CONCOURS CENTRALE SUPELEC 2023 MATHÉMATIQUES 2 - PC

Pierre-Paul TACHER

This document is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. 6 9 9

1.

Le rayon de convergence est R=1 et

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} = \frac{1}{1-x}$$

2.

On sait que la somme précédente est de classe C^{∞} sur]-1,1[, et

$$\forall x \in]-1,1[, \quad f'(x) = \sum_{n=0}^{+\infty} (x^n)'$$

$$= \sum_{n=0}^{+\infty} nx^{n-1}$$

$$= \sum_{n=1}^{+\infty} nx^{n-1}$$

Donc le rayon de $\sum_{n\geqslant 0} nx^n$ vérifie $R\geqslant 1$ et

$$\forall x \in]-1,1[, \quad \sum_{n=1}^{+\infty} nx^n = x \sum_{n=1}^{+\infty} nx^{n-1} \\ = xf'(x) \\ = \frac{x}{(1-x)^2}$$

D'autre part,

$$\forall n \in \mathbb{N}, \quad n |x|^n \geqslant |x|^n \geqslant 0 \Rightarrow R \leqslant 1$$

Donc R = 1.

On réitère; on sait que la f est de classe C^k sur]-1,1[, et

$$\forall x \in]-1, 1[, \quad f^{(k)}(x) = \sum_{n=0}^{+\infty} (x^n)^{(k)}$$

$$= \sum_{n=k}^{+\infty} n(n-1) \dots (n-k+1) x^{n-k}$$

$$= \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} x^{n-k}$$

$$= k! \sum_{n=k}^{+\infty} \binom{n}{k} x^{n-k}$$

$$= k! \sum_{n=0}^{+\infty} \binom{n}{k} x^{n-k} \qquad (n < k \Rightarrow \binom{n}{k} = 0)$$

Par le même raisonnement que la question précédente, on déduit que le rayon de convergence de $\sum_{n\geqslant 0} \binom{n}{k} x^n$ est 1 et

$$\forall x \in]-1,1[, \quad \sum_{n=0}^{+\infty} \binom{n}{k} x^n = \frac{x^k}{k!} f^{(k)}(x)$$
$$= \frac{x^k}{k!} \frac{(k!)}{(1-x)^{k+1}}$$
$$= \frac{x^k}{(1-x)^{k+1}}$$

4.

Soit $k \in \mathbb{N}$, fixé. Soit $x \in \mathbb{R}^*$. On a $0 \le n^k |x|^n \sim \underbrace{n(n-1)\dots(n-(k-1))}_{k \text{ factors}} |x|^n = \frac{n!}{k!} |x|^n$, ce qui montre que le rayon de convergence de la série qui définit f_k est le même que celui de la série

qui montre que le rayon de convergence de la serie qui definit f_k est le meme que cerui $\sum_{n\geqslant 0} \binom{n}{k} x^n$, soit R=1; la fonction f_k est bien définie sur]-1,1[.

5.

On voit que $\deg(H_j) = j$. (H_0, H_1, \dots, H_k) est une famille de $k+1 = \dim(\mathbb{R}_k[X])$ polynômes de degrés échelonnés, il s'agit donc d'une base de $\mathbb{R}_k[X]$. Par définition d'une base,

$$\exists! (\alpha_{k,0}, \dots, \alpha_{k,k}) \in \mathbb{R}^{k+1}, \quad X^k = \sum_{j=0}^k \alpha_{k,j} H_j$$
 ①

6.

On remarque que

$$\forall j \in [1, k], \quad H_j(0) = 0$$

donc

$$\forall k \in \mathbb{N}, \quad (X^k)(0) = \begin{cases} 1 & \text{si k} = 0 \\ 0 & \text{si k} > 0 \end{cases}$$
$$= \delta_{k,0}$$
$$= \alpha_{k,0} H_0(0)$$
$$= \alpha_{k,0}$$

D'autre part, le coefficient de X^k dans H_k est $\frac{1}{k!}$, par identification on a donc:

$$\forall k \in \mathbb{N}, \quad \alpha_{k,k} \frac{1}{k!} = 1$$

$$\Leftrightarrow \qquad \alpha_{k,k} = k!$$

7.

