Calcul intégral

I. Intégrale d'une fonction continue sur un segment :

Activité 0:

Soit f la fonction numérique d'une variable réelle définie par $f(x) = 3x^2 - 1$.

- **1.** Déterminer deux primitives F et G de la fonction f sur \mathbb{R} .
- **2.** Calculer F(2) F(0), G(2) G(0). Que remarquez-vous?

Le nombre F(b) - F(a) ne dépend pas du choix d'une primitive de la fonction f.

Le nombre F(b) - F(a) s'appelle intégrale de la fonction f de a à b elle est notée $\int_a^b f(x)dx$.

PP Définition:

Soit f une fonction continue sur un segment [a, b] et F une primitive de f sur [a, b]. Le nombre F(b) - F(a) et appelé **intégrale** de f de a à b et on écrit : $\int_a^b f(x) dx =$

 $[F(x)]_a^b = F(b) - F(a).$

O Exemple:

Calculons l'intégrale suivante $\int_0^1 \sqrt{x+1} dx$.

La fonction $x \mapsto \sqrt{x+1}$ est continue sur [0; 1].

Donc:
$$\int_0^1 \sqrt{x+1} dx = \int_0^1 (x+1)' \sqrt{x+1} dx$$
$$= \int_0^1 (x+1)' (x+1)^{\frac{1}{2}} dx$$
$$= \left[\frac{2}{3} \sqrt{(x+1)^3} \right]_0^1 = \frac{2}{3} \left(\sqrt{8} - 1 \right).$$

Application @:

Calculer les intégrales suivantes :

a.
$$\int_0^2 (x+4) dx$$
 b. $\int_1^e \frac{1}{x} dx$ **c.** $\int_{e^2}^{e^4} \frac{\ln(x)}{x} dx$; **d.** $\int_0^1 \frac{e^x}{e^{x+1}} dx$
e. $\int_{-2}^{\frac{\pi}{4}} \cos(2x) dx$

$$\mathbf{c.} \int_{e^2}^{e^4} \frac{\ln(x)}{x} dx ;$$

$$f = \int_{-2}^{-1} x 2^{-x^2} dx$$

Dans l'écriture $\int_a^b f(x)dx$, on peut remplacer la variable x par n'importe quelle autre lettre. $\int_a^b f(x)dx = \int_a^b f(y)dy = \int_a^b f(t)dt = \cdots$

O Exercice 0:

Calculer les intégrales suivantes :

$$I_{1} = \int_{-1}^{1} (2x^{3} - 5x^{2} + 2) dx \qquad I_{2} = \int_{1}^{2} \left(\frac{1}{x^{2}} - \frac{2}{x^{3}}\right) dx \qquad I_{3} = \int_{0}^{1} \left(1 - \frac{1}{x+1}\right) dx$$

$$I_{4} = \int_{0}^{4} x \sqrt{1 + x^{2}} dx \qquad I_{5} = \int_{0}^{\ln 3} e^{x} \sqrt{e^{x} + 1} dx \qquad I_{6} = \int_{0}^{\frac{\pi}{6}} \cos x \cdot \sin^{5} x \, dx$$

$$I_{7} = \int_{1}^{2} \frac{x - 1}{x^{2} - 2x + 2} dx \qquad I_{8} = \int_{0}^{1} (1 - x) e^{x^{2} - 2x + 3} \, dx \qquad I_{9} = \int_{1}^{e^{2}} \frac{1}{x \sqrt{1 + \ln x}} dx$$

II Conséquences:

Soit f une fonction continue sur un intervalle I. Pour tous a, b et c de I on a:

- $\bullet \quad \int_a^a f(x) dx = 0 \ .$
- $\int_a^b f(x)dx = -\int_b^a f(x)dx.$
- $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$ (Relation de Chasles).

