Capítulo I

Física I

Grandezas Físicas, Unidades e Dimensões

1.1. Introdução

- A observação de um fenómeno é incompleta quando dela não resultar uma informação quantitativa.
- · Medir é um processo que nos permite atribuir um número a uma grandeza física como resultado de comparação entre quantidades semelhantes. Uma dessas quantidades é padronizada e adoptada como unidade da grandeza em questão.

Fundamentais

aquelas que não são derivadas de outras

aquelas que podem ser expressas em termos das grandezas fundamentais

Derivadas

1.2. Escolha das grandezas fundamentais e suas unidades

Grandezas Fundamentais

No estudo da mecânica são necessárias apenas três grandezas fundamentais.

Das muitas escolhas possíveis, mantiveram-se duas até à época actual:

1. Comprimento massa e tempo

Sistemas absolutos

2. Comprimento, força e tempo

Sis

Sistemas gravitatórios

Unidades

1. Metro (m), quilograma (kg), segundo (s)

(sistema MKS, que dará origem ao Sistema Internacional – SI)

2. Centímetro (cm), grama (g), segundo (s)

(sistema CGS)

Física I

1.3. Sistemas de unidades

Grandezas e unidades fundamentais do Sistema Internacional (SI)

Grandeza Física	Unidade	Abreviatura
comprimento	metro	w
massa	quilograma	kg
tempo	segundo	Ø
Intensidade de corrente eléctrica	ampére	A
temperatura	kelvin	X
intensidade luminosa	candela	cd
quantidade de substância	mole	mol

Um sistema de unidades deve ser "coerente", o que significa que uma unidade derivada se deve obter à custa das fundamentais por simples produto ou quociente, sem que apareçam factores numéricos.

Algumas unidades SI derivadas com nomes especiais

Grandeza	Unidade	Expressão em termos de outras unidades	Expressão em termos das unidades fundamentais
Frequência	Hertz (Hz)		S ⁻¹
Força	Newton (N)		$ m m.Kg.s^{-2}$
Pressão	Pascal (Pa)	$ m N/m^2$	$\mathrm{m}^{\text{-1}}.\mathrm{Kg.s}^{\text{-2}}$
Trabalho	Joule (J)	N.m	$\mathrm{m}^2.\mathrm{Kg.s}^{-2}$
Potência	Watt (W)	J/s	$\mathrm{m}^2.\mathrm{Kg.s}^{-3}$

Definição das unidades padrão

Física I

Massa

10% Ir), que está guardado na Repartição Internacional de Pesos e Quilograma: é definido como a massa de um cilindro de platina-irídio (90% Pt – Medidas em Sèvres (França).

Comprimento

Metro: é a distância que a luz percorre no vácuo num tempo de 1/299 792 458 segundos.

Tempo

Segundo: é definido como a duração de 9 192 631 770 períodos da radiação de um certo estado do 133 Ce.

Prefixos SI e as suas abreviaturas

Prefixo	Abreviatura	Factor	Prefixo	Abreviatura	Factor
deca-	qa	10^{1}	deci-	p	10^{-1}
hecto-	Ч	10^2	centi-	C	10-2
quilo-	Ŋ	10^{3}	mili-	m	10^{-3}
mega-	M	106	micro-	η	10-6
giga-	Ð	10^{9}	nano-	n	10-9
tera-	I	10^{12}	pico-	d	10-12
peta-	d	10^{15}	femto-	f	10-15
exa-	Ξ	10^{18}	atto-	a	10-18

Outros sistemas de unidades

Física I

		Unidade	
Grandeza	IS	CGS	Britânico (fps)
Comprimento	metro	centímetro	pé
	(m)	(cm)	(ft)
Massa	quilograma	grama	libra
	(kg)	(g)	(lb)
Tempo	segundo	segundo	segundo
	(s)	(s)	(s)

Conversão de unidades

$$= 9.144 \times 10^{-1} \text{ m}$$

$$= 1.852 \times 10^3 \text{ m}$$
$$= 1.60934 \times 10^3 \text{ m}$$

$$= 3.048 \times 10^{-1} \text{ m}$$

$$= 2.54 \times 10^{-2} \text{ m}$$

Massa: 1 onça =
$$28.4 \text{ Kg}$$

$$b = 0.4536 \text{ kg}$$

1 kg
$$= 2.205 \text{ lb}$$

1 uma =
$$1.6604 \times 10^{-27} \text{ kg}$$

Velocidade:

1 nó (1 milha marít. int./h) =
$$5.14444 \times 10^{-1}$$
 m/s

1 pé por segundo (ft/s) =
$$3.048 \times 10^{-1}$$
 m/s

1.4. Dimensões

Quando analisamos uma grandeza do ponto de vista das dimensões estamos preocupados com a sua natureza e não propriamente com as unidades em que vamos exprimi-la. Diz-se que uma grandeza têm as dimensões de um comprimento, por exemplo, quando pode exprimir-se em unidades de comprimento ou que tem as dimensões de uma massa quando se pode exprimir em unidades de massa.

Por exemplo para representar as "dimensões" da velocidade indicamos: [v]

Física I

Capítulo I

Grandeza	Dimensões
Comprimento	Γ
Massa	M
Tempo	T
Velocidade	LT^{-1}
Aceleração	LT^{-2}
Força	MLT^{-2}
Trabalho	$\mathrm{ML}^2\mathrm{T}^{-2}$
Potência	ML^2T^{-3}
Pressão	$ML^{-1}T^{-2}$
Frequência	$\mathrm{T}^{ ext{-}1}$

1.4.1. Princípio da homogeneidade dimensional

No estudo de vários problemas encontramos relações entre grandezas diversas. Por exemplo no movimento uniforme encontramos:

$$x = v_t$$

É uma condição necessária para a correcção duma equação que ambos os membros tenham as mesmas dimensões, e este é o **princípio da** homogeneidade dimensional.

No exemplo apresentado teremos:

$$[x] = L$$

$$[\nu, t] = [\nu][t] = L.T^{-1}.T = L$$