Programtervező informatikus BSc, B szakirány Valószínűségszámítás és statisztika gyakorlat

1. (1-2 hét) Valószínűségek kiszámítása; feltételes valószínűség és Bayes-tétel

Elmélet

Definíció (Ismétlés nélküli permutáció). n (különböző) elem összes lehetséges sorrendje.

n!

Definíció (Ismétléses permutáció). n elem összes lehetséges sorrendje, ha ezek közül k_1, \ldots, k_r darab megegyezik.

$$\frac{n!}{k_1!\cdots k_r!} = \binom{n}{k_1,\ldots,k_r}.$$

Definíció (Ismétlés nélküli kombináció). n (különböző) elemből k darabot kiveszünk, a kihúzás sorrendje nem számít (nem számozottak, címkézettek az elemek), nincs visszatevés.

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}.$$

Definíció (Ismétléses kombináció). n (különböző) elemből k darabot kiveszünk, a kihúzás sorrendje nem számít (nem számozottak, címkézettek az elemek), van visszatevés.

$$\binom{n+k-1}{k}$$
.

Definíció (Ismétlés nélküli variáció). n (különböző) elemből k darabot kiveszünk, a kihúzás sorrendje számít (számozottak, címkézettek az elemek), nincs visszatevés.

$$\frac{n!}{(n-k)!}.$$

Definíció (Ismétléses variáció). n (különböző) elemből k darabot kiveszünk, a kihúzás sorrendje számít (számozottak, címkézettek az elemek), van visszatevés.

$$n^k$$
.

Definícó (Feltételes valószínűség).

Ha B bekövetkezett, mi a valószínűsége, hogy A bekövetkezik? $P(A|B) = \frac{P(A \cap B)}{P(B)}$, ha $P(B) \neq 0$

Definícó (Teljes eseményrendszer).

 B_1, B_2, \dots események teljes eseményrendszert alkotnak, ha **1**) $B_i \cap B_j = \emptyset$ $\forall i \neq j$ —re **2**) $\bigcup_{i=1}^{\infty} B_i = \Omega$

Teljes valószínűség tétele:

Legyen $B_1, B_2, ...$ teljes eseményrendszer, A tetszőleges esemény, $P(B_i) > 0$ minden j-re. Ekkor

$$P(A) = \sum_{j=1}^{\infty} P(A|B_j)P(B_j).$$

Bayes-tétel:

Legyen $B_1, ..., B_n, ...$ teljes eseményrendszer, A tetszőleges esemény, $P(B_j) > 0$ minden j-re. Ekkor

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum\limits_{j=1}^{\infty} P(A|B_j)P(B_j)}.$$

Definíció (Események függetlensége).

A és B események függetlenek, ha

 $P(A \cap B) = P(A) \cdot P(B)$ (A esemény bekövetkezése nem befolyásolja B esemény bekövetkezését, és fordítva).

Feladatok

- 1.1. Feladat. Hányféleképpen lehet 8 bástyát letenni egy sakktáblára, hogy ne üssék egymást?
- 1.2. Feladat. Mi a valószínűsége, hogy egy véletlenszerűen kiválasztott 6 jegyű szám jegyei mind különbözőek?
- **1.3. Feladat.** Ha egy magyarkártya-csomagból (32 lap: piros, zöld, makk, tök) visszatevéssel húzunk három lapot, akkor mi annak a valószínűsége, hogy
 - a) pontosan egy piros színű lapot húztunk?
 - b) legalább egy piros színű lapot húztunk?
- 1.4. Feladat. Egy zsákban 10 pár cipő van. 4 db-ot kiválasztva, mi a valószínűsége, hogy van közöttük pár, ha
 - a) egyformák a párok?
 - b) különbözőek a párok?
- **1.5. Feladat.** $\star n$ dobozba véletlenszerűen helyezünk el n golyót úgy, hogy bármennyi golyó kerülhet az egyes dobozokba.
 - a) Mi a valószínűsége, hogy minden dobozba kerül golyó?
 - b) Annak mi a valószínűsége, hogy pontosan egy doboz marad üresen?
- **1.6. Feladat.** Egy boltban 10 látszólag egyforma számítógép közül 3 felújított, a többi új. Mi a valószínűsége, hogy ha veszünk 5 gépet a laborba, akkor pontosan 2 felújított lesz közöttük?
- **1.7. Feladat.** Ha a 6 karakteres jelszavunkat véletlenszerűen választjuk a 10 számjegy és a 26 karakter közül, akkor mi a valószínűsége, hogy pontosan 3 szám lesz benne?
- **1.8. Feladat.** Az ötöslottónál adjuk meg annak a valószínűségét, hogy egy szelvénnyel játszva öttalálatosunk lesz, illetve hogy legalább négyesünk lesz. Mi a valószínűsége, hogy minden kihúzott szám páros? (Hogy viszonylik ez a visszatevéses esethez?)
- **1.9. Feladat.** Mennyi a valószínűsége, hogy két kockadobásnál mind a két dobás 6-os, feltéve, hogy tudjuk, hogy legalább az egyik dobás 6-os?
- **1.10. Feladat.** 41 millió ötöslottó-szelvényt töltenek ki egymástól függetlenül. Mennyi a valószínűsége, hogy lesz legalább egy 5-ös találat?
- **1.11. Feladat.** 100 érme közül az egyik hamis (ennek mindkét oldalán fej található). Egy érmét véletlenszerűen kiválasztva és azzal 10-szer dobva, 10 fejet kaptunk. Ezen feltétellel mi a valószínűsége, hogy a hamis érmével dobtunk?
- **1.12. Feladat.** Egy diák a vizsgán p valószínűséggel tudja a helyes választ. Amennyiben nem tudja, akkor tippel (az esélye, hogy eltalálja a helyes választ, ekkor $\frac{1}{3}$). Ha helyesen válaszolt, mennyi a valószínűsége, hogy tudta a helyes választ?
- **1.13. Feladat.** Egy számítógépes program két független részből áll. Az egyikben 0, 2, a másikban 0, 3 a hiba valószínűsége. Ha a program hibát jelez, akkor mi a valószínűsége, hogy mindkét rész hibás?
- **1.14. Feladat.** Egy számítógép processzorát 3 üzemben készítik. 20% eséllyel az elsőben, 30% eséllyel a másodikban és 50% eséllyel a harmadikban. A garanciális hibák valószínűsége az egyes üzemekben rendre 10%, 4%, illetve 1%. Ha a gépünk processzora elromlott, akkor mi a valószínűsége, hogy az első üzemben készült?

2. (3-4 hét) Valószínűségi változó, diszkrét eloszlások

Elmélet

Definíció (X valószínűségi változó eloszlásfüggvénye). $F_X(x) = P(X < x)$.

Az eloszlásfüggvény tulajdonságai: $0 \le F_X(x) \le 1$;

monoton növő; balról folytonos;

 $\lim_{x \to -\infty} F(x) = 0, \lim_{x \to \infty} F(x) = 1.$

Állítás Tetszőleges X valószínűségi változó esetén $P(a \le X < b) = F(b) - F(a); P(a < X \le b) = F(b+) - F(a+).$

Diszkrét eloszlások:

Definíció (Diszkrét valószínűségi változó). Értékkészlete legfeljebb megszámlálhatóan végtelen, azaz $\{x_1,...,x_n,...\}$ elemekből áll. Eloszlása: $p_i:=P(X=x_i)=P(\omega:X(\omega)=x_i)$

Definíció (Diszkrét valószínűségi változó várható értéke). Jelölése: EX.

Legyen X diszkrét valószínűségi változó, amely az x_1, x_2, \dots értékeket veszi fel, p_1, p_2, \dots valószínűségekkel, ekkor

$$EX = \sum_{k=1}^{\infty} x_k p_k$$
, ha a végtelen összeg abszolút konvergens.

