Herramientas Computacionales 2016661

Derivadas y Raíces

Ricardo Amézquita

Departamento de Física Universidad Nacional de Colombia Sede Bogotá Derivadas numéricas

2 Métodos numéricos para encontrar raíces

Derivadas numéricas

Calculo numérico de la primera derivada de una función

$$f(x_{0} + \Delta x) = \text{Taylor}(f(x_{0} + \Delta x), x_{0})$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_{0})}{n!} (x_{0} + \Delta x - x_{0})^{n}$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_{0})}{n!} \Delta x^{n}$$

$$= f(x_{0}) + f'(x_{0}) \Delta x + O(\Delta x^{2})$$

Si se ignoran los términos de orden superior a 2, se encuentra que:

$$f'(x_o) \simeq \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$\epsilon \simeq \frac{f''(x_0)}{2} \times \Delta x$$

Primera derivada usando diferencia central

$$f\left(x_0 + \frac{\Delta x}{2}\right) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \left(\frac{\Delta x}{2}\right)^n$$

$$f\left(x_0 - \frac{\Delta x}{2}\right) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \left(-\frac{\Delta x}{2}\right)^n$$

$$f\left(x_{0} + \frac{\Delta x}{2}\right) - f\left(x_{0} - \frac{\Delta x}{2}\right) = \sum \frac{f^{(n)}(x_{0})}{n!} \left(\frac{\Delta x}{2}\right)^{n} - \sum \frac{f^{(n)}(x_{0})}{n!} \left(-\frac{\Delta x}{2}\right)^{n} = 2\sum \frac{f^{(2n+1)}(x_{0})}{(2n+1)!} \left(\frac{\Delta x}{2}\right)^{(2n+1)} = f'(x_{0}) \Delta x + \frac{f^{(3)}(x_{0})}{24} \Delta x^{3} + \dots$$

$$f'(x_o) \simeq rac{f(x_0 + \Delta x/2) - f(x_0 - \Delta x/2)}{\Delta x}$$
 $\epsilon \simeq rac{f^{(3)}(x_0)}{24} \Delta x^2$

Método de la diferencia extrapolada

Del método de la diferencia central, tenemos que:

$$\frac{df}{dt} = \frac{f\left(x + \frac{\Delta x}{2}\right) - f\left(x - \frac{\Delta x}{2}\right)}{\Delta x} + \frac{f^{(3)}\left(x_{0}\right)}{24} \Delta x^{2} + O\left(\Delta x^{4}\right)$$

Y haciendo un procedimiento similar se puede encontrar que:

$$\frac{df}{dt} = \frac{f(x + \Delta x/4) - f(x - \Delta x/4)}{\Delta x/2} + \frac{f^{(3)}(x_0)}{96} \Delta x^2 + O(\Delta x^4)$$

si llamamos: $f'_{\frac{1}{2}}(x) = \frac{f(x+\Delta x/2)-f(x-\Delta x/2)}{\Delta x}$ y $f'_{\frac{1}{4}}(x) = \frac{f(x+\Delta x/4)-f(x-\Delta x/4)}{\Delta x/2}$, se puede ver que:

$$\frac{df}{dt} = \frac{4 \times f_{\frac{1}{4}}'(x) - f_{\frac{1}{2}}'(x)}{3} + 4 \times \frac{f^{(5)}(x_0)}{120} \frac{\Delta x^4}{1024} - \frac{f^{(5)}(x_0)}{120} \frac{\Delta x^4}{32} + O(\Delta x^6)$$

$$= \frac{4f_{\frac{1}{4}}'(x) - f_{\frac{1}{2}}'(x)}{3} - \frac{f^{(5)}(x_0)}{4 \times 16 \times 120} \Delta x^4 + O(\Delta x^6)$$

$$f'(x) \simeq \frac{4f'_{\frac{1}{4}}(x) - f'_{\frac{1}{2}}(x)}{3}$$

$$\epsilon \simeq \frac{f^{(5)}(x)}{4 \times 16 \times 120} \Delta x^4$$

Ejercicio

Ejercicio:

