We see an observation x of the misspelled word

Find the correct word w

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w|x)$$

We see an observation x of the misspelled word

Find the correct word w

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w|x)$$
$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x|w)P(w)}{P(x)}$$

We see an observation x of the misspelled word

Find the correct word w

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w|x)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x|w)P(w)}{P(x)}$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x|w)P(w)$$

Creating candidate set

- Words with similar spelling
- Words with similar pronunciation

Some statistics

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

Allow deletion of space or hyphen

- thisidea → thisidea
- inlaw → in-law

Words within edit distance 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	-	deletion
acress	cress	_	a	insertion
acress	caress	ca	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	_	s	insertion
acress	acres	_	s	insertion

Computing error probability: confusion matrix

- del[x,y]: count (xy typed as x)
- ins[x,y]: count (x typed as xy)
- sub[x,y]: count (x typed as y)
- trans[x,y]: count(xy typed as yx)

Computing error probability: confusion matrix

- del[x,y]: count (xy typed as x)
- ins[x,y]: count (x typed as xy)
- sub[x,y]: count (x typed as y)
- trans[x,y]: count(xy typed as yx)

Insertion and deletion are conditioned on previous character

Channel model

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

Channel model for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	-	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	e o	.0000093
acres	_	s	es e	.0000321
acres	-	s	ss s	.0000342

9/17/2020

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	_	a	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	e o	.0000093	.000299	2.8
acres	_	s	es e	.0000321	.0000318	1.0
acres	-	s	ss s	.0000342	.0000318	1.0

- Here we have maximum probability 2.8 therefore correct candidate is across
- Without considering context, this method is very good.
- But suppose if we have probabilities values very near like 2.7, 2.71..., than without using context we cannot choose which candidate is correct candidate.
- Example with context:
- Consider the sentence "...... Versatile acress whose....."
- So here we have two candidates 'across' and 'actress'
- P(actress | versatile) = 0.000021
- P(across|versatile) = 0.000021
- P(whose | actress) = 0.0010, P(whose | across) = 0.000006
- P("versatile actress whose") = 0.000021 * 0.0010 = 210 * 10⁻¹⁰
- P("versatile across whose") = 0.000021 * 0.000006 = 1 * 10⁻¹⁰
- Here actress is more probable.

Real-word spelling errors

- The study was conducted mainly be John Black
- The design an construction of the system ...

25-40% of spelling errors are real words

Noisy channel for real-word spell correction

```
Given a sentence X = w_1, w_2, w_3 \dots, w_n
```

- Candidate $(w_1) = \{w_1, w^{j_1}, w^{j_1}, w^{j_1}, w^{j_1}, \dots\}$
- Candidate $(w_2) = \{w_2, w^{j_2}, w^{j_2}, w^{j_2}, \dots\}$
- Candidate $(w_3) = \{w_3, w^{j_3}, w^{j_3}, w^{j_3}, \dots\}$

Choose the sequence W that maximizes P(W|X)

Noisy channel for real-world spell correction

Simplification: One error per sentence

Choose among all possible sentences with one word replaced

two of thew

- w_1, w^{jj}_2, w_3 two **off** thew
- w_1, w_2, w^{j_3} two of **the**
- $w^{jjj}_{1}, w_{2}, w_{3}$ **too** of thew

- So here we assume there is error in one word.
- So for assume for w1 there are three possibilities i.e. w1-> w1' w1" & w1(word itself)
- Similarly for w2-> w2' w2" & w2 and w3-> w3' w3" & w3
- So if we assume there is error in one word only the possible combination can be

```
w1' w2 w3
w1" w2 w3
w1 w2' w3
w1 w2" w3
w1 w2 w3'
w1 w2 w3"
```

- So total 6+1 = 7 possibilities.
- Otherwise three words and three combination for each so total 3^3 = 27.

Simplification: One error per sentence

Choose among all possible sentences with one word replaced

two of thew

- $\mathbf{w}_1, w^{jj}_2, w_3$ two **off** thew w_1 ,
- w_2 , w^{j_3} two of **the** w^{jjj_1} , w_2 , w_3
- too of thew

Choose the sequence W that maximizes P(W|X)

Getting the probability values

Noisy Channel

$$\hat{W} = \underset{W \in S}{\operatorname{argmax}} P(W | X)$$

where \boldsymbol{X} is the observed sentence and \boldsymbol{S} is the set of all the possible sequences from the candidate set

Getting the probability values

Noisy Channel

$$\hat{W} = \underset{W \in S}{\operatorname{argmax}} P(W | X)$$

where \boldsymbol{X} is the observed sentence and \boldsymbol{S} is the set of all the possible sequences from the candidate set

$$= \underset{W \in S}{\operatorname{argmax}} P(X|W)P(W)$$

Getting the probability values

Noisy Channel

$$\hat{W} = \underset{W \in S}{\operatorname{argmax}} P(W | X)$$

where X is the observed sentence and S is the set of all the possible sequences from the candidate set

$$= \underset{W \in S}{\operatorname{argmax}} P(X|W)P(W)$$

P(X|W)

- Same as for non-word spelling correction
- Also require proabability for no error P(w|w)

Probability of no error

What is the probability for a correctly typed word? P("the"|"the")

It may depend on the source text under consideration

- 1 error in 10 words → 0.9
- 1 error in 100 words → 0.99

Computing P(W)

Use Language Model

- Unigram
- Bigram

Spell corrector

Peter Norvig

http://www.norvig.com/spell-correct.html

- Spell correction algorithm based on edit distance: http://norvig.com/spell-correct.html
- Python spell correction libraries PyEnchant based on the enchant library (http://pythonhosted.org/pyenchant/), autocorrect, which is available at https://github.com/phatpiglet/autocorrect/
- DeepSpell: Based on RNN, LSTM and word embedding https://github.com/MajorTal/DeepSpell