Compositional Entailment Checking for a Fragment of Separation Logic

Constantin Enea Mihaela Sighireanu

LIAFA, Université Paris Diderot, France

Ondřej Lengál Tomáš Vojnar

Brno University of Technology, Czech Republic

APLAS'14

Introduction

- Procedure for checking entailments in separation logic
- Separation logic (SL)
 - formalism for reasoning about heaps
 - scalability allows local reasoning
 - e.g. Space Invader, Slayer, HIP/SLEEK, Predator, S2, . . .

Introduction

- Procedure for checking entailments in separation logic
- Separation logic (SL)
 - formalism for reasoning about heaps
 - scalability allows local reasoning
 - ▶ e.g. Space Invader, Slayer, HIP/SLEEK, Predator, S2, . . .
- Reasoning about heap-manipulating programs
 - crucial for many program analysis tasks
 - ▶ difficult: ∞ sets of graphs
 - still under heavy research

Separation Logic

■ Basic formulae of SL:

$$\varphi ::= \exists x_1, ..., x_n . \ \Pi \land \Sigma$$

$$\Pi ::= x_1 = x_2 \mid x_1 \neq x_2 \mid x = \text{null} \mid \Pi_1 \land \Pi_2$$
 pure part
$$\Sigma ::= emp \mid x \mapsto \{(f_1, x_1), ..., (f_n, x_n)\} \mid \Sigma_1 * \Sigma_2$$
 shape part

Example:

$$\varphi = \exists x_1 . E \mapsto \{(\text{next}, x_1)\} * x_1 \mapsto \{(\text{next}, F)\}$$

Separation Logic

Basic formulae of SL:

$$\begin{array}{lll} \varphi & ::= & \exists x_1, ..., x_n \,.\, \Pi \wedge \Sigma \\ \Pi & ::= & x_1 = x_2 \mid x_1 \neq x_2 \mid x = \text{null} \mid \Pi_1 \wedge \Pi_2 & \text{pure part} \\ \Sigma & ::= & \textit{emp} \mid x \mapsto \{(f_1, x_1), \ldots, (f_n, x_n)\} \mid \Sigma_1 * \Sigma_2 & \text{shape part} \end{array}$$

Example:

$$\varphi = \exists x_1 . E \mapsto \{(\text{next}, x_1)\} * x_1 \mapsto \{(\text{next}, F)\}$$

- Inductive predicates:
 - abstraction
 - data structure of any length via recursion
 - Example (singly linked list):

$$sll(E,F) \stackrel{\text{def}}{=} (E = F \land emp) \lor$$

 $(E \neq F \land \exists X_{tt} . E \mapsto \{(\text{next}, X_{tt})\} * sll(X_{tt}, F))$

Entailments in Separation Logic 1/2

$$\varphi \models \psi$$

Is φ an unfolding of ψ ?

Example:

$$\exists x_1, x_2 . E \mapsto \{(\texttt{next}, x_1)\} * \textit{sll}(x_1, x_2) * x_2 \mapsto \{(\texttt{next}, F)\}$$

$$\stackrel{?}{\models} \textit{sll}(E, F)$$

where

$$sll(E,F) \stackrel{\text{def}}{=} (E = F \land emp) \lor$$

 $(E \neq F \land \exists X_{tl} . E \mapsto \{(\text{next}, X_{tl})\} * sll(X_{tl}, F))$

Entailments in Separation Logic 2/2

- invariant checking for heap-manipulating programs
 - resolving verification conditions in deductive verification
 - fixpoint checking in abstract interpretation-based approaches
- in general undecidable
- our contribution: decision procedure for a practical fragment

Considered Fragment 1/3

template for singly linked:

$$P(E, F, \overrightarrow{B}) = (E = F \land emp) \lor (E \notin \{F\} \cup \overrightarrow{B} \land \exists X_{tl} . \Sigma(E, X_{tl}, \overrightarrow{B}) * P(X_{tl}, F, \overrightarrow{B}))$$

