Computational Complexity Theory

Lecture 1: Intro; Turing machines;

Class P and NP

Indian Institute of Science

Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:

a. Decision problem

Example: Is vertex t reachable from vertex s in graph G?

(...output is YES/NO)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:
 - a. Decision problem
 - b. Search problem

Example: Find a satisfying assignment of a boolean

formula, if it exists.

graph

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:
 - a. Decision problem
 - b. Search problem
 - c. Counting problem

Example: Find the number of cycles in a

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational **problems** come in various flavors:
 - a. Decision problem
 - b. Search problem
 - c. Counting problem
 - d. Optimization problem

Example: Find a minimum size vertex cover in a graph

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Algorithms are methods of solving problems; they are studied using formal models of computation, like Turing machines.

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Algorithms are methods of solving problems; they are studied using formal models of computation, like Turing machines memory with head (like a RAM)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Algorithms are methods of solving problems; they are studied using formal models of computation, like Turing machines memory with head (like a RAM)
 - a finite control (like a processor)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Algorithms are <u>methods</u> of solving problems; they are studied using formal <u>models of computation</u>, like <u>Turing</u> machines. (...more later)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational resources (required by models of computation) can be:
 - Space (memory cells)

- Computational complexity attempts to classify computational problems based on the amount of resources required by algorithms to solve them.
- Computational resources (required by models of computation) can be:
 - Space (memory cells)
 - Random bits
 - Communication (bit exchanges)

Some topics in complexity theory

Approximatio n algorithms

Average-case complexity

Role of Randomness

Complexit y theory

Secrecy & security

Structural complexity (P. NP. e

Some topics in complexity theory Average-case complexity Approximatio n algorithms Complexit y theory Secrecy & security Role of Randomness

Structural complexity (P, NP, etc.)

Classes P, NP, co-NP... NP-completeness.

Classes P, NP, co-NP... NP-completeness.

How hard is it to check satisfiability of a boolean formula that has exactly one or no satisfying assignment?

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation. How much space is required to check s-t connectivity?

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Counting complexity.

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Counting complexity.
 How hard is it to count the number of perfect matchings in a graph?

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Counting complexity.
- Polynomial Hierarchy.

How hard is it to check that largest independent set in G has size exactly k?

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Counting complexity.
- Polynomial Hierarchy.
 How hard is it to find a minimum size circuit
 computing the same boolean function as a
 given boolean circuit?

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Counting complexity.
- Polynomial Hierarchy.
- Boolean circuits and circuit lower bounds.

- Classes P, NP, co-NP... NP-completeness.
- Space bounded computation.
- Counting complexity.
- Polynomial Hierarchy.
- Boolean circuits and circuit lower boundsntral topic in classical complecity theory; Proving P≠NP boils down to showing circuit lower bounds.

Probabilistic complexity classes.

- Probabilistic complexity classes.
 - Does randomization help in improving efficiency?
 - Quicksort has O(n log n) expected time but O(n^2) worst case time.
 - Can SAT be solved in polynomial time using randomess?(Schoening, 1999): 3SAT can be solved in randomized O((4/3)ⁿ) time.

- Probabilistic complexity classes.
- Probabilistically Checkable Proofs (PCPs).

- Probabilistic complexity classes.
- Probabilistically Checkable Proofs (PCPs).

```
Unconditional hardness of approximation results Theorem (Hastad, 1997): If there's a poly-time algorithm to compute an assignment that satisfies at least 7/8 + e fraction of the clauses of an input 3SAT, for a constant e > 0, then P = NP.
```

- Probabilistic complexity classes.
- Probabilistically Checkable Proofs (PCPs).
- A glimpse of randomness extractors and pseudorandom generators (if time permits).

- Probabilistic complexity classes.
- Probabilistically Checkable Proofs (PCPs).
- A glimpse of randomness extractors and pseudorandom generators (if time permits). Can every polynomial-time randomized algorithm be derandomized to a deterministic polynomial-time algorithm?

Average-case Complexity

Distributional problems (if time permits).

How hard is it to solve the clique problem on inputs chosen from a "real-life" distribution?

Average-case Complexity

- Distributional problems (if time permits).
- Hardness amplification: From weak to strong hardness. In cryptographic applications, we need

n cryptographic applications, we need hard on average functions for secure encryptions.

Basic Course Info

- Course title: Computational Complexity Theory
- Credits: 3:1 Instructor: Chandan Saha
- TA: Nikhil Gupta and Vineet Nair
- Class timings: Tuesday, Thursday: 3:30-5 pm.
- Venue: CSA lecture hall 252.
- Primary reference: Computational Complexity - A Modern Approach by Sanjeev Arora and Boaz Barak.

