# Elliptic Curves

Lectured by Prof Tom Fisher Typed by David Kurniadi Angdinata

Michaelmas 2020

Syllabus

Elliptic Curves Contents

# Contents

| 1        | Fermat's method of infinite descent |                                     |    |
|----------|-------------------------------------|-------------------------------------|----|
|          | 1.1                                 | Primitive triangles                 | 3  |
|          |                                     | A variant for polynomials           |    |
| <b>2</b> |                                     |                                     |    |
|          | 2.1                                 | Rational curves                     | 5  |
|          |                                     | Order of vanishing                  |    |
|          |                                     | Riemann Roch spaces                 |    |
|          |                                     | The degree of a morphism            |    |
| 3        | Weie                                | erstrass equations                  | 8  |
|          |                                     | The Weierstrass form                | 8  |
| 4        | Grou                                | ıp law                              | 10 |
|          |                                     | The Picard group law                | 10 |
|          |                                     | Explicit formulae for the group law |    |
|          |                                     | Maps on an elliptic curve           |    |
|          |                                     | Elliptic curves over $\mathbb C$    |    |
|          |                                     | Group structure over other fields   |    |
| 5        | Isoge                               | enies                               | 14 |
| -        |                                     | Basic properties                    | 14 |
|          |                                     | The degree quadratic form           |    |

## 1 Fermat's method of infinite descent

The following are the books.

- J H Silverman, The arithmetic of elliptic curves, 1986
- J W S Cassels, Lectures on elliptic curves, 1991
- J H Silverman and J Tate, Rational points on elliptic curves, 1992
- J S Milne, Elliptic curves, 2006

## 1.1 Primitive triangles

**Definition.** Let  $\Delta = \Delta(a, b, c)$  be a right triangle



so  $a^2 + b^2 = c^2$  and the area of  $\Delta$  is  $\frac{1}{2}ab$ . Then  $\Delta$  is **rational** if  $a, b, c \in \mathbb{Q}$ , and  $\Delta$  is **primitive** if  $a, b, c \in \mathbb{Z}$  are coprime.

**Lemma 1.1.** Every primitive triangle is of the form  $\Delta \left(u^2 - v^2, 2uv, u^2 + v^2\right)$  for some  $u, v \in \mathbb{Z}$  such that u > v > 0.

*Proof.* Without loss of generality a is odd, b is even, and c is odd, so  $(b/2)^2 = ((c+a)/2)((c-a)/2)$  is a product of coprime positive integers. By unique prime factorisation in  $\mathbb{Z}$ ,

$$\frac{c+a}{2} = u^2, \qquad \frac{c-a}{2} = v^2, \qquad u, v \in \mathbb{Z},$$

so  $a = u^2 - v^2$ , b = 2uv, and  $c = u^2 + v^2$ .

**Definition.**  $D \in \mathbb{Q}_{>0}$  is a **congruent number** if there exists a rational triangle  $\Delta$  with area D.

Note that it suffices to consider  $D \in \mathbb{Z}_{>0}$  squarefree.

**Example.** D = 5.6 are congruent numbers.

**Lemma 1.2.**  $D \in \mathbb{Q}_{>0}$  is congruent if and only if  $Dy^2 = x^3 - x$  for some  $x, y \in \mathbb{Q}$  such that  $y \neq 0$ .

*Proof.* Lemma 1.1 shows D is congruent if and only if  $Dw^2 = uv\left(u^2 - v^2\right)$  for some  $u, v, w \in \mathbb{Q}$  such that  $w \neq 0$ . Put x = u/v and  $y = w/v^2$ .

Fermat showed that 1 is not a congruent number.

**Theorem 1.3.** There is no solution to

$$w^{2} = uv(u+v)(u-v), \qquad u, v, w \in \mathbb{Z}, \qquad w \neq 0.$$
(1)

*Proof.* Without loss of generality u and v are coprime, and u>0 and w>0. If v<0 then replace (u,v,w) by (-v,u,w). If  $u\equiv v\mod 2$  then replace (u,v,w) by ((u+v)/2,(u-v)/2,w/2). Then u,v,u+v,u-v are pairwise coprime positive integers whose product is a square. By unique factorisation in  $\mathbb{Z}$ ,

$$u = a^2$$
,  $v = b^2$ ,  $u + v = c^2$ ,  $u - v = d^2$ ,  $a, b, c, d \in \mathbb{Z}_{>0}$ .

Since  $u \not\equiv v \mod 2$  both c and d are odd. Then  $((c+d)/2)^2 + ((c-d)/2)^2 = (c^2+d^2)/2 = u = a^2$ , so  $\Delta\left((c+d)/2,(c-d)/2,a\right)$  is a primitive triangle. Its area is  $(c^2-d^2)/8 = v/4 = (b/2)^2$ . Let  $w_1 = b/2$ . By Lemma 1.1,  $w_1^2 = u_1v_1\left(u_1^2-v_1^2\right)$  for some  $u_1,v_1\in\mathbb{Z}$ , that is we have a new solution to (1). But  $4w_1^2 = b^2 = v \mid w^2$ , so  $w_1 \leq w/2$ . So by Fermat's method of infinite descent, there is no solution to (1).

Lecture 1 Friday 09/10/20

## 1.2 A variant for polynomials

In this section, K is a field with ch  $K \neq 2$ , with algebraic closure  $\overline{K}$ .

**Lemma 1.4.** Let  $u, v \in K[t]$  be coprime. If  $\alpha u + \beta v$  is a square for four distinct  $(\alpha : \beta) \in \mathbb{P}^1$  then  $u, v \in K$ .

*Proof.* Without loss of generality  $K = \overline{K}$ . Changing coordinates on  $\mathbb{P}^1$  we may assume the ratios  $(\alpha : \beta)$  are (1:0), (0:1), (1:-1),  $(1:-\lambda)$  for some  $\lambda \in K \setminus \{0,1\}$ . Then  $u=a^2$  and  $v=b^2$  for some  $a,b \in K$  [t], so u-v=(a+b) (a-b) and  $u-\lambda v=(a+\mu b)$   $(a-\mu b)$  for  $\mu=\sqrt{\lambda}$ . By unique factorisation in K [t],  $a+b,a-b,a+\mu b,a-\mu b$  are squares. But max  $(\deg a,\deg b)\leq \frac{1}{2}$  max  $(\deg u,\deg v)$ . So by Fermat's method of infinite descent  $u,v\in K$ .

