Introducción a los espacios de Hilbert

Resolución de los ejercicios recomendados. Capítulo 6

Ejercicio 1

Se comprueba sin dificultad que T es un operador lineal. Veamos que T es acotado.

$$||T(x)||_2^2 = 4x_1^2 + x_2^2 + 4x_3^2 + x_4^2 + \dots \le 4(x_1^2 + x_2^2 + \dots) = 4||x||_2^2$$

Es decir:

$$||T(x)||_2 \leqslant 2||x||_2 \tag{1}$$

En consecuencia, T es un operador acotado.

Para cada $x \in \ell^2$ se tiene:

$$T^{2}(x) = T(T(\lbrace x_{1}, x_{2}, x_{3}, x_{4}, \ldots \rbrace)) = T(\lbrace 0, 2x_{1}, x_{2}, 2x_{3}, x_{4}, \ldots \rbrace) = \lbrace 0, 0, 2x_{1}, 2x_{2}, 2x_{3}, \ldots \rbrace.$$

En particular se obtiene que $||T^2(x)||_2 = 2||x||$. En consecuencia, $||T^2|| = 2$.

Por otro lado, de (1) se deduce que $||T|| \le 2$, y teniendo en cuenta que si $z = \{x_1, 0, x_3, 0, \ldots\}$ entonces $T(z) = \{0, 2x_1, 0, 2x_3, 0, \ldots\}$ resulta que $||T(z)||_2 = 2||z||_2$, y se obtiene finalmente que ||T|| = 2. Obsérvese que $||T^2|| \ne ||T||^2$.

El operador adjunto T^* cumple que $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$, es decir, $2x_1\overline{y_2} + x_2\overline{y_3} + 2x_3\overline{y_4} + \cdots = x_1\overline{y_1^*} + x_2\overline{y_2^*} + x_3\overline{y_3^*} + \cdots$ de donde $T^*(y) = \{y_1^*, y_2^*, y_3^*, \cdots\} = \{2y_2, y_3, 2y_4, \cdots\}.$

Ejercicio 2

Teniendo en cuenta las propiedades lineales de la derivación, se deduce sin dificultad que T es un operador lineal. Por otro lado,

$$||T(f)||_{\mathcal{H}_2}^2 = ||f'||^2 = \int_0^1 |f'(x)|^2 dx \le \int_0^1 (|f(x)|^2 + |f'(x)|^2) dx = ||f||_{\mathcal{H}_1}^2$$

y en consecuencia, T es un operador acotado.

Ejercicio 3

Observemos en primer lugar que para cada $t \in [0, 1]$,

$$T(f)(t) = \int_0^t f(x)dx = \int_0^1 \chi_{[0,t]}(x)f(x)dx.$$

Por tanto, aplicando la desigualdad de Cauchy-Schwarz se obtiene

$$|T(f)(t)|^{2} = |\langle \chi_{[0,t]}, \overline{f} \rangle|^{2} \leqslant ||\chi_{[0,t]}||^{2} ||f||^{2}$$
$$= (\int_{0}^{1} |\chi_{[0,t]}|^{2}(x) dx) ||f||^{2} = t ||f||^{2}$$

En consecuencia, $T(f) \in L^2[0,1]$ y además se cumple

$$||T(f)||^2 = \int_0^1 |T(f)(t)|^2 dt \le \int_0^1 t ||f||^2 dt = \frac{t^2}{2} \Big|_0^1 ||f||^2$$
$$= \frac{1}{2} ||f||^2.$$

Por tanto, $||T|| \leq 1/\sqrt{2}$.

Ejercicio 4

El operador T es lineal pues el producto interno es lineal en la primera variable. Si u=0 entonces T=0 y por tanto ||T||=0. Supongamos ahora que $u\neq 0$. De la desigualdad de Cauchy Schwarz se deduce que

$$||T(x)|| = ||\langle x, u \rangle v|| = |\langle x, u \rangle| ||v|| \le ||x|| ||u|| ||v||,$$

y en consecuencia T es un operador acotado y $||T|| \leq ||u|| ||v||$. Además $||T(u)|| = ||\langle u, u \rangle v|| = ||u||^2 ||v||$, luego

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||} \geqslant \frac{||T(u)||}{||u||} = ||u|| ||v||$$

y por tanto ||T|| = ||u|| ||v||.

