

Camada de Internet

Protocolo IPv6

THE ARPA NETWORK

DEC 1969

4 NODES

Política inicial de distribuição de endereços.

- Classe A
 - o IBM
 - \circ HP
 - o AT&T
 - o MIT
 - o DoD
 - US Army, ...
- Classe B
- Classe C
- Endereços reservados

Máscara de sub-rede com base na classe

	1º octeto	2º octeto	3º octeto	4º octeto	Máscara de sub-rede
Classe A	Rede	Host	Host	Host	255.0.0.0 ou /8
Classe B	Rede	Rede	Host	Host	255.255.0.0 ou /16
Classe C	Rede	Rede	Rede	Host	255.255.255.0 ou /24

Número de redes e de hosts por rede para cada classe

Classe do endereço	Primeiro intervalo do octeto	Número de possíveis redes	Número de hosts por rede
Classe A	de 0 a 127	128 (dois estão reservados)	16,777,214
Classe B	de 128 a 191	16,384	65,534
Classe C	de 192 a 223	2,097,152	254

Política inicial de distribuição de endereços.

- Classe A
 - o IBM
 - \circ HP
 - o AT&T
 - o MIT
 - o DoD
 - US Army, ...
- Classe B
- Classe C
- Endereços reservados

Máscara de sub-rede com base na classe

	1º octeto	2º octeto	3º octeto	4º octeto	Máscara de sub-rede
Classe A	Rede	Host	Host	Host	255.0.0.0 ou /8
Classe B	Rede	Rede	Host	Host	255.255.0.0 ou /16
Classe C	Rede	Rede	Rede	Host	255.255.255.0 ou /24

Número de redes e de hosts por rede para cada classe

Classe do endereço	Primeiro intervalo do octeto	Número de possíveis redes	Número de hosts por rede
Classe A	de 0 a 127	128 (dois estão reservados)	16,777,214
Classe B	de 128 a 191	16,384	65,534
Classe C	de 192 a 223	2,097,152	254

Solução para o problema

SOLUÇÕES PALIATIVAS

- 1992 IETF cria o grupo ROAD (ROuting and ADdressing)
 - CIDR (RFC 4632).
 - Fim do uso de classes = blocos de tamanho apropriado.
 - Endereço de rede = prefixo/comprimento. Agregação das rotas = reduz o tamanho da tabela de rotas.
- DHCP
 - Alocações dinâmicas de endereços.
- NAT + RFC 1918
 - Permite conectar toda uma rede de computadores, usando apenas um endereço válido na Internet, porém com várias restrições.

SOLUÇÕES PALIATIVAS

SOLUÇÕES PALIATIVAS

Estas medidas geraram mais tempo para desenvolver uma nova versão do IP.

1992 — IETF cria o grupo IPng (IP Next Generation)

Principais questões:

- Escalabilidade.
- Segurança.
- Configuração e administração de rede.
- Suporte a QoS.
- Mobilidade.
- Políticas de roteamento.
- Transição.

NASCIMENTO DO INTERNET PROTOCOL VERSION 6

1998 — DEFINIDO PELA RFC 2460

- 128 bits para endereçamento.
- Cabeçalho base simplificado.
- Cabeçalhos de extensão.
- Identificação de fluxo de dados (QoS).
- Mecanismos de IPSec incorporados ao protocolo.
- Realiza a fragmentação e remontagem dos pacotes apenas na origem e no destino.
- Não requer o uso de NAT, permitindo conexões fim a fim.
- Mecanismos que facilitam a configuração de redes.
- Etc.

IMPLEMENTAÇÃO

QUAIS OS RISCOS DA NÃO IMPLANTAÇÃO DO IPV6?

RISCO DA NÃO IMPLANTAÇÃO DO IPV6

Embora ainda seja pequena, a utilização do IPv6 tem aumentado gradativamente, precisamos avançar ainda mais. A não implementação do IPv6 irá:

- Dificultar o surgimento de novas redes.
- Diminuir o processo de inclusão digital o reduzindo o número de novos usuários.
- Dificultar o surgimento de novas aplicações.
- Aumentar a utilização de técnicas como a NAT:
 - O custo de não implementar o IPv6 poderá ser maior que o custo de implementá-lo.
 - Provedores de Internet precisam inovar e oferecer novos serviços a seus clientes.

Algumas características

CABEÇALHO IPV6

MAIS SIMPLES

- 40 Bytes (tamanho fixo).
- Apenas duas vezes maior que o da versão anterior.

MAIS FLEXÍVEL

 Extensão por meio de cabeçalhos adicionais.

MAIS EFICIENTE

- Minimiza o overhead nos cabeçalhos.
- Reduz o custo do processamento dos pacotes.

CABEÇALHO IPV6

CABEÇALHO IPV6

Endereçamento IPv6

ENDEREÇAMENTO IPv4

- 32 bits (equivalente a 4 bytes).
- Dividido em quatro octetos.
- 4 bilhões de endereços.
- Notação decimal separada por pontos.

ENDEREÇAMENTO IPV6

ENDEREÇAMENTO IPV4

- 32 bits (equivalente a 4 bytes).
- Dividido em quatro octetos.
- $2^{32} = 4.294.967.296.$
- 4 bilhões de endereços.