Definíció (X szórásnégyzete). $D^2X = E[(X - EX)]^2 = EX^2 - E^2X$

Definíció (X szórása). $DX = \sqrt{D^2X}$

Nevezetes diszkrét eloszlások:

				-
Név (paraméterek)	Értékek (k)	P(X=k)	EX	D^2X
Indikátor (p) (= Binomiális $(1, p)$)	0, 1	$p^k(1-p)^{1-k}$	p	p(1-p)
Binomiális (n, p)	0, 1,, n	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Poisson (λ)	0, 1,	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ
Geometriai vagy Pascal (p)	1, 2,	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
(= Negatív binomiális (1, p))			r	P
Negatív binomiális (n, p)	$n, n+1, \dots$	(11-17- \ - 7	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$
Hipergeometriai (N, M, n)	0, 1,, n	$\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$	$n\frac{M}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\left(1-\frac{n-1}{N-1}\right)$

Feladatok

- **2.1. Feladat.** Adjuk meg annak a valószínűségi változónak az eloszlását, ami egy hatgyermekes családban a fiúk számát adja meg. (Tegyük fel, hogy mindig $\frac{1}{2}$ $\frac{1}{2}$ a fiúk, ill. a lányok születési valószínűsége.)
- **2.2. Feladat.** Tegyük fel, hogy az új internet-előfizetők véletlenszerűen választott 20%-a speciális kedvezményt kap. Mi a valószínűsége, hogy 10 ismerősünk közül, akik most fizettek elő, legalább négyen részesülnek a kedvezményben?
- **2.3. Feladat.** Egy tétel áru 1% selejtet tartalmaz. Hány darabot kell találomra kivennünk és megvizsgálnunk, hogy a megvizsgált darabok között legalább 0,95 valószínűséggel selejtes is legyen, ha az egyes kiválasztott darabokat vizsgálatuk után visszatesszük?
- **2.4. Feladat.** Dobjunk egy kockával annyiszor, ahány fejet dobtunk két szabályos érmével. Jelölje X a kapott számok összegét. Adjuk meg X eloszlását!
- 2.5. Feladat. Jelölje X az ötöslottón kihúzott lottószámok legkisebbikét. Adjuk meg X eloszlását!
- **2.6. Feladat.** Egy érmével dobva (tfh. p a fej valószínűsége), jelölje X az első azonosakból álló sorozat hosszát. (Azaz pl., ha a sorozat FFI..., akkor X=2.) Adjuk meg X eloszlását!
- **2.7. Feladat.** Legyenek az X diszkrét valószínűségi változó értékei -2, 1, 3, a következő valószínűségekkel:

$$P(-2) = 1/2$$
, $P(1) = 1/3$, $P(3) = 1/6$.

Rajzolja fel az F(x) eloszlásfüggvényt!

- **2.8. Feladat.** Tegyük fel, hogy a 3 valószínűségszámítás gyakorlatra rendre 15, 20, illetve 25 diák jár. Várhatóan mekkora egy véletlenszerűen kiválasztott diák csoportja?
- **2.9. Feladat.** Két kockával dobunk. Egy ilyen dobást sikeresnek nevezünk, ha van 6-os a kapott számok között. Várhatóan hány sikeres dobásunk lesz n próbálkozásból?
- **2.10. Feladat.** Tegyük fel, hogy egy dobozban van 2N kártyalap, melyek közül kettőn 1-es, kettőn 2-es szám van és így tovább. Válasszunk ki véletlenszerűen m lapot. Várhatóan hány pár marad a dobozban?
- 2.11. Feladat. Mennyi az ötöslottón kihúzott
 - a) számok összegének várható értéke?
 - b) páros számok számának várható értéke?
- **2.12. Feladat.** Egy bükkösben a bükkmagoncok négyzetméterenkénti száma Poisson-eloszlású, $\lambda=2,5$ db / m^2 paraméterrel. Mi a valószínűsége annak, hogy egy 1 m^2 -es mintában
 - a) legfeljebb egy, ill.
 - b) több, mint három magoncot találunk?
 - c) Adja meg a magoncok számanak várható értékét és szórását!
- **2.13. Feladat.** Egy adott területről származó talajmintákban a spórák száma Poisson-eloszlású. A minták harmadában egyáltalán nincs spóra. Mi a valószínűsége annak, hogy egy mintában a spórák száma egynél több? Mekkora a spórák számának várható értéke és szórása?

3. (5-6 hét) Abszlút folytonos eloszlások, függetlenség, egyenlőtlenségek, aszimptotikus tulajdonságok)

Elmélet

Abszolút folytonos eloszlások:

Definíció (Abszolút folytonos valószínűségi változó). Ha létezik olyan f(x) függvény, amelyre $F(x) = \int_{-\infty}^{x} f(t) dt$.

Ilyenkor f(x)-et sűrűségfüggvénynek hívjuk. (Megjegyzés: Az f sűrűségfüggvény létezéséhez szükséges (de nem elégséges), hogy F folytonos legyen (azaz $P(X=x)=0 \quad \forall x$ -re).)

Tétel. Legyen X abszolút folytonos eloszlású. Ekkor f(x) = F'(x); $f(x) \ge 0$; $\int\limits_{-\infty}^{\infty} f(x) \, dx = 1$; P(X = x) = 0 $\forall x$ -re; $P(a < X \le b) = P(a \le X < b) = F(b) - F(a)$.

Definíció (Várható érték). Legyen X abszolút folytonos valószínűségi változó f(x) sűrűségfüggvénnyel, ekkor $EX = \int\limits_{-\infty}^{\infty} x f(x) \, dx, \text{ ha az integrál létezik.}$

Definíció (X szórásnégyzete). $D^2X = E[(X - EX)]^2 = EX^2 - E^2X$

Definíció (X szórása). $DX = \sqrt{D^2X}$

Nevezetes abszolút folytonos eloszlások:

Név (paraméterek)	Értékek	Eloszlásfüggvény (F)	Sűrűségfüggvény (f)	EX	D^2X
Standard normális	$(-\infty,\infty)$	$\Phi(x)=$ táblázatban	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} x \in \mathbb{R}$	0	1
N(0, 1)			V 2.11		
Normális $\mathrm{N}(m,\sigma^2)$	$(-\infty,\infty)$	visszavezethető $\Phi(x)$ -re	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}} x \in \mathbb{R}$	m	σ^2
Egyenletes $\mathrm{E}[a,b]$	[a,b]	$\begin{cases} 0 & \text{ha } x \leq a \\ \frac{x-a}{b-a} & \text{ha } a < x \leq b \\ 1 & \text{ha } b < x \end{cases}$	$\begin{cases} \frac{1}{b-a} & \text{ha } a < x \leq b \\ 0 & \text{k\"{u}l\"{o}nben} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciális $\operatorname{Exp}(\lambda)$	$(0,\infty)$	$\begin{cases} 1 - e^{-\lambda x} & \text{ha } x \ge 0 \\ 0 & \text{k\"{u}l\"{o}nben} \end{cases}$	$\begin{cases} \lambda e^{-\lambda x} & \text{ha } x \ge 0 \\ 0 & \text{különben} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma $\Gamma(\alpha,\lambda)$	$(0,\infty)$	nincs zárt elemi képlet	$\begin{cases} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} & \text{ha } x \ge 0 \\ 0 & \text{k\"{u}l\"{o}nben} \end{cases}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$

Normális eloszlás standardizálása: Legyen $X \sim N(m, \sigma^2)$, ekkor $\frac{X-m}{\sigma} \sim N(0, 1)$.

Függetlenség:

Definíció (Valószínűségi változók függetlesége). Az $X_1, X_2, \dots X_n$ valószínűségi változók függetlenek, ha bármely I_1, I_2, \dots, I_n intervallumra $P(X_1 \in I_1, \dots, X_n \in I_n) = \prod_{i=1}^n P(X_i \in I_i)$

Megjegyzés: Független valószínűségi változók függvényei is függetlenek lesznek.

Tétel (Valószínűségi változók függetlensége). (i) Az $X_1, X_2, \dots X_n$ valószínűségi változók pontosan akkor függetlenek, ha együttes eloszlásfüggvényük megegyezik eloszlásfüggvényeik szorzatával, azaz $F_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} F_{X_i}(x_i) \ \forall x$ -re.

