Alternatives to t-Tools

PAIRED T-TEST

NONPARAMETRIC PAIRED TESTS

Paired or Matched t-Tools

Paired t-Test

Known alternatively as Matched Pairs or Dependent t-Test

Assumptions

- Data are either:
 - From one sample that has been test twice (example pre and post test / repeated measures)
 - Or from a group of subjects that are thought to be similar and can thus be matched or paired (example from same family, or twins)
- Data are Normally distributed, independent between observations, and have identical variances.

Example of repeated measures						
Number	Name	Test 1	Test 2			
1	Mike	35%	67%			
2	Melanie	50%	46%			
3	Melissa	90%	86%			
4	Mitchell	78%	91%			

Example of matched pairs						
Pair	Name	Test				
1	John	35	250			
1	Jane	36	340			
2	Jimmy	22	460			
2	Jessy	21	200			

A Look at the Variance

• Suppose Y_{before} and Y_{after} are the before and after measurements for one subject

• Fact:
$$Variance(Y_{before} - Y_{after}) = \sigma_{before}^2 + \sigma_{after}^2 - 2 Covariance(Y_{before}, Y_{after})$$

• Due to the assumption about equal variances for before/after:

$$Variance(Y_{before} - Y_{after}) = 2 \sigma^2 - 2 Covariance(Y_{before}, Y_{after})$$

This is different than the two-sample t-test:

Variance
$$(\overline{Y}_{before} - \overline{Y}_{after}) = \frac{\sigma_{before}^2}{n_{before}} + \frac{\sigma_{after}^2}{n_{after}}$$

- The AMA has a diagnostic test for medical reasoning
- On average, people score about 500 points on this test
- We have data from 10 subjects who took the medical reasoning test. These subjects were randomly selected from St. Paul Hospital in Dallas
- •Not fatigued: is the baseline, taking the test before a shift
- Fatigued: is after the treatment; working for 12 operational hours prior to re-taking the test

Subject #	Not Fatigued	Fatigued
1	567	530
2	512	492
3	509	510
4	593	580
5	588	600
6	491	483
7	520	512
8	588	575
9	529	530
10	508	490

(Lower numbers = worse score)

A scientific question would be if there is a decrease in medical reasoning after a long shift

To convert this to a statistical question, we can try to test whether the <u>DIFFERENCE OF THE MEANS</u> between the fatigued scores and the non fatigued scores is less than zero

$$H_0$$
: $\mu_{fatigued} - \mu_{not\ fatigued} = 0$

$$H_A$$
: $\mu_{fatigued} - \mu_{not \ fatigued} < 0$

Since this is a medical application, let's use a 0.01 decision rule for the p-value

```
If we did this, we would be wrong! Why?
```

A fundamental assumption is violated: independence

```
PROC TTEST DATA=mrt ALPHA = 0.01 SIDE = L;
    CLASS status;
    VAR score;
RUN;
```


The TTEST Procedure Variable: score

status	N	Mean	Std Dev	Std Err	Minimum	Maximum
fatigued	10	530.2	41.3677	13.0816	483.0	600.0
notFatig	10	540.5	39.2067	12.3983	491.0	593.0
Diff (1-2)		-10.3000	40.3017	18.0235		

status	Method	Mean	99% CL Mean		Std Dev	99% CL Std Dev	
fatigued		530.2	487.7	572.7	41.3677	25.5520	94.2197
notFatig		540.5	500.2	580.8	39.2067	24.2172	89.2977
Diff (1-2)	Pooled	-10.3000	-Infty	35.7027	40.3017	28.0506	68.3134
Diff (1-2)	Satterthwaite	-10.3000	-Infty	35.7155			

Method	Variances	DF	t Value	Pr < t
Pooled	Equal	18	-0.57	0.2874
Satterthwaite	Unequal	17.948	-0.57	0.2874

Equality of Variances						
Method Num DF Den DF F Value Pr > F						
Folded F	9	9	1.11	0.8756		

Assumption Check Failure

We need to account for the dependence between the two groups

A Look (back) at the Variance

• The core result for the two-sample t-test depends crucially on independence

$$Variance(\overline{Y}_{not \ fatigued} - \overline{Y}_{fatigued}) = \frac{\sigma_{not \ fatigued}^2}{n_{not \ fatigued}} + \frac{\sigma_{fatigued}^2}{n_{fatigued}}$$

