Q. Fif
$$z = a + bx + cy$$
; given

 $x \mid y \mid z$
 $0 \mid 1 \mid 1f$
 $1 \mid 0 \mid S$
 $1 \mid 1 \mid 1S$.

Find a,b,c.

normal ignations:
$$\alpha + bx + cy = 2$$

$$a \sum_{i} 1 + b \sum_{i} x_{i} + c \sum_{i} y_{i} = \sum_{i} y_{i}$$

$$a \sum_{i} y_{i} + b \sum_{i} y_{i} + c \sum_{i} y_{i} = \sum_{i} y_{i}$$

a Iy; + b I vi y; + c Iy; = Iy; Zi

$$\begin{bmatrix} \Sigma_1 & \Sigma_{4i} & \Sigma_{9i} \\ \Sigma_{x_i} & \Sigma_{x_i} & \Sigma_{x_i} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} : \begin{bmatrix} \Sigma_{2i} \\ \Sigma_{x_i} & \Sigma_{x_i} \end{bmatrix}$$

$$\begin{bmatrix} \Sigma_{4i} & \Sigma_{x_i} & \Sigma_{x_i} & \Sigma_{x_i} \\ \Sigma_{4i} & \Sigma_{4i} & \Sigma_{4i} & \Sigma_{4i} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} : \begin{bmatrix} \Sigma_{2i} \\ \Sigma_{4i} & \Sigma_{4i} & \Sigma_{4i} \\ \Sigma_{4i} & \Sigma_{4i} & \Sigma_{4i} & \Sigma_{4i} \end{bmatrix}$$

II = n = 4 data points.

H	l g	2	NV	y	12	92	24
0	0	7	0	O	0	O	0
0	t	1ず	O	0	0	l f	O
1	0	5	•	t	5	0	0
1	,	15	1	1	15	15	1
IX = 2	5 9	52 = 44	エルニン	工y2=2	In2 = 20	Iy2 = 32	- 1 - 1

Sriphy Prof. Redukod Babushri Sriphyas, Department of Mathematics, MIT Manipal

Soln: $y = ab^{x}$ $log_{e}y = log_{e}a + x log_{e}b$ A B

normal quations: y: A F BZ

	ん	y	y = loge y	2 Y	n -
•	0	3	1.0986	0	0
	1	21	3.0445	3.0445	1
	2	147	4:9904	9.9808	4
	3	1029	6-9366	20.8089	9
I	L= 6	ユy: 12年の1. Ki	エソ = 16.0698 edukodi Babushri Sriniv	INY z ras 33 big 83 4 V	エ双 ^レ ェ 14 Mathematics, MIT Manipal
27	C= 6	ンタ・ IンProf. K		22.8242	'

$$16.0698 = A(4) + B(6) - (1)$$

i.
$$a = e^{1.0986}$$
 = 2.9999

$$\therefore y = a6^{x}$$

= $(2.9999)(6.9999)$.

9: Find TT(105) given

<u>N</u>	y = 7	T(2)		
10	4	() prime	counting	function.
102	25	T(2) prime		
lo³	168			

109 1229

Prof. Kedukadi Babushri Srinivas, Department of Mathematics, MIT Manipal

$$f(n) = \frac{10}{log_e lo} = 0.4342 \times 10 = 4.342$$

$$f(0) = f(100) = 100 = 21.714$$

Q. Fit
$$y = a + b \frac{\chi}{\log_2 \chi}$$
; given

 $\frac{\chi}{10} = \frac{y(\chi)}{4}$
 $\frac{\chi}{10^2} = \frac{1}{4}$
 $\frac{\chi}{10^3} = \frac{1}{10}$
 $\frac{\chi}{10} = \frac{1}{10}$
 $\frac{\chi}{10} = \frac{\chi}{10}$

Soln: $y = a + b \frac{\chi}{10}$
 $\frac{\chi}{10} = \frac{\chi}{10}$

y = a + b x; where x =
$$\frac{x}{log_e x}$$

normal guations:

		V		
N	y	X = x/logex	XL	Xy
10	4	4.3429		
102	25	d1. 7147		
lo³	168	144.7648		
104	1229	1085-7362		
	Ty: 14 graf. Ked	XX = ukodi Bakuski Signikas, Dep	EX*: artment of Mathematics, I	5xy: VIT Manipal 1354250.51

Solving (1) 2 (2)
$$a = 1.1196$$

$$b = 1.1312.$$

$$\therefore y(\pi) = a + b\pi$$

$$= 1.1196 + (1.1312) \pi$$

$$\log_{2} \pi$$
Now, $y(10^{5}) = 1.1196 + (1.1312) \frac{10^{5}}{\log_{2} 10^{5}}$

$$= 9826.6 \qquad \text{Predicted Value by}$$
Prof. Kedukodi Babushri Srinius Department of Maline fracci, with Manipal

Actual correct value of $TT(10^5) = 9592$.

(exact answer)

Given a matrix A; C(A)

6: Pb; P?

projection matrix

prof. Kedukodi Babushri Srinivas, Department of Mathematics, Mt Manipal