Found Some insights by using heart diseases datasets

Import Libraries in python

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Pulling the dataset into python framework

hr = pd.read_csv("/content/heart.csv")

Dataset Summary

Starting Rows of dataset

hr.he	ad(10)								
₹		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngin
	0	40	М	ATA	140	289	0	Normal	172	1
	1	49	F	NAP	160	180	0	Normal	156	1
	2	37	М	ATA	130	283	0	ST	98	1
	3	48	F	ASY	138	214	0	Normal	108	,
	4	54	М	NAP	150	195	0	Normal	122	1
	5	39	М	NAP	120	339	0	Normal	170	1
	6	45	F	ATA	130	237	0	Normal	170	1
	7	54	М	ATA	110	208	0	Normal	142	1
	8	37	М	ASY	140	207	0	Normal	130	,
	9	48	F	ATA	120	284	0	Normal	120	
	4									+

Ending Rows of dataset

hr.tail	(10)

<u></u>		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAng
	908	63	М	ASY	140	187	0	LVH	144	
	909	63	F	ASY	124	197	0	Normal	136	
	910	41	М	ATA	120	157	0	Normal	182	
	911	59	М	ASY	164	176	1	LVH	90	
	912	57	F	ASY	140	241	0	Normal	123	
	913	45	М	TA	110	264	0	Normal	132	
	914	68	М	ASY	144	193	1	Normal	141	
	915	57	М	ASY	130	131	0	Normal	115	
	916	57	F	ATA	130	236	0	LVH	174	
	917	38	М	NAP	138	175	0	Normal	173	
	4									>

Basic Information

hr.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 918 entries, 0 to 917
Data columns (total 15 columns):

```
#
   Column
                    Non-Null Count Dtype
0 Age
                     918 non-null
                                     int64
                     918 non-null
                                     object
    ChestPainType 918 non-null
                                     object
   RestingBP
Cholesterol
                    918 non-null
                     918 non-null
                                     int64
                    918 non-null
   FastingBS
                                     int64
                 918 non-null
    RestingECG
                    918 non-null
                                     object
    MaxHR
                                     int64
8
    ExerciseAngina 918 non-null
                                     object
              918 non-null
9
   01dpeak
                                     float64
10 ST_Slope
                     918 non-null
                                     object
11 HeartDisease 918 non-null
12 Heart_Status 918 non-null
                                     int64
                                     object
13 Age_Status 918 non-null 14 Age_Bracket 918 non-null
                                     category
                                     category
dtypes: category(2), float64(1), int64(6), object(6)
memory usage: 95.6+ KB
```

Finding Missing Value

hr.isnull().sum()

→ Age
Sex

0 ChestPainType 0 RestingBP 0 Cholesterol 0 FastingBS 0 RestingECG 0 MaxHR 0 ExerciseAngina 01dpeak ST_Slope HeartDisease 0 dtype: int64

Missing values are not found

Finding "n" rows

hr2 = pd.read_csv("/content/heart.csv" , nrows = 6)

₹		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngin
	0	40	М	ATA	140	289	0	Normal	172	1
	1	49	F	NAP	160	180	0	Normal	156	1
	2	37	М	ATA	130	283	0	ST	98	1
	3	48	F	ASY	138	214	0	Normal	108	•
	4	54	М	NAP	150	195	0	Normal	122	1
	5	39	М	NAP	120	339	0	Normal	170	1
	4									•

 $\mbox{\#}$ we can find any rows between the dataset by using this formula $\mbox{hr}[5{:}13]$

₹		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngi
	5	39	М	NAP	120	339	0	Normal	170	
	6	45	F	ATA	130	237	0	Normal	170	
	7	54	М	ATA	110	208	0	Normal	142	
	8	37	М	ASY	140	207	0	Normal	130	
	9	48	F	ATA	120	284	0	Normal	120	
	10	37	F	NAP	130	211	0	Normal	142	
	11	58	М	ATA	136	164	0	ST	99	
	12	39	М	ATA	120	204	0	Normal	145	>

Finding specific column

[*]		Sex	FastingBS
	0	М	0
	1	F	0
	2	М	0
	3	F	0
	4	М	0
	913	М	0
	914	М	1
	915	М	0
	916	F	0
	917	М	0
	918 rc	ws × 2	2 columns

we can find specific column by another way

hr[["ChestPainType"]]

