(19) World Intellectual Property Organization International Bureau

- 1 (1881 - 1811) 1884 | J. 1818 | D. 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 18

(43) International Publication Date 1 November 2001 (01.11.2001)

PCT

(10) International Publication Number WO 01/82123 A1

(51) International Patent Classification⁷: G06F 17/27

(21) International Application Number: PCT/US01/11631

(22) International Filing Date: 10 April 2001 (10.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/198,782

20 April 2000 (20.04.2000) US

09/815,260

22 March 2001 (22.03.2001) US

- (71) Applicant: INVENTION MACHINE CORPORA-TION, INC. [US/US]; 133 Portland St., Boston, MA 02114 (US).
- (72) Inventors: TSOURIKOV, Valery; One Devonshire Pl., Apt. 2302, Boston, MA 02109 (US). SOVPEL, Igor; 3/1 Voronyanskogo St., Apt. 193, 220039 Minsk (RU).

BATCHILO, Leonid; 35 Moraine St., Belmont, MA 02478 (US).

- (74) Agent: DREYFUS, Edward; 608 Sherwood Pkwy., Mountainside, NJ 07092 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: NATURAL LANGUAGE PROCESSING AND QUERY DRIVEN INFORMATION RETRIEVAL

(57) Abstract: In a digital computer, the method of processing (84, 86) a natural language expression entered or downloaded to the computer that includes (1) identifying in the expression expanded subject, action, object components that includes at least four components and at least one additional component from the class of preposition, indirect object, adjective, and adverbial eSAO components (2) extracting each of the at least four components for designation into a respective subject, action, object field and at least a preposition field, indirect object field, adjective field, and adverbial field, and (3) using the components in at least certain ones of said fields for at least one of (i) displaying components to the user, (ii) forming a search pattern of a user request for information search of local or on-line databases (92), and (iii) forming an eSAO knowledge base (90). A constraint field can also be provided to accept non-classified components.

WO 01/82123 A1

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TITLE: Natural Language Processing and Query Driven
Information Retrieval

RELATED APPLICATION: U.S. Patent Application SN. 60/198,782, filed April 20, 2000.

BACKGROUND:

The present invention relates to methods and apparatus for semantically processing natural language text in a digital computer such that use of the processed data or representation shall lead to more reliable and accurate results than heretofore possible with conventional systems.

One example of such use includes processing user queries into search, retrieval, verification, and display desired information.

Another example is to analyze the content of processed information or documents and use such information to create a detailed and indexed knowledge base for user access and interactive display of precise information.

Reference is made to known systems for extracting, processing, and using SAO (Subject-Action-Object) data embodied in natural language text document in digital (electronic) form. These prior systems process native language user requests and/or documents to extract and store the SAO triplets existing throughout the document as well as the text segment associated with each SAO and link between each SAO and the Text segment. Links are also stored in association with each text segment and the full source document which is accessible by user interaction and input.

Although SAO extraction, processing, and management has advanced the science of artificial intelligence both stand-alone computer and web-based systems, there is a need in the art for yet greater accuracy in computer reliability in the semantic processing of user requests, knowledge base data, and information accessed and obtained on the web.

SUMMARY OF EXEMPLARY EMBODIMENT OF INVENTION:

It is an object of the present invention to expand the semantic processing power of computers to include not only the SAO but to use a new, more comprehensive, extended Subject-Action-Object (eSAO) format as the foundation for rule based processing, normalization, and management of natural language.

One skilled in this art will note that prior systems

SAOs included three components, subject (S), action (A),

Object (O), the expanded SAO (hereafter "eSAO") includes a

minimum of four components and fields and preferably seven

components and fields. These additional fields include

adjectives, prepositions, etc. more fully described below.

In one exemplary embodiment, an eighth field is preferably

provided into which all other components can be placed.

These other components and eighth field are called

constraints. Where the knowledge base or information in

local and remote databases are to be accessed in response

to a user request (or query) the system preferably uses the

same rules and number of fields to process the natural

language user request as to process candidate access or

stored documents for presentation to user.

Thus, Semantic Processor for User Request Analysis according to the principles of the present invention aims

at analyzing and classifying different types of user requests in order to create their formal representation (in the form of a set of certain fields and relations between them) which enables more effective and efficient answer search in local and remote databases, information networks, etc. Also, the output search patterns can be used to search for matching eSAO's in eSAO Knowledge Base in the system with much more accuracy and reliability than prior systems and methods even for requests being in the form of questions. In addition, the eSAO format enable greater accuracy in obtaining precise information of interest. One exemplary system according to the present invention also forms an eSAO knowledge base or index of stored processed information that can be managed by various rules related to the eSAO components and fields.

DRAWINGS:

Other and further objects and benefits shall become apparent with the following detailed description when taken in view of the appended drawings in which:

Figure 1 shows a schematic view of one example of a digital computer system in accordance with the principles of the present invention.

Figure 2 is an example of a classification routine for classifying the type of user request usable in the system of Figure 1.

Figure 3 is an example of a parsing routine for the case of user request being key words.

Figure 4 is similar to Figure 3 where user request is a bit (segment) sentence, command sentence or question sentence.

Figure 5 shows a parsing routine for the case of user request being "bit ", "command", "question" or "complex" query.

Figure 6 shows a parsed synonymic search pattern expanding routine.

Figure 7 shows a routing for generating the eSAO user request.

Figure 8 shows the principal stages of forming as eSAO Knowledge Base or Index (90) and using a user natural language search query for relevant eSAO component and source information display from the knowledge base.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT OF THE INVENTION:

The following are incorporated herein by reference:

1. System and on-line information service presently available at www.cobrain.com and the publicly available user manual therefor.

