# Embedding-Based Techniques

MATRICES, TENSORS, AND NEURAL NETWORKS

### Probabilistic Models: Downsides

#### **Embeddings**

#### Limitation to Logical Relations

- Representation restricted by manual design
  - Clustering? Assymetric implications?
  - Information flows through these relations
- Difficult to generalize to unseen entities/relations
- Everything as dense vectors
- Can capture many relations
- Learned from data

#### **Computational Complexity of Algorithms**

- Complexity depends on explicit dimensionality
  - Often NP-Hard, in size of data
  - More rules, more expensive inference
- Query-time inference is sometimes NP-Hard
- Not trivial to parallelize, or use GPUs

- Complexity depends on latent dimensions
- Learning using stochastic gradient, back-propagation
- Querying is often cheap
- GPU-parallelism friendly

### Two Related Tasks



### Two Related Tasks



### Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.



### Relation Extraction From Text

John was born in Liverpool, to Julia and Alfred Lennon.



# "Distant" Supervision



No direct supervision gives us this information.

Supervised: Too expensive to label sentences

Rule-based: Too much variety in language

Both only work for a small set of relations, i.e. 10s, not 100s



### Relation Extraction as a Matrix

John was born in Liverpool, to Julia and Alfred Lennon.

|                              | Was born in Was born to | PUP | birthplace | Source A. Hospinos |
|------------------------------|-------------------------|-----|------------|--------------------|
| John Lennon, Liverpool       | 1                       |     | ?          |                    |
| John Lennon, Julia Lennon    | 1                       |     |            |                    |
| John Lennon, Alfred Lennon   | 1                       |     |            |                    |
| Julia Lennon, Alfred Lennon  |                         | 1   |            | ?                  |
| Barack Obama, Hawaii         | 1                       |     | 1          |                    |
| Barack Obama, Michelle Obama |                         | 1   |            | 1                  |

### Matrix Factorization



# Training

Loss Function: 
$$\max_{\mathbf{v},\mathbf{w}} \log \prod_{x,y,r} \exp \langle \mathbf{v}^{x,y}, \mathbf{w}_r \rangle - \lambda(||\mathbf{v}||_2^2 + ||\mathbf{w}||_2^2)$$

Desiderata from the training algorithm:

- Do not instantiate the whole matrix!
- Do not hold all the observed cells in memory
- Each iteration linear in the no. of observations

**Solution**: Stochastic Gradient Descent!

# Training: Stochastic Updates



Pick an observed cell, R(i, j):

- Update  $\mathbf{p}_{ij}$  &  $\mathbf{r}_R$  such that R(i,j) is higher
- Pick any random cell, assume it is negative:
- Update  $\mathbf{p}_{xy}$  &  $\mathbf{r}_{R'}$  such that R'(x,y) is lower

# Relation Embeddings



### Embeddings ~ Logical Relations

#### Relation Embeddings, w

- Similar embedding for 2 relations denote they are paraphrases
  - is married to, spouseOf(X,Y), /person/spouse
- One embedding can be contained by another
  - w(topEmployeeOf) ⊆ w(employeeOf)
  - topEmployeeOf(X,Y)  $\rightarrow$  employeeOf(X,Y)
- Can capture logical patterns, without needing to specify them!

#### Entity Pair Embeddings, v

Similar entity pairs denote similar relations between them
Entity pairs may describe multiple "relations" independent foundedBy and employeeOf relations

From Sebastian Riedel 13

# Similar Embeddings

similar underlying embedding



Successfully predicts "Volvo owns percentage of Scania A.B." from "Volvo bought a stake in Scania A.B."

