שימת ההגדרות והמשפטים
קרון האינדוקציה המתמטית
2 בקרון המינימום
זגדרות ברקורסיה
1.′ אקסיומת ההיקף
וכל איבר של B וכל איבר של $A=B$ הוא גם איבר של $A=B$ וכל איבר של
A הוא גם איבר של B
1.2 הגדרה
$4\cdot x\! otin\!A$ קבוצה A תיקרא קבוצה ריקה , אם אין בה איברים, דהיינו, אם לכל x מתקיים
1.3 משפט
א קיימות שתי קבוצות ריקות שונות.
זגדרה
היו B,A קבוצות. נאמר ש- A חלקית ל- B , או ש- A תת-קבוצה של \subseteq , אם כל איבר ש
B הוא איבר של A
1.5 הגדרה
A נקראת קבוצת החזקה של A נקראת קבוצת החזקה של A נקראת קבוצת החזקה של
1.6 משפט
A נהי A קבוצה סופית בעלת n איברים. מספר התת-קבוצות של A הוא A
1.7 משפט

1.8 הגדרה

 $.\left|B
ight|\!<\!\left|A
ight|$ אם $B\!\subset\!A$ אם

יהיו B,A קבוצות. האיחוד של A עם אים הוא קבוצת כל העצמים, הנמצאים יהיו

 $.\left|B\right|\!\leq\!\left|A\right|$. תהי B קבוצה סופית. אם $B\subseteq A$ אז גם B סופית, ו

29

1.9 משפט

- $A \cup B = B \cup A$:פעולת האיחוד היא חילופית, דהיינו $B = B \cup A$
- 32 . ($A \cup B$) \cup $C = A \cup (B \cup C)$. פעולת האיחוד היא חקיבוצית, דהיינו:

1.10 משפט

- $A \subseteq A \cup B$ וגם $A \subseteq A \cup B$, וגם $A \subseteq A \cup B$ א. לכל קבוצה
 - $A \cup A = A$ מתקיים: $A \cup A = A$
- $A\cup\varnothing=A$ מתקיים: A מתקיים: A

שאלה 12

הוכיחו את משפט 1.10

1.11 משפט

 $A \cup B = B$ אם ורק אם $A \subseteq B$

1.12 משפט

 $B \subseteq C$ אם ורק אם $A \subseteq C$ אם ורק אם $A \subseteq C$

1.13 הגדרה

החיתוך של הקבוצה A עם הקבוצה B הוא קבוצת כל העצמים, הנמצאים גם ב-A וגם $A \cap B = \{x | x \in A \land x \in B\}$ ב- $A \cap B$ הסימון הוא $A \cap B$ בקיצור:

1.14 הגדרה

נאמר שהקבוצות B,A הן Bרים אם $A \cap B = \emptyset$. דהיינו, אם אין להן איברים משותפים. Bלחילופין נאמר ש-A זרה ל-B או ש-B זרה ל-A

- 1.15. משפט
- $A \cap B = B \cap A$:פעולת החיתוך היא חילופית, דהיינו $A \cap B = B \cap A$
- 35 . $(A \cap B) \cap C = A \cap (B \cap C)$ פעולת החיתוך היא קיבוצית, דהיינו: .2

```
1.16 משפט
```

 $A \cap B \subseteq B$. וגם $A \cap B \subseteq A$ וגם $A \cap B \subseteq A$ א. לכל קבוצה

 $A \cap A = A A$ ב. לכל קבוצה

 $A \cap \emptyset = \emptyset$ א. לכל קבוצה $A \cap \emptyset = \emptyset$

1.17 משפט

36 אם ורק אם $A \cap B = A$, אם ורק אם $A \subseteq B$, אם לכל

1.18 משפט

37 אם ורק אם $C \subseteq A$ וגם $C \subseteq A \cap B$, C, B, A לכל

1.19 משפט

37 . $|A \cup B| = |A| + |B| - |A \cap B|$ אם $A \cap B$ הן קבוצות סופיות, אז

1.20 משפט (חוקי הפילוג של החיתוך מעל האיחוד ושל האיחוד מעל החיתוך).

 $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$, C,B,A א. לכל שלוש קבוצות

39 . $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, C, B, A ב. לכל שלוש קבוצות

1.21 הגדרה

B- שאינם ב- A, שאינם ב- B היא קבוצת איברי A, שאינם ב- B

 $A \setminus B = \{x \in A \mid x \notin B\}$. $A \setminus B$ הוא B פחות A פחות B

הפעולה שהגדרנו זה עתה נקראת בשם **פעולת ההפרש**.

