

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 August 2002 (15.08.2002)

PCT

(10) International Publication Number
WO 02/062379 A2

(51) International Patent Classification⁷: **A61K 39/08**

(21) International Application Number: **PCT/IE02/00017**

(22) International Filing Date: 11 February 2002 (11.02.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2001/0137 9 February 2001 (09.02.2001) IE

(71) Applicant (*for all designated States except US*): **THE PROVOST, FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNIDIVIDED TRINITY OF QUEEN ELIZABETH [IE/IE]**; Near Dublin, College Green, Dublin 2 (IE).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **DOYLE, Rachael [IE/IE]**; 19 Deerpark Avenue, Castleknock, Dublin 15 (IE). **KELLEHER, Dermot [IE/IE]**; 30 Royal Terrace West, Dun Laoghaire, County Dublin (IE). **WINDLE, Henry, J. [IE/IE]**; 15 Cherryfield Avenue Upper, Ranelagh, Dublin 6 (IE). **WALSH, James, Bernard [IE/IE]**; 3 Ardlui Park, Blackrock, County Dublin (IE). **DEIRDRE, Ni, Eidhin [IE/IE]**; 15 Watkins Buildings, The Coombe, Dublin 8 (IE).

(74) Agent: **O'BRIEN JOHN A AND WELDON, Michael J;** c/o John A. O'Brien & Associates, Third Floor, Duncain House, 14 Caryfort Avenue, Blackrock, County Dublin (IE).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/062379 A2

(54) Title: CLOSTRIDIUM DIFFICILE VACCINE

(57) Abstract: A vaccine for the treatment or prophylaxis of *C. difficile* associated disease comprises a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans. The gene encodes a *C. difficile* surface layer protein, SlpA or variant or homologue thereof. The peptide/polypeptide is a *C. difficile* surface layer protein, SlpA or variant or homologue thereof. The vaccine may comprise a chimeric nucleic acid sequence.

“*Clostridium difficile* vaccine”

Introduction

5 The invention relates to vaccines to provide immunological protection against *C. difficile* infection.

Background

10 *Clostridium difficile* is a common nosocomial pathogen and a major cause of morbidity and mortality among hospitalised patients throughout the world [Kelly et al., 1994]. Outbreaks of *C. difficile* have necessitated ward and partial hospital closure. With the increasing elderly population and the changing demographics of the population, *C. difficile* is set to become a major problem in the 21st century. The 15 spectrum of *C. difficile* diseases range from asymptomatic carriage to mild diarrhoea to fulminant pseudomembranous colitis. Host factors rather than bacterial factors appear to determine the response to *C. difficile* [Cheng et al., 1997; McFarland et al., 1991; Shim et al., 1998].

20 Reports indicate that hypogammaglobulinaemia in children appears to predispose to the development of disease due to *C. difficile* and that therapy with intravenously administered gamma globulin can be associated with the clinical resolution of chronic relapsing colitis due to *C. difficile* disease [Leung et al., 1991; Pelmutter et al., 1985]. A study by Mulligan et al. [1993] found elevated levels of 25 immunoglobulins reactive with *C. difficile* in asymptomatic carriers as opposed to symptomatic patients. Recently it has been shown that patients who became colonised with *C. difficile* who had relatively low levels of serum IgG antibody against toxin A had a much greater risk of developing *C. difficile* diarrhoea [Kyne et al., 2000].

30 It is clear that any advance in the understanding of *C. difficile* disease and methods of preventing or treating *C. difficile* diarrhoea (CDD) and other related diseases will be of major therapeutic potential.

Statements of Invention

According to the invention there is provided a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.

The invention also provides a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising a *C. difficile* gene or *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof to which immunoreactivity is detected in individuals who have recovered from *C. difficile* infection.

Preferably the gene encodes a *C. difficile* surface layer protein, SlpA or variant or homologue thereof.

Preferably the peptide/polypeptide is a *C. difficile* surface layer protein, SlpA or variant or homologue thereof.

Most preferably the vaccine comprises a chimeric nucleic acid sequence. Preferably the chimeric nucleic acid sequence is derived from the 5' end of the gene, encoding the mature N-terminal moiety of SlpA from *C. difficile*.

In one embodiment of the invention the vaccine comprises a chimeric peptide/polypeptide. Preferably the amino acid sequence of the chimeric peptide/polypeptide is derived from the mature N-terminal moiety of SlpA from *C. difficile*.

Preferably the vaccine of the invention contains an amino acid sequence SEQ ID No.1 or a derivative or fragment or mutant or variant thereof.

Preferably the vaccine contains an amino acid sequence SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.

In one embodiment of the invention the vaccine contains a nucleotide sequence SEQ
5 ID No.3 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.4 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.5 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.6 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.7 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.8 or a derivative or fragment or mutant or variant thereof; a nucleotide sequence SEQ ID No.9 or a derivative or fragment or mutant or variant thereof or a nucleotide sequence SEQ ID No.10 or a derivative or fragment or mutant or variant thereof.

10 15 Preferably the vaccine of the invention is in combination with at least one other *C. difficile* sub-unit.

The invention provides a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising the mature N-terminal moiety of a surface layer protein, SlpA of *C. difficile* or variant or homologue thereof which is immunogenic in humans.

20 25 Most preferably the N-terminal moiety of SlpA contains an amino acid sequence SEQ ID No. 1.
In one embodiment of the invention the N-terminal moiety of SlpA contains an amino acid sequence SEQ ID No. 2.

30 The invention also provides a vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising an immunodominant epitope derived

from a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.

Preferably the vaccine of the invention comprises a pharmaceutically acceptable carrier. Most preferably the vaccine is in combination with a pharmacologically suitable adjuvant. Ideally the adjuvant is interleukin 12. Alternatively the adjuvant may be a heat shock protein.

In one embodiment of the invention the vaccine comprises at least one other pharmaceutical product.

The pharmaceutical product may be an antibiotic, selected from one or more metronidazole, amoxycillin, tetracycline or erythromycin, clarithromycin or tinidazole.

In one embodiment of the invention the pharmaceutical product comprises an acid-suppressing agent such as omeprazole or bismuth salts.

The vaccine of the invention may be in a form for oral administration, intranasal administration, intravenous administration or intramuscular administration.

In one embodiment of the invention the vaccine includes a peptide delivery system.

The invention also provides an immunodominant epitope derived from a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof. Preferably the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.1 or SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.

In one embodiment of the invention the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.3 or SEQ ID No.4 or SEQ ID No.5 or SEQ ID No.6 or SEQ ID No.7 or SEQ ID No.8 or SEQ ID No. 9 or SEQ ID No. 10 or a derivative or fragment or mutant or variant thereof.

The invention further provides a chimeric nucleic acid sequence derived from the 5' end of the *slpA* gene encoding the mature N-terminal moiety of SlpA from *C. difficile* which is immunogenic in humans.

5 The invention also provides a chimeric peptide/polypeptide wherein the amino acid sequence of the chimeric peptide/polypeptide is derived from the mature N-terminal moiety of SlpA from *C. difficile*.

10 The invention provides a *C. difficile* peptide comprising SEQ ID No. 1 or SEQ ID No. 2 or SEQ ID No. 3 or SEQ ID No. 4 or SEQ ID No. 5 or SEQ ID No. 6 or SEQ ID No. 7 or SEQ ID No. 8 or SEQ ID No. 9 or SEQ ID No. 10.

15 One aspect of the invention provides for the use of a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans in the preparation of a medicament for use in a method for the treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease in a host.

Preferably the medicament which is prepared is a vaccine of the invention.

20 The invention also provides a method for preparing a vaccine for prophylaxis or treatment of *C. difficile* associated disease, the method comprising;

25 obtaining a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans; and

30 forming a vaccine preparation comprised of said gene or peptide/polypeptide or derivative or fragment or mutant or variant, which is suitable for administration to a host and which when administered raises an immune response.

Preferably the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.1 or SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.

Most preferably the *C. difficile* gene contains an amino acid sequence SEQ ID No.3
5 or SEQ ID No.4 or SEQ ID No.5 or SEQ ID No.6 or SEQ ID No.7 or SEQ ID No.8 or SEQ ID No.9 or SEQ ID No.10 or a derivative or fragment or mutant or variant thereof.

The invention further provides a method for prophylaxis or treatment of *C. difficile*
10 associated disease, the method comprising;

obtaining a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans;

15 forming a vaccine preparation comprised of said gene or peptide/polypeptide or derivative or fragment or mutant or variant, and

administering the vaccine preparation to a host to raise an immune response.

20 One aspect of the invention provides monoclonal or polyclonal antibodies or fragments thereof, to a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.

25 Another aspect of the invention provides monoclonal or polyclonal antibodies or fragments thereof, to *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof to which immunoreactivity is detected in individuals who have recovered from *C. difficile* infection.

30 The invention also provides purified antibodies or serum obtained by immunisation of an animal with a vaccine of the invention.

The invention provides the use of the antibodies or fragments of the invention in the preparation of a medicament for treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease.

5 Preferably the antibodies or serum are used in the preparation of a medicament for treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease.

Most preferably the antibodies or fragments or serum of the invention are used in passive immunotherapy for established *C. difficile* infection.

10 In one embodiment of the invention the antibodies or fragment or serum of the invention are used for the eradication of *C. difficile* associated disease.

15 The invention also provides use of interleukin 12 as an adjuvant in *C. difficile* vaccine.

The invention further provides use of humanised antibodies or serum for passive vaccination of an individual with *C. difficile* infection.

20 Brief Description of the Drawings

25 The invention will be more clearly understood from the following description thereof given by way of example only with reference to the accompanying figures, in which:-

30 Fig. 1A is a Western blot showing recognition of antigens from a crude extract of *C. difficile* 171500 (PCR type 1) by serum antibodies from a patient infected with this strain. Lane 1: Pre-infection; Lane 2: Early acute; Lane 3: Late acute; Lane 4: Convalescent;

Fig. 1B is a Western blot showing recognition of antigens from a crude extract of *C. difficile* 170324 (PCR type 12) by serum antibodies from a patient infected with this strain. Lane 1: Pre-infection; Lanes 2-5: Acute; Lanes 6-7: Convalescent;

5

Fig. 2. is a Western blot showing recognition of antigens from two *C. difficile* strains of different type by serum from convalescent patients.

10

Lane 1: Strain 170324 (PCR type 12), crude antigen preparation
Lane 2: Strain 170324, surface layer protein preparation
Lane 3: Strain 171500 (PCR type 1), crude antigen preparation
Lane 4: Strain 171500, surface layer protein preparation.
Molecular mass markers (kDa) are shown on the left; and

15

Fig. 3 is an SDS-PAGE gel showing crude SLP preparations from selected strains of *C. difficile*. The gel contains 12% acrylamide, and has been stained for protein with Coomassie Blue. Each lane contains 5 µg of protein. Molecular weight markers are shown on the left.

20

Lane 1: 171500 (PCR type 1)
Lane 2: 172450 (PCR type 5)
Lane 3: 170324 (PCR type 12)
Lane 4: 171448 (PCR type 12)
Lane 5: 171862 (PCR type 17)
Lane 6: 173644 (PCR type 31)
Lane 7: 170444 (PCR type 46)
Lane 8: 170426 (PCR type 92)

25

Detailed Description of the invention

30

Two antigenic peptides containing SEQ ID No. 1 and SEQ ID No. 2, associated with two common infecting types of *C. difficile*, were found to be immunogenic in humans. The antigenic peptides were found to induce a strong immune response in

5

individuals who recover from *C. difficile* infection. Individuals who have recovered from *C. difficile* infection are those individuals who have been exposed to *C. difficile* or something strongly related and have recovered. This includes individuals where a carrier state exists in that the *C. difficile* infection has not and will not necessarily become clinically significant.

10

These antigenic peptides were found to be products of the *slpA* gene from *C. difficile* which is the structural gene for the surface layer protein, SlpA. The gene or its products are therefore ideal candidates for the preparation of vaccines against *C. difficile*.

15

Surface layer proteins (SLPs), also known as S-layers or crystalline surface layers, are associated with a wide range of bacterial species. They form a 2-dimensional array, which covers the surface of the cell completely, and grows with the cell [Sleytr et al., 1993]. The molecular weight can range from 40 000 to 200 000 Da. The proteins are typically acidic, contain a large proportion of hydrophobic amino acid residues, and have few or no sulphur-containing amino acid residues. Glycosylated S-layer proteins occur in some species. The precise function of S-layers is not always known, but since they comprise approximately 15% of the cell protein, it seems likely that they are important for *in vivo* functioning of the organism. In Gram positive organisms, the SLP has been shown to delay or prevent the excretion of degradative enzymes from the cell to the outside milieu, and may thereby create a space analogous to the periplasmic space of Gram negative bacteria. Many pathogenic species possess SLPs, which have been ascribed functions such as antiphagocytosis (*Campylobacter fetus*), and inhibition of complement-mediated killing (*Aeromonas salmonicida*).

20

Kawata et al. [1984] described the SLPs of *Clostridium difficile*. They showed the S-layer to be composed of 2 polypeptides, and demonstrated size heterogeneity for the polypeptides from different strains. Delmée et al. [1986] showed that crude extracts from *C. difficile* strains of different serotype showed different polypeptide profiles in SDS-PAGE. Poxton et al. [1999] made similar observations using purified SLP preparations. Slide agglutination [Delmée et al., 1990] has identified 21 different serotypes, apparently distinguished by the heterogeneity of the SLP.

25

35

Pantosti et al. [1989] isolated *C. difficile* from a number of patients with antibiotic-associated diarrhoea, and prepared SLPs from them.. Cerquetti et al. [2000] published N-terminal sequences of SLPs from several strains, indicating wide differences between strains.. In 2000 the complete DNA sequence of the *C. difficile* genome was published (available at web address http://www.sanger.ac.uk/Projects/C_difficile/).

The peptides of the invention were found to be encoded by a single open reading frame (ORF) named *slpA* from *C. difficile*. The peptides identified in our clinical study correspond to a lower molecular weight moiety of the *slpA* gene product. Since an immune response is also mounted against a higher molecular weight *slpA* gene product (Fig. 2), this entity may also be included in a vaccine.

The *slpA* gene has been sequenced from a number of strains corresponding to different PCR types. The sequences of strains 171500 (PCR type 1)(NCIMB 41081; PHLS R13537), 172450 (PCR type 5)(PHLS R12884), 170324 (PCR type 12) (NCIMB 41080; PHLS R12882),, 171448 (PCR type 12) (PHLS R13550), 171862 (PCR type 17) (PHLS R13702), 173644 (PCR type 31) (PHLS R13711), 170444 (PCR type 46) (PHLS R12883) and 170426 (PCR type 92) (PHLS R12871) with translations thereof are given in Appendices 1 to 8. Substantial variation in nucleotide and predicted amino acid sequence was found between strains of PCR types 1, 5, 12, 17 and 31. The genes from strains of PCR types 46 and 92 are almost identical in sequence to those of PCR type 12. When the DNA sequences of genes of different strains within a PCR type are compared, the sequences are almost if not quite identical, indicating that the potential for variation is not infinite. These findings are in agreement with serotyping studies [Delmée et al., 1986, 1990], and indicate that the production of an effective vaccine based on the *slpA* product is feasible. In this respect, the present invention includes all variant *slpA* genes and their products, individually and combined, fragments of them, and their mutants and derivatives.

One aspect of the invention provides the combination of immunodominant epitopes from the *slpA* gene products from various serotypes into a single vaccine. In this way a single vaccine may be used to immunise against several different *C. difficile* strains.

- The most common PCR types isolated from infections in the clinical study carried out at St. James's Hospital, Dublin, Ireland were PCR types 1 and 12. However, a vaccine which elicits an intense antibody response against many infecting types would be therapeutically very valuable. Recombinant DNA chimera, or several chimeras, encoding contiguous immunodominant epitopes may be made for use in the vaccine. The recombinant DNA may serve as the active component in a vaccine, or may be inserted into an appropriate expression system for the generation of a chimeric peptide vaccine in a suitable host.
- Chimeras can be generated by PCR amplification of the DNA encoding peptide regions of interest, incorporating cleavage sites for restriction endonucleases into the primers. The amplified fragments can thus be cleaved to generate compatible ends, and spliced together to create chimeras.
- The dominant epitopes may be identified by cleavage of the *sipA* products into fragments by agents which cleave at known sites, and by immunoblotting with homologous patient serum. Immunodominant peptides may be tested for their capacity to stimulate T-cell proliferative responses *in vitro*, using mouse splenic T-cells.
- DNA vaccination involves immunisation with recombinant DNA encoding the antigen or epitope of interest, cloned in a vector which promotes high level expression in mammalian cells. Typically, the vector is a plasmid vector which which also replicates in a prokaryotic vector such as *Escherichia coli*, so that the DNA can be produced in quantity. Following immunisation, the plasmid enters a host cell, where it remains in the nucleus, and directs synthesis of the recombinant polypeptide. The polypeptide stimulates the production of neutralising antibodies, as well as activating cytotoxic T-cells.
- Using a DNA vaccine, it may be necessary to modify the DNA sequence to take account of codon usage in humans. The G+C content of mammalian DNA is much higher than that of *C. difficile*. The generation of such synthetic DNA molecules, essentially containing numerous silent mutations, is within the scope of the invention.

A peptide vaccine will ideally be made using recombinant peptides. Similar considerations apply as in the generation of a DNA vaccine with regard to expression in a different host, such as *Escherichia coli*, which has a different codon usage pattern to *C. difficile*. Problems of expression may be overcome by the use of a 5 special host strain which carries additional copies of rare tRNAs (e.g. *E. coli* BL21-CodonPlus™-RIL from Stratagene), or by using *de novo* synthesis of a DNA segment carrying silent mutations which will enable normal expression in *E. coli*. There are many expression systems which are likely to allow high-level expression 10 of *slpA* genes in *E. coli*. An example is the pBAD/Thio TOPO vector of Invitrogen, in which expressed genes are under control of the arabinose promoter, which is subject to positive and negative control, enabling very tight control of expression. In this vector, the recombinant protein is typically fused to a modified thioredoxin carrying several histidine residues which enable purification by nickel chromatography. The recombinant protein can be cleaved from the thioredoxin 15 moiety by enterokinase enzyme.

Affinity chromatography may also be used with fixed antibodies or some other agent which strongly binds the peptide of interest to purify the protein from the native organism.

Purified immunogenic peptides may be used in combination with other *C. difficile* 20 sub-units as a combined vaccine against *C. difficile*. Potential candidates are the products of the other *slp* genes, which share limited homology with the *slpA* gene product and with the N-acetylmuramoyl L-alanine amidase, (CwlB), from *Bacillus subtilis*, and which may be involved in remodelling of the peptidoglycan.

Other purified proteins of *C. difficile* to which constitutive antibodies are detected 25 in individuals recovering from *C. difficile* infection are also within the scope of the present invention

A deposit of *Clostridium difficile* strain 171500, PCR type 1, was made at the 30 NCIMB on January 29, 2001, and accorded the accession number NCIMB 41081.

A deposit of *Clostridium difficile* strain 170324, PCR type 12, was made at the 35 NCIMB on January 29, 2001, and accorded the accession number NCIMB 41080.

Two peptides of the invention were found to contain the following sequences:

33kDa peptide

SEQ ID No. 1: DTKVETADQGYTVVQSKYK

5

31kDa peptide

SEQ ID No. 2 ATTGTQGYTVVKNDGKKAVK

The invention will be more clearly understood from the following examples.

10

Example 1. Clinical Study

15

Examination of sequential antibody responses to *C. difficile* among elderly patients who developed the disease was carried out. The study was based on the hypothesis that the host immune response influenced the development of *Clostridium difficile* disease. In particular we determined that a particular pattern of immune response to *C. difficile* antigens correlated with the outcome of CDD.

Materials and Methods

20

Patients

25

Serum was collected from over 300 patients and of these 30 patients developed CDD. The infecting strain (homologous strain) was grown from each patient. Strains of *C. difficile* were typed at the Anaerobe Reference Laboratory, Wales [O'Neill et al., 1996]. The most common strains isolated were PCR type 1 (n = 15) which is the most common type causing epidemics and PCR type 12 (n = 5) which is also a common hospital strain. Pre-infection serum samples were obtained from patients. Acute phase sera were then collected from patients who developed *C. difficile* disease. Convalescent sera were collected from patients who recovered. Protein extracts of patients' infecting *C. difficile* strain were probed with the patients sera using Western blotting. IgG responses to the antigens were examined.

Western blotting

30

Proteins from SDS-PAGE gels were electroblotted (0.8mA/cm² for 1 h) to PVDF membrane using a semi-dry blotting apparatus (Atto). Primary antibodies (human

35

serum: 1/50 – 1/10,000 dilution) were detected using a 1/5000 dilution of anti-human IgG (horse radish peroxidase-conjugated) in combination with enhanced chemiluminescence (ECL). Blots were washed in phosphate buffered saline (pH 7.5) containing Tween 20 (0.1% v/v), and incubated in the same solution comprising dried skim milk (5% w/v) and antibodies at the appropriate concentration. Blots were exposed to Kodak X-OMAT film for various periods of time and developed.

Results

Overall 5 patients made a full recovery and new antibody responses to previously unrecognised antigens were evident in 4 of these patients. Three of these patients had *C. difficile* belonging to PCR type 1 and one patient had *C. difficile* PCR type 12. These patients developed an acute phase antibody response to previously unrecognised *C. difficile* antigens which persisted during convalescence (Figs. 1A and 1B). These antigens were recognised by antibodies from patients who recovered and represent potential candidate vaccine antigens. Fig 1A shows a strong reaction of convalescent antibodies was observed with the 33 kDa antigen (Lane 4, arrow). Fig 1B shows a strong reaction of convalescent antibodies was observed with the 31 kDa antigen (Lanes 6 and 7, arrow).

These antibody responses have also been found in some controls in the same ward who were also on antibiotics but who did not develop CDD.

Example 2. Further characterisation of protective antigens

Materials and Methods

Partial purification and N-terminal sequencing of the 33 kDa and the 31 kDa proteins
The antigens were partially purified from *C. difficile* based on their molecular weight using preparative continuous-elution SDS-PAGE on a model 491 Prep-Cell (Bio-Rad). The appropriate antigens were subsequently identified on Western blots probed with serum obtained from individuals who recovered from *C. difficile* infection.

Preparation of surface layer proteins (SLPs)

SLPs were purified from *C. difficile* by extracting washed cells with 8 M urea, in 50 mM Tris HCl, pH 8.3 in the presence of a cocktail of protease inhibitors

(Complete®, Boehringer Mannheim), for 1 h at 37°C, followed by centrifugation for 19 000 x g for 30 min. The SLPs were recovered in the supernatant and dialysed to remove the urea [Cerquetti et al., 2000].

5 Results

The immunodominant protein which was associated with a positive outcome from *C. difficile* strain 171500 (PCR type 1) was identified and purified using preparative SDS-PAGE. The N-terminal region of the protein was sequenced using an Applied Biosystems Procise Sequencer, viz DTKVETADQGYTVVQSKYK (SEQ ID No. 1)

10

The antigen which was associated with a protective antibody response from the *C. difficile* strain 170324 (PCR type 12) was identified and the N-terminal sequence obtained, viz ATTGTQGYTVVKNDGKKAVK (SEQ ID No. 2).

