КОМИТЕТ ВЫСШЕЙ ШКОЛЫ МИНИСТЕРСТВА НАУКИ, ВЫСШЕЙ ШКОЛЫ И ТЕХНИЧЕСКОЙ ПОЛИТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет

В. А. Александров, Е. В. Колесников

Интегральные уравнения

Методические указания

Новосибирск 1993 В методических указаниях изложены сведения об интегральных уравнениях и их приложениях к задаче Штурма — Лиувилля, а также приведены задачи, рекомендуемые для решения на практических занятиях по математическому анализу на физическом факультете Новосибирского государственного университета.

Предисловие

На физическом факультете Новосибирского государственного университета тема «Интегральные уравнения» изучается в четвёртом семестре в рамках курса «Математический анализ». Её изучению отводится 3 лекции и 3 практических занятия в мае месяце.

Основная особенность данных указаний состоит в том, что мы рассматриваем тему «Интегральные уравнения» как продолжение непосредственно изучаемой перед ней темы «Теория операторов в гильбертовых пространствах». Поэтому мы целенаправленно извлекаем основные факты о решениях уравнений Фредгольма и Вольтерра из уже известных свойств операторов в гильбертовых пространствах. За это нам приходится «расплачиваться» тем, что мы находим, как правило, решение интегральных уравнений в пространстве $L_2[a,b]$ (которое является гильбертовым), а не в пространстве непрерывных функций (которое, как известно, гильбертовым не является).

Охарактеризуем вкратце книги, использованные при написании этой работы.

1. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1972.

Это прекрасный учебник по функциональному анализу, на котором учились несколько поколений ныне работающих математиков. Наше изложение весьма близко к принятому в этой книге, но в ней не обсуждается билинейная формула Штурма — Лиувилля.

2. Смирнов В. И. Курс высшей математики. Т. 4. М.: Наука, 1975.

Пятитомник В. И. Смирнова, выдержавший более 10 изданий, заслуженно считается энциклопедией всех (!) математических курсов, читаемых в университетах. Четвёртый том содержит всё, что мы сообщаем об интегральных уравнениях в этой «методичке».

3. Васильева А. Б., Тихонов Е. А. Интегральные уравнения. М.: Изд-во МГУ, 1989.

Один из последних учебников по интегральным уравнениям, написанный преподавателями-математиками для студентов-физиков. В нем физические примеры и он полностью покрывает содержание данной работы. К сожалению, учебник малодоступен: библиотека НГУ располагает всего 6 экземплярами.

4. Арфкен Г. Математические методы в физике. М.: Атомиздат, 1970.

Содержит очень сжатое введение в теорию интегральных уравнений, ориентированное на физиков и снабженное физическими примерами. В отличие от нашего курса, Арфкен нередко подменяет доказательство наводящими соображениями или правдоподобными рассуждениями.

5. Владимиров В. В. Уравнения математической физики. М.: Наука, 1971.

Помимо общей теории интегральных уравнений содержит сведе́ние задачи Штурма — Лиувилля к интегральным уравнениям с использованием обобщенных функций.

6. Трикоми Ф. Интегральные уравнения. М.: ИЛ, 1960.

Совершенно изумительная книга, написанная выдающимся ученым на высочайшем уровне, где объединяются простота, строгость и элегантность изложения, единство метода и широта используемых средств, демонстрируются глубокие связи между различными областями математики и физики. Может быть рекомендована скорее преподавателям-математикам, чем студентам-физикам.

В качестве источника задач мы использовали в основном следующие книги:

- 7. Антоневич А. Б., Князев П. Н., Радыно Я. В. Задачи и упражнения по функциональному анализу. Минск: Вышейшая школа, 1978.
- 8. Задания к лабораторным работам по курсу «Функциональный анализ и интегральные уравнения» для студентов специальности «математика» / А. Я. Дороговцев, С. Д. Ивасишен, Ю. Г. Кондратьев, А. Ю. Константинов. Киев: Изд-во Киевского ун-та.

§1. Интегральные уравнения Фредгольма и Вольтерра и примеры задач, к ним приводящих

Интегральным уравнением называется уравнение, содержащее неизвестную функцию под знаком интеграла. Мы будем рассматривать только такие интегральные уравнения, в которые неизвестная функция входит линейно. Они называются линейными интегральными уравнениями.

Важнейшими примерами линейных интегральных уравнений являются следующие:

Здесь $K:[a,b] \times [a,b] \to \mathbb{C}$ и $f:[a,b] \to \mathbb{C}$ — известные функции, а функция $x:[a,b] \to \mathbb{C}$ является искомой.

Отметим следующие различия в написанных уравнениях: в уравнениях Фредгольма пределы интегрирования постоянны, а в уравнениях Вольтерра верхний предел интегрирования — переменный; в уравнении первого рода неизвестная функция входит только под знаком интеграла.

Поскольку

$$\int_{a}^{t} K(t,s)x(s)ds = \int_{a}^{b} \widetilde{K}(t,s)x(s)ds,$$

где использовано обозначение:

$$\widetilde{K}(t,s) = \left\{ \begin{array}{ll} K(t,s), & a \leq s \leq t; \\ 0, & t < s \leq b. \end{array} \right.$$

то уравнение Вольтерра является частным случаем уравнения Фредгольма. В отдельный класс их выделяют из-за того, что их решения обладают рядом специальных свойств, которых, вообще говоря, нет у решений уравнений Фредгольма.

С интегральными уравнениями вы встречались и раньше. Например, доказывая существование и единственность решения дифференциального уравнения

$$\frac{dx}{dt} = f(t, x)$$

с начальным условием $x(t_0) = x_0$, вы сводили его к интегральному уравнению (нелинейному)

$$x(t) = x_0 + \int_{t_0}^{t} f(s, x(s))ds,$$

которое затем решали методом последовательных приближений.

Такое сведе́ние возможно и для дифференциальных уравнений порядка выше первого. Рассмотрим, например, следующую задачу для уравнения n-го порядка:

$$\begin{cases} x^{(n)}(t) + p_1(t)x^{(n-1)}(t) + \dots + p_n(t)x(t) = f(t), \\ x^{(n-1)}(a) = x^{(n-2)}(a) = \dots = x'(a) = x(a) = 0, \\ a \le t \le b. \end{cases}$$

Положим

$$x(t) = \frac{1}{(n-1)!} \int_{a}^{t} y(s)(t-s)^{(n-1)} ds,$$

где $y:[a,b] \to \mathbb{C}$ — новая неизвестная функция. Последовательно дифференцируя это равенство, найдем

$$\begin{cases} x^{(k)}(t) = \frac{1}{(n-k-1)!} \int_{a}^{t} y(s)(t-s)^{n-k-1} ds, & 1 \le k \le n-1; \\ x^{(n)} = y(t). \end{cases}$$

При этом, очевидно, выполнены условия $x^{(k)}(a)=0$ для $1\leq k\leq n-1$. Подставляя найденные для $x^{(k)}(t)$ выражения в левую часть изначального уравнения, получим

$$y(t) + \int_{a}^{t} K(t,s)y(s)ds = f(t),$$

где

$$K(t,s) = p_1(t) + p_2(t)\frac{t-s}{1!} + \dots + p_n(t)\frac{(t-s)^{n-1}}{(n-1)!}.$$

Таким образом, задача Коши для линейного уравнения n-го порядка с нулевыми начальными данными сведена к решению интегрального уравнения Вольтерра второго рода.

Задачи

Составить интегральное уравнение, соответствующее задаче Коши:

1.
$$u' + 2xu = e^x$$
, $u(0) = 1$;

2.
$$u'' - \sin xu' + e^x u = x$$
, $u(0) = 1$, $u'(0) = -1$;

3.
$$u''' + xu = e^x$$
, $u(0) = 1$, $u'(0) = u''(0) = 0$.

Решить интегральное уравнение, сведя его к обыкновенному дифференциальному уравнению:

4.
$$x(t) = e^t + \int_0^t x(s)ds;$$
 5. $x(t) = 1 + \int_0^t sx(s)ds;$

6.
$$x(t) = \frac{1}{1+t^2} + \int_0^t \sin(t-s)x(s)ds;$$

7.
$$x(t) = e^{-t} \cos t - \int_{0}^{t} \cos s e^{-(t-s)} x(s) ds;$$

8.
$$x(t) = 4e^t + 3t - 4 - \int_0^t (t - s)x(s)ds;$$

9.
$$x(t) = t - 1 + \int_{0}^{t} (t - s)x(s)ds$$
.

§2. Интегральный оператор Гильберта — Шмидта

Интегральным оператором Гильберта — Шмидта называется оператор, сопоставляющий каждой функции $x \in L_2[a,b]$ функцию y с помощью правила

$$y(t) = \int_{a}^{b} K(t, s)x(s)ds.$$

При этом предполагается, что модуль функции $K:[a,b] \times [a,b] \to \mathbb{C}$, называемой ядром интегрального оператора Гильберта — Шмидта, интегрируем в квадрате:

$$\int_{a}^{b} \int_{a}^{b} |K(t,s)|^{2} dt ds < +\infty.$$

Поскольку уравнение Фредгольма второго рода

$$x(t) = \int_{a}^{b} K(t, s)x(s)ds + f(t)$$

может быть записано в операторном виде x = Ax + f, где A — оператор Гильберта — Шмидта, то неудивительно, что многие свойства решений интегральных уравнений могут быть получены с помощью общих теорем об операторах в гильбертовом пространстве. Необходимые для этого свойства оператора Гильберта — Шмидта изучаются в настоящем параграфе.

