MOTION PLANNING FOR AUTONOMOUS VEHICLES

VARIATION OF CALCULUS

GEESARA KULATHUNGA

FEBRUARY 18, 2023

VARIATION OF CALCULUS

CONTENTS

- Optimal control problem
- Extremum
- Convexity
- Linearization of function up to the second variation
- Incremental of a function
- Incremental of a functional
- Fixed value problem
- Free terminal point problem
- Fix point problem $(t_f \text{ is fixed and } x(t_f) \text{ is free})$
- Fix point problem $(t_f \text{ is free and } x(t_f) \text{ is fixed})$
- Free endpoint problem: if t_f and $x(t_f)$ are uncorrelated
- Free endpoint problem: if t_f and $x(t_f)$ are depended on each other

To find a control $u^* \in U$ which causes the system $\dot{x}(t) = f(t, x(t), u(t))$ to follow a trajectory $x^* \in X$ that minimize the given objective function

$$J := h(t, x(t_f)) + \int_{t_0}^{t_f} g(u(t), x(t), t) dt$$
 (1)

Different types of optimal control problems.

■ Minimum-time problem from a given arbitrary initial state to a specified target set in a minimum time

$$\underset{t}{\mathsf{minimize}} \quad \int_{t_0}^{t_f} dt = t_f - t_0 = t^*,$$

where $x(t_0), t_0$ is the initial state at time t_0 , and $x(t_f), t_f$ is the final state at time t_f .

■ Terminal control problem minimize the residual between the system's final state and its desired state

$$\underset{\mathbf{x}}{\text{minimize}} \quad J = \sum_{i=0}^{n} \left(x_i(t_f) - x_{d_i}(t_f) \right)^2,$$

where J can be formulated in the following ways as well:

$$\begin{split} J &= (\mathbf{x}(t_f) - \mathbf{x}_d(t_f))^\top (\mathbf{x}(t_f) - \mathbf{x}_d(t_f)) \\ &= \left\| \mathbf{x}(t_f) - \mathbf{x}_d(t_f) \right\|_2 = (\mathbf{x}(t_f) - \mathbf{x}_d(t_f))^\top H(\mathbf{x}(t_f) - \mathbf{x}_d(t_f)), \end{split}$$

where $H \ge 0$ is a real positive semi-definite matrix. For a given matrix is positive semi-definite if for all vectors z, $z^T H z \ge 0$

 Minimum-control effect problems from a given arbitrary initial state to a specified target set in a minimum control effect

, where each β_i , denoted weighting factor of the corresponding control.

 Tracking problem minimize the residual between the system's current state and its desired state

where Q(t),H are positive semi-definite matrices $\forall t \in [t_0,t_f]$ and R(t) is a positive definite matrix $\forall t \in [t_0,t_f]$

Regulator problem minimize the residual between the system's current state and the final desired state

where Q(t),H are positive semi-definite matrices $\forall t \in [t_0,t_f]$ and R(t) is a positive definite matrix $\forall t \in [t_0,t_f]$

EXTREMUM

Local minimum

$$x(t^*) \le x(t^* + \delta t), |\delta t| < \epsilon, \exists \epsilon > 0$$

with δt perturbation. **Global minimum**

Stobat IIIIIIIIIIIII

$$x(t^*) \le x(t^* + \delta t), |\delta t| < \epsilon, \exists \epsilon > 0$$

where $x(\cdot)$ should be **smooth** (exits 1st and 2nd derivatives) and convex

If there is a **discontinuity** in the **first derivative** of a function, it means that it has a **sharp corner**, i.e., a place where there is an abrupt change in direction, and if not **function** is **continuous**. If there is a **discontinuity** in **second derivative**, it means there is an **abrupt change** in **curvature** (or radius of curvature)

CONVEX SET AND CONVEX FUNCTIONS

A set $\Omega \subseteq \mathbb{R}^n$ is convex if and only if the line segment between any two points in Ω lies in Ω , i.e., $\forall x_1, x_2 \Omega$ and $0 \le \lambda \le 1$

$$\lambda x_1 + (1 - \lambda)x_2 \in \Omega \tag{2}$$

 $\lambda x_1 + (1 - \lambda)x_2$, $\lambda \in [0, 1]$ is called convex combination of x_1 and x_2 . This can be generalized up to n points $\lambda_1 x_1 + ... + \lambda_n x_n$, $\lambda_1 + ... + \lambda_n = 1$

Figure: Some convex and nonconvex sets [1]

[1]. Boyd, S., Boyd, S. P., Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

CONVEXITY

$$x(\alpha t_1 + (1 - \alpha)t_2) \le \alpha x(t_1) + (1 - \alpha)x(t_2), \alpha \in [0, 1]$$
(3)

CONVEXITY

Check the **Hessian matrix** of the function. If the matrix is **Positive-definite** then the function is **strictly convex**, Positive **semi-definite** then the function is **convex**.

$$\operatorname{Hess} f_{p}(\mathbf{v}) = \begin{pmatrix} v_{1} & \cdots & v_{n} \end{pmatrix} \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}.$$

For the determinant, $|\text{Hess } f_p|$.

