Final Model - death_30days

Eduardo Yuki Yada

Global parameters

```
k <- params$k # Number of folds for cross validation
grid_size <- params$grid_size # Number of parameter combination to tune on each model
max_auc_loss <- params$max_auc_loss # Max accepted loss of AUC for reducing num of features
repeats <- params$repeats
```

Imports

```
library(tidyverse)
library(yaml)
library(tidymodels)
library(usemodels)
library(vip)
library(kableExtra)
library(SHAPforxgboost)
library(xgboost)
library(Matrix)
library(mltools)
library(bonsai)
library(lightgbm)
library(pROC)
library(caret)
library(themis)
source("aux_functions.R")
select <- dplyr::select</pre>
```

Loading data

```
recursive = TRUE)
dir.create(file.path("./auxiliar/final model/selected features/"),
           showWarnings = FALSE,
           recursive = TRUE)
```

Eligible features

7. hypertension 8. prior_mi 9. heart failure

11. valvopathy

10. af

```
cat_features_list = readRDS(sprintf(
  "./auxiliar/significant_columns/categorical_%s.rds",
  outcome_column
))
num_features_list = readRDS(sprintf(
  "./auxiliar/significant_columns/numerical_%s.rds",
  outcome_column
))
features_list = c(cat_features_list, num_features_list)
eligible_columns <- df_names %>%
  filter(momento.aquisicao == 'Admissão t0') %>%
  .$variable.name
exception_columns <- c('death_intraop', 'death_intraop_1', 'disch_outcomes_t0')</pre>
correlated_columns = c('year_procedure_1', # com year_adm_t0
                        'age_surgery_1', # com age
                        'admission_t0', # com admission_pre_t0_count
                        'atb', # com meds_antimicrobianos
                        'classe_meds_cardio_qtde', # com classe_meds_qtde
                        'suporte_hemod', # com proced_invasivos_qtde,
                        'radiografia', # com exames_imagem_qtde
                        'ecg' # com metodos_graficos_qtde
eligible_features <- eligible_columns %>%
  base::intersect(c(columns_list$categorical_columns, columns_list$numerical_columns)) %>%
  setdiff(c(exception_columns, correlated_columns))
if (is.null(features_list)) {
  features = eligible_features
} else {
  features = base::intersect(eligible_features, features_list)
}
Starting features:
gluedown::md_order(features, seq = TRUE, pad = TRUE)
  1. sex
  2. age
  3. education level
  4. underlying heart disease
  5. heart_disease
  6. nyha_basal
```

```
12. diabetes
```

- 13. renal failure
- 14. hemodialysis
- 15. cancer
- 16. comorbidities_count
- 17. procedure_type_1
- $18. \text{ reop_type_1}$
- 19. procedure_type_new
- $20.~{\rm cied_final_1}$
- $21. \ cied_final_group_1$
- 22. admission pre t0 count
- $23. admission_pre_t0_180d$
- 24. year adm t0
- 25. icu t0
- 26. antiarritmico
- 27. antihipertensivo
- 28. betabloqueador
- 29. dva
- 30. diuretico
- 31. vasodilatador
- 32. espironolactona
- 33. antiplaquetario_ev
- 34. insulina
- 35. psicofarmacos
- 36. antifungico
- $37. classe_meds_qtde$
- $38. \text{ meds_cardiovasc_qtde}$
- $39. \text{ meds_antimicrobianos}$
- 40. vni
- 41. ventilacao mecanica
- 42. intervencao_cv
- 43. cateter_venoso_central
- 44. proced_invasivos_qtde
- 45. transfusao
- 46. interconsulta
- 47. equipe_multiprof
- 48. holter
- 49. metodos_graficos_qtde
- 50. laboratorio
- 51. cultura
- 52. analises clinicas qtde
- 53. citologia
- 54. histopatologia_qtde
- 55. angio_tc
- 56. angiografia
- 57. cintilografia
- 58. ecocardiograma
- 59. flebografia
- 60. ultrassom
- 61. tomografia
- 62. ressonancia
- 63. exames_imagem_qtde
- 64. bic
- 65. hospital_stay

