Statistik für Fortgeschrittene: Bonusprogramm

Dieses Jupyter Notebook ist unsere Abgabe für das Statistik für Fortgeschrittene Bonusprogramm im WS22/23 @KIT.

Thema:

• Wie reagieren Schätzer auf Ausreißer in Daten? (OLS/LAD)

Autoren:

- Katharina Jacob, MATRIKELNR
- Peter Fabisch, MATRIKELNR
- Alessio Negrini, 2106547

Import der benötigten Libraries

```
In [1]: # Convert notebook to pdf
!jupyter nbconvert --to webpdf --allow-chromium-download ols_lad_regression.ipynb

[NbConvertApp] Converting notebook ols_lad_regression.ipynb to webpdf
[NbConvertApp] Building PDF
[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 585879 bytes to ols_lad_regression.pdf

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import seaborn as sns
sns.set theme(style="whitegrid")
```

Mit der statsmodel.api können wir sowohl eine OLS Regression, als auch eine LAD Regression ausführen.

Beachte, dass eine LAD Regression eine Quantil Regression ist mit dem Parameter q=0.5. Eine LAD Regression ist somit auch in statsmodels.api implementiert, jedoch als Quantil Regression.

Die restlichen Libraries sind dafür Gedacht, Daten zu manipulieren und zu visualisieren.

Load Data

The data shows the relationship between income and expenditures on food for a sample of working class Belgian households in 1857 (the Engel data).

```
In [3]: # Load data as pandas df
df = sm.datasets.engel.load_pandas().data.round(2)

# Information
print("Shape of the data:", df.shape)

# Save exogen and response variable
X = df["income"]
```

```
y = df["foodexp"]

# Add constant to exogen variables to add intercept in model
X = sm.add_constant(X)

# Preview Data
df.head(5)
```

Shape of the data: (235, 2)

Out[3]:

	income	foodexp
0	420.16	255.84
1	541.41	310.96
2	901.16	485.68
3	639.08	403.00
4	750.88	495.56

Visualize Data

```
In [4]: plt.figure(figsize=(10,6))
   plt.title("Income x Foodexp Scatterplot", size=16)
   sns.scatterplot(data=df, x="income", y="foodexp", edgecolor="black", alpha=0.8)
   plt.show()
```


In [14]: df.describe()

Out[14]:

	income	тооаехр
count	235.000000	235.000000
mean	982.473191	624.150511
std	519.230382	276.456821
min	377.060000	242.320000

```
25%
      638.875000
                   429.690000
50%
      883.980000
                   582.540000
                  743.885000
75% 1163.985000
max 4957.810000 2032.680000
```

```
In [15]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 235 entries, 0 to 234
        Data columns (total 2 columns):
         # Column Non-Null Count Dtype
            income 235 non-null float64
            foodexp 235 non-null float64
        dtypes: float64(2)
```

OLS Regression

memory usage: 3.8 KB

The following function is the target function of the OLS regression:

$$\min_eta \sum_{i=1}^n (y_i - eta_0 - \sum_{j=1}^p x_{ij}eta_j)^2$$

Which can be solved using linear algebra, i.e. compute the derivation, set to 0 and solve for β :

$$\hat{\beta} = (X'X)^{-1}X'y$$

```
In [5]: # Instantiate model
        ols model = sm.OLS(endog=y, exog=X)
        # Train model, i.e. fit estimators
        results = ols model.fit()
        # Show summary
        print(results.summary())
```

OLS Regression Results ______ Dep. Variable: foodexp R-squared: 0.830 Model: OLS Adj. R-squared: 0.830 Least Squares F-statistic: Method: 1141. Tue, 24 Jan 2023 Prob (F-statistic): Date: 9.92e-92 Time: 12:58:58 Log-Likelihood: -1445.7No. Observations: 235 AIC: 2895.

BIC:

2902.

Df Residuals: Df Model:

	coef	=========				
	COEL	std err	t	P> t	[0.025	0.975]
const income	147.4757	15.957 0.014	9.242 33.772	0.000	116.037	178.914
Omnibus: Prob(Omnibus): Skew: Kurtosis:		68.1 0.0 -0.0	000 Jarqu 670 Prob(Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.411 927.668 3.63e-202 2.38e+03

233

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.38e+03. This might indicate that there are strong multicollinearity or other numerical problems.

LAD Regression

LAD regression is very similar to OLS regression, but instead of trying to minimize the squared residuals, we minimize the absolute residuals, i.e. the difference between the actual response variable y and our estimated values \hat{y} .

