Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain

arxiv.org/abs/2110.03950

Dmitrii M. Ostrovskii Babak Barazandeh & Meisam Razaviyayn

> University of Washington IFDS Seminar November 12, 2021

Outline

$$\min_{x \in X} \max_{y \in Y} f(x, y)$$

- Background and challenges.
- Our approach: restricting diam(Y).
- Sharp bound for the critical diameter.
- Algorithms for finding stationary points. see paper

Smooth min-max optimization

Given convex bodies $X,\,Y$ in the corresponding Euclidean spaces $\textit{E}_{x},\,\textit{E}_{y},\,$ find

$$f^* := \min_{x \in X} \max_{y \in Y} f(x, y).$$

assuming that f is smooth—has Lipschitz gradient $[\nabla_x f(x, y); \nabla_y f(x, y)]$.

- Full knowledge of X, Y: can compute proximal mappings.
- Oracle access to f: can query f(x, y), $\nabla f(x, y)$, ... at any (x, y).

- **Iterative methods:** form a sequence (x_t, y_t) such that $f(x_t, y_t) \to f^*$.
- \bullet Complexity: number of iterations ${\cal T}$ to guarantee a given accuracy.

Convex-concave setup

Classical setup: $f(\cdot, y)$ convex on X; $f(x, \cdot)$ concave on Y for all x, y.

• Strong duality (a.k.a. minimax theorem) under mild assumptions:

$$f^* = \min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y) = f(x^*, y^*),$$

- (x^*, y^*) is a saddle point: $f(x^*, y) \leqslant f(x^*, y^*) \leqslant f(x, y^*)$ for all x, y.
- **Primal-dual algorithms** minimize the duality gap (primal+dual gap):

$$\varphi(x_t)\underbrace{-\varphi^* + \psi^*}_{=f^* - f^* = 0} - \psi(y_t) \leqslant \langle \nabla_{\mathsf{x}} f(x_t, y_t), x_t - x^* \rangle + \langle \nabla_{\mathsf{y}} f(x_t, y_t), y^* - y_t \rangle.$$

- Complexity $O(1/\epsilon)$ to reach ϵ duality gap is optimal without further assumptions—via extragradient-type algorithms (Nemirovski '2000).
- Well developed theory by now, although still a lot of ongoing work.

Nonconvex-concave setup

Some of the nice structure is lost, in particular no duality anymore:

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \min_{x \in X} \varphi(x) \neq \max_{y \in Y} \min_{x \in X} f(x, y).$$

We still can evaluate $\varphi(x)$ and its subgradient $\xi = \xi(x) \in \partial \varphi(x)$ at any x. However, $\varphi(x)$ is nonconvex, so we lose all hope to minimize it globally.

Reasonable goal is to approximate a local minimizer or a stationary point.

• Under mild assumptions, we can escape "malignant" saddle points —those of $\varphi(\cdot)$ —and focus on finding a **stationary point.** (Jin et al. '2017 for smooth minimization, Davis & Drusvyatskiy '2020).

But what it *means* for $x \in X$ to be ε -stationary when $\varphi(x)$ is nonsmooth?

It doesn't make sense to just use the norm of subgradients of φ . E.g., $\varphi(x) = |x|$: x = 0 is stationary $(\partial \varphi(0) \ni 0)$, but $|\nabla \varphi(x)| \geqslant 1$ if $x \neq 0$.

Nash or Moreau?

But what it *means* for $x \in X$ to be ε -stationary when $\varphi(x)$ is nonsmooth?

- First-order Nash Equilibrium (ε -FNE): $\|\nabla_x f(x,y)\| + \|\nabla_y f(x,y)\| \le \varepsilon$. Actually more complicated, taking into account the constraint sets... Stems from the primal-dual viewpoint: treats $f(\cdot,y), f(x,\cdot)$ equally.
- Or we can hold to the "primal-only" viewpoint if we make $\varphi(\cdot)$ smooth. It is possible since φ is λ -weakly convex (i.e., $\varphi(\cdot) + \frac{1}{2}\lambda \| \cdot \|$ is convex.)

Definition (Moreau envelope)

$$\phi_{\lambda}(x) := \min_{u \in X} \left\{ \phi(u) + \lambda \|u - x\|^2 \right\}$$

is called the (standard) **Moreau envelope** of a λ -weakly convex function ϕ .

