Graph Characteristics

Board Characteristics

- 6×6 Matrix
- Each square contains a number/color combination (eg. 1, Blue)
- Because it is a 6×6 matrix we chose numbers 1-6 and six colors, namely (blue, pink, white, green, red, & yellow)
- We use every possible permutation of the number/color combination to give us 6^2 squares.

Node Characteristics

- Tile Number
- Node Color
- Node Number

Edge Characteristics

- · Edge exists iff
 - same node number
 - same node color
 - both nodes exist on same x or y axis

Let's get some basic imports out of the way

```
In [2]: import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import random
import matplotlib.pyplot as plt
import scipy as sp
```

Next, We structure our squares, tiles, and boards so we can visualize the boards.

Implementing classes with all necessary methods

```
In [3]: class Square:
            def __init__(self, color, number):
                 self.color = color
                 self.number = number
        class Tile:
            def __init__(self, tile_number, matrix):
                self.number = tile number
                # TODO: check if perfect square?
                 self.matrix = matrix
            # since we always have a matrix and to make future operations simpler, we
         adjust
            # to return the integer which, when squared, forms the size of our matrix
            def get shape(self):
                 return self.matrix.shape[0]
            def print_tile(self):
                 for row in self.matrix:
                     for cell in row:
                         print(cell.color, end=' ')
                         print(cell.number, end=' ')
                     print("\n")
            def print tile row(self, row):
                for cell in self.matrix[row]:
                     print(cell.color, end=' ')
                     print(cell.number, end=' | ')
            def get_tile_row(self, row):
                 return self.matrix[row]
        class Board:
            def __init__(self, matrix):
                # constructor will accept a matrix of Tiles.
                 self.matrix = matrix
                 self.graph = nx.Graph()
                 self.adjacency dict = {}
                # TODO: check if perfect square?
            def print_board(self):
                tile shape = self.matrix[0][0].get shape()
                for x in range(tile shape):
                     self.matrix[0][0].print tile row(x)
                     self.matrix[0][1].print_tile_row(x)
                     print("\n")
                for x in range(tile shape):
                     self.matrix[1][0].print tile row(x)
                     self.matrix[1][1].print tile row(x)
                     print("\n")
            # deconstructs the board into a matrix of squares
            def deconstruct board(self):
                tile shape = self.matrix[0][0].get shape()
```

```
deconstructed matrix = []
       for x in range(tile_shape):
            row = np.concatenate([self.matrix[0][0].get_tile_row(x), self.matr
ix[0][1].get_tile_row(x)])
            deconstructed matrix.append(row)
       for x in range(tile shape):
            row = np.concatenate([self.matrix[1][0].get_tile_row(x), self.matr
ix[1][1].get_tile_row(x)]
            deconstructed matrix.append(row)
        return deconstructed_matrix
   def build graph(self):
        deconstructed_matrix = np.array(self.deconstruct_board()).reshape(6,6)
        # make each square a graph node
       for row in deconstructed matrix:
            for elem in row:
                label = elem.color + str(elem.number)
                self.graph.add node(elem, label=label)
       # for each node draw edges
       for row index, row in enumerate(deconstructed matrix, start=0):
                for col index, elem in enumerate(row, start=0):
                    # examine column, if same number or color, create an edge
between the two nodes
                    # library handles case of duplicate edges
                    for square in deconstructed matrix[:,col index]:
                        if(square.color == elem.color or square.number == elem
.number):
                            self.graph.add_edge(square,elem)
                    # examine row, if same number or color, create an edge bet
ween the two nodes
                    # library handles case of duplicate edges
                    for square in deconstructed matrix[row index]:
                        if(square.color == elem.color or square.number == elem
.number):
                            self.graph.add edge(square,elem)
        self.graph.remove edges from(nx.selfloop edges(self.graph))
   def print_graph(self):
        labels = nx.get node attributes(self.graph, 'label')
        pos = nx.spring layout(self.graph,k=0.75,iterations=20)
        plt.figure(3,figsize=(10,6))
        nx.draw(self.graph, pos, labels=labels, node_size=500, font_weight='bo
ld', node color='y')
        plt.show()
   def get laplacian matrix(self):
        return nx.laplacian matrix(self.graph)
   def get adjacency matrix(self):
        return nx.adjacency_matrix(self.graph)
   def print graph characteristics(self):
```

```
print("Graph characteristics: ")
        print(self.graph.number_of_nodes(), "nodes")
        print(self.graph.number_of_edges(), "edges")
        print("Connected?", nx.is_connected(self.graph))
   def set_adjacency_dict(self):
        if self.graph.number_of_nodes() == 0:
            return "ERROR"
        adjacency dict = {}
       for n, nbrdict in self.graph.adjacency():
            adjacency dict[n.color + str(n.number)] = []
            for item in nbrdict:
                adjacency_dict[n.color + str(n.number)].append(item.color + st
r(item.number))
       self.adjacency_dict = adjacency_dict
   def print_adjacency_dict(self):
        if self.graph.number_of_nodes() == 0:
            return "ERROR"
        adjacency_dict = {}
       for n, nbrdict in self.graph.adjacency():
            adjacency dict[n.color + str(n.number)] = []
            for item in nbrdict:
                adjacency dict[n.color + str(n.number)].append(item.color + st
r(item.number))
       #print adjancecy dict for verfication of correctness
       for k, v in adjacency_dict.items():
            print (k, '-->', v)
```

We have the key classes implemented. Let's build the actual microrobots board.

```
In [4]: def build actual blackside microrobots board():
            tileOne = Tile(1, np.array([[Square("W", 6), Square("B", 6), Square("B", 2
        )],
                     [Square("R", 3), Square("Y", 4), Square("W", 3)],
                      [Square("B", 3), Square("G", 4), Square("W", 5)]], dtype=np.objec
        t).reshape(3,3))
            tileTwo = Tile(2, np.array([[Square("P", 5), Square("P", 2), Square("P", 3
        )],
                         [Square("R", 6), Square("R", 4), Square("Y", 3)],
                         [Square("B", 4), Square("G", 5), Square("G", 3)]], dtype=np.o
        bject).reshape(3,3))
            tileThree = Tile(3, np.array([[Square("B", 1), Square("R", 2), Square("W",
        4)],
                         [Square("W", 1), Square("G", 2), Square("G", 6)],
                         [Square("Y", 2), Square("W", 2), Square("P", 4)]], dtype=np.o
        bject).reshape(3,3))
            tileFour = Tile(4, np.array([[Square("P", 1), Square("Y", 6), Square("Y",
        1)],
                         [Square("Y", 5), Square("B", 5), Square("R", 5)],
                         [Square("P", 6), Square("R", 1), Square("G", 1)]], dtype=np.o
        bject).reshape(3,3))
            return Board(np.array([[tileOne, tileTwo], [tileThree, tileFour]], dtype=n
        p.object).reshape(2,2))
        blackside board = build actual blackside microrobots board()
        blackside board.print board()
        W 6 | B 6 | B 2 | P 5 | P 2 | P 3 |
        R 3 | Y 4 | W 3 | R 6 | R 4 | Y 3 |
        B 3 | G 4 | W 5 | B 4 | G 5 | G 3 |
        B1 | R2 | W4 | P1 | Y6 | Y1 |
        W1 | G2 | G6 | Y5 | B5 | R5 |
```

Now, we implement the ability to generate random boards

Y 2 | W 2 | P 4 | P 6 | R 1 | G 1 |

```
In [5]: # takes n numbers and n colors and generates a random n x n microrobots board
        def generate random board(numbers, colors):
                # TODO check if lists are equal in size, error if not
                \# TODO generalize to n x n by defining tile size rather than just usin
        q 3x3
                # build hashmap to store numbers and colors
                expected matrix size = len(numbers) * len(colors)
                hashmap = \{\}
                for color in colors:
                     hashmap[color] = []
                     for num in numbers:
                        hashmap[color].append(num)
                hashmap copy = hashmap.copy()
                # generates a random unique (exactly once) set of combinations of
                # numbers and colors and returns them as an instance of Square
                 squares = []
                 colors copy = colors.copy()
                while len(colors copy) > 0:
                     # chose random color
                     rand color = random.choice(colors copy)
                     rand_num = random.choice(hashmap_copy[rand_color])
                     hashmap copy[rand color].pop(hashmap copy[rand color].index(rand n
        um))
                     squares.append(Square(rand color, rand num))
                     # now we check if we used last num, if so remove color
                     # care, this is terminating condition on while loop
                     if len(hashmap copy[rand color]) == 0:
                        colors_copy.pop(colors_copy.index(rand color))
                # doouble check if len is as expected
                if len(squares) != expected matrix size:
                     print("ERROR: You only produced ", len(squares), "squares and we e
        xpected", expected_matrix_size)
                     return
                # generate 4 arrays of 9
                # TODO: the generation of these tiles is obvious not, itself, random.
         need to decide if this matters
                 split squares = np.array split(squares, 4)
                 board = Board(np.array([[Tile(1, split squares[0].reshape(3,3)), Tile(
        2,split squares[1].reshape(3,3))],
                          [Tile(3,split_squares[2].reshape(3,3)), Tile(4, split_squares
        [3].reshape(3,3))]], dtype=np.object).reshape(2,2))
                return board
        random board = generate random board([1,2,3,4,5,6], ["W", "R", "B", "P", "Y",
        "G"])
        random board.print board()
```

 B 6 | Y 2 | P 4 | B 4 | B 3 | W 3 |

 P 2 | Y 5 | P 3 | W 5 | G 5 | G 3 |

 R 5 | W 1 | G 2 | G 6 | Y 1 | Y 4 |

 Y 6 | G 4 | G 1 | R 3 | W 2 | R 6 |

 Y 3 | B 1 | W 6 | B 2 | R 1 | B 5 |

 P 5 | P 1 | W 4 | R 2 | R 4 | P 6 |

Now, let's explore the connectedness of a board.

We consider two squares connected iff

- They exist on the same row OR column AND
- They are the the same color OR number

Here, we draw the resulting graph of the ACTUAL blackside microrobots board and label it with the associated node values

```
In [6]: blackside_board.build_graph()
    blackside_board.print_graph_characteristics()
    blackside_board.print_graph()
```

Graph characteristics:
36 nodes
58 edges
Connected? True

Just to make sure we got everything right let's take a look at the adjacency list.

```
In [7]: blackside board.set adjacency dict()
         blackside board.print adjacency dict()
        W6 --> ['W1', 'B6']
        B6 --> ['W6', 'B2']
        B2 --> ['B6', 'P2']
        P5 --> ['P1', 'Y5', 'P6', 'P2', 'P3']
        P2 --> ['B2', 'P5', 'P3']
        P3 --> ['P5', 'P2', 'Y3', 'G3']
        R3 --> ['B3', 'W3', 'R6', 'R4', 'Y3']
        Y4 --> ['G4', 'R4', 'Y3']
        W3 --> ['R3', 'W5', 'W4', 'Y3']
        R6 --> ['R3', 'P6',
                              'R4']
        R4 --> ['R3', 'Y4', 'R6', 'R1']
        Y3 --> ['P3', 'R3', 'Y4', 'W3',
                                          'G3', 'Y1']
        B3 --> ['R3', 'B1', 'B4', 'G3']
G4 --> ['Y4', 'G2', 'B4', 'G5', 'G3']
                       'W4', 'G5']
        W5 --> ['W3',
        B4 --> ['B3', 'G4']
        G5 --> ['G4', 'W5', 'B5', 'G3']
        G3 --> ['P3', 'Y3', 'B3', 'G4',
                                          'G5', 'G1']
        B1 --> ['B3', 'W1', 'P1', 'Y1']
        R2 --> ['G2',
                       'W2']
        W4 --> ['W3', 'W5', 'P4']
        P1 --> ['P5', 'B1', 'P6', 'Y1']
        Y6 --> ['Y1']
        Y1 --> ['Y3', 'B1', 'P1', 'Y6', 'G1']
        W1 --> ['W6',
                       'B1']
        G2 --> ['G4', 'R2', 'W2', 'G6']
        G6 --> ['G2']
        Y5 --> ['P5', 'B5', 'R5']
        B5 --> ['G5', 'Y5', 'R5']
        R5 --> ['Y5', 'B5']
        Y2 --> ['W2']
        W2 --> ['R2', 'G2', 'Y2']
        P4 --> ['W4', 'P6']
        P6 --> ['P5', 'R6', 'P1', 'P4']
        R1 --> ['R4', 'G1']
        G1 --> ['G3', 'Y1', 'R1']
```

Alright, we compared that to the actual board and nothing looks sus!