41

1.22 הגדרה

U - ביחס ל- A ביחס ל- A קבוצה, החלקית לקבוצה האוניברסלית A האוניברסלית $A^{\mathrm{c}}(U)$ היא קבוצת איברי A, שאינם ב- A הסימון יהיה $A^{\mathrm{c}}(U)$

1.23 משפט

45 . $(A^c)^c = A$. ג. $A \cap A^c = \emptyset$ ב. $A \cup A^c = U$. ג. $A \cap A^c = \emptyset$

1.24 משפט

$$A \setminus B = A \cap B^{c}$$

1.25 משפט

אם ורק אם
$$B^{\mathrm{c}} \subseteq A^{\mathrm{c}}$$
 אם ורק אם $A \subseteq B$

1.26 משפט (כללי דה-מורגן)

$$(A \cup B)^c = A^c \cap B^c$$
 .א

$$(A \cap B)^c = A^c \cup B^c .$$

1.27 הגדרה

. קבוצה $A_{\!\scriptscriptstyle lpha}$ תהי Γ של α קבוצה לכל איבר לכל קבוצה ריקה. לכל איבר ריקה

 $(A_{\alpha}$ של האינדקס של α -הוא האינדקסים ובהקשר הא נאמר ש Γ נקרא אינדקסים ובהקשר הי

 $. \mathop{\cup}_{lpha \in \Gamma} A_lpha$ לפחות, ב- Γ . הסימון הוא

 $\bigcup_{\alpha \in \Gamma} A_{\alpha} = \{x | \exists \alpha \in \Gamma \ (x \in A_{\alpha})\}$ לשון אחר:

 A_{lpha} -הוא קבוצת האיברים המשותפים לכל ה-, α כאשר האשר , lpha הוא קבוצת האיברים המשותפים לכל

 $. \mathop{\cap}_{lpha \in \Gamma} A_{lpha}$ הסימון הוא

לשון אחר:
$$\bigcap_{\alpha \in \Gamma} A_{\alpha} = \{x | \forall \alpha \in \Gamma \ (x \in A_{\alpha})\}$$
 לשון אחר:

1.28 משפט

 $lpha_0\in\Gamma$ תהי קבוצה לא ריקה של אינדקסים ויהי קבוצה לא

$$A_{\!lpha_{\!\scriptscriptstyle 0}} \subseteq igcup_{lpha\in\Gamma} A_{\!lpha}$$
 .א

$$\bigcap_{\alpha\in\Gamma}A_{\alpha}\subseteq A_{\alpha_0}\quad . \textbf{2}$$

1.27* הגדרה

תהי B קבוצה לא ריקה של קבוצות.

. $\{x|\exists A\in B\,(x\in A)\}$ איחוד כל הקבוצות ב- B היא הקבוצה , $\underset{A\in B}{\bigcup}\,A$

 $\{x| \forall A \in B (x \in A)\}$ חיתוך כל הקבוצות ב- $\{B \in B : A \in B \mid A \in B \}$

1.28* משפט

 $A_0 \in B$ תהי B קבוצה לא ריקה של קבוצות ותהי

$$A_0 \subseteq \bigcup_{A \in B} A$$
 .א

$$\bigcap_{A \subseteq R} A \subseteq A_0 . 2$$

(כללי הפילוג) משפט (1.29

$$B\cap (\mathop{\cup}\limits_{lpha\in\Gamma}A_lpha)=\mathop{\cup}\limits_{lpha\in\Gamma}(B\cap A_lpha)$$
 .X

51
$$B \cup (\bigcap_{\alpha \in \Gamma} A_{\alpha}) = \bigcap_{\alpha \in \Gamma} (B \cup A_{\alpha})$$
 .2.

(כללי דה-מורגן) משפט

$$(\bigcup_{lpha\in\Gamma}A_lpha)^{
m c}=\bigcap_{lpha\in\Gamma}A_lpha^{
m c}$$
 .א

$$(\bigcap_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcup_{\alpha \in \Gamma} A_{\alpha}^{c} \quad .$$

אקסיומה ה-n-יות הסדורות 2.1

יהי $n \geq 1$ מספר טבעי. לכל n-יה סדורה יש איבר ראשון יחיד, איבר שני יחיד וכן הלאה, ואיבר n-יות סדורות הן שוות, אם ורק אם יש להן אותו איבר ראשון, אותו איבר n-יות סדורות הן שוות, אם ורק אם יש להן אותו איבר ראשון, אותו איבר n-י.

2.2 הגדרה מכפלה קרטזית

יהיו B,A קבוצות. המכפלה הקרטזית של A ב- B היא קבוצת הזוגות הסדורים שבהם B ומימין איבר של A ומימין איבר של B

71 .
$$A \times B = \{ \left\langle a, b \right\rangle | a \in A \land b \in B \}$$
 . $A \times B$ המכפלה הקרטזית הנ"ל מסומנת

2.3 משפט

:מתקיים C,B,A

$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$
 .2x $A \times (B \cup C) = (A \times B) \cup (A \times C)$.1x

$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$
 .2 $\land A \times (B \cap C) = (A \times B) \cap (A \times C)$.1 $\land A \times (B \cap C) = (A \times B) \cap (A \times C)$.1

73
$$(B \setminus C) \times A = (B \times A) \setminus (C \times A)$$
 .2a $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.1a

