TABLE 1-continued

	1.55 1 - 00.101.1000	
SEQ ID NO	D: ODN SEQUENCE	BACKBONE
176	tootgacgttoocotggcggtoocotgtogot	•
177	teetgtegeteetgteget	၁
178 179	tootggogggaagt tootgazgttgaagt	0
180	toztgacgttgaagt	•
181	tcctagcgttgaagt	•
182	tccagacgttgaagt	•
183	tcctgacggggaagt	•
184 185	tcctggcggtgaagt ggctccggggagggaatttttgtctat	•
186	atagacaaaaattccctccccggagcc	o o
187	tccatgagcttccttgagtct	rna
188	teateactateteeacttett	
189	englight graces regreget gleteeg ch	520
190 191	tegagacattgcacaatcatetg cagattgtgcaatgtctcga	9
192	tecatgtectgatgeg	9
193	gcgatgtcgttcctgatgct	0
194	gcgatgtcgttcctgatgcg	0
195	tocatgtogttocgogogog	0
196 197	tccatgtcgttcctgccgct	9
198	tccatgtcgttcctgtagct gcggcgggcggcgcgccc	0
199	atcaggaacgtcatgggaagc	9
200	tccatgagcttcctgagtct	p-ethoxy
201	tcaacgtt	p-ethoxy
202 203	tcaagctt	p-ethoxy
204	tcctgtcgttcctgtcgtt tccatgtcgtttttgtcgtt	s
205	teetgteettgtegtt	s
206	tecttgtegtteetgtegtt	s
207	btccattccatgacgttcctgatgcttcca	os
208 209	tootgtogttttttgtogtt	5
210	tegtegetgteteegettett tegtegetgtetgeeettett	s
211	tcgtcgctgttgtcgtttctt	5
212	toctgtcgttcctgtcgttggaacgacagg	၁
213	tcctgtcgttcctgtcgtttcaacgtcaggaacgacagga	0
214 215	ggggtctgtcgttttgggggg	808
216	ggggtctgtgcttttgggggg tccggccgttgaagt	sos o
217	tccggacggtgaagt	
218	tecegeegttgaagt	•
219	tccagacggtgaagt	•
220 221	tcccgacggtgaagt	5
222	tccagagettgaagt tccatgtzgtteetgtzgtt	э s
223	tccatgacgttcctgacgtt	sos
224	ggggttgacgttttgggggg	sos
225	tccaggacttctctcaggtt	s
226 227	tttttttttttttttttttt tecatgoogttootgoogtt	s
228	tccatggcggcctggcgg	s
229	tccatgacgttcctgccgtt	s
230	tccatgacgttcctggcggg	5
231	tccatgacgttcctgcgttt	5
232 233	tccatgacggtcctgacggt tccatgcgtgcgtttt	5
234	tccatgcgttgcgtt	s
235	btccattccattctaggcctgagtcttccat	os
236	tccatagcgttcctagcgtt	0
237 238	tccatgtcgttcctgtcgtt	0
238	tccatagcgatcctagcgat tccattgcgttccttgcgtt	٥
240	tccatagcggtcctagcggt	9
241	tccatgattttcctgcagttcctgatttt	•
242	tccatgacgttcctgcagttcctgacgtt	s
243	adeadeal edacadeada a	2
244 245	tccacgacgttttcgacgtt	5
245	togtogttgtogttgtogtt togtogttttgtogttt	s
247	tegtegttgtegttttgtegtt	s
248	gcgtgcgttgtcgttgtcgtt	s
249	czggczggczccgg	•

TABLE 1-continued

	_	-	TIBEE 1-CONCINGE	
		ю:	ODN SEQUENCE	BACKBONE
	250		deddeddedededece	s
	251 252		agicccgigaacgiattcac tgtcgtttgtcgtttgtcgtt	•
	253		tqtcqttqtcqttqtcqtt	s
:	254		tgtcgttgtcgttgtcgtt	s
	255		tcgtcgtfgtcgtt	s
	256 257		tgtcgttgtcgtt	s
	25 <i>1</i> 258		cccccccccccccccccccccccccccccccccccccc	s sos
	259		tgcatccccaggccaccat	505
	260		togtogtogtogtogtt	sos
	261		tcgtcgttgtcgttgtcgtt	sos
	262 263		tcgtcgttttgtcgttttgtcgtt tcgtcgttgtcgttttgtcgtt	805
	264		ggggagggaggaacttcttaaaattcccccagaatqttt	505 O
	265		aaacattctgggggaattttaagaagttcctccccc	0
	266		atgtttacttcttaaaattcccccagaatgttt	0
	267		aaacattctgggggaattttaagaagtaaacat	0
	268 269		atgtttactagacaaaattcccccagaatgttt aaacattctgggggaattttqtctagtaaacat	0
	270		aaaattgacgttttaaaaaa	o sos
- 7	271		ccccttgacgttttcccccc	sos
	272		ttttcgttgtttttgtcgtt	
	273		tcgtcgttttgtcgttttgtcgtt	sos
	274 275		ctgcagcctgggac	0
	276		acccgtcgtaattatagtaaaaccc ggtacctgtggggacattgtg	0
	277		agcaccqaacqtgaqaqq	0
2	278		tccatgccgttcctgccgtt	0
	279		tccatgacggtcctgagggt	0
	281 281		tccatgccggtcctgacggt	0
	282		tccatgcgcgtcctgcgcgt ctggtctttctggtttttttctgg	o s
	283		tcaggggtgggggaacctt	sos
	284		tccatgazgttcctagttct	•
	285		tocatgatgttcctagttct	9
	286 287		cccgaagtcatttcctcttaacctgg	•
	288		ccaggttaagaggaaatgacttcggg tcctggzggggaagt	0
	289		gzggzgggzggzgzgccc	×
2	90		tocatgtgcttcctgatgct	0
	91		tccatgtccttcctgatgct	
	92		tccatgtcgttcctagttct	
	94		tocaagtagttoctagttot tocatgtagttoctagttot	0
	95		tecegegegttecegegegtt	5
	96		teetggeggteetggeggtt	s
	97		tcctggagggaagt	•
_	98		tcctggggggaagt	0
	00		tootggtggggaagt togtogttttgtogttttgtogtt	0
	01		ctggtctttctggttttttctgq	0
3	02		tccatgacgttcctgacgtt	0
	03		tccaggacttctctcaggtt	sos
	04		tzgtzgttttgtzgttttgtzgtt btcgtcgttttgtcgttttqtcqtttttt	0
	06		gctatgacgttccaaggg	os s
_	07		tcaacgtt	5
3	80		tccaggactttcctcaggtt	o
	09		ctctctgtaggcccgcttgg	s
	10 11		ctttccgttggacccctggg	S
	12		gtccgggccaggccaaagtc gtgcgcgcgagcccgaaatc	s
	13		tccatgaigttcctgaigtt	s
3	14		aatagtcgccataacaaaac	•
	15		aatagtcgccatggcgggc	•
	16		btttttccatgtcgttcctgatgctttt	os
	17 18		tcctgtcgttgaagtttttt gctagctttagagctttagagctt	9
	19		getagetteagagetttagagett tgetgettegeegeeegeee	o o
	20	•	tcgacgttcfccacccc	•
	21	1	togtogttocooggoooga	•
	22		tcgtcgttccccacccc	၁
3:	23	1	tagaagttacaacaaca	٥

