Online Store Data Case Study

Hayden Lynch

2023-02-13

Data Cleaning Process

Step 1: Install/Import Libraries

```
library(tidyverse)
## -- Attaching packages -----
                                      ----- tidyverse 1.3.2 --
## v tibble 3.1.8 v dplyr
                            1.1.0
                   v stringr 1.5.0
## v tidyr 1.3.0
## v readr 2.1.3 v forcats 1.0.0
## v purrr
          1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(ggplot2)
library(dplyr)
library(readr)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
##
      discard
##
## The following object is masked from 'package:readr':
##
##
      col_factor
```

Step 2: Import Unclean Data

```
df = read_csv("online_store_customer_data_copy.csv")
```

```
## Rows: 2512 Columns: 11
## -- Column specification ------
## Delimiter: ","
## chr (7): Transaction_date, Gender, Marital_status, State_names, Segment, Emp...
## dbl (4): Transaction_ID, Age, Referal, Amount_spent
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
df
```

--

```
## # A tibble: 2,512 x 11
     Transa~1 Trans~2 Gender
                              Age Marit~3 State~4 Segment Emplo~5 Payme~6 Referal
                                                                           <dbl>
##
     <chr>
                <dbl> <chr> <dbl> <chr>
                                          <chr>
                                                  <chr>
                                                          <chr>
                                                                 <chr>
## 1 1/1/2019 151200 Female
                               19 Single Kansas Basic Unempl~ Other
                                                                               1
## 2 1/1/2019 151201 Male
                               49 Single Illino~ Basic self-e~ Card
                                                                               0
## 3 1/1/2019 151202 Male
                               63 Married New Me~ Basic workers PayPal
                                                                               1
## 4 1/1/2019 151203 <NA>
                               18 Single Virgin~ Platin~ workers Card
                                                                               1
## 5 1/1/2019 151204 Male
                               27 Single Connec~ Basic
                                                          self-e~ Card
                                                                               0
## 6 1/3/2019 151205 Male
                               71 Single Hawaii Basic
                                                         Employ~ PayPal
                                                                               1
## 7 1/3/2019 151206 Female
                               34 Married New Me~ Platin~ Employ~ PayPal
                                                                               1
## 8 1/3/2019 151207 Male
                               37 Married Connec~ Basic
                                                          workers PayPal
                                                                               1
                               75 Married Florida Silver Employ~ Card
## 9 1/4/2019 151208 Male
                                                                               0
## 10 1/4/2019 151209 Female
                               41 Married Vermont Gold
                                                          Unempl~ Card
                                                                               1
## # ... with 2,502 more rows, 1 more variable: Amount_spent <dbl>, and
      abbreviated variable names 1: Transaction_date, 2: Transaction_ID,
      3: Marital_status, 4: State_names, 5: Employees_status, 6: Payment_method
```

Step 3: Remove "NA" rows

Table 1: A knitr kable

Transaction_	_Thatnesactio	n <u>G</u> HDderAge	Marital_	_sta Sta stena	ı Seg me	ntEmployees_	_sPatyusaent_	mRetheral	Amount	_spent
1/1/2019	151200	Female 19	Single	Kansas	Basic	Unemployn	ne © ther	1	2051.36	
1/1/2019	151201	Male 49	Single	Illinois	Basic	self- employed	Card	0	544.04	
1/1/2019	151202	Male 63	Married	New Mexico	Basic	workers	PayPal	1	1572.60	
1/1/2019	151203	NA 18	Single	Virginia	Platin	ımworkers	Card	1	1199.79	
1/1/2019	151204	Male 27	Single	Connection	c B asic	self- employed	Card	0	NA	
1/3/2019	151205	Male 71	Single	Hawaii	Basic	Employees	PayPal	1	2922.66	
1/3/2019	151206	Female34	Married	New Mexico	Platin	un Employees	PayPal	1	1481.42	
1/3/2019	151207	Male 37	Married	Connection	c B asic	workers	PayPal	1	1149.55	
1/4/2019	151208	Male 75	Married	Florida	Silver	Employees	Card	0	1046.20	
1/4/2019	151209	Female41	Married	Vermont	Gold	Unemployn	ne 6 tard	1	2730.60	

• Using knitr kable's allow you to make nice tables in RMarkdown.