 $A \times B$ יהיו B,A קבוצות. יחס דו-מקומי מA + B הוא תת-קבוצה של 75 A יחס דו-מקומי מ-A ל-A נקרא גם יחס דו-מקומי על 2.5 הגדרה היחס ההופכי A -יחס מהקבוצה A לקבוצה B. היחס ההופכי ל-A הוא היחס הבא מ-B יהי R^{-1} נסמן R נסמן . $\{\langle y,x\rangle | \langle x,y\rangle \in R\}$ 79 2.6 הגדרה ריבוע היחס יהי R יחס על קבוצה A היחס R^2 על R^2 היחס R יחס על קבוצה R יחס על קבוצה אירים על R $\langle c,b \rangle \in \mathbf{R}^2$ -ו $\langle a,c \rangle \in \mathbf{R}^2$ -ו כך ש- $\langle a,b \rangle \in \mathbf{R}^2$ ו- $\langle a,b \rangle \in \mathbf{R}^2$ ו-82 $.aR^2b \Leftrightarrow \exists x \in \mathbf{R}(aRx \wedge xRb)$: לשון אחר 2.7 הגדרה רפלקסיביות Aעל קבוצה A נקרא **רפלקסיבי** אם לכל A ב-A מתקיים A83 תכונה זו של היחס R נקראת רפלקסיביות. 2.8 הגדרה אנטי-רפלקסיביות Aעל קבוצה A נקרא **אנטי-רפלקסיבי** אם לשום A ב-A לא מתקיים A $\langle a,a \rangle$ לשון אחר: אם אינו מכיל שום זוג סדור מהצורה 84 תכונה זו נקראת אנטי-רפלקסיביות. 2.9 - הגדרה סימטריה .bRa יחס A על A ייקרא **סימטרי,** אם לכל b,a ב- b,a ב- A ייקרא A ייקרא A ייקרא A85 תכונה זו נקראת סימטריה. 2.10 הגדרה אנטי-סימטריה .bRa וגם aRb יחס A ב- b, a בי אנטי-סימטרי, אם לא קיימים A ב- A כך ש . תכונה זו תיקרא אנטי-סימטריה. $R \cap R^{-1} = \emptyset$ לשון אחר: אם 86 טרנזיטיביות 2.11 הגדרה

 $.aRb \land bRc \Rightarrow aRc$, A -ב c,b,a בי, אם לכל R ייקרא טרנזיטיבי, אם לכל R

88

ทเงอย	2 1	2
	4 . I	_

88 $R^2 \subset R$ על R הוא טרנזיטיבי אם ורק אם R היחס

> יחס שקילות 2.13 הגדרה

90 יחס על קבוצה A נקרא **יחס שקילות** אם הוא רפלקסיבי, סימטרי וטרנזיטיבי.

2.14 הגדרה חלוקה

A היא קבוצה של A היא ריקה. A היא ריקה של A היא קבוצה לא ריקות של Aשכל שתיים מהן זרות זו לזו ואיחודן הוא A כולה.

כל אחת מן הקבוצות הללו נקראת **תא** של החלוקה.

A קבוצה לא ריקה ותהי π חלוקה של

 π יהי \equiv היחס הבא על $x \equiv_{\pi} y : A$ אם ורק אם $x \equiv_{\pi} y : A$ יהי $\equiv_{\pi} r$ יהי 91 A הוא יחס שקילות על \equiv_{π}

91

2.16 משפט

2.15 משפט

-של π של π של π בר יחידה π של π אם π הוא יחס שקילות על קבוצה לא ריקה π 93 π דהיינו שהיחס R מושרה על ידי, $R=\equiv_{\pi}$

> מחלקות שקילות 2.17 הגדרה

94 R יהי R יחס שקילות על קבוצה A ותהי π החלוקה של A המשרה את היחס RR נקרא מחלקת שקילות של π נקרא מחלקת בחלוקה של

> קבוצת המנה 2.18 הגדרה

יהי E יחס שקילות מעל קבוצה A . קבוצת מחלקות השקילות של E יחס שקילות מעל קבוצה AA/E של A מעל E, וסימונה הוא

אם קבוצת המנה היא סופית, נכנה את מספר איבריה, דהיינו את מספר מחלקות השקילות, . אם קבוצת המנה היא אינסופית, אומרים שהאינדקס אינסופית. E של

2.19 הגדרה - יחס סדר מלא

יחס **סדר מלא** אם הוא R יחס R על קבוצה A

 $97.\,a = b$ או bRa או aRb b,a או אנטי-רפלקסיבי ב. טרנזיטיבי ג. משווה, כלומר לכל

2.20 הגדרה יחס סדר חלקי

יחס R על קבוצה A נקרא **יחס סדר חלקי** או בקיצור: **סדר חלקי**, אם הוא R

99 א. אנטי-רפלקסיבי ב. טרנזיטיבי

2.21 הגדרה קבוצה סדורה וקבוצה סדורה חלקית

קבוצה סדורה חלקית היא זוג סדור $\langle A, \prec
angle$, כאשר A היא קבוצה ו- \prec הוא סדר חלקי על

