

School of Computer Science Faculty of Science

COMP-2650: Computer Architecture I: Digital Design Fall 2020

Date	Duration	Title	Due Date	Grade Release Date
Dec 18, 2020	200 minutes	Final Exam	Dec. 18, 2020 Midnight AoE	Dec. 25, 2020

Questions

You must show your work and all steps for every question!

Question 1: [10 marks: 2 mark each]

Explain the following terms in two or three sentences.

- a. Distributivity
- b. Duality
- c. Don't Care Condition
- d. Latch versus Flip-Flop
- e. Mealy model

Question 2: [10 marks]

Simplify $F=\sum(1,3,5,7,8)+d(10,12,13,14,15)$ in the form of product of sums using 4-variable K-map.

Question 3: [5 marks: 2.5 marks each]

In a binary multiplier that multiplies an *n*-bit (first number) by *m*-bit (second number) binary numbers,

- a. How many k-bit adders are needed?
- b. How many bits would be in the output including the last carry?

Question 4: [10 marks]

Design F = \sum (1,2,5,7,8,10,15) using *only one of the options* below:

- a. 8-to-1 MUX to get the full marks.
- b. 16-to-1 MUX to get half marks.

Question 5: [20 marks]

Design BCD to Aiken encoder.

- [4 marks] Truth table
- [12 marks] minimization
- [4 marks] logic circuit.

Figure 1. This circuit is needed for Questions 6 and 7. It has one binary input *x*, one binary output F, one T and one D memory units. The memory units are either latches or flip-flops, depending on the question. They are working in *positive* logic.

Question 6: [10 marks: 5 marks each]

Given the circuit in Figure 1 in *positive* logic, complete the timing diagram if the memory units are:

- a. Latches.
- b. Flip-flops.

Question 7: [10 marks]

Assuming the memory units in the circuit in Figure 1 are flip-flops:

- a. **[4 marks]** Draw the state (transition) diagram. (hints: there would be 4 nodes based on different combinations of AB: 00, 01, 10, 11. From each node there would be two output directed edges based on whether x is 0 or 1. Also, either the edges or nodes need to be labeled by the value of F.)
- b. **[4 marks]** Derive the state table.
- c. [2 marks] Is the circuit based on the Mealy or Moore model? Justify your answer.

Question 8: [20 marks]

Using D-FFs, design a 3-bit register [C,B,A] with a single input control x. If x=1, the register shifts the value of the memory units to the *right*. If x=0, the register shifts them to the *left*. In shift right, 0 enters C. In shift left, 0 enters A. For instance: x=1: $011 \rightarrow 001$, x=0: $011 \rightarrow 110$.

- a. [5 marks] Draw the state diagram of the circuit
- b. **[5 marks]** Derive the state table
- c. [10 marks] Draw the *minimized* logic diagram of the circuit

Question 9: [5 marks]

Given m-bit address bus and n-bit data bus, how many flip-flops are needed to reach the max memory capacity? Justify your answer.