LOAN DOCUMENT

PHOTOGRAPH THE	SHEET
LEVEL NOTE DOCUMENT IDENTIFICATION	INVENTORY
CCESSIO	
DOCUMENT IDENTIFICATION	I
	A N I
	ION STATEMENT I
NTIS CRAME DITIC TRAC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND ACC SPECIAL DISTRIBUTION STAMP	DATE ACCESSIONED A I
Reproduced From	F
Best Available Copy	DATE RETURNED
19981223 035	
DATE RECEIVED IN DTIC	REGISTERED OR CERTIFIED NUMBER
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-F	DAC
DTIC FORM 70A DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL

LOAN DOCUMENT

NADC Tech. Info!

AVIONICS DIVISION \mathbf{TT}^r

REED SOLOMON ENCODER / DECODER

COMPUTER PROGRAM PACKAGE

FEBRUARY, 1976

CNI SYSTEMS ENGINEERING

Prepared Under Contract: N62269-75-C-0503

Data Item A006

for

Department of the Navy, Naval Air Development Center

by

ITT Avionics Division
500 Washington Avenue
Nutley, New Jersey 07110

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dain Entered)

REPORT DOCUMENTATION I		READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSIO	ON NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)		FINAL ENGINEERING REPORT
Reed Solomon Encoder/Decoder		18 JUN 75 - 9 FEB 76
Final Engineering Report COMPUTER PROGRAM PACKAGE		6. PERFORMING ORG. REPORT NUMBER $D~11804$
7. AUTHOR(*)	-	8. CONTRACT OR GRANT HUMBER(#)
STAFF OF: CNI Systems Engine	eering	N62269-75-C-0503
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ITT Avionics Division		Design, Fab & Test
500 Washington Avenue		RSED
Nutley, New Tersey 07110		12. REPORT DATE
Naval Air Development Center		February 9, 1976
Warminster, Pennsylvania 189	74	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different		fice) 15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
*		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
	. • .	SCHEDULE
APPROVED FOR PUBLIC RELEASE; DI	STRIBUTION 1	OND TATTED.
17. DISTRIBUTION STATEMENT (of the abstract entered in	n Block 20, II dillere	ent from Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on teverse side if necessary and	identily by block nu	imber)
Reed-Solomon Encoder Decoder Round Trip Timing	M G	licroprocessor alois Field rata
The purpose of this program is capable of a 384 word/second (cost effective and practical man	to build a Re approx. 57.	eed-Solomon encoder/decoder

SECURITY CLASSIFICATION OF THIS PAGE/When Data Kniered)

20. ABSTRACT

ITT Avionics has built and successfully tested a RSED laboratory breadboard that was funded under contract N62269-75-C-0503 (Naval Air Development Center). A summary of the engineering tests is listed below.

Encoding Time <150 microseconds
Round Trip Timing Detection < 20 microseconds
Decode Time Decode time is de

<150 microseconds</p>
< 20 microseconds</p>
Decode time is dependent
on Errata. Refer to section 5
of report number D11801 for decode times.

COMPUTER PROGRAM PACKAGE

(MICROPROCESSOR)

This data item contains the following items:

- 1. Object Program Listing
- 2. Object Program (Note- The object program is physically contained in hardware ROMS that are part of the deliverable hardware).
- 3. Source Program Listing
- 4. Intel 3000 Computer (Microprocessor) Data Sheets

OBJECT PROGRAM LISTING

RSED OBJECT PROGRAM

03' FC' .03' FD' 31' 6C'. 08' 4C'. 09' 10' 00' 00' FC'. 03' 03' 00' E3' 03' FC'. 4C'. 10' 0C'. 7C'. 28' 03' FS'. 00. 1003 E3 . -010 4C * 10 * 08 * 018 63. 03' 9F' 020 025 030 FC " FC. 0C . 50 . 18 . EC . 03 . 03 . .10. 04 7C * 03 ° FC ° .033 28 40 . 30 43 13. 03. .03 DD . FC . 040 048 40 30 * 60. 33. 03 . 7F . C7 . 050 83 14° 28° 54° 14° FF° 03° FE° 059 60. 660 -063 50 * 30 * 4C * 070 7F' 03' BF' 50 · 3C · 34 · 78 · 2C · 61 · 03 · 61 · 03 · FF · 34' 73' 63' 64' 0C' 7C' 03' FC' 03' FF' 68' 64' 44' 5C' 74' 03' 02' 03' 00' ...080 088 0 90 . 1198 0A0 5C. DAS 44 * 5C * 13. FF' 03. 02 · A3 · CBO, 20, 38, 28, 90, - 0B3 1 C. 000 03. FF'.07' 00' FF' 38 58 70 24 50 003 87. 03 ° 03 ° FF ° . ODC FC 1 70 . 24 . 74 . 43 . 26 . 0D3 74 43 26 00 00 FC 7C 04 30 03 FF 02 6F 03 5C 7C 00 74 48 7F 00 . 02. 0E0 60 * 0E8 05. 76 04 7C C7 OFS 100 7C . 03 · FC . 01. FF * FC * 108 110 00 ' E3 ' 05. 76, 05, 03, BŁ, 00, 03. 03. 03. 123 02. 00. Et. 1t. Et. 03. 130 133 140 143 FC. 150 75 * 03. 03. 158 03. 160 03. 4F. 03. FF. FF. FC. 170 03 * FF * 179 FC * 7F * 180 FF. 03. 03. C3. 00. 183 03' 03' FC' 00' FF' FC' 02' 02' FF' 03. 190 83. 198 03 00 -1A0 03: 03: FF'.03: 01 00. 143 180 - 138 103 03 * FF * FF * 00.00.03.03.08. 100 03.03. 03.03. 03. 108 FC. 00 FF 03. 03. F4 . 02 . 07 . 7A * 1E3 03, 00, 03, 03, 03, 03. FC * 1F0 01'00'FF' 03' FF' 1F8

MOD 1

100

```
. 008
               80.80.80.80.80.30.81.
           80 *
       618
020
028
030
           BF. 82. 30, 86, BE. 80, BE. 80.
           80 . 30 . 80 . 80 . 30 . 80 . 30 . BE.
           80. Br. 30, 80, Br. 30, 30, 80,
           80 * 80 * 80 * 80 * 80 * BF * 81 *
       848
 050
           35 * 85 * 80 * 80 * 85 * 86 * 34 * 80 *
           30. 80. 30. 80. 80. 80. 36.
      058
           BF* 80 * BF * 80 * BF * 30 * 80 * 87 *
           80.80.30.30.30.30.BE.33.
      . 068
     070
           FF' BF' 80' 80' BF' 30' BF' 80'
           80 . 80 . 80 . 80 . 80 . 80 . 80 .
      073
       -080
           80 . 80 . 80 . 80 . BF. BF. BF. BF.
          80,80,80,80,80,80,80,80,80
       033
           80 . 80 . BE . 80 . BE . 80 . BE . 36 .
       090
           098
       DAD
           80 * 30 * 80 * 80 * 30 * 30 * 80 * 30 *
       0AS
           BF. 80, 30, 80, 80, BE, 80, BE,
       0B0
           .083
       000
           80 80 80 80 80 30 BF 80
       DCS
           BF 35 80 80 BF BE 80 50
      0 DO
           80 80 80 80 80 80 80 80 34
       0D3
           180 185 80 80 BF 80 BF BF
       DEG
     . . 0E3
           80 80 80 80 80 80
           80 - 50 - 80 - BF - 80 - 80 - 50 - 50 -
      OFC
           30 - 80 - 80 * 80 * 80 * 30 * 30 * 30 * 36 *
       OFS
      -100
           108
       -110
           80 * 36 * 80 * BF * 34 * BF * BF * 80 * 80 * 80 * 80 * 80 * 80 *
      :118
     120
            80 * 80 * 80 * 80 * 80 * BF * BF * 81 * 81 * 80 * BF * 80 * 84 * 80 *
       128
  130
            80 80 80 80 80 80 BF BF
            BF, BL, BL, 30, 30, BL,
       140
            BF * BF * 80 * 30 * BF *
                             80 . 35 .
       148
           150
      . 153
       150
            BF. BL. BL. BL. 80. BL. BL. 80.
            163
           170
 180
            BF BF BF 80 BF 80 34
            50 . 30 . 80 . 36 . 80 . BL . 80 . BL .
      183
            80 BF 80 80 BF 30 80
      . 190
            80 BF 80 BF BF BF 80
      198
                             80 .
            80 . 80 . 34 . 30 . BF .
       1A0
           1A3
       180
           BF. 86. 80. 86. 87. 3F. 80. BF.
       138
            BF . 80 . 30 . 35 . BE . 30 . BE . 30 .
            BF. 30. 30. BF. BF. 30. 30. 30.
            80.80.82.84.80. EL. BL. BL.
        100
            80.30,80,80,80,80,80,
        1D3
            BF, 80, 80, BL, BL, BL, 80,
       JES
                                37.
            80 * BF * 80 * 80 *
                         80 *
                             80 .
                                    37.
        1E8
            80 85 BF 80 BF BF 80 BF 37
                                    30 *
       - 1F0
```

MAD 3

```
000 04 04 01 C8 04 CC 08 34 C05 P8 B8 B8 B3 B3 B3 B3 3C 04 C1 08 C
                 B5 B8 B8 B8 B8 B8 B8 74 03 . .
                 0C' 0C' CC' DC' 0C' 0C' 04' 99'
    020
                 BS . BS . BS . BS . BS . BS . OC . OC .
     028
                10 . 60 . D3 . D4 . 10 . 54 . CC . 5C .
     030
                B8. B9. B9. B9. B8. B8. 10. 10.
     038 ..
     040 .14 14 .93 02 14 04 70 00
                ES * B8 *
                                  B3 . B3 . B8 . B8 . 2C . 14 .
     049 -
                13 * 18 *
                                  04 68 13 10 30 10 4
     050
                B8 *
                                  D3 . 04 . 1C . 14 . 1C . 14 .
                         B8 •
     058
                104
                         10
     060
                                  B8 . B8 . B8 . B3 . IC . IC .
                B3 * B3 *
     058
                         070
                20 .
                B8 *
     073
     080
                24 .
     088
                E3 *
                         B8 . B8 . B3 . B3 . B8 .
                                                                      50 . 24
                         28 ° C0 ° C4 ° 23 ° 93 ° 60 ° 20 ° 88 ° 88 ° 88 ° 88 ° 25 ° 25 °
     09.0
                28 *
               , BS •
     BOR
                50.
                         34 * B9 * 90 * 20 * 20 * 98 * 24 *
     DAG
                B8 . B8 . B8 . B8 . B8 . 20 . 20 .
     0A8
                30 -
                         CC . C4 . C0 . 30 . 98 . 64 . 23 .
     0B0
                        B8, B8, B8, B8, 30, 30,
              :B8
     033
                        B8 B8 B8 B8 30 30 C0 D4 D8 34 20 4C 2C
     BCB
                34 *
                                 B8 · B3 · B8 · B3 · 14 · 34 ·
     OCS
                BS * B8 *
                38 . 30 . 90 . C0 . 43 .
     BDD
                                                            38 . 20 . 38 .
                        B3 * B3 * B3 * B3 * D3 * 38 *
     0 D3
                B8 .
    0E0
                44 38 DO - 51 - 40 -
                                                            3C 40 F8
     0E8
                B8 *
                        B3 'BS B8 B8 B8 B8
                                                                     54 30
                48 . 38 . CC . 13 . C4 . C4 .
     OFO
                                                                     33 ' 95 '
               BS .
               B3 B3 B5 B5 B5 B5 B5 FC 40 B5 D4 CC CO 3C 3C 34 30 3C
    OFS
     100
               49.
                        44 *
                                 DC . F8 . E4 .
    :108
                                                            50 *
                                                                     04 44
    110 -00
                                 D0 . D0 . D4 . 48 . 70 . 48 .
               40 *
                        E0 •
                                 DC: F8 40 40 40
     113
                4C *
                        44 .
                                 C4 .
                                          6C . 54 . D8 . 68 . 4C .
     120
                                 D8 F8 20 44 34 4C
               40 .
                        58 *
     123
            . 50 *
                                 49 D0 10 B9 10 50
     130
                        44 .
                        48 *
                50 4
                                 F8 . F4 . 48 . 48 .
     138
                                                                    24 . 50 .
                54.
                                          DO . 58 . D3 . 24 . 54 .
    140
                        54 *
                                 C4 .
                                 FC .
                        28 .
                                          5C . 4C . 54 .
                                                                    0C . 54 .
                                D3 14 08 10 20 58 F0 B9 58 58 58 00 18
     150
                58 * 4C *
               58 24
    158
               50 ·
               50° 50° D3° D4° C4° 60° 23° 04° 50° 54° F0° F8° 50° 50° 70° 50°.
                        5C *
  160
    163
               60 . DO .
                                D8 . D4 . 60 . 58 .
    170
                                                                    34: 50
                                69 . EC . E8 . 50 . 60 . 60 . .
    173 . 60 .
                        53 *
                                D8 •
                                         D4 ·
              64
                        CO.
                                                  64 50 30 .
                        5C *
                                FO . E4 . 64 . 54 . 68 . 64 .
    183
               64 .
            28. 78. 10. D4. 68. 68. 18.
    19€
             2C . 50 .
    198
                                E4 *
                                         F3 . 70 . 68 . 34 .
               6C' 10' C4' C0' 2C' 1C' E0'
  IA9
              30 4C
.. 1A8
                                E4.
                                         F0 .
                                                 5C . 6C .
               70 . 64 . D0 . C4 . 4C . 24 . 20 .
   180
               70 *
                       E0 *
 188
                                14
                                         DC . 73 . 70 . F0 . 94 .
              34° D0° D4° C8° 74° 74° DC° 74°
* 1C0
                                Bo .
              DC .
                       .74 .
                                         E4 * F4 * 74 * FC *
103
.: 1D0
              79 •
                       60 -
                                C4. C0. 78. 24. 6C. E0.
                       78 *
                                F0 . F4 . 44 .
                                                          14 5C
              7C 70 D0 4C 38 7C E0 F8
                                                  24 .
                                                          3C . 44 .
                                                                            D3 *
                                                  33 .
                                                          FC . F4 .
                                                                            7C *
              84. 64. D4. C4. 38. D0. E3
7C. 6C. E8. E0. E4. DC. EC
-1F0
                                                                   E3 * 14 *
   1F8 ·
   FIN
```

```
e10
12018
2018
201020
030
          A0 A0 A0 A0 A0 A0 A0 58 B3 A0 66 07 7E FE FE 20 93 40
0E3
0F0
0F8
           188 .78 A0 98 00 00 13
   190
           9F, 66, 50, E0, 60, C0, C1, D9, 40, E0, 40, 60, C0, C1,
           9F*
     198
          A6' E6' A6' 36' BF' 01' 60' 60' 61' E0' C0' A0' 40' 60' 60' 41'
      1A0
       1A8
           46' 06' 06' A6' 06' 20' E1' 00' 60' 38' F9' 40' 3E' 38' 26' A0'
                               E1 00 :
     130
       133
           67' FA' 80' 00' E5'
     100
                           40 *
       108 F8 A0 00 D3 18 D3
              E6 * E6 * A6 * 3F *
          E6 *
                            0.1
      100
           60 . 00 . 33 . D3 . E0 . F9 .
                               40 * A0 *
       103
           E6 * 7E *
                  A5 * 05 * 46 * 57 *
       1EB
           3F' E3' 1E' 66' 67' 66' 46' 46' 36' 06' 7E' A6' 3F' FE' CO' 01'
       1ES
       ..0
1F8
           GO . 40 . 80 . CO . 30 . 30 . CO .
```

800 03 10B 103 100 108 105 08 10B -010 03.03.03.03.03.03.03. 018 09 * 03. 020 0 C * 04* 03 - 03 - 03 - 03 - 03 -.023 03. 03 - 01 -04 00 03 04 00 030 05. 03. 0A. # 1 8 038 03. 040 03 03 03 03 03 03 03 04 02 043 -050 058 060 03 00 05 00 05 03.00. 03 * 03 * 03 * 03 * 03 * 03 * 04 * 03 * 063 OD. 0B. 05. 0C. 03. 00. 01. 070 .03 - 03 -0.73 03.03.03.03.03. 09 * 02 02 03 00 04 0B 0F 080 84* 03'.03' 03' 03' 03' 06' 03' 0C' 04'.07' 04'.02' 04'.03' ..038 03 0B. 090 098 NAD 03 . 03 . 03 . 03 . 03 . 03 . 03 . 08 . 0A8 02 02 03 08 03 04 03 04 080 03 03 03 03 03 03 03 0B8 04. .00 . 02 . 04 . 00 . 04 . 08 . 03 . · OCO. .03 . 03 . 03 . 03 . 03 . 03 . 04 . 008 0 D-0 02'04'08'03' DD8 03. 08 03, 00, 00, 08, 03, 08, 03, 08, DEO 03. DEB 00 . 04 . 05 . 05 . 00 . 0C . OFO 06. 93, 03, 03, 03, 03, 00, 00, 03 OF8 100 01 . 02 . 0F . 04 . 02 . 0C - 03 -OF * OB * 09 * OB * 04 * 03 * 03 * 09 * 02, 08, 00, 00, 08, 05, 08, 02, 08, /110 0C . 03 . 01 . 0B . 03 . 01 . 118 03 120 .05 - 03 - 02 - 02 - 06 - 02 -08 * 128 03 04 03 03 06 04 04 04 130 03 03 04 04 04 03 03 03 06 06 02 00.04.00.01.02.03.02. .04 . 04 . 03 . 04 . 06 . 03 . 00 . 150 153 07: 02: 05: 00: 08: 02: 03: 08: 160 00 04 04 00 04 04 03 03 05.00.00.05.01. 168 03. 00 05 03.03. 170 00.00.00.05.05. 00 * 03° 04° 04° 05° 0F° . 178 01 * 02. 03. 04. 05. 04. 180 03 . 03 . 00 * 00, 00, 05, 0V, 0C. 183 05 03. 0 F * 02. 0B. 08. 03. 0B. 03 * 00 * 01-198 0B. 00. 0V. 0B. 05. 00. 00 * 08. 00 ° 00 ° 02 ° 02 ° 04 ° 03 ° 08 ° 08 ° 1A0 08.00.00.03.00.03.05.05. _1A3 0B ° 0C ° 02 ° 03 ° 03 ° 03 ° 03 ° 180 08, 02, 04, 03, 05, 02, 02, 01, ·1B3 01. 06. 00. 03. 0F. 1C0 0B* 04 * 04. . 108 05 ° 00 ° 04 ° 05 ° 00. 01 . 03 . 1D0 .00 . 03 . 08 . 03 . 08 . 00. 04. 044 00. 03. 03 00 03 0 04. 03. 09 -05.00.05.08.01. 1E0 07. 04* 01 03. 1F0 0A * 03. 01. 00. 01. 08. 03. 01.

000

1F3 FIM

```
000
                          03*
                                    FD *
                     03.
                               01.
                          00.
                                    03*
                     0 i
                               0.3
                     40 *
                                     00 *
                CO *
                          921
                               E3 *
                               02.
                     00 -
                          FC.
                0 B
                     FF .
                          6F °
                               03
023
                     03°.
FF:
                          83.
030
                03*
                          FF *
      02.
.038
                          FC *
                                03
           FC .
                EF:
040
       FF.
                          03
                03*
                      03*
048
                     30 *
                 80
050
       7 F
      82 *
           92
                0.0
0.58
       B7
060
                           7F *
068
                          00
070
       98
                          FC *
                     90 *
073
       D6
                 03 . 00 . EC.
                                03.
080
                02' 03' 03'
02' 03' 03'
03' 03' 03'
02' 0A' FC'
                                98
088
            03.
                                FF.
 090
           92
                                0.0,*
093
       92.
                                00 *
       03
0A0
            00 03 FC 02 00 03
       6F *
                      93
                           0 0
 0A5
                      0-1 *
                           0.0
       27.
 0B0
                           FC f
       80 *
 0B8
            02 ·
       48 *
                 03.
                      03*
 000
                      03 *
       7.D *
 003
                 00 1 00 1
                           FE.
       03.
 8 D 0
                           08
       80-
 8C0
            00 03 FC FF 00 03 FC
                           00.
                      FF
       03
 0E0
                      03.
                           03.
 OF.0
            03 °
6F°
       FE.
                      FD.
                           FC *
 OFS
       FC .
                 03° FC°
 100
                 FB. FB. 00.
                                          FC *
            03*
       D5.*
 103
       OF.
            00
 110
                           00 *
            FE .
       26.
                 05.05.
                                           0.0
 113
                 03.05.00.
                                03
       FC .
 120
                 03.
                      03
                           67.
            03.
       03*
 128
                           FC.*
            03.
                 FC *
                      03
       FC"
 130
            03 03 03 00 03 FF FF FF FF 0B
                      03.
                                 67
 138
       0.0
                           FC.
140
       D9 *
                      FF.
 143
       03*
                      03.
                            03*
 150
       2A .
                      01.
 153
                                00 -
                                           02.
       00 *
            03.
                 D3 *
                      DB.
 160
            03.03.
        E7*
 163
                      00 -
 170
                      26.
            FE 26
 178
                 FF.
                      03.
                                 03.
            FC *
 180
        73.
        D7 *
            03 FC
                      03.
                            0.0
  .138
                       02.
                            FC
             034
 190
        FF *
                  7 E
        26 *
             03
                 03
                       03
                            02
 198
       03. 03.
                  03
                       03.
                            0.0
 IAO
                  03*
                       0.3 *
  143
             00
                  03*
                       00 *
        FF .
  180
             25.
                       01.
        2A *
                  FC *
  188
        03.
             FC'
                  03.
  100
        D9 *
             DF *
                  83*
                       03.
  108
                            03.
        00: 03:
2A: 26:
FC: 02:
             03.03.
  IDC
                            02.
                                 02.
                  24
                       23 *
                                      03
  108
                  D5 *
                       D5 *
                            03*
                                 FC.
                                      00
FF
  1EG
                            62 *
FC
                                 00'
                       03.
                  03.
             D7*
  1E3
             FC . 00 .
                       03.
                                           00 *
        93*
  17.0
             26 . 70 .
                       03.
                            03
                                 FC'
  1F3
```

1

```
010
018
020
                                          80, 80, 80, 80, Bt, 80, Bt, Bt,
 028
036
038
040
                        . 023
                                              86' BF' 80' 80' 30' EF' BF' BF'
                                             80, 81, 80, Bt, Bt, 80, 80,
             040 BF' BF' 00' 1D' BF' 80' 80'

048 1E' 82' 80' 80' 80' BF' BF' 80'

050 80' BF' 00' 06' BF' BF' 84' BF'

058 FF' 1E' 00' 16' 85'
      050 S0 BF 00 06 BF BF 84 BF 86 86 BF 80 BF 80 80 BF 80 BF 80 80 BF 80 BF
                                             86 BF 80 80 80 BF BF 80
  070
078
080
                            078 DB FF EF FF BF 80 BF BF
                                           80 * 80 * 80 * 80 * BF * 80 * BF * BF *
         083
09 n
                                         098
0A0
0A3
0B0
0B8
0C0
                                         76' FF' 80' 80' 80' 80' BF' 80'
87' 80' 80' 86' BF' 80' BF' FF'
                            0A3 62 80 80 80 86 80 BF 30 BF
                                         87' BF' 80' 80' 80' 80' 80' BF'
                                        9C0
9C8
       0C8
0D0
                                             64' BF' 80' 80' BF' BF' 80' 80'
80' 80' EF' 06' BF' 80' 30' 30'
                                             7E 80 80 85 85 30 80 BF BF
          0D8 7E' 80' 80' 85' 30' 80' BF' BF' 0E0 80' BF' 00' 28' 80' 80' 84' BF' 0E8 84' 80' BF' 80' 80' 80' 80' 80'
            OFO
                                             EF*
                                                           BF 84 00 30 BF BF 50
                                           .F2 *
                                                            80' BF' BF' BF' BF' BF' SO'
                 0F8
100
                                             BF . 87 .
                                                                         80 * BF * BF * BF *
                                                                                                                                  80 4 80 *
                108
                                                                                                                                               BF*
                                              00 - 80 - 81 - 83 - 84 - 80 - 80 -
                                             86'80'BF'80'80'80'BF'80'
FE'BF'82'30'80'80'BF'80'
                     110
                                             BF. BF. 80. 80. 80. 80. 85. 80.
                           120
                                             80 80 80 80 81 80 30 BF.
                          128
          130
                                             BF . SO . BF . 80 . FF . BF . BF . 80 .
                                             FF' 82' 85' 80' BF' 81' 80' 80'
                138
                                                           80 *
                                                                         50 * 34 * BF * 84 * BF * 30 *
                                              80 *
                        140
                                             95'81' BF' BF' BF' 81' BF' RF'
                            143
150
158
160
168
                    150
                                                                                                                                 BF .
                                             80 ° BF °
                                                                         BF * 80 * 80 * BF *
                                             FF' BF' CO' 87' 80' 80' 80' 30'
                                             80 ° 84 ° 00 ° FF ° BF ° 30 ° 80 °
                                             00' 84' 84' 84' 83' 30' 80' 80' BF' 86' BF'
   168
170
178
180
188
                                             7E BF 7F FF BF BF 80 BF 
                    188
190
                                             BF 180 87 80 BF 80 C6 80 BF BF 80 BF BF
                       193
                                             80 * 80 * 80 * 34 * 80 * BF * 30 * BF *
                            IAD
                     IAS
                                             20' 00' 80' 80' BF' BF' 30' BF'
                                             BF' 30' 30' 30' 80' BF' BF' 35'
                            180
                                             07 . 09 . BF . 30 . 80 . BF . 80 .
                    108
                                             80 * BF * 80 * 35 * 30 * 80 * 9F * 35 *
                                             87 80 80 30 80 30 30 31
                                            80 . 80 . 80 . 34 . 80 . BF . 8A . 06 . 9E . 8F . 30 . 33 . 30 . 30 . 30 . 85 .
                            108
                                            BF. 80, 00, 00, 80, BE, 82, 00.
                            TEU
                                             FF' FF' 80' 84' 30' 80' BF' 83'
                            1ES
                                            80 ' BF ' 80 ' 80 ' BF ' BF ' BF ' 35 '
                            1F0
                                            30 00 00 30 130 80 BF BF 81
                             173
```

```
000 05 05 80 C9 05 05 25 4D 003 00 11 4F 3D B5 05 05 3D 01 09 09 D1 09 09 09 21 01 01 01 00 00 00 00 00 05
        050 0D, 0D, B2, DD, 0D, 0D, 0D, 02,
    038 90' 00' 11' DD' 00' 00' 00' 00' 05'
 030 11 11 DD E1 11 11 11 11 11 11 038 9C 09 11 E9 31 11 FD 45 45 040 15 15 00 CD 15 15 15 15 15 15 040 4F 0D E5 F9 35 15 41 3D
058 FF' 4C' 00' 04' 11' 19' 2D' 45'
060 1D' 1D' 49' C9' 1D' 1D' 1D' 25'
068 00' 00' 10' FE' 39' 1D' 31' 15'
070 21' DD' 19' B9' 21' 21' 1D' 19'
078 AE' F7' F7' FF' 19' 21' 19' 09'
080 49' 31' C5' DD' 25' 25' 2D' 2D'
088 EF' AB' 0F' 0E' FD' 25' 1D' 1D'
         U88 EF7 AB 0F 0F 0E7 FD 25 1D 1D 090 25 2D 49 C9 29 2D 35 29 698 4F 0F7 F1 79 75 29 0D 11 31 31 30 AB 35 2D F9 E5 1D 2D 2D 5D 5D 608 31 41 05 09 35 31 29 05
                  31 . 31 . ED, E1 . 51 . 31 . 51 . 52 .
          0.00
                  55 * 35 * C5 * D1 * 3D * 35 * 5D * 21 *
          000
                  80 . 35 . 79 . 25 . 39 . 35 . 25 . 55 .
         008
                  DD 39 CF 45 39 39 39 39
        % ODO.
                  7D: 39: 29: F1: 31: 39: 29: 2D:
           DDS '
         0E0 535 31 00 B1 41 3D 3D 3D
          0ES F9 45 ED E1 29 3D 35 35 0F0 39 41 12 30 C5 41 41 49 0F8 B8 11 F9 BD 15 41 15 F1
         : DES
                 45° 45° DD° C1° 59° 45° 45° 05° 00° 45° 45° 45° 45° 45° 30° 45° 31° 15°
        - 100
          108
                  3D. 49 DD B5 49 49 49 5D
          11.0
        113 57° 3D° FC° FC° 41° 49° F1° 41°
          120 35 4D CD B9 4D 4D 4D 4D 4D 128 E5 4D E5 59 45 4D 61 F9 130 11 51 Cl DD 51 51 51 51 05 138 FF 51 FD F9 49 51 45 51
                 FF. 51° FD° F9° 49° 51° 45° 51° 49° 10° D0° C1° 15° 59° 55° 55° 55° 61° 65° 59° 09° 40° 55° 00° 49° FF. 11° E5° 29° 51° 59° 51° 45°
           140
           148
         - 150
           158
                  5D' 55' 00' FF' 45' 5D'
                                                       DD.
          -160
                  00 * FD * FD * FD * 55 * - 5D *
                                                       55 *
          163
                  61 . 59 . C5 . C1 . 61 . 69 . 09 .
           170
                  FB . 61 . F7 . FF . 59 . 21 . F1 .
           178
                  25 65 D5 5D 5D 7D 7F 65
                  7F' 59' F5' F1' 69' 69'
                                                       59 71 *
           188
                  69 · 6D · D5 · C1 · C5 · 29 · 3E · 69 ·
          190
                  36. 2D. El. ED. 6D.
                                                       61.
                                                             314
          198
                  6D, 6D, C2, D1, 62, 61, 5D, 6D,
        1A0
                  0C. 00. 62. 31. SD. 53.
                                                       65*
         1A8
                                                       31.
                  71 . 71 . 75 . D9 . 71 . 79 .
           180
                                                       5D.
                  8C * 84 * F1 * F9 * 0D * 71 *
          .188
                 75. 75. D5. 5D. 75. 6D. 7D. 3F.
          100
          108
                   79 * 79 * 21 * D9 * 79 *
                                                 69 *
                                                       D5 *
           IDO
                  3F * 24 * 80 * 04 * 61 * 59 *
                                                       20.
                   7D' 5D' 00' 86' 95' 35'
                                                             00 *
                  FF* FF* F1* F5* ED* 7D* 75*, 75*
           1E3
                                                      79 °
                  85 * DD * C5 * 91 * 69 * D9 *
                                                             EI *
           1F0
                  D1 . AC . F9 . FD . 75 . F1 .
           1F8
```

FIN

5

```
000 66 E6 06 FE
               66° 56° 06° FE° 87° 9E° 60° 7F° FE° E0° EF° 00° 20° 20° 60° 00° C6° 7E° 9E° 06° 06° 26° 06° DE° 08° 61° 01° 01° 19° A0° 20° 40°
          003
      010
          020
                 TE' F8' FE' FF' EF' B3' 20' 93'

TE' 86' C6' E6' 9E' 3E' 66' E6'

E6' A0' 20' 33' C1' D8' 60' 18'

BE' 66' FF' 77' 1E' E6' E6' 66'
          030
      038
     048 FE' A0 E0' 00' C1' 40' 20' 01' 050 7E' 3E' 01' 01' 66' DE' C6' C7' 058 01' 08' 01' 00' C0' F3' 81' 18'
         .040
                  66.86. E1. 26. 3E. 06. E6. E6. F6. FE. FE. FE. 41. 13. 60. F8.
         0.60
                  068
        0.70
                 67. 5E. FF. A0. FE. 20. 00.
67. 5E. C7. BE. 9E. 1E. A6. E6.
11. 08. 78. 30. B8. 80. E0. B8.
C6. 06. E6. 66. 46. 7F. 64. 66.
EE. 20. F8. 60. 00. 40. E0. 40.
E6. 79. 06. E6. 7E. E6. C6. 3E.
01. 40. 80. 60. 60. F8. 73. 18.
06. 35. 5E. C6. 1F.
           078
           080
   090
       . 098
         DAO
     0A3
           0B0
          0B3
                   06. 35. 25. 60. 15. 25. 30. 40.
F7. 28. 80. 01. 60. 38. 80. 40.
         E) QCO
       0C8
                   7E 9E 01 01 26 BE 06 FC
                  01. 60. 60. 80. 00. C0. 40. B8.
86. 67. EE. EE. 46. EE. CE. E6.
A0. 80. 80. B3. E3. 80. 60. C0.
        008
   0E0
0E8
0F0
0F8
                   BE 26 10 00 1E 9E 1E 3E
                   95 - 21 - 60 - 60 - 60 - 98 - 60 - 00 -
                   66 9E 1E 9E 66 66 46 DF 61 80 78 78 78 61 40 01 61
          100
       108
                   113
                   66' 66' 66' 06' E6' 36' 46' A7'
          120
                   E0. E0. 80. 00. 18. VO. 29. E0.
          128
                   67. 36. 46. 1E. 66. 3E. 1E. DF. A0. A0. A0. 40. 38. 18. F8. 40.
130
138
140
148
                   06° E7° FC' A6° 67° 66° 66° 3E°
E7° A0° 78° 79° 18° B3° E1° 60°
                   E7 A0 78 79 18 83 E1 60 A6 9E 3E E6 5E 3E DE 7F 00 41 20 20 E0 D3 73 13 86 A6 FF DF 5E 06 C6 07 DF A0 A0 A0 F3 18 B8 80 66 6E 64 86 86 86 65 36 7E 98 58 10 18 60 F9 40 18
     150
158
   160
163
 163
179
       173
                   9F' 66' 86' 06' 9E' 5E' 6F' 1E'
         180
                   FF' 60' 40' F8' 38' A0' C0' 20' 5E' 3E' A6' 06' 66' 7E' 00' 26'
    188 FF' 60' 40' F8' 38' A0' C0' 20' 190 5E' 3E' A6' 06' 66' 7E' 00' 26' 198 10' F8' 18' A0' 58' 00' 73' D3'
                   E6. 3E. 66. A6. 06. 86. 67. 66.
   1A0
1A8
1B0
                    EF. DE. 80. 01. Ed. C1. 80. E8.
                   3E' 3C' 3E' 3E' 06' 46' 67' 47'
                    00 . 88 . 40 . E0 . V0 . 60 .
                                                         00 * A0 *
         , IB8
                                                                4F *
                   9E. EQ. 80, 00, 8E, 80, CL.
            100
                   B3 *
                                                         064
                    A0 . 13 . 00 . 28 . F8 .
                                                         A0 . 98 .
            IDS
                    66 ' IF' DF' DF' 26' 67'
            1E0
                                18 . A0 . 78 . 00 . D3 . F8 .
                    DF DF
            1E8
                    86 42 86 7E 67 1E 42 46
            1F0
                                58 A0 B3 60
                                                          60 13
                    06 * 38 *
```