TESTING RANDOMLY GENERATED THEORY

We questioned whether, just by nature, these boards tend to be connected even when randomly generated.
 The answer to that question is no.

```
In [ ]: | %%time
        # generates n random boards with the given numbers & colors arrays
        def generate random boards(n, numbers, colors):
           boards list = []
           for x in range(n):
               boards list.append(generate random board(numbers, colors))
           return boards list
        nums = [1,2,3,4,5,6]
        cols = ["W", "R", "B", "P", "Y", "G"]
        boards_list = generate_random_boards(100, nums, cols)
        count not connected = 0
        for b in boards_list:
           print("\n")
           print(" ----- ")
           print("\n")
           b.print board()
           b.build graph()
           b.print_graph_characteristics()
           if not nx.is_connected(b.graph):
               b.print graph()
               b.set adjacency dict()
               b.print adjacency dict()
               count_not_connected = count_not_connected + 1
                                                                  ")
        print("
                  _____
        print(count_not_connected, " out of ", len(boards_list)," graphs were not conn
        ected")
```

P 3 | B 3 | P 2 | R 1 | B 5 | P 1 |
B 6 | B 2 | Y 3 | W 3 | G 5 | Y 6 |
R 5 | R 3 | W 2 | B 1 | Y 2 | P 6 |
P 5 | W 6 | R 6 | Y 4 | Y 5 | W 5 |
P 4 | W 4 | G 1 | R 4 | W 1 | G 6 |
G 4 | B 4 | G 3 | Y 1 | G 2 | R 2 |

Graph characteristics:

36 nodes

59 edges

Connected? True

G 6 | B 5 | B 3 | R 5 | Y 1 | R 3 |

R 2 | Y 4 | B 1 | W 2 | G 2 | G 3 |

G 4 | W 6 | P 3 | B 4 | P 2 | Y 2 |

W 3 | R 1 | W 5 | G 5 | B 6 | B 2 |

W 4 | Y 6 | Y 3 | P 6 | R 6 | P 1 |

Y 5 | W 1 | G 1 | P 5 | P 4 | R 4 |

Graph characteristics:

36 nodes

45 edges


```
G6 --> ['G4']
B5 --> ['B3', 'R5']
B3 --> ['B5', 'B1', 'P3', 'Y3', 'R3']
R5 --> ['B5', 'G5', 'P5', 'R3']
Y1 --> []
R3 --> ['B3', 'R5', 'G3', 'R4']
R2 --> ['W2', 'G2']
Y4 --> ['Y6']
B1 --> ['B3', 'G1']
W2 --> ['R2', 'G2']
G2 --> ['R2', 'W2', 'P2', 'G3']
G3 --> ['R3', 'G2']
G4 --> ['G6', 'W4', 'B4']
             'W1']
W6 --> ['Y6',
P3 --> ['B3', 'Y3', 'P2']
B4 --> ['G4']
P2 --> ['G2', 'P3', 'P4', 'Y2']
Y2 --> ['P2', 'B2']
W3 --> ['W4', 'W5']
R1 --> ['W1']
W5 --> ['W3', 'G5']
G5 --> ['R5', 'W5', 'P5']
B6 --> ['R6', 'B2']
B2 --> ['Y2', 'B6']
W4 --> ['G4', 'W3']
Y6 --> ['Y4', 'W6', 'Y3', 'P6', 'R6']
Y3 --> ['B3', 'P3', 'Y6']
P6 --> ['Y6', 'P5', 'R6', 'P1']
R6 --> ['B6', 'Y6', 'P6']
P1 --> ['P6']
Y5 --> ['P5']
W1 --> ['W6', 'R1', 'G1']
G1 --> ['B1', 'W1']
P5 --> ['R5', 'G5', 'P6', 'Y5', 'P4']
P4 --> ['P2', 'P5', 'R4']
R4 --> ['R3', 'P4']
 ______
```

```
      Y
      2
      |
      P
      3
      |
      B
      4
      |
      Y
      4
      |
      B
      6
      |
      W
      3
      |

      R
      3
      |
      W
      1
      |
      Y
      1
      |
      B
      3
      |
      B
      1
      |
      Y
      3
      |

      B
      5
      |
      P
      6
      |
      G
      6
      |
      B
      2
      |
      Y
      5
      |
      G
      3
      |

      Y
      6
      |
      P
      2
      |
      W
      2
      |
      Y
      5
      |
      G
      3
      |

      G
      5
      |
      R
      4
      |
      R
      1
      |
      W
      4
      |
      P
      4
      |
      P
      1
      |
      W
      6
      |
      R
      2
      |
      Y
      5
      |
      R
      2
      |
      Y
      5
      |
      R
      2
      |
      Y
      5
      |
      R
      2
      |
      Y
      5
      |
      R
```

Graph characteristics:

36 nodes

50 edges

Connected? True

 Y 1 | B 1 | B 2 | W 6 | W 1 | Y 3 |

 B 3 | R 6 | W 3 | B 6 | B 5 | W 2 |

 R 2 | R 1 | G 4 | W 4 | Y 6 | B 4 |

 G 1 | G 5 | G 6 | Y 5 | P 3 | Y 4 |

 G 2 | R 5 | G 3 | P 5 | Y 2 | P 4 |

 R 4 | P 1 | W 5 | P 6 | R 3 | P 2 |

Graph characteristics:

36 nodes

59 edges

Connected? True

 Y 1 | G 2 | B 4 | B 5 | P 4 | R 4 |

 G 3 | Y 6 | Y 2 | W 3 | R 6 | R 2 |

 R 1 | Y 3 | W 6 | R 5 | R 3 | Y 5 |

 G 6 | B 3 | B 2 | W 1 | B 1 | G 5 |

 P 5 | Y 4 | B 6 | G 4 | G 1 | P 1 |

 W 5 | W 4 | W 2 | P 3 | P 6 | P 2 |

Graph characteristics:

36 nodes

58 edges


```
Y1 --> ['R1']
G2 --> []
B4 --> ['B2', 'B6', 'B5', 'P4', 'R4']
B5 --> ['B4', 'R5']
P4 --> ['B4', 'P6', 'R4']
R4 --> ['B4', 'P4', 'R2']
G3 --> ['G6', 'W3']
Y6 --> ['Y3', 'Y4', 'Y2', 'R6']
Y2 --> ['Y6', 'B2', 'W2', 'R2']
W3 --> ['G3', 'W1', 'P3']
R6 --> ['Y6', 'R3', 'P6', 'R2']
R2 --> ['R4', 'Y2', 'R6', 'P2']
R1 --> ['Y1', 'R5', 'R3']
Y3 --> ['Y6', 'B3', 'Y4', 'R3', 'Y5']
W6 --> ['B6', 'W2']
R5 --> ['B5', 'R1', 'R3', 'Y5']
R3 --> ['R6', 'R1', 'Y3', 'R5']
Y5 --> ['Y3', 'R5', 'G5']
G6 --> ['G3',
             'G5']
B3 --> ['Y3', 'B2', 'B1']
B2 --> ['B4', 'Y2', 'B3', 'B6', 'W2', 'B1']
W1 --> ['W3', 'B1']
B1 --> ['B3', 'B2', 'W1', 'G1']
G5 --> ['Y5',
             'G6']
P5 --> ['W5', 'P1']
Y4 --> ['Y6', 'Y3', 'W4', 'G4']
B6 --> ['B4', 'W6', 'B2']
G4 --> ['Y4', 'G1']
G1 --> ['B1', 'G4', 'P1']
P1 --> ['P5', 'G1', 'P2']
W5 --> ['P5', 'W4', 'W2']
W4 --> ['Y4', 'W5', 'W2']
W2 --> ['Y2', 'W6', 'B2', 'W5', 'W4', 'P2']
P3 --> ['W3', 'P6', 'P2']
P6 --> ['P4', 'R6', 'P3', 'P2']
P2 --> ['R2', 'P1', 'W2', 'P3', 'P6']
 ______
```

```
W 3 | W 4 | P 3 | W 6 | W 5 | B 3 |
W 1 | R 4 | G 3 | R 3 | Y 3 | G 2 |
R 2 | W 2 | B 5 | B 6 | G 6 | Y 4 |
G 5 | G 4 | Y 6 | R 6 | G 1 | P 4 |
P 5 | R 1 | P 6 | B 2 | B 4 | Y 2 |
R 5 | P 1 | Y 1 | P 2 | B 1 | Y 5 |
```

Graph characteristics:

36 nodes

60 edges

Connected? True

 P 4 | B 6 | B 2 | B 5 | B 1 | R 3 |

 Y 1 | B 4 | R 5 | B 3 | P 3 | R 2 |

 W 2 | W 4 | G 6 | Y 2 | Y 4 | P 5 |

 P 2 | G 5 | W 1 | G 4 | G 2 | P 6 |

 R 1 | W 6 | Y 5 | R 4 | G 1 | W 5 |

 Y 3 | Y 6 | R 6 | P 1 | W 3 | G 3 |

Graph characteristics:

36 nodes

49 edges


```
P4 --> ['P2']
B6 --> ['B4', 'W6', 'Y6', 'B2', 'B5', 'B1']
B2 --> ['B6', 'B5', 'B1']
B5 --> ['B6', 'B2', 'B3', 'B1']
B1 --> ['B6', 'B2', 'B5', 'G1']
R3 --> ['R2', 'G3']
             'Y3']
Y1 --> ['R1',
B4 --> ['B6', 'W4', 'B3']
R5 --> ['Y5', 'R6', 'R2']
B3 --> ['B5', 'B4', 'P3']
P3 --> ['B3', 'W3']
R2 --> ['R3', 'R5']
W2 --> ['P2', 'W4', 'Y2']
W4 --> ['B4', 'W2', 'W6', 'Y4']
G6 --> ['R6']
Y2 --> ['W2', 'Y4']
Y4 --> ['W4', 'Y2']
P5 --> ['P6', 'W5']
P2 --> ['P4', 'W2', 'G2', 'P6']
G5 --> ['G4', 'G2']
W1 --> []
G4 --> ['G5', 'R4', 'G2']
G2 --> ['P2', 'G5', 'G4', 'G1']
P6 --> ['P5', 'P2']
R1 --> ['Y1', 'R4', 'G1']
W6 --> ['B6', 'W4', 'Y6', 'W5']
Y5 --> ['R5', 'W5']
R4 --> ['G4', 'R1']
G1 --> ['B1', 'G2', 'R1']
W5 --> ['P5', 'W6', 'Y5']
Y3 --> ['Y1', 'Y6', 'W3', 'G3']
Y6 --> ['B6', 'W6', 'Y3', 'R6']
R6 --> ['R5', 'G6', 'Y6']
P1 --> []
W3 --> ['P3', 'Y3', 'G3']
G3 --> ['R3', 'Y3', 'W3']
 ______
W 5 | B 5 | W 1 | G 3 | P 5 | G 2 |
R4 | B2 | B6 | G5 | G1 | R1 |
Y 1 | W 2 | Y 4 | G 4 | P 1 | R 3 |
G 6 | W 3 | Y 6 | W 6 | B 4 | Y 5 |
P 2 | W 4 | R 2 | P 3 | P 4 | Y 2 |
```

Graph characteristics:

Y3 | R5 | R6 | B1 | B3 | P6 |

36 nodes

53 edges

Connected? True

```
R 1 | P 5 | B 6 | G 2 | R 5 | R 4 |
G 4 | Y 5 | B 5 | P 6 | Y 6 | P 3 |
B 1 | W 3 | P 1 | B 4 | B 2 | W 2 |
G 6 | R 3 | Y 2 | G 5 | P 2 | Y 4 |
G 3 | B 3 | W 6 | P 4 | Y 3 | R 6 |
Y 1 | G 1 | W 1 | W 5 | W 4 | R 2 |
```

Graph characteristics:

36 nodes

52 edges

Connected? True

R 5 | G 1 | Y 3 | Y 5 | G 4 | P 6 |
P 1 | P 2 | Y 6 | P 4 | R 4 | Y 2 |
R 6 | B 3 | G 3 | R 2 | G 5 | G 6 |
R 3 | Y 1 | R 1 | B 1 | W 1 | W 3 |
G 2 | P 5 | Y 4 | B 2 | B 6 | W 5 |
P 3 | W 6 | W 2 | W 4 | B 4 | B 5 |

Graph characteristics:

36 nodes

54 edges

Connected? True

R 1 | R 6 | P 1 | G 5 | B 3 | G 3 |
Y 1 | W 2 | W 3 | G 6 | P 6 | G 4 |
R 5 | R 3 | R 2 | W 5 | G 2 | Y 2 |
Y 3 | Y 5 | B 4 | B 6 | W 1 | W 6 |
Y 4 | Y 6 | R 4 | P 2 | B 1 | W 4 |

P 5 | P 3 | G 1 | B 2 | P 4 | B 5 |

Graph characteristics:
36 nodes
51 edges
Connected? False


```
R1 --> ['Y1', 'R5', 'R6', 'P1']
R6 --> ['R1', 'R3', 'Y6']
P1 --> ['R1', 'G1']
G5 --> ['G6', 'W5', 'G3']
B3 --> ['B1', 'G3']
G3 --> ['G5', 'B3', 'G4']
Y1 --> ['R1', 'Y3', 'Y4']
W2 --> ['W3']
W3 --> ['W2']
G6 --> ['G5', 'B6', 'P6', 'G4']
P6 --> ['G6', 'P4']
G4 --> ['G3', 'G6',
                     'W4']
R5 --> ['R1', 'P5', 'R3', 'R2', 'W5']
R3 --> ['R6', 'R5', 'P3', 'R2']
R2 --> ['R5', 'R3', 'R4', 'G2', 'Y2']
W5 --> ['G5', 'R5']
G2 --> ['R2', 'Y2']
Y2 --> ['R2', 'G2']
Y3 --> ['Y1', 'Y4', 'Y5']
Y5 --> ['Y3', 'Y6']
B4 --> ['R4', 'B6']
B6 --> ['G6', 'B4', 'B2', 'W6']
W1 --> ['B1', 'W6']
W6 --> ['B6', 'W1', 'W4']
Y4 --> ['Y1', 'Y3', 'Y6', 'R4', 'W4']
Y6 --> ['R6', 'Y5', 'Y4']
R4 --> ['R2', 'B4', 'Y4', 'W4']
P2 --> ['B2']
B1 --> ['B3', 'W1']
W4 --> ['G4', 'W6', 'Y4', 'R4']
P5 --> ['R5', 'P3', 'P4', 'B5']
P3 --> ['R3', 'P5', 'P4']
G1 --> ['P1']
B2 --> ['B6', 'P2', 'B5']
P4 --> ['P6', 'P5', 'P3']
B5 --> ['P5', 'B2']
 _____
```

```
      G 6 | W 2 | W 3 | B 6 | W 6 | R 1 |

      Y 3 | W 5 | Y 5 | Y 6 | Y 2 | W 1 |

      B 1 | W 4 | R 2 | G 5 | B 4 | R 3 |

      Y 1 | B 2 | B 3 | G 1 | G 4 | P 1 |

      R 5 | P 5 | R 4 | B 5 | G 2 | P 6 |

      Y 4 | R 6 | G 3 | P 3 | P 4 | P 2 |
```

Graph characteristics:

36 nodes

61 edges


```
G6 --> ['B6', 'W6']
W2 --> ['W5', 'W4',
                    'B2', 'W3', 'W6']
W3 --> ['W2', 'B3', 'G3', 'W6']
B6 --> ['G6', 'Y6', 'B5', 'W6']
W6 --> ['G6', 'W2', 'W3', 'B6']
R1 --> ['W1', 'R3', 'P1']
             'Y4', 'Y5',
                         'Y6', 'Y2']
Y3 --> ['Y1',
W5 --> ['W2', 'W4', 'P5', 'Y5', 'W1']
Y5 --> ['Y3', 'W5', 'Y6',
                         'Y2']
Y6 --> ['B6', 'Y3', 'Y5', 'Y2']
Y2 --> ['Y3', 'Y5', 'Y6', 'G2']
W1 --> ['R1', 'W5', 'P1']
B1 --> ['Y1', 'B4']
W4 --> ['W2', 'W5', 'B4']
R2 --> ['R4', 'R3']
G5 --> ['G1', 'B5']
B4 --> ['B1', 'W4', 'G4', 'P4']
R3 --> ['R1', 'R2']
Y1 --> ['Y3', 'B1', 'Y4', 'G1', 'P1']
B2 --> ['W2', 'B3']
B3 --> ['W3', 'B2', 'G3']
G1 --> ['G5', 'Y1', 'G4', 'P1']
G4 --> ['B4', 'G1', 'G2', 'P4']
P1 --> ['R1', 'W1', 'Y1', 'G1', 'P6', 'P2']
R5 --> ['P5', 'R4', 'B5']
P5 --> ['W5', 'R5', 'B5', 'P6']
R4 --> ['R2', 'R5']
B5 --> ['B6', 'G5', 'R5', 'P5']
G2 --> ['Y2', 'G4']
P6 --> ['P1', 'P5', 'P2']
Y4 --> ['Y3', 'Y1', 'P4']
R6 --> []
G3 --> ['W3', 'B3', 'P3']
P3 --> ['G3', 'P4', 'P2']
P4 --> ['B4', 'G4', 'Y4', 'P3', 'P2']
P2 --> ['P1', 'P6', 'P3', 'P4']
 ______
W 3 | R 3 | B 2 | R 6 | W 2 | Y 6 |
W 6 | W 5 | P 6 | Y 4 | Y 2 | R 1 |
R4 | P2 | Y1 | R5 | G2 | R2 |
Y 5 | W 1 | G 3 | P 3 | P 5 | B 3 |
W4 | G4 | G6 | B4 | G1 | P4 |
B 6 | B 5 | P 1 | Y 3 | G 5 | B 1 |
```

Graph characteristics:

36 nodes

58 edges

Connected? True

R 1 | G 5 | W 6 | P 1 | P 5 | G 3 |
B 3 | W 4 | P 3 | R 4 | W 2 | R 6 |
R 3 | R 2 | G 2 | Y 1 | P 6 | B 6 |
R 5 | W 3 | B 2 | B 1 | Y 6 | W 5 |
G 1 | W 1 | G 6 | B 5 | B 4 | P 4 |
P 2 | Y 3 | G 4 | Y 2 | Y 5 | Y 4 |

Graph characteristics:
36 nodes
51 edges

Connected? True

R 1 | P 1 | Y 1 | R 5 | Y 6 | Y 2 |
Y 5 | G 5 | G 4 | Y 4 | G 2 | P 5 |
P 4 | R 3 | G 1 | G 3 | Y 3 | G 6 |
W 2 | R 6 | W 1 | P 6 | B 4 | P 3 |
R 2 | W 4 | R 4 | B 3 | W 3 | W 5 |

Graph characteristics:
36 nodes
58 edges


```
R1 --> ['R2', 'P1', 'Y1', 'R5']
P1 --> ['R1', 'P2',
                   'Y1']
Y1 --> ['R1', 'P1', 'G1', 'W1', 'Y6', 'Y2']
R5 --> ['R1']
Y6 --> ['Y1', 'Y3', 'Y2']
Y2 --> ['Y1', 'Y6']
Y5 --> ['B5', 'G5',
                    'Y4', 'P5']
G5 --> ['Y5', 'G4', 'G2', 'P5']
G4 --> ['G5', 'G1', 'R4', 'Y4', 'G2']
Y4 --> ['Y5', 'G4']
G2 --> ['G5', 'G4']
P5 --> ['Y5', 'G5', 'P3', 'W5']
P4 --> []
R3 --> ['R6', 'G3', 'Y3']
G1 --> ['Y1', 'G4', 'W1', 'G3', 'G6']
G3 --> ['R3', 'G1', 'B3', 'Y3', 'G6']
Y3 --> ['Y6', 'R3', 'G3', 'W3']
G6 --> ['G1', 'G3', 'W6']
W2 --> ['R2',
             'W1']
R6 --> ['R3', 'P6']
W1 --> ['Y1', 'G1', 'W2']
P6 --> ['R6', 'B6', 'P3']
B4 --> ['B1']
P3 --> ['P5', 'P6']
R2 --> ['R1', 'W2', 'R4']
W4 --> ['R4', 'W3', 'W5']
R4 --> ['G4', 'R2', 'W4']
B3 --> ['G3', 'B6', 'W3']
W3 --> ['Y3', 'W4', 'B3', 'W5']
W5 --> ['P5', 'W4', 'W3', 'W6']
B5 --> ['Y5', 'B2', 'B6', 'B1']
P2 --> ['P1', 'B2']
B2 --> ['B5', 'P2', 'B6', 'B1']
B6 --> ['P6', 'B3', 'B5', 'B2', 'B1', 'W6']
B1 --> ['B4', 'B5', 'B2', 'B6']
W6 --> ['G6', 'W5', 'B6']
 ______
```

```
      Y 2 | R 5 | B 2 | G 1 | Y 3 | P 2 |

      G 3 | B 5 | Y 5 | R 6 | W 1 | G 4 |

      P 1 | W 5 | G 6 | G 2 | W 6 | P 4 |

      G 5 | Y 1 | Y 4 | B 6 | B 1 | R 2 |

      B 4 | Y 6 | W 3 | P 3 | R 1 | R 3 |

      P 6 | P 5 | B 3 | W 4 | W 2 | R 4 |
```

Graph characteristics:

36 nodes

48 edges


```
Y2 --> ['B2', 'Y3', 'P2']
R5 --> ['B5', 'W5', 'P5']
B2 --> ['Y2', 'B3', 'P2']
G1 --> ['G2']
Y3 --> ['Y2']
P2 --> ['Y2', 'B2', 'P4', 'R2']
G3 --> ['G5', 'G4']
B5 --> ['R5', 'W5', 'P5', 'Y5']
Y5 --> ['B5', 'Y4']
R6 --> ['B6']
W1 --> ['W6', 'B1', 'R1', 'W2']
G4 --> ['G3', 'P4', 'R4']
P1 --> ['P6', 'P4']
W5 --> ['R5', 'B5', 'P5', 'W6']
G6 --> ['G2', 'W6']
G2 --> ['G1', 'G6']
W6 --> ['W1', 'W5', 'G6', 'W2']
P4 --> ['P2', 'G4', 'P1', 'R4']
G5 --> ['G3']
Y1 --> ['Y6', 'Y4', 'B1']
Y4 --> ['Y5', 'Y1']
B6 --> ['R6', 'B1']
B1 --> ['W1', 'Y1', 'B6', 'R1']
R2 --> ['P2', 'R3', 'R4']
B4 --> []
Y6 --> ['Y1']
W3 --> ['B3', 'P3', 'R3']
P3 --> ['W3', 'R3']
R1 --> ['W1', 'B1', 'R3']
R3 --> ['R2', 'W3', 'P3', 'R1', 'R4']
P6 --> ['P1', 'P5']
P5 --> ['R5', 'B5', 'W5', 'P6']
B3 --> ['B2', 'W3']
W4 --> ['W2', 'R4']
W2 --> ['W1', 'W6', 'W4']
R4 --> ['G4', 'P4', 'R2', 'R3', 'W4']
 ______
```

```
      Y
      2
      |
      R
      1
      |
      B
      3
      |
      G
      5
      |
      P
      1
      |
      B
      5
      |

      B
      1
      |
      G
      1
      |
      Y
      5
      |
      Y
      3
      |
      B
      6
      |
      W
      3
      |

      B
      4
      |
      G
      2
      |
      G
      3
      |
      W
      5
      |
      Y
      6
      |
      R
      4
      |

      B
      2
      |
      G
      4
      |
      W
      4
      |
      R
      3
      |
      P
      6
      |
      W
      6
      |

      R
      5
      |
      W
      1
      |
      P
      2
      |
      P
      5
      |
      P
      4
      |
```

