Связность в абстрактных графах

Горбунов Сергей Александрович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А.. Рецензент: Зорина Ю.А.

Санкт-Петербург 2010г.

Введение

Общая теория систем - концепция исследования объектов, представляющих собой системы.

Теорема. Систему n-го порядка можно разложить на (n-2) трехместных отношения .

Гиперграфы описывают:

- структуру трехместных отношений;
- математические модели:

Рис.: Модель

Постановка задачи

Понятие абстрактной независимости, или матроида, было введено как обобщение независимости в линейной алгебре.

Понятие **абстрактного графа**, или φ -графа, вводим с целью усилить аналогию между графами и матроидами.

Основная цель:

- обобщить понятия теории графов на гиперграфы, а затем на абстрактные графы;
- сравнить получившиеся результаты с теорией матроидов.

Основные определения

Пусть $\varphi: 2^D \to Z$ и $\varphi(\emptyset) = 0$. Функция φ называется:

- -монотонной, если $A \subseteq B \subseteq D \Rightarrow \varphi(A) \leq \varphi(B)$,
- -субмодулярной, если

$$A, B \in D \Rightarrow \varphi(A) + \varphi(B) \ge \varphi(A \cup B) + \varphi(A \cap B),$$
 (1)

-нормированной, если для любого $\{a\} \in D \ \varphi(\{a\}) = 1.$

Определение

Абстрактным графом (или φ -графом) называется пара $\Gamma=\langle \varphi,D\rangle$, где D - конечное множество его ребер, а $\varphi:2^D\to Z$ - монотонная субмодулярная покрывающая функция.

Множество ребер $W\subseteq D$ φ -графа называется **лесом**, если для любого $A\subseteq W$ выполняется условие независимости:

$$\varphi(A) \ge |A| \,. \tag{2}$$

Каркас - максимальный подграф, являющийся десом.

Компоненты связности леса

D - лес

Теорема 1. Для всякого леса $\langle \varphi, W \rangle$ существует единственное разбиение множества его ребер $W = T_1 + T_2 + ... + T_b$, удовлетворяющее следующим условиям:

- а) $\varphi(T_i) = |T_i|$ для любого $i \in 1:b$;
- b) для любого $T'\subseteq W$, $\varphi(T')=|T'|$, найдется такое T_i , что $T'\subseteq T_i$.

Определение

Абстрактный граф $\langle \varphi, T_i \rangle$, порожденный элементом разбиения T_i множества W, называется компонентой связности леса $\langle \varphi, W \rangle$, а лес с одной компонентой связности - деревом.

Компоненты связности абстрактного графа

ullet D - зависимое множество

 H_i - множество хорд компоненты T_i , тогда $D_i = H_i + T_i$.

Теорема 2. Разбиение абстрактного графа $\langle \varphi, D \rangle$, где $D = D_1 + D_2 + ... + D_b$, на компоненты связности $\langle \varphi, D_i \rangle$, $i \in 1:b$, не зависит от способа выбора его каркаса.

Определение

Подграфы $\langle \varphi, D_i \rangle$, $i \in 1:b$ называется компонентами связности абстрактного графа $\langle \varphi, D \rangle$. Абстрактный граф связный, если он состоит из одной компоненты связности.

S-разбиение

Разбиение абстрактного графа на компоненты связности в соответствии с теоремой 2 называется его s-разбиением.

Теорема

При заданном алгоритме разбиения абстрактного графа на компоненты связности условие субмодулярности функции φ является необходимыми и достаточными для единственности s-разбиения.

Квазиизоморфизм графов

Определение

Два абстрактных графа квазиизоморфны, если в s-разбиении они имеют изоморфные компоненты связности.

