Math_226 Notes

Randy Truong

 ${\rm April}\ 3,\ 2023$

Contents

1	10.1 (1 art 0 me), sequences (1 art 0 me) (00/20/20/	4
	1.1 Reminders	4
	1.2 Objectives	4
	1.3 Motivation	4
	1.4 A third	5
2	10.1 (Part Two): Sequences (Part Two) (03/29/23)	6
	2.1 Reminders	6
	2.1.1 Course Philosophy	6
	2.2 Motivation	6
	2.3 Sequences	7
	2.4 Convergence	7
	2.5 Divergence	8
	2.6 $\varepsilon - N$ Proof	8
	2.7 Properties of Sequence Limits	8
3	10.1: Sequences (Part 3) (03/31/23)	9
•	3.1 Summary of Lesson	9
	3.2 Reminders	9
	3.3 Motivation	9
4	4.6, 10.1: Finishing Sequences + Newton's Method	
4	(04/03/2023)	11
	4.1 Reminders	11
		11
	4.2 Motivation	11
5	10.2 (Part One): Infinite Series (Part One)	12
	5.1 Reminders	12
	5.2 Motivation	12
6	10.2 (Part Two): Infinite Series (Part Two)	13
		13
	C.O. Matination	10

7	10.3: The Integral Test	14
	7.1 Reminders	14
	7.2 Motivation	14
8	10.4: Comparision Tests	15
	8.1 Reminders	15
	8.2 Motivation	15
9	10.5: Absolute Convergence and the Ratio Test	16
	9.1 Reminders	16
	9.2 Motivation	16
10	10.6: Alternating Series and Conditional Convergence	17
	10.1 Reminders	17
	10.2 Motivation	17
11	10.6: Strategies for Analyzing Convergence	18
	11.1 Reminders	18
	11.2 Motivation	18
12	10.7 (Part One): Power Series	19
	12.1 Reminders	19
	12.2 Motivation	19
13	10.7 (Part Two): Radius and Interval of Convergence	20
	13.1 Reminders	20
	13.2 Motivation	20
14	10.7 (Part Three): Manipulation of Series (Part One)	21
	14.1 Reminders	21
	14.2 Motivation	21
15	10.7 (Part Four): Manipulation of Series (Part Two)	22
	15.1 Reminders	22
	15.2 Motivation	22
16	10.8 (Part One):	23
	16.1 Reminders	23
	16.2 Motivation	23
17	10.8 (Part Two):	24
	17.1 Reminders	24
	17.2 Motivation	24
18	10.9: Convergence of Taylor Series	25
	18.1 Reminders	25
	18.2 Motivation	25

19	10.10: Applications of Taylor Series	26
	19.1 Reminders	26 26
20	A7 (Part One): Complex Numbers (Part One)	27
	20.1 Reminders	27
	20.2 Motivation	27
21	10.10, A7 (Part Two): Complex Numbers (Part Two)	28
	21.1 Reminders	28
	21.2 Motivation	28
22	19.1 (Part One): Vectors	29
	22.1 Reminders	29
	22.2 Motivation	29
23	19.1 (Part Two): Inner Products	30
	23.1 Reminders	30
	23.2 Motivation	30
24	19.2 (Part One): Functions as Vectors, Periodic Functions	31
	24.1 Reminders	31
	24.2 Motivation	31
25	19.2 (Part Two): Fourier Series, Demos	32
	25.1 Reminders	32
	25.2 Motivation	32
26	19.3: Fourier Series, Theory	33
	26.1 Reminders	33
	26.2 Motivation	33
27	19.5 (Part One): Applications (Part One)	34
	27.1 Reminders	34
	27.2 Motivation	34
2 8	19.5 (Part Two): Applications (Part Two)	35
	28.1 Reminders	
	28.2 Motivation	35

10.1 (Part One): Sequences (Part One) (03/28/23)

1.1 Reminders

- The first MyLab homework is due on Wednesday, March 28, 2023.
 - Series (Part 0)
- The first written homework is going to be due on Friday, March 31, 2023.

1.2 Objectives

- We want to be able to derive the concept of a series and a sequence.
- We want to be able to understand where the idea of a series and sequence come from, especially from seemingly-ordinary objects.
- We want to explore the idea of a limit in relation to a sequence.
- We want to be able to discretely express a sequence.

