Matematici Speciale

Examen

1. Să se reducă sistemul de ecuații diferențiale ordinare de ordinul întâi,

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = z \\ \frac{dz}{dt} = x, \end{cases}$$

la o singură ecuație de ordin superior și să se gasească apoi soluția sa generală.

2. Să se determine suprafața de câmp a câmpului vectorial

$$\mathbf{v}(x, y, z) = xy^2 \mathbf{i} + x^2 y \mathbf{j} + (x^2 + y^2) z \mathbf{k},$$

care trece prin curba

$$(\Gamma): \begin{cases} x = 2y \\ z = 1. \end{cases}$$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x^2}{(x^2+1)(x^2+9)^2} dx.$$

- 4. În planul complex la distanță finită, funcția $f(z) = \frac{z}{(z+1)(z-1)^3}$ are singularitățile -1 (pol simplu) și 1 (pol triplu). Se cere dezvoltarea funcției în serie Laurent în jurul punctului $z_0 = 1$.
- 5. Seria Fourier a unei funcții periodice.

Matematici Speciale

Examen

1. Să se determine suprafața de câmp a câmpului vectorial

$$\mathbf{v}(x, y, z) = x \mathbf{i} + y \mathbf{j} + (z - x^2 - y^2 + 1) \mathbf{k},$$

care trece prin curba

$$(\Gamma): \begin{cases} x-z = a^2 \\ x^2+y^2 = a^2-1 \end{cases}.$$

2. Să se determine funcția olomorfă f(z) = u(x,y) + iv(x,y) știind că

$$u(x,y) = x^3 - 3xy^2 + 2xy - x$$
 şi $f(0) = i$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} \, dx.$$

- 4. Să se dezvolte în serie Taylor funcția $f(z) = \frac{1}{z^2 + 1}$ într-o vecinătatea lui $z_0 = 0$.
- 5. Divergența unui câmp vectorial.

Matematici Speciale

Examen

1. Să se determine soluția generală a sistemului de ecuații diferențiale ordinare de ordinul întâi, liniar și omogen

$$\begin{cases} y_1' &= -9y_1 - 12y_2 - 5y_3, \\ y_2' &= 5y_1 + 6y_2 + 3y_3, \\ y_3' &= y_1 + 4y_2 + y_3. \end{cases}$$

Indicație. Se va utiliza metoda eliminării. Se ajunge la ecuația diferențială liniară și omogenă de ordinul trei cu coeficienți constanți $y_1''' + 2y_1'' - 4y_1' - 8y_1 = 0$, căreia i se va determina soluția generală.

2. Să se determine suprafața de câmp a câmpului vectorial

$$\mathbf{v}(x, y, z) = xz\,\mathbf{i} + yz\,\mathbf{j} + (x^2 + y^2 + z^2)\,\mathbf{k},$$

care trece prin curba

$$(\Gamma): \begin{cases} x = 1 \\ z = y^2 \end{cases}$$

3. Să se arate că dacă f(z) = u(x,y) + iv(x,y) este olomorfă într–un domeniu D, atunci funcția $\psi(z) = U(x,y) + iV(x,y)$, unde

$$U(x,y) = e^{v(x,y)} \cos u(x,y), \quad V(x,y) = -e^{v(x,y)} \sin u(x,y),$$

este olomorfă pe D.

4. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} \, dx.$$

5. Rotorul unui câmp vectorial.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Fiecare subiect se notează cu o notă între 1 și 10. Media aritmetică a celor cinci note este calificativul acordat tezei. Timpul de lucru este 2 ore.

Matematici Speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniare de ordinul doi cu coeficienți constanți, neomogenă

$$y'' - 9y' + 20y = x^2 \cdot e^{4x}$$

și apoi să se rezolve problema lui Cauchy cu condițiile inițiale y(0)=-1, y'(0)=-3.

2. Să se determine suprafața de câmp a câmpului vectorial

$$\mathbf{v}(x, y, z) = x \mathbf{i} + y \mathbf{j} + (z - x^2 \sin y) \mathbf{k},$$

care trece prin curba

$$(\Gamma): \begin{cases} x = y^2 \\ z = 0. \end{cases}$$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x}{(x^2 - 4x + 5)^2} \, dx.$$

- 4. Să se dezvolte în serie Fourier funcția periodică f(t), de perioadă π , definită pe intervalul $(0,\pi)$ prin $f(t)=e^{-at}$, unde a este o constantă reală pozitivă.
- 5. Domeniul de convergență a unei serii Laurent.

Matematici Speciale

Examen

1. Folosind metoda eliminării, să se rezolve sistemul diferențial liniar și neomogen

$$\begin{cases} y_1' = y_2 \\ y_2' = -y_1 + y_2 + \cos x. \end{cases}$$

Răspuns:

$$\begin{cases} y_1 = e^{x/2} \left(C_1 \cos \frac{x\sqrt{3}}{2} + C_2 \sin \frac{x\sqrt{3}}{2} \right) - \sin x \\ y_2 = \frac{1}{2} e^{x/2} \left(\left(C_1 + C_2 \sqrt{3} \right) \cos \frac{x\sqrt{3}}{2} + \left(C_2 - C_1 \sqrt{3} \right) \sin \frac{x\sqrt{3}}{2} \right) - \cos x. \end{cases}$$

2. Pentru funcția f(z) = u(x,y) + iv(x,y) se cunoaște partea sa reală

$$u(x,y) = \frac{x}{2} \ln(x^2 + y^2) - y \operatorname{arctg} \frac{y}{x}, \quad f(z_0) = 0.$$

Să se determine f(z) știind că este funcție olomorfă. Răspuns: $f(z) = z \ln z$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x^2 + a^2)^3}, \ a > 0.$$

4. Să se determine suprafața de câmp a câmpului vectorial

$$\mathbf{v}(x, y, z) = \cosh x \,\mathbf{i} + y \sinh x \,\mathbf{j} + \frac{z}{2} \sinh x \,\mathbf{k},$$

care trece prin curba

$$(\Gamma): \begin{cases} y = a \cosh x \\ z = 0. \end{cases}$$

5. Sisteme diferențiale sub formă simetrică.

Matematici Speciale

Examen

1. Să se determine acea soluție a ecuației diferențiale

$$y'' - 2y' + 2y = e^x(2\cos x - 4x\sin x)$$

care satisface condițiile inițiale y(0) = 0 și y'(0) = 1.

Indicație: Se arată că soluția generală a ecuației diferențiale date este $y = (C_1 \cos x + C_2 \sin x)e^x + x^2 \cos x$, după care se determină constantele arbitrare din condițiile inițiale.

2. Să se demonstreze că dacă funcția f(z) = u(x, y) + iv(x, y) este olomorfă pe un domeniu D din planul complex, atunci funcția reală de două variabile reale

$$\varphi(x,y) = \left(e^{v(x,y)} + e^{-v(x,y)}\right) \sin u(x,y)$$

este armonică pe D, deci să se arate că $\nabla^2 \varphi(x,y) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$.

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_0^\infty \frac{dx}{(x^2 + a^2)(x^2 + b^2)}.$$

4. Să se reprezinte printr-o integrală Fourier funcția

$$f(t) = \begin{cases} \sin t, & |t| \le n\pi, \\ 0, & |t| > n\pi, \end{cases}$$

n fiind un număr natural, $n \geq 1$.

5. Forma complexă a seriei Fourier.

Matematici Speciale

Examen

1. Se dă câmpul de forță definit pe \mathbb{R}^3

$$\mathbf{F}(x,y,z) = yz(2x+y+z)\mathbf{i} + zx(x+2y+z)\mathbf{j} + xy(x+y+2z)\mathbf{k}.$$

Să se arate că ${\bf F}$ este câmp vectorial irotațional și să se determine funcția de forță.

2. Să se determine funcția olomorfă f(z) = u(x, y) + iv(x, y) știind că

$$v(x,y) = e^x(x \sin y + y \cos y) + x + y$$
 şi $f(0) = 0$.

