labset-1

February 17, 2025

```
[1]: import pandas as pd
    import numpy as np
    import seaborn as sns
     import matplotlib.pyplot as plt
    from sklearn.datasets import fetch_california_housing
[2]: data = fetch_california_housing()
    print(data)
    {'data': array([[
                        8.3252
                                      41.
                                                      6.98412698, ...,
    2.55555556,
              37.88
                         , -122.23
                                        ],
           [ 8.3014
                                             6.23813708, ...,
                             21.
                                                               2.10984183,
              37.86
                         , -122.22
                                        ],
             7.2574
                             52.
                                             8.28813559, ...,
                                                               2.80225989,
                         , -122.24
              37.85
                                        ],
                                             5.20554273, ...,
                                                               2.3256351 ,
           Γ
              1.7
                             17.
              39.43
                         , -121.22
                                        ],
           [ 1.8672
                                             5.32951289, ...,
                                                               2.12320917,
                             18.
              39.43
                         , -121.32
                                        ],
              2.3886
                                             5.25471698, ...,
                                                               2.61698113,
                             16.
                         , -121.24
              39.37
                                        ]]), 'target': array([4.526, 3.585, 3.521,
    ..., 0.923, 0.847, 0.894]), 'frame': None, 'target_names': ['MedHouseVal'],
    'feature_names': ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population',
    'AveOccup', 'Latitude', 'Longitude'], 'DESCR': '...
    _california_housing_dataset:\n\nCalifornia Housing
    dataset\n-----\n\n**Data Set Characteristics:**\n\n:Number
    of Instances: 20640\n\n:Number of Attributes: 8 numeric, predictive attributes
    and the target\n\n:Attribute Information:\n
                                                   - MedInc
                                                                   median income in
    block group\n
                     - HouseAge
                                     median house age in block group\n
                                                                          - AveRooms
    average number of rooms per household\n
                                               - AveBedrms
                                                               average number of
    bedrooms per household\n
                               - Population block group population\n
    AveOccup
                  average number of household members\n
                                                          - Latitude
                                                                           block
    group latitude\n
                        - Longitude
                                        block group longitude\n\n:Missing Attribute
    Values: None\n\nThis dataset was obtained from the StatLib
    repository.\nhttps://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html\n\nThe
    target variable is the median house value for California districts,\nexpressed
```

in hundreds of thousands of dollars (\$100,000).\n\nThis dataset was derived from the 1990 U.S. census, using one row per census\nblock group. A block group is the smallest geographical unit for which the U.S.\nCensus Bureau publishes sample data (a block group typically has a population\nof 600 to 3,000 people).\n\nA household is a group of people residing within a home. Since the average\nnumber of rooms and bedrooms in this dataset are provided per household, these\ncolumns may take surprisingly large values for block groups with few households\nand many empty houses, such as vacation resorts.\n\nIt can be downloaded/loaded using

the\n:func:`sklearn.datasets.fetch_california_housing` function.\n\n.. topic::
References\n\n - Pace, R. Kelley and Ronald Barry, Sparse Spatial
Autoregressions,\n Statistics and Probability Letters, 33 (1997)
291-297\n'}

```
[3]: # Step 1: Load the California Housing dataset
data = fetch_california_housing(as_frame=True)
housing_df = data.frame
print(housing_df)
```

	${\tt MedInc}$	${ t House Age}$	AveRooms	AveBedrms	Population	AveOccup	Latitude	\
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	
	•••	•••			•••	•••		
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	

	Longitude	MedHouseVal
0	-122.23	4.526
1	-122.22	3.585
2	-122.24	3.521
3	-122.25	3.413
4	-122.25	3.422
•••	•••	•••
20635	-121.09	0.781
20636	-121.21	0.771
20637	-121.22	0.923
20638	-121.32	0.847
20639	-121.24	0.894

[20640 rows x 9 columns]

```
[5]: # Step 2: Create histograms for numerical features
      numerical_features = housing_df.select_dtypes(include = [np.number]).columns
      print(numerical_features)
      Index(['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup',
                'Latitude', 'Longitude', 'MedHouseVal'],
              dtype='object')
[6]: # Plot histograms
      plt.figure(figsize=(15, 10))
      for i,feature in enumerate(numerical_features):
            plt.subplot(3, 3, i + 1)
            sns.histplot(housing_df[feature],kde = True,bins=10,color='green')
            plt.title(f'Distribution of {feature}')
      plt.tight_layout()
                         Distribution of MedInc
                                                           Distribution of HouseAge
                                                                                             Distribution of AveRooms
               8000
                                                 3500
                                                 3000
                                                                                   80000
                                                 2500
                                                                                   60000
                                               2000
2000
             4000
                                                 1500
                                                                                   40000
                                                 1000
                                                                                   20000
                                                                                                     80
                                                                                                         100
                        Distribution of AveBedrms
                                                           Distribution of Population
                                                                                             Distribution of AveOccup
                                                                                  250000
                                                 40000
                                                                                  200000
             200000
                                                                                150000
                                                 30000
            150000
                                                                                  100000
              100000
                                                10000
                                                                                   50000
                                                        5000 10000 15000 20000 25000 30000 35000
                                                                                               400
                                                                                                       800
                                                                                                           1000 1200
                                                                                                  AveOccup
                         Distribution of Latitude
                                                           Distribution of Longitude
                                                                                            Distribution of MedHouseVal
              10000
               8000
                                                                                    3000
                                                                                  5
2000
               4000
                                                                                    1000
                                                     -124
                                                          -122
                                                                    -118
```

```
[7]: # Step 3: Generate box plots for numerical features
plt.figure(figsize=(15, 10))
for i, feature in enumerate(numerical_features):
    plt.subplot(3, 3, i + 1)
    sns.boxplot(housing_df[feature], color='orange')
    plt.title(f'Box Plot of {feature}')
plt.tight_layout()
```

plt.show()

Outliers Detection:
MedInc: 681 outliers
HouseAge: 0 outliers
AveRooms: 511 outliers
AveBedrms: 1424 outliers
Population: 1196 outliers
AveOccup: 711 outliers
Latitude: 0 outliers

Longitude: 0 outliers MedHouseVal: 1071 outliers

```
[9]: # Optional: Print a summary of the dataset
print("\nDataset Summary:")
print(housing_df.describe())
```

Dataset Summary:

	J					
	${ t MedInc}$	HouseAge	AveRooms	AveBedrms	Population	\
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	
std	1.899822	12.585558	2.474173	0.473911	1132.462122	
min	0.499900	1.000000	0.846154	0.333333	3.000000	
25%	2.563400	18.000000	4.440716	1.006079	787.000000	
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	
max	15.000100	52.000000	141.909091	34.066667	35682.000000	
	AveOccup	Latitude	Longitude	${\tt MedHouseVal}$		
count	20640.000000	20640.000000	20640.000000	20640.000000		
mean	3.070655	35.631861	-119.569704	2.068558		
std	10.386050	2.135952	2.003532	1.153956		
min	0.692308	32.540000	-124.350000	0.149990		
25%	2.429741	33.930000	-121.800000	1.196000		
50%	2.818116	34.260000	-118.490000	1.797000		
75%	3.282261	37.710000	-118.010000	2.647250		
max	1243.333333	41.950000	-114.310000	5.000010		

[]: