

Raindrops Aon't keep falling on my head

REGINA

1REGINACHEONG@GMAIL.COM

Agenda

- Background
 Data Source
 Tools

- 4. Findings5. Conclusion

Background

When should I bring an <u>umbrella</u> to fetch my kid at Newton?

How much transport allowance should I budget for grab rides for my kid?

Data Source

Tools

- 1. Web scrapping
 - Beautifulsoup4
 - Selenium
- 2. EDA and Data Cleaning
 - Numpy
 - Pandas

Se

- 3. Model Building and Selection
 - Scikit
 - Scipy.stats
 - Statsmodel
 - Seaborn and Matplotlib

From 3600 data rows -> 1800 rows

Findings – Remove "noisy" parameters

PARAMETERS

- 1. Date
- 2. Daily Rainfall Total (mm)
- 3. Highest 30-min Rainfall (mm)
- 4. Highest 60-min Rainfall (mm)
- 5. Highest 120-min Rainfall (mm)
- 6. Mean Temperature (°C)
- 7. Maximum Temperature (°C)
- Minimum Temperature (°C)
- 9. Mean Wind Speed (km/h)
- 10. Max Wind Speed (km/h)

Findings

PARAMETERS

- 1. Date
- 2. Daily Rainfall Total (mm)
- 3. Highest 30-min Rainfall (mm)
- 4. Highest 60-min Rainfall (mm)
- 5. Highest 120-min Rainfall (mm)
- 6. Mean Temperature (°C)
- 7. Maximum Temperature (°C)
- 8. Minimum Temperature (°C)
- 9. Mean Wind Speed (km/h)
- 10. Max Wind Speed (km/h)

COLLINEARITY

Findings – Model 1

PARAMETERS

- 1. Date
- 2. Daily Rainfall Total (mm)
- 3. Highest 30-min Rainfall (mm)
- 4. Highest 60-min Rainfall (mm)
- 5. Highest 120-min Rainfall (mm)
- 6. Mean Temperature (°C)
- 7. Maximum Temperature (°C)
- 8. Minimum Temperature (°C)
- 9. Mean Wind Speed (km/h)
- 10. Max Wind Speed (km/h)

OLS Regression Resul	ts						
Dep. Variable:	Daily_Rair	nfall(mm)	R∢	squared	(uncent	ered):	0.305
Model:		OLS	Adj. R∢	squared	(uncent	ered):	0.304
Method:	Least Squares		F-statistic:			itistic:	265.1
Date:	Thu, 25 Jul 2019		Prob (F-statistic):			tistic):	1.31e-142
Time:	,	17:09:32		Lo	g-Likeli	hood:	-7005.6
No. Observations:		1814				AIC:	1.402e+04
Df Residuals:		1811				BIC:	1.403e+04
Df Model:		3					
Covariance Type:	nonrobust						
	coef	std err	t	P>ltl	[0.025	0.975]	
Min_Temperature	-0.0505	0.056	-0.900	0.368	.161	0.060	
Mean_Wind_Speed	-2.2729	0.162	-14.03	0.000	1.591	-1.955	
Max_Wind_Speed	0.6659	0.038	17.46	0.000	1.591	0.741	
Omnibus: 11	36.439	Durbin-A	Watson:	1.8	16		
Prob(Omnibus):	0.000 J	arque-Be	era (JB):	11480.5	14		
Skew:	2.867	Р	rob(JB):	0.	00		
Kurtosis:	13.909	Co	nd. No.	28	6.6		

Findings – Collinearity

Findings – Model 2

PARAMETERS

- 1. Date
- 2. Daily Rainfall Total (mm)
- 3. Highest 30-min Rainfall (mm)
- 4. Highest 60-min Rainfall (mm)
- 5. Highest 120-min Rainfall (mm)
- 6. Mean Temperature (°C)
- 7. Maximum Temperature (°C)
- 8. Minimum Temperature (°C)
- 9. Mean Wind Speed (km/h)
- 10. Max Wind Speed (km/h)

OLS Regression Results

Ŭ.							
Dep. Variable:	Daily_Rainfall(mm) R			quared (ered):	0.375	
Model:		OLS	Adj. R-s	squared (uncentered)			0.374
Method:	Least :	Squares		217.5			
Date:	Thu, 25 .	Jul 2019	Prob (F-statistic):				5.76e-182
Time:	1	7:12:44	Log-Likelihood:				-6908.9
No. Observations:		1814				AIC:	1.383e+04
Df Residuals:		1809				BIC:	1.386e+04
Df Model:		5					
Covariance Type:	Type: nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Mean_Temperature		0.492	11.331	0.000	1.607	6.536	
Max_Temperature	-0.7129	0.254	-2.812	0.005	1.210	-0.216	
Min_Temperature	-5.0204	0.352	-14.250	0.000	5.711	-4.329	
Mean_Wind_Speed	-1.5635	0.167	-9.337	0.000	1.892	-1.235	
Max_Wind_Speed	0.3478	0.042	8.186	0.000	0.264	0.431	
Omnibus: 1	172.831	Durbin-	Watson:	1.8	05		
Prob(Omnibus):	0.000 J :	arque-Be	ега (JB):	14136.3	83		
Skew:	2.915	Р	rob(JB):	0.	00		
Kurtosis:	15.371	Co	nd. No.	14	12.		

Findings – LASSO vs Ridge Models

Findings – Model Selection

APPROACH: TRAINING (60%) VS VALIDATION (20%) VS TEST (20%)

	Validation(20%)	Test(20%)	Mean
Linear Regression	0.356	0.32781315 0.27783897 0.20188714 0.28675351 0.24299511	0.267 +- 0.042
Ridge	0.359	0.32499962 0.27858819 0.20356542 0.28633999 0.24957201	0.269 +- 0.04
LASSO	0.345	0.30278124 0.24636422 0.21276213 0.25359426 0.2741038	0.258 +- 0.03
Polynomial deg=2	0.379	0.42478139 0.40851773 0.03682591 0.2427548 0.31004752	0.285 +- 0.141

Select Model: Linear Regression

Findings – Linear Regression Model Evaluation

Evaluation: The raw Model cant predict extreme target values

Findings – Model Evaluation

Conclusion

Historical Temperature and Wind Speed alone are Not good parameters to predict Rainfall at Newton.

Probable reasons:

- 1. Cloud movements/weather in surrounding areas.
- 2. There is a seasonal/time dimension that is not accounted.

