

SCRP HPC Cluster

HPC cluster managed by the CUHK Department of Economics

- Run your code on the cloud
- All necessary software installed and maintained
- GPU access
- scrp.econ.cuhk.edu.hk

Step 1: Account Creation

Accounts have been already been created for all participants.

Step 2: Create Password

Follow instructions in account creation email.

Step 3: Connect to SCRP

Web access:

- https://scrp-login.econ.cuhk.edu.hk
- https://scrp-login-2.econ.cuhk.edu.hk

- The most prominent A.I. systems today are powered by artificial neural networks (ANN).
- ANN is the pinnacle of model complexity

Machine Learning

This tutorial:

- What is ANN?
- What are the common types of ANN?
- How to write an ANN in Python?

This is a Linear Regression

Output
$$\dot{y} = \alpha + \dot{x}\dot{\beta}$$

Where $\vec{x} = [x_1 \dots x_k]$ is one sample of features (a.k.a. one observation of independent variables)

$$\vec{\beta} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}$$
 is a vector of weights (a.k.a. coefficients)

This is a Logistic Regression

$$P(y=1) = G(\alpha + \vec{x}\vec{\beta})$$
Data

Where
$$G(z) = \frac{e^z}{1+e^z}$$

This is a Neuron

Output
$$h = G(\alpha + \vec{x}\vec{\beta})$$
Input

Where G(z) is a non-linear function G(z) is called the activation function and h the neuron's activation

(A Very Simple One)

Output Layer

Output
$$h_2 = G_2(\alpha_2 + h_1\beta_2)$$

$$h_1 = G_1(\alpha_1 + \vec{x}\vec{\beta}_1)$$
 Data

(With Two Hidden Neurons)

(With Multiple Hidden Neurons)

Output Layer

Output
$$h_2 = G_2 (\alpha_2 + \vec{h}_1 \vec{\beta}_2)$$

$$\vec{h}_1 = G_1 (\vec{\alpha}_1 + \vec{x} \boldsymbol{\beta}_1)$$
 Data

(With Two Hidden Neurons and Two Output Neurons)

AI Neural Networks

Hidden Units

Flow of Activation

(With Multiple Hidden Neurons and Outputs)

Softmax

(a.k.a. Multinomial Logit)

Classification Task

Output 1

$$h_{2,1} = F(\alpha_{2,1} + h_1 \beta_{2,1})$$

Output 2

Output Layer
$$h_{2,1} = Fig(lpha_{2,1} + ec{h}_1ec{eta}_{2,1}ig) \qquad h_{2,2} = Fig(lpha_{2,2} + ec{h}_1ec{eta}_{2,2}ig)$$

$$h_{1,1} = F(\alpha_{1,1} + \vec{x}\bar{\beta}_{1,1})$$

Hidden Layer
$$h_{1,1} = Fig(lpha_{1,1} + ec{x}ec{eta}_{1,1}ig) \qquad h_{1,2} = Fig(lpha_{1,2} + ec{x}ec{eta}_{1,2}ig)$$

Data

Why Does Activation Have to be Non-Linear?

$$h_2 = G_2(\alpha_2 + \beta_2 h_1)$$

$$h_1 = G_1(\alpha_1 + \vec{\beta}_1 \vec{x})$$

If G_1 is linear, you get

$$h_2 = G_2 \left(\alpha_2 + \beta_2 (\alpha_1 + \vec{\beta}_1 \vec{x}) \right)$$
$$= G_2 \left(\alpha'_2 + \vec{\beta}'_2 \vec{x} \right)$$

So there is no point in having the hidden layer.

An econometrician's view of artificial neural network: a bunch of regressions stacked together

- Halbert White made significant contribution to the theoretical foundation of ANN in the 1980s
- Application was rare because the lack of computational power

Why is ANN Powerful?

Definition A function $\Psi: R \to [0,1]$ is a squashing function if it is non-decreasing, $\lim_{\lambda \to \infty} \Psi(\lambda) = 1$ and $\lim_{\lambda \to -\infty} \Psi(\lambda) = 0$.

