Introducción: Conceptos preliminares

Giancarlo Sal y Rosas, Ph.D.

Departamento de Ciencias Pontificia Universidad Católica del Perú vsalyrosas@pucp.edu.pe

15 de marzo de 2017

Outline

- Motivación
- Notación / Modelos / Conceptos
- Máxima Verosimilitud
- Censura

Caso 1: Estudio HPTN 039

- Hipótesis: El tratamiento contra VHS-2 (virus del herpes typo 2) reduce el riesgo de infección por VIH-1.
- Población: mujeres y hombres que tienen sexo con otros hombres VIH-1 negativas y VHS-2 positivas en alto riesgo de adquirir VIH.
- Grupos: Participantes fueron aleatorizados a:
 - Intervención: Aciclovir un medicamento muy efectivo para tratar VHS-2 y sin efectos adversos conocidos
 - Control: Un placebo que lucía fisicamente similar al aciclovir

Caso 1: Estudio HPTN 039

- Localización: El estudio incluyó 4 ciudades de EEUU, 3 de Perú y 6 de África.
- Visitas: El periodo de seguimiento se dio cada 3 meses y duró entre 12 a 18 meses.
- Respuesta: Tiempo hasta la adquisición de VIH.
- Objetivo científico: El tratamiento con aciclovir reduce el riesgo de infección de VIH.
- Objetivo estadístico: La función de supervivencia es diferente (mayor) para el grupo que tomó aciclovir que para el que no lo tomó.
- Celum et al. [1] publicaron los resultados de este estudio.


```
> hptn <- read.csv("hptn.csv")</pre>
> head(hptn)
       ptid
             t1 t2
                     event arm
  203000045 NA
                 NA
2 203000045 0
                 90
3 203000045 90 175
  203000045
            175 266
5 203000045 266
                357
6 203000053
             NA
                 NA
                         0
```

- ptid: Codigo para identificar al participante
- **t1**, **t2**: (*t*1, *t*2) intervalo de tiempo de observación
- event: Si el evento (infección) ocurrio (1) o no (0)
- arm: Grupo de intervención (1) o control (0)

Figura: Caso 1: Estudio HPTN 039

Caso 2: Estudio de Notificación de Parejas

- Población: Hombres y mujeres recientemente curados de gonorrea y/o chlamydia.
- Grupos: Participantes fueron aleatorizados a:
 - Intervención: Tickets para reclamar medicación para entregar a sus parejas o si lo preferían, personal médico podría contactarlos y entegarles la medicación sin examinación médica.
 - Control: Tratamiento estándar
- Respuesta: Persistencia o recurrencia de gonorrea y/o chlamydia en el paciente enrolado.

Caso 2: Estudio de Notificación de Parejas

- Medidas: Cada individuo tuvo dos visitas
 - Una visita de enrolamiento
 - Una visita de seguimiento (entre las semanas 3 y 19)
- Objetivo científico: Mostrar que la intervención reduce la recurrencia y/o persistencia de gonorrea y/o chlamydia.
- Objetivo estadístico: Mostrar que la función de supervivencia es diferente para ambos grupos.
- Golden et al. [2] y Sal y Rosas and Hughes [3] publicaron los resultados de este estudio.

Estructura de los datos

> hea	ad (pns)									
	gender	arm	ptid	ct_gc	ct_res	gc_res	age	corrctgc	folltime	follprim
1676	1	0	B2697	В	1	1	20.93908	1	19	0
1745	1	1	B2767	С	0	NA	22.53525	0	21	1
2263	1	1	B3286	С	1	NA	21.05133	1	21	1
445	1	0	B1455	G	0	0	23.96441	0	23	1
1693	1	1	B2714	С	1	NA	21.92745	1	23	1
1571	1	1	B2592	C	1	NΑ	26 35455	1	24	1

- gender: Hombre (1) o mujer (0)
- arm: Intervención (1) o control (0)
- folltime: Tiempo de observación (dias)
- corrctgc: Si el evento (infección) ocurrio (1) o no (0)

Figura: Caso 2: Estudio de Notificación de Parejas

Caso 3: Deserción universitaria

- Motivación: En el campo de la educación universitaria hay tres outcomes que se pueden medir:
 - Abandono forzado
 - Abandono voluntario
 - Graduación
- Pregunta científica: Se desea estudiar que factores están asociados con acelerar o retardar estos outcomes.
- Población: Estudiantes de la Pontificia Universidad Católica del Peru (PUCP).

