Régularisation

Mathieu Pigeon

UQAM

- Introduction
- Transformation des variables explicatives
- Régression Ridge
- Régression Lasso

Problématique - Régression

- Dans une problématique de type *régression*, on dispose d'une base de données de taille $n: (y_i, \mathbf{x}_i)_{i=1,2,...,n}$, avec $\mathbf{x}_i = \begin{bmatrix} x_{i1} & \cdots & x_{ip} \end{bmatrix}$.
- y_i est la variable réponse (numérique) et \mathbf{x}_i est un vecteur de variables explicatives (numériques également), ou prédicteurs.
- L'objectif est de *prédire* la valeur de la variable réponse y^* pour une nouvelle observation dont les variables explicatives sont \mathbf{x}^* .

Méthode des K plus proches voisins

- On définit $||\mathbf{x}||_2 = \sqrt{\sum_{j=1}^p x_j^2}$.
- Pour une base de données $(y_i, \mathbf{x}_i)_{i=1,2,\dots,n}$ et une valeur de K, on définit l'ensemble des K plus proches voisins du point \mathbf{x}_0 , $\mathcal{X}_0^{(K)}$, comme étant l'ensemble des K points \mathbf{x}_i de la base de données pour lesquels la valeur de $||\mathbf{x}_i \mathbf{x}_0||_2$ est la plus petite.
- Pour une nouvelle observation \mathbf{x}_0 , la prédiction sera donnée par

$$\tilde{Y} = \frac{1}{K} \sum_{i: \mathbf{x}_i \in \mathcal{X}_0^{(K)}} y_i.$$

Exemple 1

Base de données *freaggnumber* disponible dans la librairie *CASdatasets*. Contient la fréquence totale de sinistres pour 12513 classes d'assuré(e)s. Les variables sont

- ClaimNumber : la fréquence totale pour la classe;
- Exposure : l'exposition totale pour la classe (en année-police);
- VehAge : l'âge du véhicule;
- LicenceAge : l'âge auquel le conducteur a obtenu son permis de conduire;
- DriverAge : l'âge du conducteur.

Exemple 1 : Préparation des données

```
data(freaggnumber)
dataAGG <- freaggnumber
head(dataAGG)</pre>
```

library(CASdatasets)

DriverAge	LicenceAge	VehAge	Exposure	${\tt ClaimNumber}$
39	18	3	1356.402	192
35	18	3	1243.948	172
37	18	1	1263.064	172
38	18	3	1328.589	171
39	18	2	1346.795	170
40	18	3	1263.537	165

Exemple 1 : Modèle des K plus proches voisins

```
library(FNN)
FUNout <- function(x){
  sum((knn.reg(train = matrix(as.matrix(dataAGG)[,1:4],
       ncol = 4), y = dataAGG$ClaimNumber, k = x)$pred
       - dataAGG$ClaimNumber)^2)/length(dataAGG$ClaimNumber)
}
outMSE <- sapply(1:50, function(x) FUNout(x))</pre>
(1:50) [which(outMSE == min(outMSE))]
[1] 10
```

Exemple 1 : Modèle des K plus proches voisins

FIGURE – Évolution de l'erreur quadratique moyenne de validation en fonction de la valeur de K (le minimum est à K=10).

Exemple 1 : Modèle des K plus proches voisins

10.64317

Méthode des K plus proches voisins

En dépit de sa simplicité, cette méthode présente de nombreux inconvénients :

- le modèle est constant par morceau → variations abruptes; et
- le modèle performe mal en dimension élevée, c'est-à-dire lorsque
 p = dim(X) est grand.

