Suppose \tilde{p} must approximate p with relative error at most 10^{-3} . Find the largest interval in which \tilde{p} must lie if p = 900.

Proof. Since we want the relative error to be at most 10^{-3} , we set

$$\frac{|\widetilde{p} - p|}{|p|} \le 10^{-3}$$

Substitute p = 900 to get

$$\frac{|\widetilde{p} - 900|}{900} \le 10^{-3} \implies |\widetilde{p} - 900| \le \frac{9}{10} \implies 900 - \frac{9}{10} \le \widetilde{p} \le 900 + \frac{9}{10}.$$

Thus \widetilde{p} lies within the interval $\left[900 - \frac{9}{10}, 900 + \frac{9}{10}\right]$.

Compute the absolute error and relative error of the following approximation of e:

$$\sum_{n=0}^{5} \frac{1}{n!}$$

Find the second Taylor polynomial, $P_2(x)$, $f(x) = e^x \cos(x)$ about $x_0 = 0$.

- (a) Use $P_2(0.5)$ to approximate f(0.5). Find an upper bound on the error $|f(0.5) P_2(0.5)|$ using the remainder term and compare it to the actual error.
- (b) Find a bound on the error $|f(x) P_2(x)|$ good on the interval [0, 1].
- (c) Approximate $\int_0^1 f(x) dx$ by calculating $\int_0^1 P_2(x) dx$ instead.
- (d) Find an upper bound for the error in (c) using $\int_0^1 |R(x)| dx$ and compare the bound to the actual error.

Find a theoretical upper bound, as a function of x, for the absolute error in using $T_4(x)$ to approximate $f(x) = \frac{10}{x} + \sin(10x)$; $x_0 = \pi$.

Let $(p_n) = \left\langle \frac{3n^5 - 5n}{1 - n^5} \right\rangle \to -3$ Find the (fastest) rate of convergence of the form $\mathcal{O}\left(\frac{1}{n^p}\right)$ or $\mathcal{O}\left(\frac{1}{n^n}\right)$ for each. If this is not possible, suggest a reasonable rate of convergence.

- (a) Suppose you are trying to find the root of $f(x) = x e^{-x}$ using the bisection method. Find an integer a such that the interval [a, a+2] is an appropriate one in which to start the search.
- (b) Use the bisection method to find the root in your interval in (a), accurate to 10^{-4} . Provide the Octave code you used to produce your result.