review-introduction

June 20, 2020

Data Analysis with Python

Introduction

Welcome!

In this section, you will learn how to approach data acquisition in various ways, and obtain necessary insights from a dataset. By the end of this lab, you will successfully load the data into Jupyter Notebook, and gain some fundamental insights via Pandas Library.

Table of Contents

Data Acquisition

Basic Insight of Dataset

Estimated Time Needed: 10 min

Data Acquisition

There are various formats for a dataset, .csv, .json, .xlsx etc. The dataset can be stored in different places, on your local machine or sometimes online. In this section, you will learn how to load a dataset into our Jupyter Notebook. In our case, the Automobile Dataset is an online source, and it is in CSV (comma separated value) format. Let's use this dataset as an example to practice data reading.

data source: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data

data type: csv

The Pandas Library is a useful tool that enables us to read various datasets into a data frame; our Jupyter notebook platforms have a built-in Pandas Library so that all we need to do is import Pandas without installing.

```
[1]: # import pandas library
import pandas as pd
```

Read Data

We use pandas.read_csv() function to read the csv file. In the bracket, we put the file path along with a quotation mark, so that pandas will read the file into a data frame from that address. The file path can be either an URL or your local file address. Because the data does not include headers,

we can add an argument headers = None inside the read_csv() method, so that pandas will not automatically set the first row as a header. You can also assign the dataset to any variable you create.

This dataset was hosted on IBM Cloud object click HERE for free storage.

After reading the dataset, we can use the dataframe.head(n) method to check the top n rows of the dataframe; where n is an integer. Contrary to dataframe.head(n), dataframe.tail(n) will show you the bottom n rows of the dataframe.

```
[3]: # show the first 5 rows using dataframe.head() method print("The first 5 rows of the dataframe") df.head(5)
```

The first 5 rows of the dataframe

```
[3]:
              1
                             2
                                   3
                                         4
                                               5
                                                              6
                                                                    7
                                                                            8
                                                                                   9
          3
               ?
                   alfa-romero
     0
                                  gas
                                       std
                                              two
                                                    convertible
                                                                  rwd
                                                                         front
                                                                                88.6
               ?
     1
          3
                   alfa-romero
                                                                   rwd
                                                                         front
                                                                                88.6
                                  gas
                                       std
                                              two
                                                    convertible
     2
          1
               ?
                   alfa-romero
                                  gas
                                       std
                                              two
                                                      hatchback
                                                                   rwd
                                                                         front
                                                                                94.5
     3
          2
             164
                           audi
                                  gas
                                       std
                                             four
                                                           sedan
                                                                   fwd
                                                                         front
                                                                                99.8
             164
                           audi
                                       std
                                             four
                                                           sedan
                                                                   4wd
                                                                         front
                                                                                99.4
                                  gas
                                           21
                                                           24
          16
                 17
                       18
                              19
                                     20
                                                  22
                                                      23
                                                                   25
     0
        130
              mpfi
                     3.47
                            2.68
                                    9.0
                                          111
                                               5000
                                                      21
                                                           27
                                                               13495
        130
              mpfi
                    3.47
                            2.68
                                    9.0
                                               5000
                                                           27
                                                               16500
     1
                                          111
                                                      21
     2
        152
              mpfi
                     2.68
                            3.47
                                    9.0
                                          154
                                               5000
                                                      19
                                                           26
                                                               16500
     3
        109
              mpfi
                     3.19
                            3.40
                                   10.0
                                          102
                                                5500
                                                      24
                                                           30
                                                               13950
        136
              mpfi
                     3.19
                            3.40
                                    8.0
                                          115
                                               5500
                                                      18
                                                               17450
```

[5 rows x 26 columns]

