Supplementary Report: Results for the Random Benchmark instances

Josu Ceberio, Ekhine Irurozki, Alexander Mendiburu, and Jose A. Lozano (Member, IEEE)*

February 15, 2013

Abstract

In this report we introduce the supplementary data for the random benchmark experimentation carried out in the paper A Distance-based Ranking Model Estimation of Distribution Algorithms for Flowshop Scheduling Problem submitted to the journal IEEE Transactions on Evolutionary Computation. Experimentation parameters, maximum number of evaluations and the final results of the experimentation are extensively introduced. Finally, a complete statistical analysis is introduced to confirm the results obtained.

1 Parameters

Table 1: Upper θ values for the random benchmark instances. Note the first instance of each set was selected for the experimentation. The θ that provided the best fitness average of 10 repetitions was selected.

Instance	θ range	θ_{upper}
250×10	4.0 - 7.0	5.2
250×20	4.0 - 7.0	4.4
300×10	4.0 - 7.0	4.6
300×20	4.0 - 7.0	5.2
350×10	4.0 - 7.0	6.6
350×20	4.0 - 7.0	7.0
400×10	4.0 - 7.0	5.5
400×20	4.0 - 7.0	5.0
450×10	4.0 - 7.0	4.0
450×20	4.0 - 7.0	6.7

^{*}J. Ceberio, E. Irurozki and J. A. Lozano are with the Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, Gipuzkoa 20018, Spain {e-mail: jceberio001@ikasle.ehu.es}

[†]A. Mendiburu is with the Department of Computer Architecure and Technology, University of the Basque Country UPV/EHU, Gipuzkoa 20018, Spain

Table 2: Maximum number of evaluations for the random benchmark instances. Note that the first instance of each set was selected for the experimentation. The evaluation numbers reported are the average of 20 repetitions of the evaluations performed by AGA algorithm running $n \times m \times 0.4$ seconds.

Instance Evaluations

250×10	267779100
250×20	284574350
300×10	273847500
300×20	284672900
350×10	278369000
350×20	286225300
400×10	275491800
400×20	283913500
450×10	277455350
450×20	269271450

2 Results

In the Tables 3, 4 and 5 the results for the random benchmark instances of the algorithms AGA, VNS₄, GM-EDA, VNS and HGM-EDA are reported.

and Standard deviation of the results obtained from 20 Table 3: Results for the random benchmark instances. replications are introduced. Results in bold denote optim

