

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:		(11) International	le Veröffentlichung:	saummer:	WO 90/0883
C12Q 1/02, C12N 15/53	A1	(43) International Veröffentlich	es ungsdatum :	9. Au	gust 1990 (09.08.90
(21) Internationales Aktenzeichen: PCT/DE (22) Internationales Anmeldedatum: 1. Februar 1990		(euror (euror (euror	ungsstaaten: AT o päisches Patent), o päisches Patent), i päisches Patent), Fl päisches Patent), I	ČH (europäi DK (europäi I, FR (europä	sches Patent), Di isches Patent), E iisches Patent), Gi
(30) Prioritätsdaten: P 39 02 982.4 1. Februar 1989 (01.02.89	9) I	(europ	päisches Patent), N ches Patent), US.		
(71) Anmelder (für alle Bestimmungsstaaten ausser Uster LUX FORSCHUNGSGESELLSCHAFT FÜR GISCHE VERFAHREN MBH [DE/DE]; W 10, D-4050 Mönchengladbach 1 (DE).	BIOL	O- Mit in se Vor Al nen Fi	t ternationalem Rech blauf der für Änder ist. Veröffentlichung ntreffen.	rungen der A	nsprüche zugelasse
(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): MÖLDERS, Ho DE]; Hoeningerstrasse 15, d-4047 Dormagen 1	orst [D] 1 (DE)	3/	шедеп.		
(74) Anwalt: UMLAUF, Erich, O., E.; Postfach 60 (8000 München 60 (DE).	08 08,	D-			
		*			
-					
(54) Title: METHOD FOR DETECTING THE PRE CURY-ENHANCED BIOLUMINESCEN (54) Bezeichnung: VERFAHREN ZUM NACHWEIS ZU ERHÖHTER BIOLUMINESZ	NCE S VON	QUECKSILBER	MIT HILFE VO	N DURCH	
0,	2µM Hg ₂	NO ₃) ₂			
	je 0,2µM	HgCl ₂ ,ZnCl ₂ CdCl ₂ ,Pl	o(CH3C00)2		
Selektivität von E.coi.C600(p614.) für Auerksilher SELECTIVITY OF E.COLI C600 (pGL4) FOR MERCURY		0,2 م Cd Cl			
314) für 0		2,2µM Zn Cl			
oli C600(p(0,2µM Pb(CH ₃ O	m) ₂		
it von E.G RCURY		0,2 µMCaCl ₂			
Seleddyild SELECT FOR MBI		0,2 µMMgCl ₂			
		0.2 µM HgCl ₂			
BIOLUMINESCENCE RATE Biolumineszenztate		Negativkontrolle NEGATIVE 1	eest [
	7		1x104- 5x103 1x103		

(57) Abstract

Process in which microorganisms equiped with a plasmid vector, pGL4, constructed by molecular biological techniques, can be used as biosensors for mercury compounds. A gene complex (mer-Operon) inductible by mercury ions is combined by molecular cloning with the luciferase (LUX) gene system of Vibrio Harveyi. The arrangement of the two gene units is designed so that the mer-Operon promoter, which is positively regulated by mercury compounds, also controls the transcription of the LUX genes. As a result, microorganisms transformed with plasmid pGL4 respond to increasing quantities of mercury cations in the surrounding medium with an increase in their emitted bioluminescence. The process is absolutely specific for mercury, rapid and highly sensitive: the proven limit for mercury ions is approximately 0.2 ppb, i.e., 5 times lower than the detection threshold for the most powerful established methods (atomic absorption spectrometry), which detect 1 to 5 ppb of mercury and require a considerable quantity of apparatus. A further advantage of the invention is the possibility of determining measurement values (bioluminescence signals emitted by microorganisms transformed by plasmid pGL4) without direct contact between the biosensor and the signal-amplification unit (bioluminescence apparatus). The method therefore permits simple, continuous, on-line determination of critical mercury concentrations.

Es wird ein Verfahren beschrieben, bei welchem Mikroorganismen nach Ausstattung mit einem durch molekularbiologische Techniken konstruierten Plasmidvektors, pGL4, als Biosensoren für Quecksilberverbindungen eingesetzt werden können. Grundlage der Erfindung ist die Kombination eines durch Quecksilber-Ionen induzierbaren Gen-Komplexes (mer-Operon) mit dem Luciferase (LUX)-Gensystem von Vibrio-Harveyi durch die Technik der molekularen Klonierung. Dabei ist die Anordnung der beiden Gen-Einheiten so konzipiert, dass der durch Quecksilber-Verbindungen positiv regulierte Promotor des mer-Operons auch die Transkription der LUX-Gene steuert. Als Konsequenz antworten mit Plasmid pGL4 transformierte Mikroorganismen auf zunehmende Mengen an Quecksilber-Kationen in dem sie umgebenden Medium mit einer Erhöhung der von ihnen emittierten Biolumineszenz. Das beschriebene Verfahren ist absolut spezifisch für Quecksilber, schnell und hochempfindlich: Die Nachweisgrenze für Quecksilber-Kationen liegt mit etwa 0,2 ppb um einem Faktor 5 unterhalb der Detektionsschwelle der leistungsfähigsten etabliertten Methoden (Atomabsorptionsspektrometrie), die mit erheblichem apparativem Aufwand 1 bis 5 ppb Quecksilber nachweisen können. Ein weiterer Vorteil der Erfindung ist die Möglichkeit, Messwerte (Biolumineszenzsignale emittiert von mit Plasmid pGL4 transformierten Mikroorganismen) ohne direkten Kontakt des Biosensors mit der Signalverstärkungseinheit (Biolumineszenzgerät) erfassen zu können. Mit Hilfe des hier beschriebenen Verfahrens können deshalb kritische Quecksilber-Konzentrationen in einfacher Weise permanent und "on-line" erfasst werden.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	ML	Mali
AU	Australien	FI	Finnland	MR	Mauritanien
BB	Barbados	FR	Frankreich	MW	Malawi
BE	Belgien	GA	Gabon	NL	Niederlande
BF	Burkina Fasso	GB	Vereinigtes Königreich	NO	Norwegen
BG	Bukarien	HU	Ungam	RO	Rumänien
BJ	Benin	П	Italien	SD	Sudan
BR	Brasilien	JP	Japan	SE	Schweden
CA	Kanada	KP	Demokratische Volksrepublik Korea	SN	Senegal
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SU	Soviet Union
CG	Kongo	u	Liechtenstein	TD	Tschad
CH	Schweiz	LK	Sri Lanka	TG	Togo
CM	Kamerun	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DE	Deutschland, Bundesrepublik	MC	Monaco		-
DK	Dinemark	MG	Madagaskar		

