EXERCICES

(tirés de l'examen partiel A99)

Problème no. 1 (20 points)

a) Une source de tension v_s est connectée aux bornes d'une inductance de 400 mH. La forme de la tension v_s en fonction du temps est donnée dans la figure suivante.

Tracer en fonction du temps le courant, la puissance et l'énergie dans l'inductance L.

b) Soit le circuit suivant:

Déterminer le courant i_x en appliquant le principe de superposition.

Problème no. 2 (20 points)

Soit le circuit suivant:

- a) Établir les équations d'équilibre du circuit en utilisant la méthode des mailles.
- b) Établir les équations d'équilibre du circuit en utilisant la **méthode des noeuds**.
- c) À l'aide du résultat de (a) ou (b), déterminer la tension v_2 en fonction de v_s .

Problème no. 3 (20 points)

Le circuit suivant est initialement au repos:

- a) **Déterminer** et **tracer** en fonction du temps la tension v_1 . Quelle est la durée du régime transitoire du circuit?
- b) Utilisant le résultat de (a), **déterminer** et **tracer** en fonction du temps la tension v_1 pour le cas où v_s est de la forme suivante:

Problème no. 4 (20 points)

Le circuit suivant est initialement au repos:

- a) **Établir** l'équation différentielle qui relie le courant i_1 à la source v_s .
- a) $\textbf{D\'{e}terminer}$ (SANS tracer) le courant i_1 . Quelle est la durée du régime transitoire du circuit?