Examen Final Architecture des ordinateurs / SMI/ S4

Exercice 1

Considérer la fonction définie par la table de vérité ci-dessous :

A	В	С	F(A ,B,C)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- 1- Générer une expression logique correspondante (somme de produits et produit de sommes)
- 2- Simplifier les deux expressions en utilisant les règles de l'algèbre de Boole.
- 3- Construire le TABLEAU de Karnaugh et déterminer une expression logique associée.
- 4- Considérer les fonctions logiques suivantes. Pour chacune d'elles,
 - construire le tableau de Karnaugh;
 - utiliser le tableau pour simplifier les expressions
- a- F1(A,B,C) = A.B.C + A.B.C + A.B.C
- b- F2(A,B,C) = A.B.C + A.B.C + A.B.C
- c- F3(A,B,C) = A.B.C + A.B.C + A.B.C
- d- F4(A,B,C) = A.B.C + A.B.C + A.B.C

Exercice 2

1. Calculer la table de vérité du circuit logique suivant :

- 2. Donner une expression logique simple pour cette fonction logique.
- 3. Dessiner son circuit logique.

Exercice 3

1. Convertir

120_{/10} ---> binaire -10_{/10} ---> binaire

01111101010101010 ---> hexadécimale

ABE ---> Décimale

2. Calculer AB2+FEA 1FF+BF