Caso 3: Deserción universitaria

- Muestra: Se tiene disponible data de estudiantes que ingresaron entre los años 2002-l y 2012-l a la PUCP.
- Respuesta: Tiempo hasta lo que ocurra primero:
 - Abandono forzado
 - Abandono voluntario
 - Graduación
- Características particulares:
 - Es una variable discreta pues se mide en semestres.
 - Esta área es la que conocemos como análisis de riesgos competitivos.
- Pebes [4] analizó los factores asociados a la deserción estudiantil en la PUCP.

Estructura de los datos: Deserción

```
> head(deser)
         id time censored gender
                                                                                 typeschool
                                                         area
3435
       8537
               15
                         O female Architecture and urbanism Private /
                                                                         private religious
13901 19003
                             male
                                                      Science Private /
                                                                         private religious
10788 15890
                             male
                                                      Science Private /
                                                                         private religious
19477 24579
                             male
                                                      Science Private /
                                                                         private religious
442
       5544
                             male
                                                      Science Private /
                                                                         private religious
10283 15385
               13
                             male
                                                      Science Private /
                                                                         private religious
```

- id: Codigo del estudiante
- time: Número de ciclos de observación
- censored: Si el estudiante abandono (1) o no (0)

Figura : Caso 3: Deserción universitaria

Motivación

- En muchas áreas, la principal variable de respuesta es el tiempo a un determinado evento.
 - Tiempo hasta contraer una enfermedad
 - Tiempo hasta abandonar la universidad
 - Tiempo hasta terminar de pagar un préstamo
- En estos casos nuestro interés está en
 - Caracterizar la distribución del tiempo hasta que ocurra el evento para una población determinada
 - Hacer esta caracterización para dos grupos o más
 - Modelar la relación entre el tiempo a la ocurrencia de un evento y un conjunto de covariables.

Tiempo a la ocurrencia del evento

- Sea T una variable aleatoria (v.a), no negativa, que denota el tiempo a la ocurrencia de un evento de interés.
- Para evitar ambigüedad, el tiempo de inicio y el tiempo final deben ser muy bien especificados.
- Ejemplos
 - Supervivencia en general: Mide el tiempo desde el nacimiento hasta la muerte de un individuo - Estudios de esperanza de vida.
 - Tiempo de supervivencia asociado a un tratamiento para una población con determinada enfermedad: Tiempo desde el inicio del tratamiento hasta muerte.

Tiempo a la ocurrencia del evento

- En un análisis éstandar, al querer describir la variable tiempo, se presentan medidas de resumen como
 - La media, mediana
 - Desviación éstandar, rango intercuartil
- Debido a la existencia de datos censurados estas medidas de resumen pueden ser sesgadas (veremos mas adelante).
- Se necesita otra forma de presentar los datos:
 - Función de distribución
 - Función de supervivencia
 - Función de riesgo

Tiempo a la ocurrencia del evento

La distribución de *T* se puede describir de varias formas:

Función acumulada de distribución:

$$F(t) = P(T \le t) , t > 0$$

es la probabilidad de que una persona de la población seleccionada al azar **muera** antes de o en el tiempo T = t.

Función de supervivencia:

$$S(t) = 1 - F(t) = P(T > t), t > 0$$

es la probabilidad de que una persona de la población seleccionada al azar **sobreviva** hasta el tiempo T = t.

