

TD 8 ET 9 : DÉNOMBREMENTS

Exercice 1. Résoudre les relations de récurrence suivantes :

- 1. $a_n = 5a_{n-1} 6a_{n-2}$; $a_0 = 1$ et $a_1 = 0$
- 2. $a_n = a_{n-1} + a_{n-2}$; $a_0 = 0$ et $a_1 = 1$
- 3. $a_n = 2a_{n-1} 2a_{n-2}$; $a_0 = 1$ et $a_1 = 3$
- 4. $a_n = 2a_{n-1} + a_{n-2} + 6a_{n-3}$; $a_0 = 1$, $a_1 = -4$ et $a_2 = -4$
- 5. $a_n = 7a_{n-1} 16a_{n-2} + 12a_{n-3}$; $a_0 = 0$, $a_1 = 1$ et $a_2 = 2$

Exercice 2. Donner un ordre de grandeur asymptotique pour T(n).

- 1. $T(n) = 4T(n/2) + n^3$
- 2. $T(n) = 8T(n/2) + n^2$
- 3. $T(n) = 2T(n/4) + n^2$

Exercice 3. Pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$, on note : $\sum_{n=0}^{p}$ le nombre de n-uplets $(x_1, x_2, ..., x_n) \in \mathbb{N}^n$ tel que $x_1 + x_2 + \dots + x_n = p.$

- 1. Déterminer \sum_{n}^{0} , \sum_{n}^{1} , \sum_{n}^{2} , \sum_{1}^{p} , \sum_{2}^{p} . 2. Établir que $\forall n \in \mathbb{N}^{*}$, $\forall p \in \mathbb{N}$, $\sum_{n+1}^{p} = \sum_{n}^{0} + \sum_{n}^{1} + \cdots + \sum_{n}^{p}$ 3. En déduire que $\sum_{n}^{p} = C(n+p-1,p)$

Exercice 4. Soit A une partie d'un ensemble E à n éléments. On pose p = Card A.

- 1. Combien y-a-t-il de parties X de E contenant A?
- 2. Combien y-a-t-il de parties X de E à m éléments contenant $A, m \in \{p, \ldots, n\}$?
- 3. Combien y-a-t-il de couples (X,Y) de parties de E tels que $X \cap Y = A$?

Exercice 5. Soit la relation : $k \times C(n, k) = n \times C(n-1, k-1)$

- 1. Démontrez la relation.
- 2. En déduire pour tout entier positif n, la somme :

$$C(n,1) + 2 \times C(n,2) + \cdots + k \times C(n,k) + \cdots + n \times C(n,n)$$

3. En déduire pour tout entier positif non nul n, la somme :

$$C(n,2) + \cdots + (k-1) \times C(n,k) + \cdots + (n-1) \times C(n,n)$$

Exercice 6. Combien y a-t-il d'entiers entre 1 et 600 qui ne sont divisibles ni par 2, ni par 3, ni par 5?

Exercice 7. A l'aide des chiffres : 2, 3, 5, 7, 9 :

- 1. combien de nombres de trois chiffres peut-on former?
- 2. combien de ces nombres sont inférieurs à 500 ?
- 3. combien de ces nombres sont supérieurs à 700?
- 4. combien de ces nombres sont pairs?
- 5. combien de ces nombres sont impairs?
- 6. combien de ces nombres sont des multiples de sept?

Exercice 8. Combien de chaînes binaires de longueur 10 :

- 1. commencent par 11 et finissent par '000'?
- 2. contiennent quatre 0 et six 1.
- 3. contiennent au moins deux 0.
- 4. contiennent au moins deux 0 et au moins deux 1.
- 5. contiennent soit quatre 1 consécutifs, soit quatre 0 consécutifs?

Exercice 9. Soit E un ensemble à n éléments. On appelle dérangement de E toute permutation de E ne laissant aucun élément invariant. On notera D_n le nombre de dérangements de E. On pose $D_0 = 1$.

- 1. Si E comporte un seul élément, y-a-t-il des dérangements de E? En déduire D_1 .
- 2. Si E comporte deux éléments, combien y-a-t-il de dérangements de E? En déduire D_2 .
- 3. On suppose n quelconque, et on ecrit $E = \{a_1, ..., a_n\}$. Soit f une permutation de E. On suppose qu'elle laisse k éléments invariants. Combien y-a-t-il de telles permutations? En déduire la formule suivante :

$$n! = \sum_{k=0}^{n} C(n,k) \times D_k$$

- 4. En déduire D_3 , D_4 , D_5 .
- 5. Cinq couples de danseurs se rendent à un bal masqué. À l'arrivée, on sépare les hommes et les femmes. On numérote les femmes de 1 a 5, et les hommes de 1 a 5. On les fait ensuite s'élancer sur une piste, chaque homme choississant au hasard une femme pour partenaire.
 - 5.1. A chaque numéro de femme, on associe le numéro de l'homme avec lequel elle danse. Combien y a t-il d'associations possibles ?
 - 5.2. De combien de manières peut-on composer cinq couples de danseurs pour qu'aucun couple légitime ne soit reconstitué ?
 - 5.3. De combien de manières peut-on composer cinq couples de danseurs pour qu'un seul couple légitime soit reconstitué.
 - 5.4. De combien de manières peut-on composer cinq couples de danseurs pour qu'il y ait plus de couples illégitimes sur la piste de danse que de couples légitimes.

Exercice 10. Parmi les permutations de l'ensemble $E = \{a, b, c, d, e, f\}$ (que l'on peut représenter par les mots de 6 lettres qui contiennent exactement une fois chaque lettre de E), combien y en a-t-il qui ne contiennent ni ab ni cd ni ef?

Exercice 11. On considère le mot MATRICE.

- 1. Dénombrer les anagrammes du mot.
- 2. Dans chacun des cas suivants, dénombrer les anagrammes du mot :
 - 2.1. commençant et finissant par une voyelle;
 - 2.2. commençant et finissant par une consonne;
 - 2.3. commençant par une consonne et finissant par une voyelle;
 - 2.4. commençant par une voyelle et finissant par une consonne.

Exercices supplémentaires (livre de Rosen)

Exercices numéros 13, 20, 21, 32, 39 (Pages 300-301); 8, 18 (Page 308); 11, 17 (Page 331); 8, 9, 10, 29, 30, 32 (Pages 333-335).