

Video Compression

INSTRUCTOR: YAN-TSUNG PENG

DEPT. OF COMPUTER SCIENCE, NCCU

Introduction to Deep Learning

Neural Network

■ Biological Neurons

A single neuron can be regarded as a machine with only two states: "yes" when it is activated, and "no" when it is not activated.

Artificial Neuron

Fully Connected Layer

Example – Digit Recognition

輸出最大機率對應的類別

此影像為1的機率%

此影像為2的機率%

此影像為 0 的機率 %

Training Models

- Backpropagation Algorithm
 - □ It uses the chain rule to compute gradients and applies gradient descent to update the model parameters.

Neural Networks

Gradient Descent

1.
$$\frac{\partial L}{\partial o_i} \rightarrow \frac{\partial o_i}{\partial w_{ij}^{(2)}}$$
2. $\frac{\partial L}{\partial o_i} \rightarrow \frac{\partial o_i}{\partial h_i} \rightarrow \frac{\partial h_i}{\partial w_{ij}^{(1)}}$

Training Neural Networks

■ Activation Function

$$= f^{(k)} \left(\overline{W}_i^{(k)T} \overline{a}^{(k-1)} \right)$$

Ex: 1_{st} layer

Activation Function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Accuracy on CIFAR10 with Different Activation Functions

airplane	🚅 🔉 😺 📈 🤛 = 🗾 🌃 🚤 🤐
automobile	ar 💸 🧟 🎅 🔙 🚟 🚁 🖹 🚍 🗞
bird	🙈 🚅 🔯 🔌 🍇 🌠 🤡 🐼
cat	👫 👺 🍇 🐼 🍇 🍆 🚨 🧶 🤘 🕏
deer	S 🛣 🛣 🥌 🥌 🎆 🥌 🥞
dog	R & 🦝 💸 🙈 🐼 🧑 🐧 🞊
frog	
horse	
ship	S 💆 🚈 🐷 🕍 🔙 🤣 🕟 📔 👛
truck	

	ReLU	LReLU	PReLU	ELU	SELU	GELU	Swish
ResNet	93.8	94.2	94.1	94.1	93	94.3	94.7
WResNet	95.3	95.6	95.1	94.1	93.2	95.5	95.5
DenseNet	94.8	94.7	94.5	94.4	93.9	94.8	94.8

- Simple choice: ReLU
- Performance fine tuning LReLU / ELU / GELU
- Sigmoid or tanh are not bad, still useful when used appropriately

Stochastic Gradient Descent

while
$$\|\nabla f(\boldsymbol{\theta}; X_{i:i+n-1,:}, Y_{i:i+n-1})\| > \varepsilon$$
 do

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla f(\boldsymbol{\theta}; \boldsymbol{X}_{i:i+n-1,:}, \boldsymbol{Y}_{i:i+n-1})|_{\boldsymbol{\theta} = \boldsymbol{\theta}_t}$$

End while

Batch size = n

Training process via SGD (Source: Wikipedia)

Choosing Hyperparameters

- ☐ Grid Search/Random Search
- Construct a hyperparameter grid

Suggestion:

Random Search

Bergstra and Bengio, "Random Search for Hyper-Parameter Optimization", JMLR 2012

Suggested Training Steps for Neural Networks

- 1. Choosing a set of hyperparameters
- Check the initial loss (does it fit your expectation?)
- 3. Overfit the small set of data samples
 - ☐ Turn off regularization to reach 100% accuracy (~10 minibatches) for debugging
 - ☐ Loss not changing -> could be bad initialization or low learning rate
 - ☐ Loss NaN or InF -> could be bad initialization or high learning rate
- 4. Find good learning rate (1e-2, 1e-3, ...) on all training data
 - □loss should decrease significantly within 100 iterations
- 5. Constructing a coarse hyperparameter grid
 - ☐ Train several models for ~5 epochs on the whole dataset
- 6. Using fine hyperparameter grid and train longer

 Stop training the model by checking with the validation accuracy or loss

Accuracy

- Check training loss
 - Bad initialization

- ☐ Flat loss curve
 - ☐ Enable learning rate decay

- ☐ Check training and validation loss both
 - 1. Train/val accuracy have a gap but both go up
 - 2. Overfitting add regularization/more data/reduce the model size
 - 3. No gap between train/val underfitting

Ensemble Learning

- **□** Ex: Random forest
- ☐ Constructing multiple decision trees for prediction, where all the predictions are averaged (or majority vote) to generate the final result.

