Chapter 1: Data Storage

Computer Science: An Overview Eleventh Edition

by J. Glenn Brookshear

Addison-Wesler is an imprint of PEARSON

Copyright © 2012 Pearson Education, Inc.

Chapter 1: Data Storage

- 1.1 Bits and Their Storage
- 1.2 Main Memory
- 1.3 Mass Storage
- 1.4 Representing Information as Bit Patterns
- 1.5 The Binary System

Copyright © 2012 Pearson Education, Inc.

Chapter 1: Data Storage (continued)

- 1.6 Storing Integers
- 1.7 Storing Fractions
- 1.8 Data Compression
- 1.9 Communications Errors

Copyright © 2012 Pearson Education, Inc.

0-3

Bits and Bit Patterns

- Bit: Binary Digit (0 or 1)
- Bit Patterns are used to represent information.
 - Numbers
 - Text characters
 - Images
 - Sound
 - And others

Copyright © 2012 Pearson Education, Inc.

Boolean Operations

- Boolean Operation: An operation that manipulates one or more true/false values
- Specific operations
 - AND
 - OR
 - XOR (exclusive or)
 - NOT

Copyright © 2012 Pearson Education, Inc.

0 =

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

The AND operation

$$\frac{\mathsf{AND} \ 0}{0} \qquad \qquad \frac{\mathsf{AND} \ 1}{0} \qquad \qquad \frac{\mathsf{AND} \ 0}{0} \qquad \qquad \frac{\mathsf{AND} \ 1}{1}$$

The OR operation

The XOR operation

Copyright © 2012 Pearson Education, Inc.

Gates

- Gate: A device that computes a Boolean operation
 - Often implemented as (small) electronic circuits
 - Provide the building blocks from which computers are constructed
 - VLSI (Very Large Scale Integration)

Copyright © 2012 Pearson Education, Inc.

Flip-flops

- Flip-flop: A circuit built from gates that can store one bit.
 - One input line is used to set its stored value to 1
 - One input line is used to set its stored value to 0
 - While both input lines are 0, the most recently stored value is preserved

Copyright © 2012 Pearson Education, Inc.

Figure 1.4 Setting the output of a flip-flop to 1

a. 1 is placed on the upper input.

Copyright © 2012 Pearson Education, Inc.

0-11

Figure 1.4 Setting the output of a flip-flop to 1 (continued)

b. This causes the output of the OR gate to be 1 and, in turn, the output of the AND gate to be 1.

Copyright © 2012 Pearson Education, Inc.

Figure 1.4 Setting the output of a flip-flop to 1 (continued) c. The 1 from the AND gate keeps the OR gate from changing after the upper input returns to 0.

Hexadecimal Notation

- Hexadecimal notation: A shorthand notation for long bit patterns
 - Divides a pattern into groups of four bits each
 - Represents each group by a single symbol
- Example: 10100011 becomes A3

Copyright © 2012 Pearson Education, Inc.

0-15

Figure 1.6 The hexadecimal coding system

Bit pattern	Hexadecimal representation
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Copyright © 2012 Pearson Education, Inc.

Main Memory Cells

- Cell: A unit of main memory (typically 8 bits which is one byte)
 - Most significant bit: the bit at the left (highorder) end of the conceptual row of bits in a memory cell
 - Least significant bit: the bit at the right (loworder) end of the conceptual row of bits in a memory cell

Copyright © 2012 Pearson Education, Inc.

0-17

Figure 1.7 The organization of a byte-size memory cell

Copyright © 2012 Pearson Education, Inc.

Main Memory Addresses

- Address: A "name" that uniquely identifies one cell in the computer's main memory
 - The names are actually numbers.
 - These numbers are assigned consecutively starting at zero.
 - Numbering the cells in this manner associates an order with the memory cells.

Copyright © 2012 Pearson Education, Inc.

0-19

Figure 1.8 **Memory cells arranged by address**

Copyright © 2012 Pearson Education, Inc.

Memory Terminology

- Random Access Memory (RAM):
 Memory in which individual cells can be easily accessed in any order
- Dynamic Memory (DRAM): RAM composed of volatile memory

Copyright © 2012 Pearson Education, Inc.

0-21

Measuring Memory Capacity

- **Kilobyte**: 2¹⁰ bytes = 1024 bytes
 - Example: 3 KB = 3 times1024 bytes
- **Megabyte:** 2²⁰ bytes = 1,048,576 bytes
 - Example: 3 MB = 3 times 1,048,576 bytes
- **Gigabyte:** 2^{30} bytes = 1,073,741,824 bytes
 - Example: 3 GB = 3 times 1,073,741,824 bytes

Copyright © 2012 Pearson Education, Inc.

Mass Storage

- On-line versus off-line

 Typically ! Typically larger than main memory
- Typically less volatile than main memory
- Typically slower than main memory

Copyright © 2012 Pearson Education, Inc.

Mass Storage Systems

- Magnetic Systems
 - Disk
 - Tape
- Optical Systems
 - -CD
 - DVD
- Flash Technology
 - Flash Drives
 - Secure Digital (SD) Memory Card

Copyright © 2012 Pearson Education, Inc.

Files

- File: A unit of data stored in mass storage system
 - Fields and keyfields
- Physical record versus Logical record
- Buffer: A memory area used for the temporary storage of data (usually as a step in transferring the data)

Copyright © 2012 Pearson Education, Inc.

