

19 BUNDESREPUBLIK DEUTSCHLAND

[®] Off nl gungsschrift

[®] DE 195 42 355 A 1

DEUTSCHES PATENTAMT Aktenzeichen:

195 42 355.0

Anmeldetag:

14.11.95

(3) Offenlegungstag:

15. 5.97

(5) Int. Cl.5: G 03 B 37/00

H 04 N 3/10 H 04 N 7/18 H 04 N 13/00 G 01 C 11/24

G 08 T 3/60

① Anmelder:

Richter, Hans Thilo, 53894 Mechemich, DE

(74) Vertreter:

Freischem und Kollegen, 50667 Köln

② Erfinder:

gleich Anmelder

B Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 11 21 485 B1 DE 195 28 881 A1 DE 37 31 844 A1 34 17 666 A1 DE 21 55 908 A1 DE **GB** 8 91 545 A US 49 08 705 A US 31 13 484 A 06 25 762 A1

JP 62-91082 A., In: Patents Abstracts of Japan, E-543, Sep. 19,1987, Vol.11, No.292;

(54) Verfahren und Vorrichtung zur Erzeugung eines Weitwinkelbildes

- Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung eines Weitwinkelbildes, insbesondere eines Rundumbildes. Um in einem einzigen Aufnahmemoment ein möglichst vollwertiges Weitwinkel- oder Rundumbild aufzunehmen, werden folgende Verfahrensschritte und eine nach diesem Verfahren arbeitende Vorrichtung vorgeschlagen:
 - Reflexion des aufzunehmenden Bildes an einem rotationssymmetrischen Splegelkörper (1, 1) auf die Bildaufnahmeebene (2),
 - Aufnahme der reflektierten Abbildung,
 - Umwandlung der aufgenommenen Abbildung in digitale
 - Bearbeitung der digitalen Bilddaten in einem Computer zur Entzerrung der durch die Reflexion entstandenen Verzerrung des Bildes und Sichtbarmachung des Bildes.

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung eines Weitwinkelbildes insbesondere eines Rundumbildes dessen Bildausschnitt einen Winkelbereich von 360° um die Aufnahmeposition abdeckt.

Aus der Fototechnik sind mehrere Verfahren zur Erzeugung von Rundumbildern oder Bildern mit sehr grode in Verbindung mit der digitalen Bildverarbeitung in modernen Hochleistungs-PC (Personal Computer) entwickelt. Mit einer gewöhnlichen Aufnahmevorrichtung werden von einer Aufnahmeposition aus mehrere (zwölf) Bilder aufgenommen, wobei die Aufnahmevor- 15 richtung jedesmal um einen Bruchteil des Vollkreises (30°) gedreht wird. Die Signale der aufgenommenen Bilder werden digitalisiert und abgespeichert. Mit einer geeigneten Präsentations-Software wird auf einem Computermonitor ein Ausschnitt eines der aufgenom- 20 menen Bilder dargestellt. Der Betrachter kann mit Steuerbefehlen den dargestellten Ausschnitt nach rechts. links, oben und unten verschieben oder zoomen. Wählt der Betrachter Zwischenausschnitte, die zwischen zwei der aufgenommenen Bildern liegen, so berechnet der 25 Computer eine interpolierte Darstellung, das heißt, er erzeugt Bilddaten, die unter Berücksichtigung der Bilddaten der beiden nächstliegenden Aufnahmen nach vorgegebenen Gesetzmäßigkeiten dem Zwischenbild entsprechen müssen.

Die mit diesem Verfahren erzeugten und auf dem Computerbildschirm ausschnittsweise betrachtbaren Rundumaufnahmen sind hervorragend dazu geeignet, dem Betrachter einen Eindruck der Umgebung des ge-Aufnahme noch recht aufwendig, da ein mehrfaches Verdrehen der Kamera sowie die mehrfache Durchführung des Aufnahmevorgangs notwendig sind, und die digitale Speicherung und Bearbeitung einer Vielzahl von Abbildungen notwendig ist.

Aufgabe der Erfindung ist es, ein Weitwinkelbild, vorzugsweise ein Rundumbild, mit hoher und realistischer Abbildungsqualität durch einen einzigen Aufnahmevorgang festzuhalten.

