

## 明 細 書

### 疾患危険度判定用遺伝子多型の決定方法、疾患危険度判定方法及び判定用アレイ

#### 技術分野

[0001] 本発明は、疾患危険度判定用遺伝子多型の決定方法に関する。また本発明は、かかる方法によって決定された遺伝子多型を用いて、個々の被験者について疾患危険度を判定する方法に関する。より詳しくは各種の疾患の予防、治療および診断に利用できる疾患危険度判定方法、それを実効するために使用できる疾患危険度判定装置および疾患危険度判定プログラムに関する。

[0002] さらに本発明は、上記疾患として糖尿病に起因して生じる動脈硬化性疾患に関する疾患危険度の判定に使用できる、疾患危険度判定用アレイ、疾患危険度判定方法、遺伝子マーカー、及び分析キットに関する。

#### 背景技術

[0003] 動脈硬化性疾患(虚血性心疾患)の発症には、高血圧、糖尿病、高脂血症、肥満、喫煙などの環境要件が、危険因子として関係することが知られているが、家族歴もまた、危険因子の一つである。近年の分子生物学的手法の発展により、動脈硬化に関係する遺伝子上に存在する種々の遺伝子多型が明らかになっており、疾病への関与が研究されている。

[0004] このような動脈硬化性疾患を始めとして、各種の疾患について、被験者が有する個々の疾患に関与する遺伝子多型の遺伝子型等の情報に基づいて、当該被験者の疾患のなりやすさや進行しやすさ等のいわゆる「疾患危険度」が判定できれば、疾患の発症を予防したり進行を抑えるための事前対策が可能となる。すなわち、その疾患危険度の高いと判定された被験対象は、早期に日常から疾病の予防に心がけることができる。また、疾患の発症の可能性や発症後の進行度なども予測することができ、被験者に応じてよりきめ細かい診断や治療が可能となる。

[0005] しかし、動脈硬化疾患を始めとする各種の疾患に関して、これまで報告してきたSNPを含む遺伝子多型の臨床関連研究においては、単一の遺伝子多型を調べて、

該遺伝子多型について一の遺伝子型の集団と、他の遺伝子型の集団とにおいて、それぞれ患者と健常者との割合を調べることにより、疾患になりやすさのオッズ比を算出している(非特許文献1)。このような調査方法では、ほとんどの多型は有意差がなく、遺伝子多型から疾患のなりやすさや進行しやすさ等の疾患危険度を予測することはできなかった。

[0006] ましてや、検査を受ければ、そのうちの多くの被験者について高い確率で疾患危険度(疾患のなりやすさや進行しやすさ)を予測することができるような方法は全く存在しなかった。

[0007] なお、出願人は、頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有する複数の遺伝子多型を組み合わせて動脈硬化性疾患を判定する方法に関して、2003年4月14日付けで国際出願(PCT/IB03/01368)を行っている。その国際出願の国際調査で挙げられた文献(非特許文献2~6)はいずれも頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有する遺伝子多型に言及するものにすぎず、疾患危険度の判定に「正の関連性」とは逆の「負の関連性」を有する遺伝子多型を用いるという発想は全く記載されていない。

非特許文献1: Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med. 2002; 347(24): 1916-23

非特許文献2: Rauramaa R, et al., Arterioscler Thromb Vasc Biol. 2000 Dec, vol.20, no.12, p.2657-2662

非特許文献3: Chapman CM, et al., Arteriosclerosis. 2001 Nov, vol.159, no.1, p.209-217

非特許文献4: McQuillan BM, et al., Circulation. 1999 May 11, vol.99, no.18, p.2383-2388

非特許文献5: Terry JG, et al., Stroke. 1996 Oct. vol.27, no.10, p.1755-1759

非特許文献6: Castellano M, et al, Circulation. 1995 Jun 1, vol.91, no.11, p.2721-2724)

発明の開示

## 発明が解決しようとする課題

[0008] 本発明は、疾患のなりやすさや進行しやすさ等の疾患危険度の判定に関する従来の問題を解決し、以下の目的を達成することを課題とする。

[0009] すなわち、第1に本発明は、各種の疾患について固有の疾患危険度判定用遺伝子多型を決定する方法を提供することを目的とする。また第2に本発明は、各種の疾患について、発症しやすさや進行しやすさ等が判定できて、疾患の予防および治療に利用できる疾患危険度判定方法、それに使用できる疾患危険度判定装置および動脈硬化性疾患危険度判定プログラム等を提供することを目的とする。さらに第3に本発明は、疾患の中でも特に糖尿病に起因して発症する動脈硬化性疾患について、疾患危険度判定用アレイ、疾患危険度判定方法、遺伝子マーカー、並びに疾患固有の遺伝子多型及び遺伝子多型セットを検出するための分析キットを提供することを目的とする。

## 課題を解決するための手段

[0010] 本発明者らは、糖尿病患者を対象として、遺伝子多型と、動脈硬化性疾患の判定指標である頸動脈内膜中膜複合体肥度との関係を定量的に解析していたところ、頸動脈内膜中膜複合体肥厚度と負の関連性(抵抗性)を有する遺伝子多型が存在することを見いたし、それらの遺伝子多型の2以上の組み合わせ(遺伝子多型セット)により、被験者について動脈硬化性疾患のかかりにくさ(発症しにくさ)が説明できることを確認した。更に、頸動脈内膜中膜複合体肥厚度との間に正の関連性(感受性)を有する遺伝子多型または遺伝子多型セットと前記負の関連性(抵抗性)を有する遺伝子多型セットを組合せて、動脈硬化性疾患との関連を検討した場合には、正の関連性(感受性)を有する遺伝子多型または遺伝子多型セットだけから判定するよりも、動脈硬化性疾患の疾患危険度がより高精度に判定できることを見出した。

[0011] 本発明者にかかる知見に基づいて、更に検討を進めていたところ、疾患危険度の判定において、動脈硬化性疾患だけでなく多くの疾患について、疾患感受性遺伝子多型(または遺伝子多型セット)と疾患抵抗性遺伝子多型(または遺伝子多型セット)の両方を組み合わせることにより、より精度の高い結果が得られることを確認した。また、本発明者は、上記研究において動脈硬化性疾患について用いた疾患感受性遺

伝子多型(または遺伝子多型セット)と抵抗性遺伝子多型(または遺伝子多型セット)の決定方法が、他の疾患についても同様に適用できることを確信し、各種疾患に固有の遺伝子多型(感受性遺伝子多型、抵抗性遺伝子多型)の決定方法を確立した。

[0012] 本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための手段は以下のとおりである。

[0013] (1) 予め指定された複数の遺伝子多型の中から、遺伝子型を指定して所定数の遺伝子多型を抜き出し、遺伝子多型セットとする第1ステップと、

疾患の指標、及び遺伝子型を有する遺伝子多型を対応させて要素とした集合を用いて、前記遺伝子多型セットに関して、前記疾患の指標との関連性、及び該関連性の統計的有意性を計算する第2ステップと、

計算された前記関連性が、負の関連性であり且つ有意である場合に、前記遺伝子多型セットを構成する遺伝子多型を疾患危険度判定用遺伝子多型として採用する第3ステップとを含む疾患危険度判定用遺伝子多型の決定方法。

[0014] (2) 図1～9のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するか、または図38～43のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、動脈硬化性疾患危険度判定用アレイ、または図56～58のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、心筋梗塞危険度判定用アレイ。

[0015] (3) (b) 被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性を有する遺伝子多型又は負の関連性を有する遺伝子多型セットと照合する工程、を有するか、

さらに上記工程に加えて、

更に、

(b') 疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子多型セットと照合する工程、及び

(c) (b')の結果から、検出した遺伝子多型のセットについて、負の関連性と正の関連性とを対比してその偏度を算出する工程  
を有する疾患危険度の判定方法。

[0016] (4) 遺伝子型を含む1以上の遺伝子多型から構成される第1の遺伝子多型セット、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参照テーブルを記録した記録部と、  
被験試料の遺伝子型を有する遺伝子多型を取得するインターフェース部と、  
取得された前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第2の遺伝子多型セットと、前記参照テーブルにおける前記第1の遺伝子多型セットとを照合する処理部とを備え、  
前記処理部が、照合の結果一致する前記第1の遺伝子多型セットがある場合に、該第1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計算することを特徴とする疾患危険度判定装置。

[0017] (5) コンピュータに、  
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  
遺伝子型を有する1以上の遺伝子多型から構成される第1の遺伝子多型セット、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参照テーブルを記録部に記録する機能、  
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第2の遺伝子多型セットと、前記参照テーブルにおける前記第1の遺伝子多型セットとを照合する機能、及び、  
照合の結果一致する前記第1の遺伝子多型セットがある場合に、該第1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計算する機能とを実現させるための疾患危険度判定プログラム。

[0018] (6) コンピュータに、  
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  
遺伝子型を有する1以上の遺伝子多型から構成される第1の遺伝子多型セット、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参

照テーブルを記録部に記録する機能、

前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第2の遺伝子多型セットと、前記参照テーブルにおける前記第1の遺伝子多型セットとを照合する機能、及び、

照合の結果一致する前記第1の遺伝子多型セットがある場合に、該第1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計算する機能とを実現させるための疾患危険度判定プログラムを記録したコンピュータ読取可能な記録媒体。

[0019] (7) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、または図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー、または図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子マーカー。

[0020] (8) (i) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、または(ii) 図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、を含む、動脈硬化性疾患抵抗性遺伝子多型分析用キット。

[0021] (9) 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む、心筋梗塞抵抗性遺伝子多型分析用キット。

## 図面の簡単な説明

「0022」「図1-A」動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(

Odds=−2以下)。

[図1-B]上記図の続き。

[図2-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−3以下)。

[図2-B]上記図の続き。

[図3-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−4以下)。

[図3-B]上記図の続き。

[図4-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−5以下)。

[図4-B]上記図の続き。

[図5-A]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−6以下)。

[図5-B]上記図の続き。

[図6]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−7以下)。

[図7]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−8以下)。

[図8]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−9以下)。

[図9]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=−10以下)。

[図10]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=−2以下)。

[図11]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=−3以下)。

[図12]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=−4以下)。

[図13]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-5以下)。

[図14]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-6以下)。

[図15]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-7以下)。

[図16]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-8以下)。

[図17]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-9以下)。

[図18]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-10以下)。

[図19-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=2以上)。

[図19-B]上記図の続き。

[図19-C]上記図の続き。

[図20-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=3以上)。

[図20-B]上記図の続き。

[図21]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=4以上)。

[図22]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=5以上)。

[図23]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=6以上)。

[図24]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=7以上)。

[図25]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(

Odds=8以上)。

[図26]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=9以上)。

[図27]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=10以上)。

[図28]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=2以上)。

[図29]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=3以上)。

[図30]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=4以上)。

[図31]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=5以上)。

[図32]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=6以上)。

[図33]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=7以上)。

[図34]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=8以上)。

[図35]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=9以上)。

[図36]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=10以上)。

[図37-A]は、動脈硬化性疾患に対して関連性を有する遺伝子多型を列記したものである。

[図37-B]上記図の続き。

[図38]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=-2以下)。

[図39]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=-3以下)。

[図40]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=-4以下)。

[図41]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=-5以下)。

[図42]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=-6以下)。

[図43]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを示す(Odds=-7以下)。

[図44]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-2以下)。

[図45]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-3以下)。

[図46]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-4以下)。

[図47]動脈硬化性疾患に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-5以下)。

[図48-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=2以上)。

[図48-B]上記図の続き。

[図49-A]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=3以上)。

[図49-B]上記図の続き。

[図50]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=4以上)。

[図51]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを示す(Odds=5以上)。

[図52]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=2以上)。

[図53]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=3以上)。

[図54]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=4以上)。

[図55]動脈硬化性疾患に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=5以上)。

[図56]心筋梗塞に対して負の関連性を有する遺伝子多型セットを示す(Odds=-2以下)。

[図57]心筋梗塞に対して負の関連性を有する遺伝子多型セットを示す(Odds=-3以下)。

[図58]心筋梗塞に対して負の関連性を有する遺伝子多型セットを示す(Odds=-4以下)。

[図59]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-2以下)。

[図60]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-3以下)。

[図61]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-4以下)。

[図62]心筋梗塞に対して負の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=-5以下)。

[図63]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=2以上)。

[図64]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=3以上)。

[図65]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=4以上)。

[図66]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=5以上)。

[図67]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=6以上)。

[図68]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=7以上)。

[図69]心筋梗塞に対して正の関連性を有する遺伝子多型セットを示す(Odds=8以上)。

[図70]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=2以上)。

[図71]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=3以上)。

[図72]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=4以上)。

[図73]心筋梗塞に対して正の関連性を有する遺伝子多型セットを構成する遺伝子多型を列記したものである(Odds=5以上)。

[図74]本発明の実施の形態に係る疾患危険度判定用遺伝子多型の決定方法を示すフローチャートである。

[図75]本発明の実施の形態に係る疾患危険度判定装置を含むシステム全体を示すブロック図である。

[図76]本発明の実施の形態に係る疾患危険度判定装置が行う危険度の判定処理を示すフローチャートである。

[図77]実施例1の結果を示す図面である。本発明の方法により判断された動脈硬化性疾患高危険度例または動脈硬化性疾患低危険度例が、臨床的見地からの判断と一致する割合及び一致しない割合を、それぞれ「Sensitivity率(正答率)」及び「false positive率(誤答率)」として求めたものである、□は感受性「説明SSNP」のみ、△は抵抗性「説明SSNP」のみ、●は感受性「説明SSNP」及び抵抗性「説明SSNP」の両者で、推定したSensitivity率(正答率)、及びfalse positive率(誤答率)の計算値を

示す。

### 発明を実施するための最良の形態

[0023] 以下、本発明をより詳細に説明する。

#### (用語)

「遺伝子多型」とは、同一集団内において、一つの遺伝子座に2種類以上の対立遺伝子(アレル)が存在する遺伝子の多様性を意味する。具体的には、ある集団において一定の頻度以上で存在する遺伝子の変異を示す。ここでいう遺伝子の変異は、RNAとして転写される領域に限定されるものではなく、プロモーター、エンハンサー等の制御領域などを含むヒトゲノム上で特定しうるすべてのDNAにおける変異を含むものである。ヒトゲノムDNAの99.9%は各個人間で共通しており、残る0.1%がこのような多様性の原因となり、特定の疾患に対する感受性、薬物や環境因子に対する反応性の個人差として関与し得る。遺伝子多型があっても表現型に差が出るとは限らない。なお、SNP(一塩基多型)も遺伝子多型の一種であるが、本発明が対象とする遺伝子多型はこれに限られない。

[0024] 本明細書で示す遺伝子型(Genotype)は、「1」は置換塩基のうち塩基のアルファベット順(A、C、G、T)で前にくる塩基を有する多型のホモを、「2」はヘテロを、「3」は、置換塩基のうち塩基のアルファベット順で後にくる塩基を有する多型のホモを表す。例えば遺伝子多型が、NCP-1(A-2518G)のように示される場合、A/Aのホモを遺伝子型1、ヘテロ(A/G)を遺伝子型2、G/Gのホモを遺伝子型3という。「12」は前記1と2の遺伝子型(Genotype)の両方の遺伝子型、「23」は前記2と3の遺伝子型(Genotype)の両方の遺伝子型を表す。

[0025] 「遺伝子多型セット」とは、複数の遺伝子多型の組合せをいう。ここで複数の遺伝子多型とは、異なる遺伝子座を有する2種以上の遺伝子多型を意味する。また、ここで「遺伝子多型」は、遺伝子型(Genotype)を考慮したものであって、それを含むものである。すなわち、本発明において「遺伝子多型」とは特定の遺伝子型(Genotype)を有する遺伝子多型を意味する。

[0026] 本発明において「遺伝子多型セット」とは特に、対象とする疾患に対して、組合せ全体として、負(抵抗性)または正(感受性)の関連性を示す「遺伝子多型の組合せ」を

いう。こうした遺伝子多型セット(組合せ)の一例を示したものが、図1～9及び図38～43〔動脈硬化性疾患のに対して負の関連性を示す遺伝子多型セットの群〕、図19～27及び図48～51(動脈硬化性疾患に対して正の関連性を示す遺伝子多型セットの群)、図56～58(心筋梗塞に対して負の関連性を示す遺伝子多型セットの群)、図63～69(心筋梗塞に対して正の関連性を示す遺伝子多型セットの群)である。すなわち、これらの各図において、各行(横一列)には、全体として疾患に対して正または負の関連性を示す、遺伝子多型(SNP)の組合せが示されていることになる。なお、図19～27には、一行に、2または3つの遺伝子多型が示されている場合のほか、単一の遺伝子多型が示されている場合がある。この場合、当該遺伝子多型は、単独で動脈硬化性疾患に対して正の関連性を示す遺伝子多型であるといえる。なお、本明細書では、説明が複雑になるのを避けるために、当該単一の遺伝子多型についても「遺伝子多型セット」として説明する。

[0027] 図1を例にすると、当該図の各行には、動脈硬化性疾患の指標に対して負の関連性を示す遺伝子多型セットが記載されている。具体的には、一行目には、左欄から「CF12」(FactorXII遺伝子)(Genotype:3)、「BKR1」(bradykinin B2 receptor遺伝子)(Genotype:3)、及び「IL-182」(Interleukin-18遺伝子)(Genotype:12)からなる遺伝子多型セットが記載されている。「CF12」には、46位がGまたはTである対立遺伝子が存在するので(図37参照)、上記定義に従うと、左欄には「CF12」の遺伝子多型の遺伝子型3:T/Tが記載されることになる。また「BKR1」には、-58位がCまたはTである対立遺伝子が存在するので(図37参照)、同様に上記定義に従うと、中欄には「BKR1」の遺伝子多型の遺伝子型3:T/Tが記載されることになる。さらに「IL-182」には、-137位がGまたはCである対立遺伝子が存在する(図37参照)。ここで遺伝子多型セットを構成する「IL-182」の遺伝子型が「12」であるから、右欄には「IL-182」の遺伝子多型の遺伝子型1:C/Cと2:C/Gの二つが記載されることになる。そこで、これらの3つの遺伝子多型が有する遺伝子型の組合せを考えると、T/T(CF12)とT/T(BKR1)とC/C(IL-182)との組合せ(セット)、及びT/T(CF12)とT/T(BKR1)とC/G(IL-182)との組合せ(セット)の2通りの遺伝子多型セットが記載されることになる。

[0028] なお、ここでこれら2通りの遺伝子多型セットを、個々に遺伝子多型セットとして用いることもできるが、C／C (II-182) と C／G (II-182) とを、C／? (II-182) [?は可能な候補、ここではGとCを意味する]として統合して、T／T(CF12)、T／T(BKR1) 及び C／? (II-182) の一通りの遺伝子多型セットとして、用いることもできる。

[0029] 「動脈硬化性疾患」とは、広く虚血性疾患を含むものであり、狭心症、心筋梗塞、脳梗塞、末梢動脈閉塞症が含まれる。本発明が対象とする動脈硬化性疾患は、特に糖尿病に起因して発症する動脈硬化性疾患である。「動脈硬化性疾患危険度」とは、上記動脈硬化性疾患の発症しやすさ、進行しやすさを表す指標である。また、「心筋梗塞」は動脈硬化性疾患の一種であるが、「心筋梗塞危険度」とは動脈硬化性疾患の中でも特に心筋梗塞に注目して、その発症しやすさや進行しやすさを表す指標である。

[0030] (1) 疾患危険度判定用遺伝子多型の決定方法

本発明に係る疾患危険度判定用遺伝子多型の決定方法は、被験者がどの程度疾患にかかり易いか、若しくはどの程度疾患が進行し易いか(疾患危険度)の判定に使用される、疾患危険度判定用遺伝子多型の決定方法を提供する。以下においては、動脈硬化性疾患を例に説明するが、本発明はこれに限定されず、遺伝子との関連性を有する疾患に適用することができる。その場合、疾患に応じた判定指標(例えば、動脈硬化性疾患であれば頸動脈内膜中膜複合体肥厚度、腎症であれば尿中のアルブミン排泄率、心筋梗塞であれば心電図上の陳旧性(abnormal Q)心筋梗塞波形の有無又は心筋梗塞の既往の有無)を用いて、後述する相関性を評価すればよい(例えば、日本糖尿病学会編 糖尿病治療ガイド 2004-2005、文光堂参照)。

[0031] (1-1) 動脈硬化性疾患危険度判定用遺伝子多型の場合

本発明に係る動脈硬化性疾患危険度判定用遺伝子多型の決定方法に関して、図74に示したフローチャートに従って説明する。尚、ここでの処理は、CPU、メモリ、記録装置(例えばハードディスク)、操作装置(例えば、キーボード、マウス)、表示装置(例えば、CRTディスプレイ)などを備えたコンピュータを用いて行うこととして説明する。即ち、処理対象データは、操作部などから入力されて記録部に記録されており、CPUが、メモリをワーク領域として使用して各処理を実行し、処理の途中結果、最終結

果は、必要に応じて記録部の所定領域に記録される。

[0032] まず、事前に目的疾患である動脈硬化性疾患に関する遺伝子の情報を、文献、患者カルテなどから収集し、本決定方法で使用する遺伝子多型を選択する。この予備選択は、当業者の経験に基づき行うこともできるが、疾患名称又はこれに関連する言葉をキーワードとして、コンピュータを用いて種々の専門機関で構築されたデータベースを検索し、ヒット件数などに応じて選択してもよい。予備選択された遺伝子多型の一例を、図37に示す。

[0033] 図37には、種々の文献から取得した約200の遺伝子多型の中から、経験によって選択した99の遺伝子多型がリストされている(図37の詳細な説明は後述する)。尚、本明細書において示される各図の番号は、枝番が明示的に示されている場合を除いて、全ての枝番を含むものとする。従って、図37と記載した場合は、図37-A及び図37-Bを意味する。

[0034] 図74に示したフローチャートは、上記の予備選択によって選択された所定数の遺伝子多型を用いて行われる。

[0035] また、動脈硬化性疾患の判定指標として頸動脈内膜中膜複合体肥厚度(IMT)(以下、IMTと記す)を用い、これと遺伝子多型との関連性を統計的に解析する。IMTの測定に関しては後述する。従って、予め記録部には、母集団の構成要素である各人の疾患の判定指標であるIMTと、各人が持っている遺伝子多型(遺伝子型を有する。以下同じ)とが対応付けられて、被解析データとして記録されていることとする。被解析データは、例えば各人に付与した個人IDを用い、{個人ID, IMT, 複数の遺伝子多型}の形式で記録されている。

[0036] ステップS1において、ステップS2以降の処理で使用するしきい値TH1、TH2、繰り返し処理のカウンタの上限値kmaxを設定し、カウンタkに初期値として1を設定する。TH1及びTH2はそれぞれ、後述するOdds(オッズ比)及びKai(カイ二乗値)に対するしきい値である。ここで、TH1は2以上の値、TH2は統計的な有意性を決めるしきい値であり、0以上の値である。例えば、TH2=6. 63であり、この場合、対象とする事象が起こる確率PがP<0. 01である。また、上限値kmaxは2~5が好ましく、より好ましくは2又は3である。解析が煩雑にはなるが、上限値kmaxが6以上、即ち遺伝子多型6個

以上から構成される遺伝子多型セットに対して処理を行ってもよい。

[0037] ステップS2において、予備選択した遺伝子多型 $G_i$ ( $i=1 \sim n$ )の中から、遺伝子型を有する遺伝子多型を選択し、これを1つのセットとする。

[0038] ステップS3において、ステップS2で選択されたセットが、それより以前の繰り返し処理において、後述するステップS4の処理で有意性ありと判断された遺伝子多型セットを含んでいるか否かを判断し、含んでいると判断した場合、ステップS5に移行し、含んでいないと判断した場合、ステップS4に移行する。 $k=1$ の場合にはステップS4に移行する。

[0039] ステップS4において、ステップS2で指定されたセットに対して、Odds(オッズ比)及びKai(カイ二乗値)を計算し、 $Odds \leq -TH_1$ 且つ $Kai \geq TH_2$ である場合のみ、セットと対応させてOdds及びKaiを記録する。具体的には、そのセットを構成する遺伝子多型 $G_j$ を全て含む個人IDに対応するIMTを用いて、そのセットのOddsを計算する。Odds(オッズ比)の計算方法は、文献(Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N. Engl. J. Med. 2002; 347(24): 1916–23)などにより公知であり、Kai(カイ二乗値)の計算方法は統計学上周知であるので、これらの計算方法の詳細は省略する。但し、Oddsの値は、通常0以上の値であるが、本明細書中では、公知の方法で計算したOddsが1以上である場合、その値をそのまま使用するが、1よりも小さい場合には、公知の方法で計算したOddsから $-1/Odds$ を計算し、これをOddsとする。このとき、遺伝子多型の遺伝子型が1と2の場合をまとめて1つのセットとすることもできるが、遺伝子多型の遺伝子型が1の場合と、12をまとめた場合との両方とも、 $Odds \leq -TH_1$ 且つ $Kai \geq TH_2$ に該当する場合には、所定の基準で取捨選択することが好ましい。例えば、Kaiの大きい方、Oddsの絶対値の大きい方、または、後述の第3寄与率の大きい方を採用するなどによって、取捨選択する。

[0040] ステップS5において、 $k$ 個の遺伝子多型からなる全てのセットに関して、ステップS2～S4の処理を終了したか否かを判断し、終了するまでステップS2～S4の処理を繰り返す。

[0041] ステップS6において、 $k$ が上限値 $k_{max}$ よりも大きいか否かを判断し、 $k > k_{max}$ でないと判断した場合、ステップS7に移行してカウンタ $k$ を1増加させてステップS2に戻る。これによって、 $k=1 \sim k_{max}$ まで、ステップS2～S7が繰り返される。

[0042] 以上のステップS2～S7の処理によって、疾患指標(ここではIMT)と負の関連性(Oddsが負)を有するセットが決定される。例えば、図37に示した遺伝子多型を用い、 $k_{max}=3$ 、 $TH2=6.63$ とした場合、 $TH1=2$ と設定すれば図1に示したセットが得られ、 $TH1=3$ と設定すれば図2に示したセットが得られる。尚、各図における各項目の意味は後述する。 $k_{max}=3$ 、 $TH2=6.63$ の条件で、同様に、図3は $TH1=4$ とし、図4は $TH1=5$ とし、図5は $TH1=6$ とし、図6は $TH1=7$ とし、図7は $TH1=8$ とし、図8は $TH1=9$ とし、図9は $TH1=10$ として、得られたセットを表している。

[0043] ステップS8において、ステップS2～S7と同様に、正の関連性(Oddsが正)を有するセットを決定する処理を行うために、カウンタ $k$ をリセット、即ち $k=1$ とする。

[0044] ステップS9～S14において、ステップS2～S7と同様の処理を行う。但し、ステップS10では、それより以前の繰り返し処理において、ステップS11の処理で有意性ありと判断されたセットを構成する遺伝子多型を含んでいるか否かを判断する。また、ステップS11においては、 $Odds \geq TH1$ 且つ $Kai \geq TH2$ である場合のみ、セットと対応させてOdds及びKaiを記録する。

[0045] 以上のステップS9～S14の処理によって、疾患指標(ここではIMT)と正の関連性(Oddsが正)を有するセットが決定される。例えば、図37に示した遺伝子多型を用い、 $k_{max}=3$ 、 $TH2=6.63$ とした場合、 $TH1=2$ と設定すれば図19に示したセットが得られ、 $TH1=3$ と設定すれば図20に示したセットが得られる。 $k_{max}=3$ 、 $TH2=6.63$ の条件で、同様に、図21は $TH1=4$ とし、図22は $TH1=5$ とし、図23は $TH1=6$ とし、図24は $TH1=7$ とし、図25は $TH1=8$ とし、図26は $TH1=9$ とし、図27は $TH1=10$ として、得られたセットを表している。

[0046] 以上で、動脈硬化性疾患の危険度を判定する場合に有効である遺伝子多型のセットを決定することができた。

[0047] 尚、図74に示したフローチャートに対して、例えば、以下に示すように種々の修正を行い、または処理の追加を行うことができる。

[0048] 例えば、上記では、疾患指標(ここではIMT)と正／負の関連性の何れも同等に扱ったが、何れかを重視した処理としてもよい。即ち、負の関連性を重視し、まず負の関連性を有するセットを決定し、その結果を考慮して正の関連性を有するセットを決定してもよく、逆に正の関連性を重視し、最初に正の関連性を有するセットを決定し、その結果を考慮して、負の関連性を有するセットを決定してもよい。例えば、負の関連性を重視する場合、図74に示したステップS10において、それより以前の繰り返し処理において、ステップS11の処理で有意性ありと判断されたセットを構成する遺伝子多型を含んでいるか否かを判断するのに加えて、ステップS4で有意性ありと判断されたセットを構成する遺伝子多型を含んでいるか否かを判断するようにすればよい。また、正の関連性を重視する場合、図74に示したフローチャートにおいて、ステップS4とステップS11におけるOddsの判定式( $Odds \leq -TH_1$ 及び $Odds \geq TH_1$ )を入れ換えて、ステップS10において、それより以前の繰り返し処理において、ステップS11の処理で有意性ありと判断されたセットを構成する遺伝子多型を含んでいるか否かを判断するのに加えて、ステップS4で有意性ありと判断されたセットを構成する遺伝子多型を含んでいるか否かを判断するようすればよい。その結果得られるセットの一例を、図38～図43、及び図48～図51に示す。図38～43は、それぞれ $TH_1 = 2 \sim 7$ の値に対応する負の関連性を有するセットを表す。また、図48～図51は、それぞれ $TH_1 = 2 \sim 5$ の値に対応する正の関連性を有するセットを表す。

[0049] また、上記では、疾患危険度の判定に有効である遺伝子多型のセットを決定したが、さらに、遺伝子多型の数を減らす必要がある場合には、各々の遺伝子多型をランク付けし、ランクに応じて遺伝子多型を選別してもよい。

[0050] 例えば、Oddsに応じて遺伝子多型を取捨選択することができる。その結果、例えば、図1( $TH_1 = 2$ )に対応して、図10に示した遺伝子多型が決定される。同様に、図11～図18が、図2( $TH_1 = 3$ )～図9( $TH_1 = 10$ )から、図28～図36が、図19( $TH_1 = 2$ )～図27( $TH_1 = 10$ )から、それぞれ得られる。

[0051] また、より有効な遺伝子多型セットを選択する手法の一例を示せば、以下の通りである。

[0052] 先ず、母集団中の被験者に関して、図74に示した一連の処理によって決定された

遺伝子多型の各々のセットに関して、各Case(疾患者)ごとに、いくつの遺伝子多型セットで説明し得るかを決定して第1寄与率を計算する。たとえば、5つのセット(その中の1つのセットをSet20とする)でCase#210が説明されたとすると、その症例(Case#210)に対する一つのセット(例えばSet20)の第1寄与率(Caseに対する寄与率)を $1/5=0.2$ とする。

[0053] 次に、セットが説明した各Caseごとの第1寄与率の総和(Set20が10のCaseを説明したとすると、10のCaseについての総和)を求めた値から、各々の遺伝子多型の遺伝子型ごとの第2寄与率を求める。例えば、Set20が、SNP1-1とSNP13-23との2つの遺伝子多型からなるセットであれば、Set20の第1寄与率の総和を等分し、遺伝子多型の遺伝子型ごとに割り付ける。例えば、Set20に対する第1寄与率の総和が1.4になったとすると、SNP1-1、SNP13-23にそれぞれ $1.4/2=0.7$ を割り当てる。すべてのセットごとに第1寄与率の総和を各遺伝子多型に割り当て(3つの遺伝子型を有する遺伝子多型のセットならば3等分する)、遺伝子多型の遺伝子型ごとの第2寄与率を計算する。尚、図10ー図18、図28ー図37では、各遺伝子多型が、第2寄与率(図示せず)の大きい順に上から並べられている。

[0054] さらに、各々の遺伝子多型の遺伝子型ごとの第2寄与率の中の最大値を、その遺伝子多型の第3寄与率とし、最大寄与率を示す遺伝子多型の遺伝子型をその遺伝子多型の有効な遺伝子型とする。例えば、ACE-DD(1)の第2寄与率が5、ACE-DD+D/I(1+2)の第2寄与率が2とすると、ACE-DDを有効な遺伝子多型とし、第3寄与率を5とする。

[0055] さらに、図74に示した一連の処理によって決定された遺伝子多型のセットのうち、上記の有効な遺伝子多型を含むセットのみを選択する。たとえば、ACEの有効な遺伝子型がDDとすると、DD+D/I(1+2)のACE遺伝子型を含んでいるセットを破棄する。

[0056] その結果、例えば、図38(TH1=2)に対応して、図44に示した遺伝子多型が決定される。同様に、図45ー47が、図39(TH1=3)ー図43(TH1=7)から、図52ー図55が、図48(TH1=2)ー図51(TH1=5)からそれぞれ得られる。図44ー図47では、遺伝子多型が、第3寄与率の大きいものから順に上から並べられている。

[0057] 寄与率は、各々の遺伝子多型とIMTとの関連性、即ち、各々の遺伝子多型と動脈

硬化性疾患との関連性の高さを示す指標になり得る。よって、寄与率が所定以上の遺伝子多型を選択することで、より少ない遺伝子多型を用いて、後述する危険度判定を行うことができる。このとき、選択のしきい値を適切に指定すれば、精度をほとんど低下させることができない。

[0058] また、臨床データが増えた場合、それらを含む新たな被解析データの集合に対して、上記した疾患危険度判定用遺伝子多型決定方法を適用することによって、より有効な遺伝子多型セットを決定することができ、疾患危険度の判定精度を向上することができる。

[0059] また、個人の遺伝子多型情報自体をIDとして利用することができる。例えば、上記したように被解析データが{個人ID、疾患指標の値、複数の遺伝子多型}の形式で記録されており、個人IDが各病院によって付与され、管理されている場合、対象者が病院を変わると個人IDも変わってしまい、個人の履歴を追跡することができず、被解析データを有効利用することができない。しかし、遺伝子多型情報は不变の個人固有の情報であるので、遺伝子多型情報自体をIDとして使用することによって、個人IDを使用することなく、過去の被解析データ、特に過去の疾患指標の値(例えば、動脈硬化性疾患であればIMTの測定値)を利用することができる。これによって、個人の履歴を考慮した解析を行うことができ、疾患危険度の判定に、より有効な遺伝子多型を決定することができる。ここで、被解析データは、{個人ID、疾患指標の値、複数の遺伝子多型}に限定されず、疾患指標の値以外に種々の臨床データなどが付加されていてもよい。

[0060] (1-2) 心筋梗塞危険度判定用遺伝子多型の場合  
心筋梗塞に関しても、疾患の指標として、心電図上の陳旧性(abnormal Q)心筋梗塞波形の有無又は心筋梗塞の既往の有無を使用して、上記と同様の処理を行うことによって、危険度の判定に有効な遺伝子多型、及び遺伝子多型のセットを決定することができる。

[0061] 例えば、図56ー図58は、それぞれTH1=2ー4として決定した、心筋梗塞と負の関連性を有する遺伝子多型のセットを表す。また、図63ー図69は、それぞれTH1=2ー8として決定した、心筋梗塞と正の関連性を有する遺伝子多型のセットを表す。ま

た、図59～図62は、それぞれ図56～図58(TH1=2～3)を用いて決定した遺伝子多型を表す。また、図70～図73は、それぞれ図63～図69(TH1=2～8)を用いて決定した遺伝子多型を表す。

[0062] 尚、図37に記載の遺伝子多型は、下記の群に分類することができる。

- a) 脂質関連遺伝子多型群
- b) 血圧関連遺伝子多型群
- c) 代謝関連遺伝子多型群
- d) インスリン抵抗性関連遺伝子多型群
- e) 接着因子関連する遺伝子多型群
- f) 酸化ストレス関連遺伝子多型群
- g) 炎症反応関連遺伝子多型群
- h) 凝固線溶系関連遺伝子多型群
- i) 肥満関連遺伝子多型群
- j) 細胞増殖又は血管増殖関連遺伝子多型群。

[0063] ここで、ある因子に関連する遺伝子多型群とは、該因子に係る遺伝子のエクソン、イントロンに存在する多型に限らず、プロモーター領域、3'非翻訳領域、5'非翻訳領域等に存在する多型も含まれる。一般にコーディング領域中の多型は、アミノ酸配列を変化させたり、mRNAの発現量を変化させる場合があるし、調節領域中の多型であっても、mRNAの発現量を変化させたり、スプライシングを変化させる場合があり、いずれも、タンパク質の発現量や、性質を変化させる可能性もある。

[0064] より具体的に、

- a) 脂質関連遺伝子多型群に属する遺伝子多型としては、ABCA1、HUMPTONA、PPAR gamma、hepatic lipase(C-480T)、Apo E(Cys112Arg)、PON1(Gly192Arg)、microsomal triglyceride transfer protein(G-493T)、CETP(Arg451Glu)、lipoprotein lipase(Ser447STOP)、PPARgamma(Leu162Val)、ABCC6(C3421T)、apolipoproteinE(E3 exon 4(Arg 158Cys))、adiponectin(T94G)、Adiponectin(G276T)、Scavenger receptor BI=CLA-1(G4A(Gly2SEr))、LDL receptor related protein(C766T)、adiponectin(Arg112Cys)、Scavenger receptor

BI=CLA-1(G403A(Val135Ile))などが挙げられる。

[0065] b) 血圧関連遺伝子多型群に属する遺伝子多型としては、

Dopamine-D2receptor(Ser311Cys)、ACE(I/D)、AT2-receptor(A1166C)、angiotensinogen(t704c)、HANP(T2238C)、HANP(C708T)、bradykinin B2 receptor(C-58T)、endothelin-1(G5665T)などが挙げられる。

[0066] c) 代謝関連遺伝子多型群に属する遺伝子多型としては、

Alfa#estrogen#receptor(P vull)、MTHFR(C677T)、CYP2J2\*2(A14487G)、CYP2J2\*3(C14532T)、CYP2J2\*4(15028T)、CYP2J2-6(A25661T)、CYP2C9\*3(Leu359Ile)、CYP3A4(A-290G)などが挙げられる。

[0067] d) インスリン抵抗性関連遺伝子多型群に属する遺伝子多型としては、

Enos(T-786C)、glycogen#synthase((M416V)、IRS-1(G3494A(Gly972Arg))、Enos (Glu298Asp(G894T))、TGF beta(T29C(Leu10Pro))、resistin(ATG repeat)(1:6/6,2:6/7,3:7/7,4:7/8,5:8/8)、RAGE(Gly82Ser)、PGC-1(G1302A(Thr394Thr))、PGC-1(G1564A(Gly482Ser))などが挙げられる。

[0068] e) 接着因子関連遺伝子多型群に属する遺伝子多型としては、

P-selectin(A76666C(Thr715Pro))、fractalkine#receptor(G84635A(Val249Ile))、connexin37(C1019T(Pro319Ser))、E-selectin(G98T)、E-selectin(Ser128Arg)、ICAM1(E469K)、GlycoproteinVI(Ser219Pro)、glycoproteinIa(C807T)などが挙げられる。

[0069] f) 酸化ストレス関連遺伝子多型群に属する遺伝子多型としては、

p22phox(C242T(His72Tyr))、Mitochondria(A5178C)、Mitochondria(A12026G)、EPHX2(Arg402-403ins.inExon13)、Mitochondria(C1310T)、Mitochondria(T14577C)などが挙げられる。

[0070] g) 炎症反応関連遺伝子多型群に属する遺伝子多型としては、IL-6(G-174C)、

CRP(G1059C)、TNFalpha(G-238A)、interleukin6(C-634G)、MPO(G-463A)、TNF-alfa(G-308A)、CD18(C1323T)、LTA(A252G)、LTA(C804A(Thr26Asn))、C-C chemokine receptor 2(G190A)、Interleukin10(G-1082A)、interleukin 1 beta(C3953T)、IL-18(C-607A)、IL-10(C-819T)、IL-18(G-137C)、interleukin 1 receptor

antagonist(tandem repeat (2 repeat) in intron 2)などが挙げられる。

[0071] h) 凝固線溶系関連遺伝子多型群に属する遺伝子多型としては、  
PIIbIIIa(C1565T(PIA2))、Thrombomodulin(G-33A)、FactorXII、  
serotonin#2A#receptor(T102C)、PAI-1(4G-668/5G)、GPIa(A1648G)、beta  
Fib(C148T)、prothrombin(G20210)、alfa-Fib(Thr312Ala)、FactorV(G1691A)、GP  
Ia(G873A)、Thrombospondin4(G1186C(Ala387Pro))、Thrombospondin-1(A2210G)、  
von Willebrand Factor (G-1051A)、Thrombopoietin(A5713G)などが挙げられる。

[0072] i) 肥満関連遺伝子多型群に属する遺伝子多型としては、beta3  
adrenoceptor(Trp64Arg)、beta2 Adrenoreceptor(C79T)、beta-adrenergic  
receptor(A46G)、beta2 adrenoceptor(C491T)などが挙げられる。

[0073] j) 細胞増殖又は血管増殖関連遺伝子多型群に属する遺伝子多型としては、  
VEGF(C-634G)、Glutamate-cystein ligase(C-588T)などが挙げられる。

[0074] また、本発明で用いる遺伝子多型に含め得る遺伝子多型として、その他に、  
neuropepyideY(T1128C(Leu7Pro))、MMP-12(A-82G)、mmp-9=Gelatinase  
B(C-1562T)、MCP-1(A-2518G)、HPA-2(Thr145Met)、MMP7(C-153T)、matrilyn  
promoter(A-181G)、AMPD(C34T)、Methionine synthase(A2756G(Asp919gly))、  
matrix Gla protein (G-7A)なども挙げられる。

#### [0075] (2) 疾患危険度判定用アレイ

本発明は、被験者が保有する遺伝子多型に基づいて、当該被験者について疾患  
のかかりやすさや進行しやすさ(疾患危険度)を判定するために使用される、疾患危  
険度判定用アレイを提供する。本発明に係るアレイは、かかる遺伝子多型を検出す  
るためのプローブを高密度に整列させて、シリコンウェハーやガラススライド等の支持  
体上に固定化したものである。ここでプローブとしては、特定の遺伝子多型を特異的  
に認識して捕捉するものであればよい。具体的には、遺伝子多型に対応する塩基配  
列又はその相補配列の全部又は一部からなる塩基配列を有するプローブを挙げるこ  
とができる。

[0076] 本発明は特に、動脈硬化性疾患危険度判定用アレイ、及び心筋梗塞危険度判定  
用アレイを提供する。

## [0077] (2-1)動脈硬化性疾患危険度判定用アレイ

本発明の動脈硬化性疾患危険度判定用アレイは、動脈硬化性疾患のかかりやすさ(発症しやすさ)や進行しやすさを判定するために使用することができる。好適には、糖尿病またはその傾向がある被験者に対して、動脈硬化性疾患の危険度を判定するために使用することができる。本発明の動脈硬化性疾患危険度判定用アレイは、動脈硬化性疾患の判定指標となる“頸動脈内膜中膜複合体肥厚度(IMT)”との間に有意な負(抵抗性)の関連性を有する「負(抵抗性)の遺伝子多型セット」を構成する遺伝子多型に対する検出用プローブを有する、という特徴を有する。遺伝子多型セットがIMTに対して「負の関連性」があるか否かは、上記(1)の方法で求められたオッズ比(Odds)から判断することができる。すなわち、Oddsの値が負(マイナス)である場合を「負の関連性」があるとし、逆にOddsの値が正(プラス)である場合は「正の関連性」があると判定することができる。なお、この正または負の関連性に有意性があるか否かは、Kai値で評価することができる。

[0078]かかる「負(抵抗性)の遺伝子多型セット」として、具体的には、図1~9及び図38~43の各図に掲げる「負(抵抗性)の遺伝子多型セット」を例示することができる。より詳細には、図1~9及び図38~43の各図において、各行(横一列)に列記した遺伝子多型(SNP)の組合せが、一つの「動脈硬化性疾患に関する負(抵抗性)の遺伝子多型セット」を意味する。尚、先にも説明したように、例えば図1は「図1-A」とそれに続く「図1-B」という枝番で示された2つ図から構成されているが、単に「図1」という場合は「図9-A」と「図9-B」の両方を指すものである(以下、枝番で示される図を含むものについても同様)。なお、ここで「遺伝子多型」とは、前述するように、遺伝子型(Genotype)を包含するもの、すなわち特有の遺伝子型を有する遺伝子多型を意味する。上記各図において、遺伝子多型を「遺伝子略称」として、また遺伝子型を「Genotype」として示す。各遺伝子多型に関する詳細な情報は、図37に示す通りである。

[0079]本発明の動脈硬化性疾患危険度判定用アレイは、かかる図1~9のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する。図1~9の中でも

好みしくは、図5～9のいずれか、より好みしくは図6～9のいずれか、さらに好みしくは図7～9のいずれか、よりさらに好みしくは図8～9のいずれかである。また、遺伝子多型セットの選択は、特に制限されず任意に行うことができるが、その際に各図において遺伝子多型セット毎に記載されているOdds値とKai値を指標とすることができる。本発明の動脈硬化性疾患危険度判定用アレイは、かかるOdds値とKai値から評価して、IMTに対して負(抵抗性)の関連性が高い遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを備えていることが好みしい。

[0080] 本発明の動脈硬化性疾患危険度判定用アレイは、検出用プローブとして、図10に記載する遺伝子多型群、図11に記載する遺伝子多型群、図12に記載する遺伝子多型群、図13に記載する遺伝子多型群、図14に記載する遺伝子多型群、図15に記載する遺伝子多型群、図16に記載する遺伝子多型群、図17に記載する遺伝子多型群、及び図18に記載する遺伝子多型群から選択される1つの遺伝子多型群の半数以上、好みしくは6割以上、7割以上、8割以上、9割以上、より好みしくは全ての遺伝子多型に対する検出用プローブを有することが好みしい。

[0081] ここで、図10～18は、上記図1～9に基づいて、Odds毎に、IMTと負(抵抗性)の関連性を有する遺伝子多型セットを構成する遺伝子多型に分類した図である。即ち、図10は、図1に基づいてOddsが-2以下(すなわち、Odds比が「1/2」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図11は図2に基づいてOddsが-3以下(すなわち、Oddsが「1/3」以下)、図12は図3に基づいてOddsが-4以下(すなわち、Oddsが「1/4」以下)、図13は図4に基づいてOddsが-5以下(すなわち、Oddsが「1/5」以下)、図14は図5に基づいてOddsが-6以下(すなわち、Oddsが「1/6」以下)、図15は図6に基づいてOddsが-7以下(すなわち、Oddsが「1/7」以下)、図16は図7に基づいてOddsが-8以下(すなわち、Oddsが「1/8」以下)、図17は図8に基づいてOddsが-9以下(すなわち、Oddsが「1/9」以下)、図10は図9に基づいてOddsが-10以下(すなわち、Oddsが「1/10」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたものである。

