HUM 475 Md. Hasin Abran (1605082)

Y=6A3-3B2-491A+162B+36

Taking parutial derivative with respect to A and B;

and
$$\frac{\partial Y}{\partial B} = -9B^2 + 462$$

again,
$$\frac{\partial^2 Y}{\partial A^2}$$
 = 36 A

and
$$\frac{\partial^2 Y}{\partial B^2}$$
 2: 48B

so, in order to find the critical points,

and
$$\frac{\partial Y}{\partial B} = 0$$

Phyging these values into $\frac{\partial^2 Y}{\partial A^2}$ and $\frac{\partial^2 Y}{\partial B^2}$ we get,

 $\frac{\partial^2 Y}{\partial A^2} = \pm \frac{252}{7}$ and $\frac{\partial^2 Y}{\partial B^2} = \pm 54\sqrt{L}$

 $A + (A,B)_2 \left(\frac{7}{\sqrt{2}}, -3\sqrt{2}\right), \frac{\partial^2 Y}{\partial A^2} \frac{\partial^2 Y}{\partial B^2} > 0$

50, (7/2, -3/2) is a relative minimum

At (A,B) = $(-\frac{7}{\sqrt{2}},3\sqrt{2})$, $\frac{\partial^2 Y}{\partial A^2}$. $\frac{\partial^2 Y}{\partial B^2}$ >0 minimum >0, $(-\frac{7}{\sqrt{2}},3\sqrt{2})$ is a relative maximum.

At points (7, 352) and (-7, -352) 22 ond (-12, -352) 22. 322.

So, these points are relative maximum.