- As the subjects are the same people, the scores are very dependent
- In fact, the scores are usually positively correlated ($Covariance(Y_{not\ fatigued}, Y_{fatigued}) > 0$)

 Variance $(Y_{not\ fatigued} Y_{fatigued}) = \sigma_{not\ fatigued}^2 + \sigma_{fatigued}^2 2\ Cov(Y_{not\ fatigued}, Y_{fatigued})$
- Therefore, the actual variance is smaller than if the samples were independent

Instead of testing the **DIFFERENCE OF THE MEANS**:

$$H_A: \mu_{fatigued} - \mu_{not fatigued} < 0$$

We should test the **MEAN OF THE DIFFERENCES**:

$$H_o: \mu_{fatigued-not\ fatigued} = 0$$

 $H_A: \mu_{fatigued-not\ fatigued} < 0$

Subject	Not Fatigued	Fatigued	Difference
1	567	530	-37
2	512	492	-20
3	509	510	1
4	593	580	-13
5	588	600	12
6	491	483	-8
7	520	512	-8
8	588	575	-13
9	529	530	1
10	508	490	-18

Paired T-test

			(d_i)
Subject	Not Fatigued	Fatigued	Difference
1	567	530	-37
2	512	492	-20
3	509	510	1
4	593	580	-13
5	588	600	12
6	491	483	-8
7	520	512	-8
8	588	575	-13
9	529	530	1
10	508	490	-18

$$\bar{d} = \frac{d_1 + d_2 + \dots + d_{10}}{d_{10}}$$

 s_d is the sample std. dev.

$$SE(\bar{d}) = \frac{s_d}{\sqrt{10}}$$

$$T = \frac{\bar{d}}{SE(\bar{d})}$$

A SAS Code Comparison

```
DATA mrt:
                                        DATA mrt paired;
   INPUT score status $ 00;
                                             INPUT fatigued notFatig @@;
   DATALINES:
                                             DATALINES:
567 notFatig 512 notFatig 509 notFatig 593
                                            530 512 492 509 510 593 580 588 600
491 notFatig 520 notFatig 588 notFatig 529 567
530 fatigued 492 fatigued 510 fatigued 580
                                        491 483 520 512 588 575 529 530 508 490
483 fatigued 512 fatigued 575 fatigued 530
                                        RUN;
RUN;
PROC TTEST DATA=mrt ALPHA = 0.01 SIDE = L;
                                        PROC TTEST DATA=mrt paired ALPHA = 0.01 SIDE = L;
   CLASS status;
                                             PAIRED fatigued*notFatig;
   VAR score;
                                        RUN;
RUN;
```

(Two sample T-Test)

(Paired T-test)

A SAS Code Comparison

The TTEST Procedure Variable: score

status	N	Mean	Std Dev	Std Err	Minimum	Maximum
fatigued	10	530.2	41.3677	13.0816	483.0	600.0
notFatig	10	540.5	39.2067	12.3983	491.0	593.0
Diff (1-2)		-10.3000	40.3017	18.0235		

status	Method	Mean	99% (CL Mean	Std Dev	99% CL	Std Dev
fatigued		530.2	487.7	572.7	41.3677	25.5520	94.2197
notFatig		540.5	500.2	580.8	39.2067	24.2172	89.2977
Diff (1-2)	Pooled	-10.3000	-Infty	35.7027	40.3017	28.0506	68.3134
Diff (1-2)	Satterthwaite	-10.3000	-Infty	35.7155			

Method	Variances	DF	t Value	Pr < t
Pooled	Equal	18	-0.57	0.2874
Satterthwaite	Unequal	17.948	-0.57	0.2874

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	9	9	1.11	0.8756			

(Two sample T-Test)

The TTEST Procedure Difference: fatigued - notFatig

N	Mean	Std Dev	Std Err	Minimum	Maximum
10	-10.3000	13.5158	4.2741	-37.0000	12.0000

Mean	99% CL Mean		Std Dev	99% CL	Std Dev	
-10.3000	-Infty	1.7591	13.5158	8.3485	30.7838	

DF	t Value	Pr < t		
9	-2.41	0.0196		

(Paired T-test)

Checking the Assumptions

Also: is it reasonable for all the differences to be independent with the same variance?

