Solution

We need to find the Fourier transform of $R_X(\tau)$. We can do this by looking at a Fourier transform table or by finding the Fourier transform directly as follows.

$$egin{aligned} S_X(f) &= \mathcal{F}\{R_X(au)\} \ &= \int_{-\infty}^{\infty} e^{-a| au|} e^{-2j\pi f au} \ d au \ &= \int_{-\infty}^{0} e^{a au} e^{-2j\pi f au} \ d au + \int_{0}^{\infty} e^{-a au} e^{-2j\pi f au} \ d au \ &= rac{1}{a-j2\pi f} + rac{1}{a+j2\pi f} \ &= rac{2a}{a^2+4\pi^2 f^2}. \end{aligned}$$

Cross Spectral Density:

For two jointly WSS random processes X(t) and Y(t), we define the *cross spectral* density $S_{XY}(f)$ as the Fourier transform of the cross-correlation function $R_{XY}(\tau)$,

$$S_{XY}(f) = \mathcal{F}\{R_{XY}(au)\} = \int_{-\infty}^{\infty} R_{XY}(au) e^{-2j\pi f au} \; d au.$$