On a le modèle paramétrique suivant :

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i, \qquad i = 1, \dots, n.$$

Les paramètres β_j , $j=0,1,\ldots,p$ du modèle peuvent être estimés en minimisant l'erreur quadratique moyenne (MSE) sur un échantillon d'entrainement :

$$(\widehat{\beta}_0, \dots, \widehat{\beta}_p) = \operatorname{argmin}_{\beta_0, \dots, \beta_p} \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2$$

$$\widehat{y}_i = \widehat{\beta}_0 + \sum_{i=1}^p \widehat{\beta}_i X_{ij}.$$

Sous forme matricielle, on a

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & X_{11} & \dots & X_{1p} \\ \vdots & & \ddots & \vdots \\ 1 & X_{n1} & \dots & X_{np} \end{bmatrix}$$
$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_p \end{bmatrix}.$$

Le modèle est alors

$$\mathbb{E}\left[\mathbf{Y}\right] = \mathbf{X}\boldsymbol{eta}$$

avec les paramètres donnés par

$$egin{aligned} \widehat{oldsymbol{eta}} &= \mathsf{arg} \ \mathsf{min}_{oldsymbol{eta}} \left(\mathbf{Y} - \mathbf{X} oldsymbol{eta}
ight)^T \left(\mathbf{Y} - \mathbf{X} oldsymbol{eta}
ight) \ &= \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{Y}. \end{aligned}$$

Pour une nouvelle observation dont les variables explicatives sont $X_{(n+1)1},\ldots,X_{(n+1)p}$, la prédiction est donnée par

$$\widetilde{y}_{n+1} = \widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j X_{(n+1)j}.$$

On obtient ainsi un modèle qui est très **lisse** mais qui manque souvent de flexibilité pour capturer la relation entre la variable réponse et les variables explicatives.

Exemple 1 : Régression linéaire

```
MSE_LIN <- mean((predict(modele2) - dataAGG$ClaimNumber)^2)</pre>
```

6.15840 0.21764 28.296 < 2e-16 ***

MSE_LIN

VehAge

[1] 22769.49

Régression linéaire généralisée (GLM)

On a le modèle paramétrique suivant :

$$g(\mathbb{E}[Y_i]) = \beta_0 + \sum_{j=1}^{p} \beta_j X_{ij}, \qquad i = 1, \ldots, n,$$

ou, sous forme matricielle,

$$\mathbf{g}(\mathbb{E}[\mathbf{Y}]) = \mathbf{X}\boldsymbol{\beta}.$$

On retrouve une relation linéaire entre une transformation de l'espérance et les variables explicatives.

Exemple 1 : Régression linéaire généralisée (Poisson)

```
modele3 <- glm(ClaimNumber ~ DriverAge + LicenceAge + VehAge,
              family = poisson(link = "log"),
              data = dataAGG, offset = log(Exposure))
summary(modele3)
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.5930588 0.0183868 -141.03
                                           <2e-16 ***
DriverAge -0.0157666 0.0002351 -67.05 <2e-16 ***
LicenceAge 0.0522104 0.0009091 57.43 <2e-16 ***
VehAge
           -0.0078364 0.0006060 -12.93 <2e-16 ***
MSE_Poisson <- mean((predict(modele3, type = "response")</pre>
                     - dataAGG$ClaimNumber)^2)
MSE_Poisson
[1] 12.62325
```

Transformation des variables explicatives

- Pour gagner en flexibilité dans le modèle, on peut considérer une transformation de l'ensemble des variables explicatives (X).
- Pour une valeur entière positive K, on définit une transformation $h_k : \mathbb{R}^p \to \mathbb{R}, \ k = 1, \dots, K$.
- On aura alors

$$f(X_{ji}) = \gamma_0 + \sum_{k=1}^K \gamma_k h_k(X_{ij}), \qquad j = 1, \dots, p$$

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j f(X_{ij}), \qquad i = 1, \dots, n.$$

Transformation des variables explicatives

Plusieurs choix sont possibles pour les fonctions h():

- polynomiales : $h_k(x) = x^k$ par exemple (généralement quand p = 1);
- trigonométrique : $h_k(x) = \sin(kx/2\pi)$ ou $h_k(x) = \cos(kx/2\pi)$;
- séries de Taylor, etc.

Exemple 1 : Liens

FIGURE – Difficile d'utiliser ces graphiques pour déterminer la forme de la fonction h().

