Linear Models

Linear models are a class of models that are widely used in practice and have been studied extensively in the last few decades, with roots going back over a hundred years. Linear models make a prediction using a linear function of the input features, which we will explain shortly.

Linear models for regression

For regression, the general prediction formula for a linear model looks as follows:

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b$$

Here, x[0] to x[p] denotes the features (in this example, the number of features is p) of a single data point, w and b are parameters of the model that are learned, and \hat{y} is the prediction the model makes. For a dataset with a single feature, this is:

$$\hat{y} = w[0] * x[0] + b$$

which you might remember from high school mathematics as the equation for a line. Here, w[0] is the slope and b is the y-axis offset. For more features, w contains the slopes along each feature axis. Alternatively, you can think of the predicted response as being a weighted sum of the input features, with weights (which can be negative) given by the entries of w.

Trying to learn the parameters w[0] and b on our one-dimensional wave dataset might lead to the following line (see Figure 2-11):

In[25]:

```
mglearn.plots.plot_linear_regression_wave()
```

Out[25]:

```
w[0]: 0.393906 b: -0.031804
```


Figure 2-11. Predictions of a linear model on the wave dataset

We added a coordinate cross into the plot to make it easier to understand the line. Looking at w[0] we see that the slope should be around 0.4, which we can confirm visually in the plot. The intercept is where the prediction line should cross the y-axis: this is slightly below zero, which you can also confirm in the image.

Linear models for regression can be characterized as regression models for which the prediction is a line for a single feature, a plane when using two features, or a hyperplane in higher dimensions (that is, when using more features).

If you compare the predictions made by the straight line with those made by the KNeighborsRegressor in Figure 2-10, using a straight line to make predictions seems very restrictive. It looks like all the fine details of the data are lost. In a sense, this is true. It is a strong (and somewhat unrealistic) assumption that our target *y* is a linear

combination of the features. But looking at one-dimensional data gives a somewhat skewed perspective. For datasets with many features, linear models can be very powerful. In particular, if you have more features than training data points, any target y can be perfectly modeled (on the training set) as a linear function.⁶

There are many different linear models for regression. The difference between these models lies in how the model parameters w and b are learned from the training data, and how model complexity can be controlled. We will now take a look at the most popular linear models for regression.

Linear regression (aka ordinary least squares)

Linear regression, or ordinary least squares (OLS), is the simplest and most classic linear method for regression. Linear regression finds the parameters w and b that minimize the mean squared error between predictions and the true regression targets, y, on the training set. The mean squared error is the sum of the squared differences between the predictions and the true values. Linear regression has no parameters, which is a benefit, but it also has no way to control model complexity.

Here is the code that produces the model you can see in Figure 2-11:

In[26]:

```
from sklearn.linear model import LinearRegression
X, y = mglearn.datasets.make_wave(n_samples=60)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
lr = LinearRegression().fit(X train, y train)
```

The "slope" parameters (w), also called weights or *coefficients*, are stored in the coef_ attribute, while the offset or *intercept* (*b*) is stored in the intercept_ attribute:

In[27]:

```
print("lr.coef_: {}".format(lr.coef_))
    print("lr.intercept : {}".format(lr.intercept ))
Out[27]:
    lr.coef_: [ 0.394]
    lr.intercept : -0.031804343026759746
```

⁶ This is easy to see if you know some linear algebra.

You might notice the strange-looking trailing underscore at the end of coef_ and intercept_. scikit-learn always stores anything that is derived from the training data in attributes that end with a trailing underscore. That is to separate them from parameters that are set by the user.

The intercept attribute is always a single float number, while the coef attribute is a NumPy array with one entry per input feature. As we only have a single input feature in the wave dataset, lr.coef_ only has a single entry.

