Lecture 13:

Limit theorems

Assume we have i.i.d. X_1, X_2, \ldots with finite mean μ and finite variance σ^2 . Let

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

be the sample mean (of X_1 through X_n) - it itself is a r.v. with mean μ :

$$E(\overline{X}_n) = \frac{1}{n}E(X_1 + \dots + X_n) = \frac{1}{n}(E(X_1) + \dots + E(X_n)) = \mu$$

and variance σ^2/n :

$$\operatorname{Var}(\overline{X}_n) = \frac{1}{n^2} \operatorname{Var}(X_1 + \ldots + X_n) = \frac{1}{n^2} \left(\operatorname{Var}(X_1) + \ldots + \operatorname{Var}(X_n) \right) = \frac{\sigma^2}{n}$$

The **law of large numbers (LLN)** says that as n grows, the sample mean \overline{X}_n converges to the true mean μ . LLN has two versions – "weak" and "strong".

Theorem 10.2.1 (Strong LLN). The sample mean \overline{X}_n converges to the true mean μ pointwise, with probability 1. Recall that r.v.s are functions from the sample space S to \mathbb{R} – **pointwise convergence** says that $\overline{X}_n \to \mu$ for each point $s \in S$, except maybe some set B_0 of points, as long as $P(B_0) = 0$. In short, $P(\overline{X}_n \to \mu) = 1$.

Theorem 10.2.2 (Weak LLN). For all $\varepsilon > 0$, $P(|\overline{X}_n - \mu| > \varepsilon) \to 0$, as $n \to \infty$. (This is called *convergence in probability*).

Proof: Fix $\varepsilon > 0$. By Chebyshev's ineq., $P(|\overline{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$. As $n \to \infty$, the r.h.s goes to), and so must the l.h.s.

LLN is essential for simulations, statistics and science in general – when generating data by replicating an experiment and averaging the result to approximate the theoretical average, we appeal to LLN.

Example 10.2.3 (Running proportion of Heads). Let X_1, X_2, \ldots be i.i.d. Bern(1/2) (coin tosses). \overline{X}_n – the proportion of Heads after n tosses, by SLLN, the sequence $\overline{X}_1, \overline{X}_2, \ldots$ will converge to 1/2.

Outomes like HHHH... or HHTHHT... are possible, but collectively have zero probability of occurring. The WLLN says that $\forall \varepsilon > 0$, $P(|\overline{X}_n - 1/2| > \varepsilon)$ can be made as small as we like as n grows

LLN does not contradict the memoryless-ness of the coin: the fact that the proportion of Heads converges to 1/2 does *not* imply that after a long string of Heads the coin is "due" for a Tails to balance things – convergence happens by past tosses being swamped away by infinitely many tosses yet to come.

Example 10.2.5 (Monte Carlo integration). Let f be some

complicated function whose integral $\int_{a}^{b} f(x) dx$ we'd like to

approximate. Assume $0 \le f(x) \le c$, so we know the integral is finite.

By randomly (uniformly) generating points from the rectangle $a \le x \le b$, $0 \le y \le c$, area under y = f(x) (the integral's value) can be approximated by $c \cdot (b - a) \cdot p$, where p is the fraction of points under y = f(x)

Assume we have i.i.d. X_1, X_2, \ldots with finite mean μ and finite variance σ^2 . LLN says that as $n \to \infty$, \overline{X}_n converges to μ with probability 1. But what is the distribution?

Theorem 10.3.1 (Central limit theorem). As $n \to \infty$,

$$\sqrt{n} \left(\frac{\overline{X}_n - \mu}{\sigma} \right) \to \mathcal{N}(0,1)$$
 in distribution.

That means that the CDF of the l.h.s converges to Φ , the CDF of the standard Normal distribution.

Proof: Let $M(t) = E(e^{tX_j})$ – be the moment generating function (MGF) of X_j . Assume $\mu = 0$, $\sigma^2 = 1$. (We would standardise \overline{X}_n for the theorem anyway, so we might as well standardise X_j).

Then
$$M(0) = 1$$
, $M'(0) = \mu = 0$ and $M''(0) = \sigma^2 = 1$.

We wish to show that the MGF of $\sqrt{n}\overline{X}_n=(X_1+\ldots+X_n)/\sqrt{n}$ converges to the MGF of the $\mathcal{N}(0,1)$, which is $e^{t^2/2}$. (This is because convergence of MGFs implies convergence of distributions)

So
$$E(e^{t(X_1 + ... + X_n)/\sqrt{n}}) = E(e^{tX_1/\sqrt{n}}) E(e^{tX_2/\sqrt{n}})...E(e^{tX_n/\sqrt{n}}) = \left(M(t/\sqrt{n})\right)^n$$
.

