Wahrscheinlichkeitsrechnung und Statistik

4. Vorlesung - 2017

Diskrete Zufallsgrößen $X:\Omega \to \{x_1,x_2,\ldots,x_i,\ldots\}$

Wahrscheinlichkeitsverteilung von X

$$X \sim \begin{pmatrix} x_1 & x_2 & \dots & x_i & \dots \\ p_1 & p_2 & \dots & p_i & \dots \end{pmatrix} = \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$$

 $I \subseteq \mathbb{N}$ (Indexmenge)

mit den Wahrscheinlichkeiten
$$p_i = P(X = x_i) > 0$$
, $i \in I$, wobei $\sum_{i \in I} p_i = 1$

Klassische diskrete Verteilungen

Bernoulli Verteilung: $X \sim Bernoulli(p), p \in (0,1)$

$$X \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$$

Beispiel: Bernoullisches Versuchsschema

Innerhalb eines Experiments taucht A (Erfolg) oder \bar{A} (Misserfolg) auf

$$\mathbb{I}_{\mathcal{A}} = 0 \Leftrightarrow \bar{\mathcal{A}} \text{ taucht auf}$$

$$\mathbb{I}_{\mathcal{A}} = 1 \Leftrightarrow \mathcal{A} \text{ taucht auf}$$

$$\Rightarrow \mathbb{I}_A \sim Bernoulli(p) \text{ mit } p := P(A)$$

$$\mathbb{I}_A \sim egin{pmatrix} 0 & 1 \ 1-P(A) & P(A) \end{pmatrix}$$

Binomialverteilung: $X \sim Bino(n, p)$

- ullet Innerhalb eines Experiments taucht A oder \bar{A} auf (Bernoullisches Versuchsschema)
- $A = Erfolg \ mit \ P(A) = p$, $\bar{A} = Misserfolg \ mit \ P(\bar{A}) = 1 p$
- man wiederholt das Experiment *n*-mal

(z.B. Münzwurf, Ziehen mit Zurücklegen im Urnenmodell)

- ullet Zufallsgröße X= Anzahl der Erfolge in n Wiederholungen des Experiments
- \Rightarrow mögliche Werte: $X \in \{0, 1, \dots, n\}$

Beispiel: Ein Würfel wird 2-mal geworfen. Sei X die ZG die anzeigt wie oft die Zahl 6 auftaucht. Man gebe die Wahrscheinlichkeitsverteilung von X an!

Eine Zufallsgröße X mit dem Wertebereich $\{0,\ldots,n\}$ heißt **binomialverteilt** mit den Parametern $n \geq 1$ und $p \in (0,1)$, falls gilt

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, \quad k = 0, ..., n.$$

Diskrete Gleichverteilung: $X \sim Unif(n)$

$$X \sim \begin{pmatrix} 1 & 2 & \dots & n \\ \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \end{pmatrix}$$

Beispiel: Ein Würfel wird geworfen. Sei X die ZG die anzeigt welche Zahl aufgetaucht ist

$$\Rightarrow X \sim \begin{pmatrix} 1 & 2 & \cdots & 6 \\ \frac{1}{6} & \frac{1}{6} & \cdots & \frac{1}{6} \end{pmatrix}$$

Geometrische Verteilung $X \sim Geom(p)$

Innerhalb eines Experiments taucht A (*Erfolg*) mit P(A) = p oder \bar{A} (*Misserfolg*) mit $P(\bar{A}) = 1 - p$ auf

X =Anzahl der Versuche vor dem ersten Erfolg

Mögliche Werte: $X \in \{0, 1, 2, \ldots\}$

Beispiel: X zeigt an wie oft man würfelt bis die erste 6 auftaucht $\Rightarrow X \sim Geom(\frac{1}{6})$

Eine Zufallsgröße X mit dem Wertebereich $\{0,1,2,\ldots\}$ heißt **geometrisch verteilt** mit dem Parameter $p\in(0,1)$, falls gilt

$$P(X = k) = p(1-p)^k, k = 0, 1, 2,$$

Geometrische Verteilung

Mitunter heißt in der Literatur anstelle der obigen Zufallsgröße

X - Anzahl der Versuche **vor** dem ersten Erfolg

Y - Anzahl der Versuche **bis** (einschließlich) zum ersten Erfolg auch geometrisch verteilt.

