

Computational Ocean Acoustics

- Ray Tracing
- Wavenumber Integration
- Normal Modes
- Parabolic Equation

Wavenumber Integration

- Range-independent Integral Transform solution
- Exact depth-dependent solution
 - Global Matrix Approach
 - Propagator Matrix Approach
 - Invariant Embedding
- Numerical Integration
 - Fast-Field Program (FFP)
 - Fast Hankel Transform
- Numerical issues:
 - Numerical stability of depth solution
 - Aliasing and wrap-around
- Numerical Examples

Complex integration contours for evaluation of wavenumber integral. The contour C2 is used for FFP integration, while the 'exact' hyperbolic tangent contour indicated by the dashed line is used for trapezoidal rule integration

Complex Contour Integration

$$g(r,z) \simeq h(r) \int_C g(k_r,z) \sqrt{k_r} e^{ik_r r} dk_r,$$

 $\simeq h(r) \int_{k_{\min}}^{k_{\max}} g(k_r - i\epsilon, z) \sqrt{k_r - i\epsilon} e^{i(k_r - i\epsilon)r} dk_r.$

13.853 Lecture 10

Complex Contour Integration

$$g(r,z) \simeq h(r) \int_C g(k_r,z) \sqrt{k_r} e^{ik_r r} dk_r ,$$

 $\simeq h(r) \int_{k_{\min}}^{k_{\max}} g(k_r - i\epsilon, z) \sqrt{k_r - i\epsilon} e^{i(k_r - i\epsilon)r} dk_r .$

$$g(r,z) e^{-\epsilon r} \simeq h(r) f(r,z) e^{-\epsilon r}$$

$$= h(r) \int_{k_{\min}}^{k_{\max}} g(k_r - i\epsilon, z) \sqrt{k_r - i\epsilon} e^{ik_r r} dk_r.$$

$$g^{*}(r_{j},z) e^{-\epsilon r} = h(r_{j}) e^{ik_{\min}r_{j}} f^{*}(r_{j},z) e^{-\epsilon r}$$

$$= h(r_{j}) \sum_{n=-\infty}^{\infty} f(r_{j} + nR, z) e^{-\epsilon (r_{j} + nR)}$$

$$\simeq h(r_{j}) \Delta k_{r} e^{ik_{\min}r_{j}} \sum_{\ell=0}^{M-1} \left[g(k_{\ell} - i\epsilon, z) e^{ir_{\min}\ell \Delta k_{r}} \sqrt{k_{\ell} - i\epsilon} \right] e^{i\frac{2\pi\ell j}{M}},$$

$$g(r_{j},z) \simeq h(r_{j}) f(r_{j},z)$$

$$= e^{\epsilon r_{j}} h(r_{j}) \Delta k_{r} e^{ik_{\min}r_{j}} \sum_{\ell=0}^{M-1} \left[g(k_{\ell} - i\epsilon, z) e^{ir_{\min}\ell \Delta k_{r}} \sqrt{k_{\ell} - i\epsilon} \right] e^{i\frac{2\pi\ell j}{M}}$$

$$- h(r_{j}) \sum_{n\neq 0} f(r_{j} + nR, z) e^{-\epsilon nR}.$$

$$\epsilon = \frac{3}{R \log e} = \frac{3}{2\pi (M - 1) \log e} (k_{\text{max}} - k_{\text{min}}),$$

Example: Pekeris waveguide with pressure-release surface and penetrable fluid bottom

See Fig 4.7 in Jensen, Kuperman, Porter and Schmidt. *Computational Ocean Acoustics.* New York: Springer-Verlag, 2000.

Fast Hankel Transforms

$$g(r) = \int_0^\infty g(k_r) k_r J_0(k_r r) dk_r$$

= $\frac{1}{2} \int_0^\infty g(k_r) k_r \left[H_0^{(1)}(k_r r) + H_0^{(2)}(k_r r) \right] dk_r$

FFP Asymptotics

$$\lim_{kr \to \infty} H_0^{(1,2)}(k_r r) = \sqrt{\frac{2}{\pi k_r r}} e^{\pm i[k_r r - \frac{\pi}{4}]},$$

$$g(r) \simeq g^*(r) = \sqrt{\frac{1}{2\pi r}} \int_0^\infty g(k_r) \sqrt{k_r} \left[e^{i[k_r r - \frac{\pi}{4}]} + e^{-i[k_r r - \frac{\pi}{4}]} \right] dk_r$$

Fourier Transform Representation

$$g^*(r) = \int_{-\infty}^{\infty} f(k_r) e^{ik_r r} dk_r,$$

Integration kernel

$$f(k_r) = \begin{cases} g(-k_r)\sqrt{\frac{-k_r}{2\pi r}}e^{i\frac{\pi}{4}} & k_r < 0\\ g(k_r)\sqrt{\frac{k_r}{2\pi r}}e^{-i\frac{\pi}{4}} & k_r \ge 0 \end{cases}$$

