Лабораторная работа 4.4.1

Изучение дифракционной решетки с помощью гониометра

Татаурова Юлия Романовна 8 февраля 2025 г.

Аннотация

В работы мы исследовали спектр ртутной лампы и определили спектральные характеристики дифракционной решетки.

Цель работы

Знакомство с работой и настройкой гониометра $\Gamma 5$, определение спектральных характеристик амплитудной решётки.

Оборудование и инструментальные погрешности

Оборудование: гониометр, дифракционная решётка, ртутная лампа.

Технические характеристики $\Gamma 5$:

Предел разрешения автоколлиматора: 30"

Предельная погрешность при измерении угла: 5"

Цена деления шкалы оптического микрометра: 1"

Число штрихов, приходящихся на мм решетки $N=500~{
m mmp/mm}$

Экспериментальная установка

Внешний вид гониометра представлен на 1. Коллиматор 3, столик 7 и алидада 17 со зрительной трубой 12 крепится на массивном основании 23. На столике 7 размещаются исследуемые объекты. Коллиматор закреплён неподвижно, а столик и алидада с трубой могут вращаться вокруг вертикальной оси. Ширину коллиматорной щели можно менять от 0 до 2-х мм при помощи микрометрического винта 2, высоту - от 0 до 20 мм - при помощи диафрагмы

с треугольным вырезом, надетой на щель. Винт 4 служит для настройки коллиматора на параллельный пучок. Зрительная труба 12 состоит из объектива 9 и окуляра 14 с автоколлимационным устройством 13. Фокусировка трубы производится винтом 11. Наклон коллиматора и зрительной трубы к горизонтально оси изменяется винтами 6 и 10 соответственно.

Гониметр требует тщательной **юстировки**: настройки а) зрительной трубы на бесконечность; b) поверхности столика и оптической оси трубы - перпендикулярно оси вращения прибора; c) коллиматора - на параллельный пучок лучей; d) оптической оси коллиматора - перпендикулярно оси вращения прибора.

(а) Вид слева

(b) Вид справа

Рис. 1: Внешний вид гониометра $\Gamma 5$

Теоретические сведения

Амплитудную решётку можно представить в виде непрозрачного экрана, в котором прорезано большое число N параллельных щелей — штрихов. Постоянство расстояний между штрихами d и шириной штриха b должно выдерживаться с большой точностью. Интенсивность дифрагированного света максимальна для углов φ_m , при которых волны, приходящие в точку наблюдения от всех щелей, оказываются в фазе:

$$d\sin\varphi_m = m\lambda,\tag{1}$$

где $m = 0, \pm 1, \pm 2, \dots$ - порядок спектра.

Для спектральных приборов важными характеристиками являются угловая дисперсия, разрешающая способность и дисперсионная область.

Разрешающая способность

Рис. 2: Дифракция световой волны на дифракционной решетке

$$R = \frac{\lambda}{\delta \lambda} \tag{2}$$

Характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda + \delta \lambda$.

Угловая дисперсия

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}$$
 (3)

По величине угловой дисперсии можно определить угловое расстояния между двумя близкими спектральными линиями.

Дисперсионная область

Предельная ширина спектрального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использован для анализа спектра.

Определим угловое расстояние между максимумом линии и её первым нулем — полуширину линии $\delta \varphi$. Пусть на решётку, состоящую из N штрихов, падает параллельный пучок света перпендикулярно её поверхности. Если N = 2, то две волны погасят друг друга, если между ними возникнет разность хода $\lambda/2$, если N = 3, то $\lambda/3$. В общем случае N штрихов для полуширины линии $\delta \varphi$ получаем уравнение, решение которого совмест- но с уравнением $1 \ \delta \varphi \ll 1$ при имеет вид:

$$d\sin(\varphi_m + \delta\varphi) = m\lambda + \frac{\lambda}{N} \tag{4}$$

$$\delta\varphi = \frac{\lambda}{Nd\cos\varphi_m} \tag{5}$$

Тогда с учетом 3 угловое расстояние между двумя линиями определяется как:

$$\Delta \varphi \approx D\delta \lambda = \frac{m}{d\cos\varphi_m} \delta \lambda \tag{6}$$

