IEEE-754

Junseo Shin April 11, 2024

Outline

- Introduction
- Floating Point Arithmetic
- Simulations and Examples

Introduction

Should We Trust Computers?

- The error in floating point as "noise" in the data.
- The computer automatically "preprocesses" the data in a way that is not always what you want.

How does a computer operate on numbers?

178956970 - 178957034

How does a computer operate on numbers?

178956970 - 178957034

How does a computer operate on numbers?

178956970 - 178957034

Adding/Subtracting two 32 bit numbers

Adding/Subtracting two 32 bit numbers

$$=-2^6=-64$$

Multiplying two binary numbers

$$170 \times 170 = 28900$$

Multiplying two binary numbers

1 1 1

0 0 1

 $170 \times 170 = 28900$

0

Dividing Two Binary numbers

```
\begin{array}{r}
10101010 \\
10101010) 11110000111100100 \\
\underline{10101010} \\
00110111111 \\
\underline{10101010} \\
001101010 \\
\underline{10101010} \\
0010101010 \\
\underline{10101010} \\
0010101010 \\
\underline{10101010} \\
000000000
\end{array}
```

Problems with Binary Integers

No way to represent rational numbers $\,$

Problems with Binary Integers

No way to represent rational numbers

• Division is not accurate

$$3/2 = 1.5 \rightarrow 101/10 = 1.1/ = 1$$

Problems with Binary Integers

No way to represent rational numbers

• Division is not accurate

$$3/2 = 1.5 \rightarrow 101/10 = 1.1 = 1$$

• Real-Valued Functions (e.g. $\sin(x)$, e^x , \sqrt{x})

IEEE-754: Floating Point

Arithmetic

From Decimal to Floating Point

Scientific Notation: $n \times 10^m$

- $1234 = 1.234 \times 10^3$
- $0.01234 = 1.234 \times 10^{-2}$

From Decimal to Floating Point

Scientific Notation: $n \times 10^m$

- $1234 = 1.234 \times 10^3$
- $0.01234 = 1.234 \times 10^{-2}$

Floating Point: (sign, significand, exponent)

$$(-1)^s \times m \times 2^e$$

Converting Decimal to Floating Point

Decimal
$$o$$
 Binary o Floating Point
$$7.45 o 7 + 0.45 \\ o 111.01110011001100110011001100110011 \dots$$

1 bit for sign, 8 bits for exponent, 23 bits for significand

Converting Decimal to Floating Point

 $\mathsf{Decimal} \to \mathsf{Binary} \to \mathsf{Floating} \; \mathsf{Point}$

$$7.45 \rightarrow 7 + 0.45 \\ \rightarrow 111.01110011001100110011001100110011 \dots$$

1 bit for sign, 8 bits for exponent, 23 bits for significand

$$(-1)^0 \times 2^{129-127} \times 1.1101 \ 1100 \ 1100 \ 1100 \ 1100$$

Error in Floating Point

Machine Epsilon

$$\epsilon = 2^{-(p-1)}$$

- Single Precision: p = 24: $\epsilon = 2^{-23} \approx 1.19 \times 10^{-7}$
 - $1+\epsilon = 1.0000\ 0000\ 0000\ 0000\ 0001$
- Double Precision: p=53: $\epsilon=2^{-52}\approx 2.22\times 10^{-16}$

Simulations and Examples

Python Example

```
python3
>>> 0.1 + 0.2
0.300000000000000004
>>> 0.3 / 0.10
2.999999999999996
```

Simulating Larger Precision

GNU Multiple Precision Arithmetic Library (GNU MPFR)

- Used in Mathmatica
- Follows IEEE-754 standard but with arbitrary precision
- Does this solve the problem?

Stirling's Approximation vs Factorial

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Stirling's Approximation vs Factorial

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Python Default (Float64, p = 53) vs MPFR (p = 100)

- $n = 171 \rightarrow \text{Overflow in Float64}$
- At n = 100, Fractional Error of 0.000833 for both!
- Fractional Error of 10^{-6} at n = 83334

Float64 vs MPFR

Patriot Defense Missile Failure

- February 25, 1991: Patriot missile defense system failed to intercept SCUD missile
- 28 soldiers died

Simulating Precision Loss

Converting Integer to 24 bit Floating Point

- \bullet Integer to 24 bit floating point: 1 sign bit, 8 exponent bits, 15 + 1 significand bits
- ullet 100 hours or 360,000 seconds o 0 10010001 0101111111001000

$$(-1)^0 \times 2^{145-127} \times 1.011111111001000 = 360,000$$

 $\bullet \ \ 360{,}010 \ seconds \rightarrow 360{,}000 \ seconds \\$

Simulating Precision Loss

• Clock Speed: 10 ticks per second

 $0.1 \rightarrow 0.0999755859375$

Calculated time: 359912.109375

• Machine Epsilon $\epsilon = 2^{-20}$; Propogated Error $= \epsilon *$ seconds

Government Report

Hours	Seconds	Calculated Time (Seconds)	Inaccuracy (Seconds)	Approximate Shift in Range Gate (Meters)
0	0	0	0	0
1	3600	3599.9966	.0034	7
8	28800	28799.9725	.0275	55
20 ^a	72000	71999.9313	.0687	137
48	172800	172799.8352	.1648	330
72	259200	259199.7528	.2472	494
100 ^b	360000	359999.6667	.3433	687

^aContinuous operation exceeding about 20 hours—target outside range gate

[3]

^bAlpha Battery ran continuously for about 100 hours

Takehomes

- You don't need to open a black box to understand where it fails
- Think about the limitations of a system. Just because it works in one instance doesn't mean it will work in another.
- Measure noise before you measure signal

Reference

leee standard for floating-point arithmetic.

IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1-84, 2019.

David Goldberg.

What every computer scientist should know about floating-point arithmetic.

ACM Computing Surveys, 23:5–48, Mar 1991.

[2] [1]

- https://floating-point-gui.de/
- Patriot Missile Defense Software Problem Led to System Failure at Dhahran, Saudi Arabia [3]
- Floating Point Converter

xkcd

24 Bit Floating Point

$$e^{\pi} - \pi = 19.9970703125$$

https://xkcd.com/217/