fro					
btained	Std.	1309 1673 1757 1889 1378 1664 1186 1537 1514	2415 2360 2093 2222 3078 2334 2531 1505 2333	1186 1934 2511 1972 1592 1472 1921 2128 1901	3393 4640 3521 2945 3282 4506 3275 4155 4196 3711
results o	Avg.	1568969 1593026 1637359 1607455 1655890 1571112 1595378 1555627 1595627 1595627	1851442 1895743 18895743 18855407 1841798 1863531 1880572 1855947 1855290	2243244 2224311 2242945 2220188 2258006 2263223 2248515 2249658 2249943	2593160 2577047 2594564 2588579 2606162 2613938 2598782 2556667 255667 2550413
of the re	Max	1571195 1595517 1641297 1610632 1658454 1574151 1597167 1559740 1599865	1855536 1901469 1886797 1859560 1847349 1867674 1884239 1861320 1861320 1861228	2245153 2227987 224918 2222773 2265242 2265242 2251265 2211296 2211296 2254840	2599538 2586106 2603421 2594420 2614917 2624648 2605485 2574146 2604376
ndom benchmark instances. Min, Max, Average and Standard deviation of the results obtained fro Results in bold denote optimum or best known solutions of 20 repetitions. AGA AGA AGA AGA AGA AGA AGA AGA AGA A	Min	1566623 1589117 1633818 1603824 1652808 1562866 1592812 1552918 1594956	1847471 1892483 1879796 1852134 1836747 1859562 1876186 1850963 1859994 1837633	2241165 2221209 2239369 2216046 2255074 2259913 224410 2203072 22445325	2586158 2569577 2588574 2584806 2601077 2605560 2593450 2556756 256756 2583311
andard of 20 re	Std.	2384 1908 2114 1388 950 0 1770 1046 2089 769	2078 2323 2098 2584 2624 1311 1506 2181 2067 2868	2160 2031 0 0 2025 1350 1901 293 0	3524 3885 3109 3270 3875 2934 3398 3549 4754
ge and St solutions	Avg.	1590532 1613911 1657944 1628924 1673685 1579130 1615579 1615760 1615760	1873254 1918633 1901045 1876540 1862001 1883180 1902067 1878047 1878047 1886133	2270819 2253968 2269477 2239258 2281545 2285542 2275025 2228773 2272774	2622216 2624656 2624656 2616541 2634406 2643736 2622098 252098 2596387 2617420
x, Averag t known s vns.	Max	1594457 1617265 161267 1629952 1674417 1579130 1619272 1619915	1877499 1921935 1904093 1881674 1867562 1885729 1904322 1881313 1889833 1865047	2274217 2257033 2269477 2239258 2284768 2290214 2278769 2228859 2272774	2629221 2629328 2629328 2622132 2640414 2648286 2629589 2603068 2629955
Min, Max m or best	Min	1586380 1610891 1653769 1625247 1671810 1579130 1612754 1610429	1869785 1911928 1897111 1870860 1856684 1880239 1899923 1873160 1873160 1853385	2265860 2250027 2269477 2239258 2276761 2284501 2277746 22777474 2277774	2616255 2592489 2617677 2613856 2628377 2639338 2614325 2589180 2611147
	Std.	1910 3336 2214 4010 2001 813 2975 1735 2824 3070	3868 4865 3295 4619 5178 4285 4067 4881 5377	4388 2369 1509 3051 2783 3646 2259 2848 1765	4619 4656 4613 4342 5245 5245 5827 3880 5486 4030
ark insta l denote	Avg.	1576793 1603218 1644198 1620304 1662724 1574782 1606517 160617 1607141	1860515 1911599 1891349 1868715 1850767 1875509 1894832 1867022 1878257 1878257	2257521 2239233 2257063 2228788 2272071 2277022 2201652 2221583 2264020	2612288 2593007 2613544 2603574 2624804 2633105 2616274 2582165 2612483 2612483
$\begin{array}{c} \mathrm{benchm}_{8} \\ \mathrm{ts} \end{array}$	Max	1581347 1609723 1648066 1627833 1665551 1576645 1612036 1567166 1610973	1864788 1920300 1898773 1880019 1858636 1883615 1901625 1875647 1875647 1875433	2264908 2242415 2262236 2231089 2277455 2282930 2266368 2225787 2269780	2621755 2599796 2599796 2614032 2636119 2645825 2625869 2588341 2627195
random ed. Resul	Min	1574153 1597409 1641678 1613745 1659509 1573535 1601934 1559891 1601827	1850851 1886670 1862538 1841336 1869022 1888192 1860016 186903 1845996	2251273 2235429 2254615 2226053 2265952 2271241 2255633 2215727 2258816	2606191 2585492 2607218 2598254 2614286 2626320 2607273 2575862 2604157
or the	_ _ _	100847001	1 2 8 4 3 2 2 2 0 1 0 0 0 0	100 8 4 2 2 5 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1	12647097800
Results for the random benchmark instances. as are introduced. Results in bold denote optim	Instance	250×10	250×20	300×10	300 × 20

