Tema 5 (I) Jerarquía de Memoria

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid

Contenidos

I. Memoria

- Introducción
- Jerarquía de memorias

2. Memoria principal

- Introducción
- Tipos de memoria RAM
- Organización interna
- Ejemplos de acceso y empaquetado

¡ATENCIÓN!

- Estas transparencias son un guión para la clase
- Los libros dados en la bibliografía junto con lo explicado en clase representa el material de estudio para el temario de la asignatura
 - Para la preparación de los exámenes se ha de utilizar todo el material de estudios

Contenidos

I. Memoria

- Introducción
- Jerarquía de memorias

2. Memoria principal

- Introducción
- Tipos de memoria RAM
- Organización interna
- Ejemplos de acceso y empaquetado

Fuente de alimentación Placa madre Caja

CPU + disipador + ventilador

Tarjeta gráfica

Tarjeta de red

Tarjeta de sonido

CD-ROM/ DVD-ROM/ BluRay/...

Memoria RAM

Disco duro

Distintos tipos de dispositivos físicos

- Memorias semiconductoras
 - Ej.: RAM, ROM y Flash

Ej.: Discos duros y cintas

- Ej.: DVD y blu-ray
- Otros
 - Memoria de burbujas
 - Hologramas

¿Cómo es posible describirlo?

- Capacidades físicas
- Organización de los datos
- Prestaciones de trabajo

Principales características

▶ Físicas

- ▶ Volatilidad: RAM, FLASH, ...
- Borrable: ROM, RAM, ...

Principales características

Físicas

- ▶ Volatilidad: RAM, FLASH, ...
- ▶ Borrable: ROM, RAM, ...

Organización

- Unidad de almacenamiento: bits, palabras, bloques, ...
- Acceso: serie, paralelo, ...

Principales características

Físicas

- Volatilidad: RAM, FLASH, ...
- ▶ Borrable: ROM, RAM, ...

Organización

- Unidad de almacenamiento: bits, palabras, bloques, ...
- Acceso: serie, paralelo, ...

Prestaciones

- ▶ Capacidad: cantidad de datos que es posible almacenar
- Tiempo de acceso: T. entre presentar dirección y obtener los datos
- Tiempo de ciclo de memoria: T. entre acceso y acceso (de 'recuperación')
- ▶ Tiempo de ciclo: T. de acceso + T. recuperación
- Velocidad de transferencia: cantidad de datos copiados por unidad de tiempo
- Coste: precio por unidad de dato almacenable

Unidades para tamaño

Normalmente se expresa en octetos o bytes:

```
byte
                I byte = 8 bits
                                             2<sup>10</sup> bytes
  kilobyte | I KB = 1.024 bytes
  megabyte I MB = 1.024 KB
                                             2<sup>20</sup> bytes
               I GB = I.024 MB
                                             2<sup>30</sup> bytes
 gigabyte
                                             2<sup>40</sup> bytes
  terabyte
               ITB = 1.024 GB
                                             2<sup>50</sup> bytes
              I PB = I.024 TB
  petabyte
                                             2<sup>60</sup> bytes
  exabyte
                I EB = I.024 PB
  zettabyte
                I ZB = I.024 EB
                                             2<sup>70</sup> bytes
                                             2<sup>80</sup> bytes
yottabyte IYB = 1.024 ZB
```

Unidades para tamaño

Normalmente se expresa en octetos o bytes:

				1795
	byte	I byte = 8 bits		Página web: ~20 KB
	kilobyte	I KB = 1.024 bytes	2 ¹⁰ bytes	Fich. mp3: ~3 MB
•	megabyte	I MB = I.024 KB	2 ²⁰ bytes	Fich. divx: ~800 MB
•	gigabyte	I GB = 1.024 MB	2 ³⁰ bytes	1960
	terabyte	ITB = 1.024 GB	2 ⁴⁰ bytes	800 películas: ~I TB
	terabyte	1 1 D = 1.02 T GD	Z Dytes	1975
•	petabyte	IPB = I.024TB	2 ⁵⁰ bytes	Google: ~3 PB
	p = 0.000 / 0.0		_ 5/335	1975
•	exabyte	I EB = I.024 PB	2 ⁶⁰ bytes	Internet: ~300 EB
•	zettabyte	I ZB = 1.024 EB	2 ⁷⁰ bytes	I gramo ADN: ~0.36 ZB
	,		,	
	yottabyte	IYB = 1.024 ZB	280 bytes	

Unidades para tamaño (cuidado)

 En comunicación se suele usar el kilobit y no el kilobyte (I Kb <> I KB)

```
I Kb = 1.024 bits
```

- ▶ I KB = 1.024 bytes
- En almacenamiento algunos fabricantes no utilizan potencias de dos, sino potencias de 10:

```
kilobyte | KB = 1.000 bytes | 10^3 bytes
```

• gigabyte
$$I GB = I.000 MB$$
 $I O^9$ bytes

terabyte ITB = 1.000 GB $I0^{12}$ bytes

.

Contenidos

I. Memoria

- Introducción
- Jerarquía de memorias

Memoria principal

- Introducción
- Tipos de memoria RAM
- Organización interna
- Ejemplos de acceso y empaquetado

¿Cómo sería la memoria ideal?

- Maximizar la rapidez de acceso
- Maximizar la capacidad
- Minimizar el coste

Realidad

- Objetivos incompatibles entre si:
 - + velocidad ⇒ tamaño
- Se usan distintos tipos de memoria:
 - DRAM, Disco Duro, ...
- Se organizan los distintos tipos de memoria por velocidad de acceso:
 - Jerarquía de memoria

Jerarquía de memoria

Uso de la jerarquía de memoria: diferentes tiempos de acceso

- T. acceso a registro
 - ∼ I ns
- T. acceso a SRAM
 - ▶ ~10 ns

- T. acceso a DRAM
 - ▶ ~120 ns

La biblioteca de la UC3M...

