# Labo Signaalverwerking

Dries Kennes (R0486630)

 $May\ 9,\ 2018$ 

# Opdracht 2A: Analyse v.e. actieve filtertrap

# Specificatie



Figure 1: Het schema.

- Low Pass KHN Non Inverting (schema nr 5)
- Filter is een LDL
  - |H(0)| = 6dB- |H(10kHz)| = -34dB
  - $-Q_p=4$

# Analyse

# 1. Bepaal de DC- en HF-weergave

#### DC

Bij DC zijn condensatoren open kring, dus wordt de versterking bepaald door de feedback weerstanden  $R_4$ ,  $R_5$ , en  $R_6$ . Dit is dus een vaste versterking. |H(DC)| = A.



Figure 2: Schema met alle condensatoren open kring.

#### $\mathbf{HF}$

Bij HF  $(f = \infty)$  zijn de condensatoren kortsluitingen, dus wordt het signaal volledig onderdrukt door de feedback lussen  $C_1$  en  $C_2$ .  $|H(HF)| = -\infty dB$ 



Figure 3: Schema met alle condensatoren kortgesloten.

## 2. Bepaal de transferfunctie

Ik heb de transfer functie uitgerekend door het schema op te splitsen in twee integrators en de eerste opamp.

#### De integrators



Figure 4: Deel van het schema met de integrators.

De algemene formule voor een integrator is  $v_o=\frac{-v_1}{sRC}$ . Voor deze twee specifieke gevallen:  $v_5=\frac{-v_4}{sR_1C_1}$  en  $v_{out}=\frac{-v_5}{sR_2C_2}$ . Gecombineerd:  $v_{out}=\frac{v_4}{s^2R_1C_1R_2C_2}$  of  $v_4=s^2R_1R_2C_1C_2v_{out}$ 

#### Superpositie

#### **Geval 1:** $v_{in}$ , $v_{out} = v_5 = 0$



Figure 5: Superpositie schema geval 1

De opamp is nu een niet inverterende versterker.  $v_4 = v_1 \cdot \left(1 + \frac{R_6}{R_5}\right) v_1 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \Rightarrow v_4 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \left(1 + \frac{R_6}{R_5}\right) = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5}$ 

## **Geval 2:** $v_5$ , $v_{out} = v_{in} = 0$



Figure 6: Superpositie schema geval 2

De opamp is nu een niet inverterende versterker.

$$v_4 = v_1 \cdot (1 + \frac{R_6}{R_5}) \ v_1 = v_5 \cdot \frac{R_3}{R_3 + R_4} \Rightarrow v_4 = v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot (1 + \frac{R_6}{R_5}) = v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5}$$

# **Geval 3:** $v_{out}$ , $v_5 = v_{in} = 0$



Figure 7: Superpositie schema geval 3

De opamp is nu een inverterende versterker.

$$v_4 = \frac{-R_6}{R_5} \cdot v_{out}$$

## Totaal

$$\begin{split} v_4 &= \sum v_4 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{-R_6}{R_5} \cdot v_{out} \\ v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} &= -v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5} \cdot v_{out} + v_4 \end{split}$$

Vervang in deze formule  $v_5$  en  $v_4$  door de formules van de twee integrators:

$$\begin{split} v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} &= v_{out} \cdot \left( sR_2C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5} + s^2R_1R_2C_1C_2v \right) \\ \frac{v_{in}}{v_{out}} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} &= s^2R_1R_2C_1C_2 + sR_2C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5} \\ \frac{v_{out}}{v_{in}} &= \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \cdot \frac{1}{s^2R_1R_2C_1C_2 + sR_2C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5}} \\ \frac{v_{out}}{v_{in}} &= \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \cdot \frac{1}{R_6} \cdot \left( s^2 \cdot \frac{R_1R_2C_1C_2R_5}{R_6} + sR_2C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1 \right) \end{split}$$

Het resultaat: 
$$H(s) = \frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} \cdot \frac{1}{s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1}{s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1}$$

## 3. Vergelijk transfer functie met de algemene

Algemene vorm LDL filter:  $H(s) = K \frac{1}{(\frac{s}{a_{l+1}})^2 + \frac{1}{0} \cdot (\frac{s}{a_{l+1}}) + 1}$ 

$$K = \frac{R_4}{R_3 + R_4} \cdot \frac{R_5 + R_6}{R_6}$$

$$\cdot \frac{1}{\omega_n^2} = \frac{C_1 C_2 R_1 R_2 R_5}{R_6}$$

$$\cdot \frac{1}{Q\omega_n} = C_2 R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6}$$

• 
$$\frac{1}{Q\omega_n} = C_2 R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6}$$

## 4. Pole-zero plot

- Geen zeros
- Wel polen, namelijk:

$$\frac{s^2}{\omega_n^2} + \frac{s}{Q\omega_n} + 1 = 0$$

$$\frac{s^2}{(2000\pi)^2} + \frac{s}{4 \cdot 2000\pi} + 1 = 0$$

$$\frac{s^2}{(2000\pi)^2} + \frac{s}{8000\pi} + 1 = 0$$

2 complexe polen:

$$250\pi(-1+3\sqrt{7}i)$$
 en  $250\pi(-1-3\sqrt{7}i)$ 

of ongeveer

$$-785 + 6234i = 6283 \angle 97^{\circ} \text{ en } -785 - 6234i = 6283 \angle -97^{\circ}$$



#### 5. Frequentiegedrag

## Asymptotisch Bodediagram



De lijn van -40dB/dec, het beginpunt bij 10kHz, -34dB, en het filtertype (LDF) laat toe  $f_n$  te berekenen. We moeten 40dB zakken van 6dB to -34dB, dit is dus 1 decade, ofwel  $f_n = 1kHz$ .

