代数系统

由集合上定义若干个运算而组成的 系统我们通常称它为代数系统。它在计 算机科学中有着广泛的应用。

第五章 代数结构

- 代数结构是一类特殊的数学结构,它由 集合上定义若干个运算而组成系统。本 章主要讲授运算的性质及一些具有特殊 性质的代数系统。
- 重点是群、同态与同构。要求能够掌握 各种代数系统的特性,能够证明一个代 数系统是群,并能够证明两个代数系统 是同态或同构的。

学习《代数结构》这一章的要求

一、学习目的与要求 本章从一般代数系统的引入出发,研究 一些特殊的代数系统中运算的性质。通 过本章的学习使学生了界代数系统的结 构与性质。

- 3/36页 -

- 二、知识点
- 1. 代数系统的引入,运算的性质:封闭性、结合性、分配性、交换性;
- 2. 主要的代数系统:广群、半群、独异点、群、子群;代数系统之间的关系;
- 3. 交换群和循环群;
- 4. 陪集、拉格朗日定理;
- 5. 同态映射、同构映射;
- 6. 环、同态象、域。

三、要求

1. 识记

运算的封闭性、交换性、结合性、幺元、零元、逆元、等幂元的识别。

2. 领会

广群、半群、独异点、群、子群;代数系统之间的关系,主要的性质定理及其证明。

学时分配

学时	内容
2	5-1 代数系统的引入
	5-2 运算及其性质
2	5-3 半群
2	5-4 群和子群
2	5-5 阿贝尔群和循环群
2	5-6 置换群与伯恩赛德定理
2	5-7 陪集与拉格朗日定理
4	5-8 同态与同构
2	5-9 环与域

本章将从一般代数系统的引入出发, 研究一些特殊的代数系统,而这些代数 系统中的运算具有某些性质,从而确定 了这些代数系统的数学结构。

5-1 代数系统的引入

一、集合上的运算及封闭性

一元运算:

$$f_1: a \to \frac{1}{a}, a \in R, a \neq 0$$

$$f_2: x \rightarrow [x], x \in \mathbb{R}$$

$$f_3: a \rightarrow -a, a \in R$$

以上运算都是集合R上的一元运算。

二元运算:

$$f_4: a, b \rightarrow a+b, \quad a, b \in \mathbb{R}$$

可看作:

$$f_4: \mathbb{R}^2 \to \mathbb{R}$$

$$f_5: a,b \to a \bullet b, \quad a,b \in R$$

三元运算: f_6 : 三种颜色 \rightarrow 三种颜色混合色

A→A A是各种颜色的集合。

将R上的每两 个数映射成R中的 一个数。

很容易举出不封闭运算的例子:一架自动售货机,能接受一角 硬币和二角伍分硬币,而所对应的商品是桔子水(瓶)、可口可乐 (瓶)和冰淇淋(杯)。 当人们投入上述硬币的任何两枚时,自动售 货机将按表 5-1.1 所示的供应相应的商品。

表格左上角的记号 * 可以理解为一个二元运算的运算符。这个例子中的二元运算 * 就是集合{一角硬币,二角伍分硬币}上的不封闭运算。

表 5-1.1

*	一角硬币	二角任分硬币	
一角硬币	桔子水	可口可乐	
二角伍分硬币	可口可乐	冰洪淋	

运算结果不在集合 {一角硬币,二角伍分硬币}中 设 $A=\{$ 红色,黄色,蓝色 $\}$ f_7 : 三种颜色 \rightarrow 三种颜色混合色 f_7 是不封闭的。

 f_8 是I上的除法运算, f_8 是不封闭的。

定义5-1.1 如果 * 为 A^n 到B的一个函数,则称 * 为集合A上的n元运算(*operater*)。如果 B \subseteq A,则称 该n元运算在A上封闭。

二、代数系统

定义5-1.2 一个非空集合A连同若干个定义在该集合上的运算 f_1, f_2, \cdots, f_k 所组成的系统称为一个代数系统(代数语物),

记为<A, f₁,f₂,···,f_k>。

定义5-1.2°代数结构是由以下三个部分组成的数学结构:

- (1) 非空集合S, 称为代数结构的载体。
- (2) 载体S上的若干运算。
- (3) 一组刻划载体上各运算所满足性质的公理。

代数结构常用一个多元序组<S,*, Δ ,...>来表示,其中 S是载体,*, Δ ,....为各种运算。有时为了强调S有某些元素地位特殊,也可将它们列入这种多元序组的末尾。