Question #1:

check the bottom 10 rows of data frame "df".

```
[4]: # Write your code below and press Shift+Enter to execute df.tail(10)
```

```
[4]: 0 1 2 3 4 5 6 7 8 9 ... 16 \
195 -1 74 volvo gas std four wagon rwd front 104.3 ... 141
```

```
196
     -2
         103
              volvo
                                                                   104.3
                                                                              141
                          gas
                                  std
                                       four
                                              sedan
                                                      rwd
                                                           front
197
           74
                                                                   104.3
                                                                              141
     -1
               volvo
                                  std
                                       four
                                              wagon
                                                      rwd
                                                            front
                          gas
198
     -2
          103
               volvo
                                turbo
                                       four
                                              sedan
                                                      rwd
                                                            front
                                                                   104.3
                                                                              130
                          gas
199
     -1
           74
               volvo
                                                                   104.3
                                                                              130
                                turbo
                                       four
                                              wagon
                                                      rwd
                                                           front
                          gas
200
     -1
           95
              volvo
                                       four
                                              sedan
                                                           front
                                                                   109.1
                                                                              141
                          gas
                                  std
                                                      rwd
201
     -1
           95
                                                                   109.1
                                                                              141
              volvo
                                turbo
                                       four
                                              sedan
                                                      rwd
                                                           front
                          gas
     -1
202
           95
              volvo
                                       four
                                              sedan
                                                                   109.1
                                                                              173
                          gas
                                  std
                                                      rwd
                                                           front
203
     -1
           95
              volvo
                       diesel
                                turbo
                                       four
                                              sedan
                                                      rwd
                                                           front
                                                                   109.1
                                                                              145
204
    -1
           95
                                              sedan
                                                                   109.1 ...
                                                                              141
               volvo
                          gas
                                turbo
                                        four
                                                      rwd
                                                           front
       17
              18
                     19
                           20
                                 21
                                        22
                                            23
                                                24
                                                        25
     mpfi
           3.78
                  3.15
                          9.5
                                114
                                     5400
                                            23
                                                28
                                                     13415
195
196
     mpfi
           3.78
                  3.15
                          9.5
                                114
                                     5400
                                            24
                                                28
                                                     15985
197
     mpfi
           3.78
                  3.15
                          9.5
                                114
                                     5400
                                            24
                                                28
                                                     16515
198
     mpfi
           3.62
                  3.15
                          7.5
                                162
                                     5100
                                            17
                                                22
                                                     18420
199
     mpfi
           3.62
                  3.15
                          7.5
                                162
                                     5100
                                            17
                                                22
                                                     18950
200
     mpfi
           3.78
                  3.15
                          9.5
                                114
                                     5400
                                            23
                                                28
                                                     16845
           3.78
                  3.15
201
     mpfi
                          8.7
                                160
                                     5300
                                            19
                                                25
                                                     19045
202
     mpfi
           3.58
                  2.87
                          8.8
                                134
                                     5500
                                            18
                                                23
                                                     21485
203
           3.01
                  3.40
                                106
                                     4800
                                            26
                                                27
                                                     22470
      idi
                         23.0
204
     mpfi
           3.78 3.15
                          9.5
                                114
                                     5400
                                            19
                                                25
                                                     22625
```

[10 rows x 26 columns]

Question #1 Answer:

Run the code below for the solution!

Double-click here for the solution.

Add Headers

Take a look at our dataset; pandas automatically set the header by an integer from 0.

To better describe our data we can introduce a header, this information is available at: https://archive.ics.uci.edu/ml/datasets/Automobile

Thus, we have to add headers manually.

Firstly, we create a list "headers" that include all column names in order. Then, we use dataframe.columns = headers to replace the headers by the list we created.

headers

['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engine-location', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price']

We replace headers and recheck our data frame

```
[6]: df.columns = headers df.head(10)
```

