Nom:		DS2					
Prénom:	APP	ANA	REA	VAL	СОМ	RCO	
Exercice 1 – Guirlandes électriques							
1. $\mathcal{P}_J = RI^2$: la puissance reçue est $\mathcal{P} = UI$ avec $U = RI$ d'où $\mathcal{P}_J = RI^2$.						•••	
2. $I_o = \frac{E}{R+r}$, d'où $\mathcal{P}_{1,o} = \frac{RE^2}{(R+r)^2} = 8.0 \text{ W. } \mathcal{P}_{2,o} = 0.$			•••				
3. $I_f = \frac{2E}{R+r}$, d'où $I_{1,f} = I_{2,f} = \frac{E}{R+2r}$.			••				
4. $\mathcal{P}_{1,f} = \frac{RE^2}{(R+2r)^2} = 4.5 \text{W}.$			•				
5. $\mathcal{P}_{1,o} > \mathcal{P}_{1,f}$. Même si elle ne s'éteint jamais, la guirlande 1 semble clignoter.		•		•			
6. Si $r \ll R$, $\mathcal{P}_{1,o} \approx \mathcal{P}_{1,f}$: le générateur peut alors être considéré comme une source idéale de tension.		••					
7. En régime permanent, la bobine est équivalente à un fil, on retrouve alors le même circuit que précédemment.					••		
8. $\frac{E}{R+r} = i_1 + \tau_1 \frac{di_1}{dt}$, avec $\tau_1 = \frac{L}{R+r}$.			••				
9. En régime permanent : $0 + \frac{i_1}{\tau_2} = \frac{E}{L(1+\frac{r}{R})}$, d'où $i_1 = \frac{E}{R+2r}$.			••				
10. $L_1 < L_2$. On mesure $\tau_2 \approx 37.5$ ms, d'où $L_1 \approx 0.1$ H.							
11. i_1 est quasi-constante avec l'inductance L_2 .							
12. $\Delta t \approx 4.8 \text{h}$ et $\eta \approx 56 \%$.				•			
EXERCICE 2 – Annulation d'une surtension							
1. $U = E - rI$, démo et unités.						•••	
2. GBF: $r = 50 \Omega$. Générateur de tension continue: $r \approx 1 \Omega$. $r \ll R_1$ et R_2 .						•	
3. $i(t=0^-)=\frac{E}{R_1+R_2}$.			••				
4. Pour $t > 0$, $u(t) = 0$ et $i_1(t) = 0$.		••					
5. $i_{\infty} = \frac{E}{R_2}$.			••				
6. $\frac{E}{L} = \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{\tau}$ avec $\tau = \frac{L}{R_2}$. On retrouve bien $i_{\infty} = \frac{E}{R_2}$.			••	•			
7. $i(t) = \frac{E}{R_2} \left(1 - \frac{R_1}{R_1 + R_2} e^{-t/\tau} \right)$, avec $\tau = \frac{L}{R_2}$. On retrouve $i_{\infty} = \frac{E}{R_2}$.			••	•			
8. Représentation graphique : cf. correction détaillée.							
9. $u_{k+1} = u_k + \frac{\delta t}{\tau_1}(u_\infty - u_k)$.			••				
10. $u[k+1] = u[k] + dt / tau1 * (uinf - u[k]).$							
11. $\tau_1 = 67 \mu s$. Pour $\delta t > \tau_1$, la résolution numérique présente des oscillations				•			
incompatible avec un régime transitoire d'ordre 1.							
12. Durée du régime transitoire $\sim 5\tau_1$.						•	
13. Graphiquement ou avec la valeur de $\tau_1:0.3\mathrm{ms}$.	••						
14. Schéma et $i = C \frac{\mathrm{d}u}{\mathrm{d}t}$.						••	
15. Le condensateur est équivalent à un interrupteur ouvert en régime permanent, on retrouve le montage précédent.					••		
16. $\mathcal{E}_C = \frac{1}{2}Cu^2$ et démo.						•••	
17. $u(t=0^+)=0$ et $\frac{du}{dt}(t=0^+)=\frac{E}{R_2C}$.		••	•			·	
18. $\frac{d^2 u}{dt^2} + \frac{\omega_0}{Q} \frac{du}{dt} + \omega_0^2 u = \frac{E}{LC}$ avec $\omega_0 = \sqrt{\frac{R_1 + R_2}{R_1 LC}}$ et $\frac{\omega_0}{Q} = \frac{R_2}{L} + \frac{1}{R_1 C}$.		•••					
19. $\omega_0 \approx \frac{1}{\sqrt{LC}}$ et $Q \approx \frac{1}{R_2} \sqrt{\frac{L}{C}}$.				•			
20. $Q < \frac{1}{2}$: apériodique, $Q = \frac{1}{2}$: critique et $Q > \frac{1}{2}$: pseudo-périodique.						•••	
21. $C = 4\frac{L}{R_2^2} = 1.6 \times 10^{-7} \mathrm{F}.$			•				
22. $u(t) = \tilde{E} - E\left(1 + \frac{\omega_0}{2}t\right)e^{-\omega_0 t}$.		••				•	
23. $\Delta t = 5\sqrt{LC} = 2 \text{ms}.$			••				
24. Représentation graphique : cf correction détaillée.					••		
Présentation de la copie					••		
Total	APP	ANA	REA	VAL	сом	RCO	
Nombre total de points	6	16	25	6	12	17	
Nombre de points obtenus							
Commentaires:	$\eta =$	%;	$\tau =$	%;		/82	