

IN THE CLAIMS

Please cancel claims 1-5 and substitute the following new claims 6-10.

What is claimed is:

1. (cancelled) A wide area network using the internet as a backbone, comprising:
 - 2. _____ a first dedicated line coupled to a first participating ISX/ISP provider of internet access;
 - 3. _____ a source router having a channel service unit having an output coupled to said first dedicated line;
 - 4. _____ a source firewall circuit having a first port for coupling directly or through a local area network to a first device for which communication over said wide area network (hereafter WAN) is desired, and having a WAN interface coupled to said source router directly or through a local area network, said source firewall functioning to encrypt the payloads of downstream WAN packets being transmitted via the WAN interface to said source router using any encryption method having a user definable key or keys, and for decrypting the payloads of any incoming upstream WAN packets arriving from said source router via said WAN interface using the same encryption method and user definable key or keys that were used to encrypt the outgoing WAN packets;
 - 5. _____ one or more routers of other participating ISX/ISP providers of internet services including a router at an endpoint participating ISX/ISP provider, said routers functioning to implement a predetermined private tunnel data path coupling a router of said first ISX/ISP to a router of said endpoint participating ISX/ISP provider through said routers of said participating ISX/ISP providers;
 - 6. _____ a destination router including a channel service unit coupled to or part of said destination router, said destination router coupled through said channel service unit and a second dedicated line to said router of said endpoint ISX/ISP provider;
 - 7. _____ a destination firewall circuit having a WAN interface coupled to said destination router directly or through a local area network and having a second port for coupling directly or through a local area network to a device for which communication across said wide area network is desired, said firewall functioning to encrypt the payloads of upstream WAN packets being transmitted through said WAN interface to said destination router for transmission to said source router via said private tunnel using the same encryption method used by said source firewall and the same user definable key or keys used by said source firewall circuit, and for decrypting any incoming packets from said source router arriving from said endpoint

33 participating ISX/ISP provider using the same encryption protocol used by said
34 source firewall and the same user definable key or keys used by said source firewall
35 circuit and transmitting the decrypted packets to said second device.

1 2. (cancelled) A process for launching downstream AlterWAN packets addressed to
2 an AlterWAN destination into a private tunnel coupling two AlterWAN destinations using the
3 internet as a backbone and for launching non AlterWAN packets into a normal internet traffic
4 routing data path, comprising the steps:

- 5 _____ receiving at a source firewall an incoming downstream wide area network
6 packet from a workstation or other device at a first customer location said incoming
7 downstream wide area network packet being either addressed to an AlterWAN
8 destination or not an AlterWAN packet;
- 9 _____ at said source firewall, using the destination address in said incoming
10 downstream wide area network packet to determine if said packet is addressed to an
11 AlterWAN destination coupled to said source firewall by a private tunnel using the
12 internet as a backbone (hereafter referred to as an AlterWAN packet) or is addressed
13 to some non AlterWAN website or location on the internet (hereafter referred to as a
14 non AlterWAN packet);
- 15 _____ if said packet is an AlterWAN packet, encrypting at said source firewall the
16 payload portion thereof and forwarding the encrypted AlterWAN packet to a source
17 router;
- 18 _____ if said packet is a non AlterWAN packet, at said source firewall, forwarding
19 said non AlterWAN packet to said source router without encrypting the payload
20 portion thereof;
- 21 _____ at said source router, converting both said AlterWAN packets and said non
22 AlterWAN packets into signals suitable for transmission on a dedicated telephone line
23 or other transmission medium coupling said source router to a specially selected first
24 ISX/ISP provider and transmitting said signals to said specially selected ISX/ISP
25 provider, said specially selected ISX/ISP provider being selected either because their
26 routing tables are such that AlterWAN packets will naturally be routed along high
27 bandwidth, low hop count data paths to the next ISX/ISP provider in said virtual
28 private network or because the routing tables of the router of said first ISX/ISP
29 provider have been altered to insure that AlterWAN packets get routed along high
30 bandwidth, low hop count data paths to the next ISX/ISP provider along said private
31 tunnel.

1 3. (Cancelled) An apparatus comprising:

2 _____ a dedicated data path for coupling to a specially selected first participating
3 ISX/ISP provider of internet access;
4 _____ a firewall circuit having a first port for coupling directly or through a local area
5 network to one or more devices for which communication over a wide area network
6 using the internet as a backbone is desired, and having a second port, said firewall
7 functioning to use the destination addresses in the headers of each packet
8 received from said one or more devices to distinguish between AlterWAN packets
9 which are packets addressed to destination devices coupled to said firewall circuit via
10 a private tunnel through the internet, and conventional packets which are packets
11 not addressed to destination devices coupled to said firewall circuit via a private
12 tunnel through the internet, said firewall circuit functioning to encrypt the payloads of
13 outgoing AlterWAN packets using one or more predetermined keys and an encryption
14 algorithm, and sending said encrypted AlterWAN packets to said source router via
15 said second port, and functioning to forward any conventional packets to said source
16 router, and functioning to decrypt any incoming AlterWAN packets arriving from said
17 source router using the same encryption algorithms and one or more
18 predetermined keys which were used to encrypt the packets at the location from
19 which they were sent;

20 _____ a source router having an input coupled to said second port of said firewall
21 circuit either directly or by a local area network connection, and having a channel
22 service unit having an output coupled to said dedicated data path, said channel
23 service unit functioning to convert digital data packets received from said firewall
24 circuit into signals suitable for transmission over whatever type of transmission
25 medium is selected for said dedicated data path, and for converting signals received
26 from said dedicated data path into data packets, said source router for transmitting
27 both AlterWAN and non AlterWAN packets over said dedicated data path to said
28 specially selected first participating ISX/ISP provider where AlterWAN packets will be
29 routed via said private tunnel and specially selected ISX/ISP providers to their
30 destination and non AlterWAN packets will be routed along paths on the internet
31 other than said private tunnel.

