Die Pfadintegral-Formulierung der Quantenmechanik

Mathieu Kaltschmidt

21. Dezember 2018

Institut für Theoretische Physik Universität Heidelberg

Dieser Vortrag entstand im Rahmen des Quantenmechanik-Seminars, organisiert von Prof. Wolschin am Institut für Theoretische Physik der Universität Heidelberg im Wintersemester 2018/2019.

Ziel des Vortrages ist es, eine alternative Formulierung der Quantenmechanik, den sog. Pfadintegral-Formulismus, zu motivieren und diesen aus dem bereits bekannten Konzept der Übergangsamplituden herzuleiten.

Der Formalismus wird verwendet, um das Eigenenergie-Spektrum des Harmonischen Oszillators zu bestimmen und das Resultat mit den bereits bekannten Eigenenergien verglichen.

Ein Ausblick auf die zahlreichen Anwendungsgebiete der Pfadintegrale, vor allem in der Statistischen Physik und der Quantenfeldtheorie wird präsentiert.

Zu Beginn wird noch einmal das grundlegende Konzept des Wirkungsprinzips in der klassischen Mechanik sowie die bisher kennengelernten Interpretationen der Quantenmechanik nach Heisenberg und Schrödinger wiederholt.

1 Das Wirkungsprinzip in der klassischen Mechanik

2 Bisherige Zugänge zur Quantenmechanik

3 Der Pfadintegral-Formalismus

3.1 Feynman's Postulate

3.2 Allgemeine Herleitung

Ausgangspunkt unserer Herleitung ist die Auswertung der Übergangsamplitude:

$$\langle q_b, T | q_a, 0 \rangle = \langle q_b | e^{-\frac{i}{\hbar} \hat{H} T} | q_a \rangle \tag{1}$$

Wir teilen das Zeitintervall [0,T] in N+1 Teilintervalle der Länge $\delta t=\frac{T}{N+1}$ was dazu führt, dass die Exponentialfunktion in N+1 Faktoren $\mathrm{e}^{-\frac{i}{\hbar}\hat{\mathrm{H}}\delta t}$ zerfällt. Interessant ist die Betrachtung dieser Zerlegung im Limes für hohe N.

Nun wollen wir zwischen jeden der Faktoren Identitätsoperatoren im Ortsraum einfügen. Diese sind von der Form $1 = \int dq_k |q_k\rangle \langle q_k|$ und überführen Gleichung (1) in

$$\langle q_b, T | q_a, 0 \rangle = \lim_{N \to \infty} \int \prod_{k=1}^{N} dq_k \, \langle q_b | e^{-\frac{i}{\hbar} \hat{H} \delta t} | q_N \rangle \, \langle q_N | e^{-\frac{i}{\hbar} \hat{H} \delta t} | q_{N-1} \rangle \cdots \langle q_1 | e^{-\frac{i}{\hbar} \hat{H} \delta t} | q_a \rangle \quad (2)$$

Für den Hamilton-Operator wählen wir den Ansatz $\hat{\mathbf{H}} = \frac{\hat{p}^2}{2m} + V(\hat{q})$. Dieser repräsentiert die Klasse der physikalisch relevantesten Probleme. Außerdem wird die (maximal) quadratische Abhängigkeit im kinetischen Term noch wichtig für die Herleitung sein. Nach der *Baker-Campbell-Hausdorff-Formel* haben die einzelnen Exponential-Operatoren die Form

$$e^{-\frac{i}{\hbar}\hat{H}\delta t} = e^{-\frac{i}{\hbar}\frac{\hat{p}^2}{2m}\delta t} e^{-\frac{i}{\hbar}V(\hat{q})\delta t} e^{\frac{1}{2\hbar^2}[\frac{\hat{p}^2}{2m},V(\hat{q})]\delta t^2} + \mathcal{O}(\delta t^3)$$
(3)

wobei $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$ der Kommutator der beiden Operatoren ist. Aufgrund unserer Grenzwertbetrachtung für den Fall hoher N wollen wir jedoch auch den Term $\mathcal{O}(\delta t^2)$ für die weitere Herleitung vernachlässigen.