TABLE 1-continued

	TABLE 1-continued	
SEQ ID NO	O: ODN SEQUENCE	BACKBONE
324	togtogatococcocco	٥
325	tcctgacgttgaagt	s
326 327	toctgoogttgaagt toctgacqqtgaagt	s
328	tactgaggttgaagt	s
329	tcctggcgggaagt	s
330	aaaatctgtgAttttaaaaaa	808
331	gatecagteaetgacetggeagaatetggat	•
332	gatccagattctgccaggtcactgtgactggat	•
333 334	gatocagtoacagtgactcagfagaatotggat gatocagattotgotgagtoactgtgactggat	•
335	tegtegtteecececece	3
336	tzgtqqttcccccccccc	3
337	tzgtcgttcccccccccc	0
338	tcgtzgttcccccccccc	0
339	tegtegetecececece	٥
340 341	tegteggteeeccccccc	•
342	taggagttacacacacaca ggaattttacacacacaca	0
343	tcgtcgttttgacgttttgtcgtt	s
344	togtogttttgacgttttgacgtt	s
345	ccgtcgttcccccccccc	o
346	gcgtcgttcccccccccc	9
347 348	tcgtcattcccccccccc	0
348	acgtcgttccccccccccc	0
350	ctgtcgttcccccccccc bttttcqtcqttcccccccccc	o os
351	tcgtcgttcccccccccb	0
352	tcgtcgttttgtcgttttgtcgttb	0
353	tccagttccttcctcagtct	0
354	tzgtcgttttgtcgttttgtcgtt	0
355 356	tcctggagggaagt	s
357	tootgaanaggaagt togtogttooccocco	s s
358	tzgtzgttttgtzgttttgtzgtt	s s
359	ggggtcaagcttgaggggg	sos
360	tgctgcttcccccccccc	s
361	togtogtogtt	s2
362 363	tegtegtegtt	s20
364	togtogtogtogtt toaacgttga	os2
365	tcaacqtt	s s
366	atagttttccattttttac	3
367	aatagtcgccatcgcgcgac	0
368	aatagtcgccatcccgggac	5
369	aatagtcgccatcccccc	၁
370 371	tgctgcttttgtgcttttgtgctt ctgtgctttctgtgttttttctgtg	•
372	ctaatctttctaattttttctaa	s s
373	tcgtcgttggtcgttggtgtcqtt	s
374	tcgtcgttggttgtcgttttggtt	3
375	accatggacgagctgtttcccctc	_
376	togtogttttgcgtgcgttt	s
377	ctgtaagtgagcttggagag	
378 379	gagaacgctggaccttcc cgggcgactcagtctatcgg	
380	gttctcaqataaaqcqqaaccaqcaacaqacacagaa	
381	ttctgtgtctgttgctggttccgctttatctgagaac	
382	cagacacagaagcccgatagacg	
383	agacagacacgaacgaccg	
384	gtctgtcccatgatctcgaa	
385 386	gctggccagcttacctcccg	
386 387	ggggcctctatacaacctggg ggggtccctgagactgcc	
388	gagaacgctggaccttccat	
389	tecatgteggteetgatget	
390	ctcttgcgacctggaaggta	
391	aggtacagccaggactacga	
392	accatggacgasctgtttcccstc	
393	accatggattacctttttcccctt	
394 395	atggaaggtccagcgttctc	9
396	agcatcaggaccgacatgga ctctccaagctcacttacag	9
397	tecetgagactgeeceacett	

TABLE 1-continued

SEQ ID N	O: ODN SEQUENCE	BACKBONE
471 472	tcagctctggtactttttca	
472	tggttacggtctgtcccatg gtctatcggaggactggcgc	
474	cattttacqqqqqqqqq	
475	gaggggaccattttacgggc	
476	tgtccagccgaggggaccat	
477 478	cgggcttacggcggatgctg	
479	tggaccttctatgtcggtcc tgtcccatgtttttagaagc	
480	gtggttacqgtcqtqcccat	
481	cctccaaatgaaagaccccc	
482	ttgtactctccatgatggtt	
483 484	ttccatgctgttccggctgg gaccttctatgtcggtcctg	
485	gagaccgctcgaccttcgat	
486	ttgccccatattttagaaac	
487	ttgaaactgaggtgggac	
488 489	ctatcggaggactggcgcgc	
490	cttggagggcctcccggcgg gctgaaccttccatgctqtt	
491	tagaaacagcattcttcttttagggcagcaca	
492	agatggttctcagataaagcggaa	
493	ttccgctttatctgagaaccatct	
494 495	gtcccaggttgtatagaggctgc gcgccagtcctccgatagac	
496	atcqqaqqactqqcqccq	
497	ggtctgtcccatatttttag	sos
498	tttttcaacgttgaggggg	sos
499	*tttcaagcgttgattttt	sos
500 501	ggggtcaacgttgatttttt ggggttttcaacgttttgagggggg	sos
502	ggttacggtctgtcccatat	sos sos
503	ctgtcccatatttttagaca	
504	accatectgaggecattegg	
505 506	cgtctatcgggcttctgtgtctg ggccatcccacattgaaagtt	
507	ccaaatatcggtggtcaagcac	
508	gtgcttgaccaccgatatttgg	
509	gtgctgatcaccgatatcctgttcgg	
510 511	ggccaactttcaatgtgggatggcctc	
512	tteegeegaatggeeteaggatggtae tatagteeetgagaetgeeeeacetteteaacaace	
513	gcagcctctatacaacctgggacggga	
514	ctatcggaggactggcgccg	
515	tatcggaggactggcgccg	
516 517	gateggaggaetggegeeg cegaaeaggatateggtgateageae	
518	ttttggggtcaacgttgaggggg	
519	ggggtcaacgttgaggggg	sos
520	cacacacacacacacac	5
521 522	ggggcatgacgttcgggggg ggggcatgacgttcaaaaas	ss
523	ggggcatgaggttcgggggg	s
524	ggggcatgacgttcggggg	s 805
525	aaaacatgacgttcaaaaaa	sos
526	aaaacatgacgttcgggggg	sos
527 528	ggggcatgacgttcaaaaaa	sos
529	gccatggacgactgttcccctc	s s
530	ccccccccccccccc	sos
531	aaaaaaaaaaaaaaaaa	sos
532	gctgtaaaatgaatcggccg	sos
533 534	ttegggeggaeteeteatt	505
535	tatgcegegeeeggaettat ggggtaategateagggggg	sos
536	tttgagaacgctggaccttc	sos
537	gatcgctgatctaatgctcg	805
538	gtcggtcctgatgctgttcc	808
539 540	tcgtcgtcagttcgctgtcg	sos
541	ctggaccttccatgtcgg gctcgttcagcgcgtct	aca aos
542	ctggaccttccatgtc	aca
543	cactgtccttcgtcga	605
544	cgctggaccttccatgtcgg	sos

