INM430

Principles of Data Science

Week 02

Data Characteristics & Wrangling

Aidan Slingsby, giCentre Constantino Carlos Reyes-Aldasoro

Week 2 Schedule

- Know your data (and your information)
- Data attributes types
- Perspectives in data types
 - · Multidimensional data
 - · Temporal data
 - · Network data
- Wrangling
- · Data formats

Week 2 Schedule

- Know your data (and your information)
- Data attributes types
- Perspectives in data types
 - Multidimensional data
 - Temporal data
 - Network data
- Wrangling
- Data formats

Know your data

But ... what is data?

Before anything else ... Know your data!

(N.B. Overlap with VA in the next slides – slight differences in vocabulary!)

Not all data conveys information. What is the fundamental nature of "information"? Today is Friday London is in England In England rains frequently Today is raining in London Tomorrow there will be heavy rains in London, flood warnings have been issued Why is the last phrase more interesting?

Data and Information

- · Information resolves uncertainty.
- · The uncertainty of an event is measured by its probability of occurrence.
 - Uncertainty of flipping a coin (1 in 2)
 - Uncertainty of rolling dice (1 in 6)
 - Uncertainty of Euromillions (1 in 6,991,908)

$$H = -\sum_{i=1}^{n} p_i \log(p_i)$$

Data and Information

Data, (or Raw Data) is a

collection/signal/record/file/matrix/ function/container/arrangement/...

that conveys information about the characteristics, behaviour or attributes of some phenomenon

biological / geographical / financial / medical / 📆 🥌 cultural / meteorological / ...

Information resolves uncertainty. To resolve the uncertainty we need to

process/analyse/visualize/transform...

the data, generally through computational processes.

Week 2 Schedule

- · Know your data (and your information)
- Data attributes types
- Perspectives in data types
 - · Multidimensional data
 - Temporal data
 - · Network data
- Wrangling
- Data formats

Data Type Taxonomy by Shneiderman, 96

- 1D (sequences)
- nD (relational)
- Temporal
- Trees (hierarchical)
- 2D (maps)
- · Networks (graphs)
- 3D (shapes)

 Categorical / Nominal: related to the category, name or the label that characterises each item

Data attribute types: Categorical

 Categorical / Nominal: related to the category, name or the label that characterises each item, items may have more than one label

No specific rank or order
No operations like adding/
subtracting
No distance metric
Mode / Majority
Percentage of universe

Data attribute types: Categorical

 Categorical / Nominal: allocate labels according to a certain characteristic

Kather et al. (2019) Predicting survival from colorectal cancer histology slides using deep learning. PLoS Med 16(1): e1002730.

Data attribute types: Categorical

 Categorical / Nominal: allocate labels according to a certain characteristic

No specific rank or order No operations like adding/ subtracting No distance metric Mode / Majority

Percentage of universe

Kather et al. (2019) Predicting survival from colorectal cancer histology slides using deep learning. PLoS Med 16(1): e1002730.

Small note on errors (more to come)

- Allocate labels according to a certain characteristic.
- How "good" is our allocation??????? (it depends how we define "good")
- With a "Ground Truth" (real label) we can define:
 - True Positives, True Negatives
 - False Positives, False Negatives

Type lerror (false positive)

Typu renor (program)

You're pregnant

Figure 3.1 Type I and Type II enters

Paul Ellis, The Essential Guide to Effect Sizes: Statistical Pow
Meta-Analysis, and the Interpretation of Research Results,
2012. Cambridge Injurying Press.

Small note on errors (more to come)

- Allocate labels according to a certain characteristic.
- How "good" is our allocation???????? (it depends how we define "good")
- With a "Ground Truth" (real label) we can define:
 - True Positives, True Negatives
 - False Positives, False Negatives

Data Types and operations • Categorical: nominal (labels) — Operations: =, ≠ • Categorical: Ordinal (ordered) — Operations: =, ≠, >, < • Quantitative: Interval (no meaningful zero) — Operations: =, ≠, >, <, +, - (distance) • Quantitative: Ratio (meaningful zero) — Operations: =, ≠, >, <, +, -, ×, ÷ (proportions) Discrete Continuous

