Le Gohebel Lorys, Mechineau Alexandre

Sommaire

Etude de l'équation de la chaleur par la méthode des différences finies	
Etude des graphes de la solution approchée Uh(x,T) pour x [0,1] à t=T	dans
T=0.0004:	
T=0,0016:	4
T=0,0024:	5
T=0,016:	6
Conclusion	7
Etude de l'erreur max des deux schémas	8
Erreur du schéma explicite :	8
Erreur du schéma implicite :	9
Conclusion : Convergence	10
Annexe :	10

Etude de l'équation de la chaleur par la méthode des différences finies

On rappel l'équation de la chaleur :

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \ \forall x \in]0,1[, \ \forall t \in]0,T[\\ u(0,t) = u_g, \ \forall t \in [0,T]\\ u(1,t) = u_d, \ \forall t \in [0,T]\\ u(x,0) = u_0(x), \ \forall x \in [0,1] \end{cases}$$

Et on étudie cette équation avec les conditions suivantes :

$$\begin{cases} f(x,t) = 0, \\ u_0(x) = \sin(\pi x) + \frac{1}{4}\sin(10\pi x), \\ u_g = 0, \ u_d = 0. \end{cases}$$

Pour étudier cette équation on utilisera 2 schémas :

-le schéma explicite :

$$U^{(j+1)} = U^{(j)} \Delta t A_h U^{(j)} + \Delta t C^{(j)}, j = 0, ..., M$$
 (1)

-le schéma implicite :

$$U^{(j)} = U^{(j-1)} \Delta t A_h U^{(j)} + \Delta t C^{(j)}, j = 1, ..., M + 1$$
 (2)

On remarque que pour ces 2 schémas les conditions nous donne $C^{(j)}$ =0 pour tout j.

Etude des graphes de la solution approchée Uh(x,T) pour x dans [0,1] à t=T

On fixe N à 100 et Δt à 0.00001, ce qui nous donne les différents graphes en prenants des T différents :

T=0.0004:

Ici on reconnaît bien la fonction $U_0(x)$ et on voit qu'avec ce N et ce Δt fixé les solution approchées des 2 schémas collent bien à la solution exacte.

T=0,0016:

Ici on voit qu'à T=0.0016 le graphe de la fonction $U_h(x,T)$ commence à se lisser pour se rapprocher de la fonction $sin(\pi x)$ c , avec c une constante ≈ 1 .

T=0,0024:

Pareil à T=0.0024,

T=0,016:

A T=0.016 le $sin(10\pi x)$ n'est plus visible car $U_h(x,T)$ suis la solution exacte qui est définit par :

$$u(x,t) = \sin(\pi x) \exp(-\pi^2 t) + \frac{1}{4} \sin(10\pi x) \exp(-100\pi^2 t)$$

donc a T=0.016, exp(-100 π^2 T)=1.38e-7 et exp(- π^2 T)=0.85. Ce qui donne ce graphe de la forme 0.85*sin(πx).

Conclusion

Les deux schémas sembles converger vers la solution exacte avec N et Δt bien choisis, ces conditions seront étudiés dans la deuxième partie.

Etude de l'erreur max des deux schémas

Soit T=0.016, on fait varier h et Δt et regarde l'évolution de l'erreur max.

Erreur du schéma explicite :

On fixe $\Delta t = 0.0001$ et on fait varier h :

h	0.1	0.05	0.015	0.013	0.01
erreur	1.03507e-3	1.55059e-2	2.58991e-2	1.94493e+17	4.55092e+59

On fixe maintenant h=0.01 et on fait varier Λt :

Δt	0.00001	0.00004	0.00005	0.00006	0.0001
erreur	3.05385e-4	1.07464e-3	1.54246e-3	1.34328e+22	4.55092e+59

On voit d'après ces 2 tableaux que l'erreur max du schéma explicite dépend de h et de Δt .

En effet à Δt fixé l'erreur est stable pour un h aux alentour de $h \ge \sqrt{2} \Delta t$.

On fait la même observation en fixant cette fois h et en faisant varier Δt , l'erreur est stable lorsque $\Delta t \leq (h^2/2)$.

On reconnaît la condition CFL $(\Delta t/h^2) \le (1/2)$.

Et on peut supposer que le schéma converge sous cette condition.

Erreur du schéma implicite :

On fixe $\Delta t = 0.0001$ et on fait varier h :

h	0.1	0.05	0.015	0.013	0.01
erreur	1.16546e-3	2.28277e-2	2.58545e-2	3.15007e-2	5.08564e-3

On fixe maintenant h=0.01 et on fait varier Δt :

Δt	0.00001	0.00004	0.00005	0.00006	0.0001
erreur	1.20663e-3	2.53140e-3	2.96574e-3	3.39728e-3	5.08564e-3

Pour le schéma implicite on observe que l'erreur ne semble pas dépendre de h et de Δt .

En effet que se soit en fixant h et en faisant varier Δt ou l'inverse, l'erreur reste stable.

On peut donc supposer que le schéma implicite converge sans condition.

Conclusion: Convergence

D'après les tableaux et en accord avec les résultats vu en cour disant que si la solution u de l'équation est C^4 relativement à x et C^2 relativement à t alors sous la condition CFL ($\Delta t/h^2$) \leq (1/2) le schéma explicite est convergent d'ordre 2 en espace et 1 en temps.

Ici ont a bien la solution exacte qui est C^4 relativement à x car somme de fonctions sin qui sont C^* et C^2 relativement à t car somme de fonctions exp qui sont C^* .

De plus, d'après les tableaux et en accord avec les résultats vu en cour, le schéma implicite est également convergent d'ordre 2 en espace et 1 en temps car la solution est C^4 relativement à x et C^2 relativement à t mais sans condition sur h et sur Δt .

Annexe: