Neural networks Cours 1/3

Machine Learning ModIA 2023-2024

Enseignant: Sixin Zhang
sixin.zhang@toulouse-inp.fr

Reference

- Pattern Recognition and Machine Learning, Christopher M. Bishop 2006
- Deep Learning, I Goodfellow, Y Bengio, A Courville 2016
- Understanding machine learning: From theory to algorithms,
 S Shalev-Shwartz, S Ben-David 2014

Ce cours a été conçu avec Sandrine Mouysset et Axel Carlier.

Perceptron: 1-layer Neural Network (NN)

Historically, Perceptron is a highly simplified neuron model to achieve linear classification (McCulloch et Pitts 1943, Rosenblatt 1957).

image source: lecture notes of Y. LeCun (NYU)

Perceptron: 1-layer Neural Network (NN)

Representation of Perceptron

- Inner product between input vector $x \in \mathbb{R}^n$ and the weight $w : w^T x$;
- ② Add a bias scalar $(b \in \mathbb{R})$: $z = w^T x + b$
- **3** Application of an activation function to z: a = f(z)
- **①** Output value $\hat{y} = a$, e.g. $\hat{y} \in \{0,1\}$ for binary classification.

Perceptron: 1-layer Neural Network (NN)

Activation functions

The activation functions, denoted f, are usually non-linear functions. They can play a role of thresholding with 3 regimes,

- non-active: if the input value is under a threshold;
- transition phase: if the input value is close to the threshold;
- active: if the input value is above the threshold;

Figure: Sigmoid activation function : $f(z) = \frac{1}{1+e^{-z}}$

Classical learning procedure of Perceptron

Simplify the Perceptron function: convert bias to input weight

Assume input vector:
$$(x_1, \dots, x_n, 1)^T \in \mathbb{R}^{n+1}$$

$$w^{T}x + b = (w_{1}, \dots, w_{n}, b)^{T}(x_{1}, \dots, x_{n}, 1)$$

Therefore: we write $a = f(w^T x)$ instead of $a = f(w^T x + b)$

Classical learning procedure of Perceptron: Rosenblatt algorithm

To achieve binary classification using Perceptron $\hat{y} = f(\sum_i w_i x_i) \in \{0, 1\}$:

- show each training sample (x, y) in sequence repetitively.
- if the output $\hat{y} = y$ is correct, do nothing.
- if the output $\hat{y} = 0$ and the desired output y = 1: increase the weights w_i whose inputs x_i are positive, decrease the weights whose inputs are negative.
- if the output $\hat{y} = 1$ and the desired output y = 0: decrease the weights whose inputs are positive, increase the weights whose inputs are negative.

A supervised learning procedure of Perceptron

- **1** Initial weight $w^{(0)} = (w_i^{(0)})_{i \le n}$
- ② Draw training samples $(x^{\{1\}}, y^{\{1\}}), ..., (x^{\{m\}}, y^{\{m\}})$.
- **3** Compute the output of Perceptron and a differentiable loss J(w):

$$\hat{y}^{\{j\}}(w) = f\left(\sum_{i=1}^{n} w_i x_i^{\{j\}}\right) \text{ and } J(w) = \frac{1}{m} \sum_{j=1}^{m} \ell(\hat{y}^{\{j\}}(w), y^{\{j\}})$$

1 Update the weights from $w^{(t)}$ to $w^{(t+1)}$

$$w_i^{(t+1)} = w_i^{(t)} - \alpha^{(t)} \frac{\partial J}{\partial w_i} (w^{(t)})$$

where $\alpha^{(t)}$ is a step size (learning rate) $\alpha^{(t)} > 0$.

- **5** Repeat 2-4 until convergence of $w^{(t)}$ or $J(w^{(t)})$.
- \Rightarrow How to define the **cost function** ℓ ?

Two main problems of supervised learning

Classification and regression

Classification (Logistic regression) Assign a category to each observation

Binary case : false/true, $y \in \{0,1\}, \hat{y} \in [0,1]$

- sigmoid activation $(\mathbb{R} \to [0,1])$: $f(z) = (1+e^{-z})^{-1}$
- Loss function: logistic cost (cross-entropy):

$$loss(\hat{y}, y) = -ylog(\hat{y}) - (1 - y)log(1 - \hat{y})$$

Two main problems of supervised learning

Classification and regression

Linear Regression Predict a real value of each observation :

- linear activation : f(z) = z
- Mean squared error cost function (MSE):

$$\ell(\hat{y},y) = (y - \hat{y})^2$$

⇒ How to solve this type of problem ?

