Congratulations! You passed!

Grade received 90% Latest Submission Grade 90% To pass 80% or higher

Go to next item

1.	With a relatively small set of hyperparameters, it is OK to use a grid search. True/False?	1/1 point
	True	
	○ False	
	∠ ⁿ Expand	
	\odot Correct Correct. When the set of hyperparameters is small like a range for $n_l=1,2,3$ grid search works fine.	
2.	Every hyperparameter, if set poorly, can have a huge negative impact on training, and so all hyperparameters are about equally important to tune well. True or False?	1 / 1 point
	○ True	
	False	
	_e [→] Expand	
	 Correct Yes. We've seen in the lecture that some hyperparameters, such as the learning rate, are more critical than others. 	
3.	Even if enough computational power is available for hyperparameter tuning, it is always better to babysit one model ("Panda" strategy), since this will result in a more custom model. True/False?	1/1 point
	False	
	○ True	
	∠ ⁷ Expand	
	Correct Correct. Although it is possible to create good models using the "Panda" strategy, obtaining better results is more likely using a "caviar" strategy due to the number of tests and the nature of the deep learning process of ideas, code, and experiment.	
	,	

 $\textbf{4.} \quad \text{Knowing that the hyperparameter } \alpha \text{ should be in the range of } 0.00001 \text{ and } 1.0, \text{ which of the following is the recommended way to sample a value for } \alpha?$

r = -5*np.random.rand() alpha = 10**r 1 / 1 point

r = np.random.rand() alpha = 0.00001 + r *0.99999	
r = -4*np.random.rand() alpha = 10**r	
r = np.random.rand()	
alpha = 10**r	
∠ ⁷ Expand	
\bigcirc Correct Yes. This will generate a random value between 10^{-5} and 10^0 chosen randomly in a logarithmic scale.	
5. Once good values of hyperparameters have been found, those values should be changed if new data is added or a change in computational power	occurs. True/False? 1/1 point
True	
○ False	
∠ [¬] Expand	
Correct. The choice of some hyperparameters such as the batch size depends on conditions such as hardware and quantity of data.	
6. In batch normalization as presented in the videos, if you apply it on the \$l\$ th layer of your neural network, what are you normalizing?	1/1 point
\bigcirc $b^{[l]}$	
\bigcirc $a^{[l]}$	
$left z^{[l]}$	
$\bigcirc w^{[l]}$	
∠ ⁿ Expand	
⊘ Correct	
7. In the normalization formula $z_{norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2+arepsilon}}$, why do we use epsilon?	1/1 point
To avoid division by zero	
To speed up convergence	
To have a more accurate normalization	
\bigcirc In case μ is too small	
∠ ⁷ Expand	

	The parameters $\gamma^{[l]}$ and $\beta^{[l]}$ set the variance and mean of $z^{[l]}$.	
	$igwedge$ When using batch normalization we introduce two new parameters $\gamma^{[l]}, eta^{[l]}$ that must be "learned" or trained.	
	\checkmark Correct Correct. Batch normalization uses two parameters eta and γ to compute $ ilde{z}^{(i)}=eta z_{norm}^{(i)}+\gamma$.	
	Correct. Batch normalization uses two parameters ρ and γ to compute $z^{**}=\rho z_{norm}+\gamma$.	
	$z_{norm}^{(i)}=rac{z^{(i)}-\mu}{\sqrt{\sigma^2}}$.	
	$\sqrt{\sigma^2}$.	
	This should not be selected	
	No. We use a small parameter ϵ in the denominator to avoid division by z.	
	∠ ⁷ Expand	
	You didn't select all the correct answers	
q	I neural network is trained with Batch Norm. At test time, to evaluate the neural network on a new example you should perform the normalization using μ and σ^2	1/1
	estimated using an exponentially weighted average across mini-batches seen during training. True/false?	1/1 point
	○ False	
	True	
	∠ ⁷ Expand	
	○ Correct	
	Correct. This is a good practice to estimate the μ and σ^2 to use since at test time we might not be predicting over a batch of the same size, or it might even be a	
	single example, thus using the μ and σ^2 of a single sample doesn't make sense.	
10.	f a project is open-source, it is a guarantee that it will remain open source in the long run and will never be modified to benefit only one company. True/False?	1 / 1 point
	False	
	○ True	
	_∠ ⁷ Expand	
	⊘ Correct	
	Correct. To ensure that a project will remain open source in the long run it must have a good governance body too.	