Scilab Textbook Companion for Advance Semiconductor Devices by K. C. Nandi¹

Created by
Ashwani Kumar Verma
B.tech
Electronics Engineering
Uttarakhand Technical University
College Teacher
Mr. Mohd. Rijwan
Cross-Checked by
Lavitha Pereira and Mukul Kulkarni

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Advance Semiconductor Devices

Author: K. C. Nandi

Publisher: Tech-max Publications, Pune

Edition: 2

Year: 2013

ISBN: 978-81-8492-983-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Review of Fundamentals of Semiconductor	5
2	Junctions and Interfaces	38
5	Metal Semiconductor Field Effect Transistors	58

List of Scilab Codes

Exa 1.5.1	Value of forbidden gap
Exa 1.9.1	Concentration and drift velocity 6
Exa 1.9.2	Electron Moility 6
$\rm Exa~1.10.1$	Concentration and drift velocity
	Conductivity and Resistivity
	Intrinsic Carrier Concentration
	Current Mobility Velocity Conductivity 8
	Intrinsic Concentration
Exa 1.11.5	Majority Carrier density
	Length of the bar
	Resistivity of intrinsic Si
	Resistivity of intrinsic Si
	Ratio of donor atom to Si atom
Exa 1.11.10	Resistivity of Ge
Exa 1.11.11	Concentration and Conductivity
	Thermal equillibrium concentrations
	Free electrons
Exa 1.13.1	Total Current Density
	Applied electric field
	Total Current density
	Electron Mobility
Exa 1.15.1	Hall Voltage
	Mobility of holes
$\rm Exa~1.16.1$	Concentration and drift velocity
	Resistivity of intrinsic Ge
	Minority Carrier Density
	Concentration and current
Exa 1.16.5	Find out current

Exa 1.16.6 Find Concentration gradient	1
	2
Exa 1.16.8 Find conductivity of Ge	23
	4
	4
Exa 1.40.4 Find diffusion coefficients	4
Exa 1.40.5 Diffusion length and diffusion current density 2	5
Exa 1.40.6 Concentration of holes and electrons	6
Exa 1.40.7 Electron transit time and photo conductor gain 2	6
Exa 1.40.8 Resistivity of intrinsic Ge	7
·	7
Exa 1.40.10Ratio of donor atom to Si atom	8
Exa 1.40.11Equillibrium electron and hole density	8
	9
Exa 1.40.13Generation rate due to irradiation	9
	9
	0
Exa 1.40.16Energy Band gap	1
	1
· · · · · · · · · · · · · · · · · · ·	2
	2
	3
Exa 1.40.21Collector current density	3
	4
Exa 1.40.23Rate of thermal energy and photons	4
	5
Exa 1.40.25Hole Current	6
Exa 2.6.1 Junction Potential	8
	8
Exa 2.6.3 Height of Potential Barrier	9
	0
	0
	1
<u> </u>	2
	2
	3
	3
	4

Exa	2.9.4	Value of Io and Eta
Exa	2.9.5	Voltage across the diode
Exa	2.9.6	Calculate the source current
Exa	2.9.7	Calculate Vin
Exa	2.9.8	Voltage across diode
Exa	2.9.9	Voltage across diode
Exa	2.10.2	Temperature of junction
Exa	2.11.1	Reverse saturation current
Exa	2.11.2	Current multiplication factor
		Percent change in diode current 50
Exa	2.11.4	Parameters for diode
Exa	2.12.1	New value of depletion region width 51
Exa	2.12.2	Transition Capacitance
Exa	2.12.3	Space charge capacitance
Exa	2.12.4	Barrier Capacitance of Ge
Exa	2.12.5	Calculate Diameter
Exa	2.12.6	Reverse voltage and current ratio
Exa	2.12.7	Find diode current
Exa	2.12.8	Current in the circuit
Exa	5.6.1	Determine the current

Chapter 1

Review of Fundamentals of Semiconductor

Scilab code Exa 1.5.1 Value of forbidden gap

```
1 //Ex 1.5.1
2 clc; clear; close;
3 format('v',6);
5 // Given :
6 t1=35; //degreeC
7 t2=60; //degreeC
8 T1=t1+273; //K
9 T2=t2+273; //K
10 disp("Forbidden gap for Si:");
11 EG1_Si=1.21-3.6*10^-4*T1; //eV
12 disp(EG1_Si, "at 35 degree C in eV")
13 EG2_Si=1.21-3.6*10^-4*T2; //eV
14 disp(EG2_Si, "at 60 degree C in eV")
15 disp("Forbidden gap for Ge: ");
16 EG1_Ge=0.785-2.23*10^-4*T1; //eV
17 disp(EG1_Ge, "at 35 degree C in eV")
18 EG2_Ge=0.785-2.23*10^-4*T2; //eV
19 disp(EG2_Ge, "at 60 degree C in eV")
```

Scilab code Exa 1.9.1 Concentration and drift velocity

```
1 //Ex 1.9.1
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 1=6*10^-2;/m
7 V=1; // Volt
8 A=10*10^{-6}; //m^2
9 I=10*10^-3; //A
10 q=1.602*10^-19; // Coulomb
11 mu_n=1300*10^-4; //m^2/V-s
12 E=V/1; //V/m
13 v=mu_n*E; //m/s
14 J = I/A; //A/m^2
15 n=J/(q*mu_n*E); //per m^3
16 disp(n,"(i) Concentration of electron(m<sup>3</sup>): ");
17 disp(v,"(ii) Drift velocity(m/s): ");
```

Scilab code Exa 1.9.2 Electron Moility

```
1 //Ex 1.9.2
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 l=6*10^-2; //m
7 V=12; // Volt
8 v=73; //m/s
9 E=V/1; //V/m
```

```
10 \text{mu=v/E}; //\text{m}^2/\text{V-s}
11 \text{disp}(\text{mu}, \text{"Electron mobility}(\text{m}^2/\text{V-s}) : \text{")};
```

Scilab code Exa 1.10.1 Concentration and drift velocity

```
1 / Ex 1.10.1
2 clc; clear; close;
3 format('v',9);
5 // Given :
6 1=4*10^-2; /m
7 A=10*10^-6; //m^2
8 V=1; // Volt
9 I=5*10^-3; //A
10 q=1.6*10^-19; //Coulomb
11 mu=1300; //\text{cm}^2/\text{V-s}
12 J=I/A; //A/m^2
13 E=V/1; /V/m
14 n=J/(q*mu*10^-4*E);
15 v = mu * 10^- - 4 * E; //m/s
16 disp(n, "Concentration of electron(per m^3): ");
17 disp(v, "Electron velocity(m/s): ");
```

Scilab code Exa 1.11.1 Conductivity and Resistivity

```
1 //Ex 1.11.1
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ni=1.5*10^10/10^-6; //per m^3
7 mu_n=1800*10^-4; //m^2/V-s
8 mu_p=500*10^-4; //m^2/V-s
```

```
9 q=1.6*10^-19; // Coulomb
10 sigma_i=ni*(mu_n+mu_p)*q; // (ohm-m)^-1
11 disp(sigma_i, "Conductivity in (ohm-m)^-1: ");
12 rho_i=1/sigma_i; //ohm-m
13 disp(rho_i, "Resistivity in ohm-m: ");
```

Scilab code Exa 1.11.2 Intrinsic Carrier Concentration

Scilab code Exa 1.11.3 Current Mobility Velocity Conductivity

```
1 //Ex 1.11.3
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 A=1*10^-6; //m^2
7 R=3.6*10^-4/10^-2; //ohm/m
8 n=9*10^26; // electrons/m^3
9 J=3*10^6; //A/m^2
10 q=1.6*10^-19; //Coulomb
```

```
11 I=J*A; //A
12 disp(I,"(i) Current in A: ");
13 rho=R*A; //ohm-m
14 sigma=1/rho; //(ohm-m)^-1
15 disp(sigma,"(ii) Conductivity in (ohm-m)^-1");
16 v=J/n/q; //m/s
17 disp(v,"(iii) velocity of free electrons in m/s: ")
    ;
18 mu=sigma/n/q; //m^2/V-s
19 disp(mu,"(iv) Mobility in m^2/V-s; ");
```

