Оценки качества классификации Оценки обобщающей способности Методы отбора признаков

Bopoнцов Константин Вячеславович vokov@forecsys.ru

http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

Содержание

- 🕕 Оценки качества классификации
 - Чувствительность, специфичность, ROC, AUC
 - Правдоподобие вероятностной модели классификации
 - Точность, полнота, AUPRC, F1-мера
- Внешние критерии обобщающей способности
 - Внутренние и внешние критерии
 - Эмпирические внешние критерии
 - Аналитические внешние критерии
- 3 Методы отбора признаков
 - Полный перебор
 - Жадные алгоритмы
 - Поиск в ширину и генетический алгоритм

Анализ ошибок классификации

Задача классификации на два класса, $y_i \in \{-1, +1\}$. Алгоритм классификации $a(x_i) \in \{-1, +1\}$

	ответ классификатора	правильный ответ
TP, True Positive	$a(x_i) = +1$	$y_i = +1$
TN, True Negative	$a(x_i) = -1$	$y_i = -1$
FP, False Positive	$a(x_i) = +1$	$y_i = -1$
FN, False Negative	$a(x_i) = -1$	$y_i = +1$

Доля правильных классификаций (чем больше, тем лучше):

Accuracy
$$=\frac{1}{\ell}\sum_{i=1}^{\ell}\left[a(x_i)=y_i\right]=\frac{\mathsf{TP}+\mathsf{TN}}{\mathsf{FP}+\mathsf{FN}+\mathsf{TP}+\mathsf{TN}}$$

Недостаток: не учитывается ни численность (дисбаланс) классов, ни цена ошибки на объектах разных классов.

Функции потерь, зависящие от штрафов за ошибку

Задача классификации на два класса, $y_i \in \{-1, +1\}$. Модель классификации: $a(x; w, w_0) = \mathrm{sign}(g(x, w) - w_0)$. Чем больше w_0 , тем больше x_i таких, что $a(x_i) = -1$.

Пусть λ_y — штраф за ошибку на объекте класса y. Функция потерь теперь зависит от штрафов:

$$\mathscr{L}(a,y) = \frac{\lambda_{y_i}}{a(x_i; w, w_0)} \neq y_i = \frac{\lambda_{y_i}}{a(x_i; w)} [(g(x_i, w) - w_0)y_i < 0].$$

Проблема

На практике штрафы $\{\lambda_{\mathbf{v}}\}$ могут пересматриваться

- Нужен удобный способ выбора w_0 в зависимости от $\{\lambda_y\}$, не требующий построения w заново.
- Нужна характеристика качества модели g(x, w), не зависящая от штрафов $\{\lambda_v\}$ и численности классов.

Определение ROC-кривой

Кривая ошибок ROC (receiver operating characteristic). Каждая точка кривой соответствует некоторому $a(x; w, w_0)$.

• по оси X: доля ошибочных положительных классификаций (FPR — false positive rate):

$$\mathsf{FPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = -1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

 $1-\mathsf{FPR}(a)$ называется специфичностью алгоритма a.

• по оси Y: доля *правильных положительных классификаций* (TPR — true positive rate):

$$\mathsf{TPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = +1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

 $\mathsf{TPR}(a)$ называется также чувствительностью алгоритма a.

Пример ROC-кривой

Пример из Python scikits learn: http://scikit-learn.org/dev

Алгоритм эффективного построения ROC-кривой

```
Вход: выборка X^{\ell}; дискриминантная функция g(x, w);
Выход: \{(\mathsf{FPR}_i, \mathsf{TPR}_i)\}_{i=0}^\ell, AUC — площадь под ROC-кривой.
\ell_{v} := \sum_{i=1}^{\ell} [y_{i} = y], для всех y \in Y;
упорядочить выборку X^{\ell} по убыванию значений g(x_i, w);
поставить первую точку в начало координат:
(FPR_0, TPR_0) := (0,0); AUC := 0;
для i := 1, \ldots, \ell
     если y_i = -1 то
     \begin{aligned} \mathsf{FPR}_i &:= \mathsf{FPR}_{i-1} + \tfrac{1}{\ell_-}; \ \mathsf{TPR}_i := \mathsf{TPR}_{i-1}; \\ \mathsf{AUC} &:= \mathsf{AUC} + \tfrac{1}{\ell_-} \mathsf{TPR}_i; \end{aligned}
    \mid \mathsf{FPR}_i := \mathsf{FPR}_{i-1}; \; \mathsf{TPR}_i := \mathsf{TPR}_{i-1} + \frac{1}{\ell_+};
```

Градиентная максимизация AUC

Модель:
$$a(x_i, w, w_0) = \text{sign}(g(x_i, w) - w_0)$$
.