Răspuns:
$$f(z) = (1+i)z + ze^z$$
.

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x \cos 2x}{x^2 - 2x + 10} dx.$$

4. Să se determine funcția f(t) care satisface ecuația integrală Fourier

$$\int_0^\infty f(t)\cos tx \, dt = \frac{1}{x^2 + a^2}, \quad x \ge 0,$$

unde a este o constantă pozitivă.

5. Sisteme de ecuații diferențiale ordinare de ordinul întâi neliniare sub formă normală. Legătura cu ecuațiile diferențiale de ordinul n. Integrale prime. Soluție generală.

Matematici Speciale

Examen

1. Să se găsească soluția generală a sistemului simetric

$$\frac{dx}{x(x+y)} = \frac{dy}{-y(x+y)} = \frac{dz}{(y-x)(2x+2y+z)}.$$

2. Să se demonstreze că au loc identitățile

$$\nabla \cdot (\varphi \mathbf{u}) = \varphi(\nabla \cdot \mathbf{u}) + \mathbf{u} \cdot (\nabla \varphi)$$

$$\nabla \times (\varphi \mathbf{u}) = \varphi(\nabla \times \mathbf{u}) - \mathbf{u} \times (\nabla \varphi),$$

unde ∇ este operatorul lui Hamilton, $\nabla \cdot$, $\nabla \times$ sunt divergența și rotorul câmpurilor vectoriale tipărite după semnul "·" respectiv "×" care sunt definite pe domeniul $D \subset \mathbb{R}^3$, cu valori în \mathbb{R}^3 , iar $\nabla \varphi$ este gradientul câmpului scalar $\varphi : D \subset \mathbb{R}^3 \to \mathbb{R}$.

3. Folosind metodele de calcul ale unor integrale reale cu ajutorul teoriei reziduurilor, să se arate că

$$\int_0^\infty \frac{x^2 - a^2}{x^2 + a^2} \cdot \frac{\sin \omega x}{x} dx = \pi \left(e^{-a\omega} - \frac{1}{2} \right), \quad \omega > 0, \quad a > 0.$$

4. Să se reprezinte printr—o serie Fourier funcția f(t), periodică de perioadă 2π , definită prin

$$f(t) = \begin{cases} 1, & \text{pentru} \quad t \in (0, \pi) \\ -1, & \text{pentru} \quad t \in (\pi, 2\pi) \end{cases}$$

5. Funcția exponențială în complex

Matematici Speciale

Examen

1. Să se determine soluția generală a sitemului de ecuații diferențiale sub formă normală

$$\begin{cases} \frac{dy}{dx} = \frac{z}{(z-y)^2} \\ \frac{dz}{dx} = \frac{y}{(z-y)^2}. \end{cases}$$

2. Să se demonstreze identitatea

$$\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\nabla \times \mathbf{u}) - \mathbf{u} \cdot (\nabla \times \mathbf{v}),$$

unde $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$ este operatorul lui Hamilton, $\nabla \times \mathbf{u} = \operatorname{rot} \mathbf{u}$ este rotorul câmpului vectorial \mathbf{u} , $\nabla \cdot (\mathbf{u} \times \mathbf{v})$ este divergența produsului vectorial al vectorilor \mathbf{u} și \mathbf{v} , iar punctul dintre doi vectori reprezintă produsul scalar al acelor vectori.

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x \sin 2x}{x^2 - 2x + 10} dx.$$

4. Să se afle transformata Fourier prin cosinus a funcției $f(x) = \frac{1}{(1+x^2)^2}$ și din rezultatul obținut să se deducă relația

$$\int_0^\infty \frac{x \sin ux}{(1+x^2)^2} dx = \frac{\pi u e^{-u}}{4}.$$

5. Derivata după o direcție a unui câmp scalar sau vectorial. Gradientul unui câmp scalar.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Fiecare subiect se notează cu o notă între 1 și 10. Media aritmetică a celor cinci note este calificativul acordat tezei. Timpul de lucru este 2 ore.

Matematici Speciale

Examen

1. Să se determine regiunile planului complex unde funcția complexă de variabilă complexă

$$f(z) = |x^2 - y^2| + 2i|xy|$$

este olomorfă. În fiecare regiune găsită, să se determine derivata funcției f(z).

2. Să se calculeze integrala complexă

$$\int_C ze^z \, dz,$$

unde curba C este segmentul de dreaptă având extremitățile în origine și în punctul $z=\frac{\pi}{2}\,i.$

3. Fie funcția complexă

$$f(z) = \frac{3z^2 - 12z + 11}{(z-1)(z-2)(z-3)}.$$

Să se dezvolte f(z) în serie de puteri ale lui z pe domeniul 1 < |z| < 2.

4. Să se rezolve problema lui Cauchy pentru ecuația diferențială

$$y'' - 2y' + 10y = 0,$$

cu condițiile inițiale $y(\pi/6) = 0$, $y'(\pi/6) = e^{\pi/6}$.

5. Câmpuri vectoriale. Linii şi suprafeţe de câmp.

Matematici Speciale

Examen

1. Să se determine funcția olomorfă f(z) = u(x, y) + iv(x, y) știind că

$$u(x,y) = x^3 - 3xy^2 + 2xy - x$$
 şi $f(0) = i$.

2. Să se studieze comportarea seriei de puteri

$$\sum_{n=1}^{\infty} \frac{1}{n^2 \cdot 3^n} (z - 2i)^n.$$

- 3. Să se reprezinte printr–o serie Fourier funcția periodică de perioadă $T=\pi$ $f(t)=|\sin t|$.
- 4. Se consideră ecuația diferențială cu derivate parțiale de ordin 1

$$2x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} + z^3 \cdot \frac{\partial u}{\partial z} = 0.$$

Se cere să se determine soluția generală și să se rezolve problema Cauchy cu condiția inițială u(x, y, 1) = x + y.

5. Sisteme de ecuații diferențiale liniare și omogene. Matrice fundamentală a unui sistem omogen. Determinantul lui Wronski. Soluția generală a unui sistem omogen de ecuații diferențiale.

Matematici Speciale

Examen

1. Să se determine funcția olomorfă f(z)=u(x,y)+iv(x,y) știind că partea sa reală este

$$u(x,y) = e^x \sin y + \frac{2x}{x^2 + y^2},$$

iar valoarea funcției în punctul $z_0 = 1$ este $f(z_0) = 2 - ie$.

2. Să se dezvolte în serie trigonometrică Fourier funcția

$$f(x) = \frac{1}{5 + 3\sin x}.$$

Indicație: se va alege ca interval de lungime perioada $T=2\pi$ intervalul $[-\pi,\pi]$.

3. Se consideră ecuația diferențială cu derivate parțiale de ordin 1

$$xy \cdot \frac{\partial z}{\partial x} - y^2 \cdot \frac{\partial z}{\partial y} = z.$$

- a) Să se determine soluția generală;
- b) Să se rezolve problema Cauchy cu datele

$$\begin{cases} x = a \\ 2ayz = a^2 + 2. \end{cases}$$

4. Să se arate că au loc identitățile:

$$\nabla \times (\nabla \varphi) = \operatorname{rot} (\operatorname{grad} \varphi) = \mathbf{0}, \qquad \nabla \cdot (\nabla \times \mathbf{v}) = \operatorname{div} (\operatorname{rot} \mathbf{v}) = 0.$$

5. Seriile trigonometrice Fourier a unei funcții pare și a unei funcții impare.

Matematici Speciale

Examen

1. Folosind teorema reziduurilor, să se calculeze integrala complexă

$$I = \int_{\Gamma} \frac{e^z}{z(i-z)^3} \, dz,$$

unde Γ este cercul de rază a cu centrul în origine și $a \neq 1$. Discuție după a.