Comprobemos que el operador adjunto está definido por $T^*(y) = \langle y, v \rangle u$. En efecto,

$$\left\langle x, \left\langle y, v \right\rangle u \right\rangle = \overline{\left\langle y, v \right\rangle} \left\langle x, u \right\rangle = \left\langle x, u \right\rangle \left\langle v, y \right\rangle = \left\langle \left\langle x, u \right\rangle v, y \right\rangle = \left\langle T(x), y \right\rangle.$$

Ejercicio 9

Observemos en primer lugar que dado que para todo $y \in \mathcal{H}$, $\langle y, \alpha x + \beta z \rangle = \overline{\alpha} \langle y, x \rangle + \overline{\beta} \langle y, z \rangle$, se obtiene, para todo $\alpha, \beta \in \mathbb{K}$ y para todo $x, z \in \mathbb{H}$ la relación entre operadores

$$T_{\alpha x + \beta z} = \overline{\alpha} T_x + \overline{\beta} T_z.$$

Notemos además que el producto definido en \mathcal{H}' cumple

$$\langle T_y, T_x \rangle_{\mathcal{H}'} = \langle x, y \rangle_{\mathcal{H}}.$$

a) Veamos que \mathcal{H}' es un espacio de Hilbert. Sean T, S y $Q \in \mathcal{H}'$ y $y, z, x \in \mathcal{H}$ tales que $T = T_y$, $S = T_x$ y $Q = T_z$. Es definido positivo:

 $\langle T, T \rangle_{\mathcal{H}'} = \langle y, y \rangle_{\mathcal{H}} \leq 0$ y si $\langle T, T \rangle_{\mathcal{H}'} = 0$ entonces y = 0 y por tanto T = 0.

Es hermítico:

$$\langle T, S \rangle_{\mathcal{H}'} = \langle T_y, T_x \rangle_{\mathcal{H}'} = \langle x, y \rangle_{\mathcal{H}} = \overline{\langle y, x \rangle}_{\mathcal{H}} = \overline{\langle T_x, T_y \rangle}_{\mathcal{H}'} = \overline{\langle S, T \rangle}_{\mathcal{H}'}.$$

Es lineal en la primera variable:

$$\begin{split} \langle \alpha S + \beta Q, T \rangle_{\mathcal{H}'} &= \langle \alpha T_x + \beta T_z, T_y \rangle_{\mathcal{H}'} = \langle \alpha T_{\overline{\alpha}x + \overline{\beta}z}, T_y \rangle_{\mathcal{H}'} = \langle y, \overline{\alpha}x + \overline{\beta}z \rangle_{\mathcal{H}} \\ &= \alpha \langle y, x \rangle_{\mathcal{H}} + \beta \langle y, z \rangle_{\mathcal{H}} = \alpha \langle T_x, T_y \rangle_{\mathcal{H}'} + \beta \langle T_z, T_y \rangle_{\mathcal{H}'} \\ &= \alpha \langle S, T \rangle_{\mathcal{H}'} + \beta \langle Q, T \rangle_{\mathcal{H}'} \,. \end{split}$$

 \mathcal{H}' con la norma inducida es un espacio completo pues si $\{T_n\}$ es una sucesión de Cauchy en \mathcal{H}' y $\{x_n\}$ es la correspondiente sucesión en \mathcal{H} tal que $T_n = T_{x_n}$ para todo $n \in \mathbb{N}$, entonces $\{x_n\}$ es una sucesión de Cauchy en el espacio de Hilbert \mathcal{H} . Tomando $x = \lim_n x_n$, resulta que $\|T_x - T_n\| = \|x - x_n\|$ y en consecuencia $\{T_n\}$ es una sucesión convergente a T_x en \mathcal{H}' .

b) $\{Tx_n\}_{n\in\mathbb{N}}$ es un sistema ortonormal pues

$$\langle T_{x_i}, T_{x_j} \rangle_{\mathcal{H}'} = \langle x_j, x_i \rangle_{\mathcal{H}} = \delta_{ji} = \delta_{ij}.$$

Para ver que es base ortonormal bastará ver, por el teorema 4.11, que se verifica la identidad de Parseval. En efecto, sea $T \in \mathcal{H}'$ y $x \in \mathcal{H}$ tal que $T = T_x$. Se tiene:

$$||T||^2 = ||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle_{\mathcal{H}}|^2 = \sum_{n=1}^{\infty} |\langle T_{x_n}, T_x \rangle_{\mathcal{H}'}|^2 = \sum_{n=1}^{\infty} |\langle T, T_{x_n} \rangle_{\mathcal{H}'}|^2.$$