AUC — это доля правильно упорядоченных пар (x_i, x_i) :

$$\begin{aligned} \mathsf{AUC}(w) &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_{i} = -1 \big] \mathsf{TPR}_{i} = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_{i} < y_{j} \big] \big[g(x_{i}, w) < g(x_{j}, w) \big] \to \max_{w}. \end{aligned}$$

Явная максимизация аппроксимированного AUC:

$$1 - \mathsf{AUC}(w) \leqslant \mathit{Q}(w) = \sum_{i,j \colon y_i < y_j} \mathscr{L}(\underbrace{\mathit{g}(x_j,w) - \mathit{g}(x_i,w)}_{\mathit{M}_{ij}(w)}) \to \min_{w},$$

где $\mathscr{L}(M)$ — убывающая функция отступа,

 $M_{ii}(w)$ — новое понятие отступа для пар объектов.

Алгоритм SG для максимизации AUC

Возьмём для простоты линейный классификатор:

$$g(x, w) = \langle x, w \rangle, \qquad M_{ij}(w) = \langle x_j - x_i, w \rangle.$$

 \mathbf{B} ход: выборка X^ℓ , темп обучения h, темп забывания λ ; \mathbf{B} ыход: вектор весов w;

инициализировать веса w_j , $j=0,\ldots,n$; инициализировать оценку: $ar{Q}:=rac{1}{\ell+\ell-}\sum_{i,j}[y_i< y_j]\,\mathscr{L}(M_{ij}(w))$;

повторять

выбрать пару объектов (i,j): $y_i < y_j$, случайным образом; вычислить потерю: $\varepsilon_{ij} := \mathscr{L}(M_{ij}(w));$ сделать градиентный шаг: $w := w - h \mathscr{L}'(M_{ij}(w))(x_j - x_i);$ оценить функционал: $\bar{Q} := (1 - \lambda)\bar{Q} + \lambda \varepsilon_{ij};$ пока значение \bar{Q} и/или веса w не сойдутся;

Логарифм правдоподобия, log-loss

Вероятностная модель классификации, $y_i \in \{-1,+1\}$:

$$g(x,w) = P(y = +1|x,w).$$

Проблема: ROC и AUC инвариантны относительно монотонных преобразований дискриминантной функции g(x, w).

Критерий логарифма правдоподобия (log-loss):

$$L(w) = \sum_{i=1}^{\ell} [y_i = +1] \ln g(x, w) + [y_i = -1] \ln (1 - g(x, w)) \rightarrow \max_{w}$$

Вероятностная модель многоклассовой классификации:

$$a(x) = \arg \max_{y \in Y} P(y|x, w);$$

$$L(w) = \sum_{i=1}^{\ell} \ln P(y_i|x_i, w) \rightarrow \max_{w}$$

Оценки качества двухклассовой классификации

В информационном поиске:

Точность, Precision =
$$\frac{TP}{TP+FP}$$

Полнота, Recall = $\frac{TP}{TP+FN}$

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

В медицинской диагностике:

Чувствительность, Sensitivity =
$$\frac{TP}{TP+FN}$$

Специфичность, Specificity = $\frac{TN}{TN+FP}$

Sensitivity — доля верных положительных диагнозов Specificity — доля верных отрицательных диагнозов

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$: TP_y — верные положительные FP_y — ложные положительные FN_v — ложные отрицательные

Точность и полнота с микроусреднением:

Precision:
$$P = \frac{\sum_{y} TP_{y}}{\sum_{y} (TP_{y} + FP_{y})};$$

Recall: $R = \frac{\sum_{y} TP_{y}}{\sum_{y} (TP_{y} + FN_{y})};$

Микроусреднение не чувствительно к ошибкам на малочисленных классах

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$: TP_y — верные положительные FP_y — ложные положительные FN_v — ложные отрицательные

Точность и полнота с макроусреднением:

Precision:
$$P = \frac{1}{|Y|} \sum_{y} \frac{\text{TP}_{y}}{\text{TP}_{y} + \text{FP}_{y}};$$

Recall: $R = \frac{1}{|Y|} \sum_{y} \frac{\text{TP}_{y}}{\text{TP}_{y} + \text{FN}_{y}};$

Макроусреднение чувствительно к ошибкам на малочисленных классах

Кривые ROC и Precision-Recall

Модель классификации: $a(x) = \text{sign}(\langle x, w \rangle - w_0)$ Каждая точка кривой соответствует значению порога w_0

AUROC — площадь под ROC-кривой

AUPRC — площадь под кривой Precision-Recall

Примеры из Python scikit learn: http://scikit-learn.org/dev

Резюме. Оценки качества классификации

- Чувствительность и специфичность лучше подходят для задач с несбалансированными классами
- Логарифм правдоподобия (log-loss) лучше подходит для оценки качества вероятностной модели классификации.
- Точность и полнота лучше подходят для задач поиска, когда доля объектов релевантного класса очень мала.

