

Overview

- Recap: last class
 - o Why annotate data?
 - Tips and tricks for components of annotation process
 - Annotator agreement metrics
 - Ethics of crowdsourcing

This class: What do we do with annotated data?

- Logistic Regression
- Neural networks
- Adjusting for model errors

Methods of Data analysis

- We want to know if (and when and how) Republicans talk about taxes more than Democrats:
 - 1. We use word statistics to find if words like "taxes" and "spending" are more common in republican speeches
 - 2. We can train a topic model, identify the tax-related topics and determine if that topic is more common in Republican vs. Democratic speech (or incorporate party affiliation as co-variate in STM)
 - 3. We could go through every speech by hand:
 - Label if each speech or sentence or word is related to taxes
 - Count if we labeled more Republican speech than Democratic speech
 - 4. We can automate #3 using machine learning

Supervised learning

Components of a probabilistic machine learning classifier

- Given m input/output pairs (x⁽ⁱ⁾,y⁽ⁱ⁾):
- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_j^{(i)}$, or sometimes $f_j(x)$.
- 2. A **classification function** that computes \hat{y} , the estimated class, via p(y|x), like the **sigmoid** or **softmax** functions.
- 3. An objective function for learning, like **cross-entropy loss**.
- An algorithm for optimizing the objective function: stochastic gradient descent.

Supervised learning

Inference Test: Given a test example x, compute p(y|x) using learned weights w and b, and return whichever label (y = 1 or y = 0) is higher probability

Feature representation

• We can craft specific features:

Var	Definition	Value in Fig. 5.2	
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3	
x_2	$count(negative lexicon) \in doc)$	2	
x_3	<pre>{ 1 if "no" ∈ doc 0 otherwise</pre>	1	
x_4	$count(1st and 2nd pronouns \in doc)$	3	
x_5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0	
x_6	log(word count of doc)	ln(66) = 4.19	

Feature representation

- Common choice for document-level tasks:
 - BOW representation (with TF-IDF weighting)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Bag-of-words document representation

Binary Classification in Logistic Regression

- Given a series of input/output pairs:
 - \circ (x⁽ⁱ⁾, y⁽ⁱ⁾)
- For each observation x⁽ⁱ⁾
 - We represent $x^{(i)}$ by a **feature vector** $[x_1, x_2, ..., x_n]$
 - We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$
 - o (multinomial logistic regression: $\hat{y} \in \{0, 1, 2, 3, 4\}$)

Introducing feature weights

For feature x_i, weight w_i tells is how important is x_i

```
o x_i ="review contains `awesome": w_i = +10
o x_j ="review contains `abysmal": w_j = -10
o x_k ="review contains `mediocre": w_k = -2
```

- Feature weights are useful for learning an accurate classifier, but they are also useful for analyzing feature importance
 - Example: we want to learn what words people perceive as more polite and respectful
 - We have annotators rate if a text is polite/respectful or not
 - We train a classifier and examine which features are weighted the highest

How to do classification

- For each feature x_i, introduce weight w_i which tells us importance of x_i
 - (Plus we'll have a bias b)
- We'll sum up all the weighted features and the bias

$$Z = W_i X_i + b$$

$$Z = W \cdot X + b$$

If this sum is high, we say y=1; if low, then y=0

We want a probabilistic classifier

We need to formalize "sum is high".

$$p(y=1|x;\theta)$$

$$p(y=0|x; \theta)$$

The problem: z isn't a probability, it's just a number!

$$z = w \cdot x + b$$

Solution: use a function of z that goes from 0 to 1

$$y = s(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

The very useful sigmoid or logistic function

Idea of logistic regression

- We'll compute w·x+b
- And then we'll pass it through the sigmoid function:
- $\sigma(w \cdot x + b)$
- And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5\\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the **decision boundary**

Loss function

- Supervised classification:
 - \circ We know the correct label y (either 0 or 1) for each x.
 - o But what the system produces is an estimate, \hat{y}
- We want to set w and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.
 - We need a distance estimator: a loss function or a cost function (#3)
 - \circ We need an optimization algorithm to update w and b to minimize the loss (#4)

Loss Function

- We want to know how far is the classifier output:
- $\hat{y} = \sigma(w \cdot x + b)$
- from the true output:
- y [= either 0 or 1]
- We'll call this difference:
- $L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$

Deriving cross-entropy loss for a single observation x

- **Goal**: maximize probability of the correct label p(y|x)
- Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

- noting:
 - o if y=1, this simplifies to \hat{y}
 - o if y=0, this simplifies to 1- \hat{y}

Deriving cross-entropy loss for a single observation x

- Goal: maximize probability of the correct label p(y|x)
- Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Take the log of both sides

$$\log p(y|x) = \log [\hat{y}^y (1 - \hat{y})^{1-y}]$$

= $y \log \hat{y} + (1 - y) \log(1 - \hat{y})$

Deriving cross-entropy loss for a single observation **x**

Goal: maximize probability of the correct label p(y|x)

$$\log p(y|x) = \log [\hat{y}^y (1 - \hat{y})^{1-y}]$$

= $y \log \hat{y} + (1 - y) \log(1 - \hat{y})$

- Now flip sign to turn this into a loss: something to minimize
- Cross-entropy loss (because is formula for cross-entropy(y, ŷ))

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

• Or, plugging in definition of \hat{y} :

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

Our goal: minimize the loss

- Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$
- And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious
- We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

Intuition of gradient descent

• How do I get to the bottom of this river canyon?