Теорема (о компактности оператора Гильберта — Шмидта)

Интегральный оператор Гильберта — Шмидта A является линейным компактным оператором, переводящим пространство $L_2[a,b]$ в себя. При этом его норма удовлетворяет неравенству

$$||A|| = \left\{ \int_{a}^{b} \int_{a}^{b} |K(t,s)|^{2} dt ds \right\}^{\frac{1}{2}}.$$
 (1)

Доказательство

В силу неравенства Коши — Буняковского, для каждого $t \in [a,b]$ имеем:

$$|y(t)|^2 = \left| \int\limits_a^b K(t,s) x(s) ds \right|^2 \leq \int\limits_a^b |K(t,s)|^2 ds \cdot \int\limits_a^b |x(s)|^2 ds = ||x||^2 \cdot \int\limits_a^b |K(t,s)|^2 ds.$$

Интегрируя по t, получим:

$$||Ax||^2 = ||y||^2 = \int_a^b |y(t)|^2 dt \le ||x||^2 \int_a^b \int_a^b |K(t,s)|^2 dt ds,$$

откуда следует, что $y \in L_2[a,b]$ и для нормы оператора A имеет место оценка, указанная в теореме. Осталось доказать, что оператор A компактен.

Пусть $\{x_n\}$ — полная ортогональная система функций в $L_2[a,b]$. Убедимся, что всевозможные попарные произведения $x_n \cdot \overline{x}_m$ образуют полную ортогональную систему функций в $L_2([a,b] \times [a,b])$.

Её ортогональность следует из того, что

$$\int_{a}^{b} \int_{a}^{b} \left[x_{n}(t) \overline{x_{m}}(s) \right] \cdot \overline{\left[x_{n_{0}}(t) \overline{x_{m_{0}}}(s) \right]} dt ds =$$

$$= \left[\int_{a}^{b} x_{n}(t) \overline{x_{n_{0}}}(t) dt \right] \cdot \left[\int_{a}^{b} x_{m_{0}}(s) \overline{x_{m}}(s) ds \right] = 0,$$

если нарушено хоть одно из равенств $n=n_0$ и $m=m_0$. Полнота же будет следовать из известного критерия полноты ортогональной системы в сепарабельном гильбертовом пространстве: ортогональная система в гильбертовом пространстве полна, если не существует нулевого вектора, ортогонального сразу

ко всем векторам системы. Преполагая, что функция $g:[a,b]\times[a,b]\to\mathbb{C}$ ортогональная любой функции $x_n\overline{x}_m$ и заменяя двойной интеграл повторным, будем иметь

$$0 = \int_{a}^{b} \int_{a}^{b} g(t,s) \overline{x_n(t)} \overline{x_m(s)} dt ds = \int_{a}^{b} \left[\int_{a}^{b} g(t,s) \overline{x_n(t)} dt \right] x_m(s) ds.$$

Поскольку это равенство справедливо при любом m, а система функций $\{x_m\}$ полна в $L_2[a,b]$, заключаем, что функция, стоящая в квадратных скобках, равняется нулю для почти всех $s \in [a,b]$:

$$\int_{a}^{b} g(t,s)\overline{x}_{n}(t)dt = 0.$$

По той же причине g(t,s)=0 для почти всех t и s, а значит, g равняется нулю как элемент пространства $L_2([a,b]\times[a,b])$. Но тогда, в силу критерия полноты, система $\{x_n\overline{x}_m\}$ полна.

Поскольку система $\{x_n\overline{x}_m\}$ полна в $L_2([a,b]\times[a,b])$, то ядро K, как и всякая другая функция из $L_2([a,b]\times[a,b])$, может быть разложено по этой системе:

$$K(t,s) = \sum_{m,n=1}^{\infty} a_{mn} x_n(t) \overline{x}_m(s).$$

Для каждого натурального числа N положим

$$K_N(t,s) = \sum_{m,n=1}^{N} a_{mn} x_n(t) \overline{x}_m(s)$$

и обозначим через A_N оператор, определяемый ядром K_N .

Нам потребуются следующие свойства оператора A_N :

- а) оператор A_N ограничен;
- b) оператор A_N отображает $L_2[a,b]$ в некоторое конечномерное пространство;
- c) $||A A_N|| \to 0$ при $N \to \infty$.

Ввиду неравенства (1), свойство (а) очевидно. Свойство (б) следует из того, что для любого $x\in L_2[a,b]$ функция A_Nx является линейной комбинацией функций x_1,x_2,\ldots,x_N :

$$(A_N x)(t) = \int_a^b K_N(t, s) x(s) ds = \sum_{m, n=1}^N a_{mn} x_n(t) \int_a^b \overline{x}_m(s) x(s) ds = \sum_{n=1}^N \alpha_n x_n(t),$$

Наконец, чтобы доказать свойство (в), применим неравенство (1) к оператору $A-A_N$:

$$||A - A_N||^2 \le \int_a^b \int_a^b |K(t, s) - K_N(t, s)|^2 dt ds = ||K - K_N||^2,$$

и заметим, что $||K-K_N||\to 0$ при $N\to \infty$ в силу определения сходимости ряда

$$K(t,s) = \sum_{m,n=1}^{\infty} a_{mn} x_n(t) \overline{x}_m(s).$$

Теперь всё готово для доказательства компактности оператора A. Изучая общие свойства линейных операторов, отображающих гильбертово пространство H в гильбертово пространство H_1 , мы видели, что если пространство H_1 конечномерно, что линейный оператор $H \to H_1$ компактен тогда и только тогда, когда он ограничен. Поэтому из свойств (а) и (б) следует, что оператор A_N компактен. Но поскольку мы знаем, что предел последовательности компактных операторов обязательно является компактным оператором, то, в силу свойства (в), мы заключаем, что A компактен. Теорема доказана.

Теорема (об операторе, сопряжённом оператору Гильберта — Шмидта) Если A — оператор Гильберта — Шмидта, с ядром K(t,s), то сопряжённый ему оператор A^* также является оператором Гильберта — Шмидта с ядром $K^*(t,s) = \overline{K(s,t)}$, где черта означает комплексное сопряжение.

Доказательство

Покажем, что для оператора $(By)(t) = \int_a^b \overline{K(s,t)}y(s)ds$ и для любых $x,y \in L_2[a,b]$ выполнено равенство (Ax,y) = (x,By) (т. е. $B=A^*$):

$$(Ax,y) = \int_{a}^{b} \left[\int_{a}^{b} K(t,s)x(s)ds \right] \overline{y(t)}dt = \int_{a}^{b} \left[\int_{a}^{b} K(t,s)\overline{y(t)}dt \right] x(s)ds =$$

$$= \int_{a}^{b} \overline{\left[\int_{a}^{b} \overline{K(s,t)}y(s)ds \right]} x(t)dt = (x,By).$$

Задача

10. Доказать, что при $\alpha > -\frac{1}{2}, \, \gamma > 0$ и $\beta > \frac{\alpha}{2} - 1$ является компактным в пространстве $L_2[0,1]$ оператор A, заданный формулой

$$(ax)(t) = \int_{0}^{1} t^{\alpha} s^{\beta} x(s^{\gamma}) ds, \qquad t \in [0, 1].$$

Является ли A оператором Гильберта — Шмидта? Опишите образ оператора A.

§3. Решение уравнений с вырожденным ядром

В этом параграфе мы рассмотрим один метод решения интегрального уравнения Фредгольма второго рода

$$x(t) = \int_{a}^{b} K(t,s)x(s)ds + f(t), \qquad (2)$$

ядро K которого имеет вид

$$K(t,s) = \sum_{j=1}^{n} P_j(t)Q_j(s),$$
 (3)

где $P_j:[a,b]\to\mathbb{C},\ Q_j:[a,b]\to\mathbb{C}$ — некоторые функции, квадрат модуля которых интегрируем на отрезке [a,b].

Ядро вида (3) называется *вырожденным*. Мы покажем, что решение уравнения Фредгольма второго рода с вырожденным ядром может быть сведено к решению некоторой линейной системы алгебраических уравнений.

Прежде всего заметим, что без ограничения общности можем считать функции P_j в разложении (3) линейно независимыми: в противном случае мы бы выделили среди P_j максимальное число линейно независимых, выразили бы остальные P_j линейно через независимые и, перегруппировав слагаемые, вновь получили бы выражение вида (3), но теперь в нем все P_j были бы линейно независимы.

Подставив в уравнение (2) вместо K(t,s) его выражение (3), получим

$$x(t) = \sum_{j=1}^{n} P_j(t) \int_{s}^{b} Q_j(s)x(s)ds + f(t)$$

или

$$x(t) = \sum_{j=1}^{n} q_j P_j(t) + f(t), \tag{4}$$

где введено обозначение

$$q_j = \int_a^b Q_j(s)x(s)ds.$$

Смысл равенства (4) в том, что теперь мы знаем вид решения «с точностью до неопределенных коэффициентов q_j », для нахождения которых подставим (4) в уравнение (2):

$$\sum_{j=1}^{n} q_j P_j(t) + f(t) = \sum_{j=1}^{n} P_j(t) \int_{a}^{b} Q_j(s) \left[\sum_{k=1}^{n} q_k P_k(s) + f(s) \right] ds + f(t).$$

Вводя обозначение

$$a_{jk} = \int_{a}^{b} Q_j(s)P_k(s)ds, \qquad b_j = \int_{a}^{b} Q_j(s)f(s)ds,$$

перепишем последнее равенство так:

$$\sum_{j=1}^{n} q_{j} P_{j}(t) = \sum_{j=1}^{n} P_{j}(t) \Big[\sum_{k=1}^{n} a_{jk} q_{k} + b_{j} \Big].$$

Ввиду линейной независимости функций P_j , это равенство возможно лишь в случае совпадения коэффициентов при P_j в его левой и правой частях:

$$q_j = \sum_{k=1}^n a_{jk} q_k + b_j, \qquad j = 1, \dots, n.$$
 (5)

Таким образом, мы получили для коэффициентов q_j систему линейных алгебраических уравнений, решив которую с помощью формулы (4) найдём функцию x, заведомо удовлетворяющую интегральному уравнению (2): ведь все выкладки, с помощью которых мы пришли от уравнения (2) к системе (5), можно проделать в обратном порядке.