Агрегированные оценки:

- AUROC лучше подходит для оценивания качества, когда соотношение цены ошибок не фиксировано.
- AUPRC площадь под кривой точность-полнота.
- $F_1 = \frac{2PR}{P+R} F$ -мера, другой способ агрегирования P и R.
- ullet $F_eta = rac{(1+eta^2)PR}{eta^2P+R} F_eta$ -мера: чем больше eta, тем важнее R.

Задачи выбора метода обучения

Дано:
$$X$$
 — пространство объектов; Y — множество ответов; $X^{\ell}=(x_i,y_i)_{i=1}^{\ell}$ — обучающая выборка, $y_i=y^*(x_i)$; $A_t=\{a\colon X\to Y\}$ — модели алгоритмов, $t\in T$; $\mu_t\colon (X\times Y)^{\ell}\to A_t$ — методы обучения, $t\in T$.

Найти: метод μ_t с наилучшей обобщающей способностью.

Частные случаи:

- \bullet выбор лучшей модели A_t (model selection);
- выбор метода обучения μ_t для заданной модели A (в частности, оптимизация *гиперпараметров*);
- отбор признаков (features selection): $F = \left\{ f_j \colon X \to D_j \colon j = 1, \dots, n \right\}$ множество признаков; метод обучения μ_J использует только признаки $J \subseteq F$.

Как оценить качество обучения по прецедентам?

$$\mathscr{L}(a,x)$$
 — функция потерь алгоритма a на объекте x ; $Q(a,X^\ell)=rac{1}{\ell}\sum_{i=1}^\ell\mathscr{L}(a,x_i)$ — функционал качества a на X^ℓ .

Внутренний критерий оценивает качество на обучении X^ℓ :

$$Q_{\mu}(X^{\ell}) = Q(\mu(X^{\ell}), X^{\ell}).$$

Недостаток: эта оценка смещена, т.к. μ минимизирует её же.

Внешний критерий оценивает качество «вне обучения», например, по отложенной (hold-out) контрольной выборке X^k :

$$Q_{\mu}(X^{\ell}, X^{k}) = Q(\mu(X^{\ell}), X^{k}).$$

Недостаток: эта оценка зависит от разбиения $X^L = X^\ell \sqcup X^k$.

Основное отличие внешних критериев от внутренних

Внутренний критерий монотонно убывает с ростом сложности модели (например, числа признаков).

Внешний критерий имеет характерный минимум, соответствующий оптимальной сложности модели.

Кросс-проверка (cross-validation, CV)

Усреднение оценок hold-out по заданному N — множеству разбиений $X^L = X_n^\ell \sqcup X_n^k$, $n = 1, \ldots, N$:

$$\mathsf{CV}(\mu, X^L) = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} Q_{\mu}(X_n^{\ell}, X_n^k).$$

Частные случаи — разные способы задания N.

- 1. Случайное множество разбиений.
- 2. Полная кросс-проверка (complete cross-validation, CCV): N множество всех $C_{\ell+k}^k$ разбиений.

Недостаток: оценка CCV вычислительно слишком сложна. Используются либо малые k, либо комбинаторные оценки CCV.

Скользящий контроль и поблочная кросс-проверка

3. Скользящий контроль (leave one out CV): k=1,

$$LOO(\mu, X^L) = \frac{1}{L} \sum_{i=1}^{L} Q_{\mu}(X^L \setminus \{x_i\}, \{x_i\}).$$

Недостатки LOO: ресурсоёмкость, высокая дисперсия.

4. Кросс-проверка по q блокам (q-fold CV): случайное разбиение $X^L=X_1^{\ell_1}\sqcup\cdots\sqcup X_q^{\ell_q}$ на q блоков (почти) равной длины,

$$\mathsf{CV}_q(\mu, X^L) = rac{1}{q} \sum_{n=1}^q Q_\mu ig(X^L ackslash X_n^{\ell_n}, X_n^{\ell_n} ig).$$

Недостатки q-fold CV:

- оценка существенно зависит от разбиения на блоки;
- каждый объект лишь один раз участвует в контроле.

