunct, then the maximum of |f| on U is achieved on the boundary of U. $\frac{\text{Pf: Given } z \in U}{r > 0} \text{ small so } \overline{B}_{r}(z) \subset U.$ If If has a (local) max at zo then max If = If(z) and these inequalities are equalities. This implies $|f(z)| = |f(z)| \ \forall z \in S'(z_0, r)$. In fact $f(z) = f(z_0)$; if arg(f(z)) varies then (a) is <. (eg. reside so $f(z_0)=1$, then $|f(z)|\leq 1$ so $Re(f(\overline{z}))\leq 1$, and $Re\ f(\overline{z_0})=Re\left(\frac{1}{2\pi}\int_0^{2\pi}f(z_0+re^{i\theta})d\theta\right)\leq 1$, equally implies $Re(f(z))=1 \ \forall z \in S'(z_0,r)$, and since $|f(z)| \leq 1$, this gives $f(z)=1 \ \forall z \in S'(z_0,r)$. Since f is analytic, $f(z)-f(z_0)=0$ $\forall z \in S'(z_0,r) \Rightarrow zeros$ of $f(z)-f(z_0)$ aren't isolated (zeros of nonhibid analytic fit are isolated) \Rightarrow $f(z) - f(z_0) = 0$ on $U \Rightarrow f = constant$ on U. (Rmk: This also implies max principle for Re(f), since |ef| = e Re(f) has no (local) max.). · One nice (non-local) conseque is a contraction principle; the Schwarz Lemma. Thm: ||f| analytic on $D = \{|z| < 1\}$, and $|f(z)| < 1 \ \forall z \in D$ (i.e. $f: D \rightarrow D$), and $|f(0)| \le 1$, and $|f(z)| \le |z| \ \forall z \in D - \{0\}$. Noreover if equality holds in either of these then $|f(z)| = e^{i\theta}z$ for some $e^{i\theta} \in S^1$. Pf: With $f(z) = \sum_{n=1}^{\infty} q_n z^n = z F(z)$ where $F(z) = \sum_{n=0}^{\infty} a_{n+1} z^n$ analytic $(f(0)=0 \Rightarrow) no constant term)$

For $|z|=r\in(0,1)$, we have $|F(z)|=\left|\frac{f(z)}{z}\right|\leq\frac{1}{r}$, here by the maximum principle, $|F(z)|\leq\frac{1}{r}$ whenever $|z|\leq r$. Taking $r\to 1$, $|F(z)|\leq 1$ $\forall z\in D$. Here the bunds on f'(0)=F(0) and f(z)=zF(z). Nonover, if |F|=1 is achieved anywhere inside D then F is constant $=e^{i\theta}$, so $f(z)=e^{i\theta}z\cdot D$

Note: The bound on |f'(0)| is the same as the bound one gets from Candry's integral formula. The Schwarz lemma is a strengthening to pointwise bounds $|f(z)| \le |z|$ globally on the disc.

· by composing f with fractional linear transformations, we can get Schwarz-type bounds for all sorts of other situations, eg. if f maps a disc to a half-plane, etc.

In fact, we have a stronger local moult, the open mapping principle (\Rightarrow max. principle). Then, A noncombat analytic furthern is an open mapping, i.e. U open \Rightarrow f(U) open in other terms: f analytic furthern is an open mapping, i.e. U open \Rightarrow f(U) open in other terms: f analytic furthern f analytic function f analytic function f if f(z) has an isolated zero at $z=z_0$, then f analytic function f defined near f is with f(f) = 0, f(f) =