CLAIMS

1	1.	(canceled)	
1	2.	(previously presented) The method of claim 19, wherein the piezoelectric film is	
2	composed of al	uminum nitride or zinc oxide.	
1	3.	(previously presented) The method of claim 19, wherein the patterned electrode is	
2	composed of al	uminum or titanium.	
1	4.	(currently amended) The method of claim 19, whrein wherein the substrate is composed	
2	of silicon or ga	llium arsenide.	
1	5.	(canceled)	
1	6.	(currently amended) The method of claim 19, wherein the second layer of material is	
2	formed by: depositing a non-conductive layer after patterning the first conductive layer; and planarizing		
3	the non-conducting layer is planarized by chemical mechanical polishing, polymer planarization, or		
4	polymer reflow	with liftoff.	
1	7-8.	(canceled)	
2	9.	(previously presented) The method of claim 19, wherein the second layer is a	
3	non-conducting layer that has a low dielectric constant.		
1	10.	(previously presented) The method of claim 19, wherein the second layer is ${\rm SiO}_2$.	
1	11-18.	(canceled)	
1	19.	(currently amended) A method of forming a thin film acoustic device, the method	
2	comprising the steps of:		
3	forming a base electrode;		
4	forming a second electrode;		
5	forming a piezoelectric film between the base electrode and the second electrode to enable		
6	application of an electric field to the piezoelectric film, wherein the foregoing is accomplished by:		

Serial No. 09/781,820 -2- Barber 21-11-4-4 (992.1426)

7	providing a substrate;		
8	depositing and patterning a first conductive layer to define the base electrode with an		
9	edge region having a first height relative to the substrate; and		
10	placing a second layer of material over the substrate with a portion positioned along the		
11	edge region of the base electrode, said portion having a height relative to the substrate so as to eliminate		
12	or substantially reduce a step along the base electrode edge region relative to the first height, wherein the		
13	second layer of material is formed by:		
14	depositing a non-conductive layer after patterning the first conductive layer; and		
15	planarizing the non-conducting layer by chemical mechanical polishing, polymer planarization,		
16	or polymer reflow with liftoff.		
1	20. (previously presented) The method of claim 19, wherein the step of forming the		
2	piezoelectric film includes depositing the piezoelectric film on the patterned electrode and the second		
3	layer.		
1	21. (previously presented) The method of claim 19, wherein the piezoelectric film serves as		
2	a support membrane for the device.		
1	22. (currently amended) A method of forming a thin film acoustic device, comprising:		
2	forming a base electrode on a substrate;		
3	patterning the base electrode;		
4	depositing a non-conducting layer on the patterned base electrode and substrate;		
5	planarizing the non-conducting layer by chemical mechanical polishing, polymer planarization,		
6	or polymer reflow with liftoff so that the non-conducting layer and patterned base electrode form a		
7	continuous layer having a level surface;		
8	forming a piezoelectric layer on the level surface of the continuous layer; and		
9	forming a second electrode so that the piezoelectric layer is positioned between the base		
10	electrode and the second electrode to enable application of an electric field to the piezoelectric film.		

Serial No. 09/781.820 -3- Barber 21-11-4-4 (992.1426)

the planarized non-conducting layer and patterned electrode improves the mechanical integrity of the

piezoelectric layer by eliminating the edge of the patterned electrode.

2

1

24.

(canceled)

(previously presented) The method of claim 22, wherein the level surface provided by

12	depositing a non-conductive layer on the base electrode and the substrate; and			
13	planarizing the non-conducting layer by chemical mechanical polishing, polymer planarization,			
14	4 or polymer reflow with liftoff.			
1	26. (new) The method of claim 19, wherein the non-conducting layer is planarized by			
2	polymer reflow with liftoff.			
1	27. (new) The method of claim 19, wherein the base electrode is formed by:			
2	applying the first layer of electrode material on the substrate;			
3	applying and patterning non-electrode material over the first layer of electrode material to form			
4	an etch mask;			
5	etching the electrode material to form the base electrode under the non-electrode material;			
6	applying the second layer of non-conducting material over the non-electrode material and			
7	adjacent to the base electrode; and			
8	removing the non-conducting material over the non-electrode material and the non-electrode			
9	material, leaving the non-conducting material adjacent to the base electrode.			
1	28. (new) The method of claim 22, wherein the non-conducting layer is planarized by			
2	chemical mechanical polishing.			
-	Chemical mechanical polishing.			
1	29. (new) The method of claim 22, wherein the non-conducting layer is planarized by			
2	polymer reflow with liftoff.			
	Serial No. 09/781,820 -4- Barber 21-11-4-4 (992,1426)			
	Serial IVO. 09//61,620			

(currently amended) A piezoelectric device, comprising:

a base electrode formed over the substrate, including an edge region having a first height relative

a second layer of material positioned over the substrate with a portion positioned along the edge

a piezoelectric film positioned between the base electrode and the second electrode to enable

region of the base electrode, said portion having a height relative to the substrate so as to eliminate or substantially reduce a step along the base electrode edge region relative to the first height;

application of an electric field to the piezoelectric film, wherein the second layer of material is formed

1

2

3

4

5

6

7 8

9 10

11

by:

25.

to the substrate;

a substrate;

a second electrode; and

1	30. (new) The method of claim 22, wherein the continuous layer is formed by:		
2	applying a layer of electrode material on the substrate;		
3	applying and patterning a layer of non-electrode material over the layer of electrode material to		
4	form an etch mask;		
5	etching the electrode material to form the base electrode under the non-electrode material;		
6	applying non-conducting material over the non-electrode material and adjacent to the base		
7	electrode; and		
8	removing the non-conducting material over the non-electrode material and the non-electrode		
9	material, leaving the non-conducting material adjacent to the base electrode.		
1	31. (new) The method of claim 30, wherein:		
2	the non-electrode material is a polymer material; and		
3	the non-conducting material over the polymer material and the polymer material are removed by		
4	immersion in a liquid polymer solvent to lift off the non-conducting material over the polymer material.		
1	32. (new) The method of claim 30, wherein:		
2	the electrode material is etched using an isotropic process to create the base electrode having an		
3	undercut profile under the non-electrode material; and		
4	the non-electrode material over the base electrode is reflowed after creating the base electrode		
5	having the undercut profile to retract the non-electrode material towards the edge of the electrode.		
1	33. (new) The method of claim 32, wherein:		
2	the non-electrode material is a polymer material; and		

3

4

Serial No. 09/781,820 -5- Barber 21-11-4-4 (992.1426)

the non-conducting material over the polymer material and the polymer material are removed by

immersion in a liquid polymer solvent to lift off the non-conducting material over the polymer material.