Orders

Stuyvesant Senior Math Team

Aditya Pahuja

August 14, 2025

Contents

0	Introduction	2
1	Definitions and Starting Steps	2
2	Fermat's Christmas Theorem	5
3	Walkthroughs	6
4	Extra Problems	8
	4.1 Warm-ups	8
	4.2 Random interesting order-adjacent things	8
	4.3 Some actual contest problems	9
5	Solutions to Walkthroughs	10
	5.1 Solution 3.1	10
	5.2 Solution 3.2, Qiao Zhang	10
	5.3 Solution 3.3, USA TST 2008/4	11

0 Introduction

This is a short lesson on the extremely well-behaved properties of exponents in number theory. The classic example of this is, of course, Fermat's little theorem, which tells you that $a^x \pmod{p}$ is periodic in x with period (at most) p-1 for p prime.

It turns out that we can take this much further, and the main way to get information out of such expressions is through the lens of *orders*.

1 Definitions and Starting Steps

First, the following notation, if you haven't seen it before, is a useful shorthand: for a given prime p and integer n, the p-adic valuation of n, denoted by $\nu_p(n)$, is the largest integer e such that $p^e \mid n$. That is, $\nu_p(n)$ is the exponent of p in the prime factorization of n.

When gcd(a, n) = 1, the **order** of a number a modulo n, denoted $ord_n(a)$, is the smallest positive integer d for which

$$a^d \equiv 1 \pmod{n}$$
.

Fermat's little theorem and Euler's generalization tell us that, in fact, $d \mid \varphi(n)$. We can more strongly say the following:

Theorem 1.1. If
$$a^k \equiv 1 \pmod{n}$$
, then $\operatorname{ord}_n(a)$ divides k .

Proof. Let d be the order of a, and write k = qd + r, where $0 \le r < d$. Then,

$$a^{qd} \cdot a^r \equiv a^r \equiv 1 \pmod{n}$$
.

If 0 < r < d, then we have found a positive integer smaller than d for which $a^r \equiv 1 \pmod{r}$, which contradicts the minimality of the order; thus, r = 0, which means d divides k.

A number g is a **primitive root** modulo n if

$$\operatorname{ord}_n(g) = \varphi(n).$$

You can view this as saying "Euler's theorem is sharp (i.e. gives the strongest possible bound on the order) when g is a primitive root."

Example 1.1

For example, 2 is a primitive root modulo 11, because

$$2^{1} \equiv 2 \pmod{11}$$
 $2^{6} \equiv 9 \pmod{11}$ $2^{2} \equiv 4 \pmod{11}$ $2^{7} \equiv 7 \pmod{11}$ $2^{3} \equiv 8 \pmod{11}$ $2^{8} \equiv 3 \pmod{11}$ $2^{4} \equiv 5 \pmod{11}$ $2^{9} \equiv 6 \pmod{11}$ $2^{10} \equiv 1 \pmod{11}$

so 10 is the smallest x for which $2^x \equiv 1 \pmod{11}$.

In fact, we could've been more careful about how we verified this: $\operatorname{ord}_{11}(2)$ must divide $\varphi(11)$, so we only needed to check 1, 2, 5, and 10 — although this really means we only had to check 2 and 5 in the first place, so I was very inefficient!

(How many exponents do you need to check for a general prime p?)

Exercise 1.2. Find all the primitive roots modulo 11, 13, and 17. How many primitive roots are there modulo p for prime p?

Exercise 1.3. What other patterns do you notice in the table? (There are many!)

A natural question now is to ask "When do primitive roots exist?" It turns out that this has a very nice answer, although its proof (in part) is deferred to the Cyclotomic Polynomials unit.

Theorem 1.2 (Existence of primitive roots). Primitive roots exist mod 2, 4, p^k , and $2p^k$ for odd primes p.

Showing that primitive roots exist is hard without some additional machinery; however, showing that they don't is doable, since we just have to find a smaller value than $\varphi(n)$ for the order.

Proof of nonexistence. We want to show nonexistence of a primitive root modulo n for $n \notin \{2, 4, p^k, 2p^k\}$.

We consider three cases: either n is a power of two greater than 4, n has at least two (distinct) odd prime factors, or n is the product of a power of two greater than 2 and a prime power.