- We have $\varphi(\cdot) = \max_{y \in Y} f(\cdot, y)$; each $f(\cdot, y)$ is λ -smooth $\Rightarrow \lambda$ -weakly convex.
 - $\varphi_{\lambda}(\cdot)$ is differentiable and λ -smooth—same as each component $f(\cdot, y)$.

Moreau envelope criterion

Definition (Moreau envelope)

$$\phi_{\lambda}(x) := \min_{u \in X} \left\{ \phi(u) + \lambda \|u - x\|^2 \right\}$$

is called the (standard) **Moreau envelope** of a λ -weakly convex function ϕ .

Motivation:

Lemma (Lin et al. '2019 with a mistake; corrected in Ostrovskii et al. '2020)

If $\|\nabla \phi_{\lambda}(x)\| \leqslant \varepsilon$ for $x \in X$, then $x^{+} := \underset{u \in X}{\operatorname{argmin}} \{\phi(u) + \lambda \|u - x\|^{2}\}$ satisfies $\|x^{+} - x\| \leqslant \frac{\varepsilon}{2\lambda}$ and $\lambda \|x^{+} - \Pi_{X}[x^{+} - \frac{1}{\lambda}\xi]\| \leqslant \varepsilon$ for some $\xi \in \partial \phi(x^{+})$.

Here $f(x,\cdot)$ does **not** have to be concave. This motivates using $\|\nabla \varphi_{\lambda}(\cdot)\|$ as a measure of stationarity in the **nonconvex-nonconcave** setup.

Definition (ε -first-order stationary point, or ε -FSP)

Let $f(\cdot,y)$ be λ -smooth $\forall y$. Then $x \in X$ is called ε -FSP if $\|\nabla \varphi_{\lambda}(x)\| \leqslant \varepsilon$.

Finding ε -FSP: main challenge

From now on, assume $\nabla_x f(\cdot)$ is Lipschitz: for any $x', x \in X$ and $y', y \in Y$:

$$\|\nabla_{\mathbf{x}}f(\mathbf{x}',\mathbf{y}) - \nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y})\| \leqslant \lambda \|\mathbf{x}' - \mathbf{x}\|,$$

$$\|\nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y}') - \nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y})\| \leqslant \mu \|\mathbf{y}' - \mathbf{y}\|.$$

Thus, λ is the weak convexity modulus of φ , while μ is a coupling parameter.

Problem of interest

Given a problem instance of the form $\min_{x \in X} \max_{y \in Y} f(x, y)$ and $\varepsilon > 0$, find a point x^* such that $\|\nabla \varphi_{\lambda}(x)\| \leqslant \varepsilon$, where φ_{λ} is the Moreau envelope.

Hard: Lyapunov-type analyses of local search methods (e.g. gradient descent-ascent, proximal-point method) rely on **full maximization**.

Key insight

No problem when Y is a singleton. Extend this to the case of a small Y?

Min-max optimization with a small max-domain

... is relevant in adversarial training:

$$\min_{\theta \in \mathbb{R}^d} \max_{\|\delta\| \leqslant r} \sum_{i=1}^n \ell(\theta, Z_i - \delta_i) + \operatorname{reg}(\theta),$$

 $\ell(\theta,z)$ is nonconvex in θ and nonconcave in z (e.g., deep neural net). In order to remain undetected, perturbations have to be **small**.

Our strategy

Let $\hat{f}_k(x, y)$ be the k-order Taylor approximation of $f(x, \cdot)$ at some $\hat{y} \in Y$.

- $\hat{f}_k(x,\cdot)$ is a multivariate polynomial—**global** maximization for $k \leq 2$:
 - $\hat{f}_k(x,\cdot)$ is constant for k=0 and affine for k=1;
 - $\hat{f}_k(x,\cdot)$ is quadratic for k=2, can be *globally* maximized using first-order methods—see e.g. (Carmon and Duchi '2020).

Surrogate problem: $\min_{x \in X} \max_{y \in Y} \hat{f}_k(x, y)$.

Strategy

1°. Prove that any ε -FSP of the surrogate problem remains $O(\varepsilon)$ -FSP for the initial problem when $D := \operatorname{diam}(Y)$ is smaller than some \bar{D} .