2. Să se dezvolte în serie trigonometrică Fourier funcția

$$f: [-\ell, \ell] \to IR, \ f(x) = \begin{cases} 0, & \text{pentru} \ x \in [-\ell, 0] \\ x, & \text{pentru} \ x \in [0, \ell]. \end{cases}$$

3. Se dă câmpul de forțe

$$F(x,y,z) = yz(2x+y+z)\mathbf{i} + xz(x+2y+z)\mathbf{j} + xy(x+y+2z)\mathbf{k}.$$

Să se arate că acest câmp vectorial este irotațional și să se determine funcția de forță.

4. Folosind metoda eliminării, să se determine soluția generală a sistemului liniar de ecuații diferențiale de ordinul întâi

$$\begin{cases} x' = -x + y + z + e^t \\ y' = x - y + z + e^{3t} \\ z' = x + y + z + 4 \end{cases}$$

și apoi să se rezolve problema lui Cauchy cu condițiile inițiale

$$x(0) = y(0) = z(0) = 0.$$

5. Serii de puteri în complex. Teorema lui Abel. Raza de convergență a unei serii de puteri.

Matematici Speciale

Examen

1. Folosind teorema reziduurilor, să se calculeze integrala complexă

$$I = \int_{\Gamma} \frac{dz}{(z^2 + 9)^2},$$

unde curba Γ este, pe rând, unul din discurile

$$\Gamma: \begin{cases} 1) & |z - 2i| = 2; \\ 2) & |z + 2i| = 2; \\ 3) & |z| = 4. \end{cases}$$

2. Să se dezvolte în serie trigonometrică Fourier funcția

$$f(x) = \frac{1 - \alpha \cos x}{1 - 2\alpha \cos x + \alpha^2}, \ |\alpha| < 1, \ \alpha \neq 0.$$

Indicație: se va alege ca interval $[\alpha, \alpha + T]$ intervalul $[-\pi, \pi]$.

3. Să se integreze ecuația diferențială cu derivate parțiale de ordin 1, cuasiliniară

$$x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2} + \dots + x_n \frac{\partial z}{\partial x_n} = z + \frac{x_1 x_2 \dots x_n}{z}.$$

4. Să se arate că au loc egalitățile:

$$\nabla \cdot (\mathbf{u} + \mathbf{v}) = \nabla \cdot \mathbf{u} + \nabla \cdot \mathbf{v};$$

$$\nabla \times (\mathbf{u} + \mathbf{v}) = \nabla \times \mathbf{u} + \nabla \times \mathbf{v}.$$

unde \mathbf{u} , \mathbf{v} sunt câmpuri vectoriale diferențiabile pe domeniul $D \subset \mathbb{R}^3$, ∇ este operatorul lui Hamilton, $\nabla \cdot$ este divergența și $\nabla \times$ este rotorul câmpului vectorial scris alăturat.

5. Dezvoltarea unei funcții analitice într-o serie Laurent.

Matematici Speciale

Examen

- 1. Să se dezvolte în serie de puteri funcția $f(z) = \frac{3z+2}{z(z-1)^2}$
 - a) în jurul punctului $z_0 = 1$;
 - b) în jurul punctului $z_0 = 0$.
- 2. Utilizând teorema reziduurilor, să se arate că

$$\int_{\Gamma} \frac{e^{iz}}{z^2 - \pi^2} \, dz = 0,$$

unde Γ este cercul de rază arbitrară R > 0 cu centrul în origine.

3. Folosind transformarea Fourier, să se rezolve ecuația integrală

$$\int_0^\infty \varphi(u) \, \cos xu \, du = \frac{1}{x^2 + 1}.$$

4. Să se reprezinte printr—o integrală Fourier funcția **factorul discontinuu al lui Dirichlet**

$$f(t) = \begin{cases} 1, & \text{pentru} & |t| < a, \\ \frac{1}{2}, & \text{pentru} & t = \pm a, \\ 0, & \text{pentru} & |t| > a, \end{cases}$$

unde a > 0 este un număr constant.

5. Integrale reale de forma $I = \int_0^{2\pi} \mathcal{R}(\sin \theta, \cos \theta) d\theta$, unde $\mathcal{R}(\sin \theta, \cos \theta)$ este o funcție rațională în $\sin \theta$ și $\cos \theta$, rezolvate cu ajutorul teoremei reziduurilor.

Sesiunea ianuarie—februarie 2011 Matematici Speciale

Examen

1. Să se calculeze derivata câmpului scalar

$$\varphi(x, y, z) = x^2 + y^2 + z^2$$

după direcția de parametri (2, -1, 2) în punctul $M_0(1, 2, 3)$.

2. Să se afle raza de convergență a seriei de puteri în complex

$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} z^n.$$

3. Folosind teorema reziduurilor, să se calculeze integrala improprie

$$I = \int_{-\infty}^{\infty} \frac{x^2 + x + 3}{x^4 + 13x^2 + 36} dx.$$

4. Să se determine liniile de câmp ale câmpului vectorial

$$\mathbf{v}(x, y, z) = x \mathbf{i} + y \mathbf{j} + (z + \sqrt{x^2 + y^2 + z^2}) \mathbf{k}.$$

5. Câmpuri scalare. Suprafețe de nivel. Curbe de nivel.

Matematici Speciale

Examen

1. Să se găsească punctele din planul complex în care funcția

$$f(z) = z^2 + i \overline{z}^2 + 4z + 6 \overline{z} + 8$$

este monogenă. În punctele găsite, să se calculeze derivat funcției.

2. Să se determine liniile de câmp ale câmpului vectorial

$$\mathbf{v}(x, y, z) = (xy - 2z^2)\mathbf{i} + (4xz - y^2)\mathbf{j} + (yz - 2x^2)\mathbf{k}.$$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x^2 + a^2)^2}, \ a > 0.$$

4. Să se determine funcția $\varphi(x)$ astfel încât câmpul vectorial

$$\mathbf{v}(P) = 2x\varphi(x)\mathbf{i} - y\varphi(x)\mathbf{j} + 6x^2z\mathbf{k}$$

să fie solenoidal.

Răspuns: Din condiția ca div $\mathbf{v}(P) = 0$ rezultă ecuația diferențială liniară

$$\varphi'(x) + \frac{1}{2x}\varphi(x) = -3x,$$

care se integrează cu formula $\varphi(x) = e^{-\int P(x)dx} \left(C + \int Q(x)e^{\int P(x)dx}dx\right)$, unde $P(x) = \frac{1}{2x}$ și Q(x) = -3x. Se obține $\varphi(x) = \frac{C}{\sqrt{x}} - \frac{6x^2}{5}$.

5. Serii de funcții de o variabilă complexă, uniform convergente. Criteriul lui Weierstrass, criteriul lui Cauchy și proprietățile de continuitate, integrabilitate și derivabilitate a sumei f(z) a unei serii de funcții $\sum_{n=1}^{\infty} u_n(z)$ uniform convergentă pe un domeniu $D \subset \mathcal{C}$.

Matematici Speciale

Examen

1. Se dă câmpul scalar $\varphi(x,y,z)=\frac{{\bf a}\cdot{\bf r}}{r^2},$ unde

$$\mathbf{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}, \quad \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}, \quad r = ||\mathbf{r}|| = \sqrt{x^2 + y^2 + z^2}.$$

Să se calculeze unghiul dintre gradientul acestui câmp în punctul A(2,1,1) şi gradientul aceluiași câmp în punctul B(0,1,-1).

2. Să se determine liniile de câmp ale câmpului vectorial

$$\mathbf{v}(x,y,z) = (xz - y)\mathbf{i} + (yz - x)\mathbf{j} + (1 - z^2)\mathbf{k}.$$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_0^\infty \frac{x^2}{(x^2 + a^2)(x^2 + b^2)^2} dx.$$

4. Să se determine funcția olomorfă f(z)=u(x,y)+iv(x,y) când se cunosc partea imaginară

$$v(x,y) = y - \frac{y}{x^2 + y^2}$$

și valoarea sa în punctul $z_0 = 1$ care este $f(z_0) = 0$.

