1 Vectors in \mathbb{R}^n

A vector is characterized by 2 quantities: *length* and *direction*, and is represented by a directed line segment. But they are just 2 special types of vectors.

1.1 Vectors in the Plane

A vector in the plane is represented geometrically by a directed line segment whose initial point is the origin and whose terminal point is the point (x_1, x_2) . This vector is represented by the same ordered pair used to represent its terminal point

$$\mathbf{x} = (x_1, x_2)$$

- x_1, x_2 : the **components** of the vector \mathbf{x}
- $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1$ and $u_2 = v_2$

1.2 Vectors in \mathbb{R}^n

A vector in *n*-space is represented by an **ordered** *n*-**tuple**. The set of all *n*-tuple is called *n*-**space** and is denoted by \mathbb{R}^n .

Properties of Vectors Addition and Scalar Multiplication in \mathbb{R}^n

- 1. $\mathbf{u} + \mathbf{v}$ is a vector in \mathbb{R}^n .
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (u + v) + w = (u + (v + w))
- 4. u + 0 = u
- 5. u + (-u) = 0
- 6. $c\mathbf{u}$ is a vector in \mathbb{R}^n .
- 7. $c\mathbf{u} + \mathbf{v} = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{v}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. $1(\mathbf{u}) = \mathbf{u}$

THEOREM 4.3 Properties of Additive Identity and Additive Inverse

- 1. $\mathbf{v} + \mathbf{u} = \mathbf{v}$, then $\mathbf{u} = 0$.
- 2. $\mathbf{v} + \mathbf{u} = \mathbf{0}$, then $\mathbf{u} = \mathbf{v}$.
- 3. 0v = 0 (scalar)
- 4. c0 = 0 (vector 0)
- 5. cv = 0, then c = 0 or v = 0.
- 6. -(-v) = v

Writing a Vector as a Linear Combination of Other Vectors

Vector \mathbf{x} can be written as the sum of scalar multiples of n other vectors v_1, v_2, \cdots, v_n

$$x = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

then the vector **x** is called a **linear combination** of the vectors v_1, v_2, \cdots, v_n

2 Vector Spaces

Any set that satisfies these aforementioned properties (or axioms) is called **vector space**, and the objects in the set are called **vectors**.

Definition of Vector Space. Let V be a set on which 2 operations (vector addition and scalar multiplication) are defined. $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.

V is called a **vector space** if the listed axioms are satisfied for every \mathbf{u} , \mathbf{v} , \mathbf{w} and real number c, d:

1.
$$\mathbf{u} + \mathbf{v}$$
 in V

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$(u + v) + w = (u + (v + w))$$

4.
$$\mathbf{u} + \mathbf{0} = \mathbf{u} : V \text{ has a zero vector } \mathbf{0}$$

5.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
: For every \mathbf{u} in V , there exists $-u$.

6.
$$c\mathbf{u}$$
 in V

7.
$$c\mathbf{u} + \mathbf{v} = c\mathbf{u} + c\mathbf{v}$$

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{v}$$

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

10.
$$1(\mathbf{u}) = \mathbf{u}$$

REMARK. A vector space consists of 4 entities:

1. a set of vectors

2. a set of scalars

3. 2 operations

Example 3.

1. The set of all 2×3 matrices with the operations of matrix addition and scalar multiplication is a vector space.

2. The set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ with the operations of matrix addition and scalar multiplication is a vector space.

Example. The Vector Space of All Polynomials of Degree 2 or Less

Let P_2 be the set of all polynomials of the form

$$p(x) = a_2 x^2 + a_1 x + a_0$$

with the usual operations of polynomial addition and scalar multiplication. P_2 is a vector space. This can be extended to P_n .

Summary of Important Vector Spaces.

R = set of all real numbers

 R^2 = set of all ordered pairs

 $R^3 = \text{set of all ordered triples}$

 $R^n = \text{set of all n-tuples}$

 $C(-\infty,\infty)$ = set of all continuous functions defined on the real number line

 $C[a,b] = \mathrm{set}$ of all continuous functions defined on a closed interval [a,b]

P = set of all polynomials

 $P_n = \text{set of all polynomials of degree} \leq n$

 $M_{m,n} = \text{set of all } m \times n \text{matrices}$

 $M_{n,n} = \text{set of all square matrices}$

THEOREM 4.4 Properties of Scalar Multiplication

1.
$$0\mathbf{v} = \mathbf{0}$$
 2. $c\mathbf{0} = \mathbf{0}$

3. If
$$c\mathbf{v} = \mathbf{0}$$
, then $c = 0$ or $\mathbf{v} = \mathbf{0}$ 4. $(-1)\mathbf{v} = -\mathbf{v}$

Example.

