```
In [1]:
         import pandas as pd
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model_selection import train_test_split
         from sklearn import metrics
         import matplotlib.pyplot as plt
         s=pd.read csv("C:/Users/HP/Downloads/winequality red.csv")
In [2]:
In [3]: | s.head()
Out[3]:
                                                         free
                                                                 total
                     volatile
                             citric
               fixed
                                   residual
                                            chlorides
                                                        sulfur
                                                                sulfur
                                                                       density
                                                                                pH sulphates alcohol
             acidity
                     acidity
                              acid
                                     sugar
                                                      dioxide
                                                              dioxide
          0
                7.4
                        0.70
                              0.00
                                                0.076
                                                                  34.0
                                                                        0.9978 3.51
                                                                                          0.56
                                                                                                   9.4
                                        1.9
                                                         11.0
          1
                7.8
                        0.88
                              0.00
                                        2.6
                                                0.098
                                                         25.0
                                                                 67.0
                                                                        0.9968 3.20
                                                                                          0.68
                                                                                                   9.8
          2
                7.8
                        0.76
                              0.04
                                        2.3
                                                0.092
                                                         15.0
                                                                  54.0
                                                                        0.9970
                                                                              3.26
                                                                                          0.65
                                                                                                   9.8
          3
                11.2
                        0.28
                              0.56
                                        1.9
                                                0.075
                                                         17.0
                                                                  60.0
                                                                        0.9980 3.16
                                                                                          0.58
                                                                                                   9.8
                7.4
                        0.70
                              0.00
                                        1.9
                                                0.076
                                                                        0.9978 3.51
                                                                                          0.56
                                                                                                   9.4
                                                         11.0
                                                                  34.0
In [4]:
         s.shape
Out[4]: (1599, 12)
In [5]: | s.groupby('quality').size()
Out[5]: quality
         3
         4
                53
         5
               681
         6
               638
               199
         7
                18
         dtype: int64
In [6]: train,X_test,y_train,y_test=train_test_split(s.loc[:,s.columns != 'quality'],s['d
```

In [7]: s.loc[:,s.columns!='quality']

Out[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11

1599 rows × 11 columns

```
In [8]: print(y_train.value_counts())
        print(y_test.value_counts())
         5
              511
         6
              478
              149
               40
        8
               13
                8
        Name: quality, dtype: int64
              170
        6
              160
         7
               50
        4
               13
        8
                5
        Name: quality, dtype: int64
```

```
In [9]: | feature name=list(X train.columns)
                      class_name=list(y_train.unique())
                      feature_name
  Out[9]: ['fixed acidity',
                         'volatile acidity',
                         'citric acid',
                         'residual sugar',
                         'chlorides',
                         'free sulfur dioxide',
                         'total sulfur dioxide',
                         'density',
                         'pH',
                         'sulphates',
                         'alcohol']
In [10]: class_name
Out[10]: [5, 6, 7, 4, 3, 8]
In [11]: A=DecisionTreeClassifier()#create decision tree object
                      A=A.fit(X_train,y_train)#train DecisionTreeClassifier
                      y pred=A.predict(X test) #predict response for test dataset
In [12]: print("Accuracy:", metrics.accuracy_score(y_test,y_pred))
                      Accuracy: 0.5925
In [13]: | from sklearn import tree
                      plt.figure(figsize=(70,30))
                      tree.plot tree(A,filled=True)
Out[13]: [Text(1547.123378245142, 1598.184, 'X[10] <= 10.15\ngini = 0.643\nsamples = 1
                      199\nvalue = [8, 40, 511, 478, 149, 13]'),
                        Text(799.8587808190556, 1532.952, X[9] \le 0.575 = 0.508 = 0.508 = 59
                      9\nvalue = [4, 22, 380, 177, 15, 1]'),
                        Text(276.6681989134977, 1467.72, 'X[10] <= 9.075 \setminus init = 0.384 \setminus init = 25
                      9\nvalue = [2, 13, 198, 44, 2, 0]'),
                        Text(180.36481404095278, 1402.487999999998, X[0] <= 8.15 
                      mples = 12 \cdot value = [1, 3, 4, 4, 0, 0]'),
                        Text(154.24864187212702, 1337.255999999999, 'X[1] <= 0.605 \neq 0.5 \leq 0.605
                      ples = 6\nvalue = [0, 3, 3, 0, 0, 0]'),
                        Text(141.19055578771417, 1272.024, 'gini = 0.0\nsamples = 3\nvalue = [0, 3, ]
                      0, 0, 0, 0]'),
                        Text(167.3067279565399, 1272.024, 'gini = 0.0\nsamples = 3\nvalue = [0, 0,
                      3, 0, 0, 0]'),
                        Text(206.4809862097785, 1337.2559999999999, 'X[2] <= 0.55 / ngini = 0.5 / nsampl
                      es = 6\nvalue = [1, 0, 1, 4, 0, 0]'),
                        Text(193.42290012536566, 1272.024, 'gini = 0.0 \times 10^{-1} = 0.0
                      0, 4, 0, 0]'),
                        Text(219.53907229419139, 1272.024, 'X[9] <= 0.53\ngini = 0.5\nsamples = 2\nv ▼
  In [ ]:
```