Дисциплина: Численные методы Лабораторное задание №1

Отчет

Тема: Интерполирование функции с помощью многочленов Эрмита по m точкам, в которых заданы значения функции и производных.

Выполнила: студентка 3 курса 62 группы Пахомова П.В.

Проверила: старший преподаватель Фролова О.А.

1. Постановка задачи

Входные параметры:

- X вектор значений аргументов в порядке возрастания (вектор узлов интерполяции);
- Ү вектор значений функции в узлах интерполяции;
- DY вектор значений производной функции в узлах интерполяции;
- N количество узлов интерполяции, в которых заданы значения функций;
- XX значение аргумента, при котором будет вычисляться интерполяционное значение функции;
- т количество точек, по которым строится многочлен Эрмита.

Выходные параметры:

YY – вычисленное интерполяционное значение функции в точке XX;

Метод. Вычисляется значение интерполяционного многочлена Эрмита в точке XX по значениям функции и её производных в точках, наименее удалённых от точки XX.

2. Теоретическая часть

1.4. Многочлены Эрмита

Построим интерполяционный многочлен, принимающий в узлах интерполирования x_i , $i=0,1,\ldots,n$ значения f_i и имеющий в них производ-

ные, равные $f_i^{'}$. Такие многочлены называются многочленами Эрмита. Ясно, что многочлен Эрмита имеет степень не меньше, чем 2n+1, поскольку должны быть удовлетворены 2n+2 условий. Аналогично коэффициентам Лагранжа $L_n^{(i)}(x)$ определим коэффициенты Эрмита $H_i(x)$ и $h_i(x)$. Коэффициенты Эрмита — это многочлены степени 2n+1, удовлетворяющие условиям:

$$H_i(x_j) = \delta_{ij};$$
 $h_i(x_j) = 0;$ $i, j = 0,1,...,n.$ (13)
 $H'_i(x_j) = 0;$ $h'_i(x_j) = \delta_{ij};$

Построим многочлен $h_i(x)$. Если $h_i(x_j) = h_i^{'}(x_j) = 0$ при $i \neq j$, то $h_i(x)$ должен содержать множители $(x-x_j)^2$. Так как $h_i(x_i) = 0$, то $h_i(x)$ должен содержать простой множитель $(x-x_i)$. Для того чтобы $h_i^{'}(x_i) = 1$, нужно взять

$$h_i(x) = \frac{(x - x_0)^2 (x - x_1)^2 \dots (x - x_{i-1})^2 (x - x_i) (x - x_{i+1})^2 \dots (x - x_n)^2}{(x_i - x_0)^2 (x_i - x_1)^2 \dots (x_i - x_{i-1})^2 (x_i - x_{i+1})^2 \dots (x_i - x_n)^2}.$$
 (14)

Построение многочлена $H_i(x)$ похоже на построение многочлена $h_i(x)$. Многочлен $H_i(x)$ должен иметь множители $(x-x_j)^2$ для $i \neq j$ и простой множитель (a_ix+b_i) . Будем искать $H_i(x)$ в виде:

$$H_i(x) = \frac{(x-x_0)^2(x-x_1)^2 \dots (x-x_{i-1})^2 (a_i x + b_i)(x-x_{i+1})^2 \dots (x-x_n)^2}{(x_i-x_0)^2 (x_i-x_1)^2 \dots (x_i-x_{i-1})^2 (x_i-x_{i+1})^2 \dots (x_i-x_n)^2}.$$
 (15)

Продифференцировав выражение $H_{i}(x)$ и подставив в производную $H_{i}^{'}(x)$ значение $x=x_{i}$, получим

$$H_i'(x_i) = \frac{2}{x_i - x_1} + \frac{2}{x_i - x_2} + \dots + \frac{2}{x_i - x_{i-1}} + a_i + \frac{2}{x_i - x_{i+1}} + \dots + \frac{2}{x_i - x_n}$$

По определению коэффициента Эрмита $H_{i}^{'}(x_{i})=0$ и $H_{i}(x_{i})=1$. Следовательно, необходимо положить

$$a_i = -2\sum_{k=0, k \neq i}^{n} \frac{1}{x_i - x_k}, \quad b_i = 1 - a_i x_i$$
 (16)

Итак, требуемая формула (15) для коэффициентов Эрмита $H_i(x)$ построена. Теперь записать многочлены Эрмита не представляет труда:

$$H(x) = \sum_{i=0}^{n} (H_i(x)f_i + h_i(x)f_i'). \tag{17}$$

Заметив, что коэффициенты Эрмита (14), (15) связаны соотношениями

$$H_i(x) = (a_i x + b_i) \cdot h_i(x),$$

$$(x - x_i)$$
(18)

$$H_{i}(x) = (a_{i}x + b_{i}) \cdot h_{i}(x) \,, \tag{18}$$
 запишем многочлен Эрмита в иной, более удобной для вычислений форме:
$$H(x) = \sum_{i=0}^{n} [(a_{i}x + b_{i})f_{i} + f_{i}^{'})] \cdot h_{i}(x) \,. \tag{19}$$