Let's look at the training set and test set performance:

In[28]:

```
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
   print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
Out[28]:
   Training set score: 0.67
   Test set score: 0.66
```

An R^2 of around 0.66 is not very good, but we can see that the scores on the training and test sets are very close together. This means we are likely underfitting, not overfitting. For this one-dimensional dataset, there is little danger of overfitting, as the model is very simple (or restricted). However, with higher-dimensional datasets (meaning datasets with a large number of features), linear models become more powerful, and there is a higher chance of overfitting. Let's take a look at how LinearRe gression performs on a more complex dataset, like the Boston Housing dataset. Remember that this dataset has 506 samples and 105 derived features. First, we load the dataset and split it into a training and a test set. Then we build the linear regression model as before:

In[29]:

```
X, y = mglearn.datasets.load_extended_boston()
X train, X test, y train, y test = train test split(X, y, random state=0)
lr = LinearRegression().fit(X_train, y_train)
```

When comparing training set and test set scores, we find that we predict very accurately on the training set, but the R^2 on the test set is much worse:

In[30]:

```
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
```

Out[30]:

```
Training set score: 0.95
Test set score: 0.61
```

This discrepancy between performance on the training set and the test set is a clear sign of overfitting, and therefore we should try to find a model that allows us to control complexity. One of the most commonly used alternatives to standard linear regression is *ridge regression*, which we will look into next.

Ridge regression

Ridge regression is also a linear model for regression, so the formula it uses to make predictions is the same one used for ordinary least squares. In ridge regression, though, the coefficients (w) are chosen not only so that they predict well on the training data, but also to fit an additional constraint. We also want the magnitude of coefficients to be as small as possible; in other words, all entries of w should be close to zero. Intuitively, this means each feature should have as little effect on the outcome as possible (which translates to having a small slope), while still predicting well. This constraint is an example of what is called regularization. Regularization means explicitly restricting a model to avoid overfitting. The particular kind used by ridge regression is known as L2 regularization.7

Ridge regression is implemented in linear model.Ridge. Let's see how well it does on the extended Boston Housing dataset:

In[31]:

```
from sklearn.linear_model import Ridge
    ridge = Ridge().fit(X_train, y_train)
    print("Training set score: {:.2f}".format(ridge.score(X train, y train)))
    print("Test set score: {:.2f}".format(ridge.score(X_test, y_test)))
Out[31]:
    Training set score: 0.89
    Test set score: 0.75
```

As you can see, the training set score of Ridge is *lower* than for LinearRegression, while the test set score is *higher*. This is consistent with our expectation. With linear regression, we were overfitting our data. Ridge is a more restricted model, so we are less likely to overfit. A less complex model means worse performance on the training set, but better generalization. As we are only interested in generalization performance, we should choose the Ridge model over the LinearRegression model.

⁷ Mathematically, Ridge penalizes the L2 norm of the coefficients, or the Euclidean length of w.

The Ridge model makes a trade-off between the simplicity of the model (near-zero coefficients) and its performance on the training set. How much importance the model places on simplicity versus training set performance can be specified by the user, using the alpha parameter. In the previous example, we used the default parameter alpha=1.0. There is no reason why this will give us the best trade-off, though. The optimum setting of alpha depends on the particular dataset we are using. Increasing alpha forces coefficients to move more toward zero, which decreases training set performance but might help generalization. For example:

In[32]:

```
ridge10 = Ridge(alpha=10).fit(X_train, y_train)
    print("Training set score: {:.2f}".format(ridge10.score(X train, y train)))
    print("Test set score: {:.2f}".format(ridge10.score(X_test, y_test)))
Out[32]:
    Training set score: 0.79
    Test set score: 0.64
```

Decreasing alpha allows the coefficients to be less restricted, meaning we move right in Figure 2-1. For very small values of alpha, coefficients are barely restricted at all, and we end up with a model that resembles LinearRegression:

In[33]:

```
ridge01 = Ridge(alpha=0.1).fit(X_train, y_train)
    print("Training set score: {:.2f}".format(ridge01.score(X train, y train)))
    print("Test set score: {:.2f}".format(ridge01.score(X_test, y_test)))
Out[33]:
    Training set score: 0.93
    Test set score: 0.77
```

Here, alpha=0.1 seems to be working well. We could try decreasing alpha even more to improve generalization. For now, notice how the parameter alpha corresponds to the model complexity as shown in Figure 2-1. We will discuss methods to properly select parameters in Chapter 5.

