#### Ejercicio 03 MRUA problema resuelto

Una locomotora necesita 10 s. para alcanzar su velocidad normal que es 25m/s.

Suponiendo que su movimiento es uniformemente acelerado ¿Qué aceleración se le ha comunicado y qué espacio ha recorrido antes de alcanzar la velocidad regular?

Sol.: 2,5 m/s2; 125 m

R//

### 1- Análisis y clasificación del enunciado del problema en sus elementos

| Elemento                | Valor                                                     |                                        |  |  |  |  |
|-------------------------|-----------------------------------------------------------|----------------------------------------|--|--|--|--|
|                         |                                                           |                                        |  |  |  |  |
| Captura de Datos        | Velocidad inicial 0m/s                                    |                                        |  |  |  |  |
|                         | Velocidad final 25m/s                                     |                                        |  |  |  |  |
|                         | Tiempo 10s                                                |                                        |  |  |  |  |
|                         | Aceleración= Velocidad final menos velocidad inicial= (x) |                                        |  |  |  |  |
| Operaciones Aritméticas | (x) se divide entre tiempo                                |                                        |  |  |  |  |
|                         |                                                           |                                        |  |  |  |  |
|                         | Distancia= tomo tiempo y l<br>=(t)                        | omo tiempo y lo multiplico al cuadrado |  |  |  |  |
|                         | Tomo (t) y lo multiplico por aceleración=(b)              |                                        |  |  |  |  |
|                         | (b) lo divido entre dos= distancia.                       |                                        |  |  |  |  |
|                         | ¿Qué aceleración se le ha comunicado?                     |                                        |  |  |  |  |
| Preguntas               | ¿qué espacio ha recorrido                                 |                                        |  |  |  |  |
| Freguntas               | antes de alcázar la                                       |                                        |  |  |  |  |
|                         | velocidad regular?                                        |                                        |  |  |  |  |
|                         |                                                           |                                        |  |  |  |  |
|                         |                                                           |                                        |  |  |  |  |
|                         |                                                           |                                        |  |  |  |  |
| Observations            |                                                           |                                        |  |  |  |  |
| Observaciones           |                                                           |                                        |  |  |  |  |
|                         |                                                           |                                        |  |  |  |  |

## 2- Diagrama Entrada – Proceso – Salida



#### 3- Análisis de Procesos Aritméticos

Para calcular aceleración tomo velocidad final menos velocidad inicial= (x)
(x) lo divido entre tiempo= aceleración.

para calcular distancia tomo tempo y lo multiplico por (t) = (t2)

Tomo aceleración y lo multiplico por (t2) = (b)
(b) lo divido entre dos= distancia

### 4- Diseño Interfaz Hombre - Máquina



## 5- Algoritmos

| Paso | Descripción                                       |
|------|---------------------------------------------------|
| rasu | •                                                 |
|      | Inicio                                            |
| 1.   | Declarar variable de velocidad inicial            |
| 2.   | Leer variable de velocidad inicial (vi)           |
| 3.   | Declarar variable de medición de velocidad        |
|      | inicial                                           |
| 4.   | Leer variable de medición de velocidad inicial    |
|      | (m/s)                                             |
| 5.   | Declarar variable de velocidad final              |
| 6.   | Leer variable de velocidad final (vf)             |
| 7.   | Declarar variable de medición de velocidad final  |
| 8.   | Leer variable de medición de velocidad final      |
|      | (km/h)                                            |
| 9.   | Declarar variable de tiempo                       |
| 10.  | Leer variable de tiempo (t)                       |
| 11.  | Si (vi) tiene medición de (#km/h), (vi) se divide |
|      | entre 3.6 =(vi2)                                  |
| 12.  | Si (vf) tiene medición de (#km/h), (vf) se divide |
|      | entre 3.6 = (vf2)                                 |
| 13.  | Tomo (vf) y lo resto con (vi) = (vf-vi)           |
| 14.  | Escribir resultado (vf-vi)                        |
| 15.  | Tomo (vf-vi) y lo divido entre (t) = (A)          |
| 16.  | Escribo (A) como resultado de aceleración         |

|     | Tomo (t) y lo multiplico por (t) = (t2)    |
|-----|--------------------------------------------|
| 18. | Tomo (A) y lo multiplico por (t2) = (A.t2) |
| 19. | Tomo (A.t2) y lo divido entre 2 = (D)      |
| 20. | Escribo (D) como resultado de distancia.   |
| 21. | FIN                                        |