Proof:
$$E(e^{t(X_1 + \dots + X_n)/\sqrt{n}}) = \left(M(t/\sqrt{n})\right)^n$$
 - as $n \to \infty$, this is

indeterminate of form 1^{∞} , so let's look at the logarithm (and then exponentiate):

$$\lim_{n\to\infty} n \log M\left(\frac{t}{\sqrt{n}}\right) = \lim_{y\to 0} \frac{\log M(yt)}{y^2} \quad \text{where } y = 1/\sqrt{n}$$

$$= \lim_{y\to 0} \frac{t M'(yt)}{2y M(yt)} \quad \text{by L'Hôpital's rule}$$

$$= \frac{t}{2} \lim_{y\to 0} \frac{M'(yt)}{y} \quad \text{since } M(yt) \to 1$$

$$= \frac{t^2}{2} \lim_{y\to 0} M''(yt) \quad \text{by L'Hôpital's rule}$$

= $t^2/2$. So the MGF of $\sqrt{n}\overline{X}_n$ approaches $e^{t^2/2}$, the $\mathcal{N}(0,1)$ MGF.

CLT gives an *approximation* for the distr. of \overline{X}_n for n large, but finite: **Approximation 10.3.2** (CLT approximation). For large n, the distribution of $\overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$ – is approximately normal. Note that the distribution of X_j can be any! – as long as the mean and variance are finite, and yet large-sample average would be approximately normally distributed!

Example 10.3.3 (Running proportion of Heads). Again X_1, X_2, \ldots i.i.d. Bern(1/2). LLN says $\overline{X}_n \to 1/2$ as $n \to \infty$. Now we can say more: $\overline{X}_n \stackrel{.}{\sim} \mathcal{N}\left(\frac{1}{2},\frac{1}{4n}\right)$. For example, when n=100, SD(\overline{X}_n) = 1/20 = 0.05, so the 68-95-99.7 rule says there's a 95% chance that \overline{X}_n is in the interval [0.4,0.6].

Equivalently, $W_n = X_1 + \ldots + X_n = n\overline{X}_n$ is also approximately Normally distributed: $W_n \sim \mathcal{N}(n\mu, n\sigma^2)$.

Example 10.3.4 (Poisson). Let $Y \sim \text{Pois}(n)$. We can consider Y to be a sum of n i.i.d. Pois(1) r.v.s. So, for large n:

$$Y \sim \mathcal{N}(n,n)$$

Example 10.3.5 (Gamma). Let $Y \sim \text{Gamma}(n, \lambda)$. We can consider Y to be a sum of n i.i.d. $\text{Expo}(\lambda)$ r.v.s. So, for large n,

$$Y \sim \mathcal{N}(n/\lambda, n/\lambda^2)$$

Example 10.3.6 (Binomial). Let $Y \sim \text{Bin}(n, p)$. We can consider Y to be a sum of n i.i.d. Bern(p) r.v.s. So, for large n,

$$Y \sim \mathcal{N}(np, np(1-p))$$

The latter is very widely used in Statistics!

These are two continuous distributions closely related to the Normal

Definition 10.4.1 (Chi-Square) Let $V=Z_1^2+\ldots+Z_n^2$ where Z_i are all i.i.d. $\mathcal{N}(0,1)$. Then V is said to have the Chi-Square distribution with n degrees of freedom, written as $V\sim\chi_n^2$.

Actually, χ_n^2 is a special case of the Gamma:

Theorem 10.4.2 The χ_n^2 distribution is the Gamma($\frac{n}{2}, \frac{1}{2}$) distribution

Proof follows from the PDF of $Z_i^2 \sim \chi_1^2$ being the PDF of Gamma $(\frac{1}{2},\frac{1}{2})$, and so $V=Z_1^2+\ldots+Z_n^2$ – sum of n independent Gamma $(\frac{1}{2},\frac{1}{2})$ r.v.s – is $V\sim \text{Gamma}(\frac{n}{2},\frac{1}{2})$.

Expectation of Chi-Square is $E(V) = nE(Z_1^2) = n$ and variance:

$$Var(V) = nVar(Z_1^2) = n\left(E(Z_1^4) - (EZ_1^2)^2\right) = n(3-1) = 2n.$$

Chi-Square is important in Statistics because it's related to **sample variance** – used to estimate the true variance of a distribution:

Example 10.4.3 (Distribution of sample variance). For i.i.d.

 $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$, the sample variance is the r.v.

$$S_n^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X}_n)^2$$

which is $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$ - distributed.

The Student-t is defined in terms of standard Normal and χ_n^2 :

Definition 10.4.4 (Student-
$$t$$
). Let $T = \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$,

 $V \sim \chi_n^2$ and Z is independent of V. Then T is said to have the Student-t distribution with n degrees of freedom, written $T \sim t_n$.

This distribution was introduced in 1908 by William Gosset, a Master Brewer at Guinness, working on quality control of beer. He was required to publish this work under a pseudonym.

The *t* distribution forms the basis of hypothesis testing, *t-tests*, extremely widely used in practice.

The PDF of the Student-t with n d.o.f. looks like standard Normal, except with heavier tails:

$$f_T(t) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi} \Gamma(n/2)} \left(1 + t^2/n\right)^{-(n+1)/2}$$

Here's how it looks for different n (smaller n – heavier tails):

Theorem 10.4.5 (Student-t properties). The Student-t distribution t_n has the following properties:

- 1. Symmetry: If $T \sim t_n$, then $-T \sim t_n$ as well.
- 2. Cauchy as special case: The t_1 distribution is the same as the Cauchy distribution!
- 3. Convergence to Normal: as $n\to\infty$, the t_n distribution converges to the standard Normal $\mathcal{N}(0,1)$