Customer No.: 31561 Docket No.: 13366-US-PA Application No.: 10/709,924

AMENDMENTS

To the Claims:

Claim 1 (currently amended) A high-voltage metal-oxide-semiconductor (HV-MOS) device, comprising:

a substrate;

a gate dielectric layer on the substrate;

a gate on the gate dielectric layer;

a channel region in the substrate under the gate dielectric layer;

two doped regions as a source and a drain in the substrate beside the gate;

a field isolation layer between the gate and the two doped regions;

a drift region in the substrate under the field isolation layer located in one side of the at

least one doped region, connecting with the channel region and the at least one doped region; and

a modifying doped region in the substrate at periphery located in the other side of the at

least one doped region opposite to the drift region, wherein the drift region and the modifying

doped region together completely surround the doped regions and are doped with the same type

dopant.

Claim 2 (currently amended) The HV-MOS device of claim 1, wherein the modifying doped region is in the substrate at peripheries located in the other sides of the two doped regions opposite to the drift region.

Page 2 of 9

Customer No.: 31561
Docket No.: 13366-US-PA
Application No.: 10/709,924

Claim 3 (cancelled)

Claim 4 (original) The HV-MOS device of claim 1, wherein the field isolation layer comprises a field oxide (FOX) layer.

Claim 5 (currently amended) A high-voltage metal-oxide-semiconductor (HV-MOS) device, comprising:

a substrate;

a gate dielectric layer on the substrate;

a gate on the gate dielectric layer;

a channel region in the substrate under the gate dielectric layer;

two heavily doped regions as a source and a drain in the substrate beside the gate;

two lightly doped grade region under and surrounding the two heavily doped regions respectively;

a field isolation layer between the gate and the two heavily doped regions;

a drift region in the substrate under the field isolation layer located in one side of the at least one lightly doped grade region, connecting with the channel region and the at least one doped region; and

a modifying doped region in the substrate at periphery located in the other side of the at least one lightly doped grade region opposite to the drift region, wherein each doped region

Page 3 of 9

JAN-10-2007 WED 16:30

FAX NO.

Customer No.: 31561 Docket No.: 13366-US-PA

Application No.: 10/709,924

enniprises a heavily-doped-contact region and a lightly-doped grade region-under the contact

region.

Claim 6-14 (cancelled)

Claim 15 (currently amended) The HV-MOS device of claim 5, wherein the modifying

doped region is in the substrate at the peripheries located in the other sides of the two lightly

doped grade regions opposite to the drift region.

Claim 16 (previously presented) The HV-MOS device of claim 5, wherein the field

isolation layer comprises a field oxide (FOX) layer.

Claim 17 (currently amended) The HV-MOS device of claim 56, wherein a doping

concentration of the drift region and the modifying doped region ranges from 5×10¹⁵/cm³ to

5×10¹⁷/cm³the modifying doped region is in the substrate at the perion of the two doped

regions.

Claim 18 (currently amended) The HV-MOS device of claim 16, wherein a doping

concentration of the drift region and the modifying doped region ranges from 5×10¹⁵/cm³ to

5×10¹⁷/cm³the-field-isolation-layer-comprises-a-tield-oxide (FOX)-layer.

Page 4 of 9

Customer No.: 31561 Docket No.: 13366-US-PA Application No.: 10/709,924

Claim 19 (new) The HV-MOS device of claim 5, wherein the drift region and the modifying doped region are doped with the same type dopant.