15

These sequences were used to interrogate the *C. difficile* genome sequence using the TBLASTN programme, which compared our query sequences with those of the genome project (available at web address http://www.sanger.ac.uk/Projects/C_difficile/), translated in all 6 possible reading frames. A nearly identical stretch of sequence was identified when the sequence from strain 170324 (type 12) was used for interrogation. The same stretch of sequence was picked up with the sequence from strain 171500 (type 1) was used, although the identity was much less strong. Since the homologous sequence belonged to an open reading frame encoding a 719-residue peptide, this result was somewhat surprising. However, when the N-terminal sequences from the higher molecular weight SLP component were later published by Cerquetti et al [2000], it became apparent that they were encoded downstream along the same gene, subsequently identified as *sdpA*, and the reason for the discrepancy in size between the gene and its products became readily apparent.

20

25

30

The purified SLPs from strains 171500 (PCR type 1) and 170324 (PCR type 12) showed strong reactivity with homologous convalescent serum, and co-migrated with the dominant antigens detected in crude cell extracts as shown in Fig. 2. Lanes 1 and 3 contain crude antigen preparations from PCR types 1 and 12 respectively, and Lanes 2 and 4 contain SLP preparations from PCR types 1 and 12, respectively.

35

Panel A was probed with serum from a patient recovering from infection with PCR type 1, and Panel B was probed with serum from a patient recovering from infection with PCR type 12. Each serum detected 2 major antigens in the infecting strain (Panel A, Lane 3); (Panel B, Lane 1), which co-migrated with the 2 SLPs (Panel A, 5 Lane 4; Panel B, Lane 2), with which the sera also reacted strongly. Note that serum from the patient infected with the PCR type 1 strain recognised the higher molecular weight SLP from the PCR type 12 strain (Panel A, Lanes 1 and 2), whereas the converse did not occur (Panel B, Lanes 3 and 4). There is no apparent antigenic cross-reactivity with regard to the lower molecular weight SLPs.

10

SLPs were prepared from selected strains by urea extraction, and subjected to SDS-PAGE and staining with Coomassie Blue (Fig. 3). Most strains showed a characteristic profile, with two major bands located in the 29 000 to 36 000 and 45 000 to 50 000 molecular weight range. An exception was strain 172450 (Fig. 3, 15 Lane 2), which showed a single, high molecular weight band, approximately 43 000 in size.

Cloning, sequencing and analysis of *slpA* genes

The nucleotide sequences of the *slpA* genes from the two sample strains of *C. difficile* (PCR types 1 and 12, deposited at the NCIMB) and of several others (PCR 20 types 5, 12, 17, 31, 46 and 92, available from the Anaerobe Reference Unit at the Department of Medical Microbiology and Public Health Laboratory, Cardiff, Wales were obtained. The *slpA* gene and flanking sequence was amplified by polymerase chain reaction from genomic DNA prepared from *C. difficile* using a commercial kit 25 (Puregene® DNA isolation kit for yeast and Gram positive bacteria, Gentra systems Minneapolis, MN). The forward primer (5' ATGGATTATTATAGAGATGTGAG 3'), was based on sequence from the genome sequencing project, starting 112 nucleotides upstream from the start of the *slpA* open reading frame. Two reverse primers were used, depending on the PCR type. A downstream primer (5' 30 CTATTAAAGTTTATTAAAACCTATATTAC 3') was used to amplify *slpA* from PCR types 12, 17, 31, 46 and 92. A reverse primer based on the 3' end of the *slpA* open reading frame from strain 630 and the subsequent nonsense codon (5' TTACATATCTAATAATCTTCATTGTTATAACTG 3') was used to

amplify *slpA* from PCR types 1 and 5. The choice of primer for the latter two PCR types may have resulted in a small number of systematic errors in the nucleotide sequence obtained. PCR was carried out using HotStarTM Taq polymerase (Qiagen Ltd., Crawley, West Sussex, UK) according to the manufacturer's instructions. A
5 single fragment of approximately 2 kb was obtained for each strain, which was then cloned into the pBAD/Thio TOPO vector (Invitrogen, Groningen, Netherlands). Inserts were sequenced from both ends by standard procedures in commercial facilities at MWG (Wolverton Mill South, Milton Keynes, UK) and Cambridge University. New primers were designed on the basis of initial sequencing results,
10 enabling sequencing of both strands to be completed (a process known as chromosome walking).

The results are shown in Appendices 1-8.

15 The nucleotide sequences were translated to enable prediction of the amino acid sequence(s) of the product(s) (Appendices 1-8). The N-terminal sequences obtained experimentally for the low molecular weight protective antigens from strains 171500 (PCR type 1) and 170324 (PCR type 12) were almost identical to those predicted from the nucleotide sequences of their respective *slpA* genes (18/20 identical residues for strain 171500, and 19/20 identical residues for strain 170324).
20

25 Appendix 1 shows the open reading frame with translation for *slpA* from strain 171500 (PCR type 1), SEQ ID No 3. Since the reverse primer was based on the 35 nucleotides from the 3' end of the *slpA* gene, the sequence is not necessarily 100% accurate in this region. However, this part of the gene does not seem to vary greatly from strain to strain.

30 Appendix 2 shows the open reading frame with translation for *slpA* from strain 172450 (PCR type 5), SEQ ID No 4. Again, the sequence obtained for the 3' 35 nucleotides is not fully reliable. This gene is considerably smaller than the other *slpA* genes sequenced, and shows strong sequence divergence from the other PCR types examined.

35 Appendix 3 shows the open reading frame with translation for *slpA* from strain 170324 (PCR type 12), SEQ ID No 5. This gene showed a single base difference

when compared with the strain used for the genome sequencing project, strain 630, of the same PCR type. The deduced amino acid sequence is identical.

5 Appendix 4 shows the open reading frame with translation for *slpA* from strain 171448 (PCR type 12), SEQ ID No 6. This gene was almost identical in sequence to that from strain 170324.

Appendix 5 shows the open reading frame with translation for *slpA* from strain 171862 (PCR type 17), SEQ ID No 7.

10 Appendix 6 shows the open reading frame with translation for *slpA* from strain 173644 (PCR type 31), SEQ ID No 8. Like the *slpA* from strain 172450, this sequence is very dissimilar to those of *slpA* genes from other PCR types encountered.

15 Appendix 7 shows the open reading frame with translation for *slpA* from strain 170444 (PCR type 46), SEQ ID No 9. This sequence is virtually identical to that obtained for *slpA* from PCR type 12 and 92 strains.

20 Appendix 8 shows the open reading frame with translation for *slpA* from strain 170426 (PCR type 92), SEQ ID No 10. This sequence is virtually identical to that obtained for *slpA* from PCR type 12 and 46.

25 The cleavage site of the putative signal sequences from both genes was determined from experimental evidence (the N-terminal sequence of the mature proteins as determined by Edman degradation), and by the prediction tool of the Centre for Biological Sequence Analysis at the Technical University of Denmark [Nielsen et al., 1997]. The site for cleavage of the *slpA* gene product to form the mature SLPs was predicted from experimental [Cerquetti et al., 2000, Karjalainen et al., 2001 and 30 Calabi et al., 2001]. The cleavage site is typically preceded by the motif TKS. However, the relevant motif is likely to be TKG in strain 173644 (PCR type 31). No obvious motif appeared for strain 172450 (PCR type 5). However, the protein produced by type 5 strains does appear to be cleaved; hence we predicted the site to

occur at a point where the SLP sequence aligns with the cleavage sites of other PCR types.

The molecular weight and isoelectric point was calculated for each of the predicted mature proteins by the ExPASy server of the Swiss Institute for Bioinformatics (Table 1). In general, the calculated molecular weights were in fair agreement with apparent molecular masses determined from migration in gels (Fig. 3). No lower molecular weight band was apparent for Strain 172450 (PCR type 5; Lane 2). However, a higher molecular weight band is present, which is similar in size to the predicted weight for the C-terminal moiety. We observed a similar profile for another type 5 strain. It is possible that the lower molecular weight species is subject to degradation in this strain. Another possibility is that it is heavily glycosylated, which can affect staining. All peptides had a predicted isoelectric point below 7, typical of acidic proteins, and characteristic of SLPs in general [Sleyter et al, 1993].

15

Table 1

<i>C. difficile</i> strain (PCR type)	pI (N-terminal)	pI (C-terminal)	MW (N-terminal)	MW (C-terminal)
171500 (Type 1)	4.83	4.66	33365.41	44220.37
172450 (Type 5)	4.86	4.65	19364.46	42757.63
170324 (Type 12)	4.92	4.58	34228.25	39522.24
171448 (Type 12)	4.98	4.58	34156.18	39492.21
171862 (Type 17)	5.09	4.53	33783.73	39407.11
173644 (Type 31)	5.05	4.56	33626.48	41821.69
170444 (Type 46)	5.06	4.58	34230.31	39522.24
170426 (Type 92)	4.99	4.58	34242.32	39522.24

20 The translated nucleotide sequences were compared with published SlpA sequences (EMBL Accession numbers AJ300676, and AJ300677 for examples from PCR types 1, and 17 respectively; strain 630 available from the Sanger Institute for PCR type 12; EMBL Accession number AY004256 for a variant from an unnamed PCR type). The Clustal W alignment programme, which is freely available, was used. Where 25 SlpA sequences from our isolates were compared with those of other strains of the same PCR types, they were found to be nearly or quite identical. This observation

indicates, together with existing knowledge from serotyping, that the number of variants of *slpA* is not infinite, and that natural evolution of the gene is not rapid. Table 2 shows a compilation of homologies, based on amino acid residue identity, for the different translated sequences measured against published sequences.

5 Homologies are compiled for the predicted mature peptides, either combined (Table 2A) or as N-terminal (low molecular weight, less conserved moiety) (Table 2B) and C-terminal (high molecular weight, more conserved) (Table 2C) mature peptides according to predicted cleavage sites. It is clear that the SlpA sequences from strains 172450 (PCR type 5) and 173644 (PCR type 31) are quite distinct particularly with respect to N-terminal region.

10

Table 2A

Strain.type	630 (type 12)	AJ300676 (type 1)	AJ300677 (type 17)	AY004256 (type unknown)
171500.type1	55.2	99.7	55.4	56.42
172450.type5	49.8	54.0	49.9	47.77
170324.type12	100.0	57.8	81.7	59.77
171448.type12	99.7			
171862.type17	82.3	58.7	100	57.54
173644.type31	57.9	59.2	60.1	56.88
170444.type46	99.6			
170426.type92	99.9			

15

Table 2B

Strain.type	630 (type 12)	AJ300676 (type 1)	AJ300677 (type 17)	AY004256 (type unknown)
171500.type1	35.4	100	34.5	33.54
172450.type5	31.6	32.2	31.0	24.58
170324.type12	100	34.9	64.6	36.14
171448.type12	99.7			
171862.type17	64.3	34.4	100	31.55
173644.type31	37.5	34.1	41.3	31.86
170444.type46	99.1			
170426.type92	99.7			

Table 2C

Strain.type	630 (type 12)	AJ300676 (type 1)	AJ300677 (type 17)	AY004256 (type unknown)
171500.type1	70.2	99.5	71.2	73.80
172450.type5	58.4	60.4	63.0	57.60
170324.type12	100	77.3	97.1	80.00
171448.type12	99.7			
171862.type17	97.3	78.8	100	79.62
173644.type31	74.1	78.9	75.1	75.38
170444.type46	100			
170426.type92	100			

- 5 The term antibody used throughout the specification includes but is not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by a Fab expression library.
- 10 The antibodies and fragments thereof may be humanised antibodies. Neutralising antibodies such as those which inhibit biological activity of the substance amino acid sequence are especially preferred for diagnostics and therapeutics.
- 15 Antibodies both polyclonal and monoclonal which are directed against epitopes obtainable from a polypeptide or peptide of the present invention are particularly useful in diagnosis and those which are neutralising are useful in passive immunotherapy.
- 20 Antibodies may be produced by any of the standard techniques well known in the art.
- 25 A therapeutically effective amount of the polypeptide, polynucleotide, peptide or antibody of the invention in the form of pharmaceutical composition may be administered. The composition may optionally comprise a pharmaceutically acceptable carrier, diluent or excipients and including combinations thereof. The pharmaceutical composition may be used in conjugation with one or more additional pharmaceutically active compounds and/or adjuvants.

Different adjuvants depending on the host may be used to increase immunological response. The adjuvant may be selected from the group comprising Freunds, mineral gels such as aluminium hydroxide and surface active substances.

- 5 The vaccine of the invention may be in the form of an immune modulating composition or pharmaceutical composition and may be administered by a number of different routes such as by injection (which includes parenteral, subcutaneous and intramuscular injection) intranasal, intramuscular, mucosal, oral, intra-vaginal, urethral or ocular administration. There may be different formulation/composition
10 requirements dependent on the different delivery systems.

- 15 The invention is not limited to the embodiments hereinbefore described which may be varied in detail.

References

- Calabi E., Ward S., Wren B., Paxton T., Panico M., Morris H., Dell A., Dougan G., Fairweather N. (2001). Molecular characterization of the surface layer proteins from *Clostridium difficile*. *Mol. Microbiol.* 40:1187-1199.
- 5 Cerquetti M., Molinari A., Sebastianelli A., Diociaiuti M., Petruzzelli R., Cap C., Mastrantonio P. (2000). Characterization of surface layer proteins from different *Clostridium difficile* clinical isolates. *Microbial Pathogenesis*, 28:363-372.
- Cheng S.H, Lu J.J, Young T.G, Perng C.L, Chi W.M. (1997) *Clostridium difficile*-associated 10 diseases: comparison of symptomatic infection versus carriage on the basis of risk factors, toxin production, and genotyping results. *Clin Infect Dis* ; 25: 157-8.
- Delmée M., Laroche Y., Avesani V., Cornelis G. (1986). Comparison of serogrouping and polyacrylamide gel electrophoresis for typing *Clostridium difficile*. *J. Clin. Microbiol.* 24:991-994.
- 15 Delmée M., Avesani V., Delferrière N., Burtonboy G. (1990). Characterization of flagella of *Clostridium difficile* and their role in serogrouping reactions.
- Karjalainen T., Waligora-Dupriet A.-J., Cerquetti M., Spigaglia P., Maggioni A., Mauri P., Mastrantonio P., (2001). Molecular and genomic analysis of genes encoding surface-anchored proteins from *Clostridium difficile*. *Infect. Immun.* 69:3442-3446.
- 20 Kawata T., Takeoka A., Takumi K., Masuda K. (1984). Demonstration and preliminary characterization of a regular array in the cell wall of *Clostridium difficile*. *FEMS Microbiol. Lett* 24:323-328.
- Kelly, C.P., Pothoulakis C and LaMont J.T. *Clostridium difficile* colitis. *New England Journal of Medicine*. 1994 330: 257-262.
- 25 Kyne L, Warny M, Qamar A, Kelly C. Asymptomatic carriage of *Clostridium difficile* and serum levels of IgG antibody against Toxin A. *New England Journal of Medicine* 2000; 390-7.
- Leung Y.M, Kelly C.P, Boguniewicz M, Pothoulakis C, LaMont J.T, Flores A. Treatment with intravenous gamma globulin of chronic relapsing colitis by *Clostridium difficile*; toxin: *J. Pediatr* 1991; 118: 633-7.
- 30 McFarland L.V, Elmer G.W, Stamm W.E, Mulligan M.E. Correlation of immunoblot type, enterotoxin production, and cytokine production with clinical manifestation of *Clostridium difficile* infection in a cohort of hospitalised patients. *Infect Immun.* 1991; 59: 2456-62.

Mulligan M.E, Miller S.D, McFarland L.V, Fung H.C, Kwok R.Y. Elevated levels of serum immunoglobulins in asymptomatic carriers of *Clostridium difficile*. *Clin Infect Dis* 1993; 16(Suppl 4); S239-44.

5 Nielsen H., Engelbrecht J., Brunak S., von Heijne G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. *Protein Eng.* 10:1-6.

O'Neill G.L., Ogunsoyta F.T, Brazier J.S, Duerdon B.I, Modification of a PCR ribotyping method for application as a routine typing scheme for *Clostridium difficile*. *Anaerobe* (1996) 2, 205-209.

10 Pantosti A, Cerquetti M, Viti F, Ortisi G, Mastrantonio P. Immunoblot Of Serum Immunoglobulin G Response to Surface Proteins of *Clostridium difficile* in Patients With Antibiotic Associated Diarrhoea. *J. Clin Microbiol* 1989; 27; 2594-7.

Pelmutter D.H, Leichtner A.M, Goldman H, Winter H.S. Chronic diarrhoea associated with 15 hypogammaglobulinaemia and enteropathy in infants and children: *Dig Dis Sci* 1985; 30; 1149-55.

Poxton I.R., Higgins P.G., Currie C.G., McCoubrey J. (1999). Variation in the cell surface proteins of *Clostridium difficile*. *Anaerobe* 5:213-215.

Shim J, Johnson S, Samone M, Bliss DZ, Gerding D.N. Primary symptomless colonisation 20 by *Clostridium difficile* and decreased risk of subsequent diarrhoea. *The Lancet* Vol 351 1998: 633-5.

Sleytr U.B., Messner P., Pum D., Sára M. (1993). Crystalline bacterial cell surface layers. *Mol. Microbiol.* 10:911-916.

Appendix 1

SEQ ID No. 3. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 171500, PCR type 1, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

5	1 ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTCGGCTGCA	60
	-----+-----+-----+-----+-----+-----+	
10	1 M N K K N I A I A M S G L T V L A S A A	
	20	
	61	
15	CCTGTATTGCAGATGATACAAAAGTTGAAACTGGTGTCAAGGATATACTGGTACAA	120
	-----+-----+-----+-----+-----+-----+	
	+	
20	21 P V F A D D T K V E T G D Q G Y T V V Q	
	40	
	Δ	
25	121	
	AGCAAGTATAAGAAAGCTGTTGAAACAATTACAAAAGGAATATTAGATGGAAGTATAACA	180
	-----+-----+-----+-----+-----+-----+	
30	41 S K Y K K A V E Q L Q K G I L D G S I T	
	60	
35	181	
	GAAATTAAAGTTTCTTGAGGGAACTTTAGCATCTACTATAAAAGTAGGTTCTGAGCTT	240
	-----+-----+-----+-----+-----+-----+	
40	61 E I K V F F E G T L A S T I K V G S E L	
	80	
45	241	
	AATGCAGCAGATGCAAGTAAATTATTGTTACACAAGTAGATAATAACTAGATAATTAA	300
	-----+-----+-----+-----+-----+-----+	
50	81 N A A D A S K L L F T Q V D N K L D N L	
	100	
55	301	
	GGTGATGGAGATTATGTAGATTCTTAATAACTTCTCCAGGTCAAGGGGATAAAATAACT	360
	-----+-----+-----+-----+-----+-----+	
60	101 G D G D Y V D F L I T S P G Q G D K I T	
	120	
65	361	
	ACAAGTAAACTTGTGCATTGAAAGATTTAACAGGTGCTTCAGCAGATGCTATAATTGCT	420
	-----+-----+-----+-----+-----+-----+	
70	121 T S K L V A L K D L T G A S A D A I I A	
	140	
75	421	
	GGAACATCTTCAGCAGATGGTGTGTTACAAATACTGGAGCTGCTAGTGGTTCTACTGAG	480
	-----+-----+-----+-----+-----+-----+	
80	141 G T S S A D G V V T N T G A A S G S T E	
	160	

481
ACAAATTCAAGCAGGAACAAAACCTGCAATGTCAGCTATTTGACACAGCATATAAGAT 540

161 T N S A G T K L A M S A I F D T A Y T D
180

541
TCATCTGAAACTGCGGTTAACGATTACTATAAAAGCAGATATGAATGATACTAAATTGGT 600

181 S S E T A V K I T I K A D M N D T K F G
200

601
AAAGCAGGTGAGACAACTTATTCAACTGGCTTACATTGAAGATGGGTCTACAGAAAAA 660

201 K A G E T T Y S T G L T F E D G S T E K
220

661
ATTGTTAAATTAGGGACAGTGATATTAGATATAACTAAAGCTCTAAACTTACTGTT 720

221 I V K L G D S D I I D I T K A L K L T V
240

721
GTTCCCTGGAAGTAAAGCAACTGTTAAGTTGCTGAAAAAACACCAAGTGCCAGTGTCAA 780

241 V P G S K A T V K F A E K T P S A S V Q
260

781
CCAGTAATAACAAAGCTTAGAATAATAATGCTAAAGAAGAACAAATAGATATTGACGCT 840

261 P V I T K L R I I N A K E E T I D I D A
280

841
AGTTCTAGTAAACAGCACAAGATTAGCTAAAAATATGTATTTAATAAAACTGATTTA 900

281 S S S K T A Q D L A K K Y V F N K T D L
300

901
AATACTCTTATAAAAGTATTAAATGGAGATGAAGCAGATACTAATGGATTAATAGAAGAA 960

301 N T L Y K V L N G D E A D T N G L I E E
320

961
GTTAGTGGAAAATATCAAGTAGTTCTTATCCAGAAGGAAAAGAGTTACAACTAAGAGT 1020

321 V S G K Y Q V V L Y P E G K R V T T K S
340

1021
GCTGCAAAGGCTTCAATTGCTGATGAAAATCACCAGTTAAATTAACCTTAAGTCAGAT 1080

341 A A K A S I A D E N S P V K L T L K S D
360

◆
1081
AAGAAGAAAGACTTAAAGATTATGTGGATGATTAAAGAACATATAATAATGGATATTCA 1140

361 K K K D L K D Y V D D L R T Y N N G Y S
380

1141

AATGCTATAGAAGTAGCAGGAGAAGATAGAAACTGCAATAGCATTAAGTCAAAAA 1200

-----+-----+-----+-----+-----+-----+-----+-----+

5 381 N A I E V A G E D R I E T A I A L S Q K

400 400

1201

TATTATAACTCTGATGATGAAAATGCTATTTAGAGATTGAGTTGATAATGTAGTATTG 1260

-----+-----+-----+-----+-----+-----+-----+-----+

10 401 Y Y N S D D E N A I F R D S V D N V V L

420 420

1261

GTTGGAGGAAATGCAATAGTTGATGGACTTGAGCTCTCCTTAGCTCTGAAAAGAAA 1320

-----+-----+-----+-----+-----+-----+-----+-----+

15 421 V G G N A I V D G L V A S P L A S E K K

440 440

1321

GCTCCTTATTATACTTCAGATAAAATTAGATTCAAGCGTAAAGCTGAAATAAG 1380

-----+-----+-----+-----+-----+-----+-----+-----+

20 441 A P L L L T S K D K L D S S S V K A E I K

460 460

1381

AGAGTTATGAATATAAGAGTACAACAGGTATAAATACTTCAAAGAAAGTTATTTAGCT 1440

-----+-----+-----+-----+-----+-----+-----+-----+

25 461 R V M N I K S T T G I N T S K K V Y L A

480 480

1441

GGTGGAGTTAATTCTATCTAAAGAAGTAGAAAATGAATTAAAGATATGGGACTTAAA 1500

-----+-----+-----+-----+-----+-----+-----+-----+

30 481 G G V N S I S K E V E N E L K D M G L K

500 500

1501

GTTACAAGATTAGCAGGAGATGATAGATATGAAACTCTCTAAAGATAGCTGATGAAGTA 1560

-----+-----+-----+-----+-----+-----+-----+-----+

35 501 V T R L A G D D R Y E T S L K I A D E V

520 520

1561

GGTCTTGATAATGATAAAGCATTGAGTTGGAGGAACAGGATTAGCAGATGCCATGAGT 1620

-----+-----+-----+-----+-----+-----+-----+-----+

40 521 G L D N D K A F V V G G T G L A D A M S

540 540

1621

ATAGCTCCAGTTGCATCTCAATTAGAAATGCTAATGGTAAAGGATTTAGCTGATGGT 1680

-----+-----+-----+-----+-----+-----+-----+-----+

45 541 I A P V A S Q L R N A N G K M D L A D G

560

1681
 GATGCTACACCAATAGTAGTTGATGGAAAAGCTAAACTATAAATGATGATGTAAAA 1740
 561 D A T P I V V V D G K A K T I N D D V K
 5 580
 1741
 GATTTCCTAGATGATTACAAGTTGATATAATAGGTGGAGAAAACAGTGTATCTAAAGAT 1800
 581 D F L D D S Q V D I I G G E N S V S K D
 10 600
 1801
 GTTGAAAATGCAATAGATGATGCTACAGGTAAATCTCCAGATAGATATAGTGGAGATGAT 1860
 601 V E N A I D D A T G K S P D R Y S G D D
 15 620
 1861
 AGACAAGCAACTAATGCAAAGTTATAAAAGAATCTCTTATTATCAAGATAACTTAAAT 1920
 621 R Q A T N A K V I K E S S Y Y Q D N L N
 20 640
 1921
 AATGATAAAAAAGTAGTTAATTCTTGTAGCTAAAGATGGTTCTACTAAAGAAGATCAA 1980
 641 N D K K V V N F F V A K D G S T K E D Q
 25 660
 1981
 TTAGTTGATGCTTCTAGCAGCAGCTCCAGTTGCAGCAAACCTTGGTGTAACTCTTAATTCT 2040
 661 L V D A L A A A P V A A N F G V T L N S
 30 680
 2041
 GATGGTAAGCCAGTAGATAAAGATGGTAAAGtATTAACTGGTTCTGATAATGATAAAAAT 2100
 681 D G K P V D K D G K V L T G S D N D K N
 35 700
 2101
 AAATTAGTATCTCCAGCACCTATAGTATTAGCTACTGATTCTTATCTCAGATCaAGT 2160
 701 K L V S P A P I V L A T D S L S S D Q S
 40 720
 2161
 GTATCTATAAGTAaAGTTCTTGATAAAGATAATGGAGAAAACCTAGTTCAAGTTGGTAAA 2220
 721 V S I S K V L D K D N G E N L V Q V G K
 45 740
 2221 GGTATAGCTACTTCAGTTATAAACAAAATGAAAGATTATTAGATATG 2268
 741 G I A T S V I N K M K D L L D M 756

Appendix 2

SEQ ID No. 4. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 172450, PCR type 5, with translation. The putative secretory signal cleavage site (Δ) is indicated, and an approximation of the end site of cleavage to form the two mature SLPs (\blacklozenge) is also indicated.

10	ATGAAAAAAAGAAATTAGCAATGGCTATGGCAGCTGTTACTGTAGTAGGTTCTGCTGCT	60
	-----+-----+-----+-----+-----+-----+	
	1 M K K R N L A M A M A A V T V V G S A A	
20		
15	CCAGTTTGCAGCAGCTTCAGATGTAATATCACTACAAGATGGTACAAATGATAAGTAT	120
	-----+-----+-----+-----+-----+-----+	
	21 P V F A A A S D V I S L Q D G T N D K Y	
40		
20	121	
	ACAGTATCAAATACTAAAGCTAGTGACTTAGTAAAGGATATTTAGCAGCACAAAACCTTA	180
	-----+-----+-----+-----+-----+-----+	
	41 T V S N T K A S D L V K D I L A A Q N L	
60		
25	181	
	ACAACAGGTGCAGTTATTTGAACAAAGATACAAAAGTTACTTCTATGATGCAAATGAG	240
	-----+-----+-----+-----+-----+-----+	
	61 T T G A V I L N K D T K V T F Y D A N E	
80		
30	241	
	AAAGATTCTTCAACTCCA ACTGGAGATAAAAAGTTATT CAGAACAAACTTAACTACA	300
	-----+-----+-----+-----+-----+-----+	
	81 K D S S T P T G D K K V Y S E Q T L T T	
100		
35	301	
	GCTATGAAATGAAGATTATGTAAGACAACTTTAAAAATTAGATGCAGGAGAATAT	360
	-----+-----+-----+-----+-----+-----+	
	101 A N G N E D Y V K T T L K N L D A G E Y	
120		
40	361	
	GCTATTATAGATTAACTTATAATAATGCTAAAAGTTGAAATTAAAGTAGTAGCAGCT	420
	-----+-----+-----+-----+-----+-----+	
	121 A I I D L T Y N N A K T V E I K V V A A	
140		
45	421	
	AGTGAACACAGTAGTTGTATCTAGTGATGCGAAAATAGTGCAAAAGATATAGCTGAA	480
	-----+-----+-----+-----+-----+-----+	
	141 S E K T V V V S S D A K N S A K D I A E	
160		
50	481	
	AAATATGTGTTGAAGACAAAGACTTAGAAAATGCACTAAAACATAAATGCCTCAGAT	540
	-----+-----+-----+-----+-----+-----+	
	161 K Y V F E D K D L E N A L K T I N A S D	
55	180	

541
 TTCAGTAAACTGATAGTTACTATCAAGTAGTTCTTATCCAAAAGGAAAGAGATTACAA 600
 -----+-----+-----+-----+-----+-----+
 181 F S K T D S Y Y Q V V L Y P K G K R L Q
 5 200
 601
 GGTTTCTCAACTTATAGAGCTACAAATTATAATGAAGGAACTGCATATGGTAATACACCA 660
 -----+-----+-----+-----+-----+
 201 G F S T Y R A T N Y N E G T A Y G N T P
 10 220
 ♦
 661
 GTAATATTAACCTCTAAAATCTACTAGTAAGAGTAATTAAAGACTGCAGTAGAAGAGTTA 720
 -----+-----+-----+-----+-----+
 221 V I L T L K S T S K S N L K T A V E E L
 15 240
 721
 CAAAAATTGAATGCTAGTTATTCTAATACTACAACCTTAGCTGGTGATGACAGAACACAA 780
 -----+-----+-----+-----+-----+
 241 Q K L N A S Y S N T T T L A G D D R I Q
 20 260
 781
 ACAGCTATAGAGATAAGTAAAGAATATTACAATAATGATGGCGAGAAATCAGATCATTC 840
 -----+-----+-----+-----+-----+
 261 T A I E I S K E Y Y N N D G E K S D H S
 25 280
 841
 GCTGATGTAAAGAGAATGTTAAAATGTGTATTAGTAGGTGCAAATGCACTAGTAGAT 900
 -----+-----+-----+-----+-----+
 281 A D V K E N V K N V V L V G A N A L V D
 30 300
 901
 GGATTAGTTGCGGCTCTTAGCAGCAGAAAAAGATGCTCCACTATTAACTTCAAAA 960
 -----+-----+-----+-----+-----+
 301 G L V A A P L A A E K D A P L L L T S K
 35 320
 961
 GATAAATTAGATTCGTCAGTAAATCTGAAATAAAGAGAGTTTAGACTTAAACTTCA 1020
 -----+-----+-----+-----+-----+
 321 D K L D S S V K S E I K R V L D L K T S
 40 340
 1021
 ACAGAAGTAACAGGAAAAACAGTTATATAGCTGGGGAGTTAATAGTGTATCTAAAGAA 1080
 -----+-----+-----+-----+-----+
 341 T E V T G K T V Y I A G G V N S V S K E
 45 360
 1081
 GTTGTAACAGAATTAGAATCAATGGGATTAAAAGTTGAAAGATTCTCAGGTGATGATAGA 1140
 -----+-----+-----+-----+-----+
 361 V V T E L E S M G L K V E R F S G D D R
 50 380
 1141
 TATGAAACTTCTTAAAGCAGGTGAAATAGGCTTAGATAATGATAAGGCTTATGTA 1200
 -----+-----+-----+-----+

381 Y E T S L K I A G E I G L D N D K A Y V
400
1201
5 GTTGGTGGAACAGGATTAGCAGATGCCATGAGTATAGCTTCAGTTGCTTCACTAAATTA 1260
401 V G G T G L A D A M S I A S V A S T K L
420
1261
10 GATGGTAATGGTGTAGATAGAACAAATGGACATGCTACTCCAATAGTTGTTGTAGAT 1320
421 D G N G V V D R T N G H A T P I V V V D
440
1321
15 GGAAAAGCTGATAAAATATCTGATGACTTAGATAGTTCTTAGGAAGCGCTGATGTAGAT 1380
441 G K A D K I S D D L D S F L G S A D V D
460
1381 ATAATAGGTGGATTGCAAGTGTATCTGAAAAGATGGAAGAAGCTATATCAGATGCTACT
1440
20 461 I I G G F A S V S E K M E E A I S D A T
480
1441
25 GGTAAAGGC GTTACAAGAGTTAAAGGCGACGATAGACAAGACACTAACTCTGAAGTTATA 1500
481 G K G V T R V K G D D R Q D T N S E V I
500
1501
30 AAAACATATTATGCTAATGATACTGAAATAGCTAAAGCTGCAGTTTAGATAAAAGATTCA 1560
501 K T Y Y A N D T E I A K A A V L D K D S
520
1561
35 GGTGCTTCAAGTAGTGATGCAGGAGTATTAATTCTATGTAGCTAAAGATGGATCTACA 1620
521 G A S S S D A G V F N F Y V A K D G S T
540
1621
40 AAAGAAGATCAATTAGTTGATGCATTAGCAGTAGGAGCTGTTGCTGGATATAAACTTGCT 1680
541 K E D Q L V D A L A V G A V A G Y K L A
560

1681
CCAGTTGTATTAGCTACTGATTCTTATCTTCTGATCAATCGGTTGCTATAAGCAAAGTT 1740
-----+-----+-----+-----+-----+-----+-----+
5 561 P V V L A T D S L S S D Q S V A I S K V
580
1741
GTAGGAGAAAAATATTCTAAAGATTAACACAAGTTGGTCAAGGAATAGCTAATTCAAGTT 1800
-----+-----+-----+-----+-----+-----+-----+
10 581 V G E K Y S K D L T Q V G Q G I A N S V
600
1801 ATAAACAAAATGAAAGATTATTAGATATG 1830
-----+-----+-----+
15 601 I N K M K D L L D M 610

Appendix 3

SEQ ID No. 5. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 170324, PCR type 12, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

1	ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTCGGCTGCT
10	60
	<hr style="border-top: 1px dashed black;"/>
20	1 M N K K N I A I A M S G L T V L A S A A
25	61 CCTGTTTGCTGCAACTACTGGAACACAAGGTATACTGTAGTTAAAACGACTGGAAA 120
	<hr style="border-top: 1px dashed black;"/>
40	21 P V F A A T T G T Q G Y T V V K N D W K
20	Δ
20	121 AAAGCAGTAAACAAATTACAAGATGGACTAAAGATAATAGTATAGGAAAGATAACTGTA 180
	<hr style="border-top: 1px dashed black;"/>
60	41 K A V K Q L Q D G L K D N S I G K I T V
25	181 TCTTTAATGATGGGTTGTGGGTGAAGTAGCTCCTAAAGTGCTAATAAGAAAGCGGAC 240
	<hr style="border-top: 1px dashed black;"/>
80	61 S F N D G V V G E V A P K S A N K K A D
30	241 AGAGATGCTGCAGCTGAGAAGTTATATAATCTGTTAACACTCAATTAGATAAAATTAGGT 300
	<hr style="border-top: 1px dashed black;"/>
100	81 R D A A A E K L Y N L V N T Q L D K L G
35	301 GATGGAGATTATGTTGATTTCTGTAGATTATAATTAGAAAACAAAATAATAACTAAT 360
	<hr style="border-top: 1px dashed black;"/>
120	101 D G D Y V D F S V D Y N L E N K I I T N
40	361 CAAGCAGATGCAGAACATTGTTACAAAGTTAAATTCACTTAATGAGAAAACCTTTATT 420
	<hr style="border-top: 1px dashed black;"/>
140	121 Q A D A E A I V T K L N S L N E K T L I
45	421 GATATAGCAACTAAAGATACTTTGGAATGGTTAGTAAAACACAAGATAAGTGAAGGTAAA 480
	<hr style="border-top: 1px dashed black;"/>
160	141 D I A T K D T F G M V S K T Q D S E G K

481
AATGTTGCTGCAACAAAGGCACTTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCT 540

5 161 N V A A T K A L K V K D V A T F G L K S

180 541
GGTGGAAAGCGAAGATACTGGATATGTTGAAATGAAAGCAGGAGCTGTAGAGGATAAG 600

10 181 G G S E D T G Y V V E M K A G A V E D K

200 601
TATGGTAAAGTTGGAGATAGTACGGCAGGTATTGCAATAAATCTCCTAGTACTGGACTT 660

15 201 Y G K V G D S T A G I A I N L P S T G L

220 661
GAATATGCAGGTAAAGGAACACAATTGATTTAATAAAACTTTAAAAGTTGATGTAACA 720

20 221 E Y A G K G T T I D F N K T L K V D V T

240 721
GGTGGTTCAACACCTAGTGCTGTAGCTGAAGTGGTTTGTAACTAAAGATGATACTGAT 780

25 241 G G S T P S A V A V S G F V T K D D T D

260 781
TTAGCAAAATCAGGTACTATAATGTAAGAGTTATAATGCAAAAGAAGAATCAATTGAT 840

30 261 L A K S G T I N V R V I N A K E E S I D

280 841
ATAGATGCAAGCTCATATACATCAGCTGAAAATTAGCTAAAAGATATGTATTTGATCCA 900

35 281 I D A S S Y T S A E N L A K R Y V F D P

300 901
GATGAAATTCTGAAGCATATAAGGCAATAGTAGCATTACAAAATGATGGTATAGAGTCT 960

40 301 D E I S E A Y K A I V A L Q N D G I E S

320 961
AACTTAGTCAGTTAGTTAATGGAAAATATCAAGTGATTTTATCCAGAAGGTAAAAGA 1020

45 321 N L V Q L V N G K Y Q V I F Y P E G K R

340 1021
TTAGAAAATCAGCAAATGATAACAATAGCTAGTCAGATAACACCAGCTAAAGTAGTT 1080

50 341 L E T K S A N D T I A S Q D T P A K V V

360 ♦

1081
55 ATAAAAGCTAATAAATTAAAAGATTAAAAGATTATGATGATTTAAAAACATATAAT 1140

361 I K A N K L K D L K D Y V D D L K T Y N
 380
 1141
 5 AATACTTATTCAAATGTTGTAACAGTAGCAGGAGAAGATAGAAATAGAAACTGCTATAGAA 1200
 381 N T Y S N V V T V A G E D R I E T A I E
 400
 1201
 10 TTAAGTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAGCAGTTAAT 1260
 401 L S S K Y Y N S D D K N A I T D K A V N
 420
 1261
 15 GATATAGTATTAGTTGGATCTACATCTAGTTGATGGTCTTGGCATCACCATTAGCT 1320
 421 D I V L V G S T S I V D G L V A S P L A
 440
 1321
 20 TCAGAAAAAACAGCTCCATTATTAACTTCAAAAGATAAATTAGATTACATCAGTAAAAA 1380
 441 S E K T A P L L L T S K D K L D S S V K
 460
 1381
 25 TCTGAAATAAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAAACTTCTAAAAAA 1440
 461 S E I K R V M N L K S D T G I N T S K K
 480
 1441
 30 GTTTATTTAGCTGGTGGAGTTAATTCTATATCTAAAGATGTAGAAAATGAATTGAAAAAC 1500
 481 V Y L A G G V N S I S K D V E N E L K N
 500
 1501
 35 ATGGGTCTAAAGTTACTAGATTATCAGGAGAAGACAGATACGAAACTTCTTAGCAATA 1560
 501 M G L K V T R L S G E D R Y E T S L A I
 520
 1561
 40 GCTGATGAAATAGGTCTTGATAATGATAAAGCATTGATGGTGGTACTGGATTAGCA 1620
 521 A D E I G L D N D K A F V V G G T G L A
 540
 1621
 45 GATGCTATGAGTATAGCTCCAGTTGCTTCATACTAAAGATGGAGATGCTACTCCAATA 1680
 541 D A M S I A P V A S Q L K D G D A T P I
 560
 50 1681
 GTAGTTGTAGATGGAAAAGCAAAAGAAATAAGTGTGATGCTAAGAGTTCTTAGGAAC 1740
 561 V V V D G K A K E I S D D A K S F L G T
 580
 55 1741
 TCTGATGTTGATATAATAGGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCATAA 1800

581 S D V D I I G G K N S V S K E I E E S I
 600
 1801
 5 GATAGTGCAACTGGAAAAACTCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAAT 1860
 601 D S A T G K T P D R I S G D D R Q A T N
 620
 1861
 10 GCTGAAGTTTAAAAGAAGATGATTATTCACAGATGGTGAAGTTGTGAATTACTTGT 1920
 621 A E V L K E D D Y F T D G E V V N Y F V
 640
 1921
 15 GCAAAAGATGGTTCTACTAAAGAAGATCAATTAGTAGATGCCTTAGCAGCAGCACCAATA 1980
 641 A K D G S T K E D Q L V D A L A A A A P I
 660
 1981
 20 GCAGGTAGATTTAAGGAGTCTCCAGCTCCAATCATACTAGCTACTGATACTTTATCTTCT 2040
 661 A G R F K E S P A P I I L A T D T L S S
 680
 2041
 25 GACCAAAATGTAGCTGTAAGTAAAGCAGTCCTAAAGATGGTGGAACTAACCTAGTCAA 2100
 681 D Q N V A V S K A V P K D G G T N L V Q
 700
 2101 GTAGGTAAAGGTATAGCTTCTTCAGTTATAAACAAAATGAAAGATTTATTAGATATG
 2157
 30
 701 V G K G I A S S V I N K M K D L L D M
 719

Appendix 4

SEQ ID No 6. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 171448, PCR type 12, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

1	ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTTAGCTCGGCTGCT	60
10	-----+-----+-----+-----+-----+-----+-----+-----+	
	1 M N K K N I A I A M S G L T V L A S A A	
20		
	61	
15	CCTGTTTTGCTGCAACTACTGGAACACAAGGTTACTGTAGTTAAAACGACTGGAAA	120
	-----+-----+-----+-----+-----+-----+-----+-----+	
	21 P V F A A T T G T Q G Y T V V K N D W K	
40		
	Δ	
	121	
20	AAAGCAGTAAAACAATTACAAGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTA	180
	-----+-----+-----+-----+-----+-----+-----+-----+	
	41 K A V K Q L Q D G L K D N S I G K I T V	
60		
	181	
25	TCTTTAATGATGGGTTGTGGGTGAAGTAGCTCCTAAAAGTGCTAATAAGAAAGCGGAC	240
	-----+-----+-----+-----+-----+-----+-----+-----+	
	61 S F N D G V V G E V A P K S A N K K A D	
80		
	241	
30	AGAGATGCTGCAGCTGAGAAGTTATATAATCTTGTAAACACTCAATTAGATAAATTAGGT	300
	-----+-----+-----+-----+-----+-----+-----+-----+	
	81 R D A A A E K L Y N L V N T Q L D K L G	
100		
	301	
35	GATGGAGATTATGTTGATTTCTGTAGATTATAATTAGAAAACAAAATAAACTAAT	360
	-----+-----+-----+-----+-----+-----+-----+-----+	
	101 D G D Y V D F S V D Y N L E N K I I T N	
120		
	361	
40	CAAGCAGATGCAGAAGCAATTGTTACAAAGTTAAATCACTTAATGAGAAAACCTTATT	420
	-----+-----+-----+-----+-----+-----+-----+-----+	
	121 Q A D A E A I V T K L N S L N E K T L I	
140		
	421	
45	GATATAGCAACTAAAGATACTTTGGAATGGTTAGTAAAACACAAGATAGTGGAGGTAAA	480
	-----+-----+-----+-----+-----+-----+-----+-----+	
	141 D I A T K D T F G M V S K T Q D S G G K	
160		

481
AATGTTGCTGCAACAAAGGCACTTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCT 540

5 161 N V A A T K A L K V K D V A T F G L K S

180 541
GGTGGAAAGCGAAGATACTGGATATGTTGAAATGAAAGCAGGAGCTGTAGAGGATAAG 600

10 181 G G S E D T G Y V V E M K A G A V E D K

200 601
TATGGTAAAGTTGGAGATAGTACGGCAGGTATTGCAATAATCTTCCTAGTACTGGACTT 660

15 201 Y G K V G D S T A G I A I N L P S T G L

220 661
GAATATGCAGGTAAAGGAACAACAATTGATTTAATAAAAACTTAAAAGTTGATGTAACA 720

20 221 E Y A G K G T T I D F N K T L K V D V T

240 721
GGTGGTTCAACACCTAGTGCTGTAGCTGAAGTGGTTTGTAACTAAAGATGATACTGAT 780

25 241 G G S T P S A V A V S G F V T K D D T D

260 781
TTAGCAAAATCAGGTACTATAAATGTAAGAGTTATAAATGCAAAAGAAGAATCAATTGAT 840

30 261 L A K S G T I N V R V I N A K E E S I D

280 841
ATAGATGCAAGCTCATATACATCAGCTGAAAATTAGCTAAAAGATATGTATTTGATCCA 900

35 281 I D A S S Y T S A E N L A K R Y V F D P

300 901
GATGAAATTCTGAAGCATATAAGGCAATAGTAGCATTACAAAATGATGGTATAGAGTCT 960

40 301 D E I S E A Y K A I V A L Q N D G I E S

320 961
AATTTAGTTAGTTAATGGAAAATATCAAGTGATTTTATCCAGAAGGTAAAAGA 1020

45 321 N L V Q L V N G K Y Q V I F Y P E G K R

340 1021
TTAGAAAATCAGCAAATGATACAATAGCTAGTCAGATACACCAGCTAAAGTAGTT 1080

50 341 L E T K S A N D T I A S Q D T P A K V V

360 ♦

1081
55 ATAAAAGCTAATAAATTAAAAGATTAAAAGATTATGATGATGATTTAAAAACATATAAT 1140

361 I K A N K L K D L K D Y V D D L K T Y N
 380
 1141
 5 AATACTTATTCAAATGTTGAAACAGTAGCAGGAGAAGATAGAAACTGCTATAGAA 1200
 381 N T Y S N V V T V A G E D R I E T A I E
 400
 1201
 10 TTAAGTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAGCAGTTAAT 1260
 401 L S S K Y Y N S D D K N A I T D K A V N
 420
 1261
 15 GATATAGTATTAGTTGGATCTACATCTATAGTTGATGGCTTGGCATCACCATTAGCT 1320
 421 D I V L V G S T S I V D G L V A S P L A
 440
 1321
 20 TCAGAAAAAACAGCTCCATTATTAGCTTCAGATAAAATTAGATTCACTCAGTAAAAA 1380
 441 S E K T A P L L L A S K D K L D S S V K
 460
 1381
 25 TCTGAAATAAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAATCTCTAAAAA 1440
 461 S E I K R V M N L K S D T G I N T S K K
 480
 1441
 30 GTTTATTTAGCTGGGGAGTTAATTCTATATCTAAAGATGTAGAAAATGAATTGAAAAAC 1500
 481 V Y L A G G V N S I S K D V E N E L K N
 500
 1501
 35 ATGGGTCTTAAAGTTACTAGATTATCAGGAGAAGACAGATAACGAAACTCTTAGCAATA 1560
 501 M G L K V T R L S G E D R Y E T S L A I
 520
 1561
 40 GCTGATGAAATAGGTCTTGATAATGATAAAGCATTGATGGGTGACTGGATTAGCA 1620
 521 A D E I G L D N D K A F V V G G T G L A
 540
 1621
 45 GATGCTATGAGTATAGCTCCAGTTGCTTCAACTAAAGATGGAGATGCTACTCCAATA 1680
 541 D A M S I A P V A S Q L K D G D A T P I
 560
 50 1681
 561 V V V D G K A K E I S D D A K S F L G T
 580
 55 1741
 580 TCTGATGTTGATATAATAGGTGGAAAAATAGCGTATCTAAAGAGATTGAAGAGTCAATA 1800