First, suppose $n=2^k$ for $k \geq 3$. Since $\varphi(2^k)=2^{k-1}$, it suffices to show that

$$a^{2^{k-2}} \equiv 1 \pmod{2^k}$$

if gcd(a, n) = 1. Let $S = a^{2^{k-2}} - 1$, so difference of squares says

$$S = (a^{2^{k-3}} + 1)(a^{2^{k-3}} - 1) = (a^{2^{k-3}} + 1)(a^{2^{k-4}} + 1)(a^{2^{k-4}} - 1)$$

$$= (a^{2^{k-3}} + 1)(a^{2^{k-4}} + 1)(a^{2^{k-5}} + 1)(a^{2^{k-5}} - 1)$$

$$= \cdots$$

$$= (a^{2^{k-3}} + 1)(a^{2^{k-4}} + 1) \cdots (a^2 + 1)(a^2 - 1).$$

Taking mod 4, we have $a^{2^m} + 1 \equiv 2 \pmod{4}$ whenever $m \geq 1$, so $\nu_2(a^{2^m} + 1) = 1$, since it's even but not a multiple of four. Additionally, $a^2 - 1$ is a multiple of 8. This means that $\nu_2(S) = k - 3 + 3$, so $S \equiv 0 \pmod{2^k}$, which is what we want!

We now prove two critical claims that help us finish off the other cases.

Claim 1.3 — Let m and n be relatively prime. Then, the order of a number mod mn is at most $lcm(\varphi(m), \varphi(n))$.

Proof. Observe that

$$a^{\operatorname{lcm}(\varphi(m),\varphi(n))}$$

is $1 \pmod{m}$ and $1 \pmod{n}$, so by CRT it is $1 \pmod{mn}$ as desired.

Claim 1.4 — For all m > 2, $\varphi(m)$ is even.

Proof. Whenever m is divisible by an odd prime p, $\varphi(m)$ is divisible by p-1, using the explicit formula for $\varphi(m)$. Then, p-1 is even, implying $\varphi(m)$ is also even.

If m is a power of two, then $\varphi(m) = \frac{m}{2}$, which is at least two and thus even because m > 2.

Remark 1.5. There is also a cute bijective proof I am fond of which involves showing that numbers relatively prime to m come in pairs of the form (r, m - r).

Finally, let n have prime factorization $p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}$ (so $e_i=\nu_{p_i}(n)$) with $r\geq 2$, in accordance with the second and third cases. Claim 1.5 then says that

$$\operatorname{ord}_n(a) \le \operatorname{lcm}(\varphi(p_1^{e_1}), \varphi(p_2^{e_2}), \dots, \varphi(p_r^{e_r})).$$

We can then find two prime powers among the $p_i^{e_i}$ greater than two (in the second case, the two odd prime powers; in the third case, the only two available prime powers). Letting $p_1^{e_1}$ and $p_2^{e_2}$ be these two prime powers, Claim 1.6 shows that $\varphi(p_1^{e_1})$ and $\varphi(p_2^{e_2})$ are even, so their least common multiple is less than their product.

Therefore, the value of $\operatorname{ord}_n(a)$ is bounded above by

$$\operatorname{lcm}(\varphi(p_1^{e_1}), \varphi(p_2^{e_2}), \dots, \varphi(p_r^{e_r})) \leq \varphi(p_1^{e_1}) \varphi(p_2^{e_2}) \cdots \varphi(p_r^{e_r}) = \varphi(p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}) = \varphi(n),$$

with the equality at the end being a result of the fact that $\varphi(a)\varphi(b) = \varphi(ab)$ when $\gcd(a,b) = 1$.

Here's some extra content for the people who read the lecture notes. You may have noticed this $lcm(\varphi(p^k), \varphi(q^m), \dots)$ construct showing up a lot. This is because it naturally gives the maximal possible order modulo n (well, almost — you really want to halve $\varphi(2^k)$ for $k \geq 3$, whenever it shows up).

The true maximum-order function is the Carmichael function: supposing n has prime factorization $p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$, the Carmichael function $\lambda(n)$ is defined as

$$\lambda(n) = \begin{cases} \frac{1}{2}\varphi(n) & n = 2^r \text{ for } r \geq 3\\ \varphi(n) & n = p^r \text{ for odd primes } p, \text{ or } n = 1, 2, 4\\ \operatorname{lcm}(\lambda(p_1^{e_1}), \lambda(p_2^{e_2}), \dots, \lambda(p_k^{e_k})) & \text{otherwise.} \end{cases}$$

We can therefore sharpen Euler's theorem by saying

Theorem 1.6 (Stronger Euler's theorem). For any relatively prime numbers $n \geq 2$ and a,

$$a^{\lambda(n)} \equiv 1 \pmod{n}$$
.

