ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMM--ETC F/6 13/6 EVA METRO SEDAN ELECTRIC PROPULSION SYSTEM TEST AND EVALUATION. (U) SEP 79 E REIMERS DOE-1AA-EC-77-A-31-10 AD-A080 655 DOE-IAA-EC-77-A-31-1042 UNCLASSIFIED NL 1 of 4 AD A080655

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR, VIRGINIA 22060

MA080655

EVA METRO SEDAN ELECTRIC PROPULSION SYSTEM

TEST AND EVALUATION

Eberhart Reimers
Electrical Equipment Division

September 1979

Prepared for

Department of Energy
Conservation and Solar Applications
Office of Transportation Programs
Washington, DC 20545

80 2 14 00

This report has not been approved by Department of the Army. Neither the United States nor the United States Department of Defense, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or fevoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

METRO SEDAN ELECTRIC PROPULSION SYSTEM AND EVALUATION Thart Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power or atory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	TYPE OR REPORT A PERIOD COVERED In-House Technical Report. Jan 78 - Sep 79 DESERVATION OF THE PORT NUMBER CONTRACT OR GRANT NUMBER(*) PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-11042 dated 13 May 1977 REPORT DATE September 1979 NUMBER OF PAGES
METRO SEDAN ELECTRIC PROPULSION SYSTEM AND EVALUATION Thart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	In-House Technical Report. Jan 78 - Sep 79 RESECUTIVE OF SEPORT NUMBER CONTRACT OR GRANT NUMBER(*) PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 REPORT DATE September 1979
METRO SEDAN ELECTRIC PROPULSION SYSTEM AND EVALUATION Thart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	In-House Technical Report. Jan 78 - Sep 79 RESECUTIVE OF SEPORT NUMBER CONTRACT OR GRANT NUMBER(*) PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 REPORT DATE September 1979
METRO SEDAN ELECTRIC PROPULSION SYSTEM AND EVALUATION Thart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	Jan 78 - Sep 79 5 DEBEGRAMING ONG. REPORT NUMBER CONTRACT OR GRANT NUMBER(*) D. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2. REPORT DATE September 1979
METRO SEDAN ELECTRIC PROPULSION SYSTEM AND EVALUATION Thart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	Jan 78 - Sep 79 5 DEBEGRAMING ONG. REPORT NUMBER CONTRACT OR GRANT NUMBER(*) D. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2. REPORT DATE September 1979
AND EVALUATION Thart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	DESCRING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(*) D. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 REPORT DATE September 1979
rhart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power or atory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	O. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2. REPORT DATE September 1979
rhart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	O. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2. REPORT DATE September 1979
rhart/Reimers FORMING ORGANIZATION NAME AND ADDRESS Army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2 REPORT DATE September 1979
Army Research & Development Command ctrical Equipment Division, Electrical Power or atory, DRDME-EA, Ft. Belvoir, VA 22060	Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2 REPORT DATE September 1979
Army Research & Development Command ctrical Equipment Division, Electrical Power or atory, DRDME-EA, Ft. Belvoir, VA 22060	Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2 REPORT DATE September 1979
Army Research & Development Command ctrical Equipment Division, Electrical Power or atory, DRDME-EA, Ft. Belvoir, VA 22060	Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2 REPORT DATE September 1979
army Research & Development Command ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	Interagency Agreement EC-77-A-01-1042 dated 13 May 1977 2 REPORT DATE September 1979
ctrical Equipment Division, Electrical Power oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	EC-77-A-01-1042 dated 13 May 1977 2. REPORT DATE September 1979
oratory, DRDME-EA, Ft. Belvoir, VA 22060 ITROLLING OFFICE NAME AND ADDRESS	dated 13 May 1977 2. REPORT DATE September 1979
ITROLLING OFFICE NAME AND ADDRESS	2. REPORT DATE September 1979
	September 1979
The same of the sa	3. NUMBER OF PAGES
ALLOWING WORKEL WAME & WOOKESSIII GITTERBIT ITOM CONTROLLING Office)	275 5. SECURITY CLASS. (of this report)
/ 100)
(12)2911	
	Unclassified
	5a. DECLASSIFICATION/DOWNGRADING SCHEDULE
TRIBUTION STATEMENT (of the abstract entered in Block 20, if different from I	Report)
PLEMENTARY NOTES	
words (Continue on reverse side if necessary and identity by block number) ctric Propulsion ctric Dc Motor ctric Passenger Vehicle Two Phase Chopper Motor Controller	
TRACT (Continue on reverse side if necessary and identify by block number)	7
report provides the procedure and results of the VA Metro Sedan propulsion system. Data is provision, solid state dc motor controller and the dc bulsion system. Algorithms used on the automatic included.	ided for the automatic tran motor as well as the entir
	70 R

403 160

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

Title	Page
LIST OF ILLUSTRATIONS	iv
LIST OF TABLES	xi
SUMMARY	1
ACKNOWLEDGEMENTS	1
INTRODUCTION	4
OBJECTIVE	5
DESCRIPTION OF PROPULSION SYSTEM	6
PROPULSION SYSTEM RELIABILITY	6
THEORY OF OPERATION	
A. Analysis of Propulsion System Performance General Pulsomatic Mark 10 Controller Impact of Chopper Current on Motor Performance	13 13 13
 B. Monitoring Battery Transfer Efficiency 1. Conventional Method 2. Improved Method 	17 19
DATA ACQUISITION 1. HP 3052A Data Acquisition System 2. Software Programs 3. System Subroutines 4. Data Sampling	22 22 22 24
INSTRUMENTATION	
 Transmission Test DC Motor Test DC Motor Operation in the Pulsating Power Mode Voltage and Power Sensors Electromagnetic Interference Sound Level 	24 24 24 34 34 49
	LIST OF ILLUSTRATIONS LIST OF TABLES SUMMARY ACKNOWLEDGEMENTS INTRODUCTION OBJECTIVE DESCRIPTION OF PROPULSION SYSTEM PROPULSION SYSTEM RELIABILITY THEORY OF OPERATION A. Analysis of Propulsion System Performance 1. General 2. Pulsomatic Mark 10 Controller 3. Impact of Chopper Current on Motor Performance B. Monitoring Battery Transfer Efficiency 1. Conventional Method 2. Improved Method DATA ACQUISITION 1. HP 3052A Data Acquisition System 2. Software Programs 3. System Subroutines 4. Data Sampling INSTRUMENTATION 1. Transmission Test 2. DC Motor Test 3. DC Motor Operation in the Pulsating Power Mode 4. Voltage and Power Sensors 5. Electromagnetic Interference

TABLES OF CONTENTS (CONT'D)

Section	Title	Page
	8. Motor Power Loss	52
	9. Battery Energy Transfer Efficiency	55
x	RATIONALE FOR EVALUATION OF POWER TRANSFER	
	1. Scanner Terminal Designation	55
	2. Data Print Out	61
	3. Three Speed Automatic Transmission Performance	63
	.4. DC Motor Performance	64
	5. DC Controller Motor Drive	64
	6. EVA Propulsion System	68
	7. Measurement of In-Circuit Inductance	69
XI	TRANSMISSION TEST	69
XII	DC MOTOR TEST	
	1. DC Motor Performance	69
	2. Parametric Test Data	88
XIII	DC CHOPPER MOTOR DRIVE TEST	88
XIV	TRANSIENT WAVEFORM ANALYSIS	100
xv	BATTERY ENERGY TRANSFER EFFICIENCY TEST	138
XVI	EMI AND SOUND LEVEL TEST	
	1. Electromagnetic Interference (EMI)	138
	2. Sound Level	146
XVII	CONCLUSIONS	146
XVIII	REFERENCES	155
	APPENDICES	
	A. APPLICATION OF SAMPLING TECHNIQUE	156
	R FVA TRANSMISSION TEST ROUTINE SOFTWARE AND DATA PRINT-OUT	164

TABLE OF CONTENTS (CONT'D)

Section		Title	Page
	C.	EVA DC MOTOR TEST ROUTINE, SOFTWARE DATA, PRINT-OUT AND CALCULATED PERFORMANCE DATA	187
	D1.	PARAMETRIC TEST DATA, UNBUFFERED BATTERY MOTOR CHOPPER ENGINEERING DATA AND CALCULATED DATA FOR PULSED DC POWER OPERATION	210
	D2.	PARAMETRIC TEST DATA, BUFFERED BATTERY MOTOR CHOPPER ENGINEERING DATA AND CALCULATED DATA FOR PULSED DC POWER OPERATION	235
	E.	ON-BOARD BATTERY CHARGER	258
		1. General Description	259
		2. Electrical Characteristics	259
		3. Slope Characteristics	260
		4. Environmental Characteristics	261
		5. Maintenance	261
		6. Recommendations	261

NTIS G.M&I DDC TAB Unannounced Justification By Distribution/	
Unannounced Justification By Distribution/	日 日
Justification	
By	
Distribution/	
Availability Co	des
Availand/	01.
ist special	
^	
u	

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.1	Energy Requirement and Propulsion Drive Efficiency for Constant Vehicle Speed Mode @ Rated Motor Power	3
6.1	Broken Seal of Drive Shaft	7
6.2	Motor Damage to Commutator Caused by Disintegration of Soft Solder Joints	8
6.3	Motor Damage to Field Winding Caused by Disintegration of Soft Solder Joints	9
6.4	Motor Damage to Commutator Risers Caused by Disintegration of Soft Solder Joints	10
6.5	Motor Damage to Brush Housing Caused by Disintegration of Soft Solder Joints	11
6.6	Overall View of Motor Damage Caused by Disintegration of Soft Solder Joints	12
7.1	Simplified Circuit Schematic for Cableform Pulsomatic Mark 10 Controller	14
7.2	Battery Cell Voltage vs. Charge Level	18
7.3	Voltage Requirement to Achieve Full Charge Capability at Various Temperatures (12V, 50 AH Lead Acid Battery)	20
7.4	Point of Inflection for Discharge and Recharge Cycles	21
8.1	HP Type 3052A Data Acquisition System	23
8.2	Schematic of HP 3052A Data Acquisition System	25
8.3	Flowchart and Hardware Implementation of Variable Frequency, Arbitrary Waveform Voltage Measurement	26
8.4	Consecutive Sample Positions for a 100 Point Sample, Waveforms Overlaid	27
9.1	Adaptor to Lock Differential	28
9.2	Schematic of Dynamometer No. 1 Transmission Test Facility	29
9.3	Transmission Test Bed	30
94	Calibration Arm for Torque Sensor	21

Figure	Title	Page
9.5	Schematic for Dynamometer No. 3 Motor Test Facility Continuous DC Power Mode	32
9.6	Schematic for Dynamometer No. 3 Motor Test Facility Pulsating DC Power Mode	33
9.7	Dynamometer No. 3 Test Facility Overview	35
9.8	Mounting Plate for Coaxial Current Shunts on Top of DC Controller Panel	36
9.9A	Battery is Stored in Direct Proximity of Drive Stand No. 3	37
9.9B	Battery Hook-Up	38
9.10	In-Circuit Location of Coaxial Current Shunts During Testing	39
9.11	Calibration Circuit for Coaxial Current Shunts	40
9.12	Adaptor Circuit for Measurement of Thyristor Forward Voltage Drop	42
9.13	Adaptor Circuit for Measurement of Diode Forward Voltage Drop	42
9.14	Adaptor Circuit for Capacitor (C4) A.C. Voltage Sensor	43
9.15	Measurement of Power Loss in Capacitor (C4)	44
9.16	Typical Calibration Curve for Wattmeter No. 2	45
9.17	Shielded Enclosure for EMI Test	48
9.18	Motor Rotor Inertia Test	51
9.19	Windage, Friction and Magnetic Loss Test (PCOR)	53
9.20	Circuit Schematic for Battery Energy Transfer Efficiency Test	56
11.1	Transmission Performance Test in First Gear (GR1)	70
11.2	Transmission Performance Test in First Gear (GR1)	71
11 2	Transmission Performance Test in Second Coar (CP2)	72

Figure	Title	Page
11.4	Transmission Performance Test in Second Gear (GR2)	73
11.5	Transmission Performance Test in Third Gear (GR3)	74
11.6	Transmission Performance Test in Third Gear (GR3)	75
12.1	Motor Efficiency, TMOT = Parameter	76
12.2	Brush Losses vs. Motor Current	77
12.3	Windage, Friction and Magnetic Loss	78
12.4	Windage and Friction Loss	79
12.5	Motor Winding Dissipation	80
12.6	Motor Voltage vs. Motor Speed	81
12.7	Motor Current vs. Speed	82
12.8	Motor Torque vs. Motor Current and Speed	83
12.9	Motor Current vs. Motor Shaft Torque	84
12.10	Motor Speed vs. Shaft Power	85
12.11	Parametric Test Data, Motor Current and Voltage	89
12.12	Parametric Test Data, Motor Efficiency and Power Loss Per Unit Torque	90
12.13A	Parametric Test Data @ NMOT = 670 RPM	91
12.13B	Parametric Test Data @ NMOT = 839 RPM	92
12.13C	Parametric Test Data @ NMOT = 1048 RPM	93
12.13D	Parametric Test Data @ NMOT = 1310 RPM	94
12 13E	Parametric Test Data @ NMOT = 1638 RPM	05

Figure	Title	Page
12.13F	Parametric Test Data @ NMOT = 2048 RPM	96
12.13G	Parametric Test Data @ NMOT = 2560 RPM	97
12.13H	Parametric Test Data @ NMOT = 3200 RPM	98
12.131	Parametric Test Data @ NMOT = 4000 RPM	99
13.1	Motor Propulsion Profile, Pulsed DC Power	101
13.2	Motor Propulsion Profile, Pulsed DC Power	102
13.3	Motor Propulsion Profile, Pulsed DC Power	103
13.4	Motor Propulsion Profile, Pulsed DC Power	104
13.5A	Motor Performance @ 50 RPM, Pulsed DC Power	105
13.5B	Motor Performance @ 100 RPM, Pulsed DC Power	106
13.5C	Motor Performance @ 670 RPM, Pulsed DC Power	107
13.5D	Motor Performance @ 839 RPM, Pulsed DC Power	108
13.5E	Motor Performance @ 1048 RPM, Pulsed DC Power	109
13.5F	Motor Performance @ 1310 RPM, Pulsed DC Power	110
13.5G	Motor Performance @ 1638 RPM, Pulsed DC Power	111
13.5H	Motor Performance @ 2048 RPM, Pulsed DC Power	112
13.51	Motor Performance @ 2560 RPM, Pulsed DC Power	113
13.5K	Motor Performance @ 3200 RPM, Pulsed DC Power	114
13.5L	Motor Performance @ 4000 RPM, Pulsed DC Power	115

Figure	Title	Page
13.6	System Propulsion Profile, Pulsed DC Power	116
13.7	System Propulsion Profile, Pulsed DC Power	117
13.8A	System Propulsion @ 52 RPM, Pulsed DC Power	118
13.8B	System Propulsion Profile @ 203 RPM, Pulsed DC Power	119
13.8C	System Propulsion Profile @ 671 RPM, Pulsed DC Power	120
13.8D	System Propulsion Profile @ 839 RPM, Pulsed DC Power	121
13.8E	System Propulsion Profile @ 1044 RPM, Pulsed DC Power	122
13.8F	System Propulsion Profile @ 1303 RPM, Pulsed DC Power	123
13.8G	System Propulsion Profile @ 1637 RPM, Pulsed DC Power	124
13.8H	System Propulsion Profile @ 2047 RPM, Pulsed DC Power	125
13.81	System Propulsion Profile @ 2560 RPM, Pulsed DC Power	126
13.8K	System Propulsion Profile @ 3200 RPM, Pulsed DC Power	127
13.8L	System Propulsion Profile @ 4000 RPM, Pulsed DC Power	128
14.1	Waveforms, NMOT = 200 RPM	129
14.2	Waveforms, NMOT = 200 RPM	130
14.3	Waveforms, NMOT = 200 RPM	130
14.4	Waveforms, NMOT = 200 RPM	131
14.5	Waveforms, NMOT = 200 RPM	132
14.6	Waveforms, NMOT = 200 RPM	133
147	Waveforms, NMOT = 200 RPM	124

Figure	Title	Page
14.8	Waveforms, NMOT = 200 RPM	135
14.9	Waveforms, NMOT = 200 RPM	136
14.10	Waveforms, NMOT = 200 RPM	137
14.11	Waveforms, NMOT = 1000 RPM	139
15.1	Battery Maximum Charge Current vs. Time Prior to Gasing	142
15.2	Battery Energy Input vs. Charge Rate	143
15.3	Battery Discharge/Charge Efficiency	144
16.1	EMI Test, No Load	145
16.2	EMI Test, 50A Load	147
16.3	EMI Test, 200A Load	148
16.4	EMI Test, 200A Load	149
16.5	Sound Level Test, Stationary	150
16.6	Sound Level Test, Stationary	151
16.7	Sound Level Test, Motion	152
E.1	Main Input-Output Circuit (Components on PC Boards)	262
E.2	Ground Detector Circuit (On EVA PC Board)	263
E.3	± 15 V dc Supply (On CMC PC Board)	264
E.4	Battery Charger Control Circuit	265
E.5	Connector and Component Wiring Schematic	266
E.6	Instrumentation to Determine Charge Rate Curves	267

Figure	Title	Page
E.7	Battery Charger Current and Voltage Slopes	268
E.8	Battery Charger Voltage/Current Slope, Graph 2	269
E.9	Battery Charger Power Consumption, 120 VRMS	270
E.10	Battery Charger Voltage/Current Slope, Graph 4	271
E.11	Battery Charger Power Consumption, 240 V RMS	272
E.12	Battery Charger Voltage/Current Slope, 240 V RMS	273
E.13	Broadband Radiated EMI	274
E.14	Audio Sound Level: Input – 120 V RMS; Output – 10A	275

LIST OF TABLES

Table	Title .	Page					
1	EVA Constant Speed Vehicle Performance Data	2					
2	Coaxial DC Current Shunt Calibration	41					
3	Specifications for HP 3455A Digital Multimeter	46					
4	Instrumentation to Determine EMI	50					
5	Instrumentation to Determine Sound Level	50					
6	Instrumentation to Determine Motor Losses						
7	Instrumentation for Battery Test	57					
8	Windage, Friction and Magnetic Loss Data	86					
9	Windage and Friction Loss Data	86					
10	Rotor Inertia for EVA #1 Metro Sedan Propulsion Motor	87					
11	Chronological Charge and Discharge Data	140					
12	Sound Levels for EVA #1 Metro Sedan	153					
Al	Relative Sample Points for $D = (T/2)(1-1/N)$, $N = 100$	159					
A2	Relative Sample Points for $D = (T/3)(1-1/N)$, $N = 100$	160					
A3	Relative Sample Points for D = $(T/4)(1-1/N)$, N = 100	161					
A4	Relative Sample Points for D = $(T/10)(1-1/N)$, N = 100	162					
A5	Results of Period Synchronized Sampling of Various 2 kHz Waveforms	163					
B1	Transmission Test Nomenclature	170					
C1	Nomenclature for DC Motor Test	203					
D1	Nomenclature for Parametric Test Data (Un)Buffered Battery	211					

LIST OF TABLES (CONT'D)

Table	Title	Page	
D2	Nomenclature for Calculated Data, Parametric Chopper and Motor Test	223	
D3	Nomenclature for Parametric Test Data, Buffered Battery	226	
D4	Nomenclature for Calculated Data, Parametric Chopper and Motor Test	247	

I. SUMMARY

This report provides the procedure and results of the performance evaluation of the EVA Metro Sedan (car #1) variable speed dc chopper motor drive and its three speed automatic transmission. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility #2, located at the premises of the Electrical Equipment Division, Bldg 326, and evaluated with the aid of a HP 3052A Data Acquisition System under the direction of the U.S. Army Mobility Equipment Research and Development Command (MERADCOM), Fort Belvoir, Virginia, as part of a Department of Energy (DOE) Interagency Agreement EC-77-A-31-1042, dated 13 May 1977. The report furnishes performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on the dynamometer test facility, as well as the entire propulsion system.

The purpose of this project was to evaluate this concept and the system's components in terms of commercial applicability, maintainability and energy utility to establish a design base for the further development of this system or similar propulsion drives. Compilation of data with the HP 3052A Data Acquisition System made it possible to complete individual test runs in typically 20 to 30 seconds, yielding up to 36 direct read-outs for each test run and an additional 43 calculated data points. A comprehensive analysis of system and component performance was made over the entire speed, load torque and power profile which was interpreted in terms of 5 constant power profiles @ rated power, 0.75; 0.50; 0.25; and 1.25 times rated power of the motor. The incorporation of this data acquisition system into a programmable electric dynamometer test facility, possibly the first of its kind, has increased the quality, accuracy and speed of data acquisition heretofore not readily available in industry.

The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 HP @ 3800 RPM (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.

Constant speed performance data, as derived from dynamometer test runs, are shown in Table 1 and Figure 1.1, whereby symbols and unit abbreviations are presented at the top of Table 1.

II. ACKNOWLEDGEMENTS

The author wishes to thank Mr. James H. Ferrick for the development of the software and data acquisition; Carl J. Heise for the design of the test stand; and, George M. Sisk and AndrewA. Thompson for their technological support to establish the test facility and to verify data.

The battery test was performed by E. E. Moyer of E²M Engineering Services, while the evaluation of the "Marshall" battery charger was performed by E. J. Dowgiallo, Jr., and other members of the Electro-Chemical Division, MERADCOM, Fort Belvoir, Virginia.

Table 1: EVA Constant Speed Vehicle Performance Data

Motor Data		Transmission		Propulsion Sys Loss		EVA Performance		
Speed NTR RPM	Torque TMOT N-M	Slip Freq HZ	Gear Ratio :1	Power Loss WLEVA WL/W	Energy Loss JLEVA JL/J/KM	Required Energy JEVA KWH/KM	Vehicle Speed KM/H	Eff'cy EFFEVA %
4000	17.8	1.95	8.52	1.37	103.0	0.212	48.179	42
3200	22.3	2.15		1.49	140.7	0.292	38.104	40
2560	27.8	2.1		1.44	171.4	0.355	30.201	41
2047		2.35		2.78	423.2	0.717	23.649	26
1637		2.7		3.41	670.3	0.910	18.302	23
1303				4.29	1090.6	1.176	14.157	19
1044				5.35	1760.1	1.522	10.944	16
839	•	•	1	6.22	2665.7	1.853	8.400	14
4000	17.8	2.2	5.21	1.37	63.1	0.131	77.886	42
3200	22.3	2.35		1.55	91.0	0.187	61.596	39
2560	27.8	2.15		1.37	101.1	0.209	48.950	42
2047		2.15		2.66	247.6	0.423	38.621	27
1637		2,3		3.27	389.9	0.529	30.184	23
1303				4.13	634.2	0.684	23.458	20
1044				5.15	1016.3	0.879	18.243	16
839	•	•	②	5.99	1527.2	1.062	14.115	14
4000	17.8	2.0	3.65	1.94	67.4	0.140	103.165	34
3850	18.5	2.05		1.94	67.9	0.141	98.504	34
3200	22.3	2.2		1.87	86.0	0.177	78.671	35
2560	27,8	2,4		2.27	138.4	0.287	58.930	31
2047				2.97	242.2	0.412	44.064	25
1637		+		3.51	391.8	0.532	32.189	22
1303		2.85		4.38	800.4	0.866	19.662	19
1044				5.41	1601.4	1.293	12.160	16
839	1 100	•	3	6.58	3803.5	2.175	6.223	13

Motor speed (NMOT) at transmission input.

Motor shaft torque.

Transmission slip frequency referred to its input.

System power loss per unit power delivered to the wheel in watts.

System energy loss per unit energy delivered to the wheel in joules.

Energy consumption per KM distance travelled. NTR TMOT SLIP WLEVA JLEVA JEVA

Encircled numbers indicate transmission gear speed selector.

III. INTRODUCTION

The performance test and evaluation of the EVA Metro Sedan electric propulsion system presented in this report is in support of Public Law 94-413 enacted by Congress on September 17, 1976. The law requires the Department of Energy (DOE) to develop data characterizing commercially available electric and hybrid vehicles, and to foster programs yielding state-of-the-art hardware and systems configurations to improve electric and hybrid vehicle propulsion technologies.

The Electrical Power Laboratory of the U.S. Army Mobility Equipment Research and Development Command (MERADCOM) under the direction of the Office of Transportation Programs, DOE, Interagency Agreement EC-77-A-31-1042, dated 13 May 1977, has tested and evaluated the performance of the EVA Metro Sedan electromechanical propulsion system, the results of which are reported herein. This is the propulsion system of the vehicle that was performance tested by MERADCOM. Results of that test are presented in MERADCOM Report 2244, dated May 1978.

The performance evaluation of the EVA Metro Sedan electromechanical propulsion system or "electric transmission" includes the battery, the three speed automatic gear speed reducer, the dc motor in conjunction with the solid state controller panel, and the on-board battery charger. Electromagnetic Interference and Acoustic Noise performance tests were conducted for the entire vehicle, including the on-board battery charger at the MERADCOM Environmental Test Facility. Data points were taken at the dynamometer for a parametric load profile at multiple constant speed settings. The data points were used to determine motor performance when energized from a dc source; and the impact on motor performance and heat loss when receiving energy from the propulsion battery through the dc controller. Wattlosses in the dc controller and the propulsion battery were also determined during this test run. The constant speed, parametric load torque performance data are then converted into constant power/torque variable speed data and presented graphically.

With the aid of the HP 3052A multi-channel data acquisition system containing a 225 K byte memory, a digital dc and true RMS voltmeter, a 30-channel scanner and a data printer, 36 data points were logged by direct measurement for each speed and motor torque setting, whereby each test run was completed after typically 24 seconds. When programmed, such system was able to calculate complex data points, many of which are described in this report, e.g.: a resistive voltage drop across the series field of a dc motor.

Battery energy transfer efficiency was obtained in a separate test procedure. Inasmuch as an EV106 was not readily available, a similar propulsion battery, Prestolite Model 9915-X, was used for test purposes. Data were obtained from several constant current discharge/rectarge cycles for five arbitrarily chosen specific rates of current, such that the gas pressure within the cuttery remained at typically 0.5" H₂0 during the charge mode, and when bled continuously at an arbitable constant rate. Efficiency was calculated from WATT-HOUR and AMPERE-HOUR data vs. current when discharging to the inflection point of the watt curve, and WATT-HOURS and AMPERE-HOURs when charged to the same ampere-hour value obtained at inflection during discharge. It is well recognized that coulombic efficiency, which was not considered during this test, will be less than 100% in any pattery. However, the rudimentary tests performed within the limits of the budgetary allocation showed surprising repeatability between batteries and between various discharge cycles of the same battery. As such, the proposed procedure is considered an important method to evaluate and monitor the charge and indication of an on-board multi-cell

battery assembly. The results of these tests, therefore, are considered of potential interest to the system designer, and, hence, have been included in this report for this very reason.

IV. OBJECTIVE

The purpose of this test and evaluation program is to provide complete characterization of the propulsion system and its building blocks since performance data are unavailable from commercial sources. Performance data of interest are:

Transmission

Power transfer profile over speed range Efficiency Power-Loss/Motor Torque applied at input

DC Motor

Voltage-current characteristics
Efficiency
Power-Loss/Shaft Torque
Performance degradation when operating in the pulsating dc power mode

DC Controller

Transient Waveform analysis Efficiency Power-Loss/Motor Torque

Battery

Energy requirements vs. power-speed profile of motor, vehicle
Energy Losses when discharging
dc current
pulsating current
Power transfer efficiency
Losses when recharging
Energy requirement vs. recharge current
Battery performance test

Propulsion System

Efficiency, electric drive only w/o transmission Power-Loss/Motor Torque vs. speed Required Energy/Km travel vs. speed of the vehicle

EVA Metro Sedan

Electromagnetic Interference test Noise test

V. DESCRIPTION OF PROPULSION SYSTEM

The electric propulsion system for the EVA Metro Sedan comprises sixteen 6-Volt batteries, Exide EV 106; a thyristor controlled dc chopper type motor controller, Cableform Pulsomatic Mark 10; a dc series field motor rated 10 HP@3800 RPM/min, Baldor Electric Company, motor identification plate not furnished; and the original equipment mechanical transmission with torque converter, three forward positions and one reverse. Activation of the accelerator foot pedal controls the on-off conduction cycle of the controller's main thyristor and thus the power flow to the propulsion motor. The motor in turn drives the torque converter of the mechanical transmission which in turn drives an automatic transaxle. The gear shifting of the transaxle in its three forward speeds is controlled by two solenoids with electrical energizing coils, while the reverse gear is activated mechanically. The shifting of the transaxle is accomplished electrically by comparison of motor speed and its current, and a pre-set gear shift selector. Power transfer to the wheel increases commensurably with accelerator pedal travel. However, braking is accomplished solely by mechanical means. No regenerative braking is provided.

VI. PROPULSION SYSTEM RELIABILITY

The car was received after road testing and general use as a shuttle vehicle. It had 2332 miles registered on the odometer when the propulsion system was removed from the vehicle. Major problems were encountered which either delayed, or required repetition of component testing. Initially, it was necessary to repair the broken seals of the drive shaft, shown in Figure 6.1. These seals had to be slipped over the flexible "Knuckle" joint with a special tool to avoid damage during mounting.

During testing it was learned that the original equipment motor winding bars were soft soldered to the commutator bars. Heat in the motor and centrifugal force caused disintegration of the solder joints, partial open circuiting of commutator bars, and deposition of solder pebbles across the field winding, end bell and the air-gap. This is shown in Figures 6.2 through 6.6. The motor was replaced with a hard soldered unit, Baldor Electric Company Motor Frame 215 CZ 7544D, Specification 29 1755 11211, 10 HP, 3800 RPM, 84 CDC, 98A, Serial No. 1276. The entire evaluation of the electric propulsion system was performed with this motor.

Because of the circuit configuration the chopper controller developed an unusually large power loss resulting in excessive heating. Contact areas in the contactor are badly burnt. The contactor appears underrated for its task.

The battery charger was considered difficult to use because of its lack of input/output/insulation, and difficulties to maintain a constant charge level across the battery assembly because of its 15 A dc current capacity. The unit was replaced with an in-house charger, consisting of a generator-rectifier unit with field control and able to furnish up to 300 A dc charge current.

Adequate fusing of the solid state controller in its present form is considered virtually ineffective because of the very high peak to average current amplitude ratios at low motor speed. The fuse can be matched only for only one condition, and will not satisfy the requirements for the other current mode, as described in the literature (Ref. 1).

Figure 6.1. Broken seal of drive shaft.

Figure 6.2. Motor damage to commutator caused by disintegration of soft solder joints.

Figure 6.3. Motor damage to field winding caused by disintegration of soft solder joints.

Figure 6.4. Motor damage to commutator risers caused by disintegration of soft solder joints.

Figure 6.5. Motor damage to brush housing caused by disintegration of soft solder joints.

Figure 6.6. Overall view of motor damage caused by disintegration of soft solder joints.

VII. THEORY OF OPERATION

A. ANALYSIS OF PROPULSION SYSTEM PERFORMANCE

- 1. General. Motor speed control in an electric vehicle propulsion system can be attained by a solid state switch whose variable on-off conduction duty cycle transfers a proportional quantity of pulsed energy from the dc power source into the dc motor. As stated elsewhere (Ref. 2) the pulsed battery current is alternately stored and expended within the dc motor, predominantly within its series field, during each period of conduction and succeeding freewheeling operating mode. In this way an energy transfer is maintained from a high voltage, low current dc supply into a high current, lower dc voltage amplitude demanding load. The transformation ratio of the average supply and load current amplitudes is a controlled variable and is commensurate with the conduction duty cycle of the solid state switch. Though seemingly simple, the pulsating current demanded from the source is equal in amplitude to the instantaneous current demanded by the motor combined with the exponentially rising and decaying dc current amplitude in the motor, this operating mode generates power losses in excess of losses normally associated with the dc motor and the battery when operated in the continuous dc power mode.
- 2. Pulsomatic Mark 10 Controller. The simplified schematic for this chopper, shown in Figure 7.1, contains a thyristor switch (TH1) which is triggered at the gate at a repetition rate of ω_c , and force commutated by an external commutating circuit. At the instance of gate triggering TH1, precharged commutation capacitor (C4) discharges through TH1 and diode (D4), such that the positive charge at its upper terminal is transerred to the lower terminal. Charge reversal accomplished, it is then possible to commutate thyristor (TH1) either by gate or anode triggering of thyristor (TH2). Capacitor (C4) discharges again, in the process displacing the forward current in TH1 with a larger current amplitude in the reverse direction, yielding the commutation of TH1. As the lower terminal of C4 continues to be depleted, its upper terminal is recharged by the now decreasing motor current amplitude until its terminal voltage exceeds the battery supply voltage (EBAT). At this point the upper terminal of C4 is clamped to EBAT by the inverse by-pass diode (D2), and excess charge is circulated through the battery and thyristor (TH2) in its reverse direction until this device is commutated. The stored energy in the motor continues to be expended, meanwhile, locally through freewheeling diode (D2) until TH1 is retriggered.

It is noteworthy that the elapsed minimum conduction period of thyristor (TH1) prior to its earliest possible commutation is relatively constant at $(T \cong \pi \cdot L \cdot C4)$, is independent of load and current amplitude variations*, and solely a function of resonant recharge interaction between capacitor (C4) and inductor (L). Control of power transfer from the source to the motor through manipulation of the conduction duty cycle of TH1, hence, is primarily accomplished by a variable gate trigger control frequency (fc) between typically zero and 400 Hertz, and only to a lesser degree through variation of the conduction period in this application.

3. Impact of Chopper Current on Motor Performance. A general analysis of motor performance in the continuous dc current mode versus the pulsating dc current mode, and its impact on battery performance, is necessary for the understanding of the requirements for instrumentation.

In the continuous dc power operating mode, motor power (PAMOT) for a specific level of power (PTR) delivered at the shaft is (7.1):

^{*} The initial current amplitude is relatively constant @ IC4 = 330A peak.

(7.1)
$$PAMOT = I^2 ARM \cdot R_o$$
 [WDC]

whereby

 $\begin{array}{lll} IARM & = & Armature \ current, \ ADC \\ R_o & = & R_F + R_A + R_L, \ ohm \\ R_F & = & Field \ resistance, \ ohm \\ R_A & = & Armature \ resistance, \ ohm \\ R_I & = & Apparent \ load \ resistance, \ ohm \\ \end{array}$

Correspondingly, the efficiency (η AMOT) IS (7.2.):

$$\eta AMOT = (PTR/PAMOT) \cdot 100$$
 [%]

As a recipient of pulsating dc power from the dc chopper shown in Figure 7.1, the motor will incur additional power losses due to current harmonics. The increased current amplitude (IMOT), derived from Reference (2), for steady state load conditions is (7.3):

(7.3)
$$IMOT = \frac{EBAT}{R_o \pi} \left[\left(\frac{\theta_1 \omega_c}{2} \right)^2 + \frac{4}{1 + (\omega_c T_o)^2} \sum_{n=1}^{n=\infty} \frac{1}{n^2} \right] \cdot 2 \sin^2 \frac{n\theta_1 \omega_c}{2} \cdot \cos^2 n\omega_c \left(t - \frac{\theta_1}{2} \right) \right]^{\frac{1}{2}}, \quad [ARMS]$$

whereby

EBAT = Supply voltage to dc chopper, VDC

 θ_1 = Chopper conduction period, s

 π = Radians per cycle

 $\omega_c = 2\pi f_c = \text{chopper control frequency, rad/s}$

n = Harmonic coefficient

 $T_o = L_o/R_o, s$

 L_o = Circuit inductance = $L_F + L_A + L_L$, H

L_F = Inductance of series field, H L_A = Armature inductance, H

L_I = Apparent load inductance, H

and

$$IARM = (EBAT \cdot \theta \cdot \omega_c)/(2\pi R_o)$$
 (ADC)

Correspondingly, motor power requirement (PMOT) and efficiency (η MOT) for this pulsating current mode is (7.4) and (7.5) respectively:

$$PMOT = I^2MOT \cdot R_o$$
 (W)

$$\eta MOT = (PTR/PMOT) \cdot 100 \tag{\%}$$

Inasmuch as motor performance is usually established for the continuous dc power mode, its actual operating efficiency (η MOT) for the pulsating dc power mode can be predicted by (7.6):

$$\eta MOT = \eta AMOT \cdot (IARM/IMOT)^2$$
 (%)

The relative degradation of motor performance (DEGM) when receiving pulsating dc power is (7.7):

(7.7)
$$DEGM = [(\eta AMOT - \eta MOT)/\eta AMOT] \cdot 100$$
 (%)

Inspection of equation (7.7) reveals that degradation of motor performance is directly related to the magnitude of its ripple current. The product (ω_c T_o) within the boundaries $10 \ge \omega_c$ $T_o \ge 1$ maintains the magnitude of motor degradation usually at a low level. Its upper limit is based on the acceptable change of motor resistance (R_F) and (R_A), and as such the increase of motor losses, due to higher order current harmonics.

Battery performance is also impacted by the requirement to furnish pulsating dc power to the dc chopper load. Its peak current demand rises with decreasing dc chopper conduction duty cycle (Δ MOT) when supplying continuous dc power at a constant average magnitude. Correspondingly, the power loss (PLBAT) in the battery for the pulsating dc power mode increases in magnitude beyond its power loss (PLABT) in the continuous dc power mode, and is described in equations (7.8) and (7.9):

(7.8)
$$PLBAT = (IBAT_{(RMS)}/IBAT_{(AVG)})^{2}PLABT$$
 (W)

The entire power demand (PEV) for the electric propulsion system without the automatic transmission, as derived from Section X, increases to (7.9):

(7.9)
$$PEV = PABAT/(\Delta MOT)^{a5} + (IBAT_{(RMS)}/IBAT_{(AVG)}^{2} PLABT$$

Degradation of power transfer (DEGM) in the pulsating dc power mode is therefore (7.10):

(7.10)
$$DEGEV = (\eta AEV - \eta EV)/\eta AEV) \cdot 100$$
 (%)

It is noteworthy that the circuit inductance (L_o) as well as the inductance of the series field (L_{FM}) are measurable directly as real values with a programmable instrumentation package used by MERADCOM, and as described in Section X, and are relatable to motor flux level. At this point circuit inductance (L_o) , as defined in Reference (2) by its energy requirements of the motor to sustain continuous dc current flow (IARM) during the free wheeling period, is (7.11):

(7.11)
$$L_o \ge 2 \left[\left(\frac{2\pi}{\omega_c} - \theta 1 \right) (EBAT - EMOT)_{[AVG]} \right] / \delta IARM$$
 (H)

whereby,

EMOT = Motor Voltage

$$L_L = [1.78 \cdot NTR \triangle NTR/60 \cdot g] \sum_{\mathbf{v}} \overline{\mathbf{WR}^2} \cdot \theta 1$$

NTR = Motor shaft speed, r/min. Δ NTR = Incremental speed change, r/s² δ IARM = $\|ARM\|_{MAX}$ - $\|ARM\|_{MIN}$, Apk $\Sigma(\overline{WR}^2/g)$ = sum of all inertia, e.g.; rotor, gearing wheel or dynamometer; g = 9.81 m/s² (mkg)

The in-circuit field inductance (LFM) can be obtained by indirect measurement and from equation (7.12) whereby circuit inductance (LFM) is calculated at various incremental current amplitudes (IARM) for which the ripple current (δIARM) and the forward voltage step function across the series field (EFM (FWD)) can be measured during each conduction interval of thyristor (TH1).

(7.12) $LFM = EFM(FWD) \cdot \delta t / \delta IARM$

B. MONITORING BATTERY ENERGY TRANSFER EFFICIENCY

1. Conventional Method. Prior to evaluation of energy transfer efficiency, the battery is usually made to undergo various discharge and charge cycles in an attempt to equalize the charge level between individual cells. During the final preparation, prior to taking data, the battery undergoes typically three deep discharge and recharge cycles, whereby during the first and third cycle the battery is discharged at the six hour discharge current (IBAT1) rate; and during the second cycle at two times this current rate. At this point the battery has been "soaked" well enough to sustain manufacturer's specified battery capacity.

The initial open circuit terminal voltage/cell of the fully charged battery is 2.1 V at a battery temperature of typically 15.5°C. Maintaining the aforementioned constant discharge rate (IBAT1), at a 100% depth of discharge the battery voltage has diminished to 1.75 V. Inasmuch as the cell voltage decreases rather evenly with the depth of discharge, shown in Figure 7.2, the average cell voltage over the entire discharge cycle (EBAT1) is approximately 1.895 V AVG. Correspondingly, the average energy (TBAT1) is (7.13):

(7.13)
$$TBAT1 = 1.895 (V) \cdot IBAT1 (A) \cdot tl(s)$$
 (J)

Charging of the battery is based on a floating voltage battery charger, its voltage limited to a 2.36 V maximum/cell. Constant charge/discharge current amplitudes are considered equal in magnitude. For the completely discharge battery the instantaneous cell voltage increases during charge from a floating voltage $EBAT_{min} \simeq 2.18V$ $EBAT_{max} = 2.36$ volt. Then the current (IBAT2) tapers off slowly toward zero. It is common practice that the total Ampere-hours expended during charge equal 1.2 times the ampere-hours expended during discharge. Thus, referring to the single cell voltages of Figure 7.2, the average cell voltage for the charge cycle is EBAT2 = 2.293 V AVG. Approximate energy (PBAT2) to charge the battery (7.14):

(7.14) PBAT2 =
$$2.293(V) \cdot 1.2IBAT(A) \cdot tl(s)$$
 (J)

Accordingly, the typical lead acid battery energy transfer efficiency (EFFBAT) is (7.15):

(7.15)
$$\eta BAT = 1.895/(1.2 \cdot 2.293) \times 100 = 68.9$$
 (%)

Figure 7.2. Battery cell voltage vs. charge level.

In practice battery voltage is determinable only by a monitor because it is dependent on battery condition other than the charge level, e.g.: electrolyte, sulphation of electrodes, short- or open circuiting of plates, but most importantly, battery temperature. According to J. Mas (Ref. 3) cell voltage is required to rise as high as 2.6 V @ minus 18°C temperature to achieve a full charge capability, and as low as 2.1 V @ 60°C. This is shown in Figure 7.3. Thus, at low temperature, the required average cell voltage accordingly decreases during an entire charge cycle increases to 2.59 V AVG, and battery energy transfer efficiency accordingly decreases to 61%.

A rise of battery (electrolyte) temperature must be accomplished with a corresponing reduction of cell voltage to prevent uncontrolled gasing, and potentially subsequent overheating of the plates or grids accompanied by loosening of active material. This in turn requires constant monitoring of the battery charge condition. Control of the quality of battery charge operation with the aid of a hydrometer or cadmium tester appears to be somewhat arbitrary because the monitoring of specific level of gravity cannot determine the density of the electrolyte in the pores of the plates or grids, and because of stratification at the bottom of the container. The many uncontrolled variables seem to frustrate the establishment of a repeatable performance criteria for energy transfer performance in this type of battery.

2. Improved Method. In an attempt to reduce ambiguities when monitoring the rate of charge in the battery, a gas pressure monitor was utilized in the center cell of a three-cell pressure tight battery assembly to control the current amplitude of the battery charger. Upon demand, the average value of current was automatically reduced in magnitude such that the gas pressure did not exceed 1.3 cm (0.5 inches) of water through a specified orifice. The discharge cycle was limited to the point of voltage inflection, e.g.: rapid deterioration of either cell voltage to typically $2.1V/\sqrt{2} \rightarrow 1.48VDC$ @ IBAT = Constant, or preferably of available output power PABAT \geq PABAT $_o/\sqrt{2}$.* The charge cycle was limited to the point of inflection of the charge current, e.g.: rapid decrease of current amplitude (IBAT2) to limit gasing. This is shown schematically in Figure 7.4.

Having optimized the point-of-inflection on the power discharge curve, at a given discharge-current rate (IBAT1), the WATT-HOUR and AMPERE-HOUR values must be monitored at this point. Very often these values have to be extrapolated from a strip chart from known values at points adjacent to, and spanning this point-of-inflection. Thus, the WATT-HOUR EFFICIENCY (η BAT1) will be based on the knowledge of the AMPERE-HOURS of DISCHARGE at the point-of-inflection, followed by a search of the charge curve to locate that value of AMPERE-HOURS and the corresponding WATT-HOURS. The WATT-HOURS correspond to the same AMPERE-HOURS on CHARGE as on DISCHARGE. The efficiency (η BAT1) accordingly is (7.16):

(7.16)
$$\eta BAT1 = (WATT-HOUR DISCHARGE) / (WATT-HOUR CHARGE) \cdot 100$$
 (%)

The AMPERE-HOUR EFFICIENCY (η BAT2) will be based on the knowledge of the WATT-HOURS of DISCHARGE at the point-of-inflection, followed by a search of the CHARGE curve to locate that value of WATT-HOURS and the corresponding AMPERE-HOURS. Thus AMPERE-HOURS correspond to the same WATT-HOURS on CHARGE as on DISCHARGE; and the efficiency (η BAT2) is the reciprocal of these data and is (7.17):

(7.17)
$$\eta$$
BAT2 = (AMPERE-HOURS CHARGE) / (AMPERE-HOURS DISCHARGE) · 100 (%)

^{*} Subscript "o" denotes available power from fully charged battery into constant resistor load.

Figure 7.4. Point of inflection for discharge and recharge cycles.

VIII. DATA ACQUISITION

- 1. HP3052A Data Acquisition System. Electro-mechanical component and system performance test and evaluation was conducted with a Hewlett-Packard Type 3052A Automatic Data Acquisition System (Ref. 4) shown in Figure (8.1). The system contains the following instruments:
- a. 3437A System Voltmeter is used to digitize voltages (up to ±20V dc) at up to 4900 readings per second (single channel).
- b. 3495A Scanner is used to connect various inputs to the 3437A. Thirty input channels are utilized (additional channels and scanners are available). The scanner has also provisions for ten programmable contact closure outputs. All 3495A functions are programmed by the 9825A calculator.
- c. 6002A Power Supply provides 0-50V (200 watts max) with a programmable resolution of 10mV (0 to 10V range) or 60mV (0 to 50V range). Response time of the 6002A is 100mS to 400mS depending on load, amount of change, etc.
- d. The 59309A Clock provides date and time information to the 9825A whenever requested. Time resolution is 1 sec. The clock can be set manually or with the 9825A calculator.
- e. The 9871A Printer can be used to print data, reports, charts, and has some plotting capability.
- f. The 9825A Calculator is the system controller. The 9825A communicates with all other system components over the Hewlett-Packard Interface Bus (HP-IB). Up to 14 instruments may be connected to the 9825A with the interface bus. When appropriately programmed, the 9825A controls the complete operation of all system components (except for some 3968A functions).
 - 2. Software Programs. Programs supplied with the 3052A system include the following:
- a. System verification Programs are provided to individually check the operation of the 9871A, 59309A, 3437A, 3495A, and 6002A.
- b. Application Programs Complete data acquisition programs are provided which may be useful by themselves, but are intended primarily as examples, since most specific data acquisition applications will differ. Application programs include programs for scanning and recording DVM readings, waveform analysis and using the DVM as a timing generator.
- 3. System Subroutines. Subroutines are provided which do much of the actual instrument/peripheral programming. The subroutines greatly reduce the complexity of data acquisition programming. Useful subroutines are provided for controlling the DVM, Scanner, Clock, and Printer.

System software and operating instructions as well as manuals for all system components are provided in a system library. The verification, application, and system subroutine programs are recorded on magnetic tape cartridges for the 9825A calculator. The tapes and printed listings of the programs are included in the system library.

Figure 8.1. HP type 3052A data acquisition system.

Computation of appropriate values of true RMS, true DC or DC with recurrent ripple amplitudes including arbitrary waveforms within a frequency band of 60 to 4000 Hz is attained by a sampling technique which covers all portions of the recurrent waveform over several cycles of operation, and is shown in Figure (8.2).

4. Data Sampling. A flow chart and hardware implementation is shown in Figure (8.3). It is assumed that the waveform does not change appreciably over N/X cycles while being sampled (N = number of sample points, <math>X = number of samples per cycle). By establishing a delay in sampling such that the first sample is taken at some arbitrary time and that each successive sample is taken somewhat less than one-half period later, the entire waveform can be sampled in small increments, as shown in Figure (8.4). An application of this sampling technique is shown in Appendix A.

IX. INSTRUMENTATION

The EVA Metro Sedan propulsion system testing was performed by means of a number of individual tests. The individual test designation and instrumentation requirement for these tests are described below.

- 1. Transmission Test. The automatic transmission contains a torque converter, a three speed gear reducer and a drive shaft to the differential gear. The differential gears were replaced with an adaptor, shown in Figure 9.1, to facilitate a single ended output from the transmission. The transmission was tested on the dynamometer #1 test facility, schematically shown in Figure 9.2. Flexible shaft torque transducer, Ametek Type C30 500 and C30 3000, measured input and output torque, respectively, while motor input was obtained from a three-phase, full wave rectifier bridge and a variac power supply. The test bed for the transmission is shown in Figure 9.3. The torque sensor and its calibration arm are shown in Figure 9.4. Torque sensor's output voltage signal was verified to be within the boundaries of $\pm \frac{1}{2}$ % of actual reading. Speed measurement was attained digitally with a 30-tooth gear. The transmission was tested under steady state speed conditions vs. output torque, and as function of slip in the torque converter.
- 2. DC Motor Test. DC motor test in the continuous DC power mode was performed on dynamometer test facility #3, as shown schematically in Figure 9.5. Power was obtained from a three phase variac and full wave rectifier circuit.

The motor was tested at constant incremental speed (NMOT) settings, and its torque varied in accordance to a load schedule.

