

Distribution Utility Meet (DUM)-2020

250 Million Smart Meters

Dwijadas Basak

(Chief Commercial)

28-Nov-20

Over View

TATA POWER - DDL

"To be the most trusted and admired provider of reliable, competitive power and services, and be the company of choice all stakeholders"

Licensed Area: North and North West Delhi (510 sq. km) Consumer Base: 1.8 Million

TATA Power-DDL is an ISO 9001(QMS), 14001(EMS), 18001(OHSAS), 27001(ISMS), 8000(SA) and 50001 (EnMS) certified organization.

Smart Meter

2 Lacs Deployed

Billing -98%

Read availability-98.5%

Reading Opex. Saved
(No SIM Rental/Manual Read)

Modules Developed

- Billing (NET/Post/Pre-Paid)
- 2. Revenue Protection
- 3. Connect/Disconnect
- 4. Dashboard & Analysis modules

Consumer Portal

- Read Availability
 (Interval/Daily/Monthly)
- 2. Flexi. Consumption Alerts
- 3. ToU Consumption
- Pre-Paid Details

Understanding Eco-System

Expedite Product Certification

Smart Meter & Utilities

Smart Meter Implementation-Model

Utility & Model

Capex

Opex

Opex. Model(Cellular/RF)

Dependency- High
Modification Cost- High
Skill Required- Low to Moderate
Financial Condition- Not Good

Integration & Modification in Exiting IT System of Utility to upgrade & compatible

- 1. Smart Meter & Meter Accessories
- 2. Ami Communication Equipment
- 3. Backend IT System (HES/MDM)
- 4. Project Commissioning Services
- 5. Software's Annual Technical Support
- 6. Hardware AMC
- 7. Network Bandwidth
- 8. Cloud Infrastructure
- 9. System maintenance Fees
- 10. Customized Alteration

Capex. Model (Cellular)

Dependency-Low
Modification Cost-Low
Skill Required- Moderate to High
Financial Condition- Moderate/Good

- 1. Smart Meter & Meter Accessories
- 2. Ami Communication Equipment
- 3. Backend IT System (HES/MDM)
- 4. Project Commissioning Services

- .. Software's Annual Technical Support
- 2. Hardware AMC
- 3. Network Bandwidth
- 4. Cloud Infrastructure
- 5. System maintenance Fees

Capex. Model (RF)

Dependency-Min Modification Cost-Min Skill Required- High Financial Condition- Good

Mix in Geographic issues

- 1. Smart Meter & Meter Accessories
- 2. Ami Communication Equipment (Router/Collector)
- 3. Backend IT System (HES/MDM)
- 4. Project Commissioning Services

- 1. Software's Annual Technical Support
- 2. Hardware AMC
- 3. Network Bandwidth (Limit to Backhaul)
- 4. System maintenance Fees

Integration of Smart Meters with Distribution Automation & SCADA System

Stage 1

"Innovate"

- 5 Sensors installed on Transformer
- Smart Meter installed on Transformer
 - Monitors Electrical Parameters
 - Takes inputs from the 5 Sensors
- 1 Relay installed on transformer
- Smart Meters based on the algorithm for Digital Inputs, issues a digital output signal

Stage 2

"Reuse"

Sensor Data Transmitted via existing
 RF Network /IoT Platform

Stage 3

"Integrate"

- Algorithms processes the digital inputs and issues a digital output signal on runtime.
- Passes information to downstream
 SCADA system

Integration of Smart Meters with Distribution Automation & SCADA System

In field

(Application)

At Backend

Smart Meter redesigned to capture Transformer Sensor Data

b) Closer look at 5DI and 1 DO

a) Meter Redesigned

c) Relays activated

At the Backend Servers (Network Operation Center)

3) Runtime visual representation to the (24X7) Network Operation Team

Integration of Smart Meters with Distribution Automation & SCADA System

Challenges

Smart Meters, Redesigning the Smart Meter to read digital Inputs from the sensors placed to monitor

> IoT Network, RF Canopy (IOT Network). Designing the network packets so that the sensor data packets can pass via existing RF Canopy (IOT Network) to the backend servers

Application Algorithms, Creating automated algorithms for interpreting sensor data. Application can decide on runtime on course of action.

SCADA Integration, **Integration** of the application with the SCADA backbone.

Benefits in Use of Smart Meter with Rooftop Solar & Edge of the Grid Solutions

Data with Customer

Pre-Paid Post-Paid or Mix of Both

"what's in it for ME?"

Mix of Both

A. Pre-Payment Smart Meter is most desired Solution for every utility.

- 1. Advance Availability of cash
- 2. Drawbacks Already taken care of like
 - -Difficult to recharge
 - -No option of remote recharge
 - -Tariff updation
 - -Balance Availability
 - -Supply Pass issues
- 3. For All utilities most of consumer base of covers under low segment(SP_WC & PP_WC) & with multiple of complaints. Hence
 - -Min. number of complaints related to Billing.
 - -Focused Approached should be given to Bulk Consumers.
- 4. Incentive Scheme: Incentive to be given to consumers on Bulk Recharge & shifting to Post-Paid to Pre-Paid.
- B. Need of Post Paid meters could not be denied for essential services and provisions should kept available.

We need to be Future Ready!

TATA POWER-DDL

Thank You