[6]:		symboling normalized-losses		make	fuel-type	aspii	ration 1	num-of-	doors	\	
(0	3		?	alfa-romero	gas		std		two	
-	1	3		?	alfa-romero	gas		std		two	
2	2	1		?	alfa-romero	gas		std		two	
3	3	2		164	audi	gas		std		four	
4	4	2		164	audi	gas		std		four	
į	5	2		?	audi	gas		std		two	
6	6	1		158	audi	gas		std		four	
7	7	1		?	audi	gas		std		four	
8	8	1		158	audi	gas		turbo		four	
9	9	0		?	audi	gas		turbo		two	
		body-style	drive-	wheels eng	gine-location	wheel-bas	se	engine	e-size	\	
(0	convertible		rwd	front	88	.6	· ·	130		
	1	convertible		rwd	front	88	.6		130		
2	2	hatchback		rwd	front	94	.5		152		
3	3	sedan		fwd	front	99	.8		109		
4	4	sedan		4wd	front	99	.4		136		
	5	sedan		fwd	front	99	.8		136		
(6	sedan		fwd	front	105	.8		136		
-	7	wagon		fwd	front	105	.8		136		
8	8	sedan		fwd	front	105	.8		131		
Ś	9	hatchback		4wd	front	99	.5		131		
		fuel-system	bore	stroke co	ompression-rat	tio horsepo	ower	peak-rj	om city	-mpg	\
(0	mpfi	3.47	2.68		9.0	111	500		21	
:	1	mpfi	3.47	2.68	Ş	9.0	111	500	00	21	
2	2	mpfi	2.68	3.47	Ş	9.0	154	500	00	19	
3	3	mpfi	3.19	3.40	10	0.0	102	550	00	24	
4	4	mpfi	3.19	3.40	8	3.0	115	550	00	18	
į	5	mpfi	3.19	3.40	8	3.5	110	550	00	19	
(6	mpfi	3.19	3.40	8	3.5	110	550	00	19	
7	7	mpfi	3.19	3.40	8	3.5	110	550	00	19	
8	8	mpfi	3.13	3.40	8	3.3	140	550	00	17	
Ç	9	mpfi	3.13	3.40	7	7.0	160	550	00	16	

```
highway-mpg price
0
            27
                13495
            27
                16500
1
2
                16500
            26
3
            30
                13950
4
            22
                17450
            25
                15250
5
6
            25
                17710
7
            25
                18920
8
            20
                23875
            22
                    ?
9
```

[10 rows x 26 columns]

we can drop missing values along the column "price" as follows

[7]: df.dropna(subset=["price"], axis=0)

[7]:		symboling no	rmalized-los:	ses	make	fuel-type	aspiration	\		
	0	3		?	alfa-romero	gas	std			
	1	3		?	alfa-romero	gas	std			
	2	1		?	alfa-romero	gas	std			
	3	2	-	164	audi	gas	std			
	4	2	-	164	audi	gas	std			
		•••	•••		•••		•			
	200	-1		95	volvo	gas	std			
	201	-1		95	volvo	gas	turbo			
	202	-1		95	volvo	gas	std			
	203	-1		95	volvo	diesel	turbo			
	204	-1		95	volvo	gas	turbo			
		num-of-doors	body-style	dri	ve-wheels eng	gine-locati	on wheel-b	ase		\
	0	two	convertible		rwd	fro	nt 8	8.6		
	1	two	convertible		rwd	fro	nt 8	8.6		
	2	two	hatchback		rwd	fro	nt 9	4.5	•••	
	3	four	sedan		fwd	fro	nt 9	9.8	•••	
	4	four	sedan		4wd	fro	ent 9	9.4	•••	
			•••			•••				
	200	four	sedan		rwd	fro	ent 10	9.1		
	201	four	sedan		rwd	fro	ent 10	9.1		
	202	four	sedan		rwd	fro	ent 10	9.1		
	203	four	sedan		rwd	fro	ent 10	9.1		
	204	four	sedan		rwd	fro	ont 10	9.1	•••	
		engine-size	fuel-system	bo	re stroke co	ompression-	ratio horse	powe	r	\
	0	130	mpfi	3.4	47 2.68	_	9.0	11	1	
	1	130	mpfi	3.4	47 2.68		9.0	11	1	

2	152	mpfi	2.68	3.47	9.0	154
3	109	mpfi	3.19	3.40	10.0	102
4	136	mpfi	3.19	3.40	8.0	115
	•••	••• •••	•••		 •••	
200	141	mpfi	3.78	3.15	9.5	114
201	141	mpfi	3.78	3.15	8.7	160
202	173	mpfi	3.58	2.87	8.8	134
203	145	idi	3.01	3.40	23.0	106
204	141	mpfi	3.78	3.15	9.5	114

	peak-rpm	city-mpg	highway-mpg	price
0	5000	21	27	13495
1	5000	21	27	16500
2	5000	19	26	16500
3	5500	24	30	13950
4	5500	18	22	17450
	•••	•••	•••	
200	5400	23	28	16845
201	5300	19	25	19045
202	5500	18	23	21485
203	4800	26	27	22470
204	5400	19	25	22625

[205 rows x 26 columns]

Now, we have successfully read the raw dataset and add the correct headers into the data frame.