Example 01

Calculate the Hessian matrix at the point (4,2) of the following multivariable function and decide it is a convex function or not

$$f(x,y) = y^4 + x^4 + 3x^2 + 4y^2 - 4xy - 5y + 8$$

CONVEXITY

A strictly convex function will always take a unique minimum. For a convex function which is not strictly convex the minimum needs not to be unique

Consider the following function

$$f(x) = \begin{cases} -x - 4, & \text{if } x \le -4 \\ 0, & \text{if } -4 < x < 4 \\ x - 4, & \text{if } x \ge 4 \end{cases}$$

f is convex because the first inequality above holds. However it is not strictly convex because for x=-2 and y=2 the inequality does not hold strictly.

LOCAL MINIMUM OF A FUNCTION

Consider a local minimum of $x(t) = e^{0.2 \cdot t} \cdot sin(t)$

Use CasADi https://web.casadi.org/toolbox to solve this

LOCAL MINIMUM OF A FUNCTION

Consider a local minimum of $x(t) = e^{0.2 \cdot t} \cdot \sin(t)$ s.t. $t \ge 0, t \le 4\pi$

Use CasADi https://web.casadi.org/toolbox to solve this

LINEARIZATION OF FUNCTION UP TO THE SECOND VARIATION

Consider

$$x(t) = f(t) = 0.7t^3 + 3t^2 + t + 9$$

Taylor series expansion around local minimum or maximum, e.g., $t = t^*$, for a function

$$f(t^* + \delta t) = f(t^*) + \frac{\partial f(t)}{\partial t} \Big|_{t=t^*} \delta t$$
$$+ \frac{1}{2} \frac{\partial^2 f(t)}{\partial t^2} \Big|_{t=t^*} (\delta t)^2 + H.O.C$$
(4)

■ Incremental of a function

$$\Delta f = \delta f(t, \delta t) = f(t + \delta t) - f(t) \tag{5}$$

Incremental of a function

$$\Delta f = \delta f(t, \delta t) = f(t + \delta t) - f(t) \tag{5}$$

■ Incremental of a function around an extremum, e.g., $t = t^*$,

$$\Delta f = \delta f(t^*, \delta t) = f(t^* + \delta t) - f(t^*)$$

$$= f(t^*) + \frac{\partial f(t)}{\partial t} \Big|_{t=t^*} \delta t + \underbrace{\frac{1}{2} \frac{\partial^2 f(t)}{\partial t^2} \Big|_{t=t^*} (\delta t)^2 + \dots}_{H.O.T} - f(t^*) = \frac{\partial f(t^*)}{\partial t} \delta t,$$
(6)

where Δf is the differential of a function at t^* , $\dot{f}(t^*)$ is the derivative or slope of f at t^* .

The first order approximation Δf to increment δt

The f(t) is said to have a local optimal at point t^* , if there is a positive parameter ϵ that satisfy $|t-t^*| < \epsilon$, also increment of f(t) has the same sign (positive or negative)

- $\Delta f = f(t) f(t^*) \ge 0$ then, $f(t^*)$ is a local minimum
- $\Delta f = f(t) f(t^*) \le 0$ then, $f(t^*)$ is a local maximum

Hence, **necessary condition** for optimal of a function $\frac{\partial f(t)}{\partial t}\Big|_{t=t^*}=0$, which $f(t^*)$ is called **critical point or stationary point**, and the **sufficient condition**

- $\blacksquare \frac{\partial^2 f(t)}{\partial t^2}\Big|_{t=t^*} > 0$ then, $f(t^*)$ is a local minimum
- $\blacksquare \frac{\partial^2 f(t)}{\partial t^2}\Big|_{t=t^*} < 0$ then, $f(t^*)$ is a local maximum

Consider $x(t) = t^4$, Only the **fourth derivative** is **non-zero**.

In the case of higher order $t \in \mathbb{R}^n$, there are a few approaches **Approach 01**;

$$\frac{\partial f(t^* + d \cdot \delta t)}{\partial \delta t} = \sum_{i=1}^{n} \frac{\partial f(t^* + d \cdot \delta t)}{\partial t_i} \cdot d_i = \left(\Delta f(t^* + d \cdot \delta t)\right)^{\top} \cdot d$$

 $d \in \mathbb{R}^n$, where **d** is arbitrary direction but fixed. Hence, the first-order necessary condition: $\left(\Delta f(t^*)\right) = 0, \delta t = 0$, where the gradient as a column vector $\Delta f = \langle \frac{\partial f}{\partial t_1}, ..., \frac{\partial f}{\partial t_n}^\top \rangle$. The gradient is the transpose derivatives.

$$\frac{\partial^2 f(t^* + d \cdot \delta t)}{\partial \delta t^2} = \Sigma_{i=1}^n \Sigma_{j=1}^n \frac{\partial^2 f(t^* + d \cdot \delta t)}{\partial t_i \partial t_j} \cdot d_i d_j = d^\top \cdot \underbrace{\left(\Delta^2 f(t^* + d \cdot \delta t)\right)^\top}_{\text{Hessian}} \cdot d$$

the **second-order necessary condition** $d^{\top} \Big(\Delta^2 f(t^*) \Big) d \ge 0, \delta t = 0$, or $\Delta^2 f(t^*) > 0$ or **eigen values** λ must be higher than zero, namely **positive definite matrix** $\lambda : \Big(\Delta^2 f(t^*) \Big) > 0$

Approach 02; $t^* \Rightarrow t^* + d, d \in \mathbb{R}^n$, where d for all the directions Consider $f(x,y) = x^2 + y^2$ calculate its Hessian and check it has a local minimum.

