On the Algorithmic Lovász Local Lemma

Simon Grünbacher

11.4.2024

Motivation

- Let A be a finite collection of bad events in a probability space Ω .
- ▶ We want to prove that $\mathbb{P}(\bigcap_{A \in A} \overline{A}) > 0$.
- ▶ Case 1: Events A independent and $\mathbb{P}(A) < 1$ for $A \in A$
- $ightharpoonup \Longrightarrow \mathbb{P}(\bigcap_{A \in \mathcal{A}} \overline{A}) = \prod_{A \in \mathcal{A}} (1 \mathbb{P}(A)) > 0$
- ▶ Case 2: Events not independent but $\sum_{A \in A} \mathbb{P}(A) < 1$
- $ightharpoonup \Longrightarrow \mathbb{P}(\bigcap_{A \in \mathcal{A}} \overline{A}) \ge 1 \sum_{A \in \mathcal{A}} \mathbb{P}(A) > 0$
- Question: What if we have something in between?
- ▶ **Assumption:** Every $A \in \mathcal{A}$ is determined by a finite set of independent random variables $vbl(A) \subseteq \mathcal{V}$.
- ▶ Define $\Gamma(A) := \{B \in A \mid B \neq A \land vbl(B) \cap vbl(A) \neq \emptyset\}.$

The Local Lemma

Theorem (László Lovász, Paul Erdős '75)

Let \mathcal{A} be a finite collection of events as before. Assume that we have $x:\mathcal{A}\to [0,1)$ such that for all $A\in \mathcal{A}$ we have

$$\mathbb{P}(A) \leq x(A) \prod_{B \in \Gamma(A)} (1 - x(B)).$$

Then we have $\mathbb{P}(\bigcap_{A\in\mathcal{A}}\overline{A})\geq \prod_{A\in\mathcal{A}}(1-x(A))>0$.

Intuition: Easy to find $(x(A))_{A \in \mathcal{A}}$ if

- ightharpoonup events *unlikely* ($\mathbb{P}(A)$ small) or
- events close to independent $(\#\Gamma(A) \text{ small})$.

Special Cases

- Union bounds:
- ▶ Assume $\sum_{A \in \mathcal{A}} \mathbb{P}(A) < \frac{1}{4}$.
- ► Choose $x(A) := 2\mathbb{P}(A)$.
- Then

$$\mathbb{P}(A) \leq \frac{1}{2}x(A) \leq x(A)(1 - \sum_{B \in \mathcal{A}} x(B)) \leq x(A) \prod_{B \in \mathcal{A}} (1 - x(B)).$$

- union bound can be almost reproduced
- Independence:
- ▶ Assume $vbl(A) \cap vbl(B) = \emptyset$ for $A \neq B$.
- Pick $x(A) = \mathbb{P}(A)$.
- ▶ Then $\mathbb{P}(A) \leq x(A)$.

Example

- Let $Φ := C_1 \land \cdots \land C_n$ be a CNF Formula.
- ► **Assumption:** Each clause depends on exactly 5 variables.
- ▶ Assumption: $|\Gamma(\overline{C_i})| \le 11$.
- Claim: Φ is satisfiable.
- ▶ Let $x(\overline{C_i}) := \frac{1}{11}$ and assume $\mathbb{P}(X = \top) = \frac{1}{2}$ for $X \in \mathcal{V}$.
- ▶ We then have

$$2^{-5} = \mathbb{P}(\overline{C_i}) \leq \frac{1}{11}(1 - \frac{1}{11})^{11} \leq x(\overline{C_i}) \prod_{C \in \Gamma(\overline{C_i})} (1 - x(C)).$$

Question: How can we find a satisfying assignment?

The Algorithm

```
for v \in \mathcal{V} do
    x_v \leftarrow a random sample of v
end for
while not all events avoided by x do
    A \leftarrow some event that holds under (x_v)_{v \in \mathcal{V}}
    for v \in vbl(A) do
         x_v \leftarrow a random sample of v
    end for
end while
return (x_v)_{v \in \mathcal{V}}
```

The Theorem

Theorem (Robin Moser, Gábor Tardos '09)

Let $\mathcal A$ be a collection of events that satisfies the conditions of the Lovász Local Lemma. Then the expected number of loop iterations is at most

$$\sum_{A\in\mathcal{A}}\frac{x(A)}{1-x(A)}.$$

Note: Running twice as long, we succeed with probability $\frac{1}{2}$. Restarting k times, we succeed with probability $1 - 2^{-k}$.