Step 4: Remove all 2021 Rows

```
new_df = mutate(new_df, Transaction_date = as.Date(Transaction_date, "%m/%d/%Y"))
class(new_df$Transaction_date)
The "Transaction_date" needs to be in 'date format'.
```

[1] "Date"

new_df

```
## # A tibble: 2,044 x 11
##
     Transaction_date Trans~1 Gender
                                       Age Marit~2 State~3 Segment Emplo~4 Payme~5
                                                           <chr>
##
      <dat.e>
                        <dbl> <chr> <dbl> <chr>
                                                   <chr>
                                                                   <chr>
                                                                           <chr>>
##
   1 2019-01-01
                       151200 Female
                                        19 Single Kansas Basic
                                                                   Unempl~ Other
## 2 2019-01-01
                       151201 Male
                                        49 Single Illino~ Basic
                                                                   self-e~ Card
## 3 2019-01-01
                       151202 Male
                                        63 Married New Me~ Basic
                                                                   workers PayPal
## 4 2019-01-03
                       151205 Male
                                        71 Single Hawaii Basic
                                                                   Employ~ PayPal
                       151206 Female
## 5 2019-01-03
                                        34 Married New Me~ Platin~ Employ~ PayPal
## 6 2019-01-03
                       151207 Male
                                        37 Married Connec~ Basic
                                                                   workers PayPal
## 7 2019-01-04
                       151208 Male
                                       75 Married Florida Silver Employ~ Card
## 8 2019-01-04
                                      41 Married Vermont Gold
                                                                   Unempl~ Card
                       151209 Female
## 9 2019-01-04
                       151210 Female
                                        56 Married Califo~ Basic
                                                                   Employ~ PayPal
                                                                   workers Other
## 10 2019-01-05
                       151211 Female
                                        63 Married Colora~ Basic
## # ... with 2,034 more rows, 2 more variables: Referal <dbl>,
      Amount_spent <dbl>, and abbreviated variable names 1: Transaction_ID,
      2: Marital_status, 3: State_names, 4: Employees_status, 5: Payment_method
```

```
new_df = new_df %>%
  filter(Transaction_date < "2021-01-01")
new_df</pre>
```

Now, rows including 2021 can be removed.

```
## # A tibble: 1,743 x 11
##
      Transaction_date Trans~1 Gender
                                        Age Marit~2 State~3 Segment Emplo~4 Payme~5
##
      <date>
                        <dbl> <chr> <dbl> <chr>
                                                   <chr>>
                                                           <chr>
                                                                   <chr>
                                                                           <chr>>
  1 2019-01-01
                       151200 Female
                                        19 Single Kansas Basic
                                                                   Unempl~ Other
## 2 2019-01-01
                                                                   self-e~ Card
                       151201 Male
                                        49 Single Illino~ Basic
## 3 2019-01-01
                       151202 Male
                                        63 Married New Me~ Basic
                                                                   workers PayPal
## 4 2019-01-03
                       151205 Male
                                        71 Single Hawaii Basic
                                                                   Employ~ PayPal
                                        34 Married New Me~ Platin~ Employ~ PayPal
## 5 2019-01-03
                       151206 Female
## 6 2019-01-03
                       151207 Male
                                        37 Married Connec~ Basic
                                                                   workers PayPal
## 7 2019-01-04
                       151208 Male
                                        75 Married Florida Silver Employ~ Card
## 8 2019-01-04
                       151209 Female
                                        41 Married Vermont Gold
                                                                   Unempl~ Card
## 9 2019-01-04
                                        56 Married Califo~ Basic
                                                                   Employ~ PayPal
                       151210 Female
## 10 2019-01-05
                        151211 Female
                                        63 Married Colora~ Basic
                                                                   workers Other
## # ... with 1,733 more rows, 2 more variables: Referal <dbl>,
     Amount spent <dbl>, and abbreviated variable names 1: Transaction ID,
      2: Marital_status, 3: State_names, 4: Employees_status, 5: Payment_method
## #
```

• The tibble now has 1743 rows of data that can be analyzed.