- 2. The software product presently marketed by Invention Machine Corporation of Boston, USA, under it's trademark KNOWLEDGIST® and the publicly available user manual therefor.
- 3. WIPO Publication 00/14651, Published March 16, 2000.
- 4. U.S. Patent Application SN 09/541,182 filed April 3, 2000.
- 5. IMC's COBRAIN® server software marketed in the United States and manuals thereof.

See references Nos.3, 4, and 5 above for systems and methods of using an SAO format for developing an SAO extracted Knowledge Base.

The system and method according to the present invention employs a new expanded S-A-O format for semantic processing documents and generating a database of expanded SAOs for expanded information search and management.

Note the prior systems SAOs included three components, subject (S), Action (A), Object (O), whereas one example of expanded SAOs (hereafter "eSAO") includes a minimum of 4 classified components up to 7 classified components (preferably 7 classified fields) and, optionally, an 8th field for unclassified components.

In one example, the **Extended SAO (eSAO)** - components include:

- 1. Subject (S), which performs action A on an object O;
- 2. Action (A), performed by subject S on an object O;
- 3. Object (0), acted upon by subject S with action A;
- 4. Adjective (Adj.) an adjective which characterizes subject S or action A which follows the subject, in a SAO with empty object O (ex: "The invention is efficient", "The water becomes hot");
- 5. Preposition (Prep.) a preposition which governs
 Indirect Object (Ex: "The lamp is placed on the table",
 "The device reduces friction by ultrasound");
- 6. Indirect object (i0) a component of a sentence manifested, as a rule, by a notional phrase, which together with a preposition characterizes action, being an adverbial modifier. (Ex: "The lamp is placed on the table", "The light at the top is dim", "The device reduces friction by ultrasound");
- 7. Adverbial (Adv.) a component of a sentence, which characterizes, as a rule, the conditions of performing action A. (Ex: "The process is slowly modified.", "The driver must not turn the steering wheel in such a manner.")

Examples of application of the eSAO format are:

1. Input: Is the moon really blue during a blue moon?

Output:

Subject: moon
Action: be
Object: -

Preposition: during

Indirect Object: blue moon Adjective: really blue

Adverbial:

2. Input: Does the moon always keep the same face towards

the Earth?

Output:

Subject: moon Action: keep

Object: same face Preposition: towards Indirect object: Earth

Adjective:

Adverbial: always

3. Input:

The dephasing waveguide is fitted with a thin dielectric semicircle at one end, and a guide cascaded with the dephasing element completely suppresses unwanted modes.

Output:

Subject: guide cascaded with the dephasing element

Action: suppress

Object: unwanted mode

Preposition: Indirect Object: -

Adjective: -

Adverbial: completely

4. Input:

It was found that the maximum value of x is dependent on the ionic radius of the lanthanide element .

Output:

Subject: maximum value of x

Action: be Object: -

Preposition: on

IndirectObject: ionic radius of the lanthanide element

Adjective: dependent

Adverbial: -

5. Input:

This was true even though the BN interphase reacted and vaporized because of water vapor in the atmosphere at intermediate temperatures and glass formation occurred at higher temperatures.

Output:

Subject: glass formation

Action: occur Object: -

Preposition: at

IndirectObject: higher temperature

Adjective: Adverbial: -

6. Input:

The composites were infiltrated under vacuum , cured at $100 \ \text{degree} \ \text{C}$, and precalcined in air at $700 \ \text{degree}$ C.

Output: Subject: -

Action: infiltrate
Object: composite
Preposition: under
IndirectObject: vacuum

Adjective: Adverbial: -

In addition, Subject S, Object O and Indirect Object iO have their inner structure, which is recognized by the system and includes the components proper (Sm, Om, iOm) and their attributes (Attr (Sm), Attr(Om), Attr(iOm)). The

elements of each of the pairs are in semantic relation P between each other.

If, for purposes of the following description, we denote any of the elements Sm, Om, iOm as Ôm, then Subject S, Object O and Indirect Object iO are predicate elements of the type P(Attr(Ôm), Ôm). The system considers and recognizes following types of relation P: Feature (Parameter, Color, etc.), Inclusion, Placement, Formation, Connection, Separation, Transfer, etc.

Examples (Only sentence fragments are given here, which correspond to the S or O or iO) :

- 1. Input: Ce-TZP materials with CeO₂ content
 Output: P = Formation / with
 Attr (Ôm) = CeO₂ content
 Ôm = Ce-TZP materials
- 2. Input: rotational speed of freely suspended cylinder
 Output: P = Feature (Parameter)/of
 Attr (Ôm) = rotational speed
 Ôm = freely suspended cylinder
- 3. Input: ruby color of Satsuma glass
 Output: P = Feature (Color) / of
 Attr (Ôm) = ruby color
 Ôm = Satsuma glass
- 4. Input: micro-cracks situated between sintered grains
 Output: P = Placement / situated between
 Attr (Ôm) = sintered grains
 Ôm = micro-cracks
- 5. Input: precursor derived from hydrocarbon gas Output: P = Formation / derived from Attr (Ôm) = hydrocarbon gas Ôm = precursor

6. Input: dissipation driver coupled to power dissipator Output: P = Connection/ coupled to Attr (Ôm) = power dissipator Ôm = dissipation driver

- 7. Input: lymphoid cells isolated from blood of AIDS infected people Output: P = Separation / isolated from Attr (Ôm) = blood of AIDS infected people Ôm = lymphoid cells
- 8. Input: one-dimensional hologram pattern transferred to
 matrix electrode
 Output: P = Transfer / transferred to
 Attr (Ôm) = matrix electrode
 Ôm = one-dimensional hologram pattern

It is clear, that the components $\hat{O}m$ proper can also be predicate elements (in the given above examples, it is, for instance, Ex. No. 2: $\hat{O}m$ = freely suspended cylinder, Ex. No. 8: $\hat{O}m$ = one-dimensional hologram pattern). It should be noted that for information retrieval purposes it is more important to recognize the structure of Subject, Object and Indirect object, that is Attr ($\hat{O}m$) and $\hat{O}m$ than the types of relation P, because it is the basis of the algorithm of transition to the less relevant search patterns.

