าสนกศึกษา 63051060 ขือสกล สันนักอากุล 6Wo สุดชินูดา ตอนที 1

Assignment3 (1 ก.ค. 65) : Asymptotic Notation2 กาหนดส่งงาน : จ. 11 ก.ค. 65 (เวลา 23.59 น.*)* ให้นักศึกษา

- เขยนคาตอบตามเจทยกำหนดด้วยลายมือ แล้วถ่ายรูป (นามสกุล .jpg) หรือไฟล์ pdf ส่งที่เว็บส่งการบ้านภาควิชาฯ
- ตั้งชอโพล์ในรูปแบบ assign_x_id เมื่อ x คือหมายเลข Assignment และ id คือ รหัสนักศึกษา
 (กรณีส่งหลายไฟล์ให้ตั้งชื่อเป็น assign_01_id_a.jpg โดย a หมายถึง ลำดับไฟล์ แล้วทำการ zip รวมทุกไฟล์ส่งในงาน
 Assignment เดียวกันด้วยชื่อ assign_01_id.zip แทน)
- ส่งงานภายในวันเวลาที่กำหนด หากส่งเลยกำหนดให้ชี้แจงเหตุผลกับอ. บระจำ section (พิจารณาคะแนนตามเหตุผล)

แต่ละข้อต่อไปนี้ <u>ถูกหรือผิด</u>

(1)
$$3 n^2 + 10 n \log n = 0 (n \log n)$$

(2)
$$3 n^2 + 10 n \log n = \Omega (n^2)$$

(4)
$$n \log n + n/2 = O(n)$$

(5)
$$10\sqrt{n} + \log n = O(n)$$

(6)
$$\sqrt{n} + \log n = O(\log n)$$

(7)
$$\sqrt{n} + \log n = \theta (\log n)$$

(8)
$$\sqrt{n} + \log n = \theta$$
 (n)

(9)
$$\sqrt{n} + \log n = \Omega$$
 (1) $\frac{50}{100}$

(10)
$$\sqrt{n} + \log n = \Omega (\log n)$$

(11)
$$\sqrt{n} + \log n = \Omega$$
 (n)

กำหนดฟังก์ชันต่อไปนี้

1)
$$f(n) = 2 (\sqrt{n}) + \log n$$
 ขงแสดงว่า $f(n) = \theta (\sqrt{n})$

2)
$$f(n) = 10n^2 + 5n\log n + 100n + 3000$$
 จงแสดงว่า $f(n) = O(n^2)$

1.) $f(n) = 2 \sqrt{n} + \log_2 n$ Politous $f(n) = \Theta(\sqrt{n})$

Let $f: \mathbb{Z}^{+} \to \mathbb{R}$ be a function, such that $f(n) = 2 \sqrt{n} + \log_{2} n_{g}$ and $g: \mathbb{Z}^{+} \to \mathbb{R}$ be a function, such that $g(n) = \sqrt{n}$ for all positive integer n.

Coneider $C_1 \cdot g(n) \leq f(n)$ $C_1 \cdot \sqrt{n} \leq 2 \cdot \sqrt{n} + \log_2 n$ $C_1 \leq \frac{2 \cdot \sqrt{n}}{\sqrt{n}} + \frac{\log_2 n}{\sqrt{n}}$ $C_2 \leq 2 + \frac{\log_2 n}{\sqrt{n}}$ (1) $f(n) \leqslant c_{2} \cdot g(n)$ $2 \cdot \sqrt{n} + \log_{2} n \leqslant c_{2} \cdot \sqrt{n}$ $\frac{2 \cdot \sqrt{n}}{\sqrt{n}} + \frac{\log_{2} n}{\sqrt{n}} \leqslant c_{2}$ $c_{2} \geqslant 2 + \frac{\log_{2} n}{\sqrt{n}} \qquad (2$

Choose $c_1 = 1$, $c_2 = 3$, $n_0 = 1$. Since $\frac{\log_2 n}{\sqrt{n}} < 1$ (because $\log_2 n < \sqrt{n}$), then $2 + \frac{\log_2 n}{\sqrt{n}} < 2 + 1 = 3$ $\frac{\text{from}}{(2),(2)}$ $c_1 < 2 + \frac{\log_2 n}{\sqrt{n}} < c_2$, then c_1, c_2, n_0 satisfy (1), (2) that consequentially satisfy (*).

 $f(n) = 2\sqrt{n} + \log_2 n = \Theta(\sqrt{n})$

Let $f: \mathbb{Z}^+ \to \mathbb{R}$ be a function such that $f(n) = 10n^2 + 5n \log_2 n + 100n + 3000$, and $g: \mathbb{Z}^+ \to \mathbb{R}$ be a function such that $g(n) = n^2$, for all positive integer n.

To show that f(n) = O(g(n)), then there exist constant C, $n_0 > 0$; such that

0 < f(n) < c.g(n) for all n > ho

____(*

Consider $C \cdot S(n) > f(n)$

C. n2 > 10n2 + 5n logn + 100n + 3,000

 $c > \frac{10n^2}{n^2} + \frac{5n \log n}{n^2} + \frac{100n}{n^2} + \frac{3,000}{n^2}$

 $\frac{C}{h} = \frac{5 \log_2 h}{h} + \frac{100}{h} + \frac{3,000}{h^2}$

____(1

Choose C=3,110, no = 1, then C, no satisfy (.1) that consequentially satisfy (*).

o, f(n) = O(w)