第五章 常微分方程测试题

满分: 120分 时间: 110分钟

一、选择题(每题 5 分, 共 25 分)

1.函数 $y = C - \sin x$ (其中 C 是任意常数)是方程 $\frac{d^2 y}{dx^2} = \sin x$ 的

(A) 通解

- (B) 特解
- (C) 是解, 但既非通解也非特解 (D)不是解

2. 微分方程 $x^2y' + xy = y^2$ 满足初始条件 $y|_{y=1} = 1$ 的特解为

- (A) $y = \frac{2x}{1+x^2}$ (B) $y = \frac{2x}{1-x^2}$ (C) $y = \frac{x}{1+x^2}$ (D) $y = \frac{2}{1+x^2}$

3. 微分方程 $yy'' + (y')^2 = 0$ 满足初始条件 $y|_{x=0} = 1, y'|_{x=0} = \frac{1}{2}$ 的特解是

- (A) $y^2 = x 1$ (B) y = x + 1 (C) $y^2 = x + 1$ (D) $y^2 = x + 1$

4. 具有特解 $y_1 = e^{-x}$, $y_2 = 2xe^{-x}$, $y_3 = 3e^{x}$ 的三阶常系数线性微分方程是

- (A) y''' y'' y' + y = 0 (B) y''' + y'' y' y = 0
- (C) y''' 6y'' + 11y' 6y = 0 (D) y''' 2y'' y' + 2y = 0

5. 设 y_1, y_2 是二阶常系数线性齐次方程y'' + p(x)y' + q(x)y = 0的两个特解,则由 $y_1(x)$ 与 $y_2(x)$ 能构成该方程的通解,其充分条件为_____.

- (A) $y_1(x)y_2'(x) y_2(x)y_1'(x) = 0$ (B) $y_1(x)y_2'(x) + y_2(x)y_1'(x) \neq 0$

- (C) $y_1(x)y_2'(x) + y_2(x)y_1'(x) = 0$ (D) $y_1(x)y_2'(x) y_2(x)y_1'(x) \neq 0$

二、填空题(每题 5 分, 共 25 分)

1. 设对任意x > 0,曲线y = f(x)上点(x, f(x))处的切线在 y 轴上的截距 等于 $\frac{1}{x}\int_{0}^{x} f(t)dt$, 则f(x) =______.

- 2.微分方程 $xy' + y = 2\sqrt{xy}$ 的通解为 .
- 3. 微分方程 $y' + y \tan x = \cos x$ 的通解为 . .
- 4. 微分方程 $y'' y = e^x + 1$ 的一个特解应具有形式(式中a,b为常数) .

1

5. 微分方程
$$y$$
" $-\frac{y'}{x} + \frac{y}{x^2} = \frac{2}{x}$ 的通解为_____. $y = (C_1 + C_2 \ln x)x + x \ln^2 x$ 三、计算、证明题(第 1-4 题 10 分,5-6 题每题 15 分,共 70 分)

1. 求通解 $y(1+2e^{\frac{x}{y}})dx - 2(x-y)e^{\frac{x}{y}}dy = 0$

2.证明下列函数
$$y = \frac{1}{x}(C_1e^x + C_2e^{-x}) + \frac{e^x}{2}(C_1, C_2$$
为任意常数)
是方程 xy "+ $2y$ '- $xy = e^x$ 的通解.

4. 设
$$f(x) = \sin x - \int_0^x (x - t) f(t) dt$$
,其中 f 为连续函数,求 $f(x)$.

5.设函数y = f(x)满足微分方程 $y'' - 3y' + 2y = 2e^x$,其图形在(0,1)处的切线与曲线 $y = x^2 - x + 1$ 在该点处的切线重合,求函数y的解析表达式.

6.设函数
$$y = f(x)$$
由参数方程 $\begin{cases} x = 2t + t^2 \\ y = \varphi(t) \end{cases}$ $(t > -1)$ 所确定,且 $\frac{d^2 y}{dx^2} = \frac{3}{4(1+t)}$,其中 $\varphi(t)$ 具有二阶导数,曲线 $y = \varphi(t)$ 与 $y = \int_1^{t^2} \mathrm{e}^{-u^2} \mathrm{d}u + \frac{3}{2\mathrm{e}} \, \mathrm{d}t = 1$ 处相切,求函数 $\varphi(t)$.

