## Why Ensemble is better?

## Decision Tree의 한계점

#### Decision Tree는 Variance가 큰 모델입니다 Input이 조금이라도 변하면 모델이 크게 변합니다



아웃라이어가 있는 위와 같은 2차원 데이터가 있다고 해봅시다

## Decision Tree의 한계점

위의 원본데이터에서 70% 샘플링을 진행한 뒤 Decision Tree를 적합 그리고 각각의 x값에 대해 y값을 예측하면 다음과 같은 그래프가 나옵니다



Input 데이터에 큰 영향을 받음 = 모델의 Variance가 큼

## Random Forest가 이를 극복하는 방법

Decision Tree 여러개를 결합하여 Variance (변동성)을 낮춘다 tree처럼 outlier의 값을 그대로 따라가지 않고 모함수와 더 비슷해지는 것을 볼 수 있다





**High Variance** 

**Low Variance** 

## Random Forest가 가진 한계

Decision Tree 여러개를 결합하여 Variance (변동성)을 낮추지만 Decision Tree 자체가 가진 한계(=bias)인 선형 decision boundary를 극복하지 못한다





**High Variance** 

**Low Variance** 

# Boosting

## Decision Tree의 한계점

#### **Bagging**



각 모델들은 병렬적으로 학습 모델끼리 영향을 주지 않음

#### **Boosting**



각 모델들은 순차적으로 학습 이전 모델의 학습 결과를 바탕으로 다음 모델을 학습





# 에러를 다음 모델의 예측값으로 이용 Weak Classifier Model / Predict Error







## Boosting이 학습하는 과정

Weak model이 틀린점을 점차 개선해나가면서 여러개의 모델을 결합 Variance뿐만 아니라 Bias도 함께 줄일 수 있음



기존 모델 학습 결과의 틀린 정도 (Loss Function에 의해 정의)를 학습

|   | y_true |  |
|---|--------|--|
| 0 | 1      |  |
| 1 | 2      |  |
| 2 | 3      |  |
| 3 | 4      |  |
| 4 | 5      |  |

#### weak model에 의한 예측을 진행

|   | y_true | y_pred |
|---|--------|--------|
| 0 | 1      | 3      |
| 1 | 2      | 3      |
| 2 | 3      | 3      |
| 3 | 4      | 3      |
| 4 | 5      | 3      |

#### weak model이 틀린 정도를 다시 예측값으로 설정

| 0       1       3       -2         1       2       3       -1         2       3       3       0         2       3       4       3         3       4       4       5       3         2       4       4       4 |   | y_true | y_pred | error |   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|--------|-------|---|--|
| 2 3 3 0<br>3 4 3 1<br>3                                                                                                                                                                                       | 0 | 1      | 3      | -2    | 0 |  |
| 3 4 3 1 3                                                                                                                                                                                                     | 1 | 2      | 3      | -1    | 1 |  |
|                                                                                                                                                                                                               | 2 | 3      | 3      | 0     | 2 |  |
| 4 5 3 2 4                                                                                                                                                                                                     | 3 | 4      | 3      | 1     | 3 |  |
|                                                                                                                                                                                                               | 4 | 5      | 3      | 2     | 4 |  |

#### 첫 번째 모델의 error를 예측하는 두 번째 weak model 생성

|   | y_true | y_pred | error |
|---|--------|--------|-------|
| 0 | 1      | 3      | -2    |
| 1 | 2      | 3      | -1    |
| 2 | 3      | 3      | 0     |
| 3 | 4      | 3      | 1     |
| 4 | 5      | 3      | 2     |



