Introduction

At a hospital in Argentina, 480 women in active labor who did not have a c-section were the study subjects. To test whether intramuscular (IM) administration or intravenous (IV) route is the optimal route of administration of oxytocin to reduce PPH (blood loss) during the third stage of labor, a double-blinded, randomized controlled trial (with convenience sampling) was conducted. Researchers focused on whether there is a difference in average PPH value at 60 minutes after birth between the two groups.

Exploratory data analysis

Table 1. Baseline Characteristics by study groups.

	IV infusion group	IM injection group
Sample size (n)	239	241
Woman's age, mean (SD)	24.13±5.16	24.32 <u>±</u> 5.72
Gestational age, mean (SD)	38.50±2.12	38.77 <u>±</u> 1.84
Prepartum Hb, mean (SD)	11.78±1.47	11.73±1.53
Prepartum SBP, mean (SD)	114.77±13.54	114.63±13.73
Prepartum DBP, mean (SD)	75.43±10.78	74.73±11.53
Prepartum HR, mean (SD)	84.43±13.57	84.15 <u>±</u> 13.59
Preeclampsia, n (%)	1.67	0.83
Diabetes, n (%)	2.51	1.24

From **Table 1**., we can compare can conclude that the IV infusion group and IM injection group had similar sample size, woman's mean age, mean gestational age, mean prepartum Hb value, mean SBP value, mean DBP value, and mean HR value. IV infusion group had higher preeclampsia percentage and diabetes percentage than IM injection group.

Figure 1. Distribution of blood loss at 60 minutes after birth for IV infusion group and IM injection group.

According to **Figure 1**., the mean blood loss at 60 minutes after birth for IM injection group was 404.3 mL with SD of 342.2. We are 95% confident that the interval from 360.7 mL to 447.9 mL contains the true mean blood loss value at 60 minutes after birth for that group. The distribution is not normal (not Bell-shaped) and positively skewed which it has a long tail to the right. The center of the distribution is around the median (300 mL) which is lower than the mean (404.3 mL). The distribution is unsymmetric. The variability is observed from the population of n=241. The mean blood loss at 60 minutes after birth for IV infusion group was 360.8 mL with SD of 321.6. We are 95% confident that the interval from 319.7 mL to 402.0 mL contains the true mean blood loss value at 60 minutes after birth for that ¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.

group. The distribution is not normal (not Bell-shaped) and positively skewed which it has a long tail to the right. The center of the distribution is around the median (300 mL) which is lower than the mean (360.8 mL). The distribution is unsymmetric. The variability is observed from the population of n=239.

The primary outcome is the prepartum values of two groups involved no large difference and the distribution of blood loss at 60 minutes after birth of the two groups shown similar shapes (both of them were positively skewed) although IV infusion group had less difference (60.8 mL) between median (300 mL) and mean (360.8 mL) than the value of IM injection group (difference is 104.3 mL between mean 0f 404.3 mL and median 300 mL).

Inference

Since we aim to find whether there is a difference in average blood loss at 60 minutes after birth between two groups, we use two-tailed t test to answer the research question. The alternative hypothesis is the blood loss of both groups is not equal, which involved a two-tailed test. We assume it is random sample, each observation is independent, and sampling distribution of sample means is approximately normal with a large sample size. We assume the mean blood loss of IV infusion group and IM injection group are the same at 60 minutes after birth.

Table 2. t-test results of blood loss at 60 minutes after birth in IV infusion group and IM injection group.

Difference	95% C	l mean	Std dev	95% C	l std dev	T value	Pr> t	DF
(BloodLoss60								
values between IM								
injection group and								
IV infusion group)								
43.47	-16.35	103.3	332.1	312.2	354.7	1.43	0.15	474

According to **Table 2**., we can say that with 95% confidence that the people who took IM injection at 60 minutes after birth will have a blood loss difference in the range between -16.35 mL to 103.3 mL. The null value fall in the confidence interval, we have evidence to say that the true population value is different from the null value. Since the p value (0.15) is larger than α value of 0.05, we fail to reject the hypothesis. We don't have sufficient evidence to reject the null hypothesis that there is no difference in average blood loss at 60 minutes after birth between two groups. We do not have enough evidence to say that there is no difference in blood loss at 60 minutes after birth between two groups.

Conclusion

To answer the research question, we can conclude that we do not have evidence to prove there is difference in average blood loss at 60 minutes after birth between two groups. We cannot decide which one is the optimal route for administration oxytocin to women in labor to reduce blood loss. I don't think these results can apply to all women who give birth. I think detailed analysis should be made including the factors of prior illness/condition upon arrival to hospital indicator, prior chronic hypertension indicator, and other indicator to help women choose the optimal route for administration oxytocin case-by-case. Further study can be done to explore the influence of those factors on the efficiency of oxytocin administration.

¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.

Appendix

proc import
DATAFILE = "/home/u59373588/My SAS/project 1/PPH-Oxytocin-RCT.csv"
OUT = PPH
DBMS = csv
REPLACE;
GETNAMES = yes;
run;

PROC CONTENTS DATA=PPH; RUN;

%web_open_table(PPH); proc univariate data=PPH; Class StudyGroup; VAR Age; run;

Table 3. Statistics results of age in IV infusion and IM injection groups.

	Varia	IATE Procedure ble: Age Group = IM			Varia	IATE Procedure ble: Age Group = IV			
	Мо	ments							
N	241	Sum Weights	241		Moments				
Mean	24.3153527	Sum Observations	5860	N	239	Sum Weights	239		
Std Deviation	5.71548817	Variance	32.666805	Mean	24.125523	Sum Observations	5766		
Skewness	0.84593195	Kurtosis	0.39072957	Std Deviation	5.16461551	Variance	26.6732534		
Uncorrected SS	150328	Corrected SS	7840.0332	Skewness	0.75913845	Kurtosis	0.20655265		
Coeff Variation	23.5056766	Std Error Mean	0.36816696	Uncorrected SS	145456	Corrected SS	6348.23431		
Coon randion	20.0000700	Old Elitor Modil	0.00010000	Coeff Variation	21,4072686	Std Error Mean	0.33407121		

PROC CONTENTS DATA=PPH; RUN;

%web_open_table(PPH); proc univariate data=PPH; Class StudyGroup; VAR GestAge; run;

Table 4. Statistics results of gestational age in IV infusion and IM injection groups.

		0	0				0 1	
	The UNIVARIATE Procedure Variable: GestAge StudyGroup = IM					Variable	IATE Procedure e: GestAge Group = IV	
	Мо	ments				Мо	ments	
N	241	Sum Weights	241		N	239	Sum Weights	239
Mean	38.7713693	Sum Observations	9343.9		Mean	38.4987448	Sum Observations	9201.2
Std Deviation	1.84177501	Variance	3.3921352		Std Deviation	2.11635252	Variance	4.478948
Skewness	-3.0372149	Kurtosis	16.7305834		Skewness	-1.9825619	Kurtosis	5.04291489
Uncorrected SS	363089.91	Corrected SS	814.112448		Uncorrected SS	355300.64	Corrected SS	1065.98962
Coeff Variation	4.75034812	Std Error Mean	0.11863916		Coeff Variation	5.49719877	Std Error Mean	0.13689546

PROC CONTENTS DATA=PPH; RUN;

%web_open_table(PPH);

proc univariate data=PPH;

Class StudyGroup;

¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.

VAR HbBaseline;

run:

Table 5. Statistics results of HbBaseline in IV infusion and IM injection groups.

	Variable:	IATE Procedure HbBaseline Group = IM		The UNIVARIATE Procedure Variable: HbBaseline StudyGroup = IV Moments					
	Moments				238	Sum Weights	238		
N	241	Sum Weights	241	Mean	11.7768908	Sum Observations	2802.9		
Mean	11.7290456	Sum Observations	2826.7	Std Deviation	1.46610494	Variance	2.14946371		
Std Deviation	1.52822975	Variance	2.33548617						
Skewness	0.04210575	Kurtosis	0.41813547	Skewness	-0.4838012	Kurtosis	0.26870445		
Uncorrected SS	33715.01	Corrected SS	560.51668	Uncorrected SS	33518.87	Corrected SS	509.422899		
Coeff Variation	13.0294467	Std Error Mean	0.09844193	Coeff Variation	12.4489984	Std Error Mean	0.09503347		

PROC CONTENTS DATA=PPH; RUN;

%web_open_table(PPH); proc univariate data=PPH; Class StudyGroup; VAR SBPBaseline;

run;

Table 6. Statistics results of SBPBaseline in IV infusion and IM injection groups.

	Variable:	IATE Procedure SBPBaseline Group = IM			Variable:	IATE Procedure SBPBaseline Group = IV	
	Moments					ments	
N	241	Sum Weights	241	N	239	Sum Weights	23
Mean	114.634855	Sum Observations	27627	Mean	114.769874	Sum Observations	2743
Std Deviation	13.7289031	Variance	188.48278	Std Deviation	13.5380483	Variance	183.27875
Skewness	0.12598572	Kurtosis	0.05114574	Skewness	0.43119803	Kurtosis	1.1473049
Uncorrected SS	3212253	Corrected SS	45235.8672	Uncorrected SS	3191758	Corrected SS	43620.343
Coeff Variation	11.9762032	Std Error Mean	0.88435639	Coeff Variation	11.7958205	Std Error Mean	0.875703

PROC CONTENTS DATA=PPH; RUN;

%web_open_table(PPH); proc univariate data=PPH; Class StudyGroup; VAR DBPBaseline; run;

Table 7. Statistics results of DBPBaseline in IV infusion and IM injection groups.

¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.

The UNIVARIATE Procedure Variable: DBPBaseline StudyGroup = IM **Moments** N 241 Sum Weights 241 Sum Observations 18010 Mean 74.7302905 132.989454 11.5321053 **Std Deviation** Variance 0.35899534 Skewness 0.19720251 Kurtosis **Uncorrected SS** 1377810 Corrected SS 31917.4689 **Coeff Variation** 15.4316346 Std Error Mean 0.74284821

		Broup = IV						
Moments								
N	239	Sum Weights	239					
Mean	75.4309623	Sum Observations	18028					
Std Deviation	10.7778583	Variance	116.162231					
Skewness	0.077014	Kurtosis	0.27639092					
Uncorrected SS	1387516	Corrected SS	27646.6109					
Coeff Variation	14.2883744	Std Error Mean	0.6971617					

The UNIVARIATE Procedure

PROC CONTENTS DATA=PPH; RUN;

%web_open_table(PPH); proc univariate data=PPH; Class StudyGroup; VAR HRBaseline; run;

Table 8. Statistics results of HBPBaseline in IV infusion and IM injection groups.

The UNIVARIATE Procedure Variable: HRBaseline StudyGroup = IM						Variable:	IATE Procedure HRBaseline Group = IV	
Moments						Мо	ments	
N	241	Sum Weights	241		N	239	Sum Weights	239
Mean	84.1452282	Sum Observations	20279		Mean	84.4267782	Sum Observations	20178
Std Deviation	13.5895053	Variance	184.674654		Std Deviation	13.5659715	Variance	184.035582
Skewness	0.44384975	Kurtosis	0.574256		Skewness	0.81881003	Kurtosis	1.43700177
Uncorrected SS	1750703	Corrected SS	44321.917		Uncorrected SS	1747364	Corrected SS	43800.4686
Coeff Variation	16.1500605	Std Error Mean	0.87537699		Coeff Variation	16.0683278	Std Error Mean	0.8775097

proc freq data = PPH; tables StudyGroup * PreeclampsiaStatus; run;

Table 9. Frequency statistics results of prior pre eclampsia indicator in IV infusion and IM injection groups.

¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.

Frequency	Table of StudyG	Table of StudyGroup by PreeclampsiaStatus							
Percent Row Pct		Pree	clampsiaS	tatus					
Col Pct	StudyGroup	0	1	Total					
	IM	239	2	241					
		49.79	0.42	50.21					
		99.17	0.83						
		50.42	33.33						
	IV	235	4	239					
		48.96	0.83	49.79					
		98.33	1.67						
		49.58	66.67						
	Total	474	6	480					
		98.75	1.25	100.00					

proc freq data = PPH; tables StudyGroup * DiabetesStatus; run;

Table 10. Frequency statistics results of prior diabetes indicator in IV infusion and IM injection groups.

The FREQ Procedure

Tab	Frequency
	Percent Row Pct
Stu	Col Pct
IM	
IV	

	DiabetesStatus						
StudyGroup	0	1	Total				
IM	238	3	241				
	49.58	0.63	50.21				
	98.76	1.24					
	50.53	33.33					
IV	233	6	239				
	48.54	1.25	49.79				
	97.49	2.51					
	49.47	66.67					
Total	471	9	480				
	98.13	1.88	100.00				

proc ttest data = PPH alpha=0.05; Class StudyGroup; VAR BloodLoss60; run;

¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.

Table 11. t-test results of blood loss at 60 minutes of birth in IV infusion group and IM injection group.

Figure 1. Distribution of blood loss at 60 minutes after birth for IV infusion group and IM injection group.

proc means data=PPH chartype MEAN MEDIAN Q1 Q3 QRANGE RANGE MIN MAX STD maxdec=2:

Class StudyGroup;

VAR BloodLoss60;

RUN;

Table 12. Statistics results of mean blood loss at 60 minutes after birth in IV infusion group and IM injection group.

The MEANS Procedure

Analysis Variable : BloodLoss60										
StudyGroup	N Obs	Mean	Median	Lower Quartile	Upper Quartile	Quartile Range	Range	Minimum	Maximum	Std Dev
IM	241	404.31	300.00	200.00	450.00	250.00	1980.00	20.00	2000.00	342.19
IV	239	360.84	300.00	150.00	450.00	300.00	1975.00	25.00	2000.00	321.59

¹ Durocher, J., Dzuba, I. G., Carroli, G., Morales, E. M., Aguirre, J. D., Martin, R., ... & Winikoff, B. (2019). Does route matter? Impact of route of oxytocin administration on postpartum bleeding: A double-blind, randomized controlled trial. *PLOS ONE*, *14*(10), e0222981.