В заключение отметим, что если ядро уравнения (2) не вырождено, то, разлагая его в ряд Тейлора или ряд Фурье и удерживая конечное число слагаемых, получим уравнение с вырожденным ядром, решения которого повидимому приближенно совпадают с решениями исходного уравнения. С деталями основанного на этой идее приближенного метода решения интегральных уравнений Фредгольма можно ознакомиться по книге Л. В. Канторовича и В. И. Крылова «Приближенные методы высшего анализа».

Задачи

Найти все решения уравнения Фредгольма 2-го рода с вырожденным ядром

11.
$$x(t) - \frac{1}{\pi} \int_{0}^{2\pi} \cos(t) \sin sx(s) ds = \sin t.$$

12.
$$x(t) - \frac{2e}{e^2 - 1} \int_0^1 \cot tx(s) ds = 1.$$

13.
$$x(t) - \frac{24}{7} \int_{0}^{1} (1 - t^2)(1 - \frac{3}{2}s)x(s)ds = t$$
.

14.
$$x(t) - \int_{0}^{1} (2t - s)x(s)ds = \cos 2\pi t$$
.

15.
$$x(t) - \int_{-1}^{1} \left(\frac{3}{2}ts + t^2(s-1)\right)x(s)ds = 0.$$

16.
$$x(t) - \frac{4}{\pi} \int_{0}^{\pi} \cos(t-s)^2 x(s) ds = \sin 2t$$
.

17.
$$x(t) - \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t - s) x(s) ds = 0.$$

18.
$$x(t) - 3 \int_{0}^{1} (t^2s^2 + 4ts + 1)x(s)ds = 2\pi^2\cos 2\pi t.$$

§4. Альтернатива Фредгольма

Пусть H — гильбертово пространство, $A:H\to H$ — линейный компактный оператор, A^* — его сопряжённый. Разрешимость уравнения (н)

$$x - Ax = f$$

устанавливается с помощью однородного уравнения (о)

$$x - Ax = 0$$

сопряженного уравнения (сн)

$$y - A^*y = g$$

и однородного сопряженного уравнения (со)

$$y - A^*y = 0$$

следующей теоремой:

Теорема (альтернатива Фредгольма)

Для уравнения (н) возможны два случая:

I. Однородное уравнение (о) имеет только нулевое решение. При этом однородное сопряженное уравнение (со) также имеет только нулевое решение, а уравнение (н) и (сн) имеют и ровно одно решение для любой правой части.

II. Однородное уравнение (о) имеет n линейно независимых решений x_1,\ldots,x_n . При этом однородное сопряженное уравнение (со) также имеет n линейно независимых решений y_1,\ldots,y_n , а для разрешимости уравнения (н) необходимо и достаточно, чтобы для каждого $k=1,\ldots,n$ (y_k,f) = 0. При выполнении последних условий общее решение уравнения (н) имеет вид

$$x = x_0 + c_1 x_1 + \ldots + c_n x_n$$

где x_0 — частное решение неоднородного уравнения (н), а c_k — произвольные постоянные.

Обратим внимание на то, что альтернатива Фредгольма, в частности, утверждает, что уравнение (н) не может иметь бесконечного числа линейно независимых решений.

Поскольку оператор Гильберта — Шмидта компактен, то не вызывает сомнений, что альтернатива Фредгольма имеет прямое отношение к интегральным уравнениям.

Доказательство альтернативы Фредгольма мы проведем только для оператора Гильберта — Шмидта с вырожденным ядром

$$K(t,s) = \sum_{j=1}^{m} P_j(t)Q_j(s).$$

В соответствии с результатами предыдущего параграфа, решение уравнения (н) эквивалентно решению следующей линейной системы алгебраических уравнений:

$$q_j - \sum_{k=1}^m a_{jk} q_k = b_j, \qquad j = 1, \dots, m,$$
 (6)

где $a_{jk}=\int\limits_a^bQ_j(s)P_k(s)ds, \qquad b_j=\int\limits_a^bQ_j(s)f(s)ds.$ Ясно, что при этом решение однородного уравнения (о) эквивалентно решению соответствующей однородной системы:

$$q_j - \sum_{k=1}^m a_{jk} q_k = 0, \qquad j = 1, ..., m.$$
 (7)

С другой стороны, в силу $\S 2$, сопряженный к A оператор будет задаваться ядром:

$$K^*(t,s) = \sum_{i=1}^{m} \overline{Q_j(t)} \cdot \overline{P_j(s)}.$$

Поэтому вопрос о разрешимости и числе решений уравнений (сн) и (со) эквивалентен такому же вопросу для систем

$$p_j - \sum_{k=1}^m \overline{a_{kj}} p_k = c_j, \qquad j = 1, \dots, m,$$
(8)

И

$$p_j - \sum_{k=1}^m \overline{a_{kj}} p_k = 0, \qquad j = 1, \dots, m,$$
 (9)

соответственно, где черта, как обычно, означает комплексное сопряжение, а

$$c_{j} = \int_{a}^{b} \overline{P_{j}(s)}g(s)ds.$$

Теперь уже легко убедиться, что для уравнений с вырожденным ядром альтернатива Фредгольма следует из хорошо известных из курса линейной алгебры свойств систем (6)-(9). В самом деле, поскольку система (7) не может иметь бесконечного числа линейно независимых решений, то для уравнения (0) есть только две возможности: либо оно имеет только нулевое решение, либо — конечное число линейно независимых решений.

Если уравнение (о) имеет только нулевое решение, то и система (7) имеет только нулевое решение, а значит, определитель матрицы $(\delta_{jk}-a_{jk})$, где δ_{jk} — символ Кронекера, отличен от нуля. Но тогда отличен от нуля и определитель эрмитово сопряженной ей матрицы $(\delta_{jk}-\overline{a_{kj}})$, следовательно, система (9) (а вместе с ней — и уравнение (со)) также имеет только нулевое решение при любой правой части.

Если же уравнение (о) имеет n линейно независимых решений $x_1,\ldots,x_n,$ то и система (7) имеет n линейно независимых решений $q^1=(q_1^1,\ldots,q_m^1),\ldots,q^n=(q_1^n,\ldots,q_m^n)$ таких, что $x_k(t)=\sum\limits_{j=1}^m q_j^k P_j(t)+f(t).$ Ранг матрицы $(\delta_{jk}-a_{jk})$ равен m-n. Но тогда и ранг эрмитово сопряженной ей матрицы $(\delta_{jk}-\overline{a_{kj}})$ равен m-n, а значит — система (9) имеет ровно n линейно независимых

Итак, в соответствии с формулой (4) предыдущего параграфа уравнение (со) имеет n линейно независимых решений y_1, \ldots, y_n , определяемых формулами

решений $p^1 = (p_1^1, \dots, p_m^1), \dots, p^n = (p_1^n, \dots, p_m^n).$

$$y_k(t) = \sum_{j=1}^{m} p_j^k \overline{Q_j(t)}, \qquad k = 1, \dots, n.$$

При этом, как известно, необходимым и достаточным условием разрешимости системы (6) является ортогональность ее правой части каждому реше-

нию системы (9):

$$\sum_{j=1}^{m} b_j \overline{p_j^k} = 0, \qquad k = 1, \dots, n.$$

Принимая во внимание, что

$$y_k(t) = \sum_{j=1}^m p_j^k \overline{Q_j(t)},$$

можем придать последнему такой вид:

$$(f, y_k) = \int_a^b f(t) \overline{y_k(t)} dt = \sum_{j=1}^m \overline{p_j^k} \int_a^b f(t) \overline{\overline{Q_j(t)}} dt = \sum_{j=1}^m b_j \overline{p_j^k} = 0$$

для любого $k = 1, \ldots, n$.

Альтернатива Фредгольма для интегрального оператора с вырожденным ядром доказана. Её доказательство в общем случае интересующиеся могут найти, например, в учебнике А. Н. Колмогорова и С. В. Фомина «Элементы теории функций и функционального анализа».

Задачи

Исследовать разрешимость уравнения с вырожденным ядром при различных значениях λ .

19.
$$x(t) - \lambda \int_{0}^{1} (1+2t)sx(s)ds = 1 - \frac{3}{2}t.$$

20.
$$x(t) - \lambda \int_{0}^{1} t(1+s)x(s)ds = t^{2}$$
.

21.
$$x(t) - \lambda \int_{-1}^{1} (t+s)x(s)ds = \frac{1}{2} + \frac{3}{2}t.$$

22.
$$x(t) - \lambda \int_{0}^{1} tx(s)ds = \sin 2\pi t$$
.

23.
$$x(t) - \lambda \int_{0}^{\pi} \sin t \cdot \cos sx(s) ds = \cos t$$
.

24.
$$x(t) - \lambda \int_{0}^{\pi} \cos(t+s)x(s)ds = 1.$$

25. Рассмотрев $\mu=\pm\sqrt{\frac{2}{\pi}}$ и $x(t)=\sqrt{\frac{\pi}{2}}e^{-at}\pm\frac{t}{a^2+t^2},\ t\geq0,\ a>0,$ доказать, что для интегрального уравнения

$$x(t) = \mu \int_{0}^{+\infty} \sin(ts)x(s)ds$$

неверно утверждение теоремы Фредгольма о конечности числа линейно независмых собственных функций однородного уравнения.

§5. Уравнения с малым параметром. Ряд Неймана. Метод последовательных приближений

При решении уравнения Фредгольма второго рода

$$x(t) = \mu \int_{a}^{b} K(t, s)x(s)ds + f(t),$$

содержащего параметр μ , оказывается полезной следующая теорема, доказанная ранее в разделе «операторы в гильбертовых пространствах».

