Chapter 2

Random Matrices

(**Definition**) Random Matrix. Suppose we have an arbitrary matrix, $P \in \mathcal{M}_{\mathbb{R}}[M, N]$ for some $M, N \in \mathbb{N}^+$. Then, we call P a random matrix is all of its entries p_{ij} are random variables.

(Definition) Stochastic Matrix

(Definition) Ergodic Matrix.

Ergodicity

• .

Notation

Suppose we have a $M \times M$ square matrix \mathbf{P} (for some $M \in \mathbb{N}$) on a field F. We notate $\mathbf{P} \in \mathcal{M}_F[M^2]$. Take $\mathbf{P} \in \mathcal{M}_F[M^2]$.

Structural Properties of Matrices

If **P** is symmetric, then its upper triangle is equal to the lower triangle.

If \mathbf{P} is tridiagonal, then it is a band matrix of width 1.

Entry-wise Properties of Matrices

```
If \mathbf{P} is row-stochastic, then \forall i: \sum_j p_{ij} = 1. 
\mathsf{RM\_stoch} \leftarrow \mathsf{function}(\mathsf{M}, \mathsf{symm} = \mathsf{F}, \mathsf{sparsity} = \mathsf{F}) \{ \dots \} 
If \mathbf{P} is \mathcal{N}(\mu, \sigma^2), then its entries satisfy p_{ij} \sim \mathcal{N}(\mu, \sigma^2). 
\mathsf{RM\_normal} \leftarrow \mathsf{function}(\mathsf{M}, \mathsf{normal\_args} = \mathsf{c}(\mathsf{0}, \mathsf{1}), \mathsf{symm} = \mathsf{F}) \{ \dots \} 
If \mathbf{P} is p-\mathsf{sparse}, then \forall i,j \in S_M: p_{ij}/c \sim \mathsf{Bern}(p) \text{ for some } c \in \mathbb{R}. 
\mathsf{RM\_erdos} \leftarrow \mathsf{function}(\mathsf{M}, \mathsf{p\_sparse}) \{ \dots \}
```