Graph characteristics:

36 nodes

55 edges

Connected? True

```
G 6 | Y 3 | R 6 | Y 6 | B 3 | W 2 |

R 1 | Y 4 | B 2 | R 3 | B 4 | B 1 |

P 1 | P 2 | P 4 | P 3 | P 5 | G 2 |

B 6 | W 5 | B 5 | W 4 | R 2 | R 5 |

R 4 | G 3 | G 4 | Y 2 | W 3 | Y 1 |

P 6 | G 1 | G 5 | W 1 | W 6 | Y 5 |
```

Graph characteristics:

36 nodes

60 edges

Connected? True

 W 3 | Y 1 | P 2 | G 5 | P 5 | R 5 |

 Y 2 | P 4 | B 4 | G 1 | Y 4 | B 2 |

 Y 3 | R 4 | Y 5 | B 6 | B 5 | P 6 |

 G 3 | R 1 | Y 6 | R 3 | W 4 | W 1 |

 B 1 | P 1 | W 6 | W 2 | R 2 | G 4 |

 W 5 | B 3 | P 3 | R 6 | G 2 | G 6 |

Graph characteristics:

36 nodes

46 edges

Connected? True

 Y 2 | B 4 | B 6 | R 2 | P 6 | P 2 |

 Y 4 | Y 6 | R 4 | B 2 | Y 5 | R 5 |

 G 1 | P 1 | W 1 | W 2 | Y 3 | P 3 |

 B 3 | W 4 | R 3 | Y 1 | B 5 | B 1 |

 R 6 | W 5 | W 6 | W 3 | G 4 | G 3 |

R 1 | P 5 | P 4 | G 6 | G 5 | G 2 |

Graph characteristics:

36 nodes 58 edges

Connected? True

G 3 | B 5 | R 2 | Y 3 | W 1 | B 4 |
G 5 | R 3 | G 1 | R 6 | R 4 | Y 1 |
B 3 | P 1 | B 2 | P 5 | B 1 | P 4 |
P 3 | W 2 | Y 2 | W 3 | W 4 | G 6 |
P 6 | G 4 | Y 4 | W 5 | W 6 | Y 5 |
B 6 | P 2 | R 5 | G 2 | Y 6 | R 1 |

Graph characteristics:

36 nodes

53 edges


```
G3 --> ['G5', 'B3', 'P3', 'Y3']
B5 --> ['B4']
R2 --> ['B2', 'Y2', 'R5']
Y3 --> ['G3', 'W3']
W1 --> ['B1', 'W4', 'W6']
B4 --> ['B5', 'P4']
G5 --> ['G3', 'G1']
R3 --> ['R6', 'R4']
             . 'Y1']
G1 --> ['G5',
R6 --> ['R3', 'R4']
R4 --> ['R3', 'R6', 'W4']
Y1 --> ['G1', 'Y5',
                   'R1']
B3 --> ['G3', 'P3', 'B6', 'B2', 'B1']
P1 --> ['P2', 'P5', 'B1',
                          'P4']
B2 --> ['R2', 'B3', 'Y2', 'B1']
P5 --> ['P1', 'W5', 'P4']
B1 --> ['W1', 'B3', 'P1', 'B2']
P4 --> ['B4', 'P1', 'P5']
P3 --> ['G3',
             'B3', 'P6', 'W3']
W2 --> ['P2', 'Y2', 'W3', 'W4']
Y2 --> ['R2', 'B2', 'W2', 'Y4']
W3 --> ['Y3', 'P3', 'W2', 'W5', 'W4']
W4 --> ['W1', 'R4', 'W2', 'W3', 'W6']
G6 --> []
P6 --> ['P3', 'B6', 'W6']
G4 --> ['Y4']
Y4 --> ['Y2', 'G4', 'Y5']
W5 --> ['P5', 'W3', 'W6', 'Y5']
W6 --> ['W1', 'W4', 'P6', 'W5', 'Y6']
Y5 --> ['Y1', 'Y4', 'W5']
B6 --> ['B3', 'P6', 'Y6']
P2 --> ['P1', 'W2', 'G2']
R5 --> ['R2', 'R1']
G2 --> ['P2']
Y6 --> ['W6', 'B6']
R1 --> ['Y1', 'R5']
```

```
      Y 4 | B 6 | R 3 | P 1 | B 5 | B 3 |

      G 6 | B 1 | P 6 | G 3 | B 2 | G 5 |

      B 4 | R 1 | P 4 | Y 6 | P 2 | G 1 |

      G 4 | P 5 | W 4 | W 3 | Y 3 | Y 5 |

      W 5 | R 2 | G 2 | W 1 | W 6 | R 4 |

      Y 2 | P 3 | Y 1 | W 2 | R 6 | R 5 |
```

Graph characteristics:

36 nodes

49 edges


```
Y4 --> ['B4', 'G4', 'Y2']
B6 --> ['B1', 'B5', 'B3']
R3 --> ['B3']
P1 --> ['W1']
B5 --> ['B6', 'B2', 'B3']
B3 --> ['B6', 'R3', 'B5']
G6 --> ['G4', 'P6', 'G3', 'G5']
B1 --> ['B6', 'R1', 'B2']
             'P4']
P6 --> ['G6',
G3 --> ['G6', 'W3', 'G5']
B2 --> ['B5', 'B1', 'P2']
G5 --> ['G6', 'G3', 'G1', 'Y5', 'R5']
B4 --> ['Y4', 'G4', 'P4']
R1 --> ['B1', 'R2', 'G1']
P4 --> ['P6', 'B4', 'W4', 'P2']
Y6 --> []
P2 --> ['B2', 'P4']
G1 --> ['G5', 'R1']
G4 --> ['Y4', 'G6', 'B4', 'W4']
P5 --> ['P3', 'Y5']
W4 --> ['P4', 'G4', 'W3']
W3 --> ['G3', 'W4', 'W1', 'W2', 'Y3']
Y3 --> ['W3', 'Y5']
Y5 --> ['G5', 'P5', 'Y3', 'R5']
W5 --> ['W1', 'W6']
R2 --> ['R1', 'G2', 'R4']
G2 --> ['R2']
W1 --> ['P1', 'W3', 'W5', 'W2', 'W6']
W6 --> ['W5', 'W1', 'R6']
R4 --> ['R2', 'R5']
Y2 --> ['Y4', 'Y1', 'W2']
P3 --> ['P5']
Y1 --> ['Y2']
W2 --> ['W3', 'W1', 'Y2']
R6 --> ['W6', 'R5']
R5 --> ['G5', 'Y5', 'R4', 'R6']
 ______
G 5 | W 5 | W 4 | G 6 | Y 1 | G 3 |
P5 | W1 | B1 | P2 | Y6 | G4 |
Y 5 | R 1 | P 6 | Y 3 | Y 2 | Y 4 |
G 2 | P 1 | W 6 | B 5 | R 2 | B 6 |
P3 | R4 | P4 | W2 | R3 | R6 |
R 5 | G 1 | W 3 | B 3 | B 4 | B 2 |
Graph characteristics:
36 nodes
60 edges
```

Connected? True

```
P 4 | B 6 | P 2 | B 2 | W 1 | P 6 |

R 3 | W 6 | W 4 | W 3 | Y 4 | G 6 |

Y 5 | R 4 | B 4 | R 2 | W 5 | G 5 |

G 3 | B 5 | R 1 | B 1 | P 1 | Y 6 |

G 1 | P 3 | G 4 | B 3 | P 5 | R 5 |

R 6 | Y 1 | W 2 | G 2 | Y 3 | Y 2 |
```

Graph characteristics:

36 nodes

59 edges

Connected? True

R 5 | W 4 | B 1 | B 5 | G 3 | Y 6 |

R 1 | B 2 | Y 2 | G 2 | P 3 | B 3 |

P 6 | W 5 | R 6 | R 4 | G 6 | B 4 |

B 6 | G 5 | P 5 | W 2 | W 6 | G 1 |

P 2 | R 3 | P 1 | R 2 | P 4 | Y 3 |

W 1 | G 4 | W 3 | Y 1 | Y 4 | Y 5 |

Graph characteristics:

36 nodes

52 edges

Connected? True

R 4 | B 5 | P 4 | G 5 | Y 3 | R 3 |
Y 4 | B 3 | B 4 | Y 2 | R 6 | G 1 |
G 3 | B 1 | G 2 | W 6 | G 4 | Y 5 |
Y 6 | Y 1 | P 5 | R 1 | R 2 | P 2 |
P 6 | W 3 | B 6 | R 5 | W 1 | P 3 |

B 2 | G 6 | W 2 | P 1 | W 4 | W 5 |

Graph characteristics:
36 nodes
44 edges
Connected? False


```
R4 --> ['Y4', 'P4', 'R3']
B5 --> ['B3', 'B1', 'G5']
P4 --> ['R4', 'B4', 'P5']
G5 --> ['B5', 'R5']
Y3 --> ['R3']
R3 --> ['R4', 'Y3', 'P3']
Y4 --> ['R4', 'Y6', 'B4', 'Y2']
B3 --> ['B5', 'B1', 'W3', 'B4']
B4 --> ['P4', 'Y4', 'B3', 'B6']
Y2 --> ['Y4']
R6 --> ['R2']
G1 --> []
G3 --> ['G2', 'G4']
B1 --> ['B5', 'B3', 'Y1']
G2 --> ['G3', 'W2', 'G4']
W6 --> []
G4 --> ['G3', 'G2', 'W4']
Y5 --> ['W5']
Y6 --> ['Y4', 'P6', 'Y1']
Y1 --> ['B1', 'Y6', 'R1']
P5 --> ['P4', 'P2']
R1 --> ['Y1', 'R5', 'P1', 'R2']
R2 --> ['R6', 'R1', 'P2']
P2 --> ['P5', 'R2', 'P3']
P6 --> ['Y6', 'B6', 'P3']
W3 --> ['B3', 'W1', 'P3']
B6 --> ['B4', 'P6']
R5 --> ['G5', 'R1']
W1 --> ['W3', 'W4']
P3 --> ['R3', 'P2', 'P6', 'W3']
B2 --> ['W2']
G6 --> []
W2 --> ['G2', 'B2', 'W4', 'W5']
P1 --> ['R1']
W4 --> ['G4', 'W1', 'W2', 'W5']
W5 --> ['Y5', 'W2', 'W4']
```

 Y 6 | R 5 | B 2 | G 2 | P 3 | W 3 |

 B 1 | Y 5 | P 5 | B 5 | B 3 | G 5 |

 B 4 | Y 2 | R 6 | Y 4 | P 1 | G 6 |

 G 1 | R 1 | R 3 | P 6 | W 6 | Y 1 |

 B 6 | R 4 | P 4 | W 2 | G 3 | G 4 |

 Y 3 | P 2 | R 2 | W 5 | W 1 | W 4 |

Graph characteristics:

36 nodes

58 edges

Connected? True

B 1 | G 6 | P 4 | W 1 | Y 6 | P 6 |
G 3 | P 5 | R 4 | B 2 | G 5 | G 4 |
W 4 | Y 2 | Y 5 | W 3 | Y 1 | P 2 |
P 3 | W 5 | Y 3 | Y 4 | B 5 | B 6 |
W 2 | G 2 | P 1 | B 4 | R 3 | R 1 |
B 3 | W 6 | R 2 | G 1 | R 5 | R 6 |