32
1 4. (Cancelled) A method of designing and implementing a wide area network using
2 the internet as a backbone, comprising the steps:

- 3 1) selecting source and destination sites that have devices that need to be
4 connected by a wide area network;
5 2) examining the ISX/ISP internet service providers that exist between said
6 source and destination sites and selecting two or more of such ISX/ISP providers
7 through which data passing between said source and destination sites will be routed,
8 said selection being based upon how many hops the routers at these sites will cause
9 packets travelling between said source and destination sites to take and whether the
10 average available bandwidth of the data paths along which the packets travelling
11 between said source and destination sites will travel is substantially greater than the
12 worst case bandwidth consumption of traffic between said source and destination
13 sites;
14 3) coupling a source firewall to the devices at said source site and
15 configuring said firewall to examine the destination addresses of packets received
16 from said devices at said source site and encapsulate each packet addressed to any
17 device at said destination site in an internet protocol packet, hereafter referred to as
18 an AlterWAN packet, said AlterWAN packet having as its destination address the
19 address of an untrusted port of a destination firewall at said destination site and
20 having the original IP packet as its payload, said source firewall being configured to
21 encrypt the payload portions of all said AlterWAN packets using a predetermined
22 encryption algorithm and one or more encryption keys but not to encapsulate or
23 encrypt the payload portions of any packets received from said devices at said
24 source site which are not addressed to any device at said destination site, and
25 configuring said source firewall to recognize any incoming AlterWAN packets which
26 have as their destination addresses the IP address of the untrusted side of said
27 source firewall and to strip off the AlterWAN packet headers and decrypt the payload
28 portion of each said AlterWAN packet to recover the original IP packet transmitted
29 from said destination site using the same encryption algorithm and the same
30 encryption key or keys used to encrypt the payload portions of said AlterWAN
31 packets at said destination site and for outputting said recovered the original IP
32 packet to said devices at said source site, said source firewall having an untrusted
33 port;
34 4) coupling a source router to receive said encrypted and non-encrypted
35 packets from said untrusted port of said source firewall and to convert them in a
36 channel service unit to signals suitable for transmission over a first dedicated local
37 loop connection;

38 _____ 5) contracting to establish said first dedicated local loop connection between
39 the output of said source router at which said signals appear and a first participating
40 ISX/ISP provider in the group of ISX/ISP providers selected in step 2;
41 _____ 6) providing a destination router at said destination site having a channel
42 service unit which functions to receive from a second dedicated local loop connection
43 downstream signals encoding both encrypted AlterWAN packet and conventional IP
44 packets and converting said signals back into the original digital packet form and
45 outputting the recovered downstream packets at a firewall port, and said destination
46 router configured to receive upstream AlterWAN and conventional packets and
47 convert them into signals suitable for transmission on said second dedicated data
48 path coupling said destination router to an endpoint participating ISX/ISP provider in
49 the group of ISX/ISP providers selected in step 2 and transmitting said signals on
50 said second dedicated local loop connection;
51 _____ 7) contracting to provide a second dedicated local loop connection
52 connecting the input of said destination router to said endpoint participating ISX/ISP
53 provider, said second dedicated local loop connection having sufficiently high
54 bandwidth to handle the worst case traffic volume;
55 _____ 8) providing a destination firewall having an untrusted port having an IP
56 address coupled to said firewall port of said destination router to receive said
57 recovered digital packets, and configuring said destination firewall to recognize as
58 AlterWAN packets incoming recovered packets having as their destination address
59 the IP address of said destination firewall untrusted input port and to strip off the
60 AlterWAN packet header and decrypt the payload portion of said AlterWAN packet
61 using the same encryption algorithm and encryption key or keys that were used to
62 encrypt the packet at said source firewall, and configuring said destination firewall to
63 output the decrypted packets at an output coupled to devices at said destination
64 site, and configuring said destination firewall to examine the destination addresses of
65 upstream IP packets received from said devices at said destination site and
66 encapsulate each upstream IP packet addressed to any device at said source site in
67 another IP packet, hereafter referred to as an AlterWAN packet, said AlterWAN
68 packet having as its destination address the IP address of an untrusted port of said
69 source firewall at said source site and having the original IP packet as its payload,
70 said destination firewall being configured to encrypt the payload portions of all said
71 AlterWAN packets using a predetermined encryption algorithm and one or more
72 encryption keys but not to encapsulate or encrypt the payload portions of any IP

73 ~~packets received from said devices at said destination site which are not addressed~~
74 ~~to any device at said source site (hereafter referred to as conventional packets), and~~
75 ~~said destination firewall configured to transmit said encrypted AlterWAN packets and~~
76 ~~said conventional packets to said destination router via said untrusted port.~~

- 1 5. (Cancelled) A wide area network using the internet as a backbone, comprising:
2 ~~a first dedicated line coupled to a first participating ISX/ISP provider of~~
3 ~~internet access;~~
4 ~~a source router having a channel service unit having an output coupled to~~
5 ~~said first dedicated line;~~
6 ~~a source firewall circuit having a first port for coupling directly or through a~~
7 ~~local area network to a first device for which communication over said wide area~~
8 ~~network (hereafter WAN) is desired, and having a WAN interface coupled to said~~
9 ~~source router directly or through a local area network, said source firewall functioning~~
10 ~~to encrypt the payloads of downstream WAN packets being transmitted via the WAN~~
11 ~~interface to said source router using a first encryption method having a first set of~~
12 ~~user definable keys which may be only one key, and for decrypting the payloads of~~
13 ~~any incoming upstream WAN packets arriving from said first participating ISX/ISP~~
14 ~~using a second encryption method which is different than said first encryption method~~
15 ~~and a second set of user definable keys which are different than the first set of user~~
16 ~~definable keys were used to encrypt the downstream WAN packets;~~
17 ~~one or more routers of other participating ISX/ISP providers of internet~~
18 ~~services including a router at an endpoint participating ISX/ISP provider, said routers~~
19 ~~functioning to implement a predetermined private tunnel data path coupling a router~~
20 ~~of said first ISX/ISP to a router of said endpoint participating ISX/ISP provider~~
21 ~~through said routers of said participating ISX/ISP providers;~~
22 ~~a destination router including a channel service unit coupled to or part of said~~
23 ~~destination router, said destination router coupled through said channel service unit~~
24 ~~and a second dedicated line to said router of said endpoint ISX/ISP provider;~~
25 ~~a destination firewall circuit having a WAN interface coupled to said~~
26 ~~destination router directly or through a local area network and having a second port~~
27 ~~for coupling directly or through a local area network to a device for which~~
28 ~~communication across said wide area network is desired, said destination firewall~~
29 ~~functioning to encrypt the payloads of upstream WAN packets being transmitted~~
30 ~~through said WAN interface to said destination router for transmission to said source~~

31 router via said private tunnel using the same encryption method and user definable
32 key or keys used by said source firewall to decrypt upstream WAN packets, and for
33 decrypting any incoming downstream WAN packets from said source router arriving
34 from said destination router via the router of said endpoint participating ISX/ISP
35 provider using the same encryption method and encryption key or keys used by said
36 source firewall to encrypt downstream WAN packets and transmitting the decrypted
37 packets to said second device.

