Learning from Data 5. Classification: Performance Metrics

© Prakash Ishwar Spring 2017

Classification

- Supervised (preditive) learning: given examples with labels, predict labels for all unseen examples
 - Classification:
 - label = category,
 - $y \in \mathcal{Y} = \{1, \dots, m\}, m = \text{number of classes}$
 - $\ell(\mathbf{x}, y, h) = 1(h(\mathbf{x}) \neq y)$, Risk = $P(Y \neq h(\mathbf{X})) = P(\text{Error})$

x = facial geometry featuresy = gender label

Confusion Matrix or Contingency Table

		Truth			
		y = 1		y = j	 y = m
Decision	$\widehat{y} = h(\mathbf{x}) = 1$	\widehat{n}_{11}		\widehat{n}_{1j}	 \widehat{n}_{1m}
	:	:		i	:
	$\widehat{y} = h(\mathbf{x}) = i$	\widehat{n}_{i1}		\widehat{n}_{ij}	 \widehat{n}_{im}
	:	:		÷	:
	$\widehat{y} = h(\mathbf{x}) = m$	\widehat{n}_{m1}		\widehat{n}_{mj}	 \widehat{n}_{mm}

 $\hat{n}_{ij} = \text{count of the total number of class } j \text{ samples which are classified by } h(\mathbf{x})$ as class i.

- $n = \text{total number of samples} = \sum_{i=1}^{m} \sum_{j=1}^{m} \hat{n}_{ij}$
- Correct Classification Rate (CCR) = $\sum_{i=1}^{m} \hat{n}_{ii}/n$

- Class 0 = Negative or Null Hypothesis
- Class 1 = Positive or Alternative Hypothesis
- n = total number of samples
- $n_+ = \text{true}$ total number of positives
- $n_- = \text{true}$ total number of negatives
- $\hat{n}_+ =$ decided total number of positives
- $\hat{n}_{-} = \frac{\text{decided}}{\text{decided}}$ total number of negatives
- T = True, F = False, P = Positive, N = Negative, R = Rate
- Error Rates = normalized error counts = empirical estimates of conditional error probabilities
- TP = count of True Positives, TN, FP, FN similar

- Prevalence = n_+/n
- TPR = True Positive Rate = Sensitivity = Recall = Hit Rate = Detection Rate = "Power" of decision rule = TP/n_+ = estimate of: $P(h(\mathbf{x}) = 1|Y = 1)$
- FPR = False Positive Rate = False Alarm (FA) Rate = Type I Error Rate = "Size" of decision rule = FP/n_{\perp} = estimate of: $P(h(\mathbf{x}) = 1|Y = 0)$
 - Detection, False Alarm: used in Communications, Radar
 - When prevalence is low (rare event), FPR will be very small.
 Then FP is more meaningful than FPR
- Positive Likelihood Ratio (LR+): TPR/FPR
- Negative Likelihood Ratio (LR-): FNR/TNR
- Diagnostic Odds Ratio (DOR): LR+/LR-

		Tru	uth		
		y = 1	y = 0	Row sums	
Decision	$\widehat{y} = h(\mathbf{x}) = 1$	TP	FP	$\widehat{n}_{+} = \mathrm{TP} + \mathrm{FP}$	Decided total
Deci	$\widehat{y} = h(\mathbf{x}) = 0$	FN	TN	$\widehat{n}_{-} = \text{FN} + \text{TN}$	numbers
	Column sums:	$n_+ = \mathrm{TP} + \mathrm{FN}$	$n_{-} = \text{FP} + \text{TN}$	n = TP + FP + FN + TN	
True total numbers					

		Truth		
	_	y = 1	y = 0	
Decision	$\widehat{y} = h(\mathbf{x}) = 1$	$TP/n_{+} = TPR = sensitivity = recall$	$FP/n_{-} = FPR = type I$	
Deci	$\widehat{y} = h(\mathbf{x}) = 0$	$FN/n_{+} = FNR = miss rate = type II$	$TN/n_{-} = TNR = specificity$	

		Truth		
		y = 1	y = 0	
Decision	$\widehat{y} = h(\mathbf{x}) = 1$	$TP/\widehat{n}_{+} = precision = PPV$	$FP/\widehat{n}_{+} = FDR$	
Deci	$\widehat{y} = h(\mathbf{x}) = 0$	$FN/\widehat{n}_{-} = FOR$	$TN/\widehat{n} = NPV$	