Semantic Processor for User Request Analysis according to the principles of the present invention aims at analyzing and classifying different types of user requests in order to create their formal representation (in the form

of a set of certain fields and relations between them) which enables more effective and efficient search for information or documents in local and remote databases, knowledge bases, information networks, etc.

Semantic Processor (Fig. 1) receives User Request 2 as input data. Using Linguistic KB 12, Semantic Processor identifies or classifies the type of request as described below (Unit 4) and performs eSAO analysis of the request in accordance with its type (Unit 6). Then, a number of search patterns is generated corresponding to the input user request which represent its formal description designed for answer search (Unit 10) in databases, information networks, etc.

Semantic Processor analyzes the following basic types of requests (Fig. 2).

1. Keywords (18)

Keywords is a type of user request where words are organized into a Boolean expression using predetermined grammar rules. In one example, it comprises 6 rules for infix, prefix and brackets operators. The following operators are implemented: AND, OR, XOR, NEAR, NOT and brackets. The operators may be expressed in user request in

different ways, for instance AND can be written as 'AND', '&', '&&', '+'.

User request example:

"('laser' NEAR 'beam') && 'heating'"

2. Bit sentence (20)

Bit sentence is a type of user request representing a part of sentence or sentence segment (incomplete sentence) which corresponds to a certain semantic element : process, object, function (action + object), etc.

User request examples:

- (a) solid state laser system
- (b) decrease friction
- 3. Statement (22)

Statement is a type of request which is a grammatically correct imperative sentence.

User request example:

Give me the number of employees in your company.

4. Question sentence (24)

Question sentence is a type of request which is a grammatically correct interrogative sentence.

User request examples:

(a) What causes fuel cell degradation?

(b) What is the chemical composition of the ocean?

- (c) Do the continents move?
- Comlex query (25)

Complex query is a type of request, which is expressed, by several sentences, i.e. by the fragment of the text.

User request example:

- (a) Is there anything I can give my one-month-old son to relieve gas pain? I think he may have colic.
- (b) My 15-year-old son has recently been diagnosed with recurrent shoulder dislocation. Lately he got worse. How is recurrent shoulder dislocation treated?
- (c) Because I have a chronic stuffed nose and no sense of taste, I have been taking a prescribed medicine (Claritin D). Is there a time limit after which this medicine will no longer have an effect? If so, what else can I take?
- (d) Three years ago, after months of extreme fatigue, general aches and pains and stomach problems, my family doctor gave me a diagnosis of Epstein-Barr. He said my titers were 5100. Recently I went to an internist, who ran numerous blood tests and said she thinks that I have

fibromyalgia. She doesn't believe in the Epstein-Barr diagnosis. I am now being referred to a rheumatologist. Is there such a thing as Chronic Epstein-Barr? And what is the difference between Epstein-Barr and fibromyalgia?

After the type of request has been classified, the request is forwarded to eSAO module for further analysis (Unit 6).

If the request has been recognized as "Keywords", i.e. it satisfies the rules of Boolean grammar, Semantic

Processor converts the request into standard notation. See

Figure 3. For example:

Input:

"('laser' NEAR 'beam') && 'heating'"
Output:

((laser) NEAR (beam)) AND (heating)

If the request is of the type "bit" or "command" or "question sentence" or "complex query", eSAO Processor (FIG. 4) performs its tagging (Unit 36), recognizing introductory part of the request (Unit 37), parsing (Unit 38), conversion (Unit 40). If the request type is "question sentence", semantic analysis (e-SAO extraction) (Unit 42), and outputs formal representation of the original request in the form of a set of predetermined fields.

At the step of tagging (Unit 36), each word of the request is assigned a Part-Of-Speech tag (its lexical-grammatical class). The analysis used here (see above identified references Nos. 3 and 4) is supplemented with statistical data, obtained on the specially collected question corpus. This provides highly correct POS-tagging. In case of "bit sentence" several variants are possible.

For instance:

Input:

clean water

Output:

- (a) clean_JJ water_NN
- (b) clean_VB water_NN

where JJ stands for adjective, VB - verb, NN - noun

Then, (Unit 37) the introductory part of the query is recognized, which is a sequence of words in the beginning of the query, none of which is a keyword for the given query. For example:

- a) Could you tell me...
- b) Is it true, that...
- c) I want...

This part of the query is excluded from further processing or analysis. The recognition of the introductory

part is performed by means of patterns, making use of separate lexical units and tags.

For example:

a) < PP BE (interested | wondering) (if | whether) [,] >
This pattern removes, for example, the following part from
the user's query:

I am wondering if ...

b) < MD PP VB PP [,] >

This pattern removes, for example, the following part from the user's query:

Could you tell me ...

At the step of parsing, Figure 4, verbal sequences (Unit 50) and noun phrases (Unit 52) are recognized from the tagged request (Fig.5) and a syntactical parse tree is built (Unit 54).

This module includes stored Recognizing Linguistic Models for Syntactic Phrase Tree Construction. They describe rules for structurization of the sentence, i.e. for correlating part-of-speech tags, syntactic and semantic classes, etc. which are used by Text parsing and SAO extraction for building Syntactic and Functional phrases (see Reference No. 4 (i.e. US Patent Application No. 09/541,182), page 36, section "Tree Construction").

The Syntactical Phrase Tree Construction is based on context-sensitive rules to create syntactic groups, or nodes in the parse tree.

