Содержание

1	Ним-сложение	2
1	Ним-сложение	3
2	Лог. КЛШ-2023 2.1 Плакат	8
3	Решения	8
1	Источники мудрости	8

Анонс

...

1. Ним-сложение

- $\mathbb{Z}_{\geq 0}$ целые неотрицательные числа.
- \oplus ним-сложение: переводим число в двоичную систему счисления, складываем побитно без переноса (0+0=0, 1+0=1, 1+1=0), переводим обратно в исходную систему счисления.
- \otimes ним-умножение: переводим число в двоичную систему счисления, побитно умножаем, переводим в исходную систему счисления.
 - 1. Найди $2\oplus 2$, $10\oplus 5$, $\underbrace{5\oplus 5\oplus\ldots\oplus 5}_{2023\,\mathrm{pasa}}$.
 - 2. Найди $2\otimes 2$, $10\otimes 5$, $\underbrace{5\otimes 5\otimes\ldots\otimes 5}_{2023\,\mathrm{pasa}}$.
 - 3. Всегда ли $a \oplus b = b \oplus a$? Придумай числа, нарушающие равенство, или объясни, почему равенство верно всегда.
 - 4. Всегда ли $a\otimes b$ = $b\otimes a$? Придумай числа, нарушающие равенство, или объясни, почему равенство верно всегда.
 - 5. Реши уравнение $x \oplus 7 = 0$, $9 \oplus y = 11$.
 - 6. Объясни, как устроено ним-вычитать числа? Ним-вычитание должно быть обратным действием к ним-сложению.
 - 7. Придумай числа a, b и c такие, что $a \cdot (b \oplus c) = a \cdot b \oplus a \cdot c$.
 - 8. Придумай числа a,b и c такие, что $a\cdot(b\oplus c)\neq a\cdot b\oplus a\cdot c$.
 - 9. Реши уравнения $3 \cdot x \oplus 12 = 0$ и $x \oplus x \oplus x \oplus 12 = 0$.
 - 10. В сумме $5 \oplus 10 \oplus 7$ замени одно из чисел на *большее*, чтобы сумма превратилась в ноль.
 - 11. В сумме $5 \oplus 10 \oplus 7$ замени одно из чисел на меньшее, чтобы сумма превратилась в ноль.
 - 12. Миша ним-складывает числа не превосходящие 10, сколько максимум он может получить?
 - 13. Маша ним-складывает числа не превосходящие 7, сколько максимум она может получить?
 - 14. Реши уравнение $x \otimes 3 = 6$ и $x \otimes 3 = 0$.
 - 15. Реши уравнение $x \otimes x \oplus 3 \otimes x \oplus 2 = 0$.
 - 16. Придумай числа a,b и c такие, что $a\otimes (b\oplus c)=a\otimes b\oplus a\otimes c$.
 - 17. Придумай числа a,b и c такие, что $a\otimes (b\oplus c)\neq a\otimes b\oplus a\otimes c$.

 $\mathbb{Z}_{>0}$ — целые неотрицательные числа.

- \oplus ним-сложение: переводим число в двоичную систему счисления, складываем побитно без переноса (0+0=0, 1+0=1, 1+1=0), переводим обратно в исходную систему счисления.
- \otimes ним-умножение: переводим число в двоичную систему счисления, побитно умножаем, переводим в исходную систему счисления.
 - 1. Найди $2\oplus 2$, $10\oplus 5$, $\underbrace{5\oplus 5\oplus\ldots\oplus 5}_{2023\,\mathrm{pasa}}$.
 - 2. Найди $2\otimes 2$, $10\otimes 5$, $\underbrace{5\otimes 5\otimes\ldots\otimes 5}_{2023\,\mathrm{pasa}}$.
 - 3. Всегда ли $a \oplus b = b \oplus a$? Придумай числа, нарушающие равенство, или объясни, почему равенство верно всегда.
 - 4. Всегда ли $a\otimes b$ = $b\otimes a$? Придумай числа, нарушающие равенство, или объясни, почему равенство верно всегда.
 - 5. Реши уравнение $x \oplus 7 = 0, 9 \oplus y = 11.$
 - 6. Объясни, как устроено ним-вычитать числа? Ним-вычитание должно быть обратным действием к ним-сложению.
 - 7. Придумай числа a, b и c такие, что $a \cdot (b \oplus c) = a \cdot b \oplus a \cdot c$.
 - 8. Придумай числа a, b и c такие, что $a \cdot (b \oplus c) \neq a \cdot b \oplus a \cdot c$.
 - 9. Реши уравнения $3 \cdot x \oplus 12 = 0$ и $x \oplus x \oplus x \oplus 12 = 0$.
 - 10. В сумме $5 \oplus 10 \oplus 7$ замени одно из чисел на большее, чтобы сумма превратилась в ноль.
 - 11. В сумме $5 \oplus 10 \oplus 7$ замени одно из чисел на меньшее, чтобы сумма превратилась в ноль.
 - 12. Миша ним-складывает числа не превосходящие 10, сколько максимум он может получить?
 - 13. Маша ним-складывает числа не превосходящие 7, сколько максимум она может получить?
 - 14. Реши уравнение $x \otimes 3 = 6$ и $x \otimes 3 = 0$.
 - 15. Реши уравнение $x \otimes x \oplus 3 \otimes x \oplus 2 = 0$.
 - 16. Придумай числа a,b и c такие, что $a\otimes (b\oplus c)=a\otimes b\oplus a\otimes c$.
 - 17. Придумай числа a,b и c такие, что $a\otimes (b\oplus c)\neq a\otimes b\oplus a\otimes c$.