[0082] 各図に示される遺伝子多型群の中から半数以上、6割以上、7割以上、8割以上、または9割以上の遺伝子多型を選択する場合は、制限はされないが、カラムの順番

に従って上位から重点的に選択されることが好ましい。

[0083] また本発明の動脈硬化性疾患危険度判定用アレイは、また図38～43のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有することもできる。図38～43の中でも好ましくは、図39～43のいずれか、より好ましくは図40～43のいずれか、さらに好ましくは図41～43のいずれか、よりさらに好ましくは図42～43のいずれかである。前述するように、判定用アレイは、各図において遺伝子多型セット毎に記載されているOdds値とKai値から評価して、IMTに対して負(抵抗性)の関連性が高い遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを備えていることが好ましい。

[0084] かかる動脈硬化性疾患危険度判定用アレイは、検出用プローブとして、図44に記載する遺伝子多型群、図45に記載する遺伝子多型群、図46に記載する遺伝子多型群、及び図47に記載する遺伝子多型群から選択される1つの遺伝子多型群の半数以上、好ましくは6割以上、7割以上、8割以上、9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブを有することが好ましい。ここで、図44～47は、上記図38～43に基づいて、Odds毎に、IMTと負(抵抗性)の関連性を有する遺伝子多型セットを構成する遺伝子多型に分類した図である。即ち、図44は、図38に基づいてOddsが-2以下(すなわち、Oddsが「1/2」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図45は図39に基づいてOddsが-3以下(すなわち、Oddsが「1/3」以下)、図46は図40に基づいてOddsが-4以下(すなわち、Oddsが「1/4」以下)、図47は図41に基づいてOddsが-5以下(すなわち、Oddsが「1/5」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたものである。図10～18と同様に、各図に示される遺伝子多型群の中から半数以上、6割以上、7割以上、8割以上、または9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上位から重点的に選択されることが好ましい。

[0085] 本発明の動脈硬化性疾患危険度判定用アレイは、前述する負(抵抗性)の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブに加えて、正(感受性)の遺伝子多型に対する検出用プローブまたは正(感受性)の遺伝子多型セットを構成

する遺伝子多型に対する検出用プローブを有するものであることが好ましい。

[0086] 「正(感受性)の遺伝子多型」とは、動脈硬化性疾患判定の指標となる“頸動脈内膜中膜複合体肥厚度(IMT)”との間に有意な正の関連性を有する遺伝子多型をいう。また「正(感受性)の遺伝子多型セット」とは、IMTとの間に有意な正(感受性)の関連性を有する“遺伝子多型の組合せ物”を意味する。なお、遺伝子多型セットがIMTに対して「正の関連性」があるか否かは、前記(1)に記載する方法で求められたOddsから判断することができる。すなわち、Oddsの値が正(プラス)である場合を「正の関連性」があると判定することができる。なお、この正の関連性に有意性があるか否かは、Kai値で評価することができる。

[0087] 具体的には図19～27及び図48～51に、かかる「正(感受性)の遺伝子多型セット」を示す。より詳細には、図19～27及び図48～51の各図において、各行(横一列)に列記した遺伝子多型(SNP)の組合せが、IMTとの間で正(感受性)の関連性を有する「正(感受性)の遺伝子多型セット」を意味する。なお、各図において、一行に单一の遺伝子多型が示されている場合は、当該遺伝子多型は、単独でIMTとの間で正(感受性)の関連性を有する「正(感受性)の遺伝子多型」である(例えば、図19における「GSY」など)。

[0088] 具体的には、本発明の動脈硬化性疾患判定用アレイは、図1～9のいずれか一つの図に記載される負の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブに加えて、図19～27のいずれか一つの図に記載される正の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する。なお、図19～27の中でも好ましくは、図23～27のいずれか、より好ましくは図24～27のいずれか、さらに好ましくは図25～27のいずれか、よりさらに好ましくは図26～27のいずれかである。

[0089] かかる判定用アレイは、正の遺伝子多型セットを構成する遺伝子多型を検出するプローブとして、検出用プローブとして、図28に記載する遺伝子多型群、図29に記載する遺伝子多型群、図30に記載する遺伝子多型群、図31に記載する遺伝子多型群、図32に記載する遺伝子多型群、図33に記載する遺伝子多型群、図34に記載する遺伝子多型群、図35に記載する遺伝子多型群、及び図36に記載する遺伝子多型群から選択される1つの遺伝子多型群の半数以上、好ましくは6割以上、7割以

上、8割以上、9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブを有することが好ましい。

[0090] ここで、図28～36は、図19～27に基づいて、Odds毎に、IMTと正(感受性)の関連性を有する遺伝子多型を分類した図である。即ち、図28は、図19に基づいてOddsが2以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図29は図20に基づいてOddsが3以上、図30は図21に基づいてOddsが4以上、図31は図22に基づいてOddsが5以上、図32は図23に基づいてOddsが6以上、図33は図24に基づいてOddsが7以上、図34は図25に基づいてOddsが8以上、図35は図26に基づいてOddsが9以上、図36は図27に基づいてOddsが10以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものである。これらの図28～36の各図に示される遺伝子多型群の中から半数以上、6割以上、7割以上、8割以上、または9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上位から重点的に選択されることが好ましい。

[0091] また、本発明の動脈硬化性疾患判定用アレイは、図38～43のいずれか一つの図に記載される負の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブに加えて、図48～51のいずれか一つの図に記載される正の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するものであってもよい。なお、図48～51の中でも好ましくは、図49～51のいずれか、より好ましくは図50～51のいずれかのいずれかである。

[0092] かかる判定用アレイは、正の遺伝子多型セットを構成する遺伝子多型を検出するプローブとして、検出用プローブとして、図52に記載する遺伝子多型群、図53に記載する遺伝子多型群、図54に記載する遺伝子多型群、及び図55に記載する遺伝子多型群から選択される1つの遺伝子多型群の半数以上、好ましくは6割以上、7割以上、8割以上、9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブを有することが好ましい。

[0093] ここで、図52～55は、図48～51に基づいて、Odds毎に、IMTと正(感受性)の関連性を有する遺伝子多型を分類した図である。即ち、図52は、図48に基づいてOddsが2以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものであ

り、同様に、図53は図49に基づいてOddsが3以上、図54は図50に基づいてOddsが4以上、図55は図51に基づいてOddsが5以上を示す正の遺伝子多型、及び正の遺伝子多型セットを構成する遺伝子多型を挙げたものである。これらの図52～55の各図に示される遺伝子多型群の中から半数以上、6割以上、7割以上、8割以上、または9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上位から重点的に選択されることが好ましい。

[0094] 本発明者は、上記種々の要件を検討した結果、当初の予測通り、図37に記載する遺伝子多型が、動脈硬化性疾患、特に糖尿病に起因する動脈硬化性疾患の危険度の判定に有用であり、かかる遺伝子多型を単独または組み合わせて用いることによって、動脈硬化性疾患の危険度が高い精度で判定できることを確認した。よって、本発明の動脈硬化性疾患危険度判定用アレイは、検出用プローブとして、図37に記載する99個の遺伝子多型に対する検出用プローブを有するものとすることもできる。

[0095] 本発明の動脈硬化性疾患危険度判定用アレイは、被験者について動脈硬化性疾患に対する抵抗性(かかりにくさ)を評価するために使用することができる。これは、具体的には、例えばアレイ上の検出用プローブと被験試料から調製したプローブとをハイブリダイズさせ、被験者について検出された遺伝子多型を、動脈硬化性疾患の判定指標である頸動脈内膜中膜複合体肥厚度(IMT)と負の関連性を有する遺伝子多型セットと照合することにより実施することができる。このとき得られる、被験者がIMTと負の関連性を有する遺伝子多型セットを有しているか否かの情報は、被験者が動脈硬化性疾患に抵抗性であるか否か(かかりにくいか否か)の評価に有效地に利用される。

[0096] また本発明の動脈硬化性疾患危険度判定用アレイは、被験者について動脈硬化性疾患に対する抵抗性及び感受性を評価するために使用することができる。これは、具体的には、例えばアレイ上の検出用プローブと被験試料から調製したプローブとをハイブリダイズさせ、被験者について検出された遺伝子多型を、動脈硬化性疾患の判定指標であるIMTと負の関連性を有する遺伝子多型セット、並びにIMTと正の関連性を有する遺伝子多型または遺伝子多型セットと照合することにより実施することができる。このとき得られる情報(被験者がIMTと負の関連性を有する遺伝子多型セ

ットを有しているか否か、IMTと正の関連性を有する遺伝子多型または遺伝子多型セットを有しているか否かの情報)は、被験者の動脈硬化性疾患に対する抵抗性及び感受性を評価するために使用できる。

[0097] また本発明の動脈硬化性疾患危険度判定用アレイは、被験者について動脈硬化性疾患に対する危険度の有無やその高低(かかりやすさや進行のしやすさの有無及びその程度)を評価するために使用することができる。これは、具体的には、例えばアレイ上の検出用プローブと被験試料から調製したプローブとをハイブリダイズさせ、検出された遺伝子多型を、IMTと負の関連性を有する遺伝子多型セット、及び正の関連性を有する遺伝子多型または遺伝子多型セットと照合して、検出された遺伝子多型について得られた負の関連性または正の関連性に対する偏度を求ることによって実施することができる。この際得られる情報(被験者が有する遺伝子多型について、負の関連性と正の関連性との偏度に関する情報)は、被験者の動脈硬化性疾患に対する危険度の評価に有效地に利用される。

[0098] これらの場合、照合に使用されるIMTと負の関連性を有する遺伝子多型セットは、図1～9のいずれか一つの図に記載される負の遺伝子多型セットの群、または図38～43のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであることが好ましい。また、照合に使用されるIMTと正の関連性を有する遺伝子多型または遺伝子多型セットは、上記で負の遺伝子多型セットとして図1～9のいずれかに記載されているセットを使用した場合は、図19～27のいずれか一つの図に記載される正の遺伝子多型または遺伝子多型セットの群から選択される少なくとも1つのセットであることが好ましく、上記で負の遺伝子多型セットとして図38～43のいずれかに記載されているセットを使用した場合は、図48～51のいずれか一つの図に記載される正の遺伝子多型または遺伝子多型セットの群から選択される少なくとも1つのセットであることが好ましい。

[0099] 動脈硬化性疾患危険度の判定は、例えば、以下のように行うことができる。

[0100] [表1]

|        | 正の関連性を有する遺伝子多型セットの数 |   | 負の関連性を有する遺伝子多型セットの数 |   |      |
|--------|---------------------|---|---------------------|---|------|
| Case 1 | +++                 | > | -                   | → | 高危険度 |
| Case 2 | +++                 | > | 0                   | → | 高危険度 |
| Case 3 | +                   | < | ----                | → | 低危険度 |
| Case 4 | 0                   | < | ----                | → | 低危険度 |

[0101] 例えば、被験試料から検出される遺伝子多型をIMTと負の関連性を有する遺伝子多型セット(例えば、図1~9、または図38~43)、及び正の関連性を有する遺伝子多型または遺伝子多型セット(例えば、図19~27または図48~51)と照合した場合において、正の関連性を有する遺伝子多型セットのトータル数が負の関連性を有する遺伝子多型セットのトータル数よりも多い被験者(Case1)は、動脈硬化性疾患高危険度例と判定される。また、正の関連性を有する遺伝子多型セットは有するものの、負の関連性を有する遺伝子多型セットを有しない被験者(Case2)も、動脈硬化性疾患高危険度例と判定される。一方、負の関連性を有する遺伝子多型セットのトータル数が正の関連性を有する遺伝子多型セットのトータル数より少ない被験者(Case3)は、動脈硬化正疾患低危険度例と判定される。また、負の関連性を有する遺伝子多型セットは有するものの、正の関連性を有する遺伝子多型セットを有しない被験者(Case4)も、動脈硬化性疾患低危険度例と判定される。

[0102] 即ち、被験者から検出された遺伝子多型の正の関連性(感受性)と負の関連性(抵抗性)の偏度を求め、正の関連性が有意に多い場合には、当該被験者は動脈硬化性疾患の危険度が高い(或いは発症)と判定、負の関連性が有意に多い場合には、当該被験者は動脈硬化性疾患の危険度が低い(或いは非発症)と判定することができる。

[0103] 好ましくは、本発明の動脈硬化性疾患危険度判定用アレイは、被験者における臨床的所見(例えば、IMT)と対比した場合に、正答率(臨床的所見と一致する確率)が60%以上、好ましくは65%以上、より好ましくは70%以上であり、誤答率(臨床的所見と一致しない確率)が45%以下、好ましくは40%以下、より好ましくは40%以下となる結果が得られるようなものであることが好ましい。この場合の臨床的所見としては、例えば被験者の頸動脈内膜中膜複合体肥厚度(IMT)が1.1mm未満を非動脈硬化疾患例、IMTが1.1mm以上を動脈硬化疾患例とする方法を例示することができ

る。また、他の方法として、重回帰分析における頸動脈内膜中膜複合体の平均肥厚度の増分( $\Delta$  IMT)が0.2mm以上の場合、または、重回帰分析における頸動脈内膜中膜複合体の最大肥厚度の増分( $\Delta$  PIMT)が0.3mm以上の場合を動脈硬化疾患例とし、それ以外の場合を非動脈硬化疾患例とする方法を挙げることもできる。

[0104] (1-2) 心筋梗塞危険度判定用アレイ

本発明の心筋梗塞危険度判定用アレイは、心筋梗塞のかかりやすさ(発症しやすさ)や進行しやすさを判定するために使用することができる。好適には、糖尿病患者または境界型糖尿病患者に対して、心筋梗塞の危険度を判定するために使用することができる。本発明の心筋梗塞危険度判定用アレイは、心筋梗塞の判定指標との間に有意な負(抵抗性)の関連性を有する「負(抵抗性)の遺伝子多型セット」を構成する遺伝子多型に対する検出用プローブを有する、という特徴を有する。なお、ここで心筋梗塞の判定指標としては、当業界で慣用されているものであれば特に制限されないが、好ましくは心電図上で観察される陳旧性心筋梗塞波長(abnormal Q)の有無または被験者に関する心筋梗塞の既往歴を利用することができる。

[0105]かかる「負(抵抗性)の遺伝子多型セット」として、具体的には、図56～58の各図に掲げる「負(抵抗性)の遺伝子多型セット」を例示することができる。より詳細には、図56～58の各図において、各行(横一列)に列記した遺伝子多型(SNP)の組合せが、一つの「心筋梗塞に関する負(抵抗性)の遺伝子多型セット」を意味する。

[0106]本発明の心筋梗塞危険度判定用アレイは、かかる図56～58のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する。図56～58の中でも好ましくは、図57～58のいずれかである。また、遺伝子多型セットの選択には、各図において遺伝子多型セット毎に記載されているOdds値とKai値を指標とすることができる。本発明の心筋梗塞危険度判定用アレイは、かかるOdds値とKai値から評価して、心筋梗塞判定指標に対して負(抵抗性)の関連性が高い遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを備えていることが好ましい。

[0107]本発明の心筋梗塞危険度判定用アレイは、検出用プローブとして、図59に記載する遺伝子多型からなる遺伝子多型群、図60に記載する遺伝子多型からなる遺伝子

多型群、図61に記載する遺伝子多型群、及び図62に記載する遺伝子多型群から選択される1つの遺伝子多型群の半数以上、好ましくは6割以上、7割以上、8割以上、9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブを有することが好ましい。

[0108] ここで、図59～62は、上記図56～68に基づいて、Odds毎に、IMTと負(抵抗性)の関連性を有する遺伝子多型セットを構成する遺伝子多型に分類した図である。即ち、図59は、図56に基づいてOddsが-2以下(すなわち、Oddsが「1/2」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図60は図57に基づいてOddsが-3以下(すなわち、Oddsが「1/3」以下)、図61は図58に基づいてOddsが-4以下(すなわち、Oddsが「1/4」以下)、図64は図58に基づいてOddsが-5以下(すなわち、Oddsが「1/5」以下)を示す負の遺伝子多型セットを構成する遺伝子多型を挙げたものである。

[0109] これらの各図に示される遺伝子多型群の中から半数以上、6割以上、7割以上、8割以上、または9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上位から重点的に選択されることが好ましい。

[0110] 本発明の心筋梗塞危険度判定用アレイは、前述する負(抵抗性)の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブに加えて、正(感受性)の遺伝子多型に対する検出用プローブまたは正(感受性)の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するものであることが好ましい。

[0111] ここで「正(感受性)の遺伝子多型」とは、心筋梗塞の判定指標との間に有意な正の関連性を有する遺伝子多型をいう。また「正(感受性)の遺伝子多型セット」とは、心筋梗塞の判定指標との間に有意な正(感受性)の関連性を有する“遺伝子多型の組合せ物”を意味する。

[0112] 具体的には図63～69に、かかる「正(感受性)の遺伝子多型セット」を示す。より詳細には、図63～69の各図において、各行(横一列)に列記した遺伝子多型(SNP)の組合せが、心筋梗塞の判定指標との間で正(感受性)の関連性を有する「正(感受性)の遺伝子多型セット」を意味する。

[0113] 具体的には、本発明の心筋梗塞危険度判定用アレイは、図56～58のいずれか

一つの図に記載される負の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブに加えて、図63～69のいずれか一つの図に記載される正の遺伝子多型または遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する。なお、図63～69の中でも好ましくは、図64～69のいずれか、より好ましくは図65～69のいずれかである。

[0114]かかる判定用アレイは、正の遺伝子多型セットを構成する遺伝子多型を検出するプローブとして、検出用プローブとして、図70に記載する遺伝子多型群、図71に記載する遺伝子多型群、図72に記載する遺伝子多型群、及び図73に記載する遺伝子多型群から選択される1つの遺伝子多型群の半数以上、好ましくは6割以上、7割以上、8割以上、9割以上、より好ましくは全ての遺伝子多型に対する検出用プローブを有することが好ましい。

[0115]ここで、図70～73は、図63～69に基づいて、Odds毎に、IMTと正(感受性)の関連性を有する遺伝子多型を分類した図である。即ち、図70は、図63に基づいてOddsが2以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものであり、同様に、図71は図64に基づいてOddsが3以上、図72は図65に基づいてOddsが4以上、図73は図66に基づいてOddsが5以上を示す正の遺伝子多型セットを構成する遺伝子多型を挙げたものである。これらの図70～73の各図に示される遺伝子多型群の中から半数以上、6割以上、7割以上、8割以上、または9割以上の遺伝子多型を選択する場合は、カラムの順番に従って上位から重点的に選択されることが好ましい。

[0116]本発明者は、心筋梗塞、特に糖尿病に起因する動脈硬化性疾患の危険度の判定にも図37に記載する遺伝子多型が有用であり、かかる遺伝子多型を単独または組み合わせて用いることによって、心筋梗塞の危険度が高い精度で判定できることを確認した。よって、本発明の心筋梗塞危険度判定用アレイは、検出用プローブとして、図37に記載する99個の遺伝子多型に対する検出用プローブを有するものとすることもできる。

[0117]本発明の心筋梗塞危険度判定用アレイは、前述する動脈硬化性疾患危険度判定用アレイと同様に、被験者について心筋梗塞に対する抵抗性(かかりにくさ)を評価

するために使用することができるし、また、被験者について心筋梗塞に対する抵抗性及び感受性を評価するために使用することができる。さらに本発明の心筋梗塞危険度判定用アレイは、被験者について心筋梗塞に対する危険度の有無やその高低(かかりやすさや進行のしやすさの有無及びその程度)を評価するために使用することができる。

[0118] これらの場合、照合に使用される心筋梗塞判定指標と負の関連性を有する遺伝子多型セットは、図56ー58のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであることが好ましい。また、照合に使用される心筋梗塞判定指標と正の関連性を有する遺伝子多型セットは、図63ー69のいずれか一つの図に記載される正の遺伝子多型または遺伝子多型セットの群から選択される少なくとも1つのセットであることが好ましい。

[0119] 心筋梗塞危険度の判定は、前述の動脈硬化性疾患の危険度判定方法と同様な方法で行うことができる。

[0120] 以上説明する本発明の疾患危険度判定用アレイは、各疾患に応じた遺伝子多型検出用プローブを有するものであれば、本発明の目的を達成する範囲内において、上記以外のプローブ又は公知のプローブを適宜有していてもよい。また、遺伝子多型検出用プローブは、適宜標識化して用いてもよい。

[0121] 本発明の疾患判定用アレイは、あらかじめ準備したプローブを基材に固定する方法のほか、基材上で合成するAffimetrix社の方法で調製することもでき、その調製方法に特に制限はされない。また、プローブを固定する基板にも特に制限はなく、例えばガラスプレートやフィルター等公知のものを用いることができる。また、固定されるプローブの長さや用いる核酸の種類も、遺伝子多型を検出できる限りにおいて、特に制限はない。遺伝子多型を含む領域は、あらかじめPCRで増幅しておくことが感度の点から望ましい。

[0122] 特に、標識したプライマーを用いて遺伝子多型を含む領域を増幅する方法は、感度、簡便さ等の点から好適に用いることができる。たとえば、Hybrigen法においては、ビオチンにて標識したプライマーを用いて遺伝子多型を含む領域を増幅し、これをアレイに添加してハイブリダイズさせたのちに、ハイブリダイズしなかった核酸を洗

浄して除く。ついで、ハイブリダイズしたプローブを、アビシン標識した蛍光色素にて検出する。この方法により遺伝子多型が感度よく検出できる。

[0123] 本発明の疾患判定用アレイには、下記の態様が含まれる：

(A) 図1～9のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するか、または図38～43のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、動脈硬化性疾患危険度判定用アレイ。

[0124] (B) 図10～18のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するか、図44～47のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、(A)記載の動脈硬化性疾患危険度判定用アレイ。

[0125] (C) さらに、図19～27のいずれか一つの図に記載する、正(感受性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するか、図63～69のいずれか一つの図に記載する、正(感受性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するものである、(A)または(B)に記載する動脈硬化性疾患危険度判定用アレイ。

[0126] (D) 図28～37のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するか、図52～55のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、(A)または(B)記載の動脈硬化性疾患危険度判定用アレイ。

[0127] (E) 図56～58のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、心筋梗塞危険度判定用アレイ。

[0128] (F) 図59～62のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、(E)記載の心筋梗塞危険度

判定用アレイ。

[0129] (G) さらに、図63ー69のいずれか一つの図に記載する、正(感受性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するものである、(E)または(F)に記載する心筋梗塞危険度判定用アレイ。

[0130] (H) 図70ー73のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、(E)または(F)に記載的心筋梗塞危険度判定用アレイ。

[0131] (I) 被験試料から調製したプローブとハイブリダイズさせ、被験者について検出された遺伝子多型を、疾患と負の関連性を有する遺伝子多型セットと照合して、検出された遺伝子多型セットについて疾患に対する抵抗性を評価するために使用される、(A)乃至(H)のいずれかに記載する動脈硬化性疾患危険度判定用アレイ。

[0132] (J) 動脈硬化性疾患と負の関連性を有する遺伝子多型のセットが、図1ー9のいずれかに一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであるか、図38ー43のいずれかに一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットである、(I)に記載する動脈硬化性疾患危険度判定用アレイ。

[0133] (K) 被験試料から調製したプローブとハイブリダイズさせ、被験者について検出された遺伝子多型を、疾患と負の関連性を有する遺伝子多型のセット及び正の関連性を有する遺伝子多型セットと照合して、検出された遺伝子多型のセットについて疾患に対する抵抗性及び感受性を評価するために使用される、(A)乃至(H)のいずれかに記載する動脈硬化性疾患危険度判定用アレイ。

[0134] (L) 被験試料から調製したプローブとハイブリダイズさせ、被験者について検出された遺伝子多型を、疾患と負の関連性を有する遺伝子多型のセット及び正の関連性を有する遺伝子多型セットと照合して、検出された遺伝子多型のセットについて得られた負の関連性または正の関連性に対する偏度から、被験者について疾患に対する危険度の高低を評価するために使用される、(A)乃至(H)のいずれかに記載する動脈硬化性疾患危険度判定用アレイ。

[0135] (M) 動脈硬化性疾患と負の関連性を有する遺伝子多型のセットが、図1～9のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであるか、図38～43のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであり、且つ動脈硬化性疾患と正の関連性を有する遺伝子多型またはそのセットが、図19～27のいずれかに記載される正の遺伝子多型セットの群から選択される少なくとも1つのセットであるか、図48～51のいずれかに記載される正の遺伝子多型セットの群から選択される少なくとも1つのセットである、(L)に記載する動脈硬化性疾患危険度判定用アレイ。

[0136] (3) 疾患危険度の判定装置、判定方法及び判定プログラム

本発明に係る疾患危険度の判定装置、判定方法及び判定プログラムは、被験者がどの程度疾患にかかり易いか、若しくはどの程度疾患が進行し易いか(疾患危険度)の判定を行うことができる。以下においては、動脈硬化性疾患を例に説明するが、本発明はこれに限定されず、遺伝子との関連性を有する疾患に適用することができる。その場合、疾患に応じて、その疾患の判定指標(例えば、動脈硬化性疾患であれば頸動脈内膜中膜複合体肥厚度、腎症であれば尿中のアルブミン排泄率、心筋梗塞であれば心電図上の陳旧性(abnormal Q)心筋梗塞波形の有無及び心筋梗塞の既往の有無)を用いて、後述する関連性を評価すればよい。

[0137] (3-1) 動脈硬化性疾患危険度の判定装置、判定方法及び判定プログラム

図75は、本発明に係る動脈硬化性疾患危険度の判定装置(以下、判定装置と記す)を含むシステム全体を示すブロック図である。図75に示したように、病院1に設置された採血手段11及びコンピュータ12、分析機関2に設置された遺伝子多型解析用アレイ21及びコンピュータ22、サービス提供機関3に設置された判定装置31とを備えている。ここで、コンピュータ11、21、及び判定装置31は、インターネットなどの通信回線4に接続されている。

[0138] 判定装置31は、CPU32と、メモリ33と、ハードディスクなどの記録部34と、外部との通信を行う通信インターフェース(以下、I/Fと記す)部35と、キーボードなどの操作部36と、CRTディスプレイなどの表示部37と、入出力I/F部38と、各部間でデータを交換するための内部バス39とを備えている。記録部34には、動脈硬化性疾患に

関連する遺伝子多型(例えば、図10)又は遺伝子多型のセット(例えば、図1)の情報が参照テーブルとして記録されている。

[0139] 判定装置31による危険度判定処理の詳細は後述することとし、ここでは、システム全体の動作の概要を説明する。まず、病院1において、採血手段11によって被験者の血液(以下、被験試料と記す)が採取される。このとき、臨床データ(被験者ID、検査値、病歴情報、採血情報など)がコンピュータ12の記録部に記録される。被験試料は、分析機関2に提供され、遺伝子多型解析用アレイ21を用いて分析され、遺伝子型を有する遺伝子多型が検出される。ここで、遺伝子多型解析用アレイ21には、例えば、上記した動脈硬化性疾患危険度判定アレイを用いることができる。検出された遺伝子多型情報は、一旦コンピュータ22の記録手段に記録され、その後通信回線4を介してサービス提供機関3の判定装置31に送信される。判定装置31は、通信I/F部35を介して遺伝子多型情報を受信し、一旦記録部34に記録する。その後、判定装置31は、受信した遺伝子多型が、予め記録部34に記録されている参照テーブルに含まれているか否かを検索し、その結果に応じて動脈硬化性疾患の危険度を判定する。さらに、判定装置31は、判定結果を、通信回線4を介して病院1のコンピュータ12に送信する。コンピュータ12によって受信された判定結果は、臨床データ(少なくとも被験者ID)と関連させて、コンピュータ12の記録部に記録され、適宜呼び出されて利用(例えば、被験者に提示)される。判定結果を送信する病院1のコンピュータ12を特定する情報は、例えば、病院1のコンピュータ12から、臨床データに含めて送信すればよい。

[0140] 図76は、判定装置31が行う判定処理を示すフローチャートである。以下、図76のフローチャートに従って、判定装置31による危険度判定処理を具体的に示す。尚、以下においては、特に断らない限り、CPU32が行う処理として記載する。また、CPU32は、メモリ33を、ワーク領域や、処理途中のデータを一時記憶する領域として使用し、必要に応じて処理途中及び処理結果のデータを記録部34に記録する。

[0141] ステップS21において、分析機関2から通信回線4経由で、遺伝子多型情報を取得し、記録部34に記録する。ここで、遺伝子多型情報は、遺伝子型を有する遺伝子多型毎に付与した遺伝子多型コードとして伝送され、データ形式は、例えば、依頼元の

病院毎に付与した病院コード及び被験者毎に付与した被験者IDの組の各々に、複数の遺伝子多型コード $G_i$ ( $i=1 \sim n$ )が対応付けられた形式である。

[0142] ステップS22において、一つの{病院コード、被験者ID}に関する複数の遺伝子多型コード $G_i$ ( $i=1 \sim n$ )を記録部34から読み出し、遺伝子多型コード $G_i$ が、予め記録部34に記録された参照テーブルに含まれているか否かを判断する。例えば、参照テーブルとして図1に対応させて遺伝子多型コードのセットが記録されているとすると、複数の遺伝子多型コード $G_i$ ( $i=1 \sim n$ )の中から2つ又は3つの遺伝子多型コード $G_i$ を選択し、それらのセットが、図1に対応する参照テーブルに含まれているか否かを判断し、含まれていれば、そのセットに対応する第1フラグに“1”をセットする(フラグは予め0に設定されている)。また、それらのセットが、図19に対応する参照テーブルに含まれていれば、そのセットに対応する第2フラグに“1”を設定する。

[0143] ステップS23において、第1及び第2フラグが全て0であるか否かを判断し、フラグが全て0、即ち、遺伝子多型コードのセットが参照テーブルに無ければ、ステップS25に移行し、何れかのフラグに0以外の値が設定されれば、ステップS24に移行する。

[0144] ステップS24において、ステップS22の処理の結果に応じて危険度を決定する。決定された危険度は、{病院コード、被験者ID}に対応させて記録部34に記録する。この危険度の決定は、例えば、値が“1”である第1フラグの数n1と、値が“1”である第2フラグの数n2を求め、表1に応じて危険度を決定する。

[0145] 即ち、正の関連性を有する遺伝子多型セットの数n2が負の関連性を有する遺伝子多型セットの数n1よりも多い( $n_2 > n_1$ )被験者(Case1)は、動脈硬化性疾患に関して高危険度と判定される。また、正の関連性を有する遺伝子多型またはそのセットを有する( $n_2 > 0$ )が、負の関連性を有する遺伝子多型セットを有しない( $n_1 = 0$ )被験者(Case2)も、高危険度と判定される。一方、負の関連性を有する遺伝子多型セットの数n1が正の関連性を有する遺伝子多型またはそのセットの数n2より多い( $n_1 > n_2$ )被験者(Case3)は、低危険度と判定される。また、負の関連性を有する遺伝子多型セットは存在する( $n_1 > 0$ )が、正の関連性を有する遺伝子多型またはそのセットは存在しない( $n_2 = 0$ )被験者(Case4)も、低危険度と判定される。

[0146] ステップS25において、全ての{病院コード、被験者ID}に関して終了したと判断するまで、ステップS22～S24の処理を繰り返す。

[0147] 全ての{病院コード、被験者ID}に関して処理が終了すれば、ステップS26において、決定された危険度コード(上記の判定例では、高危険度又は低危険度を表すコード)と被験者IDとを対応させて、通信回線4を介して、病院コードに対応するコンピュータ12に送信する。

[0148] 以上の処理によって、判定装置31による一連の危険度判定処理が完了する。尚、以上の危険度判定処理は、汎用コンピュータを使用して、ハードディスク、CD-ROMなどのコンピュータ読取可能な記録媒体に記録されたコンピュータプログラムを読み出し、または、通信回線を介してコンピュータプログラムを取得し、それをCPUが実行することによって行うことも可能である。

[0149] また、本発明の装置は、上記した判定機能を実現可能なものである限り、必要に応じて、他の手段を適宜追加した装置とすることができる。

[0150] また、ステップS24に示した危険度の判定基準は、表1に限定されず、被験者から検出された遺伝子多型の正の関連性と負の関連性の偏度を求め、正の関連性が有意の場合には、動脈硬化性疾患の危険度が高い(或いは発症)、負の関連性が有意の場合には、動脈硬化性疾患の危険度が低い(或いは非発症)と判定すればよい。尚、偏度は、該当するセットが正／負の参照テーブルに含まれている数の差に限定されず、含まれているセットに応じた重み付け、または含まれている各々の遺伝子多型に応じた重み付けをして算出した値や、さらに臨床データを考慮して算出した値など、種々の値を用いることができる。

[0151] 動脈硬化性疾患危険度の判定に使用する参照テーブルとしては、図1～図36、図38～図55の何れかに対応するテーブルを使用すればよいが、上記したように、本発明に係る疾患危険度の判定装置、判定方法及び判定プログラムの適用対象は、動脈硬化性疾患に限定されない。心筋梗塞危険度の判定に使用する参照テーブルとしては、図56～図73の何れかに対応するテーブルを使用すればよい。

[0152] また、上記では、サービス提供機関の判定装置が、分析機関から取得した被験者の遺伝子多型情報を判定の対象とする場合を説明したが、これに限定されない。過

去に解析された個人の遺伝子多型情報を何らかの記録手段(例えば、個人毎に付与したICカード、メモリカードなどの携帯型記録手段)に記録しておき、これから遺伝子多型情報を読み出して、疾患危険度の判定処理を行ってもよい。生体の遺伝子情報は変わらないので、一度解析された遺伝子多型情報を記録しておけば、参照テーブル又は危険度の判定基準が変更されて判定精度が向上した場合にも、再び遺伝子解析のために採血などを行う必要が無く、被験者の負担が軽減される。

[0153] また、分析機関から取得した個人の遺伝子多型情報を、サービス提供機関のデータベースに個人IDと対応させて記録しておき、各個人に個人IDを通知しておけば、個人IDのみの連絡を受けるだけで、データベースに記録された対応する遺伝子多型を用いて、再度の危険度判定が可能となる。

[0154] また、上記した疾患危険度判定用遺伝子多型決定方法の説明において記載したように、遺伝子多型情報自体をIDとして使用することによって、個人IDを使用することなく、新たに取得した被解析データ(例えば、動脈硬化性疾患であればIMTの測定値)に加えて過去の被解析データを利用することができる。従って、危険度の判定精度の履歴を追跡することや、履歴を考慮した危険度の判定を行うことが可能となる。ここで、被解析データには、疾患指標の値以外に種々の臨床データなどが付加されていてもよい。

[0155] (3-2)動脈硬化性疾患危険度判定方法

以下、動脈硬化性疾患危険度判定方法についてより詳細に説明する。

本発明の動脈硬化性疾患危険度判定方法は、動脈硬化性疾患のかかりやすさや進行しやすさを判定するために使用することができる。好適には、糖尿病患者またはその傾向のある患者(糖尿病境界型)に対して動脈硬化性疾患の危険度(かかりやすさ、進行のしやすさなど)を判定するために使用することができる。

[0156] 本発明に係る動脈硬化性疾患危険度判定方法は、(b)被験試料について検出された遺伝子多型を、動脈硬化性疾患の判定指標となる“頸動脈内膜中膜複合体肥厚度(IMT)”と負の関連性を有する遺伝子多型セットと照合する工程を有することを特徴とする。なお、IMTと負の関連性を有する遺伝子多型セットとしては、好ましくは図1-9いずれか一つの図に記載される負の遺伝子多型セットの群から選択される少

なくとも1つのセット、または図38～43のいずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを挙げることができる。

[0157] 本発明の判定方法には、動脈硬化性疾患の判定指標に対して負の関連性を有する遺伝子多型セットと照合する工程と、動脈硬化性疾患の判定指標に対して正の関連性を有する遺伝子多型セットと照合する工程とを組み合わせて実施する方法が含まれる。即ち、上記(b)の工程に加えて、(b')工程として被験試料について検出された遺伝子多型を、IMTと正の関連性を有する遺伝子多型セットと照合する工程、及び(c)工程として上記(b)と(b')の結果から、検出された遺伝子多型について、負の関連性と正の関連性とを対比してその偏度を算出する工程を有する、判定方法である。なお、ここでIMTと正の関連性を有する遺伝子多型セットとしては、好ましくは図19～27のいずれか一つの図に記載される正の遺伝子多型セットの群から選択される少なくとも1つの遺伝子多型または遺伝子多型セット、及び図48～51のいずれか一つの図に記載される正の遺伝子多型セットの群から選択される少なくとも1つの遺伝子多型セットを挙げができる。

[0158] また、本発明の判定方法は、上記工程(b)または(b')に先立ち、(a)被験試料において遺伝子多型を検出する工程を有することができる。かかる検出工程(a)は、図37に記載する99個の遺伝子多型から選ばれる2または3以上の遺伝子多型を対象とした検出工程とすることができる。

[0159] 検出工程(a)は、図10～18のいずれか一つの図に記載される、負の遺伝子多型セットを構成する遺伝子多型の存在、及び図28～37のいずれか一つの図に記載される、正の遺伝子多型セットを構成する遺伝子多型の存在を検出する工程を有することができる。具体的には、図10及び図19に記載される遺伝子多型、図11及び図20に記載される遺伝子多型、図12及び図21に記載される遺伝子多型、図13及び図22に記載される遺伝子多型、図14及び図23に記載される遺伝子多型、図15及び図24に記載される遺伝子多型、図16及び図25に記載される遺伝子多型、図17及び図26に記載される遺伝子多型、または、図18及び図27に記載される遺伝子多型の存在を検出する工程とすることができる。

[0160] また検出工程(a)は、図38～43のいずれか一つの図に記載される、負の遺伝子多

型セットを構成する遺伝子多型の存在、及び図48～51のいずれか一つの図に記載される、正の遺伝子多型セットを構成する遺伝子多型の存在を検出する工程を有するものであってもよい。具体的には、図38及び図48に記載される遺伝子多型、図39及び図49に記載される遺伝子多型、図40及び図50に記載される遺伝子多型、図41及び図51に記載される遺伝子多型、図42及び図51に記載される遺伝子多型、または、図43及び図51に記載される遺伝子多型の存在を検出する工程とすることができる。

[0161] 検出工程(a)は、上記本発明の動脈硬化性疾患危険度判定用アレイを利用するこことにより、高い精度で実施することができる。即ち、検出工程(a)は、本発明の疾患判定用アレイ上で、被験試料から調製したプローブとアレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程とすることができる。

[0162] 前記検出工程(a)においては、被験者の遺伝子型を検出する方法であればいかなる方法も使用することができる。一般的な方法としては、被験者の血液、痰、皮膚、気管支肺胞洗浄液、その他の体液、あるいは組織等、DNAを含むものを被験試料として用いる。解析方法としては多くの方法が知られており、例えばシーケンス法、PCR法、ASP-PCR法、TaqMan法、インベーダーアッセイ法、MALDI-TOF/MS法、分子ビーコン法、ライゲーション法などを例示することができる(Clin. Chem. 43 : 1114-1120, 1997)。なお、シーケンス法とは、遺伝子多型を含むDNA領域を直接にシーケンスする方法である。PCR法においては、遺伝子多型に特異的なプライマーをもちいて、ある遺伝子多型のみを特異的に増幅する。PCR法においては、もっとも3'側に遺伝子多型の核酸を配置するのが一般的であるが、Allele Specific Primer(ASP)-PCR法のように、3'末端側から2番目に遺伝子多型を有するプライマーを配置する方法などのように、遺伝子多型をプライマーのどの領域に置くか、また、検出する遺伝子以外にどのような核酸配列を入れるかなどプライマーのデザインには、遺伝子多型を識別できる限り、特に制限はない。TaqMan法において蛍光色素と消光物質により両端を標識したアレル特異的プローブを標的部位にハイブリダイズさせて、この部位を含む領域を増幅するように設計したプライマーでPCR反応を行う。プライマーからのPCR反応がこのアレル特異的プローブがハイブリダイ

ズした領域に達すると、Taqポリメラーゼの5'プライムスクレアーゼ活性によりハイブリダイズしたプローブの5'末端に存在する蛍光色素が切断され、消光物質から離ることにより蛍光が生ずる。この手法により、アレル特異的プローブがどの程度ハイブリダイズしていたかがわかる。インベーダー・アッセイ法においては、鑄型の遺伝子多型部位から5'側に特異的配列を持ち、3'側にフラップ配列を持つアレルプローブと、鑄型の遺伝子多型部位からの3'側の特異的配列を有するインベーダープローブ、さらに、フラップ配列に相補的な配列を含むFRETプローブとの3種類のオリゴヌクレオチドを使い、TaqMan法と同様の原理にてどのアレルプローブがハイブリダイズしたかを特定できる。MALDI-TOF/MS法においては、遺伝子多型部位に隣接するプライマーを作成してこの領域を増幅させた後、遺伝子多型部位の1塩基のみをddNTPを用いて増幅する。ついで、MALDI-TOF/MSを用いて、付加したddNTPの種類を識別することにより遺伝子多型を同定する。Hybrigene法などのDNAチップ法と総称される方法においては、アレイ上に遺伝子多型を含むオリゴヌクレオチドプローブを配置し、PCR増幅させたサンプルDNAとのハイブリダイゼーションを検出する。

[0163] 本発明の判定方法において、動脈硬化性疾患危険度の判定は、例えば、以下のように行うことができる。

[0164] [表2]

|        | 正の関連性を有する遺伝子多型セットの数 |   | 負の関連性を有する遺伝子多型セットの数 |   |      |
|--------|---------------------|---|---------------------|---|------|
| Case 1 | +++                 | > | -                   | → | 高危険度 |
| Case 2 | +++                 | > | 0                   | → | 高危険度 |
| Case 3 | +                   | < | — — —               | → | 低危険度 |
| Case 4 | 0                   | < | — — —               | → | 低危険度 |

[0165] 例えば、被験試料について検出された遺伝子多型を、動脈硬化性疾患の判定指標であるIMTと負の関連性を有する遺伝子多型セット及び正の関連性を有する遺伝子多型セットと照合した場合において、正の関連性を有する遺伝子多型セットのトータル数が負の関連性を有する遺伝子多型セットのトータル数よりも多い被験者(Case 1)は、動脈硬化性疾患高危険度例と判定される。また、正の関連性を有する遺伝子多型セットは存在するものの、負の関連性を有する遺伝子多型セットは有しない被験

者(Case2)も、動脈硬化性疾患高危険度例と判定される。一方、負の関連性を有する遺伝子多型セットのトータル数が正の関連性を有する遺伝子多型セットのトータル数より少ない被験者(Case3)は、動脈硬化正疾患低危険度例と判定される。また、負の関連性を有する遺伝子多型セットは存在するものの、正の関連性を有する遺伝子多型セットは存在しない被験者(Case4)も、動脈硬化性疾患低危険度例と判定される。

[0166] 即ち、被験者から検出された遺伝子多型について正の関連性(感受性)と負の関連性(抵抗性)の偏度を求め、正の関連性が高い場合には動脈硬化性疾患の危険度が高い(或いは発症)、負の関連性が高い場合には動脈硬化性疾患の危険度が低い(或いは非発症)と判定できる。

[0167] 本発明の判定方法を利用することにより、高い精度で動脈硬化性疾患の危険度についての判定結果を得ることができる。

[0168] 例えば、被験者について検出した遺伝子多型をもとに、当該被験者を動脈硬化性疾患低危険度例または動脈硬化性疾患高危険度例と判断した場合に、当該被験者が臨床的な所見から、非動脈硬化疾患例または動脈硬化疾患例と判断される(判断結果が一致する)割合が60%以上、好ましくは65%以上、より好ましくは70%以上となり、また一致しない割合が45%以下、好ましくは40%以下、より好ましくは45%以下となるようなものであれば、高精度な判定結果として評価することができる。なお、臨床的な所見としては、例えば、この場合の臨床的所見としては、例えば被験者の頸動脈内膜中膜複合体肥厚度(IMT)が1.1mm未満を非動脈硬化疾患例、IMTが1.1mm以上を動脈硬化疾患例とする方法を例示することができる。また、他の方法として、重回帰分析における頸動脈内膜中膜複合体の平均肥厚度の増分( $\Delta$  IMT)が0.2mm以上の場合、または、重回帰分析における頸動脈内膜中膜複合体の最大肥厚度の増分( $\Delta$  PIMT)が0.3mm以上の場合を動脈硬化疾患例とし、それ以外の場合を非動脈硬化疾患例とする方法を用いることもできる。

[0169] なお、動脈硬化疾患例および非動脈硬化疾患例の集団は、いずれも糖尿病であって、心筋梗塞病歴がない疾患例の集団と設定することが好ましい。また、被験者から検出する遺伝子多型は、効率性等の観点から、2または3の遺伝子多型の組み合

せを有するものであることが好ましい。

[0170] 本発明の動脈硬化性疾患危険度の判定方法は、更に(d)工程として、(c)工程で得られた偏度について、さらに重み付けして、偏度の程度(すなわち、危険度の程度)を決定する工程を有するものであってもよい。

[0171] ここで、重み付けに使用される因子としては、例えば、疾患(またはその程度)と密接に関係する臨床的所見(疾患判定指標として使用されるもの)を挙げることができる。なお、重み付けに際しては、遺伝子多型と上記因子との関係を予め解析しておき、関連性やその程度を設定しておくことが好ましい。好ましくは、遺伝子多型または遺伝子多型セットと疾患(またはその程度)と密接に関係する臨床的所見との間に有意な正又は負の関連性を有する頻度をオッズ比で設定する方法、有意な正又は負の関連性を有するか否かを1か0かで設定する方法、等を挙げができる。

[0172] 例えば、動脈硬化性疾患の場合、密接に関係する臨床的所見としては、頸動脈の硬化度を挙げができる。そして頸動脈の硬化度を示す指標としては、例えば、頸動脈の肥厚度を挙げができる。かかる頸動脈の肥厚度を計測する方法としては、特に制限はないが、超音波断層装置による頸動脈内膜中膜複合体肥厚度(IMT)の測定が一般的である。当該方法は、超音波的に到達可能な頸動脈の肥厚度を計測する無侵襲かつ定量的計測法である。前記超音波断層装置は、7. 5MHz以上の中心周波数のリニア型パルスエコープローブを有するものを使用することが望ましい。頭蓋外頸動脈は皮下浅層に存在すため、7. 5MHz以上の周波数のものが使用可能で、高解像度(距離分解能0. 1mm)を得ることができる。但し、これは一例である。