A core context-sensitive rule can be defined by the following formula:

UNITE

[element_1 ... element_n] AS Group_X

IF

left_context = L_context_1 ... L_context_n

right_context = R_context_1 ... R_context_n

which means that the string in brackets (element_1 ...
element_n) must be united and further regarded as a

syntactic group of a particular kind, Group_X in this case,
if elements to the left of the string conform to the string
defined by the left_context expression, and elements to the
right of the string conform to the string defined by the
right context expression.

Elements here can be POS-tags or groups formed by the **UNITE** command.

All sequences of elements can consist of one or more elements.

One or both of context strings defined by left_context
and right_context may be empty.

The context-sensitive rules are applied to a sentence in a backward scanning, from the end of the sentence to beginning, element by element, position by position. If the present element or elements are the ones defined in brackets in one of the context-sensitive rules, and context restricting conditions are satisfied, these elements are united as a syntactic group, or node, in the parse tree. After that the scanning process returns to the last position of the sentence, and the scan begins again. The scanning process is over only when it reaches the beginning of the sentence not starting any rule. Preferably, after a context-sensitive rule has implemented, elements united into a group become inaccessible for further context-sensitive rules, instead, this group represents these elements.

A simple example illustrates the above mentioned stages.

Input sentence:

The device has an open distal end.

The DEF ARTICLE device NOUN has HAVE s

an INDEF ARTICLE open ADJ distal ADJ end NOUN . PERIOD

Grammar:

BEGIN BACKWARD STAGE

UNITE

```
[(ADJ or NOUN) (NOUN or Noun_Group)] AS Noun_Group
     IF
     left context = empty
     right context = empty
     UNITE
     [(DEF ARTICLE or INDEF ARTICLE) (NOUN or Noun Group)]
     AS Noun Group
     IF
     left context = empty
     right context = empty
     END BACKWARD STAGE
Rule 1 (ADJ and NOUN): Pass 1:
     The DEF ARTICLE device_NOUN has_HAVE_s
     an INDEF ARTICLE open (Noun_Group: distal_ADJ
     end NOUN) . PERIOD
Rule 1 (ADJ and Noun Group):Pass 2:
     The DEF ARTICLE device_NOUN has_HAVE s
     an INDEF ARTICLE (Noun_Group: open ADJ (Noun_Group:
     distal_ADJ end_NOUN)) . PERIOD
Rule 2 (INDEF ARTICLE and Noun Group):Pass 3:
     The DEF_ARTICLE device_NOUN has HAVE s
     (Noun Group: an INDEF ARTICLE (Noun_Group: open ADJ
     (Noun_Group: distal_ADJ end_NOUN))) . PERIOD
```

Rule 1 (DEF_ARTICLE and NOUN):Pass 4:

(Noun_Group: The_DEF_ARTICLE device_NOUN) has_HAVE_s

(Noun_Group: an_INDEF_ARTICLE (Noun_Group: open_ADJ

(Noun_Group: distal_ADJ end_NOUN))) ._PERIOD

Now there exists two nodes, or groups - noun groups.

Only one more rule is needed to unite a noun group, HAS
verb and one more noun group as a sentence.

Thus, the first stage in parsing deals with POS-tags, then sequencies of POS-tags are gradually substituted by syntactic groups, these groups are then substituted by other groups, higher in the sentence hierarchy, thus building a multi-level syntactic structure of sentence in the form of a tree.

For instance (first, the results are presented for the four sentences given above):

1) The dephasing waveguide is fitted with a thin dielectric semicircle at one end, and a guide cascaded with the dephasing element completely suppresses unwanted modes.

w__Sentence

 w_N_X

w NN

a AT

guide NN

w VBN XX

```
cascaded_VBN
       w__IN_N
           with_IN
           w_NN
              the_ATI
              w_NN
                 dephasing_NN
                 element_NN
    w___VBZ_XX
     w___VBZ
       completely_RB
        suppresses_VBZ
      w_NNS
        unwanted_JJ
       modes_NNS
2) It was found that the maximum value of x is dependent on
the ionic radius of the lanthanide element .
```

```
w__Sentence
w_NN
w_NN
the_ATI
w NN
```

```
{\tt maximum\_JJ}
         value_NN
   of_IN
   x NP
w__BEX_XX
   is_BEZ
   w__JJ_XX
      dependent_JJ
      w__IN_N
         on_IN
         w_NN
            w_NN
                the_ATI
                w NN
                   ionic_JJ
                   radius_NN
            of_IN
            w_NN
                the_ATI
                w\_NN
                   lanthanide_NN
                   element_NN
```

3) This was true even though the BN interphase reacted and vaporized because of water vapor in the atmosphere at intermediate temperatures and glass formation occurred at higher temperatures.

```
w_Sentence

w_NN

glass_NN

formation_NN

w__VBD_XX

occurred_VBD

w__IN_N

at_IN

w_NNS

higher_JJR

temperatures_NNS
```

4) The composites were infiltrated under vacuum, cured at 100 degree C, and precalcined in air at 700 degree C.

w__Sentence

w_NNS

The_ATI

composites_NNS

w__BEX_XX

were_BED

w__VBN_XX

infiltrated_VBN

w__IN_N

under_IN

vacuum_NN

· -- ·

5) "bit sentence" type

Input:

clean water

Output:

a) < w NN>

<clean_JJ> clean_JJ

<water_NN> water_NN

b) <w___VB_XX>

<clean_VB> clean_VB

<water_NN> water_NN

6) "question sentence" type

Input:

What causes fuel cell degradation?

