

COMPUTAÇÃO EVOLUCIONÁRIA LABORATÓRIO II PROBLEMA DA MOCHILA

PEDRO HENRIQUE LEÃO BRAGA
JOÃO PEDRO SAMARINO

Belo Horizonte, 2016

INTRODUÇÃO

Este trabalho consiste em utilizar um algoritmo genético geracional (GGA) com codificação binária para resolver o problema da mochila que consiste em selecionar o subconjunto de itens que maximiza a soma dos benefícios, sem ultrapassar sua capacidade máxima.

ANÁLISES E RESULTADOS

Neste problema a mochila possui capacidade de 35 e existem 8 objetos com pesos variando entre 6 e 18, cujos valores variam entre 3 e 9.

Como foi sugerido pelo professor, neste algoritmo utilizamos:

- Para a seleção dos pais foi-se utilizado um operador de seleção proporcional ao fitness e o método da roleta;
- Cross Over com 1 ponto de corte e probabilidade de 60% (um valor que está entre a faixa de valores sugeridos (60% a 90%));
- Para a mutação foi-se utilizado o Bit-Flip com probabilidade de mutação igual a 2% (um valor que está entre a faixa de valores sugeridos (2% a 15%));
- A população é toda substituída a cada iteração pelos seus descendentes;
- A população utilizada foi 20;
- O critério de parada para esse problema foram 1000 gerações;

Resolvendo o problema no Matlab com as configurações descritas acima foi possível obter o seguinte gráfico como resultado:

Figura 1 Grafico de Soma dos Valores x Gerações

No gráfico da figura 1 é possível perceber:

- A soma dos benefícios da solução deste problema da mochila é 21.
- Como toda população é gerada a cada geração, podemos perceber que com menos de 100 gerações foi possível achar a solução ótima para o problema, no entanto esse melhor individuo não foi gerado em várias gerações futuras;
- A Partir de 750 Gerações o melhor individuo correspondia ao valor da solução desse problema;
- O desvio da população media é em razão da penalidade pois um individuo novo que sofre um penalidade pode mudar fortemente a media de acordo com a penalidade que o mesmo sofre.

Experimentos com a probabilidade de mutação

Probabilidade de Mutação = 0

Figura 2 Probabilidade de Mutação = 0

Com a probabilidade de mutação igual a zero podemos perceber que o algoritmo se comportou de uma forma bem estável, o melhor individuo não se alterou como mostra o gráfico, mas se alterasse, sofreria variações quase insignificantes e se manteria constante, assim como a população media que se igualou ao melhor individuo, neste caso em menos de 30 gerações.

Probabilidade de Mutação 1% - 5%

Figura 3 Mutação 1%

Figura 4 Mutação 2%

Figura 5 Mutação 3%

Figura 6 Mutação 4%

Figura 7 Mutação 5%

Variando a mutação entre 1% a 5% é possível perceber:

- A partir de 1% de mutação é possível perceber que a população media está próxima ao melhor individuo, e neste caso em 1000 gerações o algoritmo não foi capaz de encontrar a solução ótima
- Variando a mutação entre 1% a 3% observa-se a distância entre a população média e o melhor individuo se distanciando cada vez mais.
 Existe maior variação entre a população media, no entanto o melhor individuo é mais constante, varia pouco e só conseguiu obter a solução ótima em 3% de variação nestes gráficos apresentados;
- A partir de 4% o melhor individuou varia muito, conseguindo atingir o resultado ótimo rapidamente, no entanto sua variação é muito brusca de uma iteração a outra;

Probabilidade de Mutação 10% - 90%

Figura 8 Mutação 10%

Figura 9 Mutação 20%

Figura 10 Mutação 30%

Figura 11 Mutação 40%

Figura 12 Mutação 50%

Figura 13 Mutação 60%

Figura 14 Mutação 70%

Figura 15 Mutação 80%

Figura 16 Mutação 90%

Variando a mutação entre 10% a 90% é possível perceber:

- Todos os gráficos nessa faixa apresentam um melhor individuo apresentando uma solução que varia basicamente entre 15 e 21;
- Todos os gráficos nessa faixa apresentam população média com valores negativas e a medida que a taxa de mutação aumenta esses valores crescem negativamente, chegando a -25;
- Os gráficos cuja mutação varia entre 10% a 40% apresentam a população media se distanciando cada vez mais do individuo ótimo a cada incremento de 10% de mutação;
- Os gráficos cuja mutação varia entre 50% a 90% apresentam a população media se aproximando lentamente cada vez mais do individuo ótimo a cada incremento de 10% de mutação;
- Os gráficos cuja mutação varia entre 10% a 40% apresentam espaçamentos maiores entre indivíduos ótimos que possuem o mesmo resultado, e a medida que é incrementado 10% a mutação essa distância vai diminuindo.

- A partir de 50% a 90% podemos perceber que os indevidos que os melhores indivíduos estão bem próximos uns dos outros e a medida que é acrescentado 10% de mutação a eles essa distância fica ainda menor
- O mesmo fenômeno acima ocorrem com os indivíduos médios;

Probabilidade de Mutação 96% - 99%

Figura 17 Mutação 96%

Figura 18 Mutação 98%

Figura 19 Mutação 99%

Variando a mutação entre 96% a 99% é possível perceber:

- A partir de 96% quanto mais se aumenta na taxa de mutação mais a população media e o melhor individuo se aproximam, isso ocorre de tal forma que com 99% é possível encontrar individuos melhores de uma geração muito pior que indivíduos médios de outras gerações;
- A partir de 96% existem melhores indivíduos com valores negativos, isso aumenta à medida que essa taxa de mutação cresce;
- A maior parte dos melhores individuos foram diferentes da resposta otima.

Experimentos com a probabilidade de cruzamento

Probabilidade de Cruzamento 0 – 99%

Figura 20 Cruzamento 0

Figura 21 Cruzamento 10%

Figura 22 Cruzamento 20%

Figura 23 Cruzamento 30%

Figura 24 Cruzamento 40%

Figura 25 Cruzamento 50%

Figura 26 Cruzamento 60%

Figura 27 Cruzamento 70%

Figura 28 Cruzamento 80%

Figura 29 Cruzamento 90%

Figura 30 Cruzamento 99%

Variando a a taxa de cruzamento entre 0% a 99% é possível perceber:

- Quanto menor o nível de cruzamentos os melhores indivíduos permanecem mais;
- Quanto menor o nível de cruzamentos, mais lenta é a evolução;
- Para o caso de 0% de cruzamento o algoritmo consegue convergir pois ele aciona a função roleta, é muito provável que ele separe os melhores pais, e devido a mutação ele consegue convergir;
- Para o caso de 0% de cruzamento o algoritmo n\u00e3o mistura duas boas solu\u00e7\u00e3es, mas seu tempo de converg\u00e9ncia \u00e9 mais baixo devido a taxa de Cross over n\u00e3o existir.

OBSERVAÇÕES

Foi alterado o algoritmo fitness de modo que o valor de rho foi multiplicado por 3, isso fez evitar casos onde se podia ter valores maiores com penalidades do que valores sem penalidades. Outra mudança realizada para melhorar o algoritmo foi o fato de elevarmos o vetor de entrada da função roleta isso fez com que os valores que tinham fitness muito parecidos fossem melhor distinguidos.

CONCLUSÃO

Através desse trabalho foi possível verificar como os fatores de mutação e Cross over influenciam diretamente no funcionamento do algoritmo, e que através de um estudo mais detalhado é possível chegar a escolha de parametros melhores para a resolução do problema, como por exemplo os parametros dados pelo professor: Cross Over 60% - 90% e mutação de 2% - 15%. Foi possível verificar a eficiência do algoritmo genético geracional (GGA) com codificação binária para resolver um problema tão complexo quanto o da mochila.