581 S D V D I I G G K N S V S K E I E E S I
600
1801 GATAGTGCAACTGGAAAAACTCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAAT 1860
5
601 D S A T G K T P D R I S G D D R Q A T N
620
1861 GCTGAAGTTTAAAGAAGATGATTATTCACAGATGGTGAAGTTGTGAATTACTTTGTT 1920
10
621 A E V L K E D D Y F T D G E V V N Y F V
640
1921 GCAAAAGATGGTTCTACTAAAGAAGATCAATTAGTAGATGCCTAGCAGCACCAATA 1980
15
641 A K D G S T K E D Q L V D A L A A A P I
660
1981 GCAGGTAGATTAAGGAGTCTCCAGCTCCAATCATACTAGCTACTGATACTTTATCTTCT 2040
20
661 A G R F K E S P A P I I L A T D T L S S
680
2041 GACCAAAATGTAGCTGTAAGTAAAGCAGTCCTAAAGATGGTGGAACTAACCTAGTTCAA 2100
25
681 D Q N V A V S K A V P K D G G T N L V Q
700
2101 GTAGGTAAAGGTATAGCTTCTCAGTTATAAACAAAATGAAAGATTATTAGATATG
2157
30
701 V G K G I A S S V I N K M K D L L D M
719

Appendix 5

SEQ ID No. 7. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 171862, PCR type 17, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

1	ATGAATAAGAAAAACTTAGCAATGGCTATGGCAGCAGTTACTGTTGTGGGTTCTGCAGCG	60
10	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	1 M N K K N L A M A M A A V T V V G S A A	
20	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	21 P I F A D S T T P G Y T V V K N D W K K	
40		Δ
121	GCAGTAAAACAATTACAAGATGGGTTGAAAAATAAACTATATCACAAATAAGGTGTCT	180
20	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	41 A V K Q L Q D G L K N K T I S T I K V S	
60	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
181	TTTAATGGAAACTCTGTTGGAGAAGTTACACCAGCCAGTTCTGGAGCAAAAAAGCAGAT	240
25	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	61 F N G N S V G E V T P A S S G A K K A D	
80	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
241	AGAGATGCTGCAGCTGAAAAGTTATATAATTAGTAAATACACAATTAGATAAACTAGGT	300
30	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	81 R D A A A E K L Y N L V N T Q L D K L G	
100	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
301	GATGGAGATTACGTTGACTTGAAGTAACCTATAATTAGCTACTCAAATAATTACAAAA	360
35	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	101 D G D Y V D F E V T Y N L A T Q I I T K	
120	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
361	GCAGAACAGAGGCAGTTCTTACAAAATTACAACAATATAATGATAAAAGTACTTATAAAT	420
40	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	121 A E A E A V L T K L Q Q Y N D K V L I N	
140	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
421	TCTGCAACAGATAACAGTAAAGGTATGGTATCTGATACACAAGTTGATAGCAAAAATGTT	480
45	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	141 S A T D T V K G M V S D T Q V D S K N V	
160		

481
GCAGCTAACCCACTTAAAGTTAGTGATATGTATAACATCTGCTATTACTGGAAAGT 540

5 161 A A N P L K V S D M Y T I P S A I T G S

180 541
GATGATTCTGGGTATAGTATTGCTAAACCAACAGAAAAGACTACAA GTTTATTGTATGGT 600

10 181 D D S G Y S I A K P T E K T T S L L Y G

200 601
ACGGTTGGTGATGCAACTGCAGGTAAAGCAATAACAGTAGATACAGCTTCAAATGAAGCT 660

15 201 T V G D A T A G K A I T V D T A S N E A

220 661
TTTGCTGAAATGGAAAGGTATTGACTACAATAATCATTCAAAGCAACTGTACAAGGA 720

20 221 F A G N G K V I D Y N K S F K A T V Q G

240 721
GATGGAACAGTTAAGACAAGCGGGGTTGTACTTAAAGATGCAAGTGATATGGCTGCAACA 780

25 241 D G T V K T S G V V L K D A S D M A A T

260 781
GGTACTATAAAAGTTAGAGTTACAAGTGCAAAAGAAGAATCTATTGATGTGGATTCAAGT 840

30 261 G T I K V R V T S A K E E S I D V D S S

280 841
TCATATATTAGTGCTGAAAATTAGCTAAAAATATGTATTAAATCCTAAAGAGGTTCT 900

35 281 S Y I S A E N L A K K Y V F N P K E V S

300 901
GAAGCTTATAATGCAATAGTTGCATTACAAATGATGGAATAGAATCTGATTTAGTACAA 960

40 301 E A Y N A I V A L Q N D G I E S D L V Q

320 961
TTAGTTAATGGAAAATATCAAGTTATTCTATCCAGAAGGAAAAGATTAGAAACTAAA 1020

45 321 L V N G K Y Q V I F Y P E G K R L E T K

340

1021 TCTGCAGATATAATAGCTGATGCAGATAGTCCAGCTAAAATAACTATAAAAGCTAATAAA
 1080

5	341 S A D I I A D A D S P A K I T I K A N K
	◆
	1081 TTAAAAGATTAAAAGATTATGTAGATGATTAAAAACATACAATAACTTACTCAAAT 1140
10	361 L K D L K D Y V D D L K T Y N N T Y S N
	380
	1141 GTTGTAAACAGTAGCAGGAGAAGATAGAATAGAAACTGCTATAGAATTAAGTAGTAAATAT 1200
15	381 V V T V A G E D R I E T A I E L S S K Y
	400
	1201 TATAATTCTGATGATAAAAATGCAATAACTGATGATGCAGTTAATAATATAGTATTAGTT 1260
20	401 Y N S D D K N A I T D D A V N N I V L V
	420
	1261 GGATCTACATCTATAGTTGATGGTCTTGTGCATCACCATTAGCTTCAGAAAAAACAGCT 1320
25	421 G S T S I V D G L V A S P L A S E K T A
	440
	1321 CCATTATTAACTCAAAAGATAAATTAGATTCATCAGTAAATCTGAGATAAAAAGA 1380
30	441 P L L L T S K D K L D S S V K S E I K R
	460
	1381 GTTATGAACTTAAAGAGTGATACTGGTATAAAACTCTAAAAAGTTATTTAGCTGGT 1440
35	461 V M N L K S D T G I N T S K K V Y L A G
	480
	1441 GGAGTTAATTCTATATCTAAAGATGTAGAAGATGAATTGAAAAATATGGGCCTTAAAGTT 1500
40	481 G V N S I S K D V E D E L K N M G L K V
	500
	1501 ACTAGATTATCAGGAGAACAGACAGATACTTCTTAGCAATAGCTGATGAAATAGGT 1560
45	501 T R L S G E D R Y E T S L A I A D E I G
	520
	1561 CTTGATAATGATAAAGCATTGTTAGTTGGTGGTACTGGATTGGCAGATGCTATGAGTATA 1620
50	521 L D N D K A F V V G G T G L A D A M S I
	540
	1621 GCTCCAGTTGCTTCTCAACTAAAGATGGAGATGCTACTCCAATAGTAGTTGTAGATGGA 1680

541 A P V A S Q L K D G D A T P I V V V D G
 560
 1681
 AAAGCAAAAGAAATAAGTGTGATGCTAAGAGTTCTAGGAACCTCTGATGTTGATATA 1740
 5
 561 K A K E I S D D A K S F L G T S D V D I
 580
 1741
 ATAGGTGGAAAAATAGCGTATCTAAAGAGATTGAAGAGTCATAGATAGTGCAACTGGA 1800
 10
 581 I G G K N S V S K E I E E S I D S A T G
 600
 1801
 AAAACTCCAGATAGAATAAGTGGAGATGACAGACAAGCAACTAATGCTGAAGTTAAAA 1860
 15
 601 K T P D R I S G D D R Q A T N A E V L K
 620
 1861
 GAAGATGATTATTCAAAGATGGTGAAGTTGTGAATTACTTTGTTGCAAAAGATGGTTCT 1920
 20
 621 E D D Y F K D G E V V N Y F V A K D G S
 640
 1921
 ACTAAAGAAGATCAATTAGTAGATGCATTAGCAGCAGCACCAATAGCAGGTAGATTAAG 1980
 25
 641 T K E D Q L V D A L A A A P I A G R F K
 660
 1981
 GAGTCTCCAGCTCCAATCATACTAGCTACTGATACTTTATCTCTGACCAAAATGTAGCT 2040
 30
 661 E S P A P I I L A T D T L S S D Q N V A
 680
 2041
 GTAAGTAAAGCAGTTCTAAAGATGGTGGAACTAACCTAGTTCAAGTAGGTAAAGGTATA 2100
 35
 681 V S K A V P K D G G T N L V Q V G K G I
 700
 2101 GCTTCTTCAGTTATAAACAAAATGAAAGATTTATTAGATATGTAA 2145
 40
 701 A S S V I N K M K D L L D M * 715

Appendix 6

SEQ ID No 8. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 173644, PCR type 31, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

1	ATGAATAAGAAGGATATAGCAATAGCTATGTCAGGATTAACAGTATTAGCTTCTGCAGCA	60
10	-----+-----+-----+-----+-----+-----+	
	M N K K D I A I A M S G L T V L A S A A	
20		
61	CCTGTATTTGCTGCTAGTAGTTACAGCAGATTATAATTACTGTAGTGCAAGGAAAA	120
15	-----+-----+-----+-----+-----+-----+	
	P V F A A S S F T A D Y N Y T V V Q G K	
40		
121	TATCAAAAAGTTATAACTGGATTACAAGATGGTTAAAAAAATGGAAAAATAACAAATATT	180
20	-----+-----+-----+-----+-----+-----+	
	Y Q K V I T G L Q D G L K N G K I T N I	
60		
181	GATGTAATATTGATGGAAGTTCAATTGGTAGGTAGTGCCAGGTTCTGATGCTGCAGCT	240
25	-----+-----+-----+-----+-----+-----+	
	D V I F D G S S I G E V V P G S D A A A	
80		
241	GCAGCTACTAAATTAAAAAGTTAGTTGATGATAAGTTAGATAACTTAGGTGATGGAAAA	300
30	-----+-----+-----+-----+-----+-----+	
	A A T K L K S L V D D K L D N L G D G K	
100		
301	TACGTTCAATTAAATGTTACTTATACTAAATCTATAATAACTAAAGCAGAATTAAA	360
35	-----+-----+-----+-----+-----+-----+	
	Y V Q F N V T Y T T K S I I T K A E L K	
120		
361	AATTATTATAATCAATTAGAAAGTAGAAAGATAGAATACTTATAGGAAATGAACCTCAA	420
40	-----+-----+-----+-----+-----+-----+	
	N Y Y N Q L E S S K D R I L I G N E P Q	
140		
421	GATACAGGAACATAAGGTCTTATAAAAGCTGATACTGATGGTACTACTGCTGTTGCAGCA	480
45	-----+-----+-----+-----+-----+-----+	
	D T G T K G L I K A D T D G T T A V A A	
160		
50		
481	GCTGCACCATTGAAATTATCAGATATATTACGTTAGTTATGATGAAGTAACAGGTGTA	540
55	-----+-----+-----+-----+-----+-----+	
	A A P L K L S D I F T F S Y D E V T G V	
180		

541
 CTTAAAGCAGAACCAACAAGTAAAGTAAGCGCTGGTAAAGTTCAAGGTCTAAAATATGGA 600
 181 L K A E P T S K V S A G K V Q G L K Y G
 5 200
 601
 AATAACAGGAGCAACTAACTATACTTCTGGAGCTGAAATATCTGTTCCTACTACAGGCTTA 660
 201 N T G A T N Y T S G A E I S V P T T G L
 10 220
 661
 ACATTAAC TGCTGATACAAC TGCAAC AACAGAT GTAAAT ATTCTGATGTTATGAGTGCA 720
 221 T L T A D T T A T T D V N I S D V M S A
 15 240
 721
 TTTAAATTAAATGGTACTGATACGATTAGTGGATTCCAGCTGGTCATCAGCTTCACT 780
 241 F K F N G T D T I S G F P A G S S A S T
 20 260
 781
 CTTAGAGCAAGTATAAAAGTAATAAATGCAAAGAAGAATCTATAGATGTTGATTCAAGT 840
 261 L R A S I K V I N A K E E S I D V D S S
 25 280
 841
 TCACATAGAACAGCTGAAGATTAGCTGAAAAATATGTATTAAACCAGAAGAGATGTGAAT 900
 281 S H R T A E D L A E K Y V F K P E D V N
 30 300
 901
 AAAACTTATGAGGCAGTGAATGATTTATATAAGAAGGTATAACAAGTAATCTTATCACT 960
 301 K T Y E A L T D L Y K E G I T S N L I T
 35 320
 961
 CAAGATGGTGGAAAATATCAAGTTGTTTATTTGCTCAAGGAAAGAGATTAACACTAAA 1020
 321 Q D G G K Y Q V V L F A Q G K R L T T K
 40 340
 1021
 GGAGCAACTGGAACCTTAGCAGATGAAAATTCTCCTCTTAAAGTAACAATAAAAGCAGAT 1080
 341 G A T G T L A D E N S P L K V T I K A D
 45 360
 ♦
 1081
 AAAGTAAAAGACTTAAAGATTATGTTGAAGATTAAAAATGCTAACAAATGGATATTCA 1140
 50 361 K V K D L K D Y V E D L K N A N N G Y S
 380
 1141
 AATTCTGTTGTTGTAGCAGGTGAAGATAGAATAGAACAGCAATAGAGTTAAGTAGCAA 1200
 55

381 N S V V V A G E D R I E T A I E L S S K
 400
 1201
 TACTATAACTCTGATGATGACAATGCAATAACTAAAGATCCAGTTAACATGTTGTTTA 1260
 5
 401 Y Y N S D D D N A I T K D P V N N V V L
 420
 1261
 GTTGGTTCTCAAGCTGTAGTTGATGGGCTTGTAGCTTCACCTTAGCATCTGAAAAAAGA 1320
 10
 421 V G S Q A V V D G L V A S P L A S E K R
 440
 1321
 GCTCCTTACTATTAACTTCAGCAGGAAAATTAGATTCAAGTGTAAAGCTGAGTTGAAA 1380
 15
 441 A P L L T S A G K L D S S V K A E L K
 460
 1381
 AGAGTAATGGATTAAAATCTACAAACAGGTGTAAATACTTCTAAAAAGTTACTTAGCT 1440
 20
 461 R V M D L K S T T G V N T S K K V Y L A
 480
 1441
 GGTGGAGTAAACTCTATATCTAAAGATGTAGAAAATGAATTAAAAGATATGGGACTTAAA 1500
 25
 481 G G V N S I S K D V E N E L K D M G L K
 500
 1501
 GTTACAAGATTATCAGGAGATGATAGATATGAAACTTCTTAGCTATAGCTGATGAAATA 1560
 30
 501 V T R L S G D D R Y E T S L A I A D E I
 520
 1561
 GGTCTTGATAATGATAAAGCTTTGTAGTTGGAGGAACAGGATTAGCGGATGCTATGAGT 1620
 35
 521 G L D N D K A F V V G G T G L A D A M S
 540
 1621
 ATAGCTCCAGTTGCTTCTCAATTAAAGAAACTCAAATGGAGAACAGGATTAGCGGATGCTATGAGT 1680
 40
 541 I A P V A S Q L R N S N G E L D L K G D
 560
 1681
 GCAACTCCAATAGTAGTTGATGGAAAAGCTAAAGATATAATTCTGAAGTAAAAGAT 1740
 561 A T P I V V V D G K A K D I N S E V K D
 580
 1741
 TTCTTAGATGATTACAAGTTGATATAATAGGTGGTGTAAATAGTGTCTAAAGAAGTA 1800
 581 F L D D S Q V D I I G G V N S V S K E V
 600
 1801
 ATGGAAGCAATAGATGATGCTACTGGAAAATCACCTGAGAGATATAGTGGAGAAGATAGA 1860

601 M E A I D D A T G K S P E R Y S G E D R
 620
 1861 CAAGCAACAAATGCTAAAGTTATAAAAGAAGATGATTCTTAAAAATGGAGAAGTTACA 1920
 5
 621 Q A T N A K V I K E D D F F K N G E V T
 640
 1921 AACTTCCTTGCTAGCTAAAGATGGTTCAACTAAAGAAGATCAATTAGTAGATGCTTAGCA 1980
 10
 641 N F F V A K D G S T K E D Q L V D A L A
 660
 1981 GGTGCTGCAATTGCTGGTAACCTTGGTGTAAACAGTAGATAATGAAGGAAAACCTACAGTT 2040
 15
 661 G A A I A G N F G V T V D N E G K P T V
 680
 2041 GCTGATAAAAAAGCTTCTCCAGCACCAATTGTTTAGAACAGATTCTTATCTTCTGAT 2100
 20
 681 A D K K A S P A P I V L A T D S L S S D
 700
 2101 CAAAATGTAGCTATAAGTAAAGCTGTAAATGATGACGCTAATACTAAGAACATTCAA 2160
 25
 701 Q N V A I S K A V N D D A N T K N L V Q
 720
 2161 GTTGGTAAAGGTATAGCTACTCAGTTGTAAGTAAAATAAAAGATTATTAGATATG
 2217
 30
 721 V G K G I A T S V V S K I K D L L D M
 739

Appendix 7

SEQ ID No 9. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 170444, PCR type 46, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

5	1 ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTTAGCTCGGCTGCT	60
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
10	1 M N K K N I A I A M S G L T V L A S A A	
	20 .	
	21 P V F A A T T G T Q G Y T V V K N D W K	
	40	
	Δ	
15	61 CCTGTTTGCTGCAACTACTGGAACACAAGGTTACTGTAGTTAAAACGACTGGAAA	120
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
20	AAAGCAGTAAAACAATTACAAGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTA	180
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	41 K A V K Q L Q D G L K D N S I G K I T V	
	60	
	80	
25	181 TCTTTAATGATGGGTTGTGGGTGAAGTAGCTCCTAAAGTGCTAATAAGAAAGCAGGAC	240
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	61 S F N D G V V G E V A P K S A N K K A D	
	100	
30	241 AGAGATGCTGCAGCTGAGAAGTTATATAATCTTGTAAACACTCAATTAGATAAAATTAGGT	300
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	81 R D A A A E K L Y N L V N T Q L D K L G	
	120	
35	301 GATGGAGATTATGTTGATTTCTGTAGATTATAATTAGAAAAAAAATAATAACTAAT	360
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	101 D G D Y V D F S V D Y N L E K K I I T N	
	140	
40	361 CAAGCAGATGCAGAAGCAATTGTTACAAAGTTAAATTCACTTAATGAGAAAATCTTATT	420
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	121 Q A D A E A I V T K L N S L N E K T L I	
	160	
45	421 GATATAGCAACTAAAGATACTTTGGAATGGTTAGTAAAACACAAGATAAGTGAAGGTAAA	480
	-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+	
	141 D I A T K D T F G M V S K T Q D S E G K	

481
 AATGTTGCTGCAACAAAGGCACTTAAAGTTAAAGATGTTGCTACATTCGTTGAAGTCT 540
 5 161 N V A A T K A L K V K D V A T F G L K S
 180
 541
 GGTGGAAGCGAAGATACTGGATATGTTATTGAAATGAAAGCAGGAGCTGTAGAGGATAAG 600
 10 181 G G S E D T G Y V I E M K A G A V E D K
 200
 601
 TATGGTAAAGTTGGAGATAGTACCGCAGGTATTGCAATAAAATCTTCCTAGTACTGGACTT 660
 15 201 Y G K V G D S T A G I A I N L P S T G L
 220
 661
 GAATATGCAGGTAAAGGAACAACAATTGATTTAATAAAACTTAAAAGTTGATGTAACA 720
 20 221 E Y A G K G T T I D F N K T L K V D V T
 240
 721
 GGTGGTTCAACACCTAGTGCTGTAGCTGTAAGTGGTTTGTAACTAAAGATGATACTGAT 780
 25 241 G G S T P S A V A V S G F V T K D D T D
 260
 781
 TTAGCAAAATCAGGTACTATAATGTAAGAGTTATAATGCAAAAGAAGAATCAATTGAT 840
 30 261 L A K S G T I N V R V I N A K E E S I D
 280
 841
 ATAGATGCAAGCTCATATACATCAGCTGAAAATTAGCTAAAAGACATGTATTGATCCA 900
 35 281 I D A S S Y T S A E N L A K R H V F D P
 300
 901
 GATGAAATTCTGAAGCATATAAGGCAATAGTAGCATTACAAAATGATGGTATAGAGTCT 960
 40 301 D E I S E A Y K A I V A L Q N D G I E S
 320
 961
 AATTTAGTTCAAGTTAATGGAAAATCAAGTGATTTTATCCAGAAGGTAAAAGA 1020
 45 321 N L V Q L V N G K Y Q V I F Y P E G K R
 340

1021 TTAGAAACTAAATCAGCAAATGATACAATAGCTAGTCAGATAACCCAGCTAAAGTAGTT
 1080

5	341 L E T K S A N D T I A S Q D T P A K V V
	◆
5	360

1081
 ATAAAAGCTAATAAAATTAAAAGATTAAAAGATTATGTAGATGATTAAAAACATATAAT 1140

10	361 I K A N K L K D L K D Y V D D L K T Y N
	380

1141
 AAATACTTATTCAAAATGTTGTAACAGTAGCAGGAGAAGATAGAATAGAAACTGCTATAGAA 1200

15	381 N T Y S N V V T V A G E D R I E T A I E
	400

1201
 TTAAGTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAGCAGTTAAT 1260

20	401 L S S K Y Y N S D D K N A I T D K A V N
	420

1261
 GATATAGTATTAGTGGATCTACATCTATAGTTGATGGTCTTGGCATCACCATTAGCT 1320

25	421 D I V L V G S T S I V D G L V A S P L A
	440

1321
 TCAGAAAAAACAGCTCCATTATTAACTTCAGATAAAATTAGATTCACTCAGTAAAAA 1380

30	441 S E K T A P L L L T S K D K L D S S V K
	460

1381
 TCTGAAATAAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAAACTTCTAAAAAA 1440

35	461 S E I K R V M N L K S D T G I N T S K K
	480

1441
 GTTTATTTAGCTGGTGGAGTTAATTCTATCTAAAGATGTAGAAAATGAATTGAAAAAC 1500

40	481 V Y L A G G V N S I S K D V E N E L K N
	500

1501
 ATGGGTCTAAAGTTACTAGATTATCAGGAGAAGACAGATAACGAAACTCTTAGCAATA 1560

45	501 M G L K V T R L S G E D R Y E T S L A I
	520

1561
 GCTGATGAAATAGGTCTTGATAATGATAAAGCATTGATTTGAGATGGTACTGGATTAGCA 1620

50	521 A D E I G L D N D K A F V V G G T G L A
	540

1621
 GATGCTATGAGTATAGCTCCAGTTGCTTCTCAACTAAAGATGGAGATGCTACTCCAATA 1680

541 D A M S I A P V A S Q L K D G D A T P I
 560
 1681
 GTAGTTGTAGATGGAAAAGCAAAAGAAATAAGTGATGATGCTAAGAGTTCTTAGGAACCT 1740
 5
 561 V V V D G K A K E I S D D A K S F L G T
 580
 1741
 TCTGATGTTGATATAATAGGTGGAAAAACTCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAAT 1800
 10
 581 S D V D I I G G K N S V S K E I E E S I
 600
 1801
 GATAGTGCAACTGGAAAAACTCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAAT 1860
 15
 601 D S A T G K T P D R I S G D D R Q A T N
 620
 1861
 GCTGAAGTTTAAAAGAAGATGATTATTCACAGATGGTGAAGTTGTGAATTACTTTGTT 1920
 20
 621 A E V L K E D D Y F T D G E V V N Y F V
 640
 1921
 GCaaaAGATGGTTCTACTAAAGAAGATCAATTAGTAGATGCCTTAGCAGCAGCACCAATA 1980
 25
 641 A K D G S T K E D Q L V D A L A A A A P I
 660
 1981
 GCAGGGTAGATTAAGGAGTCTCCAGCTCCAATCATACTAGCTACTGATACTTTATCTTCT 2040
 30
 661 A G R F K E S P A P I I L A T D T L S S
 680
 2041
 GACCAAAATGTAGCTGTAAGTAAAGCAGTCCTAAAGATGGTGGAACTAACCTAGTC 2100
 35
 681 D Q N V A V S K A V P K D G G T N L V Q
 700
 2101 GTAGGTAAAGGTATAGCTTCTTCAGTTATAAACAAAATGAAAGATTATTAGATATG
 2157
 40
 701 V G K G I A S S V I N K M K D L L D M
 719

Appendix 8

SEQ ID No 10. Nucleotide sequence of *slpA* from *Clostridium difficile* strain 170426, PCR type 92, with translation. The putative secretory signal cleavage site (Δ) and site of cleavage to form the two mature SLPs (\blacklozenge) are indicated.

