TALLER DE ENTRENAMIENTO PARA FINAL Sábado 8 de julio

Elaborado por: Gustavo Meza García

Teoría de Números

Divisibilidad

Desde el primer entrenamiento de Teoría de Números manejamos el concepto de divisibilidad, pero no hemos sido muy formales, hoy lo seremos.

Números Naturales: $N = \{0,1,2,3,...\}$ (para algunos autores $N = \{1,2,3,...\}$)

Números Enteros: Es el conjunto de números naturales, agregándole sus negativos, $Z = \{-3, -2, -1, 0, 1, 2, 3, ...\}$.

[2.1] **Definición.** Si a y b son enteros, decimos que a divide a b, en símbolos $a \mid b$, si es posible encontrar un entero x de tal manera que ax = b. Otras formas de expresar que a divide a b son:

a es divisor de b,
a es factor de b,
b es divisible entre a y
b es múltiplo de a.

Si a no divide a b escribimos $a \nmid b$.

Ejemplo Como 12 = 3•4 entonces existe un entero k tal que 12 =3k, entonces 3 divide a 12. **Ejercicio** Demuestra que 5|20 y 6|-18.

Problemas:

De la definición anterior se pueden deducir las siguientes propiedades:

Si $a \mid b$ y $a \mid c$ entonces $a \mid b+c$

Demostración Suele ocurrir que al ver esto uno diga "Pues es cierto, pero no sé cómo explicarlo". Podemos empezar cambiando el problemas a condiciones más amigables para trabajar.

Existe k entero de forma que b = ak.

Existe q entero de forma que c = aq.

Queremos concluir que existe un entero b tal que b+c = ax.

Ahora bien b+c = ak+aq = a(k+q). Haciendo x = k+q obtenemos lo que queríamos.

Si $a \mid b$ entonces $a \mid bc$

Si $a \mid b \mid a \mid b+c$ entonces $a \mid c$

(Propiedad reflexiva) a | a

(Propiedad Transitiva) Si a | b y b | c entonces a | c

P1: ¿Cuándo se cumple la Simetría? a|b y b|a

P2: $\frac{1}{2}$ Si $a \mid b+c$ entonces $a \mid b$ o $a \mid c$.

P3: ξ Si $a \mid bc$ entonces $a \mid b$ o $a \mid c$?

P4: $\frac{1}{6}$ Si $\mathbf{a} \mid \mathbf{b} + \mathbf{c}$ y $\mathbf{a} \mid \mathbf{b}$ entonces $\mathbf{a} \mid \mathbf{c}$?

TALLER DE ENTRENAMIENTO PARA FINAL Sábado 8 de julio

Elaborado por: Gustavo Meza García

Observación: Es conveniente hacer notar que el símbolo | NO es el símbolo de división, sino un símbolo de relación, así pues, aunque la división 0/0 no está definida, podemos decir que 0 | 0, ya que existe un entero (de hecho, cualquier entero) que cumple que 0c=0.

A1: (G1) Encuentra los valores de a, tales que 0 | a A2: (G1) Encuentra los valores de a, tales que a | 0

- Demuestra que no existen enteros x,y tales que 4x+6y sea impar.
- Hay 100 casilleros numerados del 1 al 100 y 100 niños, un un principio todos los casilleros están cerrados. El niño 1 irá al casillero 1 y de 1 en 1 irá abriendo los casilleros. Al terminar el niño 2 irá al casillero 2 y de 2 en 2 irá cerrando los casilleros. Al terminar el niño 3 irá al casillero 3 y de 3 en 3 irá abriendo los casilleros que están cerrados y cerrando los que están abiertos, así sucesivamente, después del niño 100 ¿Qué casilleros quedarán abiertos?

A3: (G1) ¿Para que valores de n se cumple que $n-2 \mid n+2$?

A4: (G1) ¿Para que valores de n se cumple que $n-2 \mid n^2-3$?

A5: (G1) ¿Para que valores de n se cumple que $3 \mid n^2 - 2$?

A6: (G1) ¿Para que valores de n se cumple que $n-2 \mid 2n$?

- Demuestra que para todo N, 2^N es la suma de dos impares consecutivos.
- Demuestra que para todo N, 3^N es la suma de 3 enteros consecutivos

A7: (G1) Si a es un entero impar. Probar que $a^2 - 1$ es divisible por 8.

A8: (G1) Si a es un entero impar. Probar que $a^4 - 1$ es divisible por 16.

FO6-5: Pruebe que el número de tres cifras decimales *aba* es divisible entre 3 si y sólo si *a-b* es múltiplo de 3.

P5: Encuentra todas las soluciones enteras de la ecuación x+y=xy.

FO7-20: Encuentre todas las soluciones enteras de la ecuación: $\frac{1}{x} + \frac{1}{y} = \frac{1}{1992}$

• Demuestra que existen 100 enteros consecutivos tales que ninguno es primo. (Sugerencia: Empieza con 101! + 2)