1) Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max [X, Y] is less than $\frac{1}{2}$ is

a) $\frac{3}{4}$

b) $\frac{9}{16}$

c) $\frac{1}{4}$

d) $\frac{2}{3}$

2) If $x = \sqrt{-1}$, then the value of x^x is

a) $e^{\frac{-\pi}{2}}$

b) $e^{\frac{\pi}{2}}$

c) x

d) 1

3) Given $f(z) = \frac{1}{z+1} - \frac{2}{z+3}$. If C is a counterclockwise path in the z - plane such that |z+1| = 1, the value of $\frac{1}{2\pi j} \oint_C f(z) dz$ is

a) -2

b) -1

c) 1

d) 2

4) In the circuit shown below, the current through the inductor is

a) $\frac{2}{1+i}A$

b) $\frac{-1}{1+j}A$

c) $\frac{1}{1+j}$

d) 0A

5) The impedence looking into nodes 1 and 2 in the given circuit is

1

a)	50Ω

c)
$$5k\Omega$$

d) $10.1k\Omega$

6)	A system with transfer function $G(s) =$	$\frac{(s^2+9)(s+2)}{(s+1)(s+3)(s+4)}$	is excited by $\sin \omega t$.	The steady-
	state output of the system is zero at			

a)
$$\omega = 1 \frac{raa}{s}$$

a)
$$\omega = 1 \frac{rad}{s}$$
 b) $\omega = 2 \frac{rad}{s}$ c) $\omega = 3 \frac{rad}{s}$ d) $\omega = 4 \frac{rad}{s}$

c)
$$\omega = 3 \frac{rad}{s}$$

d)
$$\omega = 4 \frac{rad}{s}$$

7) In the sum of products function
$$f(X, Y, Z) = \sum (2, 3, 4, 5)$$
, the prime implicants are

a)
$$\overline{X}Y, X\overline{Y}$$

b)
$$\overline{X}Y.X\overline{Y}\overline{Z}.X\overline{Y}Z$$

c)
$$\overline{X}Y\overline{Z}$$
, $\overline{X}YZ$, $X\overline{Y}$

b)
$$\overline{X}Y, X\overline{YZ}, X\overline{Y}Z$$
 c) $\overline{X}Y\overline{Z}, \overline{X}YZ, X\overline{Y}$ d) $\overline{X}Y\overline{Z}, \overline{X}YZ, X\overline{Y}Z$

8) If
$$x[n] = \left(\frac{1}{3}\right)^{|n|} - \left(\frac{1}{2}\right)^n u[n]$$
, the region of convergence (ROC) of its Z-transform in the Z-plane will be

a)
$$\frac{1}{3} < |z| < 3$$

a)
$$\frac{1}{3} < |z| < 3$$
 b) $\frac{1}{3} < |z| < \frac{1}{2}$ c) $\frac{1}{2} < |z| < 3$ d) $\frac{1}{3} < |z| < 1$

c)
$$\frac{1}{2} < |z| < 3$$

d)
$$\frac{1}{3} < |z| < 1$$

$$Y = j \begin{pmatrix} -13 & 10 & 5\\ 10 & -18 & 10\\ 5 & 10 & -13 \end{pmatrix}$$

If each transmission line between the two buses is represented by an equivalent π network, the magnitude of shunt susceptance of the line connecting bus 1 and 2 is

a) rotor speed

c) shaft torque

b) synchronous speed

d) core-less component

11) A two-phase load draws the following phase currents: $i_1(t) = I_m \sin(\omega t - \phi_1)$, $i_2(t) =$ $I_m \sin(\omega t - \phi_2)$. These currents are balanced if ϕ_1 is equal to

a)
$$-\phi_2$$

c)
$$\left(\frac{\pi}{2} - \phi_2\right)$$

c)
$$\left(\frac{\pi}{2} - \phi_2\right)$$
 d) $\left(\frac{\pi}{2} + \phi_2\right)$

12) A periodic voltage waveform observed on an oscilloscope across a load is shown. A permanent magnet moving coil(PMMC) meter connected across the same load reads

- a) 4*V*
- b) 5*V*
- c) 8V
- d) 10V

13) The bridge method commonly used for finding mutual inductance is

- a) Heavy Campbell Bridge
- b) Schering Bridge

- c) De Sauty bridge
- d) Wien bridge