Scilab code Exa 1.11.4 Intrinsic Concentration

```
1 //Ex 1.11.4
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 rho = 3*10^5*10^-2; //ohm-m
7 T1 = 30 + 273; //K
8 mu_n=0.13; //\text{m}^2/\text{V}-\text{s}
9 mu_p=0.05; //\text{m}^2/\text{V-s}
10 q=1.6*10^-19; // Coulomb
11 T2=100+273; //K
12 sigma_i=1/rho; //(ohm-m)^-1
13 ni1=sigma_i/q/(mu_n+mu_p); //electrons/m^3
14 disp(ni1, "Intrinsic concentration at 30 degree C(per
       m^3) : ");
15 k=8.62*10^-5; //eV/K(Boltzman constant)
16 EG0=1.21; //V(Energy band gap)
17 Ao=ni1^2/(T1^3*exp(-EGO/k/T1));//constant
18 \text{ni2} = \text{sqrt}(\text{Ao} * \text{T2}^3 * \text{exp}(-\text{EGO/k/T2})); // \text{per cm}^3
19 disp(ni2," Intrinsic concentration at 100 degree C(
      per m^3: ");
```

Scilab code Exa 1.11.5 Majority Carrier density

```
1 //Ex 1.11.5
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 1=0.1*10^-2;/m
7 R=1.5*10^3; //ohm
8 mu_n=0.14; //\text{m}^2/\text{V}-\text{s}
9 mu_p=0.05; //\text{m}^2/\text{V}-\text{s}
10 A=8*10^-8; //m^2
11 ni=1.5*10^10*10^6; // per m^3
12 q=1.6*10^-19; // Coulomb
13 rho_n=R*A/1; //ohm-m
14 sigma_n=1/rho_n; //(ohm-m)^-1
15 ND=sigma_n/mu_n/q;//
16 disp(ND, "Majority Carrier density(per m^3): ");
```

Scilab code Exa 1.11.6 Length of the bar

```
1 //Ex 1.11.6
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 A=2.5*10^-4; //m^2
7 n=1.5*10^16; // per m^3
8 q=1.6*10^-19; // Coulomb
9 mu_n=0.14; //m^2/V-s
10 mu_p=0.05; //m^2/V-s
11 I=1.2*10^-3; //A
```

```
12 V=9; // Volts
13 ni=n; // per m^3
14 sigma_i=ni*q*(mu_n+mu_p); // (ohm-m)^-1
15 rho_i=1/sigma_i; //ohm-m
16 R=V/I; //ohm
17 l=R*A/rho_i; //m
18 disp(1*1000, "Length of the bar(mm) : ");
```

Scilab code Exa 1.11.7 Resistivity of intrinsic Si

```
1 //Ex 1.11.7
2 clc; clear; close;
3 format('v',8);
4
5 //Given:
6 n=5*10^22; // per cm<sup>3</sup>
7 mu_n=1300; //\text{cm}^2/\text{V}-\text{s}
8 mu_p = 500; //cm^2/V-s
9 ni=1.5*10^10; //per cm^3
10 T = 300; //K
11 rho_n=9.5; //ohm-cm
12 q=1.6*10^-19; // Coulomb
13 \operatorname{sigma\_i=ni*q*(mu\_n+mu\_p);}/(\operatorname{ohm-cm})^-1
14 rho_i=1/sigma_i;//ohm-cm
15 disp(rho_i, "Resistivity in ohm-cm:");
16 sigma_n=1/rho_n; //(ohm-cm)^-1
17 ND=sigma_n/mu_n/q;//per m^3
18 Ratio=ND/n;
19 disp(Ratio," Ratio of donor impurity atom to Si atom
      : ");
```

Scilab code Exa 1.11.8 Resistivity of intrinsic Si

```
1 //Ex 1.11.8
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 n=5*10^22; // per cm<sup>3</sup>
7 ni=1.52*10^10*10^6; //per m^3
8 q=1.6*10^-19;//Coulomb
9 mu_n=0.135; //\text{m}^2/\text{V-s}
10 mu_p=0.048; //\text{m}^2/\text{V}-\text{s}
11 impurity=1/10^8; //atoms
12 sigma_i=ni*q*(mu_n+mu_p); //(ohm-cm)^-1
13 rho_i=1/sigma_i;//ohm-cm
14 disp(rho_i, "Resistivity of intrinsic Si in ohm-m:"
      );
15 ND=n*impurity*10^6; //per m^3
16 sigma_n=ND*mu_n*q; //(ohm-m)^-1
17 rho_n=1/sigma_n;//ohm-m
18 disp(rho_n, "Resistivity of doped Si in ohm-m : ");
19 //Answer in the book is not accurate.
```

Scilab code Exa 1.11.9 Ratio of donor atom to Si atom

```
1 //Ex 1.11.9
2 clc; clear; close;
3 format('v',7);
4
5 //Given :
6 rho=9.6*10^-2; //ohm-m
7 mu_n=1300*10^-4; //m^2/V-s
8 sigma_n=1/rho; // (ohm-cm)^-1
9 TotalAtoms=5*10^28; //per m^3
10 q=1.6*10^-19; //Coulomb
11 ND=sigma_n/mu_n/q; //per m^3
12 ratio=ND/TotalAtoms;
```

13 disp(ratio, "Ratio of doner atom to Si atom per unit volume: ");

Scilab code Exa 1.11.10 Resistivity of Ge

```
1 //Ex 1.11.10
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ni=2.5*10^13; //per cm^3
7 mu_p=1800; //cm^2/V-s
8 mu_n=3800; //cm^2/V-s
9 q=1.6*10^-19; //Coulomb
10 sigma_i=ni*q*(mu_n+mu_p); //(ohm-cm)^-1
11 rho_i=1/sigma_i; //ohm-cm
12 disp(round(rho_i), "Resistivity of Ge(ohm-cm) : ");
```

Scilab code Exa 1.11.11 Concentration and Conductivity

```
//Ex 1.11.11
clc; clear; close;
format('v',9);

//Given :
    ni=1.2*10^16; // per m^3
    p=10^22; // per m^3
    mu_p=500*10^-4; // cm^2/V-s
    mu_n=1350*10^-4; // cm^2/V-s
    q=1.6*10^-19; // Coulomb
    n=ni^2/p; // per m^3
    disp(n, "Electron concentration per m^3 : ");
    sigma=q*(n*mu_n+p*mu_p); // (ohm-m)^-1
```

```
14 disp(sigma, "Conductivity of Si(ohm-m)^-1: ");
```

Scilab code Exa 1.12.1 Thermal equillibrium concentrations

```
1 //Ex 1.12.1
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 T=27+273; //K
7 ND=10^17; //per cm^3
8 ni=1.5*10^10; //per cm^3
9 n=ND; //per m^3//ND>>n
10 disp(n, "Electron concentration per cm^3 : ");
11 p=ni^2/n; //per m^3
12 disp(p, "Holes per cm^3 : ");
```

Scilab code Exa 1.12.2 Free electrons

```
1 //Ex 1.12.2
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 Vol=4*50*1.5; //mm^3
7 ni=2.4*10^19; //per m^3
8 p=7.85*10^14; //per m^3
9 n=ni^2/p; //per m^3
10 Vol=Vol*10^-9; //m^3
11 TotalElectron=n*Vol; //no. of electrons
12 disp(TotalElectron, "Total free electrons per m^3 : ");
```

Scilab code Exa 1.13.1 Total Current Density

```
1 //Ex 1.13.1
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 ND=10^14; // per cm^3
7 \text{ NA=}7*10^13; //per cm^3
8 rho_i = 60; //ohm-cm
9 E=2; //V/cm
10 q=1.6*10^-19; //Coulomb
11 mu_p = 1800; //cm^2/V-s
12 mu_n=3800; //\text{cm}^2/\text{V}-\text{s}
13 sigma_i=1/rho_i; //(ohm-cm)^-1
14 ni=sigma_i/q/(mu_n+mu_p);//per cm^3
15 / n=p+(ND-NA); / per cm^3
16 //n*p=ni^2 implies (p+(ND-NA))*p=ni^2
17 / p^2 + (ND-NA) * p-ni^2 = 0
18 m = [1 (ND-NA) -ni^2]; //polynomial
19 p=roots(m); //per m^3
20 p=p(2); //taking only +ve value
21 n=ni^2/p;//per m^3
22 J=(n*mu_n+p*mu_p)*q*E/10^-4; //A/m^2
23 disp(J, "Total current density(A/m^2): ");
24 //Answer in the textbook is not accurate.
```

