Tallinn University of Technology School of Information Technologies Department of Computer Systems

IAF0320 Computer Systems Engineering

# **Course Project Report**

for a system entitled:

# **AUTONOMOUS UNMANNED GROUND VEHICLE**

| _                  |        | Date started: | Date ended:   |
|--------------------|--------|---------------|---------------|
| Team number:       | 1      | 19.09.2017    | 27.11.2017    |
| Team members:      |        |               |               |
| Given name and SUF | NAME:  |               | Student code: |
| 1.Tarmo Prillop    | 178206 |               |               |
| 2.Victor Deidon    | 177818 |               |               |
| 3.Ameer Shalabi    | 177359 |               |               |
| 4.Stephanie Marth  |        | 177353        |               |
| 5.Martin Lahtein   |        | 178224        |               |

| DO NOT FILL IN ANYTHING IN THIS TABLE! |            |        |  |  |
|----------------------------------------|------------|--------|--|--|
| EVALUATION                             | Max points | Points |  |  |
| Project implementation and report      | 25         |        |  |  |
| Presentation                           | 10         |        |  |  |
| Prototype                              | 5          |        |  |  |

# 1 Purpose of the document

The purpose of this document is to provide an overview of the concept development stage of an **Autonomous Unmanned Ground Vehicle System (AUGV)**. This AUGV system is primarily designed for military use. However, it can also be appropriated for domestic law enforcement use as well. Topics covered include: stakeholder, needs and requirements analysis, context exploration, suggested design aspects, development, testing, maintenance descriptions and costs and also risk assessment.

# 2 General project description

Autonomous Unmanned Ground Vehicle (AUGV) for military applications – small, ½ or ¾ of an ordinary car sized tracked or wheeled electric vehicle able to navigate autonomously in combat situations during which it able to provide fire support using RWS (remote weapon system) and/or carrying equipment and ammunition for the troops.

Similar systems already exist today but they have limitations in operation. For example, nearly all the UGVs used today are manually controlled, are not self-aware of the combat situation and mostly they use internal combustion engines which are problematic in extreme temperature situations.

This project aims to address all the aforementioned issues to provide more cost-effective and functionally superior system compared to existing ones. A rendering of the proposed system prototype is depicted on the following figure.



Figure 1. Rendering of the prototype

# 3 System stakeholders and motivation for the system

The following section lists all the identified stakeholders who can be affected by the decisions made during the course of the project. An ordered list (by priority) is provided in the tables below.

| Stakeholder                       | Describe<br>involvement                                                    | Describe influence                                                                                                                                                                 | Describe contributions                                                                                                                               | Internal or<br>external<br>(I or E) |
|-----------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Military ground command           | Also users of the system.                                                  | Great influence, if the system does not meet the requirements, it will not be used.                                                                                                | Define machine specifications (Parameters, requirements, operation principles).                                                                      | Е                                   |
| Project team                      | Organization and maintenance of the project flow.                          | Great influence, project team's decisions eventually lead to the failure or success of system.                                                                                     | Make decisions regarding the system development.                                                                                                     | I                                   |
| Media Outlets                     | Influencing the public opinion.                                            | Medium influence, can slow the project, unlikely to have it shut down.                                                                                                             | Can influence public opinion, which can itself affect the project.                                                                                   | E                                   |
| Military<br>communication<br>unit | Influence<br>development of<br>communications<br>and navigation<br>system. | Medium influence. They are responsible of providing the communications and navigation system with the specifications needed to connect the project to their communication network. | Provide the specifications needed for the project to integrate in their communication networks. May also provide design of the communication system. | E                                   |

| Company board of directors | Take important decisions regarding the system so that company would benefit as much from the project as possible. | Great influence as they will make high level decisions on project direction.                                                                     | High level decisions on project flow. Can shut the project down.                                                      | I |
|----------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---|
| Investors                  | Provide funding.                                                                                                  | Major influence as they provide the means to put the project on tracks.                                                                          | Have power to shut down the entire project.                                                                           | E |
| Government                 | Indirect users of the system. Takes the heat if the system should find any opposition nationwide.                 | Great influence, provide regulations regarding arms production and trade within the country. Also is the main source of income for the military. | Regulations, laws and constitution provide the limits to arms production, trade and use. Provide funding to military. | E |
| Competitors<br>(Milrem)    | They want to complete a better product faster than us and get most of the market share.                           | Great influence: Limited market share and our product should be improved in areas our competitors are lacking.                                   | Might undermine our system development. Increase our quality requirements and time constraints.                       | E |
| Suppliers                  | Provide components, parts, etc.                                                                                   | High influence, as it is difficult find suitable ones (can comply with higher military standards).                                               | Can slow the project down by forcing us to find new suppliers.                                                        | E |
| Engineering<br>Department  | Provide<br>technical/organi<br>zational<br>support.                                                               | Limited influence as uncooperative employees can be replaced in this field.                                                                      | Can slow down the project by forcing us to find a new team.                                                           | I |

| Manufacturers of<br>the system and<br>compatible<br>systems | Produce different parts and the final product and influence system design. | Limited influence, as contracts with different manufacturers could be signed. Their design decisions will have small influence on the system.                       | Produce parts according to the required specifications.                                                                                                                                                                                 | E |
|-------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| System Engineers                                            | Design and oversee the system development.                                 | Very high influence. Responsible to oversee the development of the project as a whole and coordinate between the different engineers and management of the project. | Make important decisions regarding the system as a whole. They are also responsible of integrating the different systems together as well as oversee the progress of the different systems and make sure they work together flawlessly. |   |
| Military support units                                      | They are going to be the users of the system.                              | Medium, the system has to meet their requirements.                                                                                                                  | Provide requirements regarding operation, maintenance and logistics.                                                                                                                                                                    | E |
| Mechanical<br>Engineers                                     | Design structure and mobility systems.                                     | Limited influence, as ineffective employees can be replaced.                                                                                                        | Provide mechanical specifications for a balanced performance.                                                                                                                                                                           | I |
| Electrical<br>Engineers                                     | Design the electrical system.                                              | High influence. They are responsible for designing the whole electrical system which has a significant impact on the overall efficiency of the project.             | Make important decisions regarding the electrical system in the project. Help impact other systems within the project scope.                                                                                                            | I |
| Materials<br>engineers                                      | Choosing the best materials.                                               | Without proper<br>materials the AUGV<br>wouldn't meet system<br>requirements.                                                                                       | Their output to the project would be proper material selection for the AUGV.                                                                                                                                                            | I |