 Exemple:

$$\int_{-3}^{2} |x| dx = \int_{-3}^{0} |x| dx + \int_{0}^{2} |x| dx = \int_{-3}^{0} -x dx + \int_{0}^{2} x dx = \left[-\frac{x^{2}}{2} \right]_{-3}^{0} + \left[-\frac{x^{2}}{2} \right]_{0}^{2} = \frac{13}{2}$$

Application 2:

Calculer les intégrales suivantes :

a.
$$\int_{-1}^{1} \frac{2|x|}{x^2 + 1} dx$$
 b. $\int_{-1}^{5} |x^2 - 4x| dx$ c. $\int_{0}^{2} |e^{-x+1} - 1| dx$

c.
$$\int_0^2 |e^{-x+1} - 1| dx$$

Propriété :

Soient f et g deux fonctions continues sur l'intervalle [a, b] et $k \in \mathbb{R}$.

• $\int_a^b k f(x) dx = k \int_a^b f(x) dx.$

Application 3:

On considère les intégrales $I = \int_0^{\frac{n}{4}} \cos{(3x)} \cos{(x)} dx$ et $J = \int_0^{\frac{n}{4}} \sin{(3x)} \sin{(x)} dx$.

1. Vérifier que cos(3x) cos(x) + sin(3x) sin(x) = cos(2x) pour tout $x \in \mathbb{R}$.

2. Vérifier que cos(3x) cos(x) - sin(3x) sin(x) = cos(4x) pour tout $x \in \mathbb{R}$.

3. Calculer I + J et I - J puis en déduire I et J.

O Exercice ②:

On pose : $K = \int_0^{\ln{(2)}} \frac{e^{t-1}}{e^{t+1}} dt \ et \ L = \int_0^{\ln{(2)}} \frac{1}{e^{t+1}} dt$

Calculer K + L et K + 2L puis en déduire les valeurs de K et L.

II. Intégrale et ordre – la valeur moyenne :

1. Intégrale et ordre :

Propriété :

Soient fet g deux fonctions continues sur l'intervalle [a, b] $(a \le b)$.

• Si $(\forall x \in [a, b])$; $f(x) \ge 0$, alors $\int_a^b f(x) dx \ge 0$.

• Si $(\forall x \in [a, b])$; $f(x) \le g(x)$, alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Application @:

1. Montrer que : $\int_{1}^{2} ln(x^{2} + 1) dx \ge 0$.

2. Montrer que : $-\frac{1}{2} \le \int_{1}^{2} \frac{\sin(x)}{x^{2}} dx \le \frac{1}{2}$.

Valeur moyenne d'une fonction continue sur un segment :

Définition :

Soit f une fonction continue sur un segment [a, b] $(a \le b)$.

l existe au moins un réel $c \in [a, b]$ tel que : $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$.

Le nombre $\frac{1}{b-a}\int_a^b f(x)dx$ est appelé **valeur moyenne** de la fonction f sur l'intervalle [a,b]

O Exemple:

La valeur moyenne de la fonction $x \mapsto \frac{2x}{1+x^2}$ sur l'intervalle [1,3] est $\frac{1}{2} \int_1^3 \frac{2x}{1+x^2} dx$ C'est-à-dire : $\frac{1}{2}[ln(x^2+1)]_1^3 = \frac{ln(5)}{2}$.

Application 5:

Calculer la valeur moyenne de la fonction $x \mapsto \frac{\ln^2(x) + x}{x}$ sur l'intervalle [1, e].

III. Techniques de calcul d'intégrales :

1. Utilisation des primitives :

Application ©:

1. Calculer les intégrales suivantes :

$$I = \int_{2}^{e} \frac{1}{x(\ln(x)+1)} dx \; ; \; J = \int_{0}^{1} t e^{t^{2}} dt \; ; \; K = \int_{0}^{\frac{\pi}{3}} \tan(x) \, dx \; \text{et} \; L = \int_{0}^{1} \frac{2x+2}{(x^{2}+2x+1)^{2}} dx.$$

2. *a*- Vérifier que : $(\forall x \in \mathbb{R})$ $\frac{e^{2x}-1}{e^{2x}+1} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

b- En déduire la valeur de l'intégrale $\int_0^1 \frac{e^{2x}-1}{e^{2x}+1} dx$.