Soit $j \in \mathbb{N}$, fixé. On remarque que:

$$\forall i \geqslant j+1, \quad H_i(j)=0$$

 et

$$\forall i \in [0, j], \quad H_i(j) = \frac{1}{i!} j(j-1) \dots (j-i+1)$$
$$= \frac{1}{i!} \frac{j!}{(j-i)!}$$
$$= {j \choose i}$$

On peut unifier les deux cas:

$$\forall (i,j) \in \mathbb{N}^2, \quad H_i(j) = \begin{pmatrix} j \\ i \end{pmatrix}$$

On évalue l'égalité ① en $j \in [\![1,k]\!]:$

$$j^{k} = \sum_{i=0}^{k} \alpha_{k,i} H_{i}(j)$$

$$= \sum_{i=0}^{j} \alpha_{k,i} H_{i}(j)$$

$$= \sum_{i=0}^{j} \alpha_{k,i} {j \choose i}$$

$$= \sum_{i=0}^{j-1} \alpha_{k,i} {j \choose i} + \alpha_{k,j}$$

ce qui est bien l'égalité demandée.

```
import numpy as np
from math import factorial
def binom(n,k):
        if k>n:
                return 0
        else:
                return factorial(n)/(factorial(k)*factorial(n-k))
def alpha(k,j):
        res = np.zeros(j+1, dtype=int)
        if k == 0:
                res[0] = 1
        for i in range(1,j+1):
                sum = 0;
                for l in range(i):
                        sum += binom(i,1)*res[1]
                res[i] = i**k-sum
        return res[j]
```

9.

On évalue la relation ① en $n \in \mathbb{N}$:

$$n^{k} = \sum_{j=0}^{k} \alpha_{k,j} H_{j}(n)$$
$$= \sum_{j=0}^{k} \alpha_{k,j} H_{j}(n)$$
$$= \sum_{j=0}^{k} \alpha_{k,j} \binom{n}{j}$$

Donc,

$$\forall x \in]-1,1[, \quad f_k(x) = \sum_{n=0}^{+\infty} n^k x^n$$

$$= \sum_{n=0}^{+\infty} (\sum_{j=0}^k \alpha_{k,j} \binom{n}{j}) x^n$$

$$= \sum_{j=0}^k \alpha_{k,j} (\sum_{n=0}^{+\infty} \binom{n}{j} x^n)$$

$$= \sum_{j=0}^k \alpha_{k,j} \frac{x^j}{(1-x)^{j+1}}$$

$$= \sum_{j=0}^k \alpha_{k,j} \frac{x^j (1-x)^{k-j}}{(1-x)^{k+1}}$$

$$f_k(x) = \frac{\sum_{j=0}^k \alpha_{k,j} x^j (1-x)^{k-j}}{(1-x)^{k+1}}$$

$$f_k(x) = \frac{P_k(x)}{(1-x)^{k+1}}$$
 ②

ce qui montre l'existence du polynôme P_k . Soit maintenant Q_k un polynôme tel que

$$\forall x \in]-1,1[, f_k(x) = \frac{Q_k(x)}{(1-x)^{k+1}}$$

alors:

$$\forall x \in]-1, 1[, \quad Q_k(x) = f_k(x)(1-x)^{k+1}$$

$$\Leftrightarrow \quad \forall x \in]-1, 1[, \quad Q_k(x) = P_k(x)$$

$$\Leftrightarrow \forall x \in]-1, 1[, \quad Q_k(x) - P_k(x) = 0$$

ce qui montre que le polynôme $Q_k - P_k$ a une infinité de racines, donc $Q_k = P_k$ et l'unicité est prouvée.

10.

