

Matemática Discreta Lista 6

Prof. Americo Barbosa da Cunha Junior

americo@ime.uerj.br

ATENÇÃO: A solução de cada questão deve ser desenvolvida de maneira clara e objetiva. Não basta fazer contas, o raciocínio deve ser explicado através de um texto coerente. Em outras palavras, mais importante que encontrar a resposta correta é explicar como você chegou nessa resposta.

Exercício 1

De quantas maneiras se podem comprar 15 latas de refrigerantes se existem 4 tipos disponíveis e há somente 6 latas de cada tipo?

Exercício 2

Encontrar a função geradora ordinária para cada uma das sequências abaixo:

- 1. $(1, 1, 1, 0, 0, 0, \cdots)$
- 2. $(1,0,0,2,3,0,0,0,\cdots)$
- 3. $(1,1,1,3,1,1,1,\cdots)$
- 4. $(0, 1, 0, 1, 0, 1, \cdots)$
- 5. $(1,-1,\frac{1}{2!},-\frac{1}{3!},\frac{1}{4!},-\frac{1}{5!},\cdots)$

Exercício 3

Encontrar a sequência gerada pelas funções geradoras ordinárias dadas abaixo:

- 1. $(x+1)^4$
- 2. $x + e^x$
- 3. $x^2(1-3x)^{-1}$
- 4. $e^{2x} + x + x^2$

Exercício 4

Quantas são as soluções inteiras não negativas de $x_1 + x_2 + x_3 + x_4 = 30$, se cada variável deve estar compreendida entre 4 e 9?

Todos os exercícios do Capítulo 7 da Referência [1].

Gabarito da Lista 6

ATENÇAO: As repostas e soluções apresentadas a seguir são para auxiliar na resolução desta lista, mas não estão isentas de possíveis erros de digitação ou mesmo de desenvolvimento. Use o gabarito com cautela, exercitando sempre o seu senso crítico. Se encontrar algum erro, por favor, reporte ao professor.

Resposta do Exercício 1

Considere a equação $x_1 + x_2 + x_3 + x_4 = 15$ e os conjuntos $Ai = \{\text{compras de 15 latas nas quais} x_i \geq 7\}$, onde x_i é o número de latas do tipo i que foram compradas. Assim, devemos retirar $\#(A_1 \cup A_2 \cup A_3 \cup A_4)$ do número de soluções inteiras não negativas da equação acima. Esse número de soluções corresponde ao caso em que existem tantas latas quanto queiramos de cada tipo. Temos então 816 - 636 = 180 maneiras.

Resposta do Exercício 2

As funções geradoras são:

- 1. $1 + x + x^2$
- $2. 1 + 2x^3 + 3x^4$
- 3. $2x^3 + 1/(1-x)$
- 4. $x/(1-x^2)$
- 5. e^{-x}

Resposta do Exercício 3

As referidas sequências são:

- 1. (1,4,6,4,1)
- 2. $(1, 2, \frac{1}{2!}, \frac{1}{3!}, \frac{1}{4!}, \cdots, \frac{1}{k!}, \cdots)$
- 3. $(0,0,1,3,3^2,3^3,3^4)$
- 4. $(1,3,3,\frac{2^3}{3!},\frac{2^4}{4!},\frac{2^5}{5!},\cdots)$

Resposta do Exercício 4

A função geradora que controla cada uma das quatro variáveis é dada por $x^4 + x^5 + x^6 + x^7 + x^8 + x^9$. Portanto, o número de soluções da equação dada corresponde ao coeficiente de x^3 0 no desenvolvimento de $(x^4 + x^5 + x^6 + x^7 + x^8 + x^9)^4 = \left(x^{16} - 4x^{22} + 6x^{28} - 4x^{34} + x^{40}\right)(1-x)^{-4}$. Em $(1-x)^{-4}$ necessitamos, portanto, apenas dos coeficientes de x^{14} , x^8 e x^2 . Assim, o coeficiente de x^{30} na expressão acima é $C^{14}_{4+14-1} - 4C^2_{4+8-1} + 6C^2_{4+2-1} = 80$.

Repostas dos Exercícios do Capítulo 7 da Referência [1]:

Estão disponíveis no apêndice A de [1].

Créditos pelos Exercícios: Os exercícios 1 até 4 foram adaptados das listas do Prof. Augusto Cesar de Castro Barbosa (UERJ). Os demais exercícios indicados são da referência [1].

Referências

[1] R. L. Grahan, D. E. Knuth e O. Patashnik, Matemática Concreta, Fundamentos para Ciência da Computação, LTC, 2ª edição, 1995