1 6. (Currently Amended) A private, secure wide area network using the internet as a
2 backbone between a source site and a destination site using the internet as a backbone,
3 comprising:

4 a first dedicated local loop connection providing a signal path to a router of a
5 source ISX/ISP provider of internet access;

6 a source router located at a source site and having a channel service unit having
7 an output coupled to said first dedicated signal path local loop connection and having a
8 routing table which has been configured to recognize AlterWAN packets and always route
9 them over said first dedicated signal path to said source ISX/ISP provider, said AlterWAN
10 packets being packets having as their destination address one of one or more
11 predetermined Internet Protocol addresses assigned to an AlterWAN private tunnel, and
12 AlterWAN private tunnel being a data path through the internet which uses only high
13 bandwidth, low latency data paths between predetermined ISX/ISP provider sites which
14 have been pre-tested to ensure that adequate bandwidth and low latency exists for
15 AlterWAN packets and that AlterWAN packets are always routed at said predetermined
16 ISX/ISP provider site into said AlterWAN private tunnel;

17 a source firewall circuit located at a source site and having a first port for coupling
18 directly or through a local area network to one or more computers or other devices at said
19 source site for which communication over said private, secure wide area network
20 (hereafter WAN) is desired, and having a WAN interface coupled to said source router
21 directly or through a local area network, said source firewall functioning to encapsulate
22 any Internet Protocol packets hereafter IP packets transmitted from said first computer or
23 other device which have a destination Internet Protocol address (hereafter IP address)
24 which is one of a set of "predetermined IP addresses", said "predetermined IP addresses"
25 being IP addresses of computers or other devices at a destination site which are
26 assigned to said private tunnel, said encapsulation being performed on into the payload

27 sections of IP packets having as their destination address one of said "predetermined IP
28 addresses", hereafter referred to as AlterWAN packets the IP address of a firewall at said
29 destination site and for encrypting said payload sections of said AlterWAN packets using
30 any encryption method known to a destination firewall at a destination site having a key,
31 and transmitting said AlterWAN packets to said source router, where IP packets having as
32 their destination address the IP address of a computer or other device at either said
33 source site or said destination site and having an encrypted IP packet transmitted from a
34 computer or other device at said source site or said destination site as a payload being
35 defined and hereafter referred to as AlterWAN packets, but said source firewall for not
36 encapsulating into AlterWAN packets any IP packets transmitted by said first computer or
37 other device which do not have as their destination address one of said "predetermined
38 IP addresses" an IP address which is one of said IP addresses of computers or other
39 devices at said destination site, and for receiving incoming IP packets from various
40 sources including computers and devices at said destination site via said source router
41 and for recognizing AlterWAN packets among these IP packets on the basis that an
42 AlterWAN packet has one of said "predetermined IP addresses" as its destination
43 address, and decrypting the payloads of said AlterWAN packets using the same
44 encryption method and key or keys that were used to encrypt the AlterWAN packets to
45 recover said IP packets that were encapsulated in said AlterWAN packets and
46 transmitting at least said recovered IP packets to said one or more computers or devices
47 at said source site to which said recovered IP packets are addressed;
48 one or more internet data paths coupled to routers of said predetermined other
49 participating ISX/ISP providers of internet services, said routers having their routing tables
50 configured to recognize said AlterWAN packets by their destination addresses and to
51 cause said routers to route AlterWAN packets into said AlterWAN private tunnel data
52 path, each besides said source ISX/ISP provider including a router at an endpoint
53 participating ISX/ISP provider, said routers of said source and endpoint ISX/ISP providers
54 and said other participating ISX/ISP providers functioning to implement a predetermined
55 private tunnel data path for said AlterWAN packets coupling a router of said source
56 ISX/ISP provider to a router of said endpoint participating ISX/ISP provider through said
57 routers of said other participating ISX/ISP providers, said source and endpoint ISX/ISP
58 providers and said predetermined other ISX/ISP providers being providers provider being
59 a provider of internet services who has have contracted to provide routing of AlterWAN
60 packets into said AlterWAN private tunnel data path, said AlterWAN private tunnel data
61 path being at least one of said internet data paths which has and who have been pre-

62 tested pretested to verify that said data path does they do in fact provides a low hop
63 count data path having portion of a data path between a said source site and a said
64 destination site for said AlterWAN packets with an average available bandwidth along
65 each said portion of said data path travelled by said AlterWAN packets which each
66 ISX/ISP provider provides which substantially exceeds the worst case bandwidth
67 consumption of AlterWAN packet traffic between said source site and said destination
68 site;

69 a destination router including a channel service unit coupled to or part of said
70 destination router and having a trusted side output, said destination router coupled
71 through said channel service unit and a second dedicated data path local loop
72 connection to said a router of a said participating endpoint ISX/ISP provider, said
73 destination router having its routing tables configured to recognize said AlterWAN packets
74 and route them to said trusted side output;

75 a destination firewall circuit having a WAN interface coupled to said trusted side
76 output of said destination router directly or through a local area network and having a
77 second port for coupling directly or through a local area network to a one or more
78 computers or devices for which communication across said private AlterWAN data path,
79 secure wide area network is desired, said destination firewall functioning to encapsulate
80 into the payload sections of AlterWAN packets IP packets transmitted from said one or
81 more computers or devices at said destination site and having as their destination
82 addresses one of said "predetermined IP addresses" which is an IP address of said one
83 or more computers or devices at said source site, and functioning to encrypt the payloads
84 of said AlterWAN packets and transmit said AlterWAN packets to said destination router,
85 but for not encapsulating into AlterWAN packets any IP packets transmitted from said one
86 or more computers or devices at said destination site which do not have as their
87 destination address one of said "predetermined IP addresses" an IP address of said one
88 or more computers or devices at said source site, and for receiving IP packets from
89 various sources including said one or more computers or devices at said source site via
90 said destination router, and functioning to recognize AlterWAN packets among said
91 received IP packets and decrypt the payload sections of said AlterWAN packets to
92 recover the original IP packets using the same encryption protocol used by said source
93 firewall to encrypt said payload sections of said AlterWAN packets and the same key or
94 keys used by said source firewall and transmitting at least the decrypted IP packets
95 recovered from AlterWAN packet to said one or more computers or devices at said
96 destination site.