Теорема (фон Неймана)

Если H - гильбертово пространство, $B:H\to H$ — линейный оператор такой, что $||B^m||<1$ для некоторого натурального m, то оператор $(I-B^{-1})$ существует, линеен, определен во всем пространстве H, ограничен и имеет место неравенство

$$(I-B)^{-1} = \sum_{n=0}^{\infty} B^n.$$

В самом деле, перепишем изначальное уравнение Фредгольма в операторном виде

$$x = \mu A x + f, (8)$$

где A — соответствующий оператор Гильберта — Шмидта. Учитывая ограниченность оператора Гильберта — Шмидта:

$$||A|| \le \left\{ \int_a^b \int_a^b |K(t,s)|^2 dt ds \right\}^{\frac{1}{2}} < +\infty$$

на основании теоремы фон Неймана заключаем, что для всех достаточно малых μ (а именно для $|\mu|<1/||A||)$ оператор $(I-\mu A)^{-1}$ может быть представлен в виде ряда

$$(I - \mu A)^{-1} = \sum_{n=0}^{\infty} \mu^n A^n$$

Следовательно, при $|\mu| < 1/||A||$ уравнение (8) для любого f имеет единственное решение, которое к тому же задается в виде ряда

$$x = \sum_{n=0}^{\infty} \mu^n A^n f = f + \mu A f + \mu^2 A (Af) + \dots,$$

называемого рядом Неймана.

Другими словами, при $|\mu|<1/||A||$ решение уравнения (8) может быть получено в виде ряда

$$x = \sum_{n=0}^{\infty} x^n,$$

первый член которого совпадает со свободным членом уравнения (8): $x_0 = f$, а каждый последующий член выражается через предыдущий по рекуррентной формуле $x_{n+1} = \mu A x_n$. Такой способ нахождения решения называется методом последовательных приближений.

Интуитивно ясно, что частичная сумма

$$\sum_{n=0}^{\infty} x^n$$

ряда Неймана может рассматриваться как приближенное решение уравнения (8). Это соображение действительно лежит в основе одного из распространенных приближенных методов решения интегральных уравнений, с которым можно более детально ознакомиться, например, по книге Л. В. Канторовича и В. И. Крылова «Приближённые методы высшего анализа».

При построении ряда Неймана нужно уметь находить n-ю степень A^n оператора A при любом n. Ядро оператора A^n называется повторным ядром и обозначается через K_n .

Теорема (о повторном ядре оператора Гильберта — Шмидта)

При $n=2,3,\ldots$, оператор A^n является оператором Гильберта — Шмидта и для повторных ядер справедливо соотношение

$$K_n(t,s) = \int_a^b K(t,r)K_{n-1}(r,s)dr.$$

Доказательство

При каждом $n=2,3,\ldots$, наша формула вытекает из следующего вычисления:

$$\int\limits_a^b K_n(t,s)x(s)ds=(A^nx)(t)=A(A^{n-1}x)(t)=$$

$$= \int_{a}^{b} K(t,r) [A^{n-1}x](r) dr = \int_{a}^{b} K(t,r) \left[\int_{a}^{b} K_{n-1}(r,s)x(s) ds \right] dr =$$

$$= \int_{a}^{b} \left[\int_{a}^{b} K(t,r)K_{n-1}(r,s) dr \right] x(s) ds.$$

Кроме того,

$$\int_{a}^{b} \int_{a}^{b} |K(t,s)|^{2} dt ds = \int_{a}^{b} \int_{a}^{b} \left| \int_{a}^{b} K(t,r) K_{n-1}(r,s) dr \right|^{2} dt ds \le$$

$$\leq \int_{a}^{b} \int_{a}^{b} \left(\int_{a}^{b} |K(t,r)|^{2} dr \cdot \int_{a}^{b} |K_{n-1}(r,s)|^{2} dr \right) dt ds =$$

$$= \int_{a}^{b} \int_{a}^{b} |K(t,r)|^{2} dr dt \cdot \int_{a}^{b} \int_{a}^{b} |K_{n-1}(r,s)|^{2} dr ds < +\infty.$$

Теорема доказана.

Теперь мы можем записать ряд Неймана

$$x = \sum_{n=0}^{\infty} \mu^n A^n f$$

в виде интегрального оператора

$$x(t) = \sum_{n=0}^{\infty} \mu^n \int_{a}^{b} K_n(t, s) f(s) ds = \int_{a}^{b} R(t, s; \mu) f(s) ds,$$
 (9)

где использовано обозначение

$$R(t, s; \mu) = \sum_{n=0}^{\infty} \mu^n K_n(t, s).$$

Интегральный оператор (9) называется pезольвентой изначального интегрального оператора A, а функция R - его pезольвентным ядром.

Задачи

26. Доказать, что если ядро K симметрично (т. е. удовлетворяет условию $K(t,s)=\overline{K(t,s)}$), то каждое повторное ядро K_n также симметрично.

Найти повторные ядра и резольвенту, а также представить через резольвенту решение следующих интегральных уравнений:

27.
$$x(t) - \frac{1}{2\pi} \int_{0}^{\pi} x(s) ds = \sin t;$$

28.
$$x(t) + \pi \int_{0}^{1} t \sin(2\pi s) \cdot x(s) ds = \cos 2\pi t;$$

29.
$$x(t) - \frac{1}{2} \int_{0}^{1} te^{3}x(s)ds = e^{-t};$$

30.
$$x(t) - \int_{0}^{\pi/2} \sin t \cos sx(s) ds = 1;$$

31.
$$x(t) - \frac{\ln 2}{2} \int_{0}^{1} 2^{t+s} x(s) ds = t$$
.

§6. Интегральные уравнения с симметричными ядрами

Рассмотрим однородное уравнение Фредгольма второго рода

$$x(t) = \mu \int_{a}^{b} K(t, s)x(s)ds. \tag{10}$$

Будем записывать его в операторном виде $x = \mu Ax$, где $x \in L_2[a,b]$, а оператор Гильберта — Шмидта A отображает Гильбертово пространство $L_2[a,b]$ в себя. Как мы знаем, оператор A компактен и, кроме того, является самосопряженным, если $K(t,s) = \overline{K(s,t)}$ (при выполнении последнего условия ядро называется симметричным).

Напомним, что в разделе «Операторы в гильбертовых пространствах» мы назвали ненулевой вектор $x\in H$ собственным вектором оператора B, отображающего гильбертово пространство H в себя, если $Bx=\lambda x$ для некоторого комплексного числа λ , называемого в этом случае собственным значением оператора B. В отличие от этого, в теории интегральных уравнений функцию $x\in L_2[a,b]$, не равную нулю тождественно, принято называть собственной функцией интегрального уравнения (10) (или собственной функцией уравнения $x=\mu Ax$ или собственной функцией ядра K), если имеет место равенство

$$x(t) = \mu \int_{a}^{b} K(t, s) x(s) ds$$

или $x = \mu A x$ для некоторого комплексного числа μ , называемого при этом собственным значением интегрального уравнения (10) (или собственным значением уравнения $x = \mu A x$ или собственным значением ядра K).

Короче говоря, мы можем сказать, что если $\lambda \neq 0$ является собственным значением оператора A, то число $\mu = 1/\lambda$ является собственным значением уравнения $x = \mu Ax$.

Напомним некоторые свойства собственных чисел и собственных векторов оператора $B: H \to H,$ доказанные в разделе «Операторы в гильбертовых пространствах»:

- 1. Число линейно независимых векторов, отвечающих данному собственному значению $\lambda \neq 0$ компактного оператора B, конечно.
- 2. Для любого $\varepsilon>0$ число собственных значений оператора B, удовлетворяющих неравенству $|\lambda|>\varepsilon,$ конечно.
- 3. Собственные значения компактного оператора B можно пронумеровать в порядке невозрастания модулей $|\lambda_1| \geq |\lambda_2| \geq \cdots$.
- 4. Все собственные числа компактного самосопряженного оператора B вещественны.
- 5. Любые два собственных вектора самосопряженного компактного оператора B, отвечающие его различным собственным значениям, ортогональны.
- 6. Каждый ненулевой компактный самосопряженный оператор B имеет по крайней мере одно собственное число, отличное от нуля.

Следующие свойства собственных чисел и собственных функций интегрального уравнения $x = \mu Ax$ непосредственно вытекают из свойств (1) — (6) и в доказательстве не нуждаются:

- і. Число линейно независимых собственных функций, отвечающих данному собственному значению μ интегрального уравнения $x=\mu Ax$, конечно.
- іі. Для любого $\varepsilon>0$ число собственных значений интегрального уравнения $x=\mu Ax$, удовлетворяющих неравенству $|\mu|<\varepsilon$, конечно.
- ііі. Собственные значения интегрального уравнения $x = \mu Ax$ можно пронумеровать в порядке неубывания модулей: $|\mu_1| \leq |\mu_2| \leq \cdots$.
- iv. Все собственные значения интегрального уравнения $x = \mu Ax$ с симметричным ядром вещественны.

- v. Любые две собственные функции интегрального уравнения $x = \mu Ax$ с симметричным ядром, отвечающие его различным собственным значениям, ортогональны.
- vi. Всякое интегральное уравнение $x = \mu Ax$ с симметричным ядром имеет по крайней мере одно собственное значение.