Ein diese Aufgabe lösendes Verfahren besteht aus 45 einem Videofilm abgespeichert werden. den folgenden Schritten:

- Reflexion des aufzunehmenden Winkelbereiches an einem rotationssymmetrischen Spiegelkörper, dessen Rotationsachse die Aufnahmeposition 50 bildet und der eine äußere, zur Rotationsachse geneigte Spiegelfläche aufweist, deren Flächennormale nach außen und in Richtung einer Bildaufnah-
- Bildaufnahmeebene reflektierten Abbildung,
- Umwandlung der aufgenommenen Abbildung in digitale Bilddaten,
- Bearbeitung der digitalen Bilddaten in einem entstandenen Verzerrung des Bildes und
- Sichtbarmachung des Bildes oder eines Bildausschnittes durch Ausdrucken, Ausgabe auf einen Bildschirm oder andere Visualisierungsverfahren.

Ein wesentliches Merkmal des erfindungsgemäßen Verfahrens ist die Reflexion des aufzunehmenden Winkelbereichs, das heißt vorzugsweise der gesamten Um-

gebung der Aufnahmeposition an einem rotationssymmetrischen Spiegelkörper mit einer nach außen und zur Bildaufnahmeebene hin geneigten Spiegelfläche. In aller Regel wird dieser Spiegelkörper die Form eines Kegelstumpfes haben. Um unterschiedliche Bildauflösungen in unterschiedlichen Bildbereichen zu erhalten, kann die Kontur des Spiegelkörpers auch gewölbt, beispielsweise kreisbogenförmig oder parabelförmig, verlaufen.

Die gesamte Umgebung um die Rotationsachse des Bem Winkelbereich bekannt. Ein neues Verfahren wur- 10 Spiegelkörpers wird in einem bestimmten Höhenabschnitt zu jeder Zeit auf die Bildaufnahmeebene projiziert. Bei einem kegelstumpfförmigen Spiegelkörper hat die Projektion die Form eines Kreisrings. Dieses Bild kann nun zu jeder Zeit durch Belichtung eines in der Bildaufnahmeebene liegenden Films oder durch Aufnahme der Bildsignale einer Bildaufnahmevorrichtung in der Bildaufnahmeebene (z. B. CCD-Bildsensor) festgehalten werden.

Die aufgenommenen Bildsignale sind durch die Refl xion stark verzerrt und geben dem menschlichen Auge nur wenig Information über das tatsächliche Aussehen der Umgebung um die Rotationsachse des Spiegelkörpers herum. Aus diesem Grund werden in einem weiteren Verfahrens schritt die aufgenommenen Bildsignale digitalisiert und in einem Computer bearbeitet, der die Verzerrung des aufgenommenen Bildes durch die Reflexion an dem Spiegelkörper herausrechnet. Diese Rechnung ist in Kenntnis der geometrischen Form des Spiegelkörpers und dessen Abstand zur Bildaufnahmeebene nach den optischen Gesetzmäßigkeiten einfach durchzuführen. Alleinige Voraussetzung ist, daß die Abbildung der in den Spiegelkörper einfallenden Lichtstrahlen auf der Bildaufnahmeebene eindeutig ist.

Das korrigierte, das heißt entzerrte Bild kann anwählten Aufnahmeorts zu verschaffen. Allerdings ist die 35 schließend durch Ausdrucken, Ausgabe auf einen Bildschirm oder andere Visualisierungsverfahren sichtbar gemacht werden.

Zur wiederholten Visualisierung des entzerrten Bildes können dessen digitale Bilddaten auf einem Datenträger, zum Beispiel einer Foto-CD, einer Diskette, einer CD-ROM oder ähnlichem abgespeichert werden. Sie können natürlich auch wieder analogisiert werden und als analoge Bilddaten in Form einer Bildsequenz, die eine Kameraschwenkung um 360° repräsentiert, auf

Wie bei herkömmlichen Aufnahmeverfahren sollten die von dem Spiegelkörper reflektierten Lichtstrahlen vor der Aufnahme auf der Bildaufnahmeebene durch eine Linsenoptik hindurchgeführt werden, damit die Bildschärfe beliebig einstellbar ist. Gegebenenfalls können auch Blenden und ähnliche Vorrichtungen für die Optimierung der Belichtung vorgesehen werden.

Wie bereits erwähnt, eignen sich insbesondere Bildaufnahmevorrichtungen für das erfindungsgemäße Ver-- Aufnahme der mittels des Spiegelkörpers auf die 55 fahren, die die Bildsignale in Form von elektrischen Signalen wiedergeben. Beispielsweise sind hier Videokameras oder Fotokameras mit CCD-Bildaufnahmesensoren geeignet.

