

X3J3 DDR Tuning Guide

V1.0 2021-01

Copyright© 2021 Horizon Robotics

All rights Reserved

Important Notice and Disclaimer

Information in this document is provided solely to enable system and software implementers to use Horizon products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

All statements, information and recommendations in this document are provided "AS IS". Horizon makes no warranty, representation or guarantee of any kind, express or implied, regarding the merchantability, fitness or suitability of its products for any particular purpose, and non-infringement of any third party intellectual property rights, nor does Horizon assume any liability arising out of the application or use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

"Typical" parameters that may be provided in Horizon datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Buyers and others who are developing systems that incorporate Horizon products (collectively, "Users") understand and agree that Users shall remain responsible for using independent analysis, evaluation and judgment in designing their applications and that Users have full and exclusive responsibility to assure the safety of Users' applications and compliance of their applications (and of all Horizon products used in or for Users' applications) with all applicable regulations, laws and other applicable requirements.

User agrees to fully indemnify Horizon and its representatives against any claims, damages, costs, losses and/or liabilities arising out of User's unauthorized application of Horizon products and non-compliance with any terms of this notice.

© 2021 Horizon Robotics. All rights reserved.

Horizon Robotics, Inc.

https://www.horizon.ai

Index

IM	IPOR'	TANT NOTICE AND DISCLAIMER	
IN	DEX.		3
1		RSION	
2	INT	FRODUCTION	
	2.1	OBJECTIVE	
	2.2	SUGGESTION FOR READERS	
	2.3	TERMS AND ABBREVIATION	
	2.4	RELEVANT MANUALS	
3	PC	B BOARD LEVEL CHECK LIST	, , , , , , , , , , , , , , , , , , ,
4	SH	ORT LIST OF RECOMMENDED LPDDR/DDR CHIPS	9
5	INT	TRODUCTION OF IMPEDANCE REGISTERS	11
	5.1	DDR PHY	11
	5.2	DDR TRAINING FIRMWARE DMEM SETTINGS	12
6	DE	FINITION OF IMPEDANCE REGISTERS	13
	6.1	DDR PHY REGISTERS	13
	6.1.1	ATxSlewRate	13
	6.1.2	ATXIMPEDANCE	14
	6.1.3	TxSlewRate	15
	6.1.4	TxOdtDrvStren	16
	6.1.5	TxImpedanceCtrl1	
	6.2	DDR TRAINING FIRMWARE DMEM SETTINGS	18
	1	Mode Register 1 (MR1)	18
	2	Mode Register 2 (MR2)	20
	3	Mode Register 5 (MR5)	22
	4	Mode Register 3 (MR3)	24
	5	Mode Register 11 (MR11)	25
	6	Mode Register 22 (MR22)	20
7	TR	OUBLE SHOOTING OF BRINGING UP A NEW BOARD	27
	7.1	INTRODUCTION OF DDR 1D/2D TRAINING	27
	7.2	DEBUG FLOW CHART	27
	7.3	DETAILED DEBUG STEPS DESCRIPTION	28

1 Version

Version Number	Change List	Author	Date
0.1	Draft Version	Jeff.Chu	2020/12/27
0.2	Add trouble shooting and debug flow	Jeff.Chu	2020/12/28
0.3	Refine architecture of document	Jeff.Chu	2021/1/7
	Add Introduction of this document and the registers		
0.4	Add CH2, 3, 4, and introduction of CH6	Jeff.Chu	2021/1/11
0.5	Refine Ch2, 3, 4, 5 with Andrew's suggestion	Jeff.Chu	2021/1/15
0.6	Refine text description	Christine.Yang	2021/1/19
0.7	1. Add 1D/2D intro	Jeff.Chu	2021/1/21
	2. remove [The definition of each bit]		
	3. remove "blue part"		
	4. remove "CVB"		
	5. fixed X3_01C_PDN_Sim report link error		
	6. Add PCB vendor 牧泰莱/万龙精益 English name		
0.8	1. remove PDN report	Jeff.Chu	2021/1/21
	2. Add suggestion of PDN simulation		
1.0	1 st Version Released	Jeff.Chu	2021/1/23

2 Introduction

2.1 Objective

This DDR tuning guide provides the tuning guidelines and detailed definitions of DDR impedance registers. Following steps describe the DDR tuning guidelines:

- A. Customers are encouraged to follow the PCB board level check list (described in Chapter 3) to avoid the discrepancies in the PCB design.
- B. Customers are encouraged to use the memory components in the short list of recommended LPDDR/DDR chips (described in Chapter 4).
- C. If both conditions could be met, the customers would have their PCB board up and running quickly by using the default DDR Register Settings provided by Horizon Robotics.
- D. If customers want to fine tune DDR setting further, they could change DDR impedance register setting based on the following descriptions in this document.

