ASSIGNMENT - 2

Lakshit Dogra - KH

PART - A

Q. What will the following commands do?

Ans: The following commands will do/perform as mentioned: -

1. echo "Hello, World!"

This command prints the text "Hello, World!" to the terminal.

2. name="Productive"

This sets a variable name with the value "Productive" in the current shell session.

3. touch file.txt

This command creates an empty file named file.txt. If the file already exists, it updates the timestamp of the file.

4. ls -a

This lists all files in the current directory, including hidden files (those starting with a dot).

5. rm file.txt

This removes (deletes) the file file.txt.

6. **cp file1.txt file2.txt**

This copies the contents of file1.txt to file2.txt. If file2.txt exists, it will be overwritten.

7. mv file.txt /path/to/directory/

This moves the file.txt to the specified directory (/path/to/directory/). If the file exists in the destination, it will overwrite it.

8. chmod 755 script.sh

This sets the permissions of the file script.sh to rwxr-xr-x, meaning the owner can read/write/execute, and others can read/execute.

9. grep "pattern" file.txt

This searches for the specified pattern (pattern) in the file file.txt and prints the matching lines.

10. **kill PID**

This sends a signal to the process with the given PID (Process ID) to terminate it.

11. mkdir mydir && cd mydir && touch file.txt && echo "Hello, World!" > file.txt && cat file.txt

Creates a directory called mydir. Changes the current directory to mydir. Creates an empty file file.txt. Writes "Hello, World!" to file.txt. Displays the content of file.txt, which will be "Hello, World!".

12. ls -l | grep ".txt"

This lists all files in long format (ls -l) and then filters the output to only show files that contain .txt in their name.

13. cat file1.txt file2.txt | sort | uniq

This concatenates file1.txt and file2.txt, sorts the combined content, and then filters out duplicate lines using uniq.

14. ls -l | grep "^d"

This lists files in long format and filters out only directories (lines starting with d).

15. grep -r "pattern" /path/to/directory/

This recursively searches for the specified pattern in all files under the given directory /path/to/directory/.

16. cat file1.txt file2.txt | sort | uniq -d

This concatenates file1.txt and file2.txt, sorts them, and then shows only the duplicate lines using uniq -d.

17. chmod 644 file.txt

This sets the permissions of file.txt to rw-r--r-, meaning the owner can read/write, while others can only read.

18. cp -r source directory destination directory

This copies the entire contents of source_directory (including subdirectories) to destination_directory.

19. find /path/to/search -name "*.txt"

This searches the specified path (/path/to/search) and lists all files with the .txt extension.

20. chmod u+x file

This adds execute permission for the user (owner) on the file file.

PART - B

Q. Identify True or False:

Ans.

- 1. Is is used to list files and directories in a directory. **True**
- 2. my is used to move files and directories. **True**
- 3. cd is used to copy files and directories. False
- 4. pwd stands for "print working directory" and displays the current directory. True
- 5. grep is used to search for patterns in files. True
- 6. chmod 755 file.txt gives read, write, and execute permissions to the owner, and read and execute permissions to group and others. **True**
- 7. mkdir -p directory1/directory2 creates nested directories, creating directory2 inside directory1 if directory1 does not exist. **True**
- 8. rm -rf file.txt deletes a file forcefully without confirmation. True

Q. Identify the Incorrect Commands:

- 1. chmodx is used to change file permissions. **Incorrect**
- 2. cpy is used to copy files and directories. **Incorrect**
- 3. mkfile is used to create a new file. **Incorrect**
- 4. catx is used to concatenate files. **Incorrect**
- 5. rn is used to rename files. **Incorrect**

PART - C

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

```
cdac@nobeuno:~ x + v - - - X

cdac@nobeuno:~ $ nano sh1
cdac@nobeuno:~ $ cat sh1
echo "Hello, World!"
cdac@nobeuno:~ $ bash sh1
Hello, World!
cdac@nobeuno:~ $ |
```

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

Question 3: Write a shell script that takes a number as input from the user and prints it.

```
cdac@nobeuno:~ x + v - - - X

cdac@nobeuno:~ nano sh3
cdac@nobeuno:~ cat sh3
read -p "enter a number: " num
echo "you entered $num"
cdac@nobeuno:~ bash sh3
enter a number: 7
you entered 7
cdac@nobeuno:~ $
```

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

```
cdac@nobeuno:~ x + v - - - X

cdac@nobeuno:~ $ nano sh4

cdac@nobeuno:~ $ cat sh4

a=5
b=3
sum=$((a+b))
echo "sume is $sum"
cdac@nobeuno:~ $ bash sh4
sume is 8
cdac@nobeuno:~ $ |
```

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd".

