8. 분산 분석

분산 분석 (ANOVA, Analysis of Variance)

관심 집단이 3개 이상이 되면기존의 검정 통계량을 통해 평균이 동일한지 여부를 판단할 수 없음 정규 분포를 따르는 검정 통계량을 만들어 낼 수 없기 때문

따라서 3개 이상 집단간 평균의 동일성을 판단하고자 할 때, 분산들의 상대적 크기를 비교하면서 이를 검정

분산 분석 용어

1. 요인 (Factor)

: 결과에 영향을 주는 <mark>원인에 해당하는 변수</mark> ex) 학습시간에 영향을 미치는 원인은 학년 (요인이 학년)

2. 수준 (Level)

: 요인을 나누는 기준 ex) 학년을 1학년, 2학년, 3학년 등으로 나눔

3. 반응 (Response)

: 실험 또는 조사의 결과로 얻어지는 양적 자료를 의미

요인에 대한 수준은 질적 자료로 그룹을 구분하는 단위로 이해 반응은 이러한 그룹별로 시행되는 실험 또는 조사에 의해 얻어지는 양적 자료

8.2 일원배치 분산 분석의 절차

일원배치 분산분석 (One-Way ANOVA)

그룹	1	2	•••	k
자료	Y ₁₁	Y ₂₁	•••	Y_{k1}
	Y ₁₂	Y ₂₂	•••	Y_{k2}
	•••	•••	•••	•••
	Y_{1n}	Y_{2n}		Y_{kn}

1. 등분산성의 가정 (각 집단의 분산이 동일)

: 각 집단의 분산이 동일 $(\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2)$

2. 정규성의 가정 (관찰값들이 모두 정규분포를 따름)

$$Y_{k1}, Y_{k2}, \dots, Y_{kn} \sim N(\mu_1, \sigma^2)$$

3. 독립성의 가정

: 각 집단별로 관측된 자료는 서로 독립임을 가정

8.2 일원배치 분산 분석의 절차

일원배치 분산 분석의 검정 절차

가설의 설정	$H_0: \mu_1 = \mu_2 = \dots = \mu_k = 0 \ vs \ H_1: Not \ H_0$
모형의 분해	$(Y_{ij} - \overline{Y}_{}) = (\overline{y}_{i.} - \overline{Y}_{}) + (Y_{ij} - \overline{Y}_{})$
제곱합의 분해 (분산의 분해)	$SST = SS_{Trt} + SSE$
자유도 계산	N - 1 = (k - 1) + (N - k)
제곱 평균의 계산	$MS_{Trt} = rac{SS_{Trt}}{k-1}$, $MSE = rac{SSE}{N-k}$
검정 통계량의 계산과 의사결정	$F = \frac{MS_{Trt}}{MSE}$