IPA and two large Kimtechs.

1 Lectures 1 and 2

	Perpendicular Boundary Conditions		Parallel Boundary Conditions
Electric Field Bdry Cdtns	$\left(ec{E}_{1}-ec{E}_{2} ight)$	$ ight)\cdot ec{n}=rac{\sigma}{\epsilon_0}$	$\left(\vec{E}_1 - \vec{E}_2\right) \cdot \vec{t} = 0$
Magnetic Field Bdry Cdtns	$\left(ec{B}_{1}-ec{B}_{2} ight)$	$(\vec{n} - \vec{n}) \cdot \vec{n} = 0$	$\left(ec{B_1} - ec{B_2} ight) \cdot ec{t} = \mu_0 ec{J}$

2 Lecture 3

$$\vec{A} = \frac{\mu_0}{4\pi} \int_{current} \frac{\vec{J}}{r} dV$$

$$d\vec{B}(P) = \frac{\mu_0}{4\pi} I dl \frac{\vec{t} \times \vec{r}_{QP}}{r_{QP}^3}$$

3 Lecture 4

Solving for the vector potential can be thought of as solving for the electrostatic potential where the current is replaced with a volume charge density : $c^2 \rho \to J$.

4 Lecture 5

Relativity of motion determines that B fields change into E fields and vice-versa. Charge value is independent of reference frame but volume (change density) is not.

5 Lecture 6

Electrostatic energy can be written as

$$U_e = \int_{\text{all space}} \rho \phi dV - \frac{1}{2} \epsilon_0 \int_{(all space)} ||\nabla \phi||^2 dV$$