Correctievoorschrift Statistiek KW/MBW#2 dd 7-10-2019

Vraagstuk 1 (28 punten)

Onderdeel a (7 punten):

2 punten: $\langle \bar{\mathbf{x}} - \mathbf{z}_{1-0,5\alpha} \frac{\sigma}{\sqrt{n}}; \; \bar{\mathbf{x}} + \mathbf{z}_{1-0,5\alpha} \frac{\sigma}{\sqrt{n}} \rangle$ 2 punten: $n = 7; \; \bar{\mathbf{x}} = 500,5714286; \; \sigma = 6$ 2 punten: $\mathbf{z}_{0,95} = \text{invNorm}(.95) = 1,644853626$

1 punt: < 496,8413; 504,3016 >

Onderdeel b (6 punten):

2 punten: $n \ge \frac{z^2 \cdot \sigma}{a^2}$ 2 punten: a = 2,5

2 punten: $n \ge 15,5839$; kies n = 16

Onderdeel c (9 punten):

3 punten: toetsingsgrootheid = $\overline{\underline{x}} \sim N(\mu = 505; \sigma = \frac{6}{\sqrt{7}} = 2,2678)$, met $\overline{x} = 500,5714$

3 punten: $Z = \langle \leftarrow; g \rangle$, met g = invNorm(.05, 505, 2.2678) = 501,2698

3 punten: $\bar{x} = 500,5714 \in Z$; verwerp H_0

Onderdeel d (6 punten):

3 punten: p-waarde = P($\bar{x} \le 500,5714 \mid \mu = 505$), met $\bar{x} \sim N(\mu = 505; \sigma = \frac{6}{\sqrt{7}} = 2,2678) = 0,0254$

3 punten: $p \le \alpha = 0.05$; dus verwerp H_0

Vraagstuk 2 (22 punten)

Onderdeel a (13 punten):

3 punten: H_0 : geen samenhang; H_1 : wel samenhang

2 punten: $e_{1,1} = 13.5$; $e_{1,2} = 15$; $e_{1,3} = 11.5$; $e_{2,1} = 5.1$; $e_{2,2} = 5.6$; $e_{2,3} = 4.3$; $e_{3,1} = 8.4$; $e_{3,2} = 9.4$; $e_{3,3} = 7.2$

 $\chi^2 = 3,8660$

4 punten: $Z = \langle g_{2*2=4; 0.95} = 9.49 ; \rightarrow \rangle$

1 punt: $\chi^2 \notin Z$; H₀ niet verwerpen; er is dus geen sprake van samenhang

3 punten: omdat e < 5, rijen 1 en 2 samenvoegen; $\chi^2 = 3,6984$; Z = < 5,99; $\rightarrow>$; verwerp H_0 niet; óf:

omdat e < 5, kolommen 2 en 3 samenvoegen; $\chi^2 = 3,0748$; Z = < 5,99; $\rightarrow>$; verwerp H_0 niet

Onderdeel b (9 punten):

2 punten: H_0 : representatief; H_1 : niet representatief 3 punten: $e_1 = 40$; $e_2 = 13,3$; $e_3 = 26,7$; $\chi^2 = 0,3255$

3 punten: $Z = \langle g_{2; 0.95} = 5.99 ; \rightarrow \rangle$

1 punt: $\chi^2 \notin \mathbb{Z}$; H_0 niet verwerpen; er is dus sprake van representativiteit

Vraagstuk 3 (28 punten)

Onderdeel a (8 punten):

 $\text{2 punten:} \qquad < \; \frac{\displaystyle \sum (x_i - \overline{x})^2}{g_{n-l; l-0, 5\alpha}} \; \; ; \; \frac{\displaystyle \sum (x_i - \overline{x})^2}{g_{n-l; 0, 5\alpha}} \; > \;$

2 punten: som van de kwadratische afwijkingen = 109830,4712

of:

2 punten:
$$<\frac{(n-1)*s^2}{g_{n-1;1-0,5\alpha}}$$
; $\frac{(n-1)*s^2}{g_{n-1;0,5\alpha}}>$

2 punten: n = 9 en s = 117,17

3 punten: $g_{8; 0,025} = 2,18; g_{8; 0,975} = 17,53$ < 6265,2864; 50380,9501 > 1 punt:

Onderdeel b (8 punten):

2 punten: H₀: varianties zijn gelijk en H₁: varianties zijn verschillend

2 punten:
$$\underline{f} \sim F(df_1 = 8; df_2 = 10), \text{ met } f = \frac{s_x^2}{s_y^2} = \frac{117,17^2}{144,95^2} = 0,6534 \text{ (mits H}_0 \text{ waar)}$$

3 punten:
$$Z = < \leftarrow ; \frac{1}{430} = 0.23 > \cup < 3.85 ; \rightarrow >$$

1 punt: omdat $f \notin Z$, verwerpen we H_0 niet; dus varianties zijn gelijk

Onderdeel c (9 punten):

2 punten:

$$\begin{array}{ll} \text{2 punten:} & H_0: \ \mu_x = \mu_y \text{ en } H_1: \ \mu_x > \mu_y \\ \text{3 punten:} & \underline{t} \sim t(\ df = 18), \ \text{met } t = \frac{(\bar{x} - \bar{y}) - (\mu_x - \mu_y)}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right) s_P{}^2}} = \frac{264,52}{59,9228363} = 4,4143 \ (\text{mits } H_0 \ \text{waar}) \end{array}$$

3 punten: $Z = \langle t_{18; 0.95} = 1.734 ; \rightarrow \rangle$

1 punt: $t \in Z$; dus H_0 verwerpen; mannen scoren hoger

<u>alternatief</u>:

2 punten: H_0 : $\mu_x = \mu_v \text{ en } H_1$: $\mu_x > \mu_v$

5 punten: $Z = \langle s_v * t_{18; 0.95} = 59,9228363*1,734 = 103,9062; \rightarrow \rangle$ 2 punten: $v = 264,52 \in Z$; dus H_0 verwerpen; mannen scoren hoger

max. 4 punten: bij gebruik Z-toets opmerkingen:

> bij gebruik "separate variance" max. 6 punten:

Onderdeel d (3 punten):

3 punten: $v > s_v * t_{18; 0.95} = 59,9228363 * 1,734 = 103,9062$

Vraagstuk 4 (22 punten)

Onderdeel a (5 punten):

5 punten: r = 0.8385 (m.b.v. GRM)

Eventueel: $r = (2450 - 6.16.24) / \sqrt{(1822 - 6.16^2) \cdot (3562 - 6.24^2)} = 146 / \sqrt{(286.106)} = 0.8385$

Onderdeel b (8 punten):

5 punten: y = 15,83216783 + 0,5104895105x (m.b.v. GRM)

3 punten: bij x = 15 hoort een voorspelling ter grootte van 23,4895

Onderdeel c (9 punten):

1 punt: H₀: geen verschil in verkoop en H₁: stijging van de verkoop

to etsings grootheid = $\underline{t} \sim t(df = 5)$, met $t = \frac{8-0}{\sqrt{\frac{4,472135955^2}{6}}} = 4,38178046$ 3 punten:

3 punten: $Z = \langle t_{5; 0.95} = 2.015 ; \rightarrow \rangle$

2 punten: $t = 4,3818 \in \mathbb{Z}$; H_0 verwerpen; er is dus sprake van een stijging