Output:

At the stage of question transformation or conversion (FIG. 6), in case of "question sentence" question structure is first recognized according to its general description (Unit 62). This formal description concerns only that introductory part of the query or the whole query, which will be transformed later on, and it is given in the following Backus-Naur notation:

1. <Question>::= [<Wh-group>]<First Verbal Group> NG
 [<Second Verbal Group >]

Notes: a) [x] means, that x element may be absent;

2. <\mathref{Wh-group}::=[Pr]<\mathref{Wh}>[NG]

b) NG - noun group;

Notes: Pr - preposition;

3. <Wh>>::=enc WP|enc WRB|enc WDT|<How RB>

Notes: a) enc_X means represents a lexical unit with a terminal symbol X, being its POS-tag;

- b) enc_WP, enc_WRB and enc_WDT tags cover all possible question words: how long, how much, how many, when, why, how, where, which, who, whom, whose, what.
- 4. <How RB>::= how enc_RB
- 5. <First Verbal Group>::=
 enc_MD|enc_HV|enc_HVZ|enc_HVD|enc_HVN|enc_BE|enc_BEZ
 |enc_BEM|enc_BER|enc_BED|enc_BEDZ|enc_DO|enc_DOD|enc_DOZ
- 6. <Second Verbal Group>::= <First Verbal Group>|
 enc_VB | enc_VBZ | enc_VBD | enc_VBN | enc_VBG |
 enc_HVG | enc_BEN | enc_BEG | enc_XNOT

It should be noted, that above-described grammar is build so as not to process posed to syntactic subjects - "What food can reduce cholesterol in blood?", "Who killed Kennedy?", because the word order in these questions is direct (statement-like) and does not need to be changed. Besides, the remaining part of the question we mark as TL ("tail").

In one example of the converting step 40, the elements in the right side of formula 1 are enumerated:

1. <Wh-group>

```
2. <First Verbal Group>
     3.NG
     4. <Second Verbal Group>
       and TL is marked as 5
Then, the formula of the query itself will be:
     request =(1,2,3,4,5)
     In some cases certain elements of the formula may be
absent.
For example:
a)
What is the chemical composition of the ocean? \rightarrow1(What)
2(is) 3(the chemical composition of the ocean) 4() 5()?
b)
Do the continents move? \rightarrow 1() 2(Do) 3(the continents)
4 (move) 5 ( ) ?
c)
How much did it help? \rightarrow1 (How much) 2 (did) 3 (it) 4 (help) 5 (
)?
d)
1 (What company) 2(is) 3(John) 4 (working) 5 (at the moment
for) \rightarrow 3 (John) 2(is) 4(working) 5(at the moment for) 1(what
company)
e)
```

1(For what company) 2(is) 3(John) 4(working) 5 (at the moment) \rightarrow 3 (John)2(is) 4(working) 1(for what company) 5 (at the moment)

After the structural formula of the request has been defined, the question is converted (Unit 64) according to the following rule:

$$(1 2 3 4 5) \rightarrow (3 2 4 1 5)$$

or

$$(1 2 3 4 5) \rightarrow (3 2 4 5 1)$$

The second formula may be regarded as a special type of the first one, connected with grammatical peculiarities of the question.

For example:

```
a)
```

1(What) 2(is) 3(the chemical composition of the ocean) 4() $5()? \rightarrow 3$ (the chemical composition of the ocean) 2(is) 4() 1(What) 5()

b)

1() 2(Do) 3(the continents) 4(move) 5() ? \rightarrow 3(the continents) 2(Do) 4(move) 1() 5()

c)

1 (How much) 2 (did) 3 (it) 4 (help) 5 ()? \rightarrow 3 (it) 2 (did) 4 (help) 1 (How much) 5 ()

d)

1(What company) 2(is) 3(John) 4(working) 5(at the moment for) \rightarrow 3 (John) 2(is) 4(working) 5(at the moment for) 1(what company)

e)

1(For what company) 2(is) 3(John) 4(working) 5 (at the moment) \rightarrow 3 (John) 2(is) 4(working) 1(for what company) 5 (at the moment)

The described transformations of the questions enable to transform them into narrative form, which can be easily translated into the search pattern.

Then, converted request is subjected to the "question word substitution". In accordance with special rules, question words are substituted with certain, so-called "null-words" so as not to corrupt sentence structure:

What Something1

Which Some

How Somehow

Who Someonel

How long Sometime

Whom Someone2

How much Something2

How many Something3

Where Somewhere

When Time clause

Why Reason clause

Whose Somebody's

Then the parsed converted request is submitted to User Request eSAO extraction 44.

At the stage of eSAO extraction (FIG. 7), in the user request (in all cases except "keywords" case) semantic elements are recognized of the type S-subject (Unit 74), A-action (Unit 72), O-object (Unit 74) as well as their attributes expressed via preposition, indirect object, adjective, adverbial, as well as inner structure (the components proper and the attributes) of Subject S, Object O and Indirect Object iO.

The recognition of all these elements is implemented by means of corresponding Recognizing Linguistic Models (see Reference No. 4 (i.e. US Patent Application No. 09/541,182) page 41, section "SAO Recognition"). These models describe rules that use part-of-speech tags, lexemes and syntactic categories which are then used to extract

from the parsed text eSAOs with finite actions, non-finite
actions, verbal nouns. One example of Action extraction is:
<HVZ><BEN><VBN> => (<A>=<VBN>)

This rule means that "if an input sentence contains a sequence of words w1, w2, w3 which at the step of part-of-speech tagging obtained HVZ, BEN, VBN tags respectively, then the word with VBN tag in this sequence is in Action". For example,

has _HVZ been_BEN produced_VBN => (A=produced)

The rules for extraction of Subject, Action and Object are formed as follows:

- 1. To extract the Action, tag chains are built, e.g.,
 manually, for all possible verb forms in active and
 passive voice with the help of the Classifier (block 3).
 For example, have been produced = <HVZ><BEN><VBN>.
- 2. In each tag chain the tag is indicated corresponding to the main notion verb (in the above example - <VBN>). Also, the type of the tag chain (active or passive voice) is indicated.
- 3. The tag chains with corresponding indexes formed at steps
 1-2 constitute the basis for linguistic modules
 extracting Action, Subject and Object. Noun groups
 constituting Subject and Object are determined according
 to the type of tag chain (active or passive voice).

