

Practical Blind Membership Inference Attack via Differential Comparisons

Bo Hui†*, Yuchen Yang†*, Haolin Yuan†*, Philippe Burlina ‡, Neil Zhenqiang Gong§, and Yinzhi Cao†

†The Johns Hopkins University ‡The Johns Hopkins University Applied Physics Laboratory §Duke University

Privacy Problem of ML

- Model
- Data

Membership Inference

State-of-the-art Attack

State-of-the-art Attack

• The Attack Performance

	Target Model	Shadow Model	Attack F1-Scores	
CIFAR-100		ResNet50	0.9384	
	ResNet50	VGG16	0.7217	
		CNN	0.8861	
CUB		RestNet101	0.9675	
	ResNet101	VGG19	0.8486	
		DensNet121	0.6389	

Motivation

Differential Comparison

Motivation

• Differential Comparison

BlindMI Attack

• Differential Comparison

Some Details

- Dataset Preparation for Differential Comparison
 - 1) Generation of Non-members:
 - Sample Transformation.
 - Random Perpetuation.
 - Cross-domain Samples.

Non-member Dataset

Probing Dataset

Some Details

- Dataset Preparation for Differential Comparison
 - 2) Rough Sample Separation:
 - Clustering algorithm like k-means.
 - Separation based on the highest probability score.

Probing Dataset 1

Probing Dataset 2

Some Details

Distance Calculations

$$D(S_{target}^{prob,k}, S_{nonmem}^{prob,k}) = \left\| \frac{1}{n_t} \sum_{i=1}^{n_t} \phi(y_i) - \frac{1}{n_n} \sum_{j=1}^{n_n} \phi(y_j') \right\|_{\nu}$$

$$y_i \in S_{target}^{prob,k}, y_j' \in S_{nonmem}^{prob,k}$$

• Eight Datasets

Dataset	# of classes	Description	Resolution	Training set size	
Adult	2	census income records	N/A	16,280	
EyePACS	5	retina images with diabetic retinopathy	150×150	10,000	
CH-MNIST	8	histological images of colorectal cancer	64×64	2,500	
Location	30	mobile users' location check-in records	N/A	2,505	
Purchase-50	50	shoppers' purchase histories	N/A	10,000	
Texas	100	inpatients stays in health facilities	N/A	10,000	
CIFAR-100	100	object recognition dataset	32×32	10,000	
Birds-200	200	photos of birds species	150×150	5,894	

Training and Probing Datasets

Distance Variations

Comparison of State-of-the-art attacks

	Attack	Adult	EyePACS	CH-MNIST	Location	Purchase-50	Texas	CIFAR-100	Birds-200
	NN	40.6 ± 7.32	69.1 ± 0.02	71.7 ± 3.53	78.4 ± 3.23	59.4 ± 11.9	76.7 ± 2.20	83.1 ± 3.53	58.3 ± 27.4
밀	Top3-NN	26.7 ± 7.25	69.5 ± 1.04	70.9 ± 4.03	78.1 ± 3.39	59.6 ± 12.1	76.8 ± 2.07	81.7 ± 6.66	68.6 ± 21.3
Blind	Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
	BlindMI	64.2 ± 1.59	77.7 \pm 0.80	75.1 ± 1.49	86.2 ± 0.90	78.0 ± 0.31	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09
×	Top2+True	52.1 ± 6.27	73.4 ± 0.41	75.4 ± 1.84	83.3 ± 2.24	62.9 ± 10.7	83.4 ± 1.29	80.9 ± 7.85	69.5 ± 25.6
Blackbox	Loss-Threshold	56.2 ± 0.77	73.8 ± 0.57	71.8 ± 4.01	47.7 ± 19.7	48.1 ± 18.6	69.6 ± 9.60	85.6 ± 5.09	71.2 ± 13.7
ac	Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
- ■	BlindMI	66.0 ± 0.28	80.6 ± 1.90	77.2 \pm 1.83	87.3 ± 0.70	79.9 ± 0.57	86.7 ± 0.37	94.8 ± 0.14	97.2 ± 0.03
nd	NN	54.3 ± 5.50	72.3 ± 0.08	73.5 ± 1.99	85.6 ± 0.71	77.0 ± 0.36	83.4 ± 0.83	93.2 ± 0.46	96.8 ± 0.28
Bi	Top3-NN	56.4 ± 9.27	74.8 ± 0.37	73.6 ± 1.80	85.7 ± 0.69	77.2 ± 0.34	83.4 ± 0.90	93.2 ± 0.80	93.2 ± 0.03
-se	Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
Gray-Blind	BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	78.0 ± 0.31	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09
	Top2+True	66.0 ± 0.50	77.3 ± 0.69	75.1 ± 2.03	86.0 ± 0.55	78.4 ± 0.25	85.7 ± 0.18	93.8 ± 0.53	96.9 ± 0.18
<u>و</u> ا	Loss-Threshold	57.0 ± 0.84	76.8 ± 0.68	73.0 ± 2.90	75.9 ± 4.96	71.8 ± 2.70	76.5 ± 4.81	87.1 ± 3.39	85.3 ± 0.89
Graybox	Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
5	BlindMI	66.0 ± 0.30	80.6 ± 1.90	77.2 \pm 1.83	87.3 ± 0.70	79.9 ± 0.57	86.7 ± 0.37	94.8 ± 0.14	$\textbf{97.2}\pm\textbf{0.03}$