Convolutional Neural Networks

☐ Convolutional layers + Pooling Layers + Fully-connected layers + normalization layers

Convolutional Layers

- Convolutional Layers
 - ☐ neurons are in 3D (3D tensor), which are width, height, and depth (channel)

Convolution:

Filtering the image with a convolution kernel, which means calculating a inner product of the kernel and a patch sliding over the image spatially.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Kernel 1

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Kernel 1

3		

Stride = 1 Kernel = 3*3

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

1	-1	-1
-1	1	-1
-1	-1	1

Kernel 1

3	-1	

Padding

為每條邊增加 pixels,使經過 filter 後的 feature map 大小與原圖一致。

0	0	0	0	0	0	0	0	0
0	1	5	4	1	5	4	7	0
0	0	2	1	0	2	1	0	0
0	Ø	4	თ	Ø	4	თ	5	0
0	1	5	4	1	5	4	7	0
0	0	2	1	0	2	1	0	0
0	9	4	თ	9	4	3	5	0
0	1	3	0	1	З	0	80	0
0	0	0	0	0	0	0	0	0

					→			
		1	5	4	1	5	4	7
	۲۱	0	2	1	0	2	1	0
2 -	4	9	4	3	9	4	3	5
		1	5	4	1	5	4	7
		0	2	1	0	2	1	0
		9	4	3	9	4	3	5
		1	3	0	1	3	0	8

0	1	0		
1	-1	0		
0	0	0		

Horizontal strides: 2 →

downsample the input by 2 in the horizontal direction

Stride: s

Padding: *p*

Output: $\left(\left[\frac{w-k+2p}{s}\right]+1\right)$

Transposed Convolution

- ☐ Why do we need transposed convolution?
 - ☐ Up-sampling
 - ☐ Encoder-Decoder Structure

1	_	1	_ 7			
т	3	4		0	1	
0	2	1	. 0		<u> </u>	L
		-	Ľ.	1	-1	
9	4	3	. 5	<u> </u>	+	⊢
-				0	0	
1	3	l 0	8			_

3	5
7	2

Transposed Convolution

 \square Considering 3x3 convolution is a function, then $f(x_1, ..., x_9) = y$

- \square If we would like to go the opposite direction, i.e. $f^{-1}(y) = x_1, ..., x_9$, how to achieve this?
- ☐ Reference: https://github.com/vdumoulin/conv_arithmetic

Transposed Convolution (Deconvolution)

Convolution Matrix

Rearrange the 3x3 kernel to a 4x16 Convolution Matrix

0	1	0
1	-1	0
0	0	0

0	1	0	0	1	-1	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	-1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	1	-1	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	1	-1	0	0	0	0	0

Each row defines one convolution operation

Rearrange the 4x4 input to a 16x1 column vector

Transposed Convolution (Deconvolution)

- □ Convolving a 4x4 input with a 3x3 kernel is equivalent to multiplying the 4x16 convolution matrix by the 16x1 input column vector, and the result will be reshaped to a 2x2 matrix from a 4x1 column vector
- □ So, if you now have a 2x2 matrix, multiplying the transposed convolution matrix (16x4) by the 2x2 matrix, you will have 16x1 column vector (4x4 matrix)
- ☐ That is, we now up-sample a 2x2 to a 4x4 matrix

多通道卷積: Convolution

Feature Extraction

Example

Different Al Systems

☐ Rule-based systems

A circle-shaped ring in the center of the image

Zero

☐ Classic machine learning

Directions

Magnitudes

Zero

Different Al systems

☐ Representation learning

☐ Representation learning — Deep learning

Low-level Features

Mid-level Features

High-level Features

Convolution Neural Network

卷積層 Convolution Layers

• 池化層 Pooling Layers

• 攤平 Flatten

全連接層 Fully-connected Layers

Pooling Layer

☐ Purpose: Reduce the number of parameters and computational complexity of the network.

Flattening

卷積神經網路

Common Architectures

- ☐ Commonly Used Deep Learning Architectures
 - ☐ VGG
 - UNet
 - ☐ ResNet
 - ☐ Transformer

VGG

proposed by K. Simonyan and A. Zisserman in 2014

Ch	Rec F
3	
64	3x3
128	3x3
256	3x3
512	3x3
512	3x3
-	
	3 64 128 256 512

VGG16 Architecture

Activation: Relu

-Figure-from-https://neurohive-io/en/popular-networks/vgg16/-

U-Net

Encoder-Decoder Architecture

No-padding

ResNet

Learn residuals instead of the whole thing

Transformer

Attention Mechanism

- Imitating information retrieval
 - retrieving v for q based on k in a database
 - ☐ value v
 - query q
 - ☐ key k

$$Att (q, k, v) = \sum_{\forall i} sim (q, k_i) \times v_i$$

Attention is all you need

q: query (to match others)

k: key (to be matched)

v: information to be extracted

$$q^{t} = W^{q}a^{t}$$
$$k^{t} = W^{k}a^{t}$$
$$v^{t} = W^{v}a^{t}$$

$$k^t = W^k a^t$$

$$v^t = W^v a^t$$

Positional Encoding

- ☐ Goal: considering the order of the words in the input sequence
- A specific vector added to each input embedding, helping determine the position/distance of/between each word

