Векторно произведение

Работим в геометричното пространство, като считаме че са фиксирани единична отсечка за измерване на дължини и ориентация.

Определение 1 Векторно произведение на векторите u v v е векторът $u \times v$, дефиниран по следния начин:

- а) Ако u и v са колинеарни, то $u \times v = 0$.
- б) Ако u и v не са колинеарни, то $u \times v$ е единственият вектор, който удовлетворява условията:

```
|u \times v| = |u||v|\sin \sphericalangle (u,v), u \times v е перпендикулярен на u и v, (u,v,u \times v) е положително ориентиран базис (казва се още \partialясна тройка).
```

(Дефиницията е коректна, тоест в б) наистина съществува единствен вектор удовлетворяващ трите условия.)

Забележка 1 Друго означение за векторното произведение е \wedge , тоест $u \wedge v$.

Забележка 2 Ако $u \neq 0$, $v \neq 0$ и $u \parallel v$, то $\sphericalangle(u,v) = 0$ или π и следователно $\sin \sphericalangle(u,v) = 0$. Така че и в тоя случай е в сила равенството $|u \times v| = |u| |v| \sin \sphericalangle(u,v)$. Ако u = 0 или v = 0, то $\sphericalangle(u,v)$ не е дефиниран. Но тъй като дължината на нулевия вектор е 0, то в тоя случай $|u \times v| = 0 = |u| |v| \sin \varphi$ каквото и да е φ . Следователно, ако се уговорим да считаме, че нулевият вектор и другите вектори сключват произволен ъгъл, то тогава $|u \times v| = |u| |v| \sin \sphericalangle(u,v)$ за всички вектори u и v.

При същата уговорка нулевият вектор е перпендикулярен на всеки вектор, така че и второто условие в б) е изпълнено при произволни u и v (тоест и при $u \parallel v$).

Но третото условие въобще няма смисъл при $u \parallel v$, защото нулевият вектор не може да бъде елемент на базис.

Теорема 1 (критерий за колинеарност на вектори)

Векторите u u v са колинеарн $u \Leftrightarrow u \times v = 0$.

Теорема 2 Ако векторите и и v не са колинеарни, то лицето на успоредника, построен върху u u v, e $|u \times v|$, а лицето на триъгълника, построен върху u u v, e $\frac{1}{2}|u \times v|$.

Теорема 3 Нека $e=(e_1,e_2,e_3)$ е положително ориентиран ортонормиран базис на пространството на геометричните вектори и спрямо него векторите и и v имат координати $u(x_1,x_2,x_3),\ v(y_1,y_2,y_3).$ Тогава координатите на $u\times v$ спрямо e са

координати
$$u(x_1, x_2, x_3)$$
, $v(y_1, y_2, y_3)$. Тогава координатите на $u \times v$ спрямо e са $u \times v \left(\left| \begin{array}{ccc} x_2 & y_2 \\ x_3 & y_3 \end{array} \right|, \left| \begin{array}{ccc} x_3 & y_3 \\ x_1 & y_1 \end{array} \right|, \left| \begin{array}{ccc} x_1 & y_1 \\ x_2 & y_2 \end{array} \right| \right)$, тоест $u \times v(x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1)$.

Теорема 4 Векторното произведение има следните свойства:

1.
$$v \times u = -u \times v$$
 (антисиметричност)

2.
$$(u+v) \times w = u \times w + v \times w$$
, $u \times (v+w) = u \times v + u \times w$ (адитивност по двата аргумента)

3.
$$(\lambda u) \times v = \lambda(u \times v), \quad u \times (\lambda v) = \lambda(u \times v), \quad$$
където $\lambda \in \mathbb{R}$ (хомогенност по двата аргумента)

Забележка 3 Свойствата 2. и 3. в горната теорема заедно са еквивалентни на свойството

$$(\lambda u + \mu v) \times w = \lambda(u \times w) + \mu(v \times w), \quad u \times (\lambda v + \mu w) = \lambda(u \times v) + \mu(u \times w)$$
 (линейност по двата аргумента)

тоест векторното произведение е билинейно.