VERSUCH NUMMER

TITEL

Antonia Joëlle Bock antoniajoelle.bock@tu-dortmund.de

Rene-Marcel Lehner rene.lehner@tu-dortmund.de

Durchführung: 21.1.2020 Abgabe: 28.1.2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung3.1 Bestimmung der Winkelrichtgröße3.2 Bestimmung des Eigenträgheitsmoments der Drillachse3.3 nächste section	
4	Diskussion	6
Αı	nhang: originale Messdaten	6

1 Theorie

2 Durchführung

3 Auswertung

3.1 Bestimmung der Winkelrichtgröße

Die Messung wird mit einem senkrechten Abstand von $r=4.0\,\mathrm{cm}$ durchgeführt. Der Auslenkwinkel φ und die aufgewendete Kraft F sind in 1 dargestellt, ebenso wie die sich daraus ergebenden Werte für die Winkelrichtgröße D. Sie berechnet sich, wie aus der Theorie zu entnehmen ist, über

$$D = \frac{Fr}{\varphi} \,. \tag{1}$$

Tabelle 1: Messwerte zur Bestimmung der Winkelrichtgröße.

φ	φ / π	F/N	$D / 10^{-3} \mathrm{N}\mathrm{m}$
26°	0,14	0,19	17,3
30°	$0,\!17$	$0,\!21$	15,7
37°	$0,\!21$	$0,\!29$	17,6
45°	$0,\!25$	$0,\!41$	20,9
60°	$0,\!33$	$0,\!49$	18,9
70°	$0,\!39$	$0,\!61$	19,9
81°	$0,\!45$	0,70	19,8
93°	$0,\!52$	0,74	18,1
100°	$0,\!56$	0,91	20,7
110°	0,61	0,97	20,2

Somit ergibt sich als experimenteller Wert $D=(18.9\pm0.5)\cdot10^{-3}\,\mathrm{N}\,\mathrm{m}$ für die Winkelrichtgröße. Der Fehler des Mittelwerts berechnet sich über

$$\Delta D = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (D_i - \bar{D})}$$
 (2)

mit dem arithmetischen Mittel D.

3.2 Bestimmung des Eigenträgheitsmoments der Drillachse

Im Folgenden sei die Annahme eines nahezu masselosen Stabs, an dem zwei Punktmassen – demnach ohne Ausdehnung – gleicher Masse $m=222,89\,\mathrm{g}$ befestigt sind. In 2 sind die Messwerte entsprechend dargestellt. Es besteht ein linearer Zusammenhang zwischen den Quadraten der Periode T und dem Abstand a der Massen:

$$T^{2} = \frac{4\pi^{2}}{D} (I_{D} + m(a_{1}^{2} + a_{2}^{2})) =: \frac{4\pi^{2}}{D} (I_{D} + ma^{2})$$
 (3)

Tabelle 2: Messwerte zur Bestimmung des Eigenträgheitsmoments $I_{\rm D}.$

a_1 / cm	a_2/cm	$(a_1^2 + a_2^2) / \mathrm{cm}^2$	T/s	T^2 / s^2
4,5	5,5	50,5	2,50	$6,\!25$
6,5	7,5	$98,\!5$	2,93	8,58
8,5	9,5	$162,\!5$	$3,\!21$	$10,\!30$
10,5	11,5	242,5	$3,\!83$	$14,\!67$
12,5	13,5	$338,\!5$	$4,\!16$	$17,\!31$
14,5	15,5	450,5	4,70	22,09
16,5	17,5	$578,\!5$	$5,\!27$	27,77
18,5	19,5	$722,\!5$	5,79	$33,\!52$
20,5	21,5	$882,\!5$	$6,\!27$	$39,\!31$
22,5	23,5	1058,5	6,78	45,97

Nun werden diese Werte in einem Diagramm aufgetragen. Mithilfe linearer Regression lässt sich aus dem Y-Achsenabschnitt b der Eigenträgheitsmoment I_D bestimmen. Die Steigung c ergibt sich unter Vergleich mit (3) aus

$$y = b + cx \tag{4}$$

$$T^2 = \frac{4\pi^2}{D}(I_{\rm D} + ma^2) \tag{5}$$

$$\Rightarrow y = T^2, \quad b = \frac{4\pi^2}{D} I_D, \quad c = \frac{4\pi^2}{D} m, \quad x = a^2$$
 (6)

Unter Zuhilfenahme von *Python 3.7.3* wird die lineare Regression durchgeführt, wie in Abbildung 1 zu sehen ist, und es ergibt sich der y-Achsenabschnitt $b=(4,42\pm0,25)\,\mathrm{s}^2$ und eine Steigung von $c=(396,0\pm4,4)\,\mathrm{kg/J}$. Daraus lässt sich das Eigenträgheitsmoment zu

$$I_{\rm D} = \frac{D}{4\pi^2} b = \frac{m}{c} b = (2.49 \pm 0.14) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$$
 (7)

bestimmen.

 ${\bf Abbildung\ 1:}\ {\bf Lineare}\ {\bf Regression}\ {\bf zur}\ {\bf Bestimmung}\ {\bf des}\ {\bf Eigentr\"{a}gheitsmoments}.$

3.3 nächste section

Tabelle 3: Messwerte aller Schwingungsdauern.

$\mathrm{T}_{zyl,gross}/\mathrm{s}$	${\rm T}_{zyl,klein}/{\rm s}$	${\rm T}_{pose1}/{\rm s}$	${\rm T}_{pose2}/{\rm s}$
1.08	2.31	0.38	0.92
1.27	2.23	0.41	0.89
1.13	2.17	0.43	0.94
1.18	2.30	0.39	0.91
1.16	2.26	0.41	0.91

Tabelle 4: Messwerte zur Bestimmung der Eigenträgheit.

T_{eigen} / s	a_{m1} / cm	a_{m2} / cm
2.50	4.5	5.5
2.93	6.5	7.5
3.21	8.5	9.5
3.83	10.5	11.5
4.16	12.5	13.5
4.70	14.5	15.5
5.27	16.5	17.5
5.79	18.5	19.5
6.27	20.5	21.5
6.78	22.5	23.5

Tabelle 5: Messunsicherheiten aller Schwingungsdauern.

	T / s
$Zylinder_{qross}$	$2.25{\pm}0.05$
$\operatorname{Zylinder}_{klein}^{s}$	$1.16{\pm}0.06$
Holzfigur Pose 1	$0.40{\pm}0.02$
Holzfigur Pose 2	$0.91 {\pm} 0.02$

4 Diskussion

Anhang: originale Messdaten