Finally, another small teaser for the Cyclotomic Polynomials unit: for which a and k does there exist a prime p for which $\operatorname{ord}_p(a) = k$?

2 Fermat's Christmas Theorem

We now introduce a very powerful theorem involving sums of two squares.

Theorem 2.1 (Fermat's Christmas Theorem). Let n be an integer. Then, all odd prime factors of $n^2 + 1$ are $1 \pmod{4}$.

Proof. This is not too hard with the theory in the previous section. The main idea is to observe that

$$n^2 \equiv -1 \pmod{p}$$

implies $n^4 \equiv 1 \pmod{p}$, so the order of n divides 4. However, 1 and 2 can obviously not be the order of n (otherwise n^2 would be 1 (mod p)), hence the order is 4. Then,

$$4 \mid \varphi(p) = p - 1$$

which by definition means $p \equiv 1 \pmod{4}$.

Conversely, we can also prove the following:

Theorem 2.2. If $p \equiv 1 \pmod{4}$, then there exists an n for which p divides $n^2 + 1$.

Proof. We want to find a number whose order is 4 modulo p. To do this, we will exploit primitive roots: we already know that a primitive roots g has order p-1, so $a=g^{\frac{p-1}{4}}$ must have order 4. (You can also find a construction using Wilson's theorem.)

The more general upshot of this is that we can always force the order to be any factor of $\varphi(n)$ if a primitive root exists.

Exercise 2.1. Extend the result of Exercise 1.2 — given a divisor d of p-1, how many of $\{1, 2, \ldots, p-1\}$ have order d?

We can say a little bit about general sums of squares, too. The following corollary is also referred to as Fermat's Christmas Theorem, and it is essentially equivalent.

Corollary 2.3. If a and b are positive integers, then $p \mid a^2 + b^2$ implies

- p = 2, or
- $p \mid \gcd(a, b)$, or
- $p \equiv 1 \pmod{4}$.

To be labor the point, if p is 3 (mod 4) and divides $a^2 + b^2$, you know that it has to divide a and b separately. One immediate result of this is that $\nu_p(a^2 + b^2)$ has to be even, just by successively dividing out p from a and b.

Remark 2.4 (Not orders, but interesting). In fact, the set of sums of two squares can be characterized as "numbers for which $\nu_p(n)$ is even whenever $p \equiv 3 \pmod{4}$." This is quite a bit stronger than Corollary 2.4!

3 Walkthroughs

Example 3.1

Find all positive integers n for which n divides $2^n - 1$.

Walkthrough. We will show that only n = 1 works. Assume for the sake of contradiction that n > 1, and take a prime $p \mid n$. The main idea then is to control the order of $2 \pmod{p}$

- (a) Let $d = \operatorname{ord}_{p}(2)$. Show that $d \mid \gcd(n, p 1)$.
- (b) Find a p such that gcd(n, p 1) = 1.
- (c) Conclude that the order of d modulo this choice of p is 1.
- (d) Deduce a contradiction.

Example 3.2 (Qiao Zhang)

Find all integers n for which the sequence

$$\nu_2(3^0-n), \, \nu_2(3^1-n), \, \nu_2(3^2-n), \, \dots$$

is unbounded.

Walkthrough. We want

$$3^k \equiv n \pmod{2^m}$$

to have solutions for arbitrarily large m.

- (a) Show that n is odd.
- (b) What do we know about n by taking mod 8?
- (c) List out all the possible values of $3^k \pmod{2^m}$ for m = 4, m = 5, and m = 6. Out of the remaining possible values of $n \pmod{2^m}$, which ones appear in your lists?
- (d) Conjecture the general answer. What does this tell you about the order of 3 modulo 2^m ?
- (e) Show that the order of 3 is 2^{m-2} and conclude.

The most interesting part of this solution is (d). We are leveraging the fact that the size of the range of $a^x \pmod{n}$ is precisely $\operatorname{ord}_n(a)$, which means that computing the order lets us show that each of the 1 (mod 8) and 3 (mod 8) residues *must* appear in the image of 3^k . (This is also what tells you that part (c) is not very computationally intensive — at most, you will have to list out 28 numbers. Even going out to m=7 is not so bad.)

Example 3.3 (USA TST 2008/4)

Prove that $n^7 + 7$ is not a perfect square for any integer n.

Walkthrough. Let's suppose that $n^7 + 7 = m^2$.

