Arithmétique

<u>Rappels:</u> IN désigne l'ensemble des entiers naturels $\{0;1;2;...\}$ (positifs) et \mathbb{Z} celui des entiers relatifs $\{...;-2;-1;0;1;2;...\}$ (positifs et négatifs).

Multiples et diviseurs

<u>Définition</u>: Soient deux entiers relatifs n et p. S'il existe un entier relatif q tel que $n=p\times q$, on dit que

- p divise n ou que p est un diviseur de n,
- n est divisible par p ou que n est un multiple de p.

Remarque : 1 et n sont toujours des diviseurs de n et n a une infinité de multiples : 2n,3n,-n,... Tous les multiples d'un entier n sont de la forme $k \times n$ pour un certain $k \in \mathbb{Z}$.

Nombres premiers

<u>Définition</u>: Un nombre entier **naturel** est premier s'il n'admet que deux diviseurs positifs distincts :

1 et lui-même.

Remarque: 1 <u>n'</u>est <u>pas</u> un nombre premier.

Exemples: Les premiers nombres premiers sont 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,...

Les nombres premiers sont les *briques élémentaires* des ensembles des entiers. C'est l'objet du théorème suivant, appelé **Théorème fondamental de l'arithmétique**.

<u>Théorème</u> Tout entier naturel peut se décomposer de manière unique comme un produit de nombres premiers.

<u>Propriété</u>: Tout nombre entier n qui n'est pas premier admet un diviseur premier inférieur ou égal à \sqrt{n} .

On se sert de cette propriété pour montrer qu'un nombre est premier : s'il n'est divisible par aucun nombre premier plus petit que \sqrt{n} , alors n est forcément lui-même premier.

Parité

Définition : Soit un entier relatif n.

- Si n est divisible par 2, on dit que n est pair. Il existe alors un entier k tel que $n=2\times k$.
- Sinon, on dit que n est **impair**. Il existe alors un entier k tel que $n=2\times k+1$.

Propriété : Soit un entier relatif n.

- Si n est pair, alors son carré n^2 est pair.
- Si n est impair, alors son carré n^2 est impair.

Preuve:

- Si *n* est pair, on peut écrire n=2k. Alors $n^2=(2k)^2=4k^2=2\times 2k^2$, donc n^2 est pair.
- Si n est impair, on peut écrire n=2k+1.

Alors $n^2 = (2k+1)^2 = (2k)^2 + 2 \times 2k \times 1 + 1^2 = 4k^2 + 4k + 1 = 2 \times (2k^2 + 2k) + 1$, donc n^2 est impair.