Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5

Асинхронных обмен данными с ВУ

Вариант 16503

Выполнил:

Шмунк Андрей Александрович

Группа Р3108

Преподаватели:

Ткешелашвили Нино Мерабиевна

Клименков Сергей Викторович

Оглавление

Задание	3
Описание программы	
Текст исходной программы	
• •	
Описание программы _	
Трассировка программы	
Дополнительное задание	
Вывод	8

Залание

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

- 1. Программа осуществляет асинхронный вывод данных на ВУ-3
- 2. Программа начинается с адреса $1F0_{16}$. Размещаемая строка находится по адресу $5AD_{16}$.
- 3. Строка должна быть представлена в кодировке КОИ-8.
- 4. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 00 (NUL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

Описание программы

Передаваемое сообщение: «ФИЛИН»

В кодировке КОИ-8: Е6Е9 ЕСЕ9 ЕЕОО

В кодировке UTF-8: D0 A4 D0 98 D0 9B D0 98 D0 9D В кодировке UTF-16: 04 24 04 18 04 1B 04 18 04 1D

ORG 0x1F0;

BEGIN: WORD 0x5AD; Ссылка на строку CUR: WORD?; Адрес текущей ячейки

FIRST: WORD?; Первый символ SECOND: WORD?; Второй символ

MASK: WORD 0xFF; Macka

START: CLA; Очистка аккумулятора

LD BEGIN; Загрузка в аккумулятор адреса первой ячейки

ST CUR; Сохранение адреса в ячейку счетчика

S0: LD (CUR)+; Загрузка первых двух символов

ST SECOND; Запись первого символа

SWAB; Обмен старшего и младшего байтов

ST FIRST; Запись первого символа

W1: IN 7; Чтение регистра состояния ВУ-3

AND #0x40; Проверка готовности

BEQ W1; «Спин-луп»

LD FIRST; Загрузка второго символа

AND MASK; Наложение маски OUT 6; Вывод данных на ВУ-3

BEQ STOP; Проверка на стоп-символ

W2: IN 7; Чтение регистра состояния ВУ-3

AND #0x40; Проверка готовности

BEQ W2; «Спин-луп»

LD SECOND; Загрузка второго символа

AND MASK ; Наложение маски OUT 6 ; Вывод данных на ВУ-3

BEQ STOP; Проверка на стоп-символ JUMP SO; Переход на загрузку символов

STOP: HLT

ORG 0x1F0 WORD 0xE6E9 WORD 0xECE9 WORD 0xEE00

Текст исходной программы

Текст исх	одной программы						
Адрес	Код команды	Мнемоника	Комментарии				
1F0	05AD	BEGIN	Ссылка на строку				
1F1	0000	CUR	Адрес текущей ячейки				
1F2	0000	FIRST	Первый символ				
1F3	0000	SECOND	Второй символ				
1F4	00FF	MASK	Маска				
1F5	0200	CLA	Очистка аккумулятора				
1F6	AEF9	LD IP-7	Загрузка в аккумулятор адреса первой ячейки				
1F7	EEF9	ST IP-7	Сохранение адреса в ячейку счетчика				
1F8	AAF8	LD (IP-8)+	Загрузка первых двух символов				
1F9	EEF9	ST IP-7	Запись второго символа				
1FA	0680	SWAB	Обмен старшего и младшего байтов				
1FB	EEF6	ST IP-10	Запись первого символа				
1FC	1207	IN 7	Чтение регистра состояния ВУ-3				
1FD	2F40	AND #40	Проверка готовности				
1FE	F0FD	BEQ IP-2	«Спин-луп»				
1FF	AEF2	LD IP-14	Загрузка второго символа				
200	2EF3	AND IP-13	Наложение маски				
201	F008	BEQ IP+8	Проверка на стоп-символ				
202	1306	OUT 6	Вывод данных на ВУ-3				
203	1207	IN 7	Чтение регистра состояния ВУ-3				
204	2F40	AND #40	Проверка готовности				
205	F0FD	BEQ IP-2	«Спин-луп»				
206	AEEC	LD IP-20	Загрузка второго символа				
207	2EEC	AND IP-20	Наложение маски				
208	F001	BEQ IP+1	Проверка на стоп-символ				
209	1306	OUT 6	Вывод данных на ВУ-3				
20A	CEED	JUMP IP-19	Переход на загрузку символов				
20B	0100	HLT	ОСТАНОВ				

Описание программы

Программа осуществляет асинхронный вывод данных на ВУ-3. Вывод осуществляется до тех пор, пока не встретится стоп-символ 0х00. Данные из ячейки распределяются по ячейкам для разделения на символы, после чего на них накладывается маска для отделения друг от друга и происходит вывод данных при готовности устройства.

