Monotone scheme for diffusion type problems with heterogeneous anisotropic tensor on unstructured meshes

Konstantin Lipnikov* Mikhail Shashkov *

Daniil Svyatskiy *

Yuri Vassilevski[‡]

* Mathematical Modeling and Analysis Group, Los Alamos National Laboratory, Email: lipnikov@lanl.gov, shashkov@lanl.gov, dasvyat@lanl.gov

Practical requirements for a discretization

- be locally conservative;
- preserve positivity of the differential solution;
- be applicable to unstructured, anisotropic, and severely distorted meshes;
- be applicable to heterogeneous full diffusion tensors;
- result in sparse systems with minimal number of non-zero entries.

Scheme description

Let us consider computational domain Ω and its partition T into triangles . The diffusion equation in the mixed form is

$$\operatorname{div} \mathbf{q} = f \qquad \mathbf{q} = -\mathbb{D} \operatorname{grad} C.$$

The conventional approach to the construction of cell-centered finite volume (FV) schemes is based on the cellwise application of the Green formula which results in the equation:

$$\sum_{e \subset \partial T} \mathbf{q}_e \cdot \mathbf{n}_e = \int_T f \, dx, \quad \forall T \in \mathcal{T}, \quad \text{where } \mathbf{q}_e = \frac{\int_e \mathbf{q} \, ds}{|e|} \text{ and } |\mathbf{n}_e| = |e|. \quad (1)$$

Cell-centered finite volume discretizations assume that one degree of freedom C_T for C is assigned to each cell T. For each cell T a reference point \mathbf{x}_T is defined (see the definition below) where C is approximated.

Flux definition

Let us consider an internal edge e connecting vertices \mathbf{v}_1 and \mathbf{v}_2 . Points \mathbf{x}_+ and \mathbf{x}_- are reference points which correspond to cells sharing the edge e. The two-point nonlinear flux approximation [C. LePotier, 2005] is derived on the basis of the Green formula and quadrature rules:

$$\mathbf{q}_e \cdot \mathbf{n}_e = A_e^+(C_{v_1}, C_{v_2}) C_{x_+} - A_e^-(C_{v_1}, C_{v_2}) C_{x_-}$$
(2)

Interpolation

The values of C at vertices are involved in the flux coefficients in (2). For an approximation of C_{v_1} and C_{v_2} two interpolation techniques may be adopted.

• *linear* (preferable for smooth solutions). Let \mathbf{x}_{T_j} , j=1,2,3 be three closest reference points to \mathbf{v}_i , such that triangle $\mathbf{x}_{T_1}\mathbf{x}_{T_2}\mathbf{x}_{T_3}$ contains \mathbf{v}_i . Then

$$C_{v_i} = \sum_{j=1}^{3} \lambda_j C_{\mathbf{x}_{T_j}}$$
 where λ_j are the barycentric coordinates of \mathbf{v}_i .

• *inverse distance weighting* [D. Shepard, 1968] (preferable for nonsmooth solutions). The interpolation uses values $C_{\mathbf{x}_T}$ of all triangles sharing \mathbf{v}_i :

$$C_{v_i} = \sum_{T_j \ni \mathbf{v}_i} w_j C_{\mathbf{x}_{T_j}} \qquad ext{where } w_j = rac{|\mathbf{v}_i - \mathbf{x}_{T_j}|^{-1}}{\sum\limits_{T_i \ni \mathbf{v}_i} |\mathbf{v}_i - \mathbf{x}_{T_j}|^{-1}}.$$

Reference point position

For any triangle $T = \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3$ and for any diffusion tensor \mathbb{D} the point \mathbf{x}_T is defined as follows:

$$\mathbf{x}_{T} = \frac{\sum_{i=1}^{3} \mathbf{v}_{i} |\mathbf{n}_{\alpha(i)}|_{\mathbb{D}}}{\sum_{i=1}^{3} |\mathbf{n}_{\alpha(i)}|_{\mathbb{D}}} \quad \text{where } |\mathbf{n}_{\alpha(i)}|_{\mathbb{D}} = (\mathbb{D}\mathbf{n}_{\alpha(i)} \cdot \mathbf{n}_{\alpha(i)})^{1/2}$$
(3)

and $\mathbf{n}_{\alpha(i)}$ is the outward normal to the edge $e_{\alpha(i)}$ opposite to the vertex \mathbf{v}_i .