#### Definition 1.5.

- An elliptic curve E/K is the projective closure of the plane affine curve  $y^2 = f(x)$  where  $f \in K[x]$  is a monic cubic polynomial with distinct roots in  $\overline{K}$ .
- For L/K any field extension

$$E(L) = \{(x, y) \in L^2 \mid y^2 = f(x)\} \cup \{\mathcal{O}\},\$$

where  $\mathcal{O}$  is the **point at infinity**.

**Fact.** E(L) is naturally an abelian group.

In this course we study E(L) for L a finite field, a local field  $[L:\mathbb{Q}_p]<\infty$ , or a number field  $[L:\mathbb{Q}]<\infty$ . By Lemma 1.2 and Theorem 1.3, if E is  $y^2=x^3-x$  then  $E(\mathbb{Q})=\{\mathcal{O},(0,0),(\pm 1,0)\}$ .

Corollary 1.6. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

*Proof.* Without loss of generality  $K = \overline{K}$ . By a change of coordinates we may assume E is

$$y^2 = x(x-1)(x-\lambda), \qquad \lambda \in K \setminus \{0,1\}.$$

Suppose  $(x,y) \in E(K(t))$ . Write x = u/v for  $u,v \in K[t]$  coprime. Then  $w^2 = uv(u-v)(u-\lambda v)$  for some  $w \in K[t]$ . By unique factorisation in K[t],  $u,v,u-v,u-\lambda v$  are all squares. By Lemma 1.4,  $u,v \in K$ , so  $x,y \in K$ .

# 2 Some remarks on algebraic curves

Work over  $K = \overline{K}$ .

Lecture 2 Monday 12/10/20

## 2.1 Rational curves

**Definition 2.1.** A plane algebraic curve  $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$  for an irreducible polynomial f is **rational** if it has a rational parameterisation, that is there exists  $\phi, \psi \in K(t)$  such that

$$\begin{array}{ccc} \mathbb{A}^{1} & \longrightarrow & \mathbb{A}^{2} \\ t & \longmapsto & \left(\phi\left(t\right), \psi\left(t\right)\right) \end{array}$$

is injective on  $\mathbb{A}^1$  minus a finite set, and  $f(\phi(t), \psi(t)) = 0$ .

#### Example 2.2.

• Any nonsingular plane conic is rational. For example, let  $x^2 + y^2 = 1$ . The line of slope t at (-1,0) is y = t(x+1). Their intersection is  $x^2 + t^2(x+1)^2 = 1$ , so  $(x+1)(x-1+t^2(x+1)) = 0$ . Thus x = -1 or  $x = (1-t^2)/(1+t^2)$ . The rational parameterisation is

$$(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right).$$

• Any singular plane cubic is rational. For example, let  $y^2 = x^3$ . The line of slope t at (0,0) is y = tx. The rational parameterisation is

$$(x,y) = (t^2, t^3).$$

• Corollary 1.6 shows that elliptic curves are not rational.

**Remark 2.3.** The genus  $g(C) \in \mathbb{Z}_{>0}$  is an invariant of a smooth projective curve C.

- If  $K = \mathbb{C}$  then g(C) is the genus of a Riemann surface.
- A smooth plane curve  $C \subset \mathbb{P}^2$  of degree d has genus g(C) = (d-1)(d-2)/2.

**Proposition 2.4.** Still assuming  $K = \overline{K}$ , let C be a smooth projective curve.

- 1. C is rational as in Definition 2.1 if and only if g(C) = 0.
- 2. C is an elliptic curve as in Definition 1.5 if and only if g(C) = 1.

Proof.

- 1. Omitted.
- 2. For  $\implies$ , use Remark 2.3. For  $\iff$ , see later Theorem 3.1.

2.2 Order of vanishing

Let C be an algebraic curve, with function field K(C). Let  $P \in C$  be a smooth point. Write ord<sub>P</sub> f for the order of vanishing of  $f \in K(C)$  at P, which is negative if f has a pole.

**Fact.** ord<sub>P</sub>:  $K(C)^* \to \mathbb{Z}$  is a discrete valuation, that is

$$\operatorname{ord}_{P}(f_{1}f_{2}) = \operatorname{ord}_{P}f_{1} + \operatorname{ord}_{P}f_{2}, \quad \operatorname{ord}_{P}(f_{1} + f_{2}) = \min(\operatorname{ord}_{P}f_{1}, \operatorname{ord}_{P}f_{2}).$$

**Definition.**  $t \in K(C)^*$  is a **uniformiser** at the point P if  $\operatorname{ord}_P t = 1$ .

**Example 2.5.** Let  $C = \{g = 0\} \subset \mathbb{A}^2$  for  $g \in K[x,y]$  irreducible, so  $K(C) = \operatorname{Frac}(K[x,y]/\langle g \rangle)$  for  $g = g_0 + g_1(x,y) + \ldots$  where  $g_i$  is homogeneous of degree i. Suppose  $P = (0,0) \in C$  is a smooth point, that is  $g_0 = 0$  and  $g_1(x,y) = \alpha x + \beta y$  such that  $\alpha$  and  $\beta$  are not both zero. Let  $\gamma, \delta \in K$ . A fact is that

$$\gamma x + \delta y \in K(C)$$
 is a uniformiser at  $p \iff \alpha \delta - \beta \gamma \neq 0$ .

**Example 2.6.** The projective closure of  $\{y^2 = x(x-1)(x-\lambda)\}\subset \mathbb{A}^2$  for  $\lambda \neq 0, 1$  is

$$\{Y^2Z = X(X-Z)(X-\lambda Z)\} \subset \mathbb{P}^2,$$

where x = X/Z and y = Y/Z. Let P = (0:1:0). We compute  $\operatorname{ord}_P x$  and  $\operatorname{ord}_P y$ . Put t = X/Y and w = Z/Y. Then

$$w = t(t - w)(t - \lambda w). \tag{2}$$

Now P is the point (t, w) = (0, 0). This is a smooth point and  $\operatorname{ord}_P t = \operatorname{ord}_P (t - w) = \operatorname{ord}_P (t - \lambda w) = 1$ . By (2),  $\operatorname{ord}_P w = 3$ , so

$$\operatorname{ord}_P x = \operatorname{ord}_P \frac{X}{Z} = \operatorname{ord}_P \frac{t}{w} = 1 - 3 = -2, \qquad \operatorname{ord}_P y = \operatorname{ord}_P \frac{Y}{Z} = \operatorname{ord}_P \frac{1}{w} = -3.$$

Remark that the line  $\{w=0\}$  meets E with multiplicity three at P, so P is a point of inflection.

