Chapter 1

Logic

Definition 1.0.0.1. Proposition is a statement that is either true or false, but not both.

1.1 Logical operations

1.1.1 Definition of \neg

Definition 1.1.1.1.

$$\neg (True) \\ \stackrel{\text{def}}{\Longleftrightarrow} False$$

Definition 1.1.1.2.

$$\neg (False) \\ \stackrel{\text{def}}{\Longleftrightarrow} True$$

1.1.2 Definition of \vee

Definition 1.1.2.1.

$$(\operatorname{True}) \vee (\operatorname{True})$$

$$\overset{\operatorname{def}}{\Longleftrightarrow} \operatorname{True}$$

Definition 1.1.2.2.

$$(\text{True}) \vee (\text{False})$$

$$\overset{\text{def}}{\Longleftrightarrow} \text{True}$$

Definition 1.1.2.3.

$$(False) \lor (True)$$

$$\stackrel{\mathrm{def}}{\Longleftrightarrow}$$
 True

Definition 1.1.2.4.

$$(False) \lor (False)$$

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 False

1.1.3 Definition of \wedge

Definition 1.1.3.1.

$$(True) \wedge (True)$$

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 True

Definition 1.1.3.2.

$$(True) \land (False)$$

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \mathrm{False}$$

Definition 1.1.3.3.

$$(False) \wedge (True)$$

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \mathrm{False}$$

Definition 1.1.3.4.

$$(False) \wedge (False)$$

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 False

1.1.4 Definition of \iff

Definition 1.1.4.1.

$$a \iff b$$

$$\stackrel{\text{def}}{\iff} (a \land b) \lor ((\neg a) \land (\neg b))$$

1.1.5 Definition of \Longrightarrow

Definition 1.1.5.1.

$$a \implies b$$

$$\stackrel{\text{def}}{\iff} (\neg a) \lor b$$

1.2 Boolean algebra

1.2.1 Associativity of \lor

Proposition 1.2.1.1.

$$(a \lor b) \lor c$$

$$\iff a \lor (b \lor c)$$

1.2.2 Associativity of \wedge

Proposition 1.2.2.1.

$$(a \wedge b) \wedge c$$

$$\iff a \wedge (b \wedge c)$$

1.2.3 Commutativity of \lor

Proposition 1.2.3.1.

$$\begin{array}{c} a \vee b \\ \Longleftrightarrow b \vee a \end{array}$$

1.2.4 Commutativity of \wedge

Proposition 1.2.4.1.

$$a \wedge b \iff b \wedge a$$

1.2.5 Identity of \vee

Proposition 1.2.5.1.

$$a \vee (\text{False})$$

$$\iff a$$

Proposition 1.2.5.2.

(False)
$$\vee a$$

$$\iff a$$

1.2.6 Identity of \wedge

Proposition 1.2.6.1.

$$a \wedge (\text{True})$$

$$\iff a$$

Proposition 1.2.6.2.

(True)
$$\wedge a$$

$$\iff a$$

1.2.7 Annihilator of \vee

Proposition 1.2.7.1.

$$a \vee (\text{True})$$

$$\iff$$
 True

Proposition 1.2.7.2.

$$(True) \lor a$$

1.2.8 Annihilator of \wedge

Proposition 1.2.8.1.

$$a \wedge (\text{False})$$

$$\iff$$
 False

Proposition 1.2.8.2.

(False)
$$\wedge a$$

$$\iff \operatorname{False}$$

1.2.9 Idempotence of \lor

Proposition 1.2.9.1.

$$\begin{array}{c} a \lor a \\ \iff a \end{array}$$

1.2.10 Idempotence of \wedge

Proposition 1.2.10.1.

$$a \wedge a \iff a$$

1.2.11 Complement of \lor

Proposition 1.2.11.1.

$$\begin{array}{c} a \vee (\neg a) \\ \Longleftrightarrow \text{True} \end{array}$$

Proposition 1.2.11.2.

