AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph starting at page 4, line 17 as follows:

Herein, the GaN-based buffer layer 102 can be formed having a triple-structured

 $Al_vIn_xGa_{1-x5v}N/In_xGa_{1-x}N/GaN$ (Here, $0 \le x \le 1$, $0 \le y \le 1$) $Al_vIn_xGa_{1-(x+y)}N/In_xGa_{1-x}N/GaN$

(where $0 \le x \le 1$, $0 \le y \le 1$) laminated, a double-structured In_xGa_{1-x}N/GaN (Here, where

 $0 \le x \le 1$) laminated, or a super-lattice-structured (SLS) In_xGa_{1-x}N/GaN (Here, where $0 \le x \le 1$)

laminated.

Please amend the paragraph starting at page 5, line 8 as follows:

Additionally, in a process of growing-up the GaN-based buffer layer 102 on the

substrate 101 at a low temperature, a metal organic chemical vapor deposition (MOCVD)

equipment is used such that it is, in a growth pressure of 100-700torr and at a low temperature of

500-800°C, grown-up to have a thickness of below 700 Å in a laminated structure such as the

triple-structured Al_vIn_xGa_{1-xx}N/In_xGa_{1-x}N/GaN Al_vIn_xGa_{1-x}N/GaN, the double-

structured In_xGa_{1-x}N/GaN or the super-lattice-structured (SLS) In_xGa_{1-x}N/GaN, etc.

Please amend the paragraph starting at page 6, line 10 as follows:

JTE/REG/ej

Reply to Office Action of May 9, 2006

Docket No.: 3449-0413PUS1

Page 4 of 17

Referring to FIG. 2, in the inventive nitride semiconductor LED, on the substrate 201

(for example, the sapphire substrate or the SiC substrate) is provided the GaN-based buffer layer

202 having the triple-structured $Al_vIn_xGa_{1-x\overline{y}}N/In_xGa_{1-x}N/GaN$ (Here, $0 \le x \le 1$, $0 \le y \le 1$)

 $Al_vIn_xGa_{1-(x+v)}N/In_xGa_{1-x}N/GaN$ (where $0 \le x \le 1$, $0 \le y \le 1$), the double-structured

 $In_xGa_{1-x}N/GaN$ (Here, $0 \le x \le 1$), or the super-lattice-structured (SLS) $In_xGa_{1-x}N/GaN$ (Here,

where $0 \le x \le 1$). Additionally, on the GaN-based buffer layer 202 is formed the undoped GaN

layer or the indium-doped GaN layer 203.

Please amend the paragraph starting at page 9, line 15 as follows:

Here, on the substrate 301 is provided the GaN-based buffer layer 302 having the triple-

structured Al. In. $Ga_{1-x_1}N/In_xGa_{1-x_2}N/GaN$ (Here, $0 \le x \le 1$, $0 \le y \le 1$) Al. $In_xGa_{1-(x+y)}N/In_xGa_{1-$

 $_xN/GaN$ (where $0 \le x \le 1$, $0 \le y \le 1$), the double-structured $In_xGa_{1-x}N/GaN$ (Here, where

 $0 \le x \le 1$) or the super-lattice-structured (SLS) $In_xGa_{1-x}N/GaN$ (Here, $0 \le x \le 1$). Additionally, on

the GaN-based buffer layer 302 is formed an undoped GaN layer or an indium-doped GaN

layer 303.

JTE/REG/ej