Dayond

IDS830 低压直流伺服驱动器 用户手册

【使用前请仔细阅读本手册,以免损坏驱动器】

目	录	1
前	音	2
安全	全注意事项	3
概	述	5
— .	基本特性	5
<u> </u>	适用领域	5
三.	技术指标	5
四.	接口定义	
	4.1 电源/电机接口	
	4.2 编码器接口	
	4.3 通讯接口	
	4.4 报警信息查询	
	4.5 控制接口	8
Ŧi.,	控制方式	9
	5.1 基本控制	
	5.2 RS232 通讯控制	. 10
	5.3 CAN 通讯控制	. 14
	5.4 CAN 通讯控制应用说明	. 21
	5.5 CAN 通讯控制应用实例	. 22
	5.6 RS485 通讯控制	
	5.7 RS485 通讯控制实例	. 28
	5.8 IDS 调试软件设置实例	. 32
	控制信号典型接线	
七.	外形安装尺寸	.36

前言

感谢选用 IDS 系列低压直流伺服驱动器。

本手册阐述了 IDS830 低压直流伺服驱动器 (5W~750W 范围)的安装、调试、维护、运行等方面。使用前,请认真阅读本手册,熟知本产品的安全注意事项。

本手册,因产品改进、规格、版本变更等原因,将会适时改动,本公司将不另行通知。

在使用本公司产品时如有任何疑问,请查阅相关说明书或致电联系本公司技术服务部,我们会在最短的时间内满足您的要求。

符号与警示标志:

危险:表示该操作错误可能危及人身安全!

注意:表示该操作错误可能导致设备损坏!

安全注意事项

开箱检查

- 缺少零部件和受损的控制器,切勿安装:
- ① 伺服驱动器必须与之匹配的伺服电机配套使用。

安装

- 少安装在不易燃烧的金属架上,防止尘埃、腐蚀性气体、导电物体、液体及易燃物侵入,并保持良好的散热条件;
- 少安装时,一定拧紧驱动器的安装螺钉,伺服驱动器和伺服电机应避免震动,禁止承受冲击。

接线

- ▲请由专业电气工程人员进行接线作业;
- ⚠ 接线前,请确认输入电源是在切断状态,接线和检查必须在电源切断且 驱动器指示灯熄灭后进行,防止电击;
- ⚠ 对驱动器的接线端子进行插拔时,请确保在驱动器指示灯熄灭后再进行;
 - ⚠ 接地端子 PE 须通过驱动器左边镙钉可靠接地;
 - ①请在控制器外部设置急停电路;
 - 學请勿将电源输入线接到输出 U、V、W端子上;
 - 请用合适力矩紧固输出端子。

通电

- ⇒请确认主回路输入电源与驱动器的额定工作电压是否一致;
- 请勿对驱动器随意进行耐高压与绝缘性能试验;
- 请勿将电磁接触器、电磁开关接到输出回路。

运行

▲驱动器接通电源后,请勿直接接触输出端子;

▲系统运行后驱动器和电机有可能有较高温升,请勿随意触摸;

- ⇒请对输入输出信号进行确认,确保安全作业;
- →确认运行信号被切断后,才可报警复位。在运行信号状态下进行报警复位,会导致驱动器突然再起动;
 - **!**请勿随意变更驱动器的参数设定,参数修改需在待机条件下进行。

保养与检查

▲请勿直接触摸控制器端子,有的端子上有高电压,非常危险;

▲通电前,务必安装好外罩;拆卸外罩时,一定要先切断电源;

▲接线前,请确认输入电源是否处于关断状态;

⚠ 切断主回路输入电源,确认驱动器的指示灯已完全熄灭后,才可以进行 检查、保养:

⚠ 请指定的专业电气工程人员进行检查和保养作业;

▲通电中,请勿进行接线和拆装端子等作业。

型驱动器的主控制板上有集成电路,检查时请充分注意,以免静电感应造成损坏。

概述

IDS830 低压直流伺服采用高性能处理器研发,为用户提供一种高性价比伺服控制解决方案,在确保稳定可靠的前提下,追求最贴近应用的功能和性能。相较于步进产品,噪声低、发热小、转速高、恒力矩输出、不丢步;相较于步进伺服产品,完全摒弃了步进产品的先天劣势,功能、性能和可靠性均更优;相较于国外知名高压伺服,性能接近、价格低廉、易于使用。

一、基本特性

工作电压: 24-60VDC; 输出电流: 峰值 30A:

额定转速: 3000RPM, 支持最高 8000RPM;

适配电机: 5W-750W 低压伺服电机、加装编码器的直流无刷电机或空心杯电机;控制方式: 外部脉冲、CAN 总线、RS485 总线、RS232 通讯控制等,支持位置、速度和力矩模式:

参数调测:采用 RS232 通讯,PC 调试软件或手持调试器,可备份和导入参数; 异常保护:具备欠压、过压、过载、过流、位置偏差过大、编码器异常等保护, 报警开集输出。

二、适用领域

各类电子加工设备、流水线料件传送装置、医疗设备、仪器仪表、精密测试设备、通道闸门控制、直角坐标机器人、伺服定长定位、车库阻拦控制、设备上下料装置、设备辅助运动装置、抓取及搬运机械装置、喷绘机、写真机、家庭及办公自动化装置等。

三、技术指标

采用 FOC 磁场定向控制技术和 SVPWM 空间矢量调制算法,可便捷修改电机参数适配各种不同规格的电机,内置电子齿轮,图形化的调试和监测软件,可根据用户需要进行功能定制,可集成简单的控制功能。

重复跟踪误差: 1pulse; 速度控制精度: 2RPM; 接收频率范围: 600KHZ; 最高转速支持: 8000RPM; 最低转速支持: 1RPM:

定位精度支持: 1/4000, 1/5000, 1/10000;

最高空载加速: 200RPM/ms:

适配电机: 24V/36V/48V 的低压伺服电机、加装编码器的直流无刷电机或空心杯电机。

四、接口定义

图 4-1

4.1电源/电机接口

序号	标示	名称	备注
	GND	输入电源-	古法 9.4V COV
	VDC	输入电源+	直流 24V-60V
CN1	U	电机动力线 U 相	
	V	电机动力线 V 相	以海增长三十九 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	W	电机动力线 W 相	■ 必须按标示与电机一一相连
圭	PE	电机接地线	
CN5 R		制动电阻	外接制动电阻,能耗泄放 (电阻规格按厂家建议选择)

