

Analyze the behavior of the three followers

- Modify SimpleLeader.java
- Set the leader price to be date
- Plot for follower price against leader price

Linear or Non-Linear

Mk1 and Mk2 are both linear

Mk3 could be non-linear

Linear Approaches

Goal: Find the follower reaction function

- •ALL HISTORICAL DATA
- MOVING WINDOW
- •MODIFIED MOVING WINDOW
- •WEIGHTED LEAST SQUARE WITH FORGETTING FACTOR

Best leader strategy given follower reaction

Given follower reaction

$$u_F = \hat{a} + \hat{b}u_L$$

Substitute into Leader profit equation

$$\begin{split} &(u_L - c_L)S_L(u_L, u_F) \\ &= (u_L - 1)(2 - u_L + 0.3u_F) \\ &= (u_L - 1)(2 - u_L + 0.3(\widehat{\alpha} + \widehat{b}u_L)) \end{split}$$

Group common terms

$$2u_{L} - u_{L}^{2} + 0.3\hat{a} u_{L} + 0.3\hat{b} u_{L}^{2} - 2 + u_{L} - 0.3\hat{a} - 0.3\hat{b} u_{L}$$
$$= (0.3\hat{b} - 1) u_{L}^{2} + (3 + 0.3\hat{a} - 0.3\hat{b}) u_{L} + (-2 - 0.3\hat{a})$$

Make 1st derivative equal to zero and solve the leader price

$$\frac{\partial}{\partial u_L} \left(0.3 \widehat{b} - 1 \right) u_L^2 + \left(3 + 0.3 \widehat{a} - 0.3 \widehat{b} \right) u_L + \left(-2 - 0.3 \widehat{a} \right) = 0$$

$$2 (0.3 \widehat{b} - 1) u_L + \left(3 + 0.3 \widehat{a} - 0.3 \widehat{b} \right) = 0$$

$$u_L = -\frac{(3 + 0.3\hat{a} - 0.3\hat{b})}{2(0.3\hat{b} - 1)}$$

All Historical Data Approach

Use all the historical data to do the estimation

$$\sum_{t=1}^{T} \{y(t) - [a* + b* x(t)]\}^2 = min_{\{\widehat{a},\widehat{b}\}} \sum_{t=1}^{T} \{y(t) - [\widehat{a} + \widehat{b} x(t)]\}^2$$

In the equation x(t) is the leader price at day t And y(t) is the follower price at day t

$$\widehat{a}^* = \frac{\sum_{t=1}^{T} x^2(t) \sum_{t=1}^{T} y(t) - \sum_{t=1}^{T} x(t) \sum_{t=1}^{T} x(t) y(t)}{T \sum_{t=1}^{T} x^2(t) - (\sum_{t=1}^{T} x(t))^2}$$

$$\widehat{b}^* = \frac{T \sum_{t=1}^{T} x(t) y(t) - \sum_{t=1}^{T} x(t) \sum_{t=1}^{T} y(t)}{T \sum_{t=1}^{T} x^2(t) - (\sum_{t=1}^{T} x(t))^2}$$

It is checked that the 2nd order partial derivative is negative, so the solution found is indeed optimal.

Moving Window Approach

- Similar to All Historical Data Approach
- Use a window to loop only the recent data
- For example: a window size of 30 will just loop the data of past 30 days

- The other term $\lambda(\theta \theta_T^*)^{\tau}(\theta \theta_T^*)$ added
- The past information is considered in θ_{T+1}^*

$$\theta_{T+1}^* = \min_{\theta} \left\{ \lambda(\theta - \theta_T^*)^{\mathsf{T}} (\theta - \theta_T^*) + \sum_{t \in T+1 - T_w}^{T+1} \left\{ y(t) - \widehat{R}[X(t), \theta] \right\}^2 \right\}$$