A אעל אדר הוא סדר מלא על \prec היא קבוצה ו- \prec הוא סדר מלא על .A

100

2.22 הגדרה - תת-קבוצה סדורה חלקית

תהי $\langle A, \prec
angle$ קבוצה סדורה חלקית. $\langle A', \prec'
angle$ תיקרא תת-קבוצה סדורה חלקית עהי

 $.\,a\!\prec'\!b$ אם ורק אם $a\!\prec'\!b$, $a,b\!\in\!A'$ ולכל ולכל $A'\!\subseteq\!A$ אם $\left\langle A,\!\prec\right\rangle$

 $.\langle A, \prec
angle$ אם $\langle A, \prec
angle$ קבוצה סדורה, אז במקרה זה $\langle A', \prec'
angle$ תיקרא תת-קבוצה סדורה, אז במקרה זה $\langle A, \prec
angle$ תיקרא תת-קבוצה סדורה, אז במקרה זה $\langle A, \prec
angle$

2.23 הגדרה איבר ראשון ואיבר אחרון

תהי $\langle A, \prec
angle$ קבוצה סדורה חלקית.

a=x או $a\prec x$, A ב-a אם לכל $a\prec x$, A ב-a או $a\prec x$ איבר a

101 .x=b או $x\prec b$, A ב-A אם לכל $x \prec b$ אם איבר $x \prec b$ איבר $x \prec b$ איבר

2.24 משפט

. בקבוצה סדורה חלקית $\left\langle A,\prec \right
angle$ אין יותר מאיבר ראשון אחד ואין יותר מאיבר אחרון אחד

102

2.25 הגדרה איבר מינימלי ואיבר מקסימלי

תהי $\langle A, \prec
angle$ קבוצה סדורה חלקית.

 $x\prec a$ אשר A ב- A ייקרא איבר מינימלי ב-A אם אין A אם A איבר A

102 . $a \prec x$ אשר A ב- A אם אין A ב- A איבר A איבר A איבר מקסימלי ב- A

102 . הוא מקסימלי. הוא מינימלי ואיבר אחרון ב $\langle A, \prec
angle$ הוא מינימלי ואיבר אחרון ב

טענה 2.27

בקבוצה סדורה (בסדר מלא) איבר הוא ראשון אם ורק אם הוא מינימלי ואיבר הוא אחרון אם 103 ורק אם הוא מקסימלי.

2.28 משפט

104 בקבוצה סדורה חלקית סופית ולא ריקה $\langle A, \prec
angle$ יש איבר מינימלי ואיבר מקסימלי.

2.29 הגדרה הרכבת יחסים

C-ל מ- מ מ- Rיחס מ- Rיחי

:הרכבה R_1R_2 היא היחס מ-A ל

$$R_1R_2 = \{\langle a,c \rangle \in A \times C \mid \exists b \in B(\langle a,b \rangle \in R_1 \land \langle b,c \rangle \in R_2\}$$

105 . $aR_{1}R_{2}c \Leftrightarrow \exists b \in B(aR_{1}b \wedge bR_{2}c)$ לשון אחר:

3.1 הגדרה - פונקציה

3.2 הגדרה

תהי f(x)=y פונקציה מ-A ל-B ויהיו A ויהיו A ו-A כך ש-A קריינו הזוג הסדור y שייך לגרף של x נאמר ש-x הוא ה**דמות** של x על ידי x הוא מקור של x על ידי x הוא מקור של x על ידי x הוא x הוא הדמות של x על ידי x הוא x הוא הדמות של x הוא מקור של x הוא מ

3.3 הגדרה

יהיא קבוצת (שתסומן f שתסומן) f ידי f על ידי f ו-f ו-f ו-f ו-f ו-f ו-f על ידי f על ידי

D היא קבוצת המקורות של איברי $(f^{-1}[D]$ שתסומן f על ידי D על על ידי f דהיינו $\{x \in A | f(x) \in D\}$ על ידי f

3.4 הגדרה

פונקציה $A \to B$ תיקרא פונקציה מ- A על B, או, בקיצור, פונקציה על, אם $f:A \to B$ פונקציה . Im(f)=B

3.5 הגדרה

פונקציה $A \to B$ תיקרא **חד-חד-ערכית**, אם לכל שני איברים שונים ב-A יש דמויות שונות.

