

Corso di Machine Learning

A.A. 2024/2025

Autoencoder per Intrusion Detection

Martina Lupini Michele Tosi

Indice

- Problema & Dataset
- Pre-processamento
- Esplorazione dataset
- Architettura modello
- Tuning iperparametri & Addestramento
- Scelta threshold
- Valutazioni finali

Problema & Dataset

Il seguente progetto pone come obiettivo la costruzione di un autoencoder per il rilevamento di **flussi anomali** nel traffico di rete. Il dataset di riferimento è il dataset **NSL-KDD**, utilizzato come benchmark nei problemi di intrusion detection.

Il dataset è composto da tutte features numeriche ad eccezione di **protocol_type**, **service**, **flag_type** e **label**. Non presenta valori mancanti.

Data	columns (total 42 columns):								
#	Column	Non-Null Count	Dtype						
0	duration	125973 non-null	int64						
1	protocol_type	125973 non-null	object						
2	service	125973 non-null	object						
	flag	125973 non-null	object						
4	src_bytes	125973 non-null	int64						
	dst_bytes	125973 non-null	int64						
6	land	125973 non-null	int64						
7	wrong_fragment	125973 non-null	int64						
8	urgent	125973 non-null							
9	hot	125973 non-null							
10	num_failed_logins	125973 non-null	int64						
11	logged_in	125973 non-null							
12	num_compromised	125973 non-null	int64						
13	root_shell	125973 non-null							
14	su_attempted	125973 non-null							
15	num_root		int64						
16	num_file_creations	125973 non-null							
17	num_shells	125973 non-null	int64						
18	num_access_files	125973 non-null							
19	num_outbound_cmds	125973 non-null							
20	is_host_login	125973 non-null	int64						
21	is_guest_login	125973 non-null							
22	count	125973 non-null							
23	srv_count	125973 non-null							
24	serror_rate	125973 non-null							
25	srv_serror_rate	125973 non-null							
26	rerror_rate	125973 non-null							
27	srv_rerror_rate	125973 non-null	float64						
28	same_srv_rate	125973 non-null							
29	diff_srv_rate	125973 non-null	float64						
30	srv_diff_host_rate	125973 non-null	float64						
31	dst_host_count		int64						
32	dst_host_srv_count		int64						
33	dst_host_same_srv_rate	125973 non-null							
34	dst_host_diff_srv_rate		float64						
35	dst_host_same_src_port_rate								
36 37	dst_host_srv_diff_host_rate		float64 float64						
	dst_host_serror_rate								
38	dst_host_srv_serror_rate	125973 non-null							
39 40	dst_host_rerror_rate dst_host_srv_rerror_rate	125973 non-null 125973 non-null							
40	label	125973 non-null							
			object						
асурс	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								

Pre-processamento

- OHE delle features categoriche
- Separazione delle istanze anomale e non anomale
- Rimozione delle etichette
- **Divisione** in training (70 %), validation (15%) e test set (15%)
- Applicazione MinMaxScaler()

Esplorazione dataset

Andando ad analizzare le distribuzioni delle feauture notiamo che *wrong_fragment* assume sempre valore 0.

Statistiche descrittive:								
	duration	src_bytes	dst_bytes	land	wrong_fragment	1		
count	47140.000000	4.714000e+04	4.714000e+04	47140.000000	47140.0			
mean	163.279317	1.314623e+04	4.416887e+03	0.000106	0.0			
std	1291.684593	4.638773e+05	7.015225e+04	0.010298	0.0			
min	0.000000	0.000000e+00	0.000000e+00	0.000000	0.0			
25%	0.000000	1.320000e+02	1.050000e+02	0.000000	0.0			
50%	0.000000	2.340000e+02	3.790000e+02	0.000000	0.0			
75%	0.000000	3.240000e+02	2.065000e+03	0.000000	0.0			
max	40504.000000	8.958152e+07	7.028652e+06	1.000000	0.0			

Se grafichiamo i valori assunti dalle features per effetto dello scaler tutti i valori sono compresi tra [0,1].

Esplorazione dataset

Alcuni valori non sono mai assunti dalle features categoriche del training set suggerendo che sono tipici di istanze anomale.