We expect
$$\bar{D} = O(\varepsilon^p)$$
 for some $p = p(k) > 0$.

 2^o . Find some ε -FSP in the surrogate problem by an efficient algorithm.

Accuracy of Taylor approximation

• Assuming k^{th} -order regularity in y, i.e. that $\nabla_{y^k}^k f(x,\cdot)$ is ρ_k -Lipschitz

$$\|\nabla_{\mathbf{y}^k}^k f(\mathbf{x}, \mathbf{y}') - \nabla_{\mathbf{y}^k}^k f(\mathbf{x}, \mathbf{y})\| \leqslant \rho_k \|\mathbf{y}' - \mathbf{y}\|,$$

 $|\hat{f}_k(x,y)-f(x,y)|\leqslant \frac{\rho_k D^{k+1}}{(k+1)!}.$

• Similarly, assuming
$$\nabla_{y^k}^k f$$
 is Lipschitz in x ("higher-order interaction")
$$\|\nabla_{y^k}^k f(x',y) - \nabla_{y^k}^k f(x,y)\| \leqslant \sigma_k \|x' - x\|,$$

allows to control how well $\nabla_x \hat{f}_k(x, y)$ approximates $\nabla_x f(x, y)$.

Lemma (Approximation error for $\nabla_{\mathbf{x}} f$.)

yields

$$\|\nabla_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) - \nabla_{\mathbf{x}} \hat{f}_k(\mathbf{x}, \mathbf{y})\| \leqslant \begin{cases} \frac{2\sigma_k \mathsf{D}^k}{k!} & \text{for } k \geqslant 1, \\ \min\{\mu \mathsf{D}, \sigma_0\} & \text{for } k = 0. \end{cases}$$

Accuracy of Taylor approximation (cont'd)

We have a problem:

- ε -FSP definition requires λ -weak convexity of $\varphi(x) = \max_{y \in Y} f(x, y)$.
- ullet So to even talk about arepsilon-FSP for the surrogate, we have to ensure that

$$\hat{\varphi}(x) := \max_{y \in Y} \hat{f}_k(x, y),$$

the surrogate primal function, is also λ -weakly convex.

• Bilinear coupling (BC), i.e. $f(x,y) = g(x) + \langle Ax, y \rangle - h(y)$, ensures

$$\nabla_{\mathsf{xx}}^2 f(\mathsf{x}, \mathsf{y}) \left[= \nabla^2 g(\mathsf{x}) = \nabla_{\mathsf{xx}}^2 f(\mathsf{x}, \hat{\mathsf{y}}) \right] = \nabla_{\mathsf{xx}}^2 \hat{f}_{\mathsf{k}}(\mathsf{x}, \mathsf{y})$$

for all y, so in this case $\hat{f}_k(\cdot,y)$ is λ -smooth and $\hat{\varphi}$ is λ -weakly convex. More generally, assuming $\|\nabla_{y^kx^2}^{k+2}f\|<\infty$ we have the following result:

Lemma (Weak convexity of $\hat{\varphi}$, simplified)

$$\nabla_{\mathbf{x}}\hat{f}_k(\cdot,y)$$
 is $\bar{\lambda}$ -Lipschitz ($\hat{\varphi}$ is $\bar{\lambda}$ -weakly convex) for $\bar{\lambda}=\lambda+O(\mathsf{D}^k)\approx\lambda$.

Main result: critical diameter

Theorem

Given $k \ge 1$, let x^* be an ε -FSP in the **surrogate problem**. Then x^* is also a 6ε -FSP for the **initial problem** if the following condition is met:

$$\min\left\{\sqrt{\frac{\lambda\rho_k\mathsf{D}^{k+1}}{(k+1)!}},\ \mu\mathsf{D}+\mathbb{1}\{k>0\}\frac{\sigma_k\mathsf{D}^k}{k!}\right\}\lesssim\varepsilon.$$

In other words, reduction to the surrogate problem works for $D \lesssim \bar{D}$ with

$$\bar{\mathsf{D}} := \max \left\{ \frac{\varepsilon}{\mu}, \ k \cdot \left(\frac{\varepsilon^2}{\lambda \rho_k} \right)^{\frac{1}{k+1}} \right\}.$$

