Introdução à Probabilidade e Estatística

Distribuições Amostrais Estimação pontual e intervalar

Departamento de Matemática Universidade de Évora Ano lectivo de 2016/17 Patrícia Filipe

Distribuições Amostrais

Distribuição Amostral da Média: População normal e σ^2 conhecida

Se a distribuição da população for normal e a variância (σ^2) for conhecida então, a Distribuição amostral da média é

$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

Diz-se que a distribuição por amostragem da média \overline{X} segue uma distribuição normal com valor esperado μ e variância $\frac{\sigma^2}{n}$. Ao desvio padrão da média amostral $(\frac{\sigma}{\sqrt{n}})$ dá-se o nome de erro padrão.

Distribuição Amostral da Média: Teorema Limite Central

Teorema Limite Central (TLC)

Suponhamos que se recolhe uma amostra de dimensão n de uma dada população X (muito grande), com valor esperado μ e variância σ^2 . Então, se a amostra for suficientemente grande, \overline{X} pode ser modelada, aproximadamente, por um modelo **normal** com valor esperado μ e variância $\frac{\sigma^2}{n}$.

Distribuição Amostral da Média: Teorema Limite Central

Distribuição Amostral da Média: Teorema Limite Central

Teorema Limite Central

Seja (X_1, X_2, \dots, X_n) uma sucessão de v.a.'s i.i.d., tal que $E[X_i] = \mu$ e $Var[X_i] = \sigma^2$, $\forall i = 1, \dots, n$, finita.

Considere-se $S_n = X_1 + \cdots + X_n$. Para valores grandes de n tem-se que:

$$\frac{S_n - E[S_n]}{\sqrt{\mathsf{Var}[S_n]}} = \frac{S_n - n\mu}{\sqrt{n}\sigma} \dot{\sim} N(0, 1)$$

Consequentemente, quando $n \to \infty$,

$$\sqrt{n}\frac{\overline{X}-\mu}{\sigma}\to Z\dot{\sim}N(0,1)$$

Na prática, considera-se amostra suficientemente grande quando $n \geqslant 30$.

Distribuição Amostral da Média (cont.)

Se a distribuição populacional não for normal, a variância for conhecida mas a amostra for suficientemente grande então (pelo TLC),

$$\overline{X} \dot{\sim} N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Se a distribuição populacional for normal, a variância não for conhecida então,

$$\sqrt{n}\frac{\overline{X}-\mu}{S} \sim t_{(n-1)}$$

Distribuição Amostral da Média (cont.)

Se a distribuição populacional for normal, a variância não for conhecida mas a dimensão da amostra for suficientemente grande então (pela aprox. da t-Student pela Normal),

$$\overline{X}\dot{\sim}N\left(\mu,\frac{S}{\sqrt{n}}\right)$$

Distribuição Amostral da Proporção

Seja X = "Número de sucessos do acontecimento A" tal que $X \sim B(n, p)$. Então,

$$\overline{P}=rac{X}{n}\,\Rightarrow\, E[\overline{P}]=p$$
 e ${\sf Var}[\overline{P}]=rac{np(1-p)}{n^2}$

Para uma a.a. de dimensão elevada

$$\sqrt{n} \frac{\overline{P} - p}{\sqrt{p(1-p)}} \dot{\sim} N(0,1)$$

$$\left|\overline{P}\dot{\sim}N\left(p,\sqrt{\frac{p(1-p)}{n}}\right)
ight|\Rightarrow\quad ext{Distribuição amostral da proporção.}$$

Distribuição Amostral da Variância

Seja (X_1,X_2,\ldots,X_n) uma sucessão de v.a.'s i.i.d. de uma população com variância σ^2 , finita. Se a distribuição da população for normal então

$$\left|\chi^2 = rac{(n-1)S^2}{\sigma^2} \sim \chi_{(n-1)}
ight| \Rightarrow \;\;\;$$
 Distribuição amostral da variância

