RELATIONAL ALGEBRA

Relational Algebra

Query Languages

- A <u>query language</u> specifies how to access the data in the database
- Different kinds of query languages:
 - Declarative languages specify what data to retrieve, but not how to retrieve it
 - Procedural languages specify what to retrieve, as well as the process for retrieving it
- Query languages often include updating and deleting data as well
- Also called <u>data manipulation language</u> (DML)

The Relational Algebra

- A procedural query language
- Comprised of relational algebra operations
- Relational operations:
 - Take one or two relations as input
 - Produce a relation as output
- Relational operations can be composed together
 - Each operation produces a relation
 - A query is simply a relational algebra expression
- Six "fundamental" relational operations
- Other useful operations can be composed from these fundamental operations

"Why is this useful?"

- SQL is only loosely based on relational algebra
- SQL is much more on the "declarative" end of the spectrum
- Many relational databases use relational algebra operations for representing execution plans
 - Simple, clean, effective abstraction for representing how results will be generated
 - Relatively easy to manipulate for query optimization

Fundamental Relational Algebra Operations

Six fundamental operations:

```
σ select operation
```

 Π project operation

U set-union operation

set-difference operation

× Cartesian product operation

ρ rename operation

- Each operation takes one or two relations as input
- Produces another relation as output
- Important details:
 - What tuples are included in the result relation?
 - Any constraints on input schemas? What is schema of result?

Select Operation

- Written as: σ_P(r)
- Pisthe predicate for selection
 - Pcan refer to attributes in *r* (but no other relation!), as well as literal values
 - Can use comparison operators: =, ≠, <, ≤, >, ≥
 - □ Can combine multiple predicates using:A (and), V (or), ¬ (not)
- □ *r* is the input relation
- Result relation contains all tuples in r for which Pis true
- Result schema is identical to schema for r

Select Examples

Using the account relation:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

"Retrieve all tuples for accounts in the Los Angeles branch."

σ_{branch_name="Los Angeles"} (account)

"Retrieve all tuples for accounts in the Los Angeles branch, with a balance under \$300."

σ_{branch_name=}"Los Angeles" A balance<300 (account)

acct_id	branch_name	balance
A-318	Los Angeles	550
A-322	Los Angeles	275

acct_id	branch_name	balance
A-322	Los Angeles	275

Project Operation

- □ Written as: $\Pi_{a,b,...}(r)$
- Result relation contains only specified attributes of r
 - Specified attributes must actually be in schema of r
 - Result's schema only contains the specified attributes
 - Domains are same as source attributes' domains
- Important note:
 - Result relation may have fewer rows than input relation!
 - Why?
 - Pelations are sets of tuples, not multisets

Project Example

Using the *account* relation:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

"Retrieve all branch names that have at least one account."

 $\Pi_{branch\ name}(account)$

branch_name
New York
Seattle
Los Angeles

- Result only has three tuples, even though input has five
- Result schema is just (branch_name)

Composing Operations

- Input can also be an expression that evaluates to a relation, instead of just a relation
- $\square \Pi_{acct_ic}(\sigma_{balance \ge 300}(account))$
 - Selects the account IDs of all accounts with a balance of \$300 or more
 - Input relation's schema is:
 Account_schema = (acct_id, branch_name, balance)
 - Final result relation's schema?
 - Just one attribute: (acct_id)
- Distinguish between <u>base</u> and <u>derived</u> relations
 - account is a base relation
 - $\sigma_{balance 300}(account)$ is a derived relation

Set-Union Operation

- □ Written as: r U s
- \blacksquare Result contains all tuples from r and s
 - \blacksquare Each tuple is unique, even if it's in both r and s
- \square Constraints on schemas for r and s?
- \neg r and smust have <u>compatible</u> schemas:
 - r and smust have same arity
 - (same number of attributes)
 - For each attribute i in r and s, r[i] must have the same domain as s[i]
 - Our examples also generally have same attribute names, but not required! Arity and domains are what matter.)