135 . $x_1 = x_2$ נובע $f(x_1) = f(x_2)$ אם מ- $f(x_1) = f(x_2)$ נובע חד-חד-ערכית אם מ- $f(x_1) = f(x_2)$

3.6 משפט

הפונקציה $A \to B$ היא חד-חד-ערכית, אם ורק אם לכל C ו-C החלקיות ל-A מתקיים $f[C \cap D] = f[C] \cap f[D]$

3.7 משפט

A-ל החלקית ל- C היא חד-חד-ערכית ועל אם ורק אם לכל היא חד-חד-ערכית $f:A \to B$

 $f[C]^{c} = f[C^{c}]$

3.8 משפט

.תהי $f:A \rightarrow B$ פונקציה

 $C = f^{-1}[f[C]] \ A$ של C של לכל תת-קבוצה לכל אם ורק אם ורק אם ורק אם לכל ת

138 . $f[f^{-1}[D]] = D$ של D של תת-קבוצה לכל תת-קבוצה f

3.9 משפט

אנו A היא קבוצה סופית ו-f:A o B היא פונקציה חד-חד-ערכית, אז מספר איברי A אינו A עולה על מספר איברי B

3.10 משפט

אם A על A, אז B סופית A היא פונקציה מ-A על B, אז B סופית ומספר איברי A אינו עולה על מספר איברי A

3.11 משפט

אם A ו-B הן קבוצות סופיות אז:

Aעל Aער חד-ערכית מ- Aעל אם ורק אם יש פונקציה חד-חד-ערכית מי $\left|A\right|=\left|B\right|$

A ל- A אם ורק אם יש פונקציה חד-חד-ערכית מ $|A| \leq |B|$

A על B-אם ורק אם יש פונקציה מ $|A| \le |B|$

139

3.12 משפט

,f:A o B ופונקציה B ופונקציה א קבוצה A קיימות קבוצה שקילות על A. קיימות קבוצה ויהי יחס שקילות על ב==_f ער ש-

3.13 הגדרה

פונקציה $f:A \to B$ תיקרא פונקציה קבועה אם יש לה ערך אחד ויחיד, דהיינו בתמונה של 141 $f:A \to B$ יש רק איבר אחד.

3.14 הגדרה

יהיו B, קבוצות לא ריקות כך ש-A פונקציית הזהות מ-A ל-B היא הפונקציה B, אוריים היהו $f:A \to B$ יהיו $f:A \to B$

3.15 הגדרה

יהיו A קבוצות לא ריקות ותהי $A=\sum_{i=1}^nA_i$ לכל $A=\sum_{i=1}^nA_i$ ההטלה של A על A_n,\dots,A_n יהיו A הרכיב ה-A ב-A ב

תהי U קבוצה לא ריקה. לכל תת-קבוצה A הפונקציה האופיינית של A ביחס ל-U היא הפונקציה U , $\chi_{\!\scriptscriptstyle A}$:U \to $\{0,1\}$ הפונקציה

143
$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

3.17 הגדרה

יהיו $f:B \to C$ ו $g:A \to C$ יהיו $A \subseteq B$ פונקציות, כך ש- $A \subseteq B$ פונקציות, לא ריקות, כך ש- $A \subseteq B$ יהיו A ל- A, וש- שלכל A ב- A בתנאים אלה אנו אומרים ש- A הוא צמצום של A ל- A . A היא הרחבה של A ל- A .

3.18 הגדרה

יהיו $g:A \to B$ ו- $g:A \to B$ פונקציות. ההרכבה $g:A \to B$ ו $f:B \to C$ יהיו $f:B \to C$ הפונקציה מ- f:A ל- $f:B \to C$ המעתיקה כל f:A ב- f:A

3.19 משפט

C-ל B-ה פונקציות היא קיבוצית, כלומר, אם h פונקציה מ-A ל-g פונקציה מ-g ל-g פונקציה מ-g ל-g אז ההרכבות $f\circ (g\circ h), (f\circ g)\circ h$ מוגדרות והן שוות.

3.20 טענה

 ${
m I}_A:A o A$ יהיו A ל-A קבוצות לא ריקות. אם ${
m I}_A$ היא פונקציית הזהות מ-B ל-B, ו- ${
m I}_A$ היא פונקציית הזהות מ- ${
m I}_B$ ל- ${
m I}_A$ היא פונקציה מ- ${
m I}_B$ וואס פונקציה מ- ${
m I}_B$ היא פונקציית הזהות מ- ${
m I}_B$ וואס פונקציה מ- ${
m I}_B$ שתיהן מוגדרות ושוות שתיהן ל- ${
m I}_A$ וואס פונקציה מוגדרות ושוות שתיהן ל- ${
m I}_A$ אז ב- ${
m I}_B\circ f$ וואס פונקציה מוגדרות ושוות שתיהן ל- ${
m I}_A$ אז ב- ${
m I}_B\circ f$ וואס פונקציה מוגדרות ושוות שתיהן ל- ${
m I}_A$

3.21 משפט

יהיו $g:A \rightarrow B$, $f:B \rightarrow C$ יהיו

. א. אם g,f חד-חד-ערכיות, אז גם g,f חד-חד-ערכית.

.ב. אם g,f היא פונקציות על, אז גם $f\circ g$ היא פונקציה על

3.22 משפט

אם $f: B \rightarrow C, g: A \rightarrow B$ אם

א. אם $f \circ g$ חד-חד-ערכית, אז אם מ-חד-ערכית.

ב. אם $f \circ g$ על, אז f על.

