Probability and Statistics

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

Outline

- Some important continuous random variables

 Uniform PDF Completely random Process
 - **Exponential PDF**
 - **Normal PDF**

Uniform random variable "Completely random process"

$$E(X) = \int_{A}^{A} \frac{1}{b^{-\alpha}} \frac{1}{a^{-\alpha}}$$

$$f_X(x) = \frac{1}{b-a}, \quad a \leq x \leq b$$

$$E(\chi^2) = \int_{-\infty}^{\infty} \chi^2 \int_{-\infty}^{\infty} d\chi$$

$$X \sim Uniform(a,b)$$

$$E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}$$

$$(x) = \begin{cases} x & dx \\ b & CDF \end{cases}$$

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{\hat{x} - a}{b - a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

The voltage across a resistor is *uniformally* distributed over the $\times \sim \text{uniform}(9.9, 10.1)$ interval (10 ± 0.1).

What the probability that the voltage exceeds 10.05?

$$P(X>10.05) = \int_{10.05}^{10.1} \int_{10.05}^{10.1}$$

$$= (10.1 - 10.05) *5 = V$$

No into. a the distr. = default uniform

Mr. Ali arrives at a bus station every day at 7:00 A.M. If a bus arrives at a random time between 7:00 A.M. and 7:30 A.M.

- Find the probability that he waits more than 10 minutes.
- Repeat (a) if Mr. Ali arrives at 6:55 A.M.
- (c) If it is known that the waiting time exceeds 10 minutes//what is the probability that it does not exceed 15 mins.

(a)
$$P(T>10) = (30-10)*\frac{1}{30} = \frac{2}{3}$$

(b)
$$P(T > 5) = (30 - 5) + \frac{1}{30} = \frac{25}{30} = \frac{5}{6}$$
 From AM

(c)
$$P(T<15|T710) = \frac{P(1010)}$$

$$= \frac{Ali \ arrived}{6!55}$$

$$= \frac{(15-10) \times \frac{1}{30}}{2/3} =$$

$$\frac{6!55}{(15-10) \times \frac{1}{30}} = \sqrt{2/3}$$

A production line is expected to produce pipes of diameter 5 mm. Actual product is assumed to follow a uniform distribution over the interval [5 \pm 0.01].

(a) Compute the probability that the diameter of a randomly chosen pipe is greater than 5.005.

(b) Compute the probability that the diameter of a randomly chosen pipe has a deviation

greater than 0.001.

greater than 0.001.

$$(D > 5.005)$$
 by symmetry $= \frac{1}{4}$
 $(5.01 - 5.005) *50$

(b) P(|X-5| > 0.001) = |-P(|X-5| < 0.001)

$$= 1 - P(4.999 \times 5000) = 1 - P(4.999 \times 5000)$$

$$= 1 - (5.001 - 4.999) \times 50 = 1 - 9$$

A production line is expected to produce pipes of diameter 5 mm. Actual product is assumed to follow a uniform distribution over the interval [5 \pm 0.01].

- (a) Compute the probability that the diameter of a randomly chosen pipe is greater than 5.005.
- (b) Compute the probability that the diameter of a randomly chosen pipe has a deviation greater than 0.001.
- (b) A pipe is not accepted if its diameter has a deviation greater than 0.001. In a lot of 100 items, what is the probability of getting at most 2 unaccepted items?

Y: no. of unaccepted items
$$\sim Bin(100,9) \neq P_{y}(y) = \frac{100}{C_{y}} \frac{y}{(1-1)}$$

$$P(Y \leq 2) = P(Y = 0) + P(Y = 1) + P(Y = 2)$$
sub.

A production line is expected to produce pipes of diameter 5 mm. Actual product is assumed to follow a uniform distribution over the interval [5 \pm 0.01].

- (a) Compute the probability that the diameter of a randomly chosen pipe is greater than 5.005.
- (b) Compute the probability that the diameter of a randomly chosen pipe has a deviation greater than 0.001.
- (b) A pipe is not accepted if its diameter has a deviation greater than 0.001. In a lot of 100 items, what is the probability of getting at most 2 unaccepted items?
- d) Determine the pipe diameter that is exceeded in 90% of the production.

$$P(D>a) = 0.9$$

 $(5.01-a)*50 = 6.9$
 $5.01-a = \frac{9}{500} \implies 9 = 4.992 \text{ mm}$ 4.99 $\stackrel{6.9}{4}$

Exponential random variable

PDF

$$f_X(x) = \lambda e^{-\lambda x}$$
,

 $x \ge 0$, $\lambda > 0$

 $X \sim Exponential(\lambda)$

Mean & variance

$$E(X) = 1/\lambda$$
, $Var(X) = 1/\lambda^2$

$$F_X(x) = 1 - e^{-\lambda x}, \quad x \ge 0,$$

= 0, $x < 0$

The time to failure of a certain device is assumed to follow an exponential distribution of mean 3 years.

What is the probability that it fails during the first year of operation?

The number of received telephone calls per minute is assumed to follow a Poisson distribution with mean 2 calls.

