Chapter 8: Alcohols, Ethers, and Thiols

8.1 Structure, Nomenclature and Properties of Alcohols

Naming Priority

Carbonyl (C=O) groups

OH

NH

SH

C≡C

C=C

Ethers, sulfides, alkyl, halogens

a) Nomenclature of Alcohols

- 1. Find the longest chain containing the –OH substituent and if C=C or C≡C are present, include them in the longest chain
- 2. Replace -e on the parent name with -ol
- 3. Number the chain beginning at the end closest to the -OH
- 4. Number all substituents according to their position (don't forget to give the -OH a number!)
- 5. Write the complete name.

8.1

 $CHEM\ 3013-Bolliger-OSU\ Stillwater$

Chapter 08: Alcohols, Ethers, and Thiols

b) Common Alcohols

c) Properties of Alcohols

Hydrogen bonding

- Alcohols and phenols have significantly higher boiling points than alkanes or haloalkanes due to hydrogen bonding
- · Accounts for complete miscibility of lower alcohols with water

Reactivity of alcohols

• Alcohols and phenols are weakly basic and weakly acidic:

 Alcohols react with alkali metals such as sodium and potassium to form the sodium or potassium alkoxide and hydrogen gas:

alkoxide ion

$$2 CH_3OH + 2 Na \longrightarrow 2Na + 2 CH_3O^- + H_2$$

$$2 \longrightarrow OH + 2 K \longrightarrow$$

8.3

 $CHEM\ 3013-Bolliger-OSU\ Stillwater$

Chapter 08: Alcohols, Ethers, and Thiols

8.2 Structure, Nomenclature and Properties of Ethers

a) Nomenclature of Ethers

Simple ethers with no other functional groups:
 Name the two oxygen substituents and add the word ether

 More complex ethers which contain more than one ether or other functional groups: Longest carbon chain as parent name and -OR part becomes an alkoxy substituent

1,2-Dimethoxyethane (DME)

b) Common Ethers

diethyl ether Tetrahydrofuran 1,4-dioxane ethyleneoxide 'ether' 'THF' 'dioxane'

c) Properties of Ethers

- Ethers have lower boiling points than alcohols (closer to hydrocarbons)
- Relatively inert –good solvents for reactive compounds
- Important in Grignard reactions: Ether solvents are required as they stabilize Grignard reagents (Chapter 12)
- Ethers oxidize upon exposure to air-to peroxides which can be explosive

$$R-O-CH_2R \xrightarrow{O_2} R-O-CHR$$

8.5

 $CHEM\ 3013-Bolliger-OSU\ Stillwater$

Chapter 08: Alcohols, Ethers, and Thiols

8.3 Structure, Nomenclature and Properties of Thiols

a) Nomenclature of Thiols

- Same as alcohols, with -thiol suffix
- -SH as a substituent = mercapto

b) Properties of Thiols

- Low molecular weight thiols stink
- Responsible for unpleasant odor from skunk, rotten eggs, and sewage

Acidity

• H₂S is a stronger acid than H₂O and RSH is a stronger acid than ROH

$$\nearrow_{SH}$$
 + NaOH \longrightarrow \nearrow_{SNa} + H₂O

8.7

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

8.4 Synthesis of Alcohols from Alkenes (see Chapter 5)

a) Acid catalyzed hydration:

b) Hydroboration-Oxidation:

8.5 Conversion of Alcohols into Alkyl Halides

a) using HX

$$-$$
OH + HCI $-$ rt $-$ CI + H₂O

$$\bigcirc$$
OH + HBr \longrightarrow \bigcirc Br + H₂O

Reactivity of alcohols:

Reactivity of HX:

$$OH$$
 + HCI $\frac{\text{heat}}{\text{ZnCl}_2}$ C_{I} + H₂O several hrs

Because chloride is such a weak nucleophile, ZnCl₂ (or another Lewis acid) is required for converting primary or secondary alcohols to alkyl chlorides.