2.2 Suggestion for Readers

If the user is familiar with DDR design, the user could try to change DDR impedance registers by themselves based on the default settings released by Horizon Robotics

2.3 Terms and Abbreviation

Abbreviation	Description
DDR	Double Data Rate SDRAM
LPDDR	Low Power Double Data Rate SDRAM
PHY	Physical (Port Physical Layer)
MR	Mode Register
ODT	On-Die-Termination

2.4 Relevant Manuals

1. AN-EN-2521-10-A-X3J3 Introduction to DDR partition and customized modification.docx

3 PCB Board Level Check List

Below is the PCB board level check list which provides the guidelines to customer's PCB design. The customers are encouraged to follow the PCB board level check list as these guidelines are verified by Horizon Robotics engineering team. The discrepancies of the PCB board level check list would increase the risk of DDR malfunctions. Under such circumstances, further customer support might be needed per the request. The customer's PCB board check list needs to be provided to Horizon Robotics prior to the call for customer support.

The SIPI simulation is essential to DDR4/LPDDR4 high speed design, the customers are encouraged to run the corresponding simulations prior to the PCB fabrication.

X3/J3 SOM	J3_02A	X3_01C	Customer Board
Board ID	2A-DV-SM-02A	2A-DV-SM-01C	
Base Material – part number	TU862	IT-180	
Base Material – DK value	3.71	4.3	
Base Material - DF value (1GHz)	0.013	0.0142	
Base Material - DF value (5GHz)	0.014	0.0154	
Base Material - DF value (10GHz)	0.015	0.0163	
DDR Line impedance	50ohm	50ohm	
DDR Line impedance tolerance	+/-10%	+/-10%	
PCB Layers	8	8	
PCB Vendor	兴森 / 牧泰莱 (MULTILAYER)	万龙精益 (WANLONGJINGYI)	
PCB DQ layout	0x2,0x1,0x7,0x0,0x5,0x3,0x4,0x6, 0x3,0x6,0x7,0x5,0x0,0x4,0x1,0x2, 0x4,0x0,0x1,0x2,0x7,0x3,0x6,0x5, 0x3,0x7,0x2,0x6,0x0,0x4,0x5,0x1,	0x2,0x1,0x7,0x0,0x5,0x3,0x4,0x6, 0x3,0x6,0x7,0x5,0x0,0x4,0x1,0x2, 0x4,0x0,0x1,0x2,0x7,0x3,0x6,0x5, 0x3,0x7,0x2,0x6,0x0,0x4,0x5,0x1,	
VAA power-up ramp rate (mV/us)	18.91mV/us	25.91mV/us	
VAA Power Management IC (for reference)	SPF5024AMMAMES	AXP15060 CLDO01	
VDDQ Resistor value	120	120	

VDDQ power-up ramp rate (mV/us)	14.81mV/us	1.39mV/us	
VDDQ Power Management IC (for reference)	MPQ2166GD-AEC1-Z	AXP15060 DCDC05	
VDDQ/VDDQLP Merge	No Power Merge	Power Merge	
Power Adapter	12V, 3A	12V, 3A	

4 Short list of recommended LPDDR/DDR chips

Below is the short list of recommended LPDDR/DDR chips which have been verified by Horizon Robotics engineering team. The customers are encouraged to use the memory components in the short list as well as to follow the PCB board level check list. If both conditions could be met, the customers would have their PCB board up and running quickly by using the default DDR Register Settings provided by Horizon Robotics.