$$(\neg a) \lor a$$

$$\iff \text{True}$$

$\textbf{1.2.12} \quad \textbf{Complement of} \ \land \\$

Proposition 1.2.12.1.

$$a \wedge (\neg a)$$

$$\iff \text{False}$$

Proposition 1.2.12.2.

$$(\neg a) \wedge a$$

$$\iff \text{False}$$

1.2.13 Absorption of \lor over \land

Proposition 1.2.13.1.

$$a \vee (a \wedge b) \iff a$$

Proposition 1.2.13.2.

$$a \vee (b \wedge a) \iff a$$

Proposition 1.2.13.3.

$$(a \wedge b) \vee a$$

$$\iff a$$

Proposition 1.2.13.4.

$$(b \wedge a) \vee a \\ \iff a$$

1.2.14 Absorption of \land over \lor

Proposition 1.2.14.1.

$$a \wedge (a \vee b) \iff a$$

Proposition 1.2.14.2.

$$a \wedge (b \vee a) \iff a$$

Proposition 1.2.14.3.

$$(a \lor b) \land a$$

$$\iff a$$

Proposition 1.2.14.4.

$$(b \vee a) \wedge a \\ \Longleftrightarrow a$$

1.2.15 Distributivity of \lor over \land Proposition 1.2.15.1.

$$\begin{array}{l} a \vee (b \wedge c) \\ \Longleftrightarrow (a \vee b) \wedge (a \vee c) \end{array}$$

Proposition 1.2.15.2.

$$(a \land b) \lor c$$

$$\iff (a \lor c) \land (b \lor c)$$

1.2.16 Distributivity of \land over \lor Proposition 1.2.16.1.

$$a \wedge (b \vee c)$$

$$\iff (a \wedge b) \vee (a \wedge c)$$

Proposition 1.2.16.2.

$$(a \lor b) \land c$$

$$\iff (a \land c) \lor (b \land c)$$

1.2.17 Double negation

Proposition 1.2.17.1.

$$\neg(\neg a) \iff a$$

1.2.18 De Morgan's laws

Proposition 1.2.18.1.

$$\neg (a \lor b) \iff (\neg a) \land (\neg b)$$

Proposition 1.2.18.2.

$$(\neg (a \wedge b)) \iff (\neg a) \vee (\neg b)$$

1.3 Basic Proposition

Proposition 1.3.0.1.

$$(a \land (\neg b)) \lor b$$

$$\iff a \lor b$$

Proof of Proposition 1.3.0.1

$$(a \land (\neg b)) \lor b$$

$$\iff (a \lor b) \land ((\neg b) \lor b)$$
 Proposition 1.2.15.2
$$\iff (a \lor b) \land (\text{True})$$
 Proposition 1.2.11.2
$$\iff a \lor b$$
 Proposition 1.2.6.1

1.4 Proof technique

Proposition 1.4.0.1.

$$a \iff (\text{True})$$
 $\iff a$

Proof of Proposition 1.4.0.1

$$a \iff (\text{True})$$

$$\overset{\text{def}}{\iff} (a \land (\text{True})) \lor ((\neg a) \land (\neg (\text{True}))) \qquad \text{Definition 1.1.4.1}$$

$$\overset{\text{def}}{\iff} (a \land (\text{True})) \lor ((\neg a) \land (\text{False})) \qquad \text{Definition 1.1.1.1}$$

$$\iff a \lor ((\neg a) \land (\text{False})) \qquad \text{Proposition 1.2.6.1}$$

$$\iff a \lor (\text{False}) \qquad \text{Proposition 1.2.8.1}$$

$$\iff a \qquad \text{Proposition 1.2.5.1}$$

Proposition 1.4.0.2.

$$\begin{array}{ccc} a \implies b \\ \Longrightarrow (a \lor c) \implies (b \lor c) \end{array}$$

Proof of Proposition 1.4.0.2

Proposition 1.4.0.3.

$$\begin{array}{ccc} a & \Longrightarrow & b \\ \Longrightarrow (a \wedge c) & \Longrightarrow & (b \wedge c) \end{array}$$

