

KOD UCZNIA				

KONKURS CHEMICZNY DLA UCZNIÓW KLAS IV-VIII SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP SZKOLNY 20 listopada 2020 r., godz. 12.00

Uczennico/Uczniu:

- 1. Arkusz składa się z 25 zadań, na których rozwiązanie masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/ego SKK		

Uwaga: w zadaniach 1.-8. i 10.-15. wybierz prawidłową odpowiedź poprzez wyraźne otoczenie pętla jednej z liter: A, B, C lub D; w zadaniu 9. – jednej z liter A, B lub C.

Zadanie 1. (0-1 pkt.)

..... /1

Który zapis przedstawia mieszaninę jednorodną?

- A. HCl_(aq)
- B. HCl_(g)
- C. HCl_(s)
- D. HCl_(c)

Zadanie 2. (0-1 pkt.)

Zbiornik, którego objętość możemy regulować, zawiera 200 cm³ gazu o masie 0,14 g. Jaka będzie masa gazu, gdy jego objętość zmniejszymy dwukrotnie?

- A. 0,07 g
- B. 0,21 g
- C. 0,14 g
- D. 0,28 g

Zadanie 3. (0-1 pkt.)

Uczeń ogrzewał 45,62 g metalu i zaobserwował wzrost jego temperatury od 22,63 °C do 41,59 °C. Jaki jest wzrost temperatury przypadający na 1 g metalu?

- A. $2,406 \frac{g}{K}$
- B. $0,496 \frac{^{\circ}\text{C}}{\text{g}}$ C. $0,4156 \frac{\text{K}}{\text{g}}$ D. $1,10 \frac{\text{g}}{^{\circ}\text{C}}$

Zadanie 4. (0-1 pkt.)

Poniżej przedstawiono konfiguracje elektronowe dla czterech różnych pierwiastków. Który pierwiastek wykazuje najwyższa wartościowość w związku tworzonym z wodorem?

- A. $K^2L^8M^8$
- B. K^2L^6
- C. $K^2L^8M^7$
- D. $K^2L^8M^{18}N^5$

Zadanie 5. (0-1 pkt.)

Kawałek metalu dodano do rozcieńczonego kwasu solnego. Przebiegła reakcja chemiczna. Na wykresie poniżej przedstawiono zależność masy metalu, która nie przereagowała, od czasu trwania reakcji.

Jaka masa metalu przereagowała po 60 sekundach?

- A. 2 g
- B. 4 g
- C. 6 g
- D. 8 g

Zadanie 6. (0-1 pkt.)

...... / 1

Chloroform jest nierozpuszczalny w wodzie ani w etanolu (alkoholu etylowym). Woda i etanol mieszają się w dowolnych stosunkach. Gęstość chloroformu jest większa od gęstości wody oraz etanolu. Gęstość wody jest większa od gęstości etanolu. Który rysunek poprawnie przedstawia wygląd probówki do której wprowadzono równe objętości wody, etanolu i chloroformu, całość wstrząśnięto i pozostawiono na pewien czas?

Zadanie 7. (0-1 pkt.)

...../1

Uczeń przeprowadził reakcję żelaza z siarką zmieszanych w stosunku masowym Fe : S=7:8. Zanotował następujące obserwacje i wnioski:

Podczas prowadzenia reakcji:

- I. Mieszanina przyjmuje czarną barwę.
- II. Mieszanina rozżarza się.
- III. Powstaje siarczek żelaza(II).
- IV. Wydziela się ostry duszący zapach.
- V. Powstaje tlenek siarki(IV).
- VI. Jest to reakcja egzoenergetyczna.
- VII. Doświadczenie przeprowadza się pod dygestorium.
- VIII. Powstała substancja nie jest przyciągana przez magnes.

Zakreśl odpowiedź zawierającą wszystkie poprawne wnioski.

A. III, V, VIII

B. II, III, V, VIII

C. III, V, VI

D. III, V

Zadanie 8. (0-1 pkt.)