Train test split (70%/30%)

```
set.seed(42)
if (outcome_column == 'readmission_30d') {
```

Feature Selection

```
custom_dummy_names <- function(var, lvl, ordinal = FALSE) {</pre>
  dummy_names(var, lvl, ordinal = FALSE, sep = "__")
}
model_fit_wf <- function(df_train, features, outcome_column, hyperparameters){</pre>
  model_recipe <-</pre>
    recipe(formula = sprintf("%s ~ .", outcome_column) %>% as.formula,
           data = df_train %>% select(all_of(c(features, outcome_column)))) %>%
    step_novel(all_nominal_predictors()) %>%
    step_unknown(all_nominal_predictors()) %>%
    step_other(all_nominal_predictors(), threshold = 0.05, other = ".merged") %>%
    step_dummy(all_nominal_predictors(), naming = custom_dummy_names)
  model_spec <-
    do.call(boost_tree, hyperparameters) %>%
    set_engine("lightgbm") %>%
    set mode("classification")
  model workflow <-
    workflow() %>%
    add_recipe(model_recipe) %>%
    add_model(model_spec)
  model_fit_rs <- model_workflow %>%
    fit_resamples(df_folds)
  model_fit <- model_workflow %>%
    fit(df_train)
  model_auc <- validation(model_fit, df_test, plot = F)</pre>
  raw_model <- parsnip::extract_fit_engine(model_fit)</pre>
  feature importance <- lgb.importance(raw model, percentage = TRUE) %>%
    separate(Feature, c("Feature","value"), "__", fill = 'right') %>%
    group_by(Feature) %>%
    summarise(Gain = sum(Gain),
              Cover = sum(Cover),
              Frequency = sum(Frequency)) %>%
    ungroup() %>%
    arrange(desc(Gain))
  cv_results <- collect_metrics(model_fit_rs) %>% filter(.metric == 'roc_auc')
  return(
```

```
list(
      cv_auc = cv_results$mean,
      cv_auc_std_err = cv_results$std_err,
      importance = feature_importance,
      auc = as.numeric(model_auc$auc),
      auc_lower = model_auc$ci[1],
      auc_upper = model_auc$ci[3]
    )
  )
}
hyperparameters <- readRDS(
  sprintf(
    "./auxiliar/model_selection/hyperparameters/lightgbm_%s.rds",
    outcome_column
  )
)
hyperparameters$sample_size <- 1
full_model <- model_fit_wf(df_train, features, outcome_column, hyperparameters)
sprintf('Full Model CV Train AUC: %.3f' ,full_model$cv_auc)
## [1] "Full Model CV Train AUC: 0.753"
sprintf('Full Model Test AUC: %.3f' ,full_model$auc)
## [1] "Full Model Test AUC: 0.794"
# full_model$importance %>%
    filter(str_detect(Feature, 'education'))
# full_model$importance %>%
   filter(str_detect(Feature, 'education')) %>%
#
    summarise(across(where(is.numeric), ~ sum(.x, na.rm = TRUE)))
#
# full_model$importance %>%
#
   separate(Feature, c("Feature", "value"), "__") %>%
#
    group_by(Feature) %>%
#
    summarise(Gain = sum(Gain),
#
              Cover = sum(Cover),
              Frequency = sum(Frequency))
Features with zero importance on the initial model:
unimportant_features <- setdiff(features, full_model$importance$Feature)
unimportant_features %>%
  gluedown::md_order()
  1. \text{ sex}
  2. hypertension
  3. prior mi
  4. heart_failure
  5. valvopathy
  6. cancer
  7. admission_pre_t0_180d
  8. betabloqueador
  9. antiplaquetario_ev
 10. vni
 11. ventilacao_mecanica
 12. intervencao cv
```

```
13. transfusao
 14. interconsulta
 15. histopatologia_qtde
 16. angio_tc
 17. flebografia
 18. ultrassom
trimmed_features <- full_model$importance$Feature</pre>
trimmed_model <- model_fit_wf(df_train, trimmed_features,</pre>
                                outcome_column, hyperparameters)
sprintf('Trimmed Model CV Train AUC: %.3f' ,trimmed_model$cv_auc)
## [1] "Trimmed Model CV Train AUC: 0.757"
sprintf('Trimmed Model Test AUC: %.3f' ,trimmed_model$auc)
## [1] "Trimmed Model Test AUC: 0.794"
selection_results <- tibble::tribble(</pre>
  ~`Tested Feature`, ~`Dropped`, ~`Number of Features`, ~`CV AUC`, ~`CV AUC Std Error`, ~`Total AUC Loss`, ~`Ins
  'None', TRUE, length(features), full_model$cv_auc, full_model$cv_auc_std_err, 0, 0
whitelist <- c()
if (full_model$cv_auc - trimmed_model$cv_auc < max_auc_loss) {</pre>
  current_features <- trimmed_features</pre>
  current_model <- trimmed_model</pre>
  current_auc_loss <- full_model$cv_auc - current_model$cv_auc</pre>
  instant_auc_loss <- full_model$cv_auc - current_model$cv_auc</pre>
  selection_results <- selection_results %>%
    add_row(`Tested Feature` = 'All unimportant',
             `Dropped` = TRUE,