- 1 -

Verfahren zum Nachweis von Quecksilber mit Hilfe von durch Quecksilber zu erhöhter Biolumineszenz angeregter Mikroorganismen

Inhalt der hier beschriebenen Erfindung ist ein Nachweisverfahren für Quecksilber-Verbindungen mit Hilfe von Mikroorganismen als Biosensoren. Der gemessene Parameter, anhand dessen sich unterschiedliche Quecksilber-Konzentrationen sensitiv und ohne Zeitverzögerung erfassen lassen, ist die Intensität des von den Organismen emittierten Biolumineszenzsignals. Grundlage der Erfindung ist die Kombination eines durch Quecksilber-Ionen induzierbaren Genkomplexes mit dem Luciferase-Gen aus Vibrio Harveyi durch die Technik molekularer Klonierung. Der resultierende Plasmidvektor, pGL4, ist so konstruiert, daß mit ihm transformierte Mikroorganismen auf erhöhte Quecksilberkonzentrationen im Wachstumsmedium mit einer erhöhten Biolumineszenz reagieren. Mit dem hier beschriebenen Plasmidsystem, pGL4, ist es möglich, verschiedenste Mikroorganismen in für Quecksilber-Ionen spezifische und empfindliche Biosensoren zu verwandeln.

Konventionelle Meßverfahren zur Bestimmung von Schwermetall-Konzentrationen

Viele Schwermetalle sind als Spurenelemente, d.h. in geringer Konzentration, für den erfolgreichen Ablauf physiologisch wichtiger Reaktionen in lebenden Organismen von Bedeutung. In höheren Konzentrationen überwiegen bei vielen dieser Elemente allerdings toxische Effekte. Die ausgeprägte Toxizität von Quecksilber-Ionen ergibt sich aus deren Tendenz, mit Sulfhydryl-Gruppen von Cysteinen in Polypeptid-Ketten, sogenannte Mercaptide zu bilden. Dieser Effekt ist besonders nachteilig für den Organismus, wenn durch die vorgenannte Reaktion das aktive Zentrum eines Enzyms irrever-

BNSDOCID: <WO__ _9008836A1_I >

Ą

- 2 -

sibel verändert und das Enzym dadurch unwirksam wird.

Schwermetalle, wie Quecksilber, werden bislang nachgewiesen durch Methoden wie i) Potentiometrie, ii) Massenspektrometrie, iii) Atomabsorptionsspektrometrie. Bei diesen etablierten Nachweismethoden geht im allgemeinen eine höhere Genauigkeit, d.h. niedriger liegende Nachweisschwelle, einher mit höherem apparativem und zeitlichem Aufwand.

In der vorliegenden Erfindung wird nun ein Meßverfahren beschrieben, bei dem mit Hilfe von Mikroorganismen als Biosensoren Quecksilber-Ionen, spezifisch, sensitiv, mit geringem Aufwand und schnell nachgewiesen werden können.

Stand der Technik bei der Verwendung von zur Biolumineszenz fähigen Mikroorganismen als Biosensoren

In der wissenschaftlichen - wie der Patentliteratur - ist die Verwendung von Mikroorganismen bei der Bestimmung toxischer Substanzen, z.B. in wässerigen Flüssigkeiten (US-PS 3 981 777), sowie der Bestimmung von Antibiotika-Konzentrationen (EP.No. 02000 226) beschrieben. Diesen Anwendungen liegt die Erfassung des Wachstums der Testorganismen durch klassische Methoden wie Trübungsmessungen, Auswerten der Kolonienzahl und -größe nach durchschnittlich mehr als 18 hzugrunde.

In jüngerer Zeit ist das sehr empfindliche und schnelle Verfahren der Biolumineszenz hinzugekommen; bei diesem bedient man sich natürlicherweise Biolumineszenz emittierender (PCT/US 84/01217), oder im Labor durch Anwendung molekularbiologischer Methoden zur Biolumineszenz befähigter (Priorität vom 03.10.88, P 38 33 628.6-41) Mikroorganismen. Beiden letztgenannten Verfahren ist gemeinsam, daß durch den Vergleich relativer Absterberaten unterschiedlich sensitiver

- 3 -

bzw. resistenter Mikroorganismen via Biolumineszenz die Erfassung genereller Toxizität in einfacher Weise möglich ist.

Im Sonderfall spezifisch resistenter Organismen, deren Biolumineszenz-Signal in Anwesenheit einer Testsubstanz nicht
abnimmt, besteht außerdem die Möglichkeit zur Identifikation
derjenigen Substanz gegenüber welcher Resistenz vorliegt.

Die Identifikation einer definierten Substanz ohne KontrollMessungen alleine aufgrund einer positiven Korrelation des
erfaßten Meßsignals mit ansteigender Konzentration des fraglichen Toxins ist mit den vorgenannten Meßsystemen nicht möglich.

Beschreibung der Erfindung

Inhalt der im folgenden beschriebenen Erfindung ist ein Verfahren, bei dem entsprechend ausgerüstete Mikroorganismen auf steigende Quecksilber-Konzentrationen in ihrem Umgebungsmedium mit einem erhöhten - statt wie beim Stand der Technik im Resistenzfall gleichbleibenden bzw. sich langsam abschwächenden - Biolumineszenz-Signal reagieren.

Kernstück der Entwicklung ist dabei ein mit den Methoden molekularer Klonierung geschaffener Plasmid-Vektor, in welchem
Teile eines durch Quecksilber induzierbaren Operons dergestalt mit dem Luciferase (LUX)-Genkomplex aus Vibrio Harveyi
verbunden sind, daß auch das für die Biolumineszenz der Mikroorganismen verantwortliche LUX-Gen der positiven Kontrolle durch Quecksilber-Ionen unterliegt. Bei diesem durch
Quecksilber induzierbaren Gensystem handelt es sich um das
sogenannte mer-Operon aus Plasmid R100 (Jackson, W.J. und
Summers, A.O. (1982) J. Bacteriol. 149, 479-487), welches
seinem Trägerorganismus die Eigenschaft der Resistenz gegenüber Quecksilberverbindungen bis zu einer Konzentration von
50 umol/l verleiht.