..... / 1

Pewien związek o wzorze MgCr₂O₄ ma następujący masowy skład procentowy:

Mg = 12.5 %

% Cr = 54,2%

% O = 33,3 %

Skład ten ilustruje/opisuje:

- A. prawo stałości składu związku chemicznego
- B. prawo zachowania masy
- C. prawo zachowania ładunku
- D. prawo Avogadra

Zadanie 9.

Poniższy wykres przedstawia zmiany masy tlenu i masy chromu w próbkach trzech różnych tlenków chromu: czerwonym tlenku chromu, zielonym tlenku chromu i czarnym tlenku chromu, o różnych masach.

Zadanie 9.1. (0-1 pkt.)

...../1

Który tlenek chromu charakteryzuje się największym udziałem masowym chromu w związku?

A. czerwony tlenek chromu

B. zielony tlenek chromu

C. czarny tlenek chromu

Zadanie 9.2. (0-1 pkt.)

W wyniku reakcji 10 g chromu z tlenem otrzymano 14,6 g tlenku. Jaki tlenek otrzymano?

A. czerwony tlenek chromu

B. zielony tlenek chromu

C. czarny tlenek chromu

Zadanie 10. (0-1 pkt.)

Masa atomowa pierwiastka X jest dwa razy większa od masy atomowej pierwiastka Y. Jaka masa związku o wzorze XY powstanie w wyniku reakcji 100 g pierwiastka X z nadmiarem pierwiastka Y?

A. 125 g

B. 150 g

C. 200 g

D. 300 g

Zadanie 11. (0-1 pkt.)

Poniższy schemat przedstawia budowę:

A. cząsteczki

B. anionu

C. kationu

D. atomu

Zadanie 12. (0-1 pkt.)

...../1

Podczas przemiany β⁻

- A. proton zamienia się w neutron
- B. elektron zamienia się w proton
- C. elektron zamienia się w neutron
- D. neutron zamienia się w proton

Zadanie 13. (0-1 pkt.)

...../1

Poniższy rysunek przedstawia schematyczny rzut na płaszczyznę drobin tworzących:

- A. związek kowalencyjny o wzorze sumarycznym CaCl
- B. związek jonowy o wzorze sumarycznym CaCl
- C. związek kowalencyjny o wzorze sumarycznym CaCl₂
- D. związek jonowy o wzorze sumarycznym CaCl₂

Zadanie 14. (0-1 pkt.)

...../1

Który z niżej wymienionych pierwiastków lub związków chemicznych nie przewodzi prądu elektrycznego w stanie stopionym?

- A. KNO_{3(c)}
- B. Mg(c)
- C. Na₂O_(c)
- D. Se_(c)

Zadanie 15. (0-1 pkt.)

/1

Który z poniższych zapisów przedstawia <u>poprawnie zbilansowane</u> równanie reakcji chemicznej?

- A. $Pb_3O_4 + 4CO \rightarrow 3PbO + 4CO_2$
- B. $3KMnO_4 \rightarrow K_2MnO_4 + 2MnO_2 + O_2$
- C. $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$
- D. $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + 2H_2O$

Zadanie 16.

Poniższy schemat przedstawia walce wykonane z różnych pierwiastków. Wszystkie walce mają takie same średnice, różnią się jednak wysokością. Walce zostały wykonane w taki sposób, by w każdym znajdowała się <u>dokładnie taka sama liczba atomów danego pierwiastka</u> wynosząca jeden kwadrylion. Załóżmy, że w każdej próbce atomy upakowane są w taki sam sposób, ściśle do siebie przylegając.

Zadanie 16.1. (0-1 pkt.)

Analizując powyższy rysunek oraz korzystając z danych zawartych w układzie okresowym pierwiastków chemicznych możemy sformułować szereg wniosków na temat masy poszczególnych walców. Odpowiedz na poniższe pytania:

- a) Który walec ma największą masę?
- b) Ile razy cięższy jest walec wykonany z siarki w porównaniu z walcem wykonanym z magnezu?

Zadanie 16.2. (0-1 pkt.)