Solving classification and regression problems

Gradient descent method: iterative method to find an optimal w^*

Multi-layer perceptron and Multi-class classification

A multi-layer perceptron (MLP) is composed of an input layer, several hidden layers and an output layer. The hidden layer is usually composed of a linear layer and a non-linear activation function.

The **depth** of the network above is L=4 (3 hidden layers plus one output layer).

Supervised learning framework

Overview

Multi-layer perceptron:

- Functionality
- Interpretation
- Activation function
- Multi-class classification loss

Functionality: multi-layer perceptron

In order to train a multi-layer perceptron, we need to understand the following computational steps:

- Forward propagation of input data to output;
- 2 Compute a loss from the output;
- Back propagation: compute gradients of the loss with respect to the weights of the output layer and hidden layers;
- **9 Update** all the weights based on optimization methods.

Illustration of forward propagation

The weights of layer k: $W_{i,j}^{[k]}$ and $b_i^{[k]}$, i output index, j input index. For depth L, we denote all the weights by $\theta = (W^{[k]}, b^{[k]})_{k \leq L}$, e.g. L = 2

$$\hat{y}(x,\theta) = f \circ f^{[2]} \left(W^{[2]} f^{[1]} (W^{[1]} x + b^{[1]}) + b^{[2]} \right)$$

For an input $x^{\{i\}}$, we write the output $\hat{y}^{\{i\}}(\theta) = \hat{y}(x^{\{i\}}, \theta)$

Functionality: multi-layer perceptron

2) Compute the objective function after the forward-propogation:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y^{\{i\}}, \hat{y}^{\{i\}}(\theta))$$

3) Back-propagation: to compute the gradients $\nabla_{\theta}J=(\frac{\partial J}{\partial \theta})^{\mathsf{T}}$ from output to input by the *chain rule* in Calculus, e.g.

$$\nabla_{\theta} J = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\partial \hat{y}^{\{i\}}}{\partial \theta} \right)^{\mathsf{T}} \nabla_{\hat{y}^{\{i\}}} \ell(y^{\{i\}}, \hat{y}^{\{i\}})$$

- Step 1: compute $\nabla_{\hat{y}^{\{i\}}} \ell(y^{\{i\}}, \hat{y}^{\{i\}})$ for $1 \leq i \leq m$.
- Step 2: compute $\frac{\partial \hat{y}^{\{i\}}}{\partial \theta}$ for $1 \leq i \leq m$.
- Step 3: compute $\nabla_{\theta} J$.

Step 1 can be solved analytically when ℓ is differentiable. How about Step 2?

Assume $\hat{y} = f(a^{[2]}) \in \mathbb{R}$, $a^{[2]} = f^{[2]}(W_{1,1}^{[2]}a_1^{[1]} + W_{1,2}^{[2]}a_2^{[1]} + b_1^{[2]}) \in \mathbb{R}$. Compute $\frac{\partial \hat{y}}{\partial \theta}$:

$$\frac{\partial \hat{y}}{\partial b_{1}^{[2]}} = \frac{\partial \hat{y}}{\partial a^{[2]}} \frac{\partial a^{[2]}}{\partial b_{1}^{[2]}} = f'(a^{[2]}) f^{[2]'}(W_{1,1}^{[2]} a_{1}^{[1]} + W_{1,2}^{[2]} a_{2}^{[1]} + b_{1}^{[2]})$$

Assume $\hat{y} = f(a^{[2]}) \in \mathbb{R}$, $a^{[2]} = f^{[2]}(W_{1,1}^{[2]}a_1^{[1]} + W_{1,2}^{[2]}a_2^{[1]} + b_1^{[2]}) \in \mathbb{R}$. Compute $\frac{\partial \hat{y}}{\partial \theta}$:

$$\frac{\partial \hat{y}}{\partial W_{1.1}^{[2]}} = \frac{\partial \hat{y}}{\partial a^{[2]}} \frac{\partial a^{[2]}}{\partial W_{1.1}^{[2]}} = f'(a^{[2]}) f^{[2]'}(W_{1,1}^{[2]} a_1^{[1]} + W_{1,2}^{[2]} a_2^{[1]} + b_1^{[2]}) a_1^{[1]}$$

Assume $\hat{y} = f(a^{[2]}) \in \mathbb{R}$, $a^{[2]} = f^{[2]}(W_{1,1}^{[2]}a_1^{[1]} + W_{1,2}^{[2]}a_2^{[1]} + b_1^{[2]}) \in \mathbb{R}$. Compute $\frac{\partial \hat{y}}{\partial \theta}$: Assume $a^{[1]} = f^{[1]}(W^{[1]}a_1^{[0]} + b_1^{[1]})$

$$\frac{\partial \hat{\mathbf{y}}}{\partial W_{i,j}^{[1]}} = \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{a}^{[2]}} \frac{\partial \mathbf{a}^{[2]}}{\partial \mathbf{a}^{[1]}} \frac{\partial \mathbf{a}^{[1]}}{\partial W_{i,j}^{[1]}}$$

