1 Expansion

- 1. Θ is the set of old parameters
- 2. Θ^* is the set of new parameters
- 3. We sample variances
- 4. u_{Θ} have size such as $\dim(u_{\Theta}) = \dim(\Theta)$
- 5. u_n have size such as $\dim(u_n) = \dim(\Theta^*) \dim(\Theta)$
- 6. We sample u_{Θ} and u_n from the prior $p(\Theta)$
- 7. $\Theta^* = (\text{mean}(\Theta, u_{\Theta}), u_n) \text{ (set addition)}$
- 8. $h(U) = \prod^{\forall (u_{\Theta} \cup u_n)} p(u)$
- 9. We keep $U^* = \frac{\Theta u_{\Theta}}{2}$

 $j(\Theta, U)$ is the function from the old parameters Θ and the auxiliary variables $U = (u_{\Theta}, u_n)$ to the new set of parameters Θ^* and the auxiliary U^* .

1.1 Example

$$(\theta_1, \ \theta_2) \rightarrow (\theta_1^* \dots \theta_4^*)$$

$$j(\Theta,u_{\Theta},u_n)=(\Theta^*,U^*)=(\frac{\theta_1+u_{\Theta 1}}{2},\ \frac{\theta_2+u_{\Theta 2}}{2},\ u_{n1},\ u_{n2},\ \frac{\theta_1-u_{\Theta 1}}{2},\ \frac{\theta_2-u_{\Theta 2},}{2})$$

$$J = \begin{vmatrix} \frac{\partial(\theta_1 + u_{\Theta_1})/2}{\partial \theta_1} & \frac{\partial(\theta_1 + u_{\Theta_1})/2}{\partial \theta_2} & \frac{\partial(\theta_1 + u_{\Theta_1})/2}{\partial u_{\Theta_1}} & \frac{\partial(\theta_1 + u_{\Theta_1})/2}{\partial u_{\Theta_2}} & \frac{\partial(\theta_1 + u_{\Theta_1})/2}{\partial u_{n_1}} & \frac{\partial(\theta_1 + u_{\Theta_1})/2}{\partial u_{n_2}} \\ \frac{\partial(\theta_2 + u_{\Theta_2})/2}{\partial \theta_1} & \frac{\partial(\theta_2 + u_{\Theta_2})/2}{\partial \theta_2} & \frac{\partial(\theta_2 + u_{\Theta_2})/2}{\partial u_{\Theta_1}} & \frac{\partial(\theta_2 + u_{\Theta_2})/2}{\partial u_{\Theta_2}} & \frac{\partial(\theta_2 + u_{\Theta_2})/2}{\partial u_{n_1}} & \frac{\partial(\theta_2 + u_{\Theta_2})/2}{\partial u_{n_2}} \\ \frac{\partial u_{n_1}}{\partial \theta_1} & \frac{\partial u_{n_1}}{\partial \theta_2} & \frac{\partial u_{n_1}}{\partial u_{\Theta_1}} & \frac{\partial u_{n_1}}{\partial u_{\Theta_2}} & \frac{\partial u_{n_1}}{\partial u_{n_1}} & \frac{\partial u_{n_1}}{\partial u_{n_2}} \\ \frac{\partial u_{n_2}}{\partial \theta_1} & \frac{\partial u_{n_2}}{\partial \theta_2} & \frac{\partial u_{n_2}}{\partial u_{\Theta_1}} & \frac{\partial u_{n_2}}{\partial u_{\Theta_2}} & \frac{\partial u_{n_2}}{\partial u_{n_1}} & \frac{\partial u_{n_1}}{\partial u_{n_2}} \\ \frac{\partial(\theta_1 - u_{\Theta_1})/2}{\partial \theta_1} & \frac{\partial(\theta_1 - u_{\Theta_1})/2}{\partial \theta_2} & \frac{\partial(\theta_1 - u_{\Theta_1})/2}{\partial u_{\Theta_1}} & \frac{\partial(\theta_1 - u_{\Theta_1})/2}{\partial u_{\Theta_2}} & \frac{\partial(\theta_1 - u_{\Theta_1})/2}{\partial u_{n_1}} & \frac{\partial(\theta_1 - u_{\Theta_1})/2}{\partial u_{n_2}} \\ \frac{\partial(\theta_2 - u_{\Theta_2})/2}{\partial \theta_1} & \frac{\partial(\theta_2 - u_{\Theta_2})/2}{\partial \theta_2} & \frac{\partial(\theta_2 - u_{\Theta_2})/2}{\partial u_{\Theta_1}} & \frac{\partial(\theta_2 - u_{\Theta_2})/2}{\partial u_{\Theta_2}} & \frac{\partial(\theta_2 - u_{\Theta_2})/2}{\partial u_{n_1}} & \frac{\partial(\theta_2 - u_{\Theta_2})/2}{\partial u_{n_2}} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2}$$

We expected $2^{-\dim(\Theta)}$ from Jin's code. Matches.

