ADAMAS UNIVERSITY PURSUE EXCELLENCE

ADAMAS UNIVERSITY

END (EVEN) SEMESTER EXAMINATION: MAY 2021

(Academic Session: 2020 – 21)

PURSUE EXCELLENCE	(Academic Session: 2020 – 21)		
Name of the Program:	B. Tech.	Semester:	VIII
Paper Title :	Environmental Engineering-II	Paper Code:	ECE44102
Maximum Marks :	40	Time duration:	3 hrs.
Total No of questions:	08	Total No of Pages:	03
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

Answer all the Groups **Group A**

Answer all the questions of the following

 $5\times1=5$

- 1. a) Through the measurement of the electrical conductivity of the wastewater one can determine the:
 - (i) oxygen content.
 - (ii) concentration of total ions.
 - (iii) acidity.
 - (iv) heavy metal content.
 - (v) concentration of organic acids.
- b) Nitrogen is present in wastewater in various forms and compounds. Which of the listed "parameters" is a pure organic composition?
 - (i) Kjeldahl nitrogen (TKN)
 - (ii) Amino acid
 - (iii) Uric acid ($C_5 H_4 N_4 = O_3$)
 - (iv) Total nitrogen (total N)
 - (v) Nitrogen in total (N_{tot})
- c) With sewer construction what do you understand under the terms "Length of reach [sewer section]"?
 - (i) Length of the back-up in the sewer.
 - (ii) Covering of the sewer.
 - (iii) Maximum length of the sewer.
 - (iv) Useful life of a sewer.
 - (v) Separation between two manholes.
- d) How often must a mechanically cleaned screen be monitored by the operating personnel?
 - (i) Once or twice a week.
 - (ii) Only at the weekend.
 - (iii) Once a month.

- (iv) Once or twice a day.
- (v) Almost never, runs automatically.
- e) Which procedure of wastewater treatment takes place without oxygen?
 - (i) Degradation of dissolved organic carbon compounds.
 - (ii) Nitrification.
 - (iii) Denitrification.
 - (iv) Release of phosphates for the production of energy.
 - (v) Storage of phosphates as energy reserve.

Group –BAnswer **any three** of the following

 $3 \times 5 = 15$

- 2. Allocate the elements a) to e) below to the appropriate numbers in the top view of the primary settling tank shown:
 - a) Tank inlet.
 - b) Bottom clearing scraper.
 - c) Skimmer.
 - d) Sludge hopper.
 - e) Tank outlet.

- 3. Calculate the ultimate BOD for a sewage whose 5 day BOD at 20° C is 250 mg/l. What will be the BOD after 2 days? [Assume K = 0.23 per day]
- 4. In the biological wastewater treatment there are two basic processes: the activated sludge and the fixed-bed processes. Explain the differences with regard to the important characteristics of the bacteria.
- 5. Short Notes (Write any two)
 - (i) Facultative ponds
 - (ii) Imhoff tank
 - (iii) IFAS process

Group –CAnswer **any two** of the following

 $2 \times 10 = 20$

- 6. The mechanical treatment stage in wastewater treatment plants in addition to grit chamber and primary settling tank also includes screens and sieves.
 - a) Name the different models of screens.
 - b) Name the different models of sieves.
 - C) Which rates of flow [m/s] should not be undercut in the screen chamber respectively not exceeded between the screen bars? Justify your answer.

- 7. The external diameter of a concrete pipe is 1,000 mm. The wall thickness of the concrete pipe is 10 % of the external diameter.
 - a) Calculate the internal diameter and the wall thickness of the pipe.
 - b) Calculate the mass of the pipe (in t) with a length of 2.0 m and a density ρ (concrete) of 2.5 kg/m³.
- 8. Short Notes (Write any two)
 - (i) Nitrification and Denitrification
 - (ii) Activated sludge
 - (iii) Lagoon design

END	