

# **IT-214**

# Database Management System

## **PROJECT TITLE:**

## "TOURISM GUIDE DATABASE"

| Student ID | Name             |
|------------|------------------|
| 202201017  | Om Lachake       |
|            | (Representative) |
| 202201041  | Dhriti Goenka    |
| 202201060  | Chintan Bhara    |
| 202201071  | Nirva Patel      |
| 202201076  | Vidhi Dhanani    |





## FUNCTIONAL DEPENDENCIES AND NORMALIZATION

## **FUNCTIONAL DEPENDENCY SET:** Customer ID → CustomerName Customer ID → ContactNumber Customer ID → Email Customer ID → Gender Customer ID → City Customer\_ID → DOB ContactNumber → Customer ID ContactNumber → CustomerName ContactNumber → Email ContactNumber → Gender ContactNumber → City ContactNumber $\rightarrow$ DOB Destination\_Name → Type of Place Destination\_Name → City Destination Name → Nearby Landmark Destination Name → Area Destination Name → Pincode Destination Name → Bus Station(Distance) Destination Name → Railway Station(Distance) Pincode → Area Pincode → City $\{City, Pincode\} \rightarrow Area$ {Area, Pincode} → City {Nearby Landmark, Pincode} → City {Nearby Landmark, Pincode} → Area {Landmark, Area, City} → Pincode {Dest Name, Sight Name} → Timing {Dest Name, Sight Name} → TicketPrice {Dest Name, Sight Name} → Distance from Dest {Cust ID, Destination Name} → Start Date {Cust ID, Destination Name} $\rightarrow$ No of Days Tour ID → Company Name Tour ID → Website Tour ID → Email ID Tour ID → Rating {Destination Name, Tour ID, Customer ID} → StartDate {Destination Name, Tour ID, Customer ID} → EndDate {Destination\_Name, Tour\_ID, Customer\_ID} → Budget\_Constraint {Destination\_Name, Tour\_ID, Customer\_ID} → Children {Destination Name, Tour ID, Customer ID} $\rightarrow$ Adults {Tour ID, Destination Name} → Consultant Fee {Tour ID, Destination Name} → Refund Percentage