Soit $l \in [0, k]$. Le coefficient de X^l dans le polynôme $X^j(1-X)^{k-j}$ est:

$$a_{l,j,k} = \begin{cases} 0 & \text{si } l < j \\ (-1)^{l-j} {k-j \choose l-j} & \text{si } l \geqslant j \end{cases}$$
$$= \begin{cases} 0 & \text{si } l < j \\ (-1)^{l-j} {k-j \choose k-l} & \text{si } l \geqslant j \end{cases}$$

On en déduis que le coefficient de X^l dans $P_k = \sum_{j=0}^k \alpha_{kj} X^j (1-X)^{k-j}$ est

$$\beta_{l,k} = \sum_{j=0}^{k} \alpha_{kj} a_{l,j,k}$$

$$= \sum_{j=0}^{l} \alpha_{kj} a_{l,j,k}$$

$$= \sum_{j=0}^{l} \alpha_{kj} (-1)^{l-j} \binom{k-j}{k-l}$$

Il n'est pas adéquat de réutiliser la fonction alpha telle quelle, puisque celle ci calcule tous les α_{ki} . $i \leq j$ pour calculer le coefficient α_{kj} . Il est préferable de la modifier pour qu'elle renvoie la liste de tout les α_{ki} . $i \leq j$. La fonction beta renvoie la liste des coefficients de P_k dans la base canonique de $\mathbb{R}[X]$:

```
def alpha(k, j):
        res = np.zeros(j+1, dtype=int)
        if k == 0:
                res[0] = 1
        for i in range(1,j+1):
                sum = 0;
                for 1 in range(i):
                         sum += binom(i,1)*res[1]
                res[i] = i**k-sum
        return res
def beta(k):
        res = np.zeros(k+1, dtype=int)
        a = alpha(k,k)
        for i in range(k+1):
                sum = 0
                eps = (-1)**i
                for j in range(i+1):
                         sum += eps*a[j]*binom(k-j,k-i)
                         eps *= -1
                res[i] = sum
        return res
```

On remarque d'abord que $xf_k' = f_{k+1}$, puis on dérive la relation 2:

$$\forall x \in]-1,1[, \quad f_k(x) = \frac{P_k(x)}{(1-x)^{k+1}}$$

$$\Rightarrow \quad \forall x \in]-1,1[, \quad f'_k(x) = \frac{P'_k(x)(1-x)^{k+1} + (k+1)P_k(x)(1-x)^k}{((1-x)^{k+1})^2}$$

$$\Leftrightarrow \quad \forall x \in]-1,1[, \quad f'_k(x) = \frac{P'_k(x)(1-x) + (k+1)P_k(x)}{(1-x)^{k+2}}$$

$$\Rightarrow \quad \forall x \in]-1,1[, \quad xf'_k(x) = \frac{xP'_k(x)(1-x) + (k+1)xP_k(x)}{(1-x)^{k+2}}$$

$$\Leftrightarrow \quad \forall x \in]-1,1[, \quad f_{k+1}(x) = \frac{xP'_k(x)(1-x) + (k+1)xP_k(x)}{(1-x)^{k+2}}$$

$$\Leftrightarrow \forall x \in]-1,1[, \quad \frac{P_{k+1}(x)}{(1-x)^{k+2}} = \frac{xP'_k(x)(1-x) + (k+1)xP_k(x)}{(1-x)^{k+2}}$$

$$\Leftrightarrow \quad \forall x \in]-1,1[, \quad P_{k+1}(x) = xP'_k(x)(1-x) + (k+1)xP_k(x)$$

$$\Leftrightarrow \quad \forall x \in]-1,1[, \quad P_{k+1}(x) = xP'_k(x)(1-x) + (k+1)xP_k(x)$$

$$\Leftrightarrow \quad \forall x \in]-1,1[, \quad P_{k+1}(x) = xP'_k(x)(1-x) + (k+1)xP_k(x)$$

$$\Leftrightarrow \quad \forall x \in]-1,1[, \quad P_{k+1}(x) = xP'_k(x)(1-x) + (k+1)xP_k(x)$$

la dernière équivalence provenant encore du fait que deux polynômes coincidant sur un ensemble infini sont égaux.