1	ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTCGGCTGCT	60
10	1 M N K K N I A I A M S G L T V L A S A A	
20	CCTGTTTGCTGCAACTACTGGAACACAAGGTTACTGTAGTTAAAACGACTGGAAA	120
15	21 P V F A A T T G T Q G Y T V V K N D W K	
40	Δ	
121	AAAGCAGTAAAACAATTACAGGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTA	180
20	41 K A V K Q L Q D G L K D N S I G K I T V	
60	TCTTTTAATGATGGGTTGTGGGTGAAGTAGCTCCTAAAGTGTCTAATAAGAAAGCGGAC	240
25	61 S F N D G V V G E V A P K S A N K K A D	
80	181	
30	AGAGATGCTGCAGCTGAGAAGTTATATAATCTGTTAACACTCAATTAGATAAAATTAGGT	300
100	81 R D A A A E K L Y N L V N T Q L D K L G	
35	301	
120	GATGGAGATTATGTTGATTTCTGTAGATTATAATTAGAAAAAAAATAATAACTAAT	360
140	101 D G D Y V D F S V D Y N L E K K I I T N	
40	361	
160	CAAGCAGATGCAGAACATTGTTACAAAGTTAAATTCACTTAATGAGAAAATCTTATT	420
50	121 Q A D A E A I V T K L N S L N E K T L I	
45	421	
180	GATATAGCAACTAAAGATACTTTGGAATGGTTAGTAAACACAAGATAGTGAAGGTAAA	480
55	+ 141 D I A T K D T F G M V S K T Q D S E G K	
481	AATGTTGCTGCAACAAAGGCACCTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCT	540
161	161 N V A A T K A L K V K D V A T F G L K S	

541
 GGTGGAAGCGAAGATACTGGATATGTTGAAATGAAAGCAGGAGCTGTAGAGGATAAG 600
 181 G G S E D T G Y V V E M K A G A V E D K
 200
 601
 TATGGTAAAGTTGGAGATAGTACGGCAGGTATTGCAATAAATCTTCCTAGTACTGGACTT 660
 201 Y G K V G D S T A G I A I N L P S T G L
 10 220
 661
 GAATATGCAGGTAAAGGAACAACAATTGATTTAATAAAAACCTTAAAGTTGATGTAACA 720
 221 E Y A G K G T T I D F N K T L K V D V T
 15 240
 721
 GGTGGTTAACACCTAGTGCTGCTGTAAGTGGTTTGTAACTAAAGATGATACTGAT 780
 241 G G S T P S A V A V S G F V T K D D T D
 20 260
 781
 TTAGCAAAATCAGGTACTATAATGTAAGAGTTATAATGCAAAAGAAGATCAATTGAT 840
 261 L A K S G T I N V R V I N A K E E S I D
 25 280
 841
 ATAGATGCAAGCTCATATACATCAGCTGAAAATTAGCTAAAAGATATGTATTTGATCCA 900
 281 I D A S S Y T S A E N L A K R Y V F D P
 30 300
 901
 GATGAAATTCTGAAGCATATAAGGCAATAGTAGCATTACAAAATGATGGTATAGAGTCT 960
 301 D E I S E A Y K A I V A L Q N D G I E S
 35 320
 961
 AATTAGTCAGTTAGTTAATGGAAAATATCAAGTGATTTTATCCAGAAGGTAAAAGA 1020
 321 N L V Q L V N G K Y Q V I F Y P E G K R
 40 340
 1021
 TTAGAAAATCAGCAAATGATACAATAGCTAGTCAGATACACCAGCTAAAGTAGTT 1080
 341 L E T K S A N D T I A S Q D T P A K V V
 45 360
 ♦
 1081
 ATAAAAGCTAATAAATTAAAAGATTAAAGATTATGATGATTTAAAAACATATAAT 1140
 361 I K A N K L K D L K D Y V D D L K T Y N
 380
 1141
 AATACTTATTCAAATGTTGTAACAGTAGCAGGAGAAGATAGAAATAGAAACTGCTATAGAA 1200

381 N T Y S N V V T V A G E D R I E T A I E
 400
 1201
 TTAAGTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAGCAGTTAAT 1260
 5
 401 L S S K Y Y N S D D K N A I T D K A V N
 420
 1261
 GATATAGTATTAGTTGGATCTACATCTAGTTGATGGTCTTGGCATCACCATTAGCT 1320
 10
 421 D I V L V G S T S I V D G L V A S P L A
 440
 1321
 TCAGAAAAAACAGCTCCATTATTAACTTCAGAAAGATAAATTAGATTCACTCAGTAAAA 1380
 15
 441 S E K T A P L L T S K D K L D S S V K
 460
 1381
 TCTGAAATAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAAACTTCTAAAAAA 1440
 20
 461 S E I K R V M N L K S D T G I N T S K K
 480
 1441
 GTTTATTAGCTGGTGGAGTTAATTCTATCTAAAGATGTAGAAAATGAATTGAAAAAC 1500
 25
 481 V Y L A G G V N S I S K D V E N E L K N
 500
 1501
 ATGGGTCTAAAGTTACTAGATTATCAGGAGAACAGATACGAAACTCTTAGCAATA 1560
 30
 501 M G L K V T R L S G E D R Y E T S L A I
 520
 1561
 GCTGATGAAAATAGGTCTTGATAATGATAAAGCATTGTAGTTGGTGGACTGGATTAGCA 1620
 35
 521 A D E I G L D N D K A F V V G G T G L A
 540
 1621
 GATGCTATGAGTATAGCTCCAGTTGCTTCTCAACTTAAAGATGGAGATGCTACTCCAATA 1680
 40
 541 D A M S I A P V A S Q L K D G D A T P I
 560
 1681
 GTAGTTGTAGATGGAAAAGCAAAAGAAATAAGTGTGATGCTAAGAGTTCTTAGGAAC 1740
 580
 1741
 TCTGATGTTGATATAATAGGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCAATA 1800
 600
 581 S D V D I I G G K N S V S K E I E E S I
 600
 1801
 GATAGTGCAACTGGAAAAACTCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAAT 1860

601 D S A T G K T P D R I S G D D D R Q A T N
620
1861 GCTGAAGTTTAAAAGAAGATGATTATTCACAGATGGTGAAGTTGTGAATTACTTGT 1920
5
621 A E V L K E D D Y F T D G E V V N Y F V
640
1921 GCAAAAGATGGTTCTACTAAAGAAGATCAATTAGTAGATGCCTAGCAGCAGCACCAATA 1980
10
641 A K D G S T K E D Q L V D A L A A A A P I
660
1981 GCAGGTAGATTAAAGGAGTCTCCAGCTCCAATCATACTAGCTACTGATACTTTATCTCT 2040
15
661 A G R F K E S P A P I I L A T D T L S S
680
2041 GACCAAAATGTAGCTGTAAGTAAAGCAGTCCTAAAGATGGTGGAACTAACCTAGTTCAA 2100
20
681 D Q N V A V S K A V P K D G G T N L V Q
700
2101 GTAGGTAAAGGTATAGCTTCTCAGTTATAAACAAAATGAAAGATTATTAGATATG
2157
25
701 V G K G I A S S V I N K M K D L L D M
719

Claims

1. A vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.
5
2. A vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising a *C. difficile* gene or *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof to which immunoreactivity is detected in individuals who have recovered from *C. difficile* infection.
10
3. A vaccine as claimed in claim 1 or 2 wherein the gene encodes a *C. difficile* surface layer protein, SlpA or variant or homologue thereof.
15
4. A vaccine as claimed in claim 1 or 2 wherein the peptide/polypeptide is a *C. difficile* surface layer protein, SlpA or variant or homologue thereof.
20
5. A vaccine as claimed in any of claims 1 to 4 wherein the vaccine comprises a chimeric nucleic acid sequence.
25
6. A vaccine as claimed in 5 wherein the chimeric nucleic acid sequence is derived from the 5' end of the gene, encoding the mature N-terminal moiety of SlpA from *C. difficile*.
30
7. A vaccine as claimed in any of claims 1 to 4 wherein the vaccine comprises a chimeric peptide/polypeptide.
8. A vaccine as claimed in 7 wherein the amino acid sequence of the chimeric peptide/polypeptide is derived from the mature N-terminal moiety of SlpA from *C. difficile*.

9. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains an amino acid sequence SEQ ID No.1 or a derivative or fragment or mutant or variant thereof.
- 5 10. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains an amino acid sequence SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.
- 10 11. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.3 or a derivative or fragment or mutant or variant thereof.
- 15 12. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.4 or a derivative or fragment or mutant or variant thereof.
13. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.5 or a derivative or fragment or mutant or variant thereof.
- 20 14. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.6 or a derivative or fragment or mutant or variant thereof.
- 25 15. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.7 or a derivative or fragment or mutant or variant thereof.
16. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.8 or a derivative or fragment or mutant or variant thereof.

17. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.9 or a derivative or fragment or mutant or variant thereof.
- 5 18. A vaccine as claimed in any of claims 1 to 8 wherein the vaccine contains a nucleotide sequence SEQ ID No.10 or a derivative or fragment or mutant or variant thereof.
- 10 19. A vaccine as claimed in any preceding claim in combination with at least one other *C. difficile* sub-unit.
- 15 20. A vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising the mature N-terminal moiety of a surface layer protein, SlpA of *C. difficile* or variant or homologue thereof which is immunogenic in humans.
21. A vaccine as claimed in claim 20 wherein the N-terminal moiety of SlpA contains an amino acid sequence SEQ ID No. 1.
- 20 22. A vaccine as claimed in claim 20 wherein the N-terminal moiety of SlpA contains an amino acid sequence SEQ ID No. 2.
23. A vaccine for the treatment or prophylaxis of *C. difficile* associated disease, the vaccine comprising an immunodominant epitope derived from a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.
- 25 24. A vaccine as claimed in any preceding claim comprising a pharmaceutically acceptable carrier.
- 30 25. A vaccine as claimed in any preceding claim in combination with a pharmacologically suitable adjuvant.

26. A vaccine as claimed in claim 25 wherein the adjuvant is interleukin 12.
27. A vaccine as claimed in claim 25 or 26 wherein the adjuvant is a heat shock protein.
- 5 28. A vaccine as claimed in any preceding claim comprising at least one other pharmaceutical product.
- 10 29. A vaccine as claimed in claim 28 wherein the pharmaceutical product is an antibiotic.
30. A vaccine as claimed in claim 29 wherein the antibiotic is selected from one or more metronidazole, amoxycillin, tetracycline or erythromycin, clarithromycin or tinidazole.
- 15 31. A vaccine as claimed in claim 28 wherein the pharmaceutical product comprises an acid-suppressing agent such as omeprazole or bismuth salts.
32. A vaccine as claimed in any preceding claim in a form for oral administration.
- 20 33. A vaccine as claimed in any preceding claim in a form for intranasal administration.
- 25 34. A vaccine as claimed in any preceding claim in a form for intravenous administration.
35. A vaccine as claimed in any preceding claim in a form for intramuscular administration.
- 30 36. A vaccine as claimed in any of claims 1 to 35 including a peptide delivery system.

37. An immunodominant epitope derived from a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof.
38. An immunodominant epitope as claimed in claim 37 wherein the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.1 or SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.
5
39. An immunodominant epitope as claimed in claim 35 wherein the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.3 or SEQ ID No.4 or SEQ ID No.5 or SEQ ID No.6 or SEQ ID No.7 or SEQ ID No.8 or SEQ ID No. 9 or SEQ ID No. 10 or a derivative or fragment or mutant or variant thereof.
10
40. A chimeric nucleic acid sequence derived from the 5' end of the slpA gene encoding the mature N-terminal moiety of SlpA from *C. difficile* which is immunogenic in humans.
15
41. A chimeric peptide/polypeptide wherein the amino acid sequence of the chimeric peptide/polypeptide is derived from the mature N-terminal moiety of SlpA from *C. difficile*.
20
42. A *C. difficile* peptide comprising SEQ ID No. 1.
43. A *C. difficile* peptide comprising SEQ ID No. 2.
25
44. A *C. difficile* gene comprising SEQ ID No. 3.
45. A *C. difficile* gene comprising SEQ ID No. 4.
46. A *C. difficile* gene comprising SEQ ID No. 5.
30

47. A *C. difficile* gene comprising SEQ ID No. 6.
48. A *C. difficile* gene comprising SEQ ID No. 7.
- 5 49. A *C. difficile* gene comprising SEQ ID No. 8.
50. A *C. difficile* gene comprising SEQ ID No. 9.
51. A *C. difficile* gene comprising SEQ ID No. 10.
- 10 52. The use of a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans in the preparation of a medicament for use in a method for the treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease in a host.
- 15 53. The use as claimed in claim 52 wherein the medicament which is prepared is a vaccine as claimed in any of claims 1 to 36.
- 20 54. A method for preparing a vaccine for prophylaxis or treatment of *C. difficile* associated disease, the method comprising;
 - obtaining a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans; and
 - 25 forming a vaccine preparation comprised of said gene or peptide/polypeptide or derivative or fragment or mutant or variant, which is suitable for administration to a host and which when administered raises an immune response.
- 30

55. A method as claimed in claim 54 wherein the *C. difficile* peptide/polypeptide contains an amino acid sequence SEQ ID No.1 or SEQ ID No.2 or a derivative or fragment or mutant or variant thereof.
- 5 56. A method as claimed in claim 54 wherein the *C. difficile* gene contains an amino acid sequence SEQ ID No.3 or SEQ ID No.4 or SEQ ID No.5 or SEQ ID No.6 or SEQ ID No.7 or SEQ ID No.8 or SEQ ID No.9 or SEQ ID No.10 or a derivative or fragment or mutant or variant thereof.
- 10 57. A method for prophylaxis or treatment of *C. difficile* associated disease, the method comprising:
 - obtaining a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans;
 - 15 forming a vaccine preparation comprised of said gene or peptide/polypeptide or derivative or fragment or mutant or variant, and
- 20 administering the vaccine preparation to a host to raise an immune response.
- 25 58. Monoclonal or polyclonal antibodies or fragments thereof, to a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans.
- 30 59. Monoclonal or polyclonal antibodies or fragments thereof, to *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof to which immunoreactivity is detected in individuals who have recovered from *C. difficile* infection.

60. Purified antibodies or serum obtained by immunisation of an animal with a vaccine according to any of claims 1 to 36.
61. The use of the antibodies or fragments as claimed in claims 58 and 59 in the preparation of a medicament for treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease.
5
62. The use of the antibodies or serum as claimed in 60 in the preparation of a medicament for treatment or prophylaxis of *C. difficile* infection or *C. difficile* associated disease.
10
63. The use of the antibodies or fragments or serum as claimed in any of claims 58 to 60 for use in passive immunotherapy for established *C. difficile* infection.
15
64. The use of the antibodies or fragment or serum as claimed in any of claims 58 to 60 for the eradication of *C. difficile* associated disease.
65. Use of interleukin 12 as an adjuvant in *C. difficile* vaccine.
20
66. The use of humanised antibodies or serum for passive vaccination of an individual with *C. difficile* infection.

A

1 2 3 4

B

1 2 3 4 5 6 7

Figure 2

Figure 3

SEQUENCE LISTING

<110> The Provost, Fellows & Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth, near Dublin

<120> C.difficile vaccine

<130> TRI002/C/WO

<160> 10

<170> PatentIn version 3.1

<210> 1

<211> 2157

<212> DNA

<213> Clostridium difficile

<400> 1

atgaataaga	aaaatatagc	aatagctatg	tcaggttaa	cagtttagc	ttcggtcgct	60
cctgttttg	ctgcaactac	tggAACACAA	ggttatactg	tagttaaaaa	cgactggaaa	120
aaAGCAGTAA	AACAATTACA	GGATGGACTA	AAAGATAATA	GTTAGGAAA	GATAACTGTA	180
tcttttaatg	atgggttgt	gggtgaagta	gctcctaaaa	gtgctaataa	gaaAGCGGAC	240
agagatgctg	cagctgagaa	gttatataat	cttgcTTACA	ctcaatttga	taaatttaggt	300
gatggagatt	atgttgattt	ttctgttagat	tataatttag	aaaaaaaaat	aataactaat	360
caagcagatg	cagaagcaat	tgttacAAAG	ttaaattcac	ttaatgagaa	aactcttatt	420
gatatacgaa	ctaaagatac	ttttggatg	gttagttaaa	cacaagatag	tgaaggtaaa	480
aatgttgctg	caacaaaggc	acttaaagt	aaagatgtt	ctacatttgg	tttgaagtct	540
ggtggaaagcg	aagatactgg	atatgttgtt	gaaatgaaag	caggagctgt	agaggataag	600
tatggtaaag	ttggagatag	tacggcaggt	attgcaataa	atcttcctag	tactggactt	660
gaatatgcag	gtaaaggaac	aacaatttgc	ttaataaaaa	ctttaaaagt	tgtgtaca	720
ggtggttcaa	cacctagtgc	tgttagctgt	agtggtttg	taactaaaga	tgataactgat	780
ttagcaaaat	caggtactat	aaatgttaga	gttataatg	caaaagaaga	atcaatttgc	840
atagatgcaa	gctcatatac	atcagctgaa	aatttagcta	aaagatatgt	atttgatcca	900
gatgaaattt	ctgaagcata	taaggcaata	gtagcattac	aaaatgttgg	tatagagtct	960
aatttagttc	agtttagttaa	tggaaaatat	caagtgttgc	tttatccaga	aggtaaaaga	1020
ttagaaacta	aatcagcaaa	tgatataata	gctagtcaag	atacaccagc	taaagttagtt	1080
ataaaagcta	ataaatttataa	agattttaaa	gattatgttag	atgattttaa	aacatataat	1140
aataacttatt	caaatgttgc	aacagtagca	ggagaagata	gaatagaaac	tgctatagaa	1200
ttaagtagta	aatattataa	ttctgtatgt	aaaaatgcaa	taactgataa	agcagttat	1260

gatatagtat tagttggatc tacatctata gttgatggc ttgttgcac accattagct	1320
tcagaaaaaa cagctccatt attattaact tcaaaagata aatttagattc atcagtaaaa	1380
tctgaaataa agagagttat gaacttaaag agtgacactg gtataaatac ttctaaaaaa	1440
gtttatttag ctggggagt taattctata tctaaagatg tagaaaatga attgaaaaac	1500
atgggtctta aagttactag attatcagga gaagacagat acgaaacttc tttagcaata	1560
gctgatgaaa taggtcttga taatgataaa gcattttag ttgggtgtac tggatttagca	1620
gatgctatga gtatagctcc agttgcttct caacttaaag atggagatgc tactccaata	1680
gtagttgtag atggaaaagc aaaagaaaata agtgatgatg ctaagagttt ctttaggaact	1740
tctgatgttg atataatagg tggaaaaaat agcgtatcta aagagattga agagtcaata	1800
gatagtgcaa ctggaaaaac tccagataga ataagtggag atgatagaca agcaactaat	1860
gctgaagttt taaaagaaga tgattatttc acagatggtg aagttgtgaa ttactttgtt	1920
gcaaaagatg gttctactaa agaagatcaa ttagtagatg ccttagcagc agcaccaata	1980
gcaggtagat ttaaggagtc tccagctcca atcatactag ctactgatac tttatcttct	2040
gaccaaaatg tagctgtaag taaagcagtt cctaaagatg gtgaaactaa cttagttcaa	2100
gtaggtaaag gtatagcttc ttcagttata aacaaaatga aagatttatt agatatg	2157