Nota: Seja Z_1, Z_2, \ldots, Z_n uma sucessão de v.a.'s i.i.d. Se $Z_i \sim N(0,1), \ i=1,\ldots,n$, então, $\sum_{i=1}^n Z_i^2 \sim \chi^2_{(n)}$

Distribuições Amostrais duas populações

Estatística	Condições	Distribuição amostral
	σ_1^2, σ_2^2 conh., Pop. Normais	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}} \sim N(0, 1)$
	σ_1^2, σ_2^2 conh.	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{\mu_1} + \frac{\sigma_2^2}{\mu_2^2}}} \dot{\sim} N(0, 1)$
	Pop. quaisquer, $n_1, n_2 > 30$	V "1 "2
$\bar{X}_1 - \bar{X}_2$		
	σ_1^2, σ_2^2 desconh., $\sigma_1^2 = \sigma_2^2$	$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim t_{n_1 + n_2 - 2}$
	Pop. Normais, $n_1, n_2 \leqslant 30$	$\begin{pmatrix} n_1 + n_2 - 2 & (n_1 + n_2) \end{pmatrix}$
	σ_1^2, σ_2^2 desconh., $\sigma_1^2 = \sigma_2^2$	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \hat{\sim} N(0, 1)$
	Pop. quaisquer, $n_1, n_2 > 30$	

Distribuições Amostrais duas populações (cont.)

Estatística	Condições	Distribuição amostral
$\frac{S_1^2}{S_2^2}$	Pop. Normais	$F = \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F_{n_1} - 1, n_2 - 1$
$\bar{P}_1 - \bar{P}_2$	$n_1, n_2 > 30$	$Z = \frac{(\bar{P}_1 - \bar{P}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \dot{\sim} N(0, 1)$
	Pop. Bernoulli	γ 1

Estimação

Estimação Pontual

Um Estimador Pontual é uma qualquer função que depende unicamente dos dados. Designa-se usualmente por $T(X_1, X_2, \cdots, X_n) \equiv T_n$ o estimador pontual de θ .

Assim (genericamente) podemos dizer que qualquer estatística é um estimador pontual!

Estimador versus Estimativa

Estimador

Um estimador é uma função da amostra aleatória $(X_1, X_2, ..., X_n)$. Esta função não envolve parâmetros desconhecidos e o seu contradomínio é o espaço de estados dos parâmetros. Um estimador é uma variável aleatória.

Estimativa

Uma estimativa é o valor concreto assumido pelo estimador para uma amostra particular $(x_1, x_2, ..., x_n)$. É um número.

Em termos formais:

- Represente-se uma dada população por X.
- ▶ Digamos que esse modelo possui função de distribuição (f.d.) $F(x) = P(X \le x)$. Mais concretamente, possui f.d. dada por $F(x;\theta) = F(x|\theta)$, onde θ representa o parâmetro (ou o vector de parâmetros) do modelo.
- ▶ O objectivo consiste em estimar o parâmetro $\theta \in \Theta$ (com Θ o espaço de parâmetros).

Por exemplo:

$$X \sim N(\mu, \sigma)$$

$$\theta = (\theta_1, \theta_2) = (\mu, \sigma) \quad \text{e} \quad \Theta = \{(\mu, \sigma) : \mu \in \mathbb{R}, \sigma > 0\}.$$

$$\hat{\theta}_1 \equiv \hat{\mu} = ?$$

e/ou

$$\hat{\theta}_2 \equiv \hat{\sigma} = ?$$

Alguns Estimadores Pontuais Mais Usuais

1. Estimador da média μ

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

onde (x_1, x_2, \dots, x_n) é uma realização da amostra aleatória (X_1, X_2, \dots, X_n) .

2. Estimador da variância σ^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

ou?

$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Alguns Estimadores Pontuais Mais Usuais

3. Estimador da proporção pSeja X= "Número de sucessos do acontecimento A" tal que $X\sim B(n,p)$. Então,

$$\overline{P} = \frac{X}{n}$$

é o estimador pontual do parâmetro p, quando a dimensão da amostra (n) é conhecida.

