

polar decomposition in von Neumann algebras

 ${\bf Canonical\ name} \quad {\bf Polar Decomposition In Von Neumann Algebras}$

Date of creation 2013-03-22 17:28:54 Last modified on 2013-03-22 17:28:54 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Result
Classification msc 47A05
Classification msc 46L10

- Let \mathcal{M} be a von Neumann algebra acting on a Hilbert space H and $T \in \mathcal{M}$. If T = VR is the polar decomposition for T with KerV = KerR, then both V and R belong to \mathcal{M} .

Proof:

- As \mathcal{M} is a http://planetmath.org/CAlgebra C^* -algebra, it is known that $R = \sqrt{T^*T}$ belongs to \mathcal{M} . (proof will be added later)
- To see that V also belongs to \mathcal{M} , by the double commutant theorem, it suffices to show that V belongs to \mathcal{M}'' (the double commutant of \mathcal{M}).

Suppose $S \in \mathcal{M}'$. We intend to prove that V commutes with S.

For $x \in H$ we have that

$$TSx = STx = SVRx$$

and

$$TSx = VRSx = VSRx$$

So SV and VS agree on $\overline{Ran R}$.

As R is self-adjoint, $\overline{Ran R}^{\perp} = KerR$, and so it remains to show that SV and VS agree on KerR. Recall that, by hypothesis, KerR = KerV.

Let $x \in KerR$. We have that RSx = SRx = 0 and therefore

$$S(KerR) \subseteq KerR = KerV$$

and so we can conclude that VS is identically zero in KerR.

Clearly SV is also identically zero on KerR = KerV.

Thus VS and SV agree on KerR. Therefore SV=VS and so $V\in\mathcal{M}''=\mathcal{M}$