O Exercice 3: BAC 2002

1. Calculer l'integrale $\int_{\frac{\pi}{a}}^{\frac{\pi}{a}} \left(\frac{1}{\cos^2(x)} - 4\cos(2x) \right) dx$.

2. Montrer que $\left(\frac{x}{x^2+1}\right)' = \frac{1-x^2}{(x^2+1)^2}$ pour tout réel x puis calculer $\int_1^{\sqrt{3}} \frac{1-x^2}{(x^2+1)^2} dx$.

2. Décomposition des fractions rationnelles en une somme de fractions rationnelles :

Application **?**:

1. Déterminer les nombres réels a, b, et c pour que l'on ait pour tout x de $\mathbb{R}\setminus\{1\}$:

$$f(x) = ax + b + \frac{c}{x-1}.$$

2. En déduire la valeur de l'intégrale : $\int_2^3 f(x) dx$.

3. Linéarisation des fonctions trigonométriques :

Application 8:

Linéariser le polynôme trigonométrique $\cos^3 x$ puis calculer $\int_0^{\frac{\pi}{4}} \cos^3 x \, dx$.

O Exercice @: BAC 2003

Vérifier, pour tout réel x, que : $sin^2x.cos^3x = cosx.sin^2x - cosx.sin^4x$.

Calculer l'integrale $I = \int_0^{\frac{\pi}{2}} \sin^2 x \cdot \cos^3 x \, dx$.

4. Intégration par parties :

Soit u et v deux fonctions dérivables sur un intervalle [a, b] telles que u' et v' continues sur [a, b].

On a:
$$(\forall x \in [a, b])$$
; $(u(x)v(x))' = u'(x)v(x) + u(x)v'(x)$.

Alors:
$$\int_{a}^{b} (u(x)v(x))' dx = \int_{a}^{b} u'(x)v(x) dx + \int_{a}^{b} u(x)v'^{(x)} dx$$

D'où
$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx$$
.

Propriété :

Soient u et v deux fonctions dérivables sur un intervalle I telles que ses dérivées u' et v'sont continues sur *I*.

Pour tout $(a,b) \in I^2$ on $a : \int_a^b u'(x)v(x)dx = [u(x)v(x)]_a^b - \int_a^b u(x)v'(x)dx$.

O Exemple:

Calculons l'intégrale $I = \int_0^1 x e^x dx$.

Posons
$$\begin{cases} u'(x) = e^x \\ v(x) = x \end{cases}, \text{ alors } \begin{cases} u(x) = e^x \\ v'(x) = 1 \end{cases}.$$

Il s'ensuit
$$I = [xe^x]_0^1 - \int_0^1 e^x dx = [xe^x]_0^1 - [e^x]_0^1 = e - e + 1 = 1.$$

Le choix des fonctions u' et v n'est pas arbitraire. Leur bonne sélection joue un rôle clé dans cette technique.

Dans l'exemple précédent si notre choix est
$$\begin{cases} u'(x) = x \\ v(x) = e^x \end{cases}$$
, alors $\begin{cases} u(x) = \frac{1}{2}x^2 \\ v'(x) = e^x \end{cases}$.

On obtient donc $\int_0^1 x e^x dx = \left[\frac{1}{2}x^2 e^x\right]_0^1 - \int_a^b \frac{1}{2}x^2 e^x dx$ ce qui rend le calcul de l'intégrale voulue est très compliqué.

