## Appendix C: Demonstration of selected features

## James T. Thorson

```
library(phylosem)
```

phylosem is an R package for fitting phylogenetic structural equation models (PSEMs). We here highlight a few features in particular.

## Estimability for multiple covariance transformations

By default, phylosem takes as input a phylogenetic tree and constructs a covariance under a Brownian motion evolutionary model. However, it also allows any combination of the following transformations:

- Ornstein-Uhlenbeck (OU);
- Pagel's lambda;
- Pagel's kappa;

This then results in eight possible covariance models formed from including or excluding each transformation. We first show that these transformations are all simultaneously estimable for a reference data set.

```
# Compare using Pagel's kappa
library(phylopath)
# Run phylosem
model = "
 DD -> RS, p1
 BM \rightarrow LS, p2
 BM \rightarrow NL, p3
 NL \rightarrow DD, p4
psem = phylosem( sem = model,
          data = rhino[,c("BM","NL","DD","RS","LS")],
          estimate ou = TRUE,
          estimate_lambda = TRUE,
          estimate_kappa = TRUE,
          tree = rhino_tree,
          getJointPrecision = TRUE,
          quiet = TRUE )
V = psem$opt$SD$cov.fixed
Rsub = cov2cor(V)[c('lnalpha','logitlambda','lnkappa'),c('lnalpha','logitlambda','lnkappa')]
knitr::kable(c("minimum eigenvalue"=min(eigen(psem$opt$SD$jointPrecision)$values),
              "maximum_eigenvalue"=max(eigen(psem$opt$SD$jointPrecision)$values)), digits=3)
```

|                       | X         |
|-----------------------|-----------|
| minimum_eigenvalue    | 0.035     |
| $maximum\_eigenvalue$ | 43439.097 |

```
knitr::kable(Rsub, digits=3)
```

|             | lnalpha | logitlambda | lnkappa |
|-------------|---------|-------------|---------|
| lnalpha     | 1.000   | 0.741       | 0.422   |
| logitlambda | 0.741   | 1.000       | 0.183   |
| lnkappa     | 0.422   | 0.183       | 1.000   |

We see that the maximum eigenvalue for the precision matrix (which corresponds to the maximum eigenvalue of the covariance matrix) is greater than zero, such that the precision is invertible and the Hessian matrix is full rank. From this we can see that all parameters are estimable when applying all three transformations. We also see that transformation parameters are not perfectly correlated, although the logit-lambda and ln-alpha parameters have a correlation of approximately 0.75.

## Scaling of runtime with increased tree size

The package phylolm is expected to have a "linear runtime", i.e., a proportional increase in runtime with increasing tree size. We therefore compare runtime for phylosem and phylolm using a simulated tree across three orders of magnitude (10, 100, 1000, or 10000 tips).

```
# Settings
Ntree_config = c( 1e1, 1e2, 1e3, 1e4 )
Nreplicates = 5
sd_x = 0.3
sd_y = 0.3
b0_x = 1
b0_y = 0
b_xy = 1
# Simulate tree
set.seed(1)
Time_rcz = array(NA, dim=c(Nreplicates,length(Ntree_config),2), dimnames=list(NULL,"tree_size"=Ntree_config),2)
for( rI in seq_len(Nreplicates) ){
for( cI in seq_along(Ntree_config) ){
  # Simulate data
  tree = ape::rtree(n=Ntree_config[cI])
  x = b0_x + sd_x * phylolm::rTrait(n = 1, phy=tree)
  ybar = b0_y + b_xy*x
  y_normal = ybar + sd_y * phylolm::rTrait(n = 1, phy=tree)
  Data = data.frame(x=x, y=y_normal)[]
  # Run phylolm
  start time = Sys.time()
  plm_bm = phylolm::phylolm(y ~ 1 + x, data=Data, phy=tree, model="BM")
```

```
Time_rcz[rI,cI,"phylolm"] = Sys.time() - start_time
  # Run phylosem
  start_time = Sys.time()
  psem_bm = phylosem(sem = "x -> y, p",
            data = Data,
            tree = tree,
            quiet = TRUE,
            newtonsteps = 0,
            getsd = FALSE )
  Time_rcz[rI,cI,"phylosem"] = Sys.time() - start_time
}}
# Format
df = apply( Time_rcz, MARGIN=2:3, FUN=mean )
df = cbind( expand.grid(dimnames(df)), "time_seconds"=as.vector(df) )
# Plot
ggplot(data=df, aes(x=tree_size, y=time_seconds, group=package, color=package)) +
  geom_line() +
  geom_point() + scale_y_log10()
```



Results show that