(ii) Az $X_1, X_2, \dots X_n$ diszkrét valószínűségi változók pontosan akkor függetlenek, ha

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i) \ \forall x_i$$
-re.

(iii) Az $X_1, X_2, \ldots X_n$ abszolút folytonos valószínűségi változók pontosan akkor függetlenek ha $f(\mathbf{x}) = \prod_{i=1}^n f_{X_i}(x_i) \ \forall x_i$ -re.

Definíció (X és Y kovarianciája). cov(X,Y) = E(XY) - EXEY

Definíció (X és Y korrelációja). $R(X,Y) = \frac{cov(X,Y)}{DXDY}$

Ha X és Y függetlenek $\Rightarrow cov(X,Y)=0$, de fordítva nem igaz. $D^2(aX+b)=a^2D^2X, \quad D^2(X+Y)=D^2(X)+D^2(Y)+2cov(X,Y)$

Egyenlőtlenségek:

Tétel (Markov-egyenlőtlenség). Legyen $g: \mathbb{R} \to \mathbb{R}$ monoton növő pozitív függvény, $X \geq 0$ valószínűségi változó, melyre $EX < \infty$ és $\varepsilon > 0$ tetszőleges. Ekkor

$$P(X \ge \varepsilon) \le \frac{E(g(X))}{g(\varepsilon)}$$

Spec., ha g(x) = x, akkor

$$P(X \ge \varepsilon) \le \frac{EX}{\varepsilon}$$

Tétel (Csebisev-egyenlőtlenség). Legyen X tetszőleges valószínűségi változó, melyre $D^2X < \infty$ és $\varepsilon > 0$ tetszőleges. Ekkor

$$P(|X - EX| \ge \varepsilon) \le \frac{D^2 X}{\varepsilon^2}$$

Aszimptotikus tulajdonságok:

Tétel (Nagy számok törvénye (NSZT)). Legyenek X_1, X_2, \ldots i.i.d. valószínűségi változók, $EX_1 = m < \infty$. Ekkor

$$\frac{X_1 + \ldots + X_n}{n} \stackrel{n \to \infty}{\longrightarrow} m \qquad 1 \text{ valószínűséggel.}$$

Tétel (Centrális határeloszlás tétel (CHT)). Legyenek X_1, X_2, \dots i.i.d. valószínűségi változók, $EX_1 = m$, $D^2X_1 = \sigma^2 < \infty$. Ekkor

$$\frac{X_1 + \ldots + X_n - nm}{\sqrt{n}\sigma} \stackrel{n \to \infty}{\longrightarrow} N(0,1) \qquad \text{gyeng\'en}$$

azaz

$$P\left(\frac{X_1 + \ldots + X_n - nm}{\sqrt{n}\sigma} < x\right) \stackrel{n \to \infty}{\longrightarrow} \Phi(x)$$

Feladatok

- **3.1. Feladat.** Tegyük fel, hogy egy számítógép meghibásodási időpontja 0 és 10 év között van és itt geometriai modellel írható le. Határozzuk meg a jelenség eloszlásfüggvényét!
- **3.2. Feladat.** Legyen 0 < Y < 3 valószínűségi változó. Eloszlásfüggvénye ezen az intervallumon $F(x) = cx^3$. Mennyi c és P(-1 < Y < 1)?
- **3.3. Feladat.** Legyen X egy folytonos valószínűségi változó a [0,c] intervallumon, sűrűségfüggvénye:

$$f(x) = \begin{cases} \frac{1}{9}x^2, & \text{ha } 0 \le x < c \\ 0, & \text{ha } x < 0 \text{ vagy } x \ge c. \end{cases}$$

Határozza meg c-t és X eloszlásfüggvényét!

- **3.4. Feladat.** Az X valószínűségi változó a [0,c] intervallumon veszi fel értékeit és ott sűrűségfüggvénye $4e^{-2x}$. Határozzuk meg c értékét és annak valószínűségét, hogy $\frac{1}{4} < X < \frac{1}{2}$!
- **3.5. Feladat.** Véletlenszerűen választunk egy pontot az $x^2 + y^2 < 1$ kör belsejében. Jelölje Z a távolságát a középponttól. Adjuk meg Z eloszlás- és sűrűségfüggvényét valamint várható értékét!
- **3.6. Feladat.** Legyen X sűrűségfüggvénye $\frac{c}{x^4}$ ha x>1, és 0 különben.
 - a) c = ?
 - b) EX = ?
- **3.7. Feladat.** Tapasztalatok szerint az út hossza, amit egy bizonyos típusú robogó megtesz az első meghibásodásáig exponenciális eloszlású valószínűségi változó. Ez a távolság átlagosan 6000 km. Mi a valószínűsége annak, hogy egy véletlenszerűen kiválasztott robogó
 - a) kevesebb, mint 4000 km megtétele után meghibásodik?
 - b) több, mint 6500 km megtétele után hibásodik meg?
 - c) 4000 km-nél több, de 6000 km-nél kevesebb út megtétele után hibásodik meg?
 - d) Legfeljebb mekkora utat tesz meg az első meghibásodásig a robogók leghamarabb meghibásodó 20%-a?

- **3.8. Feladat.** Egy tehén napi tejhozamát normális eloszású valószínűségi változóval, m=22,1 liter várható értekkel és $\sigma=1,5$ liter szórással, modellezzük.
 - a) Mi annak a valószínűsége, hogy egy adott napon a tejhozam 23 és 25 liter közé esik?
 - b) Mekkora valószínűséggel esik a napi tejhozam $m-\sigma$ es $m+\sigma$ közé?

$$(\Phi(0,6) = 0,7257, \Phi(1,93) = 0,9732, \Phi(1) = 0,8413)$$

- **3.9. Feladat.** Mennyi garanciát adjunk, ha azt szeretnénk, hogy termékeink legfeljebb 10%-át kelljen garanciaidőn belül javítani, ha a készülék élettartama 10 év várható értékű és 2 év szórású normális eloszlással közelíthető.
- **3.10. Feladat.** Tegyük fel, hogy egy populációban az intelligenciahányados (IQ) normális eloszlású 110 várható értékkel és 10 szórással. Mi a valószínűsége, hogy egy véletlenszerűen kiválasztott ember IQ-ja 120 feletti? $/\Phi(1)=0.8413$
- **3.11. Feladat.** Legyen X sűrűségfüggvénye $\frac{c}{x^4}$ ha 1 < x, és 0 különben. Mi a c konstans értéke és mennyi D^2X ?
- **3.12. Feladat.** Legyen X egyenletes eloszlású az [1,4] intervallumon Számítsuk ki $(X-1)^2$ várható értékét!
- **3.13. Feladat.** Legyen X és Y független valószínűségi változók mindkettő 0 várható értékkel és 1 szórással. Legyen W = X Y. Számítsa ki W várható értékét és szórását!
- **3.14. Feladat.** Adjon meg véges sok értéket felvehető (X) ill. végtelen sok értéket felvehető (Y) diszkrét valószínűségi változókat melyeknek szórása 1!
- **3.15. Feladat.** Legyen $X \sim N(2,\sqrt{5}^2)$ és $Y \sim N(5,3^2)$ függetlenek és legyen W=3X-2Y+1. Számítsa ki a) EW-t és D^2W -t, ill. b) $P(W \le 6)$ -ot! $(\Phi(1)=0,8413)$
- **3.16. Feladat.** Legyen X egy véges szórású valószínűségi változó és legyen $a, b \in \mathbb{R}$.
- a) Mutassa meg, hogy aX + b és X kovarianciája egyenlő a-szor X szórásnégyzetével!
- b) Számolja ki aX + b és X korrelációját $(a \neq 0)!$
- **3.17. Feladat.** Legyen X és Y független valószínűségi változók, melyre $D^2X < \infty$ és $D^2Y < \infty$.
- a) Mutassa meg, hogy X+Y és X kovarianciája egyenlő X szórásnégyzetével!
- b) Számolja kiX + Y és X korrelációját!
- **3.18. Feladat.** Tegyük fel, hogy egy tábla csokoládé tömege normális eloszlású 100g várható értékkel és 3g szórással. Legalább hány csokoládét csomagoljunk egy dobozba, hogy a dobozban levő táblák átlagos tömege legalább 0.9 valószínűséggel nagyobb legyen 99.5 g-nál, ha feltételezzük, hogy az egyes táblák tömege egymástól független? ($\Phi(1,28)=0,8997$)
- **3.19. Feladat.** Egy scannelt kép átlagos mérete 600 KB, 100 KB szórással. Mi a valószínűsége, hogy 80 ilyen kép együttesen 47 és 48 MB közötti tárhelyet foglal el, ha feltételezzük, hogy a képek mérete egymástól független? ($\Phi(1,12)=0,8686$)
- **3.20. Feladat.** Egy szoftver frissítéséhez 68 file-t kell installálni, amik egymástól függetlenül 10mp várható értékű és 2mp szórású ideig töltődnek.
- a) Mi a valószínűsége, hogy a teljes frissítés lezajlik 12 percen belül?
- b) A cég a következő frissítésnél azt ígéri, hogy az már 95% valószínűséggel 10 percen belül betöltődik. Hány file-ból állhat ez a frissítés?

```
(\Phi(2,42) = 0,992, \Phi(1,645) = 0,95)
```

