Полифазный интерполятор

Порты:

Название	Направление	Назначение		
clk	I	Тактирующий сигнал		
nrst	I	Сигнал сброса: сброс при переходе из 1 в 0		
valid_in	I	Когда сигнал в "1", считаем, что на вход поступают		
		валидные данные		
valid_out	O	Когда на выход поступают валидные данные сигнал в "1"		
div	I	Настраиваемый коэффициент деления коэффициента		
		интерполяции.		
		Пример: $M = 8$, div = 2, тогда итоговый коэффициент		
		интерполяции $M/div = 4$.		
din	I	Отсчеты входной последовательности		
dout	O	Отсчеты отфильтрованной последовательности		
c_we	I	Разрешение записи в памяти коэффициентов с остановкой		
		работы фильтра.		
c_in	I	Значение коэффициента фильтра		
c_addr	I	Номер коэффициента		

Структура фильтра:

Фильтр построен на использовании блоков МАС, на которых одновременно считаются по две фазы, использующие одинаковые коэффициенты (к примеру, для коэффициента интерполяции = 8 пары 0-я и 7-я, 1-я и 6-я, и т. д.). Из них первая подается на выход, вторая сохраняется в регистрах до нужного момента. При входе div отличном от 1, не используемые фазы не считаются.

В зависимости от четности/нечетности необходимого/заданного количества блоков фильтр может иметь непарный блок МАС. Остальные блоки МАС организованы парами, разделяющими общие памяти коэффициентов, что экономит ресурсы. Ниже представлены парные и непарный МАС.

Рис.1 – Парные блоки МАС

Рис.2 – Непарный блок МАС

Выходы всех МАС суммируются (как показано на рис.1) и умножаются на коэффициент интерполяции, для восстановления амплитуды сигнала.

Разрядности и коэффициенты фильтра:

На рисунке ниже показана схема фильтра для коэффициента интерполяции равного 8 с указанием разрядностей соединений.

Рис.3 – Схема фильтра с размерностями

Ресурсы и тайминги:

При тактовом сигнале с частотой 100 МГц фильтр имеет следующие характеристики:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.401 ns	Worst Hold Slack (WHS):	0.142 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	472	Total Number of Endpoints:	472	Total Number of Endpoints:	209

Следовательно, максимальная рабочая частота $F_{max} = \frac{1}{10-0.401} \cdot 10^3 \approx 104 \ \mathrm{M}$ Гц

Затраты ресурсов:

Resource	Utilization	Available	Utilization %
LUT	194	53200	0.36
FF	205	106400	0.19
BRAM	1	140	0.71
DSP	2	220	0.91
IO	47	125	37.60

Работа фильтра:

Характеристики: Данный фильтр имеет коэффициент интерполяции равный 8 (повышение частоты дискретизации со 125 кГц до 1 МГц), подстраиваемый до 4, 2. Построен на основе фильтра нижних частот с подавлением 80 дб.

Примеры работы:

Импульсная характеристика фильтра (отклик на единичный импульс):

Отклик на сигнал $x=0.5\sin(2\pi\cdot 10$ к Γ ц · t):

Отклик на сигнал $x = square(2\pi \cdot 1 \kappa \Gamma \mathbf{u} \cdot t)$:

АЧХ:

АЧХ фильтра с исходными коэффициентами:

АЧХ фильтра с квантованными коэффициентами