20 Table 4: Results for the random benchmark instances. replications are introduced. Results in bold denote optim

Instance		Instance $\frac{ A }{ D }$ Min Max Avg. Std. Mi	AGA Max	Avg.	Std.	Min	VNS ₄	Avg.	Std.	Min	HGM-EDA Max	SDA Avg.	Std.
350×10	10 10 10	3065912 3010979 3011165 3042887 3052190 3039389 3054327 3095955 3049066 3029292	3076051 3015930 3017258 3061112 3066334 3052171 3103257 3103257 3103257 3062688	3072182 3013093 3015093 3056989 3045145 3058004 3100344 3054702	2505 1820 1425 5848 3820 4518 2450 2414 4220 3215	3084744 3021883 3016891 3064140 3072390 3058774 3069719 3105729 3062955	3093112 3021883 3012183 3070473 3080591 3068271 3068271 3105729 3074067	3090163 3021883 3021883 3067863 3076491 3063253 3073861 3105729 3070845	2528 0 153 1876 2550 2831 1774 1774 0 2591	3051090 2996234 2977597 3026374 3031433 3023478 3037375 3078709 3029894	3062857 3004933 290792 3044715 3045762 3037643 3046678 3090803 3046914	3055806 2999430 2984841 3031778 3036396 3028553 3041731 3081731 3083100 3083100 3083100	2945 2779 3098 4507 3396 3779 2072 3030 3876
350×20	10 8 4 3 2 5 10 10 10 10 10 10 10 10 10 10 10 10 10	3483233 3488903 3465021 3488964 3441716 3461065 3461065 3464192 3494192 3454235	3504896 3507941 3485781 3510910 340868 3492595 3508580 342602 3416318	3498255 3437138 3475952 3499478 3411913 3476020 3500593 3481046 3507493	4799 4767 5388 5699 4917 7246 4326 7229 6112	3491694 3501417 340746 349548 348333 3502329 3481989 3498925 3471309	3509228 3510806 3490673 3524062 3466074 3498394 3523039 350227 3521232 348437	3500998 3506411 3482641 3517190 3460703 3489514 3514279 3492165 3492165 3477256	4850 2991 3553 3798 5082 4004 4903 5207 4197	3462591 3472888 348696 3487674 342898 3451601 3482315 3482315 3483315 3471376	3483172 3500079 346455 3510219 3456290 348460 3502424 3482175 3494609	3470716 3487248 3455661 3499036 3435055 3465020 3492962 346281 3483249	4627 8872 4260 5548 9054 8285 5822 7736 5837 6774
400×10	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	393307 3913626 3934557 3891700 3929183 3913491 3869753 3925389 3910625 3936169	3946831 3924694 392910 3907083 3946391 3926900 3877726 3937590 3937590	3940408 3917274 3938381 3899321 3937956 3920493 3873155 3932163 3937789	3486 3064 2444 4952 4324 3088 2529 3068 3673 1856	3953376 3937745 3957745 395694 3945640 3930115 3880045 3946990 3921963	395376 3937745 3954822 3928950 3945640 3930115 384523 3947456 3947456 3930638	395376 3937745 3957745 3957015 3945640 3930115 384000 3947433 392987	3545 0 0 0 0 1321 104 1979	3947105 3910048 3936392 3875265 3932228 3931953 3865710 3918728 3903109	3978898 3955026 3975825 3903755 3969255 3972628 3921303 3985113 3985113	3965250 3924313 392525 388359 3949245 3951860 3884016 384916 394931 394931	9291 11985 10872 7973 11094 10979 11942 16749 14645 12355
400×20	1084597895	4465942 4442588 4419467 4450298 4380600 4460906 4472922 4438057	4493539 4464397 4481323 4481322 4408163 4480574 4505260 4449718	4480917 4454015 4430321 4469057 4394538 4471233 4495309 4444973	6372 5871 4457 8577 6893 5368 7933 3445	4473212 4455085 4438085 4473051 4401272 4467146 4487424 4450479	4494718 4475599 4441469 4488169 4423334 4490854 4520797 4469245 4442341	4487498 4468002 4441059 4480069 4409630 4483005 4512639 4459819 4442238	4758 5669 1023 4589 5934 6660 7650 330	4488339 4471430 4445568 4481842 4404712 4483966 4494560 4466578 4450333	4545991 4528310 4482757 4531124 4457527 4533733 4543838 4498461	4515697 4503037 4462419 4462070 4437232 4506287 4526379 4491073 4472159	13822 14324 11434 13364 12753 11377 13295 13587

