

Agenda Style

01 Read The Data

Read customer movie rating data.

02 Data Preparation

Check all entries each column, handling outliers, and scale the data

03 Determine The Optimal K Value

Determine the optimal k value to determine the best model.

04 K-Mean Execution

Create a model with the optimal k value that has been found.

01. Read The Data

Read customer movie rating data and display top 6 data

	Horror <dbl></dbl>	Romcom <dbl></dbl>	Action <dbl></dbl>	Comedy <dbl></dbl>	Fantasy «dbl»
1	72.5	29.9	68.6	40.7	57.9
2	82.2	45.3	76.5	17.4	67.7
3	70.0	44.0	65.1	53.7	37.8
4	99.1	21.0	77.9	25.4	40.3
5	84.0	0.0	68.1	49.8	40.0
6	70.2	55.0	97.2	48.1	40.5

02. Data Preparation

: 0.00

: 45.61

:100.00

1st Qu.: 28.95

3rd Qu.: 59.85

Summary data and check missing value

Horror	Romcom	Action	Comedy
Min. : 0.00	Min. : 0.00	Min. : 24.60	Min. : 0.00
1st Qu.: 40.00	1st Qu.:19.90	1st Qu.: 58.75	1st Qu.: 38.50
Median : 62.80	Median :29.70	Median : 70.50	Median : 60.00
Mean : 58.57	Mean :31.25	Mean : 68.84	Mean : 56.52
3rd Qu.: 78.25	3rd Qu.:41.65	3rd Qu.: 80.55	3rd Qu.: 73.45
Max. :100.00	Max. :81.30	Max. :100.00	Max. :100.00
Fantasy			

Scale the data

Horror	Romcom	Action	Comedy	Fantasy
[1,] 0.5716500	-0.04299424	-0.02508091	-0.6986964	0.5587483
[2,] 0.9696365	0.91673283	0.47807457	-1.7277543	1.0042660
[3,] 0.4690762	0.83571691	-0.24799789	-0.1245439	-0.3550175
[4,] 1.6630357	-0.59764171	0.56724136	-1.3744297	-0.2413650
[5,] 1.0434897	-1.90636045	-0.05692619	-0.2967896	-0.2550033
[6,] 0.4772821	1.52123625	1.79646928	-0.3718711	-0.2322728

Check outliers data with Multiple Boxplot

Handling outliers

data\$Romcom[is.na(data\$Romcom)]<-mean(data\$Romcom,na.rm=TRUE)
data\$Action[is.na(data\$Action)]<-mean(data\$Action,na.rm=TRUE)
sum(is.na(data\$Romcom))
sum(is.na(data\$Action))</pre>

Average silhouette method

Gap statistic

The optimal k value is based on several methods using NbClust

The Hubert index is a graphical method of determining the number of clusters. In the plot of Hubert index, we seek a significant knee that corresponds to a significant increase of the value of the measure i.e the significant peak in Hubert index second differences plot.

The D index is a graphical method of determining the number of clusters. In the plot of D index, we seek a significant knee (the significant peak in Dindex second differences plot) that corresponds to a significant increase of the value of the measure.

Make a plot of the optimal number of clusters from several test methods

Among all indices:

- 11 proposed 2 as the best number of clusters
- 12 proposed 3 as the best number of clusters
- 1 proposed 4 as the best number of clusters
- 1 proposed 5 as the best number of clusters
- 1 proposed 8 as the best number of clusters
- 2 proposed 15 as the best number of clusters

***** Conclusion ****

According to the majority rule, the best number of clusters is 3

04. K-Mean Execution


```
# Choose 123 as our random seed
set.seed(123)

# Cluster the players using kmeans with 3 clusters
cluster_solution <- kmeans(data_scale, centers = 3)</pre>
```

```
fviz_cluster(cluster_solution, data = data)
```


04. K-Mean Execution

Store the cluster assignments back into the clustering data frame object and display the top 6 data

Horror <dbl></dbl>	Romcom <dbl></dbl>	Action <dbl></dbl>	Comedy <dbl></dbl>	Fantasy «dbl»	cluster <fctr></fctr>
72.5	29.9	68.6	40.7	57.9	3
82.2	45.3	76.5	17.4	67.7	3
70.0	44.0	65.1	53.7	37.8	1
99.1	21.0	77.9	25.4	40.3	3
84.0	0.0	68.1	49.8	40.0	3
70.2	55.0	97.2	48.1	40.5	3

Look at the distribution of cluster assignments

Thank You