The Set of Integer is Not a Vector Space.

The Set of Second-Degree Polynomials Is Not a Vector Space.

$$p(x) = x^2$$
, $q(x) = -x^2 + x + 1 \implies p(x) + q(x) \notin V$

3 Subspaces of Vector Spaces

Definition of Subspace of a Vector Space.

A non-empty subset W of a vector space V is called a **subspace** of V if W is a vector space under the operations of addition and scalar multiplication defined in V.

Example 1. The set $W = (x_1, 0, x_3) : x_1$ and $x_3 \in \mathbb{R}$ is a subspace of \mathbb{R}^e with the standard operations. Graphically, it's the xz-plane.

Test for a subspace. If W is a non-empty subset of V, then W is a subspace of V if and only if

- 1. $\mathbf{u} + \mathbf{v} \in W$
- 2. $c\mathbf{u} \in W$

The 2 trivial subspaces are the **zero subspace** (contain only the zero vector), and the space itself. The subspaces other than those 2 are **proper** (or nontrivial) subspaces.

Example. The Set of Singular Matrices Is Not a Subspace of $M_{n,n}$.

To prove, we need to show that W is empty, W is not closed under addition, or W is not closed under scalar multiplication. For this particular set, W is not closed under addition

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \implies A + B \notin W$$

Note. Sequences of subspaces nested within each other

$$P_o \subset P_1 \subset \cdots \subset P_n$$

Example 5. Subspaces of Functions (Calculus)

Let W_5 be the vector space of all functions defined n [0, 1], and let

- $W_1 = \text{set of all polynominal functions defined on the interval } [0,1]$
- $W_2 = \text{set of all functions that are differentiable on } [0, 1]$
- $W_3 = \text{set of all functions that are continuous on } [0, 1]$
- $W_4 = \text{set of all functions that are integrable on } [0, 1]$

Show that $W_1 \subset W_2 \subset \cdots \subset W_5$, and $W_i \subset W_j$ for $i \leq j$.

The Intersection of 2 Subspaces Is a Subspace. If V and W are both subspaces of a vector space U, then $V \cap W$ is also a subspace of U.

3.1 Subspace of \mathbb{R}^n

A characteristic of \mathbb{R}^2 . If $W \subset \mathbb{R}^2$, then it is a subspace if and only if one of the three possibilities listed below is true.

- 1. W consists of the single point (0,0).
- 2. W consists of all points on a line that pass through the origin.
- 3. W consists of all of R^4 .

Example 7. The Set of all points on the circle $x^2 + y^2 = 1$ is not a subspace. Take the sum a = (0, 1) and b(1, 0), then the Set is not closed under addition.

REMARK. Another way: a subspace of \mathbb{R}^2 must contain (0,0).

3.2 Subspaces of \mathbb{R}^3

Subspaces of \mathbb{R}^3 . $W \subset \mathbb{R}^3$ is a subspace of \mathbb{R}^3 (with the standard operations) if and only if it has one of the forms listed below.

- 1. W consists of the single point (0,0).
- 2. W consists of all points on a line that pass through the origin.
- 3. W consists of all points on a plane that pass through the origin.
- 4. W consists of all of \mathbb{R}^3 .

4 Spanning Sets and Linear Independence

Def. Linear Combination of Vectors.

A vector \mathbf{v} in a vector space V is called a **linear combination** of the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ in V if \mathbf{v} can be written in the form

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k,$$

where c_1, c_2, \ldots, c_k are scalars.

Example 1.

(a) For the set of vectors in \mathbb{R}^3 ,

$$S = \overbrace{(1,3,1)}^{v_1}, \overbrace{(0,1,2)}^{v_2}, \overbrace{(1,0,-5)}^{v_3}$$

 \mathbf{v}_1 is a linear combination of \mathbf{v}_2 and \mathbf{v}_3 since $\mathbf{v}_1 = 3\mathbf{v}_2 + \mathbf{v}_3$.