Scilab code Exa 1.13.2 Applied electric field

```
1 //Ex 1.13.2
2 clc; clear; close;
3 format('v',9);
```

```
4
5 // Given :
6 ND=10^14; // per cm^3
7 NA=7*10^3; //per cm<sup>3</sup>
8 rho_i = 60; //ohm-cm
9 J=52; //mA/cm^2
10 q=1.6*10^-19; //Coulomb
11 mu_p=1800; //\text{cm}^2/\text{V}-\text{s}
12 mu_n = 3800; //cm^2/V-s
13 \operatorname{sigma_i=1/rho_i}; //(\operatorname{ohm-cm})^-1
14 ni=sigma_i/q/(mu_n+mu_p);//per cm^3
15 //n = p + (ND-NA); //per cm^3
16 //n*p=ni^2 implies (p+(ND-NA))*p=ni^2
17 /p^2+(ND-NA)*p-ni^2=0
18 m=[1 (ND-NA) -ni^2];//polynomial
19 p = roots(m); //per m^3
20 p=p(2); //taking only +ve value
21 n=ni^2/p; //per m^3
22 E=J*10^-3/q/(n*mu_n+p*mu_p); //V/m
23 disp(E," Value of electrical field, E(V/cm): ");
```

Scilab code Exa 1.13.3 Total Current density

```
1 //Ex 1.13.3
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ND=10^14; //per cm^3
7 NA=7*10^13; //per cm^3
8 rho_i=60; //ohm-cm
9 E=2; //V/cm
10 q=1.6*10^-19; //Coulomb
11 mu_p=500; //cm^2/V-s
12 mu_n=1300; //cm^2/V-s
```

```
13 sigma_i=1/rho_i; // (ohm-cm)^-1
14 ni=sigma_i/q/(mu_n+mu_p); // per cm^3
15 //n=p+(ND-NA); // per cm^3
16 //n*p=ni^2 implies (p+(ND-NA))*p=ni^2
17 //p^2+(ND-NA)*p-ni^2=0
18 m=[1 (ND-NA) -ni^2]; // polynomial
19 p=roots(m); // per m^3
20 p=p(2); // taking only +ve value
21 n=ni^2/p; // per m^3
22 J=(n*mu_n+p*mu_p)*q*E/10^-4; //A/m^2
23 disp(J,"Total current density(A/m^2): ");
```

Scilab code Exa 1.13.4 Electron Mobility

```
1 //Ex 1.13.4
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 l=6*10^-2; //m
7 V=12; // volts
8 v=73; //m/s
9 E=V/l; //V/m
10 mu=v/E; //m^2/V-s
11 disp(mu, "Electron mobilitym^2/V-s) : ");
```

Scilab code Exa 1.15.1 Hall Voltage

```
1 //Ex 1.15.1
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
```

```
6 ND=10^13; // per cm^3
7 Bz=0.2; //Wb/m^2
8 d=5; //mm
9 E=5; //V/cm
10 q=1.6*10^-19; // Coulomb
11 mu_n=1300; //cm^2/V-s
12 rho=ND*q; // Coulomb/cm^3
13 J=rho*mu_n*E; //A/cm^2
14 VH=Bz*10^-4*J*d*10^-1/rho; //V
15 disp(VH*10^3, "Magnitude of hall voltage(mV): ");
```

Scilab code Exa 1.15.2 Mobility of holes

```
1 //Ex 1.15.2
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 rho=220*10^3*10^-2; //ohm/m
7 d=2.2*10^-3; //m
8 w=2*10^-3; //m
9 B=0.1; //Wb/m^2
10 I=5*10^-6; //A
11 VH=28*10^-3; //V
12 sigma=1/rho; // (ohm-m)^-1
13 RH=VH*w/(B*I); //ohm
14 mu=sigma*RH; //m^2/V-s
15 disp(mu, "Mobility(m^2/V-s) : ");
```

Scilab code Exa 1.16.1 Concentration and drift velocity

```
1 //Ex 1.16.1
2 clc; clear; close;
```

```
format('v',9);

//Given:
1=4*10^-2;//m
A=10*10^-6;//m^2
V=1;//Volt
I=5*10^-3;//A
q=1.6*10^-19;//Coulomb
mu=1300;//cm^2/V-s
J=I/A;//A/m^2
E=V/1;//V/m
A=J/(q*mu*10^-4*E)
v=mu*10^-4*E;//m/s
disp(n,"Concentration of electron(per m^3):");
disp(v,"Electron velocity(m/s):");
```

Scilab code Exa 1.16.2 Resistivity of intrinsic Ge

```
1 //Ex 1.16.2
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 mu_n=3800; //cm^2/V-s
7 mu_p=1300; //cm^2/V-s
8 ni=2.5*10^13; //per cm^3
9 q=1.6*10^-19; //Coulomb
10 ND=4.4*10^22/10^8; //per cm^3
11 sigma_n=ND*q*mu_n; //(ohm-m)^-1
12 rho_n=1/sigma_n; //ohm-cm
13 disp(rho_n, "Resistivity of doped Ge(ohm-cm) : ");
```

Scilab code Exa 1.16.3 Minority Carrier Density

```
1 //Ex 1.16.3
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ni=1.5*10^16; //per m^3
7 n=5*10^20; //per m^3
8 p=ni^2/n; //per m^3
9 disp(p, "Minor carrier density(per m^3) : ");
```

Scilab code Exa 1.16.4 Concentration and current

```
1 / Ex 1.16.4
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 ni=1.5*10^10;//per cm^3
7 mu_n = 1400; //cm^2/V-s
8 mu_p=500; //\text{cm}^2/\text{V}-\text{s}
9 1=1; //cm
10 a=1; //mm^2
11 q=1.6*10^-19; // Coulomb
12 del_n=10^14; //per cm^3
13 del_p=10^14; //per cm^3
14 Nd=8*10^15; //per cm^3
15 n=Nd; //per cm^3(Nd>>ni)
16 disp(n, "Electron concentration, n(per cm<sup>3</sup>): ");
17 p=ni^2/n;//per m^3
18 disp(p,"Hole concentration, p(per cm<sup>3</sup>): ");
19 nT=Nd+del_n; //per cm^3
20 disp(nT, "Total electron concentration, nT(per cm^3)
      : ");
21 pT=p+del_p; //per cm^3
22 disp(pT, "Total hole concentration, pT(per cm^3): ")
```

```
;
23 sigma=(nT*mu_n+pT*mu_p)*q;//(ohm-cm)^-1
24 rho=1/sigma;//ohm-cm
25 R=rho*l/(a*10^-2);//ohm
26 V=2;//volt
27 I=V/R;//A
28 disp(I*1000, "Current, I(mA) : ");
```

Scilab code Exa 1.16.5 Find out current

```
1 //Ex 1.16.5
2 clc; clear; close;
3 format('v',9);
5 // Given :
6 A=2.3*10^-4; //m^2
7 n=1.5*10^16; //per m^3
8 1=1; //mm
9 mu_n=1400; //\text{cm}^2/\text{V-s}
10 mu_p = 500; //cm^2/V-s
11 p=n;//per m^3
12 ni=n; //per m^3
13 q=1.6*10^-19;//Coulomb
14 sigma_i=ni*(mu_n*10^-4+mu_p*10^-4)*q; //(ohm-m)^-1
15 rho_i=1/sigma_i;//ohm-m
16 R=rho_i*1*10^-3/A; //ohm
17 V=9; // volt
18 I=V/R; //A
19 disp(I*1000, "Current, I(mA): ");
```

