Università di Pisa

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

CDL INGEGNERIA INFORMATICA ANNO ACCADEMICO 2021/2022

Documentazione Tecnica di Progetto

Matteo Lombardi - Francesco Zollo

Indice

1	Glossario dei Termini	3
Ι	Modello Concettuale	5
2	Area Generale2.1 Struttura di un Edificio2.2 Rischi	6 7 7
3	Area Costruzione3.1 Materiali3.2 Stadi di Avanzamento e Gestione del Personale	8 9
4	4.1 Sensoristica	10 10 10
5	Area Analisi del Rischio	11
II	Ristrutturazione	12
6	6.1 Generalizzzione di Vano 6.2 Generalizzazione di Punto D'Accesso 6.3 Generalizzazione di Materiale 6.4 Generalizzazione di Registrazione Eliminazione di attributi multivalore	14 15 16 17
	7.1 Attributo multivalore Funzione	17
Π	I Analisi Prestazionale	18
8	Tavola dei Volumi	19
9	Operazioni sui Dati 9.1 Operazione 1 - trovaAlert 9.1.1 Sezione di Diagramma Interessato 9.1.2 Tavola dei Volumi Interessati 9.1.3 Tavola degli Accessi 9.2 Operazione 2 - topologiaEdificio 9.2.1 Sezione di Diagramma Interessato 9.2.2 Tavola dei Volumi Interessati	22 22 23 23 24 24 25
	9.2.3 Tavola degli Accessi	25

9.3	Opera	zione 3 - rischiAnnui
	9.3.1	Sezione di Diagramma Interessato
	9.3.2	Tavola dei Volumi Interessati
	9.3.3	Tavola degli Accessi
9.4	Opera	zione 4 - leggiBustaPaga
	9.4.1	Sezione di Diagramma Interessato
	9.4.2	Tavola dei Volumi Interessati
	9.4.3	Tavola degli Accessi
	9.4.4	Valutazione della Ridondanza BustaPaga in Operaio
9.5	Opera	zione 5 - costoMaterialiStadio
	9.5.1	Sezione di Diagramma Interessato
	9.5.2	Tavola dei Volumi Interessati
	9.5.3	Tavola degli Accessi
	9.5.4	Valutazione della Ridondanza Costo in Stadio
9.6	Opera	zione 6 - nuovoOperaio
	9.6.1	Sezione di Diagramma Interessato
	9.6.2	Tavola dei Volumi Interessati
	9.6.3	Tavola degli Accessi
9.7	Opera	zione 7 - valutaAlert
	9.7.1	Sezione di Diagramma Interessato
	9.7.2	Tavola dei Volumi Interessati
	9.7.3	Tavola degli Accessi
9.8	Opera	zione 8 - materialiLavoro
	9.8.1	Sezione di Diagramma Interessato
	9.8.2	Tavola dei Volumi Interessati
	9.8.3	Tavola degli Accessi
IV	Mode	llo Logico 37
10 De	scrizion	ne Schema Logico 38
11 An	alisi de	lle Dipendenze Funzionali e Normalizzazione 40
		a Edificio
11.	2 Tabell	a Sensore
11.	3 Tabell	a Stadio
12 Vi	ncoli di	Integrità 41
12.	1 Vincol	i di Integrità Referenziale
12.	2 Vincol	i di Integrità Generici
12.	3 Vincol	i di Tupla
13 Im	plemen	tazione funzioni Analytics 43
13.	1 consig	liIntervento
13.	2 stimal	Oanni

1. Glossario dei Termini

Affinchè l'utente possa usufruire della base di dati al pieno delle sue potenzialità e senza fraintenderne i contenuti, di seguito un elenco di termini ricorrenti e rilevanti associati ognuno alla propria descrizione, che ne esplica il significato interpretato ai fini del database.

Termini						
Area Generale						
Edificio	Struttura costruita e/o ristrutturata che verrà in seguito monitorata.	Costruzione, Abitazione, Fabbricato, Stabile, Immobile				
Pianta	Sezione orizzontale di un edificio all'altezza di un piano.	Mappa, Carta				
Vano	Volume interno alla pianta delimitato da pareti, e adibito ad una o più funzioni. Di dimensione massime fisse.	Locale, Stanza				
Punto d'Accesso	Punto che permette lo spostamento da un vano ad un altro oppure all'esterno.	Entrata, Uscita, Passaggio				
Area Geografica	Porzione estesa di territorio terrestre delimitata da confini.	Stato, Paese				
Rischio	Probabilità che un evento calamitoso, in una certa area geografica, sia capace di causare un certo danno agli edifici.					
	Area Costruzione					
Progetto	Insieme di lavori atti alla costruzione o alla ristrutturazione di un edificio.	Piano di lavoro				
Lavoro	Attività svolte da operai con lo scopo di perseguire un progetto.					
Materiale	Mattone, intonaco, piastrella, pietra o altro, necessario a portare a termine un lavoro.					
Stadio	Stato di avanzamento in cui si trova un progetto.	Fase				
Responsabile	Persona che monitora uno o più lavori.					
Turno	Data e orario (mattutino o pomeridiano) in cui un operaio o un capocantiere eseguirà un qualche lavoro.					
Lavoro Turno	Indicazione del lavoro svolto dall'operaio e/o dal capo cantiere, con relativo numero di ore, nel dato turno.					

Termini	Termini Descrizione							
	Area Monitoraggio							
Sensore	Dispositivo elettronico che misura un certo	Dispositivo	di					
	valore o un insieme di valori.	controllo						
Registrazione	Valore(i) misurato(i) da un certo sensore in	Rilevazione						
	un determinato momento.							
Alert	Avvertimento di pericolo, generato in seguito							
	alla registrazione di un valore superiore ad							
	una soglia, da un dato sensore in un certo							
	tempo.							
	Area Analisi del Rischio							
Calamità	Calamità Evento catastrofico di tipo sismico o idrogeo-							
	logico verificatosi in una certa zona geografi-							
	ca in un certa data.							

Parte I Modello Concettuale

2. Area Generale

2.1 Struttura di un Edificio

La parte di diagramma in questione ha lo scopo di descrivere un edificio dal punto di vista strutturale. L'utente può inserire un nuovo edificio, esistente o non, fornendo il suo codice identificativo di edificio.

Saranno inoltre salvate informazioni riguardo alla topologia dell'edificio stesso: la pianta di ogni piano; i vani (mansardati o non) che la compongono; e i vari punti d'accesso interni o esterni.

Le piante delle quali si vogliono memorizzare informazioni devono essere poligonali, il cui numero di lati è anch'esso salvato nella base di dati.