如正整数集合 I_+ 以及在该集合上的普通加法。运算"+"组成一个代数系统 $\langle I_+, + \rangle$ 。又如,一个有限集 S,由 S 的幂集 $\mathcal{P}(S)$ 以及在该幂集上的集合运算"U"、" Ω "、" Ω "、" Ω "、" Ω "组成一个代数系统 $\langle \mathcal{P}(S), U, \Omega, \sim \rangle$ 。 虽然,有些代数系统具有不同的形式,但是,它们之间可能有一些共同的运算规律。

例如,考察代数系统 $\langle I, + \rangle$,这里I是整数集合,+是普通 的加法运算。很明显,在这个代数系统中,关于加法运算,具有以 下三个运算规律,即对于任意的 $x_i, y_i, z \in I$,有

(1)
$$x+y \in I$$

(封闭性)

$$(2) x+y=y+x$$

(交換律)

(3)
$$(x+y)+z=x+(y+z)$$
 (结合律)

容易找到与 $\langle I, + \rangle$ 具有相同运算规律的一些代数系统,如 表 5-1.2 所示。

表 5-1.2

	$\langle I, \cdot \rangle$	⟨R, +⟩	$\langle \mathscr{P}(S), \; U \rangle$	(<i>ቃ(</i> S), በ}
集合	I 为整数集合	R为实数集合	9(S)是8的幂集	9(8)是8的幂集
运算	• 为普通乘法	+为普通加法	U 为集合的"并"	□ 为集合的"交"
封闭性	$x \cdot y \in I$	$x+y\in R$	$A \cup B \in \mathscr{F}(S)$	$A \cap B \in \mathscr{P}(S)$
交換律	$x \cdot y = y \cdot x$	x+y=y+x	$A \cup B = B \cup A$	$A \cap B = B \cap A$
结合律	$egin{array}{c} (x\cdot y)\cdot z \ = x\cdot (y\cdot z) \end{array}$	(x+y)+z = x+(y+z)	$(A \cup B) \cup C \\ = A \cup (B \cup C)$	$(A \cap B) \cap C$ = $A \cap (B \cap C)$

虽然集合不同,运算不同,但是它们是一些具有共同运算规律的运算,研究 < I, + > 就相当于研究 < I, * > , < R, + > , < $\wp(S)$, \square >

5-2 运算及其性质

在前面考察几个具体的代数系统时,已经涉及到我们 所熟知的运算的某些性质。下面,着重讨论一般二元运算 的一些性质。

一、封闭性

定义5-2.1

设*是定义在集合A上的二元运算,如果对于任意的 $x,y \in A$,都有 $x*y \in A$,则称二元运算*在A上是封闭的。

例题1 设A-{ $x|x=2^n,n\in N$ },问乘法运算是否封闭? 对加法运算呢?

解 对于任意的 $2^r, 2^s \in A$,r, $s \in N$,因为 $2^r \cdot 2^s = 2r + s \in A$ 所以乘法运算是封闭的。而对于加法运算是不封闭的,因为至少有 $2+2^2=6 \notin A$

二、可交换性

定义5-2.2

设*是定义在集合A上的二元运算,如果对于任意的 $x,y \in A$,都有x*y=y*x,则称二元运算*在A上是可交换的。

例题2 设Q是有理数集合, \triangle 是Q上的二元运算,对任意的 $a,b \in \mathbb{R}$, $a \triangle b = a + b - a \cdot b$,问运算 \triangle 是否可交换。

解因为

 $a \triangle b=a+b-a\cdot b=b+a-b\cdot a=b \triangle a$

所以运算 Δ 是可交换的。

三、可结合性

定义5-2.3

设*是定义在集合A上的二元运算,如果对于任意的 $x, y, z \in A$,都有(x*y)*z=x*(y*z),则称二元运算*在A上是可结合的。

例如**R**上的加法运算和乘法运算都是可结合运算, **R** 上的减法运算和除法运算都是不可结合运算

例题3 设A是一个非空集合,★是A上的二元运算,对于任意 $a,b\in A$,有a★b=b,证明★是可结合运算。

证明 因为对于任意的 $a,b,c \in A$ $(a \star b) \star c = b \star c = c$ 而 $a \star (b \star c) = a \star c = c$ 所以 $(a \star b) \star c = a \star (b \star c)$

