Tutorial 8

Exercise 5

- 7. Let W be a subspace of \mathbb{R}^n . Define $W^{\perp} = \{ u \in \mathbb{R}^n \mid u \text{ is orthogonal to } W \}$.
 - (a) Let $W = \text{span}\{(1,0,1,1), (1,-1,0,2), (1,2,3,-1)\}$. Find W^{\perp} .
 - (b) Show that W^{\perp} is a subspace of \mathbb{R}^n . (Hint: Show that W^{\perp} is a solution set of a homogeneous system of linear equations.)
- 12. Use Gram-Schmidt Process to transform each of the following bases for \mathbb{R}^3 to an orthonormal basis.
 - (a) $\{(1,0,1), (0,1,2), (2,1,0)\}.$
- 13. Use Gram-Schmidt Process to transform the following basis for \mathbb{R}^4 to an orthonormal basis: $\{(2,1,0,0), (-1,0,0,1), (2,0,-1,1), (0,0,1,1)\}.$
- 19. (All vectors in this question are written as column vectors.) Let A be a square matrix of order n such that A² = A and A^T = A.
 - (a) For any two vectors $u, v \in \mathbb{R}^n$, show that $(Au) \cdot v = u \cdot (Av)$.
 - (b) For any vector $w \in \mathbb{R}^n$, show that Aw is the projection of w onto the subspace $V = \{u \in \mathbb{R}^n \mid Au = u\}$ of \mathbb{R}^n .
- A father wishes to distribute an amount of money among his three sons Jack, Jim and John.
 - (a) Show that it is not possible to have a distribution such that the following conditions are all satisfied.
 - The amount Jack receives plus twice the amount Jim receives is \$300.
 - (ii) The amount Jim receives plus the amount John receives is \$300.
 - (iii) Jack receives \$300 more than twice of what John receives.
 - (b) Since there is no solution to the distribution problem above, find a least squares solution.

(Make sure that your least squares solution is feasible. For example, one cannot give a negative amount of money to anybody.)

- 27. (a) Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$.
 - (i) Solve the linear system Ax = b.
 - (ii) Find a least squares solution to Ax = b.
 - (b) Suppose a linear system Ax = b is consistent. Show that the solution set of Ax = b is equal to the solution set of $A^{T}Ax = A^{T}b$.

(Hint: You need Theorem 4.3.6 and the result of Question 4.25(a).)