Многократная поблочная кросс-проверка

- 5. Контроль t раз по q блокам $(t \times q$ -fold CV)
- стандарт «де факто» для тестирования методов обучения.

Выборка X^L разбивается t раз случайным образом на q блоков

$$X^L = X_{s1}^{\ell_1} \sqcup \cdots \sqcup X_{sq}^{\ell_q}, \quad s = 1, \ldots, t, \quad \ell_1 + \cdots + \ell_q = L;$$

$$\mathsf{CV}_{t\times q}(\mu, X^L) = \frac{1}{t} \sum_{s=1}^t \frac{1}{q} \sum_{n=1}^q Q_\mu \big(X^L \backslash X_{sn}^{\ell_n}, X_{sn}^{\ell_n} \big).$$

Преимущества $t \times q$ -fold CV:

- увеличением t можно улучшать точность оценки (компромисс между точностью и временем вычислений);
- каждый объект участвует в контроле ровно t раз;
- оценивание доверительных интервалов (95% при t=40).

Критерии непротиворечивости моделей

Идея: Если модель верна, то алгоритмы, настроенные по разным частям данных, не должны противоречить друг другу.

1. По одному случайному разбиению $X^{\ell} \sqcup X^k = X^L$, $\ell = k$:

$$D_1(\mu, X^L) = \frac{1}{L} \sum_{i=1}^{L} |\mu(X^\ell)(x_i) - \mu(X^k)(x_i)|.$$

2. Аналог $\mathsf{CV}_{t imes 2}$: по t разбиениям $X^L = X^\ell_s \sqcup X^k_s$, $s = 1, \dots, t$:

$$D_t(\mu, X^L) = \frac{1}{t} \sum_{s=1}^t \frac{1}{L} \sum_{i=1}^L |\mu(X_s^\ell)(x_i) - \mu(X_s^k)(x_i)|.$$

Недостатки:

- длина обучения сокращается в 2 раза;
- трудоёмкость возрастает в 2 раза.

Критерии регуляризации

Perynapusatop — аддитивная добавка к внутреннему критерию, обычно штраф за сложность (complexity penalty) модели A:

$$Q_{\mathsf{per}}(\mu, X^\ell) = Q_\mu(X^\ell) + \mathsf{штра} \mathbf{\phi}(A),$$

Линейные модели: $A=\left\{a(x)=\mathrm{sign}\langle w,x\rangle\right\}$ — классификация, $A=\left\{a(x)=\langle w,x\rangle\right\}$ — регрессия.

 L_2 -регуляризация (ридж-регрессия):

штра
$$\phi(w) = \tau \|w\|_2^2 = \tau \sum_{i=1}^n w_j^2$$
.

 L_1 -регуляризация (LASSO):

штра
$$\phi(w) = \tau \|w\|_1 = \frac{\tau}{\tau} \sum_{j=1}^n |w_j|$$
.

 L_0 -регуляризация (AIC, BIC):

штра
$$\phi(w) = \tau \|w\|_0 = \tau \sum_{i=1}^n [w_i \neq 0].$$

Аналитические оценки и их обращение

Основная идея аналитического подхода:

1. Получить верхнюю оценку вероятности переобучения R_{ε} , справедливую для любой выборки X^L , широкого класса моделей A и методов обучения μ :

$$R_{\varepsilon}(\mu, X^{L}) = P\Big[Q_{\mu}(X^{\ell}, X^{k}) - Q_{\mu}(X^{\ell}) \geqslant \varepsilon\Big] \leqslant \eta(\varepsilon, A).$$

2. Тогда для любой X^L , любых A и μ и любого $\eta \in (0,1)$ с вероятностью не менее $(1-\eta)$ справедлива оценка

$$Q_{\mu}(X^{\ell}, X^{k}) \leqslant Q_{\mu}(X^{\ell}) + \varepsilon(\eta, A),$$

где $\varepsilon(\eta,A)$ — функция штрафа на A, обратная к $\eta(\varepsilon,A)$, не зависящая от скрытой контрольной выборки X^k .

3. Оптимизировать метод обучения: $Q_{\mu}(X^{\ell})+arepsilon(\eta, A) o \min_{\mu}$

Разновидности L_0 -регуляризации

Информационный критерий Акаике (Akaike Information Criterion):

$$\mathsf{AIC}(\mu, x) = Q_{\mu}(X^{\ell}) + \frac{2\hat{\sigma}^2}{\ell} |J|,$$

где $\hat{\sigma}^2$ — оценка дисперсии ошибки $D(y_i - a(x_i))$, J — подмножество используемых признаков.

