Query Complexity of Mastermind Variants

Aaron Berger, Christopher Chute, Matthew Stone

August 4, 2015

Mastermind

- i. Codemaker vs. Codebreaker
- ii. Queries: Guess a vector from $\{1, 2, \dots, 6\}^4$.
- iii. Response
 - i. Black (Red) hits
 - ii. White hits

Knuth Paper – 1976

At most five turns needed to guarantee a victory

Minimax

For each possible guess

For each possible response to that guess

Check how many possible solutions remain

Let *score* be min. number solutions eliminated

Make guess with maximum score

Optimality of the Minimax Algorithm

Lemma (Pigeonhole Principle)

For a query with r possible responses, there exists a response that would leave at leasr 1/r of possible solutions remaining.

Analyze the worst-case performance of any algorithm.

- i. Worst case response to first guess \Rightarrow At least 256 solutions remain.
- ii. Second guess: At least $\lceil 256/14 \rceil = 19$ solutions remain.
- iii. Third guess: At least $\lceil 19/14 \rceil = 2$ solutions remain
- iv. Fourth guess: At least two possible solutions left \Rightarrow cannot guarantee to guess the solution on the fourth turn.

Extensions

- i. Basic Extension: n spots, k colors
- ii. Repeats vs. no repeats
- iii. Non-adaptive vs. adaptive strategies

Theorem

(Game: n spots, k colors, repeats, adaptive allowed). For any strategy that guarantees a win in s turns,

$$s \geq O\left(\frac{n\log k}{\log n^2}\right)$$

Proof.

Theorem

(Game: n spots, k colors, repeats, adaptive allowed). For any strategy that guarantees a win in s turns,

$$s \geq O\left(\frac{n \log k}{\log n^2}\right)$$

Proof.

1. Winning Condition: Distinct sequence of responses for each of k^n vectors. Let s be number of guesses to guarantee a win.

Theorem

(Game: n spots, k colors, repeats, adaptive allowed). For any strategy that guarantees a win in s turns,

$$s \geq O\left(\frac{n\log k}{\log n^2}\right)$$

Proof.

- 1. Winning Condition: Distinct sequence of responses for each of k^n vectors. Let s be number of guesses to guarantee a win.
- 2. $\binom{n+2}{2}$ possible responses (cf. stars and bars), giving $\binom{n+2}{2}^s$ possible response sequences.

Theorem

(Game: n spots, k colors, repeats, adaptive allowed). For any strategy that guarantees a win in s turns,

$$s \geq O\left(\frac{n \log k}{\log n^2}\right)$$

Proof.

- 1. Winning Condition: Distinct sequence of responses for each of k^n vectors. Let s be number of guesses to guarantee a win.
- 2. $\binom{n+2}{2}$ possible responses (cf. stars and bars), giving $\binom{n+2}{2}^s$ possible response sequences.
- 3. Therefore, s must satisfy

$$\binom{n+2}{2}^s \ge k^n$$

1. Represent guesses and solutions as matrices ($Q_{ij} = 1$ iff the i-th spot is the j-th color)

Example

The guess (1,1,3) would become:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

1. Represent guesses and solutions as matrices ($Q_{ij} = 1$ iff the i-th spot is the j-th color)

Example

The guess (1, 1, 3) would become:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

2. $Q_{ij} \in \mathbb{R}^{nk}$

1. Represent guesses and solutions as matrices ($Q_{ij} = 1$ iff the i-th spot is the j-th color)

Example

The guess (1, 1, 3) would become:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- 2. $Q_{ij} \in \mathbb{R}^{nk}$
- 3. # of black hits of Q with hidden matrix X is $Q \cdot X$.

1. Represent guesses and solutions as matrices ($Q_{ij} = 1$ iff the i-th spot is the j-th color)

Example

The guess (1, 1, 3) would become:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- 2. $Q_{ij} \in \mathbb{R}^{nk}$
- 3. # of black hits of Q with hidden matrix X is $Q \cdot X$.
- 4. Guess a basis of span of all such matrices ($\leq nk$ guesses)

1. Represent guesses and solutions as matrices ($Q_{ij} = 1$ iff the i-th spot is the j-th color)

Example

The guess (1,1,3) would become:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

- 2. $Q_{ij} \in \mathbb{R}^{nk}$
- 3. # of black hits of Q with hidden matrix X is $Q \cdot X$.
- 4. Guess a basis of span of all such matrices ($\leq nk$ guesses)
- 5. Dot products with basis \Rightarrow Uniquely determine X

1. Represent guesses and solutions as matrices ($Q_{ij} = 1$ iff the i-th spot is the j-th color)

Example

The guess (1,1,3) would become:

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Theorem

There exists a set of at most nk guesses such that any hidden vector is uniquely determined by the responses to those guesses.