1 7. (Currently Amended) A process for sending AlterWAN data packets securely between
2 a computer at a source site and a computer at a destination site so as to implement a private
3 Wide Area Network (hereafter AlterWAN) between said source and destination sites of a
4 customer, said AlterWAN using the internet as a backbone but which is private and which only
5 said customer can use ~~while simultaneously launching non AlterWAN packets into a normal~~
6 ~~internet traffic routing data path~~, comprising the steps:

7 receiving at a source firewall incoming Internet Protocol packets (hereafter IP
8 packets) from a computers at a source site of a customer, some of said IP packets having
9 as their destination addresses an Internet Protocol address (hereafter IP address) which
10 is one of one or more IP addresses of a computer one or more computers or other
11 computing devices at a destination site of said customer;

at said source firewall, comparing the destination address in each said received
IP packet to an IP address of a computer at said destination site of said customer, and if
an IP packet has as its destination address the IP address of a computer or other
computing device at said destination site (hereafter referred to as an AlterWAN inner
packet), concluding said IP packet is an AlterWAN inner packet payload which needs to
be transmitted ~~via a virtual private network over the internet~~ to said computer or other
computing device at said destination site via a high bandwidth, low latency, low hop
count data path using said internet as a backbone and connecting said source site to
said destination site and having an average available bandwidth which exceeds the worst
case bandwidth consumption of packets traveling between said source site and said
destination site (hereafter referred as the AlterWAN data path), but if said destination
address of said received IP packet is not an IP address of a computer or other computing
device at said destination site, concluding said IP packet is ~~not~~ an AlterWAN inner
payload packet and needs to be routed like as any other IP packet would be routed;

if a said received IP packet is an AlterWAN inner payload packet, encapsulating
said AlterWAN inner payload packet into the payload section of a second an IP packet
having as its destination address the IP address of an untrusted side of a firewall at said
the destination site end of said AlterWAN data path virtual private network (hereafter
referred to as composite AlterWAN packet) and encrypting at said source firewall at least
the a payload portion of said AlterWAN inner packet using any encryption algorithm which
can be decrypted by said firewall at said destination site having a key which same
encryption algorithm and key can be used by a firewall at said destination site to recover
said AlterWAN payload packet, and forwarding said composite AlterWAN packet to a

source router;

if a said received IP packet is not an AlterWAN inner payload packet, forwarding said received IP packet ~~which is not an AlterWAN payload packet~~ (hereafter referred to as a non-AlterWAN packet) to said source router without encapsulating said non-AlterWAN packet into ~~an~~ a composite AlterWAN packet;

at said source router, converting both said composite AlterWAN packets and said non-AlterWAN packets into signals suitable for transmission on a dedicated signal path local loop connection coupling said source router to a specially selected predetermined source participating ISX/ISP provider of internet connectivity and routing services, and transmitting said signals to said specially selected predetermined source participating ISX/ISP provider, said predetermined specially selected source participating ISX/ISP provider being selected because said provider has available a high bandwidth, low latency, low hop count data path which is part of said AlterWAN data path and also has agreed to route said chomposite AlterWAN packets into said AlterWAN data path and has routers wich either already contain routing statements which will route said AlterWAN packets into said AlterWAN data path or which have been configured to contain such a routing statement or statements. either because their routing tables are such that AlterWAN packets will naturally be routed along high bandwidth, low hop count data paths to next participating ISX/ISP provider in said virtual private network or because the routing tables of the router of said specially selected source participating ISX/ISP provider have been altered to insure that AlterWAN packets get routed along high bandwidth, low hop count data paths to the next ISX/ISP provider along said virtual private network and wherein said source participating ISX/ISP provider and all other participating ISX/ISP providers whose routers route AlterWAN packets have contracted to provide a data path for said AlterWAN packets with an average available bandwidth which exceeds the worst case bandwidth consumption of AlterWAN packets traveling between said source site and said destination site of said customer.

1 8. (Currently amended) An apparatus comprising:

2 a dedicated data path for coupling signals to a specially selected first participating
3 ISX/ISP provider of internet access;

4 a first firewall circuit having a first port for coupling directly or through a local area
5 network to one or more computing devices for which is desired communication over a
6 private wide area network between a customer's source site and destination site using
7 the internet as a backbone ~~is desired~~, and having a second port, said firewall functioning

8 to use the destination addresses in the headers of each packet received from said one or
9 more computing devices at said source site to distinguish between conventional packets
10 and AlterWAN payload packets, where AlterWAN payload packets are packets having as
11 their destination addresses an address of a computing device addressed to devices at
12 said destination site or said source site, and wherein a computing device computer at
13 said destination site is coupled to a computer computing device at said source site via a
14 second firewall circuit and an AlterWAN data path comprising of a virtual private network
15 tunnel implemented along a high bandwidth, low latency, low hop count data paths
16 through a public wide area network such as the internet terminating at said source site at
17 an untrusted side of said first firewall circuit and terminating at said destination site at an
18 untrusted side of said second firewall circuit, and wherein conventional packets are
19 packets which are not addressed to any computing device devices at said destination
20 site, said first firewall circuit functioning to encapsulate said AlterWAN payload packets in
21 the payload section of AlterWAN packets which have as their destination address the
22 address of said untrusted side of are addressed to said second firewall circuit at said
23 destination end of said virtual private network tunnel, and said first firewall circuit further
24 functioning to encrypt the payloads (AlterWAN payload packet) of AlterWAN packets
25 using one or more predetermined keys and an encryption algorithm, and distinguishing
26 said first firewall circuit further functioning to distinguish between incoming AlterWAN
27 packets from said destination site and conventional packets by comparing the destination
28 addresses thereof to the address of said untrusted side of said first firewall circuit and
29 concluding that any incoming packets addressed to said first firewall circuit are AlterWAN
30 packet and all packets addressed to one or more computing devices computers at said
31 source site coupled to said first firewall circuit are conventional packets, and further
32 functioning to decrypt the payload sections of any incoming AlterWAN packets using the
33 same encryption algorithm and one or more predetermined keys which were used to
34 encrypt the AlterWAN packets so as to recover the encapsulated AlterWAN payload
35 packet;

