Rotacion de un vector θ grados en sentido antihorario.

José Juan Suárez Elizalde

Junio 2020

ABSTRACT. Probaremos que: $f(\overrightarrow{v}, \theta) = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)$, donde \overrightarrow{v} es un vector arbitrario tal que $\overrightarrow{v} \in \mathbb{R}2$ y θ es los grados que se desea rotar a \overrightarrow{v} de su dirección inicial de λ grados en sentido contrario a las manecillas del reloj. La función nos da el vector resultante en coordenadas rectangulares.

Analicemos:

Fig. 1

Tomemos al vector \overrightarrow{v} como el vector \overrightarrow{AC} representado en Fig.~1, el vector resultante (el cual a partir de ahora llamaremos \overrightarrow{r} y es representado en Fig. 1 como \overrightarrow{AB} tiene que cumplir que $\|\overrightarrow{r}\| = \|\overrightarrow{v}\|$, puesto que lo unico que queremos hacer es cambiar su dirección, no su norma.

Si tenemos que \overrightarrow{v} tiene un angulo λ con respecto al eje de las abscisas y queremos añadir θ grados a este, entonces si el angulo de \overrightarrow{r} es ω , tenemos que:

$$\omega = \lambda + \theta \tag{1}$$

Podemos observar que al cambiar el angulo de nuestro vector, algo mas cambia, ya vimos que la magnitud del vector no, pero si tomamos el sistema de coordenadas que representa a nuestro vector como el sistema rectangular, entonces podemos ver dos parametros representandolo, estos a su vez pueden ser vistos como catetos y la magnitud de nuestro vector seria la hipotenusa, de esta forma transformamos nuestro vector a un triangulo rectangulo.

Con esta perspectiva nos damos cuenta que queremos transformar un triangulo rectangulo en otro, pero con el angulo entre el cateto ady-

acente y la hipotenusa modificado con las restricciones ya anteriormente mencionadas, ademas tambien podemos observar que si encontramos el tamaño de los catetos del triangulo resultante, podremos expresar el vector resultante y el problema estaría resuelto.

En Fig. 2 tenemos que los catetos del vector original \overrightarrow{v} , son \overrightarrow{HC} que representaria a y y \overrightarrow{AH} que representaria a x, tal que $\overrightarrow{v} = (x, y)$, queremos encontrar \overrightarrow{r} que es igual a (x', y'), punto que no conocemos.

Usemos identidades trigonometricas conocidas para despejar el valor de x' y y'.

$$\sin(\omega) = \frac{y'}{\|\overrightarrow{r}\|} \tag{2}$$

Por (1) tenemos que (2) es:

$$\sin(\lambda + \theta) = \frac{y'}{\|\overrightarrow{r}\|} \tag{3}$$

Con base al mismo razonamiento tenemos que:

$$\cos(\lambda + \theta) = \frac{x'}{\|\overrightarrow{r}\|} \tag{4}$$

Podemos usar las siguientes entidades trigonometricas:

$$\sin(\lambda + \theta) = \sin \lambda \cos \theta + \cos \lambda \sin \theta \tag{1}$$

$$\cos(\lambda + \theta) = \cos \lambda \cos \theta + \sin \lambda \sin \theta \tag{2}$$

Sustituyendo las identidades en (3) y (4) tenemos:

$$\frac{y'}{\|\overrightarrow{r'}\|} = \sin \lambda \cos \theta + \cos \lambda \sin \theta \tag{5}$$

$$\frac{x'}{\|\overrightarrow{r'}\|} = \cos \lambda \cos \theta + \sin \lambda \sin \theta \tag{6}$$

Pasa que al tener (x,y), podemos encontrar el valor numerico de las funciones trigonometricas en función de λ . Las funciones que podemos sustituir en (5) y (6), serian (cos) y (sen). Encontremoslas:

$$\cos(\lambda) = \frac{x}{\|\overrightarrow{v}\|} \tag{7}$$

$$\sin(\lambda) = \frac{y}{\|\overrightarrow{v}\|} \tag{8}$$

Sustituyamos (7) y (8) en (5) y (6).

$$\frac{y'}{\|\overrightarrow{r'}\|} = \frac{y}{\|\overrightarrow{v}\|} \cos \theta + \frac{x}{\|\overrightarrow{v}\|} \sin \theta \tag{9}$$

$$\frac{x'}{\|\overrightarrow{r}\|} = \frac{x}{\|\overrightarrow{v}\|} \cos \theta + \frac{y}{\|\overrightarrow{v}\|} \sin \theta \tag{10}$$

Pasamos $\|\overrightarrow{r}\|$ multiplicando en ambas ecuaciones y cancelamos los $\|\overrightarrow{v}\|$, puesto que $\|\overrightarrow{r}\| = \|\overrightarrow{v}\|$. Por tanto:

$$y' = y\cos\theta + x\sin\theta\tag{11}$$

$$x' = x\cos\theta + y\sin\theta \tag{12}$$

Sí $\overrightarrow{r} = (x', y')$ entonces sustituimos (11) y (12), por lo que tenemos:

$$\overrightarrow{r} = (x\cos\theta + y\sin\theta, y\cos\theta + x\sin\theta) \tag{13}$$