Χ

2111cs010077@mallareddyuniversity.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 1 ()

- Diological
 Neuron (unit?
 unit=17&lesso
 n=18)
- From Spring to Winter of AI (unit? unit=17&lesso n=19)
- The Deep Revival (unit? unit=17&lesso n=20)
- From Cats to Convolutional Neural Networks (unit?

Week 1: Assignment 1

The due date for submitting this assignment has passed.

Due on 2024-08-07, 23:59 IST.

Assignment submitted on 2024-08-02, 18:30 IST

1) Consider the following table, where x_1 and x_2 are features and y is a label

1 point

x_1	x_2	y
0	0	1
0	1	1
1	0	1
1	1	0

Assume that the elements in \mathbf{w} are initialized to zero and the perception learning algorithm is used to update the weights \mathbf{w} . If the learning algorithm runs for long enough iterations, then

- The algorithm never converges
- The algorithm converges (i.e., no further weight updates) after some iterations
- The classification error remains greater than zero
- The classification error becomes zero eventually

No, the answer is incorrect.

Score: 0

Accepted Answers:

The algorithm converges (i.e., no further weight updates) after some iterations The classification error becomes zero eventually

2) In the perceptron model, the weight ${\bf w}$ vector is perpendicular to the linear decision **1** point boundary at all times.

unit=17&lesso n=21)

- Faster, higher, stronger (unit? unit=17&lesso n=22)
- The Curious
 Case of
 Sequences
 (unit?
 unit=17&lesso
 n=23)
- Beating
 humans at
 their own
 games
 (literally) (unit?
 unit=17&lesso
 n=24)
- The Madness (2013-) (unit? unit=17&lesso n=25)
- (Need for)
 Sanity (unit?
 unit=17&lesso
 n=26)
- Motivation from Biological Neurons (unit? unit=17&lesso n=27)
- McCulloch
 Pitts Neuron,
 Thresholding
 Logic (unit?
 unit=17&lesso
 n=28)
- Perceptrons
 (unit?
 unit=17&lesso
 n=29)
- Error and Error Surfaces (unit? unit=17&lesso n=30)
- Perceptron Learning Algorithm

- True
- False

Yes, the answer is correct.

Score: 1

Accepted Answers:

True

3) What is the perceptron algorithm used for?

1 point

- Clustering data points
- Classifying data
- Solving optimization problems
- Finding the shortest path in a graph

Yes, the answer is correct.

Score: 1

Accepted Answers:

Classifying data

4) Choose the correct input-output pair for the given MP Neuron.

1 point

$$f(x) = \left\{egin{array}{ll} 1, & ext{if } x_1 + x_2 + x_3 > 2 \ 0, & ext{otherwise} \end{array}
ight.$$

$$y = 1$$
 for $(x_1, x_2, x_3) = (0, 1, 1)$

$$y = 0$$
 for $(x_1, x_2, x_3) = (0, 0, 1)$

$$y=1$$
 for $(x_1,x_2,x_3)=(0,0,0)$

$$y=1$$
 for $(x_1,x_2,x_3)=(1,1,1)$

$$y = 0$$
 for $(x_1, x_2, x_3) = (1, 0, 1)$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$y = 0$$
 for $(x_1, x_2, x_3) = (0, 0, 1)$

$$y = 1$$
 for $(x_1, x_2, x_3) = (1, 1, 1)$

$$y = 0$$
 for $(x_1, x_2, x_3) = (1, 0, 1)$

- 5) Which of the following Boolean functions can be implemented using a perceptron? 1 point
 - **V** NOR
 - **✓** NAND
 - ✓ NOT
 - XOR

Yes, the answer is correct.

Score: 1

Accepted Answers:

NOR

NAND

NOT

(unit? unit=17&lesso n=31)

- Proof of
 Convergence
 of Perceptron
 Learning
 Algorithm
 (unit?
 unit=17&lesso
 n=32)
- Lecture
 Material for
 Week 1 (unit?
 unit=17&lesso
 n=33)
- Week 1
 Feedback
 Form: Deep
 Learning IIT
 Ropar (unit?
 unit=17&lesso
 n=35)

Week 2 ()

Week 3 ()

week 4 ()

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

Week 9 ()

week 10 ()

Week 11 ()

Week 12 ()

6) Which of the following threshold values of MP neuron implements AND Boolean **1 point** function? Assume that the number of inputs to the neuron is 7 and the neuron does not have any inhibitory inputs.

Yes, the answer is correct.

Score: 1

Accepted Answers:

7

7) Suppose we have a boolean function that takes 4 inputs x_1, x_2, x_3, x_4 ? We have **1 point** an MP neuron with parameter $\theta = 3$. For how many inputs will this MP neuron give output y = 1?

Yes, the answer is correct.

Yes, the Score: 1

Accepted Answers:

5

Consider points shown in the picture. The vector $\mathbf{w} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. As per this weight vector, the Perceptron algorithm will predict which classes for the data points x_1 and x_2 .

