

Ex6D Q56

Sa)
$$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha}$$

$$U=8$$

$$0=40^{\circ}$$

$$y = x \tan \alpha - \frac{9x^2}{2u^2} (1 + \tan^2 \alpha)$$

$$-13 = x \tan 40 - \frac{10x^2}{2x8^2} (1 + \tan 40)$$

32
$$\frac{307}{30 \sin \alpha}$$
 $\frac{30}{30 \cos \alpha}$

P, horizontal. Q, horizontal
speed = 18 speed = 30cos
$$\alpha$$

dist = α
time = α
 α = α = α
 α = α =

vertical v u=0 s, = 4.9 t2 Q vertical 1+ $u = 30 \times \frac{4}{5} = 24$ a=-9,8 t = 1 t $52 = 24t - 4.9t^2$ $S_1 + S_2 = 32$ 419/E2 + 24 t - 419/t2 = 32

Rigid Bodies

We previously dealt with particles, where each object was modelled just as a single point, and considered forces acting on each point separately.

In this chapter we consider rigid bodies (in this case **rods**), which takes into account the size of the object. This means we can consider other properties, e.g. **rotation** of the body.

1:: Moments in equilibrium

Clockwise moment = Anticlockwise moment

2:: Centre of Mass

For a 'non-uniform' rod we can't model its weight as acting at the centre.

3:: On the point of Tilting

"A non uniform wooden plank of mass M kg rests horizontally on supports at A and B, as shown. When a bucket of water of mass 18kg is placed at point C, the plank is in equilibrium, and is **on the point of tilting** about B. Find the value of M and the magnitude of the reaction at B."

Key Questions

a) What does it mean if a rod/beam is uniform?
b) What does it mean if a rod/beam is non-uniform?
c) What does it mean if a rod/beam is on the point of tilting about A?
d) Why might you take moments from different points on the beam?
e)There are only 2 things you can do in a moments question. What are they?

Moments

The 'moment' of a force measures the **turning effect** of the force on the body on which it is acting. $perp. force \times dist$.

about a point perpendicular distance

(any point you choose)

The diagram shows two forces acting on a lamina. Find the moment of each of the forces about the point P.

Terminology: A *lamina* is a 2D object whose thickness can be ignored.

clochwise moment = 5×2=10Nm anti-clochwise moment = 8×2sin50 = 12·3Nm (3sf) (esubtout = 2·3N (2sf) antichochwise.

Resultant Moments

C. = 20×10 = 200 a.c.=15×10=150 50Nm clochwise.

a.c. = $4 \times 1 + 3 \times 1 = 7 \text{Nm}$ $C = 5 \times 2 = 10 \text{Nm}$ resultant = 3 Nm clochwise

Exercise 4B

1 These diagrams show sets of forces acting on a light rod. In each case, calculate the resultant moment about P.

a

d

2 These diagrams show forces acting on a lamina. In each case, find the resultant moment about P.

3 The diagram shows a set of forces acting on a light rod. The resultant moment about P is 17 Nm clockwise. Find the length, d.

4 The diagram shows a set of forces acting on a light rod. The resultant moment about P is 12.8 N m clockwise. Find the value of x.

- a 5 Nm anticlockwise
 - 19 Nm anticlockwise
 - 4 Nm clockwise
- 16 Nm clockwise
 - 10 Nm clockwise
 - e 0.5 Nm anticlockwise

- 13 Nm clockwise
- 11 Nm anticlockwise
- 7 Nm anticlockwise
- 1 Nm anticlockwise

(3 marks)

- 6 m
- 1.6

This entire topic summarised...

The resultant force in any direction is 0.

The resultant moment about (any)point is 0.

i.e. Forces up = forces down, as per Year 1

In other words, clockwise moments = anticlockwise moments

You will typically use <u>both</u> these properties to solve exam questions.

Rigid Bodies in Equilibrium

mass spreadevenly

Where does weight act on a body?

A <u>uniform</u> rod AB of length 3m and weight 20N rests horizontally on supports at A and C, where AC = 2m. (see diagram)

Calculate the magnitude of the reaction at each of the supports.

Given that the rod is in equilibrium, find the values of X and Y

Exercise 4C

1 AB is a uniform rod of length 5 m and weight 20 N. In these diagrams AB is resting in a horizontal position on supports at C and D. In each case, find the magnitudes of the reactions at C and D.

a	A-	1 m C		3 m	D 1 m		D
				Δ			- B
c		1.5m	C	2.5m	D	1 m	

D	A-	2 m	C	2 m	DIM	D
			Δ		Δ	- B
4		1 5	C	2 7	D 00.	

d
$$A = 1.5 \text{ m} \cdot C$$
 2.7 m $D = 0.8 \text{ m} \cdot D$

2 Each of these diagrams shows a light rod in equilibrium in a horizontal position under the action of a set of forces. Find the values of the unknown forces and distances.

3 Jack and Jill are playing on a seesaw made from a uniform plank AB, of length 5 m pivoted at M, the midpoint of AB. Jack has mass 35 kg and Jill has mass 28 kg. Jill sits at A and Jack sits at a distance x m from B. The plank is in equilibrium. Find the value of x.

Exercise 4C

1 a 10N, 10N c 12N, 8N

- **b** 15N, 5N
- 12N, 8N 7.5, 17.5 **b** 30, 35
- d 12.6N, 7.4N

2 a 7.5, 17.5

c 245, $2\frac{2}{3}$

3 0.5 m