ENDEREÇAMENTO IPV6

- 128 bits
- **2**¹²⁸ = 340.282.366.920.938.463.463.374.607.431.768.211.456
- 340 undecilhões de endereços.
- 56 octilhões (5,6x10²⁸) de endereços IP por pessoa.

ENDEREÇAMENTO IPV6

2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1 /64

- Oito grupo de 16 bits (2 bytes)
- Endereços em Hexadecimal
- Representação de prefixo padrão CIDR

Unicast: identifica uma única interface de rede.

Multicast: identifica um conjunto de interfaces.

Anycast: identifica um conjunto de interfaces que partilham um prefixo.

IPV6: IPSEC

- Acordo criptográfico entre hospedeiros.
- Codificação de cargas úteis do datagrama IP.
- Integridade de dados.
- Autenticação de origem.

CABEÇALHO IPV6: OUTRAS MUDANÇAS

- ICMPv6: nova versão do ICMP
 - o tipos de mensagem adicionais, por exemplo, "Pacote Muito Grande";
 - o funções de gerenciamento de grupo multicast.
- DHCPv6: nova versão do DHCP

Transição para o IPv6

TRANSIÇÃO PARA IPV6

A internet é composta por diversas redes e **milhares de roteadores** e não podemos atualizar todos os roteadores simultaneamente.

Sem "dia de conversão" como a rede operará com roteadores IPv4 e IPv6 misturados?

TRANSIÇÃO PARA IPV6

Não há uma data exata para migrar para o IPv6. IPv4 e IPv6 coexistirão durante um tempo. A transição deve levar anos. A IETF criou vários protocolos e ferramentas para ajudar os administradores de rede a migrarem as redes para IPv6. As técnicas de migração podem ser divididas em três categorias:

TRANSIÇÃO PARA IPV6

PILHA DUPLA

Permite que IPv4 e IPv6 coexistam na mesma rede. Os dispositivos de pilha dupla executam os protocolos IPv4 e IPv6 simultaneamente.

TRANSIÇÃO PARA IPV6

PILHA DUPLA

Permite que IPv4 e IPv6 coexistam na mesma rede. Os dispositivos de pilha dupla executam os protocolos IPv4 e IPv6 simultaneamente.

Fonte: Cisco.

TRANSIÇÃO PARA IPV6

PILHA DUPLA

Para realizar a conversão sem um "DIA D" é necessário uma **abordagem de pilha** onde nós IPv6 também tenham uma implementação IPv4.

E o que acontece no núcleo de rede

TRANSIÇÃO PARA IPV6

TUNELAMENTO

Método que permite transportar um pacote IPv6 por uma rede IPv4. O pacote IPv6 é encapsulado dentro de um pacote IPv4, de forma semelhante a outros tipos de dados.

Será necessária a **implantação de túnel**: IPv6 transportado como carga útil no datagrama IPv4 entre roteadores IPv4.

TUNELAMENTO

TRANSIÇÃO PARA IPV6

Será necessária a **implantação de túnel**: IPv6 transportado como carga útil no datagrama IPv4 entre roteadores IPv4.

TUNELAMENTO

TRANSIÇÃO PARA IPV6

VISÃO FÍSICA

TRANSIÇÃO PARA IPV6

- > Frame 1: 899 bytes on wire (7192 bits), 899 bytes captured (7192 bits)
- Ethernet II, Src: HonHaiPr_41:9c:20 (00:16:cf:41:9c:20), Dst: Unispher_41:65:41 (00:90:1a:41:65:41)
- PPP-over-Ethernet Session
- Point-to-Point Protocol
- Internet Protocol Version 4, Src: 70.55.213.211, Dst: 192.88.99.1
- Internet Protocol Version 6, Src: 2002:4637:d5d3::4637:d5d3, Dst: 2001:4860:0:2001::68
- Transmission Control Protocol, Src Port: 1287, Dst Port: 80, Seq: 1, Ack: 1, Len: 797
- Hypertext Transfer Protocol

VISÃO LÓGICA

VISÃO FÍSICA

TRADUÇÃO

TRANSIÇÃO PARA IPV6

A NAT64 (tradução de endereços de rede 64) permite que dispositivos habilitados para IPv6 se comuniquem com dispositivos habilitados para IPv4 por meio de uma técnica de tradução semelhante à NAT para IPv4. Um pacote IPv6 é convertido em um pacote IPv4, e vice-versa.

Obrigado!

NÚCLEO de Informação e Coordenação do Ponto B.

(Apostila). Disponível em: < http://ipv6.br >. Acesso

em: 14 maio 2019.

IPv6

Capitulo 4 - Páginas de 263 à 267

TANENBAUM | WETHERALL

REDES DE COMPUTADORES

COMER, D. E. **Redes de computadores e internet.** 6. ed. Porto Alegre: Bookman, 2016.

The Internet Engineering Task Force (IETF®) - https://www.ietf.org/

Apostilas Cert Br https://cartilha.cert.br/downloads/

Notas de curso - Cisco Routing & Switching

Notas de Aulas - Ana Cristina Benso da Silva

