NAME : Harini sri.S

EMAIL : <u>harinisrisanjeevi@gmail.com</u>

EDUCATION: Integrated MSc AIML (currently 3rd year)

COLLEGE : Coimbatore Institute of Technology

AIM:

To develop a model to classify 9 activities of cow using 9 axis IMU dataset.

- 1. EATING
- 2. DRINKING
- 3. WALKING
- 4. STANDING
- 5. LYING
- 6. RUMINATING STANDING
- 7. RUMINATING LYING
- 8. GROOMING
- 9. IDLE/OTHER

STEP 1:

Importing all the necessary libraries.

IMPORTING THE NECESSARY LIBRARIES

```
[8] import numpy as np
import pandas as pd
import seaborn as sns
import sklearn as sk
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

STEP 2:

Importing the datasets.

IMPORTING THE DATASETS

```
[9] d1 = pd.read_csv('RL7_train.csv')
  d2 = pd.read_csv('D2_train.csv')
  d3 = pd.read_csv('E1_train.csv')
  d4 = pd.read_csv('G8_train.csv')
  d5 = pd.read_csv('I9_train.csv')
  d6 = pd.read_csv('L5_train.csv')
  d7 = pd.read_csv('RS6_train.csv')
  d8 = pd.read_csv('S4_train.csv')
  d9 = pd.read_csv('W3_train.csv')
```

STEP 3:

Merging all the 9 datasets into single dataset.

MERGING ALL 9 DATASETS

```
[10] dataset = pd.concat([d1,d2,d3,d4,d5,d6,d7,d8,d9], axis=0)
```

```
dataset.head()
                                                                  gyr_z mag_x mag_y mag_z label
         time
                  acc_x
                           acc_y
                                     acc_z
                                               gyr_x
                                                         gyr_y
0 1628327640 -0.292480 0.950684 -0.017578 -3.112793 -0.732422 -2.441406 -198.0 1359.0
                                                                                      579.0
                                                                                                7.0
1 1628327640 -0.288086 0.929199 -0.014160 -2.807617 -0.061035 -1.953125 -207.0 1341.0
                                                                                                7.0
2 1628327640 -0.294434 0.923340 -0.006348 -2.197266 1.708984 -0.610352 -211.5 1344.0 571.5
                                                                                                7.0
3 1628327640 -0.306641 0.922852 -0.010742 -0.549316 0.610352 -0.854492 -201.0 1351.5 564.0
                                                                                                7.0
4 1628327640 -0.315918 0.925293 0.003906 1.220703 15.380859 -0.305176 -198.0 1369.5 580.5
                                                                                                7.0
```

STEP 4:

Total number of rows = 5548032

Total number of culumns = 10

SHAPE OF DATSET

[43] dataset.shape (5548032, 10)

STEP 5:

Checking for NULL values in the dataset.

CHECKING FOR NULL VALUES

```
[14] dataset.isnull().sum()

time     0
acc_x     1
acc_y     2
acc_z     3
gyr_x     3
gyr_y     3
gyr_z     4
mag_x     5
mag_y     5
mag_z     6
label     7
dtype: int64
```

STEP 6:

Replacing the Null values and dropping nan values

REPLACING NULL VALUES AND DROPPING NAN VALUES

```
[15] dataset.replace([np.inf, -np.inf], np.nan, inplace=True)
     dataset = dataset.dropna()
     dataset.isnull().sum()
     time
             0
     acc_x
     acc_y
             0
     acc_z
             0
     gyr x
     gyr_y
             0
             0
             0
     mag_z
     dtype: int64
```

BEFORE REMOVING NULL VALUES	AFTER REMOVING NULL VALUES
time 0 acc_x 1 acc_y 2 acc_z 3 gyr_x 3 gyr_y 3 gyr_z 4 mag_x 5 mag_y 5 mag_z 6 label 7 dtype: int64	time 0 acc_x 0 acc_y 0 acc_z 0 gyr_x 0 gyr_y 0 gyr_z 0 mag_x 0 mag_y 0 mag_z 0 label 0 dtype: int64

sns.heatmap(dataset.isnull())

COLUMNS

STEP 7:

Visualizing the count of each values in "label" attribute.

VISUALIZING THE LABEL ATTRIBUTE

CHECKING FOR UNIQUE VALUES IN LABEL COLUMN