{Tour ID, Destination Name, Days} → Amount

```
Hotel\_ID \to Hotel\ Name
```

Hotel ID → Type of Hotel

Hotel\_ID → Distance from Destination

Hotel ID → Rating

 $Hotel_ID \rightarrow Website$ 

Website→ Hotel ID

Website → Type of Hotel

Website → Distance from Destination

Website → Hotel Name

Website → Rating

{Hotel\_ID, Room\_Type} → Total Rooms

{Hotel\_ID, Room\_Type} → Price

{RoomType, Hotel\_ID, Days} → Amount Percentage

Hotel ID  $\rightarrow$  ContactNumber

{Hotel\_ID, Room\_Type, Room\_No, Startdate} → Cust\_ID

{Hotel\_ID, Room\_Type, Room\_No, Startdate} → EndDate

{Hotel\_ID, Room\_Type, Room\_No, Startdate} → Tour\_ID

{Hotel\_ID, Room\_Type, Room\_No, Startdate} → Children

{Hotel ID, Room Type, Room No, Startdate} → Adults

{Hotel ID, Room Type, Startdate, Cust ID} → Tour ID

{Hotel\_ID, Room\_Type, StartDate, Cust\_ID} → CancellationDate

{Hotel ID, Room Type, StartDate, Cust ID} → EndDate

{Hotel ID, Cust ID} → Stars

{Dest\_Name, Cust\_ID} → Stars

{Tour ID, Cust ID}  $\rightarrow$  Stars

{Cust ID, StartDate} → Hotel ID

## MINIMAL FUNCTIONAL DEPENDENCY SET: Customer ID → CustomerName Customer ID → ContactNumber Customer ID → Email Customer ID → Gender Customer ID → City Customer\_ID → DOB ContactNumber → Customer ID ContactNumber → CustomerName ContactNumber → Email ContactNumber → Gender ContactNumber → City ContactNumber → DOB Destination\_Name → Type of Place Destination\_Name → City Destination Name → Nearby Landmark Destination Name → Area Destination Name → Pincode Destination Name → Bus Station(Distance) Destination Name → Railway Station(Distance) Pincode → Area Pincode → City {Landmark, Area, City} → Pincode {Dest Name, Sight Name} → Timing {Dest\_Name, Sight\_Name} → TicketPrice {Dest Name, Sight Name} → Distance from Dest {Cust ID, Destination Name} → Start Date {Cust ID, Destination Name} $\rightarrow$ No of Days Tour ID → Company Name $Tour\_ID \to Website$ Tour ID → Email ID Tour ID $\rightarrow$ Rating {Destination Name, Tour ID, Customer ID} → StartDate {Destination Name, Tour ID, Customer ID} → EndDate {Destination Name, Tour\_ID, Customer\_ID} → Budget\_Constraint {Destination Name, Tour ID, Customer ID} → Children {Destination Name, Tour ID, Customer ID} $\rightarrow$ Adults {Tour ID, Destination Name} → Consultant Fee {Tour\_ID, Destination\_Name} → Refund Percentage {Tour\_ID, Destination\_Name, Days} → Amount Hotel ID → Hotel Name

Hotel ID → Type of Hotel

Hotel ID → Rating

Hotel ID → Distance from Destination

```
Hotel ID → Website
Website→ Hotel ID
Website → Type of Hotel
Website → Distance from Destination
Website → Hotel Name
Website → Rating
{Hotel ID, Room Type} → Total Rooms
{Hotel_ID, Room_Type} → Price
{RoomType, Hotel_ID, Days} → Amount Percentage
Hotel ID → ContactNumber
{Hotel_ID, Room_Type, Room_No, Startdate} → Cust_ID
{Hotel_ID, Room_Type, Room_No, Startdate} → EndDate
{Hotel ID, Room Type, Room No, Startdate} → Tour ID
{Hotel ID, Room Type, Room No, Startdate} → Children
{Hotel ID, Room Type, Room No, Startdate} → Adults
{Hotel_ID, Room_Type, Startdate, Cust_ID} → Tour_ID
{Hotel_ID, Room_Type, StartDate, Cust_ID} → CancellationDate
{Hotel_ID, Room_Type, StartDate, Cust_ID} → EndDate
```

 ${Hotel\_ID, Cust\_ID} \rightarrow Stars$  ${Dest\_Name, Cust\_ID} \rightarrow Stars$  ${Tour\ ID, Cust\ ID} \rightarrow Stars$ 

{Cust ID, StartDate} → Hotel ID

#### **NORMALIZATION PROOFS:**

**CUSTOMER** (<u>Customer\_ID</u>, CustomerName, ContactNumber, Email, Gender, City, DOB) : Customer\_ID  $\rightarrow$  {CustomerName, ContactNumber, Email, Gender, City, DOB} ContactNumber  $\rightarrow$  {Customer\_ID, CustomerName, Email, Gender, City, DOB} Computing the primary key: {Customer\_ID} $^+ \rightarrow$  {Customer\_ID, CustomerName, ContactNumber, Email, Gender, City, DOB} {ContactNumber} $^+ \rightarrow$  {Customer\_ID, CustomerName, ContactNumber, Email, Gender, City, DOB}

Customer\_ID and ContactNumber can both be the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have Customer\_ID or ContactNumber on the left.

DESTINATION (Destination\_Name, Type of Place, City, Nearby Landmark, Area, Pincode,
Bus\_Station(Distance), Railway\_Station(Distance)):

Destination\_Name → {Type of Place, City, Nearby Landmark, Area, Pincode, Bus\_Station(Distance),
Railway\_Station(Distance)}

Pincode → Area Pincode → City {Landmark, Area, City} → Pincode

#### Computing the primary key:

{Destination\_Name}<sup>+</sup> → {Destination\_Name, Type of Place, City, Nearby Landmark, Area, Pincode, Bus\_Station(Distance), Railway\_Station(Distance)} {Destination Name} is the primary key.

#### **BCNF Proof:**

The relation is not in BCNF because the last three functional dependencies do not have the primary key on left.

**SIGHTSEEING PLACES** (<u>Dest\_Name</u>, <u>Sight\_Name</u>, Timing, Ticket\_price, Distance\_from\_Dest): {Dest\_Name, Sight\_Name} → {Timing, TicketPrice, Distance\_from\_Dest}

#### Computing the primary key:

 ${Dest\_Name, Sight\_Name}^+ \rightarrow {Dest\_Name, Sight\_Name, Timing, TicketPrice, Distance\_from\_Dest} {Dest\_Name, Sight\_Name} is the primary key.$ 

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Dest\_Name, Sight\_Name} on the left.

