Mathematik für Data Science 1 - Übungsblatt 1

Lerngruppe: ci40tapi, si40tapi, vi62tyqy

H1

a)
$$A = \{1, 4, 9\}$$

 $B = \{2, 4, 6, 8, 10\}$
b) $\overline{A} = \{2, 3, 5, 6, 7, 8, 10, 11\}$
 $\overline{B} = \{1, 3, 5, 7, 9, 11\}$
 $A \cup B = \{1, 2, 4, 6, 8, 9, 10\}$
 $\overline{A} \cap \overline{B} = \{4\}$
 $\overline{A} \cap \overline{B} = \{3, 5, 7, 11\}$
 $A \setminus B = \{1, 9\}$
 $\overline{B} \setminus A = \{2, 6, 8, 10\}$
 $\overline{A} \cup \overline{B} = \{3, 5, 7, 11\}$
 $(A \setminus B) \cup (B \setminus A) = \{1, 2, 6, 8, 9, 10\}$

H2

Aufgabe	reflexiv	symmetrisch	antisymmetrisch	transitiv
a)	nein	ja	nein	nein
b)	nein	ja	nein	ja
c)	$_{ m ja}$	nein	ja	ja
d)	$_{ m ja}$	ja	nein	ja
e)	nein	nein	ja	nein
f)	nein	nein	ja	ja

H3

Seien $n, m, k \in \mathbb{Z}$

Laut Aufgabe gilt $x \sim y$ falls x + y = 2n

a)

R ist eine Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist. Reflexivität:

$$x \in \mathbb{Z} \Rightarrow (x, x) \in R$$

$$x \in \mathbb{Z} \Rightarrow x + x = 2 * n$$

$$x \in \mathbb{Z} \Rightarrow 2 * x = 2 * n$$

$$x \in \mathbb{Z} \Rightarrow x = n$$

Mit n=x ist die Implikation oben erfüllt. Daher liegt Reflexivität vor.

Symmetrie: $(x, y) \in R \Rightarrow (y, x) \in R$

$$x+y=2*n \Rightarrow y+x=2*m$$

Dies trifft zu mit n=m, daher ist R symmetrisch.

Transitivität:

$$\begin{aligned} &(x,y) \in R \wedge (y,z) \in R \Rightarrow (x,z) \in R \\ &x + y = 2n \wedge y + z = 2m \Rightarrow x + z = 2k \\ &x + y - (y + z) = 2n - 2m \wedge y + z = 2m \Rightarrow x + z = 2k \\ &x - z = 2n - 2m \wedge y + z = 2m \Rightarrow x + z = 2k \\ &x = 2n - 2m + z \wedge y + z = 2m \Rightarrow x + z = 2k \\ &x = 2n - 2m + z \wedge y + z = 2m \Rightarrow 2n - 2m + z + z = 2k \\ &x = 2n - 2m + z \wedge y + z = 2m \Rightarrow n - m + z = k \end{aligned}$$

Die rechte Seite der Implikation ist erfüllt mit k=n-m+z, also ist die Relation transitiv.

Da R reflexiv, symmetrisch und transitiv ist, ist R eine Äquivalenzrelation.

- b) Die Beweisführung oben bleibt im Wesentlichen gleich (an einigen Stellen ändert sich nur \mathbb{Z} zu \mathbb{N}), wenn \mathbb{R} auf $\mathbb{N} \times \mathbb{N}$ eingeschränkt wird. Also nein, \mathbb{R} bleibt dann eine Äquivalenzrelation.
- c) Es liegen 2 Äquivalenzklassen vor:

$$[1] = \{..., -5, -3, -1, 1, 3, 5, ...\}$$
$$[2] = \{..., -4, -2, 0, 2, 4, ...\}$$

d) Ja, denn dann ist R nicht transitiv und damit keine Äquivalenzrelation. Zum Beispiel sind die 3 Elemente x=1,y=2,z=3 nicht transitiv: x+y ist ungerade \wedge y+z ist ungerade \Rightarrow x+z ist ungerade 1+2 ist ungerade 1+3 ist ungerade Diese Implikation ist falsch. Also ist R keine Äquivalenzrelation.