Francesca Cuomo e Marco Polverini

Evoluzione delle architetture di rete e dei servizi di telecomunicazione

Parte 1: Fondamenti

Slide adattate da:

J. Kurose, K. Ross: "Reti di calcolatori e Internet (4a edizione)". Pearson Addison Wesley

Introduzione

Obiettivi

- introdurre la terminologia e i concetti di base
- Internet come fonte di esempi

Panoramica

- cos'è Internet ?
- cos'è un protocollo ?
- host, reti di accesso, mezzi trasmissivi
- commutazione di circuito e commutazione di pacchetto
- struttura di Internet
- prestazioni: ritardi, perdite e throughput

Che cos'è Internet?

server

Portatile

Telefono cellulare

Punti di accesso

Collegam. cablato

- Host = sistema terminale
- Applicazioni di rete
- Collegamenti
 - rame, fibra ottica, onde elettromagnetiche, satellite
 - Frequenza di trasmissione = ampiezza di banda
- Router = instrada i pacchetti verso la loro destinazione finale

Che cos'è Internet?

- Un protocollo definisce il formato e l'ordine dei messaggi scambiati fra due o più entità in comunicazione
 - es.: TCP, IP, HTTP, Skype, Ethernet
- Internet: "rete delle reti"
 - struttura gerarchica
 - Internet pubblica e intranet private
- Standard Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Che cos'è Internet?

- Infrastruttura di comunicazione per applicazioni distribuite
 - Web, VoIP, e-mail, giochi, ecommerce, condivisione di file
- Servizi forniti alle applicazioni
 - servizio affidabile dalla sorgente alla destinazione
 - Servizio "best effort" (non affidabile) senza connessione

Cos'è un protocollo ?

Protocolli umani:

- "Che ore sono?"
- "Ho una domanda"
- Presentazioni
- ... invio di specifici messaggi
- ... quando il messaggio è ricevuto, vengono intraprese specifiche azioni, o si verificano altri eventi

Protocolli di rete:

- Dispositivi hardware e software, non umani
- Tutta l'attività di comunicazione in Internet è governata dai protocolli

Cos'è un protocollo ?

Protocollo umano e protocollo di rete

D: Conoscete altri protocolli umani?

Struttura di rete

- ai confini della rete
 - applicazioni
 - sistemi terminali
- reti, dispositivi fisici
 - collegamenti cablati
 - wireless
- al centro della rete
 - router interconnessi
 - la rete delle reti

Ai confini della rete

sistemi terminali (host)

- fanno girare programmi applicativi
 - es.: Web, e-mail
- situati all'estremità di Internet peer to peer

architettura client/server

- L'host client richiede e riceve un servizio da un programma server in esecuzione su un altro terminale
 - es.: browser/server Web; client/server e-mail

architettura peer to peer

- uso limitato (o inesistente) di server dedicati
 - es.: Skype, Bit Torrent

Reti d'accesso e mezzi fisici

- D: Come collegare sistemi terminali e router esterni?
- reti di accesso residenziale
- reti di accesso aziendale (università, istituzioni, aziende)...
- reti di accesso mobile

Ricordate:

- ampiezza di banda (bit al secondo)?
- condivise o dedicate?

Accesso residenziale: punto-punto

Modem dial-up

- fino a 56 Kbps di accesso diretto al router (ma spesso è inferiore)
- non è possibile "navigare" e telefonare allo stesso momento

DSL: digital subscriber line

- installazione: in genere da una società telefonica
- ~ 1 Mbps in upstream
- ~ 8 Mbps in downstream
- linea dedicata

Accesso a Larga Banda di rete fissa

Sistemi XDSL

Family	ITU	Name	Ratified	Maximum Speed capabilities
ADSL	G.992.1	G.dmt	1999	7 Mbps down 800 kbps up
ADSL2	G.992.3	G.dmt.bis	2002	8 Mb/s down 1 Mbps up
ADSL2plus	G.992.5	ADSL2plus	2003	24 Mbps down 1 Mbps up
ADSL2-RE	G.992.3	Reach Extended	2003	8 Mbps down 1 Mbps up
SHDSL (updated 2003)	G.991.2	G.SHDSL	2003	5.6 Mbps up/down
VDSL	G.993.1	Very-high-data-rate DSL	2004	55 Mbps down 15 Mbps up
VDSL2 -12 MHz long reach	G.993.2	Very-high-data-rate DSL 2	2005	55 Mbps down 30 Mbps up
VDSL2 - 30 MHz Short reach	G.993.2	Very-high-data-rate DSL 2	2005	100 Mbps up/down