```
[20] print('values in Label column:',dataset['label'].nunique())
    print('values:',dataset['label'].unique())

values in Label column: 9
    values: [7. 2. 1. 8. 9. 5. 6. 4. 3.]
```

STEP 8:

Finding out the numerical and categorical data in dataset.

There are no categorical data. So there is no need for encoding.

CHECKING FOR CATEGORICAL COLUMN

```
[19] def value_type(dataset):
    categorical=[]
    numerical=[]
    for i in dataset.columns:
        if dataset[i].dtype == 'object':
            categorical.append(i)
        else:
            numerical.append(i)
        return categorical,numerical

category,numerical=value_type(dataset)
    print('columns with categorical values:',category)
    print('columns with numerical values:',numerical)

columns with categorical values: []
    columns with numerical values: ['time', 'acc_x', 'acc_y', 'acc_z', 'gyr_x', 'gyr_y', 'gyr_z', 'mag_x', 'mag_y', 'mag_z', ']
```

STEP 9:

Splitting the dependant variable and independent variable as X and y

SPLITTING THE DEPENDANT AND INDEPENDANT VARIABLE

```
[21] X = dataset.iloc[:, :-1].values
  y = dataset.iloc[:, -1].values
```

STEP 10:

Splitting the dataset into training set and test set.

30 percent of dataset is used as test set and the remaining 70 percent is used as training set.

SPLITTING THE TRAINING AND TEST DATA

```
[22] from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = 0)
```

STEP 11:

Performing feature scaling to scale the values in particular range.

FEATURE SCALING

```
[23] from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)
```

STEP 12:

Applying Random forest classifier with n_estimaters = 4 and entropy as criterion

APPLYING RANDOM FOREST CLASSIFIER

CONFUSION MATRIX AND ACCURACY SCORE

```
[51] from sklearn.metrics import confusion matrix, accuracy score
    cm = confusion_matrix(y_test, y_pred)
    print(cm)
    accuracy score(y test, y pred)
                   230 4924
                               10 1434
                                           52 4161
    [[283219
             135
                                                       21
                                          9
        415 15092
                   234
                        242
                               15 132
                                               74
                                                       4]
      1186 350 35881 2230
                                         293 1674
                                                      34]
                              312 1782
                                   9702 1404 6121
     [ 12490 233 1645 220630
                              609
                                                     17]
             43 528 1454 269061
                                    274 9687 322
         74
                                                     200]
      3150 175 1581 19706 202 238905
                                         450 4715
                                                      21]
        141
             27
                  372 2029 15095 803 255301 516
                                                     147]
              94 2203 12987 581 12412 842 72265
       9299
                                                      61]
                  143 68 588 108 459 145 120181]]
              4
    0.9075498224596104
```

CLASSIFICATION REPORT

[52] from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
4.0	0.04	0.05	0.04	204467
1.0	0.91	0.96	0.94	294167
2.0	0.93	0.93	0.93	16217
3.0	0.84	0.82	0.83	43742
4.0	0.83	0.87	0.85	252851
5.0	0.94	0.96	0.95	281643
6.0	0.90	0.89	0.89	268905
7.0	0.95	0.93	0.94	274431
8.0	0.80	0.65	0.72	110744
9.0	1.00	0.99	0.99	121710
accuracy			0.91	1664410
macro avg	0.90	0.89	0.89	1664410
weighted avg	0.91	0.91	0.91	1664410

ACTUAL VS PREDICTED

	Actual	Predicted
0	6.0	6.0
1	7.0	7.0
2	3.0	3.0
3	7.0	7.0
4	1.0	1.0

The training score and test score lies in same range.

Hence the model is not overfitted.

TRAINING SCORE AND TEST SCORE

```
[62] print(classifier.score(X_train,y_train))
print(classifier.score(X_test,y_test))
```

0.9836508290456693

0.9075498224596104