МАТЕМАТИЧКИ МЕТОДИ НУМЕРИЧКИ АЛГОРИТМИ

НУМЕРИЧКО РЕШАВАЊЕ НЕЛИНЕАРНИХ ЈЕДНАЧИНА

Садржај

- 🕕 Уводни појмови
- Нумеричко решавање нелинеарних једначина и система нелинеарних једначина
 - Општа теорија итеративних процеса
- 🗿 Методи за решавање нелинеарних једначина
 - Њутнов метод
 - Метод сечице
 - Метод регула фалси
 - Метод Стефенсена
 - Метод половљења интервала
- Нумеричко решавање нелинеарних једначина и система нелинеарних једначина
 - Методи за симултано одређивање нула полинома
 - Методи за решавање система нелинеарних једначина

Метрика

Нека је X непразан скуп. Функција $d: X \times X \to \mathbb{R}$ која задовољава услове:

$$\begin{aligned} &1^\circ \quad d(x,y) \geq 0, \qquad d(x,y) = 0 \; \Leftrightarrow \; x = y, \\ &2^\circ \quad d(x,y) = d(y,x), \\ &3^\circ \quad d(x,y) \leq d(x,z) + d(z,y), \end{aligned}$$

зове се метрика или растојање, а (X,d), или само X, је метрички простор.

 1° У скупу \mathbb{R} :

$$d(x,y) = |x - y|.$$

$$2^{\circ}$$
 У скупу $\mathbb{R}^n = \{\mathbf{x} = (x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \mathbb{R}\}$:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2},$$

Низ

Функција $a:\mathbb{N} \to X$, $a(n)=a_n$ зове се *низ* у простору X и означава се са $\{a_n\}_{n\in\mathbb{N}}.$

Конвергенција и гранична вредност

Низ $\{a_n\}_{n\in\mathbb{N}}$ је *конвергентан* ако постоји тачка $a\in X$ таква да $(orall arepsilon>0)(\exists n_0\in\mathbb{N})(orall n\geq n_0)\ d(a_n,a)<arepsilon$.

Тачка a је *гранична вредност* или *граница* низа $\{a_n\}_{n\in\mathbb{N}}$, што се означава са $\lim_{n\to\infty}a_n=a$ или $a_n\to a$ $(n\to\infty)$.

Ако низ није конвергентан, он је дивергентан.

Кошијев низ

Низ $\{a_n\}_{n\in\mathbb{N}}$ је *Кошијев* ако важи

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall m, n \ge n_0) \ d(a_m, a_n) < \varepsilon,$$

или,
$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(\forall p \in \mathbb{N}) \ d(a_{n+p}, a_n) < \varepsilon$$
.

Пример Низ $\{a_n\}_{n\in\mathbb{N}},\ a_n=rac{1}{n},\ n\in\mathbb{N},\$ је Кошијев низ.

$$\lim_{n \to \infty} a_n = 0$$

конвергентан у \mathbb{R} , није конвергентан у \mathbb{R}^+ , јер $\lim_{n\to\infty}a_n=0\notin\mathbb{R}^+$.

Пример $\sqrt{2} = 1.41421\dots$ је ирационалан број који у децималном

запису има бесконачно много цифара које се не понављају периодично.

$$b_0 = 1, b_1 = 1.4, b_2 = 1.41, b_3 = 1.414, b_4 = 1.4142, \dots$$

Кошијев, конвергентан у \mathbb{R} , али не и у \mathbb{Q} .

Теорема

У скупу $\mathbb R$ низ $\{a_n\}_{n\in\mathbb N}$ је конвергентан ако и само ако је Кошијев.

Комплетан простор

Метрички простор у коме сваки Кошијев низ конвергира зове се *комплетан метрички простор*.

Теорема

Метрички простори $\mathbb R$ и $[lpha,eta]\subset\mathbb R$ су комплетни.

Решавање једначина

Нека је дата функција $f:[lpha,eta] o\mathbb{R}$ и нека једначина

$$f(x) = 0 (1)$$

има решење $x^* \in [\alpha, \beta]$.

Једначина (1) може да се на бесконачно много начина представи у облику

$$x = \Phi(x)$$
 (2)

(HITP.
$$x = x + \lambda f(x), \quad \lambda \in \mathbb{R}$$
).

 x^* је решење једначина (1) и (2)

Итеративни процес

Итеративни поступак

Формирање низа $\{x_k\}_{k\in\mathbb{N}}$ у [lpha,eta] применом формуле

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots,$$
 (3)

при чему је $x_0 \in [lpha, eta]$ почетна вредност, таквог да је

$$\lim_{k \to \infty} x_k = x^*.$$

зове се итеративни поступак.

$$\{x_k\}_{k\in\mathbb{N}}$$
 — итеративни низ $\Phi: [lpha,eta] o\mathbb{R}$ — итеративна функција

Метод просте итерације

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots, \qquad x_0 \in [\alpha, \beta]$$

општи итеративни метод или метод просте итерације за решавање једначина (1) и (2)

$$\lim_{k \to \infty} x_k = x^* \quad \Rightarrow \quad x^* \approx x_k : \ |x_k - x_{k-1}| < \varepsilon$$

 x_k — приближно решење

arepsilon — унапред задата тачност

Контракција

Нека је X метрички простор. Функција $F:X\to X$ је контракција ако постоји $q\in[0,1)$ тако да важи $(\forall x,y\in X)\;dig(f(x),f(y)ig)\leq q\,d(x,y).$

Фиксна тачка

Тачка $x^* \in X$ је фиксна или непокретна тачка функције $F: X \to X$ ако важи $F(x^*) = x^*$.