#### VISITED (Destination Name, Customer ID, No of Days, StartDate):

{Destination\_Name, Customer\_ID} → {No\_of\_Days, StartDate}

Computing the primary key:

{Destination\_Name, Customer\_ID} $^+ \rightarrow$  {Destination\_Date, Customer\_ID, No\_of\_Days, StartDate} {Desination\_Name, Customer\_ID} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Desination\_Name, Customer ID} on the left.

#### TOURS & TRAVELS (Tour ID, Company Name, Website, Email\_ID, Rating):

Tour ID → {Company Name, Website, Email ID, Rating}

Computing the primary key:

 ${Tour\_ID}^+ \rightarrow {Tour\_ID, Company Name, Website, Email\_ID, Rating} {Tour\_ID} is the primary key.$ 

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Tour\_ID} on the left.

# **TOURIST** (<u>Destination\_Name, Tour\_ID, Customer\_ID</u>, StartDate, EndDate, Budget\_Constraint, Children, Adults):

 $\{Destination\_Name, Tour\_ID, Customer\_ID\} \rightarrow \{StartDate, EndDate, Budget\_Constraint, Children, Adults \}$ 

#### Computing the primary key:

 $\label{localization_Name, Tour_ID, Customer_ID}^{+} \rightarrow \{ Destination\_Name, Tour\_ID, Customer\_ID, StartDate, \\ EndDate, Budget\_Constraint, Children, Adults \}$ 

{Destination Name, Tour\_ID, Customer\_ID} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Destination\_Name, Tour\_ID, Customer ID} on the left.

#### PRICING CONDITIONS (Tour ID, Destination Name, Consultant Fee, Refund Percentage):

{Tour ID, Destination Name} → {Consultant Fee, Refund Percentage}

#### Computing the primary key:

 ${Tour\_ID, Destination\_Name}^+ \rightarrow {Tour\_ID, Destination\_Name, Consultant\_Fee, Refund\_Percentage} {Tour\_ID, Destination\_Name} is the primary key.$ 

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Destination\_Name, Tour\_ID} on the left.

#### PACKAGES (Tour ID, Destination Name, Day, Amount):

{Tour ID, Destination Name, Days} → Amount

#### Computing the primary key:

{Tour ID, Destination Name, Days}<sup>+</sup> → Amount

{Tour\_ID, Destination\_Name, Days} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Tour\_ID, Destination\_Name, Days} on the left.

**HOTELS** (Hotel\_ID, Hotel Name, Type of Hotel, Distance from Destination, Rating, Website):

Hotel\_ID → {Hotel Name, Type of Hotel, Distance from Destination, Rating, Website}

Website→ {Hotel\_ID, Hotel Name, Type of Hotel, Distance from Destination, Rating}

#### Computing the primary key:

{Hotel\_ID}<sup>+</sup> → {Hotel\_ID, Hotel Name, Type of Hotel, Distance from Destination, Rating, Website}

{Website}<sup>+</sup> → {Hotel\_ID, Hotel Name, Type of Hotel, Distance from Destination, Rating, Website}

{Hotel\_ID} and {Website} can both be the primary keys.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Hotel ID} or {Website} on the left.

### **ROOM TYPE** (Hotel ID, Room Type, Total Rooms, Price):

 $\{Hotel\_ID,\,Room\_Type\} \rightarrow \{Total\,Rooms,\,Price\}$ 

### Computing the primary key:

 $\{Hotel\_ID, Room\_Type\}^+ \rightarrow \{Hotel\_ID, Room\_Type, Total Rooms, Price\}$ 

{Hotel\_ID, Room\_Type} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Hotel\_ID,Room\_Type} on the left.

## REFUND POLICY (RoomType, Hotel\_ID, Days, Amount Percentage):

{RoomType, Hotel\_ID, Days} → Amount Percentage

Computing the primary key:

{RoomType, Hotel\_ID, Days} $^+ \rightarrow$  {RoomType, Hotel\_ID, Days, Amount Percentage} {RoomType, Hotel\_ID, Days} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {RoomType, Hotel\_ID, Days} on the left.