INCREMENTAL OF A FUNCTIONAL (GRADIENT-BASED FIRST ORDER CONDITIONS)

A functional is simply a function that maps to \mathbb{R} . A function y(t) takes as input a number t and returns a number. A functional F(y) takes as input a function y(t) and returns a number.

$$\Delta J = \Delta J(x(t), \delta x(t)) = J(x(t) + \delta x(t)) - J(x(t))$$

$$= J(x(t)) + \frac{\partial J}{\partial x} \delta x(t) + \frac{1}{2!} \frac{\partial^2 J}{\partial \delta x^2} (\delta x(t))^2 + \underbrace{H.O.T}_{=0} - J(x(t))$$

$$= \delta J + \delta^2 J.$$
(7)

where δJ (first variation) is not zero then the sign will be governed by the first variation, likewise, if δJ (first variation) is zero then the sign will be governed by the second variation.

Consider $x(t) = t^2 + 4$. The sign gives whether it is a minimum or maximum.

Now consider the functional at a optimal value $x(t) = x^*(t)$ and obtain expression for the first variation δJ

$$\Delta J(x^{*}(t), \delta x(t)) = J(x^{*}(t) + \delta x(t), \dot{x^{*}}(t) + \dot{\delta x}(t), t) - J(x^{*}(t), \dot{x^{*}}(t), t)$$

$$= \int_{t_{0}}^{t_{f}} g(x^{*}(t) + \delta x(t), \dot{x^{*}}(t) + \dot{\delta x}(t), t) dt - \int_{t_{0}}^{t_{f}} g(x^{*}(t), \dot{x^{*}}(t), t) dt$$

$$= \int_{t_{0}}^{t_{f}} g(x^{*}(t) + \delta x(t), \dot{x^{*}}(t) + \dot{\delta x}(t), t) - g(x^{*}(t), \dot{x^{*}}(t), t) dt$$
(8)

By considering the **functional incremental** (eq.7), For the simplicity, let $g(x^*(t) + \delta x(t), x^*(t) + \delta x(t), t)$ be $g(\cdot)$. Then eq.(8) can be written as

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \left[\frac{\partial g(\cdot)}{\partial x} \delta x(t) + \frac{\partial g(\cdot)}{\partial \dot{x}} \dot{\delta x}(t) \right] dt$$
 (9)

■ By considering the **functional incremental** (eq.7), For the simplicity, let $g(x^*(t) + \delta x(t), \dot{x^*}(t) + \delta x(t), t)$ be $g(\cdot)$. Then eq.(8) can be written as

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \left[\frac{\partial g(\cdot)}{\partial x} \delta x(t) + \frac{\partial g(\cdot)}{\partial \dot{x}} \dot{\delta x}(t) \right] dt$$
 (9)

And using **integration by parts**: $\int u dv = uv - \int v du$, $\frac{\partial g(\cdot)}{\partial \dot{x}} \dot{\delta x}(t)$ can be expanded as

$$\int_{t_0}^{t_f} \underbrace{\frac{\partial g(\cdot)}{\partial \dot{x}}}_{u} \underbrace{\underbrace{\delta \dot{x}(t)dt}_{dv}} = \int_{t_0}^{t_f} \frac{\partial g(\cdot)}{\partial \dot{x}} \frac{d}{dt} (\delta x(t)) dt = \int_{t_0}^{t_f} \frac{\partial g(\cdot)}{\partial \dot{x}} d(\delta x(t))$$

$$= \left[\frac{\partial g(\cdot)}{\partial \dot{x}} \delta x(t) \right]_{t_0}^{t_f} - \int_{t_0}^{t_f} \delta x(t) \frac{d}{dt} (\frac{\partial g(\cdot)}{\partial \dot{x}}) dt$$
(10)

■ Now eq.(9) can be rewritten after incorporating eq.(10)

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) \delta x(t) dt + \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \delta x(t) \right]_{t_0}^{t_f} \right. \\ \left. - \int_{t_0}^{t_f} \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \left[\delta x(t) dt \right. \right.$$
 (11)
$$= \int_{t_0}^{t_f} \left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \right] \delta x(t) dt + \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \delta x(t) \right]_{t_0}^{t_f}$$

Now eq.(9) can be rewritten after incorporating eq.(10)

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) \delta x(t) dt + \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \delta x(t) \right]_{t_0}^{t_f} \right. \\ \left. - \int_{t_0}^{t_f} \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \right] \delta x(t) dt \qquad \text{(11)}$$

$$= \int_{t_0}^{t_f} \left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \right] \delta x(t) dt + \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \delta x(t) \right]_{t_0}^{t_f}$$

■ To find the **second variation** (δJ^2), again consider eq.(8)

$$\Delta J(x^{*}(t), \delta x(t)) = \int_{t_{0}}^{t_{f}} \left[\frac{\partial g(\cdot)}{\partial x} \delta x(t) + \frac{\partial g(\cdot)}{\partial \dot{x}} \delta \dot{x}(t) + \frac{1}{2!} \left[\frac{\partial^{2} g(\cdot)}{\partial x^{2}} (\delta x(t))^{2} + \frac{\partial^{2} g(\cdot)}{\partial \dot{x}^{2}} (\delta \dot{x}(t))^{2} + 2 \frac{\partial^{2} g(\cdot)}{\partial \dot{x} \partial x} (\delta \dot{x}(t)) \cdot \delta x(t) + \dots \right] \right] dt$$
(12)