So the objective function is defined as:

$$\min_{eta} \sum_{i=1}^n |y_i - eta_0 - \sum_{j=1}^p x_{ij}eta_j|$$

Unlike the OLS solution, we can not solve this analytically. So there exists many approaches. The statsmodel.api uses the **Iterative Weighted Least Squares** approach.

```
In [6]: # Instantiate model
lad_model = smf.quantreg("foodexp ~ income", df)

# Fit model with q=0.5, i.e. LAD Regression
lad_results = lad_model.fit(q=0.5)

# Show summary
print(lad_results.summary())
```

Dep. Variable: foodexp Pseudo R-squared: 0.6206
Model: QuantReg Bandwidth: 64.51
Method: Least Squares Sparsity: 209.3
Date: Tue, 24 Jan 2023 No. Observations: 235
Time: 12:58:58 Df Residuals: 233

QuantReg Regression Results

Intercept 81.4823 14.635 5.568 0.000 52.649 110.315 income 0.5602 0.013 42.516 0.000 0.534 0.586

The condition number is large, 2.38e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Add Outliers

```
# Add flag column
cols.append("flag")
outlier_df = pd.DataFrame(outliers, columns=cols)
outlier_df.head(5)

df_copy = df.copy()

# Add flag column to df
df_copy["flag"] = "Normal"

# Create df with outlier
df_with_outlier = pd.concat([df_copy, outlier_df], axis=0)
df_with_outlier.reset_index(drop=True, inplace=True)
df_with_outlier
```

Out[7]:

income	foodexp	flag
420.16	255.84	Normal
541.41	310.96	Normal
901.16	485.68	Normal
639.08	403.00	Normal
750.88	495.56	Normal
•••		
4000.00	300.00	Outlier
3900.00	350.00	Outlier
4300.00	400.00	Outlier
4200.00	370.00	Outlier
3600.00	370.00	Outlier
	420.16 541.41 901.16 639.08 750.88 4000.00 3900.00 4300.00	420.16 255.84 541.41 310.96 901.16 485.68 639.08 403.00 750.88 495.56 4000.00 300.00 3900.00 350.00 4300.00 400.00 4200.00 370.00

240 rows × 3 columns

Income x Foodexp Scatterplot (with Outlier)

OLS with Outlier

```
In [9]: # Instantiate model
  ols_model_outlier = sm.OLS(endog=df_with_outlier["foodexp"], exog=sm.add_constant(df_wit
  # Train model, i.e. fit estimators
  ols_results_outlier = ols_model_outlier.fit()

# Show summary
  print(ols_results_outlier.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Tue	Least Squa , 24 Jan 2 12:58	OLS res 023 :59 240 238	Adj. F-sta Prob	nared: R-squared: ntistic: (F-statistic) nikelihood:	:	0.362 0.359 134.9 5.33e-25 -1635.3 3275. 3281.
=======================================	coef	std err		===== t 	P> t	[0.025	0.975]
			13		0.000	308.140	412.290
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0. -1.	398 000 008 753		,		0.956 806.751 6.55e-176 2.30e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 2.3e+03. This might indicate that there are strong multicollinearity or other numerical problems.

LAD with Outlier

```
In [10]: # Instantiate model
lad_model_outlier = smf.quantreg("foodexp ~ income", df_with_outlier)

# Fit model with q=0.5, i.e. LAD Regression
lad_results_outlier = lad_model_outlier.fit(q=0.5)

# Show summary
print(lad_results_outlier.summary())
```

QuantReg Regression Results								
Dep. Variable:		 f	 oodexp	Pseud	lo R-squared:	 :	0.4352	
Model:		QuantReg			Bandwidth:			
Method:		Least Squares		Sparsity:			235.2	
Date:	Tue, 24 J		Jan 2023	No. Observations:		:	240	
Time:		12	12:58:59	Df Residuals:		238		
				Df Mo	odel:		1	
========	coef	std er	====== r	====== t	P> t	[0.025	0.975]	
	45.6372	14.05	-	0.360	0.000	117.943	173.331	
income	0.4799 ======	0.01	⊥ 4 ======	2.401	0.000	0.458	0.502	

The condition number is large, 2.3e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Comparison

In the following section we compare both Regression models (OLS/LAD) and after adding outliers.

Visualize both Regression lines