Application @:

En utilisant la formule d'intégration par parties, Calculer les intégrales suivantes :

$$I_1 = \int_1^e x^2 \ln x dx \; ; I_2 = \int_{\frac{1}{2}}^1 (2x - 1)e^{-\frac{x}{2}} dx \; ; I_3 = \int_2^e \ln(x + 2) dx \; \text{et} I_4 = \int_0^\pi x^2 \cos x dx \; .$$

O Exercice 5: BAC 2001

- **1.** Vérifier, pour tout $x \in [0; 1]$, que : $\frac{x^3 + x}{x + 1} = x^2 x + 2 \frac{2}{x + 1}$.
- 2. En utilisant la formule d'intégration par parties, Calculer l'integrale $I = \int_0^1 (3x^2 + 1) \ln(x + 1) \, dx.$

O Exercice 6:

En utilisant la formule d'intégration par parties, Calculer les integrales suivantes :

$$\bullet \ I_1 = \int_1^{e^2} x(\ln x)^2 dx$$

$$\bullet \ I_2 = \int_1^2 x \sqrt{3 - x} dx$$

•
$$I_1 = \int_1^{e^2} x(\ln x)^2 dx$$
 • $I_2 = \int_1^2 x\sqrt{3 - x} dx$ • $I_3 = \int_{\sqrt{e}}^e \frac{x \ln x}{(x^2 + 1)^2} dx$

•
$$I_4 = \int_1^2 \frac{t n(1+t)}{t^2} dt$$

$$\bullet \ I_5 = \int_0^{\frac{\pi}{4}} \frac{x}{\cos x^2} dx$$

$$I_{\Omega} = \int_{\pi}^{\pi} sinxe^{x} dx$$

$$I_8 = \int_0^1 x^2 e^x dx$$

•
$$I_9 = \int_{\frac{\pi}{2}}^{\pi} sinxe^x dx$$

IV. Calcul d'aires et de volumes :

1. Calcul des aires :

Activité 2:

On considéra la fonction définie par : f(x) = -x + 2 et (C_f) la courbe représentative de f dans le plan rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$ unité (1 cm)

- 1. Tracer (C_f) et colorier le domaine délimité par l'axe des abscisses, la courbe et les droites d'équations x = -1 et x = 3, puis donner une valeur de son aire en unités d'aires.
- **2.** Calculer $\int_{-1}^{3} |f(x)| dx \times ||\vec{i}|| \times ||\vec{j}||$. Qu'est-ce qu'on peut déduire ?

Propriété :

Soit f une fonction continue sur un segment [a, b] (a < b). et (C_f) sa courbe représentative dans un repère orthogonal.

L'aire du domaine délimité par (C_f) , l'axe des abscisses et les droites d'équations x = a et x = b est égale à $\int_a^b |f(x)| dx$ (en unité d'aire)

Application OO:

Le plan est apporté à un repère orthonormé $(0, \vec{i}, \vec{j})$ avec $||\vec{i}|| = 1cm$ et $||\vec{j}|| = \sqrt{2}cm$ Soit f la fonction définie par : $f(x) = \sin(x)$

Calculer l'aire du domaine délimité par la courbe de f et les droites d'équations : $x = \frac{\pi}{2}$ et $x = -\frac{\pi}{2}$.

O Exercice O: BAC 2015

Soit f la fonction définie sur $]0; e[\ \cup\]e; +\infty[$ par: $f(x) = \frac{1}{x(1-lnx)}$ et (C_f) la courbe de la fonction f dans un repère orthonormé $(O; \vec{\imath}; \vec{\jmath})$ tel que $||\vec{\imath}|| = 2cm$.

- **1.** Montrer que $\int_1^{\sqrt{e}} \frac{1}{x(1-lnx)} dx = ln2$. (Remarquer que $\frac{1}{x(1-lnx)} = \frac{\frac{1}{x}}{(1-lnx)}$)
- **2.** Calculer, en cm^2 , l'aire du domaine plan délimité par (C_f) , l'axe des abscisses et les droites d'équations : x = 1 et $x = \sqrt{e}$.

Propriété:

Soient f et g deux fonctions continues sur un segment [a,b], $(C_f)et(C_g)$ les courbes représentatives de f et g dans un repère orthogonal.

