

Sync. Rectifier Step Up Converter

Features

- Up to 90% Efficiency at lout=2A V_{OUT} = 5V from 3.3V Input
- Low 70µA Quiescent Current
- Guaranteed 3A Output Current at V_{OUT} = 5V from 3.3V Input
- 500KHz PWM Switching Frequency
- Synchronous and Embedded Power Mosfets;No Schottky Diode Required
- Internal Soft-Start to Limit Inrush Current
- Adjustable Output
- Output turn off true shutdown function
- Current Mode Operation with Internal Compensation for Excellent Line and Load Transient Response
- Overload/Short-Circuit Protection with hiccup control
- Shutdown Current <1µA
- Thermal Shutdown
- Compact 8 pin,SOP8 (FD) package

Application

iPad-like computers, smart phones and portable handheld devices.

General Description

The G5177C is a compact, high-efficiency, synchronous step-up converter with power Mosfets embedded and with output turn off true shutdown function and adjustable output current limiting with foldback for a single-cell Li-ion/polymer battery. The G5177C uses only 70µA (typ) quiescent current and allows the converter to switch only when needed at no load and light loads, and when load is higher than 100mA, it uses fixed-frequency PWM technique at 500KHz. It features a current mode control for fast transient response with internal compensation. The G5177C includes cycle-by-cycle current limit to maximum inductor current and over-temperature protection circuit. The G5177C is suitable for iPad-like computers, smart phones and portable handheld devices.

The G5177C is available in a SOP8 (FD) package. The operating temperature range is from -20°C to +85°C.

Ordering Information

ORDER	MARKING	TEMP.	PACKAGE	
NUMBER		RANGE	(Green)	
G5177CF11U	G5177C	-20°C to +85°C	SOP-8 (FD)	

Note: F1:SOP-8 (FD) 1: Bonding Code U: Tape & Reel

Pin Configuration

Company of the content of the con

Note: Recommend connecting the Thermal Pad to the Ground for excellent power dissipation.

Typical Application Circuit

VOUT=VREF*(1+R1/R2), where VREF typical is 1.23V.

Absolute Maximum Ratings

VOUT to GND0.3V to 6V	Thermal Resistance of Junction to Ambient (θ_{JA})
LX to GND	SOP-8 (FD)
ILIM0 to GND0.3V to 6V	Continuous Power Dissipation ($T_A = +25$ °C)
ILIM1 to GND0.3V to 6V	SOP-8 (FD)
FB to GND	Storage Temperature55~150°C
BAT to GND0.3V to 6V	Operation Temperature20~85°C

Electrical Characteristics

 $(V_{OUT} = 5V,\, V_{BAT} = 3.6V,\, L = 2.2 \mu H,\, C_{IN} = 47 \mu F,\, C_{OUT} = 68 \mu F,\, T_A = 25 ^{\circ}C)$

The device is not guaranteed to function outside its operating conditions. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
General						
Input operation voltage	V_{BAT}		2.5		4.5	V
Output voltage	Vour	Line and Load Regulation in CCM (IL>100mA) V _{BAT} =2.5~4.5	4.925	5	5.075	V
Input Quiescent current	I _{BAT}	V _{BAT} =3.6 FB=1.28 No load, no switching (exclude input current from ILM01)	1	50	70	μΑ
Shutdown supply current	I _{BAT}	(ILM01=0 in SOP-8)		0.1	1	μΑ
Oscillator&Protection						
Switching Frequency	Fosc		0.35	0.5	0.65	MHz
Soft-Start Interval	SS		4	5	6	ms
FB Regulation Voltage	V_{FB}		1.208	1.227	1.246	V
FB Input Current	I _{FB}	FB=1.0V			100	nA
T_scp_restart	Restart time in SCP			140		ms
short-Circuit Response Time	T_short_response	$V_{OUT} < V_{OUT} X25\%$,		Tosc		μs
Current Limit Response Time	T_oc_response			Tosc		μs
Maximum Duty Cycle	D _{max}	FB=0.95V	90	94	97	%
DC-DC Switches						
VOUT Leakage Current	I _{PVOUT_LK}	(ILM01=0 in SOP-8) V _{OUT} =5V		1	5	μΑ
LX Leakage Current	I _{LX_LK}	(ILM01=0 in SOP-8) V _{OUT} =5V		1	5	μΑ
Switch ON Resistance	R _{on} -N			39	55	mΩ
SWILLIT ON RESISTANCE	R _{on} -P			42	60	1115.2
Peak Current Limit	I_LIM	ILM01=1	6.5			Α
Efficiency		ILM01=1 V _{BAT} =3V, V _{OUT} =5V, I _{OUT} =2A		87		%

Electrical Characteristics (Continued)

PARAMETER	SYMBOL	L CONDITIONS		TYP	MAX	UNITS
Protection Block	_			_		
VOUT Short-Circuit Threshold	V_{SCP}	Falling Edge		V _{OUT} *0.5		V
VOUT Short-Circuit Threshold	V_{SCP}	Ring Edge		V _{OUT} *0.9		V
VBAT UVLO Threshold	V_{UVLO}	Falling Edge	1.7	1.9	2.2	V
VBAT UVLO Threshold	V_{UVLO}	Rling Edge	1.9	2.2	2.5	V
Thermal Shutdown Threshold		Rising Edge, 20°C hysteresis		150		°C
Control Block	_			_		
ILM01 Input High Level	Vih_ilm		1.5		5.5	V
ILM01 Input Low Level	Vil_ilm		0		0.5	٧
ILIM01 Internal Pull-Low Resistance	Rin_ilm		200	250	300	ΚΩ

^{*}note1:If ILM01 connect to Vbat, It will consume current | I_ilm01=Vbat/250k

^{*}note2:If IOUT is over 2A , The recommended output voltage Vout is below 5.2V.