[0173] 血管壁は、血管内腔側の1層の低エコー輝度部分と、その外の高エコー輝度層の2層構造としてエコー像上解析される。本発明者らは104例の健常例の観察より、総頸動脈のIMTが10歳代より70歳代まで加齢とともにほぼ直線的に増加し、その肥厚度は1. 0mmを越えないことを確認している。健常人の総頸動脈IMTは年齢より次式の如く求められる：

$$\text{IMT} = 0.06 \times \text{Age} + 0.3 \quad (3 < \text{Age} < 80 \text{ yr})$$

[0174] 上記頸動脈内膜中膜複合体肥厚度(IMT)以外の頸動脈の硬化度を示す指標と

しては、IMTの最大値を表す最大IMT(Max-IMT)、IMTの平均値を表す平均IMT(AvgIMT)、plaquescore(PS)、頸動脈ステイフネス等があり、これらの各指標についても種々の計測方法が確立されている。前斜位、側面、後斜位の各縦断像で最大の内膜中膜肥厚度をMax-IMTとし、該Max-IMTを示す部位を中心として中枢側1cmおよび遠位側1cmの計3ポイントの平均をAvgIMTとする方法；左右の総頸動脈(common carotid:CC)から頸動脈分岐部、内頸動脈(internal carotid:IC)の3縦断面の皮膚に対する近位壁(near wall)および遠位壁(far wall)の合計12の肥厚度の中、最大値をAvgIMTとする方法；また、左右の肥厚度の平均をAvgIMTとする方法などである。さらに、far wallの一定区画の平均肥厚度をmean IMTとする方法もある。また、一側の頸動脈の分岐部より中枢側10mmのfar wallの肥厚度を指標とすることもある。

- [0175] プラクスコア(PS)は、分岐部を基準として15mmずつ頸動脈を4区画に区分し、各々の部位での1.1mm以上のプラク厚の左右頸動脈両方での総和をいう。また、上述の3~4区画の各部位でのプラク(IMT1. 1cm以上)の数の総和をプラクナンバー(PN)と呼んで指標とすることもある。
- [0176] 頸動脈ステイフネスは、収縮期および拡張期の頸動脈の径から計測される数値である。一側の頸動脈の分岐部より中枢側10mmのfar wallの肥厚度を指標とする方法は、測定が簡便であり、総頸動脈には病変が少ないとより測定誤差が少ないといわれる。IMTは、頸動脈の最大の病変を示す指標である。PSは、動脈硬化の進展した頸動脈の全体像を示すことができるが、非進展例(肥厚度が1.1mm未満)では、0となる点で不利である等、測定する対象、疾患により好適な指標が異なる。糖尿病や高脂血症を伴う場合には、頸動脈壁は比較的に均一に肥厚するが多く、AvgIMTやmean IMTが重要な指標になるが、高血圧症を伴う場合は、プラクを認めることが多く、PS、PNおよびMaxIMTが有効な指標となる。
- [0177] 動脈硬化性疾患と密接に関係する臨床的所見としては、頸動脈内膜中膜複合体肥厚度の増加量を擧げることもできる。頸動脈内膜中膜複合体肥厚度の増加量として、平均IMTの増分( $\Delta$  IMT)や最大IMTの増分( $\Delta$  PIMT)等を指標として用いることができる。中でも $\Delta$  IMTは、総合的に動脈硬化性疾患の危険度を表すものとして

特に好ましい指標である。頸動脈内膜中膜複合体肥厚度の増加量と動脈硬化性疾患との関連性については、多くの報告がなされており、特に $\Delta$ IMTについては、 $\Delta$ IMTが0.339mm増加するごとに心筋梗塞のオッズが4.9倍になることが知られている(Yamasaki. Diabetes Care 2000 (9))。ゆえに、 $\Delta$ IMTは、動脈硬化性疾患と密接に関係する臨床的所見として位置づけられ、これを用いる方法は、極めて有効に動脈硬化性疾患の危険度を判定しうるものである。なお、頸動脈内膜中膜複合体肥厚度の増加量は、そのまま、動脈硬化性疾患の危険度の評価に利用することができるが、頸動脈内膜中膜複合体肥厚度の増加量から、適宜関数を用いて上記評価に利用してもよい。

- [0178] 頸動脈内膜中膜複合体肥厚度の増加量( $\Delta$ IMTおよび $\Delta$ PIMT等)は、集団より計測されたIMT値またはPIMT値から重回帰分析の方法により計算される偏回帰係数により表すことができる。
- [0179] また、本発明の動脈硬化性疾患危険度判定方法は、さらに被験者の臨床的所見や疾患と密接に関係する環境因子から動脈硬化危険度を決定する危険度決定工程をさらに含んでいてもよい。
- [0180] 被験者の臨床的所見によれば、それだけで、測定時における被験者の動脈硬化性疾患の状態がわかり、また臨床的所見や環境因子からも発病の危険性は予測できるが、前述する本発明の方法と組合せることによって、被験者について現状を確認しながら、被験者が有する固有の動脈硬化性疾患の危険度に基づいて、将来の発病の危険性および進行しやすさを予測することができる。特に、まだ測定時点においては肥厚が進んでいない若年齢の被験対象において、将来の危険度を予測できれば、危険度が高い場合には生活習慣の改善などの予防を行うことができ、動脈硬化性疾患の発病を防ぐことができる。
- [0181] 動脈硬化性疾患と関連する環境因子としては、年齢、性別、高血圧、肥満、喫煙歴、ヘモグロビンAlc値、糖尿病や高脂血症の罹患歴やその期間等が報告されている。
- [0182] Vitelli らは、動脈硬化危険度調査(ARIC Study)において、208例の頸動脈肥厚を有する(平均IMT、1.21 mm)非糖尿病者と208例の肥厚を有さない(平均IMT

、0.63 mm)非糖尿病者を比較し、ヘモグロビンA1cの1%の増加が動脈硬化のリスクを1.77倍高めるとの推計結果を報告している(Vitelli LL. Diabetes Care 1997; 20: 1454-8)。喫煙は動脈硬化の危険因子とされているが、住民を対象とした動脈硬化危険度調査(ARIC Study)で喫煙歴とIMTの強い相関性が示され、糖尿病あるいは高血圧患者では喫煙がさらに強い促進因子となることを示されている(Howard G, JAMA 1998; 279: 119-24.)。Sutton-Tyrrellらは、同年代の閉経前と閉経後女性のIMTとplaques病変を検索し、閉経により平均IMTは0.69→0.77mm、plaquesを認める女性は25→54%へと有意に増加することより、閉経が女性の動脈硬化を促進することを報告している(Sutton-Tyrrell K, Stroke 1998; 29: 1116-21)。

[0183] 動脈硬化の原因として、また種々の感染症の関与が考えられている。Nietoらは、動脈硬化危険度調査(ARIC Study)でIMT進展群と非進展群を抽出し、サイトメガロウイルスの抗体価を検索したところ、抗体価が20以上の症例の抗体価4未満群に対するオッズ比は5.3と有意に高く、動脈硬化の進展因子としてのサイトメガロウイルスの可能性を示唆している(Nieto FJ, Circulation 1996; 94: 922-7)。

[0184] 本発明者は以前に、1型糖尿病、2型糖尿病、境界型症例のIMTを従属変数として重回帰分析を行い、1型糖尿病者(30才未満)では、年齢、糖尿病罹病期間、ヘモグロビンA1c値が独立した危険因子であること、2型糖尿病患者(30才以上)では、年齢、ヘモグロビンA1c値、nonHDLコレステロール、収縮期血圧、喫煙歴が独立した危険因子であること、境界型糖尿病者では、加齢以外に収縮期血圧、喫煙が危険因子であることを報告している(Yamasaki Y, Diabetes 1994; 43: 634-639)。

[0185] 前記環境因子の中でも特に年齢、性別、糖尿病罹病期間およびヘモグロビンA1c値が重要である。

[0186] 本発明の動脈硬化性疾患危険度判定方法は、疾患危険度を与える遺伝子多型が存在していても、疾患に抵抗性を与える遺伝子多型の存在によりその危険度が相殺されること、並びに単一の遺伝子多型では疾患に抵抗性を与えない場合でも、複数の遺伝子多型が組み合わざって存在することにより、疾患に抵抗性を与えるという知見に基づくものである。よって、本発明の方法は、疾患の危険判定に、遺伝子多型を、組合せ物(セット)として動脈硬化性疾患危険度に抵抗性を与える因子として捉え、

そして当該抵抗性因子と感受性因子を組み合わせて疾患の発症危険度を判定することという特徴を有し、これにより精度の高い判定が可能にしたものである。特に本発明の動脈硬化性疾患危険度判定方法は、疾患判定指標として、頸動脈内膜中膜複合体肥厚度という健常者においても疾患有する者においても同様に定量的に計測可能な指標を採用し、当該指標と遺伝子多型との関係を精査し、遺伝子多型セットと肥厚度との正及び負の関係を適切に指標化することにより、より高い精度を実現した判定方法である。

[0187] (3-3) 心筋梗塞危険度判定方法

本発明の心筋梗塞危険度判定方法は、心筋梗塞のかかりやすさや進行しやすさを判定するために使用することができる。好適には、糖尿病患者またはその傾向のある患者(境界型糖尿病)に対して心筋梗塞の危険度(かかりやすさ、進行のしやすさなど)を判定するために使用することができる。

[0188] 本発明に係る心筋梗塞危険度判定方法は、(b)被験試料について検出された遺伝子多型を、心筋梗塞の判定指標と負の関連性を有する遺伝子多型セットと照合する工程を有することを特徴とする。心筋梗塞の判定指標としては、例えば前述するように、心電図上での陳旧性心筋梗塞の波形の有無や心筋梗塞の既往歴を挙げることができる。心筋梗塞の判定指標と負の関連性を有する遺伝子多型セットとしては、好ましくは図56～58いずれか一つの図に記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを挙げることができる。

[0189] 本発明の判定方法には、心筋梗塞の判定指標に対して負の関連性を有する遺伝子多型セットと照合する工程と、心筋梗塞の判定指標に対して正の関連性を有する遺伝子多型セットと照合する工程とを組み合わせて実施する方法が含まれる。即ち、上記(b)の工程に加えて、(b')工程として被験試料について検出された遺伝子多型を、心筋梗塞の判定指標と正の関連性を有する遺伝子多型セットと照合する工程、及び(c)工程として上記(b)と(b')の結果から、検出された遺伝子多型について、負の関連性と正の関連性とを対比してその偏度を算出する工程を有する、判定方法である。なお、ここで心筋梗塞の判定指標と正の関連性を有する遺伝子多型セットとしては、好ましくは図63～69のいずれか一つの図に記載される正の遺伝子多型セット

の群から選択される少なくとも1つの遺伝子多型セットを挙げることができる。

[0190] また、本発明の判定方法は、動脈硬化性疾患の危険度判定方法と同様に、上記工程(b)または(b')に先立ち、(a)被験試料において遺伝子多型を検出する工程を有することができる。かかる検出工程(a)は、図37に記載する99個の遺伝子多型から選ばれる2または3以上の遺伝子多型を対象とした検出工程とすることができる。かかる検出工程(a)は、図58～62のいずれか一つの図に記載される、負の遺伝子多型セットを構成する遺伝子多型の存在、及び図70～73のいずれか一つの図に記載される、正の遺伝子多型セットを構成する遺伝子多型の存在を検出する工程を有することができる。具体的には、図59及び図70に記載される遺伝子多型、図60及び図71に記載される遺伝子多型、図61及び図72に記載される遺伝子多型、または、図62及び図73に記載される遺伝子多型の存在を検出する工程とすることができる。

[0191] 検出工程(a)は、上記本発明の心筋梗塞危険度判定用アレイを利用することにより、高い精度で実施することができる。即ち、検出工程(a)は、本発明の疾患判定用アレイ上で、被験試料から調製したプローブとアレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程とすることができる。

[0192] なお、本発明の心筋梗塞危険度判定方法は、上記動脈硬化性疾患危険度判定方法と同様に、更に(d)工程として、(c)工程で得られた偏度について、さらに重み付けて、偏度の程度(すなわち、危険度の程度)を決定する工程を有するものであってもよいし、さらに被験者の臨床的所見や疾患と密接に関係する環境因子から心筋梗塞危険度を決定する危険度決定工程をさらに含んでいてもよい。

[0193] 本発明の心筋梗塞危険度判定方法は、上記動脈硬化性疾患危険度判定方法と同様の方法で実施できるが、かかる方法を利用することにより、高い精度で心筋梗塞の危険度についての判定結果を得ることができる。

[0194] 本発明の判定方法には下記の態様が含まれる：

(A) (b)被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性を有する遺伝子多型又は負の関連性を有する遺伝子多型セットと照合する工程、  
を有する疾患危険度の判定方法。

[0195] (B)更に、

(b') 疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子多型セットと照合する工程、及び  
(c) (b') の結果から、検出した遺伝子多型のセットについて、負の関連性と正の関連性とを対比してその偏度を算出する工程  
を有する(A)に記載する疾患危険度の判定方法。

[0196] (C) 更に、(d) 得られた偏度から疾患危険度を評価する工程を有する(B)に記載する疾患危険度の判定方法。  
(D) 対象の疾患が動脈硬化性疾患であって、疾患判定指標と負の関連性を有する遺伝子多型セットとして、図1～9のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセット、または図38～43のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを用いる、(A)乃至(D)のいずれかに記載する疾患危険度の判定方法。  
(E) 対象の疾患が、動脈硬化性疾患であって、  
(1) 疾患判定指標と負の関連性を有する遺伝子多型セットが、図1～9のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであり、且つ疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子多型セットが、図19～27のいずれかに記載される正の遺伝子多型セットの群から選択される少なくとも1つの遺伝子多型セットであるか、または  
(2) 疾患判定指標と負の関連性を有する遺伝子多型セットが、図38～43のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであり、且つ疾患判定指標と正の関連性を有する遺伝子多型または正の関連性を有する遺伝子多型セットが、図48～51のいずれかに記載される正の遺伝子多型セットの群から選択される少なくとも1つの遺伝子多型セットである、(B)乃至(D)のいずれかに記載する動脈硬化性疾患危険度の判定方法。

[0197] (F) 工程(b)または(b')に先立ち、(a) 被験試料において遺伝子多型を検出する工程を有する(A)乃至(E)のいずれかに記載する疾患危険度の判定方法。

[0198] (G) 検出工程(a)が、図37に記載する99個の遺伝子多型から選ばれる2または3以上の遺伝子多型を対象とした検出工程である(F)に記載する疾患危険度の判定

方法。

[0199] (H) 対象の疾患が、動脈硬化性疾患であって、

検出工程(a)が、本発明の動脈硬化性疾患危険度判定用アレイ上で、被験試料から調製したプローブと、アレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程である(F)または(G)に記載する疾患危険度の判定方法。

[0200] (I) 対象の疾患が、心筋梗塞であって、

検出工程(a)が、本発明の心筋梗塞危険度判定用アレイ上で、被験試料から調製したプローブと、アレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程である(F)に記載する疾患危険度の判定方法。

[0201] (J) 動脈硬化疾患例および非動脈硬化疾患例の集団が、いずれも糖尿病であって、心筋梗塞病歴がない疾患例の集団である(A)乃至(I)のいずれかに記載する疾患危険度判定方法。

[0202] (4) 疾患有効薬剤選定方法

本発明には、被験対象から検出された遺伝子多型が該当する分類から、各被験者の特性に応じた有効な薬剤を選定する方法も含まれる。当該方法は被験対象から検出された遺伝子多型に基づき、該遺伝子多型の分類から適用可能と考えられる薬剤を選定することによって行われる。遺伝子多型の分類は、上記a)～j)の分類を用いることができる。

[0203] 具体的に、制限されないが、

- a) 脂質関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、スタチンが挙げられる。
- b) 血圧関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、ACE阻害薬及びアンギオテンシンII受容体阻害薬が挙げられる。
- d) インスリン抵抗性関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、インスリン感受性改善剤が挙げられる。
- f) 酸化ストレス関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、抗酸化剤が挙げられる。

g) 炎症反応関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、免疫抑制剤及びスタチンが挙げられる。

h) 凝固線溶系関連遺伝子多型群に属する遺伝子多型に対する有効薬剤としては、抗血小板剤が挙げられる。

[0204] その他、MMP-12(A-82G)、mmp-9=Gelatinase B(C-1562T)、MMP7(C-153T)などの遺伝子多型が検出された場合には、有効薬剤として抗プロテアーゼを用いてよい。被検対象から複数の遺伝子多型が検出された場合には、上記薬剤を2種以上併用して用いることもできる。

[0205] このように、被験者の遺伝子多型に応じた適切な薬剤を選定することにより、被験対象の体質又は特徴に応じた疾患の予防、治療又は予後の対応などを行うことが可能になる。

[0206] (5) 疾患抵抗性因子顕在化方法または疾患危険度顕在化方法  
本発明は、別の角度から、被験者が保有する疾患抵抗性因子を顕在化する方法、並びに被験者が保有する疾患危険度を顕在化する方法を提供するものである。

[0207] 本発明に係る疾患抵抗性因子顕在化方法は、

(i) 被験試料において検出された遺伝子多型を、疾患判定指標と負の関連性を有する遺伝子多型または遺伝子多型セットと照合する工程、  
(ii) (i)の結果に基づき、被験試料における疾患抵抗性因子を顕在化させる工程を有するものである。これらの工程を含む限りにおいて、他の付加的ないかなる工程を有していても本発明に含まれる。

[0208] (ii)の顕在化工程は、被験試料において検出された遺伝子多型が、疾患判定指標と負の関連性を有する遺伝子多型または遺伝子多型セットのどれかに該当するか否かを明らかにすることによって行われる。

[0209] 例えば、対象とする疾患が動脈硬化性疾患(好ましくは、糖尿病に起因する動脈硬化性疾患)である場合、(i)の工程は、被験試料において検出された遺伝子多型を、頸動脈内膜中膜複合体肥厚度(IMT)と負の関連性を有する遺伝子多型または遺伝子多型セットと照合することによって行われる。かかる遺伝子多型セットとしては、図1-9のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも

1つのセット、または図38～43のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを挙げることができる。

[0210] また、例えば、対象とする疾患が心筋梗塞(好ましくは、糖尿病に起因する心筋梗塞)である場合、(i)の工程は、被験試料において検出された遺伝子多型を、心筋梗塞の判定指標と負の関連性を有する遺伝子多型または遺伝子多型セットと照合することによって行われる。かかる遺伝子多型セットとしては、図56～58のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを挙げができる。

[0211] また、上記顕在化方法においては、工程(i)に先立ち、(0)被験試料において遺伝子多型を検出する工程を有することができる。

[0212] 検出工程(0)は、図37に記載する99個の遺伝子多型から選ばれる少なくとも2の遺伝子多型を対象とした検出工程とすることができる。対象とする疾患が動脈硬化性疾患(好ましくは、糖尿病に起因する動脈硬化性疾患)である場合は、検出対象とする遺伝子多型として、図10～18から選択されるいずれかの図に記載される遺伝子多型、または図44～47から選択されるいずれかの図に記載される遺伝子多型を用いてよい。対象とする疾患が心筋梗塞(好ましくは、糖尿病に起因する心筋梗塞)である場合は、検出対象とする遺伝子多型として、図59～62から選択されるいずれかの図に記載される遺伝子多型を用いてよい。

[0213] 検出工程(0)は、前述する発明の疾患危険度判定用アレイ上で、被験試料から調製したプローブとアレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出することによって行うことができる。また、被験試料は特に制限されないが、糖尿病患者であって、動脈硬化性疾患の病歴または心筋梗塞病歴がない被験者の生体試料である場合に、より本発明による利益を享受することができる。

[0214] ヒトゲノムには、極めて多くの遺伝子多型があり、そのうちのひとつだけでは、オッズ比が低く、また、頻度も限られているため、疾患危険度を予測することは不可能である。したがって、それらの遺伝子多型をばらばらに見ていたのでは、個人が有する遺伝子多型のなかに組合せとして内在している疾患と関連する因子を見つけることはできない。本発明においては、多数の母集団における解析により、疾患判定指標と

の間に有意な負の関連性を有する複数の遺伝子多型セットが存在することが明らかになったことに基づき、それらの遺伝子多型セットを疾患抵抗性因子として位置づけ、被験試料におけるこれらの特定の遺伝子多型セットを構成する遺伝子多型の存在を選択的に明らかにしたときに、はじめて、疾患抵抗性因子を顕在化させることができる。顕在化された疾患抵抗性因子は、疾患危険度判定の情報として、極めて価値が高いものである。なお、ここで、「選択的に明らかにする」とは、無数ある遺伝子多型の組合せのうち特定のものを選択して明らかにすることである。

[0215] また、顕在化工程としては、単に、該複数の遺伝子多型の、組合せにかかる遺伝子型セットを一体として明らかにすることのほか、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、疾患抵抗性因子(疾患抵抗性遺伝子多型セット)に該当するか否か(例えば0か1か)により、また、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、疾患抵抗性因子(疾患抵抗性遺伝子多型セット)に該当する場合に、その遺伝子多型セットと疾患判定指標との間に有意な負の関連性を有する頻度のオッズ比により表すことも含まれる。また、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、疾患抵抗性遺伝子多型セットに該当する場合に、疾患抵抗性遺伝子多型セットに固有の疾患判定指標の増加抑制により表わすことも含まれる。すなわち、該被験対象の遺伝子多型における疾患抵抗性遺伝子多型セットを顕在化できる方法であれば、特に制限は無い。

[0216] また、本発明に係る疾患危険度顕在化方法は、  
(i') 被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性を有する遺伝子多型または遺伝子多型セット、並びに疾患判定指標と正の関連性を有する遺伝子多型または遺伝子多型セットと照合する工程、及び  
(ii') (i') の結果に基づき、被験試料における疾患抵抗性因子または感受性因子を顕在化させる工程を有するものである。

[0217] 該工程を含む限りにおいて、他の付加的ないかなる工程を有していても本発明に含まれる。

[0218] 上記危険度顕在化方法は、さらに、(iii') 被験試料について顕在化された疾患抵抗性因子と感受性因子との偏度を算出する工程も有するものとすることができる。

[0219] 例えば、対象とする疾患が動脈硬化性疾患(好ましくは、糖尿病に起因する動脈硬化性疾患)である場合、(i')の工程は、被験試料において検出された遺伝子多型を、動脈硬化性疾患の判定指標である「頸動脈内膜中膜複合体肥厚度」(IMT)と負の関連性を有する遺伝子多型または遺伝子多型セット、並びにIMTと正の関連性を有する遺伝子多型または遺伝子多型セットと照合することによって行われる。ここで負の関連性を有する遺伝子多型セットとしては、図1～9のいずれかに記載される負の遺伝子多型セット、または図38～43のいずれかに記載される負の遺伝子多型セットを、正の関連性を有する遺伝子多型または遺伝子多型セットとしては、図19～27のいずれかに記載される正の遺伝子多型セット、または図48～51のいずれかに記載される正の遺伝子多型セットを挙げることができる。

[0220] また、例えば、対象とする疾患が心筋梗塞(好ましくは、糖尿病に起因する心筋梗塞)である場合、(i')の工程は、被験試料において検出された遺伝子多型を、心筋梗塞の判定指標と負の関連性を有する遺伝子多型または遺伝子多型セット、並びに心筋梗塞の判定指標と正の関連性を有する遺伝子多型または遺伝子多型セットと照合することによって行われる。ここで負の関連性を有する遺伝子多型セットとしては、図38～43のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを、正の関連性を有する遺伝子多型または遺伝子多型セットとしては、図50～53のいずれかに記載される正の遺伝子多型、または遺伝子多型セットの群から選択される少なくとも1つのセットを挙げることができる。

[0221] また、工程(1')に先立ち、(0')被験試料において遺伝子多型を検出する工程を有することもできる。検出工程(0')は、図38に記載する99個の遺伝子多型から選ばれる少なくとも2の遺伝子多型を対象とした検出工程とすることができる。対象とする疾患が動脈硬化性疾患(好ましくは、糖尿病に起因する動脈硬化性疾患)である場合、検出工程(0')は、例えば、図10及び図28記載の遺伝子多型、図11及び図29記載の遺伝子多型、図12及び図30記載の遺伝子多型、図13及び図31記載の遺伝子多型、図14及び図32記載の遺伝子多型、図15及び図33記載の遺伝子多型、図16及び図34記載の遺伝子多型、図17及び図35記載の遺伝子多型、または、図18及び図36記載の遺伝子多型の存在を検出する工程、または図38及び図48記載

の遺伝子多型、図39及び図49記載の遺伝子多型、図40及び図50記載の遺伝子多型、図41及び図51記載の遺伝子多型、図42及び図51記載の遺伝子多型、または、図43及び図51記載の遺伝子多型の存在を検出する工程とすることができる。

- [0222] また対象とする疾患が心筋梗塞(好ましくは、糖尿病に起因する心筋梗塞)である場合、検出工程(0')は、例えば、図59及び図70記載の遺伝子多型、図60及び図71記載の遺伝子多型、図61及び図72記載の遺伝子多型、または図62及び図73記載の遺伝子多型の存在を検出する工程とすることができる。
- [0223] また、検出工程(0')は、上記本発明に係る疾患危険度判定用アレイ上で、検体試料から調製したプローブとアレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程とすることができる。
- [0224] また、被験試料は、糖尿病であって動脈硬化性疾患または心筋梗塞病歴がない被験者の生体試料と設定すると、本発明の効果をより有効に利用することができる。
- [0225] 前述するように、本発明は、多数の母集団における解析により、疾患判定指標との間に有意な負及び正の関連性を有する複数の遺伝子多型のセットが存在することを見いだし、更にそれらをそれぞれ疾患抵抗性因子及び疾患感受性因子として位置づけ、被験試料に存在する、これらの2つに分類される遺伝子多型セットを構成する遺伝子多型の双方を組合合わせて評価したときに、はじめて、被験者の疾患危険度が顕在化できることができることが見出したことに基づく。
- [0226] 顕在化された疾患抵抗性因子(疾患抵抗性遺伝子多型セット)及び疾患感受性因子(疾患感受性遺伝子多型セット)の組合せは、疾患危険度判定の情報として、極めて価値が高いものである。
- [0227] 顕在化工程としては、単に、該複数の遺伝子多型の、組合せにかかる遺伝子型のセットを一体として明らかにすることのほか、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、所望の疾患遺伝子多型セットに該当するものであるか否かにより、また、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、所望の疾患遺伝子多型セットに該当する場合に、疾患関連遺伝子多型セットに固有の疾患判定指標との間に有意な負または正の関連性を有する頻度のオッズ比により表すことも含まれる。また、選択的に明らかにされた複数の遺伝子多型の遺伝子型が、所望の疾患

遺伝子多型セットに該当する場合に、疾患遺伝子多型セットに固有の疾患判定指標の増加度または増加抑制度により表わすことも含まれる。すなわち、被験対象の遺伝子多型について、疾患遺伝子多型セットの抵抗性及び感受性を判断し顕在化できる方法であれば、特に制限は無い。

[0228] (6) 遺伝子マーカー

(6-1) 動脈硬化性疾患抵抗性または動脈硬化性疾患感受性を示す遺伝子マーカー

本発明は、動脈硬化性疾患抵抗性を示す遺伝子マーカーを提供する。当該遺伝子マーカーは、被験試料について、動脈硬化性疾患抵抗性の遺伝子多型の検出および選択に好適に用いることができる。かかる遺伝子マーカーは、負(抵抗性)の遺伝子多型または遺伝子多型セットの中から選択される少なくとも一つの遺伝子多型を含んでなるものである。具体的には、図1～9のいずれかに記載の負の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、または図38～43のいずれかに記載の負の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。

[0229] また、本発明は、動脈硬化性疾患感受性を示す遺伝子マーカーをも提供する。当該遺伝子マーカーは、被験試料について動脈硬化性疾患感受性の遺伝子多型の検出に好適に用いることができる。かかる遺伝子マーカーは、正(感受性)の遺伝子多型または遺伝子多型セットの中から選択される少なくとも一つの遺伝子多型を含んでなるものである。具体的には、図19～27のいずれかに記載の正の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、または図48～51のいずれかに記載の正の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。かかる動脈硬化性疾患感受性を示す遺伝子マーカーは、上記動脈硬化性疾患抵抗性を示す遺伝子マーカーと組み合わせて使用することが好ましい。

[0230] これらの動脈硬化性疾患抵抗性を示す遺伝子マーカー及び動脈硬化性疾患感受性を示す遺伝子マーカーは、それぞれ動脈硬化性疾患抵抗性の遺伝子多型の検出や選択及び動脈硬化性疾患感受性の遺伝子多型の検出や選択に用いられるほか、動脈硬化性疾患の判定や測定のための遺伝子マーカーなどとしても用いること

ができる。

[0231] (5-2) 心筋梗塞性疾患抵抗性または心筋梗塞性疾患感受性を示す遺伝子マーカー

本発明は、また心筋梗塞抵抗性を示す遺伝子マーカーを提供する。当該遺伝子マーカーは、被験試料について、心筋梗塞抵抗性の遺伝子多型の検出や選択に好適に用いることができる。かかる遺伝子マーカーは、負(抵抗性)の遺伝子多型または遺伝子多型セットの中から選択される少なくとも一つの遺伝子多型を含んでなるものである。具体的には、図56～58のいずれかの図に記載の負の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。

[0232] さらに本発明は、心筋梗塞感受性を示す遺伝子マーカーをも提供する。当該遺伝子マーカーは、被験試料について心筋梗塞感受性の遺伝子多型の検出に好適に用いることができる。かかる遺伝子マーカーは、正(感受性)の遺伝子多型または遺伝子多型セットの中から選択される少なくとも一つの遺伝子多型を含んでなるものである。具体的には、図63～68のいずれかに記載の正の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む。かかる心筋梗塞感受性を示す遺伝子マーカーは、上記心筋梗塞抵抗性を示す遺伝子マーカーと組み合わせて使用することが好ましい。

[0233] これらの心筋梗塞抵抗性を示す遺伝子マーカー及び心筋梗塞感受性を示す遺伝子マーカーは、それぞれ心筋梗塞抵抗性の遺伝子多型の検出や選択及び心筋梗塞感受性の遺伝子多型の検出や選択に用いられるほか、心筋梗塞の判定や測定のための遺伝子マーカーなどとしても用いることができる。

[0234] なお、本発明のマーカーには下記の態様が含まれる：

(A) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、または図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー。

(B) (1) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗

性の遺伝子マーカー、及び図19～27のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含むか、または

(2) 図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー、及び図48～55のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、動脈硬化性疾患感受性の遺伝子マーカー。

(C) 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子マーカー。

(D) 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子マーカー、及び図63～69のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、心筋梗塞感受性の遺伝子マーカー。

[0235] (7) 遺伝子多型分析用キット

本発明の遺伝子多型分析用キットは、負の遺伝子多型又は負の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含むことを特徴とする。当該分析用キットは、疾患抵抗性遺伝子多型を検出する分析用キットとして好適に用いることができる。あらに、本発明の遺伝子多型分析用キットは、正の遺伝子多型、又は正の遺伝子多型セット群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対、あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含むことができる。かかる分析用キットは、疾患抵抗性遺伝子多型及び疾患感受性遺伝子多型を検出する分析用キットとして、好適に用いることができる。

[0236] 負の遺伝子多型セットの一例として、図1～9のいずれかに記載する負の遺伝子多

型セットの群から選択される少なくとも一の遺伝子多型セット、または図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを挙げることができる。かかる遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む分析用キットは、動脈硬化性疾患抵抗性遺伝子多型を検出する分析用キットとして好適に用いることができる。またこの場合、さらに図19～27に記載される正の遺伝子多型セット群から選択される少なくとも1の遺伝子多型セットを構成する遺伝子、または図50～53に記載される正の遺伝子多型セット群から選択される少なくとも1の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含むことができる。かかる分析用キットは、動脈硬化性疾患抵抗性遺伝子多型及び動脈硬化性疾患感受性遺伝子多型を検出する分析用キットとして好適に用いることができる。

[0237] さらに負の遺伝子多型セットの他の一例として、図56～58のいずれかに記載する、負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを挙げができる。かかる遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む分析用キットは、心筋梗塞抵抗性遺伝子多型を検出する分析用キットとして好適に用いることができる。またこの場合、さらに図63～68に記載される正の遺伝子多型セット群から選択される少なくとも1の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含むことができる。かかる分析用キットは、心筋梗塞抵抗性遺伝子多型及び心筋梗塞感受性遺伝子多型を検出する分析用キットとして好適に用いることができる

本発明の遺伝子多型分析用キットは、上記のようなプライマー対あるいは核酸プローブを含んでなるものであれば、本発明の目的を損なわない範囲で、他の核酸又は試薬等を適宜含んでいてもよい。なお、負の遺伝子多型セットや正の遺伝子多型セットを検出するためには、これらのセットを構成する少なくとも2個の遺伝子多型を検出するためのプライマーまたはプローブを有することが必要である。一つの遺伝子多型について遺伝子多型検出用プライマーを含み、他の遺伝子多型について遺伝子

多型検出用プローブを含むようなものであっても、前記遺伝子多型を分析できる限り、本発明の遺伝子多型分析用キットに含まれる。

[0238] 遺伝子多型の検出は上記遺伝子多型検出工程で記載したいずれの方法をも用いることができるが、PCRを用いるhybrigen法、TaqMan法、インベーダー法や、遺伝子多型を有する遺伝子に特異的にハイブリダイズする核酸プローブを用いるASP-PCR法などを好適に用いることができる。

[0239] したがって、遺伝子多型分析用キットには、これらの遺伝子多系を検出する工程に用いるプライマーおよびプローブの少なくともいずれかが含まれる必要がある。遺伝子多型を検出するためのPCR法においては、もつとも3'側に遺伝子多型の核酸を配置するのが一般的であるが、Allele Specific Primer(ASP)-PCR法のように、3'末端側から2番目に遺伝子多型を有するプライマーを配置する方法などのように、遺伝子多型をプライマーのどの領域に置くか、また、検出する遺伝子以外にどのような核酸配列を入れるかなどプライマーのデザインには、遺伝子多型を識別できる限りとくに制限はない。プローブのデザインにおいても同様に、遺伝子多型を識別できる限りその配列に制限なく、用いることができる。

[0240] なお、本発明の分析キットには下記の態様が含まれる；

(A) (1) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、または

(2) 図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、

を含む、動脈硬化性疾患抵抗性遺伝子多型分析用キット。

[0241] (B) (1) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、ならびに図1～9～27のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは

当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、または  
(2)図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少  
なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対  
あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、ならびに図48  
～51のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一  
の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは  
当該遺伝子に特異的にハイブリダイズし得る核酸プローブ  
を含む、動脈硬化性疾患抵抗性遺伝子多型または感受性遺伝子多型分析用キット  
。

[0242] (C)図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少  
なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対  
あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む、心筋梗  
塞抵抗性遺伝子多型分析用キット。

[0243] (D)図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少  
なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対  
あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、ならびに図63  
～69のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一  
の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは  
当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む、心筋梗塞抵抗性  
遺伝子多型または感受性遺伝子多型分析用キット。

### 実施例

[0244] 以下、本発明の実施例により本発明をより具体的に説明するが、本発明はこれらの  
実施例に何ら限定されるものではない。

[0245] 実施例1 動脈硬化性疾患の危険度の判定

#### 1. 動脈硬化性疾患に正または負の関連性のある遺伝子多型の決定

##### <解析手順>

糖尿病疾患例において、頸動脈内膜中膜複合体肥厚度(IMT)の肥厚が同年代の  
健常群に比べ、0.2mm以上肥厚しているものをCase(発症例)、それ以外をControl

(未発症例)とした。これらのCase群(発症例群)及びControl群(未発症例群)について、下記に説明する操作で遺伝子多型を検出した。

[0246] ここでは、説明の都合上、例としてACE遺伝子(略称:ACE ID)の挿入遺伝子多型の場合を用いて説明するが、他の遺伝子についても同様な操作を行った。

[0247] (1) ACE遺伝子断片增幅用プライマーの合成

パーキンエルマー社DNAシンセサイザー392型を用いて、ホスホアミダイト法にて、ヒトACE遺伝子の配列と相同な配列を有するプライマー1(CTGGAGACCA CTCCCCATCCT TTCT)およびヒトACE遺伝子の配列と相補的な配列を有する配列(プライマー2:GATGTGGCCATCACATT CGT CAGAT)を合成した。プライマー2は5'側にビオチンを連結している。合成はマニュアルに従い、各種オリゴヌクレオチドの脱保護はアンモニア水で55°C、一夜実施した。オリゴヌクレオチドの精製はパーキンエルマー社OPCカラムにて実施した。

[0248] (2) リンカーアームを有するオリゴヌクレオチドの合成

パーキンエルマー社DNAシンセサイザー392型を用いて、ホスホアミダイト法にて、ヒトACE遺伝子の配列と相補的な配列を有する、5'末端にリンカーアームを有するオリゴヌクレオチド(Iプローブ:TTACAGGCGT GATA CAGTCA C)およびヒトACE遺伝子の配列と相補的な配列を有する5'末端にリンカーアームを有するオリゴヌクレオチド(Dプローブ:GCCTATA CAG TCACTTTAT GTG)を合成した。

[0249] この際、特表昭60-500717号公報に開示された合成法により、デオキシリジンから化学合成により調製した、5位にリンカーアームを有するウリジンを上記オリゴヌクレオチドに導入した。合成されたリンカーオリゴヌクレオチドはアンモニア水で50°C、一夜脱保護処理を施した後、パーキンエルマー社OPCカラムにて実施した。

[0250] (3) プローブオリゴヌクレオチドのマイクロタイタープレートへの結合

上記(2)で合成したプローブオリゴヌクレオチドについて、そのリンカーアームを介して、マイクロタイタープレート内面へ結合した。オリゴヌクレオチドを50mM硼酸緩衝液(pH10)、100mM  $MgCl_2$  の溶液に0.05pmol/ $\mu l$ になるように希釀し、マイクロタイタープレート(MicroFLUOR B;ダイナテック社)に各100 $\mu l$ ずつ分注し、15時間程度室温に放置することで、リンカーオリゴヌクレオチドをマイクロタイタープレ-

ト内面に結合させた。その後、0. 1pmol dNTP、0. 5%PVP、5×SSCに置換して、非特異反応を抑えるためのブロッキングを室温で2時間程度行った。最後に1×SSCで洗浄して乾燥させた。

[0251] (4) PCR法によるヒトACE遺伝子断片の増幅

ヒト白血球より抽出したDNA溶液をサンプルとして使用して、下記試薬を添加して、下記条件によりヒトACE遺伝子断片を増幅した。

[0252] <試薬>以下の試薬を含む25  $\mu$  l溶液を調製した。

[0253] プライマー1 10pmol

プライマー2 10pmol

×10緩衝液 2. 5  $\mu$  l

2mM dNTP 2. 5  $\mu$  l

Tth DNAポリメラーゼ 1U

抽出DNA溶液 100ng。

[0254] <増幅条件>

94°C・2分

94°C・1分、65°C・2分、75°C・1. 5分(35サイクル)。

[0255] (5)マイクロタイタープレート中でのハイブリダイゼーション

(4)の増幅反応液を10倍に希釈し、0. 3N NaOH中で増幅反応液中の増幅されたDNAを変性させ、各サンプルごとに増幅反応液20  $\mu$  lを200mMクエン酸-リン酸緩衝液(pH6. 0)、2%SDS、750mM NaCl、0. 1%NaN<sub>3</sub>の溶液100  $\mu$  lに加えて、上記(3)の捕捉プローブが結合したマイクロタイタープレートに投入した。蒸発を防ぐため流動パラフィンを重層し、55°Cで30分間振盪させた。これによって、増幅されたヒトACE遺伝子断片が、固定化されたプローブによって特異的にマイクロタイタープレートに捕捉される。

[0256] 次に、2×SSC(pH7. 0)、1%SDSに置換し同様に蒸発を防ぐため、流動パラフィンを重層し、55°Cで20分間振盪させた。その後、アルカリフォスファターゼを標識したストレプトアビシン(DAKO製D0396)を50mMトリス-塩酸緩衝液(pH7. 5)、1%BSAの溶液で2000倍に希釈した溶液100  $\mu$  lと置換し、37°Cで15分間振盪させた

。これによって、捕捉されたDNAのビオチンにアルカリ性ホスファターゼ標識したストレプトアビシンが特異的に結合した。250  $\mu$ lの50mMトリス—塩酸緩衝液(pH7. 5)、0. 025% Tween20溶液で3回洗浄後、アルカリ性ホスファターゼの発光基質であるジオキセタン化合物(商品名:Lumiphos480; Lumigen 社)50  $\mu$ lを注入し、37°Cで15分間保温後に暗室中でホトンカウンター(浜松ホトニクス社)で発光量を測定した。

[0257] これらの工程はすべて、DNAプローブ自動測定システム(日本臨床検査自動化学会会誌 第20巻、第728頁(1995年)を参照)により自動で行われ、所要時間は約2.5時間であった。

[0258] (6)ヒトACE遺伝子挿入多型測定検討結果

上記(4)にて増幅し、(5)にて検出された結果からACE遺伝子多型を検討する。I signalはIプローブと反応した増幅核酸断片の検出シグナル、DsignalはDプローブと反応した核酸断片の検出シグナルとし、各プローブで得られたシグナルの比の対数をとることにより塩基多型が同定できる。すなわち、シグナルの比の対数が0. 0以上のものはI型(挿入)のホモ遺伝子型、-1. 0以下はD型(欠失)のホモ遺伝子型、-1. 0～0. 0の間がI型とD型のヘテロ遺伝子型と同定できる。

[0259] 2. SNPの解析

2-1. Odds比とKai値の測定

各SNPのgenotypeそれぞれについて、Odds比とKai値を求めた。

「genotype」は、既に説明したルールに従って1～3の番号で示す。例えば、I/Dで表されるACE遺伝子の場合、

1:DD(Dのホモ接合体)

2:I/D(ヘテロ)

3:II(Iのホモ接合体)

とした。なお、I/D+DD(Dアリールを有するもの)は「12」と、II+I/D(Iアリールを有するもの)は「23」と示す。

[0260] 「Odds比」は、SNPのgenotypeがCaseあるいはControlに偏る比率を意味する。Odds比が2ならば、Caseでのgenotypeの存在頻度がControlの2倍であることを示す。

「Kai値」は、SNPのgenotypeがCaseあるいはControlに偏る統計学的な有意性を意

味する。Kai値が3.8以上ならばP<0.05となる。

[0261] Kai 5.024 → p<0.025

Kai 6.635 → p<0.01

Kai 10.827 → p<0.001。

[0262] なお、Kai値とOdds比の違いは、Odds比は存在頻度に依存しないが、Kai値は被験者数が多くなるとOdds比が低くなることがある点である。例えば、被験者数が500例の場合にCase群の1%に見られるA多型と、被験者数が5000例の場合にCase群の0.5%に見られるB多型では、同じOdds比でも、B多型の方がKai値が高くなる場合がある。

[0263] 2-2 疾患感受性遺伝子多型、及び疾患抵抗性遺伝子多型の抽出

上記で求めた各SNPのgenotypeに関するOdds比とKai値をもとに、Odds比>2.0、Kai値>3.8以上を選択条件にして、疾患感受性SNP (Case群のうちOdds比>2.0のもの)、疾患抵抗性SNP (Control群のOdds比>2.0のもの)を抽出した。

[0264] 2-3 SNPの多重解析

まず論文から動脈硬化性疾患に関するキーワード検索等によって200個のSNPを選択し、さらに99個まで絞り込んだ。次いで、この99個の中から任意に2~3つのSNPを選択し、この2つのSNPの各遺伝子型(1, 2, 3)毎のすべての組み合わせについて、Case群及びControl群の各々についてOdds比及びKai値を求めた(2つのSNPで $4 \times 4 = 16$ 通り、 $99 \times 98 \times 16 / 2$ 通り)。この特定のSNPの組合せをSSNP (Synergetic SNP)と称することにする。

[0265] 2-4 有意なSSNPの抽出

(1) 上記で得られたSSNPを、Kai値の高い順にならべる(たとえば10個のSSNPをソートした場合、上から1番目、2番目、3番目…とする)。

(2) Case群、及びControl群の各群について、説明可能なSSNP(説明SSNP)を求める。

[0266] 具体的には、下記の場合を例にして説明する:

1番目のSSNPで、症例番号5、10、15、20及び28の5名が説明可能とする、

2番目のSSNPで、症例番号5、6及び30の3名が説明可能とする、

5番目のSSNPで、症例番号5、10、及び15の3名が説明可能とする。

[0267] 上記の場合、まず1番目のSSNPは「説明SSNP」として採用される。2番目のSNPは、1番目のSSNPでは説明できない症例番号6と30が説明できるので、「説明SSNP」となる。一方、5番目のSSNPは、それで説明できるものは、すべての1番目の「説明SSNP」で説明可能となるため、採用しない。このようにして、Case群、及びControl群の各群について、2-3で求めたSSNPから「説明SSNP」を抽出した。

[0268] 2-5 無効なSNP多型の棄却

2-4で求めた「説明SSNP」の群に含まれるSNPの多型の頻度(%)を計算し、頻度が少ないものを棄却した。

[0269] 例えば、1番目SSNP[ACE-II と MTHFRのTT]

2番目SSNP[ACE-II と eNOS(略称:N1)のCアリール]

3番目SSNP[ACE-Iアリール とeNOS(略称:N1)のCアリール] とすると、ACE-IIが3. 5%、ACE-Iアリールが0. 5%となる。そこでACE-IIのみ採用し、ACE-Iアリールは棄却する(II多型か、Iアリールどちらか、頻度の高い方がより重要と考える)。

[0270] 2-6 SSNPの再評価

2-3で求めたSSNP群から、2-5で棄却されたSNPの多型を含むSSNPを抽出し、これらのSSNPを棄却した。残りのSSNP群で再度2-4と2-5の操作を行い、説明SSNPを抽出した。

[0271] 斯くして得られたCase群(疾患発症群)に関する説明SSNP(動脈硬化性疾患に正の関連性を有する遺伝子多型)をリストにしたのが図19であり、Control群(疾患未発症群)に関する説明SSNP(動脈硬化性疾患に負の関連性を有する遺伝子多型)をリストにしたのが図1である。