## 2.3 Riemann Roch spaces

**Definition.** Let C be a smooth projective curve. A divisor is a formal sum of points on C, say

$$D = \sum_{P \in C} n_P(P), \qquad n_P \in \mathbb{Z},$$

with  $n_P = 0$  for all but finitely many  $P \in C$ . The **degree** of D is

$$\deg D = \sum_{P \in C} n_P.$$

Then D is **effective**, written  $D \ge 0$ , if  $n_P \ge 0$  for all  $P \in C$ . If  $f \in K(C)^*$  then the **divisor of** f is

$$\operatorname{div} f = \sum_{P \in C} \left( \operatorname{ord}_{P} f \right) (P).$$

The **Riemann Roch space** of  $D \in \text{Div } C$  is

$$\mathcal{L}(D) = \left\{ f \in K(C)^* \mid \operatorname{div} f + D \ge 0 \right\} \cup \{0\},\,$$

that is the K-vector space of rational functions on C with poles no worse than specified by D.

Riemann Roch for genus one states that

$$\dim \mathcal{L}(D) = \begin{cases} 0 & \deg D < 0 \\ 0 \text{ or } 1 & \deg D = 0 \\ \deg D & \deg D > 0 \end{cases}$$

**Example.** Revisiting Example 2.6, let P be the point at infinity of  $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$ . Then  $\operatorname{ord}_P x = -2$  and  $\operatorname{ord}_P y = -3$ . We deduce

$$\mathcal{L}(2(P)) = \langle 1, x \rangle, \qquad \mathcal{L}(3(P)) = \langle 1, x, y \rangle.$$

This motivates the proof of Theorem 3.1.

Assume  $K = \overline{K}$  and  $\operatorname{ch} K \neq 2$ .

Lecture 3 Wednesday 14/10/20

**Proposition 2.7.** Let  $C \subset \mathbb{P}^2$  be a smooth plane cubic and  $P \in C$  a point of inflection. Then we may change coordinates such that C is

$$Y^{2} = X(X - Z)(X - \lambda Z), \qquad \lambda \neq 0, 1,$$

and P = (0:1:0).

*Proof.* We change coordinates such that P = (0:1:0) and  $T_PC = \{Z = 0\}$ . Let  $C = \{F(X,Y,Z) = 0\}$ . Since  $P \in C$  is a point of inflection, F(t,1,0) is a constant times  $t^3$ , that is no terms  $X^2Y, XY^2, Y^3$ , so

$$F \in \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle.$$

The coefficient of  $Y^2Z$  is nonzero otherwise  $P \in C$  is singular. The coefficient of  $X^3$  is nonzero otherwise  $\{Z=0\} \subset C$ . We are free to rescale X,Y,Z,F. Without loss of generality C is defined by

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$

the Weierstrass form. Substituting Y by  $Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$  we may assume  $a_1 = a_3 = 0$ . Now C is  $Y^2Z = Z^3f(X/Z)$  for f a monic cubic polynomial. Since C is smooth, f has distinct roots, without loss of generality  $0, 1, \lambda$ . Thus C is

$$Y^2 = X (X - Z) (X - \lambda Z),$$

the Legendre form.

**Remark.** It may be shown that the points of inflection on  $C = \{F = 0\} \subset \mathbb{P}^2$  in coordinates  $(X_1 : X_2 : X_3)$  are given by  $F = \det H = 0$ , where  $H = \left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right)$  is a  $3 \times 3$  matrix.

## 2.4 The degree of a morphism

**Definition.** Let  $\phi: C_1 \to C_2$  be a nonconstant morphism of smooth projective curves. Let

$$\begin{array}{cccc} \phi^* & : & K\left(C_2\right) & \longrightarrow & K\left(C_1\right) \\ f & \longmapsto & f \circ \phi \end{array}.$$

• The **degree** of  $\phi$  is

$$\deg \phi = [K(C_1) : \phi^*K(C_2)].$$

- $\phi$  is separable if  $K(C_1)/\phi^*K(C_2)$  is a separable field extension, which is automatic if  $\operatorname{ch} K=0$ .
- Suppose  $P \in C_1$  and  $Q \in C_2$  such that  $\phi : P \mapsto Q$ . Let  $t \in K(C_2)$  be a uniformiser at Q. The **ramification index** of  $\phi$  at P is

$$e_{\phi}(P) = \operatorname{ord}_{P} \phi^{*} t$$

which is always at least one, and independent of t.

**Theorem 2.8.** Let  $\phi: C_1 \to C_2$  be a nonconstant morphism of smooth projective curves. Then

$$\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P) = \deg \phi, \qquad Q \in C_2.$$

Moreover if  $\phi$  is separable then  $e_{\phi}(P) = 1$  for all but finitely many  $P \in C_1$ . In particular

- $\phi$  is surjective, noting that  $K = \overline{K}$ , and
- $\#\phi^{-1}(Q) \leq \deg \phi$ , with equality for all but finitely many Q, assuming  $\phi$  is separable.

**Remark 2.9.** Let C be an algebraic curve. A rational map is given by

$$\phi : C \longrightarrow \mathbb{P}^n 
P \longmapsto (f_0(P):\cdots:f_n(P)) ,$$

where  $f_0, \ldots, f_n \in K(C)$  not all zero. A fact is if C is smooth then  $\phi$  is a morphism.

Lecture 4 Friday

16/10/20

# 3 Weierstrass equations

In this section K is a perfect field, with algebraic closure  $\overline{K}$ .

**Definition.** An elliptic curve E over K is a smooth projective curve of genus one defined over K with a specified K-rational point  $\mathcal{O}_E$ .

**Example.**  $\{X^3 + pY^3 + p^2Z^3 = 0\} \subset \mathbb{P}^2$  for p prime is not an elliptic curve over  $\mathbb{Q}$ , since it has no  $\mathbb{Q}$ -points.

#### 3.1 The Weierstrass form

**Theorem 3.1.** Every elliptic curve E is isomorphic over K to a curve in Weierstrass form, via an isomorphism taking  $\mathcal{O}_E$  to (0:1:0).