Propiedades

- F es una función no decreciente
- Tiende a cero por la izquierda

$$\lim_{h\to -\infty} F(h)=0$$

Tiende a uno por la derecha

$$\lim_{h o \infty} F(h) = 1$$

• Si T es una variable (absolutamente) continua, entonces tiene una función de densidad, $f(\cdot)$, que se relaciona a $F(\cdot)$ via

$$f(t) = \frac{dF(t)}{dt}$$
 , $F(t) = \int_0^t f(u)du$

Media del tiempo

$$\mu = E(T) = \int_0^\infty S(t)dt$$

Mediana del tiempo

$$t_{0.5} = \inf_{\mathbf{v}} \{ m : S(x) \le 0.5 \}$$

Definición

Función de riesgo

$$\lambda(t) = \lim_{h \to 0^+} \frac{P(t \le T < t + h \mid T \ge t)}{h}$$

es el riesgo instantáneo de que el evento ocurra en en el intervalo [t, t+h], dado que no ha ocurrido hasta el tiempo t.

- Propiedades
 - $\lambda(t) \geq 0, \forall t$
 - $\lambda(\cdot)$ no tiene limite superior

Motivación

Figura : Función de riesgo instantaneo para diferentes situaciones

• Función de riesgo acumulado

$$\Lambda(t) = \int_0^t \lambda(s) ds$$

que define el riesgo acumulado de que acurra el evento hasta el tiempo ${\cal T}=t$

En el caso $f(\cdot)$ exista, las siguientes relaciones se cumplen

• $\lambda(\cdot)$ puede ser expresada como

$$\lambda(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt}\log(S(t))$$

• La función de supervivencia puede ser expresada como

$$S(t) = \exp[-\Lambda(t)]$$

Sea T una variable aleatoria continua que se comporta como un modelo exponencial con parámetro η , $T \sim \textit{Exp}(\eta)$. Entonces

$$f(t) = \eta \exp(-\eta t)$$

$$F(t) = 1 - \exp(-\eta t)$$

$$\lambda(t) = \eta$$

$$\Lambda(t) = \eta t$$

para t > 0

Figura: Modelo Exponencial

Modelo Weibull

Sea T una variable aleatoria continua que se comporta como un modelo Weibull con parámetros de forma y escala a v b. $T \sim Weibull(a, b)$, entonces

$$f(t) = \frac{a}{b} \left(\frac{t}{b}\right)^{a-1} \exp\left[-(t/b)^{a}\right]$$

$$F(t) = 1 - \exp\left[-(t/b)^{a}\right]$$

$$\lambda(t) = \frac{a}{b} \left(\frac{t}{b}\right)^{a-1}$$

$$\Lambda(t) = \left(\frac{t}{b}\right)^{a}$$

donde t > 0

Figura: Modelo Weibull

Tiempos discretos

Si T es una v.a. discreta que toma los valores $a_1 < a_2 < \cdots$

La función de probabilidad asociada es

$$f(a_i) = P(T = a_i)$$
 , $i = 1, 2, ...$

La función acumulada de probabilidad es

$$F(t) = P(T \le t) = \sum_{j|a_j \le t} f(a_j)$$

La función de supervivencia es

$$S(t) = P(T > t) = \sum_{j|a_i>t} f(a_j)$$

La función de riesgo esta dada por

$$\lambda_i = P(T = a_i \mid T \ge a_i) = \frac{f(a_i)}{S(a_i^-)} = 1 - \frac{S(a_i)}{S(a_{i-1})}$$

La función de supervivencia se puede caracterizar como

$$S(t) = \prod_{j|a_j \le t} (1 - \lambda_j)$$

Interpretación: La probabilidad de sobrevivir hasta el instante $T = a_i$ es igual a la probabilidad de que el evento no ocurra en los instantes a_1, a_2, \ldots, a_i .