Теорема

Нека је X комплетан метрички простор и $F: X \to X$ контракција. Тада постоји јединствена фиксна тачка функције F и она је гранична вредност низа $\{x_k\}_{k\in\mathbb{N}}$ дефинисаног са $x_{k+1}=F(x_k),\ k=0,1,2,\ldots$, за произвољно $x_0\in X$.

 \mathcal{Q} оказ. $X=\mathbb{R}$ (или $X=[lpha,eta]\subset\mathbb{R}$), $d(x,y)=|x-y|,\ x,y\in\mathbb{R}$. Нека је $x_0\in\mathbb{R}$ произвољно и $x_{k+1}=F(x_k),\ k=0,1,2,\ldots$ Доказаћемо најпре да је овако формиран низ $\{x_k\}_{k\in\mathbb{N}}$ Кошијев. Како је F контракција, постоји $q\in[0,1)$ тако да је

$$|x_{k+1} - x_k| = |F(x_k) - F(x_{k-1})| \le q|x_k - x_{k-1}|$$

$$\le q^2 |x_{k-1} - x_{k-2}| \le \dots \le q^k |x_1 - x_0|, \quad k \in \mathbb{N}_0.$$

Зато за произвољне $k,p\in\mathbb{N}$ важи

$$|x_{k+p} - x_k| = |x_{k+p} - x_{k+p-1} + x_{k+p-1} - x_{k+p-2} + \dots + x_{k+1} - x_k|$$

$$\leq |x_{k+p} - x_{k+p-1}| + |x_{k+p-1} - x_{k+p-2}| + \dots + |x_{k+1} - x_k|$$

$$\leq q^{k+p-1}|x_1 - x_0| + q^{k+p-2}|x_1 - x_0| + \dots + q^k|x_1 - x_0|$$

$$= (q^{p-1} + q^{p-2} + \dots + 1)q^k|x_1 - x_0|$$

$$= \frac{1 - q^p}{1 - q}q^k|x_1 - x_0| \leq \frac{|x_1 - x_0|}{1 - q}q^k.$$

Нека је arepsilon>0 произвољно. Тада, за свако $k\geq k_0$,

$$k_0=\left[rac{\lograc{(1-q)arepsilon}{|x_1-x_0|}}{\log q}
ight]+1$$
, важи $|x_{k+p}-x_k|\leq rac{|x_1-x_0|}{1-q}\,q^k, што значи$

да је низ $\{x_k\}_{k\in\mathbb{N}}$ Кошијев. Метрички простор \mathbb{R} је комплетан, па је низ $\{x_k\}_{k\in\mathbb{N}}$ конвергентан, тј. постоји $x^*=\lim_{k\to\infty}x_k$.

Докажимо да је x^* фиксна тачка функције F. За свако $k \in \mathbb{N}$ важи

$$|x^* - F(x^*)| = |x^* - x_k + x_k - F(x_k) + F(x_k) - F(x^*)|$$

$$\leq |x^* - x_k| + |x_k - F(x_k)| + |F(x_k) - F(x^*)|$$

$$\leq |x^* - x_k| + |x_k - x_{k+1}| + q|x_k - x^*|$$

$$= (1+q)|x_k - x^*| + |x_k - x_{k+1}|$$

$$\leq (1+q)|x_k - x^*| + q^k|x_1 - x_0|.$$

Због конвергенције низова $\{x_k\}_{k\in\mathbb{N}}$ и $\{q^k\}_{k\in\mathbb{N}}$, десна страна неједнакости тежи 0 кад $k\to\infty$, па је $|x^*-F(x^*)|=0$, тј. $x^*=F(x^*)$.

Покажимо још да је фиксна тачка x^* је јединствена. Претпоставимо да постоји још једна x^{**} таква да је $x^{**}=F(x^{**})$. Тада важи неједнакост

$$|x^* - x^{**}| = |F(x^*) - F(x^{**})| \le q|x^* - x^{**}|,$$

која је због чињенице да је $0 \leq q < 1$, могућа само ако је $x^* = x^{**}$. $\ \square$

Конвергенција метода просте итерације

Теорема

Нека је $\Phi(x)$ непрекидна функција која задовољава услове:

- $1^{\circ} \quad \Phi : [\alpha, \beta] \to [\alpha, \beta];$
- 2° $\Phi(x)$ има извод на $[\alpha,\beta]$ такав да за свако $x\in [\alpha,\beta]$ важи

$$|\Phi'(x)| \le q < 1.$$

Тада једначина (2) односно (1) има јединствено решење $x^* \in [\alpha, \beta]$ које је гранична вредност низа $\{x_k\}_{k \in \mathbb{N}}$ дефинисаног са $x_{k+1} = \Phi(x_k)$, $k = 0, 1, 2, \ldots$, за произвољно $x_0 \in [\alpha, \beta]$.

Конвергенција метода просте итерације

Доказ. Под наведеним условима функција $\Phi(x)$ је контракција. Заиста, за произвољне $x,y\in [\alpha,\beta]$ на основу Лагранжове теореме о средњој вредности постоји ξ између њих тако важи

$$|\Phi(x) - \Phi(y)| = |\Phi'(\xi)| |x - y| \le q|x - y|, \quad 0 \le q < 1.$$

Сегмент $[\alpha,\beta]$ је комплетан метрички простор, па према Банаховом ставу постоји јединствена тачка $x^*\in [\alpha,\beta]$ за коју важи $x^*=\Phi(x^*)$, тј. која је решење једначине (2), а која се добија као гранична вредност низа $x_{k+1}=\Phi(x_k)$, $k=0,1,2,\ldots$, за произвољно $x_0\in [\alpha,\beta]$. \square

Последица

Нека функција $\Phi(x)$ задовољава услове претходне теореме. Тада важи:

$$|x_k - x^*| \le \frac{q^k}{1 - q} |x_1 - x_0|.$$

Карактеристике итеративног процеса

Нека је (3) конвергентан итеративни процес.

