Improved Lower Bounds for Pointer Chasing via Gadgetless Lifting

Xinyu Mao, Guangxu Yang, and Jiapeng Zhang

University of Southern California

2024/05/24 @Complexity Network

Round Communication Trade-Off and Pointer Chasing

Round communication trade-off

Do more rounds of interaction allow two parties to solve problems with less communication?

Example. Parity and constant-depth circuits

Theorem. Any circuit of depth d that computes \bigoplus_n must be of size $\Omega^{\left(2^{n^{\frac{1}{d-1}}}\right)}$.

Karchmer-Wigderson game KW_f .

- Alice holds $x \in f^{-1}(0)$, Bob holds $y \in f^{-1}(1)$.
- They want to find an index i such that $x_i \neq y_i$.

Depth d, size S circuit computing $f \Leftrightarrow d$ round protocol for KW_f with $\log S$ communication

Corollary. Any d-round protocol that computes KW_{\bigoplus_n} must communicate $\Omega\left(n^{\frac{1}{d-1}}\right)$ bits.

The pointer chasing problem

- ▶ Alice holds $f_A \in [n]^n$, Bob hold $f_B \in [n]^n$.
- ▶ The k step pointer chasing function $PC_k: [n]^n \times [n]^n \to \{0,1\}$
 - $ightharpoonup pt_0 := 1$
 - \blacktriangleright for odd r's, $pt_r := f_A(pt_{r-1})$
 - \blacktriangleright for even r's, $pt_r \coloneqq f_B(pt_{r-1})$
 - $ightharpoonup PC_k(f_A, f_B) \coloneqq pt_k \bmod 2.$

Theorem (Yehudayoff 2016). Any randomized (k-1)-round protocol for PC_k that is correct with probability 0.9 requires $\Omega\left(\frac{n}{k}-k\log n\right)$ bits of communication.

This work. $\Omega\left(\frac{n}{k}\right)$ lower bound via a completely different, combinatorial proof.

A simple class of protocols for pointer chasing

- ▶ Alice and Bob choose a subset $I \subseteq [n]$ of size $S := 10 \frac{n}{k}$ uniformly at random, and then send $f_A(I)$ and $f_B(I)$ to the other party.
- Alice and Bob run the naïve (k rounds) protocol, but they can skip one round if the pointer falls into I.
- If the skip round never happens, Alice and Bob simply abort at the last round.
- ▶ The skip round event happen with high probability.

Gadgetless Lifting

Gadgetless lifting

- ▶ Identify a simple class of protocols \mathcal{K} .
- ▶ Prove lower bound for these simple protocols.
- ▶ Prove that every protocol can be simulated by a combination of simple protocols.

$$\mathcal{CC}(f) \coloneqq \min_{\Pi:\Pi \text{ computes } f} \mathcal{CC}(\Pi) = \min_{\Pi \in \mathcal{K}} \mathcal{CC}(\Pi) =: \mathcal{CC}_{\mathcal{K}}(\Pi).$$

For pointer chasing, \mathcal{K} is the set of protocols where Alice and Bob only send values of some coordinate to each other.

Lifting theorems

- ▶ Let $g: \{0,1\}^q \times \{0,1\}^q \rightarrow \{0,1\}$ be a **gadget** function.
- ► Consider functions of the form $f \circ g^n$ for some outer function $f: \{0,1\}^n \to \{0,1\}$, $(f \circ g^n) \big((x_1, y_1), \dots, (x_n y_n) \big) \coloneqq f \big(g(x_1, y_1), \dots, g(x_n, y_n) \big).$

 $CC(f \circ g^n) = \Omega(Q(f) \cdot q)$, where Q(f) denotes the query complexity of f.

- ▶ Not all functions can be written as $f \circ g^n$.
- ightharpoonup Often need q to be large.
 - \blacktriangleright Proving lift theorems for constant gadget size q is very hard and has many implications.

Decomposition and Sampling Process

Density restoring partition

Def. For a random variable X, its min-entropy is defined as $H_{\infty}(X) := \log \frac{1}{\max_{x} \Pr[X=x]}$.

Def. We say a random variable X over $[n]^J$ is γ -dense if $\mathbf{H}_{\infty}(X(I)) \geq \gamma \log n \ |I|$ for all $I \subseteq J$.

For a set X, X := uniform distribution over X.

Theorem([GPW17]). For any $X \subseteq [n]^J$, there is a partition $X = X^1 \cup \cdots \cup X^r$ and each X^i is associated with a set I_i with the following properties.