表 4-1

4.2 编码器接口 CN2

序号	标示	名称	序号	标示	名称
1	GND	输出电源地	7	B+	编码器B相正输入
2	VCC	输出电源+5V	8	A+	编码器 A 相正输入
3	W+	编码器W相正输入	13	Z-	编码器Z相负输入
4	V+	编码器V相正输入	14	В-	编码器B相负输入
5	U+	编码器U相正输入	15	A-	编码器 A 相负输入
6	Z+	编码器Z相正输入			

表 4-2

4.3 通讯接口

网口正面示意图:

RS232 接口:

网口序号	DB9 序号	备注			
3-RXD	2	外接电脑串口 TXD			
4-TXD	3	外接电脑串口 RXD			
6-GND	5	信号地			
5-5V	9	驱动器外供+5V 输出,最大 100mA			

表 4-3-1

CAN/RS485 总线接口_(引脚序号按贴膜文字方向 1-8):

RJ11 序号	名称	备注
1	CAN_H	CAN 总线 H
2	CAN_L	CAN 总线 L
7	RS485B	485 总线 B
8	RS485A	485 总线 A

表 4-3-2

模拟量接口:

标示	名称	备注
AI	模拟量输入	电压 0-5V
GND	模拟量 OV/GND	OV

4.4 报警信息及拨码开关 ID 设置查询

故障状态红灯闪烁。

拨码设置从站 ID 号。

报警状态					
故障原因	红灯	丁闪烁次数			
欠压	1	亮/灭			
过压	2	亮/灭			
过载	3	亮/灭			
编码器故障	4	亮/灭			
位置偏差过大	5	亮/灭			
过流	6	亮/灭			

ID	SW3	SW2	SW1			
7	1-ON	1-ON	1-ON			
6	0-OFF	1-ON	1-ON			
5	1-ON	0-OFF	1-ON			
4	0-OFF	0-OFF	1-ON			
3	1-ON	1-ON	0-OFF			
2	0-OFF	1-ON	0-OFF			
1	1-ON	0-OFF	0-OFF			
SW 全 OFF 时,ID 由软件预设						
SW0-CAN 终端电阻: ON-120Ω						

表 4-4

4.5 控制接口 CN3

序号	配线功能	备注
1	EX_24V/EX_5V	外接 PLC 时,为输入输出公共端提供电源。
2	伺服使能输入	用于伺服电机的使能或禁止。0V 时驱动器将切断电机电源,使电机 处于自由状态不响应脉冲。
3	脉冲指令 PULSE+	脉冲信号:脉冲上升沿有效,高电平时 4-5V,低电平时 0-0.5V,脉
4	脉冲指令 PULSE-	冲宽度应大于 1.6us,
5	方向指令 DIR+	方向信号: DIR+与 DIR-之间输入 高电平时反转, 反之正转。方向信 号应先于脉冲信号至少 5us 建立,
6	方向指令 DIR-	高电平时 4-5V, 低电平时 0-0. 5V。
7	编码器Z开集输出	Z信号输出
8	伺服报警输出	报警输出
9	EX_GND/0V	外部电源 OV/GND
10	寻找 Z 原点输入	寻找 Z 命令输入
11	定位完成输出	电机到位输出
12	编码器 A+输出	编码器反馈输出
13	编码器 A-输出	编码器反馈输出
14	编码器 B+输出	编码器反馈输出
15	编码器 B-输出	编码器反馈输出

表 4-6

注意:

单端 24V 电平时,PLC 的 24V 接 1,3 和 5,脉冲和方向信号串 2K 电阻分别接 4 和 6,使能信号和找原点信号串电阻分别接控制接口,9 脚接 0V。

单端 5V 电平时,控制系统的 5V 接 1,3 和 5,脉冲和方向信号分别接 4 和 6,使能信号和找原点信号分别接控制接口。差分脉冲接法时,脉冲方向分别接 3、4、5、6。

五、控制方式

5.1 基本控制

本驱动器提供位置、速度、扭矩三种基本操作模式。使用单一控制模式,下面列出所有的操作模式与说明。

控制模式选择	控制来源选择	说明		
	外部脉冲输入	驱动器接受位置指令,控制电机至 目标位置。位置指令由端子输入, 信号型态为脉冲+方向		
位置控制模式	PC 数字输入	相对位置: 以驱动器使能启动时刻为机械 0 点,每写入一次 PC 数字输入值, 电机转动目标距离 绝对位置: 以驱动器使能启动时刻为机械 0 点,每写入一次 PC 数字输入值, 电机以机械 0 点为参考量,转动到 目标位置		
	外部模拟量输入	模拟量输入为 0~+5V 时, 电机以 绝对位置模式转动-8192~+8192 个脉冲量		
	PC 数字输入	输入范围: -10000RPM~+10000RPM		
速度控制模式	外部模拟量输入	模拟量输入为 0~2.5~+5V 时,电机-3000RPM~+3000RPM 速度运行		
	PC 数字输入	输入的值为电流值,对应输出的力矩。正负号区别正反力矩。		
力矩控制模式	外部模拟量输入	模拟量输入为 0~2.5~+5V 时。对应的输出力矩为设置的额定电流时产生的力矩。输入 2.5~+5V 时对应正转力矩,0~2.5 为反转力矩		

5.2 RS232 通讯控制

除了上述的基本控制方式外,驱动器还提供 RS232 通讯控制方式。选择通讯控制方式时,无论是选择任何一种控制模式,控制来源一定要选择 PC 数字输入。然后根据通讯的格式和驱动器进行数据传送。以下是通讯控制时的一些具体说明。

功能说明	数据地址 (A1)	数据高八位 (A2)	数据低八位 (A3)	数据校验和 (A1+A2+A3)	备注
电机启动	0x00	0x00	0x01	0x01	写入电机使能
电机停止	0x00	0x00	0x00	0x00	写入电机失能
速度模式选 择PC 数字 输入	0x02	0x00	0xc4	0xc6	控制模式给定命令来源选择
位置模式选 择外部脉 冲输入	0x02	0x00	0xc0	0xc2	控制模式给定命令 来源选择
位置模式选 择PC 数字 输入	0x02	0x00	0xd0	0xd2	控制模式给定命令来源选择
速度比例增益	0x40			取低八位 (A1+A2+A3)	
速度积分增益	0x41			取低八位 (A1+A2+A3)	
速度微分增益	0x42			取低八位 (A1+A2+A3)	调整时建议以厂家
位置比例增 益	0x1a			取低八位 (A1+A2+A3)	默认参数基础上按 实际情况修改。
位置微分增益	0x1b			取低八位 (A1+A2+A3)	
位置前馈增	0x1c			取低八位 (A1+A2+A3)	