| Programmers                                           | Software development.                                                                                                                                                     | Great influence as this team is the only one capable of producing the AI we're looking for.                | Can shut down the project, or dramatically slow it down as finding a replacing team seems hard.                                                       | I |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Military Ground Personnel (Soldiers, medics, drivers) | Direct users of the system.                                                                                                                                               | Limited influence, as most of them will not interact directly with the vehicle.                            | Cooperate with the machine to get the best results.                                                                                                   | E |
| Softbank(Tech<br>development<br>company)              | Company's recent history shows interest in military markets (bought Boston Dynamics). Most likely would be interested in buying the company if development shows success. | Limited influence, currently no signs of developing a competing product.                                   | Might undermine our system. Potentially would alter project requirements and influence time constraints if they'd be developing a competing solution. | E |
| Electric network operators                            | They would like<br>to get profit<br>from developing<br>necessary grid<br>access to charge<br>the AUGVs.                                                                   | Medium influence. Without their cooperation they would hinder our ability to deploy the system.            | They would provide necessary grid capability to strategic locations (test fields, military bases).                                                    | E |
| Environmentalist organizations                        | Influence public opinion.                                                                                                                                                 | Their influence on public opinion affects how willingly government would support developing such a system. | The most they can do is influence some of the product requirements. Or affect where production could be set up.                                       | E |

| Stakeholder                       | Interests                                                                                         | Estimated influence | Estimated importance | Priority | Assumptions and Risks                                                                                                                                                                                       |
|-----------------------------------|---------------------------------------------------------------------------------------------------|---------------------|----------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Military ground command           | Reduce the number of combat casualties.                                                           | High                | High                 | 1        | Supportive, gives them advantage over opposing army. Reduces combat casualties.                                                                                                                             |
| Project team                      | Succeed with the project and be rewarded accordingly.                                             | High                | High                 | 1        | Supportive, want to make the project a success.                                                                                                                                                             |
| Media Outlets                     | Mostly moral interest, gain recognition.                                                          | Medium              | Low                  | 1        | Opposing, as they might turn public opinion against the project.                                                                                                                                            |
| Military<br>communication<br>unit | Establish a standardized network of communication for military use only network of communication. | Medium              | High                 | 1        | The assumption is that they will provide the necessary requirements for integrating the system in their communication network. Risk is inability to provide adequate information and high level of secrecy. |
| Company board of directors        | Succeed with the project and be rewarded accordingly.                                             | High                | High                 | 1        | Most definitely supportive, would like to see the project succeed. Risk would be that they'd shut down the project when major difficulties arise.                                                           |
| Investors                         | Financial interest, get a return on their investments.                                            | High                | High                 | 1        | Supportive, they need the project to be successful in order to get interests.                                                                                                                               |

| Government                                                  | Obtain advanced technologies for its army.                                                                                                        | High   | Medium | 2 | Supportive, wants to get advantage over other armies. May be influenced by public opinion and therefore cancel/oppose the project.                                                              |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Competitors(Mi<br>Irem)                                     | Better and faster<br>development of<br>their system.<br>Sale contracts.                                                                           | High   | High   | 2 | Opposing, as they want to get the contracts and market to themselves.                                                                                                                           |
| Suppliers                                                   | Financial<br>interest, sell as<br>much parts as<br>possible.                                                                                      | Medium | Medium | 2 | Supportive as the more we sell the more they are paid.                                                                                                                                          |
| Engineering<br>Department                                   | Find the right mechanical parts.                                                                                                                  | Low    | Low    | 2 | Supportive, it is their job to make the project succeed.                                                                                                                                        |
| Manufacturers<br>of the system<br>and compatible<br>systems | Sign contracts to profit from manufacturing products. Work closely with other engineers to ensure all parts and system are integrated as planned. | Low    | Medium | 2 | Assumption is that the parts will be manufactured according to the specifications. Risk is that they will fail to deliver the desired product.                                                  |
| System<br>Engineers                                         | Design and oversee the development of the system as a whole.                                                                                      | High   | High   | 2 | The assumption is that systems engineers are competent to carry out the design and implementation of the system. Risk is failure to meet deadlines and inability to design a successful system. |

| Military support units                                         | Safer gear<br>transportation.<br>Reduced number<br>of casualties.             | Low    | High   | 3 | Supportive, as the product would make their work safer and easier.                                                                                                      |
|----------------------------------------------------------------|-------------------------------------------------------------------------------|--------|--------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanical<br>Engineers                                        | Meet the mechanical part of the system requirements.                          | Low    | Medium | 3 | Assumption is that they will design the best possible mechanical parts with the available resources. Risk is that they will not meet system requirements and deadlines. |
| Electrical<br>Engineers                                        | Design electric<br>networks and<br>systems and<br>develop current<br>systems. | Medium | Medium | 3 | The assumption is that electronic engineers will be able to successfully design the electric system. Risk is failure to meet the requirements and lack of motivation.   |
| Materials<br>engineers                                         | Select the best materials available for given budget and constraints.         | Medium | High   | 3 | Assumption is that they'd be motivated to select the best materials available.                                                                                          |
| Programmers                                                    | Develop an appropriate AI.                                                    | High   | High   | 4 | Supportive, they can gain recognition from their work[2] [SMPC3]. Risk is lack of motivation and lack of skills needed to finish the AI.                                |
| Military Ground<br>Personnel<br>(Soldiers,<br>medics, drivers) | Support the current military operation.                                       | Low    | Low    | 4 | Assumption is that they will cooperate and accept the role of the vehicle. Risk is that some people might be against working with advanced technology side by side.     |

| Softbank(Tech development company) | Buying the company when solution is shown to be promising. | Low    | Medium | 4 | Current assumption is that<br>they are not developing a<br>competing system, risk as<br>we do not know for sure.                                                                          |
|------------------------------------|------------------------------------------------------------|--------|--------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electric<br>network<br>operators   | Develop electric<br>grid and earn<br>profit.               | Medium | Medium | 4 | They'd most probably co-<br>operate. Risk that they<br>might want to charge<br>premium as this work<br>would be for military.                                                             |
| Environmentalis<br>t organizations | Make sure that environmental impact of the project is low. | Low    | Low    | 5 | Assumption is that they wouldn't hinder the project. Might become risk when problematic or dangerous materials are used or when chosen production locations would affect the environment. |

# 4 System concept introduction

The concept of the project is an Autonomous unmanned ground vehicle (AUGV). Its main purpose is to follow and/or support troops both in firepower and/or logistics. To do so it must be equipped with weapons and be able to carry supplies. It must be able to behave on its own in a certain number of predefined use-cases. It also needs to allow an operator to take over and pilot it.