24

k.

- 4 -

Das Phänomen der Resistenz beruht auf dem Zusammenwirken dreier Polypeptide, die von einer polycistronischen Boten-RNA enkodiert werden. Nach Induktion des mer-Operons durch Quecksilber wird die Boten-RNA in verstärktem Maße gebildet, ins Cytoplasma transportiert und dort in die drei von ihr enkodierten Polypeptide translatiert: i) mer-R, ein auf die Transkription des mer-Operons insgesamt positiv wirkendes Regulator-Protein, ii) mer-TPC, ein Polypeptid, welches Quecksilber-Ionen komplexiert und ihren Transport ins Zellinnere bewerkstelligt und iii) mer-A, eine Reduktase, die (durch Übertragen zweier Elektronen) Hg++-Ionen in die flüchtige und ungefährliche Oxidationsform Hg° überführt.

Für die funktionierende Detoxifikation von Quecksilber-Ionen spielt letztlich die von mer-A enkodierte Reduktase die entscheidende Rolle: Mikroorganismen, deren mer-Operon insgesamt intakt ist, die aber eine Mutation im Quecksilber-Reduktasegen haben, sind nicht länger resistent gegenüber Quecksilber (Hg^R), sondern prägen einen hypersensitiven Phänotyp gegenüber Quecksilber aus (Hg^{SS}). Die Ursache für dieses Phänomen liegt darin begründet, daß mit Hilfe des intakten Transportproteins (mer-TPC) Hg⁺⁺-Ionen - relativ zu Mikroorganismen, die das Resistenz-Plasmid nicht tragen (Hg^S-Phänotyp) - in effizienter Weise in das Zellinnere translokalisiert werden, dort aber nicht reduziert und damit detoxifiziert werden.

Es ist letztlich diese Konstellation eines gegenüber Quecksilber hypersensitiv reagierenden Bakterienstammes, bei welchem anstelle des <u>mer-A-Reduktasegens</u> durch molekulare Klonierung der Luciferase-Genkomplex aus <u>Vibrio Harveyi</u> tritt, die dem im folgenden beschriebenen Verfahren zugrunde liegt.

BNSDOCID: <WO__ 9008836A1 1 >

- 5 -

Konstruktion eines durch Quecksilber-Ionen zu erhöhter
Transkription eines Luciferase-Genkomplexes induzierten
genetischen Regulationssystems: Plasmidvektor pGL4

Ausgangsplasmid bei der Klonierung eines pGL4 genannten Plasmides, das einen durch Quecksilber-Ionen transkriptionell stimulierten LUX-Genkomplex enthält, war Plasmid pDG106 (Gambill, B.D. und Summers, A.O., (1985) GENE, 39, 293-297), welches neben einem intakten, d.h. Resistenz gegen Quecksilber vermittelnden, mer-Operon zusätzlich ein Kanamycin-Resistenzgen aufweist. Aus pDG106 wurde mit Hilfe etablierter molekularbiologischer Techniken ein 2,1 Kilobasenpaare (KB) langes Restriktionsfragment (EcoR1-BamH1) entfernt, so daß ein 5,7 KB großes Vektorplasmid resultierte. Durch diese Manipulation (EcoR1-Restriktion) wird das mer-A Gen partiell deletiert, woraus - bedingt durch das Fehlen der funktionellen Quecksilber-Reduktase - der hypersensible Hgss-Phänotyp resultiert; die Kanamycin-Resistenz bleibt hingegen intakt und kann demzufolge zur Selektion in der anschließenden Klonierung verwendet werden.

Der in den oben beschriebenen Plasmid-Vektor zu klonierende LUX-Genkomplex aus <u>Vibrio Harveyi</u> wurde als 3,1 KB langes Sall-BamH1-Restriktionsfragment, das keine Promotorsequenzen enthält, aus einem gängigen LUX-Plasmid isoliert. Um Kompatibilität der 5' - d.h. "am Anfang" - des LUX-Gens gelegenen Sall-Schnittstelle mit der EcoR1-Schnittstelle des vorbereiteten Vektors herzustellen, bot sich eine zusätzliche Klonierung als Zwischenschritt an. Zu diesem Zweck wurde das 45 Basenpaar (BP) lange Sall-BamH1-Restriktionsfragment aus der Polylinkerregion des kommerziell erhältlichen Klonierungsvektors pBluescript (STRATAGENE, La Jolla, CA, USA) präparativ isoliert und als Adapter-Oligonukleotid an das LUX-Fragment anligiert. Das Ligationsgemisch wird schließlich mit der Restriktionsendonuklease BamH1 nachgespalten und

BNSDOCID: <WO __9008836A1 | >

Ä

- 6 -

schließlich in einen Plasmidvektor der pBR-Familie (pUC18) kloniert. Da in dem Sall-BamH1-Adapter-Oligonukleotid eine EcoR1-Schnittstelle vorhanden it, kann man aus dem als Zwischenstufe klonierten Plasmid nun den LUX-Genkomplex als EcoR1-BamH1-Fragment isolieren; um die Spaltung der innerhalb der LUX-Gens gelegenen zweiten EcoR1-Restriktionsstelle zu vermeiden, wurde in diesem Fall mit dem Enzym EcoR1 eine partielle Restriktionsspaltung durchgeführt, während die sich anschließende BamH1-Restriktion bis zur Vollständigkeit inkubiert wurde. Das so generierte 3,15 KB lange EcoR1-BamH1-Fragment wurde schließlich isoliert und in das oben beschriebene 5,7 KB große pDG106 Vektor-Derivat kloniert. Nach Transformation in kompetente Bakterien (E.coli, C600) zeigte sich, daß alle Kanamycin-resistenten Kolonien das gewünschte 8,85 KB-große Zielplasmid, pGL4, in stabiler Form enthielten.

