Job No.: Peter Dyer Builders Address: 1242 State Highway 16, Waimauku, New Zealand Date: 20/03/2024

Latitude: -36.755098 Longitude: 174.464323 Elevation: 21 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4 m
Wind Region	NZ1	Terrain Category	2.0	Design Wind Speed	42.08 m/s
Wind Pressure	1.06 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Open

For roof Cp,i = 0.4549

For roof CP,e from 0 m To 5.50 m Cpe = -0.9 pe = -0.86 KPa pnet = -1.34 KPa

For roof CP,e from 5.50 m To 11 m Cpe = -0.5 pe = -0.48 KPa pnet = -0.96 KPa

For wall Windward Cp, i = 0.4549 side Wall Cp, i = -0.5569

For wall Windward and Leeward CP,e from 0 m To 15 m Cpe = 0.7 pe = 0.67 KPa pnet = 1.26 KPa

For side wall CP,e from 0 m To 5.50 m Cpe = pe = -0.62 KPa pnet = -0.03 KPa

Maximum Upward pressure used in roof member Design = 1.34 KPa

Maximum Downward pressure used in roof member Design = 0.45 KPa

Maximum Wall pressure used in Design = 1.26 KPa

Maximum Racking pressure used in Design = 1.17 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 3850 mm Try Purlin 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.46 S1 Downward =12.23 S1 Upward =25.13

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	0.56 Kn-m	Capacity	1.79 Kn-m	Passing Percentage	319.64 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.56 Kn-m	Capacity	2.38 Kn-m	Passing Percentage	152.56 %
Mo.9D-WnUp	-1.86 Kn-m	Capacity	-1.39 Kn-m	Passing Percentage	74.73 %

First Page

		Pole Shed App	Ver 01 2022		
V _{1.35D}	0.58 Kn	Capacity	8.25 Kn	Passing Percentage	1422.41 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.30 Kn	Capacity	11.00 Kn	Passing Percentage	846.15 %
$ m V_{0.9D ext{-}WnUp}$	-1.93 Kn	Capacity	-13.75 Kn	Passing Percentage	712.44 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 8.51 mm

Deflection under Dead and Service Wind = 10.28 mm

Limit by Woolcock et al, 1999 Span/240 = 15.83 mm Limit by Woolcock et al, 1999 Span/100 = 38.00 mm

Reactions

Maximum downward = 1.30 kn Maximum upward = -1.93 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4000 mm

Internal Rafter Span = 14850 mm

Try Rafter 2x610x45 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.05 S1 Upward = 11.05

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	37.21 Kn-m	Capacity	90.18 Kn-m	Passing Percentage	242.35 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	82.70 Kn-m	Capacity	120.24 Kn-m	Passing Percentage	145.39 %
$M_{0.9D\text{-W}nUp}$	-122.94 Kn-m	Capacity	-150.28 Kn-m	Passing Percentage	122.24 %
V _{1.35D}	10.02 Kn	Capacity	88.28 Kn	Passing Percentage	881.04 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	22.27 Kn	Capacity	117.7 Kn	Passing Percentage	528.51 %
$V_{0.9D\text{-W}nUp}$	-33.12 Kn	Capacity	-147.14 Kn	Passing Percentage	444.26 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 42.24 mm
Deflection under Dead and Service Wind = 56.715 mm

Limit by Woolcock et al, 1999 Span/240 = 62.50 mm Limit by Woolcock et al, 1999 Span/100 = 150.00 mm

Reactions

Maximum downward = 22.27 kn Maximum upward = -33.12 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Second page

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -33.12 Kn

Intermediate Design Sides

Intermediate Spacing = 3750 mm

Intermediate Span = 2349 mm

Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =1.00 S1 Downward =12.23 S1 Upward =0.62

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.63 Kn-m	Capacity	6.06 Kn-m	Passing Percentage	371.78 %
V _{0.9D-WnUp}	2.78 Kn-m	Capacity	27.5 Kn-m	Passing Percentage	989.21 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.745 mm

Limit by Woolcock et al, 1999 Span/100 = 23.49 mm

Reactions

Maximum = 2.78 kn

Girt Design Front and Back

Girt's Spacing = 900 mm

Girt's Span = 4000 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.43 S1 Downward =12.23 S1 Upward =25.78

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.27 Kn-m	Capacity	1.32 Kn-m	Passing Percentage	58.15 %
$V_{0.9D\text{-W}nUp}$	2.27 Kn-m	Capacity	13.75 Kn-m	Passing Percentage	605.73 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 21.93 mm

Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Sag during installation = 19.16 mm

Reactions

Maximum = 2.27 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 3750 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.46 S1 Downward =12.23 S1 Upward =24.96

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.99 Kn-m	Capacity	1.40 Kn-m	Passing Percentage	70.35 %
V _{0.9D-WnUp}	2.13 Kn-m	Capacity	13.75 Kn-m	Passing Percentage	645.54 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 16.94 mm

Limit by Woolcock et al. 1999 Span/100 = 37.50 mm

Sag during installation =14.80 mm

Reactions

Maximum = 2.13 kn

Middle Pole Design

Geometry

225 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	3700 mm
Area	44279 mm2	As	33209.1796875 mm2
Ix	156100441 mm4	Zx	1314530 mm3
Iy	156100441 mm4	Zx	1314530 mm3
Lateral Restraint	3700 mm c/c		

Loads

Total Area over Pole = 30 m^2

Dead	7.50 Kn	Live	7.50 Kn
Wind Down	13.50 Kn Snow		0.00 Kn
Moment wind	14.00 Kn-m		
Phi	0.8	K8	0.88
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	559.30 Kn	PhiMnx Wind	33.48 Kn-m	PhiVnx Wind	78.64 Kn
PhiNcx Dead	335.58 Kn	PhiMnx Dead	20.09 Kn-m	PhiVnx Dead	47.18 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.47 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.23 < 1 OK$

Deflection at top under service lateral loads = 20.15 mm < 37.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
$V \cap -$	$(1 \sin(20)) / (1 + \sin(20))$				

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter
$D_S =$	0.6 mm	Pile Diameter

L= 2000 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

 $\label{eq:moment Wind = 14.00 Kn-m} \begin{tabular}{ll} Moment Wind = 14.00 Kn-m \\ Shear Wind = 4.67 Kn \end{tabular}$

Pile Properties

Safety Factory 0.55

Hu = 14.26 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 26.37 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.53 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2000) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2000)

Skin Friction = 32.31 Kn

Weight of Pile + Pile Skin Friction = 36.89 Kn

Uplift on one Pile = 33.45 Kn

Uplift is ok