## DLD The Karnaugh Map

Department of Computer science & IT

#### Introduction

- A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the minimum expression.
- A Karnaugh map is similar to a truth table because it presents all of the possible values of input variables and the resulting output for each value.
- Instead of being organized into columns and rows like a truth table, the Karnaugh map is an array of cells in which each cell represents a binary value of the input variables.

#### Introduction

- The cells are arranged in a way so that simplification of a given expression is simply a matter of properly grouping the cells.
- The number of cells in a Karnaugh map, as well as the number of rows in a truth table, is equal to the total number of possible input variable combinations.
- For three variables, the number of cells is 2<sup>3</sup> = 8.
- For four variables, the number of cells is 2<sup>4</sup> = 16.

## The 3-Variable Karnaugh Map

 The 3-variable Karnaugh map is an array of eight cells (2<sup>3</sup>).



#### Point to be Noted...

- In case of K-maps the row and column differ by a single bit i.e. to write numerically the index it is (00 01 11 10) as we move along, there is a change of only one bit and this is the functionality of Gray code.
- Cells that differ by only one variable are adjacent.
- Cells with values that differ by morethan one variable are not adjacent.

## Wrap-around Adjacency

- Physically, each cell is adjacent to the cells that are immediately next to it on any of its four sides.
- A cell is not adjacent to the cells that diagonally touch any of its corners.
- Also, the cells in the top row are adjacent to the corresponding cells in the bottom row and the cells in the
- outer left column are adjacent to the corresponding cells in the outer right column.
- This is called "wrap-around" adjacency because you can think of the map as wrapping around from top to bottom to form a cylinder or from left to right to form a cylinder.

## Mapping Directly from a Truth Table

| Inputs A B C | Output<br>X |  |  |
|--------------|-------------|--|--|
| 0 0 0        | 1 -         |  |  |
| 0 0 1        | 0           |  |  |
| 0 1 0        | 0           |  |  |
| 0 1 1        | 0           |  |  |
| 1 0 0        | 1           |  |  |
| 1 0 1        | 0           |  |  |
| 1 1 0        | 1           |  |  |
| 1 1 1        | 1           |  |  |



## Four Variable Karnaugh Map

## The 4-Variable Karnaugh Map

 The 4-variable Karnaugh map is an array of sixteen cells.



#### Mapping from Truth Table

| A | В | C | D | X |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |



## Mapping a standard SOP Expression on K-Map

### Mapping a Standard SOP Expression

- Following steps to be followed when mapping a standard SOP expression:
- Step 1: Determine the binary value of each product term in the standard SOP expression.
- After some practice, you can usually do the evaluation of terms mentally.
- Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell having the same value as the product term.

#### Mapping a Standard SOP Expression



$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$



$$\overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$$



$$\overline{ABCD} + \overline{ABCD} + \overline{AB$$



$$\overline{A}\overline{B}CD + \overline{A}\overline{B}\overline{C}\overline{D} + AB\overline{C}D + AB\overline{C}D + AB\overline{C}D + \overline{A}\overline{B}\overline{C}D + A\overline{B}C\overline{D}$$



# Mapping Non Standard SOP on K-Map

#### Mapping a SOP Expression

- Usually, when working with SOP expressions, the 0s are left off the map.
- Following steps to be followed when mapping a standard SOP expression:
- Step 1: Determine the binary value of each product term in the standard SOP expression.
- After some practice, you can usually do the evaluation of terms mentally.
- Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell having the same value as the product term.

Map the following SOP expression on a Karnaugh map:  $\overline{A} + A\overline{B} + AB\overline{C}$ .

| $\overline{A}$ | $+$ $A\overline{B}$ $+$ | $-AB\overline{C}$ | ABC | 0 |
|----------------|-------------------------|-------------------|-----|---|
| 000            | 100                     | 110               | 00  | 1 |
| 001            | 101                     |                   | 01  | 1 |
| 010            |                         |                   | 11  | 1 |
|                |                         |                   | 10  | 1 |

$$\overline{BC} + A\overline{B} + AB\overline{C} + A\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}CD$$

| $\overline{BC}$ | $A\overline{B}$ | $AB\overline{C}$ | $A\overline{B}C\overline{D}$ | $\overline{ABCD}$ | $A\overline{B}CD$ |
|-----------------|-----------------|------------------|------------------------------|-------------------|-------------------|
| 0000            | 1000            | 1100             | 1010                         | 0001              | 1011              |
| 0001            | 1001            | 1101             |                              |                   |                   |
| 1000            | 1010            |                  |                              |                   |                   |
| 1001            | 1011            |                  |                              |                   |                   |

| AB | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 1  | 1  |    |    |
| 01 |    |    |    |    |
| 11 | ١  | 1  |    |    |
| 10 | 1  | ١  | 1  | 1  |