

BEST AVAILABLE COPY

日本化学雜誌

---- Nippon Kagaku Zasshi -----

46.11.17

Vol. 90 No. 10 1969

___ 総合論 交 ---

溶媒抽出法による溶液内の化学平衡の研究

・関根達也

____ _ 般 論 文 ----

1997年	984
不均一系高分子溶液の拡散曲線における濃度依存性の取り扱い・金子行政・石田真一郎・水野斌也・田村陽子	987
原子状酸素による銀の酸化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
高分子多価カルボン酸の金属塩の吸収スペクトルとその光照射による変化・・小西義昭・羽田 宏・田村幹雄	992
寒王ゲルのレオロジー的性質の pH 依存性・・・・・・・・・・・・・・・・・・・・・渡瀬峰男・荒川 泓	996
ポリ(メタクリル酸ジエチルアミノエチル)塩水溶液の粘度・・・・・・・松井雅男・小松 剛・中川鶴太郎	1001
拡張 Hückel 分子軌道法によるアリル転位反応性の計算・・・・・・・・ 藤本 博・大場 宏・福井謙一	1005
N- t -ブチルアセトアミド酸加水分解の速度論的研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 赤宮英紀・寺沢誠司	1012
・ トー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
酸加水分解に対する圧力効果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1016
非イオン界面活性剤の乳化作用におよぼす温度および親水基鎖長の影響・・・・・・・・・・・ 斎藤 博	1020
モリブデン酸ナトリウムによる プルトニウム(IV) の沈殿 ・・・・・・・・・渡辺賢寿 室村忠純	1025
ガスクロマトグラフィーによる硫酸根およびスルホン基の簡易定量法・・・・・・伊藤 進・原 正	1027
置換ペンゾイルイソシアナートとエポキシド類との反応・・・・・・柘値乙彦・伊藤 正・阪井加津子	1031
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ジキサントゲン酸, キサントゲン酸チオ 無水物, キップトプラ 最 マ ニ・・・・・・ 第三アミンとの反応・・・・・・・・・・・・・・・・・・・・・・・・・・ 吉田 弘	1030

--- 次百へ続く---

中以大法學者問題有其大文

特許庁文献 70- 1194

N-(クロルベンゾイルアミノアルキル) ピペリジン類および N-(クロル

チオベンゾイルアミノアルキル) ピペリジン類の合成*¹, *2

資料整備 44.10.10 帮 分類係 工

(昭和44年6月27日受理)

去来川覚三・広瀬拓治・伏崎弥三郎*3

269/297 16 E 43/1X

1 緒

言

近年、ベンゼン環にクロル原子を有する数種の N-(ベンゾイルアミノアルキル)ピペリジン誘導体りが合成され、 これらの 化台物は有用な薬理作用を有することが明らかにされている。 著者らはさきにベンゼン環にニトロ基、アミノ基あるいはクロル原子をもつ一連の N-(ベンゾイルオキシアルキル)ピペリジン類 23)を 台成したが、 これらの 化合物のうちでベンゼン環の 2 3-位にクロル原子を有する化合物が顕著な薬理作用を示すことが明らかとなった。 そこで本報においては、これらのエステル結合のかわりにアミド結合あるいはチオアミド結合を有する N-(クロルベンゾイルアミノアルキル)ピペリジン類および N-(クロルチオベンゾイルアミノアルキル)ピペリジン類の合成を試みた。

すなわち、ピペリジン[1]、2-メチルピペリジン[2]および2-メチル-5-エチルピペリジン[3]とN-(2-ブロムエチル)フタルイミドとの反応によってえられる N-(2-フタルイミドエチル)ピペリジン類[4]~[6]に濃塩酸を加えて加熱還流したのち、加水分解を行なって N-(2-アミノエチル)ピペリジン類[7]~[9]を合成した。また、N-(3-アミノプロピル)ピペリジン類[13]~[15]

は既報^りと同様にして,相当する N-(2-シアンエチル)ピペリジ ン類(10]~(12)の還元によって合成した。えられたアミノ誘導体 の種類、沸点および屈折率を表しに示す。つぎに、これらのアミ ン類(1)~(9), (13)~(15)と芳香族酸塩化物とをベンゼン溶媒 中 2 時間加熱還流して相当する N-(クロルベンゾイルアミノア ルキル) ピペリジン類[16]~[27]を 56~97% の収率でえた。芳香 族酸塩化物としては塩化 2,3- および 3,4-ジクロルベンゾイルを 使用し、えられた生成物の種類、融点、収率ならびに元素分析値を 表2に示した。これらの化合物については赤外吸収スペクトル, 紫外吸収スペクトルおよび元素分析によって確認した。つぎに, N-(ベンゾイルアミノ アルキル)ピペリジン 類[16]~[18]および [22]~[24]を遊離塩基としたのち、ピリジン溶媒中で五硫化リン を加えて 1~3 時間加熱還流して 14~43% の収率で N-(チオベ ンゾイルアミノ アルキル)ピペリジン類[28]~[33]を 遊離塩基と して単離した。えられた生成物の種類、融点、収率ならびに元素 分析値を表3に示す。