- X^i is fixed on I_i : there exists some $\alpha_i \in [n]^{I_i}$ such that $x(I_i) = \alpha_i$ for all $x \in X^i$.
- $X^i(J \setminus I_i)$ is γ -dense.
- $\mathbf{D}_{\infty}\left(\mathbf{X}^{i}(J\setminus I_{i})\right) \leq \mathbf{D}_{\infty}(X) (1-\gamma)\log n |I_{i}| + \delta_{i} \text{ where } \delta_{i} = \log \frac{|X|}{|\cup_{j\geq i}X^{j}|}$.
- ▶ $\mathbf{D}_{\infty}(X) \coloneqq |J| \log n \mathbf{H}_{\infty}(X)$ if X is supported on $[n]^J$.

 dense I_i

Protocol tree

- ightharpoonup For each internal vertex v,
 - ightharpoonup v is owned by either Alice or Bob
 - ▶ v corresponds to a rectangle $\Pi_v = X_v \times Y_v$, the input that leads to v.
 - $\triangleright v$ has two children u_0, u_1
 - ▶ If v is owned by Alice, $X_{u_0} \cup X_{u_1}$ is a partition of X_v and $Y_{u_0} = Y_{u_1} = Y$.
 - ▶ If v is owned by Bob, $Y_{u_0} \cup Y_{u_1}$ is a partition of Y_v and $X_{u_0} = X_{u_1} = X$.
- ► Each leaf specifies an output.

Yao's min-max principle

To prove lower bound for all **randomized** protocols, it suffices to prove lower bound for all **deterministic** protocols under some input distribution μ .

Here we let μ to be the uniform distribution on all inputs $[n]^n \times [n]^n$.

Decomposition and sampling process $DS(\Pi)$

Initialization: $X := Y := [n]^n$, $J_A := J_B := [n]$, skip := false, r := 0, v := root.

 $\Pr[DS(\Pi) \text{ outputs } R] = \frac{1}{|\text{all inputs }|}$ Input: A protocol Π Output: A rectangle $R = X \times Y \subseteq [n]^n \times [n]^n$, I_A , $I_B \subseteq [n]$.

- Partition X into $X = X^0 \cup X^1$ according to node v.
- 2. Sample $\boldsymbol{b} \in \{0,1\}$ such that $\Pr[\boldsymbol{b} = b] = \frac{|X^B|}{|X|}$.
- 3. Update $X := X^b$, $v := u_b$.
- 4. If u_h is owned by Bob:
 - ▶ Further partition X into $X = X^0 \cup X^1$ where $X^b := \{f_A \in X : f_A(z_{r-1}) \bmod 2 = b\}$.
 - ▶ Sample $\boldsymbol{b} \in \{0,1\}$ such that $\Pr[\boldsymbol{b} = b] = \frac{|X^b|}{|X|}$.
 - \blacktriangleright Update $X := X^b, r := r + 1$.
- 5. Let $X = X^1 \cup \cdots \cup X^m$ be density restoring partition of X with associated I_1, \ldots, I_m .
- Sample a random element $j \in [m]$ such that $\Pr[j = j] = \frac{|X^{j}|}{|X|}$ for $j \in [m]$.
- 7. Update $X := X^j$, $I_A := I_A \setminus I_i$.
- 8. If u_h is owned by Bob $z_{r-1} \notin J_B$, skip := true.

1|1|4|5|1|4|1|

 X_{I_i} is fixed; X_{I_A} is dense.

Suppose Alice owns node v. Let u_0, u_1 be the children of v.

> As a new round begins, we do an extra partition to fix the parity of pt_r .

Loop invariant

```
Input: A protocol \Pi
Output: A rectangle R = X \times Y \subseteq [n]^n \times [n]^n, J_A, J_B \subseteq [n].
Initialization: X \coloneqq Y \coloneqq [n]^n, J_A \coloneqq J_B \coloneqq [n], skip \coloneqq false, r \coloneqq 0, v \coloneqq root.
```

Lemma. Set $\gamma \coloneqq 1 - \frac{0.1}{\log n}$. Then in the running of $DS(\Pi)$, we have the following loop invariants: After each iteration,

- $ightharpoonup X \times Y \subseteq \Pi_v$.
- \blacktriangleright $X(J_A), Y(J_B)$ are γ -dense.
- ► There exists some $\alpha_A \in [n]^{\overline{J_A}}$, $\alpha_B \in [n]^{\overline{J_B}}$ such that $x(\overline{J_A}) = \alpha_A$, $y(\overline{J_B}) = \alpha_B$ for all $x \in X$, $y \in Y$.
- ▶ There exists some $z_r \in [n]$ such that $pt_r(f_A, f_B) = z_r$ for all $f_A \in X$, $f_B \in Y$.

We only fix the party but the density restoring partition helps to fix pt_r . This is way we save the $k \log n$ factor in the previous result.

