Ed. Sational Policy Research Center

Sesearch Memorandum

EPRC 2158-23

SUBCOUNTY ALLOCATION OF ESEA TITLE I FUNDS

 h_{i}

THOMAS C THOMAS STEPHEN I KUINER

Prepared tor:

OFFICE OF THE ASSISTANT SECRETARY FOR EDUCATION WASHINGTON, D.C.

US DEPARTMENT OF HEALTH
EDUCATION & WELFARE
NATIONAL INSTITUTE OF
EDUCATION

Contract OEC-0-72-5016

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

£ ...

01626

POL!CY RESEARCH REPORT

A Policy Research Report is an official document of the Center for the Study of Social Policy. It presents results of work directed toward specific research objectives. The report is a comprehensive treatment of the objectives, scope, methodology, data, analyses, and conclusions, and presents the background, practical significance, and technical information required for a complete and full understanding of the research activity. The report is designed to be directly useful to social policy makers.

RESEARCH MEMORANDUM

A Research Memorandum is a working paper that presents the results of work in progress. The purpose of the Research Memorandum is to invite comment on research in progress. It is a comprehensive treatment of a single research area or of a facet of a research area within a larger field of study. The Memorandum presents the background, objectives, scope, summary and conclusions, as well as method and approach, in a condensed form. Since it presents views and conclusions drawn during the progress of research activity, it may be expanded or modified in the light of further research.

RESEARCH NOTE

A Research Note is a working paper that presents the results of study related to a single phase or factor of a research problem. It also may present preliminary exploration of a social policy issue or an interim report which may later appear as a larger study. The purpose of the Research Note is to instigate discussion and criticism. It presents the concepts, findings, and/or conclusions of the author. It may be altered, expanded, or withdrawn at any time.

EXECUTIVE SUMMARY

SUBCOUNTY ALLOCATION OF ESEA TITLE I FUNDS

by: Thomas C. Thomas Stephen I. Kutner

Congress has chosen to allocate by formula the compensatory education funds in ESEA Title I down to only the county level. From the county to the local school district the state may choose any option deemed consistent with the overall objective of concentrating the funds in districts with large numbers of students from low-income families.

From time to time concern is expressed that some states may be using the subcounty allocation process to thwart the intent of the law. This possibility exists because very large changes can be made in the amount of money that a school district receives depending upon the states' choice of subcounty allocators that the been approved by USOE for use in one or more states.*

There is considerable latitude for states to adjust their subcounty allocations to reflect political as well as educational realities
within the state. In 1966 when the allocators were first chosen, many
states faced with urban unrest chose to use this latitude to funnel the
maximum amount of money to urban blacks. This preference was shared by
many of those who provided technical assistance from USOE. The measure
that best accomplished this goal was an allocator based upon AFDC count.
Conversely, when an AFDC allocator is compared to a low-income allocator,

Illegal distributions at variance with the official state criteria are not covered in this analysis.

it appears biased against other low-income minorities such as Chicanos or native Americans and against those low-income students in small towns and suburbs.

From the recent Congressional debate on the renewal of the ESEA Title I legislation, it appears that a more even distribution of priorities in compensatory education across low-income students living in a variety of population densities may be desired. Other legislative titles are giving more attention to special population groups such as bilingual and handicapped. Whether or not the present allocators are consistent with these priorities is a question of judgment. To support such judgment, this report provides an analysis of the effect of alternative allocators upon school districts in selected counties in five different states whose demographic characteristics and available data base permitted us to highlight the magnitude of the effects of different choices. The sample was selected mainly to look at counties that contained both a large city, suburbs, and rural areas. This was the most interesting mix for analyis purposes, but it is not necessarily the most representative situation for the nation as a whole.

The analysis is quite complicated because there are three factors that impact upon allocation and whose effect we could not analytically combine because of data limitations. They are:

- (1) All the data bases have continuing technical weaknesses, e.g., census income data is not available for school districts of less than three hundred, and AFDC counts respond to political pressures on eligibility requirements.
- (2) Income measures based upon census data become increasingly out of date between census periods, while AFDC or state income tax data reflect current demographic shifts.
- (3) Different measures relatively favor minority groups and different population densities. The overall effects are summarized in Table S-1, but the precise magnitude of the effects varies by state and county. Tables S-2 and S-3 summarize some of the impact data for large cities.

Table S-1

ANALYSIS OF ALTERNATIVE SUBCOUNTY ALLOCATORS*

	Significa	Significant Gain, 's		
	Geographical	Ethnic and	Lag	
Allocator	Area	Racial Groups	(in years)	Limitations of Allocator
AFDC Head Count	Urban	Blacks	1	Technical problems related to administration and mapping of valfare rolls. Variance in plaing welfare regulations among state and county officers. Different participation rates among minorities. AFDC Head Count is no more than 26% of formula children for any state and averages only 8%.
Census, low income	Small cities Suburbs	Other minorities than blacks	4-14	Problems related to 20% sampling technoque. Exclusion of districts with envoluments less than 300. Problems related to split and overlapping census tracts.
State income tax	Small cities Suburbs	Other minorities than blacks	-	Under rej sk by in suals not eligible for a refund. Only 30 states have a state income tax Existence of tax loopholes. Difficulty of identifying dependents between the ages of 5 a.4 17. Exclusion of transfer payments. Nonreporting by illegal aliens, migrant workers, and others.
Performance	Small cities Suburbs	Other minorities than blacks	Varies by testing pattern	Only 17 states have a statewide testing program. Disincentive for districts to decrease number of low-performing students. Conflict over efficiency of standardized tests.

^{*} In this report we also analyzed free lunch receipts and enrollment as potential allocators; however in the case of the former the data limitations precluded meaningful conclusions and in the case of enrollment we used this allocation as a standard for comparison.

In Table S-2 the effects of a shift from AFDC headcount to an Orshansky income criteria are shown for five major cities. The most dramatic loss would be suffered by the Los Angeles City Unified School District which would lose 50.9 percent of its Title I funds to other school districts in Los Angeles County. However, all of the large cities would lose sizeable amounts of money.

Table S-2

CHANGE IN 1973 ALLOCATION FOR SELECTED LARGE CITIES
RESULTING FROM SHIFT FROM AFDC TO ORSHANSKY CRITERIA*†

City	Percent Change	Current Allocator
Boston, Massachusetts	-21.5%	AFDC head count
Des Moines, Iowa	-11.7	Combination
Los Angeles, California	- 50.9	AFDC head count
Portland, Oregon	-10.4	Combination
Wilmington, Delaware	-23.1	AFDC head count

AFDC head count is based on 1973 figures and the Orshansky income on the 1970 census. Since the total amount of money to the county is set, it is on the relative size of the districts AFDC or Orshansky count to other districts that determines the allocation.

Table S-3 looks at the effects of demographic shifts in low-income families (adjusted for inflation) between 1959 and 1969 on funds allocations. Interestingly, the changes for the major cities are in every case smaller than the weighted absolute percentage change in the county, i.e., it is the suburbs and small towns that are experiencing the largest low-income population shifts. The changes themselves are both plus and minus for the major cities. Unfortunately only one city is common to tables

For further information on the effect of change on other sizes of school districts see Table 5.

S-2 and S-3, so direct comparisons cannot be made. However, our impression, based upon the data in the report and the probable nature of demographic shifts during the later part of the 1970s, is that the offect of choosing between an AFDC head count and an income measure is of greater impact than the issue of currency of census data. Furthermore, the issue of currency in the income measure could be solved in thirty of the largest states by using state income tax data.

County	Weighted Absolute Percent Change	Major City	Percent Change
Polk County, Iowa	26%	Des Moines	-15%
Multnomah County, Ore.	. 21	Portland	15
Albany County, N.Y.	21	Albany	7
Erie County, N.Y.	18	Buffalo	-7
Onondaga County, N.Y.	21	Syracuse	-7

^{*}Weighted Absolute Percent Change measures the movement of low-income children both between districts within the county and in and out of the county. It equals (absolute percent change in school district) \times (number of low-income children in school district in 1959) \div (the sum of low-income children in county in 1959).

†For details on other school districts in the counties see Appendix B.

Given the complexities of the situation and the state history of subcounty allocations, we doubt that policymakers will seriously consider the setting of one federal standard for allocation down to the school district level in all states; or if they did so, it would be under a hold harmless provision. More likely would be a course of action that narrowed the weight that could be given to a particular variable

County	Weighted Absolute Percent Change	Major City	Percent Change
Polk County, Iowa	26%	Des Moines	-15%
Multnomah County, Ore.	21	Portland	15
Albany County, N.Y.	21	Albany	7
Erie County, N.Y.	18	Buffalo	-7
Onondaga County, N.Y.	21	Syracuse	-7

^{*}Weighted Absolute Percent Change measures the movement of low-income children both between districts within the county and in and out of the county. It equals (absolute percent change in school district) \times (number of low-income children in school district in 1959) \div (the sum of low-income children in county in 1959).

†For details on other school districts in the counties see Appendix B.

Given the complexities of the situation and the state history of subcourty allocations, we doubt that policymakers will seriously consider the setting of one federal standard for allocation down to the school district level in all states; or if they did so, it would be under a hold harmless provision. More likely would be a course of action that narrowed the weight that could be given to a particular variable

vii

8

in the allocator, e.g., both AFDC and low-income data must be used, with each AFDC child given a weight of no more than two times each low-income Orshansky child (the present national criteria weights AFDC at two-thirds of a low-income child). Technical assistance also could be given to the states with state income tax data or standardized test score data to develop such data for effective use as allocators. We particularly recommend such a course of action to replace census income data with state tax income data.

However, the initial question must be: Is the present set of allocations so incompatible with the evolving goals and foci of compensatory educ tion that new federal directives and technical assistance are warranted at this time? This report provides data on which policymakers can begin to make this assessment.

CONTENTS

EXEC	CUTIVE SUMMARY	iii
LIST	T OF TABLES	хi
I	INTRODUCTION	1
11	IMPACT OF ALTERNATIVE ALLOCATORS	5
	Selection of Allocators	5
	Data Sample	8
	Methodology	9
	Results of the Analysis	15
111	IMPACT OF LAG IN GENERATING DATA ON TIME	17
IV	MEASUREMENT BIASES OF ALTERNATIVE ALLOCATORS	25
	Census Low-Income Allocators (Under 4000, Orshansky)	25
	·	26
		27
	Department of Education (Enrollment, Lunch Receipts,	27
	and regretarinety	
V	SUMMARY AND POLICY IMPLICATIONS	29
	Census Bureau	29
		30
		31
		32
		33
Apper	ndices	
Α	ALTERNATIVE SUBCOUNTY ALLOCATIONS FOR ALL SCHOOL DISTRICTS	
	IN SAMPLE	37
	DISTRICT HEAD COUNTS OF THE NUMBER OF ELIGIBLE CHILDREN BY A CENSUS LOW-INCOME CRITERION, 1959-1969	55

TABLES

s-1	Analysis of Alternative Subcounty Allocators
S-2	Change in 1973 Allocation for Selected Large Cities Resulting from Shift from AFDC to Orshansky Criteria $_{\rm V}$
S-3	Percent Change in Number of Low-Income Children Between 1959 and 1969 for the County and Major City in the County
1	Principal reatures of Alternative Allocators
2	Subcounty Allocation Method for Selected States and Counties, Fiscal Year 1974
3	Weighted Average County Range per Formula Child
4	Magnitude of Shift in Subcounty Allocations by Alternative Criteria
5	Distributional Analysis of Funds by Alternative Subcounty Allocation Criteria for Selected School Districts
6	Weighted Absolute Percent Change in Number of Eligible Children by Low-Income Criterion Between 1959 and 1969 in Selected Counties of Iowa, Oregon, and New York 18
7	Percent Change in ZIP Code Areas' Shares of Joint Returns with Adjusted Income Under \$3,000 Between 1966 and 1969: Los Angeles County
8	Racial/Ethnic Composition of Selected Districts in Los Angeles County
9	Percent Change in Enrollment of Selected School Districts, 1970-1973
A-1	Alternative Subcounty Allocations: California, Alameda County
A-2	Percent Change in Subcounty Allocations by Alternative Criteria: California, Alameda County
A-3	Alternative Subcounty Allocations: California, Los Angeles County

A -4	Criteria: California, Los Angeles County	43
A-5	Alternative Subcounty Allocations: Delaware	45
A -6	Percent Change in Subcounty Allocations by Alternative Criteria: Delaware	46
A-7	Alternative Subcounty Allocations: Tewa	47
A-8	Percent Change in Subcount/ Allocarions by Alternative Criteria: Iowa	48
A-9	Alternative Subcounty Allocations: Massachusetts	49
A-10	Percent Change in Subcounty Allocations in Alternative Criteria: Massachusetts	51
A-11	Alternative Subcounty Allocations: Oregon, Marion and Multnomah Districts	53
A-12	Percent Change in Subcounty Allocations by Alternative Criteria: Oregon	54
B-1	Percent Change in Number of Eligible Children by Low-Income Criterion Between 1959 and 1969 by School District: Iowa	56
B-2	Percent Change in Number of Eligible Children by Low-Income Criterion Between 1959 and 1969 by School District: Oregon	58
B-3	Percent Change in Districts' Share of Eligible Children	60

ducational attainment. The initial problem was how to allocate money so s to reach the target group of "educationally deprived children with pecial education needs."

Congress has taken the leadership in providing a federal regulation or allocating ESEA Title I, Part A, funds down to the county level. urrently, the federal formula for county allocations is based on the rshansky income index plus two-thirds AFDC above an income of \$4,250.

Below the county level, however, each state may use any reasonable riterion in allocating money to school districts. The decision to llocate money in this way was made in 1965 when ESEA was first enacted cause adequate information was not available at the federal level to ske subcounty allocations. The subcounty allocation task thus was passed the states by default.

HEW's regulations state that subcounty allocations shall be based on vailable data that the state deems best to reflect the current distribution the county of children ages 5-17, inclusive from low-income families, inuding families receiving payments from AFDC. The regulations go on to say at if a state has its own survey, which it feels is better than federal ta, it can use that survey. Lastly, the regulations say that the state n use a weighted index of several factors in constructing a subcounty location formula.

ំ**1** 3

This number is summed across all districts and divided by the 1973-1974 county ratably reduced grant; the entire ratio is multiplied by 100.

From time to time, concern is expressed that the way money is actually allocated below the county level is a source of considerable inefficiency (misallocation of funds) and inequity, and works contrary to the intent of the law. However, our ability to assess the justification for such concern is hampered by a lack of specificity in the intent of the law, a lack of specificity which increases in importance the more finely the question of allocation is examined. For example, the intent of the law clearly would be violated if the school district with the highest percentages of low-income and minority students in a county were not receiving proportionately more funds (based upon enrollment) than those districts with the lowest percentages of low-income and minority students. We found no such cases in our sample. What we did find were cases in which the state selected allocators that favored urban districts over small town or suburban districts more than in proportion to the number of lowincome children or low-income plus AFDC children; cases in which the allocation criteria resulted in black children receiving proportionately more aid than other minorities; and cases in which districts losing lowincome populations over time maintained their level of funding while districts with increasing numbers of low-income children received no additional funds. We have no specific guidance on whether any or all of these situations violate the intent of the law. As a result, it is difficult to determine if there are existing allocators that don't violate at least some aspect of the intent of the law.

The choice of a specific allocator by a state simultaneously determines what proportional weight is given to urban areas versus small towns and suburbs, black versus other minorities, and determines the ability to reflect demographic changes. Trade-offs are involved and we found little guidance as to the specific intent of the law. One might argue that Orshansky plus two-thirds AFDC, which is used down to the county level, is also preferred for the subcounty allocator. Alternatively,

it could be argued that Congress wanted to give each state leeway in answering the above questions to provide for 'best' solutions in each state; i.e., state leeway resulted from a positive preference for state autonomy as well as data limitations. Moreover, the intent is very likely to be conditioned on whether the trade-offs are small or large; i.e., is the difference between the allocations of alternative criteria 5 percent or 50 percent? If it is 5 percent, then state flexibility is almost certainly a good idea; if it is 50 percent, then state flexibility might be a very bad idea depending, of course, on which choices were made by states.