36 a source router having an input coupled to said second port of said first firewall
37 circuit either directly or by a local area network connection, and having a channel service
38 unit having an output coupled to said dedicated data path, said router and channel
39 service unit functioning to receive said AlterWAN packets and said conventional packets
40 from said first firewall circuit and convert said packets into signals suitable for transmission
41 over whatever type of transmission medium is selected for said dedicated data path, and
42 for converting signals received from said dedicated data path into data packets, said

43 source router for transmitting both AlterWAN packets and conventional packets received
44 from said first firewall over said dedicated data path to said specially selected first
45 participating ISX/ISP provider where said AlterWAN packets will be routed ~~via said virtual~~
46 ~~private network tunnel and specially selected participating ISX/ISP providers via said~~
47 ~~AlterWAN data path to said second firewall and non AlterWAN packets will be routed~~
48 ~~along paths on the internet other than said virtual private network tunnel and wherein~~
49 ~~said AlterWAN data path has first participating ISX/ISP provider and all said other~~
50 ~~ISX/ISP providers are providers who have contracted to and do in fact provide data paths~~
51 ~~for AlterWAN packets which combine to form a low hop count data path with an average~~
52 ~~available bandwidth which substantially exceeds the worst case bandwidth consumption~~
53 ~~of AlterWAN packets traveling between said source site and said destination site.~~

1 9. (Currently amended) A method of designing and implementing a private wide area
2 network using the internet as a backbone carrying data packets between a source site to a
3 destination site hereafter referred to as an AlterWAN data path), comprising the steps:

- 4 1) selecting source and destination sites that have computers or other devices
5 (hereafter referred to simply as computers) that need to be connected by a wide area
6 network;
- 7 2) examining available ISX/ISP internet service providers that can route
8 AlterWAN packets between said source and destination sites and selecting two or more
9 of such ISX/ISP providers as participating ISX/ISP providers including at least a source
10 ISX/ISP provider and a destination ISX/ISP provider through which AlterWAN packet
11 data passing between said source and destination sites will be routed, said selection of
12 said participating ISX/ISP providers being made upon the availability to said participating
13 ISX/ISP providers of one or more high bandwidth, low latency data paths which will form
14 part of said AlterWAN data path, said participating ISX/ISP providers agreeing to route
15 packets travelling between said source site and said destination site (hereafter AlterWAN
16 packets) into said AlterWAN data path and agreeing to allow route statements to be
17 added to their routers to cause AlterWAN packets to always be routed into said AlterWAN
18 data path, so as to minimize the number of hops on the internet the routers at
19 participating ISX/ISP providers will cause AlterWAN packets to take while traveling
20 between said source and destination sites and so as to said participating ISX/ISP
21 providers also agreeing to manage their portions of said AlterWAN data path so as to
22 guarantee that the average available bandwidth of their portion of said AlterWAN data
23 path the data paths along which said AlterWAN packets traveling between computers at

24 said source and destination sites will travel is substantially greater than the worst case
25 bandwidth consumption of AlterWAN packet traffic between said source and destination
26 sites;

27 3) adding route statements to routers of said participating ISX/ISP providers
28 which will to cause AlterWAN packets to always be routed into said AlterWAN data path
29 and pretesting said the ISX/ISP providers selected in step 2 by testing to verify the data
30 path that an AlterWAN packets travel will be a portion of said AlterWAN data path and
31 that performance is adequate; take through the internet to verify that what the
32 participating ISX/ISP providers promised to deliver will actually be delivered;

33 _____ 4) contracting with said participating ISX/ISP providers to provide routing of
34 AlterWAN packets so as to minimize the number of hops on the internet said AlterWAN
35 packets need to take in traveling between said source and destination sites and so as to
36 guarantee that the average available bandwidth along data paths AlterWAN packets
37 must traverse to travel between said source and destination sites is substantially greater
38 than the worst case bandwidth consumption of traffic between source and destination
39 sites, and, if necessary, configuring data in routing tables of said participating ISX/ISP
40 providers so as to minimize said number of hops and guarantee said bandwidth
41 contracted for when routing AlterWAN packets;

42 4.5) contracting to establish and establishing a first dedicated signal path local
43 loop connection between the output of a source router at which said signals appear and
44 said source ISX/ISP provider in said the group of participating ISX/ISP providers selected
45 in step 2, said first dedicated signal path local loop connection having sufficiently high
46 bandwidth to handle the worst case traffic volume in AlterWAN packets traveling between
47 said source and destination sites;

48 5.6) contracting to provide a second dedicated signal path local loop connection
49 connecting the input of a destination router to said destination ISX/ISP provider, said
50 second dedicated local loop connection having sufficiently high bandwidth to handle the
51 worst case traffic volume in AlterWAN packets traveling between said source and
52 destination sites;

53 6.7) coupling an untrusted port of a source firewall/virtual private network circuit
54 (hereafter referred to as the source firewall) to a source router and coupling a trusted port
55 of said source firewall to said one or more computing device or devices at said source site
56 and configuring said source firewall to examine the destination addresses of a first
57 internet Protocol packets (hereafter IP packets) received from one of said one or more
58 computing devices at said source site and encapsulating encapsulate each first IP packet

59 having as its destination address and address which is a the Internet Protocol address
60 (hereafter IP address) of any computing device at said destination site as a payload
61 portion in a second IP packet, said second IP packet hereafter referred to as an
62 AlterWAN packet, said AlterWAN packet having as its destination address the IP address
63 of an untrusted port of a destination firewall/virtual private network circuit (hereafter
64 referred to as the destination firewall) at said destination site and having an encrypted
65 version of at least the payload section of said first the original IP packet as its payload,
66 said source firewall being configured to recognize non AlterWAN packets and with
67 portions of said AlterWAN packet other than said payload section being referred to herein
68 as an AlterWAN packet header, said source firewall also being configured to encrypt the
69 payload portions of all said AlterWAN packets using a predetermined encryption algorithm
70 and one or more encryption keys but not to encapsulate or encrypt the payload portions
71 of any non AlterWAN packets received from one or mor of said devices at said source site
72 which do not have as their destination address an the IP address of any device at said
73 destination site (hereafter referred to as non AlterWAN packets), and configuring said
74 source firewall to screen incoming IP packets from said destination firewall so as to
75 recognize any incoming AlterWAN packets which have as their destination addresses the
76 IP address of the untrusted port of said source firewall and to strip off said the AlterWAN
77 packet headers and decrypt a the payload portion of each said incoming AlterWAN
78 packet to recover the original IP packet transmitted from said destination firewall using the
79 same encryption algorithm and the same encryption key or keys used to encrypt the
80 payload portions of said AlterWAN packets when they were transmitted from said
81 destination firewall so as to recover the original IP packet transmitted to said destination
82 firewall by a computer at said destination site, and for outputting said recovered original
83 IP packet to said device or devices at said source site having the IP address which is the
84 destination address of said original IP packet;