四、附加题(每题 4 分, 共 20 分)

- 1. 设函数 f(x) 满足 $f(x+\Delta x)-f(x)=2xf(x)\Delta x+o(\Delta x)$,且 f(0)=2,求 f(1).
- 2. 求以 $y = x^2 e^x$ 和 $y = x^2$ 为特解的一阶非齐次线性微分方程.
- 3. **求**微分方程 $xy' + y(\ln x \ln y) = 0$ 满足条件 $y(1) = e^3$ 的特解.
- **4.** 设函数 y(x) 是微分方程 $y'-xy=\frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1)=\sqrt{e}$ 的特解,求 y(x).
- 5. 求微分方程 $y'' 3y' + 2y = 2xe^x$ 的通解.

答案:

第五章 常微分方程测试题

满分: 120 分 时间: 120 分钟

一、选择题(每题 5 分, 共 25 分)

1.函数 $y = C - \sin x$ (其中 C 是任意常数)是方程 $\frac{d^2y}{dx^2} = \sin x$ 的

(A) 通解

- (B) 特解
- (C) 是解,但既非通解也非特解 (D)不是解

答案: C

解: $y = C - \sin x$ 为原微分方程的解,但因含任意常数,所以不是特解; 又因为独立任意常数的个数只有一个, 所以不是通解.

2. 微分方程 $x^2y' + xy = y^2$ 满足初始条件 $y|_{x_1} = 1$ 的特解为

(A)
$$y = \frac{2x}{1+x^2}$$

(B)
$$y = \frac{2x}{1 - x^2}$$

(C)
$$y = \frac{x}{1 + x^2}$$

(A)
$$y = \frac{2x}{1+x^2}$$
 (B) $y = \frac{2x}{1-x^2}$ (C) $y = \frac{x}{1+x^2}$ (D) $y = \frac{2}{1+x^2}$

答案: A

把原式整理得 $x^2y^{-2}y' + xy^{-1} = 1$,此方程为贝努里方程.

令
$$y^{-1} = z$$
得一阶线性微分方程: $z' - \frac{1}{x}z = -\frac{1}{x^2}$,故
$$z = e^{\int \frac{1}{x} dx} \left[\int -\frac{1}{x^2} e^{-\int \frac{1}{x} dx} dx + C \right] = x \left(\frac{1}{2x^2} + C \right) = \frac{1}{2x} + Cx,$$

该微分方程的通解为 $y = \frac{2x}{1 + 2Cx^2}$. 把 $y|_{x=1} = 1$ 代入得 $C = \frac{1}{2}$.

故特解为 $y = \frac{2x}{1+x^2}$.

3. 微分方程 $yy'' + (y')^2 = 0$ 满足初始条件 $y|_{x=0} = 1, y'|_{x=0} = \frac{1}{2}$ 的特解是

(A)
$$y^2 = x - 1$$

(B)
$$y = x + 1$$

(A)
$$y^2 = x - 1$$
 (B) $y = x + 1$ (C) $y^2 = x + 1$ (D) $y^2 = x + 1$

$$(D) y^2 = x$$

答案: C

解

令
$$y' = p, y'' = p \frac{dp}{dy}$$
,则原方程化为 $p \left(y \frac{dp}{dy} + p \right) = 0$.

(1) p = 0 得 y' = 0, 与已知矛盾;

$$(2) p \neq 0$$
时,有y $\frac{dp}{dy} + p = 0$,解得 $p = \frac{C_1}{y}$.

把
$$\begin{cases} y|_{x=0} = 1, \\ y'|_{x=0} = \frac{1}{2}$$
代入得 $C_1 = \frac{1}{2}$,即微分方程为 $y' = \frac{1}{2y}$.

解得 $y^2 = x + C_2$, 把 $y|_{x=0} = 1$ 代入得 $C_2 = 1$.

所以应填 $y = \sqrt{x+1}$ 或 $y^2 = x+1$.

4. 具有特解 $y_1 = e^{-x}$, $y_2 = 2xe^{-x}$, $y_3 = 3e^x$ 的三阶常系数线性微分方程是

(A)
$$y''' - y'' - y' + y = 0$$

(A)
$$y''' - y'' - y' + y = 0$$
 (B) $y''' + y'' - y' - y = 0$

(C)
$$y''' - 6y'' + 11y' - 6y = 0$$
 (D) $y''' - 2y'' - y' + 2y = 0$

(D)
$$y''' - 2y'' - y' + 2y = 0$$

答案:B

特征根为 $r_1 = r_2 = -1$, $r_3 = 1$. 所以特征方程为

$$(r+1)^{2}(r-1) = r^{3} + r^{2} - r - 1 = 0,$$

对应微分方程为y''' + y'' - y' - y = 0,故选(B)

