Discussion on calibration systematic model

Christophe Goudet

March 6, 2017

Introduction

- Calibration uncertainties include ~85 sources
- Minimal model (ALL)
 - ▶ Conservative (∆ m_H=0.47%)
 - Over-constrained
- Maximal model has too many NP
 - ▶ Realistic (∆ m_H=0.27%)
 - ▶ Too many parameters
- Need a middle ground
 - Realistic
 - Few parameters
 - Easy to combine
- Status of systematics :
 - https://indico.cern.ch/event/607537/contributions/ 2453161/attachments/1401546/2139318/Couplings.pdf
 - https://indico.cern.ch/event/613697/contributions/ 2475511/attachments/1411833/2159897/manzoni_13_2_ 2017.pdf

Model Pre-fit

Merge a selection of NP at the tool level (similar to current ALL model). Model naively thought to be used when reading ATL-COM-PHYS-2013-1654.

Pros:

- Easy to use for analyses (change tool option)
- Unique definition of NP for combination ($\gamma\gamma$ and 4I)

Cons:

- Increase the total uncertainty
- Must find a model which minimise the increase for all analyses

- FULLMerge: merging a set of NP
- FULLNoEta : merging all dependencies in η

Model Post-fit

Merge a selection of NP after evaluation of effect on mass distribution. Done in run 1: ATL-COM-PHYS-2014-018. vPros:

- Inclusive uncertainty strictly equals the full model (categorised uncertainty less trivial)
- Optimisation of merging can be adapted in each analysis

Cons:

- Recommandations must be provided and followed for combination.
- Does not reduce statistical fluctuations impact on uncertainties.

Diagonalisation

- Diagonalise covariance matrix and define new NP as eigen-vectors
- Keep N higher eigen-values and merge remaining ones (as either model 1 or 2)

Pros:

Merged parameters are the ones having the less impact

Cons:

Loss of physical meaning of NP

Conclusion

- h015 calibration systematic samples appearing
- Need to define a strategy for HGam analyses (and H4I)
 - Physical or eigen-vectors NP
 - Merging pre- or post- mass distribution fit