Лабораторная работа 2.1.6. Эффект Джоуля-Томсона.

Никита Павличенко 13 марта 2018 г.

Цель работы

- 1. Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры.
- 2. Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса a и b.

В работе используются:

- 1. Трубка с пористой перегородкой;
- 2. труба Дьюара;
- 3. термостат;
- 4. термометры;
- 5. дифференциальная термопара;
- 6. микровольтметр;
- 7. балластный баллон;
- 8. манометр.

Теоретическая часть

$$\varkappa = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} \ln \frac{r_2}{r_1},\tag{1}$$

где r_1 — радиус нити, r_2 — радиус внешнего цилиндра, L — длина нити.

Ход работы

1. Найдем значение ΔT при разных давлениях внутри сосуда и разных температурах.

$T = 27,14C^{\circ} = 300,29K$							
P, кгс	4,2	3,792	3,438	2,982	2,562		
$\Delta T, C^{\circ}$	3,833	3,415	3,047	2,555	2,113		
U, MKB	0,156	0,139	0,124	0,104	0,086		

$T = 50,05C^{\circ} = 323,2K$							
P, кгс	4,26	3,78	3,492	3,036	2,502		
$\Delta T, C^{\circ}$	3,025	2,587	2,309	1,963	1,524		
$U-U_0$, MKB	0,131	0,112	0,1	0,085	0,066		
U, mkb	0,138	0,119	0,107	0,092	0,073		

$T = 70C^{\circ} = 343, 15K$								
P, кгс	4,23	3,798	3,516	3,024	2,442			
$\Delta T, C^{\circ}$	2,628	2,249	2,027	1,67	1,269			
$U-U_0$, MKB	0,118	0,101	0,091	0,075	0,066			
U, mkb	0,138	0,119	0,107	0,092	0,073			

- 2. Найдем зависимость ΔT от P. Посчитаем коэффициенты зависимости и построим график для каждой температуры.
- 3. Полученный тангенс угла наклона является коэффициентом Джоуля-Томсона. Найдем коэффициенты a и b через формулу

$$\mu = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p} \tag{2}$$

Получаем для температур $27.14C^{\circ}$ и $50.05C^{\circ}$

$$a=1.04438\frac{\mathrm{H}\cdot\mathrm{m}^4}{\mathrm{моль}^2}$$

$$b = 525.829 \frac{\text{см}^3}{\text{моль}}$$

Для $50.05C^{\circ}$ и $70C^{\circ}$

$$a = 1.04438 \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2}$$
 $b = 525.829 \frac{\text{см}^3}{\text{моль}}$