1.º Teste de Complementos de Análise Matemática Versão A

Mestrado Integrado em Engenharia de Materiais, Têxtil, Telecomunicações e Informática 24 de Outubro de 2016

Duração: 1h30

- 1. Considere a equação diferencial ordinária $\frac{dy}{dx} + 2xy^2 = 0$.
 - (a) Classifique a equação diferencial dada quanto à ordem e linearidade, e indique a variável independente.
 - (b) Mostre que $y=\frac{1}{x^2-1}$ é uma solução explícita da equação diferencial em I=]-1,1[mas não o é em qualquer outro intervalo mais amplo contendo I.

Solução: Equação diferencial de 1.ª ordem, não linear, e a variável independente é x. Em] $-1,1[,y=\frac{1}{x^2-1}$ e a sua derivada $y'=\frac{-2x}{(x^2-1)^2}$ estão definidas.

Substituindo na equação diferencial obtêm-se a identidade,

$$\frac{-2x}{(x^2-1)^2} + 2x\left(\frac{1}{x^2-1}\right)^2 = 0 \Leftrightarrow 0 = 0.$$

Assim, $y = \frac{1}{x^2-1}$ é uma solução explícita da equação diferencial em I =]-1,1[.

Mas $y = \frac{1}{x^2 - 1}$ não está definida em $x = \pm 1$, portanto, não pode ser solução em qualquer intervalo que contenha um desses dois pontos.

- 2. Considere a equação diferencial $3x^2ydx + (2x^3 + 4y^2)dy = 0$.
 - (a) Mostre que a equação diferencial dada não é exacta, mas que admite y como um factor integrante. Solução: $\frac{\partial (3x^2y)}{\partial y} = 3x^2$ e $\frac{\partial (2x^3+4y^2)}{\partial x} = 6x^2$, portanto como $\frac{\partial (3x^2y)}{\partial y} \neq \frac{\partial (2x^3+4y^2)}{\partial x}$ a equação diferencial não é exacta. Multiplicando a equação diferencial por y obtemos:

$$3x^2y^2dx + (2x^3y + 4y^3)dy = 0$$

Assim temos $\frac{\partial(3x^2y^2)}{\partial y}=6x^2y=\frac{\partial(2x^3y+4y^3)}{\partial x}$ e portanto esta última equação diferencial é exacta. Dizemos então que y é um factor integrante da equação diferencial dada.

(b) Determine uma família de soluções da equação diferencial exacta que se obtém multiplicando ambos os membros da equação dada por y. Solução: $x^3y^2 + y^4 + c_1 = c_2 \Leftrightarrow x^3y^2 + y^4 = c$, onde $c = c_2 - c_1$ é uma constante arbitrária.

1

- 3. Considere a equação diferencial $y' = \frac{(x-y)y}{x^2}$
 - (a) Mostre que a equação diferencial dada é homogénea.

Solução:
$$\frac{dy}{dx} = \frac{xy - y^2}{x^2} \Leftrightarrow \frac{dy}{dx} = \frac{y}{x} - \left(\frac{y}{x}\right)^2$$
. Pelo que fazendo $t = \frac{y}{x}$ tem-se

Pelo que fazendo
$$t = \frac{y}{x}$$
 tem-se

$$\frac{dy}{dx} = g(t)$$
, com $g(t) = t - t^2$

 $\frac{dy}{dx}=g(t),$ com $g(t)=t-t^2$ Logo a equação diferencial dada é homogénea de primeira ordem.

(b) Determine uma família de soluções da equação diferencial. Solução: A família de soluções da equação diferencial dada é:

$$\ln|x| - \frac{x}{y} = c(\Leftrightarrow |x| e^{-\frac{x}{y}} = e^c),$$

4. Determine a solução do problema de valor inicial,

$$\frac{dy}{dx} - \frac{3}{x}y = x^3, \ y(1) = 4.$$

Solução: Trata-se de uma equação diferencial linear com

$$P(x) = -\frac{3}{x}, \quad Q(x) = x^3.$$

O factor integrante a usar é

$$\mu(x) = e^{\int P(x)dx} = e^{\int -\frac{3}{x}dx} = e^{-3\ln|x|} = e^{\ln|x|^{-3}} = |x|^{-3},$$

cuja a forma final depende do sinal de x. Dado que se trata de um factor integrante podemos usar $\mu(x) = x^{-3}$.

Assim uma família de soluções é dada por:

$$y = x^3 \left[\int x^{-3} x^3 dx + c \right]$$

$$\Leftrightarrow y = x^3 [x + c]$$

$$\Leftrightarrow y = x^4 + cx^3.$$

Aplicando a condição inicial
$$y(1) = 4$$
 temos $4 = 1 + c \Leftrightarrow c = 3$.
Logo, a solução do problema de valor inicial é:

$$y = x^4 + 3x^3$$
.

5. Mostre que as funções $\ln(1+x)$ e $\ln(x+1)^5$ são ambas soluções da equação diferencial $y'' + \frac{1}{x+1}y' = 0$.

Diga, justificando, se $y = c_1 \ln(1+x) + c_2 \ln(x+1)^5$, onde c_1 e c_2 são constantes arbitrárias, é ou não a solução geral.

Solução: $\ln(1+x)$ e $\ln(x+1)^5$ são linearmente dependentes, logo y= $c_1 \ln(1+x) + c_2 \ln(x+1)^5$ não é solução geral.

Questão	1.(a)	1.(b)	2.(a)	2.(b)	3.(a)	3.(b)	4	5
Cotação	1	2	2	3.5	1	3.5	4	3