This analysis will provide data on the magnitude of the effect of different choices for a sample of states. A primary focus is the magnitude of the impact of the choice between a census-based income measure and AFDC or some combination of the two measures. In addition we provide data on several additional criteria: results of standardized tests (suggested by Representative Quie), state (or federal) income tax data (which would make the income measure more current than census data), enrollment (mainly as a standard of comparison), and school free lunch program participation.

Section II looks at the differential impact of these allocators for selected counties in five states. Since the impact on each school district is identified, it is possible to assess the effect on umban versus small town and suburban trade-offs and black versus other minorities; i.e., what ty, of districts exhibit positive or negative effects under different criteria. This is a static analysis in that each of the measures is derived from 1973-1974 district allocations. Section III focuses on the census income data--the only data source that is more than a year or two years out-of-date--and looks at biases related to the inability of an allocator that is out-of-date to account for demographic shifts in the population. Unfortunately data limitations prevent these results from being quantitatively combined with those of the preceding section

on alternative criteria, but the direction and magnitude of the different effects is displayed quite clearly. In Section IV the question of the AFDC coverage of the low-income population is examined and measurement biases and errors of each source are described. Section V summarizes the data and looks at the policy implications that can be drawn from the data.

Since the intent of Congress is not clear at the level of detail in allocations considered in this paper, no definitive conclusions can be reached. However, a federal policymaker can take only a few general types of actions with respect to subcounty allocations. The primary dimension of change is the amount of freedom provided the states to choose between subcounty allocation criteria. The current position is one of great freedom within a very broad focus on low-income and AFDC criteria. The opposite extreme would be to impose a single criterion which would presumably be Orshansky plus two-thirds AFDC. Between these two extremes are a number of options for restricting the range of choice. The second dimension on which the policymaker could act would vary the amount of technical assistance provided states to reduce measurement biases in existing allocator.

Assistance in developing new measures. In Section V, the data are arranged to display the results of such choices.

16

II IMPACT OF ALTERNATIVE ALLOCATORS

A fundamental policy issue raised in this research note is the magnitude of shift in funds resulting from alternative subcounty allocation criteria. This section outlines the allocation procedures included in SRI's analysis, the make-up of the data sample used in SRI's analysis of subcounty allocation criteria, the method of analysis, and the results of analysis.

Selection of Allocators

In developing a list of potential allocators for subcounty allocation policy, we began by reviewing the subcounty allocation procedures for the states in fiscal year 1974. We found that in the 40 out of 50 states making subcounty allocations the two principal sources of data were the Census Bureau and the Department of Social Welfare. With this knowledge we identified four income measures:

- Under 4,000--Families with income under \$4,000 in the 1970 census.
- Orshansky--Families with income under the Orshansky Poverty Criteria based on the 1970 census.
- Orshansky + 2/3 AFDC--Families with income under the Orshansky Poverty Criteria based on the 1970 census plus two-thirds AFDC (current allocation formula to counties)
- AFDC head Count--Number of AFDC children.

We decided to include one additional income measure in our analysis.

This measure, state income tax, is currently used in Iowa to determine the number of students from low-income families. This alternative is particularly interesting because the Internal Revenue Service represents a

potentially "rich" source of income data. We defined this alternative as follows:

• State Low Income--Low income families as defined from the state income tax returns.

A significant alternative source of data for subcounty allocation purposes is the State Department of Education. One of the most reliable statistics compiled by the State Department of Education is a measure of school district enrollment. Although we were cognizant of the fact that there is no apparent justification for basing subcounty allocations on an enrollment criterion, we decided to include this measure in our analysis for the purpose of providing a benchmark for comparing the distributional effects of alternative allocators. An enrollment criterion would have the effect of smoothing the distribution of funds among districts in a county.

Two additional sources of data generated by the State Department of Education are statistics on lunch receipts and test scores. These sources of data have been used to construct the following two allocators:

- Performance--Number of low-performing children in each district.*
- Lunch receipts--District entitlement for free lunches.

Table 1 summarizes the principal features of the alternative allocators listed above. Two general comments will assist in clarifying and enhancing the meaning of the information presented. First, the selection

Low performance is defined as children scoring below a given percentile on standardized reading tests where the percentile is calculated from the number of national Title I children in the county divided by the total number of children in the county multiplied of 100; e.g., if there were estimated to be 100,000 Title I children in the county, and total enrollment of all schools in the county was 850,000, low performance would be defined as scoring below the 12th percentile.

Table 1

PRINCIPAL FEATURES OF ALTERNATIVE ALLOCATORS

Source of Data	Allocator	Principal Features
Census Bureau	Under 4000	Conventional income approach used to identify poverty sub- population Well-accepted cconomic measure of educationally disadvantaged population
	Orshansky	A poverty index derived from a standard based on the level of income remaining after basic food needs are satisfied
Department of Social Welfare	AFDC	A current index for identifying low income families
Internal Revenue Service	State low- Income	Data available on yearly basis Important source of information on families with positive in- come not receiving welfare payments or not participating in census
State Department of Education	Enrollment	Deta highly reliable and available on yearly basis
	Lunch Receipts	Alternative measure for identifying low income, eligible children in school districts Data available on yearly basis
	Performance	Establishes link between educational need and standardized test scores.

for analysis of seven allocators from a large list of potential candidates represents a clear values choice. That is, allocators were selected that could be efficiently derived from existing data bases and, in addition, these allocators would reinforce the desired distributional pattern of Title I funding; e.g., heavy concentration of dollars in low-income areas. Therefore, an allocator such as "district residential property value per a.d.a." was precluded from analysis because it is not readily obtainable, and the distributional outcome is unclear when measured against the desired outcome. Second, each allocator generates a particular set of inequities, and therefore embodies an underlying value judgement. For example the use of a performance allocator introduces the question of whether districts characterized by above average income per a.d.a., which also contain large numbers of Low-performance students, should receive significant Title I funding. The implication of these two comments is that the selection of a preferred allocator does not only involve a decision regarding trade-offs among flawed instruments, but also represents a clear articulation of values.

Data Sample

California, Delaware, Iowa, Massachusetts, and Oregon were selected for this analysis based upon a number of factors. First, a decision was made to include states that had been part of the study by Guthrie, Frentz, and Mize of the Quie bill.* The inclusion of these states allowed us to analyze the impact of the use of a performance criterion as an allocator. A second basic constraint on selection was that eligible states were characterized by district boundaries not coterminous with state or county

^{*&}quot;The Use of Performance Criteria to Allocate Compensatory Education Funds," Part II, J. W. Guthrie et al., SRI Research Report LPRC 2158-5, July 1974.

boundaries. A decision also was made to obtain a representative sampling of states based on the size of state Title I allocations. Finally, an attempt was made to provide regional representation in the sample.

The five states selected adequately satisfy these criteria with one noticeable gap--the absence of a state representing the south or south-west region. This is primarily due to the fact that most of these states have district boundaries that are coterminous with county boundaries and therefore present no subcounty allocation options.

In selecting counties within the states, two principal criteria were used. First, counties were to be composed of large central cities, small to medium sized cities, and suburban areas. This criterion was a necessary condition for analyzing the distributional effects of a change in subcounty allocation formula. Second, counties were chosen that contained a significant percentage of the selected states' Title I eligible students. This study does not provide much information on the impact of alternative criteria on rural areas. Table 2 contains the list of selected states and counties in the sample, accompanied by the subcounty allocation procedure for each state.

Methodology

Before discussing the results of our analysis it is useful to indicate how we derived the district allocations for alternative criteria and define clearly the three summary statistics presented in this section.

The following example of the Under 4000 allocation for Castro Valley, California, will illustrate the technique used to derive alternative allocations for each district. From the 1970 Special Census tabulation we obtained data on both the county (Alameda) and district (Castro Valley) totals for the number of children aged 5 through 17 in families having incomes below \$4,000. To obtain the Under 4000 allocation for Castro

9

Table 2

SUBCOUNTY ALLOCATION METHOD FOR SELECTED STATES AND COUNTIES, FISCAL YEAR, 1974

States and Counties	Formula Children
California Alameda Los Angeles	All AFDC plus neglected and delinquent children
Delaware Kent New Castle Sussex	AFDC above \$2,000
Iowa Black Hawk Dubuque Linn Polk Pottawattami Scott	Low-income data from State Department of Revenue plus neglected, delinquent, and foster children plus all AFDC
Massachusetts Essex Plymouth Suffolk	Census plus AFDC above \$2,000 plus neglected and delinquent children
Oregon Marion Multn o mah	AFDC above \$2,000 plus neglected, delinquent, and foster children

Source: Department of Health, Education and Welfare, Office of Education, ESEA Title I project office.

Valley we divided the number of families in the district with incomes under \$4,000 (358) by the total number of families in the county with incomes under \$4,000 (26,120) and multiplied this ratio by the 1973-1974

ratably reduced grant for Alemeda county (\$6,123,591). This calculation resulted in a new grant of \$83,930 for Castro Valley. We repeated this procedure for Castro Valley for each of the seven alternative allocators.

The summary statistics presented in Tables 3, 4, and 5 are as follows:

• Weighted Average County Range per Formula Child (Table 3) -The interpretation of the weighted average county range per
formula child is that for each county the figures given in
Table 3 represent the range around the mean Title I allocation per child for 1973-74 that would result from selection
among the seven alternatives of a uniform allocator. This
range provides us with low and high grants per formula child
in each county. For example, if we assume that in 1973-74
the mean grant per formula child was \$200, the low and high
grants per formula child in Alameda County would have been
\$147 and \$253.

The average range per district per formula child is found by subtracting the lowest total dollar grant from the highest total dollar grant (from among all alternative district allocators except enrollment) and then dividing by the number of eligible students (Orshansky plus 2/3 AFDC). The weighted average county range per formula child is then the sum of the average range per district times the district's 1973-1974 ratably reduced grant all divided by the county ratably reduced grant.

• Magnitude of the Shift in Subcounty Allocations by Alternative Criteria (Table 4) --

The meaning of the magnitude of the shift is that for each allocator we can obtain an estimate of the amount of money changing hands among the districts in every county. In the case of the Under 4000 allocator, we find that 13.01% of the 1973-74 ratably reduced grant for Alameda County was shifted among the districts. We can compare this figure with estimates derived for other counties using the same allocator or with estimates of the percentage shift in funds for alternative allocators in Alameda County.

The magnitude of the shift is found by first calculating the shift for each district, defined as the difference between the district grant derived by the alternative all tor and the 1973-1974 ratably reduced grant for the district.

Table 3
WEIGHTED AVERAGE COUNTY RANGE PER FORMULA CHILD*
(Dollars)

States and Counties	Average <u>Pange</u>
California	
Alameda	\$ 53.55
Los Angeles	113.84
Delaware	
Kent	36. 66
New Castle	65.18
Sussex	70. 52
Iowa	
Black Hawk	83.47
Dubuque	101.52
Linn	100.02
Polk	73.96
Pottowattamie	92.79
Scott	59.33
Massachusetts	
Essex	72.20
Plymouth	69.85
Suffolk	64 .4 0
Oregon	
Marion	79.42
Multnomah	29.54

^{*} Excluding enrollment criterion.

Table 4

MAGNITUDE OF SHIFT IN SUBCOUNTY
ALLOCATIONS BY ALTERNATIVE CRITERIA
(Percent)

States and Counties	Under 4,000	Orshansky	Orshansky + 2/3 AFDC	Enrollment	Lunch Receipts	Performance	AFDC	State Tax Income
California Alamoda	13.01%	11 85%	. 9	%Oc 07	;	857		;
333	%10.C1	11.07%	%50.0	40.30%	NA	70.45%	×	NA
Los Angeles	32.78	31.47	27.57	22.35	NA	10.10	*	NA
Delaware								
Kent	14.59	20.51	18.37	25.13	19.55%	13.08	ż¢	NA
New Castle	20.39	16.36	14.51	52.41	25.91	21.10	*	NA
Sussex	11.83	19.77	10.56	10.39	11.04	8.19	ή¢	NA
Iowa								
Black Hawk	1.03	4.92	1.87	14.48	VN	13.30	10.06%	11.74%
Dubuque	2.99	6.21	0.50	10.20	NA	20.46	25.22	13.20
Linn	23.13	12,38	3.47	11.44	NA	11.18	10.82	10.15
Polk	7.87	5.51	2.22	20.58	NA	NA	4.90	6.28
Pottowattamie	7.69	5.96	6.71	9.90	NA	NA	4.14	11.26
Scott	5.64	4.50	1.01	15.93	NA	NA	7.95	10.41
Massachusetts								
Essex	18.80	17.83	11.60	18.29	NA	13.92	*	NA
Plymouth	21.95	21.31	14.45	25.79	NA	11.02	નુંદ	ĄN
Suffolk	23.98	20.01	5.92	7.46	NA	7.84	÷	NA
Oregon				,				
Marion	38.16	97.07	36.19	22.66	26.78	NA	27.83	NA
Multnomah	13.00	11.92	9.22	21.17	90.6	NA	4.53	NA

NA = Not available. current 1973-1974 criteria.

Table 5 DISTRIBUTIONAL ANALYSIS OF FUNDS BY ALTERNATIVE SUBCOUNTY ALLOCATION CRITERIA FOR SELECTED SCHOOL DISTRICTS*

(Dollars and Fårcent)

Districts	Ratably Reduced Crant	AFDC Head Count	Orshansky + 2/3 AFDC	Orshansky	Under 4000	State Low Income	Per- formance	Lunch Receipts	Enrollment
Suburban areas			₹						
Castro Valley Culifornia	\$48,596	•	\$68,650 (41.52%)	\$83,476 (72.09%)	\$83,930 (73.03%)	NA	\$92,441 (90.57%)	NA ,	\$214,808 (342.34%)
Newark, Delaware	\$61,339	•	\$92,982 (51.58%)	\$106,703 (73.95%)	\$116,599 (90.08%)	NA	\$237,820 (287.71%)	\$178,289 (190.66%)	\$277,873 (356.27%)
Bettendorf, Iowa	\$52,738	\$24,727 (-53.11%)	\$48,481 (-8.07%)	\$61,600 (16.80%)	\$58,544 (11.00%)	\$89,385 (69.48%)	NA	NA .	\$119,993 (127.52%)
Whitam, Massachusetts	\$34,170	†	\$69,461 (103.21%)	\$94,920 (177.78%)	\$88,965 (160.35%)	EA ·	\$34,919 (2.197)	NA	\$52,470 (53.55%)
Parkrose, Oregon	\$63,227	\$45,499 (-28.03%)	\$62,610 (-0.97%)	\$70,777 (11.94%)	\$80,325 (27.04%)	NA	NA	\$85,05 1 (27,19%)	\$138,403 (118.80%)
Small, Medium- sized Cities									
Baldwin Park, California	\$450,292	+	\$558,054 (23.93%)	\$699,645 (55.37%)	\$634,645 (40.95%)	NA	\$493,245 (9.53%)	NA	\$440,403 (-2 19%)
New Castle-Guinni, Delaware	\$66,924	†	\$111,664 (66.85%)	\$115,709 (72.89%)	\$149,257 (123.02%)	NA	\$130,910 (9 5.60%)	\$120,037 (79.3 6%)	\$160,309 (139.53)
W. Des Moines, Iowa	\$55,092	\$36,533 (-33.68%)	\$81,516 (47.96%)	\$113,721 (105.21%)	\$114,073 (107.05%)	\$81,236 (47.45%)	NA	NA ·	\$158,653 (187.97%)
Chelsea, Massachusetts	\$267,777	†	\$477,119 (78.17%)	\$936,514 (249.73%)	\$958,444 (257.92%)	NA	\$420,072 (54.87%)	NA ·	\$319,786 (19.42%)
Reynolds, Oregon	\$38,000	\$37,385 (-1.61%)	\$44,938 (18.25%)	\$48,554 (27.77%)	\$39,209 (3.18%)	NA .	NA ,*	\$52,348 (37.15%)	\$94,952 (149.81%)
Large Central Cities									
Los Angeles, California	\$29,730,223	•	\$23,186,526 (-22.01%)	\$14,587,762 (-50.93%)	\$14,123,216 (-52.49%)	NA	\$26,477,389 (-10.94%)	NA	\$22,026,612 (-25.9%)
Wilmington, Delaware	\$1,127,155	+	\$892,911 (-20.78%)	\$866,443 (-23.12%)	\$823,627 (-26.92%)	NA	\$798,553 (-29.15%)	\$707,240 (-37.25%)	(-76.5%)
Des Moines, Iowa	\$1,364,122	\$1,436,801 (5.33%)	\$1,343,389 (-1,52°)	\$1,276,877 (-6.40%)	\$1,240,106 (-9.09%)	\$1,272,450 (-6.72%)	NA	NA	(-23.84%)
Boston, Massachusetts	\$6,055,423	+	\$6,512,611 (-6.36%) .	\$5,458,798 (-21.51%)	\$5,161,940 (-25.78%)	NA	\$6, 3 68,6 8 4 (-8.43%)	NA	\$6,397,570 (-8.02%)
Portland, Oregon	\$2,164,643	\$2,127,689 (-1.70%)	\$1,974,163 (-8.79%)	\$1,902,612 (-12.10%)	\$1,861,310 (-14.01%)	NA	NA	\$1,965,710 (-9.19%)	(-24.2%)

NA: Not available.

