

10/547843

JC05 Rec'd PCT/PTO 06 SEP 2005

SEQUENCE LISTING

<110> HORIGUCHI, Takashi
MATSUI, Hideki
WATANABE, Tomomichi

<120> Novel protein and its DNA

<130> 3159 USOP

<140> US

<141> 2005-

<150> PCT/JP2004/003033

<151> 2004-03-09

<150> JP2003-64197

<151> 2003-03-10

<150> JP2003-149679

<151> 2003-05-27

<160> 10

<210> 1

<211> 264

<212> PRT

<213> Homo sapiens

<400> 1

Met Gly Gly Ala Gln Leu Glu Leu Pro Ser Gly Ala Arg Pro Gly Val
5 10 15
Cys Val Arg Arg Ser Phe Arg Ala His Ala Gly Asp Gln Pro Arg Arg
20 25 30
Pro Pro Gly Pro Ile Pro Val Pro Gly Thr Met Lys Gln Glu Ser Ala
35 40 45
Ala Pro Asn Thr Pro Pro Thr Ser Gln Ser Pro Thr Pro Ser Ala Gln
50 55 60
Phe Pro Arg Asn Asp Gly Asp Pro Gln Ala Leu Trp Ile Phe Gly Tyr
65 70 75 80
Gly Ser Leu Val Trp Arg Pro Asp Phe Ala Tyr Ser Asp Ser Arg Val
85 90 95
Gly Phe Val Arg Gly Tyr Ser Arg Arg Phe Trp Gln Gly Asp Thr Phe
100 105 110
His Arg Gly Ser Asp Lys Met Pro Gly Arg Val Val Thr Leu Leu Glu
115 120 125
Asp His Glu Gly Cys Thr Trp Gly Val Ala Tyr Gln Val Gln Gly Glu
130 135 140
Gln Val Ser Lys Ala Leu Lys Tyr Leu Asn Val Arg Glu Ala Val Leu
145 150 155 160
Gly Gly Tyr Asp Thr Lys Glu Val Thr Phe Tyr Pro Gln Asp Ala Pro
165 170 175
Asp Gln Pro Leu Lys Ala Leu Ala Tyr Val Ala Thr Pro Gln Asn Pro
180 185 190
Gly Tyr Leu Gly Pro Ala Pro Glu Glu Ala Ile Ala Thr Gln Ile Leu
195 200 205
Ala Cys Arg Gly Phe Ser Gly His Asn Leu Glu Tyr Leu Leu Arg Leu
210 215 220

Ala Pro Asn Thr Pro Pro Thr Ser Gln Ser Pro Thr Pro Ser Ala Gln
 50 55 60
 Phe Pro Arg Asn Asp Gly Asp Pro Gln Ala Leu Trp Ile Phe Gly Tyr
 65 70 75 80
 Gly Ser Leu Val Trp Arg Pro Asp Phe Ala Tyr Ser Asp Ser Arg Val
 85 90 95
 Gly Phe Val Arg Gly Tyr Ser Arg Arg Phe Trp Gln Gly Asp Thr Phe
 100 105 110
 His Arg Gly Ser Asp Lys Met Pro Gly Arg Val Val Thr Leu Leu Glu
 115 120 125
 Asp His Glu Gly Cys Thr Trp Gly Val Ala Tyr Gln Val Gln Gly Glu
 130 135 140
 Gln Val Ser Lys Ala Leu Lys Tyr Leu Asn Val Arg Glu Ala Val Leu
 145 150 155 160
 Gly Gly Tyr Asp Thr Lys Glu Val Thr Phe Tyr Pro Gln Asp Ala Pro
 165 170 175
 Asp Gln Pro Leu Lys Ala Leu Ala Tyr Val Ala Thr Pro Gln Asn Pro
 180 185 190
 Gly Tyr Leu Gly Pro Ala Pro Glu Glu Ala Ile Ala Thr Gln Ile Leu
 195 200 205
 Ala Cys Arg Gly Phe Ser Gly His Asn Leu Glu Tyr Leu Leu Arg Leu
 210 215 220
 Ala Asp Phe Met Gln Leu Cys Gly Pro Gln Ala Gln Asp Glu His Leu
 225 230 235 240
 Ala Ala Ile Val Asp Ala Val Gly Thr Met Leu Pro Cys Phe Cys Pro
 245 250 255
 Thr Glu Gln Ala Leu Ala Leu Val
 260

<210> 2
 <211> 792
 <212> DNA
 <213> Homo sapiens

<400> 2
 atggggggcg ctcagctgga gctaccgagc ggtgccaggc caggtgtgtc cgtccgtcgg 60

tcttccgtg cccacgcccgg agaccagccc cgaggccgc ctggcctat ccctgtgcc	120
ggcaccatga agcaggagtc tgcagccccg aacaccccgcc acaccccgca gtcccctacg	180
ccgtccgctc agttcccccg aaacgacggc gaccctcaag cgctgtggat tttcggtac	240
ggctccctgg tgtggaggcc cgacttcgccc tacagcgaca gccgtgtggg cttcgtgcgc	300
ggctacagcc gccgtttctg gcagggagac accttccatc gggcagcga caagatgcct	360
ggccgtgtgg tgacgctcct tgaagatcat gagggctgca cttggggcgt ggcataccaa	420
gtgcaagggg agcaggttaag caaggccctg aagtaccta atgtgcgaga ggcagtgcct	480
ggtggctacg ataccaagga ggtcaccttc tatccccaaatgcctcctga ccaaccactg	540
aaggcattgg cctatgtggc caccacacag aaccctggtt acctgggccc tgccctgaa	600
gaggccattg ccacgcagat cctggcctgc cggggcttct ccggccacaa cttgaatac	660
ttgctgcgtc tggcagactt catgcagctc tgtggcctc aggccgcagga cgagcacctg	720
gcagccatcg tggacgctgt gggcaccatg ttgccctgct tctgccccac cgagcaggct	780
ctggcgctgg tg	792

<210> 3
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 3
ggcagggta taagacac 18

<210> 4
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 4
acccgccatg ccttctcag 19

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 5
cgccagggtt ttcccagtca cgac

24

<210> 6
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 6
agcggataac aatttcacac aggaaac

27

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 7
gccatggggg gcgcgtcagct ggagctaccg

30

<210> 8
<211> 26
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 8

tcacaccagc gccagagcct gctcg

26

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 9

taatacgact cactataggg

20

<210> 10

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 10

tagaaggcac agtcgagg

18