             `Number of Features` = length(trimmed_features),
            `CV AUC` = current_model$cv_auc,
            `CV AUC Std Error` = current_model$cv_auc_std_err,
             `Total AUC Loss` = current_auc_loss,
            `Instant AUC Loss` = instant_auc_loss)
} else {
  current_features <- features</pre>
  current_model <- full_model</pre>
  current_auc_loss <- 0</pre>
}
while (current_auc_loss < max_auc_loss & mean(current_features %in% whitelist) < 1) {
  zero_importance_features <- setdiff(current_features, current_model$importance$Feature) %>%
    setdiff(whitelist)
  if (length(zero_importance_features) > 0) {
    current_least_important <- zero_importance_features[1]</pre>
  } else {
    current_least_important <-</pre>
      tail(setdiff(current_model$importance$Feature, whitelist), 1)
  test_features <-
    setdiff(current_features, current_least_important)
  current_model <-
    model_fit_wf(df_train, test_features, outcome_column, hyperparameters)
  instant_auc_loss <-</pre>
    tail(selection_results %>% filter(Dropped) %>% .^{CV} AUC , n = 1) - current_model^{CV} auc
  if (instant_auc_loss < max_auc_loss / 5 &</pre>
```

```
current_auc_loss < max_auc_loss) {</pre>
   dropped <- TRUE
   current_features <- test_features</pre>
   current_auc_loss <- full_model$cv_auc - current_model$cv_auc</pre>
  } else {
   dropped <- FALSE
   whitelist <- c(whitelist, current_least_important)</pre>
  selection_results <- selection_results %>%
   add_row(
     `Tested Feature` = current_least_important,
     `Dropped` = dropped,
     `Number of Features` = length(test_features),
     `CV AUC` = current_model$cv_auc,
     `CV AUC Std Error` = current_model$cv_auc_std_err,
     `Total AUC Loss` = current_auc_loss,
      `Instant AUC Loss` = instant_auc_loss
   )
 print(c(
   length(current_features),
   round(current_auc_loss, 4),
   round(instant_auc_loss, 4),
   current_least_important
 ))
}
## [1] "46"
                        "-0.0041"
                                          "0"
## [4] "procedure_type_1"
## [1] "45" "-0.009" "-0.005"
                                     "insulina"
               "-0.0106"
## [1] "44"
                                         "-0.0015"
## [4] "antihipertensivo"
## [1] "43"
                        "-0.0168"
                                            "-0.0063"
## [4] "procedure_type_new"
## [1] "42"
            "-0.0196"
                                  "-0.0027"
                                                   "heart_disease"
                               "-4e-04"
## [1] "41"
                  "-0.02"
                                             "antifungico"
                  "-0.0229" "-0.003"
## [1] "40"
                                                  "cintilografia"
## [1] "39"
                            "-0.025"
## [3] "-0.002"
                             "cateter_venoso_central"
## [1] "38"
                "-0.0279" "-0.0029" "tomografia"
## [1] "38"
                  "-0.0279"
                               "0.0025"
                                            "reop_type_1"
                  "-0.0279" "0.0025"
## [1] "38"
                                              "cied_final_1"
## [1] "37"
                                              "-0.0021"
                   "-0.03"
## [4] "comorbidities_count"
                                               "ecocardiograma"
## [1] "37"
                    "-0.03" "0.0043"
               "-0.0317" "-0.0016" "dva"
## [1] "36"
                 "-0.0359" "-0.0042" "diuretico"
## [1] "35"
                     "-0.0405" "-0.0047"
## [1] "34"
                                                  "antiarritmico"
## [1] "33"
                       "-0.0425"
                                                  "-0.002"
## [4] "proced_invasivos_qtde"
## [1] "33"
                         "-0.0425"
                                            "0.0034"
## [4] "exames_imagem_qtde"
            "-0.0442" "-0.0017" "diabetes"
## [1] "32"
                 "-0.0464" "-0.0022" "ressonancia"
## [1] "31"
                   "-0.0464" "0.0026"
## [1] "31"
                                                   "renal_failure"
                "-0.0464" "0.0057" "citologia"
## [1] "31"
                   "-0.052" "-0.0056" "hemodialysis"
## [1] "30"
```