[0272] 3. 説明SNPを用いた動脈硬化性疾患の判定

心筋梗塞の病歴のない糖尿病患者(被験者)を対象として、上述の如く、動脈硬化性疾患の感受性遺伝子多型(「説明SSNP」)、動脈硬化性疾患の抵抗性遺伝子多型(「説明SSNP」)を抽出した。そして各被験者が有する感受性遺伝子多型(「説明SSNP」)、及び動脈硬化性疾患の抵抗性遺伝子多型(「説明SSNP」)の個数を、各

々図19及び図1を参照してもとめ、感受性遺伝子多型の数が抵抗性遺伝子多型の数より多い場合を「動脈硬化性疾患高危険度例」、抵抗性遺伝子多型の数が感受性遺伝子多型の数が多い場合を「動脈硬化性疾患低危険度例」とする。

[0273] 一方で、これらの各被験者について、頸動脈内膜中膜複合体肥厚度を測定し、健常人の頸動脈内膜中膜複合体肥厚度平均よりも0.2mm以上厚い場合を「動脈硬化疾患例」、それ以外を「非動脈硬化疾患例」に分類した。

[0274] 各被験者について、動脈硬化疾患例及び非動脈硬化疾患例のそれぞれが、動脈硬化性疾患高危険度例及び動脈硬化性疾患低危険度例と一致する割合を、「Sensitivity率(正答率)」として求めた。また、動脈硬化疾患例及び非動脈硬化疾患例のそれぞれが、動脈硬化性疾患高危険度例及び動脈硬化性疾患低危険度例と一致しない割合を、「false positive率(誤答率)」として求めた。

[0275] <解析結果>

解析結果を図77及び表3に示す。

[0276] [表3]

|        | 感受性+抵抗性 |      | 感受性  |      | 抵抗性  |      |
|--------|---------|------|------|------|------|------|
|        | 誤答率     | 正答率  | 誤答率  | 正答率  | 誤答率  | 正答率  |
| Odds2  | 22.8    | 73.9 | 76.9 | 91.8 | 56.8 | 87.2 |
| Odds3  | 15.5    | 63.4 | 33.3 | 70.9 | 25.9 | 66.7 |
| Odds4  | 10.6    | 61.9 | 20.5 | 68.9 | 15.8 | 56.9 |
| Odds5  | 6.6     | 52.4 | 9.7  | 54.9 | 10.1 | 51.8 |
| Odds6  | 4.9     | 47.8 | 6.2  | 47.6 | 9.4  | 51.3 |
| Odds7  | 3.5     | 42.4 | 3.1  | 40.3 | 5.5  | 48.7 |
| Odds8  | 2.8     | 37.2 | 2.6  | 35.2 | 3.9  | 43.1 |
| Odds9  | 2.5     | 36.4 | 2.6  | 35.2 | 3.4  | 40.5 |
| Odds10 | 2.1     | 34   | 1.5  | 32   | 3    | 39   |

[0277] 図77において、□は感受性「説明SSNP」のみ、△は抵抗性「説明SSNP」のみ、●は感受性「説明SSNP」及び抵抗性「説明SSNP」の両者で、推定したSensitivity率(正答率)、及びfalse positive率(誤答率)の計算値を示す。各プロットは、それぞれOdds比2～10で抽出した遺伝子多型のセットに基づく計算値を示す。

[0278] 図77及び表3に示されるように、感受性遺伝子多型(説明SSNP)及び抵抗性遺伝子多型(説明SSNP)を共に用いて得られた値は、誤答率が著しく低下した。このことから感受性「説明SSNP」と抵抗性「説明SSNP」とを組み合わせて用いて動脈硬化性疾患の評価を行うことにより、精度の高い判定が行えることが明らかになった。

## 産業上の利用可能性

[0279] 本発明によると、疾患の発症しやすさや、進行しやすさ等を疾患危険度として高精度に判定でき、疾患発症の予防および治療に利用できる疾患危険度判定方法、疾患危険度判定装置および疾患危険度判定プログラムを提供することができる。当該方法は、糖尿病患者またはその境界型糖尿病の患者について、動脈硬化性疾患や心筋梗塞性疾患の発症しやすさや進行しやすさ等を精度高く判定でき、当該疾患の発症の予防や治療に有効に利用することができる。

[0280] 従来の疾患危険度の判定方法は、疾患の感受性(正の関連性)のみを指標として疾患と危険度を判定するものであったのに対し、本発明においては、疾患に対する抵抗性(負の関連性)も指標に含めたものである。これにより、本発明においては、疾患危険度を感受性だけでなく抵抗性からも判定して総合的に判断することが可能になり、疾患の危険度についてより的確でかつ精度の高い結果を得ることが可能になる。

[0281] また、本発明は、動脈硬化性疾患、特に糖尿病に起因する動脈硬化性疾患の危険度判定に有用な疾患抵抗性因子及び感受性因子、並びに心筋梗塞性疾患、特に糖尿病に起因する心筋梗塞性疾患の危険度判定に有用な疾患抵抗性因子及び感受性因子を、遺伝子多型の点から明らかにし、動脈硬化性疾患抵抗性遺伝子多型セット及び動脈硬化性疾患感受性遺伝子多型または遺伝子多型セット、並びに心筋梗塞性疾患抵抗性遺伝子多型セット及び心筋梗塞性疾患感受性遺伝子多型または遺伝子多型セットとして、これを提供するものである。これにより、被験者、特に糖尿病患者またはその傾向のある患者(糖尿病境界型)について、動脈硬化性疾患または心筋梗塞性疾患の危険度の判定、予防及び治療などを、被験者の特質に応じて、より適切な態様で行うことが可能となる。本発明が提供する疾患危険度判定方法、疾患危険度判定用アレイ、疾患抵抗性遺伝子マーカー及び疾患感受性遺伝子マーカー、疾患抵抗性遺伝子多型または疾患感受性遺伝子多型分析用キットは、動脈硬化性疾患または心筋梗塞性疾患の危険度の判定の実施に有用なものである。

[0282] なお、かかる本発明の技術は、本明細書に一例として掲げる動脈硬化性疾患や心筋梗塞性疾患だけでなく、他の疾患においても同様に適用できる。特に、糖尿病に

起因して発症する、脳梗塞、糖尿病性腎症、糖尿病性網膜症、糖尿病性神経症などにおいても同様に適用することができる。

## 請求の範囲

[1] 予め指定された複数の遺伝子多型の中から、遺伝子型を指定して所定数の遺伝子多型を抜き出し、遺伝子多型セットとする第1ステップと、  
疾患の指標、及び遺伝子型を有する遺伝子多型を対応させて要素とした集合を用いて、前記遺伝子多型セットに関して、前記疾患の指標との関連性、及び該関連性の統計的有意性を計算する第2ステップと、  
計算された前記関連性が、負の関連性であり且つ有意である場合に、前記遺伝子多型セットを構成する遺伝子多型を疾患危険度判定用遺伝子多型として採用する第3ステップとを含む疾患危険度判定用遺伝子多型の決定方法。

[2] 計算された前記関連性が、正の関連性であり且つ有意である場合に、前記遺伝子多型セットを構成する遺伝子多型を疾患危険度判定用遺伝子多型として採用する第4ステップをさらに含む請求項1に記載の疾患危険度判定用遺伝子多型の決定方法。  
。

[3] 前記関連性がオッズ比であり、  
前記有意性がカイ二乗値であり、  
前記疾患が動脈硬化性疾患であり、且つ  
前記疾患の指標が頸動脈内膜中膜複合体肥厚度である請求項2に記載の疾患危険度判定用遺伝子多型の決定方法。

[4] 前記関連性がオッズ比であり、  
前記有意性がカイ二乗値であり、  
前記疾患が心筋梗塞であり、且つ  
前記疾患の指標が、心電図上の陳旧性(abnormal Q)心筋梗塞波形の有無若しくは心筋梗塞の既往の有無である請求項2に記載の疾患危険度判定用遺伝子多型の決定方法。

[5] 前記第1ステップにおいて重複せずに前記遺伝子多型セットを決定する毎に、前記第1～第3ステップを繰り返し、  
前記第1ステップが、前記遺伝子多型セットよりも少ない数の遺伝子多型から構成される遺伝子多型セットが既に、前記第3ステップにおいて、疾患危険度判定用遺伝

子多型として採用されているか否かを判断する第5ステップを含み、  
前記判断の結果、採用されると判断した場合、前記第3ステップを実行しない  
請求項3に記載の疾患危険度判定用遺伝子多型の決定方法。

[6] 前記第1ステップにおいて重複せずに前記遺伝子多型セットを決定する毎に、前記  
第1～第4ステップを繰り返し、  
前記第1ステップが、前記遺伝子多型セットよりも少ない数の遺伝子多型から構成  
される遺伝子多型セットが既に、前記第3ステップにおいて、疾患危険度判定用遺伝  
子多型として採用されているか否かを判断する第6ステップを含み、  
前記判断の結果、採用されると判断した場合、前記第4ステップを実行しない  
請求項4に記載の疾患危険度判定用遺伝子多型の決定方法。

[7] 前記第3ステップで採用された前記遺伝子多型毎の寄与率を計算する第7ステップ  
を含み、  
前記寄与率に応じて、前記疾患危険度判定用遺伝子多型を取捨選択する請求項  
3に記載の疾患危険度判定用遺伝子多型の決定方法。

[8] 前記第5ステップで採用された前記遺伝子多型毎の寄与率を計算する第8ステップ  
を含み、  
前記寄与率に応じて、前記疾患危険度判定用遺伝子多型を取捨選択する請求項  
4に記載の疾患危険度判定用遺伝子多型の決定方法。

[9] 前記遺伝子多型の前記遺伝子型毎の前記寄与率の中の最大値であるか否かに応  
じて、前記疾患危険度判定用遺伝子多型を取捨選択する第9ステップを含む請求項  
7に記載の疾患危険度判定用遺伝子多型の決定方法。

[10] 前記遺伝子多型の前記遺伝子型毎の前記寄与率の中の最大値であるか否かに応  
じて、前記疾患危険度判定用遺伝子多型を取捨選択する第10ステップを含む請求  
項8に記載の疾患危険度判定用遺伝子多型の決定方法。

[11] 新たな疾患の指標及び遺伝子型を有する遺伝子多型を取得した場合、  
新たに取得した前記遺伝子型を有する遺伝子多型を用いて、前記集合を検索し、  
該当する疾患の指標を取得し、該疾患の指標及び前記新たな疾患の指標を用いて  
疾患危険度判定用遺伝子多型を決定する請求項1に記載の疾患危険度判定用遺

伝子多型の決定方法。

- [12] 図1～9のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するか、または図38～43のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、動脈硬化性疾患危険度判定用アレイ。
- [13] 図10～18のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するか、図44～47のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、請求項12に記載の動脈硬化性疾患危険度判定用アレイ。
- [14] さらに、図19～27のいずれか一つの図に記載する、正(感受性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するか、図63～69のいずれか一つの図に記載する、正(感受性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するものである、請求項12に記載する動脈硬化性疾患危険度判定用アレイ。
- [15] 遺伝子図28～37のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するか、図52～55のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、請求項12に記載の動脈硬化性疾患危険度判定用アレイ。
- [16] 図56～58のいずれか一つの図に記載する負(抵抗性)の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有する、心筋梗塞危険度判定用アレイ。
- [17] 図59～62のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、請求項16に記載の心筋梗塞危険度判定用アレイ。
- [18] さらに、図63～69のいずれか一つの図に記載する、正(感受性)の遺伝子多型セ

ットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型に対する検出用プローブを有するものである、請求項16に記載する心筋梗塞危険度判定用アレイ。

- [19] 図70～73のいずれか一つの図に記載される遺伝子多型群の半数以上の遺伝子多型に対する検出用プローブを有するものである、請求項16に記載の心筋梗塞危険度判定用アレイ。
- [20] (b) 被験試料について検出された遺伝子多型を、疾患判定指標と負の関連性を有する遺伝子多型又は負の関連性を有する遺伝子多型セットと照合する工程、  
を有する疾患危険度の判定方法。
- [21] 更に、
  - (b') 疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子多型セットと照合する工程、及び
  - (c) (b') の結果から、検出した遺伝子多型のセットについて、負の関連性と正の関連性とを対比してその偏度を算出する工程  
を有する請求項20に記載する疾患危険度の判定方法。
- [22] 更に、(d) 得られた偏度から疾患危険度を評価する工程を有する請求項21に記載する疾患危険度の判定方法。
- [23] 対象の疾患が動脈硬化性疾患であって、疾患判定指標と負の関連性を有する遺伝子多型セットとして、図1～9のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセット、または図38～43のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットを用いる、請求項20に記載する疾患危険度の判定方法。
- [24] 対象の疾患が、動脈硬化性疾患であって、
  - (1) 疾患判定指標と負の関連性を有する遺伝子多型セットが、図1～9のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであり、且つ疾患判定指標と正の関連性を有する遺伝子多型又は正の関連性を有する遺伝子多型セットが、図19～27のいずれかに記載される正の遺伝子多型セットの群から選択される少なくとも1つの遺伝子多型セットであるか、または

(2) 疾患判定指標と負の関連性を有する遺伝子多型セットが、図38～43のいずれかに記載される負の遺伝子多型セットの群から選択される少なくとも1つのセットであり、且つ疾患判定指標と正の関連性を有する遺伝子多型または正の関連性を有する遺伝子多型セットが、図48～51のいずれかに記載される正の遺伝子多型セットの群から選択される少なくとも1つの遺伝子多型セットである、請求項21に記載する動脈硬化性疾患危険度の判定方法。

- [25] 工程(b)または(b')に先立ち、(a)被験試料において遺伝子多型を検出する工程を有する請求項20または21に記載する疾患危険度の判定方法。
- [26] 検出工程(a)が、図37に記載する99個の遺伝子多型から選ばれる2または3以上の遺伝子多型を対象とした検出工程である請求項25に記載する疾患危険度の判定方法。
- [27] 対象の疾患が、動脈硬化性疾患であって、  
検出工程(a)が、請求項12～15のいずれかに記載する動脈硬化性疾患危険度判定用アレイ上で、被験試料から調製したプローブと、アレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程である請求項25に記載する疾患危険度の判定方法。
- [28] 対象の疾患が、心筋梗塞であって、  
検出工程(a)が、請求項16～19のいずれかに記載する心筋梗塞危険度判定用アレイ上で、被験試料から調製したプローブと、アレイ上の遺伝子多型検出用プローブとをハイブリダイズさせて遺伝子多型を検出する工程である請求項25に記載する疾患危険度の判定方法。
- [29] 遺伝子型を含む1以上の遺伝子多型から構成される第1の遺伝子多型セット、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参照テーブルを記録した記録部と、  
被験試料の遺伝子型を有する遺伝子多型を取得するインターフェース部と、  
取得された前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第2の遺伝子多型セットと、前記参照テーブルにおける前記第1の遺伝子多型セットとを照合する処理部とを備え、

前記処理部が、照合の結果一致する前記第1の遺伝子多型セットがある場合に、該第1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計算することを特徴とする疾患危険度判定装置。

- [30] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に正の関連性を有する遺伝子多型セットに、動脈硬化性疾患感受性として頸動脈内膜中膜複合体肥厚度が正常範囲をこえる頻度のオッズ比を対応させたものである請求項29に記載の疾患危険度判定装置。
- [31] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に正の関連性を有する遺伝子多型セットに、動脈硬化性疾患感受性として頸動脈内膜中膜複合体肥厚度の増加を対応させたものである請求項29に記載の疾患危険度判定装置。
- [32] 判定対象の疾患が動脈硬化性疾患であり、  
頸動脈内膜中膜複合体肥厚度との間に正の関連性を有する前記第1の遺伝子多型セットが、頸動脈内膜中膜複合体肥厚度が正常範囲をこえる頻度のオッズ比が一定以上である遺伝子多型セット、および、頸動脈内膜中膜複合体肥厚度の平均値に有意差がある遺伝子多型セット、の少なくともいずれかである、請求項29に記載の疾患危険度判定装置。
- [33] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有する遺伝子多型セットに、動脈硬化性疾患抵抗性として頸動脈内膜中膜複合体肥厚度が正常範囲以下の頻度のオッズ比を対応させたものである請求項29に記載の疾患危険度判定装置。
- [34] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有する遺伝子多型又はそのセットに、動脈硬化性疾患抵抗性として頸動脈内膜中膜複合体肥厚度の増加抑制を対応させたものである請求項29に記載の疾患危険度判定装置。

[35] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、環境因子の有無または数値と、動脈硬化性疾患感受性及び動脈硬化性疾患抵抗性とを対応させたテーブルであり、且つ、  
入力された、被験対象の環境因子の有無または数値と、前記参照テーブルにおける環境因子の有無または数値とを照合し、該環境因子の有無または数値に対応する動脈硬化感受性及び動脈硬化抵抗性から、該動脈硬化危険度を検出する検出手段をさらに備えた請求項29に記載の疾患危険度判定装置。

[36] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度と、動脈硬化性疾患感受性及び動脈硬化性疾患抵抗性とを対応させたデータテーブルであり、且つ、  
入力された、被験者の頸動脈内膜中膜複合体肥厚度と、前記参照テーブルにおける頸動脈内膜中膜複合体肥厚度とを照合し、頸動脈内膜中膜複合体肥厚度に対応する動脈硬化感受性及び動脈硬化抵抗性から、該動脈硬化危険度を検出する検出手段をさらに備えた請求項29に記載の疾患危険度判定装置。

[37] 判定対象の疾患が動脈硬化性疾患であり、  
被験者の頸動脈内膜中膜複合体肥厚度を測定し、測定結果の前記頸動脈内膜中膜複合体肥厚度を前記インターフェース部に供給する血管壁膜圧測定手段を備えた請求項39に記載の疾患危険度判定装置。

[38] コンピュータに、  
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  
遺伝子型を有する1以上の遺伝子多型から構成される第1の遺伝子多型セット、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参照テーブルを記録部に記録する機能、  
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第2の遺伝子多型セットと、前記参照テーブルにおける前記第1の遺伝子多型セットとを照合する機能、及び  
照合の結果一致する前記第1の遺伝子多型セットがある場合に、該第1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計

算する機能とを実現させるための疾患危険度判定プログラム。

[39] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に正の関連性を有する遺伝子多型セットに、動脈硬化感受性として頸動脈内膜中膜複合体肥厚度が正常範囲をこえる頻度のオッズ比を対応させたものである請求項38に記載の疾患危険度判定プログラム。

[40] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有する遺伝子多型又はそのセットに、動脈硬化感受性として頸動脈内膜中膜複合体肥厚度の増加を対応させたものである請求項38に記載の疾患危険度判定プログラム。

[41] 判定対象の疾患が動脈硬化性疾患であり、  
頸動脈内膜中膜複合体肥厚度との間に有意な正の関連性を有する遺伝子多型セットが、頸動脈内膜中膜複合体肥厚度が正常範囲をこえる頻度のオッズ比が一定以上である遺伝子多型又はそのセット、および、頸動脈内膜中膜複合体肥厚度の平均値に有意差がある遺伝子多型又はそのセットの、少なくともいずれかである、請求項38に記載の疾患危険度判定プログラム。

[42] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有する遺伝子多型又はそのセットに、動脈硬化抵抗性として頸動脈内膜中膜複合体肥厚度が正常範囲以下の頻度のオッズ比を対応させたものである請求項38に記載の疾患危険度判定プログラム。

[43] 判定対象の疾患が動脈硬化性疾患であり、  
前記参照テーブルが、頸動脈内膜中膜複合体肥厚度との間に負の関連性を有する遺伝子多型又はそのセットに、動脈硬化抵抗性として頸動脈内膜中膜複合体肥厚度の増加抑制を対応させたものである請求項38に記載の疾患危険度判定プログラム。

[44] 判定対象の疾患が動脈硬化性疾患であり、

頸動脈内膜中膜複合体肥厚度が、健常人の頸動脈内膜中膜複合体肥厚度平均よりも0.2mm以上厚い場合を動脈硬化疾患例と定義し、それ以外を非動脈硬化疾患例と定義し、かつ、検出した遺伝子多型について、負の遺伝子多型又はそのセットが正の遺伝子多型又はそのセットより多い場合を動脈硬化性疾患低危険度例、正の遺伝子多型又はそのセットが負の遺伝子多型又はそのセットより多い場合を動脈硬化性疾患高危険度例と定義した場合に、被験対象における動脈硬化疾患例及び非動脈硬化疾患例がそれぞれ動脈硬化性疾患高危険度例及び動脈硬化性疾患低危険度例と一致する割合が30%以上及び一致しない割合が30%以下となる請求項38に記載の疾患危険度判定プログラム。

[45] コンピュータに、  
被験試料の遺伝子型を有する遺伝子多型の入力を受け付ける機能、  
遺伝子型を有する1以上の遺伝子多型から構成される第1の遺伝子多型セット、及び、該遺伝子多型セットと疾患指標との正の関連性又は負の関連性を対応させた参照テーブルを記録部に記録する機能、  
前記被験試料の遺伝子多型の中の所定数の遺伝子多型から構成される第2の遺伝子多型セットと、前記参照テーブルにおける前記第1の遺伝子多型セットとを照合する機能、及び、  
照合の結果一致する前記第1の遺伝子多型セットがある場合に、該第1の遺伝子多型セットの正の関連性又は負の関連性に応じて、前記被験試料に関する偏度を計算する機能とを実現させるための疾患危険度判定プログラム  
を記録したコンピュータ読取可能な記録媒体。

[46] 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型、または図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー。

[47] (1) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー、及び図19～27のいずれかに記載する正の遺伝子多型セットの

群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含むか、または

(2) 図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む動脈硬化性疾患抵抗性の遺伝子マーカー、及び図48～55のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、動脈硬化性疾患感受性の遺伝子マーカー。

[48] 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子マーカー。

[49] 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む心筋梗塞抵抗性の遺伝子マーカー、及び図63～69のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子多型を含む、心筋梗塞感受性の遺伝子マーカー。

[50] (1) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、または

(2) 図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、を含む、動脈硬化性疾患抵抗性遺伝子多型分析用キット。

[51] (1) 図1～9のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、ならびに図19～27のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、または

(2) 図38～43のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、ならびに図48～51のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む、動脈硬化性疾患抵抗性遺伝子多型または感受性遺伝子多型分析用キット。

[52] 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む、心筋梗塞抵抗性遺伝子多型分析用キット。

[53] 図56～58のいずれかに記載する負の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブ、ならびに図63～69のいずれかに記載する正の遺伝子多型セットの群から選択される少なくとも一の遺伝子多型セットを構成する遺伝子を特異的に増幅し得るプライマー対あるいは当該遺伝子に特異的にハイブリダイズし得る核酸プローブを含む、心筋梗塞抵抗性遺伝子多型または感受性遺伝子多型分析用キット。

## [図1-A]

| Num | SNP | SNP-No  | Genotype | 遺伝子系統     | SNP-No    | Genotype | 遺伝子系統     | SNP-No | Genotype | 遺伝子系統 | Kel | Odds |
|-----|-----|---------|----------|-----------|-----------|----------|-----------|--------|----------|-------|-----|------|
| 3   | 3   | 13      | 3 CF12   | 68        | 3 BKRI    | 90       | 12 IL-182 | 17.58  | -12.78   |       |     |      |
| 3   | 3   | 48      | 23 GP61  | 65        | 3 MPO     | 75       | 12 LTA2   | 14.41  | -8.27    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 23        | 3 IRS-1   | 40       | 12 FGB3   | 14.26  | -8.38    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 80        | 3 CC02    | 96       | 23 LRP1   | 13.83  | -8.18    |       |     |      |
| 2   | 10  | 12      | GP2A     | 18        | 23 S2AR   |          |           | 13.49  | -9.9     |       |     |      |
| 3   | 3   | 33      | 1 MCP1   | 35        | 1 ES2     | 38       | 3 PONA1   | 13.35  | -3       |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 75        | 12 LTA2   | 86       | 12 IL-181 | 13.31  | -2.99    |       |     |      |
| 3   | 3   | 13      | 3 CF12   | 55        | 3 MPO     | 89       | 12 PGCl2  | 13.03  | -2.23    |       |     |      |
| 3   | 3   | 73      | 1 VEGF5  | 74        | 12 LTA1   | 93       | 23 TP01   | 13.03  | -2.45    |       |     |      |
| 3   | 3   | 25      | 3 PAI    | 86        | 12 IL-181 | 96       | 23 LRP1   | 12.82  | -8.42    |       |     |      |
| 3   | 3   | 13      | 3 CF12   | 55        | 3 MPO     | 77       | 12 APN12  | 12.72  | -2.04    |       |     |      |
| 3   | 3   | 68      | 3 BKRI   | 69        | 12 CD181  | 78       | 3 ET1     | 12.38  | -9.78    |       |     |      |
| 3   | 3   | 33      | 1 MCP1   | 35        | 1 ES2     | 54       | 1 IL62    | 11.85  | -2.72    |       |     |      |
| 3   | 3   | 33      | 1 MCP1   | 50        | 1 β2AR4   | 55       | 3 MPO     | 11.54  | -2.57    |       |     |      |
| 3   | 3   | 13      | 3 CF12   | 53        | 23 β2AR-1 | 90       | 12 IL-182 | 11.51  | -2.88    |       |     |      |
| 3   | 3   | 30      | 3 FGB3   | 38        | 3 PONA1   | 54       | 1 IL62    | 10.9   | -9.9     |       |     |      |
| 3   | 3   | 25      | 3 PAI    | 38        | 3 PONA1   | 75       | 12 LTA2   | 10.8   | -4       |       |     |      |
| 3   | 3   | 13      | 3 CF12   | 48        | 1 ICAM1   | 80       | 3 CCP2    | 10.67  | -2.69    |       |     |      |
| 2   | 68  | 3 BKRI  | 75       | 12 LTA2   |           |          | 10.46     | -2.12  |          |       |     |      |
| 3   | 3   | 13      | 3 CF12   | 29        | 3 GIα3    | 40       | 12 FGB3   | 10.24  | -2.21    |       |     |      |
| 2   | 73  | 1 VEGF5 | 93       | 23 TP01   | 98        | 12 PGCl1 | 10.1      | -2.12  |          |       |     |      |
| 3   | 3   | 30      | 3 FGB3   | 93        | 23 TP01   | 98       | 12 PGCl1  | 9.69   | -13.5    |       |     |      |
| 3   | 3   | 68      | 3 BKRI   | 77        | 12 APN12  | 90       | 12 IL-182 | 9.12   | -2.71    |       |     |      |
| 3   | 3   | 73      | 1 VEGF5  | 74        | 12 LTA1   | 75       | 12 LTA2   | 8.92   | -2.32    |       |     |      |
| 2   | 68  | 3 BKRI  | 80       | 12 IL-182 |           |          | 8.82      | -2.53  |          |       |     |      |
| 3   | 3   | 68      | 3 BKRI   | 69        | 12 CD181  | 96       | 23 LRP1   | 8.79   | -3.42    |       |     |      |
| 3   | 3   | 25      | 3 PAI    | 29        | 3 GIα3    | 74       | 12 LTA1   | 8.67   | -2.18    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 5         | 3 NI      | 40       | 12 FGB3   | 10.92  | -3.81    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 5         | 3 NI      | 90       | 12 IL-182 | 12.59  | -7.54    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 8         | 3 PONA2   | 40       | 12 FGB3   | 11.38  | -3.55    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 11        | 1 PAR2    | 40       | 12 FGB3   | 12.72  | -3.92    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 12        | 3 Thm3    | 37       | 23 GPIba  | 7.09   | -3.7     |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 12        | 3 Thm3    | 40       | 12 FGB3   | 9.31   | -3.53    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 18        | 23 S2AR   | 40       | 12 FGB3   | 14.13  | -4.82    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 18        | 23 S2AR   | 90       | 12 IL-182 | 10.61  | -6.77    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 20        | 12 GSY    | 40       | 12 FGB3   | 12.72  | -3.92    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 26        | 23 NOS3   | 55       | 3 MPO     | 6.8    | -10.23   |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 26        | 23 NOS3   | 83       | 12 CG9-3  | 7.47   | -11.05   |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 26        | 23 NOS3   | 96       | 23 LRP1   | 8.69   | -9.9     |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 29        | 3 GIα3    | 40       | 12 FGB3   | 12.72  | -3.92    |       |     |      |
| 2   | 4   | 1 ESRe1 | 30       | 3 FGB3    |           |          | 8.48      | -9.9   |          |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 36        | 12 FGA1   | 40       | 12 FGB3   | 10.87  | -3.8     |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 36        | 12 FGA1   | 49       | 23 GPIba  | 8.63   | -9.9     |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 38        | 3 PONA1   | 40       | 12 FGB3   | 6.92   | -3.98    |       |     |      |
| 2   | 4   | 1 ESRe1 | 40       | 12 FGB3   |           |          | 11.43     | -3.55  |          |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 49        | 23 GP61   | 75       | 12 LTA2   | 10.88  | -9.9     |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 70        | 3 APN2    | 75       | 12 LTA2   | 9.71   | -3.29    |       |     |      |
| 3   | 3   | 4       | 1 ESRe1  | 75        | 12 LTA2   | 90       | 12 IL-182 | 10.53  | -6.7     |       |     |      |
| 2   | 10  | 12      | GP2A     | 11        | 1 PAR2    |          |           | 9.82   | -13.65   |       |     |      |
| 2   | 10  | 12      | GP3A     | 37        | 23 GPIba  |          |           | 6.92   | -9.9     |       |     |      |
| 3   | 10  | 12      | GP2A     | 38        | 3 PONA1   | 74       | 12 LTA1   | 8.63   | -9.9     |       |     |      |
| 3   | 10  | 12      | GP3A     | 41        | 12 MMP72  | 51       | 1 GPIba   | 7.71   | -11.34   |       |     |      |
| 3   | 10  | 12      | GP2A     | 41        | 12 MMP72  | 67       | 3 IA2     | 7.3    | -10.85   |       |     |      |
| 2   | 10  | 12      | GP3A     | 67        | 3 IA2     |          |           | 7.71   | -11.34   |       |     |      |
| 3   | 13  | 3       | CF12     | 21        | 1 NI0     | 40       | 12 FGB3   | 7.3    | -10.85   |       |     |      |
| 3   | 13  | 3       | CF12     | 27        | 1 NI0     | 80       | 12 IL-182 | 7.2    | -4.57    |       |     |      |
| 3   | 13  | 3       | CF12     | 49        | 23 GP61   | 53       | 23 β2AR-1 | 7.55   | -11.15   |       |     |      |
| 3   | 13  | 3       | CF12     | 49        | 23 GP61   | 77       | 12 APN12  | 7.81   | -11.47   |       |     |      |

遺伝子多型セット群

[図1-B]

|   |    |         |    |                  |      |                  |       |        |
|---|----|---------|----|------------------|------|------------------|-------|--------|
| 3 | 13 | 3 CCF12 | 55 | 3 MPO            | 68   | 3 BKRI           | 11.86 | -3.66  |
| 3 | 13 | 3 CEF12 | 68 | 3 BKRI           | 75   | 12 LTA2          | 6     | -2.77  |
| 3 | 13 | 3 BKRI  | 68 | 3 BKRI           | 84   | 23 IL1B2         | 9     | -99    |
| 2 | 17 | 1 FRI   | 29 | 3 GIA3           | 30   | 3 FBG3           | 8.93  | -99    |
| 2 | 17 | 1 FRI   | 35 | 1 ESL2           | 45   | 23 LP13          | 7.46  | -4.17  |
| 2 | 17 | 1 FRI   | 54 | 1 IL62           | 96   | 23 LRPI          | 10.83 | -5.11  |
| 2 | 17 | 1 FRI   | 70 | 3 APM2           | 45   | 4.31             | 4.31  | -99    |
| 3 | 25 | 3 PAI   | 29 | 3 GIA3           | 45   | 23 LP13          | 7.46  | -4.17  |
| 3 | 25 | 3 PAI   | 29 | 3 GIA3           | 96   | 23 LRPI          | 10.83 | -5.11  |
| 3 | 25 | 3 PAI   | 41 | 12 MMP72         | 45   | 23 LP13          | 7.46  | -4.17  |
| 2 | 25 | 3 PAI   | 42 | 3 GCLM1          | 96   | 6.54             | -99   | -99    |
| 3 | 25 | 3 PAI   | 44 | 3 CETP4          | 45   | 23 LP13          | 7.43  | -4.16  |
| 2 | 25 | 3 PAI   | 45 | 23 LP13          | 74   | 7.46             | -4.17 | -99    |
| 3 | 25 | 3 PAI   | 50 | 1 $\beta$ 2AR4   | 96   | 12 LTA1          | 8.55  | -2.43  |
| 3 | 25 | 3 PAI   | 50 | 1 $\beta$ 2AR4   | 96   | 23 LRPI          | 12.76 | -8.4   |
| 3 | 25 | 3 PAI   | 51 | 1 GP181          | 96   | 23 LRPI          | 7.69  | -11.33 |
| 3 | 25 | 3 PAI   | 67 | 3 IA2            | 96   | 23 LRPI          | 7.74  | -11.39 |
| 3 | 25 | 3 PAI   | 73 | 1 VEGF5          | 74   | 12 LTA1          | 7.22  | -0.09  |
| 3 | 25 | 3 PAI   | 73 | 1 VEGF5          | 96   | 23 LRPI          | 6.66  | -99    |
| 3 | 30 | 3 FGB3  | 36 | 12 FGA1          | 85   | 12               | 5178  | 0.84   |
| 3 | 30 | 3 FGB3  | 38 | 3 PONAI          | 50   | 1 $\beta$ 2AR4   | 7.55  | -11.15 |
| 3 | 30 | 3 FGB3  | 38 | 3 PONAI          | 75   | 12 LTA2          | 7.38  | -0.94  |
| 3 | 30 | 3 FGB3  | 38 | 3 PONAI          | 83   | 12C9-3           | 7.22  | -6.78  |
| 3 | 30 | 3 FGB3  | 38 | 3 PONAI          | 86   | 12 IL-1B1        | 7.44  | -11.01 |
| 3 | 30 | 3 FGB3  | 38 | 3 PONAI          | 93   | 23 TPO1          | 9.26  | -12.98 |
| 3 | 30 | 3 FGB3  | 38 | 3 PONAI          | 99   | 12 PGCI2         | 7.56  | -11.17 |
| 3 | 30 | 3 FGB3  | 54 | 1 IL62           | 98   | 12 PGCI1         | 7.15  | -6.73  |
| 3 | 30 | 3 FGB3  | 74 | 12 LTA1          | 99   | 12 PGCI2         | 6.96  | -6.22  |
| 3 | 30 | 3 FGB3  | 83 | 12C9-3           | 85   | 12               | 5178  | 6.64   |
| 3 | 30 | 3 FGB3  | 83 | 12C9-3           | 98   | 12 PGCI1         | 7.03  | -9.25  |
| 2 | 30 | 3 FGB3  | 85 | 12               | 5178 | 6.64             | -99   | -99    |
| 3 | 30 | 3 FGB3  | 98 | 12 PGCI1         | 99   | 12 PGCI2         | 7.56  | -11.17 |
| 3 | 33 | 1 MCP1  | 35 | 1 ESL2           | 45   | 23 LP13          | 8.41  | -9.95  |
| 2 | 33 | 1 MCP1  | 38 | 3 PONAI          | 45   | 23 LP13          | 12.34 | -2.95  |
| 3 | 33 | 1 MCP1  | 44 | 3 CETP4          | 45   | 23 LP13          | 6.81  | -3.95  |
| 2 | 33 | 1 MCP1  | 45 | 23 LP13          | 68   | 3 BKRI           | 6.81  | -3.95  |
| 3 | 33 | 1 MCP1  | 50 | 1 $\beta$ 2AR4   | 73   | 1 VEGF5          | 7.17  | -3.47  |
| 3 | 33 | 1 MCP1  | 52 | 23 MMP71         | 53   | 23 $\beta$ 2AR-1 | 6.7   | -6.42  |
| 3 | 33 | 1 MCP1  | 52 | 23 MMP71         | 99   | 12 PGCI2         | 9.46  | -6.68  |
| 3 | 33 | 1 MCP1  | 53 | 23 $\beta$ 2AR-1 | 68   | 3 BKRI           | 7.62  | -2.44  |
| 2 | 33 | 1 MCP1  | 64 | 12 TNF $\zeta$ 2 | 90   | 12 IL-1B2        | 7.43  | -3.03  |
| 3 | 33 | 1 MCP1  | 73 | 1 VEGF5          | 85   | 12               | 5178  | 6.85   |
| 3 | 49 | 12 FGB3 | 49 | 23 GP61          | 75   | 12 LTA2          | 9.48  | -12.25 |
| 3 | 49 | 23 GP61 | 68 | 3 BKRI           | 75   | 12 LTA2          | 8.88  | -99    |
| 3 | 69 | 3 BKRI  | 69 | 12 CD161         | 75   | 12 LTA2          | 10.44 | -2.17  |
| 3 | 68 | 3 BKRI  | 69 | 12 CD161         | 90   | 12 IL-1B2        | 7.62  | -2.44  |
| 2 | 68 | 3 BKRI  | 96 | 23 LRP1          | 93   | 23 TPO1          | 8.71  | -2.38  |
| 3 | 73 | 1 VEGF5 | 75 | 12 LTA2          | 93   | 23 TPO1          | 10.02 | -2.11  |
| 3 | 73 | 1 VEGF5 | 82 | 12 IL103         | 93   | 23 TPO1          | 9.23  | -2.06  |
| 3 | 73 | 1 VEGF5 | 83 | 12C9-3           | 93   | 23 TPO1          | 8.6   | -2.13  |
| 3 | 73 | 1 VEGF5 | 89 | 12 IL102         | 93   | 23 TPO1          | 7.61  | -2.27  |

## [図2-A]

|  | Num | SNP | SNP-No  | Genotype | 遺伝子略称            | SNP-No | Genotype         | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | Kai  | Odds |
|--|-----|-----|---------|----------|------------------|--------|------------------|-------|--------|----------|-------|------|------|
|  | 3   | 13  | 3 CF12  | 68       | 3 BKRI           | 90     | 12 IL-182        |       | 17.58  | -12.9    |       |      |      |
|  | 3   | 25  | 3 PAI   | 43       | 1 MTP1           | 98     | 23 LRP1          |       | 14.29  | -18.54   |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 43       | 1 MTP1           | 70     | 3 APM2           |       | 14.15  | -4.36    |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 18       | 23 S2AR          | 40     | 12 FGB3          |       | 14.13  | -4.62    |       |      |      |
|  | 2   | 10  | 12 GP3A | 18       | 23 S2AR          |        |                  |       |        |          | 13.49 | -9.9 |      |
|  | 3   | 25  | 3 PAI   | 50       | 1 $\beta$ 2AR4   | 98     | 23 LRP1          |       | 12.76  | -6.4     |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 70       | 3 APM2           | 77     | 12 APM12         |       | 12.24  | -3.4     |       |      |      |
|  | 3   | 13  | 3 CF12  | 55       | 3 MPO            | 68     | 3 BKRI           |       | 11.86  | -3.48    |       |      |      |
|  | 3   | 13  | 3 CF12  | 53       | 23 $\beta$ 2AR-1 | 68     | 3 BKRI           |       | 11.76  | -3.09    |       |      |      |
|  | 3   | 13  | 3 CF12  | 24       | 1 AGTR1-3        | 31     | 12 APE2          |       | 11.19  | -3.2     |       |      |      |
|  | 3   | 30  | 3 FGB3  | 38       | 3 PONA1          | 54     | 1 IL82           |       | 10.59  | -9.9     |       |      |      |
|  | 3   | 33  | 1 MCP1  | 36       | 1 FGA1           | 96     | 23 LRP1          |       | 10.9   | -8.93    |       |      |      |
|  | 2   | 68  | 3 BKRI  | 88       | 1 VWF2           |        |                  |       | 10.62  | -3.44    |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 11       | 1 PAR2           | 27     | 1 N10            |       | 10.6   | -4.57    |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 12       | 3 Tbm3           | 96     | 23 LRP1          |       | 10.45  | -4.98    |       |      |      |
|  | 3   | 33  | 1 MCP1  | 36       | 1 FGA1           | 38     | 3 PONA1          |       | 10.14  | -4.88    |       |      |      |
|  | 2   | 68  | 3 BKRI  | 78       | 3 ET1            |        |                  |       | 9.91   | -6.43    |       |      |      |
|  | 3   | 33  | 1 MCP1  | 53       | 23 $\beta$ 2AR-1 | 68     | 3 BKRI           |       | 9.46   | -4.88    |       |      |      |
|  | 3   | 73  | 1 VEGF5 | 89       | 12 IL102         | 90     | 12 IL-182        |       | 9.18   | -3.33    |       |      |      |
|  | 3   | 30  | 3 FGB3  | 38       | 3 PONA1          | 69     | 1 CD181          |       | 8.59   | -9.9     |       |      |      |
|  | 3   | 33  | 1 MCP1  | 35       | 1 ESL2           | 45     | 23 LPL3          |       | 8.41   | -4.95    |       |      |      |
|  | 3   | 13  | 3 CF12  | 64       | 12 TNFa2         | 82     | 1 IL103          |       | 7.82   | -11.47   |       |      |      |
|  | 3   | 13  | 3 CF12  | 49       | 23 GP61          | 77     | 12 APM12         |       | 7.81   | -11.47   |       |      |      |
|  | 3   | 13  | 3 CF12  | 27       | 1 N10            | 40     | 12 FGB3          |       | 7.59   | -3.85    |       |      |      |
|  | 2   | 25  | 3 PAI   | 45       | 23 LPL3          |        |                  |       | 7.46   | -4.17    |       |      |      |
|  | 2   | 68  | 3 BKRI  | 96       | 23 LRP1          |        |                  |       | 7.43   | -3.03    |       |      |      |
|  | 3   | 40  | 12 FGB3 | 49       | 23 GP61          | 77     | 12 APM12         |       | 7.31   | -6.85    |       |      |      |
|  | 3   | 25  | 3 PAI   | 73       | 1 VEGF5          | 87     | 12 MSI           |       | 7.27   | -4.11    |       |      |      |
|  | 3   | 33  | 1 MCP1  | 50       | 1 $\beta$ 2AR4   | 73     | 1 VEGF5          |       | 7.17   | -3.7     |       |      |      |
|  | 3   | 30  | 3 FGB3  | 54       | 1 IL62           | 98     | 12 PGC11         |       | 7.15   | -6.73    |       |      |      |
|  | 3   | 30  | 3 FGB3  | 83       | 12C9-3           | 98     | 12 PGC11         |       | 7.03   | -5.25    |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 67       | 3 IA2            | 69     | 1 CD181          |       | 6.81   | -4.42    |       |      |      |
|  | 3   | 33  | 1 MCP1  | 52       | 23 MMP71         | 53     | 23 $\beta$ 2AR-1 |       | 6.7    | -6.42    |       |      |      |
|  | 2   | 25  | 3 PAI   | 42       | 3 GCLM1          |        |                  |       | 6.54   | -9.9     |       |      |      |
|  | 2   | 17  | 1 FR1   | 88       | 1 VWF2           |        |                  |       | 4.47   | -9.9     |       |      |      |
|  | 2   | 33  | 1 MCP1  | 64       | 12 TNFa2         |        |                  |       | 4.29   | -9.9     |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 8        | 3 PONA2          | 49     | 23 GP61          |       | 7.43   | -11      |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 12       | 3 Tbm3           | 49     | 23 GP61          |       | 7.43   | -11      |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 18       | 23 S2AR          | 90     | 12 IL-182        |       | 10.67  | -6.77    |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 26       | 23 NOS3          | 83     | 1 2C9-3          |       | 7.47   | -11.05   |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 28       | 23 NOS3          | 96     | 23 LRP1          |       | 8.69   | -9.9     |       |      |      |
|  | 2   | 4   | 1 ESRa1 | 30       | 3 FGB3           |        |                  |       | 6.48   | -9.9     |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 38       | 3 PONA1          | 96     | 23 LRP1          |       | 8.92   | -7.7     |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 49       | 23 GP61          | 50     | 1 $\beta$ 2AR4   |       | 7.37   | -10.92   |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 49       | 23 GP61          | 83     | 1 2C9-3          |       | 7.49   | -11.07   |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 51       | 12 GP1-a1        | 90     | 12 IL-182        |       | 10.56  | -5.67    |       |      |      |
|  | 3   | 4   | 1 ESRa1 | 67       | 3 IA2            | 90     | 12 IL-182        |       | 7      | -6.63    |       |      |      |

