(c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

Key definitions:

- For any $m \times n$ matrix A, let T_A be the linear transformation from \mathbb{R}^n to \mathbb{R}^m induced by A, i.e., given by $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.
- The image of a function $f: X \to Y$ is the set $\operatorname{im}(f) = \{f(x) : x \in X\}$.
- The *span* of a finite set of vectors $\{v_1, \ldots, v_n\}$ in a vector space V is the set of all linear combinations of v_1, \ldots, v_n . That is,[†]

$$\mathrm{Span}\big(\{v_1,\dots,v_n\}\big) \ = \ \{c_1v_1+\dots+c_nv_n \ : \ c_1,\dots,c_n \in \mathbb{R}\} \ = \ \left\{\sum_{i=1}^n c_i\vec{v}_i \ : \ c_i \in \mathbb{R} \text{ for each } i\right\}.$$

• The kernel of a linear transformation $T:V\to W$ from the vector space V to the vector space W is the set

$$\ker(T) = \{ v \in V : T(v) = \vec{0} \}.$$

- If V is a vector space and $S \subseteq V$, then S is closed under vector addition if $u+v \in S$ whenever $u \in S$ and $v \in S$, and closed under scalar multiplication if $cv \in S$ whenever $v \in S$ and $c \in \mathbb{R}$.
- If V is a vector space and $S \subseteq V$, then S is called a *subspace* of V if $\vec{0} \in S$ and S is closed under vector addition and scalar multiplication.

Problem 1: Span.

- (a) What sort of geometric object is the span of a nonzero vector in \mathbb{R}^3 ? (a line)
- (b) What sort of geometric object could the span of a pair of nonzero vectors in \mathbb{R}^3 be? Explain. (A line or a plane, depending on whether the two vectors are scalar multiples of each other.)
- (c) Describe the following subsets of \mathbb{R}^3 :

$$\operatorname{Span}(\vec{0}), \quad \operatorname{Span}(\vec{e}_1), \quad \operatorname{Span}(\vec{e}_1, \vec{e}_2), \quad \operatorname{Span}(\vec{e}_1, \vec{e}_2, \vec{e}_1 + 3\vec{e}_2), \quad \operatorname{Span}(\vec{e}_1, \vec{e}_1 + \vec{e}_2, \vec{e}_1 + \vec{e}_2 + \vec{e}_3).$$

$$(\{\vec{0}\} \subseteq \text{ the } x\text{-axis } \subseteq \text{ the } xy\text{-plane } \subseteq \text{ the } xy\text{-plane } \subseteq \mathbb{R}^3.)$$

(d) Prove that for any finite set of vectors $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ in \mathbb{R}^m , there is a linear transformation T such that $\mathrm{Span}(S) = \mathrm{im}(T)$.

Solution: Let $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a finite set of vectors in \mathbb{R}^m . Let $A = [\vec{v}_1 \cdots \vec{v}_n]$ be the $m \times n$ matrix whose jth column is \vec{v}_j , and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by A. Then

$$\operatorname{im}(T_A) = \{T_A(\vec{x}) : \vec{x} \in \mathbb{R}^n\} = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\} = \left\{\sum_{i=1}^n x_i \vec{v}_i : \vec{x} \in \mathbb{R}^n\right\} = \operatorname{Span}(S).$$

[†]While technically correct, Span($\{v_1, \ldots, v_n\}$) looks a bit silly, so we will often abbreviate it Span($\vec{v}_1, \ldots, \vec{v}_n$).

Problem 2: Kernel.

- (a) Describe geometrically the kernels of the following linear operators on \mathbb{R}^3 :
 - (i) the orthogonal projection onto the yz-plane;
 - (ii) the orthogonal projection onto the z-axis;
 - (iii) the reflection about the plane y = z;
 - (iv) The mapping T_A , where

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ 1 & 0 & -1 \end{bmatrix}.$$

Solution:

- (i) the x-axis
- (ii) the xy-plane
- (iii) the origin
- (iv) the line through (0,0,0) and (1,1,1)
- (b) Let V and W be vector spaces and let $T:V\to W$ be a linear transformation. Prove that T is injective if and only if $\ker(T)=\{\vec{0}\}.$