La función de probabilidad se puede caracterizar por

$$f(a_i) = \lambda_i \prod_{j=1}^{i-1} (1 - \lambda_j)$$

Interpretación: La probabilidad de que ocurra el evento en el instante a_i es igual a la probabilidad de que ocurra en a_i (λ_i) y no ocurra en a_{i-1} , a_{i-2} , ..., a_2 , a_1

Ejemplo

• Los siguientes datos son una muestra aleatoria de los tiempos (en meses) hasta la ocurrencia de un evento:

- Ojbetivo: Construir un modelo para describir este conjunto de datos
- Modelos potenciales: Exponencial, Weibull, no paramétrico

Estimación: Modelo exponencial

Supongamos que observamos una muestra

$$T_1, T_2, \ldots, T_n$$

de tiempos que son v.a. independientes e identicamente distribuidas.

 Si estas v.a. siguen un modelo <u>exponencial</u>, la probabilidad de observar esta muestra es

$$P(T = t_1, \dots, T = t_n) = \prod_{i=1}^n P(T = t_i) = \prod_{i=1}^n f(t_i)$$

$$= \prod_{i=1}^n \eta \exp\left[-\eta t_i\right] = \eta^n \exp\left[-\eta \sum_{i=1}^n t_i\right]$$

La verosimilitud está dada por

$$L_n(\eta) = \eta^n \exp\left[-\eta \sum_{i=1}^n t_i\right]$$

y su logaritmo

$$I_n(\eta) = \log\left(L_n(\eta)\right) = n\log\left(\eta\right) - \eta \sum_{i=1}^n t_i \tag{1}$$

 El estimador de máxima verosimilitud se define como el valor que máximiza (1), es decir

$$\hat{\eta} = \arg_n \max I_n(\eta)$$

Estimación: Modelo exponencial

En este caso en particular tiene una solución explícita

$$\hat{\eta} = \frac{n}{\sum_{i=1}^{n} t_i}$$

• Los estimadores de $F(\cdot)$, $S(\cdot)$ y $\lambda(\cdot)$ estan dados por

$$\hat{F}_n(t) = 1 - e^{-\hat{\eta}t}
\hat{S}_n(t) = e^{-\hat{\eta}t}
\hat{\lambda}_n(t) = \frac{n}{\sum_{i=1}^{n} t_i}$$

Estimación: Modelo exponencial

• La matriz de información, $I(\eta)$ está dada por:

$$I(\eta) = -E\left(\frac{\partial^2 L(\eta)}{\eta^2}\right) = \frac{n}{\hat{\eta}^2}$$

 El error estándar es la raíz de la inversa de la matriz de información:

$$SE(\hat{\eta}) = \sqrt{I(\eta)^{-1}} = \frac{\hat{\eta}}{\sqrt{n}}$$

• El estimador de máxima verosimilitud de η es

$$\hat{\eta}_n = 0, 12$$

• El error estándar de $\hat{\eta}$ es

$$SE(\hat{\eta}) = 0,04$$

La probabilidad estimada de sobrevivir 5 meses es

$$\hat{S}_n(5) = \exp[-0, 12 \times 5] = 0, 55$$

La probabilidad estimada de sobrevivir 10 meses es

$$\hat{S}_n(10) = \exp[-0, 12 \times 10] = 0, 30$$

Estimación: Modelo exponencial

Figura: Función estimada de supervivencia

Supongamos que observamos una muestra

$$T_1, T_2, \ldots, T_n$$

de tiempos que son v.a. independientes e identicamente distribuidas.

