Nombres complexes compléments n°2

Exercice 1

Dans le plan complexe muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) , soit M un point d'affixe z, z différent de 2-i et les points A(-3+4i), B(2-i) On considère le nombre complexe z' tel

que:
$$z' = \frac{iz+4+3i}{z-2+i}$$

- 1. Donner une interprétation géométrique du module et d'un argument de z'
- En déduire puis construire l'ensemble des points M(z) tel que:
- a. z' soit un réel négatif.
- b. z' soit un imaginaire pur
- c. |z'|=1, d. |z'|=2; e. |z+3-4i|=3.

Exercice 2

On considère le nombre complexe :

$$z = \sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}$$

- 1)a)Déterminer le module et un argument de z2.
- b)En déduire le module et un argument de z.
- 2)Déduire de ce qui précède les valeurs exactes de cos et $\sin \frac{19\pi}{12}$.
- 3) Résoudre dans IR l'équation :

$$\sqrt{2-\sqrt{3}}\cos x - \sqrt{2+\sqrt{3}}\sin x = \sqrt{2}.$$

Le plan complexe muni d'un repère orthonormé direct (O, \vec{u} , \vec{v}) (unité graphique 4 cm). On considère les suites (U_n) et (V_n) définies respectivement par : $U_n = \left(\frac{1}{2}\right)^n$ $V_n = \frac{n\pi}{3}$. On désigne par M_n le pont d'affixe z_n où $z_n = U_n e^{iV_n}$.

- 1) a) Quelle est la nature des suites (U_n) et (V_n) ?
 - b) Pour quelles valeurs de n z_n est-il réel?
- 2) a) Représenter les points $\,M_0\,$, $\,M_1\,$, $M_2\,$, $\,M_3\,$ et $\,M_4\,$ dans le repère.
 - b) Démontrer que le triangle $0M_nM_{n+1}$ est rectangle en M_{n+1} .
- 3) a) Soit (a_n) la suite définie par : $a_n = |z_{n+1} z_n|$, $\forall n \in \mathbb{N}$. Montrer que a_n est une suite géométrique dont on précisera la raison et le premier terme.
 - b) Calculer en fonction de n la somme :

$$S_n = M_0 M_1 + M_1 M_2 + \dots + M_{n-1} M_n$$

Exercice 4

On définit les nombres complexes zn de la manière suivante : $z_0 = 1$ et $z_{n+1} = \frac{1}{3} z_n + \frac{2}{3} i$

- 1)Pour tout entier naturel n ,on pose un=zn-i.
- a)Calculer u_{n+1} en fonction de u_n.
- b)Montrer par récurrence que pour tout n, $u_n = (1-i)(\frac{1}{2})^{-1}$
- 2)Exprimer en fonction de n la partie réelle xn et la partie imaginaire yn de un. Calculer les limites des suites (xn) et (y_n)
- 3)On note A_n le point d'affixe u_n et B_n le point d'affixe z_n . a)Calculer le module et un argument de un. Montrer que les points An sont alignés.
- b)Montrer que les points B_n sont alignés.

Exercice 5

1°/ Montrer que :
$$1 + e^{i\alpha} = 2\cos(\frac{\alpha}{2})e^{i\frac{\alpha}{2}} \quad \text{avec} \quad \alpha \in \mathbf{R}.$$
$$1 - e^{i\alpha} = -2i\sin(\frac{\alpha}{2})e^{i\frac{\alpha}{2}}$$

2°/ Résoudre dans C:

a)
$$z^{2n} + z^n + 1 = 0$$
 où $n \in \mathbb{N}^*$

b)
$$\left(\frac{1+z}{1-z}\right)^n + \left(\frac{1-z}{1+z}\right)^n + 1 = 0$$
 (on pourra utiliser le 1°/ pour donner une écriture simple des solutions).

Exercice 6

On considère le polynôme P défini sur C par :

$$P(z) = z^4 + 2z^3 + 6z^2 + 8z + 8.$$

1°) Justifier que : $P(\bar{z}) = \overline{P(z)}$.

En déduire que si z_0 est une racine de P, alors son conjugué est aussi une racine de P.

- 2) a) Résoudre l'équation P(z) = 0 sachant qu'elle admet deux racines imaginaires pures.
- b) Déterminer la forme trigonométrique de chacune des solutions de l'équation précédente.
- 3) Soient M_1 , M_2 , M_3 et M_4 les points d'affixes respectives -2i, 2i, -1 + i et -1 - i.
- a) Placer les points M₁, M₂, M₃ et M₄ dans le plan complexe et démontrer que M₁M₂M₃M₄ est un trapèze isocèle.
- b) Démontrer que les points M1, M2, M3 et M4 appartiennent à un même cercle de centre A d'affixe 1 dont on précisera le rayon.