Байесовский информационный критерий (Bayes Inform. Criterion):

$$\mathsf{BIC}(\mu, X^\ell) = rac{\ell}{\hat{\sigma}^2} \left(Q_\mu(X^\ell) + rac{\hat{\sigma}^2 \ln \ell}{\ell} |J|
ight).$$

Оценка Вапника-Червоненкиса (VC-bound):

$$\mathsf{VC}(\mu, X^\ell) = Q_\mu(X^\ell) + \sqrt{rac{h}{\ell} \ln rac{2e\ell}{h}} + rac{1}{\ell} \ln rac{9}{4\eta},$$

h — VC-размерность; для линейных моделей h = |J|; n — уровень значимости; обычно $\eta = 0.05$.

Выбор модели по совокупности внешних критериев

Модель, немного неоптимальная по обоим критериям, скорее всего, лучше, чем модель, оптимальная по одному критерию, но сильно не оптимальная по другому.

Задача отбора признаков по внешнему критерию

 $F = \left\{ f_j \colon X o D_j \colon j = 1, \dots, n
ight\}$ — множество признаков; μ_J — метод обучения, использующий только признаки $J \subseteq F$; $Q(J) = Q(\mu_J, X^\ell)$ — выбранный внешний критерий. $Q(J) o \min$ — задача дискретной оптимизации.

Задача отбора признаков в логических закономерностях

3акономерность R- конъюнкция пороговых условий:

$$R(x) = \bigwedge_{j \in J} [f_j(x) \geqslant a_j].$$

Критерий информативности относительно класса $c \in Y$:

$$I(p,n)
ightarrow \max_{J,\{a_j\}}; \quad egin{cases} p(R) = \# \big\{ x_i \colon R(x_i) = 1 \text{ in } y_i = c \big\}
ightarrow \max_{I,\{a_j\}}; \quad n(R) = \# \big\{ x_i \colon R(x_i) = 1 \text{ in } y_i \neq c \big\}
ightarrow \min_{I} \{ x_i \colon R(x_i) = 1 \text{ in } y_i \neq c \} \end{cases}$$

Информативность I(p,n) имеет оптимум по сложности |J|:

- ullet слишком мало признаков \Rightarrow большие n, низкая I(p,n)
- ullet оптимально признаков \Rightarrow малые n, большие p, высокая I(p,n)
- ullet слишком много признаков \Rightarrow малые p+n, низкая I(p,n)

Вывод: для отбора признаков по внешним критериям и по информативности годятся одни и те же методы.

\mathbf{B} ход: множество F, критерий Q, параметр d;

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** j = 1, ..., n, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$
$$j = 0$$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** j = 1, ..., n, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$

 $j = 1$
 $j^* = 1$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** $j = 1, \dots, n$, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$

$$j = 2$$

$$j^* = 2$$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** j = 1, ..., n, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$

$$j = 3$$

$$j^* = 3$$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** $j = 1, \dots, n$, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$

$$j = 4$$

$$j^* = 4$$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** $j = 1, \dots, n$, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: **если** $Q(J_j) < Q^*$ **то** $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$

$$j = 5$$

$$j^* = 4$$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** $j = 1, \dots, n$, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

$$d = 3$$

$$j = 6$$

$$j^* = 4$$

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** j = 1, ..., n, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

Алгоритм полного перебора (Full Search)

$$d = 3$$

$$j = 7$$

$$j^* = 4$$

Вход: множество F, критерий Q, параметр d;

- 1: $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** $j = 1, \dots, n$, где j сложность наборов:
- 3: найти лучший набор сложности j: $J_j := \arg\min_{J: \ |J|=j} Q(J);$
- 4: если $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 5: если $j j^* \geqslant d$ то вернуть J_{j^*} ;

Алгоритм полного перебора (Full Search)

Преимущества:

- простота реализации;
- гарантированный результат;
- полный перебор эффективен, когда
 - информативных признаков не много, $j^* \lesssim 5$;
 - всего признаков не много, $n \lesssim 20..100$.

Недостатки:

- в остальных случаях ооооооочень долго $O(2^n)$;
- чем больше перебирается вариантов, тем больше переобучение (особенно, если лучшие из вариантов существенно различны и одинаково плохи).

Способы устранения:

- эвристические методы сокращённого перебора.

Алгоритм жадного добавления (Add)

\mathbf{B} ход: множество F, критерий Q, параметр d;

- 1: $J_0 := \varnothing$; $Q^* := Q(\varnothing)$; инициализация;
- 2: **для всех** $j=1,\ldots, n$, где j сложность наборов:
- 3: найти признак, наиболее выгодный для добавления:

$$f^* := \underset{f \in F \setminus J_{j-1}}{\operatorname{arg\,min}} Q(J_{j-1} \cup \{f\});$$

4: добавить этот признак в набор:

$$J_i := J_{i-1} \cup \{f^*\};$$

- 5: **если** $Q(J_j) < Q^*$ то $j^* := j$; $Q^* := Q(J_j)$;
- 6: если $j j^* \ge d$ то вернуть J_{i^*} ;

Алгоритм жадного добавления (Add)

Преимущества:

- работает быстро $O(n^2)$, точнее $O(n(j^*+d))$;
- возможны быстрые инкрементные алгоритмы, пример *шаговая регрессия* (step-wise regression).

Недостатки:

- Add склонен включать в набор лишние признаки.

Способы устранения:

- Del можно идти в обратном направлении;
- Add-Del чередование добавлений и удалений (см. далее);
- поиск в ширину (см. ещё далее).

Алгоритм поочерёдного добавления и удаления (Add-Del)

Преимущества:

- как правило, лучше, чем Add и Del по отдельности;
- возможны быстрые инкрементные алгоритмы, пример *шаговая регрессия* (step-wise regression).

Недостатки:

- работает дольше, оптимальность не гарантирует.

Алгоритм поочерёдного добавления и удаления (Add-Del)

```
1: J_0 := \emptyset; Q^* := Q(\emptyset); t := 0; — инициализация;
 повторять
 3:
       пока |J_t| < n добавлять признаки (Add):
 4:
          t := t + 1; — началась следующая итерация;
          f^* := \arg \min Q(J_{t-1} \cup \{f\}); \quad J_t := J_{t-1} \cup \{f^*\};
 5:
                 f \in F \setminus J_{t-1}
          если Q(J_t) < Q^* то t^* := t; Q^* := Q(J_t);
 6:
          если t - t^* \geqslant d то прервать цикл;
7:
8:
       пока |J_t| > 0 удалять признаки (Del):
          t := t + 1; — началась следующая итерация;
9:
          f^* := \operatorname{arg\;min} Q(J_{t-1} \setminus \{f\}); \quad J_t := J_{t-1} \setminus \{f^*\};
10:
          если Q(J_t) < Q^* то t^* := t; Q^* := Q(J_t);
11:
          если t - t^* \geqslant d то прервать цикл;
12:
13: пока значения критерия Q(J_{t^*}) уменьшаются;
```

14: вернуть J_{t^*} ;

Поиск в глубину (DFS, метод ветвей и границ)

Пример: дерево наборов признаков, n = 4

Основные идеи:

- нумерация признаков по возрастанию номеров чтобы избежать повторов при переборе подмножеств;
- если набор J бесперспективен,
 то больше не пытаться его наращивать.

Поиск в глубину (DFS, метод ветвей и границ)

Обозначим Q_j^* — значение критерия на самом лучшем наборе мощности j из всех до сих пор просмотренных.

Оценка бесперспективности набора признаков J: набор J не наращивается, если

$$\exists j \colon \quad Q(J) \geqslant \varkappa Q_j^* \quad \text{if} \quad |J| \geqslant j+d,$$

 $d \geqslant 0$ — целочисленный параметр, $\varkappa \geqslant 1$ — вещественный параметр.

Чем меньше d и \varkappa , тем сильнее сокращается перебор.

Поиск в глубину (DFS, метод ветвей и границ)

\mathbf{B} ход: множество F, критерий Q, параметры d и \varkappa ;

- 1: **ПРОЦЕДУРА** Нарастить (J);
- 2: если найдётся $j\leqslant |J|-d$ такое, что $Q(J)\geqslant \varkappa Q_i^*$, то
- 3: выход;
- 4: $Q_{|J|}^* := \min\{Q_{|J|}^*, Q(J)\};$
- 5: для всех $f_s \in F$ таких, что $s > \max\{t \mid f_t \in J\}$ Нарастить $(J \cup \{f_s\})$;
- 6: Инициализация массива лучших значений критерия:
 - $Q_i^* := Q(\varnothing)$ для всех $j=1,\ldots,n$;
- 7: Упорядочить признаки по убыванию информативности;
- 8: Нарастить (\emptyset) ;
- 9: **вернуть** J, для которого $Q(J) = \min_{j=1,...,n} Q_j^*$;

Поиск в ширину (BFS)

Он же *многорядный итерационный алгоритм МГУА* (МГУА — метод группового учёта аргументов).

