

Agenda

- 1. Introductions
- 2. Syllabus
- 3. Grading
- 4. Calendar
- 5. Textbooks
- 6. Week 1 Tasks

Weekly calls

- Class calls will be recorded and posted online
- Thursday's 7PM ET
 Call to go over Weekly tasks and concepts.

Details on BrightSpace.

Machine Learning

Artificial Intelligence Al involves techniques that equip computers to emulate human behavior, enabling them to learn, **Artificial Intelligence** make decisions, recognize patterns, and solve complex problems in a manner akin to human intelligence. Machine Learning **Machine Learning** ML is a subset of AI, uses advanced algorithms to detect patterns in large data sets, allowing machines to learn and adapt. ML algorithms use supervised or unsupervised learning methods. **Deep Learning** DL is a subset of ML which uses neural networks for in-depth data processing and analytical tasks. **Deep Learning** DL leverages multiple layers of artificial neural Data networks to extract high-level features from raw input data, simulating the way human brains perceive and understand the world. Science Generative Al Generative AI is a subset of DL models that generates content like text, images, or code based **Generative A** on provided input. Trained on vast data sets, these models detect patterns and create outputs without explicit instruction, using a mix of supervised and unsupervised learning.

Types of Machine Learning

School of Professional Studies

Source: "Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Application and Challenges", Pend et al, Sep 2021

Classification vs Regression

Unsupervised vs Supervised

Unsupervised learning

Input data is unlabeled

Has no feedback mechanism

Assigns properties of given data to classify it

Divided into Clustering & Association

Used for analysis

Algorithms include: k-means clustering, hierarchical clustering, apriori algorithm

A unknown number of classes

Unsupervised learning

Variable 2

Supervised learning b)

Variable 2

Supervised learning

Input data is labeled

Has a feedback mechanism

Data is classified based on the training dataset

Divided into Regression & Classification

Used for prediction

Algorithms include: decision trees, logistic regressions, support vector machine

A known number of classes

Machine Learning Process

Machine Learning Process

Machine Learning Algorithms

Exploratory Data Analysis (EDA)

What do these data sets have in common?

Not much. Except....

Identical means, variances, correlation, coefficients of determination, regressions

Property	Value	
Mean of x	9	
Sample variance of x: s_x^2	11	
Mean of y	7.50	
Sample variance of y: s_y^2	4.125	
Correlation between x and y	0.816	
Linear regression line	y = 3.00 + 0.500x	
Coefficient of determination of the linear regression: R^2	0.67	

Another example

Common statistical values for each group in the dataset								
	Summary statistics					Regression results		
Dataset	Mean x	Mean y	Std Dev x	Std Dev y	Corr x y	Intercept	Coefficients	
Away	54.27	47.83	16.77	26.94	-0.06	53.43	-0.10	
Bullseye	54.27	47.83	16.77	26.94	-0.07	53.81	-0.11	
Circle	54.27	47.84	16.76	26.93	-0.07	53.80	-0.11	
Dino	54.26	47.83	16.77	26.94	-0.06	53.45	-0.10	
Dots	54.26	47.84	16.77	26.93	-0.06	53.10	-0.10	
H_lines	54.26	47.83	16.77	26.94	-0.06	53.21	-0.10	
High_lines	54.27	47.84	16.77	26.94	-0.07	53.81	-0.11	
Slant_down	54.27	47.84	16.77	26.94	-0.07	53.85	-0.11	
Slant_up	54.27	47.83	16.77	26.94	-0.07	53.81	-0.11	
Star	54.27	47.84	16.77	26.93	-0.06	53.33	-0.10	
V_lines	54.27	47.84	16.77	26.94	-0.07	53.89	-0.11	
Wide_lines	54.27	47.83	16.77	26.94	-0.07	53.63	-0.11	
X_shape	54.26	47.84	16.77	26.93	-0.07	53.55	-0.11	

Descriptive statistics can be misleading. Data visualization helps.

What Exploratory Data Analysis isn't....

Artificial General Intelligence (AGI)

What is Intelligence?

There are many definitions, here is one:

"Intelligence measures an agent's ability to achieve goals in a wide range of environments." S. Legg and M. Hutter

Narrow Al vs AGI

NARROW AI ARTIFICIAL GENERAL INTELLIGENCE (AGI) Al focused on a specific, singular or ■ Not fully realized, with some developers limited task questioning if it will be possible Examples include image recognition, hyper-Seeks machines that can handle a range of cognitive tasks with little oversight personalization, chatbots, predictive text ■ The ability to learn, generalize, apply Trained on specific tasks by data scientists knowledge and plan for the future Correlates questions or assignments to a specific data set to accomplish a task ■ Must consistently pass the Turing Test No self-awareness, consciousness, ■ Single, general intelligence that possesses ability to think common sense and creativity and expresses emotions

