

Ultra-fast oxygen conduction in Sillén Oxychlorides

Jun Meng
University of Wisconsin-Madison

jmeng43@wisc.edu

October 17, 2024

PRiME 2024, Symposium: I02: Solid State Ionic Devices 15

Group / Collaborators

Dane Morgan (UW)

Ryan Jacobs (UW)

Md Sariful Sheikh (UW)

Jian (Jay) Liu (NETL)
William O. Nachlas (UW-Madison)

Maciej Polak (UW)

Lane Schultz (UW)

Acknowledgement

Background: Applications implemented with oxygen-active materials

Solid Oxide Fuel Cell

Proton-Exchange Membrane Fuel Cell

Solid Oxide Electrolysis Cell

Solid Oxide Air Battery

Oxygen Separation Membrane

Oxygen Sensor

Energy Mater 2021;1:100002; ECS Trans. 2014; 58 67; Int J Energy Res. 2020; 44: 594–611. https://www.ngkntk.co.jp/english/product/sensors_plugs/zirconia_oxygen.html

Materials discovery based on structural features

Hypothesis: materials with similar structural features to known oxygen conductors are promising for high oxygen mobility.

- 62,000 oxygen-containing compounds from the Materials Project were considered.
- Nearest neighbors were ranked based on their structural similarity to fluorite BiO₂, described by XRD of oxygen sublattice and RDF
- The Bi₂MO₄X = MBi₂O₄X (M= Rare-earth element, X= halogen) family was found as the nearest neighbors. Bi₂LaO₄Cl was selected as a prime candidate for further in-depth studies.

Nearest neighbors to fluorite BiO ₂								
#	Materials ID	Formula	Distance					
1	mp-546621	Bi ₂ ErBrO ₄	18.67					
2	mp-546350	Bi ₂ TmBrO ₄	19.15					
3	mp-549127	Bi ₂ HoClO ₄	20.35					
4	mp-549728	DyZnPO	21.85					
5	mp-552738	Bi ₂ TmlO ₄	22.69					
6	mp-546625	Bi ₂ HoBrO ₄	22.69					
7	mp-3589	BPO ₄	24.14					
8	mp-1087483	ThCuPO	24.14					
9	mp-6790	Ba ₂ Y(CuO ₂) ₄	24.17					
10	mp-8789	Ca ₄ As ₂ O	24.25					

Structure and defect chemistry of LBC

LaBi₂O₄Cl (LBC) is a layered bismuth oxyhalide, adopts a "triple fluorite" layer [Bi₂LaO₄]+, balanced by the Cl⁻ layer.

• LBC is a wide band gap insulator with $E_{gap}=2.65\ eV$, consistent results achieved from exp., DFT-HSE, literatures.

The Frenkel pair $(V_0 - O_i)$ is the most thermodynamically stable defects in a wide T (300K, 873K and 1073K) range under

atmospheric $P(O_2)$.

Formation energy of oxygen defects at room temperature, atmosphere

Ab initio studies on oxygen mobility in LBC with defects

Ab initio studies indicate that vacancy diffusion in the "triple-fluorite" layer features an ultra-low migration barrier of ~ 0.1 eV!

• With oxygen vacancy $V_{\mathcal{O}}$, LBC exhibits ultra-high oxygen self-diffusivity, and ultra-low migration barrier

• With or without oxygen interstitial O_i , LBC exhibits similar oxygen self-diffusivities, and moderate migration barriers

Ab initio studies on oxygen mobility in Sr-doped LBC with oxygen vacancies

Similar oxygen diffusivity and diffusion barriers observed in Sr-doped LBC

Experimental studies for LBC and Sr-doped LBC

SEM of sintered LBC with grain size of 2.9 μm

XRD studies have revealed that LBC undergoes a phase transition from monoclinic to tetragonal after sintering.

Stoichiometry of LBC and Sr-doped LBC analyzed by Field Emission Electron Probe Microanalyzer (FE-EPMA) analysis, indicating small slight La and oxygen deficiencies, and excess Cl in LBC

	La	Sr	Ві	0	Cl	Suggested formula
Ideal LBC	1	-	2	4	1	LaBi ₂ O ₄ Cl
synthesized LBC	0.97 ± 0.03	-	2.00 ± 0.04	3.91 ± 0.06	1.05 ± 0.02	$La_{0.97}Bi_2O_{3.93}CI_{1.05}$
Ideal Sr-doped LBC	0.95	0.05	2	3.975	1	
synthesized Sr-doped LBC	0.89 ± 0.02	0.01 ± 0.00	2.00 ± 0.04	3.89 ± 0.07	1.02 ± 0.02	$La_{0.89}Sr_{0.01}Bi_2O_{3.84}Cl_{1.02}$

The stochiometric values are shown as 1 σ ranges from the sample mean.

Experimental conductivity for LBC and Sr-doped LBC

Comparison on experimental total conductivity

LBC and SLBC show comparable or higher total conductivity than YSZ and LSGM below 400 °C, with lower activation energies.

Comparison across experimental total conductivity and *ab initio*-predicted bulk conductivity

The predicted ultra-high conductivity in LBC+ V_O is not observed in our samples, which might be attributed to:

- i. The grain boundary effect
- ii. The lack of sufficient oxygen vacancies.

[1] H. Yaguchi, et al. Adv. Funct. Mater. 2023, 33, 2214082.

- LaBi₂O₄Cl (LBC) is identified as an ultra-fast oxygen conductor with ultra-low barrier of 0.1 eV, enabling ultra-high conductivity of 0.3 S/cm at 25 °C.
- LBC and Sr-doped LBC show superior conductivity and lower activation energy, although the predicted ultrahigh conductivity is not fully realized yet.
- Experimental effort on aliovalent doping to create vacancies and microstructure refinement for LBC-based materials is needed to unlock its full potential of ultrafast oxygen conduction approaching room temperature.

Scan to read the paper

Acknowledgement

Computational Materials Group

Faculty

Izabela Szlufarska Dane Morgan

Staff Scientists

Ajay Annamareddy Maciej Polak

Rafi Ullah Ryan Jacobs

Postdoc Researchers

Benjamin Afflerbach Chen Shen

Gaurav Arora Jun Meng

Muhammad Waqas Shuming Chen

Qureshi

Siamak Attarian

Graduate Students

Amy Kaczmarowski Chiyoung Kim

Lane Schultz Ni Li

Nuohao Liu Sakiru Akinyemi

Shuguang Wei Sudipta Paul

Xuanxin Hu Younsoo Kim

Undergraduate Students

Many students involved in the

Thank you!