Additional Information

- We can look at a PROFILE PLOT
- The lines connect the scores on the MRT in the "fatigued" versus "not fatigued" states for each subject

Conclusion

Statistical Conclusion: While there is some evidence that, on average, the fatigued subjects score lower than the non-fatigued subjects, we find the evidence not compelling enough for this application (paired one-sided t-test p-value = .0196) and hence conclude that there is no mean difference in MRT results. A 99% one tailed confidence interval for the mean difference in scores finds that a maximum plausible value for the mean difference is 1.76 points.

Scope of Inference: Since this was a random sample from St. Paul Hospital in Dallas, we can extend this result to the entire hospital.

Question: Would this maximum plausible value be positive or negative for a 95% one-tailed confidence interval?

Answer: Negative

Alternatives to the t-Test for Paired Data

Example: Nerve Site Data

```
/* Sign Test and Signed Rank Test */
                                                                             site1
                                                                                      site2
                                                                    horse
           data horse;
                                                                             14.2
                                                                                      16.4
                                                                       6
           input horse
                            site1
                                        site2;
           datalines:
                                                                               17
                                                                                       19
                  14.2
                            16.4
                          19
                                                                                      37.6
                  37.4
                            37.6
                                                                             37.4
                            6.6
                  24.2
                             14.4
                                                                       5
                                                                             11.2
                                                                                      6.6
                  35.2
                            24.4
                  35.2
                            23.2
                                                                             24.2
                                                                                      14.4
                  50.6
                            38
                            18.6
                  39.2
                                                                       9
                                                                             35.2
                                                                                      24.4
                                                                       3
                                                                             35.2
                                                                                      23.2
For each of the 9 horses, a veterinary anatomist measured the density
                                                                             50.6
                                                                                       38
of nerve cells at specified sites in the intestine.
                                                                             39.2
                                                                                      18.6
```

Using the paired t-Test

The sample size is rather small, hence the normality assumption is suspect

The Sign Test: Discussion and Assumptions

- No distributional assumptions and resistant to outliers
- It still requires some assumptions:
 - 1. Differences between paired observations are independent of other differences and come from the same distribution
 - 2. The Y values should be **INTERVAL** (though sometimes it is used with **ORDINAL** data as well)
- Can also be used as a 1-sample test for medians (instead of means)

The Sign Test: Hypotheses

The hypotheses will be in terms of **MEDIANS** instead of means

The Null Hypothesis:

```
H_0: The <u>MEDIAN</u> difference in nerve cell count between "site 1" and "site 2" is zero (Equivalently, H_0: Probability("site 1" > "site 2") = 0.5)
```

The Alternative Hypotheses:

```
H_A: The <u>MEDIAN</u> difference in nerve cell count between "site 1" and "site 2" is not zero (Two sided)

(Equivalently, H_A: Probability("site 1" > "site 2") \neq 0.5)
```

 H_A : The MEDIAN difference in nerve cell count between "site 1" and "site 2" is greater than zero (ONE SIDED)

(Equivalently, H_A : Probability("site 1" > "site 2") > 0.5)

The Sign Test: Nerve Site Data

 H_A : The MEDIAN difference in nerve cell count between "site 1" and "site 2" is greater than zero

horco

Under the alternative, we would expect that the # of positive differences, "site 1" - "site 2" > 0, should be large (call this number K)

cito1

Hiff

Sign

	$K - 0.5 - \frac{n}{2}$	norse	siter	sitez	alli	Sign	
(has a standard Z	$z = \frac{\pi}{\sqrt{2}}$	8	37.4	37.6	-0.2	-	
normal reference dist.	$\sqrt{n}/4$	4	17	19	-2	-	
under H_0 . We can also use the binomial	V	6	14.2	16.4	-2.2	-	
dist. to compute exact	$= \frac{6 - 0.5 - \frac{9}{2}}{5} = \frac{2}{3}$	5	11.2	6.6	4.6	+	
p-value)	$=\frac{72}{\sqrt{2}}=2/3$	7	24.2	14.4	9.8	+	
	$\sqrt{9/4}$	9	35.2	24.4	10.8	+	_
,	Y	3	35.2	23.2	12	+ K	= 6
P(Z >	2/3) = 0.2527	1	50.6	38	12.6	+	
	(ONE SIDED, CC P-VALUE)	2	39.2	18.6	20.6	+	
p-value)	$\sqrt{9/4}$ $2/3) = 0.2527$	7	24.235.250.6	14.4 24.4 23.2 38	9.8 10.8 12 12.6	+ + +	<