■ When considering only the second variation

$$\delta J^{2} = \int_{t_{0}}^{t_{f}} \frac{1}{2!} \left[\left(\frac{\partial^{2} g(\cdot)}{\partial x^{2}} \right) (\delta x(t))^{2} + \left(\frac{\partial^{2} g(\cdot)}{\partial (\dot{x})^{2}} \right) (\dot{\delta x}(t))^{2} + \left(2 \frac{\partial^{2} g(\cdot)}{\partial \dot{x} \cdot \partial x} \delta \dot{x}(t) \delta x(t) \right) \right] dt$$
(13)

■ When considering only the second variation

$$\delta J^{2} = \int_{t_{0}}^{t_{f}} \frac{1}{2!} \left[\left(\frac{\partial^{2} g(\cdot)}{\partial x^{2}} \right) (\delta x(t))^{2} + \left(\frac{\partial^{2} g(\cdot)}{\partial (\dot{x})^{2}} \right) (\dot{\delta x}(t))^{2} + \left(2 \frac{\partial^{2} g(\cdot)}{\partial \dot{x} \cdot \partial x} \delta \dot{x}(t) \delta x(t) \right) \right] dt$$
(13)

Expanding the last term using integration by parts, where $u = \frac{\partial^2 g(\cdot)}{\partial x \cdot \partial x} \delta x(t)$ and $dv = \delta \dot{x}(t) dt$

$$\delta J^{2} = \frac{1}{2} \int_{t_{0}}^{t_{f}} \left[\left[\left(\frac{\partial^{2} g}{\partial x^{2}} \right) - \frac{d}{dt} \left(\frac{\partial^{2} g}{\partial \dot{x} \cdot \partial x} \right) \right] (\delta x(t))^{2} + \left(\frac{\partial^{2} g}{\partial (\dot{x})^{2}} \right) (\dot{\delta x}(t))^{2} \right] dt + \left[\frac{\partial^{2} g(\cdot)}{\partial \dot{x} \cdot \partial x} \delta x(t) \delta x(t) \right]_{t_{0}}^{t_{f}}$$

$$(14)$$

Hence, the first order approximation δJ to increment $\delta t.$ J is said to have a **local extremum**, if there is a positive parameter ϵ that satisfy for all functions $|x-x^*|<\epsilon$, also increment of J has the same sign (positive or negative).

If the mentioned condition is valid for large ϵ , then $J(x^*)$ value gives the **global extremum**. Hence, **necessary condition** for optimal of a functional $\delta J=0$ for all admissible value of $\delta x(t)$, and the **sufficient condition**

- $\delta J^2 > 0$ then, $J(x^*)$ is a local minimum
- $\delta J^2 < 0$ then, $J(x^*)$ is a local maximum

26 6¹

Consider the **initial** and the **final** values are fixed. In other words, boundary conditions are specified $x(t_0), t_0$ and $x(t_f), t_f$ are given.

■ When initial and final values are fixed, to obtain the optimal $x^*(t)$, $\delta J(x^*(t), \delta x(t)) = 0$ has to be **zero**. Let's consider the **first variation**.

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \right] \delta x(t) dt + \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \delta x(t) \right]_{t_0}^{t_f}$$
(15)

■ When initial and final values are fixed, to obtain the optimal $x^*(t)$, $\delta J(x^*(t), \delta x(t)) = 0$ has to be **zero**. Let's consider the **first variation**.

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \right] \delta x(t) dt + \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \delta x(t) \right]_{t_0}^{t_f}$$
(15)

■ Since the **initial** and **final** values are **fixed**, which is no variation at the start and final point $(\delta x(t_0) = 0, \delta x(t_f) = 0)$, $\left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right)\delta x(t)\right]_{t_0}^{t_f} = 0$, then eq.(15) becomes

$$\Delta J(x^*(t), \delta x(t)) = \int_{t_0}^{t_f} \underbrace{\left[\left(\frac{\partial g(\cdot)}{\partial x(t)} \right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) \right]}_{g(t)} \delta x(t) dt$$
(16)

Between the **start** and the **final** point, $\delta x(t)$ usually can **not be zero** since it is **arbitrary**. Hence, **g(t) must be zero**.

Lemma

If a continuous function g(t) on an open interval (t_0,t_f) satisfies the equality

$$\int_{t_0}^{t_f} g(t)\delta x(t)dt = 0, \tag{17}$$

where the function $\delta x(t)$ is continuous in the interval $[t_0,t_f]$, then g(t) is identically zero

https://en.wikipedia.org/wiki/Fundamental_lemma_
of_calculus_of_variations

■ After considering the Lemma 1, from eq.(16) following condition, i.e., Euler-Lagrange equation, can be derived

$$\left(\frac{\partial g(\cdot)}{\partial x(t)}\right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right) = 0 \tag{18}$$

■ After considering the Lemma 1, from eq.(16) following condition, i.e., Euler-Lagrange equation, can be derived

$$\left(\frac{\partial g(\cdot)}{\partial x(t)}\right) - \frac{d}{dt}\left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right) = 0 \tag{18}$$

