

EVALUASI TENGAH SEMESTER GASAL 2023/2024 DEPARTEMEN MATEMATIKA FSAD ITS

Hari, Tanggal Rabu, 18 Oktober 2023 Waktu / Sifat 100 menit / Closed Book

Kelas, Dosen A. Prof. Dr. Drs. Subiono, MS

> В. Dian Winda S., M.Si

C. Soleha, M.Si

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

- 1. Diberikan $a \in \mathbb{R}$ dan $n = \frac{\sqrt{3-|a-1|} + \sqrt{|a-1|-3}}{a+2} + \frac{1+2a}{a-3}$. Tentukan digit terakhir dari nilai n^{2023}
- 2. Diberikan grup siklik $\langle a \rangle$ dan $\langle b \rangle$ masing-masing mempunyai orde 8 dan 20. Tentukan semua generator dari masing-masing grup siklik tersebut.
- 3. Tunjukkan bahwa bila G adalah suatu grup yang belum tentu komutatif dan $a, b \in G$, maka $|ab| = |ba| \operatorname{dan} |aba^{-1}| = |b|.$
- 4. Diberikan $S_{2\times 2}(\mathbb{Z}_3) = \left\{ A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| \det(A) \neq 0 \text{ dan } a, b, c \in \mathbb{Z}_3 \right\}, (S_{2\times 2}(\mathbb{Z}_3), \cdot)$ grup dan $H = \left\{ \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \middle| d \in \mathbb{Z}_3 \right\}$ subgrup dari $S_{2\times 2}(\mathbb{Z}_3)$.
 - (a) Tentukan banyaknya koset kanan/koset kiri dari H dalam grup $S_{2\times 2}(\mathbb{Z}_3)$ yang berbeda.
 - (b) Tentukan semua koset kanan dari H dalam grup $S_{2\times 2}(\mathbb{Z}_3)$ yang berbeda.
 - (c) Tentukan semua koset kiri dari H dalam grup $S_{2\times 2}(\mathbb{Z}_3)$ yang berbeda.
 - (d) Dari hasil (b) dan (c), apakah H subgrup normal dari $S_{2\times 2}(\mathbb{Z}_3)$? Jelaskan.

Solusi:

- 1. Ingat akan 2 hal berikut yang pernah dipelajari di Kalkulus:
 - $\sqrt{f(x)}$ terdefinisi, jika $f(x) \ge 0$.
 - $\frac{f(x)}{g(x)}$ terdefinisi untuk $g(x) \neq 0$.

Sehingga untuk $\sqrt{3-|a-1|}$ dan $\sqrt{|a-1|-3}$, didaptkankan dua pertidaksamaan

$$3 - |a - 1| \ge 0 \Longrightarrow |a - 1| \le 3 \tag{1}$$

$$|a-1|-3 \ge 0 \Longrightarrow |a-1| \ge 3 \tag{2}$$

Dari (1) dan (2) diperoleh |a-1|=3 Sehingga nilai a yang memenuhi adalah a=-2 atau a=4. Dapat di cek bahwa a=-2 tidak memenuhi sebab membuat penyebut menjadi 0. Sehingga a=4 adalah solusi satu-satunya.

$$n = \frac{\sqrt{3 - |4 - 1|} + \sqrt{|4 - 1| - 3}}{4 + 2} + \frac{1 + 2(4)}{4 - 3} = 9$$

Perhatikan bahwa untuk menentukan digit terakhir suatu bilangan, dapat digunakan konsep $grup^1$ (\mathbb{Z}_{10} , ·). Dimana untuk [9]₁₀ berorde 2 pada grup tersebut.

$$([9]_{10})^{2023} = ([9]_{10})^{2022} \cdot [9]_{10} = ([9]_{10}^2)^{1011} \cdot [9]_{10} = ([1]_{10})^{1011} \cdot [9]_{10} = [9]_{10}$$

- \therefore Digit terakhir 9^{2023} adalah 9.
- 2. Ingat kembali bahwa grup siklik adalah grup yang dibangun oleh hanya satu elemen. Cara termudah untuk menentukan generator dari grup siklik adalah dengan mencari elemen ordenya sama dengan orde grupnya². Maka generator masing-masing grup siklik adalah
 - Himpunan generator dari $\langle a \rangle$ adalah $\{a^1, a^3, a^5, a^7\}$.
 - Himpunan generator dari $\langle b \rangle$ adalah $\{b^1, b^3, b^7, b^9, b^{11}, b^{13}, b^{17}, b^{19}\}.$
- 3. Misalkan $a, b \in G$ dengan G grup.
 - Agar jawaban kita mendapat nilai sempurna, perlu dituliskan pembuktian yang lengkap. Sekarang andaikan |ab|=n dan |ba|=m, maka

$$(ab)^{n} = e$$

$$\underbrace{(ab)(ab)\cdots(ab)}_{n} = e$$

$$\underbrace{a\underbrace{(ba)\cdots(ba)}_{n-1}b} = e$$

$$\underbrace{(ba)\cdots(ba)}_{n-1}b = a^{-1}$$

$$\underbrace{(ba)\cdots(ba)}_{n-1} = a^{-1}b^{-1}$$

$$\underbrace{(ba)\cdots(ba)}_{n-1} = (ba)^{-1}$$

$$\underbrace{(ba)\cdots(ba)}_{n-1} = e$$

$$(ba)^{n} = e$$

¹Mungkin saja konsep seperti ini kurang tepat, namun setidaknya pendekatan inilah yang dapat kita hubungkan melalui materi aljabar yang sudah kita pelajari

