SEI - SoC - CNN

Plan

- Projet d'intégration des SoC
- Les CNN
- Détails d'organisation

Organisation

Projet par binôme

Séances : 40 heures

Au moins 12 heures non encadrées

Le vendredi matin, jusqu'à fin Janvier.

Evaluation:

Présentation intermédiaire : 10 mn, à la 4 ème séance 3/12

Rapport + présentation finale : 10 mn, à la dernière séance

Objectifs

Réaliser un système de traitement HW et SW, et arriver jusqu'à une implémentation avec caméra et affichage

Mettre en oeuvre toutes les méthodes et outils dont vous avez besoin.

Votre rôle

Vous avez tous le même algorithme, et vous partez d'une page blanche.

Votre mission est:

- Spécifier la solution
- Définir les techniques de résolution
- Mettre en oeuvre la solution
- Evaluer vos résultats, selon les critères usuels

Votre attitude est déterminante et vous devez chercher des solutions par vous même.

Notre rôle

- Nous vous donnons des indications méthodologiques
- Nous vous dépannons sur les outils ...
- ... lorsque vous avez exploré par vous même

Les connaissainces dont vous avez besoin

- ... et que vous avez !
- Passer d'une spécification algorithmique à une architecture de traitement HW ou SW
- Modélisation RTL (VHDL) et HLS (CatapultC)
- Informatique embarqué (C)
- Conception FPGA Xilinx ou Altera
- Outils informatiques usuels (Linux)
- Python vous sera d'une grande aide

Algorithme!

Python C/C++

Les sujets

Concevoir un CNN (Convolutionnal Neural Network) sur FPGA. Soit

- Accélérateur matériel par HLS
- Logiciel embarqué optimisé sur ARM

Avec pour cible technologique, soit

- Altera
- 🖈 Xilinx

Plan

- Projet d'intégration des SoC
- ***** Les CNN
- Détails d'organisation

Fonctions génériques 1/2

Une tâche d'IA consiste à déterminer les données 'génératrices' x qui ont produit une 'observation' y (mesure). Par exemple, la donnée génératrice 'chat' génère toutes les images possibles de chats!

Hypothèse : il existe une fonction f qui permet de passer d'une 'observation' y à ses données 'génératrices' x:

$$x = f(y)$$

Problème: f est inconnue à-priori.

Le "deep-learning" consiste à chercher f à partir d'un ensemble d'observations, qui est la base de données d'apprentissage: on connaît des données \mathbf{y} et x associées.

Fonctions génériques 2/2

On construit f à partir de fonctions génériques paramétrables de façon systématique:

$$f(\theta, y) = f_{n-1}(\theta_{n-1}, f_{n-2}(\theta_{n-2}, \dots f_0(\theta_0, y)))$$

Les fonctions f_n sont les "couches" du réseau:

- Fonctions linéaires
- Couches 'totalement' connectées : le perceptron
- Fonctions non-linéaires dites d'activation (sigmoïd, RELU, maxpool, softmax, etc ...)
- Convolution
- Sous-échantillonnage

L'apprentissage consiste à déteminer $\theta = (\theta_0, \dots, \theta_{n-1})$ pour un jeu de données (x, y)

Un réseau de neurones ?

- Un objectif : la mission du réseau de neurones
- Une base de données d'apprentissage
 - Pour la configuration
 - et le test
- Une méthode d'apprentissage
 - Fonction de coût
 - Régularisation
 - Méthode d'optimisation
- ★ Une 'architecture' de réseau
 - Nombre et nature des couches

CNN

Deep Learning pour de nombreuses tâches de traitement d'image: classification, détection, identification, amélioration de qualité, flot optique...

Seulement des couches de convolution, souséchantillonnage, "pooling" et RELU.

Convolution

Un **kernel** K de **convolution** est appliqué sur une image:

$$S(i,j) = (K \times I)(i,j) = \sum_{m} \sum_{n} I_{i+m,j+n} K_{m,n}$$

En réalité, à un étage, une image est 'multi-canal' et chaque pixel a plusieurs 'composantes':

$$S(c, i, j) = \sum_{l,m,n} I_{l,i+m,j+n} K_{c,l,m,n}$$

Un canal de sortie c est produit à partir de tous les canaux l de l'image d'entrée

RELU

RELU pour *REctified Linear Unit* est la fonction d'activation non-linéaire des CNN.

$$RELU(a) = \max(0, a)$$

Par rapport à la sigmoïd du perceptron, les avantages de RELU sont:

- Facile à implémenter
- Dérivable (presque) partout, à dérivée non-nulle même pour les valeurs extrêmes
 - L'apprentissage est facilité

MaxPool

Maxpool est l'autre fonction non-linéaire de choix:

- Sous-échantillonnage pour la réduction des données
- Remplace un groupe de données par son maximum (ou médian, etc . . .)

SoftMax

Softmax est utilisé pour les tâches de classification car le CNN ne produit pas de valeurs binaires telles qu'une appartenance à une classe

$$\operatorname{softmax}(z)_i = \frac{\exp z_i}{\sum_j \exp z_j}$$

Avec z un vecteur de probabilité pour chacune des classes potentielles. $softmax(z)_i$ fait 'émerger' la classe la plus probable.

Remarque: **Softmax** provient du monde bayesien et est lié aux techniques d'optimisations statistiques basées sur le maximum de log-vraisemblance (log-likelyhood)

Exemples de CNN

Plan

- Projet d'intégration des SoC
- Les CNN
- Détails d'organisation

Répartition des projets

14 binômes, 1 référent par binôme

- 5 binômes Ali Skaf
 - 2 binômes SW sur ARM Altera
 - 3 binômes HW sur FPGA Altera
- 9 binômes Stéphane Mancini
 - ☆ 4 binômes SW sur ARM Xilinx
 - ★ 5 binômes HW sur FPGA Xilinx

Méthode

√ Valider votre logiciel ou matériel sur des jeux de coefficients 'fictifs', dont les valeurs vous permettent de vérifier les calcul

Utiliser des coefficients appris

La deuxième phase démarre mi-Décembre

Organisation

Projet par binôme

Séances : 40 heures

Au moins 12 heures non encadrées

Le vendredi matin, jusqu'à fin Janvier.

Evaluation:

Présentation intermédiaire : 10 mn, à la 4 ème séance 3/12

Rapport + présentation finale : 10 mn, à la dernière séance