Un vano deve avere dimensioni massime rappresentate dagli attributi hMax, lungMax, largMax. Nel caso in cui il vano sia mansardato, l'attributo hMin definisce l'altezza minima del locale.

Possono essere salvate nel database anche le finestre all'interno di ogni vano, comprensive di dimensioni e orientamento cardinale.

2.2 Rischi

Il database salva informazioni riguardanti un rischio di una certa area geografica.

Del rischio in questione viene salvata la data, l'area geografica alla quale appartiene, un coefficiente, e il tipo di rischio che lo descrive.

È di grande importanza salvare questo tipo di informazioni nel database affinchè si riesca a determinare un certo rischio a seguito di una esposizione ad un certo pericolo; e il pericolo nel nostro caso è determinato dalla naturale esposizione a calamità.

Tali calamità saranno esclusivamente di tipo sismico oppure idrogeologico.

3. Area Costruzione

3.1 Materiali

Parte fondamentale per uno scopo come quello di *Smart Buildings* è memorizzare di quale materiale è fatta una certa parte.

Alcuni di questi materiali possono essere mattoni, intonaco, piastrelle e pietre. Ciascuno di essi presenta delle caratteristiche individuali, come per esempio lo spessore per un particolare intonaco piuttosto che il tipo di disegno che è presente su una piastrella, e delle caratteristiche comuni come la data di acquisto o il nome del fornitore che li ha venduti.

Inoltre è presente la possibilità di salvare dei materiali che non sono fra quelli citati sopra, e per farlo gli sono state fornite alcune caratteristiche generali che possono caratterizzare una maggior parte di materiali in commercio.

3.2 Stadi di Avanzamento e Gestione del Personale

I diversi stadi di avanzamento possono essere memorizzati al fine di gestire ogni aspetto di un intero progetto in fase di lavorazione. In effetti il ruolo centrale di questa area della base di dati viene svolto dalle entità Progetto e Lavoro, che insieme ad altri componenti possono contribuire alla memorizzazione di informazioni utili ai fini dell'azienda.

In particolare uno Stadio potrà essere dilazionato in vari "step" chiamati Lavoro, e caratterizzati da un codice univoco denominato CodLavoro.

Riferendoci ora al Lavoro, possiamo dire che per portarlo a termine occorrerà rifornirsi di materiali, i quali sono già stati esplicati nel paragrafo precedente. Per portare a termine un Lavoro occorre anche avere una sezione che riesca a gestire il personale addetto alla manodopera, alla direzione e al monitoraggio.

Per gestire un personale ampio, dobbiamo memorizzare informazioni su Turno, caratterizzati dal codice fiscale del lavoratore, dal tipo di turno (potenzialmente mattutino o pomeridiano), e dal giorno. Queste informazioni ci permettono di gestire le mansioni che ogni individuo deve svolgere, ma non quali lavori precisamente porterà a termine.

La memorizzazione dei Lavori all'interno di un turno sarà delegata ad una entità denominata Lavori Turno, che si occuperà di memorizzare l'orario, il codice univoco del lavoro, l'orario di inzio e il numero di ore del Lavoro.

Per quanto rigurarda le risorse umane, saranno categorizzate come Capo Cantiere, Responsabile o Operaio. Ognuno di essi avrà delle caratteristiche che ci permetteranno di ricercare tutto il personale che compone una unità di lavoro: ovvero dei Capi Cantiere, un Responsabile e un certo numero di operai sotto il monitoraggio (nei limiti dell'esperienza) di un Capo Cantiere.

4. Area Monitoraggio

4.1 Sensoristica

La sensoristica ci permette di avere delle rilevazioni senza le quali non potremmo effettuare delle verifiche per testare il malfunzionamento o la previsione di certi eventi, e l'unità fondamentale che ne deriva è un Sensore.

Il Sensore, ai fini del database, è interpretabile semplicemente come un dispositivo elettronico che permette di misurare delle grandezze fisiche di vario tipo, come la temperatura, o il livello di precipitazioni atmosferiche. Un sensore è quindi identificato da un ID dal quale è possibile risalire alla parte che esso monitora.

4.2 Memorizzazione dei Dati

La memorizzazione a suo modo collabora al monitoraggio stoccando le misurazioni dei sensori in apposite sezioni del database. Per farlo si serve di Registrazioni, ovvero delle misurazioni di un sensore in un certo istante denominato Timestamp.

Le Registrazioni tuttavia non offrono un vero riscontro dal punto di vista della sicurezza, perchè una registrazione non è altro che una neutra misurazione della realtà intorno al sensore.

Gli Alert sono invece delle misurazioni di un certo sensore, che quindi è possibile identificare univocamente, che riportano un valore misurato che potrebbe essere causa di problemi di qualche tipo, come una crepa nel muro.

5. Area Analisi del Rischio

Quest'area risulta fondamentale al momento dell'effettivo istante in cui una Calamità si presenta. La presente sezione del Database si prefissa di salvare le informazioni riguardanti la relazione che c'è fra gli Edifici e le Calamità avvenute, al fine di riuscire a stimare i possibili danni, oppure prevedere tali danni.

Come si può notare, la relazione Eventualità presenta un attributo *Gravita*, che ci permette di associare ad ogni Edificio un indie di gravità in corrispondenza dell'evento Calamitoso preso in considerazione.

Per semplicità, e considerando i termini didattici dell'elaborato, consideriamo il caso in cui una Calamità di un certo *Tipo*, ovvero *Sismica* oppure *Idrogeologica*, non possa verificarsi all'interno della giornata per più volte.

Le Calamità e gli Edifici sono identificati geograficamente da *Latitudine* e *Longitudine*. In questo modo è possibile calcolare l'attributo *Gravita* rendendolo dipendente dalla distanza dell'Edificio dall'Evento Calamitoso.

Parte II Ristrutturazione

6. Eliminazione delle Generalizzazioni

6.1 Generalizzzione di Vano

La generalizzazione parziale Mansarda rappresenta logicamente un vano mansardato. La ristrutturazione potrebbe essere fatta introducendo una entità Mansarda e una relazione che lega la Mansarda al Vano.

Tuttavia una soluzione migliore si ottiene osservando che un Vano può o no essere mansardato. Questo permette di ristrutturare la generalizzazione inserendo un attributo booleano Mansardato all'interno di Vano, e spostando l'attributo HMin di Mansarda su Vano, permettendo così di non introdurre nè l'entità Mansardato nè la relazione che le avrebbe dovute congiungere. Inoltre, possiamo osservare che il booleano Mansardato in questo caso è ridondante, perchè possiamo constatare se lo sia o meno semplicemente comparando gli attributi HMin e HMax: viene quindi eliminato.

