Sécurité des mots de passe

Stockage, génération et politiques de mots de passe

Pierre-Antoine HAIDAR-BACHMINSKA @Hydraze / hydraze@hydraze.org

10 janvier 2017

Télécom SudParis

Lequel de ces mots de passe est le plus solide?

- azerty
- dadada
- xjyt5g4axjyt5g4axjyt5g4axjyt5g4axjyt5g4a
- Juge un homme par ses questions plutôt que par ses réponses

Réponse : aucun.

- Ils peuvent tous être cassés en quelques minutes
- azerty: top #10 des mots de passe les plus utilisés
- dadada: ZUCKERBERG (LinkedIn, Twitter, Pinterest, ...)
- xjyt5g4axjyt5g4axjyt5g4axjyt5g4axjyt5g4axjyt5g4a: 6*"xjyt5g4a"
- Juge un homme par ses questions plutôt que par ses réponses: VOLTAIRE
- . . . tous dans des dictionnaires existants

Introduction

- Mots de passe : Schéma d'authentification le plus utilisé.
- ... malgré des alternatives plus robustes?
- De plus en plus de fuites (Dropbox, LinkedIn, MySpace, Tumblr, Yahoo)
- Comment les mots de passe sont-ils attaqués?
- Comment se défendre?

Qui suis-je?

- Casse des mots de passe depuis 2012 (surtout pour le fun)
- Membre de la Team HASHCAT
- Staff sur Zenk-Security

Table des matières

Généralités

Méthodologie d'un attaquant

Quelles défenses?

Table des matières

Généralités

Stockage des mots de passe

Attaques en ligne

Attaques hors ligne

Méthodologie d'un attaquant

Quelles défenses?

Généralités

Stockage des mots de passe

Stockage des mots de passe

- Problème : et s'il y avait une fuite de donnée?
- Solution : stocker les mots de passe à l'aide d'une fonction à sens unique
- Fonction de hachage cryptographique
- md5('INT') = 53f93baa3057821107c750323892fa92
- md5('Int') = 1686a6c336b71b36d77354cea19a8b52

Généralités

Attaques en ligne

162

Attaques en ligne

- Problème : comment accéder à un compte en ligne ?
- Solution #1 : trouver le nom d'utilisateur et tester des mots de passe
- Très lent, inefficace et rapidement repéré
- Solution #2 : trouver une fuite incluant l'utilisateur, casser le mot de passe hors ligne, tester le mot de passe
- Souvent utilisé car les personnes réutilisent les mots de passe
- Logiciel: Hydra

Généralités

Attaques hors ligne

Attaques hors ligne

- Problème : comment retrouver un mot de passe à partir d'une empreinte?
- Solution : on hache un mot de passe candidat puis on compare l'empreinte obtenue

Attaques hors ligne – Exemple

- On a cette empreinte: e10adc3949ba59abbe56e057f20f883e
- On essaie le mot de passe 1234 : md5 ('1234') 81dc9bdb52d04dc20036dbd8313ed055
- On essaie le mot de passe 123456 md5 ('123456') → e10adc3949ba59abbe56e057f20f883e

Attaques hors ligne – Performances

- Logiciels: John The Ripper, Hashcat (yay), Ophcrack (windows, rainbow tables)
- Benchmark hashcat en conditions optimales (1 hash, bruteforce)

Device / Hash	MD5	NTLM	bcrypt(5)	
i7 6850k	630 MH/s	1.3 GH/s	5 kH/s	
970 GTX	10 GH/s	17.5 GH/s	5.8 kH/s	

Table des matières

Généralités

Méthodologie d'un attaquant

Attaque par dictionnaires

Attaque par règles de mutations

Attaque par force brute

Attaque par masque

Analyse et statistiques

Quelles défenses?

Méthodologie d'un attaquant

Attaque par dictionnaires

Attaque par dictionnaires

- Candidats #1 : dictionnaires, listes de mots de passe cassés, citations, scrapping, ...
- Top #10 personnel: 123456, password, 123456789, 12345678, qwerty, 111111, 123123, abc123, 1234567, 12345
- Limitation : ne prend pas en compte les petites modifications (leetspeak, dates, zip codes, ...)
- Recommandation #1: Ne pas réutiliser des mots de passe
- Recommandation #2 : Ne pas utiliser de mots ou citations connues

Méthodologie d'un attaquant

Attaque par règles de mutations

Attaque par règles de mutations

- Candidats #2 : dictionnaires + règles de mutations
- P@\$\$w0rd!, bONJOURdU92,
 - inversion de casse, mise en minuscules,
 - ajouts à la fin, au début, à une position donnée,
 - remplacement de caractères (leet speak)
 - 40+ règles différentes, des possibilités infinies...
- Très efficace (20-70% de mots de passe récupérés en quelques minutes)
- Recommandation #3 : Ne pas utiliser un mot modifié

Méthodologie d'un attaquant

Attaque par force brute

Attaque par force brute

- Candidats : aaaaa, aaaab, aaaac, aaaad, ...
- Avantages : couverture exhaustive d'un ensemble de candidats
- Inconvénients : extrêmement lent sur des mots de passe longs...
- Nombre de candidats : (taille charset)^{nombredecaractres}

Attaque par force brute – Durée maximale de cassage

Conditions: hash seul, MD5, GPU milieu de gamme, 10 GH/s.

