Departamento de Matemática e Aplicações

Universidade do Minho

Álgebra

1° teste - 10 jan 2019

duração: duas horas

Licenciatura em Ciências de Computação - 2º ano

1. Considere, no grupo S_6 , as permutações

$$\beta = (254)(15)(2643)$$
 e $\alpha = (153)(26)$.

- (a) Determine, em extensão, o subgrupo $<\beta^{-154}>$.
- (b) Determine a ordem e a paridade de α .
- (c) Sem efetuar cálculos com composição de funções, determine $\delta \in S_6$ tal que

$$\delta (\beta^2 \alpha^3)^{-2} (43) = \delta^2 (123)^{-1}.$$

- 2. Num anel A, chama-se *idempotente* a qualquer elemento $e \in A$ tal que $e^2 = e$. Determine os idempotentes do anel \mathbb{Z}_{12} .
- 3. Sejam A um anel comutativo não nulo, q um elemento arbitrariamente fixo em $A \setminus \{0\}$ e

$$J_q = \{ a \in A : aq = 0_A \}.$$

- (a) Mostre que J_q é um ideal de A.
- (b) Mostre que o ideal J_q é nulo se e só se q não é divisor de zero.
- 4. Seja A um domínio de integridade com caraterística 2. Mostre que a aplicação $\theta:A\longrightarrow A$ definida por $\theta(x)=x^2$, para qualquer $x\in A$, é um morfismo de anéis.

Recorde que um anel tem caraterística $n \in \mathbb{N}$ se n é o menor número natural tal que $na = 0_A$, para qualquer $a \in A$.

- 5. Considere o morfismo de anéis $\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}_{12} \times \mathbb{Z}_{18}$, definido por $\varphi(x) = ([x]_{12}, [x]_{18})$, para qualquer $x \in \mathbb{Z}$.
 - (a) Determine o núcleo de φ .
 - (b) Diga, justificando, se o morfismo φ é sobrejetivo.
- 6. Seja A um domínio de integridade e $p,q\in A$ elementos associados. Mostre que se p é primo então q é primo;
- 7. Diga, sem justificar, quais das seguintes afirmações são verdadeiras e quais são falsas:
 - (a) O anel $\mathbb{Z}_5 \times \mathbb{R}$ é um domínio de integridade;
 - (b) Nenhum dos ideais $23\mathbb{Z} \times \mathbb{Z}$ e $\mathbb{Z} \times \{0\}$ de $\mathbb{Z} \times \mathbb{Z}$ é maximal;
 - (c) No anel \mathbb{Z}_9 a igualdade $[51]_9 \times [-40]_9 + ([4]_9)^{-1} = [0]_9$ é verdadeira;
 - (d) Qualquer corpo é um domínio de integridade;
 - (e) Num domínio de integridade D, uma unidade divide qualquer elemento de D.