```
In [11]: def regression_line(results, x) -> float:
    """
    Function to get the estimated value given the exogen variable x.
    First gets the estimated betas from the fitted model and then computes the estimated params: results Results of the fitted model (OLS / LAD)
    params: x Scalar of the exogen variable
    returns: Estimated value y_hat
    """

# Get fitted values
    intercept = results.params[0]
    beta_1 = results.params[1]

# Compute y_hat, i.e. estimated value
    y_hat = intercept + x * beta_1
    return y_hat
```

```
In [12]: def plot_comparison(df, ols_results, lad_results, ols_results_outlier, lad_results_outli

Plots comparison between OLS and LAD Regression as well as with outlier added
:param: df
```

```
:param: ols results
    :param: lad results
    :param: ols results outlier
    :param: lad results outlier
    # Surpress scientific notation
    np.set printoptions(suppress=True)
    fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(16,14))
    ax[0].set title("Income x Foodexp Scatterplot with OLS & LAD Regression Line", size=
    sns.scatterplot(data=df[df.flag == "Normal"], x="income", y="foodexp", edgecolor="bl
    # Add regression line for OLS
    sns.lineplot(x=df["income"],
                 y=df["income"].apply(lambda x: regression line(ols results, x)),
                 color="green",
                 label=f"OLS Regression: {np.around(ols results.params.values, 4)}", ax
    # Add regression line for LAD
    sns.lineplot(x=df["income"],
                 y=df["income"].apply(lambda x: regression line(lad results, x)),
                 color="red",
                 label=f"LAD Regression: {np.around(lad results.params.values, 4)}", ax
    # With Outlier:
    ax[1].set title("Income x Foodexp Scatterplot with OLS & LAD Regression Line (+ Outl
    sns.scatterplot(data=df, x="income", y="foodexp", edgecolor="black", alpha=0.8, hue=
    # Add regression line for OLS
    sns.lineplot(x=df["income"],
                 y=df["income"].apply(lambda x: regression line(ols results outlier, x))
                 color="green",
                 label=f"OLS Regression: {np.around(ols results outlier.params.values, 4
    # Add regression line for LAD
    sns.lineplot(x=df["income"],
                 y=df["income"].apply(lambda x: regression line(lad results outlier, x))
                 color="red",
                 label=f"LAD Regression: {np.around(lad results outlier.params.values, 4
   plt.tight layout()
   plt.show()
plot comparison (df=df with outlier,
         ols results=results,
         lad results=lad results,
         ols results outlier=ols results outlier,
         lad results outlier=lad results outlier)
```


Visualize Regression Plot with OLS

```
In [13]: fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(16,14))
         # OLS Residual Plot Settings
         sns.residplot(y=results.resid, x=results.fittedvalues, ax=axes[0,0], lowess=True, line k
         axes[0,0].set title("Residual Plot OLS", size=16)
         axes[0,0].axhline(y=0, color="green", linestyle="--")
         axes[0,0].set xlabel("Fitted values $\hat{y} i$")
         axes[0,0].set ylabel("Residuals $e i$")
         # LAD Residual Plot Settings
         sns.residplot(y=lad results.resid, x=lad results.fittedvalues, ax=axes[0,1], lowess=True
         axes[0,1].set title("Residual Plot LAD", size=16)
         axes[0,1].axhline(y=0, color="green", linestyle="--")
         axes[0,1].set xlabel("Fitted values $\hat{y} i$")
         axes[0,1].set ylabel("Residuals $e i$")
         # OLS Residual Plot Settings (+ Outlier)
         sns.residplot(y=ols results outlier.resid, x=ols results outlier.fittedvalues, ax=axes[1
         axes[1,0].set title("Residual Plot OLS (with Outlier)", size=16)
         axes[1,0].axhline(y=0, color="green", linestyle="--")
         axes[1,0].set xlabel("Fitted values $\hat{y} i$")
         axes[1,0].set_ylabel("Residuals $e i$")
         # LAD Residual Plot Settings (+ Outlier)
         sns.residplot(y=lad results outlier.resid, x=lad results outlier.fittedvalues, ax=axes[1
         axes[1,1].set title("Residual Plot LAD (with Outlier)", size=16)
         axes[1,1].axhline(y=0, color="green", linestyle="--")
```

```
axes[1,1].set_xlabel("Fitted values $\hat{y}_i$")
axes[1,1].set_ylabel("Residuals $e_i$")
fig.tight_layout()
plt.show()
```

