Package 'RNAseqQC'

July 15, 2024

```
Title Quality Control for RNA-Seq Data
```

Version 0.2.1

Description Functions for semi-automated quality control of bulk RNA-seq data.

License Apache License (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Depends R (>= 4.0)

Imports AnnotationHub, AnnotationFilter, BiocGenerics, ensembldb, circlize, DESeq2, SummarizedExperiment, ComplexHeatmap, matrixStats, grid, ggpointdensity, ggrepel, ggplot2, cowplot, patchwork, purrr, dplyr, stringr, tidyr, tibble, tidyselect, magrittr

Suggests rmarkdown, knitr, recount3, apeglm, ggrastr, gghighlight

VignetteBuilder knitr

URL https://github.com/frederikziebell/RNAseqQC

BugReports https://github.com/frederikziebell/RNAseqQC/issues

NeedsCompilation no

Author Frederik Ziebell [cre],

Frederik Ziebell [aut] (https://orcid.org/0000-0003-3673-1721), GlaxoSmithKline Research & Development Limited [cph] (GlaxoSmithKline Research & Development Limited; registered address: 980 Great West Road, Brentford, Middlesex TW8 9GS, United Kingdom)

Maintainer Frederik Ziebell <f_ziebell@web.de>

Repository CRAN

Date/Publication 2024-07-15 14:40:02 UTC

2 all_numeric

Contents

	all_numeric		. 2
	ilter_genes		. 3
	get_gene_id		3
	nake_dds		. 4
	nean_sd_plot		5
	plot_biotypes		5
	plot_chromosome		6
	blot_gene		7
	blot_gene_detection		
	olot_library_complexity		
	blot_loadings		9
	blot_ma		10
	blot_pca		11
	blot_pca_scatters		
	plot_sample_clustering		14
	olot_sample_MAs		15
	plot_total_counts		15
	olot_within_level_sample_MAs		16
	save_plots_to_pdf		17
	Г47D		18
	Γ47D_diff_testing		19
Index			20
م 11 ہ	mania fou a vector u check if all non NA elements of u can be compan		40
arr_r	meric for a vector x, check if all non-NA elements of x can be convert numeric	еа	10
	numeric		

Description

for a vector x, check if all non-NA elements of x can be converted to numeric

Usage

all_numeric(x)

Arguments

x A non-numeric vector

filter_genes 3

filter_genes

Filter genes with low counts

Description

Filter genes with low counts

Usage

```
filter_genes(dds, min_count = 5, min_rep = 3)
```

Arguments

```
\begin{tabular}{ll} $\mathsf{A}$ DESeqDataSet \\ $\mathsf{min\_count}, \, \mathsf{min\_rep} \end{tabular}
```

keep genes with at least min_count counts in at least min_rep replicates

Value

A DESeq2::DESeqDataSet object with only those genes that meet the filter criteria.

Examples

```
library("DESeq2")
dds <- makeExampleDESeqDataSet()
filter_genes(dds)</pre>
```

get_gene_id

Get all gene IDs in a DESeqDataSet for a given gene name.

Description

Get all gene IDs in a DESeqDataSet for a given gene name.

Usage

```
get_gene_id(gene_name, dds)
```

Arguments

 $\begin{array}{ll} \mbox{gene_name} & \mbox{A gene name} \\ \mbox{dds} & \mbox{A DESeqDataSet} \end{array}$

Value

A character vector

make_dds

Examples

```
get_gene_id("HBA1", T47D)
```

make_dds

Make DESeqDataSet from counts matrix and metadata

Description

Make DESeqDataSet from counts matrix and metadata

Usage

```
make_dds(counts, metadata, ah_record, design = ~1)
```

Arguments

counts The genes x samples counts matrix with row names. At least one row name must

be an ENSEMBL gene ID, since gene annotation is done via the ENSEMBL

database.

metadata data.frame of sample information. Order of rows corresponds to the order of

columns in the counts matrix.

ah_record ID of AnnotationHub record used to retrieve an EnsDb object.

design The design formula specified in DESeqDataSet() To view all valid record IDs,

run

library(AnnotationHub)
mcols(AnnotationHub()) %>%

as_tibble(rownames="ah_record") %>%

filter(rdataclass=="EnsDb")

Value

A DESeq2::DESeqDataSet object containing the counts matrix and metadata.

```
library("DESeq2")
count_mat <- counts(T47D)
meta <- data.frame(colData(T47D))
dds <- make_dds(counts = count_mat, metadata = meta, ah_record = "AH89426")</pre>
```

mean_sd_plot 5

mean_sd_plot	Create a mean-sd plot Make a scatterplot that shows for each gene its standard deviation versus mean.