 Si estas v.a. siguen un modelo Weibull, la probabilidad de observar esta muestra es

$$P(T = t_1, ..., T = t_n) = \prod_{i=1}^{n} P(T = t_i) = \prod_{i=1}^{n} f(t_i)$$

$$= \prod_{i=1}^{n} \frac{a}{b} \left(\frac{t_i}{b}\right)^{a-1} \exp\left[-(t_i/b)^a\right]$$

La verosimilitud está dada por

$$L_n(a,b) = \left(\frac{a}{b}\right)^n \left(\prod_{i=1}^n t_i\right)^{a-1} \left(\frac{1}{b}\right)^{na-n} \exp\left[-\frac{1}{b^a} \sum_{i=1}^n t_i^a\right]$$

y su logaritmo por

$$I_n(a,b) = n[\log(a) - \log(b)] + (a-1) \sum_{i=1}^n \log(t_i)$$
$$-n(a-1) \log(b) - \frac{1}{b^a} \sum_{i=1}^n t_i^a$$

 En este caso, el estimador de máxima verosimilitud se debe calcular de manera numérica.


```
# Weibull model
 lweibull <- function(x.t)</pre>
        <- length(t)
   a < x[1]
       <-x[2]
   res <-n*log(a) - n*log(b) + (a-1)*sum(log(t)) - sum(t^a)/(b^a) - (n*a-n)*log(b)
    return(-res)
         <- nlminb(c(1,1), lweibull, t=t)
> mwei
> mwei
$par
[1] 1.221615 8.756190
> ee <- solve(hessian(lweibull, x=mwei$par, t=t))</pre>
> ee
           [,1]
[1.] 0.09880791 0.2306766
[2,] 0.23067658 5.6761494
```


 Usando R, el estimador de máxima verosimilitud de a y b son

$$\hat{a}_n = 1.22 \ y \ \hat{b}_n = 8.76$$

La matriz de varianza es

$$SE(\hat{a}_n, \hat{b}_n) = \begin{pmatrix} 0.1 & 0.23 \\ 0.23 & 5.68 \end{pmatrix}$$

es decir la desviación éstandar de \hat{a}_n y \hat{b}_n es 0.31 y 2.38, respectivamente.

La probabilidad estimada de sobrevivir 5 meses es

$$\hat{S}_n(5) = \exp \left[-\left(\frac{5}{8.76}\right)^{1.22} \right] = 0.60$$

La probabilidad estimada de sobrevivir 10 meses es

$$\hat{S}_n(10) = \exp\left[-\left(\frac{10}{8.76}\right)^{1.22}\right] = 0.31$$

Figura: Función estimada de supervivencia

Estimación: No paramétrica

- ¿ Qué opción tenemos si queremos ser flexibles y deseamos no asumir un modelo exponencial?
- Sin información adicional, el mejor estimador de $F(\cdot)$ tiene la forma

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I(T_i \le t) = \frac{\# \text{ observaciones } \le t}{n}$$

donde

$$I(T_i \le t) = \begin{cases} 1 & T_i \le t \\ 0 & T_i > t \end{cases}$$

es decir $\hat{F}_n(t)$ es el promedio del número de observaciones, en la muestra, que son menores o iguales a t.

Estimación: No paramétrica

- Este estimador asigna masa ¹/_n a cada observación
- La probabilidad estimada de sobrevivir 5 meses es

$$\hat{S}_n(5) = 1 - \hat{F}_n(5) = 1 - \frac{4}{10} = 0,6$$

La probabilidad estimada de sobrevivir 10 meses es

$$\hat{S}_n(10) = 1 - \hat{F}_n(10) = 1 - \frac{7}{10} = 0.3$$

Estimación: No paramétrica

Figura: Función acumulada de probabilidad estimada

Estimación: No paramétrica vs. paramétrica

Figura : Función acumulada de probabilidad estimada en base a tres diferentes modelos

Datos censurados

- Usualmente, cuando los datos son recolectados durante un periodo de tiempo determinado, puede pasar que el tiempo a la ocurrencia del evento no sea observado para algunos individuos.
 - Este resultado es lo que se conoce como dato censurado
- Se pueden presentar tres tipos de datos censurados:
 - Por la derecha: Solo se conoce que el evento no ha ocurrido hasta el tiempo t.
 - Por la izquierda: Se conoce que el evento ha ocurrido previo a un tiempo t.
 - Intervalo: Se conoce que el evento ocurrio entre dos puntos en el tiempo [t₁, t₂]