Задачи

Найти собственные значения и собственные функции интегрального уравнения с вырожденным ядром:

32.
$$x(t) - \mu \int_{0}^{1} (1+2t)sx(s)ds = 0;$$
 33. $x(t) - \mu \int_{0}^{1} (t+s)x(s)ds = 0;$ 34. $x(t) - \mu \int_{0}^{1} \cos(t-s)x(s)ds = 0;$

Найти собственные значения и собственные функции интегрального уравнения

$$x(t) - \mu \int_{a}^{b} K(t, s)x(s)ds = 0$$

с симметричным ядром, сводя его к краевой задаче для обыкновенного дифференциального уравнения:

35.
$$K(t,s) = \begin{cases} (s-1)t, & 0 \le t \le s; \\ s(t-1), & s \le t \le 1. \end{cases}$$

36.
$$K(t,s) = \begin{cases} -t, & 0 \le t \le s; \\ -s, & s \le t \le 1. \end{cases}$$

37.
$$K(t,s) = \begin{cases} \sin s \cos t, & 0 \le t \le s; \\ \cos s \sin t, & s \le t \le 1. \end{cases}$$

38.
$$K(t,s) = \frac{1}{2}\sin|t-s|, \quad a = 0, \quad b = \pi.$$

§7. Теорема Гильберта — Шмидта для интегральных операторов. Разложение решения интегрального уравнения по собственным функциям ядра

Напомним, что наиболее важное свойство собственных функций самосопряжённого компактного оператор даётся следующей теоремой Гильберта — Шмидта: если H — гильбертово пространство и $B: H \to H$ самосопряженный компактный оператор, то в H существует ортонормированный базис,

состоящий из собственных векторов оператора B. Чтобы сформулировать аналогичную теорему для интегрального уравнения $x=\mu Ax$ с симметричным ядром, примем следующие соглашения.

Всюду в §7 и 8 мы будем считать, что последовательность x_1, \ldots, x_n собственных функций уравнения $x = \mu Ax$ с симметричным ядром является ортонормированной. Это не ограничивает общности рассуждений, так как в силу свойства (v) из предыдущего параграфа, собственные функции, отвечающие различным собственным значениям, заведомо ортогональны. Что же касается собственных функций, отвечающих одному и тому же собственному значению, то они, очевидно, лежат в некотором подпространстве и мы можем заменить их произвольным ортонормированным базисом этого подпространства, построенным, например, с помощью процедуры ортогонализации Грама — Шмидта.

Кроме того, нам будет удобно использовать следующее

Определение

Говорят, что функция $f\in L_2[a,b]$ представима через ядро $K\in L_2([a,b]\times [a,b]),$ если существует функция $g\in L_2[a,b]$ такая, что

$$f(t) = \int_{a}^{b} K(t, s)g(s)ds,$$

т. е. если f лежит в образе оператора Γ ильберта — Шмидта с ядром K.

Теорема (Гильберта — Шмидта для интегральных уравнений с симметричным ядром)

Если $f \in L_2[a,b]$ представима через симметричное ядро $K \in L_2([a,b] \times [a,b])$, то она может быть разложена в ряд

$$f(t) = \sum_{n} f_n x_n(t), \tag{11}$$

где x_1,\ldots,x_n,\ldots — ортонормированная последовательность собственных функций уравнения (10), а коэффициенты f_n задаются равенствами

$$f_n = \int_a^b f(t)x_n(t)dt.$$

Замечания

1. И в теореме и в определении речь идёт о равенстве функций в пространстве $L_2[a,b]$, а не о их совпадении при каждом t из [a,b].

2. В равенстве (11) суммирование по n может вестись как по конечному, так и по бесконечному множеству. В последнем сумма понимается как сумма бесконечного числа элементов гильбертова пространства $L_2[a,b]$.

Доказательство

Запишем интегральное уравнение (10) в виде $x = \mu Ax$ и обозначим через H образ оператора A. Фактически надо доказать, что в H существует ортонормированный базис из собственных функций уравнения $x = \mu Ax$.

Поскольку A является оператором Гильберта — Шмидта с симметричным ядром, то A компактен и самосопряжён. Значит, в $L_2[a,b]$ существует ортонормированный базис x_1,\ldots,x_n,\ldots из собственных векторов оператора A. Обозначим через λ_n собственное значение оператора, соответствующее собственному вектору $x_n:Ax_n=\lambda_nx_n$. Из последовательности x_1,\ldots,x_n,\ldots выберем подпоследовательность $x_{n_1},\ldots,x_{n_j},\ldots$ векторов, лежащих в H. Отметим, что векторы $x_{n_1},\ldots,x_{n_j},\ldots$ образуют базис в H и в зависимости от размерности H их число может быть конечно или бесконечно.

Убедимся, что теперь ни при каком значении j число λ_{n_j} не может равняться нулю. В самом деле, допустив противное, получим, что ненулевой вектор x_{n_j} удовлетворяет соотношениям $Ax_{n_j} = \lambda_{n_j} x_{n_j} = 0$. С другой стороны, поскольку $x_{n_j} \in H$, то найдется вектор $y \in L_2[a,b]$ такой, что $Ay = x_{n_j}$. Тогда, воспользовавшись самосопряженностью оператора A, будем иметь:

$$||x_{n_j}||^2 = (x_{n_j}, x_{n_j}) = (x_{n_j}, Ay) = (Ax_{n_j}, y) = (0, y) = 0,$$

а значит, $x_{n_j}=0$. Полученное противоречие и доказывает, что $\lambda_{n_j}\neq 0$.

Учитывая, что $\lambda_{n_j} \neq 0$, мы можем переписать равенство $Ax_{n_j} = \lambda_{n_j}x_{n_j}$ в виде $x_{n_j} = (1/\lambda_{n_j})Ax_{n_j}$, а значит, можем утверждать, что последовательность $x_{n_1},\ldots,x_{n_j},\ldots$ является ортонормированной последовательностью собственных функций уравнения $x = \mu Ax$.

Поскольку $x_{n_1},\dots,x_{n_j},\dots$ образуют базис в H, а функция f представима через ядро K оператора A, т. е. $f\in H$, то найдутся комплексные числа f_j такие, что

$$f = \sum_{j} f_j x_{n_j},$$

с точностью до обозначений совпадает с формулой (11). Чтобы найти выражение для f_m , достаточно, как обычно, умножить последнее равенство скалярно на x_{n_m} и воспользоваться ортонормированностью последовательности $x_{n_1},\ldots,x_{n_i},\ldots$:

$$\int_{a}^{b} f(t)x_{n_m}(t)dt = (f, x_{n_m}) = \sum_{j} f_j(x_{n_j}, x_{n_m}) = f_m.$$

Теорема доказана.

Применим доказанную теорему к решению неоднородного уравнения $x=\mu Ax+f$, где A — интегральный оператор Гильберта — Шмидта с симметричным ядром K.

Если x является его решением, то $x-f=\mu Ax$, и это значит, функция x-f представима через ядро K. поэтому она может быть разложена в ряд по ортонормированной последовательности x_1,\ldots,x_n,\ldots собственных функций однородного уравнения $=\mu Ax$:

$$x - f = \sum_{n} a_n x_n. \tag{12}$$

Подставив это разложение для x в первоначальное уравнение и учитывая, что $x_n = \mu_n A x_n$, получим:

$$f + \sum_{n} a_n x_n = x = \mu A x + f = \mu \sum_{n} \mu_n^{-1} a_n x_n + \mu A f + f$$

или

$$\sum_{n} \left(a_n - \frac{\mu}{\mu_n} a_n \right) x_n = \mu A f.$$

Поскольку функция Af, очевидно, представима через ядро K, то она тоже разлагается в ряд по функциям x_1, \ldots, x_n, \ldots , коэффициенты которого обозначим через b_n :

$$Af = \sum_{n} b_n x_n, \qquad b_n = \int_a^b (Af)(t) x_n(t) dt.$$

Значит,

$$\sum_{n} \left(a_n - \frac{\mu}{\mu_n} a_n - \mu b_n \right) x_n = 0.$$

Откуда, учитывая линейную независимость функций x_1, \dots, x_n, \dots , находим

$$a_n = \mu \frac{\mu_n b_n}{\mu_n - \mu}.$$

Подставляя это выражение в формулу (12), получим:

$$x(t) = f(t) + \mu \sum_{n} \frac{\mu_n}{\mu_n - \mu} b_n x_n(t).$$

Наконец, воспользовавшись результатами следующего вычисления

$$b_n = \int_a^b (Af)(t)x_n(t)dt = \int_a^b \left[\int_a^b K(t,s)f(s)ds\right]x_n(t)dt =$$

$$=\int\limits_a^b\left[\int\limits_a^bK(t,s)x_n(t)dt\right]f(s)ds=\int\limits_a^b(Ax_n)(s)f(s)ds=\mu_n^{-1}\int\limits_a^bx_n(s)f(s)ds,$$

получим формулу

$$x(t) = f(t) + \mu \sum_{n} \frac{x_n(t)}{\mu_n - \mu} \int_{a}^{b} x_n(s) f(s) ds,$$
 (13)

называемую разложением решения интегрального уравнения $x = \mu Ax + f$ по собственным функциям ядра. Она позволяет предъявить решение неоднородного уравнения, если известны все решение соответствующего однородного. Иногда говорят, что решение (13) получено методом Гильберта — Шмидта.

Задачи

- 39. Объясните, почему при f = 0 формула (13) теряет смысл.
- 40. Повторяя рассуждения настоящего параграфа, выясните, как изменится формула (13) для $f \neq 0$ в случае, если параметр μ равен одному из собственных значений μ_n однородного уравнения $x = \mu Ax$. Сравните полученный результат с теоремой Фредгольма.
- 41. Решить интегральное уравнение

$$x(t) = \frac{1}{2} \int_{-1}^{1} (t+s)x(s)ds$$

методом Γ ильберта — Шмидта.

