MCAL/MT - Théorème de Rice & Preuve de Réduction (2 TD)

Exercice 1 : Formalisation et Théorème de Rice (15min, 4 pt)

On note \mathcal{M} l'ensemble des codages binaires de machines de Turing.

Q1. (0.25 pt) Complétez: Un ensemble de machines de Turing est un ensemble de Rice s'il s'écrit $\{m \in \mathcal{M} \mid \mathcal{C}(\dots,)\}$ où la condition \mathcal{C} porte sur le langage reconnu par m

Q2. (0.25 pt) Complétez : Tout ensemble de Rice non-..... c'est-à-dire différent de et de ..., est

Q3. (1 pt) Formalisez en termes mathématiques les ensemble suivants

1. L'ensemble des machines de Turing qui n'acceptent pas le mot m correspondant à leur codage en binaire :

$$L_1 = \{ m \in \mathcal{M} \mid \dots \}$$

2. L'ensemble des machines de Turing dont l'exécution sans paramètre est infinie :

$$L_2 = \{ m \in \mathcal{M} \mid \dots \}$$

3. L'ensemble des machines de Turing qui acceptent tous les mots binaires :

$$L_3 = \{ m \in \mathcal{M} \mid \dots \}$$

4. L'ensemble des machines de Turing équivalentes à la MT M_{\emptyset} qui reconnaît le langage vide :

$$L_4 = \{ m \in \mathcal{M} \mid \dots \}$$

5. L'ensemble des MT qui rejettent le mot binaire ϵ

$$L_5 = \{ m \in \mathcal{M} \mid \dots \}$$

Q4. (1.5 pt) Parmi les ensembles L_1 à L_4 , certains sont des ensembles de Rice. Lesquels? Rédigez votre réponse de la manière suivante en définissant la condition de Rice, C, correspondant à l'ensemble.

Indication : ... est un ensemble de Rice car il peut s'écrire $\{m \in \mathcal{M} \mid \mathcal{C}(\ldots)\}$ avec $\mathcal{C}(L) \stackrel{\textit{def}}{=} \ldots$

Q5. (1pt) Expliquez pourquoi les autres ensembles ne sont pas un ensemble de Rice.

Q6. $(0.25 \,\mathrm{pt})$ Si un ensemble L n'est pas un ensemble de Rice, que peut-on en déduire?

Exercice 2 : Applications du Théorème de Rice (4.5 pt)

On note \mathcal{M} l'ensemble des codages binaires de machines de Turing.

Q7. (0.25 pt) Complétez: Un ensemble de machines de Turing est un ensemble de Rice s'il s'écrit $\{m \in \mathcal{M} \mid \mathcal{C}(\dots,)\}$ où la condition \mathcal{C} porte sur le langage reconnu par m

Q8. (0.25 pt) Complétez : Tout ensemble de Rice non-..... c'est-à-dire différent de et de ..., est

Q9. (4 pt) Formalisez en termes mathématiques les ensemble suivants et justifiez que ce sont des ensembles de Rice.

1. soit ω un mot de $\{0,1\}^*$, l'ensemble E_1 des MT qui n'acceptent pas le mot binaire ω $E_1 = \{m \in \mathcal{M} \mid \dots \}$ est un ensemble de Rice car ce langage correspond à $\{m \in \mathcal{M} \mid \omega \dots \}$

est un ensemble de Rice car ce langage correspond à $\{m \in \mathcal{M} \mid \omega \dots \}$ qui est de la forme $\{m \in \mathcal{M} \mid \mathcal{C}(\dots)\}$ avec $\mathcal{C}(\dots)\stackrel{def}{=}$

2. L'ensemble E_2 des machines de Turing dont le langage est régulier (ie. reconnaissable par un automate (à nombre) d'états fini A)

 $E_2 = \{ m \mid \exists A \in AEF, \dots \}$ est un ensemble de Rice car il est de la forme $\{ m \in \mathcal{M} \mid \mathcal{C}(\dots) \}$ avec $\mathcal{C}(\dots) \stackrel{def}{=}$

3. L'ensemble E_3 des machines de Turing qui n'acceptent aucun mot

 $E_3 = \{ m \mid \dots \}$ est un ensemble de Rice car il est de la forme $\{ m \in \mathcal{M} \mid \mathcal{C}(\dots) \}$

avec $\mathcal{C}(\dots) \stackrel{def}{=}$

4. L'ensemble E_4 des machines de Turing dont le langage est fini

 $E_4 = \{ m \mid \dots \in \mathbb{N} \}$

est un ensemble de Rice car il est de la forme $\{m \in \mathcal{M} \mid \mathcal{C}(\dots)\}$ avec $\mathcal{C}(\dots) \stackrel{def}{=}$

Exercice 3 : Théorème de Rice, Réduction et Preuve directe

À l'aide d'un raisonnement par contradiction utilisant l'exemple \mathcal{P}_{ω} d'application du théorème de Rice (avec $\omega = \epsilon$), montrez que « l'ensemble L des machines de Turing dont l'exécution sans paramètre s'arrête » est indécidable.

Q10. (0.25 pt) Donnez la définition mathématique de L.

Q11. (0.25 pt) L correspond-t'il à un ensemble de Rice $\mathcal{P}_{\mathcal{C}}$? si oui, donnez la condition $\mathcal{C}: \mathcal{L} \to Bool$, sinon expliquez pourquoi.