Question #2:

Find the name of the columns of the dataframe

```
[8]: # Write your code below and press Shift+Enter to execute print(df.columns)
```

Double-click here for the solution.

Save Dataset

Correspondingly, Pandas enables us to save the dataset to csv by using the dataframe.to_csv() method, you can add the file path and name along with quotation marks in the brackets.

For example, if you would save the dataframe df as automobile.csv to your local machine, you may use the syntax below:

We can also read and save other file formats, we can use similar functions to pd.read_csv() and df.to_csv() for other data formats, the functions are listed in the following table:

Read/Save Other Data Formats

Data Formate	Read	Save
	neau	save
CSV	<pre>pd.read_csv()</pre>	<pre>df.to_csv()</pre>
json	<pre>pd.read_json()</pre>	<pre>df.to_json()</pre>
excel	<pre>pd.read_excel()</pre>	<pre>df.to_excel()</pre>
hdf	<pre>pd.read_hdf()</pre>	<pre>df.to_hdf()</pre>
sql	<pre>pd.read_sql()</pre>	<pre>df.to_sql()</pre>
•••	•••	

Basic Insight of Dataset

After reading data into Pandas dataframe, it is time for us to explore the dataset. There are several ways to obtain essential insights of the data to help us better understand our dataset.

Data Types

Data has a variety of types. The main types stored in Pandas dataframes are object, float, int, bool and datetime64. In order to better learn about each attribute, it is always good for us to know the data type of each column. In Pandas:

[9]: df.dtypes

[9]:	symboling	int64
	normalized-losses	object
	make	object
	fuel-type	object
	aspiration	object
	num-of-doors	object
	body-style	object
	drive-wheels	object
	engine-location	object
	wheel-base	float64
	length	float64
	width	float64
	height	float64
	curb-weight	int64
	engine-type	object
	num-of-cylinders	object
	engine-size	int64
	fuel-system	object
	bore	object
	stroke	object
	compression-ratio	float64
	horsepower	object

```
peak-rpm object city-mpg int64 highway-mpg int64 price object
```

dtype: object

returns a Series with the data type of each column.

[10]: # check the data type of data frame "df" by .dtypes print(df.dtypes)

symboling	int64
normalized-losses	object
make	object
fuel-type	object
aspiration	object
num-of-doors	object
body-style	object
drive-wheels	object
engine-location	object
wheel-base	float64
length	float64
width	float64
height	float64
curb-weight	int64
engine-type	object
num-of-cylinders	object
engine-size	int64
fuel-system	object
bore	object
stroke	object
compression-ratio	float64
horsepower	object
peak-rpm	object
city-mpg	int64
highway-mpg	int64
price	object
dtype: object	

dtype: object

As a result, as shown above, it is clear to see that the data type of "symboling" and "curb-weight" are int64, "normalized-losses" is object, and "wheel-base" is float64, etc.

These data types can be changed; we will learn how to accomplish this in a later module.

Describe

If we would like to get a statistical summary of each column, such as count, column mean value, column standard deviation, etc. We use the describe method: dataframe.describe() This method will provide various summary statistics, excluding NaN (Not a Number) values.

[11]: df.describe()

[11]:		symboling	wheel-base	length	widt	h heig	nt \
	count	205.000000	205.000000	205.000000	205.00000	0 205.0000	00
	mean	0.834146	98.756585	174.049268	65.90780	5 53.7248	78
	std	1.245307	6.021776	12.337289	2.14520	4 2.4435	22
	min	-2.000000	86.600000	141.100000	60.30000	0 47.8000	00
	25%	0.000000	94.500000	166.300000	64.10000	0 52.0000	00
	50%	1.000000	97.000000	173.200000	65.50000	0 54.1000	00
	75%	2.000000	102.400000	183.100000	66.90000	0 55.5000	00
	max	3.000000	120.900000	208.100000	72.30000	0 59.8000	00
		curb-weight	engine-size	e compressi	on-ratio	city-mpg	highway-mpg
	count	205.000000	205.000000) 20	5.000000	205.000000	205.000000
	mean	2555.565854	126.907317	7 1	0.142537	25.219512	30.751220
	std	520.680204	41.642693	3	3.972040	6.542142	6.886443
	min	1488.000000	61.000000)	7.000000	13.000000	16.000000
	25%	2145.000000	97.000000)	8.600000	19.000000	25.000000
	50%	2414.000000	120.000000)	9.000000	24.000000	30.000000
	75%	2935.000000	141.000000)	9.400000	30.000000	34.000000
	max	4066.000000	326.000000		3.000000	49.000000	54.000000
	max	4066.000000	326.000000) 2	3.000000	49.000000	54.000000

