Efficient Quantifier Elimination in PA

Christoph Haase ¹ Shankara Narayanan Krishna² Khushraj Madnani ³ Om Swostik ² Georg Zetzsche ³

¹University of Oxford ²IIT Bombay ³MPI-SWS

July 12, 2024

• Presburger Arithmetic is the first order theory of the structure $(\mathbb{Z}; +, <, 0, 1)$.

- Presburger Arithmetic is the first order theory of the structure $(\mathbb{Z}; +, <, 0, 1)$.
- To enable quantifier elimination, we allow modulo constraints in formulas.

- Presburger Arithmetic is the first order theory of the structure $(\mathbb{Z}; +, <, 0, 1)$.
- To enable quantifier elimination, we allow modulo constraints in formulas.
- Atomic formulas are of the following form:
 - $a_1x_1 + \cdots + a_nx_n \leq b$
 - $a_1x_1 + \cdots + a_nx_n \equiv b \mod m$

where x_1, \ldots, x_n are variables and $a_1, \ldots, a_n, b, m \in \mathbb{Z}$ are constants.

- Presburger Arithmetic is the first order theory of the structure $(\mathbb{Z}; +, <, 0, 1)$.
- To enable quantifier elimination, we allow modulo constraints in formulas.
- Atomic formulas are of the following form:
 - $a_1 x_1 + \cdots + a_n x_n < b$
 - $a_1x_1 + \cdots + a_nx_n \equiv b \mod m$

where x_1, \ldots, x_n are variables and $a_1, \ldots, a_n, b, m \in \mathbb{Z}$ are constants.

 A formula is quantifier-free if it is a Boolean combination of atomic formulas.

An Example

• Given positive integers $m_1, m_2, \dots m_n$, what is the largest number that cannot be obtained as a non-negative linear combination of those numbers? The answer, if it exists, is the smallest satisfying assignment of the formula:

$$\Phi(x) = \forall y (x < y \rightarrow (\exists z_1, z_2 \dots z_n (y = z_1 m_1 + \dots + z_n m_n \land z_1 \ge 0 \land \dots \land z_n \ge 0)))$$

(For the case n = 2, look up Chicken Mcnugget Theorem!)

Quantifier Elimination

 In 1929, Mojżesz Presburger formulated the basic principles of PA and showed that it is complete and decidable.

Quantifier Elimination

- In 1929, Mojżesz Presburger formulated the basic principles of PA and showed that it is complete and decidable.
- This result was achieved by using the quantifier elimination method.

Complexity of Quantifier Elimination

Main Result

Theorem

Given a formula φ in existential Presburger arithmetic, we can compute in exponential time an equivalent quantifier-free formula ψ of size exponential in φ . Moreover, all constants in ψ are encoded in unary.

Main Result

Theorem

Given a formula φ in existential Presburger arithmetic, we can compute in exponential time an equivalent quantifier-free formula ψ of size exponential in φ . Moreover, all constants in ψ are encoded in unary.

The main ingredient for proving this is the following proposition,

Main Result

Theorem

Given a formula φ in existential Presburger arithmetic, we can compute in exponential time an equivalent quantifier-free formula ψ of size exponential in φ . Moreover, all constants in ψ are encoded in unary.

The main ingredient for proving this is the following proposition,

Proposition

Let $A \in \mathbb{Z}^{\ell \times n}$ and $b \in \mathbb{Z}^{\ell}$, and let Δ be an upper bound on all absolute values of the subdeterminants of A. If the system $Ax \leq b$ has an integral solution, then it has one of the form Db + d, where $D \in \mathbb{Q}^{n \times \ell}$ and $d \in \mathbb{Q}^n$ with $\|D\|_{\text{frac}} \leq \Delta$ and $\|d\|_{\text{frac}} \leq n\Delta^2$.

where $\|.\|_{\text{frac}}$ denotes the maximal absolute value of all numerators and denominators in the representation.

Example for Proposition

Consider the formula $(x_1 - x_2 \le 3) \land (x_1 + 2x_2 \le 4)$. This formula can be written as the system,

$$\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Let

$$(D,d) = \left(\begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

Setting x = Db + d gives $(x_1, x_2) = (2, 0)$, which is a satisfying assignment for the formula!

Recall the proposition,

Recall the proposition,

Proposition

Let $A \in \mathbb{Z}^{\ell \times n}$ and $b \in \mathbb{Z}^{\ell}$, and let Δ be an upper bound on all absolute values of the subdeterminants of A. If the system $Ax \leq b$ has an integral solution, then it has one of the form Db + d, where $D \in \mathbb{Q}^{n \times \ell}$ and $d \in \mathbb{Q}^n$ with $\|D\|_{\text{frac}} \leq \Delta$ and $\|d\|_{\text{frac}} \leq n\Delta^2$.

Recall the proposition,

Proposition

Let $A \in \mathbb{Z}^{\ell \times n}$ and $b \in \mathbb{Z}^{\ell}$, and let Δ be an upper bound on all absolute values of the subdeterminants of A. If the system $Ax \leq b$ has an integral solution, then it has one of the form Db + d, where $D \in \mathbb{Q}^{n \times \ell}$ and $d \in \mathbb{Q}^n$ with $\|D\|_{\text{frac}} \leq \Delta$ and $\|d\|_{\text{frac}} \leq n\Delta^2$.