26

 $[\]stackrel{\bigstar}{\text{Figures}}$ in parentheses are percentage changes in subcounty allocations. $\stackrel{\dagger}{\text{Current}}$ allocation criterion.

This number is summed across all districts and divided by the 1973-1974 county ratably reduced grant; the entire ratio is multiplied by 100.

• Percent Change (Table 5) -This number is the difference between the district grant derived by the alternative allocator and the 1973-1974 ratably reduced grant for the district, divided by the 1973-1974 ratably reduced grant for the district; the entire ratio is multiplied by 100.

In describing the results of our distributional analysis it is important to distinguish between two levels of analysis. The first level presents the evidence regarding the over-all magnitudes of shift in funds resulting from transfers to alternative subcounty allocation methods. The second level considers the policy issue of the winners and losers for each subcounty formula.

Results of the Analysis

Tables 3 and 4 summarize the evidence for the total redistribution of funds. These tables were derived from information contained in Tables A-1 through A-12 in Appendix A. Table 4 shows that regardless of the alternative subcounty criteria adopted there would be a significant shift in subcounty allocations, where significant is defined as a shift in excess of 5 percent. In only five counties (Black Hawk, Dubuque, Linn, Polk, and Scott counties, Iowa) do we find the shift in funds to be less than 5 percent for one of more of the alternative criteria. In 8 out of 16 counties the Orshansky + 2/3 AFDC criterion results in the smallest shift in funds.

Table 3 depicts the possible range in funding per formula child that would occur in the 16 counties in our sample. It is interesting to note that Los Angeles County has the largest average range (\$113.84), while Multnomah County, Oregon, has the smallest (\$29.54). These two

extremes represent positions of maximum or minimum gains or losses resulting from a change in the method of subcounty allocations.

Given that there will be a significant shift in funds resulting from a change in the method of making subcounty allocations, it is important to ascertain the significant gainers and losers associated with the redistribution process. Table 5 illustrates the effects of alternative criteria on 15 selected school districts characterizing suburban, small, medium-sized cities, and large central cities. Since the intent of Title I legislation was to channel funds into areas with significant populations of low-income families, that is, large central cities, it is important to observe the potential impact of alternative allocators in these urban centers.

Table 5 clearly demonstrates that with the exception of AFDC head count all the other allocators channel Title I funds out of the central cities. The principal gainers in this redistribution process are suburban areas, with small and medium-sized cities benefiting to a lesser extent. The losses incurred by large central cities and gains captured by suburban and small and medium-sized cities are most pronounced for the enrollment and under 4000 allocators. The composite allocator of Orshansky + 2/3 AFDC appears to provide a compromise choice for most counties. There is insufficient data on state low income and lunch receipts to enable us to state any conclusions on these allocators.

III IMPACT OF LAG IN GENERATING DATA ON TIME AND SPACE VARIATIONS IN TITLE I ELIGIBLE STUDENTS

One of the questions raised in the introduction was the impact of using census data that is from 4 to 14 years out of date. The time lags are for Census Bureau, 4 to 14 years; Department of Social Welfare, 0 to 1 year; Internal Revenue Service, 1 year; and State Department of Education date. 1 year. The importance of these different lags for subcounty allocation policy is that over time both a positive or negative growth occurs in the Title I eligible population of a county, as well as shifts in the Title I eligible subpopulations across districts within a county. Since a census low-income measure and the Department of Social Welfare's AFDC head count are the leading candidates for a uniform allocator, we decided to obtain an estimate of the impact of the two time lags associated with these allocators.

For the census data, we calculated the percent change in number of eligible children by a low-income criterion between 1959 and 1969 for school districts in selected counties in Iowa, Oregon, and New York. For each county we constructed a summary measure of the weighted absolute percent change in the population shifts across districts in the number of Title I eligible students over this ten-year period. The weighted county absolute percent change (for Oregon and Iowa) is equivalent to:

$$\sum_{i=1}^{N} \frac{\left\{ \left[\left(\frac{x_{i,1969} - x_{i,1959}}{x_{i,1959}} \right) \right] (100) \times g_{i} \right\}}{G}$$

where $x_{i,1969}$ and $x_{i,1959}$ are the ith district's low-income head count for 1969 and 1959; g_{i} is the ith district's 1973-1974 ratably reduced grant

and G is the corrected (for districts with data not available) 1973-1974 county ratably reduced grant. In New York we used the district's 1959 low-income head counts for weights. This does not alter significantly the meaning of our summary statistic.

The results of our findings are both consistent and significant.

Table 6 shows that for all counties the range in the weighted absolute percent change is between 13 and 54 percent or an average shift per year

Table 6

WEIGHTED ABSOLUTE PERCENT CHANGE IN NUMBER OF ELIGIBLE CHILDREN BY LOW-INCOME CRITERION BETWEEN 1959 AND 1969 IN SELECTED COUNTIES OF IOWA, OREGON, AND NEW YORK

States and Counties	Weighted Absolute Percent Change
Iowa	
Black Hawk	54%
Dubuque	29
Linn	13
Po1k	26
Pottawattamie	64
Scott	34
Oregon	
Marion	*
Multnomah	21
New York	
Albany	21
Erie	18
Nassau	38
Onondaga	21

A meaningful statistic for Marion, Oregon, could not be computed, because 23 out of 35 school districts in the county had an enrollment of less than 300 students, and thereby were not included in special census tabulation.

of between 1 and 5 percent. (A complete analysis of the percent changes for each school district in the selected counties can be found in Appendix B.) It should be noted that for time periods greater or less than 10 years the weighted absolute percent changes for these counties would likely be somewhat larger and smaller than the figures given. These results indicate that using a census low-income measure as a uniform allocator would generate substantial misallocation of funds over time. That is, some districts would continue to receive Title I funds for students that no longer reside within the districts, while other districts would be denied additional funding for a legitimate growth in their Title I eligible students.

We also attempted to use income tax data to include more states and to look at different time periods. Our only successful attempt was for Los Angeles county where we used income tax data collected by ZIP Code areas. Table 7 presents the results of our analysis of the percent change in ZIP Code areas' shares of joint returns with adjusted income under \$3,000 between 1966 and 1969 for Los Angeles County. Although we used ZIP Code areas instead of school districts for the unit of analysis for this portion of the study, we believe that some insight is gained by examining the results of Table 7. The important point to remember is that families with adjusted income under \$3,000 are likely to have students eligible for the Title I program. The weighted absolute percent change for these ZIP Code areas is 2.59 percent. This represents, on the average, a less than 1 percent per year shift in the share of joint returns across ZIP Code areas in Los Angeles County. This is at the low end of the comparable data for the other three states based upon census data. Both a decline in the rate of demographic changes in 1970-73 compared with 1959-69 and the larger than school district size of a ZIP Code account for the low magnitude of shift.

Table 7

PERCENT CHANGE IN ZIP CODE AREAS' SHARES OF JOINT RETURNS WITH

ADJUSTED INCOME UNDER \$3,000 BETWEEN 1966 AND 1969: LOS ANGELES COUNTY*

	Joint Returns					
	1966†		1969‡		Percent Change	
		Share		Share	in Share of	
ZIP Code Area	Number 3	(percent)	Number §	(percent)	Joint Returns•	
Los Angeles City	35,934	31.04%	29,552	30.72%	-1.03%	
Inglewood**	13,786	11.90	11,896	12.36	3.86	
Inglewood (City)	1,875	1.61	1,493	1.55	-3.72	
Santa Monica	1,819	1.57	1,473	1.53	-2.54	
Torrance City	1,754	1.51	1,418	1.47	-2.64	
Whittier	6,078	5.25	5,264	5.47	4.19	
Long Beach**	7,099	6.13	6,081	6.32	3.09	
Long Beach (City)	6,980	6.02	5,569	5.78	-1.44	
Pasadena**	3,617	3.12	2,802	2.91	-6.73	
Pasadena (City)	2,430	2.09	1,846	1.91	-8.61	
Glendale (City)	2,318	2.00	1,961	2.03	1.50	
Van Nuys**	7,929	6.84	6,771	7.03	2.77	
Van Nuys (City)	3,225	2.78	2,555	2.65	-4.67	
Burbank (City)	1,378	1.19	1,234	1.28	7.56	
North Hollywood (City)	2,840	2.45	2,244	2.33	-4.89	
Alhambra**	15,550	13.43	13,114	13.63	1.48	
-Alhambra (City)	1,144	0.98	924	0.96	-2.04	
Total	115,756		96,197			
Weighted absolute percent change					2.59	

In this table, ZIP Code Areas consist of sectional centers and zoned cities. The sectional centers were designed to reflect transportation centers. They do not conform to the boundaries of established subdivisions.

$$\frac{\text{share (1969)} - \text{share (1966)}}{\text{share (1966)}} \times 100$$

Calculated from Department of the Treasury Internal Revenue Service, ZIP Code Area Data:

<u>Individual Income Tax Returns: 1966</u> (Washington, U.S. Government Printing Office), pp.

77-80.

^{*}Calculated from Department of the Treasury Internal Revenue Service, ZIP Code Area Data: (Washington, U.S. Government Printing Office), pp. 107-112.

In cases in which the state from which the return was filed could not be determined, the following procedure for classification was used: (a) In 1966, these returns were assigned to an unallocated category; (b) In 1969, these returns were arbitrarily classified in the largest ZIP Code Area of one of the states within that IRS region.

The share is equivalent to number of joint returns for ZIP Code Area divided by the total number of joint returns for Los Angeles County.

The percent change in share of joint returns is equivalent to:

^{**} Surrounding area only; does not include central city.

this figure is derived by using number of joint returns in 1966 as weighting factors.

Turning to the Department of Social Welfare's AFDC head count, we can present the problem from a somewhat different perspective. From one vantage point, it is easy to point out the inequities in the distribution of Title I funds for racial and ethnic groups introduced by the use of an AFDC allocator. However, there are benefits to be gained by the minimal time lag in generating AFDC data. We do not pretend to be able to measure the net effect of these two countervailing influences in a precise way; however, we have calculated the change between 1970 and 1973 of the racial and ethnic composition of selected districts in Los Angeles County. It should be noted that these districts are characterized by minority enrollments in excess of 50 percent in 1973. Table 8 presencs enrollment data by school district for 1970 and 1973 for Black, Spanish surname, and Asian students. Table 9 shows that while all districts were experiencing a decline in total enrollment between 1970 and 1973, in general there were significant increases in these districts' populations of Black, Spanish surname, and Asian students. Pomona Unified School District represents a graphic example of this phenomenon. Pomona experienced a 9.6 percent decline in its total enrollment while at the same time the enrollments of Black, Spanish surname, and Asian students increased by 26.2, 13.0, and 24.3 percent.

These findings support our belief that the racial and ethnic composition of school districts in large urban counties is rapidly changing and furthermore that districts with high ratios of minority to total enrollment are tending to become increasingly populated by minority students. Therefore, substantial advantages can be gained for racial and ethnic groups by using an allocator, such as AFDC head count, that is based on current data. However, these advantages appear to be more important in the small towns and suburban areas than in the large cities.

Table 8

RACIAL/ETHNIC COMPOSITION OF
SELECTED DISTRICTS IN LOS ANGELES COUNTY*

District	Total Enrollment	Black	Percent Black of Total	Spanish Surname	Percent Spanish Surname of Total	Asian	Percent Asian of Total
			<u>1970</u> †				
Alhambra Elem/High	18.096	64	0.4%	5,172	28.6%	1,585	8.8%
Basset Unified	8,515	423	5.0	3,691	43.3	76	ગ.9
Compton Unified	40,364	33,486	83.0	4,605	11.4	105	C.3
Duarte Elementary	5,160	1,212	23.5	868	16.8	34	0.7
El Rancho Unified	16,466	1	0	10,834	65.8	104	0.6
Garvey Elementary	6,728	5	0.1	3,590	53.4	323	4.8
Inglewood Unified	13,156	3,266	24.8	1,433	10.9	275	2.1
Los Angeles Unified	642,895	154,926	24.1	140,346	21.8	22,435	3.5
Montabello	25,973	10	0	13,600	52.4	1,190	4.6
Mountain View Elem	6,134	0	0	3,114	50.8	25	G.4
Pasadena Unified	29,114	9,563	32.8	64 د , 2	9.2	849	2.9
Pomona Unified	22,801	4,362	19.1	3,920	17.2	140	0.5
Valle Lindo Elem	1,240	2	0.2	717	57.8	12	1.0
			<u>1973</u> ‡				
Alhambra Elem/High	17,573	68	0.4%	6,277	35.7	,028	11.5%
Basset Unified	7,888	586	7.4	4,122	52.3	81	1.0
Compton Unified	34,523	30,453	88.2	3,487	10.1	54	0.2
Duarte Elementary	4,607	1,232	26.7	929	20.2	65	1.4
El Rancho Unified	13,302	7	0.1	10,054	75.6	58	0.4
Garvey Elementary	6,001	4	0.1	3,637	50.6	388	0.5
Inglewood Unified	12,511	7,464	59.7	1,019	8.1	312	2.5
Los Angeles Unified	611,228	155,132	25.4	155,607	25.5	27,481	4.5
Montabello	24,332	24	0.1	14,508	59.6	1,355	[′] 5.6
Mountain View Elem	6,009	7	0.1	3,649	60.7	24	0.4
Pasadena Unified	25,418	10,158	40.0	3,087	12.i	672	2.6
Pomona Unified	20,602	5,505	26.7	4,428	21.5	174	0.8
Valle Lindo Elem	1,041	2	0.2	711	68.3	14	1.3
	•						

^{*}The criterion for selection of districts in this sample was that in 1973 mx :e than 50 percent of the total enrollment of the district was minority.

^{*}Statistics obtained from Racial and Ethnic Survey, 1973, State Department of Education, Bureau of Intergroup Relations (Sacramento, California), 1973.

Statistics obtained from <u>Directory of Public Elementary and Secondary Schools in Selected Districts: Enrollment and Staff by Racial/Ethnic Group, 1970</u>, U.S. Department of Health, Education, and Welfare/Office of Civil Rights (Washington, D.C.),

Table 9

PERCENT CHANGE IN ENROLLMENT OF
SELECTED SCHOOL DISTRICTS, 1970-1973

	Percent Change					
	Total		Spanish			
District	Enrollment	Black	Surname	Asian		
Alhambra Elem High	-2.9%	6.3%	21.4%	27.9%		
Bassett Unified	-7./	38.5	11.7	6.6		
Compton Unified	-14.	-9.1	-24.3	-48.6		
Duarte Elementary	-10.7	1.7	7.0	9.1		
El Rancho Unified	-19.2	600.0	-7.2	-44.2		
Garvey Elementary	-10.8	-20.0	1.3	20.1		
Inglewood Unified	-4.9	128.5	-28.9	13.5		
Los Angeles Unified	-4.9	0.1	10.9	22.5		
Montabello	-6.3	140.0	6.7	13.9		
Mountain View Elem	-2.0	0	17.2	-4.0		
Pasadena Unified	-12.7	6.2	16.0	-20.8		
Pomona Unified	-9.6	26.2	13.0	24.3		
Valle Lindo Elementary	-16.0	0	-0.8	16.6		

IV MEASUREMENT BIASES OF ALTERNATIVE ALLOCATORS

Each potential allocator contains measurement biases that limit its usefulness and generate specific inequities. In this section, we will describe the major biases related to each allocator.

