None

Null

12 avril 2024

Table des matières

1	Exercice 1	
	1.1	Question $1 \dots \dots \dots \dots \dots$
	1.2	Question 2
	1.3	Question 3
2	Exercice 3	
	2.1	Question 1

1 Exercice 1

1.1 Question 1

- Relation $\varnothing \vdash \bot$, $S \vdash (a, b) \Leftrightarrow \forall x \in S, a \leq x \leq b$
- Concrétisation : $\gamma(\bot) = \emptyset$, $\gamma((a,b)) = \{a,\ldots,b\}$ et on a bien, si $c \vdash a, c \subseteq \gamma(a)$.
- Abstraction : $\alpha(\emptyset) = \bot$, $\alpha(S) = (\inf S, \sup S)$ et on a bien, si $c \vdash a$, $\alpha(c) \preceq a$.
- On a : $\gamma(C) \sqsubseteq \gamma(C)$ donc $\alpha(\gamma(C)) \preceq C$. De même, $\gamma(\alpha(S)) \sqsubseteq S$.

1.2 Question 2

On considère les opérations au sens de Minkowski. On définit déjà $(a,b) \cup (c,d) = \min(a,c), \max(b,d)$

- Pour l'addition on prend la convention $(-\infty, a) + (b, +\infty) = (-\infty, +\infty)$ où, a, b sont quelconques et $\bot + S = \bot$. Il est clair qu'on a bien la sûreté par une sur-estimation puisqu'on sur-estime les ensembles par des intervalles au départ et qu'il y a une correspondance exacte pour les intervalles.
- Pour la multiplication $(-\infty, a < 0) \times (b > 0, c) = (-\infty, b \times a), (-\infty, a) \times (b, c < 0) = (a \times b, +\infty), (a < 0, b > 0) \times (c < 0, d > 0) = (\min(bc, ad), \max(ac, bd)).$
- Pour la division euclidienne, si $(a,b) \div (c < 0, d > 0) = a \div (c,-1) \cup a \div (1,d) \cup (+\infty,+\infty) \cup (-\infty,-\infty)$ avec les valeurs positives si b > 0, négatives si a < 0. Sinon, on a $(a,b) \div (c > 0, d > 0) = (a \div d, b \div c)$, et $(a,b) \div (c < 0, d < 0) = (a \div d, b \div c)$
- Pour le modulo, $(a,b) \mod (c < 0, d > 0) = (a,b) \mod (c,-1) \cup (a,b) \mod (1,d) \cup (0,0)$. Sinon, on considère $\{x \mod y \mid a \le x \le b, c \le y \le d\}$.

1.3 Question 3

On définit déjà $(a,b)\cup(c,d)=\min(a,c),\max(b,d).$ Il n'est pas exact car $(1,2)\cup(4,5)=\{1,2,4,5\}\neq(1,5).$ De plus

$$(a,b) \cap (c,d) = \begin{cases} \bot & \text{si } b < c \lor a > d \\ (\max(a,c),\min(b,d)) & \text{sinon} \end{cases}$$

Cet opérateur est exact.

2 Exercice 3

2.1 Question 1

Oui car $\gamma((a,b))=\{a,\ldots,b\}$ et $\alpha(\{a,\ldots,b\})=(a,b).$ De plus $\gamma((-\infty,a))=\{\ldots,a\}$ et $\alpha(\{\ldots,a\})=(-\infty,a).$