2 実 験

2.1 試 料

$$R_{1} \xrightarrow{R_{2}} R_{2} \xrightarrow{R_{1} \times R_{2}} R_{1} \xrightarrow{R_{2} \times R_{2}} R_{2} \xrightarrow{R_{1} \times R_{2}} R_{2} \xrightarrow{R_{1} \times R_{2}} R_{2} \xrightarrow{R_{2} \times R_{3}} R_{2} \xrightarrow{R_{1} \times R_{2}} R_{2} \xrightarrow{R_{2} \times R_{3}} R_{2} \xrightarrow{R_{1} \times R_{2}} R_{2} \xrightarrow{R_{2} \times R_{3}} R_{2} \xrightarrow{R_{3} \times R_{2}} R_{2} \xrightarrow{R_{1} \times R_{2}} R_{2} \xrightarrow{R_{2} \times R_{3} \times R_{2}} R_{3} \xrightarrow{R_{3} \times R_{2} \times R_{3}} R_{2} \xrightarrow{R_{3} \times R_{3} \times R_{3}} R_{3} \xrightarrow{R_{3} \times R_{3}} R_{3} \xrightarrow{R_{3} \times R_{3} \times R_{3}} R_{3} \xrightarrow{R_{3} \times R$$

*1 この報文を"アルデヒドコリジン誘導体(第 17 報)"と

(1)~(9), (13)~(33)

- *2 前報(第 16 報), 去来川寛三, 故川合昌路, 戸井康雄, 伏崎弥三郎, 日化, 90, 419(1969).
- *3 Kakuzo IsaGawa, Takuji Hirose, Yasaburo Fushizaki 大阪府立大学工学部応用化学教室,堺市百舌鳥梅町
- U. S. P., 3,342,679(1967).

R₁, R₂, R₃, n は要 1, 2 または3を参照.

- 去来川覚三、故川合昌路, 吉田淑則, 伏崎弥三郎, 日化, 88, 550(1967).
- 3) 去来川覚三, 広瀬拓治, 伏崎弥三郎, 日化, 89, 1090 (1968)
- 去来川覚三,川合昌路, 吉田淑則, 伏崎弥三郎,日化, 87,1349(1966).

BEST AVAILABLE COPY

表 1 Ν-(ω-アミノアルキル)ピペリジン類の性質および収率

ピペリジン類: 既報3) と同じものを使用した。

注 a) 引用文献 5)を参照. b) 引用文献 6)を参照.

N-(2-ブロムエチル)フタルイミド: 文献記載の方法 7 で合成した。

2.2 N-(2-アミノエチル) ピペリジン類

N-(2-プロムエチル)フタルイミド 6g(0.024 mol)を30 ml のキシレンに溶かして 2-xチルピペリジン[2]4.76g(0.048 mol) を加え、10 時間加熱還流する。反応終了後析出した固体を口別して口液からキシレンを留去してえられる褐色油状物に 3 ml の水と 7 ml の 12N 塩酸を加えて 6 時間加熱還流する。反応終了後生成する固体を口別して,口液を濃縮乾固すると黄褐色油状物がえられる。この油状物に 50% 水酸化カリウム水溶液を加えてアルカリ性にしたのちベンゼンで抽出する。抽出液を水酸化カリウムで乾燥後ベンゼンを留去してえられる残留物を滅圧蒸留すると p_{12} 65~66°Cの N-(2-rミノエチル)-2-xチルピペリジン[8] がえられる。

同様にして[1]および[3]からそれぞれ N-(2-アミノエチル) ピペリジン[7], N-(2-アミノエチル)-2-メチル-5-エチルピペリジン[9]がえられる。

要 3 N-(クロルチオペンゾイルアミノアルキル) ピペリジンの種類, 性質および分析値

$$\begin{array}{c|c} & & & & & & & & \\ R_1 & & & & & & & \\ R_1 & & & & & & & \\ & (CH_2)_n NHCS - & & & & & \\ \end{array}$$

