Statistics

By
Sharique Nawaz

What is Statistics?

What is Statistics

Statistics is a way to get information from data.

Why Learn Statistics?

Why Learn Statistics?

Knowledge of Statistics allows you to make better sense of the ubiquitous use of numbers.

Statistics is ...

- 1. Collecting Data
- 2. Analyzing Data
- 3. Interpreting Data
- 4. Presenting Data

What does it Tell?

Classification

Statistics

Descriptive Statistics

Presenting, organizing and summarizing data Inferential Statistics

Drawing conclusions about a population based on data observed in a sample

Population and Sample

POPULATION SAMPLE

SOLO 1 SON

Census and Survey

Census: Gathering data from the whole population of interest.

For example, elections, 10-year census, etc.

Survey: Gathering data from the **sample** in order to make conclusions about the population.

For example, opinion polls, quality control checks in manufacturing units, etc.

Parameter and Statistic

Parameter: A descriptive measure of the **population**.

For example, population mean, population variance, population standard deviation, etc.

Statistic: A descriptive measure of the **sample**.

For example, sample mean, sample variance, sample standard deviation, etc.

PARAMETERS

Measures used to describe the population are called **parameters**

POPULATION

STATISTICS

Measures computed from sample data are called **statistics**.

SAMPLE

Statistical Notations

Greek – Population Parameter

Mean $-\mu$

Variance – σ^2

Standard Deviation - σ

Roman – Sample Statistic

Mean $-\bar{x}$

Variance – s²

Standard Deviation - s

Variables

Categorical Data (Qualitative)

Nominal Examples

- Employee ID
- Gender
- Religion
- Ethnicity
- Pin codes
- Place of birth
- Aadhaar numbers

Ordinal

Examples

- Mutual fund risk ratings
 Fortune 50 rankings
- Movie ratings

While there is an order, difference between consecutive levels are not always equal.

Discrete and Continuous

Variables - Dependent and Independent

Dependent variables on y-axis and Independent on x-axis.

Dependent variable also called Target variable or Class

variable.

Summarizing Data

Modality

Symmetry

Central Tendency

Variability

Central Tendency

A measure of **Central Tendency** is a single value that attempts to describe a set of data **by identifying the central position** within that set of data. In other words, the Central Tendency computes the "center" around which the data is distributed.

The reliable quantity

Mean

Mean,
$$\mu = \frac{\Sigma x}{n}$$

Alan went for a trek. On the way, he had to cross a stream. As Alan did not know swimming, he started exploring alternate routes to cross over.

Suddenly he saw a sign-post, which said "Average depth 3 feet". Alan was 5'7" tall and thought he could safely cross the stream.

Alan never reached the other end and drowned in the stream.

Why did Alan Drown?

Why did Alan Drown?

The "Hotshot" Sales Executive

Kurt works as a sales manager at vsellhomes.com. In the monthly sales review, Kurt reports that he will achieve his quarterly target of \$1M.

Kurt claims his average deal size is \$100,000 and he has 10 deals in his pipeline. Kurt's boss Ross is very delighted with his numbers.

At the end of quarter, even after closing 8 deals Kurt fails to meet his target number and falls short by more than \$500,000.

Discussion

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
 - = \$100,000

Deal #	Deal Value	Deal Status
1	70,000	Open
2	50,000	Closed
3	55,000	Closed
4	60,000	Closed
5	55,000	Closed
6	50,000	Closed
7	50,000	Closed
8	60,000	Closed
9	50,000	Closed
10	5,00,000	Open

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
 = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation

Deal #	Deal Value	Deal Status
1	70,000	Open
2	50,000	Closed
3	55,000	Closed
4	60,000	Closed
5	55,000	Closed
6	50,000	Closed
7	50,000	Closed
8	60,000	Closed
9	50,000	Closed
10	5,00,000	Open

Median

Median

Median: Arrange data in increasing order and find the mid-point $\frac{(n+1)}{2}$.

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
 = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation
- Median = \$55,000 more realistic measure

Deal #	Deal Value	Deal Status
1	70,000	Open
2	50,000	Closed
3	55,000	Closed
4	60,000	Closed
5	55,000	Closed
6	50,000	Closed
7	50,000	Closed
8	60,000	Closed
9	50,000	Closed
10	5,00,000	Open

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
 \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation
- Median = \$55,000 more realistic measure

Deal #	Deal Value	Deal Status
1	70,000	Open
2	50,000	Closed
3	55,000	Closed
4	60,000	Closed
5	55,000	Closed
6	50,000	Closed
7	50,000	Closed
8	60,000	Closed
9	50,000	Closed
10	5,00,000	Open

Median is less susceptible to the influence of Outliers.

Mode

Mode

Mode – the most frequently occurring

Central Tendency: Example

- Timing for the Men's 500-meter Speed Skating event in Winter Olympics is tabulated.
- The Central Tendency measures are computed below:

Year	Time		Year	Time		Year	Time		
1928	43.4	Mean	1988	36.4	Median	36.4	1	Mode	
1932	43.4	=	1980	38.03	= (7 th + 8 th	50.1		= Value with	
1936	43.4	(43.4++36.4)/1	1984	38.19	Value)/2	38.03	1	highest	
1948	43.1	4 = 568.53/14	1976	39.17	= (40.2+40.2)/2	= (40.2+40.2)/2	38.19	1	frequency = 43.4
1952	43.2	= 40.61	1972	39.44	= 40.2	39.17	1		
1956	40.2		1964	40.1		39.44	1		
1960	40.2		1956	40.2					
1964	40.1		1960	40.2		40.1	1		
1968	40.3		1968	40.3		40.2	2		
1972	39.44		1948	43.1		40.3	1		
1976	39.17		1952	43.2		42.1	1		
			1928	43.4		43.1	1		
1980	38.03		1932	43.4		43.2	1		
1984	38.19		1936	43.4		43.4	3		
1988	36.4		1350	10.4	1	70.7	J	l	

Player_A Vs Player_B – Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37

Player_A Vs Player_B – Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351

Player_A Vs Player_B – Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351
MEAN	39	39

Player_A Vs Player_B - Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351
MEAN	39	39
MEDIAN	40	40

Dispersion Measures

Measures of Dispersion describe the data spread or how far the measurements are from the center.