8.9

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

b) using PBr₃ or SOCl₂

Only works with primary and secondary alcohols.

$$OH OH$$
 SOCI₂ pyridine

8.6 Acid Catalyzed Dehydration of Alcohols to Alkenes

E1 mechanism

Reactivity of alcohols:

8.11

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

8.7 Oxidation of Alcohols to Carbonyl Compounds

Redox reactions in organic chemistry:

Oxidation of alcohols:

Oxidation methods for alcohols (there are more)

	Method of Oxidation/Product	
Substrates	aq H ₂ CrO ₄ (Jones Reagent)	PCC
primary alcohol	carboxylic acid	aldehyde
secondary alcohol	ketone	ketone
tertiary alcohol	-	-

a) Chromic Acid (H₂CrO₄) Oxidation ("Jones Oxidation")

The *Jones Reagent* is a mixture of chromic trioxide or sodium dichromate in diluted sulfuric acid, which forms chromic acid in situ:

The Jones Oxidation allows a relatively inexpensive conversion of secondary alcohols to ketones and of most primary alcohols to carboxylic acids.

8.13

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

b) Pyridinium Chlorochromate (PCC) Oxidation of Alcohols

Chlorochromic acid can by prepared by the dissolution of chromium trioxide in 6 M aq. hydrochloric acid. Addition of pyridine gives pyridinium chlorochromate (**PCC**) as orange crystals.

Oxidation of primary alcohols with PCC yields aldehydes while secondary alcohols give ketones.

8.8 Synthesis of Ethers

a) Synthesis of Symmetrical Ethers

Under acid catalysis primary alcohols can form symmetrical ethers by intermolecular dehydration:

$$\bigcirc$$
OH + HO \bigcirc H₂SO₄ \bigcirc O

b) Synthesis of Unsymmetrical Ethers: Williamson Ether Synthesis

S_N2 process works that works best with primary alkyl halides which are attacked by an alkoxide.

Formation of alkoxide:

2 R-OH + 2 Na
$$\longrightarrow$$
 2 R-O $^{\bigcirc}$ Na $^{\oplus}$ + H₂

or

R-OH + NaH
$$\longrightarrow$$
 R-O $^{\bigcirc}$ Na $^{\oplus}$ + H₂

8.15

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

Williamson ether synthesis:

$$\rightarrow$$
 O $^{\odot}$ + CH₃I \rightarrow

$$H_3C-O^{\bigcirc} + \longrightarrow CI \longrightarrow$$

Phenols in the Williamson ether synthesis:

8.9 Synthesis of Epoxides (Oxiranes)

a) Synthesis of Epoxides by Epoxidation of Alkenes

Alkene + peroxyacid (RCO₃H) → epoxide

Stereochemical Outcome:

b) Synthesis of Epoxides in 2 Steps from Alkenes via Halohydrins

8.17

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

8.10 Reactions of Epoxides

Epoxides are very reactive ethers due to ring strain.

a) Base-Catalyzed Ring Opening

Base-catalyzed ring opening of an unsymmetrical epoxide occurs by attack of the nucleophile at the less substituted carbon atom.

Examples:

Stereochemistry: Epoxide opening is a stereospecific reaction:

b) Acid-Catalyzed Ring Opening

 Acid-catalyzed ring opening of an unsymmetrical epoxide occurs by attack of the nucleophile at the more substituted carbon atom.

Stereochemistry: Epoxide opening is a stereospecific reaction:

8.19

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

c) Anti 1,2-dihydroxylation of Alkenes via Epoxides

Stereochemical outcome:

Cis vs Trans Glycols

OsO₄/ROOH cis-glycol
OH
$$C$$
 trans-glycol

8.21

 $CHEM\ 3013-Bolliger-OSU\ Stillwater$

Chapter 08: Alcohols, Ethers, and Thiols

8.11 Thiol Synthesis and Reactions

`Br + NaSH -

Oxidation:

$$2 \nearrow SH \xrightarrow{[O]} S-S \nearrow Thiol$$
 Disulfide

Thiols are susceptible to oxidation in the presence of air:

$$2 \longrightarrow SH + 1/2 O_2 \longrightarrow S-S \longrightarrow + H_2O$$

2 R-SH
$$\xrightarrow{Br_2}$$
 R-S-S-R + 2 HBr \xrightarrow{OH} SH $\xrightarrow{R-S-S-R}$ 2 R-SH + \xrightarrow{S} OH DTT = Dithiothreitol

Protein-SH + HS-Protein →

disulfide "bridges" stabilize 3-D protein structure

8.23

CHEM 3013 – Bolliger – OSU Stillwater

Chapter 08: Alcohols, Ethers, and Thiols

8.12 Exercise