The recognition of such elements as Indirect Object,
Adjective and Adverbial is implemented in the same way,
that is taking into account the tags and the structure
itself of Syntactical Phrase Tree.

Recognition of Subject, Object and Indirect Object attributes is carried out on the basis of corresponding Recognizing Linguistic Models. These models describe rules (algorithms) for detecting subjects, objects, their attributes (placement, inclusion, parameter, etc.) and their meanings in syntactic tree.

To identify parameters of an Object (Indirect Object, Subject) Parameter Dictionary is used. A standard dictionary defines whether a noun is an object or a parameter of an object. Thus, a list of such attributes can easily be developed and stored in Linguistic KB(Block 80). For example, temperature (= parameter) of water (= object). To identify attributes such as placement, inclusion etc., Linguistic KB includes a list of attribute identifiers, i.e. certain lexical units. For example, to place, to install, to comprise, to contain, to include etc. Using such lists, the system may automatically mark the eSAOs extracted by eSAO extractor which correspond to said attributes.

These algorithms work with noun groups and act like linguistic patterns that control extraction of above-mentioned relations from the text. For example, for the relations of type parameter-object, basic patterns are <Parameter> of <Object>

and

<Object> <Parameter>

The relation is valid only when the lexeme which corresponds to <parameter> is found in the list of parameters included in Linguistic KB.

These models are used by Unit 76 of eSAO extraction module. The output of the unit is a set of 7 fields, where some of the fields may be empty.

For example (for the highlighted fragments of the first two sentences given above):

1) The dephasing waveguide is fitted with a thin dielectric semicircle at one end, and a guide cascaded with the dephasing element completely suppresses unwanted modes.

Subject: guide cascaded with the dephasing element

Action: suppresses

Object: unwanted modes

Preposition:-

IndirectObject:-

Adjective: -

Adverbial: completely

2) It was found that the maximum value of x is dependent on the ionic radius of the lanthanide element.

Subject: maximum value of x

Action: be

Object:-

Preposition: on

IndirectObject: the ionic radius of the lanthanide

element

Adjective: dependent

Adverbial:-

At the stage 77 User Request eSAO Extractor recognizes constraints, i.e., those lexical units of the query, which are not parts of eSAO.

The constraints can be represented by any lexical unit except:

(a) Question words:

enc_WP, enc_WRB, enc WDT

Example: what, how, where

(b) Articles:

enc AT, enc ATI

Example: a, an , the

(c) helpers:

enc_DO, enc_DOD, enc_DOZ, enc_MD, enc_IN, enc_XNOT,
enc_TO,enc_HV, enc_HVZ, enc_HVD,enc_BE, enc_BEZ, enc_BER,
enc_BED, enc_BEDZ, enc_BEM

Example: do, did, does

(d) personal pronouns:

enc_PPusd,enc_PPusd2,enc_PP1A,enc_PP1AS,enc_PP1O,enc_PP1OS,
enc_PP2, enc_PP3, enc_PP3A, enc_PP3AS, enc_PP3O, enc_PP3OS,
enc_PPL, enc_PPLS, enc_PP

Example: I, we, they

(e) other pronouns:

enc_PN, enc_PNq2, enc_PNusd, enc_PNusdq2
Example: same, each, something

(f) determiners:

enc_DT, enc_DTusd, enc_DTI, enc_DTS, enc_DTX, enc_EX
Example: this, those, these

(g) because, if:

enc CS

Example: because, if, since, after

(h) punctuation:

enc_Exclamatory, enc_AmpersandFW, enc_RLBracket,
enc_RRBracket,enc_LeftQuote, enc_RightQuote,

```
enc_MultipleMinus, enc_Comma, enc_FullStop,
enc_Spot3,enc_Colon, enc_Semicolon, enc_Question
    Example: ", ', ?, !, ...
```

(i) others:

enc_UH, enc_CC, enc_OD, enc_CD

Example: Oh!, and, or

As a result, eSAO extractor 42 outputs eSAO request in the form of a set of, for example, 8 fields where some of the fields may be empty:

- 1. Subject
- 2. Action
- 3. Object
- 4. Preposition
- 5. Indirect Object
- 6. Adjective
- 7. Adverbial
- 8. Constraints

Along with that, Subject, Object and Indirect Object each have inner structure, as described above.

In case of "bit sentence" and "complex query", more than one set of fields is possible.

For instance:

("Bit Sentence")

Input: clean water

```
Output:
      (a)
      Subject: -
      Action: -
      Object: clean water
      Preposition: -
      Indirect Object: -
      Adjective: -
      Adverbial: -
      Constraints: -
     (b)
      Subject: -
      Action: clean
      Object: water
      Preposition: -
      Indirect Object: -
     Adjective: -
     Adverbial: -
      Constraints: -
("Statement")
       Input: Give me the number of employees in IMC
    company.
       Output:
```

```
Subject:-
       Action:-
       Object: number of employees in IMC company
       Preposition: -
       Indirect Object: -
       Adjective: -
       Adverbial: -
       Constraints:-
("Question")
    Input: What is the chemical composition of the ocean?
    Output:
      Subject: chemical composition of the ocean
      Action: is
      Object: What
      Preposition: -
      Indirect Object: -
      Adjective: -
      Adverbial:
      Constraints:-
("Question")
     Input: Do the continents move?
     Output:
```

```
Subject: continents
   Action: move
   Object: -
   Preposition: -
   Indirect Object: -
   Adjective: -
   Adverbial: -
   Constraints:-
("Complex Query")
  Input: My 15-year-old son has recently been diagnosed
  with recurrent shoulder dislocation. Lately he got
  worse. How is recurrent shoulder dislocation treated?
   Output:
  Subject: -
   Action: treat
   Object: recurrent shoulder dislocation
  Preposition:
  Indirect object: -
  Adjective:
  Adverbial:
  Constraints: 15-year-old, son, diagnose
  At the final stage of processing the user request
```

expressions in case of "keywords", and eSAOs in other cases. Also, sign "?" may be present in some eSAO fields to signal that this field must be filled in to answer the user request.