Трассировка программы

грассировка программы												
										Ячейка,		
										содержимое		
Выпо	пняемая	gemag							которой			
	ианда	Содержимое регистров после выполнения команды								изменилось		
KON	ланда									после		
									выполнения			
	T-0		1	ı	ı	ı	1		1	ı	команды	
Адре	Код	TD	G.D.		D.D.	G.D.	D.D.		D.C.	NZV		Новый
c	команд	IP	CR	AR	DR	SP	BR	AC	PS	С	Адрес	код
150	Ы	1.7.1	ECEO	(FO	0000	000	0150	0000	004	0100	(FO	0000
1F0	E6E9	1F1	E6E9	6E9	0000	000	01F0	0000	004	0100	6E9	0000
1F1	0000	1F2	0000	1F1	0000	000	01F1	0000	004	0100		
1F2	0000	1F3	0000	1F2	0000	000	01F2	0000	004	0100		
1F3	0000	1F4	0000	1F3	0000	000	01F3	0000	004	0100		
1F4	00FF	1F5	00FF	1F4	00FF	000	01F4	0000	004	0100		
1F5	0200	1F6	0200	1F5	0200	000	01F5	0000	004	0100		
1F6	AEF9	1F7	AEF9	1F0	E6E9	000	FFF9	E6E9	008	1000		
1F7	EEF9	1F8	EEF9	1F1	E6E9	000	FFF9	E6E9	008	1000	1F1	E6E9
1F8	AAF8	1F9	AAF8	6E9	0000	000	FFF8	0000	004	0100	1F1	E6EA
1F9	EEF9	1FA	EEF9	1F3	0000	000	FFF9	0000	004	0100	1F3	0000
1FA	0680	1FB	0680	1FA	0680	000	01FA	0000	004	0100		
1FB	EEF6	1FC	EEF6	1F2	0000	000	FFF6	0000	004	0100	1F2	0000
1FC	1207	1FD	1207	1FC	1207	000	01FC	0040	004	0100		
1FD	2F40	1FE	2F40	1FD	0040	000	0040	0040	000	0000		
1FE	F0FD	1FF	F0FD	1FE	F0FD	000	01FE	0040	000	0000		
1FF	AEF2	200	AEF2	1F2	0000	000	FFF2	0000	004	0100		
200	2EF3	201	2EF3	1F4	00FF	000	FFF3	0000	004	0100		
201	1306	202	1306	201	1306	000	0201	0000	004	0100		
202	F008	20B	F008	202	F008	000	8000	0000	004	0100		
20B	0100	20C	0100	20B	0100	000	020B	0000	004	0100		

Дополнительное задание

На ВУ-6(бегущая строка) рисуется прямой угол (фигура из двух линий). Если значение на ВУ-2 положительное, угол имеет размеры 3х3 клетки, если отрицательное — 5х5. В зависимости от значения последних двух бит отрисовать поворот угла на 90, 180, 270 градусов.

ORG 0x50

NUM: WORD?

I: IN 5

AND #0x40

BEQ I

IN 4

SXTB

BNS T

BNCF

T:CALL \$FOR_FIVE

JUMP I

F: CALL \$FOR_THREE

JUMP I

HLT

FOR_THREE:

AND #3 BZC STATE11 CALL \$TR JUMP RT1

STATE11: CMP #3 BZC STATE12 CALL \$TF JUMP RT1

STATE12: CMP #2 BZC STATE13 T_pos: CALL \$TS JUMP RT1

STATE13: CMP #1

BZC RT1

FF_pos: CALL \$TT

JUMP RT1 RT1: RET

FOR_FIVE: AND #3 BZC STATE21 CALL \$FR JUMP RT2

STATE21: CMP #3 BZC STATE22 CALL \$FF JUMP RT2

STATE22: CMP #2 BZC STATE23 CALL \$FS JUMP RT2

STATE23: CMP #1

BZC RT2 CALL \$FT JUMP RT2 RT2: RET

TR:

LD #7

OUT 0x10

LD #1

OUT 0x10

OUT 0x10

CLA

OUT 0x10

RET

FR:

LD #31

OUT 0x10

LD #1

OUT 0x10

OUT 0x10

OUT 0x10

OUT 0x10

CLA

OUT 0x10

RET

TS:

LD #4

OUT 0x10

OUT 0x10

LD #7

OUT 0x10

CLA

OUT 0x10

RET

FS:

LD #16

OUT 0x10

OUT 0x10

OUT 0x10

OUT 0x10

LD #31

OUT 0x10

CLA

OUT 0x10

RET

TT:

LD #1

OUT 0x10

OUT 0x10

LD #7

OUT 0x10

CLA

OUT 0x10

RET

FT:

LD #1

OUT 0x10

OUT 0x10

OUT 0x10

OUT 0x10

LD #31

OUT 0x10

CLA

OUT 0x10

RET

TF:

LD #7

OUT 0x10

LD #4

OUT 0x10

OUT 0x10

CLA

OUT 0x10

RET

FF:

LD #31

OUT 0x10

LD #16

OUT 0x10

OUT 0x10

OUT 0x10

OUT 0x10

CLA

OUT 0x10

RET

Вывод

При выполнении данной работы я познакомился с асинхронным вводом-выводом данных в БЭВМ, узнал о внешних устройствах, их регистрах и принципе работы. Познакомился с представлением данных в различных кодировках и попрактиковался в выводе данных на ВУ-3.