Scilab code Exa 1.16.6 Find Concentration gradient

```
1 / Ex 1.16.6
```

Scilab code Exa 1.16.7 Total Current Density

```
1 / Ex 1.16.7
2 clc; clear; close;
3 format('v',9);
5 // Given :
6 ND=10^13; // \text{per m}^3
7 \text{ NA=10^14; //per m^3}
8 \text{ rho\_i}=44; //\text{ohm-cm}
9 E=3; //V/cm
10 q=1.6*10^-19; //Coulomb
11 mu_n = 0.38; //m^2/V - s
12 mu_p = 0.18; //m^2/V-s
13 ni=2.5*10^19; //per m^3
14 / n=p+(ND-NA); / per cm^3
15 //n*p=ni^2 implies (p+(ND-NA))*p=ni^2
16 / p^2 + (ND-NA) * p-ni^2 = 0
17 m=[1 (ND-NA) -ni^2];//polynomial
```

```
18  p=roots(m); // per m^3
19  p=p(1); // taking only +ve value
20  n=ni^2/p; // per m^3
21  J=(n*mu_n+p*mu_p)*q*(E/10^-2); // A/m^2
22  disp(J, "Total current density(A/m^2): ");
23  // Ans in the textbook is not accurate.
```

Scilab code Exa 1.16.8 Find conductivity of Ge

```
1 //Ex 1.16.8
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 T=300; //K
7 ni=2.5*10^13; //per cm^3
8 mu_n=3800; //\text{cm}^2/\text{V}-\text{s}
9 mu_p=1800; //\text{cm}^2/\text{V-s}
10 q=1.6*10^-19; //Coulomb
11 sigma_i=ni*(mu_n+mu_p)*q/10^-2; //(ohm-m)^-1
12 disp(sigma_i, "Conductivity of intrinsic Ge in (ohm-m
      )^{-1} : ");
13 ND=4.4*10^22/10^7; // per cm<sup>3</sup>
14 n=ND; //per cm^3
15 sigma_n=n*mu_n*q/10^-2; //(ohm-m)^-1
16 disp(sigma_n, "Conductivity after adding donor
      impurity in (ohm-m)^-1 : ");
17 NA=4.4*10^22/10^7; // \text{per cm}^3
18 p=NA; //per cm^3
19 sigma_p=p*mu_p*q/10^-2; //(ohm-m)^-1
20 disp(sigma_p, "Conductivity after adding acceptor
      impurity in (ohm-m)^-1 : ");
```

Scilab code Exa 1.40.1 Hole concentration at equillibrium

Scilab code Exa 1.40.3 Fermi level Ef

```
1 //Ex 1.40.3
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ni=1.5*10^10; //per cm^3
7 ND=10^17; //per cm^3
8 no=ND; //per cm^3///Nd>>ni
9 po=ni^2/no; //per cm^3
10 KT=0.0259; //constant
11 delEf=KT*log(no/ni); //eV
12 disp("Fermi level, Ef = Ei+"+string(delEf)+" eV");
```

Scilab code Exa 1.40.4 Find diffusion coefficients

```
1 //Ex 1.40.4
2 clc; clear; close;
```

Scilab code Exa 1.40.5 Diffusion length and diffusion current density

```
1  //Ex 1.40.5
2  clc; clear; close;
3  format('v',9);
4
5  //Given :
6  K=1.38*10^-23; //J/K
7  T=27+273; //K
8  e=1.6*10^-19; // constant
9  del_no=10^20; // per.m^3
10  tau_n=10^-7; //s
11  mu_n=0.15; //m^2/V-s
12  Dn=K*T/e*mu_n; //m^2/s
13  Ln=sqrt(Dn*tau_n); //m
14  Jn=e*Dn*del_no/Ln; //A/m^2
15  disp(Jn," Diffusion current density(A/m^2) : ");
```

Scilab code Exa 1.40.6 Concentration of holes and electrons

```
1 //Ex 1.40.6
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 sigma_n=0.1; // (ohm-cm)^-1
7 mu_n=1300; //m^2/V-s
8 ni=1.5*10^10; //per cm^3
9 q=1.6*10^-19; //Coulomb
10 n_n=sigma_n/q/mu_n; //per cm^3
11 p_n=ni^2/n_n; //per cm^3
12 p_n=p_n*10^6; //per m^3
13 disp(p_n, "Concentration of holes(per m^3) : ");
```

Scilab code Exa 1.40.7 Electron transit time and photo conductor gain

```
1 //Ex 1.40.7
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 L=100*10^-6; //m
7 A=10^-7*10^-6; //m^2
8 mu_e=0.13; //m^2/V-s
9 mu_h=0.05; //m^2/V-s
10 tau_h=10^-6; // sec
11 V=12; // volt
12 E=V/L; // v/m
13 tn=L^2/(mu_e*V); // sec
14 Gain=tau_h/tn*(1+mu_h/mu_e); //
15 disp(Gain, "Photoconductor gain : ");
```

Scilab code Exa 1.40.8 Resistivity of intrinsic Ge

```
1 / \text{Ex} 1.40.8
2 clc; clear; close;
3 format('v',7);
4
5 // Given :
6 T = 300; //K
7 rho_i = 45; //ohm-cm
8 //part (i)
9 \text{ mu_n=3800; } //\text{cm}^2/\text{V-s}
10 mu_p=1800; //\text{cm}^2/\text{V-s}
11 ni=2.5*10^13; //per cm^3
12 q=1.6*10^-19; // Coulomb
13 sigma=ni*q*(mu_n+mu_p);/(ohm-cm)^-1
14 rho=1/sigma;//ohm-cm
15 disp(round(rho), "Resistivity of intrinsic Ge at 300K
      (ohm-cm) : ");
16 //part (ii)
17 ND=4.4*10^22/10^8; //per cm<sup>3</sup>
18 sigma=ND*q*mu_n; //(ohm-cm)^-1
19 rho=1/sigma;//ohm-cm
20 disp(rho, "Resistivity of doped Ge(ohm-cm): ");
```

Scilab code Exa 1.40.9 Electron and hole concentration

```
1 //Ex 1.40.9
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ni=10^16; //per m^3
```

```
7 ND=10^22; // per m^3
8 n=ND; // per m^3//ND>>ni
9 disp(n, "Electron concentration(per m^3) : ");
10 p=ni^2/n; // per m^3
11 disp(p, "Electron concentration(per m^3) : ");
```

Scilab code Exa 1.40.10 Ratio of donor atom to Si atom

```
1 //Ex 1.40.10
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 rho=9.6*10^-2; //ohm-m
7 mu_n=1300; //cm^2/V-s
8 q=1.6*10^-19; //Coulomb
9 sigma_n=1/rho; //(ohm-m)^-1
10 ND=sigma_n/q/(mu_n*10^-4); //per m^3
11 ni=5*10^22*10^6; //per m^3
12 disp(ND/ni," Ratio of donor atom to Si atom : ");
```

Scilab code Exa 1.40.11 Equillibrium electron and hole density

```
10 disp(p_n, "Equillibrium hole density(per cm^3): ");
```

Scilab code Exa 1.40.12 Carrier Concentration

```
1 //Ex 1.40.12
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 NA=2*10^16; //per cm^3
7 ND=10^16; //per cm^3
8 p=NA-ND; //per cm^3
9 disp(p," Material is p-type & Carrier concentration(holes per cm^3): ");
```

Scilab code Exa 1.40.13 Generation rate due to irradiation

```
1 //Ex 1.40.13
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 del_n=10^15; //per cm^3
7 tau_p=10*10^-6; //sec
8 rate=del_n/tau_p; //rate of generation minority carrier
9 disp(rate, "Rate of generation of minority carrier( electron hole pair/sec/cm^3): ");
```

Scilab code Exa 1.40.14 Mobility of minority charge carrier

```
1 //Ex 1.40.14
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 E=10; //V/cm
7 v=1/(20*10^-6); //m/s
8 mu=v/E; //cm^2/V-s
9 disp(mu, "Mobility(cm^2/V-s) : ");
```