Ред и фактор конвергенције

 Pe д конвергенције итеративног процеса је r ако је

$$|x_{k+1} - x^*| = \mathcal{O}(|x_k - x^*|^r), \qquad k \to \infty,$$

тј. ако постоји константа A>0 таква да је $|x_{k+1}-x^*| \leq A|x_k-x^*|^r$ за довољно велико k.

Величина

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^r} = C_r$$

зове се асимптотска константа грешке или фактор конвергенције итеративног процеса.

Одређивање реда конвергенције

Теорема

Нека је функција $\Phi: [lpha, eta] o [lpha, eta]$ диференцијабилна r пута. Ако важи

$$\Phi(x^*) = x^*,$$

$$\Phi'(x^*) = \Phi''(x^*) = \dots = \Phi^{(r-1)}(x^*) = 0,$$

$$\Phi^{(r)}(x^*) \neq 0,$$

тада итеративни процес (3) има ред конвергенције r. Ако је $\Phi \in C^r[\alpha,\beta]$, тада је асимптотска константа грешке

$$C_r = \frac{|\Phi^{(r)}(x^*)|}{r!}.$$

Напомена. Ако итеративни процес има линеарну конвергенцију $(r=1),\;\;$ тада је фактор конвергенције $\;C_1<1.$

Убрзавање конвергенције

Теорема

Нека итеративни процес $x_{k+1}=\Phi(x_k)$, $k=0,1,2,\ldots$, конвергира ка x^* са редом конвергенције r, нека је функција Φ диференцијална r+1 пута у околини тачке x^* и нека је $\Phi'(x^*) \neq r$. Тада је итеративни процес

$$x_{k+1} = x_k - \frac{x_k - \Phi(x_k)}{1 - \frac{1}{r}\Phi'(x_k)}, \qquad k = 0, 1, 2, \dots$$

конвергентан са редом конвергенције најмање r+1.

Убрзавање конвергенције

Теорема

Нека итеративни процес $x_{k+1}=\Phi(x_k)$, $k=0,1,2,\ldots,$ конвергира ка x^* са редом конвергенције $r\geq 2$ и нека је функција Φ диференцијална r+1 пута у околини тачке x^* . Тада је итеративни процес

$$x_{k+1} = \Phi(x_k) - \frac{1}{r}\Phi'(x_k)(x_k - \Phi(x_k)), \qquad k = 0, 1, 2, \dots$$

конвергентан са редом конвергенције најмање r+1.

Пример итеративног процеса

Њутнов метод

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots,$$

 $x_0 \in [\alpha, \beta]$

ред конвергенције: r=2

Метод просте итерације

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots, \qquad x_0 \in [\alpha, \beta]$$

општи итеративни метод или метод просте итерације

$$f(x) = 0$$

- $f \in C^1[\alpha, \beta]$,
- $f'(x) \neq 0$, $x \in [\alpha, \beta]$.
- ullet $x^* \in [lpha, eta]$ просто изоловано решење

 $x_0 \in [\alpha, \beta]$

По Тејлоровој формули:

$$f(x^*) = f(x_0) + f'(x_0)(x^* - x_0) + o(x^* - x_0), \qquad x^* \to x_0$$
$$0 \approx f(x_0) + f'(x_0)(x^* - x_0),$$
$$x^* \approx x_0 - \frac{f(x_0)}{f'(x_0)} \qquad (f'(x_0) \neq 0).$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots,$$
$$x_0 \in [\alpha, \beta]$$

Њутнов метод, Њутн-Рафсонов метод или метод тангенте

Теорема

Нека једначина f(x)=0 има решење $x^*\in [\alpha,\beta]$, при чему функција f задовољава следеће услове:

- ullet $f\in C^2[lpha,eta]$ и
- ullet f'(x)
 eq 0 за свако $x \in [lpha, eta].$

Тада постоји сегмент $U(x^*) = [x^* - \delta, x^* + \delta]$ такав да итеративни процес

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots,$$

конвергира за свако $x_0 \in U(x^*)$.

Доказ. За итеративну функцију Њутновог метода

$$\Phi(x) = x - \frac{f(x)}{f'(x)}$$

важи

$$\Phi'(x) = 1 - \frac{f'^{2}(x) - f(x)f''(x)}{f'^{2}(x)} = \frac{f(x)f''(x)}{f'^{2}(x)},$$

тj.,

$$\Phi(x^*) = x^*, \qquad \Phi'(x^*) = 0.$$

- ullet Функције f(x), f'(x) и f''(x) су непрекидне,
- $f'(x) \neq 0$ на $[\alpha, \beta]$.

Зато је и функција $\Phi'(x)$ је непрекидна на $[\alpha,\beta]$, па постоји сегмент $[x^*-\delta,x^*+\delta]=U(x^*)$ такав да је $|\Phi'(x)|\leq q<1$ за свако $x\in U(x^*)$.