Architettura del modello

- Architettura simmetrica
- ReLU
- Numero di livelli e unità non fissati
- Adam come algoritmo di ottimizzazione
- MSE come funzione di perdita

Tuning iperparametri & Addestramento

Per scegliere il numero di livelli e di unità per livello si utilizza l'algoritmo **Hyperband**. La configurazione restituita è la seguente:

Model: "sequential_1"							
Layer (type)	Output Shape	Param #					
flatten_1 (Flatten)	(None, 122)	0					
dense_4 (Dense)	(None, 250)	30,750					
dense_5 (Dense)	(None, 125)	31,375					
dense_6 (Dense)	(None, 250)	31,500					
dense_7 (Dense)	(None, 122)	30,622					
Total params: 124,247 (485.34 KB) Trainable params: 124,247 (485.34 KB) Non-trainable params: 0 (0.00 B)							

Durante l'addestramento si utilizza **Early Stopping** per aumentare le abilità di generalizzazione del modello.

Threshold 95° Percentile

Calcoliamo ora la threshold in modo tale che il 95% dei dati non anomali cada al di sotto di tale soglia.

La threshold percentile è: 7.409553983966119e-05 Report di classificazione sul set di validazione con threshold percentile : precision recall f1-score support								
9 1	0.95 0.95	0.95 0.95	0.95 0.95	10101 10101				
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	20202 20202 20202				

Michele Tosi, Martina Lupini

9/13

Threshold Youden's Index

L'indice di Youden rappresenta il punto della curva ROC che massimizza la differenza tra il TPR e il FPR. La curva ROC viene tracciata valutando il TPR e il FPR per diverse thresholds.

Michele Tosi, Martina Lupini

10/13

Threshold Youden's Index

La threshold ROC è: 0.00010043981154384735 Report di classificazione sul set di validazione con threshold ROC : precision recall f1-score support							
	precision	recall	T1-score	support			
0	0.95	0.97	0.96	10101			
1	0.97	0.95	0.96	10101			
1	0.37	0.33	0.50	10101			
accuracy			0.96	20202			
-			0.55				
macro avg	0.96	0.96	0.96	20202			
weighted avg	0.96	0.96	0.96	20202			

Threshold Vettoriale

A seguito dell'addestramento viene calcolato il **vettore di errore di ricostruzione** per ciascuna feature. Esso è composto dal massimo valore di errore per ciascuna componente.

Algorithm 1 Proposed Autoencoder Threshold Calculation

```
\begin{split} X \leftarrow \mathsf{Data} \text{ of a specific class} \\ n_{samples} \leftarrow \mathsf{Number of X samples} \\ n_{features} \leftarrow \mathsf{Number of X features} \\ AE \leftarrow \mathsf{Trained autoencoder with X data} \\ th \leftarrow (0,0,...,0_{n_{features}}) \\ \mathbf{for} \ i = 1 \ to \ n_{samples} \ \mathbf{do} \\ \hat{X_i} \leftarrow AE(X_i) \\ (r_1,r_2,...,r_{n_{features}}) \leftarrow RE(X_i,\hat{X_i}) \\ th \leftarrow max((th_1,th_2,...,th_{n_{features}}),(r_1,r_2,...,r_{n_{features}})) \\ \mathbf{end for} \end{split}
```

Dal paper: https://www.researchgate.net/publication/366852853_Practical_autoencoder_based_anomaly_detection_by_using_vector_reconstruction_error

Threshold Vettoriale

Report di cla	ssificazione precision		di validaz f1-score	ione con thres support	hold vettoriale:
0 1	0.94 0.99	0.99 0.94	0.97 0.96	10101 10101	
accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	20202 20202 20202	

Valutazione finale

Nel nostro caso, è prioritario identificare correttamente gli attacchi (anomalie), anche a costo di accettare un numero più elevato di falsi positivi. Ciò implica dare maggiore importanza alla **recall**, poiché non vogliamo classificare attacchi come normali (falsi negativi).

La threshold **ROC** sembra essere la scelta migliore, garantisce una buona capacità di identificazione degli attacchi mantenendo un bilanciamento accettabile con precisione e F1-score

Valutazione finale

Il risultato finale sul **test set** del modello scelto è:

Report di	cla	ssificazione	sul set	di test con	threshold	ROC:
		precision	recall	f1-score	support	
	0	0.95	0.97	0.96	10102	
	1	0.97	0.95	0.96	10102	
accura	асу			0.96	20204	
macro a	avg	0.96	0.96	0.96	20204	
weighted a	avg	0.96	0.96	0.96	20204	

Grazie per l'attenzione!

Michele Tosi, Martina Lupini Università degli Studi di Roma "Tor Vergata" Facoltà di Ingegneria