All Allend Street Con-		
Q. No	Part-A (2 X 5 = 10 Marks) (Answer all the questions)	C
1	Consider a random process $X(t) = \cos(\omega_0 t + \theta)$ with θ uniformly distributed in the interval $(-\pi, \pi)$. Check whether $X(t)$ is stationary or not.	C
2	If the customers arrive at a bank according to a Poisson process with mean rate 2 per minute, find the probability that during a 1- minute interval no customers arrives.	
3	The joint probability mass function of a two dimensional random variable (X, Y) is given by $P(x,y) = K(2x+y)$; $x=1,2$ and $y=1,2$ where K is a constant. Find the value of K .	
4	State any two properties of poisson process.	1
5	Define Markov Chain.	

Q. N	1 MeV B (10 A 2 = 32 Marks), (8 X 1 - 9 A)
11 A	From the following data, find the two regression equations, coefficient of correlation b/w the marks in Economics(x) and Statistics(y) and Find the most likely marks in Statistics when marks in Economics are 30.
	y 43 46 49 41 36 32 31 30 33 30
	The random variables X and Y each follow exponential distribution with parameter 1 and are independent. Find the pdf of $U = X + Y$, $V = \frac{X}{Y}$.
	(OR)
	Let X and Y be discrete R.V's with probability function $f(x, y) = \frac{x+y}{21}$, $x = 1, 2, 3$; $y = 1, 2$. Find Correlation coefficients.
11 B	Suppose that orders at a restaurant are identically independent random variables with mean $\mu = 8$ and standard deviation $\sigma = 2$
	(1)Find the probability that first 100 customers spend a total of more than 840.
	(ii) Find $P(780 < X_1 + X_2 + X_3 + + X_{100} < 820)$.
	Show that the random process $X(t) = A\sin(\omega t + \theta)$ is WSS if A and ω are constant and θ is uniformly distributed random variable in $(0, 2\pi)$.
12 A	A raining process is considered as a two state of Markov chain. If it rains, its considered to be in state 0 and it it does not rain, the chain is in state 1. The TPM of the Markov chain is defined as $P = \begin{pmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{pmatrix}$ (i) Find the probability that it will rain for three days from today assuming that its raining today. (ii) Find the probability that it will rain after 3 days with initial probability of state 0 & 1 are 0.4 & 0.6 respectively.
	Find the nature of the states of the Markov shair (V) with 12
2 B	Find the nature of the states of the Markov chain $\{X_n\}$ with $n=0,1,2$ having 3 states and with one step transition probability matrix $P = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}.$
	A fisherman catches a fish at a Poisson rate of 2 per hour from a large lake with lots of fish. If he starts fishing at 10.00 a.m. What is the probability that he catches one fish by 10.30 a.m and three fishes by noon?
3 A	The joint probability mass function of (X,Y) is given by $p(x,y) = k(2x+3y)$ for $x = 0,1,2$; $y = 1,2,3$. (i) Find all marginal distribution. (ii) Find conditional distributions of X given Y. (iii) Find $P[X+Y>3]$. Are X and Y independent?