For example:

("Bit Sentence")

Input: clean water

Output:

(a)

Subject: any

Action: any

Object: clean water

Preposition: any

Indirect Object: any

Adjective: any

Adverbial: any

Constraints : any

(b)

Subject: any

Action: clean

Object: water

Preposition: any

Indirect Object: any

Adjective: any

Adverbial: any

Constraints: any

("Statement")

Input: Give me the number of employees in IMC

company.

Output:

Subject: Something1

Action: any

Object: number of employees in IMC company

Preposition: any

Indirect Object: any

Adjective: any

Adverbial: any

Constraints: any

("Question")

Input: What is the chemical composition of the ocean?

Output:

Subject: chemical composition of the ocean

Action: be

Object: ?

Preposition: any

Indirect Object: any

Adjective: any

Adverbial: any

Constraints: any

("Question")

Input: Do the continents move?

Output:

Subject: continents

Action: move

Object: any

Preposition: any

Indirect Object: any

Adjective: any

Adverbial: any

Constraints: any

("Complex Query")

Input: My 15-year-old son has recently been diagnosed

with recurrent shoulder dislocation. Lately he got

worse. How is recurrent shoulder dislocation treated?

Output:

Subject: something1

Action: treat

Object: recurrent shoulder dislocation

Preposition: any

Indirect object: any

Adjective: any

Adverbial: any

Constraints: 15-year-old, son, diagnose

If no eSAO field contains the "?" sign, that means the question is general. Absence of an element in a field ("any") means that this field can contain anything.

Functionality of all modules of the Semantic Processor is maintained by Linguistic Knowledge Base 12 which includes Database (dictionaries, classifiers, statistical data, etc.) and Database of Recognizing Linguistic Models (for text-to-words splitting, recognition of noun phrases, verb phrases, subject, object, action, attribute, "type-of-sentence" recognition, etc). See References Nos. 3, 4, and 5 above.

Thus, the output search patterns at 10 in Fig.1 can be used to search for matching eSAO's in eSAO Knowledge Base in the system with much more accuracy and reliability than prior systems and methods even for requests being in the form of questions. In addition, the eSAO format enables greater accuracy in obtaining precise information of interest.

Simultaneously, the user is offered the opportunity to receive possibly less relevant information, owing to the strategy of less strict identity between the corresponding

fields in search patterns and in documents processed during the search. Thus, for example, in the case of the last example:

Subject: something

Action: treat

Object: recurrent shoulder dislocation

Preposition: any

Indirect object: any

Adjective: any

Adverbial: any

Constraints: 15-year-old, son, diagnose

Semantic Processor additionally can form a set of less relevant search patterns, by means of gradual refusal of "Constraints" field elements and further - of recognized "Object" attributes, owing to:

recurrent = Attr (shoulder dislocation)

shoulder = Attr (dislocation)

Thus, the less relevant search pattern will be:

Subject: something

Action: treat

Object: dislocation

Preposition: any

Indirect object: any

Adjective: any

Adverbial: any

Constraints: any

Note the constraint has been removed, which can be in response to a user-entered command.

With reference to FIG. 8, the query driven information search 84 includes a semantic eSAO processing 86, 88 for creating eSAO structures index or Knowledge Base (including links to documents) 90 of source documents 80 and eSAO search patterns 92 of user requests 82. See references nos. 2 and 4 for further details on creating one example of a Knowledge Base. The present Knowledge Base, however, can have up to 8 fields for the eSAO structures and constraints as described above. The search module 84 further includes comparative analysis 92 of eSAO search patterns 92 of user requests and eSAO structures index 90 of source documents. The comparative analysis 92 identifies the eSAO structures 96 of source documents, which are most relevant for eSAO search patterns of given user requests. These structures can be displayed to the user in order of relevance and the full source sentence of user selected structure and link to the full document can be displayed. User selection of the document link shall access the full source document for display of the paragraph or paragraph segment that includes the eSAO components which can be highlighted for quick

recognition. This document display is scrollable through the entire document, see references nos. 2, 4, and 5 for further details of these functions.

It will be understood that various modification and improvements can be made to the herein disclosed exemplary embodiments without departing from the spirit and scope of the present invention.

We Claim:

Claim 1. In a digital computer, the method of processing a natural language expression entered or downloaded to the computer comprising:

identifying in the expression expanded subject, action, object (eSAO) components comprising at least four components including subject, action, object components and at least one additional component from the class of preposition component, indirect object component, adjective component, and adverbial component, and

extracting each of said at least four components for designation into a respective subject, action, object field and at least one respective field from the class of preposition field, indirect object field, adjective field, and adverbial field, and

using the components in at least certain ones of said fields for at least one of (i) component display to the user, (ii) forming a search pattern of a user request for information search of local or on-line databases, and (iii) forming an eSAO knowledge base.

Claim 2. In the method of Claim 1 wherein,

the expression comprises a user request for information search, said method further comprising classifying the expression into at least one category from

the class that includes bit sentence, statement sentence, question sentence, and complex query, and

simplifying the user request search pattern by applying rules in accordance with the respective expression category.

