Лабораторная работа 4.2.1 КОЛЬЦА НЬЮТОНА

Аксенова Светлана 29 апреля 2021 г. **Цель работы:** познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных изменений кривизны стеклянной поверхности.

В работе используются: измерительный микроскоп с опак-иллюминатором; плосковыпуклая линза; пластинка из чёрного стекла; ртутная лампа ДРШ; щель; линзы; призма прямого зрения; объектная шкала.

1 Теоретическое введение

В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальной падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равно удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2=R^2-(R-d)^2=2Rd-d^2$, где R - радиус кривизны сферической поверхности. При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = 2d + \frac{\lambda}{2} = \frac{r^2}{R} + \frac{\lambda}{2}.\tag{1}$$

Условие интерференционного минимума $\Delta = (2m+1)\lambda/2 (m=0,1,2,...),$ откуда получаем для радиусов тёмных колец

$$r_m = \sqrt{m\lambda R}. (2)$$

Аналогично для радиусов светлых колец

$$r_m' = \sqrt{(2m-1)m\lambda R/2}. (3)$$

Рисунок 1 – Схема наблюдения колец Ньютона

2 Экспериментальная часть

Схема установки для наблюдения колец Ньютона представлена на рис. 2. Изначально проводились измерения с фильтром, который пропускал жёлтую компоненту спектра ртути.

Рисунок 2 – Схема установки для наблюдения колец Ньютона

Измеренная цена деления микроскопа

$$1$$
 дел = $0, 1$ мм.

Были определены координаты диаметров тёмных колец и построен график зависимости r_m^2 от m (рис. 3). Из коэффициента наклона по формуле (2) был рассчитан радиус кривизны линзы

$$R = 12,43 \pm 0,23$$
 mm.

Далее фильтр (монохроматор) был заменён на фильтр, который пропускает две спектральные компоненты: жёлтую и зелёную, поэтому наблюдалась характерная картина биений. Это объясняется наложением двух интерференционных колец, возникающих для разных длин волн λ_1 и λ_2 . Чёткие кольца в результирующей картине образуются при наложении светлых колец и тёмных на тёмные. Размытие кольца получаются при наложении светлых колец одной картины на тёмные кольца другой.

Количество тёмных полос между между двумя центрами соседних чётких участков $\Delta m = 16$, значит между центрами этих систем поместилось 16 периодов жёлтого цвета (λ_1) и 17 зелёного цвета (λ_2)

$$\Delta m \lambda_1 = (\Delta m + 1)\lambda_2. \tag{4}$$

Преобразуем формулу

$$\Delta m(\lambda_2 + \Delta \lambda) = (\Delta m + 1)\lambda_2,$$

$$\Delta m = \frac{\lambda_2}{\Delta \lambda},$$
(5)

табличное значение $\lambda_2 = 546,07$ нм, тогда

$$\Delta \lambda = 34, 13$$
 HM.

Следовательно, длина волны $\lambda_1 = 580, 20$ нм.

Рисунок 3 – Зависимость $r_m^2(m)$

3 Вывод

В результате была изучена методика интерференционных измерений кривизны стеклянной поверхности с помощью колец Ньютона. Таким образом, был измерен радиус кривизны линзы, которая использовалась в опытах.

Также было проведено наблюдение «биений», которые были результатом интерференции двух спектральных линий ртутной лампы. Был измерен период возникающих биений и рассчитана разность длин волн жёлтой и зелёной линии ртути. В результате была получена длина волны λ_1 жёлтой линии спектра ртутной лампы, значение отличается от табличного (579,07 нм) примерно на 0,2~%.

4 Список литературы

1. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т.2. Оптика / А. В. Максимычев, Д. А. Александров, Н. С. Берюлёв и др.; под ред. А. В. Максимычева. - М.: МФТИ, 2014. - 446 с.

5 Приложение

Ссылка на данные и их обработку