- 1. Классические правила игры Ним просты. Есть несколько кучек камней. За ход можно взять любое количество камней из одной кучки. Проигрывает тот, кто не может сделать ход.
 - а) Кто выигрывает, если имеется две кучи из 11 и 22 камней? Найди выигрышный ход.
 - б) Кто выигрывает, если имеется 5 куч камней из 6, 7, 8, 9 и 10 камней? Найди выигрышный ход.
- 2. Ним Ласкера. Есть несколько кучек камней. За ход разрешается: либо взять любое положительное количество камней из одной кучки, либо поделить любую кучку на две новые непустые кучки. Проигрывает тот, кто не может сделать ход.
 - а) Построй функцию Шпрага-Гранди для одной кучки из n камней.
 - б) Определи выигрышный ход в ситуации с тремя кучками из 2, 5 и 7 камней.
- 3. Есть несколько кучек камней. За ход разрешается поделить любую кучку на две новые непустые кучки. Проигрывает тот, кто не может сделать ход.
 - а) Построй функцию Шпрага-Гранди для одной кучки из n камней.
 - б) Определи выигрышный ход в ситуации с тремя кучками из 2, 5 и 7 камней.
- 4. В ряд стоят кегли. За ход разрешается выбить шаром одну или две рядом стоящие кегли. Выигрывает тот, кто сбивает последнюю кеглю. Определи выигрышный ход для ряда из 8 кегель.
- 1. Классические правила игры Ним просты. Есть несколько кучек камней. За ход можно взять любое количество камней из одной кучки. Проигрывает тот, кто не может сделать ход.
 - а) Кто выигрывает, если имеется две кучи из 11 и 22 камней? Найди выигрышный ход.
 - б) Кто выигрывает, если имеется 5 куч камней из 6, 7, 8, 9 и 10 камней? Найди выигрышный ход.
- 2. Ним Ласкера. Есть несколько кучек камней. За ход разрешается: либо взять любое положительное количество камней из одной кучки, либо поделить любую кучку на две новые непустые кучки. Проигрывает тот, кто не может сделать ход.
 - а) Построй функцию Шпрага-Гранди для одной кучки из n камней.
 - б) Определи выигрышный ход в ситуации с тремя кучками из 2, 5 и 7 камней.
- 3. Есть несколько кучек камней. За ход разрешается поделить любую кучку на две новые непустые кучки. Проигрывает тот, кто не может сделать ход.
 - а) Построй функцию Шпрага-Гранди для одной кучки из n камней.
 - б) Определи выигрышный ход в ситуации с тремя кучками из 2, 5 и 7 камней.
- 4. В ряд стоят кегли. За ход разрешается выбить шаром одну или две рядом стоящие кегли. Выигрывает тот, кто сбивает последнюю кеглю. Определи выигрышный ход для ряда из 8 кегель.