Ejercicio 10

Definimos el operador T de la manera siguiente. Reescribimos cada $x \in \mathcal{H}$,

$$x = \sum_{n=1}^{\infty} \langle x, x_n \rangle x_n$$

y definimos

$$T(x) = \sum_{n=1}^{\infty} \alpha_n \langle x, x_n \rangle x_n.$$
 (2)

La serie en (2) converge en \mathcal{H} pues

$$\left\|\sum_{n=1}^{N} \alpha_n \langle x, x_n \rangle x_n \right\|^2 = \sum_{n=1}^{N} |\alpha_n|^2 |\langle x, x_n \rangle|^2 \leqslant A^2 \sum_{n=1}^{N} |\alpha_n|^2 |\langle x, x_n \rangle|^2 \leqslant A^2 \|x\|^2$$

para todo N. Además, tomando límites en N se obtiene

$$||T(x)| \leqslant A||x||. \tag{3}$$

Obviamente $T(x_n) = \alpha_n x_n$ y T es único Pues si T' es un operador lineal y acotado tal que $T'(x_n) = \alpha_n x_n$ entonces

$$T'(x) = \lim_{N} T'\left(\sum_{n=1}^{N} \langle x, x_n \rangle x_n\right) = \lim_{N} \sum_{n=1}^{N} \langle x, x_n \rangle T'(x_n) = \lim_{N} \sum_{n=1}^{N} \langle x, x_n \rangle \alpha_n x_n = T(x)$$

para cada $x \in \mathcal{H}$.

Veamos que ||T|| = A. De (3) se deduce que $||T|| \leq A$. Por otro lado,

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||} \geqslant \sup_{n \in \mathbb{N}} \frac{||T(x_n)||}{||x_n||} = \sup_{n \in \mathbb{N}} |\alpha_n| = A.$$

Por tanto ||T|| = A.

Hallemos T^* . Como

$$\begin{split} \langle T(x), y \rangle &= \left\langle \sum_{n=1}^{\infty} \alpha_n \langle x, x_n \rangle x_n, \ y \right\rangle = \sum_{n=1}^{\infty} \alpha_n \langle x, x_n \rangle \langle x_n, y \rangle = \sum_{n=1}^{\infty} \langle x, x_n \rangle \overline{\alpha_n} \langle y, x_n \rangle \\ &= \left\langle x, \sum_{n=1}^{\infty} \overline{\alpha_n} \langle y, x_n \rangle x_n \right\rangle \end{split}$$

resulta que el operador adjunto viene definido por

$$T^*(y) = \sum_{n=1}^{\infty} \overline{\alpha_n} \langle y, x_n \rangle x_n.$$

En concreto, T^* es el único operador lineal acotado tal que $T^*(x_n) = \overline{\alpha_n} x_n$. Finalmente

$$TT^*(x_n) = T(\overline{\alpha_n}x_n) = |\alpha_n|^2 x_n$$
 y $T^*T(x_n) = T^*(\alpha_n x_n) = |\alpha_n|^2 x_n$

para cada $n \in \mathbb{N}$. Sabemos que para la sucesión de números complejos acotada $\{|\alpha_n|^2\}_{n=1}^{\infty}$ existe un único operador lineal acotado S tal que $S(x_n) = |\alpha_n|^2 x_n$. En consecuencia, $S = TT^* = T^*T$.

Ejercicio 11

Sabemos por el apartado iv) del teorema 6.26 que $||T|| = \sup_{||x||=1} |\langle T(x), x \rangle|$ y por tanto, si $\langle T(x), x \rangle = 0$ para todo $x \in \mathcal{H}$ entonces ||T|| = 0 y en consecuencia T = 0.

Ejercicio 14

- a) Basta aplicar el apartado ii) del teorema 6.29 válido en un espacio de Hilbert complejo. El siguiente ejemplo pone de manifiesto que la propiedad no es cierta si \mathcal{H} es un espacio vectorial real. En \mathbb{R}^2 consideramos la aplicación lineal tal que T(1,0) = (0,1) y T(1,0) = (-1,0). Se cumple que $T \ge 0$ (en realidad, $\langle T(x), x \rangle = 0$ para todo $x \in \mathbb{R}^2$). Sin embargo, el operador no es autoadjunto (la matriz no es simétrica).
- b) Basta tener en cuenta que $\langle \alpha T(x), x \rangle = \alpha \langle T(x), x \rangle$ y $\langle (T+S)(x), x \rangle = \langle T(x), x \rangle + \langle S(x), x \rangle$.
- c) Veamos que $S^*TS \ge 0$. Para cada $x \in \mathcal{H}$ se tiene $\langle (S^*TS)(x), x \rangle = \langle T(S(x)), S(x) \rangle \ge 0$ si $T \ge 0$.
- d) Como $\langle T^*T(x), x \rangle = \langle T(x), T(x) \rangle = ||T(x)||^2 \ge 0$ para cada $x \in \mathcal{H}$ resulta que $T^*T \ge 0$.
- e) La propiedad es cierta sólo en espacios vectoriales complejos. En este caso por el apartado a) el operador positivo T es autoadjunto.