Régression polynomiale

Lorsque p = 1, on considère souvent

$$Y_{i} = \beta_{0} + \beta_{1} f(X_{i}) + \epsilon_{i}$$

$$f(X_{i}) = \gamma_{0} + \sum_{k=1}^{K} \gamma_{k} X_{i}^{k}$$

$$\rightarrow Y_{i} = \beta_{0} + \beta_{1} \left(\gamma_{0} + \sum_{k=1}^{K} \gamma_{k} X_{i}^{k} \right)$$

$$\rightarrow Y_{i} = \beta_{0}^{*} + \sum_{k=1}^{K} \beta_{k}^{*} X_{i}^{k} + \epsilon_{i}, \qquad i = 1, \dots, n.$$

Régression polynomiale

- Si on choisit une petite valeur de K (par exemple K=1), on obtient un modèle peu flexible : sous-ajustement.
- Si on choisit une grande valeur de K (par exemple K=20), on obtient un modèle trop flexible : surajustement.
- \(\text{\text{\$\exititt{\$\text{\$\}}}\exititt{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$

Validation croisée

- Il y a plusieurs années (!), le manque de puissance des ordinateurs rendait l'utilisation de la validation croisée difficile, voire impossible.
- On a alors développé plusieurs critères dont la valeur était basée uniquement sur l'échantillon d'entrainement : AIC, BIC, AICc, R², R² ajusté, etc.
- Ces approches (1) pouvaient ne pas conduire à des décisions cohérentes et (2) ne mesuraient pas vraiment la force prédictive d'un modèle.
- Aujourd'hui, les ordinateurs sont nettement plus puissants...

Exemple 1 : Régression Poisson polynomiale

```
dataAGG$DriverAge2 <- dataAGG$DriverAge^2
dataAGG$DriverAge3 <- dataAGG$DriverAge^3
dataAGG$LicenceAge2 <- dataAGG$LicenceAge^2
dataAGG$LicenceAge3 <- dataAGG$LicenceAge^3
dataAGG$VehAge2 <- dataAGG$VehAge^2
dataAGG$VehAge3 <- dataAGG$VehAge^3</pre>
```

Exemple 1 : Régression Poisson polynomiale

```
modele4 <- glm(ClaimNumber ~ DriverAge + LicenceAge +</pre>
              VehAge + DriverAge2 + DriverAge3 +
              LicenceAge2 + LicenceAge3 + VehAge2 +
              VehAge3, family = poisson(link = "log"),
              data = dataAGG, offset = log(Exposure))
summary(modele4)
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.159e-01 1.100e-01 -3.781 0.000156 ***
DriverAge -2.018e-02 5.942e-03 -3.397 0.000681 ***
           -1.447e-01 8.576e-03 -16.873 < 2e-16 ***
LicenceAge
        -3.221e-03 2.225e-03 -1.448 0.147608
VehAge
DriverAge2 6.433e-05 1.272e-04 0.506 0.612992
DriverAge3 -1.272e-07 8.668e-07 -0.147 0.883359
```

Exemple 1 : Régression Poisson polynomiale

[1] 11.45383

Régression polynomiale

- Dans certains cas, les termes sont « ordonnés » : x, x^2, x^3, \dots, x^K .
- Il suffit alors d'ajuster et de calculer le tMSE pour les modèles

$$Y = \beta_0 + \beta_1 X Y = \beta_0 + \beta_1 X + \beta_2 X^2 Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 \dots$$

et d'arrêter lorsqu'un certain critère est rencontré.

Transformation des variables explicatives

- Si les variables explicatives ne sont pas « ordonnées » (ce qui est généralement le cas), la procédure peut être beaucoup plus longue.
- En présence de p variables explicatives, on a 2^p modèles à ajuster et à tester.
- Avec p=5, on a 32 modèles à tester, avec p=12, on a 4 096 modèles à tester, avec p=100, on a 1.26×10^{30} modèles à tester, etc.
- Lorsque le nombre de modèles est trop élevé, on doit utiliser une approche séquentielle (stepwise approach) qui considère uniquement un sous-ensemble des 2^p modèles. Cette approche est similaire à celle utilisée avec les critères AIC et BIC.