Supports various flavours of lists, including:

singly linked lists

Considered Fragment 1/3

template for singly linked:

$$P(E, F, \overrightarrow{B}) = (E = F \land emp) \lor (E \notin \{F\} \cup \overrightarrow{B} \land \exists X_{tl} . \Sigma(E, X_{tl}, \overrightarrow{B}) * P(X_{tl}, F, \overrightarrow{B}))$$

Supports various flavours of lists, including:

singly linked lists

with additional (e.g. head/tail) pointers

Considered Fragment 2/3

$$P(E, F, \overrightarrow{B}) = (E = F \land emp) \lor$$

$$(E \notin \{F\} \cup \overrightarrow{B} \land \exists X_{tl} \cdot \Sigma(E, X_{tl}, \overrightarrow{B}) * P(X_{tl}, F, ...))$$

- ...
- cyclic lists

Considered Fragment 2/3

$$P(E, F, \overrightarrow{B}) = (E = F \land emp) \lor$$

$$(E \notin \{F\} \cup \overrightarrow{B} \land \exists X_{tl} \cdot \Sigma(E, X_{tl}, \overrightarrow{B}) * P(X_{tl}, F, ...))$$

-
- cyclic lists

skip lists

Considered Fragment 3/3

$$P(E, F, \overrightarrow{B}) = (E = F \land emp) \lor$$

$$(E \not\in \{F\} \cup \overrightarrow{B} \land \exists X_{tl} \cdot \mathbf{\Sigma}(\mathbf{E}, \mathbf{X}_{tl}, \overrightarrow{B}) * P(X_{tl}, F, ...))$$

-
- and their nested combinations

 $\models nsll(E, F, B)$

(doubly linked lists)

Overview

$$\underbrace{\exists \overrightarrow{X} . \Pi_{\varphi} \wedge \Sigma_{\varphi}}_{\varphi} \overset{?}{\models} \underbrace{\Pi_{\psi} \wedge \Sigma_{\psi}}_{\psi}$$

11 Test entailment of pure parts (is $\Pi_{\varphi} \Rightarrow \Pi_{\psi}$ SAT?)

Overview

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi} \wedge \Sigma_{\varphi}}_{\varphi} \stackrel{?}{\models} \underbrace{\Pi_{\psi} \wedge \Sigma_{\psi}}_{\psi}$$

- Test entailment of pure parts (is $\Pi_{\varphi} \Rightarrow \Pi_{\psi}$ SAT?)
- **2** Match every points-to $x \mapsto \{\dots\}$ in Σ_{ψ} with a points-to in Σ_{φ}

Overview

$$\underbrace{\exists \overrightarrow{X} . \Pi_{\varphi} \wedge \Sigma_{\varphi}}_{\varphi} \overset{?}{\models} \underbrace{\Pi_{\psi} \wedge \Sigma_{\psi}}_{\psi}$$

- Test entailment of pure parts (is $\Pi_{\varphi} \Rightarrow \Pi_{\psi}$ SAT?)
- **2** Match every points-to $x \mapsto \{\dots\}$ in Σ_{ψ} with a points-to in Σ_{φ}
- **3** Reduce the rest of Σ_{φ} and Σ_{ψ} to

$$\varphi_1 \stackrel{?}{\models} P_1 \quad \land \quad \varphi_2 \stackrel{?}{\models} P_2 \quad \land \quad \varphi_3 \stackrel{?}{\models} P_3 \quad \land \quad \dots$$

- 1 Transform $\varphi_i \sim \text{tree } \mathcal{T}_{\varphi_i}$
 - spanning tree + routing expressions
- 2 Transform $P_i \sim$ tree automaton A_{P_i}
 - all unfoldings of Pi
- 3 Test

$$\mathcal{T}_{arphi_i} \overset{?}{\in} \mathcal{L}(\mathcal{A}_{P_i})$$

Entailment of Pure Parts

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- Construct Boolean abstractions of φ and ψ :
 - ▶ BoolAbs[φ] encodes the pure part, equality and semantics of *