Surprise Function: For an event x, we want

Definition (Surprise Function)

Surprise Function: For an event x, we want

Definition (Surprise Function)

1. S(x) = 0 when $\mathbb{P}[x] = 1$

Surprise Function: For an event x, we want

Definition (Surprise Function)

- 1. S(x) = 0 when $\mathbb{P}[x] = 1$
- 2. S(x) = 1 when $\mathbb{P}[x] = 1/2$

Surprise Function: For an event x, we want

Definition (Surprise Function)

- 1. S(x) = 0 when $\mathbb{P}[x] = 1$
- 2. S(x) = 1 when $\mathbb{P}[x] = 1/2$
- 3. Decreasing function of $\mathbb{P}[x]$

Surprise Function: For an event x, we want

Definition (Surprise Function)

- 1. S(x) = 0 when $\mathbb{P}[x] = 1$
- 2. S(x) = 1 when $\mathbb{P}[x] = 1/2$
- 3. Decreasing function of $\mathbb{P}[x]$
- 4. $S(x \wedge y) = S(x) + S(y|x)$ (= S(x) + S(y) if independent)

Surprise Function: For an event x, we want

Definition (Surprise Function)

- 1. S(x) = 0 when $\mathbb{P}[x] = 1$
- 2. S(x) = 1 when $\mathbb{P}[x] = 1/2$
- 3. Decreasing function of $\mathbb{P}[x]$
- 4. $S(x \wedge y) = S(x) + S(y|x)$ (= S(x) + S(y) if independent)

Unique Surprise Function

$$S(x) = -\log_2(\mathbb{P}[x]).$$

Entropy is the expected surprise of a random variable.

Entropy is the expected surprise of a random variable.

Definition (Entropy)

Let X be a random variable with domain D.

$$H(X) = \sum_{x \in D} \mathbb{P}[X = x] \cdot \left(-\log_2\left(\mathbb{P}[X = x]\right)\right)$$

Lemma

A single turn in a non-adaptive strategy has < 4 bits of entropy.

Lemma

A single turn in a non-adaptive strategy has < 4 bits of entropy.

Lemma

The number of bits of entropy in any winning strategy is exactly

$$\log_2\left(\frac{k!}{(k-n)!}\right).$$

Lemma

A single turn in a non-adaptive strategy has < 4 bits of entropy.

Lemma

The number of bits of entropy in any winning strategy is exactly

$$\log_2\left(\frac{k!}{(k-n)!}\right).$$

Theorem

The number of queries submitted by any winning non-adaptive strategy is at least

$$\frac{1}{4}\log_2\left(\frac{k!}{(k-n)!}\right).$$

Probabilistic Method

Choose a random set of queries $Q = \{q_1, q_2, \dots, q_s\}$.

Calculate $\mathbb{P}[Q \text{ is a winning set of guesses}]$

Probabilistic Method

Choose a random set of queries $Q = \{q_1, q_2, \dots, q_s\}$.

Calculate $\mathbb{P}[Q \text{ is a winning set of guesses}]$

Theorem

When the random set of guesses is of magnitude $s = 4k \log k$

 $\mathbb{P}[Q \text{ is a winning set of guesses }] > 0$

Probabilistic Method

Choose a random set of queries $Q = \{q_1, q_2, \dots, q_s\}$.

Calculate $\mathbb{P}[Q \text{ is a winning set of guesses}]$

Theorem

When the random set of guesses is of magnitude $s = 4k \log k$

 $\mathbb{P}[Q \text{ is a winning set of guesses }] > 0$

 \exists a winning set of $4k \log k$ guesses

Thanks!

- 1. Special thanks to Danny Montealegre, Nathan Kaplan.
- 2. Thanks to SUMRY for this research opportunity.
- 3. Thanks to MathFest for the opportunity to present.