```
from sklearn.cluster import KMeans
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
#importing the required libraries for K-means and EDA
```

```
data = pd.read_csv('iris.csv')
#reading the dataset using pandas
```

print(data)

		sepal_length	sepal_width	petal_length	petal_width	species	
_	0	5.1	3.5	1.4	0.2	setosa	
	1	4.9	3.0	1.4	0.2	setosa	
	2	4.7	3.2	1.3	0.2	setosa	
	3	4.6	3.1	1.5	0.2	setosa	
	4	5.0	3.6	1.4	0.2	setosa	
	145	6.7	3.0	5.2	2.3	virginica	
	146	6.3	2.5	5.0	1.9	virginica	
	147	6.5	3.0	5.2	2.0	virginica	
	148	6.2	3.4	5.4	2.3	virginica	
	149	5.9	3.0	5.1	1.8	virginica	
	[150	rows x 5 colu	mns]				

```
data.drop('species', inplace=True, axis=1)
#removing the species column to have only numerical data
```

```
corr_matrix = data.corr()
print(corr_matrix)

sepal_length sepal_width petal_length petal_width
sepal_length 1.000000 -0.109369 0.871754 0.817954
sepal_width -0.109369 1.000000 -0.420516 -0.356544
petal_length 0.871754 -0.420516 1.000000 0.962757
petal_width 0.817954 -0.356544 0.962757 1.0000000
```

```
data = pd.read_csv('iris.csv')
#reading the dataset using pandas
```

```
# creating a pair plot
sns.pairplot(data, hue='species', palette='colorblind', markers=["o", "s",
"D"])
plt.suptitle('Pair Plot of the Iris Dataset', verticalalignment='top') #
Adds a title above all subplots

# Display the plot
plt.show()
```



```
# Selecting two dimensions just for visualization purposes
X = data[['sepal_width', 'petal_width']]

# Applying K-means clustering
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
labels = kmeans.labels_

# Adding cluster labels to the dataset for visualization
data['Cluster'] = labels

# Create a scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sepal_width', y='petal_width', hue='Cluster',
data=data, palette='viridis', style=data['species'])
plt.title('K-Means Clustering of the Iris Dataset (2D view)')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
s=300, c='red', label='Centroids', marker='X')
plt.legend()
plt.show()
```



```
# Selecting two dimensions just for visualization purposes
X = data[['sepal_width', 'petal_width']]

# Applying K-means clustering, 3 clusters
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
labels = kmeans.labels_

# Adding cluster labels to the dataset for visualization
data['Cluster'] = labels

# Create a scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sepal_width', y='petal_width', hue='Cluster',
data=data, palette='viridis', style=data['species'])
plt.title('K-Means Clustering of the Iris Dataset (2D view)')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
s=300, c='red', label='Centroids', marker='X')
plt.legend()
plt.show()
```



```
# Selecting two dimensions just for visualization purposes
X = data[['sepal_width', 'petal_width']]

# Applying K-means clustering, with 4 clusters
kmeans = KMeans(n_clusters=4, random_state=0).fit(X)
labels = kmeans.labels_

# Adding cluster labels to the dataset for visualization
data['Cluster'] = labels

# Create a scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sepal_width', y='petal_width', hue='Cluster',
data=data, palette='viridis', style=data['species'])
plt.title('K-Means Clustering of the Iris Dataset (2D view)')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
s=300, c='red', label='Centroids', marker='X')
plt.legend()
plt.show()
```



```
# Selecting two dimensions just for visualization purposes
X = data[['sepal_width', 'petal_width']]

# Applying K-means clustering
kmeans = KMeans(n_clusters=8, random_state=0).fit(X)
labels = kmeans.labels_

# Adding cluster labels to the dataset for visualization
data['Cluster'] = labels

# Create a scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sepal_width', y='petal_width', hue='Cluster',
data=data, palette='viridis', style=data['species'])
plt.title('K-Means Clustering of the Iris Dataset (2D view)')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
s=300, c='red', label='Centroids', marker='X')
plt.legend()
plt.show()
```



```
# Selecting two dimensions just for visualization purposes
X = data[['sepal_width', 'petal_width']]

# Applying K-means clustering
kmeans = KMeans(n_clusters=15, random_state=0).fit(X)
labels = kmeans.labels_

# Adding cluster labels to the dataset for visualization
data['Cluster'] = labels

# Create a scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(x='sepal_width', y='petal_width', hue='Cluster',
data=data, palette='viridis', style=data['species'])
plt.title('K-Means Clustering of the Iris Dataset (2D view)')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
s=300, c='red', label='Centroids', marker='X')
plt.legend()
plt.show()
```


4 clusters appear to be the ideal number of clusters to interpret the data set and group it to compare the species listed.