Universal approximation theorem

(Hornik, Stinchcombe and White 1989 Theorem 2.4)

Let
$$\Sigma^r(G) = \{f: \mathbb{R}^r \to \mathbb{R}: f(x) = \sum_{i=1}^q \beta_i G(a_i + b_i x), a_i, b_i, \beta_i \in \mathbb{R}^r, q = 1, 2, \dots\}$$

For every squashing function Ψ , every continuous function $g: \mathbb{R}^r \to \mathbb{R}$, every compact subset $K \subset \mathbb{R}^r$ and every $\varepsilon > 0$, there exists an $f \in \Sigma^r(\Psi)$ such that

$$\sup_{x \in K} |f(x) - g(x)| < \varepsilon$$

Why is ANN Powerful?

The universal approximation theorem says ANN can approximate any continuous function arbitrarily well.

The theorem can be extended to multiple outputs and non-continuous functions under additional assumptions.

Universal approximation theorem

(Hornik, Stinchcombe and White 1989 Theorem 2.4)

Let
$$\Sigma^{r}(G) = \{f : \mathbb{R}^{r} \to \mathbb{R} : f(x) = \sum_{i=1}^{q} \beta_{i} G(a_{i} + b_{i}x), a_{i}, b_{i}, \beta_{i} \in \mathbb{R}^{r}, q = 1, 2, ...\}$$

For every squashing function Ψ , every continuous function $g: \mathbb{R}^r \to \mathbb{R}$, every compact subset $K \subset \mathbb{R}^r$ and every $\varepsilon > 0$, there exists an $f \in \Sigma^r(\Psi)$ such that

$$\sup_{x \in K} |f(x) - g(x)| < \varepsilon$$

Why is ANN Powerful?

Note that this is an existence theorem—it does not say how many neurons q is needed, which squashing/activation function Ψ works best, or how to get the biases and weights.

Universal approximation theorem

(Hornik, Stinchcombe and White 1989 Theorem 2.4)

Let
$$\Sigma^r(G) = \{f: \mathbb{R}^r \to \mathbb{R}: f(x) = \sum_{i=1}^q \beta_i G(a_i + b_i x), a_i, b_i, \beta_i \in \mathbb{R}^r, q = 1, 2, \dots\}$$

For every squashing function Ψ , every continuous function $g: \mathbb{R}^r \to \mathbb{R}$, every compact subset $K \subset \mathbb{R}^r$ and every $\varepsilon > 0$, there exists an $f \in \Sigma^r(\Psi)$ such that

$$\sup_{x \in K} |f(x) - g(x)| < \varepsilon$$

Deep Learning

- Deep Learning refers to the stacking of multiple hidden layers
- Typical layer count is in the single digit but can go as high as a hundred.

How Does an ANN Learn?

Gradient Descent

- **Gradient descent** is a very general optimization algorithm, usable with pretty much all models.
- It uses the <u>first derivative</u> of the loss function with respect to a parameter to adjust the parameter.

- Gradient descent uses the <u>first derivative</u> of the loss function with respect to a parameter to adjust the parameter.
- E.g. suppose our model is

$$\hat{y} = \alpha + x$$

This is a (simplified) regression task, which we can solve by minimizing the squared error:

$$c = (y - \hat{y})^2$$

• For illustration purpose, let us assume the data is generated by y = 5 + x, so that if x = 1, y = 6.

Error
$$\epsilon = y - \hat{y}$$

Loss $= \epsilon^2$

First derivative of loss function:

$$\frac{d}{d\alpha} \epsilon^2$$

$$= 2\epsilon \frac{d}{d\alpha} [y - (\alpha + x)]$$

$$= -2\epsilon$$

This is the marginal effect, or gradient, of α on loss.

We have an initial guess of what α is (usually just a random number.)

This gives us an initial prediction \hat{y} and corresponding error and loss.

$$\hat{\alpha}_0 = 2$$

$$\hat{y}_0 = 2 + 1 = 3$$

$$\epsilon_0 = y - \hat{y} = 6 - 3 = 3$$

$$\frac{d}{d\alpha}\epsilon^2 = -2\epsilon = -6$$

$$\epsilon_0 = 3$$

$$\frac{d}{d\alpha}\epsilon^2 = -6 > 0$$

In our example, ϵ is positive, so the gradient is negative.