We can also get a more qualitative insight into how the alpha parameter changes the model by inspecting the coef_ attribute of models with different values of alpha. A higher alpha means a more restricted model, so we expect the entries of coef_ to have smaller magnitude for a high value of alpha than for a low value of alpha. This is confirmed in the plot in Figure 2-12:

In[34]:

```
plt.plot(ridge.coef_, 's', label="Ridge alpha=1")
plt.plot(ridge10.coef_, '^', label="Ridge alpha=10")
plt.plot(ridge01.coef_, 'v', label="Ridge alpha=0.1")

plt.plot(lr.coef_, 'o', label="LinearRegression")
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.hlines(0, 0, len(lr.coef_))
plt.ylim(-25, 25)
plt.legend()
```


Figure 2-12. Comparing coefficient magnitudes for ridge regression with different values of alpha and linear regression

Here, the x-axis enumerates the entries of coef_: x=0 shows the coefficient associated with the first feature, x=1 the coefficient associated with the second feature, and so on up to x=100. The y-axis shows the numeric values of the corresponding values of the coefficients. The main takeaway here is that for alpha=10, the coefficients are mostly between around -3 and 3. The coefficients for the Ridge model with alpha=1 are somewhat larger. The dots corresponding to alpha=0.1 have larger magnitude still, and many of the dots corresponding to linear regression without any regularization (which would be alpha=0) are so large they are outside of the chart.

Another way to understand the influence of regularization is to fix a value of alpha but vary the amount of training data available. For Figure 2-13, we subsampled the Boston Housing dataset and evaluated LinearRegression and Ridge(alpha=1) on subsets of increasing size (plots that show model performance as a function of dataset size are called *learning curves*):

In[35]:

mglearn.plots.plot_ridge_n_samples()

Figure 2-13. Learning curves for ridge regression and linear regression on the Boston Housing dataset

As one would expect, the training score is higher than the test score for all dataset sizes, for both ridge and linear regression. Because ridge is regularized, the training score of ridge is lower than the training score for linear regression across the board. However, the test score for ridge is better, particularly for small subsets of the data. For less than 400 data points, linear regression is not able to learn anything. As more and more data becomes available to the model, both models improve, and linear regression catches up with ridge in the end. The lesson here is that with enough training data, regularization becomes less important, and given enough data, ridge and

linear regression will have the same performance (the fact that this happens here when using the full dataset is just by chance). Another interesting aspect of Figure 2-13 is the decrease in training performance for linear regression. If more data is added, it becomes harder for a model to overfit, or memorize the data.

Lasso

An alternative to Ridge for regularizing linear regression is Lasso. As with ridge regression, using the lasso also restricts coefficients to be close to zero, but in a slightly different way, called L1 regularization. 8 The consequence of L1 regularization is that when using the lasso, some coefficients are exactly zero. This means some features are entirely ignored by the model. This can be seen as a form of automatic feature selection. Having some coefficients be exactly zero often makes a model easier to interpret, and can reveal the most important features of your model.

Let's apply the lasso to the extended Boston Housing dataset:

In[36]:

```
from sklearn.linear_model import Lasso
   lasso = Lasso().fit(X_train, y_train)
    print("Training set score: {:.2f}".format(lasso.score(X_train, y_train)))
   print("Test set score: {:.2f}".format(lasso.score(X_test, y_test)))
    print("Number of features used: {}".format(np.sum(lasso.coef != 0)))
Out[36]:
   Training set score: 0.29
    Test set score: 0.21
   Number of features used: 4
```

As you can see, Lasso does quite badly, both on the training and the test set. This indicates that we are underfitting, and we find that it used only 4 of the 105 features. Similarly to Ridge, the Lasso also has a regularization parameter, alpha, that controls how strongly coefficients are pushed toward zero. In the previous example, we used the default of alpha=1.0. To reduce underfitting, let's try decreasing alpha. When we do this, we also need to increase the default setting of max_iter (the maximum number of iterations to run):

⁸ The lasso penalizes the L1 norm of the coefficient vector—or in other words, the sum of the absolute values of the coefficients.