負の遺伝子多型セット群

[図2-B]

|   |    |    |                |    |    |                |    |    |                |       |        |
|---|----|----|----------------|----|----|----------------|----|----|----------------|-------|--------|
| 3 | 4  | 1  | ESR <i>a</i> 1 | 67 | 3  | IA2            | 96 | 23 | LRP1           | 7.46  | -11.04 |
| 3 | 4  | 1  | ESR <i>b</i> 1 | 96 | 23 | LRP1           | 99 | 3  | PQC12          | 0.55  | -9.9   |
| 2 | 10 | 12 | GP3A           | 37 | 23 | GP <i>b</i> a  |    |    |                | 6.52  | -9.9   |
| 3 | 10 | 12 | GP3A           | 38 | 3  | PONA1          | 51 | 12 | GP <i>b</i> a1 | 6.91  | -9.9   |
| 3 | 10 | 12 | GP3A           | 38 | 3  | PONA1          | 75 | 23 | LTA2           | 8.6   | -9.9   |
| 3 | 13 | 3  | CF12           | 49 | 23 | GP61           | 53 | 23 | $\beta$ 2AR-1  | 7.55  | -11.15 |
| 3 | 13 | 3  | CF12           | 68 | 3  | BKR1           | 78 | 3  | ET1            | 7.61  | -11.23 |
| 3 | 13 | 3  | CF12           | 68 | 3  | BKR1           | 84 | 23 | IL1B2          | 9     | -9.9   |
| 3 | 13 | 3  | CF12           | 68 | 3  | BKR1           | 88 | 1  | WTF2           | 9.23  | -7.98  |
| 2 | 17 | 1  | FRI            | 22 | 1  | ESL1           |    |    |                | 4.44  | -9.9   |
| 2 | 17 | 1  | FRI            | 29 | 3  | GIa3           |    |    |                | 4.39  | -9.9   |
| 2 | 17 | 1  | FRI            | 35 | 1  | ESL2           |    |    |                | 4.43  | -9.9   |
| 2 | 17 | 1  | FRI            | 54 | 1  | IL62           |    |    |                | 4.3   | -9.9   |
| 2 | 17 | 1  | FRI            | 70 | 3  | APM2           |    |    |                | 4.37  | -9.9   |
| 3 | 25 | 3  | PA1            | 29 | 3  | GIa3           | 30 | 3  | FGB3           | 8.93  | -9.9   |
| 3 | 25 | 3  | PA1            | 29 | 3  | GIa3           | 45 | 23 | LPL3           | 7.46  | -4.17  |
| 3 | 25 | 3  | PA1            | 29 | 3  | GIa3           | 96 | 23 | LRP1           | 10.83 | -5.11  |
| 2 | 25 | 3  | PA1            | 30 | 3  | FGB3           |    |    |                | 8.95  | -9.9   |
| 3 | 25 | 3  | PA1            | 39 | 23 | CRP1           | 45 | 23 | LPL3           | 7.43  | -4.16  |
| 3 | 25 | 3  | PA1            | 41 | 12 | MMP72          | 45 | 23 | LPL3           | 7.46  | -4.17  |
| 3 | 25 | 3  | PA1            | 43 | 1  | MTP1           | 45 | 23 | LPL3           | 7.32  | -5.4   |
| 3 | 25 | 3  | PA1            | 44 | 3  | CETP4          | 45 | 23 | LPL3           | 7.43  | -4.16  |
| 3 | 25 | 3  | PA1            | 67 | 3  | IA2            | 96 | 23 | LRP1           | 7.74  | -11.39 |
| 3 | 25 | 3  | PA1            | 73 | 1  | VEGF5          | 89 | 12 | IL102          | 6.86  | -5.17  |
| 3 | 25 | 3  | PA1            | 73 | 1  | VEGF5          | 96 | 23 | LRP1           | 6.86  | -9.9   |
| 3 | 30 | 3  | FGB3           | 38 | 3  | PONA1          | 50 | 1  | $\beta$ 2AR4   | 7.55  | -11.15 |
| 3 | 30 | 3  | FGB3           | 44 | 3  | CETP4          | 88 | 1  | WTF2           | 6.72  | -9.9   |
| 3 | 30 | 3  | FGB3           | 51 | 12 | GP <i>b</i> a1 | 54 | 1  | IL62           | 7.11  | -6.71  |
| 3 | 30 | 3  | FGB3           | 51 | 12 | GP <i>b</i> a1 | 85 | 12 | 5178           | 6.67  | -9.9   |
| 3 | 30 | 3  | FGB3           | 75 | 23 | LTA2           | 88 | 1  | WTF2           | 6.7   | -9.9   |
| 3 | 30 | 3  | FGB3           | 82 | 1  | IL103          | 85 | 12 | 5178           | 6.64  | -9.9   |
| 3 | 30 | 3  | FGB3           | 83 | 1  | 2C9-3          | 85 | 12 | 5178           | 6.64  | -9.9   |
| 2 | 30 | 3  | FGB3           | 85 | 12 | 5178           |    |    |                | 6.64  | -9.9   |
| 3 | 30 | 3  | FGB3           | 97 | 12 | MT1310         | 98 | 12 | PGC11          | 7     | -5.24  |
| 3 | 33 | 1  | MCP1           | 44 | 3  | CETP4          | 45 | 23 | LPL3           | 6.81  | -3.95  |
| 2 | 33 | 1  | MCP1           | 45 | 23 | LPL3           |    |    |                | 6.81  | -3.95  |
| 3 | 68 | 3  | BKR1           | 77 | 12 | APM12          | 78 | 3  | ET1            | 8.12  | -5.68  |
| 3 | 68 | 3  | BKR1           | 77 | 12 | APM12          | 88 | 1  | WTF2           | 8.96  | -3.3   |

## [図3-A]

|  | Num. | SNP | SNP-No  | Genotype | 遺伝子略称             | SNP-No | Genotype         | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | Kai | Odds |
|--|------|-----|---------|----------|-------------------|--------|------------------|-------|--------|----------|-------|-----|------|
|  | 3    | 13  | 3 CF12  | 68       | 3 BKRI            | 90     | 12 IL-182        | 17.58 | -12.79 |          |       |     |      |
|  | 3    | 25  | 3 PAI   | 43       | 1 MTP1            | 96     | 23 LRP1          | 14.29 | -18.54 |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 23       | 3 IRS-1           | 40     | 12 FGB3          | 14.26 | -4.38  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 43       | 1 MTP1            | 70     | 3 APM2           | 14.15 | -4.36  |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 51       | 12 GP1a1          | 88     | 3 VWF2           | 14.1  | -5.98  |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 35       | 1 ESL2            | 88     | 3 VWF2           | 14.04 | -5.30  |          |       |     |      |
|  | 2    | 10  | 12 GP3A | 18       | 23 S2AR           |        |                  | 13.49 | -99    |          |       |     |      |
|  | 3    | 25  | 3 PAI   | 50       | 1 $\beta$ 2AR4    | 96     | 23 LRP1          | 12.76 | -6.4   |          |       |     |      |
|  | 3    | 68  | 3 BKRI  | 69       | 12 CD181          | 78     | 3 ET1            | 12.38 | -9.76  |          |       |     |      |
|  | 3    | 73  | 1 VEGF5 | 88       | 3 VWF2            | 90     | 12 IL-182        | 11.24 | -9.14  |          |       |     |      |
|  | 3    | 30  | 3 FGB3  | 38       | 3 PONA1           | 54     | 1 IL-82          | 10.9  | -99    |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 36       | 1 FGA1            | 96     | 23 LRP1          | 10.9  | -8.93  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 11       | 1 PAR2            | 27     | 1 N10            | 10.6  | -4.57  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 12       | 3 Tbm3            | 96     | 23 LRP1          | 10.45 | -4.93  |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 36       | 1 FGA1            | 38     | 3 PONA1          | 10.14 | -4.88  |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 53       | 23 $\beta$ 2AR-1  | 68     | 3 BKRI           | 9.46  | -4.68  |          |       |     |      |
|  | 3    | 13  | 3 CF12  | 68       | 3 BKRI            | 84     | 23 IL1B2         | 9     | -99    |          |       |     |      |
|  | 3    | 25  | 3 PAI   | 73       | 1 VEGF5           | 88     | 3 VWF2           | 8.99  | -89    |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 35       | 1 ESL2            | 45     | 23 LPL3          | 8.41  | -4.95  |          |       |     |      |
|  | 3    | 73  | 1 VEGF5 | 77       | 1 APM12           | 88     | 3 VWF2           | 7.63  | -4.23  |          |       |     |      |
|  | 3    | 13  | 3 CF12  | 64       | 12 TNF $\alpha$ 2 | 75     | 3 LTAT2          | 7.56  | -11.16 |          |       |     |      |
|  | 3    | 13  | 3 CF12  | 49       | 23 GP61           | 53     | 23 $\beta$ 2AR-1 | 7.55  | -11.15 |          |       |     |      |
|  | 2    | 25  | 3 PAI   | 45       | 23 LPL3           |        |                  | 7.46  | -4.17  |          |       |     |      |
|  | 3    | 25  | 3 PAI   | 73       | 1 VEGF5           | 87     | 12 MS1           | 7.27  | -4.11  |          |       |     |      |
|  | 3    | 13  | 3 CF12  | 27       | 1 N10             | 90     | 12 IL-182        | 7.2   | -4.57  |          |       |     |      |
|  | 3    | 33  | 1 MCP1  | 52       | 23 MMP71          | 62     | 1 APE3           | 6.92  | -6.58  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 67       | 3 IA2             | 79     | 3 RAGE3          | 6.82  | -4.42  |          |       |     |      |
|  | 3    | 25  | 3 PAI   | 38       | 3 PONA1           | 76     | 12 TS41          | 6.67  | -99    |          |       |     |      |
|  | 2    | 25  | 3 PAI   | 42       | 3 GCLM1           |        |                  | 6.54  | -99    |          |       |     |      |
|  | 2    | 17  | 1 FRI   | 22       | 1 ESL1            |        |                  | 4.44  | -99    |          |       |     |      |
|  | 2    | 31  | 1 APE2  | 88       | 3 VWF2            |        |                  | 4.41  | -99    |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 8        | 3 PONA2           | 26     | 23 NOS3          | 7.7   | -11.34 |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 18       | 23 S2AR           | 90     | 12 IL-182        | 10.67 | -6.77  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 26       | 23 NOS3           | 83     | 12C9-3           | 7.47  | -11.05 |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 26       | 23 NOS3           | 96     | 23 LRP1          | 8.69  | -99    |          |       |     |      |
|  | 2    | 4   | 1 ESRa1 | 30       | 3 FGB3            |        |                  | 6.48  | -99    |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 38       | 3 PONA1           | 98     | 23 LRP1          | 8.92  | -7.77  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 51       | 12 GP1a1          | 90     | 12 IL-182        | 10.56 | -5.67  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 67       | 3 IA2             | 90     | 12 IL-182        | 7     | -6.63  |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 67       | 3 IA2             | 96     | 23 LRP1          | 7.46  | -11.04 |          |       |     |      |
|  | 3    | 4   | 1 ESRa1 | 96       | 23 LRP1           | 99     | 3 PGCI2          | 8.55  | -99    |          |       |     |      |
|  | 2    | 10  | 12 GP3A | 37       | 23 GP1ba          |        |                  | 6.52  | -99    |          |       |     |      |
|  | 3    | 10  | 12 GP3A | 38       | 3 PONA1           | 51     | 12 GP1a1         | 8.91  | -99    |          |       |     |      |

疾の遺伝子多型セット群

[図3-B]

|   |    |   |      |    |    |                |    |    |               |       |        |     |
|---|----|---|------|----|----|----------------|----|----|---------------|-------|--------|-----|
| 2 | 17 | 1 | FR1  | 29 | 3  | G1A3           |    |    |               |       | 4.39   | -99 |
| 2 | 17 | 1 | FR1  | 35 | 1  | ES12           |    |    |               |       | 4.43   | -99 |
| 2 | 17 | 1 | FR1  | 54 | 1  | IL82           |    |    |               |       | 4.3    | -99 |
| 2 | 17 | 1 | FR1  | 70 | 3  | APM2           |    |    |               |       | 4.37   | -99 |
| 2 | 17 | 1 | FR1  | 79 | 3  | RAGE3          |    |    |               |       | 4.32   | -99 |
| 3 | 25 | 3 | PAI  | 29 | 3  | G1A3           | 30 | 3  | FGB3          | 893   | -99    |     |
| 3 | 25 | 3 | PAI  | 29 | 3  | G1A3           | 45 | 23 | LPL3          | 746   | -4.17  |     |
| 3 | 25 | 3 | PAI  | 29 | 3  | G1A3           | 96 | 23 | LRP1          | 1083  | -5.11  |     |
| 2 | 25 | 3 | PAI  | 30 | 3  | FGB3           |    |    |               | 895   | -99    |     |
| 3 | 25 | 3 | PAI  | 41 | 12 | MMP72          | 45 | 23 | LPL3          | 746   | -4.17  |     |
| 3 | 25 | 3 | PAI  | 43 | 1  | MTP1           | 45 | 23 | LPL3          | 732   | -5.4   |     |
| 3 | 25 | 3 | PAI  | 44 | 3  | CETP4          | 45 | 23 | LPL3          | 743   | -4.16  |     |
| 2 | 25 | 3 | PAI  | 56 | 12 | HANP1          |    |    |               | 4.35  | -99    |     |
| 3 | 25 | 3 | PAI  | 67 | 3  | IA2            | 96 | 23 | LRP1          | 774   | -11.39 |     |
| 3 | 25 | 3 | PAI  | 73 | 1  | VEGF5          | 96 | 23 | LRP1          | 666   | -99    |     |
| 3 | 30 | 3 | FGB3 | 38 | 3  | PONA1          | 50 | 1  | B2AR4         | 755   | -11.15 |     |
| 3 | 30 | 3 | FGB3 | 38 | 3  | PONA1          | 83 | 1  | C9-3          | 722   | -6.78  |     |
| 3 | 30 | 3 | FGB3 | 97 | 12 | MT1310         | 98 | 12 | PGC11         | 7     | -5.24  |     |
| 2 | 31 | 1 | APE2 | 48 | 23 | ICAM1          |    |    |               | 4.22  | -99    |     |
| 2 | 31 | 1 | APE2 | 53 | 23 | $\beta$ 2AR-1  |    |    |               | 4.32  | -99    |     |
| 2 | 31 | 1 | APE2 | 89 | 12 | IL102          |    |    |               | 4.24  | -99    |     |
| 2 | 31 | 1 | APE2 | 96 | 23 | LRP1           |    |    |               | 4.37  | -99    |     |
| 2 | 31 | 1 | APE2 | 99 | 3  | PGC12          |    |    |               | 4.33  | -99    |     |
| 3 | 33 | 1 | MCP1 | 44 | 3  | CETP4          | 88 | 3  | VWF2          | 12.26 | -4.57  |     |
| 3 | 33 | 1 | MCP1 | 47 | 23 | TNF $\alpha$ 1 | 88 | 3  | VWF2          | 12.32 | -4.59  |     |
| 3 | 33 | 1 | MCP1 | 50 | 1  | $\beta$ 2AR4   | 88 | 3  | VWF2          | 12.19 | -5.45  |     |
| 3 | 33 | 1 | MCP1 | 52 | 23 | MMP71          | 53 | 23 | $\beta$ 2AR-1 | 6.7   | -6.42  |     |
| 3 | 33 | 1 | MCP1 | 53 | 23 | $\beta$ 2AR-1  | 88 | 3  | VWF2          | 12.1  | -5.42  |     |
| 2 | 33 | 1 | MCP1 | 64 | 12 | TNF $\alpha$ 2 |    |    |               | 4.29  | -99    |     |
| 3 | 33 | 1 | MCP1 | 83 | 1  | IC9-3          | 88 | 3  | VWF2          | 12.31 | -4.59  |     |
| 2 | 33 | 1 | MCP1 | 88 | 3  | VWF2           |    |    |               | 12.31 | -4.59  |     |

## [図]4-A]

| Num_SNP | SNP-No | Genotype | 遺伝子名  | SNP-No | Genotype | 遺伝子名           | SNP-No | Genotype | 遺伝子名         | Kai   | Odds   |       |
|---------|--------|----------|-------|--------|----------|----------------|--------|----------|--------------|-------|--------|-------|
| 3       | 13     | 3        | CF12  | 68     | 3        | BKR1           | 90     | 12       | IL-182       | 17.58 | -12.79 |       |
| 3       | 25     | 3        | PAI   | 43     | 1        | MTP1           | 98     | 23       | LRP1         | 14.29 | -18.54 |       |
| 3       | 33     | 1        | MCP1  | 77     | 12       | APM12          | 88     | 3        | VWF2         | 14.27 | -8.01  |       |
| 3       | 33     | 1        | WCP1  | 51     | 12       | GPIa1          | 88     | 3        | VWF2         | 14.1  | -5.98  |       |
| 2       | 10     | 12       | GP3A  | 18     | 23       | SZAR           |        |          |              | 13.49 | -99    |       |
| 3       | 25     | 3        | PAI   | 50     | 1        | $\beta$ 2AR4   | 98     | 23       | LRP1         | 12.76 | -6.4   |       |
| 3       | 4      | 1        | ESRa1 | 5      | 3        | N1             | 90     | 12       | IL-182       | 12.59 | -7.54  |       |
| 3       | 68     | 3        | BKR1  | 69     | 12       | CD181          | 78     | 3        | ET1          | 12.38 | -9.76  |       |
| 3       | 73     | 1        | VEGF5 | 88     | 3        | VWF2           | 90     | 12       | IL-182       | 11.24 | -9.14  |       |
| 3       | 30     | 3        | FGB3  | 38     | 3        | PONA1          | 54     | 1        | IL62         | 10.9  | -99    |       |
| 3       | 33     | 1        | MCP1  | 36     | 1        | FGA1           | 96     | 23       | LRP1         | 10.9  | -8.93  |       |
| 3       | 30     | 3        | FGB3  | 54     | 1        | IL62           | 86     | 1        | IL-181       | 10.84 | -99    |       |
| 3       | 4      | 1        | ESRa1 | 55     | 3        | MPO            | 68     | 3        | BKR1         | 10    | -6.47  |       |
| 3       | 4      | 1        | ESRa1 | 43     | 1        | MTP1           | 68     | 3        | BKR1         | 9.84  | -6.39  |       |
| 3       | 30     | 3        | FGB3  | 38     | 3        | PONA1          | 93     | 23       | TPO1         | 9.26  | -12.99 |       |
| 3       | 13     | 3        | CF12  | 68     | 3        | BKR1           | 84     | 23       | IL1B2        | 9     | -99    |       |
| 3       | 25     | 3        | PAI   | 73     | 1        | VEGF5          | 88     | 3        | VWF2         | 8.99  | -99    |       |
| 3       | 4      | 1        | ESRa1 | 38     | 3        | PONA1          | 96     | 23       | LRP1         | 8.92  | -7.77  |       |
| 3       | 4      | 1        | ESRa1 | 26     | 23       | NOS3           | 96     | 23       | LRP1         | 8.69  | -99    |       |
| 3       | 13     | 3        | CF12  | 84     | 12       | TNF $\alpha$ 2 | 82     | 1        | IL103        | 7.82  | -11.47 |       |
| 3       | 13     | 3        | CF12  | 49     | 23       | GP61           | 77     | 12       | APM12        | 7.81  | -11.47 |       |
| 3       | 25     | 3        | PAI   | 71     | 3        | REG1           | 78     | 12       | TS41         | 7.76  | -11.41 |       |
| 3       | 4      | 1        | ESRa1 | 8      | 3        | PONA2          | 26     | 23       | NOS3         | 7.7   | -11.34 |       |
| 3       | 40     | 12       | FGB3  | 53     | 23       | $\beta$ 2AR-1  | 70     | 1        | APM2         | 7.67  | -11.31 |       |
| 3       | 4      | 1        | ESRa1 | 49     | 23       | GP61           | 83     | 1        | 2C9-3        | 7.49  | -11.07 |       |
| 3       | 40     | 12       | FGB3  | 49     | 23       | GP61           | 77     | 12       | APM12        | 7.31  | -8.85  |       |
| 3       | 33     | 1        | MCP1  | 52     | 23       | MMP71          | 62     | 1        | APe3         | 6.92  | -6.58  |       |
| 3       | 33     | 1        | MCP1  | 48     | 23       | ICAM1          | 98     | 23       | LRP1         | 6.89  | -6.55  |       |
| 3       | -      | 4        | 1     | ESRa1  | 43       | 1              | MTP1   | 73       | 1            | VEGF5 | 6.87   | -5.17 |
| 3       | 33     | 1        | MCP1  | 73     | 1        | VEGF5          | 86     | 1        | IL-1B1       | 6.7   | -6.42  |       |
| 2       | 25     | 3        | PAI   | 42     | 3        | GCLM1          |        |          |              | 6.54  | -99    |       |
| 2       | 17     | 1        | FRI   | 22     | 1        | ESL1           |        |          |              | 4.44  | -99    |       |
| 2       | 31     | 1        | APe2  | 77     | 12       | APM12          |        |          |              | 4.42  | -99    |       |
| 3       | 4      | 1        | ESRa1 | 8      | 3        | PONA2          | 49     | 23       | GP61         | 7.43  | -11    |       |
| 3       | 4      | 1        | ESRa1 | 12     | 3        | Tbm3           | 49     | 23       | GP61         | 7.43  | -11    |       |
| 3       | 4      | 1        | ESRa1 | 18     | 23       | SZAR           | 90     | 12       | IL-182       | 10.67 | -6.77  |       |
| 3       | 4      | 1        | ESRa1 | 20     | 12       | GSY            | 49     | 23       | GP61         | 7.43  | -11    |       |
| 3       | 4      | 1        | ESRa1 | 26     | 23       | NOS3           | 55     | 3        | MPO          | 6.8   | -10.23 |       |
| 3       | 4      | 1        | ESRa1 | 26     | 23       | NOS3           | 83     | 1        | 2C9-3        | 7.47  | -11.05 |       |
| 3       | 4      | 1        | ESRa1 | 26     | 23       | NOS3           | 86     | 1        | IL-181       | 7.24  | -10.76 |       |
| 2       | 4      | 1        | ESRa1 | 30     | 3        | FGB3           |        |          |              | 6.48  | -99    |       |
| 3       | 4      | 1        | ESRa1 | 38     | 3        | PONA1          | 68     | 3        | BKR1         | 8.3   | -7.38  |       |
| 3       | 4      | 1        | ESRa1 | 49     | 23       | GP61           | 50     | 1        | $\beta$ 2AR4 | 7.37  | -10.92 |       |
| 3       | 4      | 1        | ESRa1 | 49     | 23       | GP61           | 55     | 3        | MPO          | 6.85  | -10.29 |       |
| 3       | 4      | 1        | ESRa1 | 49     | 23       | GP61           | 69     | 12       | CD181        | 7.35  | -10.9  |       |

負の遺伝子多型セット群

[図4-B]

|   |    |    |       |    |    |                |    |    |               |       |        |
|---|----|----|-------|----|----|----------------|----|----|---------------|-------|--------|
| 3 | 4  | 1  | ESRa1 | 49 | 23 | GP61           | 71 | 3  | REG1          | 7.07  | -10.56 |
| 3 | 4  | 1  | ESRa1 | 49 | 23 | GP61           | 93 | 23 | TPO1          | 7.12  | -10.62 |
| 2 | 10 | 12 | GP3A  | 21 | 1  | CX37           |    |    |               | 8.92  | -99    |
| 2 | 10 | 12 | GP3A  | 37 | 23 | GP1ba          |    |    |               | 6.52  | -99    |
| 3 | 10 | 12 | GP3A  | 38 | 3  | PONA1          | 51 | 12 | GP1ba1        | 8.91  | -99    |
| 2 | 17 | 1  | FRI   | 29 | 3  | G1A3           |    |    |               | 4.39  | -99    |
| 2 | 17 | 1  | FRI   | 35 | 1  | ESL2           |    |    |               | 4.43  | -99    |
| 2 | 17 | 1  | FRI   | 54 | 1  | IL62           |    |    |               | 4.3   | -99    |
| 2 | 17 | 1  | FRI   | 79 | 3  | RAGE3          |    |    |               | 4.32  | -99    |
| 3 | 25 | 3  | PAI   | 29 | 3  | G1A3           | 30 | 3  | FGB3          | 8.93  | -99    |
| 3 | 25 | 3  | PAI   | 29 | 3  | G1A3           | 96 | 23 | LRP1          | 10.83 | -5.11  |
| 2 | 25 | 3  | PAI   | 30 | 3  | FGB3           |    |    |               | 8.95  | -99    |
| 3 | 25 | 3  | PAI   | 38 | 3  | PONA1          | 76 | 12 | TS41          | 6.67  | -99    |
| 2 | 25 | 3  | PAI   | 56 | 12 | HANP1          |    |    |               | 4.35  | -99    |
| 3 | 25 | 3  | PAI   | 73 | 1  | VEGF5          | 96 | 23 | LRP1          | 6.66  | -99    |
| 3 | 25 | 3  | PAI   | 76 | 12 | TS41           | 85 | 12 | 5178          | 6.7   | -99    |
| 3 | 30 | 3  | FGB3  | 51 | 12 | GP1a1          | 85 | 12 | 5178          | 6.67  | -99    |
| 3 | 30 | 3  | FGB3  | 82 | 1  | IL103          | 85 | 12 | 5178          | 6.64  | -99    |
| 3 | 30 | 3  | FGB3  | 82 | 1  | IL103          | 86 | 1  | IL-181        | 7.44  | -11.01 |
| 3 | 30 | 3  | FGB3  | 83 | 1  | 2C9-3          | 85 | 12 | 5178          | 6.84  | -99    |
| 2 | 30 | 3  | FGB3  | 85 | 12 | 5178           |    |    |               | 6.84  | -99    |
| 2 | 31 | 1  | APE2  | 48 | 23 | ICAM1          |    |    |               | 4.22  | -99    |
| 2 | 31 | 1  | APE2  | 53 | 23 | $\beta$ 2AR-1  |    |    |               | 4.32  | -99    |
| 2 | 31 | 1  | APE2  | 87 | 1  | MS1            |    |    |               | 4.33  | -99    |
| 2 | 31 | 1  | APE2  | 88 | 3  | VWF2           |    |    |               | 4.41  | -99    |
| 2 | 31 | 1  | APE2  | 96 | 23 | LRP1           |    |    |               | 4.37  | -99    |
| 3 | 33 | 1  | MCP1  | 35 | 1  | ESL2           | 88 | 3  | VWF2          | 14.04 | -5.36  |
| 3 | 33 | 1  | MCP1  | 50 | 1  | $\beta$ 2AR4   | 88 | 3  | VWF2          | 12.19 | -5.45  |
| 3 | 33 | 1  | MCP1  | 52 | 23 | MMP71          | 53 | 23 | $\beta$ 2AR-1 | 8.7   | -6.42  |
| 3 | 33 | 1  | MCP1  | 53 | 23 | $\beta$ 2AR-1  | 88 | 3  | VWF2          | 12.1  | -5.42  |
| 2 | 33 | 1  | MCP1  | 64 | 12 | TNF $\alpha$ 2 |    |    |               | 4.29  | -99    |

## [図5-A]

| Num | SNP-No | Genotype | SNP-Name | SNP-No | Genotype | SNP-Name     | SNP-No | Genotype | SNP-Name    | Kai   | Odds   |
|-----|--------|----------|----------|--------|----------|--------------|--------|----------|-------------|-------|--------|
| 3   | 13     | 3        | CF12     | 68     | 3        | BKR1         | 90     | 12       | IL-182      | 17.58 | -12.79 |
| 3   | 25     | 3        | PAL      | 43     | 1        | MTP1         | 96     | 23       | LRP1        | 14.29 | -18.54 |
| 3   | 33     | 1        | MCP1     | 77     | 12       | APM12        | 88     | 3        | VWF2        | 14.27 | -6.01  |
| 2   | 10     | 12       | GP3A     | 18     | 23       | S2AR         |        |          |             | 13.49 | -89    |
| 3   | 25     | 3        | PAL      | 50     | 1        | $\beta2AR4$  | 98     | 23       | LRP1        | 12.76 | -6.4   |
| 3   | 4      | 1        | ESRa1    | 5      | 3        | N1           | 90     | 12       | IL-182      | 12.59 | -7.54  |
| 3   | 68     | 3        | BKR1     | 69     | 12       | CD181        | 78     | 3        | ET1         | 12.38 | -9.76  |
| 3   | 73     | 1        | VEGF5    | 88     | 3        | VWF2         | 90     | 12       | IL-182      | 11.24 | -9.14  |
| 3   | 30     | 3        | FGB3     | 38     | 3        | PONA1        | 54     | 1        | IL62        | 10.9  | -99    |
| 3   | 33     | 1        | MCP1     | 36     | 1        | FGA1         | 96     | 23       | LRP1        | 10.9  | -8.93  |
| 3   | 30     | 3        | FGB3     | 54     | 1        | IL62         | 86     | 1        | IL-181      | 10.84 | -99    |
| 3   | 4      | 1        | ESRa1    | 55     | 3        | MPO          | 68     | 3        | BKR1        | 10    | -6.47  |
| 3   | 4      | 1        | ESRa1    | 43     | 1        | MTP1         | 68     | 3        | BKR1        | 9.84  | -6.39  |
| 3   | 13     | 3        | CF12     | 68     | 3        | BKR1         | 84     | 23       | IL1B2       | 9     | -99    |
| 3   | 25     | 3        | PAL      | 73     | 1        | VEGF5        | 88     | 3        | VWF2        | 8.99  | -99    |
| 3   | 4      | 1        | ESRa1    | 38     | 3        | PONA1        | 96     | 23       | LRP1        | 8.92  | -7.77  |
| 3   | 4      | 1        | ESRa1    | 26     | 23       | NOS3         | 96     | 23       | LRP1        | 8.69  | -99    |
| 3   | 13     | 3        | CF12     | 64     | 12       | TNFa2        | 82     | 1        | IL103       | 7.82  | -11.47 |
| 3   | 13     | 3        | CF12     | 49     | 23       | GP61         | 77     | 12       | APM12       | 7.81  | -11.47 |
| 3   | 25     | 3        | PAL      | 71     | 3        | REG1         | 76     | 12       | TS41        | 7.76  | -11.41 |
| 3   | 4      | 1        | ESRa1    | 8      | 3        | PONA2        | 26     | 23       | NOS3        | 7.7   | -11.34 |
| 3   | 40     | 12       | FGB3     | 53     | 23       | $\beta2AR-1$ | 70     | 1        | APM2        | 7.67  | -11.31 |
| 3   | 4      | 1        | ESRa1    | 49     | 23       | GP61         | 83     | 1        | 2C9-3       | 7.49  | -11.07 |
| 3   | 40     | 12       | FGB3     | 49     | 23       | GP61         | 77     | 12       | APM12       | 7.31  | -6.85  |
| 3   | 13     | 3        | CF12     | 84     | 23       | IL1B2        | 93     | 12       | TP01        | 7.01  | -6.64  |
| 3   | 33     | 1        | MCP1     | 52     | 23       | MMP71        | 62     | 1        | APE3        | 6.92  | -6.58  |
| 3   | 33     | 1        | MCP1     | 48     | 23       | CAM1         | 96     | 23       | LRP1        | 6.88  | -6.55  |
| 3   | 33     | 1        | MCP1     | 73     | 1        | VEGF5        | 86     | 1        | IL-181      | 6.7   | -6.42  |
| 2   | 25     | 3        | PAL      | 42     | 3        | GCLM1        |        |          |             | 6.54  | -99    |
| 2   | 17     | 1        | FRI      | 22     | 1        | ESL1         |        |          |             | 4.44  | -99    |
| 2   | 31     | 1        | APE2     | 77     | 12       | APM12        |        |          |             | 4.42  | -99    |
| 3   | 4      | 1        | ESRa1    | 8      | 3        | PONA2        | 49     | 23       | GP61        | 7.43  | -11    |
| 3   | 4      | 1        | ESRa1    | 12     | 3        | Tbm3         | 49     | 23       | GP61        | 7.43  | -11    |
| 3   | 4      | 1        | ESRa1    | 18     | 23       | S2AR         | 90     | 12       | IL-182      | 10.67 | -6.77  |
| 3   | 4      | 1        | ESRa1    | 20     | 12       | GSY          | 49     | 23       | GP61        | 7.43  | -11    |
| 3   | 4      | 1        | ESRa1    | 26     | 23       | NOS3         | 55     | 3        | MPO         | 6.8   | -10.23 |
| 3   | 4      | 1        | ESRa1    | 26     | 23       | NOS3         | 83     | 1        | 2C9-3       | 7.47  | -11.05 |
| 3   | 4      | 1        | ESRa1    | 26     | 23       | NOS3         | 86     | 1        | IL-181      | 7.24  | -10.76 |
| 2   | 4      | 1        | ESRa1    | 30     | 3        | FGB3         |        |          |             | 6.48  | -99    |
| 3   | 4      | 1        | ESRa1    | 38     | 3        | PONA1        | 68     | 3        | BKR1        | 8.3   | -7.36  |
| 3   | 4      | 1        | ESRa1    | 49     | 23       | GP61         | 50     | 1        | $\beta2AR4$ | 7.37  | -10.92 |
| 3   | 4      | 1        | ESRa1    | 49     | 23       | GP61         | 55     | 3        | MPO         | 6.85  | -10.29 |
| 3   | 4      | 1        | ESRa1    | 49     | 23       | GP61         | 69     | 12       | CD181       | 7.35  | -10.9  |
| 3   | 4      | 1        | ESRa1    | 71     | 3        | REG1         |        |          |             | 7.07  | -10.56 |
| 2   | 10     | 12       | GP3A     | 21     | 1        | CX37         |        |          |             | 8.92  | -99    |

負の遺伝子多型セット群

[図5-B]

|   |    |    |      |    |    |                |    |    |        |      |        |
|---|----|----|------|----|----|----------------|----|----|--------|------|--------|
| 2 | 10 | 12 | GP3A | 37 | 23 | GP1ba          |    |    |        | 6.52 | -99    |
| 2 | 17 | 1  | FRI  | 29 | 3  | G1A3           |    |    |        | 4.39 | -99    |
| 2 | 17 | 1  | FRI  | 35 | 1  | ESL2           |    |    |        | 4.43 | -99    |
| 2 | 17 | 1  | FRI  | 54 | 1  | IL62           |    |    |        | 4.3  | -99    |
| 2 | 17 | 1  | FRI  | 79 | 3  | RAGE3          |    |    |        | 4.32 | -99    |
| 3 | 25 | 3  | PAI  | 29 | 3  | G1A3           | 30 | 3  | FGB3   | 8.93 | -99    |
| 2 | 25 | 3  | PAI  | 30 | 3  | FGB3           |    |    |        | 8.95 | -99    |
| 3 | 25 | 3  | PAI  | 38 | 3  | PONA1          | 76 | 12 | TS41   | 6.67 | -99    |
| 2 | 25 | 3  | PAI  | 56 | 12 | HANP1          |    |    |        | 4.35 | -99    |
| 3 | 25 | 3  | PAI  | 67 | 3  | IA2            | 98 | 23 | LRP1   | 7.74 | -11.39 |
| 3 | 25 | 3  | PAI  | 73 | 1  | VEGF5          | 98 | 23 | LRP1   | 6.66 | -99    |
| 3 | 25 | 3  | PAI  | 76 | 12 | TS41           | 93 | 12 | TP01   | 7.21 | -10.74 |
| 3 | 30 | 3  | FGB3 | 38 | 3  | PONA1          | 99 | 12 | PGC12  | 7.56 | -11.17 |
| 3 | 30 | 3  | FGB3 | 82 | 1  | IL103          | 86 | 1  | L-181  | 7.44 | -11.01 |
| 2 | 31 | 1  | APE2 | 48 | 23 | CAM1           |    |    |        | 4.22 | -99    |
| 2 | 31 | 1  | APE2 | 53 | 23 | B2AR-1         |    |    |        | 4.32 | -99    |
| 2 | 31 | 1  | APE2 | 87 | 1  | MS1            |    |    |        | 4.33 | -99    |
| 2 | 31 | 1  | APE2 | 88 | 3  | VWF2           |    |    |        | 4.41 | -99    |
| 2 | 31 | 1  | APE2 | 96 | 23 | LRP1           |    |    |        | 4.37 | -99    |
| 3 | 33 | 1  | MCP1 | 52 | 23 | MMP71          | 53 | 23 | B2AR-1 | 6.7  | -6.42  |
| 2 | 33 | 1  | MCP1 | 84 | 12 | TNF $\alpha$ 2 |    |    |        | 4.29 | -99    |

[図6]

| Num | SNP | SNP-No | Genotype | 遺伝子座番 | SNP-No | Genotype | 遺伝子座番 | SNP-No | Genotype | 遺伝子座番 | Kai   | Odds   |
|-----|-----|--------|----------|-------|--------|----------|-------|--------|----------|-------|-------|--------|
| 3   | 13  | 3      | CF12     | 98    | 3      | BKR1     | 90    | 12     | IL-182   |       | 17.58 | -9.76  |
| 3   | 49  | 23     | GP61     | 62    | 12     | APF3     | 75    | 12     | LTA2     |       | 14.36 | -8.24  |
| 3   | 25  | 3      | PAI      | 43    | 1      | MTP1     | 96    | 23     | LRP1     |       | 14.29 | -18.54 |
| 3   | 4   | 1      | ESRe1    | 80    | 3      | GCR2     | 96    | 23     | LRP1     |       | 13.83 | -1.8   |
| 2   | 10  | 12     | GP3A     | 18    | 23     | SZAR     |       |        |          |       | 13.49 | -99    |
| 3   | 33  | 1      | MCP1     | 90    | 3      | CCR2     | 88    | 3      | VWF2     |       | 12.85 | -10.05 |
| 3   | 4   | 1      | ESRe1    | 5     | 3      | NI       | 90    | 12     | IL-182   |       | 12.59 | -7.54  |
| 3   | 25  | 3      | PAI      | 28    | 3      | GLA3     | 55    | 12     | MPO      |       | 11.73 | -7.16  |
| 3   | 13  | 3      | CF12     | 68    | 3      | BKR1     | 84    | 23     | IL1B2    | 9     |       |        |
| 3   | 73  | 1      | VEGF5    | 98    | 3      | VWF2     | 90    | 12     | IL-182   |       | 11.24 | -9.14  |
| 3   | 30  | 3      | FGB3     | 38    | 3      | PONA1    | 54    | 1      | IL62     |       | 10.9  | -99    |
| 3   | 33  | 1      | MCP1     | 36    | 1      | FGA1     | 96    | 23     | LRP1     |       | 10.9  | -8.83  |
| 3   | 70  | 1      | APM2     | 36    | 3      | IL-181   | 87    | 1      | MS1      |       | 9.57  | -13.35 |
| 3   | 13  | 3      | CF12     | 68    | 3      | TNFa2    | 82    | 1      | IL103    |       | 7.82  | -11.47 |
| 3   | 25  | 3      | PAI      | 73    | 1      | VEGF5    | 88    | 3      | VWF2     |       | 8.99  | -99    |
| 3   | 40  | 12     | FGB3     | 64    | 12     | TNFa2    | 85    | 3      | 5178     |       | 8.91  | -99    |
| 3   | 40  | 12     | FGB3     | 70    | 1      | APM2     | 83    | 1      | TP01     |       | 8.55  | -99    |
| 3   | 4   | 1      | ESRe1    | 38    | 3      | PONA1    | 68    | 3      | BKR1     |       | 8.3   | -7.36  |
| 3   | 13  | 3      | CF12     | 64    | 12     | TNFa2    | 82    | 1      | IL103    |       |       |        |
| 3   | 25  | 3      | PAI      | 71    | 3      | REG1     | 76    | 12     | TS41     |       | 7.76  | -11.41 |
| 3   | 4   | 1      | ESRe1    | 8     | 3      | PONA2    | 26    | 23     | NOS3     |       | 7.7   | -11.34 |
| 3   | 13  | 3      | CF12     | 68    | 3      | BKR1     | 78    | 3      | ET1      |       | 7.61  | -11.23 |
| 2   | 17  | 1      | FRI      | 27    | 12     | NI0      |       |        |          |       | 4.45  | -99    |
| 2   | 31  | 1      | APF2     | 88    | 3      | VWF2     |       |        |          |       | 4.41  | -99    |
| 2   | 33  | 1      | MCP1     | 64    | 12     | TNFa2    |       |        |          |       | 4.29  | -99    |
| 3   | 4   | 1      | ESRe1    | 26    | 23     | NOS3     | 96    | 23     | LRP1     |       | 8.69  | -99    |
| 2   | 4   | 1      | ESRe1    | 30    | 3      | FBG3     |       |        |          |       | 6.48  | -99    |
| 3   | 4   | 1      | ESRe1    | 49    | 23     | GP61     | 75    | 12     | LTA2     |       | 10.68 | -99    |
| 3   | 4   | 1      | ESRe1    | 96    | 23     | LRP1     | 99    | 3      | PGC12    |       | 8.55  | -99    |
| 2   | 10  | 12     | GPJA     | 21    | 1      | CX37     |       |        |          |       | 8.92  | -99    |
| 2   | 10  | 12     | GPJA     | 37    | 23     | GP1ba    |       |        |          |       | 6.52  | -99    |
| 2   | 17  | 1      | FRI      | 22    | 1      | ESL1     |       |        |          |       | 4.44  | -99    |
| 2   | 17  | 1      | FRI      | 29    | 3      | GLA3     |       |        |          |       | 4.39  | -99    |
| 2   | 17  | 1      | FRI      | 32    | 12     | MTHFR    |       |        |          |       | 4.34  | -99    |
| 2   | 17  | 1      | FRI      | 35    | 1      | ESL2     |       |        |          |       | 4.43  | -99    |
| 2   | 17  | 1      | FRI      | 48    | 12     | ICAM1    |       |        |          |       | 4.31  | -99    |
| 2   | 17  | 1      | FRI      | 54    | 1      | IL62     |       |        |          |       | 4.3   | -99    |
| 2   | 17  | 1      | FRI      | 79    | 3      | RAGE3    |       |        |          |       | 4.32  | -99    |
| 3   | 25  | 3      | PAI      | 27    | 12     | NI0      | 30    | 3      | FGB3     |       | 8.83  | -99    |
| 3   | 25  | 3      | PAI      | 29    | 3      | GLA3     | 96    | 23     | LRP1     |       | 8.93  | -99    |
| 2   | 25  | 3      | PAI      | 30    | 3      | FBG3     |       |        |          |       | 8.95  | -99    |
| 3   | 25  | 3      | PAI      | 38    | 3      | PONA1    | 76    | 12     | TS41     |       | 6.67  | -99    |
| 2   | 25  | 3      | PAI      | 42    | 3      | GCLM1    |       |        |          |       | 6.54  | -99    |
| 2   | 31  | 1      | APF2     | 96    | 23     | LRP1     |       |        |          |       | 4.35  | -99    |
| 2   | 31  | 1      | APF2     | 86    | 3      | IL-181   |       |        |          |       | 4.26  | -99    |
| 2   | 31  | 1      | APF2     | 87    | 1      | NS1      |       |        |          |       | 4.33  | -99    |
| 2   | 31  | 1      | APF2     | 89    | 12     | IL102    |       |        |          |       | 4.24  | -99    |
| 2   | 31  | 1      | APF2     | 96    | 23     | LRP1     |       |        |          |       | 4.37  | -99    |
| 2   | 31  | 1      | APF2     | 89    | 3      | PGC12    |       |        |          |       | 4.33  | -99    |
| 3   | 40  | 12     | GPB3     | 49    | 23     | GP61     | 75    | 12     | LTA2     |       | 9.48  | -13.25 |
| 3   | 49  | 23     | GP61     | 68    | 3      | EKR1     | 75    | 12     | LTA2     |       | 8.68  | -99    |

負の遺伝子多型セット群

[図7]

|   | Num | SNP | SNP-No | Genotype | 遺伝子座标 | SNP-No | Genotype | 遺伝子座标 | SNP-No | Genotype | 遺伝子座標 | Kai   | Odds   |
|---|-----|-----|--------|----------|-------|--------|----------|-------|--------|----------|-------|-------|--------|
|   | 3   | 13  | 3      | CF12     | 88    | 3      | BKR1     | 90    | 12     | IL-182   |       | 17.58 | -12.79 |
|   | 3   | 25  | 3      | PAI      | 43    | 1      | MTP1     | 96    | 23     | LRP1     |       | 14.29 | -18.54 |
|   | 3   | 4   | 1      | ESRa1    | 80    | 3      | CCR2     | 96    | 23     | LRP1     |       | 13.83 | -18    |
| 2 | 10  | 12  | GP3A   |          | 18    | 23     | S2AR     |       |        |          |       | 13.49 | -99    |
| 3 | 33  | 1   | MCP1   |          | 80    | 3      | CCR2     | 88    | 3      | VWF2     |       | 12.85 | -10.05 |
| 3 | 73  | 1   | VEGF5  |          | 88    | 3      | VWF2     | 90    | 12     | IL-182   |       | 11.24 | -9.14  |
| 3 | 30  | 3   | FGB3   |          | 38    | 3      | PONA1    | 54    | 1      | IL62     |       | 10.9  | -99    |
| 3 | 33  | 1   | MCP1   |          | 36    | 1      | FGA1     | 96    | 23     | LRP1     |       | 10.9  | -8.93  |
| 3 | 70  | 1   | APM2   |          | 86    | 3      | IL-181   | 87    | 1      | MS1      |       | 9.57  | -13.35 |
| 3 | 30  | 3   | FGB3   |          | 32    | 12     | MTHFR    | 38    | 3      | PONA1    |       | 9.51  | -13.27 |
| 3 | 4   | 1   | ESRa1  |          | 38    | 3      | PONA1    | 90    | 12     | IL-182   |       | 9.48  | -13.24 |
| 3 | 13  | 3   | CF12   |          | 68    | 3      | BKR1     | 84    | 23     | IL1B2    |       | 9     | -99    |
| 3 | 25  | 3   | PAI    |          | 73    | 1      | VEGF5    | 88    | 3      | VWF2     |       | 8.98  | -99    |
| 3 | 40  | 12  | FGB3   |          | 64    | 12     | TNFa2    | 85    | 3      | 5178     |       | 8.91  | -99    |
| 3 | 13  | 3   | CF12   |          | 64    | 12     | TNFa2    | 82    | 1      | IL103    |       | 7.82  | -11.47 |
| 3 | 4   | 1   | ESRa1  |          | 8     | 3      | PONA2    | 26    | 23     | NOS3     |       | 7.7   | -11.34 |
| 3 | 13  | 3   | CF12   |          | 88    | 3      | BKR1     | 78    | 3      | ET1      |       | 7.61  | -11.23 |
| 3 | 30  | 3   | FGB3   |          | 98    | 12     | PGC11    | 99    | 12     | PGC12    |       | 7.56  | -11.17 |
| 3 | 49  | 23  | GP81   |          | 69    | 1      | CD181    | 80    | 3      | CCR2     |       | 7.55  | -11.14 |
| 2 | 25  | 3   | PAI    |          | 42    | 3      | GCLM1    |       |        |          |       | 6.54  | -99    |
| 2 | 17  | 1   | FR1    |          | 27    | 12     | N10      |       |        |          |       | 4.45  | -99    |
| 2 | 31  | 1   | APE2   |          | 88    | 3      | VWF2     |       |        |          |       | 4.41  | -99    |
| 2 | 33  | 1   | MCP1   |          | 84    | 12     | TNFa2    |       |        |          |       | 4.29  | -99    |
| 3 | 4   | 1   | ESRa1  |          | 26    | 23     | NOS3     | 96    | 23     | LRP1     |       | 8.69  | -99    |
| 2 | 4   | 1   | ESRa1  |          | 30    | 3      | FGB3     |       |        |          |       | 6.48  | -99    |
| 2 | 10  | 12  | GP3A   |          | 21    | 1      | CX37     |       |        |          |       | 8.92  | -99    |
| 2 | 10  | 12  | GP3A   |          | 37    | 23     | GP1ba    |       |        |          |       | 6.52  | -99    |
| 2 | 17  | 1   | FR1    |          | 22    | 1      | ESL1     |       |        |          |       | 4.44  | -99    |
| 2 | 17  | 1   | FR1    |          | 29    | 3      | G1A3     |       |        |          |       | 4.39  | -99    |
| 2 | 17  | 1   | FR1    |          | 32    | 12     | MTHFR    |       |        |          |       | 4.34  | -99    |
| 2 | 17  | 1   | FR1    |          | 35    | 1      | ESL2     |       |        |          |       | 4.43  | -99    |
| 2 | 17  | 1   | FR1    |          | 48    | 12     | ICAM1    |       |        |          |       | 4.31  | -99    |
| 2 | 17  | 1   | FR1    |          | 54    | 1      | IL62     |       |        |          |       | 4.3   | -99    |
| 2 | 17  | 1   | FR1    |          | 79    | 3      | RAGE3    |       |        |          |       | 4.32  | -99    |
| 3 | 25  | 3   | PAI    |          | 27    | 12     | N10      | 30    | 3      | FGB3     |       | 8.93  | -99    |
| 3 | 25  | 3   | PAI    |          | 29    | 3      | G1A3     | 30    | 3      | FGB3     |       | 8.93  | -99    |
| 2 | 25  | 3   | PAI    |          | 30    | 3      | FGB3     |       |        |          |       | 8.95  | -99    |
| 2 | 25  | 3   | PAI    |          | 56    | 12     | HANP1    |       |        |          |       | 4.35  | -99    |
| 3 | 25  | 3   | PAI    |          | 73    | 1      | VEGF5    | 96    | 23     | LRP1     |       | 6.66  | -99    |
| 3 | 30  | 3   | FGB3   |          | 38    | 3      | PONA1    | 69    | 1      | CD181    |       | 8.59  | -99    |
| 2 | 31  | 1   | APE2   |          | 86    | 3      | IL-181   |       |        |          |       | 4.26  | -99    |
| 2 | 31  | 1   | APE2   |          | 87    | 1      | MS1      |       |        |          |       | 4.33  | -99    |
| 2 | 31  | 1   | APE2   |          | 89    | 12     | IL102    |       |        |          |       | 4.24  | -99    |
| 2 | 31  | 1   | APE2   |          | 96    | 23     | LRP1     |       |        |          |       | 4.37  | -99    |