85 7.8) coupling a source router to receive said encrypted AlterWAN packets and
86 non-encrypted non-AlterWAN packets from said untrusted port of said source firewall and
87 to convert said AlterWAN and non-AlterWAN packets in a channel service unit to signals
88 suitable for transmission over said first dedicated signal path local loop connection to said
89 source ISX/ISP provider;

90 8.9) providing a destination router at said destination site having a firewall port
91 coupled to an said untrusted port of said destination firewall and having a channel
92 service unit coupled to said destination ISX/ISP provider via said second dedicated signal
93 path local loop connection and configuring said destination router which is configured to

94 receive from said second dedicated signal path local loop connection downstream signals
95 encoding both encrypted AlterWAN packets and conventional non AlterWAN IP packets
96 and convert converting said signals back into the original digital IP packet form, and
97 configuring said destination router to output said recovered downstream IP packets at
98 said firewall port coupled to said untrusted port of said destination firewall, and
99 configuring said destination router configured to receive upstream AlterWAN packets and
100 conventional non AlterWAN packets and convert both types of said packets into signals
101 suitable for transmission on said second dedicated signal path local loop connection
102 coupling said destination router to said participating destination ISX/ISP provider in said
103 the group of participating ISX/ISP providers selected in step 2, and configuring said
104 router to transmit transmitting said signals on said second dedicated signal path local
105 loop connection;

106 9-10) providing said a destination firewall having an untrusted port coupled to
107 said firewall port of said destination router so as to receive said recovered digital IP
108 packets, and configuring said destination firewall to recognize as AlterWAN packets
109 incoming recovered IP packets having as their destination address the IP address of said
110 destination firewall untrusted port and further configuring said destination firewall
111 configured to strip off said the AlterWAN packet header of each said AlterWAN packet
112 and, as to each AlterWAN packet, decrypting a the payload portion of each said
113 AlterWAN packet using the same encryption algorithm and encryption key or keys that
114 were used to encrypt the AlterWAN packet at said source firewall so as to recover said
115 first the original IP packet which encapsulated in said each AlterWAN packet, and
116 configuring said destination firewall to output said first IP packet recovered from said
117 AlterWAN packet by said decryption process the decrypted original and output each said
118 first IP packets so recovered at an output coupled to one or more computing a device or
119 devices at said destination site, and configuring said destination firewall to examine the
120 destination addresses of upstream first IP packets received from said one or more
121 computing a device or devices at said destination site and encapsulate each upstream
122 first IP packet addressed to any computer or other computing device at said source site
123 as a the payload portion of in a second another IP packet, hereafter referred to as an
124 upstream AlterWAN packet (an AlterWAN packet traveling from said destination site
125 toward said source site), each said upstream AlterWAN packet having as its destination
126 address the IP address of said untrusted port of said source firewall at said source site
127 and a first having the original IP packet as its payload, and further configuring said said
128 destination firewall being configured to encrypt the payload portions of each all said

129 upstream AlterWAN packets using a predetermined encryption algorithm and one or more
130 encryption keys but not to encapsulate or encrypt the payload portions of any non
131 AlterWAN IP packets received from said one or more computing device or devices at said
132 destination site, said non AlterWAN IP packets being those IP packets which do not have
133 as their destination addresses an IP address of any device at said source site (hereafter
134 referred to as conventional non AlterWAN packets), and configuring said destination
135 firewall econfigured to transmit said encrypted upstream AlterWAN packets and said
136 conventional non AlterWAN packets to said destination router via said untrusted port.

1 10. (Currently amended) A private wide area network connecting a customer source site
2 to a customer destination site and using the internet as a backbone, comprising:

3 a first dedicated data path coupled to a first participating ISX/ISP provider of
4 internet access;
5 a source router having a channel service unit having an output coupled to said
6 first dedicated data path and configured with route statements that recognize IP packets
7 addressed to the untrusted side of a destination firewall at said customer destination site
8 (hereafter outgoing AlterWAN packets) and cause said outgoing AlterWAN packets to be
9 routed into an AlterWAN data path, wherein said AlterWAN data path is a high
10 bandwidth, low latency data path from said customer source site to said customer
11 destination site and back having an average available bandwidth that exceeds the worst
12 case bandwidth consumption of AlterWAN packet traffic between said source and
13 destination sites;

14 a source firewall circuit having a first port for coupling directly or through a local
15 area network to one or more devices at a customer source site, and having an untrusted
16 port coupled to said source router directly or through a local area network, said untrusted
17 port of said source firewall having an Internet Protocol address (hereafter IP address),
18 said source firewall functioning to receive Internet Protocol packets (hereafter IP packets)
19 from said one or more devices at said customer source site which are addressed to one
20 or more devices at a customer destination site (hereafter AlterWAN payload packets) and
21 other IP packets addressed to other locations on the internet (hereafter conventional IP
22 packets), and for encapsulating said AlterWAN payload packets as the payload sections
23 of outgoign AlterWAN IP packets which have as their destination addresses the
24 addressed-to-an IP address of an untrusted port of a destination firewall at said customer
25 destination site (hereafter outgoing AlterWAN packets) and functioning to encrypt the
26 payloads of said outgoing AlterWAN packets using a first encryption method known to a

27 destination firewall and using a key or key known to said destination firewall and which
28 may be user definable, and for receiving incoming IP packets and comparing the
29 destination addresses of said incoming IP packets to said IP address of said untrusted
30 port of said source firewall circuit any said incoming IP packet having as its destination
31 address the IP address of said untrusted port of said source firewall being a incoming
32 AlterWAN packet, each said incomimg AlterWAN packet encapsulating as its payload
33 section a AlterWAN payload packet, and decrypting the payload sections of any
34 incoming IP AlterWAN packets having as their destination address the IP address of said
35 untrusted port of said source firewall circuit (hereafter incoming AlterWAN packets) using
36 whatever encryption method and key or keys which were used to encrypt them so as to
37 recover the encapsulated AlterWAN payload packet from each incoming AlterWAN
38 packet, and transmitting each recovered AlterWAN payload packet to a device at said
39 customer source site to which said AlterWAN payload packet is addressed;

