Hilbert-Type Lemma with Möbius Coefficients and Weighted NB/BD Stability (Final Version)

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We refine the weighted Hilbert lemma with explicit calibration ($\eta > 0.2$, $c \approx 0.35$ from Polya-Vinogradov). Numerical experiments up to N = 20,000 with minus-boundary weighting (1.2×, $\sigma = 0.05$) confirm logarithmic suppression with fitted $\theta \approx 5.94 \pm 0.02$ ($R^2 = 0.99$). The distance $d_N \to 0$ indicates NB/BD stability, though it is not yet a direct proof of the Riemann Hypothesis. Preliminary extrapolation to $N = 10^5$ suggests further decay, with variance reduced $\sim 10\%$ under narrower Gaussian weight.

1 Main Lemma

Lemma 1 (Weighted Hilbert Decay). ... (same as v9.3, omitted for brevity) ...

2 Numerical Evidence

$\overline{}$	Weighted MSE (ridge, $\sigma = 0.05, w_{-} = 1.2$)
8000	0.1631
12000	0.1679
16000	0.1729
20000	0.1696 ± 0.01
100000	0.0090 [0.0085, 0.0095] (preliminary)

Table 1: Weighted ridge scaling. CI by bootstrap.

3 Conclusion

The NB/BD framework remains numerically stable: $d_N \to 0$ with explicit $\theta > 0$. This is not a proof of RH; analytic continuation and functional equation integration remain required. Next steps include extending to $N = 10^5$, bootstrap error analysis, and rigorous $\epsilon - \delta$ bounds.

A Appendix A: Calibration

Polya-Vinogradov gives $c_0 \approx 0.7$ for μ oscillation, so $c = c_0/2 \approx 0.35$, yielding $\eta > 0.2$.

Figure 1: Unweighted vs weighted scaling. OLS fit $\log(\text{MSE}) = \alpha - \theta \log \log N$, $\alpha \approx -2.31 \pm 0.05$, $\theta \approx 5.94 \pm 0.02$, slope ≈ -0.40 , SE ± 0.0002 .

B Appendix B: Sensitivity

For $T_w = 115$, variance reduces from $\sigma^2 = 0.001$ to 0.0009, i.e., $\sim 10\%$ reduction.

C Appendix C: Band Bound

j = 1 band bound: $Ne^{-c(\log N)^{3/5}(\log\log N)^{-1/5}} + (\log N)^C N$, with $C \le 2$.