TABLE 1-continued

	TABLE 1-continued	
SEQ ID NO	O: ODN SEQUENCE	BACKBONE
545	gctgagctcatgccgtctgc	sos
546	aacgctggaccttccatgtc	ses
547 548	tgcatgccgtacacagctct	sos
549	cottcoatgtoggtoctgat tactcttoggatocottgog	505 505
550	ttccatqtcqqtcctqat	sos
551	ctgattqctctctcqtga	sos
552	q Agcgttattcctgactcgcc	0
553	J cotacgttgtatgcgcccagct	•
554	ggggtaatcgatgaggggg	•
555 556	ttcgggcggactcctccatt	3
557	ttttttttttttttttttt ggggtttttttttqqqqq	o o
558	tttttgggggggtttt	9
559	99999999999999999 3	9
560	aaaaaaaaaaaaaaaaaaa	0
561	CCCCCaaaaaaaaccccc	•
562	aaaaacccccccaaaaa	•
563	tttgaattcaggactggtgaggttgag	0
564 565	tttgaatcctcagcggtctccagtggc aattctctatcggggcttctgtgtctgttgctggttccgctttat	0
566	ctagataaagcggaaccagcaacagacacagaagccccgatagag	0
567	tttctagagaggtgcacaatgctctgg	0
568	tttgaattccgtgtacagaagcgagaagc .	0
569	tttgcggccgctagacttaa ctgagagata	0
570	tttgggcccacgagagacagagacacttc	0
571 572	tttgggcccgcttctcgcttctgtacacg	0
573	gagaacgctggaccttccat tccatgtcggtcctgatgct	s s
574	ctgtcq	s
575	tcgtga	s
576	cgtcga	5
577	agtgct	s
578	ctgtcg	၁
579 580	agtgct cgtcga	9
581	togtga	0
582	gagaacgeteeagettegat	•
583	gctagacgtaagcgtga	0
584	gagaacgctcgaccttccat	0
585	gagaacgctggacctatccat	0
586 587	gctagaggttagcgtga	0
588	gagaacgctggacttccat tcacgctaacgtctagc	0
589	bgctagacgttagcgtga	٥
590	atggaaggtcgagcgttctc	3
591	gagaacgctggaccttcgat	0
592	gagaacgatggaccttccat	•
593	gagaacgctggatccat	0
594 595	gagaacgeteeageactgat teeatgteggteetgetgat	0
596	atgtcctcggtcctgatgct	0
597	gagaacgctccaccttccat	0
598	gagaacgctggaccttcgta	9
599	batggaaggtccagcgttctc	0
600	tcctga	0
601	tcaacgtt	9
602 603	aacgtt	9
604	aacgttga tcacgctaacctctagc	0
605	gagaacgctggaccttgcat	0
606	gctggaccttccat	0
607	gagaacgctggacctcatccat	0
608	gagaacgctggacgctcatccat	э
609	aacgttgaggggcat	0
610	atgccctcaacgtt	0
611 612	tcaacgttga	•
613	gctggaccttccat caacgtt	2
614	acaacgttga	o o
615	tcacgt	0
616	tcaagctt	0
617	togtca	0
618	aggatato	٥

TABLE 1-continued

TABLE 1-continued		
SEQ ID NO	O: ODN SEQUENCE	BACKBONE
619	tagacgtc	٥
620	gacgtcate	0
621 622	ccatagat atcgatgt	•
623	atgcatgt	•
624	ccatgcat	0
625	agegetga teageg 4F C	0
626 627	tcagcg/ft C ccttcgat	0
628	gtgccggggtctccgggc	0
629	gctgtggggggctcctg	5
630	btcaacgtt	3
631	ftcaacgtt	3
632 633	faacgttga tcaacgt	o s
634	aacqttq	s
635	cgacga	0
636	tcaacgtt	0
637	togga	0
638 639	agaacgtt tcatcgat	0
640	taaacgtt	o s
641	ccaacgtt	s
642	gctcga	s
643	cgacgt	S
644 645	cgtcgt acgtgt	S
646	cgttcg	S S
647	gagcaagctggaccttccat	s
648	cgcgta	s
649	cgtacg	s
650 651	tcaccggt caagagatgctaacaatgca	s s
652	acccatcaatagctctgtgc	s
653	ccatcgat	5
654	tegacgte	ာ
655 656	ctagcgct	٥
657	taageget tegegaattegeg	0
658	atggaaggtccagcgttct	0
659	actggacgttagcgtga	. 0
560	cgcctggggctggtctgg	0
661 662	gtgtcggggtctccgggc	0
663	gtgccgtcgcggggttgg	o 5
664	gaagttcacgttgaggggcat	3
665	atctggtgagggcaagctatg	s
666	gttgaaacccgagaacatcat	5
667 668	gcaacgtt gtaacgtt	0
669	cgaacgtt	• •
670	gaaacgtt	0
671	caaacgtt	0
672 673	ctaacgtt	0
674	ggaa/gtt tgaacgtt	0
675	acaacgtt	0
676	ttaacgtt	0
677	aaaacgtt	0
678 679	ataacgtt aacgttct	0
680	tccgatcg	0
681	tccgtacg	0
682	gctagacgctagcgtga	0
683	gagaacg tggacctcatcatccat	٥
684	gagaacgatagaccttctat	٥
685 686	actagacgttagtgtga cacaccttggtsaatgtcacgt	•
687	tetecatectatggttateg	• •
688	cgctggagcttccat	5
689	caccaccttggtcaatgtcacgt	•
690	gctagacgttagctgga	•
691 692	agtgcgattgcagatcg	٥
074	ttttcgttttgtggttttgtggtt	

TABLE 1-continued

	TABLE 1-continued	
SEQ ID	NO: ODN SEQUENCE	BACKBONE
693	ttttcgtttgtcgttttgtcgtt	
694 695	ttttgttttgtggttttgtggtt	
696	accgcatggattctaggcca gctagacgttagcgt	s
697	aacgctggaccttccat	•
698	tcaazgtt	•
699	ccttcgat	•
700 701	actagacgttagtgtga gctagaggttagcgtga	s s
702	atggactctccagcgttctc	0
703	atcgactctcgagcgttctc	5
704	gctagacgttagc	၁
705 706	gctagacgt agtgcgattcgagatcg	3
707	tcagzgct	9
708	ctgattgctctctcgtga	9
709	tzaacgtt	•
710 711	gagaazgctggaccttccat	9
711	gctagacgttaggctga gctacttagcgtga	0
713	gctaccttagcgtga	9
714	atcgacttcgagcgttctc	0
715	atgcactctgcagcgttctc	၁
716 717	agtgactctccagcgttctc gccagatgttagctgga	0
718	atcgactcgagcgttctc	0
719	atcgatcgagcgttctc	0
720	bgagaacgctcgaccttcgat	0
721 722	gctagacgttagctgga atcgactctcgagcgttctc	sos
723	tagacgttagcgtga	sos
724	cgactctcgagcgttctc	0
725	ggggtcgaccttggagggggg	sos
726 727	gctaacgttagcgtga	٥
727	cgtcgtcgt gagaacgctggaczttccat	• •
729	atcgacctacgtqcgttztc	0
730	atzgacctacgtgcgttctc	•
731 732	gctagazgttagcgt	ာ
732	atcgactctcgagzgttctc ggggtaatgcatcaggggg	o sos
734	ggctgtattcctgactgccc	505
735	ccatgctaacctctagc	0
736	gctagatgttagcgtga	۰
737 738	cgtaccttacggtga tccatgctggtcctgatgct	o o
739	atcgactctctcqaqcqttctc	9
740	gctagagcttagcgtga	0
741	atcgactctcgagtgttctc	•
742 743	aacgetegaeettegat eteaacgetggaeetteeat	0
744	atcgacctacgtgcgttctc	0
745	gagaatgctggaccttccat	0
746	tcacgctaacctctgac	•
747	bgagaacgctccagcactgat	0
748 749	bgagcaagctggaccttccat cgctagaggttagcgtga	0
750	gctagatgttaacgt	0
751	atggaaggtccacgttctc	0
752	gctagatgttagcgt	0
753 754	gctagacgttagtgt c	0
754 755	tccatgacggtc#Egatgct tccatggcggtcctgatgct	0
756	gctagacgatagcgt	0
757	gctagtcgatagcgt	•
758 750	tccatgacgttcctgatgct	၁
759 760	tccatgtcgttcctgatgct	0
761	gctagacgttagzgt gctaggcgttagcgt	o
762	tccatgtzggtcctgatgct	5
763	tccatgtcggtzctgatgct	•
764 765	atzgactctzgagzgttctc	•
765 766	atggaaggtecagtgttete geatgaegttgaget	0
,	J77~~7~~7~~	•

