19 日本国特許庁(JP)

⑩ 特許 出願 公開

◎ 公開特許公報(A) 平2−94547

Mint. Cl. 5

識別記号 庁内整理番号 個公開 平成2年(1990)4月5日

H 01 L 23/50

7735-5F Α

審査請求 未請求 請求項の数 1 (全4頁)

60発明の名称 リードフレームの製造方法

> 20特 顧 昭63-246417

願 昭63(1988)9月30日 22出

@発 明 者 藤 川 芳 弘 福岡県北九州市八幡西区小嶺2丁目10-1 株式会社三井

ハイテツク内

勿出 願 人 株式会社三井ハイテツ

福岡県北九州市八幡西区小嶺2丁目10-1

個代 理 人 弁理士 木村 髙久

1. 発明の名称

リードフレームの製造方法

2. 特許請求の範囲

複数のインナーリードと、

該インナーリードから伸張するアウターリー κŁ.

これらを連結するタイパーと

を具えたリードフレームの製造方法において、

条材からリードフレームを成型するスタンピ ングエ程が

前記インナーリードおよびアウターリードの リード間隔が目的寸法よりもやや小さくなるよう に打ち抜く予備打ち抜き工程と、

目的寸法のリード間隔となるように打ち抜く 仕上げ打ち抜き工程とを、

含むようにしたことを特徴とするリードフレ ームの製造方法。

3. 発明の詳細な説明

〔発明の目的〕

(産業上の利用分野)

本発明は、リードフレームの製造方法に係り、 特に、そのスタンピング工程(打ち抜き工程)に 関する.

(従来の技術)

IC、LSI等の半導体装置の実装に際して用 いられるリードフレームは、鉄系あるいは銅系等 の帯状の金属材料(条材)をプレス加工又はエッ チングにより所望のパターンに成形することによ って形成される。

通常、リードフレーム1は、第2図に示す如く、 半導体集積回路チップ (以下半導体チップ) 2を 搭載するダイパッド11と、ダイパッドを取り囲 むように配設せしめられた複数のインナーリード 12とインナーリード12を一体的に連結するタ イバー13と、各インナーリードに連結せしめら れタイパーの外側に伸張するアウターリード14 と、タイパー13を両サイドから支持するサイド バー15,16と、ダイパッド11を支持するサ

ボートバー17とから構成されている。

このようなリードフレームを用いて実装せしめられる半導体装置は第3回に示す如くであり、リードフレーム1のダイパッド11上に、半導体テップ12を搭載し、この半導体チップのボンディンクパッドとリードフレームのインナーリード12とを金線ある結構し、更にこれらを樹脂ですっていませい。タイパーを切断し、アウターリードを所望の形状に折り曲げて完成せしめられる。

ところで、このようなリードフレームはプレス 加工で成型する場合、帯状材料をリードフレーム 打妆用金型内で連続的に打ち抜くことにより製造 されるため、打ち抜かれたリード表面は、第4図 (a) に示すように抜きダレ d に起因して凸面形状 となり、裏面側は抜きバリ b に起因して凹面形状

ところで、アウターリードは、封止後、所望の 形状に折り曲げられるため、抜きバリ側から折り

しかしながら、この方法では、有効平面幅Wを 得るためには深部に至るまでコイニングしなけれ ばならず、リード間隔にばらつきが生じ易い。こ のためリード間隔Dが減少した部分では、リード 間の短格が生じ易く、これが信頼性低下の原因と なっていた。

本発明は、前記実情に鑑みてなされたもので、 インナーリード先端のコイニングを有効に行なう ことができ、またインナーリード間隔のばらつき をなくし信頼性の高いリードフレームを提供する ことを目的とする。

(発明の構成)

(課題を解決するための手段)

そこで本発明のリードフレームでは、条材から リードフレームを成型するスタンピング工程を目 的寸法よりもリード間隔がやや小さくなるように 打ち抜く予備打ち抜き工程と、目的寸法のリード 間隔となるように打ち抜く仕上げ打ち抜き工程と の2工程で行うようにしている。

(作用)

曲げられると折り曲げ作業時にバリが折り曲げパ ンチによってこすられ、金属粉が発生することが ある。

また、タイパー付近に位置するタイパー付近に 発生する抜きダレは、 樹脂封止用金型との間に隙 間を作ることになり、 樹脂パリの発生原因となっ ていた。

さらにまた、抜きバリは、リードフレームを積み上げた際、下方に位置するリードフレーム表面を傷付けるのみならず、自動搬送時においては、 円滑な搬送の障害となることがあった。

また、抜きダレ側では有効平面幅Wが減少しており、インナーリード先端ではボンディングを確実に行なうのに十分な平坦幅を確保することができない。

そこで、インナーリード先端の有効平面幅Wを 増大させるペくコイニングにより第4図(b) に示 す如くインナーリード先端をつぶすという方法が 通常用いられている。

(発明が解決しようとする課題)

