Associative Models

Causal versus Associative Models

- In this class, we want you to start thinking from a causal modeling perspective
 - Unfortunately, you will very commonly encounter omitted variables
 - Still, we want you to practice identifying those omitted variables and thinking about them.
 - Wooldridge follows a causal perspective from beginning to end.
- Useful to contrast causal modeling with associative modeling
 - What if you really don't care about causality?
 - You're purely interested in population averages.

Ice Cream Sales

Building an Associative Model

- Let's see how to summarize a joint distribution without regard to causality.
- Choose β_0 and β_1 to minimize E[(crime β_0 β_1 sales)²]
 - This is similar to the way we derived the ols coefficients, here we have distances to the actual joint distribution, instead of a sample of data.
- This is what we call the population best fit line.
 - Now, I'm just going to define the error, $u = crime \beta_0 \beta_1$ sales

Ice Cream Sales

Building an Associative Model

- If I do all that, it turns out that the best fit line always fulfills two properties:
 - E(u) = 0
 - $cov(x_i, u) = 0$
- You will recognize that the second property is exactly the exogeneity assumption.
- This means that OLS will estimate the population best fit line consistently.
 - This is important.
- The problem: we're redefined the errors to make this happen.
- But if you're a causal modeler, the errors aren't there for you to redefine.
 - They represent actual real world effects!
 - E.g. the effect of temperature on crime.

Ice Cream Sales

Building an Associative Model

Remember two things:

- OLS will consistently find the population best fit line.
- When we do causal modeling, the population best fit line isn't always the line we want.

Ice Cream Sales