Figure 1.12 Logical records versus physical records on a disk

Logical records correspond to natural divisions within the data

Copyright © 2012 Pearson Education, Inc.

0-29

Representing Text

- Each character (letter, punctuation, etc.) is assigned a unique bit pattern.
 - ASCII: Uses patterns of 7-bits to represent most symbols used in written English text
 - ISO developed a number of 8 bit extensions to ASCII, each designed to accommodate a major language group
 - Unicode: Uses patterns of 16-bits to represent the major symbols used in languages world wide

Copyright © 2012 Pearson Education, Inc.

ikili sistemde gösterimi için bitleri kulllanır

sayısal değerleri

göstermede limitasyon vardır overflow(taşmak) bir değer gösterilmek için çok büyükse meydana gelir truncation: kesiklik iste bir değer tam gösterilmediğinde meydana gelir örneğin 0.5 gösterilemez

Representing Numeric Values

- Binary notation: Uses bits to represent a number in base two
- Limitations of computer representations of numeric values
 - Overflow: occurs when a value is too big to be represented
 - Truncation: occurs when a value cannot be represented accurately

Copyright © 2012 Pearson Education, Inc.

bilgisayar dilinde resimler förmülüze edilerek saklanır.

Representing Images

- Bit map techniques
 - Pixel: short for "picture element"
 - RGB
 - Luminance and chrominance
- Vector techniques
 - Scalable
 - TrueType and PostScript

Copyright © 2012 Pearson Education, Inc.

0 22

Representing Sound

- Sampling techniques
 - Used for high quality recordings
 - Records actual audio
- MIDI
 - Used in music synthesizers
 - Records "musical score"

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

0-35

The Binary System

The traditional decimal system is based on powers of ten.

The Binary system is based on powers of two.

Copyright © 2012 Pearson Education, Inc.

10 luktan ikiliğe çevirme sürekli 2 ye bölünür ve sağdan sola doğru değerler yazılarak sonuç bulunur

Figure 1.17 An algorithm for finding the binary representation of a positive integer

- **Step 1.** Divide the value by two and record the remainder.
- **Step 2.** As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.
- Step 3. Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.

Copyright © 2012 Pearson Education, Inc.

0-39

Figure 1.18 Applying the algorithm in Figure 1.15 to obtain the binary representation of thirteen

Copyright © 2012 Pearson Education, Inc.

Figure 1.19 The binary addition facts

Copyright © 2012 Pearson Education, Inc.

Storing Integers

- Two's complement notation: The most popular means of representing integer values
- Excess notation: Another means of representing integer values
- Both can suffer from overflow errors.

Copyright © 2012 Pearson Education, Inc.

0-43

Figure 1.21 **Two's complement notation systems**

a. Using patterns of length three

Bit pattern	Value represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

b. Using patterns of length four

Bit	Value
pattern	represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0000 1111 1110 1101 1100 1011 1010 1001 1000	-1 -2 -3 -4 -5 -6 -7 -8

Copyright © 2012 Pearson Education, Inc.

Figure 1.24 An excess eight conversion table

Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

Copyright © 2012 Pearson Education, Inc.

0-47

Figure 1.25 An excess notation system using bit patterns of length three

Value represented
3
2
1
0
-1
-2
-3
-4

Copyright © 2012 Pearson Education, Inc.

Storing Fractions

- Floating-point Notation: Consists of a sign bit, a mantissa field, and an exponent field.
- Related topics include
 - Normalized form
 - Truncation errors

Copyright © 2012 Pearson Education, Inc.

0-49

<u>25</u>

Data Compression

- Lossy versus lossless
- Run-length encoding
- Frequency-dependent encoding (Huffman codes)
- Relative encoding
- Dictionary encoding (Includes adaptive dictionary encoding such as LZW encoding.)

Copyright © 2012 Pearson Education, Inc.

Compressing Images

GIF: Good for cartoons

JPEG: Good for photographs

TIFF: Good for image archiving

Copyright © 2012 Pearson Education, Inc.

0-53

Compressing Audio and Video

- MPEG
 - High definition television broadcast
 - Video conferencing
- MP3
 - Temporal masking
 - Frequency masking

Copyright © 2012 Pearson Education, Inc.

Communication Errors

- Parity bits (even versus odd)
- Checkbytes
- Error correcting codes

Copyright © 2012 Pearson Education, Inc.

0-55

Figure 1.28 **The ASCII codes for the letters A and F adjusted for odd parity**

Copyright © 2012 Pearson Education, Inc.

Figure 1.29 An error-correcting code

Symbol	Code
A	000000
В	001111
C	010011
D	011100
E	100110
F	101001
G	110101
H	111010

Copyright © 2012 Pearson Education, Inc.

0-57

Figure 1.30 **Decoding the pattern 010100** using the code in Figure 1.30

Character	Code	Pattern received	Distance between received pattern and code	
A	0 0 0 0 0 0	0 1 0 1 0 0	2	
В	0 0 1 1 1 1	0 1 0 1 0 0	4	
C	0 1 0 0 1 1	0 1 0 1 0 0	3	
D	0 1 1 1 0 0	0 1 0 1 0 0	1	– Smallest
E	100110	0 1 0 1 0 0	3	distance
F	101001	010100	5	
G	1 1 0 1 0 1	0 1 0 1 0 0	2	
H	1 1 1 0 1 0	0 1 0 1 0 0	4	

Copyright © 2012 Pearson Education, Inc.