To do so, the AI must be elaborate enough to resolve common issues on its own and to identify whether it's appropriate to request a command handover to an operator. It must be all-terrain, able to emulate human speed and its batteries have to last enough time to allow it to work during a whole operation. It must have an armour adequate to the kind of missions it's going to be used in. Finally, maintenance time and frequency have to fit in the military vehicle average, and use as much standard parts as possible.

There are no comparable system currently on the market, the AUGV we are designing is candidate in a race to achieve an A.I. guided machine. Getting approved first by the NATO or another powerful organization would allow it to become the gold standard and become adopted by a lot of forces. If it succeed to do so, the next logical step is to adapt it to serve in other cases, e.g.: domestic law enforcement.

# 5 System context

The following figure illustrates the context diagram for the proposed autonomous unmanned ground vehicle. It describes how the external entities will interact with the system. In addition, a description of the external entities is provided in the table following the figure.



Figure 2. System context diagram

| External entity            | Description                                                                                            |
|----------------------------|--------------------------------------------------------------------------------------------------------|
| Operator                   | Operator who is responsible for giving tasks to the UGV and helping it to solve complicated situations |
| Imaging satellites         | Provides up to date, high resolution satellite images to aid the UGV onboard navigation system         |
| Hostile military personnel |                                                                                                        |
| Energy source              | Batteries that provide all the necessary energy for the UGV                                            |
| Navigational aids          | Aids such as GPS satellites, GPS base stations etc. that help the system to navigate more accurately   |
| Environment                |                                                                                                        |
| Allied military personnel  | Users and maintainers of the system (troops on the field, logistics personnel, mechanics, etc.)        |

# 6 Needs analysis

The mission of the developed system is to provide fire and logistics support for the military. The mission can be decomposed into sub-missions as follows:

- Firstly, it must provide fire support for the troops as one of today's deficiencies in combat is still the
  need for manned machineguns. Gunner and the assistant are vulnerable as they need to be in one
  place for prolonged periods of time, or when in movement they are slow and easy targets for the
  enemy.
- Secondly the system must carry equipment for the troops. The purpose of it, is to reduce the amount
  of equipment needed to carry by soldiers in order to improve their mobility and it would help them
  to direct their energy towards accomplishing the tasks at hand instead of carrying heavy bags.

Those missions serve the main purpose of the system: reduction of human casualties and making the troops work more effective by reducing the amount of equipment needed to carry.



# 7 Requirements analysis

The main functional requirements for the proposed autonomous AUGV system are the following:

- 1. The AUGV must be able to navigate autonomously in unfamiliar territory with the aid of onboard sensors.
- 2. The AUGV shall be equipped with a manual system abort that stops all programmed operations.
- 3. The AUGV shall use electric motors and batteries for mobility.
- 4. The AUGV shall be capable of conducting operations by either autonomously or with remote control using line-of-sight (LOS) or non-LOS (NLOS) communications.
- 5. The AUGV shall communicate with its Respective Ground Stations (GCS).
- 6. The AUGV shall have appropriate interfaces to interact with attached Remote Weapon Station (**RWS**).
- 7. The AUGV shall be capable of neutralizing enemy targets both autonomously and remotely.
- 8. The AUGV shall be designed to be easily transported and deployed.
- 9. Must support the following missions: intelligence, direct and indirect fire support, attack of moving targets.
- 10. AUGV must be capable of operating in Biological/Chemical (BC) contaminated environments.
- 11. The AUGV should be able to carry sufficient cargo for 8 soldiers.

The use cases with descriptions are the following:

| Use case                         | Description                                                                                                                                                                                                                              |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mission/task                     | This use case deals with the main mission/task the AUGV is supposed to accomplish.                                                                                                                                                       |
| Navigation                       | This use case deals with the navigation of the AUGV (both local and global navigation).                                                                                                                                                  |
| Transportation                   | This use case deals with the transportation of equipment and ammunition for the troops.                                                                                                                                                  |
| Sense the environment            | This use case deals with the sensing of the environment around the vehicle.                                                                                                                                                              |
| Point weapon at target           | This use case deals with the target identification and remote weapon system control.                                                                                                                                                     |
| Fallback to manual control       | This use case deals with the situation when the AUGV is unable to determine what it should to and the decision making is handed over to human operator.                                                                                  |
| AUGV manual control & monitoring | This use case deals with the manual control by the remote operator and vehicle status monitoring and transmitting to the remote operator.                                                                                                |
| Energy monitoring                | This use case deals with the power consumption optimization /monitoring for the AUGV (optimizing travel path to minimize energy consumption, mission abortion in case of stored energy becomes too low in order to travel back to base). |
| Confirm target                   | This use case deals with the situation when the AUGV asks for confirmation of the target (i.e the AUGV is unable to determine whether the target is valid or not).                                                                       |

Functional safety

This use case deals with the functional safety of the AUGV: action in case of the, physical emergency button / remote kill switch, activation.

The use cases are depicted in the following diagram:



In the following tables more detailed specifications for each use case is provided.

| Use case          | Mission/task                                                                      |
|-------------------|-----------------------------------------------------------------------------------|
| Description       | This use case deals with the main mission/task the AUGV is supposed to accomplish |
| Primary actor     | Operator                                                                          |
| Supporting actors | Equipment and ammunition                                                          |
|                   | Environment                                                                       |
|                   | Target                                                                            |
| Preconditions     | UGV is in operational condition                                                   |
| Guarantees        | Required mission/task defined by operator is executed successfully                |
| Trigger           | Operator command                                                                  |
| Main success      | UGV navigates to the specified location (commanded by remote operator) while      |
| scenario          | avoiding obstacles                                                                |
| Extensions        | Fall-back to manual control                                                       |
|                   | Sense the environment                                                             |

| Use case          | Navigation                                                                   |
|-------------------|------------------------------------------------------------------------------|
| Description       | This use case deals with the sensing of the environment around the vehicle   |
| Primary actor     | -                                                                            |
| Supporting actors | Environment                                                                  |
| Preconditions     | -                                                                            |
| Guarantees        | UGV at required location                                                     |
| Trigger           | UGV not at required location                                                 |
| Main success      | UGV navigates to the specified location (commanded by remote operator) while |
| scenario          | avoiding obstacles                                                           |
| Extensions        | -                                                                            |