In[37]:

```
# we increase the default setting of "max iter",
    # otherwise the model would warn us that we should increase max iter.
    lasso001 = Lasso(alpha=0.01, max iter=100000).fit(X train, y train)
    print("Training set score: {:.2f}".format(lasso001.score(X_train, y_train)))
    print("Test set score: {:.2f}".format(lasso001.score(X_test, y_test)))
    print("Number of features used: {}".format(np.sum(lasso001.coef != 0)))
Out[37]:
    Training set score: 0.90
    Test set score: 0.77
    Number of features used: 33
```

A lower alpha allowed us to fit a more complex model, which worked better on the training and test data. The performance is slightly better than using Ridge, and we are using only 33 of the 105 features. This makes this model potentially easier to understand.

If we set alpha too low, however, we again remove the effect of regularization and end up overfitting, with a result similar to LinearRegression:

In[38]:

```
lasso00001 = Lasso(alpha=0.0001, max iter=100000).fit(X train, y train)
    print("Training set score: {:.2f}".format(lasso00001.score(X_train, y_train)))
    print("Test set score: {:.2f}".format(lasso00001.score(X test, y test)))
    print("Number of features used: {}".format(np.sum(lasso00001.coef_ != 0)))
Out[38]:
    Training set score: 0.95
    Test set score: 0.64
    Number of features used: 94
```

Again, we can plot the coefficients of the different models, similarly to Figure 2-12. The result is shown in Figure 2-14:

In[39]:

```
plt.plot(lasso.coef_, 's', label="Lasso alpha=1")
plt.plot(lasso001.coef_, '^', label="Lasso alpha=0.01")
plt.plot(lasso00001.coef_, 'v', label="Lasso alpha=0.0001")
plt.plot(ridge01.coef , 'o', label="Ridge alpha=0.1")
plt.legend(ncol=2, loc=(0, 1.05))
plt.vlim(-25, 25)
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
```


Figure 2-14. Comparing coefficient magnitudes for lasso regression with different values of alpha and ridge regression

For alpha=1, we not only see that most of the coefficients are zero (which we already knew), but that the remaining coefficients are also small in magnitude. Decreasing alpha to 0.01, we obtain the solution shown as the green dots, which causes most features to be exactly zero. Using alpha=0.00001, we get a model that is quite unregularized, with most coefficients nonzero and of large magnitude. For comparison, the best Ridge solution is shown in teal. The Ridge model with alpha=0.1 has similar predictive performance as the lasso model with alpha=0.01, but using Ridge, all coefficients are nonzero.

In practice, ridge regression is usually the first choice between these two models. However, if you have a large amount of features and expect only a few of them to be important, Lasso might be a better choice. Similarly, if you would like to have a model that is easy to interpret, Lasso will provide a model that is easier to understand, as it will select only a subset of the input features. scikit-learn also provides the ElasticNet class, which combines the penalties of Lasso and Ridge. In practice, this combination works best, though at the price of having two parameters to adjust: one for the L1 regularization, and one for the L2 regularization.

Linear models for classification

Linear models are also extensively used for classification. Let's look at binary classification first. In this case, a prediction is made using the following formula:

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0$$

The formula looks very similar to the one for linear regression, but instead of just returning the weighted sum of the features, we threshold the predicted value at zero. If the function is smaller than zero, we predict the class –1; if it is larger than zero, we predict the class +1. This prediction rule is common to all linear models for classification. Again, there are many different ways to find the coefficients (w) and the intercept (*b*).

