DAOS Overview

SC24 Tutorial

DAOS: Nextgen Open Storage Platform

- Platform for innovation
- Files, blocks, objects and more
- Full end-to-end userspace
- Flexible built-in data protection
 - EC/replication with self-healing
- Flexible network layer
- Efficient single server
 - o O(100)GB/s and O(1M) IOPS per server
- Highly scalable
 - TB/s and billions IOPS of aggregated performance
 - o O(1M) client processes
- Time to first byte in O(10) μs

DAOS Design Fundamentals

- No read-modify-write on I/O path (use versioning)
- No locking/DLM (use MVCC)
- No client tracking or client recovery
- No centralized (meta)data server
- No global object table
- Non-blocking I/O processing (futures & promises)
- Serializable distributed transactions
- Built-in multi-tenancy
- User snapshot

Scalability & Performance

High IOPS

Unique Capabilities

Aurora DAOS System

- 1024x DAOS Storage nodes
 - 2x Xeon 5320 CPUs (ICX)
 - o 512GB DRAM
 - 8TB Optane Persistent Memory 200
 - 244TB NVMe SSDs
 - 2x HPE Slingshot NICs
- Supported data protection schemes
 - No data protection
 - All EC flavors: 2+1, 2+2, 4+1, 4+2, 8+1, 8+2, 16+1 and 16+2
 - N-way replication
- Usable DAOS capacity
 - between 220PB and 249PB depending on redundancy level chosen

Aurora System Specifications		
Compute Node 2 Intel Xeon scalable "Sapphire Rapids" processors; 6 Xe arch-based GPUs; Unified Memory Architecture; 8 fabric endpoints; RAMBO	Software Stack HPE Cray EX supercomputer software stack + Intel enhancements + data and learning	GPU Architecture Xe arch-based "Ponte Vecchio" GPU; Tile-based chiplets, HBM stack, Foveros 3D integration, 7nm
CPU-GPU Interconnect CPU-GPU: PCIe; GPU-GPU: Xe Link	System Interconnect Slingshot 11; Dragonfly topology with adaptive routing	Network Switch 25.6 Tb/s per switch, from 64–200 Gbs ports (25 GB/s per direction)
Peak Performance ≥ 2 Exaflop DP	High-Performance Storage ≥ 230 PB, ≥ 25 TB/s (DAOS)	Programming Models Intel oneAPI, MPI, OpenMP, C/C++, Fortran, SYCL/DPC++
Platform HPE Cray EX supercomputer	Aggregate System Memory > 10 PB	Node Performance (TF) > 130

DAOS Performance - ISC'24 Production List

			INFORMATION						10500		
# ↑	BOE	BOF INSTITUTION	SVSTEM		FILE SYSTEM CLIENT TYPE NODES	CLIENT	TOTAL CLIENT PROC.	SCORE ↑	BW	MD	REPRO.
	БОГ					NODES			(GIB/S)	(KIOP/S)	
1	SC23	Argonne National Laboratory	Aurora	Intel	DAOS	300	62,400	32,165.90	10,066.09	102,785.41	
2	SC23	LRZ	SuperMUC-NG- Phase2-EC	Lenovo	DAOS	90	6,480	2,508.85	742.90	8,472.60	•
3	SC23	King Abdullah University of Science and Technology	Shaheen III	HPE	Lustre	2,080	16,640	797.04	709.52	895.35	•
4	ISC23	EuroHPC-CINECA	Leonardo	DDN	EXAScaler	2,000	16,000	648.96	807.12	521.79	0
5	ISC24	Zuse Institute Berlin	Lise	Megware	DAOS	10	960	324.54	65.01	1,620.13	

IOR & FIND	
EASY WRITE	20,693.63 GiB/s
EASY READ	12,122.87 GiB/s
HARD WRITE	4,216.34 GiB/s
HARD READ	9,706.55 GiB/s
FIND	229,672.10 kIOP/s

METADATA	
EASY WRITE	60,985.13 kIOP/s
EASY STAT	225,295.35 kIOP/s
EASY DELETE	57,648.44 kIOP/s
HARD WRITE	33,827.19 kIOP/s
HARD READ	141,467.16 kIOP/s
HARD STAT	230,086.03 kIOP/s
HARD DELETE	62,196.78 kIOP/s

Aurora IO500 Run

Features	Limits
Number of client nodes	512
Number of client endpoints	4k
Number of client processes	53k
Number of DAOS servers	642
Number of DAOS engines	1284
Largest Pool	160PiB
Largest file	8.5PiB
Total number of files	177 Billions
Number of files in a single directory	33 Billions

DAOS Architecture Evolution: Pmem Mode

- Persistent metadata
- Require Intel Optane PMEM (or NVDIMM-N)
- App Direct mode
- Mode used on Aurora

DAOS Architecture Evolution: Pmem-less Mode

Storage Pooling - Multi-tenancy

Mercury Tenant

30TB

80GB/s

2M IOPS

Dataset Management

- New data movel to unwind 30+y of file-based management
- Introduce notion of dataset
- Basic unit of storage
- Datasets have a type
- POSIX datasets can include trillions of files/directories
- Advanced dataset query capabilities
- Unit of snapshots
- ACLs/IAM

Object Interface

- No object create/destroy
- No size, permission/ACLs or attributes
- Sharded and erasure-coded/replicated
- Algorithmic object placement
- Very short Time To First Byte (TTFB)

Software Ecosystem

POSIX Support & Interception

- Userspace DFS library with API like POSIX
 - **Require** application changes
 - Low latency & high concurrency
 - No caching
- DFUSE daemon to support POSIX API
 - No application changes
 - VFS mount point & high latency
 - Caching by Linux kernel
- 3 DFUSE + Interception library
 - No application changes
 - 2 flavors using LD_PRELOAD
 - 3a libioil
 - (f)read/write interception
 - Metadata via dfuse
 - 3b libpil4dfs
 - Data & metadata interception
 - Aim at delivering same performance as #1 w/o any application change
 - Mmap & binary execution via fuse

Resources

- Foundation website: https://daos.io/
- Github: https://github.com/daos-stack/daos
- Online doc: https://docs.daos.io
- Mailing list & slack: https://daos.groups.io
- YouTube channel: http://video.daos.io
- 8th DAOS User Group (DUG'24) at SC'24 in Atlanta