| Use case          | Transportation                                                                  |
|-------------------|---------------------------------------------------------------------------------|
| Description       | This use case deals with the transportation of equipment and ammunition for the |
|                   | troops                                                                          |
| Primary actor     |                                                                                 |
| Supporting actors | Equipment and ammunition                                                        |
| Preconditions     | -                                                                               |
| Guarantees        | Required equipment and ammo transported to the troops at specified location     |
| Trigger           |                                                                                 |
| Main success      | UGV navigates to the specified location (commanded by remote operator) while    |
| scenario          | avoiding obstacles                                                              |
| Extensions        |                                                                                 |

| Use case          | Sense the environment                                                      |
|-------------------|----------------------------------------------------------------------------|
| Description       | This use case deals with the sensing of the environment around the vehicle |
| Primary actor     | -                                                                          |
| Supporting actors | Environment                                                                |
| Preconditions     | Most of the sensors are working                                            |
| Guarantees        | Data about the environment                                                 |
| Trigger           | -                                                                          |
| Main success      | UGV has sufficient information to traverse the terrain safely              |
| scenario          |                                                                            |
| Extensions        | -                                                                          |

| Use case          | Point weapon at target                                                                |
|-------------------|---------------------------------------------------------------------------------------|
| Description       | This use case deals with the target identification and remote weapon system control.  |
| Primary actor     | -                                                                                     |
| Supporting actors | Target                                                                                |
| Preconditions     | -                                                                                     |
| Guarantees        | UGV has commanded the gun turret to move to correct position                          |
| Trigger           | Possible list of targets identified                                                   |
| Main success      | When the UGV has identified a list of potential targets, it notifies the operator who |
| scenario          | makes the decision onto which target to point the weapon.                             |
| Extensions        | -                                                                                     |

| Use case    | Fallback to manual control                                                          |
|-------------|-------------------------------------------------------------------------------------|
| Description | This use case deals with the situation when the AUGV is unable to determine what it |

|                   | should to and the decision making is handed over to human operator.                |
|-------------------|------------------------------------------------------------------------------------|
| Primary actor     | Operator                                                                           |
| Supporting actors | -                                                                                  |
| Preconditions     | UGV has identified possible targets                                                |
| Guarantees        | Complicated situation resolved by operator                                         |
| Trigger           | The AI in the UGV identifies a situation it cannot resolve by itself               |
| Main success      | UGV recognizes a situation where it cannot make a decision. It notifies the remote |
| scenario          | operator who assesses the situation and makes the decision for the UGV. After that |
|                   | the UGV can continue its normal operation.                                         |
| Extensions        | -                                                                                  |

|                   | Laurence de la constant de la consta |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use case          | AUGV manual control and monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description       | This use case deals with the manual control by the remote operator and vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | status monitoring and transmitting to the remote operator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Primary actor     | Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Supporting actors | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Preconditions     | UGV has enough energy to complete a movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | UGV in communication range of the ground control statrion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Guarantees        | UGV at required location, all relevant data transmitted to operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trigger           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Main success      | UGV movements are directly commanded by the remote operator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| scenario          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Extensions        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Use case          | Energy monitoring                                                                |
|-------------------|----------------------------------------------------------------------------------|
| Description       | This use case deals with the power consumption optimization /monitoring for the  |
|                   | AUGV (optimizing travel path to minimize energy consumption, mission abortion in |
|                   | case of stored energy becomes too low in order to travel back to base).          |
| Primary actor     | -                                                                                |
| Supporting actors | -                                                                                |
| Preconditions     | -                                                                                |
| Guarantees        | Guarantees that the UGV can return to base                                       |
| Trigger           | -                                                                                |
| Main success      | UGV during its task constantly evaluates the energy left in the batteries, makes |
| scenario          | corrections to route in order to minimize the energy consumption. Aborts the     |
|                   | mission/task if not enough energy to return to base.                             |
| Extensions        | -                                                                                |

| Use case          | Confirm target                                                                      |
|-------------------|-------------------------------------------------------------------------------------|
| Description       | This use case deals with the situation when the AUGV asks for confirmation of the   |
|                   | target (i.e. the AUGV is unable to determine whether the target is valid or not).   |
| Primary actor     | Operator                                                                            |
| Supporting actors | Target                                                                              |
| Preconditions     | Amount of ammunition is not zero                                                    |
| Guarantees        | Correct target will be eliminated                                                   |
| Trigger           | Weapon pointed at the target                                                        |
| Main success      | When the weapon has been pointed at the target then the remote operator is          |
| scenario          | notified. The remote operator decides whether to fire or not. After the decision in |
|                   | either case UGV continues to execute its main task.                                 |

| Extensions | Point weapon at target |  |
|------------|------------------------|--|
|------------|------------------------|--|

| Use case          | Functional safety                                                             |
|-------------------|-------------------------------------------------------------------------------|
| Description       | This use case deals with the functional safety of the AUGV                    |
| Primary actor     | -                                                                             |
| Supporting actors | -                                                                             |
| Preconditions     | -                                                                             |
| Guarantees        | Safe operation of the vehicle when people are in near vicinity                |
| Trigger           | -                                                                             |
| Main success      | In case of emergency button press by a person near the UGV, the UGV stops its |
| scenario          | movements and notifies the operator of the situation. Operator assesses the   |
|                   | situation via video feeds and decides when the operation can be resumed.      |
| Extensions        | -                                                                             |

# 8 Suggested system design

In the following chapters the overall system design is presented.

### 8.1 System Functional Block Diagram

### **Functional Building blocks**

### Input functions:

- Accept operator commands
- Store electricity
- Acquire data from sensors
- Accept automatic/manual operating mode
- Receive cargo / ammunition

#### Transformative functions:

- Interpret operator commands (AI)
- Update control system setpoints
- Distribute electricity
- Process data from sensors

#### Output functions:

- Provide operational status, location, imagery, audio
- Move to destined location
- Neutralize targets
- Dissipate heat, noise



### 8.2 Main system building blocks

The system main building blocks are described in the following table:

| Software          | AI and high-level software           |
|-------------------|--------------------------------------|
|                   | Embedded control SW                  |
| Electronic        | Motor controllers                    |
|                   | Sensors                              |
|                   | Communication receivers/transmitters |
|                   | Battery management system            |
| Electro-optical   | Colour imaging camera                |
|                   | Thermal imaging camera               |
| Electromechanical | Electric motors                      |
| Electrochemical   | Batteries                            |
| Mechanical        | Framework/Chassis                    |
|                   | Armor                                |
|                   | Tracks                               |
|                   | Gearboxes                            |
| Thermomechanical  | Battery heating unit                 |
|                   |                                      |

### 8.3 System design

The system is divided into five main subsystems:

- 1. Chassis
- 2. Electrical Power Subsystem (EPS)
- 3. Powertrain
- 4. Environment sensing subsystem (ESS)
- 5. Communication and data handling subsystem (CDHS)

Next all the subsystems and their functions are described.

