- 1. Changed column types manually to avoid errors:
 - Date >> Date
 - Ridership >> whole number
 - Percentage columns >> Decimal number
- 2. Converting percentage values from 0-100 scale to 0-1 scale:

```
M Code
// Converting percentage columns to numbers first
    #"Changed Type" = Table.TransformColumns(#"Promoted Headers",
       {
            {"Subways: % of Comparable Pre-Pandemic Day", each Number.FromText(_), type number},
            {"Buses: % of Comparable Pre-Pandemic Day", each Number.FromText(_), type number},
            {"LIRR: % of Comparable Pre-Pandemic Day", each Number.FromText(_), type number},
            {"Metro-North: % of Comparable Pre-Pandemic Day", each Number.FromText(_), type number},
            {"Access-A-Ride: % of Comparable Pre-Pandemic Day", each Number.FromText(_), type
number},
            {"Bridges and Tunnels: % of Comparable Pre-Pandemic Day", each Number.FromText(_), type
number},
            {"Staten Island Railway: % of Comparable Pre-Pandemic Day", each Number.FromText(_),
type number}
       }
    ),
   // Now dividing by 100
    #"Converted Percentages" = Table.TransformColumns(#"Changed Type",
       {
            {"Subways: % of Comparable Pre-Pandemic Day", each _ / 100, type number},
            {"Buses: % of Comparable Pre-Pandemic Day", each _ / 100, type number},
            {"LIRR: % of Comparable Pre-Pandemic Day", each _ / 100, type number},
            {"Metro-North: % of Comparable Pre-Pandemic Day", each _ / 100, type number},
            {"Access-A-Ride: % of Comparable Pre-Pandemic Day", each _ / 100, type number},
            {"Bridges and Tunnels: % of Comparable Pre-Pandemic Day", each _ / 100, type number},
            {"Staten Island Railway: % of Comparable Pre-Pandemic Day", each _ / 100, type number}
})
```

3. Ensuring the Date column is correctly formatted as Date type

```
M Code
#"Changed Type1" = Table.TransformColumnTypes(#"Converted Percentages",{{"Date", type date}}),
```

4. Calculating total ridership for each day by summing all transport modes:

```
M Code
#"Added Total Ridership Column" = Table.AddColumn(#"Changed Type5", "Total Ridership", each
    [#"Subways: Total Estimated Ridership"] +
    [#"Buses: Total Estimated Ridership"] +
    [#"LIRR: Total Estimated Ridership"] +
    [#"Metro-North: Total Estimated Ridership"] +
    [#"Bridges and Tunnels: Total Traffic"]+
    [#"Access-A-Ride: Total Scheduled Trips"] +
    [#"Staten Island Railway: Total Estimated Ridership"], type number)
```

5. Calculating a weighted recovery percentage considering ridership proportions:

The weighted recovery percentage calculation in Power Query M assesses the overall recovery of a transportation system by considering the proportionate contribution of ridership from different modes. It calculates a weighted sum of recovery percentages for each mode, adjusted by their respective ridership volumes, and divides this sum by the total ridership across all modes. This metric provides a holistic view of the system's recovery status, ensuring that no single mode disproportionately influences the overall recovery percentage.

Final Calculation: Weighted Recovery % = WeightedSum / TotalWeight

M Code #"Added Weighted Recovery %" = Table.AddColumn(#"Added Ridership Category", "Weighted Recovery %", each let TotalWeight = [#"Subways: Total Estimated Ridership"] + [#"Buses: Total Estimated Ridership"] + [#"LIRR: Total Estimated Ridership"] + [#"Metro-North: Total Estimated Ridership"] + [#"Access-A-Ride: Total Scheduled Trips"] + [#"Staten Island Railway: Total Estimated Ridership"], WeightedSum = ([#"Subways: % of Comparable Pre-Pandemic Day"] * [#"Subways: Total Estimated Ridership"] + [#"Buses: % of Comparable Pre-Pandemic Day"] * [#"Buses: Total Estimated Ridership"] + [#"LIRR: % of Comparable Pre-Pandemic Day"] * [#"LIRR: Total Estimated Ridership"] + [#"Metro-North: % of Comparable Pre-Pandemic Day"] * [#"Metro-North: Total Estimated Ridership"] + [#"Access-A-Ride: % of Comparable Pre-Pandemic Day"] * [#"Access-A-Ride: Total Scheduled Trips"] + [#"Staten Island Railway: % of Comparable Pre-Pandemic Day"] * [#"Staten Island Railway: Total Estimated Ridership"]) in

6. Categorizing ridership levels based on thresholds:

if TotalWeight = 0 then null else WeightedSum / TotalWeight, type number),

```
M Code
#"Added Ridership Category" = Table.AddColumn(#"Added Total Ridership Column", "Ridership Category",
each

if [Total Ridership] > 50000000 then "Very High"
else if [Total Ridership] > 30000000 then "High"
else if [Total Ridership] > 10000000 then "Moderate"
else "Low", type text),
```