Proposition 1.4.0.4. Contrapositive

$$\begin{array}{c} a \implies b \\ \iff (\neg b) \implies (\neg a) \end{array}$$

Proposition 1.4.0.5. Transitive property of \implies .

$$(a \Longrightarrow b) \land (b \Longrightarrow c)$$

$$\Longrightarrow a \Longrightarrow c$$

Proposition 1.4.0.6.

$$\begin{array}{c} a \iff b \\ \iff (a \implies b) \land (b \implies a) \end{array}$$

Proposition 1.4.0.7.

$$\begin{array}{ccc}
a & \Longleftrightarrow & b \\
\Rightarrow & (a \lor c) & \Longleftrightarrow & (b \lor c)
\end{array}$$

Proposition 1.4.0.8.

$$\begin{array}{ccc} a & \Longleftrightarrow & b \\ \Longrightarrow (a \wedge c) & \Longleftrightarrow & (b \wedge c) \end{array}$$

Proposition 1.4.0.9. Symmetric property of \iff .

$$\begin{array}{ccc} a & \Longleftrightarrow & b \\ \Longleftrightarrow b & \Longleftrightarrow & a \end{array}$$

Proposition 1.4.0.10.

$$\begin{array}{c} a \iff b \\ \iff (\neg a) \iff (\neg b) \end{array}$$

Proposition 1.4.0.11. Transitive property of \iff .

$$(a \iff b) \land (b \iff c)$$

$$\implies a \iff c$$

Proposition 1.4.0.12. Reflexive property of \iff .

$$a \iff a$$

Proof of Proposition 1.4.0.12

$$\begin{array}{ll} a \iff a \\ \stackrel{\mathrm{def}}{\Longleftrightarrow} (a \wedge a) \vee ((\neg a) \wedge (\neg a)) & \mathrm{Definition} \ 1.1.4.1 \\ \stackrel{}{\Longleftrightarrow} a \vee ((\neg a) \wedge (\neg a)) & \mathrm{Proposition} \ 1.2.10.1 \\ \stackrel{}{\Longleftrightarrow} a \vee (\neg a) & \mathrm{Proposition} \ 1.2.11.1 \end{array}$$

1.5 Quantifiers

Definition 1.5.0.1. Universal quantifier is denoted by \forall .

$$\forall x (P(x))$$

$$\stackrel{\text{def}}{\iff} (P(x_1) \land P(x_2) \land \dots)$$

Definition 1.5.0.2. Existential quantifier is denoted by \exists .

$$\exists x (P(x))$$

$$\stackrel{\text{def}}{\Longleftrightarrow} (P(x_1) \vee P(x_2) \vee \dots)$$

Proposition 1.5.0.3.

$$(\forall c(a)) \land (\forall c(b))$$

$$\iff \forall c(a \land b)$$

Proposition 1.5.0.4.

$$\exists x (P(x) \lor Q(x)) \\ \iff (\exists x (P(x))) \lor (\exists x (Q(x)))$$

Proposition 1.5.0.5.

$$P \vee (\forall x (Q(x))) \iff \forall x (P \vee (Q(x)))$$

Proposition 1.5.0.6.

$$P \wedge (\exists x (Q(x)))$$

$$\iff \exists x (P \wedge (Q(x)))$$

Axiom 1.1.

$$\forall x (P(y)) \iff P(y)$$

Axiom 1.2.

$$\exists x (P(y)) \iff P(y)$$

Proposition 1.5.0.7. De Morgan's law

$$\neg(\forall b(a)) \iff \exists b(\neg a)$$

Proposition 1.5.0.8. De Morgan's law

$$\neg(\exists b(a)) \iff \forall b(\neg a)$$

Definition 1.5.0.9. Uniqueness quantifier is denoted by !∃.

$$!\exists x(P(x))$$

$$\stackrel{\text{def}}{\Longleftrightarrow} (\exists x(P(x))) \wedge (\forall x \forall y ((P(x) \wedge P(y)) \implies (x = y)))$$

