Metrics to Evaluate Model Performance

After this video you will be able to...

- Discuss how performance metrics can be used to evaluate models
- Name three model evaluation metrics
- Explain why accuracy may be misleading

Classification

Is this animal a mammal?

Types of

Is this animal a mammal?

Yes No

Class Labels

True Predicted Label Label

Error Type

Yes

True Positive (TP)

No

True Negative (TN)

No

False Positive (FP)

Yes

False Negative (FN)

Accuracy Rate

Accuracy =
$$\begin{array}{r}
\text{# correct predictions} \\
\text{Rate} \\
&= \frac{\text{# total predictions}}{\text{TP + TN}} \\
&= \frac{\text{TP + FN}}{\text{TP + FN}}
\end{array}$$

Error Rate

Error = $\frac{\text{# incorrect predictions}}{\text{# total predictions}}$ $= \frac{\text{FN+ TP}}{\text{TP + TN + FP + FN}}$ = 1 - Accurate Rate

Predicted Label
No
No
No
Yes
Yes
No
No
Yes
No
Yes

True

Yes

No

No

Yes

Yes

No

Yes

Yes

No

No

Label

True **Predicted** Error Yes Yes True Positive (TP) No No True Negative (TN) False Positive (FP) Yes No False Negative (FN) Yes No

Classification Example

TN = 4

Classification Example

Accuracy Rate

Accuracy =
$$\frac{\text{# correct predictions}}{\text{# total predictions}}$$

$$= \frac{\text{TP + TN}}{\text{TP + TN + FP + FN}}$$

$$= (3 + 4) / 10 = 7 / 10 = 0.7$$

Error Rate

$$= 1 - 0.7 = 0.3$$

Limitation with Accuracy

Is this tumor cancerous?

most are negative examples

very few positive examples

Class Imbalance Problem

Limitation with Accuracy

Is this tumor cancerous?

- Say 3% of samples are cancer
- If model <u>always</u> predicts noncancer
 - Accuracy = 97%
 - But no cancer cases detected!

Precision & Recall

True Predicted Error

Yes Yes True Positive (TP)

No No True Negative (TN)

No Yes False Positive (FP)

Yes No False Negative (FN)

Precision =
$$\frac{TP}{TP + FP} \leftarrow \frac{All \text{ samples with Predicted = Yes}}{Predicted = Yes}$$

Recall = $\frac{TP}{TP + FN} \leftarrow \frac{All \text{ samples with True = Yes}}{True = Yes}$

How many selected items are relevant?

How many relevant items are selected?

Recall =

Samples correctly predicted as Positive

Recall

Source: https://en.wikipedia.org/wiki/Precision_and_recall

Samples correctly predicted as Positive

Recall

Source: https://en.wikipedia.org/wiki/Precision_and_recall

Samples correctly predicted as Positive

Recall

Source: https://en.wikipedia.org/wiki/Precision_and_recall

Precision & Recall

Precision =
$$\frac{TP}{TP + FP}$$
 = $\frac{Positive samples correctly predicted}{All samples predicted as Positive}$

$$Recall = \frac{TP}{TP + FN} = \frac{Positive samples correctly predicted}{All samples with true label Positive}$$

Measure of completeness

exactness

Precision & Recall

Precision

Recall

- Use together
- Goal: Maximize both

F-Measure

Precision

Recall

- F₁: evenly weighted
- F₂: weights Recall more
- F_{0.5}: weights Precision more

Evaluation Metrics

True Predicted
Yes Yes

Error

Yes No No Yes

No Yes No True Positive (TP)
True Negative (TN)
False Positive (FP)
False Negative (FN)

Accuracy Rate

Error Rate

Precision & Recall

F₁-Measure