Lecture Notes on Sets and Maps

September 29, 2024

1 Sets

We will be working with the following fundamental sets:

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$
 natural numbers
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 integers
$$\mathbb{Q} = \left\{\frac{k}{n} \mid k, n \in \mathbb{N}, n \neq 0\right\}$$
 rationals
$$\mathbb{R} =$$
 real numbers
$$\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$$
 complex numbers

where i is the *imaginary unit* characterized by $i^2 = -1$.

1.1 Operations on Sets

Given two sets A and B, we can perform the following operations:

***Union $(A \cup B)$:** $\{c \mid c \in A \text{ or } c \in B\}$ - The set containing all elements that are in either A or B.

***Intersection $(A \cap B)$:** $\{c \mid c \in A \text{ and } c \in B\}$ - The set containing only the elements that are in both A and B. ***Difference $(A \setminus B)$:** $\{c \in A \mid c \notin B\}$ - The set containing all elements that are in A but not in B. ***Symmetric Difference $(A \Delta B)$:** $(A \cup B) \setminus (A \cap B)$ - The set containing all elements that are in either A or B, but not in both.

1.2 Indexed Families of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be an *indexed family* of sets, where I is the *index set*. This refers to a collection of sets where each set is associated with an element from the index set.

Here are two examples:

- 1. $I = \mathbb{N}$: The index set is the set of natural numbers, and each set A_{α} is defined as $\{\alpha, \alpha + 1\}$.
- 2. $I = \mathbb{R}^+$: The index set is the set of positive real numbers, and each set A_α is defined as $[\alpha, \infty)$.

We can define the following:

***Union of an indexed family:** $\bigcup_{\alpha \in I} A_{\alpha} = \{a \mid a \in A_{\alpha} \text{ for some } \alpha \in I\}$ ***Intersection of an indexed family:** $\bigcap_{\alpha \in I} A_{\alpha} = \{a \mid a \in A_{\alpha} \text{ for every } \alpha \in I\}$

2 Maps

A *map* (or *function*) f from a set A to a set B (denoted as $f: A \to B$) assigns a unique element in B to each element in A.

* The *domain* of f is the set A. * The *target space* of f is the set B.

If A' is a subset of A, the *restriction* of f to A' is a map $f': A' \to B$ such that f'(a) = f(a) for all $a \in A'$.

2.1 **Examples of Maps**

Here are some examples of maps:

- 1. $f: \mathbb{R} \to \mathbb{R}, x \mapsto sin(x)$ the sine function.
- 2. $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$. 3. $g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} \frac{1}{x} & x \neq 0 \\ 2 & x = 0 \end{cases}$.
- 4. $f: V \to \text{set of subspaces of } V, v \mapsto span(v)$.
- 5. $D: P(\mathbb{R}) \to P(\mathbb{R}), p(x) \mapsto p'(x)$ the *derivative* operator.