Exploration des données

Arnaud Vanholderbeke, Benjamin Loriot et Natan Danous 11 Mai 2019

Contents

Description	1
Types et granularité	1
Distribution	
Relations	11
Mesure de l'entropie et du gain d'entropie	11

Description

Ces données sont les ventes provenant d'un seul magasin lors du Black Friday. Le magasin veut mieux comprendre le comportement des consommateur sur différents produits. Selon Kaggle, le problème principal est un problème de regression. On essaie de prédire la variable quantité d'achat à l'aide des autres variables. Ce problème peut également être vu comme un problème de régression.

Types et granularité

Table 1: Dictionnaire des données

Champ	Type	Modalités
Purchase	Quantitative	
User_ID	Ordinal	
Product_ID	Nominal	
Gender	Nominal	F, M
Age	Ordinal	$0-17 -> \dots -> 51-55 -> 55+$
Occupation	Nominal	0 -> 20
City_Category	Nominal	A, B, C
Stay_In_Current_City_Years	Ordinal	0, 1, 2, 3, 4+
Marital_Status	Nominal	0, 1
Product_Category_1	Nominal	1 -> 18
Product_Category_2	Nominal	2 -> 18 (avec NA)
Product_Category_3	Nominal	$3 \rightarrow 18 \text{ (avec NA)}$

Remarque:

• Un produit a obligatoirement une catégorie (Product_Category_1 ne contient pas de NA). Il n'a pas obligatoirement de 2ème et 3ème catégorie.

Distribution

Sexe

Age

La distribution de l'age dans une population suit habituellement une loi normale. On observe ici que ce n'est pas le cas. Il apparait que la tranche d'âge des 26-35 effectue le plus d'achats lors du Black Friday.

Métier

Métier des clients

Type de ville

Ancienneté dans la ville

Ancienneté dans la ville des clients

Situation conjugale

Situation conjugale des clients

Catégories des produits

Performance des produits

Classement des 25 meilleurs produits selon le nombre de ventes

Pas de produit que se détache du reste (du moins dans les 25 premiers, il faut garder à l'esprit qu'il y en a +3000).

Relations

Sociologie

- Age
- Métier
- Ancienneté dans la ville
- Marié, pas marié
- Sexe

=> Montant achat en fonction de l'age, métier, etc...

Commercial

- Performance des produit (via ID)
- Catégorie de produit qui se vendent le mieux

Mesure de l'entropie et du gain d'entropie

TODO: A expliquer et justifier et synthétiser.

##	Age	Gender
##	0 069374015	0 022694835

Stay_In_Current_City_Years Occupation
0.013115811 0.091392940
Marital_Status City_Category
0.007119339 0.019069753

Deux catégories importantes : Age et Occupation.