2 Shrinkage

- 1. Θ is the set of old parameters
- 2. We sample variances
- 3. Θ_0 are the parameters we keep
- 4. Θ_d are the parameters we discard
- 5. We sample U of size $\dim(\Theta_0)$ from $N(0,\sigma_{a|b}^2)$
- 6. $\Theta^* = \Theta_0 + U$ (vector addition)

•
$$\theta_i^* = \theta_i + U_i$$

7.
$$h(U) = \prod^{\forall U} p(U_i)$$

8. We keep $U^* = (\Theta_0 - U, \Theta_d)$ (set addition)

 $j(\Theta, U)$ is the function from the old parameters Θ and the auxiliary variables U to the new set of parameters Θ^* and the auxiliary U^* .

2.1 Example

$$(\theta_1 \dots \theta_4) \rightarrow (\theta_1^*, \ \theta_2^*)$$

$$j(\Theta, U) = (\Theta^*, U^*) = (\theta_1 + U_1, \ \theta_2 + U_2, \ \theta_1 - U_1, \ \theta_2 - U_2, \ \theta_3, \ \theta_4)$$

$$J = \begin{vmatrix} \frac{\partial(\theta_1 + U_1)}{\partial \theta_1} & \frac{\partial(\theta_1 + U_1)}{\partial \theta_2} & \frac{\partial(\theta_1 + U_1)}{\partial \theta_3} & \frac{\partial(\theta_1 + U_1)}{\partial \theta_4} & \frac{\partial(\theta_1 + U_1)}{\partial U_1} & \frac{\partial(\theta_1 + U_1)}{\partial U_2} \\ \frac{\partial(\theta_2 + U_2)}{\partial \theta_1} & \frac{\partial(\theta_2 + U_2)}{\partial \theta_2} & \frac{\partial(\theta_2 + U_2)}{\partial \theta_3} & \frac{\partial(\theta_2 + U_2)}{\partial \theta_4} & \frac{\partial(\theta_2 + U_2)}{\partial U_1} & \frac{\partial(\theta_2 + U_2)}{\partial U_2} \\ \frac{\partial(\theta_1 - U_1)}{\partial \theta_1} & \frac{\partial(\theta_1 - U_1)}{\partial \theta_2} & \frac{\partial(\theta_1 - U_1)}{\partial \theta_3} & \frac{\partial(\theta_1 - U_1)}{\partial \theta_4} & \frac{\partial(\theta_1 - U_1)}{\partial U_1} & \frac{\partial(\theta_1 - U_1)}{\partial U_2} \\ \frac{\partial(\theta_2 - U_2)}{\partial \theta_1} & \frac{\partial(\theta_2 - U_2)}{\partial \theta_2} & \frac{\partial(\theta_2 - U_2)}{\partial \theta_3} & \frac{\partial(\theta_2 - U_2)}{\partial \theta_4} & \frac{\partial(\theta_2 - U_2)}{\partial U_1} & \frac{\partial(\theta_2 - U_2)}{\partial U_2} \\ \frac{\partial\theta_3}{\partial \theta_1} & \frac{\partial\theta_3}{\partial \theta_2} & \frac{\partial\theta_3}{\partial \theta_3} & \frac{\partial\theta_3}{\partial \theta_4} & \frac{\partial\theta_3}{\partial U_1} & \frac{\partial\theta_3}{\partial U_2} \\ \frac{\partial\theta_4}{\partial \theta_1} & \frac{\partial\theta_4}{\partial \theta_2} & \frac{\partial\theta_4}{\partial \theta_3} & \frac{\partial\theta_4}{\partial \theta_4} & \frac{\partial\theta_4}{\partial U_1} & \frac{\partial\theta_4}{\partial U_2} \end{vmatrix} = \\ = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} = 4$$

We expected $2^{\dim(\Theta^*)}$ from Jin's code. Matches.