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

```
      Istriction
      cdac@nobeuno: ~
      x
      +
      ∨
      -
      □
      X

      cdac@nobeuno: ~
      $ cat sh6
      for i in {1..5}; do echo $i
      done
      done
      dac@nobeuno: ~
      $ bash sh6
      1
      2
      3
      4
      5
      cdac@nobeuno: ~
      $ cdac@
```

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each column representing the multiplication result for that number.

```
cdac@nobeuno: ~
cdac@nobeuno:~$ nano sh10
cdac@nobeuno:~$ nano sh10
cdac@nobeuno:~$ cat sh10
for num in {1..5}; do
        echo "multiplication table for $num is"
        for i in {1..10}; do
                  echo "num x i = ((num * i))"
        done
        echo ""
done
cdac@nobeuno:~$ bash sh10
multiplication table for 1 is
1 \times 1 = 1
1 \times 2 = 2
1 \times 3 = 3
1 \times 4 = 4
1 \times 5 = 5
1 x 6 = 6
1 \times 7 = 7
1 \times 8 = 8
1 \times 9 = 9
1 \times 10 = 10
```

```
×
 cdac@nobeuno: ~
multiplication table for 2 is
2 \times 1 = 2
2 \times 2 = 4
2 \times 3 = 6
2 \times 4 = 8
2 \times 5 = 10
2 \times 6 = 12
2 \times 7 = 14
2 \times 8 = 16
2 \times 9 = 18
2 \times 10 = 20
multiplication table for 3 is
3 x 1 = 3
3 \times 2 = 6
3 \times 3 = 9
3 \times 4 = 12
3 \times 5 = 15
3 \times 6 = 18
3 \times 7 = 21
3 \times 8 = 24
3 \times 9 = 27
3 \times 10 = 30
```

```
cdac@nobeuno: ~
multiplication table for 4 is
4 \times 1 = 4
4 \times 2 = 8
4 \times 3 = 12
4 \times 4 = 16
4 \times 5 = 20
4 \times 6 = 24
4 \times 7 = 28
4 \times 8 = 32
4 \times 9 = 36
4 \times 10 = 40
multiplication table for 5 is
5 \times 1 = 5
5 x 2 = 10
5 \times 3 = 15
5 \times 4 = 20
5 \times 5 = 25
5 \times 6 = 30
5 \times 7 = 35
5 \times 8 = 40
5 \times 9 = 45
5 \times 10 = 50
```

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered.

```
×
cdac@nobeuno: ~
cdac@nobeuno:~$ nano sh11
cdac@nobeuno:~$ cat sh11
while true; do
       read -p "enter a number: " num
       if [ $num -lt 0 ]; then
               break
       fi
       echo "square: $((num * num))"
done
cdac@nobeuno:~$ bash sh11
enter a number: 5
square: 25
enter a number: 7
square: 49
enter a number: 4
square: 16
enter a number: 0
square: 0
enter a number: 6
square: 36
enter a number: -1
cdac@nobeuno:~$
```

PART – E

Q. Consider the following processes with arrival times and burst times:

Process	Arrival Time	Burst Time
P1	0	5
P2	1	3
P3	2	6

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

Q1	Calculate	2 aver	age w	seing	FCFS	Schedu	ling:-			
	0 0									
	Bocess	Arrival	Burst	CT	WT	TAT				
	PI	0	5	5	0	5				
	P2 B	1	3	8	9	7				
	13	2	6	14	6	12				
	Ganut Chart	Pi	P	2	P3					
	' Chart	0	5	8	, ,	14				
	0 F	vouge	Wating	time	= (P1+P2+F	s) waiting Time			
			1				Total Processes.			
4							GIAC PROCESSES.			
	44H				2 (1444	= 0.33.			
						3	- 0.33			

Q. Consider the following processes with arrival times and burst times:

Process	Arrival Time	Burst Time
P1	0	3
P2	1	5
P3	2	1
P4	3	4

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

							Page Ho.		
9	Calcu	late the	time	using	SIF				
	Process Pi Ps Ps Ps	Assival D 1 2 3	Busst 3 5 1	CT 3 13 14 8	RT 0 7	ωτ 0 7 1	TAT 3 12 2 5 5 5:5	Avg	
	Garet P1 P3 P4 P3 1 Chart 0 3 4 8 13 Average TAT = 3+12+2+5 4 5 22 5 5.5								

Q. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

Process	Arrival Time	Burst Time	Priority
P1	0	6	3
P2	1	4	1
P3	2	7	4
P4	3	2	2

Calculate the average waiting time using Priority Scheduling.

9	Calculat	e the a	vuage	waiting t	Time	using	Priority	Schoole	line
	Process	Arssival	Buxst	Priority	CT	TAT	I wT	RT	
	P	0.	6	3	13	13	7	0	
100000	P2	1	4	1	5	4	0	0	
7/2- 1-3	P3	2	7	4	20	18	11	11	
	Py	3	2	2.	7	y	2	2	
				1	tvg.	9.75	5	3.25	
					0				
	Gant	P. B	R B	B Ry	Py	P. P.	P, P.	PIP	
	Chart 1)	2 3	456	7	8 9	10 1	1 12	13
			1	P3 P3	B 1	BP	3 13	1 P3	
		The State of		14 13	16	17	18 1	9	20
		1.	-						
	Aver	age Wasti	ng lime	2 7+	0+	11+2			3
		1	U		4				
	5 20 : 5								
	B8 33 15 1			4			24		
					ALTER ST			N. Street, St.	