EXP 3: Map Reduce program to process a weather dataset.

AIM:

To implement MapReduce program to process a weather dataset.

Procedure:

Step 1: Create Data File:

Create a file named "word_count_data.txt" and populate it with text data that you wish to analyse. Login with your hadoop user.

*da	ut: taset - Notepa	d											1944		
File E	dit Format	View He	lp												
3907	20150103	2.423	-98.08	30.62	15.9	2.3	9.1	7.5	3.1	11.00 C	16.4	2.9	7.3	100.0	
3907	20150104	2.423	-98.08	30.62	9.2	-1.3	3.9	4.2	0.0	13.24 C	12.4	-0.5	4.9	82.0	
3907	20150105	2.423	-98.08	30.62	10.9	-3.7	3.6	2.6	0.0	13.37 C	14.7	-3.0	3.8	77.9	
3907	20150106	2.423	-98.08	30.62	20.2	2.9	11.6	10.9	0.0	12.90 C	22.0	1.6	9.9	67.7	
23907	20150107	2.423	-98.08	30.62	10.9	-3.4	3.8	4.5	0.0	12.68 C	12.4	-2.1	5.5	82.7	
23907	20150108	2.423	-98.08	30.62	0.6	-7.9	-3.6	-3.3	0.0	4.98 C	3.9	-4.8	-0.5	57.7	
23907	20150109	2.423	-98.08	30.62	2.0	0.1	1.0	0.8	0.0	2.52 C	4.1	1.2	2.5	87.8	
23907	20150110	2.423	-98.08	30.62	0.5	-2.0	-0.8	-0.6	3.9	2.11 C	2.5	-0.1	1.4	99.9	
23907	20150111	2.423	-98.08	30.62	10.9	0.0	5.4	4.4	2.6	6.38 C	12.7	1.3	5.8	100.0	
23907	20150112	2.423	-98.08	30.62	6.5	1.4	4.0	4.3	0.0	1.55 C	6.9	2.7	5.1	100.0	
23907	20150113	2.423	-98.08	30.62	3.0	-0.7	1.1	1.2	0.0	3.26 C	5.6	0.7	2.9	99.7	
23907	20150114	2.423	-98.08	30.62	2.9	0.9	1.9	1.8	0.7	1.88 C	4.7	2.0	3.1	99.6	
23907	20150115	2.423	-98.08	30.62	13.2	1.2	7.2	6.4	0.0	13.37 C	16.4	1.4	6.7	98.9	
23907	20150116	2.423	-98.08	30.62	16.7	3.5	10.1	9.9	0.0	13.68 C	19.2	1.3	8.7	80.2	
23907	20150117	2.423	-98.08	30.62	19.5	5.0	12.2	12.3	0.0	10.96 C	20.9	3.3	10.6	87.7	
23907	20150118	2.423	-98.08	30.62	20.9	7.6	14.3	13.7	0.0	15.03 C	23.4	3.5	11.9	45.9	
23907	20150119	2.423	-98.08	30.62	23.9	6.7	15.3	14.3	0.0	14.10 C	25.6	3.8	12.6	65.3	
23907	20150120	2.423	-98.08	30.62	26.0	9.5	17.8	15.9	0.0	14.57 C	27.9	6.5	14.5	88.4	
23907	20150121	2.423	-98.08	30.62	11.0	6.9	8.9	8.9	1.7	2.71 C	13.1	6.8	9.7	99.2	
23907	20150122	2.423	-98.08	30.62	8.6	3.5	6.1	5.6	40.0	1.28 C	9.1	4.1	6.3	99.6	
23907	20150123	2.423	-98.08	30.62	9.4	2.2	5.8	4.2	7.5	6.58 C	11.1	2.0	4.8	98.4	
23907	20150124	2.423	-98.08	30.62	16.0	1.4	8.7	8.0	0.0	14.26 C	18.8	0.4	7.7	92.0	
23907	20150125	2.423	-98.08	30.62	20.2	6.4	13.3	12.7	0.0	14.99 C	22.0	4.4	11.0	69.2	
23907	20150126	2 423	-98 08	30 62	21 5	7)	14 4	14 1	a a	12 A1 C	22 9	5 5	12 2	56 8	

Step 2: Mapper Logic - mapper.py:

Create a file named "mapper.py" to implement the logic for the mapper. The mapper will read input data from STDIN, split lines into words, and output each word with its count.

#!/usr/bin/env python

import sys

input comes from STDIN (standard input)

the mapper will get daily max temperature and group it by month. so output will be (month,dailymax_temperature)

```
for line in sys.stdin:
        # remove leading and trailing whitespace
        line = line.strip()
        # split the line into words
        words = line.split()
        #See the README hosted on the weather website which help us understand how each
     position represents a column
        month = line[10:12] daily_max
        = line[38:45] daily_max =
        daily_max.strip() # increase
        counters
        for word in words:
          # write the results to STDOUT (standard output);
          # what we output here will be go through the shuffle proess and then #
          be the input for the Reduce step, i.e. the input for reducer.py
          #
          # tab-delimited; month and daily max temperature as output print
          ('%s\t%s' % (month,daily_max))
Step 3: Reducer Logic - reducer.py:
            Create a file named "reducer.py" to implement the logic for the reducer. The reducer will
     # Copy and paste the reducer.py code
reducer.py
     #!/usr/bin/env python
     from operator import itemgetter
     import sys
     #reducer will get the input from stdid which will be a collection of key, value(Key=month,
     value= daily max temperature)
     #reducer logic: will get all the daily max temperature for a month and find max temperature for
     the month
     #shuffle will ensure that key are sorted(month)
     current\_month = None
     current max = 0 month
     = None
     #input comes from STDIN
```