Axiom 1.3. Axiom of Substitution

$$\forall x((\exists y((y=x) \land P(y))) \iff P(x))$$

1.6 Logic proposition

Proposition 1.6.0.1.

$$\begin{array}{c} a \wedge b \\ \Longrightarrow a \iff b \end{array}$$

Proposition 1.6.0.2.

$$\begin{array}{c} a \wedge b \\ \Longrightarrow a \end{array}$$

Proposition 1.6.0.3.

$$\begin{array}{ccc} a \wedge ((b \wedge a) \implies c) \\ \Longrightarrow b \implies c \end{array}$$

Proposition 1.6.0.4.

$$\begin{array}{c} a \wedge (a \implies b) \\ \Longrightarrow b \end{array}$$

Proposition 1.6.0.5.

$$\begin{array}{c} a \wedge (a \iff b) \\ \Longrightarrow b \end{array}$$

Chapter 2

Set theory

Set theory have one primitive notion, called set, and one binary relation, called set membership, denoted by \in .

Definition 2.0.0.1. Definition of \notin .

$$a \notin b$$

$$\stackrel{\text{def}}{\Longleftrightarrow} \neg (a \in b)$$
)

Definition 2.0.0.2.

$$\forall a \in S, P(a)$$

$$\stackrel{\text{def}}{\Longleftrightarrow} \forall a ((a \in S) \implies (P(a)))$$

Definition 2.0.0.3.

$$\exists a \in S, P(a)$$

$$\stackrel{\text{def}}{\iff} \exists a((a \in S) \land (P(a)))$$

Proposition 2.0.0.4.

$$\forall a(\text{True})$$
 $\iff \text{True}$

2.1 Equality of sets

Definition 2.1.0.1. Definition of =.

 $\forall a \forall b ($ a = b $\iff \forall c ((c \in a) \iff (c \in b))$)

Definition 2.1.0.2. Definition of $\stackrel{\text{def}}{=}$.

 $\forall a \forall b ($ $a \stackrel{\text{def}}{=} b$ $\stackrel{\text{def}}{\Longleftrightarrow} \forall c ((c \in a) \iff (c \in b))$)

Definition 2.1.0.3. Definition of \neq .

 $\forall a \forall b ($ $a \neq b$ $\iff \neg (a = b)$

Proposition 2.1.0.4. Reflexive property of equality.

 $\forall a ($ a = a)

Proof of Proposition 2.1.0.4

 $\forall a (a = a$ $\stackrel{\text{def}}{\Longleftrightarrow} \forall b ((b \in a) \iff (b \in a)) \qquad \text{Definition 2.1.0.1}$ $\Leftrightarrow \forall b (\text{True}) \qquad \qquad \text{Proposition 1.4.0.12}$ $\Leftrightarrow \text{True} \qquad \qquad \text{Proposition 2.0.0.4}$

```
Proposition 2.1.0.5. Symmetric property of equality.
```

```
\forall a \forall b ( a = b \\ \iff b = a  )  Proof of Proposition 2.1.0.5  \forall a \forall b ( a = b \\ \iff \forall c ((c \in a) \iff (c \in b))  Definition 2.1.0.1  \iff \forall c ((c \in b) \iff (c \in a))  Proposition 1.4.0.9  \iff b = a  Definition 2.1.0.1 )
```

Proposition 2.1.0.6. Transitive property of equality.

$$\forall a \forall b \forall c ($$

$$(a = b) \land (b = c)$$

$$\Longrightarrow a = c$$
)