- **3.21. Feladat.** Legyen egy X pozitív valószínűségi változó várható értéke EX=3 és szórása DX=3. Számítsuk ki, hogy legfeljebb mekkora valószínűséggel vesz fel a változó 13-at vagy annál nagyobb értéket! Mennyi a valószínűség pontos értéke, ha feltesszük, hogy az eloszlás exponenciális?
- **3.22. Feladat.** Egy elektromos vezetékgyártó cég 40 m-es vezetékeket gyárt 0,2 m szórással. Legfeljebb mennyi annak a valószínűsége, hogy a vezeték hossza legalább 1 m-rel eltér a várható 40 m-es értéktől?

4. (7-8 hét) Leíró statisztikák, statisztikai alapfogalmak: becslések (maximum likelihood, momentum)

Elmélet

Definíció (Minta). $X_1, ..., X_n$ valószínűségi változó sorozat. A továbbiakban feltesszük, hogy függetlenek és azonos eloszlásúak. Realizációja: $x_1, ..., x_n$

Definíció (Statisztika). A minta valamely függvénye, pl.:

$$\underline{\underline{Mintaátlag\ v.\ átlag:}} \ \overline{\underline{X}} = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\underline{\underline{Tapasztalati\ szórás:}} \ S_n = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2} \ (az\ átlagtól\ való\ átlagos\ abszolút\ eltérés)$$

Korrigált tapasztalati szórás:
$$S_n^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2}$$

k-adik tapasztalati momentum (
$$k \ge 1, k \in \mathbb{Z}$$
): $m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

Tapasztalati módusz: a legtöbbször előforduló érték

 $\overline{\text{Rendezett minta: } X_1^* \leq ... \leq X_n^* \text{ a mintaelemek nem cs\"{o}kken\'{o} sorrendben}}$

Tapasztalati medián:
$$X_{\frac{n+1}{2}}^*$$
, ha n páratlan és $\frac{X_{\frac{n}{2}}^* + X_{\frac{n}{2}+1}^*}{2}$, ha n páros

<u>Terjedelem</u>: $R = X_n^* - X_1^*$ (legnagyobb – legkisebb mintaelem)

 $\overline{z\text{-kvantilis}}$: $q_z = \inf\{x : F(x) \ge z\}$. Ha F invertálható, akkor $q_z = F^{-1}(z)$.

Tapasztalati z-kvantilis: q_z értelmezése: a mintaelemek z-ed része legfeljebb a q_z , (1-z)-ed része pedig legalább a q_z értéket veszi fel (0 < z < 1); sokféleképpen számolható, pl. interpolációs módszerrel: először megállapítjuk a sorszámot: (n+1)z=e+t (e: egészrész, t: törtrész), majd kiszámoljuk a z-kvantilist: $q_z=X_e^*+t(X_{e+1}^*-X_e^*)$.

<u>Kvartilisek</u>: Speciális kvantilisek, alsó (vagy első) kvartilis: $Q_1 = q_{\frac{1}{4}}$,

medián: $Q_2 = q_{\frac{1}{2}}$,

felső (vagy harmadik) kvartilis: $Q_3 = q_{\frac{3}{4}}$

Interkvartilis terjedelem: $IQR = q_{\frac{3}{4}} - q_{\frac{1}{4}} = Q_3 - Q_1$

<u>Tapasztalati eloszlásfüggvény</u>: $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i < x)$

$$ahol \ I(X_i < x) = \begin{cases} 1 & ha \ X_i < x \\ 0 & ha \ X_i \geq x \end{cases} indikátor függvény$$

Tétel (Glivenko-Cantelli). Az $F_n(x)$ tapasztalati eloszlásfüggvény és az F(x) elméleti eloszlásfüggvény közötti eltérés maximuma 1 valószínűséggelen 0-hoz konvergál, ami azt jelenti, hogy elég nagy minta esetén $F_n(x)$ éréke minden x-re tetszőleges közel van F(x) értékéhez és n-et növelve mindenütt annak közelében marad.

Definíció (Boxplot).

$$A = \max\{x_1^*, Q_1 - 1, \dots E = Q_1, \quad E = \min\{x_n^*, Q_3 + 1, \dots E = \min\{x_n^*, Q_3 + 1, \dots E = \min\{x_n^*, Q_3 + 1, \dots E = \max\{x_n^*, Q_3$$

Legyenek X_1, X_2, \dots, X_n független, azonos eloszlású valószínűségi változók (minta) egy ϑ paraméterrel és legyen $\mathbf{X} = (X_1, X_2, \dots, X_n)$. A becslés a minta eloszlásának ismeretlen paraméterét közelíti a minta segítségével.

Definíció (Torzítatlan becslés). A ϑ valós paraméter $T(\mathbf{X})$ becslése torzítatlan, ha $E(T(\mathbf{X})) = \vartheta$ minden ϑ paraméterértékre.

Definíció (Likelihood függvény). $L(\vartheta; \mathbf{x}) = f_{\vartheta}(\mathbf{x}) = \prod_{i=1}^n f_{\vartheta}(x_i)$, ha az eloszlás folytonos $L(\vartheta; \mathbf{x}) = P_{\vartheta}(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^n P_{\vartheta}(X_i = x_i)$, ha az eloszlás diszkrét

$$L(\vartheta;\mathbf{x}) = P_{\vartheta}(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{n} P_{\vartheta}(X_i = x_i)$$
, ha az eloszlás diszkrét

Definíció (Log-likelihood függvény). $l(\vartheta; \mathbf{x}) = \ln(L(\vartheta; \mathbf{x}))$

Paraméterbecslési módszerek:

Maximum likelihood módszer (ML-módszer):

Azt a paraméterértéket keressük, ahol a likelihood függvény a legnagyobb értéket veszi fel (azaz diszkrét esetben az ismeretlen paraméter azon értéket keressük, amely mellett a bekövetkezett eredmény maximális valószínűségű): max $L(\vartheta; \mathbf{x})$. Ez nyilván megegyezik azzal a paraméterértékkel, ahol a log-likelihood függvény veszi fel a legnagyobb értéket, azaz: $\max l(\vartheta; \mathbf{x})$.

Amennyiben a függvény deriválható ϑ szerint, akkor a maximumot kereshetjük a szokásos módon, a deriváltak segítségével, azonban a feladatunkat jelentősen megnehezíti, hogy olyan n-szeres szorzatot kellene deriválni, amelyiknek minden tagjában ott van az a változó, ami szerint deriválnunk kellene. Ezért likelihood függvény helyett a log-likelihood függvény maximumhelyét keressük.