6.2 Generalizzazione di Punto D'Accesso

La generalizzazione di Punto d'Accesso, entità che rappresenta un arco, una porta, una portafinestra o simili, è di tipo totale, perchè l'eventualità che un Punto d'Accesso possa essere Interno, esclude completamente il caso in cui possa essere contemporaneamente Esterno.

La ristrutturazione è stata effettuata per mezzo di due entità: AccessoI e AccessoE.

Per quanto riguarda i Punti di Accesso Esterni, possono essere presenti oppure no, infatti esistono Vani la cui posizione li costringe ad essere circondati da altri Vani, dunque parteciperà opzionalmente in AccessoE.

Nel caso dei Punti di Accesso Interni la soluzione è leggermente più complessa. Infatti ci troviamo davanti ad una relazione "molti a molti", perchè un Punto di Accesso Interno collegherà necessariamente due Vani, e allo stesso tempo un Vano ne può avere più di uno. La soluzione prevede che i Punti di Accesso Interni abbiano un identificatore univoco IDPuntoAccesso che li identifica, e che in AccessoI ci sia salvato l'orientamento del Punto di Accesso Interno di tale Vano. In questa logica, se ad esempio avessimo due Vani comunicanti tramite una porta, avremo una tupla che identifica che quella porta si trova in un certo punto cardinale di un Vano, mentre in un'altra tupla avremo che la stessa porta nel Vano adiacente si troverà orientata al contrario.

6.3 Generalizzazione di Materiale

La generalizzazione di Materiale è stata ristrutturata considerando che un elemento dell'entità Materiale rappresenta un Lotto, che quindi sarà costituito da un solo materiale. Fatta questa assunzione, e considerato che le entità derivate da Materiale hanno tutte attributi molto diversi, la soluzione adottata è stata quella di tenere i figli e legarli dalle rispettive relazioni facoltative che permettono di accedere alle informazioni grazie alla chiave esterna che ognuna di loro ha nei confronti di Materiale.

C'è da precisare che anche la generalizzazione parziale di Mattone e Alveolatura è stata gestita esattamente come in precedenza è stata gestita la generalizzazione tra Vano e Mansarda, si omettono quindi considerazioni ridondanti (6.1).

6.4 Generalizzazione di Registrazione

Le stesse cosiderazioni fatte per la generalizzazione totale precedente (6.3) possono essere fatte anche in questo caso. Di nuovo gli attributi sono molto diversi fra i figli, e l'accesso avviene in una sola delle entità figlie, perchè l'esistenza di una tupla del padre implica l'esistenza di una sola tupla relativa ai figli. La ristrutturazione quindi risulta essere la seguente.

7. Eliminazione di attributi multivalore

7.1 Attributo multivalore Funzione

La necessità dell'attributo multivalore Funzione nasce dalla possibilità di un Vano di poter avere più di una funzione.

Questa casistica ci porta necessariamente a rimuovere l'attributo multivalore introducendo una entità Funzione e una relazione Adibito_a. Nella soluzione adottata, la funzione appartiene ad un solo Vano, ma un Vano può avere più Funzioni. In questo modo per ogni tupla di Vano esisterà almeno una tupla Funzione che fa riferimento a quello specifico Vano.

Parte III Analisi Prestazionale

8. Tavola dei Volumi

	TITOU COST	ruzione
Concetto Tip	o Volume	Considerazioni
Materiale E	3*1.080 = 3.240	Ipotizzando che una Parte sia composta me-
		diamente da 3 materiali
Mattone E	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano
		Mattone
Piastrella E	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano
		Piastrella
Pietra E	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano
		Pietra
Intonaco E	0.3*1.080 = 324	Ipotizzando che il 30% dei Materiali siano
		Intonaco
Altro	0.1*1.080 = 108	Ipotizzando che il 10% dei Materiali siano
		Altro
Lavoro E	0.5*3.240 =	Ipotizzando 2 Materiali per ogni Lavoro
	1.620	
Capo Cantiere E	45	Ipotizzato
Operaio E	12*45 = 540	Ipotizzando in media 12 Operai per Capo
		Cantiere
Responsabile E	2*14 = 28	Ipotizzando 2 Responsabili per ogni Progetto
Progetto E	10+4 = 14	Ipotizzando 10 costruzioni e 4 ristrutturazio-
		ni
Stadio E	14*3 = 42	Ipotizzando 3 Stadi per ogni Progetto
Turno E	110.000	Ipotizzato
Lavori Turno E	440.000	Ipotizzato
Composizione R	3.240	Stesso volume di Materiale
Tipologia 1 R	216	Stesso volume di Mattone
Tipologia 2 R	216	Stesso volume di Piastrella
Tipologia 3 R	216	Stesso volume di Pietra
Tipologia 4 R	324	Stesso volume di Intonaco
Tipologia 5 R	108	Stesso volume di Altro
Fornitura R	3.240	Stesso volume di Materiale
Controllo R	1,3*1.620 =	Ipotizzando 1,3 Capi Cantiere per ogni La-
	2.106	voro
Supervisione R	540	Stesso volume di Operaio
Direzione R	1.620	Stesso volume di Lavoro
Stadiazione R	42	Stesso volume di Stadio
Strutturazione R	1.620	Stesso volume di Lavoro
Turnazione R	110.000	Stesso volume di Turno
Agenda R	440.000	Stesso volume di Lavori Turno

Area Analisi Rischio				
Concetto	Tipo	Volume	Considerazioni	
Calamità	E	6	Ipotizzato	
Eventualità	R	8	Ipotizzato	
		Area Ger	nerale	
Concetto	Tipo	Volume	Considerazioni	
Rischio	E	3*5 = 15	Ipotizzando mediamente 3 rischi per area	
Area Geografica	E	5	Ipotizzato	
Edificio	E	10	Ipotizzato	
Funzione	E	1,2*180 = 216	Ipotizzando 12 funzioni ogni 10 vani	
Pianta	Е	3*10 = 30	Ipotizzando mediamente 3 piani per edificio	
Vano	E	6*30 = 180	Ipotizzando mediamente 6 vani per pianta	
Finestra	Е	1,3*180 = 234	Ipotizzando 13 finestre ogni 10 vani	
PA_Interno	Е	288	Ipotizzando l'80% dei punti d'accesso come	
			interni*	
PA_Esterno	E	72	Ipotizzando il 20% dei punti d'accesso come	
			esterni*	
Parte	Е	6*180 = 1.080	Ipotizzando 4 pareti, un soffitto e un pavi-	
			mento	
Pericolo	R	15	Stesso volume di Rischio	
Sede	R	10	Stesso volume di Edificio	
Topologia	R	30	Stesso volume di Pianta	
Adibito_a	R	216	Stesso volume di Funzione	
Suddivisione	R	180	Stesso volume di Vano	
AccessoE	R	72	Stesso volume di PA_Esterno	
AccessoI	R	288*1,6 = 461	Supponendo 16 Punti di Accesso Interni ogni	
			10 Vani	
Vista	R	234	Stesso volume di Finestra	
Costituzione	R	1.080	Stesso volume di Parte	
*ipotizzando in media 2 punti di accesso per vano, ci sono 360 punti di accesso				

