

Chapitre IV – La fonction exponentielle

Bacomathiques — https://bacomathiqu.es

TABLE DES MATIÈRES ■			
I - Le nombre <i>e</i>	1		
II - La fonction exponentielle	2		
1. Définition	2		
2. Relations algébriques	3		
3. Représentation graphique	3		
III - Étude de la fonction			
1. Dérivée	5		
2. Variations	5		
3. La suite (e^{na})	6		

I - Le nombre *e*

I - Le nombre e

Le **nombre d'Euler** *e* (également appelé constante de Neper) est une constante mathématique irrationnelle qui possède de nombreuses propriétés.

À RETENIR 💡

Valeur approchée

Une valeur approchée de e est $\approx 2,71828$.

Cependant, une définition plus exacte de *e* existe.

À RETENIR 💡

Autre définition

On définit la suite (e_n) pour tout $n \in \mathbb{N}$ par $e_n = \left(1 + \frac{1}{n}\right)^n$. Alors la limite de la suite (e_n) quand n tend vers $+\infty$ est e.

À LIRE 00

Grâce à cette définition, il est plus facile de construire un algorithme pour approximer e.

II - La fonction exponentielle

1. Définition

À RETENIR 💡

Définition

La fonction exponentielle notée pour tout $x \in \mathbb{R}$ par e^x (ou parfois $\exp(x)$) est l'unique fonction f définie sur \mathbb{R} remplissant les critères suivants :

- f est dérivable sur \mathbb{R} et f' = f
- $f > 0 \operatorname{sur} \mathbb{R}$
- f(0) = 1

DÉMONSTRATION @

Existence

L'existence de cette fonction est admise, il faut cependant en démontrer l'unicité.

Soit une autre fonction g vérifiant les mêmes propriétés que notre fonction f. On pose pour tout $x \in \mathbb{R}$, $h(x) = \frac{f(x)}{g(x)}$.

Comme g ne s'annule pas et que h est un quotient de fractions dérivables ne s'annulant pas sur \mathbb{R} , h est dérivable sur \mathbb{R} .

D'où, pour tout
$$x \in \mathbb{R}$$
, $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} = 0$ (car $f = f'$ et $g = g'$).

On a donc h constante sur \mathbb{R} et la valeur de h est $h(0) = \frac{f(0)}{g(0)} = 1$.

Pour tout
$$x \in \mathbb{R}$$
, $h(x) = 1 \iff \frac{f(x)}{g(x)} = 1 \iff f(x) = g(x)$. Donc $g = f$.

À LIRE 00

Formules

La fonction exponentielle, telle qu'on l'a écrite, est composée d'un réel $(e \approx 2,718)$ et d'un exposant réel x. Les opérations sur les exposants sont disponibles, par exemple, pour tout $x, y \in \mathbb{R}$:

- $-e^{x+y} = e^x \times e^y$
- $-e^{x-y}=\frac{e^x}{e^y}$
- $-e^{-x} = \frac{1}{e^x}$
- $-- (e^x)^y = e^{x \times y}$

Et bien entendu, $e^0 = 1$.

2. Relations algébriques

À RETENIR 💡

Relations algébriques

La fonction exponentielle a plusieurs propriétés algébriques qu'il faut connaître. Ainsi, pour tous réels x et y:

$$- e^x = e^y \iff x = y$$
$$- e^x < e^y \iff x < y$$

3. Représentation graphique

Voici une représentation graphique de la fonction exponentielle (courbe bleue) et de sa tangente au point d'abscisse 0 :

On voit plusieurs propriétés données précédemment : $e^0 = 1$, $e \approx 2,718$, etc. Mais également d'autres propriétés que nous verrons par la suite comme le fait que la fonction soit **strictement positive** sur \mathbb{R} . À noter que la **tangente** à sa courbe représentative en x = 0 est y = x + 1.

À LIRE 👀

Représentation d'une fonction exponentielle

Il peut être utile de savoir représenter une courbe d'une fonction du type $x\mapsto e^{kx}$ avec $k\in\mathbb{R}$:

- L'image de 0 par ces fonctions est toujours 1.
- Plus k est grand, plus la croissance est forte et rapide.
- Si k est négatif, la courbe est symétrique à celle de $x \mapsto e^{-kx}$ par rapport à l'axe des ordonnées.

III - Étude de la fonction

1. Dérivée

À RETENIR 💡

Dérivée d'une composée

Soit une fonction u dérivable sur un intervalle I, on a pour tout x appartenant à cet intervalle : $(e^{u(x)})' = u'(x)e^{u(x)}$.

À RETENIR 💡

Dérivée

Ainsi, si pour tout $x \in I$ on a u(x) = x, on retrouve : $(e^x)' = e^x$.

Cette propriété a été donnée dans la section "Définition".

2. Variations

Avec la dérivée donnée précédemment, il est désormais possible d'obtenir les variations de la fonction exponentielle.

ARETENIR Variations

x	$-\infty$	+∞
$(x \mapsto e^x)'$		+
$x \mapsto e^x$	0	+∞

On remarque sur le tableau de variation que la fonction exponentielle est strictement positive et croissante sur \mathbb{R} .

3. La suite (e^{na})

À RETENIR 💡

Soit $a \in \mathbb{R}$. La suite (e^{na}) est une suite géométrique de raison e^a et de premier terme 1.

DÉMONSTRATION 🧠

Posons pour tout $n \in \mathbb{N}$, $u_n = e^{na}$.

Calculons u_{n+1} :

$$u_{n+1}=e^{(n+1)a}=e^{na}\times e^a=u_n\times e^a.$$

Et on a bien $u_0 = e^0 = 1$.