DEFINICIÓN DE INTEGRALES IMPROPIAS CON LÍMITES DE INTEGRACIÓN INFINITOS

1. Si f es continua en el intervalo $[a, \infty)$, entonces

$$\int_{a}^{\infty} f(x) \ dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \ dx$$

2. Si f es continua en el intervalo $(-\infty, b]$, entonces

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \ dx$$

3. Si f es continua en el intervalo $(-\infty, \infty)$, entonces

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) \ dx$$

donde c es cualquier número real.

En los dos primeros casos, la integral impropia converge si el límite existe; en caso contrario, la integral impropia diverge. En el tercer caso, la integral impropia de la izquierda diverge si cualquiera de las integrales impropias de la derecha diverge.

DEFINICIÓN DE INTEGRALES IMPROPIAS CON DISCONTINUIDADES INFINITAS

1. Si f es continua en el intervalo [a, b) y tiene una discontinuidad infinita en b, entonces

$$\int_{a}^{b} f(x) \ dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) \ dx$$

2. Si f es continua en el intervalo (a, b] y tiene una discontinuidad infinita en a, entonces

$$\int_{a}^{b} f(x) \ dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) \ dx$$

3. Si f es continua en el intervalo [a, b] excepto en algún c en (a, b), en el que f tiene una discontinuidad infinita, entonces

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

En los dos primeros casos, la integral impropia converge si el límite existe y diverge en caso contrario. En el tercer caso, la integral impropia de la izquierda diverge si cualquiera de las integrales impropias de la derecha diverge.