

AOD4185/AOI4185

40V P-Channel MOSFET

General Description

The AOD4185/AOI4185 uses advanced trench technology to provide excellent R_{DS(ON)} and low gate charge. With the excellent thermal resistance of the DPAK/IPAK package, this device is well suited for high current applications.

- -RoHS Compliant
- -Halogen Free*

Features

 $\begin{aligned} &V_{DS} \; (V) = -40V \\ &I_{D} = -40A \\ &R_{DS(ON)} < 15 m\Omega \\ &R_{DS(ON)} < 20 m\Omega \end{aligned}$

 $(V_{GS} = -10V)$

 $(V_{GS} = -10V)$ $(V_{GS} = -4.5V)$

100% UIS Tested! 100% Rg Tested!

Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	-40	V		
Gate-Source Voltage		V_{GS}	±20	V		
Continuous Drain	T _C =25°C		-40			
Current ^{B,H}	T _C =100°C	I _D	-31	1		
Pulsed Drain Current ^C		I _{DM}	-115	_ A		
Avalanche Current ^C		I _{AR}	-42			
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	88	mJ		
	T _C =25°C	В	62.5			
Power Dissipation ^B	T _C =100°C	$-P_D$	31] w		
	T _A =25°C	В	2.5	7 vv		
Power Dissipation A	T _A =70°C	P _{DSM}	1.6	7		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C		

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A,G	t ≤ 10s	$R_{ hetaJA}$	15	20	°C/W			
Maximum Junction-to-Ambient A,G	Steady-State	Т⊕ЈА	41	50	°C/W			
Maximum Junction-to-Case D,F	Steady-State	$R_{\theta JC}$	2	2.4	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-40V, V _{GS} =0V			-1	μΑ
		T _J =55°C			-5	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.7	-1.9	-3	V
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V	-115			Α
		V _{GS} =-10V, I _D =-20A		12.5	15	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C		19	23	
		V _{GS} =-4.5V, I _D =-15A		16	20	
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-20A		50		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.72	-1	V
I _S	Maximum Body-Diode Continuous Curr	ent			-20	Α
DYNAMIC	PARAMETERS					
C_{iss}	Input Capacitance			2550		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-20V, f=1MHz		280		pF
C_{rss}	Reverse Transfer Capacitance			190		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	2.5	4	6	Ω
SWITCHI	NG PARAMETERS	-				
Q _g (-10V)	Total Gate Charge			42	55	nC
Q _g (-4.5V)	Total Gate Charge	V _{GS} =-10V, V _{DS} =-20V,		18.6		
Q_{gs}	Gate Source Charge	I _D =-20A		7		nC
Q_{gd}	Gate Drain Charge	1		8.6		nC
t _{D(on)}	Turn-On DelayTime			9.4		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-20V, R_L =1 Ω ,		20		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		55		ns
t _f	Turn-Off Fall Time	1		30		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-20A, dI/dt=100A/μs		38	49	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-20A, dI/dt=100A/μs		47		nC

A: The value of $R_{\theta,JA}$ is measured with the device in a still air environment with T $_A$ =25° C. The power dissipation P_{DSM} and current rating I_{DSM} are based on T_{J(MAX)}=150° C, using steady state junction-to-ambient thermal resistance.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

Rev.4.2: June 2024 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175° C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

H. The maximum current rating is limited by bond-wires.

^{*}This device is guaranteed green after data code 8X11 (Sep 1ST 2008).

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

-V_{DS} (Volts) Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

 ${
m -I_D}\,({\rm A})$ Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

Temperature (°C) Figure 4: On-Resistance vs. Junction **Temperature**

-V_{SD} (Volts) Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junctionto-Case (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note B)

T_{CASE} (° C)
Figure 13: Current De-rating (Note B)

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note G)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