<210> 2
 <211> 1830
 <212> DNA
 <213> Clostridium difficile

<400> 2	
atgaaaaaaa gaaatttagc aatggctatg gcagctgtta ctgttagtagg ttctgctgct	60
ccagtttttgcagcagcttc agatgtata tcactacaag atggtacaaa tgataagtat	120
acagtatcaa atactaaagc tagtgactta gtaaaggata ttttagcagc acaaaactta	180
acaacaggtg cagttatttt gaacaaagat acaaaagtta ctttctatga tgcaaatgag	240
aaagattctt caactccaac tggagataaa aaagtttatt cagaacaaac tttaactaca	300
gctaatggaa atgaagatta tgtaaagaca actttaaaaa atttagatgc aggagaatat	360
gctattatag atttaactta taataatgct aaaactgttg aaattaaagt agtagcagct	420
agtgaaaaaa cagtagtgtt atctagtgat gcgaaaaata gtgcaaaaga tatacgaa	480
aaatatgtgt ttgaagacaa agacttagaa aatgcactaa aaactataaa tgcctcagat	540
ttcagtaaaa ctgatagttt cttatcaagta gttcttatac caaaaggaaa gagattacaa	600
ggtttctcaa cttatagagc tacaaattat aatgaaggaa ctgcataatgg taatacacca	660
gtaatattaa ctctaaaatc tactagtaag agtaattaa agactgcagt agaagagtta	720

caaaaattga atgctagtttta ttcttaataact acaacttttag ctggtgatga cagaatacaa	780
acagctatacg agataagtaa agaatattac aataatgatg gcgagaaatc agatcattca	840
gctgatgtta aagagaatgt taaaaatgtt gtatttagtag gtgcaaatgc actagtagat	900
ggatttagttg cggttcctt agcagcagaa aaagatgctc cactattttt aacttcaaaa	960
gataaattttttt attcgtcagt aaaatctgaa ataaagagag ttttagactt aaaaacttca	1020
acagaagtaa cagaaaaaac agtttatata gctggtgag ttaatagtgt atctaaagaa	1080
gttgtaacag aattttagatc aatgggatta aaagttgaaa gattctcagg tgatgataga	1140
tatgaaactt cttaaaaaat agcaggtgaa ataggcttag ataatgataa ggcttatgtta	1200
gttgtggaa caggattagc agatgccatg agtatacgctt cagttgcttc tactaaattttt	1260
gatggtaatg gtgttgtaga tagaacaat ggacatgcta ctccaaatgt tggtgttagat	1320
ggaaaagctg ataaaatatc tgatgactta gatagttct taggaagcgc tgatgatgt	1380
ataataggtg gatttgcaag tgtatctgaa aagatgaaag aagctatatc agatgctact	1440
ggtaaaggcg ttacaagagt taaaggcgac gatagacaag acactaactc tgaagttata	1500
aaaacatatt atgctaataatg tactgaaata gctaaagctg cagtttttaga taaagattca	1560
ggtgcttcaa gtagtgatgc aggagtattt aatttctatg tagctaaaga tggatctaca	1620
aaagaagatc aatttagttga tgcattagca gtaggagctg ttgctggata taaacttgct	1680
ccagttgtat tagctactga ttctttatct tctgatcaat cggttgctat aagcaaagtt	1740
gtaggagaaaa aatattctaa agatttaaca caagttggtc aaggaatagc taattcagtt	1800
ataaaacaaaaa tgaaagattt attagatatg	1830

<210> 3
<211> 2158
<212> DNA
<213> Clostridium difficile

<400> 3 atgaataaga aaaatatacg aatagctatg tcaggtttaa cagtttttagc ttccggctgct	60
cctgttttttgc tgcaactac tggAACACAA ggTTATACTG tagttaaaaa cgactggaaa	120
aaAGCAGTAA AACATTACA AGATGGACTA AAAGATAATA GTATAGGAAA GATAACTGTA	180
tcttttaatg atggggttgt gggtaagta gctcctaaaaa gtgctaataa gaaagcggac	240
agagatgctg cagctgagaa gttatataat ctgtttaaca ctcaattttaga taaatttagt	300
gatggagatt atgttgattt ttctgttagat tataatttag aaaaacaaaaat aataactaat	360
caagcagatg cagaagcaat tggcacaaag ttaaattcac ttaatgagaa aactcttatt	420
gatatacgaa ctaaagatac ttttggaaatg gttgtaaaaa cacaagatag tgaaggtaaa	480

aatgttgctg caacaaaggc acttaaagtt aaagatgtt ctacattgg tttgaagtct	540
ggtgaaagcg aagatactgg atatgttgg gaaatgaaag caggagctgt agaggataag	600
tatggtaaag ttggagatag tacggcaggt attgcaataa atcttcctag tactggactt	660
gaatatgcag gtaaaggaac aacaattgat ttaataaaaa cttaaaaagt tgatgtaca	720
ggtggttcaa cacctagtgc tgtagctgta agtggtttg taactaaaga tgatactgat	780
ttagcaaaat caggtactat aaatgtaga gttataaatg caaaagaaga atcaattgat	840
atagatgcaa gctcatatac atcagctgaa aatttagcta aaagatatgt atttgatcca	900
gatgaaattt ctgaagcata taaggcaata gtagcattac aaaatgatgg tatagagtct	960
aacttagttc agttagttaa tggaaaatat caagtgattt ttatccaga agtaaaaga	1020
ttagaaacta aatcagcaaa tgatacaata gctagtcaag atacaccagc taaagtagtt	1080
ataaaagcta ataaattaaa agatttaaaa gattatgttag atgatttaaa aacatataat	1140
aatacttatt caaatgttgt aacagtagca ggagaagata gaatagaaac tgctatagaa	1200
ttaagtagta aatattataa ttctgatgat aaaaatgcaa taactgataa agcagttat	1260
gatatagtat tagttggatc tacatctata gttgatggtc ttgttgcattc accattagct	1320
tcagaaaaaa cagctccatt attattaact tcaaaagata aatttagattc atcagtaaaa	1380
tctgaaataa agagagttat gaacttaaag agtgacactg gtataaatac ttctaaaaaa	1440
gtttatTTAG ctgggtggagt taattctata tctaaagatg tagaaaatga attgaaaaac	1500
atgggtctta aagttactag attatcagga gaagacagat acgaaacttc tttagcaata	1560
gctgatgaaa taggtcttga taatgataaa gcattttagt ttgggtgtac tggattagca	1620
gatgctatga gtatagctcc agtgcttct caacttaaag atggagatgc tactccaata	1680
gtagttgtag atggaaaagc aaaagaaaata agtgatgatg ctaagagttt cttaggaact	1740
tctgatgtt atataatagg tggaaaaat agcgtatcta aagagattga agagtcaata	1800
gatagtgc当地 ctggaaaaac tccagataga ataagtggag atgatagaca agcaactaat	1860
gctgaagttt taaaagaaga tgattatttc acagatggtg aagttgtgaa ttactttgtt	1920
gcaaaaagatg gttctactaa agaagatcaa ttagtagatg ccttagcagc agcaccaata	1980
gcaggtagat ttaaggagtc tccagctcca atcatactag ctactgatac tttatctct	2040
gaccaaaaatg tagctgtaag taaagcagtt cctaaagatg gtggactaa cttagttcaa	2100
gtaggtaaag gtatagcttc ttcaagtata aacaaaatga aagatttatt agatatgg	2158

<210> 4

<211> 2271

<212> DNA

<213> Clostridium difficile

<400>	4					
atgaataaga	aaaatatagc	aatacgatcg	tcaggtttaa	cagttttagc	ttcggctgca	60
cctgtatttg	cagatgatac	aaaagttgaa	actggtgatc	aaggatatac	agtggtacaa	120
agcaagtata	agaaagctgt	tgaacaatta	caaaaaggaa	tattagatgg	aagtataaca	180
gaaatcaaag	tttctttga	gggaacttta	gcatctacta	taaaagttagg	ttctgagctt	240
aatgcagcag	atgcaagtaa	attattgttt	acacaagtag	ataataaaact	agataattta	300
ggtgatggag	attatgtaga	tttcttaata	acttctccag	gtcaagggga	taaaataact	360
acaagtaaac	ttgttgcatt	gaaagattta	acaggtgctt	cagcagatgc	tataattgct	420
ggaacatctt	cagcagatgg	tgttgttaca	aatactggag	ctgctagtgg	ttctactgag	480
acaatttcag	caggaacaaa	acttgcaatg	tcagctattt	ttgacacacgc	atatacagat	540
tcatctgaaa	ctgcggtaa	gattactata	aaagcagata	tgaatgatac	taaatttggt	600
aaagcaggtg	agacaactta	ttcaactggg	cttacatttgc	aagatgggtc	tacagaaaaaa	660
attgttaat	tagggacag	tgtattata	gatataacta	aagctcttaa	acttactgtt	720
gttcctggaa	gtaaagcaac	tgttaagttt	gctgaaaaaa	caccaagtgc	cagtgttcaa	780
ccagtaataa	caaagcttag	aataataat	gctaaagaag	aaacaataga	tattgacgct	840
agttctagta	aaacagcaca	agatttagct	aaaaaatatg	tatttaataa	aactgattta	900
aatactctt	ataaagtatt	aaatggagat	gaagcagata	ctaatggatt	aatagaagaa	960
gttagtggaa	aatatcaagt	agttctttat	ccagaaggaa	aaagagttac	aactaagagt	1020
gctgcaaagg	cttcaatitgc	tgtgaaaat	tcaccagtta	aattaactct	taagtcagat	1080
aagaagaaag	acttaaaaga	ttatgtggat	gatttaagaa	catataataa	tggatattca	1140
aatgctata	aagtagcagg	agaagataga	atagaaactg	caatagcatt	aagtcaaaaa	1200
tattataact	ctgatgatga	aatgctata	tttagagatt	cagttgataa	tgttagtattg	1260
gttggaggaa	atgcaatagt	tgtggactt	gtagcttc	ctttagcttc	tgaaaagaaaa	1320
gctccttat	tattaacttc	aaaagataaa	ttagattcaa	gogtaaaagc	tgaaataaaag	1380
agagttatga	atataaagag	tacaacaggt	ataaataactt	caaagaaagt	ttatttagct	1440
ggtggagtt	attctatatac	taaagaagta	gaaaatgaat	taaaagatat	gggacttaaa	1500
gttacaagat	tagcaggaga	tgtatagatat	gaaacttctc	taaaaatagc	tgtatgaagta	1560
ggtcttgata	atgataaagc	attttagtt	ggaggaacag	gattagcaga	tgccatgagt	1620
atagctccag	ttgcatactca	attaagaaat	gctaattggta	aaatggattt	agctgatggt	1680
gatgctacac	caatagtagt	tgtatgatgga	aaagctaaaa	ctataaatga	tgtatgaaaa	1740
gatttcttag	atgattcaca	agttgatata	ataggtggag	aaaacagtgt	atctaaagat	1800

gttggaaaatg caatagatga tgctacaggt aaatctccag atagatatacg tggagatgat	1860
agacaagcaa ctaatgc当地 agttataaaa gaatcttctt attatcaaga taacttaat	1920
aatgataaaa aagtagttaa tttcttgta gctaaagatg gttctactaa agaagatcaa	1980
ttagttgatg cttagcagc agctccagtt gcagcaaact ttgggtgtaac tcttaattct	2040
gatggtaagc cagtagataa agatggtaaa gtattaactg gttctgataa tgataaaaat	2100
aaattagtat ctccagcacc tatagtatta gctactgatt ctatcttc agatcaaagt	2160
gtatctataa gtaaagttct tgataaagat aatggagaaa acttagttca agttggtaaa	2220
ggtatacgta cttagttat aaacaaaatg aaagatttat tagatatgta a	2271

<210> 5
<211> 2158
<212> DNA
<213> Clostridium difficile

<400> 5 atgaataaga aaaatatacg aatacgatcg tcagggttaa cagttttagc ttccggctgct	60
cctgttttg ctgcaactac tggAACACAA ggTTATACTG TAGTTAAAAA CGACTGGAAA	120
aaAGCAGTAA AACAAATTACA AGATGGACTA AAAGATAATA GTATAGGAAA GATAACTGTA	180
TCTTTAATG ATGGGGTTGT GGTTGAAGTA GCTCCTAAAAA GTGCTAATAA GAAAGCGGAC	240
AGAGATGCTG CAGCTGAGAA GTTATATAAT CTTGTAAACA CTCAATTAGA TAAATTAGGT	300
GATGGAGATT ATGTTGATT TTCTGTAGAT TATAATTAG AAAACAAAAT AATAACTAAT	360
CAAGCAGATG CAGAACGAAAT TGTTACAAAG TTAAATTAC CTTATGAGAA AACTCTTATT	420
GATATGCAA CTTAAAGATAAC TTTGGAAATG GTTAGTAAAAA CACAAGATAG TGGAGGTAAA	480
AATGTTGCTG CAACAAAGGC ACTTAAAGTT AAAGATGTTG CTACATTGG TTTGAAGTCT	540
GGTGGAAAGCG AAGATACTGG ATATGTTGTT GAAATGAAAG CAGGAGCTGT AGAGGATAAG	600
TATGTTAAAG TTGGAGATAG TACGGCAGGT ATTGCAATAA ATCTTCCTAG TACTGGACTT	660
GAATATGCG GTTAAAGGAAC AACAAATTGAT TTAAATAAAA CTTTAAAAGT TGATGTAACA	720
GGTGGTTCAA CACCTAGTGC TGTAGCTGTA AGTGGTTTG TAACTAAAGA TGATACTGAT	780
TTAGCAAAAT CAGGTACTAT AAATGTAAGA GTTATAATG CAAAAGAAGA ATCAATTGAT	840
ATAGATGCAA GCTCATATAAC ATCAGCTGAA AATTAGCTA AAAGATATGT ATTGATCCA	900
GATGAAATT CTGAAGCATA TAAGGCATA GTAGCATTAC AAAATGATGG TATAGAGTCT	960
AATTAGTTG AGTTAGTTAA TGGAAAATAT CAAGTGATT TTATCCAGA AGGTAAAAGA	1020
TTAGAAACTA AATCAGCAAA TGATACAATA GCTAGTCAAG ATACACCAGC TAAAGTAGTT	1080
ATAAAAGCTA ATAAATTAAA AGATTAAAAA GATTATGTAAG ATGATTAAA AACATATAAT	1140

aataacttatt	caaatgttgt	aacagtagca	ggagaagata	gaatagaaac	tgctatatagaa	1200
ttaagtagta	aatattataa	ttctgatgat	aaaaatgcaa	taactgataa	agcagttaat	1260
gatatagtat	tagttggatc	tacatctata	gttcatggtc	ttgttgcatc	accattagct	1320
tcagaaaaaa	cagctccatt	attattagct	tcaaaagata	aattagattc	atcagtaaaa	1380
tctgaaataa	agagagttat	gaacttaaag	agtgacactg	gtataaatac	ttctaaaaaa	1440
gtttattttag	ctgggtggagt	taattctata	tctaaagatg	tagaaaatga	attgaaaaac	1500
atgggtctta	aagttactag	attatcagga	gaagacagat	acgaaacttc	tttagcaata	1560
gctgatgaaa	taggtcttga	taatgataaa	gcatttttag	ttgggtgtac	tggattagca	1620
gatgctatga	gtatagctcc	agttgcttct	caacttaaag	atggagatgc	tactccaata	1680
gtagttgttag	atggaaaagc	aaaagaaata	agtgatgatg	ctaagagttt	cttaggaact	1740
tctgatgttg	atataatagg	tggaaaaat	agcgtatcta	aagagattga	agagtcataa	1800
gatagtgc当地	ctggaaaaac	tccagataga	ataagtggag	atgatagaca	agcaactaat	1860
gctgaagttt	taaaagaaga	tgattatttc	acagatggtg	aagttgtgaa	ttactttgtt	1920
gcaaaagatg	gttctactaa	agaagatcaa	ttagtagatg	ccttagcagc	agcaccaata	1980
gcaggttagat	ttaaggagtc	tccagctcca	atcatactag	ctactgatac	tttatcttct	2040
gaccaaaatg	tagctgtaag	taaagcagtt	cctaaagatg	gtggaactaa	cttagttcaa	2100
gtaggtaaag	gtatagcttc	ttcagttata	aacaaaatga	aagatttatt	agatatgg	2158

<210> 6
 <211> 2217
 <212> DNA
 <213> Clostridium difficile

<400> 6	atgaataaga	aggatatagc	aatagctatg	tcaggattaa	cagtattagc	ttctgcagca	60
	cctgtatttg	ctgctagtag	ttttacagca	gattataatt	atactgttagt	gcaaggaaaa	120
	tatcaaaaag	ttataactgg	attacaagat	ggtttaaaaaa	atggaaaaat	aacaaatatt	180
	gatgtaatat	ttgatggaag	ttcaattgggt	gaggtagtgc	caggttctga	tgctgcagct	240
	gcagctacta	aattaaaaag	tttagttgat	gataagttag	ataacttagg	tgatgaaaa	300
	tacgttcaat	ttaatgttac	ttatactact	aaatctataa	taactaaagc	agaattaaaa	360
	aattattata	atcaattaga	aagtagtaaa	gatagaatac	ttatagggaaa	tgaacctcaa	420
	gatacaggaa	ctaaaggct	tataaaagct	gatactgatg	gtactactgc	tgttgcagca	480
	gctgcaccat	tgaardattatc	agatataattt	acgttttagtt	atgatgaagt	aacaggtgta	540
	cttaaagcag	aaccaacaag	taaagtaagc	gctggtaaag	ttcaaggct	aaaatatgga	600

aatacaggag caactaacta tacttctgga gctgaaatat ctgttcctac tacaggctta	660
acattaactg ctgataacaac tgcaacaaca gatgtaaata tttctgatgt tatgagtgca	720
ttaaaattta atggtaactga tacgattagt ggattccag ctggttcata agctttact	780
c当地tagcaa gtataaaagt aataaatgca aaagaagaat ctatagatgt tgattcaagt	840
tcacatagaa cagctgaaga tttagctgaa aaatatgtat ttaaaccaga agatgtgaat	900
aaaacttatg aggcaactgac tgatttatataaagaaggta taacaagtaa tcttatact	960
caagatggg gaaaatataca agttgttta tttgctcaag gaaagagatt aactactaaa	1020
ggagcaactg gaacttttagc agatgaaaat tctcctctta aagtaacaat aaaagcagat	1080
aaagtaaaag acttaaaaga ttatgttgaat gatttaaaaatgctaacaat tggatattca	1140
aattctgttg ttgttagcagg tgaagataga atagaaacag caatagagtt aagtagcaaa	1200
tactataact ctgatgatga caatgcaata actaaagatc cagttacaa tggatattca	1260
gttgggtctc aagctgttgt tgatggcctt gtagcttcac ctttagcatc tgaaaaaaga	1320
gctccttac tattaacttc agcagggaaa ttagattcaa gtgtttaagc tgagttgaaa	1380
agagtaatgg atttaaaatc tacaacaggt gtaaatactt ctaaaaaagt ttacttagct	1440
ggtggagtaa actctatatac taaagatgtaa gaaaatgtat taaaagatataatggacttaaa	1500
gttacaagat tatcaggaga tgatagatataatgaaacttctt tagctatagc tgatgttataat	1560
ggtcttgata atgataaagc tttttagttt ggaggaacag gatagcgga tgctatgagt	1620
atagctccag ttgcttctca attaagaaac tcaaattggag aacttgactt aaaaggtgat	1680
gcaactccaa tagtagttgt tgatggaaaa gctaaagata taaattctga agtaaaaagat	1740
ttcttagatg attcacaagt tgatataataatgggtgtaa atagtgtttc taaagaagat	1800
atggaaagcaa tagatgatgc tactggaaaa tcacctgaga gatatagtgg agaagataga	1860
caagcaacaa atgctaaagat tataaaagaa gatgattctt taaaatgg agaagttaca	1920
aacttctttg tagctaaaga tggtaact aaagaagatc aatttagtaga tgcttagca	1980
ggtgctgcaa ttgctggtaa ctgggtgtaa acagtagata atgaaggaaa acctacagtt	2040
gctgataaaa aagcttctcc agcaccaatt gtttagcaa cagattctt atcttctgat	2100
caaaatgttag ctataagtaa agctgtaaat gatgacgcta atactaagaa tctagttcaa	2160
gttggtaaag gtatagctac ttcagttgtaa agtaaaaataa aagattttt agatatg	2217

<210> 7

<211> 2145

<212> DNA

<213> Clostridium difficile

<400> 7
atgaataaga aaaacttagc aatggctatg gcagcaggta ctgttgtggg ttctgcagcg 60
ccaatatttg cagatagtac tacgccaggt tatactgtag tgaaaaatga ttggaaaaaa 120
gcagtaaaac aattacaaga tgggttggaaa aataaaaacta tatcaacaat aaaggtgtct 180
ttaatggaa actctgttgg agaagttaca ccagccagtt ctggagcaaa aaaagcagat 240
agagatgctg cagctgaaaa gttatataat ttagtaaata cacaattaga taaacttaggt 300
gatggagatt acgttgactt tgaagtaact tataatttag ctactcaa attacaaaaa 360
gcagaagcag aggagttct tacaaaatta caacaatata atgataaagt acttataaat 420
tctgcaacag atacagtaaa aggtatggta tctgatacac aagttgatag caaaaatgtt 480
gcagctaacc cacttaaagt tagtgatatg tatacaatac catctgctat tactggaagt 540
gatgattctg ggtatagttat tgctaaacca acagaaaaga ctacaagttt attgtatgg 600
acggttggtg atgcaactgc aggtaaagca ataacagtag atacagcttc aaatgaagct 660
tttgctggaa atggaaaggt tattgactac aataaatcat tcaaagcaac tgtacaagga 720
gatggaacag ttaagacaag cggggttgta cttaaagatg caagtgatat ggctgcaaca 780
ggtactataa aagttagagt tacaagtgc aaagaagaat ctattgatgt ggattcaagt 840
tcatatatta gtgctgaaaa tttagctaaa aaatatgtat ttaatcctaa agaggttct 900
gaagcttata atgcaatagt tgcattacaa aatgatggaa tagaatctga tttagttacaa 960
ttagttaatg gaaaatatca agttatccc tatccagaag gaaaaagatt agaaactaaa 1020
tctgcagata taatagctga tgcagatagt ccagctaaaa taactataaa agctaataaa 1080
ttaaaagatt taaaagattha tttatgtat ttaaaaacat acaataatac ttactcaa 1140
gttgtaacag tagcaggaga agatagaata gaaactgcta tagaattaag tagtaatata 1200
tataattctg atgataaaaaa tgcaataact gatgatgcag ttaataatata agtattagtt 1260
ggatctacat ctatagttga tggcttggc gcatcaccat tagcttcaga aaaaacagct 1320
ccattattat taacttcaaa agataaatta gattcatcag taaaatctga gataaaaaga 1380
gttatgaact taaagagtga tactggata aatacttcta aaaaagttt tttagctgg 1440
ggagttaatt ctatatctaa agatgttagaa gatgaattga aaaatatggg ccttaaagtt 1500
actagattat caggagaaga cagatacgaa acttcttag caatagctga tgaaataggt 1560
cttgataatg ataaagcatt tttatgttggc ggtactggat tggcagatgc tatgagtata 1620
gctccagttg cttctcaact taaagatgga gatgctactc caatagtagt tttatgttgg 1680
aaagcaaaag aaataagtga tttatgttggc agtttcttag gaacttctga tttatgttgg 1740
atagggtggaa aaaatagcgt atctaaagag attgaagagt caatagatag tgcaactgg 1800

aaaactccag atagaataag tggagatgac agacaagcaa ctaatgctga agttttaaaa	1860
gaagatgatt atttcaaaga tggtgaagtt gtgaattact ttgttgcaaa agatggttct	1920
actaaagaag atcaattagt agatgcatta gcagcagcac caatagcagg tagatttaag	1980
gagtctccag ctccaatcat actagctact gatactttat cttctgacca aaatgttagct	2040
gtaagtaaag cagttcctaa agatggtgga actaacttag ttcaagtagg taaaggata	2100
gcttcttcag ttataaaca aatgaaagat ttattagata tgtaa	2145

