

Machine Learning

(https://leonpalafox.github.io/mlclase/)

Leon F. Palafox PhD

Noticias

The Arrival of Artificially Intelligent Beer

WRITTEN BY ALASDAIR ALLAN

29 August 2016 // 02:37 PM CET

Recap – Regresion Lineal

Imagine you want to sell you car:

- How much do you ask for it:
 - Mileage
 - Year
 - Color
 - Options
 - Condition

Valores de autos?

Model	Year	Brand	Price	Options	Condition	Mileage
Corvette	1961	Chevrolette	100K	Standard	As New	100,000
Corvette	1961	Chevrolette	10K	Standard	Rust	100,000
Corvette	1961	Chevrolette	120K	Standard	Used	20,000

This doesn't work

Forma Matricial

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix},$$

$$eta = egin{pmatrix} eta_1 \ eta_2 \ dots \ eta_p \end{pmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$$

Ingenieria de Features

By adding an extra squared factor, we got a perfect fit

Ingeniería de Features

https://eng.uber.com/cota/

 https://medium.com/netflixtechblog/distributed-time-travel-for-featuregeneration-389cccdd3907

Expansión de espacios

 Al poner mas features, nos movemos a dimensiones superiors.

Problema de Optimización

Optimize:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$$

Score:

$$X\beta - y$$

$$(X\beta - y)^2$$

$$\frac{1}{2}(X\beta - y)^2$$

This is considered a cost!

Usando algebra matricial

$$\frac{1}{2}(X\beta - y)^2 = \frac{1}{2}(X\beta - y)^T(X\beta - y)$$
$$= J(\beta)$$

$$\nabla_{\beta}J(\beta) = 0$$

Usando algebra matricial

$$\nabla_{\beta} J(\beta) = X^T X \beta - X^T y = 0$$

$$X^T X \beta = X^T y$$

$$\beta = (X^T X)^{-1} X^T y$$

Gradient descent

$$h_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$J(\beta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\beta}(x^{(i)}) - y^{(i)})^{2}$$

$$\left| \beta_{j+1} = \beta_j - \alpha \frac{\delta}{\delta \beta_j} J(\beta) \right|$$

Gradient descent

$$\beta_{j+1} = \beta_j - \alpha(y - h_\beta(x^{(i)}))x_j^{(i)}$$

Cual es la diferencia

- Grandes cantidades de datos:
 - Gradiente descente es el rey!
 - Algebra Matricial es terrible (por que?).
- Pequeños datos
 - Algebra Matricial es lo mejor.

 En práctica se usa gradient descendente por que las bases de datos se hacen grandes de manera muy rapida.

Como controlamos el problema de ayer

Regularizacion

 Trata de mantener los valores de los pesos bajos (por que?).

$$J(\beta) = \frac{1}{2} (y - h_{\beta}(x^{(i)}))^{2} + \lambda \|\beta\|$$

$$I(\beta) = \frac{1}{2} (y - h_{\beta}(x^{(i)}))^{2} + \lambda \|\beta\|$$

$$J(\beta) = \frac{1}{2} (y - h_{\beta}(x^{(i)}))^2 + \alpha \|\beta\|$$

Esto se denomina Ridge Regression

Un ejemplo de uso

https://www.youtube.com/watch?v=AR3hY9iB5-I

Nuestro super martillo- Support Vector Machines

- SVMs son la mejor herramienta para hacer clasificacion que necesita pocas variaciones.
 - Es razonablemente facil de usar
 - Tiene pocos parametros para optimizar
 - Funciona increiblemente bien.
 - Es rapido

Support Vector Machines (SVMs)

SVM Introduction

Kernels

- Utilizar lineas es impractico por que no necesariamente es la major solución.
- Usamos el concepto del Kernel (Distancia)
 - Diferentes Kernels nos permiten usar diferentes espacios
 - Los mas communes:
 - Linear
 - Polynomial (expanded powers) (power of polynomial)
 - RBF (Gaussian Kernel) ("variance")

Kernels

http://scikit-learn.org/stable/modules/svm.html#svm-kernels

Support Vector Machines (SVMs)

 Froman parte de la familia de los métodos de Kernels

- Estos métodos son muy versatiles
 - Mucha investigación se hace alrededor de cual es el major Kernel.
 - Es una lata de gusanos
 - La panacea es tener Kernels que se autodefinan

Parameter C