- (a) Show that n cannot be less than zero.
- (b) The crux of the problem is this pretty funny step: add a particularly nice three-digit integer c to both sides so that we have something to work with. (Hint: c is a square.)
- (c) Prove that $n \equiv 1 \pmod{4}$ and thus $n^7 + 7 + c$ has a prime factor that is 3 (mod 4).
- (d) How many factors of p does n+2 have?
- (e) Get a contradiction by showing that $\nu_p(n^7+7+c) = \nu_p(n+2)$.

Funny observation: this solution is entirely reliant on the fact that, in fact, $n^7 - 7$ is a perfect square for some integer n.

Exercise 3.4. Prove that $n^3 + 7$ is not a perfect square for any integer n.

4 Extra Problems

4.1 Warm-ups

Problem 4.1 (USAMTS 2009 Round 2 Problem 2)

Prove that if a and b are positive integers such that 7^{2009} divides $a^2 + b^2$, then 7^{2010} divides ab.

Problem 4.2 (2019 AIME I/14)

Find the least odd prime factor of $2019^8 + 1$.

4.2 Random interesting order-adjacent things

Problem 4.3

Show that the Carmichael function has the promised maximal-order property: for each n, show that there exists an a such that $\operatorname{ord}_n(a) = \lambda(n)$, and prove that no number has an order larger than $\lambda(n)$. Then, show that $\lambda(n) \mid \varphi(n)$ for all n.

Problem 4.4 (Carmichael numbers)

Fermat's little theorem tells us that $a^{p-1} \equiv 1 \pmod{p}$ for all primes p, as long as $\gcd(a,p)=1$. Unfortunately, the converse fails to hold: it turns out that there exist composite integers n for which $a^{n-1} \equiv 1 \pmod{n}$ for all a satisfying $\gcd(a,n)=1$. These are a type of pseudoprime (literally, fake prime) called Carmichael numbers. Let n be a Carmichael number.

- (a) Show that n is odd and squarefree (i.e. isn't divisible by the square of a prime).
- (b) Can n have exactly two prime factors?
- (c) What is the first Carmichael number? Parts (a) and (b) should narrow this search to about 20 numbers.

Problem 4.5 (Euler's criterion for quadratic residues)

A number r is a quadratic residue modulo n if is a perfect square mod n; that is, $x^2 \equiv r \pmod{n}$ for some integer x. Given that p is prime and does not divide a, prove that a is a quadratic residue if and only if

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

Problem 4.6

Let $n \ge 2$ be an integer. For which values of k is the function $f(x) = x^k$ surjective modulo n? We say that a function g is surjective modulo n if, as x varies through the integers, g(x) takes on all n possible values mod n.

4.3 Some actual contest problems

Problem 4.7 (HMMT November 2014 G10)

Suppose that m and n are integers with $1 \le m \le 49$ and $n \ge 0$ such that m divides $n^{n+1} + 1$. What is the number of possible values of m?

Problem 4.8 (MOP 2011)

Let p be a prime and n a positive integer. Suppose that $\nu_p(2^n-1)=1$. Must $\nu_p(2^{p-1}-1)=1$?

★ Problem 4.9 (Krishna Pothapragada)

Show that, for all even integers n, the number of divisors of n does not divide $n^2 + 1$.

★ **Problem 4.10** (USEMO 2019/4)

Prove that for any prime p, there exists a positive integer n such that

$$1^n + 2^{n-1} + 3^{n-2} + \dots + n^1 \equiv 2020 \pmod{p}.$$

★ **Problem 4.11** (IMO 1990/3)

Find all positive integers n for which n^2 divides $2^n + 1$.

5 Solutions to Walkthroughs

5.1 Solution 3.1

The answer is only n = 1, which clearly works because $1 \mid 2^1 - 1$. We now show that no other n work.

Suppose for the sake of contradiction that some n > 1 works. Let p be the smallest prime dividing n and d the order of n modulo p. Then, we have

$$2^{p-1} \equiv 1 \pmod{p}, \quad 2^n \equiv 1 \pmod{p}.$$

This means $d \mid p-1$ and $d \mid n$, so d divides their greatest common divisor. However, since p is the smallest prime dividing n and all the divisors of p-1 are smaller than p, gcd(n, p-1) = 1. This means $ord_p(n)$ divides 1 and is therefore equal to 1, implying

$$2^1 \equiv 1 \pmod{p}$$
,

which is a contradiction.

5.2 Solution 3.2, Qiao Zhang

The answer is all integers of the form 8k + 1 and 8k + 3.