Y nimmt Werte in $\{1,2,\ldots\}$ an. Offensichtlich gilt Y=X+1 und

$$P(Y = k) = p(1-p)^{k-1}, k = 1, 2, ...$$

Beispiel: Eine Nachricht wird Bit für Bit gesendet. Die Wahrscheinichkeit, dass das ein Bit das letzte ist beträgt 0.2. Welches ist die Wahrscheinlichkeit, dass die Nachricht die Länge *n* hat?

 $Y = \text{Länge der Nachricht } (\in \{1, 2, 3...\}) \Rightarrow$

$$P(Y = k) = 0.2 \cdot 0.8^{k-1}, \quad k = 1, 2, \dots$$

Hypergeometrische Verteilung: $X \sim Hyp(N, M, n)$

Qualitätskontrolle

In einem Posten von N Teilen sind M defekt und N-M nicht defekt. Man entnimmt **ohne Zurücklegen** eine Stichprobe von n ($n \le N$) Teilen, davon sind k ($k \le M$) defekt und n-k ($n-k \le N-M$) nicht defekt. Wir betrachten die Zufallsgröße X = Anzahl der defekten Teile in der Stichprobe.

Mögliche Werte für X sind $\{0,1,\ldots,n^*\}$ mit

$$n^* = \min(M, n) = \begin{cases} M & \text{für } M < n \text{ (weniger defekte als entnommene Teile)} \\ n & \text{für } M \ge n \text{ (mehr defekte als entnommene Teile)} \end{cases}$$

Bei der Entnahme **ohne Zurücklegen** ändern sich die Entnahme-Wahrscheinlichkeiten in jedem Schritt!

Seien $N, M, n \in \mathbb{N}$ natürliche Zahlen mit $M, n \leq N$ und $n^* = \min(M, n)$, $n + M \leq N$. Eine Zufallsgröße X mit dem Wertebereich $\{0, \dots n^*\}$ heißt **hypergeometrisch verteilt** mit den Parametern N, M, n, falls gilt

$$P(X = k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, \quad k = 0, \dots, n^*.$$

Die hypergeometrische Verteilung

	U	rnenmodell	Lotto $M = 6$ aus $N = 49$
von	N	Kugeln	49 Zahlen
sind	Μ	rot	6 Glückszahlen
und	N-M	schwarz	43 keine Glückszahlen
entnehmen	n	Kugeln	n=6 Zahlen (getippt, $n=M$)
davon sind	k	rot	k=2 richtig getippt
und	n-k	schwarz	n-k=4 falsch getippt
<i>X</i> :	Anzahl roter Kugeln		X: Anzahl richtig getippter Zahlen
			z.B. $X = 2$ zwei Zahlen waren richtig

Beispiel: Von N=100 LCD-Displays sind M=6 defekt. Wie groß ist die Wahrscheinlichkeit dafür, dass in einer Stichprobe von n=5 zufällig ausgewählten Displays höchstens eines defekt ist?

Ziehen mit Zurücklegen

In einer Urne mit N Kugeln sind M rot und N-M schwarz.

Man entnimmt **mit Zurücklegen** n Kugeln, davon sind k rot und n-k schwarz.

Wir betrachten die Zufallsgröße:

X = Anzahl der entnommenen roten Kugeln

Man gebe die Wahrscheinlichkeitsverteilung von X an!

Antwort:

 $X \sim B(n,p)$ binomialverteilt mit der Erfolgswahrscheinlichkeit $p = \frac{M}{N}$.

Poisson-Verteilung: $X \sim Poisson(\lambda)$ Eine Zufallsgröße X mit dem Wertebereich $\{0,1,2,\dots\}$ heißt **Poisson-verteilt** mit dem Parameter $\lambda > 0$, falls gilt

$$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k=0,1,\ldots$$

Beispiele:

X: Anzahl einkommender Gespräche pro Stunde in einer Telefonzentrale X: Anzahl der in 1 Minute zerfallenen Atomkerne eines radioaktiven Präparates

Ampel: Es bezeichne X die zufällige Anzahl von Fahrzeugen, die an einer Ampel während der einminütigen Rotphase eintreffen.

X sei Poisson-verteilt mit Parameter $\lambda=5$

(d.h. im Mittel treffen in 1 Minute 5 Fahrzeuge ein).

Wie groß ist die Wahrscheinlichkeit, dass in 1 Minute höchstens 2 Fahrzeuge eintreffen?