Algebra I Examen Final (10-12-04)

Nombre y apellido:

Turno:

Carrera:

1	2	3	4	5

- 1. Sea $n \in \mathbb{N}$ y sea A un conjunto de n elementos. Determinar el número de relaciones de equivalencia en A que admiten a lo sumo 2 clases de equivalencia.
- 2. Probar que

$$\sum_{i=1}^{2^n} \frac{1}{i} > \frac{n}{2}$$

para todo $n \in \mathbb{N}$.

- 3. Sea $n=2^{25}3^{100}5^{51}7^{65}11^2$. Calcular el número de divisores positivos d de n que verifican simultáneamente las siguientes condiciones:
 - (a) d es un cuadrado perfecto.
 - (b) $40 \mid d$.
 - (c) $(d:3^{300}7^511) = 3^{60}7^5$.
- 4. Sea $g \in \mathbb{C}[X]$ y sea $f = X^4g$. Hallar los posibles valores del término constante de g, sabiendo que 0 es raíz de multiplicidad 8 del polinomio $X^5f' + f^2$.
- 5. Sea z una raíz 18-ésima primitiva de 1. Caracterizar los $n \in \mathbb{N}$ tales que $z^{4n} \in G_{12}$.

Nota. Justifique debidamente todas sus respuestas.