Билет 3

Последовательное и параллельное соединения проводников. Правила Кирхгофа. Шунт к амперметру и добавочное сопротивление к вольтметру. Мостик Уитстона. Потенциометр.

Рассмотрим электрическую цепь с несколькими источниками тока, несколькими резисторами. Чтобы упростить расчеты в данном случае введем два *правила Кирхгофа*.

Nº	Правило Кирхгофа	
1	Узел цепи— точки разветвленной цепи, в которых сходятся хотя бы три проводника. В узлах может происходить слияние или разрыв упорядоченно движущихся частиц. Если ток втекает в узел, силу тока считают положительной, если вытекает, то отрицательной.	
	Первое правило Кирхгофа — алгебраическая сумма сил тока в каждом узле равна нулю. $\sum_{i=1}^{n} I_i = 0$	
2	Второе правило Кирхгофа — алгебраическая сумма ЭДС в замкнутом контуре равна сумме падений напряжени (произведений сил токов и сопротивлений участка). [обобщение закона Ома] $\sum_{i=1}^n U_i \! = \! \sum_{j=1}^m \xi_j$	
	Знак силы тока будет «+», если направление совпадает с направлением обхода.	
Знак ЭДС будет «+», если по направлению обхода первым встречается «-».		

Соединение источников тока

осодинение исте ин	сосдинение источников тока				
Соединение	ЭДС батареи				
Последовательное	$I = I_{i}; q = q_{i}$ $A_{6am} = \xi_{6am} q = \sum_{i} \xi_{i} q_{i}$ $\xi_{6am} = \sum_{i} \xi_{i}$	$I = \left \frac{I}{\xi_1} \right \frac{ \xi_1 }{ \xi_2 } - I$			
Параллельное	$I = \sum I_i = \sum rac{\xi_i}{r_i}$ $I_i = rac{\xi_i}{r_i}$ $rac{\xi_{\delta am}}{r_{\delta am}} = \sum rac{\xi_i}{r_i}$ Если все ЭДС одинаковые: $rac{\xi_{\delta am}}{rac{r}{n}} = n \cdot rac{\xi}{r} \implies \xi_{\delta am} = \xi$	$I I_1$ ξ_1 I_2 ξ_2 I			

Проводники могут соединяться последовательно и параллельно.

Соединения проводников				
Последовательное	Сила тока во всех проводниках одинакова $I = I_1 = I_2$. Общее напряжение равно сумме напряжений на проводниках. $U = U_1 + U_2$ $I \ R = I \ R_1 + I \ R_2$ $R = R_1 + R_2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Параллельное	Общая сила тока равна сумме сил тока проводников $I = I_1 + I_2$. Напряжения на проводниках равны между собой $U = U_1 = U_2$. $I = \frac{U}{R} = \frac{U}{R_1} + \frac{U}{R_2}$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$\begin{bmatrix} I_1 \\ R_1 \\ I_2 \\ \end{bmatrix}$		