Kapitel 1 – Grundlagen

- 1. Mathematische Grundlagen
- 2. Beispielrechner ReTI

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Mathematische Grundlagen

- Verständigung auf gemeinsame Basis
- Die meisten Begriffe sollten bekannt sein, bzw. werden in anderen Vorlesungen noch formal und im Detail eingeführt.
- Hier: Informale, möglichst intuitive Einführung
 - Mengen, Funktionen, Relationen
 - Boolsche Algebra $(\{0,1\}, \land, \lor, \neg)$
 - Graphen, O-Notation
 - Beweistechniken

"Philosophie" der Mathematik

die gellen

- Gegeben gewisse <u>Aussagen (Axiome)</u>, welche andere Aussagen lassen sich aus ihnen herleiten?
- Sind die Axiome wahr und existiert eine solche Herleitung (Beweis), so sind die Folgerungen unumstößlich und indiskutabel wahr!
- Beschreiben die Axiome etwa ein physikalisches System, so gelten die hergeleiteten Folgerungen für dieses System.
- Die Frage, ob Axiome Realitätsbezug haben, ist aber außerhalb der (reinen) Mathematik!

Menge (Naive Definition)

Definition

Eine Menge ist eine Zusammenfassung von wohldefinierten, paarweise verschiedenen Objekten zu einem Ganzen.

- Die Objekte nennt man <u>Element</u>e der Menge.
 (Für eine formal vollständige Definition der Menge bräuchte man mehrere Vorlesungsstunden.)
- Notation: Sind $a_1, a_2, ..., a_n$ paarweise verschieden, so schreibt man die Menge M, die aus ihnen besteht, als $M = \{a_1, a_2, ..., a_n\}$.
 - $a_i \in M$ bezeichnet, dass a_i Element von M ist.

Beispiele für Mengen

- Leere Menge: \mathscr{O} (es gibt kein $a \in \varnothing$).
- Menge der natürlichen Zahlen: $\mathbb{N} = \{0, 1, 2, \dots\}$.
- Menge der booleschen Werte: $\mathbb{B} = \{0, 1\}$. If folsch wahr
- Achtung: Die Anordnung von Elementen der Menge und gegebenenfalls Wiederholungen sind belanglos: $\{a,b,c\} = \{c,a,b\} = \{a,a,b,c,a,b\}.$
- Eine Menge kann Elemente enthalten, die selber Mengen sind, z.B. {a,b,{a},{a,b}}=M enthalt y Element, when the lehter beiden wieder Mengen sind.

Spezifikation von Mengen

Man kann eine Menge durch Angabe von Zusatzbedingungen spezifizieren.

```
eispiele:

Menge der ganzen Zahlen:

Z = {z, -z | z ∈ N}
Beispiele:
   ■ Menge der rationalen Zahlen:
      \mathbb{Q} = \{p/q \mid p \in \mathbb{N}, q \in \mathbb{Z}, q \neq 0, p, q \text{ teilerfremd}\}.
      Menge der endlichen Zeichenketten:
       STRINGS = \{s_1s_2...s_n \mid n \in \mathbb{N}, \underline{s_i} \text{ ein Buchstabe}\}.
```

Untermengen, Potenzmenge, Mächtigkeit

- Menge *U* ist <u>Untermenge</u> von *M*, wenn jedes Element von *U* auch Element von *M* ist.
 - Notation: $U \not\subset M$ bzw. $M \supseteq U$
 - Achtung: $\{a\} \subseteq \{a,b,c\}$, aber $a \in \{a,b,c\}$
- Potenzmenge von $M : Pot(M) = \{m \mid m \subset M\}$.
 - $\begin{array}{l}
 \bullet (Pot(\{\underline{a},\underline{b},\underline{c}\})) \mid \checkmark) & & \\
 = \{ \underbrace{\varnothing}, \{\underline{a}\}, \{\underline{b}\}, \{\underline{c}\}, \{\underline{a},\underline{b}\}, \{\underline{a},\underline{c}\}, \{\underline{b},\underline{c}\}, \{\underline{a},\underline{b},\underline{c}\} \} \\
 & \underbrace{\langle \varnothing, \{\underline{a}\}, \{\underline{b}\}, \{\underline{c}\}, \{\underline{a},\underline{b}\}, \{\underline{a},\underline{c}\}, \{\underline{b},\underline{c}\}, \{\underline{a},\underline{b},\underline{c}\} \}}_{2}
 \end{array}$
- Die Anzahl |M| der Elemente einer Menge M heißt Mächtigkeit oder Kardinalität von M.