Comme $f_0(x) = \frac{1}{1-x}$, on a $P_0 = 1$. Puis,

$$P_1 = 0 + XP_0$$
$$= X$$

$$P_2 = X(1 - X) + 2X^2$$
$$= X^2 + X$$

$$P_3 = X(1 - X)(2X + 1) + 3X(X^2 + X)$$

= $X^3 + 4X^2 + X$

On peut vérifier avec le programme python:

>>> beta(2)

array([0, 1, 1])

>>> beta(3)

array([0, 1, 4, 1])

13.

On montre par récurrence que

$$\forall k \in \mathbb{N}, \quad \deg(P_k) = k$$

et

$$\forall k \in \mathbb{N}, \quad \text{dom}(P_k) = 1$$

Vrai pour $P_0 = 1$. Supposons la propriété vérifiée pour $k \in \mathbb{N}$.

$$P_{k+1} = X(1-X)P'_k + (k+1)XP_k$$

montre que $\deg(P_{k+1}) \leq k+1$, et le coefficient de X^{k+1} vaut $-k \operatorname{dom}(P_k) + (k+1) \operatorname{dom}(P_k) = 1$.

14.

Soit $x \in [0, 1[$.

$$P_{k}(\frac{1}{x}) = \sum_{j=0}^{k} \alpha_{kj} \frac{1}{x^{j}} (1 - \frac{1}{x})^{k-j}$$

$$= \sum_{j=0}^{k} \alpha_{kj} \frac{1}{x^{j}} (\frac{x-1}{x})^{k-j}$$

$$= \sum_{j=0}^{k} \alpha_{kj} \frac{1}{x^{j}} \frac{(x-1)^{k-j}}{x^{k-j}}$$

$$= \sum_{j=0}^{k} \alpha_{kj} \frac{(x-1)^{k-j}}{x^{k}}$$

8

donc

$$x^{k+1}P_k(\frac{1}{x}) = \sum_{j=0}^k \alpha_{kj}x(x-1)^{k-j}$$
$$= \sum_{j=0}^k \alpha_{kj}(\sum_{l=0}^{k-j} {k-j \choose l} (-1)x^{l+1})$$

15.

On identifie le coefficient de X^j dnas l'égalité polynomiale qui précède:

$$\beta_{j,k} = \beta k + 1 - j, k$$

valable $\forall j \in [0, k]$ si on prend naturellement $\beta_{k+1,k} = 0$.

16.

On a

$$0 \leqslant \frac{\binom{2(n+1)}{n+1}}{\binom{2n}{n}} = \frac{(2n+2)(2n+1)}{(n+1)^2} \underset{n \to +\infty}{\sim} 4$$

ce qui montre que $R = \frac{1}{4}$. On sait que la fonction $\frac{1}{\sqrt{1-4x}}$ est développable en série entière sur $]-\frac{1}{4},\frac{1}{4}[$ et que le coefficient de x^n est:

$$a_{n} = 4^{n}(-1)^{n} \frac{1}{n!} \underbrace{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right) \dots \left(-\frac{1}{2}-n+1\right)}_{n \text{ facteurs}}$$

$$= 4^{n}(-1)^{n} \frac{1}{n!} \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \dots \left(-\frac{2n-1}{2}\right)$$

$$= 4^{n}(-1)^{n} \frac{1}{n!} \left(-1\right)^{n} \frac{(2n-1)(2n-3)\dots 2\times 1}{2^{n}}$$

$$= 4^{n} \frac{1}{n!} \underbrace{\frac{(2n)!}{2n(2n-2)\dots 4\times 2\times 2^{n}}}_{n \text{ facteurs}}$$

$$= 4^{n} \frac{1}{n!} \frac{(2n)!}{2^{n}n! \times 2^{n}}$$

$$= \frac{(2n)!}{n!^{2}}$$

$$= \binom{2n}{n}$$

On a donc bien

$$\forall x \in]-\frac{1}{4}, \frac{1}{4}[, \quad \sum_{n=0}^{+\infty} {2n \choose n} x^n = \frac{1}{\sqrt{1-4x}}]$$

References

[1] Gourdon, Xavier: Algèbre, 2è édition, Ellipses (2009)