Basic Course Info

- Prerequisites: Basic familiarity with algorithms; Some *mathematical maturity* will be helpful.
- Grading policy: Assignments 30%
 Mid-term 35%

End-term - 35%

Course homepage:

drona.csa.iisc.ernet.in/~chandan/courses/complexity17/home.html

Let's begin...

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of</u> <u>computation</u>. Turing machine is one such <u>natural</u> model.

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of</u> <u>computation</u>. Turing machine is one such natural model.

 • Memory tape(s)

 • A TM consists get of rules

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>. Turing machine is one such <u>natural</u> model.
- A TM consists of:
 - Memory tape(s)
 - A finite set of rules
- Turing machines —— A mathematical way to describe algorithms.

- An algorithm is a set of instructions or rules.
- To understand the performance of an algorithm we need a <u>model of computation</u>.
 Turing machine is one such *natural* model.
- A TM consists of:
 - Memory tape(s)
 - A finite set of rules

(e.g. of a physical realization a TM is a simple adder)

Pefinition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that

- **Definition.** A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Γis a finite set of alphabets. (Every memory cell contains an element of Γ)

- Definition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Γis a finite set of alphabets. (Every memory cell contains an element of Γ)

has a blank symbol

- Pefinition. A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Γis a finite set of alphabets. (Every memory cell contains an element of Γ)
- Q is a finite set of states. (special states: q_{start} , q_{halt})
- δ is a function from Q x Γ to Q x Γ x {L,S,R}

- **Definition.** A k-tape Turing Machine M is described by a tuple (Γ, Q, δ) such that
- M has k memory tapes (input/work/output tapes) with heads;
- Γis a finite set of alphabets. (Every memory cell contains an element of Γ)
- Q is a finite set of states. (special states: q_{start} , q_{halt})
- 6 is a function from Q x r to Q x r x known as transition function; it captures {L,S,R} the dynamics of M

Turing Machines: Computation

- Start configuration.
 - All tapes other than the input tape contain blank symbols.
 - hilderright The input tape contains the input string.
 - All the head positions are at the start of the tapes.
 - The machine is in the start state q_{start}.

Turing Machines: Computation

- \$tart configuration.
 - All tapes other than the input tape contain blank symbols.
 - The input tape contains the input string.
 - All the head positions are at the start of the tapes.
 - hilder The machine is in the start state ${\sf q}_{\sf start}$.
- Computation.
 - \nearrow A **step of computation** is performed by applying δ .
- Halting.
 - \nearrow Once the machine enters q_{halt} it stops computation.

Turing Machines: Running time

- Let f: $\{0,1\}^*$ $\{0,1\}^*$ and $\overline{+}$: N N and M be a Turing machine.
- Definition. We say M computes f if on every x in {0,1}*, M halts with f(x) on its output tape beginning from the start configuration with x on its input tape.

Turing Machines: Running time

- Let f: $\{0,1\}^*$ $\{0,1\}^*$ and $\overline{\mathbb{R}}$ N N and M be a Turing machine.
- Definition. We say M computes f if on every x in {0,1}*, M halts with f(x) on its output tape beginning from the start configuration with x on its input tape.
- Definition. M computes f in T(|x|) time, if M computes f and for every x in {0,1}*, and M halts within T(|x|) steps of computation.

In this course, we would be dealing with

- Turing machines that halt on every input.
- Computational problems that can be solved by Turing machines.

- In this course, we would be dealing with
 - Turing machines that halt on every input.
 - Computational problems that can be solved by Turing machines.
- Can every computational problem be solved using Turing machines?

- There are problems for which there exists no TM that halts on every input instances of the problem and outputs the correct answer.
 - Input: A system of polynomial equations in many variables with integer coefficients.
 - Output: Check if the system has integer solutions.
 - Question: Is there an algorithm to solve this problem?

There are problems for which there exists no TM that halts on every input instances of the problem and outputs the correct answer.

A typical input instance:

$$x^2y + 5y^3 = 3$$

$$x^2 + z^5 - 3y^2 = 0$$

$$y^2 - 4z^6 = 0$$

- There are problems for which there exists *no* TM that halts on every input instances of the problem and outputs the correct answer.
 - Input: A system of polynomial equations in many variables with integer coefficients.
 - Output: Check if the system has integer solutions.
 - Question: Is there an algorithm to solve this problem?
 (Hilbert's tenth problem, 1900)

- There are problems for which there exists *no* TM that halts on every input instances of the problem and outputs the correct answer.
 - Input: A system of polynomial equations in many variables with integer coefficients.
 - Output: Check if the system has integer solutions.
 - Question: Is there an algorithm to solve this problem?
- Theorem. There does not exist any algorithm (realizable by a TM) to solve this problem.

Why Turing Machines?

TMs are natural and intuitive.

• Church-Turing thesis: "Every physically realizable computation device – whether it's based on silicon, DNA, neurons or some other alien technology – can be simulated by a Turing machine".