Census Low-Income Allocators (Under 4000, Orshansky)

In 1970, the Office of Education contracted with the Census Bureau to survey 2,000 Local Educational Authorities (LEAs) with enrollment in excess of 300. The census data that were collected have several problems which make the data difficult to use at the LEA level for subcounty allocations.

First, the decennial census data on income is derived on a 20 percent sample. The errors attributable to this factor become large for the small educational agencies. For example, an LEA with enrollment between 250 and 1,000 a.d.a. may have an estimated 50 low-income children, plus or minus two standard deviations.

Second, in 8,000 districts with enrollments of 300 or more, census units are split by school district boundaries. For these split census units, population is assigned on the basis of relative population of each overlapping LEA. It is also assumed that the income characteristics are homogeneous over the census tract and among the school districts. It seems clear that this procedure could generate serious inequities in the assigning of low-income families. Furthermore, errors in mapping, estimating areas, and clerical processing all diminish the confidence of the estimates of low-income children, particularly in small noncoterminous LEAs.

A third problem is the extent to which LEAs are coterminous with counties or other political divisions. In New Jersey and Massachusetts, which are completely partitioned into coterminous districts, income data by LEA are of good quality as long as the districts are large enough. However, there are cases for which allocations by LEA would be very difficult, such as North Dakota, which has 40 percent of its school population in districts under 300, or Illinois or Missouri with almost all districts noncoterminous with political units.

A fourth problem, discussed earlier, is that LEAs may negotiat among themselves for overlapping census tracts. The State Educational Authority (SEA) may attempt to mediate these conflicts, but does not really have accurate and conclusive data on which to arbitrate a decision.

Department of Social Welfare (AFDC Head Count)

The use of AFDC head count as an allocator may have deleterious consequences for certain racial and ethnic groups. Specifically, the cultural, moral, and ethical belief systems of Asian, Native American Indian, and Spanish surname groups act to deter participation by families of these groups in the AFDC program. In addition, language barriers and lack of accurate information on eligibility requirements may further dampen the incentive of minority families to participate. The overall effect is to minimize the likelihood that participation rates for the AFDC program will be equal across ethnic and racial groups, thereby generating potential inequities in the distribution of subcounty allocations on the basis of AFDC head count.

There are four technical problems related to the use of Department of Social Welfare data. Briefly, we can describe them as: (1) conflicts between LEAs in claiming recipients, (2) problems related to the use of addresses to identify aid recipients, (3) the potential for "welfare fraud," and (4) variance in applying welfare regulations among county officers.

It is also important to recognize that the AFDC rolls are extremely sensitive to prevailing attitudes regarding the welfare program by state and federal officials.

Internal Revenue Service (State Low Income)

There are five basic problems related to use of income tax returns to generate data on low-income families. First is the underreporting by individuals not receiving refunds. Second are the problems associated with the type of return submitted, that is, married filing separately versus joint returns, and the like. Third is the difficulty in distinguishing between dependents between the ages of 5 and 17 and all other dependents residing in a household. Fourth is the problem of the exclusion of transfer payments in the calculation of adjusted income. Fifth is the nonreporting of income by illegal aliens and migrant workers who have children attending the public schools.

An additional complication in using income tax returns for the purpose of identifying low-income families is the existe e of "tax loopholes" that disguise the actual total earnings of many middle- and upper-class families. Furthermore, no capacity currently exists whereby information may be obtained on low-income families by school district. These problems are not at all insoluble but would probably require technical assistance to the states by USOE.

Department of Education (Enrollment, Lunch Receipts, and Performance)

Enrollment

There are few measurement biases related to an enrollment allocator; however, as we indicated earlier in this technical note there is no apparent defense for using enrollment as a proxy for need. Therefore, we will not enumerate any of the potential problems stemming from an enrollment allocator.

Test Scores

Most testing programs are intended principally for the guidance of students and not for identifying pu ils who need compensatory education. Only 17 states are using testing statewide to help evaluate instruction and only 13 to assess student progress. Even these states use different tests at different grade levels. Moreover, tests do not or cannot measure many valuable educational outcomes. Furthermore, in those states where tests are administered, substantial variance exists in the techniques of administration of standardized tests among school districts by wealth. Lastly, the use of a performance allocator raises the possibility of creating a disincentive for large central city school districts by to decrease their percentage of low-performing students.

Free Lunch

A basic problem related to the use of lunch receipts as an allocator is the lack of a uniform standard across school districts in determining eligibility. In fact, considerable variation exists among schools in the same county. The Agriculture Department does not have a sophisticated enforcement mechanism in operation to monitor free lunch programs. Another problem is that the acceptance of a free lunch by a school child may be accompanied by significant social class stigma, particularly in those schools where the techniques of identifying free-lunch children (e.g., by specially colored lunch cards) serve to classify a student by economic class.

At this time it is not possible to estimate the magnitude of the impact of these issues upon allocations in a sample of states. However, they are qualitative considerations which should be kept in mind when discussing subcounty allocators.

39

V SUMMARY AND POLICY IMPLICATIONS

At the outset of this technical note several options were identified as candidates for subcounty allocation policy. These options varied along the dimension of state autonomy to a federally specified allocator and a dimension of the amount of technical assistance given to improve the allocators, especially income tax data or standardized test performance. Since it was recognized that the viability of each option depended upon the chance of a specific allocator or mixture of allocators, the methodological approach adopted for evaluation was to assess the impact of each allocator along three dimensions. These dimensions are: (1) for selected counties in five states, an analysis of the distributional impact for each allocator of a change from the current method of subcounty allocation; (2) for this same sample, an assessment by allocator of the impact of population shifts over time--that is, the inefficiency arising from misallocations related to using data that is not current; and (3) finally, an enumeration of the coverage measurement biases related to each allocator.

Summary discussions of each option in terms of these dimensions are given below.

In our analysis we considered six allocators, as proxies for low income, that are derived from income statistics on the family. We have grouped the results of our findings according to the source of the statistic.

Census Bureau

Analysis of the Under 4000 and Orshansky allocators should begin with a statement of the widely publicized limitations of the fourth count census. Specifically, these limitations are the measurement biases related

to the splitting of census units, overlapping of census tracts, exclusion of LEAs with enrollment under 300, and sampling bias introduced by the 20 percent sampling technique of the special census tabulation. However, the most serious deficiency of Census Bureau data is almost certainly the 4-to 14-year lag in generating the data. This characteristic of the data set is particularly troublesome, since it raises a serious problem of inequity in the distribution of Title I grants among districts in a county. This contention was supported by our calculation of the percent change in the number of district eligible children by low-income (census) criterion between 1959 and 1969 in selected counties in Iowa, New York, and Oregon. For all counties in this subsample the range of the weighted absolute percent change was between 13 and 54 percent.

These problems must be evaluated in light of evidence on the distributional effect of a change from current state methods of subcounty allocation to either the use of the Orshansky or Under 4000 criterion. The consistent finding was a shift of funds away from the concentration on large central cities and into small and medium sized cities and suburban areas and from Black toward other minorities (see Table 5). If such shifts are desired, the use of some income-based criterion is probably warranted.

Department of Social Welfare

Since AFDC head count currently is used as the allocator or one element of a combination of allocators in 40 but of 50 states making subcounty allocations, we were particularly interested in its characteristics. We were aware of several reporting and nonreporting biases related to its administration; included in this list are: (1) conflict between LEAs in claiming recipients; (2, underreporting by certain ethnic and racial groups, as well as certain geographical areas; (3) problems of identification of recipients legal residences; (4) variance in applying federal/state welfare standards among county social welfare officers; and (5) the sensitivity of

AFDC rolls to changes in the political attitudes of federal and state government officials. In contrast to this list of problems, we recognized that AFDC data had the distinct advantages of being current and chanelling Title I funds to urban districts. This latter point was substantiated by the fact that in the three states (California, Delaware, and Massachusetts) in our sample that currently used AFDC head count as an allocator, the large central cities of these states would receive a smaller grant under any alternative criterion. Furthermore, in Iowa and Oregon the large central cities did better under an AFDC allocator than any of the other alternatives (see Table 5).

From this list of problems and advantages our investigation focused on the net impact of an AFDC allocator on various racial groups. That is, because of the differential participation rates in the AFDC welfare program among Black, Spanish surname, Asian, and American Indian groups (with Black Americans having the highest participation rate), an AFDC allocator channels funds into districts with high concentration of Black AFDC eligible families. However, this inequity is (to some extent) compensated for because AFDC head counts are current and therefore do not have the deleterious consequence of misallocating funds because of population shifts over time. Although we did not attempt to estimate the magnitude of these two opposite effects by racial class, we did attempt to obtain an indication of the magnitude of population shifts among racial groups in a large metropolitan county. The results of our findings (see Tables 8 and 9) for Los Angeles County indicate there were substantial changes in the racial composition of Los Angeles County school districts between 1369 and 1972, with particularly large changes in East (a predominately Black section) and South (an area with large numbers of Mexican-Americans) Los Angeles.

Internal Revenue Service

The Internal Revenue Service is a potentially significant source of income data. In this study, we considered using information primarily

from state individual income tax returns to determine the number of families in a school district with income below a specified criterion. The principal features of Internal Revenue Service data are that the data is generated on a yearly basis and that there is a greater likelihood--as compared to AFDC participation rates--that low-income families will report their incomes (for the purpose of receiving refunds). This data source is not without problems. Specifically, its application as an allocator for Title I eligibility is limited by: (1) nonreporting by individuals who do not receive refunds; (2) problems associated with type of return submitted (married-filing separately versus joint returns, etc.), and (3) difficulty in distinguishing between dependents between the ages of 5 and 17 and all other dependents residing in a household. Furthermore, a critical problem is that an efficient data processing technique does not currently exist for compiling income information by school district. the one state (Iowa) that currently uses state income tax returns as part of its Title I formula, the stributional effect of using state income tax as the allocator was to channel additional monies into suburban areas at the expense of small, medium, and large cities (see Table 5).

Department of Education

One of the more interesting derived income measures considered in this study was the use of lunch receipts as an allocator. The two primary advantages of this allocator are that the data are compiled by the school district and are current. Unfortunately, a number of problems in the administration of this program introduce measurement biases and thereby limit its usefulness as an allocator. Among these problems are: (1) underreporting by certain racial and ethnic groups, (2) complex eligibility requirements, and (3) social class stigma related to the acceptance of free hot lunches. The limited empirical analysis we conducted on this allocator indicated that large central cities would be significant losers (see Table 5).

Another allocator that the Department of Education can provide is a performance measure. Over the past few years the alternative to a poverty base distribution formula given most serious consideration has been the adoption of a low-performance base. The key assumption behind a lowperformance criterion is that the correlation between performance and income is not perfect and therefore Title I funds should be channeled directly to low-achieving students. Our analysis of the distributional effects at the subcounty level of adoption of a low-performance allocator was that suburban districts as well as small and medium-sized city districts would be significant gainers, while large central city districts would experience a loss of funds (see Table 5). In addition, we were extremaly concerned with the following two problems related to the use of standardized tests for subcounty allocation purposes: (1) bias introduced by a variance in techniques of administration of standardized tests among school districts by wealth, and (2) the possibility of creating an incentive for large central city districts to show significant numbers of low-performing students.

Before turning to a consideration of the policy implications of this study, it is important to emphasize a key conclusion of our research. That is, independent of the selection of a particular alternative allocator, the adoption of an alternative allocation method would result in a significan redistribution of funds. The magnitude of the shift in funds by county and state as well as an estimate of the weighted average county range per formula child have been documented in Tables 3 and 4 of this report.

Policy Alternatives

Thus the results of the analysis indicate that the selection of a subcounty allocator reduces to a choice among second-best proxies. Each allocator is associated with a set of measurement biases and generates a

particular array of inequities among racial groups, income classes, and geographical areas.

If one supports state autonomy, the implication is that state governments can best arbitrate a solution among competing school districts. This policy option is not withe the secause state governments are sensitive to the geographical, inc. The solution of school districts within their counties. Colours, they can also be sensitive to political factors in the state that USOE or Congress would prefer they were not sensitive to.

The choice of a uniform allocator for all states bypasses this sensitivity but might better achieve national goals in the aggregate. It appears to make little sense to impose an allocator that is based solely upon either AFDC or Census Bureau income data. However, an allocator that is a weighted combination of factors might minimize the burden of the efficiency and equity problems discussed in this technical note. The combination of Orshansky + two-thirds AFDC is a good starting place for such a search procedure. However, such a procedure would not be without significant gainers and losers in terms of funds allocated.

In addition to these two extreme positions, there are a variety of options that would further limit state flexibility without entirely removing it; e.g., require that both Orshansky and AFDC count be used, with the relative weights allowed to vary between 0.5 and 3.0.

States could also be provided technical assistance in developing new sources of data and improving upon the accuracy of existing sources of information. A few examples will indicate the possible forms of technical assistance: (1) A state could be assisted in developing the capacity to extract income data by school district from either state or federal income tax forms. (2) A state could be provided with the technical and financial resources to conduct its own mid-decade state census. (3) A state could

be aided in reconstructing the special census tabulation by school district so as to be able to include districts with enrollments under 300. (This would be particularly useful in states with large numbers of small districts, such as Oregon.) (4) A state could be provided with a technical assistance team to assist in developing new sources of data--such as county assessor's data. These represent only a few of the options available to state governments in attempting to mitigate the problems generated by the existing imperfect allocators. This dimension is not entirely independent of the previous one that considers state autonomy because a state's interest and need in making use of such technical assistance would clearly vary depending upon the nature of changes in the set of subcounty allocators that could be used.

Appendix A

ALTERNATIVE SUBCOUNTY ALLOCATIONS FOR ALL SCHOOL DISTRICTS IN SAMPLE

Tables A-1, A-5, A-7, A-9, and A-11 contain the results of the calculations of alternative subcounty allocations for all school districts in the counties sampled. For each school district we calculated an alternative allocation for each of the following criteria: Under 4000, Orshansky, Orshansky + two-thirds AFDC, AFDC head count, enrollment, performance, state low income, and lunch receipts. In addition, Tables A-2, A-4, A-6, A-8, A-10, and A-12 translate the information into percent change terms.

Table A-1

ALTERNATIVE SUBCOUNTY ALLOCATIONS: CALIFORNIA, ALAMEDA COUNTY

Performance [‡]	6,017,677 286,341 20,292 99,205 360,745 92,441 18,037 608,757 565,919	2,872,432 2,872,432 11,273 56,366 169,099 286,341
Enrollment*	6, 123, 591 321, 057 62, 294 105, 842 399, 760 214, 808 16, 219 890, 718 678, 192	158,056 262,160 196,742 1,617,431 67,727 138,822 239,313 371,832 4,999
Orshansky + 2/3 AFDC*†	6,123,591 326,521 33,575 37,267 500,742 68,650 32,998 314,291 514,818	24, 229 120, 224 126, 685 3, 558, 499 6, 461 15, 807 130, 954 175, 952 2, 192
Orshansky	6, 123, 591 442, 404 41, 638 56, 251 488, 246 83, 476 34, 231 361, 530 510, 866	31,429 130,719 150,137 3,268,985 10,009 14,613 155,742 177,162
Under 4000	6, 123, 591 447, 313 51, 811 54, 625 533, 821 83, 930 19, 693 400, 659 546, 481	29,774 125,191 132,928 3,170,107 4,454 15,238 133,162 222,719 1,876
1973-74 Ratably Reduced Grant*	6,123,591 168,773 22,709 11,445 517,763 48,506 31,248 249,980 520,125	14,352 105,914 94,651 3,952,620 1,635 17,440 97,194 174,404
District	Alameda Cty Alameda Unif Albany Amador Berkeley Castro Valley Emery Fremont Hayward	Murry Newark New Haven Oakland Piedmont Pleasanton San Leandro San Lorenzo

* (See following page for footnotes.)
†

---4

Footnotes for Table A-1

* Calculated from statistics supplied by California State Department of Education, Division of Compensatory Education, ESEA Title I (Sacramento, California), 1974.

t Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.),

‡ Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menlo Park, California, May 1974).

