ШВЕЛЛЕРЫ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ

Сортамент

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 327, Украинским государственным научно-исследовательским институтом металлов

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертифика-

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11 от 23 апреля 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Грузия Республика Казахстан Республика Молдова Российская Федерация	Азгосстандарт Армгосстандарт Госстандарт Республики Беларусь Грузстандарт Госстандарт Госстандарт Республики Казахстан Молдовастандарт Госстандарт Госстандарт России
Республика Таджикистан Туркменистан Украина	Таджикстандарт Главгосслужба «Туркменстандартлары» Госстандарт Украины

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 5 апреля 2001 г. № 166-ст межгосударственный стандарт ГОСТ 8240—97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2002 г.
 - 4 B3AMEH ΓΟCT 8240—89

межгосударственный стандарт

ШВЕЛЛЕРЫ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ

Сортамент

Hot-rolled steel channels.
Assortment

Дата введения 2002—01—01

1 Область применения

Настоящий стандарт устанавливает сортамент стальных горячекатаных швеллеров общего и специального назначения высотой от 50 до 400 мм и шириной полок от 32 до 115 м.

2 Основные параметры и размеры

- 2.1 По форме и размерам швеллеры изготовляют следующих серий:
- У с уклоном внутренних граней полок;
- Π с параллельными гранями полок;
- Э экономичные с параллельными гранями полок;
- Л легкой серии с параллельными гранями полок;
- С специальные.

Условные обозначения величин, характеризующих свойства швеллера:

- h высота (швеллера);
- b ширина полки;
- s толщина стенки;
- t толщина полки;
- *R* радиус внутреннего закругления;
- r радиус закругления полки;
- X_0 расстояние от оси Y—Y до наружной грани стенки;
- Δ перекос полки;
- f прогиб стенки по высоте сечения профиля;
- F площадь поперечного сечения;
- I момент инерции;
- W— момент сопротивления;
- i радиус инерции;
- S_r статический момент полусечения.
- 2.2 Поперечное сечение швеллеров серий У, С должно соответствовать приведенному на рисунке 1, серий П, Э, Л на рисунке 2.
- 2.3 Размеры швеллеров, площадь поперечного сечения, масса 1 м и справочные значения для осей должны соответствовать приведенным в таблицах 1—5.
- 2.3.1 Площадь поперечного сечения и масса 1 м швеллера вычислены по номинальным размерам, плотность стали принята равной 7.85 г/см^3 .