A Proof Sketch

- ightharpoonup Every resampling step happens for a unique *reason* au, based on earlier random choices.
- ▶ We can use the parameters $(x(A))_{A \in A}$ to define a random reason generator G_A .
- G_A returns a reason τ for resampling A with probability p_{τ} .
- ▶ $\mathbb{P}(A \text{ gets resampled for reason } \tau) \leq \frac{x(A)}{1-x(A)}p_{\tau}$
- ► We now have

$$\mathbb{E}(\# \text{ times } A \text{ gets resampled})$$

$$= \sum_{\tau} \mathbb{P}(A \text{ gets resampled for reason } \tau)$$

$$\leq \frac{x(A)}{1 - x(A)} \sum_{\tau} p_{\tau}$$

$$\leq \frac{x(A)}{1 - x(A)}$$

Definition

A witness tree τ is a rooted tree such that every vertex $v \in V(\tau)$ has a label $[v] \in \mathcal{A}$. We call τ proper if for all $v \in V(\tau)$, the children of v have distinct labels.

Definition

A witness tree τ is a rooted tree such that every vertex $v \in V(\tau)$ has a label $[v] \in \mathcal{A}$. We call τ proper if for all $v \in V(\tau)$, the children of v have distinct labels.

- ▶ Let $A_1,...$ be the events that get resampled by the algorithm.
- ▶ For every $n \in \mathbb{N}$, we define a witness tree τ_n :
- Let $\tau_n^{(n)}$ be a root node labelled A_n .
- For $i = n 1, \dots, 1$ distinguish two cases:
- ▶ If there is $v \in V(\tau_n^{(i+1)})$ with $vbl([v]) \cap vbl(A_i) \neq \emptyset$:
- Add an A_i -labelled child to the maximum depth v to obtain $\tau_n^{(i)}$.
- ▶ Else, set $\tau_n^{(i)} := \tau_n^{(i+1)}$.
- ▶ Set $\tau_n := \tau_n^{(1)}$.

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	е

ė

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	е	С
0	0	0	1	0	e
0	0	0	1	0	$\neg d$

 $\neg a$

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	е	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	<u>0</u>	0	e

e – e

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	е
0	0	0	0	1	a∨b

a∨̈́b

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	e
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	$a \lor b$
1	0	0	0	1	$\neg a \lor c$

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
<u>0</u>	0	1	0	1	a∨b

 $a \lor b$ $\neg a \lor c$ $a \lor b$

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
<u>1</u>	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$

 $b \lor \neg c \lor d$ $a \lor b \neg d$ $\neg a \lor c$ $a \lor b$

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	e
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
<u>1</u>	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨ b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	е
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

$$(a \lor b) \land (\neg a \lor c) \land (b \lor \neg c \lor d) \land \neg d \land e$$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	<u>0</u>	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$
0	1	0	0	1	done

Lemma

Let τ_n be a witness tree produced by the algorithm. Let $v,w\in V(\tau_n)$ be two distinct nodes at the same depth. Then $\mathsf{vbl}([v])\cap \mathsf{vbl}([w])=\emptyset$. In particular, τ_n is proper.

Proof.

- ▶ Choose i, j maximally such that $v \in V(\tau_n^{(i)}), w \in V(\tau_n^{(j)})$.
- Assume i < j (i.e. v added after w) without loss.
- Seeking a contradiction, assume $vbl([v]) \cap vbl([w])$ is nonempty.
- ► Then the algorithm would have added *v* as a child of *w* at greater depth.

Lemma

Let au be a proper witness tree. Then

$$\mathbb{P}(\tau = \tau_n \text{ for some } n \in \mathbb{N}) \leq \prod_{v \in V(\tau)} \mathbb{P}([v]).$$

Lemma

Let τ be a proper witness tree. Then

$$\mathbb{P}(\tau = \tau_n \text{ for some } n \in \mathbb{N}) \leq \prod_{v \in V(\tau)} \mathbb{P}([v]).$$

- Let v_1, \ldots, v_k be the vertices of τ in depth-decreasing order.
- If we sample $[v_1], \ldots, [v_k]$ independently, then $\mathbb{P}([v_1] \cap \cdots \cap [v_k]) = \prod_{i=1}^k \mathbb{P}([v_i]).$
- ▶ Claim: When using the same random source as the resampling algorithm appropriately, then τ is produced \Longrightarrow all $[v_1], \ldots, [v_k]$ hold

а	b	С	d	e	С
0	0	0	1	0	e
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

а	b	С	d	e	С
0	0	0	1	0	e
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	е
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	$a \lor b$
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

а	b	С	d	e	С
0	0	0	1	0	e
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

а	b	С	d	e	С
0	0	0	1	0	е
0	0	0	1	0	$\neg d$
0	0	0	0	0	e
0	0	0	0	1	a∨b
1	0	0	0	1	$\neg a \lor c$
0	0	1	0	1	a∨b
1	0	1	0	1	$b \lor \neg c \lor d$
1	1	0	1	1	$\neg d$
1	1	0	0	1	$\neg a \lor c$

Claim: When using the same random source as the resampling algorithm appropriately, then τ is produced \Longrightarrow all $[v_1], \ldots, [v_k]$ hold.