Задача перечисления деревьев:

	$\varphi(\emptyset) = 0$	$arphi(\emptyset)$ не рассматривается			
n=1	1	1			
n=2	1	1			
n=3	1	4			
n=4	1	35			

Таблица: Влияние значения $\varphi(\emptyset)$ на число деревьев, при заданном числе ребер n в φ -графе

N-связность матроидов

Определение

Матроидом называется пара $\langle I, D \rangle$, в которой D - непустое конечное множество, а $I \subseteq 2^D$ - непустая совокупность подмножеств из D (называемых независимыми), удовлетворяющих следующим аксиомам:

- i1) если $A\subseteq B\in I$, то $A\in I$;
- i2) если $A\in I$, $B\in I$ и |A|=|B|-1, то существует элемент $a\in B\backslash A$, такой, что $A+a\in I$.

Ранг матроида - мощность наибольшего независимого множества. $M = \langle I, D \rangle$ - матроид, $\{S, T\}$ - разбиение D.

Определение

Матроид M k-отделяем, если:

- **1** $\rho(M) \rho(S) \rho(T) + 1 = k$,
- **2** $Min(|S|, |T|) \ge k$.

 $Min(k) = \lambda(M)$ - связность матроида. Матроид M n-связен, если $0 < n < \lambda(M)$.

Сравнение абстрактных графов и матроидов

Со всяким φ -графом можно связать матроид, определенный на множестве его ребер, если в качестве независимых множеств матроида взять множества лесов графа \Longrightarrow сравнение понятий связности.

	arphi-графы	Матроиды	
Дерево	+	-	
Лес с			
n компонентами связности	-	-	
Цикл в абстрактном графе	+	+	
Абстрактный граф с			
n компонентами связности	-	-	

Таблица: Сравнение связности матроидов и абстрактных графов

Цепь в теории графов и гиперграфов

Основная задача: дать определение цепи, используя лишь первичные понятия (ребра, вершины, функцию φ).

Пусть D - множество ребер графа. Тогда $C\subseteq D$ называется цепью, если выполняются следующие условия:

- 1. $\varphi(C) = |C|$
- 2. $\forall A \subseteq C : \varphi(A) \ge |A|$
 - 3(a). \exists лишь две вершины, каждой из которых инцидентно всего одно ребро.
 - 3(b). Существует лишь два ребра, удаление одного из которых не приводит к разбиению графа на две компоненты связности.
 - ullet 3(c). Степени всех вершин графа не больше двух.

Цепь в теории графов и гиперграфов

- ullet для графов: $arphi(A) = |\Gamma A| 1$
- для гиперграфов: $\varphi(A) = |\Gamma A| q + 1$

Обобщим на гиперграфы определение цепи, используя условие 3c.

Определение

 $C\subseteq D$ будем называть цепью, если выполняются:

- **3** Степени всех вершин не превосходят q.

Перечислим все цепи, согласно данному определению.

Перечисление цепей

Для гиперграфа с четырьмя ребрами:

1. 123-124-125-346

6. 123-124-156-256

123-124-135-236
123-124-135-246

7. 123-124-156-345 8. 123-124-156-356

- 4. 123-124-135-256
- 9. 123-124-356-456
- 5. 123-124-135-456
- 10. 123-145-246-356

Число ребер	1	2	3	4	5	6
Число цепей	1	1	3	10	58	564

Таблица: Число цепей в зависимости от числа ребер в гиперграфе

Цепь в теории абстрактных графов

Определение

 $\langle \varphi, C \rangle$ будем называть цепью, если выполняются:

- **3** Не существует $L : K \subseteq L \subset C : \varphi(L) = |L|$, где K множество ребер, которые соединяет цепь.

Результаты

- Сформулирована теорема о необходимости и достаточности условия субмодулярности функции φ для единственности s-разбиения.
- Сформулированы понятия изоморфизма и квазиизоморфизма абстрактных графов.
- Используя понятие квазиизоморфизма, изучено влияние условия субмодулярности функции φ на число деревьев.
- Проведено сравнение связности в абстрактных графах и в матроидах.
- Изучены некоторые определения цепи, обобщены на гиперграфы и абстрактные графы, приведены примеры.