#### 첫 번째 모델과 두 번째 모델의 예측 결과를 조합

|   | y_true | y_pred | error |   |         |         |   | y_true     | y_pred |
|---|--------|--------|-------|---|---------|---------|---|------------|--------|
| 0 | 1      | 3      | -2    |   |         |         | - | 0 -2       | -1     |
| 1 | 2      | 3      | -1    |   |         | _       |   | 1 -1       | -1     |
| 2 | 3      | 3      | 0     |   |         |         | : | <b>2</b> 0 | 0      |
| 3 | 4      | 3      | 1     |   |         |         | ; | <b>3</b> 1 | 1      |
| 4 | 5      | 3      | 2     |   |         |         | • | 4 2        | 1      |
|   |        |        |       |   | y_pred1 | y_pred2 |   |            |        |
|   |        |        |       |   | y_pred1 | y_pred2 |   |            |        |
|   |        |        |       | 0 | 3       | -1      |   |            |        |
|   |        |        |       | 1 | 3       | -1      |   |            |        |
|   |        |        |       | 2 | 3       | 0       |   |            |        |
|   |        |        |       | 3 | 3       | 1       |   |            |        |
|   |        |        |       | 4 | 3       | 1       |   |            |        |

두 예측 결과를 조합했을 때 첫 번째 모델의 예측 결과보다 성능이 개선되었음을 알 수 있다

|   | y_true | y_pred | error |
|---|--------|--------|-------|
| 0 | 1      | 3      | -2    |
| 1 | 2      | 3      | -1    |
| 2 | 3      | 3      | 0     |
| 3 | 4      | 3      | 1     |
| 4 | 5      | 3      | 2     |

|   | y_true | y_pred |
|---|--------|--------|
| 0 | -2     | -1     |
| 1 | -1     | -1     |
| 2 | 0      | 0      |
| 3 | 1      | 1      |
| 4 | 2      | 1      |

|   | y_pred1 | y_pred2 | final_pred |
|---|---------|---------|------------|
| 0 | 3       | -1      | 2          |
| 1 | 3       | -1      | 2          |
| 2 | 3       | + 0     | 3          |
| 3 | 3       | 1       | 4          |
| 4 | 3       | 1       | 4          |

## 틀린 정도를 어떻게 정의하는가?

#### 틀린 정도를 측정해주는 함수를 Loss Function이라고 합니다

 $y_i$ : i 번째 데이터의 target 값

 $x_i$ : i 번째 데이터의 feature

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^2$$

## Loss가 최소가 되는 지점을 어떻게 찾아나가는가?

#### 모델을 Loss Function의 기울기를 따라 수정해나가면 가장 빠르게 최소점을 찾을 수 있습니다

 $y_i$ : i 번째 데이터의 target 값

 $x_i$ : i 번째 데이터의 feature

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^2$$



#### Loss Function의 f(x)에 대한 기울기는 편미분을 통해 구할 수 있습니다

 $y_i$ : i 번째 데이터의 target 값

 $x_i$ : i 번째 데이터의 feature

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = \frac{\partial}{\partial f(x)} \frac{1}{2} (y - f(x))^2$$

#### y를 상수취급하고 미분하면 다음과 같은 식을 얻게 됩니다

 $y_i$ : i 번째 데이터의 target 값

 $x_i$ : i 번째 데이터의 feature

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = \frac{\partial}{\partial f(x)} \frac{1}{2} (y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = f(x) - y$$

#### 따라서 Loss가 L2 (MSE)인 경우 error를 negative gradient라고 할 수 있습니다

 $y_i$ : i 번째 데이터의 target 값

 $x_i$ : i 번째 데이터의 feature

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = \frac{\partial}{\partial f(x)} \frac{1}{2} (y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = f(x) - y$$

$$y_i - f(x_i) = -\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}$$

#### 따라서 Loss가 L2 (MSE)인 경우 error를 negative gradient라고 할 수 있습니다

 $y_i$ : i 번째 데이터의 target 값

 $x_i$ : i 번째 데이터의 feature

 $f(x_i)$  : 모델 f가  $x_i$  를 입력 받았을 때의 예측값

$$L(y, f(x)) = \frac{1}{2}(y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = \frac{\partial}{\partial f(x)} \frac{1}{2} (y - f(x))^2$$

$$\frac{\partial L(y, f(x))}{\partial f(x)} = f(x) - y$$

$$y_i - f(x_i) = -\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}$$

L2-loss 뿐만 아니라 미분가능한 모든 loss function에 대해 Gradient Boosting을 적용할 수 있습니다