Chapter 2 Application Layer

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016

J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Chapter 2: application layer

our goals:

- conceptual, implementation aspects of network application protocols
 - transport-layer service models
 - client-server paradigm
 - peer-to-peer paradigm
 - content distribution networks

- learn about protocols by examining popular application-level protocols
 - HTTP
 - FTP
 - SMTP / POP3 / IMAP
 - DNS
- creating network applications
 - socket API

Some network apps

- e-mail
- web
- text messaging
- remote login
- P2P file sharing
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)

- voice over IP (e.g., Skype)
- real-time video conferencing
- social networking
- search
- • •
- • •

Creating a network app

write programs that:

- run on (different) end systems
- communicate over network
- e.g., web server software communicates with browser software

no need to write software for network-core devices

- network-core devices do not run user applications
- applications on end systems allows for rapid app development, propagation

Application architectures

possible structure of applications:

- client-server
- peer-to-peer (P2P)

Client-server architecture

server:

- always-on host
- permanent IP address
- data centers for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management

Processes communicating

process: program running within a host

- within same host, two processes communicate using inter-process communication (defined by OS)
- processes in different hosts communicate by exchanging messages

clients, servers

client process: process that initiates communication

server process: process that waits to be contacted

 aside: applications with P2P architectures have client processes & server processes

Sockets

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out door
 - sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process

Addressing processes

- to receive messages,
 process must have identifier
- host device has unique 32bit IP address
- Q: does IP address of host on which process runs suffice for identifying the process?
 - A: no, many processes can be running on same host

- identifier includes both IP address and port numbers associated with process on host.
- example port numbers:
 - HTTP server: 80
 - mail server: 25
- to send HTTP message to gaia.cs.umass.edu web server:
 - IP address: 128.119.245.12
 - port number: 80
- more shortly...

App-layer protocol defines

- types of messages exchanged,
 - e.g., request, response
- message syntax:
 - what fields in messages
 & how fields are
 delineated
- message semantics
 - meaning of information in fields
- rules for when and how processes send & respond to messages

open protocols:

- defined in RFCs
- allows for interoperability
- e.g., HTTP, SMTP

proprietary protocols:

e.g., Skype

F

What transport service does an app need?

reliability

- F
- some apps (e.g., file transfer, web transactions) require
 100% reliable data transfer
- other apps (e.g., audio) can
 tolerate some loss

timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

throughput

- some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- other apps ("elastic apps")
 make use of whatever
 throughput they get
 security
 - encryption, data integrity,

Transport service requirements: common apps

	application	data loss	throughput	time sensitive
	file transfer	no loss	elastic	no 📃
	e-mail	no loss	elastic	no
	Web documents	no loss	<u>elastic</u>	no
re	al-time audio/video	loss-tolerant	audio: 5kbps-1	Mbps yes, 100's 📃
			video:10kbps-5	Mbps msec
	stored audio/video	loss-tolerant	same as above	
	interactive games	loss-tolerant	few kbps up	yes, few secs
	text messaging	no loss	elastic	yes, 100's
				msec
				yes and no
				-

Internet transport protocols services

TCP service:

- reliable transport between sending and receiving process
- flow control: sender won't
 overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantee, security
- connection-oriented: setup required between client and server processes

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, or connection setup,

Q: why bother? Why is there a UDP?

Internet apps: application, transport protocols

application	application layer protocol	underlying transport protocol
e-mail	SMTP [RFC 2821]	TCP
remote terminal access	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
file transfer	FTP [RFC 959]	TCP
streaming multimedia	HTTP (e.g., YouTube),	TCP or UDP
	RTP [RFC 1889]	
Internet telephony	SIP, RTP, proprietary	
	(e.g., Skype)	TCP or UDP

Securing TCP

TCP & UDP

- no encryption
- cleartext passwds sent into socket traverse Internet in cleartext

SSL 📃

- provides encrypted TCP connection
- data integrity
- end-point authentication

SSL is at app layer

apps use SSL libraries, that "talk" to TCP

SSL socket API

- cleartext passwords sent into socket traverse Internet encrypted
- see Chapter 8

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Web and HTTP

First, a review...

- web page consists of objects <a>□
- object can be HTML file, JPEG image, Java applet, audio file,...
- web page consists of base HTML-file which includes several referenced objects
- each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name

path name

HTTP overview

HTTP: hypertext transfer protocol

- Web's application layer protocol
- client/server model
 - client: browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

HTTP overview (continued)

=

uses TCP:

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
- HTTP messages

 (application-layer protocol messages) exchanged
 between browser (HTTP client) and Web server
 (HTTP server)
- TCP connection closed

HTTP is "stateless"

server maintains no information about past client requests

aside

protocols that maintain "state" are complex!