最高速度限制	0x1d			取低八位 (A1+A2+A3)	位置模式下有效
速度模式(PC 数字输入时		加速时间	减速时间		表示从 0 到 3000
有效)加 减速时间设 定	0x0a			取低八位 (A1+A2+A3)	的加速时间。 3000-0 的减速时 间。单位:x100MS
速 度 模 式PC 数字输 入速度给 定	0x06			取低八位 (A1+A2+A3)	设定的数字量 8192 对应实际转 速 3000RPM
位置模式(PC 数字输入时 有效)加 减速时间设 定	0x09			取低八位 (A1+A2+A3)	表示从 0 到 3000 的加速时间。 3000-0 的减速时 间。单位:x100MS
位置调试模 式位置给定 高 16 位 PC位置	0x50			取低八位 (A1+A2+A3)	32 位数据输入中 的高 16 位
位置调试模 式位置给定 低 16 位 PC位置	0x05			取低八位 (A1+A2+A3)	32 位数据输入中 的低 16 位
标定当前位 置高 16 位	0x3C			(取低8位)	发送先高后低(32 位带符号)
标定当前位 置低16位	0x3D			(取低8位)	发送先高后低(32 位带符号)
关闭通讯中 断自动停机	0x1c	0x00	0x00	0x1c	写入0时,关闭。
开启通讯中 断自动停机	0x1c	0x00	0x07	0x23	写入 0x07 时开启, 不是 0x07 时关闭。
清零指令	0x4c	0x00	0x00	取低八位 (A1+A2+A3)	强制清除位置数据 为 0
急停指令	0x4d	0x00	0x00	取低八位 (A1+A2+A3)	停在当前位置,清 除剩余未运行完的 目标位置。

寻找Z信号机 械原点	0x53	0x0	00	0x00	0x53	Z命令输入		
位置模式下 绝对位置/相	0x51	0x0	00	0x00	0x51	绝对位置		
对位置切换 控制	0x51	0x00		0x01	0x52	相对位置		
读监控参数		直接发送	€ 0x80	0x00 0x80 驱	动器会返回相应	监控信息		
	0x80	0x00	Stati	ıs_word	取 低 八 位 (A1+A2+A3)	Status_word 为自 定义的参数		
故障状态	Status_ov_ Status_err_ Status_ov_ Status_ov_	Status_ov_i =Status_word^1; 过流 Status_ov_u =Status_word^2; 过压 Status_err_enc =Status_word^3; 编码器故障 Status_ov_t =Status_word^4; 位置偏差过大 Status_ov_q =Status_word^5; 欠压 Status_ov_load =Status_word^6; 过载标志						
母线电压	0xe1				取低八位 (A1+A2+A3)	(误差 2V)		
输出电流	0xe2				取低八位 (A1+A2+A3)	实际电流要缩小		
输出转速	0xe4				取低八位 (A1+A2+A3)	返回的数字量 8192 对应实际转 速 3000RPM		
位置给定高 16 位	0xe6				取低八位 (A1+A2+A3)	位置给定为 32 位 的数据,实际的值		
位置给定低 16 位	0xe7				取低八位 (A1+A2+A3)	请根据高 16 位和 低 16 位重新组合		
位置反馈高 16 位	0xe8				取低八位 (A1+A2+A3)	位置反馈为 32 位 的数据,实际的值		

通讯控制指令详细说明:

*关于正负号数据的说明:

目标位置,目标速度,目标电流,正反方向由正负号决定。发送反方向数据直接以负号形式体现。正转:面对电机轴,逆时针旋转 CCW。反转:面对电机轴顺时针 CW。

例: -10000; 16 进制时如右下所示。根据数据位数取相应的字节。

若是目标速度, RS232 通讯时发送: 0x06 0xD8 0xF0 0xCE

若是目标速度, CAN 总线发送: ID+0x00 0x1a 0x06 0xD8 0xF0 0x00 0x00 0x01

若是目标速度, RS485 发送: 01 06 00 06 D8 F0 33 8F

若是目标位置, RS232 通讯时发送:

0x50 0xff 0xff 0x4E 延时 10MS 0x05 0xD8 0xF0 0xCD

若是目标位置, CAN 总线发送:

ID+0x00 0x1a 0x50 0xff 0xff 0x05 0xd8 0xf0

若是目标位置, RS485 发送:

0x01 0x10 0x00 0x50 0x00 0x02 0x04 0xFF 0xFF 0xD8 0xF0 0xAC 0xF3

- (1) 控制器接收的数据命令格式为: 地址 + 数据高八位 + 数据低八位置 + 数据校验和 (取前三个数据和的低八位值) 若上位机按此格式正确发送后,驱动器即时向上位 机返回该命令的两个地址,说明驱动器已成功接收命令。例如:上位机发送: 0x09 0x32 0x32 0x6d 驱动器向上位机返回:0x09 0x09 这时就说明驱动器已经接收 完成。(注意:每帧数据指令之间要有 1ms 以上的延时等待,否则数据容易出错)。
- (2) 选择为位置调试模式时,由上位机通过串口发送控制指令时。 设定顺序为:设定驱动器为位置调试模式(发送 0x02 0x00 0xd0 0xd2) →→设定 位置模式下的速度限幅值—→电机启动(0x00 0x00 0x01 0x01) —→位置给定高 16 位—→位置给定低 16 位。若位置调试模式已经确定和电机已经启动,刚下次发送的 时候不用重复发送。
- (3) 如果驱动器在调试参数的时候,已经设定好所有的参数,如加减速度,控制模式,速度限幅(出厂时已经默认一个合适的值)。这时候,只须要设定电机启动,再发送位置给定位就可以了。步骤: 电机启动(0x00 0x00 0x01 0x01)--→位置给定高16 位--→位置给定低16 位。
- (4) 设定 32 位位置给定命令。32 位数据对应的是脉冲个数。例如,在设定电子齿轮中分子分母都是 1 时。编码器线数为 2500 时,电机转动一圈须要的脉冲数为 10000。位置给定写入为 10000 时,以驱动器启动时刻为机械零点,电机转动一圈。写入100000 时,电机转动 10 圈。若再写入 0,电机转动到刚启动时的位置。
- (5) 关于位置模式下,发送位置指令是绝对位置还是相对位置的切换。发送指令为 0X51 0X00 0X00 0X51 时,发送位置是绝对位置。当发送指令为 0X51 0X00 0X01 0X52 时,位置是相对位置。
- (6) 位置模式下,输出的电机最高稳定转速限幅值由 VLimit 决定。发送指令为(0x1d设定值高8位设定值低8位校验和) 其中设定值对应的限幅转速 = (须要设定的限幅转速/8192)*3000,得到的数据四舍五入。例如,电机要3000RPM,设定值就是8192,如果要1RPM,设定值就是3(四舍五入)。
- (7) 关于寻找机械 Z 信号原点的问题,在参数配置完成之后,发送找原点操作 (0x53 0x00 0x00 0x53)之后。再发送电机启动(0x00 0x00 0x01 0x01),电机会慢慢转动,直到找到 Z 信号原点,之后不动。
- (7) 关于监控命令。发送监控命令指令为(0x80 0x00 0x80) ,驱动器收到命令后返回以下几个数据,故障信息,母线电压,输出电流(已经放大 100 倍,实际显示电流要除 100,例如,收到是 123,就是 1.23A 电流),输出转速(输出转速为数字量,换算关系式为:实际转速=(数字转速/8192)*3000),当前位置给定值高 16 位,当前位置给定值低 16 位。当前位置经定值低 16 位。当前位置反馈值高 16 位,当前位置反馈值低 16 位。其中的对应关系请参照上表。返回的格式四个数据一帧。格式为: 地址数据高八位数据低八位校验和(取低八位)。

5.3 CAN 通讯控制

现采用自定义 CAN 总线协议,协议以 ID ,从机组号,功能码,寄存器数据 1 地址,数据内容 1 高 8 位,数据内容 1 低 8 位,寄存器数据 2 地址,数据内容 2 高 8 位,数据内容 2 低 8 位,每条指令的数据为 2 个 16 位长度的带符号的整型数据,构成一条完整的 CAN 通讯指令。具体格式说明如下:

(1) 点对点的写数据操作,掉电不保存。主机发送数据指令,接收正确后,从机返回相应数据指令。例如,主机发送指令为: 0x05 0x00 0x1A 0x06 0x00 0x08 0x00 0x00 0x01 具体对应的指令内容为,对 ID 号为 0x05,组号为 0 的从机发送了速度指令(0x06 0x00 0x08)为8,并启动电机(0x00 0x00 0x01)的命令。其中 0x1A 是指令的功能码,表示写数据,但不保存数据。从机接收到数据后数据即时生效。如果寄存器地址设置为 0xFF,从机则自动识别该指令为空指令,不执行任何操作。如果主机只操作单一寄存器时,另一寄存器地址请设置为 0xFF。

发送指令格式如下:

从机	数据域								
ID									
(由	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
上位	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低	
机预			1地址	8位	8位	2 地址	8位	8位	
设)	(由上位	0X1A	(详见			(详见			
	机预设)		参数映			参数映			
			射表)			射表)			

表 5-3

接收正确后返回指令格式如下:

从机				数据	域			
ID								
(由	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
上位	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低
机预			1 地址	8位	8位	2 地址	8位	8位
设)	(由上位	0X1B	(详见			(详见		
	机预设)		参数映			参数映		
			射表)			射表)		

表 5-4

从机	数据域								
ID									
(由	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
上位	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低	
机预			1地址	8位	8位	2 地址	8位	8位	
设)	(由上位	0X1C	(详见			(详见			
	机预设)		参数映			参数映			
			射表)			射表)			

表 5-5

(2) 点对点的读数据操作,主机发送数据指令,接收正确后,从机返回相应寄存器地址数据内容。例如,主机发送指令为: 0x05 0x00 0x2A 0xE8 0x00 0x00 0xE9 0x00 0x00 具体对应的指令内容为,对 ID 号为 0x05 的从机发送读位置反馈高 16 位指令(0xE8 0x00 0x00),位置反馈低 16 位指令(0xE9 0x00 0x00)。其中 0x2A 是指令的功能码,表示读数据,从机接收到指令后,把地址相应的数据内容上传,功能码变为 0x2B。如果寄存器地址设置为 0xFF,从机则自动识别该指令为空指令,不执行任何操作。如果主机只操作单一寄存器时,另一寄存器地址请设置为 0xFF。

发送指令格式如下:

从机	数据域								
ID									
(由	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
上位	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低	
机预			1地址	8位	8位	2 地址	8位	8位	
设)	(由上位	0X2A	(详见			(详见			
	机预设)		参数映			参数映			
			射表)			射表)			

表 5-6

接收正确后返回指令格式如下:

		ATTENDED TO THE OWNER OF THE OWNER OF THE OWNER									
从机				数据	域						
ID											
(由	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7			
上位	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低			
机预			1地址	8位	8位	2 地址	8位	8位			
设)	(由上位	0X2B	(详见			(详见					
	机预设)		参数映			参数映					
			射表)			射表)					

表 5-7

从机	数据域									
ID										
(由	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
上位	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低		
机预			1 地址	8位	8位	2 地址	8位	8位		
设)	(由上位	0X2C	(详见			(详见				
	机预设)		参数映			参数映				
			射表)			射表)				

表 5-8

(3) 一对多的写数据操作,掉电不保存。主机发送数据指令,接收正确后,从机返回相应数据指令。例如,主机发送指令为: 0x00 0x01 0x8A 0x06 0x00 0x08 0x00 0x00 0x01 具体对应的指令内容为,对全局的组号为 0x01 的所有从机发送了速度指令(0x06 0x00 0x08)为 8,并启动电机(0x00 0x00 0x01)的命令。其中 0x8A 是指令的功能码,表示写数据,但不保存数据。从机接收到数据后数据即时生效。如果寄存器地址设置为 0xFF,从机则自动识别该指令为空指令,不执行任何操作。如果主机只操作单一寄存器时,另一寄存器地址请设置为 0xFF。

发送指令格式如下:

从机	数据域									
ID										
0x00	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低		
			1地址	8位	8位	2 地址	8位	8位		
	(由上位	0X8A	(详见			(详见				
	机预设)		参数映			参数映				
			射表)			射表)				

