International Institute of Information Technology, Hyderabad

(Deemed to be University)

MA101.5 - Discrete Structures - Monsoon 2024

End Semester Examination

Maximum Time: 180 Minutes	Total Marks: 100
Write detailed answers. Adequately explain your assumptions and thoug	ht process.
1. [6 points] Fill in the following blanks:	$\left[\frac{1}{2} \times 12 = 6\right]$ points
1. An example of a graph that is not a tree is and an example that is a tree is	
2. The GCD G of 208 and 57 is and integers x and y such that $208x + 57y = G$ are	
3. The inverse of 7 in \mathbb{Z}_{19}^* is and $19^{-1}\ mod\ 7$ is	
4. If $a_n = 2a_{n-1} + 3a_{n-2} + 2^n$, and $a_0 = 1$ and $a_1 = 2$, then $a_2 = 2$, $a_1 = 2$, $a_2 = 2$, $a_1 = 2$, $a_2 = 2$, $a_2 = 2$, $a_1 = 2$, $a_2 = 2$	
and $a_n =$ 5. An example of a finite field of order 11 is and an example of an integral domain of characteristic 0 is	
2. [10 points] Give an example of a group G of 48 elements, that has elements and answer the following questions: $[2+2+1]$	a subgroup S of 16 $+2+3=10$ points]
1. Give a right coset of S.	
2. Is your right coset of S also a left coset?	
3. All the right cosets of S partition G into how many equivalence	classes?
 What is the equivalence relation for the above equivalence classindeed an equivalence relation. 	ss? Prove that it is
[CO1, CO2, CO3, CO4, CO6]	
3. [10 points] Let G_n be the set of all simple undirected graphs on n no Answer the following: $[2+4]$	des labelled $1, \dots, n$. + $3 + 1 = 10$ points]
1. What is the cardinality of G_n ?	
2. Given the following binary operators on two graphs, find which group for all n?	of them makes G_n a
(a) Union $(E(G \cup G') = E(G) \cup E(G'))$	
(b) Intersection $(E(G \cap G') = E(G) \cap E(G'))$	
(c) XOR (Exclusive OR of adjacency matrices of G and G')	
(d) NAND (Element-wise NAND of adjacency matrices of G and	
3. Can you find a binary operator * (other than those listed above) for	or which G_n becomes

a group?

4. If T_n is a set of all trees on n nodes, is (T_n, \star) a subgroup of (G_n, \star) ?

[CO1, CO2, CO3, CO4, CO5, CO6]

4. [10 points] Consider the recurrence relation

$$[1.5 + 3.5 + 1.5 + 3.5 = 10 \text{ points}]$$

$$a_n = \lambda_1 a_{n-1} + \lambda_2 a_{n-2} \tag{1}$$

such that $\lambda_1^2 + 4\lambda_2 = 0$, λ_1 is even integer and $a_0 = 0$, $a_1 = 1$.

- 1. Find a_2, a_3, a_4 .
- 2. Prove that n divides a_n .
- 3. When n is prime, what is $a_n/n \mod n$ for any value of λ_1, λ_2 ?

In Equation 1, if $\lambda_1 = \lambda_2 = 1$, then prove that in Euclid's GCD algorithm to compute the $GCD(a_n, x)$ where $x \leq n$, the worst case value of x (that the algorithm takes the longest time) is $x = a_{n-1}$.

[CO1, CO2, CO3, CO4]

- 5. [10 points] Answer the following related to (binary) trees: [2+3+3+2=10 points]
 - 1. Is Huffman Encoding unique? Justify your answer.
 - 2. How many paths are there in a tree between a node u and a node v? Prove your answer.
 - 3. Prove or disprove: Every tree is 2 colourable (i.e, a bipartite graph). What about its converse?
 - 4. Convert the following arithmetic expressions to prefix and postfix notation using the corresponding tree traversals of the evaluation tree.

$$(x+yz)a - b(y+xz) + xyz (2)$$

[CO1, CO2, CO3, CO4]

- 6. [10 points] Consider a staircase with N steps. A monkey climbs p_k steps at a time where p_k is the kth prime (k = 1, ..., m), and finds that exactly one step remains at the end. Can you estimate N in terms of m? [2+2+2+4=10 points]
 - 1. Prove that if there are only m primes, then N > 1 is also a prime not amongst these m primes and thus subsequently proving that there are infinitely many primes.
 - 2. Solve for N when the monkey finds that -1 steps are left (it finds itself ahead by one step for all k = 1, ..., n).
 - 3. Use the Chinese Remainder Theorem to exhibit an isomorphism between the rings Z_n and $Z_{d_1} \times Z_{d_2} \times \ldots \times Z_{d_l}$ where d_i 's are pairwise co-prime and product $\prod_{i=1}^t d_i = n$.

[CO1, CO2, CO3, CO4]

7. [8 points] Let G be the set of non-zero complex numbers and let N be a set of complex numbers of absolute value 1 (that is, $a + bi \in N$ if $a^2 + b^2 = 1$). Answer the following questions: [1 + 3 + 4 = 8 points]

- 1. Show that G is a group under multiplication.
- 2. Show that N is a *normal* subgroup of G.
- 3. Show that the quotient group G/N is isomorphic to the group of all positive real numbers under multiplication.

[CO1, CO2, CO3, CO4, CO6]

8. [24 points] Prove or disprove the following:

 $[4 \times 6 = 24 \text{ points}]$

- 1. Every finite integral domain is a field.
- 2. J/(p) is isomorphic to J_p where J is the ring of integers, p a prime number, and (p) the ideal of J consisting of all multiples of p.
- 3. You have n distinct objects and you pick q of them one at a time with replacement. Then the probability that you pick an item more than once is at least $\frac{q(q-1)}{4n}$.
- 4. If R is a ring with unit element 1 and ϕ is the homomorphism of R onto R', then $\phi(1)$ is the unit element of R'.
- 5. For all A coprime to n, $A^{\Phi(n)} \mod n = 1$ where Φ is the Euler Totient.
- 6. A graph is a tree if and only if it has exactly n-1 edges.

[CO1, CO2, CO3, CO4, CO6]

9. [12 points] Write in detail about any four of the following:

 $[4 \times 3 = 12 \text{ points}]$

- 1. State and prove Lagrange theorem
- 2. Three popular Tree Traversals
- 3. How to solve any second order homogeneous recurrence relation
- 4. Birthday Paradox
- 5. Bound on the number of leaves of any m-ary tree of height h.
- 6. Anologies between Group Theory and Ring Theory

[CO1, CO2, CO3, CO4, CO5, CO6]