ToDo: Bespreek ligging polen

### 5. Tijdsgedrag

ToDo: Dit heel deel

ToDo: Grafiek

ToDo: Bespreek ligging polen

# Synthese

### Ontwerpvergelijkingen

Kies:  $+ C_2 = c^{te} = 1$  Kies  $C_2$  omdat van  $C_1$  makkelijker een ontwerpvergelijking te vinden is.  $+ R = R_1 = 1$  $R_2 = R_3 = R_4 = R_6 R_5$  variabel omdat die enkel in tellers zit. Dit maakt ontwerpvergelijkingen makkelijker.

De transfer functie wordt dan:

$$H(s) = \frac{R+R_5}{2R} \cdot \frac{1}{s^2 R C_1 C_2 R_5 + s \cdot (R+R_5) \cdot \frac{C_2}{2} + 1}$$

Met de vergelijkingen van uit de transfer functie: +  $K=\frac{R_4}{R_3+R_4}\cdot\frac{R_5+R_6}{R_6}+\frac{1}{\omega_n^2}=\frac{C_1C_2R_1R_2R_5}{R_6}+\frac{1}{Q\omega_n}=\frac{C_1C_2R_1R_2R_5}{R_6}$  $C_2R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6}$ 

Geeft:

- $\begin{array}{l} \bullet \quad K = \frac{R}{2R} \cdot \frac{R_5 + R}{R} = \frac{R_5 + R}{2R} \Rightarrow R_5 + R = 2KR \Rightarrow R_5 = R(2K-1) \\ \bullet \quad \frac{1}{\omega_n^2} = \frac{C_1 C_2 R^2 R_5}{R} = C_1 C_2 R R_5 \Rightarrow C_1 = \frac{1}{\omega_n^2 C_2 R_5 R} \\ \bullet \quad \frac{1}{Q\omega_n} = C_2 R_2 \cdot \frac{R_3}{R_4 + R_3} \cdot \frac{R_5 + R_6}{R_6} = C_2 R \cdot \frac{R}{2R} \cdot \frac{R_5 + R}{R} = \frac{C_2(R_5 + R)}{2} \Rightarrow Q = \frac{2}{\omega_n C_2 2KR} \Rightarrow R = \frac{1}{Q\omega_n C_2 K} \\ \end{array}$

De ontwerpvergelijkingen:

- $R = \frac{1}{Q\omega_n C_2 K}$   $R_5 = R(2K 1)$   $C_1 = \frac{1}{\omega_n^2 C_2 R_5 R}$

#### Impedantieschaling

Waarden zonder impedantieschaling:

- $R = 0.0000198943...\Omega$
- $R_5 = 0.0000596831...\Omega$
- $C_1 = 21.33...F$
- $C_2 = 1F$

Met schalingsfactor 10<sup>9</sup>:

- $R = R * ISF = 19894.36... = 19.89k\Omega$
- $R_5 = R_5 * ISF = 59683.10... = 59.68k\Omega$   $C_1 = \frac{C_1}{ISF} = 0.000000021333... = 21.33nF$   $C_2 = \frac{C_2}{ISF} = 0.000000001 = 1nF$

# Simulatie op basis van de transferfunctie

### Mathlab code

% Zonder tekenen van figuren

$$fn = 1000 \% 1kHz$$

$$K = 2 % 6dB$$

$$n = 4$$

$$wn = 2*pi*fn$$

$$H N = K * [0 0 1]$$

```
H_D = [1/wn^2 1/(Q*wn) 1]
H = tf(H_N, H_D) \% H_N / H_D
C2 = 1
R=1/(C2*K*Q*wn)
R5=R*(2*K-1)
C1=1/(wn^2*C2*R5*R)
ISF= 10<sup>9</sup>
C1 = C1/ISF
C2 = C2/ISF
R = R*ISF
R5 = R5*ISF
% CHECK 1: fn and Qz (specification vs components)
Kc = (R+R5)/(2*R)
wnc = 1/sqrt(C1*C2*R*R5)
fnc = wnc/(2*pi)
Qc = 2/(C2*wn*(R5+R))
% CHECK 2: transfer function (specification vs components)
% s^2 s^1 s^0
H_Nc = ((R5+R)/(2*R)) * [0]
                     [C1*C2*R*R5 C2*(R5+R)/2 1]
H_Dc =
Hc = tf(H_Nc, H_Dc)
Output:
fn = 1000
K = 2
Q = 4
wn = 6.2832e + 03
H_N = 0
             0
H_D = 0.0000 0.0000
                       1.0000
H =
               2
 -----
 2.533e-08 s^2 + 3.979e-05 s + 1
Continuous-time transfer function.
C2 = 1
R = 1.9894e-05
R5 = 5.9683e-05
C1 = 21.3333
ISF = 1.0000e + 09
C1 = 2.1333e-08
C2 = 1.0000e-09
R = 1.9894e+04
R5 = 5.9683e + 04
Kc = 2
wnc = 6.2832e+03
fnc = 1.0000e+03
Qc = 4
H_Nc = 0
                0
H_Dc = 0.0000 0.0000
                          1.0000
```

Continuous-time transfer function.

## Pole Zero plot



Figure 8: Pole zero plot

# Bode plot



Figure 9: Bode Plot

Door de dubbele pool is er maar 1 knik in de (anymptotosche) grafiek, daar gaat de helling van 0 naar -40dB/dec.

# Stapresponsie



Figure 10: Stapresponsie