Iterative solution

The substitution of flux (2) into equation (1) yields the nonlinear system:

$$\mathbf{A}(C)C = F.$$

We use the simplest Picard iterations: initial vector $C^0 \in \Re^{N_T}$, $C^0 \ge 0$,

solve
$$\mathbf{A}(C^{k-1})C^k = F, \qquad k = 1, 2, \dots$$
 (5)

Matrix $\mathbf{A}(C^{k-1})$ has at most four non-zeros in each row.

Theoretical result

Let \mathbf{x}_{T_i} be defined by (3) and $F_{T_i} \geq 0$, $C_{T_i}^0 \geq 0$, $i = 1, ..., N_T$. Then all iterates C^k of method (5) are non-negative:

$$C_{T_i}^k \ge 0, \quad i = 1, \dots, N_T, \ k = 1, 2, \dots$$

The proof is based on the fact that if \mathbf{x}_{T_i} are defined by (3) then A_e^+ and A_e^- in (2) are positive.

Numerical Test I: smooth solution

$C(x, y) = 2\cos(\pi x)\sin^2\theta x$	$n(2\pi y) + 2$
$\operatorname{div}\operatorname{grad} C + C = f$	in $\Omega = [0; 1]^2$

h	$ C - C_h _2$	$ \mathbf{q}-\mathbf{q}_h _2$
1/18	9.43e - 3	3.25e - 2
1/36	2.33e - 3	8.48e - 3
1/72	6.00e - 4	2.73e - 3
1/144	1.57e - 4	9.17e - 4

• Second order convergence in discrete L_2 norms for both C and \mathbf{q} when the solution is smooth.

Numerical Test II: anisotropic solution

$$\Box^{\Gamma_{1}} = \begin{bmatrix}
-\operatorname{div} \mathbb{D} \operatorname{grad} C = 0 & \operatorname{in} \Omega, & C = 0 \text{ on } \Gamma_{0}, & C = 2 \text{ on } \Gamma_{1}. \\
\Gamma_{0} = \begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix} \begin{pmatrix}
k_{1} & 0 \\
0 & k_{2}
\end{pmatrix} \begin{pmatrix}
\cos \theta - \sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}$$

h	$ C-C_h _{\infty}$	$ C - C_h _2$
1/18	1.11e - 0	9.70e - 2
1/36	8.66e - 1	5.11e - 2
1/72	6.04e - 1	2.53e - 2
1/144	3.38e - 1	1.22e - 2

• First order convergence in the discrete L_2 norm for C variable when the solution is nonsmooth and highly anisotropic.

Numerical Test III: positivity

- The solution remains non-negative on different types of meshes and for different directions of anisotropy.
- Both RT_0 and P_1 methods produce negative C_{min} in all cases.

Overshooting

- In the case of highly anisotropic solution overshoots may occur.
- The overshoot values are sensitive to the choice of an interpolation technique.
- Overshooting depends on a mutual orientation of an anisotropic solution and mesh edges.

- I_1 linear interpolation
- I_2 inverse distance weighting interpolation
- Inverse distance weighting interpolation is more stable in the case of highly anisotropic solutions.
- L_2 norm of the overshoot error $(max\{C_h-2,0\})$ behaves like O(h).

Extension to quadrilateral meshes

- $\mathcal Q$ is a comformal quadrilateral mesh with shape regular cells $diam(Q)/\rho(Q) \leq const \quad \forall Q \in \mathcal Q.$
- $-\mathbf{x}_Q \in Q$ is a point separated from ∂Q for which Q is star-shaped. For convex or slightly non-convex cells \mathbf{x}_Q may be the mass center.
- $\mathbb D$ is isotropic and heterogeneous on $\mathcal Q$
- Each edge may be artificially extended so that coefficients A_e^+ and A_e^- in (2) are positive. Hence the scheme is monotone.

less distorted mesh			
h	$ C - C_h _2$	$ \mathbf{q}-\mathbf{q}_h _2$	
1/16	9.87e - 4	2.70e - 3	
1/32	2.55e - 4	7.23e - 4	
1/64	6.38e - 5	2.27e - 4	
1/128	1.59e - 5	7.59e - 5	

 more distorted mesh

 h $||C - C_h||_2$ $||\mathbf{q} - \mathbf{q}_h||_2$

 1/16 4.14e - 3 3.18e - 2

 1/32 2.44e - 3 2.17e - 2

 1/64 1.33e - 3 1.88e - 2

 1/128 6.99e - 4 1.16e - 2

- The convergence rate is affected by the distortion degree.
- Matrix $A(C^{k-1})$ from (5) has at most five nonzeros in each row.