This shows the statistical summary of all numeric-typed (int, float) columns. For example, the attribute "symboling" has 205 counts, the mean value of this column is 0.83, the standard deviation is 1.25, the minimum value is -2, 25th percentile is 0, 50th percentile is 1, 75th percentile is 2, and the maximum value is 3. However, what if we would also like to check all the columns including those that are of type object.

You can add an argument include = "all" inside the bracket. Let's try it again.

```
[12]: # describe all the columns in "df"

df.describe(include = "all")
```

```
[12]:
                 symboling normalized-losses
                                                    make fuel-type aspiration
      count
               205.000000
                                            205
                                                     205
                                                                 205
                                                                             205
                                                      22
                                                                   2
                                                                               2
      unique
                       NaN
                                             52
                                              ?
      top
                       NaN
                                                  toyota
                                                                             std
                                                                 gas
                                             41
                                                      32
                                                                 185
                                                                             168
      freq
                       {\tt NaN}
      mean
                  0.834146
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      std
                  1.245307
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
                 -2.00000
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      min
      25%
                  0.000000
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      50%
                  1.000000
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      75%
                  2.000000
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
                  3.000000
                                            NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      max
```

unique		3	5		3	2		NaN		
top	fo	ur seda			fwd	front		NaN	•••	
freq			96		120	202		NaN	•••	
mean		aN Na	aN		NaN	NaN	98.	756585		
std	N	aN Na	aN		NaN	NaN	6.	021776	•••	
min	N	aN Na	aN		NaN	NaN	86.	600000	•••	
25%	N	aN Na	aN		NaN	NaN	94.	500000	•••	
50%	N	aN Na	aN		NaN	NaN	97.	000000		
75%	N	aN Na	aN		NaN	NaN	102.	400000	•••	
max	N	aN Na	aN		NaN	NaN	120.	900000	•••	
	engine-si	ze fuel-sys	stem	bore	stroke	compression-r	atio	horsepo	wer	\
count	205.0000	•	205	205	205	205.00		•	205	·
unique	N	aN	8	39	37		NaN		60	
top	N	aN n	npfi	3.62	3.40		NaN		68	
freq	N	aN	94	23	20		NaN		19	
mean	126.9073	17	NaN	NaN	NaN	10.14	2537		NaN	
std	41.6426	93	NaN	NaN	NaN	3.97	2040		NaN	
min	61.0000	00	NaN	NaN	NaN	7.00	0000		NaN	
25%	97.0000	00	NaN	NaN	NaN	8.60	0000		NaN	
50%	120.0000	00	NaN	NaN	NaN	9.00	0000		NaN	
75%	141.0000	00	NaN	NaN	NaN	9.40	0000		NaN	
max	326.0000	00	NaN	NaN	NaN	23.00	00000		NaN	
	peak-rpm	city-mpg	high	wav-mpg	price					
count	205	205.000000	_	.000000	-					
unique	24	NaN		NaN						
top	5500	NaN		NaN	?					
freq	37	NaN		NaN	4					
mean	NaN	25.219512	30	.751220	NaN					
std	NaN	6.542142	6	.886443	NaN					
min	NaN	13.000000	16	.000000	NaN					
25%	NaN	19.000000	25	.000000	NaN					
50%	NaN	24.000000	30	.000000	NaN					
75%	NaN	30.000000	34	.000000	NaN					
max	NaN	49.000000	54	.000000	NaN					

[11 rows x 26 columns]

Now, it provides the statistical summary of all the columns, including object-typed attributes. We can now see how many unique values, which is the top value and the frequency of top value in the object-typed columns. Some values in the table above show as "NaN", this is because those numbers are not available regarding a particular column type.

