Your Orders

Orders

Buy Again

"Buy Again" Market Basket Analysis

Springboard Data Science Career Track - Capstone One

The problem

"Buy again" recommendations are not always that accurate and timely, even for frequently purchased items.

Iy it again in Home

O FIELMS

O FIELMS

17 ITEMS

17 ITEMS

18 ITEMS

19 ITEMS

10 IT

(+) Welifie

\$3.25 liveGfree Organic Gluten Free Brown Rice Quinoa Fusilli 16 oz s2.75

\$2.75 liveGfree Sweet Chili Brown Rice Crisps 7 oz

\$2.75 liveGfree Black Sesame Brown Rice Crisps

How well can we predict what items a user will buy again?
What factors have predictive capability?

Organic Banana At \$0.65/lb

\$1.45 each Organic Baby Peeled Carrots, Bag (Limit 6)

\$3.65 each
Organic Romaine Hearts,
Bag

\$3.19 each Organic Blueberries, Package (Limit 6)

\$2.19 each
Organic Celery Hearts
(Limit 6)

\$2.19 Simply Nature Organic Sea Salt Pop Corn 04

View 23 more

\$4.29 each Organic Avo (Limit 6)

Who cares?

Retailers are interested in improving their recommendation systems

- Improve customer experience
- Keep customers coming back
- Increase sales

What factors might affect item repurchase?

Data Information

Data Source

0	1	frozen
1	2	other
2	3	bakery

departments

0	2539329	1	prior	1	2	8	NaN
1	2398795	1	prior	2	3	7	15.0
2	473747	1	prior	3	3	12	21.0

aisle	aisle_id	
prepared soups salads	1	0
specialty cheeses	2	1
energy granola bars	3	2

Modelfocused Data Exploration

Customer

Propensity to Reorder *

Frequency and time effects on Reordering

- Reorder Proportion
 - By day of week
 - By hour of day
 - By elapsed time

Item reorder frequency

• by Dept

Most Reordered

- By Product
- By Department
- By aisle

* Details are in this presentation

User Propensity to Reorder

Proportion of order items repurchased: Time-based variations

Product repurchase: Time gap variations by department

How often and when do users shop?

Most Popular: Products, Departments, Aisles

- Quantity Sold
- Quantity Reordered

Top Products: Sold, reordered, correlation

modeling

Modeling process steps

Model selection and results

- Light Gradient Boost (LBG Base) and Gradient Boost Classifier (GB) have similar ROC-AUC
- Train time is much better for LGB than for GB:

• LGB: < 1 minute

• GB: 30 minutes

➤ Light Gradient Boost (LGB Base) gave best metric / train time in comparison and improved slightly after hyperparameter tuning (LBG Final)

Model	ROC-AUC	Train time (mm:ss)	
Random Forest	0.81	02:00	
GradientBoostClassifier (GB)	0.83	30:00	
Light Gradient Boost (LGB)	0.83	00:55	

Model Results: Feature Importance

- Most discriminating features:
 - Aisle_id: Aisle id of product
 - · Runningdays: days since user last ordered product
 - u_reorderMean: proportion of user's items that are repurchased items (aggregate over all orders)
 - up_order_proportion : proportion of orders a user purchases product

Example: Model results decision tree for first level

Model Metrics

- Test hold-out Data
 - f1-score = 0.44
 - This is relatively close to the train data score, reflecting the splitting of the relatively large dataset.

Train Data Results

class		precision	recall	f1-score	support
(0	0.94	0.92	0.93	6,106,860
1	1	0.40	0.51	0.45	662,213

^{*} While the precision and recall, and ultimately the f1-score are not that great, we will discuss with respect to Kaggle competition on next slide

	Predicted: NO	Predicted: YES
Actual: NO	5,601,014	505,846
Actual: YES	326,745	335,468

Kaggle submission results

	precision	recall	f1-score	suppo
0	0.04	0.02	0.02	C 10C
U	0.94	0.92	0.93	6,106
1	0.40	0.51	0.45	662,2

Prediction Capabilities

- F1 score = 0.45 on the test data
 - Recall = 0.51
 - we are predicting only about half the reordered items as reordered
 - Precision = 0.4
 - > we are predicting more non reordered items as reordered than we are correctly predicting reordered items (in part due to imbalanced data)
- Apparently, the not so great prediction capability is one of the reasons there is a competition for improvement

Conclusion

- We developed a basic model for the 'buy again' problem
- Used a Light Gradient boosting algorithm
- Prediction capabilities are not that unreasonable when compared to the competition results
- Prediction capabilities for this problem, in general, have room for improvement
- Future work considerations
 - Additional feature engineering
 - Refine current features
 - For example, for reorder proportions, consider only orders after which the item was first purchased, rather than all orders
 - Inclusion of additional features
 - Implementation of the 'none' prediction feature