 The proposition claims a small model property for parametric integer programming.

Recall the proposition,

Proposition

Let $A \in \mathbb{Z}^{\ell \times n}$ and $b \in \mathbb{Z}^{\ell}$, and let Δ be an upper bound on all absolute values of the subdeterminants of A. If the system $Ax \leq b$ has an integral solution, then it has one of the form Db + d, where $D \in \mathbb{Q}^{n \times \ell}$ and $d \in \mathbb{Q}^n$ with $\|D\|_{\text{frac}} \leq \Delta$ and $\|d\|_{\text{frac}} \leq n\Delta^2$.

- The proposition claims a small model property for parametric integer programming.
- If the system $Ax \le b$ has an integral solution, it has a rational solution of a specific form.

For every rational solution r of $Ax \le b$, we show that there is a close-by integral solution z^* .

 An exponential blowup cannot be avoided when eliminating a block of existential quantifiers.

- An exponential blowup cannot be avoided when eliminating a block of existential quantifiers.
- Every PA formula defines an ultimately periodic set. We have the following lemma,

- An exponential blowup cannot be avoided when eliminating a block of existential quantifiers.
- Every PA formula defines an ultimately periodic set. We have the following lemma,

Lemma

Let φ be quantifier-free with one free variable. Then $|\varphi|_p \le 2^{|\varphi|}$.

where $|\varphi|_p$ denotes the smallest period of the set defined by φ .

- An exponential blowup cannot be avoided when eliminating a block of existential quantifiers.
- Every PA formula defines an ultimately periodic set. We have the following lemma,

Lemma

Let φ be quantifier-free with one free variable. Then $|\varphi|_p \le 2^{|\varphi|}$.

where $|\varphi|_p$ denotes the smallest period of the set defined by φ .

• In [Haa14], Haase constructs a sequence $(\Phi_n(x))_{n\geq 0}$ of existential PA formulas of size $O(n^2)$ such that $|\Phi_n|_p$ is at least $2^{2^{\Omega(n)}}$.

- An exponential blowup cannot be avoided when eliminating a block of existential quantifiers.
- Every PA formula defines an ultimately periodic set. We have the following lemma,

Lemma

Let φ be quantifier-free with one free variable. Then $|\varphi|_p \le 2^{|\varphi|}$.

where $|\varphi|_p$ denotes the smallest period of the set defined by φ .

- In [Haa14], Haase constructs a sequence $(\Phi_n(x))_{n\geq 0}$ of existential PA formulas of size $O(n^2)$ such that $|\Phi_n|_p$ is at least $2^{2^{\Omega(n)}}$.
- Formulas Φ_n will require exponential sized quantifier equivalents.

An Application

A well-quasi-ordering (WQO) is a reflexive and transitive ordering (X, ≤) such that for every sequence x₁, x₂, . . . ∈ X, there are i < j with x_i ≤ x_i.

An Application

- A well-quasi-ordering (WQO) is a reflexive and transitive ordering (X, ≤) such that for every sequence x₁, x₂, . . . ∈ X, there are i < j with x_i ≤ x_j.
- Given a quantifier-free formula $\varphi(x,y)$, deciding whether the relation $R \subseteq \mathbb{Z}^n \times \mathbb{Z}^n$ defined by φ is a WQO is coNP-complete [BGLZ24].

An Application

- A well-quasi-ordering (WQO) is a reflexive and transitive ordering (X, ≤) such that for every sequence x₁, x₂, . . . ∈ X, there are i < j with x_i ≤ x_j.
- Given a quantifier-free formula $\varphi(x,y)$, deciding whether the relation $R \subseteq \mathbb{Z}^n \times \mathbb{Z}^n$ defined by φ is a WQO is coNP-complete [BGLZ24].
- Our results allow us to settle the complexity for existential formulas:

Corollary

Given an existential PA formula φ , it is coNEXP-complete to decide whether φ defines a WQO.

More Applications

Corollary

The Σ_2 -fragment of Presburger Arithmetic is in NEXP.

More Applications

Corollary

The Σ_2 -fragment of Presburger Arithmetic is in NEXP.

Corollary

Monadic decomposability of ∃PA formulas is coNEXP-complete.

Conclusion

- Main result establishes a quantifier elimination procedure eliminating a block of existentially quantified variables in singly exponential time.
- All known algorithms before required doubly exponential time.
- The technical basis is a small model property for parametric integer programming.
- Implementing optimizations could lead to a more practical use of the algorithm in SMT solvers.

References I

- [BGLZ24] Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. Ramsey quantifiers in linear arithmetics. In *Proc. POPL 2024*, pages 1–32, 2024.
 - [Grä89] Erich Grädel. Dominoes and the complexity of subclasses of logical theories. *Ann. Pure Appl. Log.*, 43(1):1–30, 1989.

doi:10.1016/0168-0072(89)90023-7.

- [Haa14] Christoph Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In *Proc. CSL-LICS 2014*, pages 47:1–47:10. ACM, 2014.
 - doi:10.1145/2603088.2603092.
- [HZ19] Christoph Haase and Georg Zetzsche. Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests. In *Proc. LICS 2019*, pages 1–14. IEEE, 2019. doi:10.1109/LICS.2019.8785850.

References II

[Sch86] Alexander Schrijver. *Theory of linear and integer programming*. John Wiley & Sons, 1986.