四、可分配性

定义5-2.4 设*, Δ 是定义在集合A上的二元运算,如果对于任意的x, y, z \in A,都有

$$x*(y \triangle z) = (x*y) \triangle (x*z)$$

 $(y \triangle z)*x = (y*x) \triangle (z*x)$

则称运算*在A上对运算△是可分配的。

*	æ	β	
G	α	β	
β	ß	œ	

-		
_ △	æ	β
æ	Œ	as .
β	Œ	в

解 容易验证运算 \triangle 对于运算 \bullet 是可分配的。但是运算 \bullet 对于运算 \triangle 是不可分配的,因为

$$\beta * (a \triangle \beta) = \beta * \alpha = \beta$$

耐

$$(\beta * \alpha) \triangle (\beta * \beta) = \beta \triangle \alpha = \alpha_0$$

验证运算△对于运算*是可分配的。

从*和△的运算表中可以看出*和△两种运算都是可交换的。

故只须验证
$$\alpha \triangle (\alpha^*\alpha) = (\alpha \triangle \alpha)^*(\alpha \triangle \alpha)$$

$$\alpha \triangle (\alpha * \beta) = (\alpha \triangle \alpha) * (\alpha \triangle \beta)$$

$$\alpha \triangle (\beta * \beta) = (\alpha \triangle \beta) * (\alpha \triangle \beta)$$

$$\beta \triangle (\alpha^* \alpha) = (\beta \triangle \alpha)^* (\beta \triangle \alpha)$$

$$\beta \triangle (\alpha * \beta) = (\beta \triangle \alpha) * (\beta \triangle \beta)$$

$$\beta \triangle (\beta * \beta) = (\beta \triangle \beta) * (\beta \triangle \beta)$$

$$\alpha \triangle (\alpha^*\alpha) = \alpha \triangle \alpha = \alpha$$
 $(\alpha \triangle \alpha)^*(\alpha \triangle \alpha) = \alpha^*\alpha = \alpha$

$$\alpha \triangle (\alpha * \beta) = \alpha \triangle \beta = \alpha$$
 $(\alpha \triangle \alpha) * (\alpha \triangle \beta) = \alpha * \alpha = \alpha$

$$\alpha \triangle (\beta * \beta) = \alpha \triangle \alpha = \alpha$$
 $(\alpha \triangle \beta) * (\alpha \triangle \beta) = \alpha * \alpha = \alpha$

$$\beta \triangle (\alpha^* \alpha) = \beta \triangle \alpha = \alpha$$
 $(\beta \triangle \alpha)^* (\beta \triangle \alpha) = \alpha^* \alpha = \alpha$

$$\beta \triangle (\alpha^*\beta) = \beta \triangle \beta = \beta$$
 $(\beta \triangle \alpha)^* (\beta \triangle \beta) = \alpha^*\beta = \beta$

$$\beta \triangle (\beta * \beta) = \beta \triangle \alpha = \alpha$$
 $(\beta \triangle \beta) * (\beta \triangle \beta) = \beta * \beta = \alpha$

五、吸收律

定义5-2.5 设*, Δ 是定义在集合A上的两个可交换二元运算,如果对于任意的 $x, y \in A$,都有

$$x*(x \Delta y)=x$$

 $x \Delta (x*y)=x$

则称运算*和运算△满足吸收律。

例题5 设集合N为自然数全体,在N上定义两个二元运算*和 \star ,对于任意x, y \in N,有

$$x*y=max(x, y)$$

 $x \neq y=min(x, y)$

验证运算*和★的吸收律。

解 对于任意a,b∈N

$$a*(a \bigstar b) = max(a, min(a, b)) = a$$

$$a \bigstar (a*b) = min(a, max(a, b)) = a$$

因此,*和★满足吸收律。

六、等幂律

定义5-2.6

设*是定义在集合A上的一个二元运算,如果对于任意的 $x \in A$,都有x*x=x,则称二元运算*在A上是等幂的。

例题6 设 \wp (S)是集合S的幂集,在 \wp (S)上定义的两个二元运算,集合的"并"运算 \cup 和集合的"交"运算 \cap ,验证是 \cup 、 \cap 等幂的。