03 * 0F * 0C * 07 * 08 * 02 * 09 * 21 * 6F 03 EF 02 09 01 03 02 08 01 02 03 00 01 01 04 10 . 03 . 90 . 80, 00, 03, 00, 0B: 02: 03: 00: 0B: 00: 01: 01: EF 03 EF EF ED 03 0B 05 028 03. 04. 05. 05. 05. 01. 03. 030 .00 .03 .01 .02 .0B .04 .05 . 03. 038 04' 0B' EF' FD' 04' 00' 03' 0.40 08 6D 0B 03 0C 0C 0B 0B 00 048 04 05 90 90 08 04 02 050 03. 10:12:90:90:0B:05:03: 059 02. 00. 02. 03. 02. 01. 7F. EF. 6F. EF. 03. 04. 03. 060 068 6F * EF . 03 . 04 . 02 . 03 * 01 * 09 ' 0C' 0F' 04' 0B' ...070 12. 90. 92. 82. 07. 08. 00. 0.78 .09 . 06 . 02 . 00 . 01 . 01 . 04 . 5 080 7F . 6F . EF . EF . 03 . 02 . 01 . .088 090 09 . 02 . 08 . 07 . 02 . 05 . 03 . 10 . 95 . 01 . 01 . 05 . C1 . OE . 098 02 09 08 03 64 81 8B - DAT 01 * ED, 01, 00, 03, 00, 01, 03, 0B, - 0A8 080 080 05, 0B, 0C, 05, 01, 00, 08, 90 * 03 * 09 * 00 * 01 * 05 * 04 * . 0B8 03. 02. 02. 00. 04. 04. 08. .000 003 6F . 05 . 01 . 0C . 08 04 01 08. 02. 06. 10. 10. 04. 00. 8 C * - 0D8 0D8 92'.01' 00' 03'.0C' 03' 0B' .00 * 0B * 6F * 6F * 00 * 02 * 03 * DED 03. 03. 01. 03. 05. 01. 00. 0E8 0F0 0F8 04 02 10 02 06 04 04 04 02 93 * 01 * 0F * 02 * 0F * 04 * 0B * 100 .03 . 02 . 07 . 04 . 01 . 08 . 08 . 5E' 03' 03' 03' 03' 08' 00' -103 02 . OF . 04 . 03 . 02 . OF . 0B . - 110. 118 80 * 0A * 03 * 09 * 06 * 08 * 03 * 120 0B' 0B' 09' 0C' 0F' 02' 01, 00, 03, 02, 03 . 03 .128 01 02 03 07 01 04 130 A5 08 03 00 04 05 -140 0C . 0F . 06 . 03 . 0B . 03 . 5B . 03 . 04 . 04 . 04 . 04 . : 143 02 * 04 * 05 * 00 * 00 * 05 * 04 * 150 B1. 0V. 05. 0B. 03. 05. 09. - 158 160 08' 03' 7F' 7F' 04' 0G' 0E' 168 EE, 03, 03, 03, 05, 00, 05, 00, 0B, 01, 01, 03, 05, 0B, 05, . 170 AC . 04 . AS . AO . 00 . 05 . 00 . 173 05. 0B. 05. 05. 05. 05. 5F * 180 5E' 00' 0B' 02' 00' 03' 00 * 188 04° 02° 03° 01° 08° 06° 190 198 A0 . 03 . 03 . 03 . 06 . 0C . 00: 02: 09: 03: 00: 02: - 1A0 5F' DE' 01' 0C' 05' 0B' 143 04. 07. 06. 06. 00. 0B. 0B. 180 IES 21 . AS . 0B . 05 . 03 . 0B . 02. 01. 05. 05. 00. 00. 2B. 100 5F 6E 01 01 01 01 02 05' 02' 00' 03' 02' 0F' 00' IDS B5 A4 A1 81 02 02 1D8 0B. 02. EE. EE. 00. 01. 03* 1EC FE' FF' 03' 03' 06' 0C' 04' 04' 02' 0B' 00' 05' 01' C4' 0B' 03' 1EB IFO. 05 02 05 00 AC . 04 0B* IFS FIN

SOURCE PROGRAM LISTING

RECORD	ADD	ADDRESS R C P	LABEL	CPE	MINEM	KBUS	8	8 1	LOAD	HNII	JUMP	READ/ WRITE	MICROFUNCTION	
	*	SOURC	SOURCE PROGRAM	AM INITZ	/* ZI									
	*	SET I	SET READ FLAG LADXX TO NOT	G IADX	N OI	Y READY,		to::	0 to 176 RAM	/* W	,			
	*	SET W	SET WRITE FLAG LADZY TO READY,	AG IADZ	ZY TO I	EADY,	8	₽	01 to, 177 RAM	*	,			
100	/8	15 00	INIOO	F4 R1	CLR	0000	8	00	H	ο.	JCC 01	00	0 to AC,	READ
005	10	15 00		Fl Rl	LMI	0176	00	8	н	0	JCC 02	00	176 to AC, 176 to MAR,	READ
003	05	15 00	•	FO RI	ALR	7777	11	00	H	0	JCC 03	10	375 to AC,	WRITE
. 400	03	15 00		F4 R1	GLR	0000	00	00	н	0	JCC 04	00	0 to RO,	READ
900	04	15 00		FL RI	LMI	0177	8	00	႕		JCC 05	, 00	177 to MAR,	READ
900	02	15 00		F4 R1	GLR	0000	00	00	H	, 6	JCC 06	10	0 to AC,	WRITE
	*		SET READ FLAG IBDXX TO NOT	G IBDXX	TO NC	T READY,	X,	0 to	0 to 376 RAM	AM */	•			
	*	SET W	SET WRITE FLAG IBDZY TO NOT READY,	AG IBDZ	Y TO Y	TOT REA		0 to	00 to 377 RAM */	AM */				
200	90	06 15 00		F1 R1	LMI	0376	00	00	н	0	JCC 07	8	376 to AC, 376 to MAR	READ
800	07	15 00		F4 R1	CLR	0000	00	8	Н	0	JCC 08	10	0 to AC,	WRITE
600	08	15 00		FI RI	LMI	0377	11	.00	(∈[.	0	JCC 09	00	400 to AC, 377 to MAR	READ
0 .	*	SET A AS	AS CUR	CURRENT DATA BLOCK,	TA BLO	ock, o	to R9 *	/* ର						The second secon
010	60	15 00	:	F4 R1	GLR	0000	80	8	-	0	JCC 10	10	0 to R9,	WRITE
	*	MOVE T	/* MOVE TABLE CCTPC FROM ROM AND WRITE	TPC FRO	M ROM	AND WR		OTAL	RAM AS	TABL	RAM AS TABLE TCTPC	*		
	*	MOVE T	/* MOVE TABLE CPTCC FROM ROM AND WRITE	ICC FRO	M ROM	AND WR		IOINI	RAM AS TABLE	TABL	TPICC	*		

		READ	READ	READ	READ	•	READ	READ	READ	·			READ	WRITE			Ŧ.	
MICROFUNCTION	,	0 to R1	177 to RI,177 to MAR	0 to R2	400 to R2, 400 to MAR	BLE */	ROM Address to AC		0 to AC, JCC NOT EXEC.				R2 to MAR,1+R2 to R2	1+R1 to R1 and AC Jump to INIO1			0 to AC, Remove Lock out	
READ/ WRITE	-	00	00	00	00	FROM TA	00	00	00			•	00	10	•		11	
JUMP		JCC 11	JCC 12	JCC 13	JCC 14	SELECTS NEXT INSTRUCTION FROM TABLE	JCC 15	JCC 16	JCC 17		INI02		JCC 15	JCR 15			JCC 29	
HNI		0	0	0	0	INS	0	0	0	/* TX			0	0			0	
LOAD		г	ਜ	н	٦,	S NEXT	Ħ	. O ,	н	EXECUTED NEXT	JUMP TO		н	H		TO INOUT AT IOCOO *,	· H	
8		00	00	00	00	SLECT	00	00	00	XECU	TOR.	*	00	00	*	AT I	00	
벙ㅣ	*	00	. 0	00	00	IS NO	11	00	00	IS I	UMULA	RESS	11	77	INI 03	NOUT	8	
KBUS	RESSES	0000	0177	0000	0400	OPTION	0000	0000	0000	PABLE	TO ACC	AM ADD	0000	0000	or s		0000	
MINEM	AM ADD	CLR	LMI	CLR	LMI	s, LOA	ILR	NOP	CLR	FROM 7	WELE 1	TEXT R	LMI	ILR	ABLE 1	d EXI	CLR	
CPE	AND R	F4 RI	F1 R1	F4 R1	Fl Rl	Addres	FO RI	F6 R1	F4 R1	LECTED	FROM 1	S IN 1	F1 R1	FO R.	FROM 1	ATOR ar	F4 R1	
LABEL	INITIALIZE ROM AND RAM ADDR					LOAD NEXT ROM ADDRESS, LOAD		INIOL		CTION SE	EXT WORD	EABLE WO	INI 02		JMP BACK	CLEAR ACCUMULATOR and EXIT	INIO3 1	
ADDRESS R C P	/* INITIM	10 15 00	11 15 00	12 15 00	13 15 00	/* LOAD N	14 15 00	15 15 00	16 15 00	/* INSTRUCTION SELECTED FROM TABLE	/* LOAD NEXT WORD FROM TABLE TO ACCUMULATOR.	/* WRITE TABLE WORD IN NEXT RAM ADDRESS	00 14 00	15 14 00	/* LAST JUMP BACK FROM TABLE I	/* CLEAR	01 14 00	
RECORD))	011	012	013	014		015	016	017				018	610			020	

MICROFUNCTION		
READ/	WRITE	
JUMP		
HNH		
LOAD		
-8		I
IJ		I
XBUS		
MINEM		
CPE		
LABEL		
ADDRESS	R C P	
RECORD	NUMBER	

/* TABLE CPTCC */

/* EACH INSTRUCTION IN TABLE CPTCC IS EXECUTED AFTER THE LOAD IN INIOI */

			_		_	_	_	_		^	0	•	•	•	_	_	0	
	READ	READ																
	K to MAR	K to MAR																
	K to AC,	. K to AC,	K to AC,															
TOTAL	00	00	00	00	00	00 .	00	00	00	00	00	00	. 00	00	00	00	. 00	. 00
NT GUOT T	JZR 14	JZR 14																
111	0	0		0	0	0	0	0	0	0	0	•	,o	0	0	0		•
1	н	਼ੂਜ ,	н	н	н	d	-	н,	ખ	ਜ	н	н	т	ਜ	ď	Ä	H	~
	0	00.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	. 8	00	8	00	8	00	00	00	00	00	00	00	00	00 :	00	00	00	00
· ·	0000	0005	0004	00100	0050	9000	0012	0024	0015	0032	0021	0000	0016	0034	0035	0037	0033	0023
	LMI	LMI																
*	F1 R1	F1 RI	F1 R1	F1 R1														
	00	00	00	00	00	00	00	00	00	00	00	8	00	. 0	00	00	00	00
	80 00	01 08	02 08	80 80 .		05 08	80 90	07 08	80 80	80 60	10 08	11 08		13 08	14 08	15 08	60 00	01 00
	021	022	023	024	025	026	027	028	. 620	030	031	032	033	034	035	036	037	038

	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ
	٠												,					•		
NO	, K to MAR	K to MAR	, K to MAR	, K to MAR	, K to MAR	, K to MAR	, K to MAR	, K to MAR	, K to MAR	, K to MAR	, K to MAR	K to MAR								
MICROFUNCTION	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,	K to AC,				
READ/ WRITE	00	00	00	00	00	00	00	8	00	00	00	00	00	00	. 00	00	8	8,	00	. 00
JUMP	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14				
HNI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
LOAD	н	H	ri	ار	ਾ ਜ	ч	н	н	Н	H,	^ ⊟ ૈ.	н	ч	н	н	H	ď	н	н	਼ਜ '
8	00	00	00	00.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
5 l	00	00	. 00	00	00	00	00	00	00	00	00	00	00	8	00	00	00	8	00	00
KBUS	0003	9000	0014	0030	0025	0017	0036	0031	0027	0013	0026	1100	0022	1000	0005	0004	0070	0020	9000	0012
MINEM	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI
CPE	F1 R1	F1 R1	Fl Rl	F1 R1	Fl Rl	F1 R1	F1 R1	Fl Rl	F1 R1	FI RI	Fl Rl	FI RI	Fl Rl	F1 R1	F1 R1	F1 R1				
LABEL								,								. •		· ·		
SS	00	00	00	00	8	00	00	00	00	8	00	00	00	00	8	8	00	00	00	00
ADDRESS R C P	02 09	03 09	04 00	05 09	60 90	07 09	60 80	60 60	10 09	11 09	12 09	13 09	14 09	15 09	00 10	01 10	02 10	03 10	04 10	05 10
RECORD	039	040	041	042	043	044	045	046	047	048	049	020	051	052	. 850	Ó54	055	056	057	058
	*	_		-	-	-								٠		_	_			

Section 1

	READ	READ																		
	to MAR	K to MAR	to MAR	to MAR	to MAR	to MAR	to MAR	to MAR												
MICROFUNCTION	K to AC, K	. K to AC, K	K to AC, K																	
READ/ WRITE	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	8,	00	00
JUMP	JZR 14	JZR 14																		
HA	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0
LOAD	,rd	н	н	ri .	н	H	н	н	Н	ન,	~rdi	н	Ħ	H	н	Н	ė,	러	H	ਜ ,
8	8	00	00	00.	00	00	00	00	00	00	00	00	00	00	00	00	00	Õ	00	00
8	00	00	. 0	00	00	00	00	00	00	00	00	00	00	00	8	00	00	00	00	00
KBUS	0024	0015	0032	0021	2000	9000	0034	0035	0037	0033	0023	£000	9000	0014	0030	0025	0017	9003	0031	0027
MINEM	LMI	IWI	LMI																	
CPE	Fl Rl	Fl Rl	F1 R1	F1 R1	Fl Rl	F1 R1	F1 R1	F1 R1	Fl Rl	Fl Rl	F1 R1	F1 R1	FI RI	F1 R1	Fl Rl	F1 R1	F1 R1	F1 R1	F1 R1	F1 R1
LABEL						•			. •									•		
55 P	8	8	00	00	00	8	00	00	00	00	8	00	00	00	00	00	00	00	00	00
ADDRESS R C P	06 10	07 10	08 10	00 10	10 10	11 10	12 10	13 10	14 10	15 10	00 11	01 11	02 11	03 11	04 11	05 11	06 11	07 11	11 80	11 60
RECORD	650	090	190	062	063	064	065	990	190	890	690	070	071	072	073	074	0.75	920	710	078

				•			
	READ	READ	READ	READ	READ	READ	
READ/ MICROFUNCTION	K to AC, K to MAR						
READ/ WRITE	00	00	00	00	00	00	
JUMB	JZR 14						
HNI	•	0	0	0	0	0	
LOAD	H	н	H	H	н	н	
8	00	00	8	00,	00	8	
병	00	8	. 00	00	00	00	:
KBUS	0013	0026	0011	0022	0001	0002	
MNEM	LMI	LMI	LMI	LMI	IWI	LMI	
CPE	Fl Rl	Fl Rl	Fl Rl	F1 R1	F1 R1	F1 R1	
LABEL					<i>:</i>		/* TABLE CCTPC */
SS	8	8	00	00	00	00	BLE (
ADDRESS R C P	11 01	11 11	12 11	13 11	14 11	15 11	/* TA
RECORD	079	080	081	082	083	084	,
						4	. 20 " 2"

/* EACH INSTRUCTION IN TABLE CCTPC IS EXECUTED AFTER THE LOAD IN INIOI */

 READ	READ										
to AC, K to MAR	K to AC, K to MAR										
M 00	M 00	м 00	00 K	00 K	00 K	. 00	00 K	00 X	м 00	00 K	
JZR 14											
о 1	0 т	0	1 0	0.0	1 0	1 0	0 1	0	0 1	0 1	
00	00	00	00	00	00	00	00	00	00	00	
00 0000	00 250	0001 00	00 220	000 00	000 5000	00 820	0013 00	0003 00	0035 00	00 900	
LMI											
Fl Rl	F1 R1	F1 R1	F1 R1	Fl Rl	F1 R1	FI RI					
00	00	00	00	00	00	00	00	00	00	00	
00 12	01 12	02 12	03 12	04 12	05 12	06 12	07 12	08 12	09 12	10 12	
085	980	087	088	. 680	060	160	092	093	094	960	

	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ						
MICROFUNCTION	K to AC, K to MAR	K to AC, K to MAR.	K to AC, K to MAR																	
READ/ MI	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	. 00	00	00	8,	. 00	. 00
JUMP	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14						
HNI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD	н	H	H	٦	·	4		н	H	ન્	√ =[:	H	н	-	-	-	۳.	· ~	-	н
8	00	00	00	00.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	8
8	00	00	. 0	00	00	00	00	00	8	00	00	8	00	00	00	00 -	00	00	00	00
KBUS	0024	00100	0014	0027	0004	0012	9600	0021	2000	9200	0034	0032	0025	0031	1100	0020	0015	0016	0030	0017
MNEM	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI						
CPE	Fl Rl	F1 R1	Fl Rl	Fl Rl	Fl Rl	F1 R1	F1 R1	F1 R1	F1 R1	FI RI	Fl Rl	Fl Rl	FI RI	Fl Rl	Fl Rl	Fl Rl	Fl Rl	F1 R1	Fl Rl	F1 R1
LABEL						·												•		
SS	8	8	00	8	00	00	00	00	00	00	00	00	00	00	00	00	00	8	00	00
ADDRESS R C P	12 12	13 12	14 12	15 12	00 13	01 13	02 13	03 13	04 13	05 13	06 13	07 13	08 13	09 13	10 13	11 13	12 13	13 13	14 13	15 13
RECORD	260	860	660	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116

		· ·	•		READ	READ			•		•					•		
MICROFUNCTION		*		477ø to MAR	0 to R9	O _V M to CO	M to T	200% to AC	•	200ø to R9		R9 to AC		O to RO		•		
READ/ WRITE				11	. 00	00	-	11		11		11		11	· ·			٠
IUMP				JCC 01	JCR 15	JCR 09		JFL 03		JCR 10		JCC 04		JFL 16				
INH	*		B */	0	0	0	· .	0	~.	0		0.		0	*		* 5	·
LOAD			ZERO FOR BLOCK B	н	♬.	-		. 	- -	-		 i		. =	OCK B		TO SET READ DATA FLAG	*
8) FOR 1	00	00	00		00		00		00		00	BLOCK A OR BLOCK B	*	AD DA	=200%
CI				00 2	00 0000	00 2		00 0	*	7 11	*	.00 0	£	00 0000	OCK A	$A_{r} R9 = 0$	SET RI	K R9 =
MNEM KBUS	j	AM) *	KA, ¥	0477	000	7777		00200	_	7777		0000		000				B BLOC
MNE	/* I	(477 R	R BLOC	LMM	CLR	LTM		LMM	OCK M	SDR	OCK M	ILR	*	NOP	A BLOC	IS BLC	RESS 17	ćk TO 1
CPE	TINOUI	SCBIX	RO FO	F1 R2	F4 R1	F5 R2		F1 R2	ENT BLO	F2 R1	ENT BLO	FO R1	I RPVAL	F6 R0	T DATA	BLOCK	M ADD	ra bloc
LABEL	SOURCE PROGRAM INOUT	RESTORE R9 FROM SCBIX (477 RAM)	CHECK SCBIX = ZERO FOR BLOCK A	10001			•		'* BLOCK B IS CURRENT BLOCK M $ eq$ O		BLOCK A IS CURRENT BLOCK M = 0	IQC03 FORI	JUMP TO RPV02 IN RPVAL	IOC03 F6 R0	CHECK IF CURRENT DATA BLOCK IS	IF CURRENT DATA BLOCK IS BLOCK	WRITE 177Ø IN RAM ADDRESS 176Ø	SET CURRENT DATA BLOCK TO B BLOCK R9
머	CE PF	RE R	S SCI	01 I	01	01		01	. B 18	01	A IS	01 I	TO R	01 I	K IF (RREN	177)	URRI
ADDRESS R C	OURC	ESTO	HEC	14 (14 (15 (-) 60	LOCK	11 (LOCE	10 (UMP	14 (HEC	F CU	VRITE	SET C
ADI	× ×	/* R	* .	0.0	01	010		01	/* ·B	03	* B	03	/* J	9 [*	□ * <u></u>	*	*
RECORD NUMBER						••	•				· .			•			ą.	
RECORD				01	02	03		04		0.2	•	90	· 	20				:

			WRITE			· •	•		•	•							•
MICROFUNCTION	176ø to MAR	1778 to AC	R9 + 2000 to R9					376ø to MAR	377Ø to AC.	O to R9				_	0 to AC	671Ø to MAR	671Ø to T
READ/ WRITE	11		10	·				11		10					11	. 11	
IUMP	JCC 17		JCR 15	P 00	•			JCC 17		JCR 15	ь 00				JCR 14	JCC 23	•
	0		0			*		0	•.	0					0	0	
LOAD INH	, H		#4		•	D FLAG	*	, -	- - -	,. - -			,		-	-	
8	00		00		*	TA REA	R9 = 0	.00		00					00.	00	٠
BUS CI	0176 11		0200 00		B, R9≠0	/* WRITE 377Ø IN RAM ADDRESS 376Ø TO SET DATA READ FLAG	/* SET CURRENT DATA BLOCK TO A DATA BLOCK R9 = 0	0376 11		00 0000	,	-	*	*	00 0000	0671 00	
MNEM KBUS	LMM		LMI		/* IF CURRENT DATA BLOCK IS BLOCK	RESS 376Ø	CK TO A DA	LMM		CLR		.4	/* WRITE ZERO IN SIRPS = 671\$ RAM	/* WRITE ZERO IN SIRCS = 670\$ RAM	CLR	LMM	
CPE	F1 R2		F1 R1		BLOCI	M ADE	'A BLO	F1 R2		F4 R1		PVAL *,	RPS =	RCS =	F4 R1	F1 R2	
LABEL CPE	IOC04 F1 R2				ENT DATA	77Ø IN RA	RENT DAI	IOC05 F1 R2				INITIALIZE FOR EPVAL	ero in si	ero in si		IXCOO FIR2	• .
SSS	0.1		0.1		CURR	RITE 37	r cur	. 01		01	•	ITIALE	RITE Z	RITE Z	00	14 00	
ADDRESS R C	16 10		17 10	; ;;;	/* IF	/* WI	•	16 11		1.7 11		/* IN	/* WI	/* WI	29 15	29 14	
RECORD NUMBER	80	, ,	60		• .	•	\$	10		11	•				12	13	

	WRITE				WRITE	. •			• ·		•	WRITE			•	WRITE		•
(MICROFUNCTION	670ø to MAR	670ø to T			0 to R0	7737Ø to MAR	7737Ø to R0	0 to R1	701Ø to RI	700ø to MAR	0. to AC	1 + RO to RO	1 + R1 to R1	I to AC	737Ø to MAR	AC + 36 to AC	$733eta_{ m V}$ 0 to MAR	733Ø to T
READ/ WRITE	10				10	11	•	11	11		11	10	11	. 11	11	10	11.	
IUMP	JCC 24				JCC 26	JCC 27		JCR 12	JCC 30		JFL 30	JCR 08	JFL 30	JCR 14	JCR 13	JCR 15	JCC 31	
				-	0	0		0	0		0	0.	0	0	. 0	0	Q	
LOAD INH	-			*	~	H		-	:		-	-	H	-	٠, ٢		-	
8	00			EPVAL	11	11		11	11		11	11	11	11	11	11	11	
BUS CI	00 0290			ATION OF	00 0000	7737 00	·	00 0000	0020		00 0000	0000	0000	0001 00	0737 00	0036 00	0733 00	
MNEM KBUS CI	LMM		/* N	INITIALIZ	CLR(R0)	LMI(R0)	٠	CLR(R1)	LMI(RI)		CLA(AC)	INR(R0)	LMI(RI)	LDM(AC)	LMM(T)	LMI(A)	LMM(T)	
CPE	F1 R2		INITIALIZATION FOR EPGEN */	* WRITE COMMAND IS FOR INITIALIZATION OF EPVAL	F4 R1	FI RI		F4 R1	F1 R1	٠.	F4 R2	F3 R1	F1 R1	F1 R2	F1 R2	FI RI	F1 R2	•
LABEL			ATION	OMMAI		:	• • .								•	•		•
P.	00		IALIZ	TE C	00	00		00	00	•	00	00	00	00	00	00	00	
ADDRESS R C	14			WRI	14	14	٠	14	12		12	10	08	11	14	13	15	·
AL R	23	*	*	.*	24	7 2 9	٤	27	27		30	30	30	30	30	30	30	
ORD BER								•			 . <u>.</u>		· · · · · · · · · · · · · · · · · · ·	•		نعب		
RECORD NUMBER	14			-	. 15	16		17	18			20	21	22	23	24	25	

		WRITE					READ	READ		•				•			
MICROFUNCTION		R9 to AC	0 to R0			R9 + 177Ø to AC	AC to R2	$^2_{ m V}$ M to CO	2 M to AC	Y = 11 *	0 to R1			1 + Rl to Rl to AC	AC to T	7773Ø to AC	T & AC to T
READ/ WRITE	•	10	11			11	00	00		Y/IBDZ	11			11	11	11	11
IUMP		JCC 18	JCC 29	/* X2		JCC 19	JCC 20	JCC 21		READY FOR PROCESSING, I.E., IADZY/IBDZY = 11	JFL 22			JCR 15	JCC 23	JCC 24	JCC 25
INH		0	0	Y/IBD		0	0	0		ξĞ, Ι.	0.			0	0	0	0
LOAD INH	*	-	~	3 IADZ		-	-	-		CESSIN	-			-	-	H	1
8	NCE	00	00	L FLA	R2 */	00	00	00		r pro	00			00	00	00	00
Ö	EQUE		00	NTRC	AG IN	00	. 11	00		DY FO	00			11	11	00	00
KBUS	TION S	00 0000	00 0000	RITE CO	OL FL	0177 00	7777	0002			00 0000		*	0000	7777	7773	7777
MNEM KBUS CI	NITIALIZA	ILR	NOP	OCK, WI	re conti	LMI	SDR	LTM		A BLOCK	CLR	*		ILR	SDR	LMM	XNR
CPE	II NI N	FO R1	'6 R1	TA BLO	F WRIT	F1 R1	F2 R1	F5 R2		IT DAT	F4 R1	READY	ER TO	FO R1	F2 R1	F1 R2	F7 R1
LABEL C	LAST INSTRUCTION IN INITIALIZATION SEQUENCE	144	IOC05 F6 R1	READ CURRENT DATA BLOCK, WRITE CONTROL FLAG IADZY/IBDZY */	STORE ADDRESS OF WRITE CONTROL FLAG IN R2	IOC09	14			CHECK IF CURRENT DATA BLOCK IS	-	DATA BLOCK NOT READY	DELAY COUNTER TO ZERO	IØC06 1	.	IOC07	
ᆈ	INSI	00	00	CUF	RE AD	00	00	00		CK IF	00	A BLO	DELA	00	00	00	00
ADDRESS R C	LAST	15	15	REAL	STO	15	15	15		CHE	15	DAT	SET	10	15	15	15
AL R	*	31	17	*	*	18	19	20		*	21	*	*	22	22	23	24
RECORD	•	26	27			28	29	30			31			32	33	34	32

									READ	•					WRITE		WRITE
MICROFUNCTION	$0_{ m V}$ T to C 0		R2 to MAR			1 + R1 to R1 to AC	AC to T	•				R2 to MAR	R2 + 1 to R2 to AC		R9 to AC	$7_{ m V}$ R9 to MAR	20 or 220 to AC
READ/ WRITE	1	*	11			11	11.		00			11	11		10		10
R IUMP V	JCC 26	4Y = 4	JFL 20			JCC 23	JCR 15	•	JCR 15		,	JCR 14	JCC 28		JCR 15	JCC 27	JZR 05
	0	, SDL	0			0	0		0			0	0		0	0	0
LOAD	-	, I.E.	-			-	-		-	. •			1	*	-	H	Н
CO LOAD INH	00	LIMIT	00		/* I	00	00		00			00	00		00	00	00
MNEM KBUS CI	7777 00	S REACHED ITS	00 0000		3Y 1 AND RETES	0000	7777 11		00 0000		*	00 0000	0000 11	DECODE FAILUF	00 0000	0007 11	7777 00
MNE	TZA	ER HA	LMI		NTER I	ILR	SDR		NOP	*	FLAG	LMI	ILR	D TO I	ILR	LMI	ALR
CPE	F5 R3	Y-COUNT	F1 R1	CHED */	LAY COU	8 F0 R1	F2 R1	*	F6 RI		REQUEST) FI RI	FO R1	ITY WOR	FO R1	F1 R1	F0 R1
ADDRESS R C P LABEL	15 00	CHECK IF DELAY-COUNTER HAS REACHED ITS LIMIT, I.E., SDLAY = 4	15 00	LIMIT NOT REACHED	INCREMENT DELAY COUNTER BY 1 AND RETEST	11 00 IOC08 F0 RI	11 00	LIMIT REACHED	10 00	DATA BLOCK READY	SET NO WRITE REQUEST FLAG	11 00 IOC10	14 00	SET DATA QUALITY WORD TO DECODE FAILURE	14 00	15 00	15 00
ADD	25	*	26	*	*	20	23	*	20	*	*	22	22	*	28	28	27
RECORD NUMBER	36		37			38	39		40			41	42		43	44	45

MICROFUNCTION READ/ WRITE IUMP LOAD INH 8 MNEM KBUS CI LABEL CPE ADDRESS R C P RECORD NUMBER

/* EXIT TO APGEN AT APGOO */

/* WRITE IS IN FIRST INSTRUCTION IN APGEN

•			WRITE				WRITE	•			READ		READ					WRITE	
				~	(AC=0)		•		•		No.				POL + 1	•		•	•
MI CROFUNCTION		•	MAR=SCBIX		JFL (APG 19, APG20) (AC=0)	AC=1	SET SCBIX		AC=R9	MAR = # OF ERASURES	1 11		AC = # OF ERASURES		MAR = TAPOL R4 = TAPOL				•
READ/ WRITE			10		Ξ	=	10		· =	=	00		00	=				10	Ξ
JUMP			JCR 03	JCR 02	JFL 00	JCR 02	JZR 00		10 000	JCC 02	£0 ၁၁۲		JCC 04	30c 05	90 JOF			20 00	30c 08
H.			0	0	0	0	0		Ö	. •			0		0			0	0
LOAD				-	-	-	-		٠.	-	-		-	-	-		AND 16 */	••• •••	-
8		•	=	Ξ	Ξ	=	=		00	=	=		=	=	=			=	=
5			00	00	00	Ξ	8	R9 */	00	=	=		00	00	=		WEEN 1	00	00
KBUS		,	0477	7777	0000	0000	0000	SASED ON	0000	0000	7777		.0037	0000	0540	TAPOL */	ERASURES IS BETW	1111	7760
MNEM	/*	/*	LDM	TZR	CLA	INA	NOP	ASURES E	ILR	LM	SDR	RES */	LTM	CLR	LMI	RES IN	ERASURE	DCA	LMF
CPE	APGEN	D ON R9	F1 R2	F5 R2	F4 R2	F3 R3	F6 R1	R OF ER	F0 R1	FI RI	F2 R1	F ERASU	F5 R2	F4 R1	FI RI	F ERASU	IBER OF	F1 R3	F6 R2
LABEL	SOURCE PROGRAM APGEN */	SCBIX BASED ON R9 */	APG00			APG20	APG19	TO NUMBE	· · ·			NUMBER C				NUMBER C	THAT NUM		:
ADDRESS R C P	/* SOURCE	/* SET SCE	00 90 00	00 03 00	00 05 00	00 03 01	00 02 01	/* POINT TO NUMBER OF ERASURES BASED ON	00 00 00	01 00 00	02 00 00	/* FETCH NUMBER OF ERASURES */	03 00 00	00 00 70	02 00 00	/* WRITE NUMBER OF ERASURES IN TAPOL */	/* CHECK THAT NUMBER OF	00 00 90	00 00 20
RECORD NUMBER			₹ <u>.</u>	. 7	3	4	Ŋ	.,	9	7	.		6	10	F			12	13

RECORD NUMBER	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	HN	JUMP	READ/ WRITE	MICROFUNCTION	
14	08 00 00		FIRI	LMI	0000	=	=	-	0	JFL 09	=	JFL APG04, APG05, MAR='FIRST ERASURE'	ERASURE "
	/* COMPUT	COMPUTE ERASURE POLYNOMIAL -	E POLYNO		USE R3 AS C	AS COL	INTER	OUNTER OF NUMBER OF	BER OF	ERASURES */	/*		— w a management
15	09 02 00	APG04	F2 R1	SDR	7777	=	=	-	0	JCR 00	00	R3 = # OF ERASURES-1. READ	AD
. 91	00 00 60		F5 R2	LTM	0037	00	=	, .	0	JCC 10	00	AC = FIRST ERASURE READ	AD
	/* PLACE	ERASURE	IN TAPOL IF NON	IF NON	ZERO -	OTH	WISE,	ERWISE, REPLACE BY		37, IN TAPOL */	· /* 70°		manikos dilikiriri dalimi
17	10 00 00	·	F1 R1	LMI	0000	00	=	-	0	» JFL 11	; -	JFL APG 02 APG 03	
18	11 02 00	APG02	F1 R1	DSM	1111	00	=	-	0	JCR 01	Ξ		
19	11 01 00	•	F1 R1	LMI	0000	00	=	-	0	JCR 03	=	•	
*	/* INITIA	INITIALIZE INNER-LOOP COUNTER TO ZERO IN	IER-LOOP	COUNTER	TO ZER		RO : */			,	- -		
20	11 03 00	APG03	F4 R1	CLR	0000	00	=	-		JCR 00	10	WRI	WRITE
	/* DECREM	DECREMENT COUNT OF NUMBER OF	IT OF NU		ERASURES TO	_	TEST F	FOR END	OF OUT	END OF OUTER LOOP */	/ 	•	•
21	11 00 00		FIRI	DSM	7777	00	=	-	0	JCC 12	=		•
	*/ INCREM	INCREMENT INNER-LOOP COUNTER AND STORE	R-L00P (COUNTER	AND STO	RE IN	R1 */		·				
22	12 00 00	APG11	FO R1	ILR	0000	Ξ	=	-	0	JFL 13	Ξ	JFL APGO6 APGO7	
23	13 02 00	APG06	F6 R1	NOP	0000	00	=	-	0	JZR 04	Ξ	JUMP (MSYNG)	
	/* LOAD M	LOAD MAR WITH ADDRESS	ADDRESS	OF NEXT	ERASURE AND	E AND	INCREMENT		ERASURE	POINTER	(R(2)) */		
54	13 03 00	APG07	F1 R1	Ę	0000	Ξ	=	ښو	.0	JCR 00	=		
25	13 00 00.		F2 R1	SDR	1111	00	= .	- ·	0	JCC 14	00	RE/	READ

<u>-</u>,

													,
RECORD NUMBER	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	00	LOAD	¥	JUMP	READ/ WRITE	MI CROFUNCTION	•
	/* FETCH NEXT ERASURE AND LOAD MAR WITH ADDRESS OF	NEXT ERA	SURE AND	LOAD M	AR WITH	ADDRE	SS OF		II NG OF	OUTPUT	BEGINNING OF OUTPUT AREA */		
	14 00 00		F5 R2	LTM	0037	00	=		0	JCC 17	00		READ
	17 00 00		F1 R1	LMI	0000	00	=	-	0	JFL 16	1	JFL (APG14, APG15)	
	/* IF ERA	SURE POS	ERASURE POSITION WAS ZERO,	S ZERO,	REPL	ACE WITH	1 378 */	/*		•	· :		
8-	16 02 00	APG14	F7 R3	СМА	0000	00	, =	-	0	JCR 03	=		
	/* SAVE E	RASURE P	ERASURE POSITION (POWER)	(POWER)	IN R5	/*							•
29	16 03 00	03 00 APG15	F2 R1.	SDR	0037	11	=	-	0	JCR 16	00		READ
	/* ADD CU	RRENT ER	ADD CURRENT ERASURE TO MOST		SI GNI FI CANT		EFF I C	COEFFICIENT, 1	OLD AR	FOLD AROUND CARRIES,	RRIES, */		
	/* SAVE P	OWER FOR	POWER FORM IN R6	/*								•	
•	/* PETCH	CODE OF	PETCH CODE OF MOST SIGNIFICANT COEF, WITHOUT CURRENT	INI FI CAN	IT COEF.	WITHO	D TO		ERASURE AND	AND SAVE	VE IN R7. *,	/*	
	/* THEN RETURN POWER FORM FROM R6 TO	ETURN PO	WER FORM	FROM R		ACCUMULAROR */	ROR *						
30	16 00 00		FO R2	AMA	0037	00	=	-,	0	JCC 15	00		READ
31.	15 00 00	•	F3 R3	AIA	0037	00	=	-	0	JCC 18	=		
32	18 00 00		F2 R2	CSA		11	=	-	0	JCC 19	00		READ
33	19 00 00		F1 R2	LMM	0400	00	=	-	Ô	JCC 20	00	K = TPTCC	READ
. 48	20 00 00		F2 R1	SDR	7777	Ξ	=	—	0	JCC 21	00	•	READ
35 .	21 00 00		F5 R2	LTM	7777	00	Ξ	-	0	JCC 22	8		READ
36	22 00 00		F2 R1	SDR	TTTT	=	Ξ	***	0	JCC 23	=		
37	23 00 00	. •	FO R1	ILR	0000	00	=	-	0	JCC 24	=	· •	