■ The sufficient condition for a minimum is $\delta^2 J > 0$

$$\delta J^{2} = \frac{1}{2} \int_{t_{0}}^{t_{f}} \left[\left[\left(\frac{\partial^{2} g(\cdot)}{\partial x^{2}} \right) - \frac{d}{dt} \left(\frac{\partial^{2} g(\cdot)}{\partial \dot{x} \cdot \partial x} \right) \right] (\delta x(t))^{2} + \left(\frac{\partial^{2} g(\cdot)}{\partial (\dot{x})^{2}} \right) (\dot{\delta x}(t))^{2} \right] dt + \underbrace{\left[\frac{\partial^{2} g(\cdot)}{\partial \dot{x} \cdot \partial x} \delta x(t) \delta x(t) \right]_{t_{0}}^{t_{f}}}_{=0}$$

$$(19)$$

■ Since $(\delta x(t))^2 > 0$ and $(\delta x(t))^2 > 0$, the following two conditions must be satisfied

$$\left(\frac{\partial^2 g}{\partial x^2}\right) - \frac{d}{dt} \left(\frac{\partial^2 g}{\partial \dot{x} \cdot \partial x}\right) > 0$$

$$\frac{\partial^2 g}{\partial (\dot{x})^2} > 0$$
(20)

■ Since $(\delta \dot{x}(t))^2 > 0$ and $(\delta x(t))^2 > 0$, the following two conditions must be satisfied

$$\left(\frac{\partial^2 g}{\partial x^2}\right) - \frac{d}{dt} \left(\frac{\partial^2 g}{\partial \dot{x} \cdot \partial x}\right) > 0$$

$$\frac{\partial^2 g}{\partial (\dot{x})^2} > 0$$
(20)

■ The eq.(19) can be rearrange into the following form:

$$\delta J^{2} = \frac{1}{2} \int_{t_{0}}^{t_{f}} \begin{bmatrix} \delta x(t) & \dot{\delta x}(t) \end{bmatrix} \begin{bmatrix} \frac{\partial^{2} g(\cdot)}{\partial x^{2}} & \frac{\partial^{2} g(\cdot)}{\partial \dot{x} \cdot \partial x} \\ \frac{\partial^{2} g(\cdot)}{\partial x \cdot \partial x} & \frac{\partial^{2} g(\cdot)}{\partial (\dot{x})^{2}} \end{bmatrix} \begin{bmatrix} \delta x(t) \\ \dot{\delta x}(t) \end{bmatrix} dt$$

$$\frac{1}{2} \int_{t_{0}}^{t_{f}} \begin{bmatrix} \delta x(t) & \dot{\delta x}(t) \end{bmatrix} \Xi \begin{bmatrix} \delta x(t) \\ \dot{\delta x}(t) \end{bmatrix} dt,$$
(21)

where if
$$\Xi = \begin{bmatrix} \frac{\partial^2 g}{\partial x^2} & \frac{\partial^2 g}{\partial x \cdot \partial x} \\ \frac{\partial^2 g}{\partial x \cdot \partial x} & \frac{\partial^2 g}{\partial (y)^2} \\ \frac{\partial^2 g}{\partial x \cdot \partial x} & \frac{\partial^2 g}{\partial (y)^2} \end{bmatrix}_*$$
 is **positive definite**, the result will be **minimum** otherwise, i.e., **negative**

definite, maximum. This way we can define the objective function that gives minimum or maximum optimal

31

Consider the initial and final conditions given as $t_0 = e, x(t_0) = f$ and $t_f = g, x(t_f) = h$, respectively. Find the shortest path possible between the interval [e,g]. A small distance along the curve x(t)

$$s = \int_{e}^{g} \sqrt{dx^2 + dt^2} = \int_{e}^{g} \sqrt{1 + d\dot{x}^2} dt$$
 (22)

Term $\sqrt{1+d\dot{x}^2}$ can be considered as $g(\cdot)$ as given in eq.18. To obtain the optimal curve, the following condition must be satisfied.

$$\left(\frac{\partial g(\cdot)}{\partial x(t)}\right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right) = 0 \tag{23}$$

The partial derivatives of $g(\cdot)$ are $\frac{\partial g(\cdot)}{\partial \dot{x}(t)} = \frac{\dot{x}}{\sqrt{1+\dot{x}^2}}$ and $\frac{\partial g(\cdot)}{\partial x(t)} = 0$, where $g(\cdot) = g(t, x, \dot{x})$. Therefore, by substituting these into eq.23

$$\frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) = 0$$

$$\frac{d}{dt} \left(\frac{\dot{x}(t)}{\sqrt{1 + (\dot{x}(t))^2}} \right) = 0$$

$$\frac{\dot{x}(t)}{\sqrt{1 + (\dot{x}(t))^2}} = c, \quad c \in \mathbb{R} \quad or \quad \ddot{x}(t) = 0$$

$$\Rightarrow \dot{x}(t) = \frac{c}{\sqrt{1 - c^2}} = : a$$

$$\Rightarrow x(t) = at + b$$
(24)