LPDDR4:

Index	Vendor	Part Number	Data Rate	Operating Temperature	PCB Board
1	Micron	MT53D1024M32D4DT- 046AAT	2666	-40 ~ 105°C	(2A-CV-BB-01)
2	Micron	MT53E1G32D2FW- 046AUT:A	3200	-40 ~ 125°C	(2A-CV-BB-01)
4	Hynix	H9HCNNNBKUMLHR-	2666	-40 ∼ 105°C	(2A-DV-SM-02A)
		NEO (H54G46BYYQX053)	3200		
5	Hynix	H9HCNNN4KUMLHR- NMI	2666	-40 ~ 95°C	(2A-DV-SM-01A)
6	Samsung	K4F8E304HB-MGCJ	3200	-25 ~ 85°C	(2A-DV-SM-01A)
			3600		
7	Samsung	K4F6E3S4HM-MGCJ	3600	-25 ~ 85°C	(2A-DV-SM-01A)

DDR:

Index	Vendor	Part Number	Data Rate	Operating Temperautre	PCB Board
1	Micron	MT40A256M16LY- 062E AIT	3200	-40 ~ 95°C	(X3-DV-SM-V02)
2	Samsung	K4A8G165WC- BCTD	2666	0 ~ 95°C	(X3-DV-SM-V02)
3	Samsung	K4A4G165WF	2666	-10 ~ 70°C	(X3-DV-SM-V02)

5 Introduction of impedance registers

The DDR PHY has registers that are used to configure, control or provide status of certain features of the PHY. The user accesses these registers using the configuration port write and read commands. The following sections describe PHY impedance registers.

5.1 DDR PHY

Item	Register name	Description
1	A Try Classy Data	Set along gots of address/someond/monally drivers
1	ATxSlewRate	Set slew rates of address/command/memclk drivers
2	ATxImpedance	Set Tx impedance of Address driver cells
3	TxSlewRate	Set slew rates of the DQ/DQS drivers per nibble
4	TxOdtDrvStren	Set impedance value for Host ODT
5	TxOdtDrvStren	Set Tx impedance of DQ driver cells

5.2 DDR training firmware DMEM settings

Item	DDR type	Register name	Description		
1	DDR4	MR1	The major impedance related bits of this register are bit 0,		
			means DLL enable bit, bit 1, 2, meam Output driver		
			impedance (ODI), and bit 8, 9, 10, mean Nominal		
			$ODT(R_{TT(NOM)}).$		
2		MR2	The major impedance related bits of this register are bit 3, 4,		
			5, mean CWL(CAS Write Latency), and bit 9, 10, 11, mean		
			Dynamic ODT(R _{TT(WR)}).		
3		MR5	The major impedance related bits of this register are bit 6, 7,		
			8, mean Parked ODT value (R _{TT(Park)}).		
4	LPDDR4	MR3	The major impedance related bits of this register are bit 0,		
			means PU-CAL (Pull-up calibration point), and bit 3, 4, 5,		
			mean PDDS (Pull-down drive strength).		
5		MR11	The major impedance related bits of this register are bit 0, 1,		
			2, mean DQ ODT, and bit 4, 5, 6, mean CA ODT.		
6		MR22	The major impedance related bits of this register are bit 0, 1,		
			2, mean SOC ODT (controller ODT value for VOH		
			calibration), and bit 4, ODTE-CS (CS ODT enabled for non-		
			terminating rank).		

6 Definition of impedance registers

6.1 DDR PHY registers

DDR PHY (Major IO) register has only 16 bits

6.1.1 ATxSlewRate

Bits	Name	Description	Access	Default
[3:0]	ATxPreP	4 bit binary trim for the driver pull up slew rate. 4'b0000 has a slower slew rate than 4'b1111	R/W	0xf
[7:4]	ATxPreN	4 bit binary trim for the driver pull down slew rate. 4'b0000 has a slower slew rate than 4'b1111	R/W	0xf
[10:8]	ATxPreDrvMode	Controls predrivers to adjust timing of turn-on and turn-off of pull-up and pull-down segments. - Recommended settings if the ANIB drives CK pins: DDR4 = 3'b000 LPDDR4 = 3'b001 - Recommended settings if the ANIB does not drive CK pins: DDR4 = 3'b011 LPDDR4 = 3'b001	R/W	0x7
[15:11]	Unimplemented	Returns zero on reads	R	0x0