Spread of Data - Range

Range = Max - Min

Spread of Data - SD and Variance

Variance =
$$\frac{\Sigma(x-\mu)^2}{n}$$

Standard Deviation, $\sigma = \sqrt{Variance}$

Who's Best?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351
MEAN	39	39
MEDIAN	40	40
STANDARD DEVIATION	41.5180683558376	7.28010988928052

Measuring Variability and Spread

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

Measuring Variability and Spread

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

Mean = Median = Mode = 10 for all 3.

Measuring Variability and Spread

Range = Max - Min

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

MEAN = MEDIAN = MODE = 10 RANGE = 5,5,27

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

MEAN = MEDIAN = MODE = 10 RANGE = 5, 5, 27 Reject Player 3

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

STANDARD DEVIATION

Player 1 = 1.7873008824606

Player 2 = 3.30823887354653

What is your Decision?????????

A

Percentile & Quartile

Nth percentile states that there are atleast N% of values less than or equal to this value and (100-N) values are greater or equal to this value

$$i = (N/100)*n$$

- N The percentile you are interested
- n Number of values

Key points

- 1. If i is decimal then round off to next value
- 2. If i is integer then take average of i and i+1 value

Let's calculate 85th percentile

Data:

3310 3355 3450 3480 3480 3490 3520 3540 3550 3650 3730 3925

Calculate 85th percentile?

Quartile

Data:

3310 3355 3450 3480 3480 3490 3520 3540 3550 3650 3730 3925

Quartile

Dividing data into $\frac{1}{4}$ – 4 parts

Q1 – First Quartile – 25th percentile

Q2 – Second Quartile – 50th percentile (Median)

Q3 – Third Quartile – 75th percentile

IQR (Inter Quartile Range) = Q3 - Q1

Inter Quartile Range

Quartile

Dividing data into $\frac{1}{4}$ – 4 parts

Q1 – First Quartile – 25th percentile

Q2 – Second Quartile – 50th percentile (Median)

Q3 – Third Quartile – 75th percentile

IQR (Inter Quartile Range) = Q3 - Q1

Case Study

In an Under 19 World Cup selection squad for 2018 the BCCI needs to select 1 player based on the current performance in 2017 – 2018 Ranji Trophy. There are 2 players with similar stats and the board is not sure whom to select.

- Can you help the board members with your analysis?

Stats - Player X & Y

Runs scored by both players in last 14 matches

Player X	Player Y
40	35
20	40
ţ	7
20	23
10	20
75	26
100	12
25	30
15	27
15	102
20	18
17	7 17
1:	14
Į.	7

Measures of association between 2 variables

- 1. Covariance
- 2. Correlation coefficient

Covariance

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Higher the value stronger the relation between them

Correlation coefficient

$$r_{xy} = \frac{\text{Cov}(x, y)}{S_x \times S_y}$$

Key Points

- 1. A measure of relationship not affected by the units of measurements
- 2. Ranges from -1 to +1

Types of Correlation

Data Visualization - Plots

- 1. Box Plot
- 2. Scatter plot
- 3. Density Plot

Box Plot - Shows the data spread for individual columns

Scatter Plot - Shows relationship between 2 columns

Ice Cream Sales vs Temperature	
Temperature °C	Ice Cream Sales
14.2°	\$215
16.4°	\$325
11.9°	\$185
15.2°	\$332
18.5°	\$406
22.1°	\$522
19.4°	\$412
25.1°	\$614
23.4°	\$544
18.1°	\$421
22.6°	\$445
17.2°	\$408

Density Plot - Shows the distribution of data

Statistical simulation link

http://www.shodor.org/interactivate/activities/

INFERENTIAL STATISTICS

Normal Distribution

Mean = Median = Mode

Standard Normal Distribution

Move the mean $\mu = 0 \qquad \qquad \mu = 71$ This gives a new distribution $X-71 \sim N(0,20.25)$

 $Z = \frac{X - \mu}{\sigma}$ is called the Standard Score or the z-score.

UON FIRM

Confidence Intervals and Hypothesis Testing

- Two Ways of Inferring the Same

<u>95% CI</u>: Implies that the true population parameter (e.g., mean) will lie within this range $(\pm 2SE)$ for 95% of the samples. If the sample is in the 5% zone (2.5% in each tail shown in gray), then the true population parameter will not lie in the range $\bar{x} \pm 2SE$.

Critical Region & Significance level

Critical region:

The region in the tail of the distribution which corresponds to the rejection of the null hypothesis at some chosen significance level.

Z Critical Value:

The Z value which separates the critical region from the rest of the region in the distribution. Any Z value higher than Z critical value means that the value is in the critical region.

Significance Level:

The probability level of that is chosen to test the hypothesis testing in statistics. They are 3 levels - 10%, 5%, 1% and normally if this is not provided during testing then **5% is what chosen as a standard**.

Hypothesis Testing

Hypothesis testing is the explanation of the phenomenon - scientific proof of concept about the event

- 1. Null Hypothesis (H_0)
- 2. Alternate Hypothesis (H_a)

Hypothesis Testing Steps

- 1. State null (H_0) and alternative (H_1) hypothesis
- 2. Choose level of significance (α)
- 3. Find critical values
- 4. Find test statistic
- 5. Draw your conclusion