BUNDESREPUBLIK DEUTSCI

REC'D 1 4 AUG 2003

WIPO

PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Best Available Copy

Aktenzeichen:

102 29 976.5

Anmeldetag:

3. Juli 2002

Anmelder/Inhaber:

T-Mobile Deutschland GmbH, Bonn/DE

Bezeichnung:

Verfahren zur Ver- und Entschlüsselung von nach dem Verfahren der priorisierten Pixelübertragung übertragenen oder gespeicherten digitalen Daten

IPC:

H 04 L, H 04 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 30. Juli 2003

Deutsches Patent- und Markenamt

Der Präsident

n Auffrag

Siesia

A 9161 02/00 EDV-L

COMPLIANCE WITH

T-Mobile Deutschland GmbH

Verfahren zur Ver- und Entschlüsselung von nach dem Verfahren der priorisierten Pixelübertragung übertragenen oder gespeicherten digitalen Daten

Die Erfindung betrifft ein Verfahren zur Ver- und Entschlüsselung von nach dem Verfahren der priorisierten Pixelübertragung übertragenen oder gespeicherten digitalen Daten, nach dem Oberbegriff des Patentanspruchs 1.

Die Erstellung von Informationsinhalten z.B. Bilder, Videos, Audiodaten und Dokumenten ist sehr aufwendig. Bei der Übertragung und Speicherung solcher Informationsinhalte ist es in vielen Anwendungsfällen sinnvoll und notwendig, den Informationsinhalt zu verschlüsseln, um diesen vor unbefugtem Zugriff zu schützen. Hierzu gibt es eine Reihe von Verschlüsselungsverfahren und Applikationen, die diese Aufgabe erfüllen.

Dabei kann eine Verschlüsselung des Informationsinhalts auf verschiedenen Ebenen erfolgen.

- Direkt in einer Anwendung, z.B. durch Kennwortschutz bei Personal
 Computern oder für einen Programmzugriff
- Unabhängig von einer Anwendung, z.B. mittels des bekannten PGP
 Verschlüsselungsverfahrens bei E-Mail Anwendungen
- Bei der Übertragung der Informationen, z.B. Informationsübertragung über das Internet mittels IPSec (Internet Protocol Security)

Den bisher bekannten Verschlüsselungsverfahren fehlt es an der Möglichkeit, den Informationsinhalt flexibel und skalierbar zu verschlüsseln. Das heißt, es bestehen keine flexiblen Einstellmöglichkeiten, um zum Beispiel in Abhängigkeit vom Informationsinhalt und der spezifischen Anwendung eine angepasste

Verschlüsselung durchführen zu können. So etwas kann jedoch sinnvoll sein wenn man z.B. Video auf Abruf (video on demand) anbieten will, wobei für unterschiedliche Videoqualitäten, z.B. in Abhängigkeit von der Bildauflösung, unterschiedliche Gebühren berechnet werden sollen.

Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Ver- und Entschlüsselung von nach dem Verfahren der priorisierten Pixelübertragung übertragenen oder gespeicherten digitalen Daten anzugeben, das es ermöglicht, den Informationsinhalt flexibel und skalierbar zu verschlüsseln.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst.

Als Grundlage für das erfindungsgemäße Verfahren gelten die Verfahren zur Komprimierung und Dekomprimierung von Bild- oder Videodaten mittels priorisierter Pixelübertragung, die in den deutschen Patentanmeldungen DE 101 13 880.6 (entspricht PCT/DE02/00987) und DE 101 52 612.1 (entspricht PCT/DE02/00995) beschrieben sind. Bei diesen Verfahren werden z.B. digitale Bild- oder Videodaten bearbeitet, die aus einem Array einzelner Bildpunkte (Pixel) bestehen, wobei jedes Pixel einen sich zeitlich verändernden Pixelwert aufweist, der Farb- oder Helligkeitsinformation des Pixels beschreibt. Erfindungsgemäß wird jedem Pixel bzw. jeder Pixelgruppe eine Priorität zugeordnet und die Pixel entsprechend ihrer Priorisierung in einem Prioritätenarray abgelegt. Dieses Array enthält zu jedem Zeitpunkt, die nach der Priorisierung sortierten Pixelwerte. Entsprechend der Priorisierung werden diese Pixel, und die für die Berechnung der Priorisierung benutzten Pixelwerte, übertragen bzw. abgespeichert. Ein Pixel bekommt eine hohe Priorität, wenn die Unterschiede zu seinen benachbarten Pixel sehr groß sind. Zur Rekonstruktion werden die jeweils aktuellen Pixelwerte auf dem Display dargestellt. Die noch nicht übertragenden Pixel werden aus den schon übertragenden Pixel berechnet.

