Date	Topic	Assignments (Due F@5p)
W 01/20 F 01/22	Introduction and Course Organization Motivation for energy systems & control	Survey
M 01/25 W 01/27 F 01/29	Mathematical modeling System theoretic framework State-space and linear systems	Project Declaration
M 02/01 W 02/03 F 02/05	Stability Energy storage: batts, FCs, UCs, CAES, flywheels Energy storage: batts, FCs, UCs, CAES, flywheels	HW 1
M 02/08 W 02/10 F 02/12	Parametric Modeling Gradient Algorithm Least Squares Algorithm	
M 02/15 W 02/17 F 02/19	PRESIDENTS DAY Nonlinear Least Squares & Sensitivity Analysis State Estimation Problems in Energy Systems	HW 2
M 02/22 W 01/24 F 02/26	Open-loop Observers, Observability Observability & Luenberger Observer Luenberger Observer & Kalman Filter (KF)	Project Proposal
M 03/29 W 03/02 F 03/04	KF & Extended Kalman Filter Estimation Case Study: Battery SOC Midterm Review	HW 3
M 03/07 W 03/09 F 03/11	IN-CLASS MIDTERM Optimization: Objective Fcns & Constraints Convex functions & Sets, Minimizers	
M 03/14 W 03/16 F 03/18	Convex Programming (CP) Linear Programming (LP) Quadratic Programming (QP)	Progress Report
	SPRING RECESS	
M 03/28	Gradient Descent	(Moura on travel)
W 04/30 F 04/01	Method of Lagrange Multipliers KKT conditions	HW 4
M 04/04 W 04/06 F 04/08	Intro to Optimal Control Case Study: Optimal HEV Energy Mgmt via LP Case Study: Optimal PEV Charge Schedule via QP	
M 04/11 W 04/13 F 04/15	Dynamic Programming Case Study: Smart Appliance Scheduling Case Study: Optimal Resource & Allocation	HW 5
M 04/18 W 04/20 F 04/22	Markov Chains Stochastic Dynamic Programming (SDP) Model Predictive Control (MPC)	
M 04/25 W 04/27 F 04/29	Cloud-based MPC for a Home Heating System TBD TBD	
F 05/06	[RRR Week] CE 295 Symposium	Final Report