151

3.23 הגדרה

.תהי $f:A \rightarrow B$ פונקציה

(A-1) מקבוצה מסוימת ל- A-1 מאט מצמת משמאל אם לכל שתי פונקציות וא מקבוצה מסוימת ל-

g=h מתחייב $f\circ g=f\circ h$ מ

נאמר ש-f מ-B מ-לקבוצה מסוימת מימין אם לכל שתי פונקציות לקבוצה מסוימת נאמר ש-

מתחייב g = h מתחייב $g \circ f = h \circ f$

3.24 הגדרה

תהי $f:A \to B$ תהי $f:A \to B$ פונקציה חד-חד-ערכית ועל. **הפונקציה ההופכית** ל- $f:A \to B$ תהי f(a)=b . f(a)=b היחיד ב- f(a)=b היחיד ב- f(a)=b משפט 3.25

155 . $(f^{-1})^{ ext{-1}} = f$ -אם f:A o B חד-חד-ערכית ועל, אז f:A o B חד-חד-ערכית ועל, ועל, אז

 $f \circ f^{-1} = I_B$ -ו $f^{-1} \circ f = I_A$ אם $f \circ f^{-1} = I_B$ חד-חד-ערכית ועל, אז

155 . $(I_A(x) = x \ A - x \ tcd x, cdian, cd d - A \ d A - ווּ א פונקציית הזהות מ- A על א (כזכור, <math>I_A$

3.27 משפט

יהיו g -ו f וו- g - g - וווי $g \circ f = I_A$ פרן שתיהן חד-חד , $g:B \to A$ ווי- וויר פון יהיו $g:A \to B$ יהיו $g:A \to B$ ווי- וויר פון יהיו g - יהי g - יהיו g - יהיי g - יהיו g - יהי g - יהיו g - יהיי g - יהי g -

3.28 משפט

 $g\circ f$, ובפרט, $g\circ f$ הופכית ל- $f^{-1}\circ g^{-1}$ הופכית, אז וועתיהן $g:B\to C$ וועתיהן $g:A\to B$ אם $g:B\to C$ וועתיהן הפיכות.

3.29 משפט

-אם B^A קבוצות סופיות, כך שB אינה ריקה, אז גם הקבוצה B^A היא סופית, ו $\left|B^A\right|=\left|B\right|^{|A|}$.

158 .A הוא מספר איברי B בחזקת מספר איברי לשון אחר: מספר הפונקציות מ-A ל

nj86 3.30

יהיו B,A קבוצות סופיות, שמספר האיברים בכל אחת מהן הוא n (n>0). מספר הפונקציות החד-חד-ערכיות מA ל-B הוא מכפלת המספרים מA עד n (הסימון למכפלה n זו הוא n, קרי: n עצרת).

3.31 הגדרה

יהיו A קבוצה לא ריקה ויהי n מספר טבעי. **סדרה באורך** n של איברים מ-A היא פונקציה מ-A ל-A סדרה A ל-A סדרה אינסופית של איברים מ-A היא פונקציה מ-A ל-A סדרה סופית. A ל-A , תיקרא סדרה סופית. A כאשר A , תיקרא סדרה סופית.

3.32 הגדרה

לכל מספר טבעי n תהי A_n קבוצה. **המכפלה הקרטזית** של כל ה- A_n -ים (מ-0 ואילך

בסדר הרגיל), שתסומן $\mathop {\overset{\circ}{\times}}_{n=0}^{\infty} A_n$ היא קבוצת הסדרות האינסופיות שבהן לכל A_{n} של 162 ניתן להכליל הגדרה זו ולדבר על מושג כללי יותר של מכפלות קרטזיות. *3.32 הגדרה , תהי A_i קבוצה כלשהי, ולכל i ב- A_i תהי A_i קבוצה. המכפלה הקרטזית של כל ה- A_i -ים A_i שתסומן Γ ב- i מותאם איבר של הפונקציות מ- Γ ל-, שבהן לכל היא קבוצת הפונקציות מ- Γ 162 4.1 הגדרה יהיו A ו-B קבוצות. אם קיימת פונקציה חד-חד-ערכית מ-A על B, נאמר ש-A שקולה 181 A-B ל-B, והסימון יהיה A-B. נאמר גם ש-A4.2 משפט $A \sim A$ א. כל קבוצה שקולה לעצמה, דהיינו $B \sim A$, אז $B \sim A$, אז $A \sim B$ שקולה ל-A, דהיינו: אם $B \sim A$, אז $B \sim A$ A שקולה ל-B ו-B שקולה ל-A, אז A שקולה ל-.($A \sim B \wedge B \sim C \Rightarrow A \sim C$) 181 4.3 הגדרה 183 \mathbf{N} -קבוצה נקראת בת-מנייה אם היא סופית, או שהיא שקולה ל 4.4 משפט קבוצת המספרים השלמים ו- ${f Q}$ - קבוצת המספרים הרציונליים הן בנות-מנייה - ${f Z}$ $. \, \aleph_{\scriptscriptstyle 0} \,$ ועוצמת כל אחת מהן היא 186 4.5 משפט

כל קבוצה, החלקית לקבוצה בת-מנייה היא בת-מנייה.