Die wesentlichen Konstruktionsmerkmale sowie eine partielle Restriktionskarte des Quecksilber-Indikatorplasmids, pGL4, sind in Abb. 1 zusammengefaßt. Das Plasmid ist in linearisierter Form (Pst1) dargestellt und hat eine Größe von 8,85 KB. Es trägt die drei Gene des mer-Operons R, TPC und A, wobei die partielle Deletion des mer-A-Reduktase-Gens als "(A)A" Berücksichtigung findet. Der durch Hg-Ionen induzierte Promotor des mer-Regulons ist in Höhe der 1 KB-Markierung als schraffierter Bereich dargetellt. LUX-A bzw. -B steht für die die beiden Luciferase-Untereinheiten enkodierenden Gensegmente, die ohne eigene Promotorsequenzen in das 3'-Ende des mer-A-Gens kloniert wurden.

Durch diese Konstruktionsweise wird in Plasmid pGL4, die Transkription der LUX-Gene und damit die Synthese des Luciferase-Enzymkomplexes unter die Kontrolle des mer-Operons gebracht: In Anwesenheit von Quecksilber-Ionen im Wachstumsmedium von mit pGL4 ausgestatteten Mikroorganismen wird eine erhöhte Biolumineszenzrate gemessen, die letztlich zur Iden-

S. Markey

Ä

- 7 -

tifikation und Konzentrationsabschätzung jenes Schwermetalls herangezogen werden kann.

Experimentelle Charakterisierung und Beispiele der Anwendung von mit pGL4 ausgestatteten Mikroorganismen

Zur Durchführung aller im folgenden beschriebenen Messungen wurde ein Meßgerät der Firma BERTHOLD, Biolumat LB 9500C mit folgender Einstellung benutzt:

- Meßart: Peak, Meßzeit: 10 s, Temperatur: 25°C,
- Einstellung: manuell.
- 1. Nachweisempfindlichkeit des Quecksilber-Biosensors

Im Hinblick auf die Nachweisempfindlichkeit von mit Plasmid pGL4 transformierten Mikroorganismen für Quecksilber wurde in einer ersten Reihe von Experimenten die Biolumineszenz-Induktion bei C600(pGL4) als Funktion der Hg-Ionen im Umgebungsmedium untersucht. Eine von einer Einzelkolonie beimpfte 1 ml-Übernachtkultur in Standard-Luria-Broth (LB)-Vollmedium unter Zusatz von 30 µg/ml Kanamycin wurde 1:10 mit sterilem LB-Medium verdünnt, um je 0,5 ml der resultierenden Bakteriensuspension mit unterschiedlichen HgCl2-Konzentrationen zu induzieren. Ausgehend von 100 μ mol/l wurden die Kulturen in Zehner-Verdünnungsschritten abwärts bis zu 1 pmol/l mit HgCl versetzt und einschließlich einer Negativkontrolle zur Ermittlung des Hintergrund-Biolumineszenzsignals 35 min unter Schütteln bei 30°C inkubiert. Nach Beendigung der Inkubation wurden je 0,1 ml aus jeder Verdünnungsstufe in ein Biolumineszenzmeßgefäß überführt, mit 1 µl einer 10%igen Lösung des Luciferase-Substrates Decanal in Isopropanol versetzt und sofort mittels eines Biolumineszenzmeßgerätes (s.o.) analysiert. Die Ergebnisse - Mittelwerte aus drei voneinander unabhängigen Einzelmessungen - sind in Abb. 2 in Form eines Histogramms graphisch dargestellt. Unter den gewählten Bedin-

BNSDOCID* <WO___9008836A1_L >

- 8 -

gungen führt schon eine ${\rm HgCl}_2$ -Konzentration von 10 nmol/l relativ zur Hintergrund-Biolumineszenz (Indikatorbakterien ohne Quecksilberzusatz im Wachstumsmedium) zu einer signifikanten Erhöhung des gemessenen Signals; bei 100 nmol/l ${\rm HgCl}_2$ wird eine etwa 15fache, mit 1 µmol/l eine über 30fache Steigerung der Biolumineszenzrate relativ zu nicht induzierten Kontrollkulturen erreicht. Erhöht man die Schwermetallkonzentration auf 10 µmol/l und darüber, so macht sich der gegenüber Quecksilber-Kationen hypersensible Phänotyp drastisch bemerkbar: die zu maximaler Transkription des Quecksilber-Regulons und damit zu maximaler Biolumineszenz induzierten Organismen sterben infolge der sich akut auswirkenden Toxizität des ${\rm HgCl}_2$ ab.

Zur exakten Bestimmung der Nachweisempfindlichkeit des hier beschriebenen Verfahrens wurden unterhalb einer Quecksilber-Konzentration von 10 nmol/l, die - wie oben gezeigt - zu einer signifikanten Erhöhung des Biolumineszenzsignals des Biosensors relativ zum Hintergrund führt, detailliertere Messungen vorgenommen.

Je 0,2 ml einer 6 h bei 30°C angewachsenen, frischen Bakteriensuspension von C600(pGL4), wurden mit HgCl₂-Konzentrationen zwischen 0,1 und 10 nmol/l induziert. Nach 60 min Inkubation bei 37° (wie unter 2. gezeigt wird, Idealbedingungen) wurden Biolumineszenzmessungen durchgeführt, deren Ergebnisse in Abb. 3 graphisch dargestellt sind. Die Meßpunkte sind wiederum Mittelwerte aus mehreren unabhängigen Messungen, deren maximale Abweichungen 10 % vom hier dargestellten Mittelwert nicht überschreiten. Geht man vom Nullwert, d.i. die Biolumineszenzrate nicht mit HgCl₂-Ionen induzierter Kontrollkulturen (350 000 gemessene Lichtsignale) aus, so liegt bereits der bei 0,4 nmol/l gemessene Wert mit 400 000 außerhalb der Standardabweichung, ist also ein vom Nullwert signifikant verschiedenes Ergebnis. Dies gilt umso mehr für die

Š

- 9 -

um 150 000 - also 50 % des Negativkontrollwertes - von 350 000 auf 500 000 Lichtsignale erhöhte Biolumineszenz bei Einwirken von HgCl₂ in einer Konzentration von um 1 nmol/1.