Balance remembering and new information using >>

A new formula can be got by simplifying the formula

$$\min_{\{\widehat{a},\widehat{b}\}_{t=T}} \sum_{t=1}^{T+1} \{y(t) - [\widehat{a} + \widehat{b} x(t)]\}^{2} + \lambda(\widehat{a} - a)^{2} + \lambda(\widehat{b} - b)^{2}$$

assume that the response function of the follower is

$$\widehat{R}(X) = \widehat{a} + \widehat{b}X$$

 By applying the first order partial derivative equal to zero and solving linear equations, we could get formulas:

$$\widehat{a} = \frac{t_1 n_2 - t_2 n_1}{n_2 m_1 - n_1 m_2}, \quad \text{and} \quad \lim_{t_1 = \sum_{t=\tau+1-\tau_w}^{\tau+1} \{x(t)\}} f_1 = \sum_{t=\tau+1-\tau_w}^{\tau+1} \{x(t)\} f_2 = \sum_{t=\tau+1-\tau_w}^{\tau+1} \{y(t)\} + \lambda a$$

$$m_{1} = (T_{w} + \lambda)$$

$$n_{1} = \sum_{t=T+1}^{T+1} \{x(t)\}$$

$$t_{1} = \sum_{t=T+1-T_{w}}^{T+1} \{y(t)\} + \lambda a$$

$$m_{2} = \sum_{t=T+1-T_{w}}^{T+1} x(t)$$

$$n_{2} = (\sum_{t=T+1-T_{w}}^{T+1} \{x^{2}(t)\} + \lambda)$$

$$t_{2} = \sum_{t=T+1-T_{w}}^{T+1} \{y(t)x(t)\} + \lambda b$$

 It has been verified that the above parameters are indeed minimising the errors

Weighted Least Square with Forgetting Factor Approach

- A Forgetting Factor is introduced to discount old data
- The more recent data will be fitted better than the older

data

$$\theta_{T+1}^* = \arg \min_{\theta} \sum_{t=1}^{T+1} \lambda^{T+1-t} \left\{ y(t) - \hat{R}[X(t), \theta] \right\}^2$$

In this equation, $\hat{R}(X,\theta_r^)$ is the weighted least square

Weighted Least Square with Forgetting Factor Approach

$$\widehat{a} = \frac{n_1 m_1 - n_2 n_3}{n_1^2 - m_2 n_2}$$

$$\widehat{b} = \frac{n_1 n_3 - m_1 m_2}{n_1^2 - m_2 n_2}$$

$$m_{1} = \sum_{t=1}^{T+1} \lambda^{T+1-t} x(t) y(t)$$

$$m_{2} = \sum_{t=1}^{T+1} \lambda^{T+1-t}$$

$$n_{1} = \sum_{t=1}^{T+1} \lambda^{T+1-t} x(t)$$

$$n_{2} = \sum_{t=1}^{T+1} \lambda^{T+1-t} x^{2}(t)$$

$$n_{3} = \sum_{t=1}^{T+1} \lambda^{T+1-t} y(t)$$

Formula is deduced by calculating first order partial derivative equal to zero

- Old data are still be used but plays a less important (discount) role than new data
- Smoothly balance the old and new data

Non-Linear Approach

Machine Learning Approach

Goal: Find a price for the leader to get maximum profit

Machine Learning Approach

1. Follower Reaction Model

- a. linear + relu layers
- ь. Mean Square Error + SGD + Reduce-on-plateau
- c. Many models are experimented and the best is selected

2. Price Optimizer Model

- a. Freeze the follower reaction model
- b. profit = (leader 1) * (2 leader + 0.3 * follower)
- c. Loss = -(profit)

Machine Learning Approach

Results and Evaluation

	All historical data	Moving window Size = 100	Modified moving window Size = 30 Lambda = 0.95	Weighted least square with forgetting factor Lambda = 0.99	Machine Learning	Best approach
Mk1	17.557161331 1768	17.555740356 4453	17.55332946777 34	17.55502319335 94	17.555046081 5429	All historical data
Mk2	16.956459045 4102	16.955856323 2422	16.95718574523 93	16.95581626892 09	16.946899414 0625	Modified moving window
Mk3	19.488283157 3486	19.488330841 0645	19.48791313171 39	19.48825645446 78	19.488443374 6337	Machine Learning

Analysis and Conclusion

- All historical has most contextual information
- Modified moving window deals better with date related information
- Machine learning can model complex function

	Best approach	Analysis
Mk1	All historical data	Linear and not depend on date
Mk2	Modified moving window	Linear and depend on date
Mk3	Machine Learning	Non-linear

References

- Lecture03
- Lecture04 Slide16-20
- Lecture 06 Slide 6-10
- https://pytorch.org/docs/stable/o ptim.html#torch.optim.lr_schedul er.ReduceLROnPlateau

Thank you!

GROUP 36

BUSHUI ZHANG

WEILUE LUO

YECHENG CHU

ZHAOYU ZHANG