Data Structures and Algorithms

Week 2

Algorithm Analysis Basic Concepts

- An algorithm is a finite sequence of steps which solves a problem.
- Efficiency of algorithms can be analyzed in terms of memory/space usage and in terms of running time.
- We will focus on running time analysis.
- Running time of an algorithm depends on the input size.
- We express running time as a function of the input size n.

Algorithm Analysis Basic Concepts

Running times of two sorting algorithms

Algorithm Analysis Basic Concepts

- Running times of an algorithm may be different for different inputs of the same size.
- For example, elapsed times of insertion sort algorithm on an array of 100,000 integers:
 - Best case: 1 ms, when elements are sorted in nondecreasing order
 - Average case: 12,145 ms, when elements are randomly distributed
 - Worst case: 24,810 ms, when elements are sorted in the reverse order
- Often, we perform only the worst-case analysis

Mathematical Functions

```
• f(n) = c (constant)
```

- $f(n) = c \log n (\log n)$
- f(n) = cn (linear)
- f(n) = cn log n (n log n)
- $f(n) = cn^2$ (quadratic)

- When we analyze the running time of algorithms, we do not look at the actual running times.
- Instead, we focus on the rate of growth, i.e., how fast or slowly the running time grows as the input size increases infinitely.
- This is called asymptotic analysis.
- Notations: O (big-oh), Ω (big-omega), and Θ (big-theta)
 - (There are also small-oh, small-omega, and small-theta)

• $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \le cg(n) \text{ for } n \ge n_0 \}$

•
$$f(n) = 3n + 2 => f(n) = O(n)$$

Proof:
Let $g(n) = n$, $c = 4$, and $n_0 = 2$. Then,
 $f(n) = 3n + 2 \le 4n$ for all $n \ge 2$, or
 $f(n) \le cg(n)$ for all $n \ge n_0$
So, $f(n) = O(n)$

•
$$f(n) = 5n^3 + 2n^2 + 8n + 4 => f(n) = O(n^3)$$

Proof:
 $f(n) = 5n^3 + 2n^2 + 8n + 4$
 $\leq 5n^3 + 2n^3 + 8n^3 + 4n^3$
 $= 19n^3$
If we let $g(n) = n^3$, $c = 19$ and $n_0 = 1$, then $f(n) \leq cg(n)$ for all $n \geq n_0$
So, $f(n) = O(n^3)$

•
$$f(n) = 3n + 2 => O(n)$$

•
$$f(n) = 5n^3 + 2n^2 + 8n + 4 => O(n^3)$$

•
$$f(n) = 2n^2 + 2n \log n + 2n + 4 => O(n^2)$$

•
$$f(n) = 2n \log n + 10n - 6 => O(n \log n)$$

•
$$f(n) = 5n + 23\log n => O(n)$$

•
$$f(n) = 3\log n + 10 => O(\log n)$$

• $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \ge cg(n) \text{ for } n \ge n_0 \}$

- $f(n) = 3n \log n 2n => f(n) = \Omega (n \log n)$
- $f(n) = 5n^3 + 2n^2 + 8n + 4 => f(n) = \Omega(n^3)$

• $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

- $f(n) = 3n \log n + 4n + 5\log n => f(n) = \Theta(n \log n)$
- $f(n) = 5n^3 + 2n^2 + 8n + 4 => f(n) = \Theta(n^3)$

Rate of growth of different functions:

n	log n	n	n log n	n ²	n ³	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4096	65536
32	5	32	160	1024	32768	4294967296
64	6	64	384	4096	262144	1.84467E+19
128	7	128	896	16384	2097152	3.40282E+38
256	8	256	2048	65536	16777216	1.15792E+77
512	9	512	4608	262144	134217728	1.3408E+154

Example: Find the largest element

- Total running time, f(n) = c1 + c2 + c3(n 1) + c4
- f(n) = O(n)

Example: Three-way set disjointness problem (solution 1)

```
public static boolean disjoint1(int[] groupA, int[] groupB, int[] groupC) {
  for (int a : groupA)
  for (int b : groupB)
  for (int c : groupC)
    if ((a == b) && (b == c))
    return false
  return true;
}
```