Философия — принцип *неокончательных решений* Габора: принимая решения, следует оставлять максимальную свободу выбора для принятия последующих решений.

Усовершенствуем алгоритм Add: на каждой j-й итерации будем строить не один набор, а множество из B_j наборов, называемое j-м pядом:

$$R_j = \{J_j^1, \dots, J_j^{B_j}\}, \quad J_j^b \subseteq F, \quad |J_j^b| = j, \quad b = 1, \dots, B_j.$$

где $B_i \leqslant B$ — параметр ширины поиска.

Поиск в ширину (BFS)

\mathbf{B} ход: множество F, критерий Q, параметры d, B;

```
1: первый ряд состоит из всех наборов длины 1:
   R_1 := \{\{f_1\}, \dots, \{f_n\}\}; \quad Q^* = Q(\emptyset);
2: для всех i = 1, ..., n, где i — сложность наборов:
      отсортировать ряд R_j = \{J_i^1, \dots, J_i^{B_j}\}
3:
      по возрастанию критерия: Q(J_i^1) \leqslant \ldots \leqslant Q(J_i^{B_j});
      если B_i > B то
4:
         R_i := \{J_i^1, \dots, J_i^B\}; \quad -B лучших наборов ряда;
5:
      если Q(J_i^1) < Q^* то j^* := j; \ Q^* := Q(J_i^1);
6:
      если j - j^* \geqslant d то вернуть J_{i^*}^1;
7:
8:
      породить следующий ряд:
      R_{i+1} := \{J \cup \{f\} \mid J \in R_i, f \in F \setminus J\};
```

Поиск в ширину (BFS)

- Трудоёмкость: $O(Bn^2)$, точнее $O(Bn(j^* + d))$.
- Проблема дубликатов:
 после сортировки (шаг 3) проверить на совпадение соседние наборы с равными значениями критерия.
- Адаптивный отбор признаков: на шаге 8 добавлять к j-му ряду только признаки f с наибольшей информативностью $I_i(f)$:

$$I_j(f) = \sum_{b=1}^{B_j} [f \in J_j^b].$$

Эволюционный алгоритм поиска (идея и терминология)

$$J\subseteq F$$
 — индивид (в МГУА «модель»);

$$R_t := \left\{J_t^1, \dots, J_t^{B_t}
ight\} -$$
 поколение (в МГУА $-$ «ряд»);

$$\beta=(\beta_j)_{j=1}^n$$
, $\beta_j=[f_j\in J]-$ хромосома, кодирующая J ;

Бинарная операция *скрещивания* $\beta = \beta' \times \beta''$:

$$eta_j = egin{cases} eta_j', & ext{c вероятностью } 1/2; \ eta_j'', & ext{c вероятностью } 1/2; \end{cases}$$

Унарная операция мутации $eta = \sim eta'$

$$eta_j = egin{cases} 1 - eta_j', & ext{c вероятностью } p_m; \ eta_j', & ext{c вероятностью } 1 - p_m; \end{cases}$$

где параметр p_m — вероятность мутации.

Эволюционный (генетический) алгоритм

```
Вход: множество F, критерий Q, параметры: d, p_m, B — размер популяции, T — число поколений;
```

```
1: инициализировать случайную популяцию из B наборов:
   B_1 := B; R_1 := \{J_1^1, \dots, J_1^{B_1}\}; Q^* := Q(\emptyset);
2: для всех t = 1, ..., T, где t — номер поколения:
      ранжирование индивидов: Q(J_t^1) \leq \ldots \leq Q(J_t^{B_t}):
3:
      если B_t > B то
4:
        селекция: R_t := \{J_t^1, \dots, J_t^B\};
5:
      если Q(J_t^1) < Q^* то t^* := t; Q^* := Q(J_t^1);
6:
      если t-t^* \geqslant d то вернуть J_{t^*}^1;
7:
8:
      породить t+1-е поколение путём скрещиваний и мутаций:
      R_{t+1} := \{ \sim (J' \times J'') \mid J', J'' \in R_t \} \cup R_t;
```

Эвристики для управления процессом эволюции

- Увеличивать вероятности перехода признаков от более успешного родителя к потомку.
- Накапливать оценки информативности признаков.
 Чем более информативен признак, тем выше вероятность его включения в набор во время мутации.
- Применение совокупности критериев качества.
- Скрещивать только лучшие индивиды (элитаризм).
- Переносить лучшие индивиды в следующее поколение.
- В случае стагнации увеличивать вероятность мутаций.
- Параллельно выращивается несколько изолированных популяций (островная модель эволюции).