5. 设 y_1, y_2 是二阶常系数线性齐次方程y'' + p(x)y' + q(x)y = 0的两个特解,则由 $y_1(x)$ 与 $y_2(x)$ 能构成该方程的通解,其充分条件为_____.

$$(A) y_1(x) y_2'(x) - y_2(x) y_1'(x) = 0$$

(A)
$$y_1(x)y_2'(x) - y_2(x)y_1'(x) = 0$$
 (B) $y_1(x)y_2'(x) + y_2(x)y_1'(x) \neq 0$

(C)
$$y_1(x)y_2'(x) + y_2(x)y_1'(x) = 0$$
 (D) $y_1(x)y_2'(x) - y_2(x)y_1'(x) \neq 0$

(D)
$$y_1(x)y_2'(x) - y_2(x)y_1'(x) \neq 0$$

答案: D

解 由题意知 $y_1(x)$ 与 $y_2(x)$ 线性无关,即 $\frac{y_2(x)}{y_1(x)} \neq C$.

求导得,

$$\frac{y_{2}^{'}(x)y_{1}(x)-y_{2}(x)y_{1}^{'}(x)}{y_{1}^{2}(x)}\neq0, \exists \exists y_{1}(x)y_{2}^{'}(x)-y_{2}(x)y_{1}^{'}(x)\neq0.$$

二、填空题(每题 5 分, 共 25 分)

1. 设对任意x > 0,曲线y = f(x)上点(x, f(x))处的切线在 y 轴上的截距等于 $\frac{1}{x} \int_0^x f(t) dt$,则 $f(x) = _____$.

 $C_1 \ln x + C_2$

解: 曲线y = f(x)上点(x, f(x))处的切线方程为

$$Y - f(x) = f'(x)(X - x).$$

令X = 0,得截距Y = f(x) - xf'(x).由题意,知

$$\frac{1}{x} \int_{0}^{x} f(t)dt = f(x) - xf'(x), \text{ [II]} \int_{0}^{x} f(t)dt = x [f(x) - xf'(x)]$$

上式对x求导,化简得xf''(x) + f'(x) = 0.即 $\frac{d}{dx}(xf'(x)) = 0$

积分得 $xf'(x) = C_1$.因此

$$f(x) = C_1 \ln x + C_2(其中C_1, C_2$$
为任意常数)

2.微分方程 $xy' + y = 2\sqrt{xy}$ 的通解为_____. $x - \sqrt{xy} = C$

$$y' = 2\sqrt{\frac{y}{x}} - \frac{y}{x}, \Leftrightarrow u = \frac{y}{x}, \text{ If } y' = u + x \cdot \frac{du}{dx},$$

$$u + x \cdot \frac{du}{dx} = 2\sqrt{u} - u, \rightarrow \frac{du}{\sqrt{u} - u} = \frac{2}{x}dx,$$

$$\left(\frac{1}{\sqrt{u}} + \frac{1}{1 - \sqrt{u}}\right) du = \frac{2}{x} dx, \to 2\sqrt{u} - 2\ln(1 - \sqrt{u}) - 2\sqrt{u} = 2\ln x - 2\ln C$$

$$\int \frac{1}{1-\sqrt{u}} du \underbrace{\sqrt{u} = t}_{} \int \frac{2t}{1-t} dt = \int \frac{2(t-1)+2}{1-t} dt = \int \left(\frac{2}{1-t}-2\right) dt$$

$$= -2\ln(1-t) - 2t + C\sqrt{u} = t - 2\ln(1-\sqrt{u}) - 2\sqrt{u} + C$$

$$(1 - \sqrt{u})x = C \to x - \sqrt{xy} = C$$

3. 微分方程
$$y' + y \tan x = \cos x$$
 的通解为_____. $y = (x + C)\cos x$

4. 微分方程y" –
$$y = e^x + 1$$
的一个特解应具有形式(式中 a,b 为常数) _____. $axe^x + b$

5. 微分方程
$$y'' - \frac{y'}{x} + \frac{y}{x^2} = \frac{2}{x}$$
的通解为______. $y = (C_1 + C_2 \ln x)x + x \ln^2 x$

解: 原方程化为: $x^2y''-xy'+y=2x\cdots$ ①

$$\Rightarrow x = e^t$$
, $\iiint \frac{dy}{dx} = \frac{1}{x} \frac{dy}{dt}$, $\frac{d^2y}{dx^2} = \frac{1}{x^2} (\frac{d^2y}{dt^2} - \frac{dy}{dt})$

则方程①化为:
$$\frac{d^2 y}{dt^2} - 2\frac{d y}{dt} + y = 2e^t \cdots 2$$

方程②的特征方程为: $r^2-2r+1=0$, 解得特征根为: $r_{1,2}=1$.

