SBML Model Report

Model name: "Obeyesekere1999_CellCycle"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri¹ at March 16th 2008 at 7:31 p. m. and last time modified at May 27th 2014 at 10:24 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	7
events	0	constraints	0
reactions	10	function definitions	0
global parameters	21	unit definitions	0
rules	3	initial assignments	0

Model Notes

The model reproduces the time profiles of the different species depicted in Fig 3a of the paper. Model successfully reproduced using MathSBML.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it,

 $^{{}^{1}}California\ Institute\ of\ Technology,\ {\tt hdharuri@cds.caltech.edu}$

commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell_1	cell		3	1	litre	Ø	

3.1 Compartment cell_1

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains seven species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
 D_1	D	cell_1	$\text{mol} \cdot 1^{-1}$		
E_1	Е	cell_1	$\text{mol} \cdot 1^{-1}$		
$RS_{-}1$	RS	cell_1	$\text{mol} \cdot 1^{-1}$		
$R_{-}1$	R	cell_1	$\text{mol} \cdot 1^{-1}$		
$X_{-}1$	X	\mathtt{cell}_1	$\text{mol} \cdot 1^{-1}$		
E2F_1	E2F	\mathtt{cell}_1	$\operatorname{mol} \cdot 1^{-1}$		
$RP_{-}1$	RP	$\mathtt{cell}_{-}1$	$\operatorname{mol} \cdot 1^{-1}$		

5 Parameters

This model contains 21 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
aD_1	aD	0.400	\overline{Z}
$k_{-}1$	k	0.050	
GF_1	GF	6.300	$ \overline{\mathbf{Z}} $
$dD_{-}1$	dD	0.400	
$aE_{-}1$	аE	0.160	
$af_{-}1$	af	0.900	
${ t theta}_{-1}$	theta	1.500	
$dE_{-}1$	dE	0.200	$ \overline{\mathbf{Z}} $
pX_{-1}	pX	0.480	
$RT_{-}1$	RT	2.500	\square
$pS_{-}1$	pS	0.600	\square
$pD_{-}1$	pD	0.480	
$qD_{-}1$	qD	0.600	
$pE_{-}1$	pЕ	0.096	$ \overline{\mathbf{Z}} $
$qE_{-}1$	qE	0.600	$ \overline{\mathbf{Z}} $
$aX_{-}1$	aX	0.080	
f_1	f	0.200	$ \overline{\mathbf{Z}} $
$g_{-}1$	g	0.528	$ \overline{\mathbf{Z}} $
$dX_{-}1$	dX	1.040	$ \overline{\mathbf{Z}} $
$qX_{-}1$	qX	0.800	$ \overline{\mathbf{Z}} $
unpho_RB		0.000	

6 Rules

This is an overview of three rules.

6.1 Rule E2F_1

Rule E2F_1 is an assignment rule for species E2F_1:

$$E2F_{-1} = theta_{-1} - [RS_{-1}]$$
 (1)

6.2 Rule RP_1

Rule RP_1 is an assignment rule for species RP_1:

$$RP_{-}1 = RT_{-}1 - [RS_{-}1] - [R_{-}1]$$
 (2)

6.3 Rule unpho_RB

Rule unpho_RB is an assignment rule for parameter unpho_RB:

$$unpho_RB = [R_1] + [RS_1] \tag{3}$$

Derived unit $mol \cdot l^{-1}$

7 Reactions

This model contains ten reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

		Table 5: Overv	iew oi		
N₀	Id	Name		Reaction Equation	SBO
1	_1	cycD/CDK4 synthesis		$\emptyset \longrightarrow D_{-}1$	
2	cyclinCDK4degrad	latyich CDK4 degradation		$D_{-1} \xrightarrow{D_{-1}, E_{-1}} \emptyset$	
3	cyclin_1	cycE/CDK2 synthesis		$\emptyset \xrightarrow{\text{E2F}_1} \text{E}_1$	
4	4 cycECDK2degradatiowcE/CDK2 degradation _1			$E_{-1} \xrightarrow{E_{-1}, X_{-1}} \emptyset$	
5	pRBpdephosphoryl _1	apR&p dephosphorilation		$\emptyset \xrightarrow{\mathbf{RP}_{-}1, \ \mathbf{X}_{-}1} \mathbf{R}_{-}1$	
6	pRBE2Fcomplexass	sopR&tE2F-complex association		$R_{-}1 \xrightarrow{RS_{-}1, R_{-}1, E2F_{-}1} RS_{-}1$	
7	pRBE2Fcomplexdea	aspR&/E2FonvaaapbDCDK4eassociation cycD/CDK4	via	$RS_{-}1 \xrightarrow{RS_{-}1, D_{-}1} \emptyset$	
8	_7	pRB/E2F complex deassociation cycE/CDK2	via	$RS_{-1} \xrightarrow{RS_{-1}, E_{-1}} \emptyset$	
9	cycleprogression _1	n-cycle progression		$\emptyset \xrightarrow{\text{E_1, E2F_1, X_1}} \text{X_1}$	
10	cyclebreak_1	cycle break		$X_{-1} \xrightarrow{X_{-1}} \emptyset$	

7.1 Reaction _1

This is an irreversible reaction of no reactant forming one product.

Name cycD/CDK4 synthesis

Reaction equation

$$\emptyset \longrightarrow D_{-}1$$
 (4)

Product

Table 6: Properties of each product.

Id	Name	SBO
D_1	D	·

Kinetic Law

Derived unit not available

$$v_1 = aD_{-1} \cdot \frac{k_{-1} \cdot GF_{-1}}{1 + k_{-1} \cdot GF_{-1}}$$
 (5)

7.2 Reaction cyclinCDK4degradation_1

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name cycD/CDK4 degradation

Reaction equation

$$D_{-1} \xrightarrow{D_{-1}, E_{-1}} \emptyset \tag{6}$$

Reactant

Table 7: Properties of each reactant.

Id	Name	SBO
D_1	D	

Table 8: Properties of each modifier.

Id	Name	SBO
D_1	D	
$E_{-}1$	E	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = dD_-1 \cdot [E_-1] \cdot [D_-1]$$
 (7)

7.3 Reaction cyclin_1

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name cycE/CDK2 synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{E2F}_1} \text{E}_1 \tag{8}$$

Modifier

Table 9: Properties of each modifier.

Id	Name	SBO
E2F_1	E2F	

Product

Table 10: Properties of each product.

Id	Name	SBO
E_1	E	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = aE_1 \cdot (1 + af_1 \cdot [E2F_1])$$
 (9)

7.4 Reaction cycECDK2degradation_1

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name cycE/CDK2 degradation

Reaction equation

$$E_{-1} \xrightarrow{E_{-1}, X_{-1}} \emptyset \tag{10}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
E_1	Е	

Modifiers

Table 12: Properties of each modifier.

Id	Name	SBO
E_1	E	
$X_{-}1$	X	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = dE_{-1} \cdot [X_{-1}] \cdot [E_{-1}] \tag{11}$$

7.5 Reaction pRBpdephosphorylation_1

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name pRB-p dephosphorilation

Reaction equation

$$\emptyset \xrightarrow{\text{RP}_1, X_1} \text{R}_1 \tag{12}$$

Table 13: Properties of each modifier.

Id	Name	SBO
RP_1	RP	
$X_{-}1$	X	

Product

Table 14: Properties of each product.

Id	Name	SBO
R_1	R	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \frac{pX_{-1} \cdot [RP_{-1}] \cdot [X_{-1}]}{qX_{-1} + [RP_{-1}] + [X_{-1}]}$$
(13)

7.6 Reaction pRBE2Fcomplexassociation_1

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name pRB/E2F complex association

Reaction equation

$$R_{-1} \xrightarrow{RS_{-1}, R_{-1}, E2F_{-1}} RS_{-1}$$
 (14)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
$R_{-}1$	R	

Table 16: Properties of each modifier.

Id	Name	SBO
RS_1	RS	
$R_{-}1$	R	
$E2F_1$	E2F	

Product

Table 17: Properties of each product.

Id	Name	SBO
$RS_{-}1$	RS	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = pS_-1 \cdot [E2F_-1] \cdot [R_-1]$$
 (15)

$\textbf{7.7 Reaction} \ \texttt{pRBE2Fcomplex} \\ \texttt{deassociationviacycDCDK4_1}$

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name pRB/E2F complex deassociation via cycD/CDK4

Reaction equation

$$RS_{-1} \xrightarrow{RS_{-1}, D_{-1}} \emptyset \tag{16}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
$RS_{-}1$	RS	

Table 19: Properties of each modifier.