5. Proprietăți ale transformatei Fourier.

Matematici Speciale

Examen

1. Fie ecuația cu derivate parțiale de ordinul întâi cuasiliniară

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z - xy.$$

Să se determine soluția generală și să se rezolve problema lui Cauchy cu condiția inițială

$$z(2,y) = 1 + y^2 \iff \begin{cases} x = 2, \\ z = 1 + y^2. \end{cases}$$

2. Fie funcția complexă

$$f(z) = \frac{3z^2 - 12z + 11}{(z-1)(z-2)(z-3)}.$$

Să se dezvolte f(z) în serie de puteri ale lui z pe domeniul 1 < |z| < 2.

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_{-\infty}^{+\infty} \frac{x}{(x^2 - 6x + 10)^2} dx.$$

4. Să se calculeze rotorul câmpului vectorial

$$\mathbf{v}(P) = \text{rot } \mathbf{u}(P) + \text{grad } (z^2),$$

unde $\mathbf{u}(P) = x \mathbf{i} + 2yz \mathbf{j} + (x^2 + z^2)\mathbf{k}$, și să se arate că el este irotațional, deci că rot $\mathbf{v}(P) = \mathbf{0}$.

5. Câmpuri vectoriale. Linii şi suprafețe de câmp.

Matematici Speciale

Examen

1. Să se rezolve problema lui Cauchy pentru ecuația cu derivate parțiale liniară și omogenă

$$z\frac{\partial u}{\partial x} + (x - z)^2 \frac{\partial u}{\partial y} + x \frac{\partial u}{\partial z} = 0$$

cu condiția inițială u(x,0,z)=2z(z-x).

2. Să se determine funcția f(z)=u(x,y)+iv(x,y), olomorfă în întreg planul complex la distanță finită, știind că :

$$u(x,y) = x^2 - y^2 + 4xy;$$
 $f(0) = 0.$

3. În planul complex la distanță finită, funcția $f(z)=\frac{z}{(z+1)(z-1)^3}$ are singularitățile -1 (pol simplu) și 1 (pol triplu). Se cere dezvoltarea în serie Laurent a acestei funcții în exteriorul discului închis

$$\overline{B}(1,2) = \{ z \in \mathbb{C} : |z-1| \le 2 \}.$$

4. Se consideră câmpul vectorial

$$\mathbf{v}(P) = xz\,\mathbf{i} + yz\,\mathbf{j} + u(x,y)\,\mathbf{k}.$$

Să se dtermine funcția necunoscută u = u(x, y) astfel încât $\mathbf{v} \cdot \text{rot } \mathbf{v} = 0$.

5. Sisteme de n ecuații diferențiale ordinare de ordinul întâi neliniare sub formă normală și legătura lor cu ecuațiile diferențiale de ordinul n.

Matematici Speciale

Examen

1. Folosind metoda eliminării, să se determine soluția generală $\{y(x), z(x)\}$ a sistemului de ecuații diferențiale liniare de ordinul întâi

$$\begin{cases} y' = z; \\ z' = -y \end{cases}$$

și apoi să se rezolve problema lui Cauchy cu condițiile inițiale

$$y(\pi/3) = 1$$
, $z(\pi/3) = -1$.

2. Se cere: integrala generală a ecuației diferențiale de ordinul întâi cuasiliniare

$$xy^2 \cdot \frac{\partial z}{\partial x} + x^2y \cdot \frac{\partial z}{\partial y} = (x^2 + y^2)z;$$

suprafață integrală care conține curba

$$\begin{cases} y = 1, \\ z = x \sin(x^2 - 1). \end{cases}$$

3. Scrieti rotorul câmpului vectorial $\mathbf{F} = (P, Q, R)$, arătați că

$$\mathbf{F}(x,y,z) = yz(2x+y+z)\mathbf{i} + zx(x+2y+z)\mathbf{j} + xy(x+y+2z)\mathbf{k}$$

este un câmp irotațional pe \mathbb{R}^3 și determinați–i funcția de forță.

4. Calculul integralelor reale de forma $I = \int_0^{2\pi} \mathcal{R}(\sin \theta, \cos \theta) d\theta$ cu ajutorul teoremei reziduurilor şi rezolvarea efectivă a integralei

$$I = \int_0^{2\pi} \frac{d\theta}{a + \sin \theta}, \ a \in \mathbb{R}, \ |a| > 1.$$

Răspuns:
$$I = \frac{2\pi}{\sqrt{a^2 - 1}}$$
.

5. Funcția exponențială în complex.

Matematici Speciale

Examen

1. Să se determine suprafața de câmp a câmpului vectorial

$$\mathbf{v}(x, y, z) = xy^2\mathbf{i} + x^2y\mathbf{j} + (x^2 + y^2)z\mathbf{k},$$

care trece prin curba Γ de ecuații

$$\Gamma: \begin{cases} x = 2y, \\ z = 1. \end{cases}$$

2. Să se determine punctele z=x+iy în care funcția complexă de variabilă complexă

$$f(z) = x^2 - 4xy + y + i(3x - y^2)$$

este monogenă și să se calculeze derivata funcției în punctele găsite.

3. • Să se scrie formula de evaluare a reziduului unei funcții complexe de variabilă complexă f(z) într–un pol simplu z_0 al ei şi într–un punct multiplu z_0 de multiplicitate p.

• Folosind formulele cerute mai sus, să se determine reziduurile funcției

$$f(z) = \frac{z}{(z+1)(z-1)^3}.$$

4. • Integrale de forma $\int_{-\infty}^{+\infty} f(x)dx$ calculate cu ajutorul teoremei reziduurilor;

• Să se calculeze integrala improprie $I = \int_{-\infty}^{+\infty} \frac{x^2}{1 + x^4} dx$.

5. Seria Fourier a unei funcții periodice.

Matematici Speciale

Examen

1. Folosind metoda eliminării, să se determine soluția generală a sistemului

$$\begin{cases} y_1' = 2y_1 + y_2 \\ y_2' = y_1 + 2y_2. \end{cases}$$

2. Să se determine liniile de câmp ale câmpului vectorial

$$\mathbf{v}(x, y, z) = x \mathbf{i} + y \mathbf{j} + (z + \sqrt{x^2 + y^2 + z^2}) \mathbf{k}.$$

3. Fie variabila complexă z = x + iy şi $\overline{z} = x - iy$ conjugata complexă a acesteia. Să se determine punctele z în care funcția complexă de variabilă complexă

$$f(z) = z^2 + 2z\overline{z} - 2\overline{z}^2 + 3z + 2\overline{z},$$

este monogenă și să se calculeze f'(z) în punctele determinate.

4. Să se calculeze integrala

$$I = \int_{\Gamma} \frac{1}{1 + z^2} \sin \frac{\pi}{z} \, dz,$$

unde Γ este o elipsă de ecuație

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0,$$

în următoarele cazuri: 0 < b < 1, b > 1.

- 5. Dezvoltarea unei funcții analitice într-o serie Laurent.
 - Să se dezvolte în serie Laurent funcția

$$f(z) = \frac{1}{z(z-1)(z-2)}$$

în coroana circulară 0 < |z| < 1.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale

$$y^{(4)} + 2y'' + y = 0.$$

- 2. Să se calculeze integrala complexă $I=\int_C \frac{e^{\pi z}}{z(z-2i)}\,dz$, unde conturul C este cercul |z-3i|=r, cu raza r>0 diferită de 1 și de 3, parcurs în sens direct trigonometric. Discuție după r.
- 3. Folosind formulele integrale ale lui Cauchy, să se calculeze integrala

$$\int_C \frac{z}{(z-1)^2(z^2+4)} \, dz,$$

unde conturul C este cercul de ecuație $x^2 + y^2 - 4x - 4y = 0$, parcurs în sens direct trigonometric.