Step 5: Rename values in Referal column

```
new_df$Referal[new_df$Referal == 1] = 'Reffered'
new_df$Referal[new_df$Referal == 0] = 'Not Referred'
new_df
## # A tibble: 1,743 x 11
     Transaction_date Trans~1 Gender
                                      Age Marit~2 State~3 Segment Emplo~4 Payme~5
##
##
     <date>
                       <dbl> <chr> <dbl> <chr>
                                                 <chr>
                                                         <chr>
                                                                <chr> <chr>
##
  1 2019-01-01
                     151200 Female 19 Single Kansas Basic Unempl~ Other
## 2 2019-01-01
                     151201 Male
                                     49 Single Illino~ Basic self-e~ Card
                                                                workers PayPal
## 3 2019-01-01
                                     63 Married New Me~ Basic
                      151202 Male
## 4 2019-01-03
                      151205 Male
                                     71 Single Hawaii Basic
                                                                Employ~ PayPal
                      151206 Female 34 Married New Me~ Platin~ Employ~ PayPal
## 5 2019-01-03
                      151207 Male
                                                                workers PayPal
## 6 2019-01-03
                                     37 Married Connec~ Basic
                                     75 Married Florida Silver Employ~ Card
## 7 2019-01-04
                      151208 Male
## 8 2019-01-04
                      151209 Female 41 Married Vermont Gold
                                                                Unempl~ Card
## 9 2019-01-04
                      151210 Female 56 Married Califo~ Basic
                                                                Employ~ PayPal
## 10 2019-01-05
                                      63 Married Colora~ Basic
                                                                workers Other
                      151211 Female
## # ... with 1,733 more rows, 2 more variables: Referal <chr>,
## # Amount_spent <dbl>, and abbreviated variable names 1: Transaction_ID,
      2: Marital_status, 3: State_names, 4: Employees_status, 5: Payment_method
```

Step 6: Data Cleaning Process: Save cleaned data file

```
save(new_df, file = "cleaned_data.csv")
write.csv(new_df, file = "cleaned_data.csv")
```

Data Analysis

Data Overview

Table 2: Table Layout

1	Transaction	<u>T</u> rbentesactio	on <u>Ge</u> HalerAge	Marital_	st Stas e_n	a Steg me	nEmployees_	_Playtonsent_	nReferred	Amount_spent
1	2019-01- 01	151200	Female19	Single	Kansas	Basic	Unemployn	n Ot ther	Reffered	2051.36
2	2019-01- 01	151201	Male 49	Single	Illinois	Basic	self- employed	Card	Not Re- ferred	544.04
3	2019-01- 01	151202	Male 63	Married	New Mex- ico	Basic	workers	PayPal	Reffered	1572.60
4	2019-01- 03	151205	Male 71	Single	Hawaii	Basic	Employees	PayPal	Reffered	2922.66
5	2019-01- 03	151206	Femal@4	Married	New Mex- ico	Platin	unimployees	PayPal	Reffered	1481.42
6	2019-01- 03	151207	Male 37	Married	Connect	idBatsic	workers	PayPal	Reffered	1149.55
7	2019-01- 04	151208	Male 75	Married	Florida	Silver	Employees	Card	Not Re- ferred	1046.20
8	2019-01- 04	151209	Female41	Married	Vermont	Gold	Unemployn	n Cat rd	Reffered	2730.60
9	2019-01- 04	151210	Female56	Married	Californi	iaBasic	Employees	PayPal	Not Re- ferred	1712.82
10	2019-01- 05	151211	Femal@3	Married	Colorado	Basic	workers	Other	Reffered	154.31

colnames(df)

```
## [1] "...1" "Transaction_date" "Transaction_ID" "Gender"
## [5] "Age" "Marital_status" "State_names" "Segment"
## [9] "Employees_status" "Payment_method" "Referal" "Amount_spent"
```

str(df)

```
## $ Referal
                      : chr [1:1743] "Reffered" "Not Referred" "Reffered" "Reffered" ...
##
                     : num [1:1743] 2051 544 1573 2923 1481 ...
   $ Amount_spent
##
   - attr(*, "spec")=
##
     .. cols(
##
          \dots 1 = col_double(),
         Transaction date = col date(format = ""),
##
         Transaction ID = col double(),
##
         Gender = col character(),
##
##
         Age = col double(),
     . .
##
       Marital_status = col_character(),
##
         State_names = col_character(),
##
         Segment = col_character(),
##
         Employees_status = col_character(),
     . .
##
         Payment_method = col_character(),
##
         Referal = col_character(),
##
         Amount_spent = col_double()
     . .
##
   - attr(*, "problems")=<externalptr>
glimpse(df)
## Rows: 1,743
## Columns: 12
## $ ...1
                      <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16~
## $ Transaction_date <date> 2019-01-01, 2019-01-01, 2019-01-01, 2019-01-03, 2019~
## $ Transaction_ID
                      <dbl> 151200, 151201, 151202, 151205, 151206, 151207, 15120~
```