The Signed-Rank Test: Discussion and Assumptions

Nearly the same as for the sign test, save for the **bolded comments** below:

- Almost no distributional assumptions and resistant to outliers
- It still requires some assumptions:
 - 1. Differences between paired observations are independent of other differences and come from the same distribution
 - 2. The Y values should be **INTERVAL** (though sometimes it is used with **ORDINAL** data as well)
 - 3. The distribution of the differences is symmetric (see next slide for details)
- Can also be used as a 1-sample test for medians (instead of means)

The Signed-Rank Test: Hypotheses

The Signed-Rank test technically measures something known as the **PSEUDO-MEDIAN**

(in this case, the "pseudo-median" is the median of all pairwise differences of the differences)

If the distribution of the differences is symmetric, then the hypotheses will be in terms of <u>MEDIANS</u> (we will make this assumption in what follows to cut down on technicalities)

In this case, the null/alternative hypotheses are the same as for the sign test:

The Null Hypothesis:

 H_0 : The <u>MEDIAN</u> difference in nerve cell count between "site 1" and "site 2" is zero

The Alternative Hypotheses:

 H_A : The MEDIAN difference in nerve cell count between "site 1" and "site 2" is not zero (Two sided)

 H_A : The MEDIAN difference in nerve cell count between "site 1" and "site 2" is greater than zero (ONE SIDED)

$$Mean(S) = n(n + 1)/4$$
 and $SD(S) = [n(n + 1)(2n + 1)/24]^{1/2}$

$\operatorname{Mean}(S) = n(n+1)/4 \quad \text{and} \quad \operatorname{SD}(S) = [n(n+1)(2n+1)/24]^{1/2}.$ The Signed-Rank Test

Under the alternative, we would expect that the # of positive differences, K, should be large AND the sum of the ranks of the magnitudes for those K differences, | "site 1" - "site 2" |, should large as well (call this number S)

$z = \frac{S - 0.5 - Mean(S)}{1 - 100}$	horse	site1	site2	abs(diff)	Sign	rank	
SD(S)	8	37.4	37.6	0.2	-	1	
39 - 0.5 - (9 * 10)/4	4	17	19	2	-	2	
$=\frac{\sqrt{9*10*19/24}}{\sqrt{9*10*19/24}}=1.896$	6	14.2	16.4	2.2	-	3	
(has a standard	5	11.2	6.6	4.6	+	4	
normal reference	7	24.2	14.4	9.8	+	5	
dist. under H_0)	9	35.2	24.4	10.8	+	6	S = 39
P(Z > 1.896) = 0.029	3	35.2	23.2	12	+	7	3 – 33
(ONE SIDED, CC P-VALUE)	1	50.6	38	12.6	+	8	
	2	39.2	18.6	20.6	+	9	

These are two sided p-values, so the one-sided p-values are half as large

Signed and Signed-Rank tests: Horse Data

```
/* Sign Test and Signed Rank Test */
data horse;
                  site1
input horse
                              site2;
datalines;
       14.2
                  16.4
       37.4
                  37.6
                  6.6
       24.2
                  14.4
       35.2
                  24.4
                  23.2
       35.2
       50.6
                  38
       39.2
                  18.6
```

```
data horse2;
set horse;
diff = site1 - site2;
run;
proc univariate data = horse2;
var diff;
run;
```

Tests for Location: Mu0=0							
Test		Statistic	p Value				
Student's t	t 2.823066		Pr > t	0.0224			
Sign	M	1.5	Pr >= M	0.5078			
Signed Rank	S	16.5	Pr >= S	0.0547			

Conclusion and Some Notes

Statistical Conclusion: There is strong evidence that the distribution of nerve density at site 1 is larger than the distribution of nerve density at site 2 (Wilcoxon signed-rank test one-sided p-value of 0.0274). This means that for any value for nerve density, the probability of getting that value at site 1 is larger than the probability of getting that value at site 2.

Note:

The signed-rank test has more power than the sign test

(Compare the p-values 0.254 vs. 0.0274)

Both tests make very few assumptions about the distributions