

Algorithm in Programming

In programming, algorithm are the set of well defined instruction in sequence to solve a program. An algorithm should always have a clear stopping point.

Qualities of a good algorithm

- 1. Inputs and outputs should be defined precisely.
- 2. Each steps in algorithm should be clear and unambiguous.
- 3. Algorithm should be most effective among many different ways to solve a problem.
- 4. An algorithm shouldn't have computer code. Instead, the algorithm should be written in such a way that, it can be used in similar programming languages.

Algorithm Examples
Algorithm to add two numbers
Algorithm to find the largest among three numbers
Algorithm to find all the roots of quadratic equation
Algorithm to find the factorial
Algorithm to check prime number
Algorithm of Fibonacci series

Examples Of Algorithms In Programming

Write an algorithm to add two numbers entered by user.

```
Step 1: Start
Step 2: Declare variables num1, num2 and sum.
```

Sten 3. Read values num1 and num2


```
Step 5: Display sum
Step 6: Stop
```

Write an algorithm to find the largest among three different numbers entered by user.

```
Step 1: Start
Step 2: Declare variables a,b and c.
Step 3: Read variables a,b and c.
Step 4: If a>b

If a>c

Display a is the largest number.

Else

Display c is the largest number.

Else

If b>c

Display b is the largest number.

Else

Step 5: Stop
```

Write an algorithm to find all roots of a quadratic equation $ax^2+bx+c=0$.

```
Step 1: Start

Step 2: Declare variables a, b, c, D, x1, x2, rp and ip;

Step 3: Calculate discriminant

D ← b2-4ac

Step 4: If D≥0

r1 ← (-b+√D)/2a

r2 ← (-b-√D)/2a

Display r1 and r2 as roots.

Else

Calculate real part and imaginary part

rp ← b/2a

ip ← √(-D)/2a

Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop
```


Write an algorithm to check whether a number entered by user is prime or not.

```
Step 1: Start
Step 2: Declare variables n,i,flag.
Step 3: Initialize variables
           flag ← 1
           i \leftarrow 2
Step 4: Read n from user.
Step 5: Repeat the steps until i < (n/2)
      5.1 If remainder of n÷i equals 0
                flag \leftarrow 0
                Go to step 6
      5.2 i ← i + 1
Step 6: If flag=0
               Display n is not prime
           else
               Display n is prime
Step 7: Stop
```

Write an algorithm to find the Fibonacci series till term≤1000.

Step 6: Stop

Algorithm is not the computer code. Algorithm are just the instructions which gives clear idea to you idea to write the computer code.

Related Articles

Why every programmer should learn to optimize algorithms

self in Python, Demystified

Increment ++ and Decrement -- Operator as Prefix and Postfix

Interpreter Vs Compiler: Difference Between Interpreter and Compiler

Algorithm in Programming

Flowchart In Programming

Get Latest Updates on Programiz

Enter Your Email

Subscribe

ABOUT CONTACT ADVERTISE