Area Monitoraggio					
Concetto	Tipo	Volume	Considerazioni		
Sensore	E	310	Ipotizzato		
Accelerometro	Е	30*3.650 =	= Ipotizzando un Accelerometro per Piano*		
		109.500			
Giroscopio	Е	30*3.650 =	= Ipotizzando un Giroscopio per Piano*		
		109.500			
Temperatura	Е	180*3.650 =	= Ipotizzando un sensore di Temperatura per		
		657.000	Vano*		
Posizione	Е	6*10*3.650 =	= Ipotizzando 6 sensori di Posizione per Edifi-		
		219.000	cio*		
Pluviometro	Е	10*3.650 =	= Ipotizzando un Pluviometro per Edificio*		
		36.500			
Alert	E	0,3*1.131.500 =	= Ipotizzando chen il 30% delle Misurazioni ge-		
		339.450	nerino un Alert		
Misurazione1	R	109.500	Stesso volume di Giroscopio		
Misurazione2	R	657.000	Stesso volume di Temperatura		
Misurazione3	R	219.000	Stesso volume di Posizione		
Misurazione4	R	36.500	Stesso volume di Pluviometro		
Misurazione5	R	109.500	Stesso volume di Accelerometro		
Monitoraggio	R	310	Stesso volume di Sensore		
Avvertimento	R	339.450	Stesso volume di Alert		
*ipotizzando 2 misurazioni al giorno per 5 anni					

9. Operazioni sui Dati

9.1 Operazione 1 - trovaAlert

Data una calamità, l'operazione prende in considerazione tutti gli Edifici presenti nell'Area Geografica dove la Calamità ha avuto luogo. Successivamente, per ogni Edificio trovato, trova tutti gli Alert che sono stati generati dalle misurazioni dei Sensori in seguito all'Evento Calamitoso e ne restituisce i dati.

La frequenza presa in esame è di 2 volte all'anno, e tiene in considerazione il fatto che una richiesta del genere probabilmente verrà effettuata un paio di volte in seguito ad un Evento Calamitoso, e che gli Eventi Calamitosi della Tabella dei Volumi sono relativi a 5 anni.

Input	Output	Frequenza
AreaGeografica, Data, Tipo	CodEdificio, IDSensore e Alert	2 volte all'anno

9.1.1 Sezione di Diagramma Interessato

9.1.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni
Eventualità	R	8	Ipotizzato
Monitoraggio	R	310	Stesso volume di Sensore
Alert	Е	0,3*1.131.500 =	Ipotizzando che il 30% delle Misurazioni
		339.450	generino un Alert

9.1.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	$\operatorname{Dim}(\operatorname{Ris})$
1	Eventualità	R	Lettura	Leggo gli edifici colpiti	Vol(Eventualità) =	2
					8	
2	Monitoraggio	R	Lettura	Leggo i sensori de-	Vol(Monitoraggio)	62
				gli edifici colpiti dalla	*2 = 310*2 = 620	
				Calamità		
3	Alert	E	Lettura Leggo gli alert che i		Vol(Alert)*62 =	
	sensori hanno genera-		339.450*62 =			
		to durante la Calami-		21.045.900		
	ta					
	T	otale degli ac	21.046.52	8		
	Τ	otale degli ac	2 volte	21.046.528 * 2 = 42	2.093.056	

9.2 Operazione 2 - topologiaEdificio

Dato il codice di un Edificio, l'operazione restituisce tutte le informazioni necessarie per poter riprodurre fedelmente "su carta" la pianta dell'Edificio preso in considerazione. In particolare l'output consiste in tutti i valori degli attributi di tutte le entità Pianta e Vano.

Possiamo considerare la frequenza dell'operazione di circa 2 volte alla settimana, tenendo presente che potrebbe servire al personale addetto per tenere sotto controllo i lavori, oppure fornire su richiesta la pianta in versione grafica.

Input	Output	Frequenza
CodEdificio	Vani, Piante, Punti d'Accesso e Finestre	2 volte a settimana

9.2.1 Sezione di Diagramma Interessato

9.2.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni
Vano	Е	6*30 = 180	Ipotizzando mediamente 6 vani per pianta
AccessoI	R	288*1,6 = 461	Supponendo 16 Punti di Accesso Interni ogni
			10 Vani
PA_Interno	Е	288	Ipotizzando l'80% dei punti d'accesso come
			interni*
AccessoE	R	72	Stesso volume di PA_Esterno
PA_Esterno	E	72	Ipotizzando il 20% dei punti d'accesso come
			esterni*
Vista	R	234	Stesso volume di Finestra
Finestra	Е	1,3*180 = 234	Ipotizzando 13 finestre ogni 10 vani
* ipotizzando in media	2 punti	di accesso per vano	o, ci sono 360 punti di accesso

9.2.3 Tavola degli Accessi

id Concetto Costrutto Tipo Consideraz		Considerazioni	Accessi	$\operatorname{Dim}(\operatorname{Ris})$		
1	Vano	E	Lettura	Leggo i vani dell'edifi-	Vol(Vano) = 180	18
				cio		
2	AccessoI	R	Lettura	Leggo IDPuntoAcces-	Vol(Accesso_I) *	29
				so e Orientamento	18 = 461 * 18 =	
					8.298	
3	PA_Interno	E	Lettura	Leggo il Tipo	29	
4	AccessoE	R	Lettura	Leggo IDPuntoAcces-	Vol(AccessoE) *	7
				SO	18 = 72 * 18 =	
					1.296	
5	PA_Esterno	E	Lettura	Leggo le informazioni	7	
				che mi servono		
6	Vista	R	Lettura	Leggo IDFinestra	Vol(Vista)*18 =	1,3*18 = 23
					234*18 = 4.212	
7	Finestra	E	Lettura	Leggo le informazioni	23	
	r	Totale degli ad	14.04	5		
	r	Totale degli ad	14.045*2 =	28.090		

9.3 Operazione 3 - rischiAnnui

Dato in input il codice di un Edificio, l'operazione ha lo scopo di riuscire ad analizzare le correlazioni che esistono, all'interno dell'anno attuale, fra i Coefficienti di Rischio che riguardano l'area geografica dove ha sede quell'Edificio. Quello che restituisce risulta essere l'insieme delle informazioni necessarie alla valutazione. Un'operazione del genere può risultare fondamentale nell'analisi preventiva degli edifici e nella risoluzione preventiva di futuri possibili malfunzionamenti.