²Bisa didapatkan dengan mencari pangkat elemen yang relatif prima dengan orde grup

Dari hasil di atas didapatkan $n = k_1 m$ dengan $k_1 = 1, 2, 3, \dots$

Selanjutnya dapat kita tinjau

$$(ba)^{m} = e$$

$$(ba)(ba) \cdots (ba) = e$$

$$b \underbrace{(ab) \cdots (ab)}_{m-1} a = e$$

$$\underbrace{(ab) \cdots (ab)}_{m-1} a = b^{-1}$$

$$\underbrace{(ab) \cdots (ab)}_{m-1} = a^{-1}b^{-1}$$

$$\underbrace{(ab) \cdots (ab)}_{m-1} = (ab)^{-1}$$

$$\underbrace{(ab) \cdots (ab)}_{m} = e$$

$$(ab)^{m} = e$$

Dari hasil di atas didapatkan $m=k_2n$ dengan $k_2=1,2,3,\ldots$

Alhasil kita dapatkan $n=k_1m \longrightarrow n=k_1(k_2n) \longrightarrow k_1=k_2=1$. Sehingga didapatkan kesimpulan |ab|=|ba|.

• Dengan cara yang sama, seperti yang dilakukan pada poin pertama. Andaikan $|aba^{-1}|=n$, maka

$$(aba^{-1})^n = e$$

$$\underbrace{(aba^{-1})(aba^{-1})\cdots(aba^{-1})}_{n} = e$$

$$ab(a^{-1}a)b(a^{-1}a)\cdots(a^{-1}a)ba^{-1} = e$$

$$a\underbrace{bb\cdots b}_{n}a^{-1} = e$$

$$a^{-1}a\underbrace{bb\cdots b}_{n}a^{-1}a = a^{-1}a$$

$$b^n = e$$

Dari hasil di atas didapatkan $n = k_1|b|$.

Kemudian andaikan |b| = m, maka dengan cara yang sama didapatkan $m = k_2 |aba^{-1}|$. Disini nantinya berakibat $k_1 = k_2 = 1$.

$$\therefore |aba^{-1}| = |b|.$$

4. Perhatikan bahwa $|\mathbb{Z}_3|=3$ dan agar $\det(A)\neq 0$, maka $a,c\neq 0$. Dengan menggunakan kaidah perkalian akan ada $2\cdot 2\cdot 3=12$ elemen dalam $S_{2\times 2}(\mathbb{Z}_3)$.

$$S_{2\times 2}(\mathbb{Z}_{3}) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} \right\}$$

$$H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\}.$$

³Lebih jelasnya bisa dilihat di web Prof. Bi disini

(a) Menggunakan teorema Lagrange, banyak kosetnya adalah

$$|S_{2\times 2}(\mathbb{Z}_3):H| = \frac{|S_{2\times 2}(\mathbb{Z}_3)|}{|H|} = \frac{12}{3} = 4$$

- (b) Koset kanan dari H dalam $S_{2\times 2}(\mathbb{Z}_3)$ adalah
 - Untuk $g_1 = I$, maka $Hg_1 = H$.

• Untuk
$$g_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, maka $Hg_2 = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \right\}$.

• Untuk
$$g_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, maka $Hg_3 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \right\}$.

• Untuk
$$g_4=\left(\begin{array}{cc}2&0\\0&2\end{array}\right)$$
, maka $Hg_4=\left\{\left(\begin{array}{cc}2&0\\0&2\end{array}\right),\left(\begin{array}{cc}2&2\\0&2\end{array}\right),\left(\begin{array}{cc}2&1\\0&2\end{array}\right)\right\}$

- (c) Koset kiri dari H dalam $S_{2\times 2}(\mathbb{Z}_3)$ adalah
 - Untuk $g_1 = I$, maka $g_1 H = H$.

• Untuk
$$g_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, maka $g_2 H = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \right\}$..

• Untuk
$$g_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, maka $g_3 H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \right\}$.

• Untuk
$$g_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, maka $g_3 H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \right\}$.
• Untuk $g_4 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$, maka $g_4 H = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} \right\}$.

(d) Dapat dilihat bahwa koset kiri dan kanan dari H dalam $S_{2\times 2}(\mathbb{Z}_3)$ sama. Sehingga Hmerupakan subgrup normal dari $S_{2\times 2}(\mathbb{Z}_3)$.

-Teosofi Hidayah Agung