Дискретная производная

Определение 1. Пусть задана последовательность чисел $a_0, a_1, \ldots, a_n, \ldots$ Дискретной производной данной последовательности называется последовательность $b_0, b_1, \ldots, b_n, \ldots$ такая, что $b_i = a_{i+1} - a_i$. Если последовательность задана некоторой функцией $a_i = f(i)$, то её дискретную производную будем обозначать $\triangle f(n)$.

Упражнение 1. Вычислите дискретную производную от следующих последовательностей: a) f(n) = 1, б) f(n) = n + 3, в) $f(n) = n^k$, г) $f(n) = \frac{n(n-1)\dots(n-k+1)}{k!}$.

$$f(n) = \frac{n(n-1)\dots(n-k+1)}{k!}.$$

Упражнение 2. Что можно сказать о последовательностях, у которых совпадают дискретные производные?

1. Найдите все такие функции $f:\mathbb{N} \to \mathbb{R}$, что $f(n)=a\cdot \triangle f(n)$, где a – некоторое фиксированное число.

Определение 2. Мы можем брать производную от последовательности несколько раз, k-ой дискретной производной функции f называется последовательность $\triangle^k f(n) = (\triangle^k f)(n+1) - (\triangle^k f)(n)$. Определение индуктивное. У нас определена первая производная и потом мы поочерёдно определяем следующие.

- **2.** Докажите, что если f(n) многочлен, то существует такое k, что $\triangle^k f(n) = 0$. Докажите обратное утверждение.
- **3.** Найдите явную формулу для $\triangle^k f(n)$.
- **4.** Найдите n-ую дискретную производную многочлена n-ой степени. Из этого знания найдите

$$\sum_{k=0}^{n} (-1)^k k^n C_n^k.$$

5. Докажите, что если m и n — целые числа, 1 < m < n, то

$$\sum_{k=0}^{n} (-1)^k k^m C_n^k = 0.$$

(Подсказка: постройте интерполяционный многочлен для многочлена x^m по nточкам.)

- **6.** Найдите все функции из а) $\mathbb{Z} \to \mathbb{R}$,б) $\mathbb{R} \to \mathbb{R}$ со свойством p(x+1) = p(x) + p(x)2x + 1.
- 7. Дана функция f(x), значения которой при любом целом x целые. Известно, что для любого простого p существует многочлен $Q_p(x)$ степени не больше 2013 с целыми коэффициентами такой, что $f(n) - Q_p(n)$ делится на p.

Верно ли, что существует многочлен g(n) с вещественными коэффициентами такой, что q(n) = f(n) для любого целого n?

8. а) Докажите, что функция $f(n) = 1^{20} + 2^{20} + \ldots + n^{20}$ является многочленом от n с рациональными коэффициентами. б) Найдите значение $f(-\frac{1}{2})$.