- past history (state) must be maintained
- if server/client crashes, their views of "state" may be inconsistent, must be reconciled

HTTP connections

non-persistent HTTP

- at most one object sent over TCP connection
 - connection then closed
- downloading multiple objects required multiple connections

F

persistent HTTP

 multiple objects can be sent over single TCP connection between client, server

Non-persistent HTTP

suppose user enters URL:

www.someSchool.edu/someDepartment/home.index

(contains text, references to 10 jpeg images)

- la. HTTP client initiates TCP connection to HTTP server (process) at www.someSchool.edu on port 80
- 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket.

 Message indicates that client wants object someDepartment/home.index
- Ib. HTTP server at host

 www.someSchool.edu waiting

 for TCP connection at port 80.

 "accepts" connection, notifying
 client
- 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket

Non-persistent HTTP (cont.)

5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects

4. HTTP server closes TCP connection.

6. Steps 1-5 repeated for each of 10 jpeg objects

Non-persistent HTTP: response time

RTT (definition): time for a small packet to travel from client to server and back

HTTP response time:

- one RTT to initiate TCP connection
- one RTT for HTTP request and first few bytes of HTTP response to return
- file transmission time
- non-persistent HTTP
 response time =
 2RTT+ file transmission
 time

Persistent HTTP

non-persistent HTTP issues:

- requires 2 RTTs per object
- OS overhead for each TCP connection
- browsers often open parallel TCP connections to fetch referenced objects

persistent HTTP:

- server leaves connection open after sending response
- subsequent HTTP
 messages between same
 client/server sent over
 open connection
- client sends requests as soon as it encounters a referenced object
- as little as one RTT for all the referenced objects

HTTP request message

- two types of HTTP messages: request, response
- HTTP request message:
 - ASCII (human-readable format)

```
carriage return character
                                                   line-feed character
request line
(GET, POST,
                     GET /index.html HTTP/1.1\r\n
                    Host: www-net.cs.umass.edu\r\n
HEAD commands)
                    User-Agent: Firefox/3.6.10\r\n
                    Accept: text/html,application/xhtml+xml\r\n
            header
                    Accept-Language: en-us,en;q=0.5\r\n
              lines
                    Accept-Encoding: gzip,deflate\r\n
                    Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
carriage return,
                    Keep-Alive: 115\r\n
line feed at start
                     Connection: keep-alive\r\n
of line indicates
                     r\n
end of header lines
```

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format

Uploading form input

POST method:

- F
- web page often includes form input
- input is uploaded to server in entity body

URL method:

- uses GET method
- input is uploaded in URL field of request line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/I.0:

- GET
- POST
- HEAD
 - asks server to leave requested object out of response

HTTP/I.I:

- GET, POST, HEAD
- PUT
 - uploads file in entity body to path specified in URL field
- DELETE
 - deletes file specified in the URL field

HTTP response message


```
status line
(protocol
                HTTP/1.1 200 OK\r\n
status code
                Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
status phrase)
                Server: Apache/2.0.52 (CentOS)\r\n
                Last-Modified: Tue, 30 Oct 2007 17:00:02
                  GMT\r\n
                ETag: "17dc6-a5c-bf716880"\r\n
     header
                Accept-Ranges: bytes\r\n
       lines
                Content-Length: 2652\r\n
                Keep-Alive: timeout=10, max=100\r\n
                Connection: Keep-Alive\r\n
                Content-Type: text/html; charset=ISO-8859-
                  1\r\n
data, e.g.,
                r\n
requested
                data data data data ...
HTML file
```

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes

- status code appears in 1st line in server-toclient response message.
- some sample codes:
 - 200 OK
 - request succeeded, requested object later in this msg
 - 301 Moved Permanently
 - requested object moved, new location specified later in this msg (Location:)
 - 400 Bad Request
 - request msg not understood by server
 - 404 Not Found
 - requested document not found on this server
 - 505 HTTP Version Not Supported

Trying out HTTP (client side) for yourself

I. Telnet to your favorite Web server:

```
opens TCP connection to port 80
(default HTTP server port)
at gaia.cs.umass. edu.
anything typed in will be sent
to port 80 at gaia.cs.umass.edu
```

2. type in a GET HTTP request:

```
GET /kurose_ross/interactive/index.php HTTP/1.1

Host: gaia.cs.umass.edu

by typing this in (hit carriage return twice), you send this minimal (but complete)

GET request to HTTP server
```

3. look at response message sent by HTTP server! (or use Wireshark to look at captured HTTP request/response)

User-server state: cookies

many Web sites use cookies four components:

- I) cookie header line of HTTP response message
- 2) cookie header line in next HTTP request message
- 3) cookie file kept on user's host, managed by user's browser
- 4) back-end database at Web site

example:

- Susan always access Internet from PC
- visits specific e-commerce site for first time
- when initial HTTP requests arrives at site, site creates:
 - unique ID
 - entry in backend database for ID

Cookies: keeping "state" (cont.)