RECORD NUMBER	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	¥	JUMP	READ/ WRITE	MI CROFUNCTION		
÷ ,	/* DECREMENT		INNER LOOP COUNTER */	COUNTER	/* \		,							
	/* LOAD	LOAD MAR WITH ADDRESS	ADDRESS		OF CURRENT OUTPUT LOCATION */	OT LO	CATION	* 7						
	/* TEST	TEST WHETHER INNER LOOP IS COMPLETED	INNER LO	DP IS CO	MPLETED	/*			,					
38	24 00 00	APGIO	F1 R1	DSM	7777	00	=	· •	0	JCC 25	=			
39	25 00 00	_	FIR	Ē	0000	Ξ	=	· -	0	JFL 26	=	JFL APG08, APG09	-	
•	/* I NNEF	/* I NNER LOOP -	OVERWRIT	CURREN	IT LOCAT	ION MI	TH BE	FA-E TI	MES PR	OVERWRITE CURRENT LOCATION WITH BETA-E TIMES PREVIOUS LOCATION	CATION			
	PLUS	PLUS CURRENT LOCATION (BETA-E X	LOCATION	(BETA-E	X SIGM	1-(I-1)	+ (SIGMA-(I-1) + SIGMA-I) */	/*		٠		•	
•	/* POINT	POINT TO NEXT		I, TEST	LOCATION, TEST IT FOR ZERO,		OTHER	VISE MU	LTI PLY	OTHERWISE MULTIPLY IT BY BETA-E		FETCHED FROM R5*/	• .	
04	26 03 00	APG09	FI RI	LMI	0000	00	Ξ	} -	0	JCR 00	10		WR	WRITE
41	26 00 00		FO RI	I LR	0000	00	=	-		JCC 27	00	•	RE	READ
42	27 00 00		F5 R2	LTM	7777	00	=	_	0	JCC 28	00		RE	READ
43	28 00 00	_	F0 R2	AMA	7777	00	=	-	0	JFL 29	00	JFL APG16,APG17	RE	READ
	/* 1F NE	NEXT LOCATION IS	ION IS ZE	ZERO, STO	STORE ZERO	IN R7		AND CONVERT		PREVIOUS LOCATION TO	1 ON TO	CODE */		
†	29 02 00	APG16	F1 R1	LMI	0040	00	Ξ	-		JCR 01	Ξ	K=TCTPC		
45	29 01 00		F4 R1	CLR	0000	00	=	-	0	JCC 24	00	JUMP APG18	R	READ
•	/* CONVE	/* CONVERT BETA-E X NEXT LOCATION TO CODE AND XOR TO R7	E X NEXT	LOCATIO	100 OT N	DE AND	XOR		PREVI	= PREVIOUS LOCATION */	/* NO I			
91	29 03 00	APG17	FI RI	· W	0040	00	=	-	0	JCR 00	=	K=TPTCC	•	
47	29 00 00		FO R1	ILR	0000	00	=	_	0	JCC 30	00	•	RE	READ
84	30 00 00	,	F7 R3	INX	1111	8	=	-		16 331	00		RE	READ

					READ	READ		READ	READ	WRITE	READ	READ .	. ·	READ	READ		WRITE				
)				•				•		•				•			•		•		
	MI CROFUNCTION		•	K=TPTCC			K=TCTPC		JUMP APG10	K=TPTCC	•		K=TCTPC					K=TAPOL+ 1			
	READ/ WRITE			=	00	00	Ę	00	00	10	00	00	Ξ	00	00	=	01	=	=	=	
-	JUMP			JZR 01	JCC 01	JCC 02	JCC 03	JCC 24	JCR 00	JCR 01	JCC 04	30c 05	90 DOC	JCC 07	80 ၁၁r	JCC 10	JCC 13	JCC 12	JCR 00	JCR 01	
	X		/*	0	0	0	0	0	0		o '	0	0	0	0	0	0	0	0	0	
)	LOAD	/* /	ER FORM				_	-	-	,	· •	-	_	-			-	.	·	·	
	8	N R	O POWE	Ξ.	Ξ	Ξ.	=	= .	Ξ	= -	=	=	=	=	Ξ	=	-	=	=	=	
٠	5	STORE	MA-I T	00	=	00	00	=	00	00	00	00	00	00	00	00	00	00	00	=	
	KBUS	ORM AND) + SIG	00400	7777	1111	0040	1111	7777	0400	0000	1111	0400	0000		0000	0000	0540	7777	0000	
	MNEM KBUS	CODE F	I-1)	LMI	SDR	LTM	Ξ	SDR	LTM	LMI	- LR	NX	E E	NOP	LTM	EM	CLR	LMI	DSM	NA I	
	CPE	FETCH NEXT LOCATION IN CODE FORM AND STORE IN R7 */	X SIGMA	F1 R1	F2 R1	F5 R2	F1 R1	F2 R1	F5 R2	F1 R1	FO RI	F7 R3	F1 R1	F6 R1	F5 R2	F1 R1	F4 R1	F1 R1	F1 R1	F3 R3	
	LABEL	VEXT LOC	F BETA-E			* · · · ·	•		APG18	APG08										ÅPG05	
)	ADDRESS R C P	/* FETCH N	/* CONVERT BETA-E X SIGMA - (I-1) + SIGMA-I TO POWER FORM */	31 00 00	00 01 00	01 01 00	02 01 00	03 01 00.	24 01 00	26 02 00	26 01 00	04 01 00	05 01 00	06 01 00	07 01 00	08 01 00	10 01 00	13 01 00	12 01 00	09 03 00	
	RECORD NUMBER			64	20	51	52	53	. 45	55	, 95	22	58.	59	09	61	62	63	49	65	

RECORD	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	IZ	JUMP	READ/ WRITE	MI CROFUNCTION
99		•	F6 R1	NOP	0000	00	=	-	0	JFL 10	=	JFL APG12, APG13
29	10 02 00 /) APG12	F6 R1	NOP	0000	00	Ξ	-	0	JZR 14	=	JMP FAILO
_89 	10 03 00	10 03 00 APG13 F6 R1	F6 R1	NOP	0000	00	Ξ		0	JZR 04	11	JMP MSYNG

m

			READ	READ	READ	READ		WRITE								READ	READ		WRITE
MICROFUNCTION				٠.					•		:		1st Syndrome				JMP(MSY02, MSY05)		JMP(MSY03, MSY04)
READ/ WRITE		11	00	00	00	00	11	10	11	11	11	11	11	11	11	00	00	11	10
IUMP		JCC 01	JCC 02	JCC 03	JCC 04	JCC 05	JCC 06	JCC 07	JCC 08	JCC 09	JCC 10	JCC 11	JCC 12	JCC 13	JCC 18	JCC 21	JFL 18	JCR 01	JCF 17
INH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD		-	-	Н	1	1	H	г		-	H	П	н	Н	г	H	Н	H	-
8		00	11	11	11	11	11	11	11	11	11	11		11	11	11	10	11	11
ij		00	00	00	11	00	11	11	00	11	11	00	11	11	00	11	00	11	11
•		0540	0000	0017	7777	7777	0561	7777	7757	7777	7777	0000	0020	7777	7777	0000	7777	0000	0000
MNEM KBUS	/* 5)	LMM	CLR	AMA	SDR	LIM	LMI	SDR	LDM	SDR	SDR	ILR	LMI	SDR	SDR	INR	LIM	LMI	LMI
LABEL CPE	/* SOURCE PROGRAM MSYNG	MSY00 F1 R2	F4 R1	F0 R2	F2 R1	F5 R2	F1 R1	. F2 R1	F1 R2	F2 R1	F2 R1	FO RI	F1 R1	F2 R1	F2 R1	MSY01 F3 R1	F5 R2	MSY02 F1 R1	F1 R1
머	JRCE	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ADDRESS R C	SOI	0 04	1 04	2 04	3 04	4 04	5 04	6 04	7 04	8 04	9 04	0 04	1 04	2 04	3 04	8 04	1 04	8 02	8 01
. AI	\	00	0.1	02	03	04	02	90	07	08	60	10	11	12	13	18	21	18	18
RECORD		100	002	003	004	0.05	900	002	800	600	010	011	012	013	01.4	015	016	017	018

	READ	READ	READ						WRITE								
MICROFUNCTION						JMP (MSY06, MSY07)	JMP MSY17		JMP IOCOI		JMP(MSY13, MSY08)					Address of S1	
READ/ WRITE	00	00	00	11	11	11	11	11	10	11	11	11	11	11	11	11	11
IUMP	JCR 04	JCR 04	JCC 18	JCC 18	JCC 15	JZF 19	JCC 18 PL 01	JCR 03 P 01	JZR 14 P 01	JCR 04	JFL 20	JCR 04	JCC 22	JCR 01	JCC 23	JCR 04	JCC 24
INH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
LOAD	-	-	-	1	1	-	-	. /	-	1	~	П	Н	-	~	-	-
00	11	01	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
IJ	00	11	00	11	11	00	00	00	0.0	00	11	11	11	00	11	00	00
	0000	0000	0400	0000	0000	7757	2000	0000	0000	7777	0000	7777	0000	0000	7777	0000	0000
MNEM KBUS	NOP	NOP	LMM	LMI	LMI	LMI	LMI	CLA	NOP	DSM	ILR	SDR	INR	ILR	SDR	ILR	LMI
LABEL CPE	MSY03 F6 R1	MSY04 F6 R1	F1 R2	F1 R1	F1 R1	MSY05 FI R1	MSY06 F1 R1	MSY17 F4 R2	F6 RI	MSY07 F1 R1	FO R1	MSY08 F2 RI	F3 R1	FO RI	F2 R1	FO R1	F1 R1
SS	00	00	00	00	00	00	00	01	01	00	00	00	00	00	00	00	00
ADDRESS R C	17 02	17 03	17 04	17 05	18 05	18 03	19 02	18 02	18 03	19.03	19 04	20 03	20 04	22 04	22 01	23 01	23 04
RECORD AI	019	020	021 1	022 . 1	023	024 1	025 1	026 1	027 1	028	029	030 2	031 2	032 2	033 2	034 2	035 2
1								•									

	READ	READ			READ	READ		READ	READ	WRITE	READ	READ	READ					•
	R	RI			R	RI		R	R	>	R	R	R					
MICROFUNCTION			JMP (MSY12, MSY09)							JMP(MSY10, MSY12)		·	JMP(MSY11, MSY09)	, ,	JMP(MSY10, MSY12)	JMP MSY07		
READ/ WRITE	00	00	11	11	00	00	. 11	00	00	10	00	00	00	11	—	11	11	11
IUMP	JCC 25	JCC 26	JFL 27	JCR 01	JCC 25	JCC 30	JCC 28	JCR 04	JCC 29	JZF 30	JCR 04	JCR 05	JFL 31	JCR 04	JFL 30	JCC 19	JCR 01	JCC 21
HNI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD	-	н	-	П	П	П		~ H	1	r-I	-	н	П	-	H	H	Н	-
00	11	11	11	11	11	11	11	01	11	II	11	11	11	11	II	11	11	11
CI	11	00	11	00	00	00	-	11	00	11	00	00	00	11	11	00	11	00
-	7777	7777	7777	0400	0000	7777	0000	0000	7777	0000	0000	7777	7777	7777	0000	7777	7757	7777
MNEM KBUS	SDR	LTM	SDR	LMI	NOP	LTM	LMI	INR	XNI	LMI	ILR	LTM	AMA	INR	LMI	DSM	LDM	SDR
LABEL CPE	F2 R1	F5 R2	F2 R1	MSY09 F1 R1	F6 R0	F5 R2	F1 R1	F3 R1	F7 R3	F1 R1	MSY10 F0 R1	F5 R2	F0 R2	MSY11 F3 R1	F1 R1	MSY12 F1 R1	MSY13 F1 R2	F2 R1
ابه	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ADDRESS R C	04	04	04	03	01	01	01	01	04	04	02	04	05	02	04	03	02	01
ADI R	24	25	26	27	27	25	30	28	28	29	30	30	30	31	31	30	20	20
RECORD NUMBER	036	037	038	. 680	040	041	042	043	044	045	046	047	048	049	020	051	052	053

				,	READ	READ	WRITE	WRITE	READ	READ	READ	READ		WRITE					READ
MICROFUNCTION										JFL (MSY15, MSY16)				JMP(MSY14)	JMP(EPGEN)				
READ/ WRITE	11	11	11	11	00	00	10	10	00	00	00	00	11	10	11	11	11	11	00
IUMP	JCC 19	JCC 17	jcc 16	JCR 05	JCC 13	JCC 14	JCC 15	JCR 01	JCC 14	JFL 14	JCR 04	JCC 16	JCC 15	JCR 01	JZR 05	JCR 04	JCC 19	JCR 01	JCC 25
INH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD	~	-	Н	1	-	1.	7	H	н	-	-	H	H	-	H	-	-	-	-
8	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
딩	00	11	00	11	00	00	111.	11	11	00	00	00	11	11	00	00	00	00	00
	0602	7777	0000	0561	0000	7677	0000	0000	0000	0200	0000	7777	0000	0000	0000	7777	7777	0400	0000
MNEM KBUS	LDM	SDR	CLR	LMI	NOP	LTM	LMI	LMI	INR	LMM	NOP	LTM	LMI	LMI	NOP	DSM	DSM	LMI	NOP
CPE	F1 R2	F1 R1	F4 R1	F1 R1	F6 R1	F5 R2	F1 R1	F1 R1	F3 R1	F1 R2	F6 R1	F5 R2	F1 R1	F1 R1	F6 R1	Fl Rl	F1 R1	F1 R1	F6 R1
LABEL			•						MSY14		MSY15				MSY16 F6				
ᆈ	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ADDRESS R C	01	01	01	01	05	05	05	05	01	01	02	04	04	04	03	02	04	03	01
ADI	21	19	17	16	16	. 13	14	15	15	14	14	14	16	15	14	27	27	31	31
RECORD NUMBER	054	055	056	. 290	058	059	090	190	0.62	. 063	064	065	990	290	890	690	020	071	072

					READ	READ		READ		•	· .				IAR to AC			
MICROFUNCTION				K = TMSYP	0 to R6	s = 16	CO to C FLAG	ADDRESS OF TI	MOD SYND,	K = TMSYP	AC to R5	e + &	(R3 = -(16-s))		K = TEVAL = 646 to MAR to AC	JUMP ON C FLAG	s = 16 TEST	JCF (EPG03, EPG04)
READ/ WRITE	•		•	11	00	00		00			11	11	11		11	11		•
IUMP			٠	JCC 01	JCC 02	JCC 03		JCC 04			JCC 05	JCC 06	JCC 07		JCC 08	JCF 10		
LOAD INH				0	0	0		0			0	0 ,	0		0	0		
LOAD				-	-	-		-			. 	-	-		-	H	•	
8				11	11	10	÷	11			11	11	11		1.1	11		
MNEM KBUS CI	EN */	/* Xt	·(16-s) */	LDM(AC) 0602 00	CLR(R6) 0000 00	LTM(AC) 0020 00	•	LMM(AC)0602 11			SDR(R5) 7777 11	SDR(R3) 0037 11	LMI(R3) 7755 00	TEST R9 AND SET SCBIX ACCORDINGLY */	LDM(AC) 0646 00	CLA(AC) 0000 00		
LABEL CPE	SOURCE PROGRAM EPGEN	SET POINTER TO T' ARRAY	SET COUNTER (R3) TO -(16-s)	01 EPG00 F1 R2	F4 R1	F5 R2		F1 R2			F2 R1	F2 R1	F1 R1	ND SET SCBIX	F1 R2	F4 R2		
D.	RCE F	POIN	COU		01	01		01			01	01	01	T R9 A	01	01		
ADDRESS R C				00	00	00		0.0			00	00	00		00	00		
AD R	*	*	*	00	0.1	0.5		03			04	02	90	*	07	80		
RECORD NUMBER				001	002	003		004			005	900	200		800	600		

	WRITE			WRITE						•					READ	READ
MICROFUNCTION	TRPOL= TMSYP	602 to MAR to AC	JMP (RPVAL)	0 to R7	0 to R8		K = TEPAA	700 to R6 + K to R6	K = TEPBB	711 to R7 + K to R7	K = TEPCC	722 to R8 + K to R8		R5 to MAR		M to AC
READ/ WRITE	10			10	11		11		11		11			11	00	00
IUMP	JZR 13			JCR 01	JCR 00		JCC 11		JCC 12		JCC 21			JCC 22	JCC 23	JCC 24
INH	0			0	0		0		0		0			0	0	0
LOAD INH	4	*		П	1	•	-		-		Ĥ			-		-
8	11			11	11		11		11		11			11	11	11
CI	00			00	00		00		00		00			00	00	0.0
<u>KBUS</u>	0602	•		0000	0000		0020		0711		0722			00 0000	0000	7777
MNEM	LDM(AC)			CLR(R7)	CLR(R8)	*	LMI (R6)		LMI(R7)		LMI(R8)		*	LMI(R5)	CLR(R4)	LTM(AC)
CPE	F1 R2			F4 R1	F4 R1	INTERS	Fl Rl		FI RI		FI R1		0) = T(I	FI RI	F4 R1	F5 R2
P LABEL CPE	01 EPG03 F1 R2		,	01 EPG04	0.1	SET ADDRESS POINTERS	0.1		01		01		/* FIRST D(U) = D(O) = T(1)	01	01	01
ADDRESS R C	03			02 (01 (ET A	00		00		00		TRST	00	00	00
ADD R	10			10	10	*	10	•	11		12		*	. 21	22	23
RECORD NUMBER	010			011	012		013		014		015			016	017	018

 \mathcal{O}

				WRITE							READ	READ		READ	READ		READ
N	·		(50	M							R	33		R	2	(c)	교
MICROFUNCTION	G	OR + 1	17, EPG	S	u-1					S OF P						ADDRESS OF T(P)	
MICRO	SAVE D(U)	K = TEPDR + 1	JFL (EPG17, EPG05)	ADDRESS	SIGMA-u-l					ADDRESS OF		(P)		-(P)-1	U-P	ADDRES	n-p-1
READ/ WRITE	11			10		11	11	11		11	00	00	11	00	00	,	00
IUMP	JFL 25			JCR 00		JCC 26	JCC 27	JCC 28		JCC 29	JCC 30	JCC 31	JZR 01	JCC 01	JCC 02	JCC 03	JCC 04
INH	0			0		0	0	0		0	0	0	0.	0	0	0	0
LOAD	-			-				-	F) *	-	-	-	-	1	-	-	
8	11		•	11		11	11	11	-n) +	11	11	11	11	11	П	11	11
덩	11			00		11	00	11	= T(P)	11	11	00	00	00	11	00	00
KBUS	0734			0000		7777	0000	7777	(U+1)	0000	0000	7777	0000	0000	7777	00 0000	7777
MNEM KBUS	LMI(R4)			ILR(R8)		SDR(R2)	ILR(R7)	SDR(RI)	/* COMPUTE -(U-P)-1 IN R4 AND T(U+1) = T(P) + (U-P)	LMI(R4)	INR(R4)	LIM(AC) 7777	LMI(R4) 0000	CMA(AC) 0000	AMA(AC) 7777	LMI(R6)	SDR(R4)
CPE	FI R1			F0 R1		F2 R1	F0 R1	F2 R1	P)-1 IN	F1 R1	F3 R1	F5 R2	Fl Rl	F7 R3	F0 R2	FI RI	F2 R1
LABEL				01 EPG05					re -(u-				٠.	•		•	
ᆈ	01		•		,	0.1	01	01	MPU.	01	01	01	01	01	0.1	01	01
ADDRESS R C	00			03		00	00	00	00	00	00	00	00	01	01	01	01
ADJ R	24			25		25	26	27	*	28	29	30	31	00	01	02	03
RECORD NUMBER	·			÷													
RECORD NUMBER	019			020		021	022	023		024	025	026	027	028	029	030	031

	READ		READ	READ				READ	READ	٠	READ	READ	READ	READ		-u(1)	WRITE
MICROFUNCTION				T(U+1) =	T(P) + (U-P)	(P-U)			•	JFL(EPG28, EPG27)					ADDRESS OF T(U+1)	ADDRESS OF SIGMA-u(1)	ADDRESS OF
READ/ WRITE	00	11	00	00		11	11	00	00	11	00	00	00	00	11	11	10
IUMP	JCC 05	JCC 06	JCC 07	JCC 08		JCC ·06	JCC 09	JCC 10	JCC 12	JFL 08	JCR 07	JCC 11	JCR 01	JCR 08	JCR 01	JCC 12	JCC 13
INH	0	0	0	0		0	0	0	٠ 🗕	0	0	0	0	0	0	0	0
LOAD	H	H		H		-	H		H	1	Н	7	-	H	-	. 	–
8	11	11	Ħ	11		11	11	11	11	11	10	11	11	00	11	1	I
Ö	00	11	00	11		00	. 00	00	00	00	00	00	11.	11	11	11	11
KBUS	7777	7777	0000	7777		0000	0000 00	0000	7777	0000	0000	7777	7777	7777	0000	0000	0000
MNEM	LTM	SDR	ILR	AMA(AC)		CMR(R4)	LMI	CMA	AMA	CMA	ILR	AMA	SDR	LTM	LMI(R2)	INR(RI)	LMI(RI)
CPE	F5 R2	F2 R1	FO R1	F0 R2		F7 R1	FI RI	F7 R3	F0 R2	F7 R3	FO R1	F0 R2	F2 R1	F5 R2	F1 R1	F3 R1	F1 R1
LABEL	н.	μ.						Н		н	EPG27		-	-	EPG28		01 EPG06 1
ᆈ	01	01	01	01		01	01	01	01	01	01	01	01	01	01	01	01
ADDRESS R C	01	01	01	01		07	07	07	07	0.2	03	07	07	01	02	01	01
AD	04	05	90	07		07	90	60	10	12	08	08	11	11	08	08	12
RECORD NUMBER	032	033	034	035		036	037	038	039	040	041	042	043	044	045	046	047

SIGMA-u(1)

	READ	READ				٠.						READ	READ		READ	READ	
MICROFUNCTION		JFL (EPG07, EPG08)	JMP (EPG06)		NEXT SIGMA (U)	ADDRESS OF T(P)		ADDRESS OF	SIGMA-P(1)	K = TEPDR	ADDRESS OF D(P)	$\overline{T(P)} = -T(p)-1$	D(P)		-D(P)-1	D(U)-D(P)-1	D(U)D(P)-1
READ/ WRITE	00	00	11		=======================================	H	11	11		=======================================		00	00	I	00	00	11
IUMP	JCC 14	JFL 12	JCR 01		JCR 04	JCC 15	JCC 01	JCC .16		JCC 17		JCC 18	JCC 19	JCC 20	JCC 21	JCC 23	JCC 24
INH	0	0	0		0	0	0	0.	. 1	0		0	0	0	0	0	0
LOAD	-	-	1		П	П	H	7		-		-	н	H	1	-	1
8	11	11	11		11	11	11	11		11		11	11	11	11	11	11
MNEM KBUS CI	INR(R4) 0000 11	LTM(AC) 7777 00	LMI(R2) 0000 11	o t(u) */	DSM(RI) 7777 00	ILR(R6) 0000 00	SDR(R0) 7777 11	INR(R0) 0000 11	. •	LMI(R4) 0733 11		CMR(R9) 0000 00	LTM(AC) 7777 00	LMI(R4) 0000 00	CMA(AC) 0000 00	AMA(AC) 0037 01	ACM(AC) 0037 00
LABEL CPE	F3 R1	F5 R2	01 EPG07 F1 R1	COMPARE $t(p) - (1-p)$ to $t(u)$	01 EPG08 FI RI	FO RI	F2 R1	F3 R1		FI RI		F7 R1	F5 R2	FI R1	F7 R3	FO R2	F0 R2
ESS	. 01	1 01		MPA		1 01	10.1	01		01		01	01	01	10 1	10 01	1 01
ADDRESS R C	13 01	14 01	12 02) *	12 03	12 04	15 04	15 01		16 01		17 01	18 01	19 01	20 01	21 01	23 01
RECORD I	048	049	020		051	052	053	054 1		055		056 1	057	058	059	090	061

))							
RECORD NUMBER	AD A	ADDRESS R C	SS	LABEL CPE	PE	MNEM KBUS CI	KBUS	CI	CO LOAD INH	LOAL	INH	IUMP	READ/ WRITE	MICROFUNCTION		
062	24	01	01	F2	F2 R1	SDR(R4) 7777	777	11	11	-	0	JCC 25	11			
	*	LOC	P TO	/* LOOP TO COMPUTE REMAINING TERMS IN SIGMA-U+1	E REN	MAINING T	ERMS	IN S	IGMA-		*					
063	25	01	01	EPG09 F1 R1	R1	LMI(RI) 0000	000	11	11	-	0	JCC 27	Ξ	ADDRESS OF SIGMA-U(I)	·U(I)	
064	27	01	01	F3	F3 R1	INR(R9) 0	0000	11	10	-	0 .	JCC 28	00		READ	
. 065	28	01	01	F7	F7 R3	XNI(AC) 77	11	00	11	-	0	JCC 29	00	SIGMA-U	READ	
		•												D(U)D(P)-1		
														(SIGMA-P(I)		
990	29	01	01	F1	F1 R1	LMI(R2) 0000	0000	11	11	Н	0	JCC-30	11	ADDRESS OF SIGMA-		
								•		-				(U+1)(I+U-P)		
290	30	01	01	FI	F1 R1	LMI(R0) 00	00	11	11	-	0	JCF 31	10	ADDRESS OF	WRITE .	
									÷ ,			•		SIGMA-P(I)		
														JCF(EPG10, EPG13)		
890	31	02		01 EPG10 F0 R1	R1	ILR(R4) 0000 00	000	00	11	-	0	JCR 01	00	D(U)D(P)-I	READ	
690	.31	01	01	F5	F5 R2	LTM(T)	7777	00	11	 1°	0	JCR 04	00	SIGMA-P(I)=0?	READ	
020	31	04	01	FO	FO R2	AMA(AC) 7777	7777	. 00	11	-	0	JFL 26	00	D(U)D(P)-1	READ	
	,	•				a	•		:			· .		SIGMA-P(I)		

JFL (EPG11, EPG12)

			READ	READ					į				READ	READ		READ	READ
MICROFUNCTION	JMP (EPG09)	K = IPICC = 400		D(U)D(P)-1	SIGMA-P(I) - CODE	JMP (EPG09)		*	•	JFL (EPG14, EPG91	K = TEPDP+1	ADDRESS OF D(U)		D(U)	ADDRESS OF P	D(U) to R(0)	Δ ₄
READ/ WRITE	11	=	00	00			11			11	11		00	00	11	00	00
IUMP	JCR 01	JCR 04	JCC 25	JCR 01			JCC 27	IE CHANC	JZR 04	JFL 01	JCR 04		JCC 02	JCC 03	JCC 04	JCC 05	JCC 06
INH	0	0	0	0			0	OR TH	0	0	. 0 .		0	0	0	0	0
LOAD	-		-	-			1	PARE F	-	-	el		-	-	-	H	-
8	11	11	11	11			11	- PRE	11	11	11		11	11	11	11	11
Ö	00	. 00	00	00			Ë	ME P	11	00	11		00	00	11	11	00
	0000	0400	0000	7777			0000	BECO	0000	0000	0734		0000	7777	0000	7777	7777
MNEM KBUS	CLA(AC)	LMI(AC)	NOP(RO)	LTM(AC)			LMI(RI)	DETERMINE WHETHER U SHOULD BECOME P - PREPARE FOR THE CHANGE	INR(R3)	CLR(R4)	LMI(R4)		NOP(R0)	LTM(AC)	. LMI(R4)	SDR(R0)	LTM(AC)
CPE	F4 R2	Fl Rl	F6 R1	F5 R2			F1 R1	THER 1	F3 R1	F4 R1	F1 R1		F6 R1	F5 R2	FI RI	F2 R1	F5 R2
LABEL	01 EPG11 I	01 EPG12 I						MINE WHE	01 EPG13 1		EPG14						
ESS			1 01	1 01			10 1	TERN		4 01	02 01		4 01	4 01	4 01	4 01	4 01
ADDRESS R C	02	9 03	04	04			01		1 03	04			1 · 04	2. 04	3 04	4 04	5 04
A Al	26	26	26	25			26	*	31	00	01		01	0.5	03	04	0.5
RECORD	071	072	073	074			075		940	077	078		620	080	081	082	. 083

RECORD	AD	ADDRESS	လ္လ)				READ/		
NUMBER	ĸ	O	Q.	LABEL	CPE	MNEM	KBUS	Ö	8	LOAD INH	INH	IUMP	WRITE	MICROFUNCTION	
084	90	04	01		F1 R1	LMI(R4)	0000	11	11		0	JCC 07	11	ADDRESS OF L(P)	
085	07	04	01		F7 R3	CMA(AC)	0000	00	F=1	1	0	JCC 08	00	-P-1	READ
980	0.8	04	01		F0 R2	AMA(AC)	7777	00	11	 i	0	1CC 09	00	L(P)-P-1	READ
280	60	04	01		FI RI	LMI(R4)	0000	11	11	-	0	JCC 10	11	ADDRESS OF U	
088	10	04	01		F2 R1	SDR(R2)	7777	00	11	1	0	JCC 11	00	L(P)-P-2	READ
089	. 11	04	01		F0 R2	ACM(AC)	0000	11	11	1	0	JCC 13	00	U+1	READ
060	13	04	01		F2 R1	SDR(R1)	7777	00	11	-	0	JCC 14	10	WRITE U+1 SAVE U	WRITE
160	14	04	01		FO R1	ILR(R2)	0000	00	11	-	0	JCC .16	00	L(P)-P-2	READ
092	16	04	01		FO R2	AMA(AC)	7777	00	11	÷	0	JCC 17	. 00	L(P)+U-P-1	READ
600	17	04	01		F1 R1	LMI(R4)	0000	00	11	H	0	JCC 18	11	ADDRESS OF L(U)	•
094	18	04	01		F7 R3	CMA(AC)	0000	00	11	H	0	JCC 19	00	-(L(P)+U-P)	READ
960	19	04	01		FO R2	AMA(AC)	7777	00	11	П	p(JCC 20	00		READ
960	20	04	01		F5 R2	LTM(AC)	7777	00	11		0	JFL 21	00	L(U)	READ
					:		·							JFL (EPGIS, EPG16)	
	*	IF L	(D)	L.T. L(F)+U-P,	/* IF L(U) L.T. L(P)+U-P, ROW U BECOMES ROW P; L(U) IS REPLACED W/L(P)+U-P	COME	S RO	W P; I	SI (n)	REPLA	CED W/L	(P)+U-	/* d.	
260	21	02	01	01 EPG15	F2 R1	SDR(R9)	7777	11	11	H	0	JCR 04	11		
860	21	04	01		F0 R1	ILR(R2)	0000	11	11	-	0	JCC 22	11	L(P)+U-P-1 to L(U)	

RECORD NUMBER	AD R	ADDRESS R C	ᆈ	LABEL	CPE	MNEM	KBUS	CI	8	LOAD 1	INH	RI IUMP W	READ/ WRITE	MICROFUNCTION	
660	22	04	01		F3 R3	INA(AC)	0000	11	11	- 4	0	JCC 23	11		
100	23	04	01	•	F1 R1	LMI(R4)	7773	00	11		0	JCC 24	10	ADDRESS OF D(P)	WRITE
101	24	04	01		FI R1	LMI(R4)	0000	11	11		0	JCC 27	11		
102	27	04	01		FO R1	ILR(R0)	0000	00	11	н	0	JCC 28	11		
103	28	04	01		F3 R1	INR(R4)	0000	11	11	-	0	JCC 29	10	D(U) REPLACES	WRITE
														D(P)	
104	29	04	01		FI R1	LMI(R4)	0000	11	11	1	0	JCC 30	11	ADDRESS OF P	
105	30	04	01		FO R1	ILR(R1)	0000	00	11	н	0	JZR 05		U REPLACES P	
106	00	05	01		Fl Rl	LMI(R4)	0000	11	11	-	0	JCC 01	10	ADDRESS OF L(P)	WRITE
107	01	05	01		F0 R1	ILR(R9)	0000	00	. 11	-	0	JCC 02	11		
	*	INI	ERCH1	ANGE A	DDRES	INTERCHANGE ADDRESS POINTERS	OF SI	IGMA	-u ANE	SIGM	A-P TI	HEN SIGM	A-U	OF SIGMA-U AND SIGMA-P THEN SIGMA-U & SIGMA-U+1 */	
108	02	05	01		FO RI	ILR(R6)	0000	00	11	H	0	JCC 03	10	ADDRESS OF	WRITE
				•									·	SIGMA-P, L(U) to L(P)	P)
109	. 03	02	01		F2 R1	SDR(R9)	7777	11	11	H,	0	JCC 04	11		
110	04	05	01		FO R1	ILR(R7)	0000	00	11	г	0	JCC 05	11		
111	02	02	01		F2 R1	SDR(R6)	7777	11	11	H	0	JCC 06	11	JMP (EPG16 + 2)	
	*	INI	ERCH1	ANGE A	DDRES	INTERCHANGE ADDRESS POINTERS OF SIGMA-U AND SIGMA-U+1	OF SI	IGMA	-U ANI	SIGM	A-U+1	*		er.	٠.

