2

"Parallel Algorithms of Matrix-Vector Multiplication"

2-

1.

2.

3.

:

4.

$$c_{ii} = (a_i, b_i^T), a_i = (a_{i0}, a_{i1}, ..., a_{in-1}), b_i^T = (b_{0i}, b_{1i}, ..., b_{n-1i})^T$$
.

**Figure. 2.1.** The Element of the Result Matrix *C* is the Result of the Scalar Multiplication of the Corresponding Matrix *A* Row of the Matrix *A* and the Column of the Matrix *B* 

$$\begin{pmatrix} 3 & 2 & 0 & -1 \\ 5 & -2 & 1 & 1 \\ 1 & 0 & -1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 2 & 5 \\ -3 & 2 \\ 7 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 5 & -9 \\ -3 & -7 \end{pmatrix}$$

## **MPI**

.

MPI.

. MPI

,

MPI

,

MPI\_COLUMN\_WORLD,

,

. A. B. (

).

$$\begin{pmatrix} A_{00}A_{01}...A_{0q-1} \\ ... \\ A_{q-10}A_{q-11}...A_{q-1q-1} \end{pmatrix} \times \begin{pmatrix} B_{00}B_{01}...B_{0q-1} \\ ... \\ B_{q-10}B_{q-11}...B_{q-1q-1} \end{pmatrix} = \begin{pmatrix} C_{00}C_{01}...C_{0q-1} \\ ... \\ c_{q-10}C_{q-11}...C_{q-1q-1} \end{pmatrix},$$

where each block  $C_{ij}$  of matrix C is defined in accordance with the expression:

$$C_{ij} = \sum_{s=0}^{q-1} A_{is} B_{sj}$$
.



| Test<br>Number | Matrix<br>size | Serial<br>algorithm | Parallel algorithm |          |              |          |
|----------------|----------------|---------------------|--------------------|----------|--------------|----------|
|                |                |                     | 4 processors       |          | 9 processors |          |
|                |                |                     | Time               | Speed up | Time         | Speed up |
| 1              | 12             | 0.000000            | 0.000217           | 0.000000 | 0.005421     | 0.000000 |
| 2              | 102            | 0.001               | 0.001616           | 0.618811 | 0.027023     | 0.037005 |
| 3              | 522            | 0.207               | 0.072176           | 2.867983 | 0.112751     | 1.835903 |
| 4              | 1200           | 4.960               | 1.839645           | 2.696172 | 1.636215     | 3.031386 |
| 5              | 1500           | 14.340              | 4.487795           | 3.195331 | 3.769482     | 3.804236 |
| 6              | 2100           | 95.848              | 21.504972          | 4.457015 | 11.845334    | 8.091624 |
| 7              | 2502           | 170.877             | 51.123722          | 3.34242  | 29.781807    | 5.737630 |
| 8              | 3000           | 310.243             | 128.923538         | 2.406411 | 76.366273    | 4.062565 |

## Serial Log:

## Parallel log 4 processes:

```
FoxMethod.exe
     Size: 12 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 0.000217
     Size: 102 Number of processes:4
    The results of serial and parallel algorithms are identical. Time of execution = 0.001616
     Size: 522 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 0.072176
     Size: 1200 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 1.839645
12
13
     Size: 1500 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 4.487795
14
     Size: 2100 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 21.504972
16
17
     Size: 2502 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 51.123722
19
     Size: 3000 Number of processes:4
     The results of serial and parallel algorithms are identical. Time of execution = 128.923538
```

## Parallel log 9 processes :

```
Size: 12 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 0.005421
Size: 102 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 0.027023
Size: 522 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 0.112751
Size: 1200 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 1.636215
Size: 1500 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 3.769482
Size: 2100 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 11.845334
Size: 2502 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 29.781807
Size: 3000 Number of processes:9
The results of serial and parallel algorithms are identical. Time of execution = 76.366273
```

$$T_p = q[(n^2/p) \cdot (2n/q-1) + (n^2/p)] \cdot \tau$$
, = , n - (sqrt(p)). :

|             |             | Parallel algorithm |            |              |            |  |  |
|-------------|-------------|--------------------|------------|--------------|------------|--|--|
| Test Number | Matrix size | 4 proc             | essors     | 9 processors |            |  |  |
|             |             | Model              | Experiment | Model        | Experiment |  |  |
| 1           | 12          | 0.000001           | 0.000217   | 0.000000     | 0.005421   |  |  |
| 2           | 102         | 0.000517           | 0.001616   | 0.0001537    | 0.027023   |  |  |
| 3           | 522         | 0.0693876          | 0.072176   | 0.020552     | 0.112751   |  |  |
| 4           | 1200        | 3.79922            | 1.839645   | 1.727894     | 1.636215   |  |  |
| 5           | 1500        | 10.515175          | 4.487795   | 6.400329     | 3.769482   |  |  |
| 6           | 2100        | 34.08028           | 21.504972  | 22.032354    | 11.845334  |  |  |
| 7           | 2502        | 51.96608           | 51.123722  | 42.173270    | 29.781807  |  |  |
| 8           | 3000        | 101.858034         | 128.923538 | 77.808885    | 76.366273  |  |  |