Operationen auf Mengen 1/2

Mengendifferenz: $M_1 \setminus M_2 = \{m \mid m \in M_1 \text{ und } m \notin M_2\}$

Mengenschnitt: $M_1 \cap M_2 = \{m \mid m \in M_1 \text{ und } m \in M_2\}$

Operationen auf Mengen 2/2

■ Mengenvereinigung: $M_1 \cup M_2 = \{m \mid m \in M_1 \text{ oder } m \in M_2\}$

- Kartesisches Produkt; $M_1 \times M_2 = \{(m_1, m_2) \mid m_1 \in M_1 \text{ und } m_2 \in M_2\}$
 - (m_1, m_2) ist ein Tupel, bei dem es, im Gegensatz zu einer
 - Notation: $\underline{M^n} = M \times \cdots \times M \text{ (n mal)}. \equiv d \left(m_1, \dots, m_h \right)$ $= M \times M$

$$H^2 = H \times M$$

Operationen auf Mengen 2/2

■ Mengenvereinigung: $M_1 \cup M_2 = \{m \mid m \in M_1 \text{ oder } m \in m_2\}$

Kartesisches Produkt:

$$M_1 \times M_2 = \{(m_1, m_2) \mid m_1 \in M_1 \text{ und } m_2 \in M_2\}$$

- (m_1, m_2) ist ein Tupel, bei dem es, im Gegensatz zu einer Menge $\{m_1, m_2\}$, auf die Reihenfolge ankommt!
- Notation: $M^n = M \times \cdots \times M$ (n mal).

WS 2016/17

Relationen

Definition

Eine Relation R zwischen den Mengen X und Y ist eine Teilmenge von $X \times Y$.

- Notation: Statt $(x,y) \in R$ schreibt man xRy.
- Beispiele:
 - Relation < zwischen \mathbb{N} und \mathbb{N} . $\underline{<} = \{(\underline{0,1}), (\underline{0,2}), \ldots, (\underline{1,2}), (\underline{1,3}), \ldots\}$
 - $\blacksquare R = \{ (\underline{a,b}) \mid a,b \in \mathbb{N}, a+b \text{ ungerade } \}$ $(2,5) \in \mathbb{R}$

Funktionen

Definition

Seien X und Y Mengen. Eine Funktion $f: X \to Y$ ist eine Relation zwischen den Mengen X und Y, wobei für jedes $x \in X$ genau ein $y \in Y$ existiert, so dass $(x,y) \in f$.

- X heißt Definitionsbereich, Y Wertebereich von f.
- Notation: Statt $(x,y) \in f$ schreibt man y = f(x).
- Beispiele: × Y
 - Quadrattivnktion $f: \mathbb{N} \to \mathbb{N}, f(x) = x^2$. $f = \{(0,0), (1,1), (2,4), (3,9), (4,16), (5,25), \dots\}$
 - Kardinalitätsfunktion $f: Pot(\{a,b,c\}) \to \mathbb{N}$. $f = \{(\emptyset,0), (\{a\},1), (\{b\},1), (\{c\},1), (\{a,b\},2), (\{a,c\},2), (\{b,c\},2), (\{a,b,c\},3)\}$

and a besterneum

Beispiele: Relationen, Funktionen

- Jede Funktion ist auch eine Relation.
- Aber es gibt natürlich Relationen, die keine Funktionen (liegt an dem ,, genan" in Def. Folie 12)

 Werkebereich Bildbereich
- Beispiel:

 $= \sin^{-1}(x) = \{(\sin(x), x) \mid x \in \mathbb{R}\}$ ist eine Relation, aber keine Funktion!

