UNIVERSITY OF GOTHENBURG

CHALMERS

Real-Time Systems

7.5 credit points

Professor Jan Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

Lecture #1

UNIVERSITY OF GOTHENBURG

Lectures (15 of them)

CHALMERS

Lectures are offered in full class at least once a week, and with the goal of introducing the programming paradigm and basic scheduling theory as well as demonstrating how the paradigm and theory are applied in practice.

Special sessions (5 of them)

Special sessions are offered in full class on certain weeks, and should be seen as a complement to the lectures. Examples:

- help with software design and development tools
- introduction to sound generation and music theory
- discuss solutions to exercise problems or old exam problems

Lecture #1

Course aim

After the course, the student should be able to:

- Formulate requirements for embedded systems with strict constraints on computational delay and periodicity.
- Categorize and describe the different layers in a system architecture for embedded real-time systems.
- Construct concurrently-executing tasks for real-time applications that interface to hardware devices (sensors/actuators)
- Describe the principles and mechanisms used for designing run-time systems and networks for real-time applications.
- Apply the basic analysis methods used for verifying the temporal correctness of a set of executing tasks.

Course material

To download: (via course web page)

- Lecture notes and exercise notes.
- Programming with the TinyTimber kernel. [also used at written exam]
- Research articles and book excerpts. [recommended reading only]
- · Exercise compendium.
- Lab-PM Part 0, 1 and 2. [paper copies also handed out]
- Template code. [for target computer software]
- Handbooks and data sheets. [for target computer hardware]
- Development tools. [available for Windows, Mac, Linux]

Lecture #1

CHALMERS | WINVERSITY OF GOTHENBURG

Course contents

What this course is all about:

- 1. Construction methods for real-time systems
 - Specification, implementation, verification
 - Application constraints: origin and implications
- 2. Programming of concurrent real-time applications
 - Task and communication models (C with TinyTimber kernel)
 - I/O and interrupt programming (C with TinyTimber kernel)
- 3. Verification of system's temporal correctness
 - Fundamental scheduling theory
 - Derivation of worst-case task execution times

What is a real-time system? Typical properties of a real-time system (cont'd): • Strict safety requirements "Safety must be considered early in the design process" - Safety standards and certification • IEC 61508 (industrial systems) • IEC 62304 (medical systems) • ISO 26262 (automotive systems) • DO-178C (airborne systems) - Programming language restrictions (e.g. MISRA C) - Run-time system restrictions (e.g. cyclic executive) - Thorough testing of software and hardware components - Reliability in presence of component faults ("fault tolerance")

EDA223/DIT161 – Real-Time Systems, Chalmers/GU, 2017/2018 Updated March 14, 2018

Lecture #1

Lecture #1

UNIVERSITY OF GOTHENBURG **Specification**

How critical are the constraints?

Soft constraints:

CHALMERS

Single failures to fulfill a timing constraint is acceptable, but the usefulness of the computational result is reduced (often to what can be considered useless).

- Reservation systems: seat booking for aircraft; teller machine
- . E-commerce: stock trading, eBay
- Multimedia: video-on-demand, computer games, Virtual Reality

Statistical guarantees often suffice for these systems!

Implementation

Critical choices to be made at design time:

- · Hardware architecture:
 - Hardware parallelism: determines the degree of application parallelism that can actually be exploited
 - uniprocessor system: only pseudo-parallel execution is possible
 - multiprocessor system: truly parallel execution is possible
 - Microprocessor family: determines run-time performance, as well as difficulty in analyzing the worst-case execution time (WCET) of a software task.
 - Communication network technology: determines run-time performance, as well as difficulty in analyzing worst-case message delays.

EDA223/DIT161 – Real-Time Systems, Chalmers/GU, 2017/2018 Updated March 14, 2018

· considers all possible cases

· requires an unreasonable amount of time for testing

Lecture #1

CHALMERS | UNIVERSITY OF GOTHENBURG

Verification

How do we verify the system?

Formal analysis of the implementation:

Verify logical correctness using proof machine

- · requires dedicated description language
- abstraction level very high (often implementation independent)

Verify temporal correctness using schedulability analysis

- necessary for verifying hard-real-time systems
- · requires WCET for each task
- · requires support in programming language and run-time system

Note: results from the verification phase are only valid if all assumptions actually apply at run-time!