Introdução ao Processamento Digital de Imagem

Al Techniques Vision, Diffusion

Arnaldo Alves Viana Junior

Nossa agenda de hoje

- Breve motivação sobre PDI e Visão Computacional
- O que preciso para começar?
- Primeiros códigos em PDI

Exemplo de visão computacional

O que um Tesla enxerga??

Exemplo de visão computacional

Exemplo de PDI

Exemplo de visão computacional - Rover

Algumas aplicações

https://experiments.withgoogle.com/collection/ai/move-mirror/view/mirror

https://docs.opencv.org/3.4/df/d6c/tutorial_js_face_detection_camera.html

https://storage.googleapis.com/tfjs-examples/webcam-transfer-learning/dist/index.html

Como é processada uma imagem?

Como é processada uma imagem?

Figure 44.1: Description of the modern digital cameras. The light passes through the lens assembly and is recorded by a Bayer pattern CCD.

O que é uma imagem

- Matriz de atributos na memória do computador, onde cada atributo corresponde à cor de um ponto endereçável no dispositivo de saída. A cada atributo chamamos pixel, ou picture element.
- A cor de cada pixel pode ser representada por:
 - 1 bit aceso ou apagado (binário)
 - 8 bits diversas tonalidades (escala de cinza)
 - 24 bits diferentes cores (colorido RGB)

Imagem monocromática

35x35

Imagem escala de cinza

15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
		45	60	75	90	105	120	135	150	165	180	195	210	225	240	255
15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255

Imagem colorida (24 bpp)

Instruções para a instalação da infraestrutura

- Online:
 - Use o google Colab para rodar os scripts de Python. Não é necessário instalar nada.
- Windows:
 - Fazer o download do python no site oficial:
 - https://www.python.org/downloads/ (selecionar a opção de adicionar o Python ao PATH)
 - Abrir o cmd e executar os comandos:
 - pip install matplotlib
 - pip install opency-python
 - pip install notebook
 - Alternativa: Não é necessário, masssss... quem preferir, pode usar o anaconda e criar uma virtual env para instalar a infra
- Linux/mac:
 - Só precisa executar os comando pip no terminal usando pip3.
- VM Virtual box:
 - Tem uma VM pronta para usar, só precisa instalar o VirtualBox e os extension pack:
 - https://www.virtualbox.org/wiki/Downloads (são 2 arquivos para fazer o download)
 - Fazer o download do arquivo iot.ova que está no google drive
 - https://drive.google.com/drive/folders/1HrtLCNFSyUQ0nkCwthz7dv5RqcHx7h4t?usp=sharing
 - Senha: iot
 - sugestão: rodar com 2cpu e 4G de ram