Homework 10 Due Friday, April 24th

Recall the definition of the semidirect product.

Definition 1. Let H, K be groups, and $\varphi : K \to \operatorname{Aut}(H)$ a group homomorphism. Denote the induced action of K on H by:

$$k \cdot h = \varphi(k)(h).$$

The semidirect product of H and K with respect to φ is the set $H \rtimes K = \{(h,k) : h \in H, k \in K\}$, where multiplication is defined by the rule:

$$(h_1, k_1)(h_2, k_2) = (h_1(k_1 \cdot h_2), k_1k_2).$$

- 1. Let's make sure that $H \times K$ is a group.
 - (a) Show that $(1,1) \in H \times K$ is the identity. (Remember you have to check both sides).

Proof. Fix $h \in H$ and $k \in H$. Then we check,

$$(1,1)(h,k) = (1(1 \cdot h), 1k) = (h,k).$$

On the other hand:

$$(h,k)(1,1) = (h(k\cdot 1),k1) = (h,k),$$

where we remark that $k \cdot 1 = 1$ because K acts by automorphisms (i.e. $x \mapsto k \cdot x$ is not merely a bijection, but also a homomorphism which in particular sends 1 to 1).

(b) Show that $(h,k)^{-1} = (k^{-1} \cdot h^{-1}, k^{-1})$. (As above, you have to check both sides).

Proof. We check both directly:

$$(h,k)(k^{-1} \cdot h^{-1}, k^{-1}) = (h(k \cdot (k^{-1} \cdot h^{-1})), kk^{-1})$$

$$= (h(kk^{-1} \cdot h^{-1}), 1)$$

$$= (h(1 \cdot h^{-1}), 1)$$

$$= (hh^{-1}, 1)$$

$$= (1, 1).$$

For the other hand, we remark that because K acts by automorphisms, we have that for each $\ell \in K$, we have $(\ell \cdot x)(\ell \cdot y) = \ell \cdot (xy)$ (because $x \mapsto \ell \cdot x$ is a homomorphism). In particular

$$\begin{array}{lll} (k^{-1} \cdot h^{-1}, k^{-1})(h, k) & = & ((k^{-1} \cdot h^{-1})(k^{-1} \cdot h), k^{-1}k) \\ & = & (k^{-1} \cdot (h^{-1}h), 1) \\ & = & (k^{-1} \cdot 1, 1) \\ & = & (1, 1). \end{array}$$

(c) Prove that multiplication is associative.

Proof. We consider $h_1, h_2, h_3 \in H$ and $k_1, k_2, k_3 \in K$. We passing from line 2 to 3 that K acts by automorphism. Then:

$$((h_1, k_1)(h_2, k_2)) (h_3, k_3) = (h_1(k_1 \cdot h_2), k_1k_2)(h_3, k_3)$$

$$= (h_1(k_1 \cdot h_2)(k_1k_2 \cdot h_3), k_1k_2k_3)$$

$$= (h_1(k_1 \cdot (h_2(k_2 \cdot h_3)), k_1k_2k_3))$$

$$= (h_1, k_1)(h_2(k_2 \cdot h_3), k_2k_3)$$

$$= (h_1, k_1) ((h_2, k_2)(h_3, k_3)).$$

2. Let G_1, G_2, \dots, G_n be groups. Show that:

$$Z(G_1 \times G_2 \times \cdots \times G_n) = Z(G_1) \times Z(G_2) \times \cdots \times Z(G_n).$$

Conclude that a product of groups is abelian if and only if the factors are.

Proof. If $x = (x_1, \dots, x_n) \in Z(G_1) \times \dots \times Z(G_n)$, so that each $x_i \in Z(G_i)$, then:

$$xy = (x_1, \dots, x_n)(y_1, \dots, y_n)$$

$$= (x_1y_1, \dots, x_ny_n)$$

$$= (y_1x_1, \dots, y_nx_n)$$

$$= (y_1, \dots, y_n)(x_1, \dots, x_n)$$

$$= ux$$

This shows the right side is a subset of the left one. On the other hand, if $x = (x_1, \dots, x_n) \in Z(G_1 \times \dots \times G_n)$. Notice that the projection maps $\pi : G_1 \times \dots \times G_n \to G_i$ is surjective for each i. In particular, each element of $y_i \in G_i$ is $\pi(y)$ for some y in the product group. Notice that:

$$\pi(x)y_i = \pi(x)\pi(y) = \pi(xy) = \pi(yx) = \pi(y)\pi(x) = y_i\pi(x).$$

Thus $\pi(x) = x_i \in Z(G_i)$. Since each coordinate of x is in the center of its respective group, we have $x \in Z(G_1) \times \cdots \times Z(G_n)$, proving the left side includes in the right one, completing the proof.