- For k=1 we have $\bar{D}=\frac{\varepsilon}{\min\{\mu,\sqrt{\lambda\rho_1}\}}$. Same rate as for k=1 except for a better constant factor in the strong coupling regime $\mu\geqslant\sqrt{\lambda\rho_1}$.
- For k=2 and in the nontrivial regime $\varepsilon \ll 1$, we have $\bar{D} = \frac{\varepsilon^{2/3}}{(\lambda \rho_2)^{1/3}}$.
- Similar picture for k > 2: coupling-independent $\bar{D} = \bar{D}(\varepsilon)$ when $\varepsilon \ll 1$.

Proof: coupling-independent bound

Proposition 1. Moreau envelope gradients for φ and $\hat{\varphi}$ are *uniformly close*:

$$\|\nabla \hat{\varphi}_{\lambda}(x) - \nabla \varphi_{\lambda}(x)\| \lesssim \sqrt{\frac{\lambda \rho_k \mathsf{D}^{k+1}}{(k+1)!}} \quad \textit{for all } x \in X.$$

Proof:

 ${\bf 1}^o$. By the first-order optimality conditions for $\varphi_\lambda(x)$ and $\hat{\varphi}_\lambda(x)$ we have

$$\nabla \varphi_{\lambda}(x) = 2\lambda(x - x^{+}), \quad \nabla \hat{\varphi}_{\lambda}(x) = 2\lambda(x - \hat{x}^{+}),$$

where x^+ and \hat{x}^+ are the proximal-point mappings of x as per φ and $\hat{\varphi}$:

$$x^+ = \underset{u \in X}{\operatorname{argmin}} \{ \varphi(u) + \lambda \|u - x\|^2 \}, \quad \hat{x}^+ = \underset{u \in X}{\operatorname{argmin}} \{ \hat{\varphi}(u) + \lambda \|u - x\|^2 \}.$$

Thus
$$\|\nabla \varphi_{\lambda}(x) - \nabla \hat{\varphi}_{\lambda}(x)\| = 2\lambda \|\hat{x}^+ - x^+\|$$
. Let us bound $\|\hat{x}^+ - x^+\|$.

Proof: coupling-independent bound (cont'd)

Proposition 1. Moreau envelope gradients for φ and $\hat{\varphi}$ are uniformly close:

$$\|\nabla \hat{\varphi}_{\lambda}(x) - \nabla \varphi_{\lambda}(x)\| \lesssim \sqrt{\frac{\lambda \rho_k \mathsf{D}^{k+1}}{(k+1)!}} \quad \textit{for all } x \in X.$$

Proof:

2°. Functions $\varphi(\cdot) + \lambda \|\cdot -x\|^2$ and $\hat{\varphi}(\cdot) + \lambda \|\cdot -x\|$ are λ -strongly convex and minimized at x^+ and \hat{x}^+ correspondingly, hence

and minimized at
$$x^+$$
 and x^+ correspondingly, hence
$$\frac{1}{2}\lambda\|\hat{x}^+ - x^+\|^2 \leqslant \varphi(\hat{x}^+) + \lambda\|\hat{x}^+ - x\|^2 - \varphi(x^+) - \lambda\|x^+ - x\|^2,$$

$$\frac{1}{2}\lambda\|\hat{x}^+ - x^+\|^2 \leqslant \hat{\varphi}(x^+) + \lambda\|x^+ - x\|^2 - \hat{\varphi}(\hat{x}^+) - \lambda\|\hat{x}^+ - x\|^2.$$

Summing the two inequalities results in
$$||\hat{x}^{+}||^{2} < \hat{x}(x^{+}) + \hat{x}(x^{+}) + \hat{x}(x^{+}) + \hat{x}(x^{+}) < 2 \sin |\hat{x}(x)| + \hat{x}(x^{+}) + \hat{x}(x^{+}) = 2 \sin |\hat{x}(x)| + \hat{x}($$

$$\lambda \|\hat{x}^+ - x^+\|^2 \leqslant \hat{\varphi}(x^+) - \varphi(x^+) + \varphi(\hat{x}^+) - \hat{\varphi}(\hat{x}^+) \leqslant 2 \sup_{x \in X} |\hat{\varphi}(x) - \varphi(x)|.$$