6.1.2 AtxImpedance

Bits	Name	Description	Access	Default
[4:0]	ADrvStrenP	5 bit bus used to select the target pull up output impedance. Refer to Technology specific PHY Databook for supported options Connects to the DrvStren pins of the driver. 110_xx = Non-linear pull-up to VDDQLP for the following modes: LPDDR4x into 120R DRAM termination. LPDDR4 low- power drive into 240R DRAM termination at VOH=VDDQ/2.5 [1]. LPDDR4 low- power drive into 120R DRAM termination at VOH=VDDQ*35% [1] 100_xx = Non-linear pull-up to VDDQLP for the following modes: LPDDR4x into 60R DRAM termination. LPDDR4 low- power drive into 120R DRAM termination at VOH=VDDQ/2.5 [1]. LPDDR4 low- power drive into 60R DRAM termination at VOH=VDDQ*35% [1] 000_xx = Non-linear pull-up to VDDQLP for the following modes: LPDDR4x into 40R DRAM termination. LPDDR4 low-power into 80R DRAM termination at VOH=VDDQ/2.5 [LPDDR4 low-power into 80R DRAM termination at VOH=VDDQ/2.5 [LPDDR4 low-power into 40R DRAM termination at VOH=VDDQ*35% [1] - 111_00 = 120R linear pull-up connected to VDDQ (DDR4, LPDDR4)	R/W	0x1f
[9:5]	ADrvStrenN	This 5- bit bus is used to select the target pull down output impedance. Refer to chnology specific PHY Databook for supported options. Connects to the DrvStren pins of the driver. xxx_00 = 120R pull-down (DDR4, LPDDR4/LPDDR4x)	R/W	0x1f
[15:10]	Unimplemented	Returns zero on reads	R	0x0

6.1.3 TxSlewRate

Bits	Name	Description	Access	Default
[3:0]	TxPreP	4 bit binary trim for the driver pull up slew rate. 4'b0000 has a slower slew rate than 4'b1111	R/W	0xf
[7:4]	TxPreN	4 bit binary trim for the driver pull down slew rate. 4'b0000 has a slower slew rate than 4'b1111	R/W	0xf
[10:8]	TxPreDrvMode	Controls predrivers to adjust timing of turn-on and turn-off of pull-up and pull-down segments. Recommended settings: - DDR4 = 3'b010. - LPDDR4 = 3'b001. - LPDDR4X = 3'b101.	R/W	0x7
[15:11]	Unimplemented	Returns zero on reads	R	0x0

6.1.4 TxOdtDrvStren

Bits	Name	Description Access		Default
[5:0]	ODTStrenP	Selects the ODT pull-up impedance. Refer to Technology specific PHY Databook for supported options - 000_000 = HiZ - 001_000 = 120R pull-up connected to VDDQ (DDR4) - 011_000 = 60R pull-up connected to VDDQ (DDR4) - 111_000 = 40R pull-up connected to VDDQ (DDR4) Note: if any pull- up connected to VDDQLP is enabled, ODTStrenP value is ignored and a		0x00
[11:6]	ODTStrenN	Selects the ODT pull-down impedance. Refer to Technology specific PHY Databook for supported options - 000_000 = HiZ - 001_000 = 120R pull-down (LPDDR4/LPDDR4x) - 011_000 = 60R pull-down (LPDDR4/LPDDR4x) - 111_000 = 40R pull-down (LPDDR4/LPDDR4x)		0x00
[15:12]	Unimplemented	Returns zero on reads	R	0x0