Scilab code Exa 1.40.15 Hole and electron diffusion current

```
1 / Ex 1.40.15
2 clc; clear; close;
3 format('v',9);
4
5 // Given :
6 ND=4.5*10^15; //per cm<sup>3</sup>
7 A=1*10^-2; //cm^2
8 1=10; /cm
9 tau_p=1*10^-6; // sec
10 tau_n=1*10^-6; // sec
11 Dp=12; //\text{cm}^2/\text{sec}
12 Dn=30; //\text{cm}^2/\text{sec}
13 q=1.6*10^-19; //Coulomb
14 del_p=10^21; // electron hole pair/cm^3/sec
15 x = 34.6 * 10^-4; //cm
16 Kdash=26; //mV(Kdash is taken as K*T/q)
17 ni=1.5*10^10; //per cm^3
18 no=ND; // per cm^3//ND << ni
19 po=ni^2/no;//per cm^3
20 ln=sqrt(Dn*tau_n);//cm
21 lp=sqrt(Dp*tau_p);//cm
22 dpBYdx=del_p*exp(-x/lp); // per cm<sup>4</sup>
23 dnBYdx=del_p*exp(-x/ln); //per cm<sup>4</sup>
```

```
24 Jp=-q*Dp*dpBYdx;//A/cm^2
25 Ip=Jp*A;//A
26 disp(Ip,"Hole diffusion current (A): ");
27 Jn=q*Dn*dnBYdx;//A/cm^2
28 In=Jn*A;//A
29 disp(In,"Electron diffusion current (A): ");
30 //Solution is not complete in the book and value of Jp & Jn is due to wrong calculation for dpBYdx and dnBYdx.
```

Scilab code Exa 1.40.16 Energy Band gap

```
1 //Ex 1.40.16
2 clc; clear; close;
3 format('v',9);
4
5 //Given:
6 h=6.626*10^-34; //J-s
7 lambda=5490; // Angstrum
8 c=3*10^8; //m/s (speed of light)
9 f=c/(lambda*10^-10); //Hz
10 E=(h/1.6/10^-19)*f; //eV
11 disp(E,"Energy band gap(eV):");
```

Scilab code Exa 1.40.17 Current density in the Si

```
1 //Ex 1.40.17
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 q=1.6*10^-19; //Coulomb
7 Dn=35; //cm^2/s
```

```
8  x=[0 2]; // micro meter
9  n=[10^17 6*10^16]; // per cm^3
10  plot(x,n);
11  title('n Vs x');
12  xlabel('x(micro meter)');
13  ylabel('n(electrons per cm^3)');
14  dnBYdx=(n(2)-n(1))/(x(2)-x(1))/10^-4; // gradient
15  Jn=q*Dn*dnBYdx; // A/cm^2
16  disp(Jn, "Current density(A/cm^2): ");
```

Scilab code Exa 1.40.18 Resistance of the bar

```
1 //Ex 1.40.18
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 q=1.6*10^-19; //Coulomb
7 l=0.1; //cm
8 A=100*10^-8; //cm^2
9 n_n=5*10^20*10^-6; // per cm^3
10 mu_n=0.13*10^4; //cm^2/V-s
11 sigma_n=q*n_n*mu_n; // (ohm-cm)^-1
12 rho=1/sigma_n; //ohm-cm
13 R=rho*1/A; //ohm
14 disp(round(R/10^6), "Resistance of the bar(Mohm): ")
;
```

Scilab code Exa 1.40.19 Depletion width on p side

```
1 //Ex 1.40.19
2 clc; clear; close;
3 format('v',9);
```

```
4
5 //Given :
6 NA=9*10^16; //per cm^3
7 ND=1*10^16; //per cm^3
8 w_total=3; //micro meter
9 w_p=w_total*ND/NA; //micro meter
10 disp(w_p, "Answer is (B). Depletion width on p-side(micro meter): ");
```

Scilab code Exa 1.40.20 Majority Carrier Density

```
1 //Ex 1.40.20
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 ni=1.5*10^16; //per m^3
7 n_n=5*10^20; //per m^3
8 p_n=ni^2/n_n; //per m^3
9 disp(p_n, "Majority carrier density(per m^3) : ");
```

Scilab code Exa 1.40.21 Collector current density

```
1 //Ex 1.40.21
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 q=1.6*10^-19; //Coulomb
7 Dn=25; //cm^2/s
8 x=[0 0.5]; //micro meter(base width)
9 n=[10^14 0]; //per cm^3
10 plot(x,n);
```

```
11 title('n Vs x');
12 xlabel('x(micro meter)');
13 ylabel('n(electrons per cm^3)');
14 dnBYdx=(n(2)-n(1))/(x(1)-x(2))/10^-4;//gradient
15 Jn=q*Dn*dnBYdx;//A/cm^2
16 disp(Jn, "Current density(A/cm^2): ");
```

Scilab code Exa 1.40.22 Band gap of the material

```
1 //Ex 1.40.22
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 h=6.64*10^-34; //planks constant
7 c=3*10^8; //m/s(speed of light)
8 lambda=0.87*10^-6; //m
9 Eg=h*c/lambda/(1.6*10^-19); //eV
10 disp(Eg,"Band gap(eV) : ");
```

Scilab code Exa 1.40.23 Rate of thermal energy and photons

```
1 //Ex 1.40.23
2 clc; clear; close;
3 format('v',9);
4
5 //Given :
6 t=0.46*10^-4; //cm
7 E=2; //eV
8 alfa=5*10^4; //cm^-1
9 Io=10; //mW
10 q=1.6*10^-19; //Coulomb
11 It=Io*exp(-alfa*t); //mW
```

```
12 Pabs=Io-It; //mW
13 disp(round(Pabs),"(a) Absorbed power(mW) : ");
14 Eg=1.43; //eV(Band gap)
15 heat_fraction=(E-Eg)/E;
16 E_heat=heat_fraction*Pabs*10^-3; //J/s(energy converted to heat)
17 disp(E_heat,"(b) Rate of excess thermal energy(J/s) : ");
18 photons=Pabs*10^-3/q/E; //no. of photons per sec
19 disp(photons,"(c) No. of photons per sec : ");
```

Scilab code Exa 1.40.24 Hole current and charge stored

```
1 //Ex 1.40.24
2 clc; clear; close;
3 format('v',9);
4
5 // Given:
6 Kdash=0.0259; // constant (taken as K*T/q)
7 A=0.5; //\text{cm}^2
8 Na=10^17; // per cm^3
9 ni=1.5*10^10; //per cm^3
10 delta_p=5*10^16; //per cm^3
11 x=1000; //Angstrum
12 mu_p=500; //\text{cm}^2/\text{V-s}
13 tau_p=10^-10; // \sec 
14 q=1.6*10^-19; // Coulomb
15
16 Dp=Kdash*mu_p; //cm/s
17 Lp=sqrt(Dp*tau_p);//cm
18 p0=Na; //per cm^3
19 p=p0+delta_p*exp(x*10^-8/Lp); //per cm^3
20 delE1=log(p/ni)*Kdash;//eV(taken as Ei-Fp)
21 Eg=1.12; //eV(Band gap)
22 delE2=Eg-delE1; //eV(taken as Ec-Fp)
```

Scilab code Exa 1.40.25 Hole Current

```
1 / \text{Ex} 1.40.25
2 clc; clear; close;
3 format('v',9);
5 // Given :
6 Kdash=0.0259; // constant (taken as K*T/q)
7 A=0.5; //\text{cm}^2
8 Na=10^17;//per cm^3
9 ni=1.5*10^10; //per cm^3
10 delta_p=5*10^16; //per cm^3
11 x=1000; //Angstrum
12 mu_p = 500; //cm^2/V-s
13 tau_p=10^-10; // \sec c
14 q=1.6*10^-19; //Coulomb
15
16 Dp=Kdash*mu_p; //cm/s
17 Lp=sqrt(Dp*tau_p);//cm
18 p0=Na; //per cm^3
19 p=p0+delta_p*exp(x*10^-8/Lp); // per cm^3
20 delE1=log(p/ni)*Kdash;//eV(taken as Ei-Fp)
21 Eg=1.12; //eV(Band gap)
22 delE2=Eg-delE1; //eV(taken as Ec-Fp)
23 disp(delE2, "Steady state separation between Fp & Ec
      in eV : ");
```

```
24  Ip=q*A*Dp/Lp*delta_p*exp(x*10^-8/Lp); //A
25  disp(Ip,"Hole current in A: ");
26  Qp=q*A*delta_p*Lp; //C
27  disp(Qp,"Excess stored hole charge(Coulomb)");
28  //Answer in the book is wrong beacause of calculation mistake in the value of p & Ip.
```