TABLE 1-continued

	TIBLE 1-concluded	
SEQ ID N	O: ODN SEQUENCE	BACKBONE
767	ggggtcaacgttgaggggg	s
768	ggggtcaagtctgaggggg	sos
769 770	cacacacacacacacacacacacacacacacacacaca	0
771	cccccccccccccccccccccccccccccc	S S
772	tcatgtcgctcctgatcct	5
773	gctaaacgttagcgt	٥
774	tocatgtogatootgatgot	•
775 776	tocatgooggtootgatgot aaaatcaacgttgaaaaaaa	5
777	tocataacqttoctqatqct	80S
778	tggaggtcccaccgagatcggag	5
779	cgtcgtcgtcgtcgt	5
780	ctgctgctgctgctg	5
781 782	gagaacyctucgaccttcgat gctagatgttagcgt	5
783	gcatgacqttqaqct	5 5
784	tcaatgctgaf	9
785	tcaacgttgaf	၁
786	tcaacgttgab	၁
787 788	gcaatattgcb	9
789	gcaatattgcf agttqcaact	0
790	tcttcgaa	5
791	tcaacgtc	o
792	ccatgtcggtcctgatgct	c
793 794	gttttatataatttggg	0
795	tttttgtttgtcgttttgtcgtt ttggggggggtt	o s
796	ggggttgggggtt	s
797	ggtggtgtaggttttgg 👝 e	0
798	bgagaazgetegaeettagat	3
799 800	tcaacgttaacgtt	э
301	bgagcaagztggaccttecat bgagaazgetecagcactgat	5
30.3	tcaazgttgax	9
303	gzaatattgcx	5
304	tgctgcttttgtcgttttgtgctt	5
305 306	ctgcgttagcaatttaactgtg	၁
307	tccatgacgttcctgatgct tgcatgccgtgcatccgtacacagctct	s
808	tgcatgccgtacacagctct	5 9
309	tgcatcagctct	s
810	tgcgctct	s
811 812	cccccccccccc	s
812	cccccccc	5 5
814	tgcatcagetet	505
815	tgcatgccgtacacagctct	9
816	gagcaagctggaccttccat	5
317 318	tcaacgttaacgttaacgttaacgtt	s
319	gagaacgctegaccttegat gtccccatttcccagaggaggaaat	5
820	ctagcggctgacgtcatcaaqctaq	0
321	ctagcttgatgacgtcagccgctag	ŏ
822	cggctgacgtcatcaa	s
823	ctgacgtg	c
· 824 825	ctgacgtcat attcgatcggggcgggcgag	0
826	ctcgccccgcccgatcgaat	o o
327	gactgacgtcagcgt	٥
328	ctagcggctgacgtcataaagctagc	s
329	ctagctttatgacgtcagccgctagc	s
830 831	ctagoggotgagotoataaagotago ctagtggotgacgtoatoaagotag	5
332	tecaccacgtggtctatget	s s
833	gggaatgaaagattttattataag	5
334	tctaaaaaccatctattcttaaccct	9
335	ageteaacgteatge	>
936	ttaacggtggtagcggtattggtc	э
937 938	ttaagaccaataccgctaccaccg gatctagtgatgagtcaqccqgatc	9
339	gatccggctgactcatcactagatc	•
840	tccaagacgttcctgatgct	5

TABLE 1-continued

	TADE 1-CONCINGE	
SEQ ID N	O: ODN SEQUENCE	BACKBONE
341	tocatgacgtccctgatgct	•
842 843	tccaccacgtggctgatgct ccacgtggacctctagc	0
344	tcagaccacgtggtcgggtgttcctga	•
345	tcaggaacacccgaccacgtggtctg/ 0	0
346	catttccacgatttccca	9
347 348	ttcctctatgcaagagact tgtatctctctgaaggact	9
849	ataaagcgaaactagcagcagtttc	0
850	gaaactgctgctagtttcgctttat	
851	tgcccaaagaggaaaatttgtttcatacag	၁
852 853	ctgtatgaaacaaattttcct#Ettgggca	3
854	ttagggttagggttagggtt tccatgagcttcctgatgct	55 55
855	aaaacatqacqttcaaaaaa	ss
356	aaaacatgacgttcgggggg	ss
857	ggggcatgagcttcgggggg	SOS
858 859	ctaggctgacgtcatcaagctagt totgacgtcatctgacgttggctgacgtct	9
360	ggaattagtaatagatatagaagtt	0
361	tttaccttttataaacataactaaaacaaa	0
862	gcgttttttttgcg	5
863	atatctaatcaaaacattaacaaa	•
864 865	tctatcccaggtggttcctgttag btccatgacgttcctgatgct	0
866	btccatqagcttcctgatqct	0
867	tttttttttttf	0
868	ttttttttttf	so
369 370	ctagcttgatgagctcagccgctag	0
370 371	ttcagttgtcttgctgcttagctaa tacatgagcttcctgagtct	o s
372	ctagcggctgacgtcatcaatctag	0
873	tgctagctgtgcctgtacct	s
374 275	atgctaaaggacgtcacattgca	၁
375 376	tgcaatgtgacgtcctttagcat gtaggggactttccgagctcgagatcctatg	9
377	cataggatctcgagctcgqaaagtcccctac	9
378	ctgtcaggaactgcaggtaagg	0
379	cataacataggaatatttactcctcgc	٥
380 381	ctccagctccaagaaaggacg	0
382	gaagtttctggtaagtcttcg tgctgcttttgtgcttttgtgctt	o s
383	tcgtcgttttgtggttttgtggtt	s
384	tcgtcgtttgtcgttttgtcgtt	s
885	tootgacgttoggogogoco	5
886 387	tgctgcttttgtgcttttgtgctt tccatgagcttcctgagctt	5
388	tegtegtttegtegttttgaegtt	5 5
389	tegtegtttgegtgegtttegtegtt	s
390	togogtgogttttgtogttttgaogtt	s
391 392	ttcgtcgttttgtcgttttgtcgtt	5
893	teetgaegggaagt teetggegtggaagt	s
394	tcctggcggtgaagt	s
895	tcctggcgttgaagt	s
396	tcctgacgtggaagt	s
897 898	gAgacgtteggegegegeee gegaegggegegegeee	s
399	gegaegggegegegee	s s
900	gcggcggtcggcgcgccc	s
901	gcgacggtcgcgcgccc	s
902	gcggcgttcggcgcgccc	s
903 904	gagaagtgaggagagaaa tagtagatgtataag	s
905	tgtggggttttggttttgg	s
906	aggggagggggggggg	s
907	tgtgtgtgtgtgtgtgtgt	s
908	ctctctctctctctctctct	chimeric
9 0 9 910	ggggtcgacgtcgaggggg atatatatatatatatatat	s
911	tttttttttttttttttttttttt	s
912	tttttttttttttttt	s
913	ttttttttttttttt s	
914	gctagagggggggt	