Graph characteristics:

36 nodes

54 edges

Connected? True

G 2 | G 1 | W 3 | P 5 | P 3 | R 4 |
B 3 | P 4 | W 5 | B 1 | B 4 | G 4 |
W 4 | Y 5 | G 3 | Y 3 | B 2 | Y 4 |
R 3 | R 5 | P 1 | W 6 | R 6 | B 5 |
Y 1 | Y 6 | Y 2 | P 2 | B 6 | R 1 |
G 6 | P 6 | G 5 | W 2 | R 2 | W 1 |

Graph characteristics:

36 nodes

53 edges


```
G2 --> ['G6', 'G1']
G1 --> ['G2']
W3 --> ['W5', 'G3', 'P3']
P5 --> ['P2', 'P3']
P3 --> ['W3', 'P5']
R4 --> ['G4', 'Y4', 'R1']
B3 --> ['R3', 'B1', 'B4']
P4 --> ['P6', 'B4', 'G4']
W5 --> ['W3',
             'G5'1
B1 --> ['B3', 'B4']
B4 --> ['B3', 'P4', 'B1', 'B2', 'B6', 'G4']
G4 --> ['R4', 'P4', 'B4', 'Y4']
W4 --> ['Y4']
Y5 --> ['R5',
              'Y6', 'Y3', 'Y4']
G3 --> ['W3', 'G5', 'Y3']
Y3 --> ['Y5', 'G3', 'Y4']
B2 --> ['B4', 'B6', 'R2']
Y4 --> ['R4', 'G4', 'W4', 'Y5', 'Y3']
R3 --> ['B3', 'R5', 'R6']
R5 --> ['Y5', 'R3', 'R6', 'B5']
P1 --> []
W6 --> ['W2', 'R6']
R6 --> ['R3', 'R5', 'W6', 'B6', 'R2']
B5 --> ['R5']
Y1 --> ['Y6', 'Y2', 'R1']
Y6 --> ['Y5', 'Y1', 'P6',
                          'Y2', 'B6']
Y2 --> ['Y1', 'Y6', 'P2']
P2 --> ['P5', 'Y2', 'W2']
B6 --> ['B4', 'B2', 'R6', 'Y6']
R1 --> ['R4', 'Y1', 'W1']
G6 --> ['G2', 'P6', 'G5']
P6 --> ['P4', 'Y6', 'G6']
G5 --> ['W5', 'G3', 'G6']
W2 --> ['W6', 'P2', 'R2', 'W1']
R2 --> ['B2', 'R6', 'W2']
W1 --> ['R1', 'W2']
 _____
Y 2 | W 2 | Y 6 | B 3 | P 6 | P 2 |
B4 | G4 | P3 | R3 | B1 | W1 |
```

 Y 2 | W 2 | Y 6 | B 3 | P 6 | P 2 |

 B 4 | G 4 | P 3 | R 3 | B 1 | W 1 |

 W 5 | R 2 | P 1 | R 1 | P 5 | W 4 |

 Y 3 | B 5 | W 3 | Y 1 | R 6 | B 2 |

 B 6 | G 2 | Y 5 | G 6 | G 1 | W 6 |

 Y 4 | R 4 | R 5 | G 5 | P 4 | G 3 |

Graph characteristics:

36 nodes

58 edges

 W 6 | Y 3 | W 1 | P 5 | W 5 | P 6 |

 B 3 | G 6 | P 3 | R 1 | G 1 | W 2 |

 P 1 | G 3 | P 4 | P 2 | W 4 | B 4 |

 G 5 | Y 2 | G 4 | B 6 | R 5 | Y 6 |

 G 2 | R 6 | W 3 | B 1 | B 2 | R 4 |

 Y 4 | B 5 | R 2 | Y 5 | R 3 | Y 1 |

Graph characteristics:

36 nodes46 edges


```
W6 --> ['W1', 'W5', 'P6']
Y3 --> ['G3', 'Y2']
W1 --> ['W6', 'W3', 'W5']
P5 --> ['P2', 'Y5', 'W5', 'P6']
W5 --> ['W6', 'W1', 'P5', 'W4', 'R5']
P6 --> ['W6', 'P5', 'Y6']
B3 --> ['P3']
G6 --> ['G3', 'R6', 'G1']
P3 --> ['B3', 'P4', 'W3']
R1 --> ['B1', 'G1']
G1 --> ['G6', 'R1']
W2 --> []
P1 --> ['P4', 'P2']
G3 --> ['Y3',
             'G6']
P4 --> ['P3', 'P1', 'G4', 'P2', 'W4', 'B4']
P2 --> ['P5', 'P1', 'P4']
W4 --> ['W5', 'P4', 'B4']
B4 --> ['P4', 'W4', 'R4']
             'G4', 'R5']
G5 --> ['G2',
Y2 --> ['Y3', 'Y6']
G4 --> ['P4', 'G5']
B6 --> ['B1', 'Y6']
R5 --> ['W5', 'G5', 'R3']
Y6 --> ['P6', 'Y2', 'B6', 'Y1']
G2 --> ['G5', 'B2']
R6 --> ['G6', 'R4']
W3 --> ['W1', 'P3']
B1 --> ['R1', 'B6', 'B2']
B2 --> ['G2', 'B1']
R4 --> ['B4', 'R6']
Y4 --> ['Y5', 'Y1']
B5 --> ['Y5']
R2 --> ['R3']
Y5 --> ['P5', 'Y4', 'B5', 'Y1']
R3 --> ['R5', 'R2']
Y1 --> ['Y6', 'Y4', 'Y5']
 ______
W 3 | W 2 | R 1 | G 3 | B 5 | W 4 |
W 6 | W 1 | R 2 | P 6 | Y 3 | P 2 |
G 2 | G 6 | P 5 | Y 5 | W 5 | G 1 |
P4 | R3 | B3 | G4 | R4 | B4 |
R 6 | P 3 | Y 4 | B 6 | B 1 | Y 6 |
P1 | Y1 | G5 | B2 | Y2 | R5 |
```

Graph characteristics:

36 nodes

47 edges


```
W3 --> ['W6', 'W2', 'G3', 'W4']
W2 --> ['W3', 'W1', 'W4']
R1 --> ['R2']
G3 --> ['W3', 'G4']
B5 --> ['W5', 'B1']
W4 --> ['W3', 'W2', 'B4']
W6 --> ['W3', 'R6', 'W1', 'P6']
W1 --> ['W2', 'W6', 'Y1']
              'P2']
R2 --> ['R1',
P6 --> ['W6', 'B6', 'P2']
Y3 --> ['Y2']
P2 --> ['R2', 'P6']
G2 --> ['G6', 'G1']
G6 --> ['G2', 'G1']
P5 --> ['G5', 'Y5', 'W5']
Y5 --> ['P5', 'W5']
W5 --> ['B5', 'P5', 'Y5']
G1 --> ['G2', 'G6']
P4 --> ['P1', 'G4', 'R4', 'B4']
R3 --> ['P3', 'B3', 'R4']
B3 --> ['R3', 'B4']
G4 --> ['G3', 'P4', 'R4', 'B4']
R4 --> ['P4', 'R3', 'G4', 'B4']
B4 --> ['W4', 'P4', 'B3', 'G4', 'R4']
R6 --> ['W6', 'B6', 'Y6']
P3 --> ['R3']
Y4 --> ['Y6']
B6 --> ['P6', 'R6', 'B2', 'B1', 'Y6']
B1 --> ['B5', 'B6']
Y6 --> ['R6', 'Y4', 'B6']
P1 --> ['P4', 'Y1']
Y1 --> ['W1', 'P1', 'Y2']
G5 --> ['P5', 'R5']
B2 --> ['B6', 'Y2']
Y2 --> ['Y3', 'Y1', 'B2']
R5 --> ['G5']
```

```
      R 3 | R 4 | G 2 | W 3 | W 5 | P 4 |

      Y 3 | R 1 | P 1 | W 6 | W 1 | R 5 |

      R 6 | B 6 | G 6 | P 2 | P 6 | B 5 |

      P 3 | W 4 | R 2 | G 3 | B 4 | B 1 |

      Y 1 | P 5 | W 2 | B 2 | B 3 | G 4 |

      G 1 | Y 4 | G 5 | Y 5 | Y 2 | Y 6 |
```

Graph characteristics:

36 nodes

54 edges


```
R3 --> ['Y3', 'R6', 'P3', 'R4', 'W3']
R4 --> ['R3', 'R1', 'W4', 'Y4', 'P4']
G2 --> ['G6', 'R2', 'W2', 'G5']
W3 --> ['R3', 'W6', 'G3', 'W5']
W5 --> ['W3', 'W1']
P4 --> ['R4', 'G4']
Y3 --> ['R3', 'P3',
                    'Y1']
R1 --> ['R4', 'P1', 'W1', 'R5']
             'W1'
P1 --> ['R1',
W6 --> ['W3', 'W1']
W1 --> ['W5', 'R1', 'P1', 'W6']
R5 --> ['R1', 'B5']
R6 --> ['R3', 'B6', 'G6', 'P6']
B6 --> ['R6', 'G6', 'P6',
                          'B5']
G6 --> ['G2', 'R6', 'B6', 'G5', 'P6']
P2 --> ['B2', 'P6']
P6 --> ['R6', 'B6', 'G6', 'P2']
B5 --> ['R5', 'B6', 'B1']
             'Y3', 'G3']
P3 --> ['R3',
W4 --> ['R4', 'Y4', 'B4']
R2 --> ['G2', 'W2']
G3 --> ['W3', 'P3']
B4 --> ['W4', 'B3', 'B1']
B1 --> ['B5', 'B4']
Y1 --> ['Y3', 'G1']
P5 --> []
W2 --> ['G2', 'R2', 'B2']
B2 --> ['P2', 'W2', 'B3']
B3 --> ['B4', 'B2']
G4 --> ['P4']
G1 --> ['Y1', 'G5']
Y4 --> ['R4', 'W4', 'Y5', 'Y2', 'Y6']
G5 --> ['G2', 'G6', 'G1', 'Y5']
Y5 --> ['Y4', 'G5', 'Y2', 'Y6']
Y2 --> ['Y4', 'Y5', 'Y6']
Y6 --> ['Y4', 'Y5', 'Y2']
```

R 5 | Y 5 | Y 6 | W 3 | Y 3 | W 6 |

B 4 | P 2 | W 1 | P 3 | Y 1 | R 2 |

B 5 | W 2 | B 1 | W 5 | G 4 | R 1 |

R 4 | P 4 | Y 2 | G 3 | R 6 | P 6 |

R 3 | B 2 | B 3 | G 2 | P 1 | G 6 |

Graph characteristics:

36 nodes

59 edges


```
R5 --> ['B5', 'R4', 'R3', 'Y5']
Y5 --> ['R5', 'Y6', 'Y3']
Y6 --> ['Y5', 'Y2', 'Y4', 'Y3', 'W6']
W3 --> ['P3', 'W5', 'G3', 'Y3', 'W6']
Y3 --> ['Y5', 'Y6', 'W3', 'Y1']
W6 --> ['Y6', 'W3', 'P6', 'G6']
B4 --> ['B5', 'R4', 'B6']
P2 --> ['W2', 'P4', 'B2', 'P3', 'R2']
W1 --> ['B1', 'Y1']
P3 --> ['W3', 'P2', 'G3']
Y1 --> ['Y3', 'W1', 'P1']
R2 --> ['P2', 'R1']
B5 --> ['R5', 'B4', 'B6', 'B1', 'W5']
W2 --> ['P2', 'B2', 'W4', 'W5']
B1 --> ['W1', 'B5', 'B3', 'R1']
W5 --> ['W3', 'B5', 'W2']
G4 --> []
R1 --> ['R2', 'B1']
R4 --> ['R5', 'B4', 'R3', 'P4', 'R6']
P4 --> ['P2', 'R4', 'W4', 'P6']
Y2 --> ['Y6', 'Y4']
G3 --> ['W3', 'P3', 'G2', 'G1']
R6 --> ['R4', 'P6']
P6 --> ['W6', 'P4', 'R6', 'G6']
R3 --> ['R5', 'R4', 'B3']
B2 --> ['P2', 'W2', 'B3', 'G2']
B3 --> ['B1', 'R3', 'B2']
G2 --> ['G3', 'B2', 'G1', 'G6']
P1 --> ['Y1', 'P5']
G6 --> ['W6', 'P6', 'G2', 'G5']
B6 --> ['B4', 'B5']
W4 --> ['W2', 'P4', 'Y4']
Y4 --> ['Y6', 'Y2',
                    'W4']
G1 --> ['G3', 'G2', 'G5']
P5 --> ['P1', 'G5']
G5 --> ['G6', 'G1', 'P5']
```

```
      P 1 | Y 4 | G 5 | B 6 | Y 2 | Y 5 |

      B 3 | B 1 | W 4 | G 3 | B 5 | W 6 |

      Y 3 | G 4 | W 2 | R 4 | B 2 | G 1 |

      W 1 | Y 1 | W 3 | R 5 | G 6 | R 3 |

      W 5 | R 2 | R 1 | P 4 | G 2 | R 6 |

      B 4 | Y 6 | P 5 | P 6 | P 3 | P 2 |
```

Graph characteristics:

36 nodes

51 edges

R 1 | W 1 | P 3 | B 6 | G 6 | R 6 |

R 2 | B 2 | W 3 | R 4 | R 5 | W 4 |

B 5 | P 2 | R 3 | Y 3 | W 6 | G 2 |

P 6 | W 5 | W 2 | Y 4 | P 4 | B 1 |

G 4 | B 3 | Y 5 | Y 2 | G 3 | B 4 |

G 1 | P 1 | G 5 | Y 6 | P 5 | Y 1 |

Graph characteristics:

36 nodes 56 edges


```
R1 --> ['R2', 'G1', 'W1', 'R6']
W1 --> ['R1', 'W5', 'P1']
P3 --> ['W3', 'R3']
B6 --> ['Y6', 'G6', 'R6']
G6 --> ['B6', 'W6', 'G3', 'R6']
R6 --> ['R1', 'B6', 'G6']
R2 --> ['R1', 'B2', 'R4', 'R5']
B2 --> ['R2', 'P2', 'B3']
W3 --> ['P3', 'R3', 'W2', 'W4']
R4 --> ['R2', 'Y4', 'R5', 'W4']
R5 --> ['R2', 'R4', 'P5']
W4 --> ['W3', 'R4', 'B4']
B5 --> []
P2 --> ['B2', 'P1', 'G2']
R3 --> ['P3', 'W3', 'Y3']
Y3 --> ['R3', 'Y4', 'Y2', 'Y6']
W6 --> ['G6']
G2 --> ['P2']
P6 --> ['P4']
W5 --> ['W1', 'W2']
W2 --> ['W3', 'W5']
Y4 --> ['R4', 'Y3', 'Y2', 'Y6', 'P4']
P4 --> ['P6', 'Y4', 'P5']
B1 --> ['B4',
              'Y1']
G4 --> ['G1', 'G3', 'B4']
B3 --> ['B2', 'G3', 'B4']
Y5 --> ['G5', 'Y2']
Y2 --> ['Y3', 'Y4', 'Y5', 'Y6']
G3 --> ['G6', 'G4', 'B3']
B4 --> ['W4', 'B1', 'G4', 'B3']
G1 --> ['R1', 'G4', 'P1', 'G5',
                               'Y1']
P1 --> ['W1', 'P2', 'G1', 'P5', 'Y1']
G5 --> ['Y5', 'G1', 'P5']
Y6 --> ['B6', 'Y3', 'Y4', 'Y2', 'Y1']
P5 --> ['R5', 'P4', 'P1', 'G5']
Y1 --> ['B1', 'G1', 'P1', 'Y6']
 ______
```

```
      P 6 | W 3 | B 6 | G 1 | P 4 | W 2 |

      P 2 | W 6 | P 3 | R 2 | R 6 | W 5 |

      Y 5 | P 1 | G 5 | P 5 | Y 1 | G 2 |

      B 4 | W 1 | B 5 | R 4 | R 5 | W 4 |

      B 3 | B 2 | R 3 | Y 6 | Y 2 | G 4 |

      Y 3 | R 1 | B 1 | G 3 | Y 4 | G 6 |
```

Graph characteristics:

36 nodes

60 edges

P 5 | B 3 | W 2 | B 5 | G 6 | W 4 |

P 4 | R 1 | B 4 | W 3 | R 4 | G 2 |

W 5 | P 2 | R 5 | Y 4 | W 1 | W 6 |

B 2 | B 6 | P 3 | Y 3 | Y 2 | R 3 |

Y 6 | R 2 | P 6 | G 1 | Y 5 | R 6 |

B 1 | Y 1 | P 1 | G 4 | G 3 | G 5 |

Graph characteristics:

36 nodes

48 edges

Connected? True

G 5 | Y 5 | P 2 | B 6 | Y 4 | G 1 |
W 5 | B 5 | P 3 | P 4 | W 4 | B 2 |
W 2 | Y 3 | Y 1 | R 2 | G 6 | G 2 |
B 3 | W 3 | Y 6 | P 6 | R 1 | R 5 |
Y 2 | W 6 | R 3 | B 4 | B 1 | P 1 |
R 4 | W 1 | G 3 | R 6 | P 5 | G 4 |

Graph characteristics:

36 nodes

49 edges


```
G5 --> ['W5', 'Y5', 'G1']
Y5 --> ['G5', 'B5', 'Y3', 'Y4']
P2 --> ['P3']
B6 --> ['P6', 'B4', 'R6']
Y4 --> ['Y5', 'W4']
G1 --> ['G5', 'G2', 'P1', 'G4']
W5 --> ['G5', 'W2', 'B5', 'W4']
B5 --> ['Y5', 'W5', 'B2']
P3 --> ['P2', 'R3', 'G3', 'P4']
P4 --> ['P3', 'P6', 'B4', 'W4']
W4 --> ['Y4', 'W5', 'P4']
B2 --> ['B5', 'G2']
W2 --> ['W5', 'Y2', 'R2', 'G2']
Y3 --> ['Y5', 'W3', 'Y1']
Y1 --> ['Y3', 'Y6']
R2 --> ['W2', 'R6', 'G2']
G6 --> ['G2']
G2 --> ['G1', 'B2', 'W2', 'R2', 'G6', 'G4']
B3 --> ['W3']
W3 --> ['Y3', 'B3', 'W6', 'W1']
Y6 --> ['Y1', 'P6']
P6 --> ['B6', 'P4', 'Y6', 'R6']
R1 --> ['B1', 'R5']
R5 --> ['R1']
Y2 --> ['W2']
W6 --> ['W3', 'W1']
R3 --> ['P3', 'G3']
B4 --> ['B6', 'P4', 'B1']
B1 --> ['R1', 'B4', 'P1']
P1 --> ['G1', 'B1']
R4 --> ['R6', 'G4']
W1 --> ['W3', 'W6']
G3 --> ['P3', 'R3', 'G4']
R6 --> ['B6', 'R2', 'P6', 'R4']
P5 --> []
G4 --> ['G1', 'G2', 'R4', 'G3']
 ______
B 3 | G 1 | G 3 | G 2 | B 5 | R 6 |
G4 | P3 | B2 | B1 | R5 | B6 |
B4 | P2 | P5 | R2 | G6 | W5 |
W 6 | G 5 | R 3 | Y 3 | W 2 | R 1 |
R4 | Y1 | W3 | P6 | P1 | W4 |
P4 | Y2 | Y5 | W1 | Y4 | Y6 |
Graph characteristics:
```

36 nodes

49 edges


```
B3 --> ['B4', 'G3', 'B5']
G1 --> ['G5', 'Y1', 'G3', 'G2']
G3 --> ['B3', 'G1', 'R3', 'W3', 'G2']
G2 --> ['G1', 'G3', 'R2']
B5 --> ['B3', 'R5']
R6 --> ['B6', 'R1', 'Y6']
G4 --> ['B4', 'R4', 'P4']
P3 --> ['P2']
B2 --> ['B1', 'B6']
B1 --> ['B2', 'W1', 'B6']
R5 --> ['B5']
B6 --> ['R6', 'B2', 'B1', 'Y6']
B4 --> ['B3', 'G4', 'R4', 'P4']
P2 --> ['P3', 'Y2', 'P5', 'R2']
P5 --> ['P2', 'Y5', 'W5']
R2 --> ['G2', 'P2']
G6 --> []
W5 --> ['P5', 'W4']
W6 --> ['W2']
G5 --> ['G1']
R3 --> ['G3', 'W3', 'Y3', 'R1']
Y3 --> ['R3']
W2 --> ['W6']
R1 --> ['R6', 'R3']
R4 --> ['G4', 'B4', 'P4', 'W4']
Y1 --> ['G1', 'Y2', 'P1']
W3 --> ['G3', 'R3', 'W4']
P6 --> ['P1']
P1 --> ['Y1', 'P6']
W4 --> ['W5', 'R4', 'W3']
P4 --> ['G4', 'B4', 'R4', 'Y4']
Y2 --> ['P2', 'Y1', 'Y5', 'Y4', 'Y6']
Y5 --> ['P5', 'Y2', 'Y4', 'Y6']
W1 --> ['B1']
Y4 --> ['P4', 'Y2', 'Y5', 'Y6']
Y6 --> ['R6', 'B6', 'Y2', 'Y5', 'Y4']
 ______
```

 W 6 | G 5 | B 1 | G 4 | P 6 | Y 3 |

 W 4 | P 4 | G 6 | W 5 | B 6 | Y 2 |

 P 3 | G 2 | R 4 | G 3 | B 5 | B 3 |

 R 5 | P 5 | P 1 | G 1 | R 3 | P 2 |

 Y 5 | Y 6 | W 3 | B 2 | Y 1 | R 2 |

 W 1 | W 2 | R 6 | Y 4 | R 1 | B 4 |

Graph characteristics:

36 nodes

49 edges


```
W6 --> ['W4', 'W1', 'P6']
G5 --> ['G2', 'P5', 'G4']
B1 --> ['P1']
G4 --> ['G5', 'G3', 'G1', 'Y4']
P6 --> ['W6', 'B6']
Y3 --> ['Y2', 'B3']
W4 --> ['W6', 'W1', 'P4', 'W5']
P4 --> ['W4', 'P5']
G6 --> ['R6', 'B6']
W5 --> ['W4']
B6 --> ['P6', 'G6', 'B5']
Y2 --> ['Y3', 'P2', 'R2']
P3 --> ['G3', 'B3']
G2 --> ['G5', 'W2', 'G3']
R4 --> ['R6']
G3 --> ['G4', 'P3', 'G2', 'G1', 'B3']
B5 --> ['B6', 'B3']
B3 --> ['Y3', 'P3', 'G3', 'B5', 'B4']
             'P5', 'R3']
R5 --> ['Y5',
P5 --> ['G5', 'P4', 'R5', 'P1', 'P2']
P1 --> ['B1', 'P5', 'G1', 'P2']
G1 --> ['G4', 'G3', 'P1']
R3 --> ['R5', 'R1']
P2 --> ['Y2', 'P5', 'P1', 'R2']
Y5 --> ['R5', 'Y6', 'Y1']
Y6 --> ['Y5', 'Y1']
W3 --> []
B2 --> ['R2']
Y1 --> ['Y5', 'Y6', 'R1']
R2 --> ['Y2', 'P2', 'B2']
W1 --> ['W6', 'W4', 'W2', 'R1']
W2 --> ['G2', 'W1']
R6 --> ['G6', 'R4', 'R1']
Y4 --> ['G4', 'B4']
R1 --> ['R3', 'Y1', 'W1', 'R6']
B4 --> ['B3', 'Y4']
```

```
P5 | P6 | G5 | R4 | Y3 | R5 |
B4 | B1 | Y2 | B3 | R1 | P1 |
B 2 | Y 6 | R 2 | G 1 | W 4 | P 4 |
W 2 | Y 1 | Y 5 | B 5 | B 6 | Y 4 |
R 3 | P 2 | R 6 | W 5 | G 2 | G 6 |
P3 | G3 | W3 | G4 | W1 | W6 |
```