Summen und Produkte (Notation)

■ Wir schreiben für $f: \mathbb{N} \to \mathbb{R}$

$$\underbrace{\sum_{i=m}^{n} f(i)}_{n} = \underbrace{f(m) + f(m+1) + \dots + f(n-1) + f(n)}_{i=m}$$

$$\prod_{i=m}^{n} f(i) = f(m) \cdot f(m+1) \cdot \dots \cdot f(n-1) \cdot f(n)$$

Beispiel:

$$\sum_{i=0}^{5} i^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

Schreibweise mit beliebigen Bedingungen:

Schreibweise mit beliebigen Bedingungen:
$$\sum_{\substack{i,j>0,i+|2j|\le 5\\016/17}} (i^2/j) = (1^2/1) + (1^2/2) + (2^2/1) + (3^2/1) = 14,5$$

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 1/4

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 2/4

Konventionen

- Man schreibt auch $\underline{\cdot}$ statt \wedge und + statt $\underline{\vee}$.
- Für $\neg x$ sind viele Notationen üblich: $\sim x$, x' oder \overline{x} .
- Zur Vereinfachung der Notation bei booleschen
 Ausdrücken vereinbaren wir:
 Negation

 bindet stärker als Konjunktion ⋅, Konjunktion ⋅ / Λ
 bindet stärker als Disjunktion + / ✓

Boolesche Algebra ($\{0,1\},\wedge,\vee,\neg$) 3/4

Axiome der booleschen Algebra

Kommutativität:
$$\underline{x} + y = \underline{y + x}$$

$$X \cdot y = y \cdot X$$
$$x + (y + z) - (x + y) + z$$

Assoziativität:
$$x + (y + z) = (x + y) + z$$

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
Absorption: $x + (x \cdot y) = x$
 $x + (x \cdot y) = x$

Absorption:
$$x + (x \cdot y) = x$$
Auslowing $x \cdot (x + y) = x$

Distributivität:
$$\underline{x + (y \cdot z)} = (\underline{x + y}) \cdot (\underline{x + z})$$

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

Komplement:
$$x + (y \cdot \neg y) = x$$

$$(0 \wedge 70) = 0 \wedge 7 = 0$$

TS/RW - Kapitel 1 - Grundlagen

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 3/4

Axiome der booleschen Algebra

Kommutativität: x + y = y + x

$$x \cdot y = y \cdot x$$

Assoziativität: x + (y + z) = (x + y) + z

$$x\cdot (y\cdot z)=(x\cdot y)\cdot z$$

Absorption: $x + (x \cdot y) = x$

$$X \cdot (X + Y) = X$$

Distributivität: $x + (y \cdot z) = (x + y) \cdot (x + z)$

$$X \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

Komplement: $x + (y \cdot \neg y) = x$

$$X\cdot (y+\neg y)=X$$

SMILE – Boolesche Ausdrücke

Frage: Welche dieser Umformungen Boolescher Ausdrücke sind richtig? Das heißt, die Gleichung ist immer erfüllt für alle möglichen Werte von $x,y\in\mathbb{B}$.