Consider
$$g(\cdot) = g(x^*(t) + \delta x(t), \dot{x^*}(t) + \dot{\delta x}(t), t)$$

$$\Delta J(x^*(t), \delta x(t)) = J(x^*(t) + \delta x(t), \dot{x^*}(t) + \dot{\delta x}(t), t) - J(x^*(t), \dot{x^*}(t), t)$$

$$= \int_{t_0}^{t_f + \delta t_f} g(\cdot) dt - \int_{t_0}^{t_f} g(x^*(t), \dot{x^*}(t), t) dt$$

$$= \int_{t_0}^{t_f} \left(g(\cdot) - g(x^*(t), \dot{x^*}(t), t) \right) dt + \int_{t_f}^{t_f + \delta t_f} g(\cdot) dt$$

$$= \int_{t_0}^{t_f} \left[\frac{\partial g(\cdot)}{\partial x} \delta x(t) + \frac{\partial g(\cdot)}{\partial \dot{x}} \delta \dot{x}(t) + H.O.D \right] dt + \int_{t_f}^{t_f + \delta t_f} g(\cdot) dt$$
expanding $\int_{t_0}^{t_f} \frac{\partial g(\cdot)}{\partial \dot{x}} \delta \dot{x}(t) dt$ by integration by parts

$$\int_{t_0}^{t_f} \frac{\partial g(\cdot)}{\partial \dot{x}} \delta \dot{x}(t) dt = \left(\frac{\partial g(\cdot)}{\partial \dot{x}} \right) \delta x(t) \Big|_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}} \right) \delta x(t) dt$$
 (26)

However, t_0 is fixed, eq.26 can be written as

$$\int_{t_0}^{t_f} \frac{\partial g(\cdot)}{\partial \dot{x}} \delta \dot{x}(t) dt = \left(\frac{\partial g(\cdot)}{\dot{x}} \right) \Big|_{t_f} \delta x(t_f) - \int_{t_0}^{t_f} \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}} \right) \delta x(t) dt \tag{27}$$

Hence, eq.(25) can be reformulated as

$$\begin{split} \Delta J(x^*(t),\delta x(t)) &= \left(\frac{\partial g(\cdot)}{\dot{x}}\right)\Big|_{t_f} \delta x(t_f) + \int_{t_0}^{t_f} \left[\frac{\partial g(\cdot)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}}\right)\right] \delta x(t) + H.O.D\right] dt \\ &+ \int_{t_f}^{t_f + \delta t_f} g(\cdot) dt \end{split}$$

(28)

The term $\int_{t_f}^{t_f+\delta t_f} g(\cdot)dt$ can approximated by taking area under curve from t_f to $t_f+\delta t_f$

$$\int_{t_f}^{t_f + \delta t_f} g(\cdot)dt = g(x(t_f), \dot{x}(t_f), t_f)\delta t_f + H.O.T$$

$$= g(x^*(t_f) + \delta x(t_f), \dot{x}^*(t_f) + \delta \dot{x}(t_f), t_f)\delta t_f + H.O.T$$
(29)

Expanding eq.29 with Taylor series,

$$\int_{t_f}^{t_f + \delta t_f} g(\cdot) dt = g(x^*(t_f), \dot{x}^*(t_f), t_f) \delta t_f + \frac{\partial g(\cdot)}{\delta x} \Big|_{t_f} \delta x(t_f) \delta t_f + \Big(\frac{\partial g(\cdot)}{\partial \dot{x}} \Big) \Big|_{t = t_f} \delta \dot{x}(t_f) \delta t_f + H.O.T \delta t_f$$
(30)

After eliminating higher order terms eq.30 becomes

$$\int_{t_f}^{t_f + \delta t_f} g(\cdot) dt = g(x^*(t_f), \dot{x}^*(t_f), t_f) \delta t_f = g(\cdot) \Big|_{t_f} \delta t_f$$
(31)

After substituting the result from eq.31 to eq.28

$$\Delta J(x^{*}(t), \delta x(t)) = \left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right) \Big|_{t_{f}} \delta x(t_{f}) + \int_{t_{0}}^{t_{f}} \left[\frac{\partial g(\cdot)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}}\right)\right] \delta x(t) + H.O.D\right] dt + g(\cdot) \Big|_{t_{f}} \delta t_{f}$$
(32)

Term δt_f depends on $\delta x(t_f)$, the relationship between these can be obtained by considering the following linear approximation:

$$\dot{x}(t_f) + \delta \dot{x}(t_f) \approx \frac{\delta x_f - \delta x(t_f)}{\delta t_f}$$

$$\dot{x}(t_f) \cdot \delta t_f + \underbrace{\delta \dot{x}(t_f) \cdot \delta t_f}_{higher \, order} \approx \delta x_f - \delta x(t_f), \qquad (33)$$

$$\delta x(t_f) = \delta x_f - \dot{x}(t_f) \delta t_f,$$

where term $\delta \dot{x}(t_f) \cdot \delta t_f = 0$ due to higher order term. The overall expression for eq.32 can be represented as

$$\Delta J(x^{*}(t), \delta x(t)) = \int_{t_{0}}^{t_{f}} \left[\frac{\partial g(\cdot)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}} \right) \right] \delta x(t) + H.O.D \right] dt + \left(\frac{\partial g(\cdot)}{\partial \dot{x}} \right) \Big|_{t_{f}} \delta x_{f} + \left[g(\cdot) \Big|_{t_{f}} - \frac{\partial g(\cdot)}{\partial \dot{x}} \Big|_{t_{f}} \dot{x}(t_{f}) \right] \delta t_{f}$$
(34)

According the lemma.1 to have a minimum or maximum value $\delta J = 0$

$$\left[\frac{\partial g(\cdot)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}}\right)\right] \delta x(t) = 0$$

$$\frac{\partial g(\cdot)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g}{\partial \dot{x}}\right) = 0,$$
(35)

where $\delta x(t)$ is **arbitrary**. The **boundary conditions** can be obtained as

