# Linear Discriminant Analysis (LDA)

Prof. G. Panda
Professorial fellow
IIT, Bhubaneswar, India

# LDA Objective

- The objective of LDA is to perform dimensionality reduction.
  - So what, PCA does this....
- However, we want to preserve as much of the class discriminatory information as possible.

#### Recall PCA

- ► PCA finds the most accurate *data representation* in a lower dimensional space
- Project data in the directions of maximum variance



#### **LDA Motivations**

Main Idea: find projection to a line such that samples from different classes are well separated

Example in 2D



# PCA vs LDA

| PCA                                                    | LDA                                                    |  |
|--------------------------------------------------------|--------------------------------------------------------|--|
| Unsupervised                                           | Supervised                                             |  |
| Best represents the data                               | Best discriminates the data                            |  |
| Project the data in the directions of maximum variance | Project the data that maximizes the class separability |  |
| May not be good for classification                     | Good for classification                                |  |

# Linear Discriminant Analysis (LDA) for two classes

- ► Suppose we have 2 classes and p-dimensional samples
  - ▶ n1 samples come from the first class
  - ▶ n2 samples come from the second class
- ▶ We seek to obtain a scalar z by projecting the samples onto a line (c-1 space, c=2)
- ▶ Of all the possible lines we would like to select the one that maximizes the separability of the scalars.

# Linear Discriminant Analysis (LDA) for Two Classes

► The task of LDA is to project on line in the direction v which maximizes

want projected means are far from each other

$$J(v) = \frac{(m_1 - m_2)^2}{S_1^2 + S_2^2}$$

want scatter in class 1 is as small as possible, i.e. samples of class 1 cluster around the projected mean  $m_1$ 

want scatter in class 2 is as small as possible, i.e. samples of class 2 cluster around the projected mean  $m_2$ 

# LDA Algorithm for Two Classes

- ▶ **Step 0:** For a given dataset  $D=\{X,Y\}$ , separate samples of class 1  $(D1=\{X_1,Y_1\})$  and class 2  $(D2=\{X_2,Y_2\})$
- ▶ **Step 1:** Compute the zero mean data and mean vector for each class

$$m_1 = \begin{pmatrix} \bar{X}_1 \\ \bar{Y}_1 \end{pmatrix}, m_2 = \begin{pmatrix} \bar{X}_2 \\ \bar{Y}_2 \end{pmatrix}$$

Step 2: Compute scatter matrices S1 and S2 for each class

$$S_1 = \begin{pmatrix} var(X_1) & cov(X_1, Y_1) \\ cov(Y_1, X_1) & var(Y_1) \end{pmatrix}$$

$$S_2 = \begin{pmatrix} var(X_2) & cov(X_2, Y_2) \\ cov(Y_2, X_2) & var(Y_2) \end{pmatrix}$$

Step 3: Calculate the within-class scatter matrix

$$S_w = S_1 + S_2$$

# LDA Algorithm for Two Classes (Contd..)

- **Step 4:** Calculate the inverse of the within-class scatter matrix  $(S_w^{-1})$
- Step 5: Calculate the best eigenvector (Direct method)

$$\vec{v} = S_w^{-1}(m_1 - m_2)$$

Step 6: Project the samples of each class in the direction of v (Feature reduction)

$$z_1 = D_1 * v$$
$$z_2 = D_2 * v$$

| Samples for class-1 (D1) |                       |  |
|--------------------------|-----------------------|--|
| $X_1$                    | <i>Y</i> <sub>1</sub> |  |
| 4                        | 2                     |  |
| 2                        | 3                     |  |
| 2                        |                       |  |
| 3                        | 6                     |  |
| 4                        | 4                     |  |
| $\bar{X}_1 = 3$          | $\bar{Y}_1 = 3.8$     |  |

| Samples for class-2 (D2) |                       |  |
|--------------------------|-----------------------|--|
| $X_2$                    | <i>Y</i> <sub>2</sub> |  |
| 9                        | 10                    |  |
| 6                        | 8                     |  |
| 9                        | 5                     |  |
| 8                        | 7                     |  |
| 10                       | 8                     |  |
| $\bar{X}_2 = 8.4$        | $\bar{Y}_2 = 7.6$     |  |



$$m_1 = \begin{pmatrix} \bar{X}_1 \\ \bar{Y}_1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3.8 \end{pmatrix}$$

$$m_2 = \begin{pmatrix} \overline{X}_2 \\ \overline{Y}_2 \end{pmatrix} = \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix}$$

| Zero mean data for class-1 |                          |  |
|----------------------------|--------------------------|--|
| $X_1 - \bar{X}_1$          | $Y_1$ - $\overline{Y}_1$ |  |
| 1                          | -1.8                     |  |
| -1                         | 0.2                      |  |
| -1                         | -0.8                     |  |
| 0                          | 2.2                      |  |
| 1                          | 0.2                      |  |
| $\bar{X}_1 = 0$            | $\bar{Y}_1 = 0$          |  |

| Zero mean data for class-2     |                        |  |
|--------------------------------|------------------------|--|
| $oldsymbol{X_2}	ext{-}ar{X}_2$ | $Y_2 - \overline{Y}_2$ |  |
| 0.6                            | 2.4                    |  |
| -2.4                           | 0.4                    |  |
| 0.6                            | -2.6                   |  |
| - 0.4                          | -0.6                   |  |
| 1.6                            | 0.4                    |  |
| $\bar{X}_2 = 0$                | $\bar{Y}_2 = 0$        |  |

Calculate the scatter matrices

$$S_{1} = \begin{pmatrix} var(X_{1}) & cov(X_{1}, Y_{1}) \\ cov(Y_{1}, X_{1}) & var(Y_{1}) \end{pmatrix} = \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix}$$

$$S_2 = \begin{pmatrix} var(X_2) & cov(X_2, Y_2) \\ cov(Y_2, X_2) & var(Y_2) \end{pmatrix} = \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix}$$

Calculate the within-class scatter matrix

$$S_w = S_1 + S_2$$

$$= \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix} + \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix}$$

$$= \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}$$

► Compute the inverse of within-class scatter matrix

$$S_w^{-1} = \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{pmatrix}$$

Calculate the best eigenvector (Direct method)

$$\vec{v} = S_w^{-1}(m_1 - m_2)$$

$$= \begin{pmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{pmatrix} \begin{bmatrix} 3 \\ 3.8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{pmatrix} \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix}$$

$$= \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix}$$

- ► Reduce dimensionality and form feature vector
  - ► Size of feature vector of class-1: 5×2
  - ► Size of v: 2×1
  - ▶ Resulted feature vector will be of size 5×1

$$z_1 = D_1 * v$$

| 4 | <u>Z</u> | 7 | 1 | l |
|---|----------|---|---|---|
|   |          |   |   |   |
|   |          |   |   |   |

4.4698

3.4868

3.0695

5.2302

5.3044

| $Z_2$      | = | $D_2$ | * | υ |
|------------|---|-------|---|---|
| <b>-</b> Z |   |       |   | - |

#### $Z_2$

12.3522

8.7912

10.2657

10.1915

12.4264

# LDA Projection



# LDA Example STEP 5 (Another method)

Calculate the eigenvalues and eigenvector (Another method)

$$S_w^{-1} S_b v = \lambda v$$

$$\Rightarrow |S_w^{-1}S_b - \lambda I| = 0$$

Where, 
$$S_b = (m_1 - m_2)(m_1 - m_2)^T$$

# Thank You