PPV = Positive Predictive Value, FDR = False Discovery Rate, FOR = False Omission Rate, NPV = Negative Predictive Value

- Precision = TP/\hat{n}_+ = estimate of: $P(Y = 1 | h(\mathbf{x}) = 1)$
 - focuses on positives
 - useful when notion of negative unclear
 - used in information retrieval systems (used in conjunction with recall)

 F-score or F₁-score combines precision (P) and recall (R) into a single statistic via their harmonic mean:

$$F_1^{-1} = \frac{1}{2}(P^{-1} + R^{-1}) \text{ or } F_1 = 2PR/(P + R)$$

- widely used in information retrieval systems
- Why harmonic mean instead of arithmetic mean?
 Consider following example:

•
$$P = 10^{-4}$$
, $R \approx 1 \Rightarrow \frac{P+R}{2} \approx 0.5$, but $F_1 = \frac{2 \times 10^{-4} \times 1}{1+10^{-4}} \approx 0.002$

Generalization of rates to multiple classes

macro-averaging:

$$\frac{1}{m}\sum_{j=1}^{m} \text{Rate}(j),$$

where Rate(j) = error rate from class j's binary contingency table where class j is positive and all other classes together are negative

 micro-averaging: pool together counts from the binary contingency tables of all classes and then compute rate

Generalization of rates to multiple classes

Class 1 Class
$$m$$

$$y = 1 \quad y \neq 1 \\
\widehat{y} = 1 \quad \text{TP}_1 \quad \text{FP}_1 \quad \widehat{y} = m \quad \text{TP}_m \quad \text{FP}_m \\
\widehat{y} \neq 1 \quad \text{FN}_1 \quad \text{TN}_1 \quad \widehat{y} \neq m \quad \text{FN}_m \quad \text{TN}_m$$

Pooled

$$\frac{y}{\widehat{y}} \qquad \frac{\text{not } y}{\sum_{j=1}^{m} \text{TP}_{j}} \qquad \frac{\sum_{j=1}^{m} \text{FP}_{j}}{\text{not } \widehat{y}} \qquad \frac{\sum_{j=1}^{m} \text{FN}_{j}}{\sum_{j=1}^{m} \text{TN}_{j}}$$

Illustration of difference between macro- and micro- averaging (for precision). Macro-averaged precision = $\frac{1}{m} \sum_{j=1}^{m} \frac{\mathrm{TP}_{j}}{\mathrm{TP}_{j} + \mathrm{FP}_{j}}$. Micro-averaged precision = $\frac{\sum_{j=1}^{M} \mathrm{TP}_{j}}{\sum_{j=1}^{m} (\mathrm{TP}_{j} + \mathrm{FP}_{j})}$.

Confidence Intervals

- Error Rates = normalized error counts = empirical estimates of conditional error probabilities.
- It is considered good practice to report the estimate of an error rate together with a 1, 2, or 3 sigma confidence interval
- Example: TPR = TP/ n_+ = estimate of: $P_D = P(h(\mathbf{x}) = 1|Y = 1)$
 - Now, $\text{TPR} = \frac{1}{n_+} \sum_{j:y_j=1} \widehat{Y}_j$ is a random variable with mean P_D and variance $\frac{1}{n_+} P_D (1 P_D)$ since \widehat{Y}_j 's are IID Bernoulli random variables with mean P_D .
 - An estimate of P_D is given by TPR
 - An estimate of the standard deviation of TPR is given by $\hat{\sigma}_{\text{TPR}} = \sqrt{\frac{\text{TPR}(1-\text{TPR})}{n_+}}$
 - Thus we report the estimate of P_D as: TPR $\pm k\hat{\sigma}_{\text{TPR}}$, where k = 1 for 68% confidence, k = 2 for 95% confidence and k = 3 for 99% confidence

- Associated with a decision rule h(x) are its
 - Detection probability: $P_D(h) = P(h(\mathbf{X}) = 1 | Y = 1)$ and
 - False alarm probability: $P_{FA}(h) = P(h(\mathbf{X}) = 1|Y = 0)$
- The overall error probability can be expressed in terms of these two numbers:

$$P_{\text{error}} = P(h(\mathbf{X}) \neq Y)$$

= $P(Y = 0)P_{FA}(h) + P(Y = 1)(1 - P_D(h))$

• Associated with a family of decision rules: $\mathcal{H} = \{h\}$ is the set $\{(P_{FA}(h), P_D(h)): h \in \mathcal{H}\}$ of pairs of detection and false-alarm probabilities of these decision rules