Воспользовавшись результатами решения задач 35 — 38, найти решения неоднородных уравнений Фредгольма с симметричными ядрами при различных значениях μ :

42.
$$x(t) - \mu \int_{0}^{1} K(t, s) x(s) ds = 1,$$
 $K(t, s) = \begin{cases} (s - 1)t, & 0 \le t \le s; \\ s(t - 1), & s \le t \le 1. \end{cases}$

43.
$$x(t) - \mu \int_{0}^{1} K(t,s)x(s)ds = \sin \pi t \cos \frac{\pi}{2}t, \qquad K(t,s) = \begin{cases} -t, & 0 \le t \le s; \\ -s, & s \le t \le 1. \end{cases}$$

44.
$$x(t) - \mu \int_0^{\pi} K(t,s)x(s)ds = t - \pi$$
, $K(t,s) = \begin{cases} \sin s \cos t, & 0 \le t \le s; \\ \cos s \sin t, & s \le t \le 1. \end{cases}$

45.
$$x(t) - \mu \int_{0}^{\pi} \frac{1}{2} \sin|t - s| x(s) ds = 1.$$

§8. Разложение повторного ядра интегрального оператора по его собственным функциям. Билинейная формула

Дополним теорему Гильберта — Шмидта более специальными предложениями, справедливыми только для интегральных операторов.

Будем считать, что нам задано симметричное ядро $K \in L_2([a,b] \times [a,b])$. Соответствующий ему оператор Гильберта — Шмидта обозначим, как обычно, через A. Будем считать, что нам известнен базис из ортонормированных собственных функций x_1, \ldots, x_n, \ldots оператора A и соответствующие им собственные значения $\lambda_1, \ldots, \lambda_n, \ldots$ оператора A.

Как обычно, через K_n обозначим повторное ядро, соответствующее K.

Теорема (о разложении ядра или билинейная формула)

Для симметричного ядра K при каждом $n \geq 1$ в пространстве $L_2([a,b] \times [a,b])$ имеет место равенство

$$K_n(t,s) = \sum_{j=1}^{\infty} \lambda_j^n x_j(t) \overline{x_j(s)}.$$
 (14)

Доказательство

Как мы знаем из доказательства теоремы 1 из §2, если последовательность x_1,\ldots,x_n,\ldots образует ортонормированный базис в $L_2[a,b]$, то последовательность, составленная из всевозможных попарных произведений $x_m(t)\overline{x_n(s)}$ образует ортонормированный базис в пространстве $L_2([a,b]\times[a,b])$. Поэтому, как всякая функция $L_2([a,b]\times[a,b])$, K_n может быть разложено в ряд Фурье по этому базису:

$$K_n(t,s) = \sum_{j,k=1}^{\infty} (K_n, x_j \overline{x_k}) x_j(t) \overline{x_k(s)}$$
(15)

и нам остается найти коэффициенты этого разложения:

$$(K_n, x_j \overline{x_k}) = \int_a^b \int_a^b K_n(t, s) \overline{x_j(t)} \overline{x_k(s)} dt ds = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^b K_n(t, s) x_k(s) ds \right] \overline{x_j(t)} dt = \int_a^b \left[\int_a^$$

$$= \int_a^b (A^n x_k)(t) \overline{x_j(t)} dt = (A^n x_k, x_j) = \lambda_k (A^{n-1} x_k, x_j) = \dots = \lambda_k^n (x_k, x_j) = \lambda_k^n \delta_{kj},$$

где δ_{ij} — символ Кронеккера. Подставляя найденное значение в формулу (15), получим разложение (14). Теорема доказана.

В разложении (14) мы, очевидно, можем вести суммирование только по тем индексам j, для которых $\lambda_j \neq 0$. С другой стороны, очевидно, что если x_j является собственным вектором оператора A, соответствующим собственному значению $\lambda_j \neq 0$, то эта же самая функция x_j является собственной функцией уравнения $x = \mu A x$, соответствующей собственному значению $\mu_j = 1/\lambda_j$ этого уравнения. Поэтому можно переписать билинейную формулу в виде

$$K_n(t,s) = \sum_j \frac{x_j(t)\overline{x_j(s)}}{m_j^n},$$

где $n \ge 1$, а суммирование ведется по множеству индексов некоторой максимальной ортонормированной системы $\{x_j\}$ собственных функций уравнения $x = \mu Ax$. В частности, может случиться так, что последняя формула содержит лишь конечное число слагаемых.

Не останавливаясь на вопросе поточечной сходимости билинейной формулы, укажем один наиболее известный результат в этом направлении.

Теорема (Мерсера)

Если ядро K непрерывно, симметрично и все его собственные значения, за исключением конечного числа их, имеют одинаковый знак, то все собственные функции x_i ядра K непрерывны, ряд

$$\sum_{j} \frac{x_j(t)\overline{x_j(s)}}{\mu_j}$$

сходится равномерно в $[a,b] \times [a,b]$ и для всех $t \in [a,b], s \in [a,b]$ имеет метро равенство

$$K(t,s) = \sum_{j} \frac{x_{j}(t)\overline{x_{j}(s)}}{\mu_{j}}.$$

Доказательство теоремы Мерсера может быть найдено, например, в книгах А. Б. Васильевой и Н. А. Тихонова «Интегральные уравнения», Ф. Рисса и Б. Секефальви—Надя «Лекция по функциональному анализу» или в четвертом томе «Курса высшей математики», В. И. Смирнова.

Задачи

46. Докажите «легкую часть» теоремы Мерсера, касающуюся непрерывности собственных функций. А именно покажите, что если ядро K непрерывно, то все функции, представимые через ядро K, — непрерывны и выведите отсюда непрерывность собственных функций $x_j = \mu_j A x_j$.

Доказать, что при выполнении условий теоремы Мерсера имеют место следующие равенства

47.
$$\sum_{j} \frac{|x_n(t)|^2}{\mu_n^2} = \int_a^b |K(t,s)|^2 ds, \qquad t \in [a,b].$$

48.
$$\sum_{n} \frac{1}{\mu_n^2} = \int_a^b \int_a^b |K(t,s)|^2 dt ds.$$
 49. $\sum_{n} \frac{1}{\mu_n} = \int_a^b K(t,t) dt.$

§9. Применение теории интегральных операторов к задаче Штурма — Лиувилля

Оператором Штурма — Лиувилля называется линейный дифференциальный оператор

 $Ly = \frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x)y(x),$

где функция p непрерывно дифференцируема и положительна, а функция q непрерывна и неотрицательна на интервале [a,b].

Задачей Штурма — Лиувилля называется задача о нахождении тех чисел λ , для которых существует ненулевое C^1 -гладкое решение $y=y(x), x\in [a,b]$, дифференциального уравнения

$$Ly = \lambda \rho y$$

удовлетворяющее краевым условиям

$$y(a) + Ay'(a) = 0,$$
 $y(b) + By'(b) = 0.$

Здесь A и B — известные числа, а ho — известная непрерывная функция.

Значения параметра λ , при которых ненулевое решение существует, называются собственными значениями задачи Штурма — Лиувилля, а сами ненулевые решения называются собственными функциями задачи Штурма — Лиувилля. Такая терминология объясняется тем, что при $\rho \equiv 1$ речь действительно идет о собственных значениях и собственных функциях оператора L.

Определение

Функцией Грина оператора L называется такая обобщенная функция G двух переменных $x,t \in [a,b]$, которая удовлетворяет уравнению

$$-\frac{\partial}{\partial x}\left(p(x)\frac{\partial G(x,t)}{\partial x}\right) + q(x)G(x,t) = \delta(x-t)$$

для всех $x,t\in [a,b]$. Здесь δ , как обычно, обозначает дельта-функцию Дирака. Из курса обыкновенных дифференциальных уравнений известно, что

1. для оператора Штурма — Лиувилля существует функция Грина, являющаяся «обыкновенной» функцией, симметричной по переменным x и t;

2. если $\lambda=0$ не является собственным значением задачи Штурма — Лиувилля, то решение задачи

$$Ly = f$$
, $y(a) + Ay'(a) = 0$, $y(b) + By'(b) = 0$

выражается формулой

$$y(x) = \int_{a}^{b} G(x,t)f(t)dt.$$

Для полноты изложения докажем эти утверждения.

Теорема (о явном виде функции Грина)

Пусть y_1 и y_2 являются C^2 -гладкими линейно независимыми решениями уравнения Ly=0, удовлетворяющими условиям $y_1(a)+Ay_1'(a)=0$, $y_2(b)+By_2'(b)=0$. Тогда выражение

$$p(x) \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}$$
 (16)

отлично от нуля и не зависит от $x\in[a,b]$, т. е. является отличной от нуля постоянной, которую мы обозначим через 1/c. При этом функция $G:[a,b]\times[a,b]\to\mathbb{R}$, заданная формулой

$$G(x,t) = \begin{cases} Cy_1(x)y_2(t), & x < t; \\ Cy_1(t)y_2(x), & x > t, \end{cases}$$

является функцией Грина оператора L.

Доказательство

Следующее вычисление убеждает нас, что выражение (16) постоянно в [a,b]:

$$\frac{d}{dx} \left[p(x) \middle| \begin{array}{cc} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{array} \middle| \right] = p'(y_1y_2' - y_1'y_2) + p(y_1' + y_1y_2'' - y_1''y_2 - y_1'y_2') = p'(y_1y_2' - y_1'y_2') + p(y_1' + y_1y_2'' - y_1''y_2 - y_1'y_2') = p'(y_1y_2' - y_1'y_2') + p(y_1' + y_1y_2'' - y_1''y_2 - y_1'y_2') = p'(y_1y_2' - y_1'y_2') + p(y_1' + y_1y_2'' - y_1''y_2 - y_1'y_2') = p'(y_1y_2' - y_1'y_2') + p(y_1' + y_1y_2'' - y_1''y_2 - y_1'y_2') = p'(y_1y_2' - y_1'y_2' - y_1''y_2' - y_1''y_2' - y_1''y_2') = p'(y_1y_2' - y_1''y_2' - y_1''y_2' - y_1''y_2' - y_1''y_2' - y_1''y_2') = p'(y_1y_2' - y_1''y_2' - y_1''y_2'$$

$$= y_1(py_2') - y_2(py_1')' = y_2[(-py_1')' + qy_1] - y_1[(-py_2')' + qy_2] = y_2Ly_1 - y_1Ly_2 = 0.$$

Определитель, присутствующий в выражении (16), является опеределителем Вронского линейно независимых решений y_1 и y_2 и поэтому отличен от нуля. Функция p положительна по условию. Следовательно, выражение (16) отлично от нуля.