								WRITE		READ	READ	WRITE	٠				POWER
MICROFUNCTION	,					JMP (EPG19)		ADDRESS OF U	K = TEPDR+4		JFL(EPG18, EPG90)			ADDRESS OF	SIGMA-U (I(U))		ADDRESS OF T(U+1) POWER
READ/ WRITE	11	11	11	11	11	11		10		00	00	10		11	,	11	11
IUMP	JCR 05	JCC 06	JCC 07	JCC 08	JCC 09	JCC 11	_	JCR 05		JCC 10	JFL 11	JCR 05		JCC 12		JCC 13	JCC 14
INH	0	0	0	0	0	0	*	0		0	0	0	٠.	0		0	0
LOAD	н	н	H	1	H	Н	MENT U	H	÷		H	_		Н		-	7
9	11	11	11	11	11	11	SO, INCREMENT	11		11	11	11		11		11.	11
C	00	11	00	11	00	11	so, 1	00	٠.,	11	11	00		00		11	11
KBUS	0000	7777	0000	7777	0000	7777	3? IF	0737		0000	0000	0000		0000		7777	0000
MNEM	ILR(R7)	SDR(R9)	ILR(R8)	SDR(R7)	ILR(R9)	SDR(R8)	SHOULD THERE BE ANOTHER PASS	LMI(AC)		INR(R3)	ACM(AC)	NOP(R6)	*	ILR(R7)	• •	SDR(R2)	ILR(R5)
CPE	F0 R1	F2 R1	FO RI	F2 R1	FO RI	F2 R8	E ANC	1 R1		F3 R3	FO R2	F6 R1	(Д)С	0 R1		F2 R1	FO R1
LABEL	EPG16 F	F4	<u>t-</u> j	<u>F-</u> ,	Ŀ	<u>[-</u> 4	THERE B	01 EPG17 F1 R1		£4,	£4	01 EPG18 F	COMPUTE NEXT D(U)	01 EPG19 FOR1	. *	F14	<u> </u>
SS	01	01	01	01	01	01	ULD	01		01	01	01	AP UT	01		01	01
ADDRESS R C	03	05	02	05	05	05	SHO	02		05	02	02	CO	05		05	05
AD R	21	21	90	0.2	80	60	*	25		25	1.0	11	*	11		12	13
RECORD NUMBER	112	113	114	115	116	117		118		119	120	121		122		123	124

		READ	READ			READ	READ		READ	READ		-		READ	READ	
MICROFUNCTION			LITTLE T(U)	-t(U)-1			ADDRESS OF	T(U+1) (CODE)		T(U+1) (CODE)		ADDRESS OF	SIGMA-U(I)		SIGMA-U(I)	(CODE)
READ/ WRITE	11	00	00	11	11	00	00		00	00	11	11	g *	00	00	
IUMP	JCC 15	JCC 16	JCC 17	JCC 18	JCC 19	JCC 20	JCC 22		JCC 23	JCC 26	JCC 24	JCC 31		JCR 06	JCC 30	•
INH	0	0	0	0	0	0	0		0	0	0	0		0	0	
LOAD INH	-		F -4	H	г	7			Ţ	1	-	П	`	1	1	
8	11	11	11	11	11	11	11		11	11	11	11	•	11	01	
CI	11	11	00	00	00	11.	00		00	00	00	11		11	00	
	0000	7777	7777	0000	0000	7777	0400		0000	7777	7777	0000		7777	7777	
MNEM KBUS	LMI(R2)	SDR(R4)	LTM(AC)	CMA(AC)	LM1(R4)	SDR(RI)	LMM(AC)		NOP	LTM(AC)	DSM(R4)	LMI(R2)		SDR(R0)	LTM(T)	
CPE	F1 R1	F2 R1	F5 R2	F7 R3	F1 R1	F2 R1	F1 R2		F6 R1	F5 R2	FI RI	FI RI		F2 R1	F5 R2	
LABEL CPE	<u>F-4</u>	<u> </u>	F4	Ц	14	щ	Щ		щ	Н	01 EPG20 F	н		μ.,	щ	
SS P	01	01	01	01	01	01	01		01	01	01	01		01	01	
ADDRESS R C	02	02	05	02	02	02	05		02	05	05	02		0.5	90	
AD R	14	15	16	17	18	19	20		22	23	26	24		31	31	
RECORD NUMBER	125	126	127	128	129	130	131		132	133	134	135		136	137	

(CODE)

	READ	R)		READ	READ					READ	READ	READ		<u>~</u>		READ	READ
MICROFUNCTION	ADDRESS OF	SIGMA-U(I) (POWER)	JFL(EPG24, EPG21)		SIGMA-U(I)	(POWER)	JFL(EPG22, EPG26)	ADDRESS OF	T(U+1-I) (POWER)		T(U+1-I) (POWER)	SIGMA-U(I)	T(U+1-I)	JFL (EPG25, EPG23)		PREVIOUS SUM	JMP(EPG20)
READ/ WRITE	00			00	00			11		00	00	00			1	00	00
IUMP V	JFL 27			JCR 06	JFL 28			JCR 05		JCC 27	JCC 30	JFL 29			JCR 06	JCR 05	JCC 26
INH	0			0	0			0		0	0	0			0	0	0
LOAD	H			-	1			1		П	1	-			-	Ħ	-
9	11			11	11			11		11	11	11			Π	11	11
CI	00	•		11	00		•	00		00	00	00			00	00	00
	0200			0000	7777)		0000		00 0000	7777	7777			0400	1200	7777
MNEM KBUS	LMM(AC)			INR(RI)	LTM(AC)		÷	LMI(R4)		NOP	LTM(T)	AMA(AC)			LMI(AC)	ILR(R0)	XNI(AC)
CPE	F1 R2			F3 R1	F5 R2		•	F1 R1		F6 R1	F5 R2	FO R2		e e	FI RI	FO RI	F7 R3
P LABEL CPE				01 EPG21				01 EPG22		. 10	01	. 10			01 EPG23	01	01
	06 01			03 0	06 01			0 20		02 0	02.0	02 0			03 0	0 .90	02 0
ADDRESS R C	30 0			27 0	27 0			28 0		28 0	27 0	30 0			29 0	29 C	29 (
	က			8	.00			8	•	8	8	ന			01	N	67
RECORD NUMBER	138			139	140	•		141		142	143	144		•	145	146	147

						READ						READ	READ			READ	READ
MICROFUNCTION		JFL (EPG20, EPG26)				JMP(EPG05-2)		JMP (EPG92)					ų	JFL (EPG98, EPG93)	ADDRESS OF s	2t	2t+s
READ/ WRITE	11	11	11	11	11	00		11	=	11	11	00	00	11	11	00	00
IUMP	JCC 29	JFL 24	JCR 05	JCC 23	JCC 23	JCR 00		JCR 06	JCR 06	JCC 13	JCC 11	JCC 10	JCC 12	JCC 23	JCC 02	JCC 03	JCC 04
INH	0	0	0	0	0	0		0	0	0	0	0	0		0	0	0
LOAD INH	, -	-	-	-		-		-	÷	-	H	-	-	;⊷i	H	H	~
8	11	11	11	11	11	11		11	11	11	11	11	10	11	11	11	11
CI		00	00	00	00	00		00	00	11	11	00	00	00	00	00	00
	0000	0000	7777	0200	0200	0000		0000	0000	7777	7777	0000	7777	0000	0602	7777	7777
MNEM KBUS	INR(RI)	ILR(R0)	DSM(R4)	LMI(R0)	LMI(R0)	CLR(R4)	T. 0 *	LMI(R7)	LMI(R8)	SDR(R7)	SDR(R7)	CLR(R6)	LTM(AC)	CLR(R4)	LMI(R4)	ALR(AC)	AMA(AC)
CPE	F3 R1	F0 R1	F1 R1	F1 R1	F1 R1	F4 R1	3-2t L.	F1 R1	F1 R1	F2 R1	F2 R1	F4 R1	F5 R2	F4 R1	F1 R1	FO R1	F0 R2
LABEL	EPG24	01 EPG25 F		01 EPG26 I		. "	CHECK FOR 16-s-2t L.T. 0	01 EPG90]	EPG91			EPG92			EPG93		
SS	01	. 01	01	01	01	01	CK]	01	01	01	01	01	01	01	01	01	01
ADDRESS R C	02	02	05	03	03	03	CHI	03	03	90	90	90	90	90	90	90	90
AD A	27	29	24	24	28	23	*	11	01	01	08	11	10	. 12	23	02	03
RECORD	148	149	150	151	152	153		154	155	156	157	158	159	160	161	162	163

IUMP WRITE MICROFUNCTION JCC 05 11 2t+s L.T.E. 16?	0 JCC 06 11 477 = K = SCBIX		JFL (EPG94, EPG97)	11 SET R9 BASED ON	SCBIX	JFL (EPG96, EPG95)		ADDRESS OF SIGMA-U	JCF (98, 99)	JUMP TO DECODE	FAILURE	JMP 10C01	JMP RPVAL		
2	JCC 06	JFL 07		11											
2							=======================================	11		11			11	00	00
日に	0 0			JFL 06			JCR 02	JCF 02		JZR 14			JZR 13	JCR 07	JCC 01
1NH 0		0		0		÷	0	0		0			0	0	0
LOAD 1	·			-				-		-			-	H	-
8 = 1	11 .	11.		11			11	11		11			11	10	11
5 8 8	00			00			00	00		00			00	00	00
KBUS 7777	0477	7777	,				0200	0000		0000			0602	0000	7777
MNEM KBUS DCA(AC) 7777	LMI(R6)	LTM(AC)		CLR(R9)			LMI(R9)	LMI(R7)		NOP			LMI(AC)	ILR(R7)	AMA(AC)
CPE F1 R3	FI R1	F5 R2		F4 R1	•		F1 R1	Fl Rl		F6 R1			FI RI	FO R1	FO R2
P LABEL	01			01 EPG94			01 EPG95 F1 R1	01 EPG96 F1 R1		01 EPG97 F6 R1			01 EPG98	01 EPG99	01
ADDRESS R C	90			02 (03 (02 (03			02 (03 (07 (
ADI R 04	05	00		07			90	90	-	20			02	02	02
RECORD NUMBER 164	165	167		168		,	169	170		171		•	172	173	174

RECORD NUMBER	ADI R	ADDRESS R C	SS	ORESS C P LABEL CPE	CPE	MNEM	KBUS	Ö	8	LOAD INH	INH	IUMP	READ/ WRITE	MICROFUNCTION	
175	01	07 01	0.1	μ,	F2 R1	SDR(R6)	7777	00	11	-	0	JCC 00	00		READ
176	00	07	01	ы	FO RZ	ACM(AC)	7777	11	11	П	0	JCF 03	00	JMP (EPG89, EPG88) READ	READ
177	03	02	01	01 EPG89 FI RI	'1 R1	LMI(R6)	0000	00	11	H	0	JCR 07	11	• .	
178	03	07	01	н.	F1 R3	DCA(AC)	7777	00	11	H	0	JCC 04	00		READ
179	04	07	01	ш,	F5 R2	LTM	7777	00	11	Н	-	JCC 05	00		READ
180	05	07	01	н	FI RI	DSM(R6)	7777	00	11		0	JFL 03	11	JMP (EPG89, EPG88)	
181	03	03		01 EPG88 F1 R1	1 R1	LMI(R7)	0000	, 00	11	-	0	JCR 08	11		
182	03	03 08	01	14	FO R1	ILR(R7)	0000	00	11	г	0	JZR 07	10	10 JMP (EPG89-1)	WRITE

RECORD NUMBER	ADD	ADDRESS R C P LABEL	CPE	MNEN	MNEM KBUS	Ö	9	LOAD	HNI	IUMP	READ/ WRITE	MICROFUNCTION	
•	/* S(SOURCE PROGRAM EPVAL	M EPVAL	*									
•	* EI	EPGEN LOADS AC WITH ADDRESS OF ERROR POLYNOMIAL TABLE */	WITH A	ADDRESS	OF ERR	OR PC	OLYNC	MIAL	TABLE	*			
:	* 8	STORE ADDRESS OF ERROR POLYNOMIA	OF ERRO	R POLYN	OMIAL	L IN SEPEP	PEP *			•			
001	00	07 00 EPVOO	F1 R2	LMM	0644	00	00	 1	0	JCC 13	11	644 to MAR, to T	
002	13	00 40	F1 R1	LMI	0000	11	00	·	0	JCC 14	10	AC to MAR, 1+AC to AC WRITE	TLE
003	14	00 20	F2 R1	SDR	7777	11	00	-	0	JCR 14	00 .	AC to R8 READ	ďΩ
004	14	. 14 00	F5 R2	LTM	7777	00	00	-	0	JCC 21	00	M to AC, O $_{V}$ M to CI READ	Q.
200	21	14 00	F1 R1	DSM	7777	00	. 00	-	0	JFL 16	11	AC-1 to AC	
	/* R	/* READ IEPOO, NUMBER OF ERROR COEF	IMBER O.	F ERROR		CIEN	IS TA	FICIENTS TABLE TEPOL	POL *				
	*	/* CHECK FOR ZERO ERRORS */) ERRORÉ	**				• •			÷		
	× C	/* CHECK FOR ONE ERROR AND TWO ERRORS */	ERROR !	AND TWO) ERROR	/* S							
900	16	11 00 EPV03	F5 R1	TZR	7777	00	00		0	JCR 14	11	O v AC to CO	
200	16	14 00	F1 R1	DSM	7777	00	00	H	.0	JFL 17	11	AC-2 to AC	
800	17	11 00 EPVO5	F5 R1	TZR	7777	00	00	-	0	JCR 14	11	O V'AC to CO	
600	17	14 00	F1 R1	DSM	7777	00	00	7	0	JFL 18	11	AC-1 to AC	
	*	* STORE 1'S COMPLEMENT OF	PLEMENT	OF (NC	(NO.OF ERR	RRORS .	- 3) IN R3	N R3 *				•	
	× ×	STORE 1's COMI	COMPLEMENT OF NO.	OF NO	OF ERRORS IN RZ, R1, R5 *,	ORS	IN R2	, R1,	R5 */	•			*
010	18	11 00 EPVO7	F1 R3	CIA	0000	00	00	-	0	JCR 14	11	AC to AC	

										•	•					READ	READ	
					٠				•		•	e.		to R8				
ON		.	•			•			-				8	, 1+R8			, R,	
JNCT	-	7)	3 to AC	7)								AC	AC to	MAR		R2	to MA	
(MICROFUNCTION	AC to R3	AC to AC	AC + 3 t	AC to AC	AC to R2	AC to RI	AC to R5		•			660 Ø to AC	660 Ø = AC to RO	$0_{ m V}{ m R8}$ to MAR, 1+R8 to R8		1+R2 to R2	500 y M to MAR,	
READ/ WRITE	11	11	11	11	. 11	11	11	•				11	11	11	***	00	00	
IUMP	JCC 13	JCC 02	JCC 03	JCC 03	JCC 11	JCC 12	JCC 05					JCC 06	JCC 07	JCC 08		JCC 20	JFL 19	
INH	`	0	0	0	0				 *			0	. 0				,	
LOAD		٠			· ·				TEVOA		/* O				*			
CO			_	-				TO POWER *	BLE 1	,	TCTP	_	_		CONVERTED		-	
	00	00 (00 (00 (00	00	00	POW	O TA		BLE	00 (00	00	ONVE	00	00 . (
i)	11	00	00	00	11	11	11	E TO	UT I	/* 10	SS TA	00	11	11	Ø	11	00	
MNEM KBUS	7777	0000	0003	0000	7777	7777	7777	M COD	- OUTF	E TEPC	ADDRE	0990	7777	0000	ALL S	0000	0200	
MNE	SDR	CIA	LMI	CIA	SDR	SDR	SDR	rs froi	OWER	M TABI	OWER	LMM	SDR	LMI	PI.E.	INR	LMM	
CPE	F2 R1	F1 R3	F1 R1	F1 R3	F2 R1	F2 R1	F2 R1	/* CONVERT & COEFFICIENTS FROM CODE	/* SET ADDRESS RO FOR 🕿 POWER – OUTPUT TO TABLE TEVOA	/* READ NEXT 🗲 (CODE) FROM TABLE TEPOL */	/* G CODE = INDEX TO & POWER ADDRESS TABLE TCTPC *,	F1 R2	F2 R1	F1 R1	* CHECK FOR END OF LOOP I.E. ALL S	F3 R1	. F1 R2	
LABEL							• .	S COEF	SSS RO	[@ (CO]	INDEX				R END	800		/* READ S POWER */
ם	00	00	0.0	00	00	00	0.0	/ERT	DDR	NEX	DE	00	00	00	K FO	00 EPV08	00	Ø PC
ADDRESS R C	14	14	1,4	14	14	14	14	CON	SET A	READ	00 h	14	14	14	CHEC	14	14	READ
ADE	18	13	02	.03	04	I	12	*	*	*	*	02	90	07	*	08	20	*
DER ER		•																
RECORD NUMBER	011	012	013	014	015	016	017					018	019	020		021	022	•

		READ	READ		, in a gamenter p	WRITE					· '		READ	READ
MICROFUNCTION	•	R2 to AC	M to AC	-	$0_{\rm V}\rm R0$ to MAR,1+RO to R0	$0_{\rm V}$ R8 to MAR,1+R8 to R8				R9 to AC	70ø to MAR if R9=0 270ø to MAR if R9=200ø	71¢ to AC if R9=0 271¢ to AC if R9=200¢	AC to R4	M + AC to T
READ/ WRITE	٠	00	00		11	10			•	11	11		00	00
IUMP		JCR 14	JCC 09	-	JCC 10	JCC 08				JCR 13	JCC 18		JCC 17	JCC 16
INH	·.	0	0		0	0			*	0	0		0	0
LOAD	•	H	н		Ä	-			BLOCK		-		~	H
9		00	00		00	00		•	DATA	00	00		00	00
Ö		00	00		11	11	*		RENT	00	11		11	00
MNEM KBUS		0000	7777	/* A	0000	0000	O ROOTS	HECK *	OM CURI	0000	0000	*	7777	7777
MNE	* 0	ILR	LTM	TEVO	LMI	TMI	AN TW	TION C	RES FRO	ILR	LMI	DRESS	SDR	AMA
CPE	/* ALL &'S NOT CONVERTED */	F0 R1	F5 R2	/* WRITE S POWER IN TABLE TEVOA */	F1 R1	FI RI TIMI	SOLUTION FOR MORE THAN TWO ROOTS	/* INITIALIZE ERASURE POSITION CHECK */	/* READ NUMBER OF ERASURES FROM CURRENT DATA BLOCK */	FO RI	F1 R1	STORE NEXT ERASURE ADDRESS	F2 R1	F0 R2
LABEL CPE	NOT CO	EPV37		POWER :			N FOR N	E ERASU	MBER OI	EPV09		EXT ERAS		
머	is s	00	00	re d	00	14 00	UTIO	IALIZ	NU.	00	00	RE NI	13 00	13, 00
ADDRESS R C	ALL	10	1,4	WRI	14		SOL.	INI	REAI	11	13	STO		
AL R	*	19	19	*	60	10	*	*	*	19	19	*	18	17
RECORD NUMBER		023	024	2000	025	026	• .	•		027	028		029	030

				WRITE		READ	READ		•								
E MICROFUNCTION	•	K to AC, K to MAR	T to MAR	R4 to MAR, 1+R4 to R4		0 to R6	M to AC	AC to R8	· · · · · · · · · · · · · · · · · · ·	7740ß to R6		647 Ø to AC	647 Ø to R9		•		1 + R6 to R6, AC
READ/ WRITE		11	11	10	•	00	00	Ë		11		11	11		٠,	,	11
IUMP	T ERASURE IN TADIØ/TBDIØ */	JCC 20	JCC 21	JCC 22	٠	JCC 23	JCC 24	JCC 25		JCC 26		JCC 27	JCC 28		•		JCC 29
LOAD INH	(T/ØI	0	0	0		0	. 0	0		0			0			•	,
LOAI	IN TAI		H	H				⊶	•. ·	-		-			•	/*/	H
8	SURE	00	00	00		00	00	00	٠.	00		00	00		*	DEX R	00
Ö	r era	00	00	11	•	00	00	11		00		00	11	•	ROW */	N IN	11
MNEM KBUS	NG LAS	0037	0000	0000	R8 */	0000	0000	7777	/* 000	7740	EVAL */	0647	7777		OR LAST	/* STORE 5 LSD OF ROW INDEX IN COLUMN INDEX R7 *,	0000
MNEM	IMOTIC	LMM	LMI	LMI	ORE IN	CLR	ACM	SDR	11 100	LMI	TPUT T	LMM	SDR		HECK FO	DEX IN	ILR
CPE	/* WRITE 37% in ADDRESS FOLLOWING LAS	F1 R2	F1 R1	FI RI	/* READ FIRST ERASURE, STORE IN R8 */	F4 R1 CLR	FO R2	F2 R1	/* SET ROW INDEX TO 111 111 100 000 */	F1 R1 LMI	/* SET INDEX FOR ROOT OUTPUT TEVAL */	F1 R2	F2 R1	*	/* UPDATE ROW INDEX. CHECK FOR LAST	ROW IN	FO RI
LABEL CPE	f in ADI				T ERAST	:	• .		INDEX 1	·	K FOR R			/* BEGIN NEW ROW */	INI MO	SD OF	EPV10
ما	ITE 372	3 00	3 00	13 00	ND FIRS	13 00	3 00	13 00	r ROW	3 00	r index	13 00	3 00	GIN NE	DATE R	ORE 5 I	13 00 1
ADDRESS R C	/* WR	,16 13	20 13	21 13	/* RE2	22 13	23 13	24 13	/* SEI	25 13	/* SE	26 13	27 13	/* BE(/* UP	/* ST(28 1
O Ki			.:			/	S	ι						•	•		
RECORD NUMBER		031	032	033	•	034	035	980		037		038	039		-		040

.4		1.					·			•				READ	READ	
READ/ WRITE MICROFUNCTION	11 AC (5LS D) to R7	•	•		11 AC (5LS D) to T	11 0 to R2	11 R 8 to AC	11 R7 $\overline{\oplus}$ R8 = T $\overline{\oplus}$ AC to T	11 $0_{\rm V}$ T to CI .	11 1 + R2 to R2			11 R4 to MAR, 1 + R4 to R4	00 RO to RO	00 M to AC	11 AC to R8
			*			22 1	20	•				•		25	28	
IUMP	JFL 21		SURE		JCR 12	JCC	JCC	JCC 19	JCC 18	JFL 24			JCR 12	JCC	JCC	JCR 13
LOAD INH	0		IT ERA		0	0	0	0	•. O	0			0	0	0	
LOAL	-		URREN		÷		п	-	-	 i			-	_	Н	.
8	00		OF C		00	00	. 00		00	00			00	00	00	00
5	11	:	MENT	_	11	00	00	0,0	00	11			;i	00	00	11
MNEM KBUS	0037	*	COMPLE	O 0001 *	0000	0000	0000	7777	0037	0000	MENT */		0000	0000	7777	7777
MNE	CSR	ESSING	"SD) =	SUM I	CSR	CLR	ILR	XNR	TZA	INR	OMPLE		LMI	NOP	LIM	SDR
CPE	F2 R1	/* ROWS REMAIN FOR PROCESSING */	/* CHECK IF ROW INDEX (5LSD) = COMPLEMENT OF CURRENT ERASURE */	* SET ROW CUMMULATIVE SUM TO 0001	F2 R1	F4 R1	FO R1	F7 R1	F5 R3	F3 R1	/* ROW INDEX= ERASURE COMPLEMENT *	/* READ NEXT ERASURE */	F1 R1 LMI	F6 R1	F5 R2	F2 R1
LABEL CPE		aain f	ROW I	CUMM	00 EPV11	•	· •				EX == ER	T ERAS	EPV12	:		
ابم	00	S REN	CK IF	ROW	00	00	00	00	00	00	IND	O NEX	00	00	00	00
ADDRESS R C	13	ROW	CHE	SET	21 :10	12	12	12	12	12	ROW	REAI	10	12	12	12
AL R	29	*.	*	*	21	21	22	20	19	18	*	*	24	24	25	28
RECORD NUMBER	041			<u> </u>	042	043	044	045	046	047	: . -	•	048	049	020	051
															•	

			ş#						•	o RO	. •		H		-		AC.
/ MICROFUNCTION		to Ro			=		•		, AC	RO to MAR, 1+RO to RO		•	$0_{\rm V}$ M to CO, M to T	AC.			$400_{ m V}$ AC to MAR to AC
ROFUN		$K_{\lambda}R0 = 660 \beta$ to Ro		AC	R5 to R1				+ RI to RI, AC	MAR,		AC	to CO	T + AC to T, AC			AC to
MIC		K RO.		R5 to AC	AC =			•	1 + R	RO to	•	R7 to AC	O V M	T + A			400v
READ/ WRITE	•	11		11	11				11	11		00	00	11	5. 7. k	· ·	11
IUMP		JCR 09		JCC 23	JCC 22.				JCC 21	JFL 25		JCR 09	JCC 20	JFL 26			JCR 12
INH	*	ſ			_	*			 •								
LOAD I		0		0 ,	0	SED			0	0		0	Ō	0			0
•	*	-		-	Á,	MS L			Н	Ħ		1	г	1		*	.
8	VOA	00		00	00	S TER			00	00		00	00	00		PTCC	00
5	IN TE	00		00	11	ALL	*		11	11		00	00	00		I MC	0.
MNEM KBUS	/* Initialize address of s coefficient in tevoa */	0990	*	0000	7777	CHECK ALL & TERMS USED *,	= ZERO */		0000	0000		0000	7777	7777		READ FROM TPTCC *,	0400
MNEI	COEFF	CLR	5 to R1	ILR	SDR	ERMS -	ECK 6		ILR	LMI		ILR	LIM	ALR			LMI
CPE	SS OF	F5 R1	INDEX RI. R5 to R	FO RI	F2 R1	OF & T	M - CE	/* (x*	F0 R1	F1 R1	*	FO RI	F5 R2 LTM	F0 R1) TO (F1 R1
LABEL	E ADDRE	EPV13				/* INCREMENT NO, OF & TERMS	/* READ NEXT & TERM - CHECK &	/* COMPUTE 6. (4x) */	EPV14 F0 R1		/* 6 TERMS REMAIN */	EPV15			* C	/* CONVERT & (L x) TO CODE,	EPV16 F1 R1
ᆈ	IALIZI	00	/* INITIALIZE	00	0.0	REME) NEX	IPUTI	00 60	00 60	RMS	10 00	00	00	/* S ≠ ZERO */	VERT	11 00
ADDRESS R C	INI	11	INI	24 09	23 09	INC	REAL	CON			0		60	20 09 00	1k	CON	
	*	24	*	24	23	* .	*	*	22	21	*	25	25	. 20	*	*	26
RECORD				1			-				: .	٠.					
NU		052		053	054		-		055	056		057	058	059	· .		090

READ READ

RECORD NUMBER	AD R	ADDRESS R C P	LABEL	CPE	MNEM KBUS		ij	8	LOAI	LOAD INH	IUMP	READ/ WRITE	/ MICROFUNCTION	• .
191	26	12 00		F0 R1	ILR	0000	00	00	-	0	JCC 23	00	R2 to AC	
290	23	12 00		F7 R3	XNI	7777	. 00	00	H	0	JCR 10	00	AC 🕞 I(M) to AC	
	*	симми	JLATIVE ?	* CŲMMULATIVE ADD (XOR) SUM TO ROW SUM R2 *,	SUM I	O ROW	SUM	R2 *			÷			
063	23	10 00		F2 R1	SDR	7777	11	00	-	0	JCC 26	11	AC to R2	
	*	GALOIS	MULTIPI	/* GALOIS MULTIPLY (ADD) ROW	ROW A	Lerm by Column Lerm */	(CO)	LUMN	LIER	/* M		•		
<i>f</i> →	*	AD JUST	POWER,	/* ADJUST POWER AND STORE IN		COLUMN & TERM *,	A TE	RM *						
064	. 26	10 00	EPV17	FO R1	ILR	0000	. 00	0.0	, ,		JCR 09	11	R6 to AC	- ,
065	26	00 60		FO R1	ALR	0037	00	00	 1	· 0	JCC 19	11	R7 +A to R7, AC	
990	19	00 60		F3 R3	AIA	0037	00	00		0	JCC 18	11	AC + I (D) to AC	•
290	18	00 60		F2 RI	SDR	0037	11	00	-		JCC 22	11	AC to R7	
's .	*	CHECK	IF ROOT	/* CHECK IF ROOT FOUND, SUM =		/* 0							•	
890	25	11 00	EPV18	F5 R1	TZR	7777	00	00	-	0	JCR 14	11	$O_{ m V}$ $R_{ m Z}$ to CO	
690	25	14 00		FO RI	ILR	0000	00	00	-	. 0	JFL 29	11	R6 to AC	
•	*	/* ROOT FOUND	OUND -	- WRITE INVERSE ROOT POWER IN TEVAL *,	VERSE R	OOT PO	WER	IN TE	VAL */			,	-	
020	. 29	10 00	EPV19	F1 R1	LMI	0000	11	. 00	-		JCR 12	H	R9 to MAR, 1+R9 to R9	62
071	29	12 00	_	F1 R3	CIA	0000	00	00	~	0	JCC 17	11	ĀČ to AC 5LSD	٠
1		STORE I	NVERSE 1	/* STORE INVERSE ROOT IN REGISTER T */	REGISTE	R.T */	•		:		•			
		CONVE	R INVER	/* CONVERT INVERSE ROOT TO CODE */	TO COD	E */								•

READ

READ

RECORD NUMBER	ADDRESS R C	SS LABEL	CPE	MNEN	MNEM KBUS	Ö	8	LOAL	LOAD INH	IUMP	READ/ WRITE	MICROFUNCTION	
072	17 12	00	F1 R1	LMI	0400	00	00	н	0	JCC 16	10	$400 _{ m V}$ AC to MAR to AC	WRITE
073	16 12	00	F2 R1	CSR	0077	11	00	H	0	JCR 09	00	K AC to R1	READ
074	16 09	00 60	F5 R2	LTM	7777	00	00		0	JCC 17	00	M to AC	READ
	/* REA	* READ CUMMULATIVE INVERSE ROOT SUM CODE *	ATIVE INV	ERSE RC	OT SUN	COI)E */						
	/* XOR	/* XOR WITH NEW ROOT. STORE IN SIRCS	ROOT. S	TORE IN		*							
075	17 09	00	FI R2	LMM	0290	H	00	-	0	JCR 08	11	670% to MAR, 671% to T	
. 920	17 08	. 00	F6 R0	NOP	0000	00	00	 1	0	JCC 16	00	RO to RO	READ
220	16 08	.00	F7 R3	XNI	7777	0.0	00	-	0	JCC 18	. 00	AC T (M) K to AC	READ
	/* REA	/* READ CUMMULATIVE INVERSE ROOT PRC	ATIVE INV	FRSE RC		DUCI	DUCT POWER *,	TER */		٠			
	/* ADE	/* ADD TO NEW ROOT */	/* TOC										•
1820	18 08	00	. FI RI	LMI	0000	0.0	00	H	0	JCC 19	10	$0_{\rm v} T = 671 \beta$ to MAR	WRITE
620	19 08	. 00	FO R1	ILR	0000	00	00	-	0	JCC 20	00	R1 to AC	READ
080	20 08	00	F0 R2	AMA	7777	00	00	-	0	JCC 21	00	M + AC to AC	READ
•	/* ADJ	/* ADJUST FOR POWER > 31	WER > 31	STORE RESULT		IN SIRPS	₹ SdX					•	•
. 180	21 08	00	F3 R3	INA	0037	00	00		0	JCC 22	11	AC + I (D) to AC	•
082	22 08	00	F2 R2	CSA	0037	11	00		0	J CC 23	Ħ	K AC to AC	
083	23 08	00	F1 R1	LMI	0000	00	00	:н	0	JCC 28	11	$0_{\rm V} T = 671 \text{\&to} MAR$	

RECORD NUMBER	ADDRESS R C	ᆈ	LABEL CPE	CPE	MNEM	MNEM KBUS	ij	8	LOAD I	INH IUMP		READ/ WRITE	MICROFUNCTION	
•.	/* INC	SREME.	/* INCREMENT ROOT LIMIT R3	I LIMIT	R3 */									
•	/* CH:	ECK FO	CHECK FOR ALL ROOTS MINUS 2 FOUND	ROOTS IN	INUS 2	FOUND	(LIMIT	II	-3) */				•.	
084	24 08	8 00		FO R1	ILR	0000	11	00	1 0	JCC 25		10 F	R3 + 1 to R3, AC	WRITE
085	25 08	9 00		FO RI	ILR	0000	11	00	1 0	JFL ;	27	11 1	1+R6 to R6, AC	
	/* ROC	ROOTS -	2 NOT ALL FOUND */	LL FOU	/* QN						•			
980	27 10	00 0	EPV50	F2 R1	CSR	0037	11	00	1 . 0	JFL :	21	7 11	AC (5LSD) to R7	
-	/* NO	ROOT	/* no root - on this iteration */	HIS ITEF	ATION	<i>></i>								
087	29 11	00 1	EPV38	FO R1	ILR	0000	11	. 00	1 0	JCR 13	•	11 1	1+R6 to R6, AC	-
088	21 11	1 00	EPV39	F6 R1	NOP	0000	Ħ	00	1 0	. ; JZR 14		11 F	R0 to R0 JMP IOC01	
	/* ZER	/* ZERO ROOTS */	/* SI(• •		1 0			
: .	/* WR	TE 0 I	/* WRITE 0 FOR NUMBER OF ROOTS IN TEVAL *,	MBER OF	ROOTS	IN TEV	/* Th	÷			*			•
680	16 10	00 0	EPV02	F4 R1	CLR	0000	00	00	1 0	JCR 07		11 (0 to AC	•
060	16 07	00 2		F1 R2	LMM	0646	00	00	1 0	JCC 15		11. (646ø to MAR, to T	
091	15 07	00 2		F6 R1	NOP	0000	00	00	1 0	JZR 13		10		WRITE
· .	NO */	/* ONE ROOT */	/* T							•	<u>;</u>			
	/* WR	rre 1 1	/* WRITE 1 FOR NUMBER OF ROOTS IN TEVAL (646) */	MBER OF	ROOTS	IN TEV	4L (64	/* (9					•	• .
260	17 10	00 0	EPV04	F0 R2	ACM	0000	11	. 00	.0	JCR 07		11 1	1 to AC	•
093	17 07	00 2		F1 R2	'LMM	0646	00	00	1 0)QC	18	11 (646 to MAR, to T	•

	WRITE		٠,	READ	AC READ	READ	READ	READ		•	,		WRITE		•		: •
) IE MICROFUNCTION	R8 to MAR, 1+R8 to R8	•		· ·	$500_{ m v}$ M to MAR, $500+$ M to AC READ		0 v I to CO, to T	M to AC		0 to AC		647 to MAR to T	JMP RPG00	-			R8 to MAR, 1+R8 to R8
READ/ WRITE	10			00	00	00	00	00		11		11	10		/ •		1
IUMP	JCC 19			JCC 20	JCC 21	JCC 22	JCC 01	JFL 02		JCR 03		JCR 07	JZR 06 P				JCR 06
LOAD INH	_	*			_			:	- .								
OAD	0	FORM		0	.0	0	0	0		0		0	0			/* N	0
	-	WER]		H	Н	Н	Н	H		-		1	-			- CODE FORM	्रस
8	00	o Po		00	00	00	00	00	• .	00		00	00			ODE	00
IJ	11	IM TO		00	00	00	00	,00		00		00	00				11
KBUS	0000	E FOR		0000	.0200	0000	0037	7777		0000		0647	0000			TERN	0000
MNEM KBUS	LMI	IN COD	37 8 */	NOP	LMM	NOP	ORI	LTM	′.	CLR		LMM	NOP			DEGREE	LMI
CPE	F1 R1	/* CONVERT & COEFFICIENT IN CODE FORM TO POWER FORM *,	/* CHECK IF POWER = 31D = 37 Ø */	F6 R1	F1 R2	F6 RI	F6 R3	F5 R2		F4 R1		F1 R2	F6 R1			/* READ & COEFFICIENT 1ST DEGREE TERM	F1 R1
LABEL CPE		G COE	F POWER						/* O POWER = 0 */	EPV39	/* 6 POWER ≠0 */	EPV38			/* TWO ROOTS */	OEFFICE	EPV01
SS	00 20	IVERI	CK II	00	0.0	00	00	00	OWER	02 00	OWER	00	00		ROC	0	00
ADDRESS R C		CON	СҢЕ	. 07	0.2	07	07	01 07 00	6 P(0	03	07		TWC	REAI	18 10
AL R	18	*,	*	6	20	21	22	01	*	02	* .	02	02		*	*	18
)RD BER		•						. :			: .			•	•		
RECORD NUMBER	094			960	960	160	860	660		100		101	102				103
-							•										

RECORD NUMBER	ADDRESS R C P LABE	LABEL CPE	MNEM KBUS	KBUS CI	8	LOAD	INH	IUMP	READ/ WRITE	MICROFUNCTION	e.
	/* STORE ZERO IN INVERSE ROOTS SUM CODE R2 *,	INVERSE F	OOTS SU	M CODE R	*	٠.			•		
104	18 06 00	F4 R1	CLR	00 0000	00	-	0	JCC 26	00	0 to R2	READ
105	26 06 00	F5 R2	LTM	7777 00	00	e-t		JCR 08	00	0 $_{\rm V}$ M to C0, M to AC	READ
·	* CHECK & COEFFICIENT FOR ZERO VALU	FFICIENT	FOR ZERC	VALUE */							•
	/* STORE ZERO IN INVERSE ROOTS PRODUC	I INVERSE	OOTS PR	ODUCT PO	T POWER R3 */	/* 83					
106	26 08 00	F4 RI	CLR	00 0000	00		. 0	JFL 28	11	0 to R3	
•	/* G COEFFICIENT NOT ZERO */	T NOT ZER	/* 0			`				•	
:	/* STORE S IN R6.		STORE ONES COMPLE	MPLEMENT OF	r of 1	NO. OF	ROOTS	OF ROOTS, LE,2 IN R5*,	N R5*/	•	
107	28 11 00	F2 R1	SDR	7777 11	00	-	٠. 0	JCR 09	11	AC to R6	
108	28 09 00	F2 R1	CSR	00 0000	00	-	, 0	JCC 29	11	- 1 = 11 to AC	•
: .	/* READ & COEFFICIENT OF 2ND DEGREE	FICIENT O	F 2ND DE	GREE TERM */	/* 1					•	
	/* CONVERT CODE TO POWER, STORE IN R	E TO POW	ER, STOR	E IN R7 */				•			
	/* SET OUTPUT ROOT INDEX FOR TEVAL IN	OOT INDE	k for tev	AL IN R9 */							,
109	29 09 00	F1 R1	LMI	00 0000	00	-	0	JCC 30	11	R8 to MAR	
110	30 09 00	F2 R1	SDR	7775 11	00		. 0	JCC 31	00	7775 to R5	READ
111	31 09 00	F1 R2	LMI	0200 00	00	· H	0	JCC 27	00	$500_{ m v}$ M to MAR, $500+$ M to T READ	to I READ
										•	

