Poisson Generalized Linear Model for Zero-truncated Count Data

Brian M. Brost 23 March 2016

Description

A generalized linear model for zero-truncated count data.

Implementation

The file zt.poisson.glm.sim.R simulates data according to the model statement presented below, and zt.poisson.glm.mcmc.R contains the MCMC algorithm for model fitting.

Derivation of zero-truncated Poisson distribution

The probability mass function of the (non-truncated) Poisson distribution is:

$$[z] = \frac{\lambda^z \exp\left(-\lambda\right)}{z!}.\tag{1}$$

It follows that the probability that z = 0 is

$$[z \mid z = 0] = \frac{\lambda^0 \exp(-\lambda)}{0!}$$
 (2)

$$= \exp(-\lambda), \tag{3}$$

and thus the probability that z > 0 is $1 - [z \mid z = 0] = 1 - \exp(-\lambda)$. We arrive at the density function of the zero-truncated Poisson distribution by excluding the probability that z = 0 from the standard Poisson distribution (Eq. 1). This is accomplished by dividing Eq. 1 by $[z \mid z = 0]$:

$$[z \mid z > 0] = \frac{\lambda^z \exp(-\lambda)}{(1 - \exp(-\lambda)) z!}.$$
(4)

We abbreviate the probability mass function for the zero-truncated Poisson distribution as ZTP (λ_i) .

Model statement

Let z_i , for i = 1, ..., n, be observed, non-zero count data (i.e., z_i are integers greater than 0). Also let \mathbf{x}_i be a vector of covariates associated with z_i for which inference is desired, and the vector $\boldsymbol{\beta}$ be the corresponding coefficients.

$$z_i \mid z_i > 0 \sim \text{ZTP}(\lambda_i)$$

 $\log(\lambda_i) = \mathbf{x}_i' \boldsymbol{\beta}$
 $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\beta}^2 \mathbf{I})$

Full conditional distributions

Regression coefficients (β):

$$\begin{split} [\boldsymbol{\beta} \mid \cdot] & \propto & \prod_{i=1}^{n} \left[z_{i} \mid \boldsymbol{\beta} \right] [\boldsymbol{\beta}] \\ & \propto & \prod_{i=1}^{n} \operatorname{ZTP} \left(z_{i} \mid \mathbf{x}_{i}^{\prime} \boldsymbol{\beta} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \mathbf{0}, \sigma_{\boldsymbol{\beta}}^{2} \mathbf{I} \right). \end{split}$$

The update for β proceeds using Metropolis-Hastings.