This means loss is decreasing in alpha.

This makes sense, because if $y > \hat{y} = \alpha + x$ increasing α will bring \hat{y} closer to y.

Conversely, if $\epsilon < 0$, then

$$y < \hat{y} = \alpha + x$$

decreasing α will bring \hat{y} closer to y .

The gradient tells us the direction we need to adjustment our parameter.

The amount we need to adjust is, to a first-order approximation, inversely proportional to the gradient.

E.g.

$$\frac{d}{d\alpha}\epsilon^2 = -6$$

 α needs to be bigger.

If we adjust the parameter by the exact amount of the gradient, we might overshoot:

$$\hat{\alpha}_1 = \hat{\alpha}_0 - \frac{d}{d\alpha} \epsilon^2$$

$$= 2 - (-6)$$

$$= 8 > 5 = \text{true } \alpha$$

Overshooting could result in our parameters bouncing around the true value, never to converge.

To prevent overshooting, we moderate the gradient by a learning rate γ :

$$\hat{\alpha}_1 = \hat{\alpha}_0 - \gamma \frac{d}{d\alpha} \epsilon^2$$

E.g. if $\gamma = 0.1$:

$$\hat{\alpha}_1 = \hat{\alpha}_0 - \gamma \frac{d}{d\alpha} \epsilon^2$$

$$= 2 - 0.1(-6)$$

$$= 2.6 < 5 = \text{true } \alpha$$

Now we are not overshooting, but it will take us more iterations to get to the true α value.

- The gradient tells us the direction we need to adjustment our parameter. In the above example, the amount we need to adjust is, to a first-order approximation, proportional to $-dc/d\alpha$.
- Moderating the adjustment by a learning rate γ , we have the following update rule:

$$\alpha_t = \alpha_{t-1} - \gamma \frac{dc}{d\alpha} \bigg|_{\alpha_{t-1}}$$

Or more typical in computer science:

$$\alpha \leftarrow \alpha - \gamma \frac{dc}{d\alpha}$$

• With more than one sample, we take the average.

Stochastic Gradient Descent

- Learning is quite slow if we only update model weights after we go through all data.
- We could instead update every time after we gone through a given number of samples. This is **Stochastic Gradient Descent (SGD).**
- Because we are not using all data, we could be updating towards the wrong direction sometimes, but on average the updates will be correct. Hence, *stochastic*.
- The stochastic nature is actually a good property because it helps the model escape from local optima.

How Does an ANN Learn?

- Gradient Descent
- Back Propagation

• Because neural network have multiple layers, the gradient of lower layers needs be computed using the chain rule. This process is called back propagation.

Output
$$\vec{h}_2 = F_2(\vec{lpha}_2 + \vec{h}_1 oldsymbol{eta}_2)$$
 $\vec{h}_1 = F_1(\vec{lpha}_1 + \vec{x} oldsymbol{eta}_1)$ Data

• Because neural network have multiple layers, the gradient of lower layers needs be computed using the chain rule. This process is called **back propagation**.

E.g. single target regression task, the gradient of the second weight of the first neuron is:

$$\begin{split} &\frac{\partial}{\partial \beta_{1}^{(1,2)}} (y - h_{2})^{2} \\ &= -2(y - h_{2}) F_{2}' (\vec{\alpha}_{2} + \vec{h}_{1} \vec{\beta}_{2}) \frac{\partial}{\partial \beta_{1}^{(1,2)}} (\vec{\alpha}_{2} + \vec{h}_{1} \vec{\beta}_{2}) \\ &= -2(y - h_{2}) F_{2}' (\vec{\alpha}_{2} + \vec{h}_{1} \vec{\beta}_{2}) \beta_{2}^{(1)} \\ &\cdot \frac{\partial}{\partial \beta_{1}^{(1,2)}} F_{1} \left(\alpha_{1} + \vec{x} \vec{\beta}_{1}^{(1)} \right) \\ &= -2(y - h_{2}) F_{2}' (\vec{\alpha}_{2} + \vec{h}_{1} \vec{\beta}_{2}) \beta_{2}^{(1)} \\ &\cdot F_{1}' \left(\vec{\alpha}_{1} + \vec{x} \vec{\beta}_{1}^{(1)} \right) x_{2} \end{split}$$

An important feature of any neural network library is to automate the computation of gradient.