Question #3:

You can select the columns of a data frame by indicating the name of each column, for example, you can select the three columns as follows:

dataframe[['column 1 ',column 2', 'column 3']]

Where "column" is the name of the column, you can apply the method ".describe()" to get the statistics of those columns as follows:

dataframe[[' column 1 ',column 2', 'column 3']].describe()

Apply the method to ".describe()" to the columns 'length' and 'compression-ratio'.

```
[13]: # Write your code below and press Shift+Enter to execute df[['length', 'compression-ratio']].describe()
```

```
[13]:
                  length
                          compression-ratio
             205.000000
                                 205.000000
      count
                                   10.142537
      mean
             174.049268
      std
              12.337289
                                   3.972040
                                   7.000000
             141.100000
      min
      25%
             166.300000
                                   8.600000
      50%
             173.200000
                                   9.000000
      75%
             183.100000
                                   9.400000
             208.100000
                                   23.000000
      max
```

Double-click here for the solution.

Info

Another method you can use to check your dataset is: dataframe.info It provide a concise summary of your DataFrame.

```
[14]: # look at the info of "df" df.info
```

[14]:]: <bound dataframe.info="" method="" normalized-losses<="" of="" symboling="" th=""><th>make</th><th>9</th></bound>							make	9
	fuel	l-type aspirat	ion \						
	0	3		?	alfa-romero	gas	std		
	1	3		?	alfa-romero	gas	std		
	2	1		?	alfa-romero	gas	std		
	3	2	1	L64	audi	gas	std		
	4	2	1	L64	audi	gas	std		
		•••	•••		•••				
	200	-1		95	volvo	gas	std		
	201	-1		95	volvo	gas	turbo		
	202	-1		95	volvo	gas	std		
	203	-1		95	volvo	diesel	turbo		
	204	-1		95	volvo	gas	turbo		
		num-of-doors	body-style	dri	ve-wheels eng	gine-location	wheel-base	\	
	0	two	convertible		rwd	front	88.6	•••	
	1	two	convertible		rwd	front	88.6	•••	
	2	two	hatchback		rwd	front	94.5		

3	four	sedan		fwd	front	99.8
4	four	sedan		4wd	front	99.4
	•••	•••		••		•••
200	four	sedan		rwd	front	109.1
201	four	sedan		rwd	front	109.1
202	four	sedan		rwd	front	109.1
203	four	sedan		rwd	front	109.1
204	four	sedan		rwd	front	109.1
•	engine-size	fuel-system	bore		compression-ratio	-
0	130	mpfi	3.47	2.68	9.0	111
1	130	mpfi	3.47	2.68	9.0	111
2	152	mpfi		3.47	9.0	
3	109	mpfi		3.40	10.0	102
4	136	mpfi	3.19	3.40	8.0	115
• •	•••					
200	141	mpfi	3.78	3.15	9.5	114
201	141	mpfi	3.78	3.15	8.7	
202	173	mpfi		2.87	8.8	
203	145	idi	3.01	3.40	23.0	106
204	141	mpfi	3.78	3.15	9.5	114
	neak-rnm cit	y-mpg highway	-mng	price		
0	5000	21	P6 27	13495		
1	5000	21	27	16500		
2	5000	19	26	16500		
3	5500	24	30	13950		
4	5500	18	22	17450		
		•••	•••			
200	5400	23	28	16845		
201	5300	19	25	19045		
202	5500	18	23	21485		
203	4800	26	27	22470		
204	5400	19	25	22625		

[205 rows x 26 columns]>

Here we are able to see the information of our dataframe, with the top 30 rows and the bottom 30 rows. And, it also shows us the whole data frame has 205 rows and 26 columns in total.

Excellent! You have just completed the Introduction Notebook!

This notebook was written by Mahdi Noorian PhD, Joseph Santarcangelo, Bahare Talayian, Eric Xiao, Steven Dong, Parizad, Hima Vsudevan and Fiorella Wenver and Yi Yao.

Joseph Santarcangelo is a Data Scientist at IBM, and holds a PhD in Electrical Engineering. His

research focused on using Machine Learning, Signal Processing, and Computer Vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Copyright © 2018 IBM Developer Skills Network. This notebook and its source code are released under the terms of the MIT License.