Digital Image Processing

Berlin University of Technology (TUB), Computer Vision and Remote Sensing Group Berlin, Germany

Orga

Outlook

- 1. How to detect edges and similar image structures?
 - → Directional gradients (etc.)
- 2. How to use this information to describe an image?
 - → Texture
 - → Textons
- 3. How to use image descriptor in an application?
 - → Image retrieval

(one possible) Motivation

Currently best performing visual system humans have access to

Brodmann area 17 (red) Brodmann area 18 (orange) Brodmann area 19 (yellow)

(one possible) Motivation

Receptive field of neurons

- Auditory, somatosensory, and visual system
- Presence of stimuli change state of neuron

• e.g. retinal ganglion cells

Kolb, Helga. "How the retina works." American Scientist. 91: 28-35. (2003)

(one possible) Motivation

Receptive field of neurons

e.g. simple cells in primary visual cortex of mammals

- Inhibitory and excitatory areas
- Zero activation under diffuse lighting
- Optimal stimulus: oriented edges
- Integration over spatial support

Can be modelled as **convolution** with corresponding filter kernel!

Convolution

$$g(\alpha, \beta) = \sum_{x=1}^{N} \sum_{y=1}^{M} f(x, y) \cdot h(x - \alpha, y - \beta)$$

1. Flip filter kernel (about the filter centre)

2. Shift (re-centre), Multiply and Integrate

Convolution

Time complexity quadratic in terms of kernel size!

Solution: **Linear separability**

$$\begin{bmatrix} a \cdot A & b \cdot A & c \cdot A \\ a \cdot B & b \cdot B & c \cdot B \\ a \cdot C & b \cdot C & c \cdot C \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \end{bmatrix} \cdot \begin{bmatrix} a & b & c \end{bmatrix}$$

The Scientist and Engineer's
Guide to Digital Signal Processing
By Steven W. Smith

0.04 0.25 1.11 3.56 8.20 13.5 16.0 13.5 8.20 3.56 1.11 0.25 0.04

Convolution

Time complexity is quadratic in terms of kernel size!

Solution: **Linear separability**

- 1. Convolve image rows with horizontal filter
- 2. Convolve result columns with vertical filter

Time complexity is <u>linear</u> in terms of kernel size!

- Smoothing leads to blurring
 - edge suppression
 - Local 'Averaging' or 'Integration'

- Edge enhancement: Differentiation
 - The opposite of integration
- Definition in terms of 1D derivatives:

$$\nabla f(x,y) = \begin{vmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{vmatrix}$$

$$\nabla f(x,y) = \begin{vmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{vmatrix}$$

- 2-Element vector for each pixel in the original image
- Gradient magnitude: Rate of change of intensity
 - → Strong edges associated with large magnitude

$$|\nabla f(x,y)| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- Gradient direction: Direction of fastest intensity increase
 - → At right angles to edge in image

$$\phi(f(x,y)) = \tan^{-1}\left(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right)$$

- Directional gradients: Convolution with suitable filters, e.g. G_x and G_y
 - → Image ⊗ G_x → Gradient in x direction
 - → Image ⊗ G_y → Gradient in y direction
- Each pixel is associated with a gradient vector $\mathbf{g} = (g_x, g_v)^T$

• Gradient magnitude:
$$|\mathbf{g}| = \sqrt{g_x^2 + g_y^2}$$

Gradient direction:
$$heta = an^{-1} \left(rac{g_y}{g_x}
ight)$$

→ Direction in which intensity increases quickest

Direct Computation of Derivatives: Central Differencing

Simple definition of derivatives from Taylor series:

$$\frac{\partial}{\partial x} f(x, y) = \frac{1}{2} (f(x+1, y) - f(x-1, y))$$
$$\frac{\partial}{\partial y} f(x, y) = \frac{1}{2} (f(x, y+1) - f(x, y-1))$$

- → Average of direct left/right differences!
- Problem: Very noise-sensitive
 - → Small spatial support
 - → In practice: Consider larger local neighbourhood

The Sobel Operator: First Order Derivatives

A simple 'recipe' for calculating image gradients

$$\frac{\partial}{\partial x} f(x, y) = f(x+1, y-1) + 2f(x+1, y) + f(x+1, y+1)$$
$$-f(x-1, y-1) - 2f(x-1, y) - f(x-1, y+1)$$
$$\frac{\partial}{\partial y} f(x, y) = \dots$$

Simpler formulation in terms of convolution

Example: Edge Detection by Sobel Operator

Each pixel intensity is replaced by the local weighted sum...

