Digital Signature Algorithm

Songyue Wang (sywang@cs.hku.hk)

Prerequisites:

$$(ab) \bmod p = (a \bmod p)(b \bmod p) \bmod p$$
$$g^{xy} \bmod p = (g^x \bmod p)^y \bmod p$$

Public Parameters:

Generate large primes:
$$p,q$$

$$(q \mid p-1, \mid p \mid = 2048, \mid q \mid = 256)$$
Choose random h

$$h \in (2, \dots, p-2)$$
Calculate $g = h^{\frac{p-1}{q}} \mod p$

$$\therefore p, q \text{ are primes,}$$

$$\therefore h^{p-1} \mod p = 1$$

$$g^q \mod p = (h^{\frac{p-1}{q}} \mod p)^q \mod p = h^{p-1} \mod p = 1$$
let k be any integer,
$$g^{x+kq} \mod p = (g^x g^{kq}) \mod p$$

$$= (g^x \mod p \cdot g^{kq} \mod p) \mod p$$

$$g^{kq} \mod p = (g^q \mod p)^k \mod p = 1$$

$$\therefore g^{x+kq} \mod p = g^x \mod p$$
If k is negative, multiple q can be taken out from k ,
$$\therefore g^x \mod p = g^{x \mod q} \mod p$$

Key Generation:

Choose random x (private key)
$$x \in (1, \dots, q-1)$$
 Calculate $y = g^x \mod p$ (public key)

Signing:

Choose random k
$$k \in (1, \dots, q-1)$$
 Calculate $r = (g^k \mod p) \mod q$ Calculate $s = (k^{-1}(H(m) + xr)) \mod q$
$$((k^{-1}k) \mod q = 1)$$

$$S(r, s)$$

Verification:

Check
$$0 < r < q, 0 < s < q$$

Calculate $w = s^{-1} \mod q$

Calculate $u_1 = (H(m)w) \mod q$

Calculate $u_2 = (rw) \mod q$

Calculate $v = (g^{u_1}y^{u_2} \mod p) \mod q$

If $v = r$, signature validated, otherwiese, rejected.

Correctness:

$$g^{u_1} y^{u_2} \mod p$$

$$= g^{(H(m)w) \mod q} y^{(rw) \mod q} \mod p$$

$$= (g^{(H(m)w) \mod q} \mod p) \cdot (y^{(rw) \mod q} \mod p) \mod p$$

$$\therefore g^x \mod p = g^{x \mod q} \mod p$$

$$\therefore g^{u_1} y^{u_2} \mod p = (g^{H(m)w} y^{rw}) \mod p$$

$$= g^{H(m)w + rwx} \mod p$$

$$= g^{w(H(m) + rx)} \mod p$$

$$= g^{s^{-1}(H(m) + rx)} \mod p$$

$$= g^{k(H(m) + rx)^{-1}(H(m) + rx)} \mod p$$

$$= g^{k(mq + 1)} \mod p$$

$$= (g^{qkm} \mod p) \cdot (g^k \mod p) \mod p$$

$$= g^k \mod p \mod p$$

$$= g^k \mod p \mod p$$

$$= g^k \mod p$$

Utility:

For modular inverse with respect to p:

$$aa^{-1} \bmod p = 1$$

If
$$a = cd^{-1}$$
, $a^{-1} = c^{-1}d$

(c⁻¹, d⁻¹ are modular inverses WRT p respectively)

Proof:

$$aa^{-1} = cd^{-1}c^{-1}d = (cc^{-1})(dd^{-1})$$

$$\because cc^{-1} \bmod p = 1, dd^{-1} \bmod p = 1,$$

$$cc^{-1} = mp + 1, dd^{-1} = np + 1(m, n \in Z^{+})$$

$$aa^{-1} = mpn^2 + mp + np + 1,$$

$$aa^{-1} \mod p = 1$$

Correct