Mirror Descent

Axel Böhm

November 8, 2021

About norms

2 Bregman distances

Mirror descent

Recap on (sub)-gradient descent

 \diamond When we used a norm $\|\cdot\|$ we meant the 2-norm, i.e.

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}.$$

In gradient descent we used Lipschitz continuity:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

(Lead to a complexity of $\mathcal{O}(\frac{L}{k})$)

- ⋄ **Sub-gradient descent**: used $||g|| \le G$ which lead to $\mathcal{O}(\frac{G}{\sqrt{k}})$.
- \diamond But there are other norms $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{d} \|x\|_{\infty}$ It can happen that $\|g\|_{\infty} \leq G$ but $\|g\|_2 \approx \sqrt{d}G$.

we lose dimension independence

Recap on (sub)-gradient descent

 \diamond When we used a norm $\|\cdot\|$ we meant the 2-norm, i.e.

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}.$$

In gradient descent we used Lipschitz continuity:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

(Lead to a complexity of $\mathcal{O}(\frac{L}{k})$)

- ⋄ **Sub-gradient descent**: used $||g|| \le G$ which lead to $\mathcal{O}(\frac{G}{\sqrt{k}})$.
- \diamond But there are other norms $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{d} \|x\|_{\infty}$. It can happen that $\|g\|_{\infty} \leq G$ but $\|g\|_2 \approx \sqrt{d}G$.

we lose dimension independence

Different norms?

But where did we use the norm in the **method**?

Gradient Descent

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

equivalently

$$x_{k+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \left\{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

We can replace the 2-norm with a more general distance.

Bregman distance

- $h: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex
 - (i) h is differentiable of the interior of dom h
- (ii) h is 1-strongly convex w.r.t. $\|\cdot\|_2$

Then

$$\mathcal{D}_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

Properties

- $\Diamond \mathcal{D}_h(x,y) \geq 0$
- $\diamond \ \mathcal{D}_h(x,y) \neq \mathcal{D}_h(y,x)$
- $\diamond \mathcal{D}_h(\cdot, y)$ is convex for all y

$$\mathcal{D}_h(x,y) \approx \frac{1}{2} \langle \nabla^2 h(y)(x-y), x-y \rangle = \frac{1}{2} ||x-y||_{\nabla^2 h(y)}^2$$

$$\Diamond \mathcal{D}_h(x,y) \geq \frac{1}{2} ||x-y||^2$$
 (1-strong convexity)

Bregman distance

- $h: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex
- (i) h is differentiable of the interior of dom h
- (ii) h is 1-strongly convex w.r.t. $\|\cdot\|_2$

Then

$$\mathcal{D}_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

Properties

- $\diamond \mathcal{D}_h(x,y) \geq 0$
- $\diamond \mathcal{D}_h(x,y) \neq \mathcal{D}_h(y,x)$
- $\diamond \mathcal{D}_h(\cdot, y)$ is convex for all y

$$\mathcal{D}_h(x,y) \approx \frac{1}{2} \langle \nabla^2 h(y)(x-y), x-y \rangle = \frac{1}{2} ||x-y||_{\nabla^2 h(y)}^2$$

$$\Diamond \mathcal{D}_h(x,y) \ge \frac{1}{2} ||x-y||^2$$
 (1-strong convexity)

Examples

$$\phi \ h(x) = \frac{1}{2} ||x||_2^2 \text{ gives } \mathcal{D}_h(x, y) = ||x - y||^2$$

$$h(x) = \frac{1}{2(p-1)} ||x||_p^2 \text{ with } p \in [1,2]$$

 $\diamond \ \Delta^d = \{x \in \mathbb{R}^d_+ : \sum_{i=1}^d x_i = 1\}$ the *unit simplex* and

$$h(x) = \begin{cases} \sum_{i=1}^{d} x_i \log(x_i) & x_i > 0 \\ +\infty & \text{otherwise} \end{cases}$$

the Negative entropy.

Negative entropy

- \diamond Negative entropy: $h(x) = \sum_{i=1}^{d} x_i \log(x_i)$ for $x_i > 0$.
- \diamond Then $\nabla h(x) = \log(x) + 1$ (coordinatewise) and

$$\mathcal{D}_h(x,y) = \sum_{i=1}^d x_i \log(x_i) - y_i \log(y_i) - \langle \log(y) + 1, x - y \rangle$$

$$= \sum_{i=1}^d x_i \log(x_i) - \sum_{i=1}^d x_i \log(y_i)$$

$$= \sum_{i=1}^d x_i \log\left(\frac{x_i}{y_i}\right)$$

Known as Kullback-Leibler divergence K(X||Y).

 \diamond Is strongly convex over Δ

$$\mathcal{D}(x,y) \ge \frac{1}{2} \|x - y\|_1^2$$
 Pinsker's ineq.

Mirror descent

Idea: replace squared Euclidian norm with more general object:

$$\begin{aligned} x_{k+1} &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\alpha} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} (h(x) - h(x_k) - \langle \nabla h(x_k), x - x_k \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} (h(x) - \langle \nabla h(x_k), x \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \alpha \nabla f(x_k) - \nabla h(x_k), x \rangle + h(x) \} \end{aligned}$$

Question: But why mirror descent?