•
$$f(n) = O(n^3)$$

Example: Three-way set disjointness problem (solution 2)

```
public static boolean disjoint1(int[] groupA, int[] groupB, int[] groupC) {
  for (int a : groupA)
  for (int b : groupB)
    if (a == b)
    for (int c : groupC)
    if (b == c)
    return false
  return true;
}
```

• $f(n) = O(n^2)$

Example: Element uniqueness problem (solution 1)

```
public static boolean unique1(int[] data) {
  int n = data.length;
  for (int j=0; j < n-1; j++)
  for (int k=j+1; k < n; k++)
  if (data[j] == data[k])
  return false;  // found duplicate pair
  return true;  // if we reach this, elements are unique
}</pre>
```

• In the worst case, $f(n) = (n-1) + (n-2) + ... + 1 = O(n^2)$

Example: Element uniqueness problem (solution 2)

```
public static boolean unique2(int[] data) {
  int n = data.length;
  int[] temp = Arrays.copyOf(data, n); // make copy of data
  Arrays.sort(temp); // and sort the copy, O(n log n)
  for (int j=0; j < n-1; j++) // for loop takes O(n)
  if (temp[j] == temp[j+1]) // check neighboring entries
  return false; // found duplicate pair
  return true; // if we reach this, elements are unique
}</pre>
```

• In the worst case, $f(n) = O(n \log n) + O(n) = O(n \log n)$

Proof Techniques

- To disprove a statement, it is sufficient to show a counterexample.
- To prove a statement, we must show it is true for all objects in the domain under consideration.
- Exhaustive proof, direct proof, proof by contraposition, proof by contradiction, mathematical induction
- Loop invariant method: to prove the correctness of an algorithm (or a program), which involves a loop.

Proof Techniques Proof by Contradiction

- To prove P → Q: Assume Q is false and find a contradiction.
- Example: If an even integer is added to another even integer, the result is an even integer.

Proof:

- Let x and y be two even integers. Let z = x + y.
- Let's assume that z is an odd integer (negating the conclusion of the given statement).
- Since x is even, it can be rewritten as x = 2n, for some integer n.
- Since y is even, it can be rewritten as y = 2m, for some integer m.
- Since z is odd (this we assumed), it can be rewritten as z = 2k + 1, for some integer k.

Proof Techniques Proof by Contradiction

- Proof (continued)
 - Then, we have:

$$-x+y=z$$

$$-2n + 2m = 2k + 1$$

$$-2n+2m-2k=1$$

$$-2(n+m-k)=1$$

 This is a contradiction because the left hand side is an even number and the right hand side is 1, which is odd.

Proof Techniques Induction

- Consists of base case (or base step) and inductive step.
- To prove a predicate P(n) is true for all positive integers n.
 - Base case: Show that P(1) is true
 - Inductive step: Assume that P(k) is true, and prove P(k + 1) is also true. This assumption is called *inductive hypothesis*.
- See the example in the next slide.

Proof Techniques

Induction

Example: Prove that for any positive integer n, 2ⁿ > n
 Base case: n = 1
 LHS = 2¹ = 2, RHS = 1. So, LHS > RHS
 Induction step: (n ≥ 1).
 Inductive hypothesis: it is true for n = k (k ≥ 1), i.e., 2^k > k for k ≥ 1.

We show that it is also true for n = k + 1, i.e., $2^{k+1} > k + 1$ LHS = 2^{k+1} = 2×2^k > 2k (by the inductive hypothesis) = $k + k \ge k + 1$ = RHS.

So, LHS > RHS.

Proof Techniques

Loop Invariant

- Loop invariant:
 - A property (or a statement) that is true at the beginning of each iteration of the loop
- To prove an algorithm is correct
 - (1). Identify a loop invariant and state it.
 Choose one that will help prove the correctness
 - (2). Prove the loop invariant is true. This involves two steps – base case and inductive step
 - (3). Use the loop invariant to prove the correctness of the algorithm.

