FACULTAD DE ADMINISTRACIÓN DE EMPRESAS PROGRAMA DEL CURSO INVESTIGACIÓN DE OPERACIONES

Nombre de la Materia	Modelos de optimización I				
Plan de Estudios	2020 - II				
Profesor					
Número de Créditos		Grupo	Saló	n	IV
Horario de Clase				Horario de Atención	
Correo Electrónico					

OBJETIVOS GENERALES

Este curso tiene como objetivo que el estudiante aprenda a formular, solucionar e interpretar modelos matemáticos de investigación de operaciones con aplicaciones en diversas áreas como la manufactura, el transporte, las telecomunicaciones, la planeación financiera, el cuidado de la salud, la milicia y los servicios públicos.

Al finalizar la asignatura el estudiante estará en capacidad de:

- Formular eficientemente algunos modelos y utilizar técnicas matemáticas para la solución de problemas de las organizaciones haciendo énfasis en el área de producción.
- Solucionar problemas con ayuda del ordenador, utilizando los paquetes informáticos adecuados para cada tema.
- Interpretar y analizar la información suministrada por los modelos para ser adaptados a las condiciones reales y ser utilizadas en los procesos de toma de decisiones.

UNIDADES TEMÁTICAS

- 1 MODELOS MATEMÁTICOS
- 2 CONCEPTOS BÁSICOS DE INVESTIGACIÓN DE OPERACIONES
- 3 OPTIMIZACION LINEAL
 - Método grafico
 - Formulación con variables unidimensionales
 - Formulación con arreglos de variables
 - Formulación con matrices de variables
- 4 MODELOS DE TRANSPORTE Y ASIGNACION
- 5 OPTIMIZACION CON ENTEROS

METODOLOGÍA

El curso se desarrollará con la presentación en las clases con cuadernillos de Python, talleres, cuestionarios en Moodle y capacitaciones en el manejo de Solver (Excel) y librerías en Python. Se asignará una serie de talleres que servirán para afianzar los modelos vistos en clase y afianzar destrezas en el planteamiento y solución de casos a partir de las herramientas anteriormente mencionadas. Adicionalmente, se realizarán controles de lecturas complementarias antes de empezar cada unidad temática.

EVALUACIÓN

El curso se evaluará de la siguiente manera:

e variation de la organisme man	
25%	15% Primer Parcial
2570	10% Talleres, controles de lectura y quices
250/	15% Segundo Parcial
25%	10% Talleres, controles de lectura y quices
250/	15% Tercer Parcial
25%	10% Talleres, controles de lectura y quices
25%	PARCIAL FINAL

	ÁLGEBRA LINEAL
Semana 1: julio 21 al 24	Presentación del curso: contenidos, metodología, evaluación. Introducción a Python - Matrices, definición y clases. Operaciones entre matrices: Adición, sustracción, producto escalar, producto entre matrices, propiedad conmutativa, asociativa, etc. Potencias de matrices.
Semana 2: julio 27 al 31	Sistemas de ecuaciones: Gauss-Gauss Jordan; Solución de sistemas de ecuaciones con tres incógnitas a partir de Gauss - Gauss Jordan. Tipos de Solución Sistemas de ecuaciones: Tipos de Solución (Infinitas soluciones)
Semana 3: agosto 03 al 07	Sistemas de ecuaciones: Tipos de Solución (Sin solución – Sistemas homogéneos) Determinantes – Regla de Cramer

PROGRAMACIÓN LINEAL			
Semana 4: agosto	Planteamiento de problemas de maximización Procedimiento método gráfico		
10 al 14	Puntos Extremos y solución óptima		
Semana 5:	Planteamiento de problemas de minimización		
agosto 17 al 21	Procedimiento método gráfico Puntos Extremos y solución óptima		
Semana 6: agosto 24 al 28	PARCIAL 1		
Semana 7: septiembre 1 al 4	Casos especiales Análisis de sensibilidad (factibilidad) Análisis de sensibilidad (optimalidad)		
07 A L 11	DE SEPTIEMBRE SEMANA DE RECE		
Semana 8: septiembre 14 al 18	Aplicaciones de la programación lineal: Finanzas, producción, investigación de mercados		
Semana 9:	Planteamiento modelo de transporte		
septiembre 21 al 25	Variaciones del modelo de transporte Modelo de asignación [forma general]		
Semana 10: 28 de septiembre al 02 de octubre	PARCIAL 2		
	Modelo de la ruta más corta y problema de transbordo (Modelo general de programación)		
Semana 11: octubre 5 al 9			
octubre			

Semana 13: octubre 19 al 23	Problemas de flujo máximo Casos especiales: Producción e inventarios: soluciones en excel
Semana 14: octubre 26 al 30	PARCIAL 3
Semana 15: noviembre 03 al 06	Clasificación de modelos de programación lineal entera Método gráfico utilizando enteros Casos especiales: Presupuestos, costos, sistemas de distribución
Semana 16: noviembre 09 al 13	Restricciones de opción múltiple [mutuamente excluyentes] Restricciones condicionales Análisis de sensibilidad

BIBLIOGRAFÍA

- RENDER, Barry/ Otros; MÉTODOS CUANTITATIVOS PARA LOS NEGOCIOS; Novena edición; Prentice Hall. México 2006.
- ANDERSON, David/ otros; METODOS CUANTITATIVOS PARA LOS NEGOCIOS, Novena edición; Thomson Editores; México 2005.
- EPPEN, Gary/ otros, INVESTIGACION DE OPERACIONES EN LA CIENCIA ADMINISTRATIVA, quinta edición; Prentice Hall; México 2000.
- WINSTON, Wayne; INVESTIGACION DE OPERACIONES APLICACIONES Y ALGORITMOS; cuarta edición; Thomson, México 2005.
- ACKOFF, Russell L. EL ARTE DE RESOLVER PROBLEMAS; decimosexta reimpresión, Limusa; México 2000.
- CASTILLO, Enrique /Otros; FORMULACIÓN Y RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN MATEMÁTICA EN INGENIERÍA Y CIENCIA ADMINISTRATIVAS, 20 de febrero de 2002.
- MUNIER Nolberto PERT, CPM y Técnicas Relacionadas. Proinvert.
- LECTURAS SUGERIDAS DURANTE LA CLASE.