- 4. Se consideră câmpul scalar $\varphi(x, y, z) = \frac{yz}{x}$ definit pe un domeniu tridimensional inclus în semispațiul x > 0. Se cere:
 - (a) ecuația suprafeței de nivel care trece prin punctul M(1, 1, 1);
 - (b) versorul normalei la suprafața de nivel determinată la punctul precedent;
 - (c) derivatele câmpului scalar φ , în punctul M(1,1,1), după direcțiile date de versorii vectorilor $\mathbf{u}_1 = -\mathbf{i} + \mathbf{j} + \sqrt{2}\mathbf{k}$ și $\mathbf{u}_2 = -2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$.
- 5. Să se dezvolte în serie de puteri ale lui z (serie Laurent) funcția complexă

$$f(z) = \frac{3z^2 - 12z + 11}{z^3 - 6z^2 + 11z - 6},$$

în coroana circulară cu centrul în origine 1 < z < 2.

Indicație. Se descompune funcția f(z) în fracții simple și se găsește

$$f(z) = \frac{1}{z-1} + \frac{1}{z-2} + \frac{1}{z-3}.$$

Fiecare fracție simplă se dezvoltă în serie Laurent.

 ${f Not} f \check{a}$. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este 2 ore.

Matematici speciale

Examen

1. Folosind metoda eliminării, să se rezolve sistemul de ecuații diferențiale

$$\begin{cases} x' + y - z = 0 \\ y' - z = 0 \\ z' + x - z = \cos t. \end{cases}$$

Indicație. Aplicând teoria, se ajunge la ecuația diferențială liniară de ordinul trei, cu coeficienți constanți și neomogenă $z''' - z'' + z' - z = -\cos t$ căreia i se află soluția generală.

2. Să se rezolve sistemul simetric $\frac{dx}{z} = \frac{dy}{xz} = \frac{dz}{y}$.

Indicație. Prima integrală primă se determină din primele două rapoarte. A doua se determină din ultimele două rapoarte. Pe parcurs se înlocuiește y ca funcție de x și constanta arbitrară C_1 . În final, C_1 se înlocuiește cu expresia obținută din prima integrală primă.

- 3. Se consideră câmpul vectorial $\mathbf{v}(P) = xz\mathbf{i} + yz\mathbf{j} + u(x,y)\mathbf{k}$, unde x,y,z sunt coordonatele punctului $P \in \mathbb{R}^3$, iar u(x,y) este o funcție necunoscută definită pe \mathbb{R}^2 . Să se determine funcția u = u(x,y) astfel încât $\mathbf{v} \cdot rot\mathbf{v} = 0$.
- 4. Se dă funcția complexă de variabilă complexă

$$f(z) = z^2 + i\bar{z}^2 + 4z + 6\bar{z} + 8,$$

unde z = x + iy, iar $\bar{z} = x - iy$. Să se afle punctele în care funcția este monogenă (derivabilă) și să se calculeze derivata ei în aceste puncte.

5. Folosind teorema reziduurilor, să se calculeze integrala definită

$$I = \int_0^{\pi} \frac{\cos x}{(17 + 8\cos x)^2} dx.$$

Indicație: Funcția de integrat fiind pară, integrala se poate extinde la un interval simetric față de origine $I=\frac{1}{2}\int_{-\pi}^{\pi}\frac{\cos x}{(17+8\cos x)^2}dx=\frac{1}{2}J$. Integrala J se calculează cu ajutorul teoriei reziduurilor folosind in prealabil schimbarea de variabilă $z=e^{ix}$. Integrala J devine una complexă pe cercul |z|=1 având funcția de integrat $f(z)=\frac{2}{i}\frac{z^2+1}{(4z^2+17z+4)^2}$ cu polii dubli $z_1=-1/4\in D:|z|<1$ și $z_2=-4$ care nu aparține lui D.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este 2 ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară și neomogenă

$$y'' + 3y' + 2y = \frac{1}{e^x + 1}.$$

Indicație. Se determină intâi soluția generală y_o a ecuației omogene asociate și apoi, folosind metoda variației constantelor a lui Lagrange, se determină o soluție particulară y_p a ecuației date.

Răspuns:
$$y = y_o + y_p = C_1 e^{-x} + C_2 e^{-2x} + e^{-x} (1 - e^{-x}) \ln(e^x + 1) + e^x$$
.

2. Să se rezolve sistemul de ecuații diferențiale liniare

$$\begin{cases} y_1' &= -y_2 + y_3 \\ y_2' &= y_3 \\ y_3' &= -y_1 + y_3. \end{cases}$$

3. Să se arate că $\mathbf{v}(P) = (y+z)\mathbf{i} + (z+x)\mathbf{j} + (x+y)\mathbf{k}$ este un câmp irotațional și să se determine potențialul lui scalar.

Indicație. Se arată că rot $\mathbf{v} = \mathbf{0}$ și apoi se dtermină potențialul scalar $\varphi(P)$ integrând expresia diferențială $\omega = \mathbf{v} \cdot d\mathbf{r}$ pe un drum paralel cu axele de coordonate cu extremitațile punctul fix $P_0(x_0, y_0, z_0)$ și punctul variabil P(x, y, z). **Răspuns**. $\varphi(P) = xy + yz + zx + C$, unde C este o constantă arbitrară.

4. Să se determine funcția olomorfă f(z)=u(x,y)+iv(x,y) știind că $v(x,y)=y-\frac{y}{x^2+y^2}$ și f(1)=0.

Răspuns: $f(z) = z + \frac{1}{z}$, cunoscută sub numele de transformarea lui Jukowski.

5. Funcția exponențială în complex.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este 2 ore.

Matematici speciale

Examen

1. Să se determine funcția olomorfă f(z) = u(x, y) + iv(x, y) știind că

$$v(x,y) = 3x^2y + 6xy^2 - 2x^3 - y^3$$

și că valoarea funcției în $z_0 = 0$ este f(0) = 0.

Răspuns: $f(z) = (1 - 2i)z^3$.

2. Să se calculeze reziduurile funcției $f(z)=\frac{1}{(z-1)^3(z^2+1)}$ în toate punctele singulare.

3. Folosind teorema reziduurilor să se calculeze integrala

$$I = \int_C \frac{z^{100} e^{i\pi z}}{z^2 + 1} dz,$$

unde conturul C este elipsa de semiaxe a=1 şi b=2 de ecuație $4x^2+y^2-4=0$.

Răspuns: $I = -2\pi \cosh \pi$.

4. Să se dezvolte în serie Fourier funcția periodică f(t), de perioadă π , definită pe intervalul $(0,\pi)$ prin $f(t)=e^{-at}$, unde a>0 este o constantă.

Răspuns: $f(t) = \frac{1 - e^{-a\pi}}{\pi} \Big(\frac{1}{a} + 2 \sum_{k=1}^{\infty} \frac{a \cos 2kt + 2k \sin 2kt}{a^2 + 4k^2} \Big).$

5. Definiția integralei Fourier și forma complexă a integralei Fourier.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția ecuației diferențiale liniară, neomogenă și cu coeficienți constanți

$$y'' + y = \operatorname{tg} x$$

care satisface condițiile inițiale y(0) = 0, y'(0) = 0.

Indicație: Se determină intâi soluția generală y_0 a ecuației omogene asociate și apoi, folosind metoda variației constantelor a lui Lagrange, se determină o soluție particulară y_p a ecuației date. Se găsește

$$y = y_o + y_p = C_1 \cos x + C_2 \sin x - \cos x \cdot \ln \operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right).$$

Constantele C_1 și C_2 se determină din condițiile inițiale.

Răspuns:
$$y = \sin x - \cos x \cdot \ln \operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)$$
.