3. DC Motor Operation in the Pulsating Power Mode. With the aid of the data acquisition system, data points were taken to determine motor performance and power loss when receiving energy from the 96V dc propulsion battery through the dc controller. Power losses in the dc controller and the propulsion battery were also determined. The constant speed, parametric load torque performance data are converted into constant power/torque variable speed data and presented graphically.

The motor performance test was conducted at the dynamometer #3 test facility, schematically shown in Figure 9.6. Motor speed was measured digitally with a 30-tooth gear wheel. An Ametak torque transducer type C30-500 was used to measure load points between 0-56 N-m. The actual test facility is

Figure 8.2. Schematic of HP 3052A data acquisition system.

Figure 8.3. Flowchart and hardware implementation of variable frequency, arbitrary waveform voltage measurement.

Figure 8.4. Consecutive sample positions for a 100 point sample, waveforms overlaid.

Figure 9.1. Adaptor to lock differential.

Figure 9.2. Schematic of dynamometer No. 1 transmission test facility.

igure 9.3. Transmission test bed

Figure 9.4. Calibration arm for torque sensor.

Figure 9.5. Schematic for dynamometer No. 3 DC motor test facility, continuous DC power mode.

Figure 9.6. Schematic of dynamometer No. 3 DC motor test facility pulsating DC power mode.

shown in Figures 9.7, 9.8, 9.9A and 9.9B. DC chopper controller and battery were placed in direct proximity to the motor to simulate the cable harness in the vehicle, whereby the battery was interconnected in the same manner as shown in Figure 9.9B. The DC chopper panel was instrumented with coaxial current shunts as shown in Figure 9.10. These coaxial current shunts, T&M Research Co., type K-10000-20 were calibrated and compared against a Reference Shunt shown in Figure 9.11. The reference shunt, Weston K 9442-15, was calibrated against a secondary standard traceable to NBS. The coaxial shunt calibration was performed at the test facility with a certified HP 3455A Digital Multimeter, US Property, MERADCOM 1656. Coaxial shunt deviation and correction factors are recorded in Table 2.

All interface cables to the HP 3495A Scanner unit were, typically, terminated with a 15 ohm resistor to reduce noise.

4. Voltage and Power Sensors. Voltage drop during the forward conduction mode of thyristor TH1 and inverse bypass diode D2 is conditioned with Forward Voltage Clamps, shown in Figures 9.12 and 9.13 respectively. Either output of these clamps is normally short circuited, except during the "on" period of the device. R-C snubbers are used to compensate for the distributed capacitance of the coaxial cable to the data acquisition system.

The true ripple voltage for capacitor (C4) is measured with the AC Voltage Sensor, shown in Figure 9.14, while the measurement of its true power dissipation is obtained with a solid state wattmeter, shown in Figure 9.15. With the aid of this wattmeter it is possible to measure the true power dissipation within commutation capacitor (C4) and that of the entire commutation circuit. The wattmeter automatically increases the product of the voltage and current vectors for continuous and impulse voltage amplitudes alike with considerable accuracy. Typical RMS reading calibration curves for continuous rectangular waveforms are shown in Figure 9.16. There is virtually no significant phase shift between the relatively constant voltage vector and the variable current vector within the wattmeter.

All other voltage amplitudes were measured directly across the samples with the HP 3455A Digital Multimeter. Manufacturers' (Ref. 4) specifications for the H: 3455A Digital Multimeter, as applicable to this project, are shown in Table 3.

5. Electromagnetic Interference. This test was performed on the entire vehicle before disassembly for propulsion tests, to the requirements of MIL-STD 461-A, [Notice 4 (EL), Figure 13] and according to Method RE02 of MIL-STD 462 [Notice 3 (EL)]. Tests were performed in the MERADCOM Shielded Enclosure (EMI Test Facility). A sketch of the test setup showing the plan view of the facility, antenna and vehicle orientation is shown in Figure 9.17.

The vehicle was positioned in the Shielded Enclosure with the battery pack fully charged. The antenna equipment was oriented at the front of the vehicle (hood end) and positioned at one (1) meter test distance. The test scans were made over the frequency range of 0.14 through 1 Ghz. at each load condition as per Method RE02 of MIL-STD 462, Notice 3 (EL) for radiated broadband emissions. The results of these tests were plotted in graph form either manually or by computer in db versus frequency to the requirements of MIL-STD 461-A [Notice 4, Figure 13]. An FSS 250 Fairchild Electro Metrics Computer Controlled Surveillance System S/N69 was used to measure radiated and conducted interference. The instrument's calibration was traceable to National Bureau of Standards (NBS).

Figure 9.7. Dynamometer No. 3 test facility, overview.

Figure 9.8. Mounting plate for coaxial current shunts on top of DC controller panel.

Figure 9.9A. Battery is stored in direct proximity of drive stand No. 3.

EVA #1 METRO SEDAN BATTERY HOOK-UP

Figure 9.10. In-circuit location of coaxial current shunts during testing.

Figure 9.11. Calibration circuit for coaxial current shunts.

	TABL	TABLE 2: C	COAXIAL DC CURRENT SHUNT CALIBRATION	c CURREN	T SHUNT	CA LI BR AT	NOI		
9	Weston Shunts	nts	T&M RESFARCH	RCH					
CIEDENT	Reference		COAXIAL CURRENT SHUNTS	JRRENT SHU	NTS				
T(A)	V _I REF (mV)	VIRSH5	TERMINAL	TERMINAL VOLTAGE VIRSH (mV	IRSH (mV)				
1(0)	KS9442-15	41223W	15692	15693	15687	#1700	24945	24946	24944
25	12.50	12.47	12.78	12.50	12.44	12.45	12.40	12.42	12.48
20	25.00	24.96	25.57	25.01	24.88	24.91	24.76	24.82	24.94
75	37.50	37.48	38.46	37.60	37.42	37.46	37.09	37.22	37.40
100	20.00	79.67	51.20	50.06	08*67	49.86	49.50	69.65	49.90
CURRENT	IREF	IDLC ¹⁾	IARM	ID4 IFM2	ITH2 IFM1	IBAT	IDIC ITHI	ID2	104
SHUNT SYMB OL	RSHREF	RSH5	RSH1	RSH2	RSH3	RSH4	RSH6	RSH7	RSH8
VIREF/	1.000	1.0085	9926*0	0.9988	1.004	1.003	1.01	1.007	1.003
TRUE CURRE	TRUE CURRENT AMPLITUDE		$I = V_{\rm I}$	v) · 2000	$I = V_I(V) \cdot 2000 \text{ A/V} \cdot (V_I \text{REF} / V_I \text{ RSH})$	(ef /y rsh)	(A)		

1) TEST DATA PRIOR TO 1 January 1979

Figure 9.12. Adaptor circuit for measurement of thyristor forward voltage drop.

Figure 9.13. Adaptor circuit for measurement of diode forward voltage drop.

Figure 9.14. Adaptor circuit for capacitor (C4) A.C. voltage sensor.

Figure 9.15. Measurement of power loss in capacitor (C4).

Figure 9.16. Typical calibration curve for wattmeter No. 2.

Table 3. Specifications for HP3455A Digital Multimeter.

(Specifications Apply with AUTO CAL On) DC VOLTAGE (High Resolution Off) Accuracy: (1 digit = .001% of range)
24 hours; 23°C ± 1°C 10 V range: ± (0.002% of reading + 1 digit)
1 V range: ± (0.003% of reading + 1 digit)
0.1 V range: ± (0.004% of reading + 4 digits) 100 and 1000 V range: \pm (0.004% of reading + 1 digit) 90 days, 23°C \pm 5°C 10 V range: ± (0.005% of reading + 1 digit) 1 V range: ± (0.006% of reading + 1 digit) 0.1 V range: \pm (0.007% of reading + 4 digits) 100 and 1000 V range: \pm (0.007% of reading + 1 digit) 6 months; 23^{O} C \pm 5^{O} C 10 V range: ± (0.008% of reading + 1 digit) 1 V range: ± (0.009% of reading + 1 digit) 0.1 V range: ± (0.01% of reading + 5 digits) 100 and 1000 V range: ± (0.010% of reading + 1 digit) Temperature Coefficient: (0°C to 50°C)
0.1 V range: ± (0.0003% of reading + 0.15 digits)/°C
1 V range: ± (0.0003% of reading + 0.015 digits)/°C 10 V range: ± (0.00015% of reading + 0.01 digits)/°C 100 and 1000 V range: ± (0,0003% of reading + .01 digits)/OC Accuracy: (1 digit = 0001% of range) 24 hours; 23°C ± 1°C 10 V range: ± (0.002% of reading + 3 digits) 100 and 1000 V range: ± (0.004% of reading + 3 digits) 1 V range: ± (0.003% of reading + 4 digits) 90 days; 23°C ± 5°C 10 V range: ± (0.005% of reading + 3 digits) 100 and 1000 V range: ± (0.007% of reading + 3 digits) 1 V range: ± (0.006% of reading + 4 digits) 6 months; 23°C ± 5°C 10 V range: ± (0.008% of reading + 3 digits) 100 and 1000 V range: ± (0.010% of reading + 3 digits) 1 V range: ± (0.009% of reading + 5 digits) Temperature Coefficient: (0°C to 50°C) 1 V range: ± (0.0003% of reading + 0.15 digits)/°C 10 V range: ± (0.00015% of reading + 0.1 digits)/°C 100 and 1000 V range: ± (0.0003% of reading + 0.1 digits)/OC Input Resistance: 0.1 V through 10 V range: > 10¹⁰ ohms 100 V and 1000 V range: 10 megohm ± 0.1% Maximum Input Voltage:
High to Low Input Terminals: ± 1000 V peak
Guard to Chassis: ± 500 V peak Guard to Low Terminal: ± 200 V peak Effective Common-Mode Noise Rejection (with 1 $k\Omega$ imbalance in LOW lead) AC Input: 50 Hz Operation: > 160 dB at 50 Hz ± 0.1% 60 Hz Operation: > 160 dB at 60 Hz ± 0.1% DC Input > 140 dB Normal Mode Noise Rejection: 50 Hz Operation: > 60 dB at 50 Hz ± 0.1% 60 Hz Operation: > 60 dB at 60 Hz ± 0.1%

Table 3. Specifications (Cont'd)

AC VOLTAGE (RMS Converter)

Accuracy: (AC Coupling, input > 1% of full scale)
± (% of reading + digits) (1 digit = .001% of range)

	300 Hz-20 kHz 30 Hz-20 kHz		100 kHz-250 kHz ² 100 kHz-250 kHz ²	250 kHz-500 kHz ² 250 kHz-500 kHz ²	500 kHz-1 MHz ² 500 kHz-1 MHz ²
24 hours; 23°C ± 1°C	.04% + 40 dig.	0.4% + 80 dig.	1.8% + 200 dig.	4% + 400 dig.	5% + 1500 dig.
90 days; 23°C ± 5°C	.05% + 50 dig.	0.5% + 100 dig.	2.0% + 250 dig.	5% + 500 dig.	6% + 2000 dig.
6 months; 23°C ± 5°C	.06% + 60 dig.	0.6% + 130 dig.	2.1% + 300 dig.	5.1% + 600 dig.	6.3% + 2400 dig.

AC/DC coupled or AC coupled with input < 1% of full scale: Add + .05% of reading + 20 digits

Guard must be connected to Low.

On the 1000 V range add 0.01 ppm/volt - kHz.

Temperature Coefficient: (0°C to 50°C)

AC coupled, input > 1% of full scale: \pm (0.002% of reading \pm 2 digits)/°C AC coupled, input < 1% of full scale: \pm (0.002% of reading \pm 6 digits)/°C AC/DC coupled: \pm (0.002% of reading \pm 6 digits)/°C

Front Terminals $-2~\text{M}\Omega~\pm~1\%$ shunted by less than 100 pF Rear Terminals – 2 M Ω ± 1% shunted by less than 75 pF

Maximum Input Voltage:

High to Low Terminals: ± 1414 volts peak (Subject to a 107

volts - Hz limitation) Guard to Chassis: ± 500 V peak Guard to Low Terminal: ± 200 V peak

AC VOLTAGE (Average Converter, Option 001)

± (% of reading + digits) (1 digits = .001% of range)

	300 Hz-500 Hz 30 Hz-50 Hz	500 Hz-1 kHz 50 Hz-100 Hz		100 kHz-250 kHz ² 100 kHz-250 kHz ²
24 hours; 23°C ± 1°C	0.47% + 70 dig.	0.32% + 50 dig.	0.09% + 25 dig.	0.70% + 60 dig.
90 days; 23°C ± 5°C	0.50% + 70 dig.	0.35% + 50 dig.	0.1% + 25 dig.	0.75% + 60 dig.
6 month: 23°C ± 5°C	0 50% + 70 dia	0.40% + 60 dig.	0.1% + 30 dia.	0.75% + 70 dia

¹Guard must be connected to Low On the 1000 V range, add 0.01 ppm/volt-kHz. Specifications are for input levels above 1/100th of range.

Temperature Coefficient: (0°C to 50°C) ± (0,002% of reading + 2 digits)/OC

Front Terminals =2 M Ω \pm 1% shunted by less than 100 pF Rear Terminals =2 M Ω \pm 1% shunted by less than 75 pF

High to Low terminals: ± 1414 volts peak (Subject to a 10⁷ volts — Hz limitation)

Guard to Chassis: ± 500 V peak Guard to Low Terminal: ± 200 V peak

²Frequencies greater than 100 kHz specified on 1 and 10 V ranges only.

² Frequencies greater than 100 kHz specified on 1 and 10 V ranges only.

Figure 9.17. Shielded enclosure for EMI test.

An FSS 250 Fairchild Electro Metrics Computer Controlled Surveillance System S/N 69 was used during this investigation comprising the components shown in Table 4. The EVA Metro Sedan was tested at three vehicle chopper/motor current levels:

- a. 50 Ampere DC current draw w/vehicle in neutral.
- b. 50 Amp current draw w/vehicle in gear brake on.
- c. 200 Amp current draw w/vehicle in gear brake on.
- 6. Sound Level. Sound levels were recorded again before vehicle disassembly with the microphone positioned in the center of the vehicle, between the front seats at a height equal to the top of the seats. Levels were recorded for three different conditions as follows:
- 1. The vehicle was driven over an asphalt roadway at the speed of 32 to 40 kilometers (20 to 25 miles) per hour. The motor current during this test fluctuated between 100 and 150 amperes.
- 2. The vehicle was energized in the drive mode with brakes in locked position. The battery current was held at constant 100 amperes.
 - 3. The same as condition #2 with the battery current at constant 200 amperes.

Instrumentation shown in Table 5 was used to determine sound levels during this test. The instrumentation was calibrated with traceability to the National Bureau of Standards.

7. Motor Rotor Inertia. To aid theoretical analysis to optimize the gear ratio between the motor and the wheels, the motor rotor inertia test was performed on the original equipment motor prior to its return to Electric Vehicle Associates, Inc. Figure 9.18 shows schematically the test configuration used to measure rotor inertia. Inertia tests were conducted first with the rotor and end bell combined (J1), and then only for the end bell (J2). Rotor inertia was calculated from $J_M = J_1 - J_2$, as shown in equation (9.1):

(9.1)
$$J_{1,2} = \left(\frac{T}{2\pi} \cdot a\right)^2 \cdot \frac{W}{L}$$
 (lb ft s²)
$$= (T \cdot a)^2 \cdot \frac{W}{L} \cdot 1.066 \cdot 10^{-3}$$
 (mkg s²)

whereby:

T = duration of one oscillatory cycle(s)

a = distance between two parallel wires suspended from the ceiling (ft)

L = Length of the suspended wires (ft)

W = weight of test sample (lb)

Table 4: Instrumentation to Determine EMI

- EMC-25 Receiver, Fairchild Electro Metrics, S/N 350378R-4.
- EMC-10 Receiver, Fairchild Electro Metrics, S/N 10452.
- RVR 41" Whip Antenna, Fairchild Electro Metrics, (covering frequency range .014 Khz, through 25 Mhz), S/N 378.
- 4. VHF Broadboard(Biconical)Antenna, Stoddard, (covering frequency range of 25 Mhz through 210 Mhz), S/N 35.
- 5. Spiral Cone (Log Conial) Antenna, Stoddard, (covering frequency range of 200 Mhz through 1 Ghz), S/N 122.
- 6. SF 125 Antenna Switching Unit, Fairchild Electro Metrics, S/N 93.
- 7. Digital Interface Unit Model D1U-125, S/N 113.
- 8. Digital Step Attenuator Model DSA-125, S/N 101.
- 9. Tektronix Computer Model 5051 S/N B092189.
- 10. Tektronix Hard Copy Unit Mdl 4631, S/N B136617.

Table 5: Instrumentation to Determine Sound Level

- 1. Sound Level Meter, B&K Model 2209, Serial 595136.
- 2. Octave Band Analyzer, B&K Model 1613, Serial 601489.
- 3. Graphic Level Recorder, B&K Model 2306, Serial 631587.
- 4. Microphone, B&K Model 4165, Serial 599672.
- 5. Calibrator, B&K Model 4230, Serial 596244.

Figure 9.18. Motor rotor inertia test.

8. Motor Power Loss. Motor losses other than the electrical (I^2R) winding losses within the machine were measured with the test circuit shown in Figure 9.19, and the instrumentation package shown in Table 7. Equations (9.2) to (9.5) show the methods for determination of windage, friction and magnetic losses vs. speed or flux level.

Windage, Friction and Magnetic Loss (PCOR):

(9.2)
$$PCOR = (A1 \cdot V1) - (A1^2 \cdot RARM) - (A1 \cdot VBR)$$
 (W)

whereby:

RARM = Armature resistance, ohm VBR = Brush voltage drop, VDC A1 = Armature current, A dc

V1 = Armature voltage, including brush voltage drop, V dc

Windage and Friction Loss (PFR1), motor winding disconnected:

$$PFR1 = PFR1' - PQO3$$
 (W)

whereby:

PFR1' = Actual readout, W

PQO3 = Dynamometer #3 tare power readout, W

Windage and Bearing Loss, only (PFR2), brushes removed:

$$(9.4) PFR2 = PFR2' - PQO3$$

whereby:

PFR2' = Actual readout, W

Brush Friction Loss (PFR3):

$$(9.5) PFR3 = PFR1 - PFR2 (W)$$

Watt-Loss in Magnetic Structure (PMAG):

$$PMAG = PCOR - PFR1$$
 (W)

By measuring the ohmic resistance digitally, power losses due to winding resistance in the armature (RARM) and the series field (RFM) were also determined. The instrumentation to determine motor losses is described in Table 6.

MOTOR: BALDOR DC SERIES FIELD #1276 FRAME 215CZ 7544D 10HP/3800RPM 84VDC/98A

ARMATURE RESISTANCE: RARM = 0.0064 OHM FIELD RESISTANCE (BRUSHES REMOVED): RFM = 0.0097 OHM a 24°C BRUSH VOLTAGE DROP (VBR): VBR = F(IARM)

Figure 9.19. Windage, friction and magnetic loss test (PCOR)

TABLE 6: INSTRUMENTATION TO DETERMINE MOTOR LOSSES

WINDING RESISTANCE TEST:

VOLT-OHMMETER: DATA PRECISION, S/N 2150, PT 1588 POWER SUPPLY: HP MODEL 6226B, 0-50 VDC, 1A MAX.,

S/N 1502A02113

THERMOMETER: TAYLOR #3697743

BRUSH LOSS TEST:

VOLTMETER: HP MODEL 427A, S/N 62103018

CAL DATE 2 FEB 78, CAL DUE 1 AUG 78

MOTOR LOSS TEST, CONT'D:

 $PCOR = (A1 \cdot V1) - (RARM \cdot A1^2) - (A1 \cdot VBR)$ W

A1: WESTON M.V. METER MODEL 931, S/N 3709-1, PT. 2526, F.5. = 50MV DC CAL 10 FEB 78 DUE 13 JUL 78 WITH SHUNT 300AMP 50 MV PT2433 S/N 0025237

A2: WESTON M.V. METER MODEL 931, S/N 3709-2, PT. 2525, F.5. = 50MV DC CAL 1 FEB 78 DUE 31 JUL 78 WITH SHUNT 300AMP 50MV PT2429 S/N 0025237

V1: WESTON VOLTMETER MODEL 931, S/N 83412, PT 2882 1000 OHM/VOLT CAL 17 APR 78 DUE 14 OCT 78

V2: WESTON VOLTMETER MODEL 931, S/N 74827, PT 2520 5000 OHM/VOLT CAL 1 FEB 78 DUE 31 JUL 78

AUTOMATIC COUNTER H.P. MODEL 5323A, S/N 90800150 PT. 2899, CAL DATE 13 JAN 78 DUE 18 JUL 78

3/11 MAY 78

9. Battery Energy Transfer Efficiency. The evaluation of energy transfer efficiency of a six-volt propulsion battery similar to the type EV-106 was performed by contract (Ref. 5) under separate funding authority. For this purpose a battery manufactured by the Prestolite Company, Model 9915-X, Serial 001639, 75 A-H @ 110 minutes, was utilized. Gas leakage and pressure was controlled by a pressure snubber and an improvised inclined manometer using a 2.5 ccm hypodermic syringe with the plunger removed to allow gas leakage when the hypodermic needle was inserted into the filler cap of the center cell. The gas evolution automatic response circuit consisted of a leaky toy balloon which in turn opened a micro-switch when the gas pressure exceeded typically 0.5" water pressure through a calibrated orifice. The gas pressure itself was continually released through a porous metallic screen, or the pressure snubber (Cat. #25-S, ¼" nptf, Porosity E, Chemiquip Co.).

The circuit arrangement, shown in Figure 9.20, utilizes an adjustable thyristor controlled battery charger which is alternately turned on and off by the balloon pressure activated micro-switch. In the charge mode dc power is drained from the donor battery (B2) during the boost mode of the battery charger, while in the discharge mode battery connections are reversed such that B2 becomes the receiver and battery (B1) the donor. Inasmuch as the peak current amplitude is an uncontrolled variable and relatively constant in magnitude, the magnitude of the average current is a function the conduction duty cycle of the micro-switch.* Table 7 identifies the instrumentation package used for this test.

X. RATIONALE FOR EVALUATION OF POWER TRANSFER

Data presented throughout this report are in terms of symbols that were originated to be compatible with the data acquisition system. Although many of these symbols are defined in the text, the following scanner designation is provided as a complete centralized list of these symbols together with their description for reference. Because of cross-talk between the channels, it was necessary to group the incoming signals in accordance with the size of their amplitudes. To maintain a record of the utilization of scanner channels, the symbols are listed in sequence of the scanner channels instead of an alphabetical listing.

To aid the understanding of the software, shown in Appendix B through Appendix D, the complete test rationale to evaluate system and component performance is also included in this section. Because of available instrumentation, and the desirable cross-reference between the two major unit systems, data usually measured in the mks system were supplemented with data measured in the English unit system when feasible.

1. Scanner Terminal Designation

Scanner Channel	Designation	Description	
0	то	Transmission Torque Readout	VTO V
1	ТМОТ	Motor Shaft Torque (Into VDC Transmission)	
2	TQ, TQ.)	Dynamometer Torque Readout VDC (as applicable)	

A continuously adjustable dc current amplitude would have been clearly preferable at this juncture, but was outside the equipment capability available for this low budget effort.

	TABLE 7 : INSTR	TABLE 7 : INSTRUMENTATION FOR BATTERY TEST	BATTERY TEST	
DESCRIPTION	MFG	MODEL	RATING	USE
REGULATED SINGLE CELL THYRISTOR CHARGER	LOCAL		2,5 v/25A	VOLTAGE BOOST
HEAVY DUTY BATTERY ASSEMBLY	c&D		6v/450ан	в2
DIGITAL V-OM	MICRONTA	22-200 #A00 1985	1000/100/10/1v	ЕВАТ
MANOMETER	DWYER	1230-8	0-8" н2о	GAS PRESSURE
PRESSURE SNUBBER	CHEMIQUIP	25-s	POROSITYE	GAS LEAKAGE
AMPERE-HOUR INTEGRATOR	НОВМАТН	мРН 500 А-Н	12 v & .005v* INPUT	A-H MEASUREMENT
HALL-EFFECT MULTIPLIER	OHIO SEMITRONICS	ст400∟тт	109.9MA = 50MV*	PBAT
AMPLIFIER		AP3-88-1	1:1	
CHART RECORDER CHARTS	AMPROBE AMPROBE	LDM 1850 85 ob	12 IN/H*	
DIGITAL CLOCK	GE TELECHRON		CYCLOMETER HOURS/MINUTES	TIMING

TABLE 7.: INSTRU	TRUMENTATION FOR BATTERY TEST (CONT'D)	Y TEST (CONT'D)		
DESCRIPTION	MFG	MODEL	RATING	USE
SYNC TIMER	GEN. TIME	D21A0026	57 SECONDS	INTERVAL
SYNC TIMER	GEN. TIME	EN30054	ON: A, OFF: W	
WATT-HOUR INTEGRATOR	CURTIS INSTRUMENTS	1002-50-1	504/.1v*	JBAT
SHUNT	RAM METER		50mv/150a	IBAT
RELAY	POT. & BRUMF.	KRP11A	ррот	W-A THROW OVER
BALLOON		YQT	0.5 IN. OF WATER	SWITCH ACTUATOR

NOTE: ASTERISK (*) DENOTES CALIBRATION IN EFFECT

Scanner Channel	Designation	Description	
3		Solenoid 1, On-Off	
4		Solenoid 2, On-Off	Vdc
5	TEMP T	Transmission Temperature	Vdc
6	TEMP M	Motor Temperature	Vdc
7			
8			
9			
10	EBAT	Battery Terminal Voltage	Vdc, RMS
11	EARM	Motor Armature Voltage	Vdc, RMS
12	EFM	Motor Field Voltage	Vdc, RMS
13	ЕТНІ	"On-Voltage Drop in Thyristor (TH1) (with F Clamp)	WD Voltage Vdc, RMS
14	ED2F	On-Voltage Drop in DIODE(D2) Over One Cycle (with FWD Voltage Clamp)	Conduction Vdc, VRMS
15	VC4	Capacitor (C4) AC Voltage (Via Adaptor Circuit)	VRMS
16	PLABT'	Power Loss Within Battery When Discharging	W DC
	PLBAT'	(Via Wattmeter 1)	W RMS
17	PLCOM	Power Loss in Commutating Circuit (Via Wattme #3)	ter W RMS
18	PLAC4	Power Loss in Capacitor	W DC
19	PLC4	(Via Wattmeter 2)	w RMS
20	IBAT'	Battery Current (Shunt RSH4)	mVdc, RMS

Scanner Channel	Designation	D	escription	
21	IARM	Armature Current (Shunt RS	SH1)	mVdc,RMS
22				
23	ITH1	Thyristor TH1 Current (Shu	nt RSH6)	mVdc, RMS
24	ID2	Diode D2 Current (Shunt R	SH7)	mVdc, RMS
25	IC4	Capacitor C4 Current (Shunt	RSH8)	mV,RMS
26	ITH2	Thyristor TH2 Current (Shu	nt RSH3)	mV,RMS
27	ID4	Diode D4 Current (Shunt RS	SH2)	mV,RMS
28	VCT1	Contactor Forward Voltage	Drop	mVdc mVRMS
29				iii v iiiiii
30				
31				
32				
33				
34	NTR	Motor Rotor Speed		(Frequency)
35	NQ1	Wheel Speed		(Frequency)
36	CONTR	Control Frequency		(Frequency)
37				
38				
39				

2. Data Print Out

Designation	Description	
P1	DC Power Loss in Coaxial Current Shunts RSH1 & RSH6	W DC
P2	DC Power Loss in Coaxial Current Shunt RSH RSH4	W DC
Р3	As P1, Except RMS Power	W RMS
P4	As P2, Except RMS Power	W RMS
PABT	Average Power at Battery Terminal	W DC
PBAT	RMS Power at Battery Terminal	W RMS
PLABT	Average Power Dissipation Within Battery	W DC
PLBAT	Power Loss Resulting in Battery Heating	W RMS
ΔΜΟΤ	Conduction Duty Cycle of Main Switch, TH1	
ΔD2F	Conduction duty cycle of Free-Wheeling Diode, D2	
DFM	Resistive Voltage Drop Across DC Series Field	Vdc VRMS
PAMOT	Average Power Consumption of Motor	W DC
PMOT	RMS Power Consumption of Motor	W RMS
PTR	Motor Power Delivered at Shaft	W DC
PLMOT	Power Loss in Motor	W RMS
ηΜΟΤ	Motor Efficiency	[%]
WLMOT	Motor Power Loss Per Unit Torque @ Constant Speed	WL/N-m
РО	Power Available from transmission	W DC
PAMTR	Average Power from Controller	W DC
PACTR	Average Power Loss Within Controller	W DC
PLCTR	RMS Power Loss in Controller	W RMS
η CTR	Controller Conversion Efficiency	%

Designation	Description	
WLCTR	Controller Power Loss/N-m Torque	WL/N-m
PATH1	Average Power Loss in Thyristor TH1	W DC
PTH1	RMS Power Loss in Thyristor TH1	w RMS
PAD2F	Average Power Loss in Diode D2	W DC
PLD2F	RMS Power Loss in Diode D2	w RMS
PAEV	Power Requirement for Electrical Drive System w/o Transmission	W DC
ηEV	Conversion Efficiency of Electrical Drive System	%
PHEAT	Power Loss of Electrical Drive Resulting in Heating	w RMS
PEVA	Power Requirement for Electrical Drive System Including Transmission	W DC W RMS
ηΕνΑ	Power Transfer Efficiency for Entire System	%
WLEVA	Power Loss Per Unit Torque Delivered to the Wheel for Entire System	WL/N-m
NSL	Slip	%
ŞL	Slip Frequency	HZ
η TR	Transmission Efficiency	%
WLTR	Power Loss Per Unit Torque Delivered to the Wheel, Transmission Only	WL/N-m
vrsh	Read Out Voltage Across Coaxial Current Shunts, add Suffix	v
vtQ1	Read Out Voltage Across Torque Transducer, Test Stand #1	mV
vtR	Read Out Voltage Across Torque Transducer, Input	v
vtO	Read Out Voltage Across Torque Transducer, Transmission Output	v
vo	Read Out Voltage of Wattmeter Module, add Suffix	v
RSH	Coaxial Current Shunt Designation, add Suffix	
мот	DC Motor Designation	

3. Three Speed Automatic Transmission Performance

Read Ametek Torque transducer and dynamometer torque sensor. Compare for discrepancy. Read data for each gear ratio (GR):

So 1	lenoid 2	Gear Ratio	Approximate Torque (Max) in Terms of 10HP DC Machine	Designation
0	0	GR3 = 3.45: 1	TQ3 max = 49.2	FT-LB
0	12 V	GR2 = 5.13: 1	TQ2 max = 70.9	FT-LB
12V	12V	GR1 = 8.30: 1	TQ1 max = 114.7	FT-LB
Read data	a for N7	TR = constant @ TMOT = parameter		
(10.1)	TQ	= 13,316 (vtQ - 0.0012)	(Reference data only)	FT-LB
(10.2)	ТО	$= 50 \text{ vtQ} \cdot 1.3558$		N-m
(10.3)	ТМОТ	= 8.333 vtR - 1.3558		N-m
(10.4)	NSL	= $[(NTR - GR \cdot NO)/NTR] \cdot 100$		%
(10.5)	SL	= (NTR·NSL/100)/60		HZ
(10.6)	РО	$= (TO \cdot NO)/(5252 \cdot 1.3558)$		HP
(10.7)	PO	= $745.7 \cdot (TO \cdot NO)/(5252 \cdot 1.3558)$		WDC
(10.8)	PTR	= $(TMOT \cdot NTR)/(5252 \cdot 1,3558)$		HP
(10.9)	PTR	= $745.7 \text{ (TMOT } \cdot \text{NTR)}/(5252 \cdot 1.3558)$		WDC
(10.10)	η TR	$= (PO/PTR) \cdot 100$		%
(10.11)	WLTR	= (PTR-PO)/TO		WL/N-m

Performance equations are written to analyze motor performance with power supplied from a dc source, shown in Figure 9.5, or with power supplied from a pulsating power source, e.g.; the chopper schematically shown in Figures 7.1 and 9.6. Motor test data are printed out at regular constant speed intervals (NTR) as function of motor shaft torque (TMOT), and as shown in Appendix I. This comparative testing makes it possible to analyze degradation of motor performance for any other than pure dc power operating conditions.

DC Motor Performance

DC power is obtained from an adjustable autotransformer (variac) via a three phase, full wave rectifier. Equations (10.12) to (10.15) define motor performance as a function of motor shaft torque (TMOT) for a family of discrete but constant motor speeds (NTR = constant).

(10.12) PTR =
$$(745.7 \cdot \text{TMOT} \cdot \text{NTR})/(5252 \cdot 1.3558)$$
 W DC

$$\eta MOT = (PTR/PAMOT) \cdot 100$$

$$(10.15) WLMOT = (PAMOT - PTR)/TMOT WL/N-m$$

whereby:

IARM =
$$v_{RSH1} \cdot 2000 \text{ A/V} \cdot \text{K1}$$

K1 = 0.9766, shunt correction

DC Controller Motor Drive

DC power, as obtained from an energy storage battery, is converted into pulsating power. Power transfer is now measured in terms of energy depleted from the battery and heat loss in the dc motor as well as the other components of the propulsion system. To determine true losses, extraneous losses induced by the measurement apparatus must be identified.

Equations (10.16) to (10.19) identify losses in coaxial dc current shunts:

P1 =
$$\sum_{K} [v_{RSH}^2 \cdot 2000 \text{ A/V} \cdot \text{K}]$$
 [WDC]

$$= \sum_{\Sigma} [1^2(2000 \cdot K)]$$
 [WDC]

(10.16) P1
$$\cong$$
 [I² ARM/0.9766 + I² TH1/1.01/2000 A/V Losses in RSH8 [IC4] not considered [WDC]

(10.17)
$$P2 = (I^2 BAT'/1.003)/2000 A/V$$
 [WDC]

(10.18)
$$P3 = P1$$
 [WDC]
(10.19) $P4 = P2$ except I^2 in (ARMS)

(10.19)[WRMS]

whereby:

IBAT' =
$$v_{RSH4} \cdot 2000 \text{ A/V} \cdot \text{K4}$$

K4 = 1.003, shunt correction constant

Power available at the battery terminal is calculated from equation (10.20) to (10.23):

(10.20)
$$PABT = EBAT \cdot IBAT' - P1 - P2$$
 [WDC]

(10.21)
$$IBAT_{[AVG]} = [PABAT/(EBAT \cdot IBAT')] \cdot IBAT'$$

= $PABAT/EBAT$ [ADC]

(10.22) PBAT =
$$[EBAT \cdot IBAT'/\sqrt{\Delta MOT}]_{AVG} - P3 - P4$$
 [WRMS]

(10.23)
$$IBAT_{[RMS]} = PBAT/EBAT_{[RMS]}$$
 [ARMS]

For rectangular current pulses the forward conduction duty cycle (Δ) for thyristor TH1 and inverse bypass diode D2 is determined indirectly with equations (10.24) and (10.25).

(10.24) For TH1:
$$\triangle MOT = (I^2 BAT_{AVG})/I^2 BAT_{RMS}$$

(10.25) For D2:
$$\triangle D2 = (1 - \triangle MOT)$$

As shown in Figure 9.10, energy is expended locally through inverse bypass diode D2 and coaxial current shunt RSH1 during the freewheeling operating mode (TH1 is "off"). In equation (10.26) the average voltage drop in D2 is added to the actual measured voltage amplitude EFM. Because of integral assembly of the dc chopper motor drive, cable losses are not considered.

(10.26) DFM = EFM + ED2F + ID2
$$(1/1.007 + 1/0.9766)/2000$$
 [VDC]

Equations (10.27) to (10.31) define motor performance:

DC MOTOR PERFORMANCE IN PULSATING DC POWER MODE

(10.27)
$$PAMOT = (EARM_{[AVG]} + DFM) \cdot IARM_{[AVG]}$$
 [WDC]

(10.28)
$$\eta AMOT = (PTR/PAMOT) \cdot 100$$
 [%]

(10.29)
$$PMOT \approx I^2 ARM_{[RMS]} [(EARM + EFM)/IARM]_{[AVG]} + [ED2F \cdot ID2]_{[RMS]} + I^2 D2 [(1/0.9766)^2 + (1/1.007)^2]/2000 [WRMS]$$

(10.30)
$$\eta MOT = (PTR/PMOT) \cdot 100$$
 [%]

(10.31)
$$WLMOT = (PMOT - PTR)/TMOT$$
 [WL/N-m]

CONTROLLER AND COMPONENT PERFORMANCE. Voltage and current vectors of the commutating circuit can normally be stored in a memory and then played back slowly to yield a Fourier analysis. In this instance the previously described wattmeter No. 2 was utilized to determine power loss in capacitor (C4). Equations (10.32) to (10.34) yield:

(10.33)
$$PLAC4 = 100 v_{o2[AVG]} \cdot (1.003/1.03)$$
 [WDC]

(10.34) PLC4 =
$$100 \cdot v_{o2[RMS]} \cdot (1.003/1.03)$$
 [WRMS]

(10.35) IC4 =
$$v_{RSH8} \cdot 2000 \text{ V/A} \cdot \text{K8}$$
 [ARMS]

whereby:

K8 = 1.003, shunt correction constant

Equations (10.36) to (10.38) describe power loss in the controller:

$$(10.36) PLCTR = PBAT - PMOT - P3$$
 [WRMS]

(10.37)
$$\eta \text{CTR} = (\text{PMOT/PBAT}) \cdot 100$$
 [%]

(10.38) WLCTR =
$$PCTR/TMOT$$
 [WL/N - M]

Approximate steady-state heat losses can be measured directly if a clamping circuit is incorporated which limits the forward voltage drop to 10 volts maximum. Equations (10.39) to (10.42) yield the forward conduction losses for thyristor TH1 (PTH1) and diode D2 (PD2F):

(10.39) PATH1 =
$$(ETH1 \cdot ITH1)_{[AVG]}$$
 [WDC]

(10.40)
$$PAD2F = ED2F \cdot (IARM - ITH1)_{[AVG]}$$
 [WDC]
= $(ED2F \cdot ID2)_{[AVG]}$

(10.42A) PD2F = ED2F_[RMS] ·
$$\left[\left[(IARM - ITH1)_{[AVG]} / \sqrt{\Delta D2} \right] - IC4_{[RMS]} \right]$$
 [WRMS]

(10.42)
$$PD2F = ED2F_{[RMS]} \cdot ID2F_{[RMS]}$$
 [WRMS]

Thyristor TH1 transmits a reasonably well shaped rectangular current pulse. Heat losses can be determined by indirect means and as shown in equations (10.43) to (10.48):

(10.43) VTH1 = (ETH1_[AVG]/
$$\Delta$$
MOT) · $\sqrt{\Delta}$ MOT
= ETH1_[AVG]/ $\sqrt{\Delta}$ MOT [VRMS]

(10.44) ITH1 = ITH1_[AVG]
$$\sqrt{\Delta MOT}$$
 [ARMS]

(10.45)
$$VD2F = ED2F_{AVG1}/\sqrt{\Delta D2}$$
 [VRMS]

(10.46)
$$1D2F = (IARM - ITH1)_{AVGI} / \sqrt{\Delta D} 2 - IC4$$
 [ARMS]

(10.47) PTH1 = VTH1 • ITH1
$$_{[AVG]}/\sqrt{\Delta MOT}$$
 [WRMS]

(10.48) PD2F = VD2F ·
$$\left[\left[(IARM - ITH1)_{AVG} / \sqrt{\Delta D2} \right] - IC4_{RMS} \right]$$
 [WRMS]

Equation 10.49 yields the heat loss for the contactor.

(10.49)
$$PCT = IARM_{[RMS]} \cdot vCT_{[RMS]}$$
 [WRMS]

By definition, the measured battery current IBT' includes the two current components IBAT' and IAUX, whereby the former is the power current component and IAUX represents the control current component. However, for the purpose of this discussion, the control current component (IAUX) is neglected here. It should be noted that the "no load" battery voltage EBATO (VDC_{pk}) supplies the control current component (IAUX) continuously. This provides a realistic assessment of its open circuit terminal voltage. Under these conditions the voltage drop at the battery terminals is a function of the pulsed dc current load. The instantaneous power losses within the battery for this pulsed dc current load can then be calculated with equations (10.50) to (10.52):

(10.50)
$$\triangle EBAT_{[AVG]} = EBATO - EBAT_{[AVG]}$$
 [VDC]

(10.51)
$$PLABT = \Delta EBAT_{[AVG]} \cdot IBAT_{[AVG]}$$
 [WDC]

whereby the rate of depletion is considered constant.

Equation (10.52) yields the heat loss:

(10.52) PLABT =
$$I^2 BAT_{[RMS]} \cdot [\Delta EBAT/IBAT]_{[AVG]}$$
 [WRMS]

The in-circuit no load battery terminal voltage EBATO is defined by equation (10.53):

(10.53) EBATO =
$$\left[(EBAT_1 - EBAT_2)/(IBAT_2 - IBAT_1) \right] \cdot IBAT_1 \right]_{AVG} + EBAT_{AVG}$$
 (VDC)

whereby subscripts "1" and "2" denote column 1 and 2 of the raw data print out.

The system's equivalent dc power requirement (PAEV), power transfer efficiency (η AEV) and watt loss/N-m (WLEV) under exclusion of the requirements for the controls is defined by equations 10.54 to 10.55:

$$(10.54) PAEV = PABAT + PLABT$$
 [WDC]

$$(10.55) \quad \eta AEV = (PTR/PAEV) \cdot 100$$

Equations (10.56) to (10.59) describe the power demand for the pulsating dc power operating mode:

$$(10.56) PEV = PBAT + PLBAT [WRMS]$$

(10.57)
$$\eta EV = (PTR/PEV) \cdot 100$$
 [%]

(10.58)
$$WLEV = (PEV - PTR)/PTR$$
 [WL/W]

The generated heat loss is 10.59:

(10.59)
$$PHEAT = PLMOT + PLCTR$$
 [WRMS]

whereby:

$$PLMOT = PMOT - PTR$$
 [WRMS]

PERFORMANCE DEGRADATION. Degradation of motor and battery performance for the pulsating dc power operating mode is shown in equations (10.60) to (10.61):

MOTOR:

(10.60) DEGM =
$$100[\eta AMOT - \eta MOT]/\eta AMOT$$
 [%]

BATTERY:

(10.61) DEGEV =
$$100[\eta AEV - \eta EV]\eta AEV$$
 [%]

6. EVA Propulsion System

The total performance of the EVA Metro Sedan propulsion system is described in equations (10.62) to (10.66):

$$(10.62A) PEVA = PO/\eta EVA$$
 (WRMS)

$$(10.62B) PEVA = PBAT + PLBAT$$
 (WRMS)

$$(10.63) \quad \eta \text{EVA} = \eta \text{EV} \cdot \eta \text{TR} \tag{\%}$$

(10.64) WLEVA =
$$(PEVA - PO)/PO$$
 (WL/W)

$$= (1/\eta EVA) - 1 \tag{WL/W}$$

WHEEL SPEED:

(10.65)
$$v_{EVA} = \frac{NTR \cdot (60 \cdot SL \cdot GR)}{GR} \cdot 2\pi \cdot 0.92 \cdot 12 \cdot 2.54 \cdot 60 \cdot 10^{-5}$$
 (Km/h)

REQUIRED VEHICLE ENERGY:

(10.66) DEVA =
$$(PTR_{HP} \cdot 745.7_W \cdot 10^{-3} \frac{NTR^x}{2500} \cdot WLEVA \frac{WL}{W} / V_{EVA}$$
 (KWH/KM)
x NTR>2500 \rightarrow (NTR/2500) \rightarrow as stated

7. Measurement of In-Circuit Inductance

Although beyond the scope of this investigation, a reasonable facsimile of the impulse voltage across the series field during the forward conduction period of thyristor TH1 is attainable with the aid of a forward voltage clamp, similar as shown in Figure 9.12. The standard expression for the definition of induction $e_L = L \, di/dt$ is expanded to yield the expression for the in-circuit field inductance as shown in equation (10.67):

(10.67) LFM =
$$\left[\left[\left[(EFM)^2_{RMS} - (IFM_{RMS}(EFM/IFM)_{AVG})^2 \right] / \Delta MOT \right]^{\frac{1}{2}} \cdot \Delta t \right] / \Delta ITH1 \right]_{t=tc}^{t=0}$$

whereby:

$$\Delta t = MOT \cdot fc$$

The time interval (Δt) as well as the current interval (ITH1) are directly measurable with the HP SVMBP program routing (Ref. 6).

XI. TRANSMISSION TEST

Data points for the mechanical transmission were obtained in the constant input torque mode, whereby the input speed (NTR) was the controlled variable and output speed (NO) was a measured quantity. Figures 11.1 through 11.6 illustrate transmission performance for first, second and third gear operation. The underutilized transmission, originally designed for a 75 HP power plant, is mismatched for this application and generates an excessive power loss per unit torque applied to the wheels. The applied input torque (TMOT) on the first gear had to be restricted to 41 Newton-meter (N-m) in order not to exceed the drive shaft sensor's torque rating TO = 340 N-m.

The entire EVA transmission test routine, including the software and the parametric data print-out is shown in Appendix B. The transmission test nomenclature is shown in Table B1.

XII. DC MOTOR TEST

1. DC Motor Performance. Motor performance was evaluated initially with the aid of conventional instrumentation for general reference. Motor power loss and performance curves were plotted according to conventional practice and are shown in Figures 12.1 to 12.10. Table 8 and Figure 12.3 provide windage, friction and magnetic loss information; Table 9 and Figure 12.4 identify windage and friction losses of the machine. Table 10 shows the rotor inertia for the propulsion motor.

FIGURE 11.1: TRANSMISSION PERFORMANCE TEST IN FIRST GEAR (GR1)

FIGURE 11.2: TRANSMISSION PERFORMANCE TEST IN FIRST GEAR (GR1)

Figure 11.3. Transmission test performance in second gear (GR2).

FIGURE 11.4: TRANSMISSION PERFORMANCE TEST IN SECOND GEAR (GR2)

Figure 11.5. Transmission performance test in third gear (GR3).

FIGURE 11.6: TRANSMISSION PERFORMANCE TEST IN THIRD GEAR (GR3)

XII-1. MOTOR PERFORMANCE TEST.

Figure 12.1. Motor efficiency, TMOT = parameter.

Figure 12.2. Brush losses vs. motor current.

Figure 12.3. Windage, friction and magnetic loss.

Figure 12.4. Windage and friction loss.

Figure 12.5. Motor winding dissipation.

Figure 12.6. Motor voltage vs. motor speed.

ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMM--ETC F/6 13/6
EVA METRO SEDAN ELECTRIC PROPULSION SYSTEM TEST AND EVALUATION. (U)
SEP 79 E REIMERS
DOE-1AA-EC-77-A-31-10 AD-A080 655 DOE-IAA-EC-77-A-31-1042 UNCLASSIFIED NL 2 OF 4 AD A080655 14

Figure 12.7. Motor current vs. speed.

Figure 12.9. Motor current vs. motor shaft torque.

Table 8: Windage, Friction and Magnetic Loss Data

NMOT RPM	EARM VDC	IARM ADC	PARM W	IFM ADC	PRARM W	PBRS W	PCOR W	Designation
820	20	6.6	132	136.8	0.3	13.2	118.5	
1683	40	8.4	336		0.5	16.8	318.7	K1
2544	60	9.0	540		0.5	18.0	521.5	
3431	80	9.0	720	136.1	0.5	18.0	701.5	
3839	90	9.7	873	138.0	0.6	19.4	853.0	
4294	100	10.6	1060		0.7	21.2	1038.8	
850	20	6.0	120	108.0	0.2	12.0	107.8	
1765	40	6.6	254		0.3	13.2	240.5	K2
2691	60	9.0	540		0.5	18.0	521.5	
3632	80	9.6	768		0.6	19.2	748.2	
4501	100	10.8	1080		0.7	21.6	1057.7	
917	20	6.6	132	100.0	0.3	13.2	118.5	
1147	40	9.0	360		0.5	18.0	336.6	K3
2758	60	9.6	576		0.6	19.2	556.2	
3700	80	10.2	816		0.7	20.4	794.9	
4565	100	12.0	1200		0.9	24.0	1175.1	
927	20	7.2	144	75.0	0.3	14.4	129.3	
1939	40	9.0	360		0.5	18.0	341.5	K4
2942	60	9.6	576		0.6	19.2	556.2	
3933	80	10.2	816		0.7	20.4	794.9	
1133	20	9.0	180	50.0	0.5	18.0	161.5	
2275	40	10.2	408		0.7	20.4	386.9	K5
3436	60	12.0	720		0.9	24.0	695.1	
4620	80	12.6	1008		1.0	25.2	981.8	

Table 9: Windage and Friction Loss Data

NMOT RPM	TQ3-1 FT-LB	PFR1' W	TQ3-2 FT-LB	PFR2' W	TQ3-3 FT-LB	PQ03 W	PFR1 W	PFR2 W	PFR3
1000	0.5777	82.0	0.4202	59.7	0.1576	22.4	59.6	37.3	22.3
2500	0.8119	288.2	0.4727	167.8	0.2626	93.2	195.0	45.8	149.2
4000	1.0504	597.0	0.5777	328.0	0.4727	268.5	328.5	59.5	269.0

TABLE 10: ROTOR INERTIA FOR EVA #1 METRO SEDAN PROPULSION MOTOR

A. MEASURED DATA		W/LB	A INCHES	L INCHES	T SEC/CYCLE
ROTOR WITH END BELL	(JI)	62	9.25	116.75	1.87
END BELL ALONE	(J2)	16.8	10	116.25	2.64

B. INERTIA DATA	FT LBS ²	mkgs ²	
J ₁	.335398		
J ₂	.212610		
J _M (ROTOR)	.122788	130.89·10 ⁻⁶	

The nomenclature for Tables 8 and 9 and Figures 12.2 to 12.5 is:

PCOR	Motor Windage, Friction (Bearing and Brush Friction) and Magnetic Losses	W
PFR1	Windage and Friction Losses	W
PFR2	Windage (Including Bearing) Loss	W
PFR3	Brush Friction Loss	W
PMAG	Watt-Loss in Magnetic Structure	W
PBR	Electric Power Loss in Brushes	W
PRARM	(IARM) ² RARM Power Loss in Armature Winding	W
PRFM	(IARM) ² RFM Power Loss in Series Field Winding	W
RARM	Armature Winding Resistance	W
RFM	Field Winding Resistance	W

2. Parametric Test Data. Figures 12.11 to 12.13A-I illustrate motor performance as measured with the HP 3052A Data Acquisition System. The performance curves shown in Figures 12.11 and 12.12 were obtained from the constant speed, variable torque curves of Figures 12.13A-I and from the parametric data print-out. Software and data for the parametric test program are shown in Appendix C. Both sets of data track each other within typically 2%. However, manual data took typically 30 minutes/speed point, while automated data tracking took typically 20 sec/speed point at a considerably higher resolution.