Осим тога, важи и

$$\begin{aligned} x \in U(x^*) & \Rightarrow & |x - x^*| \le \delta \\ & \Rightarrow & |\Phi(x) - x^*| = |\Phi(x) - \Phi(x^*)| = |\Phi'(\xi)||x - x^*| \\ & \le q|x - x^*| < |x - x^*| < \delta \\ & \Rightarrow & \phi(x) \in U(x^*), \end{aligned}$$

што значи да $\Phi:U(x^*)\to U(x^*).$ Према томе, испуњени су услови за конвергенцију Њутновог итеративног процеса на $U(x^*).$

Теорема

Нека су задовољени услови претходне теореме. Тада Њутнов итеративни процес има ред конвергенције r=2 и асимптотску константу грешке

$$C_2 = \frac{|f''(x^*)|}{2|f'(x^*)|}.$$

Доказ. Према дефиниционој формули итеративног низа важи

$$x_{k+1} = x_k - \frac{f(x_k) - f(x^*)}{f'(x_k)},$$

$$x_{k+1} - x^* = x_k - x^* - \frac{f(x_k) - f(x^*)}{f'(x_k)}$$

$$f'(x_k)(x_{k+1} - x^*) = f'(x_k)(x_k - x^*) - (f(x_k) - f(x^*)),$$

$$f(x_k) - f(x^*) = f'(x_k)(x_k - x^*) - f'(x_k)(x_{k+1} - x^*).$$

C друге стране, развој функције f по Тејлоровој формули око таŭке x_k даје

$$f(x^*) - f(x_k) = f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2!}(x^* - x_k)^2, \qquad \xi_k \text{ између } x^* \text{ и } x_k.$$

Сабирањем ових једнакости добија се

$$2f'(x_k)(x_{k+1} - x^*) = f''(\xi_k)(x^* - x_k)^2,$$
$$\frac{x_{k+1} - x^*}{(x^* - x_k)^2} = \frac{f''(\xi_k)}{2f'(x_k)}.$$
$$\lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x^* - x_k)^2} = \frac{f''(x^*)}{2f'(x^*)},$$

што доказује тврђење теореме. \square

Њутнов метод за вишеструке нуле функције

Ако је $x^* \in [\alpha, \beta]$ вишеструко решење, тада Њутнов итеративни процес конвергира са редом конвергенције r=1.

Модификације са r=2

Ако је вишеструкост решења позната, тј. ако се зна да је x^* нула функције f(x) реда m: тада је она проста нула функције

$$F(x) = \sqrt[m]{f(x)}.$$

Применом Њутновог метода на решавање једначине F(x)=0 добија се итеративни процес

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots, \qquad x_0 \in U(x^*).$$

Њутнов метод за вишеструке нуле функције

Ако је вишеструкост решења позната: тада се Њутнов метод примењује на одређивање просте нуле функције

$$F(x) = \frac{f(x)}{f'(x)}.$$

На тај начин добија се итеративни низ

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{f'^2(x_k) - f(x_k)f''(x_k)}, \quad k = 0, 1, 2, \dots, \quad x_0 \in U(x^*).$$

Метод сечице

$$f(x) = 0$$

Апроксимацијом $f'(x_k) pprox rac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$ у Њутновом итеративном процесу добија се

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k), \quad k = 0, 1, 2, \dots,$$

$$x_0, x_1 \in [\alpha, \beta]$$

метод сечице

Метод сечице

Метод сечице

Теорема

Нека једначина

$$f(x) = 0$$

има решење $x^*\in [\alpha,\beta]$, при чему функција f задовољава следеће услове: $f\in C^2[\alpha,\beta]$ и $f'(x)\neq 0$ за свако $x\in [\alpha,\beta]$. Тада постоји сегмент $U(x^*)=[x^*-\delta,x^*+\delta]$ такав да итеративни процес

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k), \qquad k = 0, 1, 2, \dots,$$

конвергира за свако $x_0, x_1 \in U(x^*)$. При томе, ред конвергенције и асимптотска константа грешке су

$$r = \frac{1+\sqrt{5}}{2} \approx 1.62, \qquad C_r = \left| \frac{f''(x^*)}{2f'(x^*)} \right|^{1/r} = \left| \frac{f''(x^*)}{2f'(x^*)} \right|^{\frac{\sqrt{5}-1}{2}}.$$

Метод регула фалси

Метод регула фалси

Модификација метода сечице

$$x_{k+1} = x_k - \frac{x_k - x_0}{f(x_k) - f(x_0)} f(x_k), \qquad k = 0, 1, 2, \dots,$$

почетне вредности $x_0, x_1 \in U(x^*)$ се морају узети тако да буду са различитих страна решења једначине x^* , тј. мора да важи $f(x_0) \cdot f(x_1) < 0$.

Ако је $f \in C^1[lpha,eta]$, итеративна функција овог метода

$$\Phi(x) = x - \frac{x - x_0}{f(x) - f(x_0)} f(x)$$

задовољава услове $\Phi(x^*)=x^*$, $\Phi'(x^*)\neq 0$, па ако метод конвергира, ред конвергенције је r=1.

Метод Стефенсена

$$f'(x_k) \approx \frac{f(x_k + f(x_k)) - f(x_k)}{f(x_k)},$$

Метод Стефенсена

$$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}, \qquad k = 0, 1, 2, \dots,$$

 $x_0 \in [\alpha, \beta].$

Ако важи $f\in C^2[\alpha,\beta],\ f'(x)\neq 0$ на $[\alpha,\beta],$ метод конвергира са редом конвергенције и асимптотском константом грешке

$$r = 2,$$
 $C_r = \left| \frac{f''(x^*)}{2f'(x^*)} (f'(x^*) + 1) \right|.$

Метод половљења интервала

Овај метод решавања једначина није итеративни процес, иако се одвија у коначном броју корака који зависи од захтеване тачности. Једноставан је за примену, али је релативно спор, па се користи углавном за грубу локализацију решења. Нека једначина

$$f(x) = 0$$

има решење $x^* \in [\alpha,\beta]$. Тада је сигурно $f(\alpha) \cdot f(\beta) < 0$. Метод половљења интервала заснива се на конструкцији низа интервала $\{[x_k,y_k]\}$ таквих да је

$$y_{k+1} - x_{k+1} = \frac{y_k - x_k}{2}, \quad k = 0, 1, 2, \dots, \qquad f(x_k) \cdot f(y_k) < 0,$$