设 $y^* = (at + b)te^t$, 解得a = 1, b = 0, 从而 $y^* = t^2e^t$,

所以方程②的通解为: $y = (C_1 + C_2 t)e^t + t^2 e^t$,

把 $x = e^t$ 代入上式得原微分方程的通解为: $y = (C_1 + C_2 \ln x)x + x \ln^2 x$.

三、计算、证明题(第1-4题10分,5-6题每题15分,共70分)

1. 求通解
$$y(1+2e^{\frac{x}{y}})dx-2(x-y)e^{\frac{x}{y}}dy=0$$

解
$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\left(\frac{x}{y} - 1\right) \cdot 2\mathrm{e}^{\frac{x}{y}}}{1 + 2\mathrm{e}^{\frac{x}{y}}}$$

令
$$u = \frac{x}{y}$$
 , 原方程化为 $u + y \frac{du}{dy} = \frac{2(u-1)e^u}{1+2e^u}$,

分离变量 :
$$\frac{(1+2e^u)du}{u+2e^u} + \frac{dy}{y} = 0$$

积分得
$$y(u+2e^u)=c$$
 代入得 $x+2ye^{\frac{x}{y}}=c$.

2.证明下列函数
$$y = \frac{1}{x}(C_1e^x + C_2e^{-x}) + \frac{e^x}{2}(C_1, C_2$$
为任意常数)
是方程 xy "+ $2y$ '- $xy = e^x$ 的通解.

证明: 记
$$y_1 = \frac{1}{x}e^x$$
, $y_2 = \frac{1}{x}e^{-x}$, $y^* = \frac{e^x}{2}$

$$\begin{aligned} & \text{for } y_1 = x^{-1}e^x - x^{-2}e^x, y_1 = x^{-1}e^x - 2x^{-2}e^x + 2x^{-3}e^x \\ & y_2 = e^{-x}(-x^{-1} - x^{-2}), y_2 = e^{-x}(x^{-1} + 2x^{-2} + 2x^{-3}) \end{aligned}$$

代入后
$$y_1, y_2$$
满足 $xy'' + 2y' - xy = 0$

且
$$\frac{y_1}{y_2}$$
不为常数,故 $C_1y_1+C_2y_2$ 是齐次方程的通解.

$$\overrightarrow{\text{III}} \ y^* = y^{*'} = y^{*''} = \frac{1}{2} e^x,$$

有
$$xy*"+2y*'-xy* = \frac{e^x}{2}(x+2-x) = e^x$$

即 $y^* = \frac{e^x}{2}$ 是非齐次方程的特解,从而由线性微分方程解得结构定理知

$$y = (C_1 e^x + C_2 e^{-x})/x + \frac{e^x}{2}$$
 是非齐次线性方程的通解.

解 证由于 f'(x) = f(1-x)

求导得
$$f''(x) = f'(1-x)(-1) = -f'(1-x) = -f[1-(1-x)] = -f(x)$$

故
$$f''(x) + f(x) = 0$$

其通解为 $f(x) = C_1 \cos x + C_2 \sin x$

又由于
$$f'(x) = f(1-x)$$

故
$$-C_1 \sin x + C_2 \cos x = C_1 \cos(1-x) + C_2 \sin(1-x)$$
.

令
$$x = 0$$
 得 $C_2 = C_1 \cos 1 + C_2 \sin 1$

$$\mathbb{M} \ C_2 = \frac{C_1 \cos 1}{1 - \sin 1} = \frac{C_1 (1 + \sin 1)}{\cos 1}$$

从而方程 f'(x) = f(1-x) 的解为

$$f(x) = C_1(\cos x + \frac{1 + \sin 1}{\cos 1}\sin x)$$

4.

设
$$f(x) = \sin x - \int_0^x (x-t)f(t)dt$$
, 其中 f 为连续函数, 求 $f(x)$.