La durée concerne la recherche exhaustive. Si motif ou logique, beaucoup plus rapide

Charset / len		U	Э	10		12	13	14
min	< 1s	21s	9m	4h	4d	4M	8y	>100y
min+dig	8s 💊	5m	3h	4d	5M	15y	>500y	>10ky
min+maj+dig	6m	6h	16d	Зу	>100y	:0	0,0	T_T

Méthodologie d'un attaquant

Attaque par masque

Attaque par masque et chaînes de Markov

- Problème : comment optimiser une attaque par force brute ?
- #1 : En utilisant des masques
- Motifs prédictibles : MAJ mins (chiffres / speciaux)
- Attention : politique de mots de passe restrictive = motifs
- #2 : En utilisant des probabilités !
- Modèle de chaînes de Markov par position
- Recommandations #4: Ne pas utiliser des mots de passe courts ou comportant des motifs
- Recommandations #5 : Les mots de passe doivent faire au moins 10 caractères

Méthodologie d'un attaquant

Analyse et statistiques

Analyse et statistiques

- Statistiques diverses :
 - Longueur
 - Jeux de caractères
 - Motifs
 - Mots de base
 - Règles de mutations...
- Utile pour créer de nouveaux masques ou de nouvelles règles
- Logiciels : Passpal, pipal, P.A.C.K.
- Recommandation #6 : Fuck logic.

Analyse et statistiques — Fuite LinkedIn

- Fuite de 2012
- 177M de mots de passe
- 62M de mots de passe uniques
- 95+% de récupération

Analyse et statistiques - Fuite LinkedIn

Count	Password
1135936	123456
207488	linkedin
188380	password 🕽
149916	123456789
95854	12345678
85515	111111
75780	1234567
51969	654321
51870	qwerty
51535	sunshine

Table des matières

Généralités

Méthodologie d'un attaquant

Quelles défenses?

Côté utilisateur

Côté Développeur

Côté RSSI

Quelles défenses ? Côté utilisateur

Côté utilisateur

Authentification multi-facteur

- Ce que je sais (mot de passe)
- Ce que je suis (biométrie)
- Ce que j'ai (Token, téléphone)

Ce que je sais

- Problème : on a besoin de mots de passe complexes et longs
- Solution : les stocker de manière sécurisé dans un logiciel
- (Non, votre navigateur ne les stocke pas de manière sécurisée...)

```
12:28 (hydrazershhone) /home/hydraze
X sqlite8. config/chronium/Default/Login\ Data
SQLite version 3.8.8:1 2015-01-20 16:51:25
Enter ".help" for usage hints.
sqlite) select username_value, password_value from logins where username_value="hydraze";
hydraze!
hydraze!
hydraze!
```

- Exemple: keepass, dashlane, lastpass, 1password, ...
- Problème : Gestionnaire dans le cloud ou en local ?
- Problème : Besoin d'un mot de passe maître sécurisé ou...
 d'une phrase de passe de 4-5 mots?

Ce que je suis

- Empreintes digitales, scan de l'iris, ...
- Spoiler : la plupart des solutions grands publiques ne sont pas sécurisées
- Microsoft a rajouté de l'authentification biométrique dans Windows 10 ("Hello")
- Cassé avant la publication de la version finale :
 - Benjamin Delpy @gentilkivi Mar 21
 I really hope "Biometric" from Microsoft Hello is not the same as in Windows 10 Preview...

1.https://twitter.com/gentilkiwi/status/579401086479499264

Ce que je suis – Suite

- iPhone (5S-?) authentification TouchID (empreintes):
 cassé (CCC)²
- Problème : J'ai seulement 10 doigts, deux yeux et un visage...
- Problème : Loi très restrictive (CNIL)

Ce que j'ai

- Token matériel (Yubikey, RSA-OTP, ...)
- Peut se souvenir d'un secret, donner un OTP, faire de la crypto, . . .
- Les SMS ne sont pas considérés comme sécurisés...
- ...mais Google Authenticator et les autres logiciels générant des OTP le sont.

Quelles défenses?

Côté Développeur

Choisir la bonne fonction de hachage

- Ne surtout pas utiliser MD5, SHA-* ou d'autres fonctions brutes
- Des fonctions ont été créées pour stocker des mots de passe
- bcrypt, scrypt, argon2
- Anti-GPU
- Évolutives (paramètre de coût)
- Facile à utiliser
- Ajouter un pepper, le sel est obligatoire

Évaluer la sécurité des mots de passe utilisateurs

- Interdire les mots de passe communs (top10k.txt, cf Twitter)
- Utiliser un indicateur visuel pour la sécurité des mots de passe
- Un bon indicateur.
- Utiliser zxcvbn (dropbox)
- Gère les mots de passe simples, le keywalking, . . .
- Facile à intégrer

Quelles défenses ? Côté RSSI

Politiques de mots de passe

- Avoir une politique à respecter c'est chiant
- Certaines politiques sont contreproductives
- Les utilisateurs les contourne avec des motifs...
- MAJ min (chiffres / spéciaux)
- Même problème avec les renouvellements périodiques forcés
- Il faut sensibiliser les utilisateurs avant tout

Conclusion

- Utiliser des mots de passe longs et aléatoires (et un gestionnaire de mots de passe)...
- ... ou posez-vous les bonnes questions
- Activez l'authentification multi-facteurs dès que vous le pouvez
- Développeurs : Utilisez de meilleures fonctions de hachages!
- RSSI: Mettre en place une politique n'est pas suffisant!
- Problème de terminologie : mot de passe ou phrase de passe ou ... ?