Universidade de São Paulo Instituto de Matemática e Estatística Bachalerado em Ciência da Computação

Tiago Madeira

Geração uniforme de k-trees para aprendizado de redes bayesianas

Supervisor: Prof. Dr. Denis Deratani Mauá

São Paulo Novembro de 2016

Resumo

O resumo ainda não foi escrito.

 ${\bf Palavras\text{-}chave:}\ {\rm sem},\ {\rm resumo},\ {\rm por},\ {\rm enquanto}.$

Abstract

The abstract has not been written yet.

 ${\bf Keywords:}\ {\bf no,\ abstract,\ yet.}$

Sumário

1	Introdução	1
2	Fundamentos	3
3	Conclusão	5

Capítulo 1

Introdução

A ser escrita.

Capítulo 2

Fundamentos

Neste capítulo, apresentamos algumas definições que o leitor deve conhecer para compreender o trabalho.

Partimos do pressuposto de que o leitor conhece notações de conjuntos e as definições de grafo, árvore, subgrafo induzido e grafo completo.

Definição 1 (k-clique). [?] Seja G = (V, E) um grafo. Um k-clique é um subconjunto dos vértices, $C \subseteq V$, tal que $(u, v) \in E \ \forall \ u, v \in C, u \neq v$ (ou seja, tal que o subgrafo induzido por C é completo).

Definição 2 (k-tree e k-tree enraizada). [2] Uma k-tree é definida da seguinte forma recursiva:

- 1. Um grafo induzido por um k-clique é uma k-tree.
- 2. Se $T_k'=(V,E)$ é uma k-tree, $K\subseteq V$ é um k-clique e $v\not\in V$, então $T_k=(V\cup\{v\},E\cup\{(v,x)\mid x\in K\})$ é uma k-tree.

Uma k-tree enraizada é uma k-tree com um k-clique destacado $R=\{r_1,r_2,\cdots,r_k\}$ que é chamado de raiz da k-tree enraizada.

Definição 3 (k-tree de Rényi). [3] Uma k-tree de Rényi R_k é uma k-tree enraizada com n vértices rotulados em [1,n] e raiz $R=\{n-k+1,n-k+2,\cdots,n\}$.

Definição 4 (esqueleto de uma k-tree enraizada). [1]

Definição 5 (árvore característica). [1]

Capítulo 3

Conclusão

Ainda não foi escrita.

Referências Bibliográficas

- [1] Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi. Bijective linear time coding and decoding for k-trees. Theory of Computing Systems, 46:284–300, 2010.
- [2] Frank Harary and Edgar M. Palmer. On acyclic simplicial complexes. Mathematika, 15:115–122, 1968.
- [3] C. Rényi and A. Rényi. The prüfer code for k-trees. Combinatorial Theory and its Applications, pages 945–971, 1970.