EGZAMIN Z MATEMATYKI DYSKRETNEJ

LUTY 2009, PIERWSZY TERMIN, CZĘŚĆ A, CZAS: 120 MIN.

Pary zadań 1,2 oraz 3,4 powinny być rozwiązane na osobnych kartkach

Zadanie 1

Niech ciąg liczb całkowitych dodatnich a_1, a_2, \ldots, a_k ma sumę n. Pokaż, że

$$a_1 \cdot a_2 \cdot a_3 \cdots a_k < 3^{n/3}.$$

Zadanie 2

Ile jest sposobów przedstawienia $n\ (n\geq 2)$ w postaci sumy nieparzystej liczby składników naturalnych? Przedstawienia różniące się kolejnością składników uważamy za różne.

Zadanie 3

Udowodnij, że średnia ilość cykli w permutacji n-elementowej to H_n (n-ta liczba harmonicza).

Zadanie 4

Podział zbioru $\{1, \ldots, n\}$ na ciągi to zbiór ciągów, takich że każda z liczb $1, \ldots, n$ występuje w nim dokładnie raz. Np. wszystkie możliwe podziały $\{1, 2, 3\}$ to $\{(1), (2)\}$, $\{(1, 2)\}$ oraz $\{(2, 1)\}$. Niech a_n oznacza ilość różnych podziałów zbioru $\{1, \ldots, n\}$ na ciągi, przyjmijmy, że $a_0 = 1$. Udowodnij, że

$$a_{n+1} = \sum_{k=0}^{n} \binom{n}{k} (k+1)! a_{n-k}$$

i następnie oblicz wykładniczą funkcję tworzącą ciągu a_n .

 $Wskaz \acute{o}wka$: Jeśli $A_e(x)$ jest wykładniczą funkcją tworzącą ciągu $a_n, B_e(x)$ ciągu b_n to $A_e(x) \cdot B_e(x)$ jest wykładniczą funkcją tworzącą ciągu $c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$

POWODZENIA!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2009, PIERWSZY TERMIN, CZĘŚĆ B, CZAS: 120 MIN. Pary zadań 5,6 oraz 7,8 powinny być rozwiązane na osobnych kartkach

Zadanie 5

Oszczędny matematyk chciałby mieć karty za pomocą których może wyrazić wszystkie ciągi pięciu cyfr, czyli należące do zbioru $S = \{00000, 00001, ..., 99999\}$. Dysponuje czcionką w której odwrócone do góry nogami 0 wygląda jak 0, odwrócone 1 wygląda jak 1, odwrócone 2 wygląda jak 2, odwrócone 5 wygląda jak 5, odwrócone 6 wygląda jak 9, odwrócone 8 wygląda jak 8, a odwrócone 9 wygląda jak 6. A zatem odwrócona karta z ciągiem 12568 przedstawia ciąg 89521. Ilu najmniej kart potrzebuje matematyk?

Zadanie 6

Niech G będzie grafem, w którym nie ma cykli o długości mniejszej niż 5. Pokaż, że jeśli każdy wierzchołek ma stopień co najmniej k, to G ma co najmniej k^2+1 wierzchołków.

Zadanie 7

W pewnym spójnym grafie G krawędzie mają dodatnie wagi naturalne, k_1 krawędzi ma wagę 1, k_2 krawędzi ma wagę 2 oraz $k_1 + k_2 < 10$, poza tym dla każdej liczby naturalnej n > 2 w G istnieje co najwyżej jedna krawędź o wadze n. Podaj algorytm spradzający, czy w G istnieje minimalne drzewo spinające, które ma parzystą ilość liści? Uzasadnij jego poprawność.

Zadanie 8

Ustalmy wierzchołek s grafu K_n o nieujemnych wagach krawędzi oraz drzewo T najkrótszych dróg z wierzchołka s. Druga najkrótsza droga między s i t ($t \neq s$), to najkrótsza droga niezawarta całkowicie w T. Pokaż, że istnieje druga najkrótsza droga między s i t, która zawiera dokładnie jedną krawędź spoza T.

POWODZENIA!