Zusammengefaßt zeigen diese Ergebnisse, daß bereits Quecksilber-Kationen-Konzentrationen von unter 1 nmol/l (das entspricht bei einer Molekularmasse von 200,59 in wässeriger Lösung 0,2 μ g/l $\stackrel{>}{=}$ 0,2 ppb), signifikant nachzuweisen sind. Das hier beschriebene Verfahren ist damit unter Idealbedingungen im Vergleich der absoluten Nachweisgrenzen gegenüber den am häufigsten verwendeten Methoden der Atomabsorptionsspektrometrie, deren untere Nachweisgrenzen bei etwa 2 μ g/l liegt, überlegen (vgl. Tabelle I).

2. Induktionskinetik des Biolumineszenzsignals

Eine wichtige Voraussetzung für meßtechnische Anwendungen des hier beschriebenen Quecksilber-Biosensors ist das Wissen um den i) zeitlichen Verlauf, ii) die maximale Signalstärke, iii) das Signal-zu-Rauschen-Verhältnis sowie iv) die Stabilität des gemessenen Signals über längere Meßzeiträume nach Induktion der Biolumineszenz. In Abb. 4 ist die Stärke der gemessenen Biolumineszenzrate als Funktion der Zeit ab dem Zeitpunkt der Zugabe von 0,2 µmol/l HgCl₂ - also unter Bedingungen optimaler Induktion des mer-Operons (vgl. Abb. 2) aufgetragen. Nach einer etwa zehnminütigen Latenzzeit ist ein schneller Anstieg des Signals festzustellen, so daß nach 35 min 90 %, nach 50 min 100 % der maximal erreichbaren Biolumineszenzrate erreicht werden. Der Maximalwert bleibt über den Meßzeitraum von 4 Stunden konstant. Wie im unter 1. (vgl. Abb. 2) beschriebenen Experiment, beträgt das Verhältnis der schließlich erreichten maximalen Biolumineszenzrate zum Signal nicht induzierter Mikroorganismen als Referenzwert etwa 35.

Ş

Wenn auch eine direkte Linearität zwischen wirksamer HgCl2-Ionen-Konzentration und gemessener Biolumineszenzrate nicht besteht, das direkte Ablesen absoluter Quecksilber-Konzentrationen mithin nicht möglich ist, so geben die Kinetik der Biolumineszenz-Induktion und der Quotient von maximal erreichtem Meßsignal und Ausgangswert zusammengenommen wichtige Informationen zur Abschätzung der HgCl2-Konzentration im Umgebungsmedium der Biosensoren. Bei permanenter Aufzeichnung der Biolumineszenz, z.B. in der "on-line" Anwendung, sollte deshalb bei entsprechender Meßtechnik und computerunterstützter Auswertung eine exakte Konzentrationsbestimmung möglich sein.

3. Selektivität des Biosensors für Quecksilber-Kationen

Ein wichtiges Kriterium für den Einsatz von mit pGL4 ausgestatteten Mikroorganismen als Biosensoren zur Identifikation von Quecksilber-Kationen ist deren spezifische Erkennung von Hg-Ionen. Aufgrund theoretischer Überlegungen wie empirischer, chemisch-physikalischer Untersuchungen, weisen insbesondere andere Schwermetalle in vielerlei Hinsicht Analogien zu Quecksilber auf und kommen deshalb für eine mögliche Beeinflussung der Meßergebnisse bei der Anwendung des hier beschriebenen Verfahrens in Betracht. Um die Spezifität von mit pGL4 ausgestatteten Mikroorganismen für Quecksilber-Kationen experimentell zu überprüfen, wurden je 0,5 ml C600(pGL4)-Bakterien mit 0,2 µmol/l folgender Verbindungen für 40 min unter Schütteln inkubiert: HgCl₂; MgCl₂; CaCl₂; Pb(CH₃COO)₂; ZnCl₂; CdCl₂; Gemisch aus allen vorgenannten Verbindungen; Hg₂(NO₃)₂. Die Auswertung der Biolumineszenzmessungen ist in Abb. 5 dargestellt.

Als Ergebnis läßt sich festhalten:

1. Sowohl HgCl₂ als auch Hg₂(NO₃)₂, also Quecksilber-Verbin-

- 11 -

dungen der Oxidationsstufen +1 und +2, induzieren das Biolumineszenzsignal von C600(pGL4) in gleicher Höhe.

- 2. Keine der anderen getesteten Verbindungen führt zu einer Erhöhung der gemessenen Biolumineszenzrate relativ zum Hintergrund.
- 3. Ein Gemisch von Verbindungen, von denen einzeln nur eine (HgCl₂) zur Induktion des Biosensors in der Lage ist, führt zu einem Biolumineszenzsignal in gleicher Höhe wie sie die spezifisch erkannte Verbindung alleine hervorruft.

Mit pGL4 ausgerüstete Mikroorganismen sind, wie dieses Experiment zeigt, als Biosensoren für Quecksilber-Verbindungen hochspezifisch und liefern deshalb auch in Lösungen mit unbekannter Zusammensetzung zuverlässige Ergebnisse.

Anwendungsmöglichkeiten von mit pGL4 ausgestatteten Mikroorganismen

Als wesentliche Eigenschaften der hier beschriebenen Biosensoren treten hervor: i) die extrem hohe Nachweisempfindlichkeit für Quecksilber-Kationen, ii) die Selektivität der Biosensoren für Quecksilber, die auch durch Anwesenheit anderer, z.B. Schwermetall-Ionen, im Gemisch nicht beeinträchtigt wird, und iii) die Möglichkeit, ohne physikalischen Kontakt zwischen Biosensor und Signaldetektions- bzw. Verstärkungs-Einheit, damit also ohne meßtechnisch bedingte Unterbrechungen, kritische Konzentrationen von Quecksilber-Kationen nachweisen zu können. Die oben zur Charakterisierung von mit pGL4 ausgerüsteten Mikroorganismen durchgeführten Experimente stellen Beispiele für mögliche Anwendungen des Verfahrens dar. Zum einen ist der Nachweis von Quecksilber in Konzentrationen unterhalb der Detektionsgrenze, die bei etablierten Analysemethoden bestehen, bis in den Bereich <0,5 ppb möglich. In diesem Zusammenhang ist z.B. zu bedenken, daß der international zulässige Grenzwert für Quecksilber-Ionen in

BNSDOCID <WO 9008836A1 | >

- 12 -

Trinkwasser bei 2 ppb festgelegt ist, also mit der absoluten Nachweisgrenze bei der Atomabsorptionsspektrometrie zusammenfällt. Mit dem hier beschriebenen Verfahren ist die Reevaluierung bestehender Quecksilberbelastungen, z.B. bei der Trinkwasseranalyse, ohne größeren apparativen Aufwand, also auch dezentral, möglich. Ein zweites wichtiges Anwendungsfeld ist durch die kontaktfreie Übertragungsweise des Meßsignals, Biolumineszenz, nahegelegt: Es ist möglich, Mikroorganismen, die in Durchflußbecken industrieller oder kommunaler Kläranlagen angesiedelt werden können, mit Plasmid pGL4 auszustatten. Auf diese Weise wird die Dauerüberwachung von Abwässern im Hinblick auf ihre Belastung mit Quecksilber sehr vereinfacht und gestattet, da das Meßergebnis kritische Veränderungen sofort erkennen läßt, den Aufbau eines Frühwarnsystems das "on-line" über die Abwasserqualität Auskunft geben kann.

