

# Computer Networks VLSM

#### Introduction:

VLSM is a Variable Length Subnet Mask in which the subnet design uses more than one mask in the same network which means more than one mask is used for different subnets of a single class A, B, C, or a network. It is used to improve the usability of subnets as they can be of variable size. It is also defined as the process of subnetting a subnet.

# How to do Subnetting with VLSM?

#### **Step 1: Determine Host Requirements**

Identify the number of hosts needed in each LAN and WAN:

- **HQ LAN** 50 hosts
- **BRANCH 1** 30 hosts
- BRANCH 2 20 hosts
- WAN 1 (HQ to BRANCH 1) 2 hosts
- WAN 2 (HQ to BRANCH 2) 2 hosts
- WAN 3 (BRANCH 1 to BRANCH 2) 2 hosts

Total: 106 hosts

# **Step 2: Choose IP Subnet Class**

Based on the host count, a Class C subnet (192.168.10.0) will suffice.

## Step 3: Host Bits per Subnet

For the HQ LAN (50 hosts), 6 host bits will fulfill the requirement.

#### Step 4: Calculate Subnet Mask

The subnet mask for HQ LAN is /26 or 255.255.255.192.

#### **Step 5: Determine Increment**

With 6 host bits, the increment is 64.

#### Step 6: Network, Broadcast, and Usable IP Range

• Network Address: 192.168.10.0

• Broadcast Address: 192.168.10.63

• Usable IP Addresses: 192.168.10.1 to 192.168.10.62

### Implementing VLSM

#### Subnetting:

#### • BRANCH 1 LAN

o **Hosts:** 30

Subnet Mask: /27

Network Address: 192.168.10.64

Usable IP Range: 192.168.10.65 to 192.168.10.94

#### BRANCH 2 LAN

Hosts: 20

Subnet Mask: /27

Network Address: 192.168.10.96

Usable IP Range: 192.168.10.97 to 192.168.10.126

#### • WAN 1, WAN 2, WAN 3

o Hosts: 2 each

Subnet Mask: /30

• Usable IP Range: Address ranges for each WAN

By following these steps, you can efficiently allocate IP addresses across various subnets within your network.

#### **VLSM in CISCO PACKET TRACER**



Steps to create VLSM in CISCO Packet Tracer

Step 1: First, open the cisco packet tracer desktop and select the devices given below:

| S.NO | Device | Model-Nam<br>e | Qty |
|------|--------|----------------|-----|
| 1.   | рс     | рс             | 3   |

| 2. | switch | PT-Switch | 3 |
|----|--------|-----------|---|
| 3. | router | PT-Router | 3 |

# IP Addressing Table for PCs

| S.NO | Device | IPv4 Address  | Subnet-Mask     | Default-Gatewa<br>y |
|------|--------|---------------|-----------------|---------------------|
| 1.   | pc0    | 192.168.10.2  | 255.255.25<br>2 | 192.168.10.1        |
| 2.   | pc2    | 192.168.10.66 | 255.255.25<br>4 | 192.168.10.65       |
| 3.   | pc4    | 192.168.10.98 | 255.255.25<br>2 | 192.168.10.97       |

• Then, create a network topology as shown below the image.

 Use an automatic connecting cable to connect the devices with others.



Step 2: Configure the PCs (hosts) with IPv4 address and Subnet Mask according to the IP addressing table given above.

- To assign an IP address in PC0, click on PC0.
- Then, go to desktop and then IP configuration and there you will IPv4 configuration.
- Fill IPv4 address and subnet mask.



- Assigning an IP address using the ipconfig command, or we can also assign an IP address with the help of a command.
- Go to the command terminal of the PC.
- Then, type ipconfig <IPv4 address><subnet mask><default gateway>(if needed)

Example: ipconfig 192.168.10.2 255.255.255.192 192.168.10.1



 Repeat the same procedure with other PCs to configure them thoroughly.

Step 3: Configure router with IP address and subnet mask.

| S.NO | Device  | Interface           | IPv4 Address       | Subnet mask     |
|------|---------|---------------------|--------------------|-----------------|
| 1.   | router0 | FastEthernet0/<br>0 | 192.168.10.1       | 255.255.255.19  |
|      |         | Serial2/0           | 192.168.10.10<br>1 | 255.255.25      |
| 2.   | router2 | FastEthernet0/<br>0 | 192.168.10.65      | 255.255.25<br>4 |
|      |         | Serial2/0           | 192.168.10.10<br>2 | 255.255.25      |
|      |         | Serial3/0           | 192.168.10.10<br>5 | 255.255.25<br>2 |

| 3.       | router3 | FastEthernet0/<br>0 | 192.168.10.97      | 255.255.25 |
|----------|---------|---------------------|--------------------|------------|
| 3. route | Touters | Serial2/0           | 192.168.10.10<br>6 | 255.255.25 |

- To assign an IP address in router0, click on router0.
- Then, go to config and then Interfaces.
- Now, configure the IP address in FastEthernet and serial ports according to IP addressing Table.
- Fill IPv4 address and subnet mask.



 Repeat the same procedure with other routers to configure them thoroughly.

Step 4: After configuring all of the devices we need to assign the routes to the routers.

To assign static routes to the particular router:

• First, click on router0 then Go to CLI.

• then type the commands and IP information given below.

CLI command : ip route <network id> <subnet mask><next hop>

#### Static Routes for Router0 are given below:

```
Router(config) #ip route 192.168.10.64 255.255.255.224 192.168.10.102
Router(config) #ip route 192.168.10.104 255.255.255.252 192.168.10.102
Router(config) #ip route 192.168.10.96 255.255.252 192.168.10.102
```

#### Static Routes for Router1 are given below:

```
Router(config) #ip route 192.168.10.0 255.255.255.192
192.168.10.101
Router(config) #ip route 192.168.10.96 255.255.252
192.168.10.106
```

#### Static Routes for Router2 are given below:

```
Router(config) #ip route 192.168.10.64 255.255.255.224 192.168.10.105
Router(config) #ip route 192.168.10.100 255.255.255.252 192.168.10.105
Router(config) #ip route 192.168.10.0 255.255.255.192 192.168.10.105
```

Step 5: Verifying the network by pinging the IP address of any PC.

we will use the ping command to do so.

- First, click on PC0 then Go to the command prompt.
- Then type ping <IP address of targeted node>.
- As we can see in the below image we are getting replies which means the connection is working.

Example : ping 192.168.10.66



 A simulation of the experiment is given below we are sending PDU from PC0 to PC2 and PC2 to PC4:

Lab Task.

Design the below VLSM architecture in cisco packet tracer.

200.124.67.0/24