Look around me 360°

Find the direction of steepest slope down

Go that way

Gradient Descent

- The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function.
- For each dimension w_i the gradient component i tells us the slope with respect to that variable.
 - \circ "How much would a small change in w_i influence the total loss function L?"
 - \circ We express each element as a partial derivative ∂ of the loss ∂w_i
 - The gradient is then defined as a vector of these partials.
- **Gradient Descent**: Find the gradient of the loss function at the current point and move in the **opposite** direction.

$$w^{t+1} = w^t - h \frac{d}{dw} L(f(x, w), y)$$
"learning rate" hyperparameter

"learning rate" hyperparameter

determines how far we move in the direction specified by the gradient

Break

Components of a probabilistic machine learning classifier

- Given m input/output pairs (x⁽ⁱ⁾,y⁽ⁱ⁾):
- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_j^{(i)}$, or sometimes $f_j(x)$.
- 2. A **classification function** that computes \hat{y} , the estimated class, via p(y|x), like the **sigmoid** or **softmax** functions.
- 3. An objective function for learning, like **cross-entropy loss**.
- An algorithm for optimizing the objective function: stochastic gradient descent.

2. Neural Networks: Made up of units

2. Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Two-layer Neural Network with scalar output

Output layer (σ node)

hidden units $(\sigma \text{ node})$

Input layer (vector)

4. Backpropogation for Gradient Estimation

- We can train the model in a similar way, but we need the derivative of the loss with respect to each weight in every layer of the network
 - But the loss is computed only at the very end of the network!
- Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)
 - Algorithm for gradient estimation

1. Learned word embeddings instead of crafted features

Evaluation Metrics

- How can we tell if model is correct?
 - Performance on held-out test set
- Data splits:
 - Training set: used to learn model parameters
 - Validation/development set: used to learn hyperparameters, debug, choose best model instance
 - Test set: used to evaluate model performance

Evaluation

Gold Labels

Model Prediction

	Not Offensive	Offensive	Sum
Not Offensive	147	50	197
Offensive	10	15	25
Sum	157	65	222

Accuracy:
$$\frac{Number\ correct}{Total} = \frac{147+15}{222} = 73\%$$

Precision:
$$\frac{True\ Positive}{True\ Positive + False\ Positive} = \frac{15}{15+10} = 60\%$$

Recall:
$$\frac{True\ Positive}{True\ Positive + False\ Negative} = \frac{15}{15 + 50} = 23\%$$

Prevalence Estimates

- We often want to use the model for prevalence estimates
 - o Did prevalence of positive emotions increase over time?

Simple Approach: Classify and Count (CC)

$$\hat{\theta}^{CC} = \frac{1}{n} \sum_{i} 1\{p_i > 0.5\}$$

• Convert classifier output p_i to binary decision and compute average over all n data points (model estimates that x% of tweets express anger)

• What if our held-out test accuracy is 75%? Should we still count all outputs predicted by the model?

Adjusted Classify and Count (ACC)

$$\hat{ heta}^{ACC} = rac{\hat{ heta}^{CC} - ext{FPR}}{ ext{TPR} - ext{FPR}}$$

Dependent on the correctness of TPR and FPR

Probablistic Classify and Count (PCC)

$$\hat{\theta}^{PCC} = \frac{1}{n} \sum_{i} p_{i}$$

- Is typically effective if model is well-calibrated
 - \circ For all test samples where p=0.9, \sim 90% should be true positives
 - \circ For all test samples where p=0.7, ~70% should be true positives
 - \circ For all test samples where p=0.1, \sim 10% should be true positives

Design-based Supervised Learning

- Scenario:
 - \circ We have a classification model that outputs predicted values \widehat{Y}_i
 - Our model probably has non-random errors
 - $_{\circ}$ We're also willing to hand-code some data, so we have "gold" data Y_{i}
- This set-up is generalizable to lots of settings where we have some data we trust more than others
 - Some data is hand-coded and some labels are predicted
 - Some data is coded by researchers and some by crowd-workers

Note: If classification errors are totally random, we can ignore them, they won't change our prevalence estimates

Design-based Supervised Learning

$$\widetilde{Y}_i = \underbrace{\widehat{Y}_i}_{\substack{\text{Predicted} \\ \text{Outcome}}} - \underbrace{\frac{R_i}{\pi_i}(\widehat{Y}_i - Y_i)}_{\substack{\text{Bias-Correction Term}}}$$

- R_i is a binary variable taking 1 if document i is expert-coded and 0 otherwise
- π_i is the probability of sampling document i for expert coding

 Example: adjustment term will be large if we coded a small random sample of the data

Validation through simulations

Estimates and Standard Errors

References and Acknowledgements

- Slide thanks to Jurafasky & Martin: https://web.stanford.edu/~jurafsky/slp3/
- Jurafsky & Martin Chapter 5
- Jurafsky & Martin Chapter 7
- Keith, Katherine, and Brendan O'Connor. "Uncertainty-aware generative models for inferring document class prevalence." Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018.