Per quanto riguarda la stima della frequenza per questa operazione, possiamo considerare di richiamarla stagionalmente, e quindi moltiplicando per quattro il volume di Edificio si arriva ad una frequenza annua di 40 volte.

Input	Output	Frequenza		
CodEdificio	Rischio	40 volte all'anno		

9.3.1 Sezione di Diagramma Interessato

9.3.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni
Sede	R	10	Stesso volume di Edificio
Rischio E 3 * 5		3*5 = 15	Ipotizzando mediamente 3 rischi per area

9.3.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	Dim(Ris)
1	Sede	R	Lettura	Leggo la sede dell'Edi-	1	1
	ficio					
2	Rischio	R	Lettura	Leggo tutti i rischi e	Vol(Rischio)*1	15
			= 15*1 = 15			
		Totale degli a	16			
	r	Totale degli a	16*40 =	640		

9.4 Operazione 4 - leggiBustaPaga

L'operazione, che prende in input il codice fiscale di un Operaio, si pone l'obiettivo di calcolarne lo stipendio del mese in corso. Come si puo' evincere, la frequenza con la quale viene richiamata e' stimata mensilmente come il numero degli operai presenti nella Base di Dati.

Input	Output	Frequenza		
CFisc (di un Operaio)	Scalare di tipo Float	Vol(Operaio) = 540 volte al mese		

9.4.1 Sezione di Diagramma Interessato

9.4.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni
Lavori Turno	E	440.000	Ipotizzato
Operaio	Е	12*45 = 540	Ipotizzando in media 12 Operai per Capo Cantiere

9.4.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	$\overline{\mathrm{Dim}(\mathrm{Ris})}$
1	Operaio	E	Lettura	Leggo la Manodopera	1	1
				dell'operaio		
2	LavoriTurno	E	Lettura	Sommo le ore lavora-	Vol(LavoriTurno)	
				tive nel mese e le mol-	= 440.000	
				tiplico per la Manodo-		
				pera		
	Total	le degli access	440.00	1		
	Totale	e degli accessi	olte mensili	440.001*540 = 2	37.600.540	

9.4.4 Valutazione della Ridondanza BustaPaga in Operaio

Dato l'elevato numero di accessi necessari per portare a termine l'operazione, si decide di valutare l'inserimento di una ridondanza che possa diminuirlo. In particolare si è deciso di valutare la ridondanza BustaPaga come attributo dell'entità Operaio. In questo modo, all'inserimento di ogni tupla in LavoriTurno, si aggiorna la ridondanza per poi effettuare meno accessi nel momento della chiamata all'operazione.

Come detto in precedenza, la Tavola dei Volumi si riferisce a 5 anni di attività della Base di Dati, occorre quindi stimare il numero dei nuovi Lavori presenti nell'entità Lavori Turno ogni anno. Questa stima può essere fatta dividendo il numero di tuple presente in Lavori Turno per 5, che rappresentano gli anni, e successivamente per 12, che rappresentano i mesi in un anno, ottenedo quindi 7333 nuove tuple in Lavori Turno al mese.

Tavola degli Accessi con Ridondanza

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	$\operatorname{Dim}(\operatorname{Ris})$
1	Operaio	E	Lettura	Leggo la BustaPaga	540	
2	Operaio	E	Scrittura	Azzero la BustaPaga	540	
			del mese scorso			
3	Operaio	E	Lettura	Leggo la Manodopera	7.333	
				e la BustaPaga		
4	Operaio E Scrittura		aggiorno la ridondan-	7.333		
				za		
		Totale degl	23.619			

9.5 Operazione 5 - costoMaterialiStadio

Dato uno Stadio, l'operazione costoMaterialiStadio si prefissa l'obiettivo di trovare, all'interno dello Stadio identificato dai dati in input, il costo di tutti i Materiali necessari per portarlo a termine.

È sensato pensare di eseguire questa operazione una volta a metà dei Lavori e una volta al termine dello Stadio, per valutare il costo dei Materiali utilizzati per portarlo alla conclusione. Dunque, si calcola la frequenza come il volume della tabella Stadio diviso per il numero di anni a cui fa riferimento la Tabella dei Volumi, e moltiplicando per 2 esecuzioni, considerando così una frequenza annua di 18 volte.

Input	Output	Frequenza	
CodProgetto, DataInizio	Scalare di tipo Float	18 volte all'anno	

9.5.1 Sezione di Diagramma Interessato

9.5.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni
Stadio	Е	14*3 = 42	Ipotizzando 3 Stadi per ogni Progetto
Strutturazione	R	1.620	Stesso volume di Lavoro
Fornitura	R	3.240	Stesso volume di Materiale
Materiale	Е	3*1.080 = 3.240	Ipotizzando che una Parte sia composta
			mediamente da 3 materiali
Mattone	Е	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano
			Mattone
Piastrella	E	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano
			Piastrella
Pietra	E	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano
			Pietra
Intonaco	Е	0.3*1.080 = 324	Ipotizzando che il 30% dei Materiali siano
			Intonaco
Altro	Е	0.1*1.080 = 108	Ipotizzando che il 10% dei Materiali siano
			Altro

9.5.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	$\operatorname{Dim}(\operatorname{Ris})$
1	Strutturazione	R	Lettura	Leggo i lavori relativi	Vol(Strutturaz.)	39
				allo stadio	= 1.620	
2	Fornitura	R	Lettura	Leggo tutte le fornitu-	Vol(Fornitura)	
				re di tutti i lavori dello	*39 = 3.240*39	
				stadio	= 126.360	
3	Materiale	E	Lettura	Leggo la quantità di	2*39 = 78	
				tutte le forniture		
4	Materiale_i	E	Lettura	Leggo il costo di ogni	2*39 = 78	
				Fornitura		
	Totale	128.130	6			
	Totale	128.136*18 = 2.306.448				

9.5.4 Valutazione della Ridondanza Costo in Stadio

Dato l'elevato numero di accessi necessari per portare a termine l'operazione, anche in questo caso si decide di valutare l'inserimento di una ridondanza che possa diminuirne gli accessi. In particolare si è deciso di valutare la ridondanza CostoMateriali come attributo dell'entità Stadio. In questo modo, al termine di ogni inserimento in Pietra, Mattone, Piastrella, Intonaco o Altro, si aggiorna la ridondanza per poi effettuare meno accessi nel momento della chiamata all'operazione.

Come detto in precedenza, la Tavola dei Volumi si riferisce a 5 anni di attività della Base di Dati, occorre quindi stimare il numero dei nuovi inserimenti nelle entità sopra citate ogni anno. Questa stima può essere fatta dividendo la somma dei Volumi di Pietra, Mattone, Piastrella, Intonaco e Altro presenti nella Base di Dati per 5, ottenedo quindi 648 nuovi materiali all'anno.

Tavola degli Accessi con Ridondanza

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	$\operatorname{Dim}(\operatorname{Ris})$
1	Stadio	E	Lettura	Leggo l'attributo ri-	18	
				dondante		
2	Materiale	E	Lettura	Leggo la quantità dei	648	
				materiali acquistati		
3	Fornitura	R	Lettura	Leggo i lavori nei qua-	648	
				li ho utilizzato i mate-		
				riali		
4	Strutturazione	R	Lettura	Leggo gli stadi a cui	648	
				appartengono i lavori		
5	Stadio	Е	Lettura	Leggo attributo ridon-	648	
				dante		
6	Stadio	Е	Scrittura	Scrivo valore aggior-	2*648	
				nato		
		Totale degli a	iali	3.906		

9.6 Operazione 6 - nuovoOperaio

L'operazione ha lo scopo di inserire un Operaio all'interno della Base di Dati. L'operaio in questione dovrà rispecchiare un criterio fondamentale per il mantenimento della logica dell'applicativo, ovvero il fare capo ad un Capo Cantiere il cui numero di Operai supervisionati non superi il numero massimo di individui che quel particolare Capo Cantiere può supervisionare.

Considerata la Tavola dei Volumi relativa a 5 anni di utilizzo del database, possiamo stimare un numero di chiamate pari al rapporto tra il volume della tabella Operaio e il numero di anni presi in considerazione dalla Tavola dei Volumi.

Input	Output	Frequenza
Attributi di Operaio	Nessuno	Vol(Operaio) / 5 = 108 all'anno

9.6.1 Sezione di Diagramma Interessato

9.6.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni	
Capo Cantiere	Е	45	Ipotizzato	
Supervisione	R	540	Stesso volume di Operaio	
Operaio	Degraio E $12*45 = 540$		Ipotizzando in media 12 Operai per Capo	
			Cantiere	

9.6.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	Dim(Ris)
1	CapoCantiere	E	Lettura	Leggo OperaiMax	1	
2	Supervisione	R	Lettura	Conto le righe degli	Vol(Super.)*1 =	
				operai di quel capo	540	
3	Operaio	E	Scrittura	Inserisco la tupla	1	
	7	543				
	Totale degli accessi per 540 volte				540*108 = 8	58.320

9.7 Operazione 7 - valutaAlert

Dato un Alert, la funzione si occupa di trovare tutte le informazioni necessarie per sapere quale Parte l'ha generato. Una operazione del genere è fondamentale per garantire la sicurezza degli Edifici, in quanto in base alla tipologia di Alert potrebbero essere necessarie delle azioni di manutenzione straordinaria urgenti.

Una stima della pericolosità dell'Alert può essere data considerando il valore Soglia presente nel Sensore che ha generato quel particolare Alert e confrontandolo con il valore misurato nell'Alert.

Input	Output	Frequenza
Alert	CodEdificio, Piano, IDVano, NomeParte, Pericolosità (Float)	10 volte ogni 2 mesi

9.7.1 Sezione di Diagramma Interessato

9.7.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni
Alert	Е	0,3*1.131.500 =	Ipotizzando chen il 30% delle Misurazioni
		339.450	generino un Alert
Sensore	E	310	Ipotizzato
Monitoraggio	R	310	Stesso volume di Sensore

9.7.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	Dim(Ris)
1	Alert	E	Lettura	Leggo ValoreMisurato	1	
2	Sensore	E	Lettura	Leggo Soglia	1	
3	Monitoraggio	R	Lettura	Leggo codEdificio, ID-	1	
				Vano, Nome, Piano		
Totale degli accessi per 1 volta						3
Totale degli accessi per 10 volte				3*10 = 30		

9.8 Operazione 8 - materialiLavoro

Dato un Lavoro, l'operazione materiali Lavoro si prefissa l'obiettivo di trovare, all'interno del Lavoro identificato dal codice dato in input, i Materiali necessari per portarlo a termine.

È sensato pensare di eseguire questa operazione, per valutare i Materiali utilizzati per portarlo alla conclusione, una volta per ogni Lavoro concluso. Dunque, si calcola la frequenza come il volume della tabella Lavoro diviso per il numero di anni a cui fa riferimento la Tabella dei Volumi, considerando così una frequenza annua di 324 volte.

Input	Output	Frequenza		
CodLavoro	Costo (Float)	324 volte all'anno		

9.8.1 Sezione di Diagramma Interessato

9.8.2 Tavola dei Volumi Interessati

Concetto	Tipo	Volume	Considerazioni	
Lavoro	Е	0.5*3.240 =	Ipotizzando 2 Materiali per ogni Lavoro	
		1.620		
Fornitura	R	3.240	Stesso volume di Materiale	
Materiale	Е	3*1.080 = 3.240	Ipotizzando che una Parte sia composta	
			mediamente da 3 materiali	
Mattone	Е	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano	
			Mattone	
Piastrella	Е	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano	
			Piastrella	
Pietra	Е	0.2*1.080 = 216	Ipotizzando che il 20% dei Materiali siano	
			Pietra	
Intonaco	Е	0.3*1.080 = 324	Ipotizzando che il 30% dei Materiali siano	
			Intonaco	
Altro	Е	0.1*1.080 = 108	Ipotizzando che il 10% dei Materiali siano	
			Altro	

9.8.3 Tavola degli Accessi

id	Concetto	Costrutto	Tipo	Considerazioni	Accessi	$\operatorname{Dim}(\operatorname{Ris})$
1	Fornitura	R	Lettura	Leggo i Materiali rela-	Vol(Fornitura)	2
				tivi al Lavoro	= 3.240	
2	Materiale	E	Lettura	Leggo Quantita	2	
3	Materiale_i	Е	Lettura	Leggo le informazioni	2	
				del Materiale		
Totale degli accessi per 1 volta				3.2	244	
	Totale degli accessi per 324 volte			3.244*324 = 1.051.056		

Parte IV Modello Logico

10. Descrizione Schema Logico

Per semplicità notazionale, viene riportato il tipo degli attributi subito sopra al nome dell'attributo stesso.