(b) For the set of vectors in $M_{2,2}$, (page 226)

4.1 Finding a Linear Combination

Def. Spanning Set of a Vector Space.

Let $S = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. S is called a **spanning set** of V if *every* vector in V can be written as a linear combination of vectors in S. (S spans V)

Example. S = (1,0,0), (0,1,0), (0,0,1) spans \mathbb{R}^3 because any vector $\mathbf{u} = (u_1, u_2, u_3)$ can be written as $\mathbf{u} = u_1(1,0,0) + u_2(0,1,0) + u_3(0,0,1)$

Example. $S = 1, x, x^2$ spans P_2 because any polynominal function $p(x) = a + bx + cx^2$ in P_2 can be written as

$$p(x) = a(1) + b(x) + c(x^2)$$

These above 2 spanning sets are called **standard spanning sets** of \mathbb{R}^3 and \mathbb{P}_2 , respectively.

A nonstandard Spanning Set of R^3 .

$$S_1 = (1, 2, 3), (0, 1, 2), (-2, 0, 1)$$

$$\begin{cases}
c_1 & -2c_3 = u_1 \\
2c_1 + c_2 & = u_2 \\
3c_1 + 2c_2 + c_3 = u_3
\end{cases}$$

Since the coefficient matrix of the system has a nonzero determinant, this system has a unique solution.

A Set that Does Not Span \mathbb{R}^3

$$S_2 = (1, 2, 3), (0, 1, 2), (-1, 0, 1)$$

does not span R^3 since $\mathbf{w} = (1, -2, 2)$ can not be expressed as a linear combination of these vectors.

Consider these 2 aforementioned sets S_1, S_2 . The vectors in S_2 lie in a common plane while those in S_1 do not.

 $S_1 = \{(1, 2, 3), (0, 1, 2), (-2, 0, 1)\}$ The vectors in S_1 do not lie in a common plane.

 $S_2 = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$ The vectors in S_2 lie in a common plane.

Although S_2 does not span R^3 , it does span a subspace of R^3 - namely, the plane in which the 3 vectors of S_2 lie. This subspace is called the **span of** S_2 .

Def. The Span of a Set. If $S = \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is a set of vectors in V, then the **span of** S is the set of all linear combinations of the vectors in S.

$$span(S) = span(v_1, v_2, \dots, v_k) = \{c_1v_1 + c_2v_2 + \dots + c_kv_k : c_1, c_2, \dots, c_k \in \mathbb{R}\}$$

5

If span(S) = V: V is **spanned** by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, or S **spans** V.

THEOREM 4.7 Span(S) Is a Subspace of V

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of vectors in V, then $\mathrm{span}(S)$ is a subspace of V. Moreover, $\mathrm{span}(S)$ is the smallest subspace of V that contains S, in the sense that every other subspace of V that contains S must contain $\mathrm{span}(S)$.

4.2 Linear Dependence and Linear Independence

The set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in V is called **linearly independent** if the vector equation

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$$

has only the trivial solutions. If there are also nontrivial solutions, then S is linearly dependent.

4.2.1 Testing for Linear Independence and Linear Dependence

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of vectors n a vector space V. To determine whether S is linearly independent or not:

1. Write a homogeneous system of equations in the variables c_1, c_2, \ldots, c_k

$$\{c_1v_1+c_2v_2+\cdots+c_kv_k\}$$

- 2. Determine whether the matrix of k column vectors v_1, v_2, \ldots, v_k has a nonzero determinant or not
- 3. If yes, it is linearly independent. Otherwise, linearly dependent.

Example.(page 233)

THEOREM 4.8 A Property of Linearly Dependent Sets A set S containing ≥ 2 vectors is linearly dependent if and only if at least 1 vector v_j can be written as a linear combination of the other ones.

If S is linearly dependent, assuming $c_1 \neq 0$, then you can solve the equation for v_1 and write v_1 as a linear combination of the remaining other ones. In other words, v_1 depends on the other vectors on the set.

$$v_1 = -\frac{c_2}{c_1}v_2 - \frac{c_3}{c_1}v_3 - \dots - \frac{c_k}{c_1}v_k$$

Corolarry. 2 vectors \mathbf{u} and \mathbf{v} in V are linearly dependent if and only if one is a scalar multiple of the other.