The motor is rated at PMOT1 = 10KW @ 4000 RPM. The constant power rating of the machine was extended to 2000 RPM at which speed the current in the motor is two times the current amplitude at 4000 RPM. The other power envelopes, namely PMOT2; PMOT3; PMOT4; and PMOT5 represent 0.75; 0.5; 0.25; and 1.25 PMOT1 motor power ratings, whereby the low corner frequency is based on two times the current value for PMOT1 @ 4000 RPM.

XIII. DC CHOPPER MOTOR DRIVE TEST

In this test sequence system performance, component utilization and the performance degradation of battery and motor performance when operated in the pulsating dc power mode was investigated. The software, shown in Appendix C, was generated to enable the parametric testing of motor and system for both the unbuffered battery and buffered battery operation. Because of inadequate instrumentation, due to noise and inability to store analogously the open circuit battery voltage [EBATO] for the duration of the test, the direct measurement of losses in the battery (PLABT, PLBAT) and commutating circuit (PACOM, PCOM) led to misleading data. Hence, the measured data were replaced with calculated data. It is noteworthy that the measurement of either AVG or RMS quantities is performed by the HP 3455A Digital Voltmeter over several cycles of operation. Inasmuch as current and voltage vectors are approximately in phase in this type dc chopper circuit, power can be calculated by simple multiplication. Voltage vectors across power semiconductor devices (TH1) and (D2) were clamped to 10-volt maximum aplitude with the aid of adaptor circuits to remain within the HP 3445A crest factor specification of 8:1. This also simplified software when logging power dissipation of either device during either device's forward conduction mode.

XII-2. PARAMETRIC TEST DATA.

Figure 12.11. Parametric test data, motor current and voltage.

Figure 12.12. Parametric test data, motor efficiency and power loss per unit torque.

Figure 12.13C. Parametric test data @ NMOT = 1048 RPM.

Figure 12.13D. Parametric test data @ NMOT = 1310 RPM.

Figure 12.13F. Parametric test data @ NMOT = 2048 RPM.

Figure 12.13H. Parametric test data @ NMOT = 3200 RPM.

Figure 12.131. Parametric test data @ NMOT = 4000 RPM.

Because neither the voltage nor the current form factor can exceed an amplitude ratio RMS/AVG ≥ 1 , parametric data read-outs above unity at light load profiles are caused by noise or computation error when correlating composite data within the HP9825A calculator, and do not represent a true condition of the circuit. For this condition the RMS value of the amplitude is equal to its AVG value. Similarly, parametric read-outs for the conduction duty cycle may erroneously exceed the natural boundary limits $0 \leq \Delta \leq 1$. This is also caused by noise, or accumulated error margin, or inadequate data accumulation due to system instability when measuring over several cycles of operation. At low motor speed, but nevertheless over a considerable speed range, the chopper operated in an unstable mode and exhibited the tendency to skip each third trigger pulse. A net return of power (PACOM) from the commutating circuit to the battery near unity conduction duty cycle, indicated by a negative prefix in the computer print out, is most unlikely, and again caused by accumulated error. In any event, the increase of any of the aforementioned error margins as a result of analysis within the calculator is considered below 1%.

Parametric test data were logged for the original drive system with an unbuffered battery power supply. Additional parametric testing was performed, whereby the battery was buffered with a generator power supply. The generator load curve matched the average load demand from the dc chopper motor drive such that the battery supplied only the peak current to the load. The generator also maintained the battery at constant peak charge. While it was obviously possible to improve the power transfer from the battery to the load at near unity dc chopper conduction duty cycles, data show only an insignificant improvement of power transfer efficiency for this mode of operation. Thus, the family of performance curves for both the motor and the system were generated only for the unbuffered battery operating mode

A basic family of curves were developed from the parametric test shown in Appendix D, whereby motor speed (NMOT) was maintained constant and a parameter and motor torque was the controlled variable. The family of curves was used to generate the motor propulsion profile for five constant power rating envelopes [PMOT1 to PMOT5]. The motor is rated at PMOT1 = 10kW@ 4000 RPM. The constant power rating of the machine was extended to 2000 RPM at which speed the current in the motor is typically two times the current amplitude at 4000 RPM. The other power envelopes, namely PMOT2, PMOT3, PMOT4, and PMOT5 represent power ratings of 0.75, 0.5, 0.25, and 1.25 PMOT power ratings, whereby each low corner frequency is based on the two times rated current value of PMOT1 @ 4000 RPM. Additional reduction of data was concerned with dc motor performance in the pulsating dc power mode and subsequent performance degradation. The increase in motor current amplitude and field losses due to pulsating power is shown in Figures 13.1 and 13.2. Motor efficiency, performance degradation and other motor parameters are shown in Figures 13.3 and 13.4. Constant speed motor data as a function of torque are shown in Figures 13.5A through 13.5L. Similarly, electrical system energy utilization without the transmission and chopper conduction duty cycle for five constant horsepower propulsion profiles, shown in Figures 13.6 and 13.7 respectively, were obtained from the parametric constant speed, variable torque family of curves which are shown in Figures 13.8A through 13.8L. The parametric test data for the unbuffered battery operation are shown in Table D1 in Appendix D1. The data print-out for buffered battery operation is shown in Appendix D2.

XIV. TRANSIENT WAVEFORM ANALYSIS

Waveform transients were recorded at a motor speed (NMOT) of 200 RPM and a motor torque (TMOT) of typically 23 N-m. Review of Figures 14.1 through 14.10 shows that the motor current

Figure 13.1. Motor propulsion profile, pulsed DC power.

Figure 13.2. Motor propulsion profile, pulsed DC power.

Figure 13.3. Motor propulsion profile, pulsed DC power.

106

Figure 13.5B. Motor performance @ 100 RPM, pulsed DC power.

MOTOR POWER

 $PYOT(PTR) \longrightarrow (PW)$

Figure 13.5C. Motor performance @ 670 RPM pulsed DC power.

Figure 13.5D. Motor performance @ 839 RPM, pulsed DC power.

Figure 13.5F. Motor performance @ 1310 RPM, pulsed DC power.

Figure 13.5K. Motor performance @ 3200 RPM, pulsed DC power.

XIII-2. ELECTRIC DRIVE SYSTEM PERFORMANCE, UNBUFFERED BATTERY.

Figure 13.6. System propulsion profile, pulsed DC power.

Figure 13.7. System propulsion profile, pulsed DC power.

Figure 13.8A. System propulsion profile @ 52 RPM, pulsed DC power.

Figure 13.8B. System propulsion profile @ 203 RPM, pulsed DC power.

Figure 13.8C. System propulsion profile @ 671 RPM, pulsed DC power.

MOTOR TORQUE

Figure 13.8E. System propulsion profile @ 1044 RPM, pulsed DC power.

ВАТТЕКУ РОМЕЯ

 $bE\Lambda \longrightarrow (KM)$

Figure 13.8G. System propulsion profile @ 1637 RPM pulsed DC power.

Figure 13.8H. System propulsion profile @ 2047 RPM, pulsed DC power.

NOTE: Commutation of thyristor (TH1) completed, capacitor (C4) overcharges. Excess charge is subsequently returned to the battery causing its voltage to rise temporarily. Oscillatory transients are caused by interaction of line inductance and commutating circuit reactances (L) and (C4).

ETHl (Inverted) =

50V/cm

FIG. 14.9: Expanded time scale of events shown previously.

(IARM) contains a very high ripple content. This causes additional heat losses in the machine because of additional resistive losses and magnetic losses. It is possible to reduce the ripple by either increasing chopper frequency from its present typically 110 Hertz repetition rate, or by increasing motor inductance. As shown in Figure 14.11, ripple content of the motor current is still excessive at 1000 RPM motor speed, and for that matter was excessive for most of the speed and load profile.

XV. BATTERY ENERGY TRANSFER EFFICIENCY TEST*

The testing of the Prestolite battery, Model 9915-X, Serial No: 001639, 75 A @ 110 minutes, 6 V DC (nominal), was limited to a single temperature test, whereby the electrolyte temperature fluctuated typically between $13\frac{1}{2}$ °C (56°F) and 21°C (70°F). Emphasis was placed on conditions of minimum gasing during charge and the determination of END-OF-DISCHARGE. End-of-discharge was considered at the point of inflection of the instantaneous power curve, e.g.: a power level of PABAT_o $\sqrt{2}$ for a constant and resistive load profile. This corresponded to a cell voltage of 1.43 V DC.

For a new battery the degradation of available output power between the limits PABAT_o and PABAT_o/ $\sqrt{2}$ coincided with the available battery capacity of 130 AH @ IBAT = 50 A DC. Understandably, the available battery capacity progressively decreased with increased load demand and was typically 105 AH @ 75 A DC and 90 AH @ 125/150 A DC current amplitude.

Discharge as well as recharge cycles were conducted at 50/75/100/125/150 A DC constant current levels. During recharge, constant current was maintained until gasing occurred. At this point the average current amplitude was reduced automatically such that the established rate of gasing was not exceeded. The chronological charge and discharge data for this test series are shown in Table 11, while Figures 15.1 through 15.3 show the sustainable battery charge current (IBAT) as function of time, energy input (JBAT) and transfer requirement as function of charge current, as well as calculated energy transfer efficiency (\eta BAT).**

XVI. EMI AND SOUND LEVEL TEST

- 1. Electromagnetic Interference (EMI) was measured to determine the peak values being emitted from the vehicle drive motor and associated circuitry under the following load conditions:
 - a. 50 A current draw (IBAT AVG), transmission in neutral. Data are plotted in Figure 16.1.

Although the testing of energy transfer efficiency was limited in scope, it is believed that the described method makes it possible to generate repeatable test results and to fully characterize any battery line in a future test program. With this method it will be possible to adequately define usable battery capacity as a function of temperature, load current and aging. The result of such testing would yield a family of curves which could be applied generally to this type of battery with reasonable confidence.

^{**} The author is well aware that advanced charge methodologies which impact the chemical reaction of the battery, can extend the life of the battery between recharges. However, these methods will be hardly available to the present-day consumer. Thus, the potential consumer's daily battery charge routine will remain unaffected. Furthermore, regardless of the method chosen to recharge the battery, including consideration of coulombic efficiency, the basic question still remains what is the energy requirement to charge a battery in order to expend a set quantity of available energy at a defined rate of discharge. Thus, in terms of actual field requirements, the proposed charge/discharge monitoring mechanism is considered quite valid and practicable.

FIG. 14.11: IARM = 100A/cm

> ETH1 = 50V/cm Common terminal of oscilloscope on anode of TH1.

NMOT ≥ 1000 RPM

Table 11. Chronological Charge and Discharge Data.

LINE ITEM	PROJECT	Tadadal	TIMING			To GAS &	to INFL	
11121		Initial START	Data POINT	STOP	G.P.	HRInit Start		WATT-HRS
1	50-AMPERE	02:34:PM	05:22:30	06:32:PM	0.5"	02:48:30	139.90	931.20
	CHARGE	11:15:AM 10:01:AM		11:23:PM 10:32:AM				
2	50-AMPERE	11:21:AM	01:59:PM	03:06:PM		02:38:00	132.25	755.2
	DISCHARGE	10:29:30 11:13:PM 02:13:PM		11:05:AM 11:38:PM 03:00:PM				
3	1.00-AMPERE	12:40:PM 12:48:PM	01:40:PM	12:45:PM	0.4"	00:52:00	94.74	678.4
	CHARGE			11:25:PM		00132.00	74.74	0,0.4
4	100-AMPERE	10:04:AM	11:03:AM	11:46:AM		01:01:00	100.6	544.0
	DISCHARGE	05:20:PM		05:32:PM				
5	75-AMPERE CHARGE	05:41:PM	07:10:PM	11:25:AM	0.9"	01:29:00	110.54	754.6
6	75-AMPERE DISCHARGE	10:00:AM	11:24:30	12:00:30		01:24:30	105.11	584.8
7	125-AMPERE	03:48:PM 11:00:AM	11:30:AM	04:00:PM	1.8"	00:30:00	70.36	560.0
	CHARGE	02:03:PM	11.30.111	11:50:AM 06:32:PM	1.0	00.30.00	70.30	300.0
8	125-AMPERE DISCHARGE	03:07:PM	03:52:45	04:08:00		00:45:15	91.98	494.8
9	150-AMPERE CHARGE	04:18:PM	04:44:00	05:35:PM	0.5"	00:26:00	65.88	451.2
		05:35:PM		11:19:PM				
10	150-AMPERE DISCHARGE	09:21:AM	09:59:AM	11:00:AM		00:38:00	96.84	487.2
11	TOTAL							

Table 11. Chronological Charge and Discharge Data (Cont'd)

		ACCUMULATION		ON	TOTALS (From initial starts)	
LINE ITEM	PROJECT	Hours	AMPS-HRS	WATT-HRS	Hours AMPS-HRS WATT-HRS	
1	50-AMPERE	03:58:00 12:08:00		1144.8 473.2		
	CHARGE	00:31:00			16:35:00 + 218.95 + 1630.8	
	50-AMPERE	03:45:00	165.73	818.4		
2	DISCHARGE	00:36:00	ALL STATE OF THE S	48.0		
		00:25:00		12.0		
		00:47:00	6.10	26.4	05:33:00 - 183.45 - 904.8	
3	100-AMPERE					
3	CHARGE	11:45:00	196.12	1523.2	11:45:00 + 196.12 + 1523.2	
4	100-AMPERE	01:42:00	135.94	624.0		
4	DISCHARGE	00:12:00		92.8	01:54:00 - 154.20 - 716.8	
5	75-AMPERE CHARGE	05:44:00	159.54	1145.6	05:44:00 + 159.54 + 1145.6	
,		03:44:00	139.34	1143.0	05.44:00 + 159:54 + 1145:0	
6	75-AMPERE DISCHARGE	02:00:30	131.7	640	02:00:30 - 131.70 - 640.0	
7	125-AMPERE	00:12:00	15.72	99.6		
1	CHARGE	00:50:00	104.12	758.4		
		04:29:00	45.84	316.8	05:31:00 + 165.68 + 1174.8	
8	125-AMPERE DISCHARGE	01:01:00	109.00	515.2	01:01:00 - 109.00 - 515.2	
9	150-AMPERE					
	CHARGE	01:17:00 05:44:00		777.6 235.2	07:01:00 + 230.16 + 1012.8	
10	150-AMPERE DISCHARGE	01:39:00	140.6	566.4	01:39:00 - 140.6 - 566.4	
11	TOTAL				58:51:00 + 251.5 + 3144.0	

Figure 15.1. Battery maximum charge current vs. time prior to gasing.

Figure 15.2. Battery energy input vs. charge rate.

WATT-HOUR & AMPERE-HOUR DATA & ENERGY TRANSFER EFFICIENCIES WHEN CHARGING AT CONSTANT AVERAGE CURRENT RATE (IBAT) = PARAMETER TO 0.5" GAS PRESSURE.

PRESTOLITE LEAD ACID BATTERY, MODEL 9915-X, # 001639 IBAT = 50/75/100/125/150 A AVG.

- b. 50 A current draw (IBAT AVG), transmission in Drive mode, brakes locked, Data are plotted in Figure 16.2.
- c. 200 A current draw, transmission in Drive mode, brakes locked. Data are plotted in Figures 16.3 and 16.4.

The tests, conducted in the MERADCOM EMI Test Facility, showed that the radiated emissions from this vehicle exceeded the specification limits at all conditions.*

2. Sound Level. The operational Sound Level of the EVA Metro Sedan was considered low when compared with the road noise which is generated during rush hour traffic. Tests were conducted in the stationary mode, shown in Figures 16.5 and 16.6, as well as in the driving mode. The results of the tests in the driving mode are shown in Figure 16.7 and Table 12.

XVII. CONCLUSIONS

Power transfer through control of the conduction duty cycle by virtue of a constant pulse width and variable frequency gate trigger rate of the thyristor in a dc to dc motor controller, typically 30 to 500 Hz, yields a large ripple current in the dc motor over a wide speed and torque load range. This characteristic is generic to the control principle and describes typically 90% of all dc choppers used presently in both lift trucks and similar material handling equipment. The ripple current generates a large RMS/Average current amplitude ratio which is responsible for excessive motor heating and for considerable degradation of motor performance. To maintain a constant dc current in the motor, the peak amplitude of the pulsating current in the battery must increase steadily as motor speed decreases accompanied by a reduction in the chopper conduction duty cycle. The pulsating current amplitudes contribute toward more and more generation of heat in the battery as well and thus to excess dissipation of its energy. To minimize these losses it is of advantage to utilize the battery in the continuous dc current mode.

Generically, the class of chopper motor controllers which utilize variable pulse duration modulation to control the flow of energy from the battery to the motor, combined with a higher frequency pulse repetition rate, typically 400 to 2000 Hz, are the preferred means to reduce the ripple current in the motor. Such system can also make use of an energy storage filter between the controller and the battery in a way that a complete instantaneous current transformation is attainable from the usually higher voltage, low current source to the high current, lower voltage motor. This in turn reduces power losses, particularly at low motor speed, below measured values stated in this report.

The use of the data acquisition system made possible the high resolution testing of this electric propulsion drive at high measurement speeds heretofore not possible at this facility. Up to 36 data points were recorded within a measurement interval of typically 20 to 30 seconds, whereby both DC and RMS data were logged in sequentially within a few seconds. It has been our experience that the Average or DC values of measured motor parameters in conjunction with the dc chopper, or any other pulsed dc power source, closely match the data attained during the initial motor performance test when powered by a

^{*} Though not available at this facility, it is believed that the noise and interference specifications issued by the FCC are closely patterned after MIL Specifications, or vice versa. Thus, the emissions generated by this vehicle are considered excessive under any circumstance.

Figure 16.3. EMI test, 200A load.

FREQUENCY IN MHZ

18-1

Figure 16.5. Sound level test, stationary.

Figure 16.6. Sound level test, stationary.

Figure 16.7. Sound level test, motion.

Table 12. Sound Levels for EVA No. 1 Metro Sedan.

OCTAVE BAND	SOUND LEVEL	BATTERY CURRENT IBAT (AVG)		
CENTER FREQUENCY	VEHICLE MOVING	100 ADC	200 ADC	
Hz	DB	DB	DB	
31.5	86	62	83	
63	82	70.5	63	
125	70	65	63	
250	67	72	71	
500	59.5	62	61	
1000	52	57	52	
2000	50.5	47	52	
4000	50	50	46	
8000	49	48	47	
16000	35	31	32	
LINEAR	92	79	84	
DBA	69	68.5	65.5	

source providing continuous de power. Thus, it appears that measurements concerned with degradation of motor performance as well as battery utilization, can be attained directly with a single test run in conjunction with the de chopper. This, of course, simplifies the performance evaluation of such a propulsion drive.

The measurement of energy transfer efficiency in a battery has been reduced to a simple test. The battery is charged at any arbitrarily set value as long as constant gas pressure and flow rate is maintained. Under these conditions, energy transfer efficiency can be measured for various rates of discharge, and for constant ampere-hour charge and discharge ratios. The attained efficiencies described in the report can be improved by replacing the pulsating charge current with a continuous dc current. In this way the peak amplitude would be reduced while the identical average charge current would be maintained.

XVIII. REFERENCES

Reference	Description				
1	"A Low Cost Thyristor Fuse," by Eberhart Reimers, IEEE Transactions on Industry Application, Vol. IA – 12, No. 2, March/April 1976, pp. 172-179.				
2	"Design Analysis of Multiphase DC Chopper Motor Drive," by Eberhart Reimers, IEEE Transactions on Industry Application, Vol. IA -8 , No. 2, March/April 1972, pp. 136-144.				
3	"Wide Temperature Range Charging System Controlled by Battery Acceptance," by Joseph A. Mas, Transactions of the New York Academy of Sciences, Div. of Engineering, 1967, pp. 615-626, Presented on October 11, 1967.				
4	"3052A Automatic Data Acquisition System Library," Vol. IIIA pp. 1-2 and 1-3, Hewlett-Packard Company, 1976, Loveland, CO 80537.				
5	"Charge and Discharge Data, Minimal Gas Evolution on Charge, Watt-Hour Determination of End-of-Charge," by E. E. Moyer, E ² M Engineering Services, MERADCOM Contract DAAK-78-M-2379.				
6	"3052A Automatic Data Acquisition System Library," Vol 1A, Section III, p. 31.				
7	"Base Line Tests of the EVA Metro Electric Passenger Vehicle," by E. J. Dowgiallo, et al., MERADCOM Report 2244, May 78.				

APPENDIX A

APPLICATION OF SAMPLING TECHNIQUE

The sampling delay (D) is calculated by using equation (A.1):

(A.1) $D = (T/X) \cdot (1 - 1/N)$

whereby

D = Delay Time

T = Average period observed with the frequency counter

N = Total number of samples within one measurement

X = Number of samples per cycle of test waveform

The result of a 100-point sampling test with X = 2 is shown in Table A2. The decimal portion of the T(-) numbers represents the fractional position along the waveform that is sampled from an arbitrary starting point while the integer (+)1 represents the relative position in the waveform.

A graphic example of this is given in Figure 8.4 where successive waveforms are assumed to be overlaid; consecutive samples are labelled 1, 2, 3, 4, etc. For convenience t = 0 is set at the initiation of the sinewave, though it can occur anywhere in the cycle in reality. The period averaging function is performed by an HP 5302A Universal Counter Module. This counter uses from 9 to 90 milliseconds to perform the period averaging function; the number of periods averaged is 1, 10, 100, or 1000, depending upon frequency. The period average function is performed by counting the instrument's 10 megahertz oscillator for one of the indicated number of periods until a total count between 90000 and 900000 (9 to 90 ms) is obtained. This somewhat parallels the modification of the delay equation (change in X) so that at lower frequencies a lower number of cycles is required to get complete waveform sampling. The rate selection will be accomplished by software comparison of the period average input value and appropriate stepping criteria. The example shown was dictated by the high speed DVM's maximum sample rate of less than 5700 samples per second; for the 2 kilohertz signal frequency the sampling rate (X = 2) is greater than 4000 per second and required 50 cycles (25 milliseconds) for a 100 sample test. At 60 Hertz this technique would require 8333 milliseconds to accumulate the data. Thus, it is obviously advantageous to compress the sampling time by altering the delay time as allowed by the frequency of the waveform being sampled. Sampling map points for X = 3, 4 and 10 are given in Tables 3, 4, and 5 respectively.

The results of using this technique on a variety of 2 kilohertz waveforms (X = 2) are given in Table A6. For these tests the voltage was approximately 10 volts peak-to-peak with successive data groupings corresponding to zero, positive, and negative offset, respectively. The offsets shift the waveform to near zero-based values, but not exactly to zero. The output data are:

N = Total number of data points in sample.

A+= Average of all positive values over N samples.

A- = Average of all negative values over N samples.

N+= Number of positive readings.

N- = Number of negative readings.

 $N\phi$ = Number of null (zero) readings.

The samples originate at random phase from a free running input. The anticipated positive and negative averages for the symmetric sinewave and squarewave are approximately 1.59 and 2.5 volts, respectively, while the offset waveforms would have magnitudes near 5.0 and 0.0 for the positive and negative averages for positive offset and near 0.0 and -5.0 for negative offsets. These expectations match the data to within the accuracy of the amplitude setting and the function generator characteristics. The important point to note is the number of positive and negative samples in each case. The square wave data clearly show a worst case 51.49 polarity ratio for the sampling, while the sine wave data shows a 40:50 split when symmetric and 98:2 split when offset. These results indicate that sampling is quite well spaced along the waveform. This is further corroborated by the positive and negative pulse data. In these cases the pulse width is approximately 15% of the total period, so that the expected magnitudes would be about .75 and 4.75 volts on the unshifted waveforms and 1.5 and 8.5 volts in the case of shifted waveforms; the magnitude results match reasonably and the N+ and N- numbers show good agreement with the expected values. It can be concluded that a valid technique for determining "VAVG" has been improved by increasing the number of samples, if necessary. In this way a typically 2000 Hertz pulse duration waveform (PDM) can be analyzed with a sampling rate just over 4000 Hertz.

S	r	S	T
1	0.495	2	0.990
3	1.495	4	1.980
5	2.475	6	2.970
7	3.465	8	3.960
9	4.455	10	4.950
13	5.445 6.435	12	5.940 6.930
15	7.425	16	7.920
17	8.415	18	8.910
19	9.405	20	9.900
21	10.395	22	10.390
23 25	11.385 12.375	24	11.380
27	13.365	26 28	12.970 13.960
29	14.355	30	14.350
31	15.345	32	15.340
33	16.335	34	16.330
35	17.325	36	17.820
37	13.315	38	18.310
39 41	19.305 20.295	4 0 4 2	19.300
43	21.285	44	20.790
45	22.275	46	22.770
47	23.265	43	23.760
49	24.255	50	24.750
51	25.245	52	25.740
53	26.235 27.225	54	26.730
55 57	28.215	56 53	27.720 28.710
59	29.205	60	29.700
61	30.195	62	30.690
63	31.185	64	31.680
65	32.175	66	32.670
67	33.165	68	33.660
69 71	34.155 35.145	70 72	34.650 35.640
73	36.135	74	36.630
75	37.125	76	37.620
77	38.115	78	38.610
79	39.105	80	39.500
81	40.095	82	40.590
83 85	41.085 42.075	84 86	41.580
87	43.065	88	42.570 43.560
89	44.055	90	44.550
91	45.045	92	45.540
93	46.035	94	46.530
95	47.025	96	47.520
97	48.015	98	48.510
99	49.005	100	49.500

TABLE A1: Relative Sample Points for D = (T/2)(1-1/N), N=100.

S	T	S	Т
1		2	0.5600
5		6	1.9300
7		9	2.6400
11		10 12	3.3000 3.9600
13	4.2900	14	4.6200
15	4.9500	16	5.2300
17	5.6100	18	5.9400
19	6.2700	20	6.6000
21	6.9300	22	7.2600
23 25	7.5900 8.2500	24	7.9200
27	8.9100	26 23	8.5800 9.2400
29	9.5700	30	9.9000
31	10.2300	32	10.5600
33	10.8900	34	11.2200
35	11.5500	36	11.8900
37	12.2100	38	12.5400
39 41	12.8700 13.5300	40	13.2000
43	14.1900	4 2 4 4	13.8600
45	14.8500	46	15.1800
47	15.5100	48	15.3400
49	16.1700	50	16.5000
51	16.8300	52	17.1600
53	17.4900	54	17.8200
55 57	18.1500 18.8100	56 58	18.4800
59	19.4700	60	19.1400
61	20.1300	62	20.4600
63	20.7900	64	21.1200
65	21.4500	66	21.7800
67	22.1100	68	22.4400
69	22.7700	70	23.1000
71 73	23.4300 24.0900	72 74	23.7600
75	24.7500	76	24.4200 25.0800
77	25.4100	78	25.7400
79	26.0700	80	26.4000
81	26.7300	82	27.0600
83	27.3900	84	27.7200
85	28.0500	86	28.3800
87 89	28.7100 29.3700	88 90	29.0400
91	30.0300	92	30.3600
93	30.6900	94	31.0200
95	31.3500	96	31.6800
97	32.0100	98	32.3400
99	32.6700	0 = (T/3)(1-1/N)	33.0000

TABLE A2: Relative Sample Points for D = (T/3)(1-1/N), N=100.

S	r	S	T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37	0.2475 0.7425 1.2375 1.7325 2.2275 2.7225 3.2175 3.7125 4.2075 4.7025 5.1975 5.6925 6.1875 6.6825 7.1775 7.6725 8.1675 8.6625 9.1575 9.6525	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40	0.4950 0.9900 1.4850 1.9800 2.4750 2.9700 3.4650 3.9600 4.4550 4.9500 5.4450 5.9400 6.4350 6.9300 7.4250 7.9200 8.9100 9.4050 9.9000
41	10.1475	42	10.3950
45	11.1375	46	11.3850
49 51	12.1275	50 52	12.3750
53 55	13.1175 13.6125	54 56	13.3650
57 59	14.1075 14.6025	58 60	14.3550
61	15.0975 15.5925	62 64	15.3450
65	16.0875	66	16.3350
67 69	16.5825 17.0775	68 70	16.8300
71	17.5725	72	17.8200
73 75	18.0675 18.5625	74 76	18.3150
77	19.0575	78	19.3050
79 81	19.5525 20.0475	80 82	19.8000
83	20.5425	84	20.7900
85 87	21.0375	86	21.2850
89	21.5325 22.0275	88 90	21.7800 22.2750
91	22.5225	92	22.7700
93 95	23.0175 23.5125	94 96	23.2650
97	24.0075	98	24.2550
99	24.5025	100	24.7500

TABLE A3: Relative Sample Points for D = (T/4)(1-1/N), N=100.

S	т	5	T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 445 47 49 51 53 55	0.0990 0.2970 0.4950 0.6930 0.8910 1.0890 1.2870 1.4850 1.6830 1.9810 2.0790 2.2770 2.4750 2.6730 2.8710 3.0690 3.2670 3.4650 3.6630 3.8610 4.0590 4.2570 4.4550 4.6530 4.8510 5.0490 5.2470 5.4450	2 4 5 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 52 54 56	0.1980 0.3960 0.5940 0.7920 0.9900 1.1880 1.3860 1.5840 1.7820 1.9800 2.1780 2.3760 2.5740 2.5740 2.5740 2.5740 3.3660 3.3660 3.7620 3.9600 4.3560 4.3560 4.7520 4.9500 5.1480 5.3460 5.5440
51	5.0490	52	5.1480 5.3460
53	5.2470	54	
61	6.0390	62	6.1380
63	6.2370	64	6.3360
65	6.4350	66	6.5340
67	6.6330	68	6.7320
69	6.8310	70	6.9300
71	7.0290	7 2	7.1280
73	7.2270	7 4	7.3260
75	7.4250	7 6	7.5240
77	7.6230	7 8	7.7220
79	7.8210	8 0	7.9200
81	8.0190	8 2	8.1180
83 85 87 89 91	8.2170 8.4150 8.6130 8.8110 9.0090 9.2070	84 86 83 90 92	8.3160 8.5140 8.7120 8.9100 9.1080 9.3060
95	9.4050	96	9.5040
97	9.6030	98	9.7020
99	9.8010	100	9.9000

TABLE A4: Relative Sample Points for D = (T/10)(1-1/N), N=100.

	IVE PULSE	100.00	4.34	98.0-	83.00	17.00	00.0	189.68	8.77	-0.01	86.00	14.00	9.90	106.00	0.22	-1.51	85.00	15.00	00.0	
	HEGATIVE	ᄪᆇ	# +±	Ĥ-H	"+ *	# 	=0X	:II Z	# + - -	 	# *	 	=0N	# Z	F. H	Ĥ-=	# + Z	11 12	=0X	
		100.00	0.78	-4.31	15.60	85.88	ଜ.ଜ	166.66	1.53	-0.09	15.66	85.88	6.66	166.66	6.64	-8.63	14.60	86.00	ଡ.ଡ	
	POSITIVE	#	#+#	Ĥ-"	# + Z	11 - 2	=0×	11 2	Ĥ+#	Ĥ-≡	11 + 2	# 	10N	# Z	±÷⊞	Ĥ-H	# *	- X	# 0 Z	
																		- 1		
Ling	и Н V E	100.00	1.37	-1.62	20.00	28.88	0.00	188.88	4.95	-8.88	98.00	2.00	99.99	166.66	ବର.ଜ	-4.97	1.00	90.06	1.66	
	SINE	N= 100.00						188.	4.	-8-	98.	N-= 2.88	œ.	100.	H+≡ Ø•ØØ	4	-	98.	•	
	SINE		"+H	# - I	# + Z	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=0 Z	N= 189.	H+= 4.	Ĥ-= -9.	N+= 98.	2.	N8= .9.	100.	Ĥ+≡ Ø.	Ĥ-=	N+= 1.	×× 08.	NØ= 1.	

TABLE A5: Results of Period Synchronized Sampling of Various 2 kHz, Waveforms.

APPENDIX B

EVA TRANSMISSION TEST ROUTINE
SOFTWARE AND DATA PRINT-OUT

```
0: dsp "EVA TRANSMISSION TEST ROUTINE"
1: dsp "PROGRAM TAPE TRACK 0, FILE 23"
2: dsp "PROGRAM UPDATE: 3-19-79"
3: clr 7
4: dim A[18,10];dim B[18,10];dim C$[13]
5: dsp "PUT DATA TAPE IN CALCULATOR"; stp
6: enp "DATA TAPE TRACK: ",D;trk D
7: enp "FIRST RAW DATA FILE = ",G;gto "data"
8: "avg 1":
9: wrt 722, "B;U=>";wait 100; trg 722
10: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
11: I+1+I; ret
12: "avg 10":
13: wrt 722, "B;U;>"; wait 100; trg 722
14: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
15: I+1+I; ret
16: "avg 100":
17: wrt 722, "B; U7>"; wait 100; trg 722
18: red 722.2, A[I,P]; clr 722
19: I+1+I; ret
20: "rms 1":
21: wrt 722, "B; U=="; wait 100; trg 722
22: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
23: I+1+I; ret
24: "rms 10":
25: wrt 722, "B;U;="; wait 100; trg 722
26: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
27: I+1+I; ret
28: "rms 100":
29: wrt 722, "B; U7="; wait 100; trg 722
30: red 722.2, A[I,P]; clr 722
31: I+1+I; ret
32: dsp "CLOCK READ AND PRINT, NO CR/LF"
33: "clockread":
34: fmt 8,cl; wrt 708.8, "C"; fmt 8,cl2; red 708.8, C$; clr 708; ret
35: "clockprint":
36: fmt 1,c2, z; fmt 2,"-", z; fmt 3,":", z
37: fmt 4,5x, z; fmt 5,3/; fmt 6, "79-", z; wrt 715.5
38: wrt 715.6; wrt 715.1, C$ [3,4]; wrt 715.2; wrt 715.1, C$ [5,6]
39: wrt 715.4; wrt 715.1, C$ [7,8]; wrt 715.3; wrt 715.1, C$ [9,10]
40: wrt 715.3; wrt 715.1, C$ [11,12]; wrt 715.4; ret
41: "poly":
42: if p0<11;gto +2
43: (((((((plp18+p17)p1+p16)p1+p15)p1+p14)p1+p13)p1+p12)p1+p11)p1+p20
44: (((((((p20+p10)p1+p9)p1+p8)p1+p7)p1+p6)p1+p5)p1+p4)p1+p3)p1+p20
45: ret p20+p2
46: "*temp T":
47: if p2>0;gto +8
48: 0+p3;3.874077384el+p4;4.4123932482e-2+p5;1.1405238498e-4+p6
49: 1.9974406568e-5+p7;9.0445401187e-7+p8;2.2766018504e-8+p9
50: 3.624740938e-10+p10;3.8648924201e-12+p11;2.8298678519e-14+p12
```

```
51: 1.4281383349e-16+p13;4.8833254364e-19+p14;1.0803474683e-21+p15
52: 1.3949291026e-24+pl6;7.9795893156e-28+pl7;if p24>0;gto +10
53: 'poly' (p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17)+p20
54: p20/le6+p1+p20;gto +5
55: 0+p3;3.874077384el+p4;3.3190198092e-2+p5;2.0714183645e-4+p6
56: -2.1945834823e-6+p7;1.103190055e-8+p8;-3.0927581898e-11+p9
57: 4.5653337165e-14+pl0;-2.761687804e-17+pl1;if p24>0;gto +11
58: 'poly' (p2,p3,p4,p5,p6,p7,p8,p9,p10,p11)/le6+p1+p20
59: .002+p21
60: 1+p24; if p20>0; gto -5
61: gto -13
62: 'poly'(p21,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17)/le6+p22
63: p22-p20+p22
64: if abs(p22)<.0000001; ret p21
65: 'poly' (p21,0,0,0,0,0,0,7pl0,8pl1,9pl2,10pl3,11pl4,12pl5,13pl6,14pl7)+p23
66: (p23+'poly' (p21,p4,2p5,3p6,4p7,5p8,6p9))/le6+p23
67: p21-p22/p23+p21;gto -5
     'poly'(p21,p3,p4,p5,p6,p7,p8,p9,p10,p11)/le6-p20+p22
68:
69: if abs(p22)<.0000001;ret p21
70: 'poly' (p21,p4,2p5,3p6,4p7,5p8,6p9,7p10,8p11)/le6+p23
71: p21-p22/p23+p21;gto -3
72: "data":
73: dsp "PRESS CONTINUE TO CLEAR ARRAYS";stp
74: for I=1 to 18
75: for J=1 to 10
76: 0+A[I,J]
77: next J
78: next I
79: for I=1 to 18
80: for J=1 to 10
81: 0+B[I,J]
82: next J
83: next I
84: 0+H
85: dsp "PRESS CONTINUE TO READ DATA"; stp
86: for P=1 to 10
87: H+1+H;1+I
88: fmt 1,3x,el4.4;fmt 2,el3.6,z;fmt 5,f3.0
89: wrt 709.5, "C", 0
90: gsb "avg 10"
91: wrt 709.5, "C",1
92: gsb "avg 10"
93: wrt 709.5, "C", 2
94: gsb "avg 1"
95: wrt 709.5,"C",3
96: gsb "avg 10"
97: wrt 709.5, "C", 4
98: gsb "avg 10"
99: for Q=10 to 12
100: wrt 709.5,"C",Q
101: gsb "avg 100"
102: next Q
103: wrt 709.5, "C", 20
104: qsb "avq 1"
```

```
105: wrt 709.5, "C", 34; wait 100
106: wrt 714,"I"
107: time 2000
108: on err "Tl"
109: red 714.1, A[I,P]; jmp 2
110: "T1":0+A[I,P];dsp "NO TRANSMISSION INPUT SPEED";jmp 2
111: dsp "TRANSMISSION INPUT SPEED MEASURED"
112: clr 709; I+1+I
113: wrt 709.5, "C", 35; wait 100 114: wrt 714, "I"
115: time 2000
116: on err "T2"
117: red 714.1, A[I,P]; jmp 2
118: "T2":0+A[I,P];dsp "NO TRANSMISSION OUTPUT SPEED";jmp 2
119: dsp "TRANSMISSION OUTPUT SPEED MEASURED"
120: clr 709; I+1+I
121: wrt 709.5, "C", 5
122: gsb "avg 1"
123: wrt 709.5, "C",6
124: gsb "avg 1"
125: for Q=10 to 12
126: wrt 709.5,"C",Q
127: gsb "rms 100"
128: next Q
129: wrt 709.5,"C",20
130: gsb "rms 1"
131: dsp "MEASUREMENTS COMPLETE"; wait 1000; clr 7
132: dsp "NEW TORQUE SETTING?"; wait 2500
133: dsp "PRESS CONTINUE WHEN READY"; stp
134: next P
135: "record A":
136: dsp "PRESS CONTINUE TO RECORD A-ARRAY"; stp
137: rcf G, A[*]
138: G+1+G;1+I
139: "convert":
140: dsp "CONVERT TO TRUE DATA"
141: on err "E2"; jmp 2
142: "E2":dsp "ERROR IN CONVERT ROUTINE";stp
143: for P=1 to H
144: 2*A[10,P]+B[1,P]
145: 2*A[11,P]+B[2,P]
146: -1*13316*A[3,P]-15.09+B[3,P]
147: 50*A[1,P]*1.3558+B[4,P]
148: 8.333*A[2,P]*1.3558+B[5,P]
149: if A[4,P]>5; if A[5,P]>5;1+B[6,P]
150: if A[4,P]<5; if A[5,P]>5;2+B[6,P]
151: if A(4,P)<5; if A(5,P)<5; 3+B(6,P)
152: if B[6,P]=1;8.3+B[7,P]
153: if B[6,P]=2;5.13+B[7,P]
154: if B[6,P]=3;3.56+B[7,P]
155: 100*(B[1,P]-B[7,P]*B[2,P])/B[1,P]+B[8,P]
156: B[1,P]*B[8,P]/100/60+B[9,P]
157: B[2,P]*B[4,P]/5252/1.3558+B[10,P]
158: 745.7*B[10,P]+B[11,P]
```

```
159: B[1,P]*B[5,P]/5252/1.3558+B[12,P]
160: 745.7*B[12,P]+B[13,P]
161: 100*B[10,P]/B[12,P]+B[14,P]
162: (B[13,P]-B[11,P])/B[4,P]+B[15,P]
        * temp T'(A[12,P]) +B[16,P]
163: '* temp T'(A[12,P]) +B[16,P]
164: '* temp T'(A[13,P]) +B[17,P]
165: next P
166: "record B":
167: dsp "PRESS CONTINUE TO RECORD B-ARRAY"; stp
168: rcf G,B[*]
169: G+1+G
170: dsp "IS PAPER POSITIONED PROPERLY?"; stp
171: "print":
172: wrt 715, "EVA TRANSMISSION TEST WITH DC POWER SOURCE"
173: wrt 715, "DC SERIES MOTOR, 10 HP, 3800 RPM" 174: wrt 715, "BALDOR ELECTRIC CO., ST. LOUIS, MO"
175: wrt 715, "SPEC: 29 1755 1121; S.N.: 1276' 176: gsb "clockprint"
177: wrt 715, "MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060"; wrt 715.5
178: dsp "HEADER AND DATE/TIME PRINTED"
179: fmt 4, f2.0, z; fmt 6, x, f9.3, z; fmt 9, 2x, cll, z
180: 18+M
181: for I=1 to M-1
182: wrt 715.4, I
183: jmp I
184: wrt 715.9,"NTR
                                RPM"; jmp M-I
185: wrt 715.9, "NO
186: wrt 715.9, "TQ
187: wrt 715.9, "TO
                                RPM"; jmp M-I
                               FT-#";jmp M-I
Nm";jmp M-I
                                 Nm";jmp M-I
188: wrt 715.9, "TMOT
189: wrt 715.9, "GEAR SELECT"; jmp M-I
190: wrt 715.9, "GR RATIO:1"; jmp M-I
191: wrt 715.9, "NSL %"; jmp M-I
192: wrt 715.9, "SL RPS"; jmp M-I
193: wrt 715.9, "PO HP"; jmp M-I
                                 HP";jmp M-I
194: wrt 715.9, "PO
                                  W"; jmp M-I
195: wrt 715.9, "PTR HP"; jmp M-I
196: wrt 715.9, "PTR W"; jmp M-I
197: wrt 715.9, "TRANS EFF %"; jmp M-I
198: wrt 715.9, "WLTR W/Nm"; jmp M-I
                              W/Nm";jmp M-I
199: wrt 715.9, "TRAN TEMP C"; jmp M-I
200: wrt 715.9, "MOTR TEMP C" ; jmp M-I
201: for P=1 to H
202: wrt 715.6, abs(B[I,P])
203: next P
204: wrt 715," "
205: next I
206: wtb 715,12
207: "raw data":
208: dsp "PRINT RAW DATA?"; stp
209: wrt 715, "EVA TRANSMISSION TEST RAW DATA"
210: fmt 3,c14,f3.0; wrt 715.3, "DATA ON FILE: ",G-2
211: gsb "clockprint"
212: wrt 715.5; fmt 4, f2.0, z; fmt 6, x, f9.4, z
```

```
213: 18+M
214: for I=1 to M-1
215: wrt 715.4,I
216: jmp I
217: wrt 715.9,"TO
218: wrt 715.9,"TO
219: wrt 715.9,"SOL 1
220: wrt 715.9,"SOL 2
221: wrt 715.9,"EBAT
222: wrt 715.9,"EBAT
223: wrt 715.9,"EFM
224: wrt 715.9,"EFM
225: wrt 715.9,"IARM
226: wrt 715.9,"NTR
227: wrt 715.9,"NQ
228: wrt 715.9,"NQ
228: wrt 715.9,"NQ
228: wrt 715.9,"TEMP TR
229: wrt 715.9,"TEMP MT VDC";jmp M-I
230: wrt 715.9,"EBAT
231: wrt 715.9,"EBAT
231: wrt 715.9,"EBAT
232: wrt 715.9,"EBAT
233: wrt 715.9,"EBAT
231: wrt 715.9,"EBAT
232: wrt 715.9,"EBAT
233: wrt 715.9,"EBAT
231: wrt 715.9,"EBAT
232: wrt 715.9,"EARM
233: wrt 715.9,"EARM
234: for P=1 to H
235: wrt 715.6,A[I,P]
236: next P
237: wrt 715,"
238: next I
239: wtb 715,12
240: gto "data"
241: end
*26537
```

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

79-05-23 11:21:30 MERADCOM, DRDME-EA, FT. BELVOIR, VA 2206.0

1	NTR RPM	MOTOR ROTOR SPEED, TRANSMISSION INPUT
2	NO RPM	WHEEL (DYNAMOMETER) SPEED, TRANSMISSION OUTPUT
3	TQ FT-#	TRANSMISSION TORQUE READ-OUT
4	TO Nm	TRANSMISSION TORQUE READ-OUT
5	TMOT Nm	MOTOR SHAFT TORQUE
6	GEAR SELECT	TRANSMISSION GEAR SELECTION
7	GR RATIO:1	GEAR RATIO
8	NSL %	SLIP
9	SL RPS	
10	PO HP	POWER OUTPUT OF TRANSMISSION
11	PO W	POWER OUTPUT OF TRANSMISSION
12	PTR HP	MOTOR SHAFT POWER
13	PTR W	MOTOR SHAFT POWER
14	TRANS EFF %	
	WLTR W/Nm	TRANSMISSION WATT-LOSS/TORQUE DELIVERED TO WHEEL
16	TRAN TEMP C	TRANSMISSION OIL TEMPERATURE
17	MOTR TEMP C	MOTOR FIELD WINDING TEMPERATURE

Table B1. Transmission Test Nomenclature.