Description

Create a mean-sd plot Make a scatterplot that shows for each gene its standard deviation versus mean.

Usage

```
mean_sd_plot(vsd)
```

Arguments

vsd

A DESeqTransform object

Value

A ggplot object of the ggplot2 package that contains the mean-sd plot.

Examples

```
library("DESeq2")
dds <- makeExampleDESeqDataSet(interceptMean=10, n=5000)
vsd <- vst(dds)
mean_sd_plot(vsd)</pre>
```

 $plot_biotypes$

Plot number of counts per sample and biotype

Description

Plot the total number of counts for each sample and the major classes of ENSEMBL gene biotypes (protein coding, lncRNA, etc.)

Usage

```
plot_biotypes(dds)
```

Arguments

dds

A DESeqDataSet

6 plot_chromosome

Value

A ggplot object of the ggplot2 package.

Examples

```
plot_biotypes(T47D)
```

plot_chromosome

Plot gene expression along a chromosome

Description

Plot gene expression along a chromosome

Usage

```
plot_chromosome(vsd, chr, scale = FALSE, trunc_val = NULL)
```

Arguments

vsd An object generated by DESeq2::vst()

chr A string denoting a chromosome as annotated by ENSEMBL, e.g. '1', '2', 'X',

'Y', 'MT'

scale Whether to scale the columns of the heatmap

trunc_val Truncate the expression matrix to this value prior to plotting. This is useful

if some very high expression values dominate the heatmap. By default, the heatmap is truncated to expression values at most 3 standard deviations from the

mean.

Value

A Heatmap-class object of the ComplexHeatmap package that contains the heatmap of expression values.

```
library("DESeq2")
chr1 <- T47D[which(mcols(T47D)$chromosome=="1"),]
vsd <- vst(chr1)
plot_chromosome(vsd, chr="1")</pre>
```

plot_gene 7

plot_gene Plot a gene

Description

Plot a gene

Usage

```
plot_gene(
   gene,
   dds,
   x_var = NULL,
   color_by = NULL,
   point_alpha = 0.7,
   point_rel_size = 2,
   show_plot = TRUE
)
```

Arguments

gene A gene ID or gene name, i.e. an element of rownames(dds) or of rowData(dds)\$gene_name
dds a DESeqDataSet

x_var Variable to plot on the x-axis. If NULL, then each sample is plotted separately.

variable (column in colData(dds)) to color points by.

point_alpha alpha value of geom_point()

point_rel_size relative size of geom_point()

show_plot Whether to show the plot or not

Value

The function displays the plot and returns invisible the data frame of expression values and colData annotation for the gene.

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet()
colData(dds)$type <- c("A","A","A","B","B","B")
colData(dds)$patient <- c("1","1","2","2","3","3")
dds <- estimateSizeFactors(dds)
plot_gene("gene1", dds)
plot_gene("gene1", dds, x_var="patient", color_by="type")</pre>
```

Plot number of detected genes for each sample

Description

For specified thresholds, the number of detected genes is shown for each sample.

Usage

```
plot_gene_detection(dds, thresholds = c(3, 10, 20, 50))
```

Arguments

dds A DESeqDataSet

thresholds Vector of thresholds for which the number of genes with counts greater or equal

than the thresholds is plotted

Value

A ggplot object of the ggplot2 package that contains the gene detection plot.

Examples

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet()
plot_gene_detection(dds)</pre>
```

```
plot_library_complexity
```

Plot the library complexity

Description

Plot per sample the fraction of genes, versus the fraction of total counts.

Usage

```
plot_library_complexity(dds, show_progress = TRUE)
```

Arguments

dds A DESeqDataSet

show_progress Whether to show a progress bar of the computation.

plot_loadings 9

Value

A ggplot object of the ggplot2 package that contains the library complexity plot.

