AOD Lista 2

Mateusz Gancarz 261694

20 kwietnia 2023

1 Zadanie 1

1.1 Treść zadania

W zadaniu przedsiębiorstwo lotnicze musi dokonać wyboru dostawcy paliwa dla swoich samolotów odrzutowych spośród trzech dostępnych firm. Każdy z dostawców ma określone ilości paliwa, jakie może dostarczyć w nadchodzącym miesiącu. Przedsiębiorstwo musi również określić plan dostaw paliwa do czterech lotnisk, na których obsługuje swoje samoloty.

Koszt jednego galonu paliwa na każdym lotnisku zależy od dostawcy, z którego pochodzi paliwo. Celem jest minimalizacja kosztów całkowitych zakupu i dostawy paliwa na wszystkie lotniska.

1.2 Opis modelu

1.2.1 Dane

- $\bullet \;\; n,$ liczba firm dostarczających paliwo
- m, liczba lotnisk
- companies constraints_i, limit zasobów paliwa poszczególnych firm
- \bullet airports constraints_i, ilość paliwa potrzebna na każdym z lotnisków
- $costs_{i,j}$, koszty jednego galonu paliwa firma/lotnisko

1.2.2 Zmienne decyzyjne

 \bullet $x_{i,j}$, macierz z ilościami dowiezionego paliwa na firmę przez lotnisko

1.2.3 Ograniczenia

- $\sum_{i=1}^{m} x_{i,j} \ge airports_constraints_j, j = 1, ..., n$ ilość paliwa dostarczonego na lotniska nie może być mniejsza niż jego zapotrzebowanie
- $\sum_{j=1}^{n} x_{i,j} \leq companies_constraints_i, i = 1, ..., m$ ilość paliwa dostarczonego przez firmy nie może przekroczyć ich limitów

1.2.4 Funkcja celu

 $f(x) = \sum_{i,j}^{n,m} costs_{i,j} \cdot x_{i,j}$ minimalizacja

1.3 Odpowiedzi

- a) Minimalny koszt całkowity przedsięwzięcia będzie równy 8525000 i oto plan zakupów:
 - Firma 1 dowiezie 165000 litrów paliwa na Lotnisko 2 oraz 110000 litrów na Lotnisko 4
 - $\bullet\,$ Firma 2 dowiezie 110000 litrów paliwa na Lotnisko 1 oraz 55000 litrów na Lotnisko 2
 - Firma 3 dowiezie 330000 litrów paliwa na Lotnisko 3 oraz 330000 litrów na Lotnisko 4
- b) tak, wszystkie firmy dostarczają paliwo
- c) nie, Firmie 2 zostanie trochę paliwa

2 Zadanie 2

2.1 Treść zadania

Zadanie polega na znalezieniu najtańszej ścieżki pomiędzy dwoma zadanymi miastami w grafie skierowanym, gdzie koszt przejazdu reprezentowany jest przez wagę krawędzi $c_{i,j}$, a czas przejazdu przez $t_{i,j}$. Dodatkowo wymagane jest, aby całkowity czas przejazdu nie przekroczył zadanego limitu $T_m ax$.

2.2 Opis modelu

2.2.1 Dane

- n, liczba wierzchołków
- m, liczba krawędzi
- T_{max} ograniczenie dla drogi
- $weights_{i,j}$, wagi krawędzi
- \bullet $costs_{i,j}$, koszty przejścia przez krawędzie
- b_i , ograniczenie bilansu przepływu

2.2.2 Zmienne decyzyjne

• $x_{i,j}$, macierz z krawędziami, które występują w ścieżce (0-nie występuje, 1-występuje)

2.2.3 Ograniczenia

- $\sum_{j=1}^n x_{i,j} \sum_{j=1}^n x_{j,i} = b_i$, dla $i=1,\ldots,n$, kontrola bilansu przepływu
- $\sum_{i=1,j=1}^{i=n,j=n} costs_{i,j} \cdot x_{i,j} \leq T_{max},$ koszt drogi nie może przekroczyć limitu

2.2.4 Funkcja celu

$$f(x) = \sum_{i,j}^{i=n,j=n} weights_{i,j} \cdot x_{i,j}$$
minimalizacja

2.3 Odpowiedzi

a) Rozwiązanie dla grafu

- b) Tak, ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest konieczne. Bez tego ograniczenia, modele programowania liniowego nie będą w stanie uwzględnić wymagań dotyczących sieci połączeń między miastami. Zmienna decyzyjna o wartości niecałkowitej nie ma sensu w kontekście tego problemu, ponieważ nie można zbudować części połączenia między miastami.
 - c) Po zwiększeniu ograniczenia T_{\max} do 1000 rozwiązanie wygląda następująco

3 Zadanie 3

3.1 Treść zadania

W zadaniu należy wyznaczyć przydział minimalnej liczby radiowozów do każdej zmiany i dzielnicy policji, spełniający określone minimalne i maksymalne wymagania oraz minimalizujący łączną liczbę radiowozów.

