Lab 3: Significance of network metrics

Rodrigo Arias Mallo

November 1, 2017

1 The metric

For selecting the metric, I set the seed to the last 5 digits of my DNI, as recently seen in some hash generation¹, and ran the following command in python:

```
from random import *
seed(64718)
metrics = ["clustering coefficient", "closeness centrality"]
r = randint(0, 1)
print(metrics[r])
Which produced the following output
% python metric.py
clustering coefficient
```

So I decided to use clustering coefficient C_{WS} as a metric.

2 Introduction

2.1 Cleaning the data

The datasets have been uncompressed in data/, and then processed by the script prepare-data.sh, which removes the header with the number of nodes and edges, and outputs the remaining edge list in the same file with a new extension .edges. The properties of the graphs can be seen at the table 1.

After some research I found the BiRewire R package [1] written by A. Gobbi, a fast implementation of the switchin model [2] [3].

3 Proposition

Based on some properties of a graph \hat{G} , we want to create a sequence of random graphs $\langle G \rangle$ by using two different methods, and then test if they maintain a set of measures that we found on \hat{G} .

The first model, the Erdös–Rényi graph takes as input the number of vertex |V| and edges |E| of \hat{G} , and builds a new random graph with the same number

http://klondike.es/klog/2017/09/25/descifrando-las-bases-de-datos-delreferendum-catalan/

Language	N	E	$\langle k \rangle$	δ
Arabic	21531	68742	6.385	2.966×10^{-4}
Basque	12207	25541	4.185	3.428×10^{-4}
Catalan	36865	197075	1.069×10^{1}	2.900×10^{-4}
Chinese	40298	180925	8.979	2.228×10^{-4}
Czech	69303	257254	7.424	1.071×10^{-4}
English	29634	193078	1.303×10^{1}	4.397×10^{-4}
Greek	13283	43961	6.619	4.984×10^{-4}
Hungarian	36126	106681	5.906	1.635×10^{-4}
Italian	14726	55954	7.599	5.161×10^{-4}
Turkish	20409	45625	4.471	2.191×10^{-4}

Table 1: Properties of the graphs after preprocessing.

of vertex and edges. The clustering coefficient is then computed for each graph in the sequence $\langle G \rangle$ as $\langle X \rangle$.

We can consider the measurement X as a random variable, with mean E[X] and variance VAR[X]. By computing T elements in the sequence, the sample mean \overline{X} is an unbiased estimator of E[X], and by the central limit theorem, the sample \overline{X} is distributed

3.1 Erdős–Rényi model

The ER model is implemented in python using the networkx package. The gnm_random_graph creates a ER graph with parameters |V| and |E|. An average of T=25 graphs is performed. The measure is taken by calling average_clustering. We see that none of the generated graphs contain a value greater that the orig-

Language	x	$p(x_{ER} \ge x)$	\overline{x}_{ER}
Arabic	1.885×10^{-1}	0.000	2.958×10^{-4}
Basque	4.671×10^{-2}	0.000	2.971×10^{-4}
Catalan	2.211×10^{-1}	0.000	2.916×10^{-4}
Chinese	1.708×10^{-1}	0.000	2.310×10^{-4}
Czech	1.217×10^{-1}	0.000	1.124×10^{-4}
English	2.353×10^{-1}	0.000	4.416×10^{-4}
Greek	1.338×10^{-1}	0.000	4.800×10^{-4}
Hungarian	5.085×10^{-2}	0.000	1.549×10^{-4}
Italian	1.437×10^{-1}	0.000	4.868×10^{-4}
Turkish	2.236×10^{-1}	0.000	2.317×10^{-4}

Table 2: The measures of the models.

inal one. We can conclude that, even the ER model keeps the number of nodes and edges, the clustering coefficient is smaller.

- 4 Results
- 5 Discussion
- 6 Methods

References

- [1] A. Gobbi, F. Iorio, D. Albanese, G Jurman, and J. Saez-Rodriguez. BiRewire: High-performing routines for the randomization of a bipartite graph (or a binary event matrix), undirected and directed signed graph preserving degree distribution (or marginal totals), 2017. R package version 3.8.1.
- [2] A. Gobbi, F. Iorio, K.J. Dawson, D.C. Wedge, D. Tamborero, L. Alexandrov, N. Lopez-Bigas, M.J. Garnett, G Jurman, and J. Saez-Rodriguez. Fast randomization of large genomic datasets while preserving alteration counts. BMC Bioinformatics, 30(17):617–623, 2014.
- [3] F. Iorio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G Jurman, and J. Saez-Rodriguez. Efficient randomization of biological networks while preserving functional characterization of individual nodes. *BMC Bioinformatics*, 17(1):617–623, 542.