<chr> "Female", "Male", "Male", "Female", "Male", "~

<dbl> 19, 49, 63, 71, 34, 37, 75, 41, 56, 63, 60, 47, 24, 1~

<chr> "Single", "Single", "Married", "Single", "Married", "~
<chr> "Kansas", "Illinois", "New Mexico", "Hawaii", "New Me~

<chr> "Basic", "Basic", "Basic", "Basic", "Platinum", "Basi~

<chr> "Other", "Card", "PayPal", "PayPal", "PayPal", "PayPa-"

<chr> "Reffered", "Not Referred", "Reffered", "Reffered", "~

<dbl> 2051.36, 544.04, 1572.60, 2922.66, 1481.42, 1149.55, ~

Data Analysis Process

\$ Gender

\$ Segment

\$ Referal
\$ Amount spent

\$ Marital_status

\$ Payment_method

\$ State_names

\$ Age

Question 1: Does the date influence spending amount (Year/Month)?

```
yearly_differences_amount_spent = df %>%
  mutate(Year = format(Transaction_date, "%Y")) %>%
  group_by(Year) %>%
  summarise(Total_Amount_Spent = sum(Amount_spent))
kable(yearly_differences_amount_spent[1:2,])
```

\$ Employees_status <chr> "Unemployment", "self-employed", "workers", "Employee~

Year	Total_Amount_Spent
2019	1247650
2020	1237644

• Per Year

```
monthly_differences_amount_spent = df %>%
  mutate(Month = format(Transaction_date, "%m")) %>%
  group_by(Month) %>%
  summarise(Total_Amount_Spent = sum(Amount_spent))
kable(monthly_differences_amount_spent[1:12,])
```

Month	Total_Amount_Spent
01	262925.1
02	210744.9
03	199478.7
04	201662.5
05	211077.4
06	207129.8
07	199257.6
08	213644.6
09	192004.4
10	215111.4
11	160991.5
12	211266.0

• Per Month

```
date_differences_amount_spent = df %>%
  mutate(Month = format(Transaction_date, "%m"), Year = format(Transaction_date, "%Y")) %>%
  group_by(Month,Year) %>%
  summarise(Total_Amount_Spent = sum(Amount_spent))
```

```
## 'summarise()' has grouped output by 'Month'. You can override using the
## '.groups' argument.
```

```
kable(date_differences_amount_spent[1:12,])
```

Month	Year	Total_Amount_Spent
01	2019	109263.95
01	2020	153661.16
02	2019	105064.02
02	2020	105680.87
03	2019	107089.68
03	2020	92388.98
04	2019	117837.08
04	2020	83825.46
05	2019	114877.42
05	2020	96200.01
06	2019	108504.29
06	2020	98625.54

• Per both year and month

Question 2: Do certain states spend more than others?

State_names	Total_Amount_Spent	Avg_Amount_Spent
Arizona	70769.26	1645.80
Massachusetts	67080.16	1490.67
Illinois	66729.45	1390.20
Missouri	63834.37	1679.85
New Jersey	61035.85	1606.21

Question 3: Does marital status dictate membership segments?

```
# Total and average amount spent per marital status per membership
marital_status_dictate_membership = df %>%
    group_by(Marital_status,Segment) %>%
    summarise(Total_Amount_Spent = sum(Amount_spent),Avg_Amount_Spent = mean(Amount_spent))
## 'summarise()' has grouped output by 'Marital_status'. You can override using
## the '.groups' argument.
```

marital_status_dictate_membership = marital_status_dictate_membership[order(marital_status_dictate_memb
kable(marital_status_dictate_membership[1:10,])