表 5-9

接收正确后返回指令格式如下:

从机	数据域								
ID									
0x00	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低	
			1地址	8位	8位	2 地址	8位	8位	
	(由上位	0X8B	(详见			(详见			
	机预设)		参数映			参数映			
			射表)			射表)			

表 5-10

从机				数据	域						
ID											
0x00	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7			
	从机组号	从机组号 功能码 寄存器 数据高 数据低 寄存器 数据高 数据低									
			1地址	8位	8位	2 地址	8位	8位			
	(由上位	0X8C	(详见			(详见					
	机预设)		参数映			参数映					
			射表)			射表)					

表 5-11

(4) 一对多的写数据操作,掉电不保存。主机发送数据指令,接收正确后,从机不返回相应数据指令。但接收数据有误则返回报错帧。例如,主机发送指令为: 0x00 0x01 0x8A 0x06 0x00 0x08 0x00 0x00 0x01 具体对应的指令内容为,对全局的组号为 0x01 的所有从机发送了速度指令(0x06 0x00 0x08)为 8,并启动电机(0x00 0x00 0x01)的命令。其中 0x8A 是指令的功能码,表示写数据,但不保存数据。从机接收到数据后数据即时生效。如果寄存器地址设置为 0xFF,从机则自动识别该指令为空指令,不执行任何操作。如果主机只操作单一寄存器时,另一寄存器地址请设置为 0xFF。

发送指令格式如下:

从机		数据域								
ID										
0x00	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低		
			1地址	8位	8位	2 地址	8位	8位		
	(由上位	0X9A	(详见			(详见				
	机预设)		参数映			参数映				
			射表)			射表)				

表 5-12

从机	数据域									
ID										
0x00	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
	从机组号	功能码	寄存器	数据高	数据低	寄存器	数据高	数据低		
			1地址	8位	8位	2 地址	8位	8位		
	(由上位	0X9C	(详见			(详见				
	机预设)		参数映			参数映				
			射表)			射表)				

表 5-13

参数寄存器地址映射列表:

功能说明	寄存器地址	数据高八位	数据低八位	备注		
电机启动	0x00	0x00	0x01	写入电机使能		
电机停止	0x00	0x00	0x00	写入电机失能		
速度模式选择 PC 数字输入	0x02	0x00	0xc4	控制模式给定命令来源选择		
位置模式选择 外部脉冲输 入	0x02	0x00	0xc0	控制模式给定命令来源选择		
位置模式选择 PC 数字输入	0x02	0x00	0xd0	控制模式给定命令来源选择		
PC 模式-速度 给定	0x06			实际电机转速=(写入值/8192)*3000		
CAN-组号	0x0b			设置一对多模式时,从机接收组		
CAN-报告时间	0x0c			设置自动向主机报告状态信息时间 间隔,大于0时起作用,单位:ms		
从机 CAN-ID 号	0x0d			从机自身识别号		
CAN-自动报告 内容选择	0x2e	0X00		低八位数据,默认为 0, 可选 1, 或 2。 选择 0: 位置反馈, 电流, 速度。 选择 1: 位置反馈 选择 2: 输出电流		
速度比例增益	0x40					
速度积分增益	0x41					
速度微分增益	0x42					
位置比例增益	0x1a] 」调整时建议以厂家默认参数基础上		
位置微分增益	0x1b			按实际情况修改。		
位置前馈增益	0x1c					

		加速时	减速时	
速度模式(PC			,,,,	
数字输入时有	0x0a	间	间	1 代表 0 到 3000RPM 所用时间是
效)加减速	OxOa			100ms
时间设定				
位置模式(PC		加速时	减速时	
数字输入时有	0x09	间	间	1 代表 0 到 3000RPM 所用时间是
效)加减速	0x09			100ms
时间设定				
位置调试模式				
位置给定高16	0x50			32 位数据输入中的高 16 位
位PC位置				
位置调试模式				
位置给定低16	0x05			32 位数据输入中的低 16 位
位PC位置				
清除故障	0x4a			清除驱动当前故障
清零指令	0x4c	0x00	0x00	强制位置数据为0
急停指令	0x4d	0x00	0x00	紧急停机,清除剩余未运行的目标 位置
标定当前位置	0x3C			(阳优 0 片)
高 16 位	UXOC			(取低 8 位)
标定当前位置	0.00			(取低 8 位)
低 16 位	0x3D			(現低 8 位)
关闭通讯中断	0.1	0.00	0.00	
自动停机	0x1c	0x00	0x00	
开启通讯中断	01	0x00	007	
自动停机	0x1c	UXUU	0x07	
找Z信号原点	0x53	0x00	0x00	运行到 Z 信号位置
位置模式下绝	0x51	0x00	0x00	绝对位置
对位置/相对	Ov.F1	000	001	和平份蓋
位置切换控制	0x51	0x00	0x01	相对位置
/				
位置模式下速				机克的粉点量 0400 社产应应数
度限幅值(位	0.4.			设定的数字量 8192 对应实际转速
置命令下达到	0x1d			3000RPM
给定位置的实				
际转速)				

读参数地址列表	を(可利用 2A ユ	力能单条读 ^I	取以下内容)
定位完成	0x55			到位: 0 未到位: 1
母线电压	0xe1			(误差 2V)
输出电流	0xe2			实际电流要缩小 100 倍
输出转速	0xe4			返回的数字量 8192 对应实际转速 3000RPM
位置给定高16	0xe6			· 位置给定为 32 位的数据,实际的值
位置给定低16	0xe7			请根据高 16 位和低 16 位重新组合
位置反馈高16 位	0xe8			· 位置反馈为 32 位的数据,实际的值
位置反馈低16 位	0xe9			请根据高 16 位和低 16 位重新组合
故障状态	0xE3			返回驱动故障状态
	Status_run Status_ov_i Status_ov_u Status_err_e Status_ov_t Status_ov_q Status_ov_lo	=Status_wor =Status_wor =Status_wor nc =Status_v =Status_v =Status_v ad =Status_v	ord^0 运行状 ord^1; od^2; vord^3; vord^4; word^5; word^6;	在个位所对应信息如下(高有效): 态 0-停机,1-启动 过流 过压 编码器故障 位置偏差过大 欠压 过载标志 外部控制标志 0-pc,1-外部 PLC

