ROB 101 - Fall 2021

Affine Spaces & Hyperplanes

November 22, 2021

Learning Objectives

- ► Introduce material that is assumed in UofM Computer Science courses that have Math 214 as a prerequisite.
- ▶ Provide a resource for use after you leave ROB 101.

Outcomes

- Learn how to separate \mathbb{R}^2 into two halves via hyperplanes.
- Orthogonal projection.
- Affine Subspace (Linear Variety).

Separating Hyperplanes

We want to study linear structures than can be used to divide \mathbb{R}^n into pieces.

Figure: Dividing \mathbb{R}^3 into disjoint regions. Image from Wikimedia Commons.

Dot Product or Inner Product

Definition

Let $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$ be column vectors.

$$u := \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad v := \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}.$$

The dot product of u and v is defined as

$$\langle u, v \rangle = u \bullet v := \sum_{k=1}^{n} u_k v_k.$$

Dot Product or Inner Product

Remark

We note that

$$u^{\mathsf{T}} \cdot v = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \sum_{k=1}^n u_k v_k =: \langle u, v \rangle.$$

The dot product is also called the inner product.

Key Use of the Inner Product of Two Vectors

The inner product will provide us a generalization of a right angle (90 deg angle) between two vectors in \mathbb{R}^n .

$$w_1 \perp w_2 \iff \langle w_1, w_2 \rangle = 0 \iff w_1^\mathsf{T} w_2 = 0$$

(Read it as: w_1 is orthogonal to w_2 if, and only if, their inner product is zero. Orthogonal means "at right angle")

Key Use of the Inner Product of Two Vectors

 $Source: \ https://study.com/academy/lesson/the-gram-schmidt-process-for-orthonormalizing-vectors.html. \\$

Reading the values from the graph, we have

$$w_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, w_2 = \begin{bmatrix} -\frac{7}{3} \\ \frac{7}{4} \end{bmatrix}$$

$$\implies \langle w_1, w_2 \rangle = w_1^\mathsf{T} w_2 = -3\frac{7}{3} + 4\frac{7}{4} = 0$$

ightharpoonup Consider the set of all points, $x \in \mathbb{R}^2$ such that

$$\langle a, x \rangle = 0, \quad a \in \mathbb{R}^2.$$

 $ightharpoonup a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and $\langle a, x \rangle = a_1 x_1 + a_2 x_2$.

ightharpoonup Consider the set of all points, $x \in \mathbb{R}^2$ such that

$$\langle a, x \rangle = 0, \quad a \in \mathbb{R}^2.$$

Writing it in the set notation:

$$L = \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^2 \}.$$

ightharpoonup L is a line that passes through the origin.

 $L = \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^2 \}.$

The familiar $x_2 = mx_1 + b$ (y = mx + b) is called the regressor form.

$$L = \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^2 \}.$$

$$ightharpoonup \langle a, x \rangle = 0 \implies m = -\frac{a_1}{a_2} \text{ and } b = 0.$$

- $L = \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle = 0, \ a \in \mathbb{R}^2 \}.$
- $ightharpoonup \langle a, x \rangle = 0 \implies m = -\frac{a_1}{a_2} \text{ and } b = 0.$

Recall (Lecture 11): Example

Let $V \subset \mathbb{R}^2$ be the set of all points that lie on a line y = mx + b, that is

$$V := \left\{ \begin{bmatrix} x \\ mx + b \end{bmatrix} \mid x \in \mathbb{R} \right\}.$$

Then V is a subspace of \mathbb{R}^2 if, and only if, b=0, that is, the line must pass through the origin.

Remark

If we view $A := a^{\mathsf{T}}$, then clearly $Ax = a^{\mathsf{T}}x = 0$ is the nullspace of A and hence is a subspace.

$$L = \{x \in \mathbb{R}^2 \mid Ax = 0\} = \text{null}(A).$$

- ightharpoonup We can divide \mathbb{R}^2 into two halves.
- ▶ Indeed, we define the following half-planes.

$$H^+ := \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle > 0 \},$$

$$H^- := \{ x \in \mathbb{R}^2 \mid \langle a, x \rangle < 0 \}.$$

Translations of Sets

Definition

Let $S \subset \mathbb{R}^n$ be a subset and and let $x_c \in \mathbb{R}^n$ be a vector. We define the translation of S by x_c as

$$x_c + S := \{x_c + x \mid x \in S\}.$$

Note that, because S consists of vectors in \mathbb{R}^n , the addition in the above formula makes sense.

Affine Subspace (Linear Variety)

If we take a subspace and translate it by x_c , then we get an affine subspace.

$$M = x_c + L = \{x \in \mathbb{R}^2 \mid \langle a, x - x_c \rangle = 0, \ a, x_c \in \mathbb{R}^2 \}.$$

Affine Subspace (Linear Variety)

We can look into the translated lines as follows.

$$\langle a, x - x_c \rangle = a^{\mathsf{T}}(x - x_c) = 0$$

 $a^{\mathsf{T}}x = a^{\mathsf{T}}x_c =: d, \quad d \in \mathbb{R}.$

- $a^{\mathsf{T}}x = a_1x_1 + a_2x_2 = d.$
- ► In regressor form:

$$x_2 = -\frac{a_1}{a_2}x_1 + \frac{d}{a_2} =: mx_1 + b, \quad a_2 \neq 0.$$

We can divide \mathbb{R}^2 into two halves.

$$H^{+} := \{ x \in \mathbb{R}^{2} \mid \langle a, x - x_{c} \rangle > 0 \},$$

$$H^{-} := \{ x \in \mathbb{R}^{2} \mid \langle a, x - x_{c} \rangle < 0 \}.$$

Next Time

ightharpoonup Hyperplanes in \mathbb{R}^n , Quadratic Program, and Maximum Margin Classifier

▶ Read Chapter 13 of ROB 101 Book