Издание официальное

1

ГОСТ 8240—97

Рисунок 2

Т а б л и ц а 1 — Швеллеры с уклоном внутренних граней полок

Номер швел-	h	b	s	t	R	r	Пло- щадь попере-	Macca		-		е значен	ия для с			
лера					не б	олее	чного	1 м, кг		<i>X</i> —	-X			Y— <i>Y</i>		X_0 , cm
у			М	ΙM			сечения <i>F</i> , см ²		I_x , cm ⁴	W_{x_3} , cm ³	<i>i_x</i> , cm	<i>S_x</i> , cm ³	<i>I_y</i> , cm ⁴	W_{y_3} , cm ³	<i>i</i> ₀ , cm	
5У	50	32	4,4	7,0	6,0	2,5	6,16	4,84	22,8	9,1	1,92	5,59	5,61	2,75	0,95	1,16
6,5У	65	36	4,4	7,2	6,0	2,5	7,51	5,90	48,6		2,54	9,00	8,70	3,68	1,08	1,24
8 y	80	40	4,5	7,4	6,5	2,5	8,98	7,05	89,4	22,4	3,16	23,30	12,80	4,75	1,19	1,31
10 y	100	46	4,5	7,6	7,0	3,0	10,90	8,59	174,0	34,8	3,99	20,40	20,40	6,46	1,37	1,44
12 y	120	52	4,8	7,8	7,5	3,0	13,30	10,40	304,0	50,6	4,78	29,60	31,20	8,52	1,53	1,54
14 y	140	58	4,9	8,1	8,0	3,0	15,60	12,30	491,0	70,2	5,60	40,80	45,40	11,00	1,70	1,67
16 У	160	64	5,0	8,4	8,5	3,5	18,10	14,20	747,0	93,4	6,42	54,10	63,30	13,80	1,87	1,80
16aY	160	68	5,0	9,0	8,5	3,5	19,50	15,30	823,0		6,49	59,40	78,80	16,40	2,01	2,00
18 У	180	70	5,1	8,7	9,0	3,5	20,70	16,30	1090,0		7,24	69,80	86,00	17,00	2,04	1,94
18aY	180	74	5,1	9,3	9,0	3,5	22,20	17,40	1190,0		7,32	76,10		20,00	2,18	2,13
20У	200	76	5,2	9,0	9,5	4,0	23,40	18,40	1520,0		8,07	87,80		20,50	2,20	2,07
22У	220	82	5,4	9,5	10,0	4,0	26,70	21,00	2110,0		8,89		151,00		2,37	2,21
24У	240	90	5,6	10,0	10,5	4,0	30,60	24,00	2900,0		9,73	139,00		31,60	2,60	2,42
27У	270	95	6,0	10,5	11,0	4,5	35,20	27,70	4160,0			178,00		37,30	2,73	2,47
30 У	300	100	6,5	11,0	12,0	5,0	40,50	31,80	5810,0			224,00		43,60	2,84	2,52
33 y	330	105	7,0	11,7	13,0	5,0	46,50	36,50	7980,0			281,00		51,80	2,97	2,59
36 Y	360	110	7,5	12,6	14,0	6,0	53,40	41,90	10820,0				513,00		3,10	2,68
40Y	400	115	8,0	13,5	15,0	6,0	61,50	48,30	15220,0	761,0	15,70	444,00	642,00	73,40	3,23	2,75

Таблица 2 — Швеллеры с параллельными гранями полок

Номер	h	b	S	t	R	r	Пло- - щадь			Спр	авочны	е значен	ия для с	осей		
швел- лера серии П					не б	олее	попере- чного сечения	Масса 1 м, кг		Х-	-X			Y— <i>Y</i>		<i>X</i> ₀ , см
11			М	ΙM			<i>F</i> , cm ²		I_x , cm ⁴	W_{x_3} , cm ³	<i>i_x</i> , cm	S_x , cm ³	I_y , cm ⁴	W_y , cm ³	<i>i_y</i> , см	
5П	50	32	4,4	7,0	6,0	3,5	6,16	4,84	22,8	9,1	1,92	5,61	5,95	2,99	0,98	1,21
6,5Π	65	36	4,4	7,2	6,0	3,5	7,51	5,90	48,8	15,0	2,55	9,02	9,35	4,06	1,12	1,29
8П	80	40	4,5	7,4	6,5	3,5	8,98	7,05	89,8	22,5	3,16	13,30	13,90	3,31	1,24	1,38
10Π	100	46	4,5	7,6	7,0	4,0	10,90	8,59	175,0	34,9	3,99	20,50	22,60	7,37	1,44	1,53
12Π	120	52	4,8	7,8	7,5	4,5	13,30	10,40	305,0	50,8	4,79	29,70	34,90	9,84	1,62	1,66
14Π	140	58	4,9	8,1	8,0	4,5	15,60	12,30	493,0	70,4	5,61	40,90	51,50	12,90	1,81	1,82
16Π	160	64	5,0	8,4	8,5	5,0	18,10	14,20	750,0	93,8	6,44	54,30	72,80	16,40	2,00	1,97
16aΠ	160	68	5,0	9,0	8,5	5,0	19,50	15,30	827,0	103,0	6,51	59,50	90,50	19,60	2,15	2,19
18П	180	70	5,1	8,7	9,0	5,0	20,70	16,30	1090,0		7,26	70,00	100,00	20,60	2,20	2,14
18аП 20П	180 200	74 76	5,1 5,2	9,3	9,0	5,0 5,5	22,20 23,40	17,40 18,40	1200,0 1530,0	133,0 153,0	7,34 8,08	76,30 88,00		24,30	2,35	2,36
2011 22Π	220	82	5,2	9,0 9,5	9,5 10,0	6,0	26,70	21,00	2120,0		8,90	111,00		25,20 31,00	2,39 2,58	2,30 2,47
24Π	240	90	5,6	10,0	10,5	6,0	30,60	24,00	2910,0		9,75		248,00	39,50	2,85	2,72
27Π	270	95	6,0	10,5	11,0	6,5	35,20	27,70	4180,0		10,90		314,00	46,70	2,99	2,78
30Π	300	100	6,5	11,0	12,0	7,0	40,50	31,80	5830,0		12,00		393,00	54,80	3,12	2,83
33П	330	105	7,0	11,7	13,0	7,5	46,50	36,50	8010,0		13,10		491,00	64,60	3,25	2,90
36Π	360	110	7,5	12,6	14,0	8,5	53,40	41,90	10850,0	603,0	14,30	350,00	611,00	76,30	3,38	2,99
40Π	400	115	8,0	13,5	15,0	9,0	61,50	48,30	15260,0	763,0	15,80	445,00	760,00	89,90	3,51	3,05