Die Bildaufnahme kann jedoch auch durch eine her-Computer zur Entzerrung der durch die Reflexion 60 kömmliche Fotokamera mit Film erfolgen, wobei anschließend die auf den Film aufgenommenen Bilddaten nach der Filmentwicklung über einen Scanner digitalisiert werden.

> Es ist leicht zu erkennen, daß mit dem genannten 65 Aufnahmeverfahren zu jedem Zeitpunkt durch eine einfache Bildaufnahme die vollständige Umgebung um die Rotationsachse des Spiegelkörpers herum aufnehmbar ist. Auf diese Weise lassen sich durch Aufnahme einer

Bildsequenz auch Filme herstellen, die die gesamte Umgebung um die Rotationsachse des Spiegelkörpers her-

In Verbindung mit dem oben beschriebenen Visualisierungsprogramm kann der Betrachter daher nicht nur sich um die Aufnahmeachse herum drehen und den Bildausschnitt zoomen. Er kann auch bei Aufnahme und digitaler Abspeicherung eines geeigneten Films seine Betrachtungsposition durch Veränderung der Aufnahmeposition des Spiegelkörpers verändern.

Das erfindungsgemäße Verfahren bietet gegenüber herkömmlichen Weitwinkel- oder Rundum-Aufnahmeverfahren noch einen weiteren wesentlichen Vorteil. Es ermöglicht die Aufnahme von Rundum-Stereo-Bildpaaren. Herkömmliche Stereo-Bildpaare bestehen aus zwei 15 Aufnahmen, die von Aufnahmepositionen aus aufgenommen werden, welche um eine horizontale Strecke, Basis B genannt, versetzt sind. Die Basis B entspricht in der Regel dem Augenabstand, das heißt 65 mm. Bei der Aufnahme weit entfernter Motive kann die Basis ver- 20 größert werden, bei der Aufnahme naher Motive empfiehlt sich eine Verkleinerung der Aufnahmebasis.

Gemäß dem erfindungsgemäßen Verfahren können nun mindestens zwei, vorzugsweise drei rotationssymmetrische Spiegelkörper den aufzunehmenden Winkel- 25 bereich auf eine Bildaufnahmeebene reflektieren. Die Rotationsachsen der beiden Spiegelkörper müssen dabei einen horizontalen Abstand zueinander haben. Rechtwinklig zur Verbindungslinie zwischen den beiden Rotationsachsen ist die Hauptbetrachtungsrichtung, in 30 der die Aufnahmebasis B zwischen den Aufnahmepositionen gleich dem Abstand zwischen den Rotationsachsen der Spiegelkörper ist. In die anderen Blickrichtungen verändert sich die Basis mit dem Cosinus des Winkels zwischen der Blickrichtung und der Hauptbetrach- 35 tungsrichtung. Das heißt, daß bei einem Blick in Richtung der Verbindungslinie zwischen zwei Spiegelkörpern die Aufnahmebasis zwischen den von diesen Spiegelkörpern reflektierten Abbildungen gleich Null ist.

Aus diesem Grund ist es vorteilhaft, mehr als zwei 40 Spiegelkörper zur Erzeugung eines Stereo-Bildpaares eines Rundumbildes zu verwenden. Werden beispielsweise drei Spiegelkörper verwendet, deren Rotationsachsen die Eckpunkte eines gleichseitigen Dreiecks bildrei Spiegelkörper mindestens so groß wie die Höhe dieses Dreiecks. Bei der Bearbeitung der digitalisierten Bilddaten kann der Computer aus drei Aufnahmen dasjenige Aufnahmenpaar auswählen, welches die größte Aufnahmebasis hat, um das Stereo-Bildpaar zu erzeu- 50 Farbdrucker, geeignet. gen. Mit einem geeigneten Algorithmus ist es auch möglich, aus den drei aufgenommenen Bildern zwei Bildausschnitte, die ein Stereo-Bildpaar darstellen, zu berechnen, welche keinem der aufgenommenen Bilder entsprechen, sondern durch Interpolation oder Extrapolation 55

