$\underset{Corrig\acute{e}}{\operatorname{Relations}}\; \underset{Corrig\acute{e}}{\operatorname{Binaires}}\;$

DARVOUX Théo

Décembre 2023

Exercices.	
Exercice 16.1	2

Soit \mathscr{R} la relation définie sur \mathbb{R} par :

$$x \mathcal{R} y \iff xe^y = ye^x.$$

- 1. Montrer que \mathscr{R} est une relation d'équivalence sur \mathbb{R} .
- 2. Préciser le cardinal de la classe d'équivalence d'un réel x.
- 1. Réflexivité : Soit $x \in \mathbb{R}$, on a bien que $xe^x = xe^x$.

Symétrie : Soient $x, y \in \mathbb{R}$ tels que $xe^y = ye^x$, on a bien $ye^x = xe^y$.

Transitivité : Soient $x, y, z \in \mathbb{R}$ tels que $xe^y = ye^x$ et $ye^z = ze^y$. Montrons que $xe^z = ze^x$.

D'après la première égalité, $y = xe^{y-x}$.

On remplace y dans la seconde : $xe^{y-x+z} = ze^y$.

On divise par e^y : $xe^{z-x}=z$. On multiplie par e^x : $xe^z=ze^x$.

On a bien $x \mathcal{R} z$.

2. Soient $x, y \in \mathbb{R}$.

On a $x \mathcal{R} y \iff \frac{x}{e^x} = \frac{y}{e^y}$. On pose $f: x \mapsto \frac{x}{e^x}$. La classe d'équivalence de x est alors $\{y \in \mathbb{R} \mid f(x) = f(y)\}$.

On a que f est dérivable et $f': x \mapsto \frac{1-x}{e^x}$. Alors :

x	$-\infty$ 1 $+\infty$
f'(x)	+ 0 -
f	$-\infty$ $\frac{1}{e}$ 0

Alors, pour $x \in]-\infty, 0]$, |[x]| = 1, pour x = 1, |[x]| = 1 et sinon, |[x]| = 2.