

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

Hindu-Arabic Numbers

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

Letters/Symbols

3141592653589793238462643383

Hindu-Arabic Numbers

Invented 0-300 AD In India

800 AD: Al Khwarizmi (etymology of "algorithm") in Middle East

1200 AD: Fibonacci In Europe

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

(non-quantum)

ABCDE

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

Letters/Symbols

3141592653589793238462643383

Hindu-Arabic Numbers

Binary Numbers (2 digits instead of 10)

_ 1

0

0

1

0

()

1

Lights Bulbs

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

ABCDE FGHIJK LMNOP QRSTU VWXYZ

Letters/Symbols

Colors

1

Y 220460642200

3141592653589793238462643383

Hindu-Arabic Numbers

Ţ

Binary Numbers (2 digits instead of 10)

1

1

0

0

1

1

Kids on See-Saw

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

Computers Use: transistors + wires (Classical Bits of Information)

(non-quantum)

Step 1: Pick the most convenient/efficient physical medium for storing and manipulating numbers.

Letters/Symbols

3141592653589793238462643383

Hindu-Arabic Numbers

Binary Numbers (2 digits instead of 10)

L

0

0

0

1

Computers Use: basically, mini light bulbs (Classical Bits of Information)

(non-quantum)

Step 2: "Automate" the process of thinking using physical information scheme.

(Simplified) Evolution of Classical CPU Over Time

Entire State of CPU

Classical Bits versus Quantum Bits ("Qubits")

Modern Classical Bits

Classical Bits versus Quantum Bits ("Qubits")

Modern Classical Bits

Qubit -> state of an atom or photon

(Just make things even smaller)

Problem 1: Factoring Integers

Input: integer x.

Output: non-trivial factors of x.

$$x = 54 \longrightarrow 2, 3, 6, 9, 18, 27$$

Best Classical Algorithm: $O(2^n)$ for n bit numbers

Shor's Quantum Algorithm: O(poly(n))

Many cryptography schemes (e.g., RSA) rely on exponential runtime for the problem.

Problem 1: Factoring Integers

Input: integer x.

Output: non-trivial factors of x.

$$x = 54 \longrightarrow 2, 3, 6, 9, 18, 27$$

Best Classical Algorithm: $O(2^n)$ for n bit numbers

Shor's Quantum Algorithm: O(poly(n))

Many cryptography schemes (e.g., RSA) rely on exponential runtime for the problem.

Problem 2: Search Problem

Input: list L, target value

Output: index of target in L

$$L = [2, 1, 10, 4, 7, 9, 3] \longrightarrow 4$$

target = 7 (index of 7)

Many applications in cloud quantum computing, databases, etc.

Problem 1: Factoring Integers

Input: integer x.

Output: non-trivial factors of x.

$$x = 54 \longrightarrow 2, 3, 6, 9, 18, 27$$

Best Classical Algorithm: $O(2^n)$ for n bit numbers

Shor's Quantum Algorithm: O(poly(n))

Many cryptography schemes (e.g., RSA) rely on exponential runtime for the problem.

Problem 2: Search Problem

Input: list L, target value

Output: index of target in L

$$L = [2, 1, 10, 4, 7, 9, 3] \longrightarrow 4$$

target = 7 (index of 7)

Many applications in cloud quantum computing, databases, etc.

Best Possible Classical Algorithm: O(n)

Problem 1: Factoring Integers

Input: integer x.

Output: non-trivial factors of x.

$$x = 54 \longrightarrow 2, 3, 6, 9, 18, 27$$

Best Classical Algorithm: $O(2^n)$ for n bit numbers

Shor's Quantum Algorithm: O(poly(n))

Many cryptography schemes (e.g., RSA) rely on exponential runtime for the problem.

Problem 2: Search Problem

Input: list L, target value

Output: index of target in L

$$L = [2, 1, 10, 4, 7, 9, 3] \longrightarrow 4$$

target = 7 (index of 7)

Many applications in cloud quantum computing, databases, etc.

Best Possible Classical Algorithm: O(n)

Grover's Quantum Algorithm: $O(n^{1/2})$

Entire State of CPU

State Quantum CPU

State Quantum CPU

Qubit = some property of atom

- Probabilities can actually be negative or complex numbers.
- What happens if we measure some atoms/qubits but not

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - o The rules for how exponential probabilities are updated are constrained to certain operations.
 - o Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- **Quantum computers are not 100%** superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

Question: How does "Nature" keep track of and update so much information so quickly?

Answer: 0

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - o Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

Question: How does "Nature" keep track of and update so much information so quickly?

Answer: Nobody knows.

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - o Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

- Answer: Nobody knows.
- Three categories/types of answers:

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

- o **Answer:** Nobody knows.
- o Three categories/types of answers:
 - 1. Who cares? Quantum physics works why ask the question?

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

- Answer: Nobody knows.
- Three categories/types of answers:
 - 1. Who cares? Quantum physics works why ask the question?
 - 2. Quantum mechanics doesn't make sense, thus needs fixed.

Key Takeaways

- Quantum computers can be faster because they get to manipulate and exponential amount of information in O(1) time.
- Quantum computers are not 100% superior nor solve all hard problems trivially because:
 - The rules for how exponential probabilities are updated are constrained to certain operations.
 - o Even though we get to manipulate an exponential number of probabilities, we only see one outcome at the end.

- o **Answer:** Nobody knows.
- Three categories/types of answers:
 - 1. Who cares? Quantum physics works why ask the question?
 - 2. Quantum mechanics doesn't make sense, thus needs fixed.
 - 3. We live in a multiverse which interact (many-worlds interpretation).

