# **Regression Analysis**

### **Linear model**

Recall a linear model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where  $\mathbb{E}[\epsilon] = 0$ ,  $Var(\epsilon) = \sigma^2 \mathbf{I}_n$ , and  $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_p]$  is a design matrix which we assume to be of full rank.

## **Model Diagnostics**

Having fitted a classical linear model, we assess the validity of the model using diagnostic tools.

- Examination of the model assumptions
  - 1. linearity of the predictors, 2. constant variance, 3. uncorrelated, and 4. normally distributed errors
- Outliers
  - "unusual" points in feature or response spaces
- Collinearity
  - highly correlated predictors

### Residuals

Recall, for each i = 1, ..., n, the *i*th residual is defined as

$$\widehat{m{\epsilon}}_i = \mathbf{Y}_i - \widehat{\mathbf{Y}}_i,$$

where 
$$\widehat{\mathbf{Y}}_i = \mathbf{x}_i^{ op} \widehat{oldsymbol{eta}}$$

## **Regression Diagnostics**

#### 1. linearity of the predictors

- plot  $\widehat{\boldsymbol{\epsilon}}_i$  against the fitted values  $\widehat{\mathbf{Y}}_i$ .
- we expect a plot with no discernible trend or pattern





## **Regression Diagnostics**

#### 2. heteroscedasticity

- plot the standardized residuals  $r_i$  against the fitted values (or predictors)
- we expect a "horizontal band" centered at zero.





#### 2. heteroscedasticity

- we may also plot  $|r_i|$  against the fitted values  $\widehat{\mathbf{Y}}_i$  or  $r_i^2$  against the fitted values  $\widehat{\mathbf{Y}}_i$ .
  - If we add a least-squares line to this plot, we see whether there is any tendency for  $|r_i|$  to increase or decrease with  $\widehat{\mathbf{Y}}_i$ .



### **Regression Diagnostics**

#### 3. Nonindependence of the error terms

- Possible forms of nonindependence:
  - Observations collected over time and/or across space.
  - Study done on sets of related subjects
- Correlated errors may indicate misspecification (especially through omitted explanatory variables and unnoticed nonlinearity). We should first examine whether model specification can be improved.

#### 3. Nonindependence of the error terms

Example: Corn Yield

For 
$$i = 1, ..., n$$
,

- i = the index of a  $2m^2$  patch planted to corn and the patches are arranged in a long line at the edge of a field.
- $x_i$  = the amount of fertilizer applied to the ith patch.
- $Y_i$  = the corn yield in the ith patch.

#### 3. Nonindependence of the error terms

Example: Corn Yield





## **Regression Diagnostics**

#### 4. Nonnormality of error terms

- Normal QQ (quantile-quantile) plot of the standardized residuals.
  - **Idea**: if two distributions are similar, their quantiles should be similar.
    - We compare empirical quantiles of the standardized residuals with theoretical quantiles from N(0,1)
  - If the residuals are approximately normal, the normal QQ plot should be approximately linear

#### 4. Nonnormality of error terms

**Example:** two Normal QQ plots for the standardized residuals

- ullet Model1:  $Y_i = \mathbf{x}_i^ op oldsymbol{eta} + \epsilon_i, \epsilon_i \sim N(0,3)$ , iid
- ullet Model2:  $Y_i = \mathbf{x}_i^ op oldsymbol{eta} + \epsilon_i, \epsilon_i \sim t(3)$ , iid



### Types of outliers

- An outlier is a data point which comes from a different distribution than the rest of the data
  - $\circ$  a big difference between the explanatory vector  $\mathbf{x}_i$  for the ith case and the rest of the  $\mathbf{x}$ -data: "outlier in the  $\mathbf{x}$ -direction" or "high-leverage point"
  - $\circ$  a large difference between the response  $Y_i$  and the mean  $\mathbf{x}_i^{\top} \boldsymbol{\beta}$ : "outlier in the y-direction", "error outlier", or "outlier"
- We say a point is a high-influence point if the regression result changes markedly after refitting without the observation of interest

## **Types of outliers**



Figure credit: SL 9.1

## **Outliers (in the y-direction)**

Say  $Y_n$  is an outlier. That is, we assume,  $Y_i \sim N(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2), \quad i = 1, 2, \cdots, n-1$  but  $Y_n \sim N(\Delta + \mathbf{x}_n^{\top} \boldsymbol{\beta}, \sigma^2)$  for some  $\Delta \neq 0$ .