Таблица 3 — Швеллеры экономичные с параллельными гранями полок

Номер	h	b	S	t	R	r	Пло- щадь			Спра	авочные	е значені	ия для ос	сей		
швел- лера серии					не б	олее	попе- ре- чного сече-	Масса 1 м, кг		X—.	X			Y— <i>Y</i>		<i>X</i> ₀ , см
Э			N	И М			ния <i>F</i> , см ²		I_x , cm ⁴	W_x , cm ³	<i>i_x</i> , cm	<i>S_x</i> , cm ³	I_y , cm ⁴	W_y , cm ³	<i>i_y</i> , cm	
59 6,59 89 109 129 149 169 189 209 229 249 279 309 339 369	50 65 80 100 120 140 160 200 220 240 270 300 330 360	32 36 40 46 52 58 64 70 76 82 90 95 100 105 110	4,2 4,2 4,2 4,5 4,6 4,7 4,8 4,9 5,1 5,3 5,8 6,3 6,9 7,4 7,9	7,0 7,2 7,4 7,6 7,8 8,1 8,4 8,7 9,0 9,5 10,0 10,5 11,0 11,7 12,6 13,5	6,5 6,5 7,5 9,0 9,5 10,0 11,0 11,5 12,0 13,0 13,0 13,0 14,0 15,5	2,5 2,5 2,5 3,0 3,0 3,0 3,5 4,0 4,0 4,5 5,0 5,0 6,0	6,10 7,41 8,82 10,79 13,09 15,41 17,85 20,40 23,02 26,36 30,19 34,87 39,94 46,15 52,90 61,11	4,79 5,82 6,92 8,47 10,24 12,15 14,01 16,01 18,07 20,69 23,69 27,37 31,35 36,14 41,53	22,9 48,9 90,0 175,9 307,0 495,7 755,5 1097,9 1537,1 2134,2 2927,0 4200,2 5837,1 8021,8 10864,5	9,17 15,05 22,50 35,17 51,17 70,81 94,43 121,99 153,71 194,02 243,92 311,12 389,14 488,17 603,58 765,40	1,94 2,57 3,19 4,04 4,84 5,67 6,50 7,34 8,17 9,00 9,85 10,97 12,09 13,18 14,33 15,83	178,25 224,00 281,23 350,05	6,02 9,42 13,93 22,68 35,12 51,76 73,17 100,51 134,07 179,05 249,03 316,24 395,57 497,02 618,92	3,05 4,13 5,38 7,47 10,03 13,13 16,70 20,87 25,54 31,54 40,07 47,43 55,58 65,78 77,76 91,80	0,993 1,127 1,257 1,450 1,638 1,833 2,024 2,219 2,413 2,606 2,872 3,011 3,147 3,282 3,420	1,23 1,32 1,41 1,56 1,70 1,86 2,02 2,18 2,35 2,52 2,78 2,83 2,88 2,94 3,04

