Step-1

Solvable equation; an equation is said to be solvable if value of constant of coefficient can be easily computed and then solving the equation by manipulation.

Let
$$c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0$$

$$c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + c_4 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

That is;

$$c_1 + c_2 = 0$$
 $\hat{a} \in \hat{a} \in \hat{a} \in [\hat{a} \in \hat{a}]$

$$c_1 + c_4 = 0 \ \ \hat{\mathbf{a}} \in |\hat{\mathbf{a}} \in |\hat{\mathbf{a}} \in |\hat{\mathbf{c}} \in |(2)| \ c_2 + c_3 = 0 \ \ \hat{\mathbf{a}} \in |\hat{\mathbf{a}} \in |\hat{\mathbf{c}} \in |(3)| \ c_3 + c_4 = 0 \ \ \hat{\mathbf{a}} \in |\hat{\mathbf{a}} \in |\hat{\mathbf{c}} \in |(4)| \ \$$

Step-2

Now solve, by subtract (1)-(2)

$$(c_1 + c_2) - (c_1 + c_4) = 0$$

 $c_2 - c_4 = 0$
 $c_2 = c_4$

From (4),

$$-c_4 - c_3 = 0$$
$$c_3 = -c_4$$

So,

$$c_1 = -c_4$$

$$c_2 = -c_1$$

= c_4

$$c_1 = -c_4$$
$$c_2 = c_4$$

Therefore, $c_3 = -c_4$

Step-3

Therefore $-c_4v_1 + c_4v_2 - c_4v_3 + c_4v_4 = 0$

If
$$c_4 = 1_{\text{then}} - v_1 + v_2 - v_3 + v_4 = 0$$

Therefore v_1, v_2, v_3, v_4 are dependent.

They do not span R^4 because dimension of R^4 is $\boxed{4}$.

Step-4

Now, (0,0,0,1)

$$c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = (0,0,0,1)$$

Now, (0,0,0,1)

$$c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = (0,0,0,1)$$

That is;

$$c_1 + c_2 = 0$$
 $\hat{a} \in \hat{a} \in [\hat{a} \in [1])$

$$c_1 + c_4 = 0$$
 $\hat{a} \in \hat{a} \in \hat{a} \in [6]$

$$c_2 + c_3 = 0$$
 $\hat{a} \in \hat{a} \in \hat{a} \in [\hat{a} \in \hat{a}]$ (7)

$$c_3 + c_4 = 1 \ \hat{a} \in \hat{a} \in [\hat{a} \in (8)]$$

Equation – (5) – Equation – (6)

$$c_2 - c_4 = 0$$

Equation – (3) – Equation – (4)

$$c_2 - c_4 = -1$$

Therefore this is not possible to find ${}^{\mathcal{C}_2,\,\mathcal{C}_4}$.

Hence the equation is not solved.