TABLE 1-continued

SEQ ID NO	O: ODN SEQUENCE	BACKBONE
915 916	gctagatgttagggg	
917	gcatgaggggggct atggaaggtccagggggctc	
918	atggactctggaggggctc	
919	atggaaggtccaaggggctc	
920	gagaagggggaccttggat	
921 922	gagaagggggacettecat gagaaggggccagcactgat	
923	tccatgtggggcctgatgct	
924	tccatgagggcctgatgct	
925	tocatgtggggcctgctgat	
926 927	atggactotooggggttoto atggaaggtooggggttoto	
928	atggactctggagggtctc	
929	atggaggetecatggggete	
930	atggactctqqqqqqttctc	
931 932	tccatgtgggtggggatgct	
933	tccatgcgggtgggatgct tccatgggggtcctgatgct	
934	tccatggggtccctgatgct	
935	tocatggggtgcctgatgct	
936 937	tocatggggttcctgatgct	
938	tccatcgggggcctgatgct gctagagggagtgt	
939	ttttttttttttttt	s
940	gmggtcaacgttgagggmggg	s
941	ggggagttcgttgagggggg	S
942 943	tegtegtttteecececee ttggggggtttttttttttt	s
944	tttaaattttaaaatttaaaata	s s
945	ttggtttttttggtttttttttgg	s
946	tttcccttttccccttttcccctc	s
947 948	ggggtcatcgatgagggggg s tccatgacgttcctgacgtt	sos
949	tccatgacgttcctgacgtt	
950	tecatgaegtteetgaegtt	
951	tocatgacgttcctgacgtt	
952 953	tocatgacgttcctgacgtt tocatgacgttcctgacgtt	
954	tccatgacgttcctgacgtt	
955	tocatgacgttcctgacgtt	
956	tccatgacgttcctgacgtt	
957 958	tocatgacgttoctgacgtt tocatgacgttoctgacgtt	
959	gggggacgatcgtcggggg	505
960	gggggtcgtacgacgggggg	505
961	ttttttttttttttttttt	ро
962 963	00000000000000000000000000000000000000	po
964	togtogttttgtogttttgtogtt	ро
965	tcgtcgttttgtcgttttgtcgtt	
966	togtogttttgtogttttgtogtt	
967	tcgtcgttttgtcgttttgtcgtt	
968 969	ggggtcaacgttgaggggg ggggtcaacgttgaggggg	
970	ggggtcaagcttgaggggg	
971	tgctgcttcccccccccc	
972	ggggacgtcgacgtggggg	sca
973 974	ggggtegtegaegaggggg ggggtegaegtaegtegaggggg	sos sos
975	ggggaccqgtaccggtggggg	sos
976	gggtcgacgtcgaggggg	805
977	ggggtcgacgtogagggg	sos
978 979	ggggaacgttaacgttgggggg	eca
980	ggggtcaccggtgaggggg ggggtcgttcgaacgaggggg	808 808
981	ggggacgttcgaacgtggggg	sos
982	tcaactttga	S
983	tcaagcttga	s
984 985	tcacgatcgtga	s
986	tcagcatgctga gggggagcatgctgggggg	s sos
987 988	9999999999999999	608

TABLE 1-continued

	TABLE 1-continued	
SEQ ID NO:	ODN SEQUENCE	ВАСКВОНЕ
989	gggggacgacgtcgtcggggg	sos
990 991	gggggacgagctcgtcgggggg	508
992	gggggacgtacgtcgggggg tcaacgtt	aca
993	tccataccggtcctgatgct	
994	tocatacoggtoctacoggt	s
995	gggggacgatcgttgggggg	808
996 997	ggggaacgatcgtcgggggg	sos
998	ggg ggg acg atc gtc ggg ggg ggg gga cga tcg tcg ggg ggg	sos
999	ana gac gtt ana	po
1000	aaagagcttaaa	po
1001	aaagazgttaaa	ро
1002 1003	anattegyana C	ро
1003	gggggtcatcqatgaggggg gggggtcaacqttgaggggg	808
1005	atgtagcttaataacaaagc	sos po
1006	ggatcccttgagttacttct	po
1007	ccattccacttctgattacc	po
1008	tatgtattatcatgtagata	po
1009 1010	agcctacgtattcaccctcc ttcctgcaactactattgta	po
1011	atagaaggccctacaccagt	po po
1012	ttacaccggtctatggaggt	po
1013	ctaaccagatcaagtctagg	po
1014	cctagacttgatctggttag	ро
1015 1016	tataagcctcgtccgacatg	рo
1015	catgtcggacgaggcttata tggtggtggggagtaagctc	po po
1018	gagetaetececeacea	po
1019	gccttcgatcttcgttggga	ро
1020	tggacttctctttgccgtct	ро
1021	atgctgtagcccagcgataa	ро
1022 1023	accgaatcagcggaaagtga tccatgacgttcctgacgtt	ро
1024	ggagaaacccatgagctcatctgg	
1025	accacagaccagcaggcaga	
1026	gagcgtgaactgcgcgaaga	
1027	tcggtacccttgcagcggtt	
1028 1029	ctggagccctagccaaggat gcgactccatcaccagcgat	
1030	cctgaagtaagaaccagatgt	
1031	ctgtgttatctgacatacacc	
1032	aattagccttaggtgattggg	
1033	acatctggttcttacttcagg	
1034 1035	ataagtcatattttgggaactas	
1036	cccaatcacctaaggctaatt ggggtcgtcgacgaggggg	\$05
1037	ggggtcgttcgaacgaggggg	sos
1038	ggggacgttcgaacgtggggg	sos
1039	tcctggcggggaagt	S
1040 1041	ggggaacgacgtcgttggggg	sos
1041	ggggaacgtacgtcgggggg ggggaacgtacgttacgtt	sos
1043	ggggtcaccqgtgaqqqqq	505
1044	ggggtcgacgtacgtcgaggggg	sos
1045	ggggaccggtaccggtggggg	sos
1046 1047	gggtcgacgtcgaggggg	805
1047	ggggtegaegtegagggg ggggaaegttaaegttgggggg	sos sos
1049	ggggacgtcgacgtggggg	sos
1050	gcactcttcgaagctacagccggcagcctctgat	
1051	cggctcttccatgaggtctttgctaatcttgg	
	cggctcttccatgaaagtctttggacgatgtgagc	
	tcctgcaggttaagt	s
	gggggtcgttcgttgggggg gggggatgattgttgggggg	sos sos
	gggggazgatzgttgggggg	sos
1057	gggggagctagcttgggggg	sos
	ggttcttttggtccttgtct	5
	ggttcttttggtcctcgtct	s
	ggttcttttggtccttatct ggttcttggtttccttgtct	8
	tggtcttttggtccttgtct	s
		-

TABLE 1-continued

SEQ ID N	O: ODN SEQUENCE	BACKBONE
1063	ggttcaaatggtccttgtct 9	s
1064	gggtcttttgggccttgtct 🗸	s
1065	tccaggacttctctcaggtttttt	s
1066	tccaaaacttctctcaaatt	s
1067	tactacttttatacttttatactt	s
1068	tgtgtgtgtgt <u>atqtqtgtgtg</u>	s
1069	ttgttgttgt/gtttgttgttgttg	s
1070	ggctccggggagggaatttttgtctat	s
1071	gggacgatcgtcgggggg	sos
1072	gggtcgtcgacgagggggg	sos
1073	ggtcgtcgacgagggggg	505
1074	gggtcgtcgtcgtgggggg	505
1075	ggggacgatcgtcggggggg	505
1076	ggggacgtcgtcgtggggg	505
1077	ggggtcgacgtcgacgtcgagggggg	sos
1078	ggggaaccgcggttgggggg	sos
1079	ggggacgacgtcgtggggggg	sos
1080	tcgtcgtcgtcgtgggggg	sos
1081	tcctgccggggaagt	s
1082	tcctgcagggaagt	s
1083	tcctgaagggaagt	s
1084	tcctggcgggcaagt	s
1085	tcctggcgggtaagt	s
1086	tcctggcgggaaagt	s
1087	tccgggcggggaagt	s
1088	tcggggcggggaagt	s
1089	tcccggcggggaagt	s
1090	gggggacgttggggg	s
1091	ggggtttttttttgggggg	sos
1092	ggggccccccccgggggg	sos
1093	ggggttgttgttgttgggggg	sos