**BOOKINGS** (<u>Hotel\_ID, Room\_Type, Room\_No, Startdate, Cust\_ID, Enddate, Tour\_ID, Children, Adults): {Hotel\_ID, Room\_Type, Room\_No, Startdate} → {Cust\_ID, Enddate, Tour\_ID, Children, Adults}</u>

#### Computing the primary key:

 $\label{eq:hotel_ID} $$\{\mbox{Hotel_ID, Room\_Type, Room\_No, Startdate}\}^+ \rightarrow \{\mbox{Hotel\_ID, Room\_Type, Room\_No, Startdate, Cust\_ID, Enddate, Tour\_ID, Children, Adults}\}$$ 

{Hotel\_ID, Room\_Type, Room\_No, Startdate} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Hotel\_ID, Room\_Type, Room\_No, Startdate} on the left.

**CANCELLATIONS** (<u>Hotel\_ID, Room\_Type, Startdate, Cust\_ID</u>, Tour\_ID, CancellationDate, EndDate): {Hotel\_ID, Room\_Type, Startdate, Cust\_ID} → {Tour\_ID, CancellationDate, EndDate}

#### Computing the primary key:

{Hotel\_ID, Room\_Type, Startdate, Cust\_ID}⁺ → {Hotel\_ID, Room\_Type, Startdate, Cust\_ID, Tour\_ID, CancellationDate, EndDate}

{Hotel\_ID, Room\_Type, Startdate, Cust\_ID} is the primary key.

#### **BCNF** Proof:

The relation is in BCNF because all functional dependencies have the primary key {Hotel\_ID, Room\_Type, Startdate, Cust\_ID} on the left.

## RATING\_HOTEL (Hotel\_ID, Cust\_ID, Stars):

 $\{Hotel\_ID, Cust\_ID\} \rightarrow Stars$ 

## Computing the primary key:

 $\{Hotel\_ID,\,Cust\_ID\}^{\scriptscriptstyle +} \to \{Hotel\_ID,\,Cust\_ID,\,Stars\}$ 

{Hotel\_ID, Cust\_ID} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Hotel\_ID, Cust\_ID} on the left.

## $\textbf{RATING\_DEST} \ (\underline{Dest\_Name,\ Cust\_ID},\ Stars) :$

 $\{ Dest\_Name, \, Cust\_ID \} \rightarrow Stars$ 

Computing the primary key:

 $\{Dest\_Name, Cust\_ID\}^{+} \rightarrow \{Hotel\_ID, Cust\_ID, Stars\}$ 

{Dest Name, Cust ID} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Dest\_Name, Cust\_ID} on the left.

#### RATING\_T&T (Tour\_ID, Cust\_ID, Stars):

{Tour ID, Cust ID} → Stars

Computing the primary key:

 $\{\text{Tour ID, Cust ID}\}^+ \rightarrow \{\text{Hotel ID, Cust ID, Stars}\}$ 

{Tour ID, Cust ID} is the primary key.

#### **BCNF Proof:**

The relation is in BCNF because all functional dependencies have the primary key {Tour ID, Cust ID} on the left.

#### ROOM NUMBER (Hotel\_ID, Room\_Type, Room\_No):

Computing the primary key:

{Hotel\_ID, Room\_Type, Room\_No}<sup>+</sup> → {Hotel\_ID, Room\_Type, Room\_No}

{Hotel ID, Room Type, Room No} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.

#### TOUR CONTACT DETAILS (Tour ID, TContactNumber):

Computing the primary key:

 $\{Tour\_ID, TContactNumber\}^+ \rightarrow \{Tour\_ID, ContactNumber\}$ 

{Tour ID, TContactNumber} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.

#### AVAILABLE HOTEL(Destination Name, Hotel ID):

Computing the primary key:

{Destination Name, Hotel\_ID}<sup>+</sup> → {Destination Name, Hotel\_ID}

{Destination Name, Hotel ID} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.

#### **HOTEL CONTACT DETAILS** (<u>Hotel\_ID,HContactNumber</u>):

Computing the primary key:

{Hotel\_ID, HContactNumber}<sup>+</sup> → {Hotel\_ID, ContactNumber}

{Hotel\_ID, HContactNumber} is the primary key.

This relation only has a non-trivial functional dependency. So, it is in BCNF, as all functional dependencies only have the primary key on the left.