5 Basis and Dimension

Def. Basis

A set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ in V is called a **basis** for V if

- 1. S spans V.
- 2. S is linearly independent.

REMARK. A basis has 2 features. It must have *enough vectors* to span V, but *not so many vectors* that 1 one them could even be written as a linear combination of the others in S.

If V has a basis consisting of a finite number of vectors, then V is **finite dimesional**. Otherwise, like the vector space P of all polynominals, is **infinite dimesional**.

Example 1. The Standard Basis for \mathbb{R}^3

$$S = \{(1,0,0), (0,1,0), (0,0,1)\}$$

- $S \operatorname{span} \mathbb{R}^3$.
- S is linear independent because the vector equation $c_1(1,0,0) + c_2(0,1,0) + c_3(0,0,1) = 0$ has only the trivial solution. Thus, S is a basis for \mathbb{R}^3 .

That basis is called the **standard basis** for \mathbb{R}^3 . That is, the vectors

$$\mathbf{e}_1 = (1, 0, \dots, 0)$$
 $\mathbf{e}_2 = (0, 1, \dots, 0)$
 \vdots
 $\mathbf{e}_n = (0, 0, \dots, 1)$

form the **standard basis** for \mathbb{R}^n .

Standard Basis for P_n . $S = \{1, x, x^2, \dots, x^n\}$

$$\textbf{Standart Basis for } M_{2,2}\textbf{. } S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

THEOREM 4.9 Uniqueness of Basis Representation If S is a basis for V, every vectors in V can be written in **only one** way as a linear combination of vectors of S.

Now, these are 2 important theorems concerning bases.

THEOREM 4.10 Bases and Linear Dependence

If S is a set of n vectors and is a basis for V, then every set containing $\geq n$ vectors in V is **linearly** dependent.

THEOREM 4.11 Number of Vectors in a Basis If V has one basis with n vectors, then every basis for V has n vectors.

5.1 The Dimension of a Vector Space

Def. Dimension of a Vector Space.

If V has a basis with n vectors, then n is the **dimension** of V, denoted by $\dim(V) = n$.

If
$$V = \{0\}$$
, $\dim(V) = 0$.

- 1. $\dim(\mathbb{R}^n) = n$.
- 2. $\dim(P_n) = n + 1$.
- 3. $\dim(M_{m,n}) = mn$.

If W is V's subspace, W is finite dimensional and $\dim(W) \leq n$.

Example. 247

Basis Tests in an n-Dimensional Space. Let V be a vector space of dimension n.

- 1. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set of vectors in $V \implies S$ is a basis for V.
- 2. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans $V \implies S$ is a basis for V.

6 Rank of a Matrix and System of Linear of Equations

Def.Row Space and Column Space of a Matrix. Let A be a $m \times n$ matrix.

- 1. The row space of A is the subspace of \mathbb{R}^n spanned by the row vectors of A.
- 2. The column space of A is the subspace of \mathbb{R}^m spanned by the column vectors of A.

Recall that 2 matrices are **row-equivalent** if one can be obtained from the other by elementary row operations.

THEOREM 4.13 Row-Equivalent Matrices Have the Same Row Space.

If $A_{m \times n}$ is row-equivalent to $B_{m \times n}$, then they have the same row space.

REMARK. The row space of a matrix does not change by elementary row operations. However, it can **change** the *column space*.

Basis for the Row Space of a Matrix. If A is row-equivalent to a matrix B in row-echelon form, then the nonzero row vectors of B form a basis for A's row space.

Suppose you are ask to find a basis for the subspace spanned by $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

- \bullet Form a matrix A consisting B's vectors as **row vectors**.
- \bullet Rewrite A in **row-echelon** form.

Find a Basis for the Column Space. There are 2 options. On the one hand, the column space of A is the row space of A^T . On the other hand, observe that:

REMARK. Although row operations can *change* the column space, they *do not change* the **dependency** relationships between columns. (Notice that, the determinant remains unchanged.)

THEOREM 4.15 Row and Column Spaces Have Equal Dimension.

Proof. (p.256) Suppose the basis S of A's row space has r vectors. You can rewrite the matrix and observe that the column vectors of A are all linear combination of the vectors S.

Thus, $\dim(\operatorname{col\ space}) \leq \dim(\operatorname{row\ space})$. Doing the same, we have $\dim(\operatorname{row\ space}) \leq \dim(\operatorname{col\ space})$. Proof complete.