Métodos de Estimação: Método dos momentos (Karl Pearson, 1902)

Seja θ o parâmetro (ou vector de parâmetros) desconhecido do modelo ao qual temos associada uma a.a. de dimensão n. Para este modelo considere-se:

- $F(x|\theta)$ Função de distribuição
- $f(x|\theta)$ Função densidade de probabilidade (f.d.p.) (ou f.m.p.)
 - Considerar todos os momentos populacionais (supondo que existem) até à k-ésima ordem.
 - ► Escrever os seus correspondentes momentos amostrais $(M'_r = n^{-1} \sum_{i=1}^n X_i^r, 1 \le r \le k)$
 - Obter um sistema de k equações em ordem aos k parâmetros do modelo.

Um Exemplo

E, por último,

► Resolver este sistema de equações, de onde se obtêm os k estimadores dos parâmetros do modelo.

Seja
$$(X_1, X_2, \dots, X_n)$$
 uma a.a. (i.i.d.) de $N(\mu, \sigma)$.

$$\theta = (\mu, \sigma^2) \mathbf{e} \Theta = \{(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 \in (0, \infty)\}$$
$$(\theta_1 = \mu \mathbf{e} \theta_2 = \sigma^2)$$
$$E[X] = \mu \mathbf{e} E[X^2] = \mu^2 + \sigma^2$$

$$\begin{cases} \mu = \frac{1}{n} \sum_{i=1}^{n} X_i \\ \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \end{cases} \Rightarrow \begin{cases} \hat{\mu} = \overline{X} \\ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \end{cases}$$
$$\hat{\mu} = \overline{X} \quad \hat{\sigma}^2 = \frac{n-1}{n} S^2$$

Outros Métodos de Estimação

- Método dos Momentos:
- Método dos Mínimos Quadrados (usado, por exemplo, na Regressão Linear);
- Método da Máxima Verosimilhança;
- etc...

Estimadores Pontuais: Quais?

Existindo mais do que um estimador para um dado parâmetro, como escolher o mais indicado?

O mais indicado é aquele que possui as melhores propriedades ⇒ O estudo das Propriedades dos Estimadores

Estimativas do valor esperado — Exemplo

- À medida que se aumenta a dimensão da amostra espera-se que a estimativa do valor esperado seja cada vez melhor (no sentido, de cada vez mais próxima do verdadeiro valor)
- 2. Se para a mesma dimensão da amostra se calcular a correspondente média amostral esta vai, portanto, variar de amostra para amostra mas apresentar um comportamento que é característico de uma distribuição simétrica e com com variabilidade pequena.

Propriedades dos Estimadores

- O estimador de θ deverá ser uma estatística. Ou seja, ser uma função unicamente dos dados.
- O estimador deverá ter como valor esperado o parâmetro que se pretende estimar. Neste caso, diz-se que o estimador é centrado ou não enviesado.
- 3. De entre todos os estimadores centrados de θ deverá escolher-se aquele que tiver a menor variância.

Propriedades dos Estimadores

Seja X uma população caracterizada por um parâmetro θ , $(X_1,X_2,...,X_n)$ uma amostra aleatória dessa população e $\hat{\theta}=\hat{\theta}~(X_1,X_2,...,X_n)$ um estimador de θ

- ▶ $\hat{\theta}$ diz-se centrado ou não enviesado se $E\left[\hat{\theta}\right] = \theta$. Se $\hat{\theta}$ não satisfaz a propriedade anterior diz-se não centrado ou enviesado, e chama-se viés do estimador $\hat{\theta}$ a $Vi\acute{e}s\left[\hat{\theta}\right] = E\left[\hat{\theta}\right] - \theta$.
- ▶ Se $\hat{\theta}$ e $\tilde{\theta}$ são dois estimadores centrados de θ . O estimador $\hat{\theta}$ diz-se mais eficiente do que $\tilde{\theta}$ se $Var\left[\hat{\theta}\right] < Var\left[\tilde{\theta}\right]$.