Analiza powyższego rysunku pozwala na sformułowanie szeregu wniosków na temat objętości (wielkości) atomów wymienionych pierwiastków. Rozwiąż poniższe problemy:

a) Uporządkuj przedstawione pierwiastki względem wzrastającego rozmiaru atomu.

b) Podaj nazwę lub symbol jednego z pierwiastków przedstawionych w zadaniu, którego 1 cm³ będzie zawierał najmniej atomów.

___<__<___

Zadanie 16.3. (0-1 pkt.)

Uzupełnij poniższe zdania. Otocz pętlą jedno określenie spośród podanych w każdym nawiasie.

Pierwiastek charakteryzuje się tym większą gęstością, im jego atomy mają (*większą / mniejszą*) masę i (*większą / mniejszą*) objętość. Wynika z tego, że spośród przedstawionych pierwiastków największą gęstość ma (*magnez / siarka / platyna / potas*).

Zadanie 17. (0-2 pkt.)

...../2

Analizując położenie astatu w układzie okresowym pierwiastków określ najbardziej prawdopodobne właściwości astatu. Spośród właściwości podanych poniżej (I - V) wybierz po jednej z każdego punktu i(otocz ją pętlą).

I.	Stan skupienia	ciało stałe	ciecz	gaz
II.	Barwa	może mieć kolor	bezbarwny	
III.	Toksyczność	toksyczny	nietoksyczny	
IV.	Stabilność	promieniotwórczy	trwały	
V.	Aktywność chemiczna	aktywniejszy od jodu	mniej aktywny od jodu	

Zadanie 18. (0-2 pkt.)

Elektroujemność jest parametrem, którego wartość liczbową można obliczać na różne sposoby – korzystając z różnych wzorów definicyjnych, stąd istnieją różne skale elektroujem-ności. Zgodnie ze skalą elektroujemności wg Paulinga (1932 r.) największą elektroujemność ma fluor (χ = 4,0), najmniejszą – frans (χ = 0,7). Z kolei elektroujemność wg skali wprowadzonej przez Mullikena (1935 r.) może przyjmować wartości od 0,50 (dla rubidu) do 3,90 (dla fluoru).

Na podstawie: A. Bielański, *Podstawy Chemii Nieorganicznej*, Wydawnictwo Naukowe PWN, Warszawa 2013, s. 144–146

Poniżej przedstawiono elektroujemności wg Mullikena dla czterech pierwiastków: X, Y, Z i W (litery te nie są prawdziwymi symbolami pierwiastków):

Pierwiastek	X	Y	Z	W
Elektroujemność wg Mullikena	0,77	1,17	2,95	3,04

Korzystając z przedstawionych informacji oceń prawdziwość podanych zdań. Otocz pętlą literę \mathbf{P} – jeśli zdanie jest prawdziwe lub literę \mathbf{F} – jeśli zdanie jest fałszywe.

	Zdanie		
1.	Pierwiastek X to niemetal.	P	F
2.	Pierwiastki X i Y tworzą związek jonowy.	P	F
3.	Pierwiastki Z i W tworzą związek kowalencyjny.	P	F
4.	Pierwiastek Y dobrze przewodzi prąd elektryczny.	P	F

Zadanie 19. (0-2 pkt.)

...... /2

Oceń prawdziwość podanych zdań. Otocz pętlą literę \mathbf{P} – jeśli zdanie jest prawdziwe lub literę \mathbf{F} – jeśli zdanie jest fałszywe.

	Zdanie		
1.	Węgiel jest pierwiastkiem klasyfikowanym jako niemetal, ponieważ atomy węgla są ze sobą połączone wiązaniami kowalencyjnymi.	P	F
2.	W cząsteczce tlenku węgla(IV) atomy tlenu są połączone z atomem węgla czterema pojedynczymi wiązaniami kowalencyjnymi spolaryzowanymi.	P	F
3.	Temperatura wrzenia cząsteczki wody wynosi 100 °C.	P	F
4.	Gęstość próbki wody podwoi się, gdy podwoimy jej masę.	P	F

Zadanie 20.

