International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: sk-SK

Triedenie

Sysel' má postupnosť N celých čísel $S[0], S[1], \ldots, S[N-1]$. Táto postupnosť je permutáciou čísel 0 až N-1. Sysel' chce túto postupnosť usporiadať do rastúceho poradia, a to pomocou výmen dvojíc prvkov. Jeho priateľka Maja chce tiež robiť výmeny dvojíc prvkov, nie však nutne tak, aby s triedením pomohla.

Maja a Sysel' budú modifikovať postupnosť v sérii kôl. V každom kole urobí prvú výmenu prvkov Maja, potom spraví svoju výmenu Sysel'. Presnejšie povedané, osoba, ktorá robí výmenu prvkov, si vyberie dva indexy a vymení prvky postupnosti \boldsymbol{S} na týchto indexoch. Zvolené indexy nemusia byť rôzne. Ak sa rovajú, prvok sa vymení sám so sebou, a teda sa postupnosť nezmení.

Sysel' vie, že Maji na triedení postupnosti S nezáleží. Našťastie však Sysel' pozná postupnosť dvojíc indexov, ktoré bude Maja vyberať. Maja plánuje robiť výmeny v prvých M kolách. Očíslujme tieto kolá číslami od 0 po M-1. Pre každé i od 0 po M-1, vrátane, vyberie Maja v i-tom kole indexy X[i] a Y[i] a vymení prvky na týchto pozíciách.

Sysel' chce postupnost' S usporiadat'. Pred každým kolom sa pozrie, či je už postupnost' S usporiadaná v rastúcom poradí. Ak je, Sysel' ukončí celý proces.

Vašou úlohou je nájsť postupnosť výmien, ktoré môže Syseľ použiť na utriedenie postupnosti S, ak je známa počiatočná postupnosť S a Majine indexy, ktoré bude vymieňať. V niektorých podúlohách je potrebné nájsť najkratšiu možnú postupnosť výmien. Predpokladajte, že v každom vstupe je možné usporiadať postupnosť S v najviac M kolách.

Poznamenávame, že ak Sysel' vidí, že po Majinej výmene je postupnosť \boldsymbol{S} usporiadaná, môže vybrať dva rovnaké indexy (napríklad $\boldsymbol{0}$ a $\boldsymbol{0}$). Výsledkom je usporiadaná postupnosť \boldsymbol{S} na konci celého kola, a teda Sysel' dosiahne svoj cieľ. Ak je počiatočná postupnosť \boldsymbol{S} už usporiadaná, minimálny počet kôl potrebných na jej usporiadanie je $\boldsymbol{0}$.

Príklad 1

Predpokladajme, že:

- Počiatočná postupnosť je S = 4, 3, 2, 1, 0.
- Maja plánuje urobiť M = 6 výmien.
- Postupnosti X a Y, ktoré vyjadrujú indexy Majiných výmien, sú X = 0, 1, 2, 3, 0, 1 a Y = 1, 2, 3, 4, 1, 2. Teda dvojice indexov, ktoré Maja plánuje vybrať, sú (0, 1), (1, 2), (2, 3), (3, 4), (0, 1), a (1, 2).

V tomto prípade Sysel' môže zmeniť postupnosť S na postupnosť 0, 1, 2, 3, 4 v troch kolách. Môže to urobiť výberom indexov (0, 4), (1, 3), (1, 3).

Nasledujúca tabuľka uvádza, ako Syseľ a Maja modifikujú postupnosť.

Kolo	Hráč	Dvojica indexov na výmenu	Postupnosť
začiatok			4, 3, 2, 1, 0
0	Maja	(0,1)	3, 4, 2, 1, 0
0	Sysel'	(0,4)	0, 4, 2, 1, 3
1	Maja	(1,2)	0, 2, 4, 1, 3
1	Sysel'	(1,3)	0, 1, 4, 2, 3
2	Maja	(2,3)	0, 1, 2, 4, 3
2	Sysel'	(3,4)	0, 1, 2, 3, 4

Príklad 2

Predpokladajme, že:

- Počiatočná postupnosť je S = 3, 0, 4, 2, 1.
- Maja plánuje urobiť M = 5 výmien.
- Dvojica indexov, ktoré Maja plánuje vybrať, sú (1,1), (4,0), (2,3), (1,4), a (0,4).

V tomto prípade Sysel' môže usporiadať postupnosť S v troch kolách, napríklad výberom dvojíc indexov (1,4), (4,2), a (2,2). Nasledujúca tabuľka uvádza, ako Sysel' a Maja modifikujú postupnosť.

Kolo	Hráč	Dvojica indexov pre výmenu	Postupnosť
začiatok			3, 0, 4, 2, 1
0	Maja	(1,1)	3, 0, 4, 2, 1
0	Sysel'	(1,4)	3, 1, 4, 2, 0
1	Maja	(4,0)	0, 1, 4, 2, 3
1	Sysel'	(4,2)	0, 1, 3, 2, 4
2	Maja	(2,3)	0, 1, 2, 3, 4
2	Sysel'	(2,2)	0, 1, 2, 3, 4

Úloha

Je daná postupnosť S, číslo M a postupnosti indexov X a Y. Vypočítajte nejakú postupnosť výmien, ktoré Syseľ môže použiť na usporiadanie postupnosti S. V podúlohách S a S musí byť nájdená postupnosť najkratšia možná.

Je potrebné implementovať funkciu findSwapPairs ():

- findSwapPairs (N, S, M, X, Y, P, Q) Grader zavolá túto funkciu práve raz.
 - N: dĺžka postupnosti S.
 - S: pole celých čísel obsahujúce počiatočnú postupnoť S.
 - M: počet výmien, ktoré Maja plánuje urobiť.

- \blacksquare X, Y: celočíselné polia dĺžky M. Pre $0 \le i \le M-1$, v kole i Maja plánuje vymeniť prvky s indexami X[i] a Y[i].
- lacktriangle P, Q: celočíselné polia. Použite tieto polia na uloženie indexov výsledných Sysľovych výmien, ktoré použije na usporiadanie postupnosti S. Označme R počet Sysľovych výmien v riešení, ktoré váš program našiel. Pre každé i od i po i po i vrátane uložte Sysľove indexy v kole i do i do i do i nožte predpokladať, že každé z polí i a i už bolo alokované na i prvkov.
 - Návratová hodnota tejto funkcie je *R* (definované vyššie).

Podúlohy

podúloha	body	N	M	dodatočné obmedzenia na X, Y	požiadavky na R
1	8	$1 \le N \le 5$	$M=N^2$	X[i] = Y[i] = 0 pre všetky i	$R \leq M$
2	12	$1 \le N \le 100$	M = 30N	X[i] = Y[i] = 0 pre všetky i	$R \leq M$
3	16	$1 \le N \le 100$	M = 30N	X[i] = 0, Y[i] = 1 pre všetky i	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	nie sú	$R \leq M$
5	20	$6 \leq N \leq 2000$	M=3N	nie sú	minimálne možné
6	26	$6 \leq N \leq 200000$	M=3N	nie sú	minimálne možné

Predpokladajte, že existuje riešenie, ktoré vyžaduje M alebo menej kôl.

Sample grader

Sample grader číta vstup zo súboru sorting.in v nasledujúcom tvare:

- riadok 1: N
- riadok 2: S[0] ... S[N 1]
- riadok 3: M
- riadky 4, ..., M+3: X[i] Y[i]

Sample grader vypíše:

- riadok 1: návratovú hodnotu R funkcie findSwapPairs ().
- riadky 2 až R+1: hodnoty P[i] Q[i].