## Лабораторная работа 2.1.3 Определение $\frac{C_p}{C_v}$ по скорости звука в газе

Вячеслав Ждановский, студент 611 группы ФРКТ Шамиль Вагабов, студент 611 группы ФРКТ Станислав Токарев, студент 611 группы ФРКТ

25 апреля 2017 г.

**Цель работы:** 1) измерение частоты коебаний и длины волны при резонансе звуковых колебваний в газе, заполнящем трубу 2) определение показателя адиабаты с помощью уравнения состояния идеального газа

**В работе используются:** звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер

**Теоретические сведения:** Скорость распространения звуковой волны в газах зависит от показателя адиабаты  $\gamma$ .

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \implies \gamma = \frac{\mu}{RT} c^2 \tag{1}$$

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отражённых волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2} \tag{2}$$

Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к её началу и вновь отражённая, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга  $\rightarrow$  амплитуда возрастает  $\rightarrow$  наступает резонанс.

При звуковых колбеаниях слои газа, прилегающие к торцам трубам, не испытваются смещения. Узлы смещения повторяются по всей длине трубы через  $\lambda/2$ . Между узлами находятся максимумы смещения (пучности).

Скорость звука связана с его частотой f и длиной волны  $\lambda$  соотношением  $c=\lambda f$ .

Подбор условий, при которых возникает резонанс, можно производить двумя способами: а) при неизменной частоте f и переменной L, тогда для последовательных резонансов  $L_{n+k} = n\lambda/2 + k\lambda/2$  б) при неизменной длине L и переменной f, тогда для последовательных резонансов:

$$L = \frac{\lambda_{k+1}}{2}(n+k) \tag{3}$$

Получаем:

$$f_{k+1} = f_1 + \frac{c}{2L}k\tag{4}$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

## Экспериментальная установка:



Описание работы установки: Звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО. Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Тонкая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колбания: при расчётах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

**Ход работы:**  $L=(370\pm 5mm)$  - длина трубы. p=767 мм. рт. ст. Плавно увеличивая частоту генератора, получим ряд последовательных резонансых значений частоты, отмечая момент резонанса по увелчиению амплитуды колебаний на экране осциллографа.

| к, номер резонанса | 1   | 2   | 3    | 5    | 6    | 7    |
|--------------------|-----|-----|------|------|------|------|
| f, Hz              | 477 | 931 | 1428 | 2315 | 2775 | 3238 |

Таблица 1: Измерения для  $t = 21 \pm 0.2^{o}C$ 

| к, номер резонанса | 1   | 2   | 3    | 5    | 6    | 7    |
|--------------------|-----|-----|------|------|------|------|
| f, Hz              | 482 | 941 | 1440 | 2342 | 2812 | 3827 |

Таблица 2: Измерения для  $t = 30 \pm 0.2^{o}C$ 

| к, номер резонанса | 1   | 2   | 3    | 4    | 5    | 6    |
|--------------------|-----|-----|------|------|------|------|
| f, Hz              | 489 | 958 | 1429 | 1967 | 2380 | 2853 |

Таблица 3: Измерения для  $t = 40 \pm 0.2^{o}C$ 

| k, номер резонанса | 1   | 2   | 3    | 4    | 5    |
|--------------------|-----|-----|------|------|------|
| f, Hz              | 499 | 972 | 1451 | 1935 | 2415 |

Таблица 4: Измерения для  $t = 50 \pm 0.2^{o}C$ 

Построим графики зависимостей  $f_{k+1} - f_1$  от k. Найдем коэффициенты наклона прямых:



$$k_1 = 460.5 \pm 3.0 Hz \tag{5}$$

$$k_2 = 466.3 \pm 1.6 Hz \tag{6}$$

$$k_3 = 476.7 \pm 5.5 Hz \tag{7}$$

$$k_4 = 478.3 \pm 0.7 Hz \tag{8}$$

Отсюда найдем скорости звука и показатели адиабат.

| № опыта | с, м/с          | $\gamma$        |
|---------|-----------------|-----------------|
| 1       | $340.8 \pm 5.1$ | $1.38 \pm 0.02$ |
| 2       | $345.1 \pm 4.8$ | $1.36 \pm 0.03$ |
| 3       | $352.8 \pm 6.2$ | $1.38 \pm 0.04$ |
| 3       | $354.0 \pm 4.8$ | $1.36 \pm 0.03$ |

Таблица 5: Полученные результаты

**Подведение итогов:** данный метод позволяет получить достаточно точные значения показателя адиабаты.

Большую погрешность в результат эксперминта вносит изменение температуры в помещение, а также возможная негерметичность трубы и примеси в газах.