Proof Techniques Loop Invariant

Insertion Sort

```
1 public class InsertionSort {
   public static void insertionSort(char[] data) {
    int n = data.length;
    for (int k = 1; k < n; k++) { // begin with second element
       char cur = data[k]; // save data[k] in cur
6
       int j = k;
                        // find correct index j for cur
       while (j > 0 && data[j-1] > cur) { // thus, data[j-1] must go after cur
         data[j] = data[j-1];
8
                                        // shift data[j-1] rightward
9
                                        // and consider previous j for cur
          j--;
10 } // while
11
    data[j] = cur;
                                   // this is the proper place for cur
12
     } // for
13 }
                                   // running time: O(n²)
```

Proof Techniques

Loop Invariant

- Loop invariant (L.I.): At the start of each iteration of the for loop of lines 4 12, the subarray data[0 . . k − 1] consists of the elements originally in data[0 . . k − 1] but in sorted order.
- Base case: Just before the first iteration, k = 1. The subarray data[0 . . k − 1] has only one element data[0], and it is trivially sorted.

Inductive step:

- Assume the L.I. is true at the start of an iteration and prove it is also true at the start of the next iteration.
- Assume the loop invariant is true at the start of the m-th iteration, i.e. when k = m, the subarray data[0..m-1] consists of the elements originally in data[0..m-1] but in sorted order.

Proof Techniques Loop Invariant

- Inductive step: (continued)
 - During the execution of the m-th iteration, the while loop in lines 7-10 moves data[m] into the correct position in data[0..m-1].
 - So, at the start of the (m+1)-th iteration, data[0..m] consists of the elements originally in A[0..m] but in sorted order.
- The **for** loop ends when k = n.
- According to the loop invariant, the subarray data[0 . . n 1]
 consists of the elements originally in data[0 . . n 1] but in sorted
 order. In other words, the entire array is sorted.

Recursion

- A recursive function is a function which is defined in terms of itself.
- A recursion, in programming, is a way of implementing repeated execution of statements (or a method), where a method invokes itself.
- Example: Factorial

$$n! = 1$$
 if $n = 0$
 $n^*(n-1)!$ if $n \ge 1$

Java implementation

Recursion trace

Recursive calls

Returning from calls

Running time of factorial: O(n)

- Search a sequence of n elements for a target element.
- Linear search
 - Examine each element while scanning the sequence
 - Best case: one comparison, or O(1)
 - Worst case: n comparisons, or O(n)
 - On average: n/2 comparisons, or O(n)
- Binary search
 - If the sequence is sorted, we can use binary search
 - Running time is O(log n)

Pseudocode

```
Algorithm binarySearch(int[] data, int target, int low, int high)
 If low > high
                              // target is not found
   return false
 else
   mid = floor((low + high)/2) // median candidate
   if target = data[mid]  // target found
      return true
    else if target < data[mid]
      search data[low .. mid-1] recursively
   else
      search data[mid+1 .. high] recursively
```

Java implementation

```
public static boolean binarySearch(int[] data, int target,
                             int low, int high) {
   if (low > high)
     return false;
                             // interval empty; no match
4 else {
5
     int mid = (low + high) / 2;
6
     if (target == data[mid])
        return true;
                               // found a match
     else if (target < data[mid]) // recurse left of the middle
        return binarySearch(data, target, low, mid - 1);
9
10
     else // recurse right of the middle
11
        return binarySearch(data, target, mid + 1, high);
12
13 }
```


Recursion Binary Search

- Running time analysis
 - Execution of one call takes O(1).
 - Each time binary search is (recursively) invoked, the number of elements to be searched is reduced to at most half.
 - Initially, there are *n* elements.
 - In the first recursive call, there are at most n/2 elements.
 - In the second recursive call, there are at most n/4 elements.
 - and so on …

Recursion Binary Search

- Running time analysis (continued)
 - In the *j*-th recursive call, there are at most $n / (2^{j})$ elements.
 - In the worst case, the target is not in the sequence. In this case, recursion stops when there is no more elements to be searched.
 - The max. number of recursive calls is the smallest integer r such that $\frac{n}{2^r} < 1$
 - Or, r is the smallest integer such that $r > \log n$
 - Therefore, $r = \lfloor \log n \rfloor + 1$
 - So, the total running time is $O(\log n)$

Recursion More Examples

Print array elements recursively - Pseudocode

```
Algorithm printArrayRecursively(data, i)

if i = n, return

else

print data[i]

i = i + 1

printArrayRecursively(data, i)
```

Recursion More Examples

Print array elements recursively – Java code

```
public static void printArrayRecursive(int[] data, int i){
   if (i == data.length)
   return;
   else{
      System.out.print(data[i++] + " ");
      printArrayRecursive(data, i);
   }
}
```