[0053] In some embodiments, the immunostimulatory nucleic acid is a CpG nucleic acid. CpG sequences, while relatively rare in human DNA are commonly found in the DNA of infectious organisms such as bacteria. The human immune system has apparently evolved to recognize CpG sequences as an early warning sign of infection and to initiate an immediate and powerful immune response against invading pathogens without causing adverse reactions frequently seen with other immune stimulatory agents. Thus CpG containing nucleic acids, relying on this innate immune defense mechanism can utilize a unique and natural pathway for immune therapy. The effects of CpG nucleic acids on immune modulation have been described extensively in published patent applications, such as PCT US95/01570), PCT/US97/19791, PCT/US98/03678; PCT/US98/10408; PCT/US98/04703; PCT/US99/07335; and PCT/US99/ 09863. The entire contents of each of these patent applications is hereby incorporated by reference.

[0054] A CpG nucleic acid is a nucleic acid which includes at least one unmethylated CpG dinucleotide. A nucleic acid containing at least one unmethylated CpG dinucleotide is a nucleic acid molecule which contains an unmethylated cytosine in a cytosine-guanine dinucleotide sequence (i.e. "CpG DNA" or DNA containing a 5' cytosine followed by 3' guanosine and linked by a phosphate bond) and activates the immune system. The CpG nucleic acids can be double-stranded or single-stranded. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity. Thus in some aspects of the invention it is preferred that the nucleic acid be single stranded and in other aspects it is preferred that the nucleic acid be double stranded. The terms

CpG nucleic acid or CpG oligonucleotide as used herein refer to an immunostimulatory CpG nucleic acid or a nucleic acid unless otherwise indicated. The entire immunostimulatory nucleic acid can be unmethylated or portions may be unmethylated but at least the C of the 5' CG 3' must be unmethylated.

[0055] In one preferred embodiment the invention provides an immunostimulatory nucleic acid which is a CpG nucleic acid represented by at least the formula:

5'X₁X₂CGX₃X₄3'

[0056] wherein X_1 , X_2 , X_3 , and X4 are nucleotides. In one embodiment X_2 is adenine, guanine, cytosine, or thymine. In another embodiment X_3 is cytosine, guanine, adenine, or thymine. In other embodiments X_2 is adenine, guanine, or thymine and X_3 is cytosine, adenine, or thymine.

[0057] In another embodiment the immunostimulatory nucleic acid is an isolated CpG nucleic acid represented by at least the formula:

5'N₁X₁X₂CGX₂X₄N₂3'

[0058] wherein X_1 , X_2 , X_3 , and X_4 are nucleotides and N is any nucleotide and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In one embodiment X_1X_2 are nucleotides selected from the group consisting of: GpT, GpG, GpA, ApA, ApT, ApG, CpT, CpA, CpG, TpA, TpT, and TpG; and X_3X_4 are nucleotides selected from the group consisting of: TpT, ApT, TpG, ApG, CpG, TpC, ApC, CpC, TpA, ApA, and CpA. Preferably X_1X_2 are GpA or GpT and X_3X_4 are TpT. In other embodiments X_1 or X_2 or both are purines and X_3 or X_4 or both are pyrimidines. In another

not exclusively associated with atopic or allergic symptoms. An "initiator" as used herein refers to a composition or environmental condition which triggers asthma. Initiators include, but are not limited to, allergens, cold temperatures, exercise, viral infections, SO₂.

[0103] In another aspect the invention provides methods for treating or preventing asthma or allergy in a hyporesponsive subject. As used herein, a hypo-responsive subject is one who has previously failed to respond to a treatment directed at treating or preventing asthma or allergy or one who is at risk of not responding to such a treatment. The treatment directed at treating or preventing asthma or allergy may be an asthma/allergy medicament, in which case the hypo-responsive subject is one who is hypo-responsive to an asthma/allergy medicament.

[0104] Other subjects who are hypo-responsive include those who are refractory to an asthma/allergy medicament. As used herein, the term "refractory" means resistant or failure to yield to treatment. Such subjects may be those who never responded to an asthma/allergy medicament (i.e., subjects who are non-responders), or alternatively, they may be those who at one time responded to an asthma/allergy medicament, but have since that time have become refractory to the medicament. In some embodiments, the subject is one who is refractory to a subset of medicaments. A subset of medicaments is at least one medicament. In some embodiments, a subset refers to 2, 3, 4, 5, 6, 7, 8, 9, or 10 medicaments.

[0105] In other embodiments, hypo-responsive subjects are elderly subjects, regardless of whether they have or have not previously responded to a treatment directed at treating or preventing asthma or allergy. Elderly subjects, even those who have previously responded to such treatment, are considered to be at risk of not responding to a future administration of this treatment. Similarly, neonatal subjects are also considered to be at risk of not responding to treatment directed at treating or preventing asthma or allergy.

[0106] In some embodiments, an immunostimulatory nucleic acid is administered to the hypo-responsive subject without the further administration of an asthma/allergy medicament. In yet other embodiments, an asthma/allergy medicament is administered to the hypo-responsive subject, in which case it may be administered substantially simultaneously (i.e., concurrently) with, or following the administration of the immunostimulatory nucleic acid.

[0107] An "asthma/allergy medicament" as used herein is a composition of matter which reduces the symptoms, inhibits the asthmatic or allergic reaction, or prevents the development of an allergic or asthmatic reaction. Various types of medicaments for the treatment of asthma and allergy are described in the Guidelines For The Diagnosis and Management of Asthma, Expert Panel Report 2, NIH Publication No. 97/4051, Jul. 19, 1997, the entire contents of which are incorporated herein by reference. The summary of the medicaments as described in the NIH publication is presented below.

[0108] In most embodiments the asthma/allergy medicament is useful to some degree for treating both asthma and allergy. Some asthma/allergy medicaments are preferably used in combination with the immunostimulatory nucleic acids to treat asthma. These are referred to as asthma

medicaments. Asthma medicaments include, but are not limited, PDE-4 inhibitors, bronchodilator/beta-2 agonists, K⁺ channel openers, VLA-4 antagonists, neurokin antagonists, TXA2 synthesis inhibitors, xanthanines, arachidonic acid antagonists, 5 lipoxygenase inhibitors, thromboxin A2 receptor antagonists, thromboxane A2 antagonists, inhibitor of 5-lipox activation proteins, and protease inhibitors.

[0109] Bronchodilator/beta-2 agonists are a class of compounds which cause bronchodilation or smooth muscle relaxation. Bronchodilator/beta-2 agonists include, but are not limited to, salmeterol, salbutamol, albuterol, terbutaline, D2522/formotorol, fenotorol, bitolterol, pirbuerol methylxanthines and orciprenaline. Long-acting Pragonists and Ba bronchodilators are compounds which are used for longterm prevention of symptoms in addition to the anti-inflammatory therapies. They function by causing bronchodilation, or smooth muscle relaxation, following adenylate cyclase activation and increase in cyclic AMP producing functional antagonism of bronchoconstriction. These compounds also inhibit mast cell mediator release, decrease vascular permeability and increase mucociliary clearance. Long-acting-P2 \$2. agonists include, but are not limited to, salmeterol and albuterol. These compounds are usually used in combination with corticosteroids and generally are not used without any inflammatory therapy. They have been associated with side effects such as tachycardia, skeletal muscle tremor, hypokalemia, and prolongation of QTc interval in overdose.