2. Să se determine soluția generală a ecuației diferențiale cu derivate parțiale de ordinul întâi liniară și omogenă

$$xz\frac{\partial u}{\partial x} - yz\frac{\partial u}{\partial y} + (x^2 - y^2)\frac{\partial u}{\partial z} = 0.$$

3. Folosind teorema reziduurilor, să se calculeze integrala reală

$$I = \int_0^\infty \frac{dx}{(x^2 + a^2)^2 (x^2 + b^2)^2},$$

unde a și b sunt două numere reale pozitive diferite.

Indicație. $I = \frac{1}{2}J$, unde $J = \int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)^2(x^2 + b^2)^2}$, iar aceasta integrală se calculează cu teoria reziduurilor.

4. Să se determine liniile de câmp ale câmpului vectorial

$$\mathbf{v}(P) = (x^2 \operatorname{div} \mathbf{r})\mathbf{i} + 3\operatorname{rot} [(z+y)\mathbf{i} + x\mathbf{j}] + \operatorname{grad} (z^3).$$

 Relaţiile Cauchy–Riemann de olomorfie ale unei funcţii complexă de variabilă complexă.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

- 1. Să se integreze ecuația diferențial
ă $y^{\prime\prime}-3y^{\prime}+2y=(x^2+x)e^{3x}.$
- 2. Să se determine soluția generală a ecuației diferențiale cu derivate parțiale de ordinul întâi liniară și omogenă

$$(x-a)\frac{\partial u}{\partial x} + (y-b)\frac{\partial u}{\partial y} + (z-c)\frac{\partial u}{\partial z} = 0.$$

3. Să se arate că $\mathbf{v}(x,y,z) = \frac{2x}{z}\mathbf{i} + \frac{2y}{z}\mathbf{j} - \frac{x^2 + y^2}{z^2}\mathbf{k}$ este câmp vectorial irotațional și să se determine potențialul scalar.

Răspuns.
$$\mathbf{v}(P) = \operatorname{grad} \varphi(P)$$
, unde $\varphi(P) = \frac{x^2 + y^2}{z} + C$.

4. Să se determine soluția problemei lui Cauchy pentru ecuația

$$2x\frac{\partial z}{\partial x} - 3y\frac{\partial z}{\partial y} = 0,$$

cu condiția inițială $z(2,y)=y^2+1.$

Răspuns: Integrala primă este $x^3y^2=C$ și soluția căutată este $z=\frac{1}{8}x^3y^2+1$.

5. Să se deducă seria Taylor a funcției $f(z) = e^z$ în vecinătatea originii.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară, neomogenă, cu coeficienți constanți $y'' - 6y' + 9y = e^{3x}$ și apoi să se rezolve problema lui Cauchy cu datele inițiale y(0) = 0 și y'(0) = 1.

Indicație: Soluția particulară se caută de forma $y_p = Ax^2e^{3x}$, unde A este constantă ce se determină din condiția ca y_p să fie soluție a ecuației date.

2. Să se determine soluția generală a ecuației cu derivate parțiale

$$\sqrt{x}\frac{\partial u}{\partial x} + \sqrt{y}\frac{\partial u}{\partial y} + \sqrt{z}\frac{\partial u}{\partial z} = 0.$$

3. Să se determine funcția derivabilă $\varphi(x)$ astfel încât câmpul vectorial

$$\mathbf{v}(P) = 2x\varphi(x)\mathbf{i} - y\varphi(x)\mathbf{j} + 6x^2z\mathbf{k}$$

să fie solenoidal.

Indicație. Se impune condiția div $\mathbf{v}(P) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} = 0.$

Răspuns: $\varphi(x) = \frac{C}{\sqrt{x}} - \frac{6x^2}{5}$.

4. Folosind teorema reziduurilor, să se calculeze integrala complexă

$$I = \int_{|z|=3/2} \frac{z^3 \cdot e^z}{(z-1)^2 (z^2 + iz + 2)} dz.$$

5. Să se dezvolte în serie de puteri într
–o vecinătate a punctului $z_0=3$ funcția

$$f(z) = \frac{z(z^2+1) - 4(z^2-1)}{z^3 - 6z^2 + 11z - 6}$$

și să se precizeze apoi natura punctului z_0 pentru funcția f(z).

Indicație. Se descompune funcția f(z) în fracții simple. Se obține

$$f(z) = 1 + \frac{1}{z-1} + \frac{2}{z-2} - \frac{1}{z-3}$$

după care se folosește seria geometrică cu rația q, unde |q|<1.

Răspuns:
$$f(z) = -\frac{1}{z-3} + \frac{7}{2} + \sum_{n=1}^{\infty} (-1)^n \left(2 + \frac{1}{2^{n+1}}\right) (z-3)^n$$
.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară, neomogenă și cu coeficienți constanți

$$y'' + 6y' + 8y = 2\sin x + 3\cos x.$$

Indicație: Soluția particulară se caută de forma $y_p = A \cos x + B \sin x$.

2. Să se determine soluția generală a ecuației diferențiale cu derivate parțiale de ordinul întâi liniară și omogenă

$$xy\frac{\partial u}{\partial x}-y^2\frac{\partial u}{\partial y}+z^2\frac{\partial u}{\partial z}=0.$$

3. Să se dezvolte în serie de puteri într–o vecinătate a punctului $z_0=0$ funcția

$$f(z) = \frac{z(z^2+1) - 4(z^2-1)}{z^3 - 6z^2 + 11z - 6}$$

și să se precizeze apoi natura punctului z_0 pentru funcția f(z).

Indicație. Se descompune funcția f(z) în fracții simple. Se obține

$$f(z) = 1 + \frac{1}{z-1} + \frac{2}{z-2} - \frac{1}{z-3}$$

se pune în evidență binomul z-3, după care se folosește seria geometrică cu rația q, unde |q|<1.

Răspuns:
$$f(z) = -\frac{2}{3} - \sum_{n=1}^{\infty} \left(1 + \frac{1}{2^n} - \frac{1}{3^{n+1}}\right) z^n$$
.

4. Folosind teorema reziduurilor, să se calculeze integrala

$$I = \int_0^{2\pi} \frac{\cos^2 x}{5 + 4\cos x} dz.$$

Indicație. Este o integrală de forma $\int_0^{2\pi} \mathcal{R}(\sin x, \cos x) dx$, unde \mathcal{R} este o funcție rațională. Se face schimbarea de variabilă $z = e^{ix}$.

Răspuns: $I = \pi/4$.

5. Să se determine seria Laurent a ramurii principale a funcției complexe de variabilă complexă $f(z) = \frac{1}{\sqrt{1+z^2}}$ în coroana circulară $1 < |z| < \infty$.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară, neomogenă, cu coeficienți constanți

$$y'' - 5y' + 6y = e^{3x}$$

și apoi să se rezolve problema lui Cauchy cu datele inițiale y(0) = 1, y'(0) = -1.

Indicație: Soluția particulară se caută de forma $y_p = Axe^{3x}$, unde A este constantă ce se determină din condiția ca y_p să fie soluție a ecuației date.

2. Să se determine soluția generală a ecuației diferențiale cu derivate parțiale de ordinul întâi liniară și omogenă

$$(x - y + z)\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0.$$

3. Să se dezvolte în serie de puteri într–o vecinătate a punctului $z_0=2$ funcția

$$f(z) = \frac{z(z^2+1) - 4(z^2-1)}{z^3 - 6z^2 + 11z - 6}$$

și să se precizeze apoi natura punctului z_0 pentru funcția f(z).

Indicație. Se descompune funcția f(z) în fracții simple, punându–se în evidență în același tipm binomul z-2. Se obține

$$f(z) = 1 + \frac{1}{1 + (z - 2)} + \frac{2}{z - 2} + \frac{1}{1 - (z - 2)}$$

după care se folosește seria geometrică cu rația q, unde |q|<1.

Răspuns:
$$f(z) = \frac{2}{z-2} + 3 + 2 \sum_{n=1}^{\infty} (z-2)^{2n}$$
.