NOTE:

Download Videos ()

Books ()

Text
Transcripts
()

Problem Solving Session -July 2024 ()

$$egin{array}{c} x_1 = -1 \ x_1 = 1 \ x_2 = -1 \ x_2 = 1 \end{array}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$egin{array}{c} x_1 = -1 \ x_2 = 1 \end{array}$$

9) Consider the following table, where x_1 and x_2 are features (packed into a single **1 point** vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$) and y is a label:

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

Suppose that the perceptron model is used to classify the data points. Suppose further that the

weights ${f w}$ are initialized to ${f w}=\begin{bmatrix}1\\1\end{bmatrix}$. The following rule is used for classification,

$$y = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x} > 0 \\ 0 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x} < 0 \end{cases}$$

 $y = \begin{cases} 1 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x} > 0 \\ 0 & \text{if } \mathbf{w}^{\mathrm{T}} \mathbf{x} \leq 0 \end{cases}$ The perceptron learning algorithm is used to update the weight vector \mathbf{w} . Then, how many times the weight vector \mathbf{w} will get updated during the entire training process?

- 02
- 0 1
- 0
- Not possible to determine

Yes, the answer is correct.

Score: 1

Accepted Answers:

10) Which Boolean function with two inputs x1 and x2 is represented by the following **1** point decision boundary? (Points on boundary or right of the decision boundary to be classified 1)

- OAND
- OR
- OXOR
- O NAND

Yes, the answer is correct.

Score: 1

Accepted Answers:

OR

11) Choose the correct input-output pair for the given MP Neuron.

1 point

$$y = \left\{egin{array}{ll} 1, & ext{if} \;\; x_1 + x_2 + x_3 \geq 2 \ 0, & ext{otherwise} \end{array}
ight.$$

$$y=1$$
 for $(x_1,x_2,x_3)=(0,1,1)$

$$y=0$$
 for $(x_1,x_2,x_3)=(0,0,1)$

$$y=1$$
 for $(x_1,x_2,x_3)=(1,1,1)$

$$y = 0$$
 for $(x_1, x_2, x_3) = (1, 0, 0)$

Yes, the answer is correct.

Score: 1

Accepted Answers:

$$y = 1$$
 for $(x_1, x_2, x_3) = (0, 1, 1)$

$$y = 0$$
 for $(x_1, x_2, x_3) = (0, 0, 1)$

$$y = 1$$
 for $(x_1, x_2, x_3) = (1, 1, 1)$

$$y = 0$$
 for $(x_1, x_2, x_3) = (1, 0, 0)$

12) Suppose we have a boolean function that takes 4 inputs x1, x2, x3, x4? We have an **1** point MP neuron with parameter $\theta = 2$. For how many inputs will this MP neuron give output y = 1?

- 11
- 21
- 0 15
- 8

Yes, the answer is correct.

Score: 1

Accepted Answers:

11

13) We are given the following data:

1 point

x1	x2	y3
2	4	1
3	-1	-1
5	6	-1
2	0	1
-1	0	1
-2	-2	1

Can you classify every label correctly by training a perceptron algorithm? (assume bias to be 0 while training)

- Yes
- No

Yes, the answer is correct.

Score: 1

Accepted Answers:

No

14) We are given the following dataset with features as (x1,x2) and y as the label (-1,1). **1** point If we apply the perception algorithm on the following dataset with w initialized as (0,0). What will

be the value of w when the algorithm converges? (Start the algorithm from (2,2)

x1	x2	y
2	2	1
2	-2	1
-2	1	-1

- (-2,2)
- (2,1)
- (2,-1)
- None of These

Yes, the answer is correct.

Score: 1

Accepted Answers:

(2,-1)

15) Consider points shown in the picture. The vector w is (-1,0). As per this weight 1 point vector, the Perceptron algorithm will predict which classes for the data points x1 and x2.

- 2x1=1
- ✓ x2=1
- ✓ x1=-1
- 2=-1

Yes, the answer is correct.

Score: 1

Accepted Answers:

x2=1

x1 = -1

x5 is inhibitory input. For input (1,1,1,0,1) what will be the value of y?

$$y = 0$$

y=1 since $heta \geq 3$

y=1/2 Insufficient information	
Yes, the answer is correct. Score: 1	
Accepted Answers: $y=0$	
17) An MP neuron takes two inputs x1 and x2. Its threshold is $\theta=0$. Select all the boolean functions this MP neuron may represent.	1 point
OAND	
ONOT	
OR	
■ NOR	
Yes, the answer is correct. Score: 1	
Accepted Answers: NOR	
18) What is the output of a perceptron with weight vector ${f w}=[2$ -3 $1]$ and bias $b=-2$ when the input is ${f x}=[1$ 0 $-1]$?	1 point
O 0	
\bigcirc 1	
-1	
O 2	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
-1	
19) What is the "winter of AI" referring to in the history of artificial intelligence?	1 point
 The period during winter when AI technologies are least effective due to cold temperatures 	
A phase marked by decreased funding and interest in AI research.	
The season when AI algorithms perform at their peak efficiency.	
A period characterized by rapid advancements and breakthroughs in Al technolog	gies.
Yes, the answer is correct. Score: 1	
Accepted Answers: A phase marked by decreased funding and interest in AI research.	