Exercice 3.1 Preuve d'indécidabilité par réduction de \mathcal{P} à L.

Q12. (0.75 pt) Montrez que l'ensemble $\mathcal{P}_{\epsilon} \stackrel{def}{=} \{ m \in \mathcal{M} \mid U(m)(\epsilon) = \mathbb{V} \}$ est indécidable.

Q13. (0.25 pt) Donnez une MT M_{∞} qui ne termine jamais quel que soit le ruban.

Démontrons que L est indécidable par réduction de l'ensemble \mathcal{P}_{ϵ} à L

On considère la transformation R définie par $R(m) \stackrel{\text{def}}{=} [\text{if } U(m)(\epsilon) = \mathbb{V} \text{ then } \to \bigcirc \text{ else } M_{\infty}]_2$

Q14. (0.5 pt) Complétez le diagramme de réduction $\frac{M_R}{traduction} \qquad \qquad m \in \mathcal{P}_\epsilon \qquad \cdots \qquad \in L$

- Q15. (0.5 pt) Si le diagramme de réduction est correct, que peut-on en conclure?
- Q16. (0.5 pt) Que reste-t'il à montrer pour avoir le droit d'appliquer la réduction?
- Q17. (1 pt) Rédiger la preuve de (⇒) en commençant par expliciter ce qu'on doit montrer.
- Q18. (1 pt) Rédiger la preuve de (←) en commençant par expliciter ce qu'on doit montrer.

Exercice 3.2 Preuve directe d'indécidabilité

Q19. (1.5 pt) Complétez la preuve directe d'indécidabilité.

Preuve par contradiction: Supposons L , alors il existe une MT M_L telle que

$$M_L(m) = \mathbb{V} \Leftrightarrow \ldots \qquad \stackrel{\textit{def}}{\Longleftrightarrow} U(m)(\epsilon) \ldots$$
 et $M_L(m) = \mathbb{F} \Leftrightarrow \ldots \qquad \stackrel{\textit{def}}{\Longleftrightarrow} U(m)(\epsilon) \ldots$

Utilisons M_L pour construire une MT M_ϵ qui décide \mathcal{P}_ϵ , l'ensemble des machine de Turing qui acceptent le mot ϵ .

Construction de M_ϵ : Notons m, la machine de Turing passée en paramètre à M_ϵ La MT M_ϵ doit décider si m accepte ou non le mot ϵ .

$$M_{\epsilon}(m) \stackrel{\mathrm{def}}{=} [\text{ if } \ldots \ldots \ldots \text{ then } U(m)(\epsilon) \text{ else } \to \otimes \]_{\scriptscriptstyle 2}$$

Montrons que M_{ϵ} décide \mathcal{P}_{ϵ} . Pour cela on doit montrer

$$(i) \quad M_{\epsilon}(m) = \mathbb{V} \Leftrightarrow \dots \dots \mathcal{P}_{\epsilon} \stackrel{\mathsf{def}}{\Longleftrightarrow} U(m)(\epsilon) = \dots$$

$$\mathsf{et} \quad (ii) \quad M_{\epsilon}(m) = \mathbb{F} \Leftrightarrow \dots \dots \mathcal{P}_{\epsilon} \stackrel{\mathsf{def}}{\Longleftrightarrow} \dots \dots \dots \mathbb{V} \quad \mathsf{ie.} \quad \left\{ \begin{array}{l} \to \otimes \\ \to \infty \end{array} \right.$$

- (i) Si $M_{\epsilon}(m)=\mathbb{V}$ nécessairement c'est la branche du **if** qui a été prise puisque la branche rend \mathbb{F} . Mais alors \mathbb{V} est le résultat de et donc m ϵ d'où $m\in\mathcal{P}_{\epsilon}$.
- (ii) Si $M_{\epsilon}(m)=\mathbb{F}$, cette réponse de la branche then ou de la branche else. Examinons les deux cas :
 - Si l'exécution de $M_{\epsilon}(m)$ a pris la branche c'est que le test $M_L(m)$ rend ... et cela signifie que m sur ϵ . Et alors on peut conclure que m le mot ϵ et donc $m \notin \mathcal{P}_{\epsilon}$.
 - La réponse $\mathbb F$ peut aussi provenir de la branche mais alors $\mathbb F$ est le résultat de ce qui signifie que m n'accepte pas ϵ d'où $m \notin \mathcal P_\epsilon$.

(i) et (ii) montrent que M_{ϵ}	i contredit le fait que \mathcal{P}_ϵ est
: Contradiction.	
Conclusion : En supposant	on aboutit à une contradiction,
donc	

Exercice 4:

Soit \overline{L} un langage indécidable. Appliquez les définitions afin de montrer que L est indécidable.

Exercice 5 : Indécidabilité de l'équivalence de machines de Turing (2.5 pt)

Le théorème de Rice permet de montrer qu'il n'existe pas de MT (*ie.* de programme) capable de dire si deux MTs (ou programmes) fournis en paramètre sont équivalents (c'est-à-dire qu'ils retournent le même résultat sur toutes les entrées possibles).

Q20. (2.5 pt) Étant donnée une MT M', montrez, à l'aide du théorème de Rice, que l'ensemble $\mathcal{P}_{\equiv M'}$ des machines de Turing équivalentes à M' est indécidable

$$\mathcal{P}_{\equiv M'} \stackrel{\text{\tiny def}}{=} \{ m \mid U(m) \equiv M' \}$$