- 1. Indicar a qué cuadrante pertenece cada uno de los siguientes ángulos:
- a. $\alpha_1 = 60^{\circ}$
- b. $\alpha_2 = 130^{\circ}$
- c. $\alpha_3 = -45^{\circ}$
- d. $\alpha_4 = 200^{\circ}$
- e. $\alpha_5 = 300^{\circ}$
- 2. Expresar los siguientes ángulos en radianes, expresando las respuestas en función de π
- a. $\alpha_1 = 60^{\circ}$
- b. $\alpha_2 = 180^{\circ}$
- c. $\alpha_3 = 135^{\circ}$
- d. $\alpha_4 = 150^{\circ}$
- e. $\alpha_5 = 315^{\circ} 20'$
- 3. Expresar en el sistema sexagesimal la amplitud de los siguientes ángulos.
- a. $\alpha_1 = \frac{\pi}{4}$
- $b. \quad \alpha_2 = \, \frac{3\pi}{2}$
- c. $\alpha_3 = \frac{5}{4}\pi$
- d. $\alpha_4 = \frac{2}{3}\pi$
- e. $\alpha_5 = \frac{5}{6}\pi$
- **4.** Demostrar, utilizando la circunferencia trigonométrica y el teorema de Pitágoras, la siguiente igualdad:

$$\cos^2(x) + \sin^2(x) = 1$$

En la siguiente tabla se encuentran los valores del seno y del coseno más frecuentes para recorridos y ángulos del primer cuadrante:

t (en grados)	0	30º	45º	60º	90⁵
t (en radianes)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sen t	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos t	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

5. A partir de la tabla anterior y utilizando la circunferencia trigonométrica, calcular:

a.
$$\operatorname{sen}\left(\frac{3}{4}\pi\right)$$
 ; $\cos\left(\frac{3}{4}\pi\right)$

b.
$$\cos\left(\frac{5}{6}\pi\right)$$
; $\sin\left(\frac{5}{6}\pi\right)$

c.
$$\operatorname{sen}\left(\frac{5}{3}\pi\right)$$
; $\cos\left(\frac{5}{3}\pi\right)$

d.
$$\operatorname{sen}\left(-\frac{\pi}{4}\right)$$
; $\cos\left(-\frac{\pi}{4}\right)$

e.
$$\operatorname{sen}\left(\frac{5\pi}{2}\right)$$
; $\cos\left(\frac{5\pi}{2}\right)$

Resolver las siguientes ecuaciones trigonométricas

a.
$$\operatorname{sen}(t) = 1$$
 $0 \le t \le 2\pi$

b.
$$\cos(t) = \frac{1}{2}$$
 $0 \le t \le 2\pi$

c. sen(t) =
$$-\frac{\sqrt{2}}{2}$$
 $0 \le t \le 2\pi$

d.
$$\cos(t) = -\frac{\sqrt{3}}{2}$$
 $0 \le t \le 4\pi$