負の遺伝子多型セット群

[図8]

|  | Num | SNP | SNP-No | Genotype | 遺伝子名 | SNP-No | Genotype       | 遺伝子名 | SNP-No | Genotype | 遺伝子名  | Kai    | Odds |
|--|-----|-----|--------|----------|------|--------|----------------|------|--------|----------|-------|--------|------|
|  | 3   | 13  | 3      | CF12     | 68   | 3      | BKRI           | 90   | 12     | IL-182   | 17.58 | -12.79 |      |
|  | 3   | 25  | 3      | PAI      | 43   | 1      | MTP1           | 96   | 23     | LRP1     | 14.29 | -18.54 |      |
|  | 3   | 4   | 1      | ESRa1    | 80   | 3      | ICCR2          | 96   | 23     | LRP1     | 13.83 | -18    |      |
|  | 2   | 10  | 12     | GP3A     | 18   | 23     | S2AR           |      |        |          | 13.49 | -99    |      |
|  | 3   | 33  | 1      | MCP1     | 80   | 3      | CCR2           | 88   | 3      | WIF2     | 12.85 | -10.05 |      |
|  | 3   | 73  | 1      | VEGF5    | 88   | 3      | WIF2           | 90   | 12     | IL-182   | 11.24 | -9.14  |      |
|  | 3   | 30  | 3      | FGB3     | 38   | 3      | PONA1          | 54   | 1      | IL62     | 10.9  | -99    |      |
|  | 3   | 70  | 1      | APM2     | 86   | 3      | IL-181         | 87   | 1      | MS1      | 9.57  | -13.35 |      |
|  | 3   | 30  | 3      | FGB3     | 32   | 12     | MTHFR          | 38   | 3      | PONA1    | 9.51  | -13.27 |      |
|  | 3   | 4   | 1      | ESRa1    | 38   | 3      | PONA1          | 90   | 12     | IL-182   | 9.48  | -13.24 |      |
|  | 3   | 13  | 3      | CF12     | 68   | 3      | BKRI           | 84   | 23     | IL1B2    | 9     | -99    |      |
|  | 3   | 25  | 3      | PAI      | 73   | 1      | VEGF5          | 88   | 3      | WIF2     | 8.99  | -99    |      |
|  | 3   | 40  | 12     | FGB3     | 64   | 12     | TNF $\alpha$ 2 | 85   | 3      |          | 5.178 | -99    |      |
|  | 3   | 4   | 1      | ESRa1    | 36   | 12     | FGA1           | 49   | 23     | GP61     | 8.63  | -99    |      |
|  | 3   | 13  | 3      | CF12     | 64   | 12     | TNF $\beta$ 2  | 82   | 1      | IL103    | 7.82  | -11.47 |      |
|  | 3   | 4   | 1      | ESRa1    | 8    | 3      | PONA2          | 26   | 23     | NOS3     | 7.7   | -11.34 |      |
|  | 3   | 13  | 3      | CF12     | 68   | 3      | BKRI           | 78   | 3      | ET1      | 7.61  | -11.23 |      |
|  | 3   | 30  | 3      | FGB3     | 98   | 12     | PGC11          | 99   | 12     | PGC12    | 7.56  | -11.17 |      |
|  | 3   | 49  | 23     | GP61     | 69   | 1      | CD181          | 80   | 3      | CCR2     | 7.55  | -11.14 |      |
|  | 2   | 25  | 3      | PAI      | 42   | 3      | GCLM1          |      |        |          | 6.54  | -99    |      |
|  | 2   | 17  | 1      | FRI      | 27   | 12     | N10            |      |        |          | 4.45  | -99    |      |
|  | 2   | 31  | 1      | APE2     | 88   | 3      | VWF2           |      |        |          | 4.41  | -99    |      |
|  | 2   | 33  | 1      | MCP1     | 64   | 12     | TNF $\beta$ 2  |      |        |          | 4.29  | -99    |      |
|  | 3   | 4   | 1      | ESRa1    | 26   | 23     | NOS3           | 96   | 23     | LRP1     | 8.69  | -99    |      |
|  | 2   | 4   | 1      | ESRa1    | 30   | 3      | FGB3           |      |        |          | 6.48  | -99    |      |
|  | 2   | 10  | 12     | GP3A     | 21   | 1      | CX37           |      |        |          | 8.92  | -99    |      |
|  | 2   | 17  | 12     | GP3A     | 37   | 23     | GP1ba          |      |        |          | 6.52  | -99    |      |
|  | 2   | 17  | 1      | FRI      | 22   | 1      | ESL1           |      |        |          | 4.44  | -99    |      |
|  | 2   | 17  | 1      | FRI      | 54   | 1      | IL62           |      |        |          | 4.39  | -99    |      |
|  | 2   | 17  | 1      | FRI      | 29   | 3      | G1A3           |      |        |          | 4.34  | -99    |      |
|  | 2   | 17  | 1      | FRI      | 32   | 12     | MTHFR          |      |        |          | 4.32  | -99    |      |
|  | 3   | 25  | 3      | PAI      | 27   | 12     | N10            | 30   | 3      | FGB3     | 8.93  | -99    |      |
|  | 3   | 25  | 3      | PAI      | 29   | 3      | G1A3           | 30   | 3      | FGB3     | 8.93  | -99    |      |
|  | 2   | 25  | 3      | PAI      | 30   | 3      | FGB3           |      |        |          | 8.95  | -99    |      |
|  | 2   | 25  | 3      | PAI      | 56   | 12     | HANP1          |      |        |          | 4.35  | -99    |      |
|  | 3   | 25  | 3      | PAI      | 73   | 1      | VEGF5          | 98   | 23     | LRP1     | 6.68  | -99    |      |
|  | 3   | 30  | 3      | FGB3     | 38   | 3      | PONA1          | 69   | 1      | CD181    | 8.59  | -99    |      |
|  | 2   | 31  | 1      | APE2     | 86   | 3      | IL-181         |      |        |          | 4.26  | -99    |      |
|  | 2   | 31  | 1      | APE2     | 87   | 1      | MS1            |      |        |          | 4.33  | -99    |      |
|  | 2   | 31  | 1      | APE2     | 89   | 12     | IL102          |      |        |          | 4.24  | -99    |      |
|  | 2   | 31  | 1      | APE2     | 96   | 23     | LRP1           |      |        |          | 4.37  | -99    |      |

負の遺伝子多型セット群

[図9]

|   | Num | SNP     | SNP-No  | Genotype | 遺伝子座番  | SNP-No    | Genotype  | 遺伝子座番 | SNP-No | Genotype | 遺伝子座番 | Kai | Odds |
|---|-----|---------|---------|----------|--------|-----------|-----------|-------|--------|----------|-------|-----|------|
|   | 3   | 13      | 3 CF12  | 68       | 3 BKRI | 90        | 12 IL-182 |       | 17.58  | -12.79   |       |     |      |
|   | 3   | 25      | 3 PAI   | 43       | 1 MTP1 | 96        | 23 LRP1   |       | 14.29  | -18.54   |       |     |      |
|   | 3   | 4       | 1 ESRa1 | 80       | 3 CCR2 | 96        | 23 LRP1   |       | 13.83  | -18      |       |     |      |
| 2 | 10  | 12 GP3A | 18      | 23 SPAR  |        |           |           |       | 13.49  | -99      |       |     |      |
| 3 | 33  | 1 MCP1  | 80      | 3 CCR2   | 88     | 3 VWF2    |           | 12.85 | -10.05 |          |       |     |      |
| 3 | 30  | 3 FGB3  | 38      | 3 PONA1  | 54     | 1 IL62    |           | 10.9  | -99    |          |       |     |      |
| 3 | 70  | 1 APM2  | 86      | 3 IL-181 | 87     | 1 MSI     |           | 9.57  | -13.35 |          |       |     |      |
| 3 | 30  | 3 FGB3  | 32      | 12 MTHFR | 38     | 3 PONA1   |           | 9.51  | -13.27 |          |       |     |      |
| 3 | 4   | 1 ESRa1 | 38      | 3 PONA1  | 90     | 12 IL-182 |           | 9.48  | -13.24 |          |       |     |      |
| 3 | 13  | 3 CF12  | 68      | 3 BKRI   | 84     | 23 IL1B2  |           | 9     | -99    |          |       |     |      |
| 3 | 25  | 3 PAI   | 73      | 1 VEGF5  | 88     | 3 VWF2    |           | 8.99  | -99    |          |       |     |      |
| 3 | 40  | 12 FGB3 | 64      | 12 TNFa2 | 85     | 3         | 5.178     | 8.91  | -99    |          |       |     |      |
| 3 | 4   | 1 ESRa1 | 36      | 12 FGA1  | 49     | 23 GPG1   |           | 8.63  | -99    |          |       |     |      |
| 3 | 13  | 3 CF12  | 64      | 12 TNFa2 | 82     | 1 IL103   |           | 7.82  | -11.47 |          |       |     |      |
| 3 | 4   | 1 ESRa1 | 8       | 3 PONA2  | 26     | 23 NOS3   |           | 7.7   | -11.34 |          |       |     |      |
| 3 | 13  | 3 CF12  | 68      | 3 BKRI   | 78     | 3 ET1     |           | 7.61  | -11.23 |          |       |     |      |
| 3 | 30  | 3 FGB3  | 98      | 12 PGCI1 | 99     | 12 PGCI2  |           | 7.56  | -11.17 |          |       |     |      |
| 3 | 49  | 23 GP61 | 69      | 1 CD181  | 80     | 3 CCR2    |           | 7.55  | -11.14 |          |       |     |      |
| 2 | 25  | 3 PAI   | 42      | 3 GCLM1  |        |           |           | 6.54  | -99    |          |       |     |      |
| 2 | 17  | 1 FRI   | 27      | 12 N10   |        |           |           | 4.45  | -99    |          |       |     |      |
| 2 | 31  | 1 APE2  | 88      | 3 VWF2   |        |           |           | 4.41  | -99    |          |       |     |      |
| 2 | 33  | 1 MCP1  | 64      | 12 TNFa2 |        |           |           | 4.29  | -99    |          |       |     |      |
| 3 | 4   | 1 ESRa1 | 26      | 23 NOS3  | 96     | 23 LRP1   |           | 8.69  | -99    |          |       |     |      |
| 2 | 4   | 1 ESRa1 | 30      | 3 FGB3   |        |           |           | 6.48  | -99    |          |       |     |      |
| 2 | 10  | 12 GP3A | 21      | 1 CX37   |        |           |           | 6.92  | -99    |          |       |     |      |
| 2 | 10  | 12 GP3A | 37      | 23 GPIba |        |           |           | 6.52  | -99    |          |       |     |      |
| 2 | 17  | 1 FRI   | 22      | 1 ESL1   |        |           |           | 4.44  | -99    |          |       |     |      |
| 2 | 17  | 1 FRI   | 29      | 3 GIA3   |        |           |           | 4.39  | -99    |          |       |     |      |
| 2 | 17  | 1 FRI   | 32      | 12 MTHFR |        |           |           | 4.34  | -99    |          |       |     |      |
| 2 | 17  | 1 FRI   | 35      | 1 ESL2   |        |           |           | 4.43  | -99    |          |       |     |      |
| 3 | 25  | 3 PAI   | 27      | 12 N10   | 30     | 3 FGB3    |           | 4.31  | -99    |          |       |     |      |
| 3 | 25  | 3 PAI   | 29      | 3 GIA3   | 30     | 3 FGB3    |           | 8.93  | -99    |          |       |     |      |
| 2 | 25  | 3 PAI   | 30      | 3 FGB3   |        |           |           | 8.95  | -99    |          |       |     |      |
| 2 | 25  | 3 PAI   | 56      | 12 HANP1 |        |           |           | 4.35  | -99    |          |       |     |      |
| 3 | 25  | 3 PAI   | 73      | 1 VEGF5  | 96     | 23 LRP1   |           | 6.86  | -99    |          |       |     |      |
| 3 | 30  | 3 FGB3  | 38      | 3 PONA1  | 69     | 1 CD181   |           | 8.59  | -99    |          |       |     |      |
| 2 | 31  | 1 APE2  | 86      | 3 IL-181 |        |           |           | 4.26  | -99    |          |       |     |      |
| 2 | 31  | 1 APE2  | 87      | 1 MSI    |        |           |           | 4.33  | -99    |          |       |     |      |
| 2 | 31  | 1 APE2  | 89      | 12 IL102 |        |           |           | 4.24  | -99    |          |       |     |      |
| 2 | 31  | 1 APE2  | 96      | 23 LRP1  |        |           |           | 4.37  | -99    |          |       |     |      |

負の遺伝子多型セット群

[図10]

| SNP-No | Genotype |
|--------|----------|
| 13     | 3        |
| 68     | 3        |
| 75     | 12       |
| 73     | 1        |
| 55     | 3        |
| 93     | 23       |
| 33     | 1        |
| 4      | 1        |
| 40     | 12       |
| 25     | 3        |
| 77     | 12       |
| 90     | 12       |
| 74     | 12       |
| 38     | 3        |
| 29     | 3        |
| 99     | 12       |
| 69     | 12       |
| 50     | 1        |
| 35     | 1        |
| 96     | 23       |
| 53     | 23       |
| 45     | 23       |
| 30     | 3        |
| 10     | 12       |
| 80     | 3        |
| 54     | 1        |
| 83     | 1        |
| 48     | 1        |
| 86     | 12       |
| 49     | 23       |
| 76     | 23       |
| 82     | 12       |
| 18     | 23       |
| 27     | 1        |
| 89     | 12       |
| 11     | 1        |
| 98     | 12       |
| 12     | 3        |
| 41     | 12       |
| 70     | 3        |
| 51     | 1        |
| 67     | 3        |
| 52     | 23       |
| 44     | 3        |
| 37     | 23       |
| 26     | 23       |
| 5      | 3        |
| 78     | 3        |
| 36     | 12       |
| 42     | 3        |
| 17     | 1        |
| 8      | 3        |
| 20     | 12       |
| 23     | 3        |
| 85     | 12       |
| 64     | 12       |
| 84     | 23       |

[図11]

| SNP-No | Genotype |
|--------|----------|
| 68     | 3        |
| 13     | 3        |
| 4      | 1        |
| 33     | 1        |
| 25     | 3        |
| 96     | 23       |
| 73     | 1        |
| 88     | 1        |
| 77     | 12       |
| 45     | 23       |
| 24     | 1        |
| 31     | 12       |
| 53     | 23       |
| 40     | 12       |
| 90     | 12       |
| 18     | 23       |
| 70     | 3        |
| 30     | 3        |
| 50     | 1        |
| 27     | 1        |
| 38     | 3        |
| 10     | 12       |
| 78     | 3        |
| 49     | 23       |
| 89     | 12       |
| 43     | 1        |
| 64     | 12       |
| 36     | 1        |
| 55     | 3        |
| 67     | 3        |
| 42     | 3        |
| 51     | 12       |
| 29     | 3        |
| 98     | 12       |
| 52     | 23       |
| 44     | 3        |
| 17     | 1        |
| 87     | 12       |
| 69     | 1        |
| 11     | 1        |
| 83     | 1        |
| 54     | 1        |
| 82     | 1        |
| 35     | 1        |
| 12     | 3        |
| 75     | 23       |
| 37     | 23       |
| 26     | 23       |
| 97     | 12       |
| 41     | 12       |
| 39     | 23       |
| 85     | 12       |
| 84     | 23       |
| 22     | 1        |
| 8      | 3        |
| 99     | 3        |

[図12]

| SNP-No | Genotype |
|--------|----------|
| 4      | 1        |
| 33     | 1        |
| 25     | 3        |
| 88     | 3        |
| 13     | 3        |
| 68     | 3        |
| 90     | 12       |
| 96     | 23       |
| 38     | 3        |
| 53     | 23       |
| 73     | 1        |
| 45     | 23       |
| 43     | 1        |
| 30     | 3        |
| 10     | 12       |
| 27     | 1        |
| 40     | 12       |
| 23     | 3        |
| 69     | 12       |
| 78     | 3        |
| 51     | 12       |
| 36     | 1        |
| 70     | 3        |
| 18     | 23       |
| 35     | 1        |
| 64     | 12       |
| 67     | 3        |
| 75     | 3        |
| 29     | 3        |
| 50     | 1        |
| 79     | 3        |
| 11     | 1        |
| 49     | 23       |
| 17     | 1        |
| 31     | 1        |
| 52     | 23       |
| 77     | 1        |
| 83     | 1        |
| 42     | 3        |
| 98     | 12       |
| 44     | 3        |
| 87     | 12       |
| 26     | 23       |
| 84     | 23       |
| 37     | 23       |
| 62     | 1        |
| 12     | 3        |
| 47     | 23       |
| 97     | 12       |
| 76     | 12       |
| 99     | 3        |
| 41     | 12       |
| 54     | 1        |
| 8      | 3        |
| 22     | 1        |
| 48     | 23       |
| 89     | 12       |
| 56     | 12       |

[図13]

| SNP-No | Genotype |
|--------|----------|
| 33     | 1        |
| 4      | 1        |
| 88     | 3        |
| 25     | 3        |
| 68     | 3        |
| 73     | 1        |
| 96     | 23       |
| 90     | 12       |
| 13     | 3        |
| 10     | 12       |
| 30     | 3        |
| 43     | 1        |
| 49     | 23       |
| 38     | 3        |
| 77     | 12       |
| 53     | 23       |
| 86     | 1        |
| 82     | 1        |
| 64     | 12       |
| 69     | 12       |
| 40     | 12       |
| 18     | 23       |
| 50     | 1        |
| 78     | 3        |
| 26     | 23       |
| 51     | 12       |
| 76     | 12       |
| 52     | 23       |
| 29     | 3        |
| 48     | 23       |
| 35     | 1        |
| 17     | 1        |
| 31     | 1        |
| 42     | 3        |
| 54     | 1        |
| 70     | 1        |
| 55     | 3        |
| 36     | 1        |
| 85     | 12       |
| 71     | 3        |
| 21     | 1        |
| 5      | 3        |
| 62     | 1        |
| 84     | 23       |
| 93     | 23       |
| 37     | 23       |
| 83     | 1        |
| 8      | 3        |
| 22     | 1        |
| 79     | 3        |
| 87     | 1        |
| 56     | 12       |
| 12     | 3        |
| 20     | 12       |

[図14]

| SNP-No | Genotype |
|--------|----------|
| 33     | 1        |
| 4      | 1        |
| 13     | 3        |
| 68     | 3        |
| 25     | 3        |
| 96     | 23       |
| 90     | 12       |
| 88     | 3        |
| 77     | 12       |
| 73     | 1        |
| 10     | 12       |
| 49     | 23       |
| 30     | 3        |
| 86     | 1        |
| 18     | 23       |
| 38     | 3        |
| 82     | 1        |
| 64     | 12       |
| 93     | 12       |
| 84     | 23       |
| 53     | 23       |
| 69     | 12       |
| 40     | 12       |
| 78     | 3        |
| 43     | 1        |
| 52     | 23       |
| 76     | 12       |
| 26     | 23       |
| 50     | 1        |
| 48     | 23       |
| 36     | 1        |
| 17     | 1        |
| 31     | 1        |
| 54     | 1        |
| 42     | 3        |
| 70     | 1        |
| 55     | 3        |
| 21     | 1        |
| 62     | 1        |
| 5      | 3        |
| 71     | 3        |
| 37     | 23       |
| 99     | 12       |
| 83     | 1        |
| 8      | 3        |
| 29     | 3        |
| 67     | 3        |
| 35     | 1        |
| 22     | 1        |
| 79     | 3        |
| 87     | 1        |
| 12     | 3        |
| 20     | 12       |
| 56     | 12       |

[図15]

| SNP-No | Genotype |
|--------|----------|
| 25     | 3        |
| 90     | 12       |
| 68     | 3        |
| 4      | 1        |
| 96     | 23       |
| 33     | 1        |
| 13     | 3        |
| 88     | 3        |
| 75     | 12       |
| 49     | 23       |
| 10     | 12       |
| 80     | 3        |
| 73     | 1        |
| 70     | 1        |
| 29     | 3        |
| 38     | 3        |
| 36     | 1        |
| 40     | 12       |
| 64     | 12       |
| 55     | 12       |
| 30     | 3        |
| 62     | 12       |
| 86     | 3        |
| 87     | 1        |
| 5      | 3        |
| 18     | 23       |
| 43     | 1        |
| 76     | 12       |
| 26     | 23       |
| 17     | 1        |
| 31     | 1        |
| 93     | 1        |
| 71     | 3        |
| 82     | 1        |
| 54     | 1        |
| 78     | 3        |
| 21     | 1        |
| 8      | 3        |
| 84     | 23       |
| 37     | 23       |
| 42     | 3        |
| 85     | 3        |
| 99     | 3        |
| 27     | 12       |
| 56     | 12       |
| 89     | 12       |
| 35     | 1        |
| 48     | 12       |
| 22     | 1        |
| 32     | 12       |
| 79     | 3        |

[図16]

| SNP-No | Genotype |
|--------|----------|
| 96     | 23       |
| 90     | 12       |
| 13     | 3        |
| 25     | 3        |
| 33     | 1        |
| 68     | 3        |
| 88     | 3        |
| 80     | 3        |
| 4      | 1        |
| 30     | 3        |
| 10     | 12       |
| 73     | 1        |
| 38     | 3        |
| 36     | 1        |
| 64     | 12       |
| 43     | 1        |
| 86     | 3        |
| 87     | 1        |
| 18     | 23       |
| 70     | 1        |
| 69     | 1        |
| 42     | 3        |
| 49     | 23       |
| 26     | 23       |
| 78     | 3        |
| 17     | 1        |
| 31     | 1        |
| 82     | 1        |
| 84     | 23       |
| 99     | 12       |
| 98     | 12       |
| 21     | 1        |
| 8      | 3        |
| 32     | 12       |
| 37     | 23       |
| 40     | 12       |
| 85     | 3        |
| 54     | 1        |
| 29     | 3        |
| 27     | 12       |
| 89     | 12       |
| 56     | 12       |
| 35     | 1        |
| 48     | 12       |
| 22     | 1        |
| 79     | 3        |

[図17]

| SNP-No | Genotype |
|--------|----------|
| 90     | 12       |
| 13     | 3        |
| 25     | 3        |
| 88     | 3        |
| 68     | 3        |
| 80     | 3        |
| 4      | 1        |
| 96     | 23       |
| 30     | 3        |
| 10     | 12       |
| 33     | 1        |
| 73     | 1        |
| 38     | 3        |
| 64     | 12       |
| 86     | 3        |
| 87     | 1        |
| 43     | 1        |
| 70     | 1        |
| 18     | 23       |
| 49     | 23       |
| 69     | 1        |
| 42     | 3        |
| 26     | 23       |
| 78     | 3        |
| 17     | 1        |
| 31     | 1        |
| 82     | 1        |
| 99     | 12       |
| 98     | 12       |
| 21     | 1        |
| 8      | 3        |
| 84     | 23       |
| 32     | 12       |
| 37     | 23       |
| 40     | 12       |
| 85     | 3        |
| 54     | 1        |
| 36     | 12       |
| 29     | 3        |
| 27     | 12       |
| 89     | 12       |
| 56     | 12       |
| 35     | 1        |
| 48     | 12       |
| 22     | 1        |
| 79     | 3        |

[図18]

| SNP-No | Genotype |
|--------|----------|
| 13     | 3        |
| 25     | 3        |
| 68     | 3        |
| 80     | 3        |
| 90     | 12       |
| 4      | 1        |
| 96     | 23       |
| 88     | 3        |
| 33     | 1        |
| 30     | 3        |
| 10     | 12       |
| 38     | 3        |
| 64     | 12       |
| 86     | 3        |
| 87     | 1        |
| 43     | 1        |
| 70     | 1        |
| 18     | 23       |
| 49     | 23       |
| 73     | 1        |
| 69     | 1        |
| 42     | 3        |
| 26     | 23       |
| 78     | 3        |
| 17     | 1        |
| 31     | 1        |
| 82     | 1        |
| 99     | 12       |
| 98     | 12       |
| 21     | 1        |
| 8      | 3        |
| 84     | 23       |
| 32     | 12       |
| 37     | 23       |
| 40     | 12       |
| 85     | 3        |
| 54     | 1        |
| 36     | 12       |
| 29     | 3        |
| 27     | 12       |
| 89     | 12       |
| 56     | 12       |
| 35     | 1        |
| 48     | 12       |
| 22     | 1        |
| 79     | 3        |

## [図19-A]

|  | Num | SNP | SNP-No   | Genotype | 遺伝子型       | SNP-No | Genotype | 遺伝子型  | SNP-No | Genotype | 遺伝子型 | Kai | Ords |
|--|-----|-----|----------|----------|------------|--------|----------|-------|--------|----------|------|-----|------|
|  | 3   | 8   | 12 PONA2 | 24       | 12 AGTR1-3 | 31     | 3 APE2   | 14.56 | 521    |          |      |     |      |
|  | 2   | 9   | 12 PONA2 | 31       | 3 APE2     |        | 12 IA2   | 13.32 | 442    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 33       | 4 MCP1     | 67     | 12 IA2   | 13.29 | 444    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 49       | 3 FGFB3    | 67     | 12 IA2   | 13.08 | 277    |          |      |     |      |
|  | 3   | 33  | 3 MCP1   | 67       | 12 IA2     | 68     | 12 EKRI  | 12.91 | 272    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 40       | 3 FGFB3    | 51     | 23 GP1e1 | 12.03 | 259    |          |      |     |      |
|  | 2   | 53  | 1 B2AR-1 | 70       | 12 APM2    |        | 12 EKRI  | 11.84 | 338    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 67       | 12 IA2     | 96     | 1 LRP1   | 11.43 | 241    |          |      |     |      |
|  | 3   | 33  | 3 MCP1   | 51       | 23 GP1e1   | 68     | 12 EKRI  | 10.78 | 242    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 17       | 3 FRI      | 30     | 1 FGFB3  | 10.74 | 239    |          |      |     |      |
|  | 3   | 53  | 1 B2AR-1 | 84       | 1 IL1B2    | 98     | 3 PGC11  | 10.34 | 249    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 26       | 1 NOS3     | 30     | 1 FGFB3  | 10.26 | 248    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 4        | 23 ESRA1   | 30     | 1 FGFB3  | 10.05 | 236    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 51       | 23 GP1e1   | 96     | 1 LRP1   | 10.03 | 222    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 75       | 3 LTa2     | 67     | 23 MS1   | 10.02 | 123    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 13       | 12 GF12    | 90     | 3 IL-1B2 | 9.71  | 209    |          |      |     |      |
|  | 3   | 8   | 12 PONA2 | 24       | 12 AGTR1-3 | 25     | 12 PAI   | 9.69  | 302    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 39       | 3 CRP1     | 50     | 23 B2AR4 | 9.67  | 719    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 33       | 3 MCP1     | 90     | 3 IL-1B2 | 9.6   | 268    |          |      |     |      |
|  | 3   | 33  | 3 MCP1   | 42       | 1 GOLM1    | 74     | 3 LTa1   | 9.36  | 704    |          |      |     |      |
|  | 3   | 8   | 12 PONA2 | 26       | 1 NOS3     | 45     | 1 LPL3   | 9.25  | 358    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 17       | 3 FRI      | 38     | 12 PONA1 | 9.12  | 242    |          |      |     |      |
|  | 3   | 53  | 1 B2AR-1 | 62       | 1 APE3     | 98     | 3 PGC11  | 9.05  | 247    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 39       | 12 PONA1   | 42     | 1 GCLM1  | 9.05  | 22     |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 38       | 12 PONA1   | 64     | 3 INF22  | 9.02  | 235    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 13       | 12 CF12    | 88     | 12 WF2   | 8.93  | 21     |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 49       | 3 FGFB3    | 90     | 3 IL-1B2 | 8.89  | 203    |          |      |     |      |
|  | 3   | 29  | 12 G1A3  | 37       | 1 QP1e1    | 78     | 12 ET1   | 8.85  | 517    |          |      |     |      |
|  | 3   | 12  | 12 Tbm3  | 84       | 1 IL1B2    | 85     | 3        | 5178  | 8.84   | 304      |      |     |      |
|  | 3   | 3   | 3 ACE ID | 25       | 12 PAI     | 33     | 3 MCP1   | 8.66  | 32     |          |      |     |      |
|  | 3   | 29  | 12 G1A3  | 39       | 3 CRP1     | 78     | 12 ET1   | 8.49  | 424    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 7        | 1 N7       | 27     | 3 NI0    | 8.39  | 293    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 4        | 23 ESRA1   | 88     | 12 WF2   | 8.05  | 204    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 4        | 23 ESRA1   | 96     | 1 LRP1   | 7.73  | 203    |          |      |     |      |
|  | 3   | 65  | 12 MPO   | 86       | 3 IL-1B1   | 96     | 1 LRP1   | 7.71  | 614    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 40       | 3 FGFB3    | 51     | 23 GP1e1 | 7.63  | 251    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 73       | 23 VEGF5   | 87     | 23 MS1   | 7.32  | 247    |          |      |     |      |
|  | 2   | 53  | 1 B2AR-1 | 64       | 23 ILB2    |        | 3 LPL3   | 7.25  | 246    |          |      |     |      |
|  | 3   | 12  | 12 Tbm3  | 26       | 1 NOS3     | 62     | 1 APE3   | 7.21  | 221    |          |      |     |      |
|  | 1   | 74  | 3 LTa1   |          | 12 CYPBA4  | 96     | 1 LRP1   | 7.15  | 22     |          |      |     |      |
|  | 3   | 77  | 3 APM12  | 94       | 12 CYPBA4  | 96     | 1 LRP1   | 7.14  | 313    |          |      |     |      |
|  | 3   | 55  | 12 MPO   | 88       | 12 WF2     | 96     | 1 LRP1   | 7.09  | 245    |          |      |     |      |
|  | 3   | 3   | 3 ACE ID | 93       | 1 TP01     | 96     | 1 LRP1   | 7.03  | 312    |          |      |     |      |
|  | 3   | 36  | 3 FOA1   | 73       | 23 VEGF5   | 90     | 3 IL-1B2 | 6.98  | 223    |          |      |     |      |
|  | 3   | 55  | 12 MPO   | 90       | 3 IL-1B2   | 96     | 1 LRP1   | 6.97  | 23     |          |      |     |      |
|  | 3   | 33  | 3 MCP1   | 67       | 12 IA2     | 85     | 3        | 5178  | 6.89   | 21       |      |     |      |
|  | 3   | 33  | 3 MCP1   | 51       | 23 GP1e1   | 80     | 12 CORR2 | 6.73  | 216    |          |      |     |      |
|  | 2   | 77  | 3 APM12  | 80       | 12 CCR2    |        | 3 LPL3   | 6.7   | 433    |          |      |     |      |
|  | 3   | 36  | 3 FOA1   | 78       | 12 ET1     | 90     | 3 IL-1B2 | 6.67  | 22     |          |      |     |      |
|  | 3   | 12  | 12 Tbm3  | 40       | 3 FGFB3    | 73     | 23 VEGF5 | 6.65  | 23     |          |      |     |      |
|  | 2   | 77  | 3 APM12  | 90       | 3 IL-1B2   |        | 12 Tbm3  | 6.64  | 283    |          |      |     |      |
|  | 1   | 20  | 3 CSY    |          | 3 ACE ID   | 12     | 3 NI0    | 4.52  | 89     |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 3        | 3 ACE ID   | 27     | 3 LGB3   | 6.8   | 99     |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 3        | 3 ACE ID   | 30     | 12 Tbm3  | 10.24 | 99     |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 3        | 3 ACE ID   | 37     | 1 GP1ba  | 7.19  | 277    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 3        | 3 ACE ID   | 90     | 1 LRP1   | 6.69  | 263    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 10       | 3 GP3A     | 30     | 1 LGB3   | 8.4   | 298    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 10       | 3 GP3A     | 38     | 12 PONA1 | 8.17  | 206    |          |      |     |      |
|  | 3   | 1   | 3 ABCA1  | 10       | 3 GP3A     | 38     | 12 PONA1 | 7.22  | 209    |          |      |     |      |

正の遺伝子多型セット群

[図19-B]

|   |   |         |    |           |    |                   |       |       |
|---|---|---------|----|-----------|----|-------------------|-------|-------|
| 3 | - | 3 ABCA1 | 10 | 3 GP3A    | 53 | 1 β2AR-1          | 7.76  | 3.59  |
| 3 | - | 3 ABCA1 | 19 | 12 MNP9   | 30 | 1 FGb3            | 8.37  | 2.03  |
| 3 | - | 3 ABCA1 | 19 | 12 MNP9   | 38 | 12 PONA1          | 7.09  | 2.05  |
| 3 | - | 3 ABCA1 | 28 | 12 AGT1   | 30 | 1 FGb3            | 8.06  | 2.03  |
| 3 | - | 3 ABCA1 | 29 | 12 AGT1   | 53 | 1 β2AR-1          | 7.17  | 3.43  |
| 3 | - | 3 ABCA1 | 37 | 1 GP1ba   | 53 | 1 β2AR-1          | 6.88  | 4.41  |
| 3 | - | 3 ABCA1 | 37 | 1 GP1ba   | 77 | 3 APM12           | 6.84  | 8.9   |
| 3 | - | 3 ABCA1 | 38 | 12 PONA1  | 49 | 3 FGb3            | 7.75  | 2.59  |
| 3 | - | 3 ABCA1 | 38 | 12 PONA1  | 71 | 23 REGI           | 6.92  | 2.04  |
| 3 | - | 3 ABCA1 | 38 | 12 PONA1  | 73 | 12 ET1            | 7.55  | 2.17  |
| 3 | - | 3 ABCA1 | 38 | 12 PONA1  | 98 | 1 LRP1            | 8.09  | 2.42  |
| 3 | - | 3 ABCA1 | 38 | 12 PONA1  | 98 | 3 PGCI1           | 7.84  | 2.83  |
| 3 | - | 3 ABCA1 | 49 | 3 FCB3    | 67 | 12 TA2            | 7.17  | 2.46  |
| 3 | - | 3 ABCA1 | 53 | 1 β2AR-1  | 85 | 3                 | 5178  |       |
| 3 | - | 3 ACE1D | 7  | 1N7       | 50 | 23 β2AR4          | 7.42  | 4.62  |
| 3 | - | 3 ACE1D | 8  | 12 PONA2  | 16 | 12 hepatic lipase | 7.25  | 3.8   |
| 3 | - | 3 ACE1D | 8  | 12 PONA2  | 31 | 3 APF2            | 8.75  | 5.13  |
| 3 | - | 3 ACE1D | 8  | 12 PONA2  | 32 | 23 MTHFR          | 9.21  | 6.94  |
| 3 | - | 3 ACE1D | 8  | 12 PONA2  | 45 | 11PL3             | 8.03  | 4.84  |
| 2 | - | 3 ACE1D | 12 | 12 Tbn3   | 12 | 3                 | 805   | 3.84  |
| 3 | - | 3 ACE1D | 13 | 12 CF12   | 39 | 12 PONA1          | 7.39  | 2.15  |
| 3 | - | 3 ACE1D | 13 | 12 CF12   | 50 | 23 β2AR4          | 8.24  | 10.71 |
| 3 | - | 3 ACE1D | 19 | 12 MNP9   | 50 | 23 β2AR4          | 8.75  | 5.13  |
| 3 | - | 3 ACE1D | 19 | 12 MNP9   | 87 | 23 MS1            | 7.1   | 2.5   |
| 3 | - | 3 ACE1D | 25 | 12 PA1    | 50 | 23 β2AR4          | 8.6   | 6.81  |
| 3 | - | 3 ACE1D | 25 | 12 PA1    | 87 | 23 MS1            | 7.17  | 2.45  |
| 3 | - | 3 ACE1D | 25 | 12 PA1    | 93 | 1 TPQ1            | 6.91  | 3.1   |
| 3 | - | 3 ACE1D | 27 | 3 N10     | 38 | 12 PONA1          | 7.34  | 3.47  |
| 3 | - | 3 ACE1D | 27 | 3 N10     | 88 | 12 WF2            | 6.88  | 2.87  |
| 3 | - | 3 ACE1D | 27 | 3 N10     | 96 | 1 LRP1            | 6.92  | 2.73  |
| 3 | - | 3 ACE1D | 32 | 23 MTHFR  | 38 | 12 PONA1          | 6.9   | 2.1   |
| 3 | - | 3 ACE1D | 32 | 23 MTHFR  | 51 | 23 GPI6           | 7.29  | 2.1   |
| 3 | - | 3 ACE1D | 32 | 23 MTHFR  | 67 | 12 IA2            | 7.26  | 2.14  |
| 3 | - | 3 ACE1D | 33 | 3 MGP1    | 37 | 1 GPI6            | 7.13  | 2.21  |
| 3 | - | 3 ACE1D | 33 | 3 MCP1    | 42 | 1 GGM1            | 6.64  | 2.31  |
| 3 | - | 3 ACE1D | 33 | 3 MCP1    | 51 | 23 GPI6           | 9.62  | 31.9  |
| 3 | - | 3 ACE1D | 37 | 1 GP1ba   | 50 | 23 β2AR4          | 8.79  | 6.71  |
| 3 | - | 3 ACE1D | 39 | 12 PONA1  | 51 | 23 GPI6           | 8.2   | 2.19  |
| 3 | - | 3 ACE1D | 38 | 12 PONA1  | 67 | 12 IA2            | 8.64  | 2.24  |
| 3 | - | 3 ACE1D | 39 | 3 CRP1    | 87 | 23 MS1            | 6.74  | 2.2   |
| 3 | - | 3 ACE1D | 40 | 3 FGB3    | 50 | 23 β2AR4          | 6.72  | 5.5   |
| 3 | - | 3 ACE1D | 42 | 1 GCLM1   | 50 | 23 β2AR4          | 8.89  | 11.41 |
| 3 | - | 3 ACE1D | 42 | 1 GCLM1   | 93 | 1 TPQ1            | 7.18  | 2.02  |
| 2 | - | 3 ACE1D | 50 | 23 β2AR4  | 93 | 1 TPQ1            | 8.72  | 5.11  |
| 3 | - | 3 ACE1D | 51 | 23 GP141  | 73 | 23 VEGF5          | 8.51  | 2     |
| 3 | - | 3 ACE1D | 51 | 23 GP1a1  | 90 | 3 IL-182          | 8.76  | 2.04  |
| 3 | - | 3 ACE1D | 51 | 3 FGB3    | 93 | 12 PA1            | 8.78  | 2.78  |
| 3 | - | 3 ACE1D | 67 | 12 IA2    | 73 | 23 APF2           | 8.21  | 4.42  |
| 3 | - | 3 ACE1D | 67 | 12 IA2    | 90 | 3 IL-182          | 8.18  | 2.02  |
| 3 | - | 3 ACE1D | 67 | 12 IA2    | 93 | 1 TPQ1            | 7.83  | 6.21  |
| 3 | - | 3 ACE1D | 10 | 3 GP3A    | 22 | 1 ESL1            | 6.73  | 2.26  |
| 3 | - | 3 ACE1D | 10 | 3 GP3A    | 25 | 12 PA1            | 8.78  | 2.78  |
| 3 | - | 3 ACE1D | 10 | 3 GP3A    | 31 | 3 APF2            | 13.32 | 4.42  |
| 3 | - | 3 ACE1D | 10 | 3 GP3A    | 67 | 12 IA2            | 7.68  | 3.26  |
| 3 | - | 3 ACE1D | 10 | 3 GP3A    | 85 | 3                 | 5178  | 3.84  |
| 3 | - | 3 ACE1D | 15 | 12 MNP-12 | 22 | 1 ESL1            | 6.73  | 2.26  |
| 3 | - | 3 ACE1D | 15 | 12 MNP-12 | 25 | 12 PA1            | 8.78  | 2.78  |
| 3 | - | 3 ACE1D | 15 | 12 MNP-12 | 31 | 3 APF2            | 13.32 | 4.42  |
| 3 | - | 3 ACE1D | 15 | 12 MNP-12 | 67 | 12 IA2            | 7.68  | 3.26  |
| 3 | - | 3 ACE1D | 15 | 12 MNP-12 | 85 | 3                 | 5178  | 3.84  |

[図19-C]

|   |    |          |    |            |      |           |       |       |
|---|----|----------|----|------------|------|-----------|-------|-------|
| 3 | 9  | 12 PON42 | 21 | 12 CX37    | 22   | 1 ESL1    | 7.08  | 2.34  |
| 3 | 9  | 12 PON42 | 21 | 12 CX37    | 25   | 12 PAI    | 9.26  | 2.63  |
| 3 | 9  | 12 PON42 | 21 | 12 CX37    | 26   | 1 NOS3    | 7.15  | 2.63  |
| 3 | 9  | 12 PON42 | 21 | 12 CX37    | 31   | 3 APE2    | 12.31 | 4.22  |
| 3 | 9  | 12 PON42 | 21 | 12 CX37    | 67   | 12 IA2    | 8.68  | 3.82  |
| 3 | 9  | 12 PON42 | 21 | 12 CX37    | 85   | 3         | 5178  | 8.84  |
| 2 | 8  | 12 PON42 | 22 | 1 ESL1     | 26   | 1 NOS3    | 7.15  | 2.63  |
| 3 | 8  | 12 PON42 | 24 | 12 AGTR1-3 | 67   | 12 IA2    | 7.22  | 3.16  |
| 3 | 8  | 12 PON42 | 24 | 12 AGTR1-3 | 67   | 12 PAI    | 8.78  | 2.78  |
| 2 | 8  | 12 PON42 | 25 | 12 PAI     | 31   | 3 APE2    | 10.83 | 4.32  |
| 3 | 9  | 12 PON42 | 26 | 1 NOS3     | 32   | 23 MTHFR  | 7.92  | 4.01  |
| 3 | 9  | 12 PON42 | 26 | 1 NOS3     | 43   | 12 MTP1   | 7.62  | 2.6   |
| 3 | 8  | 12 PON42 | 26 | 1 NOS3     | 63   | 12 HANP2  | 6.76  | 2.39  |
| 3 | 8  | 12 PON42 | 26 | 1 NOS3     | 64   | 3 TNFa2   | 6.84  | 2.45  |
| 3 | 9  | 12 PON42 | 26 | 1 NOS3     | 73   | 23 VEGF5  | 7.13  | 2.92  |
| 3 | 9  | 12 PON42 | 26 | 1 NOS3     | 79   | 23 RAGE3  | 7.57  | 3.23  |
| 3 | 9  | 12 PON42 | 32 | 23 MTHFR   | 85   | 3         | 5178  | 7.09  |
| 3 | 8  | 12 PON42 | 32 | 23 MTHFR   | 67   | 12 IA2    | 7.7   | 3.2   |
| 3 | 8  | 12 PON42 | 33 | 12 PON41   | 67   | 12 IA2    | 8.61  | 3.8   |
| 3 | 8  | 12 PON42 | 43 | 12 MTP1    | 85   | 3         | 5178  | 7.5   |
| 3 | 9  | 12 PON42 | 43 | 12 MTP1    | 67   | 12 IA2    | 7.89  | 3.28  |
| 3 | 9  | 12 PON42 | 51 | 23 GP1a1   | 68   | 12 EKRI   | 7.59  | 4.71  |
| 3 | 8  | 12 PON42 | 51 | 23 GP1a1   | 79   | 23 RAGES3 | 8.13  | 3.6   |
| 3 | 8  | 12 PON42 | 51 | 23 GP1a1   | 98   | 1(LRP1)   | 9.06  | 4.4   |
| 3 | 9  | 12 PON42 | 63 | 12 HANP2   | 67   | 12 IA2    | 7.68  | 3.26  |
| 3 | 8  | 12 PON42 | 63 | 12 HANP2   | 85   | 3         | 5178  | 8.84  |
| 2 | 8  | 12 PON42 | 67 | 12 IA2     | 7.89 | 3.28      |       |       |
| 2 | 8  | 12 PON42 | 65 | 3          | 5178 | 6.66      | 3.26  |       |
| 3 | 12 | 12 Tbm3  | 25 | 12 PAI     | 62   | 1 APE3    | 7.03  | 2.05  |
| 3 | 12 | 12 Tbm3  | 25 | 12 PAI     | 85   | 3         | 5178  | 7.08  |
| 3 | 12 | 12 Tbm3  | 33 | 3 MCP1     | 84   | 1(LB2     | 6.7   | 2.83  |
| 3 | 12 | 12 Tbm3  | 40 | 3 FGB3     | 62   | 1 APE3    | 6.86  | 2.22  |
| 3 | 12 | 12 Tbm3  | 53 | 1 /ZAR-1   | 64   | 1(LB2     | 7.12  | 3.77  |
| 3 | 12 | 12 Tbm3  | 70 | 12 APm2    | 85   | 3         | 5178  | 7.76  |
| 2 | 12 | 12 Tbm3  | 74 | 3 LTa1     | 85   | 3         | 5178  | 6.06  |
| 3 | 29 | 12 QIA3  | 37 | 1 GP1ba    | 38   | 12 FON41  | 7.32  | 9.74  |
| 3 | 29 | 12 QIA3  | 37 | 1 GP1ba    | 39   | 3 CRP1    | 8.1   | 4.87  |
| 3 | 29 | 12 QIA3  | 37 | 1 GP1ba    | 43   | 12 MTP1   | 7.08  | 3.81  |
| 3 | 29 | 12 QIA3  | 37 | 1 GP1ba    | 68   | 12 EKRI   | 7.14  | 4.54  |
| 2 | 29 | 12 QIA3  | 38 | 12 DON41   | 51   | 23 GP1a1  | 7.24  | 6.86  |
| 3 | 29 | 12 QIA3  | 39 | 3 CRP1     | 68   | 12 EKRI   | 6.67  | 9.04  |
| 3 | 29 | 12 QIA3  | 39 | 3 CRP1     | 78   | 12 ET1    | 8.08  | 4.9   |
| 3 | 29 | 12 QIA3  | 42 | 1 GCLM1    | 78   | 12 ET1    | 7.39  | 9.9   |
| 3 | 29 | 12 QIA3  | 43 | 12 MTP1    | 51   | 23 GP1a1  | 6.69  | 9.06  |
| 3 | 29 | 12 QIA3  | 43 | 12 MTP1    | 78   | 12 ET1    | 7.41  | 3.49  |
| 3 | 29 | 12 QIA3  | 51 | 23 GP1a1   | 52   | 1(MP7)    | 6.65  | 9.02  |
| 3 | 29 | 12 QIA3  | 51 | 23 GP1a1   | 78   | 12 ET1    | 6.88  | 9.25  |
| 3 | 29 | 12 QIA3  | 51 | 23 GP1a1   | 70   | 12 APm2   | 11.32 | 3.71  |
| 3 | 29 | 12 QIA3  | 62 | 1 APE3     | 78   | 12 ET1    | 6.97  | 3.38  |
| 3 | 29 | 12 QIA3  | 67 | 12 IA2     | 98   | 1(RP1)    | 6.94  | 9.9   |
| 3 | 33 | 3 MCP1   | 67 | 12 IA2     | 74   | 3 LTa1    | 7.65  | 10.11 |
| 3 | 33 | 3 MCP1   | 74 | 3 LTa1     | 78   | 12 ET1    | 7.69  | 3.84  |
| 3 | 53 | 1 /ZAR-1 | 56 | 23 HANP1   | 70   | 12 ET1    | 11.01 | 3.24  |
| 3 | 53 | 1 /ZAR-1 | 62 | 1 APE3     | 70   | 12 APm2   | 11.32 | 3.71  |
| 3 | 53 | 1 /ZAR-1 | 67 | 12 IA2     | 70   | 12 APm2   | 9.01  | 4.4   |
| 3 | 53 | 1 /ZAR-1 | 73 | 23 VEGF5   | 80   | 12 CCR2   | 7.17  | 2.77  |
| 3 | 53 | 1 /ZAR-1 | 80 | 12 CCR2    | 98   | 3 FGCI1   | 7.84  | 3.8   |
| 2 | 55 | 12 MPO   | 69 | 3 CD181    | 98   | 4.46      | 9.9   | 9.9   |