For linear models for regression, the output, \hat{y} , is a linear function of the features: a line, plane, or hyperplane (in higher dimensions). For linear models for classification, the decision boundary is a linear function of the input. In other words, a (binary) linear classifier is a classifier that separates two classes using a line, a plane, or a hyperplane. We will see examples of that in this section.

There are many algorithms for learning linear models. These algorithms all differ in the following two ways:

- The way in which they measure how well a particular combination of coefficients and intercept fits the training data
- If and what kind of regularization they use

Different algorithms choose different ways to measure what "fitting the training set well" means. For technical mathematical reasons, it is not possible to adjust w and b to minimize the number of misclassifications the algorithms produce, as one might hope. For our purposes, and many applications, the different choices for item 1 in the preceding list (called *loss functions*) are of little significance.

The two most common linear classification algorithms are logistic regression, implemented in linear_model.LogisticRegression, and linear support vector machines (linear SVMs), implemented in svm.Linear SVC (SVC stands for support vector classifier). Despite its name, LogisticRegression is a classification algorithm and not a regression algorithm, and it should not be confused with LinearRegression.

We can apply the LogisticRegression and LinearSVC models to the forge dataset, and visualize the decision boundary as found by the linear models (Figure 2-15):

In[40]:

```
from sklearn.linear_model import LogisticRegression
 from sklearn.svm import LinearSVC
 X, y = mglearn.datasets.make forge()
 fig, axes = plt.subplots(1, 2, figsize=(10, 3))
 for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
     clf = model.fit(X, y)
     mglearn.plots.plot_2d_separator(clf, X, fill=False, eps=0.5,
                                      ax=ax, alpha=.7)
     mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
     ax.set_title("{}".format(clf.__class__.__name__))
     ax.set xlabel("Feature 0")
     ax.set_ylabel("Feature 1")
 axes[0].legend()
                                                        LogisticRegression
                LinearSVC
                                    1
eature 1
```

Figure 2-15. Decision boundaries of a linear SVM and logistic regression on the forge dataset with the default parameters

Feature 0

In this figure, we have the first feature of the forge dataset on the x-axis and the second feature on the y-axis, as before. We display the decision boundaries found by LinearSVC and LogisticRegression respectively as straight lines, separating the area classified as class 1 on the top from the area classified as class 0 on the bottom. In other words, any new data point that lies above the black line will be classified as class 1 by the respective classifier, while any point that lies below the black line will be classified as class 0.

The two models come up with similar decision boundaries. Note that both misclassify two of the points. By default, both models apply an L2 regularization, in the same way that Ridge does for regression.

For LogisticRegression and LinearSVC the trade-off parameter that determines the strength of the regularization is called C, and higher values of C correspond to less

Feature 0

regularization. In other words, when you use a high value for the parameter C, Logis ticRegression and LinearSVC try to fit the training set as best as possible, while with low values of the parameter C, the models put more emphasis on finding a coefficient vector (w) that is close to zero.

There is another interesting aspect of how the parameter C acts. Using low values of C will cause the algorithms to try to adjust to the "majority" of data points, while using a higher value of C stresses the importance that each individual data point be classified correctly. Here is an illustration using LinearSVC (Figure 2-16):

In[41]:

mglearn.plots.plot_linear_svc_regularization()

Figure 2-16. Decision boundaries of a linear SVM on the forge dataset for different values of C

On the lefthand side, we have a very small C corresponding to a lot of regularization. Most of the points in class 0 are at the top, and most of the points in class 1 are at the bottom. The strongly regularized model chooses a relatively horizontal line, misclassifying two points. In the center plot, C is slightly higher, and the model focuses more on the two misclassified samples, tilting the decision boundary. Finally, on the righthand side, the very high value of C in the model tilts the decision boundary a lot, now correctly classifying all points in class 0. One of the points in class 1 is still misclassified, as it is not possible to correctly classify all points in this dataset using a straight line. The model illustrated on the righthand side tries hard to correctly classify all points, but might not capture the overall layout of the classes well. In other words, this model is likely overfitting.