Proof of Proposition 2.1.0.6

 $\forall a \forall b \forall c ($

)

$$(a = b) \land (b = c)$$

$$\stackrel{\text{def}}{\Longleftrightarrow} (\forall d((d \in a) \iff (d \in b))) \land (b = c)$$
 Definition 2.1.0.1
$$\stackrel{\text{def}}{\Longleftrightarrow} (\forall d((d \in a) \iff (d \in b))) \land (\forall d((d \in b) \iff (d \in c)))$$
 Definition 2.1.0.1
$$\iff \forall d(((d \in a) \iff (d \in b)) \land ((d \in b) \iff (d \in c)))$$
 Proposition 1.5.0.3
$$\implies \forall d((d \in a) \iff (d \in c))$$
 Proposition 1.4.0.11
$$\stackrel{\text{def}}{\Longleftrightarrow} a = c$$
 Definition 2.1.0.1

Axiom 2.1. Axiom of extensionality

$$\begin{array}{c} \forall a \forall b (\\ a = b \\ \Longrightarrow \forall c ((a \in c) \iff (b \in c)) \\) \end{array}$$

Axiom 2.2. Existence of empty set

$$\forall a ($$

$$a \notin \emptyset$$
 $)$

Proposition 2.1.0.7. Uniqueness of \emptyset

$$\forall a (\\ \forall b (b \notin a) \\ \iff a = \emptyset$$
)

Proof of Proposition 2.1.0.7

$$\forall a (\\ \forall b (b \notin a) \\ \iff \forall b ((b \notin a) \iff (\text{True})) \\ \iff \forall b ((b \notin a) \iff (b \notin \emptyset)) \\ \iff \forall b ((\neg (b \in a)) \iff (b \notin \emptyset)) \\ \iff \forall b ((\neg (b \in a)) \iff (\neg (b \in \emptyset))) \\ \iff \forall b ((b \in a) \iff (b \in \emptyset)) \\ \iff \forall b ((b \in a) \iff (b \in \emptyset)) \\ \iff \exists a \in \emptyset \\ \end{pmatrix} \text{ Definition 2.0.0.1}$$

Proposition 2.1.0.8. Single choice

```
\forall a ( \\ a \neq \emptyset \\ \iff \exists b (b \in a)  )
```

```
\forall a(
                        True
                 \iff (\forall b(b \notin a)) \iff (a = \emptyset)
                                                                             Proposition 2.1.0.7
                 \iff (a = \emptyset) \iff (\forall b(b \notin a))
                                                                             Proposition 1.4.0.9
                 \iff (\neg(a = \emptyset)) \iff (\neg(\forall b(b \notin a)))
                                                                             Proposition 1.4.0.10
                 \stackrel{\text{def}}{\Longleftrightarrow} (a \neq \emptyset) \iff (\neg(\forall b(b \notin a)))
                                                                             Definition 2.1.0.3
                 \iff (a \neq \emptyset) \iff (\exists b(\neg(b \notin a)))
                                                                             Proposition 1.5.0.7
                 \stackrel{\text{def}}{\Longleftrightarrow} (a \neq \emptyset) \iff (\exists b (\neg (\neg (b \in a))))
                                                                             Definition 2.0.0.1
                 \iff (a \neq \emptyset) \iff (\exists b(b \in a))
                                                                             Proposition 1.2.17.1
     )
Axiom 2.3. Existence of pair set
                      \forall a \forall b \forall c (
                                                                 c \in \{a, b\}
                                                          \iff (c=a) \lor (c=b)
                      )
Proposition 2.1.0.9. Uniqueness of pair set
            \forall a \forall b \forall c (
                                             \forall d((d \in c) \iff ((d = a) \lor (d = b)))
                                      \implies c = \{a, b\}
Proof of Proposition 2.1.0.9
\forall a \forall b \forall c (
                      \forall d((d \in c) \iff ((d = a) \lor (d = b)))
               \iff \forall d(((d \in c) \iff ((d = a) \lor (d = b))) \land (\text{True})) \text{ Proposition 1.2.6.1}
               \iff \forall d(((d \in c) \iff ((d = a) \lor (d = b)))
                            \wedge ((d \in \{a, b\}) \iff ((d = a) \vee (d = b))))
                                                                                                Axiom 2.3
               \iff \forall d(((d \in c) \iff ((d = a) \lor (d = b)))
                            \wedge (((d=a) \vee (d=b)) \iff (d \in \{a,b\})))
                                                                                                Proposition 1.4.0.9
                \Longrightarrow \forall d((d \in c) \iff (d \in \{a, b\}))
                                                                                                Proposition 1.4.0.11
               \stackrel{\text{def}}{\iff} c = \{a, b\}
                                                                                                Definition 2.1.0.1
```

