连续的概念

王二民(≥wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

什么是连续?

变化的描述

	初值	终值	增量
自变量	а	Χ	$\Delta x = x - a$
函数值	f(a)	f(x)	$\Delta y = f(x) - f(a)$ $= f(a + \Delta x) - f(a)$

称 Δx 为自变量 x 在 a 处的增量,称 Δy 为自变量在 a 处有增量 Δx 时对应的函数值或因变量的增量。

 \triangle Δx 的值可以自由变化,但跟 a 以及函数的定义域有关。

连续的概念

函数 y = f(x) 在 a 处连续的意思就是"当自变量的变化 Δx 较小时,因变量的变化 Δy 也不能太大"。用数学语言描述即"当 Δx 无限接近于 0 时 Δy 也无限接近于 0"。

定义

设函数 f 在 a 的某个邻域内有定义,若

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (f(a + \Delta x) - f(a)) = 0,$$

则称函数 f 在 a 处连续,并称 a 为函数 f 的连续点。

$$idx = a + \Delta x$$
, 则

$$\lim_{\Delta x \to 0} (f(a + \Delta x) - f(a)) = 0 \iff \lim_{x \to a} f(x) = f(a)$$

函数在内点连续的概念

定义(函数在一点连续)

设函数 f 在 a 的某个邻域内有定义,如果

$$\lim_{x\to a} f(x) = f(a).$$

则称**函数** f **在点** a **处连续**,并称 a 为函数 f 的一个**连续点**。

- 极限 $\lim_{x\to a} f(x)$ 存在。
- ② 函数 f 在点 a 处有定义。
- 左端的极限值与右端的函数值相等,即 $\lim_{x\to a} f(x) = f(a)$.

左右连续的概念

定义(左连续)

设存在 $\delta > 0$ 使得函数 f 在 $(a - \delta, a]$ 上有定义,如果

$$\lim_{x\to a^-}f(x)=f(a),$$

则称**函数 f 在点 a 处左连续**。

定义(右连续)

设存在 $\delta > 0$ 使得函数 f 在 $[a, a + \delta)$ 上有定义,如果

$$\lim_{x\to a^+}f(x)=f(a),$$

则称**函数 f 在点 a 处右连续**。

连续、左连续、右连续图示

函数在区间上连续的概念

设 $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$, a < b, 设 I 表示区间 (a,b), [a,b), [a,b], (a,b] 中的任何一种。如果函数 f 满足

- 在开区间 (a, b) 上的每一点处都连续。
- ② 若 $a \in I$, 则 $\lim_{x \to a^+} f(x) = f(a)$.
- ③ 若 $b \in I$, 则 $\lim_{x \to b^-} f(x) = f(b)$.

则称**函数 f 在区间 / 上连续**。

连续的本质是求极限与求函数值可以交换顺序

$$\lim_{x \to a} f(x) = f(a) = f(\lim_{x \to a} x)$$

用函数的连续性求极限

例 1. 求极限 $\lim_{x\to 0}$ arctan $e^{\sin x}$.

解. 由函数 arctan x, e^x , 以及 sin x 的连续性可知

$$\lim_{x \to 0} \arctan e^{\sin x} = \arctan \left(\lim_{x \to 0} e^{\sin x} \right)$$

$$= \arctan e^{\lim_{x \to 0} \sin x}$$

$$= \arctan e^{0}$$

$$= \arctan 1$$

$$= \frac{\pi}{4}.$$

间断点的概念

设函数 f 在点 a 的某个去心邻域内有定义,若 a 不是函数 f 的连续点,即

$$\lim_{x\to a} f(x) \neq f(a),$$

则称 a 为函数 f 的**不连续点**(或**间断点**),此时可能出现下面三种情况

- 表达式 $\lim_{x\to a} f(x)$ 无意义,极限 $\lim_{x\to a} f(x)$ 不存在;
- 表达式 f(a) 无意义,即函数 f 在点 a 处无定义;
- 表达式 $\lim_{x\to a} f(x)$ 和 f(a) 都有意义,但二者的值不相等。

函数间断点举例

例 2. 考察函数 $f(x) = \frac{\sin x}{x}$ 的间断点。

例 3. 考察函数 f(x) = sgn(x) 的间断点。

函数间断点举例

例 4. 考察极限 $f(x) = \frac{1}{x}$ 和 $g(x) = \sin \frac{1}{x}$ 的间断点.

间断点的分类

第一类 极限 $\lim_{x\to a^-} f(x)$ 和 $\lim_{x\to a^+} f(x)$ 都存在

可去间断点 两者相等,即 $\lim_{x\to a} f(x)$ 存在。

跳跃间断点 两者不相等。

第二类 极限 $\lim_{x\to a^-} f(x)$ 和 $\lim_{x\to a^+} f(x)$ 至少有一个不存在。

连续函数的概念

定义(连续函数)

设函数 $f: D \to \mathbb{R}$, 若对任意 $a \in D$, 对于任意 $\varepsilon > 0$, 都存在 $\delta > 0$, 使得当 $x \in D$ 且 $|x - a| < \delta$ 时,有 $|f(x) - f(a)| < \varepsilon$, 则函数 f 为**连续函数**。

- 通俗地说,连续函数的意思就是,对于定义域内的任意一点 a, 当 自变量增量无限接近于 0 时,对应的函数值增量也无限接近与 0.
- \bigcirc 为了可以考虑任何函数的连续性,该定义增加了条件 $x \in D$.