**Remark.** Proposition 2.7 treated the special case where E is a smooth plane cubic and  $\mathcal{O}_E$  is a point of inflection.

**Fact.** If  $D \in \text{Div } E$  is defined over K, that is fixed by  $\text{Gal }(\overline{K}/K)$ , then  $\mathcal{L}(D)$  has a basis in K(E), not just in  $\overline{K}(E)$ .

Proof. Pick bases  $\langle 1, x \rangle = \mathcal{L}\left(2\left(\mathcal{O}_{E}\right)\right) \subset \mathcal{L}\left(3\left(\mathcal{O}_{E}\right)\right) = \langle 1, x, y \rangle$ . Then  $\operatorname{ord}_{\mathcal{O}_{E}} x = -2$  and  $\operatorname{ord}_{\mathcal{O}_{E}} y = -3$ . The seven elements  $1, x, y, x^{2}, xy, x^{3}, y^{2}$  in the six-dimensional vector space  $\mathcal{L}\left(6\left(\mathcal{O}_{E}\right)\right)$  must satisfy a dependence relation. Leaving out  $x^{3}$  or  $y^{2}$  gives a basis for  $\mathcal{L}\left(6\left(\mathcal{O}_{E}\right)\right)$  since each term has a different order pole at  $\mathcal{O}_{E}$ , so the coefficients of  $x^{3}$  and  $y^{2}$  are nonzero. Rescaling x and y we get

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \quad a_{i} \in K.$$

Let E' be the curve defined by this equation, or rather its projective closure. There is a morphism

$$\begin{array}{cccc} \phi & : & E & \longrightarrow & E' \subset \mathbb{P}^2 \\ & P & \longmapsto & \left(x\left(P\right):y\left(P\right):1\right) = \left(\frac{x}{y}\left(P\right):1:\frac{1}{y}\left(P\right)\right) \ . \\ & \mathcal{O}_E & \longmapsto & \left(0:1:0\right) \end{array}$$

Then

$$\left[K\left(E\right):K\left(x\right)\right]=\deg\left(x:E\rightarrow\mathbb{P}^{1}\right)=\mathrm{ord}_{\mathcal{O}_{E}}\frac{1}{x}=2,\qquad\left[K\left(E\right):K\left(y\right)\right]=\deg\left(y:E\rightarrow\mathbb{P}^{1}\right)=\mathrm{ord}_{\mathcal{O}_{E}}\frac{1}{y}=3,$$

so



By the tower law, [K(E):K(x,y)]=1, so  $\deg(\phi:E\to E')=1$ , so  $\phi$  is birational. If E' is singular then E and E' are rational, a contradiction. So E' is smooth and we may apply Remark 2.9 to  $\phi^{-1}$  to see that  $\phi^{-1}$  is a morphism, so  $\phi$  is an isomorphism.

**Proposition 3.2.** Let E and E' be elliptic curves over K in Weierstrass form. Then  $E \cong E'$  over K if and only if the Weierstrass equations are related by a change of variables

$$x=u^2x'+r, \qquad y=u^3y'+u^2sx'+t, \qquad u,r,s,t\in K, \qquad u\neq 0.$$

*Proof.* Let  $\langle 1, x \rangle = \mathcal{L}(2(\mathcal{O}_E)) = \langle 1, x' \rangle$  and  $\langle 1, x, y \rangle = \mathcal{L}(3(\mathcal{O}_E)) = \langle 1, x', y' \rangle$ . Then

$$x = \lambda x' + r,$$
  $y = \mu y' + \sigma x' + t,$   $\lambda, r, \mu, \sigma, t \in K,$   $\lambda, \mu \neq 0.$ 

Looking at coefficients of  $x^3$  and  $y^2$ ,  $\lambda^3 = \mu^2$ , so  $(\lambda, \mu) = (u^2, u^3)$  for some  $u \in K^*$ . Put  $s = \sigma/u^2$ .

A Weierstrass equation defines an elliptic curve if and only if it defines a smooth curve, if and only if  $\Delta(a_1, \ldots, a_6) \neq 0$  where  $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$  is a certain polynomial. If  $\operatorname{ch} K \neq 2, 3$  then we can reduce to the case E is

$$y^2 = x^3 + ax + b,$$

with discriminant

$$\Delta = -16 \left( 4a^3 + 27b^2 \right).$$

Corollary 3.3. Assume  $\operatorname{ch} K \neq 2,3$ . Elliptic curves  $E = \{y^2 = x^3 + ax + b\}$  and  $E' = \{y^2 = x^3 + a'x + b'\}$  are isomorphic over K if and only if  $a' = u^4a$  and  $b' = u^6b$  for some  $u \in K^*$ .

*Proof.* E and E' are related as in Proposition 3.2 with r = s = t = 0.

**Definition.** The j-invariant is

$$j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2}.$$

**Corollary 3.4.** If  $E \cong E'$ , then j(E) = j(E'), and the converse holds if  $K = \overline{K}$ .

Proof.

$$E \cong E' \quad \iff \quad \exists u \in K^*, \ \begin{cases} a' = u^4 a \\ b' = u^6 b \end{cases} \quad \implies \quad \left(a^3 : b^2\right) = \left(a'^3 : b'^2\right) \quad \iff \quad \mathbf{j}(E) = \mathbf{j}(E'),$$

and the converse holds if  $K = \overline{K}$ .

## 4 Group law

Let  $E = E(\overline{K}) \subset \mathbb{P}^2$  be a smooth plane cubic, and let  $\mathcal{O}_E \in E(K)$ . Then E meets each line in three points counted with multiplicity.

## 4.1 The Picard group law

Let  $P, Q \in E$ , let S be the third point of intersection of PQ and E, and let R be the third point of intersection of  $\mathcal{O}_ES$  and E. We define

$$P \oplus Q = R$$
.

If P = Q then take  $T_P E$  instead, etc. This is the **chord and tangent process**.

**Theorem 4.1.**  $(E, \oplus)$  is an abelian group.

Associativity is hard.

**Definition.**  $D_1, D_2 \in \text{Div } E$  are **linearly equivalent**, written  $D_1 \sim D_2$ , if there exists  $f \in \overline{K}(E)^*$  such that

$$\operatorname{div} f = D_1 - D_2.$$

Let

$$[D] = \{ D' \mid D' \sim D \}.$$

The **Picard group** is

$$\operatorname{Pic} E = \operatorname{Div} E / \sim$$
.

