Prácticas de Matlab Métodos adaptativos Hoja 7

1.1 Práctica 6 (Ecucacion rigida)

Considerar el siguiente sistema

$$y'(t) = Ay(t) + B(t) \quad t \in [0, 10]$$
(1)

$$\begin{pmatrix} A = -2 & 1\\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t)\\ 999(\cos(t) - \sin(t)) \end{pmatrix} \qquad B(t) = \begin{pmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{pmatrix} \tag{2}$$

$$y(0) = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{3}$$

La solución exacta es:

$$y = 2e^{-t} \begin{pmatrix} 1\\1 \end{pmatrix} + \begin{pmatrix} \sin(t)\\\cos(t) \end{pmatrix} \tag{4}$$

Haz un diagrama de eficiencia en la misma manera como en la hoja1, con las siguientes diferencias.

• Para hacer un diagrama de eficiencia para un método adaptativo cambia la

tolerancia, empezando con $TOL_{initial}=0.01$ y repite el calculo con $TOL_{nuevo}=\frac{TOL}{2}.$

• comparando el método (con paso fijo) del trapecio (con Newton) con mieuler12.m

y mieuler21.m.

1.1.1 Mieuler12

Errores

tol _{vect}	0.01	0.005	0.0025	0.00125	0.000625	0.0003125	0.00015625	7.8125e-05
ev _{vect}	7410	7318	8195	6756	8960	17292	34373	68738
err _{vect}	0.0011535	0.000832497	0.000821912	0.000743978	0.000419655	0.000209667	0.000104815	5.24099e-05

Gráfica

$$f(t) = Ay(t) + B(t) \quad t \in [0, 10] \quad A = \begin{pmatrix} -2 & 1 \\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t) \\ 999(\cos(t) - \sin(t) \\ 999(\cos(t) - \sin(t) \end{pmatrix}$$
 Error global vs Tol met= mieuler12, intv=[0 10] y0=[2 3], N=200 M=8 Relacion Error vs Tol=1.00026 TOL=0.01 h_{min} =1e-05 h_{max} = 0.2 facmax=5, fac=0.9

Figure 1: Euler 12 Error vs Tol

1.1.2 Mieuler21

Errores

tol _{vect}	0.01	0.005	0.0025	0.00125	0.000625	0.0003125	0.00015625	7.8125e-05
ev_{vect}	14702	13640	14582	17726	24702	41228	75160	143388
err_{vect}	5.20908e-05	2.62843e-05	1.02226e-05	8.07239e-06	1.68118e-06	7.00477e-07	3.03517e-08	1.09359e-08

Gráfica

$$f(t) = Ay(t) + B(t) \quad t \in [0, 10] \quad A = \begin{pmatrix} -2 & 1 \\ 998 & -999 \end{pmatrix} \quad B(t) = \begin{pmatrix} 2\sin(t) \\ 999(\cos(t) - \sin(t) \end{pmatrix}$$
 Error global vs Tol met= mieuler21, intv=[0 10] y0=[2 3], N=200 M=8 Relacion Error vs Tol=0.986829 TOL=0.01 h_{min} =1e-05 h_{max} = 0.2 facmax=5, fac=0.9 10⁻⁴ Perror vs Tol = 0.9 facmax=5 and h_{min} =1e-05 h_{max} = 0.2 facmax=5 and h_{min} =1e-05 h_{max} =10⁻² Tol =10⁻²

Figure 2: Euler 21 Error vs TOL

1.1.3 Trapecio

Errores

h _{vect}	0.01	0.005	0.0025	0.00125	0.000625	0.0003125	0.00015625	7.8125e-05
$err_{elimpnwt}$	0.00103055	0.000256162	6.43522 e-05	1.61356e-05	4.37391e-06	1.51784e-06	0.000474986	0.000604019

Gráficas

Figure 3: Trapecio con Newton Error vs TOL