Réduction de la variance

- On a vu que l'erreur quadratique moyenne de validation pouvait se décomposer en trois termes : (1) variance de la prédiction, (2) biais de la prédiction au carré et (3) l'erreur stochastique (irréductible).
- Un grand nombre de variables explicatives dans un modèle vient augmenter la flexibilité du modèle, ce qui peut cause du surajustement (ou surapprentissage) et augmenter la variance de la prédiction.
- Sélectionner correctement les variables \to diminiuer la variabilité des prédictions \to diminuer l'erreur quadratique moyenne de validation.
- Il existe d'autres méthodes que la sélection de variables permettant la réduction de la variance.

- Il s'agit d'un modèle qui ajoute une contrainte aux valeurs que peuvent prendre les paramètres (β) .
- Cela permet de réduire la variance des paramètres et donc, la variance des prédictions.
- En contrepartie, cela va causer une augmentation du biais : il faut que la diminution de la variance soit plus importante que l'augmentation du biais pour obtenir de meilleures estimations.

À la base, il s'agit d'un modèle de régression linéaire

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i,$$

mais pour lequel les estimateurs sont donnés par

$$\widehat{\beta}^{R} = \arg\min_{\beta_0,...,\beta_p} \sum_{i=1}^n \left(Y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^n \beta_j^2,$$

pour une valeur de $\lambda > 0$.

Sous forme matricielle, on a (pour simplifier la théorie, on suppose que les variables explicatives sont centrées et réduites et que la variable réponse est centrée)

$$\mathbb{E}\left[\mathbf{Y}\right] = \mathbf{X}\boldsymbol{eta}$$

où les coefficients sont donnés par

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\pmb{R}} &= \operatorname{arg\ min}_{\pmb{\beta}} \left(\mathbf{Y} - \mathbf{X} \boldsymbol{\beta} \right)^T \left(\mathbf{Y} - \mathbf{X} \boldsymbol{\beta} \right) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta} \\ &= \left(\mathbf{X}^{**}{}^T \mathbf{X}^{**} + \lambda \mathbf{I}_p \right)^{-1} \mathbf{X}^{**}{}^T \mathbf{Y}, \end{split}$$

où I_p est une matrice identité $(p \times p)$ et

$$\mathbf{X}^{**} = \begin{bmatrix} X_{11} & \dots & X_{1p} \\ \dots & \ddots & \dots \\ X_{n1} & \dots & X_{np} \end{bmatrix}.$$

• Le terme supplémentaire

$$\lambda \sum_{j=1} \beta_j^2$$

permet d'ajouter une pénalité liée à la valeur des paramètres.

- Ainsi, les estimations $\widehat{\beta}_1^R, \dots, \widehat{\beta}_p^R$ seront plus petites (en valeur absolue) que celles obtenus avec le modèle classique $\widehat{\beta}_1, \dots, \widehat{\beta}_p$.
- La contrainte supplémentaire peut affecter un ou plusieurs des paramètres du modèle mais **ne doit pas** toucher l'ordonnée à l'origine.

- L'hyperparamètre λ permet de contrôler l'intensité de la contrainte appliquée : plus la valeur de λ sera élevée, plus la pénalité sera importante et plus les estimations obtenues seront près de 0.
- Si on choisit $\lambda=0$, alors $\widehat{\beta}_{j}^{R}=\widehat{\beta}_{j},\,j=1,\ldots,p$.
- On utilise la validation croisée pour déterminer la valeur de λ qui minimise l'erreur quadratique moyenne de validation (vMSE).

De façon équivalente, on peut obtenir les paramètres du modèle de régression Ridge en résolvant

$$\widehat{\beta}^{R} = \arg\min_{\beta_0,...,\beta_p} \sum_{i=1}^n \left(Y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right)^2$$

sous la contrainte que $\sum_{j=1}^p \beta_j^2 \leq s$, pour un hyperparamètre s>0. En présence d'une matrice de schéma (**X**) orthonormale, on peut vérifier que

$$\widehat{oldsymbol{eta}}^{oldsymbol{R}} = rac{\widehat{oldsymbol{eta}}}{1+\lambda}$$

Exemple 2 : Multicolinéarité

```
### Création d'une base avec beta_1 = 1 et beta_2 = 1
set.seed(100)
x1 <- rnorm(20)
x2 <- rnorm(20,mean=x1,sd=.01)
x11 <- (x1 - mean(x1))/sd(x1)
x22 <- (x2 - mean(x2))/sd(x2)
y <- rnorm(20, mean = 3 + x11 + x22)
yy <- y - mean(y)</pre>
```

