l'Ingénieur

Activation 1

Réglage de correcteurs P et PI

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

D'après ressources P. Dupas.

Soit un système de fonction de transfert $G(p) = \frac{10}{10}$ placé dans une boucle à retour unitaire. On

 $\frac{1}{p(1+p+p^2)}$ placé dans une boucle à retour unitaire. On

souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de 45° et une marge de gain de 10 dB.

On donne le diagramme de Bode associé à cette fonction de transfert.

Question 1 Mesurer puis calculer la marge de phase.

Question 2 *Mesurer puis calculer la marge de gain.*

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

1.
$$M_{\varphi} = -60^{\circ}$$
.

2.
$$M'_G = -20 \, \text{dB}$$
.

3.
$$K_P = 0.054$$
 et $M_G = 5.35$ dB.

4.
$$K_P = 0.0316$$
 et $M_{\varphi} = 70^{\circ}$.

Correcteur proportionnel intégral

D'après ressources P. Dupas.

Soit un système de fonction de transfert $G(p) = \frac{1}{\left(p+1\right)\left(\frac{p}{8}+1\right)}$ placé dans une boucle à retour unitaire.

On souhaite disposer d'une marge de phase de 45° en utilisant un correcteur proportionnel intégral de la forme $C(p) = K_p \frac{1+\tau p}{\tau p}$.

Question 1 Tracer le diagramme de Bode de la boucle ouverte non corrigée.

Question 2 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

1.
2.
$$C(p) = 15, 7 \frac{1+1,018p}{1,018p}$$

3.

1