

EK-TM4C123GXL-BOOSTXL-SENSHUB Firmware Development Package

USER'S GUIDE

Copyright

Copyright © 2012-2016 Texas Instruments Incorporated. All rights reserved. Tiva and TivaWare are trademarks of Texas Instruments Instruments. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

APlease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.

Texas Instruments 108 Wild Basin, Suite 350 Austin, TX 78746 www.ti.com/tiva-c

Revision Information

This is version 2.1.3.156 of this document, last updated on July 25, 2016.

Table of Contents

Cop	yright
Rev	ision Information
1	Introduction
2	Example Applications
2.1	Motion Air Mouse (airmouse)
2.2	Nine Axis Sensor Fusion with the MPU9150 and Complimentary-Filtered DCM (compdcm_mpu9150) 8
2.3	Humidity Measurement with the SHT21 (humidity_sht21)
2.4	Light Measurement with the ISL29023 (light_isl29023)
2.5	Pressure Measurement with the BMP180 (pressure_bmp180)
2.6	Temperature Measurement with the TMP006 (temperature_tmp006)
IMP	ORTANT NOTICE

1 Introduction

The Texas Instruments® Tiva™ C Series EK-TM4C123GXL is a low cost platform that can be used for software development and to prototype a hardware design. A variety of BoosterPacks are available to quickly extend the LaunchPads features.

This document describes the example applications that are provided for the EK-TM4C123GXL when paired with the BOOSTXL-SENSHUB BoosterPack. This BoosterPack provides a variety of motion and environmental sensors. It also provides an EM expansion option for attachement of additional peripherals such as the CC2533EMK or CC4000EMK. These examples utilize the TivaWare™ for C Series Sensor Library to extract and process information from the BOOSTXL-SENSHUB.

2 Example Applications

The example applications show how to use features of the Cortex-M4F microprocessor, the peripherals on the Tiva C Series microcontroller, and the drivers provided by the peripheral driver library. These applications are intended for demonstration and as a starting point for new applications.

There is an IAR workspace file (ek-tm4c123gxl-boostxl-senshub.eww) that contains the peripheral driver library project, USB library project, and all of the board example projects, in a single, easy to use workspace for use with Embedded Workbench version 6.

There is a Keil multi-project workspace file (ek-tm4c123gxl-boostxl-senshub.mpw) that contains the peripheral driver library project, USB library project, and all of the board example projects, in a single, easy to use workspace for use with uVision.

All of these examples reside in the <code>examples/boards/ek-tm4c123gxl-boostxl-senshub</code> subdirectory of the firmware development package source distribution.

2.1 Motion Air Mouse (airmouse)

This example demonstrates the use of the Sensor Library, TM4C123G LaunchPad and the SensHub BoosterPack to fuse nine axis sensor measurements into motion and gesture events. These events are then transformed into mouse and keyboard events to perform standard HID tasks.

Connect the device USB port on the side of the LaunchPad to a standard computer USB port. The LaunchPad with SensHub BoosterPack enumerates on the USB bus as a composite HID keyboard and mouse.

Hold the LaunchPad with the buttons away from the user and toward the computer with USB Device cable exiting the right and bottom corner of the board.

- Roll or tilt the LaunchPad to move the mouse cursor of the computer up, down, left and right.
- The buttons on the LaunchPad perform the left and right mouse click actions. The buttons on the SensHub BoosterPack are not currently used by this example.
- A quick spin of the LaunchPad generates a PAGE_UP or PAGE_DOWN keyboard press and release depending on the direction of the spin. This motion simulates scrolling.
- A quick horizontal jerk to the left or right generates a CTRL+ or CTRL- keyboard event, which creates the zoom effect used in many applications, especially web browsers.
- A quick vertical lift generates an ALT+TAB keyboard event, which allows the computer user to select between currently open windows.
- A quick twist to the left or right moves the window selector.
- A quick jerk in the down direction selects the desired window and closes the window selection dialog.