Set-Union Example

More complicated schema: accounts and loans

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

cust_name	acct_id	
Johnson	A-318	
Smith	A-322	
Reynolds	A-319	
Lewis	A-307	
Reynolds	A-301	

depositor

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan borrower

Set-Union Example (2)

Find names of all customers that have either a bank account or a loan at the bank

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

cust_name	acct_id
Johnson	A-318
Smith	A-322
Reynolds	A-319
Lewis	A-307
Reynolds	A-301

depositor

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan borrower

Set-Union Example (3)

- Find names of all customers that have either a bank account or a loan at the bank
 - Easy to find the customers with an account:

 $\Pi_{cust_name}(depositor)$

Also easy to find customers with a loan:

 $\Pi_{cust_name}(borrower)$

Johnson
Smith
Reynolds
Lewis

 $\Pi_{cust_name}(depositor)$

Anderson
Jackson
Lewis
Smith

 $\Pi_{cust_name}(borrower)$

Result is set-union of these expressions:

 $\Pi_{cust_name}(depositor) \cup \Pi_{cust_name}(borrower)$

Note that inputs have 8 tuples, but result has 6 tuples.

Johnson Smith Reynolds Lewis Anderson Jackson

Set-Difference Operation

- □ Written as: r s
- Result contains tuples that are only in r, but not in s
 - Tuples in both r and sare excluded
 - Tuples only in sare also excluded
- □ Constraints on schemas of *r* and *s*?
 - Schemas must be compatible
 - (Exactly like set-union.)

Set-Difference Example

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan

cust_name	acct_id
Johnson	A-318
Smith	A-322
Reynolds	A-319
Lewis	A-307
Reynolds	A-301

depositor

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

borrower

"Find all customers that have an account but not a loan."

Set-Difference Example (2)

- Again, each component is easy
 - All customers that have an account:

 Π_{cust_name} (depositor)

All customers that have a loan:

 $\Pi_{cust\ name}(borrower)$

 $\Pi_{cust_name}(borrower)$

Result is set-difference of these expressions

 $\Pi_{cust_name}(depositor) - \Pi_{cust_name}(borrower)$

cust_name
Johnson
Reynolds

Cartesian Product Operation

- □ Written as: r × s
 - Read as "r cross s"
- \square No constraints on schemas of r and s
- Schema of result is concatenation of schemas for r and s
- If r and shave overlapping attribute names:
 - All overlapping attributes are included; none are eliminated
 - Distinguish overlapping attribute names by prepending the source relation's name
- Example:
 - Input relations: r(a, b) and s(b, c)
 - Schema of $r \times sis(a, r.b, s.b, c)$

Cartesian Product Operation (2)

- \square Result of $r \times s$
 - Contains every tuple in r, combined with every tuple in s
 - If r contains N_r tuples, and scontains N_s tuples, result contains $N_r \times N_s$ tuples
- Allows two relations to be compared and/or combined
 - If we want to correlate tuples in relation r with tuples in relation s...
 - © Compute $r \times s$, then select out desired results with an appropriate predicate

Cartesian Product Example

Compute result of borrower × loan

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

borrower

loan

 \blacksquare Result will contain $4 \times 4 = 16$ tuples

Cartesian Product Example (2)

Schema for borrower is:
 Borrower_schema = (cust_name, loan_id)

Schema for Ioan is:
 Loan_schema = (loan_id, branch_name, amount)

Schema for result of borrower × loan is:

(cust_name, borrower.loan_id, loan.loan_id, branch_name, amount)

 Overlapping attribute names are distinguished by including name of source relation

Cartesian Product Example (3)

Result:

	borrower.	loan.		
cust_name	loan_id	loan_id	branch_name	amount
Anderson	L-437	L-421	San Francisco	7500
Anderson	L-437	L-445	Los Angeles	2000
Anderson	L-437	L-437	Las Vegas	4300
Anderson	L-437	L-419	Seattle	2900
Jackson	L-419	L-421	San Francisco	7500
Jackson	L-419	L-445	Los Angeles	2000
Jackson	L-419	L-437	Las Vegas	4300
Jackson	L-419	L-419	Seattle	2900
Lewis	L-421	L-421	San Francisco	7500
Lewis	L-421	L-445	Los Angeles	2000
Lewis	L-421	L-437	Las Vegas	4300
Lewis	L-421	L-419	Seattle	2900
Smith	L-445	L-421	San Francisco	7500
Smith	L-445	L-445	Los Angeles	2000
Smith	L-445	L-437	Las Vegas	4300
Smith	L-445	L-419	Seattle	2900

Cartesian Product Example (4)

- Can use Cartesian product to associate related rows between two tables
 - ... b ut, a lot of extra rows are included!

cust_name	borrower. loan_id	loan. loan_id	branch_name	amount
Jackson	L-419	L-437	Las Vegas	4300
Jackson	L-419	L-419	Seattle	2900
Lewis	L-421	L-421	San Francisco	7500
Lewis	L-421	L-445	Los Angeles	2000

Combine Cartesian product with a select operation
 σ_{borrower.loan id=loan.loan id}(borrower × loan)

Cartesian Product Example (5)

"Retrieve the names of all customers with loans at the Seattle branch."