Chapter 2

Junctions and Interfaces

Scilab code Exa 2.6.1 Junction Potential

```
1 //Ex 2.6.1
2 clc; clear; close;
3 format('v',6);
4
5 //Given :
6 Ge=4.4*10^22; //atoms/cm^3
7 NA=Ge/10^8; //per cm^3
8 NA=NA*10^6; //per m^3
9 ND=NA*10^3; //per m^3
10 ni=2.5*10^13; //per cm^3
11 ni=ni*10^6; //per m^3
12 VT=26; //mV
13 Vj=VT*log(NA*ND/ni^2); //mV
14 disp(Vj, "Junction potential in mV : ");
```

Scilab code Exa 2.6.2 Contact Potential

```
1 //Ex 2.6.2
```

```
2 clc; clear; close;
3 format('v',6);
4
5 //Given :
6 ni=2.5*10^15; //per cm^3
7 Ge=4.4*10^22; //atoms/cm^3
8 NA=Ge/10^8; //per cm^3
9 NA=NA*10^6; //per m^3
10 ND=NA*10^3; //per m^3
11 ni=ni*10^6; //per m^3
12 T=27+273; //K
13 VT=T/11600; //V
14 Vo=VT*log(NA*ND/ni^2); //V
15 disp(Vo,"Contact potential in V:");
```

Scilab code Exa 2.6.3 Height of Potential Barrier

```
1 / Ex 2.6.3
2 clc; clear; close;
3 format('v',6);
5 // Given :
6 mu_n=1500*10^-4; //m^2/V-s
7 mu_p = 475*10^-4; //m^2/V-s
8 ni=1.45*10^10*10^6; //per m^3
9 q=1.6*10^-19;//Coulomb
10 rho_p=10; //ohm-cm
11 rho_p=rho_p*10^-2; //ohm-m
12 rho_n=3.5;//ohm-cm
13 rho_n=rho_n*10^-2;//ohm-m
14 sigma_p=1/rho_p; //(ohm-m)^-1
15 NA=sigma_p/q/mu_p; //m^3
16 sigma_n=1/rho_n; //(ohm-m)^-1
17 ND=sigma_p/q/mu_n; //m^3
18 VT = 26 * 10^{-3}; //V
```

```
19 Vj=VT*log(NA*ND/ni^2);//V
20 disp(Vj,"Height of potential barrier in V: ");
21 //Anser in the book is wrong.
```

Scilab code Exa 2.6.4 Height of Potential barrier

```
1 / Ex 2.6.4
2 clc; clear; close;
3 format('v',6);
4
5 //Given:
6 rho_p=2;//ohm-cm
7 rho_p=rho_p*10^-2; //ohm-m
8 \text{ rho_n=1;}//\text{ohm-cm}
9 rho_n=rho_n*10^-2;//ohm-m
10 mu_n = 1500 * 10^{-4}; //m^2/V - s
11 mu_p = 2100*10^-4; //m^2/V-s
12 \text{ni}=2.5*10^13; // \text{per m}^3
13 q=1.6*10^-19; // Coulomb
14 sigma_p=1/rho_p; //(ohm-m)^-1
15 NA=sigma_p/q/mu_p; //m^3
16 sigma_n=1/rho_n; //(ohm-m)^-1
17 ND=sigma_p/q/mu_n; //m^3
18 T=27+273; //K
19 VT=T/11600; //V
20 Vj = VT * log(NA * ND/ni^2); //V
21 disp(Vj, "Height of potential barrier in V: ");
22 // Anser in the book is wrong.
```

Scilab code Exa 2.7.1 Diode voltage and current

```
1 //Ex 2.7.1
2 clc; clear; close;
```

```
3 format('v',6);
4
5 //Given :
6 Vgamma=0.6; // volt
7 rf=12; //ohm
8 V=5; // volts
9 R=1; //kohm
10 IF=(V-Vgamma)/(R*1000+rf); //A
11 disp(IF*1000, "Diode current in mA :");
12 VF=Vgamma+IF*rf; // volts
13 disp(VF, "Diode voltage in volts :");
```

Scilab code Exa 2.7.2 Alternating and total voltage

```
1 / Ex 2.7.2
2 clc; clear; close;
3 format('v',7);
5 // Given :
6 Vgamma=0.6; //volt
7 Rf = 10; //ohm
8 Eta=2;
9 \quad Vm = 0.2; // volts
10 Vdc=10; //volts
11 RL=1; //kohm
12 IDQ = (Vdc - Vgamma) / (RL*1000+Rf); //A
13 VT = 25 * 10^{-3}; // volts
14 rd=Eta*VT/IDQ;//ohm
15 disp ("Alternating component of voltage across RL, Vo
      (ac) = "+string(RL*1000/(RL*1000+rd)*Vm)+"*sin(
      omega*t)");
16 Vo_DC=IDQ*RL*1000; // volts
17 disp("Total load voltage = "+string(Vo_DC)+"+"+
      string(RL*1000/(RL*1000+rd)*Vm)+"*sin(omega*t)");
```

Scilab code Exa 2.7.3 Ratioo of Current

```
1 / Ex 2.7.3
2 clc; clear; close;
3 format('v',8);
4
5 // Given :
6 Eta=2; // for Si diode
7 T = 300; //K
8 VT = T/11600; //V
9 IbyIo = 90/100;
10 //I = Io *(exp(V/Eta/VT) - 1)
11 V = log(IbyIo + 1) * Eta * VT; //V
12 disp(V*1000, "Saturation value of voltage in mV: ");
13 VF=0.5; // volts
14 VR = -0.5; //volts
15 IFbyIR=(exp(VF/Eta/VT)-1)/(exp(VR/Eta/VT)-1);//ratio
16 disp(IFbyIR, "Ratio of forward to reverse current:"
      );
17 // Answer in the book is wrong.
```

Scilab code Exa 2.7.4 Ratio of Current

```
1 //Ex 2.7.4
2 clc; clear; close;
3 format('v',8);
4
5 //Given:
6 Eta=2; //for Si diode
7 T=300; //K
8 VT=T/11600; //V
9 IbyIo=90/100;
```

```
10  //I=Io*(exp(V/Eta/VT)-1)
11  V=log(IbyIo+1)*Eta*VT; //V
12  disp(V*1000, "Saturation value of voltage in mV: ");
13  VF=0.2; // volts
14  VR=-0.2; // volts
15  IFbyIR=(exp(VF/Eta/VT)-1)/(exp(VR/Eta/VT)-1); // ratio
16  disp(IFbyIR, "Ratio of forward to reverse current: ");
17  // Answer in the book is wrong.
```

Scilab code Exa 2.9.1 Reverse saturation current

```
1 //Ex 2.9.1
2 clc; clear; close;
3 format('v',6);
4
5 //Given :
6 IF=10; //mA
7 VF=0.75; // volts
8 T=27+273; //K
9 Eta=2; // for Si diode
10 VT=T/11600; //V
11 Io=IF/(exp(VF/Eta/VT)-1); //mA
12 disp(Io*10^6, "Reverse saturation current in nA : ");
```

Scilab code Exa 2.9.2 Reverse saturation current

```
1 //Ex 2.9.2
2 clc; clear; close;
3 format('v',6);
4
5 //Given :
6 IF=10; //mA
```

```
7  VF=0.3; // volts
8  T=27+273; //K
9  Eta=1; // for Ge diode
10  VT=T/11600; //V
11  Io=IF/(exp(VF/Eta/VT)-1); //mA
12  disp(Io*10^6, "Reverse saturation current in nA : ");
```

Scilab code Exa 2.9.3 Determine forward current

```
1 //Ex 2.9.3
2 clc; clear; close;
3 format('v',6);
4
5 //Given :
6 Io=1*10^-9; //A
7 T=27+273; //K
8 VT=T/11600; //V
9 VF=0.3; // volts
10 Eta=1; // for Ge diode
11 IF=Io*(exp(VF/Eta/VT)-1); //mA
12 disp(IF*10^3, "Forwad current in mA : ");
```

Scilab code Exa 2.9.4 Value of Io and Eta

```
1 //Ex 2.9.4
2 clc; clear; close;
3 format('v',8);
4
5 //Given :
6 T=27+273; //K
7 V1=0.4; //V
8 V2=0.42; //V
9 I1=10; //mA
```

