If U is a subspace of a space E, recall that the *codimension* of U is the dimension of E/U, which is also equal to the dimension of any subspace V such that E is a direct sum of U and V ($E = U \oplus V$).

Proposition 29.12 implies the following useful fact.

Proposition 29.13. Let $\varphi \colon E \times F \to K$ be any nondegenerate sesquilinear form. A subspace U of E has finite dimension iff U^{\perp} has finite codimension in F. If $\dim(U)$ is finite, then $\operatorname{codim}(U^{\perp}) = \dim(U)$, and $U^{\perp \perp} = U$.

Proof. Since φ is nondegenerate $E^{\perp} = \{0\}$ and $F^{\perp} = \{0\}$, so Proposition 29.12 applied to the restriction of φ to $U \times F$ implies that a subspace U of E has finite dimension iff U^{\perp} has finite codimension in F, and that if $\dim(U)$ is finite, then $\operatorname{codim}(U^{\perp}) = \dim(U)$. Since U^{\perp} and $U^{\perp\perp}$ are orthogonal, and since $\operatorname{codim}(U^{\perp})$ is finite, $\dim(U^{\perp\perp})$ is finite and we have $\dim(U^{\perp\perp}) = \operatorname{codim}(U^{\perp\perp\perp}) = \operatorname{codim}(U^{\perp\perp}) = \dim(U)$. Since $U \subseteq U^{\perp\perp}$, we must have $U = U^{\perp\perp}$.

Proposition 29.14. Let $\varphi \colon E \times F \to K$ be any sesquilinear form. Given any two subspaces U and V of E, we have

$$(U+V)^{\perp} = U^{\perp} \cap V^{\perp}.$$

Furthermore, if φ is nondegenerate and if U and V are finite-dimensional, then

$$(U \cap V)^{\perp} = U^{\perp} + V^{\perp}.$$

Proof. If $w \in (U+V)^{\perp}$, then $\varphi(u+v,w)=0$ for all $u \in U$ and all $v \in V$. In particular, with v=0, we have $\varphi(u,w)=0$ for all $u \in U$, and with u=0, we have $\varphi(v,w)=0$ for all $v \in V$, so $w \in U^{\perp} \cap V^{\perp}$. Conversely, if $w \in U^{\perp} \cap V^{\perp}$, then $\varphi(u,w)=0$ for all $u \in U$ and $\varphi(v,w)=0$ for all $v \in V$. By bilinearity, $\varphi(u+v,w)=\varphi(u,w)+\varphi(v,w)=0$, which shows that $w \in (U+V)^{\perp}$. Therefore, the first identity holds.

Now, assume that φ is nondegenerate and that U and V are finite-dimensional, and let $W = U^{\perp} + V^{\perp}$. Using the equation that we just established and the fact that U and V are finite-dimensional, by Proposition 29.13, we get

$$W^{\perp} = U^{\perp \perp} \cap V^{\perp \perp} = U \cap V.$$

We can apply Proposition 29.12 to the restriction of φ to $U \times W$ (since $U^{\perp} \subseteq W$ and $W^{\perp} \subseteq U$), and we get

$$\dim(U/W^{\perp}) = \dim(U/(U \cap V)) = \dim(W/U^{\perp}).$$

If T is a supplement of U^{\perp} in W so that $W = U^{\perp} \oplus T$ and if S is a supplement of W in E so that $E = W \oplus S$, then $\operatorname{codim}(W) = \dim(S)$, $\dim(T) = \dim(W/U^{\perp})$, and we have the direct sum

$$E = U^{\perp} \oplus T \oplus S$$