

O diodo zener mostrado no circuito da figura acima, é considerado ideal e tem tensão nominal de 16 V. Com base nos valores dos elementos do circuito, qual o valor, em ampères, da corrente I sobre o diodo zener?

2ª questão

3ª questão

39

O circuito da figura acima mostra um diodo Zener com tensão nominal de 6 V, alimentado por uma fonte de tensão contínua. Se a corrente elétrica que atravessa o diodo Zener é 0,3 A, a tensão $V_{\rm f}$ da fonte, em volts, é

- (A) 19
- (B) 24
- (C) 27
- (D) 32
- (E) 38

5ª questão

Determinar a potência dissipada pelo Zener. Dados Vi = 14 V, R = 160 Ω , Vz = 6 V, RL = 160 Ω .

53 Considere o circuito abaixo, no qual o diodo Zener tem tensão de condução de 2 V.

Se a tensão no nó d vale 4 V, o valor de R1 é

- (A) 10Ω
- (B) 100Ω
- (C) 120 Ω
- (D) 160 Ω
- (E) 400Ω

7ª questão

O circuito elétrico da figura ao lado usa um diodo zener considerado ideal. Sendo V_F a tensão contínua da fonte, e V_Z a tensão nominal do zener, qual o menor valor que V_F pode assumir, acima do qual o diodo zener vai conduzir?

- (A) 2V_z
- (B) 3V₂
- (C) 4/3 Vz
- (D) V,
- (E) 5 V_Z (A

Questão 33 - Conhecimentos Específicos - Técnico em Eletrônica

No circuito abaixo os diodos zener estão com Vz = 6,2 V. A tensão de entrada (VI) é senoidal com amplitude Vm = 10 V. Quais são os valores das tensões de pico positivo e negativo do sinal de saída (Vo), respectivamente?

- A. 5 V e 5 V. B. 0,7 V e 0,7 V.
- C. 6,2 Ve 6,2 V. D. 6,8 Ve 6,8 V.

9ª questão

O diodo Zener será empregado em um circuito regulador de tensão para uma carga de 5 V ± 5%, cujo consumo de corrente é desprezivel (menor do que 10 µA). O circuito regulador é composto de uma bateria de 12 V que alimenta um resistor R em série com o diodo Zener.

Considere
$$I_{Zmin} = \frac{I_{Zmax}}{10}$$

O valor comercial de R que atende às exigências do projeto é

- (A) 560Ω
- (B) 5k6Ω
- (C) 47Ω
- (D) 47kΩ
- (E) 100kΩ

código:	BZX79C5V1
Especificações	V _Z = 5,1 V P _{Zmäx} = 400 mW

10^a questão

O circuito da figura apresenta um regulador de tensão que utiliza um diodo Zener com as seguintes características:

- tensão Zener: V_Z = 10 V corrente Zener: 0,5 mA \leq I $_Z$ \leq 20 mA

O valor mínimo do resistor R_s, em ohms, que garante o funcionamento do regulador é

- (A) 560
- (B) 700
- (C) 1200
- (D) 1800
- (E) 2500

11ª questão

33

O circuito mostrado na Figura abaixo contém dois diodos ideais, sendo um do tipo zener (Z₁) e o outro comum (D₁)

Nesse circuito:

- os componentes são energizados por uma bateria de tensão constante $V_{\rm C}$ de 11,7 $V_{\rm C}$
- a tensão nominal do zener é 7,5 V;
- a queda de tensão direta em D₁ é fixa em 0,7 V;
- os resistores R₁, R₂ e R₃ têm os valores de 10 Ω , 80 Ω e 6 Ω , respectivamente;
- a corrente que passa em R₂ é de 0,1 A.

Nessa situação, a corrente que passa no resistor $\boldsymbol{R}_{1},$ em ampere, é

- (A) 0,0
- (B) 0,1
- (C) 0,2
- (D) 0,3
- (E) 0,7

53

Na Figura a seguir é apresentado o circuito de um regulador de tensão que emprega um diodo zener Z₁ com tensão de ruptura igual a 6,0 V.

Considerando-se a curva característica de corrente x tensão do diodo zener Z_1 apresentada no gráfico acima, conclui-se que a relação entre a corrente reversa i_Z no diodo zener e a tensão não regulada V_A é expressa graficamente por:

40

O circuito regulador de tensão representado na Figura abaixo tem como objetivo manter a tensão constante sobre o resistor R_2 , mesmo na ocorrência de variações na fonte não regulada V_{DC} . Para realizar essa tarefa, foi utilizado um diodo zener Z_1 , com tensão de ruptura $V_Z = 5,0 \text{ V}$ e uma capacidade máxima de dissipação de potência igual a 2,0 W.

Dessa forma, qual é o valor máximo de tensão, em volts, que a fonte não regulada V_{DC} pode assumir sem danificar o circuito regulador?

- (A) 10
- (B) 12
- (C) 14
- (D) 16
- (E) 18

36 No circuito ao lado, a fonte *CA* possui uma tensão de pico de 10 V e frequência de 1 Hz e o diodo zener, uma tensão de condução direta de 0,7 V e reversa de 8 V.

A forma de onda da tensão $V_{\rm R2}$ em ${\rm R_2}$ será, então,

Determinar Iz e Pz no circuito abaixo

39

O circuito da figura acima mostra um diodo Zener com tensão nominal de 6 V, alimentado por uma fonte de tensão contínua. Se a corrente elétrica que atravessa o diodo Zener é 0,3 A, a tensão V_f da fonte, em volts, é

- (A) 19
- (B) 24
- (C) 27
- (D) 32
- (E) 38