186

4.6 משפט

. \aleph_0 שעוצמתה שעוצמתה לכל קבוצה אינסופית יש תת-קבוצה 187 4.7 משפט 189 . קבוצת המספרים הממשיים – אינה בת - מנייה ${f R}$ 4.8 משפט 193 האיחוד של שתי קבוצות בנות מנייה הוא בן מנייה. 4.9 משפט א. אם B בת-מנייה, אז גם A בת-מנייה $f:A \rightarrow B$ א. אם 194 ב. אם $A \rightarrow B$ בת-מנייה, אז גם $f:A \rightarrow B$ ב. 4.10 משפט . אם לכל n טבעי A_n היא קבוצה בת-מנייה, אז גם $A_n \stackrel{\circ}{\underset{n=0}{\cup}} A_n$ אם לכל 195 4.11 משפט 196 אם $A \times B$ בת-מנייה, אז גם B,A בת-מנייה. 4.12 משפט 198 4.13 טענה אינה בת-מניה. אינה בת-מניה. ($\{0,1\}^{\mathbf{N}}$) אינה בת-מניה. 198 טענה 4.14 $\mathcal{P}(A)$ אם $\mathcal{P}(A)$ אינה בת-מנייה. יתר על כן: $\mathcal{P}(A)$ אז אינה ב $\mathcal{P}(A)$ אינה בת-מנייה. 199 4.15 טענה . אם \mathbf{R} , דהיינו עוצמתה $\{0,1,...,n\}^{\mathbb{N}}$ אם מספר טבעי חיובי, אז 200

```
4.16 טענה
```

201 . $A \times A \sim A$ אם A היא בת-מנייה ואינסופית, אז

טענה 4.17

202 . $A^{\mathbf{N}} \times A^{\mathbf{N}} \sim A^{\mathbf{N}}$, A לכל קבוצה

4.18 טענה

 $\mathbf{R} \times \mathbf{R} \sim \mathbf{R}$

טענה 4.9

203 . $C \triangleleft D$ אז $D \sim B$ ו- $C \sim A$, $A \triangleleft B$

4.20 הגדרה

A במקרה זה נאמר גם ש $|B| \ge |A|$ (קרי: עוצמת B גדולה או שווה לעוצמת.

203 . $A \lhd B$ אם (B אם לעוצמת A קטנה או שווה לעוצמת A אם (קרי: עוצמת A קטנה או שווה לעוצמת אוה לעוצמת אוריים.

4.21 משפט

א. $|A| \le |A|$ הוא רפלקסיבי).

204 .(ב. $|A| \le |B| \land |B| \le |C| \Rightarrow |A| \le |C|$ ב.

4.22 הגדרה

 $.\left|A\right|
eq \left|B\right|$ אבל $\left|A\right| \le \left|B\right|$ אם (B אם קטנה מעוצמת A קטנה (קרי: עוצמת A

204 . (A במקרה זה נאמר גם ש-|B| > |A| (קרי: עוצמת B גדולה מעוצמת ...

4.23 משפט

. אם אינה על אם ורק אם יש פונקציה חד-חד-ערכית מ-A ל-B, שאינה על אם אם |A| < |B|

205

טענה 4.24

205 . $\left|A\right| < \left|\{0,1\}^A\right|$ מתקיים A לכל קבוצה

(משפט קנטור) 4.25

206 . $\left|A\right| < \left|\mathcal{P}(A)\right|$ מתקיים A לכל קבוצה

```
(משפט קנטור, שרדר ברנשטיין) 4.26
                                          \lambda = \mu אז \mu \leq \lambda וגם \lambda \leq \mu אז \mu = \mu אם \lambda = \mu אז \mu = \lambda
207
                         A \sim B אז A \lhd A וגם A \lhd A אז A = B
                                                                                   4.27 מסקנה (כלל הסנדוויץ')
                             B \sim C-ו A \sim B אם A \sim C-ו, אז A \subset B \subseteq C אם A \sim C-ו A \subseteq B \subseteq C
                                                                                            |A| = |C| - |A| = |B|
210
                                                                                                         4.28 משפט
                                            \lambda_2 < \lambda_1 א. יהיו \lambda_1 < \lambda_2 עוצמות. לא יתכן שגם \lambda_2, \lambda_1 וגם א. יהיו
           .(< טרנזיטיביות של ) . \lambda_1<\lambda_3 אז \lambda_2<\lambda_3 ו- \lambda_1<\lambda_2 הן עוצמות ו- \lambda_3,\lambda_2,\lambda_1 ב. אם
212
                                                                                                         4.29 משפט
212
                                                                             קיימות אינסוף עוצמות אינסופיות.
                                                                                                        4.30 הגדרה
             |A_2|=\kappa_2 -ו|A_1|=\kappa_1 -יהיו און כך ש-\kappa_1 קבוצות זרות זו לזו, כך ש-\kappa_2 עוצמות. יהיו \kappa_2
                                                   . \left|A_{\scriptscriptstyle 1}\cup A_{\scriptscriptstyle 2}\right|- דהיינו \left|A_{\scriptscriptstyle 1}\right|+\left|A_{\scriptscriptstyle 2}\right|יוגדר כ
214
                                                                               (דוגמאות לחיבור עוצמות) 4.31
                                                                             . \kappa + 0 = \kappa , \kappa א. לכל עוצמה
                                                                                                    \aleph_0 + 1 = \aleph_0 .a
                                                                                                  \aleph_0 + \aleph_0 = \aleph_0 .
                                                                                                     T. 8 = 8 + 8
215
                                                                                                         4.32 משפט
                               . \kappa_1 + \kappa_2 = \kappa_2 + \kappa_1 :א. חיבור עוצמות הוא חילופי (קומוטטיבי), דהיינו
          (\kappa_1 + \kappa_2) + \kappa_3 = \kappa_1 + (\kappa_2 + \kappa_3) :ב. חיבור עוצמות הוא קיבוצי (אסוציאטיבי), דהיינו
216
                                                                                                         4.33 משפט
```