Pewne dwa leki: A oraz B są nietrwałe i po dłuższym przechowywaniu ulegają rozkładowi. Szybkość rozkładu tych leków można opisać za pomocą prawa rozpadu naturalnego. Mówi ono, że po pewnym ściśle określonym czasie, zwanym czasem połowicznego rozpadu, lub czasem połowicznego zaniku, połowa leku ulega rozkładowi. Następnie, po kolejnym czasie połowicznego rozpadu, zanika połowa z tej połowy która pozostała itd...

Poniżej przedstawiono schematycznie próbki leków A i B, z zaznaczeniem liczby cząsteczek aktywnych form leku w próbce. Formy nieaktywne (cząsteczki które uległy rozpadowi) nie zostały na schematach oznaczone.

...../2

Analizując powyższe schematy określ, ile wynosił czas T1 (dla leku A) i czas T2 (dla leku B).

T1	T2

Zadanie 20.2. (0-1 pkt.)

l...... / 1

Poniżej przedstawiono wykres zależności liczby aktywnych cząsteczek pewnego leku w próbce. Określ, czy szybkość rozkładu cząsteczek leku jest zgodna z prawem rozpadu naturalnego, czy opisana jest inną zależnością matematyczną. Uzasadnij swoje stanowisko.

Ocena oraz uzasadnienie:	

Zadanie 21. (0-1 pkt.)

/1

Dopasuj wymienione właściwości złota I – IV do jego zastosowań A – D.

	Zastosowanie złota		
A	W stomatologii jako amalgamat.		
В	W jubilerstwie.		
С	Pozłacane styki i złącza w elektronice.		
D	Ochrona hełmów astronautów.		

	Właściwości złota			
I	Świetnie przewodzi prąd elektryczny.			
II	Odporny chemiczne.			
III	Odbija promieniowanie cieplne.			
IV	Rzadko występujący metal			

A	В	С	D

Zadanie 22. (0-2 pkt.)

Cylinder miarowy napełniono całkowicie (aż po samą górną krawędź) etanolem (d_{etanol} = 0,789 g·cm⁻³). Napełniony cylinder zważono. Następnie do cylindra wrzucono ostrożnie pręt wykonany z nieznanego stopu metali o masie 18,7 g. Część etanolu wylała się z cylindra. Po wytarciu ścianek cylindra i powtórnym zważeniu okazało się, że masa cylindra wzrosła o 13,9 g. Wyznacz gęstość stopu, z którego wykonano pręt. Wynik podaj z dokładnością do dwóch miejsc po przecinku.

Zadanie 23. (0-3 pkt.)

..... /3

Poniżej przedstawiono zbilansowane równanie pewnej reakcji, gdzie X, Y, Z i W to substancje nieorganiczne.

$$X + 2Y \longrightarrow Z + 2W$$

Stosunek masowy reagentów biorących udział w reakcji wyraża się następująco:

$$m_{\rm X}: m_{\rm Y}: m_{\rm Z}: m_{\rm W} = 8\frac{3}{4}: 1: 5\frac{3}{4}: 4.$$

Zidentyfikuj substancje X, Y, Z i W wiedząc, że reagentem o największej masie cząstecz-kowej jest azotek litu Li₃N. Podaj tok swojego rozumowania przy identyfikacji azotku litu. Zapisz pełne, zbilansowane równanie przedstawionej reakcji.

Równanie reakcji:

\square Informacja do zadań 24 – 25.

Spektroskopia mas to technika pozwalająca na bardzo precyzyjne pomiary mas pojedynczych cząsteczek oraz atomów. W pierwszym etapie próbka pierwiastka lub związku chemicznego bombardowana jest silnie rozpędzonymi elektronami, fotonami lub jonami, w wyniku czego z próbki wybijane są zjonizowane atomy lub cząsteczki (tj. pozbawione elektronu). Drobiny te są następnie przyspieszane w polu elektrycznym. W dalszej kolejności wpadają one w pole magnetyczne. Powoduje ono odchylenie torów lotu jonów, przy czym odchylenie to jest tym większe, im lżejszy jest dany jon. Rozdzielone względem masy strumienie zjonizowanych atomów zderzają się następnie z detektorem, który zlicza poszczególne jony.