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM
BALDOR ELECTRIC CO., ST. LOUIS, MO
SPEC: 29 1755 1121; S.N.: 1276

6	79-06-22	11.	1 D:04:04	MERADCOM,	MERADCOM, DRDME-EA,	FT. BELVOIR,	*	22060
_	NTR	RPM	1646.000	2036.000	"	3200.000		
7	ON	RPM	174.000	224.000		366.000		
3	TO	FT-#	178.671	180.575	172.200	170.602		
4	To	N	257.073	258.968		243.735		
2	TMOT	EN	37.399	38.327	37.572	38.027		
9	GEAR	SELECT	1.000	1.000	1.000	1.000		
1	GR	RATIO:1	8.300	8.300	8.300	8.300		
8	NSL	ф	12.260	8.684		5.069		
6	3F	RFS	3.363	2.947		2.703		
0	2	HP	6.282	8.147	6	12.528		
-	P0	M	4684.356	6074.882	744	9342.058		
7	PTR	HP	8.645	10.959	13.455	17.089		
3	PTR	X	6446.611	8172.021	100	12743.293		
4	TRANS	S 'EFF &	72.664	74.338		73.310		
2	WLTR	W/Nm	6.855	8.098		13.955		
16	TRAN	TEMP C	75.458	•	70.	68.624		
1	MOTR	TEMP C	47.114	49.855		53.418		

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR 'ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

R, VA 22060	3202.000	368.000	124.621	178.175	29.744	1.000	8.300	4.610	2.460	9.208	6866.553	13.375	9973.941	68.845	17.440	65.572	48.240
FT. BELVOIR,	2558.000	292.000	126.273	179.014	29.768	1.000	8.300	5.254	2.240	7.341	5474.124	10.694	7974.204	68.648	13.966	67.902	46.456
MERADCOM, DRDME-EA,	2048.000	230.000	131.972	188.985	30.073	1.000	8.300		2.317		45		6449.847	70.575	10	71.547	45.160
MERADCOM,	1642.000	178.000	132.638	190.391	29.736	1.000	8.300	10.024	2.743	4.759	3549.033	6.857	5113.264	69.408	8.216	72.488	43.317
1D:0D:45	1302.000	132.000	135.634	195.310	29.935	1.000	8.300	15.853	3.440	3.621	2699.863	5.474	4081.662	66.146	7.075	73.070	40.967
	RPM	RPM	FT-#	EN	EN	GEAR SELECT	RATIO:1	d₽	RPS	HP	Z	HP	3	S EFF &	W/Nm	TEMP C	
79-96-22			TO												WLTR :	TRAN	MOTR
7	1	7	6	4	S	9	7	80	9	10	11	12	13	14	15	16	17

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEO: 29 1755 1121; S.N.: 1276

0	3196.000	370.000	90.120	127.809	23.866	1.000	8.300	3.911	2.083	6.641	4952.283	10.712	7987.699	61.999	23.750	62.890	44.310	
R, VA 22060	2558.000	294.000	91.158	128.318	23.921	1.000	8.300	4.605	1.963	5.298	3950.753	8.593	6407.958	61.654	19.149	64.642	43.198	
FT. BELVOIR, VA	2044.000	230.000	95.246	137.906	24.041	1.000	8.300	6.605	2.250	4.454	3321.654	6.901	5146.134	64.547	13.230	69.210	42.464	
	1640.000	180.000	102.344	142.957	24.286	1.000	8.300	8.902	2.433	3.614	2694.768	5.593	4171.040	64.607	10.327	70.155	41.514	
MERADCOM, DRDME-EA,	1310.000	138.000	102.570	146.113	24.094	1.000	8.300	12.565	2.743	2.832	2111.603	4.433	3305.396	63.884	8.170	70.582	40.896	
10:59:18	1046.000	96.000	116.485	166.283	24.585	1.000	8.300	23.824	4.153	2.242	1671.722	3.611	2693.031	62.076	6.142	70.492	39.490	
10			FT-#			SELE	ATIO:1					HP	3	S'EFF &	W/Nm	TEMP C	TEMP C	
9-06-22	NTR	NO	TO	J.	TOMI	GEAR	GR	NSI	3F	8	2	PTR	PTR	TRANS	WLTR	TRAN	MOTR	
0	-	~	~	-	10	10	-	00	0	0	-	0	m	-	10	10	-	

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

79-	79-06-22	10:55:	55:59	MERADCOM, DRDME-EA,	DRDME-EA,	FT. BELVOIR,	R, VA 22060	09	
-	NTR	RPM	836.000		1312.000	1640.000	2046.000	2556.000	3204.000
~	2	RPM	72.000		146.000	184.000	234.000	294.000	372.000
~	To	F-I-#	83.382		65.898	62.942	59.693	53.980	52.808
•	5	EN			91.441	91.312	86.382	78.159	74.870
5	TAC	EN			17.827	17.891	17.706	17.825	17.840
9	GEAR	SELECT			1.000	1.000	1.000	1.000	1.000
-	GR	7 GR RATIO:1	8.300	8.300	8.300	8.300	8.300	8.300	8.300
80	TSN	a p			7.637	6.878	5.073	4.531	3.633
•	16	RPS			1.670	1.880	1.730	1.930	1.940
2	2	HP			1.875	2.360	2.839	3.227	3.911
=	2	3			1398.102	1759.510	2116.817	2406.418	2916.718
12	MI	HP			3.285	4.121	5.088	6.398	8.027
13	FE	3	_		2449.415	3072.732	3793.793	4771.334	5985.934
7	TRANS	BFF &			57.079	57.262	55.797	50.435	48.726
15	WLTR		5.476	9.013	11.497	14.382	19.413	30.258	40.994
16	TRAN	TEMP C	68.940	68.083	67.518	66.546	4	61.384	58.750
11	MOTR	TEMP C	35.971	36.500	37.100	37.675	38.130	38.991	39.681

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR 'ELECTRIC CO., ST. LOUIS, MO SPEO: 29 1755 1121; S.N.: 1276

22060
VA
BELVOIR,
FT.
DRDME-EA,
MERADCOM,
10:53:10
79-06-22

3202.000 374.000 22.541	35.900	11.961	1.000				1.886	1406.088	5.379	4010.875	35.057	72.556	68.196	42.535
2554.000 33 296.000 25.897	40.155	11.904	1.000	8.300	3.806	1.620	1.669	1244.722	4.270	3183.860	39.095	48.292	72.130	42.037
2042.000 236.000 31.063	46.745	12.209	1.000	8.300	4.074	1.387	1.549	1155.297	3.501	2610.824	44.250	31.137	74.655	42.037
1636.000 186.000 32.009	50.511	11.994	1.000	8.300	5.636	1.537	1.319	983.881	2.756	2054.834	47.881	21.202	76.281	42.203
1306.000 146.000 33.740	52.767	11.798	1.000	8.300	7.213	1.570	1.082	806.788	2.164	1613.572	50.000	15.290	77.591	42.440
1046.000 116.000 36.163				8.300	7.954	1.387	0.873	651.081	1.742	1299.036	50.120	12.090	78.212	42.559
834.000 88.000 38.507	58.879	11.942	1.000	8.300	12.422	1.727	0.728	542.609	1.399	1042.984	52.025	8.498	78.700	43.269
NTR RPM NO RPM TC FT-#	EN	EN	SELECT	ATIO:1	æ	RPS	HP	3	HP	Z	S'EFF &	W/Nm	TEMP C	TEMP C
NTR	10	TWOT	GEAR	GR	NOL	36	2	2	PTR	PTR	TRANS	WLTR	TRAN	MOTR
- MM	4	'n	9	-	00	0	10	11	12	13	14	15	16	17

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

0																	
22060	000.	000.	179	.832	.57	000	30	174	.546	.833	.215	89	908	629	145	143	37
VA	3200.0	594.0	106.3	153.8	37.7	2.0	5.1	4.7	2.5	12.8	9569.2	16.968	12652.8	75.6	20.0	59.6	54.1
FT. BELVOIR,			109.255	157.367	37.612	2.000	5.130	6.472	2.757	10.299	7679.686	13.501		76.280	15.176	63.141	52.349
DRDME-EA,	2044.000	364.000	108.323	159.093	37.261	2.000	5.130	8.644	2.945	8.133	6064.516	10.696	7975.910	76.035	12.014	66.524	50.276
MERADCOM, DRDME-EA,	1650.000	282.000	112.730	162.394	37.439	2.000	5.130	12.324	3.389	6.431	4795.830	8.675	6469.285	74.132	10.305	700.69	48.569
10:50:24	1304.000	190.000	125.713	183.712	38.009	2.000	5.130	25.253	5.488	4.902	3655.392	6.961	5190.485	70.425	8.356	73.964	45.985
10:	RPM	RPM	FT-#	Nm	EN	SELECT	ATIO:1	ф	SL RPS	HP	3	HP	3	BFF 8	W/Nm	TEMP C	TEMP C
79-06-22	NTR	ON	TC	TO	TOWL	GEAR	GR R	NSI	SL	2	PO	PTR	PTR	TRANS	WLTR	TRAN	MOTR
79-	-	7	3	4		9							13	14	15	16	11

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

0	3198.000	592.000	74.114	111.182	29.503	2.000	5.130	5.036	2.684	9.243	6892.850	13.250	9880.661	69.761	26.873	55.109	48.217
3, VA 22060							5.130										
FT. BELVOIR,	2050.000	370.000	78.868	120.382	29.951	2.000	5.130	7.410	2.532	6.255	4664.527	8.623	6429.951	72.544	14.665	59.783	45.349
MERADCOM, DRDME-EA,	1638.000	288.000	85.432	122.464	29.747	2.000	5.130	9.802	2.676	4.953	3693.556	6.843	5102.629	72.385	11.506	63.960	43.530
MERADCOM,	1308.000	214.000	87.204	127.594	30.287	2.000	5.130	16.069	3.503	3.835	2859.493	5.563	4148.693	68.925	10.104	68.218	42.226
10:47:40	1048.000	126.000	116.445	166.893	29.908	2.000	5.130	38.323	6.694	2.953	2202.177	4.402	3282.417	67.090	6.473	69.705	40.324
	RPM	RPM	F.T-#	Nm	r Nm	R SELECT	GR RATIO:1	dР	RPS	HP	X	HP	3	NS 'EFF &	R W/Nm	N TEMP C	R TEMP C
79-06-22	1 NTR	2 NO	3 TQ	4 TO	5 TMO	6 GEA	7 GR	8 NST	TS 6	10 PO	11 PO	12 PTR	13 PTR	14 TRA	15 WLT	16 TRA	17 MOT

ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMM--ETC F/6 13/6
EVA METRO SEDAN ELECTRIC PROPULSION SYSTEM TEST AND EVALUATION.(U)
SEP 79 E REIMERS
DOE-1AA-EC-77-A-31-10 AD-A080 655 DOE-IAA-EC-77-A-31-1042 UNCLASSIFIED NL 3 OF 4 AD A080655

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

	00	00	89	2	-	00	0	m	6	-	2	7	0	2	4	4	3
	3202.0	596.0	52.7				5.13	4.51	2.40	6.73	5019.085	10.70	7984.32	62.86	36.87	49.08	40.94
09	2558.000	472.000	55.325	82.495	24.220	2.000	5.130	5.342	2.277	5.468	4077.683	8.701	6488.130	62.848	29.219	50.743	39.275
R, VA 22060							5.130	6.636	2.261	4.591	3423.534	6.818	5084.514	67.333	18.901	53.789	37.986
FT. BELVOIR,	1638.000	294.000	61.623	91.548	24.401	2.000	5.130	7.923	2.163	3.780	2818.654	5.613	4185.604	67.342	14.931	56.748	36.500
	1308.000	222.000	64.713	95.189	24.424	2.000	5.130	12.931	2.819	2.968	2213.019	4.486	3345.570	66.148	11.898	62.024	35.562
MERADCOM, DRDME-EA,	1052.000	162.000	67.962	98.826	24.101	2.000	5.130	21.002	3.682	2.248	1676.596	3.561	2655.169	63.145	9.902	62.981	34.623
45:06	846.000	60.000	115.673	165.455	23.760	2.000	5.130	63.617	8.970	1.394	1039.621	2.823	2105.022	49.388	6.439	64.982	33.368
10:45:	RPM	RPM	FT-#	EN	N	SELECT	GR RATIO:1	æ	RPS	HP	3	HP	3	BFF &	W/Nm	TEMP C	TEMP C
9-06-22	NTR	ON ON	To	2	TWOT	GEAR	GR R	NSE	J6	2	2	PTR	PTR	TRANS	WLTR	TRAN	MOTR
-6/	٦	~	~	4	2	9	-	8	0	0	=	7	m	7	5	9	1

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEO: 29 1755 1121; S.N.: 1276

	3194.000	598.000	32.728	45.360	17.917	2.000	5.130	3.953	2.104	3.809	2840.630	8.037	5992.987	47.399	69.497	57.071	45.254	
0	2556.000	476.000	34.912	47.916	17.960	2.000	5.130	4.465	1.902	3.203	2388.534	6.447	4807.291	49.686	50.479	61.019	44.121	
R, VA 22060	2054.000	378.000	38.054	52.300	17.731	2.000	5.130	5.592	1.914	2.776	2070.318	5.115	3813.901	4	m	63.073	m	
FT. BELVOIR,	1642.000	298.000	39.932	55.862	17.819	2.000	5.130	6.898	1.888	2.338	1743.307	4.109	3064.046	56.896	23.643	66.478	42.914	
DRDME- EA,	1306.000	232.000	42.675	58.450	17.957	2.000	5.130	8.870	1.931	1.904	1420.089	3.293	2455.921	57.823	17.722	70.919	42.274	
MERADCOM,			43.687			2.000	5.130	13.847	2.419	1.571	1171.543	2.660	1983.253	59.072	12.770	74.187	41.680	
10:36:12	840.000	120.000	51.344	70.405	17.896	2.000	5.130	26.714	3.740	1.186	884.770	2.111	1574.286	56.201	9.794	75.769	4	
0	RPM	RPM	FT-#	NA	EN	SELECT	GR RATIO:1	æ	RPS	HP	3	HP	3	S EFF &	W/Nm	TEMP C	TEMP C	
79-06-22	NTR	ON	3 TO	To	TMOT	GEAR	GR	NSE) SI	PO	8	PTR	PTR	TRAN	WLTR .	TRAN	MOTR	
25			.,	4	-,	9	-	ω	0,	10	7	12	7	14	7	16	-	

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

22060
VA
BELVOIR,
FT.
DRDME-EA,
MERADCOM,
10:29:34
79-06-22

3204.000 602.000 11.915 15.300 11.939 2.000 5.130 3.612 1.294	5.372 4006.064 24.078 198.787 61.316
2556.000 478.000 14.405 18.558 11.919 2.000 5.130 4.063 1.731	4.278 3190.375 29.118 121.854 64.596
2050.000 382.000 15.723 22.333 11.812 2.000 5.130 4.407 1.506	3.401 2535.919 35.231 73.544 67.270
1638.000 302.000 18.373 27.524 12.038 2.000 5.130 5.418 1.479	2.769 2064.905 42.156 43.395 71.928
1312.000 240.000 21.529 31.154 11.966 2.000 5.130 6.159 1.347	2.205 1644.130 47.625 27.640 76.748
	1323.504 49.502 19.657 79.098
836.000 140.000 23.340 34.469 11.945 2.000 5.130 14.091 1.963	1045.812 48.322 15.680 80.777
RPM RPM FT-# Nm R SELECT RATIO:1 RATIO:1	HP W/Nm W/Nm TEMP C
NTR NO TO TO TMOT GEAR GR R NSL SC	PTR PTR TRANS WLTR TRAN
1284501860	765432

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM *ALDOR 'ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

79-	79-06-22	10:	10:26:35	MERADCOM,	MERADCOM, DRDME-EA,	FT. BELVOIR, VA	/A	22060
-	NTR	RFM		2054.000	2556.000	3210.000		
7	ON ON	RPM	7	530.000	674.000	856.000		
m	To	FT-#	9	67.509		66.484		
4	10	EN	94	100.637		99.038		
S	TWOL	EN	33.179	37.253	37.535	37.630		
9	GEAR	GEAR SELECT	3.000	3.000		3.000		
1	GR R	RATIO:1	3.560	3.560	3.560	3.560		
00	NSI	*	21.657	8.140	6.125	2.067		
0	ST	RPS	4.461	2.787	2.609	2.711		
10	2	HP	3.621	7.491	9.442	11.906		
=	2	3	2700.035	5585.695	704	8878.130		
12	PTR	HP	5.759		13.473	16.964		
13	PTR	3	4294.679	8013.109	100	12649.809		
=	TRANS	BFF &	62.869			70.184		
15	WLTR	W/Nm	16.823			38.083		
16	TRAN	TRAN TEMP C	77.170			60.378		
11	MOTR	MOTR TEMP C	51.419			57.854		

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR 'ELECTRIC CO., ST. LOUIS, MOSPEC: 29 1755 1121; S.N.: 1276

	3204.000	858.000	49.559	70.783	29.678	3.000	3.560	4.667	2.492	8.529	6360.037	13.354	9958.071	63.868	50.832	55.941	51.139
09	2556.000	678.000	51.530	75.339	30.084	3.000	3.560	5.568	2.372	7.173	5349.262	10.799	8052.676	66.428	35.883	60.035	49.177
R, VA 22060	2032.000	532.000	51.077	75.199	29.481	3.000	3.560	6.195	2.301	5.618	4189.538	8.413	6273.552	66.781	27.713	64.165	47.795
FT. BELVOIR, VA	1638.000	416.000	52.103	76.380	29.718	3.000	3.560	9.587	2.617	4.462	3327.476	6.836	5097.765	65.273	23.177	65.368	46.550
	1310.000	310.000	51.210	76.400	29.407	3.000	3.560	15.756	3.440	3.326	2480.270	5.410	4034.328	61.479	20.341	69.683	45.160
MERADCOM, DRDME-EA,	1034.000	178.000	76.644	114.293	29.550	3.000	3.560	38.716	6.672	2.857	2130.514	4.291	3199.775	66.583	9.355	76.437	42.914
:03	848.000	54.000	94.314	142.202	24.223	3.000	3.560	77.330	10.929	1.078	804.160	2.885	2151.174	37.382	9.473	78.744	41.157
10:23	RPM	R PM	#-J.J	EN	EN	GEAR SELECT	RATIO:1	do	RPS	HP	X	HP	Z	EFF		LEMP	TEMP C
79-06-22	1 NTR	2 NO	3 TQ			6 GEAR					1 PO		3 PTR	4 TRANS	5 WLTR	6 TRAN	7 MOTR
										_	_	_	_	_	7	_	_

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

22060
K
BELVOIR,
FT.
DRDME-EA,
MERADCOM,
10:20:15
79-06-22

3194.000 860.000 32.328	52.202 24.024	3.560	2.207	6.305	10.776	8035.757	28.506	63.875	53.186	47.490
682.000 34.366	23.877	3.560	2.101	5.160	8.528	6359.410	605.09	46.613	56.449	46.385
2048.000 540.000 36.163	23.857	3.560	2.093	4.058	6.862				59.439	45.514
1642.000 424.000 38.267	24.159	3.560	2.209	3.512	5.571	4154.329	63.035	26.039	61.590	44.310
1314.000 326.000 36.949	23.732	3.560	2.557	2.590	4.379	3265.724	59.133	23.595	64.006	43.743
1046.000 228.000 46.283	24.257	3.560	3.905	2.105	3.563	2657.166	29.067	16.547	70.941	42.559
842.000 54.000 93.848	138.905 23.927 3.000	3.560	10.829	1.053	2.829	2109.793	37.232	9.534	77.436	41.870
NTR RPM NO RPM TO FT-#	EN EN FORTES	ATIO:1	RPS	HP 3	HP	3	S EFF &	M/Nm	TEMP C	TEMP C
NTR	TWOT	GR R	SL	22	PTR	PTR	TRANS	WLTR	TRAN	MOTR
- 4 m		· ~ &		10	17	13	14	15	16	17

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

	000 3216.000		18	29 30.375	1.8	3.000	3	54 4.358	2		2748		9	45	109	54 47.537	42
091	2556.0	686.0	20.850	33.029	18.1	3.0									75.1	47.654	40.3
R, VA 22060	2048.000	546.000	19.132	33.206	17.996	3.000	3.560	5.090	1.737	2.546					59.055	48.967	39.182
FT. BELVOIR, VA	1640.000	430.000	21.622	35.584	18.116	3.000	3.560	6.659	1.820	2.149	1602.400	4.172	3111.287	51.503	42.403	•	38.656
DRDME-'EA,	1300.000	332.000	21.183	34.303	17.820	3.000	3.560	9.083	1.968	1.599			242		(*)	51	38.322
MERADCOM, DRDME-EA,	1050.000	252.000	23.100	37.205	17.828	3.000	3.560	14.560	2.548	1.317	981.856	2.629	1960.378	50.085	26.301	55.363	37.579
10:17:16	838.000	170.000	28.879	46.757	17.709	3.000	3.560	27.780	3.880	1.116	832.422	2.084	1554.128	53.562	15.435	58.061	36.212
	RPM	RPM	FT-#	EN	EN	GEAR SELECT	RATIO:1	, de	RPS	HP	3	HP	X	S EFF &	3	TEMP C	TEMP C
79-06-22	NTR	0N	TO	P P			GR	NST		2	2	PTR	PTR	TRANS	WLTR	TRAN	MOTR
79	7	7	m	4	2	9	7	œ	0	10	=	12	13	14	15	16	17

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEO: 29 1755 1121; S.N.: 1276

22060
Y.
BELVOIR,
FT.
DRDME-EA,
MERADCOM,
10:14:19
06-22

3226.000 876.000 3.731 0.080 12.129 3.000 3.560 3.330 1.791 0.010 7.338 5.495 4097.542 0.179 51316.006
2568.000 696.000 1.055 0.272 11.861 3.000 3.560 3.514 1.504 0.027 19.814 4.278 3189.797 0.621 11661.301 339.538
2056.000 554.000 0.616 1.414 12.187 3.000 3.560 4.074 1.396 0.110 82.041 3.519 2624.005 3.519 3.519 3.519
1636.000 436.000 0.323 3.248 12.097 3.000 3.560 5.125 1.397 0.199 148.324 2.779 2072.565 7.157 592.348 39.538
1314.000 346.000 0.456 1.598 12.004 3.000 3.560 6.259 1.371 0.078 57.896 2.215 1651.829 3.505 997.574 39.776
1052.000 270.000 0.743 3.750 11.814 3.000 3.560 8.631 1.513 0.142 106.036 1.745 1301.546 8.147 318.790 339.752
840.000 204.000 2.181 5.761 12.087 3.000 3.560 13.543 1.896 0.165 123.086 1063.229 11.577 163.178 38.919
NTR RPM NO RPM TC FT-# TO NM GEAR SELECT GR RATIO:1 NSL 8 SL RPS PO W PTR HP PTR HP PTR W/NM TRANS EFF 8 WLTR W/NM
NTR NO TC TO TO TMOT GEAR GR R NSL SC PO PO PTR TRANS WLTR
12843010087654321

EVA TRANSMISSION TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

MERADCOM, DRDME-EA, FT. BELVOIR, VA 10:10:12 79-06-22

22060

1 NTR RPM
2 NO RPM
3 TC FT-#
4 TO NM
5 TMOT NM
6 GEAR SELECT
7 GR RATIO:1
8 NSL 8
9 SL RPS
10 PO HP
11 PO W
12 RTR HP
13 RTR W
14 TRANS EFF 8
15 WLTR W/Nm
16 TRAN TEMP C

APPENDIX C

EVA DC MOTOR TEST ROUTINE, SOFTWARE DATA,
PRINT-OUT AND CALCULATED PERFORMANCE

BASIC PROGRAM

```
0: dsp "EVA DC MOTOR TEST, CHOPPER DRIVEN"
1: dsp "PROGRAM TAPE TRACK 0, FILE 25"
2: dsp "PROGRAM UPDATE: 5-2-79"
3: clr 7
4: dim A[36,10]; dim B[36,10]; dim C$[13]
5: dsp "PUT DATA TAPE IN CALCULATOR"; stp 6: enp "DATA TAPE TRACK: ",D; trk D
7: enp "FIRST RAW DATA FILE = ",G;gto "data"
8: "avg 1":
9: wrt 722, "B;U=>"; wait 100; trg 722
10: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
ll: I+1+I; ret
12: "avg 10":
13: wrt 722, "B;U;>"; wait 100; trg 722
14: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
15: I+1+I; ret
16: "avg 100":
17: wrt 722, "B; U7>"; wait 100; trg 722
18: red 722.2, A[I,P]; clr 722
19: I+1+I; ret
20: "rms 1":
21: wrt 722, "B; U=="; wait 100; trg 722
22: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
23: I+1+I;ret
24: "rms 10":
25: wrt 722, "B;U;=";wait 100; trg 722
26: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
27: I+1+I; ret
28: "rms 100":
29: wrt 722, "B; U7="; wait 100; trg 722
30: red 722.2, A[I,P]; clr 722
31: I+1+I; ret
32: dsp "CLOCK READ AND PRINT, NO CR/LF" 33: "clockread":
34: fmt 8,cl; wrt 708.8, "C"; fmt 8,cl2; red 708.8,C$; clr 708; ret
35: "clockprint":
36: fmt 1,c2,z;fmt 2,"-",z;fmt 3,":",z
37: fmt 4,5x,z;fmt 5,3/;fmt 6,"79-",z;wrt 715.5
38: wrt 715.6; wrt 715.1, C$ [3,4]; wrt 715.2; wrt 715.1, C$ [5,6]
39: wrt 715.4; wrt 715.1, C$ [7,8]; wrt 715.3; wrt 715.1, C$ [9,10]
40: wrt 715.3; wrt 715.1, C$ [11,12]; wrt 715.4; ret
41: "poly":
42: if p0<11;gto +2
43: ((((((plp18+p17)p1+p16)p1+p15)p1+p14)p1+p13)p1+p12)p1+p11)p1+p20
44: ((((((((p20+p10)p1+p9)p1+p8)p1+p7)p1+p6)p1+p5)p1+p4)p1+p3)p1+p20
45: ret p20+p2
46: "*temp T":
47: if p2>0;gto +8
48: 0+p3;3.874077384e1+p4;4.4123932482e-2+p5;1.1405238498e-4+p6
49: 1.9974406568e-5+p7;9.0445401187e-7+p8;2.2766018504e-8+p9
50: 3.624740938e-10+p10;3.8648924201e-12+p11;2.8298678519e-14+p12
```

```
51: 1.4281383349e-16+p13;4.8833254364e-19+p14;1.0803474683e-21+p15
52: 1.3949291026e-24+p16;7.9795893156e-28+p17;if p24>0;gto +10
53: 'poly'(p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17)+p20
54: p20/le6+p1+p20;gto +5
55: 0+p3;3.874077384e1+p4;3.3190198092e-2+p5;2.0714183645e-4+p6
56: -2.1945834823e-6+p7;1.103190055e-8+p8;-3.0927581898e-11+p9
57: 4.5653337165e-14+p10;-2.761687804e-17+p11;if p24>0;gto +11
58: 'poly'(p2,p3,p4,p5,p6,p7,p8,p9,p10,p11)/1e6+p1+p20
59: .002+p21
60: 1+p24;if p20>0;gto -5
61: gto -13
      poly'(p21,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17)/1e6+p22
62:
63: p22-p20+p22
64: if abs(p22)<.0000001;ret p21
65: 'poly'(p21,0,0,0,0,0,0,7p10,8p11,9p12,10p13,11p14,12p15,13p16,14p17)+p23
66: (p23+'poly'(p21,p4,2p5,3p6,4p7,5p8,6p9))/le6+p23
67: p21-p22/p23+p21;gto -5
      poly (p21,p3,p4,p5,p6,p7,p8,p9,p10,p11)/le6-p20+p22
69: if abs(p22)<.0000001;ret p21
70: 'poly'(p21,p4,2p5,3p6,4p7,5p8,6p9,7p10,8p11)/le6+p23
71: p21-p22/p23+p21;gto -3
72: "data":
73: dsp "PRESS CONTINUE TO CLEAR ARRAYS"; stp
74: for I=1 to 34
75: for J=1 to 10
76: 0+A[I, J]
77: next J
78: next I
79: for I=1 to 34
80: for J=1 to 10
81: 0+B[I,J]
82: next J
83: next I
84: 0+H
85: dsp "PRESS CONTINUE TO READ DATA"; stp
86: for P=1 to 10
87: H+1+H;1+I
88: fmt 1,3x,el4.4;fmt 2,el3.6,z;fmt 5,f3.0
89: wrt 709.5, "C", 34; wait 100
90: wrt 714, "I"
91: time 2000
92: on err "Tl"
93: red 714.1,A[I,P]; jmp 2
94: "T1":0+A[I,P]; dsp "NO MOTOR SPEED"; jmp 2
95: dsp "MOTOR SPEED MEASURED"
96: clr 709; I+1+I
97: wrt 709.5, "C", 1
98: gsb "avg 10"
99: for Q=10 to 12
100: wrt 709.5, "C", Q
101: gsb "avg 100"
102: next Q
103: wrt 709.5, "C", 20
104: gsb "avg 1"
```

```
105: wrt 709.5, "C", 21
106: gsb "avg 1"
107: wrt 709.5, "C", 23
108: gsb "avg 1"
109: wrt 709.5, "C", 24
110: gsb "avg 1"
111: wrt 709.5, "C",28
112: gsb "avg 1"
113: wrt 709.5, "C", 13
114: gsb "avg 1"
115: wrt 709.5, "C", 14
116: gsb "avg 1"
117: wrt 709.5, "C",16
118: gsb "avg 1"
119: wrt 709.5, "C", 17
120: gsb "avg 1"
121: wrt 709.5, "C", 18
122: gsb "avg 1"
123: wrt 709.5, "C",6
124: gsb "avg 1"
125: wrt 709.5, "C", 35; wait 100
126: wrt 714, "I"
127: time 2000
128: on err "T2"
129: red 714.1,A[I,P];jmp 2
130: "T2":0+A[I,P];dsp "NO CHOPPER SIGNAL";jmp 2
131: dsp "CHOPPER PERIOD MEASURED"
132: clr 709; I+1+I
133: for Q=10 to 12
134: wrt 709.5, "C",Q
135: gsb "rms 100"
136: next Q
137: wrt 709.5, "C",20
138: gsb "rms 1"
139: wrt 709.5, "C",21
140: gsb "rms 1"
141: for Q=23 to 28
142: wrt 709.5, "C",Q
143: gsb "rms 1"
144: next Q
145: for Q=13 to 18
146: wrt 709.5, "C",Q
147: gsb "rms 1"
148: next Q
149: wrt 709.5, "C", 29
150: gsb "rms 1"
151: gsb "avg 1"
152: dsp "MEASUREMENTS COMPLETE" await 1000;clr 7
153: dsp "NEW TORQUE SETTING?"; wait 2500
154: dsp "PRESS CONTINUE WHEN READY"; stp
155: next P
156: "record A":
157: dsp "PRESS CONTINUE TO RECORD A-ARRAY"; stp
158: G, A[*]
```

```
159: G+1+G;1+I
160: "convert":
161: dsp "CONVERT TO TRUE DATA"
162: on err "E2"; jmp 3
163: "E2":dsp "ERROR IN CONVERT ROUTINE"; stp
164: fxd 0;dsp "ERROR ",char(rom),ern,"IN LINE ",erl;stp
165: for P=1 to H
166: if A[1,P]=0;1+B[1,P];jmp 2
167: 2/A[1,P] + B[1,P]
168: 8.333*A[2,P]+B[2,P]
169: A[3,P] + B[3,P]
170: A[4,P] +B[4,P]
171: A[5,P] +B[5,P]
172: 2000*1.003*A[6,P] +B[6,P]
173: 2000*.9766*A[7,P]+B[7,P]
174: 2000*1.011*A[8,P] +B[8,P]
175: 2000*1.007*A[9,P]+B[9,P]
176: A[10,P] +B[10,P]
177: A[11,P] +B[11,P]
178: A[12,P] + B[12,P]
179: 200*1.003*1.033*A[13,P]+B[13,P]
180: 1600*1.003/1.03*A[14,P] +B[14,P]
181: 100*1.003*.983*A[15,P] +B[15,P]
182: '* temp T'(A[16,P]) +B[16,P]
183: if A[17,P]=0;1+B[17,P];jmp 2
184: 1/A[17,P] +B[17,P]
185: A[18,P] +B[18,P]
186: A[19,P] +B[19,P]
187: A[20,P] +B[20,P]
188: 2000*1.003*A[21, P] +B[21, P]
189: 2000*.9766*A[22,P]+B[22,P]
190: 2000*1.011*A[23,P]+B[23,P]
191: 2000*1.007*A[24,P]+B[24,P]
192: 2000*1.003*A[25,P]+B[25,P]
193: 400*A[26,P]+B[26,P]
194: 400*A[27,P]+B[27,P]
195: for I=28 to 31
196: A[I,P] +B[I,P]
197: next I
198: 200*1.003*1.033*A[32,P]+B[32,P]
199: 1600*1.003/1.03*A[33,P]+B[33,P]
200: 100*1.003*.983*A[34,P]+B[34,P]
201: A[35,P] +B[35,P]
202: A[36,P] +B[36,P]
203: next P
204: "record B":
205: dsp "PRESS CONTINUE TO RECORD B-ARRAY"; stp
206: rcf G, B[*]
207: G+1+G
208: dsp "IS PAPER POSITIONED PROPERLY?"; stp
209: "print":
210: 0+R
211: dsp "SET R=1 TO PRINT"; wait 1000
212: ent "R= ",R; if R#1;gto "data"
```

```
213: dsp "IS PAPER POSITIONED PROPERLY?"; stp
214: "SET TOP OF FORM":
215: wtb 715,27,84
216: wrt 715, "EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE"
217: wrt 715, "DC SERIES MOTOR, 10 HP, 3800 RPM"
218: wrt 715, "BALDOR ELECTRIC CO., ST. LOUIS, MO"
219: wrt 715, "SPEC: 29 1755 1121; S.N.: 1276"
220: gsb "clockread"
221: gsb "clockprint"
222: wrt 715, "MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060"; wrt 715.5
223: dsp "HEADER AND DATE/TIME PRINTED"
224: fmt 4,f2.0,z;fmt 6,x,f9.3,z;fmt 9,2x,cl1,z
225: 37+M
226: for I=1 to M-1
227: wrt 715.4,I
228: jmp I
                                          RPM";jmp M-I
229: wrt 715.9,"NTR
230: wrt 715.9, "TMOT 231: wrt 715.9, "EBAT
                                        FT-#";jmp M-I
231: wrt 715.9, "EBAT 232: wrt 715.9, "EARM
                                          VDC";jmp M-I
                                          VDC "; jmp M-I
                                          VDC";jmp M-I
233: wrt 715.9, "EFM
234: wrt 715.9, "IBAT"
                                          ADC";jmp M-I
235: wrt 715.9, "IARM
                                          ADC";jmp M-I
236: wrt 715.9,"ITH1
237: wrt 715.9,"ID2
238: wrt 715.9,"VCT1
                                         ADC "; jmp M-I
ADC "; jmp M-I
VDC "; jmp M-I
                                          VDC";jmp M-I
239: wrt 715.9,"ETH1
                                          VDC";jmp M-I
240: wrt 715.9, "EDF2
241: wrt 715.9, "PLABT
242: wrt 715.9, "PLACOM
243: wrt 715.9, "PLAC4
                                             I-M qmi;"W
I-M qmi;"W
243: wrt 715.9, "PLAC4 W"; jmp M-I
244: wrt 715.9, "MOTR TEMP C"; jmp M-I
245: wrt 715.9, "CONTROLR HZ"; jmp M-I
246: wrt 715.9, "EBAT
247: wrt 715.9, "EARM
                                        VRMS"; jmp M-I
                                        VRMS";jmp M-I
VRMS";jmp M-I
ARMS";jmp M-I
247: wrt 715.9,"EARM
248: wrt 715.9,"EFM
248: wrt 715.9, "EFM

249: wrt 715.9, "IBAT'

250: wrt 715.9, "IARM

251: wrt 715.9, "ITH1

252: wrt 715.9, "IC2

253: wrt 715.9, "IC4

254: wrt 715.9, "ITH2

255: wrt 715.9, "VCT1

256: wrt 715.9, "VCT1
                                         ARMS"; jmp M-I
                                        ARMS"; jmp M-I
                                        ARMS";jmp M-I
ARMS";jmp M-I
ARMS";jmp M-I
                                         ARMS" : jmp M-I
                                        VRMS"; jmp M-I
                                        VRMS";jmp M-I
VRMS";jmp M-I
VRMS";jmp M-I
257: wrt 715.9, "ETH1
258: wrt 715.9, "EDF2
259: wrt 715.9, "VC4
260: wrt 715.9, "PLBT 261: wrt 715.9, "PLCOM
                                             W"; jmp M-I
                                             W";jmp M-I
                                        W";jmp M-I
VRMS";jmp M-I
VDC";jmp M-I
262: wrt 715.9, "PLC4
263: wrt 715.9, "VINT
263: wrt 715.9, "VINT 264: wrt 715.9, "VINT
265: for P=1 to H
266: wrt 715.6, abs(B[I,P])
```

```
267: next P
268: wrt 715," "
269: next I
270: "form feed":
271: wtb 715,12
272: "raw data":
273: dsp "PRINT RAW DATA?"; stp
274: wrt 715, "EVA DC MOTOR TEST RAW DATA"
275: wrt 715, "CHOPPER WITH BUFFERED BATTERY SOURCE"
276: fmt 3,c14,f3.0;wrt 715.3, "DATA ON FILE: ",G-2
277: gsb "clockprint"
278: wrt 715.5; fmt 4, f2.0, z; fmt 6, x, f9.4, z
279: fmt 9,2x,cll,z
280: 37+M
281: for I=1 to M-1
282: wrt 715.4, I
283: jmp I
284: wrt 715.9, "SPD SIG PER"; jmp M-I
285: wrt 715.9, "TMOT VDC"; jmp M-I
286: wrt 715.9, "EBAT VDC"; jmp M-I
                                          VDC ";jmp M-I
287: wrt 715.9, "EARM
288: wrt 715.9, "EFM
                                          VDC ";jmp M-I
                                          VDC ";jmp M-I
VDC ";jmp M-I
VDC ";jmp M-I
VDC ";jmp M-I
289: wrt 715.9, "IBAT'
290: wrt 715.9, "IARM
291: wrt 715.9, "ITH1
292: wrt 715.9,"ID2
                                          VDC "; jmp M-I
293: wrt 715.9, "VCT1
294: wrt 715.9, "ETH1
                                          VDC";jmp M-I
                                          VDC ";jmp M-I
VDC ";jmp M-I
VDC ";jmp M-I
295: wrt 715.9, "EDF2
296: wrt 715.9, "PLABT
297: wrt 715.9, "PLACOM
                                          VDC";jmp M-I
298: wrt 715.9, "PLAC4
299: wrt 715.9, "TEMPM
                                          VDC"; jmp M-I
299: wrt 715.9, "TEMPM VDC , JND M-1
300: wrt 715.9, "CHP SIG PER"; jmp M-1
301: wrt 715.9, "EBAT VRMS"; jmp M-1
302: wrt 715.9, "EARM VRMS"; jmp M-1
303: wrt 715.9, "EFM VRMS"; jmp M-1
                                         VRMS"; jmp M-I
304: wrt 715.9,"IBAT
                                        VRMS";jmp M-I
VRMS";jmp M-I
VRMS";jmp M-I
VRMS";jmp M-I
305: wrt 715.9, "IARM 306: wrt 715.9, "ITH1
306: wrt 715.9, "ITH
307: wrt 715.9, "ID2
308: wrt 715.9,"IC4
309: wrt 715.9,"ITH2
                                         VRMS";jmp M-I
310: wrt 715.9, "ID4
311: wrt 715.9, "VCT1
312: wrt 715.9, "ETH1
                                         VRMS";jmp M-I
                                        VRMS";jmp M-I
VRMS";jmp M-I
VRMS";jmp M-I
313: wrt 715.9, "EDF2
                                         VRMS";jmp M-I
314: wrt 715.9, "VC4
315: wrt 715.9, "PLBT
                                         VRMS"; jmp M-I
                                        VRMS";jmp M-I
VRMS";jmp M-I
VRMS";jmp M-I
VDC";jmp M-I
316: wrt 715.9, "PLCOM
317: wrt 715.9, "PLC4
318: wrt 715.9, "VINT
319: wrt 715.9, "VINT
320: for P=1 to H
```

321: wrt 715.6,A[I,P]
322: next P
323: wrt 715," "
324: next I
325: wtb 715,12
326: gto "data"
327: end
*25293

```
0: dsp "FILE 37, TRACK 1, PROGRAM TAPE"
1: dsp "EVA DC MOTOR CHOPPER DRIVE DATA REDUCTION"
2: dsp "PROGRAM UPDATE: 5-11-79"
3: dim B[36,10];dim C[43,10];dim C$[13];dim C[10]
4: enp "DATA TAPE TRACK:",T;trk T
5: enp "FIRST DATA FILE:",F
6: enp "LAST DATA FILE:",L
7: enp "FIRST REDUCED DATA FILE:", N
8: : for K=F to L by 2
9: :for I=1 to 36
10: :for J=1 to 10
1b: 0+B[I/J]
12: next J
13: next I
14: 'ldf K,B[*]
15: wait 50
16: for I=1 to 36
17: :for J=1 to 10
18: abs(B[1,J])+B[I,J]
19: next J
20: next I
21: dsp "ALL DATA POSITIVE"; wait 500
22: :for I=1 to 36
23: :for J=1 to 10
24: if B[I,J]<0;prt "I=",I;prt "J=",J;spc 1
25: next J
26: next I
27: dsp "DATA LOADED, CONTINUE?"; stp
28: :for I=1 to 43
29: :for J=1 to 10
30: 0+C[I,J]
31: next J
32: next I
33: :for I=1 to 10
34: 0+Q[·I]
35: next I
36: 0+R+S
37: :for P=1 to 10
38: if B[1,P]=0;P-1+S;gto "record C"
39: if B[1,P]=1;P+S;gto "last calculation"
40: if P=10; P+S
4D: B[1,P]+C[1,P]
42: B[2,P] +C[2,P]
43: B[2,P]*1.3558+C[3,P]
44: (B[7,P]^2/.9766+B[8,P]^2/1.011)/2000+Q[1]

45: B[6,P]^2/1.003/2000+Q[2]

46: (B[22,P]^2/.9766+B[23,P]^2/1.011)/2000+Q[3]

47: B[21,P]^2/1.003/2000+Q[4]
48: B[3,P]*B[6,P]-Q[1]-Q[2]+C[4,P]
49: C[4,P]/B[3,P]+C[5,P]
50: B[18,P]*B[21,'P]-Q[3]-Q[4]+C[6,P]
```

```
51: C[6,P]/B[18,P] + C[7,P]
52: (C[5,P]/C[7,P]) 2+C[8,P]
53: 1-C[8,P] \cdot C[9,P]
54: B[5,P]+B[12,P]+B[9,P]*(1/.9766+1/1.007)/2000+C[10,P]
55: (B[4,P]+C[10,P])*B[7,P]+C[11,P]
56: 745.7*B[1,P]*B[2,P]/5252+C[12,P]
57: B[22, P] ^2* (B[4,P]+B[5,P])/B[7,P]+B[24,P]*B[30,P]+Q[5]
58: Q[5]+B[24,P]^2*((1/.9766)^2+(1/1.007)^2)/2000+C[13,P]
59: 100*C[12,P]/C[11,P]+C[14,P]
60: (C[11,P]-C[12,P])/C[3,P]+C[15,P]
61: 100*C[12,P]/C[13,P]+C[16,P]
62: (C[13,P]-C[12,P])/C[3,P]+C[17,P]
63: 100* (1-C[16, P]'/C[14, P]) +C[18, P]
64: C[13,P]-C[12,P]+C[19,P]
65: C[6,P]-C[13,P]-Q[3]+C[20,P]
66: B[7,P]*B[10,P]+C[21,P]
67: B[22,P]*B[28,P]+C[22,P]
68: C[11,'P]*B[22,P]'/B[7,P]^2+C[23,P]
69: 100*C[13,P]'/C[6,P]+C[24,P]
70: C[20, P]/C[3, P] +C[25, P]
71: B[8,P]*B[11,P]+C[26,P]
72: B[9,P]*B[12,'P] +C[27,P]
73: B[23,P]*B[29,P]+C[28,P]
74: B[24, P] * B[30, P] +C[29, P]
75: C[20, P]-C[28, P]-C[29, P]-C[22, P]+C[30, P]
76: -B[6,1]*(B[3,1]-B[3,2])/(B[6,1]-B[6,2])+B[3,1]+C[41,P]
77: C[41, P]-B[3, P]+C[40, P]
78: C[40,P]*C[5,P]+C[31,P]
79: C[40,P]/C[5,P]*C[7,P]^2+C[32,P]
80: C[4,P]+C[31,P]+C[33,P]
81: 100*C[12,P]/C[33,P]+C[34,P]
82: C[6,'P]+C[32,'P]+C[35,P]
83: 100*C[12,P]/C[35,P]+C[36,P]
84: C[35, P] /C[12, P]-1+C[37, P]
85: C[19,P]+C[20,P]+C[38,P]
86: 100*(1-C[36,P]/C[34,P])+C[39,P]
87: C[4,P]-C[11,'P]-Q[1]+C[42,P]
88: C[42,P]-C[26,P]-C[27,P]-C[21,P]+C[43,P]
89: "last calculation":
90: next P
91: dsp "DATA REDUCTION COMPLETED!"; wait 1000
92: "record C":
93: trk 0
94: dsp "IS REDUCED DATA TAPE IN CALC.?";stp
95: dsp "PRESS CONTINUE TO RECORD C-ARRAY"; stp
96: rcf N,C[*]
97: N+1+N
98: trk 1
99: "\clockread":
100: :fmt 8, cl; wrt 708.8, "C"; fmt 8, cl2; red 708.8, C$; clr 708
101: "print":
102: dsp "IS PAPER POSITIONED PROPERLY?"; stp
103: "SET TOP OF FORM":
104: wtb 715,27,84
```

```
105: wrt 715, "EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE"
106: "clockprint":
107: :fmt 1,:c2, z;fmt 2,"-", z;fmt 3,":", z
108: :fmt 4,5x, z;fmt 5,2/;fmt 6,"79-",z;wrt 715.5
109: wrt 715.6; wrt 715.1,C$[3,4]; wrt 715.2; wrt 715.1,C$[5,6]
110: wrt 715.4; wrt 715.1, C$ [7,8]; wrt 715.3; wrt 715.1, C$ [9,10]
111: wrt 715.3; wrt 715.1, C$[11, 12]; wrt 715.4
112: wrt 715, "MERADCOM, DRDME-EA, FT. BELVOIR, VA
113: wrt 715.5;dsp "HEADER AND DATE/TIME PRINTED"
114: :fmt 4,:f2.0, z;fmt 6,2x,f9.3,z;fmt 9,2x,cll,z
115: 44+M
116: :for I=1 to M-1
117: wrt 715.4,I
118: jmp I
119: wrt 715.9, "NTR
                                    RPM"; jmp M-I
120: wrt 715.9, "TMOT
                                  FT-#"; jmp M-I
121: wrt 715.9, "TMOT
                                    N-m"; jmp M-I
122: wrt 715.9, "PABAT
123: wrt 715.9, "IBAT
                                      W";jmp M-I
                                    ADC"; jmp M-I
                                      W";jmp M-I
124: wrt 715.9, "PBAT
125: wrt 715.9, "IBAT
                                  ARMS"; jmp M-I
126: wrt 715.9, "DELTAMOT PU"; jmp M-I
127: wrt 715.9, "DELTAD2 PU"; jmp M-I
128: wrt 715.9, "DFM VDC"; jmp M-I
129: wrt 715.9, "PAMOT W"; jmp M-I
130: wrt 715.9, "PTR
                                       W";jmp M→I
131: wrt 715.9, "PMOT
                                      W";jmp M→I
132: wrt 715.9, "EFFAMOT %"; jmp M-I
133: wrt 715.9, "WLAMT W/N-m"; jmp M-I
134: wrt 715.9, "EFFMOT %"; jmp M-I
                                       %";jmp M-I
135: wrt 715.9, "WLMOT W/N-m"; jmp M-1
136: wrt 715.9, "DEGM
                                       %";jmp M-I
137: wrt 715.9, "PLMOT
138: wrt 715.9, "PLCTR
139: wrt 715.9, "PACT
                                      W";jmp M-I
                                       W"; jmp M-I
                                      W";jmp M-I
140: wrt 715.9, "PCT
141: wrt 715.9, "EMOT
                                       W";jmp M-I
                                  VRMS"; jmp M-I
142: wrt 715.9, "EFFCTR %"; jmp M-I
143: wrt 715.9, "WLCTR W/N-m"; jmp M-I
144: wrt 715.9, "PATHI W"; jmp M-I
                                      W";jmp M-I
145: wrt 715.9, "PAD2F
146: wrt 715.9, "PTH1
                                      W";jmp M-I
                                       W";jmp M→I
140: Wrt 715.9, "PTH1
147: wrt 715.9, "PD2F
148: wrt 715.9, "PLCOM
149: wrt 715.9, "PLABT
150: wrt 715.9, "PLBAT
151: wrt 715.9, "PAEV
                                       W";jmp M-I
                                       W";jmp M-I
                                       W";jmp M-I
                                       W";jmp M-I
                                       W";jmp M-I
152: wrt 715.9, "EFFAEV
153: wrt 715.9, "PEV
154: wrt 715.9, "EFFEV
                                       %";jmp M-I
                                       W";jmp M-I
                                       %";jmp M-I
155: wrt 715.9, "WLEV
156: wrt 715.9, "PHEAT
                                     PU";jmp M-1
                                       W";jmp M-I
157: wrt 715.9, "DEGEV %"; jmp M-I
158: wrt 715.9, "DELTABT VDC"; jmp M-I
```

```
159: wrt 715.9, "EBATO VLC"; jmp M-I
160: wrt 715.9, "PLACTR
161: wrt 715.9, "PLACOM
162: for P=1 to S
163: wrt 715.6, C[I,P]
164: next P
165: wrt 715," "
166: next I
167: wtb 715,12
168: R+1+R
169: if R<2; gto '"print"
170: next K
171: end
*21612
```

```
0: dsp "EVA DC MOTOR TEST ROUTINE"
1: dep "PROGRAM TAPE TRACK 0, FILE 24"
2: dsp "PROGRAM UPDATE: 4-25-79"
3: clr 7
4: dim A[11,10];dim B[14,10];dim C$[13]
5: dsp "PUT DATA TAPE IN CALCULATOR"; stp
6: enp "DATA TAPE TRACK: ",D;trk D
7: enp "FIRST RAW DATA FILE = '",G;gto "data"
8: "avg I":
9: wrt 722, "B; U=>"; wait 100; trg 722
10: red 722.2, A[I, P]; olr 722; if A[I, P]>1000; imp 2
1b: I+1+I; ret
12: "avg 10":
13: wrt 722, "B;U; >"; wait 100; trg 722
14: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
15: I+1+I; ret
16: "avg 100":
17: wrt 722, "B; U7 y"; wait 100; trg 722
18: red 722.2, A[I,P]; c]r 722
19: I+1+I; ret
20: "rms 1":
21: wrt 722, "B; U=="; wait 100; trg 722
22: red 722.2, A[I,P]; c]r 722; if A[I,P]>1000; jmp 2
23: I+l+I; ret
24: "rms 10":
25: wrt 722, "B;U;="; wait 100; trg 722
26: red 722.2, A[I,P]; clr 722; if A[I,P]>1000; jmp 2
27: I+1+1; ret
28: "rms 100":
29: wrt 722, "B; U7="; wait 100; trg 722
30: red 722.2, A[I,P]; clr 722
31: I+1+1; ret
32: dsp "CLOCK READ AND PRINT, NO CR/LF"
33: "Mclockread":
34: :fmt 8,cl;wrt 708.8, "C";fmt 8,cl2;red 708.8,C$;olr 708;ret
35: "lalackprint":
36: :fmt 1,c2,z;fmt 2,"-",z;fmt 3,":",z
37: :fmt 4,5x,z;fmt 5,3/;fmt 6,"79-",z;wrt 715.5
38: wrt 715.6; wrt 715.1, C$[3,4]; wrt 715.2; wrt 715.1, C$[5,6]
39: wrt 715.4; wrt 715.1, C$[7,8]; wrt 715.3; wrt 715.1, C$[9,10]
40: wrt 715.3; wrt 715.1, C$[11, 12]; wrt 715.4; ret
41: "poly":
42: if p0<11;gto +2
43: •((((((plp18+p17)p1+p16)p1+p15)p1+p14)p1+p13)p1+p12)p1+p11)p1+p20
44: •(((((((p20+p10)p1+p9)p1+p8)p1+p7)p1+p6)p1+p5)p1+p4)p1+p3)p1+p20
45: ret p20+p2
46: "* temp T":
47: if p2>0;gto +8
48: 0+p3;3.874077384e1+p4;4.4123932482e-2+p5;1.1405238498e-4+p6
49: 1.9974406568e-5+p7;9.0445401187e-7+p8;2.2766018504e-8+p9
50: 3.624740938e-10+p10;3.8648924201e-12+p11;2.8298678519e-14+p12
```

```
5D: 1.4281383349e-16+p13;4.8833254364e-19+p14;1.0803474683e-21+p15
52: 1.3949291026e-24*p16;7.9795893156e-28*p17;if p24>0;gto +10
     'poly' 1p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,pl2,pl3,pl4,pl5,p16,pl7)+p20
54: p20/le6+pl+p20;gto +5
55: 0+p3;3.874077384el+p4;3.3190198092e-2+p5;2.0714183645e-4+p6
56: -2.1945834823e-6+p7;1.103190055e-8+p8;-3.0927581898e-11+p9
57: 4.5653337165e-14*pl0;-2.761687804e-17*pl1;if p24>0;gto +11
58:
     'poly' 1p2,p3,p4,p5,p6,p7,p8,p9,p10,p110/1e6+p1+p20
59: .002+p21
60: 1+p24; if p20>0;gto -5
61: gto -13
62: 'poly'(
     'poly' (p21,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17)/1e6+p22
63: p22-p20-p22
64: if abs(p22)<.0000001; ret p21
65: 'poly' (p21,0,0,0,0,0,0,7p10,8p11,9p12,10p13,11p14,12p15,13p16,14p17) +p23
66: (p23+'poly' (p21,p4,2p5,3p6,4p7,5p8,6p9))/le6+p23
67: p21-p22/p23+p21;gto -5
68: 'poly'(p21,p3,p4,p5,p6,p7,p8,p9,p10,p11)/1e6-p20+p22
69: if abs(p22)<.0000001; ret p21
70: 'poly' (p21, p4, 2p5, 3p6, 4p7, 5p
70: 'poly' (p21,p4,2p5,3p6,4p7,5p8,6p9,7p10,8p11)/le6+p23
7b: p21-p22/p23+p21;gto -3
72: '"data":
73: dsp "PRESS CONTINUE TO CLEAR ARRAYS"; stp
74: :for I=1 to 11
75: :for J=1 to 10
76: 0+A[I/J]
77: next 'J
78: next I
79: :for I=1 to 14
80: :for J=1 to 10
81: 0+B[I/J]
82: next 'J
83: next I
84: 0+H
85: dsp "PRESS CONTINUE TO READ DATA"; stp
86: :for P=1 to 10
87: H+1+H;1+I
88: fmt 1,3x,e14.4;fmt 2,e13.6,z;fmt 5,f3.0
89: wrt 7(9.5,"C",34;wait 100
90: wrt 714,"I"
9D: time 1000
92: ion err ".Tl"
93: red 714.1,A[I,P];jmp 2
94: '"T1":0+A[I,P];dsp "NO MOTOR SPEED";jmp 2
95: dsp "MOTOR SPEED MEASURED"
96: clr 709;I+1→I
97: wrt 709.5,"C",1
98: igsb "avg 10"
99: :for Q=10 to 12
100: wrt 709.5, "C"
101: gsb "avg 100"
102: next Q
103: wrt 709.5, "C", 20
104: gsb "avg 1"
```

```
105: wrt 709.5, "C",6
106: gsb "avg I"
107: :for Q=10 to 12
108: wrt 709.5, "C", Q
109: gsb "rms 100"
110: next Q
111: wrt 709.5, "C", 20
112: gsb "rms 1"
113: dsp "MEASUREMENTS COMPLETE"; wait 1000; clr 7
114: dsp "NEW TORQUE SETTING?"; wait 2500
115: dsp "PRESS CONTINUE WHEN READY"; stp
116: next P
117: "record A":
118: dsp "PRESS CONTINUE TO RECORD A-ARRAY";stp
119: rcf G, A[*]
120: G+1+G;1+I
121: "convert":
122: dsp "CONVERT TO TRUE DATA"
123: on err "E2" pjmp 3
124: "E2":dsp "ERROR IN CONVERT ROUTINE";stp
125: :fxd 0;dsp "ERROR ", char(rom), ern, "IN LINE ", erl; stp
126: :for P=1 to H
127: if A[1,P]=0;1+B[1,P];jmp 2
128: 2/A[1,P]+E[1,P]
129: 8.333*A[2,P]+B[2,P]
130: B[2,'P]*1.3558+B[3,P]
131: :for I=3 to 5
132: A[I,P]+B[I+1,P]
133: next I
134: 2000*1.003*A[6,P]+B[7,P]
135: 2000*1.003*A[11,P]+B[8,P]
136: '*temp T'(A[7,P])+B[9,P]
137: B[1,P]*B[2,P]'/5252+B[10,P]
138: 745.7*B[10,'P] +B[11,'P]
139: B[4,'P] * B[7,'P] +B[12,P]
140: 100*B[11, P]/B[12, P]+B[13, P]
141: (B[12,P]-B[11,P])/B[3,P]+B[14,P]
142: next P
143: "record B":
144: dsp "PRESS CONTINUE TO RECORD B-ARRAY" astp
145: rcf G, B[*]
146: G+1+G
147: dsp "IS PAPER POSITIONED PROPERLY?";stp
148: "print":
149: wrt 715, "EVA DC MOTOR TEST WITH DC POWER SOURCE"
150: wrt 715, "DC SERIES MOTOR, 10 HP, 3800 RPM"
15D: wrt 715, "BALDOR ELECTRIC CO., ST. LOUIS, MO"
152: wrt 715, "SPEC: 29 1755 1121; S.N.: 1276"
153: gsb "clockprint"
154: wrt 715, "MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060"; wrt 715.5
155: dsp "HEADER AND DATE/TIME PRINTED"
156: :fmt 4,f2.0, z;fmt 6,x,f9.3,z;fmt 9,2x,cll,z
157: 15+M
158: :for I=1 to M-1
```

```
159: wrt 715.4, I
160: jmp I
161: wrt 715.9, "NTR
                                    RPM"; jmp M-I
162: wrt 715.9, "TMOT
163: wrt 715.9, "TMOT
164: wrt 715.9, "EBAT
                                   FT-#"; jmp M-I
                                     Nm";jmp M→I
                                    VDC";jmp M-I
                                   VDC";jmp M-I
VDC";jmp M-I
ADC";jmp M-I
ARMS";jmp M-I
165: wrt 715.9, "EARM
160: wrt 715.9, "EFM
167: wrt 715.9, "IBAT.
168: wrt 715.9, "IBAT
169: wrt 715.9, "MOTR TEMP C"; jmp M-I
170: wrt 715.9; PTR
171: wrt 715.9; PTR
172: wrt 715.9; PAMOT
                                      HP";jmp M-I
171: wrt 715.9, "PTR W"; jmp M-I
172: wrt 715.9, "PAMOT W"; jmp M-I
173: wrt 715.9, "MOTOR EFF %"; jmp M-I
174: wrt 715.9, "WLMOT W/Nm"; jmp M-I
175: :for P=1 to H
176: wrt 715.6, abs(B[I, P])
177: next P
178: wrt 715," "
179: next I
180: wtb 715,12
181: "raw data":
182: dsp "PRINT RAW DATA?"; stp
183: wrt 715, "EVA DC MOTOR TEST RAW DATA"
184: :fmt 3,c14,:f3.0;wrt 715.3, "DATA ON FILE: ",G-2
185: gsb "clackprint"
186: wrt 715.5; fmt 4, f2.0, z; fmt 6, x, f9.4, z
187: :fmt 9,2x,cll,z
188: 12+M
189: :for I=1 to M-1
190: wrt 715.4, I
191: jmp I
192: wrt 7154.9, "SPD SIG PER"; jmp M-I
193: wrt 715.9, "TMOT VDC"; jmp M-I
194: wrt 715.9, "EBAT VDC"; jmp M-I
                                     VDC";jmp M-I
195: wrt 715 9, "EARM
196: wrt 7154.9, "EFM
                                     VDC";jmp M-I
197: wrt 715 9, "IARM VDC"; jmp M-I
198: wrt 715 9, "TEMP MT VDC"; jmp M-I
199: wrt 715 9, "EBAT VRMS"; jmp M-I
200: wrt 71549, "EARM
                                   VRMS"; jmp M-1
201: wrt 71549, "EFM
                                   VRMS";jmp M→I
202: wrt 715 9, "IARM
                                   VRMS"; jmp M-1
203: :for P=1 to H
204: wrt 715@6, A[I,P]
205: next P
206: wrt 715," "
207: next I
208: wtb 715,12
209: gto "data"
210: end
*6831
```