- 1. diagnose by looking at absolute values of standardized/studentized residuals
- Recall both standardized and studentized residuals approximately follow N(0,1) distribution.
- ullet Any  $|r_i| \geq 3$  or  $|r_i^*| \geq 3$  are potential outliers

## **Outliers (in the y-direction)**

#### **Remarks**

- If there are outliers detected, do not just throw them away, but search for an explanation (an effect not modeled, error in data entry, etc.)
- Not all outliers have a very strong influence on the fitted regression mean.
   However, an observation which is both outlier and high-leverage point may have a strong effect on the response mean.
- In the presence of an outlier, estimate model parameters with and without the outliers. Report both results.

#### **Cook's Distance**

Recall a  $100(1-\alpha)\%$  confidence ellipsoid for  $\beta$  is

$$\left\{\mathbf{b}: \left(\mathbf{b} - \widehat{oldsymbol{eta}}
ight)^{^{ op}} \mathbf{X}^{^{ op}} \mathbf{X} (\mathbf{b} - \widehat{oldsymbol{eta}}) \leq p S^2 F_{p,n-p,lpha}
ight\}$$

Cook [1977] suggested measuring the distance of  $\widehat{m{\beta}}_{(i)}$  from  $\widehat{m{\beta}}$  by using the measure

$$D_i = rac{(\widehat{oldsymbol{eta}}_{(i)} - \widehat{oldsymbol{eta}})^{^{ op}} \mathbf{X}^{^{ op}} \mathbf{X} (\widehat{oldsymbol{eta}}_{(i)} - \widehat{oldsymbol{eta}})}{p S^2}$$

#### **Cook's Distance**

Note,

$$D_i = rac{(\widehat{oldsymbol{eta}}_{(i)} - \widehat{oldsymbol{eta}})^{^{ op}} \mathbf{X}^{^{ op}} \mathbf{X} (\widehat{oldsymbol{eta}}_{(i)} - \widehat{oldsymbol{eta}})}{pS^2} = rac{\|\widehat{\mathbf{Y}}_{(i)} - \widehat{\mathbf{Y}}\|^2}{pS^2}$$

• Some recommend considering points for which  $D_i>1$  to be influential. Others suggest points for which  $D_i>F_{p,n-p,.1}$ 

We can show that

$$D_i = r_i^2 rac{\mathbf{H}_{ii}}{p\left(1 - \mathbf{H}_{ii}
ight)}$$

• captures the distance of the *i*th observation from the other points in both x and yes direction styebin song

### Example plot(lm(fit))





## **Colinearity**

One important assumption in the classical linear model is that  $\mathbf{X}$  is full rank. In practice, however, the columns of  $\mathbf{X}$  could be *almost* linearly dependent or colinear.

- In such case,  ${\bf X}^{\top}{\bf X}$  is close to singular, i.e., the smallest eigenvalue of the matrix  ${\bf X}^{\top}{\bf X}\approx 0$
- Since  $\widehat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^\top\mathbf{X})^{-1})$ , the precision of  $\hat{\boldsymbol{\beta}}$  is determined by  $(\mathbf{X}^\top\mathbf{X})^{-1}$ 
  - near collinearity = large variances of the estimated coefficients

Examination of the model assumptions → Revise a model assumption

- 1. linearity of the predictors
  - transform the response or predictors
  - include additional predictors into the model to account for the non-linear relationships
  - non-parametric regression (e.g., polynomial regression, splines)
- 2. constant variance
  - $\circ$  variable transformation (choose h so that  $\mathrm{Var}(h(\mathbf{Y})) pprox \mathrm{const}$ )
  - weighted least squares

Examination of the model assumptions → Revise a model assumption

- 3. uncorrelated errors
  - model error variances ("general" linear model)
- 4. normally distributed errors
  - mild non-normality can be safely ignored (especially with light-tailed distributions)
  - for heavy-tailed distributions, base the inference on the assumption of another distribution, or use resampling methods for the inference

Outliers, leverage points, and influential points → Examine each point

- do not throw them away, but search for an explanation
- estimate model parameters with and without the observations of interest.
   Report both results.

- Collinearity → Revise X or use shrinkage methods
  - drop variables, ideally based on scientific knowledge.
  - obtain more data if possible.
  - create composite variables of collinear predictors, e.g., using a principle component analysis.
  - use regularization techniques.