

GPS Beamforming with Low-cost RTL-SDRs

Wil Myrick, Ph.D.

September 13, 2017 GNU Radio Conference 2017

Recap from GRCon 2016

MWF Invented by Dr. Scott Goldstein and Dr. Irving Reed (1996)

Timeline |

GNU Radio Initial Release (2001) Revisited GPS Work and GNU Radio (2013)

Asynchronous Distributed Sensor Processing with FM SoOPs (2014)

Embedded GPS Research (2015)

GNSS-SDR GPS Processing

of Signal Processing
Experience
based G
Thesis v

Completed MWF based GPS STAP Ph.D. Thesis with Dr. Michael Zoltowski (2000)

Adjust the frequencies and phases based on tracking information from the RTL-SDRs

From GRCon16 to GRCon17

- ✓ Streamed 60 seconds of data from each RTL-SDR (2016)
- ✓ Demodulated navigation data for each detected channel (2016)
- ✓ Tracked delay, frequency, and phase from each RTL-SDR (2016)
- ✓ Time, frequency, and phase alignment based on RTL-SDRs sharing no common external references
- ✓ RTL-SDR based GPS beamformer with GNSS-SDR
- ✓ GPS position estimates from beamformed RTL-SDRs
- ✓ GNSS-SDR on Raspberry Pi 3

GNU Radio
Receiver based
on GNSS-SDR
Framework
(CTTC)

- Built on GNU Radio blocks
- Supports realtime positioning based on RTL-SDRs
- Supports
 custom
 algorithm
 integration

http://gnss-sdr.org/documentation/how-gnss-sdr-works

Robust Positioning, Navigation, and Timing (PNT)

Standard Beamforming Solutions

Spatial Beamforming enables a variety of solutions that provide Robust PNT on single platforms

IoT Devices

IoT devices with low SWAP-C could share PNT information potentially providing Robust PNT solutions for a group of IoT Devices

GPS Beamforming with RTL-SDRs

Typical Approaches to Synchronizing RTL-SDRs

Multi-RTL Approach

Typical approaches to leveraging multiple RTL-SDRs involve hardware modifications so a single clock source is shared between the RTL-SDRs

"Multi-RTL is GNU Radio block that transforms cheap multiple RTL-SDR receivers into multi-channel receiver" Reference: https://github.com/ptrkrysik/multi-rtl

Other References: http://superkuh.com/rtlsdr.html#clocks.align.multirtl

Overall RTL-SDR "Software" Synchronization Approach

RTL-SDR "Software" Synchronization Approach

Asynchronous Snapshots with RTL-SDRs

RTL-SDR software synchronization

GPS Acquisition across RTL-SDRs

RTL-SDRs provide varying GPS acquisition results

RTL-SDR 1	RTL-SDR 2	RTL-SDR 3	RTL-SDR 4
13	13	13	13
15	15	15	15
29*	29*	29*	29*
2	-	2	2
5	5	5	5
20	20	-	20

^{*} PRN 29 was used as reference transmitter for RTL-SDR synchronization

Coarse (Data) and Fine (Code) Synchronization

Coarse (Data) and Fine (Code) Synchronization

Carrier Phase Extraction on RTL-SDRs

Differential phase of PRN 29 relative to RTL-SDR 4

Carrier Phase Extraction on RTL-SDRs (PRN 29)

Carrier Phase Extraction on RTL-SDRs (PRN 15)

Carrier Phase Extraction on RTL-SDRs (PRN 13)

Carrier Phase Extraction on RTL-SDRs (PRN 2)

Carrier Phase Extraction on RTL-SDRs (PRN 20)

Carrier Phase Extraction on RTL-SDRs (PRN 5)

GPS Beamforming RTL-SDR Performance

GPS Acquisition across RTL-SDRs

GNSS-SDR operating on Raspberry Pi 3

```
myrickw - pi@raspberrypi: ~/Documents - ssh pi@192.168.0.1 - 119×26
Tracking of GPS L1 C/A signal started on channel 1 for satellite GPS PRN 05 (Block IIR-M)
Tracking of GPS L1 C/A signal started on channel 2 for satellite GPS PRN 10 (Block IIF)
Tracking of GPS L1 C/A signal started on channel 3 for satellite GPS PRN 13 (Block IIR)
Tracking of GPS L1 C/A signal started on channel 4 for satellite GPS PRN 15 (Block IIR-M)
Tracking of GPS L1 C/A signal started on channel 5 for satellite GPS PRN 18 (Block IIR)
Tracking of GPS L1 C/A signal started on channel 6 for satellite GPS PRN 20 (Block IIR)
Tracking of GPS L1 C/A signal started on channel 7 for satellite GPS PRN 21 (Block IIR)
Tracking of GPS L1 C/A signal started on channel 0 for satellite GPS PRN 29 (Block IIR-M)
Tracking of GPS L1 C/A signal started on channel 2 for satellite GPS PRN 12 (Block IIR-M)
Tracking of GPS L1 C/A signal started on channel 5 for satellite GPS PRN 19 (Block IIR)
Tracking of GPS L1 C/A signal started on channel 7 for satellite GPS PRN 02 (Block IIR)
Tracking of GPS L1 C/A signal started on channel 5 for satellite GPS PRN 12 (Block IIR-M)
Tracking of GPS L1 C/A signal started on channel 2 for satellite GPS PRN 18 (Block IIR)
```


RTL-SDR Beamformer Comparison (SDR 2)

RTL-SDR 2 Only

Best RTL-SDR Beamformer

RTL-SDR Beamformer Comparison (SDR 3)

RTL-SDR 3 Only

Best RTL-SDR Beamformer

RTL-SDR Beamformer Comparison (SDR 4)

RTL-SDR 4 Only

Best RTL-SDR Beamformer

Summary and Next Steps

- Initial results show feasibility of GPS beamforming utilizing RTL-SDRs without hardware modification
- "Software Synchronization" preprocessing approach of RTL-SDRs allow exploration of GPS beamforming leveraging existing GNSS-SDR processing architecture
- Plan to explore distributed GPS beamforming with a mixture of SDRs in a variety of environments

Questions?

Wilbur L. Myrick, Ph.D. myrick.wilbur@ensco.com (703) 321-4504

Ideas to Reality™