79-05-23 11:21:30 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	MOTOR ROTOR SPEED
2	TMOT FT-#	MOTOR SHAFT TORQUE
		MOTOR SHAFT TORQUE
	EBAT VDC	
		MOTOR ARMATURE VOLTAGE, AVERAGE VALUE
	E FM VDC	
	I BAT ADC	
	IBAT ARMS	
9	MOTR TEMP C	MOTOR TEMPERATURE, SERIES FIELD WINDING
		MOTOR POWER DELIVERED AT SHAFT
11	PTR W	MOTOR POWER DELIVERED AT SHAFT
12	PAMOT W	AVERAGE POWER CONSUMPTION OF MOTOR
		MOTOR EFFICIENCY
14	WLMOT W/Nm	MOTOR WATT-LOSS/TORQUE DELIVERED AT SHAFT

Table C1: Nomenclature for DC Motor Test.

DC SERIES MOTOR, 10 HP, 3800 REM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

79-06-22 17:30:07 MERADCCM, DRCME-FA, FT. BELVOIR, VA 22060

3993.631	4.414	5.985	68.894	68,336	0.558	53.616	53.741	33.175	3.356	2502.920	3693.841	67.759	198.998
3201.353	4.425	5.999	55.341	54.794	0.547	52.762	52.918	32.570	2.697	2011.263	2919.897	68.881	151.460
2556,114	4.473	6.065	44.615	44.068	0.548	52.443	52.437	31.940	2.177	1623.490	2339.754	69.387	118.099
2045.377	4.308	5.841	36.197	35.659	0.538	52.166	52.216	31,382	1.678	1251.040	1888.249	66.254	109,101
1635.565	4.544	6.161	29.535	28.996	0.539	52.377	52.377	30.945	1.415	1055.261	1546.945	68, 216	908.62
1304.886	4.458	6.045	24.291	23.748	0.543	52.473	52.337	30.751	1.108	826.022	1274.605	64.806	74.211
1043.899	4.351	5.899	19.983	19.438	0.545	52.048	51.895	30.581	0.865	644.915	1040.048	62.008	086.990
838.567	4.384	5.944	16.625	16.097	0.528	51.829	51.975	31,164	0.700	522.031	861.673	60.583	57.136
663.821	4.451	6.035	13.947	13.407	0.541	52,306	52.296	30.945	0.563	419.562	729.539	57.511	51.360
RPM	. FT-#	N	VDC	VDC	VDC	ADC	ARMS	TEMP C	HP	3	3	EAF 8	W/Nm
NTR	TOWL	TOWL	EBAT	EARM	EFM	LEAT	IBAT	MOT'R .	.FTR	PTR	PAMOT	MOTOR	WEMOT

1264667890112112

EVA DC MOTOR TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPRO: 29 1755 1121; S.N.: 1276

79-06-22 17:37:47 MEKADCOM, DRDME-EA, FT. BELVOIR, VA 22060

-	NT.R			839.444	1048.254	1311.516	1639.266	2048.360	2559.452	3199.421	3996.465
7	TWOT			8.835	8.812	8.687	8.759	8.882	8.754	8.802	8.726
٣	TOM J.			11.978	11.947	11.778	11.876	12.043	11.868	11.934	11.831
4	Eb?:T			19.656	23.703	28.627	34.933	42.808	52.654	65.209	80.732
2	EARM			18.882	22.920	27.857	34.151	42.020	51.870	64.416	79.938
9	EFM			0.775	0.783	0.770	0.782	0.788	0.784	0.793	0.795
1	·1 BAT			74.970	74.960	73.913	74.393	74.810	74.964	75.819	76.266
8	·1 BAT	ARMS	73.881	74.724	75.145	73.640	74.423	74.944	74.844	76.047	76.429
6	MOTR			31.188	31.625	32,328	33.175	33.416	34.213	35.081	36.140
10	.YFF			1.412	1.759	2,169	2.734	3.464	4.266	5.362	6.640
11	PTR			1053.001	1311.485	1617.610	2038.747	2583,257	3181.118	3998.522	4951.657
17	PAMO			1473.637	1776.774	2115.873	2598.731	3202.479	3947.174	4944.082	6157.139
13	MCTO			71.456	73.813	76.451	78.452	80.664	80.592	80.875	80.421
7	CMTG			26 117	20 00	300 01	77 162	61 430	24 545	20 223	101 000

EVA DC MCTCH TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

3996.176	13.060	17.706	87.779	86.706	1.073	100.623	100.942	37.172	9.937	7409.904	8832.543	83.893	80.347
3195.261	13.275	17.999	71.007	69.933	1.074	101.042	101.122	36.043	8.077	6022.648	7174.685	83.943	64.007
2560.464	13.257	17.974	57.683	56.614	1.069	100.491	100.761	35.177	6.463	4819.596	5796.588	83.145	54.355
2047.888	13.046	17.687	46.778	45.726	1.052	99.461	99.377	34.454	5.087	3793.223	4652.570	81.530	48.586
1639.998	13.176	17.864	38.282	37.234	1.047	99.604	99.417	33.634	4.114	3068.129	3812.987	80.465	41.695
1307.744	13.085	17.741	31.315	30.273	1.042	99.022	96.076	32.884	3.258	2429.602	3100.850	78.353	37.837
1048.486	13.319	18.058	26.058	25.009	1.049	100.416	100.982	32.013	2.659	1982.734	2616.649	75.774	35.105
838.409	13.142	17.818	21.678	20.649	1.029	99.542	99.297	31.067	2.098	1564.429	2157.896	72.498	33,307
671.072	12.938	17.541	18.179	17.159	1.020	98.414	98.013	29.754	1.653	1232.735	1789.094	68,903	31.717
RPM	F1'-#	EN	VEC	VLC	VEC	ADC	ARMS	TEMP C	HP	3	3	ERF &	W/Nm
					EFM								

'EVA DC MOTOR TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM EALDOR ELECTRIC CO., ST. LOUIS, MO :SPIO: 29 1755 1121; S.N.: 1276

MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

17:40:46

79-06-22

3993.585	17.593	23.853	92.658	91.297	1.362	123.834	124.232	44.334	13.378	9675.936	11474.297	86.942	62.816	
													51.486	
2559.726	17.627	23.899	60.930	59.584	1.346	123.004	123.269	41.623	8.591	6406.375	7494.640	85.479	45.536	
2051.718	18.202	24.678	49.978	48.620	1.358	124.807	124.793	40.301	7.111	5302.475	6237.644	85.008	37.894	
		-											36.828	
													34.491	
				26.356										
	_			21.475							-			
				17.761										
200.779	18.230	24.716	9.605	8.279	1.326	125.541	125.114	34.768	0.697	519.677	1205.826	43.097	27.762	
RFM	FT-#	EN	VEC	VEC	VLC	ADC	ARMS	EMP C	НР	Z	3	EFF 8	W/Nm	
NTR	TOMI	TAOT	EBAT	EARM	DEM	, I E A.L	IEAT	MOT'R T	P.F.F.	PTF	PEMOT	MOTOR	WIMCT	
-	7	3	4	2	9	1	8	6	10	11	12	13	14	

EVA DC MOTOR TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RFM EALDOR ELECTRIC CO., ST. LOUIS, MO. SPEO: 29 1755 112 U; S.N.: 1276

MERADCCM, DRDME-EA, F.T. BELVOIR, VA 22060

17:47:45

79-06-22

.245 4002.018													
2557.972 3197.245	21.856 21	29.633 29	63.532 78	61.923 76	1.609 1	143.341 143	143.289 143	49.622 51	10.645 13	7938.041 9918	9106.724 11248	87.167 88	39.439 44
2049.405													
1640.440													
1310.424													
1033.921													
837.369	77.110	30.067	24.546	22.954	1.592	145.232	144.954	42.060	3.536	2636.606	3564.932	73.959	30.876
645.445												69.421	29.774
190.724											1500.088	40.278	29.616
RPM												OR EFF &	-
NTR	DWI.	3 TMO	4 EBA	S EAR	6 EFM	7 · 1EA	8 · JEA	9 MOF	O YER	1 PTR	2 PAMC	3 MOTO	MIM P

EVA DC MOTOR TEST WITH DC POWER SOURCE DC SERIES MOTOR, 10 HP, 3800 RFM EALDOR ELECTRIC CO., ST. LOUIS, MO SPHO: 29 1755 112 J; S.N.: 1276

79-06-22 17:50:54 MERADCOM, DRUME-LA, FT. BELVOIR, VA 22060

3199.559	27.781	37.666	82.342	80.322	2.020	171.244	171.994	60.195	16.925	12620.625	14100.555	89.504	19.291
				64.830									
				52.603									
1639.574	27.73	37.654	45.038	43.054	1.985	170.943	171.252	55.802	8.670	6465.284	7698.961	83.976	32.763
1304.522	27.465	37.237	37.000	35.027	1.973	170.063	170.530	54.044	6.822	5087,129	6292,233	80.848	32.363
				29.095									
837.464	27.611	37.435	26.136	24.199	1.937	170.568	170.550	49.715	4.403	3283.084	4457.902	73.646	21.383
665.022	28.142	38.155	22.274	20.336	1.938	173.455	173.800	46.667	3.563	2657.256	3863.532	68.778	31,615
198.318	28.212	38.250	11.391	9.457	1.934	174.131	172.697	44.900	1.065	794.394	1983.455	40.051	31 087
RPM	FT-#	EN	VEC	VDC	VDC	ADC	ARMS	PEMP C	НР	M	3	ERF 8	W/Nm
NTR	TWOT	TOMI	EBAT	EARM	EFM	1 EAT	1 BAT	MOTE 1	PTR	PTR	PAMOT	MCI'OR	WIMCH

APPENDIX D1

PARAMETRIC TEST DATA, UNBUFFERED BATTERY

MOTOR CHOPPER ENGINEERING DATA AND CALCULATED

DATA FOR PULSED DC POWER OPERATION

79-05-23 11:28:23 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	MOTOR ROTOR SPEED
2	TMOT	FT-#	MOTOR SHAFT TORQUE
3	EBAT	VDC	BATTERY TERMINAL VOLTAGE, AVERAGE VALUE
4	EARM	VDC	MOTOR ARMATURE VOLTAGE, AVERAGE VALUE
5	E FM	VDC	MOTOR FIELD VOLTAGE, AVERAGE VALUE
6	IBAT'	ADC	BATTERY CURRENT, AVERAGE VALUE
7	IARM	ADC	MOTOR CURRENT, AVERAGE VALUE
8	ITH1	ADC	CURRENT IN THYRISTOR TH1(x), AVERAGE VALUE
9	ID2	ADC	CURRENT IN INVERSE BY-PASS DIODE D2(x), AVERAGE VALUE
10	VCT1	VDC	VOLTAGE DROP ACROSS CONTACTOR, AVERAGE VALUE
11	ETH1	VDC	VOLTAGE FROP DURING ON-CYCLE OF TH1(x), AVERAGE VALUE
12	EDF2	VDC	VOLTAGE DROP DURING ON-CYCLE OF D2(x), AVERAGE VALUE
15	PLAC4	W	POWER LOSS WITHIN COMMUTATING CAPACITOR C4, AVERAGE VALUE
16	MOTR TE	MP C	MOTOR FIELD WINDING TEMPERATURE
17	CONTROL	RHZ	DC CHOPPER PULSE REPETITION FREQUENCY
18		VRMS	BATTERY TERMINAL VOLTAGE, R.M.S. VALUE
19		VRMS	MOTOR ARMATURE VOLTAGE, R.M.S. VALUE
20	E FM	VRMS	MOTOR FIELD VOLTAGE, R.M.S. VALUE
21		ARMS	BATTERY CURRENT, R.M.S. VALUE
22		ARMS	MOTOR CURRENT, R.M.S. VALUE
23	ITH1	ARMS	CURRENT IN THYRISTOR TH1, R.M.S. VALUE
24		ARMS	CURRENT IN INVERSE BY-PASS DIODE D2. R.M.S. VALUE
25		ARMS	CURRENT IN CAPACITOR C4, R.M.S. VALUE
26		ARMS	CURRENT IN THYRISTOR TH2, R.M.S. VALUE
27	ID4	ARMS	CURRENT IN DIODE D4, R.M.S. VALUE
28		VRMS	VOLTAGE DROP ACROSS CONTACTOR CT1, R.M.S. VALUE
29		VRMS	VOLTAGE DROP DURING ON-CYCLE OF TH1(x), R.M.S. VALUE
30	EDF2	VRMS	VOLTAGE DROP DURING ON-CYCLE OF D2(x), R.M.S. VALUE
31		VRMS	CAPACITOR C4 VOLTAGE (x) DURING COMMUTATION, R.M.S. VALUE
31		VICTO	CAPACITOR C4 VOLTAGE (A) BURING COMMUNICATION, K.M.S. VALUE
34	PLC4	W	HEAT LOSS IN CAPACITOR C4
		VRMS	
36		VDC	VOLTAGE DROP ACROSS THE CURRENT SHUNT, K.M.S. VALUE
30	. 1	• 50	VOLINGE DEVI ACROSS INZ CORRENT SHOWI, RVERROE VALUE

(x) THIS DATA OBTAINED FROM EXTERNAL ADAPTOR CIRCUIT

Table D1. Nomenclature for Parametric Test Data (Un)buffered Battery.

79-06-22 16:01:06 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	83.739	51.939	52.176	46.255	53.394	55.314
2	TMOT	FT-#	4.655	8,631	13.443	17.173	21.779	27.140
3	EBAT	VDC	103.194	100.917	98.427	96.530	95.086	93.819
4	EARM	VDC	1.652	2.331	3.030	3.530	3.996	4.713
5	E FM	VDC	0.172	1.098	0.827	1.253	1.670	1.881
6	IBAT'	ADC	4.211	6.602	9.998	13.715	18.453	24.576
7	IARM	ADC	43.898	71.196	98.644	115.743	142.371	169.735
8	ITH1	ADC	4.198	5.825	9.269	13.230	16.554	22.752
9	ID2	ADC	41.917	62.823	86.904	105.425	122.306	146.692
10	VCT1	VDC	0.050	0.073	0.096	0.114	0.137	0.163
11	ETH1	VDC	0.062	0.073	0.098	0.116	0.141	0.156
12	EDF2	VDC	0.678	0.670	0.667	0.658	0.649	0.644
13	PLADT		21.060	47.127	79.422	179.017	464.838	854.392
14-	PLACOM		32:035	47.906	64.747	73.586	79.595	95.158
15	PLAC4	W	4.554	4.776	4.996	5.243	5.472	5.785
16	MOTR T	EMP C	26.235	27.361	29.144	31.334	33.972	38.848
17	CONTRO	LR H2	33.541	47.775	104.370	148.336	173.496	205.636
18	EBAT	VRMS	102.992	100.697	98.297	96.407	95.089	93.896
19	EARM	VRMS	2.539	3.222	3.985	4.776	5.529	6.418
20	EFM	VRMS	15.629	17.058	18.292	18.598	18.872	19.460
21	I BAT	ARMS	23.550	33.721	45.175	55.105	66.639	82.427
22	IARM	ARMS	57.112	85.492	113.813	137.115	160.866	191.160
23	ITH1	ARMS	24.062	34.778	45.960	56.272	67.980	83.832
24	ID2	ARMS	52.968	79.996	106.782	128.312	149.680	174.292
25	IC4	ARMS	15.205	19.238	24.714	28.044	32.016	37.332
26	ITH2	ARMS	13.212	18.212	22.784	26.196	29.620	33.420
27	ID4	ARMS	5.968	8.120	9.616	10.164	9.884	8.284
28	VCT1	VRMS	0.061	0.089	0.115	0.139	0.161	0.193
29	ETH1	VRMS	0.303	0.352	0.393	0.428	0.463	0.506
30	EDF2	VRMS	0.687	0.689	0.688	0.686	0.684	0.681
31	VC4	VRMS	27.342	30.310	33.226	35.801	38.803	42.890
32	PLDT	₩-	128.928	170.159	250.350	408.451	639.066	987.506
33	PLCOM	W	777.876	1003.156	1151.171	1259.441	1343.155	1426.683
34	PLC4	W	16.351	20.785	25.226	28.923	32.879	37.712
35	VINT	VRMS	0.016	0.023	0.031	0.038	0.046	0.056
36	TNIV	VDC	0.002	0.004	0.006	0.009	0.011	0.016

79-06-22 16:05:14 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	202.308	199.172	197.473	203.871	196.461	201.611
2	TMOT	.FT-#	4.833	8.651	12.834	17.103	22.710	27.457
3	EBAT	VDC	99.208	97.534	95.776	94.493	93.560	92.766
4	EARM	VDC	3.774	4.873	5.728	6.604	7.376	8.218
5	E FM	VDC	0.002	0.592	0.746	1.469	1.665	1.850
6	IBAT'	ADC	6.796	9.896	14.455	19.867	26.461	33.867
7	IARM	ADC	49.578	71.429	95.547	117.075	147.613	171.337
8	ITH1	ADC	6.323	10.270	14.542	18.004	26.120	33.470
9	ID2	ADC	42.709	63.397	82.719	99.633	121.358	139.894
10	VCT1	VDC	0.042	0.066	0.088	0.108	0.138	0.163
11	ETH1	VDC	0.083	0.104	0.129	0.165	0.185	0.224
12	EDF2	VDC	0.649	0.643	0.637	0.622	0.615	0.604
13	PLADT	W	22.522	52.412	83.399	192.535	630.004	1024.3 56
14	PLACO	W	52.468	73.353	86.167	94.490	108.460	120.209
15	PLAC4	W	4.661	4.875	5.150	5.496	5.909	6.317
16	MOTR T	EMP C	30.556	31.212	32.836	34.503	37.244	40.801
17	CONTRO	LR HZ	57.897	76.582	138.841	217.885	250.943	283.183
18	EBAT	VRMS	99.011	97.430	95.688	94.508	93.623	92.893
19	EARM	VRMS	4.493	5.537	6.576	7.576	8.626	9.721
20	EFM	VRMS	19.203	21,217	21.990	22.460	22.651	22.875
21	IBAT'	ARMS	30.531	40.421	52.337	64.694	80.541	96.228
22	IARM	ARMS	60.627	88.285	114.516	139.888	169.792	194.832
23	ITH1	ARMS	30.472	41.107	53.320	64.987	82.073	97.663
24	ID2	ARMS	55.022	79.775	104.164	125.895	151.453	173.184
25	IC4	ARMS	18.977	24.373	29.348	33.179	38.736	43.550
26	ITH2	ARMS	16.664	21.588	25.992	29.708	33.908	37.836
27	ID4	ARMS	7.204	8.620	9.292	8.648	7.056	6.272
28	VCT1	VRMS	0.058	0.083	0.108	0.134	0.165	0.192
29	ETH1	VRMS	0.411	0.458	0.492	0.526	0.565	0.612
30	EDF2	VRMS	0.667	0.670	0.670	0.668	0.666	0.663
31	VC4	VRMS	31.759	35.745	39.217	42.876	48.192	53.954
32	PLOT		182.708	206.971	299.764	488.479	831.387	1188.406
33	PLCOM		1005.353	1196.822	1350.354	1478.878	1611.058	1674.804
34	PLC4	W	20.167	25.043	29.768	34.297	39.406	44.237
35	VINT	VRMS	0.020	0.028	0.036	0.045	0.056	0.066
36	VINT	VDC	0.005	0.007	0.009	0.012	0.017	0.022

79-06-22 16:09:29 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	667.682	667.357	667.609	668.428	671.419	665.263
2	TMOT	FT-#	4.496	8.626	13.279	19.269	22.337	27.840
3	EBAT	VDC	96.738	94.589	93.551	92.474	91.993	91.203
4	EARM	VDC	10.502	13.032	14.899	16.686	17.472	18.565
5	E-FM	VDC	0.006	0.812	0.985	1.435	1.361	1.735
6	IBAT'	A DC	13.577	19.883	28.074	39.663	46.090	59.771
7	IARM	ADC	49.223	73.651	99.615	128.741	146.279	173.973
8	ITH1	ADC	12.771	19.340	27.677	39.997	46.017	58.555
9	ID2	ADC	37.547	54.487	71.962	90.010	100.025	116.639
10	VCT1	VDC	0.051	0.075	0.100	0.129	0.151	0.180
11	ETH1	VDC	0.148	0.206	0.258	0.316	0.352	0.389
12	EDF2	VDC	0.581	0.565	0.551	0.531	0.520	0.507
13	PLA DT		0.521	68.097	112.600	273.411	795.739	1277.900
14	PLACOM	W	83.577	114.712	143.907	161.228	168.167	182.516
15	PLAC4	W	4.625	5.551	11.053	4.261	3.708	1.985
16	MOTR I	EMP C	33.634	34.551	35.683	38.895	41.585	45.231
17	CONTRO	LR HZ	125.202	156.865	180.263	403.546	424.707	452.859
18	EBAT	VRMS	96.534	94.549	93.570	92.566	92.152	91.445
19	EARM	VRMS	11.073	13.638	15.618	17.330	18.524	19.822
20	EFM	VRMS	28.596	29.968	30.331	30.249	30.084	29.614
21	I BAT'	ARMS	40.762	55.145	72.276	90.912	105.756	124.914
22	IARM	ARMS	69.260	93.812	122.173	151.842	172.175	199.734
23	ITH1	ARMS	43.190	57.142	72.994	92.345	106.661	126.254
24	ID2	ARMS	58.728	81.023	103.963	130.266	141.725	161.483
25	IC4	ARMS	27.362	34.202	40.682	47.281	50.712	56.288
26	ITH2	ARMS	22.752	28.072	33.520	40.320	42.632	47.384
27	ID4	ARMS	8.148	7.472	6.820	7.340	7.876	8.776
28	VCT1	VRMS	0.073	0.100	0.129	0.161	0.184	0.214
29	ETH1	VRMS	0.665	0.697	0.733	0.780	0.812	0.860
30	EDF2	VRMS	0.630	0.628	0.625	0.619	0.615	0.611
31	VC4	VRMS	45.458	52.338	59.679	67.328	72.414	79.148
32	PLBT		340.441	292.802	425.878	826.248	1039.415	1476.151
33	PLCOM		1457.797	1677.203	1875.746	2037.878	2119.692	2171.4 19
34	PLC4	W	27.950	24.198	70.722	88.199	94.475	104.802
35	VINT	VRMS	0.028	0.038	0.050	0.066	0.073	0.086
36	VINT	VDC	0.008	0.013	0.019	0.025	0.031	0.039

79-06-22 16:13:26 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	PPM	838.306	835.994	839.080	839.840	831.771	839.557
2	TMOT	FT-#	4.531	9.443	13.206	17.552	21.933	26.474
3	EBAT	VDC	96.342	94.358	93.370	92.531	91.779	90.915
4	EARM	VDC	13.100	16.574	18.314	19.809	21.022	22.307
5	E FM	VDC	0.841	0.960	1.237	1.004	1.430	1.906
6	IBAT'	A DC	15.679	24.999	32.295	42.730	52.976	64.553
7	IARM	ADC	49.588	77.851	98.791	122.595	143.900	165.922
8	ITH1	ADC	14.459	24.436	33.264	41.366	52.910	64.186
9	ID2	ADC	34.870	54.299	66.841	80.691	91.981	102.907
10	VCT1	VDC	0.049	0.076	0.096	0.119	0.140	0.162
11	ETH1	VDC	0.175	0.254	0.298	0.340	0.388	0.437
12	EDF2	VDC	0.552	0.534	0.520	0.502	0.487	0.472
13	PLA DT	W	1.331	83.753	124.954	220.397	781.293	1180. 316
14	PLACON	1 W	95.148	133.029	153.386	170.475	184.926	200. 383
15	PLAC4	W	4.630	12.196	5.324	4.177	2.862	1.599
16	MOTR 3	EMP C	36.764	37.459	38.943	41.253	43.435	47.114
17	CONTRO	OLR HZ	146.859	186.070	204.477	441.327	466.893	492.029
18	EBAT	VRMS	96.129	94.317	93.478	92.708	91.957	91.132
19	EARM	VRMS	13.649	17.212	19.027	20.690	21.977	23.446
20	EFM	VRMS	30.925	32.371	32.676	32.374	31.812	31.377
21	I BAT	ARMS	44.714	62.828	77.712	93.299	110.149	128.785
22	IARM	ARMS	70.843	101.020	123.540	147.017	170.456	193.015
23	ITH1	ARMS	46.648	64.300	78.130	94.994	111.412	129.812
24	ID2	ARMS	58.346	84.609	101.344	118.665	135.139	150.506
25	IC4	ARMS	29.508	38.575	43.631	48.625	52.958	57.612
26	ITH2	ARMS	24.108	30.908	35.292	39.828	44.064	48.320
27	ID4	ARMS	8.000	7.048	7.216	7.764	8.568	9.516
28	VCT1	VRMS	0.072	0.104	0.128	0.150	0.174	0.199
29	ETH1	VRMS	0.730	0.771	0.797	0.836	0.874	0.918
30	EDF2	VRMS	0.613	0.612	0.607	0.601	0.597	0.590
31	VC4	VRMS	49.918	59.908	66.200	72.396	78.313	84.270
32	PLBT	₩-	375.752	361.640	445.999	678.728	1022.215	1404.432
33	PLC OM-	W	1576.911	1851.316	2004.722	2117.650	2219.203	2299. 803
34	PLC4	W	29.945	67.782	80.204	90.253	99.269	107.607
35	VINT	VRMS	0.031	0.043	0.053	0.065	0.076	0.088
36	VINT	VDC	0.010	0.016	0.021	0.027	0.034	0.042

79-06-22 16:17:24 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	1048.524	1046.037	1048.154	1046.017	1044.684	1044.216
2	TMOT	FT-#	4.586	9.883	12.864	17.480	21.830	28.115
3	EBAT	VDC	95.423	93.743	92.970	92.004	91.103	89.875
4	EARM	VDC	16.485	20.590	22.323	24.195	25.720	27.409
5	E FM	VDC	0.502	1.068	1.330	1.445	1.325	1.915
6	IBAT'	ADC	18.275	28.283	37.673	49.261	61.490	78.294
7	IARM	ADC	51.727	81.425	97.320	122.829	144.162	173.141
8	ITHI	ADC	18.081	28.342	36.629	49.450	61.008	78.561
9	ID2	ADC	33.690	51.863	60.170	74.089	84.064	94.964
10	VCT1	VDC	0.048	0.077	0.094	0.118	0.142	0.171
11	ETH1	VDC	0.215	0.295	0.349	0.406	0.452	0.524
12	EDF2	VDC	0.485	0.498	0.481	0.466	0.442	0.425
13	PLABT	W	3.236	90.001	135.218	215.242	785.933	1302 .710
14	PLACON	W	104.186	145.348	164.402	186.479	200.873	218. 047
15	PLAC4	W	11.441	5.674	4.431	3.241	1.596	0.278
16	MOTR T	EMP C	37.675	38.704	40.753	43.269	45.655	49.130
17	CONTRO	LR HZ	172.811	213.947	229.418	366.595	514.754	539.012
18	EBAT	VRMS	95.262	93.770	93.077	92.169	91.315	90.169
19	EARM	VRMS	17.076	21.290	23.055	25.054	26.609	28.471
20	E FM	VRMS	33.358	34.803	34.815	34.196	33.576	32.571
21	I BAT'	ARMS	48.866	68.685	81.805	100.581	118.394	143.108
22	IARM	ARMS	73.421	104.047	122.446	148.053	170.749	199.851
23	ITH1	ARMS	50.267	70.628	83.266	101.909	119.642	144.371
24	ID2	ARMS	59.030	83.359	96.994	114.999	129.037	146.639
25	IC4	ARMS	32.537	41.243	45.717	51.173	55.586	61.183
26	ITH2	ARMS	25.468	33.020	36.900	41.884	46.104	51.256
27	ID4	ARMS	7.540	7.272	7.840	8.756	9.636	10.896
28	VCT1	VRMS	0.074	0.105	0.125	0.152	0.176	0.206
29	ETH1	VRMS	0.791	0.850	0.872	0.911	0.952	1.011
30	EDF2	VRMS	0.594	0.591	0.586	0.579	0.573	0.563
31	VC4	VRMS	55.278	67.224	72.496	79.403	85.300	92.596
32	PLBT	W	436.301	385.760	458.805	691.472	1033.053	1532.204
33	PLCOM	W	1700.839	1990-045	2117,354	2233,492	2319.559	2910.297
34	PLC4	W	55.804	76.636	84.482	94.644	103.415	113.544
35	VINT	VRMS	0.034	0.048	0.056	0.069	0.082	0.097
36	VINT	VDC	0.012	0.020	0.025	0.033	0.040	0.052

79-06-22 16:21:26 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	1310.714	1306.036	1305.814	1303.291	1303.788	1301.771
2	TMOT	FT-#	4.775	8.711	12.863	18.194	21.704	28.207
3	EBAT	VDC	94.700	93.390	92.398	91.199	90.321	88.784
4	EARM	VDC	20.510	24.703	27.425	29.970	31.464	33.645
5	EFM	VDC	0.678	1.104	0.987	1.287	1.556	1.928
6	IBAT'	A DC	21.881	32.339	43.283	59.458	70.531	92.467
7	IARM	ADC	50.148	74.638	97.125	124.300	141.933	173.442
8	ITH1	ADC	21.205	31.935	43.380	59.509	71.106	93.109
9	ID2	ADC	29.509	42.971	53.232	64.051	71.467	80.463
10	VCT1	VDC	0.053	0.079	0.103	0.129	0.148	0.177
11	ETH1	VDC	0.250	0.337	0.414	0.484	0.536	0.621
12	EDF2	VDC	0.415	0.452	0.439	0.413	0.395	0.368
13	PLA ET	W	44.854	69.104	135.857	218.717	301.310	1286.371
14	PLACOM	W	96.427	142.311	175.525	201.538	212.782	-226.166
15	PLAC4	W	8.035	5.488	4.008	2.191	1.117	0.264
16	MOTR T	EMP C	40.753	41.965	43.317	45.537	48.733	52.907
17	CONTRO	LR HZ	196.523	235.797	255.401	270.191	277.258	284.739
18	EBAT	VRMS	94.587	93.427	92.501	91.366	90.543	89.100
19	EARM	VRMS	21.044	25.405	28.197	30.757	32.273	34.495
20	EFM	VRMS	36.152	37.084	36.785	35.816	35.028	33.548
21	I BAT'	ARMS	50.652	69.307	87.462	109.788	125.495	152.998
22	IARM	ARMS	72.503	98.402	122.563	150.924	169.186	200.262
23	ITH1	ARMS	53.361	70.446	88.463	111.796	126.699	154.137
24	ID2	ARMS	56.956	74.981	92.322	109.421	119.793	135.864
25	IC4	ARMS	33.500	41.424	48.284	53.500	56.750	62.266
26	ITH2	ARMS	25.864	33.040	38.436	43.912	47.196	52.236
27	ID4	ARMS	7.484	7.716	8.604	9.888	10.732	12.076
28	VCT1	VRMS	0.081	0.111	0.138	0.166	0.183	0.213
29	ETH1	VRMS	0.887	0.923	0.961	1.001	1.034	1.093
30	EDF2	VRMS	0.566	0.566	0.558	0.548	0.539	0.527
31	VC4	VRMS	60.555	71.707	79.452	86.990	91.656	98.922
32	PLBT	W	700.859	397.800	473.186	711.821	982.926	1518.4 86
33	PLCOM	W	1788.838	2063.539	2218.395	2971.373	3027.930	3028.865
34	PLC4	W	61.969	77.636	88.813	98.708	104.909	114.060
35	VINT	VRMS	0.035	0.048	0.060	0.076	0.086	0.105
36	VINT	VDC	0.014	0.021	0.029	0.039	0.047	0.061

79-06-22 16:26:16 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	1638.459	1640.059	1638.571	1642.319	1636.567	1637.213
2	TMOT	FT-#	4.483	8.800	12.909	17.677	22.294	28.567
3	EBAT	VDC	93.979	92.621	91.581	90.306	89.091	87.297
4	EARM	VDC	25.403	31.051	34.281	37.110	39.153	41.664
5	EFM	VDC	0.790	0.728	1.080	1.245	1.624	1.951
6	IBAT'	A DC	24.160	38.910	52.521	68.625	87.084	110.912
7	IARM	ADC	50.439	75.685	97.705	120.928	144.754	174.278
8	ITH1	ADC	24.464	38.434	52.386	68.764	85.996	112.215
9	ID2	ADC	25.830	36.838	45.104	52.215	57,802	62.940
10	VCT1	VDC	0.046	0.070	0.091	0.114	0.137	0.169
11	ETH1	VDC	0.298	0.425	0.509	0.580	0.648	0.749
12	EDF2	VDC	0.353	0.381	0.375	0.349	0.322	0.293
13	PLAET	W	32.484	67.650	146.036	199.579	279.102	1201.568
14	PLACOM	W	104.698	152.160	181.903	203.244	213.516	221.106
15	PLAC4	W	7.702	4.993	3.336	1.974	0.745	0.200
16	MOTR T	EMP C	43.577	44.594	46.079	48.850	51.954	56.102
17	CONTRO	LR HZ	220.235	262.468	277.681	285.730	287.852	284.900
18	EBAT	VRMS	93.951	92.708	91.678	90.476	89.256	87.579
19	EARM	VRMS	25.769	31.716	34.948	37.778	39.899	42.398
20	EFM	VRMS	37.701	38.999	38.288	37.039	35.605	33.657
21	I BAT'	ARMS	56.389	75.907	95.024	116.890	138.193	166.017
22	IARM	ARMS	73.069	99.965	123.345	148.365	171.706	201.004
23	ITH1	ARMS	58.072	77.281	96.207	118.388	140.084	168.230
24	ID2	ARMS	53.170	71.779	85.897	97.941	109.098	119.632
25	IC4	ARMS	34.182	43.229	50.090	54.322	57.853	62.005
26	ITH2	ARMS	27.224	34.508	39.780	44.192	47.876	51.548
27	ID4	ARMS	7.012	8.516	9.828	10.992	12.116	13.364
28	VCT1	VRMS	0.074	0.100	0.124	0.148	0.174	0.204
29	ETH1	VRMS	0.882	1.001	1.058	1.087	1.130	1.185
30	EDF2	VRMS	0.524	0.526	0.519	0.506	0.494	0.476
31	VC4	VRMS	63.830	78.292	86.262	92.677	97.664	102.800
32	PLBT	W	608,294	431.908	487.692	643.625	951.077	1422.087
33	PLCOM	W	1889.893	2168.786	2302.826	3040.862	3065.324	3063.14 3
34	PLC4	W	65.050	80.638	91.480	99.776	103.549	102.929
35	VINT	VRMS	0.039	0.052	0.065	0.080	0.094	0.113
36	VINT	VDC	0.016	0.026	0.035	0.045	0.057	0.074

79-06-22 16:30:10 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	2049.558	2049.695	2048.924	2046.712	2049.481	2047.546
2	TMOT	FT-#	4.254	9.070	13.678	17.974	22.067	27.685
3	EBAT	VIC	93.837	91.770	90.383	88.984	87.557	85.706
4	EARM	VDC	31.152	38.865	43.085	45.901	48.200	50.971
5	EFM	VDC	0.507	1.192	1.217	1.749	1.551	1.967
6	IBAT'	ADC	28.281	47.177	65.390	84.354	101.953	130.071
7	IARM	ADC	49.572	78.112	101.828	123.442	142.851	170.741
8	1TH1	ADC	28.156	47.032	65.798	84.208	103.799	131.309
9	ID2	ADC	21.387	30.770	35.877	39.420	40.546	41.420
10	VCT1	VIC	0.055	0.085	0.109	0.128	0.146	0.171
11	ETH1	VDC	0.351	0.521	0.638	0.712	0.792	0.902
12	EDF2	VDC	0.261	0.291	0.287	0.264	0.247	0.208
13	PLA BT	W	52.754	53.674	160.724	210.408	247.550	291.5 89
14	PLACOM	W	106.805	151.828	182.578	191.658	191.448	185.730
15	PLAC4	W	7.517	5.226	3.367	2.089	3.195	7.429
16	MOTR T	EMP C	45.608	46.902	48.709	51.838	54.600	58.291
17	CONTRO	LR HZ	242.334	280.536	286.073	282.425	274.295	256.937
18	EBAT	VRMS	93.689	91.787	90.483	89.146	87.752	85.964
19	EARM	VRMS	31.986	39.598	43.722	46.534	48.866	51.554
20	E FM	VRMS	38.753	39.834	38.630	36.881	34.884	32.555
21	I BAT'	ARMS	59.478	84.212	106.779	127.943	147.622	174.803
22	IARM	ARMS	74.573	103.188	128.618	150.455	170.573	196.687
23	ITH1	ARMS	60.822	84.944	107.570	129.186	150.740	177.147
24	ID2	ARMS	49.706	66.442	78.284	86.884	92.302	95.202
25	IC4	ARMS	35.707	44.232	49.909	53.821	55.887	56.248
26	ITH2	ARMS	27.732	34.976	40.048	43.324	45.348	46.668
27	ID4	ARMS	7.156	9.212	10.964	12.124	13.048	13.872
28	VCT1	VRMS	0.086	0.119	0.145	0.163	0.181	0.201
29	ETH1	VRMS	0.936	1.034	1.135	1.163	1.213	1.278
30	EDF2	VRMS	0.468	0.470	0.461	0.449	0.433	0.407
31	VC4	VRMS	67.127	81.293	90.597	95.852	98.545	100.026
32	PLBT	W	763.501	471.653	482.449	596.026	767.770	1025.448
33	PLCOM	W	1969.791	2220.342	2312.532	2999.574	2318.204	2256.707
34	PLC4	W	66.191	80.848	89.434	90.417	51.600	55.097
35	VINT	VRMS	0.041	0.057	0.073	0.087	0.101	0.118
36	TNIV	VDC	0.019	0.031	0.043	0.056	0.068	0.085

79-06-22 16:36:15 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	2559.924	2560.091	2560.769	2560.056	2560.980	2559.902
2	TMOT	.FT-#	4.398	8.871	13.255	17.416	21.777	27.355
3	EBAT	VDC	92.510	90.725	89.146	87.489	85.765	83.370
4	EARM	VDC	39.492	48.056	53.038	56.469	59.351	62.488
5	EFM	VDC	0.533	1.031	1.093	1.140	1.590	2.099
6	IBAT'	ADC	34.256	55.546	76.112	98.685	120.787	150.655
7	IARM	ADC	51.363	76.772	99.574	121.798	143.027	170.024
8	ITH1	ADC	34.050	54.820	76.179	99.709	121.929	153.158
9	ID2	ADC	17.314	21.358	23.439	22.682	21.358	17.693
10	VCT1	VDC	0.047	0.071	0.093	0.115	0.136	0.161
11	ETH1	VDC	0.429	0.615	0.753	0.869	0.972	1.108
12	EDF2	VDC	0.222	0.218	0.191	0.168	0.140	0.099
13	PLAET	W	88.896	28.597	77.357	157.891	203.665	151.93 7
14	PLACOM	W I	91.265	127.351	142.548	141.218	128.300	103.48 0
15	PLAC4	W	7.711	5.677	9.703	5.721	6.103	5.756
16	MOTR T	EMP C	48.545	49.879	51.977	54.368	57.877	61.887
17	CONTRO		278.233	377.098	293.440	247.786	217.682	174.742
18	EBAT	VRMS	92.512	90.812	89.229	87.658	85.889	83.508
19	EARM	VRMS	40.350	48.803	53.625	57.086	59.843	62.922
20	EFM	VRMS	40.067	39.980	37.573	34.957	32.150	27.582
21	I BAT'	ARMS	63.370	88.625	111.253	132.958	154.843	180.500
22	IARM	ARMS	74.319	101.215	124.907	145.806	166.276	189.128
23	I.TH1	ARMS	64.785	89.130	113.030	134.847	157.312	183.375
24	ID2	ARMS	44.751	55.385	61.649	64.468	63.945	57.822
25	IC4	ARMS	35.426	40.842	44.533	45.556	45.396	40.963
26	ITH2	ARMS	27.568	32.848	35.904	37.084	36.968	33.712
27	ID4	ARMS	7.368	9.268	10.696	11.604	12.212	11.596
28	VCT1	VRMS	0.075	0.101	0.124	0.144	0.163	0.183
29	ETH1	VRMS	0.956	1.064	1.156	1.228	1.294	1.350
30	EDF2	VRMS	0.412	0.404	0.383	0.360	0.337	0.291
31	VC4	VRMS	69.656	80.955	85.852	88.218	89.278	85.577
32	PLBL	W	1061.463	673.941	465.581	431.577	435.286	367.214
33	PLCOM	W	2012.419	2177.277	2161.510	2099.857	2007.013	1778.5 86
34	PLC4	W	65.643	74.854	45.308	44.532	43.991	39.905
35	VINT	VRMS	0.044	0.060	0.076	0.090	0.104	0.121
36	VINT	VDC	0.023	0.037	0.050	0.064	0.080	0.101