表 5-14

广播模式下:功能码为 00x8A,0x9A 一对多时的写参数不保存寄存器操作列表 点对点模式下:功能码为 0x1A,一对一时的写参数不保存寄存器操作列表 广播模式参数列表:

电机启动	0x00	0x00	0x01	写入电机使能
电机停止	0x00	0x00	0x00	写入电机失能
速度模式(PC 数字		加速度	减速度	写入 10 时,表示从 0 到 3000
输入时有效)加减 速度设定	0x0a			要1秒的时间
位置调试模式位置 给定高 16 位 位置	0x50			32 位数据输入中的高 16 位
位置调试模式位置 给定低 16 位 位置	0x05			32 位数据输入中的低 16 位
PC 模式-速度给定	0x06			实际电机转速=(写入值 /8192)*3000
CAN-报告时间	0х0с			设置从机自动向主机报告状 态时间间隔,大于0时起作用
找Z信号原点	0x53	0x00	0x00	找到 Z 信号后停止
位置模式下绝对位	0x51	0x00	0x00	绝对位置
置/相对位置切换	0x51	0x00	0x01	相对位置
位置模式下的速度 限幅值	0x1d			实际电机转速=(写入值 /8192)*3000(位置命令下达到 给定位置的实际转速)

表 5-15

5.4 CAN 通讯控制应用说明

在 CAN 通讯开始前,用户可通过串口连接驱动器的参数管理软件,提前预写入以下参数。

- (1) 控制模式。选择 CAN 通讯控制时,首先选择控制来源。需要电机工作在位置模式下时,选择位置调试模式-PC 数字输入。需要工作在速度模式时,选择速度调试模式-PC 数字输入。并切换为 PC 控制。即表示由内部指令控制电机的启动停止。
- (2)选择速度模式时,可提前写入速度的加减速时间。当写入为 10 时,时间标识为 0 到 3000RPM 时,所用时间为 1 秒。写入 100 时,时间是 10 秒。写入为 1 时,时间是 0.1 秒。数值越大,加减速时间越长。为避免速度提高过快造成的冲击,内部已经限制最高加减速。

(3) 速度写入值计算方法: 实际转速=写入值/8192x 3000 RPM。

- (4)选择为位置模式时,可以预写入位置命令下达到给定位置的最高转速,和位置命令是相对位置还是绝对位置。设置完成后,然后再由通讯写入位置指令。电机转动的圈数和电机的脉冲当量有关。当电机脉冲当量为 5000 时,写入数字量 5000,即电机转动一圈。若选择为绝对位置,重复写入 5000,电机的位置始终会是 5000,不再变化。若写 10000,电机会再转一圈。之后写 0,电机会反转 2 圈。若选择的是相对位置,数字写入 5000,电机转动一圈,重复再一次写入 5000,电机会再转一圈。多次写入会累加写入值。若电机要反转,写入-5000 即可,电机会反转一圈。重复写入,会重复运动。
- (5)须要注意的是,位置模式时,写入的位置指令格式为为,先写位置高 16 位,再写位置低 16 位。
- (6) 从机 ID 号,在多个驱动连接时,设置单个驱动器自身的识别号。号码从 1 到 100。从机不能设置 ID 号为 0。
- (7) 主机在发送时设置 ID 号为 0 时,表示进入广播模式。广播模式的功能码是 0x8A,或 0x9A.
- (8)从机组号,当有多个从机连接时,可以分别划分从机所属的组号,主机在广播模式时, 从机根据相应的组号来判别是否接收系统发过来的数据。
- (4) CAN 自动报告内容选择。当启动自动报告时,可选择自动报告的内容。

选择 0: 位置反馈, 电流, 速度。

选择 1: 位置反馈

选择 2: 输出电流

当选择为 0 时,从机向主机报告电机的实时位置反馈,从机分两条指令向主机发送。一条存放位置反馈高 16,位置反馈低 16 位。一条存放电机输出电流,实时速度。

选择为1时,从机只向主机报告电机的实时位置反馈。一条指令完成。

选择为2时,从机只向主机报告电机的输出电流,实时速度。一条指令完成。

(5) CAN 自动报告时间。当报告时间设置为大于 0 时,自动报告设置开始生效。从机会每间隔一段时间,向主机报告当前电机的位置,速度,或电流。设置的单位是 ms,如设置 2000,即表示 2000ms 间隔报告一次状态信息。

5.5 CAN 通讯控制应用实例

(1) 点对点的速度控制模式:

在预设好控制来源选择后,速度调试模式-PC 数字输入。同时从机 ID 号设置为 0x0A,从机组号为 0,对单个从个从机给定速度指令,和加减速指令。下图指令表示:发送数据给 ID 号为 0x0A,组号为 0 的从机,功能码是 0x1A (表示写数据不保存),加速度和减速度为 3 (表示速度从 0 到 3000RPM 要加速 0.3 秒),速度指令为 188RPM。发送后从机成功接收,同时返回相同的数据。

图 5-1

发送启动电机命令

图 5-2

(2) 点对点的位置控制模式:

在预设好控制来源选择后,位置调试模式-PC 数字输入。同时从机 ID 号设置为 0x0A,从机组号为 0,对单个从个从机设置最高速度限制指令和启动命令,设置后同时发送位置给定指令。下图指令表示:发送数据给 ID 号为 0x0A,组号为 0 的从机,功能码是 0x1A(表示写数据不保存),最高速度为 188RPM(表示位置命令下达到位置到达的最高运行速度)。设置完成后,再发送了位置给定命令。发送后从机成功接收,同时返回相同的数据。

图 5-3

(3) 一对多的速度控制模式

在预设好控制来源选择后,速度调试模式-PC 数字输入。同时一个从机 ID 号设置为 0x0A,从 机组号为 0,另一个从机 ID 号设置为 0x0B,从机组号为 0 对多个从个从机给定速度指令和启动命令。下图指令表示:发送数据给 ID 号为 0(广播模式),组号为 0 的从机,功能码是 8A(表示广播模式写数据不保存),速度指令为 280RPM(06 03 00),然后启动 2 个从机。发送后从机成功接收,同时返回相同的数据。

图 5-4

(4) 一对多的位置控制模式:

在预设好控制来源选择后,位置调试模式-PC 数字输入。同时从机 ID 号设置为 0x0A,从机组号为 0,对单个从个从机设置最高速度限制指令和启动命令,设置后同时发送位置给定指令。下图指令表示:发送数据给 ID 号为 0x0A,组号为 0 的从机,功能码是 0x1A(表示写数据不保存),最高速度为 188RPM(表示位置命令下达到位置到达的最高运行速度)。设置完成后,再发送了位置给定命令。发送后从机成功接收,同时返回相同的数据。

