Série 2

- 1. A l'aide du cercle trigonométrique, mais sans machine à calculer, déterminer les valeurs suivantes:

 - a) $\cos(\frac{179\pi}{3})$ b) $\sin(-\frac{374\pi}{6})$ c) $\tan(\frac{163\pi}{4})$ d) $\cot(-\frac{67\pi}{3})$
- 2. Calculer, sans machine, la valeur des fonctions trigonométriques des angles ainsi définis :

 - a) $\cos x = \pm \frac{4}{5}$, $\frac{15\pi}{2} \le x \le 8\pi$ c) $\tan x = \pm \frac{4}{3}$, $-\frac{7\pi}{2} \le x \le -3\pi$
 - b) $\sin x = \pm \frac{\sqrt{11}}{6}$, $-\frac{7\pi}{2} \le x \le -3\pi$ d) $\cot x = -\frac{2\sqrt{10}}{7}$, $11\pi \le x \le \frac{23\pi}{2}$
- 3. a) Calculer $A = \sin x \frac{1}{\cos x}$ sachant que $\tan x = -\frac{1}{2}$ et $4\pi \le x \le 5\pi$.
 - b) Soit φ l'angle défini par $\sin \varphi = -\frac{2}{\sqrt{13}}$ et $65\pi < 2\varphi < 67\pi$. Calculer $B = \frac{3\sin\varphi - 2\cos\varphi - 5\tan\varphi}{1 + \sin\varphi \cdot \cos\varphi - 3\tan^2\varphi}$.
- 4. Comparer, sans machine, les angles α et β dans les trois cas suivants :
 - a) $\sin \alpha = \frac{3}{4}$, $\alpha \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ et $\beta = \frac{5\pi}{6}$.
 - b) $\cos \alpha = \frac{2}{5}$, $\alpha \in [0, \pi]$ et $\beta = \frac{\pi}{3}$.
 - c) $\tan \alpha = -2$, $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $\beta = -\frac{\pi}{3}$.
- 5. Soit ABC un triangle rectangle en C. Déterminer le sinus et le cosinus de l'angle $\alpha = \widehat{BAC}$ sachant que AC = 5 et BC = 12.

Déterminer sans calculatrice si α est plus grand ou plus petit que $\frac{\pi}{3}$.

- **6.** Un polygone régulier de n côtés est inscrit dans un cercle de rayon r. Calculer le périmètre P et l'aire A de ce polygone en fonction de r et de n.
- 7. Un cône de révolution est défini par son angle au sommet α (angle entre une génératrice et l'axe) et le rayon r du cercle de base.

Ce cône de révolution est une surface développable. En le découpant le long d'une génératrice, on obtient son développement : c'est un secteur circulaire.

Calculer l'angle au centre β de ce secteur circulaire.

8. Pour déterminer la hauteur d'une tour, on vise son sommet depuis un point au sol, avec un angle d'élévation α ; puis on s'avance d'une distance d'une pied de la tour et on effectue une deuxième visée avec un angle β .

Calculer la hauteur h de la tour en fonction de α , β et d.

9. La figure ci-jointe est constituée d'un segment AB, d'un arc de cercle (BC)de centre O et du segment AC tangent à l'arc (BC) en C.

On connaît les mesures suivantes : $AB = 18 \,\mathrm{cm}$ et $\alpha = 30^{\circ}$.

Calculer le périmètre P et l'aire A de cette figure.

Réponses de la série 2

1. a)
$$\cos(\frac{179\pi}{3}) = \frac{1}{2}$$

c)
$$\tan(\frac{163\pi}{4}) = -1$$

b)
$$\sin(-\frac{374\pi}{6}) = -\frac{\sqrt{3}}{2}$$

d)
$$\cot(-\frac{67\pi}{3}) = -\frac{\sqrt{3}}{3}$$

2. a)
$$\cos x = +\frac{4}{5}$$
, $\sin x = -\frac{3}{5}$, $\tan x = -\frac{3}{4}$

b)
$$\sin x = +\frac{\sqrt{11}}{6}$$
, $\cos x = -\frac{5}{6}$, $\tan x = -\frac{\sqrt{11}}{5}$

c)
$$\tan x = -\frac{4}{3}$$
, $\sin x = +\frac{4}{5}$, $\cos x = -\frac{3}{5}$

d)
$$\cot x < 0$$
 et $11\pi \le x \le \frac{23\pi}{2}$ sont incompatibles.

3. a)
$$A = \frac{7\sqrt{5}}{10}$$
.

b)
$$B = -26$$
.

4. a)
$$\alpha < \beta$$
,

b)
$$\alpha > \beta$$

b)
$$\alpha > \beta$$
, c) $\alpha < \beta$.

5.
$$\sin \alpha = \frac{12}{13}$$
, $\cos \alpha = \frac{5}{13}$ et $\alpha > \frac{\pi}{3}$ car $\cos \alpha < \cos \frac{\pi}{3}$.

6.
$$P = 2 n r \sin \frac{\pi}{n}$$
 et $A = n r^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}$.

7.
$$\beta = 2\pi \sin \alpha$$
.

8.
$$h = d \cdot \frac{\tan \alpha \cdot \tan \beta}{\tan \beta - \tan \alpha}$$
.

9.
$$r = 6 \,\mathrm{cm}$$
, $P \approx 41 \,\mathrm{cm}$ et $A \approx 68, 9 \,\mathrm{cm}^2$.