почевши од $[x_0,y_0]=[lpha,eta]$. На тај начин је обезбеђено да $x^*\in [x_k,y_k]$ за свако $k\in \mathbb{N}$, тј. да је

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} y_k = x^*.$$

Метод половљења интервала

Процес се прекида кад је дужина интервала $[x_k,y_k]$ мања од неког унапред задатог броја $\varepsilon>0$, а за приближно решење се узима средина тог интервала:

$$x^* \approx z_k = \frac{x_k + y_k}{2}.$$

Грешка метода, тј. одступање приближног од тачног решења је

$$|z_k - x^*| \le \frac{1}{2^{k+1}} (\beta - \alpha).$$

Метод половљења интервала

Алгоритам:

$$[x_0,y_0]=[lpha,eta];$$
 за $n=0,1,2,\ldots$ понављати: $z_n=rac{x_n+y_n}{2}$

- Ако је $f(z_n) = 0$, тада је z_n тачно решење.
- ullet Ако је $f(x_n) \cdot f(z_n) < 0$, тада је $[x_{n+1}, y_{n+1}] = [x_n, z_n]$.
- ullet Ако је $f(y_n) \cdot f(z_n) < 0$, тада је $[x_{n+1}, y_{n+1}] = [z_n, y_n]$.

$$3$$
аустављање: $\frac{y_n-x_n}{2}$

Решавање полиномских једначина

Полиномске једначине: $P(x)=0, \quad P\in \mathbb{C}[x]$

$$x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0$$
 $(a_0, a_1, \dots, a_{n-1} \in \mathbb{C})$

Према основном ставу алгебре:

Сваки полином степена $n\geq 1$ има тачно n нула у $\mathbb{C}.$

Претходно описаним методима решења се одређјују сукцесивно, једно по једно на раздвојеним интервалима.

Посебну класу чине методи којима се ођедном (симултано) одређују сва решења једначине.

Симултано одређивање нула полинома

Нека полином

$$P(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

има n простих (различитих) нула r_1, r_2, \ldots, r_n .

Факторисани облик:

$$P(x) = (x-r_1)(x-r_2)\cdots(x-r_n) = \prod_{j=1}^n (x-r_j) = (x-r_i)\prod_{\substack{j=1\\j\neq i}}^n (x-r_j).$$

 $\mathsf{3a}$ сваку нулу $\mathit{r_i}$, $\mathit{i}=1,2,\ldots,n,$ добија се

$$x - r_i = \frac{P(x)}{\prod\limits_{\substack{j=1 \ j \neq i}}^{n} (x - r_j)},$$
 $ext{tj.}$ $r_i = x - \frac{P(x)}{\prod\limits_{\substack{j=1 \ j \neq i}}^{n} (x - r_j)}.$

Вајерштрасов метод

Нека су $x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}$ апроксимације нула r_1, r_2, \ldots, r_n полинома P(x) редом.

Узимајући $x=x_i^{(k)}$ и $r_ipprox x_i^{(k)},$ добија се побољшана апроксимација нуле r_i :

Вајерштрасов метод за симултано одређивање нула полинома

Вајерштрасов метод

Свака итерација састоји се из n формула, које генеришу n низова, међусобно зависних:

члан са индексом k+1 једног низа зависи од kтих чланова свих низова.

Другим речима, добија се низ $\left\{ \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)} \right) \right\}_{k \in \mathbb{N}}$ који конвергира ка (r_1, r_2, \dots, r_n) ако су му почетне вредности $\left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)} \right)$ међусобно различите и довољно близу тачним вредностима.

Конвергенција метода је квадратна (r=2).

Интересантно својство Вајерштрасовог метода:

$$\sum_{i=1}^{n} x_i^{(k)} = -a_{n-1}.$$

Модификација Вајерштрасовог метода

Вајерштрасовом метод:

у k+1-вој итерацији користе само вредности из претходне, kте итерације.

$$x_i^{(k+1)} = x_i^{(k)} - \frac{P(x_i^{(k)})}{\prod\limits_{\substack{j=1\\j\neq i}}^{n} \left(x_i^{(k)} - x_j^{(k)}\right)}$$

$$= x_i^{(k)} - \frac{P(x_i^{(k)})}{\prod\limits_{j=1}^{i-1} \left(x_i^{(k)} - x_j^{(k)}\right) \prod\limits_{j=i+1}^{n} \left(x_i^{(k)} - x_j^{(k)}\right)}$$

Модификовани Вајерштрасов метод

Модификација Вајерштрасовог метода добијена Гаус-Зајделовим приступом:

у k+1-вој итерацији користе се већ израчунате вредности из текуће итерације.

Решавање система нелинеарних једначина

Нека су (нелинеарне) функције $f_i(x_1,x_2,\ldots,x_n),$ $i=1,2,\ldots,n,$ дефинисане у некој области $D\subset\mathbb{R}^n.$

Систем нелинеарних једначина:

$$\begin{aligned}
f_1(x_1, x_2, \dots, x_n) &= 0, \\
f_2(x_1, x_2, \dots, x_n) &= 0, \\
&\vdots \\
f_n(x_1, x_2, \dots, x_n) &= 0.
\end{aligned}$$
(4)

Увођењем ознака

$$\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^T, \qquad \mathbf{f} = [f_1 \ f_2 \ \cdots \ f_n]^T, \qquad \mathbf{0} = [0 \ 0 \ \cdots \ 0]^T,$$

систем се може записати као векторска једначина

$$f(x) = 0.$$

★□ > ★ = > ★ = > 9 < ○

Решавање система нелинеарних једначина

Итеративни методи за решавање једначине

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}.\tag{5}$$

заснивају се на формирању низа вектора $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$,

$$\mathbf{x}^{(k)} = [x_1^{(k)} \ x_2^{(k)} \ \cdots \ x_n^{(k)}]^T \in D$$

који конвергира ка тачном решењу

$$\mathbf{x}^* = [x_1^* \ x_2^* \ \cdots \ x_n^*]^T$$

једначине (5) односно система (4).