- 1. Отбросив предрассудки, выполни действия с p-адическими числами:
 - a) $567 + 134 \text{ B } \mathbb{Z}_8$;
- в) ... 2222 + 1 в \mathbb{Z}_3 ;
- б) ... 3333 + 123 в \mathbb{Z}_4 ;
- г) ... $1313132 \cdot 3$ в \mathbb{Z}_5 ;
- 2. Присмотрись к равенству

$$2 + 3 \cdot 5^{1} + 1 \cdot 5^{2} + 3 \cdot 5^{3} + 1 \cdot 5^{4} + \dots = 1/3.$$

Аккуратно объясни, когда и почему равенство является абсолютно верным?

- 3. Запиши полностью:
 - a) $-1 \text{ B } \mathbb{Z}_{10}$;

б) -3 в \mathbb{Z}_5 ;

в) -10 в \mathbb{Z}_3 ;

- 4. Реши уравнения в *p*-адических числах
 - a) x + 3 = 0 в \mathbb{Z}_7 ;
- r) 2x = 1 в \mathbb{Z}_5 ;

ж) 2x = 117 в \mathbb{Z}_5 ;

- б) $x + 7 = \dots 5555$ в \mathbb{Z}_9 ; д) 5x = 2 в \mathbb{Z}_7 ;

B) 3x = 1 B \mathbb{Z}_5 ;

- e) $9x = -1 \text{ B } \mathbb{Z}_{10}$;
- 5. Присмотрись к равенству

$$1 + 5 + 5^2 + 5^3 + 5^4 + \dots = -1/8.$$

Аккуратно объясни, когда и почему равенство является абсолютно верным?

- 1. Отбросив предрассудки, выполни действия с p-адическими числами:
 - a) $567 + 134 \text{ B } \mathbb{Z}_8$;
- в) ... 2222 + 1 в \mathbb{Z}_3 ;
- б) ... 3333 + 123 в \mathbb{Z}_4 ;
- г) ... $1313132 \cdot 3$ в \mathbb{Z}_5 ;
- 2. Присмотрись к равенству

$$2 + 3 \cdot 5^{1} + 1 \cdot 5^{2} + 3 \cdot 5^{3} + 1 \cdot 5^{4} + \dots = 1/3.$$

Аккуратно объясни, когда и почему равенство является абсолютно верным?

- 3. Запиши полностью:
 - a) $-1 \text{ B } \mathbb{Z}_{10}$;

б) -3 в \mathbb{Z}_5 ;

в) -10 в \mathbb{Z}_3 ;

- 4. Реши уравнения в p-адических числах
 - a) x + 3 = 0 в \mathbb{Z}_7 ;
- r) 2x = 1 в \mathbb{Z}_5 ;

ж) 2x = 117 в \mathbb{Z}_5 ;

- б) $x + 7 = \dots 5555$ в \mathbb{Z}_9 ;
- π) 5x=2 в \mathbb{Z}_7 :
- B) 3x = 1 B \mathbb{Z}_5 ;

- e) $9x = -1 \text{ B } \mathbb{Z}_{10}$;
- 5. Присмотрись к равенству

$$1 + 5 + 5^2 + 5^3 + 5^4 + \dots = -1/8.$$

Аккуратно объясни, когда и почему равенство является абсолютно верным?

 \mathbb{Z}_p — целые p-адические числа, \mathbb{Q}_p — дробные p-адические числа;

- 1. Приведи пример уравнения, которое можно решить в \mathbb{Z}_3 и невозможно решить в \mathbb{Z}_2 . Реши его в \mathbb{Z}_3 .
- 2. Приведи пример уравнения, которое можно решить в \mathbb{Z}_2 и невозможно решить в \mathbb{Z}_3 . Реши его в \mathbb{Z}_2 .
- 3. Запиши а)
 - a) $2/3 \text{ B } \mathbb{Q}_3$;

б) 5/48 в \mathbb{Q}_2 ;

- в) 5/21 в \mathbb{Q}_7 ;
- 4. Серёжа Ламзин утверждает, что 1/3 это целое число, Ваня Адо утверждает, что 1/3 это дробное число, а Вика Луковская, что делить 1 на 3 нельзя.

В каких числах прав каждый из них?

- 5. Найди правые три знака каждого корня уравнения или докажи, что решений нет:
 - a) $x^2 = 2 \text{ B } \mathbb{Z}_7;$

в) $x^2 = -1$ в \mathbb{Z}_7 ;

д) $x^2 = 17 \text{ в } \mathbb{Z}_2;$

- б) $x^2 = 2$ в \mathbb{Z}_5 ;
- r) $x^2 = -1 \text{ B } \mathbb{Z}_5;$
- e) $x^3 = 2 \text{ B } \mathbb{Z}_5;$
- 6. (*) При каком условии на обычное целое число m уравнение $x^2 = m$ имеет решение в \mathbb{Z}_2 ?