 \S Estimates for the numerator of the Orshansky, Orshansky + 2/3 AFDC, and Under orall 4,000 criteria were obtained by using the following proxy variables:

Orshansky:

Total number of Orshansky children in state Total number of AFDC children in state

 $_{\rm X}$ Total number of AFDC children in school district

Orshansky + 2/3 AFDC:

Total number of Orshansky children in state Total number of AFDC children in state

+ 2/3 Total number of AFDC children in school district

Under \$4,000:

Total number of AFDC children in school Total number of Under \$4,000 children in state X Total num X district

Table A-2

PERCENT CHANGE IN SUBCOUNTY ALLOCATIONS BY ALTERNATIVE CRITERIA:

CALIFORNIA, ALAMEDA COUNTY

District	Under 4000 [†]	<u>Orshansky</u> †	Orshansky + 2/3 AFDC*†	Enrollment*	Performance [‡]
Alameda City	165.03%	162.12%	93.46%	90.23%	69.66%
Albany	128.15	83.35	47.84	174.31	-10.64
Amador	377.28	391.48	225.61	824.78	766.79
Berkeley	3.10	-5.70	-3.28	-22.79	-30.32
Castro Valley	73.03	72.09	41.52	342.84	90.57
Emery	-36.97	-9.54	-5.60	-48.09	-42.27
Fremont	60.27	44.62	25.72	256.31	143.52
Hayward	5.06	-1.78	-1.02	30.39	8.80
Livermore	62.64	78.43	45.18	309.97	159.47
Murry	107.45	118.98	68.81	1001.28	528.38
Newark	18.20	23.41	13.51	147.52	NA
New Haven	40.44	58.62	33.84	107.86	152.50
0akland	-19.79	-17.29	-9.97	-59.07	-27.32
Piedmont	172.41	512.17	295.16	4042.32	589.48
Pleasanton	-12.62	-16.20	-9.36	4695.99	223.19
San Leandro	37.00	60.23	34.73	1462.22	73.98
San Lorenzo	27.70	1.58	0.83	113.20	64.18
Suno1	-31.15	-33.87	-19.55	83.44	-17.24

^{*} Calculated from statistics supplied by California State Department of Education, Division of Compensatory Education, ESEA Title I (Sacramento, California), 1974.

Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

^{*}Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute, (Menlo Park, California), May 1974.

Table A-3

ALTERNATIVE SUBCOUNTY ALLOCATIONS: CALIFORNIA, LOS ANGELES COUNTY

District	1973-1974 RRG*	Under \$4000 [†]	Orshansky [†]	Orshansky + 2/3 AFDC*†	£nrollment*	Performance [‡]
<u> </u>						
ABC	405,414		80 0,709	576,195	786,492	617,543
Alhambra, El	211,569	1,659,020	1,551,629		318,141	201,244
Alhambra High	121,247	-	148,252	132,931	308,625	323,569
Antelope	96,734	584,205	685,897	•	263,449	272,27 <u>1</u>
Arcadia	61,472		194,325	118,803	359,815	51,298
Azusa	353,936		535,788	432,508	429,436	680,056
Baldwin Park	450,292	634,645	699,645	558,054	440,403	493,245
Bassett	189,319		287,215		286,409	408,406
Bellflower	193,279	330,411	309,880	243,707	398,906	230,839
Beverly Hills	13.954	136,692	104,036	52,819	.02,849	11,838
Bonita	116,910	280,784	271,067	165,361	275,442	254,514
Burbank	232,877	539,366	437,324	321,250	504,505	256,487
Castaic ⁹	11,880	14,366	14,491	13,004	10,436	13,311
Centincla	138,029	947,700	882,452	459,640	252,907	234,785
Charter Oak	63,169	164,988	146,766	100,822	314,887	256,487
Claremont	47,330	114,926	117,784	77,704	241,410	122,325
Compton	3,164,868	2,860,079	3,169,395	3,166,747	1,312,789	3,219,903
Covina Valley	211,947	398,321	302,449	251,092	560,294	217,028
Culver City	93,717	256,406	212,532	144,972	235,113	94,703
Downey	220,432	568,533	527,613	353,038	580,423	246,623
Duarte	218,735	267,724	339,976	271,160	166,553	266,352
Eastside	18,291	29,167	63,908	38,049	24,764	17,757
East Whittier	100,128	257,712	242,628	161,668	328,365	126,271
El Monte Elem	374,489	866,730	875,392	590,966	338,660	297,920
El Monte UHS	285,864	1,106,159	1,244,721	700,136	261,397	408,40
El Rancho	364,684	482,774	486,742	417,416	480,272	570, 191
El Segundo	23,382	99,254	77,284	46,719	109,738	25,649
Garvey	298,121	599,877	639,081	445,512	216,434	230,839
Glendale	332,816	872,389	763,754	521,129	842,316	280,163
Glendora	75,237	218,533	199,155	128,757	310,217	134,163
Hacienda-La Puent	ta [§] 588,717	683,459	682,553	612,157	1,079,940	1,158,139
Hawthorne	147,835	217,662	190,610	166,324	184,170	73,000
Hermosa Beach	30,359	117,973	98,835	59,883	52,923	19,730
Hughes-Elizabeth	2,828	3,483	3,344	3,050	6,828	0
Inglewood	545,894	425,747	367,843	468,951	449,601	534,678
Keppel Union	49,027	83,147	82,114	63,2.4	33,287	31,568
La Canada	4,337	43,532	47,560	8 ز9, 22	170,409	19,730
Lancaster	107,482	219,403	237,054	163,435	253,898	136,136
Las Vergenes	11,314	83,582	68,738	36, 3.23	220,325	61,162
Lawndale	225,335	437,509	413,173	306,480	195,703	193,352
Lennox	139,349	38,744	32,697	93,277	106,837	61,162
Little Lake	119,361	174,130	172,031	142,082	207,059	159,811
Long Beach	2,083,261	3,802,990	3,506,398	2,698,116	2,265,514	1,489,600
Los Angeles	29,730,223	14,123,216	14,587,762	23,186,526	22,026,612	26,477,389
Los Nietos	64,866	123,632	137,477	96,166	94,385	136,136
Lowell	7,354	88,371	74,312	36,283	177,060	51,298
Lynwood	369,021	473,197	413,173	388,037	297,871	278,190
Manhattan Beach	27,719	149,316	111,839	64,057	160,751	49,325
Monrovia	244,568	322,575	300, 219	268,592	225,384	228,866

Table A-3 (Concluded)

District	1973-1974 RRG*	Under \$4000 [†]	Orshansky†	Orshansky + 2/3 AFDC*+	Enrollment*	Performance [‡]
						1 100 707
Montebello	1,121,959	1,308,584	1,485,491	1,279,061	866,160	1,189,707
Mt. View	340,925	351,307	348,522	344,208	202,106	205,190
Newall	22,251	30,908	24,151	23,118	82,463	35,514
Norwalk	536,466	876,743	870,933	681,031	1,015,555	846,408
Calmdale	74,294	105,349	§ 23,614	95,203	141,400	151,919
Palos Verdes	3,394	183,57	-50,853	67,108	628,217	63,135
Paramount	410,128	659,514	636,851	508,124	330,311	455 , 758
Pasadena	1,261,308	1,592,413	1,602,904	1,408,941	927,750	968,733
Pomona	949,988	1,133,148	1,261,070	1,084,320	745,809	850,354
Redondo Beach	182,908	473,633	471,136	307,443	293,449	195,325
Rosemead	65,809	99,254	95,862	78,828	93,677	65,108
Rowland	323,011	337,376	325,114	323,980	523,346	544,542
San Gabriel	62,415	232,027	206,958	124,904	135,245	53,270
San Marino	3,583	62,251	48,674	23,118	122,261	11,838
Santa Monica	258,522	722,203	611,214	410,834	462,124	222,947
Saugus	45,444	29,167	26,752	37,407	157,779	102,595
Soledad	6,223	6,965	17,092	10,917	16,486	11,838
South Bay	77,689	722,638	671,778	334,415	243,214	175,595
So. Pasadena	36,204	72,699	57,592	45,434	140,516	15,783
South Whittier	125,584	294,279	267,151	186,714	141,329	142,054
Sulphur Springs	29,039	10,883	8,917	20,389	79,067	73,000
Temple	41,107	80,970	67,624	52,498	166,801	59,189
Torrance	202,706	599,006	552,136	353,680	1,116,272	489,299
Valle Lindo	27,536	79,664	88,431	53,783	37,924	49,325
Walnut	26,588	60,510	49,417	36,444	177,166	122,325
West Covina	146,326	276,865	270,123	199,878	437,360	217,325
Westside	37,147	99,253	102,179	65,181	75,494	55,243
Whittier City	133,315	314,304	302,077	206,300	208,969	132,190
Whittier Union	166,691	1,063,061	1,021,415	536,059	496,156	461,677
Wm. S. Hart	67,318	53,980	93,261	78,506	247,990	149,947
Wilsona	2,263	4,789	17,092	8,667	3,502	1,973
Wiseburn	21,308	19,154	27,867	24,082	73,513	25,649
L.A. County	49,768,415	49,768,715	49,768,415	49,768,415	49,768,415	49,768,415

Note: RRG = Ratably Keduced Grant.

^{*,†,} ‡ , $^{\hat{9}}$ Footnotes same as for Table A-1.

PERCENT CHANGE IN SUBCOUNTY ALLOCATIONS BY ALTERNATIVE CRITERIA:
CALIFORNIA, LOS ANGELES COUNTY

			Orshansky +	_	
District	Under \$4,000†	Orshansky†	2/3 AFDC*†	Enrollment*	Performance [‡]
ABC	78.46%	97.50%	42.12%	93.99%	53.32%
Alhambra, El	684.15	633.39	273.72	50.37	-4.88
Alhambra High	22.43	22.27	9.63	154.54	166.86
Antelope	503.92	609.05	263.13	172.34	181.46
Arcadia	296.57	216.11	93.26	485.33	-16.55
Azusa	43.04	51.37	22.19	21.33	63.88
Baldwin Park	40.95	55.37	23.93	-2.19	9.53
Basset	51.99	51.70	22.36	51.28	115.72
Bellflower	70.95	60.32	26.09	106.38	19.43
Beverly Hills	879.59	645.56	278.52	13.54	-15.16
Bonita	140.17	131.85	41.44	135.60	117.70
Burbank	131.60	87.79	37.94	116.64	10.13
Castaic	20.92	21.97	9.46	-12.15	16.25
Centincla	586.59	539.32	283.00	83.22	70.09
Charter Oak	161.18	132.33	59.60	398.48	306.03
Claremont	142.81	148.85	64.17	410.05	158.45
Compton	-9.63	0.14	0.05	-58.51	1.73
Covina Valley	87.93	42.70	18.46	164.35	2.39
Culver City	173.59	126.78	250.87	150.87	1.05
Downey	157.91	139.35	60.15	163.31	11.88
Duarte	22.39	55.31	23.96	-23.85	21.76
Eastside	59.46	249.39	108.02	35.38	-2.91
East Whittier	157.38	142.31	61.46	227.94	26.10
El Monte Elem	131.44	133.75	57.80	-9.56	-20.44
El Monte UHS	286.95	335.42	144.91	-8.55	42.86
El Rancho	32.38	33.46	14.45	31.69	56.35
El Segundo	-57.47	-66.88	-79.98	52.97	-89.00
Garvey	101.21	114.36	49.43	-27.40	-22.56
Glendale	162.12	130.98	56.58	153.08	-15.82
Glendora	190.45	164.70	71.13	312.31	78.32
Hacienda	22.32	22.16	9.56	93.28	107.28
Hawthorne	47.23	28.93	12.50	24.57	-50.62
Hermosa Beach	288.59	225.55	97.24	74.32	-35.01
Hughes-Elizabeth	23.16	18.24	7.95	141.44	-100.00
Inglewood	-22.00	-32.61	-14.09	-17.63	-2.05
Keppel Union	69.59	-83.24	29.01	-32.10	-35.61
La Canada	903.73	996.61	429.35	3,829.19	354.92
Lancaster	104.12	120.55	52.05	136.22	26.65
Las Vergenes	638.74	507.54	219.27	1,847.36	440.58
Lawndale	94.15	83.35	36.01	-13.15	-11.19
Lennox	-72.19	-76.53	-33.06	-23.33	-56.10
Little Lake	45.88	44.20	19.03	73.47	33.88
Long Beach	82.54	68.31	29.51	8.74	-28.49
Los Angeles	-52.49	-50.93	-22.01	-25.91	-10.94
Los Niclos	90.59	111.93	48.25	45.50	109.87
Lowell	1,101.67	910.49	393.37	2,307.66	597.55
Lynwood	28.23	11.96	5.15	-19.28	-24.61

Table A-4 (Concluded)

District	Under \$4,000*	Orshansky*	Orshansky + 2/3 AFDC*†	Enrollment*	Performance‡
Manhattan Beach	474.75%	303.47%	131.09%	479.93%	77.94%
Monrovia	31.89	22.75	9.82	-7.84	-6.42
Montebello	16.63	32.40	14.00	-22.79	6.03
Mt. View	3.04	2.22	0.96	60.18	-39.81
Newell	38.90	8.53	3.89	270.60	59.60
Norwalk	63.42	62.34	26.94	89.30	57.77
Palmdale	41.79	65.03	28.14	90.32	104.48
Palos Verdes	5,299.85	4,344.69	1,877.25	18,409.63	1,760.19
Paramount	60.80	55.28	23.89	-19.46	11.12
Pasadena	26.25	27.08	11.70	-26.44	-23.19
Pomona	19.28	32.74	14.14	-21.49	-10.48
Redondo Beach	158.94	157.58	68.08	60.43	6.78
Rosemead	50.82	45.66	19.78	42.34	-1.06
Rowland	4.44	0.65	0.29	62.02	65.58
San Gabriel	271.74	231.58	100.11	116.68	-14.65
San Moreno	1,627.39	1,258.47	545.21	3,312.25	230.39
Santa Monica	179.35	136.42	58.91	78 <u>.</u> 75	-13.76
Saugus	-35.81	-41.13	-17.68	247.19	1,256.82
Soledad	11.92	174.65	75.42	16 4.92	90.22
South Bay	830.16	764.70	330.45	213.06	126.02
South Pasadena	100.80	59.07	25.49	43.37	-56.62
South Whittier	134.32	112.72	48.67	12.53	13.11
Sulphur Springs	-62.52	-69.29	-29.78	172.27	151.38
Temple	96.97	64.50	27.71	305.77	43.98
Torrance	195.50	172.38	74.47	450.68	141.38
Valle Lindo	189.40	221.14	95.31	37.72	79:12
Walnut	127.58	85.86	37.06	566.33	36.07
West Covina	89.21	84.60	36.59	198.89	48.52
Westside	167.18	175.06	75.46	103.23	48.71
Whittier City	135.76	126.58	54.74	56.74	-0.84
Whittier Union	537.74	512.75	221.58	197.65	176.96
Wm. S. Hart	-19.81	116.61	16.61	268.38	122.74
Wilsona	111.62	655.28	283.07	54.75	-12.81
Wiseburn	-10.10	30.78	13.01	120.37	20.37

^{*}Calculated from statistics supplied by California State Department of Education, Division of Compensatory Education, ESEA Title I (Sacramento, California), 1974.

Calculated from special census tabulation, Office of Education, ESEA Title I, (Washington, D.C.), September 1973.

^{*}Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menlo Park, California), May 1974.

