INTELLIGENT DECISION SUPPORT SYSTEMS - EXERCISES X (PART I) - RANKING METHODS IN DEA

- I. Indicate the truth (T) or falsity (F) for the below statements.
 - a) For an efficient unit, super-efficiency is always greater or equal to its efficiency
 - b) For a given unit, cross-efficiency can be greater than its efficiency
 - c) When including additional weight constraints, efficiencies for all units always become lesser
 - d) To estimate the stochastic acceptability indices with 0.01 accuracy and 95% confidence, one needs to consider 1,000 samples
- II. Write the linear programming model for computing the super-efficiency of A, B, C, or D, while assuming:
 - a) input- or output-oriented improvements
 - b) CCR (CRS) or BCC (VRS) (i.e., constant or variable returns to scale)

DMU	Α	В	С	D
input₁	5	8	7	6
input ₂	14	15	10	12
output ₁	9	5	3	6
output ₂	4	8	7	9

- III. Given the matrix of efficiencies attained by different DMUs for the weights vectors being most favorable to other units:
 - a) What is the cross-efficiency of unit A?
 - b) What is the super-efficiency of unit B?
 - c) What can we say about the super-efficiencies of units A and C?

DMU	E _{kA}	E _{kB}	E _{kC}
E _{Ak}	1.0	0.2	0.9
E _{Bk}	0.6	0.7	0.8
E _{Ck}	0.8	0.6	1.0

IV. Using the Monte Carlo simulation, three weight vectors ($w_{1,2,3}$) have been sampled. They implied the efficiency scores given in the below table. Show the respective matrices of efficiency rank acceptability indices (ERAIs) and pairwise efficiency outranking indices (PEOIs) (for w_1 : A is the best, $C - 2^{nd}$, B is the worst)

	Α	В	С
W ₁	1.0	0.2	0.9
W ₂	0.6	0.7	0.8
W ₃	8.0	0.6	1.0

INTELLIGENT DECISION SUPPORT SYSTEMS - EXERCISES X (PART II) - CLASSICAL MOO METHODS

- I. Indicate the truth (T) or falsity (F) for the below statements.
 - a) Various solutions in the decision space are always translated to different points in the objective space
 - b) Weakly Pareto optimal solutions are always Pareto optimal
 - c) The number of solutions contained in the Pareto frontier may be finite
 - d) The max point attains not better values than the nadir point on all objectives
 - e) Classical optimization methods require multiple runs with different parameter values to approximate the Pareto frontier
 - f) The weighted sum method (WSM) parameterized with positive weights for all objectives identifies the Pareto optimal solution
 - g) The epsilon constrain method (ECM) can find non-supported efficient solutions
- II. Consider a set of solutions **a-h** in the objective space with two minimized objectives (see figure below).

- a) Compute the ideal point **z**^{ideal}.
- b) Compute a utopian point z^{utop} for ε =0.1.
- c) Compute the max point z^{max}
- d) Compute the nadir point **z**^{nadir}.
- III. Consider a set of solutions **a-h** in the objective space with two minimized objectives (see figure below).

- a) Identify Pareto optimal and weakly Pareto optimal solutions.
- b) What would be the solution returned by **WSM** with the following objective function: **Minimize** $0.5 \cdot f_1(x) + 0.5 \cdot f_2(x)$?
- c) What about **WSM** with: *Minimize* $2/3 \cdot f_1(x) + 1/3 \cdot f_2(x)$?
- d) Solution a is Pareto optimal. Can it be discovered by WSM?
- e) What would be the solution returned by **ECM** with the following objective function and constraint: **Minimize** $f_1(x)$, s.t. $f_2(x) \le 4.5$?
- f) What about **ECM** with: *Minimize* $f_2(x)$, s.t. $f_1(x) \le 5.5$?

How to reformulate the objective function using the augmentation factor to be sure that **ECM** always returns a Pareto optimal rather than a weakly Pareto optimal solution?

- g) What would be the solution(s) returned by the **ASF** method with the following objective function: **Minimize** $max\{0.5 \cdot f_1(x), 0.5 \cdot f_2(x)\}$?
- h) What about **ASF** with: **Minimize** $max\{2/3 \cdot f_1(x), 1/3 \cdot f_2(x)\}$?
- i) Which solution would be selected for the following order of lexicographic optimization ($f_1(x)$, $f_2(x)$)?