unit-4:
1) simplex method:

Marsimize $z = 5x_1 + 7x_2$.

Subject to constraints $x_1+x_2 \le 4$ $3x_1+8x_2 \le 24$ $10x_1+7x_2 \le 35$, $x_1,x_2 \ge 0$.

solution:

Let alack variables be 31,52,53.

 $\chi_1 + \chi_2 + S_1 = 4.$ $3\chi_1 + 3\chi_2 + S_2 = 24$ $10\chi_1 + 7\chi_2 + S_3 = 35$

The standard Linear Programming Pro Hem

in Mornimize Z= 5×1+ 7×2+051+052+059.

Step 1: Initial simplex Table

/ 03	ci	5	7		0	0	solution	Ratio
CBj	BV	71	72	SI	52	\$3	Some	1
0	SI	1	T	1	0	0	4	4=4
0	Sa	3	8	0		0	24)	24 23 C
0	53	10	7	0	0	1	35.	35 = 5
0			-				1	12/12/12/2014
2	j	0	0	0	0	0		
73-	-cj	-5	-7	0	0	0		1000

A rightly du

key value = 8.
Entrung variable = 1/2
Leaving " = 52

step 2; First Ituration Table:

CBi	Cĵ BV	5,	7 22	6	52	53	Solution	Ratio
0	181	5/8	0	1	-1/8	1	1	1/508 = 8 12b
7	22	318	1	0	118	0	Processing the Section	3/3/8 = 1/8 = 8.
0	53	59/8	66	Ó	- 7 /8	19.0		14 = 14xP = 1E SH7 59 59
7	23	0+21 +0	٦	0	7/8	0		1.89
ZS	-cj.	21-5	0	0	7/8	0		

step 3: second Iteration Table.

CBÎ	Cj BV	5	7 72	0	0 52	0.	Solution	Ratio
5	21	1	0	8/5	-1/5	0	8/5	in the ea
7	22	0	1	-3/5	1/6	0	12/5	
0	\$3	9	0	-59	6/10	10	11/5	
Z	j	5	7	40 -21 5 5 8/5	-1/5+7/5 = 6/5	0	40 +84 = 124	
29	-cj	0			6/5	0.		

$$Am = Z = 124$$
 5
 $91 = 8/5$
 $92 = 12/5$

calculations !

old $S_3 = \frac{59}{8}$ 0 0 $-\frac{7}{8}$ 1 14.

New $\frac{59}{8}$ 0 $\frac{59}{8}$ $\frac{1}{5}$ $\frac{59}{8}$ 0 $\frac{8}{5}$ $\frac{59}{8}$ 0 $\frac{8}{5}$ 0 $\frac{9}{5}$ 0 $\frac{8}{5}$ 0 $\frac{9}{5}$ 0 $\frac{9}{5}$ 0 $\frac{9}{5}$ 0 $\frac{9}{5}$ 0 $\frac{9}{5}$ 0

$$2 = 5 \times 1 + 7 \times 2$$

$$124 = 8/(8/8) + 7(12/5)$$

$$= 40 + 84$$

$$= 124$$

$$= 124$$

$$= 6$$
Chark.

101 10

:5

10.5-44

2) The stable Mariage. Problem:

It is an important Algorithmic version of bipartite matching problem.

> It is a classic problem.

) hoal -> stable matching between two sets with various preprience to each other.

sot $y = \{m_1, m_2 \dots m_n \}$ not $x = \{w_1, w_2 \dots w_n \}$

Mens preferences

1st 2nd 3nd.

Bob Lea Ann Sue

Jim Lea sue Ann

Tom sue Lea Ann

Women's preferences.

1st 2nd 3rd.

Ann Jim Fom Bob

Hea Tom Bob Jum

see Jim Tom bob.

	Ran king	f Mat	Matrix.		
	Ann	Lea	sul		
Bob	2,3	1,2	3,3		
Jim	3,1	1,3	2,1		
tom	312	211	1/2		

sul. Lea Ann Force Men 3,3 112 Bob Вов Tim 2,1 113 Jum 3,1 rom. 1/2 2,1

Bob proposed to bea, bea supted.

true ten.	-	Ann	· Lea	su!
sûn'	Bob	2,3	112	3,3,
fom.		3,1	[113]x	211
		312	2,1	1,2

Jum proposed to Jum proposed to Jum proposed to sue, sue aupted

Lea Fred Hen Bob X11,2 tom. 2,1 1/2 X 1201 3,2 our, que rijuted proposed to Lea, Lea Break up with propused the Tom tom and aupted Bob sue AM Lea Free 313 Bob 2,3 Hen Bob. Jim 2,1 Tom 1/2 121 proposed to Ann, Ann accepted Bob (Bob, Ann), (Ium, sue), (Tom, Lea)

Algorithm:

step! Tritially all the men and all the women were free, but having their own preprione List with them.

step 2: Propose: one of the free man m

proposes the woman w. this woman

is hormally the highest prepared one

from his prepare dist.

Response: It the woman wis true then she aupti the proposal of matched m. If she is not you, she compares the m with her current mate. It she prefers m than the curp to his proposal making sormer mate tree aupti his proposal making sormer mate tree otherwise wimply rejects m & proposal.

step 3: Finally, returns the matching pairs of (m, w).

Time Extilerry Wass: O(n2).

3) Marumum Matching un Bipartite graphs: soln: Quem augmented with 6 2,3? Augmented with 5

Queine : 3,4

augument with 4.

soln.

Que : 2,3 w1th 6. 4,5, 2 aug with 9, ang with 10

will die of the inter-

11.8