На правах рукопису

Копаліані Дар'я Сергіївна

УДК 004.032.26

Еволюційні нейро-фаззі мережі з каскадною Структурою для інтелектуального аналізу данних

05.13.23 — системи та засоби штучного інтелекту

Дисертація на здобуття наукового ступеня кандидата технічних наук

Науковий керівник **Бодянський Євгеній Володимирович**, доктор технічних наук, професор

3MICT

Розділ 1. Багатовимірна каскадна нейро-мережа, що еволюціо-	
нує	3
1.1. Багатовимірна каскадна система, що еволюціонує, побудована	
на нео-фаззі нейронах	3
1.2. Багатовимірна каскадна система, що еволюціонує, побудована	
на багатовимірних нео-фаззі нейронах	3
1.2.1. Багатовимірний нео-фаззі нейрон	3
Список використаних джерел	5

РОЗДІЛ 1

БАГАТОВИМІРНА КАСКАДНА НЕЙРО-МЕРЕЖА, ЩО ЕВОЛЮЦІОНУЄ

1.1. Багатовимірна каскадна система, що еволюціонує, побудована на нео-фаззі нейронах

. . .

1.2. Багатовимірна каскадна система, що еволюціонує, побудована на багатовимірних нео-фаззі нейронах

Архітектура багатовимірної каскадної системи, яка ґрунтується на звичайних нео-фаззі нейронах, що її описано у 1.1 є надмірною, адже вектор вхідних сигналів x(k) (для першого каскаду) подається на однотипні нелінійні синапси $NS_{di}^{[1]j}$ нео-фаззі нейронів, кожен з яких на виході генерує сигнал $\hat{y}_d^{[1]j}(k), d=1,2,\ldots,g$. У результаті компоненти вихідного вектора

$$\hat{y}^{[1]j}(k) = \left(\hat{y}_1^{[1]j}(k), \hat{y}_2^{[1]j}(k), \dots, \hat{y}_g^{[1]j}(k)\right)^T$$
(1.1)

обчислюються незалежно один від одного, хоча $\mu_{1il}(x_i(k)) = \mu_{2il}(x_i(k)) = \mu_{jil}(x_i(k)) = \mu_{nil}(x_i(k))$. Уникнути цього можна, якщо ввести до розгляду багатовимірний нео-фаззі нейрон, що є модифікацією систем, запропонованих у [??,??].

1.2.1. Багатовимірний нео-фаззі нейрон. Вузлами багатовимірного нео-фаззі нейрону є складені нелінійні синапси $MNS_i^{[1]j}$, кожен з яких має h функцій належності $\mu_{li}^{[1]j}$ та gh настроюваних синаптичних вагових коефіцієнтів, але тільки hn функцій належності, що в g разів менше, ніж у випадку,

коли каскад сформований із звичайних нео-фаззі нейронів.

Введемо надалі до розгляду $(hn \times 1)$ - вектор функцій належності

$$\mu^{[1]j}(k) = \left(\mu_{11}^{[1]j}(x_1(k)), \mu_{21}^{[1]j}(x_1(k)), \dots, \mu_{h1}^{[1]j}(x_1(k)), \dots, \mu_{hn}^{[1]j}(x_n(k))\right)^T$$
(1.2)

та $(q \times hn)$ - матрицю синаптичних вагових коефіцієнтів

$$W^{[1]j} = \begin{pmatrix} w_{111}^{[1]j} & w_{112}^{[1]j} & \dots & w_{1li}^{[1]j} & \dots & w_{1hn}^{[1]j} \\ w_{211}^{[1]j} & w_{212}^{[1]j} & \dots & w_{2li}^{[1]j} & \dots & w_{2hn}^{[1]j} \\ \vdots & \vdots & & \vdots & & \vdots \\ w_{g11}^{[1]j} & w_{g12}^{[1]j} & \dots & w_{gli}^{[1]j} & \dots & w_{ghn}^{[1]j} \end{pmatrix},$$
(1.3)

і запишемо сигнал на виході $MN_j^{[1]}$ у k-й момент часу у вигляді

$$\hat{y}^{[1]j}(k) = W^{[1]j}\mu^{[1]j}(k). \tag{1.4}$$

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