Good Looking Mathematics

A Discussion of Mathematical Models

Patrick Rhomberg

The University of Iowa Applied Mathematics and Computational Science Computer Science, Computational Epidemiology Group

April 9, 2013

Abstruse Goose: 211

The Landscape of Modern Mathematics

ialc I: Derivatives Calc II: Derivatives of Parametric Equations Calc III / Differential Equations: Vector Fields

Table of Contents

- Motivation
- Mathematical Framework
 - Calc I: Derivatives
 - Calc II: Derivatives of Parametric Equations
 - Calc III / Differential Equations: Vector Fields
- Models
 - FitzHugh-Nagumo
 - Compartmental Epidemiology

Calc I: Derivatives
Calc II: Derivatives of Parametric Equations
Calc III / Differential Equations: Vector Fields

Calc I: Derivatives
Calc II: Derivatives of Parametric Equations
Calc III / Differential Equations: Vector Fields

$$y(t)$$
 $y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$ $x(t) = ??$

$$y(t)$$
 $y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$ $x(t) = ??$

$$y(t) \quad y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$$

$$x(t) = ??$$

$$y(t)$$
 $y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$ $x(t) = ??$

$$y(t) \quad y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$$

$$x(t) = ??$$

$$y(t)$$
 $y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$ $x(t) = ??$

$$y(t)$$
 $y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$ $x(t) = ??$

$$y(t)$$
 $y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$ $x(t) = ??$

$$y(t) \quad y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$$

$$x(t) = ??$$

$$y(t) \quad y(t) = e^{-(x(t)-2)^2} - \arctan(x(t)-4) + 2$$

$$x(t) = ??$$

A Tale of Two Models

A Tale of Two Models

The Nagumo Tunnel-Diode Nerve Model

The FitzHugh Equations

$$\frac{d}{dt}V = V - V^3 - W - I$$

$$\frac{d}{dt}W = 0.08(V + 0.7 - 0.8W)$$

The FitzHugh Equations

$$\frac{d}{dt}V = V - V^3 - W - I$$

$$\frac{d}{dt}W = .08(V + .7 - .8W)$$

Susceptible

Infected

Removed

 $\overline{\mathsf{R}}$

$$\frac{d}{dt}I =$$

$$\frac{d}{dt}R =$$

$$\frac{d}{dt}S = -cSI$$

$$\frac{d}{dt}I = cS$$

$$\frac{d}{dt}R =$$

$$\frac{d}{dt}S = -cSI$$

$$\frac{d}{dt}I = cSI - \frac{1}{\tau}$$

$$\frac{d}{dt}R = \frac{1}{\tau}I$$

An SIR Example: A Pandemic Outbreak

An SIR Example: Herd Immunity

$$\frac{d}{dt}S = -cSI$$

$$\frac{d}{dt}I = cSI - \frac{1}{\tau}$$

$$\frac{d}{dt}R = \frac{1}{\tau}I$$

The SIR Model

$$\frac{d}{dt}S = -cSI$$

$$\frac{d}{dt}I = cSI - \frac{1}{\tau}I$$

$$\frac{d}{dt}R = \frac{1}{\tau}I$$

After Some Math Magic:

The Basic Reproductive Number is given $R_0 = c\tau$.

The SIR Model

$$\frac{d}{dt}S = -cSI$$

$$\frac{d}{dt}I = cSI - \frac{1}{\tau}I$$

$$\frac{d}{dt}R = \frac{1}{\tau}I$$

After Some Math Magic:

The Basic Reproductive Number is given $R_0 = c\tau$.

If $R_0 < \frac{1}{S(0)}$, then $\frac{d}{dt}I(0) < 0$, so we avoid a pandemic.

If $R_0 > \frac{1}{S(0)}$, then $\frac{d}{dt}I(0) > 0$, so we have a bad time.

Pros:

 Easily adapted to many different situations.

Pros:

- Easily adapted to many different situations.
- Computationally inexpensive.

Pros:

- Easily adapted to many different situations.
- Computationally inexpensive.
- Mathematical framework provides strong analysis.

Pros:

- Easily adapted to many different situations.
- Computationally inexpensive.
- Mathematical framework provides strong analysis.

Cons:

The Mass Action mixing assumptions.

Pros:

- Easily adapted to many different situations.
- Computationally inexpensive.
- Mathematical framework provides strong analysis.

Cons:

- The Mass Action mixing assumptions.
- Probabilities assumed to be exponential.

Pros:

- Easily adapted to many different situations.
- Computationally inexpensive.
- Mathematical framework provides strong analysis.

Cons:

- The Mass Action mixing assumptions.
- Probabilities assumed to be exponential.
- Focus on the whole, not the individual

Images used:

- Landscape: http://abstrusegoose.com/211
- Airplane: http://upload.wikimedia.org/wikipedia/commons/thumb/ 3/34/DieCastModelsWIKI1.jpg/220px-DieCastModelsWIKI1.jpg
- Nagumo Circuit: http://www.scholarpedia.org/article/FitzHugh-Nagumo_model
- Animated Excitation Block: http://www.scholarpedia.org/ w/images/4/43/FitzHugh_block.gif
- Fast Depolarization: http://www.scholarpedia.org/ w/images/3/30/FitzHugh_accommodation.gif

YOU!

Thanks for having me!

Thanks for coming!