Table A-5

ALTERNATIVE SUBCOUNTY ALLOCATIONS: DELAWARE

Counties and Districts	1973-1974 RRG*	Under \$4000 [†]	Orshansky†	Orshansky + 2/3 AFDC T	Enroll- ment*	Lunch Receipts‡	Perfor-
Kent	315,900	315,900	315,900	315.900	315,900	315,900	315,900
Caesar Rodney	39,009	85,099	103,786	97,045	117,984	93,899	67,063
Capital	155,591	•	•	120,547	101,180	109,589	130,595
Lake Forest	76,329	•	55,441	61,726	51,352	60,564	60,003
Symrna	44,971	•	•	36,581	45,384	51,847	58,239
No Castle	1,533,831	1,533,831	1,533,831	1,533,831	1,533,831	1,533,831	1,533,831
Alexis I Dupont	2,974	12,359	18,318	15,915	57,810	32,657	21,818
Alfred I Dupont	0	43,161	29,767	23,263	200,251	78,696	19,637
Appoquinimink	44.097	18,633	47,932	51,776	41,966	47,406	39,273
Claymo	20,126	47,724	45,185	42,471	66,483	50,818	21,818
Conrad Area	59,537	97,730	91,132	88,007	111,939	66,847	82,910
De La Warr	109,667	104,385	104,566	114,169	71,002	92,776	115,637
Marsh Allton	17,141	49,245	46,100	40,800	76,132	43,015	34,909
Mt. Pleasant	18,302	38,217	25,951	30,272	98,084	53,579	10,637
New Castle-Guinni	66,924	149,257	115.709	111,664	160,309	120,037	130,910
Newark	61,339	116,599	106,703	92,982	279,873	178,289	237,820
Stanton	6,569	32,894	36,025	29,513	105,988	62,471	10,909
Wilmington	1,127,155	823,627	866,443	892,911	263,994	707,240	798,553
Sussex	487,144	487,144	487,144	482,707	482,707	487,144	482,707
Cape Herlipen	66,475	103,077	92,588	48,170	80,303	86,872	58,830
Delmar	4,437	7,599	13,434	NA	NA.	10,045	NA
Indian River	131,289	142,889	137,853	159,765	140,251	128,623	150,846
Laurel	49,369	49,722	50,227	56,399	47,201	42,379	42,237
Seaford	53,082	58,973	58,699	68,543	80,430	64,739	64,864
Woodbridge	56,984	43,280	45,507	49,475	46,334	48,284	31,677
Wilford	125,508	81,604	88,836	100,355	88,188	106,201	134,253
State Total	2,336,875	2,336,875	2,336,875	2,332,438	2,332,438	2,336,875	2,332,438

Note: NA = not available, RRG = Ratably Reduced Grant.

^{*} Calculated from statistics supplied by the Department of Public Instruction, ESEA Title I (Dover, Delaware), 1974.

Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

Calculated from Department of Public Instruction School Lunch Program, School Breakfast Programs: 1973-74 (Dover, Delaware), 1974.

Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menlo Park, California), May 1974.

Table A-6

PERCENT CHANGE IN SUBCOUNTY ALLOCATIONS BY ALTERNATIVE CRITERIA: DELAWARE

Counties and Districts	Under \$4,000†	<u>Orshansky</u> †	Orshansky + 2/3 AFDC [†]	Enrollment*	Lunch Receipts [‡]	Performance [§]
Kent						
Caesar Rodney	118.15	166.05	148.77	202.45	140.71	71.91
Capital	-19.00	-20.83	-22.52	-34.97	-59.56	-16.06
Lake Forest	-16.52	-27.36	-19.13	-32.72	-20.65	-21.38
Symrna	-8.69	-25.52	-18.65	0.91	15.28	29.50
New Castle						
Alexis I. Dupont	315.56	515.93	435.13	1,843.84	998.08	633.62
Alfred I. Dupont	**	**	**	**	**	**
Appoquinimink	-57.74	8.69	17.41	-4.83	7.50	-10.93
Claymont	137.12	124.51	111.02	230.33	152.49	8.40
Conrad Area	64.15	53.06	47.81	88.01	12.27	39.25
De La Warr	-4.81	4.65	4.10	-35.25	-15.40	5.44
Marsh Allton	187.29	168.94	138.02	344.15	150.94	103.65
Mt. Pleasant	108.81	41.79	65.40	35.91	192.74	7.29
New Castle	123.02	72.89	66.85	139.53	79.36	95.60
Newark	≲⊍ .08	73.95	51.58	356.27	190.66	287.71
Stanton	400.74	448.40	349.27	1,513.45	850.99	66.06
Wilmington	-26.92	-23.12	-20.78	-76.57	-37.25	-29.15
Sussex						
Cape Henlipen	55.06	39.28	-27.53	20.80	-79.19	-11.50
Delmar	71.26	202.77	NA	NA.	126.39	NA
Indian River	8.83	4.99	21.68	6.82	-2.03	14.62
Laurel	0.71	1.73	14.23	-4.39	-14.15	-14.44
Seaford	11.09	10.58	29.12	51.52	21.96	22.19
Woodbridge	-24.04	-20.14	-13.17	-18.68	-15.26	-44.41
Wilford	-34.98	-29.21	-20.04	-29.73	-15.38	6.96

Note: NA = not available.

^{*}Calculated from statistics supplied by the Department of Public Instruction, ESEA Title I (Dover, Delaware), 1974.

[†]Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

^{*}Calculated from Department of Public Instruction School Lunch Program, School Breakfast Programs: 1973-74 (Dover, Delaware), 1974.

Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menlo Park, California), May 1974.

^{** 1973-1974} Ratably Reduced Grant (RRG) equal to zero.

Table A-7

ALTERNATIVE SUBCOUNTY ALLOCATIONS: IOWA

Counties and Districts	1973-1974 RRG*	_ AF DC*	State Low Income*†	Under \$4,000 ^{†‡}	Orshansky ^{†‡}	Orshansky + 2/3 AFDC†‡	Enrollment*	Perfor- mance 9
Black Hawk	734,719	•	734,719	734,719	734,719	734,719	734,719	734,719
Cedar Falls	92,605	•	145,583	86,785	96,680	78,833	175,338	185,693
Dunkerton	11,301	3,206	20,749	18,892	18,744	13,086	19,511	8,074
Hudson	6,592	0	14,286	1,771	10,852	6,937	20,543	0
La Porte	24,956	11,075	41,158	29,814	45,380	32,952	26,465	29,604
Waterloo	599,265	673,225	512,943	597,457	563,063	602,911	492,862	511,343
Dubuque	459,573	459,573	459,573	459,573	459,573	459,573	459,573	459,573
Dubuque	315,329	431,249	254,654	301,567	286,750	317,643	362,231	409,381
W. Dubuque	144,244	28,324	204,919	158,006	172,823	142,110	97,342	50,192
Linn	775,360	75,360	775,360	775,360	775,360	775,360	775,360	775,360
Alburnett	8,947	3,608	13,949	33,875	24,835	16,356	14,967	7,702
Cedar Rapids	557,358	638,262	480,923	489,305	484,116	545,009	484,142	587,937
Center Point	11,615	6,888	16,071	20,910	16,126	12,462	13,154	20,539
Central City	22,916	15,087	30,323	31,366	28,060	22,977	16,980	28,242
College	25,427	8,200	41,543	31,784	37,091	25,703	58,495	0
Linn Marr	23,230	7,544	37,904	32,202	37,413	25,508	60,667	59,051
Libson	9,575	4,264	14,555	7,528	7,096	6,036	10,364	10,270
Marion	59,315	62,317	57,007	36,384	39,026	48,290	58,535	28,242
Mt. Vernon	13,970	3,936	23,349	13,801	22,900	15,383	21,146	0
North Linn	30,450	14,103	45,788	52,694	49,347	35,438	21,624	15,405
Springville	12,557	11,152	13,949	25,511	29,350	22,198	15,286	17,972
Polk	1,581,298	1,581,298	1,581,298	1,581,298	1,581,298	1,581,298	1,581,298	NA.
Ankeny	26,840	10,088	50,164	26,298	28,576	20,932	91,338	NA.
Bondurant	8,476	2,726	16,472	13,320	10,206	7,148	15,846	NA.
Des Moines	1,364,122	1,436,801	1,272,450	1,240,106	1,276,877	1,343,389	1,038,891	NA
Johnston	14,283	3,817	19,476	18,443	17,496	11,742	30,269	NA
N. Polk	10,360	3,544	19,841	21,858	17,204	11,572	18,740	NA.
Saydel	34,633	39,532	26,954	50,888	41,989	41,013	57,113	NA.
S.E. Polk	44,262	40,896	49,416	64,550	48,696	45,438	80,581	NA
Urbendale	23,230	7,361	45,298	31,763	26,535	18,550	89,867	NA.
W. Pes Moines	55,092	36,533	81,236	114,073	113,721	81,516	158,653	NA
Pottawattamie	474,676	474,676	474,676	474,676	474,676	474,676	474,676	
Avoca	13,655	5,736	21,783	6,291	11,297	9,678	13,108	NA.
Carson	12,608	6,310	18,532	9,437	11,088	9,823	10,807	NA
Council Bluffs	363,201	380,601	314,067	352,331	358,778	375,581	318,541	NA
Lewis Central	28,723	30,976	24,384	67,002	50,627	45,359	62,295	NA.
Oakland	13,970	5,736	22,433	11,324	7,740	7,223	14,719	NA.
Treynor	5,944	860	9,428	5,033	12,343	8,812	11,109	NA
Tri Center	19,309	4,876	32,187	8,808	10,251	8,667	20,135	NA
Underwood	9,687	1,147	18,207	11,324	9,205	6,789	16,009	NA
Walnut	7,579	1,434	13,655	3,146	3,347	2,745	7,951	NA
Scott	714,002	714,002	714,002	714,002	714,002	714,002	714,002	
Bettendorf	52,738	24,727	89,385	58,544	61,600	48,481	119,992	NA.
Davenport	599,893	656,680	525,500	559,608	157,701	599,329	486,141	NA.
N. Scott	42,850	23,884	67,600	72,893	64,634	50,132	57,270	NA
Pleasant Valley	18,521	8,711	31,357	22,958	20,067	16,060	50,599	NA

Note: RRG = Ratably Reduced Grant, NA = not available.

^{*}Calculated from Department of Public Instruction, ESEA Title I (Des Moines, Iowa), 1974.

Low state income refers to children from Lamilies with income below \$2,000 per year, as obtained from lows State Income Tax Returns.

^{*} Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menlo Park, California), May 1974.

Table A-8 PERCENT CHANGE IN SUBCOUNTY ALLOCATIONS BY ALTERNATIVE CRITERIA: IOWA

Counties and Districts	AFDC*	State Low Income*†	Under \$4,000‡	Orshansky [‡]	Orshansky +	Enrollment*	Performance §
Black Hawk		F7 000		4.00%	-15.00%	89.00%	100.53%
Cedar Falls	-49.00%	57.00%	-6.00%		15.80	72.65	-28.55
Dunkerton	-71.63	83.60	67.17 -82.24	65.86 64.62	5.78	211.64	-20.55
Hudson	0	116.72 64.93	-82.24 19.47	81.84	32.04	6.05	18.62
La Porte	-55.62 12.34	-14.40	-0.30	-6.04	0.61	-17.76	-14.67
Waterloo	12.34	-14.40	-0.30	-0.04	0.01	-17.70	2400.
Dubuque							
Dubuque	36.76	-19.42	-4.36	-9.06	0.73	14.87	29.83
West Dubuque	80.36	42.06	9.54	19.81	-1.48	-32.52	-65.20
Linn							
Alburnett	-59.67	55.91	278.62	177.58	82.81	67.29	-13.92
Cedar Rapids	14.52	-13.71	-12.21	-13.14	15.73	-13.14	5.49
Center Point	-40.70	38.36	80.03	38.84	7.29	13.25	76.83
Central City	-34.16	32.32	36.87	22.45	0.27	-25.90	23.24
College	-67.51	63.38	25.00	45.87	1.09	130.05	0
Linn-Marr	-67.52	63.17	38.62	61.05	9.81	161.16	154.20
Lisbon	-55.47	52.01	-21.38	-25.89	-36.96	8.24	7.26
Marion	5.06	-3.89	-38.65	-34.21	-18.59	-1.32	-52.39
Mount Vernon	-71.83	67.14	-1.21	63.92	10.11	51.37	0
North Linn	-53.68	50.37	73.05	62.06	16.38	-28.99	-49.41
Springville	-11.19	11.09	103.16	133.73	76.78	21.73	43.12
Polk							
Ankeny	-62.41	86.90	-2.02	6.47	-22.01	240.31	NA.
Bondurant	-67.84	94.57	57.15	20.41	-15.67	86.95	NA.
Des Moines	5.33	-6.72	-9.09	-6.40	-1.52	-23.84	NA.
Johnston	-73.28	36.36	29.13	22.50	-17.79	111.92	NA
N. Polk	100.00	91.51	11c.98	66.06	11.69	80.88	NA.
Saydel	14.14	-22.17	46.93	21.23	18.42	64.90	NA.
S.E. Polk	-7.60	11.64	45.83	10.01	2.65	82.05	NA.
Urbandale	-69.31	94.99	36.73	14.22	-20.14	286.85	NA.
W. Des Moines	-33.68	47.45	107.05	105.21	47.96	187.97	NA.
Pottawattamie							
Avoca	-57.99	59.52	-53.92	-17.26	-29.12	-4.00	NA.
Carson	-49.95	46.98	-25.15	-12.05	-22.08	-14.26	NA.
Council Bluffs	4.79	-13.52	-2.99	-1.23	3.40	-12.29	NA.
Lewis Central	/.81	-15.10	133.26	76.25	57.91	116.88	NA.
0akland	-58.94	60.57	-18.94	-44.59	-48.29	5.36	NA.
Treynor	-05.53	58.61	-15.32	107.65	48.25	86.89	NA.
Tri Center	-74.74	66.69	-54.38	-46.91	-55.11	4.27	NA
Underwood	-88.15	87.95	16.89	-4.97	-29.91	65.26	NA.
Walnut	-81.12	79.69	-58.59	-55.95	-63.87	4.63	NA.
Scott							
Bettendorf	-53.11	69.48	11.00	16.80	-8.07	127.52	NA.
Davenport	9.46	-12.40	-6.71	-5.36	-0.09	-18.96	NA.
N. Scott	-44.26	-84.22	70.11	50.83	16.99	33.65	NA.
Pleasant Valley	-95.29	69.30	23.95	8.34	-13.28	173.19	NA.

Note: NA = not available.

^{*}Calculated from Department of Public Instruction, ESEA Title I (Des Moines, Iowa), 1974.

thow state income refers to children from families with income below \$2,000 per year, as obtained from Iowa State Income Tax Returns.

[‡]Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.),

September 1973.

Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance,"
Stanford Research Institute (Menlo Park, California), May 1974.

