自动控制理论

实验二: 状态反馈控制

自 05 2020011126 刘若涵

1 实验目的

- (1) 训练设计模拟实验方案的能力。
- (2) 掌握用状态反馈的方法实现控制系统闭环极点的配置。
- (3) 观察状态反馈的性能,研究极点配置对系统闭环阶跃响应的影响。

2 判断系统能控性、能观性

系统状态方程为:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 10 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

开环传递函数为:

$$G(s) = \frac{10}{(0.5s+1)(s+1)}$$

使用 MATLAB 中 ctrb(A,B) 函数求出系统能控性矩阵为:

$$Q_k = \begin{bmatrix} 10 & -20 \\ 0 & 20 \end{bmatrix}$$

 $rankQ_k = 2$,系统完全能控。

使用 MATLAB 中 obsv(A,C) 函数求出系统能观性矩阵为:

$$Q_g = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$$

 $rankQ_q = 2$,系统完全能观。

3 以单位阶跃信号为输入,观测闭环系统的阶跃响应

$$u = r - [K_1 \ K_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

3.1 $K_1 = 0$,调节 K_2 ,观测闭环系统的阶跃响应,使闭环系统的输出过渡过程 呈无超调、有超调等情况。记录相应的 K_2 、超调量 σ 和过渡过程时间 t_s ,计算闭环系统的极点。

(1)
$$K_2 = 0.01$$

闭环极点为: -1.7236、-1.2764, $\sigma=0\%$, $t_s=4.018s$

(2) $K_2 = 0.1$

闭环极点为: $-1.5\pm1.3229i$, $\sigma=2.84\%$, $t_s=2.871s$

(3) $K_2 = 1$

闭环极点为: $-1.5 \pm 4.4441i$, $\sigma = 34.63\%$, $t_s = 2.381s$

K_2		超调量	过渡过程时间(s)	闭环极点
0.01	无超调	0%	4.018	-1.7236, -1.2764
0.1	有超调	2.84%	2.871	$-1.5 \pm 1.3229i$
1	有超调	34.63%	2.381	$-1.5 \pm 4.4441i$

由表可知, $K_1=0$ 时闭环极点关于 -1.5 对称,随着 K_2 的增大,闭环节点逐渐远离实轴,阶跃响应超调量 σ 变大,过渡过程时间 t_s 减小。

3.2 计算 $K_1=0$ 、 $K_2=5$ 和 $K_1=0.7$ 、 $K_2=5$ 两种情况下的闭环系统极点,观测闭环系统的阶跃响应,超调量 σ 和过渡过程时间 t_s 。

(1)
$$K_2 = 0$$
, $K_2 = 5$

闭环极点为: $-1.5 \pm 9.9875 i$, $\sigma = 62.39\%$, $t_s = 2.568 s$

(2) $K_2 = 0.7$, $K_2 = 5$

闭环极点为: $-5 \pm 9.1652i$, $\sigma = 18.02\%$, $t_s = 0.788s$

$[K_1, K_2]$	超调量	过渡过程时间(s)	闭环极点
[0, 5]	62.39%	2.568	$-1.5 \pm 9.9875i$
[0.7, 5]	18.02%	0.788	$-5 \pm 9.1652i$

由表可知,在增加完整状态反馈后($K_1 \neq 0$),闭环极点位置更靠近实轴。这使得超调量 σ 下降,过渡过程时间 t_s 减小,系统动态性能有所提升。

3.3 自行拟定三组 K_1 、 K_2 ,计算闭环系统的极点在所希望的位置上,分别测出 阶跃响应的超调量 σ 和过渡过程时间 t_s , 振荡次数 N 等。

(1) 期望闭环极点 -3、-2

使用 MATLAB 中 place(A,B,p) 函数求出全状态反馈增益矩阵 K = [0.2, 0.1]

(2) 期望闭环极点 $-1 \pm 5i$

使用 MATLAB 中 place(A,B,p) 函数求出全状态反馈增益矩阵 K = [-0.1, 1.25]

 $\sigma = 53.36\%$, $t_s = 3.874s$, N = 4

(3) 期望闭环极点 -5±5i

使用 MATLAB 中 place(A,B,p) 函数求出全状态反馈增益矩阵 K = [0.7, 2.05]

 $\sigma=4.32\%$, $t_s=0.843s$, N=1

期望闭环极点	$[K_1, K_2]$	超调量	过渡过程时间(s)	振荡次数 N
-3, -2	[0.2, 0.1]	0	2.476	0
$-1 \pm 5i$	[-0.1, 1.25]	53.36%	3.874	4
$-5 \pm 5i$	[0.7, 2.05]	4.32%	0.843	1

4 状态反馈的优点

- (1) 状态反馈可以配置系统的极点,从而改变系统的动态性能。通过调节状态反馈的系数,可以任意调节系统的过渡过程时间、超调量等参数,配置起来较为方便。
- (2) 状态反馈可以仅使用比例放大器实现,无需使用多余的积分器等,相较于经典方法中的极点配置方法,更加便捷。