Дальнейшие вычисления проделаем на основе теоремы о связи классической и обобщенной производной кусочно-гладкой функции: если кусочно-гладкая функция f имеет разрывы в точках x_k , то её обобщенная производная f' связана c ее классической производной f'_c c помощью формулы

$$f' = f_c' + \sum_k [f]_{x_k} \delta(x - x_k),$$

где $[f]_{x_k}$ обозначает скачок функции f в точке x_k . В силу этой теоремы

$$\frac{\partial G(x,t)}{\partial x} = \left\{ \begin{array}{ll} Cy_1'(x)y_2(t), & \text{если } x < t; \\ Cy_1(t)y_2'(x), & \text{если } x > t. \end{array} \right.$$

Следовательно.

$$p(x)\frac{\partial G(x,t)}{\partial x} = \left\{ \begin{array}{ll} Cp(x)y_1'(x)y_2(t), & \text{если } x < t; \\ Cp(x)y_1(t)y_2'(x), & \text{если } x > t, \end{array} \right.$$

и, ещё раз применяя теорему, получим:

$$\begin{split} \frac{\partial}{\partial x} \left(p(x) \frac{\partial G(x,t)}{\partial x} \right) &= -Cp(x) \left| \begin{array}{cc} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{array} \right| \delta(x-t) + \\ &+ \left\{ \begin{array}{cc} C[p(x)y_1'(x)]'y_2(t), & \text{если } x < t; \\ C[p(x)y_2'(x)]'y_1(t), & \text{если } x > t. \end{array} \right. \end{split}$$

Учитывая определение постоянной C, отсюда найдем:

$$-\frac{\partial}{\partial x} \left(p(x) \frac{\partial G(x,t)}{\partial x} \right) + q(x)G(x,t) =$$

$$= \delta(x-t) + \begin{cases} C[-(p(x)y_1'(x))' + q(x)y_1(x)]y_2(t), & x < t; \\ C[-(p(x)y_2'(x))' + q(x)y_2(x)]y_1(t), & x > t. \end{cases}$$

Остается заметить, что второе слагаемое в правой части последнего равенства равно нулю, так как результат применения оператора L, к каждой из функций y_1 и y_2 , есть ноль. Теорема доказана.

Применение теории интегральных операторов к задаче Штурма — Лиувилля основано на следующей лемме.

Лемма

Если $f\in C^2[a,b]$ не является собственным значением задачи Штурма — Лиувилля, то решение $y=y(x),\,x\in[a,b],$ задачи

$$Ly = f$$
, $y(a) + Ay'(a) = 0$, $y(b) + By'(b) = 0$

существует, единственно и выражается формулой

$$y(x) = \int_{a}^{b} G(x,t)f(t)dt. \tag{17}$$

Доказательство

Существование решения обычно доказывается с помощью стандартного приема, применяемого в теории обыкновенных дифференциальных уравнений, — метода вариации постоянного вектора. Мы опустим эту часть доказательства, поскольку ничего нового добавить не сможем.

Чтобы убедиться в единственности, допустим, что нашлось два решения y_1 и y_2 нашей задачи. Тогда функция $y=y_1-y_2$ не равна нулю тождественно и удовлетворяет условиям

$$Ly = Ly_1 - Ly_2 = f - f = 0 = o \cdot y,$$

$$y(a) + Ay'(a) = y_1(a) + Ay'_1(a) + y_2(a) + Ay'_2(a) = 0,$$

$$y(b) + By'(b) = y_1(b) + By'_1(b) + y_2(b) + By'_2(a) = 0.$$

Но это означает, что $\lambda=0$ является собственным значением оператора L. Последнее противоречит условиям леммы. Единственность доказана.

Формулу (17) мы докажем, используя формализм теории обобщенных функций. Если φ — пробная функция (т. е. φ бесконечно дифференцируема и обращается в ноль в некоторой окрестности точек a и b), то, используя определения произвольной обобщенной функции: $(F',\varphi) = -(F,\varphi')$ и умножения обобщенной функции: $(aF,\varphi) = (F,a\varphi)$, можем записать:

$$(Ly,\varphi) = (-(py')' + qy,\varphi) = -((py')',\varphi) + (qy,\varphi) = (py',\varphi') + (y,q\varphi) =$$

= $(y',p\varphi') + (y,q\varphi) = -(y,(p\varphi')') + (y,q\varphi) = (y,-(p\varphi')' + q\varphi) = (y,L\varphi).$

Справедливости ради надо отметить, что равенство $(Ly,\varphi)=(y,L\varphi)$ не является для нас новым: оно выражает известный нам факт симметричности оператора Штурма — Лиувилля. Продолжая вычисления, возьмем в качестве y именно ту «обычную» функцию, которая задаётся равенством (17), так что её действие как обобщенной функции задаётся некоторым интегралом:

$$(y, L\varphi) = \left(\int_a^b G(x, t) f(t) dt, L\varphi\right) = \int_a^b \left[\int_a^b G(x, t) f(t) dt\right] (L\varphi)(x) dx =$$

$$= \int_a^b \left[\int_a^b G(x, t) (L\varphi)(x) dx\right] f(t) dt = ((G(x, t), (L\varphi)(x)), f(t)).$$

Предпоследнее равенство здесь написано на основании теоремы Фубини (докажите самостоятельно существование соответствующего двойного интеграла). Вновь используя симметричность оператора L и вспоминая определение функции Грина, будем иметь

$$((G(x,t),(L\varphi)(x)),f(t))=((LG(x,t),\varphi(x)),f(t))=$$

$$((\delta(x-t),\varphi(x)),f(t))=(\varphi(t),f(t)=(\varphi,f)).$$

Собирая воедино результаты предыдущих вычислений, получим, что если функция y задана формулой (17), то для любой пробной функции φ имеет место равенство

$$(Ly,\varphi)=(f,\varphi).$$

Это означает, что непрерывные функции Ly и f совпадают как обобщенные функции. Но тогда они совпадают и поточечно. Последнее утверждение можно обосновать, например, ссылкой на лемму Лагранжа из вариационного исчисления. Лемма доказана.

Теперь мы готовы перейти непосредственно к изложению применения теории интегральных операторов к задаче Штурма — Лиувилля.

Из только что доказанной леммы непосредственно следует, что задача Штурма — Лиувилля

$$Ly = \lambda \rho y,$$
 $y(a) + Ay'(a) = 0,$ $y(b) + By'(b) = 0$

эквивалентна интегральному уравнениею

$$y(x) = \lambda \int_{a}^{b} G(x, t)\rho(t)y(t)dt. \tag{18}$$

(Для этого нужно функцию $\lambda \rho y$ рассматривать как f).

Ядро полученного интегрального уравнения несимметрично, что не позволяет сразу в полном объеме применить теорию, развитую в предыдущих параграфах. Чтобы исправить такой недостаток, введем новую переменную

$$z(x) = \sqrt{\rho(x)y(x)}.$$

Тогда интегральное уравнение (18) примет вид

$$z(x) = \lambda \int_{a}^{b} K(x, t)z(t)dt, \tag{19}$$

где введено обозначение $K(x,t)=G(x,t)\sqrt{\rho(x)}\sqrt{\rho(x)}$. Ядро K последнего уравнения, очевидно, симметрично ввиду симметричности функции Грина G,

Последнее обстоятельство позволяет нам непосредственно использовать свойства (i) — (vi) $\S 6$ и теорему Гильберта — Шмидта для получения соответствующих свойств решений интегрального уравнения (19) и, тем самым, следующих свойств собственных функций и собственных значений задачи Штурма — Лиувилля:

- 1. Задача Штурма Лиувилля имеет бесконечное число собственных значений.
- 2. Для любого $\varepsilon > 0$ число собственных значений задачи Штурма Лиувилля, удовлетворяющих неравенству $|\lambda| < \varepsilon$, конечно.
- 3. Собственные значения задачи Штурма Лиувилля можно перенумеровать в порядке неубывания модулей: $|\lambda_1| \leq |\lambda_2| \leq \dots$
- 4. Все собственные значения задачи Штурма Лиувилля вещественны.
- 5. Любые две собственные функции y_1 и y_2 задачи Штурма Лиувилля, отвечающие её различным собственным значениям λ_1 и λ_2 , ортогональны в интервале [a,b] с весом ρ :

$$\int_{a}^{b} y_1(x)y_2(x)\rho(x)dx = 0.$$

Подчеркнем, что не всякое интегральное уравнение (19) с симметричным ядром эквивалентно хоть какой-нибудь задаче Штурма — Лиувилля. Поэтому можно ожидать, что собственные значения задачи Штурма — Лиувилля обладают какими-то дополнительными свойствами. Для примера укажем одно такое свойство. Если, как обычно, рангом собственного значения называть число линейно независимых собственных функций, ему отвечающих, то свойство (i) §6 можно сформулировать так: каждое собственное значение μ интегрального уравнения $x = \mu Ax$ имеет конечный ранг. Для задачи Штурма — Лиувилля имеет место более сильное утверждение.

Теорема

Каждое собственное значение задачи Штурма — Лиувилля имеет ранг, равный единице.