## 6. Tabla de Datos

|               |          |           | Valor   | Áı | mbit     | 0 |               |                             |
|---------------|----------|-----------|---------|----|----------|---|---------------|-----------------------------|
| Identificador | Tipo     | Tipo Dato | Inicial | Е  | Р        | S | Observaciones | Documentación               |
| vi            | Variable | Real      | 0,0     | Е  |          |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar un dato ingresado |
|               |          |           |         |    |          |   |               | por el usuario.             |
| vf            | Variable | Real      | 0,0     | Е  |          |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar un dato ingresado |
|               |          |           |         |    |          |   |               | por el usuario.             |
| t             | Variable | Real      | 0,0     | Е  |          |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar un dato ingresado |
|               |          |           |         |    |          |   |               | por el usuario.             |
| mvi           | Variable | Entero    | 0       | Е  |          |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar un dato ingresado |
|               |          |           |         |    |          |   |               | por el usuario.             |
| mvf           | Variable | Entero    | 0       | Е  |          |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar un dato ingresado |
|               |          |           |         |    |          |   |               | por el usuario.             |
| mt            | Variable | Entero    | 0       | Е  |          |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar un dato ingresado |
| :2            |          | Real      | 0.0     |    | D        |   |               | por el usuario.             |
| vi2           | variable | Real      | 0,0     |    | P        |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar una de las        |
|               |          |           |         |    |          |   |               | respuestas de una operación |
| - m           |          | D 1       | 0.0     |    | <u> </u> |   |               | aritmética.                 |
| vf2           | variable | Real      | 0,0     |    | P        |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar una de las        |
|               |          |           |         |    |          |   |               | respuestas de una operación |
| _             |          |           |         |    |          |   |               | aritmética.                 |
| t2            | Variable | Real      | 0,0     |    | P        |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar una de las        |
|               |          |           |         |    |          |   |               | respuestas de una operación |
|               |          |           | 0.0     |    | _        |   |               | aritmética.                 |
| Vf-vi         | variable | Real      | 0,0     |    | P        |   |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar una de las        |
|               |          |           |         |    |          |   |               | respuestas de una operación |
|               |          |           | 0.0     |    | _        | ~ |               | aritmética.                 |
| a             | variable | Real      | 0,0     |    | P        | S |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar una de las        |
|               |          |           |         |    |          |   |               | respuestas de una operación |
| 1             |          | D 1       | 0.0     | -  |          | C |               | aritmética.                 |
| d             | variable | Real      | 0,0     |    | P        | S |               | Variable donde se va a      |
|               |          |           |         |    |          |   |               | almacenar una de las        |
|               |          |           |         |    |          |   |               | respuestas de una operación |
|               |          |           |         |    |          |   |               | aritm <b>é</b> tica.        |

# 7. Tabla de Expresiones Aritméticas y Computacionales

| Expresiones Aritméticas                               | Expresiones Computacionales   |  |  |  |
|-------------------------------------------------------|-------------------------------|--|--|--|
|                                                       |                               |  |  |  |
| m/s= (#km/h) / 3.6                                    | V_m/s=(#km/h) / 3.6           |  |  |  |
| a= (velocidad final) – (velocidad inicial) / (tiempo) | V_a = (v_vf) - (v_vi) / (v_t) |  |  |  |
| t2= (tiempo)*(tiempo)                                 | v_t2 = (v_t) + (v_t)          |  |  |  |
| d= (aceleración)*(t2) / 2                             | V_d= (v_a) *(v_t2) / (2)      |  |  |  |

# 8. Diagrama de Flujo de Datos



#### 9. Prueba de Escritorio

#### Esta en el Excel

## 10. Pseudocódigo

```
Algoritmo aceleracion distancia
   // VERSION=1.0
   // FECHA=22/02/2023
   // ENUNCIADO: Una locomotora necesita 10 s. para alcanzar su velocidad normal que es
25m/s.
   // Suponiendo que su movimiento es uniformemente acelerado ¿Qué aceleración se le ha
comunicado y qué espacio ha recorrido antes de alcanzar la velocidad regular?
   // HECHO POR: HERNAN ALBERTO LONDOÑO VELEZ
   // FECHA: 20/02/2023
   // VERSION: 1.0
   // DEFINICION:
   Definir v vi Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD INICIAL
   Definir v vf Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD FINAL
   Definir v_t Como Real // VARIABLE QUE ALMACENA EL VALOR DE TIEMPO
   Definir v mvi Como Entero // VARIABLE QUE ALAMCENA LA MEDICION DE VELOCIDAD
INICIAL
   Definir v_mvf Como Entero // VARIABLE QUE ALAMCENA LA MEDICION DE VELOCIDAD
FINAL
   Definir v_mt Como Entero // VARIABLE QUE ALAMCENA LA MEDICION DE TIEMPO
```

Definir v\_vi2 Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD INICIAL EN M/S

Definir v\_vf2 Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD FINAL EN M/S

Definir v\_t2 Como Real // VARIABLE QUE ALMACENA TIEMPO EN SEGUNDOS.