Wyniki analizy spektrometrycznej przedstawiane są na tzw. spektrogramie, gdzie na osi x odkłada się masy poszczególnych atomów (masy atomów i utworzonych z nich kationów są praktycznie identyczne – masę elektronu można pominąć), a na osi y względną intensywność sygnału, która jest wprost proporcjonalna do liczby zarejestrowanych drobin o danej masie.

Na podstawie: P. Atkins, J. de Paula, *Chemia Fizyczna*, Wydawnictwo Naukowe PWN, Warszawa 2016, s. 747

Zadanie 24.1. (0-1 pkt.)

...../1

W trakcie bombardowania próbki pierwiastka X fotonami lub rozpędzonymi elektronami (etap jonizacji) część atomów nie ulega jonizacji, jedynie odrywa się z powierzchni próbki przechodząc do fazy gazowej:

$$X_{(s)} \rightarrow X_{(g)}$$

Jak nazywamy proces przechodzenia substancji z fazy stałej bezpośrednio do fazy gazowej?

..... /2

Poniżej przedstawiono spektrogram naturalnej próbki pierwiastka X, który jest mieszaniną 5 różnych izotopów. Zawartość jednego z izotopów jest pomijalnie mała – nie została zarejestrowana na widmie.

Wyznacz średnią masę atomową pierwiastka X. Jaki to pierwiastek?

Średnia masa atomowa pierwiastka X:_____ Symbol lub nazwa pierwiastka X:_____

Zadanie 25.

W drugim eksperymencie zbadano skład cząsteczkowy pewnej próbki wody, której cząsteczki zbudowane były wyłączne z atomów ¹⁶O oraz atomów wodoru o następującym składzie izotopowym:

60% H 30% D 10% T

W próbce badanej wody można więc wyróżnić następujące indywidua chemiczne (cząsteczki):

 $H_2^{16}O$ $HD^{16}O$ $HT^{16}O$ $D_2^{16}O$ $DT^{16}O$ $T_2^{16}O$

Poniżej przedstawiono spektrogram jaki uzyskano podczas badania omawianej próbki wody:

..... /1

Wyjaśnij, dlaczego na spektrogramie widocznych jest jedynie 5 pików (sygnałów), skoro w próbce wody można było znaleźć 6 różnych indywiduów chemicznych (cząsteczek)?

Zadanie 25.2. (0-1 pkt.)

/1

Przypisz wzory cząsteczek wody, z uwzględnieniem ich składu izotopowego, do pików obserwowanych na spektrogramie. Uzupełnij poniższą tabelę.

	Pik 1	Pik 2	Pik 3	Pik 4	Pik 5
Wzory indywiduów					

Zadanie 25.3. (0-1 pkt.)

...../1

W trakcie jonizacji próbki wody powstał m.in. jon o następującym wzorze:

$$DT^{16}O^{+}$$

Określ liczbę protonów, neutronów i elektronów w tym jonie. Uzupełnij poniższą tabelę.

Liczba protonów	Liczba neutronów	Liczba elektronów				

Brudnopis

(nie podlega ocenie)

