- Time complexity
- Big 0 notation
- TLE (time Limit exceeded)

next class

Agend a

- how to rairwate total its

basics madhs

i) sum of N natural no.

$$1+2+3+4+5+...+N = N*(N+1)$$

ii) Arithmetic Progression

dirst term : a

common diff: d

1 2 3 4
$$n$$
a a+d a+2d a+3d a+ $(n-1)$ d

$$S_{n-1} = \frac{n}{2} \left[2a + (n-1)d \right]$$

iii) heometric progression

dirst term: a

Common ratio: 8

Sum of n terms =
$$a(x^{n-1})$$
 $(x!=1)$

iv) How many times we need divide N by 2 till the N value reaches 1.

$$N=32$$
 $32 \xrightarrow{12} 16 \xrightarrow{12} 8 \xrightarrow{12} 4 \xrightarrow{12} 2 \xrightarrow{12} 2$

$$N=24 \qquad 24 \qquad \xrightarrow{12} \qquad 12 \qquad \xrightarrow{12} \qquad 6 \qquad \xrightarrow{12} \qquad 3 \qquad \xrightarrow{12} \qquad 1$$

```
int Jun (int N) }
                                                  i → [ 1 N]
0.1
           int s=0;
                                                        N iterations
           dor (int i= 1) i = 10; i++) {
                                                          (N)0
                   5= S+i;
           return s;
       3
        roid fun (int N, int M) {
0 - 2
             Jor (int i=1) (z=N); i+1) {

i) (i)-2==0) {

Sop(i);

3
             Jor (int i= 1; iz=m; i++) {

ij [iy-2==0) {

Sop(i);

3
```

3

n+w i+x

0(N+M)

Q.3 int Jun (int N)
$$\S$$

int $S=0$;

Jor (int $i=0$; $i=100$; $i+1)$ \S

S=Stit("i);

S=Stit("i);

Ano. a) int are independent at interpretable at input \Rightarrow 0(1)

The int Jun (int N) \S

S=Stivi);

S=Stivi);

S=Stivi);

S=Stivi);

S=Stivi);

S=Stivi);

S=Stivi);

S=Stivi);

S=Stivi);

I = JN

I = J

```
0-6 roid fun (int N) {

int s=0;

for (int i=0; i<N; i=i*2) {

s=S+i;

3
```

indinite itr

148	i value after
1	2 -> 2'
2	4 → 2 ²
3	8 → 2 ³
4	l6 → 24

loop breaks i= N

Il assume loop breaks after
$$K$$
 iterations
$$i = 2^{K}$$

$$2^{K} = N$$

take log base 2 on both sides $\log_2 2^k = \log_2 N$

log_ N itr

Nested Loop

ì	Ċ		i l r
1	[1	CO	2+
2	[1	CN	₩ N
3	Ci	NJ	N
: :			:
	۲.	415	4
10	Ľι	NΩ	<u> </u>
			10 N

10 N ity

(N)0

ì	ວ	idr
1	[1 N]	N +
2	CN 1]	+ N
3	CU 1]	N
•		
•		;
•		+
N	[ו אס	<u> </u>

N*N

N2 itr

0-10 roid June (int 10) {	ì	ciol c	148
} (++i ; N = i +\ni) ro}	٥	[0 0]	1
1 or (int j=0; j<=i; j++) {	1	[0 0]	1 2
Sop (i+" "+j);	2	[0 2]	1 3
3	:		<u>.</u>
3	N-1	[0 10-17	: N

$$1 + 2 + 3 + 4 + 5 + \dots + N$$

$$\Rightarrow \frac{N(N+1)}{2} \quad \text{it} \quad \Rightarrow \frac{N^2 + N}{2} \quad \text{O(N}^2)$$

0-12 roid Jun (int N) {

for (int i=1; i <=
$$2^N$$
; i++) {

sop(i);

3

Ì	ל נו וז	iðr
2	[1 17]	N +
<u>N</u> 2	$\begin{bmatrix} 1 & \frac{N}{2} \end{bmatrix}$	N 2 +
2)5	[1 N/2]	+ 2 4 +
1	[i i j	+ : + 1

$$N + \frac{N}{2} + \frac{N}{4} + \dots + 1$$

$$\alpha = N$$
 , $\gamma = \frac{1}{2}$

terms = 10g2 N+1

$$N^*\left(\frac{1}{2}\right)^{t-1} = 1$$

$$\frac{N}{2^{\frac{1}{4}-1}} = 1$$

$$N = 2^{t-1}$$

take log on both sides

$$\log_2 N = t - 1$$
 , $t = \log_2 N + 1$

$$\alpha = N$$
 , $\gamma = \frac{1}{2}$

109, N = N

terms = 10g2 N+1

$$S = a \left(r^{t} - 1 \right)$$

$$= N \left(\left(\frac{1}{2} \right)^{\log_2 N + 1} - 1 \right)$$

$$\frac{1}{2} - 1$$

$$= + N \left(1 - \left(\frac{1}{2}\right)^{\log_2 N + 1}\right)$$

$$+ \frac{1}{2}$$

$$= 2N \left(1 - \left(\frac{1}{2}\right)^{\log_2 N + 1}\right)$$

$$= 2 N \left(1 - \frac{1}{2^{\log_2 N + 1}} \right)$$

$$= 2 N \left(1 - \frac{1}{2^{\log_2 N} \times 2} \right)$$

$$= 2N \left(1 - \frac{1}{N \times 2} \right)$$

$$= 2N \left(\frac{2N-1}{2N}\right) = 2N-1$$

Comparing terms

 $log_2 N < JN < N < N log_2 N < NJN < N^2 < 2^N$

how to find big o?

- i) find total no. of iterations
- ii) distand lower order terms (keep the highest order terms)

ity:
$$10 N \log_2 N + 50 N JN + 100 N^2$$

$$O(N^2) \rightarrow TC$$

Arrays. sort (arr); - arr will be

Sorted

3 4 5 6 7 1 2 2 2 2 3 3

temp = \$ 7

Cn+=2

3 4 5 6 1 2 2 2 4 4

temp = 4

count = 2

temp = 7

cnt =

1+2+2+2+3

=> 10

large sun query

$$A = \frac{5}{2}10 \quad 20 \quad 5 \quad -9 \quad 2 \quad 6 \quad \overline{5}$$

List: 10 20 30 46

val=ub

int val= list. remove (n-1);

list-add (0, val);

lidx val

10 Lent = X X X Y \$ 6

2 rd N=12

i -> (1 to Jn)

i -> 1 2 3 (i, N/i)

1 12 2 6 3 4 (overt = x y/6)