Boolesche Algebra ($\{0,1\}, \land, \lor, \neg$) 4/4

- Neben der vorgestellten gibt es weitere boolesche Algebren, in denen diese Axiome gelten.
- Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgenden Regeln sind aus den Axiomen ableitbar: One der Die folgen Regeln sind aus den Axiomen ableitbar: One der Die folgen Regeln sind aus den Axiomen ableitbar: One der Die folgen Regeln sind aus den Axiomen aus der Die folgen Regeln sind aus de

Doppeltes Komplement:

Idempotenz:

De-Morgan-Regel:

Consensus-Regel:

Resolutions-Rejely

$$\frac{\neg(\neg x) = x}{x + x = x \cdot x} = x$$

$$\frac{x + x}{\neg(x + y)} = (\neg x) \cdot (\neg y)$$

$$\neg(x \cdot y) = (\neg x) \cdot (\neg y)$$
$$\neg(x \cdot y) = (\neg x) + (\neg y)$$

$$(\underline{x}\cdot\underline{y})+((\underline{\neg x})\cdot\underline{z})$$

$$= (x \cdot y) + ((\neg x) \cdot z)$$

$$(x+y)\cdot((\neg x)+z)$$

$$= (x+y) \cdot ((\neg x) + z) \wedge ((\neg$$

Boolesche Funktion

Definition

Eine boolesche Funktion *f* in *n* Variablen und mit *m* Ausgängen ist eine Funktion

$$f: \underline{\mathbb{B}^n} \to \underline{\mathbb{B}^m}(n, m \in \mathbb{N}).$$

Die Menge aller booleschen Funktionen in Nariablen mit m Ausgängen ist

$$\mathbb{B}_{n,m} := \{f \mid f : \mathbb{B}^n \to \mathbb{B}^m\}.$$

- Wir schreiben abkürzend \mathbb{B}_n statt $\mathbb{B}_{n,1}$. $\{ \mathcal{B}^n \to \mathcal{B} \}$
 - Ein digitaler Schaltkreis ohne Speicherelemente, mit n Eingängen und m Ausgängen realisiert eine solche Funktion! (Details später)

Gerichteter Graph

Definition

- G = (V, E) ist ein gerichteter Graph, wenn folgendes gilt:
 - V endliche, nichtleere Menge (Knoten) Y Verler
 - E endliche Menge (Kanten) () edge
 - Abbildungen $Q: E \rightarrow V$ und $Z: E \rightarrow V$ Q(e) ist Quelle, Z(e) Ziel einer Kante e
 - Abbildungen *indeg* : $V \to \mathbb{N}$ und *outdeg* : $V \to \mathbb{N}$ $indeg(v) = |\{e \mid Z(e) = \underline{v}\}|$ ist der Eingangsgrad, outdeg = out degree $outdeg(v) = |\{e \mid Q(e) = \underline{v}\}| der Ausgangsgrad von v.$

Pfade in gerichteten Graphen

- Ein Knoten mit
 - indeg(v) = 0 heißt Wurzel.
 - outdeg(v) = 0 heißt Blatt.
 - outdeg(v) > 0 heißt innerer Knoten.
- Ein Pfad (der Länge \underline{k}) in \underline{G} ist eine Folge von k Kanten $\underline{e_1, e_2, \dots, e_k}$ ($k \ge 0$) mit $\underline{Z(e_i)} = Q(e_{i+1})$ für alle i ($k 1 \ge i \ge 1$)

- Ein Zyklus in G ist ein Pfad der Länge ≥ 1 in G, bei dem Ziel und Quelle identisch sind (G heißt azyklisch, falls kein Zyklus in G existiert).
- Die Graph-Tiefe eines azyklischen Graphen ist definiert als die Länge des längsten Pfades in G.

Bäume, Binäre Bäume

Definition

Ein Baum ist ein gerichteter, azyklischer Graph mit genau einer Wurzel w (indeg(w) = 0) und indeg(v) = 1 für alle andere Knoten v. Ein Baum heißt binär (bzw. Binärbaum), wenn für seine innere Knoten v outdeg(v) \leq 2 gilt.

