11.16.2.2.1

EE24BTECH11020 Ellanti Rohith

February 20, 2025

Question

A die is thrown. Find the probability of that the outcome is less than 7.

Solution Outline

- 1 Define a random variable.
- Devise the PMF and CDF of the random variable.
- Obeduce the required probability from the CDF expression.

Variables Used:

Variable name	Description
S	Sample space
X	Random variable corresponding to the number on die
$F_{\mathbf{X}}(x)$	Cumulative distribution function (CDF)
$p_{\mathbf{X}}(x)$	Probability Mass function (PMF)

Each outcome is equally likely.

Let X be the number obtained when the die is rolled.

$$X \in S$$

Event	Sample space
$p_{\mathbf{X}}(1)$	{1}
$p_{\mathbf{X}}(2)$	{2}
$p_{X}(3)$	{3}
$p_{\mathbf{X}}(4)$	{4}
$p_{\mathbf{X}}(5)$	{5}
$p_{\mathbf{X}}(6)$	{6}

Since the die is fair, each outcome has an equal probability:

$$p_X(k) = \begin{cases} \frac{1}{6}, & k \in \{1, 2, 3, 4, 5, 6\} \\ 0, & \text{otherwise} \end{cases}$$

CDF

By the definition of the cumulative distribution function (CDF):

$$F_X(k) = P(X \le k) = \sum_{i=-\infty}^k p_X(i)$$

Thus, the CDF is given by:

$$F_X(k) = \begin{cases} 0, & k < 1 \\ \frac{1}{6}, & 1 \le k < 2 \\ \frac{2}{6}, & 2 \le k < 3 \\ \frac{3}{6}, & 3 \le k < 4 \\ \frac{4}{6}, & 4 \le k < 5 \\ \frac{5}{6}, & 5 \le k < 6 \\ 1, & k \ge 6 \end{cases}$$

We need to find:

$$P(X < 7) = P(X \le 6) = \sum_{i=1}^{6} P(X = i) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{6}{6} = 1$$
us,

Thus,

$$P(X < 7) = 1$$

Simulation

- Generate a random number using the rand() function.
- Restrict random numbers from 1 to 6 by using rand() % 6 operator.
- Ocunt the number of favourable outcomes by iterating for a large number of trails.
- Oivide it by the total number of trails to get the desired PMF.
- ODF can then be simulated by summing the required PMFs.

PMF - Plot

CDF - Plot