Cookies (continued)

what cookies can be used for:

- authorization
- shopping carts
- recommendations
- user session state (Web e-mail)

aside

cookies and privacy:

- cookies permit sites to learn a lot about you
- you may supply name and e-mail to sites

how to keep "state":

- protocol endpoints: maintain state at sender/receiver over multiple transactions
- cookies: http messages carry state

Web caches (proxy server)

goal: satisfy client request without involving origin server

- user sets browser: Web accesses via cache
- browser sends all HTTP requests to cache
 - object in cache: cache returns object
 - else cache requests object from origin server, then returns object to client

More about Web caching

- cache acts as both client and server
 - server for original requesting client
 - client to origin server
- typically cache is installed by ISP (university, company, residential ISP)

why Web caching?

- reduce response time for client request
- reduce traffic on an institution's access link
- Internet dense with caches: enables "poor" content providers to effectively deliver content (so too does P2P file sharing)

Caching example:

assumptions:

- avg object size: I 00K bits
- avg request rate from browsers to origin servers: I 5/sec
- avg data rate to browsers: 1.50 Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps

consequences:

- LAN utilization: 15% problem!
- access link utilization = 99%
- total delay = Internet delay + access delay + LAN delay
 - = 2 sec + minutes + usecs

Caching example: fatter access link

assumptions:

- avg object size: I 00K bits
- avg request rate from browsers to origin servers: I 5/sec
- avg data rate to browsers: I.50 Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps154 Mbps

consequences:

- LAN utilization: 15%
- access link utilization = 99%, 9.9%
- total delay = Internet delay + access delay + LAN delay
 - = 2 sec + minutes + usecs msecs

Cost: increased access link speed (not cheap!)

Caching example: install local cache

assumptions:

- avg object size: I 00K bits
- avg request rate from browsers to origin servers: I 5/sec
- avg data rate to browsers: 1.50 Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps

consequences:

- LAN utilization: 15%
- access link utilization = ?
- total delay = ?

How to compute link utilization, delay?

Cost: web cache (cheap!)

Caching example: install local cache

Calculating access link utilization, delay with cache:

- suppose cache hit rate is 0.4
 - 40% requests satisfied at cache,
 60% requests satisfied at origin
- access link utilization:
 - 60% of requests use access link
- data rate to browsers over access link
 - = 0.6*1.50 Mbps = .9 Mbps
 - utilization = 0.9/1.54 = .58
- total delay
 - = 0.6 * (delay from origin servers) +0.4
 * (delay when satisfied at cache)
 - \blacksquare = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
 - less than with 154 Mbps link (and cheaper too!)

Conditional GET

F

- Goal: don't send object if cache has up-to-date cached version
 - no object transmission delay
 - lower link utilization
- cache: specify date of cached copy in HTTP request

 server: response contains no object if cached copy is up-to-date:

HTTP/1.0 304 Not Modified

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Electronic mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server

Electronic mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - "server": receiving mail server

Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction (like HTTP)
 - commands: ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob

- I) Alice uses UA to compose message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Sample SMTP interaction

F

- F
- S: 220 hamburger.edu
- C: HELO crepes.fr
- S: 250 Hello crepes.fr, pleased to meet you
- C: MAIL FROM: <alice@crepes.fr>
- S: 250 alice@crepes.fr... Sender ok
- C: RCPT TO: <bob@hamburger.edu>
- S: 250 bob@hamburger.edu ... Recipient ok 👨
- C: DATA
- S: 354 Enter mail, end with "." on a line by itself
- C: Do you like ketchup?
- C: How about pickles?
- C: .
- S: 250 Message accepted for delivery
- C: QUIT
- S: 221 hamburger.edu closing connection

F

Try SMTP interaction for yourself:

- telnet servername 25
- see 220 reply from server
- enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)

SMTP: final words

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses
 CRLF.CRLF to
 determine end of message

comparison with HTTP:

- HTTP: pull
- SMTP: push
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response message
- SMTP: multiple objects sent in multipart message

Mail message format

ASCII characters only

Mail access protocols

- SMTP: delivery/storage to receiver's server
- mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored messages on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase

- client commands:
 - user: declare username
 - pass: password
- server responses
 - +OK
 - -ERR

transaction phase, client:

- list: list message numbers
- retr: retrieve message by number
- dele: delete
- quit

```
S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on
C: list
S: 2 912
C: retr 1
S: <message 1 contents>
S:
C: dele 1
C: retr 2
S: <message 1 contents>
C: dele 2
C: quit
   +OK POP3 server signing off
```

POP3 (more) and IMAP

more about POP3

- previous example uses POP3 "download and delete" mode
 - Bob cannot re-read email if he changes client
- POP3 "download-andkeep": copies of messages on different clients
- POP3 is stateless across sessions

IMAP 📮

- keeps all messages in one place: at server
- allows user to organize messages in folders
- keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

DNS: domain name system

people: many identifiers:

SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g.,
 www.yahoo.com used by humans
- Q: how to map between IP address and name, and vice versa?

Domain Name System:

- distributed database
- implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; Ist approximation:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS records

- DNS: distributed database storing resource records (RR)
 - RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME [

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS protocol, messages

query and reply messages, both with same message format
Shyles - 2 bytes - 2

message header

- identification: I6 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

2 bytes — 2 bytes —	
identification	flags
# questions	# answer RRs
# authority RRs	# additional RRs
questions (variable # of questions)	
ans <mark>wer</mark> s (variable # of RRs)	
authority (variable # of RRs)	
additional info (variable # of RRs)	

DNS protocol, messages

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dnsl.networkutopia.com, NS)
 (dnsl.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

Attacking DNS

F

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache IPs of TLD servers, allowing root server bypass
- bombard TLD servers
 - potentially more dangerous

redirect attacks

- man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

exploit DNS for DDoS

- send queries with spoofed source address: target IP
- requires amplification

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

examples:

- file distribution (BitTorrent)
- Streaming (KanKan)
- VoIP (Skype)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server to N peers?

peer upload/download capacity is limited resource

File distribution time: client-server

- server transmission: must sequentially send (upload) N file copies:
 - time to send one copy: F/u_s
 - time to send N copies: NF/u_s
- client: each client must download file copy
 - d_{min} = min client download rate
 - min client download time: F/d_{min}

time to distribute F to N clients using client-server approach

increases linearly in N

 $D_{c-s} \ge max\{NF/u_{s.}, F/d_{min}\}$

File distribution time: P2P

- server transmission: must upload at least one copy
 - time to send one copy: F/u_s
- client: each client must download file copy
 - min client download time: F/d_{min}

- clients: as aggregate must download NF bits
 - max upload rate (limiting max download rate) is $u_s + \sum u_i$

time to distribute F to N clients using P2P approach

$$D_{P2P} \geq max\{F/u_{s,}, F/d_{min,}, NF/(u_s + \Sigma u_i)\}$$

increases linearly in N ...

... but so does this, as each peer brings service capacity

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

P2P file distribution: BitTorrent

- file divided into 256Kb chunks
- peers in torrent send/receive file chunks

P2P file distribution: BitTorrent

- peer joining torrent:
 - has no chunks, but will accumulate them over time from other peers
 - registers with tracker to get list of peers, connects to subset of peers ("neighbors")

- while downloading, peer uploads chunks to other peers
- peer may change peers with whom it exchanges chunks
- churn: peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:

- at any given time, different peers have different subsets of file chunks
- periodically, Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

sending chunks: tit-for-tat

- Alice sends chunks to those four peers currently sending her chunks at highest rate
 - other peers are choked by Alice (do not receive chunks from her)
 - re-evaluate top 4 every 10 secs
- every 30 secs: randomly select another peer, starts sending chunks
 - "optimistically unchoke" this peer
 - newly chosen peer may join top 4

BitTorrent: tit-for-tat

- (I) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks (CDNs)
- 2.7 socket programming with UDP and TCP

Video Streaming and CDNs: context

- video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
 - ~1B YouTube users, ~75M Netflix users
- challenge: scale how to reach ~1B users?
 - single mega-video server won't work (why?)
- challenge: heterogeneity
 - different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- solution: distributed, application-level infrastructure

Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia: video

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate):
 video encoding rate changes
 as amount of spatial,
 temporal coding changes
- examples:
 - MPEG I (CD-ROM) I.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < I Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Streaming stored video:

simple scenario:

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- server:
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - manifest file: provides URLs for different chunks

client:

- periodically measures server-to-client bandwidth
- consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation, or overflow does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)
 - where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)

Content distribution networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 1: single, large "mega-server"
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link

....quite simply: this solution doesn't scale

Content distribution networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
 - bring home: smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - used by Limelight

Content Distribution Networks (CDNs)

- CDN: stores copies of content at CDN nodes
 - e.g. Netflix stores copies of MadMen
- subscriber requests content from CDN
 - directed to nearby copy, retrieves content
 - may choose different copy if network path congested

Content Distribution Networks (CDNs)

OTT challenges: coping with a congested Internet

- from which CDN node to retrieve content?
- viewer behavior in presence of congestion?
- what content to place in which CDN node?