Propriedades dos Estimadores

• Um estimador $\hat{\theta}$ diz-se consistente quando, para qualquer número real $\varepsilon > 0$, se verifica:

$$\lim_{n\to\infty}P\left[\left|\hat{\theta}-\theta\right|<\varepsilon\right]=1.$$
 As condições

i)
$$\lim_{n\to\infty} E\left[\hat{\theta}\right] = \theta;$$

ii) $\lim_{n\to\infty} Var\left[\hat{\theta}\right] = 0.$

são suficientes para que $\hat{\theta}$ seja estimador consistente.

Estimação Intervalar

Na estimação pontual, pretende-se obter um valor que, com base na informação amostral, seja o melhor valor para estimar um determinado parâmetro populacional.

Na estimação intervalar constrói-se um intervalo de valores que, com um certo grau de certeza, previamente estipulado, contenha o verdadeiro valor do parâmetro.

Estimação Intervalar

Seja (X_1, X_2, \cdots, X_n) uma a.a. (i.i.d.) de uma população com f.d.p. (ou f.m.p.) $f(x|\theta)$, com $\theta \in \Theta$ parâmetro desconhecido. Se $\Theta \subset \mathbb{R}$, fala-se em *estimação intervalar*

Uma estimativa intervalar de $\theta \in \mathbb{R}$ é um qualquer par de funções (estatísticas) de $\overrightarrow{x} = (x_1, x_2, \cdots, x_n), L(x_1, x_2, \cdots, x_n)$ e $U(x_1, x_2, \cdots, x_n)$ tais que $L(\overrightarrow{x}) \leqslant U(\overrightarrow{x}), \ \forall \overrightarrow{x}$ e $I(\overrightarrow{x}) = L(\overrightarrow{x}) \leqslant \theta \leqslant U(\overrightarrow{x})$

Ao intervalo $[L(\overrightarrow{X}), U(\overrightarrow{X})]$ chama-se *estimador intervalar* de θ .

Métodos de construção do Intervalo de Confiança

Construção através da Variável Pivot

Construção do intervalo de confiança para o parâmetro θ : consiste em encontrar uma v.a. $Z(\overrightarrow{X},\theta)$ cuja distribuição seja independente de θ .

A obtenção de um intervalo de confiança a $(1-\alpha) \times 100\%$ para θ através do método da variável *pivot* consiste na obtenção da variável *pivot* $Z(\overrightarrow{X},\theta)$ e na obtenção de pontos a e b (independentes de θ) tal que

$$P(a < Z(\overrightarrow{X}, \theta) < b) \geqslant 1 - \alpha$$

e, posteriormente, na inversão destas desigualdades em ordem ao parâmetro $\theta.$

1 - α é o grau ou nível de confiança.

Intervalo de Confiança para a Média

Seja (X_1, X_2, \cdots, X_n) uma a.a. i.i.d. $N(\mu, \sigma^2)$, com σ^2 conhecida. Dado $\alpha \in (0, 1)$, pretende-se construir um intervalo de confiança a $(1 - \alpha) \times 100\%$ para μ . $\overline{X} \sim N(\mu, \frac{\sigma^2}{})$

$$Z = \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \sim N(0, 1)$$
 Z é uma variável *pivot* para μ

$$P(a < Z < b) = 1 - \alpha \Rightarrow a = -Z_{1-\frac{\alpha}{2}}$$
 e $b = Z_{1-\frac{\alpha}{2}}$

$$P(\overline{X} - Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

Intervalo de Confiança para a Média

Por outras palavras,

$$\left] \overline{X} - Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right[$$

é o intervalo de confiança a $(1 - \alpha) \times 100\%$ para μ .

