Name of Department:- Computer Science and Engineering

1.	Subject Code:	TCS 704		Course Title:	Advanced Computer Architecture
2.	Contact Hours:	L: 3	T:	P:	Arcintecture

Semester: VII

4. Pre-requisite: TCS 404

- 5. Course Outcomes: After completion of the course students will be able to
 - Discuss the classes of computers, and new trends and developments in computer architecture
 - 2. Study advanced performance enhancement techniques such as pipelines ,dynamic scheduling branch predictions, caches
 - Compare and contrast the modern computer architectures such as RISC, Scalar, and multi CPU systems
 - 4. Critically evaluate the performance of different CPU architecture
 - 5. Improve the performance of applications running on different cpu architectures.
 - 6. Develop applications for high performance computing systems

6. Detailed Syllabus

UNIT	CONTENTS	Contact Hrs
Unit - I	Fundamentals: Computer Architecture and Technology Trends, Moore's Law, Classes of Parallelism and Parallel Architectures, Instruction Set Architecture: The Myopic View of Computer Architecture, Trends in Technology, Trends in Cost, Processor Speed, Cost, Power, Power Consumption, Fabrication Yield Performance Metrics and Evaluation: Measuring Performance, Benchmark Standards, Iron Law of Performance, Amdahl's Law, Lhadma's Law	10
Unit - II	Memory Hierarchy Design: Basics of Memory Hierarchy, Coherence and locality properties, Cache memory organizations, Cache Performance, Cache optimization techniques, Virtual Memory, Techniques for Fast Address Translation	9
Unit – III	Pipelining: What is pipelining, Basics of a RISC ISA, The classic five-stage pipeline for a RISC processor, Performance issues in pipelining, Pipeline Hazards	10
Unit – IV	Branches and Prediction: Branch Prediction, Direction Predictor, Hierarchical Predictors, If Conversion, Conditional Move Instruction Level Parallelism: Introduction, RAW and WAW, dependencies, Duplicating Register Values, ILP	8
Unit – V	Multiprocessor architecture: taxonomy of parallel architectures. Centralized shared-memory, Distributed shared-memory architecture, Message passing vs Shared Memory	9
	Total	46

Text/ Reference Books

- John L. Hennessy, David A. Patterson, "Computer Architecture: A Quantitative Approach" 5th edition, Morgan Kaufmann
- 2. "by Kai Hwang, "Advanced Computer Architecture", McGraw Hill Publishing