EXERCICES TIRÉS DE L'EXAMEN PARTIEL 2012

Problème no. 1 (25 points)

a) La diode D₁ dans le circuit suivant est une diode discrète (1N4148). La température de la diode est 25°C.

Déterminer le coefficient d'émission n et le courant de saturation en inverse I_s de la diode. (10 points)

b) Considérons le circuit régulateur de tension suivant.

Les spécifications de la diode Zener 1N5231B (à $I_Z = 20$ mA) sont: $V_Z = 5.1$ V et $r_Z = 17$ Ω

- Calculer la tension V_{z0} . (4 points)
- Tracer un circuit équivalent du régulateur. (4 points)
- Déterminer la tension de sortie V_0 pour deux valeurs de la charge: R_L = infinie et R_L = 100 Ω . (7 points)

Problème no. 2 (25 points)

a) Considérons le circuit suivant.

On désire obtenir le point de fonctionnement suivant: $I_C = 5$ mA et $V_{CE} = 12$ V. En supposant que $V_{BE} = 0.7$ V, déterminer les valeurs des résistances R_B et R_C . (12 points)

b) Considérons le circuit suivant.

Déterminer la tension V_{GS}, le courant I_D et la tension V_{DS}. (13 points)

Problème no. 3 (25 points)

Considérons l'amplificateur à transistor bipolaire suivant.

- a) Déterminer le point de fonctionnement (I_C, V_{CE}) du transistor. (6 points)
- b) Tracer un circuit équivalent petit signal de l'amplificateur utilisant le modèle en π du transistor. (6 points) Déterminer les paramètres (r_{π}, g_m, r_o) du modèle. (6 points)
- c) À l'aide du circuit équivalent petit signal, calculer la résistance d'entrée R_{in} , la résistance de sortie R_{o} et le gain en tension (sans charge) A_{v0} de l'amplificateur. (7 points)

Problème no. 4 (25 points)

Considérons l'amplificateur à MOSFET suivant.

a) On mesure: $V_{GS} = 2.25 \text{ V}$.

Déterminer le point de fonctionnement (ID, VDS) du MOSFET. (6 points)

b) Les paramètres petit signal du MOSFET (à $I_D = 10$ mA) sont donnés: $g_m = 45$ mS, $r_o = \infty$.

Tracer un circuit équivalent petit signal de l'amplificateur. (6 points)

c) À l'aide du circuit équivalent petit signal, calculer la résistance d'entrée R_{in} , la résistance de sortie R_o et le gain en tension (sans charge) A_{v0} de l'amplificateur. (8 points)

Calculer le gain en tension de l'amplificateur avec une charge de 3.3 k Ω . (5 points)