Similarly to the case of regression, linear models for classification might seem very restrictive in low-dimensional spaces, only allowing for decision boundaries that are straight lines or planes. Again, in high dimensions, linear models for classification

become very powerful, and guarding against overfitting becomes increasingly important when considering more features.

Let's analyze LinearLogistic in more detail on the Breast Cancer dataset:

In[42]:

```
from sklearn.datasets import load_breast_cancer
   cancer = load_breast_cancer()
   X_train, X_test, y_train, y_test = train_test_split(
        cancer.data, cancer.target, stratify=cancer.target, random_state=42)
   logreg = LogisticRegression().fit(X_train, y_train)
    print("Training set score: {:.3f}".format(logreg.score(X_train, y_train)))
   print("Test set score: {:.3f}".format(logreg.score(X_test, y_test)))
Out[42]:
   Training set score: 0.953
   Test set score: 0.958
```

The default value of C=1 provides quite good performance, with 95% accuracy on both the training and the test set. But as training and test set performance are very close, it is likely that we are underfitting. Let's try to increase C to fit a more flexible model:

In[43]:

```
logreg100 = LogisticRegression(C=100).fit(X_train, y_train)
    print("Training set score: {:.3f}".format(logreg100.score(X_train, y_train)))
    print("Test set score: {:.3f}".format(logreg100.score(X_test, y_test)))
Out[43]:
    Training set score: 0.972
    Test set score: 0.965
```

Using C=100 results in higher training set accuracy, and also a slightly increased test set accuracy, confirming our intuition that a more complex model should perform better.

We can also investigate what happens if we use an even more regularized model than the default of C=1, by setting C=0.01:

In[44]:

```
logreg001 = LogisticRegression(C=0.01).fit(X_train, y_train)
    print("Training set score: {:.3f}".format(logreg001.score(X_train, y_train)))
    print("Test set score: {:.3f}".format(logreg001.score(X_test, y_test)))
Out[44]:
    Training set score: 0.934
    Test set score: 0.930
```

As expected, when moving more to the left along the scale shown in Figure 2-1 from an already underfit model, both training and test set accuracy decrease relative to the default parameters.

Finally, let's look at the coefficients learned by the models with the three different settings of the regularization parameter C (Figure 2-17):

In[45]:

```
plt.plot(logreg.coef_.T, 'o', label="C=1")
plt.plot(logreg100.coef_.T, '^', label="C=100")
plt.plot(logreg001.coef_.T, 'v', label="C=0.001")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1])
plt.ylim(-5, 5)
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.legend()
```


As LogisticRegression applies an L2 regularization by default, the result looks similar to that produced by Ridge in Figure 2-12. Stronger regularization pushes coefficients more and more toward zero, though coefficients never become exactly zero. Inspecting the plot more closely, we can also see an interesting effect in the third coefficient, for "mean perimeter." For C=100 and C=1, the coefficient is negative, while for C=0.001, the coefficient is positive, with a magnitude that is even larger than for C=1. Interpreting a model like this, one might think the coefficient tells us which class a feature is associated with. For example, one might think that a high "texture error" feature is related to a sample being "malignant." However, the change of sign in the coefficient for "mean perimeter" means that depending on which model we look at, a high "mean perimeter" could be taken as being either indicative of "benign" or indicative of "malignant." This illustrates that interpretations of coefficients of linear models should always be taken with a grain of salt.

