Álgebra II

CP1: Espacios vectoriales y Subespacios

Objetivos

Esta clase práctica tiene como objetivos:

- Verificar si un conjunto dado constituye un espacio vectorial con las leyes especificadas.
- Comprobar si un subconjunto constituye un subespacio vectorial

Le recomendamos realizar los ejercicios señalados y consultar el libro $\acute{A}lgebra~Tomo~I$ de Teresita Noriega. Secciones 1.2, 1.3 y 1.4.

Ejercicios

Ejercicio 1: En \mathbb{R}^n se definen las operaciones

$$a \oplus b = a - b$$

$$\alpha * a = -\alpha a$$

para todo $a, b \in \mathbb{R}^n$ y $\alpha \in \mathbb{R}$. ¿Cuáles de los axiomas de espacio vectorial satisface \mathbb{R}^n con estas dos operaciones?

Ejercicio 2: En K^2 (donde $K = \mathbb{R}$ o \mathbb{C}) se definen las operaciones:

$$(a,b) \oplus (c,d) = (a+d,b+c)$$

$$\alpha * (a,b) = (\alpha a, \alpha b)$$

para $(a,b), (c,d) \in K^2, \alpha \in K$. Determine si E es un espacio vectorial sobre K.

Ejercicio 3: En \mathbb{R}_+^* se definen las operaciones:

$$a \oplus b = ab$$

$$\alpha * a = a^{\alpha}$$

Demuestre que E es un espacio vectorial.

Ejercicio 4: Consideremos el conjunto $E =]-\pi/2, \pi/2$ [y el cuerpo $K = \mathbb{R}$. Demuestre que (E, K) es un espacio vectorial con las operaciones

$$a \oplus b = \arctan(\tan a + \tan b)$$

 $\alpha * a = \arctan(\alpha \tan a)$

Ejercicio 5: En el conjunto de las funciones complejas de variable real $F(\mathbb{R}, \mathbb{C})$ considere el subconjunto

$$V = \{ f \in F(\mathbb{R}, \mathbb{C}) : f(-t) = \overline{f(t)} \}$$

Demuestre que V con las operaciones de suma y producto usual por un escalar, es un espacio vectorial sobre \mathbb{R} . ¿Puede ser V un espacio vectorial sobre \mathbb{C} ?

Ejercicio 6: Sea $V = \mathbb{R}^3$. Demuestre que W no es un subespacio de V, donde

(a)
$$W = \{(a, b, c) : a \ge 0\}$$

(b)
$$W = \{(a, b, c) : a^2 + b^2 + c^2 \le 1\}$$

Ejercicio 7: En el espacio de las matrices reales de orden 3, $M_3(\mathbb{R})$. diga cuáles de los siguientes subconjuntos son subespacios vectoriales de $M_3(\mathbb{R})$:

- (a) El de las matrices simétricas
- (b) El de las matrices antisimétricas
- (c) El de las matrices que tienen diagonal principal nula
- (d) El de las matrices con determinante nulo

Ejercicio 8: Verifique si es verdadera o falsa la siguiente proposición:

"La intersección de una cantidad finita de subespacios, es un subespacio".