Scilab code Exa 2.9.5 Voltage across the diode

```
1 //Ex 2.9.5
2 clc; clear; close;
3 format('v',8);
4
5 //Given :
6 Io1=10^-12; //A
7 Io2=10^-10; //A
8 I=2; //mA
9 Eta=1; //constant
10 T=27+273; //K
11 VT=26/1000; //V
12 //I=I1+I2
13 V=(log(I*10^-3/(Io1+Io2))+1)*Eta*VT; //V
14 disp(V," Voltage across the diodes in V:");
15 //Ans in the book is not accurate.
```

Scilab code Exa 2.9.6 Calculate the source current

```
1 //Ex 2.9.6
2 clc; clear; close;
3 format('v',8);
4
5 //Given :
```

Scilab code Exa 2.9.7 Calculate Vin

```
1 / Ex 2.9.7
2 clc; clear; close;
3 format('v',8);
5 // Given :
 6 Io=10^-13;/A
7 T = 27 + 273; //K
8 Eta=1; //constant
9 V = 0.6; //V
10 VT = 26/1000; //V
11 I3=Io*(\exp(V/Eta/VT)-1); //A
12 R = 1 * 1000; //ohm
13 Ir=V/R;/A
14 Itotal=I3+Ir; //A
15 VD1=log(Itotal/Io)*Eta*VT;//V
16 VD2=VD1; //V
17 Vin = VD1 + VD2 + V; //V
18 \operatorname{disp}(\operatorname{Vin}, \operatorname{``Voltage} \operatorname{Vin}(\operatorname{V}) : \operatorname{``)};
```

Scilab code Exa 2.9.8 Voltage across diode

```
1 / Ex 2.9.8
2 clc; clear; close;
3 format('v',8);
4
5 // Given :
6 Vs = 10; //V
7 disp("Case(i) : Vb=9.8V");
8 Vb=9.8;/V
9 //D1 forward & D2 reverse biased: Breakdown D2
10 VD2 = Vb; //V
11 VD1=Vs-Vb; //V
12 disp(VD1,"VD1(V) : ");
13 \operatorname{disp}(\mathtt{VD2}, \mathtt{``VD2}(\mathtt{V}) : \mathtt{``});
14 disp("Case(ii) : Vb=10.2V");
15 Vb=10.2; //V
16 //D1 forward & D2 reverse biased: none will be
      breakdown
17 VD2 = Vb; //V
18 //I = I0 so \exp(V1/Eta/VT) - 1 = 1
19 Eta=1; // constant
20 \text{ VT} = 26/1000; //V
21 VD1 = log(1+1) * Eta * VT; //V
22 VD2=Vs-VD1; //V
23 disp(VD1,"VD1(V) : ");
24 disp(VD2,"VD2(V):");
```

Scilab code Exa 2.9.9 Voltage across diode

```
1 //Ex 2.9.9
2 clc; clear; close;
3 format('v',8);
4
5 //Given :
6 Vs=5; // Volt
7 Eta=1; // constant
```

```
8  VT=26/1000; //V
9  //I=I0 so exp(V1/Eta/VT)-1=1
10  V1=log(1+1)*Eta*VT; // Volt
11  V2=Vs-V1; // volt
12  disp(V1, "Voltage across diode D1 in V : ");
13  disp(V2, "Voltage across diode D2 in V : ");
```

Scilab code Exa 2.10.2 Temperature of junction

```
1 / Ex 2.10.2
2 clc; clear; close;
3 format('v',8);
4
5 // Given :
6 \text{ rho_n=10; //ohm-cm}
7 rho_p=3.5; //ohm-cm
8 ni=1.5*10^10; //per cm^3
9 V_{j} = 0.56; //v_{olt}
10 q=1.6*10^-19;//Coulomb
11 mu_n = 1500; //cm^2/V-s
12 mu_p=500; //\text{cm}^2/\text{V-s}
13 sigma_p=1/rho_p; //(ohm-cm)^-1
14 NA=sigma_p/q/mu_p;//per cm^3
15 sigma_n=1/rho_n; //(ohm-cm)^-1
16 ND=sigma_n/q/mu_n; //per cm^3
17 VT = V_j / log(NA*ND/ni^2); //V
18 T=11600*VT; //K
19 disp(T, "Temperature of junction in degree K: ");
20 t=T-273; // degree C
21 disp(t, "Temperature of junction in degree C: ");
```

Scilab code Exa 2.11.1 Reverse saturation current

```
1 / Ex 2.11.1
2 clc; clear; close;
3 format('v',8);
4
5 // Given :
6 Io=10; //nA
7 T1=27+273; //K
8 T2=87+273; //K
9 VT=T1/11600; //V
10 Eta=2; // for Si
11 m=1.5; //for Si
12 VGO = -1.21; //volt
13 K=Io*10^-9/T1^m/exp(VGO/Eta/VT);//constant
14 VT=T2/11600; //V
15 Io2=K*T2^m*exp(VGO/Eta/VT);/A
16 disp(Io2*10^9, "Reverse saturation current at 87
      degree C in nA : ");
```

Scilab code Exa 2.11.2 Current multiplication factor

```
1 //Ex 2.11.2
2 clc; clear; close;
3 format('v',8);
4
5 //Given :
6 V=0.45; // volt
7 Eta=2; // for Si
8 T1=27+273; //K
9 T2=125+273; //K
10 VT1=T1/11600; //V
11 VT2=T2/11600; //V
12 I1BYIo1=exp(V/Eta/VT1);
13 I2BYIo2=exp(V/Eta/VT2);
14 m=1.5; // for Si
15 VG0=1.21; // volt
```

```
16     Io1BYIo2=(T1/T2)^m*exp(-VGO/Eta/VT1+VGO/Eta/VT2);//
          constant
17     I2BYI1=I2BYIo2/I1BYIo1/Io1BYIo2;
18     disp(I2BYI1,"Factor by which current increases: ");
19     //Answer is wrong in the textbook.
```

Scilab code Exa 2.11.3 Percent change in diode current

```
1 / Ex 2.11.3
2 clc; clear; close;
3 format('v',8);
5 // Given :
6 Io1=2; //nA
7 T1=10+273; //K
8 V = 0.4; // volt
9 VT1=T1/11600; //V
10 m=1.5; //for Si
11 Eta=2; // for Si
12 VGO = -1.21; //volt
13 K=Io1*10^-9/T1^m/exp(VGO/Eta/VT1);//constant
14 I1=Io1*10^-9*[exp(V/Eta/VT1)-1];//nA
15 T2=70+273; //K
16 VT2=T2/11600; //V
17 Io2=K*T2^m*[exp(VGO/Eta/VT2)];//A
18 I2=Io2*[exp(V/Eta/VT2)-1];/nA
19 change=(I2-I1)/I1*100; /\%
20 disp(change, \% change in diode current : ");
21 //Answer is wrong in the textbook.
```

Scilab code Exa 2.11.4 Parameters for diode

```
1 / Ex 2.11.4
```

```
2 clc; clear; close;
3 format('v',8);
5 // Given :
6 T = 300; //K
7 m_Si=1.5; //for Si
8 \text{ m_Ge=1.5; //for Ge}
9 EGO_Si=1.21; // volt
10 EGO_Ge=0.785; // volt
11 Eta_Si=2;
12 Eta_Ge=1;
13 VT = 26/1000; //V
14 disp("Part(i): ");
15 d_logIoBYdt_Ge=m_Ge/T+EGO_Ge/(Eta_Ge*T*VT);//per
      degree C
  disp(d_logIoBYdt_Ge,"d(log(Io))/dt for Ge (per
      degree C) : ");
  d_logIoBYdt_Si=m_Si/T+EGO_Si/(Eta_Si*T*VT);//per
      degree C
  disp(d_logIoBYdt_Si,"d(log(Io))/dt for Si (per
      degree C) : ");
19 disp("Part(ii) : ");
20 V = 0.2; //volt
21 dVBYdt_Ge=V/T-Eta_Ge*VT*d_logIoBYdt_Ge
22 disp(dVBYdt_Ge*1000,"dV/dt for Si (mV per degree C)
     : ");
23 V = 0.6; //volt
24 dVBYdt_Si=V/T-Eta_Si*VT*d_logIoBYdt_Si
25 disp(dVBYdt_Si*1000,"dV/dt for Si (mV per degree C)
      : ");
```