If

$$\operatorname{Div}^0 E = \ker (\operatorname{deg} : \operatorname{Div} E \to \mathbb{Z})$$

is the degree zero divisors on E, let

$$\operatorname{Pic}^0 E = \operatorname{Div}^0 E / \sim$$
.

Note that  $\operatorname{div} f q = \operatorname{div} f + \operatorname{div} q$ .

Proposition 4.2. Let

$$\begin{array}{ccc} \psi & : & E & \longrightarrow & \operatorname{Pic}^0 E \\ & P & \longmapsto & [(P) - (\mathcal{O}_E)] \end{array}.$$

Then

1. 
$$\psi(P \oplus Q) = \psi(P) + \psi(Q)$$
, and

2.  $\psi$  is a bijection.

Proof.

1. Let  $P, Q \in E$ , let S be the third point of intersection of PQ and E, and let R be the third point of intersection of  $\mathcal{O}_E S$  and E. Let l = 0 be the line PQ and let m = 0 be the line  $\mathcal{O}_E S$ . Then

$$\operatorname{div} \frac{l}{m} = (P) + (S) + (Q) - (R) - (S) - (\mathcal{O}_E) = (P) + (Q) - (\mathcal{O}_E) - (P \oplus Q),$$

so 
$$(P \oplus Q) + (\mathcal{O}_E) \sim (P) + (Q)$$
. Thus  $(P \oplus Q) - (\mathcal{O}_E) \sim (P) - (\mathcal{O}_E) + (Q) - (\mathcal{O}_E)$ , so  $\psi(P \oplus Q) = \psi(P) + \psi(Q)$ .

2. For injectivity, suppose  $\psi(P) = \psi(Q)$  for  $P \neq Q$ . Then there exists  $f \in \overline{K}(E)^*$  such that div f = P - Q, and deg  $(f : E \to \mathbb{P}^1) = \operatorname{ord}_P f = 1$ , so  $E \cong \mathbb{P}^1$ , a contradiction. For surjectivity, let  $[D] \in \operatorname{Pic}^0 E$ . Then  $D + (\mathcal{O}_E)$  has degree one. By Riemann Roch, dim  $\mathcal{L}(D + (\mathcal{O}_E)) = 1$ , so there exists  $f \in \overline{K}(E)^*$  such that div  $f + D + (\mathcal{O}_E) \geq 0$ . Since div  $f + D + (\mathcal{O}_E)$  has degree one, div  $f + D + (\mathcal{O}_E) = (P)$  for some  $P \in E$ , so  $(P) - (\mathcal{O}_E) \sim D$ . Thus  $\psi(P) = [D]$ .

Proof of Theorem 4.1.

- $P \oplus Q = Q \oplus P$  is clear.
- $\mathcal{O}_E$  is the identity. Let S be the third point of intersection of  $\mathcal{O}_E P$  and E. Then P is the third point of intersection of  $\mathcal{O}_E S$  and E, so  $\mathcal{O}_E \oplus P = P$ .
- Inverses. Let S be the third point of intersection of  $T_{\mathcal{O}_E}E$  and E, and let Q be the third point of intersection of PS and E. Then S is the third point of intersection of PQ and E, and  $\mathcal{O}_E$  is the third point of intersection of  $\mathcal{O}_ES$  and E, so  $P \oplus Q = \mathcal{O}_E$ .
- By Proposition 4.2,

$$\psi\left((P\oplus Q)\oplus R\right)=\psi\left(P\oplus Q\right)+\psi\left(R\right)=\psi\left(P\right)+\psi\left(Q\right)+\psi\left(R\right)=\psi\left(P\right)+\psi\left(Q\oplus R\right)=\psi\left(P\oplus Q\oplus R\right)\right).$$

Since  $\psi$  is injective,  $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$ . We deduce that  $\oplus$  is associative, and

$$\psi: (E, \oplus) \xrightarrow{\sim} (\operatorname{Pic}^0 E, +)$$

is an isomorphism of groups. Note that we did not need  $\psi$  surjective for the proof that  $\oplus$  is associative.

## 4.2 Explicit formulae for the group law

We consider E in Weierstrass form

Lecture 5 Monday 19/10/20

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, (3)$$

and  $\mathcal{O}_E$  is the point at infinity.

**Remark.**  $\mathcal{O}_E$  is a point of inflection. So now  $P_1 \oplus P_2 \oplus P_3 = \mathcal{O}_E$  if and only if  $P_1, P_2, P_3$  are collinear.

Let  $P_1 = (x_1, y_1)$  and  $P_2 = (x_3, y_3)$ , let P' = (x', y') be the third point of intersection of  $P_1P_2 = \{y = \lambda x + \nu\}$  and E, and let  $P_3 = (x_3, y_3)$  be the second point of intersection between x = x' and E, so  $P_3 = P_1 \oplus P_2 = \ominus P'$ . Thus

$$\ominus P_1 = (x_1, -(a_1x_1 + a_3) - y_1).$$

Substituting  $y = \lambda x + \nu$  into (3) and looking at the coefficient of  $x^2$  gives  $\lambda^2 + a_1\lambda - a_2 = x_1 + x_2 + x'$ , so

$$x_3 = \lambda^2 + a_1 \lambda - a_2 - x_1 - x_2, \qquad y_3 = -(a_1 x' + a_3) - y' = -(a_1 x' + a_3) - (\lambda x' + \nu) = -(\lambda + a_1) x_3 - \nu - a_3.$$

It remains to find formulae for  $\lambda$  and  $\nu$ .

Case 1.  $x_1 = x_2$  and  $P_1 \neq P_2$ . Then  $P_1 \oplus P_2 = \mathcal{O}_E$ .

Case 2.  $x_1 \neq x_2$ . Then

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}, \qquad \nu = y_1 - \lambda x_1 = \frac{y_1 (x_2 - x_1) - (y_2 - y_1) x_1}{x_2 - x_1} = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}.$$

Case 3.  $x_1 = x_2$  and  $P_1 = P_2$ . Then

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}, \qquad \nu = \frac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3}.$$

Corollary 4.3. E(K) is an abelian group.

*Proof.* It is a subgroup of  $E = E(\overline{K})$ .

- Identity is  $\mathcal{O}_E \in E(K)$  by definition.
- Closure and inverses are by the formulae above.
- Associativity and commutativity are inherited.