Examples

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet()
plot_library_complexity(dds)</pre>
```

plot_loadings

Plot loadings of a principal component

Description

Plot loadings of a principal component

Usage

```
plot_loadings(
  pca_res,
  PC = 1,
  square = FALSE,
  color_by = NULL,
  annotate_top_n = 0,
  highlight_genes = NULL,
  show_plot = TRUE
)
```

Arguments

pca_res A result returned from plot_pca()

PC Number of the principal component to plot

square Whether to plot squared loadings. The squared loading is equal to the fraction of

variance explained by the respective feature in the given principal component.

color_by Variable (column in pca_res\$loadings) to color points by. Can also be 'pc_sign'

to color by the sign of the loading (useful in combination with the square =

TRUE parameter).

annotate_top_n Annotate the top n features with positive or negative loading

highlight_genes

Vector of gene names or gene IDs to highlight on the plot (overwrites top_n

annotation)

show_plot Whether to show the plot

10 plot_ma

Value

The function displays the loadings plot and returns invisible a list of the plot, the data frame of the PCA loadings.

Examples

```
set.seed(1)
data <- matrix(rnorm(100*6), ncol=6)
data <- t(t(data)+c(-1, -1.1, -1.2, 1, 1.1, 1.2))
pca_res <- plot_pca(data)
plot_loadings(pca_res)</pre>
```

plot_ma

MA-plot of a differential testing result

Description

MA-plot of a differential testing result

Usage

```
plot_ma(de_res, dds, annotate_top_n = 5, highlight_genes = NULL)
```

Arguments

de_res An object returned by DESeq2::results() or DESeq2::lfcShrink()

dds The DESeqDataSet that was used to build the 'de_res' object. This is needed

for gene name annotation.

annotate_top_n Annotate the top n significant genes by fold change (up- and down-regulated)

highlight_genes

Vector of gene names or gene IDs to highlight on the plot (overwrites top_n

annotation)

Value

A ggplot object of the ggplot2 package that contains the MA-plot. The plot shows three classes of points: Light gray points are genes with low counts that are removed from the analysis by independent filtering. Darker gray points are not significant genes that show a density map to visualize where the majority of non-significant points are located. Finally, red point show significant genes.

plot_pca 11

Examples

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(n=1500, m=6, betaSD=.3, interceptMean=6)
rowData(dds)$gene_name <- rownames(dds)
dds <- DESeq(dds)
de_res <- results(dds)
plot_ma(de_res, dds)</pre>
```

plot_pca

Plot results of a principal component analysis

Description

Plot results of a principal component analysis

Usage

```
plot_pca(
   obj,
   PC_x = 1,
   PC_y = 2,
   n_feats = 500,
   scale_feats = FALSE,
   na_frac = 0.3,
   metadata = NULL,
   color_by = NULL,
   shape_by = NULL,
   point_alpha = 0.7,
   point_rel_size = 2,
   show_plot = TRUE,
   rasterise = FALSE,
   ...
)
```

Arguments

obj	A (features x samples) matrix or SummarizedExperiment object
PC_x	The PC to show on the x-axis.
PC_y	The PC to show on the y-axis.
n_feats	Number of top-variable features to include.
scale_feats	Whether to scale the features.
na_frac	Only consider features with the stated maximum fraction of NAs or NaNs. NA/NaNs will be mean-imputed for PCA.

plot_pca_scatters

metadata	A data.frame used for annotating samples. rownames(metadata) must match colnames(obj).
color_by	Variable by which to color points. Must be a column in metadata or in colData(obj). Alternatively, it can be the name of a feature (a rowname of obj) or a gene name (an element of rowData(obj)\$gene_name).
shape_by	Variable by which to color points. Must be a column in metadata or in colData(obj).
point_alpha	alpha value of geom_point()
<pre>point_rel_size</pre>	relative size of geom_point()
show_plot	Whether to show the plot or not
rasterise	Whether to rasterise the point, using ggrastr.
	Other parameters passed on to ggrastr::rasterise

Details

If the metadata or colData of obj contain a column colname, this colum will be removed in the \$pca_data slot, because this column contains the colnames of the data matrix. Similarly, for the \$loadings slot, the column rowname is reserved for the rownames of the data matrix.

Value

The function displays the plot and returns invisible a list of the plot, the data.frame to make the plot, the vector of percentages of variance explained and the loadings matrix.