Relating accuracy and average fixed size

Input: A protocol Π

Output: A rectangle $R = X \times Y \subseteq [n]^n \times [n]^n$, J_A , $J_B \subseteq [n]$.

Initialization: $X := Y := [n]^n$, $J_A := J_B := [n]$, skip := false, r := 0, v := root.

Lemma. If $DS(\Pi)$ outputs $(R = X \times Y, J_A, J_B)$ and skip = false in the end, then

$$\Pr_{(f_A, f_B) \leftarrow R} [\Pi(f_A, f_B) = PC_k(f_A, f_B)] \le \frac{2^{0.1}}{2}.$$

Lemma. $\Pr[\text{skip} = true] \leq \frac{2^{0.1}}{n} \cdot k \cdot \mathbf{E}[|\overline{J_A}| + |\overline{J_B}|].$

Union bound for k rounds

If we can prove
$$\mathbf{E}[|\overline{J_A}| + |\overline{J_B}|] = O(c)$$
, then we have
$$\frac{2^{0.1}}{n} \cdot k \cdot O(c) = \Omega(1) \Rightarrow c = \Omega\left(\frac{n}{k}\right).$$

Average fixed size is bounded by communication: A density increment argument

In the running of $DS(\Pi)$, we track the value of the following value:

$$D_{\infty}(R) := D_{\infty}(X(J_A)) + D_{\infty}(Y(J_B)).$$

$$\mathbf{D}_{\infty}(X) \coloneqq |J| \log n - \mathbf{H}_{\infty}(X)$$

- In the beginning, $D_{\infty}([n]^n \times [n]^n) = 0$.
- In expectation (over the choice of b), each communication bit/new round increase $D_{\infty}(R)$ by at most 1:

$$\frac{|X^0|}{|X|}\log\frac{|X^0|}{|X|} + \frac{|X^1|}{|X|}\log\frac{|X^1|}{|X|} \le 1.$$
 Since X is fixed outside J_A , $X(J_A)$ is a uniform distribution.

- ▶ In expectation (over the choice of j), $D_{\infty}(R)$ decreases by at least $(1 \gamma) \log n \mathbf{E}_{i}[|I_{i}|] + 1$.

 - $\blacktriangleright \mathbf{E}_{j}[\delta_{j}] = \sum_{j} p_{j} \delta_{j} = \sum_{j} p_{j} \log \frac{1}{\sum_{t>j} p_{t}} \leq \int_{0}^{1} \frac{1}{1-x} dx \leq 1.$

$$p_j \coloneqq \frac{\left|X^j\right|}{\left|X\right|}$$

▶
$$D_{\infty}(R) \ge 0 \rightarrow \mathbf{E}[|\overline{J_A}| + |\overline{J_B}|] = \mathbf{E}[|I_1| + |I_2| + \dots +] \le O\left(\frac{c}{(1-\gamma)\log n}\right)$$
. total increment \ge total decrement.

Not a round-by-round bound!

Recap

- ▶ The decomposition and sampling process: Use density restoring partition to decompose the behavior of Π into the combination of simple protocols (i.e., fixing some coordinates).
- ► Relating accuracy and **average fixed size**.
- ► Average fixed size is bounded by communication.

Discussion

- More generic density restoring partition?
- ▶ Open question: Can we prove parity not in AC0 using a top-down approach?
 - ► [RSS' FOCS 23] gave a proof for depth 4 circuits.
- ► Round communication trade-off for other problems?

Theorem. Any randomized (k-1)-round protocol (where Alice speaks first) for PC_k that is correct with probability 0.9 requires $\Omega\left(\frac{n}{k}\right)$ bits of communication.

Thanks for listening ©

Appendix: Proof of density restoring partition lemma

A greedy algorithm

- Input: $X \subseteq [n]^J$.
- Output: a partition $X = X^1 \cup \cdots \cup X^m$ and $I_1, \ldots, I_m \subseteq [J]$.
- While $X \neq \emptyset$
 - I. Find the maximal $I \subseteq J$ such that X_I is not γ -dense.
 - $\exists \alpha_i \in [n]^I \text{ s. t. } \Pr_{x \leftarrow X}[x(I) = \alpha_i] \ge n^{-\gamma|I|}.$
 - 2. $X^i := \{x \in X : x(I) = \alpha_i\}, I_i := I$.
 - 3. $X := X \setminus X^i$, $J := J \setminus I_i$, i := i + 1.
- ▶ X^i is fixed on I_i by construction.
- ▶ $X^i(J \setminus I_i)$ is γ -dense: if not, then $\exists K \subseteq J \setminus I_i$ that violates the min-entropy condition at the moment I_i is chosen.

 - ▶ $I_i \cup K$ violates the maximality of I_i .