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V

video stored in CDN at http://KingCDN.com/NetC6y&B23V

Case study: Netflix

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Socket programming

goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and endend-transport protocol

Socket programming

Two socket types for two transport services:

- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Application Example:

- client reads a line of characters (data) from its keyboard and sends data to server
- server receives the data and converts characters to uppercase
- 3. server sends modified data to client
- 4. client receives modified data and displays line on its screen

Socket programming with UDP

UDP: no "connection" between client & server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:

 UDP provides unreliable transfer of groups of bytes ("datagrams") between client and server

Client/server socket interaction: UDP

Example app: UDP client

```
Python UDPClient
include Python's socket
                     from socket import *
library
                        serverName = 'hostname'
                       serverPort = 12000
create UDP socket for _____clientSocket = socket(AF_INET,
server
                                               SOCK_DGRAM)
get user keyboard
input _____ message = raw_input('Input lowercase sentence:')
Attach server name, port to
                      clientSocket.sendto(message.encode(),
message; send into socket
                                              (serverName, serverPort))
read reply characters from --- modifiedMessage, serverAddress =
socket into string
                                               clientSocket.recvfrom(2048)
print out received string ---- print modifiedMessage.decode()
and close socket
                        clientSocket.close()
```

Example app: UDP server

Python UDPServer

```
from socket import *
serverPort = 12000
```

create UDP socket ———— serverSocket = socket(AF_INET, SOCK_DGRAM)

bind socket to local port number 12000

serverSocket.bind((", serverPort))

print ("The server is ready to receive")

loop forever — while True:

Read from UDP socket into message, getting client's address (client IP and port)

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.decode().upper()

send upper case string back to this client

serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Socket programming with TCP

client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

client contacts server by:

- Creating TCP socket, specifying IP address, port number of server process
- when client creates socket: client TCP establishes connection to server TCP

- when contacted by client, server TCP creates new socket for server process to communicate with that particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients (more in Chap 3)

application viewpoint:

TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server

Client/server socket interaction: TCP

Example app: TCP client

Python TCPClient from socket import * serverName = 'servername' serverPort = 12000create TCP socket for server, remote port 12000 →clientSocket = socket(AF_INET(SOCK_STREAM clientSocket.connect((serverName,serverPort)) sentence = raw_input('Input lowercase sentence:') No need to attach server -clientSocket.send(sentence.encode()) name, port modifiedSentence = clientSocket.recv(1024) print ('From Server:', modifiedSentence.decode()) clientSocket.close()

Example app:TCP server

Python TCPServer

from socket import * serverPort = 12000create TCP welcoming serverSocket = socket(AF_INET,SOCK_STREAM) socket serverSocket.bind((",serverPort)) server begins listening for serverSocket.listen(1) incoming TCP requests print 'The server is ready to receive' loop forever while True: server waits on accept() connectionSocket, addr = serverSocket.accept() for incoming requests, new socket created on return → sentence = connectionSocket.recv(1024).decode() read bytes from socket (but capitalizedSentence = sentence.upper() not address as in UDP) connectionSocket.send(capitalizedSentence. close connection to this client (but *not* welcoming encode()) socket) connectionSocket.close()

Application Layer 2-104

Chapter 2: summary

our study of network apps now complete!

- application architectures
 - client-server
 - P2P
- application service requirements:
 - reliability, bandwidth, delay
- Internet transport service model
 - connection-oriented, reliable: TCP
 - unreliable, datagrams: UDP

- specific protocols:
 - HTTP
 - SMTP, POP, IMAP
 - DNS
 - P2P: BitTorrent
- video streaming, CDNs
- socket programming:TCP, UDP sockets

Chapter 2: summary

most importantly: learned about protocols!

- typical request/reply message exchange:
 - client requests info or service
 - server responds with data, status code
- message formats:
 - headers: fields giving info about data
 - data: info(payload) being communicated

important themes:

- control vs. messages
 - in-band, out-of-band
- centralized vs. decentralized
- stateless vs. stateful
- reliable vs. unreliable message transfer
- "complexity at network edge"