	READ	READ					H	READ	READ			READ	READ					READ
MICROFUNCTION	647Ø to R9	M to AC	AC to R7		RO to RO JMP IOC01		$0_{ m v}$ 670% to MAR,670% to T	0 to $^{R}_{0}$	M to AC	671\$ to MAR, 671\$ to T		AC to R_2	M to AC				644ø to MAR to T	AC to R ₃
READ/ WRITE	00	00	11		11		11	00	00	11		00	00				11	00
IUMP	JCR 08	JCC 28	JCR 07		JZR 14	IN R ₂ */	JCR 07	JCC 26	JCC 12	JCC 11	o R3 */	JCC 10	JCC 09	•			JCC 08	JCC 07
INH	0	0	0		0	IORE	0	0	0	0	RPS t	0	0				0	0
LOAD	-	-	н		Н	IRCS,S	Ħ.	-	-	Н	UCT SI	H					H	· 1
8	00	00	00		00	SUM S	00	00	00	00	PROD	00	00	644 */			00	00
Ö	11	00	11		00	ODE	. 00	00	00	00	OWEF	11	00	SEPEP =	*	•	00	11
KBUS	0647	7777	7777		00 0000	OTS C	00 0290	0000	7777 00	0671	OTS P	7777	7777		FORM		0644	7777
MNEM KBUS	CSR	LIM	SDR		NOP	PERSE RC	LMM	NOP	LTM	Γ MM	ZERSE RC	SDR	LTM	l addr	T CODE	e .	LMM	CSR
CPE	F2 R1	F5 R2	F2 R1	*	F6 R1	IVE INV	F1 R2	F6 R1	F5 R2	F1 R2	IVE INV	F2 R1	F5 R2	NOMIA	FICIEN		F1 R2	F2 R1
LABEL C	· htt	щ	1-1-1	/* DECODE FAILURE */	10 00 EPV40 F	/* READ CUMMULATIVE INVERSE ROOTS CODE SUM SIRCS, STORE IN $_{ m R_2}$ *,	EPV20 F	щ	щ	н	/* READ CUMMULATIVE INVERSE ROOTS POWER PRODUCT SIRPS to R $_3$ */		н.	/* READ ERROR POLYNOMIAL ADDRESS	/* READ 1st & COEFFICIENT CODE FORM */	/* STORE IN R ₆ */		14
പ	00	00	00	ODE	00	D CU	00	00	00	00	D CU	00. 40	00	D ER	D 1st	RE IN	00	00
ADDRESS R C	60 2	2 08	3 08	* DEC	28 10	* REA	7 11	7 07	20 9	2 07	* REA		0 07	* REA	* REA	* STC	9 07	8 07
A A	27	27	28		28		27	27	26	12	`	11	10		_		60	08
RECORD NUMBER	112	113	114		115		116	117	118	119	٤.	120	121			•	122	123

)										,				
RECORD NUMBER	ADDRESS R C	ы	LABEL	CPE	MNEM KBUS	KBUS	덩	8	LOAD	INH	LOAD INH IUMP	READ/ WRITE	MICROFUNCTION	
124	02	00 20		F5 R2	LTM	0037	00	00	-	0	JCC 25	00	K M to AC	READ
125	25 (00 40		FO R1	ILR	0000	11	00	-	0	JCC 06	11	1 + AC to AC	
126	90	00 20		F1 R1	LMI	2000	00	00	-		JCC 05	11	700 _v AC to MAR,	•
·.) <u>.</u>		-							700 + AC to AC	
127	0.5	00 20		FO R1	ILR	0000	00	00	-	0	JCC 04	00	R ₅ to AC	READ
128	04	00 20		F5 R2	LTM	7777	00	00	H	0	JCC 03	00	M to T	READ
	* F	EADS	MAX. C	OEFFICE	/* READ SMAX. COEFFICIENT (USE	R ₅) POWER FORM */)WER	FORM	*					
	* 8	/* STORE IN R ₇ */	N R7 */											
129	03	00 20		F1 R3	CIA	00 0000	00	00	–	0	JCC 23	11	AG to AC (R ₅)	
	/* A	DD INI	DEX TO	TEVOA AI	/* ADD INDEX TO TEVOA ADDRESS 65	1278 */	,				•			• •
130	23	00 20		F1 R1	LMI	0657	00	00	-	0	JCC 24	11	AC+657\$ to AC	
131	24	00 40		F1 R1	LMI	0000	00	00	-	0	JCC 30	11	O _V AC to MAR	
132	30	00 40		FO R1	ILR	0000	00	00	-	0	JCR 06	00	T to AC (G CODE)	READ
133	30	00 90		F2 R1	SDR	7777	11	00	m	0	JCC 17	00	AC to R ₆	READ
134	17	00 90		F5 R2	LTM	7777	00	00	-	0	JCC 28	00	M to AC & POWER MAX	READ
135	28	00 90		F2 R1	SDR	7777	11	00	-	0	JCR 07	11	AC to R ₇	
	/* A	DD ON	E'S CO	MPLEMEI	/* ADD ONE'S COMPLEMENT OF TMAX AND *,	MAX AI	/* QI	,						
										•	ě			

/* INVERSE ROOTS POWER PRODUCT (R3) */

ADDRESS											READ/	
P LABEL CPE	CPE	1	MNEI	21	MNEM KBUS CI	Ö	8	LOAD INH	INH	IUMP	WRITE	MICROFUNCTION
/* CHECK IF S MAX < INVERSE ROC					ROOTS POWER SUM */	ER SI	/* MC				•	
28 07 00 EPV26 F1 R3 CIA	F1 R3	R3	CIA		0000	00	00	 1	0	JCC 28	11	\overline{AC} to \overline{AC} to \overline{AC}
29 07 00 F2 R1 SDR	R1	R1	SDR		7777	11	00	1	0	JCR 08	11	AC to R4
29 08 00 FO R1 ILR			ILR		0000	00	00	-	0	JCR 06	11	R_3 to AC
29 06 00 FO RI ALR			ALR		7777	00	00	г	0	JCC 27	11	R4 + AC to R4, AC
27 06 00 F1 R3 CIA	R3	R3	CIA		0000	00	00	П	0	JFL 24	11	AC to AC
/* ♂ MAX > INVERSE ROOTS POWER PRODUCT */	INVERSE ROOTS POW	RSE ROOTS POW	rs Pow	p-t-mi	R PROD	UCT	*					
24 02 00 EPV21 F2 R1 SDR	F2 R1	RI	SDR		7777 11	II	00	М	0	JCR 06	11	AC to $R_4 = P$
/* 𝝊 MAX < INVERSE ROOTS POWER PRODUCT (≠ 0) */	INVERSE ROOTS POWER	E ROOTS POWER	POWER		PRODU	CI (;	* (0 ≠					,
24 03 00 EPV22 F1 R1 LMI	F1 R1	R1	LMI		0037	00	00	н	0	JCR 05	11	$R_7 + 37 \beta$ to R_7
24 05 00 F0 R1 ILR			ILR		0000	00	00	H	0	JCC 20	11	R ₃ to AC
20 05 00 F1 R3 CIA	R3	R3	CIA		0000	11	00	-	0	JCR 06	11	$1 + \overline{AG}$ to AC
20 06 00 F0 R1 ALR	R1	R1	ALR		7777	00	00	1	0.	JCC 09	11	$R_7 + AC$ to $AC = P$
09 06 00 F2 R1 SDR	RI	RI	SDR		7777	11	00	1	0	JCC 24	11	AC to $R_4 = P$
/* READ CURRENT BLOCK INDEX INDICATOR SCBIX */	RRENT BLOCK INDEX IN	BLOCK INDEX IN	NDEX IN		IDICATC	R SC	BIX */		-			
/* ESTABLISH CURRENT BLOCK ADE					ADDRESS IN R8 */	V. R8	*	-				
24 06 00 F1 R2 LMM	R2	R2	LMM		0477	00	00	-	0	JCC 15	11	477% to MAR to AC
15 06 00 F4 R1 CLR	RI	RI	CLR		0000	00	00	H	0	JCC 14	00	0 to $R_{ m g}$

	1)						
RECORD NUMBER	ADD R	ADDRESS R C	[بم	LABEL CPE	CPE	MNEM KBUS		Ö	00	CO LOAD INH	INH	IUMP	READ/ WRITE	MICROFUNCTION	
149	14	90	00		E5 R2	$_{ m LTM}$	7777	. 00	00	-	0	JCC 16	00	O_VM to CO , M to AC	READ
150	16	90	00		F1 R1	LMI	0004	00	00	н	0	JFL 28	11	4 to MAR, 4 to Rg	
	*	CURI	RENT	BLOCK	CURRENT BLOCK IS A, 0	0 to R ₈ */							. •		
÷	*	CURI	RENT	BLOCK	/* CURRENT BLOCK IS B, 20	204Ø to Rg	* *								
151	28	03	00 I	EPV41	F1 R1	LMI	0200	00	00	н	0	JCR 02	11	$204 \mbox{\it g}$ to MAR, $204 \mbox{\it g}$ to R ₈	
	*	READ	COI	DE SEL	READ CODE SELECT FOR CURRENT	CURREN	IT BLOCK */	/K */			•				٠
	*	CHE	CK FC	OR LON	/* CHECK FOR LONG OR SHORT CODE $st/$	IORT CO	DE */	,							
152	28	02	00	EPV42	F0 R1	ILR	0000	00	00	-	0	JCR 05	00	$R_4 = P \text{ to AC}$	READ
153	28	0.5	00		F5 R2	$_{ m TZM}$	0001	00	00	-	0	JCC 29	00	N OVM to CO, T	READ
154	29	02	00		F2 R1	SDR	7777	00	00	-	0	JFL 25	11	P-1 to R ₀	
	*	TON(G CO	/* LONG CODE */											
155	22	02	00	EPV23	F4 R1	CLR	0000	00	00	—	0	JCC 04	11	0 to R ₁	
156	04	02	00		F1 R1	LMI	0000	11	00	1	0	JZR 06	11	1 to $R_{\mathbf{l}}$, 0 to MAR	
	*	SHO	RT CC	DDE, C	SHORT CODE, CHECK IF P < 9 */	* 6 > d									
157	25	03	00	EPV24	F1 R3	CIA	0000	00	00	-	o	JCR 05	11	$\overline{AC} = \overline{P}$ to AC	
158	25	02.	00		F1 R1	L MI	100	00	00	-	0	JCC 26	11	$\overline{P} + 11\beta$ to AC	
159	26	0.5	00		F4 R1	CLR	0000	00	00	н	0	JFL 23	11	0 to $R_{ m 0}$	
	*	STOF	Æ UP	PER AD	STORE UPPER AND LOWER LIMITS	R LIMIT	S FOR P <	6 >	*				-		

																	•	
	E MICROFUNCTION	$0 + 23 \beta$ to R_0 , 23β to MAR	R_4 to AC = P	AC + 14\(\beta\) to AC	AC to $R_{ m l}$		R_4 to $AC = P$	AC + 7774 to AC	AC to AC	$(P-4)$ AC + 24\beta to AC	R_4 to $AC = P$		P - 4 to AC	AC to R_0	0 to R_1	$4 \text{ to } R_1$		P - 19 to AC
	READ/ WRITE	11	11	11	11		11	11	11	.11	11		11	11	11	11		11
	IUMP	JCR 05	JCC 10	JCC 11	JZR 06	·	JCR 06	JCC 13	JCC 11	JCC 25	JFL 22		JCR 05	JCC 27	JCC 09	JZR 06		JCR 06
	CO LOAD INH	0	0	0	0		0	0	0	0	0	/ * 6	0	0	0	0	× 02 <	0
	LOA	-	7	, -	н		H	-		H		₽ ₩	-	H	-	-	4	-
)	00	00	00	00.	00		00	00	00	00	00	< 20	00	00	00	00	> 9 AND P	00
	Ö	00	00	00	11		00	00	00	00	00	4	00	11	00	00		00
	MNEM KBUS	0023	0000	0014	7777	*	0000	7774	0000	0024	0000	S FOR P	7774	7777	0000	0004	'S FOR F	7755
	MNEN	LMI	ILR	LMI	SDR	- 4 < 20 */	ILR	LMI	CIA	LMI	ILR	R LIMIT	LMI	SDR	CLR	LMI	SR LIMIT	LMI
	CPE	FI RI	FO RI	F1 R1	F2 R1	CHECK IF p	FO RI	F1 R1	F1 R3	F1 R1	FO RI	ID LOWE	F1 R1	F2 R1	F4 R1	F1 R1	ID LOWI	F1 R1
	LABEL					9 СНЕ	EPV25					PPER AN	EPV26				PPER AN	EPV27
	ADDRESS R C P	23 03 00	23 05 00	10 05 00	11 05 00	/* FOR P ≥9	23 02 00	23 06 00	13 06 00	11 06 00	25 06 00	/* STORE UPPER AND LOWER LIMITS FOR P - 4	22 03 00	22 05 00	27 05 00	09 02 00	/* STORE UPPER AND LOWER LIMITS FOR P	22 02 00
	RECORD NUMBER	160	161	162	163		164	165	166	167	168	8	169	170	171	172	•	173

RECORD	ADI	ADDRESS	S										READ/	
NUMBER	2	C		LABEL	CPE	MNEM	ANEM KBUS CI	Ö	8	LOAL	CO LOAD INH	IUMP	WRITE	MICROFUNCTION
174	22	22 06 00	00		F2 R1	SDR	7777		00	-	0	JCC 10	11	AC to R ₁
175	10	10 06 00	00		F1 R1	LMI	0023 00 00	.00	00	-	0	JZR 06	11	$23 ilde{ec{\mu}}$ to R_0
	*	FIND) A P.	AIR OF	/* FIND A PAIR OF VALUES V	WITH SUM = P */	M = P	>			•			
	*	AND	WIT	H XOR	/* AND WITH XOR TO $oldsymbol{\sigma}_1$ C	CODE */								

/* STORE LONG/SHORT CODE INDICATOR IN R3 */

/* CHECK IF UPPER LIMIT OF P > LOWER LIMIT OF P */

T to AC	AC to R ₃	0 to R_7	R ₁ to AC	AC to AC	AC to T	R ₀ to AC	T + AC to AC	$0_{\mathbf{v}}$ $R_{\mathbf{o}}$ to MAR
11	11	11	11	11	11	11	11	11
JCC 02	JCC 01	JCR 03	JCR 02	JCC 06	JCR 06	JCC 07	JCC 05	JFL 12
0	0	0	0	0	0	0	0	0
н	H	Ä	П	H	-	-	-	r-l
00	00	00	00	00	00	00	00	00
00	11	00	00	00	11	00	00	00
0000	7777	0000	0000	0000	7777	0000	7777	0400
ILR	SDR	CLR	ILR	CIA	SDA	ILR	ALR	LMI
FO R1	F2 R1	F4 RI	FO RI	F1 R3	F2 R2	FO R1	FO RI	F1 R1
EPV28								
00	00	00	00	00	00	00	00	00
90	90	90	03	02	02	90	90	90
00	02	01	01	. 01	90	90	0.	02
174	175	176	177	178	179	180	181	182

^{/*} UPPER LIMIT > LOWER LIMIT */

^{/*} CONVERT UPPER AND LOWER LIMITS FROM POWER TO CODE */

^{/*} XOR THE RESULTS WITH THE CUMMULATIVE CODE SUM IN R $_2$ */

	READ	READ		READ	READ					•							
MICROFUNCTION	R ₂ to AC	M to T	$0_{ m V}$ R ₁ to MAR	\overline{AC} $(\overline{R_2})$ to \overline{AC}	T T (I v K) to T	T T AC to T	T to T		R ₆ to AC	T 🖨 AC to T	$0_{ m V}$ T to CO	R_0 to R_0			$R_0 - 1$ TO $R_0 \mapsto$ to MAR	$egin{array}{c} ext{K} & ext{R} $	$R_1 + 1$ to R_1 to AC
READ/ WRITE	00	00	11	00	00	11	11	i	11	11	11	11			11	11	11
IUMP	JCR 06	JCC 19	JCC 04	JCC 31	JCR 10	JCR 14	JCR 11		JCR 12	JCR 13	JCR 07	JFL 21		-	JCC 05	JCR 02	JCC 01
INH	0	0	0	0	0	0	0		0	0	0	0		*	0	0	0
LOAD		-	Н			-	÷		H	-	-	-		LIMI	-	H	H
9	00	00	00	00	00	00	00		00	0.0	00	000		OWER	00	00	00
	00	00	. 00	00	00	00	0,0	*	00	00	00	00		TO L	00	00	11
MNEM KBUS CI	0000	7777	0400	0000	7777	7777	0000	I IN Re	0000	7777	7777	0037	IN R ₆ */	ADD 1	7777	0037	0000
MNEM	ILR	IIM	LMI	CIA	XNI	XNR	CIA	DE OF 6	ILR	XNR	TZR	LDR	E VALUE	LIMIT.	DSM	LDR	ILR
CPE	F0 R1	F5 R2	FI RI	F1 R3	F7 R3	F7 R1	F1 R3	/* Does result equal code of $oldsymbol{\epsilon}_1$ in R $_6$ */	F0 R1	F7 R1	F5 R1	F5 RI	/* XOR RESULT $\neq G_{\mathbf{z}}$ CODE VALUE IN	/* SUBTRACT 1 FROM UPPER LIMIT. ADD 1 TO LOWER LIMIT $st/$	F1 R1	F5 R1	FO RI
LABEL	EPV29							SULT EC					$\text{ult} \neq$	T I FRC	EPV30		
ᆈ	00	00	00	00	00	00	00	ES RE	00	00	00	00	RES	TRAC	00	00	00
ADDRESS R C	03	90	90	90	90	10	14	DO	11	12	13	07	XOR	SUB	03	03	02
ADI	12	12	19	04	31	31	31	*	31	31	31	31	*	*	21	05	05
RECORD NUMBER	183	184	185	186	187	188	189		190	191	192	193			194	195	196

_										to MAR				11)1	
MICROFUNCTION			$^{ m K}_{ m V}$ $^{ m K}_{ m 3}$ to CO	0 _V R ₇ to CO			0 to R_0		ب	$R_0 + 36 \beta$ to R_0 , 36β to MAR	$R_4 + 1$ to R_4 , AC	AC to R ₁	$R_7 + 1$ to R_7 , AC	R_0 to R_0 JMP IOC01	R_0 to R_0 JMP IOC01	
	•		J	0	·		O				щ	1	щ	н,		
READ/ WRITE			11	11			11	٠		11	11	11	11	11	11	
IUMP			JCR 05	JFL 08			JFL 07			JCC 15	JCR 03	JCC 06	JCC 01	JZR 14	JZR 14	
LOAD INH			0	0			0		-	0	0	0	0		0	
LOAL			_	 1			r ,			-	H	,	Н	-	-	•
8			00	00		ED */	00			00	00	00	00	00	00	•
Ö	-		00	00		N TR	00			00	11	11	11	00	00	
		DE */	0003	7777		AVE BEE	0000		TOR */	9800	0000	7777	0000	0000	0000	
MNEM KBUS	LIMIT */	/* CHECK FOR LONG OR SHORT CODE $st/$	TZR	TZR		/* CHECK IF 2ND SET OF LIMITS HAVE BEEN TRIED */	CLR	/* SIII	INDICAT	LMI	ILR	SDR	ILR	NOP	NOP	3
CPE	/* UPPER LIMIT < LOWER LIMIT *	G OR SE	F5 R1	F5 R1		ET OF L	F4 R1	/* TRY SECOND SET OF LIMITS */	/* SET 2ND SET OF LIMITS INDICA	F1 R1	FO RI	F2 R1	FO RI	F6 R1	F6 R1	
LABEL	MIT &	OR LON	EPV31)DE */	2ND S	EPV32	ND SET	SET OF	EPV33						* QNNC
۵.	ER LI	CK F	00	00	G CC	CK II	00	SECC	ZND	00	00	00	00	00	00	TS FC
ADDRESS R C	/* UPPI	/* CHE	12 02	12 05	/* LONG CODE */	/* CHE	08 02	/* TRY	/* SET	07 02	15 02	15 03	06 03	08 03	07 03	/* ROOTS FOUND */
					/											
RECORD NUMBER			197	198	•	,	199			200	201	202	203	204	202	

/* CHECK IF UPPER LIMIT = 378 *,

	MICROFUNCTION	7740ø to T	R_0 to AC	T 🛈 AC to T	0 _V T to CI	R_0 to AC		$R_{ m l}$ to AC	0 to R ₁	•	R_9 to MAR, R_9+1 to R_9	R ₁ to AC	$\rm R_{\rm 9}$ to MAR, $\rm R_{\rm 9}+1$ to $\rm R_{\rm 9}$		R ₅ to AC	AC to AC	646ø to MAR, to T	
, 4, 4, 4	KEAD/ WRITE	11	- 1	11	11	11		11	11		11	10	11		10	11	11	
	IUMP	JCR 06	JCC 08	JCR 05	JCC 02	JFL 03		JCR 06	JCR 03	*	JCR 05	JCC 21	JCC 07		JCC 06	JCC 05	JCC 04	
	INH	0	0	0	0	0		0,	0	RESS	0	0	0		0	0	0	
	CO LOAD INH		-	-	-	-		. 	-	L ADD	1	-	-		П	-	-	
	9	00	00	00	00	00		00	00	TEVA	00	00	00	/* (Iv	00	00	00	
	D I	00	.00	00	00	00		00	00	NEXT		00	11	Ø RAN	00	00	00	
,		7740	0000	7777	7777	0000		0000	0000	MIT IN	0000	0000	0000	TEVAL (646Ø RAM) */	0000	0000	0646	
	MNEM KBUS	LMM	ILR	XNR	TZR	ILR		ILR	CLR	OWER LI	LMI	ILR	LMI		ILR	CIA	LMM	
	CPE	F1 R2	F0 R1	F7 R1	F5 R1	FO RI	378 */	FO RI	F5 R1	/* roots found. Write lower limit in next teval address $st/$	F1 R1	FO R1	F1 R1	/* WRITE NUMBER OF ROOTS IN	FO RI	F1 R3	F1 R2	
	LABEL	EPV34					/* UPPER LIMIT = 3	EPV35		OUND.	EPV36			UMBER				
4	ایم	00	00	00	00	00	ER LI	00	00	TS F	00	00	00	TE N	00	00	00	
	ADDRESS R C	02	90	90	05	05	UPF	02	90	ROC	03	05	05	WR	05	05	05	
	ADI R	21	21	08	08	02	*	03	03	*	03	03	21	*	0.7	90	0.5	
	RECORD NUMBER	206	207	208	. 602	210		211	212		213	214	215		216	217	218	

WRITE

WRITE

	NO				
	MICROFUNCTION	Rg to AC	•	AC to R	
READ/	WRITE	10		11	
	CO LOAD INH IUMP	0 JCC 01 10		JZR 06	10
	INH	0		Ö	
	LOAD	H		-	
i	00	00	*	00	
		00	O Rg	11	
-	ANEM KBUS CI	00 00 0000	INDICATOR TO Rg */	0770 11 00	
	MNEM	ILR	M.	CSR	
	CPE	FO RI	/* RESTORE CURRENT BLOCI	F2 R1	*
	LABEL		CURRE		/* EXIT TO RPGEN */
V.	ы	00	TOR	00	T TO
ADDRESS	C	04 05 00	RES	01 02 00	EXI
AD	2	07	7	01	*
RECORD	NUMBER	219		220	

THE THE PERSON NAMED IN COLUMN				un i trans ha anu fabr i	and the second second second	e au ann ann Au'i All Airead a th'i	me hy a same and or the			•	•	,					
		1		7)	READ	READ			READ	READ			READ		READ		
MICROFUNCTION			1st SIGMA-e	644 to MAR 645 to AC		M + 700 to MAR	M + 700 + 1 to AC	AC to R0	0 to R2	t INTO AC	POINT TO O/P AREA	561 to MAR	t INTO R8	AC = t to R8	s+t INTO AC	s + t INTO R6	s +t INTO R6
READ/ WRITE	•	11	11	:	00	00		11	00	00	11		00		00	11	11
IUMP		1CC 09	JCC 13		JCC 14	JCC 15		JCC 16	JCC 17	JCC 18	JCC 19		JCC 20		JCC 21	JCC 22	JCR 07
INH	:	0	0		. 0	0		0	0	0	0		0		0	0	0
LOAD		-	1		1	,	,	H	Ħ	1	-		П		H	H	г
8		00	11	:	11	11	,	11	11	11	11		11	٠	11	11	11
CI	4	00	00		00	11		11	00	00	00		11		00	11	00
KBUS		0000	0644	:	0000	0020		7777	0000	7777	0561		7777		7777	7777	0000
MNEM KBU	/* N	CIA(AC) 0000	LMI(AC)		NOP (RO) 0000	LMM(AC)0700		SDR(RO) 7777	CLR(R2) 0000	LTM(AC) 7777	LMI(R2)		SDR(R8)		AMA(AC) 7777	SDR(R6) 7777	CMR(R6) 0000
PE	RPGE	F4 R2	FI R1		F6 RI	F1 R2		F2 R1	F4 R1	F5 R2	F1 R1		F2 R1	t	F0 R2	F2 R1	F7 R1
LABEL CPE	SOURCE PROGRAM RPGEN	06 01 RPG00 F	ы		Γ 	F-4	•	£4,	<u>.</u>	<u> </u>	[14		F14	·			•
ᆈ	RCE 1	01	01		01	01	,	01	0.1	01	01		01		01	01	0.1
ADDRESS R C	SOU		90	:	90	90		90	90	90	90	v	90		90	90	90
AD]	*	00	60		13	. 14		15	16	17	18		19		20	21	22
RECORD NUMBER			01						70								. ~
REC		001	005		. 003	004		002	900	002	008		600		010	011	012

.

.

	WRITE			8 to R8	Ō				N R3	•	ІА-е			READ	READ		READ	LAR
MICROFUNCTION	s+t INTO O/P AREA	t to R8	UT THE LOOP WITH A NEW (S-SIGMA(E) (T) COEFFICIENT */	INC T COUNTER 1 + R8 to R8	INC s+t COUNTER AND	STORE IN R7	0 to R2	s + t + 1 to R7	START OF O/P AREA IN R3		POINT TO NEXT SIGMA-e	R0 to MAR	1 + R0 to R0	0 to Rl	FETCH SIGMA-e	(CODE) M to AC	CONVERT SIGMA-e	TO POWER, 50M to MAR
READ/ WRITE	10		(T) (C	=======================================	11		11	11	11	11	11		٠	00	00		00	
IUMP	JFL 16		SIGMA(F	JCR 07	JFL 17		JZR 13	JCR-07	JCC 23	JCC 24	JCC 25			JCC 26	JCC 27	÷	JFL 16	,
HNI	0		w (s	0	0	**	0	0 .	0	0	0			0	0		0	
LOAD INH	П		H A NE	H	-		.	-	-	-	H			1	· H			
8	11		JP WIT	11	11		11	11	11	1	1			11	111		11	
5	00		E LOC	11	11		. 00	11	11	11	11		•	00	00		00	
KBUS	0000		JT TH	0000	0000		0000	7777	0000	7777	0000			0000	7777		0200	
MNEM	CMR(R8)		PREPARE FOR A PASS THROUGHOU	INR(R8)	ILR(R6)	•	CLR(R2)	SDR (R7)	ILR(R2)	SDR(R3)	LMI (RO)			CLR(RI)	LTM (AC)	et e	LMM(T)	4.
CPE	F7 R1		ASS TH	F3 R1	F0 R1		F4 R1	F2 R1	FO RI	F2 R1	FI RI			F4 R1	F5 R2		FI R2	. ,
LABEL			E FOR A	RPG01	н		01 RPG02	01 RPG03	1	-	-			r-1	·	÷		
RESS C P	07 01		EPAR	02 01	07 01		03 0	0 70	07 01	07 01	07 01			02 01	07 01		07 01	
ADDRESS R C	22 0		/* PF	16 0	16 0		17.0	17 0	17 0	23 0	24 0			25 0	26 0		27 (
RECORD NUMBER	013			014	015		016	017	018	019	020			021	022		023	
					•													

	Ą		Э						6		•	e	Ð			READ	٠
	READ		READ				VER)	٠	CODE		8	+ R3 to R3	READ			RE,	; .
MICROFUNCTION	SIGMA-e to R4	CODE	SIGMA-e (POWER)	M to AC	ADDRESS OF T'1	603 to MAR	SAVE SIGMA-e (POWER)	IN R5	RETURN SIGMA-e (CODE)	TO AC R4 to AC	POINT TO O/P AREA R	R3 to MAR 1 + R3	PREPARE FOR INNER	LOOP TEST	1 + R7 to R7	XOR SIGMA-e OR	SIGMA-exT' TO M
READ/ WRITE	00		00		11		11		11		11		00			0 0	į.,
IUMP	JCR 00		JCC 17	. *.	JCC 15		JCC 14		JCC 13		JCR 07		JCC 14			JCC 15	
HNI	0		0		0		0		0		0		Ó			0	
CO LOAD	7		2 3		1		-		Н,		-		1			H	
	11		11		11	·	11		11		11		10			11	•
CI	11		00		00		11		00		11		11			00	,
KBUS	7777		7777		0603		7777		0000		0000		0000			7777	
MNEM KBUS	SDR(R4)		LTM (AC)		LMI(RI)		SDR(R5)		ILR(R4)		LMI (R3)		INR(R7)		·	F7 R3 XNI(AC)	
CPE	F2 R1		F5 R2		F1 R1		F2 R1		FO R1		FI RI		F3 R1	s.	. ""	F7 R3	
LABEL	01 RPG04		01		01		01		01	-	01 RPG05		01			01	•
RESS C P	03 0				0 00		0 00		0 00		0 00		0 40			0 40	
ā	16 0		00 91		17 0		15 0		14 0		13 0		13 0	•		14 0	•
			1		Н		1		7		Н		-			-	
RECORD NUMBER	024		025	<i>:</i>	026		027		028		029		030			031	

SIGMA-exT' TO M

					,	v: =												
		WRITE		READ)6, RPG01)	READ		READ		•							
	MICROFUNCTION	RI to MAR	1 + RI to MAR	RESTORE SIGMA-e	(POWER)	R5 to AC JMP (RPG06, RPG01)	h = T' to T	TMSYP TERM to T	SIGMA-e x T'	(POWER)	ZERO TEST	CHECK FOR END	OF INNER LOOP	M + AC to AC	1 + R7 to R7	POINT TO NEXT I'	RI to MAR	
•	READ/ WRITE	10		00			00		00			11				11		
	IUMP	JCC 18		JCF 19		•	JCR 00		JFL 20			JCR 07				JCC 21		
	INH	0		0			0		0			0				0		
	CO LOAD INH	Н		H			-		-			-				н		
)	00	11		11			11		11			10				11	•	
	MNEM KBUS CI	LMI (RI) 0000 11		ILR(R5) 0000 00			LTM(T) 7777 00		AMA(AC) 7777 00			INR(R7) 0000 11				LMI(RI) 0000 11	a.	
	CPE	FI RI		F0 R1			F5 R2		F0 R2			F3 R1	. •		f	Fl Rl		•
	S P LABEL CPE	01		01			01 RPG06		01			01 RPG07 F3 R1			•	01		
	ADDRESS R C	07		07			02		00			02				07	. •	`
	AD R	15		18			19		19			20	,			20		
	RECORD NUMBER	032		033			034		035			036				037		

1 + RI to MAR

	READ		Ē		READ	READ	ILT		
MICROFUNCTION	00 INC O/P POINTER	1 + R3 to R3	POINT TO SIGMA-e x T'	(CODE)	CONVERT TO CODE	M to AC =	CODE FORM OF RESULT	1 + R8 to R8	s+t+1 to R7
READ/ WRITE	00		11		00	00	. •	11	11
IUMP	JCF 19		JCR 00		JCC 18	JCC 13		JCR 07	JFL 17
INH	0		0		0	0	•	0	0
MNEM KBUS CI CO LOAD INH IUMP	п	٠	H		~	-		г	H
00	11		11		11	11		11	11
Ö	11	•	00		00	00		11	11
KBUS	0000		0400		0000	7777		0000	0000
MNEM	INR(R3)		LMI(AC) 0400 00		NOP (R0) 0000 00	LTM(AC) 7777 00		INR(R8)	ILR(R6)
CPE	F3 R1		Fl R1		F6 R1	F5 R2		F3 R1	FO R1
LABEL CPE			01 RPG08						
SS	01	•			01	01		01	01
ADDRESS R C	07		03		00	00		03	07
AD R	21		20		20	18	٠	19	19
RECORD	038		039		040	041		042	043

رب م	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	H.	JUMP	READ/ WRITE	MI CROF UNCTION	
SOURCE		PROGRAM	PROGRAM RPVAL */	÷			٠		→			•	
EAD N		READ NUMBER OF		S FOR	ERASURES FOR CURRENT	BLOCK */	*	••		,			•
TORE		ONE'S CO	/* STORE ONE'S COMPLEMENT OF NUMBER OF	OF NU		ERASURES IN RO%/	ES IN	R0%/					
00 13 01		RPV00	F0 R1	I LR	0000	00	00	-	ő	JCC 01	Ξ;	R9 to AC	
01 13 01			FI RI	LMI	0000	00	00	-	0	JCC 02	=	70 Ø TO AC OR 70 Ø + 200 TO AC	TO AC
13 01			FI RI	LMI	0000	Ξ	00	-	.0	3cc 03	Ξ	AC to MAR, 1 + AC to AC	
03 .13 01			F2 RI.	SDR	7777	=	00.	-	O	JCC 04	00	AC to R6	READ
04 13 01			F5 R2	LTM	7777	00	00	·-	0	JCC 05	00	M to T	READ
13 01			F2 R3	LDI	7777	=	00	 .	0	90 JOS	00	1 = M to AC	READ
13 01			F2 RI	SDR	7777	Ξ	00	· -	0	JCC 07	=	AC to RO	
(EAD	Z	UMBER OF	/* READ NUMBER OF ERRORS	/*									
TORE		ONE'S CC	STORE ONE'S COMPLLMENT OF NUMBER OF	OF NU	MBER OF	ERRORS IN R, */	N N	/* '					
OMP	5	COMPUTE NUMBER OF	OF ERRA	TA (ER	RORS + E	RASURE	is) st	ORE ON	E'S (CO)	ERRATA (ERRORS + ERASURES) STORE ONE'S COMPLEMENT IN R4 */	IN R4 */		
10 21. 70	,		F4 R1	CLR	0000	00	00		0	3cc 08	1	0 to R7	-
13 01		-	FI RI	IM]	9490	Ξ	00	-	ō	60 JOF	=	646 Ø to MAR 647 Ø to R7	
13 01			FO RI	ILR	0000	00	. 00	-	Õ	JCC 10	00	T to AC	READ
13 01			F0 R2	AMA	7777	00	00	, 	0	11 226	00	M + AC to T.	READ
13 01		. •	F2 R3	רפו	7777	=	00	<u>. </u>	0	JCC 12	00	I = M to AC	READ
	,												

								•										
	· ·				·			•								+ R6 to R6		
	MI CROF UNCT 1 ON	AC to R1	T to T	T to AC	AC to R4		,	0 to R2	0 to R3	7777 TO AC	131 Ø to R8	152 Ø to R5				R6 to MAR, 1 +	1 + RO to RO	I = M to AC
	READ/ WRITE	Ξ	=	=	= .			Ξ.	=	-	11	1				=	00	00
	JUMP	JCC 13	JCC 14	JCC 15	JCC 16		,	JCC 17	JCC 18	JCC 19	JCC 20	JCC 21				JCC 22	JCC 23	JFL 24
	Z E	0	ó	0	0			Õ	Ó	0	Ö	0.			·	0	0	ō
)	LOAD	-	-	-	-			**	-	₩.	-			/* S		-	-	-
	8	00	00	0.	00	`		0.	00	00.	00	00		ERASURES		00	00	00
	5	=	00	00	Ξ		/*	00	00	00	Ξ	Ξ			/*	Ξ	1	Ξ
	KBUS	7777	0000	0000	7777		, TRVOA	0000	0000	0000	0131	0152		NUMBER OF	CESSED	0000	0000	7777
	MNEM	SDR	CIA	LR	SDR	RO */	TRVOB,	CLR	CLR	CSR	CSR	CSR		MENT OF	ARE PRO	LM	ILR	LDI
	CPE	F2 R1	FI R3	FO RI	F2 RI	3 to ZE	DEXES FOR	F4 RI	F4 RI	F2 R1	F2 RI	F2 RI	ERASURE *1	'S COMPLE	/* CHECK 1F ALL ERASURES ARE PROCESSED */	FI RI	FO RI	F2 R3
	LABEL					R2 AND F	LIZE IN	,						ENT ONE	IF ALL		RPV07	•
)	ADDRESS R C P	12 13 01	13 13 01	14 13 01	15 13 01	/* CLEAR R2 AND R 3 to ZERO */	/* INITIALIZE INDEXES FOR TRVOB, TRVOA */	16 13 01	17 13 01	18 13 01	19 13 01	20 13 01	/* READ NEXT	/* INCREMENT ONE'S COMPLEMENT OF	/* CHECK	21 13 01	22 13 01	23 13 01
	RECORD	. 22	14		. 91			17.	. 18	19	20	21		•	٠	22	23	77