Норма у векторском простору

Норма

Нека је X векторски простор над пољем скалара $\mathbb R$. Функција $\|\cdot\|:X o\mathbb{R}$ таква да за свако $\mathbf{x},\mathbf{y}\in X$ и свако $\lambda\in\mathbb{R}$ важи

1°
$$\|\mathbf{x}\| \ge 0$$
, $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$,
2° $\|\lambda\mathbf{x}\| = |\lambda| \|\mathbf{x}\|$,

$$2^{\circ} \quad \|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|,$$

$$3^{\circ} \quad \|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|,$$

зове се норма, а $(X, \|\cdot\|)$, или само X, је нормирани простор.

Ако је у простору X дефинисана норма, може се дефинисати метрика:

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

Векторске норме

Hopмe вектора у \mathbb{R}^n :

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 $(p \ge 1).$

$$p=1: \ \|{f x}\|_1 = \sum_{i=1}^n |x_i|$$
 (Менхетн норма)

$$p=2:$$
 $\|\mathbf{x}\|_2=\sqrt{\sum_{i=1}^n|x_i|^2}$ (Еуклидска норма)

$$p \to \infty$$
: $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$ (максимум норма)

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \|\mathbf{x}\|_{1}, \quad \forall \mathbf{x} \in \mathbb{R}^{n}.$$

Матричне норме

Hopмe матрица у $\mathcal{M}_{n\times n}$:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

$$\|A\|_2 = \sqrt{\sum_{i,j=1}^n |a_{ij}|^2}$$
 — Фробениусова норма

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

$$\|A\|_{sp}=\sigma(A)=\sqrt{\max|\lambda(A^TA)|},$$
 спектрална норма $\lambda(A^TA)$ сопствене вредности A^TA

Норме вектора и матрица

Однос норме вектора и матрица

Норма матрице ||A||, $A \in \mathcal{M}_{n \times n}$, је сагласна са нормом вектора $\|\mathbf{x}\|$, $\mathbf{x} \in \mathbb{R}^n$ ако за произвољне $A, B \in \mathcal{M}_{n \times n}$ и $\mathbf{x} \in \mathbb{R}^n$ важи:

$$||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||,$$

 $||AB|| \le ||A|| ||B|.$

Ако је норма $\|A\|$ сагласна са нормом $\|\mathbf{x}\|$ и ако за сваку матрицу $A \in \mathcal{M}_{n \times n}$ постоји вектор $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$, такав да је

$$||A\mathbf{x}|| = ||A|| ||\mathbf{x}||,$$

тада је норма матрице $\|A\|$ потчињена норми вектора (индукована нормом вектора) $\|\mathbf{x}\|$.

Конвергенција низова вектора

Итеративни методи за решавање система $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ заснивају се на формирању низа вектора $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ који конвергира ка тачном решењу \mathbf{x}^* .

Низ вектора
$$\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$$
, $\mathbf{x}^{(k)}=[x_1^{(k)} \ x_2^{(k)} \ \dots \ x_n^{(k)}]^T\in\mathbb{R}^n$, конвергира ка вектору $\mathbf{x}^*=[x_1^* \ x_2^* \ \dots \ x_n^*]^T\in\mathbb{R}^n$, тј.
$$\lim_{n\to\infty}\mathbf{x}^{(k)}=\mathbf{x}^*,$$
ако је $\lim_{n\to\infty}x_j^{(k)}=x_j^*,\quad j=1,2,\dots,n.$

Низ вектора
$$\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$$
 конвергира ка вектору $\mathbf{x}^*=[x_1^* \ x_2^* \ \dots \ x_n^*]^T\in\mathbb{R}^n$ ако је
$$\lim_{n\to\infty}\|\mathbf{x}^{(k)}-\mathbf{x}^*\|=0,$$

где је $\|\cdot\|$ произвољно изабрана норма у \mathbb{R}^n .

Парцијални изводи и Тејлорова формула

Парцијални изводи

Нека је $f:D\to\mathbb{R}$, $D\subseteq\mathbb{R}^n$, дефинисана у некој околини тачке $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Парцијални извод функције f по променљивој x_i y тачки x je $\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_j + h, \dots, x_n) - f(x_1, x_2, \dots, x_j, \dots, x_n)}{h}.$

Парцијални изводи другог реда функције f су

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right).$$

Тејлоров полином првог степена

Нека функција $f(\mathbf{x})$, $\mathbf{x} = (x_1, x_2, \dots, x_n)$, има непрекидне парцијалне изводе у некој околини тачке $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} = (a_1, a_2, \dots, a_n)$. Тада важи $f(\mathbf{x}) = T_1(\mathbf{x}) + R_1(\mathbf{x}),$ где је

$$T_1(\mathbf{x}) = f(\mathbf{a}) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(\mathbf{a}) (x_j - a_j), \quad R_1(\mathbf{x}) = o(\|\mathbf{x} - \mathbf{a}\|), \quad \mathbf{x} \to \mathbf{a}$$