_ *		ChestPainType
	0	ATA
	1	NAP
	2	ATA
	3	ASY
	4	NAP
	913	TA
	914	ASY
	915	ASY
	916	ATA
	917	NAP
	918 rc	ows × 1 columns

Adding Essential columns

```
# new column will add named age_bracket which will denote age status
Age_range = [0,18,30,60,100]
labels = ["young", "Adult", 'Old', 'Very Old']
label = ["0-18" , "18-30", "30-60" , "60-100"]

hr["Age_Status"] = pd.cut(hr["Age"], bins = Age_range, labels = labels)
hr["Age_Bracket"] = pd.cut(hr["Age"], bins = Age_range, labels = label)

# Heart Status column tell us about the status of heart diseases either it will be normal or heat disease.
heart_status = {0: "Normal", 1: "Heart Disease"}
hr["Heart_Status"] = hr["HeartDisease"].map(heart_status)
```

₹		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	ExerciseAngina	Oldpeak	ST_Slope	HeartDisease	Heart_Status
	0	40	М	ATA	140	289	0	Normal	172	N	0.0	Up	0	Normal
	1	49	F	NAP	160	180	0	Normal	156	N	1.0	Flat	1	Heart Disease
	2	37	М	ATA	130	283	0	ST	98	N	0.0	Up	0	Normal
	3	48	F	ASY	138	214	0	Normal	108	Υ	1.5	Flat	1	Heart Disease
	4	54	М	NAP	150	195	0	Normal	122	N	0.0	Up	0	Normal
	95	58	М	ASY	130	263	0	Normal	140	Υ	2.0	Flat	1	Heart Disease
	96	43	М	ATA	142	207	0	Normal	138	N	0.0	Up	0	Normal
	97	39	М	NAP	160	147	1	Normal	160	N	0.0	Up	0	Normal
	98	56	М	ASY	120	85	0	Normal	140	N	0.0	Up	0	Normal
	99	41	М	ATA	125	269	0	Normal	144	N	0.0	Up	0	Normal

Basic Statistical Analysis

100 rows × 13 columns

hr.de	scribe()							
_ →	Age		RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisease	
	count	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	
	mean	53.510893	132.396514	198.799564	0.233115	136.809368	0.887364	0.553377	
	std	9.432617	18.514154	109.384145	0.423046	25.460334	1.066570	0.497414	
	min	28.000000	0.000000	0.000000	0.000000	60.000000	-2.600000	0.000000	
	25%	47.000000	120.000000	173.250000	0.000000	120.000000	0.000000	0.000000	
	50%	54.000000	130.000000	223.000000	0.000000	138.000000	0.600000	1.000000	
	75%	60.000000	140.000000	267.000000	0.000000	156.000000	1.500000	1.000000	
	max	77.000000	200.000000	603.000000	1.000000	202.000000	6.200000	1.000000	

Data visualization by using Charts

79% Male which is more than female in heart disease process

```
Frequency = hr["ChestPainType"].value_counts().values
ChestPainType = hr["ChestPainType"].value_counts().index
c = ['r', 'b', 'y', 'g']
plt.bar(ChestPainType, Frequency, color= c, label =ChestPainType)

plt.title('ChestPainType Scatter Chart', fontsize = 15)
plt.xlabel('ChestPainType', fontsize = 15)
plt.ylabel('Frequency', fontsize = 15)
plt.legend()
plt.show()
```


ASY(Asymptomatic) type chestpain frequency are much highest than rest of them.

```
Frequency = hr["Age_Status"].value_counts().values
Age_Bracket = hr["Age_Status"].value_counts().index

c = ['r', 'g', 'b', 'y']

plt.barh(Age_Bracket, Frequency, color = c , label = Age_Bracket )

plt.title('Age_Status Scatter Chart', fontsize = 15)
plt.ylabel('Age_Status', fontsize = 15)
plt.xlabel('Frequency', fontsize = 15)

plt.legend()

plt.show()
```



```
ages = hr['Age']
cholesterol = hr['Cholesterol']

colors = np.random.rand(len(ages))
plt.figure(figsize=(15, 6))
plt.scatter(ages, cholesterol, c = colors, cmap= "twilight")

plt.title('Cholesterol Scatter Chart',fontsize = 15)
plt.xlabel('Age',fontsize = 15)
plt.ylabel('Cholesterol', fontsize = 15)
plt.ylabel('Cholesterol', fontsize = 15)
plt.colorbar()
```

