ELG 5218 - Uncertainty Evaluation in Engineering Measurements and Machine Learning Introduction

Miodrag Bolic

Health Devices Research Group (HDRG)
Computational Analysis and Acceleration Research Group (CARG)
School of Electrical Engineering and Computer Science
University of Ottawa

January 8, 2021

Outline

- Introduction
- 2 Engineering approaches
 - Divergence between the mainstream ML and engineering
 - Uncertainty
- **3** What we are going to learn in this course
- 4 References

About the course

This course is about:

- Probabilistic and generative models
 - If a system can learn efficiently with a small amount of data ⇒ strong modelling assumptions
- Bayesian approach
- Problems that engineers have when dealing with ML:
 - noise
 - small data
 - data is not independent
 - uncertainty

About the course

Introduction

This course is **not** about:

- Supervised deep learning
 - Algorithms still struggle with knowing what they don't know
 - They do not know if they failed
- Dealing with introductory ML examples

Some practical problems

- Security: Detecting and classifying drones
 - 1 Sensors: radars, cameras
 - 2 Real time processing
 - 3 Difficult to collect data for training
 - 4 Confidence in our estimates and classification should increase as we receive more data
 - 5 Algorithms need to be interpretable to allow for decision making
- Medical: Classifying breathing of a person remotely
 - Sensor: Thermal camera, camera or radar
 - Same problems as items 2-5 above
 - We first need to detect the person, his/her chest or nose therefore we might even miss the signal
 - Everyone breathes differently and it is very difficult to train supervised ML model

Framework - engineering approach

Figure: The workflow of Uncertainty Quantification Baudin et al. [2015]

Framework - ML approach

Engineering approaches Divergence between the mainstream ML and engineering

Figure: The workflow of probabilistic modelling

Sensors

Engineering approaches Divergence between the mainstream ML and engineering

- Sensor data is:
 - lacksquare Streaming \Rightarrow Need to handle issues of streaming data
 - lacksquare Dependent \Rightarrow Time series models
 - Noisy ⇒ Model need to include known info about the noise (Type, standard deviation)

Data for training

5 5 The state of t

- Data is:
 - Small data
 - Often, very difficult to collect and difficult to label
 - Often, collected from several small experiments that differ from each other making it very difficult to train (need homogeneous data to train the network). Examples:
 - Data is collected with different sensors
 - Data is collected in different environment ⇒ different noise

Understanding the phenomenon

- We build models in engineering to understand the phenomenon in order to be able to design a proper system or to be able to make, or explain the decisions
- Therefore, the models need to be:
 - Interpretable
 - Provide uncertainties in the estimates

Uncertainties and AI

Engineering approaches Uncertainty

Probabilistic methods can be used to:

- Make decisions given partial information about the world
- Account for noisy sensors or actuators
- Explain phenomena not part of the models
- Describe inherently stochastic behaviour in the world

Topics I

What we are going to learn in this course

- 1 Models, presenting uncertainty
- 2 Probabilistic reasoning Bayesian regression Bayesian logistic regression
- 3 Problem with analytical solutions. Inference: Variational inference, MCMC Probabilistic programming
- 4 Bayesian models: hierarchical and mixture models
- 5 Gaussian processes regression and classification
- 6 Clustering with uncertainties: probabilistic PCA, VAR, normalizing flows
- 7 Time series models, forecasting and classification
 - Models: ARIMA, state space, HMM, RNN, attention
 - filtering: Kalman filters, particle filters

Topics II

What we are going to learn in this course

- Classification of time series: shapelets, probabilistic approaches, Early classification
- Forecasting
- 8 Sensor fusion
- 9 Stacking and merging models
- 10 Integration of physical and machine learning models
- 11 Sequential decision making

Software

What we are going to learn in this course

Examples will be mainly in Julia

- Probabilistic machine and deep learning Turing, Flux, Gen, ForneyLab
- Optimization
- Combining NN and differential equations

Optionally Python

- Probabilistic machine and deep learning
 Pyro based on Pytorch or
 NumPyro based on JAX
- Time series sktime gluonts
- More to come

Why new language?

What we are going to learn in this course

New ML tools should have - please see The Next Generation of Machine Learning Tools :

- fine-grained control flow use
- non-standard optimization loops
- higher-order differentiation as a first-class citizen
- probabilistic programming as a first-class citizen
- support for multiple heterogeneous accelerators in one model
- seamless scalability from a single machine to gigantic clusters

Grades

What we are going to learn in this course

- Assignments 30%
- Scribing 20%
- Midterm 15%
- Final 35%

Books I

What we are going to learn in this course

No text book

Probabilistic machine learning

- Murphy, Kevin P. 2021. Probabilistic Machine Learning: An Introduction, MIT press.
- Bayesian Reasoning and Machine Learning by David Barber.
- Bayesian Methods for Hackers by Cameron Davidson-Pilon.
- J. Winn, C. Bishop, Model Based Machine Learning
- N. D. Goodman, J. B. Tenenbaum, and The ProbMods Contributors (2016). Probabilistic Models of Cognition (2nd ed.)

Bayesian analysis

■ R. McElreath, Statistical Re-thinking: A Bayesian Course with Examples in R and Stan, Chapman and Hall, CRC, 2015,

Books II

What we are going to learn in this course.

- A. Gelman, et al, Bayesian Data Analysis, 3rd edition, Chapman and Hall, CRC Texts in Statistical Science, 2013.
- C. Davidson-Pilon, Bayesian Methods for Hackers, Addison-Wesley Data and Analytics, 2015,
- C. Bailer-Jones, Practical Bayesian Inference: A primer for Physical Scientists, Cambridge University Press, 2017.

References I

References

Michael Baudin, Anne Dutfoy, Bertrand looss, and Anne-Laure Popelin. Openturns: an industrial software for uncertainty quantification in simulation, 2015.

Recommended videos

Reference

- Bayesian Inference, part 1 Shakir Mohamed MLSS 2020, Tübingen
- Keynote: Machine Learning and A.I. At Uber Zoubin Ghahramani