Exam 1A Chem 1142 Spring 2013

CHCIII I 142		SP	180 / linear	
Spring 2013	-		120°/frigoral f	
- IZEV		5p3	109.5°/ tetrahedra	
Name: KEY		Sp3d	96°, 126°/trigonal	bipyramida
MULTIPLE CHOICE. [4 pts ea.] Choose to	the best response on	the scantro	on sheet. [48 pts tot	al.]
	c) 120° d)	180°	e) 90° and 120°	
Q2. How many σ and π bonds are there is a) 3 σ , 1 π b) 3 σ , 2 π	n a molecule of acet c) 2σ , 3π d)	cylene: H–C 2 σ, 2 π	$= C - H? \frac{2\pi/3\pi}{2\pi/3\pi} band$ e) 0 σ , 3 π	ore always TI.
Q3. Which one of the following substance a) CCl ₄ b) Cl ₂		ole-dipole is NCl ₃	ntermolecular force e) CH4	s?
Q4. At room temperature, which of the fo		s has the str CH ₃ CH ₃	e) CH ₃ Cl 1500	London,
Q5. The boiling points of NH ₃ , PH ₃ , AsF a) NH ₃ which has an unexpectedly b) NH ₃ which has an unexpectedly c) SbH ₃ which has an unexpectedly d) SbH ₃ which has an unexpectedly e) AsH ₃ which has an unexpectedly	high boiling point low boiling point high boiling point low boiling point	C NH form STR		H-Bondo!!
Q6. What fraction of an atom occupying a) 1 b) ½	-	cubic lattice 1/6	is part of the unit c e) 1/8	ell?
Q7. For a pure substance, $\Delta H_{\rm fus}$ is known $\Delta H_{\rm vap}$ for this substance? a) -15.0 kJ/mol d) +15.0 kJ/mol	b) 45 0 lsI /m ol		a) 0 0 laI /m al	st probably the > 0 { fus: break some IM } Vay: break all remain
a) a solid	than its critical temp b) a vapor e) an hydraulic fluid	detatute is c	c) a rheostatic lic	quid #MF > AHvap>1
Q9. Which of the following is an example a) C(graphite) b) MgO		ork solid? NaCl	e) I ₂	Diamond, sp3 Cabon
Q10. If the pressure of a gas over a liquid a) increase d) have a higher vapor pressure	increases, the amount b) decrease e) depend on the pe		c) remain the sar	
Q11. Which of the following would have a) pure H ₂ O d) 1 m (NH ₄) ₂ SO ₄ (aq)	b) $1 \text{ m C}_6\text{H}_{12}\text{O}_6(\text{aq})$)	c) 1 <i>m</i> KCl(aq)	
fp dyrenin & mold on hp dwation & mold (or) if we wa	int lower	t bp duation	[]
1	= lowert 5	oluti conc	Pure water: 	m=6!

#mol word change

mol word of the change w/ t.

Q12. Which concentration will change as the temperature of a solution is increased?

a) %(w/w)

- b) molality
- c) molarity
- d) morality
- e) mole-fraction

Short Response.

Show ALL work to receive credit.

Q13. [13 pts.] Describe the geometries of these cubic cells: simple cubic, body-centered cubic, and face-centered cubic. Which of these would give the highest density for the same type of atoms? Explain.

Assuming that all these unit cells have exactly the same edge length, *a*, then the face-centered cubic unit cell would contain the most number of atoms for the same volume, and hence would have the maximum density.

Q14. [14 pts.] The normal boiling point and normal freezing point of sulfur dioxide are -10 °C and -72.7 °C respectively. The triple point is -75.5 °C and 1.65 x 10⁻³ atm, and its critical point is at 157 °C and 78 atm. On the basis of this information, draw a rough sketch of the phase diagram of SO₂. Be sure to carefully label your diagram.