^{*}note3:Tosc=1/Fosc

Typical performance Characteristics

 $(V_{\text{IN}} = 2.5 \text{V} \sim 4.2 \text{V}, \ V_{\text{OUT}} = 5 \text{V}, \ C_{\text{IN}} = 47 \mu \text{F}, \ C_{\text{OUT}} = 47 \mu \text{F} \ + 22 \mu \text{F}, \ L = 2.2 \mu \text{H}, \ T_{\text{A}} = 25 ^{\circ} \text{C})$

V_{IN} , V_{OUT} , I_{L} Waveform

\mathbf{V}_{IN} , $\!\mathbf{V}_{\mathrm{OUT}},\,\mathbf{I}_{\mathrm{L}}$ waveform

V_{IN} , V_{OUT} , I_L Waveform

V_{IN} ,V_{OUT}, I_L Waveform

V_{IN} ,V_{OUT}, I_L Waveform

V_{IN} ,V_{OUT}, I_L Waveform

Typical Performance Characteristics (continued)

Start Up Waveform

Start Up Waveform

Start Up Waveform

Start Up Waveform

Short Circuit Waveform

Short Circuit Waveform

Typical Performance Characteristics (continued)

200mA ~ 1.5A Load Transient Waveform

200mA ~ 1.5A Load Transient Waveform

200mA ~ 1.5A Load Transient Waveform

200mA ~ 1.5A Load Transient Waveform

Over Current & Under Voltage Waveform

Over Current & Under Voltage Waveform

Typical Performance Characteristics (continued)

Minimum Footprint PCB Layout Section

SOP-8 (FD)

Pin Description For SOP-8 (FD)

PIN	NAME	FUNCTION		
1,2	LX	Inductor Node.		
3	VBAT	IC Power Supply Input.		
4	ILIM01	Output Current Limit Setting, and On/Off Control.		
5	GND	IC Analog Ground.		
6	FB	Converter Feedback Input.		
7,8	VOUT	Converter Output.		
	EP	Exposed Paddle. Connect to the ground plane to optimize thermal performance. EP is internally connected to GND. EP must be connected to GND at a single point with a star ground connection.		

Block Diagram (For SOP-8 (FD)

Function Description

The G5177C current-mode step-up DC-DC switching converter uses a fixed-frequency PWM architecture with output shutdown. In light-load mode, the converter switches when needed, consuming only $70\mu\text{A}$ of quiescent current. In heavy-load mode of higher than 100mA, the converter switches every cycle at a constant frequency as fixed-PWM, thus enabling noise filtering. The G5177C is highly efficient, with internal and synchronous switches. Shutdown reduces the quiescent current to less than $0.1\mu\text{A}$. Low quiescent current and high efficiency make this device ideal for portable equipment.

The G5177C step-up DC-DC switching converter typically generates a 5V output voltage from a single-cell battery input voltage. The minimum output peak current limit is 6.5A in SOP8-FD package. When an

over-current, short-circuit or thermal shutdown condition is encountered. The converter will turn off until the over-current or over-temperature condition is removed, and during the state of short-circuit after precharge is end, the converter will turn off 64ms first and then turn on 1ms cycle by cycle to protect converter under short circuit operation. Internal soft-start limits the inrush current to less than 500mA under no-load conditions during startup. The G5177C is adjustable by 2 external resistors with calculating the value for R1 as R1 = R2 (VOUT/VFB - 1).

The G5177C switches at a 500KHz frequency, allowing for tiny external components. The G5177C is optimized for use in iPad-like computers, smart phones, portable handheld devices and other applications requiring low quiescent current for maximum battery life.

Package Information

SOP-8 (FD) Package

Oh.l.	DIMENSION IN MM			DIMENSION IN INCH			
Symble	MIN. NOM. MAX. MIN.		MIN.	NOM.	MAX.		
Α	1.35	1.55	1.60	0.053	0.061	0.063	
A1	0.00		0.10	0.000		0.004	
A2	1.15	1.35	1.50	0.045	0.053	0.059	
D	4.80	4.90	5.00	0.189	0.192	0.197	
D1	2.29		3.71	0.090		0.146	
E	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.153	0.157	
E2	2.29		2.64	0.090		0.104	
С	0.19	0.23	0.27	0.007	0.009	0.011	
b	0.33	0.43	0.53	0.013	0.017	0.021	
е	1,27 BSC			0,050 BSC			
L	0.40	0.70	1.00	0.016	0.028	0.039	

Taping Specification

PACKAGE	Q'TY/REEL		
SOP-8 (FD)	2,500 ea		

GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.