"0.002"

"-0.05"

"-0.0514" "-0.0014" "nyha_basal"

[1] "29"

[1] "28"

[4] "cied_final_group_1"

```
## [1] "27"
                     "-0.0518"
                               "-4e-04"
## [4] "equipe_multiprof"
           "-0.0518" "0.0042" "af"
## [1] "27"
## [1] "26"
             "-0.0525" "-7e-04" "holter"
## [1] "26"
                         "-0.0525"
                                              "0.0058"
## [4] "meds_cardiovasc_qtde"
## [1] "25"
                             "-0.0668"
## [3] "-0.0143"
                             "underlying_heart_disease"
                "-0.0668" "0.0089" "espironolactona"
## [1] "25"
            ## [1] "25"
## [1] "24"
## [1] "23"
                "-0.0732" "6e-04" "laboratorio"
## [1] "22"
                          "-0.0801"
                                               "-0.0069"
## [1] "21"
## [4] "metodos_graficos_qtde"
## [1] "20" "-0.0823" "-0.0022"
## [4] "classe_meds_qtde"
             "-0.0821"
## [1] "19"
                                              "2e-04"
## [4] "meds_antimicrobianos"
## [1] "19" "-0.0821"
                             "0.0231"
                                          "angiografia"
                                         "year_adm_t0"
## [1] "19"
                 "-0.0821" "0.0079"
                  "-0.0811" "0.001"
"-0.0811" "0.0027"
                    "-0.0811" "0.001" "vasodilatador" "-0.0811" "0.0027" "psicofarmacos" "educatio:
## [1] "18"
## [1] "18"
## [1] "18"
                                                    "education_level"
                           "-0.0811"
## [1] "18"
## [3] "0.0246"
                            "admission_pre_t0_count"
## [1] "18"
                            "-0.0811"
## [3] "0.002"
                            "analises_clinicas_qtde"
             "-0.088" "-0.0069" "hospital_stay"
## [1] "17"
## [1] "17" "-0.088" "0.025" "age"
selection_results %>%
 rename(Features = `Number of Features`) %>%
 niceFormatting(digits = 4, label = 1)
```