Obs. Quanto maior for a confiança com que se queira estimar o intervalo, maior será a amplitude deste.

À metade da amplitude de um intervalo de confiança designa-se por margem de erro

Interpretação de Nível de Confiança

Como exemplo, considere-se um nível de confiança de 95%.

- Recolha-se uma amostra aleatória de dimensão n, estime-se a média e o desvio padrão amostrais e construa-se o respectivo intervalo de confiança para o valor médio.
- 2. Repitam-se estes passos para 100 amostras aleatórias da mesma população.

O que se pode dizer é que cerca de 95% desses intervalos contêm o valor médio μ , enquanto que os restantes 5% não contêm esse parâmetro.

Um intervalo de confiança deverá ser estimado de modo a possuir uma amplitude pequena.
Como diminuir a amplitude do intervalo?

- Ao diminuir a confiança, diminui-se a amplitude do intervalo. Pouco recomendável
- Ao aumentar a dimensão da amostra, para uma confiança fixa, diminui-se a amplitude do intervalo.

Intervalo de Confiança para a Média

Seja (X_1, X_2, \cdots, X_n) uma a.a. i.i.d. $N(\mu, \sigma^2)$, com σ^2 desconhecida. Dado $\alpha \in (0, 1)$, pretende-se construir um intervalo de confiança a $(1 - \alpha) \times 100\%$ para μ .

$$T = \sqrt{n} \frac{X - \mu}{S} \sim t(n - 1)$$

$$P(\overline{X} - t_{n-1, 1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{n-1, 1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n}}) = 1 - \alpha$$

$$\left] \overline{X} - t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right[$$

é o intervalo de confiança a $(1 - \alpha) \times 100\%$ para μ .

Se
$$n > 30$$
, $Z = \sqrt{n} \frac{\overline{X} - \mu}{S} \stackrel{\sim}{\sim} N(0, 1)$

$$\overline{X} - Z_{1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{1 - \frac{\alpha}{2}} \frac{S}{\sqrt{n}} \left[$$

é o intervalo de confiança a $(1 - \alpha) \times 100\%$ para μ .

Intervalo de Confiança para a Proporção

Seja (X_1, X_2, \cdots, X_n) uma a.a. i.i.d. Ber(p), com p parâmetro desconhecido. Dado $\alpha \in (0, 1)$, pretende-se construir um intervalo de confiança a $(1 - \alpha) \times 100\%$ para p.

$$Z = \frac{p-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\sim}{\sim} N(0,1), \quad n > 30$$

$$P\left(\overline{p} - Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}
$$\left| \overline{p} - Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}, \overline{p} + Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \right|$$$$

é o intervalo de confiança a $(1-\alpha) \times 100\%$ para p. O intervalo anterior resulta apropriado para $n\bar{p} \geqslant 10$ e $n(1-\bar{p}) \geqslant 10$.

Margem de Erro dos Intervalo de Confiança

Margem de Erro do IC para µ

- σ^2 conhecida: $Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
- σ^2 desconhecida: $t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$
- σ^2 desconhecida e n > 30: $Z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$

Margem de Erro do IC para p

$$Z_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

Margem de Erro dos Intervalo de Confiança

Questões:

- 1. Qual a dimensão da amostra a considerar de modo a que a margem de erro associada ao IC para μ (considerando σ^2 conhecida e desconhecida) seja inferior a β ?
- 2. A mesma questão mas agora para o IC para p (considerando \bar{p} conhecido e desconhecido)?

Intervalo de Confiança para a Variância

Seja (X_1, X_2, \cdots, X_n) uma a.a. i.i.d. proveniente de uma população Normal.

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{(n-1)}$$

$$P(a < \frac{(n-1)S^2}{\sigma^2} < b) = 1 - \alpha$$

Resolvendo as desigualdades em ordem ao parâmetro de interesse resulta,

$$\left] \frac{(n-1)S^2}{\chi_{n-1;1-\frac{\alpha}{2}}^2}; \frac{(n-1)S^2}{\chi_{n-1;\frac{\alpha}{2}}^2} \right[$$

é o intervalo de confiança a $(1 - \alpha) \times 100\%$ para σ^2 .