for line in sys.stdin:

line = line.strip()

remove leading and trailing whitespace

```
# parse the input we got from mapper.py
  month, daily max = line.split('\t', 1)
  # convert daily_max (currently a string) to float try:
  daily_max = float(daily_max) except ValueError:
     # daily_max was not a number, so silently #
     ignore/discard this line continue
  # this IF-switch only works because Hadoop shuffle process sorts map output #
  by key (here: month) before it is passed to the reducer
  if current_month == month:
     if daily_max > current_max: current_max
       = daily_max
  else:
     if current_month:
       # write result to STDOUT
       print ('%s\t%s' % (current_month, current_max))
     current_max = daily_max
     current\_month = month
# output of the last month
if current_month == month:
  print ('%s\t%s' % (current_month, current_max))
```

Step 4: Prepare Hadoop Environment:

Start the Hadoop daemons and create a directory in HDFS to store your data.

start-all.sh

Step 6: Make Python Files Executable:

Give executable permissions to your mapper.py and reducer.py files.

chmod 777 mapper.py reducer.py

Step 7: Run the program using Hadoop Streaming:

Download the latest hadoop-streaming jar file and place it in a location you can easily access.

Then run the program using Hadoop Streaming. hadoop

fs -mkdir -p /weatherdata

hadoop fs -copyFromLocal /home/sx/Downloads/dataset.txt /weatherdata

hdfs dfs -ls /weatherdata

hadoop jar /home/sx/hadoop-3.2.3/share/hadoop/tools/lib/hadoop-streaming-3.2.3.jar \

- -input /weatherdata/dataset.txt \
- -output /weatherdata/output \
- -file "/home/sx/Downloads/mapper.py" \
- -mapper "python3 mapper.py" \setminus
- -file "/home/sx/Downloads/reducer.py" \
- -reducer "python3 reducer.py"

 $hdfs\ dfs\ -text\ /weatherdata/output/* > /home/sx/Downloads/outputfile.txt$

Step 8: Check Output:

Check the output of the program in the specified HDFS output directory.

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/output/ /part-00000

Result:

Thus, the program for weather dataset using Map Reduce has been executed successfully.

EXP 4: Create UDF in PIG

Step-by-step installation of Apache Pig on Hadoop cluster on Ubuntu

Pre-requisite:

- · Ubuntu 16.04 or higher version running (I have installed Ubuntu on Oracle VM (Virtual Machine) VirtualBox),
- · Run Hadoop on ubuntu (I have installed Hadoop 3.2.1 on Ubuntu 16.04). You may refer to my blog "How to install Hadoop installation" click here-for Hadoop installation).

Pig installation steps Step 1:

Login into Ubuntu

Step 2: Go to https://pig.apache.org/releases.html and copy the path of the latest version of pig that you want to install. Run the following comment to download Apache Pig in Ubuntu:

\$ wget https://dlcdn.apache.org/pig/pig-0.16.0/pig-0.16.0.tar.gz

Step 3: To untar pig-0.16.0.tar.gz file run the following command:

\$ tar xvzf pig-0.16.0.tar.gz

Step 4: To create a pig folder and move pig-0.16.0 to the pig folder, execute the following command:

\$ sudo mv /home/hdoop/pig-0.16.0 /home/hdoop/pig

Step 5: Now open the .bashrc file to edit the path and variables/settings for pig. Run the following command:

\$ sudo nano .bashrc

Add the below given to .bashrc file at the end and save the file.

#PIG settingsexport PIG_HOME=/home/hdoop/pigexport PATH=\$PATH:\$PIG_HOME/binexport

PIG_CLASSPATH=\$PIG_HOME/conf:\$HADOOP_INSTALL/etc/hadoop/export PIG_CONF_DIR=\$PIG_HOME/confexport JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64export PIG_CLASSPATH=\$PIG_CONF_DIR:\$PATH#PIG setting ends

Step 6: Run the following command to make the changes effective in the .bashrc file: \$ source .bashrc

Step 7: To start all Hadoop daemons, navigate to the hadoop-3.2.1/sbin folder and run the following commands:

\$./start-dfs.sh\$./start-yarn\$ jps

```
hdoop@hdoop-VirtualBox:~$ cd hadoop-3.2.1/sbin
hdoop@hdoop-VirtualBox:~/hadoop-3.2.1/sbin$ ./start-dfs.sh
Starting namenodes on [localhost]
Starting datanodes
Starting secondary namenodes [hdoop-VirtualBox]
hdoop@hdoop-VirtualBox:~/hadoop-3.2.1/sbin$ ./start-yarn.sh
Starting resourcemanager
Starting nodemanagers
hdoop@hdoop-VirtualBox:~/hadoop-3.2.1/sbin$ jps
4817 DataNode
5298 ResourceManager
5000 SecondaryNameNode
5450 NodeManager
4683 NameNode
5982 Jps
hdoop@hdoop-VirtualBox:~/hadoop-3.2.1/sbin$
```

Step 8: Now you can launch pig by executing the following command: \$

Step 9: Now you are in pig and can perform your desired tasks on pig. You can come out of the pig by the quit command:

> quit;