Robotics

Estimation and Learning with Dan Lee

Week 4. Localization

4.4 Iterative Closest Point (ICP) Algorithm

Review: EM Algorithm

$$\arg\max_{\theta} F(X|\theta)$$

Initialize
$$\hat{\theta}$$

E-step

Find a lower bound $G(\theta|\hat{\theta})$

M-step

 $\hat{\theta}_{new} = \arg\max_{\theta} G(\theta|\hat{\theta})$

Stop if converged

$$\arg\max_{\boldsymbol{\mu},\boldsymbol{\Sigma}} \sum_{i=1}^{N} \ln \left\{ \frac{1}{K} \sum_{k=1}^{K} g_k(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

General EM

EM for GMM

Review: 3D Map Representation

3D point cloud measurement

Map visualized in 3D

Implementation Example

Problem: Register two point sets X and Y.

Problem 1: Rotation and translation?

Problem 2: Correspondences?

• Problem 2: Correspondence

Closest point!

[SOLUTION] K. Arun, T. Huang, and S. Blostein, "Least-squares fitting of two 3D point set", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 9(5), pp. 698–700, 1987.

ICP: Example

ICP: Motion Increment

Raw measurements are in the local coordinate frame.

Registration gives the motion increment of the body w.r.t the model