Bei einer vereinfachten Ausführungsform dieses Verfahrens reflektieren alle Spiegelkörper die Lichtstrahlen auf eine gemeinsame Bildaufnahmeebene, in der eine einzige Bildaufnahme-Vorrichtung vorhanden ist. Sind 60 dabei die Spiegelkörper in gleicher Höhe angeordnet, so ergeben sich Schattenzonen, in denen die einzelnen Spiegelkörper den jeweils benachbarten Spiegelkörper reflektieren, nicht jedoch das dahinter befindliche Abgelkörper in unterschiedlicher Höhe angeordnet werden, so daß jeder Spiegelkörper ein vollständiges Bild der Umgebung seiner Rotationsachse auf die Bildauf-

nahmeebene reflektiert. Alternativ kann der Winkel der kegelförmigen Spiegelfläche der Spiegelkörper so gewählt werden, daß eine Spiegelung der benachbarten Spiegelkörper vermieden wird, das heißt, daß die auf die Bildaufnahmefläche reflektierten Lichtstrahlen entweder schräg von unten oder von oben auf den Spiegelkörper treffen. Diese Ausführungsform ist dann vorzuziehen, wenn mit dem Spiegelkörper eine nach unten gerichtete Rundum-Aufnahme erzeugt werden soll, beispielsweise bei einer Landschaftsaufnahme aus einem Flugzeug heraus.

Es ist ebenfalls möglich, auch die Bildaufnahmeebenen in unterschiedlicher Höhe anzuordnen, so daß jede Kombination aus Spiegelkörper und zugeordneter Bildaufnahmeebene in einer anderen Höhe angeordnet ist als die benachbarte Kombination. Unterschiedliche Abstände zu den Bildaufnahmeebenen oder die unterschiedlichen vertikalen Positionen der Spiegelkörper können sowohl durch Anpassung der Geometrie der Spiegelkörper vor der Bildaufnahme korrigiert werden als auch durch Berücksichtigung der unterschiedlichen Voraussetzungen bei der Bearbeitung der einzelnen digitalisierten Bilddaten der durch die Spiegelkörper erzeugten Aufnahmen.

Eine erfindungsgemäße Vorrichtung zur Erzeugung eines Weitwinkelbildes geht aus Patentanspruch 7 hervor. Sie umfaßt einen rotationssymmetrischen Spiegelkörper und eine starr mit diesem Spiegelkörper verbundene, in der Bildaufnahmeebene befindliche Bildaufnahmevorrichtung. Mit dieser Vorrichtung lassen sich die Bilder lediglich aufnehmen, jedoch noch nicht digitalisieren, entzerren und visualisieren.

Hierfür ist gemäß Patentanspruch 8 eine Vorrichtung zur Digitalisierung der aufgenommenen Bildsignale, ein Computer zur Bearbeitung der digitalisierten Daten und eine Visualisierungsvorrichtung notwendig. Erzeugt die Bildaufnahmevorrichtung elektronische Bildsignale (z. B. CCD-Bildsensor), so kann die Digitalisierungsvorrichtung durch einen herkömmlichen A/D-Wandler gebildet werden. Dieser speichert in der Regel die Farbintensität der drei Grundfarben Gelb, Magenta und Cyan jedes Bildpunktes (Pixel) digital ab, z. B. als Wert zwischen 0 und 255. Nimmt die Bildaufnahmevorrichtung herkömmliche Bilder auf, so ist als Ditigalisieden, so ist die kleinste Aufnahmebasis zwischen zwei der 45 rungsvorrichtung ein Scanner verwendbar, der die aufgenommenen Bilder zeilenweise abtastet und die Farbintensitätswerte für jedes Pixel abspeichert.

> Als Visualisierungsvorrichtung ist insbesondere ein Computer-Monitor oder ein Drucker, insbesondere

> Wie bei einer herkömmlichen Kamera sollte zwischen dem Spiegelkörper und der Bildaufnahmeebene eine Linsenoptik und notwendigenfalls eine Blende angeordnet sein.

Wie bereits erwähnt, kann die Hauptaufnahmerichtung des oder der Spiegelkörper nach oben oder nach unten gerichtet sein. In diesem Fall steht die mittlere Einfallsrichtung der auf die Bildaufnahmeebene reflektierten Lichtstrahlen nicht rechtwinklig zur Rotationsachse des Spiegelkörpers sondern weist einen Winkel von weniger als 90° auf. Diese Anordnung ist z. B. zur Herstellung von Landschaftsaufnahmen aus Flugzeugen vorteilhaft.