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} \delta x_f + \left[g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f)\right] \delta t_f = 0$$
 (36)

Term t_f is fixed, and $x(t_f)$ is free, hence, $\delta t_f = 0$. Therefore, the boundary value constraints after considering eq.36,

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} \delta x_f + \left[g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f)\right] \delta t_f = 0$$

$$\Rightarrow \left[\left(\frac{\partial g}{\partial \dot{x}}\right)\Big|_{t_f}\right] \delta x_f = 0$$
(37)

Term δx_f is arbitrary, then the value constraints, i.e., the final point condition,

$$\frac{\partial g(x(t_f), \dot{x}(t_f), t_f)}{\partial \dot{x}(t_f)} = 0 \tag{38}$$

Consider the initial position given as $t_0 = e, x(t_0) = f$. Find the shortest path between on the interval [e,h], where $h = t_f$ and $x(t_f)$ is free. A small distance along the curve x(t) can be defined as $ds = \sqrt{dx^2 + dt^2}$. Therefore,

$$s = \int_{e}^{h} \sqrt{dx^2 + dt^2} = \int_{e}^{h} \sqrt{1 + d\dot{x}^2} dt$$
 (39)

Term $\sqrt{1+d\dot{x}^2}$ can be considered as $g(\cdot)$ as given in eq.18. To obtain the optimal curve, the following condition must be satisfied.

$$\left(\frac{\partial g(\cdot)}{\partial x(t)}\right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right) = 0 \tag{40}$$

The partial derivatives of $g(\cdot)$ are $\frac{\partial g(\cdot)}{\partial \dot{x}(t)} = \frac{\dot{x}}{\sqrt{1+\dot{x}^2}}$ and $\frac{\partial g(\cdot)}{\partial x(t)} = 0$, where $g(\cdot) = g(t,x,\dot{x})$. Therefore, by substituting these into eq.23

$$\frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) = 0$$

$$\frac{d}{dt} \left(\frac{\dot{x}(t)}{\sqrt{1 + (\dot{x}(t))^2}} \right) = 0$$

$$\frac{\dot{x}(t)}{\sqrt{1 + (\dot{x}(t))^2}} = c, \quad c \in \mathbb{R} \quad or \quad \ddot{x}(t) = 0$$

$$\Rightarrow \dot{x}(t) = \frac{c}{\sqrt{1 - c^2}} = : a, \quad \Rightarrow x(t) = at + b$$

$$(41)$$

Since $x(t_f)$ is free the following boundary condition, i.e., the terminal condition must be satisfied apart from eq.41

$$\left[\left(\frac{\partial g}{\partial \dot{x}} \right) \Big|_{t_f} \right] \delta x_f = 0, \quad \frac{\partial g}{\partial \dot{x}} \Big|_{t_f} = 0$$

$$\frac{\dot{x}(t_f)}{\sqrt{1 + (\dot{x}(t_f))^2}} = 0, \quad \Rightarrow \dot{x}(t_f) = 0$$
(42)

Considering eq.(41), eq.(42), and the initial condition, the optimal curve can be determined

$$\dot{x}(t_f) = 0 \Rightarrow a = 0$$

$$x(t_0) = at + b \Rightarrow f = ae + b = b \Rightarrow x(t) = f$$
(43)

Term t_f is free, and $x(t_f)$ is fixed, hence, $\delta x_f = 0$. Therefore, the boundary value constraints after considering eq.36,

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} \delta x_f + \left[g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f)\right] \delta t_f = 0$$

$$\Rightarrow \left[g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f)\right] \delta t_f = 0$$
(44)

Term δt_f is arbitrary, then the value constraints, i.e., the final point condition:

$$g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f) = 0$$

$$g(x(t_f), \dot{x}(t_f), t_f) - \Big(\frac{\partial g(x(t_f), \dot{x}(t_f), t_f)}{x(\dot{t}_f)}\Big) \dot{x}(t_f) = 0$$
(45)

Consider the initial position given as $t_0 = e, x(t_0) = f$. Find the extremal point by maximizing $J(x) = \int_{t_0}^{t_f} \left(2x(t) + \frac{1}{2}\dot{x}^2(t)\right) dt$, where these boundary conditions must be satisfied: $x(t_f) = m$, $t_f > t_0$.

Let $g(\cdot) = g(t, x, \dot{x})$ be $2x(t) + \frac{1}{2}\dot{x}^2(t)$. To obtain the optimal curve, the following condition must be satisfied.