Example:

$$\mathcal{H}_{\text{trivial}} = \{h_0(\mathbf{x}) \equiv 0, h_1(\mathbf{x}) \equiv 1\}$$

the family of trivial decision rules:

- Always decide zero irrespective of the value of \mathbf{x} : $h_0(\mathbf{x}) = 0 \ \forall \mathbf{x}, P_{FA}(h_0) = P_D(h_0) = 0.$
- Always decide one irrespective of the value of \mathbf{x} : $h_1(\mathbf{x}) = 1 \ \forall \mathbf{x}, P_{FA}(h_1) = P_D(h_1) = 1.$

- Randomized decision rules:
 - Given: a family of decision rules $\mathcal{H} = \{h\}$
 - Randomized decision rule: randomly select a rule H from \mathcal{H} according to some distribution p(h)
- Detection probability = $E_H[P_D(H)]$, $H \sim p(h)$
- False alarm probability = $E_H[P_{FA}(H)]$, $H \sim p(h)$
- Example: For $\mathcal{H}_{trivial} = \{h_0(\mathbf{x}) \equiv 0, h_1(\mathbf{x}) \equiv 1\},\$
 - The set of all randomized decision rules of this family can be described as $h_Z(\mathbf{x})$, where $P(Z=1)=\lambda, P(Z=0)=1-\lambda$, and $\lambda \in [0,1]$.
 - $P_{FA}(h_Z) = \lambda P_{FA}(h_1) + (1 \lambda) P_{FA}(h_0) = \lambda.$
 - $P_{D}(h_{Z}) = \lambda P_{D}(h_{1}) + (1 \lambda)P_{D}(h_{0}) = \lambda.$
 - As λ ranges from 0 to 1, the pair $(P_{FA}, P_D) = (\lambda, \lambda)$ traces out a straight line from (0,0) and to (1,1)

• Convex hull of $\{(P_{FA}(h), P_D(h)): h \in \mathcal{H} \cup \mathcal{H}_{trivial}\}$: is the set of (P_{FA}, P_D) pairs of all randomized decision rules of the family (including the trivial decision rules)

```
conv(\{(P_{FA}(h), P_D(h)): h \in \mathcal{H} \cup \mathcal{H}_{trivial}\})
= \{(E[P_{FA}(H)], E[P_D(H)]): H \text{ a RV over} \mathcal{H} \cup \mathcal{H}_{trivial}\}
```

- i.,e., the set of (P_{FA}, P_D) pairs obtained by taking all possible averages of (P_{FA}, P_D) pairs of the rules in the family (including the trivial decision rules)
- ROC curve (terminology from Radar): is the upper envelope of the convex hull

- A classifier that can perfectly separate positives from negatives (if one exists) will have an ROC curve which "hugs" the left-vertical and top horizontal axes (red curve in next figure). Such a classifier may not exist.
- The closer that an ROC curve of a family of classifiers is to "hugging" the ROC curve of the zero-error classifier, the better it is.
- The overall quality of an ROC curve is sometimes summarized as a single number:
 - Area Under the Curve (AUC): higher is better. Maximum is 1.
 - Equal Error Rate (EER) or Cross Over Rate: value of P_{FA} when $1 P_D = P_{FA}$. Lower is better. Minimum is zero.

- Some properties of any ROC curve:
 - Always includes the points (0,0) and (1,1)
 - Always above the ROC curve of the trivial rules where $P_D = P_{FA}$
 - Shape of ROC curve is always concave: the chord joining any two points on the ROC curve is never above the ROC curve
 - ROC curve is always continuous, but need not be differentiable: e.g., can have consecutive straight line segments of different slopes
- In practice: (P_{FA}, P_D) estimated by (FPR, TPR)
 - i.e., empirical estimates of false-alarm and detection probabilities of different rules in the family
 - ideally, one should also show confidence bands in both directions around each point: (FPR $\pm k\hat{\sigma}_{\text{FPR}}$,TPR $\pm k\hat{\sigma}_{\text{TPR}}$) where k = 1 for 68% confidence, k = 2 for 95% confidence and k = 3 for 99% confidence

