MAT 01375 – Matemática Discreta B 2009/2

Lista de Exercícios 6

- 1. Verifique quais das relações S_1, S_2, S_3, T, M, N da lista 5 são de equivalência. Justifique sua resposta.
- 2. Seja R a relação de equivalência das congruências módulo n, ou seja, dizemos que $(a,b) \in R \iff a$ e b tem o mesmo resto na divisão por n. Dado $a \in \mathbb{Z}$ denotaremos por $[a]_n$ a classe de equivalência de a com respeito a relação R. Descreva a classe de equivalência $[4]_n$, onde:
 - a) n = 3,
- b) n = 5,
- c) n = 6,
- d) n = 8,
- e) n = 9
- 3. Será que as coleções de conjuntos abaixo definem uma partição do conjunto dos números inteiros (\mathbb{Z})? Justifique sua resposta. Caso sua resposta seja negativa use alguns elementos da coleção para dar um exemplo de uma partição de \mathbb{Z} .
 - a) o conjunto dos números inteiros positivos e o conjunto dos números inteiros negativos
 - b) o conjunto dos números inteiros divisíveis por 3, o conjunto dos números inteiros que tem resto 1 na divisão por 3 e conjunto dos números inteiros que tem resto 2 na divisão por 3
 - c) o conjunto dos números inteiros que não são divisíveis por 3, o conjunto dos números pares e conjunto dos números inteiros que tem resto 3 na divisão por 6.
- 4. Questão 4 2006/2 (2,5 pontos): Seja R a relação em $\mathbb{N} \times \mathbb{N}$ definida por:

$$((a,b),(c,d)) \in R \longleftrightarrow a+d=b+c.$$

- a) Mostre que R é uma relação de equivalência.
- b) Determine as classes de equivalência de $[(1,1)]_R$, $[(2,1)]_R$ e $[(3,2)]_R$.
- 5. Questão 4 2007/1 (2,0 pontos): Seja S uma relação em $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ definida por:

$$((a,b),(c,d)) \in S \longleftrightarrow a = c.$$

- a) S é funcional? S é sobrejetora?
- b) Mostre que S é uma relação de equivalência em \mathbb{R}^2 .
- c) Descreva $[(2,3)]_S$