Analyzing IBM Watson Experiments With IPython Notebook

Torsten Bittner IBM Emerging Technologies

@torstenbittner

SciPy 2013, Austin TX, USA June 27, 2013

Agenda

- IBM Watson in a nutshell
- Domain adaptation challenges
- Case study for analysis tooling:
 - · Java, Dojo, D3 based approach
 - IPython Notebook based approach

IBM Watson in a Nutshell

1. Ingest

Identify, pre-process data, create search indices + other data stores

2. Train

Create QA pairs as training set, run in Watson, train ML models

3. Test

Run Watson with blind test set and measure accuracy

4. Production

Run Watson with unknown questions

IBM Watson in a Nutshell

Domain Adaptation Challenges

- IBM Watson is large and complex, lots of: Knobs - e.g., data, algorithms, models Dependencies: between components Ingest Candidate Question Information Generation Scoring Search **FMR** Dependencies Analysis between changes Pipeline processing
 - Metrics Which ones are important?
 - Experiments Which should be run?
- Documentation How to track changes and attribute results to experiments?

Our Driving Principles

- Apply scientific method.
- Perform ad-hoc analysis.

"If you can't solve a problem, then there is an easier problem you can solve: find it." -George Pólya, How to Solve It (1945)

- Study the knobs, then turn one at a time.
- Focus on something measurable.
- Develop tooling to support process.

IBM

Case study - Question Class Analysis Using Java / Dojo / D3

Analysis result:

• Effort:

Feature	LOC	Language		
Container Web App	150	HTML / JavaScript / Dojo Java		
Extract relevant experiment results	7900			
D3 visualization	300	JavaScript / D3		
Total:	8350	3		

Case study - Question Class Analysis Using IPython Notebook

Analysis result:

IBM

Case study - Question Class Analysis Using IPython Notebook

Effort:

Feature	LOC	Language
IPython analysis notebook	analysis notebook 20 Python	
Extract relevant experiment results (module "result_proc")	200	Python
Total:	220	1

Setup:

- IPython Notebook installed in Python virtual environment
 - Packages: Pandas, NumPy, SymPy, Matplotlib, scikit-learn
- Deployed nbserver for each team member in cluster environment
- Shared file system for direct access to experiment results
- Workers deployed across 10 machines for parallel processing

More analysis examples

Experiment Recall Shift

experiment	qid	text	matchesE xactInCan didates	score@1	topCorrec tRank	hutts
NT13	844783	What is an example of a virus for the Linux operating system?	6	0.16	17	

Slice Recall Breakdown

By Candidate Generator

IPython Notebook pro's

- Less languages, less code, many Python libraries
- Broader population enabled to carry out analyses (data scientists)
- Code = Analysis
- Documentation, hypothesis, experiment description and analysis inline
- Results easy to reproduce, communicate and share
- Scalability though in memory-processing (25 GB/s)
- Simple remote development
- Flexible usage of notebooks for:
 - Experiment analysis
 - Ingestion
 - QA pairs processing
 - ML analysis

Summary

- IBM Watson is a powerful, complex system domain adaptation requires changes to data, algorithms and models
- IPython Notebook is great tool to analyze IBM Watson experiments:
 - ad-hoc data manipulation
 - ad-hoc analysis and visualization
 - documentation
 - parallel processing
- Try it http://ipython.org/notebook.html