Linear Programming

Class 5: The simplex method, part 2 Dr Thomas Lidbetter tlidbetter@business.rutgers.edu

Class outline

- Finding an intial basic feasible solution:
 - Two-phase method
 - Big-M method
- Infeasibility
- Unboundedness
- Degeneracy
- Pivoting rules
- Number of pivots

Two-phase method

- Include one new (artificial) variable $x_i' \ge 0$ per constraint i of the original LP, adding if $b_i \ge 0$ and subtracting if $b_i < 0$.
- For this new system, $\mathbf{x} = (|b_1|, ..., |b_m|)^T$ is feasible.
- Use new objective, $\sum_i x_i'$.
- If the optimal solution is $\mathbf{x} = \mathbf{x}_0$, $\mathbf{x}' = \mathbf{0}$ then $\mathbf{x} = \mathbf{x}_0$ is a bfs to the original LP, otherwise the original LP is infeasible.

Two-phase method

Summary

Original LP: min $\mathbf{c}^T \mathbf{x}$ s.t. $A\mathbf{x} = \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$

Phase 1: solve min $\mathbf{1}^T \mathbf{x}'$ s.t. $A\mathbf{x} \pm \mathbf{x}' = \mathbf{b}$, $\mathbf{x}, \mathbf{x}' \geq \mathbf{0}$

Phase 2: if solution is $\mathbf{x} = \mathbf{x}_0$, $\mathbf{x}' = \mathbf{0}$ then solve original LP starting with bfs $\mathbf{x} = \mathbf{x}_0$.

Example 2

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 & -1 \end{pmatrix},$$

$$\boldsymbol{b} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \qquad \boldsymbol{c} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ -1 \\ -5 \end{pmatrix}$$

Big-M method

- Include an artificial variable $x_i' \ge 0$ for each constraint i as in the two-phase method
- Add (or subtract) x_i' to constraint i if b_i is positive (or negative, resp.)
- Solve new LP: $\min \mathbf{c}^T \mathbf{x} + M \mathbf{1}^T \mathbf{x}'$ s.t. $A\mathbf{x} \pm \mathbf{x}' = \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$ where M is a large positive number
- Initial bfs is $\mathbf{x}' = (|b_1|, \dots, |b_m|)^T$
- As long as M is large enough, no x_i' variable will be in basis of the solution

Example 3

Minimize
$$-x_1 - 3x_2 + x_3$$

s.t $x_1 + x_2 + 2x_3 \le 4$
 $-x_1 + x_3 \ge 4$
 $x_3 \ge 3$
 $x_1, x_2, x_3 \ge 0$

How big should *M* be?

- *M* should be large enough that there is some bfs with $\mathbf{x}' = \mathbf{0}$ that has a strictly smaller objective than all bfs's with $\mathbf{x}' \neq \mathbf{0}$.
- To choose *M*, we cannot only look at the coefficients of the objective function. Eg.

Minimize
$$x_1$$

s.t $\varepsilon x_1 - x_2 \ge \varepsilon$
 $x_1, x_2 \ge 0$

where ε is small and positive.

Infeasibility

• A linear program may be in feasible. Eg.

Minimize
$$2x_1 - 3x_2$$

s.t $x_1 + x_2 = -1$
 $x_1, x_2 \ge 0$

Infeasibility is detected in Phase 1 of the two-phase method (or after finding a solution with x' ≠ 0 when using the Big-M method)

Unbounded problems

 Some LPs may be unbounded, i.e. the objective function can be made arbitrarily small. Eg.

Minimize
$$-x_1$$

s.t $x_1 - x_2 = 2$
 $x_1, x_2 \ge 0$

· We can detect unboundedness from the tableau,

Degeneracy

Some basic variables may be equal to o. Eg.

Definition: If a bfs solution \mathbf{x}_B contains some zero coordinate $(\mathbf{x}_B)_i = 0$ then we say it is *degenerate*.

• If we have a degenerate bfs, we will make zero progress by removing them from the basis.

Cycling

- If we're not careful, we may go from one degenerate solution to another and end up at the original bfs.
- To avoid this, we can use *Bland's pivoting rule:*
- 1. If $(\mathbf{s}_N)_i < 0$ for several i's (where $\mathbf{s}_N = \mathbf{c}_N^T \mathbf{c}_N^T B^{-1} N$), choose the one with the smallest i (leftmost in the tableau).
- 2. If in the chosen column i there are several indices j that minimize $\frac{(\mathbf{x}_B)_j}{T_{ij}}$ choose the smallest such j (highest in the tableau).

Cycling

Example:

	X1	x2	x 3	x 4	x 5	x6	b	
6	-6	0	2	1	0	1	2	6 / 6
Divot	6	1	-12	0	0	0	12	6/12 = 4/8
pivot on this one	4	Ο	1	0	1	-1	8	
This one	-2)	0	-4	0	0	1	6	
(highest)					,			sis (furthest left)
9 30/	bri	ra	X	,	int	0 E		sis Curtlanch
	O			(The source of
								(aC+)
								ust)

Number of pivots

The number of pivots can be very large.

Example 4 (Klee-Minty polytope):

Max
$$2^{n-1}x_1 + 2^{n-2}x_2 + \dots + 2x_{n-1} + x_n$$

s.t $x_1 \leq 5$
 $4x_1 + x_2 \leq 25$
 $8x_1 + 4x_2 + x_3 \leq 125$
 \vdots
 $2^n x_1 + 2^{n-1} x_2 + \dots + 4x_{n-1} + x_n \leq 5^n$
 $x > 0$

This LP has 2^n extreme points and starting at $\mathbf{x} = 0$, the simplex algorithm goes through all of them before reaching the optimal solution $(0,0,...,5^n)$.

Number of pivots

Open problem: find a pivoting rule that guarantees that the number of pivots required will be a polynomial function of n and m.