STANDARD NORMAL DISTRIBUTION

INFERENTIAL STATISTICS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Standard Normal Distribution

Central Limit Theorem

STANDARD NORMAL DISTRIBUTION

STANDARDIZATION

Standardization is the process of converting the distribution of a variable $X \sim (\mu, \sigma^2)$ to a normal distribution $Z \sim N(0, 1)$.

Formula

$$Z = \frac{X - u}{\sigma}$$

where

Z = z-score

X = random variable

<u>example</u>

Data	$X-\mu$ Z-score	
1	-4	-1.46
2	-3	-1.095
3	-2 -0.73	
4	-1 -0.365	
5	0 0	
6	1	0.365
7	2	0.73
8	3	1.095
9	4	1.46

$$\bar{x} = 5.0$$
 $s = 2.74$

STANDARDIZATION

Standardization is the process of converting the distribution of a variable $X \sim (\mu, \sigma^2)$ to a normal distribution $Z \sim N(0, 1)$.

Formula

$$Z = \frac{X - u}{\sigma}$$

<u>where</u>

$$Z = z$$
-score

X = random variable

Normal Distribution

STANDARD NORMAL DISTRIBUTION

When we standardize the **normal distribution**

 $X \sim N(\mu, \sigma^2)$, the result is a **standard normal distribution** $Z \sim N(0, 1)$.

Formula

$$Z = \frac{X - u}{\sigma}$$

<u>where</u>

$$Z = z$$
-score

X = random variable

Standard Normal Distribution

EXERCISE

Convert the given dataset into a <u>standard normal</u> <u>distribution</u> N(0, 1) by computing the **z-score** for each data point.

	$\overline{}$	+	$\overline{}$
ע	a	し	a

Dala
1
2
2
3
3
3
4
1 2 2 3 3 3 4 4 4
5

solution

CENTRAL LIMIT THEOREM

CENTRAL LIMIT THEOREM

The <u>Central Limit Theorem</u> (CLT) states that the sampling distribution of the <u>sample mean</u> will be normally distributed, regardless of the shape of the original population distribution.

CENTRAL LIMIT THEOREM

Original Population Distribution

<u>Sampling Distribution</u>

 $N\left(\mu, \frac{\sigma^2}{n}\right)$

As the sample size n increases the variance $\frac{\sigma^2}{n}$ of sampling distribution decreases.

SAMPLING DISTRIBUTION

A <u>sampling distribution</u> is the probability distribution of a <u>statistic</u> (e.g., μ , σ^2) obtained from a large number of samples drawn from a specific population.

Denoted by

$$N\left(\mu, \frac{\sigma^2}{n}\right)$$
 , $n > 30$

where

 $\frac{\sigma^2}{n}$ = variance of the sampling distribution

Sampling Distribution

STANDARD ERROR

Standard error is the **standard deviation** of the distribution formed by the **sample means**.

Formula

$$SE = \frac{\sigma}{\sqrt{n}}$$

where

 σ = sampling standard deviation

n = number of observations

Sampling Distribution

LABORATORY