Jacobian matrices: $\frac{\partial a^{[1]}}{\partial W_{i,i}^{[1]}} : \mathbb{R}^1 \to \mathbb{R}^2 \quad \frac{\partial a^{[2]}}{\partial a^{[1]}} : \mathbb{R}^2 \to \mathbb{R}^1, \quad \frac{\partial \hat{y}}{\partial a^{[2]}} : \mathbb{R} \to \mathbb{R},$

Assume
$$\hat{y} = f(a^{[2]}) \in \mathbb{R}, a^{[2]} = f^{[2]}(W_{1,1}^{[2]}a_1^{[1]} + W_{1,2}^{[2]}a_2^{[1]} + b_1^{[2]}) \in \mathbb{R}.$$
Compute $\frac{\partial \hat{y}}{\partial \theta}$: Assume $a^{[1]} = f^{[1]}(W^{[1]}a^{[0]} + b^{[1]})$

$$\frac{\partial a^{[2]}}{\partial a_1^{[1]}} = f^{[2]'}(W_{1,1}^{[2]}a_1^{[1]} + W_{1,2}^{[2]}a_2^{[1]} + b_1^{[2]})W_{1,1}^{[2]}$$

$$\frac{\partial a_i^{[1]}}{\partial W_{i,i}^{[1]}} = f_i^{[1]'} (W^{[1]} a^{[0]} + b^{[1]}) a_j^{[0]}, \quad i, j \in \{1, 2\}$$

Interpretation: multi-layer perceptron

Figure: Linear vs. non-linear separation of training data

The non-linearity $f^{[1]}, f^{[2]}, \cdots$ in MLP plays a key role for non-linear separation.

Example: https://playground.tensorflow.org/

Activation functions: sigmoid

• The gradient function tends to zero when z is away from 0: cause vanishing gradients in the back propagation.

Activation functions: Rectified Linear Unit

$$ReLU(z) = \begin{cases} z & \text{if } z > 0 \\ 0 & \text{if } z \le 0 \end{cases}$$

The gradient is either 0 or 1 (when $z \neq 0$), very different to that of the sigmoid.

Activation functions: others

These functions could potentially improve the gradient-descent training, e.g. to achieve a faster convergence.

Multi-class classification

- Question 1: Assume $y \in \{1, 2, \dots, C\}$. To classify x into C categories, how to design a **differentiable** loss $\ell(y, \hat{y})$?
- Question 2: Assume \hat{y} is a probability distribution over $\{1, 2, \dots, C\}$, how to compute it as the output of an MLP?

Multi-class classification

- Answer 1: Use the cross-entropy loss by representing y and \hat{y} as a probability distribution over $\{1, 2, \dots, C\}$.
- Answer 2: Use the Softmax non-linear function f so that $\hat{y} = f(a)$.

Cross-entropy loss

• KL divergence between two distributions p and q over $\{1, \dots, C\}$

$$\mathit{KL}(q||p) = \sum_{i=1}^{C} \log \frac{q_i}{p_i} q_i$$

- Let y be a vector in $\{0,1\}^C$ such that $y_i = 1$ i.f.f the category of y is i.
- Let \hat{y} be a vector in $(0,1)^C$ such that $\sum_i \hat{y}_i = 1$.
- The cross-entropy loss is $KL(y||\hat{y})$, which is equivalent to

$$\sum_{i=1}^{C} \log(y_i) y_i - \sum_{i=1}^{C} \log(\hat{y}_i) y_i$$

In practice, we minimize the second term (to optimize MLP):

$$-\sum_{i=1}^{C}\log(\hat{y}_i)y_i$$

Softmax non-linearity

• Let $a \in \mathbb{R}^C$ and $\hat{y} = f(a)$, such that

$$\hat{y}_i = \frac{e^{a_i}}{\sum_k e^{a_k}},$$

- We have $\hat{y}_i \geq 0$ and $\sum_i \hat{y}_i = 1$.
- **Property**: for any $c \in \mathbb{R}$ and $a \in \mathbb{R}^C$, f(a+c) = f(a).
- To avoid numerical issues, we compute f(a+c) with $c=-\max_j a_j$,

$$\hat{y}_i = \frac{e^{a_i - \max_j a_j}}{\sum_k e^{a_k - \max_j a_j}}.$$