Comparison of State-of-the-art attacks

	Attack	Adult	EyePACS	CH-MNIST	Location	Purchase-50	Texas	CIFAR-100	Birds-200
	NN	40.6 ± 7.32	69.1 ± 0.02	71.7 ± 3.53	78.4 ± 3.23	59.4 ± 11.9	76.7 ± 2.20	83.1 ± 3.53	58.3 ± 27.4
рц	Top3-NN	26.7 ± 7.25	69.5 ± 1.04	70.9 ± 4.03	78.1 ± 3.39	59.6 ± 12.1	76.8 ± 2.07	81.7 ± 6.66	68.6 ± 21.3
Blind	Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
	BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	78.0 ± 0.31	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09
×	Top2+True	52.1 ± 6.27	73.4 ± 0.41	75.4 ± 1.84	83.3 ± 2.24	62.9 ± 10.7	-83.4 ± 1.29	80.9 ± 7.85	69.5 ± 25.6
ĝ.	Loss-Threshold	56.2 ± 0.77	73.8 ± 0.57	71.8 ± 4.01	47.7 ± 19.7	48.1 ± 18.6	69.6 ± 9.60	85.6 ± 5.09	71.2 ± 13.7
Blackbox	Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
B	BlindMI	66.0 ± 0.28	80.6 ± 1.90	77.2 ± 1.83	87.3 ± 0.70	79.9 ± 0.57	86.7 ± 0.37	94.8 ± 0.14	97.2 ± 0.03
pu	NN	54.3 ± 5.50	72.3 ± 0.08	73.5 ± 1.99	85.6 ± 0.71	(77.0 ± 0.36)	83.4 ± 0.83	93.2 ± 0.46	96.8 ± 0.28
Bi	Top3-NN	56.4 ± 9.27	74.8 ± 0.37	73.6 ± 1.80	85.7 ± 0.69	77.2 ± 0.34	83.4 ± 0.90	93.2 ± 0.80	93.2 ± 0.03
ray-Blind	Top1-Threshold	1.01 ± 0.44	71.1 ± 0.42	52.8 ± 17.6	22.7 ± 3.87	53.5 ± 7.26	0.67 ± 0.38	92.8 ± 1.72	71.4 ± 0.65
S.	BlindMI	64.2 ± 1.59	77.7 ± 0.80	75.1 ± 1.49	86.2 ± 0.90	78.0 ± 0.31	85.5 ± 0.80	93.9 ± 0.63	96.8 ± 0.09
1000	Top2+True	66.0 ± 0.50	77.3 ± 0.69	75.1 ± 2.03	86.0 ± 0.55	78.4 ± 0.25	85.7 ± 0.18	93.8 ± 0.53	96.9 ± 0.18
Q.	Loss-Threshold	57.0 ± 0.84	76.8 ± 0.68	73.0 ± 2.90	75.9 ± 4.96	71.8 ± 2.70	76.5 ± 4.81	87.1 ± 3.39	85.3 ± 0.89
raybox	Label-Only	56.2 ± 5.28	72.8 ± 0.09	70.9 ± 1.54	75.3 ± 0.12	72.1 ± 0.07	79.7 ± 0.50	85.5 ± 0.47	86.4 ± 0.81
5	BlindMI	66.0 ± 0.30	80.6 ± 1.90	77.2 \pm 1.83	87.3 ± 0.70	79.9 ± 0.57	86.7 ± 0.37	94.8 ± 0.14	97.2 ± 0.03

Problems

Motivations

Necessity but not sufficiency

Problems

Prob Dataset