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

borrower

loan

- Need both borrower and loan relations
- Correlate tuples in the relations using loan_id
- Then, computing result is easy.

Cartesian Product Example (6)

 Associate customer names with loan details, using Cartesian product and a select:

σ_{borrower.loan_id=loan.loan_id}(borrower × loan)

Select out loans at Seattle branch:

 $\sigma_{branch_name="Seattle"}(\sigma_{borrower.loan_id=loan.loan_id}(borrower \times loan))$ Simplify:

 $\sigma_{borrower.loan_id=loan.loan_id\ A\ branch_name="Seattle"} (borrower \times loan)$

Project results down to customer name:

 $\Pi_{cust_name}(\sigma_{borrower.loan_id \perp loan.loan_id \perp branch_name="Seattle"}(borrower \times loan))$

Final result:

Rename Operation

- Results of relational operations are unnamed
 - Result has a schema, but the relation itself is unnamed
- Can give result a name using the rename operator
- □ Written as: $\rho_x(E)$ (Greek rho, not lowercase "P")
 - Eis an expression that produces a relation
 - Ecan also be a named relation or a relation-variable
 - 1 x is new name of relation
- □ More general form is: $\rho_{x(A_1, A_2, ..., A_n)}(E)$
 - Allows renaming of relation's attributes
 - Requirement: Ehas arity n

Scope of Renamed Relations

- Pename operation ρ only applies within a specific relational algebra expression
 - This does not create a new relation-variable!
 - The new name is only visible to enclosing relational-algebra expressions
- Rename operator is used for two main purposes:
 - Allow a derived relation and its attributes to be referred to by enclosing relational-algebra operations
 - Allow a base relation to be used multiple ways in one query
 - $r \times \rho_s(r)$
- In other words, rename operation ρ is used to resolve ambiguities within a specific relational algebra expression

Rename Example

"Find the ID of the loan with the largest amount."

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan

- Hard to find the loan with the largest amount!
 - (At least, with the tools we have so far...)
- Much easier to find all loans that have an amount smaller than some other loan
- Then, use set-difference to find the largest loan

Rename Example (2)

- How to find all loans with an amount smaller than some other loan?
 - Use Cartesian Product of *loan* with itself: *loan* × *loan*
 - Compare each loan's amount to all other loans
- Problem: Can't distinguish between attributes of left and right *loan* relations!
- Solution: Use rename operation
 loan × ρ_{test}(loan)
 - Now, right relation is named *test*

Rename Example (3)

Find IDs of all loans with an amount smaller than some other loan:

$$\Pi_{loan.loan_id}(\sigma_{loan.amount < test.amount}(loan \times \rho_{test}(loan)))$$

Finally, we can get our result:

```
\Pi_{loan\_io}(loan) - \Pi_{loan.loan\_io}(\sigma_{loan.amount < test.amount}(loan \times \rho_{test}(loan)))
```

loan_id

- What if multiple loans have max value?
 - All loans with max value appear in result.

Additional Relational Operations

- The fundamental operations are sufficient to query a relational database...
- Can produce some large expressions for common operations!
- Several additional operations, defined in terms of fundamental operations:

```
∩ set-intersection
```

natural join

÷ division

← assignment

Set-Intersection Operation

- □ Written as: $r \cap s$
- $r \cap s = r (r s)$ r - s = the rows in r, but not in s r - (r - s) = the rows in both r and s
- Relations must have compatible schemas
- Example: find all customers with both a loan and a bank account
 - $\Pi_{cust_name}(borrower) \cap \Pi_{cust_name}(depositor)$

Natural Join Operation

- Most common use of Cartesian product is to correlate tuples with the same key-values
 - Called a join operation
- The <u>natural join</u> is a shorthand for this operation
- \square Written as: $r \bowtie s$
 - I r and smust have common attributes
 - The common attributes are usually a key for r and/or s but certainly don't have to be