ГОСТ 8240-97

Таблица4 — Швеллеры легкой серии с параллельными гранями полок

	h	h	S	t	R	r	Пло- щадь			Спра	авочные	значені	ия для ос	сей		
Номер швел- лера	,,	υ	3	•	не б	олее	попе- ре-	Масса 1 м,		Х—.	X			Y- <i>Y</i>		<i>X</i> ₀ , см
Л			N	ſМ			чного сече- ния <i>F</i> , см ²	ΚΓ	I_x , cm ⁴	W_x , cm ³	<i>i_x</i> , cm	<i>S_x</i> , см ³	<i>I_y</i> , cм ⁴	W_y , cm ³	<i>i_y</i> , cm	J.
12Л 14Л	120	30 32	3,0	4,8	7		6,39	5,02 5,94	135,26	22,54		13,43	5,02	2,24	0,89	0,76
14Л 16Л	140 160	32 35	3,2 3,4	5,6 5,3	8	_	7,57 9,04	7,10	212,94 331,96	30,42 41,49	5,31 6,06	18,23 24,84	6,55 9,23	2,70 3,46	0,93 1,01	0,78 0,83
18Л	180	40	3,6	5,6	8	_	10,81	8,49	503,87	55,98	6,83	33,49	14,64	4,10	1,16	0,94
20Л	200	45	3,8	6,0	9	_	12,89	10,12	748,17	74,82	7,62	44,59	22,37	6,51	1,32	1,06
22Л	220	50	4,0	6,4	10	_	15,11	11,86	1070,97	97,36	8,42	57,82	32,85	8,61	1,47	1,19
24Л	240	55	4,2	6,8	10	_	17,41	13,66	1476,39	123,03	9,21	72,90	46,25	11,04	1,63	1,31
27Л	270	60	4,5	7,3	11	_	20,77	16,30		164,31	10,33	97,48	65,10	14,17	1,77	1,40
30Л	300	65	4,8	7,8	11	_	24,30	19,07	3186,74	212,45	11,45	126,24	89,08	17,84	1,91	1,51