Examples

```
set.seed(1)
data <- matrix(rnorm(100*6), ncol=6)
data <- t(t(data)+c(-1, -1.1, -1.2, 1, 1.1, 1.2))
plot_pca(data)</pre>
```

plot_pca_scatters

Plot matrix of PCA scatter plots

Description

Plot matrix of PCA scatter plots

Usage

```
plot_pca_scatters(
  obj,
  n_PCs = min(10, nrow(obj), ncol(obj)),
  show_var_exp = T,
  n_feats = 500,
  scale_feats = FALSE,
```

plot_pca_scatters 13

```
na_frac = 0.3,
metadata = NULL,
color_by = NULL,
shape_by = NULL,
point_alpha = 0.7,
point_rel_size = 2,
transpose = FALSE,
rasterise = FALSE,
...
)
```

Arguments

obj	A (features x samples) matrix or SummarizedExperiment object
n_PCs	Number of principal components to plot
show_var_exp	Whether to show a plot of the percentage of variance explained by each PC in the bottom left corner.
n_feats	Number of top-variable features to include.
scale_feats	Whether to scale the features.
na_frac	Only consider features with the stated maximum fraction of NAs or NaNs. NA/NaNs will be mean-imputed for PCA.
metadata	A data.frame used for annotating samples. rownames(metadata) must match colnames(obj).
color_by	Variable by which to color points. Must be a column in metadata or in colData(obj). Alternatively, it can be the name of a feature (a rowname of obj) or a gene name (an element of rowData(obj)\$gene_name).
shape_by	Variable by which to color points. Must be a column in metadata or in colData(obj).
point_alpha	alpha value of geom_point()
<pre>point_rel_size</pre>	relative size of geom_point()
transpose	Wheter to transpose the whole matrix of scatter plots
rasterise	Whether to rasterise the points using ggrastr.
	Other parameters passed on to ggrastr::rasterise

Value

The function displays the scatter plots of the PCs

```
set.seed(1)
data <- matrix(rnorm(100*6), ncol=6)
data <- t(t(data)+c(-1, -1.1, -1.2, 1, 1.1, 1.2))
plot_pca_scatters(data)</pre>
```

```
plot_sample_clustering
```

Plot clustering of samples in a distance heatmap

Description

Plot clustering of samples in a distance heatmap

Usage

```
plot_sample_clustering(
    se,
    n_feats = 500,
    anno_vars = NULL,
    anno_title = "group",
    distance = "euclidean",
    ...
)
```

Arguments

se	A SummarizedExperiment object.
n_feats	Number of top-variable features (genes) to consider
anno_vars	Character vector of columns in colData(se) to annotate samples
anno_title	The title of the color legend for anno_vars
distance	The type of distance metric to consider. Either 'euclidean', 'pearson' or 'spearman'
	Other arguments passed on to ComplexHeatmap::Heatmap()

Value

A Heatmap-class object of the ComplexHeatmap package that contains the heatmap of pairwise sample distances.

```
library("DESeq2")
dds <- makeExampleDESeqDataSet(m=8, interceptMean=10)
vsd <- vst(dds)
plot_sample_clustering(vsd)</pre>
```

plot_sample_MAs 15

of samples	
------------	--

Description

For each level of the grouping variable, the gene-wise median over all samples is computed to obtain a reference sample. Then, each sample is plotted against the reference.

Usage

```
plot_sample_MAs(vsd, group, y_lim = 3, rasterise = FALSE, ...)
```

Arguments

vsd	An object generated by DESeq2::vst()
group	A grouping variable, must be a column of colData(vsd)
y_lim	Y-axis limits, the axis will run from -y_lim to y_lim
rasterise	Whether to rasterise the points using ggrastr.
	Other parameters passed on to ggrastr::rasterise

Value

A list of ggplot objects of the ggplot2 package, with each element corresponding to one MA-plot.

