1 Schwach konstruierbare Garben auf Simplizialkomplexen, relative Version

In diesem Abschnitt sollen die Beobachtungen der letzten beiden Abschnitte vereint werden. Nach Abschnitt ?? sind Garben auf einem Simplizialkomplex \mathcal{K} nichts anderes als ein Simplizialkomplex von Garben über dem einpunktigen Raum. In Abschnitt ?? haben wir diese Garben auf \mathcal{K} geometrisch charakterisiert als die simplizial konstanten Garben auf der geometrischen Realisierung $|\mathcal{K}|$ von \mathcal{K} . Wir erwarten daher auch eine relative Version dieser Aussage über einem beliebigen topologischen Raum X, die die Simplizialkomplexe von Garben auf X alias Garben auf $\mathcal{K} \times X$ geometrisch beschreibt.

Wir geben zunächst eine leichte Verallgemeinerung der Aussage von ?? an.

Wir definieren Garben mit Werten in beliebigen Kategorien C mit der schon in \ref{Matter} verwandten allgemeinen Abstiegsbedingung.

Definition 1 ([?], 2.1.5). Sei C eine vollständige Kategorie und X ein topologischer Raum. Eine C-wertige Prägarbe $F \in [\operatorname{Off_X}^{\operatorname{op}}, C]$ auf X heißt C-wertige Garbe auf X, falls sie die Abstiegsbedingung erfüllt:

Für alle unter endlichen Schnitten stabilen offenen Überdeckungen $U = \bigcup_i U_i$ gilt $F(U) = \lim_i F(U_i)$.

Für C die Kategorien der Mengen oder der abelschen Gruppen ist diese Definition äquivalent zur bekannten Definition über die eindeutige Verklebbarkeit von verträglichen Schnitten.

Bezeichne wieder $\mathcal B$ die Kategorie der Basis der Topologie auf einem Produkt topologischer Räume $X\times Y$ mit Inklusionen als Morphismen.

Satz 2. Seien X und Y topologische Räume. Dann gibt es eine \ddot{A} quivalenz von Kategorien

$$(\operatorname{Ens}_{/X})_{/Y} \xrightarrow{\approx} \operatorname{Ens}_{/\mathcal{B}} \xleftarrow{\approx} \operatorname{Ens}_{/X \times Y}$$

gegeben durch

$$U \times V \mapsto (F(V))(U)$$
 für $F \in (\operatorname{Ens}_{/X})_{/Y}$ und $U \times V \mapsto F(U \times V)$ die Restriktion für $F \in \operatorname{Ens}_{/X \times Y}$.

Beweis. Die zweite Äquivalenz ist $\ref{eq:constraint}$. Für die erste Äquivalenz bemerken wir wie in $\ref{eq:constraint}$, dass die zugrundeliegenden Prägarbenkategorien übereinstimmen. Nun fordert die Garbenbedingung für $\operatorname{Ens}_{/\mathcal{B}}$ die Verklebungseigenschaft für beliebige Überdeckungen von Basismengen durch Basismengen, während die Garbenbedingungen für $(\operatorname{Ens}_{/\mathrm{X}})_{/Y}$ die Verklebungseigenschaft für "Produkt-Überdeckungen" von Basismengen fordert, d. h. für Überdeckungen der Form $U \times V = \bigcup_{i,j} U_i \times V_j$ für $U = \bigcup_i U_i$ eine Überdeckung von U und $V = \bigcup_j V_j$ eine Überdeckung von V.