Assignment # 2

Knowledge Representation and Processing

April 16, 2021

Note: Assignment#2, due on 14:00 May 4, contributes to 10% of the total mark of the course.

Q1. Recall the syntax of the Description Logics \mathcal{EL} , DL-Lite and \mathcal{ALC} . Suppose Teacher and Course are concept names and teaches is a role name. Let \mathcal{E} be any of the following expressions:

(a)	$\top \sqsubseteq \bot$
(b)	\exists teaches.Course \sqsubseteq Teacher
(c)	∀teaches.Course
(d)	∃Course.teaches
(e)	$\exists teaches^ \top \sqsubseteq Teacher \sqcup School$
(f)	Teacher $\sqsubseteq \exists teaches. \top$
(g)	Teacher $\sqsubseteq \exists teaches. \bot$
(h)	$\geq 3 \text{ teaches.} \top \sqsubseteq \text{Teacher}$
(i)	\geq 4 teaches.Course \sqsubseteq Teacher
(j)	$\forall teaches. \top \sqsubseteq \exists teaches. Course$
(k)	$\exists teaches. \top \sqsubseteq \geq 2 \; teaches. \top$
(l)	\geq 2 teaches. \top \sqsubseteq \exists teaches. \top
•	Translate ${\mathcal E}$ into natural languages
•	State whether it is;

- an \mathcal{EL} concept;
- an \mathcal{EL} concept inclusion;
- a DL-Lite concept;
- a DL-Lite concept inclusion;

- an \mathcal{ALC} concept;
- an \mathcal{ALC} concept inclusion;
- none of the above.
- If \mathcal{E} is a concept inclusion, check whether \mathcal{E} follows from the empty TBox (i.e., $\emptyset \models \mathcal{E}$). If this is not the case, define an interpretation \mathcal{I} such that $\mathcal{I} \not\models \mathcal{E}$.
- If \mathcal{E} is a concept, check whether \mathcal{E} is satisfiable. If this is the case, define an interpretation \mathcal{I} such that $\mathcal{E}^{\mathcal{I}} \neq \emptyset$.

Q2. Create an \mathcal{EL} TBox \mathcal{T} that models the following facts:

- (a) Mammals are animals.
- (b) Lions are mammals that are carnivores.
- (c) Giraffe are mammals that are herbivores.
- (d) Carnivores eat meat.
- (e) A vertebrate is any animal that has, amongst other things, a backbone.

Is the following \mathcal{EL} -TBox an \mathcal{EL} -terminology? Explain your answer. Express each concept inclusion in natural language:

- (a) Lion \sqsubseteq Animal $\sqcap \exists$ lives. Savannah
- (b) ∃eat.Meat

 Carnivore
- (c) Bird \equiv Vertebrate $\sqcap \exists$ has_part.Wing $\sqcap \exists$ has_part.Leg $\sqcap \exists$ lays.Egg
- $(\mathrm{d}) \ \ \text{Reptile} \sqsubseteq \text{Vertebrate} \sqcap \exists \text{lays.Egg}$
- Q3. Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be an interpretation, where

$$\Delta^{\mathcal{I}} = \{1, 2, 3, 4, 5, 6\}$$

$$A^{\mathcal{I}} = \{1, 2\}$$

$$B^{\mathcal{I}} = \{3, 4, 5, 6\}$$

$$r^{\mathcal{I}} = \{(1, 3), (1, 5), (2, 6)\}$$

Determine the extension of $C^{\mathcal{I}}$ of the following \mathcal{EL} -concepts C under \mathcal{I} :

- \bullet $A \sqcap B$
- $\exists r.B$
- $\exists r.(A \sqcap B)$
- T

• $A \sqcap \exists r.B$

Which of the following are true?

- $\mathcal{I} \models A \equiv \exists r.B$
- $\mathcal{I} \models A \sqcap B \sqsubseteq \top$
- $\mathcal{I} \models \exists r. A \sqsubseteq A \cap B$
- $\mathcal{I} \models \top \sqsubseteq B$
- $\mathcal{I} \models B \sqsubseteq \exists r.A$

Q4. Let $\mathcal{T} = \{ \text{Parent} \sqsubseteq \exists \text{hasChild.Person}, \text{Mother} \sqsubseteq \text{Parent} \}$. Show that $\mathcal{T} \not\models \text{Parent} \sqsubseteq \text{Mother}$ by giving an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \not\models \text{Parent} \sqsubseteq \text{Mother}$.

Q5. Let \mathcal{T} be an \mathcal{EL} -TBox containing the following (primitive) concept definitions:

Bird ≡ Vertebrate □ ∃has_part.Wing

Reptile

□ Vertebrate

□ ∃lays.Egg

- (a) Is \mathcal{T} in normal form? Explain.
- (b) Given \mathcal{T} , compute an \mathcal{EL} -TBox \mathcal{T}' in normal form using the pre-processing algorithm from the lecture.
- (c) Apply the algorithm from the lecture slides deciding whether $A \sqsubseteq_{\mathcal{T}'} B$ (equivalently $\mathcal{T}' \models A \sqsubseteq B$), where A, B are concept names. Using the normalized TBox \mathcal{T}' as input and explain step-by-step which rules are applied.
- (d) Using the output of the algorithm, decide whether
 - Reptile $\sqsubseteq_{\mathcal{T}'}$ Vertebrate
 - Vertebrate $\sqsubseteq_{\mathcal{T}'}$ Bird

Q6. Let \mathcal{T} be an \mathcal{EL} -TBox containing the following concept inclusions:

$$A \sqsubseteq X$$

$$A \sqsubseteq Y$$

$$B \sqsubseteq B'$$

$$X \sqcap Y \sqsubseteq \exists r.B$$

$$\exists r.B' \sqsubseteq A'$$

(a) Is \mathcal{T} in normal form?

- (b) Using the output of the algorithm, decide whether
 - $\bullet \ A \sqsubseteq_{\mathcal{T}} Z$
 - $B \sqsubseteq_{\mathcal{T}} Z$
 - $\bullet \ X \sqsubseteq_{\mathcal{T}} Y$
 - $\bullet \ A \sqsubseteq_{\mathcal{T}} A'$
 - $B \sqsubseteq_{\mathcal{T}} B'$
- Q7. Show that every \mathcal{EL} -TBox is satisfiable (consistent). That is, show that for every \mathcal{EL} -TBox \mathcal{T} there exists an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$.