Во время сдачи преподавателю программы студент на ряде тестовых примеров, которые подготавливает самостоятельно, должен показать, что его программа работает в соответствии с заданием. Построение тестовых примеров требует глубокого понимания программируемого метода и не должно сопровождаться большой вычислительной работой. Ниже приведён ряд общих замечаний относительно разработки тестовых примеров.

Замечание 1 (об определении значения функции в точке x^* с помощью интерполяционного многочлена степени m). Если дана таблица значений $x_i, y_i, i = 0,1,...,n$ и требуется вычислить значение табулированной функции в точке x^* , построив многочлен степени m по ближайшим к x^* точкам, то нужно показать, что:

- а) действительно строится многочлен степени т и на выход подаётся значение этого многочлена в точке x^* :
 - b) многочлен строится по ближайшим точкам;
- с) в исходной таблице содержится достаточное количество точек для построения многочлен степени m, то есть точек больше, чем m. Последнее требование тестируется очевидным образом. Поэтому полагаем, что в исходной таблице достаточно много точек. Тестирование требований а, b рассмотрим на примере, взяв m=3, то есть многочлен должен строиться по четырём ближайшим к x^* точкам.

Выберем такой набор узлов x_i , i = 0,1,...,n, в котором четыре последовательных узла $x_j, x_{j+1}, x_{j+2}x_{j+3}$ находятся на значительном расстоянии от остальных узлов.

Тогда в точках $x_k^*, k = 0,1,2,3,4$ приближённые значения функции должны определяться значениями многочлена $P_{3}(x)$, построенного по точкам $x_{i}, x_{i+1}, x_{i+2}x_{i+3}$:

Возьмём некоторый конкретный многочлен $\widetilde{P}_3(x)$ и положим в узлах $x_k, k=j, j+1, j+2, j+3$ табличные значения y_k равными значениям многочлена $\widetilde{P}_3(x)$. В остальных узлах $x_i, i=0,1,...,n, \ i\neq j, j+1, j+2, j+3$ табличные значения не есть значения многочлена $\widetilde{P}_3(x)$, а равны, к примеру, $1000+\widetilde{P}_3(x)$. Построив описанную выше входную таблицу, можно провести пять тестов: зададимся некоторым конкретным многочленом $\widetilde{P}_3(x)$, программно вычислим значения в точке $x_k^*, k=0,1,2,3,4$. Полученные значения должны совпадать со значениями $\widetilde{P}_3(x_k^*)$. Этими тестами мы показываем, что в самом деле строится многочлен третьей степени по ближайшим к x_j^* узлам таблицы при любом взаимном расположении узлов и точки x_j^* .

Теперь возьмём произвольную сетку узлов x_i , $i=0,1,...,n,\ n>3$ и произвольное x^* , $x_0 < x^* < x_n$. Проведём три теста: во всех узлах сетки значения y_i , i=0,1,...,n присвоим значения $y_i=Q_0(x_i)$ в первом тесте, $y_i=Q_1(x_i)$ во втором, $y_i=Q_2(x_i)$ в третьем, где $Q_0(x)$, $Q_1(x)$, $Q_2(x)$ - многочлены нулевой, первой и второй степени соответственно. Поскольку многочлены $Q_0(x)$, $Q_1(x)$, $Q_2(x)$ формально являются многочленами третьей степени, вычисленные программные значения функции в точке x^* должны быть равны $Q_0(x^*)$, $Q_1(x^*)$, $Q_2(x^*)$.

3. Алгоритм

- 1. Инициализация:
- Входные параметры: массивы

X, Y, DY,

значение

XX

и количество ближайших точек т.

