Study of the HH Detection Sensitivity with BDT with HH \rightarrow bb \parallel + E_T^{miss}

Xiuyuan Zhang, **Shuzhou Zhang**, Zhe Yang, Bing Li, Bing Zhou

The Univ. of Michigan

9/14/2020

Event selection and expected yields

Event selection

- single & dilepton triggers
- exactly 2 light leptons
 - $p_T^l > 9GeV$
- opposite charge of lepton pair
- exactly 2 b-tagged jets
 - $p_T^{b-jet} > 20 GeV$, DL1r, 77%
- Signal region 1 (SR1)
 - $15 GeV < m_{ll} < 75 GeV (110 GeV)$
 - for $ee + \mu\mu (e\mu + \mu e)$
 - target bbWW, bbau au and low m₁₁ bbZZ
 - can be further separated to 3 SR based on m_{ll}(> 75GeV or < 75GeV), and lepton pair flavor type (same/different flavor), for BDT training

- Signal region 2 (SR2)
 - ee + μμ only
 - $75 GeV < m_{ll} < 110 GeV$
 - 40GeV $< m_{bb} < 210$ GeV
 - high m_{ll} bbZZ
- Top control (Top CR)
 - $m_{ll} > 110 \, GeV$
- DY control (ZII CR)
 - $ee + \mu\mu$ only
 - $75 GeV < m_{ll} < 110 GeV$
 - $m_{bb} < 40 GeV \ or \ m_{bb} > 210 GeV$
 - also used by $bb\tau\tau$ analysis

training
Used 4 SR
as shown

Expected event yields in signal region 1

Process	$ee + \mu\mu$	$e\mu + \mu e$
bbWW	4.40 ± 0.07	4.49 ± 0.07
bb au au	1.524 ± 0.016	1.760 ± 0.018
bbZZ	0.0744 ± 0.0012	0.00168 ± 0.00015
$t\bar{t}/Wt/t\bar{t}V$	240080 ± 150	388090 ± 190
$Z o \ell \ell$	20760 ± 250	110 ± 11
Fakes ¹	8510 ± 80	12940 ± 70
Z ightarrow au au	1370 ± 50	1410 ± 50
Diboson	308 ± 4	142 ± 2
H	207.5 ± 0.7	271.8 ± 0.8
s/b	22×10^{-6}	15×10^{-6}

Control Regions

Top:

Reweighed by a quadratic fitting function with an overall normalization factor 0.901

DY: An overall scale factor 1.245 is applied bjet_0_pt

Four BDT training Regions

- R1:
- $75 GeV < m_{ll} < 110 GeV, ee + \mu\mu$
- R2:
- $75 GeV < m_{ll} < 110 GeV, e\mu + \mu e$
- R3:
- $15 GeV < m_{ll} < 75 GeV, ee + \mu\mu$
- R4:
- $\cdot 15 GeV < m_{ll} < 75 GeV, e\mu + \mu e$

Multi-Class BDT Training

Event pre-selection before training:

```
150 GeV > m_{bb} > 80 GeV, |\Delta(R_{bb})| < 2.8
```

- Input variables for BDT training:
 - bjets bjet_1_pt, bjet_1_eta, bjet_2_pt, bjet_2_eta,
 - ODIlepton II m, II pt, II deltar, II deltaeta, II deltaphi,
 - o bb bb_m, bb_pt, bb_deltar, bb_deltaeta, bb_deltapt,
 - Met met_met, met_sig, met_phi,
 - o m_T mt_lep0_met, mt_lep1_met,
 - M_{bb} m_bbll, m_bbllmet

Examples of input variable distributions (in R2)

Multi-class BDT Training

Use multi-class training to train BDT in each region

- In region 2 and region 4 (eμ), use 4 classes
 - Class 0: Signal
 - Class 1: Top
 - Class 2: Other(di-boson, single Higgs)
 - Class 3: fakes 6
- In region 1 and region 3(ee, μμ), use 5 classes
 - Class 0:DY
 - Class 1:Signal
 - Class 2:Top
 - Class 3:Other(di-boson, single Higgs)
 - Class 4:fakes 5

BDT Spectra in R2 and R4 ($e\mu$)

BDT Spectra in R1 and R3 (ee, $\mu\mu$)

Sensitivity Fitting Program Setup (1)

Using Asimov data to obtain the expected sensitivity; Statistic ONLY

- POI: SigXsecOverSM(norm factor of signal), 1, -10, 10
- Nuisance parameter:
- mutop(norm factor of top background), 1, 0, 3
- FitBlind:TRUE
- SignificanceBlind:TRUE
- POlAsimov: 1
- Top control region:
- Variable: Il_m(20 bins, 110GeV, 300GeV)

Sensitivity Fitting Program Setup (2)

Obtain the upper limits by fitting four signal regions simultaneously

- Region 1(HM/SF):
 - Variable: BDT_R1_5_class_sig(10 bins, 0,1)
- Region 2(HM/DF):
 - Variable: BDT_R2_4_class_sig(10 bins, 0,1)
- Region 3(LM/SF):
 - Variable: BDT_R3_5_class_sig(10 bins, 0,1)
- Region 4(LM/DF):
 - Variable: BDT_R4_4_class_sig(10 bins, 0,1)

Likelihood Plots

1.5

2.5

mutop

Expected Upper Limits on signal strength μ

The limit is slightly worse than the training using DNN Will further study the systematic uncertainty impact

Summary

- MVA analysis performed with BDT to cross check the DNN method
- Slightly worse expected upper limits from BDT, but still quite close
- Will have further check with systematic uncertainties included

Would like to document to supporting note

Backup: Kinematic distributions