Јакобијева матрица

Нека су функције $f_i(x_1,x_2,\ldots,x_n), \quad i=1,2,\ldots,n,$ дефинисане у некој области $D\subset\mathbb{R}^n.$ Јакобијева матрица:

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}) \\ \vdots & & & & \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}) \end{bmatrix} = \left[\frac{\partial f_i}{\partial x_j}(\mathbf{x}) \right]_{n \times n}$$

Трансформишемо систем једначина

$$\mathbf{f}(\mathbf{x}) = \mathbf{0} \qquad \Leftrightarrow \qquad \mathbf{x} = \mathbf{\Phi}(\mathbf{x})$$

Итеративни низ:

$$\mathbf{x}^{(k+1)} = \mathbf{\Phi}(\mathbf{x}^{(k)}), \ k = 0, 1, 2, \dots, \quad \mathbf{x}^{(0)} \in D$$

Теорема о фиксној тачки

Нека је X комплетан метрички простор и $F: X \to X$ контракција, тј. постоји $q \in [0,1)$ тако да за свако $x,y \in X$ важи

$$||F(x) - F(y)|| \le q||x - y||.$$

Тада постоји јединствена фиксна тачка функције F и она је гранична вредност низа $\{x_k\}_{k\in\mathbb{N}}$ дефинисаног са $x_{k+1}=F(x_k)$ $k = 0, 1, 2, \ldots$, за произвољно $x_0 \in X$.

Испитајмо под којим је условима $\Phi(\mathbf{x})$ контракција.

Нека функције $\Phi_i(x_1, x_2, \dots, x_n), i = 1, 2, \dots, n$, имају непрекидне парцијалне изводе на D. Нека су $\mathbf{x},\mathbf{y}\in D$ произвољни. Тејлоровим развојем функција $\Phi_i, i=1,2,\ldots,n$, у околини тачке ${\bf x}$ добија се

$$\Phi_i(\mathbf{y}) = \Phi_i(\mathbf{x}) + \frac{\partial \Phi_i}{\partial x_1}(\mathbf{x})(y_1 - x_1) + \dots + \frac{\partial \Phi_i}{\partial x_n}(\mathbf{x})(y_n - x_n) + r_i,$$

$$i = 1, 2, \dots, n$$

 $i = 1, 2, \dots, n$

$$\Phi_{i}(\mathbf{y}) - \Phi_{i}(\mathbf{x}) = \frac{\partial \Phi_{i}}{\partial x_{1}}(\mathbf{x})(y_{1} - x_{1}) + \dots + \frac{\partial \Phi_{i}}{\partial x_{n}}(\mathbf{x})(y_{n} - x_{n}) + r_{i},$$

$$|\Phi_{i}(\mathbf{y}) - \Phi_{i}(\mathbf{x})| \leq \left|\frac{\partial \Phi_{i}}{\partial x_{1}}(\mathbf{x})\right| |y_{1} - x_{1}| + \dots + \left|\frac{\partial \Phi_{i}}{\partial x_{n}}(\mathbf{x})\right| |y_{n} - x_{n}|,$$

$$\|\mathbf{\Phi}(\mathbf{y}) - \mathbf{\Phi}(\mathbf{x})\| = \max_{1 \le i \le n} |\Phi_i(\mathbf{y}) - \Phi_i(\mathbf{x})| \le \max_{1 \le i \le n} \sum_{j=1}^n \left| \frac{\partial \Phi_i}{\partial x_j}(\mathbf{x}) \right| |y_j - x_j|$$

$$\le \max_{1 \le j \le n} |y_j - x_j| \max_{1 \le i \le n} \sum_{j=1}^n \left| \frac{\partial \Phi_i}{\partial x_j}(\mathbf{x}) \right|$$

$$= \|\mathbf{x} - \mathbf{y}\|_{\infty} \|J(\mathbf{x})\|_{\infty},$$

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial \Phi_1}{\partial x_1}(\mathbf{x}) & \frac{\partial \Phi_1}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial \Phi_1}{\partial x_n}(\mathbf{x}) \\ \frac{\partial \Phi_2}{\partial x_1}(\mathbf{x}) & \frac{\partial \Phi_2}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial \Phi_2}{\partial x_n}(\mathbf{x}) \\ \vdots & & & \\ \frac{\partial \Phi_n}{\partial x_1}(\mathbf{x}) & \frac{\partial \Phi_n}{\partial x_2}(\mathbf{x}) & \cdots & \frac{\partial \Phi_n}{\partial x_n}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial \Phi_i}{\partial x_j}(\mathbf{x}) \end{bmatrix}_{n \times n}$$

Ако је $\|J(\mathbf{x})\| \leq q < 1,\;$ за свако $\mathbf{x} \in D$, тада је $\; \mathbf{\Phi} \;$ контракција, тј. итеративни процес

$$\mathbf{x}^{(k+1)} = \mathbf{\Phi}(\mathbf{x}^{(k)}), \ k = 0, 1, 2, \dots, \quad \mathbf{x}^{(0)} \in D$$

конвергира.

$$f_1(x_1, x_2, \dots, x_n) = 0,$$

 $f_2(x_1, x_2, \dots, x_n) = 0,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0.$

 $\mathbf{x}^* = [x_1^* \ x_2^* \ \cdots \ x_n^*]^T \in D$ — тачно реčење $\mathbf{x}^{(k)} = [x_1^{(k)} \ x_2^{(k)} \ \cdots \ x_n^{(k)}]^T \in D$ — приближно решење.