#### 8.3.1 Chassis subsystem

The chassis subsystem is composed of two main components: the track systems and the armour. The vehicle is built modularly using self-contained track systems that provide the necessary mechanical structure for the tracks, rollers and mountings for all the other subsystems.

Another key component is armour, which provides protection against fire from handguns and up to .50 calibre machine guns.

### 8.3.2 Electrical power subsystem

The main purpose of the EPS is to provide electrical power to the motors and other components. It consists of batteries and respective battery management systems. The latter being responsible for charging and protection of the batteries, and also battery thermal management (heating/cooling).

#### 8.3.3 Powertrain

This subsystem handles everything related to the physical motion of the AUGV . It consists of the motors and respective motor controllers and gearboxes.

### 8.3.4 Environment sensing subsystem

This subsystem is responsible for providing all the necessary information about the environment around the AUGV for localization and navigation. This includes the inertial measurement units (IMU), GPS, thermal and colour cameras and radars.

### 8.3.5 Communication and data handling subsystem

This subsystem is responsible for communication with the ground control station (GCS) and data processing to provide the main functionality for the AUGV. This includes the communication modules and computers (multiple for redundancy purposes).

The block definition diagram for the system is presented on the following figure.



# 9 Use of ready components and existing systems



• For the UGV attitude sensing an inertial measurement unit (IMU) and attitude heading reference system (AHRS) solution from Vectornav is intended to be used. Namely model VN-110 which is a tactical grade (in terms of performance) IMU with environmental protection level matching to DO-160 standard.



• For the computing platform an Aitech product A195 RediBuilt GPGPU rugged computer could be used. The dual CPU solution (Intel Core i7 and NVIDIA TX1) provide sufficient computing capabilities for 1-2 stereo cameras. In total of four of those will be planned to use on the UGV, 2 extra for redundancy purposes.



• For controlling the motor, a suitable Sevcon Gen-4 motor controller will be used.



- 1. Cel
- 2 Modul
- High-strength battery tray
- 4. Thermal insulation
- Coolant connection
- Coolant connector
   Electric connectors
- Main contactor box
- Wain contactor box
   High voltage connection
- 10. BMS
- Safety control unit

# DESIGNED WITH MILITARY STANDARDS

• For the battery solutions, Lithiumlon battery modules from Kokam will be used, as at the moment it seems that this is one of few manufacturers that produce water cooled military grade battery solutions. Also the rated energy density (260Wh/kg) and high rated output (100C) make this option suitable. In addition Kokam has advertised themselves as manufacturer who can provide custom solutions which may be necessary.



• For vision based navigation and object identification Multisense-21 long range stereo cameras from Carnegie Robotics are suitable for this application. The long range, customizability (options to have also IR imaging sensors) and Gigabit Ethernet connection make this a suitable choice as the same component can be used in different configurations throughout the vehicle, minimizing the number of different products/interfaces that need to be handled in the mechanical and software engineering sides.



• For the global navigation a GPS module is necessary. As in the initial design phases access to military grade GPS solutions may be difficult a consumer level solution with acceptable environmental and performance requirements will be used. One good solution is provided by Swift Navigations - the Duro, which is a ruggedized GPS/GNSS module with built in RTK (Real Time Kinematic) to enhance the position accuracy to centimetre level.

For choosing the most suitable electric motor for the UGV a formal trade-off analysis was performed.

The key criteria for the motors are: price, weight, torque and speed characteristics. The selection that is common to all of the motors is size and overall power output, so those cannot be used in the selection process. So, the aim of this process is to find the optimal motor given the dimensional and output power constraints.

The weighing factors are chosen to be in range of 0.1 to 1 (omitting zero as then the criteria wouldn't be listed at all). Having in total 5 criteria, means that the sum of the weighting factors must be 2.25.

For the value ratings an actual measurement method is applied. This method is usable as each of the criteria can be measured and a suitable step function can be defined to provide a more objective effectiveness rating. In the following tables, calculations for each of the alternatives are provided.

Hohomer HM10

| Criteria          | Weight | Meas. | Value | Score |
|-------------------|--------|-------|-------|-------|
| Price (Euros)     | 0.65   | 921   | 2     | 1.3   |
| Torque/Amp (Nm/A) | 0.25   | 0.3   | 4     | 1     |
| Torque (Nm)       | 0.3    | 31.8  | 4     | 1.2   |
| Weight (Kg)       | 0.75   | 47    | 1     | 0.75  |
| Rated speed (RPM) | 0.3    | 3000  | 3     | 0.9   |
|                   |        |       |       |       |

Total score 5.15



### Motenergy 1302

| Criteria          | Weight | Meas. | Value | Score |
|-------------------|--------|-------|-------|-------|
| Price (Euros)     | 0.65   | 733   | 5     | 3.25  |
| Torque/Amp (Nm/A) | 0.25   | 0.15  | 2     | 0.5   |
| Torque (Nm)       | 0.3    | 18.75 | 1     | 0.3   |
| Weight (Kg)       | 0.75   | 17    | 3     | 2.25  |
| Rated speed (RPM) | 0.3    | 5000  | 5     | 1.5   |





### Golden Motor HPM-10kW

| Criteria          | Weight | Meas. | Value | Score |
|-------------------|--------|-------|-------|-------|
| Price (Euros)     | 0.65   | 800   | 4     | 2.6   |
| Torque/Amp (Nm/A) | 0.25   | 0.28  | 3     | 0.75  |
| Torque (Nm)       | 0.3    | 28.9  | 3     | 0.9   |
| Weight (Kg)       | 0.75   | 18    | 3     | 2.25  |
| Rated speed (RPM) | 0.3    | 4700  | 4     | 1.2   |
|                   |        |       |       | _     |

Total score 7.4



### Domel AZ220-55-P172A

| Criteria          | Weight | Meas. | Value | Score |
|-------------------|--------|-------|-------|-------|
| Price (Euros)     | 0.65   | 1030  | 1     | 0.65  |
| Torque/Amp (Nm/A) | 0.25   | 0.28  | 3     | 0.75  |
| Torque (Nm)       | 0.3    | 22    | 2     | 0.6   |
| Weight (Kg)       | 0.75   | 27    | 2     | 1.5   |
| Rated speed (RPM) | 0.3    | 2050  | 2     | 0.6   |
|                   |        |       |       |       |

Total score 4.1



From the total scores we see that two products: Motenergy 1302 and Golden Motor HPM-10kW, came very close with scores 7.8 and 7.4 respectively. The other two scored significantly lower and their scores will not be analysed further.