Proof.

- ▶ For $P \in \mathcal{V}$ the algorithm uses independent samples P_0, P_1, \ldots
- ightharpoonup Assume the random source leads to au being produced.
- ▶ Let $i \in \{1, ..., k\}$.
- ▶ For $P \in \text{vbl}([v_i])$ let $S(P) := \{j \mid 1 \le j < i, P \in \text{vbl}([v_j])\}$
- ▶ When sampling $[v_i]$, we get the sample $P_{\#S(P)}$.
- At the step before v_i was resampled by the algorithm, x_P has value $P_{\#S(P)}$. Thus $[v_i]$ holds.
- This is because every time x_P was resampled corresponds to a unique $v \in V(\tau)$ with $P \in vbl([v])$.
- ▶ This v has greater depth than v_i , thus $v \in \{v_i \mid j \in S(P)\}$.

Random Reasons

Algorithm 1 Random Witness Tree Generator G_A

```
\tau \leftarrow (A)
repeat
    L \leftarrow \text{Leaves}(\tau)
    done \leftarrow true
    for v \in L do
         for B \in \Gamma^+(v) do
             if rand() < x(B) then
                  add (B) as child of v
                  done ← false
             end if
         end for
    end for
until done
return \tau
```

Random Reasons

Write
$$x'(A) := x(A) \prod_{B \in \Gamma(A)} (1 - x(B))$$
.

Lemma

Let τ be a proper witness tree with root labelled A. Then algorithm G_A produces τ with probability $p_{\tau} = \frac{1-x(A)}{x(A)} \prod_{v \in V(\tau)} x'([v])$.

Proof.

For $v \in V(\tau)$ let $W_v := \Gamma^+([v]) \setminus \{[c] \mid c \text{ child of } v\}$. Then

$$\rho_{\tau} = \frac{1}{x(A)} \prod_{v \in V(\tau)} x([v]) \prod_{u \in W_{v}} (1 - x(u))
= \frac{1 - x(A)}{x(A)} \prod_{v \in V(\tau)} \frac{x([v])}{1 - x([v])} \prod_{u \in \Gamma^{+}([v])} (1 - x(u))
= \frac{1 - x(A)}{x(A)} \prod_{v \in V(\tau)} x'([v]).$$

The Proof

Proof.

Let $A \in \mathcal{A}$ and let T_A be the set of proper A-rooted witness trees.

$$\mathbb{E}(\# \text{ times } A \text{ gets resampled}) = \sum_{\tau \in \mathcal{T}_A} \mathbb{P}(A \text{ gets resampled for reason } \tau)$$

$$\leq \sum_{\tau \in \mathcal{T}_A} \prod_{v \in V(\tau)} \mathbb{P}([v])$$

$$\leq \sum_{\tau \in T_A} \prod_{v \in V(\tau)} x'([v])$$
$$= \sum_{\tau \in T_A} \frac{x(A)}{1 - x(A)} p_{\tau}$$

$$= \frac{x(A)}{1 - x(A)} \sum_{\tau \in T_A} p_{\tau}$$
$$x(A)$$

$$\leq \frac{x(A)}{1-x(A)}$$

Another Example

- Let $n, k \in \mathbb{N}$ such that $4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \leq 1$
- ▶ **Claim:** We can 2-color the edges in the complete graph K_n such that no k vertices form a monochromatic subgraph
- ▶ Let $A := \{C_I \mid I \in (\frac{n}{k})\}$ be the events that $I \subseteq \underline{n}$ is monochromatic under a random coloring.
- We have $|\Gamma(C_I)| \leq {k \choose 2} {n \choose k-2}$
- ► Choose $x(C_I) = {k \choose 2} {n \choose k-2}^{-1} =: N^{-1}$ and assume that all edges are colored red with probability $\frac{1}{2}$
- ▶ We then have

$$2^{1-\binom{k}{2}} = \mathbb{P}(C_I) \le (4N)^{-1} \le N^{-1}(1-\frac{1}{N})^N$$

Note: More efficient for lower bounds on offdiagonal ramsey numbers