<210> 8
<211> 2158
<212> DNA
<213> Clostridium difficile

<400> 8	
atgaataaga aaaatatagc aatacgctatg tcaggtttaa cagttttagc ttcggctgct	60
cctgttttg ctgcaactac tggAACACAA ggttatactg tagttaaaaa cgactggaaa	120
aaAGCAGTAA AACAAATTACA AGATGGACTA AAAGATAATA GTATAGGAAA GATAACTGTA	180
tcttttaatg atggggttgt gggtgaagta gctcctaaaa gtgctaataa gaaAGCGGAC	240
AGAGATGCTG CAGCTGAGAA GTTATATAAT CTTGTAAACA CTCAATTAGA TAAATTAGGT	300
GATGGAGATT ATGTTGATT TTCTGTAGAT TATAATTAG AAAAaaaaat AATAACTAAT	360
CAAGCAGATG CAGAACAGCAAT TGTTACAAAG TAAATTACAC TTAATGAGAA AACTCTTATT	420
GATATAGCAA CTAAGATAAC TTTGGAATG GTTAGTAAAAA CACAAGATAAG TGAAGGTAAA	480
AATGTTGCTG CAACAAAGGC ACTTAAAGTT AAAGATGTTG CTACATTGG TTTGAAGTCT	540
GGTGGAAAGCG AAGATACTGG ATATGTTATT GAAATGAAAG CAGGAGCTGT AGAGGATAAG	600
TATGGTAAAG TTGGAGATAG TACGGCAGGT ATTGCAATAA ATCTTCCTAG TACTGGACTT	660
GAATATGCAG GTAAAGGAAC AACAAATTGAT TTAAATAAAA CTTTAAAAGT TGATGTAACA	720
GGTGGTTCAA CACCTAGTGC TGTAGCTGTA AGTGGTTTG TAACTAAAGA TGATACTGAT	780
TTAGCAAAAT CAGGTACTAT AAATGTAAGA GTTATAATG CAAAAGAAGA ATCAATTGAT	840
ATAGATGCAA GCTCATATAC ATCAGCTGAA AATTAGCTA AAAGACATGT ATTGATCCA	900
GATGAAATT CTGAAGCATA TAAGGCAATA GTAGCATTAC AAAATGATGG TATAGAGTCT	960
AATTAGTTG AGTTAGTTAA TGGAAAATAT CAAGTGTATT TTATCCAGA AGTAAAAGA	1020
TTAGAAACTA AATCAGCAAA TGATACAATA GCTAGCTAAG ATACACCAGC TAAAGTAGTT	1080
ATAAAAGCTA ATAAATTAAA AGATTTAAA GATTATGTAG ATGATTAAA AACATATAAT	1140
AATACTTATT CAAATGTTGT AACAGTAGCA GGAGAAGATA GAATAGAAAC TGCTATAGAA	1200
TAAAGTAGTA AATATTATAA TTCTGTATGAT AAAATGCAA TAACTGATAA AGCAGTAAAT	1260

gatatagtat tagtggatc tacatctata gttgatggtc ttgttgcatc accattagct	1320
tcagaaaaaa cagctccatt attattaact tcaaaaagata aattagattc atcagtaaaa	1380
tctgaaataa agagagttat gaacttaaag agtgacactg gtataaatac ttctaaaaaa	1440
gtttatTTAG ctggTggagt taattctata tctaaagatg tagaaaatga attgaaaaac	1500
atgggtctta aagttactag attatcagga gaagacagat acgaaacttc ttttagcaata	1560
gctgatgaaa taggtcttga taatgataaa gcattttagt ttggTggtaC tggatttagca	1620
gatgctatga gtatagctcc agttgcttct caacttaaag atggagatgc tactccaata	1680
gtagttgttag atggaaaagc aaaagaaaata agtgatgatg ctaagagttt cttaggaact	1740
tctgatgttg atataatagg tgaaaaaaat agcgtatcta aagagattga agagtcaata	1800
gatagtgcaa ctggaaaaac tccagataga ataagtggag atgatagaca agcaactaat	1860
gctgaagttt taaaagaaga tgattatttc acagatggtg aagttgtgaa ttactttgtt	1920
gcaaaagatg gttctactaa agaagatcaa ttagtagatg ccttagcagc agcaccaata	1980
gcaggttagat ttaaggagtc tccagctcca atcatactag ctactgatac tttatcttct	2040
gaccaaaatg tagctgtaag taaagcagtt cctaaagatg gtggaactaa cttagttcaa	2100
gtaggtaaag gtatagcttc ttcaGttata aacaaaatga aagatttatt agatatga	2158

<210> 9
<211> 20
<212> PRT
<213> Clostridium difficile

<400> 9

Asp Lys Thr Lys Val Glu Thr Ala Asp Gln Gly Tyr Thr Val Val Gln			
1	5	10	15

Ser Lys Tyr Lys
20

<210> 10
<211> 20
<212> PRT
<213> Clostridium difficile

<400> 10

Ala Thr Thr Gly Thr Gln Gly Tyr Thr Val Val Lys Asn Asp Gly Lys			
1	5	10	15

Lys Ala Val Lys
20

SEQ ID No. 1
(Strain 171500)

DKTKVETADQGYTVVQSKYK

SEQ ID No. 2
(Strain 170324)

ATTGTQGYTVVKNDGKKAVK

SEQ ID No. 3
(Strain 171500 DNA)

ATGAATAAGAAAAATAGCAATAGCTATGTCAGGTTAACAGTTAGCTTCGGCTGCACCT
GTATTTGCAGATGATACAAAAGTTGAAACTGGTATCAAGGATATAACAGTGGTACAAAGCAA
GTATAAGAAAGCTGTTGAAACAATTACAAAAAGGAATTAGATGGAAGTATAACAGAAATTA
AAGTTTCTTGAGGGAACTTAGCATCTACTATAAAAGTAGGTTCTGAGCTTAATGCAGCAG
ATGCAAGTAAATTATTGTTACACAAGTAGATAATAACTAGATAATTAGGTGATGGAGATT
ATGTAGATTCTTAATAACTTCTCCAGGTCAAGGGATAAAATAACTACAAGTAAACTGTTG
CATTGAAAGATTAACAGGTGCTTCAGCAGATGCTATAATTGCTGGAACATCTCAGCAGATG
GTGTTGTTACAATACTGGAGCTGCTAGTGGTTCTACTGAGACAAATTAGCAGGAACAAAC
TTGCAATGTCAGCTATTTGACACAGCATATACAGATTCTGAAACTCGCGTTAAGATTA
CTATAAAAGCAGATATGAATGATACTAAATTGGTAAAGCAGGTGAGACAACTTATTCAACTG
GGCTTACATTGAAAGATGGGCTACAGAAAAATTGTTAAATTAGGGACAGTGAATTATAG
ATATAACTAAAGCTTTAAACTTACTGTTGTTCTGGAAGTAAAGCAACTGTTAAGTTGCTG
AAAAAACACCAAGTCCAGTGTCAACCAGTAATAACAAAGCTTAGAATAATAATGCTAAA
GAAGAAACAATAGATATTGACGCTAGTTCTAGTAAAACAGCACAAGATTAGCTAAAAAATA
TGTATTAAATAAAACTGATTAAATACTCTTATAAAAGTATTAAATGGAGATGAAGCAGATAC
TAATGGATTAATAGAAGAAGTTAGTGGAAAATATCAAGTAGTTCTTATCCAGAAGGAAAAA
GAGTTACAACAAAGTGCTGCAAAGGCTCAATTGCTGATGAAAATTCAACCAGTTAAATTAA
CTCTTAAGTCAGATAAGAAGAAAGACTTAAAGATTATGTGGATGATTAAAGAACATATAAT
AATGGATATTCAAATGCTATAGAAGTAGCAGGAGAAGATAGAATAGAAACTGCAATAGCATT
AAGTCAAAATATTATAACTCTGATGATGAAAATGCTATATTAGAGATTCAAGTTGATAATGT
AGTATTGGTGGAGGAATGCAATAGTTGATGGACTGTAGCTTCTCCTTAGCTTCTGAAAAA
GAAAGCTCCTTATTATTAACCTCAAAGATAAATTAGATTCAAGCGTAAAGCTGAAATAAA
GAGAGTTATGAATATAAAAGAGTACAACAGGTATAAATACTCTAAAGAAAGTTATTAGCTG
GTGGAGTTATTCTATATCTAAAGAAGTAGAAAATGAATTAAAAGATATGGACTTAAAGTT
ACAAGATTAGCAGGAGATGATAGATATGAAACTTCTCTAAAATAGCTGATGAAGTAGGTCT
TGATAATGATAAACGATTGTTAGTTGGAGGAACAGGATTAGCAGATGCCATGAGTATAGCTCC
AGTTGCATCTCAATTAAAGAAATGCTAATGGAAAATGGATTAGCTGATGGTATGCTACACC
AATAGTAGTTGATGGAAAAGCTAAAATATAATGATGATGTTAAAAGATTCTTAGATG
ATTCAACAGTTGATATAATAGGTGGAGAAAACAGTGTATCTAAAGATGTTGAAAATGCAATA
GATGATGCTACAGGTAAATCTCCAGATAGATATAGTGGAGATGATAGACAAGCAACTAATGC
AAAAGTTATAAAAGAATCTTCTTATTATCAAGATAACTTAAATAATGATAAAAAGTAGTTAA
TTCTTGTAGCTAAAGATGGTTCTACTAAAGAAGATCAATTAGTTGATGCTTCTGAGCAGCT
CCAGTTGCAGCAAACCTTGGTGTAACTCTTAATTCTGATGGTAAGCCAGTAGATAAAGATGGT
AAAGtATTAAACTGGTTCTGATAATGATAAAAATAATTAGTATCTCCAGCACCTATAGTATTAG
CTACTGATTCTTATCTCAGATCaAAGTGTATCTAAAGTAaAGTTCTGATAAAGATAATGG
AGAAAACTTAGTTCAAGTTGGTAAAGGTATAGCTACTTCAGTTATAAACAAAATGAAAGATT
ATTAGATATGTAA

SEQ ID No. 4
 (Strain 172450 DNA)

ATGAAAAAAAAGAAATTAGCAATGGCTATGGCAGCTGTTACTGTAGTAGGTTCTGCTGCTCCA
 GTTTTGAGCAGCTTCAGATGTAATATCACTACAAGATGGTACAAATGATAAGTATACAGTA
 TCAAATACTAAAGCTAGTGAAGTAAAGGATATTTAGCAGCACAAAACCTAACACAGGT
 GCAGTTATTTGAACAAAGATACAAAGTTACTTCTATGATGCAAATGAGAAAGATTCTCA
 ACTCCAACGGAGATAAAAAAGTTATTAGAACAACAACTTAACACTACAGCTAATGGAAATGA
 AGATTATGTAAGACAACTTAAAAAATTAGTGCAGGAGAATATGCTATTAGATTTAAC
 TTATAATAATGCTAAAAGCTGTTGAAATTAAAGTAGTAGCTAGTGAAGACAAAG
 ATCTAGTGATGCGAAAATAGTGCAGGAGATATAGCTGAAATTATGTTGAAGACAAAG
 ACTTAGAAAATGCACTAAAACACTATAAATGCCTCAGATTCTAGTAAAACGATAGTTACTATC
 AAGTAGTTCTTATCCAAAAGGAAAGAGATTACAAGGTTCTCAACTTATAGAGCTACAAATT
 ATAATGAAGGAACGTGCATATGTAATACACCACTGAAATTAAACTCTAAACACTAGTAAGA
 GTAATTAAAGACTGCAGTAGAAGAGTTACAAAATTGAATGCTAGTTATTCTAATACACAA
 CTTAGCTGGTGTGATGACAGAATACAAACAGCTATAGAGATAAGTAAAGAATATTACAATAAT
 GATGGCGAGAAATCAGATCATTAGCTGATGTTAAAGAGAATGTTAAAATGTTGATTAGTA
 GGTGCAAATGCACTAGTAGATGGATTAGTGCCTCTTACAGCAGGAGAAAGATGCTCCA
 CTATTATTAACCTCAAAAGATAAATTAGATCGTCAGTAAATCTGAAATAAAGAGAGTTTA
 GACTAAAAACTCAACAGAAGTAACAGGAAAAACAGTTATATAGCTGGTGGAGTTAATAG
 TGTATCTAAAGAAGTTGTAACAGAATTAGAATCAATGGGATTAAAAGTTGAAAGAGATTCTCAG
 GTGATGATGATGATGAAACTCTTTAAAATAGCAGGTGAAATTAGGCTAGATAATGATAAG
 GCTTATGTAGTTGGTGGAACAGGATTAGCAGATGCCATGAGTATAGCTCAGTTGCTTCTACT
 AAATTAGATGGTAATGGTGTGAGATAGAACAAATGGACATGCTACTCCAATAGTTGTTGTA
 GATGGAAAAGCTGATAAAATATGATGACTTAGATAGTTCTAGGAAGCGCTGATGTAAGAT
 ATAATAGGTGGATTGCAAGTGTATCTGAAAGATGGAAGAAGCTATATCAGATGCTACTGGT
 AAAGGCCTTACAAGAGTTAAAGGCAGCATAGACAAGACACTAACTCTGAAGTATAAAAC
 ATATTATGCTAATGATACTGAAATAGCTAAAGCTGCACTTTAGATAAAGATTCTAGGTGCTTC
 AAGTAGTGTGATGCAGGAGTATTAAATTCTATGCTAAAGATGGATCTACAAAAGAAGATCA
 ATTGATTGATGCATTAGCAGTAGGAGCTGTTGCTGGATATAAACTTGCTCCAGTTGATTAGCT
 ACTGATTCTTATCTTCTGATCAATCGGTTGCTATAAGCAAAGTTGTAAGGAGAAAATATTCTA
 AAGATTTAACACAAGTTGGTCAAGGAATAGCTAATTCTAGTTATAACAAAATGAAAGATTAT
 TAGATATG

SEQ ID No. 5
 (Strain 170324 DNA)

ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTTCGGCTGCTCCT
 GTTTTGCTGCAACTACTGGAACACAAGGTTAACTGTAGTTAAAACGACTGGAAAAAAAGCA
 GTAAAACAATTACAAGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTATCTTTAA
 TGATGGGTTGTGGGTGAAGTAGCTCCTAAAGTGTAAATAAGAAAGCGGGACAGAGATGCTG
 CAGCTGAGAAGTTATATAACTCTGTTAACACTCAATTAGATAAATTAGGTGATGGAGATTATG
 TTGATTCTGTAGATTATAATTAGAAAACAAATAACTAATCAAGCAGATGCGAGAAG
 CAATTGTTACAAGTTAAATTCACTTAATGAGAAAACCTTATTGATATAGCAACTAAAGATA
 CTTTGGAAATGGTTAGTAAACACAAGATAGTGAAGGTTAAAGTGTGCTGCAACAAAGGCA
 CTTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCTGGTGGAAAGCGAAGATACTGGATAT
 GTTGTGAAATGAAAGCAGGAGCTGAGAGGATAAGTATGGTAAAGTTGGAGATAGTACGGC
 AGGTATTGCAATAAAATCTCCTAGTACTGGACTTGAATATGCAAGGTTAAAGGAACAAACATTGA
 TTTTAATAAAACCTTAAAGTTGATGTAACAGGTGGTCAACACCTAGTGCTGAGCTGTAAG
 TGGTTTGTAACTAAAGATGATACTGATTAGCAAAATCAGGTACTTAAATGTAAGAGTTAT
 AAATGCAAAAGAAGAATCAATTGATATAGATGCAAGCTCATATACATCAGCTGAAATTAG
 CTAAAAGATATGTTATTGATCCAGATGAAATTCTGAAAGCATATAAGGCAATAGTAGCATTAC
 AAAATGATGGTATAGAGTCTAACTTAGTCAAGTAAAGGAAATATCAAGTGTGATTTTT
 ATCCAGAAGGTTAAAGATTAGAAACTAAATCAGCAAATGATAACATAGCTAGTCAAGATACA
 CCAGCTAAAGTAGTTATAAAAGCTAATAAATTAAAGATTAAAGATTATGTAAGTGTGATTTA
 AAAACATATAATAACTTATTCAAATGTTGTAACAGTAGCAGGAGAAGATAGAATAGAAAC

TGCTATAGAATTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAGC
 AGTTAATGATATAGTATTAGTGGATCTACATCTATAGTTGATGGCTTGTGCATCACCATT
 GCTTCAGAAAAAACAGCTCCATTATTAACTTCAAAAGATAAATTAGATTCACTCAGTAAA
 TCTGAAATAAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAATACTTCTAAAAAGTT
 TATTTAGCTGGTGGAGTTAATTCTATATCTAAAGATGTAGAAAATGAATTGAAAACATGGGT
 CTTAAAGTTACTAGATTACAGGAGAAGACAGATACGAAACTTCTTAGCAATAGCTGATGAA
 ATAGGTCTTGATAATGATAAAGCATTGATGTTGGTGGACTGGATTAGCAGATGCTATGAGT
 ATAGCTCCAGTTGCTCTCACTTAAAGATGGAGATGCTACTCCAATAGTAGTTGATGATAATA
 AAAGCAAAAGAAATAAGTGTGATGCTAAGAGTTCTTAGGAACCTCTGATGTTGATATAATA
 GGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCAATAGATAGTGCAACTGGAAAAC
 TCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAATGCTGAAGTTAAAAGAAGATG
 ATTATTTCACAGATGGTGAAGTTGTAATTACTTGTGCAAAAGATGGTCTACTAAAGAAG
 ATCAATTAGTAGATGCCCTAGCAGCAGCACCAATAGCAGGTAGATTAAAGGAGTCTCCAGCTC
 CAATCATACTAGCTACTGATACTTATCTCTGACCAAAATGTAGCTGTAAGTAAAGCAGTTC
 CTAAAGATGGTGGAACTAACCTAGTTCAAGTAGGTAGTTAAGGATAGCTCTCAGTTATAAAC
 AAATGAAAGATTATTAGATATGG

SEQ ID No. 6

(Strain 171448 DNA)

ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTTCGGCTGCTCCT
 GTTTTGCTGCAACTACTGGAACACAAGGTTACTGTAGTTAAAACGACTGGAAAAAGCA
 GTAAAACAATTACAAGATGGACTAAAGATAATAGTATAGGAAAGATAACTGTATCTTTAA
 TGATGGGGTTGTTGGTGAAGTAGCTCTAAAGTCTAATAAGAAAGCGGGACAGAGATGCTG
 CAGCTGAGAAGTTATATAATCTTGTAAACACTCAATTAGATAAATTAGGTGATGGAGATTATG
 TTGATTCTGTAGATTATAATTAGAAAACAAATAACTAATCAAGCAGATGCAGAAG
 CAATTGTTACAAAGTTAAATTCACTTAATGAGAAAACCTTATTGATATAGCAACTAAAGATA
 CTTTGGAAATGGTTAGTAAACACAAGATAGTGGAGGTAAAATGTTGCTGCAACAAAGGCA
 CTTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCTGGTGAAGCGAAGATACTGGATAT
 GTTGTGAAATGAAAGCAGGAGCTGTAGAGGATAAGTATGGTAAAGTGGAGATAGTACGGC
 AGGTATTGCAATAAACTTCTTAGTACTGGACTTGAATATGCAAGGTAAAGGAACAACAATTGA
 TTTAATAAAACTTAAAGTTGATGTAACAGGTGGTCAACACCTAGTGCTGTAGCTGTAAG
 TGGTTGTAACTAAAGATGATACTGATTAGCAAATCAGGTACTATAATGTAAGAGTTAT
 AAATGCAAAGAAGAATCAATTGATATAGATGCAAGCTCATATACATCAGCTAAAATTAG
 CTAAAAGATATGTATTGATCCAGATGAAATTCTGAAGCATATAAGGCAATAGTAGCATAC
 AAAATGATGGTATAGAGTCTAATTAGTTGCTAGTTAATGAAAATATCAAGTGAATT
 ATCCAGAAGGTTAAAGATTAGAAACTAAATCAGCAAATGATAACAATAGCTAGTCAGATA
 CCAGCTAAAGTAGTTAAAGCTAATAAATTAAAAGATTAAAAGATTATGATGATTAA
 AAAACATATAATAACTTATTCAAATGTTGAAACAGTAGCAGGAGAAGATAGAATAGAAAC
 TGCTATAGAATTAGTAGTAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAC
 AGTTAATGATATAGTATTAGTGGATCTACATCTATAGTTGATGGCTTGTGCATCACCATT
 GCTTCAGAAAAAACAGCTCCATTATTAGCTTCAAAAGATAAATTAGATTCACTCAGTAAA
 TCTGAAATAAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAATACTTCTAAAAAGTT
 TATTTAGCTGGTGGAGTTAATTCTATATCTAAAGATGTAGAAAATGAATTGAAAACATGGGT
 CTTAAAGTTACTAGATTACAGGAGAAGACAGATACGAAACTTCTTAGCAATAGCTGATGAA
 ATAGGTCTTGATAATGATAAAGCATTGATGTTGGTGGACTGGATTAGCAGATGCTATGAGT
 ATAGCTCCAGTTGCTCTCAACTTAAAGATGGAGATGCTACTCCAATAGTAGTTGATGATAATA
 AAAGCAAAAGAAATAAGTGTGATGCTAAGAGTCAATAGATAGTGCAACTGGAAAAC
 GGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCAACTAATGCTGAAGTTAAAAGAAGATG
 TCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTAATGCTGAAGTTAAAAGAAGATG
 ATTATTTCACAGATGGTGAAGTTGTAATTACTTGTGCAAAAGATGGTCTACTAAAGAAG
 ATCAATTAGTAGATGCCCTAGCAGCAGCACCAATAGCAGGTAGATTAAAGGAGTCTCCAGCTC
 CAATCATACTAGCTACTGATACTTATCTCTGACCAAAATGTAGCTGTAAGTAAAGCAGTTC
 CTAAAGATGGTGGAACTAACCTAGTTCAAGTAGGTAAAGGTAGCTCTCAGTTATAAAC
 AAATGAAAGATTATTAGATATGG

SEQ ID No. 7

(Strain 171862 DNA)