7. Classifying recovery levels based on weighted recovery percentage:

```
M Code
#"Added Weighted Recovery Classification" = Table.AddColumn( #"Added Weighted Recovery %",
"Recovery Classification", each
  if [#"Weighted Recovery %"] >= 1 then "Fully Recovered"
  else if [#"Weighted Recovery %"] >= 0.8 then "High Recovery"
  else if [#"Weighted Recovery %"] >= 0.5 then "Medium Recovery"
  else "Low Recovery", type text)
```

Callender Table

The CalendarTable generates a structured date table that helps in time-based analysis. It includes additional attributes for each date to enable easier grouping and filtering in reports.

```
• CALENDAR ( MIN('MTA_Daily_Ridership'[Date]), MAX('MTA_Daily_Ridership'[Date]))
```

Creates a continuous date range from the **earliest** to the **latest** date in the MTA_Daily_Ridership dataset.

Adding Date Attributes:

- Year: Extracts the year from each date.
- o Month: Extracts the numerical month (1–12).
- o Month Name: Converts the month number into its full name (e.g., January).
- o **Quarter**: Groups months into their respective quarters (Q1–Q4).
- Season: Assigns a season based on the month.
- Weekday: Returns the full weekday name (e.g., Monday).
- Weekday Number: Numbers weekdays from Monday (1) to Sunday (7).
- Week of Year: Determines the week number within the year, following ISO 8601 standards.
- o Week of Month: Calculates which week of the month a given date falls into.
- Day Type: Classifies the date as either a "Weekday" or "Weekend" based on the day
 of the week.

```
CalendarTable =
ADDCOLUMNS (
    CALENDAR ( MIN('MTA_Daily_Ridership'[Date] ), MAX('MTA_Daily_Ridership'[Date] )),
    "Year", YEAR([Date]),
    "Month", MONTH([Date]),
    "Month Name", FORMAT([Date], "MMMM"),
    "Quarter", "Q" & FORMAT(QUARTER([Date]), "0"),
    "Season",
       SWITCH ( TRUE(),
           MONTH([Date]) IN {12, 1, 2}, "Winter",
           MONTH([Date]) IN {3, 4, 5}, "Spring",
           MONTH([Date]) IN {6, 7, 8}, "Summer",
            "Fall"
        ),
    "Weekday", FORMAT([Date], "dddd"),
    "Weekday Number", WEEKDAY([Date], 2), -- Monday = 1, Sunday = 7
    "Week of Year", WEEKNUM([Date], 2), -- ISO 8601 week numbering
    "Week of Month", INT((DAY([Date]) - 1) / 7) + 1,
    "Day Type",
       IF ( WEEKDAY([Date], 1) IN {1, 7}, "Weekend", "Weekday" ) -- Sunday (1) & Saturday (7) are
weekends
)
```

Measures

Month-over-Month (MoM) Growth Calculation

This formula calculates the percentage change in total ridership compared to the previous month.

```
MoM Growth =
VAR CurrentMonthValue = SUM('MTA_Daily_Ridership'[Total Ridership])
VAR PreviousMonthValue =
    CALCULATE(
        SUM('MTA_Daily_Ridership'[Total Ridership]),
        DATEADD('CalendarTable'[Date], -1, MONTH)
    )

RETURN

IF(
        NOT ISBLANK(PreviousMonthValue) && PreviousMonthValue <> 0,
        (CurrentMonthValue - PreviousMonthValue) / PreviousMonthValue,
        BLANK()
    )
```

VAR CurrentMonthValue

o Calculates the **total ridership** for the current month.

VAR Previous Month Value

• Retrieves the **total ridership** from the previous month using DATEADD(), which shifts the date one month backward.

RETURN

 If the previous month's value is not blank or zero, the formula computes the MoM growth as:

(Current Month Value - Previous Month Value) / Previous Month Value

 If the previous month's value is blank or zero, it returns BLANK() to prevent errors or misleading results.

Year-over-Year (YoY) Growth Calculation

This formula measures the percentage change in total ridership compared to the same month in the previous year.

```
YoY Growth =
VAR CurrentYearValue = SUM('MTA_Daily_Ridership'[Total Ridership])
VAR PreviousYearValue =
    CALCULATE(
        SUM('MTA_Daily_Ridership'[Total Ridership]),
        DATEADD('CalendarTable'[Date], -1, YEAR)
    )

RETURN

IF(
    NOT ISBLANK(PreviousYearValue) && PreviousYearValue <> 0,
        (CurrentYearValue - PreviousYearValue) / PreviousYearValue,
        BLANK()
    )
```

VAR CurrentYearValue

o Computes the **total ridership** for the current year.

VAR PreviousYearValue

Retrieves the total ridership from the same month in the previous year using DATEADD()
 with a -1 YEAR shift.

RETURN

- If the previous year's value is not blank or zero, the formula calculates the YoY growth as:
 (Current Year Value Previous Year Value) / Previous Year Value
- o If the previous year's value is blank or zero, it returns BLANK() to avoid incorrect calculations.