Marital_status	Segment	$Total_Amount_Spent$	Avg_Amount_Spent
Married	Basic	673206.05	1423.269
Single	Basic	465573.31	1423.772
Married	Gold	142760.13	1456.736
Single	Gold	95452.28	1289.896
Married	Missing	105413.90	1369.012
Single	Missing	96590.12	1509.221
Married	Platinum	238962.31	1413.978
Single	Platinum	197428.95	1462.437
Married	Silver	262528.03	1396.426
Single	Silver	207378.96	1502.746

Question 4: What is the percentage breakdown between employee status?

```
employee_status_percent = df %>%
    group_by(Employees_status) %>%
    count(Employees_status)
# Turning total count to percent of people (using scales package)
employee_status_percent$Percent = percent(employee_status_percent$n/1743)
#employee_status_percent$Percent = percent(employee_status_percent$Percent)
# Changing the name of column
names(employee_status_percent) [names(employee_status_percent) == 'n'] = "Count"
kable(employee_status_percent[1:4,])
```

Employees_status	Count	Percent
Employees	676	38.8%
Unemployment	177	10.2%
self-employed	339	19.4%
workers	551	31.6%

Question 5: What age group spends more than others, how does the payment method influence age group spending?

```
# Making Age_Group Column and new dataframe for the question
age_group_df = df %>%
 mutate(
    Age_Group = dplyr::case_when(
      Age < 25 \sim "15-24",
      Age \geq 25 & Age < 40 \sim 25-39,
      Age \geq 40 \& Age < 55 \sim "40-54",
      Age >= 55 ~ "55+"
      )
    )
age_group_differences_amount_spent = age_group_df %>%
  group_by(Age_Group) %>%
  summarise(Total Amount Spent = sum(Amount spent), Avg Amount Spent = mean(Amount spent))
# Get count of dataset
example = age_group_df %>%
  count(Age_Group)
names(example) [names(example) == 'n'] = "Total People"
# Combine both tables
age_group_differences_amount_spent$Total_People = example$`Total People`
kable(age_group_differences_amount_spent[1:4,])
```

${\bf Age_Group}$	$Total_Amount_Spent$	Avg_Amount_Spent	${\bf Total_People}$
15-24	372376.5	1489.506	250
25-39	548819.2	1385.907	396
40-54	662596.0	1462.684	453
55+	901502.3	1399.848	644

Question 6: Are referrals worth investing into?

```
referal_amount_spent = df %>%
  group_by(Referal) %>%
  summarise(Total_Amount_Spent = sum(Amount_spent), Avg_Amount_Spent = mean(Amount_spent))
kable(referal_amount_spent[1:2,])
```

Referal	Total_Amount_Spent	Avg_Amount_Spent
Not Referred	871763.8	1426.782
Reffered	1613530.2	1425.380

Question 7: Should other payment methods be targeted and influenced?

```
payment_method_targeting = df %>%
  group_by(Payment_method) %>%
  summarise(Total_Amount_Spent = sum(Amount_spent), Avg_Amount_Spent = mean(Amount_spent))
kable(payment_method_targeting[1:3,])
```

Payment_method	Total_Amount_Spent	Avg_Amount_Spent
Card	725668.1	1425.674
Other	619987.8	1476.161
PayPal	1139638.1	1400.047

Question 8: How much of a difference are the different segments making?

```
# Creating table with total/avg amount spent per segment
segment_influence = df %>%
    group_by(Segment) %>%
    summarise(Total_Amount_Spent = sum(Amount_spent), Avg_Amount_Spent = mean(Amount_spent))
# Adding total people column
segment_count = df %>%
    count(Segment)
segment_influence$Total_People = segment_count$n
# Adding percent column
segment_count$n = segment_count$n / 1743
segment_influence$Percent = segment_count$n
segment_influence$Percent = percent(segment_influence$Percent)
kable(segment_influence[1:5,])
```

Segment	Total_Amount_Spent	Avg_Amount_Spent	Total_People	Percent
Basic	1138779.4	1423.474	800	45.9%
Gold	238212.4	1384.956	172	9.9%
Missing	202004.0	1432.653	141	8.1%
Platinum	436391.3	1435.498	304	17.4%

Segment	$Total_Amount_Spent$	Avg_Amount_Spent	Total_People	Percent
Silver	469907.0	1441.432	326	18.7%