4. Să se determine liniile de câmp ale câmpului vectorial

$$\mathbf{v}(P) = xy^2\mathbf{i} + x^2y\mathbf{j} + z(x^2 + y^2)\mathbf{k}$$

și suprafața de câmp care trece prin curba (Γ) : $\begin{cases} x = 2y \\ z = a, \end{cases}$ unde $a \in \mathbb{R}$.

5. Să se demonstreze că funcția complexă $f(z) = \frac{1}{\sin \frac{1}{z}}$ are în punctul $z_0 = 0$ un

punct singular esențial neizolat.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară, neomogenă, cu coeficienți constanți

$$y'' - 7y' + 12y = xe^{3x}$$

și apoi să se rezolve problema lui Cauchy cu datele inițiale y(0) = 1, y'(0) = -1.

Indicație: Soluția particulară se caută de forma $y_p = x(Ax + B)e^{3x} = (Ax^2 + Bx)e^{3x}$, unde A și B sunt constante reale.

2. Să se determine soluția generală a ecuației diferențiale cu derivate parțiale de ordinul întâi cvasi-liniară neomogenă

$$(xy^{3} - 2x^{4})\frac{\partial z}{\partial x} + (2y^{4} - x^{3}y)\frac{\partial z}{\partial y} = 9z(x^{3} - y^{3}).$$

3. Să se dezvolte în serie de puteri într–o vecinătate a punctului $z_0=1$ funcția

$$f(z) = \frac{z(z^2+1) - 4(z^2-1)}{z^3 - 6z^2 + 11z - 6}$$

și să se precizeze apoi natura punctului z_0 pentru funcția f(z).

Indicație. Se descompune funcția f(z) în fracții simple, punându–se în evidență în același tipm binomul z-1. Se obține

$$f(z) = 1 + \frac{1}{z - 1} - \frac{2}{1 - (z - 1)} + \frac{1}{2} \frac{1}{1 - \frac{z - 1}{2}}$$

după care se folosește seria geometrică cu rația q, unde |q|<1.

Răspuns:
$$f(z) = \frac{1}{z-1} - \frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{2^{n+1}} - 2\right)(z-1)^n$$
.

4. Folosind teorema reziduurilor, să se calculeze integrala

$$I = \int_0^{2\pi} \frac{\cos 3x}{2 + \cos x} dz.$$

Indicație. Este o integrală de forma $\int_0^{2\pi} \mathcal{R}(\sin x, \cos x) dx$, unde \mathcal{R} este o funcție rațională. Se face schimbarea de variabilă $z = e^{ix}$.

5. Serii de funcții de o variabilă complexă uniform convergente. Proprietăți.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară, neomogenă, cu coeficienți constanți

$$y'' + 11y' + 30y = e^{3x}$$

și apoi să se rezolve problema lui Cauchy cu datele inițiale y(0) = 1, y'(0) = -1.

Indicație: Soluția particulară se caută de forma $y_p = Ae^{3x}$, unde A este constantă ce se determină din condiția ca y_p să fie soluție a ecuației date.

 $2.\,$ Să se găsească suprafața integrală a ecuației cu derivate parțiale de ordinul întâi liniară și neomogenă

$$xy \cdot \frac{\partial z}{\partial x} - y^2 \cdot \frac{\partial z}{\partial y} = x$$

care trece prin curba (C_a) de ecuații

$$(C_a): \begin{cases} x = a \\ 2ayz = a^2 + 2, \end{cases}$$

unde a este o constantă reală arbitrară și pozitivă.

3. Să se arate că dezvoltarea în serie Taylor a funcției $\cos z$ este

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}.$$

4. Să se arate că $\mathbf{v}(P) = \mathbf{v}(x, y, z) = yz(2x+y+z)\mathbf{i}+zx(x+2y+z)\mathbf{j}+xy(x+y+2z)\mathbf{k}$ este un câmp vectorial irotațional și să se determine potențialul lui scalar.

Indicație. Se arată că rot $\mathbf{v}(P) = \mathbf{0}$ și se determină funcția scalară $\varphi(P)$ cu proprietatea $\mathbf{v}(P) = \operatorname{grad} \varphi(P)$.

Răspuns: Funcția potențial are expresia

$$\varphi(P) = \int_{P_0P} \mathbf{v} \cdot d\mathbf{r} = \int_{x_0}^x v_1(t, y_0, z_0) dt + \int_{y_0}^y v_2(x, t, z_0) dt + \int_{z_0}^z v_3(x, y, t) dt.$$

Se găsește $\varphi(x,y,z) = xyz(x+y+z) + C$, unde C este o constantă reală.

5. Funcțiile circulare și funcțiile hiperbolice în complex.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale liniară, neomogenă, cu coeficienți constanți

$$y'' - 2y' + 2y = e^x \cos x$$

și apoi să se rezolve problema lui Cauchy cu datele inițiale y(0) = 1, y'(0) = -1.

Indicație: Ecuația caracteristică a ecuației diferențiale omogene y''-2y'+2y=0 are rădăcinile complex conjugate $\lambda_{1,2}=1\pm i$. Soluția generală a ecuației omogene asociate este $y_0=(C_1\cos x+C_2\sin x)e^x$. Soluția generală a ecuației date este $y=y_0+y_p$, unde y_p este o soluție particulară a ecuației date. Soluția particulară se caută de forma $y_p=x(A\cos x+B\sin x)e^x$, unde A și B sunt constante care se determină din condiția ca y_p să fie soluție a ecuației date. Se determină apoi soluția problemei lui Cauchy.

- 2. Să se rezolve problema lui Cauchy pentru ecuația cu derivate parțiale de ordinul întâi cuasiliniară $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z xy$ cu condiția inițială $z(2,y) = 1 + y^2$.
- 3. Să se determine mulțimea de convergență a seriei de puteri

$$\sum_{n=0}^{\infty} \frac{3^n}{(3n-2)2^n} (z-1+i)^n$$

și să se reprezinte grafic discul de convergență.

Răspuns: Raza de convergență este $R = \frac{\sqrt{2}}{3}$.

4. Folosind teorema reziduurilor să se calculeze integralele

$$I_1 = \int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx$$
, $I_2 = \int_{-\infty}^{+\infty} \frac{1}{1+x^4} dx$.

Răspuns: $I_1 = I_2 = \frac{\pi\sqrt{2}}{2}$.

5. Expresia derivatelor unei funcții olomorfe.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

- 1. Să se găsească soluția problemei lui Cauchy a ecuației $y^{\prime\prime}-2y^{\prime}+10y=0$ cu condițiile inițiale $y(\pi/6) = 0$, $y'(\pi/6) = e^{\pi/6}$.
- 2. Să se determine constantele reale a și b astfel încât funcția

$$f(z) = (\cosh y + a \sinh y)\cos x + i(\cosh y + b \sinh y)\sin x$$

să fie olomorfă în întreg planul complex la distanță finită și apoi să se calculeze f'(z).

Răspuns: a = b = -1. Funcția are forma $f(z) = \cos z + i \sin z = e^{iz}$, de unde găsim $f'(z) = ie^{iz}$.

3. Să se găsească soluția generală a sistemului simetric

$$\frac{dx}{x(x+y)} = \frac{dy}{-y(x+y)} = \frac{dz}{(y-x)(2x+2y+z)}.$$

Indicație: Se determină două integrale prime independente funcțional.

4. Să se determine forma trigonometrică a numărului complex $z = \sqrt{3} + i$.

Indicaţie. Se determină modulul şi argumentului numărului z. Se găseşte |z|=2 şi $\operatorname{Arg} z=\frac{\pi}{6}.$ Răspuns: $z=2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}).$

5. Serii Taylor.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine funcția olomorfă f(z) = u(x,y) + iv(x,y), unde z = x + iy, știind că partea imaginară este

$$v(x,y) = (x\sin y + y\cos y)e^x + x + y$$

și că valoarea funcției în $z_0 = 0$ este $f(z_0) = 0$.