上記構成によれば、バリの発生を極めて少なく することができ、ボンディング部分の平坦化のた めのコイニングを行なうにしても少ないバリが潰 れる程度の深さまで入れればよく、リード間隔に 影響を与えることなく、充分な有効平面幅を得る ことができる。

(実施例)

以下、本発明実施例のリードフレームの製造方法について、図面を参照しつつ詳細に説明する。

まず、第1図(a) に示すように、帯状材料に、 仕上げ寸法よりもややリード間隔が小さくなるよ うに形成された第1の金型を装着し、プレス加工 を行なうことにより、点線 r に示すように仕上げ 寸法よりもややリード間隔が小さいリードフレー ムをパターニングする。ここで実線 c は仕上げ寸 法を示す。

次いで、仕上げ寸法のリード間隔となるように 形成された第2の金型を装着し、アレス加工を行 なうことにより、仕上げ寸法のリードフレームを パターニングする。この第2の金型内で、インナ ーリード先端部のバリを潰す程度にコイニングし、 表面を平坦化する。

なお、各部の形状は、第2図に示した従来例の リードフレームと全く同様であり、同一部には同 一符号を付した。

このようにして形成されたリードフレームは、 バリの発生がほとんど皆無であり、リード間隔に 影響を与えることなく、充分な有効平面幅を得る ことができる。また、アウターリードの折り曲げ 時にも金属物を発生せしめることなく、信頼性の 高い半導体装置の形成が可能となる。

また、タイパー付近に位置するタイパー付近に 発生する抜きダレもほとんど皆無であり、樹脂パ リの発生を大幅に低減することができ、半導体装 置の信頼性の向上をはかることができる。

さらにまた、抜きバリが、ほとんどないため、 リードフレームを積み上げた際にも、下方に位置 するリードフレーム表面を傷付けることもなく、 また自動機送時においては、円滑な機送をおこな うことが可能となる。

例のリードフレームの製造工程を示す説明図、第2回は従来のリードフレームを示す図、第3回は、半導体装置を示す図、第4回(a) および第4回(b) は従来例のリードフレームのインナーリード 先端部の製造工程を示す図である。

1 ··· リードフレーム、2 ··· 半導体チップ、3 ··· ワイヤ、4 ··· 封止材料、1 1 ··· ダイパッド、1 2 ··· インナーリード、1 3 ··· タイパー、1 4 ··· アウターリード、1 5 · · 16 ··· サイドバー、1 7 ··· サポートバー、d ··· 抜きダレ、b ··· 抜きバリ。

出願人代理人 木 村 高 久

また、有効平面幅 W の減少もなく、インナーリード先端ではポンディングを確実に行なうことができる。

なお、実施例では、1つの金型でインナーリードもアウターリードも一度に打ち抜くようにしたが、タイバーを境界として、2つの金型を用いて、インナーリード側を打ち抜いた後、アウターリード側を打ち抜くようにしてもよい。

更に、コイニングは、表裏どちらから行なって もよいし、コイニング工程を省略することも可能 である。

〔発明の効果〕

以上説明してきたように、本発明のリードフレームの製造方法によれば、条材から予めリード間隔が目的寸法よりもやや小さくなるように打ち抜いた後、目的寸法のリード間隔となるように仕上げ打ち抜きを行うようにしているため、バリの発生を極めて少なくすることができる。

4. 図面の簡単な説明

第1図(a) および第1図(b) は、本発明実施

3 2 4 12 11 14

第3図

第 4 図(a)

第 4 図 (b)

CLIPPEDIMAGE= JP402094547A

PAT-NO: JP402094547A

DOCUMENT-IDENTIFIER: JP 02094547 A

TITLE: MANUFACTURE OF LEAD FRAME

PUBN-DATE: April 5, 1990

INVENTOR-INFORMATION:

NAME

FUJIKAWA, YOSHIHIRO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

N/A

MITSUI HIGH TEC INC

APPL-NO: JP63246417

APPL-DATE: September 30, 1988

INT-CL (IPC): H01L023/50

US-CL-CURRENT: 29/827,438/FOR.380

ABSTRACT:

PURPOSE: To extremely reduce burrs by so punching beforehand a stripelike material that the interval of leads becomes slightly smaller than its object size, and then finish punching it so that the internal becomes the object size.

CONSTITUTION: A first mold so formed that the interval of leads becomes

slightly smaller than its finishing size is mounted on a stripelike material,

and a lead frame having the internal of the leads slightly smaller than its

finishing size is so patterned by pressing as to be designated by broken lines

(r). Here, solid lines (c) denote finishing size. Then, a second mold so

formed that the interval becomes that of the finishing size

03/12/2003, EAST Version: 1.03.0002

is mounted, and a lead frame of finishing size is patterned by pressing. It is so coined in the degree of collapsing the burrs at the ends of inner leads 12 in the second mold, and the surface is flattened. In the frame formed in this manner, the burrs are almost wholly eliminated, do not affect the interval of the leads, and its sufficiently effective planar width can be obtained.

COPYRIGHT: (C) 1990, JPO& Japio