21 March 2019

7.4 Homework: Binomial distribution

1a. The following table shows the probability distribution of a discrete random variable *X* .

x	0	2	5	9
P(X = x)	0.3	\boldsymbol{k}	2k	0.1

Find the value of k.

[3 marks]

1b. Find E(X).

[3 marks]

2. The random variable X has the following probability distribution.

х	1	2	3
P(X = x)	S	0.3	q

Given that $\mathrm{E}(X) = 1.7$, find q.

[6 marks]

3a. The following diagram shows a board which is divided into three regions \emph{A} , \emph{B} and \emph{C} .

A game consists of a contestant throwing one dart at the board. The probability of hitting each region is given in the following table.

Region	A	В	С
Probability	<u>5</u> 20	$\frac{4}{20}$	1/20

Find the probability that the dart does **not** hit the board.

[3 marks]

3b. The contestant scores points as shown in the following table.

Region	A	В	С	Does not hit the board
Points	0	q	10	-3

Given that the game is fair, find the value of q.

[4 marks]

4a. In a large university, the probability that a student is left handed is 0.08. A sample of 150 students is randomly selected from the university. Let k be the expected number of left-handed students in this sample.

Find k. [2 marks]

- **4b.** Hence, find the probability that exactly k students are left handed; [2 marks]
- **4c.** Hence, find the probability that fewer than k students are left handed. [2 marks]
- **5a.** A box holds 240 eggs. The probability that an egg is brown is 0.05.

Find the expected number of brown eggs in the box. [2 marks]

- **5b.** Find the probability that there are 15 brown eggs in the box. [2 marks]
- **5c.** Find the probability that there are at least 10 brown eggs in the box. [3 marks]
- **6a.** The probability of obtaining "tails" when a biased coin is tossed is 0.57. The coin is tossed ten times. Find the probability of obtaining **at least** four tails. [4 marks]
- **6b.** The probability of obtaining "tails" when a biased coin is tossed is 0.57. The coin is tossed ten times. Find the probability of obtaining the fourth tail on the tenth toss. [3 marks]
- **7a.** A factory makes lamps. The probability that a lamp is defective is 0.05. A random sample of 30 lamps is tested.

Find the probability that there is at least one defective lamp in the sample. [4 marks]

7b. A factory makes lamps. The probability that a lamp is defective is 0.05. A random sample of 30 lamps is tested.

Given that there is at least one defective lamp in the sample, find the probability that there are at most two defective lamps.

[4 marks]

$$m{r}_1=egin{pmatrix}2\\3\\-1\end{pmatrix}+segin{pmatrix}5\\-3\\2\end{pmatrix}$$
 and $m{r}_2=egin{pmatrix}9\\2\\2\end{pmatrix}+tegin{pmatrix}-3\\5\\-1\end{pmatrix}$ intersect at the point P. Find the coordinates of P.

9a. Consider the points A (1, 5, 4), B (3, 1, 2) and D (3, k, 2), with (AD) perpendicular to (AB).

Find

- (i) \overrightarrow{AB} ;
- (ii) \overrightarrow{AD} giving your answer in terms of k .

[3 marks]

9b. Show that k=7.

[3 marks]

9c. The point 0 has coordinates (0, 0, 0), point A has coordinates (1, -2, 3) and point B has coordinates (-3, 4, 2).

The point C is such that $\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AD}$

Find the position vector of C.

[4 marks]

9d. Find $\cos \widehat{ABC}$.

[3 marks]

10a. Let $f(x) = e^x (1 - x^2)$.

Show that $f'(x) = \mathrm{e}^x (1 - 2x - x^2)$.

[3 marks]

10b. Part of the graph of y=f(x), for $-6 \le x \le 2$, is shown below. The x-coordinates of the local minimum and maximum points are r and s respectively. [1 mark]

Write down the **equation** of the horizontal asymptote.

10c. Write down the value of *r* and of *s*.

[4 marks]

10d. Let L be the normal to the curve of f at $\mathrm{P}(0,1)$. Show that L has equation x+y=1 . *[4 marks]*