This example also supports the RemoTI low power RF Zigbee® human interface device profile. The wireless features of this example require the CC2533EMK expansion card and the CC2531EMK USB Dongle. For details and instructions for wireless operations see the

Wiki at http://processors.wiki.ti.com/index.php/Tiva_C_Series_LaunchPad and http://processors.wiki.ti.com/index.php/Wireless_Air_Mouse_Guide.

2.2 Nine Axis Sensor Fusion with the MPU9150 and Complimentary-Filtered DCM (compdcm_mpu9150)

This example demonstrates the basic use of the Sensor Library, TM4C123G LaunchPad and SensHub BoosterPack to obtain nine axis motion measurements from the MPU9150. The example fuses the nine axis measurements into a set of Euler angles: roll, pitch and yaw. It also produces the rotation quaternions. The fusion mechanism demonstrated is complimentary-filtered direct cosine matrix (DCM) algorithm is provided as part of the Sensor Library.

Connect a serial terminal program to the LaunchPad's ICDI virtual serial port at 115,200 baud. Use eight bits per byte, no parity and one stop bit. The raw sensor measurements, Euler angles and quaternions are printed to the terminal. The RGB LED begins to blink at 1Hz after initialization is completed and the example application is running.

2.3 Humidity Measurement with the SHT21 (humidity_sht21)

This example demonstrates the basic use of the Sensoror Library, TM4C123G LaunchPad and SensHub BoosterPack to obtain temperature and relative humidity of the environment using the Sensirion SHT21 sensor.

Connect a serial terminal program to the LaunchPad's ICDI virtual serial port at 115,200 baud. Use eight bits per byte, no parity and one stop bit. The humidity and temperature as measured by the SHT21 is printed to the terminal. The RGB LED begins to blink at 1Hz after initialization is complete and the example application is running.

2.4 Light Measurement with the ISL29023 (light_isl29023)

This example demonstrates the basic use of the Sensor Library, TM4C123G LaunchPad and the SensHub BoosterPack to obtain ambient and infrared light measurements with the ISL29023 sensor.

Connect a serial terminal program to the LaunchPad's ICDI virtual serial port at 115,200 baud. Use eight bits per byte, no parity and one stop bit. The raw sensor measurements are printed to the terminal. The RGB LED blinks at 1Hz once the initialization is complete and the example is running.

2.5 Pressure Measurement with the BMP180 (pressure_bmp180)

This example demonstrates the basic use of the Sensor Library, TM4C123G LaunchPad and the SensHub BoosterPack to obtain air pressure and temperature measurements with the BMP180 sensor.

Connect a serial terminal program to the LaunchPad's ICDI virtual serial port at 115,200 baud. Use eight bits per byte, no parity and one stop bit. The raw sensor measurements are printed to the terminal. The RGB LED blinks at 1Hz once the initialization is complete and the example is running.

2.6 Temperature Measurement with the TMP006 (temperature_tmp006)

This example demonstrates the basic use of the Sensor Library, TM4C123G LaunchPad and the SensHub BoosterPack to obtain ambient and object temperature measurements with the Texas Instruments TMP006 sensor.

Connect a serial terminal program to the LaunchPad's ICDI virtual serial port at 115,200 baud. Use eight bits per byte, no parity and one stop bit. The raw sensor measurements are printed to the terminal. The RGB LED blinks at 1Hz once the initialization is complete and the example is running.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Applications

roducts	3
---------	---

Wireless Connectivity

Ρ Audio www.ti.com/audio **Amplifiers** amplifier.ti.com **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com OMAP Applications Processors www.ti.com/omap

Automotive and Transportation www.ti.com/automotive Communications and Telecom www.ti.com/communications Computers and Peripherals www.ti.com/computers Consumer Electronics www.ti.com/consumer-apps **Energy and Lighting** www.ti.com/energy Industrial www.ti.com/industrial Medical www.ti.com/medical Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense Video and Imaging www.ti.com/video

TI E2E Community e2e.ti.com

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012-2016, Texas Instruments Incorporated