Question 9: In the varying states, which age group should be targeted, what percent do they make up in the states?

```
# Creating base table
state_targeting = age_group_df %>%
  group by (State names, Age Group) %>%
  summarise(Total_Amount_Spent = sum(Amount_spent)), Avg_Amount_Spent = mean(Amount_spent))
## 'summarise()' has grouped output by 'State_names'. You can override using the
## '.groups' argument.
# Adding total people using count
state_agegroup_count = age_group_df %>%
  group_by(State_names,Age_Group) %>%
  count(Age_Group)
state_targeting$Total_People = state_agegroup_count$n
state_targeting = state_targeting[,c(1,2,5,3,4)]
# Sort by largest amount spent per state per age group
state_targeting = state_targeting %>%
  arrange(desc(Total_Amount_Spent))
kable(state_targeting[1:10,])
```

State_names	Age_Group	Total_People	Total_Amount_Spent	Avg_Amount_Spent
Massachusetts	55+	21	33588.92	1599.472
Arizona	55+	19	30372.38	1598.546
Georgia	55+	23	26846.50	1167.239
Maine	55+	15	25393.08	1692.872
California	55+	19	25131.57	1322.714
South Dakota	55+	13	24624.65	1894.204
Missouri	40-54	15	24148.52	1609.901
Montana	55+	14	24071.42	1719.387
Delaware	55+	17	23116.05	1359.768
Minnesota	55+	13	22634.89	1741.145

Question 10: Should we influence a gender for a specific segment?

'.groups' argument.

```
# Creating table for total/avg amount spent
gender_segment_influence = df %>%
   group_by(Gender,Segment) %>%
   summarise(Total_Amount_Spent = sum(Amount_spent), Avg_Amount_Spent = mean(Amount_spent))
## 'summarise()' has grouped output by 'Gender'. You can override using the
```

```
# Re-ordered the values based on segment
gender_segment_influence = gender_segment_influence[order(gender_segment_influence$Segment),]
# Created total people from different table using count
gender_segment_count = df %>%
    group_by(Gender,Segment) %>%
    count(Segment)
gender_segment_count = gender_segment_count[order(gender_segment_count$Segment),]
# After re-ordering the count, I merged both of them together
gender_segment_influence$Total_People = gender_segment_count$n
gender_segment_influence = gender_segment_influence[,c(1,2,5,3,4)]
kable(gender_segment_influence[1:10,])
```

Gender	Segment	Total_People	Total_Amount_Spent	Avg_Amount_Spent
Female	Basic	427	594996.78	1393.435
Male	Basic	373	543782.58	1457.862
Female	Gold	94	135382.43	1440.239
Male	Gold	78	102829.98	1318.333
Female	Missing	74	115132.55	1555.845
Male	Missing	67	86871.47	1296.589
Female	Platinum	169	230832.40	1365.872
Male	Platinum	135	205558.86	1522.658
Female	Silver	171	248562.60	1453.582
Male	Silver	155	221344.39	1428.028

Question 11: What age group is worth referring to the online environment?

```
# Creating table for age_groups referred total/avg spending
age_group_online_experience = age_group_df %>%
    group_by(Age_Group,Referal) %>%
    summarise(Total_Amount_Spent = sum(Amount_spent), Avg_Amount_Spent = mean(Amount_spent))

## 'summarise()' has grouped output by 'Age_Group'. You can override using the
## '.groups' argument.

# Separate table for total people
age_group_online_count = age_group_df %>%
    group_by(Age_Group,Referal) %>%
    count(Referal)

# Add column from count to main table
age_group_online_experience$Total_People = age_group_online_count$n
# Re-ordered table
age_group_online_experience = age_group_online_experience[,c(1,2,5,3,4)]
kable(age_group_online_experience[1:8,])
```

Age_Group	Referal	Total_People	Total_Amount_Spent	Avg_Amount_Spent
15-24	Not Referred	87	130305.7	1497.767
15-24	Reffered	163	242070.8	1485.097
25-39	Not Referred	156	218461.9	1400.397

Age_Group	Referal	Total_People	Total_Amount_Spent	Avg_Amount_Spent
25-39	Reffered	240	330357.3	1376.489
40-54	Not Referred	150	219728.3	1464.855
40-54	Reffered	303	442867.8	1461.610
55+	Not Referred	218	303268.0	1391.137
55+	Reffered	426	598234.3	1404.306