La biblioteca de la UPC...

Una biblioteca en Florida...

Uso de la jerarquía de memoria: diferentes capacidades

Si la memoria fuera ilimitada...

▶ Si el siguiente nivel tiene menos memoria...

Uso de la jerarquía de memoria

 Solo en memoria lo que se necesite en un instante dado.

- Si no está, se copia de un nivel a otro la porción necesaria:
 - ▶ Ej.: cargar un programa en RAM
- Cuando no se necesite, se borra la copia realizada.
- El comportamiento de los accesos lo favorece:
 - Proximidad de referencias

Ejemplo Principio de cercanía/proximidad

```
int main ( void )
{
   int i, j;

   j=0;
   for (i=0; i<1024; i++)
        j=j+i;
}</pre>
```

```
.text
  .globl main

main: li $t0 0 # $t0 <-> j
    li $t1 0 # $t1 <-> i
    b2: bge $t1 1024 finb2
    add $t0 $t0 $t1
    add $t1 $t1 1
    b b2

finb2: jr $ra
```

- Accesos a memoria:
 - ▶ El fetch de cada instrucciones:
 - > 2+4*1.024+1+1 = 4.100
- Los 4.100 palabras accedidas en M.P. son solo 7 palabras

Principio de cercanía/proximidad

- Las referencias a los datos y al programa dentro de un proceso tienden a agruparse.
- Durante cortos periodos de tiempo se necesitarán sólo unos pocos fragmentos de un proceso.
- Sería posible hacer predicciones inteligentes sobre qué fragmentos de un proceso se necesitarán en un futuro cercano.

Jerarquía de almacenamiento

Contenidos

I. Memoria

- Introducción
- Jerarquía de memorias

2. Memoria principal

- Introducción
- Tipos de memoria RAM
- Organización interna
- Ejemplos de acceso y empaquetado

Motivación

- Los programas a
 ejecutar y datos que
 usar en la ejecución,
 están guardados en
 memoria.
- Importante conocer memoria caché y memoria virtual.

Memoria RAM —

Tecnología para Memoria Principal

Tipos de memoria de semiconductores

- Memoria de solo lectura (ROM)
 - ▶ Almacenamiento permanente.
 - Ejemplo de donde se usa:
 - ▶ BIOS

- Memoria de lectura/escritura (RAM)
 - Almacenamiento temporal (volátil).
 - Ejemplo de donde se usa:
 - Memoria principal

Tipos de memoria de semiconductores

- Memoria de solo lectura (ROM)
 - Almacenamiento permanente.
 - Ejemplo de donde se usa:
 - ▶ BIOS

- Memoria de lectura/escritura (RAM)
 - Almacenamiento temporal (volátil).
 - Ejemplo de donde se usa:
 - Memoria principal

Mal uso del término RAM (memoria de acceso aleatorio), ya que como todas las memorias semiconductoras, es de acceso aleatorio.

▶ RAM dinámica (DRAM)

- Almacena bits como carga en condensadores.
- Tiende a descargarse: necesita refrescos periódicos.
 - Ventaja: construcción más simple, más almacenamiento, más económica
 - Inconveniente: necesita circuitería de refresco, más lenta.
 - □ 2%-3% de los ciclos de reloj consume el refresco

RAM estática (SRAM)

- Almacena bits como interruptores en on y off.
- Tiende a no descargarse: **no** necesita refresco.
 - Ventaja: No necesita circuitería de refresco, más rápida.
 - Inconveniente: Construcción compleja, menos almacenamiento, más cara.

From Computer Desktop Encyclopedia © 2005 The Computer Language Co. In

Usada en memoria principal

Tipos de RAM

From Computer Desktop Encyclopedia 2005 The Computer Language Co. In

RAM dinámica (DRAM)

- Almacena bits como carga en condensadores.
- Tiende a descargarse: necesita refrescos periódicos.
 - Ventaja: construcción más simple, más almacenamiento, más económica
 - Inconveniente: necesita circuitería de refresco, más lenta.
 - □ 2%-3% de los ciclos de reloj consume el refresco

RAM estática (SRAM)

- Almacena bits como interruptores en *on* y *off*.
- Tiende a no descargarse: **no** necesita refresco.
 - Ventaja: No necesita circuitería de refresco, más rápida.
 - Inconveniente: Construcción compleja, menos almacenamiento, más cara.

Contenidos

I. Memoria

- Introducción
- Jerarquía de memorias

2. Memoria principal

- Introducción
- Tipos de memoria RAM
- Organización interna
- Ejemplos de acceso y empaquetado

Controlador de memoria DRAM

- Controlador se encarga del refresco y particularidades de la DRAM
- Oculta todo esto al procesador y le ofrece una interfaz simple
 - CPU no dependiente de la tecnología de la memoria

Organización interna de la memoria

Direccionamiento por fila/columna

Direccionamiento por fila/columna con CAS/RAS

Accesos típicos

Accesos típicos

Empaquetados típicos (1/2)

Empaquetados típicos (2/2)

SIMM 72 pines

DIMM (168 pines)

DDR DIMM (184 pines)

Tema 5 (I) Jerarquía de Memoria

Grupo ARCOS

Estructura de Computadores Grado en Ingeniería Informática Universidad Carlos III de Madrid