Die Offenbarung der Anmeldungen DE 101 13 880.6 und DE 101 52 612.1 soll vollinhaltlich in die Offenbarung der vorliegenden Erfindung aufgenommen werden.

Erfindungsgemäß erfolgt die Übertragung bzw. das Speichern der priorisierten Pixelgruppen in Form von Datenpaketen, wobei die Datenpakete nicht nur Bilddaten in Form von Bildpunkten (Pixel) enthalten können, sondern jegliche Art von digitalen Daten die in einem Array speicherbar sind. Dabei besteht ein Datenpaket aus einem Datenwert, der die Position der Pixelgruppe im Array beschreibt und aus den Werten der einzelnen Pixel der Pixelgruppen. Durch Verschlüsselung des Positionswertes der Pixelgruppen und/oder der Pixelwerte der Pixelgruppen ist es möglich, den Dateninhalt gegen unbefugten Zugriff zu schützen. In Abhängigkeit von den verwendeten Schlüsseln und davon, welche Teile des Informationsinhalts verschlüsselt werden, z.B. Positionswerte und/oder Pixelgruppenwerte, können die unterschiedlichsten Bedürfnisse bei der Verschlüsselung berücksichtigt werden. Die Datenpakete werden ihrer Wichtigkeit nach in abgehender Reihenfolge übertragen und/oder gespeichert. Dadurch ist, zumindest bei statischen, sich zeitliche nicht verändernden n-dimensionalen Arrays erfindungsgemäß auch eine Ver- und Entschlüsselung der Pixelgruppen anhand ihrer Wichtigkeit möglich.

Die Vorteile der Erfindung gegenüber dem aktuellen Stand der Technik bestehen in der skalierbaren Handhabung des Verschlüsselungsverfahrens. Im Gegensatz zu herkömmlichen Verfahren bietet die getrennte Verschlüsselung der Positionswerte und /oder Pixelgruppenwerte für unterschiedliche Anforderung den Vorteil, dass in den entsprechenden Anwendungen und Geräten nur dieses Verfahren implementiert werden muss. Ist dieses Verfahren einmal implementiert, können die unterschiedlichsten Anforderungen ein gemeinsames Verfahren nutzen. Dieses reduziert die Anzahl der Implementierungen, was unter anderem Speicherplatz spart, der insbesondere bei mobilen Endgeräten nur begrenzt zur Verfügung steht. Die Reduzierung der Anzahl der Implementierungen ergibt sich

aus der Möglichkeit, Audio, Bild und Videodaten mit dem gleichen Verfahren zu verschlüsseln.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

In folgenden werden einige Ausführungsbeispiele der Erfindung erläutert.

Es wird davon ausgegangen, dass der Informationsinhalt als 2-dimensionale Bilddatei (Bildarray) vorliegt. Jeder Bildpunkt (Pixel) des Bildarrays wird z.B. durch einen 32 Bit Wert (Pixelwert) repräsentiert. Die 32 Bit sind z.B. in 4 Werte (Transparent, Rot, Grün, Blau) mit jeweils 8 Bit aufgeteilt. Die Bildpunkte des Bildarrays werden durchgezählt, wobei die Position jedes Pixels durch eine ganze Zahl festgelegt ist. Es werden Pixelgruppen gebildet, die aus einem Bezugspixel, das die Position der Pixelgruppe innerhalb des Arrays angibt, und weiteren, das Bezugspixel umgebenden Pixeln bestehen. Jeder Pixelgruppe wird je nach deren "Bildwichtigkeit" eine Priorität zugeordnet, wobei die Pixelgruppen mit der höchsten Priorität zuerst gespeichert bzw. übertragen werden.

