

Central Force Motion and Kepler's Laws

Orbit Solution

Orbital solution, in terms of conic section, is a geometric static map, in which every point on ellipse, denoted by (\mathbf{r}, θ) , also corresponds to a 't' which is implied.

However, in most **applications**, we need **positions** with respect to **time** and, therefore, we **need** to find **relations** for positions as a **function** of time.

Orbits & Kepler's Laws

In this **regard**, it is worth noting that **Kepler's** 2nd and 3rd law contain **time** as a parameter.

As **conic** section solution is **obtained** under the condition of **central** force motion, it should be **possible** to make use of **Kepler's** laws to arrive at time **solutions**.

Mathematical Form of Kepler's Laws

However, as **Kepler's** laws are in the form of **statements**, we need to **translate** these into mathematical **forms**.

This can be done by **invoking** the conservation of angular momentum, as **related** to the ellipse which is the **basic** orbital geometry.

Derivation of Kepler's Laws

Basic Position Model

Consider the **position** of an object at two time instants, 't' & 't + dt', along with the **velocities**, as shown below.

Kepler's 1st Law

As \mathbf{H} , is a **vector** product of non-colinear vectors ' \mathbf{r} ' and ' \mathbf{dr}/\mathbf{dt} ', these vectors **define** a plane, so that $\mathbf{r} \times (\mathbf{dr}/\mathbf{dt})$, which is \mathbf{H} , is normal to this **plane**.

Now, as **H** is constant in both **magnitude** & direction, it means that the **plane** defined by vectors '**r**' & '**dr**' is **conserved** during motion, proving the **1**st **Law**.

Kepler's 2ndLaw

Also, we can show that area swept by 'r' in 'dt' is,

$$dA = \frac{1}{2}(r)(v_p dt); \quad \frac{dA}{dt} = \frac{1}{2}rv_p = \frac{1}{2}\left|\vec{r} \times \frac{d\vec{r}}{dt}\right| = \frac{1}{2}\left|\vec{H}\right| = \frac{1}{2}h$$

This is 2nd law i.e. 'equal areas' swept in 'equal time'.

Kepler's 3rd Law

Kepler's 3rd law can now be derived by obtaining the orbital time period using ellipse relations, as follows.

$$\frac{dA}{dt} = \frac{1}{2}h = \frac{1}{2}\sqrt{\mu a(1-e^2)}; \quad T = \frac{\text{Area of ellipse}}{\text{Areal Velocity}} = \frac{\pi ab}{\left(\frac{dA}{dt}\right)}$$

$$T = \frac{2\pi a^2\sqrt{1-e^2}}{\sqrt{\mu a(1-e^2)}} = \frac{2\pi}{\sqrt{\mu}}a^{\binom{3/2}{2}}; \quad T^2 = \frac{4\pi^2}{\mu}a^3 \rightarrow \text{ Kepler's } 3^{rd} \text{ law}$$

Explicit Time Solution

Angular Motion Formulation

As **orbital** parameters, 'a' and 'e', do not involve 't', we need a separate **solution** to connect 't' to 'r' and ' θ '.

While, **Kepler's** 3rd law does provide **time** information, it is only the **orbital** time period, which is an **average** value over one **cycle**.

t - θFormulation

In order to fix 't', we can obtain the **expression** for $(d\theta/dt)$ from 'h', as shown **below**.

$$h = rv_p = r\frac{rd\theta}{dt}; \quad dt = \frac{1}{h}r^2d\theta \to t = \frac{1}{h}\int r^2d\theta$$
$$r = \frac{\binom{h^2/\mu}{\mu}}{1 + e\cos\theta}; \quad t - t_0 = \frac{h^3}{\mu^2}\int_{\theta_A}^{\theta_B} \frac{d\theta}{(1 + e\cos\theta)^2}$$

Thus, we see that as 'h' is known, we can find 't' for given ' θ ' or vice versa, through above integral.

Time Solution Strategy

In general, time **integral** can be solved in **closed** form through a **series** of trigonometric **substitutions**, though it is a bit **tedious** exercise, except for e = 0 or e = 1.

Of course, we can also **numerically** integrate the function, but would **need** to repeat the **process** for all combinations of **angles**.

't' Solution Through Transformation

Therefore, we need a **methodology** that gives the **time** solution, without explicit **integration** of the function.

It is **interesting** to note that Kepler was **able** to solve this problem, **without** using any **integration** at all, for **all positions** of planets.

Summary

It is seen that Kepler's laws are **directly** derivable from the basic **elliptic** solution.

Further, as the orbital **solution** is implicit in nature, the **solution** for time requires additional **formulation**.