To find best model by using r2 value the following are algorithms

1. MULTIPLE LINEAR REGRESSION: r2 value= 0.93

2. SUPPORT VECTOR MACHINE:

S.No	Hyperparameter	Linear	rbf	poly	sigmoid
1	C=0.1	0.92	-0.0016	-0.0016	-0.0016
2	C=10	-4.56	-0.004	-0.0014	-0.0015
3	C=100	-167.5	0.010	0.200	-0.0008
4	C=1000	-	0.091	0.49	0.006
5	C=2000	-	0.17	0.56	0.013
6	C=10000	-	0.62	0.66	0.05

The SVM Regression uses r2 value (kernel-linear, hyperparameter C=0.1) = 0.92

3. DECISION TREE:

S.No	Crietrion	Splitter	Max_features	R2 Value
1	Squared_error	<mark>Best</mark>	<mark>Sqrt</mark>	<mark>0.80</mark>
2	Squared_error	Best	Log2	0.64
3	Squared_error	Random	Sqrt	0.31
4	Squared_error	Random	Log2	0.68
5	Friedman_mse	Best	Sqrt	0.40
6	Friedman_mse	Best	Log2	-0.128
7	Friedman_mse	Random	Sqrt	-0.79
8	Friedman_mse	Random	Log2	-0.53
9	Absolute_error	Best	Sqrt	0.26
10	Absolute_error	Best	Log2	0.105
11	Absolute_error	Random	Sqrt	0.105
12	Absolute_error	Random	Log2	0.48
13	Poisson	Best	Sqrt	0.70
14	Poisson	Best	Log2	-0.67
15	Poisson	Random	Sqrt	-0.44
16	Poisson	Random	Log2	-0.32

The Decision Tree Regression uses r2 value (Crietrion=Squared_error, Splitter= Best, Max_features = Sqrt) = 0.92

4. RANDOM FOREST:

S.No	Crietrion	Max_features	N_Estimators	R2 Value
1	Squared_error	Sqrt	10	0.78
2	Squared_error	Sqrt	100	0.81
3	Squared_error	Log2	10	0.78
4	Squared_error	Log2	100	0.81

5	Friedman_mse	Sqrt	10	0.78
6	Friedman_mse	Sqrt	100	0.81
7	Friedman_mse	Log2	10	0.78
8	Friedman_mse	Log2	100	0.81
9	Absolute_error	Sqrt	10	0.70
10	Absolute_error	<mark>Sqrt</mark>	<mark>100</mark>	<mark>0.82</mark>
11	Absolute_error	Log2	10	0.70
12	Absolute_error	Log2	<mark>100</mark>	<mark>0.82</mark>
13	Poisson	Sqrt	10	0.67
14	Poisson	Sqrt	100	0.80
15	Poisson	Log2	10	0.67
16	Poisson	Log2	100	0.80

The Random Forest Regression uses r2 value (Crietrion=Absolute_error, $Max_features = Sqrt, n_estimators=100) = 0.82$