

Inelastic Scattering of Photons by Electrons to Verify Particle Nature of Light

Yongao Hu

Light: Wave or Particle?

Wave Theory

Classical electromagnetism

Image credit: S. Tanzilli, CNRS

Relativistic Mechanics

Scattering Rate and Cross Section Differs between Wave and Particle Prediction

Wave Theory

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Thomson Scattering

$$\frac{d\sigma}{d\Omega} = r_0^2 \left(\frac{1 + \cos^2 \theta}{2} \right)$$
$$r_0 = \frac{e^2}{4\pi\epsilon_0 m_e c^2}$$

Thomson Scattering Total Cross Section

$$\sigma = \frac{8\pi}{3}r_0^2 \approx 66.5 \text{ fm}^2$$

J. D. Jackson. Classical electrodynamics; 2nd ed. Wiley, New York, NY, 1975.

$$\gamma^{\mu}\partial_{\mu}\psi + im\psi = 0$$

Klein-Nishina Scattering

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \left(\frac{E_f}{E_i}\right)^2 \left(\frac{E_f}{E_i} + \frac{E_i}{E_f} - \sin^2\theta\right)$$

Klein-Nishina Total Cross Section

$$\sigma = 2\pi r_e^2 \left[\frac{1+x}{x^3} \left(\frac{2x(1+x)}{1+2x} - \ln(1+2x) \right) + \frac{\ln(1+2x)}{2x} - \frac{1+3x}{(1+2x)^2} \right]$$
$$x = \frac{E_i}{m_e c^2}$$

3

Experimental Setup for Angular-dependent Measurements

Recoil Scintillator

 $\theta \in [0^{\circ}, 135^{\circ}]$ (at 15° intervals)

Coincidence Circuit to Ensure that Only the Scattering Events are Picked up

Data Analysis: Peak fitting

Calibration of MCA using Known Energy Source Converts Channel number to Energy

Channel-energy conversion relation

$$E_i = aC_i + b$$

$$a = (0.390 \pm 0.014) \text{ keV}$$

$$b = (-10.5 \pm 6.2) \text{ keV}$$

Recoil Detector is used for Measuring Rate instead of Scatter Detector

Angular Dependence of Scattering Rate Follows Klein-Nishina Prediction

Total Cross Section from Attenuation Follows Klein-Nishina Prediction

Attenuation dependence

$$A = A_0 e^{-\mu x} = A_0 e^{-\sigma N \rho l}$$

Uncertainties in the Experiment

Statistical Uncertainty

• Inherent statistical nature of scattering: the statistical error of peak position and width of peak

Systematic Uncertainty

- Angle offset of the setup: fitted offset $\theta_0 = 2.56 \pm 0.71^\circ$
- Time resolution of MCA: Resolution of angle, time, length, mass measurement: $\sigma_{\theta}^{\rm sys} \sim 0.5^{\circ}$, $\sigma_{t}^{\rm sys} \sim 0.01$ s, $\sigma_{l}^{\rm sys} \sim 0.05$ cm, $\sigma_{m}^{\rm sys} \sim 0.05$ g
- Coincidence circuit unable to filter all background: $n_{\rm F}=2\tau n_r n_s$
- Fitting of scatter spectrum with gaussian function

Massachusetts Institute of Technology

Conclusion: Light is made of particles!

Successfully demonstrated particle nature of light

Verified Klein-Nishina Scattering

Massachusetts Institute of Technology