Now notice that if every G_i is abeelian, then:

$$Z(G_1 \times \cdots \times G_n) = Z(G_1) \times \cdots \times Z(G_n) = G_1 \times \cdots \times G_n,$$

so that the product group is abelian. Conversely, if the product group is abelian, fix some $g_i \in G_i$, then $(1, \dots, g_i, \dots, 1)$ is in the center of the product group (everything is!), so g_i is in the center of G_i . Since g_i was arbitrary, G_i is abelian.

- 3. Let's classify some abelian groups! List all *abelian* groups of the following orders, in elementary divisor and invariant factor forms.
 - (a) 100

Proof. $100 = 4 \cdot 25 = 2^2 \cdot 5^2$. Then $G = P \times Q$ where P is a group of order 4 and Q of order 25. In each case these are classified by the partitions of 2 (which are 1+1 and 2), The possibilities for P are therefore $Z_2 \times Z_2$ and Z_4 , and the possibilities for Q are $Z_5 \times Z_5$ and Z_{25} . Thus the group (in elementary divisor form) are:

$$G_1 = Z_2 \times Z_2 \times Z_5 \times Z_5$$
 $G_2 = Z_4 \times Z_5 \times Z_5$ $G_3 = Z_2 \times Z_2 \times Z_{25}$ $G_4 = Z_4 \times Z_{25}$.

Let's put these into invariant factor form following the method described in class.

	G_1	2		5	(G_2	2	5
		2		5			4	5
		2		5			1	5
		ļ	ď					l
	G_3	2		5		G_4	2	5
_		$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$		$\frac{5}{25}$	(G_4	4	5 25

Multiplying horizontally gives:

$$G_1 = Z_{10} \times Z_{10}$$
 $G_2 = Z_{20} \times Z_5$
 $G_3 = Z_{50} \times Z_2$ $G_4 = Z_{100}$.

(b) 243

Proof. $243 = 3^5$. So groups are classified by partitions of 5, which are

$$5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1$$

These correspond to:

$$Z_{243}$$
 $Z_{81} imes Z_{3}$
 $Z_{27} imes Z_{9}$
 $Z_{27} imes Z_{3} imes Z_{3}$
 $Z_{9} imes Z_{9} imes Z_{3}$
 $Z_{9} imes Z_{3} imes Z_{3}$
 $Z_{3} imes Z_{3} imes Z_{3} imes Z_{3}$

This is already in invariant factor form.

(c) 9801

Proof. $9801 = 3^4 * 11^2$. So $G = P \times Q$ where |P| = 81 and |Q| = 121. The options for p are classified by partitions of 4, of which there are 5:

$$4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1,$$

and the options for Q are partitions of 2 (2 and 1+1). This gives us 5*2=10 options:

$$G_{1} = Z_{81} \times Z_{11} \times Z_{11} \qquad G_{2} = Z_{81} \times Z_{121}$$

$$G_{2} = Z_{27} \times Z_{3} \times Z_{11} \times Z_{11} \qquad G_{4} = Z_{27} \times Z_{3} \times Z_{121}$$

$$G_{5} = Z_{9} \times Z_{9} \times Z_{11} \times Z_{11} \qquad G_{6} = Z_{9} \times Z_{9} \times Z_{121}$$

$$G_{7} = Z_{9} \times Z_{3} \times Z_{3} \times Z_{11} \times Z_{11} \qquad G_{8} = Z_{9} \times Z_{3} \times Z_{3} \times Z_{121}$$

$$G_{9} = Z_{3} \times Z_{3} \times Z_{3} \times Z_{3} \times Z_{11} \times Z_{11} \qquad G_{10} = Z_{3} \times Z_{3} \times Z_{3} \times Z_{3} \times Z_{121}.$$

We put these into invariant factor form following the method described in class.

