HW due 7/13 7/7/16, 5:38 PM

HW due 7/13

Due: 7:00am on Wednesday, July 13, 2016

To understand how points are awarded, read the **Grading Policy** for this assignment.

Exercise 32.4

Consider each of the electric- and magnetic-field orientations.

Part A

What is the direction of propagation of the wave if $ec{E}=E\hat{i}$, $ec{B}=-B\hat{j}$.

Express the direction of the propagation vector, \vec{P} , as a unit vector. Its three components should be entered in order (x,y,z) separated by commas. For example, if the wave propagates only in the -x direction, enter -1,0,0.

ANSWER:

0,0,-1

Correct

Part B

What is the direction of propagation of the wave if $\vec{E} = E\hat{j}$, $\vec{B} = B\hat{i}$.

Express the direction of the propagation vector, \vec{P} , as a unit vector. Its three components should be entered in order (x,y,z) separated by commas. For example, if the wave propagates only in the -x direction, enter -1,0,0.

ANSWER:

0,0,-1

Correct

Part C

What is the direction of propagation of the wave if $ec{E}=-E\hat{k}, ec{B}=-B\hat{i}$.

Express the direction of the propagation vector, \vec{P} , as a unit vector. Its three components should be entered in order (x,y,z) separated by commas. For example, if the wave propagates only in the -x direction, enter -1,0,0.

ANSWER:

0,1,0

HW due 7/13 7/7/16, 5:38 PM

Part D

What is the direction of propagation of the wave if $\vec{E}=E\hat{i}$, $\vec{B}=-B\hat{k}$.

Express the direction of the propagation vector, \vec{P} , as a unit vector. Its three components should be entered in order (x,y,z) separated by commas. For example, if the wave propagates only in the -x direction, enter -1,0,0.

ANSWER:

0,1,0

Correct

Exercise 32.18

A sinusoidal electromagnetic wave from a radio station passes perpendicularly through an open window that has area of 0.500 $\,\mathrm{m}^2$. At the window, the electric field of the wave has an rms value 0.0300 $\,\mathrm{V/m}$.

Part A

How much energy does this wave carry through the window during a 30.0-s commercial?

Express your answer with the appropriate units.

ANSWER:

$$U = 3.58 \times 10^{-5} \,\mathrm{J}$$

Correct

Score Summary:

Your score on this assignment is 100%.

You received 10 out of a possible total of 10 points.