Scilab code Exa 2.12.1 New value of depletion region width

```
1 //Ex 2.12.1
2 clc; clear; close;
```

Scilab code Exa 2.12.2 Transition Capacitance

```
1 / Ex 2.12.2
2 clc; clear; close;
3 format('v',8);
4
5 // Given :
6 NA=4*10^20; //per m<sup>3</sup>
7 V_j = 0.2; // V_{olt}
8 V1 = -1; //Volts
9 V2=-5; //Volts
10 A=0.8*10^-6; //\text{m}^2
11 epsilon_r=16; // for Ge
12 epsilon_o=8.85*10^-12; // permitivity
13 q=1.6*10^-19; //Coulomb
14 W1 = sqrt(2*epsilon_r*epsilon_o*(Vj-V1)/q/NA);/m
15 CT1=epsilon_r*epsilon_o*A/W1;//
16 disp(CT1*10^12, "Transition capacitance(pF): ");
```

```
17 W2=sqrt(2*epsilon_r*epsilon_o*(Vj-V2)/q/NA);//m
18 CT2=epsilon_r*epsilon_o*A/W2;//
19 disp(CT2*10^12,"New value of Transition capacitance(pF):");
```

Scilab code Exa 2.12.3 Space charge capacitance

```
1 / Ex 2.12.3
2 clc; clear; close;
3 format('v',8);
5 // Given :
6 NA=3*10^20; // per m<sup>3</sup>
7 V_{j} = 0.2; //V_{olt}
8 V = -10; // Volts
9 A=1*10^-6; //m^2
10 epsilon_r=16; // for Ge
11 epsilon_o=8.854*10^-12; // permitivity
12 q=1.6*10^-19; // Coulomb
13 W=sqrt (2*epsilon_r*epsilon_o*(Vj-V)/q/NA); //m
14 disp(W*10^6, "Width of depletion region(micro meter)
      : ");
15 CT=epsilon_r*epsilon_o*A/W;//
16 disp(CT*10^12, "Transition capacitance(pF): ");
17 // Answer is wrong in the textbook.
```

Scilab code Exa 2.12.4 Barrier Capacitance of Ge

```
1 //Ex 2.12.4
2 clc; clear; close;
3 format('v',8);
4
5 //Given :
```

```
6 W=2*10^-4*10^-2; //m
7 A=1*10^-6; //m^2
8 epsilon_r=16; // for Ge
9 epsilon_o=8.854*10^-12; // permitivity
10 q=1.6*10^-19; // Coulomb
11 CT=epsilon_r*epsilon_o*A/W; //
12 disp(CT*10^12, "Barrier capacitance(pF): ");
13 // Answer is wrong in the textbook.
```

Scilab code Exa 2.12.5 Calculate Diameter

```
1 / Ex 2.12.5
2 clc; clear; close;
3 format('v',8);
5 // Given :
6 Vj = 0.5; // Volt
7 V = -4.5; // Volt
8 rho_p=5*10^-2; //ohm-m
9 epsilon_r=12; // for Si
10 epsilon_o=8.854*10^-12; // permitivity
11 q=1.6*10^-19; // Coulomb
12 CT = 100 * 10^{-12}; //F
13 mu_p = 500*10^-4; //m^2/V-s
14 sigma_p=1/rho_p; //(ohm-m)^-1
15 NA=sigma_p/q/mu_p;//per m^3
16 W=sqrt (2*epsilon_r*epsilon_o*(Vj-V)/q/NA); //m
17 A=CT*W/(epsilon_r*epsilon_o);//
18 r=sqrt(A/\%pi);//m
19 D=2*r; //m
20 disp(D*10^6, "Diameter(micro meter): ");
21 //Answer is wrong in the textbook. Sqrt is not taken
       while calculating W value and also other mistakes
```

Scilab code Exa 2.12.6 Reverse voltage and current ratio

```
1 / Ex 2.12.6
2 clc; clear; close;
3 format('v',8);
5 // Given :
6 Eta=2; // for Si
7 T = 300; //K
8 \text{ VT} = 26/1000; //V
9 IbyIo=0.9;
10 //part (i)
11 V=log(IbyIo+1)*Eta*VT; // volt
12 disp(V*1000, "Value of reverse voltage(mV): ");
13 // part (ii)
14 VF=0.2; // volt
15 VR = -0.2; //volt
16 IFbyIR=(exp(VF/Eta/VT)-1)/(exp(VR/Eta/VT)-1)
17 disp(IFbyIR," Ratio of forward bias current to
      reverse saturation current: ");
18 //Answer is wrong in the textbook.
```

Scilab code Exa 2.12.7 Find diode current

```
1 //Ex 2.12.7
2 clc; clear; close;
3 format('v',8);
4
5 //Given:
6 Vs=100; //V
7 Rf1=20; //ohm
8 Vgamma1=0.2; // Volts
```

```
9 Rf2=15; //ohm
10 Vgamma2=0.6; //Volts
11 Vb_Ge=0.2;//Volts
12 Vb_Si=0.6; //Volts
13 R1=10*10^3; //ohm
14 R2=1*10^3; //ohm
15 // Case (i)
16 Imax=Vs/R1;/A
17 //D1 ON & D2 off
18 V=Vb_Ge+Rf1*Imax; //Volt
19 / D2 off as V < Vb_Si
20 I2=0; //A
21 I1=(Vs-V)/(R1+Rf1);//A
22 disp("For R=10 kohm : ");
23 disp(I1*1000,"I1(mA)=");
24 disp(I2,"I2(mA)=");
25 // Case ( i i )
26 R=R2; //ohm//D1 & D2 ON
27 /V = Vb_Ge + Rf1 * I1 / V = Vb_Si + Rf2 * I2
28 ///V = Vs - I*R//V = Vs - (I1 + I2)*R
29 //20*I1-15*I2=Vb_Si-Vb_Ge
30 / 1020*I1+1000*I2=99.8
31 A = [20 1020; -Rf2 R];
32 B = [Vb\_Ge - Vb\_Ge Vs - Vb\_Ge];
33 X = B * A^-1; //
34 I1=X(1)*1000; //mA
35 I2=X(2)*1000; //mA
36 disp("For R=1 kohm : ");
37 disp(I1,"I1(mA)=");
38 disp(I2,"I2(mA)=");
39 //Answer for 2nd part is not accurate in the book.
```

Scilab code Exa 2.12.8 Current in the circuit

```
1 //Ex 2.12.8
```

```
2 clc; clear; close;
3 format('v',8);
5 // Given :
6 Rf = 10; //ohm
7 Vgamma=0.5; //Volt
8 \text{ RL}=20; //\text{ohm}
9 V=3; // Volt
10 //Loop 1: 75*I1-50*I=V-Vgamma
11 //Loop 2: -50*I1+80*I=-Vgamma
12 \quad A = [75 \quad -50; -50 \quad 80];
13 B=[V-Vgamma -Vgamma];
14 X = B * A^- - 1;
15 I1=X(1); //A
16 I = X(2); //A
17 Vx = -Vgamma + 50 * I1; // Volt
18 disp(Vx,"DC source(Volts): ");
19 //Answer is wrong in the textbook.
```

Chapter 5

Metal Semiconductor Field Effect Transistors

Scilab code Exa 5.6.1 Determine the current

```
1 / Ex 5.6.1
2 clc; clear; close;
3 format('v',6);
5 // Given :
6 VTN=0.7; //V
7 W=45; // micro m
8 L=4; //micro m
9 mu_n=700; //\text{cm}^2/\text{V}-\text{s}
10 t_ox = 450; //Angstrum
11 epsilon_ox=3.9*8.85*10^-14; //F/cm
12 VGS=2*VTN; //V
13 Kn = (W*10^-4)*mu_n*epsilon_ox/(2*(L*10^-4)*(t_ox))
      *10^-8));//A/V^2
14 Kn=Kn*10^3; //mA/V^2
15 ID=Kn*(VGS-VTN)^2;//A
16 disp(ID, "Current in mA: ");
17 //Answer is wrong in the book. Calculation mistake
      whle calculating value for Kn.
```