Recursion

More Examples

Reverse sequence recursively – Pseudocode

```
Algorithm reverseArray(data, low, high)
if low >= high, return
else
swap data[low] with data[high]
reverseArray(data, low+1, high-1)
```

Recursion

More Examples

Reverse sequence recursively – Java code

Recursion More Examples

Binary sum – Java code

```
public static int binarySum(int[] data, int low, int high) {
    if (low > high) // zero elements in subarray
    return 0;
    else if (low == high) // one element in subarray
     return data[low];
5
    else {
6
     int mid = (low + high) / 2;
     return binarySum(data, low, mid) +
8
                       binarySum(data, mid+1, high);
9
10 }
```

Recursion

Computing Powers

- Definition: $power(x, n) = x^n$
- Recursive definition

```
power(x, n) = 1 if n = 0
x * power(x, n-1) otherwise
```

- Direct implementation
 - 1 public static double power(double x, int n) {

```
2  if (n == 0)
3   return 1;
4  else
5  return x * power(x, n-1);
6 }
```

- Execution of each method call takes O(1).
- The method is invoked (n + 1) times.
- Running time is O(n)

Recursion Computing Powers

- There is an efficient method.
- Let $k = \left| \frac{n}{2} \right|$
- If n is even, $k = \frac{n}{2}$ and if n is odd, $k = \frac{n-1}{2}$
- So,

$$(x^k)^2 = \left(x^{\frac{n}{2}}\right)^2 = x^n$$
 if n is even

$$(x^k)^2 = (x^{\frac{n-1}{2}})^2 = x^{n-1}$$
 if *n* is odd

Recursion

Computing Powers

Then, we can redefine power(x, n) as follows:

$$power(x, n) = 1 if n = 0$$

$$\left(power\left(x, \left\lfloor \frac{n}{2} \right\rfloor\right)\right)^{2} if n \text{ is even}$$

$$\left(power\left(x, \left\lfloor \frac{n}{2} \right\rfloor\right)\right)^{2} \cdot x if n \text{ is odd}$$

Recursion Computing Powers

Illustration

Recursion Computing Powers

Implementation

```
public static double power(double x, int n) {
    if (n == 0)
     return 1;
3
    else {
4
5
     double partial = power(x, n/2); // use integer division of n
6
     double result = partial * partial;
     if (n % 2 == 1) // if n odd, include extra factor of x
       result *= x;
8
9
     return result;
10
11 }
```

- Execution of one call takes O(1).
- The method is invoked $O(\log n)$ times.
- Running time is O(log n)

Recursion

Designing Recursive Algorithms

- Two components: base case and recursion
- Base case:
 - Recursive call stops when a certain condition is met.
 - This is usually referred to as base case.
- Recursion: When the condition of the base case is not met, the algorithm invokes itself recursively.
- Sometimes, a helper method is necessary.
- When poorly designed, very inefficient.
- Make sure the base case is always reached to avoid infinite recursion.

Illustration

- Stack ADT supports the following operations:
 - push(e): Adds element e to the stack top.
 - pop(): Removes and returns the top element from the stack. Returns null if the stack is empty.
 - top(): Returns the top element of the stack without removing it. Returns null if the stack is empty.
 - size(): Returns the number of elements in the stack.
 - isEmpty(): Returns true if the stack is empty and false otherwise.

Illustration

Operation	Return Value	Stack Contents → top
push(10)	_	(10)
push(20)	-	(10, 20)
push(5)	-	(10, 20, 5)
size()	3	(10, 20, 5)
top()	5	(10, 20, 5)
pop()	5	(10, 20)
push(30)	-	(10, 20, 30)
pop()	30	(10, 20)
pop()	20	(10)
pop()	10	()
isEmpty()	true	()
pop()	null	()

Java's stack (java.util.Stack class)

Stack ADT in	Class java.util.Stack
Textbook	
size()	size()
isEmpty()	empty()
push(e)	push(e)
pop()	pop()
top()	peek()

JavaStackDemo.java

- Array-based implementation
 - The bottom element is stored in *data*[0].
 - The top element is stored in data[t], 0 ≤ t < N.
 - When the stack is empty, by convention, t = -1.

data, N = 11							V	t			
	2	3	5	7	11	13	17				
	0	1	2	3	4	5	6	7	8	9	10

ArrayStack.java

Running times of array-based implementation

Method	Running Time
size()	O(1)
isEmpty()	O(1)
push(e)	O(1)
pop()	O(1)
top()	O(1)

- Stack implementation using singly-linked list.
 - Stack top element is stored at the head of a list.
 - All operations take O(1).