Figure 2-17. Coefficients learned by logistic regression on the Breast Cancer dataset for different values of ${\cal C}$

If we desire a more interpretable model, using L1 regularization might help, as it limits the model to using only a few features. Here is the coefficient plot and classification accuracies for L1 regularization (Figure 2-18):

In[46]:

```
for C, marker in zip([0.001, 1, 100], ['o', '^', 'v']):
        lr_l1 = LogisticRegression(C=C, penalty="l1").fit(X_train, y_train)
        print("Training accuracy of l1 logreg with C={:.3f}: {:.2f}".format(
              C, lr_l1.score(X_train, y_train)))
        print("Test accuracy of l1 logreg with C={:.3f}: {:.2f}".format(
              C, lr_l1.score(X_test, y_test)))
        plt.plot(lr l1.coef .T, marker, label="C={:.3f}".format(C))
    plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
   plt.hlines(0, 0, cancer.data.shape[1])
   plt.xlabel("Coefficient index")
   plt.ylabel("Coefficient magnitude")
   plt.ylim(-5, 5)
   plt.legend(loc=3)
Out[46]:
   Training accuracy of l1 logreg with C=0.001: 0.91
   Test accuracy of l1 logreg with C=0.001: 0.92
   Training accuracy of l1 logreg with C=1.000: 0.96
   Test accuracy of l1 logreg with C=1.000: 0.96
   Training accuracy of l1 logreg with C=100.000: 0.99
   Test accuracy of l1 logreg with C=100.000: 0.98
```

As you can see, there are many parallels between linear models for binary classification and linear models for regression. As in regression, the main difference between the models is the penalty parameter, which influences the regularization and whether the model will use all available features or select only a subset.

Figure 2-18. Coefficients learned by logistic regression with L1 penalty on the Breast Cancer dataset for different values of C

Linear models for multiclass classification

Many linear classification models are for binary classification only, and don't extend naturally to the multiclass case (with the exception of logistic regression). A common technique to extend a binary classification algorithm to a multiclass classification algorithm is the *one-vs.-rest* approach. In the one-vs.-rest approach, a binary model is learned for each class that tries to separate that class from all of the other classes, resulting in as many binary models as there are classes. To make a prediction, all binary classifiers are run on a test point. The classifier that has the highest score on its single class "wins," and this class label is returned as the prediction.

Having one binary classifier per class results in having one vector of coefficients (w) and one intercept (b) for each class. The class for which the result of the classification confidence formula given here is highest is the assigned class label:

$$w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b$$

The mathematics behind multiclass logistic regression differ somewhat from the onevs.-rest approach, but they also result in one coefficient vector and intercept per class, and the same method of making a prediction is applied.

Let's apply the one-vs.-rest method to a simple three-class classification dataset. We use a two-dimensional dataset, where each class is given by data sampled from a Gaussian distribution (see Figure 2-19):

In[47]:

```
from sklearn.datasets import make_blobs
X, y = make blobs(random state=42)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.legend(["Class 0", "Class 1", "Class 2"])
  15
                                                                   Class 0
                                                                   Class 1
  10
                                                                   Class 2
    5
    0
  -5
                                     -2
                                                      2
                              -4
                                              0
                                                              4
                                                                      6
                                     Feature 0
```

Figure 2-19. Two-dimensional toy dataset containing three classes

Now, we train a Linear SVC classifier on the dataset:

In[48]:

```
linear_svm = LinearSVC().fit(X, y)
    print("Coefficient shape: ", linear_svm.coef_.shape)
    print("Intercept shape: ", linear_svm.intercept_.shape)
Out[48]:
    Coefficient shape: (3, 2)
    Intercept shape: (3,)
```

We see that the shape of the coef is (3, 2), meaning that each row of coef contains the coefficient vector for one of the three classes and each column holds the coefficient value for a specific feature (there are two in this dataset). The intercept is now a one-dimensional array, storing the intercepts for each class.