Solution: For the forward direction, suppose T is injective. Since T is linear, we know that $T(\vec{0}) = \vec{0}$, so $\vec{0} \in \ker(T)$. If \vec{v} is any other vector in $\ker(T)$ then $T(\vec{v}) = \vec{0}$ which forces $\vec{v} = \vec{0}$ since T is injective, so we conclude that $\ker(T) = \{\vec{0}\}$ as desired. For the converse, suppose that $\ker(T) = \{\vec{0}\}$, let $\vec{x}, \vec{y} \in V$, and suppose that $T(\vec{x}) = T(\vec{y})$. Then by linearity of T,

$$\vec{0} = T(\vec{x}) - T(\vec{y}) = T(\vec{x} - \vec{y}),$$

so we have $\vec{x} - \vec{y} \in \ker(T)$. By assumption this gives $\vec{x} - \vec{y} = \vec{0}$, so $\vec{x} = \vec{y}$ as desired.

Problem 3: Image and Kernel

- (a) Let S be the solution set in \mathbb{R}^4 of the linear system $\begin{cases} x_1 + 2x_3 + 3x_4 = 0 \\ x_3 + 2x_4 = 0 \end{cases}$
 - (i) Find a linear transformation T such that im(T) = S.
 - (ii) Find a linear transformation T such that $\ker(T) = S$.

Solution: For (i), let T be the linear transformation induced by the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & -2 \\ 0 & 1 \end{bmatrix}$

whose columns span the solution set of the linear system. For (ii), let T be the linear transformation induced by the coefficient matrix $\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ of the linear system.

(b) Let V and W be vector spaces and let $T:V\to W$ be a linear transformation. Prove that $\ker(T)$ is a subspace of V and that $\operatorname{im}(T)$ is a subspace of W.

Solution: Let V and W be vector spaces and let $T: V \to W$ be a linear transformation. Since T is linear we know that $T(\vec{0}_V) = \vec{0}_W$, so $\vec{0}_V \in \ker(T)$ and $\vec{0}_W \in \operatorname{im}(T)$. For any $\vec{x}, \vec{y} \in \ker(T)$ and $c \in \mathbb{R}$ we have

$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}) = \vec{0} + \vec{0} = \vec{0},$$

so $\vec{x} + \vec{y} \in \ker(T)$, and

$$T(c\vec{x}) = cT(\vec{x}) = c\vec{0} = \vec{0},$$

so $c\vec{x} \in \ker(T)$. Thus $\ker(T)$ contains $\vec{0}_V$ and is closed under vector addition and scalar multiplication, and is therefore a subspace of V. For $\operatorname{im}(T)$, let $\vec{x}, \vec{y} \in \operatorname{im}(T)$ and $c \in \mathbb{R}$. Fix $\vec{u}, \vec{v} \in V$ such that $T(\vec{u}) = \vec{x}$ and $T(\vec{v}) = \vec{y}$. Then

$$\vec{x} + \vec{y} = T(\vec{u}) + T(\vec{v}) = T(\vec{u} + \vec{v}) \in \text{im}(T)$$

and

$$c\vec{x} = cT(\vec{u}) = T(c\vec{u}) \in \text{im}(T),$$

so $\operatorname{im}(T)$ contains $\vec{0}_W$ and is closed under vector addition and scalar multiplication, and is therefore a subspace of W.

Problem 4: Subspaces

For each part below, determine whether or not the given subset is a subspace of the vector space:

- (a) the solution set in \mathbb{R}^n of a homogeneous* linear system in n variables YES
- (b) the solution set in \mathbb{R}^n of a non-homogeneous linear system in n variables NO
- (c) the set of all points (x, y) in \mathbb{R}^2 such that $x^2 y^2 = 0$ NO
- (d) the set of all points (x, y) in \mathbb{R}^2 such that $x^3 y^3 = 0$ YES
- (e) the set of even polynomials ‡ in the space \mathcal{P} of all polynomials YES

^{*}Recall that the linear system $A\vec{x} = \vec{b}$ is homogeneous if $\vec{b} = \vec{0}$.

[‡]Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is even if f(-x) = f(x) for all $x \in \mathbb{R}$, and odd if f(-x) = -f(x) for all $x \in \mathbb{R}$.

- (f) the set of odd polynomials in the space \mathcal{P} of all polynomials YES
- (g) the set of functions in $C^{\infty}([0,1])$ that are proportional to their own derivative NO
- (h) the set of invertible $n \times n$ matrices in $\mathbb{R}^{n \times n}$ NO
- (i) the set of symmetric $n \times n$ matrices in $\mathbb{R}^{n \times n}$ (recall that a matrix A is symmetric if $A = A^{\top}$, where A^{\top} is the transpose of A) YES