Weitere Merkmale und Vorzüge der Erfindung ergebild der Umgebung. Aus diesem Grund sollten die Spie- 65 ben sich aus der folgenden Zeichnungsbeschreibung. Die Zeichnungen zeigen in

Fig. 1 die Seitenansicht einer erfindungsgemäßen Bildaufnahmevorrichtung,

Fig. 2 eine alternative Ausführungsform eines Spiegelkörpers der Aufnahmevorrichtung aus Fig. 1,

Fig. 3 die schaubildliche Darstellung der Aufnahmevorrichtung aus Fig. 1,

Fig. 4 eine andere Aufnahmevorrichtung gemäß der 5 Erfindung zur Erzeugung eines Stereo-Bildpaares und

Fig. 5 eine alternative Aufnahmevorrichtung zur Erzeugung eines Stereo-Bildpaares.

Die in den Fig. 1 und 3 dargestellte Bildaufnahmevorrichtung besteht aus einem kegelstumpfförmigen Spie- 10 gelkörper 1, der in einem Abstand A oberhalb einer Bildaufnahmefläche 2 angeordnet ist, welche beispielsweise von einem CCD-Bildaufnahmesensor gebildet werden kann. Der Spiegelkörper 1 reflektiert die auf ihn auftreffenden Lichtstrahlen, so daß sie auf eine Kreis- 15 ringfläche 4 auf der Bildaufnahmeebene geworfen werden. Auf diese Weise wird ein bestimmter Höhenabschnitt der die Rotationsachse 3 des Spiegelkörpers 1 umgebenden Umgebung auf der Ringfläche 4 der Bildaufnahmeebene 2 abgebildet. In einer Zwischenebene 5 20 zwischen dem Spiegelkörper 1 und der Bildaufnahmeebene 2 können (nicht dargestellte) Linsenoptiken, Blenden oder ähnliche optische Hilfsmittel angeordnet wer-

tionssymmetrischen Spiegelkörpers 1' gewölbt verlaufen. Hierdurch werden unterschiedliche Bildbereiche in der Aufnahmeebene unterschiedlich vergrößert abgebildet.

Die Fig. 4 zeigt schematisch eine erste einfache Aus- 30 führungsform zur Erzeugung eines Stereo-Bildpaares. In dem Abstand der Aufnahmebasis B sind zwei Spiegelkörper 1 nebeneinander angeordnet. Die Hauptbetrachtungsrichtung ist durch den Doppelpfeil dargestellt. In dieser Betrachtungsrichtung ist die Aufnahme- 35 2 Bildfläche basis der aufgenommenen Bilder gleich dem Abstand B zwischen den Rotationsachsen 3 der Spiegelkörper. Die beiden Spiegelkörper 1 reflektieren die aus ihrer Umgebung einfallenden Lichtstrahlen jeweils auf eine Kreisringfläche 4. In der dargestellten Ausführungsform, in 40 der die Spiegelkörper 1 auf gleicher Höhe angeordnet sind, ergeben sich in der Richtung rechtwinklig zur Hauptbetrachtungsrichtung, das heißt in Richtung zur Rotationsachse des benachbarten Spiegelkörpers hin, ein Schattenbereich, in dem nicht die Umgebung, son- 45 dern der benachbarte Spiegelkörper aufgenommen wird. Um dies zu verhindern, ist es möglich, beide Spiegelkörper auf unterschiedlichen Höhen so anzuordnen, so daß der oberste Abschnitt des einen Spiegelkörpers 1 unterhalb des untersten Abschnitts des anderen Spie- 50 gelkörpers 1 liegt. Hierdurch ergeben sich unterschiedlich große Kreisringflächen 4 auf der Bildaufnahmeebene. Entweder können diese Größenunterschiede bei der Bearbeitung der digitalisierten Bilddaten herausgerechnet werden. Alternativ ist es möglich, jedem Spiegelkör- 55 per 1 eine eigene Bildaufnahmefläche mit einer separaten Bildaufnahmevorrichtung zuzuordnen. Schließlich können die Spiegelkörper unterschiedliche Konturen, das heißt insbesondere unterschiedliche Durchmesser und Neigung der Spiegelfläche aufweisen, so daß die 60 erzeugten Abbildungen bis auf die horizontale Verschiebung der Aufnahmeposition einand rentsprechen.

