Machine Learning

Árboles de decisión

Christian Oliva Moya Pedro Ramón Ventura Gómez

Introducción - Árboles de decisión

Un árbol de decisión es un algoritmo de ML:

- Supervisado
- De clasificación
- No paramétrico

Divide el espacio de forma recursiva utilizando reglas de decisión

Pongamos un ejemplo:

Pongamos un ejemplo:

Attribute 1

Pongamos un ejemplo:

Pongamos un ejemplo:

Árboles de decisión - Conceptos

- Diagrama en forma de árbol que representa condiciones sucesivas sobre los atributos para clasificar una instancia
- Tipos de nodos:
 - Nodos internos:
 - Definen preguntas condicionales sobre los atributos
 - Nodos hoja:
 - Ejemplos que cumplen la condición y dan una predicción
- Objetivo: Construir el árbol más sencillo que mejor separe los ejemplos por clase

Árboles de decisión

• ¿Cómo funciona?

Es un algoritmo iterativo. Mientras exista un corte que mejore el criterio de separación:

- 1. Se selecciona la mejor separación de acuerdo al criterio
- 2. Se añade la condición al árbol incluyendo las posibles respuestas
- 3. Se calculan los nodos hoja de la nueva condición añadida
- 4. Criterio de parada. Si no se cumple se vuelve al paso 1
- ¿Cómo saber la mejor separación?
- ¿Qué criterio de parada puede haber?

Árboles de decisión - Impureza: Entropía

¿Cómo saber la mejor separación?

La entropía mide la incertidumbre en la fuente de información, es decir...

Cómo de desordenados están los ejemplos

$$E(X) = -\sum_{i=1}^{c} P(C_i) log_2(P(C_i))$$

Donde $P(C_i)$ es la proporción de ejemplos que son clasificados como clase C_i

Árboles de decisión - Impureza: Gini

¿Cómo saber la mejor separación?

Una métrica alternativa es la impureza de Gini

Mide la probabilidad de clasificar incorrectamente un dato aleatorio si seguimos la distribución:

$$Gini(X) = 1 - \sum_{i=1}^{c} P(C_i)^2$$

Donde P(C_i) es la proporción de ejemplos que son clasificados como clase C_i

Árboles de decisión - Impureza

¿Cómo saber la mejor separación?
Otras funciones de impureza:

Criterion	Impurity function $I(q_1, q_2,, q_C)$	Comments
Expected error	$1 - \max(q_1, q_2,, q_C)$	Causes many ties
GINI (CART)	$1-\sum q_k^2$	If 2 classes: $2 q_1 q_2$
Entropy (ID3,C5)	$-\sum q_k \log_2 q_k$	$0\log_2 0 \equiv 0$
DKM	$2\sqrt{q_1\cdot q_2}$	Only 2 classes. Robust for unbalanced classes
CHAID	χ^2	"Chi-square Automatic Interaction Detector"

Árboles de decisión - Impureza

• ¿Cómo saber la mejor separación?

En cualquier caso, buscamos la separación que minimice la impureza global:

global
$$I(s) = \sum_{j=1}^{n} P_{j} \cdot I(q_{1}(j), q_{2}(j), ..., q_{C}(j))$$

Ejemplo de ejecución con impureza de Gini y dos clases:

Gini with **two classes:** $I = 2 q_1 q_2$

Total impurity of "attribute 0 > 2.5"?

response = Yes:

$$I = 2 \cdot \frac{4}{5} \cdot \frac{1}{5} = \frac{8}{25}$$

response = No:

$$I = 2 \cdot \frac{2}{4} \cdot \frac{2}{4} = \frac{1}{2}$$

Total impurity =
$$P(Yes) \cdot \frac{8}{25} + P(No) \cdot \frac{1}{2} = \frac{5}{9} \cdot \frac{8}{25} + \frac{4}{9} \cdot \frac{1}{2} = \frac{2}{5}$$

Ejemplo de ejecución con impureza de Gini y dos clases:

Query	Yes		No		1/->
	n_+ , n	1	n ₊ , n ₋	1	l(s) total
$x_0 > 1.5$	6, 2	$\frac{3}{8}$	0, 1	0	$\frac{1}{3} = 0.333$
$x_0 > 2.5$	4, 1	$\frac{8}{25}$	2, 2	$\frac{1}{2}$	$\frac{2}{5} = 0.400$
$x_0 > 3.5$	2, 1	$\frac{4}{9}$	4, 2	4 9	$\frac{4}{9} = 0.444$
$x_1 > 1.5$	5, 2	$\frac{20}{49}$	1, 1	$\frac{1}{2}$	$\frac{3}{7} = 0.429$
$x_1 > 2.5$	4, 0	0	2, 3	$\frac{12}{25}$	$\frac{4}{15} = 0.267$
$x_1 > 3.5$	2, 0	0	4, 3	$\frac{24}{49}$	$\frac{8}{21} = 0.381$

Best query: attribute $_1 > 2.5$ (lowest total impurity)

Árboles de decisión - Criterio de parada

- ¿Qué criterio de parada puede haber?
 - Profundidad máxima del árbol
 - Que la impureza sea menor que un umbral
 - Número mínimo de datos en un nodo hoja. En este árbol el mínimo es 10.

Árboles de decisión - Ventajas e Inconvenientes

Ventajas

Se pueden representar visualmente. Son fáciles de interpretar

Realizan una selección de características de forma implícita

Soportan datos categóricos y numéricos

Son muy rápidos

Inconvenientes

Rápido sobreajuste (overfitting) a los datos de entrenamiento con árboles con mucha profundidad

Árboles sesgados para clases no balanceadas

Es un algoritmo Greedy