Department 07 Master Computer Science

Deep learning - Dog Breed Classification

Realization of an native Android app using deep learning algorithms

Alice Bollenmiller, Andreas Wilhelm WS 17/18 IG January 22, 2018

Contents

T	Introduction			
	1.1	Deep learning	1	
	1.2	Terms of Referencee	1	
2	Met	hodological fundamentals	1	
	2.1	Common Frameworks for Deep Learning Applications	1	
	2.2	Common Models in Deep Learning Applications	1	
	2.3	Qualified Models for mobile App Integration	1	
	2.4	Key requirements for an appropriate dataset	1	
3	Concept			
	3.1	Frameworks	1	
	3.2	Model based Architectures	1	
	3.3	Application based Architecture	2	
4	Realization			
	4.1	dataset	2	
	4.2	hardware environment	2	
	4.3	software environment	2	
	4.4	installation of software	2	
		4.4.1 Tensorflow based on Python	2	
		4.4.2 Tensorflow based on Bazel	2	
		4.4.3 Installing Android Studio and its Delevopment Kit	2	
	4.5	building the models	2	
	4.6	Output Tests and Validation	2	
	4.7	Implementation of an native Android App	2	
	4.8	Deployment and Validation	2	
5	Eva	luation	2	
6	Con	clusion	3	

Deep learning January 22, 2018

1 Introduction

1.1 Deep learning

- what is deep learning -; purpose, usage, current research projects, state of the arts

1.2 Terms of Referencee

- dog breed analyzer -; goals, purpose,
- -¿ high perfomance computing but native android app

2 Methodological fundamentals

2.1 Common Frameworks for Deep Learning Applications

- some examples, tensorflow (tensorflow slim -; High level api for easier use, tensorflow lite), Caffe, Keras, Torch, PyTorch, ...

https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/

2.2 Common Models in Deep Learning Applications

- short differences between different architecuteres (?, CNN, RNN)
- AlexNet, Mobilenet, Inception, VGG, -¿ short decsription, useCases, important things, differences

2.3 Qualified Models for mobile App Integration

- Mobilenet, Inception etc -¿ short decsription, useCases, important things, differences

2.4 Key requirements for an appropriate dataset

- generall why you need a huge dataset -; different backgrounds
- self trained needs a huge dataset, a lot of computing performance and time
- -¿ so use pre trained, if small dataset.
- -¿ pretrained used millions of pictures (e.g. ImageNet)

3 Concept

3.1 Frameworks

- tensorflow -; why

3.2 Model based Architectures

- general architectures of models -¿ Mobilenet, Inception

3.3 Application based Architecture

4 Realization

4.1 dataset

4.2 hardware environment

used CPU, GPU -; NVIDIA, handys

4.3 software environment

- Bazel, Java, Android Studio, Python, Operating System
- Android system

4.4 installation of software

- software environment

4.4.1 Tensorflow based on Python

4.4.2 Tensorflow based on Bazel

- e.g. Workspace changes for Android SDK, msse4.2

4.4.3 Installing Android Studio and its Delevopment Kit

- also possible with bazel but easier Android studio (needs correct versions of sdk, ndk)
- SDK, NDK
- IMPORTANT: tf versions updaten (same as trained)

4.5 building the models

- -¿ evtl extra subsubsection:
- execution methods -i. Bazel and Python (incompatible versions)
- Mobilnet -; steps, optimierung
- Inception -; steps, optimierung
- time related differences of execution
- -¿ time CPUs/GPU

4.6 Output Tests and Validation

- test pictures and if it works -; label image
- validation script?!

4.7 Implementation of an native Android App

- list all necessary things to do (e.g. tensorflow version, Interpreter -; load Model)

4.8 Deployment and Validation

5 Evaluation

- prio von nierdig zu hoch
- regarding implementation time

- regarding performance
- regarding quality in accuracy
- handy perfomance?

6 Conclusion

- tutorials not complete, different
- which model is better
- prospects, improvements, Recommendations