Ar	Anscombe's Quartet (warning about metrics)										
		I		II		III	1	IV			
	х	у	х	у	х	у	х	У			
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58			
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76			
	13.0	7.58	13.0	8.74	13.0	12.7	8.0	7.71	https://en.wikipedia.org/wi		
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	ki/Anscombe%27s_quartet		
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47			
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04			
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25			
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.5			
	12.0	10.8	12.0	9.13	12.0	8.15	8.0	5.56			
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91			
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89			
	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5	Mean		
	3.31	2.03	3.31	2.03	3.31	2.03	3.31	2.03	Standard Deviation		

- Know your data (and your information)
- · Data attributes types
- · Perspectives in data types
 - · Multidimensional data
 - · Temporal data
 - Network data
- Wrangling
- · Data formats

Multidimensional data

· Without yet taking into account the nature of the data, or the relationships between dimensions we could observe the number of dimensions of a certain data set.

Point

Line

Square

Cube

Tesseract

Multidimensional data

 Without yet taking into account the nature of the without yet taking into account the nature of the data, or the relationships between dimensions we could observe the number of dimensions of a certain data set.

Point Line of the nature of the nature of the data, or the relationships between dimensions we could observe the number of dimensions of a certain data set.

Point Line of the nature of the nature of the data, or the relationships between dimensions we could observe the number of dimensions of a certain data set.

Multidimensional data

• Without yet taking into account the *nature* of the data, or the relationships between dimensions we could observe the number of dimensions of a

Multidimensional data: Examples

 Zero dimensions 42

Multidimensional data: Examples

(Bivariate)

· Zero dimensions One dimension (Univariate)

42

Multidimensional data: Examples

· Zero dimensions One dimension Two dimensions

Why would these matter? Scale/scope: Which tools to use, how you would derive features (e.g., look at the variance of intervals) Arrangement: Analysis of seasonality, yearly vs. weekly cycles Viewpoint: How you compare multiple outcomes, e.g., several simulation runs Granularity: Extracting micro/macro behavior, e.g., yearly trends vs. hourly trends

Other perspectives on data

- · Structured vs. unstructured
 - Structured data: a certain data model, e.g., relational DBs
 - Unstructured data: no pre-defined model
 - Structure can be derived (hopefully)
 - · Semi-structured forms are common, e.g., XML, JSON
 - text data (e.g. e-mail messages, word processing documents) videos, photos, audio files, presentations, WEB!...
- · Static vs. Dynamic (streaming)
 - Data might **stream** from sources
 - Ex: Twitter API, custom-build data sources, etc...

- Know your data (and your information)
- Data attributes types
- · Perspectives in data types
 - · Multidimensional data
 - · Temporal data
 - Network data
- Wrangling
- · Data formats

Data: Where? What? How?

- · How accessible are those ZB of data?
- How much can we understand of data as it is?
- · How much of that data is relevant?
- · How clean is the data?

From last week - DS Process

- · Understand domain needs
- · Collect & make data available
- Get the data ready for analysis
- · Exploratively (and visually) analyse the data
- Model the phenomena (if needed)
- · Evaluate findings
- ITERATE (from any stage to any other stage)!
- · Communicate findings

From last week - Data wrangling & fusion

- · Getting the data ready to be analysed
- Data is never perfect and it is segregated, i.e., multiple sources
- Many names: data wrangling, data munging, data cleaning, data massaging, data scrubbing, preprocessing, data tidying, data curating,....
- Data fusion: merging / integrating several data sources
- · Handle missing data

On wrangling

I spend more than half of my time integrating, cleansing and transforming data without doing any actual analysis. Most of the time I'm lucky if I get to do any analysis. Most of the time once you transform the data you just do an average... the insights can be scarily obvious. It's fun when you get to do something somewhat analytical.

Enterprise Data Analysis and Visualization: An Interview Study

Sean Kandel, Andreas Paepoke, Joseph M. Hellerstein, and Jeffrey Heer

Abstract—Operations with ordinal analysis in node costner engagement, streaming operation, improve production, informations doctories, and control fault. Though interments analysis and installation losts have been failt in tempore be suited intermediated by the control fault. Though intermediated productions are controlled in companies. So better understand the enterprise analysis conspirate, we concluded intermediated intermediated intermediated analysis for any particular analysis and produces and the controlled analysis for any particular analysis and produces and the controlled analysis and controlled analysis analysis.

