WHAT IS CLAIMED IS:

1

2	1. A method of fabricating a capacitor electrode, comprising:		
3	forming an etch stop layer over a surface of an interlayer insulating layer and		
4	over a surface of a conductive plug extending at a depth from the surface of the		
5	interlayer insulating layer;		
6	forming a lower mold layer over the etch stop layer, and adjusting a wet etch		
7	rate of the lower mold layer by adding dopants to the lower mold layer during		
8	formation of the lower mold layer, and by annealing the lower mold layer;		
9	forming an upper mold layer over the surface of the lower mold layer, wherein		
10	a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the		
11	lower mold layer;		
12	dry etching the upper mold layer, the lower mold layer and the etch stop layer		
13	to form an opening therein which exposes at least a portion of the surface of the		
14	contact plug;		
15	wet etching the upper mold layer and the lower mold layer so as to increase a		
16	size of the opening at the lower mold layer and so at to expose a surface portion of		

1	the etch stop layer adjacent the surface of the conductive plug; and
2	depositing a conductive material over the surface of the opening in the upper
3	and lower mold layers, the surface portion of the etch stop layer, and an exposed
4	surface of the conductive plug.
5	
6	2. The method of claim 1, further comprising removing the upper and lower
7	mold layers after depositing the conductive material.
8	
9	3. The method of claim 1, wherein the lower mold layer is formed of a doped
10	oxide by chemical vapor deposition.
11	
12	4. The method of claim 3, wherein the lower mold layer is formed of at least
13	one of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG).
14	
15	5. The method of claim 1, wherein the upper mold layer is formed of an
16	undoped oxide by plasma enhanced chemical vapor deposition.

1	The method of claim 1, wherein the upper mold layer is formed of at least			
2	one of plasma-enhanced tetraethyllorthosilicate (PE-TEOS), high-density plasma			
3	(HDP) oxide, and P-SiH₄ oxide.			
4 .				
5	7. The method of claim 1, wherein the lower mold layer is formed of			
6	borophosphosilicate glass (BPSG), and wherein phosphorous and boron are adde			
7	to the BPSG prior to said annealing.			
8				
9	8. The method of claim 7, wherein the boron is added in an amount of 2-3			
10	wt% of the BPSG, and the phosphorous is added in an amount of 2-3 wt% of the			
11	BPSG.			
12				
13	9. The method of claim 1, wherein the lower mold layer is formed of			
14	phosphosilicate glass (PSG), and wherein phosphorous is added to the PSG prior to			
15	said annealing.			
16				
17	10. The method of claim 9, wherein the phosphorous is added in an amount			
18	of less than 5 wt% of the PSG.			

1	11. The method of claim 1, further comprising cleaning a surface of the
2	lower mold layer having the adjusted wet etch rate prior to forming the upper mold
3	layer.
4	
5	12. The method of claim 11, wherein H ₂ SO ₄ is used to clean the surface of
6	the lower mold layer.
7	
8	13. The method of claim 1, wherein the conductive layer is deposited as a
9	polysilicon by low pressure chemical vapor deposition.
10	
11	14. The method of claim 1, wherein the upper mold layer and the lower mold
12	layer are wet etch using at least one of SC1 (NH ₄ OH/H ₂ O ₂ /deionized water) and HF
13	(hydrofluoric acid).
14	
15	15. The method of claim 1, wherein the etch stop layer is silicon nitride, and
16	the annealing of the lower mold layer is carried out at a temperature of less than

1 700°C.

2

7

8

9

10

11 .

