MH1812 Tutorial Chapter 1: Elementary Number Theory

- Q1: Show that 2 is the only prime number which is even.
- Q2: Show that if n^2 is even, than n is even, for n an integer.
- Q3: The goal of this exercise is to show that $\sqrt{2}$ is irrational. We provide a step by step way of doing so.
 - 1. Suppose by contradiction that $\sqrt{2}$ is rational, that is $\sqrt{2} = \frac{m}{n}$, for m and n integers with no common factor. Show that m has to be even.
 - 2. Compute m^2 , and deduce that n has to be even too, a contradiction.
- Q4: Show the following two properties of the integers modulo n:
 - 1. $(a \mod n) + (b \mod n) \equiv (a+b) \mod n$.
 - 2. $(a \mod n) \cdot (b \mod n) \equiv (a \cdot b) \mod n$.
- Q5: Compute the addition table and the multiplication tables for integers modulo 4.
- Q6: Show that $\frac{p(p+1)}{2} \equiv 0 \pmod{p}$ for p an odd prime.
- Q7: Consider the following sets S, with respective operator Δ .
 - 1. Let S be the set of rational numbers R, and Δ be the multiplication. Is S closed under Δ ? Justify your answer.
 - 2. Let S be the set of natural numbers N, and Δ be the subtraction. Is S closed under Δ ? Justify your answer.
 - 3. Let S be the set of irrational numbers I, and Δ be the addition. Is S closed under Δ ? Justify your answer.