To make the selection between Motenergy and Golden Motor products we should still consider each of the scores for criteria separately. The Torque and Torque/Amp ratings are low on the Motenergy one, meaning that those should be compensated by the gearbox ratio, which is possible due to the high nominal speed of the motor. As the gearbox will be present regardless of motor selection and the ratio difference wouldn't introduce any significant cost changes those parameters are not important. One may think, that the higher torque ratings on the Golden Motor product would lead to higher torque output on the final solution.

Unfortunately, this is not the case as the gearbox torque limitation would start to limit the upper torque value, and the only gain would be higher top speed of the UGV.

As a conclusion the Motenergy 1302 motors will be chosen to be used on the UGV, due to its low price and weight combined with its high speed and moderate torque output characteristics that will be compensated by proper gear ratio selection.

# 10 System performance requirements (non-functional requirements)

| Non-functional req. | Minimum acceptable level                                                                                                                                                                                                                                                                                                                                                              | Desired level                                                                                                                                                                                                                                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reliability         | Minimum acceptable time between failures is 27 hours (same as M1 Abrams).                                                                                                                                                                                                                                                                                                             | Given the fact that our system is less complex than the M1 Abram, and more modern, we can aim for the best MTBF found in the previous document, which is 167 hours.                                                                                                            |
| Compatibility       | In order for the system to be used widely the system must be implemented in accordance to NATO STANAG 4586 - "Standard interfaces for Unmanned Control systems". This means that the data link, C2 (command and control) and HMI (humanmachine interface) must be implemented according to this document so that the system would be compatible with already existing solutions used. | In addition to NATO STANAG 4586, the US military also uses SAE AS-4 JAUS - "Joint Architecture for Unmanned Systems", specifying the same areas as the NATO standard, but is mainly used by the US DOD. Achieving compatibility with both of those standards would be desired. |
| Functionality       | The AUGV shall be capable of operating across grass, dirt and loose sand and climb inclines up to 15 degrees.                                                                                                                                                                                                                                                                         | The AUGV shall be capable of operating across grass, dirt, <b>snow</b> and loose sand and climb inclines up to <b>30</b> degrees.                                                                                                                                              |
| Performance         | Movement speed 15-20km/h Range of 100km Payload 500 kg Cargo capacity 600 litres Operational temp. range -40 to 85 C Ability to withstand assault rifle fire (up to 7.62mm rounds) Range of detecting/identifying objects 250m Weight: 500kg                                                                                                                                          | Movement speed 40km/h Range of 200km Payload 800 kg Cargo capacity 800 litres Operational temp. range -40 to 85 C Ability to withstand heavy machinegun fire (.50 cal) Range of detecting/identifying objects 500m Weight: 300kg                                               |

| Maintainability - Measure of the ease of accomplishing the functions required to maintain the system in a fully operable condition. | Mean time to restore(MTTR) = Time to diagnose and detect the fault + Time to secure any necessary replacement / re- coding + Time to effect the replacement / repair + Time to restore the system to full operation MTTR = 1+3+7+1 = 12 Hence the longest acceptable time to restore is 12 hours Built-in test equipment for most crucial parts of the system, necessary to return to safety: | MTTR = 15 mins + 1 hour + 3.5 hours + 15 mins The desired time to restore is 5 hours. Built-in test equipment for additional parts of the system:  Parts already listed in min. acceptable level cell Improved sensor error detection GPS connection test Communications test |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Availability - The system must be available to perform its function correctly when called upon.                                     | The longest acceptable time to restore is 12 hours. The minimum acceptable time between failures is 27 hours of action. Minimum acceptable availability is $1 - \frac{12}{27} = 0.5555 = 55.55\%$                                                                                                                                                                                             | The desired time to restore is 5 hours.  The desired time between failures is 167 hours of action.  Desired availability is $1 - \frac{5}{167} = 0.9700 = 97\%$                                                                                                               |

# 11 User interface / Operator interface

As many functions of the system require input from the operator, the operator interface design needs to be considered also. From the use-cases it can be seen that most of the interactions that the operator has with the UGV are notification based, where the input from the operator is a quick decision. This means that the operator interface must be really well thought out so that would be possible. In order to design it, primary functional requirements have to be established. These are listed below:

- Have the capability to control and monitor the AUGV.
- Be flexible as the user and mission requirements may vary, the system attributes can be easily changed.
- Must be capable of executing maintenance software and displaying appropriate status results.
- Have ergonomically designed operator control and displays.
- Be capable of operation within the specified environmental conditions.
- Must be easily deployed and transported.
- Have the capability to control and monitor audio-visual payloads, data link and C2 interfaces during the mission.
- Must permit dynamic mission re-tasking during all phases of operational mission execution.

There are many ways how such an operator interface can be implemented. One example that uses a tablet based handheld system is depicted in the figure below.



Figure 3. Tablet based operator interface

Such a solution could be easily used for operators who themselves are on the field, near the machine.

Another solution that can be considered is a more elaborate system that would be mounted on a vehicle which would provide more physical controls (buttons, switches, etc.) providing an environment with more tactile feedback and easier controlling of the UGV while wearing gloves. One such an operator station example is presented on the figure below:



Figure 4. Stationary operator interface

# 12 Development and testing

The first task in the development of the project was defining the project and the needs that this project fulfils. We investigated the available technologies and what technologies needed further development to meet the requirements for AUGV. We viewed previous work done in this field and started thinking of ways to create a new unique system. We decided what tasks and objectives the system will accomplish; thus a clearer view of the design was developed. Then we worked on creating the design and decided what components and parts we should use to implement the system. After viewing few proposed designs, we finally agreed on all aspects of the project and defined the final design shown in this document.

#### Verification

During every life cycle stage, all components, parts, and subsystems of the AUGV will be compared to the requirements specified in the design of the system. This also includes the system itself as whole according to the design description.

#### Validation

Stakeholders are included in the development at all stages, their needs and requirements are taken into consideration when deciding if the system accomplishes its purpose of design. This system is validated when it achieves its intended use and meets stakeholder's requirements in the intended operational environment.

It is important to note here that verification and validation are done in parallel throughout the life cycle of the project.

Most critical area that needs to be addressed during testing is definitely the AI. Proper identification of friendly troops is needed to provide safe operation.

