למידת מכונה תרגיל 5

: מגישים

רונלי ויגננסקי 211545892 ירין דאדו 316383298

הרצת התוכנית

להרצת התוכנית נצטרך להעביר מספר ארגומנטים כדי לאפשר ל-data להיות ממוקם בכל נתיב שרירותי.

python3 ex5.py <TRAIN_PATH> <VALID_PATH> <TEST_PATH> <OUTPUT_PATH>
לדוגמא :

python3 ex5.py ./data/train ./data/valid ./data/test ./test_y

ההרצה הזו מניחה שכל ה-data נמצא בתיקיית אב data. בנוסף, קובץ הפלט שמכיל את כל הברדיקציות של התוכנית ייקרא test_y ויווצר בתיקייה הנוכחית.

בחירת הארכיטקטורה

במהלך הכתיבה של התוכנית בחנו ארכיטקטורות שונות שאמורות לעבוד טוב עם data במהלך הכתיבה של audio (לפי מה שראינו באינטרנט).

חלק מהארכיטקטורות שניסינו:

- ▼ VGG16 קיבלנו אחוזי דיוק לא טובים, גם כאשר ניסינו לכייל את היפר
 הפרמטרים לא היה שיפור ניכר.
- ResNet קיבלנו אחוזי דיוק טובים, אבל הארכיטקטורה הייתה די מורכבת ומספר השכבות גדול מאוד. זה גרם לכך שמספר היפר הפרמטרים יחסית די גדול והיה לנו קשה יותר לכייל אותם.
- אך (ResNet אחוזי אחוזי הדיוק טובים (מאוד דומים לאחוזים שקיבלנו ב-ResNet לעומת ארכיטקטורה או הייתה פשוטה יותר ואיפשרה לנו לכייל את היפר הפרמטרים בצורה נוחה. לכן, החלטנו לעבוד איתה.

בחירת היפר הפרמטרים

השתמשנו בארכיטקטורה קיימת (VGG11), ונשענו על הסכמה הכללית שלה שכוללת בתוכה:

- מספר השכבות 11.
- סוגי השכבות וגודלן:
- Convolution 64 o
- Convolution 128 o
- Convolution 256 o
- Convolution 256 o
- Convolution 512 o
- Convolution 512 o
- Convolution 512 o
- Convolution 512 o
- Fully Connected 4096 o
- Fully Connected 4096 o
- Fully Connected 4096 o

בחרנו לא לשנות את סוגי השכבות ולהיעזר בקונבולוציה, זאת מכיוון שקבצי ה-audio בחרנו לא לשנות את סוגי השכבות ולהיעזר בקונבולוציה שימושית מאוד למציאת features בצורה מומרים לקבצי תמונה עייי FFT ולכן קונבולוציה שימושית מאוד למציאת אוטומטית.

.Epochs, Learning Rate, Dropout, Optimizer : הפרמטרים שבחנו וכיילנו הם

מציאת הערכים האופטימליים התבצעה באופן דומה לתרגילים הקודמים. עבור כל היפר פרמטר ניסינו ערכים בטווח מוגדר ו״התקדמנו״ בכיוון שנתן אחוזי דיוק גבוהים יותר.

הטווחים שהגדרנו:

- Epochs = [1, 20] •
- LearningRate = [0.0001, 0.1]
 - Dropout = [0.2, 0.5] •
 - Optimizer = [Adam, SGD] •
- 2 עם ערכים בחזקות של Batch = [16, 128] •

בחרנו את הפרמטרים הבאים:

- Epochs=12 •
- LearningRate=0.0004
 - Dropout=0.5 •
 - Optimizer=Adam
 - Batch=128 •

:תהליך האימון

רצנו בלולאה כמספר האיפוקים. בכל איטרציה ביצענו אימון באמצעות פונקציית train. בדקנו את הביצועים של המודל הנוכחי על-ידי יצירת פרדיקציות לסט ולידציה והשוואה לתיוגים שלו.

הדפסנו בכל איטרציה את אחוזי הדיוק וה-loss ולפי זה בחרנו את הפרמטרים שציינו לעיל.

במהלך האימון הדפסנו את ה-accuracy וה-loss הממוצעים של ה-validation לכל epoch. ניתן לראות שהמודל הצליח להגיע לאחוזי דיוק גבוהים (94%). כל שורה בהדפסה מייצגת epoch ספציפי.

Average loss: 0.8340, Accuracy: 4988/6798(73.4%)

Average loss: 0.6036, Accuracy: 5571/6798(82.0%)

Average loss: 0.3810, Accuracy: 6043/6798(88.9%)

Average loss: 0.4110, Accuracy: 6042/6798(88.9%)

Average loss: 0.3232, Accuracy: 6177/6798(90.9%)

Average loss: 0.4239, Accuracy: 6060/6798(89.1%)

Average loss: 0.3042, Accuracy: 6261/6798(92.1%)

Average loss: 0.2972, Accuracy: 6324/6798(93.0%)

Average loss: 0.3460, Accuracy: 6246/6798(91.9%)

Average loss: 0.2731, Accuracy: 6324/6798(93.0%)

Average loss: 0.3501, Accuracy: 6228/6798(91.6%)

Average loss: 0.4134, Accuracy: 6163/6798(90.7%)

Average loss: 0.3350, Accuracy: 6315/6798(92.9%)

Average loss: 0.3211, Accuracy: 6266/6798(92.2%)

Average loss: 0.3063, Accuracy: 6335/6798(93.2%)

Average loss: 0.2978, Accuracy: 6402/6798(94.2%)

Average loss: 0.3159, Accuracy: 6368/6798(93.7%)

Average loss: 0.3151, Accuracy: 6357/6798(93.5%)

Average loss: 0.2962, Accuracy: 6377/6798(93.8%)

- Average loss: 0.3357, Accuracy: 6347/6798(93.4%)
- Average loss: 0.3336, Accuracy: 6372/6798(93.7%)
- Average loss: 0.4986, Accuracy: 6187/6798(91.0%)
- Average loss: 0.2880, Accuracy: 6421/6798(94.5%)
- Average loss: 0.4050, Accuracy: 6363/6798(93.6%)
- Average loss: 0.3337, Accuracy: 6406/6798(94.2%)
- Average loss: 0.3983, Accuracy: 6359/6798(93.5%)
- Average loss: 0.3814, Accuracy: 6405/6798(94.2%)
- Average loss: 0.5332, Accuracy: 6254/6798(92.0%)
- Average loss: 0.3550, Accuracy: 6412/6798(94.3%)
- Average loss: 0.3041, Accuracy: 6439/6798(94.7%)
- Average loss: 0.3114, Accuracy: 6438/6798(94.7%)
- Average loss: 0.3464, Accuracy: 6448/6798(94.9%)
- Average loss: 0.3522, Accuracy: 6401/6798(94.2%)
- Average loss: 0.3915, Accuracy: 6389/6798(94.0%)
- Average loss: 0.4410, Accuracy: 6397/6798(94.1%)
- Average loss: 0.3854, Accuracy: 6416/6798(94.4%)
- Average loss: 0.3873, Accuracy: 6427/6798(94.5%)
- Average loss: 0.3692, Accuracy: 6417/6798(94.4%)
- Average loss: 0.3890, Accuracy: 6399/6798(94.1%)
- Average loss: 0.4537, Accuracy: 6371/6798(93.7%)