Likelihood Ratio Tests and ROC

Likelihood Ratio (LR):

$$LR(\mathbf{x}) = \frac{p(\mathbf{x}|y=1)}{p(\mathbf{x}|y=0)}$$

• Randomized Likelihood Ratio Test (LRT) with threshold η and randomization probability γ :

$$h_{LRT}(\mathbf{x}) = \begin{cases} 1 \text{ with probability 1} & \text{if } LR(\mathbf{x}) > \eta \\ 1 \text{ with probability } \gamma & \text{if } LR(\mathbf{x}) = \eta \\ 0 \text{ with probability 1} & \text{if } LR(\mathbf{x}) < \eta \end{cases}$$

Likelihood Ratio Tests and ROC

- The family of randomized LRTs is optimal in the Neyman-Pearson sense:
 - Any LRT_{η,γ} with parameters η,γ is the most powerful test of its size
 - Meaning: if any decision rule h has a better (lower) false alarm probability than then $LRT_{\eta,\gamma}$ it must have a worse (lower) detection probability:
 - Formally, if size = $P_{FA}(h) \le P_{FA}(LRT_{\eta,\gamma})$ then power = $P_D(h) \le P_D(LRT_{\eta,\gamma})$
- If $\gamma=1$ and $\eta\to\infty$, then $LRT_{\eta,\gamma}\to h_1$ the trivial "always decide class one" rule
- If $\gamma=0$ and $\eta\to 0$, then $LRT_{\eta,\gamma}\to h_0$ the trivial "always decide class zero" rule
- If the ROC curve of the family of LRTs is differentiable at a point, then its slope at that point = the LRT-threshold = η

Precision-Recall Curve

- Similar in concept to ROC, except it is a plot of precision versus recall (see figure).
- Here, "hugging" the top right is the best we can do.
- This curve can be summarized by a single number:
 - The mean precision (averaged over recall values) which approximates the area under the curve.
 - Alternatively, one can quote the precision for a recall, e.g., when the first K = 10 positive entries have been correctly recalled. This is called average precision at K score. Used in evaluating information retrieval systems.

Precision-Recall Curve

log-loss, perplexity

Consider the following 2 choices for the posterior pmf:

- Both will produce the same MAP decision (2 in this example), but clearly model $p(y|\mathbf{x}, \theta_2)$ is more "decisive" than model $p(y|\mathbf{x}, \theta_1)$ for this \mathbf{x}
- Need a more nuanced test sample performance measure than CCR to tease-apart the "decisiveness" of different models/estimates of the posterior pmf of the label given the feature

log-loss, perplexity

logloss =
$$-\frac{1}{n_{\text{test}}} \sum_{j=1}^{n_{\text{test}}} \log_b p(y_j | \mathbf{x}_j, \theta)$$
, typically, $b = 2$ for "bits".

perplexity =
$$b^{\text{logloss}}$$

• If test data $(X_1, Y_1), ..., (X_{n_{\text{test}}}, Y_{n_{\text{test}}})$ are \sim IID samples from a joint distribution q(x, y) then, as $n_{\text{test}} \to \infty$, by the law of large numbers, the logloss will converge to:

logloss
$$\rightarrow E_{(\mathbf{X},Y)\sim q(\mathbf{x},y)}[-\log_b p(Y|\mathbf{X},\theta)]$$

• This limiting logloss can be shown to be the sum of the following 2 nonnegative terms:

$$E_{(\mathbf{X},Y)\sim q(\mathbf{x},y)}\left[-\log_b p(Y|\mathbf{X},\theta)\right] = \underbrace{E_{(\mathbf{X},Y)\sim q(\mathbf{x},y)}\left[-\log_b q(Y|\mathbf{X})\right]}_{E_{(\mathbf{X},Y)\sim q(\mathbf{x},y)}\left[-\log_b q(Y|\mathbf{X})\right]} + \underbrace{E_{\mathbf{X}\sim q(\mathbf{x})}\left[D(q(y|\mathbf{X})||p(y|\mathbf{X},\theta)\right]}_{E_{(\mathbf{X},Y)\sim q(\mathbf{x},y)}\left[-\log_b q(Y|\mathbf{X})\right]}_{E_{(\mathbf{X},Y)\sim q(\mathbf{x},y)}\left[-\log_b q(Y|\mathbf{X})\right]}$$

Conditional entropy of label given feature Conditional divergence between true posterior and model

• See Problem 2.4 in Assignment 2 for definition of divergence D(q||p) between 2 pmfs