A test plan that will determine the sufficiency of the system and the feasibility of continuing and further develop the engineering of the system is developed. In this test plan, we create a schedule for further testing and decide the testing equipment and what available resources we could use. We decide what type of data is collected, methods of collecting the data, and how the data is analysed and processed.

#### Development testing

In this stage, we test the different subsystems and components separated from one another to determine if the components and subsystem function as desired. Most of components are already manufactured and tested by their manufacturing party. Components that need to be developed and tested by our team include tracks, chassis and armour.

#### Developmental testing

In this stage we test the system as whole. This stage mainly focuses on observing the interaction and behaviour of the different component when integrated together in the subsystems and the system as a whole. In this stage we determine if the system meets the operational and performance requirements set during the system design stages.

#### Operational testing

The system is tested in different real environments(Forest, urban, winter etc). the AUGV is included in military force training programmes, where identification of people and actions taken are observed with most attention.

# 13 System operations and maintenance

- **Storage.** After completing a mission the AUGV can be stored in either its respective Ground Control Station (GCS) or kept where the troops are currently stationed.
- **Transportation.** The vehicle offers great off-road mobility. The AUGV can be transported by helicopters internally or as slung load.
- Installation. No installation needed. The vehicle will start operating immediately after being deployed. Cargo will be constantly loaded and weapons constantly attached.
- Routine maintenance. AUGV maintenance checks will primarily consist of, but not limited to, AI
  testing to ensure that it's working correctly. Failures in AI are the most costly. Testing of all the
  subsystems and components will be performed as well. After 200 working hours (approximately 2-3
  months) a 50 man-hour maintenance check is performed. Every year a 200 man-hour maintenance
  check is performed.
- **Emergency maintenance.** If the AUGV has been in a conflict and received damage, it is repaired and tested before returning to operation.
- System modification and upgrading. The most critical upgrading would deal with software updates on the AI side. It would mean the vehicle would have to retreat from the battlefield to perform an upgrade. There would be a testing phase to check the new features work as intended. Upgrading other subsystems is more straightforward. These other subsystems are not as experimental and do not need as much testing. One advantage of having a system with several subsystems in a modular design is that modifying one of them does not directly affect the others.
- **System disposition.** When an AUGV unit comes to the end of its life-cycle, or it suffers damage beyond repair, many of its components can be recycled to be used in building other units or as spare parts. Disposing of the batteries is the most challenging, but nowadays it is possible to recycle them. When a major upgrade of the AUGV comes, older units will be removed from operations gradually.

# 14 Cost of development and maintenance

Analysis for cost of system development is broken down into two tables: hardware and software.

In the hardware table an overview and approximate costs of ready components is given. Components that require engineering are listed also.

In the software table a list of functions that have to be developed is given in accordance with necessary software licences, including costs, for system development.

Needed man-hours and cost of development cannot be approximated without specialist guidance and is postponed until such an opportunity arises.

| Hardware            |               |                          |                           |                |  |  |
|---------------------|---------------|--------------------------|---------------------------|----------------|--|--|
| Ready<br>components | Cost<br>[€]   | To be engineered / built | Man-hours                 | Cost<br>[€]    |  |  |
| Computing platform  | 3350          | Tracks                   | Needs specia              | alist guidance |  |  |
| Vision systems      | 170 - 420     | Armour                   | Needs specialist guidance |                |  |  |
| Radar               | 215           | Chassis                  | Needs specialist guidance |                |  |  |
| IMU/AHRS            | 670           |                          |                           |                |  |  |
| Motors              | 1200 per unit |                          |                           |                |  |  |
| Motor controller    | 790           |                          |                           |                |  |  |
| Batteries           | 560 - 690     |                          |                           |                |  |  |
| Arms                | 15000         |                          |                           |                |  |  |

| Software                         |              |                           |                        |                                   |  |
|----------------------------------|--------------|---------------------------|------------------------|-----------------------------------|--|
| To be developed                  | Man-hours    | Cost<br>[€]               | Licences               | Cost<br>[€]                       |  |
| Artificial intelligence          | Needs specia | Needs specialist guidance |                        | 8K initial + 2K/year subscription |  |
| Control system (Motion and arms) | Needs specia | Needs specialist guidance |                        | SW not yet chosen                 |  |
|                                  |              |                           | Control implementation | SW not yet chosen                 |  |

### 15 Risk assessment

The weakest and most uncertain parts of the design for the system are the following:

- 1. Artificial intelligence
- 2. Motion system
- 3. Armour
- 4. Structural design
- 5. Batteries

# 15.1 Analysis, development and test to eliminate or reduce these weaknesses to an acceptable level

#### 1. Artificial intelligence

- o Training of AI in simulation environment
  - the simulation environment is by definition limited to testing in foreseeable conditions, real world behaviour is more complex
- o Failure to recognize the environment
  - in case of failure, it's critical for the AI to be aware of its situation in order to notify an operator
- o Failure to notify operator in case of problems
  - in case of failure of the AI, if the operator isn't able to pilot the system, it's basically lost until someone comes and picks it up

#### 2. Motion subsystem:

Motor system is one of the essential subsystems in this system. The failure of this subsystem directly affects the system as whole.

The motion subsystem has two main weaknesses:

- Motors overheating the risk of overheating can be caused by long run-time as well as the temperature of the environment. This risk can be reduced by testing the system in extreme conditions that could lead to the overheating of the motors (long period run time, high temperature environment, etc.). Outcomes of these tests will help determine further design decisions and develop the subsystem to eliminate or further reduce any potential design failures.
- Gearbox failures the risk of gearbox failure is a common risk in automobile systems. There
  is a variety of issues that can rise and cause the gearbox to fail. This risk can be reduced in
  testing different types of gearboxes and assessing the performance of each of these types to
  decide the most suitable with the system.

#### 3. Armour

The armour is also an uncertain part as the

- Too fragile if optimized for weight
  - A compromise in motor size, vehicle size and armour thickness has to be worked out by the engineers.
- Not enough armour (uncovered parts)

- Armour could be divided so that the most crucial parts for vehicle operation (motor, control system, batteries) are more protected than others (E.g. gear compartment).
- o For testing, prototype chassis could be built and tested against light- and heavy machine gun fire.

#### 4. Structural design

One of the parts of the design that is very uncertain is the overall structural design. To resolve the issue careful analysis regarding the terrain handling must be done where following points are considered:

- o weight of the vehicle
- o centre of gravity in different operational cases
- o contact area with ground

Based on the analysis several prototype designs should be tested in a virtual environment. Testing with real hardware would be unreasonable, as scale models wouldn't be feasible as gravity doesn't scale, thus any tests done with scale models would be invalid.