There is only one person to answer and each call is assumed to have a *fixed* duration of 0.5 minute. If that person receives a call, what is the probability that the next call will be blocked?

The number of received telephone calls per minute is assumed to follow a Poisson distribution with mean 2 calls.

There is only one person to answer and each call is assumed to have a *fixed* duration of 0.5 minute. If that person receives a call, what is the probability that the next call will be blocked?

If No call arrived in the last 5 mins, what is the probability that the next call will arrive within the coming 3 mins?

Memoryless property of the exponential distribution

Assume that X follows an exponential distribution with rate λ .

$$\Pr(X \ge x + y | X \ge x) =$$

Normal (Gaussian) random variable

Mean & variance

$$E(X) = \mu,$$

 $Var(X) = \sigma^2$

$$F_X(x) = \int\limits_{-\infty}^x f_X(t) dt$$

Standard normal (Gaussian) RV

$$Z \sim N(0,1)$$

$$\int Z \sim N(0,1) \int f_{Z}(z) = \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2}, -\infty < z < \infty$$

$$\phi(z) = \int_{-\infty}^{z} f_{Z}(t)dt$$

Z	φ(z)
0.00	0.5000
0.01	0.5040
0.02	0.5080
2.99	0.9986

$$\phi(0) =$$

$$\phi(-\infty) =$$

$$\phi(\infty) =$$

$$\phi(-2) =$$

Compute

- (a) P(Z < 1)
- (b) P(Z > 2)
- (c) P(1.5 < Z < 2.2)
- (d) P(Z < -1)
- (e) P(-2.2 < Z < -1.5)

$$X \sim N (\mu, \sigma^2)$$
 $\frac{X - \mu}{\sigma} \sim N(0, 1)$

- Height of students in a certain college is assumed to follow a normal distribution with mean 170 cm and standard deviation 2 cm.
- (a) What is the probability that the height of a student chosen at random will be greater than 175 cm?
- (b) In a group of 50 students, what is the probability of getting at least 2 students with height greater than 175 cm? $[\phi(2.5) = 0.99]$

- Height of students in a certain college is assumed to follow a normal distribution with mean 170 cm and standard deviation 2 cm.
- (a) What is the probability that the height of a student chosen at random will be greater than 175 cm?
- (b) In a group of 50 students, what is the probability of getting at least 2 students with height greater than 175 cm?
- (c) Determine the symmetric bounds around the mean that include 90% of all student lengths. $[\phi(1.645) = 0.95]$

Outline

Moment generating function

- Introduction
- Definition
- Proof
- Examples

Introduction

For a random variable X (discrete or continuous)

- The mean: E(X)
- The variance: $E(X^2) E(X)^2$

• We need to calculate E(X), E(X²),, E(Xⁿ),

2nd moment

nth moment

• Moment generating function (MGF): $M_X(t)$

1st moment

Definition

Definition

$$M_X(t) = E(e^{tX})$$

Discrete

Continuous

$$E(X) = \left[\frac{d}{dt} M_X(t)\right]_{t=0}$$

$$E(X^2) = \left[\frac{d^2}{dt^2} M_X(t)\right]_{t=0}$$

$$E(X^n) = \left[\frac{d^n}{dt^n} M_X(t)\right]_{t=0}$$

MGF for important RV's

Binomial(n,p)
$$(1-p+pe^t)^n$$
Geometric(p) $\frac{pe^t}{1-(1-p)e^t}$
Poisson(λ) $e^{\lambda(e^t-1)}$
Uniform(a,b) $\frac{e^{bt}-e^{at}}{t(b-a)}$
Exponential(λ) $\frac{\lambda}{\lambda-t}$
 $N(\mu,\sigma^2)$ $e^{t\mu+\frac{1}{2}t^2\sigma^2}$

Proof

Example: The Binomial random variable

Binomial RV

X is the *number of successes* \Rightarrow X \sim Binomial (n, p)

$$P_{X}(x) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, 2, ..., n$$

$$n = 1, 2, 3, ..., 0
$$E(X) = n p,$$

$$Var(X) = n p (1-p)$$$$

$$E(X) = n p,$$

$$Var(X) = n p (1 - p)$$

Example: The Geometric random variable

X is the *number of trials until* 1st success \Rightarrow X \sim Geometric (p)

$$P_X(x) = p (1-p)^{x-1}, \quad x = 1, 2, 3, ...$$

 0

$$E(X) = \frac{1}{p}, \qquad Var(X) = \frac{1-p}{p^2}$$

Example: The Exponential random variable

 $X \sim Exponential(\lambda)$

PDF

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \quad \lambda > 0$$

$$E(X) = 1/\lambda$$
, $Var(X) = 1/\lambda^2$

For a random variable with the following PMF

$$f_X(x) = \frac{1}{8} {3 \choose x}$$
 for $x = 0, 1, 2, 3$

Find the MGF and use it to get E(X) and V(X)

Exercise:

Consider the discrete random variable \boldsymbol{X} with probability mass function

x	0	1	2	3
P(X=x)	1/8	2/8	2/8	3/8

- 1. Find the moment generating function of X
- 2. Using the obtained formula, find E[X] and V[X]