Table 1:

			OTT ATTO	OU AUG GUE	TO A LATIO	T + ATIOT
Tested Feature	Dropped	Features	CV AUC	CV AUC Std Error	Total AUC Loss	Instant AUC Loss
None	TRUE	65	0.7528	0.0308	0.0000	0.0000
All unimportant	TRUE	47	0.7568	0.0310	-0.0041	-0.0041
procedure_type_1	TRUE	46	0.7568	0.0310	-0.0041	0.0000
insulina	TRUE	45	0.7618	0.0319	-0.0090	-0.0050
antihipertensivo	TRUE	44	0.7633	0.0326	-0.0106	-0.0015
procedure_type_new	TRUE	43	0.7696	0.0314	-0.0168	-0.0063
heart_disease	TRUE	42	0.7723	0.0322	-0.0196	-0.0027
antifungico	TRUE	41	0.7727	0.0324	-0.0200	-0.0004
cintilografia	TRUE	40	0.7757	0.0332	-0.0229	-0.0030
$cateter_venoso_central$	TRUE	39	0.7778	0.0325	-0.0250	-0.0020
tomografia	TRUE	38	0.7807	0.0317	-0.0279	-0.0029
reop_type_1	FALSE	37	0.7782	0.0312	-0.0279	0.0025
cied_final_1	FALSE	37	0.7782	0.0311	-0.0279	0.0025
$comorbidities_count$	TRUE	37	0.7828	0.0320	-0.0300	-0.0021
ecocardiograma	FALSE	36	0.7785	0.0305	-0.0300	0.0043
dva	TRUE	36	0.7844	0.0313	-0.0317	-0.0016
diuretico	TRUE	35	0.7887	0.0320	-0.0359	-0.0042
antiarritmico	TRUE	34	0.7933	0.0311	-0.0405	-0.0047
proced_invasivos_qtde	TRUE	33	0.7953	0.0317	-0.0425	-0.0020
$exames_imagem_qtde$	FALSE	32	0.7919	0.0334	-0.0425	0.0034
diabetes	TRUE	32	0.7970	0.0308	-0.0442	-0.0017
ressonancia	TRUE	31	0.7992	0.0313	-0.0464	-0.0022

Table 1: (continued)