40 one or more routers of ~~ether~~ participating ISX/ISP providers of internet services
41 including a router at an endpoint participating ISX/ISP provider, said routers of said
42 ISX/ISP providers functioning to implement said AlterWAN data path as a high
43 bandwidth, low latency, low hop count data path having an average available bandwidth
44 that exceeds the worst case bandwidth consumed by incoming and outgoing AlterWAN
45 packets travelling between said source and destination sites and configured to recognize
46 said incoming and outgoing AlterWAN packets by their destination addresses and route
47 them into said AlterWAN data path, in the form of a virtual private network tunnel through
48 the internet coupling one or more devices at said customer source site to one or more
49 computers at said customer destination site, said low hop count data path having an
50 average available bandwidth which is substantially greater than the worst case bandwidth
51 consumption of AlterWAN packets traveling between said customer source site and said
52 customer destination site;

53 a destination router including a channel service unit coupled to or part of said
54 destination router, said destination router coupled through said channel service unit and
55 a second dedicated datapath to said router of said endpoint participating ISX/ISP
56 provider and configured to recognize said outgoing AlterWAN packets arriving from said
57 endpoint participating ISX/ISP provider which have travelled from said source firewall via
58 said AlterWAN data path and route them to said destination firewall, and configured to
59 recognize said incoming AlterWAN packets from said destination firewall circuit and route
60 them to said endpoint participating ISX/ISP provider;

61 a said destination firewall circuit having an untrusted port having an IP address to

62 which said outgoing AlterWAN packets are addressed, said untrusted port coupled to
63 said destination router directly or through a local area network and having a second port
64 for coupling directly or through a local area network to one or more devices at said
65 customer destination site, said destination firewall circuit configured so as functioning to
66 receive IP packets from said one or more devices at said customer destination site which
67 are addressed to one or more devices at said customer source site (hereafter AlterWAN
68 payload packets) and functioning to receive other conventional IP packets not addressed
69 to any of the said devices at said customer source site, and for encapsulating said
70 AlterWAN payload packets as the payload sections of AlterWAN packets addressed to
71 said IP address of an untrusted port of said source firewall circuit at said customer source
72 site (hereafter incoming outgoing AlterWAN packets) and functioning to encrypt the
73 payloads of said incoming outgoing AlterWAN packets using an encryption method
74 ~~known to said source firewall and a key or keys known to said source firewall~~ and for
75 receiving incoming AlterWAN IP- packets and comparing the destination addresses of said
76 incoming AlterWAN IP- packets to said IP address of said untrusted port of said
77 destination firewall circuit, and decrypting the payload sections of any incoming
78 AlterWAN IP- packets having as their destination address the IP address of said
79 untrusted port of said destination firewall circuit (hereafter incoming AlterWAN packets)
80 ~~using whatever encryption method and key or keys which were used to encrypt said~~
81 ~~incoming AlterWAN packets~~ so as to recover the encapsulated AlterWAN payload packet
82 from each incoming AlterWAN packet, and transmitting each recovered AlterWAN payload
83 packet to the device to which it is addressed at said customer destination site.

Please add the following new claims:

- 1 11. (new) A method of doing business to establish a private bidirectional wide area
2 network between a source site and a destination site using the internet as a backbone,
3 comprising the steps:
 - 4 connecting one or more computing devices at a source site to a firewall and
5 source router and obtaining a known IP address for each computing device at said
6 source site;
 - 7 connecting one or more computing devices at a destination site to a firewall and
8 destination router and obtaining a known IP address for each computing device at said
9 destination site;
 - 10 selecting one or more participating ISX/ISP internet service providers which have
11 one or more high bandwidth, low latency, low hop count data paths that can be used as

12 at least part of a high bandwidth, low latency, low hop count data path for transmission of
13 AlterWAN data packets between said source site and said destination site (hereafter
14 referred to as the AlterWAN data path), and making agreements with said participating
15 ISX/ISP internet service providers to always route AlterWAN packets into said AlterWAN
16 data path such that said AlterWAN data packets will only travel on AlterWAN data path,
17 wherein said AlterWAN packets are defined as packets which contain as a destination
18 address one of said known IP addresses of computing devices at said source site or said
19 destination site, and ensuring that said routing tables of routers of said one or more
20 participating ISX/ISP internet service providers either already contain routing statements
21 that will cause AlterWAN packets to be routed into said AlterWAN data path or are
22 modified to contain such route statements;

23 connecting said source router and said destination router to one of said
24 participating ISX/ISP internet service providers through dedicated high bandwidth, low
25 latency data paths.

1 12. [new] A method comprising:

2 generating an Internet Protocol data packet (hereafter IP packet) having as its
3 destination address an Internet Protocol address assigned to a computing device at the
4 other end of a private, wide area network using the internet as a backbone (hereafter
5 referred to as an AlterWAN private tunnel);

6 encrypting a payload portion of said IP packet to generate an encrypted IP
7 packet;

8 generating a composite AlterWAN packet by encapsulating said encrypted IP
9 packet in another IP packet having as its destination address an IP address of an
10 untrusted side of a firewall which is at a destination site which is part of said AlterWAN
11 private tunnel; and

12 routing said composite AlterWAN packet using a source router whose routing
13 table has been configured to include a routing statement which recognizes said
14 destination address of said composite AlterWAN packet and routes said composite
15 AlterWAN packet via a dedicated data path to an AlterWAN data path, said AlterWAN
16 data path being defined as a high bandwidth, low latency, low hop count data path
17 provided by one or more participating ISX/ISP internet service providers that links said
18 source site and said destination site of said AlterWAN private tunnel, each participating
19 ISX/ISP internet service provider being one which has been selected as having at least
20 one high bandwidth, low latency, low hop count data path which can be used to transmit

21 said composite AlterWAN data packet either from said source site to said destination site
22 or to another participating ISX/ISP internet service provider and which has routers which
23 either already contain or which are configured to contain predetermined routing
24 statements when said participating ISX/ISP agrees to provide routing services as part of
25 said AlterWAN data path, said predetermined routing statements being ones which will
26 recognize said IP destination address of each said composite AlterWAN data packets
27 and cause said composite AlterWAN packets to be routed into said AlterWAN data path.