Id	Name	SBO
RS_1	RS	
$D_{-}1$	D	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \frac{pD_-1 \cdot [RS_-1] \cdot [D_-1]}{qD_-1 + [RS_-1] + [D_-1]}$$
(17)

7.8 Reaction _7

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name pRB/E2F complex deassociation via cycE/CDK2

Reaction equation

$$RS_{-1} \xrightarrow{RS_{-1}, E_{-1}} \emptyset$$
 (18)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
RS_1	RS	

Modifiers

Table 21: Properties of each modifier.

Id	Name	SBO
$RS_{-}1$	RS	
$E_{-}1$	E	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \frac{pE_{-1} \cdot [RS_{-1}] \cdot [E_{-1}]}{qE_{-1} + [RS_{-1}] + [E_{-1}]}$$
(19)

7.9 Reaction cycleprogression_1

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name cycle progression

Reaction equation

$$\emptyset \xrightarrow{E_{-1}, E2F_{-1}, X_{-1}} X_{-1}$$
 (20)

Modifiers

Table 22: Properties of each modifier.

Id	Name	SBO
$E_{-}1$	Е	
$E2F_{-}1$	E2F	
$X_{-}1$	X	

Product

Table 23: Properties of each product.

Id	Name	SBO
$X_{-}1$	X	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = aX_{-1} \cdot [E_{-1}] + f_{-1} \cdot [E2F_{-1}] + g_{-1} \cdot [X_{-1}]^2 \cdot [E_{-1}]$$
(21)

7.10 Reaction cyclebreak_1

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name cycle break

Reaction equation

$$X_{-1} \xrightarrow{X_{-1}} \emptyset \tag{22}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
X_1	X	

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
X_{-1}	X	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = dX_{-1} \cdot [X_{-1}] \tag{23}$$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species D_1

Name D

Initial amount 0.1 mol

This species takes part in four reactions (as a reactant in cyclinCDK4degradation_1 and as a product in _1 and as a modifier in cyclinCDK4degradation_1, pRBE2FcomplexdeassociationviacycDCDK4-_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D}_{-}1 = v_1 - v_2 \tag{24}$$

8.2 Species E_1

Name E

Initial amount 0.6 mol

This species takes part in six reactions (as a reactant in cycECDK2degradation_1 and as a product in cyclin_1 and as a modifier in cyclinCDK4degradation_1, cycECDK2degradation_1, _7, cycleprogression_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{E}_{-1} = |v_3| - |v_4| \tag{25}$$

8.3 Species RS_1

Name RS

Initial amount 1 mol

This species takes part in six reactions (as a reactant in pRBE2FcomplexdeassociationviacycDCDK4-_1, _7 and as a product in pRBE2Fcomplexassociation_1 and as a modifier in pRBE2Fcomplexassociation-_1, pRBE2FcomplexdeassociationviacycDCDK4_1, _7).

$$\frac{d}{dt}RS_{-1} = |v_6| - |v_7| - |v_8| \tag{26}$$

8.4 Species R_1

Name R

Initial amount 0.5 mol

This species takes part in three reactions (as a reactant in pRBE2Fcomplexassociation_1 and as a product in pRBpdephosphorylation_1 and as a modifier in pRBE2Fcomplexassociation_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R}_{-}1 = v_5 - v_6 \tag{27}$$

8.5 Species X_1

Name X

Initial amount 0.7 mol

This species takes part in six reactions (as a reactant in cyclebreak_1 and as a product in cycleprogression_1 and as a modifier in cycECDK2degradation_1, pRBpdephosphorylation_1, cycleprogression_1, cyclebreak_1).

$$\frac{d}{dt}X_{-1} = v_9 - v_{10} \tag{28}$$

8.6 Species E2F_1

Name E2F

Involved in rule E2F_1

This species takes part in three reactions (as a modifier in cyclin_1, pRBE2Fcomplexassociation_1, cycleprogression_1) and is also involved in one rule which determines this species' quantity.

8.7 Species RP_1

Name RP

Involved in rule RP_1

This species takes part in one reaction (as a modifier in pRBpdephosphorylation_1) and is also involved in one rule which determines this species' quantity.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany