Classification of neuronal tree. Branching Neuronal Morphologies

(traditional) Distance between trans: all distance, sequence represention functional distortions distance. blastneuron distance

Topological Morphology Descriptor. ABTMD. > Barcade dear (not stable) >PD (botheneck distance)

Saussian Kornel. image (a matrix of pixel values) -> Machine learning CNN ... SVM. RF

dear: For each Barcode, we generate a density profile | | Barcode TMD(T.f) - Borcode TMD(TI,f) | dx = dfar follow: YER, to value of the histogram

> algorithm. Note that a component may die before it is born. T: tree R: root N: nodes set B: set of branch points L: set of leaves. (N= BUL)

f: a real-valued function. N->R

for each nen, In denote the subtree with root at the node n radial distance, path distance, branch length, branch order

In denote the set of leaves of Tr.

for 11f-91100) [stable *

death time

brith time

brith time

death time

Let v(n) = mox { fox | x 6 L n}

TMD algorithm.

TMD (T,f): empty seek list to outnin pairs of real numbers. $A \leftarrow L$. $\triangleright A$: set of active node.

for every LEL

While REA

for lin A

7: parent of 1 C: oblidion of 7 if HARC, NEA

 C_m : randomly choose one of $\{C \mid v(c) = mox_c \cdot (v(c'))\}$

Add. 1 to A

Remove c; from A

Add (vico, fip) to TMD (T, f)

V(p) ← V(Cm)

Add (V(R), f(R)) to TMD(T,f)

Return TMD(T,f).

& Bottleneck distance. do (PD, PD')

matching between two persistence diagram PD and PD' is a bijection μ between PDUD and PO'UD.

μ: PDUD-> PD'UD (there exists)

D: {(x,x)(x>0} with infinite multiplicity.

stability of TMD. O(E) for botheneck distance stability. $W_{\infty}(X,Y) \le \|f-g\|_{\infty}$ $X= dgm_{P}(f)$, $Y= dgm_{P}(g)$ Y?

2

Persistence Image.

Let & be a PD. in bith-death coordinates

& T:R->R 7(B) be the multiset in bith-persistence

(nj) -> (x, y-x)

Let $\phi_u: \mathbb{R}^2 \to \mathbb{R}$ differentiable probability distribution. mean $u = (u_x, u_y) \in \mathbb{R}^2$ We choose this distribution to be the normal symmetric Gaussian $\phi_u = g_u$ mean: u_v variance: σ^*

 $g_{u(x,y)} = \frac{1}{2\pi 0^{2}} e^{-[(x-u_{x})^{2} + (y-u_{y})^{2}]/2\sigma^{2}}$

Let $f: \mathbb{R}^2 \to \mathbb{R}$ is nonnegative weighting function. that said f(x,s)=0 (when persistence is zero) and f is placewise differentiable, and continuous.

Def. For f, o PD, the som corresponding persistence surface $f_{\mathfrak{b}}: \mathcal{R}^2 \longrightarrow \mathcal{R}$ is the function.

 $\rho_{\theta}(z) = \sum_{\mathbf{u} \in \mathsf{T}(\theta)} f(\mathbf{u}) \phi_{\mathbf{u}}(z)$

the called persistence surface.

Perf. 2. For B. a PD, its persistence image is the collection pixels $L(f_b)_{t} = \iint_{P} f_b \, dy dy$.

PD probability PS grid. PI

a singular vector representing all homological dimensions

stability.

P-Massestein distance is governilization of bothereck distance

Why (B, B) = inf (\(\Sigma\) | | u - \(\forall u) | | \(\forall p\) \forall

Y:B>B' u \(\text{u} \) | | u - \(\forall u) | | \(\forall p\) \forall

For h: R=>R differentiable, let 17h1= sup 1/7h(2)1/2 sept

That I let A is maximum area of any pixel in the image, A is the Westerl area of the image, I is the Westerl area of the image, I is the white number of pixel of the image.

Then:

A is $|II(P_{b})-I(P_{b'})||_{1} \leq I_{10} A' (||f||_{\infty}|\nabla \phi|+||\phi||_{\infty}|\nabla f|) W_{1}(b,b')$ (iii) $||II(P_{b})-I(P_{b'})||_{1} \leq I_{10} A' (||f||_{\infty}|\nabla \phi|+||\phi||_{\infty}|\nabla f|) W_{1}(b,b')$

Thm 2. The persistence image $L(\beta)$ with Gaussian distribution (i) $\|L(\beta)-L(\beta)\|_{1} \leqslant \|F|\nabla f\|_{1} + \|\frac{1}{2}\|\frac{1}{2}\|_{2} \le \|W_{1}(B,B')\|_{2} \leqslant \|F|\nabla f\|_{1} + \|\frac{1}{2}\|\frac{1}{2}\|\frac{1}{2}\|_{2} \le \|W_{1}(B,B')\|_{2} \leqslant \|F|\nabla f\|_{1} + \|\frac{1}{2}\|\frac{1}{2}\|\frac{1}{2}\|_{2} \le \|W_{1}(B,B')\|_{2} \leqslant \|F|\nabla f\|_{1} + \|\frac{1}{2}\|\frac{1}{2}\|\frac{1}{2}\|^{2} \le \|W_{1}(B,B')\|_{2} \leqslant \|F|\nabla f\|_{1} + \|\frac{1}{2}\|\frac{1}{2}\|\frac{1}{2}\|^{2} \le \|W_{1}(B,B')\|_{2} \leqslant \|F|\nabla f\|_{1} + \|\frac{1}{2}\|\frac{1}{2}\|\frac{1}{2}\|^{2} \le \|F|\nabla f\|_{2} + \|F|\nabla f\|_{2}$