Ha ϑ 1 dimenziós, akkor $\partial_{\vartheta}l(\vartheta,\mathbf{x})=0$, míg ha $\vartheta=(\vartheta_1,...,\vartheta_p)$ p dimenziós, akkor $\partial_{\vartheta_i}l(\vartheta,\mathbf{x})=0$ megoldásából kapjuk a becslést. (A második deriváltak segítségével ellenőrizzük, hogy valóban maximum.)

Tétel (ML-becslés invariáns tulajdonsága). Ha ϑ ML-becslése $\hat{\vartheta}$, akkor tetszőleges g függvény esetén $g(\vartheta)$ MLbecslése $q(\vartheta)$.

Momentum módszer:

A mintából számítható tapasztalati momentumokat ($m_i:=rac{1}{n}\sum_j x^i_j$) egyenlővé tesszük az elméleti momentumokkal $(M_i(\vartheta):=E_\vartheta X^i)$, mégpedig annyit, amennyiből a paramétereket meg tudjuk határozni. p darab ismeretlen paraméter esetén tipikusan p ismeretlenes egyenletrendszert oldunk meg ϑ -ra: $M_1(\vartheta) = m_1, \dots M_p(\vartheta) = m_p$ (megjegyzés: $m_1 = \overline{x}$)

Feladatok

4.1. Feladat. Legyen X_1, \ldots, X_n független, azonos eloszlású valószínűségi változók m várható értékkel. Célunk az ismeretlen m paraméter becslése. Tekintsük az alábbi statisztikákat és állapítsuk meg, hogy melyek torzítatlanok! Amelyik nem torzítatlan, hogyan tudnánk torzítatlanná tenni?

$$T_1(\mathbf{X}) = X_8, \qquad T_2(\mathbf{X}) = \frac{X_9 + X_{19}}{9}, \qquad T_3(\mathbf{X}) = \overline{X}$$

- **4.2. Feladat.** Adjon torzítatlan becslést a független, azonos $E[0,\vartheta]$ eloszlású X_1,\ldots,X_n minta ϑ paraméterére a mintaátlag segítségével!
- 4.3. Feladat. Legyen az alábbi gyakorisági tábla egy 20 elemű minta, a következő diszkrét eloszlásból: $P(X_i = -1) = c, P(X_i = 1) = 3c, P(X_i = 2) = 1 - 4c$ $(i = 1, \dots, 20 \text{ és } c \text{ az ismeretlen paraméter}, 0 < c < \frac{1}{4}).$

érték	-1	1	2
gyakoriság	4	10	6

Határozza meg c ML-becslését és c becslését a momentum módszerrel!

- **4.4. Feladat.** Legyenek X_1, X_2, \dots, X_n független azonos eloszlású valószínűségi változók az alábbi eloszlásokból. Számolja ki az ismeretlen paraméter ML-becslését!
- a) Bin(m, p) binomiális eloszlás, ahol $m \in \mathbb{N}$ adott és p a paraméter
- b) $Exp(\lambda)$ exponenciális eloszlás
- c) $N(\mu, \sigma^2)$ normális eloszlás, ahol $\sigma \in \mathbb{N}$ adott és μ a paraméter
- **4.5. Feladat.** Határozza meg az ismeretlen paraméter ML-becslését, ha a minta E[a, 1] eloszlású!

Megoldás

A paraméter függvényében nem deriválható a likelihood függvény (ugrik):

$$L(a; \mathbf{x}) = \prod_{i=1}^{n} \frac{1}{1-a} I(a \le x_i \le 1) = \frac{1}{(1-a)^n} I(a \le x_1, x_2, ..., x_n \le 1) =$$
$$= \frac{1}{(1-a)^n} I(a \le x_1^* \le ... \le x_n^* \le 1) = \frac{1}{(1-a)^n} I(a \le x_1^*) I(x_n^* \le 1)$$

 $Az \ I(a \leq x_1^*)I(x_n^* \leq 1) \ \textit{rész 0 vagy 1 lehet, tehát úgy kell megválasztani a paramétereket, hogy 1 legyen: } a \leq x_1^* \textit{és } x_n^* \leq 1 \\ \textit{teljesüljön. Mivel a } (-\infty, x_1^*] \ \textit{intervallumon az } \frac{1}{(1-a)^n} \textit{függvény maximuma az } a = x_1^* \textit{ pontban van, így } \hat{a} = X_1^*.$

4.6. Feladat. Legyenek X_1, X_2, \dots, X_n független azonos E[a, b] eloszlású valószínűségi változók. Számolja ki az ismeretlen paraméterek becslését a momentum módszerrel!

5. (9-10 hét) Konfidenciaintervalluok, paraméteres próbák

Elmélet

Definíció (Konfidenciaintervallum a normális eloszlás várható értékére). Legyenek $X_1, X_2, \ldots, X_n \sim N(m, \sigma^2)$ független azonos eloszlású valószínűségi változók (tfh. σ ismert). Ekkor az $(1-\alpha)100\%$ -os konfidenciaintervallum m-re: $\overline{X} \pm u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$, ahol $u_{1-\frac{\alpha}{3}}$ a standard normális megfelelő kvantilisét jelöli.

Hipotézisvizsgálat

Hipotézis: állítás, aminek igazságát vizsgálni szeretnénk

Statisztikai próba: eljárás aminek a segítségével döntést hozhatunk a hipotézisről

Legyen $(\Omega, \mathcal{A}, \mathcal{P})$ statisztikai mező, ahol $\mathcal{P} = \{\mathbb{P}_{\vartheta} | \vartheta \in \Theta \subseteq \mathbb{R}^p\}$, és legyen $\mathbf{X} = (X_1, \dots, X_n)$ független, azonos eloszású minta a \mathbb{P}_{ϑ} sokaságból. Jelölje \mathbf{X} a mintateret.

Nullhipotézis: $H_0: \vartheta \in \Theta_0$ Ellenhipotézis: $H_1: \vartheta \in \Theta_1$

Paramétertér: $\Theta = \Theta_0 \cup \Theta_1$

 $\underline{\textit{Dönt\'es}}$: T(X) statisztika ($T: \mathcal{X} \to \mathbb{R}$ próbastatisztika) segítségével, melynek ismerjük az eloszlását a nullhipotézis fennállása esetén

Mintateret két részre bontjuk: $\mathcal{X} = \mathcal{X}_e \cup \mathcal{X}_k$ és $\mathcal{X}_e \cap \mathcal{X}_k = \emptyset$

 \mathcal{X}_k : kritikus tartomány – azon X megfigyelések halmaza, amikre elutasítjuk a nullhipotézist

 \mathcal{X}_e : elfogadási tartomány – azon X megfigyelések halmaza, amikre elfogadjuk a nullhipotézist

Kritikus érték: c (függ α -tól, ld. alább)

$$\mathcal{X}_k = \{ \mathbf{x} \in \mathcal{X} : T(\mathbf{x}) \ge c \} \text{ vagy } \mathcal{X}_k = \{ \mathbf{x} \in \mathcal{X} : T(\mathbf{x}) \le c \} \text{ vagy } \mathcal{X}_k = \{ \mathbf{x} \in \mathcal{X} : |T(\mathbf{x})| \ge c \}$$

$$\mathcal{X}_e = \{ \mathbf{x} \in \mathcal{X} : T(\mathbf{x}) < c \} \qquad \mathcal{X}_e = \{ \mathbf{x} \in \mathcal{X} : |T(\mathbf{x})| < c \}$$

	Döntés						
Valós állapot	H_0 -t elfogadjuk (\mathcal{X}_e)	H_0 -t elvetjük (\mathcal{X}_k)					
$H_0 igaz (\vartheta \in \Theta_0)$	helyes döntés $(1-\alpha)$	elsőfajú hiba (α)					
H_0 hamis $(\vartheta \in \Theta_1)$	másodfajú hiba (β)	helyes döntés $(1 - \beta)$					

Elsőfajú hiba valószínűsége:

Egyszerű hipotézis (Θ_0 halmaz egyelemű) esetén: $\mathbb{P}_{\vartheta_0}(\mathbf{X} \in \mathcal{X}_k) = \alpha \quad \vartheta_0 \in \Theta_0 \qquad /= \mathbb{P}(\text{elvetjük } H_0\text{-}t \mid H_0 \text{ igaz}) / \text{Összetett hipotézis } (\Theta_0 \text{ halmaz több elemű) esetén: } \mathbb{P}_{\vartheta}(\mathbf{X} \in \mathcal{X}_k) \leq \alpha \quad \forall \vartheta \in \Theta_0$

Próba (pontos) terjedelme vagy szignifikanciaszintje: $\alpha = \sup\{\mathbb{P}_{\vartheta}(X \in \mathcal{X}_k) : \vartheta \in \Theta_0\}$ Megbízhatósági (konfidencia-) szint: $1 - \alpha$ /= $\mathbb{P}(elfogadjuk\ H_0$ -t | $H_0\ igaz$)/

A próba meghatározása: előre rögzített α terjedelemhez azt a c értéket keressük, amire a próba pontos terjedelme éppen α .