图 5-5

(5) CAN 人机自动报告时间和选择报告内容

设置单一从机自动报告时间和自动报告的内容。下图指令表示:发送数据给 ID 号为 0x0A,组号为 0 的从机,功能码是 0x1A(表示写数据不保存),自动报告的时间间隔是 2000MS,报告的内容是选择 0:位置反馈,电流,速度。发送后从机成功接收,同时返回相同的数据。设置完成后,从机每隔 2000ms,向主机发送回监控指令。

图 5-6

5.6 RS485 通讯控制

本伺服驱动器支持 RS485 通讯控制,内部以 MODBUS RTU 通信协议运行。

MODBUS RTU 通讯协议基本格式:

目标站号	功能码	数据	CRC 校验码
1字节	1字节	N字节	2 字节

表 5-16

MODBUS RTU 常用功能码简介

(1) 功能码 03, 读数据寄存器, 现驱动内部支持读单个或两个寄存器。

请求格式:

目标站号	功能码	起止地址	起止地址	读取个数	读取个数	CRC 校验码
		高字节	低字节	高字节	低字节	
1字节	03	1字节	1字节	1字节	1字节	2 字节

表 5-17

正确应答格式:

目标站号	功能码	返回数据	寄存器1高	寄存器1低	 CRC 校验码
		字节数	字节	字节	
1字节	03	1字节	1字节	1字节	 2 字节

表 5-18

若所写数据地址不对,数据出错,则功能码改变为0x81。

范例说明:

发送报文: 01 03 00 E1 00 01 D4 3C

01-10号

03一功能码,读取数据寄存器

00 E1 一伺服读取数据寄存器地址,00 高字节,E1 低字节(地址 E1 为读取驱动器当前电压)。

00 01 一读取数据个数,00 高字节,01 低字节

D4 3C-CRC 校验码

正式应答格式:

接收报文: 01 03 02 00 1F F9 8C

01-ID 号

03一功能码,读取数据寄存器

02一返回数据字节数

00 1F一返回数据,00 寄存器高字节,1F 寄存器低字节(表示当前驱动器电压为32V)。

F9 8C—CRC 校验码

(2) 功能码 06, 写数据寄存器

请求格式:

113.3.114.4						
目标站号	功能码	起止地址	起止地址	读取个数	读取个数	CRC 校验码
		高字节	低字节	高字节	低字节	
1 字节	06	1 字节	1 字节	1 字节	1 字节	2 字节

表 5-19

若设置成功,原报文返回。

若所写数据地址不对,数据出错,则功能码改变为0x86,其它原文返回。

范例说明:

发送报文: 01 06 00 06 10 00 64 08

01-ID 号

06一功能码,读取数据寄存器

00 06 一伺服写数据寄存器地址,00 高字节,06 低字节(地址 06 为速度指令内部寄存器地址)。

10 00一写数据强制值,10 高字节,00 低字节(表示速度指令为 1500RPM),4096 代表 1500RPM

64 0B-CRC 校验码

正式应答格式(原文返回):

接收报文: 01 06 00 06 10 00 64 08

(3) 功能码 10, 写多数据寄存器

请求格式:

目	功	起止	起止	数量	数量	强制	BYTE	BYTE	BYTE	BYTE	CRC 7	校
标	能	地址	地址	高字	高 字	值字	(31-24)	(23-16)	(15-8)	(7-0)	验	码
站	码	高字	低字	节	节	节数					(16BIT	Γ)
号		节	节									
ID	10	00	地址	00	02	04		持符号的 3	2 位数据		2 字节	ť

表 5-23

正确应答格式:

目标站号	功能码	起止地址	起止地址	数量高字	数量低字	CRC 校验码
		高字节	低字节	节	节	
1字节	10	1字节	1字节	1 字节	1 字节	2 字节

表 5-21

若所写数据地址不对,数据出错,则功能码改变为0x90:

范例说明:

发送报文: 01 10 00 50 00 02 04 00 01 86 A0 C5 4B

01-ID 号

10一功能码,读取数据寄存器

00 50 一伺服写数据寄存器地址,00 高字节,50 低字节(地址50 为寄存器位置指令地址)

00 02 一数量字节数,00 高字节,02 低字节

04一强制值字节数

00 01一强制值高字节

86 A0一强制值低字节(表示写入位置指令为 100000)

C5 4B —CRC 校验码

正式应答格式:

接收报文: 01 10 00 50 00 02 41 D9

01-ID 号

10一功能码,读取数据寄存器

00 50 一伺服写数据寄存器地址,00 高字节,50 低字节

00 02 一数量字节数,00 高字节,02 低字节

C5 4B 一CRC 校验码

RS485 参数映射列表

(1) 读单个数据地址映射表:

地址	返回数据高8位	返回数据低8位	备注
0xE1			监控电压
0xE2			输出电流(返回值/100)单位: A
0xE3			驱动器状态
0xE4			电机转速

表 5-22

其中读数据地址 E3 返回数据具体对应故障状态信息如下:

Status_run =Status_word^0; 运行状态 0-停机,1-启动

Status_ov_i =Status_word^1; 过流 Status_ov_u =Status_word^2; 过压

Status_err_enc =Status_word^3; 编码器故障 Status_ov_t =Status_word^4; 位置偏差过大

Status_ov_q =Status_word^5; 欠压 Status_ov_load =Status_word^6; 过载标志

Status_Con_Mode =Status_word^7; 外部控制标志 = 0-pc; 1-外部 PLC

(2) 读 2 个数据地址映射表

起始地址	返回数据1	返回数据 2	返回数据 3	返回数据 4	备注
0xE1	电压值高8位	电压值低8位	电流值高8位	电流值低8位	16 位长度
0xE3	状态位高8位	状态位低8位	电机转速高 8	电机转速低 8	16 位长度
			位	位	
0xE6	位置指令	位置指令	位置指令	位置指令	32 位长度
	(24-31BIT)	(16-23BIT)	(8-15BIT)	(0-7BIT)	数据(4个
					值组合)
0xE8	位置反馈指令	位置反馈指令	位置反馈指	位置反馈指令	32 位长度
	(24-31BIT)	(16-23BIT)	♦ (8-15BIT)	(0-7BIT)	数据(4个
					值组合)