## [図20-A]

| Num | SNP | SNP-No          | Genotype | 遺伝子座番           | SNP-No | Genotype        | 遺伝子座番 | SNP-No | Genotype | 遺伝子座番 | Kai | Odds |
|-----|-----|-----------------|----------|-----------------|--------|-----------------|-------|--------|----------|-------|-----|------|
| 3   | 8   | 12 PONA2        | 30       | 12 FGB3         | 31     | 3 APE2          | 15.08 | 5.33   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 33       | 3 MCP1          | 67     | 12 1A2          | 13.29 | 4.44   |          |       |     |      |
| 2   | 53  | 1 $\beta$ 2AR-1 | 70       | 12 APN2         | 25     | 12 PAI          | 11.84 | 3.38   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 23       | 3 IRS-1         | 45     | 1 LPL3          | 10.1  | 3.09   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 26       | 1 NOS3          | 50     | 23 $\beta$ 2AR4 | 9.25  | 3.58   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 42       | 1 GCLM1         | 50     | 23 $\beta$ 2AR4 | 8.89  | 11.41  |          |       |     |      |
| 3   | 29  | 12 GIa3         | 37       | 1 GP1ba         | 78     | 12 ET1          | 8.85  | 5.17   |          |       |     |      |
| 3   | 12  | 12 Tbm3         | 84       | 1 IL1B2         | 85     | 3               | 5178  | 8.84   | 3.04     |       |     |      |
| 3   | 3   | 3 ACE ID        | 37       | 1 GP1ba         | 50     | 23 $\beta$ 2AR4 | 8.79  | 6.71   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 19       | 12 MMMP9        | 50     | 23 $\beta$ 2AR4 | 8.75  | 5.13   |          |       |     |      |
| 3   | 1   | 3 ABCA1         | 38       | 12 PONA1        | 80     | 3 CCR2          | 8.42  | 3.74   |          |       |     |      |
| 3   | 12  | 12 Tbm3         | 21       | 1 CX37          | 85     | 3               | 5178  | 8.31   | 3.14     |       |     |      |
| 2   | 3   | 3 ACE ID        | 12       | 12 Tbm3         |        |                 |       | 8.05   | 3.84     |       |     |      |
| 3   | 1   | 3 ABCA1         | 53       | 1 $\beta$ 2AR-1 | 85     | 3               | 5178  | 7.87   | 6.2      |       |     |      |
| 3   | 1   | 3 ABCA1         | 10       | 3 GP3A          | 53     | 1 $\beta$ 2AR-1 | 7.76  | 3.58   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 38       | 12 PONA1        | 68     | 1 BKRI          | 7.43  | 3.95   |          |       |     |      |
| 3   | 29  | 12 GIa3         | 42       | 1 GCLM1         | 78     | 12 ET1          | 7.42  | 4.82   |          |       |     |      |
| 3   | 51  | 3 GP1a1         | 86       | 1 IL1B1         | 89     | 3 IL102         | 7.25  | 9.9    |          |       |     |      |
| 3   | 1   | 3 ABCA1         | 80       | 3 CCR2          | 89     | 3 IL102         | 7.14  | 3.84   |          |       |     |      |
| 3   | 77  | 3 APN12         | 94       | 12 CTP3A4       | 96     | 1 LRP1          | 7.14  | 3.13   |          |       |     |      |
| 3   | 12  | 12 Tbm3         | 53       | 1 $\beta$ 2AR-1 | 84     | 1 IL1B2         | 7.12  | 5.77   |          |       |     |      |
| 3   | 1   | 3 ABCA1         | 37       | 1 GP1ba         | 77     | 3 APM12         | 6.94  | 9.9    |          |       |     |      |
| 3   | 12  | 12 Tbm3         | 40       | 3 FGB3          | 68     | 1 BKRI          | 6.87  | 4.43   |          |       |     |      |
| 3   | 55  | 12 MPO          | 79       | 12 PAGE3        | 93     | 23 TPO1         | 6.84  | 4.42   |          |       |     |      |
| 3   | 51  | 3 GP1a1         | 62       | 1 APE3          | 86     | 1 IL1B1         | 6.78  | 4.37   |          |       |     |      |
| 1   | 20  | 3 GSY           |          |                 |        |                 |       | 4.52   | 9.9      |       |     |      |
| 3   | 1   | 3 ABCA1         | 3        | 3 ACE ID        | 12     | 12 Tbm3         | 6.8   | 9.9    |          |       |     |      |
| 3   | 1   | 3 ABCA1         | 28       | 12 AGT1         | 53     | 1 $\beta$ 2AR-1 | 7.17  | 3.43   |          |       |     |      |
| 3   | 1   | 3 ABCA1         | 37       | 1 GP1ba         | 53     | 1 $\beta$ 2AR-1 | 6.88  | 4.41   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 7        | 1 N7            | 50     | 23 $\beta$ 2AR4 | 7.42  | 4.62   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 8        | 12 PONA2        | 31     | 3 APE2          | 8.75  | 5.13   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 8        | 12 PONA2        | 32     | 23 MTHFR        | 9.21  | 6.94   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 13       | 12 CF12         | 50     | 23 $\beta$ 2AR4 | 8.24  | 10.71  |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 25       | 12 PAI          | 50     | 23 $\beta$ 2AR4 | 8.8   | 6.01   |          |       |     |      |
| 3   | 3   | 3 ACE ID        | 40       | 3 FGB3          | 50     | 23 $\beta$ 2AR4 | 6.72  | 5.57   |          |       |     |      |
| 2   | 3   | 3 ACE ID        | 50       | 23 $\beta$ 2AR4 |        |                 | 8.72  | 5.11   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 23       | 3 IRS-1         | 31     | 3 APE2          | 13.32 | 4.42   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 23       | 3 IRS-1         | 67     | 12 1A2          | 8.69  | 3.82   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 26       | 1 NOS3          | 31     | 3 APE2          | 10.83 | 4.32   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 26       | 1 NOS3          | 32     | 23 MTHFR        | 7.92  | 4.07   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 30       | 12 FGB3         | 67     | 12 1A2          | 7.66  | 3.26   |          |       |     |      |
| 3   | 8   | 12 PONA2        | 30       | 12 FGB3         | 85     | 3               | 5178  | 7.58   | 3.22     |       |     |      |
| 2   | 8   | 12 PONA2        | 31       | 3 APE2          |        |                 | 13.32 | 4.42   |          |       |     |      |

正の遺伝子多型セット群

[図20-B]

|   |    |          |    |          |    |          |      |       |      |
|---|----|----------|----|----------|----|----------|------|-------|------|
| 3 | 8  | 12 PONA2 | 32 | 23 MTHFR | 85 | 3        | 517B | 7.09  | 4.48 |
| 3 | 8  | 12 PONA2 | 32 | 23 MTHFR | 93 | 23 TPO1  |      | 7.49  | 3.95 |
| 3 | 8  | 12 PONA2 | 38 | 12 PONA1 | 67 | 12 IA2   |      | 7.7   | 3.27 |
| 3 | 8  | 12 PONA2 | 63 | 12 HANP2 | 67 | 12 IA2   |      | 7.66  | 3.76 |
| 2 | 8  | 12 PONA2 | 67 | 12 IA2   |    |          |      | 7.86  | 3.26 |
| 3 | 8  | 12 PONA2 | 90 | 3 IL-182 | 93 | 23 TPO1  |      | 8.38  | 4.22 |
| 3 | 12 | 12 Tbm3  | 70 | 12 APM2  | 85 | 3        | 517B | 7.75  | 4.73 |
| 3 | 29 | 12 G1A3  | 37 | 1 GP1ba  | 38 | 12 PONA1 |      | 7.32  | 9.74 |
| 2 | 29 | 12 G1A3  | 38 | 12 PONA1 |    |          |      | 7.24  | 5.86 |
| 3 | 29 | 12 G1A3  | 62 | 1 APE3   | 78 | 12 ET1   |      | 6.97  | 3.38 |
| 3 | 29 | 12 G1A3  | 67 | 12 IA2   | 96 | 1 LRP1   |      | 6.94  | 3.99 |
| 3 | 29 | 12 G1A3  | 78 | 12 ET1   | 93 | 23 TPO1  |      | 7.31  | 3.9  |
| 3 | 53 | 1 B2AR-1 | 66 | 23 HANP1 | 70 | 12 APM2  |      | 11.07 | 3.24 |
| 3 | 53 | 1 B2AR-1 | 82 | 1 APE3   | 70 | 12 APM2  |      | 11.32 | 3.71 |
| 3 | 53 | 1 B2AR-1 | 67 | 12 IA2   | 70 | 12 APM2  |      | 9.01  | 4.4  |
| 2 | 55 | 12 MPO   | 69 | 3 CD181  |    |          |      | 4.49  | 3.9  |
| 2 | 68 | 1 BK1    | 77 | 3 APM12  |    |          |      | 4.5   | 3.9  |

[図21]

|  | Num | SNP | SNP-No   | Genotype | 遺伝子略称      | SNP-No | Genotype  | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | Kai | Odds |
|--|-----|-----|----------|----------|------------|--------|-----------|-------|--------|----------|-------|-----|------|
|  | 3   | 8   | 12 PONA2 | 30       | 12 FGB3    | 31     | 3 APE2    | 15.08 | 5.33   |          |       |     |      |
|  | 3   | 3   | 3 ACE ID | 33       | 3 MCP1     | 67     | 12 1A2    | 13.29 | 4.44   |          |       |     |      |
|  | 3   | 3   | 3 ACE ID | 39       | 3 CRP1     | 50     | 23 B2AR4  | 9.67  | 7.19   |          |       |     |      |
|  | 3   | 1   | 3 ABCA1  | 89       | 3 CCP2     | 85     | 12        | 5178  | 9.28   | 11.79    |       |     |      |
|  | 3   | 3   | 3 ACE ID | 8        | 12 PONA2   | 32     | 23 MTHFR  | 9.21  | 6.94   |          |       |     |      |
|  | 2   | 23  | 12 IRS-1 | 74       | 12 LTA1    |        |           |       |        |          |       |     |      |
|  | 3   | 53  | 1 B2AR-1 | 67       | 12 1A2     | 70     | 12 APM2   | 9.01  | 4.44   |          |       |     |      |
|  | 3   | 3   | 3 ACE ID | 42       | 1 GCIM1    | 50     | 23 B2AR4  | 8.89  | 11.41  |          |       |     |      |
|  | 3   | 33  | 3 MCP1   | 42       | 1 GCIM1    | 75     | 1 LTa2    | 8.87  | 6.77   |          |       |     |      |
|  | 3   | 29  | 12 G1A3  | 37       | 1 GP1ba    | 79     | 12 ET1    | 8.85  | 5.17   |          |       |     |      |
|  | 3   | 1   | 3 ABCA1  | 25       | 1 PAI      | 53     | 1 B2AR-1  | 8.58  | 8.99   |          |       |     |      |
|  | 3   | 29  | 12 G1A3  | 39       | 3 CRP1     | 78     | 12 ET1    | 8.48  | 4.24   |          |       |     |      |
|  | 3   | 8   | 12 PONA2 | 90       | 3 IL-1B2   | 93     | 23 TP01   | 8.39  | 4.22   |          |       |     |      |
|  | 3   | 33  | 3 MCP1   | 67       | 12 1A2     | 75     | 1 LTa2    | 7.2   | 9.63   |          |       |     |      |
|  | 3   | 12  | 12 Tbm3  | 53       | 1 B2AR-1   | 84     | 1 LL1B2   | 7.12  | 5.77   |          |       |     |      |
|  | 3   | 1   | 3 ABCA1  | 3        | 3 ACE ID   | 88     | 1 VWF2    | 6.99  | 9.39   |          |       |     |      |
|  | 3   | 1   | 3 ABCA1  | 37       | 1 GP1ba    | 77     | 3 APM12   | 6.94  | 8.99   |          |       |     |      |
|  | 3   | 1   | 3 ABCA1  | 37       | 1 GP1ba    | 53     | 1 B2AR-1  | 6.88  | 4.41   |          |       |     |      |
|  | 3   | 12  | 12 Tbm3  | 40       | 3 FGB3     | 68     | 1 BKRI    | 6.87  | 4.43   |          |       |     |      |
|  | 3   | 55  | 12 MPO   | 79       | 12 RAGE3   | 93     | 23 TP01   | 6.84  | 4.42   |          |       |     |      |
|  | 3   | 3   | 3 ACE ID | 67       | 12 1A2     | 88     | 1 VWF2    | 6.81  | 4.38   |          |       |     |      |
|  | 3   | 51  | 3 GP1a1  | 71       | 23 REG1    | 86     | 1 IL-1B1  | 6.78  | 4.37   |          |       |     |      |
|  | 2   | 12  | 12 Tbm3  | 75       | 1 LTa2     |        |           |       |        |          |       |     |      |
|  | 2   | 12  | 12 Tbm3  | 54       | 3 IL62     |        |           |       |        |          |       |     |      |
|  | 2   | 36  | 3 FGA1   | 54       | 3 IL62     |        |           |       |        |          |       |     |      |
|  | 1   | 20  | 3 GSY    |          |            |        |           |       |        |          |       |     |      |
|  | 2   | 68  | 1 BKRI   | 77       | 3 APM12    |        |           |       |        |          |       |     |      |
|  | 2   | 55  | 12 MPO   | 69       | 3 CD181    |        |           |       |        |          |       |     |      |
|  | 3   | 3   | 3 ABCA1  | 3        | 3 ACE ID   | 12     | 12 Tbm3   | 6.49  | 9.99   |          |       |     |      |
|  | 3   | 3   | 3 ACE ID | 8        | 12 PONA2   | 31     | 3 APE2    | 8.75  | 5.13   |          |       |     |      |
|  | 3   | 3   | 3 ACE ID | 37       | 1 GP1ba    | 50     | 23 B2AR4  | 8.79  | 6.71   |          |       |     |      |
|  | 3   | 8   | 12 PONA2 | 10       | 3 SP3A     | 31     | 3 APE2    | 13.32 | 4.42   |          |       |     |      |
|  | 3   | 8   | 12 PONA2 | 15       | 12 MMP-12  | 31     | 3 APE2    | 13.32 | 4.42   |          |       |     |      |
|  | 3   | 8   | 12 PONA2 | 21       | 12 CX37    | 31     | 3 APE2    | 12.37 | 4.22   |          |       |     |      |
|  | 3   | 8   | 12 PONA2 | 24       | 12 AGTR1-3 | 31     | 3 APE2    | 14.58 | 5.21   |          |       |     |      |
|  | 3   | 8   | 12 PONA2 | 26       | 1 NOS3     | 31     | 3 APE2    | 10.93 | 4.32   |          |       |     |      |
|  | 2   | 8   | 12 PONA2 | 31       | 3 APE2     |        |           |       |        |          |       |     |      |
|  | 2   | 23  | 12 IRS-1 | 25       | 1 PAI      |        |           |       |        |          |       |     |      |
|  | 3   | 23  | 12 IRS-1 | 27       | 23 N10     | 58     | 3 HANP1   | 6.74  | 9.11   |          |       |     |      |
|  | 3   | 23  | 12 IRS-1 | 27       | 23 N10     | 74     | 12 LTA1   | 6.67  | 9.04   |          |       |     |      |
|  | 3   | 23  | 12 IRS-1 | 27       | 23 N10     | 84     | 1 IL1B2   | 6.79  | 9.99   |          |       |     |      |
|  | 3   | 23  | 12 IRS-1 | 27       | 23 N10     | 94     | 12 CYP3A4 | 6.65  | 9.02   |          |       |     |      |
|  | 3   | 23  | 12 IRS-1 | 28       | 12 AGT1    | 74     | 12 LTA1   | 9     | 11.51  |          |       |     |      |
|  | 3   | 29  | 12 G1A3  | 37       | 1 GP1ba    | 38     | 12 PONA1  | 7.32  | 9.74   |          |       |     |      |
|  | 2   | 29  | 12 G1A3  | 38       | 12 PONA1   |        |           |       |        |          |       |     |      |
|  | 3   | 29  | 12 G1A3  | 42       | 1 GCIM1    | 78     | 12 ET1    | 7.42  | 4.62   |          |       |     |      |
|  | 3   | 29  | 12 G1A3  | 67       | 12 A2      | 96     | 1 LRP1    | 6.94  | 8.99   |          |       |     |      |

正の遺伝子多型セット群

[図22]

| Num. | SNP | SNP-No   | Genotype | 遺伝子座番    | SNP-No | Genotype  | 遺伝子座番 | SNP-No    | Genotype | 遺伝子座番     | Kai   | Odds  |
|------|-----|----------|----------|----------|--------|-----------|-------|-----------|----------|-----------|-------|-------|
| 3    | 8   | 12 PONA2 | 30       | 12 FGFB3 | 31     | 3 APE2    | 31    | 3 APE2    | 31       | 3 APE2    | 15.08 | 5.33  |
| 3    | 3   | 3 ACE ID | 39       | 3 GRP1   | 50     | 23 β2AR4  | 50    | 23 β2AR4  | 50       | 23 β2AR4  | 9.67  | 7.19  |
| 3    | 3   | 3 ACE ID | 8        | 12 PONA2 | 32     | 23 MTHFR  | 32    | 23 MTHFR  | 32       | 23 MTHFR  | 9.21  | 6.94  |
| 2    | 23  | 12 IRS-1 | 75       | 23 LTA2  | 50     | 23 β2AR4  | 50    | 23 β2AR4  | 50       | 23 β2AR4  | 9.16  | 11.68 |
| 3    | 3   | 3 ACE ID | 42       | 1 GCLM1  | 50     | 23 β2AR4  | 50    | 23 β2AR4  | 50       | 23 β2AR4  | 8.89  | 11.41 |
| 3    | 29  | 12 G1A3  | 37       | 1 GPIba  | 78     | 12 ET1    | 78    | 12 ET1    | 78       | 12 ET1    | 8.05  | 5.17  |
| 3    | 1   | 3 ABCA1  | 25       | 1 PAI    | 53     | 1 β2AR-1  | 53    | 1 β2AR-1  | 53       | 1 β2AR-1  | 8.58  | 99    |
| 3    | 55  | 12 MPO   | 86       | 3 IL-181 | 98     | 1 LRP1    | 98    | 1 LRP1    | 98       | 1 LRP1    | 7.71  | 6.14  |
| 2    | 29  | 12 G1A3  | 38       | 12 PONA1 | 99     | 1 LTA2    | 99    | 1 LTA2    | 99       | 1 LTA2    | 7.24  | 5.86  |
| 3    | 12  | 12 Tbm3  | 53       | 1 β2AR-1 | 84     | 1 IL1B2   | 84    | 1 IL1B2   | 84       | 1 IL1B2   | 7.12  | 5.77  |
| 3    | 1   | 3 ABCA1  | 3        | 3 ACE ID | 88     | 1 VWF2    | 88    | 1 VWF2    | 88       | 1 VWF2    | 6.99  | 9.38  |
| 3    | 1   | 3 ABCA1  | 37       | 1 GPIba  | 77     | 3 APN12   | 77    | 3 APN12   | 77       | 3 APN12   | 6.94  | 99    |
| 3    | 36  | 3 FGA1   | 93       | 1 TPO1   | 99     | 23 PGC12  | 99    | 23 PGC12  | 99       | 23 PGC12  | 6.88  | 5.67  |
| 3    | 1   | 3 ABCA1  | 21       | 23 C37   | 67     | 3 1A2     | 67    | 3 1A2     | 67       | 3 1A2     | 6.84  | 99    |
| 3    | 1   | 3 ABCA1  | 88       | 3 IL-181 | 89     | 12 IL102  | 89    | 12 IL102  | 89       | 12 IL102  | 6.92  | 99    |
| 3    | 1   | 3 ABCA1  | 3        | 3 ACE ID | .12    | 12 Tbm3   | .12   | 12 Tbm3   | .12      | 12 Tbm3   | 6.8   | 99    |
| 2    | 12  | 12 Tbm3  | 54       | 3 IL82   |        |           |       |           |          |           | 6.49  | 99    |
| 2    | 79  | 1 RAGE3  | 90       | 3 IL-182 |        |           |       |           |          |           | 5.7   | 99    |
| 2    | 36  | 3 FGA1   | 54       | 3 IL62   |        |           |       |           |          |           | 4.72  | 99    |
| 1    | 20  | 3 GSY    |          |          |        |           |       |           |          |           | 4.52  | 99    |
| 2    | 68  | 1 BKRI   | 77       | 3 APN12  |        |           |       |           |          |           | 4.5   | 99    |
| 2    | 55  | 12 MPO   | 69       | 3 CD181  |        |           |       |           |          |           | 4.49  | 99    |
| 2    | 12  | 12 Tbm3  | 80       | 1 CCR2   |        |           |       |           |          |           | 4.1   | 99    |
| 3    | 3   | 3 ACE ID | 8        | 12 PONA2 | 31     | 3 APE2    | 31    | 3 APE2    | 31       | 3 APE2    | 8.75  | 5.13  |
| 3    | 3   | 3 ACE ID | 37       | 1 GPIba  | 50     | 23 β2AR4  | 50    | 23 β2AR4  | 50       | 23 β2AR4  | 8.79  | 6.71  |
| 2    | 3   | 3 ACE ID | 79       | 1 RAGE3  |        |           |       |           |          |           | 4.77  | 99    |
| 2    | 23  | 12 IRS-1 | 25       | 1 PAI    |        |           |       |           |          |           | 6.38  | 99    |
| 3    | 23  | 12 IRS-1 | 27       | 23 N10   | 56     | 3 HANP1   | 56    | 3 HANP1   | 56       | 3 HANP1   | 6.74  | 9.11  |
| 3    | 23  | 12 IRS-1 | 27       | 23 N10   | 74     | 12 LTA1   | 74    | 12 LTA1   | 74       | 12 LTA1   | 6.67  | 9.04  |
| 3    | 23  | 12 IRS-1 | 27       | 23 N10   | 75     | 23 LTA2   | 75    | 23 LTA2   | 75       | 23 LTA2   | 6.75  | 9.13  |
| 3    | 23  | 12 IRS-1 | 27       | 23 N10   | 84     | 1 IL1B2   | 84    | 1 IL1B2   | 84       | 1 IL1B2   | 6.79  | 99    |
| 3    | 23  | 12 IRS-1 | 27       | 23 N10   | 94     | 12 CYP3A4 | 94    | 12 CYP3A4 | 94       | 12 CYP3A4 | 6.65  | 9.02  |
| 3    | 23  | 12 IRS-1 | 27       | 23 N10   | 98     | 23 PGC11  | 98    | 23 PGC11  | 98       | 23 PGC11  | 6.95  | 99    |
| 3    | 23  | 12 IRS-1 | 28       | 12 AGT1  | 74     | 12 LTA1   | 74    | 12 LTA1   | 74       | 12 LTA1   | 6.74  | 9.11  |
| 3    | 23  | 12 IRS-1 | 28       | 12 AGT1  | 75     | 23 LTA2   | 75    | 23 LTA2   | 75       | 23 LTA2   | 6.75  | 9.13  |
| 3    | 23  | 12 IRS-1 | 28       | 12 AGT1  | 75     | 12 LTA1   | 75    | 12 LTA1   | 75       | 12 LTA1   | 9.06  | 11.57 |
| 3    | 23  | 12 IRS-1 | 44       | 3 CETP4  | 74     | 12 LTA1   | 74    | 12 LTA1   | 74       | 12 LTA1   | 9.16  | 11.68 |
| 3    | 23  | 12 IRS-1 | 44       | 3 CETP4  | 75     | 23 LTA2   | 75    | 23 LTA2   | 75       | 23 LTA2   | 9.06  | 11.57 |
| 3    | 23  | 12 IRS-1 | 47       | 3 TNFα1  | 74     | 12 LTA1   | 74    | 12 LTA1   | 74       | 12 LTA1   | 9.06  | 11.57 |
| 3    | 23  | 12 IRS-1 | 47       | 3 TNFα1  | 75     | 23 LTA2   | 75    | 23 LTA2   | 75       | 23 LTA2   | 9.16  | 11.68 |
| 3    | 23  | 12 IRS-1 | 70       | 23 APM2  | 74     | 12 LTA1   | 74    | 12 LTA1   | 74       | 12 LTA1   | 8.6   | 11.09 |
| 3    | 23  | 12 IRS-1 | 70       | 23 APM2  | 75     | 23 LTA2   | 75    | 23 LTA2   | 75       | 23 LTA2   | 8.7   | 11.2  |
| 2    | 23  | 12 IRS-1 | 74       | 12 LTA1  |        |           |       |           |          |           | 9.06  | 11.57 |
| 3    | 29  | 12 G1A3  | 37       | 1 GPIba  | 38     | 12 PONA1  | 38    | 12 PONA1  | 38       | 12 PONA1  | 7.32  | 9.74  |

正の遺伝子多型セット群

[図23]

|   | Num. | SNP      | SNP-No   | Genotype | 遺伝子座番    | SNP-No    | Genotype | 遺伝子座番     | SNP-No    | Genotype | 遺伝子座番 | Kai   | Odds |
|---|------|----------|----------|----------|----------|-----------|----------|-----------|-----------|----------|-------|-------|------|
|   | 3    | 3        | 3 ACE ID |          | 39       | 3 CRP1    |          | 50        | 23 β 2AR4 |          | 9.67  | 7.19  |      |
|   | 3    | 23       | 12 IRS-1 |          | 51       | 12 GP1a1  |          | 75        | 23 LTA2   |          | 9.53  | 99    |      |
|   | 3    | 3        | 3 ACE ID |          | 8        | 12 PONA2  |          | 32        | 23 MTHFR  |          | 9.21  | 6.94  |      |
| 2 | 2    | 23       | 12 IRS-1 |          | 75       | 23 LTA2   |          |           |           |          | 9.16  | 11.68 |      |
|   | 3    | 3        | 3 ACE ID |          | 42       | 1 GCLM1   |          | 50        | 23 β 2AR4 |          | 8.89  | 11.41 |      |
|   | 3    | 1        | 3 ABCA1  |          | 25       | 1 PAI     |          | 53        | 1 β 2AR-1 |          | 8.58  | 99    |      |
|   | 3    | 1        | 3 ABCA1  |          | 53       | 1 β 2AR-1 |          | 85        | 3         | 5178     | 7.87  | 6.2   |      |
|   | 3    | 23       | 12 IRS-1 |          | 28       | 12 AGT1   |          | 51        | 12 GPIα1  |          | 7.86  | 10.29 |      |
|   | 3    | 55       | 12 MPO   |          | 86       | 3 IL-81   |          | 96        | 1 LRP1    |          | 7.71  | 6.14  |      |
|   | 3    | 29       | 12 G1a3  |          | 37       | 1 GP1ba   |          | 38        | 12 PONA1  |          | 7.32  | 9.74  |      |
|   | 3    | 1        | 3 ABCA1  |          | 3        | 3 ACE ID  |          | 88        | 1 VWF2    |          | 6.99  | 9.38  |      |
|   | 3    | 1        | 3 ABCA1  |          | 37       | 1 GP1ba   |          | 77        | 3 APM12   |          | 6.94  | 99    |      |
|   | 3    | 29       | 12 G1a3  |          | 67       | 12 IA2    |          | 96        | 1 LRP1    |          | 6.94  | 99    |      |
|   | 3    | 29       | 12 G1a3  |          | 33       | 23 MCP1   |          | 78        | 1 ET1     |          | 6.88  | 9.27  |      |
|   | 3    | 1        | 3 ABCA1  |          | 86       | 3 IL-81   |          | 89        | 12 IL102  |          | 6.82  | 99    |      |
|   | 3    | 1        | 3 ABCA1  |          | 3        | 3 ACE ID  |          | 12        | 12 Ibm3   |          | 6.8   | 99    |      |
|   | 3    | 12       | 12 Tbm3  |          | 45       | 23 LPL3   |          | 67        | 12 IA2    |          | 6.68  | 99    |      |
|   | 2    | 12       | 12 Tbm3  |          | 54       | 3 IL62    |          |           |           |          | 6.49  | 99    |      |
|   | 2    | 79       | 1 RAGE3  |          | 90       | 3 IL-182  |          |           |           |          | 5.7   | 99    |      |
| 1 | 20   | 3 GSY    |          |          |          |           |          |           |           |          | 4.52  | 99    |      |
| 2 | 68   | 1 BKRI   |          | 77       | 3 APM12  |           |          |           |           |          | 4.5   | 99    |      |
| 2 | 55   | 12 MPO   |          | 69       | 3 CD181  |           |          |           |           |          | 4.49  | 99    |      |
| 2 | 12   | 12 Tbm3  |          | 80       | 1 CCR2   |           |          |           |           |          | 4.1   | 99    |      |
| 3 | 3    | 3 ACE ID |          | 37       | 1 GP1ba  |           | 50       | 23 β 2AR4 |           | 8.79     | 6.71  |       |      |
| 2 | 3    | 3 ACE ID |          | 79       | 1 RAGE3  |           |          |           |           |          | 4.77  | 99    |      |
| 2 | 23   | 12 IRS-1 |          | 25       | 1 PAI    |           |          |           |           |          | 6.38  | 99    |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 51       | 12 GPIα1  |           | 7.36     | 99    |       |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 56       | 3 HANP1   |           | 6.74     | 9.11  |       |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 74       | 12 LTA1   |           | 6.67     | 9.04  |       |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 75       | 23 LTA2   |           | 6.75     | 9.13  |       |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 84       | 1 IL1B2   |           | 6.79     | 99    |       |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 94       | 12 CYP2A4 |           | 6.65     | 9.02  |       |      |
| 3 | 23   | 12 IRS-1 |          | 27       | 23 N10   |           | 98       | 23 PGCL1  |           | 6.98     | 99    |       |      |
| 3 | 23   | 12 IRS-1 |          | 28       | 12 AGT1  |           | 74       | 12 LTA1   |           | 9        | 11.51 |       |      |
| 3 | 23   | 12 IRS-1 |          | 28       | 12 AGT1  |           | 75       | 23 LTA2   |           | 9.16     | 11.68 |       |      |
| 3 | 23   | 12 IRS-1 |          | 44       | 3 CEFP4  |           | 74       | 12 LTA1   |           | 9.1      | 11.62 |       |      |
| 3 | 23   | 12 IRS-1 |          | 44       | 3 CEFP4  |           | 75       | 23 LTA2   |           | 9.06     | 11.57 |       |      |
| 3 | 23   | 12 IRS-1 |          | 47       | 3 TNF-α1 |           | 74       | 12 LTA1   |           | 9.06     | 11.57 |       |      |
| 3 | 23   | 12 IRS-1 |          | 47       | 3 TNF-α1 |           | 75       | 23 LTA2   |           | 9.16     | 11.68 |       |      |
| 3 | 23   | 12 IRS-1 |          | 51       | 12 GP1a1 |           | 70       | 23 APM2   |           | 6.99     | 9.37  |       |      |
| 3 | 23   | 12 IRS-1 |          | 51       | 12 GP1a1 |           | 74       | 12 LTA1   |           | 9.44     | 99    |       |      |
| 3 | 23   | 12 IRS-1 |          | 70       | 23 APM2  |           | 74       | 12 LTA1   |           | 8.6      | 11.09 |       |      |
| 3 | 23   | 12 IRS-1 |          | 70       | 23 APM2  |           | 75       | 23 LTA2   |           | 8.7      | 11.2  |       |      |
| 2 | 23   | 12 IRS-1 |          | 74       | 12 LTA1  |           |          |           |           | 9.06     | 11.57 |       |      |

## 正の遺伝子多型セット群

[図24]

| Num. | SNP      | SNP-No. | Genotype | 遺伝子座   | SNP-No.  | Genotype          | 遺伝子座 | SNP-No.   | Genotype | 遺伝子座  | Kai  | Odds |
|------|----------|---------|----------|--------|----------|-------------------|------|-----------|----------|-------|------|------|
| 3    | 3 ABCA1  | 1       | 3 ACE ID | 3 LTA2 | 3        | 3 ACE ID          | 27   | 3 N10     | 23       | N10   | 1024 | 89   |
| 3    | 3 ACE ID | 3       | 3 ACE ID | 75     | 3        | 3 LTA2            | 87   | 3 MSI     | 1002     | 12.6  |      |      |
| 3    | 3 ACE ID | 3       | 3 ACE ID | 39     | 3        | 3 CRP1            | 50   | 23 β2AR4  | 6.67     | 7.19  |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 51     | 12       | GP <sub>a</sub> 1 | 74   | 12 LTA1   | 8.44     | 89    |      |      |
| 2    | 23 IRS-1 | 23      | 12 IRS-1 | 74     | 12       | LTA1              |      |           | 8.06     | 11.57 |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 51     | 12       | GP <sub>a</sub> 1 | 53   | 12 β2AR-1 | 8.02     | 89    |      |      |
| 3    | 3 ACE ID | 3       | 3 ABCA1  | 42     | 1        | GCM1              | 50   | 23 β2AR4  | 8.89     | 11.41 |      |      |
| 3    | 1 ABCA1  | 1       | 3 ABCA1  | 69     | 1        | CD81              | 77   | 3 APM12   | 7.46     | 89    |      |      |
| 3    | 29 Q1A3  | 29      | 12 Q1A3  | 37     | 1        | GP <sub>b</sub> b | 38   | 12 PONA1  | 7.32     | 8.74  |      |      |
| 3    | 1 ABCA1  | 1       | 3 ABCA1  | 3      | 3 ACE ID |                   | 88   | 1 VWF2    | 6.98     | 9.38  |      |      |
| 3    | 1 ABCA1  | 1       | 3 ABCA1  | 37     | 1        | GP <sub>b</sub> b | 77   | 3 APM12   | 6.94     | 89    |      |      |
| 3    | 1 ABCA1  | 1       | 3 ABCA1  | 21     | 23       | CX37              | 67   | 3 IA2     | 6.84     | 89    |      |      |
| 3    | 1 ABCA1  | 1       | 3 ABCA1  | 3      | 3 ACE ID |                   | 12   | 17m3      | 6.8      | 89    |      |      |
| 2    | 12 Tbm3  | 12      | 12 Tbm3  | 54     | 3        | LB2               |      |           | 6.49     | 89    |      |      |
| 2    | 79 RAGE3 | 79      | 1 RAGE3  | 90     | 3        | IL-82             |      |           | 5.7      | 89    |      |      |
| 2    | 3 ACE ID | 3       | 3 ACE ID | 79     | 1        | RAGE3             |      |           | 4.77     | 89    |      |      |
| 2    | 3 FGA1   | 36      | 3 FGA1   | 54     | 3        | LE2               |      |           | 4.72     | 89    |      |      |
| 1    | 20 GSY   | 20      | 3 GSY    |        |          |                   |      |           | 4.52     | 89    |      |      |
| 2    | 68 BKRI  | 68      | 1 BKRI   | 77     | 3        | APM12             |      |           | 4.5      | 89    |      |      |
| 2    | 12 Tbm3  | 12      | 12 Tbm3  | 80     | 1        | CCP2              |      |           | 4.1      | 89    |      |      |
| 2    | 23 IRS-1 | 23      | 12 IRS-1 | 25     | 1        | PA1               |      |           | 6.38     | 89    |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 28     | 12       | AG11              | 74   | 12 LTA1   | 9        | 11.51 |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 44     | 3        | CEP4              | 74   | 12 LTA1   | 8.06     | 11.57 |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 47     | 3        | TNFα1             | 74   | 12 LTA1   | 8.06     | 11.57 |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 53     | 12       | β2AR-1            | 74   | 12 LTA1   | 7.12     | 9.51  |      |      |
| 3    | 23 IRS-1 | 23      | 12 IRS-1 | 70     | 23       | APM2              | 74   | 12 LTA1   | 8.6      | 11.09 |      |      |

正の遺伝子多型セット群

[図25]

| Num. | SNP | SNP-No.             | Genotype 遺伝子略称 | SNP-No.             | Genotype 遺伝子略称 | SNP-No.             | Genotype 遺伝子略称 | Kai   | Odds |
|------|-----|---------------------|----------------|---------------------|----------------|---------------------|----------------|-------|------|
| 3    | 1   | 3                   | ABCA1          | 3                   | 3 ACE ID       | 27                  | 3 N10          | 10.24 | 99   |
| 3    | 23  | 12 IRS-1            | 51             | 12 GP <sub>81</sub> | 75             | 23 LT <sub>A2</sub> | 9.53           | 99    |      |
| 2    | 23  | 12 IRS-1            | 75             | 23 LT <sub>A2</sub> |                |                     | 9.16           | 11.68 |      |
| 3    | 23  | 12 IRS-1            | 51             | 12 GP <sub>81</sub> | 53             | 12 β2AR-1           | 9.02           | 99    |      |
| 3    | 3   | 3 ACE ID            | 42             | 1 GCLM1             | 50             | 23 β2AR4            | 8.89           | 11.41 |      |
| 3    | 3   | 3 ACE ID            | 13             | 12 CF12             | 50             | 23 β2AR4            | 8.24           | 10.71 |      |
| 3    | 29  | 12 G1A3             | 37             | 1 GP <sub>81a</sub> | 38             | 12 PONA1            | 7.32           | 9.74  |      |
| 3    | 1   | 3 ABCA1             | 3              | 3 ACE ID            | 88             | 1 VWF2              | 6.99           | 9.38  |      |
| 3    | 1   | 3 ABCA1             | 37             | 1 GP <sub>81a</sub> | 77             | 3 APM12             | 6.94           | 99    |      |
| 3    | 29  | 12 G1A3             | 67             | 12 IA2              | 96             | 1 LRPI1             | 6.94           | 99    |      |
| 3    | 1   | 3 ABCA1             | 3              | 3 ACE ID            | 12             | 12 Tb <sub>m3</sub> | 6.8            | 99    |      |
| 3    | 12  | 12 Tb <sub>m3</sub> | 45             | 23 LPL3             | 67             | 12 IA2              | 6.66           | 99    |      |
| 2    | 12  | 12 Tb <sub>m3</sub> | 54             | 3 IL62              |                |                     | 6.49           | 99    |      |
| 2    | 79  | 1 RAGE3             | 90             | 3 IL-182            |                |                     | 5.7            | 99    |      |
| 2    | 2   | 3 ACE ID            | 79             | 1 RAGE3             |                |                     | 4.77           | 99    |      |
| 2    | 36  | 3 FGA1              | 54             | 3 IL62              |                |                     | 4.72           | 99    |      |
| 1    | 20  | 3 GSY               |                |                     |                |                     | 4.52           | 99    |      |
| 2    | 68  | 1 BKRI              | 77             | 3 APM12             |                |                     | 4.5            | 99    |      |
| 2    | 23  | 12 IRS-1            | 25             | 1 PAI               |                |                     | 6.38           | 99    |      |
| 3    | 23  | 12 IRS-1            | 28             | 12 AGT1             | 74             | 12 LT <sub>A1</sub> | 9              | 11.51 |      |
| 3    | 23  | 12 IRS-1            | 28             | 12 AGT1             | 75             | 23 LT <sub>A2</sub> | 9.1            | 11.62 |      |
| 3    | 23  | 12 IRS-1            | 39             | 23 CRP1             | 74             | 12 LT <sub>A1</sub> | 9.06           | 11.57 |      |
| 3    | 23  | 12 IRS-1            | 39             | 23 CRP1             | 75             | 23 LT <sub>A2</sub> | 9.16           | 11.68 |      |
| 3    | 23  | 12 IRS-1            | 44             | 3 CEP4              | 74             | 12 LT <sub>A1</sub> | 9.06           | 11.57 |      |
| 3    | 23  | 12 IRS-1            | 44             | 3 CEP4              | 75             | 23 LT <sub>A2</sub> | 9.16           | 11.68 |      |
| 3    | 23  | 12 IRS-1            | 47             | 3 TNFα1             | 74             | 12 LT <sub>A1</sub> | 9.06           | 11.57 |      |
| 3    | 23  | 12 IRS-1            | 47             | 3 TNFα1             | 75             | 23 LT <sub>A2</sub> | 9.16           | 11.68 |      |
| 3    | 23  | 12 IRS-1            | 51             | 12 GP <sub>81</sub> | 74             | 12 LT <sub>A1</sub> | 9.44           | 99    |      |
| 3    | 23  | 12 IRS-1            | 53             | 12 β2AR-1           | 74             | 12 LT <sub>A1</sub> | 7.12           | 9.51  |      |
| 3    | 23  | 12 IRS-1            | 53             | 12 β2AR-1           | 75             | 23 LT <sub>A2</sub> | 7.2            | 9.61  |      |
| 3    | 23  | 12 IRS-1            | 70             | 23 APM2             | 74             | 12 LT <sub>A1</sub> | 8.6            | 11.09 |      |
| 3    | 23  | 12 IRS-1            | 70             | 23 APM2             | 75             | 23 LT <sub>A2</sub> | 8.7            | 11.2  |      |
| 2    | 23  | 12 IRS-1            | 74             | 12 LT <sub>A1</sub> |                |                     | 9.06           | 11.57 |      |
| 2    | 23  | 12 IRS-1            | 80             | 12 CCR2             |                |                     | 5.55           | 99    |      |