Graph characteristics:

36 nodes

50 edges


```
P5 --> ['P3', 'P6', 'G5', 'R5']
P6 --> ['P5', 'Y6', 'P2']
G5 --> ['P5', 'Y5', 'R5']
R4 --> ['G4', 'R5']
Y3 --> []
R5 --> ['P5', 'G5', 'R4']
B4 --> ['B2', 'B1', 'B3']
B1 --> ['B4', 'Y1', 'B3', 'R1', 'P1']
              'Y5']
Y2 --> ['R2',
B3 --> ['B4', 'B1', 'B5']
R1 --> ['B1', 'W1', 'P1']
P1 --> ['B1', 'R1', 'P4']
B2 --> ['B4', 'W2', 'R2']
             'Y1']
Y6 --> ['P6',
R2 --> ['Y2', 'B2', 'R6']
G1 --> ['G4']
W4 --> ['W1', 'P4']
P4 --> ['P1', 'W4', 'Y4']
W2 --> ['B2']
Y1 --> ['B1', 'Y6', 'Y5', 'Y4']
Y5 --> ['G5', 'Y2', 'Y1', 'B5', 'Y4']
B5 --> ['B3', 'Y5', 'W5', 'B6']
B6 --> ['B5']
Y4 --> ['P4', 'Y1', 'Y5']
R3 --> ['P3', 'R6']
P2 --> ['P6', 'G2']
R6 --> ['R2', 'R3', 'G6']
W5 --> ['B5']
G2 --> ['P2', 'G6']
G6 --> ['R6', 'G2', 'W6']
P3 --> ['P5', 'R3', 'G3', 'W3']
G3 --> ['P3', 'W3', 'G4']
W3 --> ['P3', 'G3', 'W1', 'W6']
G4 --> ['R4', 'G1', 'G3']
W1 --> ['R1', 'W4', 'W3', 'W6']
W6 --> ['G6', 'W3', 'W1']
 ______
```

```
R 2 | R 4 | R 6 | P 4 | G 1 | G 5 |

R 5 | W 2 | R 1 | B 3 | R 3 | P 2 |

W 6 | Y 4 | W 1 | P 1 | Y 2 | Y 5 |

B 1 | B 2 | W 5 | Y 6 | P 6 | Y 1 |

W 3 | W 4 | G 6 | Y 3 | B 4 | B 6 |

P 5 | P 3 | G 4 | G 2 | B 5 | G 3 |
```

Graph characteristics:

36 nodes

50 edges

 P 2 | B 1 | B 6 | B 3 | P 5 | P 3 |

 Y 3 | W 5 | B 5 | R 4 | R 3 | R 5 |

 G 2 | P 4 | B 2 | W 2 | P 1 | P 6 |

 R 1 | G 4 | R 2 | Y 4 | G 1 | G 5 |

 W 4 | B 4 | G 3 | W 3 | Y 6 | Y 2 |

 R 6 | G 6 | Y 5 | W 1 | Y 1 | W 6 |

Graph characteristics:
36 nodes
61 edges

Connected? True

R 2 | R 1 | P 6 | Y 4 | W 2 | R 4 |
G 1 | R 6 | W 5 | Y 1 | G 2 | R 5 |
Y 5 | B 5 | W 4 | W 3 | P 5 | G 6 |
P 1 | G 4 | W 6 | B 6 | B 3 | Y 2 |
B 1 | B 2 | Y 6 | Y 3 | G 5 | P 4 |
R 3 | W 1 | P 3 | G 3 | P 2 | B 4 |

Graph characteristics:
36 nodes

o noucs

51 edges


```
R2 --> ['R3', 'R1', 'W2', 'R4']
R1 --> ['R2', 'R6', 'W1', 'R4']
P6 --> ['W6', 'Y6', 'P3']
Y4 --> ['Y1', 'Y3', 'R4']
W2 --> ['R2', 'G2', 'P2']
R4 --> ['R2', 'R1', 'Y4', 'R5', 'P4', 'B4']
G1 --> ['P1', 'B1', 'Y1', 'G2']
R6 --> ['R1', 'R5']
W5 --> ['W4', 'W6', 'R5']
Y1 --> ['Y4', 'G1', 'Y3']
G2 --> ['W2', 'G1', 'G5', 'P2']
R5 --> ['R4', 'R6', 'W5']
Y5 --> ['B5', 'P5']
B5 --> ['Y5', 'B2', 'P5']
W4 --> ['W5', 'W6', 'W3']
W3 --> ['W4', 'Y3', 'G3']
P5 --> ['Y5', 'B5', 'G5', 'P2']
G6 --> []
P1 --> ['G1', 'B1']
G4 --> []
W6 --> ['P6', 'W5', 'W4', 'Y6', 'B6']
B6 --> ['W6', 'B3']
B3 --> ['B6']
Y2 --> []
B1 --> ['G1', 'P1', 'B2']
B2 --> ['B5', 'B1']
Y6 --> ['P6', 'W6', 'Y3']
Y3 --> ['Y4', 'Y1', 'W3', 'Y6', 'G3']
G5 --> ['G2', 'P5']
P4 --> ['R4', 'B4']
R3 --> ['R2', 'P3', 'G3']
W1 --> ['R1']
P3 --> ['P6', 'R3', 'G3', 'P2']
G3 --> ['W3', 'Y3', 'R3', 'P3']
P2 --> ['W2', 'G2', 'P5', 'P3']
B4 --> ['R4', 'P4']
 _____
P5 | P2 | W3 | B1 | R6 | P1 |
R 5 | Y 5 | G 5 | G 2 | Y 6 | W 1 |
R 2 | W 2 | Y 3 | G 3 | P 3 | Y 1 |
R 3 | R 1 | Y 4 | G 4 | W 5 | B 5 |
W4 | R4 | Y2 | W6 | B3 | G1 |
P4 | P6 | G6 | B4 | B6 | B2 |
Graph characteristics:
```

36 nodes 58 edges

B3 | W1 | P5 | Y4 | W2 | W3 | R4 | P1 | W6 | R2 | R6 | W4 | W 5 | R 5 | Y 2 | Y 3 | B 5 | Y 6 | R 1 | B 6 | R 3 | B 4 | P 6 | P 2 | B 2 | B 1 | P 3 | P 4 | G 3 | G 5 | G 2 | Y 5 | Y 1 | G 4 | G 6 | G 1 |

Graph characteristics:

36 nodes

56 edges

Connected? True

Y 6 | Y 2 | R 1 | G 6 | G 1 | R 6 | G 2 | B 2 | P 5 | R 5 | R 3 | R 2 | B 3 | B 5 | W 1 | Y 3 | R 4 | W 4 | B4 | P2 | P3 | G5 | Y1 | W2 | B 6 | G 4 | G 3 | W 3 | W 6 | W 5 | B1 | Y4 | Y5 | P1 | P4 | P6 |

Graph characteristics: 36 nodes

61 edges

Connected? True

B4 | Y1 | Y4 | B5 | P6 | B2 | B 6 | Y 2 | Y 6 | Y 3 | Y 5 | R 1 | W 6 | B 1 | G 3 | P 2 | P 1 | R 6 | P3 | G4 | G2 | P5 | R3 | W1 | W 5 | W 3 | R 2 | W 4 | W 2 | R 5 |

B 3 | G 5 | P 4 | R 4 | G 1 | G 6 |

Graph characteristics:

36 nodes 54 edges Connected? True

 Y 2 | P 2 | P 5 | W 1 | B 6 | R 1 |

 B 2 | Y 6 | R 3 | B 4 | B 1 | P 4 |

 R 4 | B 5 | W 6 | P 3 | G 5 | G 4 |

 R 6 | R 2 | P 1 | B 3 | W 3 | G 6 |

 W 5 | R 5 | W 4 | G 3 | G 1 | Y 4 |

 Y 1 | W 2 | Y 3 | Y 5 | G 2 | P 6 |

Graph characteristics:

36 nodes

47 edges


```
Y2 --> ['B2', 'Y1', 'P2']
P2 --> ['Y2', 'R2', 'W2', 'P5']
P5 --> ['P2', 'P1']
W1 --> ['R1']
B6 --> ['B1']
R1 --> ['W1']
B2 --> ['Y2', 'B4', 'B1']
Y6 --> []
R3 --> ['Y3']
B4 --> ['B2', 'B3', 'B1', 'P4']
B1 --> ['B6', 'B2', 'B4', 'G1']
P4 --> ['B4', 'G4', 'Y4', 'P6']
R4 --> ['R6', 'G4']
B5 --> ['R5', 'G5']
W6 --> ['W4']
P3 --> ['B3', 'G3']
G5 --> ['B5', 'G1', 'G2', 'G4']
G4 --> ['P4', 'R4', 'G5', 'G6', 'Y4']
R6 --> ['R4', 'R2', 'G6']
R2 --> ['P2', 'R6', 'R5', 'W2']
P1 --> ['P5']
B3 --> ['B4', 'P3', 'G3', 'W3']
W3 --> ['B3']
G6 --> ['G4', 'R6', 'P6']
W5 --> ['R5', 'W4']
R5 --> ['B5', 'R2', 'W5']
W4 --> ['W6', 'W5', 'Y4']
G3 --> ['P3', 'B3', 'G1']
G1 --> ['B1', 'G5', 'G3', 'G2']
Y4 --> ['P4', 'G4', 'W4']
Y1 --> ['Y2', 'Y3', 'Y5']
W2 --> ['P2', 'R2', 'G2']
Y3 --> ['R3', 'Y1', 'Y5']
Y5 --> ['Y1', 'Y3']
G2 --> ['G5', 'G1', 'W2']
P6 --> ['P4', 'G6']
```

```
      W 5 | P 3 | P 4 | W 1 | P 5 | W 3 |

      B 3 | Y 4 | G 3 | Y 3 | P 2 | P 6 |

      G 5 | G 1 | P 1 | R 5 | G 2 | Y 2 |

      B 1 | B 5 | Y 6 | B 6 | G 4 | B 2 |

      R 4 | B 4 | W 2 | R 3 | R 6 | R 1 |

      G 6 | Y 1 | Y 5 | R 2 | W 6 | W 4 |
```

Graph characteristics:

36 nodes

55 edges


```
W5 --> ['G5', 'W1', 'P5', 'W3']
P3 --> ['P4', 'P5', 'W3']
P4 --> ['P3', 'P1', 'P5']
W1 --> ['W5', 'W3']
P5 --> ['W5', 'P3', 'P4', 'P2']
W3 --> ['W5', 'P3', 'W1', 'W4']
B3 --> ['B1', 'G3', 'Y3']
Y4 --> ['B4', 'Y1', 'Y3']
             'Y3']
G3 --> ['B3',
Y3 --> ['B3', 'Y4', 'G3', 'R3']
P2 --> ['P5', 'G2', 'P6']
P6 --> ['P2']
G5 --> ['W5', 'G6', 'G1', 'R5', 'G2']
G1 --> ['G5', 'Y1', 'P1', 'G2']
P1 --> ['P4', 'G1']
R5 --> ['G5', 'R3', 'R2']
G2 --> ['P2', 'G5', 'G1', 'G4', 'Y2']
Y2 --> ['G2', 'B2']
B1 --> ['B3', 'B5', 'B6', 'B2']
B5 --> ['B1', 'B4', 'B6', 'B2']
Y6 --> ['Y5', 'B6']
B6 --> ['B1', 'B5', 'Y6', 'B2']
G4 --> ['G2']
B2 --> ['Y2', 'B1', 'B5', 'B6']
R4 --> ['B4', 'R3', 'R6', 'R1']
B4 --> ['Y4', 'B5', 'R4']
W2 --> []
R3 --> ['Y3', 'R5', 'R4', 'R2', 'R6', 'R1']
R6 --> ['R4', 'R3', 'W6', 'R1']
R1 --> ['R4', 'R3', 'R6']
G6 --> ['G5', 'W6']
Y1 --> ['Y4', 'G1', 'Y5']
Y5 --> ['Y6', 'Y1']
R2 --> ['R5', 'R3']
W6 --> ['R6', 'G6', 'W4']
W4 --> ['W3', 'W6']
 _____
W 2 | P 5 | Y 6 | Y 1 | W 5 | Y 3 |
```

