Sistema completo de sucesos

• Un cjto. de sucesos $\{A_1, A_2, ..., A_n\}$ forma un sistema completo de sucesos (SCS), o una partición del espacio muestral Ω , si cumple:

- $A_i \neq \emptyset$, $\forall i$
- $A_i \cap A_j = \emptyset$, si $i \neq j$
- $\bigcup_{i=1}^n A_i = \Omega$

Problema 2.18

• De una baraja de 40 cartas se extrae una al azar. Los sucesos $O = \{\text{obtener oro}\}, C = \{\text{obtener copa}\},$ $E = \{\text{obtener espada}\}\ y\ B = \{\text{obtener basto}\},$ forman un Sistema Completo de Sucesos. ¿Por qué?

Problema 2.19

En el lanzamiento de dos dados, los sucesos

 $A = \{\text{obtener la misma cara en ambos lanzamientos}\}$

 $B = \{ \text{obtener distinta cara y suma impar} \}$

 $C = \{ \text{obtener distinta cara y suma par} \}$

forman un Sistema Completo de Sucesos. ¿Por qué?

Sin tener en cuenta el orden, podemos obtener:

$$A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

$$B = \{(1,2), (1,4), (1,6), (2,3), (2,5), (3,4), (3,6), (4,5), (5,6)\}$$

$$C = \{(1,3), (1,5), (2,4), (2,6), (3,5), (4,6)\}$$

Problema 2.20 (enunciado)

 Una urna contiene 3 bolas blancas y 3 bolas negras; otra urna contiene 4 blancas y 5 negras. Se elige una urna al azar y se extrae una bola. Probabilidad de que sea blanca.

- Para resolverlo debemos tener en cuenta la probabilidad de escoger primero uno de los grupos.
- Secuencia de sucesos:
 - 1º. Escoger urna (cjto. de sucesos que forman un SCS)
 - 2º. Elegir bola (otro cjto. de sucesos)

T^{ma} de Probabilidad Total

• Sea $\{A_1, A_2, ..., A_n\}$ un sistema completo de sucesos (SCS), y sea B un suceso cualquiera; entonces

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

Demostración:

$$P(B) = P(B \cap \Omega) = P(B \cap (\bigcup_{i=1}^{n} A_i)) = P(\bigcup_{i=1}^{n} (B \cap A_i)) = P(B) = P(B)$$

Universidad de Alicante

T^{ma} de Probabilidad Total

Problema 2.20 (solución)

Una urna contiene 3 bolas blancas y 3 bolas negras; otra urna contiene 4 blancas y 5 negras. Se elige una **urna al azar** y se extrae una bola. Probabilidad de que sea blanca.

- $U_1 = \{ \text{Urna 1} \}$, $U_2 = \{ \text{Urna 2} \}$, $B = \{ \text{Elegir bola blanca} \}$
 - U_1 y U_2 forman un SCS.

Problema 2.20 (cont.)

Otra forma de verlo es mediante un árbol:

Problema 2.21

Se tienen tres conjuntos de números impares: del 1 al 7, del 9 al 21 y del 23 al 39. Elegimos aleatoriamente un conjunto de manera que el 1º tiene el doble de probabilidad de ser elegido que el 2º, y éste triple que el tercero.

Del conjunto elegido se obtiene un número al azar.

Calcular la **probabilidad** de que el número escogido sea **primo**.

•
$$C_1 = \{1, 3, 5, 7\};$$
 $C_2 = \{9, 11, 13, 15, 17, 19, 21\};$ $C_3 = \{23, 25, 27, 29, 31, 33, 35, 37, 39\};$ $P = \{n^{\circ} \text{ primo}\}$

T^{ma} de Bayes

• Sea $\{A_1, A_2, ..., A_n\}$ un sistema completo de sucesos (SCS), y sea B un suceso tal que P(B) > 0; entonces

$$P(A_k|B) = \frac{P(B|A_k) \cdot P(A_k)}{\sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)}$$

- Demostración:
 - Usando el desarrollo de probabilidad condicional y el T^{ma} de probabilidad total:

$$P(A_k|B) = \frac{P(B \cap A_k)}{P(B)} = \frac{P(B|A_k) \cdot P(A_k)}{\sum_{i=1}^n P(B|A_i) \cdot P(A_i)}$$

Universidad de Alicante

T^{ma} de Bayes

• Bayes se aplica normalmente cuando la secuencia habitual de sucesos aparece invertida (se pregunta la prob. de uno de los sucesos del SCS).

Problema 2.22 (del 2.20)

 Una urna contiene 3 bolas blancas y 3 bolas negras; otra urna contiene 4 blancas y 5 negras. Se elige una urna al azar y se extrae una bola. Si la bola ha salido blanca, hallar la probabilidad de que se haya sacado de la segunda urna.

Universidad de Alicante

Problema 2.23 (del 2.21)

 Se tienen tres conjuntos de números impares: del 1 al 7, del 9 al 21 y del 23 al 39. Elegimos aleatoriamente un conjunto de manera que el 1º tiene el doble de probabilidad de ser elegido que el 2º, y éste triple que el tercero.

Del conjunto elegido se obtiene un número al azar.

Si el **número** ha salido **primo**, calcular la **probabilidad** de que se haya obtenido del **segundo conjunto**.

•
$$C_1 = \{1, 3, 5, 7\};$$
 $C_2 = \{9, 11, 13, 15, 17, 19, 21\};$ $C_3 = \{23, 25, 27, 29, 31, 33, 35, 37, 39\};$ $P = \{n^{\circ} \text{ primo}\}$