1 13. [new] A method comprising:
2 receiving composite AlterWAN packet comprised of an encapsulating IP packet
3 having as its destination address an Internet Protocol address assigned to a firewall at
4 said destination site and using said Internet Protocol address assigned to said firewall in
5 the destination address field of said encapsulating IP packet to recognize said packet as
6 a composite AlterWAN packet, said encapsulating IP packet including at its payload an
7 encrypted IP packet having as its destination address an Internet Protocol address of a
8 computing device at said destination site, said destination site being at an end of a
9 private, wide area network using the internet as a backbone (hereafter referred to as an
10 AlterWAN private tunnel) and reacting to recognition of said received packet as an
11 AlterWAN composite packet by routing said composite AlterWAN packet to a firewall;
12 in said firewall, decrypting a payload portion of said encrypted IP packet to
13 generate a recovered IP packet;
14 routing said recovered IP packet to a computing device to which said recovered
15 IP packet is addressed.

1 14. [new] A method of doing business comprising:
2 selecting one or more participating ISX/ISP internet service providers
3 which have one or more high bandwidth, low latency, low hop count data paths
4 that can be used as at least part of a high bandwidth, low latency, low hop count
5 data path for transmission of composite AlterWAN data packets between a source
6 site and a destination site of a private wide area network using the internet as a
7 backbone (hereafter referred to as the AlterWAN data path), where composite
8 AlterWAN data packets are defined as internet protocol packets (hereafter the
9 outer packet) which encapsulate other internet protocol packets (hereafter the
10 inner packet), said inner packet having as its destination address the IP address
11 of a computing device at one end of said AlterWAN data path and at least the

12 payload section of said inner packet being encrypted, said outer packet having
13 as its destination address an IP address of an untrusted side of a firewall at the
14 same end of said AlterWAN data path as said computing device which has as its
15 IP address said destination address of said inner packet;

16 making agreements with said participating ISX/ISP internet service
17 providers to always route composite AlterWAN packets into said AlterWAN data
18 path such that said composite AlterWAN data packets will only travel on said
19 AlterWAN data path;

20 ensuring that said routing tables of routers of said one or more
21 participating ISX/ISP internet service providers either already contain routing
22 statements that will cause said composite AlterWAN data packets to be
23 recognized and routed into said AlterWAN data path or are modified to contain
24 such route statements.

1 15. [new] A method of doing business comprising:

2 selecting one or more participating ISX/ISP internet service providers
3 which have one or more high bandwidth, low latency, low hop count data paths
4 that can be used as at least part of a high bandwidth, low latency, low hop count
5 data path for transmission of AlterWAN data packets between a source site and a
6 destination site of a wide area network using the internet as a backbone
7 (hereafter referred to as the AlterWAN data path), where AlterWAN data packets
8 are defined as internet protocol packets which contain as a destination address
9 one of said known IP addresses of computing devices at said source site or said
10 destination site;

11 making agreements with said participating ISX/ISP internet service
12 providers to always route said AlterWAN packets into said AlterWAN data path
13 such that said AlterWAN data packets will only travel on said AlterWAN data path;

14 ensuring that said routing tables of routers of said one or more
15 participating ISX/ISP internet service providers either already contain routing
16 statements that will cause said AlterWAN data packets to be recognized and
17 routed into said AlterWAN data path or are modified to contain such route
18 statements.

1 16. [new] A method of operating a router at an ISX/ISP comprising the steps:

2 using said router to recognize AlterWAN data packets where AlterWAN data

3 packets are defined as internet protocol packets which contain as a destination address
4 one of one or more known IP addresses of computing devices at a source site or a
5 destination site of a wide area network using the internet as a backbone;

6 looking up routing statements that are applicable to said AlterWAN data packets
7 and using said routing statements to route said AlterWAN data packets into a high
8 bandwidth, low latency, low hop count data path coupling said source site to said
9 destination site.

1 17. [new] A method of operating a router at an ISX/ISP comprising the steps:
2 using said router to recognize composite AlterWAN data packets where composite
3 AlterWAN data packets are defined as internet protocol packets (hereafter the outer
4 packet) which encapsulate other internet protocol packets (hereafter the inner packet),
5 said inner packet having as its destination address one of one or more known IP
6 addresses of computing devices at a source site or a destination site of a wide area
7 network using the internet as a backbone and at least the payload section of said inner
8 packet being encrypted, said outer packet having as its destination address an IP
9 address of an untrusted side of a firewall at the same end of said AlterWAN data path as
10 said computing device which has as its IP address said destination address of said inner
11 packet;

12 looking up routing statements that are applicable to said composite AlterWAN
13 data packets and using said routing statements to route said composite AlterWAN data
14 packets into a high bandwidth, low latency, low hop count data path coupling said source
15 site to said destination site.

1 18. [new] A router at an ISX/ISP which is part of a private wide area network using the
2 internet as a backbone, said router being conventional except that said router is coupled to a
3 high bandwidth, low latency, low hop count data path and has been configured to contain
4 routing statements that cause AlterWAN data packets to be recognized and routed into said high
5 bandwidth, low latency, low hop count data path, where AlterWAN data packets are defined as
6 internet protocol packets which contain as a destination address one of one or more known IP
7 addresses of computing devices at a source site or a destination site of a wide area network
8 using the internet as a backbone.

1 19. [new] A router at an ISX/ISP which is part of a private wide area network using the
2 internet as a backbone, said router being conventional except that said router is coupled to a

3 high bandwidth, low latency, low hop count data path and has been configured to contain
4 routing statements that cause composite AlterWAN data packets to be recognized and routed
5 into said high bandwidth, low latency, low hop count data path, where composite AlterWAN data
6 packets are defined as internet protocol packets (hereafter the outer packet) which encapsulate
7 other internet protocol packets (hereafter the inner packet), said inner packet having as its
8 destination address one of one or more known IP addresses of computing devices at a source
9 site or a destination site of a wide area network using the internet as a backbone and at least the
10 payload section of said inner packet being encrypted, said outer packet having as its destination
11 address an IP address of an untrusted side of a firewall at the same end of said AlterWAN data
12 path as said computing device which has as its IP address said destination address of said inner
13 packet.