在这一章中,我们将 review deterministic GD-type optimization methods

§1 Plain-vanilla GD optimization methods

- 1. Definition: GD optimization method
 - 全 D objective function 的 input 维度: d∈N
 - D objective function: $L: \mathbb{R}^d \to \mathbb{R}$ \$\text{\$\text{differentiable}}\$
 - B 各轮送代的 learning rate / step size: (Yn)neN ⊆ [0,∞)
 - B initial value: ≥ ∈ Rd
 - D 用于map 选代轮次和该轮次 input 的函数: D:No→Rd
 - 则 B 被称为 GD process for the objective function L with learning rates $(Y_n)_{n\in\mathbb{N}}$ and initial value \mathcal{Z} , 若 对 \forall $n\in\mathbb{N}$, 有
 - D B = 3

Algorithm 6.1.2: GD optimization method

Input: $\mathfrak{d}, N \in \mathbb{N}, \ \mathscr{L} \in C^1(\mathbb{R}^{\mathfrak{d}}, \mathbb{R}), \ (\gamma_n)_{n \in \mathbb{N}} \subseteq [0, \infty), \ \xi \in \mathbb{R}^{\mathfrak{d}}$

Output: N-th step of the GD process for the objective function \mathscr{L} with learning rates $(\gamma_n)_{n\in\mathbb{N}}$ and initial value ξ (cf. Definition 6.1.1)

- 1: Initialization: $\Theta \leftarrow \xi$
- 2: **for** n = 1, ..., N **do**
- 3: $\Theta \leftarrow \Theta \gamma_n(\nabla \mathcal{L})(\Theta)$
- 4: return Θ

2. Definition: GD optimization in the training of ANNs

- 全 D data 的 features (input) 的维度: d∈N
 - D ANN 的 hidden layers 数: h∈N
 - ② ANN 的各隐藏层 neuron 数: 11, 12, ---, 1n ∈ N (input layer 维度为 d, output layer 维度为 1)
 - **②** ANN 的总 parameters 数: $\partial \in \mathbb{N}$, 且满足 $\partial = \mathcal{U}_1(d+1) + [\frac{h}{h} \mathcal{U}_{k-1} + 1] + \mathcal{U}_{h+1}$
 - \circ ANN \$\text{ activation function : }\alpha: $R \to R$ \$\text{ olifferentiable}
 - ⑤ training data 的数量: M∈N
 - D training data \$6 features: 'X1, X2, --, XM ∈ Rd
 - training data \$6 labels: y₁, y₂, --, yM ∈ R
 - ① (MSE) loss function: $L: R^{\circ} \to R$, 且满足对 $U'\theta \in R^{\circ}$,有 $L(\theta) = \frac{1}{M} \left[\sum_{m=1}^{M} \left| (N_{mat_1, mat_2, \cdots, mat_{hr} id_R})(X_m) Y_m \right|^2 \right]$
 - ⑩ 各轮送代的 learning rate/step size:(Yn)neN⊆[0,∞)
 - D initial value: 3 & Rd
 - ® 用于map 选代轮次和该轮次 input 的函数: D:No→Rd

则 的被称为 GD process for the objective function L with learning rates (Yn)neN and initial value 3,

岩对YneN,有

- D Bo = }

§ > GD optimization with classical momentum

1. Definition: Momentum GD optimization method

全 D objective function 的 input 维度: d∈N

- Descrive function: $L: \mathbb{R}^d \to \mathbb{R}$ to differentiable
- B 各轮送代的 learning rate / step size: (Yn)n∈N ⊆ [0,∞)
- 各轮送代的 momentum decay factor: (×n)neN⊆[v.1]
- D initial value: $\frac{1}{2} \in \mathbb{R}^d$
- ® 用于map 选代轮次和该轮次 input 的函数: D:No→Rd

图 被称为 GD process for the objective function L with learning rates $(Y_n)_{n \in \mathbb{N}}$, momentum decay factors $(\bowtie_n)_{n \in \mathbb{N}}$, and initial value 3,

若存在(各轮送代的 momentum) 'm:No→R°,使得对 Y n∈N,有

- $\begin{array}{ccc}
 \mathbb{D} & \mathbb{B}_0 = \mathbb{Z}, \\
 \mathbb{W}_0 = \mathbb{D}
 \end{array}$
- Θ $'m_n = \alpha_n 'm_{n-1} + (1-\alpha_n)(PL)(P_{n-1})$ (上一轮的 momentum 贡献 α 比重, 当前的贡替度贡献 $1-\alpha$ 比重) $P_n = P_{n-1} \gamma_n 'm_n$

Algorithm 6.3.2: Momentum GD optimization method

Input: $\mathfrak{d}, N \in \mathbb{N}, \mathcal{L} \in C^1(\mathbb{R}^{\mathfrak{d}}, \mathbb{R}), (\gamma_n)_{n \in \mathbb{N}} \subseteq [0, \infty), (\alpha_n)_{n \in \mathbb{N}} \subseteq [0, 1], \xi \in \mathbb{R}^{\mathfrak{d}}$ Output: N-th step of the momentum GD process for the objective function \mathcal{L} with learning rates $(\gamma_n)_{n \in \mathbb{N}}$, momentum decay factors $(\alpha_n)_{n \in \mathbb{N}}$, and initial value ξ (cf. Definition 6.3.1)

- 1: Initialization: $\Theta \leftarrow \xi$; $\mathbf{m} \leftarrow 0 \in \mathbb{R}^{\mathfrak{d}}$
- 2: **for** n = 1, ..., N **do**
- 3: $\mathbf{m} \leftarrow \alpha_n \mathbf{m} + (1 \alpha_n)(\nabla \mathcal{L})(\Theta)$
- 4: $\Theta \leftarrow \Theta \gamma_n \mathbf{m}$
- 5: return Θ