Diffusitivity of deformable cells

Master's thesis

to obtain the second degree

 $Master\ of\ Science\ (M.Sc.)$

written by

TIM VOGEL

(born on June 9, 2002 in FINSTERWALDE)

Day of submission: December 12, 2024

Supervised by Jun.-Prof. Dr. Markus Schmidtchen (Institute of Scientific Computing)

Contents

1 Introduction

I will cite [?] for sure.

2 Cell model

- * introduce the Discrete cell form (DCF)
- can i just reference my bachelor thesis or how should i do that?

2.1 Discrete cell form

* the discrete cell form consists of a list that holds all wall points in consecutive order

2.2 Cell dynamics

- * area force
- * edge force
- * interior angle force
- * overlap force

2.3 Numerical solver

* Differential Equations.jl solver * solve(prob_cell1, EM(), dt = timeStepSize) * - > EulerMaruyamamethodwithfixedtimestepsize

3 Sanity check

* After introducing cell model and dynamics, we want to check whether it shows the same dynamics as the billiard model from [?] when setting the parameters such that the cells should have the same characteristics.

References

[Bruna and Chapman, 2012] Bruna, M. and Chapman, S. J. (2012). Excluded-volume effects in the diffusion of hard spheres. *Phys. Rev. E*, 85:011103.

Statement of authorship

I hereby declare that I have written this thesis (*Diffusitivity of deformable cells*) under the supervision of Jun.-Prof. Dr. Markus Schmidtchen independently and have listed all used sources and aids. I am submitting this thesis for the first time as part of an examination. I understand that attempted deceit will result in the failing grade "not sufficient" (5.0).

Tim Vogel

Dresden, December 12, 2024 Technische Universität Dresden Matriculation Number: 4930487