Exemple 2 : Multicolinéarité

```
M1 <- lm(yy ~ x11 + x22)
round(coef(M1), 3)
(Intercept) x11 x22
0.000 4.931 -2.766

X <- matrix(c(rep(1,20), x11, x22), ncol = 3)
Y <- matrix(yy, ncol = 1)
round(t(solve(t(X) %*% X) %*% t(X) %*% Y), 3)
(Intercept) x11 x22
0.000 4.931 -2.766
```

Exemple 2 : Multicolinéarité

```
### Fonction lm.ridge de la librairie MASS
library(MASS)
M2 \leftarrow lm.ridge(yy \sim x11 + x22, lambda = 1)
round(coef(M2), 3)
        x11 x22
0.000 1.059 1.052
lambda <- 1
Z \leftarrow X[,2:3]
round(t(solve(t(Z) %*% Z + lambda*diag(2))
               %*% t(Z) %*% Y), 3)
        x11 x22
0.000 1.058 1.051
```

Régression Ridge

On peut démontrer que la variance des estimateurs est donnée par

$$\operatorname{Var}\left[\widehat{\boldsymbol{\beta}}\right] = \sigma^2 \mathbf{W} \mathbf{X}^{**T} \mathbf{X}^{**} \mathbf{W},$$

où $\mathbf{W} = \left(\mathbf{X}^{**}^T \mathbf{X}^{**} + \lambda \mathbf{I}_p\right)^{-1}$. On peut également vérifier que le biais est donné par $-\lambda \mathbf{W} \boldsymbol{\beta}$.

modele5

```
DriverAge LicenceAge VehAge
0 -463.0799 0.6211036 11.77947 6.158403
1 -463.0499 0.6211080 11.77846 6.157810
2 -463.0199 0.6211123 11.77745 6.157217
3 -462.9899 0.6211166 11.77645 6.156625
4 -462.9600 0.6211209 11.77544 6.156032
```


 ${
m Figure}$ – Évolution des valeurs des paramètres en fonction de la valeur de λ .

```
### Fonction glmnet de la librairie du même nom
library(glmnet)
head(dataAGG, 3)
  DriverAge LicenceAge VehAge Exposure ClaimNumber
1
         39
                    18
                            3 1356.402
                                                192
2
         35
                    18 3 1243.948
                                                172
         40
                    18
                            3 1263.537
                                                165
X <- as.matrix(dataAGG[.(1:3)])</pre>
Y <- as.matrix(dataAGG[,5])
OS <- as.matrix(dataAGG[.4])
fit <- glmnet(X, Y, alpha = 0, nlambda = 5, offset = OS)
```

```
round(fit$lambda, 2)
68895.54 6889.55
                  688.96
                           68.90
                                    6.89
round(fit$beta, 2)
          s0
               s1 s2 s3
                               s4
DriverAge
          0 0.03 0.23 0.58 0.62
LicenceAge
          0 0.28 2.26 8.24 11.29
VehAge
          0
             0.12 1.01 4.12
                               5.87
plot(fit, xvar = "lambda")
```


FIGURE – Évolution des valeurs des paramètres en fonction de la valeur de $ln(\lambda)$.

```
set.seed(1)
cv.fit <- cv.glmnet(X, Y, nfolds = 10, alpha = 0,
                   offset = 0S)
cv.fit$lambda.min
7.561278
coef(cv.fit, s = "lambda.min")
(Intercept) -447.1411740
DriverAge 0.6221213
LicenceAge 11.2457049
         5.8451944
VehAge
plot(cv.fit)
```


 ${
m Figure}$ – Évolution de l'erreur quadratique moyenne en fonction de la valeur de ${
m ln}(\lambda)$.

FIGURE – Évolution de la déviance Poisson en fonction de la valeur de $ln(\lambda)$.

49 / 63

Régression Ridge

- + L'obtention du modèle final est beaucoup plus rapide que de tester tous les 2^p modèles ou d'utiliser une approche *stepwise*.
- + La variance des prédictions sera réduite.
- Ne fait pas de sélection de variables : même si on choisit une grande valeur pour λ , toutes les variables explicatives sont conservées dans le modèle.
- L'interprétation peut être complexe à faire.