Fast Hankel Transform

$$g(r) = g^*(r) + \int_0^{20\pi/r} g(k_r) w(k_r r) [k_r J_0(k_r r)] dk_r$$
$$-\sqrt{\frac{k_r}{2\pi r}} \left(e^{i(k_r r - \frac{\pi}{4})} + e^{-i(k_r r - \frac{\pi}{4})} \right)] dk_r$$

Weight function

$$w(k_r r) = \begin{cases} 1 & k_r r \le 10\pi \\ \left[1 + \cos\left(\pi(kr - 10\pi)/(10\pi)\right)\right]/2 & 10\pi < k_r r < 20\pi \end{cases}$$

Bessel Function Table

$$kr = n\Delta k_r \Delta r, \quad n = 0, \dots 20\pi/(\Delta k_r \Delta r),$$

Aliasing associated with Fast Hankel Transform integration for typical Pekeris waveguide problem. The symmetric wavenumber kernel showing the presence of a two attenuated modes is sketched in the upper plot, with the $\sqrt{k_r}$ introduced by the FFP approximation indicated by the dashed curve near the origin. The discrete wavenumber integration yields the periodic result shown in the lower frame by a dashed curve, approximating the correct continuous result shown as a solid curve. The discrete result is a superposition of the 'true' field produced by the mirror sources in all the range windows.

Complex integration contours for evaluation of wavenumber integral. The contour C2 is used for FFP integration, while the 'exact' hyperbolic tangent contour indicated by the dashed line is used for trapezoidal rule integration

Trapezoidal Rule Integration

Wavenumber Discretization

$$\Delta k_r R < \frac{\pi}{4} \,,$$

Exact Complex Contour

$$\overline{k}_r = \begin{cases} k_r (1 - i\epsilon \tanh k_r / 6\Delta k_r), & k_r / 6\Delta k_r \le 20\\ k_r (1 - i\epsilon), & k_r / 6\Delta k_r > 20, \end{cases}$$

Hankel Transform Compensation

$$g(r) = \int_0^\infty g(k_r) [w(k_r r) k_r J_0(k_r r) + (1 - w(k_r r)) \sqrt{\frac{k_r}{2\pi r}} \left(e^{i(k_r r - \frac{\pi}{4})} + e^{-i(k_r r - \frac{\pi}{4})} \right)] dk_r ,$$

Weight function

$$w(k_r r) = \begin{cases} 1 & k_r r \le 10\pi \\ [1 + \cos(\pi(kr - 10\pi)/(10\pi))]/2 & 10\pi < k_r r < 20\pi \\ 0 & k_r r > 20\pi \end{cases}$$

Numerical Implementation

- Use FFP approximation, evaluated either by direct numerical integration or FFT.
- Compute lookup table for $J_0(x)$, $x < 20\pi$ with $\simeq 40$ samples per period ($\simeq 400$) values.
- Modify g(r, z) by a tapered difference between the Bessel function and of the asymptotic Hankel function for all values of $k_r r < 20\pi$.
- Computationally efficient by Lagrange inetrpolation in Bessel function lookup table.

Example: Free space Green's function

$$p(r,z) = \int_0^\infty \frac{e^{ik_z|z|}}{ik_z} k_r J_0(k_r r) dk_r$$

Acoustic point source field. (a) shows the FFP approximation which clearly breaks down at steep angles and short ranges, while (b) shows the correct spherical spreading behavior at all propagation angles, produced using Eq. (1)

Filon Integration

$$\int_{a}^{b} f(k_r) e^{Sg(k_r)} dk_r = \begin{cases} \frac{\Delta k_r}{S \Delta g} \left[\Delta \left\{ f e^{Sg} \right\} - \frac{\Delta f \Delta \left\{ e^{Sg} \right\}}{S \Delta g} \right], & \Delta g \neq 0 \\ \frac{\Delta k_r}{2} \left[f(a) e^{Sg(a)} + f(b) e^{Sg(b)} \right], & \Delta g = 0 \end{cases}$$

$$g(r_j, z) \simeq \frac{w_j}{\sqrt{2\pi r_j}} e^{i\left[k_{\min}r_j - \frac{\pi}{4}\right]} \sum_{\ell=0}^{M-1} \left[g(k_\ell, z) e^{ir_{\min}\ell\Delta k_r} \sqrt{k_\ell}\right] e^{i\frac{2\pi\ell j}{M}}.$$

Range-dependent quadrature weights

$$w_j = \Delta k_r \left[\frac{\sin(\Delta k_r r_j/2)}{\Delta k_r r_j/2} \right]^2$$
.