Soit (Δ) le domaine délimité par les courbes $(C_f)et(C_g)$ et les droites d'équations x=a et x=b.

L'aire du domaine (Δ) en unités d'aire est donnée par : $A(\Delta) = \int_a^b |f(x) - g(x)| dx$.

Application OO:

Le plan est rapporté à un repère orthogonal $(0, \vec{\imath}, \vec{\jmath})$ avec $||\vec{\imath}|| = 2cm$ et $||\vec{\jmath}|| = 2cm$ On considère les fonctions f et g définie par : $f(x) = 2x^2 + 1$ et $g(x) = x^2 + x + 1$ Calculer l'aire du domaine délimité par les courbes des fonctions f et g et l'axe des abscisses et les droites d'équations x = 0 et x = 2.

O Exercice @: Session Rattrapage 2017

Soit f la fonction numérique définie sur \mathbb{R} par: $f(x) = x + 1 - (x^2 + 1)e^x$.

Et (C_f) la courbe de la fonction f dans un repère orthonormé $(0; \vec{t}; \vec{j})$ tel que $||\vec{t}|| = 2cm$

- **1.** Montrer que $H: x \mapsto (x-1)e^x$ est une fonction primitive de la fonction $h: x \mapsto xe^x$ sur \mathbb{R} , puis en déduire que: $\int_{-1}^0 xe^x \, dx = \frac{2}{e} 1$.
- **2.** En utilisant une intégration par parties, Montrer que: $\int_{-1}^{0} (x^2 + 1)e^x dx = 3\left(1 \frac{2}{e}\right).$
- **3.** 3) Calculer en cm^2 , l'aire du Domaine plan délimité par (C_f) , la droite (D) d'équation y = x + 1 et les droites d'équations : x = -1 et x = 0.

2. Calcul des volumes :

Propriété :

L'espace est rapporté à un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$. Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. Soit (Σ) un solide limité par deux plans z = a et z = b et soit S(t) est l'aire de l'intersection du solide (S) avec le plan z = t $(a \le t \le b)$.

le volume de ce solide est (en unités de volume) : $v(s) = \int_a^b S(t)dt$.

Exemple: volume V d'un cylindre de rayon R et de hauteur h.

L'intersection du plan z = t avec le cylindre est un disque d'aire $S(t) = \pi R^2$.

Puisque $t \to S(t)$ est continue sur [0, h] alors le volume de cylindre est :

$$V = \int_0^h S(t)dt = \int_0^h \pi R^2 dt = \pi R^2 \int_0^h dt = \pi R^2 h \ cm^3.$$

// Propriété :

Soit f une fonction continue sur un segment [a,b] (a < b), et (C_f) sa courbe représentative. Le volume du solide engendré par la rotation de la courbe (C_f) autour de l'axe des abscisses un tour complet est donné par la formule : $V = \pi \int_a^b (f(x))^2 dx$ (en unités de volume).

O Exemple:

Le volume du solide engendré par la rotation de la courbe de la fonction $x \to e^x$ sur [0,1] Autour de l'axe des abscisses un tour complet est donné par :

$$: V = \pi \int_0^1 (f(x))^2 dx = \pi \int_0^1 (e^x)^2 dx = \pi \int_0^1 e^{2x} dx = \frac{\pi}{2} [e^{2x}]_0^1 = \frac{\pi (e^2 - 1)}{2} u. a$$

*Application *\mathcal{Q} \mathcal{E}:

Soit *g* la fonction numérique définie sur [0,1] par : $f(x) = xe^{\frac{1}{2}x}$.

Calculer Le volume du solide engendré par la rotation de la courbe de la fonction g autour de l'axe des abscisses un tour complet.

Répondre à la même question pour la fonction $f(x) = \frac{\sqrt{x}}{\cos(x)}$ sur l'intervalle $\left[0, \frac{\pi}{4}\right]$.