Wir fügen erneut Identitätsoperatoren ein, dieses Mal jedoch im Impulsraum und analysieren beispielhaft einen der Faktoren aus Gleichung (2):

$$\langle q_{k+1} | e^{-\frac{i}{\hbar} \hat{H} \delta t} | q_k \rangle = \int dp_k \langle q_{k+1} | e^{-\frac{i}{\hbar} \frac{\hat{p}^2}{2m} \delta t} | p_k \rangle \langle p_k | e^{-\frac{i}{\hbar} V(\hat{q}) \delta t} | q_k \rangle$$

$$= \int dp_k e^{-\frac{i}{\hbar} \left(\frac{p_k^2}{2m} + V(q_k)\right) \delta t} \langle q_{k+1} | p_k \rangle \langle p_k | q_k \rangle$$

$$= \int \frac{dp_k}{2\pi} e^{-\frac{i}{\hbar} H(p_k, q_k) \delta t} e^{-\frac{i}{\hbar} (q_{k+1} - q_k) p_k}$$
(4)

Der letzte Umformungsschritt begründet sich aus der Relation zwischen der Basis im Orts- und Impulsraum, welche durch die Fourier-Transformation gegeben ist und die folgende Form hat: $\langle p_k | q_k \rangle = \frac{1}{\sqrt{2\pi}} \, \mathrm{e}^{-\frac{i}{h} p_k q_k}$.

Setzen wir dieses Ergebnis in Gleichung (2) ein, so erhalten wir:

$$\langle q_b, T | q_a, 0 \rangle = \lim_{N \to \infty} \int \frac{\mathrm{d}p_0}{2\pi} \prod_{k=1}^{N} \frac{\mathrm{d}p_k \mathrm{d}q_k}{2\pi} \, \mathrm{e}^{\frac{i}{\hbar} \sum_{k=0}^{N} \left[p_k \frac{q_{k+1} - q_k}{\delta t} - \mathrm{H}(p_k, q_k) \right] \delta t}$$
 (5)

beziehungsweise, wenn wir uns an die infinitesimale Definition der Ableitung erinnern:

$$\langle q_b, T | q_a, 0 \rangle = \int_{q(0)=q_0}^{q(T)=q_T} \mathcal{D}p(t) \mathcal{D}q(t) \ e^{\frac{i}{\hbar} \sum_{k=0}^{N} [p_k \dot{q}_k - H(p_k, q_k)] \delta t}$$
 (6)

Wir haben hier direkt die üblichen Konventionen für das Integrationsmaß

$$\mathcal{D}q(t) = \lim_{N \to \infty} \prod_{k=1}^{N} dq_k$$

$$\mathcal{D}p(t) = \lim_{N \to \infty} \prod_{k=1}^{N} dp_k$$

verwendet.

Im nächsten Schritt sind wir an der rigorosen Lösung für den von uns gewählten Ansatz

 $H(p_k,q_k)=rac{p_k^2}{2m}+V(q_k)$ interessiert. In der diskreten Darstellung wie oben

$$\int \frac{\mathrm{d}p_k}{2\pi} \,\mathrm{e}^{-\frac{i}{\hbar} \left(p_k (q_{k+1} - q_k) - \frac{p_k^2}{2m} \delta t \right)} \tag{7}$$

erkennen wir die Form eines Gauß-Integrals, für das wir im Reellen die Lösung

$$\int_{-\infty}^{\infty} dp \exp\left(-\frac{1}{2}ap^2 + bp\right) = \sqrt{\frac{2\pi}{a}} \exp\left(\frac{b^2}{2a}\right) \quad \text{mit } \Re(a) > 0$$
 (8)

kennen. Mit diesem Wissen können wir durch einen mathematischen Trick, eine analytische Fortsetzung in die komplexe Ebene, auch Gauß-Integrale der Form von Gleichung (7) lösen.