Datos censurados: Derecha

Datos del participante con codigo 203000045

 Nuestra información es que si la infección ocurre sera en algun momento despues del dia 357

Datos censurados: Derecha

Datos censurados: Intervalo

Datos del participante con codigo 628001747

 La infección por VIH, para este participante, se dio en el intervalo (90,180], pero no sabemos en que dia exactamente.

Datos censurados

- Datos censurados por la derecha
 - El participante del estudio se mudó de ciudad.
 - El paciente falleció de una causa ajena a al enfermedad estudiada.
 - El estudio terminó y el evento de interés no se observó.
- Datos censurados por la izquierda
 - Tiempo hasta el primer resfrío de un bebe
- Datos censurados por intervalo
 - Se registra anualmente si una persona se ha contagiado (o no) de determinada enfermedad.

Libreria survival

 Esta data es un estudio del tiempo de vida de 100 personas con cancer de pulmon

```
> head(lung)
  inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
                2 74
       306
                                        90
                                                  100
                                                          1175
                                                                   NA
       455
                2 68
                                        90
                                                  90
                                                          1225
                                                                   15
     3 1010
                                        90
                                                  90
                                                           NA
                                                                   15
              2 57 1
      210
                                        90
                                                         1150
                                                                   11
                                                  60
                2 60 1
       883
                                        100
                                                  90
                                                           NA
    12 1022
                                        50
                                                  80
                                                          513
> Surv(lung$time,lung$status)[1:10]
            455 1010+ 210
                             883 1022+ 310
                                                     218
                                                            166
```

- El primer y segundo paciente murieron a los 306 y 455 dias del diagnóstico, respectivamente
- El tercer paciente se mantuvo con vida hasta el ultimo dia de observación (1010)

Libreria survival

> head(hptn, n=8)

203000045

[9] (

ptid 203000045 t1 t2 event arm

0 90

0, 88+1 (88,182+1

```
90 175
   203000045 175 266
   203000045 266 357
   203000053
                0 86
   203000053
              86 175
   203000053 175 265
10 203000053 265 358
> Surv(time = hptn$t1, time2 = hptn$t2, event = hptn$event)[1:10]
        [0, 90+] ( [90, 175+] ([175, 266+] ([266, 357+] ( [0, 86+] ( [86, 175+] ([175, 265+] ([265, 358+]
```

- Esta data es del estudio HPTN 039 que busca prevenir la infección de VIH
- En todos los intervalos observados tenemos data censurada

Referencias I

- [1] C. Celum, A. Wald, J. Hughes, J. Sanchez, S. Reid, S. Delany-Moretlwe, F. Cowan, M. Casapia, A. Ortiz, J. Fuchs, S. Buchbinder, B. Koblin, S. Zwerski, S. Rose, J. Wang, and L. Corey. Effect of aciclovir on hiv-1 acquisition in herpes simplex virus 2 seropositive women and men who have sex with men: a randomised, double-blind, placebo-controlled trial. *Lancet*, 371(9630): 2109–2119, 2008.
- [2] M. R. Golden, W. L. Whittington, H. H. Handsfield, J. P. Hughes, W. E. Stamm, M. Hogben, A. Clark, C. Malinski, J. R. Helmers, K. K. Thomas, and K. K. Holmes. Effect of expedited treatment of sex partners on recurrent or persistent gonorrhea or chlamydial infection. *New England Journal of Medicine*, 352(7):676–685, 2005.

Referencias II

[3] V. Sal y Rosas and J. Hughes. Nonparametric and semiparametric analysis of current status data subject to outcome misclassification. *Stat Commun Infect Dis*, 2010 (364), 2010.