Table A-9

ALTERNATIVE SUBCOUNTY ALLOCATIONS: MASSACHUSETTS

Counties	1973-1974	Under		Orshansky +	. *	
and Districts	RRG [★]	\$4,000 [†]	Orshansky†	2/s AFDC*†	Enrollment*	Performance [‡]
Essex	2,495,632	2,495,632	2,495,632	2,495,632	2,495,632	2,495,632
Amesbury	35,624	56,714	56,076	55,771	47,713	28,126
Andover	32,330	33,474	38,339	37,897	119,152	44,458
Beverly	154,319	108,737	123,796	131,370	148,973	173,295
Boxford	4,640	7,249	6,091	6,544	26,698	4,537
Danvers	36,222	44,135	31,890	36,334	104,419	107,062
Essex	5,089	10,021	13,974	11,135	11,517	NA
Georgetown	10,927	22,387	18,453	15,823	32,345	42,643
Gloucester	147,284	124,302	116,272	123,751	107,224	136,095
Groveland	11,675	2 , 38	1,792	4.395	29,858	33,570
Hamilton	5,688	10,021	6,987	6,446	34,476	21,775
Haverhill	253,256	173,76	166,792	200,424	173,166	1 89,62 6
Ipswich	15,118	35,606	29,740	25,981	51,508	42,643
Lawrence	485,558	692,936	716,978	590,724	201,698	265,839
Lynn	701,544	455,205	473,866	550,678	286,598	447,203
Lynnfield	10,178	31,768	25,978	21,293	56,164	22,683
Manchester	4,140	5,970	5,016	4,591	23,744	18,146
Marblehead	27,990	42,216	35,294	31,548	82,732	45,365
Merrimac	17,063	12,366	15,049	15,725	22,735	26,312
Metuchen	68,104	43,708	41,206	62,510	120,984	140,632
Middleton	12,573	6,823	7,525	30,767	21,407	24,497
Nabant	12,573	7,249	5,196	6,544	15,967	9,980
Newbury	7,783	18,123	15,228	14,358		
Newburyport	82,174	67,588	73,991	76,673	18,977	13,610 63,511
North Andover	1,369	8,742		· ·	63,998	· ·
Peabody	73,642	114,707	10,033	10,744	61,754	34,477
Rockport			123,617	106,756	210,671	167,851
-	8,981	12,153	9,496	9,084	19,089	7,258
Rawley Sa! m	4,490	11,940	10,033	6,544	15,724	24,497
	156,115	179,523	175,213	177,867	130,875	148,797
Salisbury	29,038	50,104	48,551	43,367	25,352	23,590
Saugus	20,995	52,876	54,463	43,855	115,132	124,300
Swampscott	27,242	39,231	28,665	26,176	56,687	25,404
Topsfield	6,585	5,970	6,270	5,860	33,467	16,331
Wenham	6,436	3,411	1,433	1,563	11,180	3,629
West Newbury	5,837	2,772	2,329	2,539	13,648	12,702
Plymouth	1,247,971	1,247,971	1,247,971	1,247,971	1,247,971	1,247,971
Abington	36,136	40,588	34,407	34,973	46,430	19,231
Bridgewater	31,751	53,502	44,435	43,498	45,375	25,810
Brockton	483,827	338,846	319,514	403,009	265,069	290,991
Carver	11,944	14,349	18,327	16,953	11,825	12,652
Duxbury	13,305	18,859	17,117	18,019	39,919	19,231
East Bridgewater	11,189	10,044	11,065	12,013	34,021	24,797
Halifax	10,130	10,864	10,720	10,947	14,917	23,785
Hanover	20,865	25,214	19,364	20,441	47,783	26,822
Hanson	18,295	17,629	17,463	12,207	30,459	79,959
.Hingham	38,404	31,773	39,766	27,804	77,288	92,105
Hull	78,168	41,408	48,065	31,776	44,364	230,262
	•	•		•	-	- ·

Table A-9 (Concluded)

Counties and Districts	1973-1974 RRG*	Under \$4,000†	Orshansky [†]	Orshansky + 2/3 AFDC*†	Enrollment*	Pe formance‡
Plymouth						
(continued)						
Kingston	18,900	40,178	45,299	42,045	21,498	17,206
Lakeville	14,968	12,504	7,780	9,494	19,561	13,664
Marion	7,257	3,279	9,509	9,688	12,565	5,061
Marshfield	42,637	51,862	58,266	55,801	70,293	37,955
Mattoposett	15,724	8,404	9,164	12,981	18,321	8,603
Middleboro	60,781	44,482	43,051	50,570	51,744	52,631
Norwell	7,257	12,914	10,893	12,400	17,010	12,146
Pembroke	35,833	20,499	16,598	27,610	45,746	38,461
Plymouth	75,600	186,950	179,121	137,081	64,708	32,895
Rochester	3,175	15,989	22,304	13,950	7,380	13,664
Rockland	39,311	35,053	41,495	40,010	58,753	34,918
Scituate	34,775	38,538	40,977	39,913	79,225	47,064
Wareham	92.073	75,231	75,383	83,799	46,472	40,485
W. Bridgewater	11,491	10,044	12,967	11,528	23,778	12,652
Whitam	34,170	88,965	94,920	69,461	52,470	34,919
Suffolk	7,476,806	7,476,806	7,475,806	7,476,806	7,476,806	7,476,806
Boston	6 955,423	5,161,940	5,458,798	6,512,611	6,397,570	6,368,684
Chelsea	267,777	958,444	936,514	477,119	319,786	420,072
Revere	181,421	1,084,431	842,863	345,091	499,405	511,812
Winthrop	72,185	271,991	238,631	141,985	260,045	176,237

Note: RRG = Ratably Reduced Grant, MA = not available.

^{*}Calculated from Statistics supplied by Department of Education, ESFA Title I (Boston, Massachusette), 1974.

[†] Calculated from special census tabulation, Office of Education, ESFA Title I (Washington, D.C.), September 1973.

^{*}Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menio Park, California), May 1974.

Table A-10

PERCENT CHANGE IN SUBCOUNTY ALLOCATIONS IN ALTERNATIVE CRITERIA:

MASSACHUSETTS

Counties and Districts	<u>Under \$4,000</u> †	Orshansky†	Orshansky + 2/3 AFDC*†	Enrollment*	Performance [‡]
Essex					
Amesbury	59.20%	57.41%	58.15%	33.93%	-21.04%
Andover	3.53	18.58	17.21	268.54	37.51
Beverly	-29.53	-19.77	-14.87	-3.46	12.29 ,
Boxford	56.22	31.27	41.03	475.38	-2.21
Danvers	21.84	-11.95	0.30	L88.27	195.57
Essex	96.91	174.59	118.80	126.31	NA.
Georgetown	104.87	68.87	44.80	196.00	290.25
Gloucester	-15.60	-21.05	-15.97	-27.19	-7.59
Groveland	-67.12	-84.65	-62.35	155.74	187.53
Hamilton	76.17	22.83	13.32	506.11	282.82
Haverhill	-31.38	-34.14	-20.86	-31.62	-25.12
Ipswich	133.52	96.71	71.85	99.99	182.06
Lawrence	42.70	47.66	21.65	-58.46	-45.25
Lynn	-35.11	-32.45	-21.50	-59.14	-36.24
Lynnfield	212.12	155.23	109.20	451.81	122.86
Manchester	42.48	19.71	9.57	466.68	333.07
Marblehead	50.84	26.09	12.71	195.57	62.07
Merrimac	-27.52	-11.80	-7.84	33.24	54.20
Methuten	-35.82	-39.49	-8.21	206.49	106.49
Middleton	- 45.73	-40.14	144.70	70.26	94.83
Nabant	-42.34	-58.67	147.95	26.99	-20.62
Newbury	132.85	95.65	84.47	143.82	74.86
Newburyport	-17.75	-9.95	6.69	22.11	-22.71
N. Andover	-39.16	-30.17	-25.22	329.77	139.94
Peabody	55.76	67.86	44.96	186.07	127.92
Rockport	35.31	5.73	1.14	112.54	-19.18
Rawley	165.92	123.45	45.74	250.20	445.59
Salem	14.99	12.23	13.93	-16.16	-4.68
Salisbury	72.54	67.19	49.34	-12.69	-18.76
Saugus	151.85	159.40	108.88	448.37	492.04
Swampscott	44.00	5.22	-3.91	108.06	-6.74
Topsfield	-9.33	-4.78	-11.00	408.23	-75.23
Wenham	-47.00	-77.73	-75.71	73.71	-43.61
W. Newbury	-52.50	-60.09	-56.50	133.81	117.61
Plymouth					
Abington	12.32	-4.78	-3.21	26.48	-46.78
Bridgewater	68.50	39.94	36-99	42.99	18.71
Brockton	-29.96	-33.96	-16.70	-45.00	-39.85
Carver	20.13	53.44	41.93	0.99	5.92
Duxbury	41.74	28.65	35.43	200.03	44.53
East Bridgewater	-10.23	-1.10	7.36	114.68	121.61
Halifax	7.24	5.82	8.06	47.25	134.79
Hanover	20.84	-7.19	2.03	129.01	28.55
Hanson	-3.64	-4.54	-33.27	66.48	337.05

Table A-10 (Concluded)

Counties and Districts	Under \$4,000†	Orshansky [†]	Orshansky + 2/3 AFDC*†	Enrollment*	Performance [‡]
Plymouth					
(continued)					
Hingham	-17.26	3.54	-27.60	101.24	139.83
Hull	47.02	-38.51	-59.34	-43.24	194.57
Kingston	112.58	134.67	122.46	13.74	-8.96
Lakeville	-16.46	-48.02	-36.57	30.68	-8.71
Marion	-54.81	31.03	33.49	73.10	-30.26
Marshfield	21.63	36.65	30.87	64.86	-10.98
Mattoposett	-46.55	-41.71	-17.44	16.51	-45.28
Middleboro	-26.81	-29.17	-16.79	-14.86	-13.40
Norwell	77.95	50.10	70.86	134.39	67.36
Pembroke	-42.79	-53.67	-22.94	27.66	7.33
Plymouth	147.28	136.93	81.32	-14.40	-56.48
Rochester	403.59	602.48	339.37	132.44	330.36
Rockland	-10.83	5.55	1.77	49.45	-11.17
Scituate	10.82	104.10	14.77	127.82	35.33
Wareham	-18.29	-18.13	-8.99	-49.52	-56.03
West Bridgewater	-187.40	12.84	0.32	106.92	10.10
Whitham	160.35	177.78	103.28	53.55	2.19
Suffolk					
Boston	-25.78	-21.51	-6.36	-8.02	-8.43
Chelsea	257.92	249.73	78.17	19.42	54.87
Revere	497.74	99.99	90.21	175.27	182.11
Winthrop	276.79	230.58	96.69	260.24	144.14

Note: NA = not available.

^{*}Calculated from Statistics supplied by Department of Education, ESEA Title I (Boston, Massachusetts), 1974.

Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.). September 1973.

^{*}Calculated from J. Guthrie, A. Frentz, and R. Mize, "The Political Economy of Poverty and Pupil Performance," Stanford Research Institute (Menlo Park, California), May 1974.

					_,		
Marion	739,437	739,437	739,437	739,437	739,437	739,437	739,437
Aumsville No. 11	0	6,134	9,916	10,110	9,218	11,144	15,049
Bethany No. 63	0	2,453	2,219	2,065	2,152	1,500	492
Brooke No. 31	0	4,907	4,437	4,129	4,303	3,000	4,788
Buena Crest No. 34	0	307	277	258	269	1,007	478
Cascade UH No. 5	45,000	20,548	58,826	58,397	49,905	23,296	17,786
Central Howell 540C	0	307	277	258	269	2,465	684
Cloverdale No. 144C	0	920	832	774	807	1,672	1,779
Detroit No. 123J	0	1,840	1,664	1,548	1,614	3,900	4,378
Eldriedge No. 60	0	2,146	1,941	1,806	1,884	2,036	670
Evergreen No. 10	0	613	555	516	538	986	820
Gerodis UH No. 1	0	11,961	34,455	46,558	38,795	7,501	17,548
Gervais No. 76	0	22,389	20,244	18,839	19,635	5,379	13,544
Jefferson No. 140J	0	47,230	25,043	21,151	27,003	20,081	15,671
Marion No. 20	0	3,680	3,328	3,097	3,227	2,164	4,104
Mt. Angel No. 91	0	16,561	8,908	16,761	16,716	14,745	12,717
Monitor No. 142J	0	3,680	3,329	3,097	3,227	4,522	0
No. Howell No. 51	0	0	0	0	0	1,114	273
No. Marion No. 15	0	24,842	37,984	28,999	28,067	27 ,7 53	34,887
No. Santiam No. 12	0	5,214	4,714	4,387	4,573	1,886	5,555
W. Stayton No. 61	0	3,680	3,328	3,097	3,227	2,015	3,283
Parkersville No. 82	0	2,453	2,219	2,065	2,152	643	0
Pioneer No. 13	0	1,533	1,387	1,290	1,345	1,200	239
Pratum No. 50	0	0	0	. 0	0	1,522	218
Salem No. 24J	515,637	416,805	313,960	281,611	311,946	462,612	435,670
St. Paul No. 45	0	14,107	12,757	11,871	12,373	5,165	7,251
Scotts Mills No. 73J	0	1,840	1,664	1,548	1,614	3,215	5,007
Silver Crest No. 93	0	2,146	1,941	1,806	1,883	2,786	3,420
Silverton No. 4	30,000	23,001	26,051	35,517	32,708	22,503	34,887
Silverton UH No. 7J	25,000	9,200	56,641	78,750	63, 3	19,609	8,209
Stayton No. 775	0	11,654	11,597	12,770	12,520	14,530	24,626
Stayton UH No. 4J	0	5,827	20,169	21,816	18,228	12,430	5,473
Sublimity No. 7	0	1,533	1,387	1,290	1,345	5,143	3,557
Turner No. 79	0	7,667	6,933	6,452	6,725	4,822	6,841
Victor Point No. 42	0	0	0	0	0	6,460	1,642
Woodburn No. 123	122,000	62,259	55,464	56,801	58,026	42,005	47,885
Multnomah	2,516,775	2,516,775	2,516,775	2,516,775	2,516,775	2,516,775	2,516,775
Bonneville No. 46	0	3,661	4,896	2,614	4,564	2,477	1,627
Corbett No. 39	25,000	8,368	7,842	6,910	7,321	17,230	13,087
David Douglas No. 40	161,264	140,940	161,074	149,023	146,301	211,225	167,224
Gresham No. 4	0	32,425	50,653	48,741	43,423	95,571	55,257
Gresham UH No. 2J	45,000	36,607	176,757	163,963	122,696	129,223	27,628
Lynch No. 28	0	31,639	74,179	62,186	52,259	89,379	70,505
Orient No. 6J	16,235	6,276	9,537	8,404	7,700	21,941	17,929
Parkrose No. 3	63,227	45,499	80,325	70,777	62,610	138,403	80,551
Pleasany Valley No. 155	3,406	0	6,782	5,976	4,039	9,019	6,543
Portland No. 10	2,164,643	2,127,689	1,861,310		1,974,163	1,639,271	1,965,710
Reynolds No. 7	38,000	37,385	39,209	48,554	44,938	94,952	52,348
Riverdale No. 51J	0	0	0	0	0	9,342	1,454
Rockwood No. 27	0	45,238	42,812	45,566	45,443	55,189	55,257
Sauvies Island No. 19	0	1,048	1,399	1,449	1,319	3,553	1,655

Note: RRG = Ratably Reduced Grant.

^{*}Calculated from statistics supplied by Department of Education (Salem, Oregon), 1974.

[†] Calculated from special census tabulation, Office of Éducation, ESEA Title I (Washington, D.C.), September 1973.

Table A-12

PERCENT CHANGE IN SUBCOUNTY ALLOCATIONS BY ALTERNATIVE CRITERIA: OREGON

Counties and Distric:	AFDC	<u>Under \$4,000</u> †	<u>Orshansky</u> †	Orshansky + 2/3 AFDC*†	Enrollment .	Lunch Receipts*
Marion						
Aumsville No. 11	‡	‡	‡	‡	‡	#
Bethany No. 63	‡	‡	‡	‡	‡	#
Brooke No. 31	‡	‡	‡	‡	‡	‡
Buena Crest No. 34	±	‡	‡	‡	‡	‡
Cascade UH No. 5	-54.33%	30.72%	29.77%	10.90%	-48.23%	-60.47%
Central Howell 540C	\$	‡	#	*	#	‡
Cloverdale No. 144C	‡	‡	‡	‡	‡	‡
Detroit No. 123J	-48.96	-54.53	-53.44	-52.43	-65.56	-60.75
Eldriedge No. 60	#	‡	#	‡	‡	‡
Evergreen No. 10	±	‡	#	‡	‡	‡
Gerodis UH No. 1	#	‡	#	‡	‡	‡
Gervais No. 76	#	‡	‡	‡	‡	‡
Jefferson No. 140J	‡	‡	‡	‡	‡	‡
Marion No. 20	‡	‡	‡	±	‡	‡
Mt. Angel No. 91	‡	‡	‡	‡	‡	‡
Monitor No. 142J	‡	‡	‡	#	‡	‡
No. Howell No. 51	‡	‡	‡	‡	‡	‡
No. Marion No. 15	‡	‡	‡	#	‡	‡
No. Santiam No. 12	‡	‡	‡	‡	#	‡
Parkersville No. 82	‡	‡	#	‡	#	‡
Pioneer No. 13	‡	‡	#	#	‡	‡
Pratum No. 50	‡	‡	#	‡	#	‡
Salem No. 24J	-19.16	-39.11	-45.38	-39.50	-10.28	-15.50
St. Paul No. 45	#	‡	#	#	‡	‡
Scotts Mills No. 73J	‡	‡	#	‡	‡	‡
Silver Crest No. 93	‡	‡	‡	‡	‡	‡
Silverton No. 4	-23.33	-13.16	.8.39	9.02	24.99	16.29
Silverton UH No. 7J	-63 20	126.56	215.00	152.57	-23.72	-67.16
Stayton No. 775	#	‡	‡	#	‡	‡
Stayton UH No. 4J	#	‡	#	‡	‡	#
Sublimity No. 7	#	±	‡	‡	‡	#
Turner No. 79	‡	‡	#	‡	‡	+ .
Victor Point No. 42	‡	‡	‡	‡	‡	#
W. Stayton No. 61	‡	ŧ	‡	‡	‡	#
Woodburn No. 123	#	‡	‡	#	#	‡
Multnomah						
Bonneville No. 46	‡	‡	#	‡	‡	#
Corbett No. 39	-66.52	-68.63	-12.36	-70.71	-30.72	-47.65
David Dougles No. 40	-21.60	0.11	-7.59	-9.27	30.98	3.69
Gresham No. 4	‡	#	‡	‡ ‡	‡	‡
Gresham UH No. 2J	-18.65	292.79	264.36	172.65	18.71	-38-60
Lynch No. 28	#	#	‡	#	#	‡
Orient No. 6J	-61.34	-41.25	-48.23	-52.57	35.14	10.43
Parkrose No. 🗅	-28.03	27.04	11.94	-0.97	118.89	27.39
Pleasant Valley No. 155	100.00	99.11	15.45	18.58	164.79	92.10
Portland No. 10	-1.70	-14.01	-12.10	-8.79	-24.27	-9.19
Reynolds No. 7	-1.61	3.18	27.77	18.25	149.87	37.15
Riverdale No. 51.	‡	.	#	‡	#	‡
Rockwood No. 27	‡	‡	.	#	#	‡ ‡
Sauvies Island No. 19	#	‡	#	#	#	7

^{*} Calculated from statistics supplied by Department of Education (Salem, Oregon), 1974.