Example: Edge Detection by Sobel Operator

- Commonly Used: Composition of differential operator and low-pass
- E.g. derivatives of the normal distribution:

$$G(x,y;\sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$G_x(x,y) = \frac{\partial}{\partial x} G(x,y;\sigma) = \frac{-x}{2\pi\sigma^4} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$G_y(x,y) = \frac{\partial}{\partial y} G(x,y;\sigma) = \frac{-y}{2\pi\sigma^4} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

- σ: Scale and noise sensitivity
 - → σ small: Small structures discernable, noise/texture preserved
 - → σ large: Large structures emphasized, noise suppressed

|g|

 g_y

|g|

Texture

Texture in images:

Systematic spatial intensity variation

Texture

Spatial distribution is important,

but is lost if only radiometric information is taken into account.

Texture

Texture measures

- Local statistics
 - → Properties of local intensity distribution
- Histogram of Oriented Gradients (HoG)
 - → Properties of local gradient distribution
- Gray-Level Co-Occurrence Matrices (GLCM)
 - → Probability of intensity-pairs in a given spatial relation
- Textons

Filterbank

The Leung-Malik Filter Bank

T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 43(1):29-44, June 2001.

The Schmid (S) Filter Bank

C. Schmid. Constructing models for content-based image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 39-45, 2001.

MR8 - Filterbank

- Gaussian
 - One scale
- Laplacian of Gaussian
 - One scale
- 1st Derivative of Gaussian
 - Three scales
 - Six orientations
- 2rd Derivative of Gaussian
 - Three scales
 - Six orienations
- → Maximum response over orientation!!

Analogy with visual cortex

Receptive fiel of on-off-cell in visual cortex of mammals

- Excitatory/inhibitory center, inhibitory/excitatory sourrounding
- Zero activation under diffuse lighting
- Optimal impulse: small oriented light bar
- Other configurations possible

Gaussian function

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-x^2 + y^2}{2\sigma^2}\right)$$

Fst derivative

$$G_x(x,y) = \frac{\partial}{\partial x} G(x,y) = -\frac{x}{\sigma^2} G(x,y)$$

Snd derivative

$$G_{xx}(x,y) = \frac{\partial}{\partial x^2} G(x,y) = -\frac{1}{\sigma^2} \left(\frac{x^2}{\sigma^2} - 1 \right) G(x,y)$$

Mexican hat (DoG)

$$M(x,y)=G(x,y;\sigma_1)-G(x,y;\sigma_2), \qquad \sigma_1<\sigma_2$$

Linear separable when parallel to image axis! Rotated versions?

→ Adjust pixel access during spatial convolution:

$$x = round(i + r * cos(\phi) - s * sin(\phi))$$
$$y = round(j + r * sin(\phi) + s * cos(\phi))$$

Clustering

- MR8-Filterbank: Eight filter-responses for each pixel
- Clustering in eight-dimensional space

Clustering

- MR8-Filterbank: Eight filter-responses for each pixel
- Clustering in eight-dimensional space
- K-Means clustering
 - Converges to K clusters (number of clusters pre-defined)
 - 0. Given: Initial (sub-optimal) parameters
 - 1. Compute membership of datapoints i to cluster j
 - 2. Assign data point i to the most likeliy cluster
 - 3. Cluster parameters are trivial to compute from assignment
 - → Mean value of all features in a cluster
 - 4. Iterate steps 1 to 3 until all assignments remain unchanged

Clustering

- MR8-Filterbank: Eight filter-responses for each pixel
- Clustering in eight-dimensional space
- K-Means clustering
 - Converges to K clusters (number of clusters pre-defined)
 - Cluster centers are prototypes of dominant filter-responses
 - → Textons

- Probability of occurrence of specific textons in specific area
- Efficient and robust texture descriptor
- Applications:
 - Texture recognition
 - Scene categorization
 - Segmentation
 - Object detection
 - Image Retrieval

Image database

Training:

Image database

Image database

Training:

1. Convolve DB with filterbank

Image database

Training:

- 1. Convolve DB with filterbank
- 2. Clustering

Image database

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

Application:

1. Convolve query with filterbank

Query image

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

- 1. Convolve query with filterbank
- 2. Calculate texton image

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

- 1. Convolve query with filterbank
- 2. Calculate texton image
- 3. Calculate texton histogram

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

- 1. Convolve query with filterbank
- 2. Calculate texton image
- 3. Calculate texton histogram
- 4. Compare histograms

Training:

- 1. Convolve DB with filterbank
- 2. Clustering
- 3. Calculate texton images
- 4. Calculate texton histogram

- 1. Convolve query with filterbank
- 2. Calculate texton image
- 3. Calculate texton histogram
- 4. Compare histograms

Given

main(int argc, char** argv)

- argv[1] == "generate"
 - → loads image database
 - → extracts textons
 - → extracts texon-based image descriptors for images in database
 - → saves image descriptors and textons
- argv[1] == "find"
 - → loads textons and image descriptors of database
 - → loads image queries (and distorts them)
 - → calculates query image descriptors
 - → compares query with database descriptors
 - → gives image ID of the most similar one
- argv[2] == path to init file
 - → used to define all necessary parameters (read function provided)