解:
$$f(x) = \sin x - x \int_0^x f(t) dt + \int_0^x t f(t) dt$$

 $f'(x) = \cos x - \int_0^x f(t) dt$, $f''(x) = -\sin x - f(x)$
 $f''(x) + f(x) = -\sin x$
特征方程为 $r^2 + 1 = 0$, 所以 $r = \pm i$
设 $y^* = x(A\cos x + B\sin x)$
 $y^{*'} = A\cos x + B\sin x + x(-A\sin x + B\cos x)$
 $y^{*''} = -2A\sin x + 2B\cos x + x(-A\cos x - B\sin x)$
代入原方程解得 $A = \frac{1}{2}$, $B = 0$, 所以 $y^* = \frac{1}{2}x\cos x$
所以通解为 $y = C_1\cos x + C_2\sin x + \frac{1}{2}x\cos x$
代入 $f(0) = 0$, $f'(0) = 1$, $f(0) = 1$,

5.设函数y = f(x)满足微分方程 $y'' - 3y' + 2y = 2e^x$,其图形在(0,1)处的切线与曲线 $y = x^2 - x + 1$ 在该点处的切线重合,求函数y的解析表达式.

5. 解
$$y"-3y'+2y=0$$
 通解为 $\tilde{Y}=C_1\mathrm{e}^x+C_2\mathrm{e}^{2x}$ 令 $y"-3y'+2y=2\mathrm{e}^x$ 特解为 $y^*=Ax\mathrm{e}^x$,代入方程知 $A=-2$,故 $y^*=-2x\mathrm{e}^x$,故通解为 $y=C_1\mathrm{e}^x+C_2\mathrm{e}^{2x}-2x\mathrm{e}^x$ 由题意 $y|_{x=0}=1$ $y'|_{x=0}=-1$ 知 $C_1=1$, $C_2=0$ 所求函数为 $y=\mathrm{e}^x-2x\mathrm{e}^x$.

6.设函数
$$y = f(x)$$
由参数方程 $\begin{cases} x = 2t + t^2 \\ y = \varphi(t) \end{cases}$ $(t > -1)$ 所确定,且 $\frac{d^2 y}{dx^2} = \frac{3}{4(1+t)}$,其中 $\varphi(t)$ 具有二阶导数,曲线 $y = \varphi(t)$ 与 $y = \int_1^{t^2} \mathrm{e}^{-u^2} \mathrm{d}u + \frac{3}{2\mathrm{e}} \, \mathrm{d}t = 1$ 处相切,求函数 $\varphi(t)$.

6.解: 因为

$$\frac{dy}{dx} = \frac{\varphi'(t)}{2+2t}, \frac{d^2y}{dx^2} = \frac{1}{2+2t} \cdot \frac{(2+2t)\varphi''(t) - 2\varphi'(t)}{(2+2t)^2} = \frac{(1+t)\varphi''(t) - \varphi'(t)}{4(1+t)^3},$$

由题设
$$\frac{d^2y}{dx^2} = \frac{3}{4(1+t)}$$
,故 $\frac{(1+t)\varphi''(t) - \varphi'(t)}{4(1+t)^3} = \frac{3}{4(1+t)}$,从而

$$(1+t)\varphi''(t) - \varphi'(t) = 3(1+t)^2,$$

$$\mathbb{E}[\varphi''(t) - \frac{1}{1+t}\varphi'(t)] = 3(1+t).$$

设
$$u = \varphi'(t)$$
,则有 $u' - \frac{1}{1+t}u = 3(1+t)$,故

$$u = e^{\int \frac{1}{1+t} dt} \left[\int 3(1+t) e^{-\int \frac{1}{1+t} dt} dt + C_1 \right]$$

$$= (1+t)\left[\int 3(1+t)(1+t)^{-1}dt + C_1\right] = (1+t)(3t+C_1),$$

$$\varphi(t) = \int (1+t)(3t+C_1)dt = \int (3t^2+(3+C_1)t+C_1)dt = t^3 + \frac{3+C_1}{2}t^2 + C_1t + C_2.$$

由曲线
$$y = \varphi(t)$$
与 $y = \int_1^{t^2} e^{-u^2} du + \frac{3}{2e}$ 在 $t = 1$ 处相切知 $\varphi(1) = \frac{3}{2e}, \varphi'(1) = \frac{2}{e},$

所以
$$u|_{t=1} = \varphi'(1) = \frac{2}{e}$$
,由此知 $C_1 = \frac{1}{e} - 3$.由 $\varphi(1) = \frac{3}{2e}$,知 $C_2 = 2$.于是

$$\varphi(t) = t^3 + \frac{1}{2e}t^2 + (\frac{1}{e}-3)t + 2, t > -1.$$

四、附加题(每题 4 分, 共 20 分)

1. 2e

2.
$$y' - y = 2x - x^2$$

3.
$$xe^{2x+1}$$

4.
$$y(x) = \sqrt{x}e^{\frac{x^2}{2}}$$

5.
$$y = C_1 e^x + C_2 e^{2x} - x(x+2)e^x$$