Beispiele:

Blaker

Groß-O-Notation (1/2)

positive, reelle Tahlen (inklusive 0)

- Seien $f,g: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. Man schreibt $f(x) \in O(g(x))$, wenn es $c \in \mathbb{R}_0^+, x_0 \in \mathbb{R}_0^+$ gibt, so dass $f(x) \le c \cdot g(x)$ für alle $x > x_0$ gilt.
 - Beispiel: $5x + 2 \in O(x^2) \subset besser o(x)$ Setze $\underline{c = 5}, \underline{x_0 = 1}$ x = 1: $S - 1 + 2 = 7 \not\in S - 1^2 = 5x + 2 \le 5 \cdot x^2$, für x > 1. x = 2: $S - 2 + 2 = 12 \le S - 2^2$ Beweis: Setze $c = 5, x_0 = 1$
- Groß-O-Notation wird verwendet, um Größe von parametrisierten Objekten (z.B. Graphen), Laufzeit von Algorithmen (Anzahl von Rechenschritten in Abhängigkeit von der Eingabe) usw. asymptotisch, d.h. bis auf eine = h(x)=2x2 multiplikative Konstante, abzuschätzen.
- Die Notation f(x) = O(g(x)) ist weit verbreitet, aber eigentlich falsch, da O(g(x)) eine Menge ist. So folgt aus $\mathcal{E}O(x^2)$ f(x) = O(g(x)) und h(x) = O(g(x)) keinesfalls f(x) = h(x)!

= 20

Groß-O-Notation (2/2)

Groß-O-Notation (2/2)

SMILE – O-Notation

Gegeben: blain Schwaff gründ
$$f(x) = \sqrt{x} + 2$$
, $g(x) = 0.5e^x$, $h(x) = x + 1$, Welche Aussagen sind dann wahr?

SMILE – O-Notation

Gegeben:

Welche Aussagen sind dann wahr?

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g \\
\text{Welche Aussagen sind dann wahr?}
\end{cases}$$

$$\begin{cases}
f(x) = \sqrt{x} + 2, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g(x) = 0,5e^{x}, \quad h(x) = x + 1, \quad g(x) =$$

Beweistechniken

- Sukzessive Folgerungen bzw. Direkter Beweis
- Indirekter Beweis bzw. Beweis durch Widerspruch
- Vollständige Induktion

Sukzessive Folgerungen

Gegeben Aussage A, es soll Aussage B bewiesen werden.

■ Sukzessive Folgerungen:

Aus A folgt C, aus C folgt D, aus

Aus A folgt C, aus C folgt D, aus D folgt B, also gilt B.

Beispiel: Sukzessive Folgerungen

■ Gegeben f,g,h, $f(x) \in O(g(x))$, $g(x) \in O(h(x))$. Dann gilt $f(x) \in O(h(x))$.

Beweis:

- Aus $\underline{f(x)} \in O(\underline{g(x)})$ folgt die Existenz von $\underline{c_f, x_{0f}} : \underline{f(x)} \leq \underline{c_f \cdot g(x)}$ für $\underline{x} > x_{0f}$. Aus $\underline{g(x)} \in \underline{O(h(x))}$ folgt die Existenz von $c_g, x_{0g} : \underline{g(x)} \leq \underline{c_g \cdot h(x)}$ für $x > x_{0g}$.
- Man setze $x_0 = \max\{x_{0f}, x_{0g}\}$. Dann gilt für $x > x_0$ sowohl $f(x) \le c_f \cdot g(x)$ als auch $g(x) \le c_g \cdot h(x)$.
- Man setze $c := c_f \cdot c_g$, Dann gilt für $x > x_0$: $f(x) \le c_f (g(x)) \le c_f (c_g \cdot h(x)) = c \cdot h(x)$. Dies bedeutet aber gerade $f(x) \in O(h(x))$

Indirekter Beweis 1/2

Es soll Aussage S bewiesen werden.

- Indirekter Beweis: Man nimmt an, ¬S (also die Umkehrung von S) würde gelten. Daraus leitet man einen Widerspruch her (z.B. "es gilt C und ¬C", "31 = 42", ...).
- Da der Widerspruch schrittweise aus $\neg S$ logisch hergeleitet wurde, kann $\neg S$ nicht gelten und somit muss S gelten.