化合物	R ₁	R ₂	n	融点	収率	分析值 (%)			
番 号				(°C)	(%)	C	H	N	
(28)	Н	H	2	81~ 82	42.6	52.69	6.08	8.70	
(29)	CH_3	Н	2	$104 \sim 105$	22.2	53.97	6.17	8.64	
(30)	CH_3	C_2H_5	2	67~ 68	13.7	56.63	7.02	7.92	
(31)	H	H	3	90.5~91.5	15.1	54.30	6.13	8.76	
(32)	CH_3	H	3	94~ 95	34.l	55.59	6.49	7.94	
(33)	CH_3	C_2H_5	3	104~105	16.5	57.86	7.09	7.69	

2.3 N-(3-アミノプロピル) ピペリジン類

既報 9 の方法にしたがって、表 1 に示す化合物[13]、[14]および[15]を合成した。

2.4 N-(アミノアルキル)ピペリジン類と芳香族酸塩化物との 反応

N-(アミノアルキル)ピペリジン 類[7]~[9]あるい は[13]~[15]と等モルの芳香族酸塩化物とをベンゼンに溶かして 2 時間加熱還流すると白色固体が生成する。反応終了後,反応混合物を冷却したのち析出する固体を口過して,この固体を適当な溶媒から再結晶すると <math>N-(クロルベンゾイルアミノアルキル)ピペリジン類の塩酸塩が白色結晶としてえられる。

2.5 N-[3-(2,3-ジクロルチオペンゾイルアミノ)プロピル]ピペリジン

N-[3-(2,3-ジクロル ベン ゾイルアミノ)プロピル]ピペリジン塩酸塩 <math>2.68 g (0.0076 mol)を水 20 ml に溶解し、10% 水酸化ナトリウム水溶液でアルカリ性にしたのちエーテルで抽出する。抽出液を無水硫酸ナトリウムで乾燥したのち溶媒を留去すると淡黄色油状物 2.06 g がえられる。この油状物を 12 ml のピリジンに溶

表 2 N-(クロルベンゾイルアミノアルキル)ピペリジン塩酸塩の種類,性質および分析値

$$R_1$$
 N
 $(CH_2)_nNHCO$
 R_3
 $+HCI$

化合物番号 R ₁ R ₂ R ₃ n		20			#L 1: (0.C)	de ata 4 - 4 \	分析值(%)		
	融点(°C)	収率(%)	C	Н	N				
(16)	H	Н	2, 3-diCl	2	147~149	70.9	49.61	5.91	8.02
(17)	CH ₃	H	2, 3-diCl	2	190~191	93.0	51.53	6.21	8.07
(18)	CH₃	C_2H_5	2, 3-diCl	2	142~143	71.2	53.82	6.93	7.40
(19)	H	H	3, 4-diCl	2	212~213	86.1	49.87	5.84	8.29
(20)	CH ₃	H	3, 4-diCl	2	171~172	93.8	51.29	6.27	7.95
(21)	CH_3	C ₂ H ₅	3, 4-diCl	2	144~145	78.9	53.72	6.90	7.47
(22)	H	H	2, 3-diCl	3	172~173	85.5	51.52	6.11	7.73
(23)	CH ₃	H	2, 3-diCl	3	158~159	82.2	52.38	6.39	7.54
(24)	CH ₃	C ₂ H ₅	2, 3-diCl	3	143~144	76.3	54.68	6.95	7.14
(25)	н	Н	3, 4-diCl	3	140~142	96.6	51.36	6.21	7.83
(26)	CH ₃	H	3, 4-diCl	3	149~150	93.0	52.36	6.61	7.67
(27)	CH3	C_2H_5	3, 4-diCl	3	163~164	55.9	54.91	7.21	7.26

⁵⁾ Beilstein, Bd XX, S. 67(1935).

⁶⁾ Beilstein, Bd XX, S. 68 (1935).

^{7) &}quot;Organic Syntheses", (1948) Coll. Vol., 1, p. 119.