ATGAATAAGAAAAACTTAGCAATGGCTATGGCAGCAGTTACTGTTGTGGTTCTGCAGCGCCA
 ATATTCAGATAGTACTACGCCAGGTTATACTGTAGTGAAAATGATTGGAAAAAAGCAGT
 AAAACAATTACAAGATGGTTGAAAATAAAACATATCAACAATAAAAGGTGTCTTAATG
 GAAACTCTGTTGGAGAAGTTACCCAGCCAGTCTGGAGCAAAAAAGCAGATAGAGATGCT
 GCAGCTGAAAAGTTATATAATTAGTAAATACACAATTAGATAAAACTAGGTGATGGAGATTAC
 GTTGACTTGAAGTAACTTATAATTAGCTACTCAAATAATTACAAAAGCAGAAGCAGAGGCA
 GTTCTTACAAATTACAACAATAATGATAAAAGTACTTATAAAATTCTGCAACAGATAACAGTA
 AAAGGTATGGTATCTGATACACAAGTTAGCAGCTTAAAGTGTGCACTAACCCACTAAAGTT
 AGTGATATGTATACAATACCATCTGCTATTACTGGAAGTGATGATTCTGGGTATAGTATTGCT
 AAACCAACAGAAAAGACTACAaGTTTATTGTATGGTACGGTTGGTATGCAACTGCAGGTAAA
 GCAATAACAGTAGATACAGCTTCAATGAAGCTTGTGCAACAGGTACTATAAAAGTTAGAGTACAAGTGCAAAAG
 AATAAATCATTCAAAGCAACTGTACAAGGAGATGGAACAGTTAAGACAAGCAGGGTTGTACT
 TAAAGATGCAAGTGATATGGCTGCAACAGGTACTATAAAAGTTAGAGTACAAGTGCAAAAG
 AAGAATCTATTGATGTGGATTCAAGTTCATATTAGTGTGCAAAATTTAGCTAAAGGAA
 TATTAATCCTAAAGAGGTTCTGAAAGCTTAAATGCAATAGTGTGCAATTACAAAGTGTGAA
 TAGAATCTGATTTAGTACAATTAGTTAATGGAAAATATCAAGTTATTTCTATCCAGAAGGAA
 AAAGATTAGAAACTAAATCTGCAAGTATAATAGCTGATGCAAGTACTGCTAAATAACT
 ATAAAAGCTAATAAAATTAAAGATTAAAGATTATGAGATGATTAAAAACATACAATAA
 TACTTACTCAAATGTTGTAACAGTAGCAGGAGAAGATAGAAATAGAAACTGCTATAGAATTAA
 GTAGTAAATATTATAATTCTGATGATAAAATGCAATAACTGATGATGATGCAAGTACTGCTAAATAATAG
 TATTAGTTGGATCTACATCTATAGTTGATGGTCTTGTGCACTCACCATTAGCTTCAGAAAAAAC
 AGCTCCATTATTATTAACCTCAAAGATAAATTAGATTCAGTAAAGTGTGAGATAAAAAG
 AGTTATGAACTTAAAGAGTGATACTGGTATAAATACTCTAAAAAGTTATTTAGCTGGTGG
 AGTTAATTCTATATCTAAAGATGTAGAAGATGAATTGAAAAATATGGGCTTAAAGTTACTAG
 ATTATCAGGAGAACAGACAGATACTGAAACTTCTTAGCAATAGCTGATGAAATAGGTCTTGATAA
 TGATAAAGCATTGTAGTTGGTGGTACTGGATTGGCAGATGCTATGAGTATAGCTCCAGTTGC
 TTCTCAACTTAAAGATGGAGATGCTACTCCAATAGTAGTTGTAGATGGAAAAGCAAAAGAAA
 TAAGTGTGATGCTAAGAGTTCTAGGAACCTCTGATGTTGATATAATAGGTGGAAAAAATA
 GCGTATCTAAAGAGATTGAAGAGTCATAGATAGTGCACACTGAAAAACTCCAGATAGAATA
 AGTGGAGATGACAGACAAGCAACTAATGCTGAAGTTTAAAAGAAGATGATTATTCAAAGA
 TGGTGAAGTTGTGAATTACTTGTGCAAAAGATGGTCTACTAAAGAAGATCAATTAGTGA
 TGCATTAGCAGCAGCACCAATAGCAGGTAGATTAAAGGAGTCTCAGCTCCAATCATACTAGC
 TACTGATACTTTATCTTCTGACCAAAATGTAGCTGTAAGTAAAGCAGTTCTAAAGATGGTGG
 AACTAACTTAGTCAAGTAGGTAAAGGTATAGCTTCTCAGTTATAAACAAATGAAAGATT
 ATTAGATATGTAA

SEQ ID No. 8

(Strain 173644 DNA)

ATGAATAAGAAGGATATAGCAATAGCTATGTCAGGATTAACAGTATTAGCTTCTGCAGCACCT
 GTATTTGCTGCTAGTAGTTTACAGCAGATTATAATTATACTGTAGTGCAAGGAAAATATCAA
 AAAGTTATAACTGGATTACAAGATGGTTAAAAATGGAAAAATAACAAATATTGATGTAAT
 ATTGATGGAAGTTCAATTGGTAGGGTAGTGCCAGGTTCTGATGCTGCAAGCTGCACTAA
 ATTTAAAAGTTAGTTGATGATAAGTTAGATAACTTAGGTGATGGAAAATACGTTCAATTAA
 TGTTACTTATACTACTAAATCTATAATAACTAAAGCAGAATTAAAAATTATTATAATCAATT
 AGAAAGTAGTAAAGATAGAAATACTTATAGGAAATGAACTCAAGATAACAGGAACCTAAAGGTC
 TTATAAAAGCTGATACTGATGGTACTACTGCTGTTGCAGCAGCTGCACCAATTGAAATTATCAG
 ATATATTACGTTAGTTATGATGAAGTAACAGGTGACTTAAAGCAGAACCAACAAGTAAAG
 TAAGCGCTGGTAAAGGTCAAGGTCTAAATATGGAAATACAGGAGCAACTAACTATACTCTG
 GAGCTGAAATATCTGTTCTACTACAGGCTTAACATTAACTGCTGATACAACAGCAACACAG
 ATGTAATATTCTGATGTTATGAGTGCAATTAAATTAAATGGTACTGATACGATTAGTGGATT
 CCCAGCTGGTCTACAGCTTACTCTAGAGCAAGTATAAAAGTAATAAAATGCAAAAGAAGA
 ATCTATAGATGTTGATTCAAGTTCACATAGAACAGCTGAAGATTAGCTGAAAATATGTATT

TAAACCAGAAGATGTGAATAAAACTTATGAGGCAC TGACTGATTATATAAGAAGGTATAA
 CAAGTAATCTTATCACTCAAGATGGTGGAAAATATCAAGTTGTTATTGCTCAAGGAAAGA
 GATTAACTACTAAAGGAGCACTGGAACCTTAGCAGATGAAAATTCTCCTCTAAAGTAACAA
 TAAAAGCAGATAAAGTAAAAGACTTAAAGATTATGTTGAAGATTAAAAATGCTAACAAAT
 GGATATTCAAATTCTGTTGTTAGCAGGTGAAGATAGAATAGAAACAGCAATAGAGTTAAG
 TAGCAAATACTATACTCTGATGACAATGCAATAACTAAAGATCCAGTTAACAAATGTTGT
 TTTAGTTGGTTCTCAAGCTGTAGTTGATGGGCTTGAGCTTCACCTTAGCATCTGAAAAAAGA
 GCTCCTTACTATTAACCTCAGCAGGAAAATTAGATTCAAGTGTAAAGCTGAGTTGAAAAGA
 GTAATGGATTAAAATCTACAACAGGTGTAATACTCTAAAAAGTTACTTAGCTGGTGG
 GTAAACTCTATATCTAAAGATGTAGAAAATGAATTAAAAGATATGGGACTTAAAGTTACAAG
 ATTATCAGGAGATGATAGATATGAAACTTCTTAGCTATAGCTGATGAAATAGGTCTTGATAA
 TGATAAAGCTTGTAGTTGGAGGAACAGGATTAGCGGATGCTATGAGTATAGCTCCAGTTGC
 TTCTCAATTAAGAAACTCAAATGGAGAACCTGACTTAAAGGTGATGCAACTCCAATAGTAGT
 TGTTGATGAGAAAGCTAAAGATATAAATTCTGAAGTAAAAGATTCTTAGATGATTCTACAAGT
 TGATATAATAGGTGGTAAATAGTGTCTAAAGAAGTAATGGAAGCAATAGATGATGCTAC
 TGGAAAATCACCTGAGAGATATAGTGGAGAAGATAGACAAGCAACAAATGCTAAAGTTATAA
 AAGAAGATGATTCTTAAAATGGAGAACCTACAGTTGCTGATAAAAAGCTTCTCAGCACCAATTGTT
 CTAAGAAGATCAATTAGTAGCTTCTGATCAAATGTAGCTATAAGTAAAGCTGTAATGATGACG
 CTAATACTAAGAATCTAGTTCAAGTTGGTAAAGGTAGCTACTCAGTTGTAAGTAAAATAA
 AAGATTATTAGATATG

SEQ ID No. 9

(Strain 170444 DNA)

ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTTCGGCTGCTCCT
 GTTTTGCTGCAACTACTGGAACACAAGGTATACTGTAGTTAAAACGACTGGAAAAAAGCA
 GTAAAACAATTACAAGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTATCTTAA
 TGATGGGGTTGTTGGTGAAGTAGCTCCTAAAAGTGCTAATAAGAAAGCAGGACAGAGATGCTG
 CAGCTGAGAAGTTATATAACTCTTGTAAACACTCAATTAGATAATTAGGTGATGGAGATTATG
 TTGATTCTGTAGATTATAATTAGAAAAAAAATAATAACTAATCAAGCAGATGCGAGAAG
 CAATTGTTACAAGTTAAATTCACTTAATGAGAAAATCTTATTGATATGCAACTAAAGATA
 CTTTGGAATGGTTAGTAAAACACAAGATAGTGAAGGTTAAAGTGTGCTGCAACAAAGGCA
 CTTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCTGGTGGAAAGCGAAGATACTGGATAT
 GTTATTGAAATGAAAGCAGGAGCTGTAGAGGATAAGTATGGTAAAGTTGGAGATAGTACGGC
 AGGTATTGCAATAATCTCCTAGTACTGGACTTGAATATGCAGGTAAAGGAACAAACATTGA
 TTTAATAAAACTTAAAGTTGATGTAACAGGTGGTCAACACCTAGTGCTGTAGCTGTAAG
 TGGTTGTAACTAAAGATGATACTGATTAGCAAAATCAGGTACTATAATGTAAGAGTTAT
 AAATGCAAAGAAGAATCAATTGATATAGATGCAAGCTCATATACTCAGCTGAAAATTAG
 CTAAAAGACATGTATTGATCCAGATGAAATTCTGAAGCATATAAGGCAATAGTAGCATTAC
 AAAATGATGGTATAGGTCTAATTAGTTCAAGTGTAGTTAATGGAAAATATCAAGTGTATTTT
 ATCCAGAAGGTTAAAGATTAGAAACTAAATCAGCAAATGATACAATAGCTAGTCAGATACA
 CCAGCTAAAGTAGTTAAAAGCTAATAAATTAAAAGATTAAAGATTATGATGATGATTTA
 AAAACATATAATAACTTATTCAATGTTAACAGTAGCAGGAGAAGATAGAATAGAAAC
 TGCTATAGAATTAGTAGAAATTATAATTCTGATGATAAAAATGCAATAACTGATAAACAGC
 AGTTAATGATATAGTATTAGTTGGATCTACATCTATAGTTGATGGCTTGTGATCACCATT
 GCTTCAGAAAAACAGCTCCATTATTATAACTCTAAAGATAAAATTAGATTCTCATCAGTAAA
 TCTGAAATAAAAGAGAGTTATGAACCTAAAGAGTGACACTGGTATAAATACTCTAAAAAGTT
 TATTTAGCTGGTGGAGTTAATTCTATATCTAAAGATGTAGAAAATGAATTGAAAACATGGT
 CTTAAAGTTACTAGATTATCAGGAGAAGACAGATACGAAACTCTTAGCAATAGCTGATGAA
 ATAGGTCTTGATAATGATAAAGCATTGTTAGTTGGTGGTACTGGATTAGCAGATGCTATGAGT
 ATAGCTCCAGTTGCTCTCAACTTAAAGATGGAGATGCTACTCCAATAGTAGTTGATGATGGA
 AAAGCAAAGAAATAAGTGTAGTCAAGAGTTCTTAGGAACCTCTGATGTTGATATAATA
 GGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCATAGATAGTGCAACTGGAAAAAC
 TCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTATGCTGAAGTTAAAAGAAGATG

ATTATTCACAGATGGTGAAGTTGTGAATTACTTGTGAAAAGATGGTCTACTAAAGAAG
ATCAATTAGTAGATGCCTAGCAGCAGCACCAATAGCAGGTAGATTAAGGAGTCTCCAGCTC
CAATCATACTAGCTACTGATACTTATCTTGTGACCAAAATGTAGCTGTAAAGCAGTC
CTAAAGATGGTGGAACTAACTTAGTTCAAGTAGGTAAAGGTATAGCTTCTCAGTTATAAAC
AAATGAAAGATTATTAGATATGA

SEQ ID No. 10

(Strain 170426 DNA)

ATGAATAAGAAAAATATAGCAATAGCTATGTCAGGTTAACAGTTAGCTTCGGCTGCTCCT
GTTTTGCTGCAACTACTGGAACACAAGGTATACTGTAGTTAAAACGACTGGAAAAAAGCA
GTAAAAACAATTACAGGATGGACTAAAAGATAATAGTATAGGAAAGATAACTGTATCTTTAA
TGATGGGGTTGGGTGAAGTAGCTCCTAAAAGTGTAAATAAGAAAGCGGGACAGAGATGCTG
CAGCTGAGAAGTTATATAATCTTGTAAACACTCAATTAGATAAAATTAGGTATGGAGATTATG
TTGATTTTCTGTAGATTATAATTAGAAAAAAAATAATAACTAATCAAGCAGATGCAGAAG
CAATTGTTACAAAGTTAAATTCACTTAATGAGAAAACCTTATTGATATAGCAACTAAAGATA
CTTTGGAATGGTAGTAAAACACAAGATAGTGAAGGTAAAATGTTGCTGCAACAAAGGCA
CTTAAAGTTAAAGATGTTGCTACATTGGTTGAAGTCTGGTGGAAAGCGAAGATACTGGATAT
GTTGTTGAAATGAAAGCAGGAGCTGTAGAGGATAAGTATGGTAAAGTTGGAGATAGTACGGC
AGGTATTGCAATAATCTCCTAGTACTGGACTTGAATATGCAGGTAAAGGAACAACAATTGA
TTTAATAAAACTTAAAAGTTGATGTAACAGGTGGTCAACACCTAGTGTAGCTGTAAAG
TGGTTTGTAACTAAAGATGATACTGATTAGCAAATCAGGTACTATAATGTAAGAGTTAT
AAATGCAAAGAAGAATCAATTGATATAGTGAAGCTCATATACTACAGCTGAAATTTAG
CTAAAAGATATGTATTGATCCAGATGAAATTCTGAAGCATATAAGGCAATAGTAGCATTAC
AAAATGATGGTATAGAGTCTAATTAGTTGATGTAACAGGTGGTCAACACCTAGTGTAGCTGTAA
ATCCAGAAGGTAAAAGATTAGAAACTAAATCAGCAAATGATACAATAGCTAGTCAAGATA
CCAGCTAAAGTAGTTAAAAGCTAATAAATTAAAAGATTAAAAGATTATGATGATT
AAAACATATAATAACTTATTCAAATGTTGTAACAGTAGCAGGAGAAGATAGAATAGAAAC
TGCTATAGAATTAGTAGAAATATTATAATTCTGATGATAAAAATGCAATAACTGATAAAC
AGTTAATGATATAGTATTAGTTGGATCTACATCTATAGTTGATGGCTTGTGATCACCATT
GCTTCAGAAAAACAGCTCCATTATTAACTTCAAAGATAAAATTAGATTCTAGTAA
TCTGAAATAAGAGAGTTATGAACCTAAAGAGTGCACACTGGTATAAATACTTCTAAAAAGTT
TATTAGCTGGTAGTTAATTCTATCTAAAGATGTAGAAAATGAATTGAAAAACATGGT
CTTAAAGTTACTAGATTATCAGGAGAAGACAGATACTTCTTAGCAATAGCTGATGAA
ATAGGTCTTGATAATGATAAAAGCATTTGTAGTTGGTAGCTGGATTAGCAGATGCTATGAGT
ATAGCTCCAGTTGCTCTCAACTTAAAGATGGAGATGCTACTCCAATAGTAGTTGAGATGGA
AAAGCAAAGAAATAAGTGTAGCTAACAGAGTTCTTAGGAACCTCTGATGTGATATAATA
GGTGGAAAAAATAGCGTATCTAAAGAGATTGAAGAGTCAATAGATAGTGCACACTGGAAA
TCCAGATAGAATAAGTGGAGATGATAGACAAGCAACTATGCTGAAGTTAAAAGAAGATG
ATTATTTCACAGATGGTGAAGTTGTGAATTACTTGTGAAAAGATGGTCTACTAAAGAAG
ATCAATTAGTAGATGCCTAGCAGCAGCACCAATAGCAGGTAGATTAAGGAGTCTCCAGCTC
CAATCATACTAGCTACTGATACTTATCTTGTGACCAAAATGTAGCTGTAAAGCAGTC
CTAAAGATGGTGGAACTAACTTAGTTCAAGTAGGTAAAGGTATAGCTTCTCAGTTATAAAC
AAATGAAAGATTATTAGATATG

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 August 2002 (15.08.2002)

PCT

(10) International Publication Number
WO 02/062379 A3

(51) International Patent Classification⁷: **C12N 15/31,**
C07K 14/33, C12N 15/62, C07K 16/12, A61K 39/08,
31/711

(21) International Application Number: **PCT/IE02/00017**

(22) International Filing Date: 11 February 2002 (11.02.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2001/0137 9 February 2001 (09.02.2001) IE

(71) Applicant (for all designated States except US): **THE PROVOST, FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNIDIVIDED TRINITY OF QUEEN ELIZABETH [IE/IE]**; Near Dublin, College Green, Dublin 2 (IE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **DOYLE, Rachael** [IE/IE]; 19 Deerpark Avenue, Castleknock, Dublin 15 (IE). **KELLEHER, Dermot** [IE/IE]; 30 Royal Terrace West, Dun Laoghaire, County Dublin (IE). **WINDLE, Henry, J.** [IE/IE]; 15 Cherryfield Avenue Upper, Ranelagh, Dublin 6 (IE). **WALSH, James, Bernard** [IE/IE]; 3 Ardlu Park, Blackrock, County Dublin (IE). **DEIRDRE, Ni, Eithin** [IE/IE]; 15 Watkins Buildings, The Coombe, Dublin 8 (IE).

(74) Agent: **O'BRIEN JOHN A AND WELDON, Michael J;**
c/o John A. O'Brien & Associates, Third Floor, Duncairn House, 14 Carysfort Avenue, Blackrock, County Dublin (IE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GII, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
16 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/062379 A3

(54) Title: CLOSTRIDIUM DIFFICILE VACCINE

(57) Abstract: A vaccine for the treatment or prophylaxis of *C. difficile* associated disease comprises a *C. difficile* gene or a *C. difficile* peptide/polypeptide or a derivative or fragment or mutant or variant thereof which is immunogenic in humans. The gene encodes a *C. difficile* surface layer protein, SlpA or variant or homologue thereof. The peptide/polypeptide is a *C. difficile* surface layer protein, SlpA or variant or homologue thereof. The vaccine may comprise a chimeric nucleic acid sequence.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/IE 02/00017

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/31 C07K14/33 C12N15/62 C07K16/12 A61K39/08 A61K31/711

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS, CHEM ABS Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 20304 A (ORAVAX INC) 29 April 1999 (1999-04-29) page 22 ---- CALABI EMANUELA ET AL: "Molecular characterization of the surface layer proteins from Clostridium difficile." MOLECULAR MICROBIOLOGY, vol. 40, no. 5, June 2001 (2001-06), pages 1187-1199, XP002946325 ISSN: 0950-382X Table 1: Strain 1, 33 kDa band ---- -/-	1,2,5,7, 19, 23-37, 52-54, 57-64
P,X		1-9,11, 19-21, 23-42, 44,52-64

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
16 August 2002	22 10 2002
Name and mailing address of the ISA	Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Mata-Vicente, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/IE 02/00017

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	KARJALAINEN TUOMO ET AL: "Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile." INFECTION AND IMMUNITY, vol. 69, no. 5, May 2001 (2001-05), pages 3442-3446, XP002946326 ISSN: 0019-9567 Associated to Acc. No: AJ291709. ---	1-9,11, 19-21, 23-42, 44,52-64
A	CERQUETTI M ET AL: "CHARACTERIZATION OF SURFACE LAYER PROTEINS FROM DIFFERENT CLOSTRIDIUM DIFFICILE CLINICAL ISOLATES" MICROBIAL PATHOGENESIS, ACADEMIC PRESS LIMITED, NEW YORK, NY, US, vol. 28, no. 6, June 2000 (2000-06), pages 363-372, XP002946324 ISSN: 0882-4010	
A	MASTRANTONIO P ET AL: "Identification of Clostridium difficile genes encoding surface proteins with adhesive properties." ABSTRACTS OF THE GENERAL MEETING OF THE AMERICAN SOCIETY FOR, vol. 100, 2000, page 72 XP001002649 100th General Meeting of the American Society for Microbiology; Los Angeles, California, USA; May 21-25, 2000, 2000 ISSN: 1060-2011 the whole document -----	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IE 02/00017

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 57, 63 and 64 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: - because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
(9, 11, 21, 42, 44) - (1-8, 19, 20, 23-41, 52-64) - partial

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: (9, 11, 21, 42, 44) - complete; (1-8, 19, 20, 23-41, 52-64) - partial

Clostridium difficile S layer protein (SlpA) comprising SEQ ID NO:1 and its corresponding gene (slpA), which comprises SEQ ID NO:3; epitopes, homologs, derivatives, variants or fragments thereof. Chimeras comprising any of the previously mentioned polynucleotides/(poly)peptides. Antibodies against those (poly)peptides. Vaccines comprising any of the former and methods for prophylaxis/treatment of C. difficile-associated diseases based on the use thereof.

2. Claims: (10, 13, 14, 17, 18, 22, 43, 46, 47, 50, 51) - complete; (1-8, 19, 20, 23-41, 52-64) - partial

Idem as subject 1, but restricted to a gene comprising SEQ ID NOS: 5, 6, 9 or 10 and a polypeptide/peptide comprising SEQ ID NO:2.

3. Claims: (12, 45) - complete; (1-8, 19, 20, 23-37, 39-41, 52-54, 56-64) - partial

Idem as subject 1, but restricted to a gene comprising SEQ ID NO:4.

4. Claims: (15, 48) - complete; (1-8, 19, 20, 23-37, 39-41, 52-54, 56-64) - partial

Idem as subject 1, but restricted to a gene comprising SEQ ID NO:7.

5. Claims: (16, 49) - complete; (1-8, 19, 20, 23-37, 39-41, 52-54, 56-64) - partial

Idem as subject 1, but restricted to a gene comprising SEQ ID NO:8.

6. Claims: (65) - complete

Use of interleukin 12 as an adjuvant in a C. difficile vaccine.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

7. Claims: (66) - partial

Use of humanised antibodies for passive vaccination of an individual with C. difficile infection.

8. Claims: (66) - partial

Use of serum for passive vaccination of an individual with C. difficile infection.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Please notice that:

1. The translations of the ORFs contained in appendices 1-8 are not included in the sequence listing and, therefore, the one corresponding to the first invention has not been searched. In case the applicant decided to pay additional fees, he should be aware of the fact that the same will apply to the other inventions..
2. Claims 39 and 56 refer to SEQ ID N0s:3-10 as "amino acid sequences" but, actually, they are nucleotidic sequences.
3. The sequence numbering is confusing. The sequence identity numbers mentioned in the description and claims do not correspond with those of the sequence listing (example: SEQ ID N0:1 of the description is a peptide which appears under SEQ ID N0:9 of the sequence listing).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/IE 02/00017

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9920304 A	29-04-1999	AU 1108299 A CA 2307331 A1 EP 1024826 A1 WO 9920304 A1 US 6214341 B1 US 2001051153 A1	10-05-1999 29-04-1999 09-08-2000 29-04-1999 10-04-2001 13-12-2001