BNSDOCID <WO __ 9008836A1_[_>

PCT/DE90/00063

- 13 -

<u>Wertetabellen</u> (jeweils gerundete Mittelwerte aus 3 Messungen)

0 9 000	zrate
1 pM 10 400	
10 pM 12 100	
100 pM 11 800	
1 nM 11 000	
10 nM 16 000	
100 nM 150 000	
1 µM 335 000	
10 μΜ 3 300	
100 µM 50	
Zu Abb. 3 Konzentration [HgCl ₂] Biolumineszen	zrate
Zu Abb. 3 Konzentration [HgCl ₂] Biolumineszen 0,0 350 200	zrate
-	zrate
0,0 350 200	zrate
0,0 350 200 0,1 350 100	zrate
0,0 350 200 0,1 350 100 0,2 386 700	zrate
0,0 350 200 0,1 350 100 0,2 386 700 0,4 399 900	zrate
0,0 350 200 0,1 350 100 0,2 386 700 0,4 399 900 0,8 490 600	zrate
0,0 350 200 0,1 350 100 0,2 386 700 0,4 399 900 0,8 490 600 1,0 500 100 1,5 570 000 2,0 630 000	zrate
0,0 350 200 0,1 350 100 0,2 386 700 0,4 399 900 0,8 490 600 1,0 500 100 1,5 570 000	zrate
0,0 350 200 0,1 350 100 0,2 386 700 0,4 399 900 0,8 490 600 1,0 500 100 1,5 570 000 2,0 630 000	zrate

		•
Zu Abb. 4	Zeit nach Zugabe von 0,2 µM HgCl ₂ [Minuten]	Biolumineszenzrate
	0	11 800
•	2	10 490
	5	12 064
	10	11 900
	15	57 900
	20	113 200
	25	186 600
	30	246 200
	35	321 400
	40	330 800
	45	341 800
	50	350 100
	55	348 500
	60	349 300
	120	361 000
	180	356 000
	240	357 900
	300	360 500
D. 31-1		
Zu Abb. 5		Biolumineszenzrate
	Kein Zusatz	1 700
,	0,2 µM HgCl ₂	69 000
	0,2 µM MgCl ₂	1 500
	0,2 μM CaCl ₂	800
	0,2 μM Pb(CH ₃ COO) ₂	1 400
	0,2 μM ZnCl ₂	1 000
	0,2 µM CdCl ₂	1 100
	Gemisch aus je 0.2 uM der obigen Verbindungen	66 500
	$0,2 \mu\text{M} \text{Hg}_2(\text{NO}_3)_2$	68 000

- 15 -

Tabelle I

Nachweisgrenzen Quecksilber

(jeweils Einzelelementbestimmung in schwach mineralsaurer Lösung)

Analysenart:	Be:	sti	mmungs	grenze:
ICP-AES:	10	-	20	μg/l
ICP-MS:		=	0,1	μg/l
Graphitrohr-AAS:		=	2	μg/l
Hydrid-AAS:		=	0,5	μg/l
Kaltdampf-AAS:		=	0,001	μg/l
pGL4-Biosensoren:		=	0,2	μg/l
(E-coli C 600)				

BNSDOCID: <WO___9008836A1_1 >

Patentansprüche

- 1. Verfahren zum Nachweis von Quecksilber-Verbindungen in flüssiger oder gasförmiger Umgebung mit Hilfe von Mikroorganismen definierter Spezifität gegenüber Quecksilber, dad urch gekennzeichnet, daß die Indikatorstämme durch vektorvermittelten Gentransfer ausgestattet sind mit
- (I) einem durch Quecksilber-Ionen spezifisch induzierbaren Gen-System (mer-Operon) und
- (II) einem die Eigenschaft zur Biolumineszenz verleihenden bakteriellen Luciferase (LUX)-Genkomplex.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnete Plasmid folgende Konstruktionsmerkmale in sich vereint:
- (I) das Quecksilber-Regulon aus dem Quecksilber-Resistenzplasmid pDG106,
- (II) den LUX-Genkomplex aus Vibrio Harveyi sowie
- (III) ein Resistenz gegen das Antibiotikum Kanamycin vermittelndes Gen.
- 3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß Mikroorganismen verschiedenster Herkunft und Sensitivität gegenüber toxischen Substanzen nach Einführung des Plasmids pGL4 zu Quecksilber-spezifischen Biosensoren umgewandelt werden können, die auf Biolumineszenz-Basis arbeiten.
- 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Anwesenheit von Quecksilber-Ionen

BNSDOCID: <WO___9008836A1_1 >

- 17 -

oberhalb einer bestimmten kritischen Konzentration zur Stimulation des durch Quecksilber-Ionen induzierbaren Promotors des Quecksilber-Regulons aus Plasmid pDG106, zu erhöhter Transkription der Gene des Operons und letztlich deren verstärkter Expression auf Proteinebene führt.