W 2 | P 5 | Y 6 | Y 1 | W 5 | Y 3 |

R 6 | Y 4 | G 6 | R 1 | G 1 | B 5 |

R 3 | Y 5 | P 1 | Y 2 | W 1 | W 4 |

B 1 | B 4 | P 2 | G 2 | P 3 | B 6 |

G 4 | B 2 | W 3 | G 3 | R 4 | R 2 |

G 5 | B 3 | W 6 | R 5 | P 6 | P 4 |

Graph characteristics:

36 nodes

48 edges

P 1 | Y 3 | R 3 | G 3 | W 6 | P 6 |
W 3 | W 4 | R 2 | Y 6 | B 5 | W 2 |
W 5 | G 5 | R 1 | G 2 | W 1 | R 5 |
R 4 | G 1 | G 4 | P 5 | P 4 | Y 5 |
Y 2 | Y 4 | G 6 | R 6 | B 6 | B 1 |
P 3 | P 2 | Y 1 | B 3 | B 2 | B 4 |

Graph characteristics:

36 nodes

54 edges

Connected? True

 B 5 | G 2 | G 5 | Y 1 | P 3 | Y 3 |

 B 2 | G 4 | B 6 | P 1 | Y 2 | Y 5 |

 P 6 | R 1 | W 2 | Y 6 | R 6 | R 5 |

 G 6 | P 2 | B 3 | R 2 | R 4 | R 3 |

 W 1 | P 5 | P 4 | B 1 | W 5 | G 3 |

 B 4 | Y 4 | G 1 | W 4 | W 3 | W 6 |

Graph characteristics:

36 nodes

51 edges


```
B5 --> ['B2', 'B4', 'G5']
G2 --> ['G4', 'P2', 'G5']
G5 --> ['B5', 'G2', 'G1']
Y1 --> ['P1', 'Y6', 'B1', 'Y3']
P3 --> ['W3', 'Y3']
Y3 --> ['Y1', 'P3', 'Y5', 'R3', 'G3']
B2 --> ['B5', 'B4', 'B6', 'Y2']
G4 --> ['G2', 'Y4']
             'B3'1
B6 --> ['B2',
P1 --> ['Y1', 'B1']
Y2 --> ['B2', 'Y5']
Y5 --> ['Y3', 'Y2',
                   'R5']
P6 --> ['G6', 'Y6', 'R6']
R1 --> ['R6', 'R5']
W2 --> []
Y6 --> ['Y1', 'P6', 'R6']
R6 --> ['P6', 'R1', 'Y6', 'R4', 'R5']
R5 --> ['Y5', 'R1', 'R6', 'R3']
G6 --> ['P6']
P2 --> ['G2', 'P5', 'R2']
B3 --> ['B6', 'R3']
R2 --> ['P2', 'R4', 'R3']
R4 --> ['R6', 'R2', 'R3']
R3 --> ['Y3', 'R5', 'B3', 'R2', 'R4', 'G3']
W1 --> ['B1', 'W5']
P5 --> ['P2', 'P4', 'W5']
P4 --> ['P5']
B1 --> ['Y1', 'P1', 'W1']
W5 --> ['W1', 'P5', 'W3']
G3 --> ['Y3', 'R3']
B4 --> ['B5', 'B2', 'Y4', 'W4']
Y4 --> ['G4', 'B4', 'W4']
G1 --> ['G5']
W4 --> ['B4', 'Y4', 'W3', 'W6']
W3 --> ['P3', 'W5', 'W4', 'W6']
W6 --> ['W4', 'W3']
 _____
Y4 | P5 | P4 | B5 | Y1 | P3 |
Y 3 | G 2 | B 2 | G 4 | Y 6 | R 6 |
```

 Y 4 | P 5 | P 4 | B 5 | Y 1 | P 3 |

 Y 3 | G 2 | B 2 | G 4 | Y 6 | R 6 |

 W 5 | B 6 | P 1 | Y 5 | R 2 | Y 2 |

 R 3 | W 1 | B 3 | W 2 | G 3 | W 4 |

 R 4 | P 2 | G 1 | R 5 | B 4 | G 5 |

 R 1 | W 6 | P 6 | W 3 | B 1 | G 6 |

Graph characteristics:

36 nodes

52 edges

 B 3 | R 1 | W 4 | W 1 | G 3 | W 3 |

 Y 2 | P 5 | B 5 | R 6 | P 1 | B 2 |

 G 2 | G 6 | Y 3 | P 6 | R 4 | B 4 |

 G 4 | G 5 | P 2 | R 5 | B 6 | Y 4 |

 W 2 | R 2 | Y 5 | B 1 | Y 1 | P 4 |

 P 3 | W 6 | R 3 | Y 6 | G 1 | W 5 |

Graph characteristics:

36 nodes

49 edges


```
B3 --> ['P3', 'G3', 'W3']
R1 --> ['R2', 'W1']
W4 --> ['W1', 'W3']
W1 --> ['R1', 'W4', 'B1', 'W3']
G3 --> ['B3', 'G1', 'W3']
W3 --> ['B3', 'W4', 'W1', 'G3', 'W5']
Y2 --> ['G2', 'W2', 'B2']
P5 --> ['G5', 'B5', 'P1']
B5 --> ['P5', 'Y5', 'B2']
R6 --> ['P6', 'R5', 'Y6']
P1 --> ['P5', 'Y1', 'G1']
B2 --> ['Y2', 'B5', 'B4']
G2 --> ['Y2', 'G4', 'W2', 'G6']
G6 --> ['G2', 'G5', 'W6', 'P6']
Y3 --> ['Y5', 'R3']
P6 --> ['R6', 'G6', 'Y6']
R4 --> ['B4']
B4 --> ['B2', 'R4', 'Y4', 'P4']
G4 --> ['G2', 'G5', 'Y4']
G5 --> ['P5', 'G6', 'G4', 'R5']
P2 --> []
R5 --> ['R6', 'G5']
B6 --> []
Y4 --> ['B4', 'G4', 'P4']
W2 --> ['Y2', 'G2', 'R2']
R2 --> ['R1', 'W2']
Y5 --> ['B5', 'Y3', 'Y1']
B1 --> ['W1', 'Y1']
Y1 --> ['P1', 'Y5', 'B1', 'G1']
P4 --> ['B4', 'Y4']
P3 --> ['B3', 'R3']
W6 --> ['G6', 'Y6', 'W5']
R3 --> ['Y3', 'P3']
Y6 --> ['R6', 'P6', 'W6']
G1 --> ['G3', 'P1', 'Y1']
W5 --> ['W3', 'W6']
```

```
Y 2 | P 3 | B 2 | R 2 | G 5 | Y 5 |
R 3 | R 4 | R 5 | B 4 | W 6 | Y 6 |
G 3 | Y 4 | W 1 | G 6 | W 4 | W 2 |
P6 | G2 | R1 | Y1 | P2 | R6 |
B5 | B6 | B1 | W3 | G1 | P4 |
Y3 | W5 | B3 | G4 | P5 | P1 |
```

Graph characteristics:

36 nodes

48 edges


```
Y2 --> ['Y3', 'B2', 'R2', 'Y5']
P3 --> []
B2 --> ['Y2', 'B1', 'B3', 'R2']
R2 --> ['Y2', 'B2']
G5 --> ['G1', 'P5', 'Y5']
Y5 --> ['Y2', 'G5', 'Y6']
R3 --> ['G3', 'Y3', 'R4', 'R5']
R4 --> ['R3', 'Y4', 'R5', 'B4']
             , 'R4', 'R1']
R5 --> ['R3',
B4 --> ['R4', 'G4']
W6 --> ['W4', 'Y6']
                    'R6']
Y6 --> ['Y5', 'W6',
G3 --> ['R3', 'Y3', 'G6']
             'W4']
Y4 --> ['R4',
W1 --> ['R1', 'B1', 'W4', 'W2']
G6 --> ['G3', 'G4']
W4 --> ['W6', 'Y4', 'W1', 'W2']
W2 --> ['W1', 'W4']
P6 --> ['P2', 'R6']
G2 --> ['P2']
R1 --> ['R5', 'W1', 'B1', 'Y1', 'R6']
Y1 --> ['R1']
P2 --> ['P6', 'G2', 'P5']
R6 --> ['Y6', 'P6', 'R1']
B5 --> ['B6', 'B1']
B6 --> ['B5', 'B1']
B1 --> ['B2', 'W1', 'R1', 'B5', 'B6', 'B3', 'G1']
W3 --> []
G1 --> ['G5', 'B1']
P4 --> ['P1']
Y3 --> ['Y2', 'R3', 'G3', 'B3']
W5 --> ['P5']
B3 --> ['B2', 'B1', 'Y3']
G4 --> ['B4', 'G6']
P5 --> ['G5', 'P2', 'W5', 'P1']
P1 --> ['P4', 'P5']
 _____
G 1 | P 3 | B 3 | P 2 | Y 5 | B 1 |
G6 | W4 | Y1 | P5 | G2 | W1 |
W 6 | P 6 | P 4 | B 2 | W 3 | Y 3 |
W 2 | G 3 | G 4 | R 1 | B 4 | R 6 |
Y 6 | B 6 | P 1 | R 5 | W 5 | R 3 |
B 5 | G 5 | R 2 | R 4 | Y 4 | Y 2 |
Graph characteristics:
36 nodes
```

48 edges

```
      Y 3 | G 3 | W 1 | G 2 | W 6 | G 4 |

      G 6 | Y 5 | R 2 | Y 4 | R 3 | R 4 |

      B 6 | B 5 | G 5 | G 1 | R 6 | B 1 |

      P 2 | W 2 | W 4 | P 1 | Y 1 | B 4 |

      R 1 | P 4 | W 5 | R 5 | P 6 | Y 2 |

      W 3 | Y 6 | P 3 | B 2 | B 3 | P 5 |
```

Graph characteristics:

36 nodes 50 edges

Connected? False

ANSWERING IF THE ACTUAL GAMEBOARD IS ALWAYS CONNECTED

Next, we examine all of the different permutations of the actual board graph and verify they are all connected

In [441]: # implement a function which rotates the boards and places them in the associated "slot" until all permutations have been achieved.

Expected outcome

There are 4! ways to place the tiles in the 4 slots. There are 4^4 independent rotations of the individual tiles.

Consider the tile placement without rotation. For each placement, without allowing rotation, there are 3 other equivalent boards. (add explanation here)

Consider the tile rotations, each tile has exactly 4 ways of rotating it in place with exactly one other duplicate board created. (add explanation here) Therefore, each board is represented by 4 x 4 equivalent arrangements determind by the slot placement and the rotational position of the first tile.

As such, we expect that there are a total of $\frac{4!\times4^4}{4^2}=384$ unique boards for four 3×3 tiles.

So expect to see 6144 total boards generated by our program and 5760 of them should be non-unique.

```
In [413]: # implement a function which compares the graphs of two Boards to determine if
they are, in fact, the same.
In []:
```