Kandel, Sean, et al. "Enterprise data analysis and visualization: An interview study.", IEEE TVCG (2012)

Ways to cope with this

- Become a ninja wrangler!
- (Be an optimist), remember that a by-product is that it's helping you understand the data better
- Use application domain knowledge to only spend time on problems that will give useful results
- Experienced analysts will develop shortcuts and heuristics to know whether to invest more time

Data Quality & Usability Issues

Missing Data no measurements, redacted, ...?

Erroneous Values misspelling, outliers, ...?

Type Conversion e.g., zip code to lat-lon

Entity Resolution diff. values for the same thing?

Data Integration errors when combining data

Usability, Credibility & Usefulness

Data is *usable* if it can be parsed and manipulated by computational tools. Data usability is thus defined in conjunction with the tools by which it is to be processed.

Data is *credible* if, according to one's subjective assessment, it is suitably representative of a phenomenon to enable productive analysis.

Data is *useful* if it is usable, credible, and responsive to one's inquiry.

Slide by Jeff He

Data Wrangling

A process of iterative data exploration and transformation that enables analysis.

The goal of wrangling is to make data useful:

- Map data to a form readable by downstream tools (database, stats, visualization, ...)
- Identify, document, and (where possible) address data quality issues.

andel, Sean, et al. "Research directions in data wrangling: Visualizations and transformations for usable

Some wrangling steps

- · Visualise "raw" data for detection
- · Visualise missing/uncertain data
- · Transform data
 - Scripts / processes to data
 - Correct errors, e.g., missing data
 - Statistical data transformations
 - Integrate / merge
- DataWrangler video: https://vimeo.com/19185801

Data Organisation perspective -- Tidy data

According Wickham, in a tidy dataset:

- Each variable must have its own column.
- Each observation must have its own row.
- Each value must have its own cell.

Indications of messy data (from Wickham, 2014 [*])

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

[*] Wickham, H., 2014. Tidy Data. Journal of Statistical Software, 59(i10

Atheist 12 27 37 52 35 7 Buddhist 27 21 30 34 33 5 Catholic 418 617 732 670 638 111 Don't know/refused 15 14 15 11 10 3 Evangelical Prot 575 869 1064 982 881 148 Hindu 1 9 7 9 11 3 Historically Black Prot 228 244 236 238 197 22 Jehovah's Witness 20 27 24 24 21 3	religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k	
Buddhist 27 21 30 34 33 5 Catholic 418 617 732 670 638 111 Don't know/refused 15 14 15 11 10 3 Evangelical Prot 575 869 1064 982 881 148 Hindu 1 9 7 9 11 3 Historically Black Prot 228 244 236 238 197 22 Jehovah's Witness 20 27 24 24 21 3 Jewish 19 19 25 25 30 9 - Can you identify the variables?	Agnostic	27	34	60	81	76	137	
Catholic 418 617 732 670 638 111 Don't know/refused 15 14 15 11 10 3 Evangelical Prot 575 869 1064 982 881 148 Hindu 1 9 7 9 11 3 Historically Black Prot 228 244 236 238 197 22 Jehovah's Witness 20 27 24 24 21 3 Jewish 19 19 25 25 30 9 - Can you identify the variables?	Atheist	12	27	37	52	35	70	
Don't know/refused	Buddhist	27	21	30	34	33	58	
Evangelical Prot 575 869 1064 982 881 148 Hindu 1 9 7 9 11 3 Historically Black Prot 228 244 236 238 197 22 Jehovah's Witness 20 27 24 24 21 21 Jewish 19 19 25 25 30 9 - Can you identify the variables?	Catholic	418	617	732	670	638	1116	
Hindu 1 9 7 9 11 3 Historically Black Prot 228 224 236 238 197 22 Jehovah's Witness 20 27 24 24 21 3 Jewish 19 19 25 25 30 9 - Can you identify the variables?	Don't know/refused	15	14	15	11	10	35	
Historically Black Prot 228 244 236 238 197 22 Jehovah's Witness 20 27 24 24 21 3 Jewish 19 19 25 25 30 9 - Can you identify the variables?	Evangelical Prot	575	869	1064	982	881	1486	
Jehovah's Witness 20 27 24 24 21 3 3 3 25 25 30 9 3 3 3 4 3 4 4 5 5 5 5 5 5 5 5	Hindu	1	9	7	9	11	34	
Jewish 19 19 25 25 30 9 - Can you identify the variables?	Historically Black Prot	228	244	236	238	197	223	
- Can you identify the variables?	Jehovah's Witness	20	27	24	24	21	30	
	Jewish	19	19	25	25	30	95	
Discuss briefly		- Is	- Is this dataset tidy?					