From Sebastian Riedel 14

# **Implications**

X historian at  $Y \rightarrow X$  professor at Y

X professor at Y X historian at Y

(Freeman, Harvard)

→ (Boyle, OhioState)

Kevin Boyle Ohio State

R. Freeman Harvard



Learns asymmetric entailment:

PER historian at UNIV → PER professor at UNIV

But,

PER professor at UNIV → PER historian at UNIV

From Sebastian Riedel 15

### Two Related Tasks



# **Graph Completion**



# **Graph Completion**



### Tensor Formulation of KG



### Factorize that Tensor





$$S(r(a,b)) = f(\mathbf{v}_r, \mathbf{v}_a, \mathbf{v}_b)$$

# Many Different Factorizations

#### CANDECOMP/PARAFAC-Decomposition

$$S(r(a,b)) = \sum_{k} R_{r,k} \cdot e_{a,k} \cdot e_{b,k}$$

#### Tucker2 and RESCAL Decompositions

$$S(r(a,b)) = (\mathbf{R}_r \times \mathbf{e}_a) \times \mathbf{e}_b$$

#### Model E

$$S(r(a,b)) = \mathbf{R}_{r,1} \cdot \mathbf{e}_a + \mathbf{R}_{r,2} \cdot \mathbf{e}_b$$

Holographic Embeddings

$$S(r(a,b)) = \mathbf{R}_r \times (\mathbf{e}_a \star \mathbf{e}_b)$$

Not tensor factorization (per se)

# Translation Embeddings



#### TransE

$$S\left(r(a,b)\right) = -\|\mathbf{e}_a + \mathbf{R}_r - \mathbf{e}_b\|_2^2$$

#### TransH

$$S(r(a,b)) = -\|\mathbf{e}_a^{\perp} + \mathbf{R}_r - \mathbf{e}_b^{\perp}\|_2^2$$
$$\mathbf{e}_a^{\perp} = \mathbf{e}_a - \mathbf{w}_r^T \mathbf{e}_a \mathbf{w}_r$$

#### TransR

$$S(r(a,b)) = -\|\mathbf{e}_a\mathbf{M}_r + \mathbf{R}_r - \mathbf{e}_b\mathbf{M}_r\|_2^2$$

### Parameter Estimation



Observed cell: increase score

$$S\left(r(a,b)\right)$$

Unobserved cell: decrease score

$$S\left(r'(x,y)\right)$$

### Matrix vs Tensor Factorization





- No encoding of type information
- Can only predict for entity pairs that appear in text together
- Sufficient evidence has to be seen for each entity pair
- Assume low-rank for pairs
- But many relations are not!
- Spouse: you can have only ~1
- Cannot learn pair specific information

## What they can, and can't, do..



- Red: deterministically implied by Black
  - needs pair-specific embedding
  - Only **F** is able to generalize
- Green: needs to estimate entity types
  - needs entity-specific embedding
  - Tensor factorization generalizes, **F** doesn't
- Blue: implied by Red and Green
  - Nothing works much better than random



# Joint Extraction+Completion



# Compositional Neural Models

So far, we're learning vectors for each entity/surface pattern/relation..

But learning vectors independently ignores "composition"

#### Composition in Surface Patterns

- Every surface pattern is not unique
- Synonymy: A is B's spouse.
   A is married to B.
- Inverse: X is Y's parent.
   Y is one of X's children.
- Can the representation learn this?

#### Composition in Relation Paths

- Every relation path is not unique
- Explicit: A parent B, B parent C

  A grandparent C
- Implicit: X bornInCity Y, Y cityInState Z
  X "bornInState" Z
- Can the representation capture this?

# Composing Dependency Paths



But we don't need linked data to know they mean similar things...

Use neural networks to produce the embeddings from text!



# Composing Relational Paths



### Review: Embedding Techniques

#### Two Related Tasks:

- Relation Extraction from Text
- Graph (or Link) Completion

#### **Relation Extraction:**

Matrix Factorization Approaches

#### **Graph Completion:**

Tensor Factorization Approaches

#### Compositional Neural Models

- Compose over dependency paths
- Compose over relation paths

### **Tutorial Overview**

**Part 1: Knowledge Graphs** 



**Part 4: Critical Analysis**