Indicație: Se folosesc condițiile Cauchy–Riemann și independența de drum a unei integrale curbilinii și se găsește

$$u(x,y) = (x\cos y - y\sin y)e^x + x - y.$$

Pentru a pune în evidență variabila z se face y=0 și se trece x în z. **Răspuns**: $f(z)=z(e^z+1+i)$.

2. Folosind definiția, să se arate că funcția complexă

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = z^2$$

este monogenă în orice punct $z \in \mathbb{C}$ și f'(z) = 2z.

Indicație. Se studiază existența limitei $\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$.

3. Să se determine punctele singulare la distanță finită ale funcției

$$f(z) = \frac{z^8 + 1}{(z^2 + 4)^3}$$

și să se precizeze comportarea ei în punctul de la infinit.

- 4. Să se calculeze integrala curbilinie în complex $I = \int_{C_r} \frac{dz}{z z_0}$, unde curba C_r este cercul de rază r cu centrul în punctul z_0 parcurs în sens trigonometric.
- 5. Câmpuri vectoriale. Linii și suprafețe de câmp.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine soluția generală a ecuației diferențiale

$$y'' - 3y' + 2y = (3x - 2)e^x.$$

Indicație. Soluția generală este de forma $y = y_0 + y_p$ unde y_0 este soluția generală a ecuației omogenă asociată și y_p este o soluție particulară a ecuației date. Soluția particulară se caută în forma $y_p = x(Ax + B)e^x$.

Răspuns.
$$y = C_1 e^x + C_2 e^{2x} - \frac{x}{2} (3x+2)e^x$$
.

2. Să se determine funcția olomorfă f(z) = u(x,y) + iv(x,y), unde z = x + iy, știind că partea imaginară este

$$u(x,y) = x^3 - 3xy^2 + 2xy - x$$

și că valoarea funcției în $z_0 = 0$ este $f(z_0) = i$.

Indicație: Se folosesc condițiile Cauchy–Riemann și independența de drum a unei integrale curbilinii și se găsește

$$v(x,y) = -y^3 + 3x^2y - x^2 + y^2 - y + 1,$$

Pentru a pune în evidență variabila z se face y=0 și se trece x în z.

Răspuns: $f(z) = z^3 - iz^2 - z + i$.

- 3. Să se dezvolte în serie Taylor funcția $f(z) = \frac{1}{1+z^2}$ în vecinătatea punctului $z_0 = 1$.
- 4. Să se determine reziduurile funcției $f(z) = \frac{1}{(z^2+1)^n}$, unde n > 1 este un număr natural.

Răspuns: Există doi poli multipli de ordinul $n: z_1 = i; z_2 = -i$. Reziduurile în aceste puncte sunt $\text{Rez}\left[f(z), z_1\right] = -i\frac{(2n-2)!}{2^{2n-1}[(n-1)!]^2} = -\text{Rez}\left[f(z), z_2\right]$.

5. Proprietăți ale transformatei Fourier.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Să se determine funcția olomorfă f(z) = u(x,y) + iv(x,y), unde z = x + iy, știind că partea imaginară este

$$v(x, y) = (x \sin y + y \cos y)e^x$$

și că valoarea funcției în $z_0 = 0$ este $f(z_0) = 0$.

Răspuns: $f(z) = ze^z$.

2. Să se determine reziduurile funcției complexe inclusiv în $z=\infty$

$$f(z) = \frac{1}{z^3 - z^5}.$$

Indicație. Constatăm că $z_1 = 0$ este pol triplu, iar $z_2 = 1$ și $z_3 = -1$ sunt poli simpli.

Răspuns: $\operatorname{rez}[f(z), z_1] = 1$; $\operatorname{rez}[f(z), z_2] = -\frac{1}{2}$; $\operatorname{rez}[f(z), z_3] = -\frac{1}{2}$. Pentru calculul reziduului în punctul de la infinit aplicăm rezultatul: *suma tuturor reziduurilor este zero*.

3. Folosind teorema reziduurilor, să se calculeze integralele

$$I_1 = \int_0^{2\pi} \frac{\cos n\theta}{1 + a^2 - 2a\cos\theta} d\theta, \quad I_2 = \int_0^{2\pi} \frac{\sin n\theta}{1 + a^2 - 2a\cos\theta} d\theta.$$

Indicație. Aceste integrale se determină simultan considerând combinația

$$I_1 + iI_2 = \int_0^{2\pi} \frac{\cos n\theta + i\sin n\theta}{1 + a^2 - 2a\cos \theta} d\theta = \int_0^{2\pi} \frac{(\cos \theta + i\sin \theta)^n}{1 + a^2 - 2a\cos \theta} d\theta.$$

Se efectuează schimbarea de variabilă $z=e^{i\theta}$ și ultima integrală devine

$$I_1 + iI_2 = \frac{1}{i} \int_{|z|=1} \frac{z^n}{az^2 - (1+a^2)z + a} dz$$

care se calculează folosind teorema reziduurilor.

Răspuns:
$$I_1 = \frac{2\pi a^n}{1 - a^2}$$
, $I_2 = 0$.

4. Să se dezvolte în serie Fourier funcția f(t), periodică de perioadă 2π ,

$$f(t) = \begin{cases} 1, & pentru \ t \in (0, \pi) \\ -1, & pentru \ t \in (\pi, 2\pi). \end{cases}$$

5. Domeniul de convergență al unei serii Laurent.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.

Matematici speciale

Examen

1. Fie câmpurile scalare $\varphi(x,y,z) = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, $\psi(x,y,z) = \|\mathbf{c} \times \mathbf{r}\|$, unde $\mathbf{c} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ și $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Să se determine liniile de câmp ale câmpului vectorial $\mathbf{w}(x,y,z) = \operatorname{grad} \varphi \times \operatorname{grad} \psi$ și suprafața de câmp care trece prin curba $\Gamma: x = y, \ x^2 + y^2 + z^2 - 3x - y - 2z = 0$.

Răspuns: Liniile de câmp sunt $\begin{cases} x^2+y^2+z^2 &= C_1\\ x+y+z &= C_2 \end{cases}$ iar suprafața de câmp este sfera $(x-1)^2+(y-1)^2+(z-1)^3-3=0$.

2. Să se determine funcția complexă f(z) = u(x,y) + iv(x,y), unde z = x + iy, știind că partea reală este $u(x,y) = \frac{1 - x^2 - y^2}{(1+x)^2 + y^2}$ și f(1) = 0.

Indicație. Folosind formula $f'(z)=\frac{\partial u}{\partial x}-i\frac{\partial u}{\partial y}$, se determină f'(z). Pentru a găsi expresia sa în funcție de z, se face y=0 și se trece x în z. Rezultă $f'(z)=-\frac{2}{(1+z)^2}$. Răspuns. $f(z)=\frac{1-z}{1+z}$.

3. Să se dezvolte în serie Fourier funcția f de perioadă 2π , definită pe intervalul $(-\pi,\pi)$, prin

$$f(x) = \begin{cases} x, & pentru & 0 \le x < \pi \\ 0, & pentru & -\pi < x < 0. \end{cases}$$

Răspuns: $a_0 = \frac{\pi}{4}$, $a_n = \frac{(-1)^n - 1}{n^2 \pi}$, $b_n = \frac{(-1)^{n+1}}{n}$.

4. Folosind teorema reziduurilor, să se calculeze integrala curbilinie

$$I = \int_{|z|=3} \frac{1}{z^3(z^2 - 1)(z - 4)} dz.$$

Răspuns. $I = -\frac{\pi i}{480}$.

5. Serii de puteri în complex. Teorema lui Abel.

Notă. Toate subiectele sunt obligatorii iar ordinea de abordare a lor este aleatorie. Timpul de lucru este două ore.