

Contents

O1Introduction

What's the SAME & what's the difference?

02
Data
Exploration

What data was SAME trained on?

O3 Modeling

What's the brain behind SAME?

Q4 Conclusion

How can we use it?

There are so many messages in my inbox!

The SIA¹ Customer Service Centre receives thousands of feedback, compliments and complaints every week

The level 1 support team has to manually read and sort the messages to the correct level 2 service teams

Help me sort out the messages!

((2)

KrisFlyer & PPS Club (KF)

Lounge, Catering, **Amenity (LCA) kits**

Others

Top 2 most-asked topics

Objectives: SIA management hired us to

- (1) Develop a predictive model to automatically sort messages into the 3 topics, and
- Highlight the **frequently mentioned words and their sentiments** in KF and LCA

The Approach

KrisFlyer & PPS Club

Earning miles, redeeming miles, status in SQ's frequent flyer programs

Inf flyi

SQ-Operated, Partner and Contract Lounges Information about airport lounges you can access when flying SQ.

SQ Catering and Amenities

All you have to know about Menus, Amenity kits and so on when you're onboard SO

Small Talk
Talk about stuff that don't fit anywhere else here

16k (40%), 10k (24%), 14k (36%) data rows respectively

Modelling

Try different pre-processing, vectoriser, models & pick the best combination

Find the top comments of KF and LCA, and analyse the sentiments of these comments to derive insights

Strap in! Diving into the data

- 1. Properly spelled words
- 2. Absence of Singlish
- Replies to comments will duplicate words
- 4. Thread titles are important as they contain many key words

What's the Model Answer?

Lemmatisatio	n vs Stemming vs None:	Pre-processing & vectorisation trials:			
Bolded – different from					
Steps	Baseline	Alternate 1	Alternate 2	Alternate 3	
Pre- processing	Basic data cleaning	Basic data Cleaning	 Basic data Cleaning Remove duplicated sentences 	 Basic data Cleaning Remove duplicated sentences 	
Vectorisation	CountVectoriser	TFIDF	CountVectoriser	TFIDF	
Model	Multi-Naïve Bayes	Multi-Naïve Bayes	Multi-Naïve Bayes	Multi-Naïve Bayes	
Best performing pre-processing & vectorisation combination					
3					
Modelling trials:					
Model	Multi-Naïve Bayes	Random Forest	XGBoost	SVM	

^{*} The alternate 1, 2, 3 also had 4 additional stopwords (iirc, imo, imho, btw) extracted from a "SQTalk Abbreviations, Slangs, Definitions, Phrases" thread. This had little effect on the model performance.

1 Lemm vs Stem vs None

	Baseline 1	Baseline 2	Baseline 3
Pre-processing	Basic cleaning	- basic cleaning - lemm	- basic cleaning - stem
Vectoriser	CountVectoriser	CountVectoriser	CountVectoriser
Model	Multinomial Naive Bayes	Multinomial Naive Bayes	Multinomial Naive Bayes
macro-average ROC AUC	0.878	0.885	0.887
macro-average f1-score	0.737	0.747	0.752

- Baseline 3 (remove NA, with stem) performed the best
- Macro-average ROC AUC (One vs the Rest) and f1-score (labels = KF, LCA) used as key metrics
 - To compare the model's confidence to distinguish classifications, and focus
 on minimising false-positives and -negatives for KF and LCA

2 Preprocess, Vectoriser

	Baseline Model (from notebook 2)	Alternate 1 *Best performance*	Alternate 2	Alternate 3
Pre-processing	- Basic cleaning - Stem	- Basic cleaning - Stem	- Basic cleaning - Stem - Remove duplicated sentences	- Basic cleaning - Stem - Remove duplicated sentences
Vectoriser	CountVectoriser	TFIDF	CountVectoriser	TFIDF
Model	Multinomial Naive Bayes	Multinomial Naive Bayes	Multinomial Naive Bayes	Multinomial Naive Bayes
Macro-average ROC AUC	0.887	0.908	0.807	0.819
Macro-average f1-score (kf, lca)	0.752	0.759	0.625	0.630

Best performance: Basic clean, stem, TFIDF

- TFIDF had slightly better performance than CountVectoriser
- Removing duplicated comments seemed to have an adverse effect on model performance;
 this suggests that the comments that people reply to usually have crucial key words in them

Model Comparison

	Model 1 (from notebook 3)	Model 2	Model 3	Model 4 *Best performance*
Vectoriser	TFIDF	TFIDF	TFIDF	TFIDF
Model	Multinomial Naive Bayes	Random Forest	XGBoost	SVM
Macro-average ROC AUC	0.908	0.883	0.925	0.925
Macro-average f1-score (kf, lca)	0.759	0.719	0.807	0.815

Best performance: SVM

- Model 3 performed the best with the following params:
 - TfidfVectorizer(max_features=500, stop_words=stem_stopwords)
 - SVC(C=1, gamma=1, probability=True, random_state=42)
- SVM edged out due to its slightly better f1-score

Sentiment Analysis: Top Words

KrisFlyer & PPS Club

Lounges, Catering, Amenity Kits (LCA)

- 1. Find top words
- 2. Find sentences that contain these words
- 3. Sort the sentiment score* by:

Sentiment	Score	Assigned value	
Very Negative	Under -0.5	1	
Negative	Between -0.5 and -0.1	2	
Neutral	Between -0.1 and 0.1	3	
Positive	Between 0.1 and 0.5	4	
Very Positive	Over 0.5	5	

Sentiment Analysis: Results

Sentiment Score	KrisFlyer 'miles'	KrisFlyer 'PPS'	KrisFlyer 'KF'	LCA 'lounge'	LCA 'SQ'	LCA 'served'
Very negative (1)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Negative (2)	<0.1	<0.1	<0.1	<0.1	0.1	0.1
Neutral (3)	0.3	0.4	0.4	0.4	0.4	0.6
Positive (4)	0.6	0.6	0.6	0.5	0.4	0.3
Very positive (5)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Overall:	Positive	Positive	Positive	Positive	Positive	Positive

* Due to rounding, total may not add up to 1

- Sentiments for comments containing top words are positive → these are areas of strength for SIA
- Separate deep-dive into these comments can be conducted to find out the reasons why (e.g. good service, good exclusive deals for members, good food served etc.)

Conclusion

Model

Successfully developed SAME: a multi-class classification model with macro-average ROC AUC (0.93) and f1-scores (0.82)

Sentiment Analysis

Comments with 'miles', 'PPS', 'KF', 'lounge', 'SQ', 'served' have **largely** positive sentiments → areas of strength for SIA

Next Steps (areas for future improvement)

- Sort by topic (e.g. KF, LCA, others): SAME can be used as a backend engine for a chatbot to sort incoming messages
- Sort by type (feedback, complaints, compliments): SAME + Sentiment Analysis
- Develop multi-label model to detect comments with >1 topics (e.g. both KF and LCA)
- Find **top words with negative sentiments** to identify and improve on areas of weaknesses

Thanks:

Your work will never be the *same* again

Annex A - Macro Average f1-Score

Label	Per-Class F1 Score	Macro-Averaged F1 Score
Airplane	0.67	0.67 + 0.40 + 0.67
≜ Boat	0.40	3
€ Car	0.67	= 0.58

The macro-averaged F1 score (or macro F1 score) is computed using the arithmetic mean (aka unweighted mean) of all the per-class F1 scores.

In general, if you are working with an imbalanced dataset where all classes are equally important, using the macro average would be a good choice as it treats all classes equally. (source)