解した溶液に、五硫化リン 1.16g を加えて 1.5 時間加熱運流する。反応終了後室温まで冷却したのち 150 ml の水中に投入して 析出する黄色固体を口過する。この固体をクロロホルムに溶かし て活性アルミナを充テンしたクロマトカラムに通して溶出液を無水硫酸ナトリウムで乾燥したのち、溶媒を留去すると黄色油状物 が残留する。この油状物に少量の n-ヘキサンを加えて結晶化し

その他の N-(2,3-ジクロルチオベンゾイルアミノアルキル)ピペリジン類[28]~[30], [32]および[33]も 同様の 方法で 合成した。

ルテノセンのひとドロキシベンゾイル化

(昭和44年7月2日受理)

鹿 島 長 次・小 林 隆一郎・杉 山 登*1

1 緒 言

Nesmeyanov らりはフェロセンのサリチル酸クロリドによるサリチロイル化により収率 22% で o-ヒドロキシベンゾイル-フェロセン(以下 HBF と略記する)をえた。また Schaaf 2)はフェロセンと o-メトキシ安息香酸クロリドから収率 45% で o-メトキシ ベンゾイル-フェロセン(以下 MBF と略記する)をえ,さらにこれの塩化アルミニウムによる脱メチルで収率 43% で HBF をえた。

ところが o-メトキシベンゾイル-ルテノセン(以下 MBR と略記する)と o-ヒドロキシベンゾイル-ルテノセン(以下 HBR と略記する)の合成に関する報告は見あたらない。 著者らはルテノセンと o-メトキシ安息香酸クロリドを 塩化アルミニウムの 存在下で反応させたところ MBR と HBR をえ,そのさい条件により両者の収率が調節できることを見いだしたのでここに報告する。

2 結果と考察

Rausch 6^{9} はルテノセンのベンゾイル化にさいし、ルテノセンと酸クロリドのモル比が 1:1 の場合より 1:3 の場合の方がケトンの収率がよいと報告しているので、著者らはその比に 1:n $(n \ge 3)$ を選んだ。

Ullmann らりはベンゼンの 0-メトキシ安息香酸クロリドによるアシル化のさい、収率 46% で直接 0-ヒドロキシベンゾフェノン(以下 HBB と略記する)をえており、Graebe らりはこのさい、メチル基が遊離の塩酸あるいは塩化アルミニウムにより完全に脱離されると報告している。そこで酸クロリドに対する塩化アルミニウムのモル比を変え、MBR と HBR の収率を検討した。また

*1 Choji Kashima, Ryuichiro Kobayashi, Noboru Suciyama 東京教育大学理学部 化学教室,東京都文京区大

同時に酸クロリドとルテノセンの混合物に塩化アルミニウムを後から徐々に加えていく方法(A法)と、酸クロリドに塩化アルミニウムをはじめから加えておきルテノセンを後から加える方法(B法)につき両物質の収率を検討した。 結果は衷 1, 衷2に示してある。

表 1	A法による	反応	物質のモ	ル比と収	率(%)の[吳係
実験番号		1	2	. 3	4	5

,				1:3:3
モル比(メタロセ ン:酸クロリド: 1:3:3 塩化アルミニウム)	1:3:6	1:3:12	1:6:6	1:3:6 1:3:12
ルテノセン (MBR 18 HBR 0 全収率 18	12 6 18	0 13 13	21 0 21	
フェロセン (MBF 43 HBF 0 AIV ま 43		0 27 27		

注 a) モル比 1:3:3 で 24 時間反応後, さらに塩化アルミニウムを 3 の割合で加え, 同時間反応させ, さらに 6 の割合で塩化アルミニウムを加え, 同時間反応させた結果.

表 2 B法による反応物質のモル比と収率(%)の関係 実験番号 1' 2' 3'

モル比(メタロセン:酸クロ リド:塩化アルミニウム)	1:3:3	1:3:6	1:3:12
リト:塩化ノルミーソム/ MBR ルテノセン HBR 全収率	38 0 38	12 2 14	0 12 12

まず反応物質のモル比(メタロセン: 0-メトキシ安息香酸クロリド:塩化アルミニウム;以下これにならう)によって生成物の収率がかなり影響を受けることが明らかになった。すなわちA法ではモル比1:6:6の方がモル比1:3:3よりも MBR の収率は高かった。またB法でモル比1:3:3のとき,A法のモル比1:6:6 のときよりも高い 収率を示すにもかかわらず,このときHBR の収率が0であることは注目すべきことである。

BEST AVAILABLE COPY

A. N. Nesmeyanov, N. S. Kochetkova, V. D. Vikchevskaya, Y. N. Sheinker, L. B. Senyavina, M. I. Struchkova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1962, 1990

²⁾ R. L. Schaaf, J. Org. Chem., 27, 107(1962).

M. D. Rausch, E. D. Fisher, H. Grubert, J. Am. Chem. Soc., 82, 76(1960).

⁴⁾ F. Ullmann, I. Goldberg, Ber., 35, 2811(1902).

⁵⁾ C. Graebe, F. Ullmann, *ibid.*, 29, 824(1896).