Entailment of Pure Parts

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- Construct Boolean abstractions of φ and ψ :
 - ▶ BoolAbs[φ] encodes the pure part, equality and semantics of *
 - φ and $BoolAbs[\varphi]$ are equisatisfiable
 - $\varphi \Rightarrow E = F \text{ iff } BoolAbs[\varphi] \Rightarrow [E = F]$
 - $\varphi \Rightarrow E \neq F$ iff $BoolAbs[\varphi] \Rightarrow \neg [E = F]$

Entailment of Pure Parts

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- Construct Boolean abstractions of φ and ψ :
 - ▶ BoolAbs[φ] encodes the pure part, equality and semantics of *
 - φ and $BoolAbs[\varphi]$ are equisatisfiable
 - $\varphi \Rightarrow E = F$ iff $BoolAbs[\varphi] \Rightarrow [E = F]$
 - $\varphi \Rightarrow E \neq F$ iff BoolAbs[φ] $\Rightarrow \neg [E = F]$
- Normalize φ and ψ according to BoolAbs[\cdot] $\sim \varphi', \psi'$
 - use SAT solver
 - add implied (dis)equalities
 - remove empty inductive predicates
 - e.g. if $E = F \wedge P(E, F)$, remove P(E, F)
- Test whether $\Pi_{\omega'} \Rightarrow \Pi_{\psi'}$ is SAT

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- points-to $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- **points-to** $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}
- inductive predicates $P(E, F, \overrightarrow{B})$ in $\Sigma_{\psi'}$:
 - in the order from the most specialized to the most general

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- points-to $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}
- inductive predicates $P(E, F, \overrightarrow{B})$ in $\Sigma_{\psi'}$:
 - in the order from the most specialized to the most general
 - look at Σ_{φ'} as a graph

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- points-to $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}
- inductive predicates $P(E, F, \overrightarrow{B})$ in $\Sigma_{\psi'}$:
 - in the order from the most specialized to the most general
 - look at Σ_φ as a graph
 - ▶ select a subgraph G of $\Sigma_{\varphi'}$ corresponding to E, F, and \overrightarrow{B}

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- points-to $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}
- inductive predicates $P(E, F, \overrightarrow{B})$ in $\Sigma_{\psi'}$:
 - in the order from the most specialized to the most general
 - look at Σ_φ as a graph
 - ▶ select a subgraph G of $\Sigma_{\varphi'}$ corresponding to E, F, and \overrightarrow{B}
 - ▶ transform G into a tree T_G with the root E

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- points-to $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}
- inductive predicates $P(E, F, \overrightarrow{B})$ in $\Sigma_{\psi'}$:
 - in the order from the most specialized to the most general
 - ▶ look at $\Sigma_{\omega'}$ as a graph
 - ▶ select a subgraph G of $\Sigma_{\varphi'}$ corresponding to E, F, and \overrightarrow{B}
 - ▶ transform G into a tree T_G with the root E
 - ► transform $P(E, F, \overrightarrow{B})$ into a tree automaton $\mathcal{A}_{P(E, F, \overrightarrow{B})}$

$$\underbrace{\exists \overrightarrow{X} \, . \, \Pi_{\varphi'} \wedge \Sigma_{\varphi'}}_{\varphi'} \overset{?}{\models} \underbrace{\Pi_{\psi'} \wedge \Sigma_{\psi'}}_{\psi'}$$

- **points-to** $E \mapsto \{(f_1, x_1), \dots\}$ in $\Sigma_{\psi'}$:
 - find $E \mapsto \{(f_1, x_1), \dots\}$ in Σ_{φ}
- inductive predicates $P(E, F, \overrightarrow{B})$ in $\Sigma_{\psi'}$:
 - in the order from the most specialized to the most general
 - ▶ look at $\Sigma_{\omega'}$ as a graph
 - ▶ select a subgraph G of $\Sigma_{\varphi'}$ corresponding to E, F, and \overrightarrow{B}
 - ▶ transform G into a tree T_G with the root E
 - ► transform $P(E, F, \overrightarrow{B})$ into a tree automaton $A_{P(E,F,\overrightarrow{B})}$
 - test

$$\mathcal{T}_G \stackrel{?}{\in} \mathcal{L}(\mathcal{A}_{P(E,F,\overrightarrow{B})})$$

Transforming Graphs into Trees

Dealing with joins (> 1 incoming edges):

Transforming Graphs into Trees

Dealing with joins (> 1 incoming edges):

- Spanning Tree (ST)
- split every join into several copies:
 - one for every incoming edge ∉ ST
 - ▶ label it with alias[Y], alias \uparrow [f₁ f₂ ...], or alias $\uparrow \downarrow$ [f₁ f₂ ...]

