

개인 칩 설계 : UART 송신기

신재호 **/ 32217401 /** 융합반도체공학과

목차

목표

설계 프로세스

주제선정 이유

9 목표

회로설계 8단계의 공정을 OpenLane + Sky130 pdk 활용 위주로 UART 송신기 완성하기 (ASIC으로 만들기)

115200 bps, Even Parity 조건으로 Asic 구현하고 STA/DRC/LVS를 통과하는 GDSII 결과물 생성하기

한 주제 선정 이유

UART 송신기는 실무표준 IP이고, SoC에서 가장 보편적인 통신 모듈이다.

수업시간에 다룬 디지털 설계 프로세스를 거의 그대로 적용가능

모두 오픈 소스 기반 설계OpenLane + Sky130조합으로Tape-Out 수준까지 완성도를높일수 있을 가능성이 높음

활용하는 Open Source Tool

Architecture Design

Draw.io + Markdown

High-level 블록 다이어그램*,* 스펙정의(Specification)

Design Entry

VS code + Verilog

RTL Cdoe 작성

Logic Synthesis

Yosys

RTL -> Netlist 변환

System Partitioning

VS Code + Yosys

계층화 및 모듈 분할

활용하는 Open Source Tool

Floorplanning

OpenLane + OpenROAD

Die/Core 영역 설정

Placement

OpenROAD

셀 배치 최적화과정

Routing

OpenROAD + TritonRoute

배선

Verification

OpenSTA + Icarus Verilog + Klayout

STA/DRC/LVS

<u>S</u>

공정 이름	오픈소스 툴
Architecture Design	Draw.io + Markdown
Design Entry	VS Code + Verilog
Logic Synthesis	Yosys
System Partitioning	VS Code + Yosys
Floorplanning	OpenLane + OpenROAD
Placement	OpenROAD
Routing	OpenROAD + TritonRoute
Verification	OpenSTA + Icarus Verilog + Klayout

Thank You

