9_real data example 1

Ziang Wang 7/15/2020

Example with 50 counts (Real data from the U.S. Census Bureau Website)

Generate 50 counts and compute the total count

The data is about the Total Employement of 50 states in the U.S.in 2018.

```
# Get the data from the U.S. Census Bureau Website
# Total Employment in 2018
url = "https://www.census.gov/quickfacts/geo/chart/US/BZA110218"
counts <- read_html(url) %>% html_nodes(".qf-positive") %>% html_text()
counts < counts [c(2*(1:length(counts))-1,2*(length(counts):1))][1:50]
set.seed(328328)
N <- as.numeric(gsub(",","",counts))</pre>
t <- sum(N)
N
        1730817
                  261053 2549128 1043210 15223664
##
   [1]
                                                    2423817 1528867
  [8]
         405809
                  539557 8669611
                                   3975657
                                             551681
                                                     597765 5524630
## [15]
        2816081 1364250 1203434 1642234 1691552
                                                     516240
                                                             2366053
## [22]
        3323852 3947891 2729492
                                    944890 2533694
                                                     371239
                                                              845616
## [29]
       1221809
                 612420 3739076
                                  631393 8410206 3848565
                                                              346155
## [36]
       4878062 1385228 1629432 5478025
                                             661332
                                                     442449 1903609
                 2683214 10794596 1337574
## [43]
         359771
                                             261282 3386839 2847481
## [50]
         554567
```

[1] 128734869

Define alpha and sampling functions

```
# Define alpha based on the geometric mechanism
alpha <- 1/exp(1)

# pdf of the double geometric distribution
probs <- function(n, k = 0){
  p <- c()
  for(i in 1:length(n)){
    p[i] <- alpha^(abs(n[i] - k))*(1-alpha)/(1 + alpha)
  }
  return(p)
}</pre>
# Chop the noise so that i is less than or equal to 50 (?)
```

```
# Set the first and the last probabilities (Boundaries) to adjust when using sample function
first_p = last_p = function(p){
  return(0.5*(1 - sum(p)))
}
# Define the function to sample noisy count (could be positive) from the dg distribution
samplenoise <- function(n, center = 0, i = 50){</pre>
  i = i-1
  return(sample(x = (-i + center):(i + center), size = n,
                prob = c(first_p(probs((-i_ + center):(i_ + center), center)),
                          probs((-i_ + center):(i_ + center), center),
                         last_p(probs((-i_ + center):(i_ + center), center)))))
}
# Define the function to sample posterior count (must be positive) from the dq distribution
samplepos <- function(n, center = 0, i = 50){</pre>
  # Two cases
  if (-i + center >= 0){
    result = samplenoise(n, center, i)
  } else {
    prob = probs(0:(i + center), center)
    result = sample(x = 0:(i + center), size = n, prob = prob / sum(prob))
  }
  return(result)
}
# Define the function to find the pi in multinomial idea
pi <- function(pos){</pre>
 p <- c()
  for(i in 1:length(pos)){
    p[i] <- pos[i] / sum(pos)</pre>
  return(p)
}
```

Find noisy counts and the posterior of the total and individuals

All algorithms share the same noisy counts.

- 1. Algorithm 1: New total and new components for each try
- 2. Algorithm 2: New total with fixed components
- 3. Algorithm 3: Only use noise counts (Not Bayesian). If noisy count is negative, use the posterior mode.

```
set.seed(1)

# Generate n counts
n = 10000

# Create vectors for results
p1_total <- c()
p2_total <- c()
t3_noise <- c()</pre>
```

```
p1_N <- matrix(data = NA, n, 50)
N3_noise <- matrix(data = NA, n, 50)
for(i in 1:n){
  # Noisy count of the total
  t.noise <- samplenoise(1, center = t, i = 50)</pre>
  # Algorithm 1
    ## Posterior count of the total
  p1_total[i] <- samplepos(1, center = t.noise, i = 50)</pre>
    ## Sample the individual noisy counts
  N_noise <- c()
  for(j in 1:length(N)){
    N_noise[j] \leftarrow samplenoise(1, center = N[j], i = 50)
    ## Sample the individual posterior counts
  posterior_N <- c()</pre>
  for(k in 1:length(N_noise)){
    posterior_N[k] <- samplepos(n = 1, center = N_noise[k], i = 50)</pre>
  p1_N[i,] <- posterior_N</pre>
  # Algorithm 2
  p2_total[i] <- p1_total[i]</pre>
  # Algorithm 3
  t3_noise[i] <- t.noise
  N3_noise[i,] <- N_noise
# Algorithm 3 Adjustments
# Function used to find the posterior mode
Mode <- function(x) {</pre>
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
# Substitute negative noisy counts with the posterior mode of that state
for(i in 1:n){
  for(j in 1:50){
    if(N3_noise[i,j] < 0){</pre>
      N3\_noise[i,j] \leftarrow Mode(p1\_N[,j])
  }
}
```

Multinomial idea

Generate each individual count of multinomial idea

```
multi_1 <- matrix(data = NA, 50, n)
multi_2 <- matrix(data = NA, 50, n)
multi_3 <- matrix(data = NA, 50, n)

for(i in 1:n){
    # Algorithm 1
    multi_1[, i] <- rmultinom(n = 1, size = p1_total[i], prob = pi(p1_N[i,]))

# Algorithm 2: Probabilities are the same for all 10000 runs.
multi_2[, i] <- rmultinom(n = 1, size = p2_total[i], prob = pi(p1_N[1,]))

# Algorithm 3: Only use noisy counts for each run
multi_3[, i] <- rmultinom(n = 1, size = t3_noise[i], prob = pi(N3_noise[i,]))
}</pre>
```

Plot the results

Multinomial idea - Algorithm 1

Multinomial idea - Algorithm 2

Multinomial idea - Algorithm 3

Comparison

Variance

Table 1: Variances with the multinomial idea

	n1	n2	n3	n4	n5
Algorithm 1 Algorithm 2 Algorithm 3	1671832	535338.0	944843.7	1624088	558714.9 548134.7 538233.4

Bias

```
 \begin{aligned} df\_bias &\leftarrow data.frame(n1 = c(bias(result1\$n1, rep(N[1], n)), bias(result2\$n1, rep(N[1], n)), \\ & bias(result3\$n1, rep(N[1], n))), \\ & n2 = c(bias(result1\$n2, rep(N[12], n)), bias(result2\$n2, rep(N[12], n)), \end{aligned}
```

Table 2: Bias with the multinomial idea

	n1	n2	n3	n4	n5
Algorithm 1	8.3049	4.7117	-0.7292	-3.7677	0.7500
Algorithm 2	7.1376	5.3906	6.4192	12.1823	0.5266
Algorithm 3	9.5990	-3.1670	6.5854	-6.7299	11.3924

Mean Squared Error

Table 3: MSE with the multinomial idea

	n1	n2	n3	n4	n5
Algorithm 1	1698226	557195.9	955883.7	1605091	558659.6
Algorithm 2	1671716	535313.5	944790.4	1624074	548080.1
Algorithm 3	1687436	539384.8	960993.0	1669334	538309.4