Wir wählen hierzu eine Substitution der Form $\delta t \to \delta t (1-i\varepsilon)\big|_{\varepsilon=0}$ und erhalten:

$$\int \frac{\mathrm{d}p_k}{2\pi} \,\mathrm{e}^{-\frac{i}{\hbar} \left(p_k (q_{k+1} - q_k) - \frac{p_k^2}{2m} \delta t \right)} = \underbrace{\sqrt{\frac{m}{2\pi\hbar\delta t}}}_{\stackrel{:=}{=} \gamma} \,\mathrm{e}^{\frac{i}{\hbar} \frac{m}{2\delta t} (q_{k+1} - q_k)} \tag{9}$$

Dies führt uns zu dem Endergebnis der Herleitung, der **Feynman-Kac-Formel** für Übergangsamplituden:

$$\langle q_b, T | q_a, 0 \rangle = \lim_{N \to \infty} \gamma^{N+1} \prod_{k=1}^{N} \int dq_k \, \exp\left(\frac{i}{\hbar} \int_0^T dt \, \mathcal{L}(q, \dot{q})\right)$$

$$\equiv \int_{q_0}^{q_T} \mathcal{D}q(t) \exp\left(\frac{i}{\hbar} \int_0^T dt \, \mathcal{L}(q, \dot{q})\right)$$
(10)

Das Integrationsmaß berücksichtigt hierbei die Information aus der p-Integration, welche sich im Vorfaktor γ versteckt.

Wir dürfen an dieser Stelle den Lagrangian $\mathcal L$ anstelle des Ausdrucks $p\dot q$ – $\mathrm H(p,q)$ schreiben, welcher zuvor noch nicht als Legendre-Transformation angesehen werden konnte, da wir zuerst die p-Integration ausführen mussten um die extremalisierenden Charakter der Legendre-Transformation zu berücksichtigen und eine Funktion von q und $\dot q$ zu erhalten. Hier is auch die Bedeutung des quadratisch in p angesetzten kinetischen Terms im Hamiltonian eingegangen.

4 Der Harmonische Oszillator

Wir wollen nun das Erlernte benutzen um das Eigenenergie-Spektrum für das Potential des harmonischen Oszillators zu bestimmen.

Wir kennen den Lagrangian für dieses Problem:

$$\mathcal{L} = \frac{m}{2}\dot{q}^2 - \frac{m\omega^2}{2}q^2 \tag{11}$$

und parametrisieren alle Pfade als Abweichungen vom klassischen Pfad:

$$q(t) = q_{\rm cl}(t) + \eta(t) \tag{12}$$

Die Wirkung des klassischen Beitrags lässt sich aus einer etwas länglichen aber nicht allzu schweren Rechnung bestimmen und wird an dieser Stelle als bekannt vorausgesetzt:

$$S[q_{\rm cl}] = \frac{m\omega}{2\sin(\omega T)} \left[(q_T^2 + q_0^2)\cos(\omega T) - 2q_T q_0 \right]$$
(13)

5 Der klassische Grenzfall

6 Weiterführende Anwendungen

Literaturverzeichnis

- [1] P. A. M. Dirac. "The Lagrangian in Quantum Mechanics". In: *Physikalische Zeitschrift der Sowjetunion* 3.1 (1933), pp. 312–320.
- [2] R. P. Feynman. "Space-Time Approach to Non-Relativistic Quantum Mechanics". In: *Reviews of Modern Physics* 20.2 (1948), pp. 367–387.
- [3] R. P. Feynman and A. R. Hibbs. *Quantum mechanics and path integrals*. New York [u.a.]: Dover, 2010, pp. XII, 371.
- [4] Prof. Arthur Hebecker. *Theoretische Physik IV Quantenmechanik*. Universität Heidelberg, 2018, p. 111.
- [5] Richard MacKenzie. *Path Integral Methods and Applications*. Université de Montréal, 2000, p. 55.
- [6] Yen Chin Ong. *Note: Where is the Commutation Relation Hiding in the Path Integral Formulation?* Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, Taiwan 10617, p. 6.
- [7] Prof. Timo Weigand. *Quantum Field Theory I + II*. Heidelberg University, 2013/2014, p. 271.