Definir vf\_vi Como Real // VARIABLE QUE ALMACENA EL RESULTADO DE UNA OPERACION ARITMETICA DE VF-VI

Definir v\_a Como Real // VARAIABLE QUE ALMACENA EL RESULTADO DE UNA OPERACION ARITMETICA DE ACELERACION

Definir v\_d Como Real // VARAIABLE QUE ALMACENA EL RESULTADO DE UNA OPERACION ARITMETICA DE DIATANCIA

```
// VALOR INICA:
v_vi <- 0.0
v_vf <- 0.0
v_t <- 0.0
v_mvi <- 0
v_mvf <- 0
v_mt <- 0
v_vi2 <- 0.0
v_vf2 <- 0.0
v_t2 <- 0.0
vf_vi <- 0.0
v_a <- 0.0
v_d <- 0.0
// INICIO
// ENTRADA DE DATOS
Escribir 'escribe velocidad inicial'
Leer v_vi
// ENTRADA DE DATOS
Escribir ' si velocidad inicial esta en m/s escriba 1 o si esta en km/h escriba 2'
Leer v_mvi
// ENTRADA DE DATOS
Escribir 'escribe velocidad final'
Leer v_vf
// ENTRADA DE DATOS
Escribir 'si velocidad final esta en m/s escriba 1 o si esta en km/h escriba 2'
Leer v_mvf
```

```
// ENTRADA DE DATOS
   Escribir 'escribe tiempo'
   Leer v_t
   // ENTRADA DE DATOS
   Escribir 'si tiempo esta en segundos escriba 1, si esta en minutos escriba 2, si esta en horas
escriba 3'
   Leer v_mt
   Escribir '-----'
   // PROCESO
   Segun v_mvi Hacer // SE CONVIERTE LOS KM/H A M/S DE VELOCIDAD INICIAL
          1:
                 v_vi2 <- v_vi
          2:
                 v_vi2 <- v_vi/3.6
   FinSegun
   Escribir 'velocidad inicial en m/s es:',v_vi2,'m/s'
   // PROCESO
   // PROCESO
   Segun v_mvf Hacer // SE CONVIERTE LOS KM/H A M/S DE VELOCIDAD FINAL
          1:
                 v_vf2 <- v_vf
          2:
                 v_vf2 <- v_vf/3.6
   FinSegun
   Escribir 'velocidad final en m/s es:',v_vf2,'m/s'
   // PROCESO
   // PROCESO
   Segun v_mt Hacer // SE CONVIERTE LAS HORAS Y MINUTOS A SEGUNDOS DEL TIEMPO
          1:
```

```
v_t2 <- v_t
          2:
                 v_t2 <- v_t*60
          3:
                 v_t2 <- v_t*3600
   FinSegun
   Escribir 'tiempo en segundo es:',v_t2,'seg'
   // PROCESO
   Escribir '-----'
   Escribir 'los resulatdos son:'
   // SALIDA
   vf_vi <- v_vf2-v_vi2 // SE RESTA VELOCIDAD FINAL (EN SEGUNDOS) CON VELOCIDAD FINAL
(EN SEGUNDOS) PARA OBTENER LA VARIABLE VF_VI
   v_a <- vf_vi/v_t2 // SE DIVIDE LA VARIABLE VF_VI ENTRE EL TMEPO (EN SEGUNDOS) PARA
OBTENER ACELERACION
   // SALIDA
   v_t^2 < v_t^2 \le v_t^2  // Para obtener tiempo al cuadrado, se multiplica tiempo por
TIEMPO
   v_d <- v_a*v_t2/2 // PARA OBTENER DISTANCIA, SE DIVIDE ACELERACION ENTRE TIEMPO
AL CUADRADO
   // SALIDA
   Escribir 'la aceleracion es:',v_a,'m/s2'
   Escribir 'la distancia es:',v_d,'m'
   // FIN
FinAlgoritmo
```