

Data Collection and Preprocessing Phase

Date	15 June 2024
Team ID	739802
Project Title	Disease prediction using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description										
	Dimension: 8 rows x 131 columns Descriptive stastistics:										
	T v ロ 叫 撃 記 目 :									F	
	₹	itching	skin_rash	nodal_skin_eruptions	continuous_sneezing	shivering	chills	joint_pain	stomach_pain	acidity	ulcers_on_to
Data Overview	count	4920.000000	4920.000000	4920.000000	4920.000000	4920.000000	4920.000000	4920.000000	4920.000000	4920.000000	4920.00
Butu Overview	mean	0.137805	0.159756	0.021951	0.045122	0.021951	0.162195	0.139024	0.045122	0.045122	0.02
	std	0.344730	0.366417	0.146539	0.207593	0.146539	0.368667	0.346007	0.207593	0.207593	0.14
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
	75% max	0.000000	0.000000	1.000000	0.000000 1.000000	1.000000	0.000000	1.000000	1.000000	1.000000	1.00
	8 rows ×	131 columns									
Univariate Analysis	Pie char		istribution of It	ching symptom into number	or of Yes/No	Pie Chart show	oving the distribu	ution of Continu	ous Sneezing syr		ber of Yes,/No


```
[ ] train_data.isnull().sum()
                                      → itching
                                           skin_rash
                                                                         0
                                           nodal_skin_eruptions
                                                                         0
                                           continuous_sneezing
                                                                         0
                                           shivering
                                                                         0
                                           blister
                                                                         0
                                           red_sore_around_nose
                                           yellow_crust_ooze
                                                                       0
                                           prognosis
                                                                       0
                                           Unnamed: 133
                                                                    4920
                                           Length: 134, dtype: int64
                                      [ ] train_data.isna().sum().sum()
                                      → 4920
                                     REMOVING NULL COLUMNS IN TRAINING DATA
Handling Missing Data
In train and test
                                     [ ] train_data['Unnamed: 133'].value_counts()
                                     → Series([], Name: count, dtype: int64)
                                     [ ] train_data.drop("Unnamed: 133",axis = 1,inplace=True)
                                          train_data.drop("fluid_overload",axis = 1,inplace=True)
                                     [ ] train_data.shape
                                     → (4920, 132)
                                     [ ] test_data.isnull().sum()

→ itching

                                        skin_rash
nodal_skin_eruptions
                                        continuous_sneezing
                                        shivering
                                        inflammatory_nails
                                        blister
red_sore_around_nose
                                        yellow_crust_ooze 0
prognosis 0
Length: 133, dtype: int64
                                     test_data.drop("fluid_overload",axis = 1,inplace=True)
```


Data Transformation	from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder() train_data['prognosis'] = label_encoder.fit_transform(train_data['prognosis']) train_data['prognosis'].unique()
	array([15, 4, 16, 9, 14, 33, 1, 12, 17, 6, 23, 30, 7, 32, 28, 29, 8, 11, 37, 40, 19, 20, 21, 22, 3, 36, 10, 34, 13, 18, 39, 26, 24, 25, 31, 5, 0, 2, 38, 35, 27])
	[] label_encoder =LabelEncoder() test_data['prognosis']= label_encoder.fit_transform(test_data['prognosis']) test_data['prognosis'].unique() array([15, 4, 16, 9, 14, 33, 1, 12, 17, 6, 23, 30, 7, 32, 28, 29, 8,
Feature Engineering	-
Save Processed Data	-