- 5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß der LUX-Genkomplex aus Vibrio Harveyi solchermaßen durch Klonierung in das Quecksilber-Regulon eingefügt ist, daß beide Gen-Systeme gemeinsam auf einer einzigen polycistronischen, Boten-RNA enkodiert werden, deren Syntheserate in direkter Weise von der Aktivität des durch Quecksilber-Kationen induzierbaren Promotors des mer-Operons abhängig ist.
- 6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die durch die Anwesenheit von Quecksilber-Kationen oberhalb einer bestimmten Konzentration vermehrt synthetisierte RNA quantitativ in die von ihr enkodierten Proteine translatiert wird, woraus, bedingt durch das Vorhandensein erhöhter Mengen des Enzyms Luciferase, eine erhöhte Biolumineszenz der eingesetzten Mikroorganismen resultiert.
- 7. Verfahren nach Anspruch 2, dad urch gekenn-zeich chnet, daß die Biosensoren eine absolute Selektivität für Quecksilber-Kationen aufweisen, so daß deren eindeutige Identifikation auch aus (Schwermetall-)Gemischen unterschiedlichster Zusammensetzung ohne weiteres möglich ist.
- 8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die untere Nachweisgrenze für Quecksilber-Kationen im Bereich weniger ppb liegt, und deshalb
 die mit Plasmid pGL4 ausgerüsteten Biosensoren den meisten

- 18 -

etablierten Verfahren für den höchstempfindlichen Schwermetall-Nachweis, wie der Atomabsorptionsspektrometrie, in ihrer Nachweisempfindlichkeit für Quecksilber überlegen sind.

9. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß sich aufgrund seiner hohen Empfindlichkeit und der Möglichkeit, Meßwerte ohne direkten Kontakt des
Biosensors mit der Signaldetektionseinheit zu erfassen, für
Anwendungen, die eine permanente Aufzeichnung der Quecksilber-Belastung erfordern ("on-line"), anbietet.

Konstruktionsmerkmale und Restriktionskarte von Plasmid pGL4

 \tilde{z}_{i}^{i}

ERSATZBLATT

Ï

ERSATZBLATT

Ş

ABB.5	0,2 µ M Hg ₂	(NO ₃) ₂	
	je 0,2µMHgCl ₂ ;ZnCl ₂	CdCl ₂ ;Pb(CH ₃ COO) ₂	
ecksilber		0,2 µM Cd Cl ₂	
77) für Ou		0,2µM Zn Cl ₂	
ii C600 (pG		0,2µM Pb(CH ₃ 000) ₂	
t von E.co		0,2µMCaCl ₂	
Selektivität von E.coli C600(pGL4) für Quecksilber		0,2µMMgCl ₂	
		0,2 µM HgCl ₂	
Biolumineszen	zrato	Negativkontrolle	
DIULUITIITESZETI	2x10te - 701x5		1×10 ⁴ - 5×10 ³ - 1×10 ³ -

ERSATZBLATT

Ŕ

INTERNATIONAL SEARCH REPORT

I. CLAS	SIFICATIO	N OF SUBJECT MATTER (if several class	ssification symbols apply indicate all) 6	/DE30/00063
		ional Patent Classification (IPC) or to both N		
Int	.Cl.5	C12Q 1/02, C	212N 15/53	
II. FIELD	S SEARCH	1ED		
01 10 .		Minimum Docum	nentation Searched 7	
Classificat	ion System		Classification Symbols	
Int	.C1.5	C12Q, C12N,	G01N	
			r than Minimum Documentation ts are included in the Fields Searched ⁸	
		ONSIDERED TO BE RELEVANT		
ategory •	Citatio	on of Document, 11 with indication, where ap	propriate, of the relevant passages 12	Relevant to Claim No. 13
Y	US,	A, 4581335 (BALDWIN) see the whole docume	-	1-9
Y	WO,	A, 88/00617 (BOYCE of FOR PLAND RESEARCH 1988; see the whole	INC.) 28 January	1-9
Y	Cher	mical Abstracts, Vol 31 March 1986; (Colu D.B. Gambill et al: " mercury-resistant cl expression vectors" see page 150, abstra 1985, 39(2-3), 293-7	umbus, Ohio, US) Versatile oning and act 103228a & Gene	1-9
,				
"A" docucons "E" earliing "L" docuwhic citali "O" documother "P" document	ment defining the second of th	of cited documents: 10 ing the general state of the art which is not of particular relevance but published on or after the international may throw doubts on priority claim(s) or establish the publication date of another special reason (as specified) ing to an oral disclosure, use, exhibition or need prior to the international filing date but ority date claimed	"T" later document published after the or priority date and not in conflic cited to understand the principle invention. "X" document of particular relevance cannot be considered novel or involve an inventive step. "Y" document of particular relevance cannot be considered to involve a document is combined with one of ments, such combination being of in the art. "&" document member of the same page.	t with the application but or theory underlying the e; the claimed invention cannot be considered to e; the claimed invention n inventive step when the or more other such docupations to a person skilled
	Actual Com	pletion of the International Search	Date of Mailing of this International Sea	rch Report
		990 (21.04.90)	8 June 1990 (08.06	
iternationa	Searching .	Authority	Signature of Authorized Officer	
Euro	pean P	atent Office		

Form PCT/ISA/210 (second sheet) (January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

DE 9000063 SA 34067

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 25/05/90

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Pater men	nt family nber(s)	Publication date
US-A- 4581335	08-04-86	None		
WO-A- 8800617	28-01-88	AU-A- EP-A-	7751687	10-02-88 20-07-88
				·
1				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