- As the number of layers go up, the process becomes quite brittle.
- Remember the chain rule involves a lot of multiplication.
- Small times small means very small, resulting in vanishing gradient.
- Big times big means very big, resulting in exploding gradient.
- Neither is good for learning.
- A lot of research goes into finding ways to combat the issue: different activation functions, different randomization distributions...

Hands-on Demo

Computation

- The idea of artificial neural network can be traced back to as far back as the 1940s.
- Due to the large number of parameters and large data size involved, effective use of ANN was prohibitive until 2010s.

11 Model Size

NLP's Moore's Law: Every year model size increases by 10x

It Takes a Lot to Train These Models!

Model size	Hidden size	Number of layers	Number of parameters (billion)	Model-parallel size	Number of GPUs	Batch size	Achieved teraFIOPs per GPU	Percentage of theoretical peak FLOPs	Achieved aggregate petaFLOPs
1.7B	2304	24	1.7	1	32	512	137	44%	4.4
3.6B	3072	30	3.6	2	64	512	138	44%	8.8
7.5B	4096	36	7.5	4	128	512	142	46%	18.2
18B	6144	40	18.4	8	256	1024	135	43%	34.6
39B	8192	48	39.1	16	512	1536	138	44%	70.8
76B	10240	60	76.1	32	1024	1792	140	45%	143.8
145B	12288	80	145.6	64	1536	2304	148	47%	227.1
310B	16384	96	310.1	128	1920	2160	155	50%	297.4
530B	20480	105	529.6	280	2520	2520	163	52%	410.2
1T	25600	128	1008.0	512	3072	3072	163	52%	502.0

Source: Nvidia

HOME COMPUTE STORE CONNECT CONTROL CODE AI HPC ENTERPRISE HYPERSCALE CLOUD

EDGE

LATEST > Ampere Arm Server CPUs To Get 512 Cores, AI Accelerator > COMPUTE

Search ...

HOME > **AI** > So Who Is Building That 100,000 GPU Cluster For xAI?

SO WHO IS BUILDING THAT 100,000 GPU CLUSTER FOR XAI?

July 30, 2024 Timothy Prickett Morgan

ANN took off due to massive increase in computational capabilities, particularly in the use of **graphic processing unit** (GPU) for computation.

NVIDIA® DGX STATION™ YOUR PERSONAL AI SUPERCOMPUTER

Announcing NVIDIA H200 Tensor Core GPU

Supercharging the highest-performing generative AI and HPC platforms

141GE

Memory Bandwidth
4.8 TB/S

GPT-3 175B Inference

1.6X
Performance vs H100

Llama2 70B Inference

1.9X
Performance vs H100

HPC Simulation

2.0X

HGX H200

1.1 TB HBM3e | 32 PF FP8 fore Memory Capacity | 1.4X More HBM Bandwidth

Announcing GB200 NVL72 Delivers New Unit of Compute

36 GRACE CPUs GB200 NVL72 -

72 BLACKWELL GPUs

Fully Connected NVLink Switch Rack

720 PFLOPs Training Inference 1,440 PFLOPs **NVL Model Size** 27T params Multi-Node Bandwidth 130 TB/s Multi-Node All-Reduce 260 TB/s

NVIDIA Corp @ NVIDIA Financials Overview Compare NASDAQ: NVDA : Market Summary > NVIDIA Corp 134.91 USD + Follow +130.72 (3,119.81%) ↑ past 5 years Closed: 10 Jul, 7:59 pm GMT-4 • Disclaimer After hours 135.60 +0.69 (0.51%) 5D 1M 6M YTD 1Y <u>5Y</u> 1D 150 100 50 2021 2023 2022 2024