Таблица5 — Швеллеры специальные

	h	h	S	t	R	r		Пло- щадь			Справоч	ные зна	ачения дл	я осей		
Номер швел- лера	.,		5	•	не б	олее	Уклон полок, %	попе- ре- чного	Масса 1 м, кг		<i>X</i> — <i>X</i>			Y— <i>Y</i>		<i>X</i> ₀ , см
С			M	ſМ			%	сече- ния <i>F</i> , см ²	,	I_x , cm ⁴	W_{x_3} , cm ³	i_x , cm	I_y , cm ⁴	W_y , cm ³	i_y , cm	
8C	80	45	5,5	9,0	9,0	1,5	6	11,80	9,26	115,82	28,95	3,13	22,24	7,63	1,38	1,57
14C	140	58	6,0	9,5	9,5	4,75	_	18,51	14,53	563,70	80,50	5,52	53,20	13,01	1,70	1,71
14Ca	140	60	8,0	9,5	9,5	5,0	10	21,30	16,72	609,10	87,01	5,35	61,02	14,09	1,69	1,67
16C	160	63	6,5	10,0	10,0	5,0	_	21,95	17,53	866,20	108,30	6,28	73,30	16,30	1,83	1,80
16Ca	160	65	8,5	10,0	10,0	5,0	_	25,15	19,74	934,50	116,80	6,10	83,40	17,55	1,82	1,75
18C	180	68	7,0	10,5	10,5	5,3	_	25,70	20,20	1272,00	141,00	7,04	98,50	20,10	1,96	1,88
18Ca	180	70	9,0	10,5	10,5	5,3	_	29,30	23,00	1370,00	152,00	6,84	111,00	21,30	1,95	1,84
18Сб	180	100	8,0	10,5	10,5	5,0	6	34,04	26,72		199,00	7,25	305,48	43,58	3,00	2,99
20C	200	73	7,0	11,0	11,0	5,5	10	28,83	22,63	1780,37	178,04	7,86	128,04	24,19	2,11	2,02
20Ca	200	75	9,0	11,0	11,0	5,5	10	32,83	25,77	1913,71	191,37	7,64	143,63	25,88	2,09	1,95
20Сб	200	100	8,0	11,0	11,0	5,5	6	36,58	28,71	2360,88	236,09	8,03	327,23	46,30	2,99	2,93
24C	240	85	9,5	14,0	14,0	7,0	_	44,46	34,90	3841,35	320,11	9,29	268,89	43,70	2,46	2,35
26C	260	65	10,0	16,0	15,0	3,0	_	44,09	34,61	4088,00	314,50	9,63	1115,60	171,60	5,03	3,91
26Ca	260	90	10,0	15,0	15,0	7,5	8	50,60	39,72	5130,83	394,68	10,07	343,15	52,62	2,60	2,48
30C	300	85	7,5	13,5	13,5	7,0	10	43,88	34,44	6045,43	403,03	11,74	260,74	41,41	2,44	2,20
30Ca	300	87	9,5	13,5	13,5	7,0	10	49,88	39,15		433,03	11,41	288,78	43,93	2,41	2,13
30Сб	300	89	11,5	13,5	13,5	7,0	10	55,88	43,86	6945,43	463,03	11,15	315,35	46,29	2,38	2,09

- 2.3.2 Значения радиусов закругления, уклона внутренних граней полок, указанных на рисунках 1 и 2 и приведенных в таблицах 1—5, используют для построения калибров и на профиле не контролируют.
- 2.4 Форма швеллера и предельные отклонения по размерам должны соответствовать приведенным на рисунке 3 и в таблице 6.
- 2.4.1 Уклон внутренних граней полок швеллеров серии У должен быть в пределах от 4 % до 10 %. По соглашению потребителя с изготовителем уклон внутренних граней полок не должен превышать 8 % при $h \le 300$ мм и 5 % при h > 300 мм.
- 2.5 Притупление прямых углов швеллеров до № 20 не должно превышать 2,5 мм, свыше № 20-3.5 мм. Притупление внешних углов не контролируют.
- 2.6 Швеллеры изготовляют длиной от 2 до 12 м, по соглашению потребителя с изготовителем длиной свыше 12 м:

- мерной длины;
- мерной длины с немерной в количестве не более 5 % массы партии;
- кратной мерной длины;
- кратной мерной длины с немерной в количестве не более 5 % массы партии; немерной длины;
- ограниченной длины в пределах немерной.

Рисунок 3

Таблицаб — Предельные отклонения параметров

В миллиметрах

Параметр	Интервал значений параметра	Предельное отклонение
Высота h	До 80 включ. Св. 80 » 200 » » 200 » 400 »	±1,5 ±2,0 ±3,0
Ширина полки <i>b</i>	До 40 включ. Св. 40 » 89 » » 89	±1,5 ±2,0 ±3,0
Толщина полки <i>t</i>	До 10 включ. Св. 10 » 11 » » 11	-0,5 -0,8 -1,0
Толщина стенки <i>s</i>	До 5,1 включ. Св. 5,1 » 6,0 » » 6,0	±0,5 ±0,6 ±0,7
Перекос полки Δ при ширине полки b , не более	До 95 включ. Св. 95	1,0 0,015 <i>b</i>
Прогиб стенки f по высоте h сечения профиля, не более	До 100 включ. Св. 100 » 200 » » 200 » 400 »	0,5 1,0 1,5

Примечания

- Для швеллеров серии Л прогиб стенки не должен превышать 0,15s.
 Для швеллеров серий У и П предельные отклонения по толщине стенки не контролируют.
 Перекос полки ∆ и прогиб стенки f швеллера измеряют, как показано на рисунке 3.

