IC2004

グリッド上での並列分枝限定法 アプリケーション

合田 憲人 東京工業大学/科学技術振興機構さきがけ 大角 知孝 東京工業大学

グリッド上での高性能計算

- ログリッド計算
 - ロインターネット上の計算資源を安全に、安定して、 安易に利用することにより高性能計算を実現
 - □高性能計算のコスト軽減、未知の大規模問題の求解
- □問題点
 - □計算に伴うオーバーヘッドの影響大
 - □WAN上の通信、セキュリティに関する処理(認証、暗号化等)
 - ログリッド上で効率よく実行可能なアプリケーションでは、ある程度のタスク粒度が必要.

[Goux 2000]: 190 sec/task

[Neary 2002]: 177-430 sec/task

□大量の細粒度タスクから構成される大規模問題も存在. (例:最適化問題) Kento Aida Tokyo Institute of Techno

グリッド上での最適化問題の高速求解

- □目的:グリッド上での最適化問題求解 アプリケーションの高性能実行
 - ログリッド上での最適化問題求解アプリケーションの 並列化
 - □分枝限定法アプリケーション
 - □階層的マスタ・ワーカ方式による並列化
 - ロアプリケーションスケジューリング技術の開発
 - ログリッド上でのアプリケーションの実装と実証実験

□成果

- □最適化問題分野に対して, グリッド上での高性能計 算利用への道を開く.
- ログリッドアプリケーションの一分野を開拓する.

分枝限定法

- □最適解の探索
 - □問題を複数の小規模な問題(子問題)に再帰的 に分割して、各子問題について解の計算を行う.
 - □最適解の存在しない子問題(例:下界>暫定値)

は探索木から削除.

- □応用

 - □制御工学
 - ロマルチプロセッサ スケジューリング
- □並列化

各子問題の計算 は独立.

 $(Z-L)/L < \varepsilon$

マスタ・ワーカ方式による分枝限定法の並列化

階層的マスタ・ワーカ方式

階層的マスタ・ワーカ方式を用いた 並列分枝限定法

□ワーカ 子問題計算

GridRPC

- **□**GridRPC
 - ログリッド上でクライアント・ サーバ型のRPCを実現す るプログラミングモデル
 - □GGFにおける標準化
- **□Ninf-G**
 - □ GridRPC Ø reference implementation
 - □Globus Toolkit上に実装
 - □GSIによる安全なRPC
- **□Ninf**
 - □Ninf-Gの前身として開発
 - □高速なRPC

GridRPCによる実装(続)

グリッド実験環境

Sdpa

dual Athlon 2GHz 東京電機大(埼玉)

RTT=14ms

Globus Toolkit 2.* Ninf-G 1.1.1

Mp

dual Athlon 1.6GHz 徳島大(徳島)

RTT=20ms

client/ supervisor

LAN

RTT=0.04ms

Super Titanet

SINET

RTT=1ms

Blade

dual PIII 1.4GHz 東工大(横浜) **Prestoll**

dual Athlon 1.6GHz 東工大(東京)

グリッド実験環境(続)

	specification of a single node	Grid software	RTT/
	3		distance
Client PC	PIII 1.0GHz, 256MB mem. 100BASE-T NIC	GTK 2.2 Ninf-G 1.1.1	
Blade	PIII 1.4GHz x2 512MB mem. 100BASE-T NIC	GTK 2.2 Ninf-G 1.1.1	0.04ms
PrestoIII	Athlon 1.6GHz x2, 768MB mem. 100BASE-T NIC	GTK 2.4 Ninf-G 1.1.1	1ms 30km
Мр	Athlon 1.6GHz x2 512MB mem. 100BASE-T NIC	GTK 2.4 Ninf-G 1.1.1	20ms 500km
Sdpa	Athlon 2GHz x2, 1024MB mem. 1000BASE-T NIC	GTK 2.4 Ninf-G 1.1.1	14ms 50km

BMI固有值問題

□定義

双線形行列関数 F(x,y) の最大固有値を最小化するベクトル変数 x,y を求める問題.

$$F(x,y) := F_{00} + \sum_{i=1}^{n_x} x_i F_{i0} + \sum_{j=1}^{n_y} y_j F_{0j} + \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} x_i y_j F_{ij}$$

$$F: R^{n_X} \times R^{n_Y} \rightarrow R^{m \times m}$$

$$F_{ij} = F^{T}_{ij} \in R^{m \times m} (i = 0,...,n_x, j = 0,...,n_y)$$

□応用

□制御工学

□ヘリコプター制御、ロボットアーム制御

- **□OR**
 - □大規模問題求解への挑戦

グリッド上でのアプリケーション実行時間

グリッド上での実行時間内訳

PCクラスタ間負荷分散

- **□**supervisor
 - □master(=PCクラスタ)上の負荷(=未処理子問題数)を問い合わせ
 - □アイドル状態のマスタを発見する度に、タスクを再分散.
 - □タスク実行履歴の保存
 - □PCクラスタの性能に応じて分配タスク数を決定.

$$N_{\text{task(i)}} = N_{\text{task(total)}} \frac{T_{\text{task(i)}} N_{\text{workers(i)}}}{\sum_{j} (T_{\text{task(j)}} N_{\text{workers(j)}})}$$

PCクラスタ上でのアイドル時間

P1-P5: $n_x=6$, $n_v=6$, m=24

擬似グリッド実験環境上での実行時間

P2: $n_x=6$, $n_y=6$, m=24

□ 高レイテンシの条件下でも、アプリケーションの性能低下は小さい。→ 階層化の効果

グリッド実験環境

Sdpa

dual Athlon 2GHz 東京電機大(埼玉)

RTT=12ms

Мр

dual Athlon 2.0GHz 徳島大(徳島)

Ninf-G 2.2.0

RTT=28ms

Globus Toolkit 2.4.*

WIDE

SINET

client/ supervisor

LAN

RTT=0.03ms

Blade dual PIII 1.4GHz 東工大(横浜) RTT=6ms

Tsukuba WAN

Prestolli

dual Athlon 1.6GHz 東工大(東京)

まとめ

- ログリッド上での並列分枝限定法アプリケーションの実装と実証実験
 - □階層的マスタ・ワーカ方式による並列化および GridRPC(Ninf-G, Ninf)による実装の有効性を 確認
- □今後の課題
 - □PCクラスタ間負荷分散アルゴリズム, 擬似グリッド テストベッド
 - □耐故障性

Acknowledgments:

- JST さきがけ「情報基盤と利用環境」
- JST ACT-JST コモディティグリッド技術によるテラスケール大規模数理最適化」
- Ninfプロジェクト