$$\mathbf{3}^o. \text{ Finally, we get } |\hat{\varphi}(x) - \varphi(x)| \leqslant \sup_{y \in Y} |\hat{f}_k(x, y) - f(x, y)| \leqslant \frac{\rho_k \mathsf{D}^{k+1}}{(k+1)!}. \quad \blacksquare$$

$$\sup_{y\in Y}|\tau_k(x,y)-\tau(x,y)|\leqslant \frac{1}{(k+1)!}$$

Proof: coupling-dependent bound

Proposition 2. For any $x^* \in X$ such that $\|\nabla \hat{\varphi}_{2\lambda}(x^*)\| \leqslant \varepsilon$, one has

$$\|\nabla \hat{\varphi}_{\lambda}(x^*) - \nabla \varphi_{\lambda}(x^*)\| \lesssim \left\{ \begin{array}{ll} \mu \mathsf{D} + \frac{\sigma_k \mathsf{D}^k}{k!} + \varepsilon & \text{for} \ \, k \geqslant 1, \\ \min\{\mu \mathsf{D}, \sigma_0\} + \varepsilon & \text{for} \ \, k = 0. \end{array} \right.$$

Proof: (assuming $X = E_x$ and $k \ge 1$ for simplicity)

 $\mathbf{1}^{o}$. Now let x^{+}, \hat{x}^{+} be the proximal-point mappings of x^{*} as per $\varphi, \hat{\varphi}$:

$$\nabla \varphi_{\lambda}(x^*) = 2\lambda(x^* - x^+), \quad \nabla \hat{\varphi}_{\lambda}(x^*) = 2\lambda(x^* - \hat{x}^+),$$

Thus
$$\|\nabla \varphi_{\lambda}(x^*) - \nabla \hat{\varphi}_{\lambda}(x^*)\| = 2\lambda \|\hat{x}^+ - x^+\|$$
.

2°. By the λ -strong convexity of $\varphi(\cdot) + \lambda \|\cdot -x^*\|^2$ and Cauchy-Schwarz:

$$\frac{1}{2}\lambda \|\hat{x}^{+} - x^{+}\|^{2} \leq \lambda \|\hat{x}^{+} - x^{*}\|^{2} + \varphi(\hat{x}^{+}) - \varphi(x^{+}) - \lambda \|x^{+} - x^{*}\|^{2}$$
$$\leq 4\lambda \|\hat{x}^{+} - x^{*}\|^{2} + \varphi(\hat{x}^{+}) - \varphi(x^{+}) - \frac{3}{4}\lambda \|\hat{x}^{+} - x^{+}\|^{2}.$$

Proof: coupling-dependent bound (cont'd)

Rearranging, we get

$$(\lambda \|\hat{x}^+ - x^+\|)^2 \le 8(\lambda \|\hat{x}^+ - x^*\|)^2 + 2\lambda \left[\varphi(\hat{x}^+) - \varphi(x^+) - \frac{3}{4}\lambda \|\hat{x}^+ - x^+\|^2\right].$$

3°. Since x^* is an ε -FSP for $\hat{\varphi}_k$, the Moreau criterion characterization gives

$$\|\hat{x}^+ - x^*\| \leqslant \frac{\varepsilon}{2\lambda}$$
 and $\|\hat{\xi}\| \leqslant \varepsilon$ for some $\hat{\xi} \in \partial \hat{\varphi}(\hat{x}^+)$. the first inequality,

Using the first inequality,

$$(\lambda \|\hat{x}^+ - x^+\|)^2 \le 2\varepsilon^2 + 2\lambda \left[\varphi(\hat{x}^+) - \varphi(x^+) - \frac{3}{4}\lambda \|\hat{x}^+ - x^+\|^2\right].$$

4°. By convexity of $\varphi(\cdot) + \frac{1}{2}\lambda \|\cdot -\hat{x}^+\|^2$, for **arbitrary** $\xi \in \partial \varphi(\hat{x}^+)$ we get

$$\varphi(\hat{x}^+) - \varphi(x^+) - \frac{\lambda}{2} \|\hat{x}^+ - x^+\|^2 \leqslant \langle \xi, \hat{x}^+ - x^+ \rangle$$

whence

$$(\lambda \|\hat{x}^+ - x^+\|)^2 \leqslant 2\varepsilon^2 + 2\lambda \left[\langle \xi, \hat{x}^+ - x^+ \rangle - \frac{1}{4}\lambda \|\hat{x}^+ - x^+\|^2\right]$$

