NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao

MA1104 Multivariable Calculus AY 2006/2007 Sem 2

Question 1

(a) Let $f(x, y, z) = z^3 + xyz - 2$. This give us $f_x(x, y, z) = yz$, $f_y(x, y, z) = xz$, $f_z(x, y, z) = 3z^2 + xy$. Thus equation of tangent plane to surface f(x, y, z) = 0 at (1, 1, 1) is

$$f_x(1,1,1)(x-1) + f_y(1,1,1)(y-1) + f_z(1,1,1)(z-1) = 0$$

$$(1)(x-1) + (1)(y-1) + 4(z-1) = 0$$

$$x + y + 4z = 6.$$

Hence, we approximate (1.01, 0.97, c) to be a point on the tangent plane of the curve at (1, 1, 1). This give us $c \approx \frac{1}{4}(6 - 1.01 - 0.97) = 1.005$.

(b) Let f(x,y,z) = x+y+z and $g(x,y,z) = xyz^2$. This give us $f_x(x,y,z) = f_y(x,y,z) = f_z(x,y,z) = 1$ and $g_x(x,y,z) = yz^2$, $g_y(x,y,z) = xz^2$, $g_z(x,y,z) = 2xyz$. We would like to find the minimum of f(x,y,z) under the constrain g(x,y,z) = 2500. Using method of Lagrange multipliers, we solve $f_x = \lambda g_x$, $f_y = \lambda g_y$ and $f_z = \lambda g_z$ for some $\lambda \in \mathbb{R}$. Thus we have,

$$\begin{cases} 1 = \lambda yz^2 \\ 1 = \lambda xz^2 \\ 1 = 2\lambda xyz \\ xyz^2 = 2500 \end{cases}$$

Since we can see from the equations that $\lambda, x, y, z \neq 0$, it is easy to get x = y = z/2 = 5 as the only critical point. Since the minimum of f(x, y, z) exists, it must be f(5, 5, 10) = 20.

Question 2

(a) Let S be the surface area we wanted. Firstly, we would like to understand how D looks like. At the intersection points of the two parabolas bounding the region D, we have $x^2 = 18 - x^2$, which give us $x = \pm 3$. Thus D is given by $x \in [-3, 3]$, $y \in [x^2, 18 - x^2]$. Therefore we have,

$$S = \iint_{D} \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^{2} + \left(\frac{\partial g}{\partial y}\right)^{2}} dA$$

$$= \int_{-3}^{3} \int_{x^{2}}^{18 - x^{2}} \sqrt{3} dy dx$$

$$= \sqrt{3} \int_{-3}^{3} (18 - 2x^{2}) dx$$

$$= \sqrt{3} \left[18x - \frac{2}{3}x^{3}\right]_{-3}^{3} = 72\sqrt{3}.$$

(b) Notice that ∇g is continuous in \mathbb{R}^3 . Also we have $\mathbf{r}(0) = \langle 0, 0, 0 \rangle$ and $\mathbf{r}(1) = \langle 1, 1, 1 \rangle$. Thus

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{G} \cdot d\mathbf{r} + \int_{C} \mathbf{H} \cdot d\mathbf{r}$$

$$= g(\mathbf{r}(1)) - g(\mathbf{r}(0)) + \int_{0}^{1} \mathbf{H}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= [xyz + 3e^{yz} \cos(\pi xz)]_{(0,0,0)}^{(1,1,1)} + \int_{0}^{1} (t^{2})(1) + (t^{3})(2t) + (t)(3t^{2}) dt$$

$$= 1 + 3e \cos(\pi) - 3\cos(0) + \left[\frac{1}{3}t^{3} + \frac{2}{5}t^{5} + \frac{3}{4}t^{4}\right]_{0}^{1}$$

$$= -3e - \frac{31}{60}.$$

(c) Let E be the region enclosed by S. We see that E is given by $x \in [0,1]$, $y \in [0,3]$, $z \in [0,5]$. Given that $\mathbf{F}(x,y,z) = \langle x^2y, xy^2, 5xyz \rangle$, we have $\text{div } \mathbf{F} = 2xy + 2xy + 5xy = 9xy$. Thus by Divergence Theorem, we have,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} \, dV
= \int_{0}^{5} \int_{0}^{3} \int_{0}^{1} 9xy \, dx \, dy \, dz
= 9 \int_{0}^{1} x \, dx \int_{0}^{3} y \, dy \int_{0}^{5} 1 \, dz
= 9 \left[\frac{1}{2} x^{2} \right]_{0}^{1} \left[\frac{1}{2} y^{2} \right]_{0}^{3} [z]_{0}^{5}
= 9 \left(\frac{1}{2} \right) \left(\frac{9}{2} \right) (5) = \frac{405}{4}.$$