1.3 Motivation

In former calculus classes, we have observed the idea of limits, derivatives, and integrals at face value. We know how to evaluate these different calculations, but what exactly do they mean in the context of math? How can we better observe what exactly happens in these calculations, and understand them outside the context of visualizing graphs or projectile motion.

1.4 A third...

10.1 (Part Two): Sequences (Part Two) (03/29/23)

2.1 Reminders

- MyLab Math Assignment 1 Sequences (Part 0) is due tonight, March 29, 2023.
- Written Homework 1 is due Friday, March 31, 2023 at the beginning of class.
- Friday's lesson is going to be over **sections 4.6 and 10.1** and we will be talking about **Newton's Method.**

2.1.1 Course Philosophy

Remember that the entire point of this class is to develop an intuition and a larger understanding and appreciation of calculus.

"Calculus is just algebra with a tiny drop of limits"

2.2 Motivation

In the last class, we got our first taste of sequences by exploring the idea of a third and eventually relating it to the **geometric sequence**, which results in the formula of

$$a_n = \frac{1}{1 - x}$$

In this class, we were essentially taking our "preview" of sequences, actually defining different aspects of our sequence, doing operations on sequences, and finally, exploring one of the most important ideas of sequences, which are limit convergence and divergence, which led us to the famous $\varepsilon-N$ proof, which is also known as the **precise definition of convergence**.

2.3 Sequences

Definition 1. Sequences

A function with a domain of natural numbers and a co-domain of real numbers.

$$f: \mathbb{N} \to \mathbb{R}$$

Meaning.

Although our intuition would tell us that a sequence is just a list or a collection of numbers, a sequence is more precisely just a function in which we input an **index** (a natural number) and we output a **term** (a real number). We, of course, then, collect these outputs, and this is what we generally see.

Example.

$$\{a_n\}
 \{a_n\}_{n=1}^{\infty}
 \{a_n\}_{n=0}^{\infty}
 1, 2, 3, 4, \dots
 1.1, 2.2, 3.3, 4.4, \dots$$

2.4 Convergence

Definition 2. Sequence Convergence

Informal Definition.

A sequence $\{a_n\}$ converges to a limit L if the terms get arbitrarily close to L as n gets sufficiently large, which is also known as

$$\lim_{n \to \infty} a_n = L$$

Formal Definition.

A sequence $\{a_n\}$ converges to a limit L if, for every $\varepsilon > 0$, where ε is the distance from the range to the limit L, there exists such a number that

$$|a_n - L| < \varepsilon \text{ for } n \ge N$$

The preceding expression is also known as the $\varepsilon-N$ proof.

2.5 Divergence

Definition 3. Sequence Divergence

Informal Definition.

A sequence diverges when it doesn't converge. If the sequence $\{a_n\}$ does not get arbitrarily close to limit L as n gets sufficiently large. This is also known as when the limit L does not exist.

 $\lim_{n\to\infty} a_n \text{ does not exist}$

Formal Definition.

A sequence a_n diverges to (positive) infinity if, for every M>0, there exists an N such that

$$a_n > M$$
 whenever $n > M$

Additionally, a sequence a_n diverges to negative infinity, if, for every M<0, there exists an N such that

 $a_n < M$ whenever n > M

2.6 $\varepsilon - N$ **Proof**

In this proof, we are proving the existence of a limit when given a sequence a_n

2.7 Properties of Sequence Limits

10.1: Sequences (Part 3) (03/31/23)

3.1 Summary of Lesson

In this lesson, we further develop the idea of convergence and divergence by **expanding it to non-elementary sequences**. We apply several new theorems as a result of this, such as the Sandwich Theorem. The homework, as a result, is all about convergence and divergence, testing on how well we are able to determine convergence and divergence given sequences including factorials, logarithms, and exponential functions.

3.2 Reminders

- The third MyLab Math assignment (Sequences (Part 2)) is due on Tuesday, April 3rd.
- The second written assignment is due on Friday, April 7, 2023.