Comments:

- Below triple point pressure (1.65 x 10^{-3} atm) CO_2 will sublime rather than melt as the temperature is increased.
- Above the critical temperature, the distinction between the liquid and gaseous phase disappears. We call this state of matter a supercritical fluid. Below Tc, the gas can be compressed and turned into a liquid.
- The melting point increases with increasing applied pressure. All substances whose d(solid)
 d(liquid) have this behavior. Bismuth and water are two substances where d(solid) <
 d(liquid), resulting in opposite melting point behavior.

Q15. [15 pts.] A quantity of 7.480 g of an organic compound is dissolved in water to make 300.0 mL of solution. The solution has an osmotic pressure of 1.43 atm at 27 °C. The analysis of this compound shows it to contain 41.8 % C, 4.7 % H, 37.3 % O, and 16.3 % N. Calculate the molecular formula of the organic compound.

Q16. [10 pts.] Calculate the van't Hoff factor of Na₃PO₄ in a 0.40 *m* aqueous solution whose boiling point is 100.78 °C.

$$\Delta T_b = i \cdot k_b \cdot m$$

$$\Delta T_b = 150.78^{\circ} c - 150^{\circ} c$$

$$= 0.78^{\circ} c$$

$$= 0.78^{\circ} c$$

$$= \frac{0.78^{\circ} c}{K_b \cdot m} = \frac{0.78^{\circ} c}{0.52^{\circ} c/m \times 0.40^{\circ} m}$$

$$= \frac{3.75}{1.75}$$

$$\text{rote: } K_b (wate) \text{ should be}$$

given on equation sheet!

Comment:

Ideal van't Hoff factor would be 4 (since we might expect sodium phosphate to completely dissociate and form 3 sodium ions and 1 phosphate ion).

In reality, ion-pairing will reduce this number because oppositely charged ions can pair up in solution, reducing the number of particles actually formed per formula unit.

Seful Information

Periodic Table of the Elements IΑ IΙΑ IIIA IVA VIA VIIA VIIIA Не Н Ве Ν 0 F Li В С Ne 19.00 9.01 10.81 12 01 14.01 16.00 20.18 Na Mg ΑI Si Р s CI Ar 30.97 32.07 26.98 28.09 v Κ Ca Sc Τi Cr Mn Fe Со Ni Cu Zn Ga Se Br Kr Ge As 50.94 55.85 74.92160 39.10 40.08 44.96 47.87 52.00 54.94 58.93 58.69 63.55 72.61 78.96 83.80 40 43 Υ Rb Sr Nb Тс Ru Rh Pd Cd Sb Те Хe Zr Мо In Sn ı Αg 88.91 101.07 118.71 121.76 127.60 131.29 Pt Rn Cs Ba* Lu Hf Ta w Re Os lr Αu Hg ΤI Pb Bi Ро Αt 137.33 174.97 178.49 180.95 186.21 190.23 192.22 195.08 196.97 207.20 [210] 132.91 183.84 204.38 208.98 [222] 110 111 112 113 114 115 116 118 Fr Ra** Lr Rf Db Bh Μt Sg Hs [277] [285] [289] [293] [226] [262] [261] [262] [264] [268] [269] [272]

Gd

157.25

Cm

1 atm = 101,325 Pa = 760 mmHg = 760 torr

140.12

Th

Pr

140.91

Рa

Nd

U

 $R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$

138.91

Αc

 $\Delta T_{\rm b} = i k_{\rm b} m$

 $I_{\rm b} = i \kappa_{\rm b} m$

c = kP

 $\Delta T_{\rm f} = i k_{\rm f} m$

Pm

[145]

Np

Sm

150.36

Pu

Am

 $K_b(H_20) = 0.52^{\circ} \text{/m}$

 $R = 8.314 \text{ J/mol} \cdot \text{K}$

Es

Er

Fm

Md

Yb

173.04

No

 $\Pi = iMRT$

Dy

162.50

Cf

Bk