Write-up	Correctness of Program	Documentation of Program	Viva	Timely Completion	Total	Dated Sign of Subject Teacher
4	4	4	4	4	20	

Expected Date of Completion: Actual Date of Completion:

Group A

Assignment No: 4

Title of the Assignment: Write a program to solve a 0-1 Knapsack problem using dynamic programming or branch and bound strategy.

Objective of the Assignment: Students should be able to understand and solve 0-1 Knapsack problem using dynamic programming

Prerequisite:

- 1. Basic of Python or Java Programming
- 2. Concept of Dynamic Programming
- 3. 0/1 Knapsack problem

Contents for Theory:

- 1. Greedy Method
- 2. 0/1 Knapsack problem
- 3. Example solved using 0/1 Knapsack problem

What is Dynamic Programming?

• Dynamic Programming is also used in optimization problems. Like divide-and-conquer method, Dynamic Programming solves problems by combining the solutions of subproblems.

Course: Laboratory Practice III

- Dynamic Programming algorithm solves each sub-problem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time.
- Two main properties of a problem suggest that the given problem can be solved using Dynamic Programming. These properties are **overlapping sub-problems and optimal substructure**.
- Dynamic Programming also combines solutions to sub-problems. It is mainly used where the
 solution of one sub-problem is needed repeatedly. The computed solutions are stored in a table, so
 that these don't have to be re-computed. Hence, this technique is needed where overlapping subproblem exists.
- For example, Binary Search does not have overlapping sub-problem. Whereas recursive program of Fibonacci numbers have many overlapping sub-problems.

Steps of Dynamic Programming Approach

Dynamic Programming algorithm is designed using the following four steps –

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution, typically in a bottom-up fashion.
- Construct an optimal solution from the computed information.

Applications of Dynamic Programming Approach

- Matrix Chain Multiplication
- Longest Common Subsequence
- Travelling Salesman Problem

Knapsack Problem

You are given the following-

- A knapsack (kind of shoulder bag) with limited weight capacity.
- Few items each having some weight and value.

The problem states-

Which items should be placed into the knapsack such that-

- The value or profit obtained by putting the items into the knapsack is maximum.
- And the weight limit of the knapsack does not exceed.

Knapsack Problem

Knapsack Problem Variants

Knapsack problem has the following two variants-

- 1. Fractional Knapsack Problem
- 2. 0/1 Knapsack Problem

0/1 Knapsack Problem-

In 0/1 Knapsack Problem,

- As the name suggests, items are indivisible here.
- We can not take a fraction of any item.
- We have to either take an item completely or leave it completely.
- It is solved using a dynamic programming approach.

0/1 Knapsack Problem Using Greedy Method-

Consider-

- Knapsack weight capacity = w
- Number of items each having some weight and value = n

0/1 knapsack problem is solved using dynamic programming in the following steps-

Step-01:

- Draw a table say 'T' with (n+1) number of rows and (w+1) number of columns.
- Fill all the boxes of 0th row and 0th column with zeroes as shown-

T-Table

Step-02:

Start filling the table row wise top to bottom from left to right.

Use the following formula-

$$T(i,j) = max \{ T(i-1,j), value_i + T(i-1,j-weight_i) \}$$

Here, T(i, j) = maximum value of the selected items if we can take items 1 to i and have weight restrictions of j.

- This step leads to completely filling the table.
- Then, value of the last box represents the maximum possible value that can be put into the knapsack.

Step-03:

- To identify the items that must be put into the knapsack to obtain that maximum profit,
- Consider the last column of the table.
- Start scanning the entries from bottom to top.
- On encountering an entry whose value is not same as the value stored in the entry immediately above it, mark the row label of that entry.
- After all the entries are scanned, the marked labels represent the items that must be put into the knapsack

Problem-.

For the given set of items and knapsack capacity = 5 kg, find the optimal solution for the 0/1 knapsack problem making use of a dynamic programming approach.

Item	Weight	Value 3	
1	2		
2	3	4	
3	4	5	
4	5	6	

Solution-

<u>Given</u>

- Knapsack capacity (w) = 5 kg
- Number of items (n) = 4

Step-01:

- Draw a table say 'T' with (n+1) = 4 + 1 = 5 number of rows and (w+1) = 5 + 1 = 6 number of columns.
- Fill all the boxes of 0th row and 0th column with 0.