解

对于任意的 $A \in \wp(S)$,有 $A \cup A = A$ 和 $A \cap A = A$,因此运算 \cup 和 \cap 都满足等幂律。

小结 运算及其性质

定义5-2.1~6 设*和 Δ 为集合 Λ 上的二元运算:

若 \forall x \forall y(x,y∈A \rightarrow x*y∈A),

则称*在A上封闭。

若 $\forall x \forall y (x,y \in A \rightarrow x*y=y*x)$,

则称*满足交换律。

则称*满足结合律。

若 $\forall x \forall y \forall z (x,y,z \in A \rightarrow x*(y \Delta z)=(x*y) \Delta (x*z))$,

则称*对Δ满足分配律。

若 $\forall x \forall y (x,y \in A \rightarrow x*(x \Delta y) = x,x \Delta (x*y) = x)$,

则称*和Δ满足吸收律。

若 $\forall x (x \in A \rightarrow x*x=x)$,

则称*满足等幂律。

七、幺元

定义5-2.7 设*为集合A上的二元运算:

若 ∃ e_l ∀ $x(e_l,x\in A\rightarrow e_l*x=x)$,则称 e_l 为A中的左幺元。

若 ∃ e_r ∀ $x(e_r,x \in A \rightarrow x*e_r=x)$,则称 e_r 为A中的右幺元。

若∃e∀ $x(e,x∈A\to e*x=x*e=x)$,则称e为A中的幺元。

见P-180页例题7。

例题7 设集合S={α,β,γ,δ},在S上定义的两个二元运算*和★ 如表5-2.2所示。试指出左幺元或右幺元。

*	α		3 S	γ
α	δ	α	β	γ
β	α	β	γ	δ
γ	α	β	γ	γ
δ	α	β	γ	δ

*	α	_	3 S	γ
α	α	β	δ	γ
β	β	α	γ	δ
γ	γ	δ	α	β
δ	δ	δ	β	γ

解由表**5-2.2**可知β,δ都是S中关于运算*的左幺元,而α是S中关于运算★的右幺元。

定理5-2.1 代数结构<A, *>有关于*运算的幺元e, 当且仅当它同时有关于*运算的左幺元e,和右幺元e, 。并且其所含幺元是唯一的,即e,= e,= e。

证明: 先证左幺元 e_1 =右幺元 e_r = e_r

$$\mathbf{e_l} = \mathbf{e_l} * \mathbf{e_r} = \mathbf{e_r} = \mathbf{e}$$

再证幺元e是唯一的

设还有一个幺元e'∈A,则

$$e' = e' * e = e$$

八、零元

定义5-2.8 如果 $\theta_l \in A$,满足:对一切 $\mathbf{x} \in A$,都有 $\theta_l * \mathbf{x} = \theta_l$

则称元素θ₁ 为左零元。

如果 θ_{r} ∈ **A**,满足:对一切**x**∈**A**,都有

 $\mathbf{x} * \mathbf{\theta_r} = \mathbf{\theta_r}$

则称元素θ, 为右零元。

如果 θ ∈A且对任意x∈A,都有

$$x*\theta=\theta*x=\theta$$

则称元素 θ 为代数结构<A,*>(关于*运算)的零元(zero)。

例题8 表5-2.3定义的二元运算

例题8 设集合S={浅色,深色},定义在S上的一个二元运算* 如表5-2.3所示。试指出零元和幺元。

*	浅色	深色
浅色	浅色	深色
深色	深色	深色

表5-2.3

解

深色是S中关于运算*的零元,浅色是S中关于运算*的幺元。

定理5-2.2 代数结构<A,*>有关于*运算的零元 θ ,当且仅当它同时有关于*运算的左零元 θ ₁和右零元 θ ₂。并且其所含零元是唯一的,即 θ ₁= θ ₂= θ 。

定理5-2.3 如果代数结构<A,*>有关于*运算的零元 θ 和幺元e,且集合A中元素个数大于2,则 $\theta\neq e$ 。

□ 证明:用反证法:

反设幺元e =零元 θ ,则对于任意 $x \in A$,必有

$$\mathbf{x} = \mathbf{e} * \mathbf{x} = \mathbf{\theta} * \mathbf{x} = \mathbf{\theta} = \mathbf{e}$$