Caso i) $\langle T(x), x \rangle \neq 0$ o $\langle T(y), y \rangle \neq 0$. Supongamos por ejemplo $\langle T(y), y \rangle \neq 0$. Dividiendo por $\langle T(y), y \rangle$ bastará probar que $|\langle T(x), y \rangle|^2 \leq \langle T(x), x \rangle$ para todo $x, y \in \mathcal{H}$ tal que $\langle T(y), y \rangle = 1$. Sea $\lambda \in \mathbb{C}$ arbitrario.

$$\langle T(x - \lambda y), x - \lambda y \rangle = \langle T(x), x \rangle - \overline{\lambda} \langle T(x), y \rangle - \lambda \langle T(y), x \rangle + \lambda \overline{\lambda} \langle T(y), y \rangle$$

$$= \langle T(x), x \rangle - \langle T(x), y \rangle \overline{\lambda} - \lambda \overline{\langle T(x), y \rangle} + \lambda \overline{\lambda}$$

$$= \langle T(x), x \rangle - \overline{\langle T(x), y \rangle} \overline{\langle T(x), y \rangle} + \overline{\langle T(x), y \rangle} \overline{\langle T(x), y \rangle}$$

$$- \overline{\langle T(x), y \rangle} \overline{\lambda} - \lambda \overline{\langle T(x), y \rangle} + \lambda \overline{\lambda}$$

$$= \langle T(x), x \rangle - |\overline{\langle T(x), y \rangle}|^2 + (\overline{\langle T(x), y \rangle} - \lambda) (\overline{\langle T(x), y \rangle} - \lambda)$$

$$= \overline{\langle T(x), x \rangle} - |\overline{\langle T(x), y \rangle}|^2 + |\overline{\langle T(x), y \rangle} - \lambda|^2$$

En particular para $\lambda = \langle T(x), y \rangle$ se obtiene

$$0 \leqslant \langle T(x - \lambda y), x - \lambda y \rangle = \langle T(x), x \rangle - |\langle T(x), y \rangle|^2$$

de donde se deduce la desigualdad buscada.

Caso ii) $\langle T(x), x \rangle = 0$ y $\langle T(y), y \rangle = 0$. Se obtiene para $\lambda \in \mathbb{C}$ arbitrario,

$$0 \leqslant \langle T(x - \lambda y), x - \lambda y \rangle = -\overline{\lambda} \langle T(x), y \rangle - \lambda \langle T(y), x \rangle,$$

y tomando $\lambda = \langle T(x), y \rangle$ resulta

$$0 \leqslant -2 |\langle T(x), y \rangle|^2$$

y en consecuencia $|\langle T(x), y \rangle| = 0$ y se cumple también la desigualdad.

El mismo ejemplo del apartado a) pone de manifiesto que la desigualdad no es cierta si \mathcal{H} es un espacio vectorial real. En \mathbb{R}^2 la aplicación lineal tal que T(1,0)=(0,1) y T(1,0)=(-1,0) que cumple que $T\geqslant 0$, en este caso, $\langle T(x),x\rangle=0$ para todo $x\in\mathbb{R}^2$ no cumple la desigualdad propuesta pues para $x=(x_1,x_2)$ e $y=(y_1,y_2)$ resulta que

 $\left| \langle T(x), y \rangle \right|^2 = (-x_2 y_1 + x_1 y_2)^2 > 0 = \langle T(x), x \rangle \langle T(y), y \rangle$

si $-x_2y_1 + x_1y_2 \neq 0$. De hecho, en la demostración anterior de la desigualdad propuesta hemos utilizado que el operador T es autoadjunto en ambos casos.

