Министерство науки и высшего образования Российской Федерации Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК "Информатика и управление"

КАФЕДРА ИУК6 "Защита информации"

ПРАКТИЧЕСКАЯ РАБОТА №5

ДИСЦИПЛИНА: «Схемотехника дискретных устройств»

TEMA: «Регистры»

Выполнил: студент гр. ИУК5-42Б

Ли Р. В.

(подпись)

Проверил:

Корнеев А. А.

(подпись)

Дата сдачи (защиты)

27.05.24

Результаты сдачи (защиты):

Количество рейтинговых баллов:

3aymeno

Цель работы: ознакомление с устройством и функционированием регистров и регистровой памяти; испытание интегрального универсального регистра сдвига.

Задание 1. Собрать на рабочем поле среды Micro-Cap 12 схему для испытания универсального регистра сдвига и установить в диалоговых окнах компонентов их параметры или режимы работы.

Рисунок 1 - Логическая схема универсального регистра сдвига

Задание 2. Составить план исследования параллельного регистра сдвига, заполнив ячейки памяти генератора слова 16-Bit Digital Stimulus на основе правил функционирования регистра 74LS194A.

Рисунок 2 - Временные диаграммы

Рисунок 3 - Ячейки памяти генератора слова

Задание 3. Собрать на рабочем поле Micro-Cap 12 схему для испытания последовательного регистра сдвига и установить в диалоговых окнах компонентов их параметры или режимы работы.

Рисунок 4 - Логическая схема последовательного регистра сдвига

Рисунок 5 - Временные диаграммы

Задание 4. Составить план исследования последовательного регистра 74LS194A, заполнив ячейки памяти генератора 16-Bit Digital Stimulus произвольными (или по заданию преподавателя) 4-разрядными кодовыми комбинациями, вводимыми последовательно в регистр A.

Рисунок 6 - Логическая схема последовательного регистра сдвига

Рисунок 7 - Ячейки памяти генератора 16-Bit Digital Stimulus

Рисунок 8 - Временные диаграммы

Вывод: в ходе лабораторной работы ознакомились с устройством и функционированием регистров и регистровой памяти; испытали интегральный универсальный регистр сдвига.

ТЕСТОВЫЕ ЗАДАНИЯ К РАБОТЕ 5

- 1. Укажите функции, которые в общем случае может выполнять регистр:
 - обнуление (очистку) хранимой информации, запись входной информации в последовательном или в параллельном коде;
 - сравнение двух бинарных чисел одинаковой разрядности с целью определения их равенства или неравенства;
 - преобразование информации путем ее сдвига под воздействием тактовых импульсов;

- хранение информации, ее сдвиг вправо и влево, выдачу хранимой информации в последовательном или в параллельном коде;
- 2. В параллельном регистре с приходом каждого тактового импульса информация на выходах поразрядно сдвигается в направлении от выхода $\mathbf{Q}\mathbf{D}$ к выходу $\mathbf{Q}\mathbf{A}$.

Укажите, как называют такой регистр:

регистр прямого сдвига; • регистр обратного сдвига;

• реверсивный регистр;

• регистр хранения.

3. Укажите, какие регистры выполняют со статическим управлением:

• последовательные;

• параллельные;

последовательнопараллельные;

• параллельно-последовательные.

4. Укажите, при каких уровнях сигналов на управляющих входах SO и S1 информационные входы реверсивного регистра 74LS194A недоступны:

S0 = 0, S1 = 0;

S0 = 0, S1 = 1;

S0 = 1, S1 = 0;

S0 = 1, S1 = 1.

5. Укажите, в какой разряд вводится информация последовательного регистра **74LS194A** при S0 = 1, S1 = 0 на управляющих входах и сигналах $SR = 1_{M} CLR = 1$

в разряд \mathbf{D} ;

в разряд С;

в разряд \mathbf{B} ;

в разряд A.

6. Укажите, при каких уровнях управляющих сигналов S0 и S1 разрешена запись информации в параллельный регистр 74LS194A:

S0 = 0, S1 = 0;

S0 = 0, S1 = 1;

S0 = 1, S1 = 0;

S0 = 1, S1 = 1.

7. Укажите, разрешено ли последовательное перемещение сигналов в триггерной подсистеме параллельного регистра 74LS194A во время записи информации:

• Да; • <mark>Нет;</mark>

- 8. Укажите, сколько **входов** имеет последовательный регистр с динамическим управлением:
 - один информационный вход;
 - два: один информационный вход и вход для тактовых импульсов (импульсов сдвига);
 - три: один информационный, вход для тактовых импульсов и установочный вход;
 - четыре: два информационных входа, вход для тактовых импульсов и установочный вход.
- 9. Укажите, чем отличается **динамическое управление** регистрами от статического управления:
 - при динамическом управлении запоминание сигналов, действующих на информационных входах регистра, происходит во входных емкостях МДП-транзисторов в момент изменения значения сигнала на входе синхронизации, а в статических регистрах, построенных, например, на *RS*-триггерах, сигналы действуют в момент их поступления на информационные входы.