In questa notazione: vc(i) rappresenta il tipo VARCHAR(i), c(i) rappresenta il tipo CHAR(i), ts rappresenta il tipo TIMESTAMP, e int e float rappresentano rispettivamente i tipi INT e FLOAT.

```
\begin{array}{c} vc(100) & float & date \\ Rischio(Area Geografica, Tipo, Data, Coefficiente) \end{array}
                                                                 vc(100)
AreaGeografica(\underline{Nome})
                                                                                                               vc(100)
                                                                                                                                                                     date
Eventualita(Edificio, AreaGeografica, Data, TipoCalamita, Gravita)
 \begin{aligned} & \text{Edificio}(CodEdificio, \underbrace{tinyint}_{tinyint}, \underbrace{AreaGeografica}_{vc(100)}, \underbrace{Longitudine}_{float}, \underbrace{Latitudine}_{long)} \end{aligned} 
                                                                                                                                          int
Funzione(NomeFunz, IDVano, Piano, Edificio)
\operatorname{Pianta}(Piano,\,Edificio,\,NLati)
Punto
Accesso
Interno<br/>(\underline{IDPunto} Accesso, Tipo,\ Larghezza,\ Altezza)
{\rm PuntoAccessoEsterno}(\underbrace{IDPuntoAccesso}_{(1)},\underbrace{Larghezza}_{(2)},\underbrace{Altezza}_{(2)},\underbrace{Orientamento}_{(2)},\underbrace{Vc(45)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{Int}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5)}_{(2)},\underbrace{C(5
\operatorname*{Finestra}(\underbrace{IDFinestra}^{c(5)},IDVano,\,Piano,\,Edificio,\,Larghezza,\,Altezza,\,Orientamento)
Alert(Timestamp, IDSensore, ValoreMisurato)
Posizione (Timestamp, IDSensore, Larghezza)
```

 ${\it Temperatura}(Timestamp,\ IDSensore,\ TemperaturaRilevata)$ ${\footnotesize \begin{array}{c} {}^{ts} \\ {\footnotesize Pluviometro}(Timestamp,\,IDSensore,\,Precipitazione) \end{array}}$ Giroscopio($Timestamp,\ IDSensore,\ Wx,\ Wy,\ Wz$) Edificio) vc(100)floatfloattinyintfloat $Pietra(CodLotto, NomeFornitore, SuperficieMedia, PesoMedia, Decorativa, Costo_kg, Disposizione, Tipo)$ TipoAlveolatura) vc(100)vc(100)vc(100)floatint $Piastrella(CodLotto, NomeFornitore, TipoDisegno, Costo_mq, Costituente, NumLati, LungLato, Fuga, Adesivo)$ $\label{eq:constable} \begin{aligned} & \operatorname{Responsabile}(\overset{c(5)}{\underline{CFisc}},\overset{float}{Costo}) \end{aligned}$ Controllo(CodLavoro, CapoCantiere) $\textbf{CapoCantiere}(\underbrace{CFisc}^{c(16)}, \underbrace{Manodopera}^{float}, \underbrace{OperaiMax}^{int})$ $\begin{array}{ccc} c(16) & float & c(16) & float \\ \text{Operaio}(\underbrace{CFisc}, Manodopera, CapoCantiere, BustaPaga) \end{array}$ $\begin{array}{c} \textit{date} & \textit{c(5)} \\ \textit{Stadio}(DataInizio, CodProgetto, StimaDataFine, DataFineEffettiva, Costo) \end{array}$ ${{\rm Progetto}}(CodProgetto,\,Ristrutturazione,\,DataPresentazione,\,DataApprovazione,\,DataInizio,\,StimaDataFine,\,DataPresentazio$ tinyintCodEdificio $\text{LavoriTurno}(OraInizio, \overset{int}{Data}, \overset{date}{CFiscLavoratore}, \overset{vc(10)}{Orario}, \overset{int}{NumeroOre}, \overset{c(5)}{CodLavoro}, \overset{c(16)}{Capo})$ c(5)vc(10)

11. Analisi delle Dipendenze Funzionali e Normalizzazione

Per tutte le tabelle descritte sopra, ad eccezione di Edificio, Sensore e Stadio, la chiave è unica e non ci sono dipendenze funzionali non banali. Esse sono quindi in BCNF.

11.1 Tabella Edificio

Nella tabella Edificio sono presenti le seguenti dipendenze funzionali:

- CodEdificio → Intera Tupla
 Banale poichè ho la chiave primaria a sinistra.
- Latitudine, Longitudine → Intera Tupla
 L'implicante costituisce un'altra chiave di Edificio, dato che in un determinato punto della
 Terra descritto dalle due coordinate posso costruire un solo edificio.

Quindi, visto che per tutte le dipendenze non banali l'implicante è una chiave, Edificio è in BCNF.

11.2 Tabella Sensore

Nella tabella Sensore sono presenti le seguenti dipendenze funzionali:

- $IDSensore \rightarrow Intera\ Tupla$ Banale poiché ho la chiave primaria a sinistra
- Parte, Piano, Vano, Edificio, XPos, YPos → Intera Tupla
 L'implicante costituisce un'altra chiave di Sensore, dato che in un determinato punto (XPos, YPos)
 di una parte di un edificio, può essere posizionato un solo sensore.

Quindi, visto che per tutte le dipendenze non banali l'implicante è una chiave, Sensore è in BCNF.

11.3 Tabella Stadio

Nella tabella Stadio sono presenti le seguenti dipendenze funzionali:

- CodProgetto, $DataInizio \rightarrow Intera\ Tupla$ Banale poichè ho la chiave primaria a sinistra.
- CodProgetto, StimaDataFine → Intera Tupla L'implicante costituisce un'altra chiave di Stadio, dato che, vista la sequenzialità degli stadi dei progetti, preso un Progetto, per una StimaDataFine potrò avere un solo Stadio corrispondente.

Quindi, visto che per tutte le dipendenze non banali l'implicante è una chiave, Stadio è in BCNF.