- Переменные: YY (результат интерполяции), closestPoints (ближайшие точки к XX).
- 2. Нахождение ближайших точек:
- Для каждого элемента массива X находим разницу с XX и сортируем пары по этой разнице.
 - Выбираем т пар с наименьшей разницей как ближайшие точки.
- 3. Вычисление интерполяционного значения ҮҮ:
 - Для каждой ближайшей точки:
 - 1. Находим индекс выбранной точки idx.
 - 2. Вычисляем многочлен L:

$$L = \prod_{j=0}^{m-1} \left(rac{(XX - X[closestPoints[j].second])^2}{(X[idx] - X[closestPoints[j].second])^2}
ight)$$

3. Вычисляем значение Н:

$$H = (XX - X[idx]) \cdot L$$

4. Вычисляем значение а , учитывая условие :

$$a = -4 \cdot \sum_{j=0}^{m-1} rac{1}{X[idx] - X[closestPoints[j].second]}$$

5. Вычисляем значение b:

$$b = 1 - a \cdot X[idx]$$

6. Обновляем YY с учетом текущей точки:

$$YY+=\left(rac{(a\cdot XX+b)\cdot Y[idx]}{XX-X[idx]}+DY[idx]
ight)\cdot H$$

- 4. Возвращение результата:
 - Возвращаем значение YY как результат интерполяции в точке XX.

Тестирование

№ теста	Функция	X	Y	DY	XX	m	Ожид аемы й резул ьтат	Получе нный результ ат
1	x^2	[1.0, 2.0, 3.0, 4.0, 5.0]	[1.0, 4.0, 9.0, 16.0, 25.0]	[2.0, 4.0, 6.0, 8.0, 10.0]	2.5	1	6.25	6.0
2	χ^2	[1.0, 2.0, 3.0]	[0.0, 1.0, 4.0, 9.0]	[2.0, 4.0, 6.0, 8.0]	1.5	2	2.25	2.25
3	x^2	[2.0, 4.0, 6.0, 8.0, 10.0]	[4.0, 16.0, 36.0, 64.0, 100.0]	[4.0, 8.0, 12.0, 16.0, 20.0]	5.0	3	25.0	250
4	$x^4 + 2x^3 + 3x^2 + 4x$	[1.0, 2.0, 3.0, 4.0, 5.0]	[10.0, 52.0, 174.0, 448.0, 970.0]	[20.0, 72.0, 184.0, 380.0, 684.0]	2.5	1	99.06 25	88.0
5	$x^4 + 2x^3 + 3x^2 + 4x$	[1.0, 2.0, 3.0, 4.0, 5.0]	[10.0, 52.0, 174.0, 448.0, 970.0]	[20.0, 72.0, 184.0, 380.0, 684.0]	2.5	2	99.06 25	99.0
6	$x^4 + 2x^3 + 3x^2 + 4x$	[1.0, 2.0, 3.0, 4.0, 5.0]	[10.0, 52.0, 174.0, 448.0, 970.0]	[20.0, 72.0, 184.0, 380.0, 684.0]	2.5	3	99.06 25	99.0625
7	$x^4 + 2x^3 + 3x^2 + 4x$	[1.0, 2.0, 3.0, 4.0, 5.0]	[10.0, 52.0, 174.0, 448.0, 970.0]	[20.0, 72.0, 184.0, 380.0, 684.0]	2.5	4	99.06 25	99.0625
8	1000	[-1000 -999 1 2 3 4 5 1000]	[1000 1000 1000]	[1000 1000 2 4 6 8 10 1000]	3.1	3	1000	1000.57 519
9	1000	[-1000 -999 1 2 3 4 5 1000]	[1000 1000 1000]	[1000 1000 2 4 6 8 10 1000]	1.1	3	1000	999.993 16
10	1000	[-1000 -999 1 2 3 4 5 1000]	[1000 1000 1000]	[1000 1000 2 4 6 8 10 1000]	-500	3	1000	6.24997 1981265 587E10
11	X+1	[1.0, 2.0, 3.0, 4.0, 5.0]	[2.0, 3.0, 4.0, 5.0, 6.0]	[1.0, 1.0, 1.0, 1.0, 1.0]	2.5	2	3.5	3.5
12	χ^2	[1.0, 2.0, 3.0, 4.0, 5.0]	[1.0, 4.0, 9.0, 16.0, 25.0]	[2.0, 4.0, 6.0, 8.0, 10.0]	2.5	3	6.25	6.25
13	x^3	[1.0, 2.0, 3.0, 4.0, 5.0]	[1.0, 8.0, 27.0, 64.0, 125.0]	[3.0, 12.0, 27.0, 48.0, 75.0]	2.5	4	15.625	15.625

Примеры 1-7 показывают, что при использовании функции hermiteInterpolation с заданными значениями X, Y, DY, XX и m, программа для многочлена степени 2 и 4 вычисляет значение этого многочлена в точке XX даже если m, количество точек, меньше степени+1 многочлена.

Примеры 8-10 демонстрируют работу функции hermiteInterpolation и её точность в зависимости от удалённости точек, этими тестами мы так же показываем, что строится многочлен по ближайшим к XX узлам таблицы при любом взаимном расположении узлов и точки XX

Примеры 11-13 показывают, что действительно строится многочлен степени n и на выход подаётся значение этого многочлена в точке XX