Die Pixelgruppen können nun erfindungsgemäß in verschiedenen Verschlüsselungsstufen übertragen bzw. abgespeichert werden.

Ohne Verschlüsselung:

Es besteht ein freier Zugriff auf den gesamten Informationsinhalt, d.h. die Pixelgruppen werden unverschlüsselt übertragen.

Verwendung eines einfachen Schlüssels:

Es wird ein einziger Schlüssel zum ver- und entschlüsseln verwendet, d.h. ein symmetrisches Verschlüsselungsverfahren angewandt. Hierbei können z.B. die Positionswerte der Bezugspixel einer Pixelgruppe verschlüsselt werden, so dass ohne den passenden Schlüssel eine lagerichtige Positionierung der Pixelgruppe

im Bildarray nicht mehr möglich ist. Der Schlüssel kann über einen zweiten Übertragungsweg übermittelt werden, z.B. per E-Mail oder Postweg. Es wird keine weitere Infrastruktur benötigt. Ein symmetrisches Verschlüsselungsverfahren ist schneller als ein asymmetrisches Verfahren, beispielsweise PGP.

Verwendung eines asymmetrischen Verschlüsselungsverfahrens:
Es wird jeweils ein privater und ein öffentlicher Schlüssel zum ver- und entschlüsseln des Informationsinhalts verwendet. Die Verschlüsselung ist im Vergleich zum symmetrischen Verfahren aufwendigen und nur auf eine Punkt-zu-Punkt Beziehung beschränkt. Es ist jedoch kein zweiter Übertragungsweg zur Übertragung des Schlüssels notwendig.

Verwendung eines mehrfachen Schlüssels:

Bei einem mehrfachen Schlüssel wird der Schlüssel aus einer Kombination von einzelnen Schlüsseln zusammengestellt. Die Schlüssel können Abhängigkeiten zum Informationsinhalt, zur Zeit, zur Urheberquelle, zum Übertragungsmedium oder zu anderen Merkmalen aufweisen.

Damit lassen sich die Wiedergabemöglichkeiten des Informationsinhalts bei Bedarf beliebig einschränken, und der Informationsinhalt kann so situationsgerecht dargestellt werden. Hierzu einige Beispiele:

- Zeitliche Komponente im Schlüssel: Der Informationsinhalt lässt sich nur ab/bis zu einen bestimmten Zeitpunkt entschlüsseln
- Schlüssel abhängig vom Übertragungsmedium: Der Informationsinhalt lässt sich nur entschlüsseln, wenn das Übertragungsmedium eine bestimmte Identifikation besitzt
- Schlüssel abhängig von der Urheberquelle: Der Informationsinhalt lässt sich nur auf dem Gerät entschlüsseln, auf dem er aufgenommen wurde, z.B. als Missbrauchsschutz bei der Erstellung von Sicherheitskopien

Verwendung von kaskadierten Schlüsseln:

Kaskadierte Schlüssel können benutzt werden, um eine Teilverschlüsselung des Informationsinhalts durchzuführen. Dieses kann zum Beispiel angebracht sein, um im gleichen Datenstrom, die normale Qualität in verschlüsselter Form, und eine schlechte Qualität, z.B. für eine Bildvorschau, in unverschlüsselter Form zu übertragen, ohne dass dabei Redundanz entsteht. Dabei kann zum Beispiel die Auflösung eines Bildes heruntergesetzt werden. Unter "Auflösung" ist in diesem Fall nicht die "Bildhöhe x Bildbreite" gemeint, da diese bei Anwendung des Verfahrens unverändert bleibt. Vielmehr ist mit heruntergesetzter Auflösung eine Abweichung zum Originalbild gemeint, die bei der Rekonstruktion durch noch nicht übertragene und/oder entschlüsselte Pixelgruppen entstehen können. Das Verfahren der kaskadierten Schlüssel arbeitet nach dem Prinzip der Zwiebelschalen. Bei Anwendung des Verfahrens der priorisierten Pixelübertragung kann z.B. eine Reduzierung der Pixelgruppengröße zur Bildung einer kaskadierten Verschlüsselung dienen. Eine Pixelgruppe besteht aus einem (Referenz)Pixel, der durch seinen Positionswert eindeutig bestimmt wird, und einer Anzahl weiterer Pixel. Besteht eine Pixelgruppe z.B. aus insgesamt 9 Pixel, so können zum Beispiel 5 Pixel unverschlüsselt und 4 Pixel verschlüsselt übertragen werden. Die äußere Schale, welche die 5 unverschlüsselten Pixel umfasst, enthält keine Verschlüsselung und würde es zum Beispiel erlauben, ohne Schlüssel ein Video in Briefmarkengröße anzusehen. In der nächsten Schale werden ein oder mehrere der verschlüsselten Pixel übertragen. Für jede weitere Schale wird ein weiterer Schlüssel verwendet. Die Art der Schalen werden vor der Übertragung zwischen Sender und Empfänger vereinbart. Auf diese Art und Weise kann derjenige der alle Schlüssel besitzt und alle Schalen entschlüsseln kann, das Video in der besten Qualität ansehen.

Um Störungen zu verringern, die z.B. durch Abhängigkeiten zwischen den Daten der einzelnen Schalten entstehen können, kann bei dieser Art der Verschlüsselung zusätzlich zu dem Positionswert und den Werten der Pixelgruppen ein Hash-Wert übertragen werden, der sich aus dem Positionswert und den Werten der Pixelgruppen errechnet. Stimmt der im Empfänger berechnete Hash-Wert nicht mit dem übertragenen Hash-Wert überein, wird diese

Pixelgruppe nicht entschlüsselt. Dadurch wird erreicht, dass keine Störungen durch andere Schalen auftreten.

Eine Kombination der unterschiedlichen Schlüssel und Verfahren ist möglich.

Selbstverständlich ist das erfindungsgemäße Verschlüsselungsverfahren nicht nur auf Bild- und Videodaten anwendbar, sondern auf alle Arten von digitalen Daten, die sich in Datenblöcke, ähnlich den Datenblöcken von Bildpunkten, unterteilen lassen.

Die Erfindung wird nachfolgend anhand eines einfachen Beispiels näher erläutert.

In Tabelle 1 ist ein Teil eines Datenstromes dargestellt, der nach dem Verfahren der priorisierenden Pixelübertragung aufbereitet wurde. Der Wert "Pos x" gibt die jeweilige Position der Pixelgruppe an, die Werte "Px_n" die einzelnen Pixelwerte der in der Pixelgruppe enthaltenen Pixel. Jede Pixelgruppe besteht beispielsweise aus 5 Pixeln.

Tabelle 1:

Pos0 P0_0 P0_1 P0_2 P0_3 P0_4 P0_5 Pos1 P1_0 P1_1 P1_2 P1_3 P1_4 P1_5

Tabelle 2 zeigt die Verschlüsselung nur der Positionswerte. Vorteil: Es braucht nur ein Teil des Datenstroms verschlüsselt werden, was eine deutliche Steigerung der Performance gegenüber einer kompletten Verschlüsselung aller Daten bringt. Eine Rekonstruktion der so verschlüsselten Daten ohne Kenntnis des Schlüssels ist nicht oder nur mit großem Rechenaufwand möglich.

Tabelle 2:

Pos0 P0_0 P0_1 P0_2 P0_3 P0_4 P0_5 Pos1 P1_0 P1_1 P1_2 P1_3 P1_4 P1_5

Tabelle 3 zeigt die Verschlüsselung eines Teils der Pixelgruppe. Vorteil: Der gleiche Datenstrom erlaubt aufgrund einer unterschiedlichen Verschlüsselung der

Pixelwerte unterschiedliche Qualitäten bei der Rekonstruktion der Bild-, Audiooder Videodaten. In dem unten angeführten Beispiel kann der Empfänger den
Positionswert und die Pixelwerte Px_0 bis Px_2 ohne Schlüssel verwenden. Zur
Entschlüsselung der Pixelwerte Px_3 bis Px_5 wird jeweils der passende
Schlüssel benötigt. Besitzt der Empfänger den/die Schlüssel für die Pixelwerte
Px_3 bis Px_5 nicht, so muss die Applikation diese Pixelwerte aus den frei
verfügbaren Werten Px_0 bis Px_2 rekonstruieren. Da dem Empfänger aber eine
Vielzahl von Pixelwerten fehlen, ist die Qualität der Rekonstruktion (Auflösung)
deutlich reduziert.