12

13

14

15

16

16. The method of claim 1, wherein the conductive material forms a

cylindrical electrode defined by a cylindrical wall and a bottom wall which extends

over a surface of the conductive plug, wherein the cylindrical wall extends upwardly

from the bottom wall away from the surface of the interlayer insulating layer;

wherein the cylindrical wall of the cylindrical electrode is defined by an upper cylindrical wall portion, a lower cylindrical wall portion, and an intermediate cylindrical wall portion located between the upper and lower cylindrical wall portions;

wherein a diameter of the upper cylindrical wall portion and a diameter of the lower cylindrical wall portion increase with an increase in a distance from the surface of the bottom wall, wherein a diameter of the intermediate cylindrical wall portions decreases with an increase in a distance away from the surface of the bottom wall, and wherein

 $A \ge C$, C > B, and C > D

where A is a diameter of the upper cylindrical wall portion at a location farthest

from the bottom wall, B is a diameter of the upper cylindrical wall portion at a location

2 nearest to the bottom wall, C is a diameter of the lower cylindrical wall portion at a

location farthest from the bottom wall, and D is a diameter of the lower cylindrical

wall portion at the bottom wall.

forming a lower electrode comprises:

5

6

7

8

9

10

11

12

13

14

15

16

3

4

17. A method of fabricating a capacitor, comprising forming a lower electrode over an interlayer insulating layer, forming a dielectric layer over the lower electrode, and forming an upper electrode over the dielectric layer, wherein said

forming an etch stop layer over a surface of the interlayer insulating layer and over a surface of a conductive plug extending at a depth from the surface of the interlayer insulating layer;

forming a lower mold layer over the etch stop layer, and adjusting a wet etch rate of the lower mold layer by adding dopants to the lower mold layer during formation of the lower mold layer, and by annealing the lower mold layer;

forming an upper mold layer over the surface of the lower mold layer, wherein

1 .	a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the		
2	lower mold layer;		
3	dry etching the upper mold layer, the lower mold layer and the etch stop layer		
4	to form an opening therein which exposes at least a portion of the surface of the		
5	contact plug;		
6	wet etching the upper mold layer and the lower mold layer so as to increase a		
7	size of the opening at the lower mold layer and so at to expose a surface portion of		
8	the etch stop layer adjacent the surface of the conductive plug; and		
9	depositing a conductive material over the surface of the opening in the upper		
10	and lower mold layers, the surface portion of the etch stop layer, and an exposed		
11	surface of the conductive plug.		
12			
13	18. The method of claim 17, wherein said forming a lower electrode further		
14	comprises:		
15	depositing an insulating layer over the conductive material and within the		
16	opening;		

1	removing a portion of the insulating layer and the conductive material to		
2	expose the upper mold layer; and		
3	removing a remaining portion of the insulating layer and the upper and lowe		
4	mold layers.		
5			
6	19. The method of claim 17, wherein the lower mold layer is formed of a		
7	doped oxide by chemical vapor deposition.		
8			
9	20. The method of claim 17, wherein the lower mold layer is formed of at		
10	least one of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG).		
11			
12	21. The method of claim 17, wherein the upper mold layer is formed of an		
13	undoped oxide by plasma enhanced chemical vapor deposition.		
14			
15	22. The method of claim 17, wherein the upper mold layer is formed of at		
16	least one of plasma-enhanced tetraethyllorthosilicate (PE-TEOS), high-density		

1	plasma (HDP) oxide, and P-SiH₄ oxide.		
2			
3	23. The method of claim 17, wherein the lower mold layer is formed of		
4	borophosphosilicate glass (BPSG), and wherein phosphorous and boron are added		
5	to the BPSG prior to said annealing.		
6			
7	24. The method of claim 23, wherein the boron is added in an amount of 2-3		
8	wt% of the BPSG, and the phosphorous is added in an amount of 2-3 wt% of the		
9	BPSG.		
10			
11	25. The method of claim 17, wherein the lower mold layer is formed of		
12	phosphosilicate glass (PSG), and wherein phosphorous is added to the PSG prior to		
13	said annealing.		
. 14			
15	26. The method of claim 25, wherein the phosphorous is added in an		
16	amount of less than 5 wt% of the PSG.		
17			
18	27. The method of claim 17, further comprising cleaning a surface of the		

