Regression and Assumptions

Background on Regression

What is Regression?

Statistical test for prediction

Type of modeling

 Allows for continuous IVs and continuous or categorical DVs

Analysis	DV Type	Levels of DV
Binary Logistic Regression	Categorical	2
Multinomial Logistic Regression	Categorical	3+
Linear Regression	Continuous	NA

Types of Regression

- Linear Data forms a straight line
- Non-linear Data does not form a straight line
- Logistic DV is categorical
- Simple One IV
- Multiple Multiple IVs
 - Stepwise/Hierarchical Assess each IV one at a time to see how important it is to the outcome

Parts of a Regression Line

$$\cdot$$
 y = mx + b

- b Intercept where the line starts on the y axis
- Residual how different the predicted line is from the actual line
 - AKA error

Assumptions of Linear Regression

Assumptions of Linear Regression

- Linear relationship between x and y
- Homoscedasticity normal distribution of your error
- Homogeneity of variance change in error is the same for all values of x
- Xs are measured without error
- Absence of Multicollinearity observations are independent without too much overlap
- Lack of outliers

Linear

Relationship between x and y must be linear

Homoscedasticity

Normal Distribution of the error

Homogeneity of Variance

• The change in the error is the same at all levels of x

X as a Known Constant

Xs are measured without error

Good luck verifying this or achieving it!

Absence of Multicollinearity

Y values are independent

 Knowing something about one data point DOES NOT mean you know something about another one

Absence of Outliers

Data points not near any others

Can skew your data

Types of Outliers

- Leverage extreme value in x space
- Distance extreme value in y space
- Influential extreme in both x and y space

Questions?