表 5-23

(3) 写单个数据地址映射表

地址	写入数据高8位	写入数据低8位	备注	
0x00	0x00	0x00 / 0x01	0x00-停止,0x01-启动	
0x02	0x00	0xc4/0xd0	0xc4 速度模式, 0xd0 位置模式	
0x06			速度指令=写入值/8192 RPM	
0x09	加速时间	减速时间	位置模式加减速时间	
0x0a	加速时间	减速时间	速度模式加减速时间	
0x1d			位置模式:最高速度	
			实际限制值=写入值/8192*3000	
			RPM 。	
0x4a			写入地址为 4a 的数据时,驱动清除当	
			前故障	

IDS830 低压直流伺服驱动器使用手册 V2.0

0x51			0 绝对位置/1 相对位置	
0x2c			额定电流: 单位 MA	
0x4c	0x00	0x00	清零指令,位置清零	
0x4d	0x00	0x00	急停指令,停机清除剩余未运行位置	
0x4E	0x00		1:RS485 指令无返回值。0: 有返回	
0x4f	0x00	0x00	缓冲急停	
0x1c	0x00	0x00	关闭通讯中断自动停机	
0x1c	0x00	0x07	开启通讯中断自动停机	

表 5-24

(4) 写连续两个 16 位数据,即写入位置指令(含正负号)

地址	写入数据 1	写入数据 2	写入数据 3	写入数据 4	备注
0x50	位置指令	位置指令	位置指令	位置指令	32 位长度数据(4 个
	(24-31BIT)	(16-23BIT)	(8-15BIT)	(0-7BIT)	值组合)

(5)标定当前位置(含正负号),把写入的数据,标定为目标位置和反馈的位置。下一次 发送目标位置时,会以标定的数字位置为起点。

地址	写入数据 1	写入数据 2	写入数据 3	写入数据 4	备注
0x3C	位置指令	位置指令	位置指令	位置指令	32 位长度数据(4 个
	(24-31BIT)	(16-23BIT)	(8-15BIT)	(0-7BIT)	值组合)

5.7 RS485 通讯控制范例

(1) 功能码 03,读数据寄存器,下图功能为,读取 01 站号的电机内部地址 E1 寄存器的数据。正确接收后,返回寄存器内容。下图为读取驱动器当前供电电压(返回 1F 表示 32V)。

图 5-7

(2) 功能码 03,读取两个连续数据寄存器,下图功能为,读取 01 站号的电机内部地址为 E1 和 E2 的寄存器的数据。正确接收后,返回寄存器内容。下图为读取驱动器当前供电电压(返回 1F 表示 32V)和输出平均电流(2D 表示 0.45A)。电流返回值为实际电流的 100 倍。

图 5-8

(3) 功能码 06,写数据寄存器,下图功能为,启动 01 站号的电机。正确接收后原文返回。

图 5-9

(4) 功能码 06,写数据寄存器,下图功能为,停止 01 站号的电机。正确接收后原文返回。

图 5-10

(5) 功能码 06, 写数据寄存器,下图功能为,写入 01 站号速度指令为 1500RPM。正确接收后原文返回。

图 5-11

(6) 功能码 10, 写数据寄存器,下图功能为,写入 01 站号位置指令为 10000。正确接收后返回相应应答指令。

图 5-12

(6) MODBUS 调试建议用网上通用开放平台调试。

5.8 IDS 调试软件设置范例

- (1) 建立通讯,首先建立硬件连接,调试线连接到驱动器的 RS232 接口,一端连接到 USB 转串口。
- (2) 查看电脑串口端口号,在设备管理器中,查看端口,看 USB 转串口是那个 COM 口。下图是正常情况下的端口详情。若串口无驱动,会显示黄色叹号,提示要安装驱动程序。

(4)确认后,给驱动器通电,打开调机软件,文件下拉,串口设置,选择对应的串口号。 然后打开串口。

(4) 打开串口后,第一次软件会自动把驱动内部设置参数读入。若通讯失败,左下角会显示通讯故障,或读入参数失败。判断通讯是否成功,以是否读入到驱动版本为条件。若驱动版本为 UNKNOW,通讯失败,请检查硬件连接。

(5) 通讯成功后,会读入如下参数。

左边,输入密码以上为厂家参数,修改时,必须输入密码指令。建议谨慎修改,电机参数错误,容易报警或运行异常,或损坏驱动器和设备。实际咨询厂家后方可操作。密码默认 8888. 若修改错误,请咨询厂家恢复默认参数。

- (6) 控制来源选择,若控制系统为脉冲定位型,请选择,位置模式,外部脉冲输入,控制状态为 PLC 控制。若为通讯位置控制,CAN 或 485,选择位置模式-PC 数字输入。通讯的控制时,请切换至 PC 控制。当前状态,参考右下角。PC 控制和 PLC 控制的区别为,启动,停机操作是外部使能 IO 控制,还是通过通讯指令控制。若是 PC 控制,外使能 IO 失效,由指令启动停机。若 PLC 控制,通讯指令启动停机失效,外部使能 IO 控制。若为速度控制,请选择速度模式-PC 数字输入。控制状态为 PC 控制。
- (7) 不同模式的参数设置,详情直接浏览软件参数界面。
- (8) 加速时间,减速时间。标定为,从0速开始,加速到3000RPM的时间。
- (9) 伺服运行参数

调整运行参数时,根据负载调节。位置比例,是关系到达目标位置响应的快慢,过大会过冲,过小,位置响应会太慢,或不到位。速度比例,调节速度响应快慢,同时有匹配惯量作用。若是大惯量负载,速度比例增大到 10000 左右,若运行时负载有卡顿,速度积分调节到 100 以下。若到达目标位置时,有过冲,来回晃动。位置比例调小,建议在 500 左右。电流环参数暂时不建议调节,如有必要,请联系厂家。

(10)监控参数。驱动版本,通讯成功与否的参考。母线电压,参考供电电压是否异常。输出电流,观察实际运行的电流,用于判断负载大小,看选型电机功率是否满足要求。电机转速,当前电机的运行速度。目标位置,接收到的目标位置。位置反馈,电机实际运行的位置。

六. 控制信号典型接线

图 6-1 差分方式控制信号接口接线图

图 6-2 单端方式控制信号接口接线图

图 6-3 单端方式控制信号接口接线总图

七. 外形安装尺寸

