

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

«Классификация методов моделирования многофункциональных центров НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА НА ТЕМУ: обслуживания»

Студент: Волков Г.В. Руководитель: Рудаков И.В.

Цель и задачи работы

Цель работы - провести обзор и сравнить существующие методы моделирования многофункциональных центров обслуживания Для достижения поставленной цели следует решить следующие задачи:

- изучить основные понятия моделирования многофункциональных центров обслуживания
- описать и классифицировать существующие методы
- произвести сравнительный анализ рассмотренных методов

Моделирование

проще и удобнее исследовать, когда реальные эксперименты затруднены из– помощью объекта-модели. Широко применяется в научных исследования и в является одним из эффективных методов изучения сложных систем. Модели за финансовых или физических препятствий. Формализованность позволяет прикладных задачах в различных областях. Компьютерное моделирование чётко обозначить основные факторы, определяющие свойства изучаемого Моделирование — процесс замещения одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с объекта-оригинала и связи между ними.

МФЦ

комплексные процессы, включающие как прямое обслуживание клиентов, так предоставления различных видов услуг клиентам. Они могут включать в себя организации, призванные обеспечивать широкий спектр административных и документы». Являются структурированной системой, предназначенной для 8 государственных услуг гражданам и юридическим лицам в одном месте. В Многофункциональные центры обслуживания (МФЦ) — это современные последние годы подобные центры получили широкое распространение в многих странах, в том числе и в России, где они известны как «Мои и внутренние операционные процессы

Методы моделирования

В данной работе рассмотрено несколько методов:

- конечные автоматы
- вероятностные автоматы
- системы массового обслуживания
- сети Петри

Конечные автоматы

алфавитом, набором состояний, и функциями выхода и перехода. Разделяются на автоматы Мили и Мура. Выход автомата Мили зависит от состояния и входа, а у детерминированными моделями (F-схема). Обладают выходным и выходным Автомат можно представить как некоторое устройство, на которое подаются входные сигналы, снимаются выходные сигналы и которое может иметь определённые внутренние состояния. Они являются дискретно -Мура только от состояния. Конечные автоматы работают с дискретным временем и позволяют моделировать только детерминированные объекты. Также они имеют, только одно состояние на всю систему и не способны отражать параллельные процессы.

Вероятностные автоматы

автомата характерно задание таблицы вероятностей перехода автомата і состояния памяти в них и может быть описано статистически. Для такого определить, как дискретные потактные преобразователи информации с памятью, функционирование которых в каждом такте зависит только от математического аппарата вероятностные автоматы, которые можно Дискретно-стохастический подход (Р-схемы) использует в качестве некоторое состояние и появления некоторого выходного сигнала в зависимости от текущего состояния и входного сигнала.

Аналогичны конечным автоматам, но имеют вероятности у переходов и выходов. А также позволяют моделировать стохастические системы.

Системы массового обслуживания

ввиду того, что большинство производственных, экономических, технических выделяют накопитель заявок некоторой ёмкости, ожидающих обслуживания, формализации процессов обслуживания. Этот подход наиболее известен и т.д. систем по сути являются системами массового обслуживания. Под предназначенную для эффективного обслуживания потока заявок при обслуживания можно выделить элементарный прибор, в котором уже системой массового обслуживания понимают динамическую систему, ограничениях на доступные ресурсы. В любой системе массового Непрерывно-стохастический подход (Q-схема) применяется для канал обслуживания и потоки событий.

Системы массового обслуживания

системы, но имеет только одно состояние на всю систему, отображающее Данный метод позволяет моделировать стохастические и параллельные количество занятых потоков.

Сети Петри

математическая модель дискретных динамических систем, ориентированная Сетевой подход (N-схема) используется для формализованного описания и анализа причинно-следственных связей в сложных системах, где одновременно протекает несколько процессов. Сеть Петри — это на качественный анализ и синтез таких систем.

Задаётся множествами дискретных моментов времени, позиций и состояний, а также функцией инцидентности и начальной маркировкой. Имеет множество обобщений расширяющих функционал сети.

Сети Петри

системы и ей отдельных элементов. Позволят выделять некоторые части в локальных событиях в системе, что позволяет отображать состояние всей Позволяет моделировать стохастические системы. Сконцентрирована на отдельные функциональные блоки с помощью иерархических сетей.

Критерии сравнения

- возможность моделирования стохастических систем (К1)
- возможность моделирования параллельных систем (К2)
- тип состояния (К3) некоторые методы имеют только одно глобальное событиях, условиях и связях, что позволяет получить более подробную информацию о состоянии всей системы и её отдельных элементов состояние на всю системы, другие концентрируются на локальных

Сравнение

Критерий	ΚΆ	BA	СМО	СП
K1	Нет	Да	Да	Да
K2	Нет	Нет	Да	Да
K3	Глобальное	Глобальное	Глобальное	Локальное

Заключение

Цель, которая была поставлена в начале научно-исследовательской работы, была достигнута: проведён обзор и сравнение существующих методов моделирования многофункциональных центров обслуживания.

Решены все поставленные задачи:

- изучены основные понятия моделирования многофункциональных центров обслуживания
- описаны и классифицированы существующие методы
- произведён сравнительный анализ рассмотренных методов