12. Vincoli di Integrità

12.1 Vincoli di Integrità Referenziale

Sono presenti tutti i vincoli di integrità referenziale generati dalla traduzione dello schema ER. Inoltre, sono stati implementati i seguenti vincoli:

- L'attributo Capo in LavoriTurno non può contenere valori non presenti in CFisc di Capo
- L'attributo Cod Edificio in Progetto non può contenere valori non presenti in Cod Edificio
- L'attributo CFisc in Turno non può contenere valori non presenti in CFisc di CapoCantiere e Operaio

12.2 Vincoli di Integrità Generici

- Un Operaio non può avere un Capo diverso dal suo
- Un Punto d'Accesso Interno collega 2 vani
- L'Edificio in Materiale deve corrispondere all'Edificio del Lavoro
- Un lavoratore non può svolgere contemporaneamente più lavori

12.3 Vincoli di Tupla

- L'attributo Tipo in Calamita deve essere una stringa "Sismico" o "Idrogeologico"
- L'attributo Gravita in Eventualita deve essere un intero compreso fra 0 e 100
- L'attributo Orientamento in Finestra deve essere una stringa fra le seguenti: "Nord", "Sud", "Est", "Ovest", "NordEst", "NordOvest", "SudEst", "SudOvest"
- L'attributo Orientamento in PA_Esterno deve essere una stringa fra le seguenti: "Nord", "Sud", "Est", "Ovest", "NordEst", "NordOvest", "SudEst", "SudOvest"
- L'attributo Tipologia in Sensore deve essere una stringa fra le seguenti: "Giroscopio", "Temperatura", "Posizione", "Pluviometro", "Accelerometro"
- L'attributo Tipo in Materiale deve essere una stringa fra le seguenti: "Pietra", "Intonaco", "Altro", "Piastrella", "Mattone"
- L'attributo Orario in Turno deve essere una stringa fra le seguenti: "Mattutino", "Pomeridiano"
- L'attributo OraInizio in LavoriTurno deve essere compreso tra 7 e 18

- Le Date in Progetto devono essere coerenti temporalmente
- $\bullet\,$ In Edificio, l'attributo Latitudine è compreso fra -90 e 90, e l'attributo Longitudine tra -180 e 180
- In Calamita, l'attributo Lat Epicentro è compreso fra -90 e 90, e l'attributo Long Epicentro tra -180 e 180

13. Implementazione funzioni Analytics

13.1 consigliIntervento

I consigli di intervento assegnati quando si chiama consigliIntervento dipendono dai rischi nella seguente logica.

Consideriamo gli ultimi alert generati dai sensori dellàedificio in questione. Questi alert avranno sicuramente un valore anomalo, altrimenti non sarebbero stati generati, e quindi presentano un piccolo contributo che fa peggiorare logicamente l'intera valutazione dei consigli.

Di ogni alert così trovato, posso rendermi conto di quanto grava sulla valutazione dell'intervento constatando quanto si è scostato in percentuale dalla soglia.

Una volta assegnato lo scostamento percentuale ad ogni alert, questo valore verrà ulteriormente incrementato, e quindi aggravato, da un contributo dato dal valore stesso moltiplicato per l'attuale coefficiente di rischio presente nell'area geografica in cui è situato l'edificio.

Considerato quindi questo ultimo dato, viene fatta una stima dipendente anche dal numero di piani che l'edificio presenta, e dal piano in cui il sensore che ha generato quell'alert è posizionato.

In questi termini viene fatta una valutazione composta dal genere di intervento che si deve fare e dal numero di giorni entro il quale dovrebbe essere effettuato l'intervento.

Per quanto riguarda il genere di intervento, ovviamente dipende da quale tipo di sensore stiamo considerando. Nel caso in cui un giroscopio oppure un accelerometro non sia situato all'ultimo piano dell'edificio, verrà consigliato un rifacimento di solaio al piano. D'altra parte, se proviene da un accelerometro oppure da un giroscopio, e però il sensore è posizionato all'ultimo piano, verrà consigliato un rifacimento della copertura. Nel caso in cui invece il sensore che ha generato quell'alert sia di posizione, occorre ovviamente risanare la parte, e questo in effetti viene consigliato.

Invece per quanto riguarda i giorni consigliati entro il quale il problema dovrebbe essere risolto, vengono stimati tramite il valore calcolato in precedenza. Assumendo che sia un valore compreso fra 0 e 100, il range compreso tra 1 e 20 consiglierà un tempo di intervento di 60 giorni, e così via fino al tempo di intervento consigliato immediato.

13.2 stimaDanni

La stima dei danni viene assegnata tramite la definizione di *stato* dell'edificio. Occorre quindi dare una definizione di tale oggetto.

$$stato = \sum_{i=1}^{3} \left[\sum_{j=0}^{n} \left((s_{s_j} - m_{s_j}) \frac{1}{t_j} \right) \right] p_i$$

con s_{s_j} soglia del sensore j-esimo, m_{s_j} misurazione del sensore j-esimo, t_j distanza di mesi dalla chiamata della funzione alla misurazione del j-esimo valore, p_i coefficiente che dipende dal tipo di sensore, n numero di misurazioni dei sensori.

La sommatoria interna si occupa di sommare ogni singolo scostamento delle misurazioni, in modo inversamente proporzionale al tempo, in mesi, in cui la misurazione è stata fatta. Questo perchè voglio dare maggiore peso alle misurazioni effettuate di recente, invece di quelle più lontane nel tempo. Inoltre, il valore così ottenuto viene moltiplicato per un coefficiente che dipende dal tipo

di sensore che ha effettuato la misurazione. Questo perchè stiamo considerando la stima dei danni per un evento calamitoso sismico, e quindi i sensori piu influenti sono gli accelerometri e i giroscopi, invece dei sensori di posizione. Si e' deciso quindi di attribuire un valore di 0.2 ai sensori di posizione, e 0.4 ai giroscopi e agli accelerometri.

La sommatoria più esterna invece si occupa di sommare tutti questi contributi, ottenendo quindi un valore sempre più grande quanto più le misurazioni sono vicine temporalmente e scostate dalla soglia.

Una volta definito e calcolato lo stato di un edificio, occorre stimare i danni che un ipotetico evento sismico instaurerebbe nell'edificio stesso. Questo è possibile grazie alla gravità dell'ipotetico evento calamitoso. Innanzitutto dobbiamo osservare che lo stato di un edificio è un numero con la virgole, e positivo nel caso in cui i sensori si scostino molto dalla soglia. Osserviamo anche che la gravità di una calamità è un numero compreso fra 0 e 10.

Si considerano infine le seguenti ipotesi: nel caso in cui lo stato sia positivo e la gravità bassa (ovvero compresa fra 0 e 5), l'edificio probabilmente non subirà danni. Altrimenti, se lo stato risulta sempre positivo ma la gravità è alta (ovvero compresa fra 5 e 10), significa che l'edificio si trova in buono stato ma anche che la gravità è considerevole, quindi verrà previsto un quantitativo di danni lievi. Altrimenti, se l'edificio ha uno stato negativo, e quindi non si trova in salute, e la gravità è bassa, comunque le condizioni dell'edificio non permetterebbero la sopportazione dell'evento sismico, e riporterebbe danni moderati. Infine, nel caso peggiore, ovvero il caso in cui lo stato sia negativo e la gravità alta, l'edificio potrebbe avere dei danni ingenti.