

Evaluation and modeling of data from low-cost air quality sensors for accurate $PM_{2.5}$ estimation

<u>Dinushani Senarathna</u>¹, Vijay Kumar¹, Supraja Gurajala², Suresh Dhaniyala³, Shantanu Sur⁴, Sumona Mondal¹

¹Department of Mathematics, Clarkson University, ²Department of Computer Science, Suny Potsdam University, ³Department of Mechanical Engineering, Clarkson University, ⁴Department of Biology, Clarkson University

1¹ niversity,

Background

Motivation:

- Low-cost sensors are producing high resolution spatio-temporal data
- Low –cost sensors data can be noisy and low in accuracy^{[1][2]} and sensitive to weather parameters
- Correction models are built to correct PM_{2.5} form PurpleAir (PA) sensor data using EPA measurements as gold-standard^{[1][2]}
- Existing models are applicable US wide and use relative humidity (RH) for correction [2]

Figure 1: PA sensor deployed for AQ measurement

Research objectives:

- Build and investigate PA $PM_{2.5}$ correction model performance as function of distance
- Evaluate the model performance based on multiple PA sensors vs/ single PA sensor

Methodology

- Data source: Cook county, Illinois, USA; 2019 August to 2020
 July from EPA and PA
- Prediction models were built using PA-measured temperature (T) and relative humidity (RH) as correction factors
- Prediction accuracy of models built using single PA sensor and multiple PA sensor data were compared
- Determined the effect of distance between PA and EPA sites on model performance
- Identified the optimal number of PA sensors needed for accurate prediction

Figure 2: Location of 15 PA sensors (purple) and 7 EPA air monitoring sites including 3 FRM/FEM (green), and 4 non-FRM/FEM (blue) in Cook County, Chicago, Illinois, USA.

Results

PM_{2.5} data distributions:

• Median values of PM_{2.5} from PA sensors (10.9) and EPA (8.7)

Figure 3: Comparison between the EPA and PA PM_{2.5} distribution for 14 PA sensors and 7 EPA sites

Effects of temperature and relative humidity on model accuracy: $PM_{2.5 \text{ (EPA)}} = \beta_0 + \beta_1 PM_{2.5 \text{ (PA)}} + \beta_2 RH_{\text{(PA)}} + \beta_3 T_{\text{(PA)}} \text{ where } \beta_{2,} \beta_3 = 0 \text{ (None)}, \ \beta_3 = 0 \text{ (RH)}, \ \beta_2 = 0 \text{ (T)}$

Figure 4: Box plots for comparisons of different correction model R² values

Figure 5: Model R² values plotted against distances between PA and EPA sites

 When consider overall, no effect from distance for the model R2 values

Changes of model accuracy across various distance groups:

- Distances were divided into 4 groups (0-10, 10-20, 20- 30 and > 30 km)
- Order restricted inference^[10] applied for model R² with distance groups

- Global test: no deceasing trend in model R² values were observed with increasing distances
- Pairwise analysis: model accuracy decreased for groups when distance is > 30 km

Figure 6: Plot of mean model R² under each distance groups

Distance group

Results

Correction models built with multiple PA sensors: $PM_{2.5 (EPA)} = \beta_0 + \beta_1 T_{(PA)} + \beta_2 RH_{(PA)} + \sum_{i=3}^{7} \beta_i PM_{2.5 (PAj)}, \text{ where } j = 1,...,5$

PA sensors within 30 km for each EPA site with all possible combination of 2, 3, 4, 5 PA sensors were considered

Figure 7: Box plots for multiple PA sensor model R² values

 Local models have a lower RMSE values compared with the US-wide model

Figure 8: Box plots of RMSE values for local Chicago models (C) and US-wide models (U)

Conclusion & Future work

- Relative humidity and temperature provide more accurate prediction for FRM and non-FRM data, respectively
- Model R^2 values decrease significantly when the distance between EPA and PA sensors are > 30 km
- Models using multiple PA sensors performed better than using a single PA sensor, however, improvement was minimal for more than >3 PA sensors
- Consideration of additional parameters such as wind speed and wind direction might help to obtain higher model accuracy

References

- Ardon-Dryer, K. (2020), Measurements of PM_{2.5} with Purple Air under atmospheric conditions, Atmos. Meas. Tech., 13, 5441–5458, 2020, https://doi.org/10.5194/amt-13-5441-2020
- 2. Barkjohn, K, K (2020), Development and Application of a United States wide correction for PM_{2.5} data collected with the Purple Air sensor, https://doi.org/10.5194/amt-2020-413
- . Feenstra, B.(2019), Performance evaluation of twelve low-cost PM_{2.5} sensors at an ambient air monitoring site, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2019.116946
- 4. Datta, A. (2020), Statistical field calibration of a low-cost PM_{2.5} monitoring network in Baltimore, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117761
- 5. Liu, H, Y. (2019), Performance Assessment of a Low-Cost PM_{2.5} Sensorfor a near Four-Month Period in Oslo, Norway, http://dx.doi.org/10.3390/atmos10020041
- Kelleher, S (2018), A low-cost particulate matter (PM_{2.5} monitor for wildland fire smoke, Atmos. Meas. Tech., 11, 1087–1097, 2018, https://doi.org/10.5194/amt-11-1087-2018
- 7. Jayaratne, R (2018), The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, https://doi.org/10.5194/amt-11-4883-2018
- 8. Hopke P. K,(2018), Hourly land-use regression models based on low-cost PM monitor data, Environmental Research 167(2018) 7-14, https://doi.org/10.1016/j.envres.2018.06.052
 9. He, M., Kuerbanjiang, N., and Dhaniyala, S.: Performance characteristics of the low-cost Plantower PMS optical sensor, Aerosol Science
- and Technology, 54, 232–241, 2020, https://doi.org/10.1080/02786826.2019.1696015
 10. Jelsema, C. M., & Peddada, S. D. (2016). CLME: An R Package for Linear Mixed Effects Models under Inequality Constraints. *Journal of Statistical Software*, 75(1), 1–32. https://doi.org/10.18637/jss.v075.i01