G_1	3	11	G_2	3	11			
	81	11		81	121			
	1	11						
			1					
G_3	3	11	G_4	3	11			
	27	11		27	121			
	3	11		3	1			
G_5	3	11	G_6	3	11			
	9	11		9	121			
	9	11		9	1			
G_7	3	11	G_8	3	11			
	9	11		9	121			
	3	11		3	1			
	3	1		3	1			
G_7	3	11	G_8	3	11			
	3	11		3	121			
	3	11		3	1			
	3	1		3	1			
	3	1		3	1			
	1		1					

Multiplying horizontally gives:

$$G_1 = Z_{891} \times Z_{11}$$
 $G_2 = Z_{9801}$
 $G_3 = Z_{297} \times Z_{33}$ $G_4 = Z_{3267} \times Z_3$
 $G_5 = Z_{99} \times Z_{99}$ $G_6 = Z_{1089} \times Z_9$
 $G_7 = Z_{99} \times Z_{33} \times Z_3$ $G_8 = Z_{1089} \times Z_3 \times Z_3$
 $G_9 = Z_{33} \times Z_{33} \times Z_3 \times Z_3$ $G_{10} = Z_{363} \times Z_3 \times Z_3 \times Z_3$.

- 4. Which of the following groups of order 80 are isomorphic?
 - (a) $Z_5 \times Z_4 \times Z_4$
 - (b) $Z_{10} \times Z_8$
 - (c) $Z_4 \times Z_{20}$
 - (d) $Z_8 \times Z_5 \times Z_2$

Proof. We will put each of them in elementary divisor form. Call them G_1, G_2, G_3, G_4 respectively. The first one is already there (although I usually order it with increasing primes). That is:

$$G_1 \cong Z_4 \times Z_4 \times Z_5$$
.

For the second group we factor $10 = 2 \cdot 5$ and $8 = 2^3$. Thus the elementary divisor form has a 2, a 2^3 and a 5. We write:

$$G_2 \cong Z_2 \times Z_8 \times Z_5$$
.

For the third, we notice $4 = 2^2$ and $20 = 2^2 \cdot 5$. Thus we have 2 4's, and a 5. That is:

$$G_3 \cong Z_4 \times Z_4 \times Z_5$$
.

For the last, we see $8 = 2^3$ and the rest are factored. So we have a 2, an 8, and a 5. That is:

$$G_4 \cong Z_2 \times Z_8 \times Z_5$$
.

It is now easy to see that $G_1 \cong G_3$ and $G_2 \cong G_4$.

5. Let A be an abelian group of (invariant factor) type (n_1, n_2, \dots, n_s) . Show that there exists some element in A of order m if and only if $m|n_1$. Conclude that the exponent of A is n_1 .

Proof. We write

$$A \cong Z_{n_1} \times Z_{n_2} \times \cdots \times Z_{n_t} \cong \langle x_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_t \rangle$$
,

so that the generator of the *i*th component is x_i with order n_i . Suppose $m|n_1$. Let $k = n_1/m$. Then $|x_1^k| = m$ as an element of Z_{n_1} , and therefore $(x_1^k, 1, \dots, 1) \in A$ has order m as well.

Conversely, suppose $y \in A$ with |y| = m. In coordinates we have $y = (y_1, y_2, \dots, y_t)$. Then $y^{n_1} = (y_1^{n_1}, y_2^{n_1}, \dots, y_t^{n_1})$. Each $n_i | n_1$, so call $k_i = n_1/n_i$. Then:

$$y_i^{n_1} = (y_i^{n_i})^{k_i} = 1^{k_i} = 1,$$

because anything in Z_{n_i} to the n_i th power is 1. Thus $y^{n_1} = 1$, so that the order of y divides n_1 . This completes the proof.

Since anything to the power n_1 is 1, we know that n_1 is less than or equal to the exponent of A. But $(x_1, 1, \dots, 1)$ has order n_1 , so the exponent could be no smaller that n_1 .