SUTD 2021 50.007 Homework 6

James Raphael Tiovalen 1004555

Markov Decision Process & Reinforcement Learning

Question 1

Assuming that we only consider synchronous updates (i.e., we update the current iteration's Q-values using the previous iteration's Q-values), and using the Q-learning algorithm's update equation as such for each (s, a):

$$Q_1^*(s, a) \leftarrow \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma \max_{a'} Q_0^*(s', a')],$$

we would obtain:

$$\begin{split} Q_1^*(0,J) &= T(0,J,0) \times [R(0,J,0) + 0.5 \times \max_{a'} Q_0^*(0,a')] \\ &= 1 \times (0+0) = 0 \\ Q_1^*(0,W) &= T(0,W,0) \times [R(0,W,0) + 0.5 \times \max_{a'} Q_0^*(0,a')] \\ &= 1 \times (0+0) = 0 \\ Q_1^*(1,J) &= T(1,J,0) \times [R(1,J,0) + 0.5 \times \max_{a'} Q_0^*(0,a')] \\ &+ T(1,J,1) \times [R(1,J,1) + 0.5 \times \max_{a'} Q_0^*(1,a')] \\ &= 0.5 \times (1+0) + 0.5 \times (0+0) = 0.5 \\ Q_1^*(1,W) &= T(1,W,0) \times [R(1,W,0) + 0.5 \times \max_{a'} Q_0^*(0,a')] \\ &= 1 \times (1+0) = 1 \\ Q_1^*(2,J) &= T(2,J,0) \times [R(2,J,0) + 0.5 \times \max_{a'} Q_0^*(0,a')] \\ &+ T(2,J,2) \times [R(2,J,2) + 0.5 \times \max_{a'} Q_0^*(2,a')] \\ &= 0.5 \times (4+0) + 0.5 \times (0+0) = 2 \\ Q_1^*(2,W) &= T(2,W,1) \times [R(2,W,1) + 0.5 \times \max_{a'} Q_0^*(1,a')] \\ &= 1 \times (1+0) = 1 \\ Q_1^*(3,J) &= T(3,J,1) \times [R(3,J,1) + 0.5 \times \max_{a'} Q_0^*(1,a')] \\ &+ T(3,J,3) \times [R(3,J,3) + 0.5 \times \max_{a'} Q_0^*(3,a')] \\ &= 0.5 \times (4+0) + 0.5 \times (0+0) = 2 \\ Q_1^*(3,W) &= T(3,W,2) \times [R(3,W,2) + 0.5 \times \max_{a'} Q_0^*(2,a')] \\ &= 1 \times (1+0) = 1 \\ Q_1^*(4,J) &= T(4,J,2) \times [R(4,J,2) + 0.5 \times \max_{a'} Q_0^*(4,a')] \\ &= 0.5 \times (4+0) + 0.5 \times (0+0) = 2 \\ Q_1^*(4,W) &= T(4,W,3) \times [R(4,W,3) + 0.5 \times \max_{a'} Q_0^*(3,a')] \\ &= 0.5 \times (4+0) + 0.5 \times (0+0) = 2 \\ Q_1^*(4,W) &= T(4,W,3) \times [R(4,W,3) + 0.5 \times \max_{a'} Q_0^*(3,a')] \\ &= 0.5 \times (4+0) + 0.5 \times (0+0) = 2 \\ Q_1^*(4,W) &= T(4,W,3) \times [R(4,W,3) + 0.5 \times \max_{a'} Q_0^*(3,a')] \\ &= 1 \times (1+0) = 1 \\ \end{split}$$

Hence, our Q-values would be:

	s = 0	s = 1	s=2	s = 3	s=4
J	0	0.5	2	2	2
W	0	1	1	1	1

Question 2

Since the action should be chosen based on $\arg \max_a Q_1^*(s,a)$ for each state s, we would get:

s=1	s=2	s=3	s=4
W	J	J	J

Question 3

Since the value for state s should be $\max_a Q_1^*(s,a)$, we would get:

s = 0	s = 1	s=2	s = 3	s=4
0	1	2	2	2

Question 4

No. Conducting a second iteration of the Q-Value Iteration Algorithm, we would obtain these corresponding values of $Q_2^*(s,a)$ for each (s,a) tuple:

$$\begin{split} Q_2^*(0,J) &= T(0,J,0) \times [R(0,J,0) + 0.5 \times \max_{a'} Q_1^*(0,a')] \\ &= 1 \times (0+0) = 0 \\ Q_2^*(0,W) &= T(0,W,0) \times [R(0,W,0) + 0.5 \times \max_{a'} Q_1^*(0,a')] \\ &= 1 \times (0+0) = 0 \\ Q_2^*(1,J) &= T(1,J,0) \times [R(1,J,0) + 0.5 \times \max_{a'} Q_1^*(0,a')] \\ &+ T(1,J,1) \times [R(1,J,1) + 0.5 \times \max_{a'} Q_1^*(1,a')] \\ &= 0.5 \times (1+0) + 0.5 \times (0+0.5 \times 1) = 0.75 \\ Q_2^*(1,W) &= T(1,W,0) \times [R(1,W,0) + 0.5 \times \max_{a'} Q_1^*(0,a')] \\ &= 1 \times (1+0) = 1 \\ Q_2^*(2,J) &= T(2,J,0) \times [R(2,J,0) + 0.5 \times \max_{a'} Q_1^*(0,a')] \\ &+ T(2,J,2) \times [R(2,J,2) + 0.5 \times \max_{a'} Q_1^*(2,a')] \\ &= 0.5 \times (4+0) + 0.5 \times (0+0.5 \times 2) = 2.5 \\ Q_2^*(2,W) &= T(2,W,1) \times [R(2,W,1) + 0.5 \times \max_{a'} Q_1^*(1,a')] \\ &= 1 \times (1+0.5 \times 1) = 1.5 \\ Q_2^*(3,J) &= T(3,J,1) \times [R(3,J,1) + 0.5 \times \max_{a'} Q_1^*(1,a')] \\ &+ T(3,J,3) \times [R(3,J,3) + 0.5 \times \max_{a'} Q_1^*(1,a')] \\ &= 0.5 \times (4+0.5 \times 1) + 0.5 \times (0+0.5 \times 2) = 2.75 \\ Q_2^*(3,W) &= T(3,W,2) \times [R(3,W,2) + 0.5 \times \max_{a'} Q_1^*(2,a')] \\ &= 1 \times (1+0.5 \times 2) = 2 \\ Q_2^*(4,J) &= T(4,J,2) \times [R(4,J,4) + 0.5 \times \max_{a'} Q_1^*(4,a')] \\ &= 0.5 \times (4+0.5 \times 2) + 0.5 \times (0+0.5 \times 2) = 3 \\ Q_2^*(4,W) &= T(4,W,3) \times [R(4,W,3) + 0.5 \times \max_{a'} Q_1^*(3,a')] \\ &= 1 \times (1+0.5 \times 2) = 2 \end{split}$$

As demonstrated, the derived optimal policy is as follows and does not change:

s = 1	s=2	s=3	s=4
W	J	J	J