

7. Three monkeys A, B and C with masses of 10 , 15 & 8 Kg respectively are climbing up & down the rope suspended from D . At the instant represented , A is descending the rope with an acceleration of 2 m/s $^2$  & C is pulling himself up with an acceleration of 1.5 m/s $^2$  . Monkeys B is climbing up with a constant speed of 0.8 m/s . Treat the rope and monkeys as a complete system & calculate the tension T in the rope at D. (g =  $10 \text{ m/s}^{-2}$ )



$$T_1 - 8g = 8 \times 1.5$$
 $T_1 - 8g = 12$ 
 $T_1 - 8g = 12$ 

For A

 $T_1 = 92N$ 

For B

 $T_2 = T_1 + 15g$ 
 $T_3 = 92 + 150$ 





Ex

In the arrangement shown in figure  $m_A = m$  and  $m_B = 2m$ , while all the pulleys and string are massless and frictionless. At t = 0, a force F = 10t starts acting over central pulley in vertically upward direction. Find [Take all the units into S.I. system] [m = 1kg]



(C) 2 sec

14. Velocity of A when B loses contact with floor is (A) 
$$8 \text{ m/s}$$
 (C)  $10 \text{ m/s}$ 

(B) 6 m/s

(D) 
$$11 \text{ m/s}$$



Then B 100GE contact



(D) 1 sec

when A look contact

$$5t-10=1a_A$$

$$5t - 10 = \frac{dv}{dt}$$

$$4 \quad 4 \quad va$$

$$5t dt flott = \int dv$$

$$2 \quad 0$$

$$v = \frac{5}{2}[12] - 20$$

AK



1\*. In the following arrangement the system is initially at rest. The 5 kg block is now released. Assuming the pulleys and string to be massless and smooth, the acceleration of blocks is

$$\langle A \rangle a_A = \frac{g}{7}$$

(B) 
$$a_B = 0 \text{ m/s}^2$$

$$\langle C \rangle a_c = \frac{g}{14}$$

$$(D) 2a_C = a_A$$





FOR-A

$$\frac{Foc - c}{2T - 8g = 8q - 3}$$

$$109 - 27 = 109_{A}$$
 $27 - 83 = 89_{L}$ 
 $+$ 

$$29 = 109_{A} + 89_{C}$$











Illustration 29. A pendulum of mass m is suspended from the ceiling of a train moving with an acceleration 'a' as

shown in figure. Find the angle  $\theta$  in equilibrium position.







$$T \sin \theta = \frac{ma_{0}}{T \cos \theta} = \frac{ma_{0}}{T \cos \theta}$$

$$T \cos \theta = \frac{ma_{0}}{T \cos \theta}$$

**2.** In the given figure pulley is moving with an accelation  $a_0$  in upward direction, acceleration of block A with respect to pulley is

$$(A) \frac{1}{3} (g + a_0) \uparrow$$

(C) 
$$\frac{g+a_0}{2}\uparrow$$

(B) 
$$\frac{1}{3}$$
(g - a<sub>0</sub>)  $\uparrow$ 

(D) 
$$\left(\frac{g-a_0}{2}\right) \uparrow$$









$$2mq + 2mq_0 - T = 2mq_1$$