021 Sec 5. I Monday, Dec 2, 2019 Section 6.1 We have already seen a special case of areas between curves, When we Governd the cerear cender fox) on [aib], we were finding the arm between y=fix) and y=0 on [a,b] We now generalize this to find the area between y = f(x) and y = g(x) on the closed intervel [a,b] For now, assume fox 7 g(x) for all x in [aib] $y = \frac{1}{\sqrt{2}} =$ $\int_{a}^{b} \left[\xi(x) - g(x) \right] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$ This is valid even it found or g have negetive values (we still went for now, f79 4x) $\frac{1}{a} = \frac{1}{a} + \frac{1}{a} \times - \frac{1}{a} = \frac{1}{a}$

021 sec 601 Del Let f(x) 7 g(x) for all x in the closed interval [a, b] The crea of the region bounded by the comes given by y = f(x), y = g(x) and the vertical lines X=a, X=b is A = Sb [f(x)-g(x)]dx = Sa f(x)dx - Sa(x)dx provided that both right hand integrals exist Ex Graph and find the area of the region R bounded by the graphs of $f(x) = x^2 + 1$ on the interval [0,1] $g(x) = x^2$ $Area = S'\left[(\chi^2 + 1) - \chi^2\right] d\chi$ = Soldx = x] = 1-0=1

021 Sec 6,1 Final Exam 021 A - Man Der 9th 7250 Aux Volog 205 we was consider the case of & continuous functions found g on I=[a,b] where fry on portel I and grf on another part of I. The orea is not So [fix) -g(x)]ax The area is; S [f(x) - g(x)] ox + S [g(x) - f(x)] dx A = So | f(x)-g(x) lox = So | g(x) - f(x) lox Ex Find the area between f(x) = x5 and g(x) = x3 First find where found 9 intersect.

X⁵ = X³ X5-X3=0 x3(x2-1) =0 X3(X-1)(X+1)=0 We want: 5°(x5-x7) dx + 5°(x3-x5) dx $= \left(\frac{x_6}{6} - \frac{x_4}{4}\right) \Big|_{0}^{1} + \left(\frac{x_4}{4} - \frac{x_6}{6}\right) \Big|_{0}^{1} = \frac{1}{6}$ Set H(X) = X - X3 so (t is an odd function slightly easier way, 50 S'H(x)ax = 250 (+(x)dx = 2(t2)=6

021 Sec 611

EX Find the wied between: $y_1 = x^2 \times 1$, $y_2 = 3x$

Find the values of X at the points of

intersection

×3-x-3x=0

x3-4X=0

x(x2-4)=0

x(x-2)(x+2)=0

X=0,-2,2

A= So [(x3-x)-3x]ax+ So [3x-(x3-x)]dx

A = 50 [x3-4x] dx + 50 [4x-x3] dx

 $= \left(\frac{x^{4}}{4} - 2x^{2}\right) \left(\frac{0}{2} + \left(2x^{2} - \frac{x^{4}}{4}\right)\right)^{2}$

=4+4=8

021 Sec 61

EX Find the area of the regim enclosed by one cycle of $y = \sin x$, $y = \cos x$

Find pts of intersection on [0,27] SINX = COSX SINX (

Arou =
$$\int_{-\infty}^{5\pi} [\sin x - \cos x] dx$$

$$= (-\cos x - \sin x) \Big[\frac{5\pi}{4} \Big]$$

$$= \Big[-(\frac{1}{\sqrt{2}}) - (\frac{1}{\sqrt{2}}) \Big] - \Big[\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \Big]$$

$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} = 2\sqrt{2}$$

021 Sec 6.2	
Section 6.2 Volumes	
A (right) circular cylinder	
Volume Es: V=(TT2)h = (and of the base) (height)	
y (xy)(Z) = (area of bise) (height)	
(xy)(Z) = (area of bose) (height)	1
9 / = (1)	
Del A cylinder is a solid with a top and bottom which a congruent shapes, The top and bottom are in parallel congruent shapes, the top and bottom bese > keight	ne planes,
Del A cylinder is a solid bottom are in parallel	,
congruent shapes, the to hese) x keight	\leftarrow
Del A cylinder of the top and bottom cold in formation congruent shapes, The top and bottom cold in frese) x keight Volume = (orea of the brese) x keight	
of a solid	
To approximate the volume of the sections of where x is in the ith subintancel, we comprete where x is in the ith subintancel, we comprete	
I who of the approved	
V(52) 2 A(Kit) De height	
cross section	
Cross 1-1	

621 Sec 6,2
Deb Let S be a solid that lies between X=a and X=b
If the cruss-sectional aread S in the plane by through X
is perpendicular to the x-axis is ACX), with A a continuous
V = (in \(\(\times \) \(\times \) \(\times \)
Ex Find the volume of the solid obtained by reading the graph of
EX Find the volume of the solid obtained by reading the graph of f(x) = VX about the X-aris between X=0 and X=1
The cross-sections $A(X)$ are circles with vadies $f(X) = \sqrt{X}$ So $A(X) = TT (\sqrt{X})^2 = TT X$
So the volume is $V = S_0^1 T \times dx = T S_0^1 \times dx = T \times \frac{2}{2} \Big _0^1 = \frac{T}{2}$
Aside In finding area (2 dim idea) we integrate (ine segments (1 dim) In finding area (2 dim idea) " Volume (3 dim idea) " The a senser integration "increases" the dimension by
In a sense, megatin uneges