Tested Feature	Dropped	Features	CV AUC	CV AUC Std Error	Total AUC Loss	Instant AUC Loss
renal_failure	FALSE	30	0.7966	0.0312	-0.0464	0.0026
citologia	FALSE	30	0.7935	0.0322	-0.0464	0.0057
hemodialysis	TRUE	30	0.8047	0.0308	-0.0520	-0.0056
$cied_final_group_1$	TRUE	29	0.8028	0.0317	-0.0500	0.0020
nyha_basal	TRUE	28	0.8042	0.0305	-0.0514	-0.0014
equipe_multiprof	TRUE	27	0.8046	0.0310	-0.0518	-0.0004
af	FALSE	26	0.8004	0.0309	-0.0518	0.0042
holter	TRUE	26	0.8053	0.0305	-0.0525	-0.0007
$meds_cardiovasc_qtde$	FALSE	25	0.7995	0.0292	-0.0525	0.0058
underlying_heart_disease	TRUE	25	0.8196	0.0268	-0.0668	-0.0143
espironolactona	FALSE	24	0.8107	0.0259	-0.0668	0.0089
bic	FALSE	24	0.8156	0.0270	-0.0668	0.0041
cultura	TRUE	24	0.8195	0.0279	-0.0667	0.0001
icu_t0	TRUE	23	0.8267	0.0252	-0.0739	-0.0071
laboratorio	TRUE	22	0.8260	0.0263	-0.0732	0.0006
metodos_graficos_qtde	TRUE	21	0.8329	0.0219	-0.0801	-0.0069
$classe_meds_qtde$	TRUE	20	0.8351	0.0263	-0.0823	-0.0022
$meds_antimicrobianos$	TRUE	19	0.8349	0.0253	-0.0821	0.0002
angiografia	FALSE	18	0.8118	0.0226	-0.0821	0.0231
year_adm_t0	FALSE	18	0.8270	0.0207	-0.0821	0.0079
vasodilatador	TRUE	18	0.8339	0.0287	-0.0811	0.0010
psicofarmacos	FALSE	17	0.8312	0.0300	-0.0811	0.0027
education_level	FALSE	17	0.8156	0.0261	-0.0811	0.0182
$admission_pre_t0_count$	FALSE	17	0.8093	0.0262	-0.0811	0.0246
analises_clinicas_qtde	FALSE	17	0.8319	0.0276	-0.0811	0.0020
hospital_stay	TRUE	17	0.8408	0.0278	-0.0880	-0.0069
age	FALSE	16	0.8158	0.0264	-0.0880	0.0250

```
} else {
  selected_features <- current_features</pre>
}
con <- file(sprintf('./auxiliar/final_model/selected_features/%s.yaml', outcome_column), "w")</pre>
write_yaml(selected_features, con)
close(con)
feature_selected_model <- model_fit_wf(df_train, selected_features,</pre>
                                        outcome_column, hyperparameters)
sprintf('Selected Model CV Train AUC: %.3f', feature_selected_model$cv_auc)
## [1] "Selected Model CV Train AUC: 0.841"
sprintf('Selected Model Test AUC: %.3f', feature_selected_model$auc)
## [1] "Selected Model Test AUC: 0.763"
 selection_results <- selection_results %>%
 filter(`Number of Features` < length(features)) %>%
  mutate(`Features Removed` = length(features) - `Number of Features`,
         `CV AUC Low` = `CV AUC` - `CV AUC Std Error`,
         `CV AUC High` = `CV AUC` + `CV AUC Std Error`)
selection_results %>%
```

if (exists('last_feature_dropped')) {

selected_features <- c(current_features, last_feature_droped)</pre>

Hyperparameter tuning

Selected features:

```
gluedown::md_order(selected_features, seq = TRUE, pad = TRUE)
```

- 1. age
- $2. \ admission_pre_t0_count$
- 3. year_adm_t0
- $4. \ \ education_level$
- 5. angiografia
- 6. psicofarmacos
- 7. analises_clinicas_qtde
- 8. bic
- 9. meds_cardiovasc_qtde
- $10. \text{ renal_failure}$
- $11.\ espironolactona$
- $12. exames_imagem_qtde$
- 13. citologia
- 14. af
- 15. ecocardiograma
- $16.~{\rm cied_final_1}$
- 17. reop_type_1