Transforming Inductive Predicates into Tree Automata 1/3

Tree automaton representing all possible unfoldings of P

Transforming Inductive Predicates into Tree Automata 1/3

Tree automaton representing all possible unfoldings of P

The idea:

- In Unfold the predicate P twice $\sim P^{[2]}$
 - necessary to capture all possible alias relations we use
 - $\Sigma_P(E, X_{tl}, B) = E \mapsto \{(f_1, X_{tl}), (f_2, X_{tl}), (f_3, B)\}$

Transforming Inductive Predicates into Tree Automata 1/3

Tree automaton representing all possible unfoldings of P

The idea:

- 1 Unfold the predicate P twice $\rightarrow P^{[2]}$
 - necessary to capture all possible alias relations we use

2 Get the tree encoding $\mathcal{T}_{P^{[2]}}$

Transforming Inductive Predicates into Tree Automata 2/3

3 Transform $\mathcal{T}_{P^{[2]}}$ into a tree automaton $\mathcal{A}_{P^{[2]}}$ accepting $\{\mathcal{T}_{P^{[2]}}\}$

Transforming Inductive Predicates into Tree Automata 2/3

3 Transform $\mathcal{T}_{P[2]}$ into a tree automaton $\mathcal{A}_{P[2]}$ accepting $\{\mathcal{T}_{P[2]}\}$

4 Add loop enabling construction of the list backbone of size ≥ 2

Transforming Inductive Predicates into Tree Automata 3/3

- 5 Duplicate backbone transitions with transitions over $P \leadsto \mathcal{A}_{P^{[2+]}}$
 - to enable arbitrary interleaving

Transforming Inductive Predicates into Tree Automata 3/3

- 5 Duplicate backbone transitions with transitions over $P \leadsto \mathcal{A}_{P^{[2+]}}$
 - to enable arbitrary interleaving

- 6 For every nested predicate edge over Q, insert A_Q
 - and modify the aliases appearing in AQ

Transforming Inductive Predicates into Tree Automata 3/3

- 5 Duplicate backbone transitions with transitions over $P \leadsto \mathcal{A}_{P^{[2+]}}$
 - to enable arbitrary interleaving

- 6 For every nested predicate edge over Q, insert A_Q
 - and modify the aliases appearing in A_O
- 7 Unite $\mathcal{A}_{P^{[2+]}}$ with $\mathcal{A}_{P^{[1]}} \rightsquigarrow \mathcal{A}_{P^{[1+]}}$

Soundness, Completeness & Complexity

The decision procedure is

sound

Soundness, Completeness & Complexity

The decision procedure is

- sound
- polynomial and incomplete
 - issues with empty nested lists

Soundness, Completeness & Complexity

The decision procedure is

- sound
- polynomial and incomplete
 - issues with empty nested lists
- extension: exponential and complete
 - for the considered fragment
 - exponential in the maximum height of the hierarchy of nested predicates

Experimental Results

Implemented in a solver **SPEN**

- input format: SMTLIB2
 - extension for separation logic
- uses:
 - MINISAT
 - VATA tree automata library
- benchmarks (from SL-COMP'14):
 - ▶ 292 1s problems: < 8 s (2nd place)
 - ▶ 43 "fixed definitions" problems: operations on
 - nested singly linked lists
 - nested circular singly linked lists
 - · 3-level skip lists
 - doubly linked lists
 - average time: 0.35 s (1st place)

Future work

■ Generalize to a more expressive fragment of SL

Integrate into a program analysis framework

Conclusion

- A decision procedure for a fragment of SL
 - practical fragment for lists

- Entailment queries split to simpler ones . . .
 - compositional

... and reduced to tree automata membership

Encouraging experimental results