--- [quote from Arora-

Barak's book]

Why Turing Machines?

- TMs are natural and intuitive.
- Church-Turing thesis: "Every physically realizable computation device whether it's based on silicon, DNA, neurons or some other alien technology can be simulated by a Turing machine".

--- [quote from Arora-Barak's

book]

 Several other computational models can be simulated by TMs.

Basic facts about TMs

Time constructible functions. A function T: N N is <u>time constructible</u> if $T(n) \ge n$ and there's a TM that computes the function that maps x to T(|x|) in O(T(|x|)) time.

• Examples: $T(n) = n^2$, or 2^n , or n log n

Turing Machines: Robustness

- Let $f: \{0,1\}^* \{0,1\}^*$ and $\mathbb{H} \in \mathbb{N}$ be a time constructible function.
- Binary alphabets suffice.
 - If a TM M computes f in T(n) time using Γ as the alphabet set then there's another TM M' that computes f in time 4.log |Γ| . T(n) using {0, 1, blank} as the alphabet set.

Turing Machines: Robustness

- Let f: $\{0,1\}^{*}$ $\{0,1\}^{*}$ and T: $\rightarrow N$ be a time constructible function.
- Binary alphabets suffice.
 - If a TM M computes f in T(n) time using Γ as the alphabet set then there's another TM M' that computes f in time 4.log $|\Gamma|$. T(n) using $\{0, 1, blank\}$ as the alphabet set.
- A single tape suffices.
 - If a TM M computes f in T(n) time using k tapes then there's another TM M' that computes f in time 5k. T(n)² using a single tape that is used for input, work and output

Every TM can be represented by a finite string over {0,1}.

TM.

...simply encode the description of the

Every TM can be represented by a finite string over {0,1}.

Every string over {0,1} represents some
 TM.

...invalid strings map to a fixed, trivial

TM.

- Every TM can be represented by a finite string over {0,1}.
- Every string over {0,1} represents some TM.
- Every TM has infinitely many string representations.
 - ... allow padding with arbitrary number of 0's

Every TM can be represented by a finite string over {0,1}.

Every string over {0,1} represents some
 TM.

 Every TM has infinitely many string representations.

{0,1} Ox

- Every TM can be represented by a finite string over {0,1}.
- Every string over {0,1} represents some TM.
- Every TM has infinitely many string representations.
- A TM (i.e. its string representation) can be given as an input to another TM!!

Universal Turing Machines

- Theorem. There exists a TM U that on every input x, α in $\{0,1\}^*$ outputs $M_{\alpha}(x)$.
- Further, if M_{α} halts within T steps then U halts within C. T. log T steps, where C is a constant that depends only on M_{α} 's alphabet size, number of states and number of tapes.

Universal Turing Machines

- Theorem. There exists a TM U that on every input x, α in $\{0,1\}^*$ outputs $M_{\alpha}(x)$.
- Further, if M_{α} halts within T steps then U halts within C. T. log T steps, where C is a constant that depends only on M_{α} 's alphabet size, number of states and number of tapes.
- Physical realization of UTMs are modern day electronic computers.

Complexity classes P and NP

In the initial part of this course, we'll focus primarily on decision problems.

- In the initial part of this course, we'll focus primarily on decision problems.
- Decision problems can be naturally identified with boolean functions, i.e. functions from {0,1}* to {0,1}.

- In the initial part of this course, we'll focus primarily on decision problems.
- Decision problems can be naturally identified with boolean functions, i.e. functions from {0,1}* to {0,1}.
- Boolean functions can be naturally identified with sets of {0,1} strings, also called languages.

Decision problems Boolean functions Languages

• Definition. We say a TM M <u>decides a</u> <u>language</u> $L \subseteq \{0,1\}^*$ if M computes f_L , where $f_L(x) = 1$ if and only if $x \in L$.

Complexity Class P

Let T: N→ N be some function.

- Definition: A language L is in DTIME(T(n))
 if there's a TM that decides L in time
 O(T(n)).
- Defintion: Class P = U DTIME (nc).

Complexity Class P

Let T: N→ N be some function.

- Definition: A language L is in DTIME(T(n))
 if there's a TM that decides L in time
 O(T(n)).
- Defintion: Class ₱ = U DTIME (nc).

Deterministic polynomial-time

- Cycle detection (DFS)
 - Check if a given graph has a cycle.

- Cycle detection
- Solvability of a system of linear equations
 (Gaussian elimination)
 - Given a system of linear equations over check if there exists a common solution to all the linear equations.

- Cycle detection
- Solvability of a system of linear equations
- Perfect matching (Edmonds 1965)
 - Check if a given graph has a perfect matching

- Cycle detection
- Solvability of a system of linear equations
- Perfect matching
- Primality testing (AKS test 2002)
 - Check if a number is prime