i	1	<u>1</u>													18	1			
1	₁ H wodór			Układ Okresowy Pierwiastków Chemicznych														₂ He	1
	1,0 2,2	2	1									ĺ	13	14	15	16	17	4,0	
2	3 Li lit 7,0 1,0	4Be beryl 9,0 1,5	liczba atomowa ————————————————————————————————————					symbol chemiczny pierwiastka 1,0 średnia masa atomowa, u				5B bor 10,8 2,0	6C wegiel 12,0 2,6	7N azot 14,0 3,0	8O tlen 16,0 3,4	₉ F fluor 19,0 4,0	10Ne neon 20,2	2	
3	Na sód 23,0 0,9	12Mg magnez 24,3 1,3	3	4	5	6	7	8	9	10	11	12	13Al glin 27,0 1,6	14 Si krzem 28,1 1,9	15P fosfor 31,0 2,2	16 S siarka 32,1 2,6	17Cl chlor 35,5 3,2	18 Ar argon 40,0	3
4	19 K potas 39,1 0,8	20Ca wapń 40,1 1,0	21Sc skand 45,0 1,4	22 Ti tytan 47,9 1,5	23 V wanad 51,0 1,6	24Cr chrom 52,0 1,7	25 Mn mangan 54,9 1,6	26Fe żelazo 55,9 1,8	27CO kobalt 58,9 1,9	28 Ni nikiel 58,7 1,9	29 Cu miedź 63,6 1,9	30Zn cynk 65,4 1,7	31 G a gal 69,7 1,8	32Ge german 72,6 2,0	33 As arsen 74,9 2,0	34 Se selen 79,0 2,6	35Br brom 79,9 3,0	36Kr krypton 83,8	4
5	37 Rb rubid 85,5 0,8	38 Sr stront 87,6 1,0	39 Y itr 88,9 1,2	40Zr cyrkon 91,2 1,3	41Nb niob 92,9 1,6	42 Mo molibden 96,0 2,2	43Tc technet 97,9 2,1	44Ru ruten 101,1 2,2	45Rh rod 102,9 2,3	46Pd pallad 106,4 2,2	47Ag srebro 107,9 1,9	48Cd kadm 112,4 1,7	49 In ind 114,8 1,8	50Sn cyna 118,7 2,0	51Sb antymon 121,8 2,1	52Te tellur 127,6 2,1	53 I jod 126,9 2,7	54Xe ksenon 131,3	5
6	55 C S cez 132,9 0,8	56Ba bar 137,3 0,9	†	72 Hf hafn 178,5 1,3	73Ta tantal 181,0 1,5	74W wolfram 183,8 1,7	75Re ren 186,2 1,9	76Os osm 190,2 2,2	77 Ir iryd 192,2 2,2	78Pt platyna 195,1 2,2	79 Au złoto 197,0 2,4	80Hg rtęć 200,6 1,9	81Tl tal 204,4 1,8	82Pb ołów 207,2 1,8	83Bi bizmut 209,0 1,9	84Po polon 209,0 2,0	85At astat 210,0 2,2	86Rn radon 222,0	6
7	87 Fr frans 233,0 0,7	88Ra rad 226,0 0,9	‡	104Rf rutherford 267,1	105Db dubn 268,1	106 Sg seaborg 271,1	107 Bh bohr 272,14	108 Hs has 270,1	109 Mt meitner 276,2	110Ds darmsztadt (281)	111Rg rentgen (282)	112Cn kopernik (285)	113Nh nihon (286)	114 Fl flerow (289)	115Mc moskow (290)	116LV liwermor (293)	117 Ts tenes (294)	118Og oganeson (294)	7
† Lantanowce		57 La lantan 138,9	58 Ce cer 140,1	59Pr prazeodym 140,9	60Nd neodym 144,2	61Pm promet 144,9	62Sm samar 150,4	63 Eu europ 152,0	64Gd gadolin 157,3	65 Tb terb 158,9	66Dy dysproz 162,5	67 Ho holm 164,9	68 Er erb 167,3	69 Tm tul 168,9	70 Yb iterb 173,0	71 Lu lutet 175,0			
‡ Aktynowce		89Ac aktyn 227,0	90Th tor 232,0	91Pa protaktyn 231,0	92 U uran 238,0	93Np neptun 237,1	94Pu pluton 244,1	95 Am ameryk 243,1	96 Cm kiur 247,1	97 Bk berkel 247,1	98Cf kaliforn 251,1	99Es einstein 252,1	100Fm ferm 257,1	101Md mendelew 258,1	102No nobel 259,1	103Lr lorens 262,1			