READ

					READ			:				WRITE						•	•	READ
	MICROFUNCTION				M to T	AC + 20 Ø to AC	0√T to C0			T to AC	R8 to MAR.1 + R8 to R8	1 + R2 to R2						T to AC	400 V AC to MAR	RO
	READ/ WRITE				00	<u>.</u>	_			=	Ξ	10	•		-			=	Ξ	00
	JUMP				JCR 13	JCC 26	JFL 26	,		JCC 25	JCR 12	JCR 11			JFL 28			. JCC 25	JCR 13	JCC 27
	H				Ö	0	0				0	0			0			0.	0	0
	LOAD	N.	·				-		/* 91	-	,	-	-		-		IN TRVOA */	- -	-	-
	8				00	,00	00	٠	•	8	00	00			00		IN TR	00	00	8
	5		> 16 */		00	00	00		9F E	00	-	=		.UE */	00		H	8	00	00
	KBUS	-	MBER 15	ZERO */	7777	0020	7777		EMENT NO	0000	0000	0000		ZERO VAL	0000		RASURE W	0000	0040	0000
	MNEM	/* (ION NOI.		·LTM	LMI	TZA		B INCR	I LR	LM LM	- R R	/*	N FOR	NOP		RENT E	I LR	E	NOP
	CPE	PROCESSED	JRE POSIT	JRE POSIT	F5 R2	FI RI	F5 R3	, 16 */	IN TRVO	FO RI	FI RI	F3 RI	ERASURE POSITION \$ 16 */	POSITIO	F6 RI		UE OF CUR	FO RI	FIR	F6 RI
	LABEL	ES NOT F	IF ERASI	IF ERASI	RPVOI		-		ERASURE	RPV43			R POSITI	ERASURE	RPV03	€ ≠ 0 *,	CODE VALI	RPV04		·
)	ADDRESS R C P	/* ERASURES NOT PROCESSED */	/* CHECK IF ERASURE POSITION NUMBER IS ≥1	/* CHECK IF ERASURE POSITION =	24 10 01	24 13 01	26 13 01	/* · ERASURES	/* WRITE ERASURE IN TRVOB INCREMENT NO	26 10 01 RPV43	25 10 01	25 12 01	/* ERASUR	/* CHECK ERASURE POSITION FOR ZERO VALUE */	26 11 01	/* ERASURE ≠ 0 */	/* READ CODE VALUE OF CURRENT ERASURE WRI	28 11 01	25 11 01	25 13 01
	RECORD NUMBER				. 25	26	27		• .*	28	29	30			31			32	33	34
						-														

		*																		
	٠.	READ		WRITE				ı.			READ	READ			READ	• .		·		
	•		R5 to R5	+ R6.to R6					•	7 TO R7				•	;					
	MI CROFUNCTION	M to AC	R5 to MAR 1 + 1	R6 to MAR 1 + 1		1 to AC				R7 TO MAR 1 +	1 + R1 "TO R1 ,	I = M to AC	•		M to T	AC + 2Ø to AC	OVT to CO			
	READ/ WRITE	00	=	10		-		٠.		-	00	00			00	=	=			
,	JUMP	JCC 28	JCC 29	JCC 22	. /*	JCR 13				JCR 12	92 200 .	JFL 27			JCR 12	£0 00°	JFL 12			
	I N	0	ō	Õ	IULATOR	0		•		0	0	0			0	0	Ö		· ·	
	LOAD	-	-	-	1 IN ACCUMULATOR	_		/ s _e	·	-	· •	-			-	-	-		/×91 ≪	
	00	00	00	00		00		ERROR */	,	00	00	00		/* 91	00	00	00			
	5	00	=	=)E 0 0	=	R */	OF.		=======================================	Ξ	=		, 16	00	00	00		ERROS	
	KBUS	7777	0000	0000	ERASURE POSITION IS ZERO - INSERT CODE	0000	NEXT ERROR	/* INCREMENT ONE'S COMPLEMENT OF NUMBER	SSED */	0000	0000	7777		ER 1S		0020	7777		/* WRITE ERROR IN TRVOB, INCREMENT NO OF	
	MNEM	LTM	LMI	LMI	RO - 11	ACM	READ	MENT O	PROCE:	LM	I LR	LDI	ED */	N NUMB	LTM	EM I	TZA		INCREM	
	CPE	F5 R2	F R	FI RI	ON IS ZE	F0 R2	PROCESSED READ NEXT	S COMPLE	CHECK IF ALL ERROS ARE PROCESSED */	FI RI	FO RI	F2 R3	. PROCESSED */	R POSITION NUMBER IS	F5 R2	FI RI	F5 R3	/* :	TRVOB,	
	LABEL		RPV05		E POSITI	RPV06	/* ALL ERASURES F	ENT ONE	IF ALL	RPV08	RPV14		ERRORS NOT ALL	CHECK IF ERROR	27 ,10 01 RPV09			₩	ERROR IN	
	ESS	13 01	13 01	13 01	RASUR	10 01	LL ER	NCREM	HECK	24 11 01	2 01	2 01	RRORS	HECK	0 01	12 01	12 01	/* ERROR	RITE	
	ADDRESS R C P	27 1	28 1	29 1	/* E	28 1	/* A	*	3 */	24 1	24 12	26 12 01	% E	3 */	1, 72	27 1	ω -	* E	*/	
	RECORD NUMBER	35	36	37		38				33	40	41			745	43	‡			

	·.					WRITE					•		READ	READ			•
MICROFUNCTION	•	• • •	T to AC	R8 to MAR	1 + R8 to R8	1 + R3 to R3					T to A	$400_{ m V}$ AC to MAR	RO	M to AC		R5 to MAR	1 + R5 to R5
READ/ WRITE			11	11	•	10	.	11			11	11	00	00		11	. •
IUMP			0 100 30	JCR 12		JCR 11		JFL 9			JCC 30	JCR 13	JCC 31	JCR 12		JCC 29	
INH		16 */	0	0	•	0		0	•.	*	0	0	0	0	•	0	
LOAD INH			H	г		-	LUE *,	-		TRVOA	H	1	1	г	•	1	
8		' ERROF	00	00		00	ERO VA	00		WRITE IN TRVOA	00	00	00	00	•	00	
CI), OF	00	11		11	OR Z	00			. 00	. 00	00	. 00		11	
KBUS		ENT NO	00 0000	0000		0000	TION F	0000		ERROR.	0000	0400	0000 000	7777		0000	
MNEM		,/* WRITE ERROR IN TRVOB, INCREMENT NO. OF ERRORS ≥	ILR	LMI		INR	/* ERROR \$ 16 CHECK ERROR POSITION FOR ZERO VALUE	NOP		/* READ CODE VALUE OF CURRENT	ILR	LMI	NOP	LIM	TRVOA */	LMI	
CPE		TRVOB,	FO R1	F1 R1		. F3 R1	ECK ER	F6 R1		UE OF	FO RI	F1 R1	F6 R1	F5 R2	UE IN	F1 R1	•
LABEL CPE	* 9	ROR IN	01 RPV10 F0 R1			·; :	16 CH	11 01 RPV11	0	DE VAL	RPV12				/* WRITE CODE VALUE IN TRVOA		
SS	OR ≥ 1	TE ER		01	• .	12 01	OR \$	01	*) (1)		01	01	01	TE C	01	
ADDRESS R C	/* ERROR≥16	* WRI	2 10	30 10		30 12	* ERR	12 11	ERROR ≠ 0	* RE	11 - 60	30 11	30 13	31 13	* WRI	31 12	
		,	12	. <u>.</u>		√ਲ /⊹	\$ •	F	<u>ы</u>		Ö	က်	က်	8		က	
RECORD NUMBER									•		• .						
NU			45	46	-	47		48			49	50	51	52	•	53	

	WRITE	· -					•	,									
(MICROFUNCTION	R7 to MAR	1 + R7 to R7		1 to AC	R5 to MAR	1 + R5 to R5		•	•			0 to R7	0 to R8	R2 to AC	R3 + AC to AC	330% to MAR	331Ø to R7
READ/ WRITE	10			11	11			•		RVOC ,		11	11	11	11	11	
IUMP	JCC 24			JCR 12	JCC 29		-			>16, WRITE IN TABLE TRVOC		JCR 14	JCC 23	JCR 12	JCC 22	JCC 21	
INH				0	0				- .	re in	, R ₁ *,	0	0	0	0	0	. •
LOAD	7	٠.		1	H				•	6, WRIT	O. OF ERRATA \geqslant 16 in R $_0$, R $_1^*$ /	П	F	H	·		
CO	00			00	00		,	/* DC	_	ons ≽ı	ata 🔊	00	00	00	00	00	
Ö	11	•		11	11			TRVC	'OB *	SITIC	F ERR	00	00	00	00	11	
KBUS	0000			0000	0000			TABLE TRVOC	LE TRV	ITH PC	(O, O)	0000	0000	0000	7777	0330	
MNEM	LMI		*	ACM	LMI			/* INITIALIZE INDEXES FOR OUTPUT	/* INITIALIZE INDEX FOR INPUT TABLE TRVOB	/* COMPUTE NUMBER OF ERRATA WITH POSITIONS	/* STORE ONE'S COMPLEMENT OF N	CLR	CLR	ILR	ALR	LMI	4
PE	F1 R1		/* ERROR POSITION = ZERO	FO R2	F1 R1	•		S FOR	OR IN	OFE	PLEME	1 RI	F4 R1	FO RI	FO RI	F1 R1	
LABEL CPE			= NO		FJ			DEXE	DEX	IMBEI	COM	01 RPV16 F4 RI	F	F.	F.	F4	
LABE	01 RPV13		OSITI	01 RPV15	1	•		ZE IN	ZE IN	re nu	NE'S	RPV]					
SS			OR P(01	·		TALE	TALE	MPUT	RE O		01	01	01	01	
ADDRESS R C	12		ERR	10	12			INI	INI	COI	STO	11	14	14	12	12	
AD R	29	•		60	60	. 5	.	*	*	*	*	27	27	. 23	23	22	
RD SER								•							•	•	
RECORD NUMBER	54	-	and the second s	52	26			14 1		·	•-	. 22	28	29	09	61	

•	WRITE			ı	. ·	•			READ	READ					READ	READ	•
MICROFUNCTION	AC to AC	AC to R0	AC to R1	131% to MAR.	132Ø to R8			• .	1 + R0 to R0	K_VM to MAR	400ø + M to AC		•		AC to R2	M to AC	AC to R6
READ/ WRITE	10	#	11	11					00	00					00	00	11
IUMP	JCC 20	JCC 19	JCC 18	JCC 17	•				JCC 16	JFL 31					JCR 14	JCC 30	JCC 29
INH	0	0	0	0					.0	0				*	0	0	. 6
LOAD	- 4	. 1	H	-		· /* 8			* 	,—i			*	N R6	-	H	Ħ,
8	00	00	00	00		N > FROM TRVOB *,		*	00	00			PORM	STORE IN R6	00	. 00	. 00
5	00	11	11	1.1		FROM	*	PROCESSED	11	00		•	- POWER FORM		11	00	11
KBUS	0000	7777	7777	0131		NO N	A > 16	_	0000	0400		/ * 0		ERRATA.	0037	7777	7777
MNEM	CIA	SDR	SDR	LMI		READ NEXT ERRATA WITH POSITIO	INCREMENT THE NO. OF ERRATA	≥ 16 ARE	INR	LMM		ERRATA NOT YET ALL PROCESSED	STORE CURRENT ERRATA IN 77 R2	READ CODE VALUE OF CURRENT	CSR	LIM	SDR
CPE	F1 R3	F2 R1	F2 R1	FI RI		TA WIT	E NO. C	CHECK IF ALL ERRATA	F3 R1	F1 R2		ALL PF	: ERRAT	UE OF	F2 R1	F5 R2	F2 R1
LABEL						r erry	THI IN	ALL E	PV21			ot yei	RRENT	E VAL	PV17		•
티	01	01	01	01		NEX	EMEI	K IF	01 RPV21	01		ra nc	E CU	COL	01 RPVI7	01	01
	12	12	12	12	·	READ	INCR	CHEC	12	12	•	ERRA.	STOR	READ	10	14	14
ADDRESS R C	21	20	19	18	,	*	*	*	17	16		*	*	*	31	31	30
RECORD NUMBER	. 29	63	64	65		•	-	ŧ	99	29				•	89	69	20

.

RECORD NUMBER	ADI	ADDRESS R C F	P LABEL CPE	CPE		MNEM KBUS CI CO LOAD INH	KBUS	IJ	8	LOAD	INH	IUMP	READ/ WRITE	MICROFUNCTION	
	*	INITIA	/* INITIALIZE INDEX FOR TABLE OF ALL ERRATA TRVOA	EX FO	R TABI	LE OF 1	ALL ERF	RATA 1	FRVOA	*	**		•		
	*		STORE NUMBER OF ALL ERRATA IN R3	R OF A	ILL ER	RATA II		*							
7.1	29	14	01	F2 R1		CSR	0000	00	00		0	JCC 28	11	All I's to AC	:
72	2.8	14	01	F2 R1		CSR	0152	11	00	-	0	JCC 26	11	152Ø to R5	
73	26	14	01	FO RI		ILR	00 0000	. 00	00	н 	0	JCC 25	11	R4 to AC	
74	25	14	01	, F2 R1		SDR	7777	11	00		0	JCC 24	11	AC to R3	
	*		READ NEXT ERRATA FROM TRVOA (CODE)	RATA F	ROM 1	IRVOA	(CODE	* (٠.	•		•	
	*		INCREMENT ONE'S COMPLEMENT OF NO. OF	NE'S (COMPI	LEMEN	T OF N	10.0		ERRATA IN TRVOA	TRVO	/* {	•		
	*		CHECK IF ALL ERRATA PROCESSED	ERRAT	A PRO	CESSE	/* Q			j.	٠.		-	•	•
75	24	14 (01 RPV20	FO RI		ILR	0000	00	00	-	0	JCC 22	11	R6 to AC	
92	22	14	01	F1 R	R1 I	LMI	0000	11	00	-	0	JCC 21	11	R5 to MAR	•
											•			I + R5 to R5	
77	21	14	01	F3 R	R1 I	INR	0000	11	00	-	0	JCC 20	00	1 + R3 to R3	READ
. 82	20	14	01	F7 R	R3 X	XNI	7777	.00	00	-	0	JFL 19	00	$I = \overline{M} \oplus AC$ to AC	READ
	*		ERRATA NOT ALL PROCESSED	LL PRC	CESS	ED */			•				•		•
	*		XOR CURRENT ERRATA WITH CODE IN R6	ERRAI	'A WIT	H COL	E IN R	/* 9ì		•					
	*		CONVERT THE RESULT TO POWER	RESUI	LT TO	POWEI	*	•				·			

)													
RECORD NUMBER	ADI	ADDRESS R C	P LABEL	CPE	MNEM	KBUS CI	Ö	8	CO LOAD INH	INH	IUMP	READ/ WRITE	MICROFUNCTION	•
	*		CUMULATIVELY ADD INTO 77 IN	Z ADD IN	TO 77 IN		JUST 1	FOR PO	R2 ADJUST FOR POWER INDEX	NDEX	*		•	•
62	19	10	01 RPV18	F1 R1	LMI	0200	. 00	00	-	0	JCR 15	11	AC to MAR	
- 08	19	. 12	01	FO RI	ILR	0000	00	00	1	0	JCC 20	00	R2 to AC	READ
81	20	15	01	FO RZ	AMA	7777	00	00	H	0	JCC 18	00	M + AC to AC	READ
82	18	15	10	F3 R3.	AIA	7777	00	00	. 	0	JCR 14	11	AC + I to AC	•
83	18	14	01	F2. R1	CSR	0037	11	00	, H	. 0	JCC 24	11	K AC to R2	
e name de seden en re	*		ERRATA IN TABLE TRVOA ALL PROC	LE TRVOA	ALL PRO	CESSED	*							•
	*		WRITE CURRENT PRODUCT IN TRVOC	T PRODU	ICT IN TH		*	٠.		,		•	•••	
84	19	11	01 RPV19	FO R1	ILR	0000	00	00		·. 0	JCR 14	11	R2 to AC	
82	19	14	01	F1 R1	LMI	0000	11	00	-	. 0	JCC 17	11	R7 to MAR	
•				•									1 + R7 to R7	
. 98	17	14	. 10	FI R1	LMI	0000	11	00	H	0	JCR 12	10	R8 to MAR	WRITE
• .	•		,				•						1 + R8 to R8	
	*		ALL ERRATA IN TRVOB PROCESSED	TRVOB F	ROCESSI	/* Q5						e.	•	

^{/*} EVALUATE Z POLYNOMIAL */

^{/*} INITIALIZE INDEXES FOR TABLES TRVOB, TRVOC, TMSYN */

^{/*} INITIALIZE INDEX FOR CHARACTER POSITIONS IN TADIØ/TBDIØ

MICROFUNCTION	All I's to AC	Ø to R8	Ø to R7	562 ø to R4	R9 + 7 to R9				561 Ø to MAR	561 Ø to AC	AC READ	$1 + I(\overline{M})$ to AC REALD	AC to R6	R2			•
	A11 1	131	331	295	R9 +				561	561	0 to AC	1+1	AC 1	0 to R2			· .
READ/ WRITE	11	11	11	11	11	. •	*	<u>.</u> .	. 11		00	00	11	11	•		
IUMP	JCR 15	JCC 30	JCC 29	JCC 24	JCC 28	-	S IN R6		JCC 27		JCC 26	JCC 25	JCC 12	JCC 21			
INH	0	0	0	0	0	*	SIENI		.0	,	0	0	0	0		* · •	
LOAD	-	-	ı	H	.	S IN ERRATA POLYNOMIAL	COEFFIC		H	•*	-	п	-	-		ATA ≥1	
8	00	00	00	00	00	POLY	ER OF	•	00		00	00	00	00		OF ERF	*` A
5	00	11	11	11	00	RATA	UMB		00		00	11	11	00		NO.	ESSE
KBUS	0000	0131	0331	0562	2000		T OF N	ERO *	0561		0000	7777	7777	0000	*	INT OF	EN PROC
MNEM	CSR	CSR	CSR	CSR	LMI	FICIEN	IPLEMEN	R2 TO Z	LMM		CLR	AIA	SDR	CLR	M TRVO	MPLEME	IAVE BEI
CPE	F2 R1	F2 R1	F2 R1	F2 R1	F1 R1	READ NUMBER OF COEFFICIENT	STORE THE TWO'S COMPLEMENT OF NUMBER OF COEFFICIENTS IN R6	SET WRITE EARLY FLAG R2 TO ZERO	F1 R2	• .	F4 R1	F3 R3	F2 R1	F4 R1	READ NEXT ERRATA FROM TRVOE	INCREMENT ONE'S COMPLEMENT OF NO. OF ERRATA >16	CHECK IF ALL ERRATA HAVE BEEN PROCESSED
LABEL	01 RPV22					UMBER	THE TWO	ITE EARI							EXT ERR	AENT OI	IF ALL
SS		5 01	5 01	5 01	5 .01	AD N	ORE !	T WR	5 01		. 2	5 01	5 01	5 01	AD N	CRE	HECK
ADDRESS R C	1 11	1 15	30 15	9 15	24 15	/* RE	/* ST	/* SE	28 15		27 15	26 15	25 15	12 15	* RE	NI *	 . *
RECORD AI	87 31	88 31	89 3	90 29	91 2		5		82 2		93 2	94 2	95 2	96 1	/ 26		

RECORD NUMBER	ADD	ADDRESS R C	P LABEL	CPE	MNEM	MNEM KBUS	Ö	00	LOAD	INH	IUMP	READ/ WRITE	MICROFUNCTION	*
86	21	15	01 RPV39	FI RI	LMI	0000	11	00	-	0	JCC 17	11	R8 to MAR	
	*				-				-	•			1 + R8 to R8	
66	17	12	01	F3 R1	INR	0000	11	00	≓ .	0	JCC 16	00	1 + R1 to R1	READ
100	16	15	01	F5 R2	LTM	7777	00	00	-	0	JFL 21	00	M to A	READ
	*		ERRATA N	ALL ERRATA NOT PROCESSED		*					•			-
/	*		CK IF 2 C	R LESS E	CHECK IF 2 OR LESS ERRATA REMAIN	MAIN	*	·.						
101	21	10	01	FI RI	LMI	0000	00	00		CPE	JCR 9	.*	RI + 2 to RI	
102	21	60	01	F5 R1	TZR	7777	00	00	H	0	JFL 20		O _V R2	
	*		OR LESS	TWO OR LESS ERRATA REMAIN	REMAIN	*	·		· •	•.			•	
	*		CK WRITI	CHECK WRITE EARLY FLAG	LAG R2	*				,				
103	20	11	01 RPV2	01 RPV24 F2 R1	SDR	7777	11	00		0	JFL 18		AC to R3	
	*.	WRIT	E EARLY	FLAG NO	WRITE EARLY FLAG NOT SET. SET $R2 \neq 0$	ET R2 7	0	*	•					
	*		PUTE AD	DRESS O	COMPUTE ADDRESS OF WRITE EARLY FLAG FOR NON CURRENT BLOCK	EARLY F	LAG F	OR NO	NCU	RRENT	BLOCK	*		
•	*		WRITE INTO RAM	RAM */								•		
104	18	10	01 RPV25	5 F0 R1	ILR	0000	00	00		0	JCR 9	. ·	R9 to AC	
105	18	60	10	F1 R3	CIA	0000	00	.00		0	JCC 19	٠	AC to AC	
106	19	60	01	F5 R1	CLA	0200		00	ं स्त	•	JCC 20	•	KAAC to AC (0 or 200 to AC)	200 to AC)

	o MAR		WRITE				, 		•			٠.					READ
MICROFUNCTION	AC + 177 Ø to AC to MAR	$\overline{AC} + 1 \text{ to AC (001)}$	AC to R2	R3 to AC	$400 \mathrm{VAC}$ to MAR			$400_{ m V}$ AC to MAR		AC to R3				MIAL */		400 V AC to MAR	R4 to AC
READ/ WRITE	11	11	10	11	11		11	11	•	11				OLYNC		11	00
IUMP	JCC 25	JCC 23	JCC 24	JCC 22	JCR 15		JCC 22	JCR 15		JCC 22			•	IN ERRATA POLYNOMIAL		JCR 15	JCC 10
INH		0	0	0	0		0	0	- .				*	NI S	-	0	Ó
LOAD 1	Ħ	-	H	, 	.	-		7		~				COEFFICIENTS		H	-
8	00	. 00	00	00	00		00	00		00			TORE 1			00	00
Ci	00	. 11	11	0.0	00	•	00	00		11			ND S). OF		00	00
KBUS	0177	0000	7777	0000	0400		0000	0400	*	7777		*	CODEA	r of no. of		0400	0000
MNEM	LMI	CIA	SDR	ILR	LMI	*	NOP	LMI	A LEFT	SDR	SSED *	IN R3	ATA TO	PLEMEN	/* X:	LMI	ILR
CPE	F1 R1	F1 R3	F2 R1	FO R1	FI RI	AG SET	F6 R1	F1 R1	O ERRAT	F2 R1	r Proce	I ERRATA	ENT ERR	'S COM	YN INDE	FI R1	F0 R1
LABEL						WRITE EARLY FLAG SET	01 RPV26		MORE THAN TWO ERRATA LEFT	01 RPV27	ALL ERRATA NOT PROCESSED	STORE CURRENT ERRATA IN R3	CONVERT CURRENT ERRATA TO CODE AND STORE IN T	INITIALIZE ONE'S COMPLEMENT	INITIALIZE TMSYN INDEX	01 RPV28	01 RPV29
SS	01	01	01	01	.01	ITE		01)RE 1		L ERI	ORE	NVE	ITIAI	ITIAI		į
ADDRESS R C	60	60	60	60	60		11	11		10	AL.	ST(10	15
ADJ R	20	. 25	23	24	22	*	18	22	*	20	* .	*	*	*	*	22	22
ORD IBER				· ·			\$	•			`: .	•		•	•		
RECORD NUMBER	107	108	109	110	111		112	113	•	114	- · .	- *	· ·			115	116

	READ						•••• • • • •	-	•	READ	READ			READ			
MICROFUNCTION	M to T	AC to R0	R6 to AC	AC to R5		•		1 + R0 to R0	RO to MAR .	I + R5 to R5	0 to R0		٠.	I ⊕ T to T	O $_{ m V}^{ m T}$ to CO	$500_{ m V}$ T to MAR	500 + T to T
READ/ WRITE	00	11	11	11		*	•	11		00	00			00	11	11	
IUMP	JCC 23	JCC 14	JCC 13	JCC 11	· · · · · · · · · · · · · · · · · · ·	CIENTS		JCC 09		JCC 04	JFL 15	,	RO */	JCR 14	JCC 05	JFL 11	•
INH	0	0	0	0		EFFI	*	0	•.	, 0	0		R ZE	0	0	0	
LOAD	H	-	-	-	*	OF CC	ESSED	1		. •	H		SULT FC	H G			
8	00	00	00	00		UMBEI	PROCI	. 00		00	00		CK RE	00	00	00	•
5	00		00	11	TMS	OF N	ARE	11		11	00	*	CHE	00	00	00	
KBUS	7777	7777	0000	7777	FROM	MENT	SS ONE	0000		0000	0000		T AND	7777	7777	0200	٠.
MNEM KBUS	LTM	SDR	ILR	SDR	READ NEXT ERRATA COEFFICIENT FROM TMSYN	INCREMENT THE ONE'S COMPLEMENT OF NUMBER OF COEFFICIENTS	CHECK IF ALL COEFFICIENTS LESS ONE ARE PROCESSED	LMI	•	INR	NOP	ALL COEFFICIENTS NOT PROCESSED	XOR COEFFICIENT WITH SUM IN T AND CHECK RESULT FOR ZERO	XNI	TZA	LMI	
CPE	F5 R2	F2 R1	FO R1	F2 R1	ATA COE	Ę ONE'S	COEFFIC	FI R1		F3 R1	F6 R1	NTS NOT	NT WITH	F7 R3	F5 R3	F1 R1	
LABEL					EXT ERR	ENT TH	IF ALL (01 RPV30			•	EFFICIE	EFFICIE	01 RPV31			:
SS	01	01	01	01	N CN	CREM	ECK			01	01	COI	R CO	·	01	01	
ADDRESS R C	15	15	1,5	15				15		15	15			10	14	14	
AI	10	, 23	14	13	*	*	* s	11		60	04	*	*	15	15	05	٠.
RECORD NUMBER		•				<u>-</u>	• ,	•			•			•			
REC	1117	118	119	120	••	-	· · .	121		122	123			124	125	126	

										• .			,	•			•	
				READ	READ		- 	READ	READ									
MICROFUNCTION	-			R3 to AC	M + AC to AC	$400_{\rm V}$ AC to MAR	400 + AC to AC	0 to R0	M to AC	A to T		0 to T					All I's to MAR	RO - 1 to RO
READ/ WRITE	٠.	, ,		00	00	11		00	00	11		11		٠	, ,	•	11	
IUMP			*	JCR 12	JCC 08	JCR 15		JCC 07	JCC 02	JCC 11		JCR 15					JCR 15	ŝ
LOAD INH		*	JUM I	0	0	0		0	0	0		0					0	
LOAD			TIVE S		-	-		-	H ,	H	,	H		*			H	
9		RM IN	STORE IN CUMULATIVE SUM T	00	00	00	•	00	00	00		00	*	M IN T	*		00	.
CI		B_i TE	E IN O	00	00	00	•	00	00	11	*	00	SED	o su)R)		00	
MNEM KBUS		р Арр		0000	7777	0400	·	0000	7777	7777	= ZERO	00 0000	OCESSED	OR INT	MERATO	*	7777	
MNEN		CONVERT RESULT TO POWER AND ADD $\mathrm{B_{1}}$ TERM IN R3	CONVERT RESULT TO CODE AND	ILR	AMA	LMI		NOP	LTM	SDR	SUM T	CLR	ALL COEFFICIENTS LESS ONE PR	READ LAST COEFFICIENT AND XOR INTO SUM IN T	CHECK IF RESULT IS ZERO (NUMERATOR)	CONVERT THE RESULT TO POWER	DSM	
CPE	*	TO PC	TOC	FÓ R1	FO RZ	FI RI		F6 R1	F5 R2	F2 R1	SET	F4 R1	S TES	ICIEN	IS ZE	SULT 1	F1 R1	
LABEL	RESULT NOT ZERO	ESULT	ESULT	RPV32 F	<u>[-</u> 4	<u> </u>		Ε4	<u>[-</u> 4	[14	RESULT IS ZERO.		CIEN	COEFI	ESULI	HE RE	RPV34 F	
D.	'I NO	ERT R	ERT R	01 RP	01	01		01,	01	01	T IS Z	01 RPV33	OEFFI	LAST	K IF R	ERT T	01 RP	
ADDRESS R C	RESUI	CONV	CONV	11 (12	12		15	15	15	RESUI	10	ALL C	READ	CHEC	CONV	11	
ADI	*	*	*	11	11	08		08	02	02	*	11	*	*	*	*	15	
RECORD NUMBER	•		-	127	128	129		130	131	132		133			·		134	
					-													

											•						
			READ	READ					READ	READ							READ
MICROFUNCTION	1 + R0 to R0	R0 to MAR	0 to R0	I ⊕ T to T	$O_{ m V}$ T to CO	0 to R0		$500~\mathrm{V}$ T to MAR	0 to R0	M to AC					R7 to MAR	1 + R7 to R7	O to R0
READ/ WRITE	11		00	00	11	11		11	00	0 0					11		00
IUMP	JCC 15		JCR 12	JCC 05	JCC 04	JFL 13		JCR 12	JCC 12	JCC 14					JCC 10		JCC 07
INH	0		0	0	0	0		0	0	0			*		0		0
LOAD INH	-		H	1	-	H		Н	H				$3_1 + B_j$	*	-		Н
9	00		00	00	00	00		00	00	00		*	В ₁ ТТ (I	-ve POWER	00		00
Ö	00		00	00	00	00		00	00	00			(B ₁)/		11		00
KBUS	0000		0000	7777	7777	0000		0200	0000 000	7777		A TRVOC	ERM Z	M FOR	0000		0000
MNEM KBUS	LMI		NOP	XNI	TZA	NOP		LMI	NOP	LTM	*	READ NEXT PRODUCT TERM FROM	COMPUTE ERROR CORRECTION TERM Z $(B_1)/B_1$ TT (B_1+B_1)	CHECK ERROR CORRECTION TERM	LMI		NOP
CPE	F1 R1		F6 R1	F7 R3	F5 R3	F6 R1	/* O	FI RI	F6 RI	F5 R2		DUCT I	OR CORRI	CORRECT	FI RI		F6 R1
LABEL							RESULT \neq ZERO	01 RPV35			SUM IN T NOT ZERO	XT PRC	IE ERRC	SRROR (
ᆈ	01		01	01	01	01	ULT=	01	01	01	NI IN	D NE	MPUI	ECK 1	01		01
ADDRESS R C	15		15	12	12	12		11	12	12		REA	CO		12		12
ADJ	00		15	15	05	. 04	*	13	13	12	*	*	*	*	14		10
RECORD	135		136	137	138	139		140	141	142		٠			143		144

	READ	. •									READ	READ	•			÷	
MICROFUNCTION	$AC + I(\overline{M})$ to AC	37 Ø to T	37 Ø to MAR			T + AC to I, AC			1 + AC to AC	400 V AC to MAR	R3 to AC	M to T		R3 */		AG to AG	AC to R3
READ/ WRITE	00	11		÷		11		*	11	11	00	00		NI NO	,	11	11
IUMP	JCC 06	JFL 14	·			JCR 11		STORE THE TWO'S COMPLEMENT IN T	JCR 08	JCR 14	JCC 13	JCC 10		CORRESPONDING TO ERRATA POSITION IN R3		JCC 11	JCC 08
INH	0	0				0		EMEN	0	0	0	0		ERRA'		0	0
LOAD	7	-			·* (ø	-		COMPL	~		-	H		NG TO		-	H
8	00	00	•	•	1D (37	00		WO'S	00	00	00	00		PONDI		00	00
덩	00	00			NG 3.	00		THE T	11	00	00	00		RRES	*	00	11
MNEM KBUS	7777	0037		JLT *	y addi	7777		STORE	0000	0400	0000	7777			TBDIØ	0000	0037
MNEM	AIA	LMM		ERO REST	POWER B	ALR			LMI	LMI	ILR	LTM	`	CHARAC	TADIØ	CIA	CSR
CPE	F3 R3	F1 R2		T OR Z	SITIVE	F0 R1	/* I	T TO C	F1 R1	F1 R1	F0 R1	F5 R2	RO. */	ESS OF	er fron	F1 R3	F2 R1
P LABEL		12 01		/* NEGATIVE RESULT OR ZERO RESULT	/* CONVERT TO POSITIVE POWER BY ADDING 31D (37 Ø)	10 01 RPV36	POSITIVE RESULT	CONVERT RESULT TO CODE.	11 01 RPV37	08 01	14 01	14 01	SUM IN T IS ZERO.	COMPUTE ADDRESS OF CHARACTER	/* READ CHARACTER FROM TADIØ/TBDIØ	14 01 RPV40	14 01
ADDRESS R C	7	1 90		Z *	× ×	14	* P	0 */	14	14 (14	13	× S	*/	/* R	10	11
RECORD P		146				147			148	149	150	151	•			152	153
						<u></u> _											

	į					•)			CT.	PFAD/		
RECORD	A N	ADDRESS R C	P LABEL	CPE	MNEM	KBUS CI	00	LOAD	INH	<u>IUMP</u> V	WRITE	MICROFUNCTION	
154	08	14	01	F0 R1	ILR	00 0000	00	-	0	JCC 07	11	R9 to AC	
155	07	14	01	F0 R1	ALR	7777 00	00	-1 .	0	JCC 06	11	AC + R3 to R3, AC	
	*		XOR CHARACTER WITH ERROR CORRECTION	R WITH I	SRROR CO	ORRECTIO	N TERM IN T	IN T	*				
156	90	14	01	F1 R1	LMI	0000 000	00	-	0	JCC 12		$O_{ m V}$ R3 to MAR	
157	12	14	01	FO R1	ILR	00 0000	00	г	0	JCC 09	00	T to AC	READ
158	60	14	01	F7 R3	XNI	7777 00	00	-	0	JCC 03	00	I (M) To AC to AC	READ
,	*		WRITE CORRECTED CHARACTER IN TADIØ / TBDIØ	TED CHA	RACTER	IN TADIØ	/TBDIØ	*					
159	03	14	01	FI RI	LMI	00 0000	00	-	0	JCR 15	11	$0_{ m V}$ R3 to MAR	
160	03	15	01	F1 R1	LMI	0000	00	-	0	JCC 17	10	R8 to MAR	WRITE
								٠.				1 + R8 to R8	· .
	*		SUM IN T IS ZERO		*								
161	13	10	01 RPV38	FO R1	ILR	00 0000	00	-	0	JCC 10	11	R3 to AC	
162	10	10	0.1	F3 R1	INR	0000	00	-	0	JCR 14	11	1 + R7 to R7	
	*		ALL ERRATA ≽1	>16 PROCESSED	ESSED	*	1						
	*		RESTORE R9 (0	(0 OR 200 Ø)	/* (Ø								
163	21	11	01 RPV41 F5	F5 R1	LRI	00000	00	7	0	JCC 10	11	K A R9 to R9	
	*		READ ADDRESS OF ERROR POLYNOMIAL	OF ERRC	OR POLYN	IOMIAL		,			*		

)						
RECORD NUMBER	ADI R	ADDRESS R C	ابم	LABEL	CPE	MNEM	KBUS	ij	8	CO LOAD INH	INH	IUMP	READ/ WRITE	MICROFUNCTION	
	*	REAL) NC	IMBER (READ NUMBER OF ERRORS AND WRITE IN DATA QUALITY WORD	S AND V	VRITE 1	IN DA	ta qu	LITY W	ORD	*			
164	10	11	01		Fl R2	LMM	0644	00	00	П	0	JCR 09	11	644 Ø to MAR	
							•				•			644 Ø to AC	
165	10	60	01		FO R1	ILR	0000	00	00	н	0	JCC 11	00	R9 to AC	READ
166	11	60	01		F1 R2	LMM	0020	00	00	-	0	JCC 12	00	$^{0}\mathrm{_{V}}$ M to MAR	READ
	. *				•							•		M to T	
167	12	60	01		F2 R1	SDR	7777	11	00	-	0	JCC 13	00	AC to T	READ
168	13	60	01		F0 R2	ACM	0000	00	00	-	0	JCC 14	00	M to AC	READ
169	14	60	01		Fl Rl	LMI	2000	00	00	-	0	JCC 17	11	7 + T to T	
														7 y T to MAR	•
170	17	60	01		F5 R1	TZR	7777	00	00	Н	0	JCC 15	10	$0_{ m ~V}$ R2 to CO	WRITE
	*	CHE	3CK]	if writ	CHECK IF WRITE EARLY FLAG IS SET	FLAG IS		*					,		
171	15	60	01		F0 R1	ILR	0000	00	00	1	0	JFL 04	11	R9 to AC	
	*		TE E	ARLY FI	WRITE EARLY FLAG IS SET	/* IS		•							
172	04	11	01	01 RPV42	F6 R1	NOP	0000	00	00	-	0	JCR 14	11		
173	04	14	01		F5 R1	TZR	7777	00	00	7	0	JCC 16	11	0 V R9 to CO	
	*		r To	INOUI	EXIT TO INOUT AT IOC03	3 */					•	. *			
	*		ITE 1	ARLY F	WRITE EARLY FLAG IS NOT SET	OT SET	*								No.