Let's visualize the lines given by the three binary classifiers (Figure 2-20):

In[49]:

```
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
line = np.linspace(-15, 15)
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_,
                                  ['b', 'r', 'g']):
    plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)
plt.ylim(-10, 15)
plt.xlim(-10, 8)
plt.xlabel("Feature 0")
plt.vlabel("Feature 1")
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1',
            'Line class 2'], loc=(1.01, 0.3))
```

You can see that all the points belonging to class 0 in the training data are above the line corresponding to class 0, which means they are on the "class 0" side of this binary classifier. The points in class 0 are above the line corresponding to class 2, which means they are classified as "rest" by the binary classifier for class 2. The points belonging to class 0 are to the left of the line corresponding to class 1, which means the binary classifier for class 1 also classifies them as "rest." Therefore, any point in this area will be classified as class 0 by the final classifier (the result of the classification confidence formula for classifier 0 is greater than zero, while it is smaller than zero for the other two classes).

But what about the triangle in the middle of the plot? All three binary classifiers classify points there as "rest." Which class would a point there be assigned to? The answer is the one with the highest value for the classification formula: the class of the closest line.

Figure 2-20. Decision boundaries learned by the three one-vs.-rest classifiers

The following example (Figure 2-21) shows the predictions for all regions of the 2D space:

In[50]:

Figure 2-21. Multiclass decision boundaries derived from the three one-vs.-rest classifiers

Strengths, weaknesses, and parameters

The main parameter of linear models is the regularization parameter, called alpha in the regression models and C in LinearSVC and LogisticRegression. Large values for alpha or small values for C mean simple models. In particular for the regression models, tuning these parameters is quite important. Usually C and alpha are searched for on a logarithmic scale. The other decision you have to make is whether you want to use L1 regularization or L2 regularization. If you assume that only a few of your features are actually important, you should use L1. Otherwise, you should default to L2. L1 can also be useful if interpretability of the model is important. As L1 will use only a few features, it is easier to explain which features are important to the model, and what the effects of these features are.

Linear models are very fast to train, and also fast to predict. They scale to very large datasets and work well with sparse data. If your data consists of hundreds of thousands or millions of samples, you might want to investigate using the solver='sag' option in LogisticRegression and Ridge, which can be faster than the default on large datasets. Other options are the SGDClassifier class and the SGDRegressor class, which implement even more scalable versions of the linear models described here.

Another strength of linear models is that they make it relatively easy to understand how a prediction is made, using the formulas we saw earlier for regression and classification. Unfortunately, it is often not entirely clear why coefficients are the way they are. This is particularly true if your dataset has highly correlated features; in these cases, the coefficients might be hard to interpret.

Linear models often perform well when the number of features is large compared to the number of samples. They are also often used on very large datasets, simply because it's not feasible to train other models. However, in lower-dimensional spaces, other models might yield better generalization performance. We will look at some examples in which linear models fail in "Kernelized Support Vector Machines" on page 92.

Method Chaining

The fit method of all scikit-learn models returns self. This allows you to write code like the following, which we've already used extensively in this chapter:

In[51]:

```
# instantiate model and fit it in one line
logreg = LogisticRegression().fit(X_train, y_train)
```

Here, we used the return value of fit (which is self) to assign the trained model to the variable logreg. This concatenation of method calls (here init and then fit) is known as method chaining. Another common application of method chaining in scikit-learn is to fit and predict in one line:

In[52]:

```
logreg = LogisticRegression()
y pred = logreg.fit(X train, y train).predict(X test)
```

Finally, you can even do model instantiation, fitting, and predicting in one line:

In[53]:

```
y_pred = LogisticRegression().fit(X_train, y_train).predict(X_test)
```

This very short variant is not ideal, though. A lot is happening in a single line, which might make the code hard to read. Additionally, the fitted logistic regression model isn't stored in any variable, so we can't inspect it or use it to predict on any other data.

Naive Bayes Classifiers

Naive Bayes classifiers are a family of classifiers that are quite similar to the linear models discussed in the previous section. However, they tend to be even faster in training. The price paid for this efficiency is that naive Bayes models often provide generalization performance that is slightly worse than that of linear classifiers like LogisticRegression and LinearSVC.

The reason that naive Bayes models are so efficient is that they learn parameters by looking at each feature individually and collect simple per-class statistics from each feature. There are three kinds of naive Bayes classifiers implemented in scikit-