Tabelle 3:

In den angeführten Beispielen werden verschlüsselte und nicht verschlüsselte Daten im gleichen Datenstrom übertragen. Um Übertragungsfehler zu erkennen und um zu erkennen, ob die Entschlüsselung erfolgreich war, kann jeder Teil der Pixelgruppe (Positionswert und Px_n) in der entschlüsselten Form eine CRC-Prüfung enthalten. Tritt ein Übertragungsfehler auf, und die CRC-Prüfung schlägt fehl, so wird der entsprechende Pixelwert nicht zur Rekonstruktion verwendet. Der andere Teil der Pixelgruppe kann weiterhin verwendet werden. Auf diese Art und Weise erhöht sich gleichzeitig die Robustheit des Übertragungsverfahrens gegenüber Übertragungsfehlern. Anstelle einer CRC-Prüfung können auch Hash Funktionen zum Einsatz kommen. Diese bieten einen besseren Sicherungsschutz benötigen aber eine höhere Rechenleistung.

Patentansprüche

- Verfahren zur Ver- und Entschlüsselung von nach dem Verfahren der priorisierten Pixelübertragung übertragenen oder gespeicherten digitalen Daten, wobei der zu ver- oder entschlüsselnde Informationsinhalt aus einzelnen Pixelgruppen besteht, wobei jede Pixelgruppe einen Positionswert, mindesten einen Pixelwert sowie einen ihr zugewiesenen Prioritätswert aufweist,
 - dadurch gekennzeichnet,
 - dass mindestens ein Schlüssel angewendet wird, mit welchem wahlweise der Positionswert und/oder der Pixelwert/die Pixelwerte einer Pixelgruppe verschlüsselt oder entschlüsselt werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schlüssel wahlweise mit der Art des zu verschlüsselnden Informationsinhalts und/oder mit der Urheberquelle, und/oder mit dem verwendeten Übertagungsmedium verknüpft ist oder eine zeitliche Abhängigkeit besitzt.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass jeder Pixelwert oder ein oder mehrere ausgewählte Pixelwerte mit je einem separaten Schlüssel verschlüsselt oder entschlüsselt werden.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein symmetrisches Verschlüsselungsverfahren durchgeführt wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein asymmetrisches Verschlüsselungsverfahren durchgeführt wird.

- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Pixelgruppen aus digitalisierten Abtastwerten eines Audiosignals gebildet werden.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Dateien Bilddaten, Videodaten oder Audiodaten enthalten.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Farbtiefe der Pixelwerte in Abstufungen mit einem separaten Schlüssel verschlüsselt oder entschlüsselt wird.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Ver- und Entschlüsselung von nach dem Verfahren der priorisierten Pixelübertragung übertragenen oder gespeicherten digitalen Daten, wobei der zu ver- oder entschlüsselnde Informationsinhalt aus einzelnen Pixelgruppen besteht, wobei jede Pixelgruppe einen Positionswert, mindesten einen Pixelwert sowie einen ihr zugewiesenen Prioritätswert aufweist, wobei mindestens ein Schlüssel angewendet wird, mit welchem wahlweise der Positionswert und/oder der Pixelwert/die Pixelwerte einer Pixelgruppe verschlüsselt oder entschlüsselt werden.

In Abhängigkeit von den verwendeten Schlüsseln und davon, welche Teile des Informationsinhalts verschlüsselt werden, z.B. Positionswerte und/oder Pixelgruppenwerte, können die unterschiedlichsten Bedürfnisse bei der Verschlüsselung berücksichtigt werden.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.