Il s'agit d'un modèle de régression linéaire

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j X_{ij} + \epsilon_i,$$

mais pour lequel les estimateurs sont donnés par

$$\widehat{\boldsymbol{\beta}}^{\boldsymbol{L}} = \arg\min_{\beta_0,\dots,\beta_p} \sum_{i=1}^n \left(Y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^n |\beta_j|,$$

pour une valeur de l'hyperparamètre $\lambda>0$ obtenue par validation croisée.

- L'effet de la régression Lasso est similaire à celui de la régression Ridge : les paramètres prennent de plus petites valeurs (en valeur absolue).
- La régression Lasso **force** certains paramètres à prendre exactement la valeur 0 si la valeur de λ est assez élevée : sélection de variables.
- Le modèle final obtenu est plus facile à interpréter.

De façon équivalente, on peut obtenir les paramètres du modèle de régression Lasso en résolvant

$$\widehat{eta}^{L} = \operatorname{arg\ min}_{eta_0,...,eta_p} \sum_{i=1}^n \left(Y_i - eta_0 - \sum_{j=1}^p eta_j X_{ij}
ight)^2$$

sous la contrainte que $\sum_{j=1}^p |\beta_j| \leq s$, pour un hyperparamètre s>0.

```
fit <- glmnet(X, Y, alpha = 1, nlambda = 5, offset = OS)</pre>
round(fit$lambda, 2)
68.90 6.89 0.69 0.07 0.01
round(fit$beta, 2)
          s0 s1 s2 s3 s4
DriverAge . 0.19 0.58 0.62 0.62
LicenceAge . 10.71 11.67 11.77 11.78
VehAge . 4.84 6.03 6.15 6.16
plot(fit, xvar = "lambda")
```

Exemple 1 : Régression Lasso

FIGURE – Évolution de la valeur des paramètres en fonction de la valeur de $ln(\lambda)$.

```
set.seed(1)
cv.fit <- cv.glmnet(X, Y, nfolds = 10, alpha = 1,
                   offset = OS)
cv.fit$lambda.min
0.3428948
coef(cv.fit, s = "lambda.min")
(Intercept) -460.0745341
DriverAge 0.5994006
LicenceAge 11.7260140
          6.0927586
VehAge
plot(cv.fit)
```

Exemple 1 : Régression Lasso

 ${
m Figure}$ – Évolution de l'erreur quadratique moyenne en fonction de la valeur de ${
m ln}(\lambda)$.

```
(Intercept) -2.588302202

DriverAge -0.015652738

LicenceAge 0.051645133

VehAge -0.007618157
```

Exemple 1 : Régression Lasso

FIGURE – Évolution de la déviance Poisson en fonction de la valeur de $ln(\lambda)$.

Régression

Les estimateurs sont obtenus en résolvant

$$\widehat{\beta}^{L} = \arg\min_{\beta_0, \dots, \beta_p} \sum_{i=1}^{n} \left(Y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2$$

sous la contrainte

- $\sum_{i=1}^{p} \beta_i^2 \le s$, s > 0, pour la régression Ridge;
- $\sum_{j=1}^{p} |\beta_j| \le s$, s > 0, pour la régression Lasso; et
- $\sum_{j=1}^{p} \mathbb{I}_{\beta_j \neq 0} \leq s$, $s \in \mathbb{N}$, pour la régression classique avec sélection de variables.

Régression

FIGURE – Deux paramètres : régression Lasso (gauche) et régression Ridge (droite). Image issue de *An Introdcution to Statistical Learning : with Applications in R.*

Exemple 1 : Résultats

Modèle	Régularisation	(MSE)	vMSE
10 plus proches voisins	Non	10.64	14.67
Régression linéaire	Non	22769.49	23 588.88
Régression Poisson	Non	12.62	13.06
Régression Poisson polynomiale	Non	11.45	12.32
Régression Poisson Ridge	Oui	12.42	12.89 (
Régression Poisson Lasso	Oui	12.61	13.04