115	gion.	<\$10k	\$10-20k	\$20-30k	\$30-41%	\$40-50k	\$50-75k
	poetic	27	34	60	. 61	.76	137
	briet	12	27	37	52	35	20
	dellisiet. thesise	416	617	30 732	420	638	58 1116
	n't know/refused	15	14	132	420 11	10	35
	angelical Prot	575	860	1064	962	583	1486
	sdu	- 1	9	7	9	- 11	34
	torically Black Prot	228	244	236	238	197	223
	oveda's Witmens	20	27 19	24 25	24 25	21	30 95
Jes	r)di.	19	19	. 29	. 25	30	- 90
	religion Agnostic		ome 10k			free	
	Agnostic	\$10)-20k			34	Į.
	Agnostic	\$20)-30k			60)
	Agnostic	\$30)-40k			81	
Tidy Data	Agnostic	\$40)-50k			76	5
	Agnostic	\$50)-75k			137	
	Agnostic	\$75	5-100k			122	2
	Agnostic	\$10	00-150	k		109)
	Agnostic	>1	50k			84	l .
					efused	96	

AE 20 AF 20 AG 20 AL 20 AM 20 AN 20 AN 20 AR 20 AR 20 AS 20	2000 0 2000 2 2000 52 2000 52 2000 0 2000 0 2000 2 2000 2 2000 0 2000 186 2000 97 2000 -	4 228 0 19 152 0 999	1 4 183 0 21 130 1 1003	0 6 149 0 14 131	0 5 129 0 24 63	0 12 94 0 19 26	0 10 80 1 16 21		9:
AF 200 AG 200 AL 200 AM 200 AN 200 AO 200 AR 200 AS 200	2000 52 2000 0 2000 2 2000 2 2000 0 2000 186 2000 97	0 19 152 0 999	0 21 130 1	149 0 14 131 2	129 0 24 63	94 0 19 26	80 1 16		9
AG 20 AL 20 AM 20 AN 20 AO 20 AR 20 AS 20	2000 0 2000 2 2000 2 2000 0 2000 186 2000 97	0 19 152 0 999	0 21 130 1	0 14 131 2	0 24 63	0 19 26	1 16	_	
AL 20 AM 20 AN 20 AO 20 AR 20 AS 20	2000 2 2000 2 2000 0 2000 186 2000 97	19 152 0 999	21 130 1	14 131 2	24 63	19 26	16	_	
AM 20 AN 20 AO 20 AR 20 AS 20	2000 2 2000 0 2000 186 2000 97	152 0 999	130 1	131 2	63	26		-	100
AN 20 AO 20 AR 20 AS 20	2000 0 2000 186 2000 97	0 999	1	2		-	21		
AO 20 AR 20 AS 20	2000 186 2000 97	999	1 1003	100	0			-	
AR 20 AS 20	2000 97		1003			. 0	0	-	
ol name		278		912	482	312	194	-	24
ol name	2000 —		594	402	419	368	330	-	12
		-	-	-	1	1	_	-	1000
Can you Is this d	25-34, 3 u identi	35-44, fy the	45-5	4, 55				U-1	.4,

country	year	m014	m1524	m2534	m35	44 m	4554	m5564	m65	mu	8014
AD	2000	. 0	0	- 1		0	- 0	0	0	-	-
AE	2000	2	4	4		6	5	12	10	_	3
AF	2000	52	228	183	1	19	129	94	80	-	93
AG	2000	0	0	0		0	0	0	. 1	-	1
AL.	2000	2	19	21		14	24	19	16	-	3
AM	2000	2	152	130	1		63	26	21	-	- 1
AN	2000	0	0	1		2	0	0	. 0	-	. 0
AO	2000	186	999	1003	9		482	312	194	-	247
AR	2000	. 97	278	594	41)/2	419	368	330	-	121
AS	2000	_	-	_	-	-	- 1	- 1	-	-	-
			AD AD	year 2000 2000	m m	0-14 15-2	4	0 0			
			AD	2000	m	25-3		1			
			AD	2000	m	35-4		0			
			AD	2000	1111	45-5		0			
			AD	2000	m	55-6		0			
Tidy Da	ıta		AD	2000	m	65+		0			
,			AE	2000	m	0-14		2			
			AE	2000	m	15-2		4			
			AE	2000	m	25-3		4			
			AE	2000	m	35-4		6			
			AE	2000	1111	45-5		5			
			AE	2000	m.	55-6		12			
			AE	2000	mi	65+		10			
			AE	2000	f :	0-14		3			