6.1.5 TxImpedanceCtrl1

Bits	Name	Description	Access	Default
[5:0]	DrvStrenFSDqP	Refer to Technology specific PHY Databook for supported options. 6 bit bus used to select the target pull up output impedance. Connects to the DrvStren pins of the driver. xxx_110 = Non-linear pull-up to VDDQLP for the following modes: LPDDR4x into 120R DRAM termination. LPDDR4 low power drive into 240R DRAM termination at VOH=VDDQ/2.5 [1]. LPDDR4 low power drive into 120R DRAM termination at VOH=VDDQ*35% [1] xxx_100 = Non-linear pull-up to VDDQLP for the following modes: LPDDR4x into 60R DRAM termination. LPDDR4 low- power drive into 120R DRAM termination at VOH=VDDQ/2.5 [1]. LPDDR4 low- power drive into 60R DRAM termination at VOH=VDDQ*35% [1] xxx_000 = Non-linear pull-up to VDDQLP for the following modes: LPDDR4x into 40R DRAM termination. LPDDR4 low- power into 80R DRAM termination at VOH=VDDQ/2.5 [1]. LPDDR4 low- power into 80R DRAM termination at VOH=VDDQ/2.5 [1]. LPDDR4 low- power into 40R DRAM termination at VOH=VDDQ/35% [1] 000_111 = HiZ - 001_111 = 120R linear pull-up connected to VDDQ (DDR4, LPDDR	R/W	0x3f
[11:6]	DrvStrenFSDqN	Refer to Technology specific PHY Databook for supported options. This 6-bit bus is used to select the target pull down output impedance. Connects to the DrvStren pins of the driver. 000_xxx = HiZ 001_xxx = 120R pull-down (DDR4, LPDDR4/LPDDR4x) 011_xxx = 60R pull-down (DDR4, LPDDR4/LPDDR4x) 111_xxx = 40R pull-down (DDR4, LPDDR4/LPDDR4x)	R/W	0x3f
[15:12]	Unimplemented	Returns zero on reads	R	0x0

6.2 DDR training firmware DMEM settings

DDR chips: Mode Register.

1 Mode Register 1 (MR1)

Mode			
Register	Description		
21	RFU		
	0 = Must be programmed to 0		
	1 = Reserved		
20:18	MR select		
	000 = MR0		
	001 = MR1		
	010 = MR2		
	011 = MR3		
	100 = MR4		
	101 = MR5		
	110 = MR6		
	111 = DNU		
17	N/A on 4Gb and 8Gb, RFU		
	0 = Must be programmed to 0		
	1 = Reserved		
12	Data output disable (Qoff) – Output buffer disable		
	0 = Enabled (normal operation)		
	1 = Disabled (both ODI and RTT)		
11	Termination data strobe (TDQS) – Additional termination pins (x8 configuration only)		
	0 = TDQS disabled		
	1 = TDQS enabled		
10, 9, 8	Nominal ODT (RTT(NOM) – Data bus termination setting		
	000 = RTT(NOM) disabled		
	001 = RZQ/4 (60 ohm)		
	010 = RZQ/2 (120 ohm)		
	011 = RZQ/6 (40 ohm)		
	100 = RZQ/1 (240 ohm)		
	101 = RZQ/5 (48 ohm)		
	110 = RZQ/3 (80 ohm)		
7	111 = RZQ/7 (34 ohm)		
7	Write leveling (WL) – Write leveling mode		
	0 = Disabled (normal operation) 1 = Enabled (enter WL mode)		
	1 – Enabled (enter w.L. mode)		

<u> </u>	入口(以中 1: 1:0				
13, 6, 5	Rx CTLE Control				
	000 = Vendor Default				
	001 = Vendor Defined				
	010 = Vendor Defined				
	011 = Vendor Defined				
	100 = Vendor Defined				
	101 = Vendor Defined				
	110 = Vendor Defined				
	111 = Vendor Defined				
4, 3	Additive latency (AL) - Command additive latency setting				
	00 = 0 (AL disabled)				
	$01 = CL - 1^{-1}$				
	10 = CL - 2				
	11 = Reserved				
2, 1	Output driver impedance (ODI) – Output driver impedance setting				
	00 = RZQ/7 (34 ohm)				
	01 = RZQ/5 (48 ohm)				
	10 = Reserved (Although not JEDEC-defined and not tested, this setting will provide RZQ/6 or 40 ohm)				
	11 = Reserved				
0	DLL enable – DLL enable feature				
	0 = DLL disabled				
	1 = DLL enabled (normal operation)				

