Examen Final

Mecánica del Continuo

15 de diciembre de 2005

1) Si $\dot{u} = \omega \times u$ y $\dot{v} = \omega \times v$, utilizando notación indicial muestre que

$$\frac{d}{dt}(u \times v) = \omega \times (u \times v)$$

2)

a. Probar que el tensor $B_{ik} = \varepsilon_{ijk} a_j$ es antisimétrico

b. Sea B_{ij} un tensor cartesiano antisimétrico de segundo orden. Sea además el vector $b_i = \frac{1}{2} \varepsilon_{ijk} B_{jk}$. Mostrar que $B_{pq} = \varepsilon_{pqi} b_i$.

3) Para un cuerpo elástico en equilibrio bajo la acción de fuerzas de másicas b_i y fuerzas de superficie $t_{ij}^{(n)}$, mostrar que la energía total de deformación es igual a la mitad del trabajo hecho por las fuerzas externas que producen los desplazamientos u_i . Es decir

$$\frac{1}{2} \int_{V} \sigma_{ij} \varepsilon_{ij} dV = \frac{1}{2} \left[\int_{V} \rho b_{i} u_{i} dV + \int_{S} t_{i}^{(n)} u_{i} dS \right]$$

Sugerencia: partir de la ecuación de equilibrio, multiplicar por el desplazamiento u_i y luego integrar sobre el volumen. En el resultado hallado, aplicar integración por partes (teorema de Green). Tener en cuenta además la simetría del tensor de tensiones.

Teorema de Green:

$$\int_{V} \frac{\partial}{\partial x_{i}} A_{jkl\cdots} dV = \int_{S} n_{i} A_{jkl\cdots} dS$$

4) Desarrolle la expresión de los tensores de deformación de Green-Lagrange y de Almansi. Explique cómo se derivan ambos tensores y su interpretación. Cuándo se usa uno y cuándo el otro?