<u>LinkedStack.java</u> code

Reversing array elements

```
public static <E> void reverse(E[] a) {
   Stack<E> buffer = new ArrayStack<>(a.length);
   for (int i=0; i < a.length; i++)
    buffer.push(a[i]);
   for (int i=0; i < a.length; i++)
    a[i] = buffer.pop();
}</pre>
```

- Matching parentheses
 - Scan the expression one character at a time from left to right
 - If the character is an opening delimiter, push it to the stack
 - If the character is a closing delimiter:
 - Pop a delimiter from the stack
 - Compare that with the closing delimiter being scanned
 - If they are a matching pair (for example, a left square bracket and a right square bracket), continue
 - Else, the expression is invalid

Matching parentheses (continued)

- A queue has a linear data structure (like stack)
- An object is added to one end called *rear*, and removed from the other end called *front*.
- FIFO (first in first out).
- Adding is called enqueue
- Removing is called dequeue

Illustration

- Queue ADT operations:
 - enqueue(e): Adds element e to the back of queue.
 - dequeue(): Remove and returns the first element from the queue. Returns null if the queue is empty.
 - first(): Returns the first element of the queue, without removing it. Returns null if the queue is empty.
 - size(): Returns the number of elements in the queue.
 - isEmpty(): Returns true if the queue is empty and false otherwise.

• Illustration of operations:

Operation	Return Value	first ← Q ← last	
enqueue(10)	-	(10)	
enqueue(20)	-	(10, 20)	
enqueue(5)	-	(10, 20, 5)	
size()	3	(10, 20, 5)	
dequeue()	10	(20, 5)	
enqueue(30)	-	(20, 5, 30)	
dequeue ()	20	(5, 30)	
dequeue ()	5	(30)	
dequeue ()	30	()	
isEmpty()	true	()	
dequeue()	null	()	

- Java has the java.util.Queue interface.
- Java Queue interface operations:

Queue ADT	Interface java.util.Queue		
	throws exception	returns special	
		value	
enqueue(e)	add(e) offer(e)		
dequeue()	remove() poll()		
first()	element() peek()		
size()	size()		
isEmpty()	isEmpty		

- In Java:
 - LinkedList class implements List and Deque interfaces.
 - Deque interface extends Queue interface.
- JavaQueueDemo.java

Array-based implementation (<u>ArrayQueue.java</u>)

Array-based implementation (continued)

- Array-based implementation (continued)
- Elements are added in a wrap around manner:
 - 1 public void enqueue(E e) throws IllegalStateException {

 - 3 int avail = (f + sz) % data.length; // use modular arithmetic
 - 4 data[avail] = e;
 - 5 sz++;
 - 6 }

Singly linked list-based implementation

```
public class LinkedQueue<E> implements Queue<E> {
  private SinglyLinkedList<E> list = new SinglyLinkedList<>();
  public LinkedQueue() { }
  public int size() { return list.size(); }
  public boolean isEmpty() { return list.isEmpty(); }
  public void enqueue(E element) { list.addLast(element); }
  public E first() { return list.first(); }
  public E dequeue() { return list.removeFirst(); }
}
```

Circular queue

- Double-ended queue, called deque (pronounced "deck").
 - Allows insertion and deletion at both ends.
 - Can be used as a stack or as a queue
- Queue and Deque (in Java)

Queue Method	Equivalent Deque Method
add(e)	addLast(e)
offer(e)	offerLast(e)
remove()	removeFirst()
poll()	pollFirst()
element()	getFirst()
peek()	peekFirst()

Stack and Deque (in Java)

Stack Method	Equivalent Deque Method
push(e)	addFirst(e)
pop()	removeFirst()
peek()	peekFirst()

- java.util.Deque interface.
- java.util.ArrayDeque implements Deque interface.

References

 M.T. Goodrich, R. Tamassia, and M.H. Goldwasser, "Data Structures and Algorithms in Java," Sixth Edition, Wiley, 2014.