Def. Rank of a Matrix. The dimension of the row (or col) space of A is called the rank of A, and denoted by rank(A).

6.1 The Nullspace of a Matrix

Solutions of a Homogeneous System.

Consider the homogeneous linear system $A_{m \times n} \mathbf{x}_{n \times 1} = \mathbf{0}$

The set of all solutions of this is a subspace of \mathbb{R}^n called the **nullspace** :

$$N(A) = \{ \mathbf{x} \in R^n : A\mathbf{x} = \mathbf{0} \}$$

The dimension of A's nullspace is the **nullity** of A.

REMARK. The *nullspace* of A is also the **solution space** of the system $A\mathbf{x} = \mathbf{0}$.

Dimension of the Solution Space. If A is an $m \times n$ matrix of rank r, then the dimension of the nullspace is n-r. That is,

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A)$$

Example. 261

6.2 Solutions of Systems of Linear Equations

The set of all solutions vectors of the *homogeneous* linear system $A\mathbf{x} = \mathbf{0}$ is a **subspace**. However, for $A\mathbf{x} = \mathbf{b} \neq 0$, it's not a subspace - since $\mathbf{0}$ is never a solution of a nonhomogeneous system. However, there is a *relationship* between them.

$\it THEOREM$ 4.18 Solutions of a Nonhomogeneous Linear System.

If \mathbf{x}_p is a particular solution for $A\mathbf{x} = \mathbf{b}$, then every solution of this system can be written in the form

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$$

where \mathbf{x}_h is a solution of $A\mathbf{x} = \mathbf{0}$.

Example 8. Finding the Solution Set of a Nonhomogeneous System.

Find the set of all solution vectors of the system of linear equations

$$\begin{cases} x_1 & -2x_3 + x_4 = 5\\ 3x_1 + x_2 - 5x_3 & = 8\\ x_1 + 2x_2 & -5x_4 = -9 \end{cases}$$

SOLUTION. The augmented matrix for the system $A\mathbf{x} = \mathbf{b}$ reduces as follows.

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 5 \\ 3 & 1 & -5 & 0 & 8 \\ 1 & 2 & 0 & -5 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 1 & 5 \\ 0 & 1 & 1 & -3 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The system of linear equations corresponding to the reduced row-echelon matrix is

$$\begin{cases} x_1 & -2x_3 + x_4 = 5 \\ x_2 + x_3 - 3x_4 = -7 \end{cases}$$

Letting $x_3 = s$ and $x_4 = t$, you can write a representative solution of $A\mathbf{x} = \mathbf{b}$ as follows.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2s - t + 5 \\ -s + 3t - 7 \\ s + 0t + 0 \\ 0s + t + 0 \end{bmatrix} = s \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 3 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 5 \\ -7 \\ 0 \\ 0 \end{bmatrix}$$
$$= s\mathbf{u}_1 + t\mathbf{u}_2 + \mathbf{x}_p$$

THEOREM 4.19 Solutions of a System of Linear Equations

The system of linear equation $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

6.3 Sys. Linear Equations with Square Coefficient Matrices

SUMMARY. Equivalent Conditions for Square Matrices.

If A is an $n \times n$ matrix, then the following conditions are equivalent.

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution for $any \ n \times 1$ matrix \mathbf{b} .
- 3. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 4. A is row-equivalent to I_n .
- 5. $det(A) = |A| \neq 0$
- 6. $\operatorname{Rank}(A) = n$
- 7. The n row vectors of A are linearly independent.
- 8. The n col vectors of A are linearly independent.

7 Coordinates and Change of Basis

If B is a basis for V, then every vector $\mathbf{x} \in V$ can be expressed in one and only one way as a linear combination of B's vectors. The *coefficients* in that linear combination are the **coordinates of x relative**

to $\mathbf B$. In the context of *coordinate*, the order of vectors in basis is important, and this will be emphasized by referring to the basis B as an *ordered* basis.

Coordinate Representation Relative to a Basis.

Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an ordered basis for V, and let $\mathbf{x} \in V$ such that

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 v_2 + \dots + c_n v_n$$

The scalar c_1, c_2, \ldots, c_n are the coordinates of x relative to the basis B. The coordinate matrix (or coordinate vector) of x relative to B is the column matrix in \mathbb{R}^n whose components are the coordinates of x.

$$[\mathbf{x}]_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Coordinate Representation in \mathbb{R}^n

Writing a vector in \mathbb{R}^n as $\mathbf{x} = (x_1, x_2, \dots, x_n)$ means that the x_i 's are the coordinates of \mathbf{x} relative to the standard basis S in \mathbb{R}^n . So you have

$$[\mathbf{x}]_S = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Example. The coordinate matrix of \mathbf{x} in R^2 relative to the (nonstandard) ordered basis $B = {\mathbf{v}_1, \mathbf{v}_2} = {(1,0),(1,2)}$ is

$$[\mathbf{x}_B] = \begin{bmatrix} 3\\2 \end{bmatrix}$$

Find the coordinate of **x** relative to the standard basis $B' = \{\mathbf{u}_1, \mathbf{u}_2\} = \{(1,0), (0,1)\}.$

ANSWER.
$$[\mathbf{x}_B] = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad [\mathbf{x}]_{B'} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Example. Find the coordinate matrix of $\mathbf{x} = (1, 2, -1)$ in \mathbb{R}^3 relative to the (nonstandard) basis

$$B' = \{(u)_1, \mathbf{u}_2, \mathbf{u}_3\} = \{(1, 0, 1), (0, -1, 2), (2, 3, -5)\}$$

SOLUTION. Begin by writing \mathbf{x} as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$:

$$\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$$
$$(1, 2, -1) = c_1 (1, 0, 1) + c_2 (0, -1, 2) + c_3 (2, 3, -5)$$

Equating corresponding components produces the following system of linear equations

$$\begin{cases} c_1 + 2c_3 = 1 \\ -c_2 + 3c_3 = 2 \\ c_1 + 2c_2 - 5c_3 = -1 \end{cases}$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 1 & 3 & -5 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

The solution of this system is $c_1 = 5, c_2 = -8, c_3 = -2$. So, the coordinate matrix of **x** relative to B' is

$$\begin{bmatrix} \mathbf{x}_{B'} \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \\ -2 \end{bmatrix}$$

7.1 Change of Basis in \mathbb{R}^n

In the previous example,

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 1 & 2 & -5 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

$$P \qquad [\mathbf{x}]_{B'} \qquad [\mathbf{x}]_{B}$$

The matrix P is the **transition matrix from** B' to B.

$$P[\mathbf{x}_{B'}] = []Bx_B$$

To perform a change of basis from B to B', use the matrix P^{-1}

$$[\mathbf{x}_{B'}] = P^{-1}[\mathbf{x}_B]$$

This means that the change of basis problem in Eg.3 can be represented by the matrix equation

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & 2 \\ 3 & -7 & -3 \\ 1 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \\ -2 \end{bmatrix}.$$

$$P^{-1} \qquad [\mathbf{x}]_B \qquad [\mathbf{x}]_{B'}$$

THEOREM 4.20 The Inverse of a Transition Matrix.

 $P: transition \ matrix \ from \ B' \to B \ in \ R^n$, then P is **invertible** and P^{-1} is the transition matrix from $B \to B'$.

My own thoughts. To perform a change of basis from B to S, use B itself

$$B[\mathbf{x}_B] = \mathbf{x}_S$$

Hence, for $[\mathbf{x}]_B$ and $[\mathbf{x}]_{B'}$ that is the same point

$$B[\mathbf{x}_B] = B'[\mathbf{x}_{B'}] = [\mathbf{x}_S]$$

To perform a change of basis from B' to B, simply

$$[\mathbf{x}_B] = B^{-1}B'[\mathbf{x}_{B'}]$$

In other words, $P = B^{-1}B'$ (from $[\mathbf{x}_{B'}] \to [\mathbf{x}_B]$). And $P^{-1} = B'^{-1}B$, we got a theorem.

THEOREM 4.21 Transition Matrix from B to B.

The matrix P^{-1} from B to B^{-1} can be found by using Gauss-Jordan elimination on

$$[B':B] \to [I_n:P^{-1}]$$

11

7.2 Coordinate Representation in General n-Dimensional Spaces

Example.
$$p = 3x^3 - 2x^2 + 4$$
 has the coordinate matrix $[p]_S = \begin{bmatrix} 4 \\ 0 \\ -2 \\ 3 \end{bmatrix}$.