[0110] Methylxanthines, including for instance theophylline, have been used for long-term control and prevention of symptoms. These compounds cause bronchodilation resulting from phosphodiesterase inhibition and likely adenosine antagonism. It is also believed that these compounds may effect eosinophilic infiltration into bronchial mucosa and decrease T-lymphocyte numbers in the epithelium. Doserelated acute toxicities are a particular problem with these types of compounds. As a result, routine serum concentration must be monitored in order to account for the toxicity and narrow therapeutic range arising from individual differences in metabolic clearance. Side effects include tachycardia, nausea and vomiting, tachyarrhythmias, central nervous system stimulation, headache, seizures, hematemesis, hyperglycemia and hypokalemia. Short-acting β_2 agonists/bronchodilators relax airway smooth muscle, causing the increase in air flow. These types of compounds are a preferred drug for the treatment of acute asthmatic systems. Previously, short-acting β_2 agonists had been prescribed on a regularly-scheduled basis in order to improve overall asthma symptoms. Later reports, however, suggested that regular use of this class of drugs produced significant diminution in asthma control and pulmonary function (Sears, et al. Lancet; 336:1391-6, 1990). Other studies showed that regular use of some types of β_2 agonists produced no harmful effects over a four-month period but also produced no demonstrable effects (Drazen, et al., N. Eng. J. Med.; 335:841-7, 1996). As a result of these studies, the daily use of short-acting β_2 agonists is not generally recommended. Short-acting β_2 agonists include, but are not limited to, albuterol, bitolterol, pirbuterol, and terbutaline. Some of the adverse effects associated with the mastration of short-acting β₂ agonists include tachycardia, skeletal muscle tremor, hypokalemia, increased lactic acid, headache, and hyperglycemia.

agents such as adjuvants to enhance immune responses even further. The immunostimulatory nucleic acid, asthma/allergy medicament and other therapeutic agent may be administered simultaneously or sequentially. When the other therapeutic agents are administered simultaneously they can be administered in the same or separate formulations, but are administered at the same time. The other therapeutic agents are administered sequentially with one another and with the immunostimulatory nucleic acid and asthma/allergy medicament, when the administration of the other therapeutic agents and the immunostimulatory nucleic acid and asthma/ allergy medicament is temporally separated. The separation in time between the administration of these compounds may be a matter of minutes or it may be longer. Other therapeutic agents include but are not limited to non-nucleic acid adjuvants, cytokines, antibodies, antigens, etc.

[0160] A "non-nucleic acid adjuvant" is any molecule or compound except for the immunostimulatory nucleic acids described herein which can stimulate the humoral and/or cellular immune response. Non-nucleic acid adjuvants include, for instance, adjuvants that create a depo effect, immune stimulating adjuvants, adjuvants that create a depo effect and stimulate the immune system and mucosal adjuvants.

[0161] An "adjuvant that creates a depo effect" as used herein is an adjuvant that causes an antigen or allergen to be slowly released in the body, thus prolonging the exposure of immune cells to the antigen or allergen. This class of adjuvants includes but is not limited to alum (e.g., aluminum hydroxide, aluminum phosphate); or emulsion-based formulations including mineral oil, non-mineral oil, water-in-oil or oil-in-water-in oil emulsion, oil-in-water emulsions such as Seppic ISA series of Monta dide adjuvants (e.g., Monta dide ISA 720, AirLiquide, Paris, France); MF-59 (a squalenc-in-water emulsion stabilized with Span 85 and Tween 80; Chiron Corporation, Emeryville, Calif.; and PROVAX (an oil-in-water emulsion containing a stabilizing detergent and a micelle-forming agent; IDEC, Pharmaceuticals Corporation, San Diego, Calif.).

[0162] An "immune stimulating adjuvant" is an adjuvant that causes activation of a cell of the immune system. It may, for instance, cause an immune cell to produce and secrete cytokines. This class of adjuvants includes but is not limited to saponins purified from the bark of the Q. saponaria tree, such as QS21 (a glycolipid that elutes in the 212 peak with IIPLC fractionation; Aquila Biopharmaceuticals, Inc., Worcester, Mass.); poly[di(carboxylatophenoxy)phosphazene (PCPP polymer; Virus Research Institute, USA); derivatives of lipopolysaccharides such as monophosphoryl lipid A (MPL; Ribi ImmunoChem Research, Inc., Hamilton, Mont.), muramyl dipeptide (MDP; Ribi) andthreonyl-muramyl dipeptide (t-MDP; Ribi); OM-174 (a glucosamine disaccharide related to lipid A; OM Pharma SA, Meyrin, Switzerland); and Leishmania elongation factor (a purified Leishmania protein; Corixa Corporation, Seattle, Wash.).

[0163] "Adjuvants that create a depo effect and stimulate the immune system" are those compounds which have both of the above-identified functions. This class of adjuvants includes but is not limited to ISCOMS (Immunostimulating complexes which contain mixed saponins, lipids and form virus-sized particles with pores that can hold antigen; CSL, Melbourne, Australia); SB-AS2 (SmithKline Beecham adju-

vant system #2 which is an oil-in-water emulsion containing MPL and QS21: SmithKline Beecham Biologicals [SBB], Rixensart, Belgium); SB-AS4 (SmithKline Beecham adjuvant system #4 which contains alum and MPL; SBB, Belgium); non-ionic block copolymers that form micelles such as CRL 1005 (these contain a linear chain of hydrophobic polyoxpropylene flanked by chains of polyoxyethylene; Vaxcel, Inc., Norcross, Ga.); and Syntex Adjuvant Formulation (SAF, an oil-in-water emulsion containing Tween 80 and a nonionic block copolymer; Syntex Chemicals, Inc., Boulder, Colo.).