Ejercicio 18

Tenemos que demostrar que T es biyectivo. Para hacerlo probaremos lo siguiente:

- i) T es inyectivo. En efecto , si $x \in \mathcal{H}$ es tal que T(x) = 0 entonces $||x|| \le \frac{||T(x)||}{a} = 0$ y por tanto x = 0.
- ii) $T(\mathcal{H})$ es un subespacio vectorial cerrado de \mathcal{H} . En efecto, sea $\{y_n\}_{n\in\mathbb{N}}\subset T(\mathcal{H})$ una sucesión que converge a $y\in\mathcal{H}$. Existe una sucesión $\{x_n\}_{n\in\mathbb{N}}\subset\mathcal{H}$ tal que $T(x_n)=y_n$. De

$$a||x_n - x_m|| \le ||T(x_n - x_m)|| = ||T(x_n) - T(x_m)|| = ||y_n - y_m||$$

se deduce que $\{x_n\}_{n\in\mathbb{N}}$ es una sucesión de Cauchy en \mathcal{H} puesto que $\{y_n\}_{n\in\mathbb{N}}$ lo es. Como \mathcal{H} es completo, existe el límite x de la sucesión $\{x_n\}_{n\in\mathbb{N}}$. La continuidad del operador T permite asegurar que

$$T(x) = \lim_{n} T(x_n) = \lim_{n} y_n = y.$$

Se concluye que $y \in T(\mathcal{H})$ y por tanto $T(\mathcal{H})$ es cerrado.

iii) $T(\mathcal{H})^{\perp} = \{0\}$. En efecto sea $y \in T(\mathcal{H})^{\perp}$. Entonces $\langle y, T(x) \rangle = 0$ para todo $x \in \mathcal{H}$. Como T es autoadjunto resulta que $\langle T(y), x \rangle = 0$ para todo $x \in \mathcal{H}$. Por tanto T(y) = 0 y como T es inyectiva se obtiene que y = 0. El corolario 3.10 junto con ii) y iii) permiten deducir que $T(\mathcal{H}) = \mathcal{H}$ y por tanto T es sobreyectiva.

Ejercicio 19

a) Sea T el operador asociado a la base de Riesz $\{x_n\}_{n=1}^{\infty}$, es decir, el operador biyectivo y bicontinuo $T: \mathcal{H} \longrightarrow \mathcal{H}$ tal que $T(e_n) = x_n$ para todo $n \in \mathbb{N}$. Para cada $x \in \mathcal{H}$, expresamos $T^{-1}(x) \in \mathcal{H}$ en la base ortonormal $\{e_n\}_{n=1}^{\infty}$,

$$T^{-1}(x) = \sum_{n=1}^{\infty} c_n e_n \text{ siendo } c_n = \langle T^{-1}(x), e_n \rangle \text{ y } \{c_n\}_{n=1}^{\infty} \in \ell^2,$$

De esta manera,

$$x = T(T^{-1}(x)) = \sum_{n=1}^{\infty} c_n T(e_n) = \sum_{n=1}^{\infty} c_n x_n \text{ y } \{c_n\}_{n=1}^{\infty} \in \ell^2.$$

La expresión es única pues si $x=\sum_{n=1}^{\infty}c_nx_n=\sum_{n=1}^{\infty}d_nx_n$ entonces $T^{-1}(x)=\sum_{n=1}^{\infty}c_ne_n=\sum_{n=1}^{\infty}d_ne_n$ y como la expresión respecto de una base ortonomal es única, $c_n=d_n$ para todo $n\in\mathbb{N}$.

b) Sabemos que para cada $n \in \mathbb{N}$ se tiene $c_n = \langle T^{-1}(x), e_n \rangle = \langle x, (T^{-1})^*(e_n) \rangle$. Por tanto, tomamos

$$y_n = (T^{-1})^*(e_n) = (T^*)^{-1}(e_n)$$
 para cada $n \in \mathbb{N}$.

La unicidad se deduce de que si $\langle x, y_n \rangle = \langle x, z_n \rangle$ para todo $x \in \mathcal{H}$ entonces $y_n = z_n$ para todo $n \in \mathbb{N}$.

- c) Para cada $n, m \in \mathbb{N}$ se tiene $\langle x_n, y_m \rangle = \langle T(e_n), (T^*)^{-1}(e_m) \rangle = \langle e_n, e_m \rangle = \delta_{n,m}$.
- d) Que la sucesión $\{y_n\}_{n=1}^{\infty}$ es una base de Riesz se deduce de que el operador $(T^*)^{-1}$ es biyectivo y bicontinuo. Que su sucesión biortonormal es $\{x_n\}_{n=1}^{\infty}$ se deduce de que si $H=(T^*)^{-1}$ entonces aplicando el teorema 6.19 se obtiene

$$(H^*)^{-1} = (H^{-1})^* = (((T^*)^{-1})^{-1})^* = T^{**} = T \,.$$