## 4.3 Maps on an elliptic curve

Theorem 4.4. Elliptic curves are group varieties. That is,

are morphisms of algebraic varieties.

*Proof.* The above formulae show [-1] and + are rational maps. By Remark 2.9,  $[-1]: E \to E$  is a morphism. The formulae also show, by case 2, that + is regular on

$$U = \{ (P, Q) \in E \times E \mid P, Q, P + Q, P - Q \neq \mathcal{O}_E \}.$$

For  $P \in E$  let translation by P be

$$\begin{array}{cccc} \tau_P & : & E & \longrightarrow & E \\ & X & \longmapsto & P + X \end{array},$$

which is a rational map and therefore a morphism. Let  $A, B \in E$ . We factor + as

$$E \times E \xrightarrow{\tau_{-A} \times \tau_{-B}} E \times E \xrightarrow{+} E \xrightarrow{\tau_{A+B}} E.$$

Thus + is regular on  $(\tau_A \times \tau_B)(U)$  for all  $A, B \in E$ , so + is regular on  $E \times E$ .

**Definition.** For  $n \in \mathbb{Z}$  let

$$\begin{array}{cccc} [n] & : & E & \longrightarrow & E \\ & P & \longmapsto & \underbrace{P + \cdots + P}_{n} \ , \end{array}$$

and  $[-n] = [-1] \circ [n]$ . The *n*-torsion subgroup of *E* is

$$E[n] = \ker([n] : E \to E)$$
.

**Lemma 4.5.** Assume  $\operatorname{ch} K \neq 2$ . Let E be

$$y^2 = (x - e_1)(x - e_2)(x - e_3),$$

for  $e_1, e_2, e_3 \in \overline{K}$  distinct. Then

$$E[2] = \{\mathcal{O}, (e_1, 0), (e_2, 0), (e_3, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^2.$$

*Proof.* Let  $P = (x, y) \in E$ . Then [2] P = 0 if and only if P = -P, if any if P

## 4.4 Elliptic curves over $\mathbb{C}$

Let  $\Lambda = \{a\omega_1 + b\omega_2 \mid a, b \in \mathbb{Z}\}$  for  $\omega_1$  and  $\omega_2$  a basis for  $\mathbb{C}$  as an  $\mathbb{R}$ -vector space. Then

$$\left\{ \begin{array}{c} \text{meromorphic functions on} \\ \text{Riemann surface } \mathbb{C}/\Lambda \end{array} \right\} \qquad \leftrightsquigarrow \qquad \left\{ \begin{array}{c} \Lambda\text{-invariant meromorphic} \\ \text{functions on } \mathbb{C} \end{array} \right\}.$$

This field is generated by  $\wp(z)$  and  $\wp'(z)$  where

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left( \frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right).$$

They satisfy

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

for some  $g_2, g_3 \in \mathbb{C}$  depending on  $\Lambda$ . One shows that

$$\mathbb{C}/\Lambda \cong E(\mathbb{C})$$

is an isomorphism as Riemann surfaces and as groups, where E is the elliptic curve

$$y^2 = 4x^3 - g_2x - g_3.$$

**Theorem 4.6** (Uniformisation theorem). Every elliptic curve over  $\mathbb{C}$  arises in this way.

For elliptic curves  $E/\mathbb{C}$  we have

1. 
$$E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$$
, and

2. 
$$\deg[n] = n^2$$
.

We show 2 holds over any field K and 1 holds if  $\operatorname{ch} K \nmid n$ .

## 4.5 Group structure over other fields

The following will be a summary of the results.

1. If 
$$K = \mathbb{C}$$
, then

$$E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}.$$

2. If  $K = \mathbb{R}$ , then

$$E\left(\mathbb{R}\right)\cong\begin{cases}\mathbb{Z}/2\mathbb{Z}\times\mathbb{R}/\mathbb{Z}&\Delta>0\\\mathbb{R}/\mathbb{Z}&\Delta<0\end{cases}.$$

3. If  $K = \mathbb{F}_q$ , then Hasse's theorem states that

$$|\#E\left(\mathbb{F}_q\right) - (q+1)| \le 2\sqrt{q}.$$

- 4. If  $[K:\mathbb{Q}_p]<\infty$  with ring of integers  $\mathcal{O}_K$ , then E(K) has a subgroup of finite index isomorphic to  $(\mathcal{O}_K,+)$ .
- 5. If  $[K:\mathbb{Q}]<\infty$ , then the Mordell-Weil theorem states that E(K) is a finitely generated abelian group.

Note that the isomorphisms in 1, 2, and 4 respect the relevant topologies.

## 5 Isogenies

**Definition.** Let  $E_1$  and  $E_2$  be elliptic curves.

Lecture 6 Wednesday 21/10/20

- An **isogeny**  $\phi: E_1 \to E_2$  is a nonconstant morphism with  $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$ , which is if and only if it is surjective on  $\overline{K}$ -points, by Theorem 2.8. We say  $E_1$  and  $E_2$  are **isogenous**.
- Let

$$\text{Hom}(E_1, E_2) = \{\text{isogenies } E_1 \to E_2\} \cup \{0\}.$$

This is a group under  $(\phi + \psi)(P) = \phi(P) + \psi(P)$ . If  $\phi : E_1 \to E_2$  and  $\psi : E_2 \to E_3$  are isogenies then  $\psi \circ \phi$  is an isogeny. By the tower law,  $\deg(\psi \circ \phi) = \deg \phi \deg \psi$ .

**Lemma 5.1.** If  $0 \neq n \in \mathbb{Z}$  then  $[n] : E \to E$  is an isogeny.

*Proof.* By Theorem 4.4, [n] is a morphism. We must show  $[n] \neq 0$ . Assume  $\operatorname{ch} K \neq 2$ .

n = 2. By Lemma 4.5, #E[2] = 4, so  $[2] \neq 0$ .

n odd. By Lemma 4.5, there exists  $0 \neq T \in E[2]$ . Then  $nT = T \neq 0$ , so  $[n] \neq 0$ .

Now use  $[mn] = [m] \circ [n]$ . If ch K = 2 then replace Lemma 4.5 with a lemma computing E[3].

A corollary is that  $\operatorname{Hom}(E_1, E_2)$  is torsion-free as a  $\mathbb{Z}$ -module.