于是,推出A中所有元素都是相同的,矛盾。

九、逆元

定义5-2.9 设代数结构<A,*,e>中* 为二元运算,e为 么元,a,b 为A中元素,若b*a=e,那么称b为a的左逆元,a为 b的右逆元。若a*b=b*a=e,那么称a(b)为b(a)的逆元 (inverse elements)。

x的逆元通常记为 x^{-1} ;但当运算被称为"加法运算"(记为+)时,x的逆元可记为-x。

一般地,一个元素的**左逆元**不一定等于它的**右逆元**。一个元素可以有**左逆元**不一定有**右逆元**。甚至一个元素的**左**(右)逆元不一定是唯一的。

P-182页例题9: 先找出幺元,再根据幺元所在的行和 列找出左、右逆元。

例题**9** 设集合**S**={ α , β , γ , δ , ζ },定义在**S**上的一个二元 运算*如表**5-2.4**所示。

试指出代数系统**<S**,*>中各个元素的左、右逆元情况。

	老	5-2.4			
+	· a		γ	δ	
a	a	В	'n	ð	2
₽	β	δ	α	7	3
γ	γ	a a	β	66	p
ð	ð	a	7	ð	Y
5		8	a	Y	

解 α 是幺元; β 的左逆元和右逆元都是 γ ; 即 β 和 γ 互

为逆元; δ 的左逆元是 γ 而右逆元是 β ; β 有两个左逆元

 γ 和 δ ; ζ 的右逆元是 γ ,但 ζ 没有左逆元。

定理5-2.4 设<A,*>有么元e,且运算*满足结合律,那么当A中元素x有左逆元l及右逆元r时,l=r,它们就是x的逆元。并且每个元素的逆元都是唯一的。

□ 证明: 先证左逆元=右逆元
 设a,b,c,且b是a的左逆元, c是b的左逆元。
 因为: (b*a)*b=e*b=b
 所以: e=c*b=c*((b*a)*b)
 = (c*(b*a))*b
 = ((c*b))*a)*b

= ((e) *a) *b =a*b (b也是a的右逆元)

再证逆元是唯一的

设a有两个逆元
$$b_1$$
和 b_2 ,则有
$$b_1 = b_1 * e = b_1 * (a * b_2)$$

$$= (b_1 * a) * b_2$$

$$= e * b_2 = b_2$$

例题**10** 试构造一个代数系统,使得其中只有一个元素具有逆元。

解

设m,n \in I,T = {x|x \in I,m \leq x \leq n},那么,代数系统 <T,max>中有一个幺元是m,且只有m有逆元,因为m=max(m,m)。

例题11 对于代数系统<R,·>, 这里R是实数的全体,是普通的乘法运算,是否每个元素都有逆元。

解

该代数系统中的幺元是1,除了零元素**0**外,所有的元素都有逆元。

例题12 对于代数系统 $\langle N_k, +_k \rangle$,这里 $N_k = \{0,1,2,...,k-1\}$, $+_k$ 是定义在 N_k 上的模k加法运算,定义如下: 对于任意 $x,y \in N_k$

- 35/36页 -

$$x +_k y = \begin{cases} x+y & \text{ $ \ddot{x}+y < k $} \\ x+y-k & \text{ $ \ddot{x}+y \ge k $} \end{cases}$$

试问是否每个元素都有逆元。

解

可以验证, $+_k$ 是一个可结合的二元运算, N_k 中关于运算 $+_k$ 的幺元是0, N_k 中的每一个元素都有唯一的逆元,即0的逆元是0,每个非零元素x的逆元是k-x。

十、从运算表中看运算具有的性质

- 1)运算*具有封闭性,当且仅当运算表中的每个元素都属于 A。
- 2)运算*具有可交换性,当且仅当运算表关于主对角线是对称的。
- 3)运算*具有等幂性,当且仅当运算表的主对角线上的每一元素与它所在行(列)的表头元素相同。
- 4) A中关于运算*具有零元,当且仅当该元素所对应的行和列中的元素都与该元素相同。
- 5) A中关于运算*具有幺元,当且仅当该元素所对应的行和列依次与运算表的行和列相一致。
- 6)设A中关于运算*具有幺元,a和b互逆,当且仅 当位于a所在行和b所在列的元素及b所在行和a 所在列的元素都是幺元。