Missingness mechanisms

Missing Completely at Random (MCAR)
 an observation being missing does not depend on observed or unobserved measurements

Unit	1	2	3	4	5	6
1	1	3	4.3	3.5	1	4.6
2	1	3	2	3.5	2	2

- Student forgot to answer the question

Missingness mechanisms

- Missing Completely at Random (MCAR)
 an observation being missing does not depend on observed or unobserved measurements
- Missing At Random (MAR) the missingness mechanism depends on the observed data but not on the unobserved (missing) data
 - Men are more likely to tell you their weight/age than women (is this true????)

Missingness mechanisms

- Missing Completely at Random (MCAR)
 an observation being missing does not depend on observed or unobserved measurements
- Missing At Random (MAR) the missingness mechanism depends on the observed data but not on the unobserved (missing) data
- Unit 1 2 3 4 5 6
 1 1 3 4.3 3.5 1 4.6
 2 1 3 ? 3.5 ? ?
- Missing not at random (MNAR)
 - the missingness mechanism depends on missing values
 - Problematic, hard to make statistics
 - Study about students with anaemia conducted in school (but students did not attend because of anaemia)

Missingness mechanisms

- Missing Completely at Random (MCAR)
 an observation being missing does not depend on observed or unobserved measurements
- Missing At Random (MAR)
 the missingness mechanism
 depends on the observed data but
 not on the unobserved (missing) data
- Missing not at random (MNAR)
 - the missingness mechanism depends on missing values
 - Problematic, hard to make statistics
- · Very hard to know which type!

Missing data - how to deal?

- Only analyse fully available items (aka Complete Case Analysis)
 - Simple execution
 - Losing observations

Gender	Age	Score
F	32	12
F	44	10
M	55	?
M	?	45
М	13	55
M	44	63
F	5ó	?
2	2	12
-	24	_
	31	

Missing data - how to deal?

- · Analyse columns with all available items
 - Less data lost
 - Hard to compare between analyses, samples are different
 - Suitable for aggregated analysis

Gender	Age	Score
F	32	12
F	44	10
M	55	-?-
M	-?-	45
M	13	55
M	44	63
F	56	-?
-?	?	12
F	31	-?-

Missing data - how to deal?

- Delete a whole column
 - Only if most of the values are missing in a column
 - Avoids further problems

Gender	Age	Score
F	Age 32	12
F	7	10
M	P	47
M	P	45
М	P	55
М	4 <mark>4</mark>	63
F	7	33
?	†	12
F	3 <mark>1</mark>	14
	•	

Missing value imputation

- Mean / mode substitution
 - Replace missing value with sample mean or mode
 - Reduces variability
 - Weakens covariance and correlation

Missing value imputation • Regression substitution (deterministic) - replaces missing values with predictions from a regression function

Interpolation construct new data points within the range of a discrete set of known data points with the help of a model function Several different functions to interpolate how to choose? Cubic

Missing value imputation

Whatever method is used, .. Keep a record! Analytical provenance is important

- Know your data (and your information)
- Data attributes types
- Perspectives in data types
 - Multidimensional data
 - · Temporal data
 - Network data
- Wrangling
- · Data formats

```
JSON (JavaScript Object Notation)

• Is a lightweight data-interchange format, alternative to XML

• JSON is built on two structures:

- A collection of name/value pairs

- An ordered list of values

• Gaining popularity in web apps

• http://json.org/
```


Some tools for Data Wrangling

- · Programming yourself Python is good!
- Open Refine (previously Google Refine)
 - Now in transition to OpenRefine
 - Runs as a local server
 - Good for also extending data
 - http://openrefine.org/index.html
- DataWrangler (now TriFacta)

 - Available online
 - Good for splitting / merging / deleting data

DataWrangler alpha

- http://vis.stanford.edu/wrangler/

- · Know your data (and your information)
- Data attributes types
- · Perspectives in data types
 - · Multidimensional data
 - Temporal data
 - · Network data
- Wrangling
- · Data formats