Evoluzione della copertura a Larga Banda di rete fissa

Rete di Distribuzione Telefonica

Obiettivo

 Trasporto e trattamento del segnale dalla centrale (SL) all'apparecchio del cliente

E' costituita da

- Portanti fisici
- Attestazioni e terminazioni
- Apparati trasmissivi
- Altri dispostivi

Si suddivide nelle seguenti sezioni

- Rete Primaria (~ 1 km)
- Rete Secondaria (~ 200 m)
- Raccordo (~ 50 m)

Architetture ibride rame-fibra (FTTx)

Architetture FTTx

Concetti acquisiti (1)

- Protocollo di rete
- Struttura generale di una rete
 - Sezione di accesso
 - Sezione dorsale (Backbone)
- Tipologie di reti di accesso
 - Fisse (wired)
 - Mobili (wireless)
- Tipologie di risorse
 - Risorse dedicate
 - Risorse condivise
- Banda di accesso

Accesso aziendale: reti locali (LAN)

Una LAN collega i sistemi terminali di aziende e università ad un router

Ethernet

- 10 Mb, 100 Mb, 1 Giga,10 Giga
- Sistemi terminali collegati mediante uno switch

Accesso wireless

- Una rete condivisa d'accesso wireless collega i sistemi terminali al router
 - Access Point (AP)
- Wireless LAN
 - 802.11b/g (WiFi): 11 o 54 Mbps
- Rete d'accesso wireless geografica
 - gestita da un provider di telecomunicazioni
 - ~ 1 Mbps per i sistemi cellulari (HSDPA)...
 - WiMax per aree più grandi

Reti domestiche

- Componenti di una tipica rete domestica
 - DSL o modem via cavo
 - router/firewall/NAT
 - Ethernet
 - Punto d'accesso wireless

Mezzi trasmissivi

Mezzo fisico

 ciò che sta tra il trasmittente e il ricevente

Mezzi guidati

 i segnali si propagano in un mezzo fisico: fibra ottica, filo di rame o cavo coassiale

Mezzi a onda libera

 i segnali si propagano nell'atmosfera e nello spazio esterno

Twisted Pair (TP)

- due fili di rame distinti
 - Categoria 3: tradizionale cavo telefonico, 10 Mbps Ethernet
 - Categoria 5:100 Mbps Ethernet

Mezzi trasmissivi: cavo coassiale e fibra ottica

Cavo coassiale

- due conduttori in rame concentrici
- bidirezionale
- banda base:
 - singolo canale sul cavo
 - legacy Ethernet
- banda larga

Fibra ottica

- Mezzo sottile e flessibile che conduce impulsi di luce
- Alta frequenze trasmissiva:
 - Elevata velocità di trasmissione punto-punto (da 10 a 100 Gps)
- Basso tasso di errore, immune all'interferenza elettromagnetica

Mezzi trasmissivi: canali radio

- Trasportano segnali nello spettro elettromagnetico
- non richiedono l'installazione fisica di cavi
- bidirezionali
- effetti dell'ambiente di propagazione:
 - riflessione
 - ostruzione da parte di ostacoli
 - interferenza

- Tipi di canali radio
 - Microonde terrestri
 - es.: canali fino a 45 Mbps
 - LAN (es.: Wifi)
 - 11 Mbps, 54 Mbps
 - Wide-area (es.: cellulari)
 - es.: 3G: ~ 1 Mbps
 - Satellitari
 - canali fino a 45 Mbps (o sottomultipli)
 - ritardo punto-punto di 270 msec
 - geostazionari/a bassa quota

Spettro elettromagnetico

Sistemi a microonde

Il nucleo della rete

- Rete magliata di router che interconnettono i sistemi terminali
- Come vengono trasferiti i dati attraverso la rete ?
 - Commutazione di circuito: circuito dedicato per l'intera durata della sessione (rete telefonica)
 - Commutazione di pacchetto: i messaggi di una sessione utilizzano le risorse su richiesta, e di conseguenza potrebbero dover attendere per accedere a un collegamento

Commutazione di circuito (Circuit Switching - CS)

- Risorse punto-punto riservate alla "chiamata"
 - ampiezza di banda, capacità del commutatore
 - risorse dedicate: non c'è condivisione
 - prestazioni da circuito (garantite)
 - necessaria l'impostazione della chiamata

Commutazione di circuito

- Risorse di rete (banda) suddivise in "pezzi"
- ciascun "pezzo" viene allocato ai vari collegamenti
- le risorse rimangono inattive se non utilizzate (non c'è condivisione)

- Suddivisione della banda in "pezzi"
 - divisione di frequenza
 - divisione di tempo

