## Better Designs Exist



Keminder Tutorial #2 7 Today / 4=30-5=30pm-1302 SC.



## Functional Dependencies

- A form of constraint (hence, part of the schema)
- Finding them is part of the database design
- Used heavily in schema refinement



#### Examples

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E1847 | John  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | -Lawyer  |

- EmpID → Name, Phone, Position
- Position 
   Phone
- but Phone Position clerk, Lawyer

#### In General

To check if A → B violation:

Erase all other columns

| <br>A | <b>]</b> | В   |  |
|-------|----------|-----|--|
| X1    |          | Y1, |  |
| X2    |          | Y2  |  |
|       |          | "   |  |

 check if the remaining relation is many-one (called *functional* in mathematics)

# Example

| EmpID      | Name  | Phone  | Pos    | ition          |         |
|------------|-------|--------|--------|----------------|---------|
| E0045      | Smith | 1234-  | Cle    | rk) v          | 1       |
| E1847      | John  | 9876   | Sale   | esrep          | . 1     |
| E1111      | Smith | 9876   | Sale   | esrep          | -1      |
| E9999      | Mary  | 1234 - | law    | yer) 🗸         | ا لمن   |
| More examp | les:  | 1      | so for | violat<br>Pos- | F Phone |

#### More examples:

Product: name → price, manufacturer

Person:  $ssn \rightarrow name, age$ 

Company: name → stock price, president

# Q: From this, can you conclude phone >> SSN?

a phone is only used by

| SSN <sub>//</sub>                  | Phone   | Number,   | ONE  | person |
|------------------------------------|---------|-----------|------|--------|
| 123-321-99 Alex                    | (201)   | 555-1234  |      |        |
| 123-321-99Alex                     | (206)   | 572-4312  |      |        |
| 909-438-44                         |         | 464-0028  |      |        |
| 909-438-44 Alex                    | (212) : | 555-4000  |      |        |
| 909-438-44 Alex<br>123-321-88 Juin | (104)   | 555-123 x |      |        |
|                                    |         |           |      |        |
| F.D. stated                        | 04      | schema    | desi | m      |
| = state                            | ac      | 50 0.     | /    |        |
|                                    |         | 4.50      | C    | ,      |



- After defining FDs, we can now define keys
- Key of a relation R is a set of attributes that

- functionally determines all attributes of R (N, A)

none of its subsets determines all attributes of R

Superkey

- a set of attributes that contains a key
- We will need to know the keys of the relations in a DB schema, so that we can refine the schema

| u DD ser | (Name, Addr) | (Netid/) | (NetID, dept) |
|----------|--------------|----------|---------------|
| KeA      | V            | V        |               |
| 5- key   |              |          | 19            |

## Finding the Keys of a Relation

Given a relation constructed from an E/R diagram, what is its key?

#### Rules:

 If the relation comes from an entity set, the key of the relation is the set of attributes which is the key of the entity set.



#### Finding the Keys

#### Rules:

 If the relation comes from a many-many relationship, the key of the relation include the set of all attribute keys in the relations corresponding to the entity sets (and additional attributes if necessary)



buys(name, ssn., date)

#### Finding the Keys

But: if there is an arrow from the relationship to E, then we don't need the key of E as part of the relation key.



# Finding the Keys

#### More specific rules:

- Many-one, one-many, one-one relationships
- Multi-way relationships
- Weak entity sets

(Try to find them yourself)

# Reasoning with FDs

- 1) closure of FD sets
- 2) closure of attribute sets

#### Closure of FD sets

- Given a relation schema R & a set S of FDs
  - is the FD f logically implied by S?
- Example
  - $-R = \{A,B,C,G,H,I\}^{\frac{6}{2}} \text{ attr}, \text{ age } \rightarrow \text{ brike}$   $-S = A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H$

  - would A → H be logically implied? wew rule
  - yes (you can prove this, using the definition of FD)
- Closure of S: S+ = all FDs logically implied by S
- How to compute S+?
  - we can use Armstrong's axioms

Name



# Inferring S+ using Armstrong's Axioms

• 
$$S+=S$$

#### •r Loop

- add the new FDs to S+
- foreach pair of FDs in S, apply the transitivity rule
- add the new FD to S+
- Until S+ does not change any further

$$\Rightarrow$$
 AA  $\rightarrow$  D  $\Rightarrow$  A $\Rightarrow$ D

Q1: What do you like best of this cls. that we must keep?

02: What --- dislike - ---

---- go?

#### Additional Rules



- Decomposition rule
  - $-X \rightarrow YZ$ , then  $X \rightarrow Y$  and  $X \rightarrow Z$
- Pseudo-transitivity rule
  - $-X \rightarrow Y$  and  $YZ \rightarrow U$ , then  $XZ \rightarrow U$
- These rules can be inferred from Armstrong's axioms

# Closure of a Set of Attributes ( name, addr) Given a set of attributes $\{A1, ..., An\}$ and a set of dependencies S.7 Problem: find all attributes B such that: any relation which satisfies S also satisfies: $A1, ..., An \rightarrow B$

The **closure** of  $\{A1, ..., An\}$ , denoted  $\{A1, ..., An\}$ <sup>+</sup>, is the set of all such attributes B

We will discuss the motivations for attribute closures soon

# Algorithm to Compute Closure

Start with 
$$X=\{A1, ..., An\}$$
. {name, addr}

Repeat until X doesn't change do:

if 
$$B_1, B_2, \dots B_n \longrightarrow C$$
 is in S, and  $B_1, B_2, \dots B_n$  are all in X, and C is not in X

#### then

add C to X. 
$$X=X+\{c\}$$

Example

$$R: \langle A, B, C, D, E, F \rangle \qquad I_{S} (A, F) = \{A, \dots, F\}$$

$$A B \longrightarrow C$$

$$A D \longrightarrow E$$

$$B \longrightarrow D$$

$$A F \longrightarrow B$$

$$Closure of \{A,B\}: X = \{A, B, C, D, E\}$$

$$Closure of \{A,E\}: X = \{A, F, B, D, C, E\}$$

$$AF \rightarrow B$$

$$A, B, F$$

$$AB \rightarrow C$$

# Usage for Attribute Closure

- Test if X is a superkey
  - compute X+, and check if X+ contains all attrs of R

- Check if  $X \rightarrow Y$  holds
  - by checking if Y is contained in X+



#### Normal Forms

```
x set.
x array
First Normal Form = all attributes are atomic
Second Normal Form (2NF) = old and obsolete
             Ted Code
Boyce Codd Normal Form (BCNF)
Third Normal Form (3NF)
Fourth Normal Form (4NF)
```

Others...

## Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:

f and only if: A relation R is in

Whenever there is a nontrivial FI for R, it is the case that  $\{A_1, A_2, \dots A_n\}$ is a super-key for R.

In English (though a bit vague):

Whenever a set of attributes of R is determining another attribute,

it should determine <u>all</u> attributes of R. In Control V SSN - A Addrty yes BUNE ?





## Example

| Name | SSN        | Phone Number   |
|------|------------|----------------|
| Fred | 123-321-99 | (201) 555-1234 |
| Fred | 123-321-99 | (206) 572-4312 |
| Joe  | 909-438-44 | (908) 464-0028 |
| Joe  | 909-438-44 | (212) 555-4000 |

What are the dependencies?

SSN→Name

What are the keys?

Is it in BCNF?



#### What About This?

| Name              | Price              | Category |
|-------------------|--------------------|----------|
| Gizmo<br>OneClick | \$19.99<br>\$24.99 | gadgets  |

Name → Price, Category