Proof: coupling-dependent bound (cont'd)

$$(\lambda \|\hat{x}^+ - x^+\|)^2 \le 2\varepsilon^2 + 2\lambda \left[\langle \xi, \hat{x}^+ - x^+ \rangle - \frac{1}{4}\lambda \|\hat{x}^+ - x^+\|^2 \right]$$

5°. Applying Cauchy-Schwarz twice we get

 $\leq \mu D$

$$(\lambda \|\hat{x}^{+} - x^{+}\|)^{2} \leq 4\varepsilon^{2} + 4\lambda \left[\langle \hat{\xi}, \hat{x}^{+} - x^{+} \rangle - \frac{1}{4}\lambda \|\hat{x}^{+} - x^{+}\|^{2} \right] + 4\|\hat{\xi} - \xi\|^{2}$$

$$\leq 4\varepsilon^{2} + 4\|\hat{\xi}\|^{2} + 4\|\hat{\xi} - \xi\|^{2}.$$

Recall that $\hat{\xi} \in \partial \hat{\varphi}(\hat{x}^+)$ was chosen to guarantee $\|\hat{\xi}\| \leqslant \varepsilon$. Thus we get $(\lambda \|\hat{x}^+ - x^+\|)^2 \leqslant 8\varepsilon^2 + 4\|\hat{\xi} - \xi\|^2,$

6°. It remains to bound
$$\|\hat{\xi} - \xi\|^2$$
. The "subgradient of max" rule implies: $\hat{\xi} \in \overline{\operatorname{conv}}\left(\left\{\nabla_{\mathbf{x}}\hat{f}_k(\hat{\mathbf{x}}^+, y), \ y \in \operatorname{Argmax}_{y \in Y}\hat{f}_k(\hat{\mathbf{x}}^+, y)\right\}\right)$.

Besides, we can choose $\xi = \nabla_{\mathbf{x}} f(\hat{x}^+, y^*)$ for $y^* \in \operatorname{Argmax}_{y \in Y} f(\hat{x}^+, y)$. Hence, choosing $\bar{y} \in \operatorname{Argmax}_{y \in Y} \|\nabla_{\mathbf{x}} \hat{f}_k(\hat{x}^+, y) - \nabla_{\mathbf{x}} f(\hat{x}^+, y^*)\|$ we get

$$\begin{split} &\|\hat{\xi}_{X}^{+} - \xi^{+}\| \leq \|\nabla_{\mathsf{x}}\hat{f}_{k}(\hat{x}^{+}, \bar{y}) - \nabla_{\mathsf{x}}f(\hat{x}^{+}, y^{*})\| \\ &\leq \|\nabla_{\mathsf{x}}f(\hat{x}^{+}, \bar{y}) - \nabla_{\mathsf{x}}f(\hat{x}^{+}, y^{*})\| + \|\nabla_{\mathsf{x}}f(\hat{x}^{+}, y^{*}) - \nabla_{\mathsf{x}}\hat{f}_{k}(\hat{x}^{+}, y^{*})\| \,. \end{split}$$

 $\leq \frac{2\sigma_k D^k}{k!}$

Honest Hessian approximation

Lemma (Weak convexity of $\hat{\varphi}$)

Assume $\|\nabla_{\mathbf{y}^k \mathbf{x}^2}^{k+2} f\| \leqslant \tau_k$. Then $\nabla_{\mathbf{x}} \hat{f}_k(\cdot, \mathbf{y})$ is $\bar{\lambda}$ -Lipschitz with

$$\bar{\lambda} := \lambda + \frac{2\tau_k \mathsf{D}^k}{k!} \mathbb{1}\{k \geqslant 1\}.$$

In fact, under some mild measurability condition it suffices to assume that $\nabla_{y^k x}^{k+1} f(\cdot, y)$ is τ_k -Lipschitz for all $\forall y \in Y$, so we don't need $f \in C^{k+2}$.