Commutazione di circuito: FDM e TDM

Un esempio numerico

- Quanto tempo occorre per inviare un file di 640000 bit dall'host A all'host B su una rete a commutazione di circuito?
 - Tutti i collegamenti presentano un bit rate di 2,048 Mbps
 - Ciascun collegamento utilizza TDM con 32 slot/sec
 - Si impiegano 500 ms per stabilire un circuito punto-punto
- Provate a calcolarlo

Concetti acquisiti (2)

- Topologia del backbone
 - stella
 - maglia
 - gerarchica
- Commutazione di circuito
 - Canale di comunicazione dedicato alla sessione
 - Multiplazione statica (es. TDM, FDM)
 - Sessione composta da tre fasi
 - Protocollo di segnalazione
 - Efficienza bassa
 - Solo contese di preassegnazione
 - Ritardo di trasferimento basso

Commutazione di pacchetto (Packet Switching - PS)

- Il flusso di dati puntopunto viene suddiviso in pacchetti
 - I pacchetti condividono le risorse di rete
 - Ciascun pacchetto utilizza completamente il canale
 - Le risorse vengono usate a seconda delle necessità
 - MULTIPLAZIONE STATISTICA

Larghezza di benda suddivisa in pezzi"
Allocuzione dedicata
Risonse rivervate

Contesa per le risorse

- La richiesta di risorse può eccedere il quantitativo disponibile
- congestione: accodamento dei pacchetti, attesa per l'utilizzo del collegamento
- store and forward: il commutatore deve ricevere l'intero pacchetto prima di poter cominciare a trasmettere sul collegamento in uscita

Multiplazione statistica

- La sequenza dei pacchetti A e B non segue uno schema prefissato Condivisione di risorse su richiesta: multiplazione statistica
- TDM: ciascun host ottiene uno slot di tempo dedicato unicamente a quella connessione.

Store-and-forward

- Occorrono L/R secondi per trasmettere un pacchetto di L bit su un collegamento in uscita da R bps
- store and forward
 - l'intero pacchetto deve arrivare al router prima che questo lo trasmetta sul link successivo
- ritardo = 3L/R (supponendo che il ritardo di propagazione sia zero)
- Occore approfondire

Esempio:

- L = 7,5 Mbit
- R = 1,5 Mbps
- ritardo = 15 sec

Confronto CS e PS

La commutazione di pacchetto consente a più utenti di usare la rete

- 1 collegamento da 1 Mpbs
- Ciascun utente:
 - 100 kpbs quando è "attivo"
 - attivo per il 10% del tempo
- Commutazione di circuito:
 - 10 utenti
- commutazione di pacchetto:
 - con 35 utenti, la probabilità di averne > 10 attivi è inferiore allo 0,0004

D: come è stato ottenuto il valore 0,0004?

Confronto CS e PS

La commutazione di pacchetto è la "scelta vincente?"

- Ottima per i dati a "burst"
 - Condivisione delle risorse
 - Più semplice, non necessita l'impostazione della chiamata
- Eccessiva congestione: ritardo e perdita di pacchetti
 - Sono necessari protocolli per il trasferimento affidabile dei dati e per il controllo della congestione
- D: Come ottenere un comportamento simile al circuito ?
 - è necessario fornire garanzie di larghezza di banda per le applicazioni audio/video
 - è ancora un problema irrisolto

Struttura di Internet: rete di reti

- Fondamentalmente gerarchica
 - al centro: "ISP di livello 1"
 - Verizon, Sprint, AT&T, Cable&Wireless
 - copertura nazionale/internazionale
 - Comunicano tra di loro come "pari"

Gli ISP di livello 1 sono direttamente connessi a ciascuno degli altri ISP di livello 1

ISP di livello 1 - Un esempio: Sprint

Struttura di Internet

- ISP di livello 2: ISP più piccoli (nazionali o distrettuali)
 - Si può connettere solo al alcuni ISP di livello 1, e possibilmente ad altri ISP di livello 2

Struttura di Internet

ISP di livello 3 e ISP locali (ISP di accesso)

Reti "ultimo salto" (last hop network), le più vicine ai sistemi terminali

Struttura di Internet

Un pacchetto attraversa un numero anche molto elevato di reti

Ritardi e perdita

- I pacchetti si accodano nei buffer dei router
- Se il tasso di arrivo dei pacchetti eccede la capacità del collegamento i pacchetti si accodano, in attesa del proprio turno

Quattro cause di ritardo per i pacchetti

- 1. Ritardo di elaborazione del nodo
- controllo errori sui bit
- determinazione del canale di uscita (instradamento)

