放大电路

电路组成

四个部分: 偏置电路、信号源、负载、晶体管

负载: 在负载上得到放大后的信号

偏置: V_{CC} , R_{b1} , R_{b2} , R_{E} 构成分压式偏置电阻

耦合电容:信号可以通过,直流不能通过。

旁路电容: C_E 容抗比 R_E 小得多

分析方法

先算直流再算交流

直流分析

1.画出直流通路

所有电容开路, 电感短路

2.计算工作点电流

在b处和e处将电路断开,使用戴维南定理,求开路电压

$$V_{BB} = rac{R_{B2}}{R_{B2} + R_{B1}} V_{cc}$$

短路内阻, V_{cc} 短路到地:

$$R_B = R_{B1}//R_{B2}$$

在将得到的简化电路连接到三极管上, 可以写出方程

$$V_{BB} = I_B R_B + V_{BE(on)} + I_E R_E$$

又由 $I_E = (1+\beta)I_B$,可以求出

$$I_{B} = rac{V_{BB} - V_{BE(on)}}{R_{B} + (1+eta)R_{E}}, \,\, I_{E} = rac{V_{BB} - V_{BE(on)}}{rac{R_{B}}{1+eta} + R_{E}}$$

大电流上的电阻转换到小电流上,乘上电流倍数;小电流上的电阻转换到大电流上,除以电流倍数 eta足够大时, $I_C=I_B$

 $(1+\beta)R_E\gg R_B$ 时, R_B 可忽略

最终目的是算出工作点电流 I_{CQ}

交流分析

1.画出交流通路

大电容短路,直流电源短路到地

因为 V_{cc} 短路到地,所以 R_{B1} 和 R_{B2} 两个电阻并联, R_{C} 一段连接到地,发射极直接接地, R_{L} 连接到集电极

$$\diamondsuit R_L^{'} = R_C / / R_L$$

2.代入小信号等效电路

在b, e, c三点, 把三极管拿掉, 代入小信号模型 (注意 V_{ce} ,基区宽度调制)

可以将 R_B , R_S , V_b 这个回路用戴维南化简,但要注意用戴维南化简后得到的电压并不是 R_B 两端实际的电压

题目没说的话, $r_{bb'}$ 忽略, r_{ce} 当断路

波形失真

线性失真

波形中不产生其他频率的分量

类型	现象	解决办法
饱和失真	底部削平	增大 R_B 或减小 R_C
截止失真	顶部削平	减小 R_B 或增大 R_C

对于失真的改善,我们由基本原则:

调大 R_C 使得 U_{CE} 减小,更容易发生饱和失真,反之更容易发生截止失真。

调大 R_B 使得 I_B 減小, I_C 也減小, U_{CE} 增大,更容易发生截止失真,反之更容易发生饱和失真。

具体原理可以看这篇文章