

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution, <u>EX</u>: N-queen problem
- In such cases, we can use local search algorithms
- * keep a single "current" state, try to improve it
- All states have an objective function
- Goal is to find state with the best objective value

1. Hill climbing local search

- loop that continuously moves in the direction of increasing value (Aka as greedy local search)
- Terminates when a peak is reached

Hill climbing does not look ahead of the immediate neighbors of the current state "trying to find the top of Mount Everest while in a thick fog"

1. Hill climbing local search

```
function HILL-CLIMBING (problem) returns a state that is a local maximum
inputs: problem, a problem
 local variables: current, a node
                   neighbor, a node
 current \leftarrow Make-Node(Initial-State[problem])
 loop do
     neighbor \leftarrow a highest-valued successor of current
     if Value[neighbor] \le Value[current] then return State[current]
     current \leftarrow neighbor
```


- Objective function = 17
 - (number of pairs of queens that are attacking each other
- Hill climbing search for the move which minimize this value

- Computations adopt Darwin principles 'survival of the fittest'
- Useful when search space very large or too complex
- Suitable for optimization problems

GA is one of the evolutionally computation algorithms

- Start with k randomly generated states (population)
- A state (chromosome) is represented as a string of numbers (Genes)
- Each state is possible solution for the problem
- Chromosomes are evaluated by fitness function
- Selection of chromosomes is based on fitness function

Genetic Algorithms

https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3

GA- Flow chart

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m_with_all_steps_involved_from_beginning_until_termination_com_ditions_met_6_/1418786

- Used to Control routing system
- Can be in one city at a time
- Each city visited once and only once

Our objective is to determine the shortest route through N cities (nodes)

<u>Traveling Salesman Problem (TSP):</u>

- Testing every possibility would require N! separate additions
- For a 15 city tour:
 - $15! = 1.31 \times 10^{12}$ separate calculations
 - Assuming 1 million calculations per second → 15 days

(complexity!)

TSP in real life:

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m with all steps involved from beginning until termination con ditions met 6 /1418786

Solution Encoding:

Each solution (chromosome) will be represented by 4-genes (number of cities in the tour)

EX: "1432" means that: (Tour form node 1 to 4 to 3 to 2)

This tour yield a total cost of 22

Our job is to search for the tour with minimum cost

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m with all steps involved from beginning until termination con ditions met 6 /1418786

- Suppose we have population size 4
- Construct GA initial population randomly
- * Each chromosome (solution) is consist of 4 genes.

Interpretation:

Chromosome _1	1432	1→4→3→2
Chromosome _2	3241	3→2→4→1
Chromosome _3	4123	4→1→2→3
Chromosome _4	1324	1→3→2→4

Start Generate initial random population Calculate fitness of individuals Satisfy stop criterion? End Selection of the individuals Select Genetic Operator Crossover Operator: **Mutation Operator:** Select two individuals and swap Select one individual and a section of gene between them mutate the genes in it

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorithm with all steps involved from beginning until termination conditions met 6 /1418786

*

GA, example

Population Evolution (fitness function):

Determine the fitness value for each solution, and the **total** fitness, $F = \sum f_i$.

i	Initial pop.	F _i
1	1432	22
2	3241	23
3	4123	18
4	1324	24

Generate initial random population Calculate fitness of individuals Satisfy stop criterion? End Selection of the individuals Select Genetic Operator Crossover Operator: **Mutation Operator:** Select two individuals and swap Select one individual and a section of gene between them mutate the genes in it

Start

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m_with_all_steps_involved_from_beginning_until_termination_com ditions_met_6_/1418786

Selection (Roulette wheel):

i	Initial pop.	f _i	p _i
1	1432	22	0.252
2	3241	23	0.264
3	4123	18	0.207
4	1324	24	0.28
	Total	87	

-Do not forget the objective here (minimization)

Selection (Roulette wheel):

Select random according to Roulette wheel

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorithm with all steps involved from beginning until termination conditions met 6 /1418786

- Pair chromosomes are selected randomly for crossover operation
- Crossover point is selected randomly
- Paris of offspring's are generated
- Crossover is performed according to pre-fixed crossover probability

```
  For example, suppose we randomly selected chromosomes _1 and _3
  chromosome 1 1432
```

```
chromosome _3 4123
```

Suppose that the crossover point is 2

Crossover takes place, generating two new strings:

i

Genetic Algorithm (GA)

Start Generate initial random population Calculate fitness of individuals Satisfy stop criterion? End Selection of the individuals Select Genetic Operator Crossover Operator: **Mutation Operator:** Select two individuals and swap Select one individual and a section of gene between them mutate the genes in it

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m with all steps involved from beginning until termination conditions met 6 /1418786

- Single chromosome is input for mutation operation
- Mutation point(s) are selected randomly
- Single offspring is generated
- Mutation is performed according to pre-fixed mutation probability
- Mutation occurs infrequently (very low probability)

For example,

- Suppose that mutation operation is decided to be performed on offspring _1 "1423"
- Let the mutation points are 2,3
- Swap operation is performed in locations 2, 3, the string change its value from "1423" to "1243"
- After the crossover and one mutation operations, we now have two offspring's for the new generation:
 1243

4132

GA- Flow chart

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m with all steps involved from beginning until termination con ditions met 6 /1418786

- ❖These operations are repeated until reach to the fixed size population
- ❖Suppose that, chromosomes _2 and chromosomes _3 are selected for the crossover operation
 - Suppose that crossover is decided not to be performed
 - Suppose that also mutation is decided not to be performed
 - ➤This case, the chromosomes 2 and 3 are copied to the new generation without modifications
- ❖Now the new generation after performing these operations is:

Generation (2)

Generated by:

chromosome _1	1243	Crossover followed by mutation
chromosome _2	4132	Crossover operation
chromosome _3	3241	Copied form mating pool
chromosome _4	4123	Copied form mating pool

GA, Stopping condition

i

Genetic Algorithm (GA)

https://plos.figshare.com/articles/ Flow Chart of Genetic Algorith m_with_all_steps_involved_from_beginning_until_termination_com_ditions_met_6_/1418786

Apply the tour represented by the best chromosome found in the final generation

GA, basic algorithm


```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
         FITNESS-FN, a function that measures the fitness of an individual
repeat
    new\_population \leftarrow empty set
    for i = 1 to SIZE(population) do
        x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
        y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
        child \leftarrow REPRODUCE(x, y)
        if (small random probability) then child \leftarrow MUTATE(child)
        add child to new_population
    population \leftarrow new\_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN
```


Solution Encoding:

Evaluation (Fitness Function)

fitness=number of pairs of queens that are attacking each other, either directly or indirectly

The target is minimization

Cross over operation

Recall, this is just the first offspring for this crossover!

Mutation operation

Bio-inspired algorithms

- Genetic Algorithm, (1974)
- Ant Colony Optimization, (1992)
- Genetic Programming, (1994)
- Particle swarm optimization, (1998)
- Fish Swarm Algorithm, (2012)
- Artificial Bee Colony Algorithm, (2005)
- Ant Lion Optimizer, (2014)
- Grey wolf optimizer, (2014)

Thank You !