$$\left(\frac{\partial g(\cdot)}{\partial x(t)}\right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right) = 0, \quad \Rightarrow 2 - \frac{d}{dt} (\dot{x}(t)) = 0, \quad \Rightarrow \ddot{x}(t) = 2, \quad (46)$$

where the partial derivatives of $g(\cdot)$ are $\frac{\partial g(\cdot)}{\partial \dot{x}(t)} = \dot{x}(t)$ and $\frac{\partial g(\cdot)}{\partial x(t)} = 2$. Thus, the optimal curve has the following form: $x(t) = t^2 + c_1 t + c_2$. Considering the initial conditions, $f = e^2 + c_1 e + c_2$. Since t_f is free the following boundary condition, i.e., the terminal condition must be satisfied apart from eq.46

$$g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f) = 0$$

$$2x(t_f) + \frac{1}{2}\dot{x_f}^2(t) - \dot{x}^2(t_f) = 0$$

$$2x(t_f) - \frac{1}{2}\dot{x}^2(t_f) = 0$$

$$(47)$$

However, $x(t_f)=m$ is provided, $x(t)=t^2+c_1t+c_2\Rightarrow m=t_f^2+c_1t_f+c_2$ and $\dot{x}(t_f)=2t_f+c_1$ Considering these constraints:

$$2(t_f^2 + c_1 t_f + c_2) - \frac{1}{2}(2t_f + c_1)^2 = 0$$

$$\Rightarrow 2c_2 - \frac{1}{2}c_1^2 = 0$$
(48)

Values for c_1, c_2 can be obtained after solving $2c_2 - \frac{1}{2}c_1^2 = 0$ and $f = e^2 + c_1e + c_2$

FREE ENDPOINT PROBLEM

FREE ENDPOINT PROBLEM: IF t_f AND $x(t_f)$ ARE UNCORRELATED

$$\left. \left(\frac{\partial g}{\partial \dot{x}^{*}} \right) \right|_{t_{f}} = 0$$

$$\left. g(\cdot) \right|_{t=t_{f}} - \left(\frac{\partial g(\cdot)}{\dot{x}^{*}} \right) \right|_{t=t_{f}} \dot{x}^{*}(t_{f}) = 0$$
(49)

Consider $x(t_f) = \Theta(t_f)$, then $\delta x_f = \frac{\partial \Theta(t_f)}{\partial t} \delta t_f = \dot{\Theta}(t_f) \delta t_f$. Along with that, the boundary conditions eq.(36) become

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} \delta x_f + \left[g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f)\right] \delta t_f = 0$$

$$\Rightarrow \left[\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} \dot{\Theta}(t_f) + g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f)\right] \delta t_f = 0$$
(50)

Term δt_f is arbitrary,

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} \dot{\Theta}(t_f) + g(\cdot)\Big|_{t_f} - \frac{\partial g(\cdot)}{\partial \dot{x}}\Big|_{t_f} \dot{x}(t_f) = 0$$

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} (\dot{\Theta}(t_f) - \dot{x}(t_f)) + g(\cdot)\Big|_{t_f} = 0$$
(51)

Find the optimal curve that minimises the $J(x)=\int_{t_0}^{t_f}\sqrt{(1+\dot{x}^2(t))}dx$, where the initial condition is given by $x(t_0)=0, t_0=0$. No terminal constraints are specified, i.e., terminal constraints are free. However, $x(t_f)$ is required to lie on a line $\Theta(t)=-5t+15$.

Term $\sqrt{1+d\dot{x}^2(t)}$ can be considered as $g(\cdot)$ as given in eq.18. To obtain the optimal curve, the following condition must be satisfied.

$$\left(\frac{\partial g(\cdot)}{\partial x(t)}\right) - \frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)}\right) = 0 \tag{52}$$

The partial derivatives of $g(\cdot)$ are $\frac{\partial g(\cdot)}{\partial \dot{x}(t)} = \frac{\dot{x}}{\sqrt{1+\dot{x}^2}}$ and $\frac{\partial g(\cdot)}{\partial x(t)} = 0$, where $g(\cdot) = g(t, x, \dot{x})$. Therefore, by substituting these into eq.52

$$\frac{d}{dt} \left(\frac{\partial g(\cdot)}{\partial \dot{x}(t)} \right) = 0$$

$$\frac{d}{dt} \left(\frac{\dot{x}(t)}{\sqrt{1 + (\dot{x}(t))^2}} \right) = 0$$

$$\frac{\dot{x}(t)}{\sqrt{1 + (\dot{x}(t))^2}} = c, \quad c \in \mathbb{R} \quad or \quad \ddot{x}(t) = 0$$

$$\Rightarrow \dot{x}(t) = \frac{c}{\sqrt{1 - c^2}} = a$$

$$\Rightarrow x(t) = at + b$$

$$\Rightarrow \dot{x}(t) = a$$
(53)

Since $x(t_f)$ is free, the following boundary condition, i.e., terminal condition, must be satisfied apart from eq.51

$$\left(\frac{\partial g(\cdot)}{\partial \dot{x}}\right)\Big|_{t_f} (\dot{\Theta}(t_f) - \dot{x}(t_f)) + g(\cdot)\Big|_{t_f} = 0$$

$$\frac{\dot{x}(t_f)}{\sqrt{1 + \dot{x}^2(t_f)}} (-5 - \dot{x}(t_f)) + \sqrt{(1 + \dot{x}^2(t_f))} = 0 \Rightarrow -5\dot{x}(t_f) + 1 = 0$$
(54)

Considering eq.(53), eq.(54), and the initial condition, the optimal curve can be determined

$$-5\dot{x}(t_f) + 1 = 0, \dot{x}(t) = a \qquad \Rightarrow a = \frac{1}{5}$$

$$x(t) = at + b \Rightarrow x(t_0) = at_0 + b \Rightarrow b = 0$$

$$x^*(t) = \frac{1}{5}t$$

$$(55)$$

Finally, value of t_f can be obtained using the optimal trajectory of $x^*(t)$ eq.(55) by solving $x(t_f) = \Theta(t_f)$