Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

CRIMEA-300 Система контроля глубины и температуры v1.0 09.03.2016

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Содержание

- 1. Состав
 - 1.1 Надводный (интерфейсный модуль)
 - 1.2 Подводный (измерительный модуль)
- 2. Параметры системы
 - 2.1 Технические характеристики
 - 2.1.1 Интерфейсный модуль
 - 2.1.2 Измерительный модуль
 - 2.2 Требования по подключению
- 3. Настройка и работа с системой
 - 3.1 Калибровка атмосферного давления
 - 3.2 Калибровка плотности воды
 - 3.3 Сброс настроек

Приложение А

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

1. Состав

1.1 Надводный (интерфейсный модуль)

Интерфейсный модуль изображен на рисунке 1, представляет собой сборку печатных плат с символьным ЖКИ экраном, на котором отображаются данные о глубине (рассчитываемые на основе данных о гидростатическом давлении) и температуре, получаемые от измерительного модуля.

рисунок 1 - Crimea-300, общий вид интерфейсного модуля

Модуль предназначен для интеграции в различные системы информационной поддержки водолазных спусков, пультовые и другие подобные системы.

1.2 Подводный (измерительный модуль)

Измерительный модуль изображен на рисунке 2, представляет собой монолитный герметичный блок с кабелем подключения.

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

рисунок 2 - Crimea-300, общий вид измерительного модуля Имеет встроенный датчик гидростатического давления и температуры. Модуль предназначен для непосредственного размещения на контролируемом объекте.

2. Параметры системы

2.1 Технические характеристики

2.1.1 Интерфейсный модуль

Параметр	мин	номинал	макс	Единица измерения	
Напряжение питания	4	5	12	В	
Потребляемая мощность			1.1	Вт	
Габариты ДхШхВ	-	98x60x20.3	-	MM	
Интерфейс сопряжения		RS-485			
Входные напряжения (входы А, В)	0		3,3	В	
Рабочий диапазон температур	-20		60	°C	
Частота обновления данных		4		Гц	
ЖКИ экран	4 строки по 20 символов				

2.1.2 Измерительный модуль

Измерительный модуль							
Параметр	мин	номинал	макс	Ед. изм.			
Напряжение питания	4	5	12	В			
Ток потребления*	10		70	мА			
Габариты (длина х диаметр)	-	50x21	-	MM			
Интерфейс сопряжения		RS-485					
Входные напряжения (входы А, В)	0		3,3	В			
Измеряемое давление	0		30	бар			

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Измеряемая температура	-10	60	°C
Рабочий диапазон температур	-10	60	°C
Погрешность измерения давления** (от 0°C до 40°C): 0 6 бар 0 20 бар 0 30 бар	-60 -150 -350	-60 -150 -350	мбар
Погрешность измерения температуры** (от 0 до 10 бар): от -20°C до 60°C	-2,0	+2.5	°C

^{* -} значение параметра уточняется по результатам испытания макетного образца.

Внимание: не допускать попадания на материал корпуса подводной части растворителей и агрессивных растворов (бензин, ацетон, растворители, кислоты, щелочи и т. п.).

2.2 Требования по подключению

Подключение измерительного и интерфейсного модулей производится экранированной витой парой, длиной не более 600 м.

Надежная герметизация кабельного ввода измерительного модуля производится пользователем.

рисунок 3 - расположение отверстий для запайки.

Кнопки 1 и 2, подключаемые к интерфейсному модулю (рисунок 3) и применяемые для выполнения калибровок НОРМАЛЬНО РАЗОМКНУТЫЕ.

^{** -} ориентировочные значения.

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

На рисунке также обозначены: 1,2 - пары отверстий для запайки проводов кнопок, 4 - "+" питания, 5 - Tx+/Rx+, 6 - Tx-/Rx-, 7 - земля.

3. Настройка и работа с системой

Поскольку применяемый датчик давления является абсолютным, для некоторых задач необходимо выполнить калибровку атмосферного давления, которое в последствие будет принято за точку отсчета глубины.

Для достижения наибольшей точности так же имеется возможность выполнить калибровку плотности воды, по сути - калибровку гидростатического давления на глубине 1 метр.

3.1 Калибровка атмосферного давления

Для выполнения калибровки атмосферного давления, перед подачей питания должны быть замкнуты контакты кнопки 1 (Кнопка 1 зажата) до появления на экране надписи "ZO калибровка...".

Калибровка занимает до 5 секунд, после чего результат калибровки сохраняется в энергонезависимую память интерфейсного модуля автоматически.

При этом измерительный модуль должен находится на поверхности воды.

3.2 Калибровка плотности воды

Процедура калибровки плотности воды схожа с процедурой калибровки атмосферного давления (п.3.1), с той лишь разницей, что используются контакты кнопки 2, до появления надписи ("1М калибровка...").

При этом измерительный модуль должен быть расположен максимально точно на глубине 1 метр.

3.3 Сброс настроек

Сброс настроек производится при подаче питания при обоих зажатых кнопках до появления надписи "Сброс настроек...". Положение измерительного модуля при этой операции не важно.

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Приложение А - Интерфейсный модуль. Габаритный чертеж.

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Лит. Масса Масштаб

UC&NL

1:1

UC&NL

Underwater Communication and Navigation Laboratory http://unavlab.com support@unavlab.com

Α 1100 Ø21 50 При установке не перекрывать! Инв. № подл. подп. и дета Взам. инв. № Инв. № дубл. Подп. и дата Назначение проводников кабеля Цвет изоляции Назначение Зелёный +5..+12B Tx-/Rx-Белый/бесцветный Tx+/Rx+ Коричневый GND Чёрный Оплётка Крым-300 (измерительный модуль)

Изм. Лист № докум. Разраб. Пров.

Т. контр.

Н. контр.

Подп. Дата

Габаритный чертёж

Копировал