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

T-Table

Step-02:

Start filling the table row wise top to bottom from left to right using the formula-

$$T\left(i,j\right) = max\left\{ T\left(i\text{-}1,j\right), value_{i} + T\left(i\text{-}1,j-weight_{i}\right)\right\}$$

Finding T(1,1)-

We have,

- (value)_i = (value)₁ = 3
 (weight)_i = (weight)₁ = 2

Substituting the values, we get-

$$T(1,1) = \max \{ T(1-1, 1), 3 + T(1-1, 1-2) \}$$

$$T(1,1) = \max \{ T(0,1), 3 + T(0,-1) \}$$

$$T(1,1) = T(0,1) \{ \text{ Ignore } T(0,-1) \}$$

$$T(1,1)=0$$

Finding T(1,2)-

We have,

- (value)_i = (value)₁ = 3
 (weight)_i = (weight)₁ = 2

Substituting the values, we get-

$$T(1,2) = \max \{ T(1-1, 2), 3 + T(1-1, 2-2) \}$$

Course: Laboratory Practice III

$$T(1,2) = \max \{ T(0,2), 3 + T(0,0) \}$$

$$T(1,2) = \max \{0, 3+0\}$$

$$T(1,2) = 3$$

Finding T(1,3)-

We have,

- (value)_i = (value)₁ = 3
 (weight)_i = (weight)₁ = 2

Substituting the values, we get-

$$T(1,3) = \max \{ T(1-1,3), 3 + T(1-1,3-2) \}$$

$$T(1,3) = \max \{ T(0,3), 3 + T(0,1) \}$$

$$T(1,3) = \max \{0, 3+0\}$$

$$T(1,3) = 3$$

Finding T(1,4)-

We have,

- (value)_i = (value)₁ = 3
 (weight)_i = (weight)₁ = 2

Substituting the values, we get-

$$T(1,4) = \max \{ T(1-1,4), 3 + T(1-1,4-2) \}$$

$$T(1,4) = \max \{ T(0,4), 3 + T(0,2) \}$$

$$T(1,4) = \max \{0, 3+0\}$$

$$T(1,4) = 3$$

Finding T(1,5)-

We have,

- \bullet i=1
- \bullet j=5
- $(value)_i = (value)_1 = 3$
- $(weight)_i = (weight)_1 = 2$

Substituting the values, we get-

$$T(1,5) = \max \{ T(1-1,5), 3 + T(1-1,5-2) \}$$

Course: Laboratory Practice III

$$T(1,5) = \max \{ T(0,5), 3 + T(0,3) \}$$

$$T(1,5) = \max \{0, 3+0\}$$

$$T(1,5) = 3$$

Finding T(2.1)-

We have,

- \bullet i = 2
- $\bullet \quad j=1$
- $(value)_i = (value)_2 = 4$
- (weight)i = (weight)2 = 3

Substituting the values, we get-

$$T(2,1) = \max \{ T(2-1, 1), 4 + T(2-1, 1-3) \}$$

$$T(2,1) = \max \{ T(1,1), 4 + T(1,-2) \}$$

$$T(2,1) = T(1,1) \{ Ignore T(1,-2) \}$$

$$T(2,1) = 0$$

Finding T(2,2)-

We have,

- i = 2
- j = 2
- $(value)_i = (value)_2 = 4$
- (weight)_i = (weight)₂ = 3

Substituting the values, we get-

$$T(2,2) = max \{ T(2-1, 2), 4 + T(2-1, 2-3) \}$$

$$T(2,2) = max \{ T(1,2), 4 + T(1,-1) \}$$

$$T(2,2) = T(1,2) \{ Ignore T(1,-1) \}$$

T(2,2) = 3

Finding T(2,3)-

We have,

- i = 2
- j = 3
- (value)_i = (value)₂ = 4
- (weight)_i = (weight)₂ = 3

Substituting the values, we get-

$$T(2,3) = max \{ T(2-1,3), 4 + T(2-1,3-3) \}$$

$$T(2,3) = max \{ T(1,3), 4 + T(1,0) \}$$

$$T(2,3) = max \{ 3, 4+0 \}$$

$$T(2,3) = 4$$

Similarly, compute all the entries.

After all the entries are computed and filled in the table, we get the following table-

	0	1	2	3	4	5
0	0	0	0	0	0	0
1 1	0	0	3	3	3	3
1 2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Course: Laboratory Practice III

T-Table

- The last entry represents the maximum possible value that can be put into the knapsack.
- So, maximum possible value that can be put into the knapsack = 7.

Identifying Items To Be Put Into Knapsack

Following Step-04,

- We mark the rows labelled "1" and "2".
- Thus, items that must be put into the knapsack to obtain the maximum value 7 are-

Item-1 and Item-2

Time Complexity-

- Each entry of the table requires constant time $\theta(1)$ for its computation.
- It takes $\theta(nw)$ time to fill (n+1)(w+1) table entries.
- It takes $\theta(n)$ time for tracing the solution since tracing process traces the n rows.
- Thus, overall θ (nw) time is taken to solve 0/1 knapsack problem using dynamic programming.

Course: Laboratory Practice III

Conclusion-In this way we have explored Concept of 0/1 Knapsack using Dynamic approach.