Ако функције $f_i, i=1,2,\ldots,n$, имају непрекидне парцијалне изводе на D, Тејлоровим развојем у околини тачке $\mathbf{x}^{(k)}$ добија се

$$f_i(\mathbf{x}^*) = f_i(\mathbf{x}^{(k)}) + \frac{\partial f_i}{\partial x_1}(\mathbf{x}^{(k)})(x_1^* - x_1^{(k)}) + \dots + \frac{\partial f_i}{\partial x_n}(\mathbf{x}^{(k)})(x_n^* - x_n^{(k)}) + r_i^{(k)}, \qquad i = 1, 2, \dots, n,$$

 $r_i^{(k)}$, $i=1,2,\ldots,n$ — остатак у Тејлоровој формули. $oldsymbol{z}$ на $oldsymbol{z}$

Како је

$$f_i(\mathbf{x}^*) = 0, \qquad i = 1, 2, \dots, n,$$

важи:

$$0 = f_i(\mathbf{x}^{(k)}) + \frac{\partial f_i}{\partial x_1}(\mathbf{x}^{(k)})(x_1^* - x_1^{(k)}) + \dots + \frac{\partial f_i}{\partial x_n}(\mathbf{x}^{(k)})(x_n^* - x_n^{(k)}) + r_i^{(k)}, \qquad i = 1, 2, \dots, n,$$

тj.

$$0 \approx f_1(\mathbf{x}^{(k)}) + \frac{\partial f_1}{\partial x_1}(\mathbf{x}^{(k)})(x_1^* - x_1^{(k)}) + \dots + \frac{\partial f_1}{\partial x_n}(\mathbf{x}^{(k)})(x_n^* - x_n^{(k)})$$

$$0 \approx f_2(\mathbf{x}^{(k)}) + \frac{\partial f_2}{\partial x_1}(\mathbf{x}^{(k)})(x_1^* - x_1^{(k)}) + \dots + \frac{\partial f_2}{\partial x_n}(\mathbf{x}^{(k)})(x_n^* - x_n^{(k)})$$

$$\vdots$$

 $0 \approx f_n(\mathbf{x}^{(k)}) + \frac{\partial f_n}{\partial x_1}(\mathbf{x}^{(k)})(x_1^* - x_1^{(k)}) + \dots + \frac{\partial f_n}{\partial x_n}(\mathbf{x}^{(k)})(x_n^* - x_n^{(k)})$

$$\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \approx \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}^{(k)}) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}^{(k)}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{x}^{(k)}) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}^{(k)}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}^{(k)}) \\ \vdots & & & & \\ \frac{\partial f_n}{\partial x_1}(\mathbf{x}^{(k)}) & \frac{\partial f_n}{\partial x_2}(\mathbf{x}^{(k)}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{x}^{(k)}) \end{bmatrix} \begin{bmatrix} x_1^* - x_1^{(k)} \\ x_2^* - x_2^{(k)} \\ \vdots \\ x_n^* - x_n^{(k)} \end{bmatrix}$$

$$\mathbf{0} \approx \mathbf{f}(\mathbf{x}^{(k)}) + J(\mathbf{x}^{(k)})(\mathbf{x}^* - \mathbf{x}^{(k)})$$

Ако је $J(\mathbf{x}^{(k)})$ регуларна матрица:

$$\mathbf{0} \approx \mathbf{f}(\mathbf{x}^{(k)}) + J(\mathbf{x}^{(k)})(\mathbf{x}^* - \mathbf{x}^{(k)}),$$

$$-\mathbf{f}(\mathbf{x}^{(k)}) \approx J(\mathbf{x}^{(k)})(\mathbf{x}^* - \mathbf{x}^{(k)}),$$

$$\mathbf{x}^* - \mathbf{x}^{(k)} \approx -J(\mathbf{x}^{(k)})^{-1}\mathbf{f}(\mathbf{x}^{(k)}),$$

$$\mathbf{x}^* \approx \mathbf{x}^{(k)} - J(\mathbf{x}^{(k)})^{-1}\mathbf{f}(\mathbf{x}^{(k)}).$$

Итеративни процес:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - J(\mathbf{x}^{(k)})^{-1} \mathbf{f}(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, \dots,$$

 $\mathbf{x}^{(0)} \in D,$

метод Њутн-Канторовича

Конвергенција метода Њутн-Канторовича

Ако важи:

- \bullet ${f x}^{(0)}$ је довољно близу ${f x}^*$,
- ullet Јакобијева матрица $J(\mathbf{x})$ је регуларна за свако $\mathbf{x} \in D$ и

$$ullet$$
 $rac{\partial^2 f_i}{\partial x_k \partial x_j}$, $i,j,k=1,2,\ldots,n,$ су ограничени на D ,

тада итеративни низ $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ конвергира ка $\mathbf{x}^*,$ тј.

$$\lim_{k \to \infty} d(\mathbf{x}^{(k)}, \mathbf{x}^*) = 0.$$

Pед конвергенције: r=2;

Заустављање процеса: $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| < \varepsilon, \quad \varepsilon > 0$ задати број;

Приближно решење: $\mathbf{x}^* pprox \mathbf{x}^{(k)}$.

паралела са Њутновим методом:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \quad \longleftrightarrow \quad \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - J(\mathbf{x}^{(k)})^{-1} \mathbf{f}(\mathbf{x}^{(k)})$$

Модификовани метод Њутн-Канторовича

Да би се избегло одређивање инверзне матрице $W(\mathbf{x}^{(k)})^{-1}$ у свакој итерацији:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - J(\mathbf{x}^{(0)})^{-1}\mathbf{f}(\mathbf{x}^{(k)}), \quad k = 0, 1, 2, \dots,$$

 $\mathbf{x}^{(0)} \in D.$

модификовани метод Њутн-Канторовича

предност: само једно израчунавање инверзне матрице. r=1