CS 5135/6035 Learning Probabilistic Models

Exercise Questions for Lecture 7 Parameter estimation, Maximum Likelihood Estimation

Gowtham Atluri

2/4/2020

Questions

- 1. The lifetime (in years) of a certain brand of light bulbs, l, follows an exponential distribution ($f(x) = \lambda e^{-\lambda x}$) with (an unknown) parameter λ . A sample of five bulbs were tested and the lifetimes were found to be 2, 3, 1, 3, and 4 years, respectively. [4+2+4+2 points]
 - a. Write the likelihood function.
 - b. Write the log-likelihood function.
 - c. Derive the equation for estimating λ using MLE?
 - d. What is the estimate $\hat{\lambda}_{MLE}$ for the sample given above?
- 2. A particular gene occurs as one of two alleles ('A' and 'a'), where allele 'A' has frequency θ in the population. That is, a random copy of the gene is 'A' with probability θ and 'a' with probability 1θ . Since a diploid genotype consists of two genes, the probability of each genotype is given by: [6+2+3+2 points]

genotype	AA	Aa	aa
probability	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

When a random sample of 100 people are tested, 'AA' genotype was found in 20 people, 'Aa' genotype was found in 10 people, and 'aa' genotype was found in 70 people.

- a. Write the likelihood function.
- b. Write the log-likelihood function.
- c. Derive the equation for estimating θ using MLE?
- d. What is the estimate $\hat{\theta}_{MLE}$ for the sample given above?

Bonus Question

1. Derive equations for estimating parameters of a Gamma distribution, assuming n samples $\{x_1, x_2, \ldots, x_n\}$ are sampled (i.i.d.) from it.