- 16. L'angle des axes des coordonnées pour que l'équation y 2x = 0 soit un axe de symétrie de la conique $4x^2 - 4xy - 2y^2 + 5 = 0$ vaut :
 - 3. 120° 4. 30° (M. 78) 1.60° 2. 90°
- 17. Déterminer l'assertion fausse : une courbe qui possède un foyer est une conique
 - une conique non dégénérée possède un, deux ou quatre sommets
 - 3. les diamètres d'une parabole sont tous parallèles entre eux
 - une hyperbole équilatère est une courbe dont l'excentricité vaut 2 une conique non dégénérée n'a pas de point double (M.-78)
- 18. En axes quelconques, la condition nécessaire et suffisante pour que l'équation $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$ représente un cercle est:
 - 5. A = C; $B = A \cos \theta$ 3. A = C1. $A = C = B \cos \theta$ (M.-78)4 A = C : B = 02. B = D = E = 0
- 19. En axes orthonormés, l'équation $3x^2 + y^2 = 1$ rapporté au système d'axes formés par les droites 2x - y = 0 (axe Ox) et x + 2y = 0 (axe Oy) devient:
 - $4.7x^2 + 13y^2 8xy 5 = 0$ 1. $7x^2 + 7y^2 + 8xy - 5 = 0$
 - $5. 13x^2 + 7y^2 8xy + 5 = 0$ $2. 7x^2 + 13y^2 - 8xy - 3 = 0$ $3. 13x^2 + 7y^2 - 8xy - 5 = 0$ www.ecoles-rdc.net
- 20. Soit l'ellipse $x^2/a^2 + y^2/b^2 = 1$ des foyers F_1 et F_2 . Le lieu du symétrie de F₁ par rapport à une tangente variable à l'ellipse est :
 - un cercle de centre 0 et de rayon F2 F1
 - un cercle de centre F_1 et de rayon $2\sqrt{a^2-b^2}$
 - une ellipse de centre 0 et d'axes $a + \sqrt{a^2 b^2}$; $b + \sqrt{a^2 b^2}$
 - un cercle de centre F2 et de rayon 2a
 - un cercle de centre 0 et de rayon 2a 5.
- 21. On donne la parabole d'équation $y^2 = 4x$. L'équation de la tangente à cette parabole parallèlement à la droite d'équation x - 3y = 0 est :

(MB, -78)

1.
$$y = \frac{1}{3}x + 9$$
 3. $y = \frac{1}{3}x$ 5. $y = -\frac{1}{3}x$

2.
$$y = \frac{1}{3}x + 3$$
 4. $y = -3 - \frac{1}{3}x$ (M.-78)