Lecture 18: Potential Energy Diagrams

Warm-Up Activity
A potential energy diagram
for some system is shown
at right. At what position(s)
is the magnitude of the force
at a maximum?

A Deeper Model for Interactions

• Quantities

– Work
$$W = \int_{r_i}^{r_f} \vec{F} \cdot d\vec{r}$$

- Kinetic Energy
$$K = \frac{1}{2}mv^2$$

- Potential Energy
$$U =$$
depends on interaction

You have to tell everyone where zero
$$PE$$
 is!

* Gravity
$$U_g = mgy$$

* Spring $U_{sp} = \frac{1}{2}kx^2$

$$\star$$
 Spring O_{sp} -

- Work-energy theorem
$$W_{\text{net,ext}} = \Delta E_{\text{total}}$$

L18-1: Potential Energy Diagrams

The potential energy of the spring is given by $U_{sp} = \frac{1}{2}kx^2$.

- Sketch a potential energy diagram (a graph of U_{sp} vs. x).
- How does the total energy change?

 How can you tell? $t = t_f$
- Where is the kinetic energy largest?
 Smallest? How can you tell?

 $v_i = 0$

• Where is the spring force largest? Smallest? How can you tell?

L18-2: Astronaut Energy I

We send an astronaut into space, creating the following graph of potential energy U_q vs. distance from the surface of the Earth y.

- Describe how the potential U_g (GJ) energy of the system changes of the system chan
- Describe how the gravitational force changes as *y* increases. Do you think this behavior makes sense? (**Hint:** What feature of the graph tells you about the force?)

L18-3: Astronaut Energy II

We send an astronaut into space, creating the following graph of potential energy U_g vs. distance from the surface of the Earth y.

Assume the total energy of the

Astronaut-Earth system is -4 GJ._{-1}^{0}

- How high above the surface of the Earth does the astronaut go?
- What is the astronaut's largest kinetic energy? Where does this happen?

Main Ideas

- The work-energy theorem can be used to solve a broad array of problems.
- A variety of representations can be helpful in solving problems using work and energy.