Másodfajú hiba valószínűsége:

$$\overline{\beta(\vartheta) = \mathbb{P}_{\vartheta}(X \in \mathcal{X}_e) = 1} - \mathbb{P}_{\vartheta}(X \in \mathcal{X}_k) \quad \vartheta \in \Theta_1 \qquad \qquad / = \mathbb{P}_{\vartheta}(elfogadjuk \ H_0 - t \mid H_0 \ hamis) /$$

Erőfüggvény: $\psi(\vartheta) = 1 - \beta(\vartheta)$ /= $\mathbb{P}(elvetj\ddot{u}k H_0 - t \mid H_0 \text{ hamis})$ /

Minél erősebb a próba, annál nagyobb valószínűséggel veti el a hamis nullhipotézist. Vagyis a próba ereje annak a valószínűsége, hogy egy adott különbséget adott mintanagyság és terjedelem mellett egy statisztikai próba kimutat. (Kísérletek tervezésekor az erő nagyságának előre meghatározott értékéből határozható meg a mintanelemszám.) A próba erejét addig nem tudjuk kiszámolni, ameddig az ellenhipotézis egy értékét nem rögzítjük ill. nem mondjuk meg a külünbég nagyságát, amit ki szeretnénk mutatni.

p-érték: annak a valószínűsége, hogy igaz H_0 esetén a tapasztalt eltérést vagy annál nagyobb eltérést kapunk. Ha egy próbát számítógép segítségével végzünk el, rendszerint a p-érték révén tudunk dönteni: ha p-érték $< \alpha$, akkor elvetjük H_0 -t.

A hipotézisek nem egyenrangúak. H_0 -t csak indokolt esetben szeretnénk elutasítani, így az elsőfajú hiba súlyosabbnak számít, mint a másodfajú hiba. Általában az elsőfajú hiba legnagyobb valószínűségét adjuk meg, de a másodfajú hiba csökkentésére is törekszünk (pl. mintanagyság növelésével).

 H_0 elfogadása: statisztikailag nem találtunk komoly bizonyítékot arra, hogy H_0 nem lenne igaz; vagyis H_0 elfogadása esetén sem lehet állítani, hogy H_0 teljesül

 H_0 elvetése: statisztikailag komoly bizonyítékot találtunk arra, hogy a H_0 nem igaz, azaz H_1 igaz

Próbák normális eloszlás várható értékére

Egymintás próbák

$$X_1,\ldots,X_n\sim N(m,\sigma^2)$$

$$H_0: m = m_0$$
$$H_1: m \neq m_0$$

$$H_0: m \le m_0$$

$$H_1: m > m_0$$

$$H_0: m \ge m_0$$

$$H_1: m < m_0$$

Egymintás u-próba (σ ismert)

Próbastatisztika:
$$T(X) = u = \frac{\overline{X} - m_0}{\frac{\sigma}{\sqrt{n}}} \overset{H_0 \text{ esetén}}{\sim} N(0, 1)$$

Kritikus tartományok:

$$\mathcal{X}_k = \{\mathbf{X} : |u| > u_{1-\frac{\alpha}{2}}\}$$

$$\mathcal{X}_k = \{ \mathbf{X} : u < u_\alpha \}$$

Kapcsolat a konfidenciaintervallummal (az alábbi lépések ekvivalensek):

$$\boxed{|u|>u_{1-\frac{\alpha}{2}}|} \Leftrightarrow u>u_{1-\frac{\alpha}{2}} \ \ vagy \ \ u<-u_{1-\frac{\alpha}{2}} \Leftrightarrow \frac{\overline{X}-m_0}{\frac{\sigma}{\sqrt{n}}}>u_{1-\frac{\alpha}{2}} \ \ vagy \ \ \frac{\overline{X}-m_0}{\frac{\sigma}{\sqrt{n}}}<-u_{1-\frac{\alpha}{2}} \Leftrightarrow \frac{\overline{X}-m_0}{\frac{\sigma}{\sqrt{n}}}<-u_{1-\frac{\alpha}{$$

$$\overline{X} - m_0 > u_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \quad \textit{vagy} \quad \overline{X} - m_0 < -u_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Leftrightarrow \boxed{m_0 \notin \left(\overline{X} - u_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)}$$

Vagyis a null hipotézist pontosan akkor utasítjuk el, ha a $(1-\alpha)100\%$ -os konfidenciaintervallum nem tartalmazza m_0 -t. Egymintás t-próba (σ ismeretlen)

Próbastatisztika:
$$T(X) = t = \frac{\overline{X} - m_0}{\frac{s_n^*}{\sqrt{n}}} \stackrel{H_0 \ eset\'en}{\sim} t_{n-1}$$

Kritikus tartományok:

$$\mathcal{X}_k = \{\mathbf{X} : |t| > t_{n-1,1-\alpha/2}\}$$
 $\mathcal{X}_k = \{\mathbf{X} : t > t_{n-1,1-\alpha}\}$ $\mathcal{X}_k = \{\mathbf{X} : t < t_{n-1,\alpha}\}$

$$\mathcal{X}_k = \{\mathbf{X} : t > t_{n-1,1-\alpha}\}$$

$$\mathcal{X}_k = \{\mathbf{X} : t < t_{n-1,\alpha}\}$$

Kétmintás próbák

$$X_1,\ldots,X_n\sim N(m_1,\sigma_1^2), \quad Y_1,\ldots,Y_m\sim N(m_2,\sigma_2^2)$$
 függetlenek

$$H_0: m_1 = m_2$$

$$H_0: m_1 \leq m_2$$

$$H_0: m_1 \ge m_2$$

$$H_1: m_1 \neq m_2$$

$$H_1: m_1 \geq m_2$$
 $H_2: m_2 \geq m_3$

$$U \cdot m < m$$

$$H_1: m_1 \neq m_2$$

$$H_1: m_1 > m_2$$

$$H_1: m_1 < m_2$$

$$H_0: m_1 = m_2$$
 $H_0: m_1 \leq m_2$ $H_0: m_1 \geq m_2$ $H_1: m_1 \neq m_2$ $H_1: m_1 \neq m_2$ $H_1: m_1 > m_2$ $H_1: m_1 < m_2$ $H_1:$

	juggett	en	nem juggetten
σ_1 és σ_2 ismert	Kétmintás u-próba		Egymintás u-próba
			a különbségekre
	előzetes F-	próba	
σ_1 és σ_2 ismeretlen	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	Egymintás t-próba
	Kétmintás t-próba	Welch-próba*	a különbségekre

előzetes F-próba (
$$\sigma_1, \sigma_2$$
 ismeretlen)

$$H_0: \sigma_1 = \sigma_2$$
 $H_1: \sigma_1 \neq \sigma_2$

$$F = \begin{cases} \frac{(s_1^*)^2}{(s_2^*)^2} & \text{Ho eset\'en} \\ \frac{(s_1^*)^2}{(s_2^*)^2} & \text{Constant} \\ \frac{(s_2^*)^2}{(s_1^*)^2} & \text{Ho eset\'en} \\ \text{Constant} \\ \text{Figure 1} & \text{Ho so} \\ \text{Figure 2} \end{cases}$$