## 5.1 Basic properties

**Lemma 5.2.** Let  $\phi: E_1 \to E_2$  be an isogeny. Then

$$\phi(P+Q) = \phi(P) + \phi(Q), \qquad P, Q \in E_1.$$

*Proof.*  $\phi$  induces a map

$$\phi_*$$
:  $\operatorname{Div}^0 E_1 \longrightarrow \operatorname{Div}^0 E_2$   
  $\sum_{P \in E} n_P(P) \longmapsto \sum_{P \in E} n_P(\phi(P))$ .

Recall  $\phi^*: K(E_2) \hookrightarrow K(E_1)$ . A fact is that

$$\operatorname{div}\left(\mathrm{N}_{K(E_{1})/K(E_{2})}f\right) = \phi_{*}\left(\operatorname{div}f\right), \qquad f \in K\left(E_{1}\right)^{*}.$$

So  $\phi_*$  takes principal divisors to principal divisors. Since  $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$  the diagram

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$P \mapsto [(P) - (\mathcal{O}_{E_{1}})] \downarrow \sim \qquad \sim \downarrow Q \mapsto [(Q) - (\mathcal{O}_{E_{2}})]$$

$$\operatorname{Pic}^{0} E_{1} \xrightarrow{\phi_{*}} \operatorname{Pic}^{0} E_{2}$$

commutes. Since  $\phi_*$  is a group homomorphism,  $\phi$  is group homomorphism.

**Lemma 5.3.** Let  $\phi: E_1 \to E_2$  be an isogeny. Then there exists a morphism  $\xi$  making the diagram

$$E_1 \xrightarrow{\phi} E_2$$

$$x_1 \downarrow \qquad \qquad \downarrow x_2$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

commute, where  $x_i$  is the x-coordinate on a Weierstrass equation for  $E_i$ . Moreover if  $\xi(t) = r(t)/s(t)$  for  $r, s \in K[t]$  coprime then  $\deg \phi = \deg \xi = \max(\deg r, \deg s)$ .

*Proof.* For  $i = 1, 2, K(E_i)/K(x_i)$  is a degree two Galois extension with Galois group generated by  $[-1]^*$ . Since  $\phi$  is a group homomorphism we have  $\phi \circ [-1] = [-1] \circ \phi$ . If  $f \in K(x_2)$  then  $[-1]^* f = f$  and  $[-1]^* (\phi^* f) = \phi^* ([-1]^* f) = \phi^* f$ , so  $\phi^* f \in K(x_1)$ . Taking  $f = x_2$  gives  $\phi^* x_2 = \xi(x_1)$  for some rational function  $\xi$ , so



By the tower law,  $2 \deg \phi = 2 \deg \xi$ . Now

$$\phi^* : K(x_2) \longrightarrow K(x_1)$$

$$x_2 \longmapsto \xi(x_1) = \frac{r(x_1)}{s(x_1)},$$

for  $r, s \in K[t]$  coprime. Claim that the minimal polynomial of  $x_1$  over  $K(x_2)$  is

$$f(t) = r(t) - s(t) x_2 \in K(x_2)[t].$$

Check that  $f(x_1) = 0$  and f is irreducible in  $K[x_2, t]$ , since r and s are coprime. By Gauss' lemma, f is irreducible in  $K(x_2)[t]$ . Thus

$$\deg\phi=\deg\xi=\left[K\left(x_{1}\right):K\left(x_{2}\right)\right]=\deg f=\max\left(\deg r,\deg s\right).$$

**Lemma 5.4.** deg[2] = 4.

*Proof.* Assuming ch  $K \neq 2, 3$ , let E be  $y^2 = f(x) = x^3 + ax + b$ . If P = (x, y) then

$$x(2P) = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x = \frac{\left(3x^2 + a\right)^2 - 8xf(x)}{4f(x)} = \frac{x^4 + \dots}{4f(x)}.$$

The numerator and denominator are coprime. Indeed otherwise there exists  $\theta \in \overline{K}$  with  $f(\theta) = f'(\theta) = 0$ , so f has a multiple root, a contradiction. By Lemma 5.3, deg  $[2] = \max(4,3) = 4$ .

#### 5.2 The degree quadratic form

**Definition.** Let A be an abelian group. Then  $q:A\to\mathbb{Z}$  is a quadratic form if

- 1.  $q(nx) = n^2 q(x)$  for all  $n \in \mathbb{Z}$  and all  $x \in A$ , and
- 2.  $(x,y) \mapsto q(x+y) q(x) q(y)$  is  $\mathbb{Z}$ -bilinear.

**Lemma 5.5.**  $q: A \to \mathbb{Z}$  is a quadratic form if and only if it satisfies the **parallelogram law** 

$$q(x + y) + q(x - y) = 2q(x) + 2q(y), \qquad x, y \in A.$$

Proof.

$$\implies \text{ Let } \langle x,y\rangle = q\left(x+y\right) - q\left(x\right) - q\left(y\right). \text{ Then } \langle x,x\rangle = q\left(2x\right) - 2q\left(x\right) = 2q\left(x\right) \text{ by 1 with } n = 2. \text{ But by 2,}$$
$$q\left(x+y\right) + q\left(x-y\right) = \frac{1}{2}\left\langle x+y,x+y\right\rangle + \frac{1}{2}\left\langle x-y,x-y\right\rangle = \left\langle x,x\right\rangle + \left\langle y,y\right\rangle = 2q\left(x\right) + 2q\left(y\right).$$

 $\leftarrow$  On example sheet 2.

Lecture 7 Friday 23/10/20

**Theorem 5.6.** deg : Hom  $(E_1, E_2) \to \mathbb{Z}$  is a quadratic form.

Note that deg 0 = 0. For the proof we assume ch  $K \neq 2, 3$ . We write  $E_2$  as  $y^2 = x^3 + ax + b$ . Let  $P, Q \in E_2$  with  $P, Q, P + Q, P - Q \neq 0$ . Let  $x_1, \ldots, x_4$  be the x-coordinates of these four points.

**Lemma 5.7.** There exist  $w_0, w_1, w_2 \in \mathbb{Z}[a, b][x_1, x_2]$  of degree at most two in  $x_1$  and degree at most two in  $x_2$  such that  $(1: x_3 + x_4: x_3x_4) = (w_0: w_1: w_2)$ .

*Proof.* By direct calculation,

$$w_0 = (x_1 - x_2)^2$$
,  $w_1 = 2(x_1x_2 + a)(x_1 + x_2) + 4b$ ,  $w_2 = x_1^2x_2^2 - 2ax_1x_2 - 4b(x_1 + x_2) + a^2$ .