Table 5: Results for the random benchmark instances. Min, Max, Average and Standard deviation of the results obtained from $\begin{array}{c} 12697 \\ 12025 \\ 11280 \\ 111814 \\ 8649 \\ 10189 \\ 10189 \\ 7985 \\ 9210 \\ 9996 \end{array}$ 14835 19114 14685 15105 16503 14464 16092 15478 16764 Std. 4989858 5001841 5000896 50576285660685 5678634 5652449 5618789 $\begin{array}{c} 5669628 \\ 5641866 \\ 5630423 \end{array}$ 4969349 4979093 HGM-EDA 5687086 5701506 5710515 5678570 5650496 5659727 5697429 5697429 5671253 4996317 4997216 5034532 502828 5013337 5035827 5014363 $\frac{4994291}{5077268}$ replications are introduced. Results in bold denote optimum or best known solutions of 20 repetitions. 4945213 4963724 4979497 4998720 4971752 4976883 4985428 5622073 5633716 5653949 5627182 5583783 5611787 5644147 5607597 5592803 Min 1859 809 2292 597 Std. 5468 5043 6465 6195 7347 4674 6569 7182 4947278 4955556 4960448 4907294 4959690 5580214 5607715 5600785 5585438 5547247 5567192 5604431 5575892 5562585 5004837 4907294 4965100 4936947 4947333 4950666 4956910 5592450 5616850 5612248 5592928 5557544 5574585 5616896 5585250 5572643 $\frac{4942637}{5005074}$ 5569431 5597985 **5587972** 4947333 4942281 4950775 5532708 5555781 5594845 5561410 **5549109** Min 4952505 4260 3508 677 2301 2850 2901 3557 4213 9327 8083 7745 6890 9903 8935 9442 8296 4295 Std. 5564135 5600264 5599575 5570557 5521705 5551816 5591816 5579344 5567613 4892084 4940080 4934735 4940075 4926956 4935709 4938891 4913383 4981896 4936130 4942892 4931113 4941073 5580165 5617291 5610737 5578183 5543428 5572680 5614739 4897775 $5594373 \\ 5574801$ $\begin{array}{c} 4870929 \\ 4884041 \\ 4930649 \\ 4933807 \end{array}$ $4934094 \\ 4922342 \\ 4931140$ 5545906 5584602 5588641 5586343 5507299 5534081 558460 558982 5559057 Min П 10 10 10 10 Instance 450×10 450×20

3 Statistical Analysis

In order to state whether there exist statistical differences among the observed results, we consider applying a non-parametric Friedman's test to the average results of the 5 algorithms separately for each job-machine configuration. A level $\alpha=0.05$ of significance was set. Results reported significant differences between the algorithms. Therefore a post-hoc method is used to carry out all pairwise comparisons and determined which algorithms stand out from the rest of the approaches. Particularly, Shaffer's static procedure is used. Again, the significance level has been fixed to $\alpha=0.05$.

3.1 Instances of 250 jobs: 250×10 and 250×20 .

3.1.1 Non-parametric test: Friedman Test

Table 6: Average ranking of the algorithms for the instances 250×10 and 250×20 .

Algorithm	250×10	$250{\times}20$
AGA	1.9	1.9
VNS_4	0.9	0.9
HGM-EDA	2.9	2.9

Table 7: Adjusted p-values for the algorithms for the configuration 250×10 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	unadjusted p	p_{Shaf}
VNS ₄ vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
$AGA vs. VNS_4$	0.025	0.025
AGA vs. HGM-EDA	0.025	0.025

Table 8: Adjusted p-values for the algorithms for the configuration 250×20. The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	unadjusted p	p_{Shaf}
VNS_4 vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
$AGA vs. VNS_4$	0.025	0.025
AGA vs. HGM-EDA	0.025	0.025

3.2 Instances of 300 jobs: 300×10 and 300×20 .

3.2.1 Non-parametric test: Friedman Test

Table 9: Average ranking of the algorithms for the instances 300×10 and 300×20 .