Claim 3. In the method of Claim 2 wherein,

the rules include transforming a question sentence rules according to

wherein

- 1 <wh-group>
- 2 <First Verbal Group>
- 3 NG (Noun Group)
- 4 <Second Verbal Group>
- 5 TL (tail)

Claim 4. The method of Claim 1 wherein,

the expression comprises a sentence of a document downloaded to the computer and wherein said process comprises using the components for forming an indexed eSAO knowledge base entry, and

selecting the eSAO entry for display of the eSAO components, or of the source expression that includes the

eSAO components, in response to a user request that includes at least a subset of the expression eSAO components.

Claim 5. The method of Claim 1 wherein,

the expression includes constraint components that includes components that are not classified in any other component type,

said extracting step, further includes extracting constraint components for designation into a constraint field, and

said using step further includes using the components in at least certain ones of said fields for at least one of (i) component display to the user, (ii) forming a search pattern of a user request for information search of local or on-line databases, and (iii) forming an eSAO knowledge base.

Claim 6. The method of Claim 5 wherein,

the object field includes an object component field segment and an attribute field segment.

Claim 7. The method of Claim 6 said method further comprising

forming a less relevant user request search pattern by deleting one or more components from the constraint field or one or more attributes from the object field.

Claim 8. The method of Claim 4 wherein,

the expression comprises part of a downloaded document, said method further classifying the expression into at least one category from the class that includes bit sentence, statement sentence, question sentence.

Claim 9. The method of Claim 8 wherein,

the expression includes a question sentence and transforming the sentence according to the rule

or

wherein

- 6 <wh-group>
- 7 <First Verbal Group>
- 8 NG (Noun Group)
- 9 <Second Verbal Group>
- 10 TL (tail)

Claim 10. The method of Claim 8 said method comprising,

processing all of the natural language expressions from a plurality of downloaded documents into an eSAO Knowledge Base.

Claim 11. The method of Claim 10 said method further
comprising,

providing communication access to said eSAO knowledge base by a plurality of user computers, processing natural language user requests into eSAO search patterns and conveying to respective users expressions and source document links for respective expression whose eSAO field components substantially match the eSAO components of the respective user requests.

FIG. 1 Structural and Functional Scheme of the Semantic Processor for User Request Analysis

FIG. 2
Basic Types of the User Request

FIG. 3
Structural and Functional Scheme of the User
Request eSAO Processor
(the case of "keywords")

FIG. 4
Structural and Functional Scheme of the User Request eSAO Processor (the case of "bit", "command", "question" or "complex" query)

4/8

FIG. 5
Structural and Functional Scheme of User
Request Parser

FIG. 6 Structural and Functional Scheme of User Request Convertor

FIG. 7
Structural and Functional Scheme of User
Request eSAO extractor

FIG. 8.

Query driven information search

8/8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US01/11631

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : G06F 17/27 US CL : 704/9 According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) U.S.: 704/1, 7, 8, 9, 10; 707/2, 3, 4, 5, 104, 530, 531, 532				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
Y	US 5,369,575 A (LAMBERTI et al) 29 November 1994 (29.11.1994), abstract; col. 3, line 1, 2, 4-8 65 to col. 4, line 14; and col. 4, line 28 to col. 7, line 37.		1, 2, 4-8, & 10-11	
Α	03 to col. 4, line 14, and col. 4, line 28 to col. 7, line 37.		3,9	
A	US 5,799,268 A (BOGURAEV) 25 August 1998 (25.08.1998), abstract; figs. 1 ¹ 2; col. 2, line 51 to col. 3, line 38; col. 7, line 27 to col. 9, line 34; col. 10, line 12 to col. 12, line 27; col. 39, line 40 to col. 42, line 26; col. 57, line 11 to col. 61, line 61; and col. 62, line 44 to col. 65, line 67.		1-11	
. A	US 5,933,822 A (BRADEN-HARDER et al) 03 August 1999 (03.08.1999), abstract; col. 5, line 2 to col. 6, line 3; col.11, line 34 to col.14, line 64; and col. 17, line 29 to col.18, line 24.		1-11	
Y	US 5,963,940 A (LIDDY et al) 05 October 1999 (05.10.1999), abstract, col. 2, line 35 to col. 3, line 63; col. 10, line 25 to col. 12, line 28; col. 16, line 40 to col. 16, line 68; col. 24, lines 13-54; and col. 30, lines 2 to col. 34, line 63.		1, 2, 4-8, & 10-11	
			3 & 9	
A			· 1	
A, P	US 6,076,051 A (MESSERLY et al) 13 June 2000 (1 col. 3, line 29; and col. 4, line 18 to col. 14, line 34.	3.06.2000), abstract; col. 2, line 34 to	1-11	
	documents are listed in the continuation of Box C.	See patent family annex.		
	. 169			
Special categories of cited documents:				
"A" document defining the general state of the art which is not considered to be of particular relevance		principle or theory underlying the invent. "X" document of particular relevance; the		
		considered novel or cannot be conside when the document is taken alone	red to involve an inventive step	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination		
"O" documen	t referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in th	TA S	
"P" document published prior to the international fiting date but later than the "&" document member of the same patent family priority date claimed				
Date of the actual completion of the international search 20 June 2001 (20.06.2001) Date of mailing of the international search 2 June 2001 (20.06.2001)				
Name and mailing address of the ISA/US Authorized officer				
Commissioner of Patents and Trademarks Box PCT Joseph Thomas			11 111/1/1	
Washington, D.C. 20231			MMM 1	
Facsimile No. (703)305-3230 Telephone No. (703) 305-4700				

Form PCT/ISA/210 (second sheet) (July 1998)

	INTERNATIONAL SEARCH REPORT	International application No.
		PCT/US01/11631
		·
	•	
	·	
Continuation o	f B. FIELDS SEARCHED Item 3: EAST search Usearch terms: sub, extend/extension	bject, action/predicate, object, SAO,
expand/expansion	a, extend/extension	
		· ·
		i.
		·
	•	
		•