Complejidad del Algoritmo de Busqueda Binaria

El algoritmo de la busqueda binaria consiste en los siguientes pasos:

- 1. Dividir el rango o lista de elementos en un punto medio.
- 2. Se realiza una comparacion entre el valor buscado y el valor ubicado en el punto medio.
- 3. De ser diferentes se procede buscar en la zona donde existen mas posibilidades que se encuentre dicho dato (Derecha o izquierda).
- 4. Repetimos nuevamente el paso 1 hasta encontrar o no el valor deseado.

Entonces aplicando lo indicado se tiene los siguientes casos para un conjunto de N elementos donde para ciertos valores de n se tiene lo siguiente:

• N = 1

1

Se realizan 1 Comparacion como maximo.

• N = 3

Se realizan 2 comparaciones como maximo.

• N = 7

Se realizaran 3 comparaciones como maximo.

• N = 15

Se realizaran 4 comparaciones como maximo.

De lo encontrado se puede formar la siguiente tabla:

n	Comparaciones (m)
1	1
3	2
7	3
15	4

De la tabla podemos deducir que para n se realizaran 2^m - 1 donde m es la cantidad de comparaciones a realizar, se procede a despejar m.

$$n = 2^m - 1$$

 $n + 1 = 2^m$

$$\log_2 (n + 1) = \log_2 2^m$$

Por lo tanto se tiene que: $\mathbf{m} = \log_2 (n + 1)$ donde $\mathbf{m} > = 1$ y m representa la cantida de comparaciones a realizar.

Asumiendo que siempre se podra obtener un numero n que sea aprimadamente $(2^m - 1)$, para un N grande se tiene que la compejidad sera:

O (n) =
$$\log_2 (n + 1)$$

Por lo tanto la complejidad de dicho algorito es logaritmica.

Complejidad =
$$O(log_2n)$$