Ŷ,

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/DE 90/00063

	07111111			
		N DES ANMELDUNGSGEGENSTANDS (bei onalen Patentklassifikation (IPC) oder nach der		nzugebeni
1				
Int.C	$C1^{\circ}$ $C1$	2 Q 1/02, C 12 N 15/53		
		E SACHGEBIETE		
		Recherchierter M		
Klassifik	ationssystem		Klassifikationssymbole	
Int.C	5.	C 12 Q, C 12 N, G 01	N	
		Recherchierte nicht zum Mindestprüfstoff g	ehörende Veröffentlichungen, soweit diese	· · · · · · · · · · · · · · · · · · ·
		unter die recherchierte	en Sachgebiete fallen ⁸	
			,	
III. EINS	CHLÄGIGE	VERÖFFENTLICHUNGEN ⁹		
Art*		nung der Veröffentlichung 11, soweit erforderlich	n unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. 13
<u> </u>				
Y		, 4581335 (BALDWIN) 8. A iehe das ganze Dokument	April 1986,	1-9
Y	P:	, 88/00617 (BOYCE THOMPS LAND RESEARCH INC.) 28. iehe das ganze Dokument		1-9
У	3: D re s:	cal Abstracts, Band 104, 1. März 1986, (Columbus, B. Gambill et al.: "Veresistant cloning and exprise Seite 150, Zusammer Gene 1985, 39(2-3), 293	Chio, US), csatile mercury- cession vectors" nfassung 103228a	1-9
• Parane	Jose V atomoria	n von angegebenen Veröffentlichungen ¹⁰ :		
"A" Ver defi "E" älte tior	offentlichung iniert, aber ni res Dokumen nalen Anmelde	, die den allgemeinen Stand der Technik cht als besonders bedeutsam anzusehen ist t, das jedoch erst am oder nach dem Interna- datum veröffentlicht worden ist	"T" Spätere Veröffentlichung, die nach der meldedatum oder dem Prioritätsdatum ist und mit der Anmeldung nicht kollic Verständnis des der Erfindung zugru oder der ihr zugrundeliegenden Theorie	veröffentlicht worden diert, sondern nur zum ndeliegenden Prinzips
zwe fent nan	eifelhaft ersch tlichungsdatur nten Veröffen	die geeignet ist, einen Prioritätsanspruch einen zu lassen, oder durch die das Veröfneiner anderen im Recherchenbericht getlichung belegt werden soll oder die aus einem ren Grund angegeben ist (wie ausgeführt)	"X" Veröffentlichung von besonderer Bedei te Erfindung kann nicht als neu oder au keit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedei	of erfinderischer Tätig-
"O" Ver eine bez	öffentlichung, Benutzung, ieht	die sich auf eine mündliche Offenbarung, eine Ausstellung oder andere Maßnahmen	te Erfindung kann nicht als auf erfind ruhend betrachtet werden, wenn die einer oder mehreren anderen Veröffent gorie in Verbindung gebracht wird und	derischer Tätigkeit be- Veröffentlichung mit lichungen dieser Kate-
tum		die vor dem internationalen Anmeldeda- em beanspruchten Prioritätsdatum veröffent-	einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselber	n Patentfamilie ist
IV. BESC	HEINIGUNG			
Datu	m des Abschlu	sses der internationalen Recherche	Absendedatum des internationalen Rechere	
21.	. April	1990		JUN 1990
inter	nationale Reci	nerchenbehörde	Unterschrift des bevollmächtigten Bedienst	eten
	i	Europäisches Patentamt	155 DS KOW	777

Formblatt PCT/ISA/210 (Blatt 2) (Januar 1985)

ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

DE 9000063

SA 34067

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 25/05/90

Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglie Pater	ed(er) der atfamilie	Datum der Veröffentlichun
US-A- 4581335	08-04-86	Keine		
WO-A- 8800617	28-01-88	AU-A- EP-A-	7751687 0274527	10-02-88 20-07-88
			·	
•				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

INTERNATIONAL SEARCH REPORT

Inte Jional Application No PCT/US 97/20793

A. CLASS	IFICATION OF SUBJECT MATTER		<u> </u>	
IPC 6	C12N15/70 C12Q1/02	C12Q1/68	C12Q1/66	
	to International Patent Classification (IPC) or to both na	ational classification and	IIPC	
	SEARCHED ocumentation searched (classification system followed	d by classification symbi	ols)	
IPC 6	C12Q			
Documenta	tion searched other than minimum documentation to th	ne extent that such docu	iments are included in the fields sea	arched
Electronic o	data base consulted during the international search (na	ame of data base and, v	where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropri	riate, of the relevant pas	ssages	Relevant to claim No.
		·		
X	WO 94 13831 A (DU PONT ;L			1-9
	ALAN (US); MAJARIAN WILLI D) 23 June 1994	AM KOREKI (A	5);	
	cited in the application			
	see the whole document			
X	WO 96 16187 A (DU PONT) 3	0 May 1996		1-9
	see the whole document			
X	WO 94 01584 A (HARVARD CO			1-9
	SPENCER B (US)) 20 Januar see the whole document	y 1994		
Α	EP 0 649 905 A (TOYODA CH 26 April 1995	IUO KENKYUSHO	KK)	1-9
	see the whole document			
	<i>!</i>			
Furt	her documents are listed in the continuation of box C.	X	Patent family members are listed in	п аппех.
° Special ca	tegories of cited documents :	"T" late	r document published after the inter	national filling date
	ent defining the general state of the art which is not lered to be of particular relevance	cite	priority date and not in conflict with ad to understand the principle or the rention	
"E" earlier o	document but published on or after the international date	"X" dac	ermon urnent of particular relevance; the ci nnot be considered novel or cannot	
which	ant which may throw doubts on priority claim(s) or is cited to establish the publication date of another	inv	rolve an inventive step when the document of particular relevance; the ci	cument is taken alone
"O" docume	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cai do-	nnot be considered to involve an inv cument is combined with one or mo	ventive step when the re other such docu-
"P" docume	means ent published prior to the international filing date but	in t	ents, such combination being obviou the art.	
	nan the priority date claimed actual completion of theinternational search		ument member of the same patent in a continuous of the international search	
	0 March 1998		06/04/1998	
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Aut	honzed officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl,		Hagenmaier, S	
	Fax: (+31-70) 340-3016	\	nagonina rei i u	

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte ional Application No PCT/US 97/20793

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9413831 A	23-06-94	AT 152181 T	15-05-97
	20 00 51	AU 5730494 A	04-07-94
		CA 2150232 A	23-06-94
		DE 69310207 D	28-05-97
		DE 69310207 T	14-08-97
		EP 0673439 A	27-09-95
		ES 2102811 T	01-08-97
		JP 8504101 T	07-05-96
		US 5683868 A	04-11-97
		ZA 9309078 A	05-06-95
WO 9616187 A	30-05-96	CA 2200702 A	30-05-96
		EP 0793729 A	10-09-97
WO 9401584 A	20-01-94	AT 162225 T	15-01-98
		AU 4588493 A	31-01-94
		DE 69316368 D	19-02-98
		EP 0651825 A	10-05-95
		JP 85 019 30 T	05-03-96
		NO 950040 A	06-03-95
		US 5585232 A	17-12-96
		US 5589337 A	31-12-96
EP 0649905 A	26-04-95	JP 7227285 A	29-08-95
		JP 7163359 A	27-06-95
		US 5702883 A	30-12-97