Práctica III Geometría I

Universidad: Mayor de San Ándres.

Asignatura: Geometría I.

Parcial: I.

Alumno: PAREDES AGUILERA CHRISTIAN LIMBERT.

1. Muestre que la intersección de 3 semiplanos es un conjunto convexo.

Demostración.- Imagine los semiplanos S_1 , S_2 , S_3 y S_4 tales que $S_4 = S_1 \cap S_2 \cap S_3$, tomando tres puntos P_1, P_2 y P_3 pertenecientes a S_4 entonces: $P_1, P_2, P_3 \in S_1, S_2, S_3$ Sea S_1, S_2 y S_2 convexos entonces $P_1, P_2, P_3 inS_1, S_2, S_3$ y por lo tanto pertenece a la intersección, entonces S_4 también es convexo.

$\mathbf{2}$. Dado un segmento AB muestre que existe, y es único, un punto C entre A y B tal que

$$\frac{\overline{AC}}{\overline{BC}} = 5$$

Demostración.- Supongamos que C está entre A y B. Entonces probemos la existencia del punto C. Por el axioma III_2 existe x, b y c en los reales que representan las coordenadas de los puntos A, B y C respectivamente, y por lo tanto,

$$\frac{m(AC)}{m(BC)} = \frac{c - x}{b - c}$$

pero como $\frac{m(AC)}{m(BC)} = 5$ entonces

$$\frac{c-x}{b-c} = 5$$

lo que implica que

$$c = \frac{5b + x}{1 + 5} \ (1)$$

De donde vemos que c existe para cualquier valor de x y b por lo tanto verificamos la existencia del punto C.

Para probar la unicidad de C supondremos que hay una C' entonces,

$$\frac{m(AC^{'})}{m(BC^{'})} = 5 \ y \ por \ lo \ tanto \frac{c^{'}-x}{b-c^{'}} = 5$$

así nos queda,

$$c' = \frac{5b+x}{1+5}$$
 (2)

Por el axioma III_2 en (1) y (2), podemos decir que los puntos C y C' tienen una distancia igual a cero lo que por el axioma III_1 , concluimos que C y C' son el mismo punto, de donde tenemos una contradicción.

3. Muestre que las bisectrices de un ángulo y de su suplemento son perpendiculares.

Demostración.- Sea

Práctica III Geometría I

Sea $A\widehat{O}B$ un ángulo y $B\widehat{O}C$ su suplemento, entonces:

$$A\widehat{O}B + B\widehat{O}C = 180^{\circ}$$
 (1)

Demostremos que $B\widehat{O}D + B\widehat{O}E = 90^{\circ}$ para esto, tenga en cuenta que $B\widehat{O}D = \frac{A\widehat{O}B}{2}$, por lo tanto, S_{OD} es la bisectriz de $A\widehat{O}B$ y $B\widehat{O}E = \frac{B\widehat{O}C}{2}$ luego, $B\widehat{O}E + B\widehat{O}D = \frac{A\widehat{O}B}{2} + \frac{B\widehat{O}C}{2}$ de donde

$$2(B\widehat{O}E + B\widehat{O}D) = A\widehat{O}B + B\widehat{O}C \quad (2)$$

Igualando (1) y (2),

$$2(B\widehat{O}E + B\widehat{O}D) = 180^{\circ}$$
$$B\widehat{O}E + B\widehat{O}D = 90^{\circ}$$

Lo que implica que $S_{OE} \perp S_{OD}$ como queríamos demostrar.

4. En la figura, se tiene AD = DE, $\widehat{A} = D\widehat{E}C$ y $A\widehat{D}E = B\widehat{D}C$. Muestre que los triángulos ADB y EDC son congruentes.

Demostración.-

Luego por ALA tenemos $\triangle ABD \cong \triangle EDC$