From the results of the simulations a real prototype can be built and tested in various operating conditions. For testing centre of gravity and weight in different situations (various payloads etc) simple adjustable mechanism with weights could be used to change the mass and centre of gravity.

#### 5. Batteries

Batteries are also one of the weak spots of the system as:

- Capacity in various climates (extreme temperatures)
  - Cold temperatures reduce the driving range of an electric vehicle. They also affect the charging. For example, most Li-ion batteries cannot be charged below freezing. Hot temperatures are detrimental as well, since once a battery is damaged by heat, its capacity cannot be restored.
  - Cooling as well as warming systems could be designed to prevent these risks from happening. Tests at different extreme temperatures must be performed.
- Overcharging issues
  - Most commonly used batteries for electric vehicles cannot accept overcharge. That is, when fully charged, the charge current must be cut off. This poses a safety hazard as a battery becomes unstable when charged to a higher than specified voltage, with the possibility of venting with flame.
  - Properly designed charging equipment is necessary. Also, protection circuits must be built into the battery pack that do not allow exceeding the set voltage, including temperature sensors.
  - Testing the charging of the battery to higher voltages until it is under stress.
- Short lifespan
  - Batteries degrade after a certain amount of cycles. Batteries for electric vehicles are still quite short-lived.
  - Careful selection and extensive testing are necessary to choose the right battery for this specific application.

### 15.2 Most potential risks/failures that the system might be subject to

In this section the most potential risks and failures that affect the system as a whole are brought out and their likelihood and consequences are analysed.

#### 1. Al failure during operation.

- The likelihood of this risk is medium, because it's an emerging technology but yet it's something we're going to test a lot
- This issue is very critical, as if the AI crashes without giving control to the operator, the system is simply unusable.

#### 2. Third parties unable to deliver on time or delivering out of specification items

- It is moderately likely that one of the third parties will fail to deliver their products on time or deliver parts that are out of spec. It could be that they deliver late and their parts don't work sufficiently with other parts.
- This issue is very critical as the unmanned vehicle will have many different intricate parts that work together. If one of those parts was out of spec, it will cause the whole system to fail. Not having parts on time can also delay the finishing of the system.

#### 3. Being late to market

- High likeliness, as we are just in the first phases, while others have been developing such systems for a long time.
- Criticality is medium-high because in arms trades, large long-term contracts are made, which we will miss out on if we fail to deliver.

#### 4. Reduction of available funds.

- Not very likely that investors may want to withdraw their investments. This could be due to late delivery of the system or that it no longer interests them.
- Quite influential as funds are essential to achieving anything these days. If investors pull
  out their support, these is a real chance that the system could come into a halt.

#### 5. Laws against autonomous weapons are enforced

- There have been movements towards regulating (banning operation) of autonomous weapons. This is a risk that has to be accepted.
- This risk can be considered moderately influential to the whole system, as when these kinds of laws are adopted the design process must be changed to focus on other areas this kind of platform can be used.

#### 6. Being hacked

- The risk of system being hacked to take over the control of the machine is not extremely likely. The implementation of strict software and hardware security policies would help to reduces the likeliness of this.
- This issue is rather critical as being taken over, could cause harm to friendly forces, enemy can catch the machine and could reverse engineer the system.

#### 7. Getting stuck on difficult terrain

- Not very likely as the system is engineered on the basis of other systems, that have been proven efficient. Also the development methodology should reduce it.
- Consequence is quite high, as not being able to manoeuvre on difficult terrain makes the system almost useless.

#### 15.3 Risk cube

The risks and failures identified in the previous section are depicted on the risk cube below. Numbers in the table correspond to the risks in the previous section (i.e. 1 - Al failure during operation.)



Figure 5. Risk matrix

### 15.4 Risk mitigation practices

### 1. Al failure during operation

One of the risks for the whole system is AI failures, for example AI failing to recognize situations where it cannot take proper decisions and hand control over to operator. In order to mitigate this risk AI first of all needs to be extensively tested both in virtual environments and in physical world.

### 2. Third parties unable to deliver on time or delivering out of specification items

Parts need special machinery to be built. Subcontractors provide this machinery to create parts. Subcontractor might fail to deliver these parts on time, or the parts do not meet the specifications. Keeping direct and consistent contact with subcontractors is always the best way to avoid any risks that may arise at their end. Specification of parts must be stressed to avoid failure of meeting these

specifications. If any part doesn't fulfil requirement, it's better to know in order to make necessary adjustments. If subcontractor is not able to manufacture parts to specification. A schedule of delivery must be agreed upon with subcontractors.

#### 3. Being late to market.

Finishing the product later than others will cause us to miss out on contracts which are usually long-term and large in arms trade. Having started too late, insufficient funds and lack of proficient engineers/scientists are main causes for being late. Consequence would be us getting only a small fraction of the market. The development could be accelerated by rapid prototyping and quick testing of critical parts. Also by Al training and testing in virtual environment.

#### 4. Reduction of available funds

The reduction of funds is common with projects that may become uninteresting to its investors. This can be because of failure to deliver a working system on time. It can also because the system is outdated and there is a better system that investors choose to invest in instead of your system. This risk can be mitigated in two different ways. First is to find new investors. When the projects is starting, a list of possible investors must be compiled. This list will come handy when the project needs urgent funds if an investor pulls out or investment turned out to not be enough. There must be more than one source of funds since the inception of the project. The project must have more than one investor (or more than one investing group). The second way is to consider cheaper alternatives to the parts used. Cheaper parts may not deliver the desired performance, but they are a good way to reach minimum required performance with less financial spending. This can be a risky endeavour as these cheaper parts may be unsuitable alternative. However, choosing good alternatives could eliminate unwanted risks in the future.

#### 5. Laws against autonomous weapons are enforced

Only possible action to try to mitigate the issue is by lobbying against this in military and government circles proving that the benefits will overweigh the negative aspects of such solutions. One way to mitigate the risk is in development phase consider also alternative uses for the AUGV, so that when such laws will be enforced then the development could be shifted from military uses to civil uses as one example.

#### 6. Being hacked

Control can be gained by an unwanted operator; insufficient security standards would make it likely that the system would then be totally unusable. Adopting the same security standards as aerial drone manufacturers have done seems like a plausible option.

#### 7. Getting stuck on difficult terrain

Ability to move on difficult terrain is determined by a number of factors: weight, centre of gravity, dimensions etc. To mitigate the issue firstly a number of different solutions should be tried out in virtual simulation environment, as building scale models wouldn't help due to the fact that gravity doesn't scale. After the simulation, the best solution should be prototyped and tested.