79-06-22 16:42:19 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	3199.838	3198.573	3201.180	3198.121	3196.525
2	TMOT	FT-#	4.521	8.746	13.475	17.728	26.413
3	EBAT	VDC	91.520	89.529	87.409	85.517	81.599
4	EARM	VDC	49.204	59.278	65.701	69.837	77.307
5	EFM	VDC	0.558	0.647	1.264	1.555	1.849
6	IBAT'	A DC	40.084	63.747	90.320	113.146	163.852
7	IARM	ADC	52.275	76.003	100.699	120.384	165.000
8	ITH1	ADC	39.407	64.219	91.184	115.529	165.935
9	ID2	ADC	12.034	12.475	9.865	6.817	0.105
10	VCT1	VDC	0.046	0.068	0.092	0.113	0.153
11	ETH1	VDC	0.526	0.741	0.920	1.053	1.324
12	EDF2	VDC	0.161	0.129	0.089	0.053	0.020
13	PLA BT	W	124.304	186.479	146.675	166.056	\$\$\$\$\$\$\$\$
14	PLACOM	W	64.148	75.091	69.276	51.826	1.750
15	PLAC4	W	8.370	3.481	4.784	4.878	4.876
16	MOTR I	EMP C	50.603	52.117	53.812	56.264	59.416
17	CONTRO	LR HZ	516.227	406.659	301.391	191.445	1.000
18	EBAT	VRMS	91.493	89.537	87.483	85.613	81.493
19	'EARM	VRMS	50.087	59.963	66.225	70.297	77.267
20	EFM	VRMS	40.403	37.510	32.356	26.983	3.256
21	IBAT'	ARMS	65.255	89.086	113.419	131.614	163.529
22	IARM	ARMS	71.897	95.844	119.360	135.201	164.381
23	ITH1	ARMS	66.443	89.797	114.971	133.432	165.400
24	ID2	ARMS	36.312	39.938	37.420	31.076	0.141
25	IC4	ARMS	32.999	35.346	33.701	27.984	0.120
26	ITH2	ARMS	25.708	27.964	26.728	22.980	0.024
27	ID4	ARMS	7.364	8.768	9.052	8.268	0.024
28	VCT1	VRMS	0.072	0.093	0.114	0.128	0.151
29	ETH1	VRMS	1.009	1.118	1.202	1.260	1.314
30	EDF2	VRMS	0.358	0.321	0.273	0.229	0.020
31	VC4	VRMS	69.586	74.884	73.075	69.276	30.461
32	PLBT	W	1338.225	1464.236	1172.657	1199.285	
33	PLCOM	W	1959.835	1963.107	1761.681	1477.226	2.150
34	PLC4	W	61.312	32.559	32.593	28.128	4.868
35	VINT	VRMS	0.045	0.060	0.076	0.088	0.109
36	VINT	VCC	0.026	0.043	0.060	0.076	0.109

79-06-22 16:45:34 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	4003.605	3997.343	3999.450
2	TMOT	FT-#	4.994	8.555	13.399
3	EBAT	VDC	90.191	88.392	86.009
4	EARM	VDC	62.895	72.760	83.116
5	EFM	VIC	0.928	0.726	1.074
6	IBAT'	A DC	47.400	68.970	98.609
7	IARM	ADC	52.895	72.450	99.031
8	ITH1	ADC	46.767	69.116	99.509
9	ID2	ADC	5.742	3.438	0.101
10	VCT1	V DC	0.049	0.067	0.091
11	ETH1	VDC	0.675	0.893	1.146
12	EDF2	VDC	0.091	0.044	0.021
13	PLA BT	W	209.255	273.136	84.796
14	PLACOM	W	25.395	17.798	1.65 2
15	PLAC4	W	2.209	4.802	4.725
16	MOTR T	EMP C	49.832	51.302	52.605
17	CONTRO	LR HZ	526.623	339.301	1.000
18	EBAT	VRMS	90.224	88.435	85.946
19	EARM	VRMS	63.688	73.311	83.123
20	EFM	VRMS	38.717	30.714	3.343
21	I BAT'	ARMS	64.413	80.802	98.535
22	IARM	ARMS	67.288	82.581	98.676
23	ITH1	ARMS	65.513	82.093	99.341
24	ID2	ARMS	24.672	20.402	0.181
25	IC4	ARMS	27.863	24.212	0.160
26	ITH2	ARMS	21.068	18.340	0.032
27	ID4	ARMS	7.760	7.416	0.036
28	VCT1	VRMS	0.068	0.080	0.091
29	ETH1	VRMS	1.141	1.219	1.138
30	EDF2	VRMS	0.274	0.215	0.021
31	VC4	VRMS	67.783	63.213	32.922
32	PLBT	W	1291.332	1723.571	17.37 7
33	PLCOM	W	1573.312	1312.493	2.306
34	PLC4	W	24.641	23.349	4.709
35	VINT	VRMS	0.044	0.054	0.065
36	VINT	VDC	0.031	0.046	0.065

79-05-23 11:29:01 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

```
NTR
             RPM
                      MOTOR ROTOR SPEED
    TMOT
            FT-#
                      MOTOR SHAFT TORQUE
 3
    TMOT
             N- m
                      MOTOR SHAFT TORQUE
 4
    PABAT
                      BATTERY POWER AVAILABLE AT TERMINAL, AVERAGE VALUE
                      BATTERY CURRENT, AVERAGE VALUE
    IBAT
             ADC
                      BATTERY R.M.S. POWER AVAILABLE AT TERMINAL
    PBAT
 6
            ARMS
    IBAT
                      BATTERY CURRENT, R.M.S. VALUE
    DELTAMOT PU
                      CHOPPER CONDUCTION DUTY CYCLE A MOT
 9
    DELTAD2
             PII
                      DUTY CYCLE OF FREE WHEELING MODE AD2
10
    DFM
             VDC
                      MOTOR FIELD VOLTAGE, AVERAGE VALUE
11
    PAMOT
                      AVERAGE POWER CONSUMPTION OF MOTOR
    PTR
12
                      MOTOR POWER DELIVERED AT SHAFT
    PMOT
                      R.M.S. POWER CONSUMPTION OF MOTOR
13
    EFFAMOT
14
                      DC POWER TRANSFER EFFICIENCY OF MOTOR
15
    WLAMT W/N-m
                      MOTOR DC WATT-LOSS/TORQUE DELIVERED AT SHAFT
    EFFMOT
                      MOTOR POWER TRANSFER EFFICIENCY BASED ON R.M.S. VALUES
    WLMOT W/N-m
                      MOTOR R.M.S. WATT-LOSS/TORQUE DELIVERED AT SHAFT
                      MOTOR PERFORMANCE DEGRADATION IN PULSATING DC CURRENT MODE
18
    DEGM
19
    PLMOT
                      HEAT LOSS IN MOTOR
    PLCTR
20
                      HEAT LOSS IN DC CHOPPER PANEL
21
    PACT
               W
                      POWER LOSS ACROSS CONTACTOR C1
22
    PCT
                      HEAT LOSS IN CONTACTOR C1
                      MOTOR VOLTAGE, R.M.S. VALUE
POWER TRANSFER EFFICIENCY OF CONTROLLER
23
    EMOT
    EFFCTR
24
    WLCTR W/N-m
25
                      CONTROLLER WATT-LOSS/MOTOR TORQUE DELIVERED AT SHAFT
26
    PATH1
                      AVERAGE POWER LOSS IN TH1
27
    PAD2 F
                      AVERAGE POWER LOSS IN D2
28
    PTH1
                      HEAT DISSIPATION OF TH1
29
    PD2F
                      HEAT DISSIPATION OF D2
    PLCOM
                      HEAT DISSIPATION OF COMMUTATING CIRCUIT
30
31
    PLABT
                      POWER LOSS WITHIN BATTERY WHEN DISCHARGING
32
    PLBAT
               W
                      HEAT DISSIPATION OF BATTERY WHEN DISCHARGING DC POWER FOR ELECTRIC DRIVE IN CONTINUOUS DC CURRENT MODE
33
    PAEV
               W
                      ELECTRIC DRIVE EFFICIENCY IN CONTINUOUS DC CURRENT MODE
34
    EFFAEV
35
    PEV
               W
                      R.M.S. POWER FOR ELECTRIC DRIVE IN PULSATING DC CURRENT MODE
    EFFEV
                      ELECTRIC SYSTEM EFFICIENCY IN PULSATING DC CURRENT MODE
37
    WLEV
              PU
                      ELECTRIC SYSTEM WATT-LOSS/WATT DELIVERED AT MOTOR SHAFT
                      HEAT DISSIPATION OF ELECTRIC SYSTEM
38
    PHEAT
               W
                      SYSTEM PERFORMANCE DEGRADATION FOR PULSATING DC CURRENT MODE
39
    DEGEV
    DELTABT VDC
40
                      VOLTAGE DROP WITHIN BATTERY, AVERAGE VALUE
                      OPEN CIRCUIT BATTERY VOLTAGE, PEAK AMPLITUDE
POWER LOSS IN CHOPPER PANEL, AVERAGE VALUE
POWER LOSS IN COMMUTATING CIRCUIT, AVERAGE VALUE
41
    EBATO
             VDC
42
    PLACTR
    PLACOM
```

Table D2. Nomenclature for Calculated Data, Parametric Chopper and Motor Test.

EVA DC MOTOR TEST WITH UNBUFFERED BATTERY/CHOPPER SOURCE

79-05-11 11:25:00 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	1638.459	1640.059	1638.571	1642.319	1636.567	1637.213
2	TMOT FT-#	4.483	8.800	12.909	17.677	22.294	28.567
3	TMOT N-m	6.078	11.932	17.503	23.967	30.227	38.732
4	PABAT W	2268.658	3599.493	4802.309	6185.099	7740.251	9654.374
5	IBAT ADC	24.140	38.863	52.438	63.490	86.881	110.592
6	PBAT W	5291.785	7026.248	8694.762	10550.693	12300.265	14491.143
7	IBAT ARMS	56.325	75.789	94.840	116.613	137.809	165.464
8	DELTAMOT PU	0.184	0.263	0.306	0.345	0.397	0.447
9	DELTAD2 PU	0.816	0.737	0.694	0.655	0.603	0.553
10	DFM VDC	1.169	1.146	1.500	1.546	2.005	2.307
11	PAMOT W	1340.284	2436.845	3495.998	4686.690	5957.693	7663.161
12	PTR W	1042.880	2049.300	3003.402	4122.026	5180.440	6640.733
13	PM OT W	2803.363	4238.945	5558.216	7040.876	8371.264	10182.398
14	EFFAMOT &	77.810	84.096	85.910	87.952	86.954	86.658
15	WLAMT W/N-m	48.932	32.480	28.144	23.560	25.714	26.398
16	EFFMOT &	37.201	48.345	54.035	58.544	61.884	65.218
17	WIMOT W/N-m	289.652	183.515	145.967	121.787	105.564	91.441
18	DEGM &	52.190	42.513	37.102	33.436	28.832	24.741
19	PLMOT W	1760.482	2189.645	2554.814	2918.850	3190.823	3541.665
20	PLCTR W	2484.021	2779.233	3124.180	3491.615	3904.201	4274.063
21	PACT W	2.324	5.270	8.855	13.803	19.888	29.401
22	PCT W	5.371	10.019	15.295	22.026	29.856	41.049
23	EMOT VRMS	38.494	42.527	45.171	47.549	48.821	50.714
24	EFFCTR &	52.976	60.330	63.926	66.734	68.058	70.266
25	WLCTR W/N-m	408.696	232.929	178.497	145.686	129.165	110.350
26	PATH1 W	7.301	16.331	26.668	39.904	55.690	34.014
27	PAD2 F W	9.115	14.033	16.900	18.209	18.628	13.465
28	PTH1 W	51.239	77.359	101.749	129.663	158.243	199.385
29	PD2 F W	27.887	37.746	44.557	49.580	53.865	56.899
30	PLCOM W	2399.523	2654.109	2962.578	3291.346	3662.237	3976.729
31	PLABT W	53.689	139.200	242.354	403.863	617.889	984.870
32	PLBAT W	292.283	529.402	792.766	1170.764	1554.602	2204.635
33	PAEV W	2322.347	3738.692	5044.663	6588.963	8358.140	10639.244
34	EFFAEV &	44.906	54.813	59.536	62.560	61.981	62.417
35	PEV W	5584.067	7555.650	9487.529	11721.457	13854.867	16695.778
36	EFFEV &	18.676	27.123	31.656	35.166	37.391	39.775
37	WLEV PU	4.354	2.687	2.159	1.844	1.674	1.514
38	PHEAT W	4244.503	4968.878	5678.994	6410.465	7095.025	7815.728
39	DEGEV 8	58.411	50.518	46 .828	43.787	39.674	36.276
40	DELTABT VDC	2.224	3.582	4.622	5.897	7.112	8.905
41	EBATO VDC	96.203	96.203	96.203	96.203	96.203	96.203
42	PLACTR W	926.776	1158.984	1300.066	1488.584	1768.173	1969.435
43	PLACOM W	908.035	1123.351	1247.643	1416.668	1673.967	1837.556

79-05-11 10:57:30 MERADCCM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	83.739	51.939	52.176	46.255	53.394	55.314
2	TMOT FT-#	4.655	8.631	13.443	17.173	21.779	27.140
3	TMOT N-m	6.311	11.702	18.227	23.283	29.529	36.796
4	PARAT W	433.502	663.593	978.990	1316.865	1743.965	2290.352
5	I BAT ADC	4.201	6.576	9.946	13.642	18.341	24.412
6	PBAT W	2423.274	3390.682	4431.885	5299.785	6318.918	7713.951
7	IBAT ARMS	23.529	33.672	45.087	54.973	66.453	82.154
8	DELTAMOT PU	0.032	0.038	0.049	0.062	0.076	0.088
9	DELTAD2 PU	0.968	0.962	0.951	0.938	0.924	0.912
10	DFM VDC	0.892	1.832	1.582	2.017	2.443	2.672
11	PAMOT W	111.683	296.375	454.900	642.065	916.709	1253.516
12	PTR W	55.344	63.652	99.591	112.781	165.111	213.148
13	PMOT W	174.743	413.662	591.597	881.694	1155.132	1569.016
14	EFFAMOT %	49.554	21.477	21.893	17.565	18.011	17.004
15	WLAMT W/N-m	8.927	19.887	19.494	22.733	25.453	28.274
16	EFFMOT %	31.672	15.387	16.834	12.791	14.294	13.585
17	WLMOT W/N-m	18.919	29.909	26.994	33.025	33.528	36.848
18	DEGM 8	36.087	28.353	23.106	27.178	20.640	20.108
19	PLMOT W	119.399	350.010	492.006	768.913	990.021	1355.868
20	PLCTR W	2246.575	2972.680	3832.611	4406.900	5148.252	6122.751
21	PACT W	2.206	5.192	9.466	13.243	19.494	27.730
22	PCT W	3.496	7.600	13.121	19.011	25.901	36.921
23	EM OT VRMS	3.310	4.999	5.321	6.572	7.275	8.317
24	EFFCTR %	7.211	12.200	13.349	16.636	18.281	20.340
25	WLCTR W/N-m	355.978	254.022	210.275	189.278	174.348	166.397
26	PATH1 W	0.262	0.423	0.912	1.537	2.328	3.560
27	PAD2F W	28.419	42.100	57.945	69.372	79.406	94.439
28	PTH1 W	7.283	12.232	18.063	24.082	31.503	42.451
29	PD2 F W	36.368	55.108	73.506	98.028	102.416	118.628
30	PLCOM W	2199.427	2897.740	3727.921	4275.779	4988.432	5924.751
31	PLABT W	16.842	41.335	87.286	145.605	222.224	326.719
32	PLBAT W	528.349	1083.875	1793.540	2364.362	2917.270	3700.106
33	PAEV W	450.344	704.927	1066.276	1462.470	1966.189	2617.071
34	EFFAEV 3	12.289	9.030	9.340	7.712	8.398	8.145
35	PEV W	2951.623	4474.557	6225.425	7664.147	9236.189	11414.057
36	EFFEV %	1.875	1.423	1.600	1.472	1.788	1.867
37	WLEV PU	52.333	69.297	61.510	66.956	54.939	52.550
38	PHEAT W	2365.974	3322.690	4324.617	5175.813	6138.273	7478.619
39	DEGEV %	84.742	84.246	82.872	80.918	78.712	77.072
40	DELTABT VCC	4.009	6.286	8.776	10.673	12.116	13.383
41	EBATO VDC	107.203	107.203	107.203	107.203	107.203	107.203
42	PLACTR W	320.823	364.606	519.066	667.855	816.743	1021.830
43	PLACOM W	289.936	316.891	450.744	583.704	715.515	896.101

79-05-11 11:03:00 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1 NTR RPM 202.308 199.172 197.473 203.871 196.461 2 TMOT FT-# 4.833 8.651 12.834 17.103 22.710	201.611 27.457 37.226
3 TMOT N-m 6.552 11.729 17.401 23.188 30.790 4 PABAT W 672.945 962.447 1379.588 1869.950 2463.868	
	31 25 . 568
	33.693
	8910.123
	95.918
	0.123
	2.595
	1852.650
11 PAMOT W 221.503 440.783 687.365 1029.752 1443.394 12 PTR W 138.815 244.634 359.851 495.065 633.483	785.965
13 PMOT W 319.753 656.178 969.327 1449.541 1889.949	2375.795
14 EFFAMOT % 62.670 55.500 52.352 48.076 43.888	42.424
15 WLAMT W/N-m 12.620 16.724 18.822 23.059 26.304	28 .654
16 EFFMOT % 43.413 37.282 37.124 34.153 33.519	33.082
17 WLMOT W/N-m 27.615 35.089 35.026 41.163 40.807	42.708
	22.020
18 DEGM % 30.727 32.826 29.088 28.960 23.628 19 PLMOT W 180.938 411.544 609.475 954.476 1256.465	1589.830
20 PLCTR W 2698.036 3271.564 4021.047 4638.211 5611.115	6510.177
21 PACT W 2.101 4.703 8.427 12.699 20.375	28.005
22 PCT W 3.539 7.351 12.404 18.682 28.004	37.361
23 EMOT VRMS 5.463 7.627 8.622 10.510 11.247	12.296
24 EFFCTR % 10.587 16.686 19.392 23.764 25:135	26.664
25 WLCTR W/N-m 411.782 278.940 231.083 200.026 182.236	174.883
26 PATH1 W 0.528 1.069 1.870 2.974 4.821	7.510
27 PAD2F W 27.705 40.753 52.676 62.011 74.651	84.501
28 PTH1 W 12.538 18.820 26.258 34.205 46.375	59.763
29 PD2F W 36.724 53.458 69.748 84.073 100.942	114.776
30 PLCCM W 2645.234 3191.935 3912.636 4501.251 5435.795	6298.278
31 PLABT W 24.888 52.717 102.273 165.915 245.344	340.669
32 PLBAT W 503.283 882.019 1345.069 1764.912 2281.898	2760.901
33 PAEV W 697.834 1015.164 1481.861 2035.865 2709.212	3466.237
34 EFFAEV % 19.892 24.098 24.284 24.317 23.383	22.675
35 PEV W 3523.413 4814.587 6343.563 7864.771 9801.053	11571.025
36 EFFEV % 3.940 5.081 5.673 6.295 6.463	6.734
37 WLEV PU 24.382 18.681 16.628 14.886 14.472	13.849
38 PHEAT W 2878.974 3683.107 4630.522 5592.687 6867.581	8100.007
39 DEGEV \$ 80.194 78.915 76.640 74.114 72.358	70.300
40 DELTABT VDC 3.669 5.342 7.100 8.384 9.316	10.111
41 EBATO VDC 102.877 102.877 102.877 102.877 102.877	102.877
42 PLACTR W 450.164 519.000 687.444 833.020 1008.981	1257.335
43 PLACOM W 419.830 472.475 624.472 755.336 909.133	1137.318

79-05-11 11:07:23 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	667.682	667.357	667.609	668.428	671.419	665.263
2	TMOT F	T-#	4.496	8.626	13.279	19.269	22.337	27.840
3	TMOT	N-m	6.096	11.696	18.004	26.125	30.285	37.745
4	PABAT	W	1311.960	1877.604	2620.482	3657.701	4226.874	5432.319
5	IBAT	ADC	13.562	19.850	28.011	39.554	45.948	59.563
6	PBAT	W	3930.704	5206.262	6750.001	8395.211	9719.277	11386.640
7	IBAT A	RMS	40.718	55.064	72.139	90.694	105.470	124.519
8	DELTAMOT	PU	0.111	0.130	0.151	0.190	0.190	0.229
9	DELTAD2	PU	0.889	0.870	0.849	0.810	0.810	0.771
10	DFM	VDC	0.625	1.431	1.608	2.057	1.982	2.359
11	PAMOT	W	547.705	1065.270	1644.307	2412.967	2845.658	3640.292
12	PTR	W	426.220	817.387	1258.710	1828.735	21 29 . 4 1 2	2629.672
13	PMOT	W	1064.596	1711.855	2455.917	3343.200	3924.087	4780.163
14	EFFAMOT	8	77.819	76.730	76.550	75.788	74.830	72.238
15	WLAMT W/	N-m	19.930	21.194	21.418	22.363	23.650	26 .775
16	EFFMOT	*	40.036	47.749	51.252	54.700	54.265	55.012
17	WLMOT W/	N-m	104.726	76.479	66.498	57.970	59.260	56.974
18	DEGM	*	48.553	37.771	33.047	27.825	27.482	23.846
19	PLMOT	W	638.376	894.468	1197.207	1514.465	1794.675	2150.491
20	PLCTR	W	2862.729	3488.287	4283.807	5035.989	5774.387	6578.169
21	PACT	W	2.494	5.505	9.967	16.600	22.125	31.276
22	PCT	W	5.086	9.392	15.801	24.410	31.647	42.749
23	EMOT V	RMS	15.657	18.423	20.244	22.106	22.897	24.023
24	EFFCTR	8	27.084	32.881	36.384	39.823	40.374	41.980
25	WLCTR W/	N-m	469.634	298.254	237.941	192.767	190.670	174.277
26	PATH1	W	1.892	3.976	7.145	12.628	16.185	22.797
27	PAD2 F	W	21.824	30.761	39.616	47.794	52.048	59.121
28	PTH1	W	28.739	39.852	53.535	72.033	86.597	108.616
29	PD2F	W	37.025	50.907	64.966	80.697	87.185	98.676
30	PLCOM	W	2791.879	3388.137	4149.505	4858.850	5568.958	6328.128
31	PLABT	W	62.727	134.461	218.843	351.599	430.547	605.147
32	PLBAT	W	565.444	1034.691	1451.432	1848.549	2268.548	2644.740
33	PAEV	14	1374.687	2012.065	2839.325	4009.300	4657.420	6037.467
34	EFFAEV	8	31.005	40.624	44.331	45.612	45.721	43.556
35	PEV	W	4496.149	6240.953	8201.433	10243.760	11987.825	14031.379
36	EFFEV		9.480	13.097	15.347	17.852	17.763	18.741
37	WLEV	PU	9.549	6.635	5.516	4.602	4.630	4.336
38	PHEAT	W	3501.106	4382.755	5481.014	6550.455	7569.062	8728.660
39	DEGEV	8	69.425	67.760	65.380	60.861	61.149	56.972
40	DELTABT	VCC	4.625	6.774	7.813	8.889	9.370	10.160
41	EBATO	VDC	101.363	101.363	101.363	101.363	101.363	101.363
42	PLACTR	W	762.933	809.372	970.716	1235.457	1369.214	1774.836
43	PLACOM	W	736.723	769.129	913.988	1158.436	1 278 . 856	1661.641

79-05-11 11:11:45 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	838.306	835.994	839.080	839.840	831.771	839.557
2	TMOT FT-#	4.531	9.443	13.206	17.552	21.933	26.474
3	TMOT N-m	6.144	12.802	17.905	23.798	29.737	35.894
4	PABAT W	1509.058	2355.117	3009.273	3944.380	4848.751	5850.609
5	I BAT ADC	15.663	24.959	32.230	42.628	52.831	64.353
6	PBAT W	4293.645	5916.504	7250.560	8629.701	10101.951	11700.777
7	IBAT ARMS	44.665	62,730	77.564	93.085	109.855	128.394
8	DELTAMOT PU	0.123	0.158	0.173	0.210	0.231	0.251
9	DELTAD2 PU	0.877	0.842	0.827	0.790	0.769	0.749
10	DEM VDC	1.428	1.548	1.825	1.587	2.009	2,482
11	PAMOT W	720.449	1410.850	1989.528	2623.022	3314.135	4112.924
12	PTR W	539.365	1120.809	1573.335	2093.013	2590.292	3155.820
13	W TOM9	1450.188	2357.526	3092.386	3754.982	4632.442	5548.404
14	EFFAMOT &	74.865	79.442	79.081	79.794	78.159	76.729
15	WLAMT W/N-m	29.474	22.656	23.245	22.272	24.341	26.665
16	EFFMOT %	37.193	47.542	50.878	55.740	55.915	56.378
17	WLMOT W/N-m	148.251	96.602	94.839	69.838	68.673	66.657
18	DEGM 's	50.320	40.155	35.664	30.146	28.458	25.872
19	PLMOT N	910.324	1236.717	1519.051	1661.969	2042.149	2392.584
20	PLCTR N	2839.811	3551.708	4147.342	4859.190	5448.495	6124.965
21	PACT W	2.406	5.920	9.495	14.619	20.174	26.926
22	PCT W	5.115	10.463	15.759	22.056	29.731	38.319
23	EMOT VRMS	20.756	23.516	25.184	25.658	27,281	29.836
24	EFFCTR %	33.775	39.847	42.650	43.512	45.857	47.419
25	WLCTR W/N-m	462.225	277.430	231.630	204.189	183.221	170.642
26	PATH1 W	2.524	6.195	9.919	14.082	20.540	28.033
27	PAD2F W	19.254	28.972	34.763	40.517	44.762	49.547
28	PTH1 W	34.035	49.579	62.294	79.377	97.365	119.186
29	PO2F %	35.749	51.783	61.492	71.314	80.653	88.835
30	PLCOM W	2764.912	3439.379	4007.797	4686.444	5240.746	5878.625
31	PLABT W	52.298	132.874	203.420	304.800	417.471	564.160
32	PLBAT W	425.261	839.303	1178.166	1453.411	1805.080	2245.718
33	PAEV W	1561.356	2487.990	3212.693	4249.180	5266.223	6414.768
34	EFFAEV %	34.545	45.049	48.972	49.257	49.187	49.196
35	PEV W	4718.906	6755.806	8428.726	10083.112	11907.031	13946.495
36	EFFEV %	11.430	16.590	18.666	20.758	21.754	22.628
37	WLEV PU	7.749	5.028	4.357	3.818	3.597	3.419
38	PHEAT W	3750.634	4788.426	5666.392	6521.160	7490.644	8517.549
39	DEGEV %	66.913	63.173	61.884	57.858	55.772	54.004
40	DELTABT VDC	3.339	5.324	6.312	7.150	7.902	8.767
41	EBATO VIC	99.681	99.681	99.681	99.681	99.681	99.681
42	PLACTR W	787.246	940.869	1014.201	1312.818	1522.630	1721.552
43	PLACOM W	763.062	899.782	960.019	1243.598	1437.154	1618.046
	- Dicori W	103.002	077.102	300.013	1243.390	143/.134	1010.040

79-05-11 11:16:06 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	1048.524	1046.037	1048.154	1046.017	1044.684	1044.216
2	TMOT FT-#	4.586	9.883	12.864	17.480	21.830	28.115
3	TMOT N-m	6.218	13.399	17.442	23.700	29.597	38.118
4	PABAT W	1742.125	2647.113	3496.194	4522.092	5587.550	7015.264
5	IBAT ADC	18.257	28.238	37.606	49.151	61.332	78.055
6	PBAT W	4649.888	6430.272	7599.693	9249.034	10782.165	12862.943
7	IBAT ARMS	48.812	68.575	81.650	100.349	118.077	142.654
8	DELTAMOT PU	0.140	0.170	0.212	0.240	0.270	0.299
9	DELTAD2 PU	0.860	0.830	0.788	0.760	0.730	0.701
10	DFM VDC	1.021	1.618	1.872	1.985	1.852	2.435
11	PAMOT W	905.529	1808.313	2354.576	3215.631	3974.863	5167.189
12	PTR W	682.781	1467.306	1914.495	2596.158	3237.967	4168.343
13	PMOT W	1808.865	2935.890	3710.320	4655.439	5560.406	6868.854
14	EFFAMOT %	75.401	81.170	81.310	80.736	81.461	80.669
15	WLAMT W/N-m	35.822	25.413	25.232	26.138	24.898	26.204
16	EFFMOT %	37.746	49.995	51.599	55.766	58.233	60.685
17	WIMOT W/N-m	181.097	109.565	102.962	86.889	78.469	70.846
18	DEGM &	49.939	38.407	36.540	30.927	28.515	24.774
19	PLMOT W	1126.084	1468.084	1795.825	2059.280	2322.439	2700.511
20	PLCTR W	2837.014	3486.373	3878.268	4577.237	5199.753	5963.332
21	PACT W	2.504	6.238	9.136	14.495	20.475	29.585
22	PCT W	5.468	10.969	15.312	22.507	30.006	41.233
23	EMOT VRMS	24.848	28.378	30.441	31.556	32.657	34.448
24	EFFCTR %	38.901	45.657	48.822	50.334	51.570	53.400
25	WLCTR W/N-m	456.249	260.193	222.358	193.132	175.687	156.444
26	PATH1 W	3.878	8.368	12.786	20.074	27.580	41.152
27	PAD2F W	16.342	25.823	28.915	34.528	37.178	40.320
28	PTH1 W	39.748	60.035	72.594	92.801	113.935	145.888
29	PO2F W	35.045	49.292	56.806	66.551	73.874	82.600
30	PLCCM W	2756.753	3366.077	3733.557	4395.377	4981.939	5693.610
31	PLAET W	55.997	134.041	207.605	318.807	453.071	672.429
32	PLBAT W	400.273	790.506	978.669	1328.875	1679.255	2245.982
33	PAEV W	1798.122	2781.155	3703.799	4840.899	6040.621	7687.694
34	EFFAEV %	37.972	52.777	51.690	53.630	53.603	54.221
35	PEV W	5050.161	7220.778	8578.363	10577.969	12461.420	15108.924
36	EFFEV %	13.520	20.328	22.318	24.543	25.984	27.589
37	WLEV PU	6.396	3.919	3.481	3.074	2.849	2.625
38	PHEAT W	3963.097	4954.456	5674.093	6636.517	7522.192	8663.842
39	DEGEV %	64.395	61.484	56.824	54.236	51.525	49.118
40	DELTABT VDC	3.067	4.747	5.521	6.486	7.387	8.615
41	EBATO VCC	98.490	98.490	98.490	98.490	98.490	98.490
42	PLACTR W	835.065	835.009	1136.105	1297.528	1600.206	1829.675
43	PLACOM W	812.340	794.579	1085.269	1228.431	1514.973	1718.618
		012.340	,,,,,,,	1000.200	1000.731		

79-05-11 11:20:44 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	1310.714	1306.036	1305.814	1303.291	1303.788	1301.771
2	TMOT FT-#	4.775	8.711	12.863	18.194	21.704	28.207
3	TMOT N-m	6.474	11.810	17.440	24.668	29.426	38.243
4	PABAT W	2070.418	3016.249	3992.598	5411.071	6355.133	8185.628
5	I BAT ADC	21.863	32.297	43.211	59.333	70.362	92.197
6	PBAT W	4785.595	6465.367	8074.911	10007.073	11332.282	13588.136
7	IBAT ARMS	50.595	69.202	87.295	109.527	125.159	152.504
8	DELTAMOT PU	0.187	0.218	0.245	0.293	0.316	0.365
9	DELTAD2 PU	0.813	0.782	0.755	0.707	0.684	0.635
10	DFM VDC	1.123	1.600	1.479	1.765	2.023	2.377
11	PAMOT W	1084.873	1963.194	2807.295	3944.567	4752.802	6247.727
12	PTR W	888.702	1615.348	2384.904	3366.316	4017.742	5213.466
13	PMOT W	2256.491	3396.241	4454.410	5799.978	6738.297	8315.917
14	EFFAMOT %	81.913	82.232	84.954	85.353	84.534	83.446
15	WLAMT W/N-m	30.299	29.452	24.220	23.421	24.980	27.045
16	EFFMOT %	39.384	47.563	53.540	59.049	59.625	62.693
17	MLMOT W/N-m	211.259	150.789	118.665	98.636	92.454	81.125
18	DEGM %	51.922	42.195	36.977	31.990	29.466	24.870
19	PLMOT W	1367.789	1780.893	2069.506	2433.162	2720.554	3102.451
20	PLCTR W	2525.004	3061.714	3608.940	4189.252	4571.391	5239.937
21	PACT W	2.656	5.884	10.028	16.096	20.967	30.718
22	PCT W	5.964	10.964	16.937	25.016	31.030	42.698
23	EMOT VRMS	31.277	34.678	36.474	38.532	39.916	41.592
24	EFFCTR %	47.152	52.530	55.164	57.959	59.461	61.200
25	WLCTR W/N-m	389.994	259.237	206.935	169.825	155.352	137.018
26	PATH1 W	5.298	10.748	17.970	28.807	38.079	57.301
27	PAD2F W	12.258	19.439	23.369	26.449	28.216	29.571
28	PTH1 W	47.326	64.988	85.040	111.952	131.028	168.526
29	PD2 F W	32.213	42.452	51.519	59.973	64.626	71.592
30	PLCOM W	2439.601	2943.309	3455.444	3992.311	4344.707	4957.121
31	PLABT W	59.897	130.770	217.855	370.257	500.859	797.969
32	PLBAT W	320.772	600.371	889.123	1261.715	1584.780	2183.326
33	PAEV W	2130.315	3147.019	4210.453	5781.328	6855.992	8983.597
34	EFFAEV %	41.717	, 51.329	56.642	58.236	58.602	58.033
35	PEV W	5106.367	7065.738	8964.034	11268.789	12917.062	15771.462
36	EFFEV %	17.404	22.862	26.605	29.877	31.104	33.056
37	WLEV PU	4.746	3.374	2.759	2.347	2.215	2.025
38	PHEAT W	3892.793	4842.607	5678.446	6622.414	7291.945	8342.388
39	DEGEV %	58.281	55.461	53.029	48.696	46.923	43.039
40	DELTABT VDC	2.740	4.049	5.042	6.240	7.118	8.655
41	EBATO VDC	97.439	97.439	97.439	97.439	97.439	97.439
42	PLACTR W	984.035	1049.698	1179.543	1456.842	1589.516	1918.212
43	PLACOM W	963.823	1013.627	1128.177	1385.490	1502.254	1800.123

79-05-11 11:29:34 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1 NTR RMM 2049.558 2049.695 2048.924 2046.712 2049.481 2047.546 3 TMOT FT-# 4.254 9.070 13.678 17.974 22.067 27.685 3 TMOT R-m 5.768 12.297 18.544 24.369 29.919 37.535 4 PARAT W 2651.719 4224.115 5900.545 7491.328 8905.767 11115.995 1BAT ADC 28.259 47.119 655.284 84.187 101.714 129.5999 6 PBAT W 5565.985 7717.001 9641.843 11377.575 12917.088 14976.193 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.000 19								
TMOT N-m	1	NTR RPM	2049.558	2049.695	2048.924	2046.712	2049.481	2047.546
PABAT W 2651.719 4324.116 5900.545 7491.328 8905.767 11115.995 First ADC 28.259 47.119 65.284 84.187 101.714 129.699 First ARMS 5565.985 7717.001 9641.843 11377.575 12917.088 14976.193 First ARMS 59.409 84.075 106.560 127.629 147.200 174.215 DELTAMOT PU 0.226 0.314 0.375 0.435 0.477 0.554 DELTAD2 PU 0.774 0.686 0.625 0.565 0.523 0.446 DETM VDC 0.789 1.514 1.540 2.053 1.839 2.217 PAMOT W 1533.393 3154.114 4544.041 5919.568 7149.144 9091.221 PTR W 1238.053 2639.530 3979.017 5223.285 6421.411 8048.543 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.280 LEFFANOT W 78.190 83.685 87.566 88.238 89.833 88.628 W LAMT W/N-m 59.870 41.847 30.469 28.572 24.290 27.512 EFFMOT W 34.608 48.026 54.963 59.458 63.069 66.836 TO MLMOT W/N-m 405.550 232.295 175.819 146.146 125.681 106.400 DEGM W 55.738 42.611 37.232 32.616 29.794 24.589 PLMOT W 2339.267 2856.493 3260.405 3561.480 3760.205 3993.738 PLCTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 PACT W 6.395 12.262 18.596 24.578 30.901 39.469 PACT W 6.395 12.262 18.596 24.578 30.901 39.469 PACT W 6.395 12.262 18.596 59.973 82.165 118.375 PACT W 6.395 12.262 18.596 10.291 10.399 10.019 8.618 PACT W 6.395 12.262 18.596 10.291 10.399 10.019 8.618 PACT W 6.895 12.262 18.596 10.291 10.399 10.019 8.618 PACT W 6.895 12.262 18.596 10.291 10.399 10.019 8.618 PACT W 6.895 12.262 18.596 10.591 10.991 10.019 10.01	2	TMOT FT-#	4.254	9.070	13.678	17.974	22.067	27.685
5 LBAT ADC 28.259	3	TMOT N-m	5.768	12.297	18.544	24.369	29.919	37.535
6 PBAT NIT RAMS 5565.985 7717.001 9641.843 11377.575 12917.088 14976.193 8 DELTAMOT PU 0.226 0.314 0.375 0.435 0.477 0.554 9 DELTADOZ PU 0.774 0.696 0.625 0.565 0.523 0.446 10 DFM VOC 0.789 1.514 1.540 2.053 1.839 2.217 11 PAMOT W 1533.393 3154.114 4544.041 5919.568 7148.144 9031.221 12 PTR W 1238.053 2639.530 3979.017 5223.285 6421.411 8048.543 13 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.280 14 EFFANOT % 78.190 83.685 87.566 88.238 89.833 88.628 15 WLAMT W/N-m 59.870 41.347 30.469 28.572 24.290 27.512 16 EFFMOT % 34.608 48.026 54.963 59.458 63.069 66.836 17 WLMOT W/N-m 405.538 232.29	4	PABAT W	2651.719	4324.116	5900.545	7491.328	8905.767	11115.995
6 PBAT NIT RAMS 5565.985 7717.001 9641.843 11377.575 12917.088 14976.193 8 DELTAMOT PU 0.226 0.314 0.375 0.435 0.477 0.554 9 DELTADOZ PU 0.774 0.696 0.625 0.565 0.523 0.446 10 DFM VOC 0.789 1.514 1.540 2.053 1.839 2.217 11 PAMOT W 1533.393 3154.114 4544.041 5919.568 7148.144 9031.221 12 PTR W 1238.053 2639.530 3979.017 5223.285 6421.411 8048.543 13 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.280 14 EFFANOT % 78.190 83.685 87.566 88.238 89.833 88.628 15 WLAMT W/N-m 59.870 41.347 30.469 28.572 24.290 27.512 16 EFFMOT % 34.608 48.026 54.963 59.458 63.069 66.836 17 WLMOT W/N-m 405.538 232.29	5	IBAT ADC	28.259	47.119	65.284	84.187	101.714	129.699
7 IRAT ARMS		PBAT W	5565.985	7717.001		11377.575	12917.088	
B		IBAT ARMS						
9 DELTAD2 PU 0.774 0.686 0.625 0.565 0.523 0.446 10 DFM VDC 0.789 1.514 1.540 2.053 1.839 2.217 11 PAMOT W 1583.393 3154.114 4544.041 5919.568 7149.144 9031.221 12 PTR W 1238.053 2639.530 3979.017 5223.285 6421.411 8048.543 13 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.280 14 EFFANOT % 78.190 83.685 87.566 88.238 89.833 88.628 15 WLAMT W/N-m 59.870 41.847 30.469 28.572 24.290 27.512 6EFMOT % 34.608 48.026 54.963 59.458 63.069 66.836 17 WLMOT W/N-m 405.550 232.295 175.819 146.146 125.681 106.400 18 DEGM % 55.738 42.611 37.232 32.616 29.794 24.589 19 PLOTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 19 PLOTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 19 PLOTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 21 PACT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 58.448 59.750 61.270 24 EFFCTR % 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 344.957 179.880 128.786 105.52 90.557 77.223 26 PATH1 N 9.887 24.519 41.955 59.973 82.165 118.375 77 PAD2F W 5.581 8.956 10.291 10.399 10.019 8.618 29.125 10.204 N 1897.422 243.169 427.440 669.014 953.405 145.823 12.2054 150.221 182.346 226.370 19.025 WLCTR W/N-m 343.957 179.880 128.786 10.291 10.399 10.019 8.618 37.422 243.169 427.440 669.014 953.405 1455.823 29.125 13.260 36.102 38.969 39.922 38.716 32.205 12.205 13.260 36.102 38.969 39.922 38.716 32.205 12.205 13.260 36.102 38.969 39.922 38.716 32.205 12.205 13.206 66.77 12.205 12.2								
DFM								
11 PAMOT W 1583.393 3154.114 4544.041 5919.568 7149.144 9091.221 12 PTR W 1238.053 2639.530 3979.017 5223.285 6421.411 8048.543 13 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.280 14 EFFANOT % 78.190 93.685 87.566 88.238 89.833 88.628 15 WLANT W/N-m 59.870 41.847 30.469 28.572 24.290 27.512 16 EFFMOT % 34.608 48.026 54.963 59.458 63.069 66.836 17 WLMOT W/N-m 405.550 232.295 175.819 146.146 125.681 106.400 18 DEGM % 55.738 42.611 37.232 32.616 29.794 24.589 19 PLNOT W 2339.267 2856.493 3260.405 3561.480 3760.205 3993.738 20 PLCTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2893.586 21 PACT W 2.714 6.617 11.038 15.833 20.928 29.125 22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 55.365 58.443 59.750 61.270 24 EFFCTR % 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.380 128.786 105.582 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAO2 F W 5.581 8.995 10.291 10.399 10.019 8.618 28 PTHI W 9.887 24.519 41.955 59.973 82.165 118.375 29 PO2 F W 5.581 8.995 10.291 10.399 10.019 8.618 29 PTHI W 9.887 24.519 41.955 59.973 82.165 118.375 20 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 77.91 122.054 150.221 182.346 226.370 39 PO2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.814 1537.578 1996.801 2626.667 33 PAEV W 2779.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV % 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV % 20.799 31.085 36.999 40.443 43.057 457.23 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 40 DZLTABT VDC 9.6931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931								
12 PTR W 1238.053 2639.530 3979.017 5223.285 6421.411 8048.543 13 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.280								
13 PMOT W 3577.320 5496.023 7239.422 8784.765 10181.616 12042.290 14 EFFRMOT ** 78.190 83.685 87.566 88.238 89.833 88.628 15 WLAMT W/N-m 59.870 41.847 30.469 28.572 24.290 27.512 16 EFFMOT ** 34.608 48.026 54.963 59.458 63.069 66.836 17 MLMOT W/N-m 405.550 232.295 175.819 146.146 125.681 106.400 18 DEGM * 55.738 42.611 37.232 32.616 29.794 24.589 19 PLMOT W 2339.267 2856.493 3260.405 3561.480 3760.205 3993.738 20 PLCTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 21 PACT W 2.714 6.617 11.038 15.833 20.925 39.0138 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
14 EFFANOT 8 78.190 93.685 87.566 88.238 89.833 88.628 15 W LAMT W/N-m 59.870 41.947 30.469 28.572 24.290 27.512 16 EFFMOT 8 34.608 48.026 54.963 59.458 63.069 66.835 17 WLMCT W/N-m 405.550 232.295 175.819 146.146 125.681 106.400 18 DEGM 8 55.738 42.611 37.232 32.616 29.794 24.589 19 PLMOT W 2339.267 2856.493 3260.405 3561.480 3760.205 399.3738 20 PLCTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2893.586 21 PACT W 6.395 12.262 18.596 24.578 30.901 39.469 22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRNS 48.050 53.341 56.365 58.449								
15 WLAMT W/N-m								
16 EFFMOT \$ 34.608 48.026 54.963 59.458 63.069 66.836 17 WLMOT 405.550 232.295 175.819 146.146 125.681 106.400 18 DEGM \$ 55.738 42.611 37.232 32.616 29.794 24.589 19 PLMOT W 2339.267 2856.493 3260.405 3561.480 3760.205 3993.738 20 PLCTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 21 PACT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 58.443 59.750 61.270 25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2 F W 5.581 8.956 10.291								
17 NLMCT W/N-m		The state of the s						
18 DEGM % 55.738 42.611 37.232 32.616 29.794 24.589 19 PLMOT W 2339.267 2856.493 3260.405 3561.480 3760.205 3993.738 20 PLCTR W 1983.988 2281.958 2388.228 2572.967 2709.338 2898.586 21 PACT W 2.714 6.617 11.038 15.833 20.928 29.125 22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 589.443 59.750 61.270 24 EFFCTR 8 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
19 PLMOT W 2339.267 2856.493 3260.405 3561.480 3760.205 3993.738 20 PLCTR W 1983.988 2211.958 2388.228 2572.967 2709.338 2898.586 21 PACT W 2.714 6.617 11.038 15.833 20.828 29.125 22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 58.443 59.750 61.270 24 EFFCTR 8 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATH1 W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2F W 5.531 8.956 10.291 10.399 10.019 8.618 28 PTH1 W 5.6913 87.791 122.054 150.221 182.346 226.370 29 PD2F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 366.386 774.193 1138.314 15.7578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV 8 45.199 57.792 62.880 66.008 65.131 64.021 37.91 1.323 1.323 1.325 37.025 37.								
20 PLCTR W 1983.988 2211.958 2388.228 2572.967 2700.338 2898.586 21 PACT W 2.714 6.617 11.038 15.833 20.828 29.125 22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 58.443 59.750 61.270 24 EFFCTR 8 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.880 128.786 105.532 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2F W 5.531 8.956 10.291 10.399 10.019 8.618 28 PTHI M 56.913 87.791 122.054 150.221 182.346 226.370 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
21 PACT W 2.714 6.617 11.038 15.833 20.928 29.125 22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 59.448 59.750 61.270 24 EFFCTR & 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2 F W 5.581 8.956 10.291 10.399 10.019 8.618 28 PTHI W 56.913 87.791 122.054 150.221 182.346 226.370 29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLABT W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLBAT W 386.386 774.193 1138.314 1537.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 96.931								
22 PCT W 6.395 12.262 18.596 24.578 30.901 39.469 23 EMOT VRMS 48.050 53.341 56.365 58.448 59.750 61.270 24 EFFCTR 8 64.271 71.220 75.083 77.211 78.823 80.409 25 MLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATHI N 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2 F N 5.581 8.956 10.291 10.399 10.019 8.618 28 PTH1 N 56.913 87.791 122.054 150.221 182.346 226.370 29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM Ø 1897.422 243.169 427.440 669.014 953.405 1455.823 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
23 EMOT VRMS 48.050 53.341 56.365 59.449 59.750 61.270 24 EFFCTR 8 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2 F W 5.581 8.956 10.291 10.399 10.019 8.618 28 PTHI W 56.913 87.791 122.054 150.221 182.346 226.370 29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.314 153.75.78 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV 8 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV 8 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.803 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV 8 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931								
24 EFFCTR \$ 64.271 71.220 75.083 77.211 78.823 80.409 25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2 F W 5.531 8.956 10.291 10.399 10.019 8.618 28 PTHI W 56.913 87.791 122.054 150.221 182.346 226.370 29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.569 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLBAT W 386.386 774.193 1138.314 15J7.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VIC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VIC 9.6931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.222								
25 WLCTR W/N-m 343.957 179.880 128.786 105.582 90.557 77.223 26 PATH1 W 9.887 24.519 41.955 59.973 82.165 118.375 27 PAD2 F W 5.581 8.956 10.291 10.399 10.019 8.618 28 PTH1 M 56.913 87.791 122.054 150.221 182.346 226.370 29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.569 2594.031 31 PLABT W 37.422 243.169 427.440 669.014 953.405 1455.823 22 PLBAT W 386.386 774.193 1138.314 1537.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 2455.869 2594.031 35 PEV W 5952.371 8491.193 10780.657 64.008 655.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV % 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV % 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931								
26 PATHI W 9.887 24.519 41.955 59.973 82.165 118.375 27 PADZF W 5.581 8.956 10.291 10.399 10.019 8.618 28 PTHI W 56.913 87.791 122.054 150.221 182.346 226.370 29 PDZF W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.422 243.169 427.440 669.014 953.405 1455.823 31 PLABT W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.314 151.7578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV % 45.199 57.792 62.880 64.008 65.131 64.02		WLCTR W/N-m						
27 PAD2 F W 5.581 8.956 10.291 10.399 10.019 8.618 23 PTH1 M 56.913 87.791 122.054 150.221 182.346 226.370 29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.314 15J7.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFREV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889								
28 PTHI								
29 PD2 F W 23.251 31.260 36.102 38.969 39.922 38.716 30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.314 15J7.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV \$ 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV % 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.8803 2.217 1.709 1.473 1.323								
30 PLCCM W 1897.429 2080.646 2211.477 2359.198 2455.669 2594.031 31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.314 1537.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931		PD2 F W						
31 PLAET W 37.422 243.169 427.440 669.014 953.405 1455.823 32 PLEAT W 386.386 774.193 1138.314 15J7.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.322	30	PLCCM W	1897.429	2080.646	2211.477	2359.198		
32 PLEAT W 386.386 774.193 1138.314 1537.578 1996.801 2626.667 33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 96.931		PLAST W						
33 PAEV W 2739.142 4567.284 6327.984 8160.342 9859.172 12571.818 34 EFFAEV & 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.803 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931	32	PLEAT W	386.386	774.193				
34 EFFAEV \$ 45.199 57.792 62.880 64.008 65.131 64.021 35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV \$ 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV \$ 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.122	33	PAEV W	2739.142	4567.284		8160.342		
35 PEV W 5952.371 8491.193 10780.657 12915.153 14913.889 17602.859 36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.322	34	EFFAEV %	45.199	57.792	62.880	64.008		
36 EFFEV & 20.799 31.085 36.909 40.443 43.057 45.723 37 WLEV PU 3.803 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV & 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.322	35							
37 WLEV PU 3.808 2.217 1.709 1.473 1.323 1.187 38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV % 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.322	36	EFFEV %	20.799	31.085	36.909	40.443		
38 PHEAT W 4323.255 5068.451 5648.633 6134.447 6469.543 6892.324 39 DEGEV % 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.322	37	WLEV PU	3.803		1.709			
39 DEGEV 8 53.982 46.212 41.302 36.816 33.893 28.581 40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1550.452 1741.846 2011.322	38	PHEAT W	4323.255					
40 DELTABT VDC 3.094 5.161 6.547 7.947 9.373 11.225 41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1560.452 1741.846 2011.322	39	DEGEV %	53.982					
41 EBATO VDC 96.931 96.931 96.931 96.931 96.931 96.931 96.931 96.931 42 PLACTR W 1066.676 1165.784 1349.054 1560.452 1741.846 2011.322	40	DELTABT VDC						
42 PLACTR W 1066.676 1165.784 1349.054 1560.452 1741.846 2011.322	41	EBATO VDC						
	42	PLACTR W						
	43	PLACOM W	1048.493	1125.693	1285.720	1474.247	1623.834	1855.204