Доказательство

Допустим, что ранг собственного значения λ больше единицы. Тогда существуют по крайней мере две C^2 -гладкие линейно независимые функции y_1 и y_2 , удовлетворяющие уравнению $Ly = \lambda \rho y$ и граничным условиям y(a) + Ay'(a) = 0, y(b) + By'(b) = 0. Поскольку уравнение $Ly = \lambda \rho y$ является уравнением второго порядка, то y_1 и y_2 , как и два любые другие линейно независимые решения, образуют его фундаментальную систему решений. То есть

любое решение y=y(x) уравнения $Ly=\lambda\rho y$ является линейной комбинацией функций y_1 и y_2 и, в частности, удовлетворяет граничным условиям $y(a)+Ay'(a)=0,\ y(b)+By'(b)=0.$ Но это абсурдно, так как заведомо существует решение уравнения $Ly=\lambda\rho y$, удовлетворяющее, например, условиям $y(a)+Ay'(a)=1,\ -Ay(a)+y'(a)=1.$ Теорема доказана.

Наконец, укажем без доказательства очень важное свойство собственных функций задачи Штурма — Лиувилля, вытекающее, по сути дела, из теоремы Гильберта — Шмидта.

Теорема (Стеклова)

Если $f:[a,b]\to\mathbb{R}$ дважды непрерывно дифференцируема, причем f(a)+Af'(a)=0 и f(b)+Bf'(b)=0, то f разлагается в абсолютно и равномерно на [a,b] сходящийся ряд

$$f(x) = \sum_{n=1}^{\infty} f_n y_n(x)$$

по ортонормированным собственным функциям $y_1,...,y_n,...$ задачи Штурма — Лиувилля:

$$Ly = \lambda \rho y,$$
 $y(a) + Ay'(a) = 0,$ $y(b) + By'(b) = 0.$

При этом коэффициент f_n находится по формуле

$$f_n = \int_a^b f(x)\rho(x)y_n(x)dx.$$

Задачи

- 50. Найти функцию Грина оператора $Ly=d^2y/dx^2$ с граничными условиями $y(0)=0,\,y'(1)=0.$
- 51. Найти функцию Грина для оператора $Ly = d^2y/dx^2 + y$ с граничными условиями y(0) = 0, y'(1) = 0.
 - 52. Преобразовать дифференциальное уравнение

$$\frac{d^2y}{dx^2} - k^2y(x) - V_0\frac{e^{-x}}{x}y(x) = 0,$$

решение которого удовлетворяет граничным условиям $y(0)=y(\infty)=0,$ в интегральное уравнение Фредгольма

$$y(x) = \mu \int_{0}^{+\infty} G(x,t) \frac{e^{-t}}{t} y(t) dt.$$

Величины V_0 и k^2 постоянны. Отметим, что исходное дифференциальное уравнение получается из уравнения Шредингера с мезонным потенциалом.

53. Исходя из разложения функции Грина по собственным функциям, по-казать, что

$$\frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\sin n\pi t \cdot \sin n\pi s}{n^2} = \left\{ \begin{array}{ll} s(1-t), & \text{если } s < t; \\ t(1-s), & \text{если } s > t. \end{array} \right.$$

$$\frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{\sin{(n+\frac{1}{2})\pi t} \cdot \sin{(n+\frac{1}{2})\pi s}}{(n+\frac{1}{2})^2} = \begin{cases} s, & \text{если } s < t; \\ t, & \text{если } s > t. \end{cases}$$

§10. Интегральные уравнения Вольтерра: теорема о существовании и единственности решения

В самом начале нашего изложения, в §1, было отмечено, что решения уравнения Вольтерра обладают рядом специальных свойств, которых, вообще говоря, нет у решений уравнений Фредгольма. Чтобы обосновать это утверждение, приведём в настоящем параграфе следующую теорему, которую надо рассматривать как «противовес» альтернативе Фредгольма для уравнений Фредгольма, рассмотренной в §4.

Теорема (о существовании и единственности решения уравнения Вольтерра)

Если $K \in L_2([a,b] \times [a,b])$, то при любом μ и любой функции $f \in L_2[a,b]$, уравнение Вольтерра второго рода

$$x(t) = \mu \int_{a}^{t} K(t,s)x(s)ds + f(t), \qquad t \in [a,b],$$

имеет и притом единственное решение $x \in L_2[a,b]$, которое может быть найдено с помощью метода последовательных приближений.

Доказательство мы проведем лишь в случае, когда ядро K ограничено. Доказательство общего случая базируется на той же идее, но технически реализуется заметно сложнее. Заинтересованные читатели найдут его, например, в книге Φ . Трикоми «Интегральные уравнения».

Итак, предположим, что $|K(t,s)| \leq M$ для всех $t,s \in [a,b]$ и обозначим через A соответствущий оператор Вольтерра. Воспользовавшись неравенством Коши — Буняковского

$$\left[\int_{a}^{b} F_{1}(t) \cdot F_{2}(t)dt\right]^{2} << \int_{a}^{b} F_{1}^{2}(t)dt \cdot \int_{a}^{b} F_{2}^{2}(t)dt,$$

для $x \in L_2[a,b]$ получим:

$$[(Ax)(t)]^{2} = \left[\int_{a}^{t} K(t,s)x(s)ds\right]^{2} \le \int_{a}^{t} K^{2}(t,s)ds \cdot \int_{a}^{t} x^{2}(s)ds \le$$

$$\le (t-a)M^{2} \int_{a}^{b} x^{2}(s)ds = (t-a)M^{2}||x||^{2}.$$

Опираясь на последнее неравенство, с помощью того же приёма найдем:

$$[(A^{2}x)(t)]^{2} = \left[\int_{a}^{t} K(t,s)(Ax)(s)ds\right]^{2} \le \int_{a}^{t} K^{2}(t,s)ds \cdot \int_{a}^{t} [(Ax)(s)]^{2}ds \le (t-a)M^{2} \int_{a}^{t} (s-a)M^{2}||x||^{2}ds = \frac{(t-a)^{3}}{2}M^{4}||x||^{2}.$$

Применяя метод математической индукции, допустим, что для некоторого n выполнено неравенство

$$[(A^n x)(t)]^2 \le \frac{(t-a)^{2n+1}}{(2n)!!} M^{2n} ||x||^2$$
(20)

и докажем, что оно верно для n+1. В самом деле,

$$[(A^{n+1}x)(t)]^{2} = \left[\int_{a}^{t} K(t,s)(A^{n}x)(s)ds\right]^{2} \le \int_{a}^{t} K^{2}(t,s)ds \cdot \int_{a}^{t} [(A^{n}x)(s)]^{2}ds \le (t-a)M^{2} \int_{a}^{t} \frac{(s-a)^{2n+1}}{(2n)!!} M^{2n}||x||^{2}ds = \frac{(t-a)^{2n+3}}{(2n)!!(2n+2)} M^{2n+2}||x||^{2}.$$

Значит, неравенство (20) выполнено для любого n. Поэтому для любого n имеем

$$||A^n x||^2 = \int_a^b [(A^n x)(t)]^2 dt \le \frac{M^{2n} ||x||^2}{(2n+2)!!} (b-a)^{2n+2}.$$

Отсюда вытекает следующая оценка для нормы оператора $\mu^n A^n$:

$$||\mu^n A^n|| = \sup_{x \in L_2[a,b]} \frac{||\mu^n A^n x||}{||x||} \le |\mu|^n \frac{M^n (b-a)^{n+1}}{\sqrt{(2n+2)!!}} =$$

$$= \left[\frac{|\mu|M(b-a)}{\sqrt{2}}\right]^n \frac{1}{\sqrt{(n+1)!}}.$$

Поскольку для любого $\alpha > 0$

$$\lim_{n \to +\infty} \frac{\alpha^n}{n!} = 0,$$

то при любых значениях параметров $\mu,\,M,\,a$ и b найдется такое число n, что последнее выражение будет меньше единицы. Но тогда для этого номера n будем иметь

$$||\mu^n A^n|| < 1.$$

Следовательно, по теореме Фон Неймана, цитированной в §5, оператор $I-\mu A$ обратим. Но это и означает, что исходное уравнение Вольтерра, переписанное в операторной форме $x=\mu Ax+f$ или $(I-\mu A)x=f$, имеет и ровно одно решение, задаваемое равенством $x=(I-\mu A)^{-1}f=\sum_{n=0}^{\infty}\mu^n A^n f$. Теорема Доказана.

Задачи

Используя метод последовательных приближений, решить уравнения:

54.
$$x(t) = \mu \int_{0}^{t} sx(s)ds + 1;$$
 55. $x(t) = \mu \int_{0}^{t} (s - t)x(s)ds + t.$

56. Решить уравнение

$$x(s) = \int_{0}^{t} (t - s)x(s)ds + t^{2}$$

следующими тремя различными способами: а) сведением к дифференциальному уравнению; б) методом последовательных приближений; в) найти резольвенту и, таким образом, решить уравнение.

Используя преобразование Лапласа, решить интегральные уравнения Вольтерра:

57.
$$x(t) - 2 \int_{0}^{t} \cos(t - s) x(s) ds = e^{t}, \quad t > 0;$$

58.
$$x(t) - \int_{0}^{t} e^{-2(t-s)}x(s)ds = 1+t, \quad t > 0;$$

59.
$$\int_{0}^{t} e^{t-s} x(s) ds = t$$
.

Оглавление

П	[редисловие
	Интегральные уравнения Фредгольма и Вольтерра и примеры задач, к ним приводящих
§2.	Интегральный оператор Гильберта — Шмидта
§3.	Решение уравнений с вырожденным ядром
§4.	Альтернатива Фредгольма
§5.	Уравнения с малым параметром. Ряд Неймана. Метод последовательных приближений
§6.	Интегральные уравнения с симметричными ядрами
§7.	Теорема Гильберта — Шмидта для интегральных операторов. Разложение решения интегрального уравнения по собственным функциям ядра
§8.	Разложение повторного ядра интегрального оператора по его собственным функциям. Билинейная формула
§9.	Применение теории интегральных операторов к задаче Штурма — Лиувилля
§10.	Интегральные уравнения Вольтерра: теорема о существовании и единственности решения