216

. $\kappa + \aleph_0 = \kappa$ עוצמה אינסופית. κ

4.34 משפט

 $.\left|A\setminus B
ight|=\left|A\right|$ אינסופית, אז $A\setminus B$ אינסופית, אז B=B. א. יהיו B,A אינסופית, אז אB=B ו-

216 .
$$|A\setminus B|=|A|$$
 ב. אם A קבוצה, שאינה בת-מנייה, $B\subseteq A$ ו- $B\subseteq A$, אז

4.35 משפט

217 .
$$\kappa_1+\lambda_1\leq\kappa_2+\lambda_2$$
 אז , $\lambda_1\leq\lambda_2$ ו- $\kappa_1\leq\kappa_2$ אם $\lambda_2,\lambda_1,\kappa_2,\kappa_1$ יהיו $\lambda_2,\lambda_1,\kappa_2,\kappa_1$ אוצמות. אם

4.36 הגדרה

יהיו $\kappa\lambda$ עוצמות. המכפלה של κ ב- λ , שתסומן $\kappa\cdot\lambda$ או בקיצור κ תוגדר כך:

A חתהי A קבוצה שעוצמתה κ ותהי A קבוצה שעוצמתה

$$. \kappa \cdot \lambda = |A| \cdot |B| = |A \times B|$$

(דוגמאות לכפל עוצמות) 4.37

 $\kappa \cdot 1 = \kappa \cdot 1 = \kappa \cdot 0 = 0$ ו- $\kappa \cdot 0 = 0$ א. לכל עוצמה

 $\mathbf{S}_0 \cdot \mathbf{S}_0 = \mathbf{S}_0 \quad ... \mathbf{S}_0$

4.38 משפט

219 ב. כפל עוצמות הוא קיבוצי:
$$(\kappa\lambda)\mu = \kappa(\lambda\mu)$$
 ב.

4.39 משפט (חוק הפילוג של הכפל מעל החיבור).

220 .
$$\kappa(\lambda + \mu) = \kappa \lambda + \kappa \mu$$
 אם $\kappa(\lambda + \mu) = \kappa \lambda + \kappa \mu$ הן עוצמות אז

440 הגדרה

יהיו λ,κ עוצמות . יהיו B,A קבוצות בעלות העוצמות λ,κ קבוצות בעלות העוצמה . (B ל-A ל-A) כך: $\lambda^{\kappa}=\left|B\right|^{|A|}=\left|B^{A}\right|$ כך: λ^{κ} בחזקת λ ל- λ^{κ}

221

טענת עזר 441

221 (
$$D^{C} \sim B^{A}$$
 אם , $D \sim B$ ו - $C \sim A$ אם) . $\left|D^{C}\right| = \left|B^{A}\right|$ אז , $\left|D\right| = \left|B\right|$ ו- $\left|C\right| = \left|A\right|$ אם

4.42 משפט

222 . $|\mathcal{P}(A)|=2^{\kappa}$ אז , $|A|=\kappa$ לכל קבוצה $|\mathcal{P}(A)|=2^{|A|}$ לשון אחר: אם . $|\mathcal{P}(A)|=2^{|A|}$

4.43 משפט

לכל עוצמה $\kappa < 2^{\kappa}$, κ לכל עוצמה

(תכונות של העלאה בחזקה) 4.44

. יהיו $\kappa_3, \kappa_2, \kappa_1$ עוצמות

 $.\left(\kappa_1\cdot\kappa_2\right)^{\kappa_3}=\kappa_1^{\kappa_3}\cdot\kappa_2^{\kappa_3}.$

 $K_1^{\kappa_2+\kappa_3} = K_1^{\kappa_2} \cdot K_1^{\kappa_3}$. . .

222 $.\kappa_1^{\kappa_2 \cdot \kappa_3} = (\kappa_1^{\kappa_2})^{\kappa_3} .\lambda$

טענה 4.45

 $. \aleph^{\aleph_0} = \aleph$