Будем рассматривать уравнение диффузии в кольце

$$\partial_t u = D\partial_{xx} u + F(u(x,t),t), \ x \in [0;2\pi]$$

Будем искать для $t \in [0; T]$ решение u(x, t), отвечающее следующим граничным и начальным условиям

$$u(x,0) = u_0(x), \ x \in [0; 2\pi]$$
$$u(0,t) = u(2\pi,t); \ \partial_x u(0,t) = \partial_x u(2\pi,t), \ t \in [0;T]$$

Программа принимает на вход следующие параметры:

D – коэффициент диффузии

N – количество узлов сетки по x для численного метода

dt – шаг по времени, с которым будет двигаться программа

NT – количество шагов по времени, которые будет выполнять программа

 2π -периодичность функции будет следовать из периодичности начальной функции u_0 и периодичности функции правой части F. В качестве стартовой функции и правой части для теста можно использовать функции, описанные ниже . В дальнейшем я попрошу изменять эту функцию.

$$u_0 = \sin(5x)$$
$$F(u(x,t),t) = \sin(0.1 * u(x,t) + t)$$

В качестве бонусного упражнения можете настроить ввод функции пользователем.

Также у пользователя должна быть возможность выбирать вид отображения: анимация профиля волны или тепловая карта. Соответственно, после указания параметров пользователь должен запустить расчет кнопкой "Run"и наслаждаться результатом.

Аппроксимация задачи

Для аппроксимации исходной задачи будем использовать неявную симметричную разностную схему. Зададим пространственную сетку

$$x_n = nh, \ n = \overline{0, N}, \ h = \frac{2\pi}{N},$$

где N — количество узлов сетки, h — шаг пространственной переменной. Определим сеточную функцию

$$u = (u_0, u_1...u_N), \ u_n = u(x_n), n = \overline{0, N}$$

в каждый момент времени $t \in [0;T]$. Выберем шаг по времени τ , тогда

$$t_m = m\tau, \ m = \overline{0, M}, \ M = \frac{T}{\tau},$$

$$u^m = u(x, m\tau), \ u_n^m = u(nh, m\tau).$$

 $\mathcal{D}\mathcal{U}_{XX}$ аппроксимируем сеточным оператором L_n

$$L_n u^m = D \frac{u_{n+1}^m - 2u_n^m + u_{n-1}^m}{h^2}.$$

Введем систему сеточных функций, которые будут составлять ортонормированный базис и являться собственным функциями оператора L_n :

$$e_k(j) = \frac{1}{2\pi} e^{ikjh}, \ k = \overline{0, N},$$

тогда собственные значения оператора L_n имеют вид

$$\lambda_k = \frac{4D}{h^2} \sin^2(\frac{kh}{4}).$$

Для аппроксимации правой части используем выражение:

$$F_n^m = F(u_n^m, \tau m)$$

Используя введенные обозначения, запишем неявную симметричную разностную схему для исходного уравнения:

$$\begin{cases}
 \frac{u_n^m - u_n^{m-1}}{\tau} + L_n \left(\frac{u^m + u^{m-1}}{2} \right) = \frac{F_n^m + F_n^{m-1}}{2}, & m = \overline{0, M}, n = \overline{0, N} \\
 u_0^m = u_N^m = \frac{u_1^m + u_{N-1}^m}{2}, & \\
 u_n^0 = u_0(xn), & n = \overline{0, N}.
\end{cases}$$
(1)

Метод Фурье

 $e_n, p = \overline{0, N}$:

Уравнение будем решать методом итерации. Пусть $u^{(s)}$ – s-ое приближение на текущем временном слое т. В качестве начального (нулевого) приближения возьмем решение на предыдущем временно слое $u^{(0)} = u^{m-1}$. Правую часть переобозначим следующим образом $F^{(s)} = F(u_n^{(s)}, P)$. Перепишем схему с учетом этих обозначений:

$$\left(E + \frac{\tau}{2}L_n u^{(s)}\right) = \left(E + \frac{\tau}{2}L_n\right)u^{m-1} + \tau \frac{F_n^{(s-1)} + F_n^{m-1}}{2}, n = \overline{0, N}.$$

Для решения этих уравнений применим метод Фурье. Решение $u^{m}(x_{n}) = \sum_{k=0}^{N} \widehat{u}_{k}^{m} e_{k}(x_{n}).$ Hyperause [1, 6] и будем искать в виде

Рассмотрим метод Фурье для s-ой итерации Домножим обе части равенства скалярно на

 $\left\langle \left(E + \frac{\tau}{2} L_n\right) \sum_{n=0}^{N} \widehat{u}_k^{(s)} e_k, e_p \right\rangle = \left\langle \left(E - \frac{\tau}{2} L_n\right) \sum_{n=0}^{N} \widehat{u}_k^{m-1} e_k, e_p \right\rangle + \tau \left\langle \frac{F_n^{(s-1)} + F_n^{m-1}}{2}, e_p \right\rangle.$

Используя это и обозначив $\phi_l^m = \langle F_n^{(s-1)} + F_n^{m-1}, e_l \rangle$, получаем

$$\left(1 + \frac{\tau}{2}\lambda_l\right)\widehat{u}_l^{(s)} = \left(1 - \frac{\tau}{2}\lambda_l\right)\widehat{u}_l^m + \frac{\tau}{2}\phi_l^m.$$

Таким образом, получаем коэффициенты Фурье для искомой функции:

 $\widehat{u}_l^{(s)} = \frac{(2-\tau\lambda_l)u_l^{m-1}+\tau\phi^mi_l}{2+\tau\lambda_l}.$