# ML Benchmarks on Discovery Cluster

# Research Computing







# Ensuring exclusive GPU usage

#### Non Exclusive Request for NVIDIA Tesla P100 GPU

\$ srun --partition gpu --pty --gres=gpu:p100 /bin/bash

| PID   | USER     | PR | NI  | VIRT   | RES    | SHR    | S | %CPU | %MEM | TIME+     | COMMAND    |
|-------|----------|----|-----|--------|--------|--------|---|------|------|-----------|------------|
| 9116  | e.dorari | 20 | 0   | 15.2g  | 845716 | 114408 | R | 99.7 | 0.2  | 102:16.46 | GB2D-alph+ |
| 17987 | s.chakr+ | 20 | 0   | 162368 | 2524   | 1584   | R | 0.7  | 0.0  | 0:00.09   | top        |
| 11059 | root     | 0  | -20 | 15.4g  | 1.3g   | 112952 | S | 0.3  | 0.3  | 39:19.04  | mmfsd      |
| 17939 | root     | 20 | 0   | 308372 | 4620   | 3304   | S | 0.3  | 0.0  | 0:00.07   | slurmstepd |
| 1     | root     | 20 | 0   | 51976  | 4148   | 2620   | S | 0.0  | 0.0  | 2:44.72   | systemd    |

Discovery user **e.dorari** can be seen hogging **99.7%** of the available E5-2680v4@2.40GHz CPU which would heavily skew results

#### Non Exclusive Request for NVIDIA V100 SXM2 GPU

\$ srun --partition gpu --pty --gres=gpu:v100-sxm2 /bin/bash

| PID    | USER     | PR | NI | VIRT    | RES    | SHR    | S | %CPU | %MEM | TIME+ COMMAND      |
|--------|----------|----|----|---------|--------|--------|---|------|------|--------------------|
| 243212 | jefftian | 20 | 0  | 7460388 | 201700 | 114600 | R | 99.7 | 0.1  | 97:01.82 continuu- |
| 243374 | jefftian | 20 | 0  | 7460388 | 203472 | 114600 | R | 99.7 | 0.1  | 96:04.34 continuu- |
| 243199 | jefftian | 20 | 0  | 7472108 | 209904 | 114600 | R | 99.0 | 0.1  | 96:56.08 continuu- |
| 9      | root     | 20 | 0  | 0       | 0      | 0      | S | 0.3  | 0.0  | 32:38.49 rcu_sched |
| 243355 | root     | 20 | 0  | 305284  | 4512   | 3216   | S | 0.3  | 0.0  | 0:00.28 slurmster  |
| 243377 | root     | 20 | 0  | 0       | 0      | 0      | S | 0.3  | 0.0  | 0:01.02 nv_queue   |
| 251939 | s.chakr+ | 20 | 0  | 162412  | 2584   | 1584   | R | 0.3  | 0.0  | 0:00.36 top        |

Discovery user **jeff.tian** can be seen hogging **99.7%** of the available Intel Gold 6132@2.60Ghz CPU which would heavily skew results

#### Exclusive Request for NVIDIA V100 SXM2 GPU

\$ srun --partition gpu --pty --gres=gpu:p100 --exclusive /bin/bash

| PID | USER     | PR | NI  | VIRT   | RES  | SHR  | S | %CPU | %MEM | TIME+   | COMMAND    |
|-----|----------|----|-----|--------|------|------|---|------|------|---------|------------|
| 766 | s.chakr+ | 20 | 0   | 162368 | 2524 | 1584 | R | 0.3  | 0.0  | 0:00.20 | top        |
| 1   | root     | 20 | 0   | 51976  | 4152 | 2620 | S | 0.0  | 0.0  | 2:47.79 | systemd    |
| 2   | root     | 20 | 0   | 0      | 0    | 0    | S | 0.0  | 0.0  | 0:00.23 | kthreadd   |
| 4   | root     | 0  | -20 | 0      | 0    | 0    | S | 0.0  | 0.0  | 0:00.00 | kworker/0+ |