Examples

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(n=1000, m=4, interceptMean=10)
colData(dds)$type <- c("A","A","B","B")
vsd <- vst(dds)
plot_sample_MAs(vsd, group="type")</pre>
```

plot_total_counts

Plot total counts per sample

Description

Plot the distribution of the total number of counts per sample as histogram.

Usage

```
plot_total_counts(dds, n_bins = 50)
```

Arguments

dds A DESeqDataSet

n_bins Number of histogram bins

Value

A ggplot object of the ggplot2 package that contains the histogram of total counts per sample.

Examples

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(m=30)
plot_total_counts(dds)</pre>
```

```
plot_within_level_sample_MAs
```

Plot correlations of samples within a level of a group

Description

For the given level, the gene-wise median over all samples is computed to obtain a reference sample. Then, each sample is plotted against the reference as MA-plot.

Usage

```
plot_within_level_sample_MAs(
   vsd,
   group,
   level,
   y_lim = 4,
   rasterise = FALSE,
   ...
)
```

Arguments vsd

group	A grouping variable, must be a column of colData(vsd)
level	A level of the grouping variable
y_lim	Y-axis limits, the axis will run from -y_lim to y_lim

An object generated by DESeq2::vst()

rasterise Whether to rasterise the points using ggrastr.

... Other parameters passed on to ggrastr::rasterise

save_plots_to_pdf

Value

A list of ggplot objects of the ggplot2 package that contains for each sample of the specified level the the sample vs reference MA-plot.

Examples

```
library("DESeq2")
set.seed(1)
dds <- makeExampleDESeqDataSet(n=1000, m=4, interceptMean=10)
colData(dds)$type <- c("A","A","B","B")
vsd <- vst(dds)
plot_within_level_sample_MAs(vsd, group="type", level="A")</pre>
```

save_plots_to_pdf

Save list of plots to PDF

Description

This function takes a list of plots as input and makes a pdf with ncol x nrow plots per page.

Usage

```
save_plots_to_pdf(
  plots,
  file = "plots.pdf",
  ncol,
  nrow,
  subfig_width = subfig_height * 16/9,
  subfig_height = 2.5,
  legend_position = "original"
)
```

Arguments

plots List of plots that is passed to the plotlist argument of cowplot::plot_grid
file file where the plots are saved
ncol number of columns per page for the grid of plots
nrow number of rows per page for the grid of plots
subfig_width width of a plot of the grid in inches
subfig_height height of a plot of the grid in inches
legend_position

either 'original' if the original legend of each sub-plot is shown, 'none', if no legend should be shown in any of the sub-plots, 'bottom', if no legend should be shown in the sub plots and one shared legend at the bottom or 'right', which is same as 'bottom', but shown on the right

18 T47D

Value

The function returns nothing but is called for it's side effect, which is to save a pdf of plots to the filesystem.

Examples

```
library("ggplot2")
manuf <- unique(mpg$manufacturer)
plots <- lapply(manuf, function(x){
    df <- mpg[mpg$manufacturer==x,]
    ggplot(df, aes(cty, hwy)) +
        geom_point() +
        labs(title=x)
})
save_plots_to_pdf(plots, ncol=3, nrow=2)</pre>
```

T47D

The T47D cell line data of RNA-seq experiment GSE89888

Description

The dataset contains the read counts of experiment GSE89888 in which T47D cells with different mutation statuses were treated with E2 (estradiol) or vehicle.

Usage

T47D

Format

A DESeqDataSet with 43576 rows (of genes) and 24 columns (of samples).

Source

```
doi:10.1101/2021.05.21.445138
```

T47D_diff_testing

T47D_diff_testing

Differential expression results corresponding to the T47D data set.

Description

Differential expression results corresponding to the T47D data set.

Usage

 $T47D_diff_testing$

Format

A DESeqResults object with 36562 rows and 3 columns.

Source

See the 'data' vignette on how to reproduce this object.

Index

```
* datasets
    T47D, 18
    T47D_diff_testing, 19
all_numeric, 2
{\tt filter\_genes, 3}
{\tt get\_gene\_id}, 3
make_dds, 4
mean\_sd\_plot, 5
plot_biotypes, 5
plot\_chromosome, 6
plot_gene, 7
plot\_gene\_detection, 8
plot\_library\_complexity, 8
plot_loadings, 9
plot_ma, 10
plot_pca, 11
plot_pca_scatters, 12
plot_sample_clustering, 14
plot_sample_MAs, 15
\verb|plot_total_counts|, 15
plot_within_level_sample_MAs, 16
save_plots_to_pdf, 17
T47D, 18
T47D_diff_testing, 19
```