Alternatively, let  $y = \lambda x + \nu$  be the line through P and Q. Then

$$x^{3} + ax + b - (\lambda x + \nu)^{2} = (x - x_{1})(x - x_{2})(x - x_{3}) = x^{3} - s_{1}x^{2} + s_{2}x - s_{3}$$

where  $s_i$  is the *i*-th symmetric polynomial in  $x_1, x_2, x_3$ . Comparing coefficients gives  $\lambda^2 = s_1, -2\lambda\nu = s_2 - a$ , and  $\nu^2 = s_3 + b$ . Eliminating  $\lambda$  and  $\nu$  gives

$$F(x_1, x_2, x_3) = (s_2 - a)^2 - 4s_1(s_3 + b) = 0,$$

which has degree at most two in each  $x_i$ . Then  $x_3$  is a root of the quadratic polynomial  $w(t) = F(x_1, x_2, t)$ . Repeating for the line through P and -Q shows that  $x_4$  is the other root. Thus  $w_0(t - x_3)(t - x_4) = w(t) = w_0t^2 - w_1t + w_2$ , so  $(1:x_3 + x_4:x_3x_4) = (w_0:w_1:w_2)$ .

Proof of Theorem 5.6. We show that if  $\phi, \psi \in \text{Hom}(E_1, E_2)$  then

$$\deg(\phi + \psi) + \deg(\phi - \psi) \le 2\deg\phi + 2\deg\psi.$$

We may assume  $\phi, \psi, \phi + \psi, \phi - \psi \neq 0$ , otherwise trivial, or use deg [2] = 4. Let

$$\phi: (x,y) \mapsto (\xi_1(x), \dots), \qquad \psi: (x,y) \mapsto (\xi_2(x), \dots),$$

$$\phi + \psi: (x,y) \mapsto (\xi_3(x), \dots), \qquad \phi - \psi: (x,y) \mapsto (\xi_4(x), \dots).$$

By Lemma 5.7,

$$(1:\xi_3(x)+\xi_4(x):\xi_3(x)\xi_4(x))=(w_0:w_1:w_2),$$

where  $w_0, w_1, w_2$  are in terms of  $\xi_1(x)$  and  $\xi_2(x)$ . Put  $\xi_i = r_i/s_i$  for  $r_i/s_i \in K[x]$  coprime. Then

$$(s_3(x) s_4(x) : r_3(x) s_4(x) + r_4(x) s_3(x) : r_3(x) r_4(x)) = (w_0 : w_1 : w_2),$$

where  $w_0, w_1, w_2$  are in terms of  $r_1(x), s_1(x), r_2(x), s_2(x)$ , so

$$\begin{split} \deg\left(\phi+\psi\right) + \deg\left(\phi-\psi\right) &= \max\left(\deg r_3\left(x\right), \deg s_3\left(x\right)\right) + \max\left(\deg r_4\left(x\right), \deg s_4\left(x\right)\right) \\ &= \max\left(\deg s_3\left(x\right), \deg\left(r_3\left(x\right), \deg\left(r_3\left(x\right), s_4\left(x\right)\right) + r_4\left(x\right), s_3\left(x\right)\right), \deg r_3\left(x\right), r_4\left(x\right)\right) \\ &\leq 2\max\left(\deg r_1\left(x\right), \deg s_1\left(x\right)\right) + 2\max\left(\deg r_2\left(x\right), \deg s_2\left(x\right)\right) \\ &= 2\deg\phi + 2\deg\psi, \end{split}$$

since  $s_3(x) s_4(x)$ ,  $r_3(x) s_4(x) + r_4(x) s_3(x)$ ,  $r_3(x) r_4(x)$  are coprime. Now replace  $\phi$  and  $\psi$  by  $\phi + \psi$  and  $\phi - \psi$  to get

$$\deg 2\phi + \deg 2\psi \le 2\deg (\phi + \psi) + 2\deg (\phi - \psi).$$

Since deg[2] = 4 we get

$$2 \operatorname{deg} \phi + 2 \operatorname{deg} \psi < \operatorname{deg} (\phi + \psi) + \operatorname{deg} (\phi - \psi)$$
.

Thus deg satisfies the parallelogram law, so deg is a quadratic form.

Corollary 5.8. deg  $n\phi = n^2 \deg \phi$  for all  $n \in \mathbb{Z}$  and  $\phi \in \operatorname{Hom}(E_1, E_2)$ . In particular deg  $[n] = n^2$ .

**Example 5.9.** Let E/K be an elliptic curve, and let  $0 \neq T \in E(K)[2]$ . Suppose  $\operatorname{ch} K \neq 2$ . Without loss of generality E is

$$y^2 = x(x^2 + ax + b),$$
  $a, b \in K,$   $b(a^2 - 4b) \neq 0,$ 

and T = (0,0). If P = (x, y) and P' = P + T = (x', y'), then

$$x' = \left(\frac{y}{x}\right)^2 - x - a = \frac{x^2 + ax + b}{x} - x - a = \frac{b}{x}, \qquad y' = -\left(\frac{y}{x}\right)x' = -\frac{by}{x^2}.$$

Let

$$\xi = x + x' + a = \frac{x^2 + ax + b}{x} = \left(\frac{y}{x}\right)^2, \qquad \eta = y + y' = \left(\frac{y}{x}\right)\left(x - \frac{b}{x}\right).$$

Then

$$\eta^{2} = \left(\frac{y}{x}\right)^{2} \left(\left(x + \frac{b}{x}\right)^{2} - 4b\right) = \xi\left((\xi - a)^{2} - 4b\right) = \xi\left(\xi^{2} - 2a\xi + a^{2} - 4b\right).$$

Let E' be

$$y^2 = x(x^2 + a'x + b'),$$
  $a' = -2a,$   $b' = a^2 - 4b.$ 

There is an isogeny

$$\phi : E \longrightarrow E'$$

$$(x,y) \longmapsto \left( \left( \frac{y}{x} \right)^2 : \frac{y(x^2 - b)}{x^2} : 1 \right) .$$

$$\mathcal{O}_E \longmapsto (0:1:0)$$

Then  $(y/x)^2 = (x^2 + ax + b)/x$ , which are coprime since  $b \neq 0$ . By Lemma 5.3,  $\deg \phi = 2$ . We say  $\phi$  is a 2-isogeny.