My user s.chakravarty is now free to utilize all the compute

### Exclusive Request for NVIDIA V100 SXM2 GPU

\$ srun --partition gpu --pty --gres=gpu:v100-sxm2 --exclusive /bin/bash

| PID    | USER     | PR | NI  | VIRT   | RES  | SHR    | S | %CPU | %MEM | TIME+    | COMMAND   |
|--------|----------|----|-----|--------|------|--------|---|------|------|----------|-----------|
| 246024 | s.chakr+ | 20 | 0   | 162376 | 2532 | 1584   | R | 0.7  | 0.0  | 0:00.12  | top       |
| 1      | root     | 20 | 0   | 52808  | 4992 | 2612   | S | 0.3  | 0.0  | 3:28.23  | systemd   |
| 29     | root     | rt | 0   | Θ      | 0    | 0      | S | 0.3  | 0.0  | 0:03.28  | watchdog+ |
| 12373  | root     | 0  | -20 | 15.5g  | 1.49 | 219780 | S | 0.3  | 0.7  | 54:34.75 | mmfsd     |

My user  $\mathbf{s.chakravarty}$  is now free to utilize all the compute

# Creating a miniconda environment

# Clean Conda Environment Steps

#### Download Miniconda 2 from the internet

\$ wget https://repo.anaconda.com/miniconda/Miniconda2-latest-Linux-x86\_64.sh

## Change the permissions of the installation script

\$ chmod +x Miniconda2-latest-Linux-x86\_64.sh

## Run the installation script to install Miniconda 2

\$ ./Miniconda2-latest-Linux-x86\_64.sh

Agree to license agreement >> yes

Directory to install >> /work/rc/s.chakravarty

cd /work/rc/s.chakravarty/bin

## Activate your base miniconda environment

\$ source activate

### Update all your conda packages

conda update conda

Proceed? >> yes

# **Configuring Conda Environments**



# rapids.ai **cuML**

#### Steps

\$ conda create --name cuml\_env --no-default-packages

\$ conda activate cuml\_env

(cuml\_env) \$ conda install -c rapidsai-nightly -c nvidia -c conda-forge -c defaults rapids=0.16 python=3.8 cudatoolkit=11.0



# Intel® DAAL4py

#### Steps

\$ conda create --name daal4py\_env --no-default-packages \$ conda activate daal4py\_env

(daal4py\_env) \$ conda install -c intel daal4py



# H<sub>2</sub>O.ai **H<sub>2</sub>O<sub>4</sub>GPU**

#### Steps

\$ conda create --name h2o4gpu\_env --no-default-packages

\$ conda activate pydaal\_env

(h2o4gpu\_env ) \$ conda create -n h2o4gpuenv -c h2oai -c conda-forge -c rapidsai h2o4gpu-cuda10

# **Configuring Conda Environments**



# rapids.ai **cuML**

#### Sample Code

Python 3.8.5 | packaged by conda-forge |

>>> from cuml.cluster import KMeans

>>> import cudf, numpy as np, pandas as pd

>>> def np2cudf(df):

... df = pd.DataFrame({'fea%d'%i:df[:,i] for i in range(df.shape[1])})

... pdf = cudf.DataFrame()

... for c,column in enumerate(df):

... pdf[str(c)] = df[column]

... return pdf

 $>>> kmeans\_float = KMeans(n\_clusters = 2).fit(np2cudf(np.array([[1.,1.], [1.,4.], [1.,0.]]))) \\$ 

>>> print(kmeans\_float.cluster\_centers\_)

array([[1., 0.5], [1., 4.]])



# Intel® DAAL4py

#### Sample Code

\$ python3

Python 3.7.7 :: Intel(R) Corporation

>>> from daal4py import kmeans\_init

>>> import numpy as np

>>> X = np.array([[1.,1.], [1.,4.], [1.,0.]])

>>> kmi = kmeans\_init(10, method="plusPlusDense")

>>> result = kmi.compute(X)

>>> print(result.centroids)

array([[1., 0.5], [1., 4.]])



## H<sub>2</sub>O.ai **H<sub>2</sub>O<sub>4</sub>GPU**

#### Sample Code

\$ python3

Python 3.6.11 | packaged by conda-forge |

Type "help", "copyright", "credits" or "license" for more information

>>> import h2o4gpu

>>> import numpy as np

>>> X = np.array([[1.,1.], [1.,4.], [1.,0.]])

>>> model = h2o4gpu.KMeans(n\_clusters=2,random\_state=1234).fit(X)

>>> model.cluster\_centers\_

array([[1. , 0.5], [1. , 4. ]])