Standard

```
lightgbm_recipe <-</pre>
  recipe(formula = sprintf("%s ~ .", outcome_column) %>% as.formula,
         data = df_train %>% select(all_of(c(selected_features, outcome_column)))) %>%
  step_novel(all_nominal_predictors()) %>%
  step_unknown(all_nominal_predictors()) %>%
  step_other(all_nominal_predictors(), threshold = 0.05, other = ".merged") %>%
  step_dummy(all_nominal_predictors())
lightgbm_tuning <- function(recipe) {</pre>
  lightgbm_spec <- boost_tree(</pre>
   trees = tune(),
    \min_n = tune(),
   tree_depth = tune(),
    learn_rate = tune(),
    # loss_reduction = tune(),
    sample_size = 1.0
  ) %>%
    set_engine("lightgbm") %>%
    set_mode("classification")
  lightgbm_grid <- grid_latin_hypercube(</pre>
    trees(range = c(50L, 300L)),
    min_n(),
    tree_depth(),
    learn_rate(range = c(0.01, 0.2), trans = NULL),
    # loss_reduction(),
    size = grid_size
 lightgbm_workflow <-
    workflow() %>%
    add_recipe(recipe) %>%
    add_model(lightgbm_spec)
  lightgbm_tune <-
    lightgbm_workflow %>%
    tune_grid(resamples = df_folds,
              grid = lightgbm_grid)
  lightgbm_tune %>%
    show_best("roc_auc") %>%
    niceFormatting(digits = 5, label = 4)
  best_lightgbm <- lightgbm_tune %>%
    select_best("roc_auc")
  autoplot(lightgbm_tune, metric = "roc_auc")
  final_lightgbm_workflow <-</pre>
    lightgbm_workflow %>%
    finalize_workflow(best_lightgbm)
  last_lightgbm_fit <-</pre>
    final_lightgbm_workflow %>%
    last_fit(df_split)
  final_lightgbm_fit <- extract_workflow(last_lightgbm_fit)</pre>
```



```
## [1] "Optimal Threshold: 0.00"
## Confusion Matrix and Statistics
##
##
       reference
##
  data
           0
                1
##
      0 3644
      1 1062
               17
##
##
##
                  Accuracy: 0.774
##
                    95% CI: (0.7618, 0.7858)
       No Information Rate: 0.9949
##
       P-Value [Acc > NIR] : 1
##
##
##
                     Kappa : 0.0211
##
    Mcnemar's Test P-Value : <2e-16
##
##
```

```
##
               Sensitivity: 0.77433
##
               Specificity: 0.70833
##
            Pos Pred Value : 0.99808
            Neg Pred Value: 0.01576
                Prevalence: 0.99493
##
            Detection Rate: 0.77040
##
##
      Detection Prevalence: 0.77188
##
         Balanced Accuracy: 0.74133
##
##
          'Positive' Class: 0
##
final_lightgbm_fit <- standard_results$fit</pre>
lightgbm_parameters <- standard_results$parameters</pre>
saveRDS(
  lightgbm_parameters,
  file = sprintf(
    "./auxiliar/final_model/hyperparameters/lightgbm_%s.rds",
    outcome_column
  )
)
# Save the final model. We need it for the calculator
lgb.save(
  parsnip::extract_fit_engine(final_lightgbm_fit),
  sprintf("./results/%s/final_model.txt", outcome_column)
)
saveRDS(final_lightgbm_fit,
        sprintf("./results/%s/final_model_wf.rds", outcome_column))
```

SHAP values


```
Feature value Low High
```

```
shap <- shap.prep(lightgbm_model, X_train = matrix_test)

for (x in shap.importance(shap, names_only = TRUE)[1:n_plots]) {
   p <- shap.plot.dependence(
        shap,
        x = x,
        color_feature = "auto",
        smooth = FALSE,
        jitter_width = 0.01,
        alpha = 0.3
   ) +
        labs(title = x)
   print(p)
}</pre>
```


Warning: Removed 822 rows containing missing values (geom_point).

education_level_X999

Warning: Removed 1055 rows containing missing values (geom_point).


```
## $num_iterations
```

##

\$learning_rate

^{## [1] 284}

```
## [1] 0.02775186
##
## $max_depth
## [1] 1
##
## $feature_fraction
## [1] 1
##
## $min_data_in_leaf
## [1] 21
##
## $min_gain_to_split
##
## $bagging_fraction
## [1] 1
##
## $num_class
## [1] 1
##
## $objective
## [1] "binary"
##
## $num_threads
## $num_threads$num_threads
## [1] 0
##
## $seed
## [1] 87212
##
## $deterministic
## [1] TRUE
##
## $verbose
## [1] -1
##
## $metric
## list()
## $interaction_constraints
## list()
##
## $feature_pre_filter
## [1] FALSE
```

Models Comparison

```
x = `Model (features)`,
y = AUC,
ymin = `Lower Limit`,
ymax = `Upper Limit`
)) +
geom_point() +
geom_errorbar() +
labs(title = outcome_column) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

death_30days

saveRDS(df_auc, sprintf("./auxiliar/final_model/performance/%s.RData", outcome_column))