 \mathbb{Z}_p — целые p-адические числа, \mathbb{Q}_p — дробные p-адические числа;

- 1. Приведи пример уравнения, которое можно решить в \mathbb{Z}_3 и невозможно решить в \mathbb{Z}_2 . Реши его в \mathbb{Z}_3 .
- 2. Приведи пример уравнения, которое можно решить в \mathbb{Z}_2 и невозможно решить в \mathbb{Z}_3 . Реши его в \mathbb{Z}_2 .
- 3. Запиши
- a) $2/3 \text{ B } \mathbb{Q}_3;$

б) 5/48 в \mathbb{Q}_2 ;

- в) 5/21 в \mathbb{Q}_7 ;
- 4. Серёжа Ламзин утверждает, что 1/3 это целое число, Ваня Адо утверждает, что 1/3 это дробное число, а Вика Луковская, что делить 1 на 3 нельзя.

В каких числах прав каждый из них?

- 5. Найди правые три знака каждого корня уравнения или докажи, что решений нет:
 - a) $x^2 = 2 \text{ B } \mathbb{Z}_7;$

в) $x^2 = -1$ в \mathbb{Z}_7 ;

д) $x^2 = 17 \text{ в } \mathbb{Z}_2;$

б) $x^2 = 2$ в \mathbb{Z}_5 ;

- r) $x^2 = -1$ в \mathbb{Z}_5 ;
- e) $x^3 = 2 \text{ B } \mathbb{Z}_5;$
- 6. (*) При каком условии на обычное целое число m уравнение $x^2 = m$ имеет решение в \mathbb{Z}_2 ?

Загоночная контрольная:)

- 1. Найдит ним-сумму $2 \oplus 3 \oplus 4 \oplus 5 \oplus 6$.
- 2. В ряд стоят кегли. За ход разрешается выбить шаром одну или две рядом стоящие кегли. Выигрывает тот, кто сбивает последнюю кеглю. Определи выигрышный ход для ряда из 8 кегель.
- 3. Запиши 1/5 в \mathbb{Z}_2 и -1/6 в \mathbb{Q}_3 .
- 4. Посмотри на уравнение $x^2 = x$ в \mathbb{Z}_{10} . Найди два его корня абсолютно точно, а для третьего корня правые три знака.
- 5. Какое число ближе к 27 в \mathbb{Z}_3 : 26 или 108?

Загоночная контрольная:)

- 1. Найдит ним-сумму $2 \oplus 3 \oplus 4 \oplus 5 \oplus 6$.
- 2. В ряд стоят кегли. За ход разрешается выбить шаром одну или две рядом стоящие кегли. Выигрывает тот, кто сбивает последнюю кеглю. Определи выигрышный ход для ряда из 8 кегель.
- 3. Запиши 1/5 в \mathbb{Z}_2 и -1/6 в \mathbb{Q}_3 .
- 4. Посмотри на уравнение $x^2 = x$ в \mathbb{Z}_{10} . Найди два его корня абсолютно точно, а для третьего корня правые три знака.
- 5. Какое число ближе к 27 в \mathbb{Z}_3 : 26 или 108?

Загоночная контрольная:)

- 1. Найдит ним-сумму $2 \oplus 3 \oplus 4 \oplus 5 \oplus 6$.
- 2. В ряд стоят кегли. За ход разрешается выбить шаром одну или две рядом стоящие кегли. Выигрывает тот, кто сбивает последнюю кеглю. Определи выигрышный ход для ряда из 8 кегель.
- 3. Запиши 1/5 в \mathbb{Z}_2 и -1/6 в \mathbb{Q}_3 .
- 4. Посмотри на уравнение $x^2=x$ в \mathbb{Z}_{10} . Найди два его корня абсолютно точно, а для третьего корня правые три знака.
- 5. Какое число ближе к 27 в \mathbb{Z}_3 : 26 или 108?

2. Лог. КЛШ-2023

Курс выбрали 14 школьников.

1.

В теховском файле \newpage стоит, чтобы легко было скопировать секцию, для печати двух копий подряд на одном листе. Это позволяет экономить бумагу и время при печати :)

2.1. Плакат

3. Решения

4. Источники мудрости

передалать потом в bib-файл

1.

2.