Лабораторная работа 1 по Теории Автоматов Дискретная математика

Задания

- 1. Пусть $A = \{\mu, \zeta, bash\}, B = \{\Lambda, linux, \mu, CPP\}.$
 - (a) Распишите $A \times B$;
 - (b) распишите $2^{B\setminus A}$;
 - (c) распишите $A \times B \times A$;
 - (d) распишите $(A \cap B) \times B \times \{baka, 2\};$
- 2. (а) Пусть $A = \{K, H, B\}$, которые обозначают камень, ножницы, бумагу. Постройте $A \times A$. А теперь определите бинарное отношение beats на A, которое соответствует игре 'камень, ножницы, бумага'.
 - Какими свойстами из рефлексивности, симметричности, транзитивности обладает beats?
 - (b) Пусть $X = \{x \in \mathbb{N} \mid x \leq 2^4\}$. Определите бинарное отношение $div: x \ div \ y = true$, если x делится без остатка на y. Явно опишите это бинарное отношение. Какими свойстами из рефлексивности, симметричности, транзитивности обладает div?
 - (c) Пусть $\Gamma = \{\alpha, \beta, \gamma\}$. Определите бинарное отношение \sim на множестве 2^{Γ} : $A \sim B$, если |A| = |B|. Докажите, что \sim это отношение эквивалентности.
- 3. Как уже было сказано на лекции, по определению бесконечное множество **бесконечно счёт- но**, если все её элементы можно занумеровать натуральными числами ('посчитать').

Занумеруйте следующие множества (тем самым, докажите, что они счётно бесконечны):

- (а) Все целые числа, оканчивающиеся на цифру 2 или 7;
- (b) $\mathbb{N} \times \mathbb{N}$. Подсказка: представьте как бесконечную таблицу!
- (с) \mathbb{Q} (множество рациональных чисел). Подсказка: предыдущий пункт поможет.
- 4. Пусть $A = \{x \in \mathbb{N} \mid x > 4$ и $x < 100\}, B = \{y \in \mathbb{Q} \mid y = x * x$ для некоторого $x \in \mathbb{N}\}.$
 - (a) Распишите $A \cap B$ и $A \setminus B$.
 - (b) Является ли $A \cup B$ счётно бесконечным? Объясните.
 - (c) Является ли 2^B счётно бесконечным? Объясните.
 - (d) Придумайте бинарное отношение на B, которое симметрично и транизитивно, но не рефлексивно.