Crop Detection for Smart Farming

CS 646 Higher Level Computer Vision

Esther Vogt

Additional team members: Martin Böckling, David Probst, Fabio Westphal

Use Case in Smart Farming

- Agricultural robots allow lower production costs & decreased need for manual labour
- Weed control: stop (noxious) weeds from competing with desired flora
- To apply targeted measures, weeds must be detected
- Robots carry cameras for weed detection

June 28, 2021 Crop Detection for Smart Farming

Data Set

- published by <u>University of Bonn</u>
- captured over period of three months in spring 2016
- robot carried 4-channel multispectral camera and RGB-D sensor
- used 11,552 / 12,340 of available labeled images
 - Input images: NIR (3 channels)
 - Segmentation mask: colorCleaned (3 classes)

	#images per_category:						
		nir	rgb	id	colorCleaned	iMapCleaned	
Data Availability	cka						
	CKA_160421	823	0	823	600	600	
	CKA_160426	306	306	306	296	296	
	CKA_160427	881	2	881	881	881	
	CKA_160428	300	0	300	300	300	Problem: sparse RGB
	CKA_160429	614	0	624	612	602	
	CKA_160502	302	0	302	302	302	
	CKA_160503	1570	288	1570	1556	1556	
	CKA_160504	301	0	301	301	301	
	CKA_160505	963	0	963	963	963	imaga
	CKA_160506	301	0	301	301	301	image
	CKA_160509	912	0	912	912	912	41 1 414
	CKA_160510	867	0	869	869	867	availability
	CKA_160511	401	1	401	289	289	,
	CKA_160512	304	0	304	304	304	
	CKA_160513	301	0	332	319	314	
	CKA_160517	307	0	315	315	307	
	CKA_160518	305	0	305	305	305	
	CKA_160523	2148	3	2281	1949	2197	
	CKA_160527	300	0	300	300	300	
	CKA_weeds	512	0	522	0	505	
			-			•	

June 28, 2021 Crop Detection for Smart Farming

Data Understanding & Preprocessing

Model Architecture – ResNet (UNet)

Model Training

Approach

- Loss Metric: 1 mIoU vs. 1-weighted mIoU
- Performance Metric: mloU vs. weighted mloU
- # images: 11,552
- Train-Test Split:
- 0.70 training set
- 0.15 validation set
- 0.15 test set
- # epochs: 30
- Batch size: 32
- Activation: ReLu

Model Training

Lessons Learned - mean IoU vs. weighted mean IoU

Effective Number of Samples (ENS)

$$w_{n,c} = \frac{1}{E_{n_c}}$$
$$E_{n_c} = \frac{1 - \beta^{n_c}}{1 - \beta}$$

where n_a is the Number of Samples in Class c and E_n represents the Effective Number of Samples

Model Evaluation

Lessons Learned – mean IoU vs. weighted mean IoU

Effective Number of Samples (ENS)

$$w_{n,c} = \frac{1}{E_{n_c}}$$
$$E_{n_c} = \frac{1 - \beta^{n_c}}{1 - \beta}$$

where n_c is the Number of Samples in Class c and E_{n_c} represents the Effective Number of Samples

Model Evaluation

Lessons Learned – mean IoU vs. weighted mean IoU

Effective Number of Samples (ENS)

$$W_{n,c} = \frac{1}{E_{n_c}}$$
$$E_{n_c} = \frac{1 - \beta^{n_c}}{1 - \beta}$$

where n_c is the Number of Samples in Class c and E_{n_c} represents the Effective Number of Samples