اد					to MAR	1)	WRITE	
MICROFUNCTION			AC to AC	K A AC to AC	AC + 177\(\beta\) to AC to MAR	$\overline{AC} + 1 \text{ to AC (001)}$	0 V R9 to CO	
READ/ WRITE	*	•	11	11	11	11	10	
IUMP	BLOCK		JCR 09	JCC 03	JCC 02	JCR 14	JCC 16	
INH	RENT		0	0	0	0	0	
LOAD	N-CUR		-	-	-	r	-	
KBUS CI CO LOAD INH	OR NO		00	00	00	00	00	
5	LAG F	•	00	00	00	11	. 00	
	ARLY F	*	00 0000	0200 00	0177 00	0000.11	7777 00	
MNEM	WRITE I		CIA	LMI	LMI	CIA	TZR	
CPE	ESS OF	JEST IN	Fl R3	F5 R1	FI R1	F1 R3	F5 R1	
ADDRESS R C P LABEL CPE	/* COMPUTE ADDRESS OF WRITE EARLY FLAG FOR NON-CURRENT BLOCK	/* SET WRITE REQUEST IN RAM	04 10 01 RPV02 F1 R3	01,	01	01	01	
RESS C F	OMP	ET W	0 01	0 60	0 60	0 60	14 0	
ADDRESS R C	*	× ×	04	04 (03 (02 (0.5	
RECORD NUMBER			174	175	176	177	178	

/* EXIT TO INOUT AT IOC03

INTEL 3000

COMPUTER (MICROPROCESSOR) DATA SHEETS

SCHOTTKY **BIPOLAR LSI** MICROCOMPUTER SET

The INTEL® Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions, similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

The INTEL® 3001 Microprogram Control Unit (MCU) controls the sequence in which microinstructions are fetched from the microprogram memory. Its functions include the following:

Maintenance of the microprogram address register.

Selection of the next microinstruction based on the contents of the microprogram address register.

Decoding and testing of data supplied via several input busses to determine the microinstruction execution sequence.

Saving and testing of carry output data from the central processor (CP) array.

Control of carry/shift input data to the CP array.

Control of microprogram interrupts.

High Performance - 85 ns Cycle Time

TTL and DTL Compatible Fully Buffered Three-State and Open **Collector Outputs**

Direct Addressing of Standard Bipolar PROM or ROM

512 Microinstruction Addressability

Advanced Organization

9-Bit Microprogram Address Register and Bus

4-Bit Program Latch Two Flag Registers

Eleven Address Control Functions Three Jump and Test Latch

Functions

16-way Jump and Test Instruction **Bus Function**

Eight Flag Control Functions Four Flag Input Functions Four Flag Output Functions

40 Pin DIP

Other members of the INTEL Bipolar Microcomputer Set:

3002 Central Processing Element 3003 Look-Ahead Carry Generator 3212 Multi-Mode Latch Buffer

3214 Priority Interrupt Control Unit 3226 Inverting Bi-Directional Bus Driver 3301 Schottky Bipolar ROM (256 x 4)

3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

CONTENTS

Introduction	1
Package Configuration	2
Pin Description	3
Logical Description	4
Functional Description	5 5
Flag Control Functions	6
Load and Interrupt Strobe Functions	6
D. C. and Operating Characteristics	7
A. C. Characteristics and Waveforms	8, 9
Typical A. C. and D. C. Characteristics	10
APPENDICES	
A. Address Control Function Summary	11
B. Flag Control Function Summary	11
C. Jump Set Diagrams	12
D. Typical Configurations	13

PACKAGE CONFIGURATION

PACKAGE OUTLINE

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE (1)
1-4	PX ₄ -PX ₇	Primary Instruction Bus Inputs Data on the primary instruction bus is tested by the JPX function to determine the next microprogram address.	active LOW
5, 6, 8, 10	SX ₀ -SX ₃	Secondary Instruction Bus Inputs Data on the secondary instruction bus is synchronously loaded into the PR-latch while the data on the PX-bus is being tested (JPX). During a subsequent cycle, the contents of the PR-latch may be tested by the JPR, JLL, or JRL functions to determine the next microprogram address.	active LOW
7, 9, 11	PR ₀ -PR ₂	PR-Latch Outputs The PR-latch outputs are asynchronously enabled by the JCE function. They can be used to modify microinstructions at the outputs of the microprogram memory or to provide additional control lines.	open collecto
12, 13, 15, 16	FC ₀ -FC ₃	Flag Logic Control Inputs The flag logic control inputs are used to cross-switch the flags (C and Z) with the flag logic input (FI) and the flag logic output (FO).	
14	FO	Flag Logic Output The outputs of the flags (C and Z) are multiplexed internally to form the common flag logic output. The output may also be forced to a logical 0 or logical 1.	active LOW three-state
17	FI	Flag Logic Input The flag logic input is demultiplexed internally and applied to the inputs of the flags (C and Z). Note: the flag input data is saved in the F-latch when the clock input (CLK) is low.	active LOW
18	ISE .	Interrupt Strobe Enable Output The interrupt strobe enable output goes to logical 1 when one of the JZR functions are selected (see Functional Description, page 6). It can be used to provide the strobe signal required by the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits.	
19	CLK	Clock Input	
20	GND	Ground	
21-24 37-39	AC ₀ -AC ₆	Next Address Control Function Inputs All jump functions are selected by these control lines.	
25	EN	Enable Input When in the HIGH state, the enable input enables the microprogram address, PR-latch and flag outputs.	
26-29	MA_0-MA_3	Microprogram Column Address Outputs	three-state
30-34	MA ₄ -MA ₈	Microprogram Row Address Outputs	three-state
35	ERA	Enable Row Address Input When in the LOW state, the enable row address input independently disables the microprogram row address outputs. It can be used with the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits to facilitate the implementation of priority interrupt systems.	
36	LD	Microprogram Address Load Input When in the active HIGH state, the microprogram address load input inhibits all jump functions and synchronously loads the data on the instruction busses into the microprogram register. However, it does not inhibit the operation of the PR-latch or the generation of the interrupt strobe enable.	•
40	VCC	+5 Volt Supply	•

NOTE:
(1) Active HIGH unless otherwise specified.

The MCU performs two major control functions. First, it controls the sequence in which microinstructions are fetched from the microprogram memory. For this purpose, the MCU contains a microprogram address register and the associated logic for selecting the next microinstruction address. The second function of the MCU is the control of the two flag flip-flops that are included for interaction with the carry input and carry output logic of the CP array. The logical organization of the MCU is shown in Figure 2.

NEXT ADDRESS LOGIC

The next address logic of the MCU provides a set of conditional and unconditional address control functions. These address control functions are used to implement a jump or jump/test operation as part of every microinstruction. That is to say, each microinstruction typically contains a jump operation field that specifies the address control function, and hence, the next microprogram address.

In order to minimize the pin count of the MCU, and reduce the complexity of the next address logic, the microprogram address space is organized as a two dimensional array or matrix. Each microprogram address corresponds to a unit of the matrix at a particular row and column location. Thus, the 9bit microprogram address is treated as specifying not one, but two addresses the row address in the upper five bits and the column address in the lower four bits. The address matrix can therefore contain, at most, 32 row addresses and 16 column addresses for a total of 512 microinstructions.

The next address logic of the MCU makes extensive use of this two component addressing scheme. For example, from a particular row or column address, it is possible to jump unconditionally in one operation anywhere in that row or column. It is not possible, however, to jump anywhere in the address matrix. In fact, for a given location in the matrix, there is a fixed subset of microprogram addresses that may be selected as the next address. These

possible jump target addresses are referred to as a jump set. Each type of MCU address control (jump) function has a jump set associated with it. Appendix C illustrates the jump set for each function.

FLAG LOGIC

The flag logic of the MCU provides a set of functions for saving the current value of the carry output of the CP array and for controlling the value of the carry input to the CP array. These two distinct flag control functions are called flag input functions and flag output functions.

The flag logic is comprised of two flip-flops, designated the C-flag and the Z-flag, along with a simple latch, called the F-latch, that indicates the current state of the carry output line of the CP array. The flag logic is used in conjunction with the carry and shift logic of the CP array to implement a variety of shift/rotate and arithmetic functions.

Figure 2. 3001 Block Diagram

ADDRESS CONTROL FUNCTIONS

The address control functions of the MCU are selected by the seven input lines designated AC₀-AC₆. On the rising edge of the clock, the 9-bit microprogram address generated by the next address logic is loaded into the microprogram address register. The next microprogram address is delivered to the microprogram memory via the nine output lines designated MA₀-MA₈. The microprogram address outputs are organized into row and column addresses

MA8 MA7 MA6 MA5 MA4

row address

MA3 MA2 MA1 MA0

column address

Each address control function is specified by a unique encoding of the data on the function input lines. From three to five bits of the data specify the particular function while the remaining bits are used to select part of either the row or column address desired. Function code formats are given in Appendix A. "Address Control Function Summary."

The following is a detailed description of each of the eleven address control functions. The symbols shown below are used throughout the description to specify row and column addresses.

Symbol Meaning

5-bit next row address rown

where n is the decimal row

address

4-bit next column address coln

where n is the decimal

column address.

UNCONDITIONAL ADDRESS CON-TROL (JUMP) FUNCTIONS

The jump functions use the current microprogram address (i.e., the contents of the microprogram address register prior to the rising edge of the clock) and several bits from the address control inputs to generate the next microprogram address.

Mnemonic

Function Description

column, specified by

JCC Jump in current column. AC0-AC4 are used to select 1 of 32 row addresses in the current

MA₀-MA₃, as the next address

JZR Jump to zero row.

> AC₀-AC₃ are used to select 1 of 16 column addresses in rowo, as the

next address.

JCR Jump in current row.

AC₀-AC₃ are used to select 1 of 16 addresses in the current row, specified by MA₄-MA₈, as

the next address.

JCE Jump in current column/ row group and enable PR-latch outputs. ACo-

AC2 are used to select 1 of 8 row addresses in the current row group, specified by MA7-MA8, as the next row address. The current column is speci-

fied by MAn-MA3. The PR-latch outputs are asynchronously enabled.

FLAG CONDITIONAL ADDRESS CONTROL (JUMP/TEST) **FUNCTIONS**

The jump/test flag functions use the current microprogram address, the contents of the selected flag or latch, and several bits from the address control function to generate the next microprogram address.

Mnemonic

Function Description

JFL

Jump/test F-Latch. ACo-AC3 are used to select 1 of 16 row addresses in the current row group, specified by MA₈, as the next row address. If the current column group, specified by MA3, is colo-col7, the F-latch is used to select col2 or col3 as the next column address. If MA₃ specifies column group colg-col15, the F-latch is used to select col₁₀ or col₁₁ as the next column address.

JCF

Jump/test C-flag. AC₀-AC₂ are used to select 1 of 8 row addresses in the current

row group, specified by MA7 and MA8, as the next row address. If the current column group specified by MA3 is colo-col7, the C-flag is used to select colo or col3 as the next column address. If MA₃ specifies column group colg-col15, the C-flag is used to select col₁₀ or col₁₁ as the next column address.

JZF

Jump/test Z-flag. Identical to the JCF function described above, except that the Z-flag, rather than the C-flag, is used to select the next column address.

PX-BUS AND PR-LATCH CONDI-**TIONAL ADDRESS CONTROL** (JUMP/TEST) FUNCTIONS

The PX-bus jump/test function uses the data on the primary instruction bus (PX4-PX7), the current mircoprogram address, and several selection bits from the address control function to generate the next microprogram address. The PR-latch jump/test functions use the data held in the PR-latch, the current microprogram address, and several selection bits from the address control function to generate the next microprogram address.

Function Description Mnemonic

JPR Jump/test PR-latch.

ACo-AC2 are used to

select 1 of 8 row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. The four PR-latch bits are used to select 1 of 16 possible column addresses as the next

Mnemonic

Function Description

column address.

JLL

Jump/test leftmost PRlatch bits. AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA7 and MA8, as the next row address. PR2 and PR3 are used to

select 1 of 4 possible column addresses in col₄ through col₇ as the next column address.

Jump/test rightmost PR-latch bits. AC₀ and AC₁ are used to select 1 of 4 high-order row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. PR₀ and PR₁ are used to select 1 of 4 possible column addresses in col₁₂ through col₁₅ as the next column address.

Jump/test PX-bus and load PR-latch. AC₀ and AC₁ are used to select 1 of 4 row addresses in the current row group, specified by MA₆-MA₈, as the next row address. PX₄-PX₇ are used to select 1 of 16 possible column addresses as the next column address. SX₀-SX₃ data is locked in the PR-latch at the rising edge of the clock.

JPX

FLAG CONTROL FUNCTIONS

The flag control functions of the MCU are selected by the four input lines designated FC₀-FC₃. Function code formats are given in Appendix B, "Flag Control Function Summary."

The following is a detailed description of each of the eight flag control functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select which flag or flags will be set to the current value of the flag input (FI) line. Data on FI is stored in the F-latch when the clock is low. The content of the F-latch is loaded into the C and/or Z flag on the rising edge of the clock.

Mnemonic	Function Description
SCZ	Set C-flag and Z-flag to FI. The C-flag and the Z-flag are both set to the value of FI.
STZ	Set Z-flag to FI. The Z- flag is set to the value of FI. The C-flag is unaffected.
STC	Set C-flag to FI. The C- flag is set to the value of FI. The Z flag is unaffected.
HCZ	Hold C-flag and Z-flag. The values in the C-flag

FLAG OUTPUT CONTROL FUNCTIONS

The flag output control functions select the value to which the flag output (FO) line will be forced.

and Z-flag are unaffected.

Mnemonic	Function Description
FF0	Force FO to 0. FO is forced to the value of logical 0.
FFC	Force FO to C. FO is forced to the value of the C-flag.
FFZ	Force FO to Z. FO is forced to the value of the Z-flag.
FF1	Force FO to 1. FO is forced to the value of

logical 1.

LOAD AND INTERRUPT STROBE FUNCTIONS

The load function of the MCU is controlled by the input line designated LD. If the LD line is active HIGH at the rising edge of the clock, the data on the primary and secondary instruction busses, PX4-PX7 and SX0-SX3, is loaded into the microprogram address register. PX₄-PX₇ are loaded into MA₀-MA₃ and SX₀-SX₃ are loaded into MA4-MA7. The high-order bit of the microprogram address register MAg is set to a logical 0. The bits from the primary instruction bus select 1 of 16 possible column addresses. Likewise. the bits from the secondary instruction bus select 1 of the first 16 row addresses.

The interrupt strobe enable of the MCU is available on the output line designated ISE. The line is placed in the active high state whenever a JZR to col₁₅ is selected as the address control function. Customarily, the start of a macroinstruction fetch sequence is situated at rowo and col₁₅ so that the INTEL 3214 Priority Interrupt Control Unit may be enabled at the beginning of the fetch/execute cycle. The priority interrupt control unit may respond to the interrupt by pulling the enable row address (ERA) input line down to override the selected next row address from the MCU. Then by gating an alternative next row address on to the row address lines of the microprogram memory, the microprogram may be forced to enter an interrupt handling routine. The alternative row address placed on the microprogram memory address lines does not alter the contents of the microprogram address register. Therefore, subsequent jump functions will utilize the row address in the register, and not the alternative row address, to determine the next microprogram address.

Note, the load function always overrides the address control function on AC0- AC6. It does not, however, override the latch enable or load sub-functions of the JCE or JPX instruction, respectively. In addition, it does not inhibit the interrupt strobe enable or any of the flag control functions.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	65°C to +160°C
All Output and Supply Voltages	−0.5V to +7V
All Input Voltages	
Output Currents	100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = 0^{\circ}C$ to $70^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
Vc	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	٧	$V_{CC} = 4.75V$, $I_{C} = -5 \text{ mA}$
I _F	Input Load Current: CLK Input EN Input All Other Inputs		-0.075 -0.05 -0.025	-0.75 -0.50 -0.25	mA mA mA	$V_{CC} = 5.25V, V_{F} = 0.45V$
I _R	Input Leakage Current: CLK EN Input All Other Inputs			120 80 40	μΑ μΑ μΑ	V_{CC} = 5.25V, V_{R} = 5.25V
VIL	Input Low Voltage			8.0	V	V _{CC} = 5.0V
VIH	Input High Voltage	2.0			٧	
Icc	Power Supply Current		170	240	mA	$V_{CC} = 5.25V^{(2)}$
VoL	Output Low Voltage (All Output Pins)	·	0.35	0.45	V	V_{CC} = 4.75V, I_{OL} = 10 mA
V _{OH}	Output High Voltage (MA ₀ -MA ₈ , ISE, FO)	2.4	3.0		V	V_{CC} = 4.75V, I_{OH} = -1 mA
los	Output Short Circuit Current (MA ₀ -MA ₈ , ISE, FO)	−15	-28	-60	mA .	$V_{CC} = 5.0V$
lo (off)	Off-State Output Current: MA ₀ -MA ₈ , FO MA ₀ -MA ₈ , FO, PR ₀ -PR ₂			-100 100	μΑ μΑ	V _{CC} = 5.25V, V _O = 0.45V V _{CC} = 5.25V, V _O = 5.25V

NOTES

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽²⁾ EN input grounded, all other inputs and outputs open.

A.C. CHARACTERISTICS AND WAVEFORMS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{CY}	Cycle Time	85	60		ns
t _{WP}	Clock Pulse Width	30	20		ns
t _{SF} t _{SK} t _{SX} t _{SI}	Control and Data Input Set-Up Times: LD , AC_0 - AC_6 FC_0 , FC_1 SX_0 - SX_3 , PX_4 - PX_7 FI	10 0 35 15	0 25 5		ns ns ns
t _{HF} tHK tHX tHI	Control and Data Input Hold Times: LD, AC_0-AC_6 FC ₀ , FC ₁ SX ₀ -SX ₃ , PX ₄ -PX ₇ FI	5 0 20 20	0 5 8		ns ns ns
tco	Propagation Delay from Clock Input (CLK) to Outputs (MA ₀ -MA ₈ , FO)		30	44	ns
t _{KO}	Propagation Delay from Control Inputs FC_2 and FC_3 to Flag Out (FO)		16	30	ns
t _{FO}	Propagation Delay from Control Inputs AC ₀ -AC ₆ to Latch Outputs (PR ₀ -PR ₂)	•	26	40	ns
t _{EO}	Propagation Delay from Enable Inputs EN and ERA to Outputs $(MA_0-MA_8, FO, PR_0-PR_2)$		21	32	ns
t _{Fi}	Propagation Delay from Control Inputs AC_0-AC_6 to Interrupt Strobe Enable Output (ISE)		24	40	ns

NOTE

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF.
Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT:

CAPACITANCE(2) $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance: CLK, EN All Other Inputs		11 5	16 10	pF pF
COUT	Output Capacitance		6	12	pF

NOTE

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{B1AS} = 2.5V, V_{CC} = 5V and T_A = 25°C.

TYPICAL AC AND DC CHARACTERISTICS

5.0

VCC (VOLTS)

4.75

5.25

APPENDIX A ADDRESS CONTROL FUNCTION SUMMARY

	DECORUPTION	FUNCTION					NEXT ROW				NEXT COL						
MNEMONIC	DESCRIPTION	AC ₆	5	4	3	2	1	0	MA ₈	7	6	5	4	MA ₃	2	1	0
JCC	Jump in current column	0	0	d ₄	. d ₃	d_2	. d ₁	d ₀	d ₄	d ₃	d ₂	d ₁	d ₀	m ₃	m ₂	m ₁	m ₀
JZR	Jump to zero row	0	1	0.	d_3	d ₂	d ₁	d_0	0	0	0	0	0	d ₃	d_2	d_1	d_0
JCR	Jump in current row	0	1	1	d3	d_2	d_1	d ₀	m ₈	m ₇	m ₆	m ₅	m ₄	d_3	. d ₂	d_1	do
JCE	Jump in column/enable	1	1	1	0	d_2	d ₁	d ₀	m ₈	m ₇	d ₂	d ₁	d_0	_, m ₃	m ₂	m ₁	m ₀
JFL	Jump/test F-latch	1	0	0	d ₃	d ₂	d ₁	d ₀	m ₈	d ₃	d ₂	d ₁	d ₀	m ₃	0	1	f
JCF	Jump/test C-flag	.1	0	- 1	0	d_2	d_1	d_{0}	mg	m ₇	d_2	d_1	d ₀	m_3	0	1	С
JZF	Jump/test Z-flag	1	0	1	1	d_2	d ₁	d_0	mg	m ₇	d_2	d ₁	d ₀	m ₃	0	1	Z
JPR	Jump/test PR-latches	1	1	0	0	d ₂	d ₁	d ₀	m ₈	m ₇	d_2	d ₁	d ₀	p ₃	p ₂	p ₁	p ₀
JLL	Jump/test left PR bits	1	1	0	1	d_2	d ₁	d_0	mg	m ₇	d ₂	d ₁	d_0	0	1	p ₃	p ₂
JRL	Jump/test right PR bits	1	1	1	1	1	d ₁	d_0	m ₈	m ₇	1	d ₁	d ₀	1	1	P1	P ₀
JF.	Jump/test PX-bus	1	1	1	1 .	0	d ₁	d ₀	mg	m ₇	m ₆	d ₁	d ₀	x 7	×6	x ₅	X4

SYMBOL	MEANING	
d _n	Data on address control line n	
mn	Data in microprogram address register bit n	
Pn	Data in PR-latch bit n	
×n	Data on PX-bus line n (active LOW)	
f, c, z	Contents of F-latch, C-flag, or Z-flag, respectively	

APPENDIX B FLAG CONTROL FUNCTION SUMMARY

TYPE	MNEMONIC	DESCRIPTION	FC ₁	. 0		
	SCZ	Set C-flag and Z-flag to f	0	0		
Flag	STZ	Set Z-flag to f	0	1	•	
Input	STC	Set C-flag to f	1	0		
	HCZ	Hold C-flag and Z-flag	1	1		

TYPE .	MNEMONIC	DESCRIPTION	FC ₃	2			
	FF0	Force FO to 0	0	0			
Flag	FFC	Force FO to C-flag	0	1			
Output	FFZ	Force FO to Z-flag	1	0			
	FF1	Force FO to 1	• 1 .	1	4		*

LOAD FUNCTION		NEX	(T RO	W			NEXT	COL	er j	 		
LD	MA ₈	7	6	5	4	MA ₃	2	1	0			
0	see Ap	pendi	хА			see Ap	pendi	хА				i _e
1	0	x ₃	x ₂	×1	x ₀	x 7	×6	×5	х4	{		

		•	
SYMBOL	MEANING		
f	Contents of the F-latch		
xn	Data on PX- or SX-bus line n (active LOW)		

The following ten diagrams illustrate the jump set for each of the eleven jump and jump/test functions of the MCU. Location 341, indicated by the black square, represents one current row (row₂₁) and current column (col₅) address. The blue boxes indicate the microprogram locations that may be selected by the particular function as the next address.

JCC

JCF, JZF Jump/Test C-Flag

Jump/Test Z-Flag

Non-Pipelined Configuration with 512 Microinstruction Addressability

Pipelined Configuration with 2048 Microinstruction Addressability

ORDERING INFORMATION:

Part Number Description

C3001

Microprogram **Control Unit**

Intel Corporation 3065 Bowers Avenue Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026 Telex: 34-6372

WESTERN 1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642 TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240 Tel: (214) 661-8829 TWX: 910-860-5487

GREAT LAKES REGION 8312 North Main Street Dayton, Ohio 45415 Tel: (513) 890-5350

TELEX: 288-004

EASTERN 2 Militia Drive Suite 4

Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187

MID-ATLANTIC 520 Pennsylvania Avenue Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444 TWX: 510-661-3055

EUROPE Belgium Intel Office 216 Avenue Louise Brussels B1050 Tel: 649-20-03

TELEX: 24814

ORIENT Japan Intel Japan Corporation Kasahara Bldg. 1-6-10, Uchikanda Chivoda-ku Tokyo 101

Tel: (03) 295-5441 TELEX: 781-28426

SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET

3002 CENTRAL PROCESSING ELEMENT

The INTEL® Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions. similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

The INTEL® 3002 Central Processing Element contains all of the circuits that represent a 2-bit wide slice through the data processing section of a digital computer. To construct a complete central processor for a given word width N, it is simply necessary to connect an array of N/2 CPE's together. When wired together in such an array, a set of CPE's provide the following capabilities:

2's complement arithmetic
Logical AND, OR, NOT and
exclusive-OR
Incrementing and decrementing
Shifting left or right
Bit testing and zero detection
Carry look-ahead generation
Multiple data and address busses

High Performance - 100 ns Cycle Time

TTL and DTL Compatible

N-Bit Word Expandable Multi-Bus Organization

3 Input Data Busses

2 Three-State Fully Buffered Output Data Busses

11 General Purpose Registers

Full Function Accumulator

Independent Memory Address Register

Cascade Outputs for Full Carry Look-Ahead

Versatile Functional Capability 8 Function Groups Over 40 Useful Functions Zero Detect and Bit Test

Single Clock

28 Pin DIP

Other members of the INTEL Bipolar Microcomputer Set:

3001 Microprogram Control Unit 3003 Look-Ahead Carry Generator 3212 Multi-Mode Latch Buffer

3214 Priority Interrupt Control Unit 3226 Inverting Bi-Directional Bus Driver 3301 Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

CONTENTS

Introduction	1
Package Configuration	2
Pin Description	
Logical Description	4
Functional Description	5
D. C. and Operating Characteristics	8
A. C. Characteristics and Waveforms	9, 1
Typical A. C. and D. C. Characteristics	11
APPENDICES	
A. Micro-Function Summary	12
	13
C. Function and Register Group Formats	14
D. Typical Configurations	15

PACKAGE CONFIGURATION

PACKAGE OUTLINE

PIN DESCRIPTION

The external bus inputs provide a separate input port for external input devices. 3, 4 K ₀ -K ₁ Mask Bus Inputs The mask bus inputs provide a separate input port for the microprogram memory, to allow mask or constant entry. 5, 6 X, Y Standard Carry Look-Ahead Cascade Outputs The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003 Look-Ahead Carry Generator. 7 CO Ripply Carry Output The ripple carry output is only disabled during shift right operations. 8 RO Shift Right Output The shift right output is only enabled during shift right operations. 9 LI Shift Right Input 10 CI Carry Input Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). 12-13 A ₀ -A ₁ Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address are slection. 14 GND Ground 15-17, F ₀ -F ₆ Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). Active LOW Three-state The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). Active LOW Three-state The memory data bus inputs provide a separate input port for memory data.	PIN	SYMBOL	NAME AND FUNCTION	TYPE(1)
The mask bus inputs provide a separate input port for the microprogram memory, to allow mask or constant entry. 5, 6 X, Y Standard Carry Look-Ahead Cascade Outputs The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003 Look-Ahead Carry Generator. 7 CO Ripply Carry Output The ripple carry output is only disabled during shift right operations. 8 RO Shift Right Output The shift right output is only enabled during shift right operations. 9 LI Shift Right linput 10 CI Carry Input 11 EA Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (Ao-A1). 12-13 Ao-A1 Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address tate memory address register (MAR). 14 GND Ground 15-17, Fo-F6 Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 Do-D1 Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 Mo-M1 Memory Data Bus Inputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). Active LOW Three-state The memory data bus inputs provide a separate input port for memory data. ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (Do-D1)	1, 2	10-11	The external bus inputs provide a separate input port for external input	Active LOW
The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003 Look-Ahead Carry Generator. 7 CO Ripply Carry Output The ripple carry output is only disabled during shift right operations. 8 RO Shift Right Output The shift right output is only enabled during shift right operations. 9 LI Shift Right Input Active LOV Three-state 10 CI Carry Input Active LOV When in the LOW state, the memory address enable input enables the memory address outputs (Ao-A ₁). 11 EA Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR). 14 GND Ground 15-17, Fo-F6 Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 Do-D1 Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 Mo-M1 Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data bus inputs provide a separate input enables the memory data outputs (Do-D ₁)	3, 4	K ₀ -K ₁	The mask bus inputs provide a separate input port for the microprogram	Active LOW
The ripple carry output is only disabled during shift right operations. Three-state Active LOV The shift Right Output The shift right output is only enabled during shift right operations. Three-state LI Shift Right Input Active LOV The shift Right Input Active LOV The shift Right Input Active LOV CI Carry Input Active LOV Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). Active LOV The memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR). GND Ground Solution CLK Clock Input Do-D1 Memory Data Bus Outputs The micro-function bus inputs control ALU function and register selection. Active LOW The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). Active LOW The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). Active LOW The memory data bus inputs provide a separate input port for memory data. BD Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	5, 6	X, Y	The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003	
8 RO Shift Right Output The shift right output is only enabled during shift right operations. 9 LI Shift Right Input Active LOV Three-state 100 CI Carry Input Active LOV Men in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). 12-13 A ₀ -A ₁ Memory Address Bus Outputs Active LOV Men in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). 14 GND Ground 15-17, F ₀ -F ₆ Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 D ₀ -D ₁ Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. 23 ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	7	СО		Active LOW Three-state
10 CI Carry Input Active LOV 11 EA Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). 12-13 A ₀ -A ₁ Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR). 14 GND Ground 15-17, 24-27, Fo-F ₆ Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 D ₀ -D ₁ Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. 23 ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	8	RO	Shift Right Output	Active LOW Three-state
11 EA Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). 12-13 A ₀ -A ₁ Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR). 14 GND Ground 15-17, 24-27, The micro-function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 D ₀ -D ₁ Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. 23 ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	9	LI		Active LOW
When in the LOW state, the memory address enable input enables the memory address outputs (A ₀ -A ₁). 12-13 A ₀ -A ₁ Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR). 14 GND Ground 15-17, 24-27, The micro-function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 D ₀ -D ₁ Memory Data Bus Outputs are the buffered outputs of the full function accumulator register (AC). Active LOW Three-state function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	10	CI	Carry Input	Active LOW
The memory address bus outputs are the buffered outputs of the memory address register (MAR). 14 GND Ground 15–17, F ₀ –F ₆ Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19–20 D ₀ –D ₁ Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21–22 M ₀ –M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. 23 ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ –D ₁)	11	EA	When in the LOW state, the memory address enable input enables the	Active LOW
15-17, 24-27. Fo-F6 Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 Do-D1 Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 Mo-M1 Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. Active LOW Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (Do-D1)	12-13	A ₀ -A ₁	The memory address bus outputs are the buffered outputs of the	Active LOW Three-state
The micro-function bus inputs control ALU function and register selection. 18 CLK Clock Input 19-20 D ₀ -D ₁ Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. 23 ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	14	GND	Ground	
19-20 D ₀ -D ₁ Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁) Active LOW		F ₀ -F ₆	The micro-function bus inputs control ALU function and register	
The memory data bus outputs are the buffered outputs of the full function accumulator register (AC). 21-22 M ₀ -M ₁ Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data. ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	18	CLK	Clock Input	
The memory data bus inputs provide a separate input port for memory data. 23 ED Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D ₀ -D ₁)	19-20	D ₀ -D ₁	The memory data bus outputs are the buffered outputs of the full	Active LOW Three-state
When in the LOW state, the memory data enable input enables the memory data outputs (D_0-D_1)	21-22	M ₀ -M ₁	The memory data bus inputs provide a separate input port for	Active LOW
	23	ED	When in the LOW state, the memory data enable input enables the	Active LOW
	28	V_{CC}	+5 Volt Supply	

NOTE:
1. Active HIGH, unless otherwise specified.

The CPE provides the arithmetic, logic and register functions of a 2-bit wide slice through a microprogrammed central processor. Data from external sources such as main memory, is brought into the CPE on one of the three separate input busses. Data being sent out of the CPE to external devices is carried on either of the two output busses. Within the CPE, data is stored in one of eleven scratchpad registers or in the accumulator. Data from the input busses, the registers, or the accumulator is available to the arithmetic/logic section (ALS) under the control of two internal multiplexers. Additional inputs and outputs are included for carry propagation. shifting, and micro-function selection. The complete logical organization of the CPE is shown below.

MICRO-FUNCTION BUS AND DECODER

The seven micro-function bus input lines of the CPE, designated F_0 – F_6 , are decoded internally to select the ALS function, generate the scratchpad address, and control the A and B multiplexers.

M-BUS AND I-BUS INPUTS

The M-bus inputs are arranged to bring data from an external main memory into the CPE. Data on the M-bus is multiplexed internally for input to the ALS.

The I-bus inputs are arranged to bring data from an external I/O system into the CPE. Data on the I-bus is also multiplexed internally, although independently of the M-bus, for input to the ALS Separation of the two busses permits a relatively lightly loaded memory bus even though a large number of I/O devices are connected to the I-bus. Alternatively, the I-bus may be wired to perform a multiple bit shift (e.g., a byte exchange) by connecting it to one of the output busses. In this case, I/O device data is gated externally onto the M-bus.

SCRATCHPAD

The scratchpad contains eleven registers designated R₀ through R₉ and T. The output of the scratchpad is multiplexed internally for input to ALS. The ALS output is returned for input into the scratchpad.

ACCUMULATOR AND D-BUS

An independent register called the accumulator (AC) is available for storing the result of an ALS operation. The output of the accumulator is multiplexed internally for input back to the

ALS and is also available via a threestate output buffer on the D-bus outputs. Conventional usage of the D-bus is for data being sent to the external main memory or to external I/O devices.

A AND B MULTIPLEXERS

The A and B multiplexers select the two inputs to the ALS specified on the micro-function bus. Inputs to the A-multiplexer include the M-bus, the scratchpad, and the accumulator. The B-multiplexer selects either the I-bus, the accumulator, or the K-bus. The selected B-multiplexer input is always logically ANDed with the data on the K-bus (see below) to provide a flexible masking and bit testing capability.