(

021 Sec 6.2 - L EX Find the udame of a sphere of reduces r wlog (without loss of generality), assume that the sphere is centered at the origin x2+42=12 V V TZX = redies of the cross section The ward a cross-section is $\pi r^2 = \pi \left[f(x)\right]^2$ =4 (1-x=)5 V= 15 (r2-x2)0x $= \pi \left(\Gamma^2 \times^2 \right)$ So V= att ((r2-x2)dx, note A(x)=(r2-x2)tt is an even fundas

 $V = 2\pi \left[r^2 x - \frac{x^3}{3} \right] = 2\pi \left[r^3 - \frac{r^3}{3} \right] = \frac{4}{3}\pi r^3$

621 Sec 62 The sphere is an example of a solid of revolution Let f(x)?0 on [a,b], Readire f(x) about the x-axis, A cross-section et x will be a circle of radius f(X) circle of radius f(x)

The cases of a cross-section is

The cases of a cross-section is TL = L [+(x)] 2 so volume = SaA(x)dx = SbT [f(x)]2dx = TSa[f(x)]dx EX Find the volume of the solid generated when f(x) = \for on [1,4] is revolved about the x-axis, $V = \pi S_1^{+} (\frac{1}{2})^2 dx$ $= \pi S_1^{+} \times \frac{1}{2} dx$ V= 11x=1 = - 1/4 = 17 [-4+1]

If a solid is not a solid of revolution it can be tricky to find a formula for the area of a cross-section.

V=34

Ex Find the area of a square base pyramid by internating cross-sections that are perpendicular to the x-axis,

The center of the base is on the X-axis We need a farmely for the area of a cross-section at X1 A(X) Let the pyramid have a base length of L, true height of h and a slent height of S

Using similar triangles, we have
$$\frac{15/2}{h} \frac{14/2}{h} \times \frac{5}{2} = \frac{5}{2}, 50 = \frac{L}{h}$$

The area of a cross-section is S^2 $A(s) = S^2 = \left(\frac{LX}{h}\right)^2 = \frac{L^2}{h^2} X^2$

Note Lihare constants, the only variable is X So $V = S_0^h A(x) dx = S_0^h \frac{L^2}{h^2} \chi^2 dx = \frac{C^2}{L^2} S_0^h \chi^2 dx$

$$\sqrt{2} \frac{L^{2}}{h^{2}} \frac{\chi^{3}}{3} \Big|_{\chi=0}^{\chi=h} = \frac{1}{3} L^{2} h$$

021 Sec 6.2	
A cone is a solid whose base is in a plane The solid topons to a pt. So the pyramide is a cone	
$V = \frac{1}{3}\pi r^2 h = \frac{3}{3}(\omega \omega $	
Chan the about & free	
WE NOW IN THE STATE OF THE STAT	
$V = \int_{0}^{h} tr \left[\frac{f(x)}{2} \right]^{2} dx = tr \int_{0}^{h} \frac{(mx)^{2} dx}{x^{2} + h}$	

V=m21 Sh x2 ox = m2 17 x3 | x=h

V= = 1 (TM2x3 = 1 (TMx2) X

The Granda is true for any come

= 1 (aread bese) (height)

note y=mx, so x=y

h Volume = { 3 (aver of base) (height)

OZI. Sec 6.3 Volumes by cylindrical Thells Deb Let & be continuous and non-ng on [a,6], a 20 Let R be the region bounder above by y=food bounded below by the y=0 (x-ares) and an the rides by the vertical like singments x=a, x=b. Then the volume of the solution that is solid of revolution that is generated by revolving R about the y-artis (5 -b a b (200 x) fox) dx thickness V= Sa circum height thickness U=X and y=X Ex Lot D be the reglan between y = x and y = x and y = x and y = x and y = xFind the volume of the solid about general when D is revolved about general when D is revolved about the $y - \alpha + \alpha$; $x = x = \alpha$ To find a and α ; set $x = x^2$, $x = x = \alpha$; $x = \alpha$; V= S/(2TTX)Xdx - S/201XXXXXX $V = 2\pi \left(\frac{10}{200} \right) = \frac{10}{6}$ $V = 2\pi \left(\frac{10}{200} \right) = \frac{10}{6}$

problem use cylindus (disks) from 6.2 y / y=x $V = \int_{y=0}^{y=1} T \left[Ty \right]^{2} dy - T \int_{y=0}^{y=0} (y)^{2} dy$ $= \pi \left[\int_{0}^{y} y dy - \int_{0}^{y} y^{2} dy \right] = \frac{11}{2}$ using desks our line segments one perpondicular to the series of rotation. Using shells-our line segments one procedled to the certis of rotation.

EL Use shells to find the volume of the solid generated when the regin enclosed he y=VF, X=1, X=4, y=0 is revolved about the y-oras. Using disks we would V=S 2TT x fcx) dx = St 2TT x (x2) dx = \$\frac{4}{2\pi \times \frac{3/2}{2} \times = 2(t\times \frac{72}{3})\frac{4}{1}}