L2 - Techniques mathématiques EEA - HAE304X

Feuille de TD nº 2

Primitives, intégrales, sommes de Riemann

Exercice 1

Déterminer les primitives suivantes

1.
$$\int xe^{x^{2}}dx$$
2.
$$\int \frac{\ln|x|}{x}dx$$
3.
$$\int \frac{dx}{x\ln|x|}$$
4.
$$\int \frac{\sin x}{1+\cos^{2}x}dx$$
5.
$$\int \ln|x|dx$$
6.
$$\int x\ln|x|dx$$
7.
$$\int xe^{3x}dx$$
8.
$$\int \frac{dx}{(2x+3)^{2}}$$
9.
$$\int \frac{dx}{x^{2}+4}$$
10.
$$\int \frac{dx}{2x^{2}+8x+10}$$
11.
$$\int \frac{2x+4}{2x^{2}+8x+10}dx$$
12.
$$\int \frac{2x+5}{2x^{2}+8x+10}dx$$
13.
$$\int \frac{dx}{\sqrt{4-x^{2}}}$$

Exercice 2

Calculer les intégrales suivantes :

1.
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$
 2. $\int_{0}^{1} x^2 \arctan x \, dx$ 3. $\int_{-1}^{1} \sqrt{1-x^2} \, dx$

Exercice 3

Calculer les intégrales suivantes :

1.
$$\int_0^{\pi/2} \sin^2 x \cos^2 x \, dx$$
 2. $\int_0^{\pi/4} \sin^4 x \, dx$ 3.(*) $\int_0^{\pi/3} \sin^3 x \cos^2 x \, dx$

Exercice 4

(*)Calculer de deux manières différentes les intégrales

$$I = \int_0^{+\infty} e^{-t} \cos t \, dt \quad \text{et} \quad J = \int_0^{+\infty} e^{-t} \sin t \, dt.$$

Exercice 5

Déterminer les primitives des fractions rationnelles suivantes :

1.
$$\frac{1}{x(x+1)}$$
 2. $\frac{1}{x^2(x^2+1)}$ 3. $\frac{x}{x^2-4}$ 4. $\frac{x^3}{x^2-4}$ 5. $\frac{1}{(x-1)^2(x+2)}$ 6. $\frac{x^4}{x^3-x^2+x-1}$

Exercice 6 (Sommes de Riemann)

Calculer les limites des sommes de Riemann suivantes :

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k^2}} , \quad (*)T_n = \sum_{k=1}^n \frac{1}{\sqrt{4n^2 - k^2}} , \quad (*)U_n = \sum_{k=1}^n \frac{k}{n^2} \ln(1 + \frac{k}{n}) .$$

Exercice 7

Une application

Calculer la valeur efficace sur l'intervalle [0,1] du signal $s(t) = \frac{1}{2t+3}$.

On rappelle que la valeur efficace d'un signal s(t) sur l'intervalle [0,T] est Veff $=\sqrt{\frac{1}{T}\int_0^T s^2(t) dt}$.

Dérivées partielles

Exercice 8

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x \sin y$. Calculer $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$.

Intégrales doubles

Exercice 9 Calculer
$$I = \iint_{[0,1]\times[0,1]} \frac{1}{1+x+y} \, dx \, dy$$
.

Exercice 10

Soit Δ , le domaine du plan délimitée par les paraboles d'équations $y=x^2$ et $x=y^2$.

- a) Calculer $I = \iint_{\Delta} xy \, dx \, dy$. b) Calculer l'aire de Δ .

Exercice 11

On consière le disque centré en O et de rayon $R:D(O,R)=\{(x,y)\in\mathbb{R}^2,\ x^2+y^2\leq R^2\}.$ Retrouver le fait que son aire vaut πR^2 :

- a) en réalisant un découpage par tranches verticales de ce disque.
- b) en utilisant les coordonnées polaires.

Exercice 12
$$\text{Calculer } I = \iint_{D(O,1)} \frac{1}{1+x^2+y^2} \, dx \, dy \quad (D(O,1) \text{ est le disque unité}).$$