Natural Join Definition

- For two relations r(R) and s(S)
- Attributes used to perform natural join:

$$R \cap S = \{A_1, A_2, ..., A_n\}$$

Formal definition:

$$r \bowtie s = \prod_{R \cup S} (\sigma_{r,A} = sA_{A} \land r,A = sA_{A} \land ... \land r,A = sA_{n} (r \times s))$$

- I r and sare joined using an equality condition based on their common attributes
- Result is projected so that common attributes only appear once

Natural Join Example

- Simple example:
 - "Find the names of all customers with loans"
- Result:

```
\Pi_{aust\_name}(\sigma_{borrower.loan\_id=loan.loan\_id}(borrower \times loan))
```

Rewritten with natural join:

 $\Pi_{ast name}(borrower \bowtie loan)$

Natural Join Characteristics

- Very common to compute joins across multiple tables
- □ Example: customer⋈ borrower⋈ loan
- Natural join operation is associative:
 - (customer ⋈ borrower) ⋈ loan is equivalent to customer ⋈ (borrower ⋈ loan)

Note:

- Eventhough these expressions are equivalent, order of join operations can dramatically affect query cost!
- (Keep this in mind for later...)

Division Operation

- □ Binary operator: r ÷ s
- Implements a "for each" type of query
 - "Find all rows in *r* that have one row corresponding to each row in s."
 - Relation *r* divided by relation *s*
- Easiest to illustrate with an example:
- Puzzle Database

```
puzzle_list(puzzle_name)
```

- Simple list of puzzles by name
- completed(person_name, puzzle_name)
 - Records which puzzles have been completed by each person

Puzzle Database

"Who has solved every puzzle?"

- Need to find every person in completed that has an entry for every puzzle in puzzle_list
- Divide completed by puzzle_list to get answer:

person_name
Alex
Carl

 Only Alex and Carl have completed every puzzle in *puzzle_list*.

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed

altekruse soma cube puzzle box

puzzle_list

Puzzle Database (2)

"Who has solved every puzzle?"

person_name
Alex
Carl

- Very reminiscent of integer division
 - Result relation contains tuples from completed that are evenly divided by puzzle_name
- Several other kinds of relational division operators
 - e.g. some can compute "remainder" of the division operation

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

Division Operation

```
For r(R) \div s(S)
```

- □ Required: $S \subset R$
 - All attributes in Smust also be in R
- Result has schema R- S
 - Result has attributes that are in Rbut not also in S
 - I (This is why we don't allow S = R)
- Every tuple t in result satisfies these conditions: $t \in \Pi_{R-S}(r)$

```
\langle \forall t_s \in s: \exists t_r \in r: t_r[S] = t_s[S] \land t_r[R-S] = t \rangle
```

Every tuple in the result has a row in r corresponding to every row in s

Puzzle Database

For completed + puzzle_list

- Schemas are compatible
- Result has schema (person_name)
 - Attributes in completed schema, but not also in puzzle_list schema

person_name
Alex
Carl

completed + puzzle_list

Every tuple t in result satisfies these conditions:

$$t \in \Pi_{R \cdot S}(r)$$

 $\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R \cdot S] = t \rangle$

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed = r

altekruse
soma cube
puzzle box

 $puzzle_list = s$

Division Operation

- Not provided natively in most SQL databases
 - Rarely needed!
 - Easy enough to implement in SQL, if needed

- Will see it in the homework assignments, and on the midterm... ©
 - Often a very nice shortcut for more involved queries

Relation Variables

- Recall: relation variables refer to a specific relation
 - A specific set of tuples, with a particular schema
- Example: account relation

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

account is actually technically a relation variable, as are all our named relations so far

Assignment Operation

- Can assign a relation-value to a relation-variable
- □ Written as: relvar ← E
 - Eis an expression that evaluates to a relation
- Unlike ρ, the name relvar persists in the database
- Often used for temporary relation-variables:

```
temp1 \leftarrow \Pi_{R,S}(r)

temp2 \leftarrow \Pi_{R,S}(temp1 \times s) - \Pi_{R,S,S}(r))

result \leftarrow temp1 - temp2
```

- Query evaluation becomes a sequence of steps
- (This is an implementation of the ÷ operator)
- Can also use assignment operation to modify data
 - More about updates next time...