3.2 Opis modelu

3.2.1 Dane

- shifts, liczba zmian
- districts, liczba dzielnic
- $shift\ constraints_i$ najmniejsze ilości radiowozów dla zmiany
- $\bullet \ dsitrict_constraints_i,$ najmniejsze ilości radiowozów dla dzielnic
- \bullet lower_constraints_i, minimalne liczby radiowozów dla każdej zmiany i dzielnicy
- $\bullet \ upper_constraints_i,$ maksymalne liczby radiowozów dla każdej zmiany i dzielnicy

3.2.2 Zmienne decyzyjne

• $x_{i,j}$, liczba radiowozów na j zmianie w i dzielnicy

3.2.3 Ograniczenia

- $upper_constraints_{i,j} \ge x_{i,j} \ge lower_constraints_{i,j}$, dla i = 1, ..., shifts, j = 1, ..., districts, liczby radiowozów zawierają się między minimalnymi i maksymalnymi limitami
- $\sum_{i=1}^{districts} x_{i,j} \ge districts_constraints_{i,j}$, dla $j = 1, \dots, shifts$, liczby radiowozów są większe niż minimalne liczby dla dzielnic
- $\sum_{j=1}^{shifts} x_{i,j} \ge shifts_constraints_{i,j}$, dla $i = 1, \dots, districts$, liczby radiowozów są większe niż minimalne dla zmian

3.2.4 Funkcja celu

$$f(x) = \sum_{i,j}^{i=shifts,j=districts} x_{i,j}$$
 minimalizacja

3.3 Odpowiedzi

a) Całkowita liczba radiowozów jest równa 48. Oto przydział radiowozów:

	zmiana 1	zmiana 2	zmiana 3
p_1	2	7	5
p_2	3	6	7
p_3	5	7	6

4 Zadanie 4

4.1 Treść zadania

Firma przeładunkowa chce rozmieścić kamery na swoim terenie, aby monitorować kontenery składowane w wybranych kwadratach. Każda kamera może obserwować k kwadratów na lewo, prawo, górę i dół, ale nie może być umieszczona w kwadracie zajmowanym przez kontener. Celem jest rozmieszczenie kamer w sposób umożliwiający monitorowanie każdego kontenera przez co najmniej jedną kamerę oraz minimalizacja liczby użytych kamer.

4.2 Opis modelu

4.2.1 Dane

- \bullet *n*, liczba wierszy
- \bullet m, liczba kolumn
- $\bullet \ c$ liczba kontenerów
- \bullet k zasięg kamer

4.2.2 Zmienne decyzyjne

 $\bullet~x_{i,j},$ reprezentacja siatki magazynu, wartość w komórce jest równa 1 jeśli jest kamera, 1 jeśli nie

4.2.3 Ograniczenia

• $\sum_{t=min(j-k,1)}^{t=max(j+k,m)} x_{i,t} + \sum_{t=min(i-k,1)}^{t=max(i+k,m)} x_{t,j} \ge 1$ dla każdego pola na siatce magazynu, gdzie znajduje się kontener

4.2.4 Funkcja celu

$$f(x) = \sum_{i,j}^{i=n,j=m} x_{i,j}$$
minimalizacja

4.3 Odpowiedzi

5 Zadanie 5

5.1 Treść zadania

W zadaniu przedstawiony jest problem optymalizacji produkcji czterech różnych wyrobów w fabryce, z uwzględnieniem czasu obróbki na trzech maszynach oraz ograniczeń czasowych i popytu na produkty. Celem jest znalezienie optymalnego tygodniowego planu produkcji i obliczenie zysku z ich sprzedaży.

5.2 Opis modelu

5.2.1 Dane

- $materials_count$, liczba produktów
- machines count, liczba maszyn

- hours constraints, ograniczenie tygodniowe dla godzin pracy maszyn
- materials constraints, popyt na materialy
- $minutes_per_kg$, czas potrzebny do wyrobu na poszczególnej maszynie
- costs, koszty zasobów dla produktów
- profits, przychody dla poszczególnych produktów
- machine costs, koszty produkcji produktów na maszynach

5.2.2 Zmienne decyzyjne

 \bullet x_i , ilości wyprodukowanych materiałów

5.2.3 Ograniczenia

- $x_i \leq b_i$, dla $i=1,\ldots,n$, ilość wyprodukowanego materiału nie może przekroczyć popytu
- $\sum_{j=1}^n t_{ij} x_j \le h_i$, dla $i=1,\ldots,m$, czas spędzony na produkcji nie może przekroczyć limitu czasowego

5.2.4 Funkcja celu

$$f(x) = \sum_{i=1}^n x_i (p_i - c_i) - \sum_{i=1}^m \sum_{j=1}^n \frac{t_{ij} c_{mi}}{60} x_j$$
maksymalizacja

5.3 Odpowiedzi

Zysk przy optymalnym wyrobie materiałów wynosi 3632.5 i tak wygląda podział na poszczególne materiały:

- material 1 = 125kg
- materiał 2 = 100kg
- material 3 = 150kg
- materiał 4 = 500kg