Artificial and robotic vision

Spring 2013

Lecture 6: unsupervised learning

one layer

How do we compute these filters?

supervised training

0.5

dataset

stochastic gradient descent

one layer

input Image

I to NI convolutions or correlation or template matching

NI to NI
subsampling
or pooling
or L norm pool

non-linearity tanh etc...

gradient descent, min cost function

$$\underset{W}{\text{minimize}} \quad \lambda \sum_{t=1}^{N-1} \|\mathbf{p}^{(t)} - \mathbf{p}^{(t+1)}\|_1 + \sum_{t=1}^{N} \|\mathbf{x}^{(t)} - W^T W \mathbf{x}^{(t)}\|_2^2 + \gamma \sum_{t=1}^{\overline{N}} \|\mathbf{p}^{(t)}\|_1$$

p = features, x = input

supervised training issues:

- need labeled data!
- takes a long time
- lots of effort
- in videos it is crazy
- •we cannot scale up!
- ~all use gradient descent
- not related to learning in the brain
- use global error propagation
- not local err. prop.
- math-heavy techniques
- they take a long time to compute

unsupervised training: autoencoders

main idea: learn to reconstruct the input with some sparse base functions

unsupervised training: autoencoders

the dataset is just unlabeled data! of any form: video, frames, etc easy to get! easy to consume

iteration no O

train by finding base-functions or the basic blocks of images

unsupervised training: autoencoders

related to: vector quantization clustering

> used for: compression de-noising

Sparse coding (Olshausen & Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).

Training: given a set of random patches x, learning a dictionary of bases $[\Phi_1, \Phi_2, ...]$

$$\min_{a,\phi} \sum_{i=1}^{m} \left\| x_i - \sum_{j=1}^{k} a_{i,j} \phi_j \right\|^2 + \lambda \sum_{i=1}^{m} \sum_{j=1}^{k} |a_{i,j}|$$

Input: Novel image patch x (in R^d) and previously learned ϕ_i 's Output: Representation $[a_{i,1}, a_{i,2}, ..., a_{i,\kappa}]$ of image patch x_i .

$$\min_{a} \sum_{i=1}^{m} \left\| x_i - \sum_{j=1}^{k} a_{i,j} \phi_j \right\|^2 + \lambda \sum_{i=1}^{m} \sum_{j=1}^{k} |a_{i,j}|$$

Represent x_i as: $a_i = [0, 0, ..., 0, 0.8, 0, ..., 0, 0.3, 0, ..., 0, 0.5, ...]$

Slide credit: Andrew Ng

Eugenio Culurciello

$$[a_1, ..., a_{64}] = [0, 0, ..., 0, 0.8, 0, ..., 0, 0.3, 0, ..., 0, 0.5, 0] (feature representation)$$

Compact & easily interpretable

sparse coding: example

64 bases functions of 8x8 pixels

The bases seem to capture the intrinsic structure of the building elements, that are mainly composed of vertical, horizontal, slanting edges and corners.

Multiple layers of deep network:

Repeat for each layer:

- 1- sample output of previous layer (new input)
- 2- learn dictionary of inputs = filters
- 3- use filters to generate outputs

sparse coding: deep networks

Any feature mapping from x to a, i.e. a = f(x), where

- -a is sparse (and often higher dim. than x)
- -f(x) is nonlinear
- -reconstruction x'=g(a), such that x'≈x

Therefore, sparse RBMs, sparse auto-encoder, even VQ can be viewed as a form of sparse coding.