Kétmintás u-próba $(\sigma_1, \sigma_2 ismert)$

Próbastatisztika:
$$u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \overset{H_0 \text{ esetén}}{\sim} N(0, 1)$$

Kétmintás t-próba ($\sigma_1 = \sigma_2$ ismeretlen

Próbastatisztika:
$$t = \sqrt{\frac{nm}{n+m}} \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{(n-1)(s_1^*)^2 + (m-1)(s_2^*)^2}{n+m-2}}} \stackrel{H_0 \text{ eset\'en}}{\sim} t_{n+m-2}$$

*Welch-próba** ($\sigma_1 \neq \sigma_2$ ismeretlen)

$$\textit{Pr\'obastatisztika:} \quad t' = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{(s_1^*)^2}{n} + \frac{(s_2^*)^2}{m}}} \overset{H_0 \textit{ eset\'en}}{\sim} t_f \textit{ , ahol } f \approx \frac{\left(\frac{(S_1^*)^2}{n} + \frac{(S_2^*)^2}{m}\right)^2}{\left(\frac{(S_1^*)^2}{n} + \frac{(S_2^*)^2}{m}\right)^2}$$

^{*} A Welch-próbát nem vesszük gyakorlaton.

Feladatok

- **5.1. Feladat.** Legyen X_1, X_2, X_3, X_4 független azonos $N(\mu, 2^2)$ eloszlású minta. A megfigyelt értékek a következők: 14,8; 12,2; 16,8; 11,1 a) Adjon 95%-os megbízhatóságú konfidenciaintervallumot μ -re!
 - b) Hány elemű mintára van szükség, ha azt szeretnénk, hogy a konfidenciaintervallum legfeljebb 1,6 hosszúságú legyen? $(u_{0.975}=1.96)$
- **5.2. Feladat.** Azt szeretnénk vizsgálni, hogy a napi középhőmérséklet október 18-án Budapesten 15° C alatt volt-e? Az elmúlt 4 év napi középhőmérsékletei a következők voltak: 14, 8; 12, 2; 16, 8; 11, 1 °C, valamint tegyük fel, hogy az adatok normális eloszlásból származnak.
 - a) Írjuk fel a null- és ellenhipotézist!
 - b) Tegyük fel, hogy a napi középhőmérséklet szórása $\sigma=2$. Tesztelje a fenti hipotézist $\alpha=0.05$ terjedelem mellett! Adja meg a kritikus tartományt és p-értéket! Mi a döntés?
 - c) Tesztelje a hipotézist úgy is, hogy nem használja a szórásra vonatkozó előzetes információt!
 - d) Milyen hipotézist írjunk fel, ha azt szeretnénk vizsgálni, hogy a napi középhőmérséklet október 18-án Budapesten 15°C-tól különböző volt? Teszteljük a fenti adatok segítségével!

$$(u_{0.05} = -1.645, \ \Phi(1.275) = 0.899, \ t_{3:0.05} = -2.353 \ u_{0.975} = 1.96)$$

5.3. Feladat. Az alábbi két minta két különböző gyáregységben tapasztalt selejtarányra vonatkozik (ezrelékben). Állítható-e, hogy az "A" gyáregység jobban dolgozott? (Feltételezhetjük, hogy a minták normális eloszlásúak, függetlenek.)

	11,9									
В	12,1	12,0	12,9	12,2	12,7	12,6	12,6	12,8	12,0	13,1

$$(F_{9,9;0,975}=4,026,\ t_{18;0,05}=-1,734)$$

5.4. Feladat. Két szervert hasonlítottunk össze. Az elsőn 30 futás átlagos ideje 6,7 mp volt, míg ettől függetlenül a másodikon 20 futásé 7,2 mp. Vizsgáljuk meg, hogy van-e szignifikáns különbség a két szerver sebessége közt, ha a futási idők szórása mindkét gépen 0,5 volt?

$$(u_{0,975} = 1,96)$$

5.5. Feladat. Az alábbi két minta 10 forgalmas csomópont levegőjében található szennyezőanyag koncentrációra vonatkozó két adatsort tartalmaz. Az első sorban a november 15-i, a másodikban a november 29-i számok szerepelnek. Szignifikánsan változott-e a légszennyezettség?

november 15.	20,9	17,1	15,8	18,8	20,1	15,6	14,8	24,1	18,9	12,5
november 29.	21,4	16,7	16,4	19,2	19,9	16,6	15,0	24,0	19,2	13,2

$$(t_{9:0.975} = 2,262)$$

6. (11-12 hét) Nemparaméteres próbák, egyszerű lineáris regresszió

Elmélet

Nemparaméteres próbák:

Diszkrét illeszkedésvizsgálat

Legyen X_1, \ldots, X_n egy n elemű minta és tegyük fel, hogy a mintaelemek r különböző x_j $(j=1,\ldots r)$ értéket vehetnek fel. Továbbá jelölje $\nu_j (j=1,\ldots r)$ az egyes értékek megfigyelt gyakoriságát, azaz n független megfigyelést osztályozunk valamilyen szempont szerint, r páronként diszjunkt osztályba. Az egyes osztályok feltételezett valószínűségei rendre $p_1,\ldots p_r$.

Osztályok	1	2	 r	Összesen
Értékek	x_1	x_2	 x_r	
Gyakoriságok	ν_1	ν_2	 ν_r	n
Valószínűségek	p_1	p_2	 p_r	1

Azt vizsgáljuk, hogy a minta eloszlása megegyezik-e a feltételezett eloszlással. Ismert eloszlás esetén tiszta illeszkedésvizsgálatot végzünk. Ha viszont az eloszlás paraméteres és csak az eloszláscsaládot ismerjük, a paraméter(eke)t viszont nem (pl. az a kérdés, hogy származhatnak-e az adatok p paraméterű binomiális eloszlásból), akkor becsléses illeszkedésvizsgálatot végzünk.

Tiszta illeszkedésvizsgálat:

$$H_0: P(X_i = x_j) = p_j \quad j = 1, \dots, r$$

 $H_1: \exists legalább egy j melyre $P(X_i = x_j) \neq p_j$$

$$\textit{Pr\'obastatisztika: } T_n = \sum_{j=1}^r \frac{(\nu_j - np_j)^2}{np_j} \overset{H_0 \, \textit{eset\'en}}{\sim} \chi^2_{r-1} \quad \textit{Kritikus tartom\'any: } \mathcal{X}_k = \{\mathbf{x} : T_n(\mathbf{x}) > \chi^2_{r-1,1-\alpha}\}$$

Becsléses illeszkedésvizsgálat:

Legyen θ egy s dimenziós paramétervektor, valamint legyen $\hat{\theta}$ a θ paramétervektor ML-becslése, és legyen $\hat{p}_j = p_j(\hat{\theta})$.

$$H_0: P(X_i = x_j) = \hat{p}_j \quad j = 1, \dots, r$$

 $H_1: \exists legalább egy j melyre $P(X_i = x_j) \neq \hat{p}_j$$

Próbastatisztika:
$$T_n = \sum_{j=1}^r \frac{(\nu_j - n\hat{p}_j)^2}{n\hat{p}_j} \stackrel{H_0 \text{ eset\'en}}{\sim} \chi^2_{r-s-1}$$
 Kritikus tartomány: $\mathcal{X}_k = \{\mathbf{x} : T_n(\mathbf{x}) > \chi^2_{r-s-1,1-\alpha}\}$

Megjegyzés: Mivel a próba aszimptotikus, vigyáznunk kell arra, hogy a minta elemszáma elég nagy legyen. Konyhaszabályként meg szokás követelni, hogy az ún. elméleti gyakoriság (np_j) legalább 5 legyen. Ha ez nem teljesül, akkor a kis várt gyakoriságokkal rendelkező eseményeket összevonjuk.