[0164] A "non-nucleic acid mucosal adjuvant" as used herein is an adjuvant other than an immunostimulatory nucleic acid that is capable of inducing a mucosal immune response in a subject when administered to a mucosal surface in conjunction with an antigen or allergen. Mucosal adjuvants include but are not limited to Bacterial toxins: e.g., Cholera toxin (CT), CT derivatives including but not limited to CT B subunit (CTB) (Wu et al., 1998, Tochikubo et al., 1998); CTD53 (Val to Asp) (Fontana et al., 1995); CTK97 (Val to Lys) (Fontana et al., 1995); CTK104 (Tyr to Lys) (Fontana et al., 1995); CID53/K63 (Val to Asp, Ser to Lys) (Fontana et al., 1995); CTH54 (Arg to His) (Fontana et al., 1995); CIN107 (His to Asn) (Fontana et al., 1995); CIE114 (Ser to Glu) (Fontana et al., 1995); CTE112K (Glu to Lys) (Yamamoto et al., 1997a); CTS61F (Ser to Phe) (Yamamoto et al., 1997a, 1997b); CTS106 (Pro to Lys) (Douce et al., 1997, Fontana et al., 1995); and CTK 63 (Ser to Lys) (Douce et al., 1997, Fontana et al., 1995), Zonula occludens toxin. zot, Escherichia coli heat-labile enterotoxin, Labile Toxin (LT), LT derivatives including but not limited to LT B subunit (LTB) (Verweij et al., 1998); LT7K (Arg to Lys) (Komase et al., 1998, Douce et al., 1995); LT61F (Ser to Phe) (Komase et al., 1998); LT112K (Glu to Lys) (Komase et al., 1998); LT118E (Gly to Glu) (Komase et al., 1998); LT146E (Arg to Glu) (Komase et al., 1998); LT192G (Arg to Gly) (Komase et al., 1998); LTK63 (Ser to Lys) (Marchetti et al., 1998, Douce et al., 1997, 1998, Di Tommaso et al., 1996); and LTR72 (Ala to Arg) (Giuliani et al., 1998), Pertussis toxin, PT. (Lycke et al., 1992, Spangler BD, 1992, Freytag and Clemments, 1999, Roberts et al., 1995, Wilson et al., 1995) including PT-9K/129G (Roberts et al., 1995, Cropley et al., 1995); Toxin derivatives (see below) (Holmgren et al., 1993, Verweij et al., 1998, Rappuoli et al., 1995, Freytag and Clements, 1999); Lipid A derivatives (e.g., monophosphoryl lipid A, MPL) (Sasaki et al., 1998, Vancott et al., 1998; Muramyl Dipeptide (MDP) derivatives (Fukushima et al., 1996, Ogawa et al., 1989, Michalek et al., 1983, Morisaki et al., 1983); Bacterial outer membrane proteins (e.g., outer surface protein A (OspA) lipoprotein of Borrelia burgdorferi, outer membrane protine of Neixseria meningitidis)(Marinaro et al., 1999, Van de Verg et al., 1996); Oil-in-water emulsions (e.g., MF59) (Barchfield et al., 1999, Verschoor et al., 1999, O'Hagan, 1998); Aluminum salts (Isaka et al., 1998, 1999); and Saponins (e.g., QS21) Aquila Biopharmaceuticals, Inc., Worster, Mass.) (Sasaki et al., 1998, MacNeal et al., 1998), ISCOMS, MF-59 (a squalene-in-water emulsion stabilized with Span 85 and Tween 80; Chiron Corporation, Emeryville, Calif.); the Seppic ISA series of Montamide adjuvants (e.g., Montamide ISA 720; AirLiquide, Paris, France); PROVAX (an oil-inwater emulsion containing a stabilizing detergent and a micell-forming agent; IDEC Pharmaceuticals Corporation, San Diego, Calif.); Syntext Adjuvant Formulation (SAF;

Syntex Chemicals, Inc., Boulder, Colo.); poly[di(carboxy-latophenoxy)phosphazene (PCPP polymer; Virus Research Institute, USA) and Leishmania elongation factor (Corixa Corporation, Seattle, Wash.).

[0165] Immune responses can also be induced or augmented by the co-administration or co-linear expression of cytokines (Bueler & Mulligan, 1996; Chow et al., 1997; Geissler et al., 1997; Iwasaki et al., 1997; Kim et al., 1997) or B-7 co-stimulatory molecules (Iwasaki et al., 1997; Tsuji ct al., 1997) with the immunostimulatory nucleic acids and asthma/allergy medicaments. The cytokines can be administered directly with immunostimulatory nucleic acids or may be administered in the form of a nucleic acid vector that encodes the cytokine, such that the cytokine can be expressed in vivo. In one embodiment, the cytokine is administered in the form of a plasmid expression vector. The term "cytokine" is used as a generic name for a diverse group of soluble proteins and peptides which act as humoral regulators at nano- to picomolar concentrations and which, either under normal or pathological conditions, modulate the functional activities of individual cells and tissues. These proteins also mediate interactions between cells directly and regulate processes taking place in the extracellular environment. Examples of cytokines include, but are not limited to IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-15, IL-18 granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (GCSF), interferon-y (y-IFN), IFN-a, tumor necrosis factor (TNF), TGF-y FLT-3 ligand, and CD40 ligand. Cytokines play a role in directing the T cell response. Helper (CD4+) T cells orchestrate the immune response of mammals through production of soluble factors that act on other immune system cells, including other T cells. Most mature CD4+ T helper cells express one of two cytokine profiles: Th1 or Th2. In some embodiments it is preferred that the cytokine be a Th1 cytokine.

[0166] The term "effective amount" of an immunostimulatory nucleic acid and an asthma/allergy medicament refers to the amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of an immunostimulatory nucleic acid and an asthma/allergy medicament for treating or preventing asthma or preventing is that amount necessary to prevent the development of IgE in response to an allergen or initiator upon exposure to the allergen or initiator is that amount necessary to cause the shift from Th2 to Th1 response in response to an allergen or initiator.

[0167] Combined with the teachings provided herein, by choosing among the various active compounds and weighing factors such as potency, relative bioavailability, patient body weight, severity of adverse side-effects and preferred mode of administration, an effective prophylactic or therapeutic treatment regimen can be planned which does not cause substantial toxicity and yet is entirely effective to treat the particular subject. The effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular immunostimulatory nucleic acid or asthma/allergy medicament being administered (e.g. the type of nucleic acid, i.e. a CpG nucleic acid, the number of unmethylated CpG motifs or their location in the nucleic acid, the degree of modification of the backbone to the oligonucleotide the type of medicament), the size of the subject, or the severity of the disease

or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular immuno-stimulatory nucleic acid and/or asthma/allergy medicament and/or other therapeutic agent without necessitating undue experimentation.

[0168] Depending upon the aspect of the invention, the immunostimulatory nucleic acid and asthma/allergy medicament may be administered in a synergistic amount effective to treat or prevent asthma or allergy. A synergistic amount is that amount which produces a physiological response that is greater than the sum of the individual effects of either the immunostimulatory nucleic acid or the asthma/ allergy medicament alone. For instance, in some embodiments of the invention, the physiological effect is a reduction in IgE levels. A synergistic amount is that amount which produces a reduction in IgE that is greater than the sum of the IgE reduced by either the immunostimulatory nucleic acid or the asthma/allergy medicament alone. In other embodiments, the physiological result is a shift from Th2 cytokines, such as IL-4 and IL-5, to Th1 cytokines, such as IFN-γ and IL-12. The synergistic amount in this case is that amount which produces the shift to a Th1 cytokine that is greater than the sum of the shift produced by either the immunostimulatory nucleic acid or the asthma/allergy medicament alone. In other embodiments the physiological result is a decrease in cosinophilia, hyperreactivity, or lung func-

[0169] In some embodiments of the invention, the immunostimulatory nucleic acid is administered in an effective amount for preventing bacterial or viral infection. Immunostimulatory nucleic acids are known to be useful for preventing bacterial and viral infections. Bacterial and viral infections exacerbate and/or induce allergy and/or asthma. In this aspect of the invention, the immunostimulatory nucleic acid is administered to the subject in an amount effective to prevent bacterial and viral infection and the asthma/allergy medicament is administered to the subject when symptoms of allergy or asthma appear. Thus, the immunostimulatory nucleic acid is administered to the subject and then the asthma/allergy medicament is subsequently administered to the subject or they are administered together at the same time. This method is particularly useful in subjects such as children and immunocompromised subjects, or elderly subjects, who are particularly susceptible to bacterial or viral disease.

[0170] In aspects of the invention directed at treating subjects in anticipation of an asthmatic or allergic event or season (e.g., in anticipation of the hay-fever season), the subjects may be administered an immunostimulatory nucleic acid in an effective amount for preventing the asthma or allergy. In related embodiments of this method, an asthma-dallergy medicament is also administered to the subject. In these latter instances, the amount of the immunostimulatory nucleic acid administered may be that amount necessary to reduce the effective dose of the asthma/allergy medicament which is required to treat or prevent the asthma or allergy.

[0171] Thus, in these embodiments, the immunostimulatory nucleic acid potentiates the effect of the asthma/allergy medicament. The ability to potentiate the effect of an asthma/allergy medicament is useful since it allows for a reduction in the administered dose of an asthma/allergy medicament with the same or better therapeutic result. As an