Adaptive Integration

Numerical Examples Pekeris Waveguide with Elastic Bottom

Shallow WaterWaveguide with Fast Shear Bottom

[See Jensen, Fig 4.9]

$$C_S = 600 \text{ m/s}$$

Stratified Elastic Bottom Scholte wave – Fast Sand Seabed

Scholte Waves in Shallow Water

Fig. 1 Phase-velocities of the lowest modes in shallow water over an extremely "hard" rock-bottom

Fig. 2 Phase-velocities of the lowest modes in shallow water over a relative "soft" rock-bottom

Fig. 8 Installation of the sensor package on the sea floor and mooring of its radio buoy in shallow water

Fig. 12 Radial and vertical particle velocity of the interface wavelet in Fig. 11 with the resulting hodographs

Scholte Waves Inversion For Seabed Shear Properties

[See Jensen, Figs 8.9, 8.10, 8.11]

Seabed Shear Properties from Scholte Wave Inversions

Table 1 Interface wave experiments

Investigators	Year	Water depth (m)	Bottom type	Centre freq. (Hz)	Measured att. (dB/km)	Inferred shear speed (m/s)	Inferred shear att. (dB/λ_8)
Bucker, Whitney, Keir	1964	1 20	sand sand	20 25	300 200	100 1 9 5	1.4 1.4
Davies ⁷	1965	4410	-	6	-	50-190	-
Herron, Dorman, Drake ⁸	1968	5	silt	5	-	40-115	
Hamilton et al. ⁹	1970	390 985	silt silt	- '	-	100 90	- -
Schirmer ¹⁰	1980	130	sand	4.5	7	120	0.2
McDaniel, Beebe ^{ll}	1980	32	sand	10	-	200	-
Essen et al. 12	1981	1	silt	4	-	75-250	-
Tuthill et al. 13	1981	7	mud	4.5	-	25-50	-
Whitmarsh, Lilwall ¹⁴	1982	5260	-	4.5	-	25-170	-
Holt, Hovem, Syrstad ¹⁵	1983	_	sand	35	600	135-195	2.3
Brocher et al. 16	1983	67	sand	5	0.43	260	0.02
Schmalfeldt, Rauch ¹⁷	1983	20 30	-	3 3	10 2	100 150	0.3 0.1

Reproduced by permission from Jensen, Finn B. and Henrick Schmidt."Shear Properties of Ocean Sediments Determined from Numerical Modelling of Scholte Wave Data." In Ocean Seismo-acoustics: Low Frequency Underwater Acoustics (NATO Conference Series, Marine Sciences). Edited by Tuncay Akal and Jonathan M. Berkson. New York: Plenum Press, 1986.

Shallow WaterWaveguide with Slow Shear Bottom

[See Jensen, Fig 4.10]

$$C_s = 300 \text{ m/s}$$

Stratified Elastic Bottom Scholte wave – Silt Seabed

Shallow WaterWaveguide with Porous, Unconsolidated Sand Bottom

Porous Sand – Permeability $k = 10^{-10}$

Shallow WaterWaveguide with Porous, Unconsolidated Sand Bottom

Porous Sand – Permeability $k = 10^{-10}$

Seabed Dispersion Sand Seabed - Elba

See Maguer, Pouliquen, Bovio, Fox, and Schmidt. "Comparison between subcritical penetration models and *in situ* data." Journal of the Acoustical Society of America 103, no. 5 (May 1998): 2901.

Shallow WaterWaveguide Transversely Isotropic Bottom

Silt 1600/200 $< C_p > = 1800 \text{ m/s}$ Sand 2000/400 $< C_s > = 300 \text{ m/s}$

INTEGRAND

Stratified Elastic Bottom Evanescent Tunneling Regime

Evanescent Wave Tunneling

See Fig. 4.14 in Jensen, Kuperman, Porter and Schmidt. *Computational Ocean Acoustics*. New York: Springer-Verlag, 2000.

10

Shallow Water Seismo-Acoustics

- Bottom-limited Waveguide Propagation
 - Critical angles 15-25 degrees
 - Normal mode propagation characteristics for longer ranges
 - Branch line integral contribution significant for ranges < 5-10 H
 - Evanescent penetration and scattering dominant tunneling
 - Wavenumber integration modeling 'exact' and decomposes into physically interpretable components
- Elasticity
 - Very low shear speeds -<10-100 m/s makes shear a perturbative effect
 - Scholte waves dominating propagation mechanism below 10 Hz
- Porosity of sandy sediments
 - Strong dispersion in 1-10 kHz regime
- Transverse Isotropy
 - Seasonal sedimentation creates significant anisotropy (P: 10%, S: 30%)