Assignment 2

1. Order the following functions by growth rate (4 points)

 $\begin{array}{l} N \\ \sqrt{N} \\ N^{1.5} \\ N^2 \\ NlogN \\ NloglogN \\ NloglogN \\ Nlog^2N \end{array}$

 $Nlog(N^2)$

2/N

 2^{N}

37

 $N^2 log N$

 N^3

Indicate which of the functions grow at the same rate.

2/N, 37, \sqrt{N} , N, N log log N, N log N, N log(N²), N log²N, N^{1.5}, N², N² log N, N³, 2^{N/2}, 2^N.

 $N \log N$ and $N \log (N^2)$ grow at the same rate.

- 2. For each of the following code fragments give running time analysis (Big Oh) (9 points)
 - a. sum =0; for (i=0; i < n ; i++) sum++;

The running time is O(N).

b. sum = 0; for(i = 0; i < n; i++) for(j = 0; j < i; j++) sum++;The running time is $O(N^2)$.

c. sum =0; for(i = 0; i < n; i++) for(j = 0; j < i *i; j++) for(k = 0; k<j; k++) sum++; j can be as large as i^2 , which could be as large as N^2 . k can be as large as j, which is N^2 . The running time is thus proportional to $N \cdot N^2 \cdot N^2$, which is $O(N^5)$.

3. Give efficient algorithm along with running time analysis to find the minimum subsequence sum (Assume the minimum sum is either 0 or a negative value) (5 points)

```
public static int minSubSum( int [] a) {
    int minSum = 0, this Sum =0;

    for ( int j = 0; j < a.length; j++)
    {
        thisSum += a[j];
        if(thisSum < minSum)
            minSum = thisSum;
        else if(thisSum > 0)
            thisSum = 0;
    }
    return minSum;
}
```