Question 3

(a) We have $f_x = 2x\cos(x^2 + yz)$, $f_y = z\cos(x^2 + yz)$, $f_z = y\cos(x^2 + yz)$. Also $\frac{\partial x}{\partial u} = 2u$, $\frac{\partial y}{\partial u} = 2v$, $\frac{\partial z}{\partial u} = 7$, $\frac{\partial x}{\partial v} = -2v$, $\frac{\partial y}{\partial v} = 2u$, $\frac{\partial z}{\partial v} = 11$. Thus

$$\frac{\partial f}{\partial u} = f_x \left(\frac{\partial x}{\partial u}\right) + f_y \left(\frac{\partial y}{\partial u}\right) + f_z \left(\frac{\partial z}{\partial u}\right)
= (2x\cos(x^2 + yz))(2u) + (z\cos(x^2 + yz))(2v) + (y\cos(x^2 + yz))(7)
= (4xu + 2zv + 7y)\cos(x^2 + yz),$$

$$\frac{\partial f}{\partial v} = f_x \left(\frac{\partial x}{\partial v}\right) + f_y \left(\frac{\partial y}{\partial v}\right) + f_z \left(\frac{\partial z}{\partial v}\right)
= (2x\cos(x^2 + yz))(-2v) + (z\cos(x^2 + yz))(2u) + (y\cos(x^2 + yz))(11)
= (-4xv + 2zu + 11y)\cos(x^2 + yz).$$

(b) Firstly, from the cylindrical coordinates, we see that the region E bounded by the parameters is the hemisphere of radius 1, with base on the x-y plane, centered at the origin, pointing in the positive z direction. Thus E can be given by rectangular coordinates $x \in [-1,1]$, $y \in [-\sqrt{1-x^2}, \sqrt{1-x^2}]$, $z \in [0, \sqrt{1-x^2-y^2}]$, or spherical coordinates $\theta \in [0, 2\pi]$, $\phi \in [0, \frac{\pi}{2}]$, $\rho \in [0, 1]$.

(i) Since $r dr d\theta = dy dx$, we can have

$$I = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} 1 \ dz \ dy \ dx.$$

(ii) Since $dz dy dx = \rho^2 \sin \phi d\rho d\phi d\theta$, we have

$$I = \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho^{2} \sin \phi \ d\rho \ d\phi \ d\theta$$

(iii) Using the spherical coordinates form, we have

$$I = \int_0^{2\pi} 1 \ d\theta \int_0^{\frac{\pi}{2}} \sin\phi \ d\phi \int_0^1 \rho^2 \ d\rho$$
$$= [\theta]_0^{2\pi} [-\cos\phi]_0^{\frac{\pi}{2}} \left[\frac{1}{3}\rho^3\right]_0^1$$
$$= (2\pi)(1)\left(\frac{1}{3}\right) = \frac{2}{3}\pi.$$

(c) Let D be the area enclosed by the parameters. We see that D is the area between the x-axis, x = 1 and y = x. Thus we also have D to be given by $x \in [0, 1]$, $y \in [0, x]$. Therefore,

$$\int_0^1 \int_y^1 e^{x^2} dx dy = \int_0^1 \int_0^x e^{x^2} dy dx$$
$$= \int_0^1 x e^{x^2} dx$$
$$= \left[\frac{1}{2} e^{x^2}\right]_0^1 = \frac{1}{2} (e - 1).$$

Question 4

(a) We notice that C can be traced by $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, 4(\sin^2 t - \cos^2 t) \rangle$ from t = 0 to $t = 2\pi$. Let S be the surface with equation $z = g(x,y) = y^2 - x^2$ bounded by C, and D be the area given by the polar coordinates $r \in [0,2]$, $\theta \in [0,2\pi]$. Then S is a smooth surface on area D. Since

$$\operatorname{curl} \mathbf{F} = \langle \frac{\partial}{\partial y}(xy) - \frac{\partial}{\partial z} \left(\frac{1}{3} x^3 \right), \frac{\partial}{\partial z}(x^2 y) - \frac{\partial}{\partial x}(xy), \frac{\partial}{\partial x} \left(\frac{1}{3} x^3 \right) - \frac{\partial}{\partial y}(x^2 y) \rangle$$
$$= \langle x - 0, 0 - y, x^2 - x^2 \rangle = \langle x, -y, 0 \rangle,$$

we have by Stokes' Theorem,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}
= \iint_{D} -(x)(-2x) - (-y)(2y) + 0 \, dA
= \iint_{D} 2(x^{2} + y^{2}) \, dA
= \int_{0}^{2} \int_{0}^{2\pi} 2r^{3} \, d\theta \, dr
= 2 \int_{0}^{2} 1 \, d\theta \int_{0}^{2\pi} r^{3} \, dr
= 2[\theta]_{0}^{2\pi} \left[\frac{1}{4} r^{4} \right]_{0}^{2} = 16\pi.$$