ALS AND K-BUS

The ALS is capable of a variety of arithmetic and logic operations, including 2's complement addition, incrementing, and decrementing, plus logical AND, inclusive-OR, exclusive-NOR, and logical complement. The result of an ALS operation may be stored in the accumulator or one of the scratchpad registers. Separate left input and right output lines, designated LI and RO, are available for use in right shift operations. Carry input and carry output lines, designated CI and CO are provided for normal ripple carry propaga-

tion. CO and RO data are brought out via two alternately enabled tri-state buffers. In addition, standard look ahead carry outputs, designated X and Y, are available for full carry look ahead across any word length.

The ability of the K-bus to mask inputs to the ALS greatly increases the versatility of the CPE. During non-arithmetic operations in which carry propagation has no meaning, the carry circuits are used to perform a word-wise inclusive-OR of the bits, masked by the K-bus. from the register or bus selected by the function decoder. Thus, the CPE provides a flexible bit testing capability. The K-bus is also used during arithmetic operations to mask portions of the field being operated upon. An additional function of the K-bus is that of supplying constants to the CPE from the microprogram.

MEMORY ADDRESS REGISTER AND A-BUS

A separate ALS output is also available to the memory address register (MAR) and to the A-bus via a three-state output buffer. Conventional usage of the MAR and A-bus is for sending addresses to an external main memory. The MAR and A-bus may also be used to select an external device when executing I/O operations.

Figure 2. 3002 Block Diagram

During each micro-cycle, a micro-function is applied to F-bus inputs of the CPE. The micro-function is decoded, the operands are selected by the multiplexers, and the specified operation is performed by ALS. If a negative going clock edge is applied, the result of the ALS operation is either deposited in the accumulator or written into the selected scratchpad register. In addition, certain operations permit related address data to be deposited in the MAR. A new micro-function should only be applied following the rising edge of the clock.

By externally gating the clock input to CPE, referred to as conditional clocking, the clock pulse may be selectively omitted during a micro-cycle. Since the carry, shift, and look-ahead circuits are not clocked, their outputs may be used to perform a variety of non-destructive tests on data in the accumulator or in the scratchpad. No register contents are modified by the operation due to the absence of the clock pulse.

The micro-function to be performed is determined from the function group (F-Group) and register group (R-Group) selected by the data on the F-bus. The F-Group is specified by the upper three bits of data, F_4 - F_6 . The R-Group is specified by the lower four bits of data, F_0 - F_3 . R-Group I contains R_0 through R_9 , T, and AC and is denoted by the symbol R_n . R-Group II and R-Group III contain only T and AC. F-Group and R-Group formats are summarized in Appendix A.

The following is a detailed explanation of each of the CPE micro-functions. A general functional description of each operation is given followed by two additional descriptions which explain the result of the micro-function with both K-bus inputs at logical 0 or both at logical 1. In most cases, the effect of placing the K-bus in the all-one or the all-zero state is to either select or deselect the accumulator in the operation. respectively. A micro-function mnemonic is included with each description for reference purposes and to assist in the design of micro-assembly languages. The micro-functions are summarized in Appendix B. The effective micro-functions for the all-zero and the all-one K-bus states are summarized in Appendix C and D, respectively.

F-GROUP O

R-GROUP I

Logically AND the contents of AC with the data on the K-bus. Add the result to the contents of R_n and the value of the carry input (CI). Deposit the sum in AC and R_n .

ILR

K-BUS = 00

Conditionally increment R_n and load the result in AC. Used to load AC from R_n or to increment R_n and load a copy of the result in AC.

ALR

K-BUS= 11

Add AC and CI to R_n and load the result in AC. Used to add AC to a register. If R_n is AC, then AC is shifted left one bit position.

F-GROUP O

R-GROUP II

Logically AND the contents of AC with the data on the K-bus. Add the result to CI and the data on the M-bus. Deposit the sum in AC or T, as specified.

ACM

K-BUS = 00

Add CI to the data on the M-bus. Load the result in AC or T, as specified. Used to load memory data in the specified register, or to load incremented memory data in the specified register.

AMA

K-BUS = 11

Add the data on the M-bus to AC and CI, and load the result in AC or T, as specified. Used to add memory data or incremented memory data to AC and store the sum in the specified register.

F-GROUP O

R-GROUP III

(General description omitted, see Appendix B.)

SRA

K-BUS = 00

Shift the contents of AC or T, as specified, right one bit position. Place the previous low order bit value on RO and fill the high order bit from the data on LI. Used to shift or rotate AC or T right one bit.

(K-bus = 11 description omitted, see Appendix B.)

F-GROUP 1

R-GROUP I

Logically OR the contents of R_n with the data on the K-bus. Deposit the result in MAR. Add the data on the K-bus to contents of R_n and CI. Deposit the result in R_n .

LMI

K-BUS = 00

Load MAR from R_n . Conditionally increment R_n . Used to maintain a macro-instruction program counter.

DSM

K-BUS = 11

Set MAR to all one's. Conditionally decrement R_n by one. Used to force MAR to its highest address and to decrement R_n .

F-GROUP 1

R-GROUP II

Logically OR the data on the M-bus with the data on the K-bus. Deposit the result in MAR. Add the data on the K-bus to the data on the M-bus and Cl. Deposit the sum in AC or T, as specified.

LMM

K-BUS = 00

Load MAR from the M-bus. Add CI to the data on the M-bus. Deposit the result in AC or T. Used to load the address register with memory data for macro-instructions using indirect addressing.

LDM

K-BUS = 11

Set MAR to all ones. Subtract one from the data on the M-bus. Add CI to the difference and deposit the result in AC or T, as specified. Used to load decremented memory data in AC or T.

F-GROUP 1

R-GROUP III

Logically OR the data on the K-bus with the complement of the contents of AC or T, as specified. Add the result to the logical AND of the contents of specified register with the data on the K-bus. Add the sum to CI. Deposit the result in the specified register.

CIA

K-BUS = 00

Add CI to the complement of the contents of AC or T, as specified. Deposit the result in the specified register. Used to form the 1's or 2's complement of AC or T.

DCA

K-BUS = 11

Subtract one from the contents of AC or T, as specified. Add CI to the difference and deposit the sum in the specified register. Used to decrement AC or T.

F-GROUP 2

R-GROUP I

Logically AND the data on the K-bus with the contents of AC. Subtract one om the result and add the difference to CI. Deposit the sum in R_n.

CSR

K-BUS = 00

Subtract one from CI and deposit the difference in R_n . Used to conditionally clear or set R_n to all 0's or 1's, respectively.

SDR

K-BUS = 11

Subtract one from AC and add the difference to CI. Deposit the sum in R_n . Used to store AC in R_n or to store the decremented value of AC in R_n .

F-GROUP 2

R-GROUP II

Logically AND the data on the K-bus with the contents of AC. Subtract one from the result and add the difference to CI. Deposit the sum in AC or T, as specified.

CSA

K-BUS = 00

Subtract one from CI and deposit the difference in AC or T, as specified. Used to conditionally clear or set AC or T.

SDA

K-BUS = 11

Subtract one from AC and add the difference to CI. Deposit the sum in AC or T, as specified. Used to store AC in T, or decrement AC, or store the decremented value of AC in T.

F-GROUP 2

R-GROUP III

Logically AND the data of the K-bus with the data on the I-bus. Subtract one from the result and add the difference to CI. Deposit the sum in AC or T, as specified.

(K-bus = 00 description omitted, see CSA above.)

LDI

K-BUS = 11

Subtract one from the data on the I-bus and add the difference to CI. Deposit the sum in AC or T, as specified. Used to load input bus data or decremented input bus data in the specified register.

F-GROUP 3

R-GROUP I

Logically AND the contents of AC with the data on the K-bus. Add the contents of R_n and CI to the result. Deposit the sum in R_n .

INR

K-BUS = 00

Add CI to the contents of R_n and deposit the sum in R_n . Used to increment R_n .

ADR

K-BUS = 11

Add the contents of AC to R_n . Add the result to CI and deposit the sum in R_n . Used to add the accumulator to a register or to add the incremented value of the accumulator to a register.

F-GROUP 3

R-GROUP II

(All descriptions omitted, identical to F-Group O/R-Group II described above.)

F-GROUP 3

R-GROUP III

Logically AND the data on the K-bus with the data on the I-bus. Add CI and the contents of AC or T, as specified, to the result. Deposit the sum in the specified register.

INA

K-BUS = 00

Conditionally increment the contents of AC or T, as specified. Used to increment AC or T.

AIA

K-BUS = 11

Add the data on the I-bus to the contents of AC or T, as specified. Add CI to the result and deposit the sum in the specified register. Used to add input data or incremented input data to the specified register.

F-GROUP 4

R-GROUP I

Logically AND the data on the K-bus with the contents of AC. Logically AND the result with the contents of R_n . Deposit the final result in R_n . Logically OR the value of CI with the word-wise OR of the bits of the final result. Place the value of the carry OR on the carry output (CO) line.

CLR

K-BUS =

Clear R_n to all 0's. Force CO to CI. Used to clear a register and force CO to CI.

ANR

K-BUS = 11

Logically AND AC with R_n . Deposit the result in R_n . Force CO to one if the result is non-zero. Used to AND the accumulator with a register and test for a zero result.

F-GROUP 4

R-GROUP II

Logically AND the data on the K-bus with the contents of AC. Logically AND the result with the data on the M-bus. Deposit the final result in AC or T, as specified. Logically OR the value of CI with the word-wise OR of the bits of the final result. Place the value of the carry OR on CO.

CLA

K-BUS = 00

Clear AC or T, as specified, to all 0's. Force CO to CI. Used to clear the specified register and force CO to CI.

ANM

K-BUS = 11

Logically AND the data on the M-bus with the contents of AC. Deposit the result in AC or T, as specified. Force CO to one if the result is non-zero. Used to AND M-bus data to the accumulator and test for a zero result.

F-GROUP 4

R-GROUP III

Logically AND the data on I-bus with the data on the K-bus. Logically AND the result with the contents of AC or T, as specified. Deposit the final result in the specified register. Logically OR CI with the word-wise OR of the bits of the final result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLA above.)

ANI

K-BUS = 11

Logically AND the data on the I-bus with the contents of AC or T, as specified. Deposit the result in the specified register. Force CO to one if the result is non-zero. Used to AND the I-bus to the accumulator and test for a zero result.

F-GROUP 5

R-GROUP I

Logically AND the data on the K-bus with the contents of R_n . Deposit the result in R_n . Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLR above.)

TZR

K-BUS = 11

Force CO to one if R_n is non-zero. Used to test a register for zero. Also used to AND K-bus data with a register (see general description) for masking and, optionally, testing for a zero result.

F-GROUP 5

R-GROUP II

Logically AND the data on the K-bus with the data on the M-bus. Deposit the result in AC or T, as specified. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLA above.)

LTM

K-BUS = 11

Load AC or T, as specified, with data from the M-bus. Force CO to one if the result is non-zero. Used to load the specified register from memory and test for a zero result. Also used to AND K-bus data with M-bus data (see general description) for masking and, optionally, testing for a zero result.

F-GROUP 5

R-GROUP III

Logically AND the data on K-bus with contents of AC or T, as specified. Deposit the result in the specified register. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLA above.)

TZA

K-BUS = 11

Force CO to one if AC or T, as specified, s non-zero. Used to test the specified register for zero. Also used to AND K-bus data to the specified register (see general description) for masking and, optionally, testing for a zero result.

F-GROUP 6 R-GROUP I

Logically OR CI with the word-wise OR of the logical AND of AC and the data on the K-bus. Place the result of the carry OR on CO. Logically OR the contents of R_n with the logical AND of AC and the data on the K-bus. Deposit the result in R_n .

NOP

K-BUS = 00

Force CO to CI. Used as a null operation or to force CO to CI.

ORR

K-BUS = 11

Force CO to one if AC is non-zero. Logically OR the contents of the accumulator to the contents of R_n . Deposit the result in R_n . Used to OR the accumulator to a register and, optionally, test the previous accumulator value for zero.

F-GROUP 6

R-GROUP II

Logically OR CI with the word-wise OR of the logical AND of AC and the data on the K-bus. Place the value of the carry OR on CO. Logically OR the data on the M-bus, with the logical AND of AC and the data on the K-bus. Deposit the final result in AC or T, as specified.

LMF

K-BUS = 00

Load AC or T, as specified, from the M-bus. Force CO to CI. Used to load the specified register with memory data and force CO to CI.

ORM

K-BUS = 11

Force CO to one if AC is non-zero. Logically OR the data on the M-bus with the contents of AC. Deposit the result in AC or T, as specified. Used to OR memory data with the accumulator and, optionally, test the previous value of the accumulator for zero.

F-GROUP 6

R-GROUP III

Logically OR CI with the word-wise OR of the logical AND of the data on the I-bus and the data on the K-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the data on the I-bus. Logically OR the result with the contents of AC or T, as specified. Deposit the final result in the specified register.

(K-bus = 00 description omitted, see NOP above.)

ORI

K-BUS = 11

Force CO to one if the data on the I-bus is non-zero. Logically OR the data on the I-bus to the contents of AC or T, as specified. Deposit the result in the specified register. Used to OR I-bus data with the specified register and, optionally, test the I-bus data for zero.

F-GROUP 7

R-GROUP I

Logically OR CI with the word-wise OR of the logical AND of the contents of R_n and AC and the data on the K-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the contents of AC. Exclusive-NOR the result with the contents of R_n . Deposit the final result in R_n .

CMR

K-BUS = 00

Complement the contents of R_n . Force CO to CI.

XNR

K-BUS = 11

Force CO to one if the logical AND of AC and R_n is non-zero. Exclusive-NOR the contents of AC with the contents of R_n . Deposit the result in R_n . Used to exclusive-NOR the accumulator with a register.

F-GROUP 7

R-GROUP II

Logically OR CI with the word-wise OR of the logical AND of the contents of AC and the data on the K-bus and M-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the contents of AC. Exclusive-NOR the result with the data on the M-bus. Deposit the final result in AC or T, as specified.

LCM

K-BUS = 00

Load the complement of the data on the M-bus into AC or T, as specified. Force CO to CI.

XNM

K-BUS = 11

Force CO to one if the logical AND of AC and the M-bus data is non-zero. Exclusive-NOR the contents of AC with the data on the M-bus. Deposit the result in AC or T, as specified. Used to exclusive—NOR memory data with the accumulator.

F-GROUP 7

R-GROUP III

Logically OR CI with the word-wise OR of the logical AND of the contents of the specified register and the data on the I-bus and K-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the data on the I-bus. Exclusive-NOR the result with the contents of AC or T, as specified. Deposit the final result in the specified register.

CMA

K-BUS = 00

Complement AC or T , as specified. Force CO to CI.

XNI

K-BUS = 11

Force CO to one if the logical AND of the contents of AC or T, as specified, and the I-bus data is non-zero. Exclusive-NOR the contents of the specified register with the data on the I-bus. Deposit the result in AC or T, as specified. Used to exclusive-NOR input data with the accumulator.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	
Storage Temperature	65°C to +160°C
All Output and Supply Voltages	0.5V to +7V
All Input Voltages	−1.0V to +5.5V
Output Currents	100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$

			LIMITS			
SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	٧	$V_{CC} = 4.75V$, $I_C = -5 \text{ mA}$
l _F	Input Load Current: F_0 - F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI		-0.05 -0.85 -2.3	-0.25 -1.5 -4.0	mA mA	$V_{CC} = 5.25V, V_F = 0.45V$
I _R	Input Leakage Current: F ₀ -F ₆ , CLK, K ₀ , K ₁ , EA, ED I ₀ , I ₁ , M ₀ , M ₁ , LI CI			40 60 180	μΑ μΑ μΑ	$V_{CC} = 5.25V, V_{R} = 5.25V$
VIL	Input Low Voltage			8.0	V	$V_{CC} = 5.0V$
V _{IH}	Input High Voltage	2.0			V ,	
Icc	Power Supply Current		145	190	mA	$V_{CC} = 5.25V^{(2)}$
V _{OL}	Output Low Voltage (All Output Pins)		0.3	0.45	V	V_{CC} = 4.75V, I_{OL} = 10 mA
V _{OH}	Output High Voltage (All Output Pins)	2.4	3.0		V	$V_{CC} = 4.75V$, $I_{OH} = -1$ mA
los	Short Circuit Output Current (All Output Pins)	-15	-25	-60	mA	$V_{CC} = 5.0V$
IO (off)	Off State Output Current A_0 , A_1 , D_0 , D_1 , CO and RO			-100 100	μΑ μΑ	V_{CC} = 5.25V, V_{O} = 0.45V V_{CC} = 5.25V, V_{O} = 5.25V

NOTES

⁽¹⁾ Typical values are for T_A = 25°C and nominal supply voltage

⁽²⁾ CLK input grounded, other inputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
tcY	Clock Cycle Time	100	70		ns
t _{WP}	Clock Pulse Width	33	20		ns
tFS	Function Input Set-Up Time (F_0 through F_6)	60	40	•	ns
	Data Set-Up Time:				
tps	I ₀ , I ₁ , M ₀ , M ₁ , K ₀ , K ₁	50	30		ns
tss	LI, CI	27	13		ns
	Data and Function Hold Time:				
t _{FH}	F ₀ through F ₆	. 5	-2		ns
t _{DH}	I_0 , I_1 , M_0 , M_1 , K_0 , K_1	5	-4		ns
tsH	LI, CI	15	2		ns
	Propagation Delay to X, Y, RO from:				
tXF	Any Function Input		37	52	ns
t _{XD}	Any Data Input		29	42	ns
t _{XT}	Trailing Edge of CLK		40	60	ns
t_{XL}	Leading Edge of CLK	17			ns
	Propagation Delay to CO from:				
t _{CL}	Leading Edge of CLK	20			ns
tcT	Trailing Edge of CLK		48	70	ns
tcF	Any Function Input		43	65	ns
t _{CD}	Any Data Input		. 30	55	ns
t _{CC}	CI (Ripple Carry)		14	25	ns
	Propagation Delay to A_0 , A_1 , D_0 , D_1 from:				
t_{DL}	Leading Edge of CLK		32	50	ns
tDE	Enable Input ED, EA		12	25	ns

NOTE:

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

TEST CONDITIONS:

Input pulse amplitude: 2.5 V

Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 10 mA and 30 pF.

Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

CAPACITANCE(2) TA = 25°C

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance		5	10	pF
C _{OUT}	Output Capacitance		6	12	pF .

NOTE:

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{BIAS} = 2.5V$, $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

TYPICAL AC AND DC CHARACTERISTICS

Output Current vs Output High Voltage

Carry in Set Up Time vs V_{CC} and Temperature

Propagation Delay Clock to "A" and "D" Data Outputs vs V_{CC} and Temperature

Output Current vs Output Low Voltage

Clock Pulse Width vs V_{CC} and Temperature

Propagation Delay Function Inputs to Cascade Outputs vs $\mathbf{V}_{\mathbf{CC}}$ and Temperature

Propagation Delay Clock to "A" and "D" Data Output vs Load Capacitance

APPENDIX A MICRO-FUNCTION SUMMARY

F-GROUP	R-GROUP	MICRO-FUNCTION										
		$R_n + (AC \wedge K) + CI \rightarrow R_n, AC$										
0	П	$M + (AC \wedge K) + CI \rightarrow AT$										
3 ,	III	$AT_L \wedge (\overline{I_L \wedge K_L}) \rightarrow RO$ $[AT_L \wedge (I_L \wedge K_L)] \vee [AT_H$	$LI \lor [(I_H \land K_H) \land AT_H] \rightarrow AT_H \lor (I_H \land K_H)] \rightarrow AT_L$									
	1	$K \vee R_n \rightarrow MAR$	$R_n + K + CI \rightarrow R_n$									
1	н	$K \vee M \rightarrow MAR$	$M + K + CI \rightarrow AT$									
	111	$(\overline{AT} \vee K) + (AT \wedge K) + CI \rightarrow$	AT									
***	1	$(AC \land K) -1 + CI \rightarrow R_n$										
2	11	(AC ∧ K) -1 + CI → AT	(see Note 1)									
	Ш	$(I \wedge K) - 1 + CI \rightarrow AT$										
	i	$R_n + (AC \land K) + CI \rightarrow R_n$	·									
3	П	$M + (AC \wedge K) + CI \rightarrow AT$										
	111	$AT + (I \land K) + CI \rightarrow AT$										
	1	$CI \lor (R_n \land AC \land K) \rightarrow CO$	$R_n \wedge (AC \wedge K) \rightarrow R_n$									
4	ΪΙ	$CI \lor (M \land AC \land K) \rightarrow CO$	$M \wedge (AC \wedge K) \rightarrow AT$									
	111	$CI \lor (AT \land I \land K) \rightarrow CO$	$AT \wedge (I \wedge K) \rightarrow AT$									
	ı	$CI \lor (R_n \land K) \rightarrow CO$	$K \wedge R_n \rightarrow R_n$									
5	11	$CI \lor (M \land K) \rightarrow CO$	$K \wedge M \rightarrow AT$									
	111	$CI \lor (AT \land K) \rightarrow CO$	$K \wedge AT \rightarrow AT$									
	1	CI ∨ (AC ∧ K) → CO	$R_n \vee (AC \wedge K) \rightarrow R_n$									
6	11	$CI \lor (AC \land K) \rightarrow CO$	$M \vee (AC \wedge K) \rightarrow AT$									
. *	HI	$C1 \lor (1 \land K) \rightarrow CO$	$AT \lor (I \land K) \rightarrow AT$									
	1	$CI \vee (R_n \wedge AC \wedge K) \rightarrow CO$	$R_n \oplus (AC \wedge K) \rightarrow R_n$									
7	H .	$CI \lor (M \land AC \land K) \rightarrow CO$	$M \oplus (AC \wedge K) \rightarrow AT$									
	111.	$CI \lor (AT \land I \land K) \rightarrow CO$	$AT \oplus (I \wedge K) \rightarrow AT$									

NOTES:

- 1. 2's complement arithmetic adds 111 . . . 11 to perform subtraction of 000 . . . 01.
- 2. R_n includes T and AC as source and destination registers in R-group 1 micro-functions.
- 3. Standard arithmetic carry output values are generated in F-group 0, 1, 2 and 3 instructions.

SYMBOL	MEANING	
I, K, M	Data on the I, K, and M busses, respectively	·
CI, LI	Data on the carry input and left input, respectively	
CO, RO	Data on the carry output and right output, respectively	
R _n	Contents of register n including T and AC (R-Group I)	
AC	Contents of the accumulator	
AT	Contents of AC or T, as specified	
MAR	Contents of the memory address register	•
L, H	As subscripts, designate low and high order bit, respectively	
+	2's complement addition	
_	2's complement subtraction	,
^	Logical AND	
V	Logical OR	
⊕	Exclusive-NOR	•
\rightarrow	Deposit into	

APPENDIX B ALL-ZERO AND ALL-ONE K-BUS MICRO-FUNCTIONS

K-BUS = 00 MICRO-FUNCTION	MNEMONIC	K-BUS = 11 MICRO-FUNCTION	MNEMONIC
$R_n + CI \rightarrow R_n$, AC	ILR	$AC + R_n + CI \rightarrow R_n$, AC	ALR
M + CI → AT	ACM	$M + AC + CI \rightarrow AT$	AMA
$AT_L \rightarrow RO$ $AT_H \rightarrow AT_L$ $LI \rightarrow AT_H$	SRA	(See Appendix B)	-
$R_n \rightarrow MAR$ $R_n + CI \rightarrow R_n$	LMI	$11 \rightarrow MAR$ $R_n - 1 + CI \rightarrow$	R _n DSM
M → MAR M + CI → AT	LMM	$11 \rightarrow MAR$ $M-1+CI \rightarrow$	AT LDM
AT + CI → AT	CIA	AT - 1 + CI → AT	DCA
$CI - 1 \rightarrow R_n$	CSR	$AC - 1 + CI \rightarrow R_n$	SDR
CI — 1 → AT See Note 1	CSA	$AC - 1 + CI \rightarrow AT$ See Note 1	SDA
(See CSA above)	_	I – 1 + CI → AT	LDI
R _n + Cl → R _n	INR	$AC + R_n + CI \rightarrow R_n$	ADR
See ACM above)	_	(See AMA above)	. —
AT + CI → AT	INA	I + AT + CI → AT	AIA
$CI \rightarrow CO$ $0 \rightarrow R_n$	CLR	$CI \lor (R_n \land AC) \rightarrow CO \qquad R_n \land AC \rightarrow R_r$	ANR
CI → CO 0 → AT	CLA	$CI \lor (M \land AC) \rightarrow CO$ $M \land AC \rightarrow AT$	ANM
See CLA above)	-	$CI \lor (AT \land I) \rightarrow CO$ $AT \land I \rightarrow AT$	ANI
See CLR above)	_	$CI \lor R_n \to CO$ $R_n \to R_n$	TZR
See CLA above)	_	$CI \lor M \to CO$ $M \to AT$	LTM
See CLA above)	_	$CI \lor AT \rightarrow CO$ $AT \rightarrow AT$	TZA
$CI \rightarrow CO$ $R_n \rightarrow \dot{R}_n$	NOP	$CI \lor AC \to CO$ $R_n \lor AC \to R_r$	ORR
CI → CO M → AT	LMF	$CI \lor AC \to CO$ $M \lor AC \to AT$	ORM
See NOP above)	-	$CI \lor I \to CO$ $I \lor AT \to AT$	ORI
$CI \rightarrow CO$ $\overline{R}_n \rightarrow R_n$	CMR	$CI \lor (R_n \land AC) \rightarrow CO \land R_n \oplus AC \rightarrow R_n$	XNR
$CI \rightarrow CO \qquad \overline{M} \rightarrow AT$	LCM	$CI \lor (M \land AC) \rightarrow CO \qquad M \oplus AC \rightarrow AT$	XNM
CI → CO ĀT → AT	CMA	$CI \lor (AT I) \rightarrow CO \qquad I \overline{\oplus} AT \rightarrow AT$	XNI

APPENDIX C FUNCTION AND REGISTER GROUP FORMATS

FUNCTION GROUP	F ₆	5	4	
0	0	0 .	0	
1	0	0	1	
* 2	0	1	0	
3	0	1	1	
4	1 -	0	0	
5	1	0	1	•
6	1	1 .	0	
7	1	1	1	

REGISTER GROUP	REGISTER	F ₃	2	1	0	
	R ₀	0	0	0	0	
	R ₁	0	0	0	1	
	R ₂	0	0	1	0	
	R ₃	0	0	1	1	•
	R ₄	0	1	.0	0	
ı	R ₅	0	1	0	1	
	R ₆	0	1	. 1	0	
·	R ₇	0	1	1	1	
	R ₈	1	0	0	. 0	
	R ₉	1	0	0	1	
	T	1	1	0	0	
	AC	1	1	0	1	
	Т	1	0	1	0	
11	AC	1	0	1	1	
	·T	1	1	1 .	0	
- 111	AC	1	1	1	1	

Ripple-Carry Configuration (N 3002 CPE's)

Carry Look-Ahead Configuration With Ripple Through the Left Slice (32 Bit Array)

Carry Look-Ahead Configuration
With No Carry Ripple Through the Last Slice
(32 Bit Array)

NOTE:

(1) A bit from microprogram memory can be used to replace the gate shown above and inform the 3003 of an active Shift Right operation.

ORDERING INFORMATION

Part Number

Description

C3002

Central

Processing

Unit

Intel Corporation

3065 Bowers Avenue

Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026

Telex: 34-6372

WESTERN

1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642

TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240

Tel: (214) 661-8829

TWX: 910-860-5487

GREAT LAKES REGION

8312 North Main Street

Dayton, Ohio 45415

Tel: (513) 890-5350

TELEX: 288-004

TEEEX. 200-00

EASTERN

2 Militia Drive

Suite 4

Lexington, Massachusetts 02173

Tel: (617) 861-1136

TWX: 710-321-0187

MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444

TWX: 510-661-3055

EUROPE

Belgium

Intel Office

216 Avenue Louise

Brussels B1050

Tel: 649-20-03

TELEX: 24814

ORIENT

Japan

Intel Japan Corporation

Kasahara Bldg.

1-6-10, Uchikanda

Chiyoda-ku

Tokyo 101

Tel: (03) 295-5441

TELEX: 781-28426

The INTEL® Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions, similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET

The INTEL® 3003 Look-Ahead Carry Generator (LCG) is a high speed circuit capable of anticipating a carry across a full 16-bit 3002 Central Processing Array. When used with a larger 3002 CP Array multiple 3003 carry generators provide high speed carry look-ahead capability for any word length.

The LCG accepts eight pairs of active high cascade inputs (X,Y) and an active low carry input and generates active low carries for up to eight groups of binary adders.

3003 LOOK-AHEAD CARRY GENERATOR

High Performance — 10 ns typical propagation delay

Compatible with INTEL 3001 MCU and 3002 CPE

DTL and TTL compatible

Full look-ahead across 8 adders

Low voltage diode input clamp

Expandable

28-pin DIP

Diagram of a Typical System

Other members of the INTEL Bipolar Microcomputer Set:

3001 Microprogram Control Unit 3002 Central Processing Element 3212 Multi-Mode Latch Buffer 3214 Priority Interrupt Control Unit 3226 Inverting Bi-Directional Bus Driver 3301A Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

3003 LOOK-AHEAD CARRY GENERATOR

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1,7,8,11,18 21,23,27	Y ₀ -Y ₇	Standard carry look-ahead inputs	Active HIGH
2,5,6,10,19 20,24,26	x ₀ -x ₇	Standard carry look-ahead inputs	Active HIGH
17	C _n	Carry input	Active LOW
4,9,12,13,15 16,22,25	C _{n+1} -C _{n+8}	Carry outputs	Active LOW
3	EC _{n+8}	C _{n+8} carry output enable	Active HIGH
28	v _{cc}	+5 volt supply	
14	GND	Ground	

PACKAGE OUTLINE

3003 LOGIC EQUATIONS

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE. Logic equations for the 3003 are:

$$\overline{C_0 + 1} = Y_0 X_0 + Y_0 \overline{C_0}$$

$$\overline{C_n + 2} = Y_1 X_1 + Y_1 Y_0 X_0 + Y_1 Y_0 \overline{C_n}$$

$$\overline{C_n + 3} = Y_2 X_2 + Y_2 Y_1 X_1 + Y_2 Y_1 Y_0 X_0 + Y_2 Y_1 Y_0 \overline{C}_n$$

$$\overline{\overline{c_n + 4}} = Y_3 X_3 + Y_3 Y_2 X_2 + Y_3 Y_2 Y_1 X_1 + Y_3 Y_2 Y_1 Y_0 X_0 + Y_3 Y_2 Y_1 Y_0 \overline{c_n}$$

$$\overline{C_{n} + 5} = Y_{4}X_{4} + Y_{4}Y_{3}X_{3} + Y_{4}Y_{3}Y_{2}X_{2} + Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{n}$$

$$\overline{\overline{c_n + 6}} = Y_5 X_5 + Y_5 Y_4 X_4 + Y_5 Y_4 Y_3 X_3 + Y_5 Y_4 Y_3 Y_2 X_2 + Y_5 Y_4 Y_3 Y_2 Y_1 X_1 + Y_5 Y_4 Y_3 Y_2 Y_1 Y_0 X_0 + Y_5 Y_4 Y_3 Y_2 Y_1 Y_0 \overline{c_n}$$

$$\overline{C_{n} + 7} = Y_{6}X_{6} + Y_{6}Y_{5}X_{5} + Y_{6}Y_{5}Y_{4}X_{4} + Y_{6}Y_{5}Y_{4}Y_{3}X_{3} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{3}Y_{1}Y_{0}X_{0} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C_{h}}$$

 $\overline{C_n + 8}$ = High Impedance State when EC_n + 8 Low

$$C_{n} + 8 = Y_{7}X_{7} + Y_{7}Y_{6}X_{6} + Y_{7}Y_{6}Y_{5}X_{5} + Y_{7}Y_{6}Y_{5}Y_{4}X_{4} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}X_{3} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{n} \text{ when EC}_{n} + 8 \text{ high}$$

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	•								٠			٠,			. 0°C	to 70°C
Storage Temperature														-	-65°C to	+160°C
All Output and Supply Voltages .															-0.5∖	/ to +7V
All Input Voltages															-1.0V t	o +5.5V
Output Current																100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

SYMBOL	PARAMETER	MIN.	TYP. (1)	MAX.	UNIT	CONDITIONS
v _c	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	V _{CC} = 4.75V, I _C = -5 mA
I _F	Input Load Current: C _n and EC _n + 8 All Other Inputs		-0.07 -0.9	-0.25 -1.5	mA mA	V _{CC} = 5.25V, V _F = 0.45V
I _R	Input Leakage Current: C _n and EC _n + 8 All Other Inputs			40 100	μΑ μΑ	V _{CC} = 5.25V, V _R = 5.25V
V _{1L}	Input Low Voltage	4		8.0	٧	V _{CC} = 5.0V
V _{IH}	Input High Voltage	2.0			V	V _{CC} = 5.0V
I _{CC}	Power Supply Current		80	130	mA	$V_{CC} = 5.25V$, All Y + EC _n + 8 high All X + C _n low
v _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	٧	V _C = 4.75V, I _{OL} = 4 mA
v _{OH}	Output High Voltage (All Output Pins)	2.4	3		V	$V_{CC} = 4.75V$, $I_{OH} = -1$ mA
IOS	Short Circuit Output Current (All Output Pins)	-15	-40	-65	mA	V _{CC} = 5V
IO(off)	Off-State Output Current (C _n + 8)			100 100	μΑ μΑ	V _{CC} = 5.25V, V _O = 0.45V V _{CC} = 5.25V, V _O = 5.25V

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

SYMBOL	PARAMETER		MIN.	TYP. ⁽¹⁾	MAX.	UNIT
txc	X, Y to Outputs		3	10	20	ns
^t CC	Carry In to Outputs			13	30	ns
^t EN	Enable Time, C _n + 8		121	20	40	ns

NOTE:

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

TEST CONDITIONS:

Input pulse amplitude of 2.5V.
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 30 pF.
Speed measurements are made at 1.5 volt levels.

CAPACITANCE(2) TA = 25°C

SYMBOL		PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance	All inputs		12	20	pF
C _{OUT}	Output Capacitance	C _n + 8		7	12	pF

NOTE:

3003 WAVEFORMS

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{BIAS} = 5.0V$, $V_{CC} = 5.0V$ and $T_A = 25^{\circ} C$.

3003 TYPICAL CONFIGURATIONS

The 3003 LCG can be directly tied to the 3001 MCU and a 3002 CP array of any word length. The following figures represent typical configurations of 16- and 32-bit CP arrays. Figures 1 and 2 illustrate use of the 3003 in a system where the carry output (CO) to the 3001 MCU is rippled through the high order CPE slice. Figure 3 illustrates use of the 3003 in a system where tri-state output C_{n+8} is connected directly to the flag input on the 3001 MCU. C_{n+8} is disabled during shift right by decoding that instruction externally, thus multiplexing C_{n+8} with the shift right (RO) output of the low order CPE slice.

Figure 1. Carry Look-Ahead Configuration with Ripple through the Left Slice (16-Bit Array)

Figure 2. Carry Look-Ahead Configuration with Ripple through the Left Slice (32-Bit Array)

3003 TYPICAL A.C. AND D.C. CHARACTERISTICS

ICC vs Temperature

Output Current vs Output Low Voltage

Output Current vs Output High Voltage

X,Y To Outputs vs V_{CC} & Temperature

X,Y To Output Delay vs Load Capacitance

Figure 3. Carry Look-Ahead Configuration with No Carry Ripple through the Left Slice (32-Bit Array)

ORDERING INFORMATION

Part Number C3003

Description Look-Ahead

Carry Generator

Intel Corporation

3065 Bowers Avenue

Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026 Telex: 34-6372 WESTERN

1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642

TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240

Tel: (214) 661-8829

TWX: 910-860-5487

GREAT LAKES REGION

8312 North Main Street

Dayton, Ohio 45415

Tel: (513) 890-5350

TELEX: 288-004

EASTERN

2 Militia Drive

Suite 4

Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187 MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444

TWX: 510-661-3055

EUROPE

Belgium

Intel Office

216 Avenue Louise

Brussels B1050

Tel: 649-20-03

TELEX: 24814

ORIENT

Japan

Intel Japan Corporation

Kasahara Bldg. 1-6-10, Uchikanda

Chiyoda-ku

Tokyo 101

Tel: (03) 295-5441

TELEX: 781-28426