ΓΟCT 8240-97

2.7 Предельные отклонения по длине швеллеров мерной и кратной мерной длины не должны превышать:

при длине от 2 до 8 м включ. — до +40 мм;

- » » св. 8 м до + [40 + 5(l 8)] мм, но не более 100 мм, где l длина швеллера, м.
- 2.8 Швеллеры должны быть обрезаны. Косина реза не должна выводить длину швеллеров за предельные отклонения по длине.

Длина отдельного швеллера— это наибольшая длина условно вырезанной штанги с торцами, перпендикулярными к продольной оси.

- 2.9 Кривизна швеллера в горизонтальной и вертикальной плоскостях не должна превышать 0,2 % длины; по соглашению изготовителя с потребителем до 0,15 % длины.
- 2.10 Предельные отклонения по массе не должны превышать ± 4 % для партии и ± 6 % для отдельного швеллера.

Отклонение от массы — это разность между фактической массой в состоянии поставки и рассчитанной по данным таблиц 1—5.

При расчете массы партии к метражу швеллеров мерной или кратной мерной длины прибавляют 0,5 от суммы предельных отклонений по длине швеллеров в партии.

2.11 Размеры и геометрическую форму швеллера контролируют на расстоянии не менее 500 мм от торца. Высоту швеллера контролируют в плоскости стенки, толщину стенки — у торца профиля.

УДК 669—423.2:338.33:006.354

MKC 77:140.70

B22

ОКП 29 2500

Ключевые слова: швеллеры горячекатаные, сортамент, параметры, размеры, предельные отклонения, справочные величины

Редактор Л.И. Нахимова
Технический редактор Л.А. Гусева
Корректор В.И. Варенцова
Компьютерная верстка А.Н. Золотаревой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 18.07.2001. Подписано в печать 18.09.2001. Усл.печ.л. 0,93. Уч.-изд.л. 0,70. Тираж 1135 экз. С 2040. Зак. 860.

МКС 77.140.70 Группа В22 к ГОСТ 8240—97 Швеллеры стальные горячекатаные. Сортамент

Напечатано	Должно быть
X_0 Y $\frac{F}{b-s}$ $\frac{b-s}{2}$	X_0 Y $\frac{b-S}{2}$ X X Y
X_0 Y X X X X Y Y Y Y Y Y	X ₀ Y X X X R
	X_0 Y D S X

(Продолжение поправки к ГОСТ 8240—97)

Окончание

В каком месте	Напечатано	Должно быть
Пункт 2.3. Таб-		
лица 1. Графа $S_{\!\scriptscriptstyle X}$. Для		
номера швеллера 8У	23,30	13,30
таблица 2. Графа		
$W_{ m y}$. Для номера швеллера 8Π	3,31	5,31
таблица 5. Графа		
I_{y} . Для номера		
швеллера 26С	1115,60	115,60
Пункт 2.4	на рисунке 3	на рисунках 1—3
рисунок 3. Обозначение прогиба	t	f
Пункт 2.7	при длине от 2 до 8 м включ. — до +40 мм; » » св. 8 м — до +[40+5 (<i>l</i> —8)] мм,	+40 мм — при длине от 2 до 8 м включ.; +[40+5(<i>l</i> —8)] мм, но не более 100 мм — при
	но не более 100 мм	длине св. 8 м,

(ИУС № 12 2004 г.)