(b) We have $f_x(x,y) = 3x^2 - 3$ and $f_y(x,y) = -3y^2 + 12$.

When $f_x(x,y) = 0$, we have $x = \pm 1$.

When $f_y(x,y) = 0$, we have $y = \pm 2$.

Combining the above, we have $\nabla f(x,y) = \langle 0,0 \rangle$ only when $(x,y) = (\pm 1,\pm 2)$ or $(x,y) = (\pm 1,\mp 2)$.

Also $f_{xx}(x,y) = 6x$, $f_{yy}(x,y) = -6y$, $f_{xy}(x,y) = 0$, and so $D = f_{xx}f_{yy} - (f_{xy})^2 = -36xy$.

This give us $D|_{(1,2)}$, $D|_{(-1,-2)} < 0$ i.e. (1,2) and (-1,-2) are saddle points.

Also $D|_{(-1,2)}$, $D|_{(1,-2)} > 0$, and since $f_{xx}(-1,2) < 0$ and $f_{xx}(1,-2) > 0$, (-1,2) is a local maximum point and (1,-2) is a local minimum point.

Question 5

(a) We have $f_x(x, y, z) = 6x$, $f_y(x, y, z) = -10y$ and $f_z(x, y, z) = 4z$. Thus $\nabla f(1, 1, 2) = \langle 6, -10, 8 \rangle$. Therefore to get as cool as possible, I should set out in the direction of $-\nabla f(1, 1, 2) = \langle -6, 10, -8 \rangle$.

Rate of change of the temperature = $3D_{\frac{\langle -6,10,-8\rangle}{\sqrt{200}}}f(1,1,2) = \frac{3}{\sqrt{200}}(-36-100-64) = -30\sqrt{2}$ °.

Note: The question give temperature in degrees, not degrees (Celsius/Farenheit), and thus we will follow in our solution above. =)

(b) We have,

$$\nabla(fg) = \langle (fg)_x, (fg)_y, (fg)_z \rangle$$

$$= \langle fg_x + gf_x, fg_y + gf_y, fg_z + gf_z \rangle$$

$$= \langle fg_x, fg_y, fg_z \rangle + \langle gf_x, gf_y, gf_z \rangle$$

$$= f\langle g_x, g_y, g_z \rangle + g\langle f_x, f_y, f_z \rangle$$

$$= f\nabla g + g\nabla f.$$

Let P_n be the statement that $\nabla(f^n) = nf^{n-1}\nabla f$, $n \in \mathbb{Z}^+$. P_1 is $\nabla f = \nabla f$, which is immediately true.

Assume P_k is true for some $k \in \mathbb{Z}^+$, i.e. $\nabla(f^k) = kf^{k-1}\nabla f$. Consider P_{k+1} . We have $\nabla(f^{k+1}) = \nabla(f^kf) = f^k\nabla f + f\nabla(f^k) = f^k\nabla f + f(kf^{k-1}\nabla f) = (k+1)f^k\nabla f$, and so P_{k+1} is true.

Therefore by Mathematical Induction, we have P_n to be true for all $n \in \mathbb{Z}^+$.

(c) Let P = x and $Q = x^3 + 3xy^2$, which give us $F(x,y) = \langle P,Q \rangle$. Also, let C be the path of the particle, and D be the area bounded by C. We see that D is given by the polar coordinates $r \in [0,3]$, $\theta \in [0,\pi]$. Thus by Green's Theorem, we have work done on the particle by F to be

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

$$= \iint_{D} 3x^{2} + 3y^{2} \, dA$$

$$= \int_{0}^{3} \int_{0}^{\pi} 3r^{3} \, d\theta \, dr$$

$$= 3 \int_{0}^{\pi} 1 \, d\theta \int_{0}^{3} r^{3} \, dr$$

$$= 3[\theta]_{0}^{\pi} \left[\frac{1}{4} r^{4} \right]_{0}^{3} = \frac{243}{4} \pi.$$