Mirror descent

Idea: replace squared Euclidian norm with more general object:

$$\begin{aligned} x_{k+1} &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\alpha} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} (h(x) - h(x_k) - \langle \nabla h(x_k), x - x_k \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} (h(x) - \langle \nabla h(x_k), x \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \alpha \nabla f(x_k) - \nabla h(x_k), x \rangle + h(x) \} \end{aligned}$$

Mirror descent

Idea: replace squared Euclidian norm with more general object:

$$\begin{aligned} x_{k+1} &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\alpha} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} (h(x) - h(x_k) - \langle \nabla h(x_k), x - x_k \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha} (h(x) - \langle \nabla h(x_k), x \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \alpha \nabla f(x_k) - \nabla h(x_k), x \rangle + h(x) \} \end{aligned}$$

Question: But why mirror descent?

The Mirror part

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^d} \{ \langle \alpha \nabla f(x_k) - \nabla h(x_k), x \rangle + h(x) \}$$

By optimality condition:

$$0 = \alpha \nabla f(x_k) - \nabla h(x_k) + \nabla h(x_{k+1})$$

Therefore

$$\nabla h(x_{k+1}) = \nabla h(x_k) - \alpha \nabla f(x_k)$$

Why it's called mirror descent

Figure: $\psi = h$

Mirror Descent w.r.t. negative entropy

Negative entropy: $h(x) = \sum_{i=1}^{d} x_i \log(x_i)$ for $x_i > 0$.

We define $a := \alpha \nabla f(x_k) - \nabla h(x_k)$. Then

$$x_{k+1} = \underset{x \in \Delta}{\operatorname{arg min}} \{ \langle a, x \rangle + h(x) \}$$

Results in

$$x_{k+1} = x_k. * e^{-\alpha \nabla f(x_k)}$$

in a pointwise sense.

(General) mirror descent convergence statement

Since we changed norm in the space of the variable x, we need to go to the dual norms in the space of the subgradients

$$||y||_* := \max_{||x||=1} \{\langle y, x \rangle\}.$$

$\mathsf{Theorem}$

In $(\mathbb{R}^d,\|\cdot\|)$ and subgradients bounded in dual norm $\|g_k\|_* \leq G$, then

$$f(\bar{x}_k) - f^* \leq \frac{(\mathcal{D}(x^*, x_0))^{1/2} G}{\sqrt{k}},$$

where \bar{x}_k denotes the averaged iterates, as usual.

Convergence w.r.t. negative entropy

It might occur that

$$||g||_{\infty} = (||g||_1)_* \le G$$

but

$$\|g\|_2 \approx \sqrt{d}G$$
.

But is are all the bounds of the previous theorem dimension independent?

What about $\mathcal{D}(x^*, x_0)$? Let $x_0 = (\frac{1}{d}, \dots, \frac{1}{d})$, then

$$\mathcal{D}(x,x_0) = \sum x_i \log \left(\frac{x_i}{\frac{1}{d}}\right) = \sum x_i \log(x_i) + \log(d) \leq \log(d)$$

while $||x_0 - x^*||^2 < 2$.

Proof

In the Euclidian space we used

$$\langle x_{k+1} - x_k, x^* - x_{k+1} \rangle$$

$$= \frac{1}{2} \|x^* - x_k\|^2 - \frac{1}{2} \|x^* - x_{k+1}\|^2 - \frac{1}{2} \|x_{k+1} - x_k\|^2.$$

Similar 3-point identity holds for Bregman distances:

$$\langle \nabla h(x_{k+1}) - \nabla h(x_k), x^* - x_{k+1} \rangle = = D(x^*, x_k) - D(x^*, x_{k+1}) - D(x_{k+1}, x_k).$$

Therefore

$$D(x^*, x_{k+1}) \leq D(x^*, x_k) - D(x_{k+1}, x_k) + \alpha \langle g_k, x^* - x_{k+1} \rangle.$$

Proof II

$$D(x^*, x_{k+1}) \le D(x^*, x_k) - D(x_{k+1}, x_k) + \alpha \langle g_k, x^* - x_{k+1} \rangle.$$

Last term is not quite right.

$$\langle g_{k}, x^{*} - x_{k+1} \rangle = \langle g_{k}, x^{*} - x_{k} \rangle + \langle g_{k}, x_{k} - x_{k+1} \rangle$$

$$\leq f(x^{*}) - f(x_{k}) + \|g_{k}\|_{*} \|x_{k} - x_{k+1}\|$$

$$\leq f(x^{*}) - f(x_{k}) + \frac{\alpha \|g_{k}\|_{*}^{2}}{2} + \frac{\|x_{k} - x_{k+1}\|^{2}}{2\alpha}.$$

Combined we get that

$$D(x^*, x_{k+1}) \leq D(x^*, x_k) - D(x_{k+1}, x_k) + \alpha(f(x^*) - f(x_k)) + \frac{\alpha^2 \|g_k\|_*^2}{2} + \frac{\|x_k - x_{k+1}\|^2}{2}.$$

Proof III

We assumed strong convexity of h:

$$D(x_{k+1},x_k) \geq \frac{1}{2}||x_{k+1}-x_k||^2.$$

Yields

$$D(x^*, x_{k+1}) \leq D(x^*, x_k) + \alpha(f(x^*) - f(x_k)) + \frac{\alpha^2 \|g_k\|_*^2}{2}$$

Continue as always

$$\frac{1}{k}\sum_{i=1}^k f(x_i) - f^* \leq \frac{D(x^*, x_0)}{\alpha k} \frac{\alpha G^2}{2}$$

What about the smooth case

- Talked about how to get better constants in the "bounded subgradients" setting
- but can't make them bounded if they are not

However,

Can also come up with a new notion of smoothness

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + LD(y, x)$$

which might hold even if f is not smooth in classical sense