Intervalo de Confiança para a Diferença de Médias

Considere-se duas amostras de dimensões n_1 e n_2 de duas populações independentes X_1 e X_2 com valores médios μ_1 e μ_2 e variâncias σ_1^2 e σ_2^2 .

Admitamos que as duas populações são normais e que σ_1^2 e σ_2^2 são conhecidas.

$$\left] \overline{X_1} - \overline{X_2} - Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; \overline{X_1} - \overline{X_2} + Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right[$$

é o intervalo de confiança a $(1-\alpha) \times 100\%$ para $\mu_1-\mu_2$ com σ_1^2 e σ_2^2 são conhecidas.

Intervalo de Confiança para a Diferença de Médias

Considere-se duas amostras de dimensões n_1 e n_2 de duas populações independentes X_1 e X_2 com valores médios μ_1 e μ_2 e variâncias σ_1^2 e σ_2^2 .

Admitamos que as duas populações são normais e que σ_1^2 e σ_2^2 são desconhecidas, mas $\sigma_1^2 = \sigma_2^2$.

$$\left] \overline{X_1} - \overline{X_2} - t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^*; \overline{X_1} - \overline{X_2} + t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^* \right[$$

com

$$S^* = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

é o intervalo de confiança a $(1 - \alpha) \times 100\%$ para $\mu_1 - \mu_2$ com σ_1^2 e σ_2^2 são desconhecidas.

Intervalo de Confiança para a Diferença de Médias

Considere-se duas amostras de dimensões n_1 e n_2 de duas populações independentes X_1 e X_2 com valores médios μ_1 e μ_2 e variâncias σ_1^2 e σ_2^2 .

que σ_1^2 e σ_2^2 são desconhecidas, mas $\sigma_1^2=\sigma_2^2$ e $n_1>30$ e $n_2>30$

$$\left] \overline{X_1} - \overline{X_2} - Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}; \overline{X_1} - \overline{X_2} + Z_{1 - \frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right[$$

é o intervalo de confiança a $(1-\alpha) \times 100\%$ para $\mu_1-\mu_2$ com σ_1^2 e σ_2^2 são desconhecidas.

Intervalo de Confiança para a Diferença de Proporções

Considere-se duas amostras de dimensões n_1 e n_2 de duas populações Bernoulli independentes X_1 e X_2 , com p_1 e p_2 as probabilidades de sucesso associadas às populações X_1 e X_2 , respectivamente.

Admitamos que $n_1 > 30$ e $n_2 > 30$.

$$\left] \overline{p_1} - \overline{p_2} - Z_{1 - \frac{\alpha}{2}} P^*; \overline{p_1} - \overline{p_2} + Z_{1 - \frac{\alpha}{2}} P^* \right[$$

com

$$P^*\sqrt{\frac{\overline{p_1}(1-\overline{p_1})}{n_1}+\frac{\overline{p_2}(1-\overline{p_2})}{n_2}}$$

é o intervalo de confiança a $(1 - \alpha) \times 100\%$ para $p_1 - p_2$.

Intervalo de Confiança para a Diferença de Variâncias

Considere-se duas amostras de dimensões n_1 e n_2 de duas populações normais independentes X_1 e X_2 , com σ_1^2 e σ_2^2 as variâncias populacionais (desconhecidas).

$$\left] \frac{1}{F_{n_1-1,n_2-1;1-\frac{\alpha}{2}}} \frac{S_1^2}{S_2^2}; \frac{1}{F_{n_1-1,n_2-1;\frac{\alpha}{2}}} \frac{S_1^2}{S_2^2} \right[$$

é o intervalo de confiança a $(1-\alpha)\times 100\%$ para $\frac{\sigma_1^2}{\sigma_2^2}.$