- Usando los algoritmos de diferencias hacia adelante, diferencia central y diferencia extrapolada, calcule las derivadas de e^x y de $\cos(x)$, para $x=0,1,\ 1,\ 100$ y para cada uno de los casos haga gráficas del error relativo en función de Δx donde pueda comparar los diferentes métodos de diferenciación.
 - ¿Para que valores de Δx el error se hace menor a 1e-3?
 - 2 ¿Para que valores de Δx el error se hace menor a 1e-6?
 - § ¿Que pasa si el valor de Δx se hace demasiado pequeño? Verifique para valores de Δx menores a 1e-14. ¿Como se puede explicar lo observado en este caso?
- ② Adicione un ruido aleatorio a sus funciones y trate de calcular las derivadas. ¿Que pasa en este caso?

Calculo numerico de la segunda derivada

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0) \Delta x + \frac{1}{2} f''(x_0) \Delta x^2 + O(\Delta x^3)$$

$$f(x_0 - \Delta x) = f(x_0) - f'(x_0) \Delta x + \frac{1}{2} f''(x_0) \Delta x^2 + O(\Delta x^3)$$

Eliminando los términos de alto orden superior a 2 y sumando estas ecuaciones, se encuentra que:

$$f''(x_o) \simeq \frac{f(x_0 + \Delta x) + f(x_0 - \Delta x) - 2f(x_0)}{\Delta x^2}$$

Ejercicio:

- Escriba una función en python que calcule la segunda derivada de una función arbitraria. Como parámetros de entrada, esta debe recibir una función \mathbf{F} , el valor de \mathbf{X} para el cual se quiere calcular las derivada, así como el valor de Δx con el que se quiere trabajar. Por defecto la función debe utilizar $\Delta x = 1e 5$.
- ② Usando la función plot de Matplotlib, grafique una función de su selección y su segunda derivada para diferentes valores de Δx . Calcule y grafique el error relativo como función de Δx .

Métodos numéricos para encontrar raíces

Método de Newton

Usando series de Taylor, una función se puede expandir:

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + O(h^3)$$

Usando esta expansión es posible encontrar el valor de x que cumpla que f(x) = 0:

$$f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) = 0$$

Si x_0 esta cerca a x, entonces:

$$(x - x_0)^2$$
 es pequeño $(x - x_0)^2$ es mas pequeño $(x - x_0)^3$ es aun mas pequeño

y podemos simplificar la ecuación a:

$$f(x_0) + (x - x_0) f'(x_0) = 0$$

de donde:

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Si iteramos, podemos escribir:

Ejemplo

$$f(x) = x^{2}$$

$$f'(x) = 2x$$

$$\frac{f(x)}{f'(x)} = \frac{x}{2}$$

Si iniciamos con $x_0 = 1$

Χį	$x_i - \frac{f(x_i)}{f'(x_i)}$	x_{i+1}
0.1	0.1-0.05	0.05
0.05	0.05-0.025	0.025
0.025	0.025-0.0125	0.0125
0.0125	0.0125-0.00625	0.00625

	111	$\rightarrow 0$

Método de la Bisectriz

Ejercicio

Usando el método de la bisectriz, obtener el cero de la función SIN(X) usando como valores iniciales:

$$a = 3,0$$

$$y$$

$$b = 3,3$$

Compare el resultado con la solución analítica y grafique el error en función del numero de iteraciones

Método de Interpolación Lineal

Ejercicio

Usando el método de la interpolación, obtener el cero de la función SIN(X) usando como valores iniciales:

$$a = 3,0$$

$$y$$

$$b = 3,3$$

Haga una gráfica con el error en función del numero de iteraciones, y compárela con la obtenida en el punto anterior.

② Usando el método de la interpolación, haga un programa que calcule la raíz cuadrada de un numero n, encontrando el cero de la función $Y=X^2-n$ usando como valores iniciales:

$$a=0$$
 y $b=n$

Haga una gráfica con el error en función del numero de iteraciones.

- Repita los problemas anteriores usando las funciones de scipy:
 - brentq
 - ø brenth
 - ridder
 - bisect
 - o newton
 - fsolve