2 Mode Register 2 (MR2)

Mode			
Register	Description		
11:9	Dynamic ODT (RTT(WR)) – Data bus termination setting during WRITEs		
	000 = RTT(WR) disabled (WRITE does not affect RTT value)		
	001 = RZQ/2 (120 ohm)		
	010 = RZQ/1 (240 ohm)		
	011 = High-Z		
	100 = RZQ/3 (80 ohm)		
	101 = Reserved		
	110 = Reserved		
	111 = Reserved		
7:6	Low-power auto self refresh (LPASR) – Mode summary		
	$00 = \text{Manual mode} - \text{Normal operating temperature range (TC: } -40^{\circ}\text{C} - 85^{\circ}\text{C})$		
	01 = Manual mode - Reduced operating temperature range (TC: -40 °C -45 °C)		
	10 = Manual mode - Extended operating temperature range (TC: -40°C-125°C)		
	11 = ASR mode - Automatically switching among all modes		
5:3	CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in		
	1 ^t CK WRITE preamble		
	$\frac{000}{1} = 9 \text{ (DDR4-1600)}^{1}$		
	001 = 10 (DDR4-1866)		
	$010 = 11 \text{ (DDR4-2133/1600)}^{1}$		
	011 = 12 (DDR4-2400/1866)		
	100 = 14 (DDR4-2666/2133)		
	101 = 16 (DDR4-2933,3200/2400)		
	110 = 18 (DDR4-2666)		
	111 = 20 (DDR4-2933, 3200)		
	CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in		
	2 ^t CK WRITE preamble		
	000 = N/A		
	001 = N/A		
	010 = N/A		
	011 = N/A		
	100 = 14 (DDR4-2400)		
	101 = 16 (DDR4-2666/2400)		
	110 = 18 (DDR4-2933, 3200/2666)		
	111 = 20 (DDR4-2933, 3200)		
8, 2	RFU		
	0 = Must be programmed to 0		
	1 = Reserved		
1:0	RFU		

0 = Must be programmed to 0

1 = Reserved

3 Mode Register 5 (MR5)

Mode			
Register	Description		
21	RFU		
	0 = Must be programmed to 0		
	1 = Reserved		
20:18	MR select		
	000 = MR0		
	001 = MR1		
	010 = MR2		
	011 = MR3		
	100 = MR4		
	101 = MR5		
	110 = MR6		
	111 = DNU		
17	N/A on 4Gb and 8Gb, RFU		
	0 = Must be programmed to 0		
	1 = Reserved		
13	RFU		
	0 = Must be programmed to 0		
	1 = Reserved		
12	Data bus inversion (DBI) – READ DBI enable		
	0 = Disabled		
	1 = Enabled		
11	Data bus inversion (DBI) – WRITE DBI enable		
	0 = Disabled		
	1 = Enabled		
10	Data mask (DM)		
	0 = Disabled		
	1 = Enabled		
9	CA parity persistent error mode		
	0 = Disabled		
	1 = Enabled		
8:6	Parked ODT value (RTT(Park))		
	000 = RTT(Park) disabled		
	001 = RZQ/4 (60 ohm)		
	010 = RZQ/2 (120 ohm)		
	011 = RZQ/6 (40 ohm)		
	100 = RZQ/1 (240 ohm)		
	101 = RZQ/5 (48 ohm)		
	110 = RZQ/3 (80 ohm)		
	111 = RZQ/7 (34 ohm)		

	入口版个 3. 1.0
5	ODT input buffer for power-down
	0 = Buffer enabled
	1 = Buffer disabled
4	CA parity error status
	0 = Clear
	1 = Error
3	CRC error status
	0 = Clear
	1 = Error
2:0	CA parity latency mode
	000 = Disable
	001 = 4 clocks (DDR4-1600/1866/2133)
	010 = 5 clocks (DDR4-2400/2666)
	011 = 6 clocks (DDR4-2933/3200)
	100 = Reserved
	101 = Reserved
	110 = Reserved
	111 = Reserved
	·

4 Mode Register 3 (MR3)

Feature	OP	Definition
		0b: V _{DDQ} × 0.6
PU-CAL (Pull-up calibration point)	OP[0]	1b: VDDQ × 0.5 (default)
		0b: WR postamble = $0.5 \times {}^{t}CK$ (default)
WR-PST(WR postamble length)	OP[1]	1b: WR postamble = $1.5 \times {}^{t}CK$
PPRP		0b: PPR protection disabled (default)
(Post-package repair protection)	OP[2]	1b: PPR protection enabled
		000b: RFU
		001b: RZQ/1
		010b: RZQ/2
		011b: RZQ/3
		100b: RZQ/4
		101b: RZQ/5
		110b: RZQ/6 (default)
PDDS (Pull-down drive strength)	OP[5:3]	111b: Reserved
		0b: Disabled (default)
DBI-RD (DBI-read enable)	OP[6]	1b: Enabled
		0b: Disabled (default)
DBI-WR(DBI-write enable)	OP[7]	1b: Enabled