Преимущества и недостатки эволюционных алгоритмов

Преимущества:

- it's fun из серии «трудно быть богом»
- возможность введения различных эвристик;
- решает задачи даже с очень большим числом признаков.

Недостатки:

- относительно медленная сходимость;
- отсутствие теоретических гарантий;
- подбор параметров непростое искусство;

Случайный поиск — упрощенный генетический алгоритм

Модификация: шаг 8

- породить $t\!+\!1$ -е поколение путём многократных *мутаций*:

$$R_{t+1} := \{ \sim J, \ldots, \sim J \mid J \in R_t \} \cup R_t;$$

Недостатки:

- ничем не лучше ЭА;
- сходимость ещё медленнее.

Способ устранения:

- CПА — случайный поиск с адаптацией.

Основная идея адаптации:

- увеличивать вероятность появления тех признаков, которые часто входят в наилучшие наборы,
- одновременно уменьшать вероятность появления признаков, которые часто входят в наихудшие наборы.

Случайный поиск с адаптацией (СПА)

Вход: множество F, критерий Q, параметры d, j_0 , T, r, h;

```
1: p_1 = \cdots = p_n := 1/n; — равные вероятности признаков;
 2: для всех i = j_0, ..., n, где j — сложность наборов:
 3:
       для всех t=1,\ldots,T, где t — номер итерации:
 4:
           r случайных наборов признаков из распределения \{p_1,\ldots,p_n\}:
           R_{it} := \{J_{it}^1, \ldots, J_{it}^r\}, \quad |J_{it}^1| = \cdots = |J_{it}^r| = j;
           J_{jt}^{\min}:=rg\min_{J\in R_{jt}}Q(J); — лучший из r наборов;
 5:
           J_{jt}^{\max} := rg \max_{J \in R_+} Q(J); — худший из r наборов;
 6:
           H:=0; наказание для всех f_s\in J_{it}^{\mathsf{max}}:
 7:
           \Delta p_s := \min\{p_s, h\}, \quad p_s := p_s - \Delta p_s, \quad H := H + \Delta p_s,
           поощрение для всех f_s \in J_{it}^{\min}: p_s := p_s + H/j;
8:
        J_i := \operatorname{arg\,min} \ Q(J); \ - лучший набор сложности j;
 9:
               J \in R_{i1}, \dots, R_{iT}
        если Q(J_i) < Q^* то j^* := j, Q^* := Q(J_i),
10:
        если i - j^* \geqslant d то вернуть J_{i^*};
11:
```

Случайный поиск с адаптацией (СПА)

Рекомендации по выбору параметров r, T, h:

```
T \approx 10..50 — число итераций; r \approx 20..100 — число наборов, создаваемых на каждой итерации; h \approx \frac{1}{r_B} — скорость адаптации;
```

Преимущества:

- трудоёмкость порядка $O(\mathit{Tr}(j^*+d))$ операций;
- меньшее число параметров, по сравнению с генетикой;
- довольно быстрая сходимость.

Недостатки:

- при большом числе признаков СПА малоэффективен.

Лбов Г. С. Выбор эффективной системы зависимых признаков // Вычислительные системы, 1965, Т. 19, С. 21–34. Загоруйко Н. Г., Ёлкина В. Н., Лбов Г. С. Алгоритмы обнаружения эмпирических закономерностей. Новосибирск: Наука, 1985.

Резюме. Методы отбора признаков

- Критерий Q(J) должен иметь оптимум по сложности:
 - внешний критерий оценка обобщающей способности,
 - информативность для логических правил.
- Для отбора признаков могут использоваться любые эвристические методы дискретной оптимизации

$$Q(J) \to \min_{J \subseteq F}$$
.

- Большинство эвристик эксплуатируют две основные идеи:
 - признаки ранжируются по их полезности;
 - Q(J) изменяется не сильно при небольшом изменении J.
- МГУА и ЭА очень похожи на их основе легко создавать «симбиотические» алгоритмы (метаэвристики).
- L₁-регуляризация в линейных моделях беспереборная? Нет!
 Перебор при поиске подмножества активных ограничений есть, но он эффективно управляется условиями ККТ.