Algorithm	300×10	300×20
AGA	1.9	1.9
VNS_4	0.9	0.9
HGM-EDA	2.9	2.9

3.2.2 Pairwise comparison: Shaffer's Static Procedure

Table 10: Adjusted p-values for the algorithms for the configuration 300×10 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	\mid unadjusted p	p_{Shaf}
VNS_4 vs. $HGM\text{-}EDA$	7.74×10^{-6}	2.32×10^{-5}
$AGA vs. VNS_4$	0.025	0.025
AGA vs. HGM-EDA	0.025	0.025

Table 11: Adjusted p-values for the algorithms for the configuration 300×20 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	unadjusted p	p_{Shaf}
VNS_4 vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
$AGA vs. VNS_4$	0.025	0.025
AGA vs. HGM-EDA	0.025	0.025

3.3 Instances of 350 jobs: 350×10 and 350×20 .

3.3.1 Non-parametric test: Friedman Test

Table 12: Average ranking of the algorithms for the instances 350×10 and 350×20 .

Algorithm	350×10	350×20
AGA	1.9	1.9
VNS_4	0.9	0.9
HGM-EDA	2.9	2.9

3.3.2 Pairwise comparison: Shaffer's Static Procedure

Table 13: Adjusted p-values for the algorithms for the configuration 350×10 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	\mid unadjusted p	p_{Shaf}
VNS ₄ vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
$AGA vs. VNS_4$	0.025	0.025
AGA vs. HGM-EDA	0.025	0.025

Table 14: Adjusted p-values for the algorithms for the configuration 350×20 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	unadjusted p	p_{Shaf}
VNS_4 vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
$AGA vs. VNS_4$	0.025	0.025
AGA vs. HGM-EDA	0.025	0.025

3.4 Instances of 400 jobs: 400×10 and 400×20 .

3.4.1 Non-parametric test: Friedman Test

Table 15: Average ranking of the algorithms for the instances 400×10 and 400×20 .

Algorithm	400×10	400×20
AGA	2.4	2.9
VNS_4	1.0	1.9
HGM-EDA	2.5	0.9

3.4.2 Pairwise comparison: Shaffer's Static Procedure

Table 16: Adjusted p-values for the algorithms for the configuration 400×10 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	\mid unadjusted p	p_{Shaf}
VNS ₄ vs. HGM-EDA	0.001	0.005
$AGA vs. VNS_4$	0.003	0.025
AGA vs. HGM-EDA	0.8	0.025

Table 17: Adjusted p-values for the algorithms for the configuration 400×20 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	unadjusted p	p_{Shaf}
AGA vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
VNS_4 vs. $HGM\text{-}EDA$	0.025	0.025
$AGA vs. VNS_4$	0.025	0.025

3.5 Instances of 450 jobs: 450×10 and 450×20 .

3.5.1 Non-parametric test: Friedman Test

Table 18: Average ranking of the algorithms for the instances 450×10 and 450×20 .

Algorithm	450×10	$450{\times}20$
AGA	2.9	2.8
VNS_4	1.9	2.1
HGM-EDA	0.9	0.9

3.5.2 Pairwise comparison: Shaffer's Static Procedure

Table 19: Adjusted p-values for the algorithms for the configuration 450×10 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis	unadjusted p	p_{Shaf}
AGA vs. HGM-EDA	7.74×10^{-6}	2.32×10^{-5}
VNS_4 vs. $HGM\text{-}EDA$	0.025	0.025
$AGA vs. VNS_4$	0.025	0.025

Table 20: Adjusted p-values for the algorithms for the configuration 450×20 . The hypothesis that have a p-value higher than ≤ 0.05 are rejected.

Hypothesis | unadjusted p | p_{Shaf}

Hypothesis	\mid unadjusted p	p_{Shaf}
AGA vs. HGM-EDA	5.69×10^{-5}	1.70×10^{-4}
VNS_4 vs. $HGM\text{-}EDA$	0.007	0.007
$AGA vs. VNS_4$	0.17	0.17