5 Mode Register 11 (MR11)

Feature	OP	Definition
		000b: Disable (default)
		001b: RZQ/1
		010b: RZQ/2
		011b: RZQ/3
		100b: RZQ/4
		101b: RZQ/5
DQ ODT		110b: RZQ/6
DQ bus receiver on-die termination	OP[2:0]	111b: RFU
		000b: Disable (default)
		001b: RZQ/1
		010b: RZQ/2
		011b: RZQ/3
		100b: RZQ/4
		101b: RZQ/5
CA ODT		110b: RZQ/6
CA bus receiver on-die termination	OP[6:4]	111b: RFU

6 Mode Register 22 (MR22)

Function	OP	Data
SOC ODT (controller ODT	OP[2:0]	000b: Disable (default)
value for VOH calibration)		001b: RZQ/1 (Illegal if MR3 OP[0] = 0b)
		010b: RZQ/2
		011b: RZQ/3 (Illegal if MR3 OP[0] = 0b)
		100b: RZQ/4
		101b: RZQ/5 (Illegal if MR3 OP[0] = 0b)
		110b: RZQ/6 (Illegal if MR3 OP[0] = 0b)
		111b: RFU
ODTE-CK (CK ODT enabled	OP[3]	ODT bond PAD is ignored
for non-terminating rank)		0b: ODT-CK enable (default)
		1b: ODT-CK disable
ODTE-CS (CS ODT enabled	OP[4]	ODT bond PAD is ignored
for non-terminating rank)		0b: ODT-CS enable (default)
		1b: ODT-CS disable
ODTD-CA (CA ODT termina-	OP[5]	ODT bond PAD is ignored
tion disable)		0b: CA ODT enable (default)
		1b: CA ODT disable
ODTD for x8_2ch (Byte)	OP[7:6]	See Byte Mode section
mode		

7 Trouble shooting of bringing up a new board

7.1 Introduction of DDR 1D/2D training

One dimensional training, or 1D training, is a group of training stages that optimize a system's delays at a set of user-provided reference voltages.

Two-dimensional training, or 2D training, is a group of training stages that can be run after 1D training to further refine the system's pstate 0 delay and voltage settings.

7.2 Debug flow chart

When bring up a board, you can check the correctness in following green rectangle based on the phenomenon (orange diamond) you encountered.

7.3 Detailed Debug steps description

The following table lists a detailed description of what to check.

Failed	Failed Phenomenon	Items to be check	Detail Descriptions
Step			
	1D training fail	(a) Check the default DDR parameters	Check if use correct default DDR parameters from Horizon Robots' suggestion
1		(b) Check the rank number of used DDR chip	Rank number=1, CsPresentChA & CsPresentChB of dmem setting is 0x1. Rank number=2, CsPresentChA & CsPresentChB of dmem setting is 0x3.
		(c) Check the correctness of Dqmap	Check the correctness of Dqmap connection in the schematic
2	2D training fail	(d) Check if the DQ line impedance is 50 ohm or lower	If the DQ line impedance is not 50 ohm, pls. refer to the DDR tuning guide to fine tune the registers corresponding to the changed impedance on the PCB
3	unable to boot up in kernel	(e) check the correctness of resistors, capacitors and clock	check the value and polarity of the resistors, capacitors and clock on the PCB board (LPDDR component area)
4	stressapptest room temperature 24 Hours fail	(f) check the value of capacitors	the value of the capacitors should follow the PDN simulation result if the suggested PCB schematic design is changed
5	stressapptest 5 pcs room temperature 48 Hour fail	(g) check the soldering of the resistors and capacitors	check if the resistors or capacitors on the PCB have solder empty, solder short or cold soldering. Also make sure there is no component shifted or missed.
6	stressapptest 5 pcs high temperature 48 Hour fail	temperature range of	when the testing temperature is out of the DDR/LPDDR memory specification, the test will fail
7	stressapptest 5 pcs low temperature 48 Hour fail	(I) check the operating temperature range of DDR/LPDDR memory spec.	when the testing temperature is out of the DDR/LPDDR memory specification, the test will fail