Even n obviously don't work because $3^k - n$ is odd, and numbers that are 5 (mod 8) or 7 (mod 8) fail because $3^k - n$ is never divisible by 8 (just by reducing mod 8), so it remains to show that the rest of the numbers do work.

The key insight is that

Claim 5.1 — As m goes from 1 to 2^{m-2} , $3^k \pmod{2^m}$ cycles through all the 1 (mod 8) and 3 (mod 8) residues modulo 2^m .

Proof. First, we show that $\operatorname{ord}_{2^m}(3) = 2^{m-2}$ — to show this, it suffices to prove that the order doesn't divide 2^{m-3} . In particular, we have

$$3^{2^{m-3}} - 1 = (3^{2^{m-4}} + 1)(3^{2^{m-4}} - 1)$$

$$= (3^{2^{m-4}} + 1)(3^{2^{m-5}} + 1)(3^{2^{m-5}} - 1)$$

$$= (3^{2^{m-4}} + 1)(3^{2^{m-5}} + 1)(3^{2^{m-6}} + 1)(3^{2^{m-6}} - 1)$$

$$= \cdots$$

$$= (3^{2^{m-4}} + 1)(3^{2^{m-5}} + 1) \cdots (3^m + 1)(3^m - 1),$$

so $\nu_2(3^{2^{m-3}}-1)$ is equal to m-4+3=m-1 < m, hence $3^{2^{m-3}}$ is not 1 (mod 2^m) as desired.

This means that $3^1, 3^2, \ldots, 3^{2^{m-2}}$ are all distinct modulo 2^m , since otherwise we could take two of them and divide to get $3^{\text{smaller number}} \equiv 1 \pmod{2^m}$. Moreover, none of these 2^{m-2} residues are even (cutting the possible space of numbers in half) or 5 (mod 8) or 7 (mod 8) (cutting the possible space of numbers in half again), so these residues map exactly to all the 1 (mod 8) and 3 (mod 8) residues.

For example, the claim says that I should expect $3^k \pmod{32}$ to give me the 8 values 1, 3, 9, 11, 17, 19, 25, and 27 as k varies, which is in fact what happen (try it yourself!)s. Finally, this means $3^k \equiv n \pmod{2^m}$ always has a solution for $n \equiv 1 \pmod{8}$ or $n \equiv 3 \pmod{8}$, regardless of how large m is, so $\nu_2(3^k - n)$ is unbounded for the claimed values of n.

5.3 Solution 3.3, USA TST 2008/4

Suppose for contradiction that

$$n^7 + 7 = m^2$$

for some integer m. Then, adding 121, we get

$$n^7 + 2^7 = m^2 + 11^2$$
.

If n is even, then m is odd; however, the left-hand side is 0 (mod 4) because it's a multiple of 2^7 , while the right-hand side is 2 (mod 4). Thus, n is odd, and more specifically 1 (mod 4).

By Christmas theorem, the primes dividing $m^2 + 11^2$ are either 1 (mod 4) or factors of gcd(m, 11). In the latter case, gcd(m, 11) is either 1 or 11, so if a prime divides $m^2 + 11^2$, it's either 1 (mod 4) or 11. Factoring the left-hand side then shows

$$(n+2)(n^6 - 2n^5 + 4n^4 - 8n^3 + 16n^2 - 32n + 64) = m^2 + 11^2.$$

Since $n+2 \equiv 3 \pmod{4}$, it has a prime factor that is $3 \pmod{4}$, so $11 \mid n+2$. Additionally, $\nu_{11}(n+2)$ is odd because, again, $n+2 \equiv 3 \pmod{4}$.

Now, since $n \equiv -2 \pmod{11}$, the other factor of $n^7 + 2^7$ is

$$n^6 - 2n^5 + 4n^4 - 8n^3 + 16n^2 - 32n + 64 \equiv 64 \cdot 6 \equiv 10 \pmod{11}$$

and thus not a multiple of 11.

Putting it all together,

$$\nu_{11}(m^2 + 11^2) = \nu_{11}(n^7 + 2^7) = \nu_{11}(n+2)$$

because $n^6 - 2n^5 + 4n^4 - 8n^3 + 16n^2 - 32n + 64$ doesn't contribute any factors of 11. However, $\nu_{11}(m^2 + 11^2)$ is even since $11 \equiv 3 \pmod{4}$, while $\nu_{11}(n+2)$, as established earlier, is odd. This is our desired contradiction.