3.3 Motivation

In the previous lesson, we learned about the **precise definition of convergence and divergence**. We learned about what exactly convergence and divergence means, and we were able to apply these concepts to various elementary sequences. However, what if we were given a sequence like

$$\{a_n\} = \frac{\cos(n)}{n}$$

Additionally, what if we were given a sequence like

$$\{a_n\} = \left(1 + \frac{x}{n}\right)^n$$

These sequences are undoubtedly more complex than our former examples and are not nearly as intuitive whenever it comes to actually solving them.

Therefore, we need to learn a few more **theorems** as well as **techniques** in order to determine convergence and divergence in more complex sequence functions.

Theorem 1. Sandwich Theorem

Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to L} b_n = L$ also.

let
$$\{a_n\}, \{b_n\}, \{c_n\}$$
 be sequences if $a_n \leq b_n \leq c_n$ and
$$\lim_{n \to \infty} a_n = L \text{ and } \lim_{n \to \infty} c_n = L, \text{ then}$$

$$\lim_{n \to \infty} b_n = L$$

Theorem 2. The Continuous Function Theorem For Sequences

Theorem 3. Other Theorem

Theorem 5

4.6, 10.1: Finishing Sequences + Newton's Method (04/03/2023)

4.1 Reminders

- The third MyLab Math assignment (Sequences (Part 2)) is due on Tuesday, April 3rd.
- The second written assignment is due on Friday, April 7, 2023.

4.2 Motivation

10.2 (Part One): Infinite Series (Part One)

5.1 Reminders

- The third MyLab Math assignment (Sequences (Part 2)) is due on Tuesday, April 3rd.
- The second written assignment is due on Friday, April 7, 2023.

5.2 Motivation

10.2 (Part Two): Infinite Series (Part Two) (04/05/23)

6.1 Reminders

- The third MyLab Math assignment (Sequences (Part 2)) is due on Tuesday, April 3rd.
- The second written assignment is due on Friday, April 7, 2023.

6.2 Motivation

10.3: The Integral Test (04/07/23)

- 7.1 Reminders
- 7.2 Motivation

10.4: Comparision Tests (04/10/23)

- 8.1 Reminders
- 8.2 Motivation

10.5: Absolute Convergence and the Ratio Test

- 9.1 Reminders
- 9.2 Motivation

10.6: Alternating Series and Conditional Convergence

- 10.1 Reminders
- 10.2 Motivation

10.6: Strategies for Analyzing Convergence

- 11.1 Reminders
- 11.2 Motivation

10.7 (Part One): Power Series

- 12.1 Reminders
- 12.2 Motivation

10.7 (Part Two): Radius and Interval of Convergence

- 13.1 Reminders
- 13.2 Motivation

10.7 (Part Three):Manipulation of Series(Part One)

- 14.1 Reminders
- 14.2 Motivation

10.7 (Part Four):Manipulation of Series(Part Two)

- 15.1 Reminders
- 15.2 Motivation

10.8 (Part One):

- 16.1 Reminders
- 16.2 Motivation

10.8 (Part Two):

- 17.1 Reminders
- 17.2 Motivation

10.9: Convergence of Taylor Series

- 18.1 Reminders
- 18.2 Motivation

10.10: Applications of Taylor Series

- 19.1 Reminders
- 19.2 Motivation

A7 (Part One): Complex Numbers (Part One)

- 20.1 Reminders
- 20.2 Motivation

10.10, A7 (Part Two): Complex Numbers (Part Two)

- 21.1 Reminders
- 21.2 Motivation

19.1 (Part One): Vectors

- 22.1 Reminders
- 22.2 Motivation

19.1 (Part Two): Inner Products

- 23.1 Reminders
- 23.2 Motivation

19.2 (Part One): Functions as Vectors, Periodic Functions

- 24.1 Reminders
- 24.2 Motivation

19.2 (Part Two): Fourier Series, Demos

- 25.1 Reminders
- 25.2 Motivation

19.3: Fourier Series, Theory

- 26.1 Reminders
- 26.2 Motivation

19.5 (Part One): Applications (Part One)

- 27.1 Reminders
- 27.2 Motivation

19.5 (Part Two): Applications (Part Two)

- 28.1 Reminders
- 28.2 Motivation