Árbol de Decisión

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Atributos de Separación

Modelo: Árbol de Decisión

Datos de Entrenamiento

Árbol de Decisión

El árbol tiene tres tipos de nodos:

- 1. Un nodo raíz que no tiene arcos entrantes y tiene arcos salientes.
- 2. Nodos internos, cada uno de los cuales tiene exactamente un arco entrante y dos o más arcos salientes.
- 3. Nodos hoja o terminales, cada uno de los cuales tiene exactamente un arco entrante.
- A cada nodo de hoja se le asigna una etiqueta de clase.
- Los nodos no terminales, que incluyen la raíz y otros nodos internos, contienen tests sobre los atributos para separar los ejemplos que tienen valores diferentes para esos atributos.
- El árbol de decisión fragmenta el dataset de manera recursiva hasta asignar los ejemplos a una clase.

Otro Ejemplo

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

¡Puede existir más de un árbol que se ajuste a los datos!

Clasificando con un árbol de decisión

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class	
11	No	Small	55K	?	
12	Yes	Medium	80K	?	
13	Yes	Large	110K	7	
14	No	Small	95K	?	
15	No	Large	67K	?	

Test Set

Aplicamos el modelo

Comenzamos en la raíz

Dato de Evaluación

Refund		Taxable Income	Cheat
No	Married	80K	?

Clasificando con un árbol de decisión

Muchos algoritmos

CART

•ID3, C4.5 (J48 en Weka)

•SLIQ, SPRINT

Construyendo un Árbol de Decisión

- Estrategia: Top down (greedy) Divide y vencerás recursiva
 - Primero: seleccionar un atributo para el nodo raíz y crear rama para cada valor posible del atributo.
 - Luego: dividir las instancias del dataset en subconjuntos, uno para cada rama que se extiende desde el nodo.
 - Por último: repetir de forma recursiva para cada rama, utilizando sólo las instancias que llegan a ésta.
- Detenerse cuando todas las instancias del nodo sean de la misma clase.

Un árbol de decisión hace cortes perpendiculares a los ejes

Figure 3.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.

El dataset Weather

Condiciones para salir a jugar tenis:

Table 4.6	The weather data with identification codes.					
ID code	Outlook	Temperature	Humidity	Windy	Play	
а	sunny	hot	high	false	no	
b	sunny	hot	high	true	no	
С	overcast	hot	high	false	yes	
d	rainy	mild	high	false	yes	
e	rainy	cool	normal	false	yes	
f	rainy	cool	normal	true	no	
g	overcast	cool	normal	true	yes	
h	sunny	mild	high	false	no	
i	sunny	cool	normal	false	yes	
i	rainy	mild	normal	false	yes	
k	sunny	mild	normal	true	yes	
I	overcast	mild	high	true	yes	
m	overcast	hot	normal	false	yes	
n	rainy	mild	high	true	no	

¿Cómo escoger atributos?

Criterio para escoger el mejor atributo

- . ¿Qué atributo escojo?
 - La idea es crear el árbol más pequeño posible.
 - Heurística: escoge el atributo que produce nodos lo más "puros" posible.
- El criterio más popular de pureza: information gain
 - Information gain crece cuando crece la pureza promedio de los subconjuntos.
- Estrategia: escoger el atributo que maximiza el valor de information gain.

Computando la Información

La información se puede medir en bits

- **Entropía**: información promedio requerida para codificar un evento dado una distribución de probabilidad (viene de la teoría de información de Claude Shannon).
- La entropía nos entrega la información esperada en bits (puede ser una fracción).

Fórmula para calcular la entropía:

$$entropy(p_1,p_2,\ldots,p_n) = -p_1log_2p_1 - p_2log_2p_2\ldots - p_nlog_2p_n$$

$$\mathrm{H}(X) = -\sum_{i=1}^n \mathrm{P}(x_i) \log_b \mathrm{P}(x_i)$$

Entropía para dos Clases con distintas Proporciones

La entropía toma su máximo valor cuando p=0.5 (máxima incerteza).

Ejemplo: atributo outlook

• Outlook = Sunny :

```
\inf([2,3]) = \exp(2/5,3/5) = -2/5 \log (2/5) - 3/5 \log (3/5) = 0.971 \text{ bits}
```

• Outlook = Overcast :

```
info([4,0]) = entropy(1,0) = -1 log (1) - 0 log (0) = 0 bits
```

Nota: esto normalmente queda indefinido

• Outlook = Rainy :

```
\inf([2,3]) = \exp(3/5,2/5) = -3/5 \log(3/5) - 2/5 \log(2/5) = 0.971 \text{ bits}
```

Información esperada para el atributo

```
info([3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 bits
```

Calculando information gain

 Information gain: Información antes del split – información después del split

$$Gain(S, D) = H(S) - \sum_{V \in D} \frac{|V|}{|S|} H(V)$$

gain(Outlook) = info([9,5]) - info([2,3],[4,0],[3,2])
= 0.940 - 0.693
= 0.247 bits

Information gain para los atributos de los datos de weather:

```
gain(Outlook) = 0.247 bits

gain(Temperature) = 0.029 bits

gain(Humidity) = 0.152 bits

gain(Windy) = 0.048 bits
```

Seguimos particionando

gain(Temperature) = 0.571 bits gain(Humidity) = 0.971 bitsgain(Windy) = 0.020 bits

Árbol de Decisión Resultante

- Nota: no todas las hojas tienen que ser puras; a veces instancias idénticas tienen clases diferentes.
 - → El splitting termina cuando los datos no se pueden seguir particionando.
- Se puede exigir un mínimo número de instancias en la hoja para evitar sobreajuste.
- Puede predecir probabilidades usando las frecuencias relativas de las clases en la hoja.

Otras cosas sobre árboles

- Information gain tiende a favorecer atributos de muchas categorías por su capacidad de fragmentar el dataset en muchas bifurcaciones.
- Una solución es usar una métrica llamada Gain ratio.
- Gain ratio toma en cuenta el número y el tamaño de las ramas (respecto a la cantidad de ejemplos que alcanzan) al elegir un atributo.
- Los atributos numéricos son discretizados, escogiendo la partición que maximice information gain (o gain ratio).
- Existen otras métricas para medir pureza distintas a entropía como el índice de Gini =1-Pr(Sacar dos ejemplos de la misma clase).
- Para evitar sobre-ajuste los árboles pueden ser podados (se eliminan ramas que alcanzan muy pocos ejemplos).
- La gran ventaja de los árboles es la interpretabilidad.