Project 4: Analytics of Open University Code_presentation VARCHAR(45) Sum click INT Code_presentation VARCHAR(45) Code_p

Group 6: Hail Nijo, Tyson Horeswell, Patric Beaven, Vijay Mani

About Dataset

- Dataset contains 7 csv's which shows data about students, courses and their usage of the Virtual Learning Environment(VLE)
- Contains data from Student intake periods February and October in the years 2013 and 2014.
- Has data for 32,593 instances of students joining a course. 27,295 being completely unique students
- Data Source: Kaggle

Title: Open University Learning Analytics

URL: https://www.kaggle.com/datasets/mexwell/open-university-learning-analytics/data

Technologies Used in the Project

- SQLite Portable database allowing everyone to use the same database small and fast
- Jupyter Notebooks Easy to code, test and iterate
- SQLAlchemy Connect to SQLite to create and query the database
- Pandas and Matplotlib Analysis and Visualization
- SkLearn and Tensorflow Machine learning

General Overview (Geographic)

- Region with the most students was Scotland.
- Ireland had the least.

General Overview (Students)

- When you count Withdrawn as a Fail and Distinction as a Pass, There is more fails than passes.
- Very High Withdrawal rate

- Slightly more Male (54.8%) than Female (45.2%) students
- 0-35 represent the overwhelming majority of students.

Questions Asked

Which students are most likely to drop out of their course before it completes?

Does IMD_BAND affect student success?

What is the effect of Student Interaction vs their final score?

Which students are most likely to drop out of their course before it completes?

Jupyter notebook flow:

- SQLITE created from CSVs sourced from Kaggle.
- Explore, cleaning and merging datasets.
- Creating Bins.
- Create training and testing dataframes.
- Logistic regression method used for prediction

Which students are most likely to drop out of their course before it completes?

Disability has the highest positive correlation, that means that when the student has a disability, increases the probability to drop out from the course. Assessment score has the highest negative correlation, which means that when Assessment score increases then probability to drop out of the course decreases.

Accuracy score - 81.5

	Feature	Correlation
7	disability	1.069622
1	region	0.554217
8	final_result	0.220115
4	age_band	0.011615
2	highest_education	0.006146
5	num_of_prev_attempts	-0.055242
3	imd_band	-0.058045
6	studied_credits	-0.208220
0	gender	-0.283133
10	total_clicks	-0.733081
11	registration	-0.841382
9	assessment_score	-4.368085

Does IMD_BAND affect student success?

Target = Final Result (Pass or Fail)

Model	IMD_Band	Demographics	30 Days Interaction, Assessment, Date Registration	60 Days Interaction, Assessment, Date Registration	90 Days Interaction, Assessment, Date Registration	All Days Interaction, Assessment, Date Registration
Logistic Regression		61%	64%	69%	70%	74%
Decision Tree XGBoost		56%	76%	78%	78%	82%
Random Forest		57%	78%	79%	80%	85%
Neural Network		59%	68%	69%	69%	71%

Does IMD_BAND affect student success?

First looked at imd band as only feature and if we could predict the students final result

Then looked at student demographics as features to predict final result

Finally, included assessment score and course interaction with student demographics to predict accurate final result

Confusion Matrix

	Predicted 0	Predicted 1	
Actual 0	3089	716	
Actual 1	537	3805	

Accuracy Score: 0.8462010556032895

Classification Report

	precision	recall	f1-score	support
0	0.85	0.81	0.83	3805
1	0.84	0.88	0.86	4342
accuracy			0.85	8147
macro avg	0.85	0.84	0.85	8147
weighted avg	0.85	0.85	0.85	8147

Out[45]:

<Axes: title={'center': 'Features Importances'}, ylabel='1'>

What is the effect of Student Interaction vs their final score?

Wanted to find out if the students' interaction, not their results, would predict their final score.

The following columns where used:

- Code_module (unique 7)
- Code_presentation (unique 4)
- Date_submitted (all values)
- Date (all values)
- ID_site (all values)
- Activity_type (unique 10)
- Registration (binned to 3)
- Total_clicks (binned to 6)
- Final result (binned to 2)

What is the effect of Student Interaction vs their final score?

Pass	150
Fail	77
Distinction	25

Withdrawn	2337
Fail	998
Pass	1

What is the effect of Student Interaction vs their final score?

I ran through a number of models to find the best model for the dataset the best 3 being:

- Decision Tree
- Random Forest
- KNN

However the following got over the threshold:

- Naive Bayes
- Logic Regression

	Model	Score
0	Decision Tree	93.10
1	Random Forest	93.09
2	KNN	87.03
3	Naive Bayes	76.47
4	Logistic Regression	75.06
5	Linear SVC	74.78
6	Support Vector Machines	73.64
7	Stochastic Gradient Decent	73.64

Limitations and Challenges of Dataset & Analysis

Data

- The age of the data is 10 years old 2013-2014 would be better to have more recent data
- The amount of data is only 7 courses over 4 presentations (sessions)
- There are only 27,295 students there would have been many more
- A limited amount of demographic information
- The size of the dataset was about 500 MB larger than github allows

Analysis

- We only had 2 weeks to analyse the data
- Some of the lexicon are harder to understand, or different from Australia, such as education levels

References

Kuzilek J., Hlosta M., Zdrahal Z. Open University Learning Analytics dataset Sci. Data 4:170171 doi: 10.1038/sdata.2017.171 (2017).