Wie bereits erwähnt, ist es mit der in Fig. 4 dargestellten Bildaufnahmevorrichtung mit zwei Spi gelkörpern 1 nicht möglich, in der Richtung der Verbindungslinie 65 zwischen den zwei Rotationsachsen 3 der Spiegelkörper 1 ein stereoskopisches Bildpaar zu erzeugen, da hier die Aufnahmebasis d r durch die beiden Spiegelkörper 1

aufgenommenen Abbildungen gleich Null ist.

Um diesen Nachteil auszuräumen und in jeder Richtung um die erfindungsgemäße Aufnahmevorrichtung herum eine gewisse Aufnahmebasis zwischen zwei erzeugten Abbildungen zu erzielen, ist es möglich, drei Spiegelkörper 1 zur Reflexion der Umgebung auf die Bildaufnahmeebene 2 vorzusehen (vergleiche Fig. 5). In der Zeichnung sind die Spiegelkörper 1 wiederum auf gleicher Höhe angeordnet, so daß in Richtung der Verbindungslinie zwischen den Achsen jeder Spiegelkörper einen durch benachbarte Spiegelkörper verdeckten Bereich aufweist. Dies kann wiederum durch Anordnung der Spiegelkörper 1 in unterschiedlicher Höhe behoben werden, wobei gegebenenfalls auch die Bildaufnahmeebenen 2 für jeden Spiegelkörper 1 in einer anderen Höhe anzuordnen. Die in Fig. 5 dargestellte Aufnahmevorrichtung weist drei Hauptbetrachtungsrichtungen auf, die jeweils senkrecht zu den Verbindungslinien zwischen den Rotationsachsen 3 zweier benachbarter Spiegelkörper 1 liegen. In diesen Richtungen ist die Stereobasis, d. h. der Abstand zwischen den Aufnahmepositionen der mit den beiden benachbarten Spiegelkörpern 1 aufgenommenen Bildausschnitte am größten.

Selbstverständlich können auch mehr Spiegelkörper Wie in Fig. 2 dargestellt, kann die Kontur des rota- 25 zur Aufnahme der Bilddaten zur Erzeugung von Stereo-Bildpaaren in beliebiger Richtung um die Aufnahmevorrichtung herum verwendet werden. Mit wachsender Anzahl der Spiegelkörper nehmen die Bildbereiche zu, die mit einer ausreichend großen Stereo-Basis erfaßt wer-

Bezugszeichenliste

- 1, 1' Spiegelkörper
- 3 Rotationsachse
- 4 Kreisringfläche
- 5 Zwischenebene

Patentansprüche

- 1. Verfahren zur Erzeugung eines Weitwinkelbildes, insbesondere eines Rundumbildes, dessen Bildausschnitt einen Winkelbereich von 360° um die Aufnahmeposition abdeckt, bestehend aus folgenden Schritten:
 - Reflexion des aufzunehmenden Winkelbereiches an einem rotationssymmetrischen Spiegelkörper (1, 1'), dessen Rotationsachse (3) die Aufnahmeposition bildet und der eine äu-Bere, zur Rotationsachse (3) geneigte Spiegelfläche aufweist, deren Flächennormale nach außen und in Richtung einer Bildaufnahmeebene (2) weist,
 - Aufnahme der mittels des Spiegelkörpers (1, 1') auf die Bildaufnahmeebene (2) reflektierten Abbildung,
 - Umwandlung der aufgenommenen Abbildung in digitale Bilddaten,
 - Bearbeitung der digitalen Bilddaten in einem Computer zur Entzerrung der durch die Reflexion entstandenen Verzerrung des Bildes und
 - Sichtbarmachung des Bildes od r eines Bildausschnittes durch Ausdrucken, Ausgabe auf einen Bildschirm oder andere Visualisierungsverfahren.
- 2. Verfahren nach Anspruch 1, dadurch gek nn-

zeichnet, daß die bearbeiteten digitalen Bilddaten des entzerrten Bildes zur wiederholten Visualisierung abgespeichert werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die von dem Spiegelkörper (1, 1') reflektierten Lichtstrahlen durch eine Linsenoptik hindurch zur Bildaufnahmeebene (2) geleitet werden.

4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Bildaufnahme mit einer Videokamera oder einer Fotokamera mit CCD-Bildaufnahmesensor erfolgt.

5. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Bildaufnahme mit einer Fotokamera auf einen Film erfolgt, wobei die auf den Film aufgenommene Abbildung nach der Filmentwicklung und gegebenenfalls nach Herstellung eines Abzugs mittels eines Scanners in digitale Bilddaten umgewandelt wird.

6. Verfahren nach mindestens einem der vorangehenden Ansprüche zur Erzeugung eines Stereo-Bildpaares, bestehend aus zwei Weitwinkelbildern, deren Aufnahmeposition um eine Basis (B) zueinander versetzt sind, dadurch gekennzeichnet, daß mindestens zwei, vorzugsweise drei, rotationssymmetrische Spiegelkörper (1), deren Rotationsachsen (3) einen horizontalen Abstand zueinander haben, den aufzunehmenden Winkelbereich auf eine Bildaufnahmeebene (2) reflektieren.

7. Vorrichtung zur Erzeugung eines Weitwinkelbildes, insbesondere eines Rundumbildes, dessen Bildausschnitt einen Winkelbereich von 360° um die

Aufnahmeposition abdeckt, mit

— einem rotationssymmetrischen Spiegelkörper (1, 1'), dessen Rotationsachse (3) die Aufnahmeposition bildet und der eine äußere, zur Rotationsachse (3) geneigte Spiegelfläche aufweist, deren Flächennormale nach außen und in Richtung einer Bildaufnahmeebene (2) weist.

— einer in der Bildaufnahmeebene (2) angeordneten Bildaufnahmevorrichtung, die starr mit dem Spiegelkörper (1, 1') verbunden ist.

8. Vorrichtung nach Anspruch 7, gekennzeichnet durch

- ein Mittel zum Digitalisieren der aufgenommenen Bildsignale,

 einen Computer zur Bearbeitung der digitalisierten Daten, die das aufgenommene Bild repräsentieren und

- eine Visualisierungsvorrichtung, insbesondere einen Drucker oder einen Computermonitor, zur Visualisierung des sich aus den bearbeiteten Daten ergebenden Bildes.

9. Vorrichtung nach Anspruch 7 oder 8, dadurch 55 gekennzeichnet, daß sie zwischen dem Spiegelkörper (1, 1) und der Bildaufnahmeebene (2) eine Linsenoptik umfaßt.

10. Vorrichtung nach mindestens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß sie 60 zwischen dem Spiegelkörper (1, 1') und der Bildaufnahmeebene (2) eine Blende umfaßt.

11. Vorrichtung nach mindestens einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Bildaufnahmevorrichtung von einer Videokamera 65 oder einer Fotokamera mit CCD-Bildaufnahmesensor gebildet wird.

12. Vorrichtung nach mindestens einem der An-

sprüche 7 bis 11 zur Erzeugung eines Stereo-Bildes, dadurch gekennzeichnet, daß zwei identische Spiegelkörper (1) nebeneinander vor einer Bildaufnahmeebene (2) angeordnet sind.

13. Vorrichtung nach mindestens einem der Ansprüche 7 bis 11 zur Erzeugung eines Stereo-Bildes, dadurch gekennzeichnet, daß drei identische Spiegelkörper (1) vor einer Bildaufnahmeebene (2) angeordnet sind, deren Rotationsachsen (3) in den Eckpunkten eines gleichseitigen Dreiecks liegen.

14. Vorrichtung nach mindestens einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß die Spiegelkörper in Richtung senkrecht zu Bildaufnahmeebene zueinander versetzt angeordnet sind

Vorrichtung nach einem der Ansprüche 12 bis
dadurch gekennzeichnet, daß der Abstand (B)
zwischen den Rotationsachsen (3) der Spiegelkörper (1) verstellbar ist.

16. Vorrichtung nach mindestens einem der Ansprüche 7 bis 15, dadurch gekennzeichnet, daß der Spiegelkörper (1) die Form eines Kegelstumpfes hat.

17. Vorrichtung nach mindestens einem der Ansprüche 7 bis 16, dadurch gekennzeichnet, daß die mittlere Einfallsrichtung der auf die Bildaufnahmeebene reflektierten Lichtstrahlen zur Rotationsachse (3) des Spiegelkörpers (1, 1') einen Winkel von weniger als 90° aufweist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 195 42 355 A1 G 03 B 37/00

15. Mai 1997

FIG.1

FIG.2

FIG.3

Numm r: Int. Cl.6:

Offenlegungstag:

DE 195 42 355 A1 G 03 B 37/00

15. Mai 1997