Proof of Proposition 2.1.0.8

)

Definition 2.1.0.10. Definition of singleton set.

```
 \forall a ( \\ \{a\} \stackrel{\mathrm{def}}{=} \{a,a\}  )
```

Proposition 2.1.0.11. Property of singleton set.

```
\forall a \forall b (
b \in \{a\}
\iff b = a
)
Proposition (1)
\forall a \forall b (
b \in \{a\}
\iff b \in \{a, a\}
)
```

Proof of Proposition (1)

$$\forall a ($$
 True
$$\iff \{a\} \stackrel{\mathrm{def}}{=} \{a,a\} \qquad \qquad \text{Definition 2.1.0.10}$$

$$\stackrel{\mathrm{def}}{\iff} \forall b ((b \in \{a\}) \iff (b \in \{a,a\})) \qquad \text{Definition 2.1.0.2}$$

Proof of Proposition 2.1.0.11

```
\forall a \forall b ( b \in \{a\} \iff b \in \{a, a\} Proposition (1) \iff (b = a) \lor (b = a) Axiom 2.3 \iff b = a Proposition 1.2.9.1
```

Proposition 2.1.0.12. Uniqueness of singleton set.

```
\forall a \forall b (
\forall c ((c \in b) \iff (c = a))
\implies b = \{a\}
```

Proof of Proposition 2.1.0.12

$$\forall a \forall b ($$

$$\forall c ((c \in b) \iff (c = a))$$

$$\iff \forall c (((c \in b) \iff (c = a)) \land (\text{True})) \quad \text{Proposition 1.2.6.1}$$

$$\iff \forall c (((c \in b) \iff (c = a))$$

$$\land ((c \in \{a\}) \iff (c = a))) \quad \text{Proposition 2.1.0.11}$$

$$\iff \forall c (((c \in b) \iff (c = a))$$

$$\land ((c = a) \iff (c \in \{a\}))) \quad \text{Proposition 1.4.0.9}$$

$$\iff \forall c ((c \in b) \iff (c \in \{a\})) \quad \text{Proposition 1.4.0.11}$$

$$\iff b = \{a\} \quad \text{Definition 2.1.0.1}$$

Axiom 2.4. Existence of union set.

$$\forall a \forall b ($$

$$b \in (\bigcup a)$$

$$\iff \exists c ((b \in c) \land (c \in a))$$

Proposition 2.1.0.13. Uniqueness of union set.

```
\forall a \forall b ( \forall c ((c \in b) \iff (\exists d ((c \in d) \land (d \in a)))) \implies b = (\bigcup a) )
```

Proof of Proposition 2.1.0.13

```
\forall a \forall b (
\forall c((c \in b) \iff (\exists d((c \in d) \land (d \in a))))
\iff \forall c(((c \in b) \iff (\exists d((c \in d) \land (d \in a)))) \land (\mathsf{True})) \quad \mathsf{Proposition 1.2.6.1}
\iff \forall c(((c \in b) \iff (\exists d((c \in d) \land (d \in a))))
\land ((c \in (\bigcup a)) \iff (\exists d((c \in d) \land (d \in a))))
\land ((\exists d((c \in d) \land (d \in a))))
\land ((\exists d((c \in d) \land (d \in a)))) \iff (c \in (\bigcup a)))) \quad \mathsf{Proposition 1.4.0.9}
\iff \forall c((c \in b) \iff (c \in (\bigcup a))) \quad \mathsf{Proposition 1.4.0.11}
\iff b = (\bigcup a) \quad \mathsf{Definition 2.1.0.1}
```

Definition 2.1.0.14. Definition of pairwise union $A \cup B$.