Indirekter Beweis 2/2

- Betrachte den Spezialfall $S = A \Rightarrow B$. A = 1

 - Dann ist $\neg S \cong A \land \neg B$. Man nimmt also an, dass A gilt, aber $\neg B$.
 - Ergibt sich aus der Annahme ein Widerspruch, dann muss aus der Gültigkeit von A die Gültigkeit von B folgen.
 - Ergibt sich der Widerspruch speziell durch Herleitung von $\neg A$ aus $\neg B$ dann reduziert sich der Widerspruchsbeweis auf den Spezialfall Beweis der "Kontraposition" (¬B)
 - $A \Rightarrow B$ und $\neg B \Rightarrow \neg A$ sind logisch äquivalent.
 - Implizit setzt man immer die Gültigkeit sämtlicher Axiome voraus. Sei Ax die Aussage "Sämtliche Axiome gelten".
 - Dann ist $S' = (A \land Ax) \Rightarrow B$ zu beweisen.
 - Annahme ist dann also: $\neg S' = A \land Ax \land \neg B$ gilt.

Beispiel: Indirekter Beweis

0(x)

■ Zu zeigen: $x^2 \notin O(x)$

Beweis:

- Wir nehmen an, dass $x^2 \in O(x)$ ware. Dann gibt es c und x_0 , so dass für $x > x_0$ gilt:
- Nun suchen wir ein x_1 für das $x_1^2 = c \cdot x_1$. Dies ist für $x_1 = c$ der Fall.
- Für alle $x > x_1 = c$ ist $x^2 > c \cdot x$. Man wähle ein $x_2 > max\{x_0, x_1\}$. Dann gilt auch für x_2 : $x_2 > c \cdot x_2$ (2)
- Andererseits muss für x₂ auch (1) gelten. Widerspruch! Somit kann die Annahme nicht stimmen.

Vollständige Induktion

- Die vollständige Induktion ist eine Beweismethode für Aussagen, die für alle natürlichen Zahlen n gelten sollen.
- Zuerst wird die Aussage für den Basisfall n = 0 beweisen (manchmal auch n = 1 oder höher).
- Dann wird der Induktionsschritt durchgeführt:

 Unter der Annahme, dass die Aussage für *n* gilt

 (Induktionsvoraussetzung) wird bewiesen, dass die

 Aussage auch für *n* + 1 gilt.
- Daraus folgt die Gültigkeit der Aussage für alle natürlichen Zahlen.

Vollständige Induktion: Beispiel (1/2)

Behauptung:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \underbrace{n}_{n+1} \text{ gilt für alle } n \in \mathbb{N}.$$

Induktionsanfang:

Zeige die Behauptung für $\underline{n} = 1$.

$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \underbrace{\frac{1}{1(1+1)}}_{k=1} = \underbrace{\frac{1}{2}}_{k=1}$$

Vollständige Induktion: Beispiel (2/2)

Induktionsvoraussetzung (IV):

Nehme an, die Behauptung gilt für ein $n \in \mathbb{N}$.

Also: Es gibt ein n für das gilt:

$$: \sum_{k=1}^{n} \frac{1}{k(k+1)} = \underbrace{\binom{n}{n+1}}$$

$$(n+1) - Summerglied$$

Induktionsschritt:

Zeige die Behauptung für n+1.

$$\frac{1}{\sum_{k=1}^{n+1} \frac{1}{k(k+1)}} = \frac{1}{\sum_{k=1}^{n} \frac{1}{k(k+1)}} + \frac{1}{(n+1)(n+2)} = \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{(n+1)^2} = \frac{n$$

$$= \frac{(n(n+2)+1)}{(n+1)(n+2)} = \frac{(n^2+2n+1)}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{(n+1)}{(n+2)} = \frac{(n+1)}{(n+1)+1}$$