Real Analysis

Yunwei Ren

Contents

3	Lebesgue Measure		2
	3.1	Introduction	2
	3.2	Outer Measure	2

3 Lebesgue Measure

3.1 Introduction

1.

Proof. Since \mathfrak{M} is an σ -algebra, $B \setminus A \in \mathfrak{M}$ as long as $A, B \in \mathfrak{M}$. Since $B \setminus A$ and A are disjoint, $mB = mA + m(B \setminus A) \ge mA$ since m is nonnegative.

2.

Proof. Let $A_0 = E_0$ and $E_k = A_k \setminus A_{k-1}$ for $k \ge 1$. Clear that E_i and E_j are disjoint for distinct i and j, $\bigcup A_n = \bigcup E_n$ and $A_i \subset E_i$ for every i. Hence,

$$m\left(\bigcup E_n\right) = m\left(\bigcup A_n\right) = \sum mA_n \le \sum mE_n,$$

where the last inequality comes from Exercise 1.

3.

Proof. Suppose that $mA < \infty$. Then $mA = m(A \cup \varnothing) = mA + m\varnothing$, implying that $m\varnothing = 0$.

3.2 Outer Measure

5.

Proof. We show that $\{I_n\}$ must cover the entire [0,1] by contradiction. Assume that $x \notin I_k$ for k = 1, 2, ..., n. Then, as I_k are open and n is finite, there exists some $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon)$ and I_k are disjoint for every k. Since \mathbb{Q} is dense in \mathbb{R} , there exists some rational number in $(x - \varepsilon, x + \varepsilon)$, contradicting with the hypothesis that $\{I_k\}$ covers all rational numbers between 0 and 1.

6.

Proof. By the definition of the outer measure, for every $\varepsilon > 0$, there exists some collection $\{I_n\}$ of open intervals that covers A and $\sum l(I_n) \leq m^*A + \varepsilon$. Let $O = \bigcup I_n$. O is a countable union of open sets and therefore is also open. And by Proposition 2, $m^*O \leq \sum l(I_n)$. Thus, $m^*O \leq m^*A + \varepsilon$.

Let $\varepsilon_n = 1/n$ and for each n, by the previous discussion, we can always get an open set O_k such that $A \subset O_k$ and $m^*O \leq m^*A + \varepsilon_m$. Let G be the countable intersection of these open sets. Clear that G is a G_δ set covering A and $m^*A = m^*G$.

7.

Proof. If $m^*E = \infty$, it is trivial. Suppose that $m^*E \leq \infty$. For any $x \in \mathbb{R}$, collection $\{I_n\}$ of open intervals covers E + x iff $\{I_n - x\}$ covers E. Since the length of intervals is translation invariant, this implies $m^*(E + x) = m^*E$.

8.

Proof. Clear that $m^*A \leq m^*(A \cup B)$. Meanwhile, $m^*(A \cup B) = m^*A + m^*B = m^*B$. Hence, $m^*(A \cup B) = m^*B$.