$$A \cup B$$

$$\stackrel{\text{def}}{=} \bigcup \{A, B\}$$

Proposition 2.1.0.15. Property of pairwise union.

$$\forall A \forall B \forall x (x \in (A \cup B) \iff ((x \in A) \lor (x \in B)))$$

Proof:

)

 $\forall A \forall B \forall x ($

```
x \in (A \cup B)
\iff x \in \bigcup \{A, B\}  Definition 2.1.0.1 and 2.1.0.15
\iff \exists Y ((x \in Y) \land (Y \in \{A, B\}))  Definition 2.4
\iff \exists Y ((x \in Y) \land ((Y = A) \lor (Y = B)))  Definition 2.3
\iff \exists Y (((x \in Y) \land (Y = A)) \lor ((x \in Y) \land (Y = B)))  Proposition 1.2.16.1
\iff (\exists Y ((x \in Y) \land (Y = A))) \lor (\exists Y ((x \in Y) \land (Y = B)))  Proposition 1.5.0.4
\iff ((x \in A) \lor (x \in B))  Axiom 1.3 with P(A, x) = (x \in A)
```

Proposition 2.1.0.16. Commutativity of \cup .

$$\forall x \forall y ((x \cup y) = (y \cup x))$$

Proof:

 $\forall x \forall y ($

$$(x \cup y) = (y \cup x)$$

$$\iff \forall z(z \in (x \cup y) \iff z \in (y \cup x)) \qquad \text{Definition 2.1.0.1}$$

$$\iff \forall z(((z \in x) \lor (z \in y)) \iff ((z \in y) \lor (z \in x))) \qquad \text{Proposition 2.1.0.16}$$

$$\iff \forall z(((z \in x) \lor (z \in y)) \iff ((z \in x) \lor (z \in y))) \qquad \text{Proposition 1.2.3.1}$$

$$\iff \text{True} \qquad \qquad \text{Proposition 1.4.0.12}$$

Proposition 2.1.0.17. Identity of \cup .

$$\forall x ((x \cup \emptyset) = x)$$

Proof:

 $\forall x ($

)

)

$$(x \cup \emptyset) = x$$

$$\iff \forall y(y \in (x \cup \emptyset) \iff (y \in x)) \qquad \text{Definition 2.1.0.1}$$

$$\iff \forall y(((y \in x) \lor (y \in \emptyset)) \iff (y \in x)) \qquad \text{Proposition 2.1.0.16}$$

$$\iff \forall y(((y \in x) \lor (\neg(\neg(y \in \emptyset)))) \iff (y \in x)) \qquad \text{Proposition 1.2.17.1}$$

$$\iff \forall y(((y \in x) \lor (\neg(y \notin \emptyset))) \iff (y \in x)) \qquad \text{Definition 2.0.0.1}$$

$$\iff \forall y(((y \in x) \lor (\neg(\text{True}))) \iff (y \in x)) \qquad \text{Definition 2.2}$$

$$\iff \forall y(((y \in x) \lor (\text{False})) \iff (y \in x)) \qquad \text{Definition 1.1.1.1}$$

$$\iff \forall y((y \in x) \iff (y \in x)) \qquad \text{Proposition 1.2.5.1}$$

$$\iff \text{True} \qquad \text{Proposition 1.4.0.12}$$

Definition 2.1.0.18. Definition of 0.

$$0 \stackrel{\text{def}}{=} \emptyset$$

Definition 2.1.0.19. Definition of successor S(x).

$$S(x)$$

$$\stackrel{\text{def}}{=} x \cup \{x\}$$

Definition 2.1.0.20. Definition of 1.

$1 \stackrel{\text{def}}{=} S(0)$	
$=0\cup\{0\}$	Definition 2.1.0.20
$= \emptyset \cup \{\emptyset\}$	Definition 2.1.0.19
$= \{\emptyset\} \cup \emptyset$	Proposition 2.1.0.17
$=\{\emptyset\}$	Proposition 2.1.0.18