Given

- int loadDB(vector<Mat>& db, string fname, int numberOfImages)
 - db: contain images after loading
 - fname: file containing all image paths
 - numberOfImages: maximal number of images to be loaded
 - → Loads database
 - → DB-file: one path per line
 - → Suitable database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

- void distortQuery(vector<Mat>& queries)
 - queries: query images
 - → Flips the images and adds some noise

Given

void clustering(vector<Mat>& filterResp, Mat& textons,
 int numberOfDataPoints)

• filterResp: filterresponse images

• textons: cluster centers, ie. Textons

• numberOfDataPoints: number of randomly sampled data points (speed)

→ Applies kMeans-clustering to filter responses in order to find textons

→ textons is a N x 8 matrix, where N is the number of clusters, ie. textons

- void createKernel1D(Mat& kernel, int kSize, string name)
 - will contain computed (1D) kernel • kernel:
 - kSize: size (length) of the kernel
 - specifies which kernel shall be computed name:
 - → Computes gaussian, fst-dev gaussian, snd-dev gaussian, or mexican hat kernel
 - → name = "gaussian", "gaussianDevX", "gaussianDevXX", "mexHat"

Gaussian function

$$G(x,y) = \frac{1}{2\pi \sigma^2} \exp\left(\frac{-x^2 + y^2}{2\sigma^2}\right)$$

Fst derivative

$$G_x(x,y) = \frac{\partial}{\partial x} G(x,y) = -\frac{x}{\sigma^2} G(x,y)$$

Snd derivative

$$G_{xx}(x,y) = \frac{\partial}{\partial x^2} G(x,y) = -\frac{1}{\sigma^2} \left(\frac{x^2}{\sigma^2} - 1 \right) G(x,y)$$

Mexican hat (DoG)
$$M(x, y) = G(x, y; \sigma_1) - G(x, y; \sigma_2), \quad \sigma_1 < \sigma_2$$

$$\sigma_1 < \sigma_2$$

- void spatialConvolution(Mat& in, Mat& out, Mat& kernel, double phi)
 - in: input image
 - out: output image
 - kernel: convolution kernel
 - Phi: orientation of kernel
 - Computes convolution with rotated version of base kernel
 - → NOTE: 1D stays 1D after rotation (just access indices are changed)

$$x = round(i + r * cos(\phi) - s * sin(\phi))$$

- $\rightarrow y = round(j + r * sin(\phi) + s * cos(\phi))$
- → "Horizontal" and "Vertical" separated kernels differ by 90°!

- void applyFilterbank(vector<Mat>& db, vector<Mat>& filterResp)
 - db: image database
 - filterResp: filter responses of MR8-filterbank
 - → Applies MR8-filterbank to all images
 - → Takes maximum over orientation for all oriented kernel (1st and 2rd dev. of gaussian)
 - → Uses linear separable convolution
 - → filterResp[i]-filterResp[i+7] contains the eight filter responses of image i
 - → eg. 10 images in database result in 80 filter responses

- void getTextonImages(vector<Mat>& filterResp, Mat& textons, vector<Mat>& textonImages)
 - filterResp: filter responses
 - textons: textons
 - textonImages: the calculated texton images
 - → Computes the distance of each filter response vector to all textons
 - → filterResp[i]-filterResp[i+7] contain filterresponses of image i
 - → textonImages[i]-textonImages[i+N-1] contain N texton images of image i
 - → textons is a N x 8 matrix, where N is the number of textons
 - → For each image i calculate

$$textonImage[i+t] = \sqrt{\sum_{j=1}^{8} (filterResp[i+j] - texton[t,j])^{2}}$$

- void calcTextonHistograms(vector<Mat>& textonImages,
 Mat& textonHistogram)
 - textonImages: calculated texton images
 - textonHistogram: matrix texton histograms
 - → Computes the texton histogram of texton images
 - → textonImages[i]-textonImages[i+N-1] contains N texton images of image I
 - → Texton histogram h of image i:

$$h_{i}(t) = \frac{1}{Z} \cdot \sum_{x,y} textonImages[t](x,y)$$
$$Z = \sum_{t} h_{i}(t)$$

- void findQuery(Mat& textonHistogram, Mat& db)
 - textonHistogram: image descriptors of query images (one per row)
 - db: image descriptors of database images (one per row)
 - → Computes distance for each query image and each image in database as euclidian distance of image descriptors (ie. texton histograms)
 - → Prints index of image with minimal distance

- Mandatory:
 - Implement missing functionionality
 - State which database you used
 - Briefly discuss the performance of the implemented system
 - Easy/hard queries?
 - What problems do you expect in a real application scenario?
 - What are possible improvements?

- Optional
 - Implement improvements...

Mid-term Exam

- Friday, <u>01.06.2012</u>, <u>10:15pm</u>, <u>E020</u>
- In place of an exercise
- Duration: ca. 30 min
- No grade, but pass is necessary to take part at the final exam
- Topics from lecture and exercise
- Questions in English, answers in English or German
- No books, no calculator, no script, no paper, ...