[†]Calculated from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

^{‡1973-1974} RRG equal to zero.

Appendix B

DISTRICT HEAD COUNTS OF THE NUMBER OF ELIGIBLE CHILDREN BY A CENSUS LOW-INCOME CRITERION, 1959-1969

Tables B-1, B-2, and B-3 present information on the district head counts (in selected counties in Iowa, Oregon and New York) of the number of eligible children by a census low-income criterion for the years 1959 and 1969. From these data, the percent change was calculated. For each county, a weighted absolute percent charge was calculated, using the 1973-74 district ratably reduced grant as a weighting factor in Iowa and Oregon and the number of district eligible children in 1959 for New York.

Table B-1

PERCENT CHANGE IN NUMBER OF ELIGIBLE CHILDREN BY LOW-INCOME CRITERION BETWEEN 1959 AND 1969 BY SCHOOL DISTRICT: IOWA*

Black Hawk County	.%
KIACK HAWK COUNTY	.%
	. /0
Hudson 55 6 -89	
LaPorte City 71 43 -39	
Waterloo 658 981 49	,
Weighted Absolute Percent Change 54	
Dubuque County	
Dubuque 660 751 14	
Western Dubuque 816 319 -61	
1000021	
Weightd Absolute Percent Change 29	. *
Linn County	
Alburnett 58 20 -66	
Cedar Rapids 760 761 0	
Center Point 66 26 -61	
Central City 131 51 -61	
College 51 52 2	
Linn-Mar 86 51 -41	
Lisbon 15 14 -57	
Marion 38 66 74	
Mount Vernon 58 11 -81	
North Line 109 94 -14	
Springville 45 46 2	
Weighted to ute Percent Change 13	
Polk County	
Ankeny 49 35 -29	
Bondurant-Farrar 68 35 -49	
Des Moines 2,236 1,893 -15	
Johnston 40 33 -18	

Table B-1 (Concluded)

Polk County (continued)	
North Polk 79 42	-47%
Saydel 42 40	-5
Southeast Polk 91 91	0
Urbandale 46 80	7 4
West Des Moines 58 230 ·	297
Weighted Absolute	
Percent Change	26
Pottawattamie County	
AvoHa 101 8	-92
Charson-Macedonia 116 16	- 86
Council Bluffs 484 732	51
Lewis Central 59 146	147
Oakland 139 27	-81
Treynor 74 12	-84
Tri-Center 171 12	- 93
Underwood 144 6	- 96
Walnut . 49 4	-92
Weighted Absolute	
Percent Change	64
Scott County	
Bettendorf 55 142	158
Davenport 988 1,206	22
North Scott 256 157	-39
Pleasant Valley 61 27	- 56
Weighted Absolute	
Percent Change	34

For 1959 the low-income criterion used is number of children from families with 1959 income of under \$2,000. For 1969 the cutoff point was estimated to be under \$2,500 (based on an inflation factor derived from the yearly percent changes in the consumer price index--unad-justed--between 1959 and 1969).

Statistics supplied by Oregon State Department of Education, ESEA Title I (Salem, Oregon), 1974.

Statistics obtained from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

Table B-2

PERCENT CHANGE IN NUMBER OF ELIGIBLE CHILDREN BY LOW-INCOME:
CRITERION BETWEEN 1959 AND 1969 BY SCHOOL DISTRICT: OREGON*

Counties and School Districts	1959 Low-Income Head Count†	1969 Low-Income Head Count [‡]	Percent Change
Multnomah County			
Bonneville	14	NA ·	
Corbett	40	15	-63%
David Douglas	297	397	34
Gresham	153	153	0
Gresham Union	158	538	241
Lynch	69	200	190
Orient	76	36	- 53
Parkrose	217	205	-6
Pleasant Valley	19	31	63
Portland	4,417	5,070	15
Reynolds	122	157	29
Riverdale	14	NA	
Rockwood	24	151	529
Sauvies Island	14	NA	
Weighted Absolute Percent Change			21
Marion County	2,375	§	
Aumsville	19	23	21
Bethany	9	NA	
Brooks	13	NA	
Buena Crest	6	NA	
Cascade	58	191	229
Central Howell	6	NA	
Cloverdale	7	NA	
Detroit	10	NA	
Eldridge	26	NA	
Evergreen	3	NA	
Gervais Elem.	56	NA	
Gervais Union	60	40	-33
Jefferson	57	17	-235
Marion	7	NA	
Monitor	18	NA	
Mount Angel	65	33	-49
North Howell	5	NA	•
North Marion	135	101	

Table B-2 (Concluded)

Counties and School Districts	1959 Low-Income Head Count†	1969 Low-Income Head Count‡	Percent Change
Marion County			
(continued)			
North Santiam	2	. NA	%
Parkersville	17	NA	
Pioneer	11	NA	
Pratum	6	NA	
Salem	1,128	876	-22
Scotts Mills	22	NA	
Silver Crest	10	NA	
Silverton	168	85	-4 9
Silverton Union	144	200	39
Stayton	28	58	107
Stayton Union	21	70	233
St. Paul	80	NA	
Sublimity	10	NA	
Turner	29	NA	
Victor Point	1.6	NA	
West Stayton	9	NA	
Woodburn	114	171	50

NA = not available.

For 1959 the low-income criterion used is number of children from families with 1959 income of under \$2,000. For 1969 the cutoff point was estimated to be under \$2,500 (based on an inflation factor derived from the yearly percent changes in the consumer price index--unad-justed--between 1959 and 1969).

Statistics supplied by Oregon State Department of Education, ESEA Title I (Salem, Oregon), 1974.

Statistics obtained from special census tabulation, Office of Education, ESEA Title I (Washington, D.C.), September 1973.

A comparable county low-income head count for 1969 is not available, because the special census tabulation excludes districts with an enrollment under 300.

Table B-3

PERCENT CHANGE IN DISTRICTS' SHARE OF ELIGIBLE CHILDREN BY LOWINCOME CRITERION BETWEEN 1959 AND 1969: NEW YORK

		Eligible			
	1959*		969 [†]	Percent Change	
Counties		Share		Share	in Share of
and Districts	<u>Number</u>	(percent)	Number	(percent)	Eligible Children
.1.					
Albany County	1 005	(0.009	1 527	6E 10%	6.99%
Albany	1,905	60.92%	1,537	65.18%	
Berne Knox	127	4.06	17	0.72	-82.26
Bethlehem	133	4.25	120	5.08	19.52
Selkirk	76	2.43	61	2.58	6.17
Cohoes	209	6.68	65	2.75	-58.83
South Colonie	234	7.43	140	5.93	-20.72
North Colonie	138	4.41	171	7.25	64.39
Menands	0	0	0	0	0
Maplewood	6	0.19	NA		
Green Island	24	0.76	26	1.10	44.73
Guilderland	168	5 . 37	85	3.60	-32.96
Voorheesville	32	1.02	40	1.69	65.68
Watervliet	75	2.39	96	4.07	70.29
Total	3,127		2,358		
Weighted Absolute Percent Change					21.42
Erie County					
Alden	73	0.59	91	0.75	27.11
Williamsville	160	1.31	193	1.59	21.37
Sweet Home	127	1.04	162	1.33	27.88
Eggertsville	49	0.40	84	0.69	72.50
Snyder	53	0.43	128	1.05	144.18
Amherst CHS	83	0.68	2 12	1.75	157.35
East Aurora	92	0.75	67	0.55	-26.66
South Wales	8	0.06	NA		
Farnham	7	0.05	NA		
Buffalo	8,185	67.15	7,548	62.36	-7. 15
Cheektowaga	⁻ 75	0.61	114	0.94	54.09
Maryvale	168	1.37	207	1.71	24.81
Cleveland L.11	118	0.96	95	0.78	-18.75
Depew	69	0.56	152	1.25	123.21
Sloan	131	1.07	80	0.66	-38.31
Clarence	90	0.73	95		6.84
Griffith Institute	152	1.24	96	2 12	:6.29
Eden	65	0.53	134	1.10	107.54

Table B-3 (Continued)

	Eligible Children					
	1	.959*		1969†	Percent Change	
Counties		Share		Share	in Share of	
and Districts	Number	(percent)	Number	(percent)	Eligible Children	
Erie County						
(continued)						
Iroquois	97	0.79%	113	0.93%	17.72%	
Lake Shore	208	.1.70	166	1.37	-19.41	
Charlotte Sidway	12	0.09	NA			
Hamburg	160	1.31	155	1.28	-2.29	
Frontier	139	1.14	251	2.07	81 57	
Holland	56	0.45	56	0.46	2.22	
Lackawana	441	3 .61	482	3.98	10.24	
Lancaster	145	1.18	157	1.29	9.32	
Akron	65	0.53	22	0.18	-66.03	
North Collins	191	1.56	85	0.70	-55.12	
Orchard Park	67	0.54	68	0.56	3.70	
Tonawanda	134	1.09	260	2.14	96.33	
Kenmore	613	5.02	487	4.02	-19.92	
West Seneca	155	1.27	342	2.82	122.04	
Total	12,188		12,102			
	,		,			
Weighted Absolute						
Percent Change					17.57	
Nassau County						
Glen Cove	235	3.21	335	3.30	2.80	
Hempstead	210	2.87	506	4.99	73.87	
Uniondale	205	2.80	224	2.20	-21.43	
East Meadow	412	5.62	384	3.79	-32.56	
North Bellmore	57	0.78	123	1.21	55.13	
Levittowa	339	4.63	480	4.73	2.16	
Seaford	77	1.05	85	0.83	-20.95	
Bellmore	26	0.36	64	0.63	75.00	
Roosvelt	100	1.37	312	2.08	51.83	
Freeport	204	2.79	502	4.95	77.42	
Baldwin	137	1.87	85	0.84	-55.08	
Oceanside	166	2.27	211	2.08	-8.37	
Malverne	89	1.22	199	1.96	60.66	
Valley Stream	NA		NA		***	
Woodmere	173	2.36	102	1.01	-57.20	
Lawrence	301	4.11	253	2.49	-39.42	
Elmont	161	2.20	262	2.58	17.27	
Franklin Square	60	0.82	148	1.46	78.05	
Garden City	92	1.26	60	0.59	-53.18	
East Rockway	35	0.48	8 6	0.85	77.08	
Dast Nockway	رر	0.70	GU	J. J.	77.00	

Table B-3 (Continued)

	Eligible_Children					
		.959*	_ 1	969†	Percent Change	
Counties		Share		Share	in Share of	
and Districts	Number	(percent)	<u>Number</u>	(percent)	ingible Children	
Nassau County						
(centinued)	0.5	1 00%			1/ (0%	
Lynbrook	95	1.30%	113	1.11%	-14.62%	
Rockville Centre	190	2.59	151	1.49	-42.47	
Floral Park	63	0.86	146	1.44	67.44	
Wantagh	92	1.26	133	1.31	3.97	
Merrick	31	0.42	84	0.83	97.26	
Island Trees	118	1.61	124	1.22	-24.22	
West Hempstead	148	2.02	102	1.01	- 50.00	
North Merrick	16	0.22	68	0.67	204.55	
Island Park	39	0.53	195	1.92	262.26	
Valley Stream CHS	136	1.86	238	2.35	26.34	
Sewanhaka	317	4.33	590	5.82	34.41	
Mepham	99	1.35	335	3.30	144.44	
Long Beach	246	3.36	399	3.9 3	16.96	
Westbury	122	1.67	140	1.38	-17.37	
East Williston	45	0.61	49	0.48	-21.31	
Rosyln	80	1.09	110	1.08	-0.92	
Port Washington	144	1.97	185	1.82	-7.61	
New Hyde Park	53	0.72	85	0.84	16.67	
Manhassett	83	1.13	36	0.36	-68.14	
Great Neck	228	3.11	239	2.36	-24.12	
Herricks	137	1.87	151	1.49	-20.32	
Mineola	93	1.27	71	0.70	-44.88	
Carle Place	75	1.0~	42	0.41	- 59.80	
Sea Cliff	87	1.19	93	0.92	-22.69	
Syossett	199	2.72	107	1.06	-61.03	
Locust Valley	63	0.86	103	1.02	18.61	
Plainview	154	2.10	137	1.35	- 35.71	
Oyster Bay	67	0.92	88	0.87	-5.43	
Jericho	100	1.37	62	0.61	-55.47	
Hicksville	181	2.47	167	1.65	-33.20	
Plainedge	137	1.87	119	1.17	- 37.43	
Bethpage	159	2.17	156	1.54	-29.03	
Farmingdale	232	3.17	297	2.93	- 7.57	
Massapequa	217	6.96	599	5.91	99.66	
Total	7,325		10,135			
Weighted Absolute						
Percent Change					38.23	

Table B-3 (Concluded)

Eligible Children 1959³ 1969† Percent Change Counties Share in Share of Share and Districts Number (percent) Number (percent) Eligible Children Onondaga County West Genesee 108 3.00% 202 4.86% 62.00% North Syracuse 170 4.73 332 7.99 68.92 101 East Syracuse 2.81 205 4.93 75.45 Dewitt 119 3.31 1.92 80 -41.99 Jordon Elbridge 46 1.28 1.64 68 28.13 Fablus 39 1.08 19 0.46 -57.41 Cherry Rd. Onon. 38 1.06 NA Solvay 82 2.28 68 1.64 -28.07 LaFayette 30 0.83 71 1.71 106.02 Baldwinsville 159 4.42 4.50 1.81 187 Manlius 83 2.31 117 2.81 21.65 -20.69 Marcellus 73 2.03 67 1.61 0.92 Onondaga 33 51 1.23 33.70 Liverpool 109 3.03 205 4.93 62.71 Lyncourt 22 0.61 9 0.22 -63.93 3.20 58 1.40 Skaneateles 115 -56.25 Syracuse 2,204 61.27 1,379 57.22 -6.61 Tully 0.96 - 4 92 65 1.81 **∔**0 Total 3,596 4,158 Weighted Absolute 21.02 Percent Change

NA = not available.

^{*}Calculated from statistics supplied by New York State Department of Education, Division of Compensatory Education, ESEA Title I (Albany, New York), 1974.

[†]Calculated from <u>Special Census Tabulation</u>, Office of Education, ESEA Title I (Washington, D.C.), September, 1973.