- 2. Ritardo di accodamento
- attesa di trasmissione
- livello di congestione del router

Ritardo nelle reti PS

- 3. Ritardo di trasmissione (L/R)
- R=frequenza di trasmissione del collegamento (in bps)
- L=lunghezza del pacchetto (in bit)
- Ritardo di trasmissione = L/R

- 4. Ritardo di propagazione (d/s)
- d = lunghezza del collegamento fisico
- s = velocità di propagazione del collegamento (~2×10⁸ m/sec)
- Ritardo di propagazione = d/s

L'analogia del casello autostradale

- Le automobili viaggiano (ossia "si propagano") alla velocità di 100 km/h
- Il casello serve (ossia "trasmette") un'auto ogni 12 secondi
- auto~bit; colonna ~ pacchetto
- D: quanto tempo occorre perché le 10 auto si trovino di fronte al secondo casello?

- Tempo richiesto al casello per trasmettere l'intera colonna sull'autostrada = 12*10 = 120 sec
- Tempo richiesto a un'auto per viaggiare dall'uscita di un casello fino al casello successivo: 100km/(100km/h)= 1 hr
- R: 62 minuti

L'analogia del casello autostradale

- Le auto ora "si propagano" alla velocità di 1000 km/h
- Al casello adesso occorre 1 min per servire ciascuna auto
- D: le prime auto arriveranno al secondo casello prima che le ultime auto della colonna lascino il primo?
- Sì! Dopo 7 minuti, la prima auto sarà al secondo casello, e tre auto saranno ancora in coda davanti al primo casello.
- Il primo bit di un pacchetto può arrivare al secondo router prima che il pacchetto sia stato interamente trasmesso dal primo router

Ritardo di link

$$d_{\rm link} = d_{\rm elab} + d_{\rm queue} + d_{\rm trasm} + d_{\rm prop}$$

- d_{elab} = ritardo di elaborazione (processing delay)
 - in genere pochi microsecondi, o anche meno
- d_{queue} = ritardo di accodamento (queuing delay)
 - dipende dalla congestione
- d_{trasm} = ritardo di trasmissione (transmission delay)
 - = L/R, significativo sui collegamenti a bassa velocità
- d_{prop} = ritardo di propagazione (propagation delay)
 - da pochi microsecondi a centinaia di millisecondi

Ritardo di accodamento

- L = lunghezza del pacchetto (bit)
- a = tasso medio di arrivo dei pacchetti

La/R = intensità di traffico

- L·a/R ~ 0: ritardo molto limitato
- L·a/R -> 1: il ritardo cresce in modo non lineare
- L·a/R > 1: più "lavoro" in arrivo di quanto possa essere effettivamente svolto, ritardo medio infinito

Perdita di pacchetti

- Una coda (detta anche buffer) ha capacità finita
 - quando il pacchetto trova la coda piena, viene scartato (e quindi va perso)
 - un pacchetto perso può essere ritrasmesso dal nodo precedente, dal sistema terminale che lo ha generato, o non essere ritrasmesso affatto

Throughput

- Frequenza (bit/unità di tempo) alla quale i bit sono trasferiti tra mittente e ricevente
 - istantaneo: in un determinato istante
 - medio: in un periodo di tempo più lungo

Throughput (segue)

 $R_s < R_c$ Qual è il throughput medio end to end?

 $R_s > R_c$ Qual è il throughput medio end to end?

Collo di bottiglia (Bottleneck)

Collegamento su un percorso punto-punto che vincola un throughput end to end

Throughput: scenario Internet

- Throughput end to end per ciascuna connessione
 - $= \min(R_c, R_s, R/10)$
- In pratica R_c o R_s è spesso nel collo di bottiglia

10 collegamenti (equamente) condivisi collegamento collo di bottiglia R bit/sec

Elementi architetturali di una Computer Network

- Trasmissioni digitali
- Scambio di frames tra elementi di rete adiacenti
 - Framing e error control
- Medium access control (MAC) regola l'accesso ai mezzi condivisi
- Indirizzi identificano il punto di accesso alla rete (interfaccia)
- Trasferimento dei pacchetti in rete
- Calcolo distribuito delle tabelle di routing

Elementi architetturali di una Computer Network

- Congestion control all'interno della rete
- Internetworking tra reti diverse
- Segmentazione e riassemblaggio dei messaggi in pacchetti all'ingresso e all'uscita da una rete
- Protocolli di trasporto end-to-end per comunicazioni tra processi
- Applicazioni che utilizzano le informazioni che attraversano la rete
- Intelligenza ai bordi della rete