Для сравнения между собой различных спектральных приборов Релей предложил приравнять полуширину $\delta \varphi$ и расстояние между лини- ями $\Delta \varphi$. Критерий Релея удобен для

различных оценок. Согласно ему для дифракционных решёток разрешающая способность определяется порядком спектра и числом штрихов:

$$R = Nm \tag{7}$$

Результаты измерений и обработка данных

Цвет	φ_1	φ_{-1}	Длина волны λ , нм (эксп)	Длина волны λ , нм (теор)
K1	162°10′58"	197°50′58"	611.96	611.9
K2	162°50′58"	198°10′58"	623.03	623.0
Ж1	163°20′58"	196°40′58"	573.06	577.0
Ж2	163°10′58"	196°50′58"	578.64	579.1
Γ	165°50′58"	194°10′58"	488.94	491.6
С	167°30′58"	192°30′58"	432.33	435.8
Φ	168°20′58"	191°40′58"	403.88	404.7

Таблица 1: Угловые координаты спектральных линий ртути в первом порядке

$$\sigma_{\lambda} = \sigma_{\varphi} \cos \varphi \cdot d \approx 0.05$$
 нм

Рис. 3: Зависимость синуса угла спектральных линий в ± 1 порядках от длины волны

По графику и опираясь на формулу 1 определим период решетки $d=1984.8\pm0.2$ нм; $\sigma_d=\sigma_\varphi\cdot\lambda\frac{\cos\varphi}{\sin^2\varphi}=0.2$ нм.

Рис. 4: Зависимость угловой дисперсии желтого спектра от его порядка Угловая дисперсия расчитывается по формуле 3:

$$D = \frac{k}{\cos \varphi},$$

где k - тангенс угла наклона графика 3

$$\sigma_D = \sqrt{\left(\frac{\sigma_k}{\cos\varphi}\right)^2 + \left(k\frac{\sin\varphi}{\cos^2\varphi}\right)^2}$$

Порядок т	-2	-1	1	2
Угол	235°30′58"	196°50′58"	163°10′58"	124°40′58"
D, сек/ангстр	17.8 ± 0.8	10.5 ± 0.5	10.5 ± 0.5	17.7 ± 0.8

Таблица 2: Угловые координаты и угловая дисперсия желтого спектра в разных порядках

Рис. 5: Определение разрешающей способности для желтого дублета

Для качественного определения аппаратной разрешающей способности R оценим на глаз, во сколько раз расстояние между центрами желтых линий больше полуширины одной линии: $R \approx 12$.

Разрешающую способность можно оценить как $R = \frac{\lambda_y}{\delta \lambda_y} = \frac{\lambda_y}{d sin \delta \varphi_y} \approx 1990$, где $\delta \varphi_y$ - возьмем как предел разрешения автоколлиматора. С учетом этого число эффективно работающих штрихов решетки и ее эффективный размер:

$$N = \frac{R}{m} = 1990 \tag{8}$$

$$l = Nd \approx 4 \text{ MM}$$
 (9)

Определим при каких порядках спектра, при котором фиолетовая линия наложится на желтую. $m_y \lambda_y = m_p \lambda_p$. Отсюда получаем $m_y = 5, m_p = 7$.

Вывод

Определили период и спектральные характеристики дифракционной решетки. Вычисленный период решетки: $d=1984.8\pm0.2$ нм, что близко к данному (2000 нм).

Была получена зависимость угловой дисперсии от порядка желтого спектра и так же близка к теоретической (4).

Определить разрешающую способность точно не удалось, а измерение "на глаз"не дало адекватных результатов. Вычисленная по фотографии разрешающая способность решетки получилась порядка 10 усл.ед, в то время как ее значение обычно порядка 10^3 усд.ед.