

MICROPROCESSOR PROGRAMMING AND INTERFACING OPEN-ENDED PROBLEM

NAME: MUNTAHA SHAMS

ROLL NO: EL-17062

Question:

Design a Microprocessor based system in which: 1. Two EPROMs 2764 are to be interfaced for Address Space 1 and two RAMs 6116 are to be interfaced for Address Space 2. A single decoder 74139 is to be used. Draw the diagram (by using some application software) and mention binary address space (starting and final addresses) for individual EPROM and RAM devices.

Solution:

EPROMs used are of 27 series, their memory capacity is 64 Kilobytes

Converting 64 Kilobytes which is a byte word into bytes as follows:

64Kb/8Kb=8Kb = 2^3 . 2^{10} = 2^{13} (13 address lines from A0-A12 directly connected to 8088)

Selection pins for decoder A13, A14

Enable pins for decoder are from A15-A19

➤ Address Space 1:

Starting Address – PPPP PP00 0000 0000 0000

Final Address - PPPP PP11 1111 1111 1111

<u>Calculation of PPPP PP:</u>

ROLL # =062 = 3E (hex) =0011 1110b Binary in reverse order= 0111 1100 Discard 2 least significant bits= 0111 11 PPPP PP= 0111 11

Starting Address – 0111 1100 0000 0000 0000 (7C000 h)

Final Address – 0111 1111 1111 1111 1111 (7FFFF h)

➤ Table for the two 2764 EPROMs:

			Enable /fixed					select Direct address														
			A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
EP 1	ROM	INITIAL ADDRESS	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		FINAL ADRESSD	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
EP 2	ROM	INITIAL ADDRESS	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		FINAL ADDRESS	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

EPROM 1 EPROM 2
Starting address= 7C000h Starting address= 7EFFFh
Final address=7FFFFh
Final address=7FFFFh

RAMs are 6116, which means 61 is name of series, and 16 is memory capacity.

Converting 16 KB into bits as follows:

16 KB/8 KB= $2 = 2^{1}$. $2^{10} = 2^{11}$ (11 address lines from A0-A10 directly connected to 8088)

Selection pins for decoder A11, A12

Enable pins for decoder are from A13-A19

➤ Address Space 2:

Starting Address – RRRR RRRR 0000 0000 0000

Final Address – RRRR RRRR 1111 1111 1111

Calculation of RRRR RRRR:

ROLL # =062 = 3E (hex) =0011 1110*

RRRR RRRR= 0011 1110

Starting Address -0011 1110 0000 0000 0000 (3E000h)

Final Address -0011 1110 1111 1111 1111 (3EFFFh)

➤ Table for the two 6116 RAMs:

		Enable /fixed									select				Direct address							
			A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
R.A	M 1	INITIAL ADDRESS	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		FINAL ADRESSD	0	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1
R/	M 2	INITIAL ADDRESS	0	0	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0
		FINAL ADDRESS	0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1

RAM 1 Starting address= 3E000h Final address = 3E7FFh RAM 2
Starting address= 3E800h
Final address=3EFFFh

> First Enable pin of 74139

> Second Enable pin of 74139

➤ Output for 74139

output of Address Space 1

As the selection pins are 10 and 11 so 2764 EPROM will be connected to 1Y2 and Y3 respectively.

output of Address Space 1

As the selection pins are 00 and 01 so 6616 RAM will be connected to 2 Yo and 2 Y1 respectively

Question:

Two 8255 PPI and two 8254 PIT/C are to be interfaced for Address Space 3. A single decoder 74138 is to be used. Draw the diagram (by using some application software) and mention binary address space (starting and final addresses) for individual 8255and 8254 devices.

Solution:

➤ Address Space 3: (for both 8255 and 8244)

Starting Address – AAAA 0000

Final Address – AAAA 11111

Roll # =062 =760 = 1111 10

Reverse order of binary = 0111 11

Discard 2 least significant bits= 0111

AAAA= 0111

Starting Address – 0111 0000 (70h)

Final Address – 0111 1111 (7Fh)

➤ Table for the two 8255 PPI:

FIXED

		A7	A6	A5	A4	A3	A2	A1	A0
8255 1	INITIAL ADDRESS	0	1	1	1	0	0	0	0
	FINAL ADRESSD	0	1	1	1	0	0	1	1
8255 2	INITIAL ADDRESS	0	1	1	1	0	1	0	0
	FINAL ADDRESS	0	1	1	1	0	1	1	1

8255 1	8255 2
Starting address= 70h	Starting address= 74h
Final address =73h	Final address=77h

A0 — A1 Is used to select the port modes for each 8255

> Table for the two 8254 PIT/C:

			fixed			selection of Counter/timer						
		A7	A6	A5	A4	A3	A2	A1	Α0			
8254 1	INITIAL ADDRESS	0	1	1	1	1	0	0	0			
	FINAL ADRESSD	0	1	1	1	1	0	1	1			
8254 2	INITIAL ADDRESS	0	1	1	1	1	1	0	0			
	FINAL ADDRESS	0	1	1	1	1	1	1	1			

8254 1	8254 2
Starting address= 78h	Starting address= 7Ch
Final address =7Bh	Final address=7Fh

A0 - A1 Is used to select the counter/timer for each 8254.

➤ Output for 74138

		Inp	outs	,		Outmute											
Е	nab	le	S	elec	et		Outputs										
G2A	G2B	G١	C	В	Α	$\bar{0}$	ī	$\bar{2}$	3	4	5	6	7				
1	X	Χ	X	Χ	X	1	1	I	1	1	1	1	1				
Х	-	Х	X	Χ	X	1	1	1	1	1	1	1	1				
Х	X	0	Χ	Χ	X	1	1	l	1	1	1	1	1				
0	0	l	()	0	0	0	1	1	1	١	1	1	1				
()	0	1	0	0	1	1	0	1	1	1	1	1	1				
0	0	-	0	_	0	1	1	0	1	1	1	1	1				
()	0	1	()	1	1	1	1	1	0	i	1	1	1				
0	0	1	1	0	0	1	1	1	1	0	1	1	1				
0	0	1	1	0	1	1	1	1	1	1	0	1	1				
0	0	1	1	1	0	1	1	1	1	1	1	0	1				
()	0	Ι	1	1	1.	1	1	١	1	1	1	1	0				

• A4 is inverted then selections bits become 000,001,010,011 so output will be at Yo, Y1, Y2, Y3 respectively.

• To enable decoder 138 G1=1, $\overline{G}2A=0$ and $\overline{G}2B=0$

MCU 8088 INTERFACE WITH 8254 AND 8255 PIT/C

As A0-A7 is multiplexed so first we have to demultiplexed it using **74245** and **74LS373** for separate data and address pin respectively.