1	lower mold layer having the adjusted wet etch rate prior to forming the upper mold
2	layer.
3	
4	28. The method of claim 27, wherein H ₂ SO ₄ is used to clean the surface of
5	the lower mold layer.
6	
7	29. The method of claim 17, wherein the conductive layer is deposited as a
8	polysilicon by low pressure chemical vapor deposition.
9	
10	30. The method of claim 17, wherein the upper mold layer and the lower
11	mold layer are wet etch using at least one of SC1 (NH ₄ OH/H ₂ O ₂ /deionized water)
12	and HF (hydrofluoric acid).
13	
14	31. The method of claim 17, wherein the etch stop layer is silicon nitride,
15	and the annealing of the lower mold layer is carried out at a temperature of less than
16	700°C.

32. The method of claim 18, wherein the conductive material forms a cylindrical lower electrode defined by a cylindrical wall and a bottom wall which extends over a surface of the conductive plug, wherein the cylindrical wall extends upwardly from the bottom wall away from the surface of the interlayer insulating layer;

wherein the cylindrical wall of the cylindrical lower electrode is defined by an upper cylindrical wall portion, a lower cylindrical wall portion, and an intermediate cylindrical wall portion located between the upper and lower cylindrical wall portions;

wherein a diameter of the upper cylindrical wall portion and a diameter of the lower cylindrical wall portion increase with an increase in a distance from the surface of the bottom wall, wherein a diameter of the intermediate cylindrical wall portions decreases with an increase in a distance away from the surface of the bottom wall, and wherein

 $A \ge C$, C > B, and C > D

where A is a diameter of the upper cylindrical wall portion at a location farthest from the bottom wall, B is a diameter of the upper cylindrical wall portion at a location

1	nearest to the bottom wall, C is a diameter of the lower cylindrical wall portion at a		
2	location farthest from the bottom wall, and D is a diameter of the lower cylindrical		
3	wall portion at the bottom wall.		
4			
5	33. A capacitor comprising:		
6	an interlayer insulating layer having a surface;		
7	a conductive plug extending at a depth from the surface of the interlayer		
8	insulating layer;		
9	an etch stop layer extending over the insulating layer and exposing the		
10	conductive plug;		
11	a cylindrical lower electrode defined by a cylindrical wall and a bottom wall		
12	which extends over a surface of the conductive plug and over a portion of the etch		
13	stop layer adjacent the conductive plug, wherein the cylindrical wall extends		
14	upwardly from the bottom wall away from the surface of the interlayer insulating		
15	layer;		
16	a dielectric layer formed over the cylindrical lower electrode; and		

an upper electrode formed over the dielectric layer;

wherein the cylindrical wall of the cylindrical lower electrode is defined by an upper cylindrical wall portion, a lower cylindrical wall portion, and an intermediate cylindrical wall portion located between the upper and lower cylindrical wall portions; wherein a diameter of the upper cylindrical wall portion and a diameter of the lower cylindrical wall portion increase with an increase in a distance from the surface of the bottom wall, wherein a diameter of the intermediate cylindrical wall portions decreases with an increase in a distance away from the surface of the bottom wall,

 $A \ge C$, C > B, and C > D

where A is a diameter of the upper cylindrical wall portion at a location farthest from the bottom wall, B is a diameter of the upper cylindrical wall portion at a location nearest to the bottom wall, C is a diameter of the lower cylindrical wall portion at a location farthest from the bottom wall, and D is a diameter of the lower cylindrical wall portion at the bottom wall.

and wherein

1	34.	The capacitor of claim 33, wherein the etch stop film is a silicon nitride
2	film.	
3		
4	35.	The capacitor of claim 33, wherein the lower electrode is a polysilicon
5	electrode.	
6		
7	36.	The capacitor of claim 33, wherein the dielectric layer is an oxynitride
8	(NO) layer.	