

Motivation

- Problems in Empirical Asset pricing and Risk Premia forecasting:
 - premia predicting
 - conditional expectation of a future realized return
 - market efficiency returns driven by unpredictable news
 - variable/factor selection (large pool, correlated)
 - o functional form (ambiguity, hidden pattern and relations)
- Machine learning can help in empirical asset pricing with:
 - a diverse collection of high-dimensional models for complex uncertainty
 - regularization techs for factor selection and avoid overfitting
 - efficient nonlinear modeling
- Two canonical research agendas:
 - cross-sectional (across one asset class, predictive signals)
 - time-series (directly forecasting)

Our goal:

• Explore the predictive power of cutting-edge Machine Learning models for time series forecasting on financial industry

Outlines:

- Identify powerful models in various industries
- Apply them on financial time series and make predictions
- Evaluate them in two-fold:
 - high prediction accuracy: RMSE, MAPE, OWA
 - o large economic gains for investors: portfolio Sharpe ratio, return, risk

Data

- 2005-2019, daily, 108 tickers from Yahoo Finance
- ETFs, mutual funds, real estates, commodities

Next:

- Models
- Python framework design
- Hyperparameter tuning
- Prediction accuracy
- Portfolio performance
- Conclusion

Models

- ESRNN
 - M4 Competition Winner, an international series of competition
- Telescope
 - improved from ESRNN

Similarities:

- Hybrid of traditional time series models and Machine Learning techniques
- Both have been proved to have excellent predict power in time series
 - Firstly, extracted patterns (trend, seasonality, etc)
 - o Train Machine Learning models on resulting series
 - Make predictions
 - Add patterns back

Model 1: ESRNN^[1]

- Mixes Exponential Smoothing with dilated ' STM natural'
- Main elements:
 - Deseasonality ES
 - Generation of forecast NN
 - Ensembling average top N models

Figure 1: NN Architecture by Smyl et al. (2018)

Model 2: Telescope^[2]

Hybrid multi-step-ahead forecasting approach based on time series decomposition

Hyperparameters Tuning (Forward-Chaining Nested CV)

Empirical Evaluation:

- Model Performance
- Portfolio Performance

Figure 5: Data split for empirical analysis

Model Performance - Metrics

- overall weighted average (OWA)
 - created by M4
 - o compare with a benchmark model
- $OWA = \frac{1}{2} \left(\frac{Model \ sMAPE}{Benchmark \ sMAPE} + \frac{Model \ MASE}{Benchmark \ MASE} \right)$

- the weighted average of
 - symmetric mean absolute percentage error (sMAPE)
 - uses percentage errors that are scale-independent and intuitive to understand
 - but it is always equal to two for a zero actual value, regardless of the forecast that is used
 - mean absolute scaled error (MASE)
 - fix problems of sMAPE
 - provide an alternative with better mathematical properties such as a defined mean and a finite variance
- root mean squared error (RMSE)
 - o a popular absolute measure of fit

Model Performance - Results

• Both models beat benchmark on average (based on OWA)

	ESRNN	Telescope
RMSE	0.015	0.012
MASE	0.657	0.473
MAPE	0.009	0.007
OWA	0.946	0.689

Model Performance - Visualization

Outperforming benchmark does not mean great accuracy

(a) AMT actual vs. predictions

(b) HWSAX actual vs. predictions

Portfolio Performance - Construction

- minimum variance portfolio
 - o a collection of assets combined to minimize the volatility of the overall portfolio
- efficient risk portfolio
 - a collection of assets combined to produce the highest possible returns at the given level of risk

For each type of construction, we compare an enhanced portfolio (predicted returns) with a benchmark portfolio (historical returns)

Portfolio Performance - Metrics

- high annualized return
- high Sharpe ratio
- small volatility
- small max drawdown

Portfolio Performance - Results

	Minimum Variance Portfolio		-	Efficient Risk Portfolio (Vol=0.2)			
	Benchmark	ESRNN	Telescope	,	Benchmark	ESRNN	Telescope
Annu. Return	0.002	0.007	0.007	-	0.020	0.138	0.113
Annu. Volatility	0.010	0.018	0.102		0.016	0.132	0.200
Sharpe Ratio	-0.023	0.620	0.850		1.176	1.113	0.700
Max DrawDown	-0.005	-0.012	-0.050		-0.007	-0.065	-0.090

Portfolio Performance - Visualization (Telescope)

Portfolio Performance - Visualization (ESRNN)

Conclusion

Volatile results:

- ML has its shortcomings as it cannot impose economic principles and hence cannot identify deep fundamental economic mechanisms along with a higher volatility in returns
- Telescope is unable to recognize enough frequency terms to construct a treebased model

• Possible improvement:

- volatility modeling
- o add more features in Telescope

• Future works:

- factor-based prediction models (LASSO)
- predict factors' time series instead of asset returns

References

[1] Bauer, Andre et al. "Telescope: An Automatic Feature Extraction and Transformation Approach

For Time Series Forecasting on a Level-Playing Field". 2020 IEEE 36th

International

Conference on Data Engineering (ICDE).

[2] Smyl, Slawek. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting." *International Journal of Forecasting* 36 (2020) 75-85.

Questions?

Appendix:

input_size = 7 dilation = [[1,2],[4,8]]

Time Frame	Dilations	LSTM Size		
Monthly	(1, 3), (6, 12)	50		
Quarterly	(1, 2), (4, 8)	40		
Yearly	(1, 2), (2, 6)	30		

Table 1: Summary of network parameters

Figure 1: NN Architecture by Smyl et al. (2018)