Optimización

Formulario · Primavera 2021

1. Optimización estática

1.1. Análisis convexo

Definición 1.1 (Conjunto convexo). Sea $X \subseteq \mathbb{R}^n$, decimos que X es **convexo** si, para cualesquiera $x \in X$ y para toda $\lambda \in (0,1)$, se cumple:

$$\lambda x + (1 - \lambda)y \in X$$
.

Equivalentemente, decimos que X es **convexo** si, para todas $a \in \partial X$ y $b \in X$, existe ℓ tal que $\langle b-a, \ell \rangle \leq 0$; donde ∂X es la frontera de X y $\langle \cdot, \cdot \rangle$ denota el producto punto.

Conjunto convexo

Conjunto no convexo

Proposición 1.1

Sean A y B dos subconjuntos convexos de \mathbb{R}^n , entonces:

- (i) $A \cap B$ es convexo.
- (II) $A + B = \{a + b : a \in A, b \in B\}$ es convexo.
- (III) Para todo $k \in \mathbb{R}$, $kA = \{ka : a \in A\}$ es convexo.

Definición 1.2 (Función convexa). Sea $X \subseteq \mathbb{R}^n$ un conjunto convexo, $f: X \to \mathbb{R}$ es una **función convexa** si, para toda $x_1 \neq x_2 \in X$ y toda $\lambda \in (0,1)$, se tiene:

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Si la desigualdad es estricta, se dice que la función es estrictamente convexa.

Definición 1.3 (Función cóncava). Sea $X \subseteq \mathbb{R}^n$ un conjunto convexo, $f: X \to \mathbb{R}$ es una **función cóncava** si, para toda $x_1 \neq x_2 \in X$ y toda $\lambda \in (0,1)$, se tiene:

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Si la desigualdad es estricta, se dice que la función es estrictamente cóncava.

Definición 1.4. Sea $X\subseteq \mathbb{R}^n$ y $f:X\to \mathbb{R}$ una función, definimos:

- · la gráfica de f como $G_f = \{(x,r) \in X \times \mathbb{R} : f(x) = r\}.$
- · el epígrafo de f como $E_f = \{(x,r) \in X \times \mathbb{R} : f(x) \leq r\}.$
- · el hipógrafo de f como $H_f = \{(x,r) \in X \times \mathbb{R} : f(x) \geq r\}$.

Teorema 1.1

Sea $X \subseteq \mathbb{R}^n$ un conjunto convexo,

- (I) una función $f:X\to\mathbb{R}$ es convexa si y solo si E_f es un conjunto convexo de \mathbb{R}^{n+1} .
- (II) una función $f:X\to\mathbb{R}$ es cóncava si y solo si H_f es un conjunto convexo de \mathbb{R}^{n+1} .

Proposición 1.2

Sean $X \subseteq \mathbb{R}^n$ un conjunto convexo, $f: X \to \mathbb{R}$ y $g: X \to \mathbb{R}$ dos funciones cóncavas, y $\alpha \in \mathbb{R}$, entonces:

- (I) f es cóncava si $\alpha > 0$.
- (II) f es convexa si $\alpha < 0$.
- (III) f + g es cóncava.

Proposición 1.3

Sean $X\subseteq \mathbb{R}^n$ un conjunto convexo, $g:X\to \mathbb{R}$ una función cóncava, y $h:Y\to \mathbb{R}$ una función cóncava y creciente tal que $g(X)\subseteq Y\subseteq \mathbb{R}$; entonces, $h\circ g$ es cóncava.

^	$\alpha \alpha $			
2.	Calculo	de	variaciones	٠

3. Teoría de control óptimo

4. Elementos de programación dinámica