79-05-11 12:47:47 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	2559.924	2560.091	2560.769	2560.056	2560.980	2559.902
2	TMOT FT-#	4.398	8.871	13.255	17.416	21.777	27.355
3	TMOT N-m	5.963	12.027	17.971	23.612	29.525	37.038
4	PABAT W	3166.570	5033.376	6774.246	8616.510	10334.210	12522.299
5	I BAT ADC	34.229	55.480	75.990	98.487	120.495	150.202
6	PBAT W	5855.537	8035.132	9906 .495	11626.114	13260.976	15021.999
7	IBAT ARMS	63.295	88.481	111.023	132.630	154.397	179.887
8	DELTAMOT PU	0.292	0.393	0.468	0.551	0.609	0.697
9	DELTAD2 PU	0.708	0.607	0.532	0.449	0.391	0.303
10	DFM VDC	0.773	1.270	1.308	1.331	1.751	2.216
11	PAMOT W	2068.126	3786.906	5411.433	7039.832	8739.160	11001.101
12	PTR W	1598.651	3224.408	4819.290	6330.418	7918.441	9942.644
13	PMOT W	4324.547	6575.614	8508.994	10082.845	11805.721	13607.832
14	EFFAMOT &	77.300	85.146	89.058	89.923	90.609	90.379
15	WLAMT W/N-m	78.728	46.770	32.950	30.044	27.797	28.539
16	EFFMOT %	36.967	49.036	56.638	62.784	67.073	73.066
17	WLMOT W/N-m	457.116	278.644	205.316	158.918	131.661	98.824
18	DEGM %	52.177	42.410	36.403	30.180	25.975	19,156
19	PLMOT W	2725.896	3351.206	3689.704	3752.428	3887.280	3665.188
20	PLCTR W	1526.087	1450.343	1383.196	1523.392	1428.862	1379.223
21	PACT W	2.405	5.413	9.290	14.035	19.397	27.421
22	PCT W	5.600	10.225	15.437	21.028	27.136	34.663
23	EMOT VRMS	58.260	65.031	68.172	69.193	71.033	71.973
24	EFFCTR %	73.854	81.836	85.893	86.726	89.026	90.586
25	WICTR W/N-m	255.915	120.592	76.969	64.517	48.395	37.188
26	PATH1 W	14.612	33.713	57.394	86.678	118.516	169.633
27	PAD2F W	3.849	4.648	4.482	3.818	2.985	1.754
28	PTH1 W	61.934	94.868	130.664	165.536	203.585	247.501
29	PD2F W	18.432	22.348	23.616	23.238	21.579	16.838
30	PLCOM W	1440.121	1322.902	1213.479	1313.590	1176.561	1080.221
31	PLABT W	98.340	258.451	473.949	777.482	1158.976	1804.497
32	PLBAT W	336.258	657.372	1011.686	1410.007	1902.895	2588.230
33	PAEV W	3264.910	5291.827	7248 -195	9393.992	11493.186	14326.796
34	EFFAEV %	48.965	60.932	66.490	67.388	68.897	69.399
35	PEV W	6191.795	8692.504	10918.182	13036.122	15163.871	17610.229
36	EFFEV %	25.819	37.094	44.140	48.561	52.219	56.459
37	WLEV PU	2.873	1.696	1.266	1.059	0.915	0.771
38	PHEAT W	4251.983	4801.549	5072.900	5275.820	5316.142	5044.411
39	DEGEV %	47.270	39.122	33.614	27.939	24.207	18.645
40	DELTABT VDC	2.873	4.658	6.237	7.894	9.618	12.014
41	EBATO VDC	95.383	95.383	95.383	95.383	95.383	95.383
42	PLACTR W	1096.520	1241.966	1354.866	1564.166	1577.225	1494.796
43	PLACOM W	1075.654	1198.193	1283.700	1459.634	1436.327	1295.988

EVA DC MOTOR TEST WITH UNBUFFERED BATTERY/CHOPPER SOURCE

79-05-11 12:52:03 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR	RPM	3199.838	3198.573	3201.180	3198.121	3196.525
2	TMOT F	T-#	4.521	8.746	13.475	17.728	26.413
3	TMOT	N- m	6.129	11.858	18.270	24.036	35.811
4	PABAT	W	3665.494	5700.165	7881.433	9655.529	13329.194
5	IBAT	ADC	40.051	63.668	90.167	112.908	163.350
5	PBAT	W	5963.440	7963.887	9902.011	11241.041	13285.784
7	IBAT A	RMS	65.179	88.945	113.188	131.301	163.030
8	DELTAMOT	PU	0.378	0.512	0.635	0.739	1.004
9	DE LT AD2	PU	0.622	0.488	0.365	0.261	-0.004
10	DFM	VDC	0.731	0.788	1.363	1.615	1.869
11	PAMOT	W	2610.379	4565.239	6753.314	8601.723	13064.114
12	PTR	W	2053.887	3971.917	6124.742	8049.947	11987.886
13	PMOT	W	4935.025	7257.205	9485.814	10848.384	12962.894
14	EFFAMOT	8	78.682	87.003	90.692	93.585	91.762
15	WLAMT W/	N-m	90.793	50.037	34.405	22.957	30.053
16	EFFMOT	8	41.619	54.731	64.567	74.204	92.479
17	W LMOT W/	N-m	470.066	277.060	183.969	116.429	27.225
18	DEGM	9	47.105	37.094	23.806	20.710	-0.781
19	PLMOT	W	2881.137	3285.288	3361.072	2798.437	975.009
20	PLCTR	W	1023.585	697.991	402.366	374.493	295.525
21	PACT	N	2.417	5.179	9.257	13.554	25.175
22	PCT	W	5.149	3.909	13.558	17.239	24.863
23	EMCT V	RMS	68.678	75.747	79.492	30.247	78.879
24	EFFCTR	*	82.755	91.126	95.797	96.507	97.570
25	WLCTR W/	N-m	167.001	58.364	22.024	15.581	8.252
26	PATH1	W	20.712	47.586	83.888	121.651	219.690
27	PAD2 F	W	1.937	1.607	0.880	0.365	0.002
28	PTH1	W	67.042	100.397	138.169	168.133	217.271
29	PD2 F	W	13.003	12.311	10.233	7.111	0.003
30	PLCON	W	938.391	575.875	240.406	132.010	53.384
31	PLABT	18	135.040	341.393	574.646	1058.439	2171.329
32	PLBAT	W	357.638	666.277	1063.110	1431.368	2162.814
33	PAEV	W	3800.534	5041.559	8556.079	10713.968	15500.523
34	EFFAEV	9	54.042	65.743	71.584	75.135	77.339
35	PEV	W	6321.078	8630.164	10965.122	12672.410	15448.598
36	EFFEV	*	32.493	46.024	55.857	63.523	77.599
37	WLEV	PU	2.078	1.173	0.790	0.574	0.289
38	PHEAT	W	3904.723	3983.279	3763.438	3172.931	1270.534
39	DEGEV	8	39.875	29.995	21.970	15.454	-0.336
40		VCC	3.372	5.362	7.482	9.374	13.292
41	EBATO	VDC	94.891	94.891	94.891	94.891	94.891
42	PLACTR	W	1052.948	1129.929	1118.815	1039.786	237.524
43	PLACOM	W	1027.881	1075.556	1024.790	904.215	-7.343

EVA DC MOTOR TEST WITH UNBUFFERED BATTERY/CHOPPER SOURCE

79-05-11 12:56:13 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

1	NTR RPM	4003.605	3997.343	3999.450
2	TMOT FT-#	4.994	8.555	13.399
3	TMOT N-m	6.771	11.599	18.167
4	PABAT W	4271.408	6089.028	8466.471
5	I BAT ADC	47.359	68.886	98.437
6	PBAT W	5805.059	7135.617	8453.959
7	IBAT ARMS	64.341	80.688	98.364
8	DELTAMOT PU	0.542	0.729	1.001
9	DELTAD2 PU	0.458	0.271	-0.001
10	DFM VDC	1.025	0.773	1.095
11	PAMOT W	3380.983	5327.442	8339.520
12	PTR W	2838.715	4855.697	7608.851
13	PMOT W	5470.425	6921.965	8277.678
14	EFFAMOT %	83.961	91.145	91.238
15	WLAMT W/N-m	80.092	40.670	40.220
16	EFFMOT %	51.892	70.149	91.920
17	WLMOT W/N-m	388.597	178.135	36.816
18	DEGM %	38.195	23.036	-0.747
19	PLMOT W	2631.710	2066.268	668.827
20	PLCTR W	330.194	206.827	166.416
21	PACT W	2.615	4.853	9.048
22	PCT W	4.578	6.620	8.984
23	EM OT VRMS	81.312	83.815	83.909
24	EFFCTR %	94.235	97.006	97.915
25	WLCTR W/N-m	48.769	17.831	9.161
26	PATH1 W	31.558	61.686	113.995
27	PAD2F W	0.522	0.150	0.002
28	PTH1 W	74.721	100.071	113.076
29	PD2 F W	6.767	4.396	0.004
30	PLCOM W	244.127	95.741	44.352
31	PLABT W	187.200	396.203	800.801
32	PLBAT W	345.510	543.583	799.603
33	PAEV W	4458.608	6485.231	9267.272
34	EFFAEV %	63.668	74.873	82.105
35	PEV W	6150.569	7679.201	9253.563
36	EFFEV %	46.154	63.232	82.226
37	WLEV PU	1.167	0.581	0.216
38	PHEAT W	2961.903	2273.096	835.243
39	DEG EV %	27.509	15.548	-0.148
40	DELTABT VDC	3.953	5.752	8.135
41	EBATO VDC	94.144	94.144	94.144
42	PLACTR W	887.911	756.537	117.033
43	PLACOM W	853.216	689.847	-6.013

APPENDIX D2

PARAMETRIC TEST DATA, BUFFERED BATTERY

MOTOR CHOPPER ENGINEERING DATA AND CALCULATED

DATA FOR PULSED DC POWER OPERATION

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

79-05-23 11:28:23 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22050

1	NTR	RPM	MOTOR ROTOR SPEED
2	TMOT	FT-#	MOTOR SHAFT TORQUE
3		VDC	BATTERY TERMINAL VOLTAGE, AVERAGE VALUE
4	EARM	VDC	MOTOR ARMATURE VOLTAGE, AVERAGE VALUE
5	E FM		MOTOR FIELD VOLTAGE, AVERAGE VALUE
6	IBAT'	ADC	BATTERY CURRENT, AVERAGE VALUE
7	IARM	ADC	MOTOR CURRENT, AVERAGE VALUE
8	ITHI	ADC	CURRENT IN THYRISTOR TH1(x), AVERAGE VALUE
9	ID2	ADC	CURRENT IN INVERSE BY-PASS DIODE D2(x), AVERAGE VALUE
10	VCT1	VDC	
11		VDC	
12		VDC	VOLTAGE DROP DURING ON-CYCLE OF D2(x), AVERAGE VALUE
	22.2		relation that bearing on order of be(x), intended these
15	PLAC4	W	POWER LOSS WITHIN COMMUTATING CAPACITOR C4. AVERAGE VALUE
16	MOTR T		MOTOR FIELD WINDING TEMPERATURE
17	CONTRO		DC CHOPPER PULSE REPETITION FREQUENCY
18		VRMS	BATTERY TERMINAL VOLTAGE, R.M.S. VALUE
19	EARM		MOTOR ARMATURE VOLTAGE, R.M.S. VALUE
20	E F.A		MOTOR FIELD VOLTAGE, R.M.S. VALUE
21	IBAT'		BATTERY CURRENT, R.M.S. VALUE
22	IARM		MOTOR CURRENT, R.M.S. VALUE
23		ARMS	CURRENT IN THYRISTOR TH1, R.M.S. VALUE
24	ID2	ARMS	CURRENT IN INVERSE BY-PASS DIODE D2, R.M.S. VALUE
25	IC4		CURRENT IN CAPACITOR C4, R.M.S. VALUE
26	ITH2		CURRENT IN THYRISTOR TH2, R.M.S. VALUE
27	ID4	ARMS	CURRENT IN DIODE D4, R.M.S. VALUE
23	VCT1		VOLTAGE DROP ACROSS CONTACTOR CT1, R.M.S. VALUE
29		VRMS	VOLTAGE DROP DURING ON-CYCLE OF TH1(x), R.M.S. VALUE
	EDF2		VOLTAGE DROP DURING ON-CYCLE OF D2(x), R.M.S. VALUE
31	VC4	VRMS	CAPACITOR C4 VOLTAGE (x) DURING COMMUTATION, R.M.S. VALUE
		***************************************	CATACITOR OF VOLTAGE (X) BURING COMMUTATION, R.H.S. VALUE
34	PLC4	W	HEAT LOSS IN CAPACITOR C4
300	11/1V	VRMS	
36	TRIV	VDC	VOLTAGE DROP ACROSS THE CURRENT SHUNT, AVERAGE VALUE
			TODINGS SHOW THE COUNTRY SHOWI, AVERAGE VALUE

(x) THIS DATA OBTAINED FROM EXTERNAL ADAPTOR CIRCUIT

Table D3. Nomenclature for Parametric Test Data, Buffered Battery.

EVA DC NOTOR TEST WITH BUFFERED BATTERY/CHOFPER SOURCE DC SERIES MOTOR, 10 HP, 3800 RFM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEO: 29 1755 1121; S.N.: 1276

MERADCOM, DREME-EA, FT. BELVOIR, VA 22060

15:02:01

3996.930	102.422	64.377	0.116	47.807	55.135	48.267	7.418	0.054	0.615	0.103	\$6.55	38.4	7.705	49.668	669.433	102.444	65.561	43.978	72.156	75.862	72.731	30.653	33.500	25.928	8.484	0.081	1.144	0.290	76.333	1483.031	2142.969	60.397	0.049	0.032
3200.238	102.495	.51.623	0.563	42.084	55.682	41.591	14.134	0.055	0.493	0.154	420.56	566.985	5.956	47.372	552.239	102.524	52.646	43.222	73.480	82,113	73.803	42.777	39.358	30.428	8.412	0.089	1.069	0.353	77.818	166.991	2299.040	70.701	0.050	0.028
2557.943	102.505	40.476	0.853	35.613	54.672	35.460	.19.212	0.052	0.400	0.202	455	215.067	5.470	45.608	256.138	102.590	41.528	41.479	899.69	83.656	71.013	51.861	40.521	31.788	7.916	0.091	1.005	0.398	76.931	563.431	3333.436	74.189	0.048	0.024
4.289	102.564	32.512	0.523	29.687	53.836	29.481	24.524	0.052	0.326	0.250	11.72	950.58	5.896	43.837	237.528	102.624	33.428	39.188	65.917	83.734	66.807	58.003	40.200	31.400	7.436	0.089	0.922	0.454	71.814	150:62	2229.690	73.462	0.046	0.020
1640.034	102.595	27.031	0.290	27.394	58.582	27.269	30.115	0.056	0.298	0.307	16.05	124	6.007	42.392	212.351	102.686	27.941	37.136	65.376	88.246	66.160	65.536	39.298	31.588	7.212	0.094	0.837	0.503	67.670	204:000	2179 209	72.883	0.045	0.019
1307.566	102.722	20.433	0.537	21.051	51.580	20.788	30.381	0.051	0.230	0.374	40.00	144.320	10.971	41.276	172.597	102.746	21.242	34.463	56.870	80.589	58.577	63.924	35.667	28.544	7.264	980.0	177.0	0.532	60.09	49:45	1959.866	49.388	0.040	0.014
1047.528	102.772	16.390	0.311	17.99.6	50.303	17.302	33.293	0.050	0.195	0.424	4	1	4.730	40.301	152.303	102.803	17.139	32.778	52.457	79.007	53.259	63.804	33.801	27.100	7.704	0.084	0.722	0.560	55.589	293.62	1821.323	33.684	0.037	0.012
840.842	102.828	13.521	1.062	15.735	52.537	15.137	35.213	0.052	0.174	0.488	945.0	150.001	4.776	39.609	137.392	102.860	14.163	31.248	48.505	77.737	50.105	64.710	31.755	25.908	8.084	0.083	0.685	0.593	52.442	64.063	424.0147	32.026	0.034	0.010
4.604	103.073	10.692	0.027	12.850	49.627	13.216	37.567	0.054	0.152	0.562	4:4	101.252	4.741	38.728	119.279	102.965	11.452	29,100	44.092	75.296	46.061	63.441	30.070	24.336	8.448	0.081	0.644	0.625	48.487	189:67	1589.110	29.943	0.031	600.0
RPM	201	VEC	8	ADC	ADC	ADC	ADC	VDC	VEC	VDC.	Z	3	3	EMP C	LR H2	VEMS	VRMS	VRMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARNIS	VRMS	VRMS	VRMS	VRMS	3	3	3	VRMS	VDC
THOL	EBAT	EARM	EFM	IBAT	IARM	[TH]	ID2	VCT1	ETH1	EDF2	PLABF	FLACOM	PLAC4	MOFR T	CONTRO	EBAT	EARM	EFM	IBAT	IARM	I'TH]	102	104	1TH2	104	VCF.	ETH1	EDF2	VC4	PLBT	PLCOM	PLC4	LINI	LNIA
- ~	٣	4	s	9	7	20	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	52	56	27	28	58	30	31	32	33	34	35	36

EVA DC MCTOR TEST WITH BUFFERED BATTERY/CHOFPER SOURCE LC SERIES MOTOR, 10 HP, 3800 RFM EALDOR ELECTRIC CO., ST. LOUIS, MO. SPEC: 29 1755 1121; S.N.: 1276

MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

15:09:19

4003.467 8.736	74.597	70.861	77.751	70.653	6.958	0.074	0.812	0.069	200-272	2000	4.242	56.495	500.512	102.1.81	75.401	40.343	95.998	96.96	94.084	31.076	33.059	26.196	8.844	0.099	1.164	0.260	74.519	1910.2961	2090.369	32.545	0.063	0.047
3200.502	60.114	62.459	78.093	62.318	16.787	0.076	0.670	0.149	24.216	251.066	4.921	53.627	499.863	102.291	61.085	42.747	95.907	104.945	95.499	48.719	41.524	33.612	9.296	0.110	1.067	0.335	82.818	695.969	1991.05	75.256	0.065	0.042
2561.809 8.763	48.249	53.213	79.386	53.601	24.992	0.073	0.549	0.214	119.809	267-135	4.126	51.512	328.971	102.400	49.454	42.046	93.219	110.258	93.437	63.300	45.657	36.800	9.272	0.113	0.999	0.400	83.012	450.034	3067.030	83.530	0.064	0.035
2049.004	39.045	0.823	78.784	45.319	33.257	0.074	0.462	0.271	143.697	-	3.914	49.224	270.670	102.459	39.857	40.637	89.468	1111.743	88.078	73.672	45.857	37.496	8.744	0.114	0.928	0.449	79.895	466.742	9855.820	85.342	0.061	0.030
1636.235 8.920	31.241	38.425	78.009	38.200	39.642	0.074	0.388	0.333	133.163	16.616	4.363	47.795	247.107	102.546	32.086	39.016	82.687	111.352	82.498	80.278	45.295	36.876	7.988	0.113	0.867	0.504	76.658	137.15	146.6364	83.912	0.057	0.025
1310.261 8.867 102.534	24.920	32.004	76.331	31.311	44.308	0.071	0.328	0.396	115.245	191.526	5.225	46.056	216.630	102.608	25.962	37.579	75.165	108.246	75.987	83.944	44.333	35.368	7.444	0.110	0.830	0.547	71.868	994:924	156.1655	80.280	0.053	0.021
1046.758 8.351 102.523	19.814	26.459	72.093	25.989	46.823	0.069	0.262	0.471	15:16	164.49	10.463	44.735	190.434	102,621	20.600	35.619	088.99	101.762	67,333	82.775	41.304	32.772	7.244	0.102	0.791	0.579	66.216	451.686	2122.403	999.99	0.046	0.017
838.945 8.962	16.480	23.494	171.37	22.286	51.063	0.068	0.230	0.529	281.98	142.650	5.409	43.459	170.508	102.674	17.078	33.728	62.346	103.598	63.996	83.903	39.859	31.892	7.352	0.100	0.750	909.0	61.792	360.022	2020.207	39.057	0.044	0.015
668.499 8.629	13.161	19.723	73.511	19.094	53.536	0.065	0.191	0.565	18:191	120:02	-5.269	42.487	146.127	102.748	13.876	31.065	57.191	696.86	58.658	84.467	35.968	29.488	7.764	0.097	0.683	0.621	55.172	129.1	1861.861	36.172	0.040	0.012
FF-#	VIC	ADC	ADC	ADC	ADC	VDC	VIC	VDC	×	3	3	EMP C	LR HZ	VRMS	VRMS	VRMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	VRMS	VRMS	VRMS	V RMS	3	3	3	VRMS	VDC
NTR	EARM	EFM	IARM	ITHI	102	VCI'1	ETH1	EDF2	PLABT	PLACCM	FLAC4	MOTR T	CONTRO	EBAT	EARM	EFM	IBAT	IARM	I TH]	102	IC4	1TH2	104	VCT1	ETH1	EDF2	VC4	PLBT	FLCOM	PLC4	VINT	LINIA
-76	4	9 0	1	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30	33	32	33	34	32	36

EVA DC MOPOR TEST WITH BUFFERED BATTERY/CHOFPER SOUNCE IC SERIES MOTOR, 10 HP, 3800 REM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

														.1												_	_	_							_	
	3997.680	13.707	101.991	81.594	1.428	96.085	102.830	97.960	5.907	960.0	0.934	0.045	100	144 876	4.405	65.686	339.044	102.029	82.659	34.321	117.271	120.747	118.651	28.075	30.511	24.900	8.780	0.116	1.234	0.212	73.481	2001.198	1834-146	30.745	0.079	990.0
	3198.551	13.655	102.108	66.063	.1.070	84.445	104.123	86.449	17.679	0.100	0.769	0.126	100	254 906	9.797	63.346	425.563	102.219	898.99	40.925	121.684	131.939	122.311	54.640	44.453	36.240	10.480	0.134	1.100	0.317	86.556	18:12	2961.090	45.136	0.083	0.057
	2558.438	12.856	102.354	52.498	1.553	69.534	97.978	68.993	28.778	0.095	0.628	0.205	44.64	284 713	3.055	60.561	324.588	102.444	53.375	42.176	113.820	131.548	113.515	72.182	48.726	40.620	10.524	0.136	1.013	0.391	89.565	\$8.125	3266.937	90.412	0.078	0.046
	2049.204	13.433	102.391	42.643	1.078	60.762	101.023	60.470	39.883	0.097	0.534	0.275	44.94	280 001	2.078	58.589	277.803	102.555	43.638	41.547	109.869	136.353	109.795	87.549	52.778	43.056	10.432	0.141	0.971	0.450	89.647	55:35	33 20 378	96.261	0.076	0.041
	1636.340	13.115	102.504	34.310	1.202	49.743	98.211	49.337	48.747	0.094	0.440	0.350	120.02	247 383	2.518	56.702	261.385	102.689	35.229	40.458	99.919	132.818	99.300	94.880	52.517	42.324	9.576	0.137	0.917	0.503	87.130	194.199	3218156	95.568	690.0	0.033
	1305.852	13.106	102.666	27.471	1.347	41.528	96.596	41.014	55.586	0.092	0.360	0.415	1	216.491	2.723	55.479	237.652	102.769	28.432	38.640	90.150	129.126	90.626	99.492	50.310	40.680	8.508	0.132	0.884	0.543	82.216	567.74	3068.440	91.859	0.062	0.027
	1048.966	13.600	102.653	22.546	1.294	36.096	99.387	34.524	61.880	0.093	0.318	0.479	45.55	186.800	10.428	53.951	234.250	102.706	23.438	36.411	85.175	129.985	85.369	104.023	48.966	39.192	7.792	0.130	0.840	0.573	76.555	45.53	2925410	84.862	0.059	0.024
	836.978	13.221	102.733	18.109	096.0	29.988	95.500	29.566	66.190	0.089	0.264	0.514	-153.695	164.99	11.507	53.023	245.139	102.775	19.060	34.080	77.050	125.942	78.191	105.111	45.817	36.696	7.332	0.126	992.0	0.592	68.630	45.016	166*6624	61.353	0.054	0.020
	666.791	13.130	102.763	14.808	1.086	25.775	95.271	25.499	998.69	0.089	0.229	0.540	145.545	1	5.886	52.559	249.811	102.805	15.688	31.737	71.715	123.559	73.237	106.098	42.266	34.580	7.124	0.123	0.699	0.607	61.961	629:10	2002-12905	42.013	0.050	0.017
	RPM	F.T-#	VDC	VDC	VDC	ADC	ADC	ADC	ADC	VDC	VDC	VDC	3	3	3	EMP C	CR HZ	VRMS	VRMS	VEMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	VRMS	VRMS	VRMS	VIMS	3	3	3	VRMS	VDC
-	NTR	TOMT	EBAT	EARM	EFM	1 BAT	IARM	[HI]	102	VCF1	ETH1	EDF2	PLA BT	PLACOM	PLAC4	MOTR T	CONTRO	EBAT	EARM	EFM	IBAL	IARM	I TH1	102	104	1TH2	104	VCT1	ETH1	EDF2	VC4	PLBT	PLCOM	PLC4	VINT	VINT
	-	7	٣	4	2	9	1	80	6	10	=	12	13	14	15	16	17	18	13	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36

EVA DC MCTOR TEST WITH BUFFERED BATTERY/CHOFPER SOURCE DZ SERIES MOTOR, 10 HP, 3800 RFM BALDOR ELECTRIC CO., ST. LOUIS, MO SPEG: 29 1755 1121; S.N.: 1276

MERADCOM, DRCME-LA, FT. BELVOIR, VA 22060

15:19:34

3998.282 17.600 101.654 86.189 11.655 116.2024 117.492 4.139 0.027 283.093 123.093 1.007 1	29.477 131.714 133.684 24.490 26.981 21.235 0.135 0.182 0.182 0.182 0.182 0.089 0.089
195.856 18.084 102.075 70.040 107.885 126.390 107.035 17.534 0.110 0.842 0.842 0.842 0.110 164.755 251.465 17.323 360.313 70.681	38.851 143.690 153.912 145.260 57.278 45.336 37.278 11.128 0.162 11.140 0.298 87.725 87.725 87.725 0.098
2561.161 102.272 56.534 1.209 89.752 122.108 90.296 31.938 0.711 0.711 225.738 291.933 102.472 57.293	41.346 138.976 139.215 139.215 81.064 54.122 44.624 12.112 0.169 0.169 0.095 0.095
2048.242 18.253 102.538 45.952 1.929 77.028 46.622 0.597 0.597 279.588 293.238 66.025 46.935 46.935	41.201 132.175 161.175 161.175 18.2.744 19.572 58.595 48.248 11.888 11.888 10.698 10.698 105.859 105.859
1641.249 17.833 102.703 36.948 1.613 63.418 56.765 0.192 0.347 300.758 268.869 102.869 37.996	119.317 119.317 119.847 119.848 109.521 69.418 47.888 10.888 10.888 10.888 10.888 10.888 10.888 10.990 10.990 10.990 10.083 10.083
1304.090 18.094 102.881 29.878 1.550 53.659 120.655 53.553 66.379 0.418 0.412 0.418 307.476 233.659 66.379 0.418 307.476 233.659 84.193 102.986	38.624 108.866 155.201 110.239 116.470 58.094 46.52 9.656 0.162 0.545 91.546 91.546 91.546 91.546 91.546 0.048 0.076
1042.576 17.877 102.948 24.230 1.766 45.246 73.914 0.355 0.469 637.242 206.337 206.337 206.333 103.169 25.299	36.409 100.922 152.525 101.747 120.417 54.262 44.176 8.544 0.570 0.570 83.284 83.284 98.031 0.070
838.193 18.871 103.046 20.240 1.043 41.649 84.234 0.318 0.503 726.373 726.373 191.741 11.741	34.071 98.715 99.725 99.725 129.581 52.958 43.176 8.012 0.162 0.590 77.603 77.603 89.721 0.069
665.133 17.912 103.053 16.308 1.251 33.319 87.178 0.263 0.263 609.655 167.688 87.808 87.808 87.178 10.263 1	31.791 89.127 152.271 90.040 129.077 48.585 39.912 7.144 0.152 0.072 69.275 869.275 869.275 2261.444
REPA VDC VDC VDC VDC VDC VDC VDC VDC	ARMS ARMS ARMS ARMS ARMS ARMS ARMS ARMS
NTR TNOT EBARM EBARM EBAM ITHI ITHI ID2 VCTI EDF2 EDF2 PLACCM PLACCM PLACCM PLACCM ECONTRO CONTRO CONTRO CONTRO	EFM 11BAT 11DA 11TH 11D2 11C4 11TH 11TH 11TH 11TH 11TH 11TH 11TH 11T
10040000000000000000000000000000000000	0.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2

EVA DC MCTCR TEST WITH BUFFERED EATTERY/CHOPPER SOURCE DC SERIES NOVOR, 10 HP, 3800 KPM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

15:27:00

4002.818 19.741 101.755 88.964 1.636 127.830	3.200 0.130 1.047 0.016	4.503 85.086 178.916	101.813 89.626 25.755 140.801	142.389 22.094 24.373 19.660 7.496 0.143	1.221 0.161 69.137 2324.861 1386.454	0.095
3194.238 22.179 101.225 73.123 1.988 124.573	127.123 17.036 0.150 0.912 0.096	5.727 81.549 321.932	101.451 73.903 36.396 162.125	161.497 55.627 45.376 36.680 11.440	1.198 0.274 87.516 2322.286	0.110
2562.791 22.650 101.740 59.843 1.830 111.672	112.822 33.670 0.151 0.783 0.180	0.482 0.482 78.545 262.811	101.945 60.633 40.150 163.008	164.530 86.824 56.990 47.192 13.272	1.140 0.371 103.291 1001.328	0.111
2048.756 22.297 102.221 48.309 2.147 92.292	94.310 50.729 0.149 0.655 0.265	0.925 74.700 282.788	102.475 49.272 40.594 150.570	151.448 107.628 62.627 51.680 12.940 0.198	1.097 0.442 107.961 1302.667 3299.656	0.103
1634.162 23.066 102.473 39.299 1.597 79.468	80.627 64.581 0.148 0.556 0.340	1.147 71.726 280.113	102.669 40.452 39.645 142.185	142.470 123.076 65.416 53.088 12.040	1.047 0.499 106.000 1434.811 3256.030	0.098
1303.915 22.130 102.667 31.676 1.646 65.749	65.032 76.290 0.138 0.460 0.460	0.114 69.480 525.205	32.788 38.389 38.389 124.994	130.156 130.366 62.447 50.384 10.436	0.968 0.541 97.167 1338.113 3161.923	0.090
1043.032 22.234 102.950 25.661 1.572 54.764	54.610 83.718 0.139 0.390 0.452	0.896 67.292 478.384	103.113 26.905 36.117 116.910	137.640 134.555 58.936 48.444 9.432 0.184	0.885 0.565 89.327 1275.500 2994.500	0.081
838.930 22.693 103.017 21.351 1.628 49.313	48.993 93.695 0.142 0.343 0.489	7.850 65.255 435.768	103.178 22.678 33.936 111.955	112.767 142.370 57.151 46.856 8.624 0.185	0.821 0.587 82.740 -1303.968 -2850.958	0.078
669.607 22.130 103.050 17.461 1.697 41.279	40.671 99.586 0.137 0.298 0.523	10.057 63.118 388.042	103.210 18.808 31.832 103.851	103.890 144.041 53.380 44.024 7.708 0.178	0.752 0.606 74.795 1218.030 2602.976	0.072
FF-# VEC VEC VEC AEC		m -1				
NTR TMCF EBAT EARN EFN IBAT	ITHI ID2 VCTI ETHI EDF2 PLAEF	PLAC4 MOTR 1 CONTRO	ELAT EARN EFN 18AT	102 102 104 17H2 104 VCF1	ETHI EDF2 VC4 PLBT PLCOM	VINT
1084596	8 6 0 T 2 E E	15	18 20 21 22	25 25 27 28	33233	36 35

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOFPER SOURCE DC SERIES NOFOR, 10 hP, 3800 RPM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

METADCCA, CREME-EA, FT. BELVOIR, VA 22060

15:34:05

26.185 26.185 100.379 95.973 2.197 159.614 169.614 10.272 0.152 1.183 0.023 1.0000 1.00000 1.00	0.024 0.024 0.151 0.023 36.449 31.966 4.594 0.107
3199.500 26.987 100.713 76.192 2.404 150.669 152.936 13.915 0.070 0.070 145.936 12.899 92.465 214.956 100.746 76.706 182.706 185.013 52.706	11.408 0.193 1.217 0.253 86.862 2152.691 0.1257
2559.315 26.962 101.388 61.370 130.635 130.635 130.635 130.635 130.635 101.62 101.75 101.549 62.688 180.881 180.881 180.881 180.881 200.066 182.506 182.506 182.506 182.506	107.188 107.188 107.188 107.188 1241.729 58.268 0.123
2043.506 28.071 101.777 50.816 113.971 115.645 53.695 0.166 0.250	1.159 1.159 1.159 1.159 1.15,108 1.269,135 1.09,782
1638.122 28.715 102.226 41.653 2.172 98.442 170.792 99.122 0.368 0.368 0.327 275.553 82.254 82.2554 102.495 102.495 165.696 208.806 165.696 16	12.988 0.217 1.103 1.103 1.103 1.103 1.203 1.203 1.24.009 0.114
1310.158 27.136 102.605 33.479 2.149 78.695 161.721 79.624 0.158 0.387 0.387 1.512 1.512 1.512 1.512 1.512 1.513 1	11.352 6.205 1.009 10.529 10.329 1210.664 121.664 0.101
1041.888 27.331 102.927 27.307 1.721 65.117 66.878 93.746 0.159 0.159 0.437 1432 0.159 0.437 1432 0.159 0.15	10.260 0.204 0.927 0.557 95.709 117.084 0.094
837.397 27.842 102.904 22.653 1.853 166.028 60.058 106.484 0.160 0.360 0.360 1526.099 224.304 103.225 24.304 103.225 24.304 131.758 131.758 132.360 159.086 62.427	9.344 0.206 0.864 0.579 89.222 2963.094 111.176
669.639 27.303 103.060 18.650 18.760 52.419 165.913 50.311 111.501 0.163 0.163 0.163 1432.434 196.089 1003.337 20.331 20.331 20.331 20.331 20.331 20.331 20.337 20.331 20.337 20.331 20.337 20.	8.332 0.205 0.205 0.600 81.125 1572.726 95.070
R P M FT - # V D C V	ARMS VRMS VRMS VRMS VRMS VRMS VRMS VRMS V
NTR THOT EEATH EEATH EEATH EEATH EEATH IDAN ITHI ID2 VCTI ECTI ED52 PLACT PLACT PLACT PLACT PLACT PLACT PLACT ID4 ITHI ID5 ID7 ITHI ID7 ID7	104 VCT1 ETH1 EDF2 VC4 PLC6 PLCOM
22222222222222222222222222222222222222	27 28 33 33 34 36 36

EVA DE MOTOR TEST WITH BUFFERED BATTERY/CHOFPER SOURCE DC SERIES NOTOR, 10 HP, 3800 RFM EALDOR ELECTRIC CO., ST. LOUIS, NO SPEC: 29 1755 1121; S.N.: 1276

MERADCOM, DRUME-EA, FT. BELVOIR, VA 22060

15:39:33

79-06-22

3969.083 22.148 96.531 96.531 148.326 149.131 150.227 0.199 0.199 0.199 1.280 0.199 1.280 0.199 1.280 0.199 1.280 0.199 1.280 1.280 1.280 1.280 1.280 1.380 1.380 1.380 1.401	
3204.340 27.891 96.233 77.214 16.21891 164.103 10.230 10.2	29.448 10.344 0.259 0.259 1.311 0.259 1.311 8.5.294 1.319 1.311 0.259 0.259 0.259 0.259 0.259 0.259
2561.240 28.428 96.068 63.094 2.001 147.981 147.857 31.596 0.0948 0.160 0.948 0.160 0.948 0.950 6.950 6.950 6.950 6.950 8.382 96.382 195.837	56.288 46.744 14.156 0.264 0.358 106.358 30.34 55.497 0.099
2049.063 27.423 27.423 96.789 50.809 12.173 122.173 53.518 0.793 0.793 0.793 0.793 241.541 5.142 5.142 5.142 5.142 5.142 5.142 136.849 97.134 97.134	53.956 13.956 13.956 0.259 0.259 1.232 1.232 1.326 1.326 62.733 0.081
28.525 28.525 97.157 41.683 105.682 105.682 105.747 72.317 0.681 0.681 0.681 1.868 51.651 287.473 97.479 42.560 37.528 169.909	56.376 12.876 0.261 1.165 1.1178 1.1178 1.
1301.841 27.361 33.233 33.233 33.233 173.534 86.227 86.220 1.271 1.271 46.808 277.210 97.862 34.296 36.235.672 153.874	103 925 016 016 016 016 016 016 016 016 016 016
27.495 97.843 27.495 97.843 17.533 17.533 17.533 17.525 99.431 0.489 0.489 0.489 1.306 0.489 1.306 1.306 0.489 1.306 1.3	53.332 10.340 0.258 0.996 0.996 0.581 96.510 118.392 0.098
840.394 27.807 22.601 1.966 65.073 175.415 67.415 6	51.284 9.364 0.285 0.926 0.926 0.926 113.957 0.092
666.336 28.122 98.091 18.633 19.58 56.754 176.563 55.997 120.620 0.174 0.532 18.40 32.763 430.875 98.365 19.904 30.977 127.361 127.361	8.508 8.508 8.508 0.214 0.846 0.846 0.846 1.579.222 2631.771 106.324 0.087
R R P W V V V V V V V V V V V V V V V V V V	ARMS ARMS ARMS VRMS VRMS VRMS VRMS W W VRMS VDC
NTR EBAT EBAT EFFM IBAT IDD VCTI IDD VCTI ETHI EFHI EPLACH PLACON PLACON PLACON EBAT COUTRO EBAT EFF IDAR EFF IDAR IDAR	ICA ITH2 ID4 VCT1 ETH1 EDE2 VCA PLCON FLCON
222 222 222 233 233 233 233 233 233 233	25 27 27 27 28 29 30 31 31 31 31 32 36

EVA IC MCTOR TEST WITH BUFFERED BATTERY/CHOFPER SOUNCE DC SERIES MOTOR, 10 HP, 3800 RFM EALDOR "ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.N.: 1276

09	26.847 10.24.341 1.829 1	39.131 0.058 0.016
1, VA 22060	56.536 10.1756 1.383 1.383 1.383 1.383 1.383 1.29.099 0.132 0.132 0.132 0.132 0.132 0.132 0.132 1.00.706 1.00.7	34.689 0.049 0.012
Fr. BELVOIR,	52.234 10.259 10.957 14.389 116.584 106.684 0.107 0.107 12.379 10.975 141.752 143.263 100.975 143.263 100.975 139.947 57.211 139.947 57.211 139.947 57.211 139.947 67.211 130.975 130.	29.976 29.976 0.039 0.009
DRDME-EA, I	59.939 13.148 10.1312 3.116 0.910 10.066 87.893 0.1093 0.1093 0.1093 10.1998 4.382 125.337 14.382 110.1993 110.1993 110.1993 110.1993 110.166 125.337 125.337 135.268	26.527 26.527 0.033 0.007
MERADCOM,	55.668 8.274 101 2.390 6.836 72.390 6.836 6.945 6.945 6.945 6.945 10.065 9.065 9.065 10.065 1	21.262
15:44:57	3.684 101.797 10.026 5.071 47.002 42.298 0.061 0.061 0.065 39.824 39.824 39.824 39.824 31.771 101.738 2.510 12.510 12.510 12.510 12.510 12.510 12.510 12.510 12.510 12.510 12.510 13.610 14.040 6.055 0.055 0.055	16.000 0.017 0.003
15:4	R P P P P P P P P P P P P P P P P P P P	VRMS
9-06-22	Third	PLCOM PLC4 VINT
19-1	25	36 34

EVA LC MCTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM EALEOR ELECTRIC CO., ST. LOUIS, MO SPEC: 29 1755 1121; S.M.: 1276

5

DERADCCM, DRIME-EA, FT. BELVOIR, VA 22060

15:48:57

96	27	100.024	S	-	27	169	27	143.	0.166	0	0.624	7	1						21.453	90.270	197.547	91.233	177.695	40.922	36.528	7.348	0.196	0.532	999.0	49.404	159-155	35-1-1-1	41.597	0.062	0.018
98.005	21.516	100.384	5.165	1.348	20.551	138.369	20.018	118.055	0.133	0.150	0.631	607.09	100	5.483	46.197	189.091	100.479	6.729	20.982	72.116	163.815	73.217	149.761	35.265	32.004	9.560	0.162	0.485	0.665	43.727	150.00	458.934	35.945	0.050	0.013
99.686	17.457	100.721	4.630	1.215	16.997	119.913	15.137	103.638	0.114	0.126	0.636	250.499	36.829	5.315	42.559	167.073	100.759	5.345	20.515	60,962	142.740	62.015	130,991	31.454	28.900	10.164	0.139	0.455				•	32.218		
98 .295	12.832	100.935	3.934	0.803	11.880	96.814	11.408	84.546	0.087	0.107	0.636	1000	1	5.012	40.729	140.305	100.998	4.982	19.675	48.284	116.215	49.822	106.541	27.282	24.780	9.928	0.113	0.420	999.0		T	+	27.735		
103.588	9.095	101.184	3.282	0.864	8.804	69.055	8.023	63.514	990.0	0.088	0.645	156.95	4	4.757	40.253	64.859	101.187	4.161	18.923	37.452	88.207	38.600	81.748	22.287	20.680	8.588	0.086	0.385	0.664	33.658	100.000	1153.6861	23.505	0.027	0.005
102.372	4.706	101.502	2.475	0.664	5.633	48.785	4.727	43.827	0.044	0.061	0.641	25:25	1	4.530	40.444	43.476	101.457	3.270	17.287	27.663	61.370	27.641	56.654	17.392	15.384	098.9	090.0	0.341	0.658	29.700	139.62	196.11	18:187	0.019	0
KPM	F.F									VEC		3	3	3	EMP C	LR HZ	VRMS	VRMS	VEMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	VRMS	VRMS	VRMS	VRMS	3	3	3	VRMS	VBC
NTR	TMOT	EBAT	EARM	EFM	I EAT	IARM	1TH1	102	VCF1	ETH1	EUF2	PLA Br	PLACOM	PLAC4	MOTR TEMP	CONT'RO.	EBAT	EARM VRMS	EFM	I BAT	IARM	ITHI	102	IC4	ITH2	ID4	VC.F.1	ETH1	ED F2	VC4	PLLST	PLCOM	PLC4	LINI	LINIA
-	7														16	17	18	19	20	21	22	23	24	25	56	27	28	59	30	31	32	33	34	35	36

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE DC SERIES MOTOR, 10 HP, 3800 RPM EALDOR ELECTRIC CO., ST. LOUIS, MO SPEO: 29 1755 1121; S.N.: 1276

MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

15:54:27

79-06-22

	27.303					171.540	32.429	137.814	0.168	0.214	0.598	150.076	113.666	6.334	53.395	264.743		9.867	23.827	97.291	197.371	97.622	175.077	44.975			0.199		0.653	55.491	849487	1950.370	45.171	990.0	0.
201.147	٦.	٦.	4	1.7	3.5	ဘ	24.925	•	0.141	0.173	0.605	154:400	497.76	5.933	48.779	235.674	100.159	8.775	23.308	80.320	172.233	82.700	155.501	40.601	35.592	7.636	0.170	0.546	0.654	50.346	127.566	956.985	41.025	.05	.01
220,881	17.808	100.282	999.9	1.306	19.661	121.585	19.282	102.561	0.114	0.157	0.613	196.585	93.002	5.563	45.302	209.978	100.363	7.875	23.101	68.525	145.865	69.577	132.199	35.727	31.520	9.124	0.144	0.519	0.654	45.603	621.626	96364829	36.072	0.047	0.013
198.5		100.	5.	-	14.	93.	13.792	81.	0	0	0.	100	1			178.039	100.639	6.701	22.473	52.818	115.825	54.149	105.795	30.010	26.832	9.616	0.113	0.481	0.652	41.309	348.564	1492,291	30.658		0
199.171	8.774	100.883	4.966	991.0	10.485	72.056	869.6	62.384	990.0	0.106	0.622	59.056	136.62	4.849	43.009	83.495	100.901	5.715	21.624	42.066	90.961	43.170	83.944	25.195	22.584	9.036	0.086	0.449	0.650	37.663	233.202	01616661	26.013	.02	0.
5.	4.451	101.244	3.685	0.164	6.385	46.180	6.092	40.435	0.042	920.0	0.625	20.5	1	4.440	43.340	56.218	101.216	4.482	19.347	30.271	63.069	31.301	56.855	19.559	17.336	7.300	090.0	0.400	0.643	32.894	101-10-10-10-10-10-10-10-10-10-10-10-10-	1040-369	20.486		0.
RPM	FI-#	VDC	700	VDC	ADC	ADC	ADC	ADC	VDC	VIC		3	3	3	EMP C	LR H2	VEMS	VRMS	VRMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	ARMS	VENS	VRMS	VENS	VRMS	3	3	*	VRNS	VIC
NTR	TENOT	EBAT	EARM	EFM	IBAT,	IARM	1.TH]	ID2	VCT.1	ETH1	EDF2	PLAET	PLACOM	PLAC4	MOFR T	CONTRO	EBAT	EARM VRMS	EFM	IEAT,	IARM	I.I.H.I	102	IC4	ITH2	104	VCT.1	ETH1	EDF2	VC4	FLBT	PLCOM	PLC4	LNIA	LNIA
-	7	3	4	2	9	1	89	6	10	11	12	13	14										24	25	56	27	58	58	30	31	35	33	34	35	36

•

79-05-23 11:29:01 MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

```
NTR
             RPM
                      MOTOR ROTOR SPEED
    TMOT
            F'T-#
                      MOTOR SHAFT TORQUE
 3
    TMOT
             N- IT
                      MOTOR SHAFT TOROUE
                      BATTERY POWER AVAILABLE AT TERMINAL, AVERAGE VALUE
 4
    PABAT
               W
             ADC
 5
    TRAT
                      BATTERY CURRENT, AVERAGE VALUE
                      BATTERY R.M.S. POWER AVAILABLE AT TERMINAL
 6
    PBAT
               W
    IBAT
            ARMS
                      BATTERY CURRENT, R.M.S. VALUE
 8
    DELTAMOT PU
                      CHOPPER CONDUCTION DUTY CYCLE A MOT
9
    DELTAD2 PU
                      DUTY CYCLE OF FREE WHEELING MODE AD2
             VDC
10
    DFM
                      MOTOR FIELD VOLTAGE, AVERAGE VALUE
11
    PAMOT
               W
                      AVERAGE POWER CONSUMPTION OF MOTOR
12
    PTR
                      MOTOR POWER DELIVERED AT SHAFT
13
    PMOT
               W
                      R.M.S. POWER CONSUMPTION OF MOTOR
                      DC POWER TRANSFER EFFICIENCY OF MOTOR
    EFFAMOT
14
    WLAMT W/N-m
                      MOTOR DC WATT-LOSS/TORQUE DELIVERED AT SHAFT
15
16
    EFFMOT
                      MOTOR POWER TRANSFER EFFICIENCY BASED ON R.M.S. VALUES
                      MOTOR R.M.S. WATT-LOSS/TORQUE DELIVERED AT SHAFT MOTOR PERFORMANCE DEGRADATION IN PULSATING DC CURRENT MODE
17
    WLAOF W/N-m
13
    DEGM
    PLMOT
19
                      HEAT LOSS IN MOTOR
               W
    PLCTR
20
               W
                      HEAT LOSS IN DC CHOPPER PANEL
21
    PACT
               W
                      POWER LOSS ACROSS CONTACTOR C1
22
    PCT
                      HEAT LOSS IN CONTACTOR C1
                      MOTOR VOLTAGE, R.M.S. VALUE
POWER TRANSFER EFFICIENCY OF CONTROLLER
    EMOT
23
            VRMS
24
    EFFCTR
25
    WICTR W/N-m
                      CONTROLLER WATT-LOSS/MOTOR TORQUE DELIVERED AT SHAFT
26
    PATH1
               W
                      AVERAGE POWER LOSS IN TH1
27
    PAD2 F
                      AVERAGE POWER LOSS IN D2
28
    PTH1
                      HEAT DISSIPATION OF THI
                      HEAT DISSIPATION OF D2
29
    PD2 F
               W
30
    PLCOM
               N
                      HEAT DISSIPATION OF COMMUTATING CIRCUIT
    PLABT
                      POWER LOSS WITHIN BATTERY WHEN DISCHARGING
31
               W
                      HEAT DISSIPATION OF BATTERY WHEN DISCHARGING DC POWER FOR ELECTRIC DRIVE IN CONTINUOUS DC CURRENT MODE
32
    PLBAT
33
    PAEV
               W
    EFFAEV
                      ELECTRIC DRIVE EFFICIENCY IN CONTINUOUS DC CURRENT MODE
34
                      R.M.S. POWER FOR ELECTRIC DRIVE IN PULSATING DC CURRENT MOD
35
    PEV
               W
    EFFEV
36
                      ELECTRIC SYSTEM EFFICIENCY IN PULSATING DC CURRENT MODE
               8
                      ELECTRIC SYSTEM WATT-LOSS/WATT DELIVERED AT MOTOR SHAFT
37
    WILEV
              PII
38
    PHEAT
               W
                      HEAT DISSIPATION OF ELECTRIC SYSTEM
39
    DEGEV
                      SYSTEM PERFORMANCE DEGRADATION FOR PULSATING DC CURRENT MOD
    DELTABT VDC
40
                      VOLTAGE DROP WITHIN BATTERY, AVERAGE VALUE
                      OPEN CIRCUIT BATTERY VOLTAGE, PEAK AMPLITUDE POWER LOSS IN CHOPPER PANEL, AVERAGE VALUE
41
    EBAT0
             VDC
    PLACTR
42
    PLACOM
                      POWER LOSS IN COMMUTATING CIRCUIT, AVERAGE VALUE
```

Table D4. Nomenclature for Calculated Data, Parametric Chopper and Motor Test.

DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

BELVOIR,

F.F.

DRDME- EA,

MERADO OM,

95:95:60

238 2000 2 9647. 135. 135. 100. 0.0 13249. 13249. 13249. 13249. 13249. 1323. 1324. 1325. 1325. 1326. 1640.034 2807.993 27.370 6704.870 6704.870 6.0.176 0.176 0.176 0.176 1173.735 3169.064 31.990 31.990 31.990 31.990 31.990 31.990 31.990 31.990 31.990 31.990 31.990 31.990 44.3.329 44.3.329 44.3.329 8.127 25.5.2.8 27.5.6.0 27.5.6.0 27.5.6.0 27.5.6.0 27.5.6.0 27.5.6.0 27.5.6.0 27.5.0 840.842 4.650 6.304 4983.724 4983.724 0.105 0.895 0.105 0.895 1.2724 681.312 4.604 4.604 4.604 0.085 0.08 NTR RPM
TNOT FT-#
TNOT N-M
PABAT W
IGAT ADC
PEAT ANN
DE LTAD2 PU
PUTR W
PUTR

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

10:02:28

4003.467	8.736	11.844	7215.812	70.609	9489.139	92.866	0.578	0.422	0.937	5872.815	4965.638	9139.789	84.553	76.594	54.330	352.430	35.745	4174.151	340.156	5.779	9.611	94.230	96.318	28.720	57.384	0.477	109.526	990.8	212.953	61.089	105.673	7276.901	68.238	9594.812	51.753	0.932	4514.306	24.158	0.865	103.060	1337.433	1273.793
3200.502	8.751	11.864	6374.392	62.390	9795.674	95.763	0.424	0.576	0.522	4735.237	3976.585	8546.897	83.979	63.943	46.527	385.210	44.597	4570.312	1238.628	5.933	11.504	81.486	87.252	104.398	41.738	2.502	101.911	16.312	1108.901	55.545	130.859	6429.937	61.845	9926.533	40.060	1.496	5808.940	35.225	0.890	103.060	1634.112	1583.939
2561.809	8.763	11.881	5436.455	53.154	9530.734	93.074	0.326	0.674	1.202	3925.666	3187.320	7565.450	81.192	62.148	42.130	368.514	48.111	4378.130	1954.741	5.828	12.424	68.681	79.380	164.533	29.453	5.339	93.299	25.292	1823.727	41.571	127.459	5478.026	58.184	9658.193	33.001	2.030	6332.871	43.281	0.782	103.060	1506.142	1465.521
2049.004	8.700	11.796	4618.151	45.124	9152.541	89.329	0.255	0.745	1.128	3165.022	2531.099	6357.342	179.97	53.742	39.814	324.377	50.215	3826.243	2784.970	5.803	12.769	56.979	69.460	236.101	20.928	9.010	81.729	33.074	2657.398	32.335	126.719	4650.486	54.427	9279.260	27.277	2.666	6611.213	49.883	0.717	103.060	1448.935	1413.194
1636.235	8.920	12.093	3934.666	38.380	8466.131	82.559	0.216	0.784	1.174	2528.596	2072.224	5139.940	81.952	37.737	40.316	253.669	50.805	3067.716	3316.477	5.740	12.587	46.269	60.712	274.239	14.818	13.190	71.502	40.492	3191.895	20.798	96.234	3955.464	52.389	8562, 366	24.202	3.132	6384.193	53.804	0.542	103.060	1402.233	1368.485
1310.261	8.867	12.022	3277.501	31.965	7700.841	75.051	0.181	0.819	1.040	1981.601	1649.624	3970.596	83.247	27.614	41.546	193.057	50.093	2320.972	3721.391	5.400	11.863	36.815	51.561	309.544	10.270	17.534	63.060	45.925	3600.543	16.794	92.580	3294.295	50.02	7793.421	21.167	3.724	6042.362	57.730	0.525	103.060	1292.432	1259.227
1046.758	8.351	11.323	2709.321	26.427	6853.523	66.785	0.157	0.843	0.921	1494.830	1241.199	2958.730	83.033	22.400	41.950	151.689	49.477	1717.531	3887.249	4.949	10.400	29.268	43.171	343.314	6.818	22.074	53.282	47.886	3775.681	14.188	90.614	2723.509	45.574	6944.137	17.874	4.595	5604.780	60.780	0.537	103.060	1211.496	1177.655
838.945	8.962	12.151	2407.463	23.461	6391.904	62.254	0.142	0.858	0.772	1296.839	1067.511	2438.246	82.316	18.874	43.782	112.813	46.813	1370.735	3946.138	5.079	10.348	23.776	38.146	324.771	5.116	27.006	48.023	50.818	3836.948	10.421	73.376	2417.884	44.151	6465.281	16.511	5.056	5316.873	62.602	0.444	103.060	1107.485	1070.284
668.499	8.629	11.699	2022.150	19.692	5867.920	57.110	0.119	0.881	1.754	1096.453	819.014	1964.591	74.697	23.715	41.689	97.921	44.189	1145.577	38 96 . 612	4.809	685.6	20.081	33.480	333.074	3.641	30.263	40.091	52.448	3794.484	7.343	61.758	2029.493	40.356	5929.619	13.812	6.240	5042.189	65.774	0.373	103.060	922.751	884.038
RPM	F.T-#	E-N	3	ADC	3	A RMS	Od J	PU	VIC	3	3	3	. do	E-N/	a p	H-N/	æ	3	3	3	3	/RMS	*	E-N	3	3	3	3	3	3	3	3	*	3	*	P.O.	3	•	V DC	VBC	3	3
N'FR	TOMT	TOMI	PABAT	IBAT	PBAT	IBAT	DELTAMO	DE LTAD2	DFM	PAMOT	PTR	PMOF	EFFAMOT	VLAM'T W,	EFFMOT	WIMOF W.	DEGM	PLMOT	PLCTR	PACT	PCT	EMOT	EFFCTR	VICTR W,	PATHI	PAD2 F	P.I.H.1	PD2 F	PLCOM	PLABT	PLBA T	PAEV	EFFAEV	PE .	EFFEV	M LEV	PHEAT	DEGEV	DELTABL	EBATO VDC	PLACTR	PLACOM
-	7	6	4	s	9	1	80	6	10	=		13								51	22	23	24	25	56	27	28	56	30	=	32	33	34	35	36	37	38	39	40	41	42	43

EVA IC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

MERADCOM, DRDME-EA, Fr. BELVOIR, VA 22060

10:08:57

3997.680	13.707	18.583	9785.112	95.941	11943.736	117.062	0.672	0.328	1.480	8542.420	7779.920	11778.005	91.074	41.031	66.055	215.144	27.471	3998 .085	151.304	9.882	14.240	97.547	98.612	8.142	91.455	0.269	146.384	5.950	-15.270	92.146	137.185	9877.259	78.766	12080.921	64.398	0.553	4149:389	18.241	0.960	102.952	1232.533	1130.927
3198.551	13.655	18.514	8609.657	84.319	12414.720	121.452	0.482	0.518	1.214	7005.091	6201.455	11244.049	88,528	43.407	55.153	272.369	37.700	5042,595	1154.360	10.367	17.706	85.249	90.570	62,351	66.476	2.221	134.504	17.309	984,841	71,153	147.622	8680.810	71.439	12562.342	49.365	1.026	6196.955	30.898	0.844	102.952	1595,319	1516.255
2558.438	12.856	17.431	7107.367	69.439	11638.530	113.609	0.374	0.626	1.787	5318.705	4670.212	9579.839	87.807	37.204	48.750	281.664	44.480	4909.627	2043.459	9.296	17.902	72.884	82.311	117.232	43.307	2.907	114.968	28.225	1882.364	41.542	111.199	7148.909	65.328	11749.730	39.747	1.516	6953.086	39.157	0.598	102.952	1781.393	1722.883
2049.504	13.433	18.213	6212.581	60.675	11246.078	109.659	0.306	0.694	1.393	4448.637	3908.997	8093.459	87.870	29.630	48.298	229.756	45.034	4184.462	3137.139	9.781	19.228	59.436	71.967	172.251	32.288	10.963	106.664	39.425	2971.821	34.024	111.135	6246.605	62.578	11357.213	34.419	1.905	7321.601	44.999	0.561	102.952	1756.911	1703.878
1636.340	13.115	17.781	5091.464	49.671	10241.683	99.735	0.248	0.752	1.601	3526.811	3047.075	6435.399	86.397	26.980	47.349	190.554	45.197	3388.324	3792.375	9.214	18.168	48.565	62.835	213.278	21.715	17.055	91.086	47.687	3635.433	22.235	89.647	5113.699	59.587	10331.329	29.494	2.391	7130.699	50.503	0.448	102.952	1558.510	1510.526
1305.852	13.106	17.769	4257.062	41.465	9247.939	886.68	0.212	0.788	1.818	2829.119	2429.903	5038.395	85.889	22.468	48.228	146.804	43.849	2608.492	4196.945	8.873	16.997	39.152	54.481	236.201	14.780	23.043	80.138	54.046	4045.765	11.853	55.824	4268.915	56.921	9303.763	26.117	2.829	6805.437	54.116	0.286	102.952	1422.335	1375.638
1048,966	13.600	18.439	3699.056	36.035	8732.088	85.020	0.180	0.820	1.835	2423.086	2025.566	4123.447	83.594	21.558	49.123	113.773	41.236	2097.880	4596.386	9.286	16.903	31.887	47.222	249.273	10.968	29.628	71.744	959.65	4448.083	10.773	696.65	3709.828	54.600	8792.056	23.039	3.341	6694.267	57.805	0.299	102.952	1270.323	1220.441
836.978	13.221	17.925	3075.161	29.934	7904.757	76.913	0.151	0.849	1.541	1876.503	1571.107	3240.514	83.725	17.638	48.483	93.135	42.092	1669.407	4653.099	8.539	15.811	25.913	40.994	259.594	7.811	34.025	59.865	62.203	4515.220	6.563	43.330	3081.724	50.981	7948.087	19.767	4.059	6322.506	61.227	0.219	102.952	1193.556	1143.182
666.791	13.130	17.802	2643.434	25.724	7359.576	71.588	0.129	0.871	1.696	1572.318	1243.094	2622.730	19.061	18.494	47.397	77.499	40.050	1379.636	4726.378	8.485	15.179	21.404	35.637	265.496	5.831	37.695	51.182	64.376	4595.641	4.848	37.545	2648.282	46.940	7397.121	16.805	4.951	6106.014	64.198	0.188	102.952	1066.147	1014.135
RPM	FT-1	2	3	ADC	3	ARMS	OT PU	2 PU	VDC	3	3	3	T S	M-N/M		H-N/M	*	3	3	3	3	VRMS	*	M-N/M	3	3	3	3	3	3	3	Z	æ	3	*	n d	3	•	r voc	VDC	3	3
NTE	TMOL	TNOF	PABAT	I BA T	PBAT	IBAT	DELTAM	DEI.TAD	DFM	PANOT	PFE	PMOT	EFFAMO	WLAMT	EFFMOT	WLMOF	DEGM	PLMOF	PLCTR	PACT	PCT	EMOL	EFFCTR	WLCTR	PATHI	PACZF	PTH]	PD2F	PLCOM	PLABI	PLBAT	PAEV	EFFAEV	PEV	EFFEV	WLEV	PHEAT	DEGEV	DELTAB	EBATO VIC	PLACTR	PLACOM
7	7	~	*	S	9	7	20	0	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	42	43

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

MERADCOM, DRUME-EA, FT. BELVOIR, VA 22060

10:14:35

3928.282 17.600 23.862	11826.374 116.340 13376.867	131.454	0.217	10698.480	9991.171	12802.353	29.642	78.042	117.812	16.433	2811.182	556.685	14.492	206 90	95.705	23.330	118.321	0.113	163.826	4.467	370.407	166.326	11007 700	83 310	13589.216	73.523	0.360	3367.867	11.748	1.430	103.083	980.517	
3195.856 18.084 24.518	10992.672	143.368	0.436.	9022.244	8205.701	13375.926	33.304	61.347	210.875	32.549	5170.224	1249.870	15.907	06 020	91.313	50.978	90.106	1.927	165.590	17.069	1042.264	108.603	192.411	73 917	14840.836	55.291	0.809	6420.094	25.198	1.008	103.083	1848.644	
2561.161 17.678 23.968	9163.481 89.599 14209.151	138.664	0.582	7078.161	6428.421	11815.590	27.109	54.406	224.769	40.095	5387.169	2371.224	15.11/	74 919	83.155	98.935	64.240	6.100	149.664	30.909	2163.982	72.697	1/4.114	60 600	14383.265	44.694	1.237	7758.393	35.785	0.811	103.083	1988.196	
2048.242 18.259 24.756	7988.105	131.876	0.651	5926.604	5310.045	10207.942	24.906	52.019	197.850	41.941	4897.897	3307.681	15.079	261.12	75.404	133.614	45.987	12.692	138.339	44.481	3097.069	42.470	121./00	66 123	13659.387	38.875	1.572	8205.579	41.208	0.545	103.083	1977.069	
1641.249 17.833 24.178	6627.649 64.531 12247.047	119.055	0.706	4697.799	4155.653	8039.208	22.423	51.692	160.623	41.564	3883.556	4187.974	14.216	8/1.07	65.642	173.214	31.179	19.684	118.656	55.089	3988.051	24.448	83.214	62.471	12330.261	33.703	1.967	8071.530	46.051	0.379	103.083	1855.340	
1304.090 18.094 24.532	5449.462 52.969 11187.384	108.630	0.762	3850.438	3350.303	6351.511	20.387	52.748	122.339	39.378	3001.209	4817.530	14.263	150.67	56.774	196.377	22.040	27.756	103.528	63.520	4625.390	10.745	45.193	61 359	11232.577	29.827	2.353	7818.739	51.390	0.203	103.083	1526.094	
1042.576 17.877 24.237	4690.575 45.563 10389.899	100.708	0.795	3192.835	2646.259	5110.442	22.551	51.781	101.670	37.523	2464.183	5262.427	14.001	23.933	49.187	217,123	16.055	34.695	87.332	68.665	5082.497	6.176	30.174	56 342	10420.073	25.396	2.938	7726.610	54.926	0.136	103.083	1424.566	
838.193 18.871 25.585	4298.306 41.713 10157.932	98.497	0.821	2733.356	2245.848	4317.021	19.054	52.023	80.951	36.684	2071.173	5823.294	14.868	205.52	42.499	227.602	13.230	42.333	79.527	16.501	5641.765	1.575	8.781	52 230	10166.713	22.090	3.527	7894.467	57.706	0.038	103.083	1485.664	
665.133 17.912 24.285	3443.895 33.419 9170.892	88.934	0.859	2200.680	1691.558	3458.741	20.965	48.907	72.769	36.373	1767.182	5696.271	13.959	23.182	37.714	234.561	8.769	46.386	65.356	78.461	5529.272	1.011	2444 996	44.900	9178.053	18.430	4.426	7463.454	62.466	0.030	103.083	1166.050	
RPM FT-#	ADC	ARMS	PU	33	3	3	N-H	æ	M-W/	ф	3	3	3	MONO	CINA S	M-W/	3	3	3	3	3	3 :	2 3		3	*	PU	3	*	VEC.	3	3 3	
NTR RPM TMOT FT-# TMOT N-m	PABAT IBAT PBAT	IBAT	DEL'TAD2	PAMOT	PrR	PMOT	WLANT W	EFFMOT	W LHOF W	DEGM	PLHOF	PLCTR	PACI	FULL	EFFCTR	WICTR W	PATHI	PAD2 F	PTH1	PD2F	PLCOM	PLABE	PLBAT	EFFAEV	PEV	EFFEV	WLEV	PHEAT	DEGEV	DELTABI	EBATO	PLACOM	
321	400	7 8	6	2 =	12	13	15	16	17	18	19	50	17	27	24	25	56	27	28	58	30	5	32	34	35	36	37	. 38	39	40	41	43	

EVA DO MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

MERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

10:20:27

9.741	6.764	2.279	7.583	5.057	0.503	0.825	0.175	1.655	3.400	9.264	1.615	4.253	5.562	006.6	5.452	5.228	2.350	2.995	7.094	0.356	8.418	8.158	9.079	4.553	0.050	3.857	3.555	5.226	7.221	7.059	9.500	5.191	2.116	7.203	0.295	5.345	9.377	1.467	3.223	1.876	0.179
4002.818																																									
3194.238	30.070	12583.716	124.31	16406.63	161.720	0.591	0.40	2.101	10717.242	10059.681	15565.422	93.855	21.901	64.622	183.132	31.147	5506.742	813.216	21.344	31.268	90.671	94.873	27.044	115.889	1.642	193.482	15.267	573.200	248.385	420.347	12832.102	78.387	16826.983	59.777	0.673	6319.958	23.741	1.998	103.223	1848.090	1709.214
2562.791	30.709	11338.077	111.442	16574.045	162.578	0.470	0.530	2.044	9043.788	8241.870	14157.439	91.133	26.113	58.216	192.632	36.120	5915.569	2386.092	22.136	36.261	77.456	85.419	17.700	88.353	6.050	187.612	32.224	2129.995	165.239	351.676	11503.315	71.648	16925.721	48.694	1.054	8301.661	32.036	1.483	103.223	2277.060	2160.522
2048.756	30.231	9414.877	92.103	15390.203	150.185	0.376	0.624	2.463	7330.428	6486.068	11560.504	88.481	27.931	56.105	167.857	36.591	5074.436	3801.505	21.452	35.829	63.794	75.116	125.750	61.763	13.424	166.064	47.596	3552.016	92.263	245.320	9507.140	68.223	15635.523	41.483	1.411	6875.941	39.195	1.002	103.223	2069.378	1972.738
1634.162	31.273	8125.855	79.298	14560.818	141.823	0.313	0.687	2.002	6074.473	5351.845	9356.489	88.104	23.107	57.199	128.056	35.077	4004.644	5177.204	21.733	36.173	51.301	64.258	165.551	44.836	21.988	149.135	61.368	4930.528	29.460	190.196	8185.315	65.383	14751.014	36.281	1.756	9181.848	44.510	0.750	103.223	2037.092	1948.535
1303.915	30.004	6736.375	65.614	12833.298	124.683	0.277	0.723	2.129	4627.904	4097.015	7588.876	88.529	17.694	53.987	116.381	39.017	3491.861	5220.265	18.944	32.920	43.347	59.134	173.988	29.907	30.970	126.016	70.485	4990.844	36.471	131.696	6772.846	60.492	12964.994	31.601	2.164	8712.126	47.761	0.556	103.223	2096.784	2016.963
1043.032	30.144	5625.190	54.640	12025.911	116.628	0.219	0.781	2.108	3839.864	3292.648	5994.838	85.749	18.153	54.925	89.642	35.947	2702.189	688.8009	19.254	31.832	34.759	49.849	199.338	21.284	37.806	104.143	75.978	5796.936	14.892	67.847	5640.081	58.379	12093.757	27.226	2.673	8711.078	53.364	0.273	103.223	1774.061	1695.716
838.930	30.767	5067.258	49.189	11522.832	111.679	0.194	0.806	2.211	3366.331	2703.049	5101.487	80.297	21.558	52.986	77.955	34.013	2398.438	6399.147	20.249	32.641	29.069	44.273	207.988	16.828	45.781	92.533	83.525	6190.448	10.145	52.294	5077.403	53.237	11575.126	23.352	3.282	8797.586	56.135	0.206	103.223	1689.289	1606.430
669.607	30.004	4241.935	41.164	10692.306	103.598	0.158	0.842	2.320	2799.619	2103.994	4180.429	75.153	23.184	50.330	69.205	33.030	2076.435	6491.138	19.402	30.955	24.242	39.098	216.342	12.113	52.096	78.144	87.229	6294.811	7.106	45.012	4249.041	49.517	10737.318	19.595	4.103	8567.573	60.427	0.173	103.223	1431.243	1347.632
RPM	EIZ	3	ADC	3	ARMS	or Pu	PU :	NBC VBC	3	3	3	*	M-W/	*	H-N/	æ	3	3	3	3	VRMS	*	M-W/	3	3	3	3	3	3	3	3.		3	•	PO	3	-	, voc	VDC	3	3
NTR RPM	TONT	PABAT	IBAT	PBAT	IBAT	DELTAM	DE LTAD	DFM	PAMOL	PTR	PMOT	EFFAMO	WLAMT V	EF FMOR	WLMOF V	DEGM	PLMOF	PLCTR	PACT	PCT	EMOT	EFFCTR	WLCTR V	PATH1	PAD2 F	P'FH]	PD2 F	PLCOM	PLABI	PLBAT	PAEV	EFFAEV	PEV	EFFEV	WLEV	PHEAT	DEGEV	DELTAB	EBATO	PLACTR	PLACOM
1	•	4	2	9	1	œ	6	10	7.	12	13	14	15	16	11	18	19	50	21	22	23	24	25	56	27	28	53	30	33	35	33	34	35	36	37	38	39	40	41	45	43

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

5

BELVOIR,

፤

DRDME- EA,

MERADCOM,

10:26:09

3199.500 26.987 36.987 36.987 1837.255 1837.255 1837.255 1837.255 193.270 193.259.370 171.512 133.040 24.000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25. 1638 28. 10038 16933 16933 10038 11827 11827 1182 1184 1 27.136 27.136 36.4934 18054.934 18054.934 18.504 19.289 0.711 0.711 8793.038 21.472 21.472 21.472 21.473 21 1041.888 27.331 37.331 14061.219 14061.219 0.759 0.759 0.759 18.536 18.536 18.536 18.536 19.044 19.046 19.044 19.044 19.044 19.044 19.044 19.044 19.044 19.044 19.046 19.044 19.0 837.397 27.842 37.175 847.175 627.175 61.000 13566.319 10.215 0.785 0.785 0.785 0.785 12.481 4172.865 13.10.365 6129.258 74.009 74.60 5.539 5.557 5.557 5.557 5.557 5.557 5.557 5.558 5.558 5.558 5.558 5.558 5.558 5.558 5.558 5.558 5.558 6.538 6. NTR RPM
THOUT FT-#
THOUT N-M
DEADY N-M
DEAT AND
DELTAD2 PU
OF W
PTR W
PT W VRMS

EVA DC MOTOR TEST WITH BUFFERED HATTERY/CHOPPER SOURCE

MERADOM, DRDME-EA, FT. BELVOIR, VA 22060

10:35:04

m ao ao	œ œ	ם מו	9	6	_	8	_	7		0	3	6	7	1	4	4	_	6	0	1	2	2	2	6	9	0	2	2	0	4	8	6	6	8	9	4	2	6	. 6
3969.083 22.148 30.028	14284.508	14295.22	148.056	0.999	00.00	1.17	14047.54	12481.207	14131.89	88.850	52.163	88.31	54.972	0.59	1650.684	140.69	29.661	29.37	94.490	98.85	4.685	192.285	00.0	191.669	0.006	-80.36	290.612	290.915	14575.12	85.63	14586.138	85.56	0.16	1791.378	0.07	1.96	98.495	214.41	-7.52
27.891 37.81¢	15633.178	17897.555	186.472	0.759	0.241	2.016	13891.089	12689.377	16343.488	91.349	31.779	75.337	109.855	17.528	4154.111	1017.016	40.393	49.912	87.251	94.111	26.895	183.220	0.582	249.807	10.080	707.217	367.495	484.204	16000.673	79.305	18381.759	69.032	0.449	5171.128	12.954	2.262	98.495	1713.032	1488.837
2561.240 28.428 38.542	14007.551	18526.112	192.215	0.575	0.425	2.193	11619.791	10337.816	16066.242	88.967	33.262	64.345	148.628	27.676	5728.426	2418.525	39.413	55.254	16.791	86.722	62.750	140.214	5.048	251.503	30.389	2081.379	353.890	615.002	14361.441	71.983	19141.114	54.008	0.852	8146.951	24.971	2.427	98.495	2360.730	2176 054
27.423 37.180	11623.921	17093.798	175.982	0.466	0.534	2.291	9219.881	7978.186	12979.918	86.532	33.397	61.466	134.529	28.968	5001.732	4076.341	37.367	53.284	63.035	75.933	109.639	96.824	13.864	220.076	50.691	3752.289	204.893	439.953	11828.814	67.447	17533.750	45.502	1.198	9078.073	32.537	1.706	98 .495	2381.223	2233.167
1640.269 28.525 38.674	10232.769	16427.169	168.520	0.391	609.0	2.733	7968.841	6643.134	10964.760	83.364	34.279	60.586	111.746	27.323	4321.626	5425.425	39.621	54.999	52.137	66.748	140.288	71.976	23.980	197.933	67.087	5105.406	140.919	360.772	10373.688	64.038	16787.941	39.571	1.527	9747.051	38.208	1.338	98.495	2241.918	2106.341
27.361 37.096	8335.897	14851.175	151.756	0.317	0.683	2.366	6177.747	5057.483	8659.971	81.866	30.199	58.401	97.111	28.663	3602.480	6157.836	38.128	53.135	42.193	58.312	165,995	49.294	35.147	165.130	79.856	5859.715	85.093	268.095	8420.991	60.058	15119.270	33.451	1.989	9760.325	44.303	0.995	98.495	2139.030	2016.461
27.495 37.278	7206.625	13914.529	141.900	0.269	0.731	2.092	5146.714	4089.427	7065.434	79.457	28.363	57.879	79.834	27.156	2976.008	6817.406	37.403	53.012	34.521	50.777	182.882	36.389	44.655	142.570	89.614	6532.210	48.014	178.208	7254.639	56.370	14092.737	29.018	2.446	9793.414	48.522	0.652	98.495	2041.501	1923.053
840.394 27.807 37.701	6359.276	13228.808	134.518	0.233	0.767	2.570	4415.384	3318.036	6058.416	75.147	29.106	54.767	72.687	27.120	2740.380	7139.623	35.71	50.407	29.535	45.797	189.374	27.129	55.290	125.462	98.557	6865.196	30.040	129.175	6389.316	51.931	13357.983	24.839	3.026	9880.002	52.169	0.463	98.495	1926.091	1807.902
28.122 38.127	5547.915	12489.451	126.970	0.198	0.802	2.612	3750.922	2660.562	517.7718	70.931	28.598	51.384	66.021	27.557	2517.213	7281.354	30.664	44.467	25.017	41.457	190.975	20.887	64.147	108.836	107.153	7020.897	22.843	115.121	5570.758	47.759	12604.572	21.108	3.738	9798.567	55.804	0.404	98.495	1779.481	1663.784
FY-#	3 0	3	P.RMS	T PU	PU	VDC	3	3	3	de	M-N/	æ	H-N/	æ	3	3	3	3	VRMS	000	M-W/	3	3	3	N	3	3	3	3	a p	3	000	PU	3	*	VDC	VDC	3	3
TMOT	PABAT	PBAT	IBAT	DELTAMO	DE LI AD2	DFM	PAHOF	PIR	PMOF W	EFFAMOL	W LAMT W	EFFMOT	WEMOF W/	DEGM	PLMOF	PLCTR	PACT	PCT	EMOT	EFFCTR	WICTR W	PATH1	PAD2 F	PTH1	PD2F	PLCCM	PLABT	PLBAT	PAEV	EFFAEV	PEV	EFFEV	WLEV	PHEAT	DEGEV	DELTABL	EBATO	PLACTR	PLACON
35	4 4	9	1	20	6	0	-	7	3	4	2	9	1	8	6	0	_	7	3	4	2	9	1	8	6	0	-	7	3	4	2	9	1	8	6	0	_	7	~

EVA DC MOTOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

HERADCOM, DRDME-EA, FT. BELVOIR, VA 22060

10:42:46

55.014		6.3	5.7	24.7	, , ,	2.0	.5	0	6.	2.614	41.	209	2	9	œ	12.922	8	3	13.07	6857.777	8	6	œ	.08	8.40		3	42.421	120	55	89.89	683	44.39	8.242	7	.28	42.811	0.85	72.305	.36	102.7	9.5	103.
56.536		4	4	- α			9.0				3	4	1217.860	6	4	4.		25.	1043.218	5880.620	20.400	29.259	7.359	17,115	199.361	2.319	82.803	32.967	105.	6	-	588.	1838.244	5	7703.935	2	7	8	6.1	-	102.710	886.644	781.122
5	-		4	14		•			0.937	1.714	. 60	27.							29.						209.152		6	4	88.	2	25	10.		•	6174.489		÷.			1.806	102.710	27.77	743.980
6.63	3.14	17.826	8 60	10.95	1 ,	'n			0.947	1.653	77.	111.892	50.	23.449		17.201		. 97	538.620	4156.855	9	13.670	5.642	=			57.569	œ	74.60	a.		305.583	1.78	9.94	5121.274	.18	.77	4695.475	8.0	.47	102.710	26.2	558.283
55.668	.27			1 4		٠		0.038	0.962	1.858	307.921	65.	434.355	21.238	21.620	15.056	32.891	29.108	368.959	.90	4.676	7.286	5.132	12	276.971	0.473	42.799	12.329	54	3032.487	8.381	220.568	. 66	9.350	3766.445	1.736		6		7	32.	۳.	332.450
.14	.68	4.995	07	200		14	3.74	0.045	0.955	0.725	113,125	27.278	158.866	24	17.187	17.170	26.344	28.792	3	2255.287	1.906	3.152	2.942	6.575	451.507	0	27.759	-	35	6	4	101.764	19.	5.249	2517.912		•		.36	.91	17.20	400.807	370.907
RPM	F-U-#	E - N	3	ADC	200	3	æ		PU	VDC	3	3	3		Z	*	M-N/	*	3	3	3	3	VRMS	œ	E-N/	3	3	3	3	Z	3	3	3	*	3	æ	PU	3	æ	VDC	VDC	3	3
N'FR	TOMT	TWOT	PARAT	LEAT	4000	PBAT	IBAT	DELTAMOT	DE LTAD2	DFM	PAMOT	PTR	PMOT	E FFAMOT	WLAMT W	EFFMOF	WLMOF W	DEGM	PLMOF	PLCTR	PAC'F	PCT	EMOT	EFFCTR	WLCTR W	PATHI	PAD2 F	PTH1	PD2F	PLCOM	PLABT	PLBAT		EFFAEV	PEV	EFFEV	WLEV	PHEAT	DEGEV	DE L'I' A B'I	EBATO	PLACTR	PLACOM
-	2	· ~	4		,	٥	1	8	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	42	43

EVA DO MOTOR TEST MITH BUFFERED BATTERY/CHOPPER SOURCE

MERAUCOM, DRONE-EA, FT. BELVOIR, VA 22060

10:47:21

6	27.450	37.217			9015.361	89.989	0.093	0.907	2.719	1480.988	377.857	5		29.641	-	42.928	25.033	16	7015.757	٦.		10.133	21.913	188.510	4.885	89.854	.5		0	•	602.101	2.2	13.484		3.929	4.	8613.408		2		1250.052	.17
8.00	-	29.171	2	0		-:			0	1004.893	299.400	1385.455	29.794	24.184	21.610	37.230	27.468	086.05	5.28	.39	6.45	.59	9	199.691	3.010	4	35.483	9	3.68		.25	7.20	4.34	.38	.91	4.55	1.34	2.72	.68	02.06	.93	42.02
9.65	1	23.669	4.32	. 92	8.31	0.82	.07	0.923	. 95	89.60	247.013	97.88	1.28	2.92	22.499	5.94	æ	0.87	18.09	C	9.81	.83	17.915	.01	1.911	S	8.24	۳.	2.65	.74	3.7	90.	14.303	.10	3.846	24.99	8.97		1.344	90.	.2	825.745
8	2	17.398	4	-		8		0.940	•	m		743.355	33.888	20.082	24.092	32.433	28.906	564.264	_	8.456	13.134		5	236.570	1.220	3.80	20.904	0.97		13.372			14.832	•	3.519		0			102.065		97.
103.588	9 .095	12.331		8.780	3784.238		. 05	4		335.291	91	_	39	34	32	31.986	36.519	0	51.34	.57	7.625	.20	13.			40.987	4		4.61	.73	140.327	.96	14.928	4.	4.		5.7	7.1	.88	9	550.584	504.318
102.372		3		9	3.89	•		0.959		186.581	68	282.918	æ	∞	24.180	3	4	14.	9.8	2.150	3.654	4.811	\circ	394.711	0.288	28.100	9.428			3.		99.	1.3		۳.	:	2733.176	80.084	99	05.0	2.68	52.1
RPM	F.L-#	EIN	3	ADC	3	ARMS	T PU	PU	VDC	3	3	3	œ	m-N/	÷	M-W/	90	3	Z	3	3	VRMS	90	M-W/	3	3	3	3	3	3	Z	Z	æ	3	œ	ρŲ	3	c#P	VDC	VDC	3	3
NTR	TONT	THOT	PAHAT	IBAT	PBAT	IBAT	DELTAMOT	DE L'I AD2	DFM	PAMOT	PFR	PMOF	EFFAMOL	W LAM'T W	EFFMOT	WEMOT W.	DEGM	PLMOT	PLCT'R	PACT	PCT	EMOT	EFFCTR	W LCT'R W	PATHI	PAD2 F	PTII1	PD2F	PLCON	PLABE	PLBA'F	PAEV	EFFAEV	PEV	EFFEV	WLEV	PHEAT	DEGEV	DELTABT	EBAT0	PLACTR	PLACOM
-	7	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	77	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43

A DC HOFOR TEST WITH BUFFERED BATTERY/CHOPPER SOURCE

22060

V.A

BELVOIR,

E-EA,

MERADCOM,

10:51:43

 1 WTR
 RPM
 197.530
 199.171
 198.552
 220.881
 201.147
 197.530

 2 TROT
 K-4
 4.51
 8.774
 12.637
 17.808
 21.148
 27.313

 3 TROT
 K 4.5132
 10.453
 11.895
 17.131
 24.142
 28.741
 37.017

 4 DATA
 M
 64.532
 10.453
 10.453
 10.453
 0.938
 23.402
 33.412

 5 LBAT
 W
 A30.241
 42.006
 52.722
 20.813
 0.113
 32.412
 32.412

 9 DELFANOT
 W
 20.830
 0.936
 0.931
 0.936
 0.938
 0.936
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938
 0.938

APPENDIX E

ON-BOARD BATTERY CHARGER

General Description. The EVA "Battery Marshall" charger is a solid state unit designed to operate from either 120 V RMS or 240 V RMS single phase utility power. The unit is primarily designed to recharge a 48-cell lead acid battery pack, typically sixteen EV-106 batteries, from a fully discharged to a fully recharged condition in eight to ten hours. In the low voltage mode, e.g.: 120 V RMS, the charging current is limited to typically 10 Ampere maximum, while in the high voltage mode, e.g.: 240 V RMS, up to 30 Ampere maximum is available to charge the battery. At its maximum charge rate the power transfer efficiency within the charger is typically 85% for the 120 V RMS connection, and 75% for the 240 V RMS operating mode. Correspondingly, the required power to sustain the maximum charge rate is one kilowatt @ 0.73 power factor for the 120 V RMS connection mode, and 3.6 kilowatt @ 0.46 power factor for the 240 V RMS connection mode. When adjusted properly, the battery charger will not overcharge the battery, but instead will slowly reduce the charge current to prevent excessive gassing. Charging will be terminated altogether when the battery reaches 2.5 V/cell. (Ref. 7).

Electrical Characteristics. Circuit schematics for the battery charger are shown in Figures E1 through E5. The charger operates directly from a single phase power source without the benefit of an isolation transformer. A sensing circuit at the input monitors the line voltage in order to determine the required operating mode for the charger. Another monitor senses the power ground, and activates an interlock to disable the charger should a ground fault occur.

Both, the input as well as the output terminals of the charger are protected by 30 Ampere circuit breakers. Additional fuses protect the cooling fan, accessory receptacle and controls.

The charge rate is controlled by a full wave rectifier circuit which contains two thyristors. The gate trigger for either transistor is phase controlled by the set-reset mechanism of a saturable reactor, whereby the set time is a function of the trigger rate of the unijunction transistor voltage-controlled oscillator (Q3C). Transistor (Q3C), shown in Figure E4, in turn is manipulated by a current and voltage sensor circuit. Five adjustments make it possible to adjust trickle current, taper point voltage, maximum charge current for 120 V RMS operation, maximum current for 240 V RMS operation, and final point voltage cut-off. Because the charger fails to provide line isolation by virtue of an isolation transformer and/or a smoothing reactor, charge and line currents will exhibit a comparatively large peak/average amplitude ratio. This may burden the utility line unduly.

Lack of input/output isolation by virtue of an isolation transformer can create a grounding problem accompanied by a possible hazard to maintenance personnel. In order to minimize this hazard only floating type instrumentation is recommended for measurement of output parameters of the charger. In the event of a power failure in the utility line, the batteries when fully charged, emit a typically 1.5 mA current amplitude into the line through the charger. The measured impedance for this operating condition with the charger output open ended is typically 70,000 ohm.

Variation of line voltage causes a two percent change in output voltage in the 240 V RMS operating mode. However, in the low voltage or 120 V RMS mode, output current may change as much as 40% with a 10 volt change in line voltage. The charger contains one 0-30 Ampere meter. The accuracy of the meter varied from (-) 1% at 3 Amperes to (-) 12% at 25 Amperes. Prefereably, this meter should not be used to adjust the charge current rates. The five charger adjustments — trickle, taper, 120 V RMS line, 240 V RMS line, and final point — are screwdriver adjustments that are accessible through grommeted holes in the top of the charger case. It is recommended to use external instrumentation to make adjustments, and to maintain proper operation of the charger. The charge rate is controlled by a full wave rectifier circuit which contains two thyristors. Gate triggering is provided by a conventional saturable reactor set-reset trigger circuit, whereby the phase delay is manipulated by a current and voltage sensing unijunction transistor voltage-controlled-oscillator. (Ref 7).

Slope Characteristics. To determine the charge characteristics of the battery charging system, a battery pack consisting of sixteen EV-106 batteries was used as a load. Attempts were made to obtain the parameters of the charger with only a resistive load; however, the output characteristics were too unstable to obtain meaningful data. The circuit indicated in Figure E6 was used to obtain the input-output characteristics of the charger. The input source for the 115/120 voltage connection was a 30-ampere autotransformer across a 120-VAC line. The input for the 240-volt connection was obtained from a 15 kW Engine Generator. The 5 kW variable load was used to discharge the battery pack from full charge to 1.7 volts per cell following each charge cycle. Prior to the charge rate tests, the charger adjustments were made as follows:

- a. Trickle current -3 amperes.
- b. Taper-point voltage 110 volts.
- c. 120-volt maximum current 15 amperes.
- d. 240-volt maximum current 25 amperes.
- e. Final-point voltage 120 volts.

The battery pack was cycled from discharge to charge several times at the different voltage connections to obtain the input-output parameters as a function of time. The slope characteristics including voltage and current versus time and voltage versus current for the charger at three different input voltages are illustrated in Figures E7 through E12.

The tests on the charger were performed only at ambient temperatures of 72–75°F and 85–92°F. The output of the charger appeared to be stable and comparable at these ranges. Tests at the temperature extremes were not performed. (Ref 7).

Environmental Characteristics. The Electromagnetic Interference (EMI) tests were performed on the battery charger utilizing the procedures outlined in MIL-STD-462. The tests were conducted with the charger installed in an EVA No. 1 Metro Sedan. The radiated EMI was measured with the trunk lid in both the open and closed positions. The tests were performed using the 120-volt connection and a charger output of 10 amperes. The tests indicated that the charger radiates EMI in excess of the limits specified in MIL-STD-461A (REQ2, Figure 13) in the entire frequency range below 8 Megahertz. Figure E13, shows the radiated EMI from the charger to the MIL-STD-461A limits. Two additional limits, used for enginegenerators, are also indicated on the graph.

The audio sound levels emanating from the charger are relatively low as indicated on Figure E14. The tests were performed in a sound chamber with the sensing microphone at a distance of 40 inches from the charger and 4 inches above the charger. Measurements were made on all four sides of the charger while the unit was operated on the 120-volt connection with an output of 10 amperes. The "db" values indicated on Figure E14, are the average of the four readings taken in each octave band. (Ref 7).

Maintenance. The EVA Corporation Battery Charger should require very little maintenance if afforded the proper care and if it is not abused; however, the unit should be subjected to a periodic preventive maintenance inspection to insure long service. This maintenance should include removing dust and dirt from all components including the printed circuit boards, cleaning exposed relay contacts, cleaning and lubricating the cooling fan, and readjusting the charge rate control potentiometers. This preventive maintenance should be performed at six-month intervals.

Repair to the charger could be quite difficult and should be attempted only by electronics technicians experienced in voltage regulator and control circuitry utilizing solid state components. The replacement of components within the charger, once a problem has been isolated, could also pose difficulties, especially on the printed circuit boards where all components are soldered directly to the board. Thus, the battery charger can be repaired only with some difficulty.

Recommendations. It is recommended that the control adjustments of the battery charger be adjusted only with external instrumentation with at least 1% accuracy. Since the charger characteristics are governed by these adjustments, the single ammeter on the charger is inadequate for this purpose and should only be used as an indicator that the charger is working.

The Electromagnetic Interference radiation from the charger should be suppressed by either filtering or shielding. Since the charger is designed for use primarily in residential environment, the charger would probably interfere with radio and television reception. Although the conducted interference tests were not performed because of the high radiated figure, the conducted noise would most likely compound the interference problems.

Because of the method of operation of the charger, isolation of the output from the input power line would require a redesign of the charger. It is, therefore, recommended that the output lines of the charger be thoroughly insulated and be insulated against possible contact with power ground. Any test instrumentation used in or around the charger output circuit must be isolated from power ground. Otherwise, damage could result to both the charger as well as to the instruments.

If the charger is used on a vehicle or battery pack that becomes greater than 50% discharged on a daily basis, the high input voltage range (230/240) should be used. If the discharge is less than 50%, the 114/120 range would be more efficient and should be sufficient to restore the battery to full charge overnight.

Figure E1. Main Input-Output Circuit (Components on PC Boards).

Figure E2. Ground Detector Circuit (On EVA PC Board).

Figure E3. \pm 15 V DC Supply (On CMC PC Board).

Figure E4. Battery Charger Control Circuit.

Figure E5. Connector and Component Wiring Schematic.

Instruments:

ACVM - A C Voltmeter, Weston 904, ID #1208
ACAM - A C Ammeter, Weston 904, ID # 0654
CT - Current Transformer, Weston 461, S/N 22167
PFM - Power Factor Meter, Weston 338, ID # 0168
DCWM - D C Voltmeter, Weston 901, ID # 0308
DCmWM - D C Millivoltmeter, Weston 931, ID # 0541 & 1246
Shunt #1 - 20 Amp/50 mv, ID # 16591
Shunt #2-- 100 Amp/50 mv, ID # 16592
Battery - Sixteen EV106 Batteries in series
Load - 5KW resistive load, variable

Other instruments

Digital Multimeter, Keithley 167, ID # 18374 Digital Multimeter, Keithley 168, ID # 22509 Storage Oscilloscope, Tektronix 549, ID #9686

Figure E6. Instrumentation to Determine Charge Rate Curves.

Figure E7. Battery Charger Current and Voltage Slopes.

EUA CORP. Battery Charger ** 115 Volt Conn. ** Voltage vs Current Graph #2

Figure E9. Battery Charger Power Consumption, 120 V RMS.

Figure E10. Battery Charger Voltage/Current Slope, Graph 4.

Figure E11. Battery Charger Power Consumption, 240 V RMS.

AD-A080 655

ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMM--ETC F/6 13/6
EVA METRO SEDAN ELECTRIC PROPULSION SYSTEM TEST AND EVALUATION. (U)
SEP 79 E REIMERS
DOE-1AA-EC-77-A-31-1042

UNCLASSIFIED

END DATE FILMED

Figure E13. Broadband Radiated EMI.

Figure E14. Audio Sound Level: Input - 120 V RMS; Output - 10A.

DISTRIBUTION LIST

No. Copies	Addressee	No. Copies	Addressee
	Department of Defense	1	Commander
			Electrotechnology Laboratory
1	Technical Library		USAMERADCOM, DRDME-E
	DDR & E		Fort Belvoir, VA 22060
	The Pentagon, Room 3E1039		
	Washington, DC 20301	6	Commander
			ATTN: Electrical Equipment Division
1	Director, Technical Information		USAMERADCOM, DRDME-EA
	Defense Advanced Research Projects		Fort Belvoir, VA 22060
	Agency		
	1400 Wilson Blvd	2	Commander
	Arlington, VA 22209		ATTN: Technical Library
10	D.C. D		USAMERADCOM, DRDME-WC
12	Defense Documentation Center		Fort Belvoir, VA 22060
	Cameron Station		
	Alexandria, VA 22314		Industry
	Department of the Army	1	Mr. Ralph Blakemore
			Barber-Nichols Engineering Co.
1	Dr. Charles H. Church		6325 W. 55th Avenue
	Chief, Advanced Concepts Team		Arvada, CO 80002
	USADCSRDA, DAMA-ARZ		
	The Pentagon, Room 3E-361	1	Mr. William J. Tuten
	Washington, DC 20301		Creative Technology, Inc.
			14415 N. Scottsdale Road #700
2	Director, Tank Automotive Science		Scottsdale, AZ 85260
	Laboratory		
	ATTN: Colonel Herbert H. Dobbs	1	Mr. Silvairs Ganrett
	USATARADCOM, DRDTA-RGT		Bogue Electric Mfg. Co.
	Warren, MI 48090		100 Pennsylvania Avenue
	D		Patterson, NJ 07509
	Department of Energy		
5	M. Ed., I D.,	1	Mr. Peter Balthasar
3	Mr. Edward Beyma		Power Functions Engineering, Inc.
	Trans. Energy Cons. Div.		P.O. Box 2312
	Department of Energy		Garland, TX 75041
	20 Massachusetts Avenue, NW Washington, DC 20545		M. Thomas Boarder Manager
	Washington, DC 20343	1	Mr. Thomas Ruggles, Manager
	USAMERADCOM		Power Transistor Product Marketing Motorola, Inc.; SPD
	OSTANDEGIA		5005 East McDowell Road
1	Commander		Phoenix, AZ 85062
	ATTN: Special Assistant for R&D		Filoellix, AZ 63002
	USAMERADCOM, DRDME-ZK	1	Mr. E. E. Moyer
	Fort Belvoir, VA 22060		7 Fenion Street West
			Saratoga Springs, NY 12866
1	Commander		Datatoba optinigo, tv i 12000
	ATTN: Special Assistant for Materiel	1	Mr. Edward Buchanon
	Assessment		Electronic Research & Development
	USAMERADCOM, DRDME-ZG		Martin Marietta Co.
	Fort Belvoir, VA 22060		P.O. Box 179
			Denver, CO 80201
1	Commander		
	ATTN: Office of Patent Counsel		
	USAMERADCOM, DRDME-L		
	Fort Belvoir, VA 22060		