Függetlenségvizsgálat

n független megfigyelést két szempont szerint osztályozunk, az 1. szempont szerint r osztály, míg a 2. szempont szerint s osztály van. Annak a valószínűsége, hogy egy megfigyelést az 1. szempont szerint az s-edik, a második szerint pedig a s-edik osztályba sorolunk, s-vel jelöljük. Az osztályozási eljárás eredményét ún. kontingenciatábla formájában szokás megadni:

			2.	szemp	ont		
		1		j		S	Sorösszegek
	1	ν_{11}		ν_{1j}		ν_{1s}	$ u_{1ullet}$
	:	:		÷		÷	:
1. szempont	i	ν_{i1}		$ u_{ij}$		$ u_{is}$	$ u_{iullet}$
	:	:		÷		:	:
	r	ν_{r1}		ν_{rj}		ν_{rs}	$ u_{rullet}$
Oszlopösszeg	gek	$\nu_{\bullet 1}$		$\nu_{ullet j}$		$\nu_{ullet s}$	n
	1.	7 7)	/1 1	

 $\nu_{ij} = megfigyelések$ gyakorisága az (i, j) osztályban

$$\nu_{i\bullet} = \sum_{j=1}^{s} \nu_{ij}$$
 $\nu_{\bullet j} = \sum_{i=1}^{r} \nu_{ij}$

Hasonlóan $p_{i\bullet}$ ill. $p_{\bullet j}$ a marginális eloszlást jelölik, tehát a $[p_{ij}]$ mátrix sor-, illetve oszlopösszegei: $p_{i\bullet} = \sum_{j=1}^{s} p_{ij}$ $p_{\bullet j} = \sum_{i=1}^{r} p_{ij}$

 H_0 : a két szempont független egymástól, azaz $p_{ij} = p_{i \bullet} \cdot p_{\bullet j} \ 1 \le i \le r, \ 1 \le j \le s$

 H_1 : a két szempont nem független, azaz $p_{ij} \neq p_{i\bullet} \cdot p_{\bullet j}$ legalább egy (i,j) párra

Próbastatisztika:
$$T_n = \sum_{i=1}^r \sum_{j=1}^s \frac{\left(\nu_{ij} - \frac{\nu_{i\bullet}\nu_{\bullet j}}{n}\right)^2}{\frac{\nu_{i\bullet}\nu_{\bullet j}}{n}} \stackrel{H_0 \ eset\'en}{\sim} \chi^2_{(r-1)(s-1)}$$
Kritikus tartomány: $\mathcal{X}_k = \{\mathbf{x}: T_n(\mathbf{x}) > \chi^2_{(r-1)(s-1),1-\alpha}\}$

Megjegyzés: Ha r=s=2, akkor a próbastatisztika a következőképpen leegyszerűsödik: $T_n=n\cdot\frac{(\nu_{11}\nu_{22}-\nu_{12}\nu_{21})^2}{\nu_{1\bullet}\nu_{2\bullet}\nu_{\bullet1}\nu_{\bullet2}}\overset{H_0\ esetén}{\sim}\chi_1^2.$

$$T_n = n \cdot \frac{(\nu_{11}\nu_{22} - \nu_{12}\nu_{21})^2}{\nu_{1\bullet}\nu_{2\bullet}\nu_{\bullet1}\nu_{\bullet2}} \stackrel{H_0 \, eset\'{e}n}{\sim} \chi_1^2.$$

Homogenitásvizsgálat

Van két független mintánk (adatsorunk) az egyikben n, a másikban m megfigyeléssel. Valamilyen szempont szerint r, páronként diszjunkt osztályba soroljuk a megfigyeléseket. Az i-edik osztály valószínűsége p_i az 1. minta és q_i a 2. minta esetén (i=1,2,...,r). Legyenek az egyes osztályok gyakoriságai ν_1,\ldots,ν_r az 1. minta és μ_1,\ldots,μ_r a 2. minta esetén.

Osztályok	1	2	 r	Összesen
1. minta				
Gyakoriságok	ν_1	ν_2	 ν_r	n
Valószínűségek	p_1	p_2	 p_r	1
2. minta				
Gyakoriságok	μ_1	μ_2	 μ_r	m
Valószínűségek	$ q_1 $	q_2	 q_r	1

Azt vizsgáljuk, hogy a két minta ugyanolyan eloszlás szerint sorolódik-e be az egyes osztályokba:

 H_0 : a két eloszlás megegyezik, azaz $p_i = q_i \ i = 1, \dots r$

 H_1 : a két eloszlás nem megegyezik meg, azaz \exists legalább egy i, hogy $p_i \neq q_i$

Próbastatisztika:
$$T_{n,m} = nm \sum_{i=1}^r \frac{\left(\frac{\nu_i}{n} - \frac{\mu_i}{m}\right)^2}{\nu_i + \mu_i} \stackrel{H_0 \text{ eset\'en}}{\sim} \chi_{r-1}^2$$
 Kritikus tartomány: $\mathcal{X}_k = \{\mathbf{x} : T_{n,m}(\mathbf{x}) > \chi_{r-1,1-\alpha}^2\}$

Egyszerű lineáris regresszió:

Adott $(x_1, y_1), \ldots, (x_n, y_n)$ számpárokra szeretnénk egyenest illeszteni.

Modell:
$$y_i = ax_i + b + \varepsilon_i$$
, ahol $E\varepsilon_i = 0$ és $D^2\varepsilon_i = \sigma^2 < \infty$ $(i = 1, ..., n)$

Cél: a és b becslése

Módszer: legkisebb négyzetek:
$$\min \sum_{i=1}^{n} (y_i - (ax_i + b))^2$$

Megoldás:
$$\hat{a} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$
, ennek szórásnégyzete: $D^2(\hat{a}) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2}$

$$\hat{b} = \overline{y} - \hat{a}\overline{x}$$
, ennek szórásnégyzete: $D^2(\hat{b}) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum (x_i - \overline{x})^2}\right)$

Reziduálisok:
$$\hat{\varepsilon}_i = y_i - \hat{y_i} = y_i - (\hat{a}x_i + \hat{b}) \quad (i = 1, \dots, n)$$

Reziduális szórásnégyzet becslése:
$$\hat{\sigma}^2 = \frac{\sum (y_i - \hat{y_i})^2}{n-2}$$

Feladatok

6.1. Feladat. Egy gyárban egy termék minőségét 4 elemű mintákat véve ellenőrzik, havonta 300 mintavétellel. Megszámolták, hogy a legutóbbi hónapban hányszor volt selejtes a minta, melynek eredményiet az alábbi táblázat tartalmazza:

Selejtesek száma	0	1	2	3	4
Darabszám	80	113	77	27	3

Modellezhető a mintákban levő selejtesek száma

- a) (4; 0, 25), ill.
- b) (4; p) paraméterű binomiális eloszlással $(\alpha = 0, 05)$? $(\chi^2_{3:0.95} = 7, 81, \chi^2_{2:0.95} = 5, 99)$

6.2. Feladat. Az alábbi kontingencia-táblázat mutatja, hogy egy 100 éves időszakban egy adott napon a csapadék mennyisége és az átlaghőmérséklet hogyan alakult:

Hőmérséklet Csapadék	kevés	átlagos	sok
hűvös	15	10	5
átlagos	10	10	20
meleg	5	20	5

A cellákban az egyes esetek gyakoriságai találhatóak. $\alpha=0,05$ mellett tekinthető-e a csapadékmennyiség és a hőmérséklet függetlennek? $(\chi^2_{4;0,95}=9,49)$

6.3. Feladat. Két dobókockával dobva az alábbi gyakoriságokat figyeltük meg:

Dobások	1	2	3	4	5	6
1. kocka	27	24	26	23	18	32
2. kocka	18	12	15	21	14	20

 $\alpha=0,05$ mellett döntsünk arról, hogy tekinthető-e a két eloszlás azonosnak! $\left(\chi^2_{5;0,95}=11,1\right)$