0.1 ECDSA Signature Scheme

- Public Parameters: A cyclic group G of prime order q, a generator g, a hash function $H: \{0,1\}^* \to Z_q$, a hash function $H': G \to Z_q$
- KeyGen(λ): It takes security parameter λ as input, outputs a private key sk: x, which is a random number in Z_q , and a public key $pk: y = g^x \in G$.
- Sign(M, sk): It takes the message M and secret key as input, and generate the signature by the performing the following steps.
 - 1. Compute $m = H(M) \in \mathbb{Z}_q$;
 - 2. Randomly choose a number $k \in \mathbb{Z}_q$;
 - 3. Compute $R = g^{k^{-1}}, r = H'(R) \in \mathbb{Z}_q$;
 - 4. Compute s = k(m + xr) modq
 - 5. Output the signature as $\sigma = (r, s)$
- Verify (σ, M, pk) : It takes M, σ, pk as input, verify the signature as follows:
 - 1. Check whether $r, s \in \mathbb{Z}_q$ or not;
 - 2. Compute $R' = g^{ms^{-1}modq}y^{rs^{-1}modq}$;
 - 3. Check whether H'(R') = r or not. Outputs true if the equation holds, otherwise outputs false.
- Correctness: $R' = g^{ms^{-1}modq}g^{xrs^{-1}} = g^{(m+xr)s^{-1}} = g^{k^{-1}} = R$. Hence, H'(R') = r