正の遺伝子多型セット群

[図26]

| 正の遺伝子多型セット群 |    |          |    |           |    |           |       |       |  |
|-------------|----|----------|----|-----------|----|-----------|-------|-------|--|
| 3           | 1  | 3 ABCA1  | 3  | 3 ACE ID  | 27 | 3 N10     | 10.24 | 99    |  |
| 3           | 23 | 12 IRS-1 | 51 | 12 GP1a1  | 75 | 23 LTA2   | 9.53  | 99    |  |
| 2           | 23 | 12 IRS-1 | 75 | 23 LTA2   |    |           | 9.16  | 11.68 |  |
| 3           | 23 | 12 IRS-1 | 51 | 12 GP1a1  | 53 | 12 β2AR-1 | 9.02  | 99    |  |
| 3           | 3  | 3 ACE ID | 42 | 1 GCLM1   | 50 | 23 β2AR4  | 8.89  | 11.41 |  |
| 3           | 3  | 3 ACE ID | 13 | 12 CF12   | 50 | 23 β2AR4  | 8.24  | 10.71 |  |
| 3           | 29 | 12 GIA3  | 37 | 1 GP1ba   | 38 | 12 PONA1  | 7.32  | 9.74  |  |
| 3           | 1  | 3 ABCA1  | 3  | 3 ACE ID  | 88 | 1 WVF2    | 6.99  | 9.38  |  |
| 3           | 1  | 3 ABCA1  | 37 | 1 GP1ba   | 77 | 3 APM12   | 6.94  | 99    |  |
| 3           | 29 | 12 GIA3  | 67 | 12 IA2    | 96 | 1 LRP1    | 6.94  | 99    |  |
| 3           | 1  | 3 ABCA1  | 3  | 3 ACE ID  | 12 | 12 Tbm3   | 6.8   | 99    |  |
| 3           | 12 | 12 Tbm3  | 45 | 23 LP13   | 67 | 12 IA2    | 6.66  | 99    |  |
| 2           | 12 | 12 Tbm3  | 54 | 3 L62     |    |           | 6.49  | 99    |  |
| 2           | 79 | 1 RAGE3  | 90 | 3 IL-182  |    |           | 5.7   | 99    |  |
| 2           | 3  | 3 ACE ID | 79 | 1 RAGE3   |    |           | 4.77  | 99    |  |
| 2           | 36 | 3 FGA1   | 54 | 3 L62     |    |           | 4.72  | 99    |  |
| 1           | 20 | 3 GSY    |    |           |    |           | 4.52  | 99    |  |
| 2           | 68 | 1 BKRI   | 77 | 3 APM12   |    |           | 4.5   | 99    |  |
| 2           | 23 | 12 IRS-1 | 25 | 1 PAI     |    |           | 6.38  | 99    |  |
| 3           | 23 | 12 IRS-1 | 28 | 12 AGT1   | 74 | 12 LTA1   | 9     | 11.51 |  |
| 3           | 23 | 12 IRS-1 | 28 | 12 AGT1   | 75 | 23 LTA2   | 9.1   | 11.62 |  |
| 3           | 23 | 12 IRS-1 | 39 | 23 CRP1   | 74 | 12 LTA1   | 9.06  | 11.57 |  |
| 3           | 23 | 12 IRS-1 | 39 | 23 CRP1   | 75 | 23 LTA2   | 9.16  | 11.68 |  |
| 3           | 23 | 12 IRS-1 | 44 | 3 CETP4   | 74 | 12 LTA1   | 9.06  | 11.57 |  |
| 3           | 23 | 12 IRS-1 | 44 | 3 CETP4   | 75 | 23 LTA2   | 9.16  | 11.68 |  |
| 3           | 23 | 12 IRS-1 | 47 | 3 TNFα1   | 74 | 12 LTA1   | 9.06  | 11.57 |  |
| 3           | 23 | 12 IRS-1 | 47 | 3 TNFα1   | 75 | 23 LTA2   | 9.16  | 11.68 |  |
| 3           | 23 | 12 IRS-1 | 51 | 12 GP1a1  | 74 | 12 LTA1   | 9.44  | 99    |  |
| 3           | 23 | 12 IRS-1 | 53 | 12 β2AR-1 | 74 | 12 LTA1   | 7.12  | 9.51  |  |
| 3           | 23 | 12 IRS-1 | 53 | 12 β2AR-1 | 75 | 23 LTA2   | 7.2   | 9.61  |  |
| 3           | 23 | 12 IRS-1 | 70 | 23 APM2   | 74 | 12 LTA1   | 8.6   | 11.09 |  |
| 3           | 23 | 12 IRS-1 | 70 | 23 APM2   | 75 | 23 LTA2   | 8.7   | 11.2  |  |
| 2           | 23 | 12 IRS-1 | 74 | 12 LTA1   |    |           | 9.06  | 11.57 |  |
| 2           | 23 | 12 IRS-1 | 80 | 12 CCR2   |    |           | 5.55  | 99    |  |

[図27]

| 正の遺伝子多型セット群 |        |    |          |    |            |    |           |       |       |
|-------------|--------|----|----------|----|------------|----|-----------|-------|-------|
| 3           | 0.0354 | 1  | 3 ABCA1  | 3  | 3 ACE ID   | 27 | 3 N10     | 10.24 | 99    |
| 3           | 0.0348 | 23 | 12 IRS-1 | 51 | 12 GPla1   | 75 | 23 LTA2   | 9.53  | 99    |
| 2           | 0.0417 | 23 | 12 IRS-1 | 75 | 23 LTA2    |    |           | 9.16  | 11.68 |
| 3           | 0.0299 | 23 | 12 IRS-1 | 51 | 12 GPla1   | 53 | 12 β2AR-1 | 9.02  | 99    |
| 3           | 0.0403 | 3  | 3 ACE ID | 42 | 1 GCLM1    | 50 | 23 β2AR4  | 8.89  | 11.41 |
| 3           | 0.0356 | 3  | 3 ACE ID | 13 | 12 CF12    | 50 | 23 β2AR4  | 8.24  | 10.71 |
| 3           | 0.0233 | 1  | 3 ABCA1  | 37 | 1 GPlba    | 77 | 3 APM12   | 6.94  | 99    |
| 3           | 0.0366 | 29 | 12 GIa3  | 67 | 12 IA2     | 98 | 1 LRP1    | 6.94  | 99    |
| 3           | 0.0245 | 1  | 3 ABCA1  | 3  | 3 ACE ID   | 12 | 12 Tbm3   | 6.8   | 99    |
| 3           | 0.0254 | 12 | 12 Tbm3  | 45 | 23 LPL3    | 67 | 12 IA2    | 6.66  | 99    |
| 2           | 0.0203 | 12 | 12 Tbm3  | 54 | 3 IL62     |    |           | 6.49  | 99    |
| 2           | 0.0226 | 79 | 1 RAGE3  | 90 | 3 IL-182   |    |           | 5.7   | 99    |
| 2           | 0.0124 | 3  | 3 ACE ID | 79 | 1 RAGE3    |    |           | 4.77  | 99    |
| 2           | 0.0212 | 36 | 3 FGAI   | 54 | 3 IL62     |    |           | 4.72  | 99    |
| 1           | 0.0162 | 20 | 3 GSY    |    |            |    |           | 4.52  | 99    |
| 2           | 0.0279 | 68 | 1 BKRI   | 77 | 3 APM12    |    |           | 4.5   | 99    |
| 2           | 0.0183 | 23 | 12 IRS-1 | 25 | 1 PAI      |    |           | 6.38  | 99    |
| 3           | 0.0401 | 23 | 12 IRS-1 | 28 | 12 ACT1    | 74 | 12 LTA1   | 9     | 11.51 |
| 3           | 0.0402 | 23 | 12 IRS-1 | 28 | 12 ACT1    | 75 | 23 LTA2   | 9.1   | 11.62 |
| 3           | 0.0416 | 23 | 12 IRS-1 | 39 | 23 CRP1    | 74 | 12 LTA1   | 9.06  | 11.57 |
| 3           | 0.0416 | 23 | 12 IRS-1 | 39 | 23 CRP1    | 75 | 23 LTA2   | 9.16  | 11.68 |
| 3           | 0.0416 | 23 | 12 IRS-1 | 44 | 3 CETP4    | 74 | 12 LTA1   | 9.06  | 11.57 |
| 3           | 0.0416 | 23 | 12 IRS-1 | 44 | 3 CETP4    | 75 | 23 LTA2   | 9.16  | 11.68 |
| 3           | 0.0411 | 23 | 12 IRS-1 | 47 | 3 TNF-alfa | 74 | 12 LTA1   | 9.06  | 11.57 |
| 3           | 0.0411 | 23 | 12 IRS-1 | 47 | 3 TNF-alfa | 75 | 23 LTA2   | 9.16  | 11.68 |
| 3           | 0.0347 | 23 | 12 IRS-1 | 51 | 12 GPla1   | 74 | 12 LTA1   | 9.44  | 99    |
| 3           | 0.0386 | 23 | 12 IRS-1 | 70 | 23 APM2    | 74 | 12 LTA1   | 8.6   | 11.09 |
| 3           | 0.0387 | 23 | 12 IRS-1 | 70 | 23 APM2    | 75 | 23 LTA2   | 8.7   | 11.2  |
| 2           | 0.0416 | 23 | 12 IRS-1 | 74 | 12 LTA1    |    |           | 9.06  | 11.57 |
| 2           | 0.0225 | 23 | 12 IRS-1 | 80 | 12 CCR2    |    |           | 5.55  | 99    |

[図28]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 1      | 3        |
| 90     | 3        |
| 33     | 3        |
| 8      | 12       |
| 67     | 12       |
| 53     | 1        |
| 51     | 23       |
| 96     | 1        |
| 38     | 12       |
| 74     | 3        |
| 12     | 12       |
| 40     | 3        |
| 30     | 1        |
| 73     | 23       |
| 62     | 1        |
| 78     | 12       |
| 25     | 12       |
| 29     | 12       |
| 85     | 3        |
| 55     | 12       |
| 88     | 12       |
| 68     | 12       |
| 36     | 3        |
| 26     | 1        |
| 80     | 12       |
| 77     | 3        |
| 98     | 3        |
| 70     | 12       |
| 84     | 1        |
| 37     | 1        |
| 10     | 3        |
| 13     | 12       |
| 4      | 23       |
| 42     | 1        |
| 19     | 12       |
| 32     | 23       |
| 87     | 23       |
| 50     | 23       |
| 39     | 3        |
| 20     | 3        |
| 27     | 3        |
| 31     | 3        |
| 93     | 1        |
| 54     | 23       |
| 17     | 3        |
| 43     | 12       |
| 22     | 1        |
| 21     | 12       |
| 28     | 12       |
| 15     | 12       |
| 94     | 12       |
| 24     | 12       |
| 64     | 3        |
| 56     | 23       |
| 7      | 1        |
| 86     | 3        |
| 63     | 12       |
| 71     | 23       |
| 69     | 3        |
| 45     | 1        |
| 79     | 23       |
| 75     | 3        |
| 52     | 1        |
| 16     | 12       |

[図29]

| SNP-No | Genotype |
|--------|----------|
| 53     | 1        |
| 3      | 3        |
| 8      | 12       |
| 12     | 12       |
| 1      | 3        |
| 70     | 12       |
| 67     | 12       |
| 85     | 3        |
| 29     | 12       |
| 38     | 12       |
| 77     | 3        |
| 50     | 23       |
| 62     | 1        |
| 80     | 3        |
| 93     | 23       |
| 31     | 3        |
| 20     | 3        |
| 96     | 1        |
| 78     | 12       |
| 37     | 1        |
| 68     | 1        |
| 94     | 12       |
| 55     | 12       |
| 84     | 1        |
| 89     | 3        |
| 51     | 3        |
| 86     | 1        |
| 33     | 3        |
| 79     | 12       |
| 10     | 3        |
| 21     | 1        |
| 56     | 23       |
| 40     | 3        |
| 23     | 3        |
| 26     | 1        |
| 30     | 12       |
| 25     | 12       |
| 32     | 23       |
| 42     | 1        |
| 28     | 12       |
| 15     | 12       |
| 69     | 3        |
| 45     | 1        |
| 19     | 12       |
| 7      | 1        |
| 13     | 12       |
| 90     | 3        |
| 63     | 12       |

[図30]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 8      | 12       |
| 67     | 12       |
| 1      | 3        |
| 31     | 3        |
| 53     | 1        |
| 12     | 12       |
| 33     | 3        |
| 37     | 1        |
| 29     | 12       |
| 75     | 1        |
| 42     | 1        |
| 23     | 12       |
| 93     | 23       |
| 55     | 12       |
| 50     | 23       |
| 20     | 3        |
| 78     | 12       |
| 68     | 1        |
| 54     | 3        |
| 70     | 12       |
| 80     | 3        |
| 85     | 12       |
| 39     | 3        |
| 79     | 12       |
| 88     | 1        |
| 51     | 3        |
| 71     | 23       |
| 86     | 1        |
| 74     | 12       |
| 40     | 3        |
| 77     | 3        |
| 84     | 1        |
| 25     | 1        |
| 36     | 3        |
| 27     | 23       |
| 38     | 12       |
| 90     | 3        |
| 69     | 3        |
| 10     | 3        |
| 15     | 12       |
| 30     | 12       |
| 24     | 12       |
| 32     | 23       |
| 21     | 12       |
| 26     | 1        |
| 28     | 12       |
| 96     | 1        |
| 56     | 3        |
| 94     | 12       |

[図31]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 8      | 12       |
| 12     | 12       |
| 1      | 3        |
| 37     | 1        |
| 31     | 3        |
| 29     | 12       |
| 23     | 12       |
| 30     | 12       |
| 50     | 23       |
| 55     | 12       |
| 53     | 1        |
| 36     | 3        |
| 54     | 3        |
| 86     | 3        |
| 20     | 3        |
| 38     | 12       |
| 84     | 1        |
| 77     | 3        |
| 96     | 1        |
| 78     | 12       |
| 93     | 1        |
| 99     | 23       |
| 79     | 1        |
| 32     | 23       |
| 74     | 12       |
| 75     | 23       |
| 25     | 1        |
| 39     | 3        |
| 69     | 3        |
| 90     | 3        |
| 80     | 1        |
| 68     | 1        |
| 21     | 23       |
| 67     | 3        |
| 42     | 1        |
| 88     | 1        |
| 27     | 23       |
| 89     | 12       |
| 28     | 12       |
| 44     | 3        |
| 47     | 3        |
| 70     | 23       |
| 56     | 3        |
| 94     | 12       |
| 98     | 23       |

[図32]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 1      | 3        |
| 12     | 12       |
| 55     | 12       |
| 23     | 12       |
| 37     | 1        |
| 50     | 23       |
| 29     | 12       |
| 96     | 1        |
| 86     | 3        |
| 53     | 1        |
| 20     | 3        |
| 8      | 12       |
| 32     | 23       |
| 77     | 3        |
| 54     | 3        |
| 79     | 1        |
| 67     | 12       |
| 85     | 3        |
| 69     | 3        |
| 38     | 12       |
| 39     | 3        |
| 68     | 1        |
| 90     | 3        |
| 80     | 1        |
| 74     | 12       |
| 75     | 23       |
| 25     | 1        |
| 33     | 23       |
| 78     | 1        |
| 45     | 23       |
| 42     | 1        |
| 88     | 1        |
| 27     | 23       |
| 51     | 12       |
| 89     | 12       |
| 28     | 12       |
| 70     | 23       |
| 44     | 3        |
| 47     | 3        |
| 56     | 3        |
| 94     | 12       |
| 84     | 1        |
| 98     | 23       |

[図33]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 1      | 3        |
| 12     | 12       |
| 23     | 12       |
| 54     | 3        |
| 50     | 23       |
| 77     | 3        |
| 74     | 12       |
| 37     | 1        |
| 75     | 3        |
| 87     | 23       |
| 20     | 3        |
| 79     | 1        |
| 29     | 12       |
| 38     | 12       |
| 39     | 3        |
| 21     | 23       |
| 67     | 3        |
| 90     | 3        |
| 36     | 3        |
| 80     | 1        |
| 27     | 3        |
| 42     | 1        |
| 68     | 1        |
| 88     | 1        |
| 69     | 1        |
| 53     | 12       |
| 51     | 12       |
| 28     | 12       |
| 44     | 3        |
| 47     | 3        |
| 70     | 23       |
| 25     | 1        |

[図34]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 1      | 3        |
| 12     | 12       |
| 23     | 12       |
| 54     | 3        |
| 29     | 12       |
| 37     | 1        |
| 20     | 3        |
| 50     | 23       |
| 77     | 3        |
| 79     | 1        |
| 67     | 12       |
| 38     | 12       |
| 42     | 1        |
| 74     | 12       |
| 75     | 23       |
| 90     | 3        |
| 36     | 3        |
| 27     | 3        |
| 68     | 1        |
| 13     | 12       |
| 96     | 1        |
| 88     | 1        |
| 45     | 23       |
| 53     | 12       |
| 51     | 12       |
| 28     | 12       |
| 39     | 23       |
| 44     | 3        |
| 47     | 3        |
| 70     | 23       |
| 25     | 1        |
| 80     | 12       |

[図35]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 1      | 3        |
| 12     | 12       |
| 23     | 12       |
| 54     | 3        |
| 29     | 12       |
| 37     | 1        |
| 20     | 3        |
| 50     | 23       |
| 77     | 3        |
| 79     | 1        |
| 67     | 12       |
| 38     | 12       |
| 42     | 1        |
| 74     | 12       |
| 75     | 23       |
| 90     | 3        |
| 36     | 3        |
| 27     | 3        |
| 68     | 1        |
| 13     | 12       |
| 96     | 1        |
| 88     | 1        |
| 45     | 23       |
| 53     | 12       |
| 51     | 12       |
| 28     | 12       |
| 39     | 23       |
| 44     | 3        |
| 47     | 3        |
| 70     | 23       |
| 25     | 1        |
| 80     | 12       |

[図36]

| SNP-No | Genotype |
|--------|----------|
| 3      | 3        |
| 12     | 12       |
| 1      | 3        |
| 23     | 12       |
| 54     | 3        |
| 20     | 3        |
| 50     | 23       |
| 77     | 3        |
| 67     | 12       |
| 79     | 1        |
| 42     | 1        |
| 27     | 3        |
| 29     | 12       |
| 74     | 12       |
| 75     | 23       |
| 96     | 1        |
| 90     | 3        |
| 36     | 3        |
| 13     | 12       |
| 68     | 1        |
| 37     | 1        |
| 45     | 23       |
| 51     | 12       |
| 28     | 12       |
| 39     | 23       |
| 44     | 3        |
| 47     | 3        |
| 70     | 23       |
| 53     | 12       |
| 25     | 1        |
| 80     | 12       |

## [図37-A]

| SNP-No | 略号        | 遺伝子                                      | site                   | 位置(rs)                             |
|--------|-----------|------------------------------------------|------------------------|------------------------------------|
| 1      | ABCA1     | ABCA 1                                   | G1051A(Arg219Lys)      | rs2230806                          |
| 2      | DRD2      | Dopamine D2 receptor                     | CG(Ser311Cys)          | rs1801028                          |
| 3      | ACE ID    | ACE                                      | I/D type               | X62855の1451～1738番目の欠失<br>rs1799752 |
| 4      | ESRa1     | alpha estrogen receptor                  | TC(PvuII)              | rs2234693                          |
| 5      | N1        | e NOS                                    | T-786C+4repeat         | rs2070744                          |
| 6      | SELP      | P-selectin                               | AC(Thr715Pro)          | rs6136                             |
| 7      | N7        | p 22phox                                 | C242T                  | rs4673                             |
| 8      | PONA2     | HUMPPONA                                 | A172T(Met55Leu)        | rs3202100                          |
| 9      | IL6       | interleukin -6                           | G-174C                 | rs1800795                          |
| 10     | GP3A      | GP IIb IIIa                              | C1565T(PIA2)           | rs5918                             |
| 11     | PAR2      | PPAR gamma                               | C-G(Pro12Ala)          | rs1801282                          |
| 12     | Tbm3      | thrombomodulin                           | G-33A                  | M74564の1487番目                      |
| 13     | CF12      | Factor XI                                | C46T                   | rs1801020                          |
| 14     | NPY       | neuropeptide Y                           | T1128C(Leu7Pro)        | rs16139                            |
| 15     | MMP12     | MMP-12                                   | A-82G                  | rs2276109                          |
| 16     | HL1       | hepatic lipase                           | C-480T                 | rs1800588                          |
| 17     | FR1       | Flactalkine receptor CX3CR1              | GA(V249I)              | rs3732379                          |
| 18     | S2AR      | serotonin 2A receptor                    | T102C                  | rs6313                             |
| 19     | MMP9      | MMP-9=gelatinase B                       | C-1562T                | rs3918242                          |
| 20     | GSY       | glycogen synthase                        | AG(M416V)              | rs5447                             |
| 21     | CX37      | connexin37(gap junction protein)         | C1019T(Pro319Ser)      | rs1764391                          |
| 22     | ESL1      | E-selectin                               | G98T                   | rs1805193                          |
| 23     | IRS1      | IRS-1                                    | Gly971Arg              | rs1801278                          |
| 24     | AGTR1-3   | AT1 receptor                             | A1166C                 | rs5186                             |
| 25     | PAI       | PAI-I                                    | 4G/5G at -668          | rs1799889                          |
| 26     | NOS3      | e NOS                                    | G894T(Glu298Asp)       | rs1799983                          |
| 27     | N10       | TGF-beta 1                               | T29C(Leu10Pro)         | AY330201の329番目                     |
| 28     | AGT1      | Angiotensinogen                          | T704C(M235T)           | JST050982, rs699                   |
| 29     | G1A3      | GP Ia                                    | A1648G (Lys505Glu)     | rs1801106                          |
| 30     | FGB3      | beta Fibrinogen                          | C148T                  | rs1800787                          |
| 31     | APE2      | Apolipoprotein E                         | TC(Cys112Arg)          | rs429358                           |
| 32     | MTHFR     | MTHFR                                    | C677T                  | rs1801133                          |
| 33     | MCP1      | MCP-1(chemokine)                         | A-2518G                | rs1024611                          |
| 34     | PT        | prothrombin                              | G20210A                | rs1799983                          |
| 35     | ESL2      | E-selectin                               | A581C(Ser128Arg)       | rs5361                             |
| 36     | FGA1      | alpha fibrinogen                         | AG(Thr312Ala)          | rs8050                             |
| 37     | GP1ba     | Human Platelet Antigen-2                 | C1018T(Thr145Met)      | rs6085                             |
| 38     | PONA1     | PON1                                     | A584G(Gln192Arg)       | rs682, 2003/8/サントリE575→584         |
| 39     | CRP1      | C-reactive protein                       | 1059G/C(rs1800947)     | rs1800947                          |
| 40     | 3AR       | beta 3 adreno receptor                   | TC(Trp84Arg)           | rs4994                             |
| 41     | MMP72     | matrilysin promoter                      | C-153T                 | L22525の1050番目                      |
| 42     | GCLM1     | glutamate-cysteine ligase, modifier      | -588C/T                | U72210の2670番目                      |
| 43     | MTP1      | microsomal triglyceride transfer protein | G-493T                 | rs1800591                          |
| 44     | CETP4     | Cholesterol ester transfer protein       | GA (Arg451Gln)         | rs1800777                          |
| 45     | LPL3      | Lipoprotein lipase                       | CG(Ser447 STOP)        | rs328                              |
| 46     | PPAR-alfa | PPAR-alfa                                | C698G(Leu162Val)       | rs1800206                          |
| 47     | TNF-alpha | TNF-alpha                                | G-238A                 | rs361525                           |
| 48     | ICAM1     | intercellular adhesin molecule 1         | GA(E469K)              | rs5498                             |
| 49     | GP61      | Glycoprotein VI                          | TC(Ser219Pro)          | rs1813882                          |
| 50     | B2AR4     | beta 2-Adrenergic Receptor               | C79G                   | rs1042714                          |
| 51     | GP1a1     | Glycoprotein I a                         | C807T                  | rs1126843                          |
| 52     | MMP71     | matrilysin promoter                      | A-181G                 | L22525の1022番目                      |
| 53     | B2AR-1    | beta 2-Adrenergic Receptor               | A46G(Arg16Gly)         | rs1042713                          |
| 54     | IL62      | Interleukin-6                            | C-834G                 | rs1800796                          |
| 55     | MPO       | myeloperoxidase                          | G-483A(rs2333227)      | rs2333227                          |
| 56     | HANP1     | Human Atrial Natriuretic Peptide         | T2238C                 | rs5065                             |
| 57     | 2J2-2     | CYP2J2*2                                 | 14,487A>G(Thr 143 Ala) | 14,487A>G, AF272142の20518番目        |
| 58     | 2J2-3     | CYP2J2*3                                 | 14,532C>T(Arg 158 Cys) | 14,532C>T, AF272142の20563番目        |
| 59     | 2J2-4     | CYP2J2*4                                 | 15,028T>A(Ile 192 Asn) | 15,028T>A, AF272142の21059番目        |

[図37-B]

|    |              |                                                                           |                                                     |                            |
|----|--------------|---------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
| 60 | ABCC6        | ABCC6                                                                     | C3421T(R1141X)                                      | AC025778の27135番目           |
| 61 | 2J2-6        | CYP2J2*6                                                                  | 25,661A>T(Asn 404 Tyr)                              | 25,661A>T、AF272142の31692番目 |
| 62 | APE3         | Apolipoprotein E $\epsilon$ 3 in exon 4                                   | Arg158Cys (C/T)                                     | rs7412                     |
| 63 | HANP2        | Human Atrial Natriuretic Peptide                                          | C708T                                               | rs5064                     |
| 64 | TNFa2        | Tumor necrosis factor- $\alpha$                                           | G-308A                                              | rs1800629                  |
| 65 | CF5          | Factor V                                                                  | G1691A                                              | rs6025                     |
| 66 | $\beta$ 2AR5 | $\beta$ 2-Adrenergic Receptor                                             | C491T(Thr164Ile)                                    | rs1800888                  |
| 67 | 1A2          | Glycoprotein I a                                                          | G873A                                               | rs1062535                  |
| 68 | BKR1         | bradykinin B2receptor                                                     | C-58T                                               | rs1799722                  |
| 69 | CD181        | CD 18                                                                     | C1323T                                              | rs235326                   |
| 70 | APM2         | adiponectin                                                               | T94G                                                | rs2241766                  |
| 71 | REG1         | Resistin                                                                  | ATG 6 repeat                                        | rs3833230                  |
| 72 | AMPD1        | adenosine monophosphate deaminase                                         | C34T                                                | M37921の274番目               |
| 73 | VEGF5        | VEGF                                                                      | C-634G                                              | rs2010963                  |
| 74 | LTA1         | Lymphotoxin-alfa                                                          | A252G                                               | M16441の1069番目              |
| 75 | LTA2         | Lymphotoxin-alfa                                                          | Thr26Asn/C804A                                      | rs1041981                  |
| 76 | TS41         | Thrombospondin-4                                                          | G1186C(Ala387Pro)                                   | rs1866389                  |
| 77 | APM12        | ADIPONECTIN                                                               | G278T                                               | rs1501299,IMS-JST013728    |
| 78 | ET1          | Endothelin-1                                                              | G5665T/Lys198Asn                                    | M25380の161番目               |
| 79 | RAGE3        | RAGE                                                                      | Gly82Ser (G/A)                                      | rs2070600                  |
| 80 | CCR2         | C-C chemokine receptor2                                                   | G190A(Val64Ile)                                     | rs1799864                  |
| 81 | TS11         | Thrombospondin-1                                                          | A2210G(Asn700Ser)                                   | AC037198の55322番目           |
| 82 | IL103        | Interleukin-10                                                            | G-1082A                                             | rs1800898                  |
| 83 | 2C9-3        | CYP2C9*3                                                                  | Leu359Ile(A1075C)                                   | rs1057910                  |
| 84 | IL1B2        | IL-1 $\beta$                                                              | C3953T                                              | rs1143634                  |
| 85 | 5178         | Mitochondria                                                              | A5178C                                              | V00662の5178番目              |
| 86 | IL-181       | Interleukin-18                                                            | C-607A                                              | rs1946518                  |
| 87 | MS1          | Methionine synthase                                                       | A2756G(Asp919Gly)                                   | rs1805087                  |
| 88 | VWF2         | von Willebrand Factor                                                     | G-1051A                                             | rs7965413                  |
| 89 | IL102        | Interleukin-10                                                            | C-819T                                              | rs1800871                  |
| 90 | IL-182       | Interleukin-18                                                            | G-137C                                              | rs187238                   |
| 91 | MT12026      | Mitochondria                                                              | A12026G                                             | V00662の12026番目             |
| 92 | SRB11        | Scavenger receptor B I =CLA-1                                             | G4A(Gly2Ser)                                        | rs4238001                  |
| 93 | TPO1         | Thrombopoietin                                                            | A5713G                                              | rs6141                     |
| 94 | CYP3A4       | CYP3A4                                                                    | A-290G                                              | rs2740574                  |
| 95 | EPHX22       | soluble epoxide hydrolase(EPHX2)                                          | Arg402-403ins.In<br>exon13<br>((CGT)ins after 1206) | rs2234887                  |
| 96 | LRP1         | LDL receptor related protein                                              | C766T                                               | AF058399の518番目             |
| 97 | MT1310       | Mitochondria                                                              | C1310T                                              | V00662の1310番目              |
| 98 | PGC11        | Peroxisome proliferation activated receptor $\gamma$ coactivator-1(PGC-1) | G1302A(Thr394Thr)                                   | rs2970847                  |
| 99 | PGC12        | Peroxisome proliferation activated receptor $\gamma$ coactivator-1(PGC-1) | G1564A(Gly482Ser)                                   | AF108200の592番目             |

[図38]

| SNP-No | Genotype | 遺伝子略称  | SNP-No | Genotype | 遺伝子略称          | kai   | odds |
|--------|----------|--------|--------|----------|----------------|-------|------|
| 1      | 1        | ABCA1  | 20     | 23       | GSY            | 7     | -2.9 |
| 3      | 23       | ACE ID | 81     | 23       | TS11           | 90.8  | -4.5 |
| 3      | 23       | ACE ID | 86     | 3        | IL-181         | 32.8  | -2.4 |
| 8      | 12       | PONA2  | 11     | 23       | PAR2           | 7.7   | -99  |
| 11     | 23       | PAR2   | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 21     | 23       | CX37   | 99     | 1        | PGC12          | 7.1   | -2.2 |
| 25     | 3        | PAI    | 90     | 12       | IL-182         | 8.8   | -4.2 |
| 27     | 3        | N10    | 64     | 12       | TNF2           | 6.7   | -99  |
| 35     | 23       | ESL2   | 82     | 23       | IL103          | 7.2   | -6.8 |
| 40     | 12       | 3AR    | 80     | 1        | CCR2           | 8     | -4.3 |
| 62     | 23       | APE3   | 90     | 12       | IL-182         | 7     | -6.7 |
| 67     | 1        | 1A2    | 68     | 3        | BKR1           | 6.8   | -2.7 |
| 74     | 12       | LTA1   | 81     | 23       | TS11           | 84.5  | -4.4 |
| 74     | 12       | LTA1   | 86     | 3        | IL-181         | 31.6  | -2.4 |
| 75     | 23       | LTA2   | 81     | 23       | TS11           | 82.8  | -4.3 |
| 75     | 23       | LTA2   | 86     | 3        | IL-181         | 31    | -2.4 |
| 77     | 12       | APM12  | 81     | 23       | TS11           | 79.8  | -4   |
| 77     | 12       | APM12  | 86     | 3        | IL-181         | 29.1  | -2.3 |
| 79     | 23       | RAGE3  | 81     | 23       | TS11           | 100.8 | -4.8 |
| 79     | 23       | RAGE3  | 86     | 3        | IL-181         | 38.2  | -2.6 |
| 81     | 23       | TS11   | 93     | 23       | TPO1           | 57.9  | -3.4 |
| 81     | 23       | TS11   | 98     | 23       | PGC11          | 107.8 | -5.1 |
| 86     | 3        | IL-181 | 98     | 23       | PGC11          | 40.9  | -2.6 |

[図39]

| SNP-No | Genotype | 遺伝子略称  | SNP-No | Genotype | 遺伝子略称          | kai   | odds |
|--------|----------|--------|--------|----------|----------------|-------|------|
| 3      | 23       | ACE ID | 81     | 23       | TS11           | 90.8  | -4.5 |
| 8      | 12       | PONA2  | 11     | 23       | PAR2           | 7.7   | -99  |
| 11     | 23       | PAR2   | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 25     | 3        | PAI    | 90     | 12       | IL-182         | 8.8   | -4.2 |
| 27     | 3        | N10    | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 35     | 23       | ESL2   | 82     | 23       | IL103          | 7.2   | -6.8 |
| 40     | 12       | 3AR    | 80     | 1        | CCR2           | 8     | -4.3 |
| 62     | 23       | APE3   | 90     | 12       | IL-182         | 7     | -6.7 |
| 74     | 12       | LTA1   | 81     | 23       | TS11           | 84.5  | -4.4 |
| 75     | 23       | LTA2   | 81     | 23       | TS11           | 82.8  | -4.3 |
| 77     | 12       | APM12  | 81     | 23       | TS11           | 79.8  | -4   |
| 79     | 23       | RAGE3  | 81     | 23       | TS11           | 100.8 | -4.8 |
| 81     | 23       | TS11   | 93     | 23       | TPO1           | 57.9  | -3.4 |
| 81     | 23       | TS11   | 98     | 23       | PGC11          | 107.8 | -5.1 |

[図40]

| SNP-No | Genotype | 遺伝子略称  | SNP-No | Genotype | 遺伝子略称          | kai   | odds |
|--------|----------|--------|--------|----------|----------------|-------|------|
| 3      | 23       | ACE ID | 81     | 23       | TS11           | 90.8  | -4.5 |
| 8      | 12       | PONA2  | 11     | 23       | PAR2           | 7.7   | -99  |
| 11     | 23       | PAR2   | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 25     | 3        | PAI    | 90     | 12       | IL-182         | 8.8   | -4.2 |
| 27     | 3        | N10    | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 35     | 23       | ESL2   | 82     | 23       | IL103          | 7.2   | -6.8 |
| 40     | 12       | 3AR    | 80     | 1        | CCR2           | 8     | -4.3 |
| 62     | 23       | APE3   | 90     | 12       | IL-182         | 7     | -6.7 |
| 74     | 12       | LTA1   | 81     | 23       | TS11           | 84.5  | -4.4 |
| 75     | 23       | LTA2   | 81     | 23       | TS11           | 82.8  | -4.3 |
| 77     | 12       | APM12  | 81     | 23       | TS11           | 79.8  | -4   |
| 79     | 23       | RAGE3  | 81     | 23       | TS11           | 100.8 | -4.8 |
| 81     | 23       | TS11   | 98     | 23       | PGC11          | 107.8 | -5.1 |

[図41]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称          | kai   | odds |
|--------|----------|-------|--------|----------|----------------|-------|------|
| 8      | 12       | PONA2 | 11     | 23       | PAR2           | 7.7   | -99  |
| 11     | 23       | PAR2  | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 27     | 3        | N10   | 64     | 12       | TNF $\alpha$ 2 | 6.7   | -99  |
| 35     | 23       | ESL2  | 82     | 23       | IL103          | 7.2   | -6.8 |
| 62     | 23       | APE3  | 90     | 12       | IL-182         | 7     | -6.7 |
| 81     | 23       | TS11  | 98     | 23       | PGC11          | 107.8 | -5.1 |

[図42]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称          | kai | odds |
|--------|----------|-------|--------|----------|----------------|-----|------|
| 8      | 12       | PONA2 | 11     | 23       | PAR2           | 7.7 | -99  |
| 11     | 23       | PAR2  | 64     | 12       | TNF $\alpha$ 2 | 6.7 | -99  |
| 27     | 3        | N10   | 64     | 12       | TNF $\alpha$ 2 | 6.7 | -99  |
| 35     | 23       | ESL2  | 82     | 23       | IL103          | 7.2 | -6.8 |
| 62     | 23       | APE3  | 90     | 12       | IL-182         | 7   | -6.7 |

[図43]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称          | kai | odds |
|--------|----------|-------|--------|----------|----------------|-----|------|
| 8      | 12       | PONA2 | 11     | 23       | PAR2           | 7.7 | -99  |
| 11     | 23       | PAR2  | 64     | 12       | TNF $\alpha$ 2 | 6.7 | -99  |
| 27     | 3        | N10   | 64     | 12       | TNF $\alpha$ 2 | 6.7 | -99  |

[図44]

| SNP-No | GeneType |
|--------|----------|
| 81     | 23       |
| 86     | 3        |
| 38     | 3        |
| 5      | 12       |
| 90     | 12       |
| 56     | 3        |
| 71     | 3        |
| 62     | 12       |
| 18     | 23       |
| 76     | 3        |
| 73     | 1        |
| 25     | 23       |
| 13     | 3        |
| 35     | 23       |
| 36     | 1        |
| 98     | 12       |
| 8      | 23       |
| 23     | 23       |
| 24     | 12       |
| 83     | 12       |
| 2      | 12       |
| 11     | 12       |
| 10     | 23       |
| 15     | 12       |
| 47     | 23       |
| 49     | 12       |
| 29     | 23       |
| 50     | 12       |
| 79     | 23       |
| 12     | 23       |
| 30     | 12       |
| 45     | 12       |
| 52     | 12       |
| 82     | 12       |
| 7      | 12       |
| 20     | 12       |
| 26     | 12       |
| 37     | 12       |
| 43     | 12       |
| 96     | 12       |
| 55     | 23       |
| 87     | 12       |
| 21     | 12       |
| 31     | 23       |
| 42     | 12       |
| 19     | 12       |
| 40     | 23       |
| 28     | 12       |
| 69     | 12       |
| 80     | 23       |
| 78     | 12       |
| 54     | 12       |
| 77     | 12       |
| 3      | 23       |
| 70     | 23       |
| 89     | 23       |
| 32     | 12       |
| 4      | 23       |
| 33     | 23       |
| 74     | 12       |
| 75     | 23       |
| 51     | 12       |
| 48     | 12       |
| 67     | 23       |
| 16     | 23       |
| 68     | 3        |
| 53     | 12       |
| 27     | 23       |
| 99     | 23       |
| 88     | 23       |
| 17     | 23       |
| 22     | 12       |
| 93     | 23       |
| 1      | 23       |
| 64     | 12       |

[図45]

| SNP-No. | GenoType |
|---------|----------|
| 81      | 23       |
| 98      | 23       |
| 5       | 12       |
| 90      | 12       |
| 69      | 3        |
| 86      | 3        |
| 35      | 23       |
| 25      | 3        |
| 83      | 23       |
| 68      | 3        |
| 28      | 3        |
| 62      | 23       |
| 80      | 1        |
| 8       | 12       |
| 15      | 23       |
| 10      | 12       |
| 18      | 23       |
| 70      | 1        |
| 20      | 23       |
| 11      | 23       |
| 96      | 23       |
| 40      | 12       |
| 82      | 23       |
| 32      | 1        |
| 33      | 1        |
| 73      | 1        |
| 21      | 23       |
| 31      | 12       |
| 78      | 3        |
| 52      | 23       |
| 27      | 3        |
| 13      | 3        |
| 24      | 23       |
| 53      | 3        |
| 43      | 3        |
| 77      | 23       |
| 30      | 23       |
| 89      | 12       |
| 45      | 23       |
| 93      | 3        |
| 42      | 23       |
| 36      | 1        |
| 38      | 3        |
| 55      | 12       |
| 64      | 12       |
| 50      | 23       |
| 75      | 12       |
| 99      | 1        |
| 1       | 1        |
| 67      | 1        |
| 7       | 23       |
| 16      | 3        |
| 48      | 3        |
| 26      | 23       |
| 49      | 23       |
| 37      | 23       |
| 54      | 23       |
| 76      | 3        |
| 4       | 3        |
| 51      | 3        |
| 74      | 12       |
| 39      | 3        |
| 19      | 3        |
| 56      | 3        |
| 29      | 12       |
| 84      | 12       |
| 71      | 3        |
| 87      | 23       |
| 12      | 3        |
| 88      | 3        |
| 79      | 12       |
| 3       | 23       |
| 2       | 23       |
| 23      | 3        |
| 47      | 12       |
| 22      | 1        |
| 17      | 3        |

[図46]

| SNP-No | GenoType |
|--------|----------|
| 81     | 23       |
| 90     | 12       |
| 25     | 3        |
| 33     | 1        |
| 5      | 12       |
| 80     | 1        |
| 40     | 12       |
| 62     | 23       |
| 35     | 23       |
| 82     | 23       |
| 67     | 1        |
| 2      | 12       |
| 8      | 23       |
| 10     | 23       |
| 15     | 12       |
| 23     | 23       |
| 24     | 12       |
| 29     | 23       |
| 49     | 12       |
| 50     | 12       |
| 79     | 23       |
| 83     | 12       |
| 11     | 12       |
| 17     | 23       |
| 22     | 12       |
| 26     | 12       |
| 45     | 12       |
| 47     | 23       |
| 52     | 12       |
| 12     | 23       |
| 86     | 23       |
| 20     | 12       |
| 30     | 12       |
| 98     | 23       |
| 7      | 12       |
| 37     | 12       |
| 43     | 12       |
| 96     | 12       |
| 31     | 23       |
| 36     | 1        |
| 42     | 12       |
| 19     | 12       |
| 87     | 12       |
| 28     | 12       |
| 21     | 12       |
| 99     | 1        |
| 3      | 23       |
| 54     | 12       |
| 77     | 12       |
| 78     | 12       |
| 70     | 23       |
| 89     | 23       |
| 18     | 23       |
| 38     | 23       |
| 48     | 12       |
| 13     | 23       |
| 32     | 12       |
| 73     | 23       |
| 75     | 23       |
| 4      | 23       |
| 74     | 12       |
| 76     | 3        |
| 1      | 1        |
| 16     | 23       |
| 53     | 12       |
| 71     | 3        |
| 64     | 12       |
| 93     | 3        |
| 55     | 3        |
| 88     | 3        |
| 51     | 1        |
| 68     | 3        |
| 39     | 3        |
| 27     | 3        |
| 69     | 3        |
| 84     | 1        |
| 56     | 3        |

[図47]

| SNP-No | GenoType |
|--------|----------|
| 81     | 23       |
| 98     | 23       |
| 5      | 12       |
| 90     | 12       |
| 69     | 3        |
| 86     | 3        |
| 35     | 23       |
| 25     | 3        |
| 83     | 23       |
| 68     | 3        |
| 28     | 3        |
| 62     | 23       |
| 80     | 1        |
| 8      | 12       |
| 15     | 23       |
| 10     | 12       |
| 18     | 23       |
| 70     | 1        |
| 20     | 23       |
| 11     | 23       |
| 96     | 23       |
| 40     | 12       |
| 82     | 23       |
| 32     | 1        |
| 33     | 1        |
| 73     | 1        |
| 21     | 23       |
| 31     | 12       |
| 78     | 3        |
| 52     | 23       |
| 27     | 3        |
| 13     | 3        |
| 24     | 23       |
| 53     | 3        |
| 43     | 3        |
| 77     | 23       |
| 30     | 23       |
| 89     | 12       |
| 45     | 23       |
| 93     | 3        |
| 42     | 23       |
| 36     | 1        |
| 38     | 3        |
| 55     | 12       |
| 64     | 12       |
| 50     | 23       |
| 75     | 12       |
| 99     | 1        |
| 1      | 1        |
| 67     | 1        |
| 7      | 23       |
| 16     | 3        |
| 48     | 3        |
| 26     | 23       |
| 49     | 23       |
| 37     | 23       |
| 54     | 23       |
| 76     | 3        |
| 4      | 3        |
| 51     | 3        |
| 74     | 12       |
| 39     | 3        |
| 19     | 3        |
| 56     | 3        |
| 29     | 12       |
| 84     | 12       |
| 71     | 3        |
| 87     | 23       |
| 12     | 3        |
| 88     | 3        |
| 79     | 12       |
| 3      | 23       |
| 2      | 23       |
| 23     | 3        |
| 47     | 12       |
| 22     | 1        |
| 17     | 3        |

[図48-A]

| SNP-No | Genotype | 遺伝子略称   | SNP-No | Genotype | 遺伝子略称  | kai  | odds |
|--------|----------|---------|--------|----------|--------|------|------|
| 1      | 23       | ABCA1   | 81     | 1        | TS11   | 73.4 | 3.8  |
| 1      | 23       | ABCA1   | 86     | 12       | IL-181 | 21.6 | 2    |
| 2      | 12       | DRD2    | 79     | 1        | RAGE3  | 9.1  | 12   |
| 3      | 1        | ACE ID  | 16     | 12       | HL1    | 8.5  | 2.1  |
| 3      | 1        | ACE ID  | 19     | 1        | MMP9   | 6.7  | 2.2  |
| 3      | 1        | ACE ID  | 27     | 12       | N10    | 8.8  | 2.3  |
| 3      | 1        | ACE ID  | 42     | 1        | GCLM1  | 10   | 2.6  |
| 3      | 1        | ACE ID  | 69     | 1        | CD181  | 8    | 2.5  |
| 4      | 23       | ESRa1   | 79     | 1        | RAGE3  | 7.2  | 10   |
| 4      | 23       | ESRa1   | 81     | 1        | TS11   | 80.5 | 4    |
| 4      | 23       | ESRa1   | 86     | 12       | IL-181 | 30.6 | 2.3  |
| 5      | 23       | N1      | 74     | 3        | LTA1   | 12.7 | 4.4  |
| 5      | 23       | N1      | 75     | 1        | LTA2   | 10.6 | 3.6  |
| 7      | 1        | N7      | 81     | 1        | TS11   | 73.6 | 3.7  |
| 7      | 1        | N7      | 86     | 12       | IL-181 | 26.1 | 2.1  |
| 8      | 3        | PONA2   | 74     | 3        | LTA1   | 10.5 | 2    |
| 8      | 3        | PONA2   | 75     | 1        | LTA2   | 10.6 | 2    |
| 8      | 3        | PONA2   | 81     | 1        | TS11   | 66.3 | 3.4  |
| 8      | 3        | PONA2   | 86     | 12       | IL-181 | 24   | 2.1  |
| 10     | 3        | GP3A    | 79     | 1        | RAGE3  | 9.1  | 11.9 |
| 11     | 1        | PAR2    | 79     | 1        | RAGE3  | 9.7  | 99   |
| 11     | 1        | PAR2    | 98     | 1        | PGC11  | 9.2  | 3.5  |
| 12     | 3        | Tbm3    | 81     | 1        | TS11   | 52.4 | 3    |
| 13     | 23       | CF12    | 79     | 1        | RAGE3  | 7.1  | 9.8  |
| 13     | 23       | CF12    | 81     | 1        | TS11   | 72.8 | 3.6  |
| 15     | 12       | MMP12   | 79     | 1        | RAGE3  | 8.1  | 10.8 |
| 16     | 12       | HL1     | 79     | 1        | RAGE3  | 11.8 | 99   |
| 16     | 12       | HL1     | 81     | 1        | TS11   | 67   | 3.5  |
| 17     | 3        | FR1     | 79     | 1        | RAGE3  | 9    | 11.8 |
| 17     | 3        | FR1     | 86     | 12       | IL-181 | 26.4 | 2.1  |
| 18     | 12       | S2AR    | 79     | 1        | RAGE3  | 8    | 10.8 |
| 18     | 12       | S2AR    | 81     | 1        | TS11   | 64   | 3.5  |
| 19     | 1        | MMP9    | 81     | 1        | TS11   | 44.3 | 2.8  |
| 20     | 1        | GSY     | 81     | 1        | TS11   | 62.9 | 3.3  |
| 20     | 1        | GSY     | 86     | 12       | IL-181 | 25.6 | 2.1  |
| 21     | 1        | CX37    | 79     | 1        | RAGE3  | 7.8  | 99   |
| 21     | 1        | CX37    | 81     | 1        | TS11   | 43   | 2.8  |
| 21     | 1        | CX37    | 98     | 1        | PGC11  | 9.2  | 3.7  |
| 22     | 1        | ESL1    | 86     | 12       | IL-181 | 27   | 2.2  |
| 23     | 23       | IRS1    | 79     | 1        | RAGE3  | 8    | 10.8 |
| 24     | 1        | AGTR1-3 | 81     | 1        | TS11   | 77   | 3.8  |
| 24     | 1        | AGTR1-3 | 98     | 1        | PGC11  | 7.9  | 3    |
| 25     | 12       | PAI     | 81     | 1        | TS11   | 88.9 | 4.3  |
| 25     | 12       | PAI     | 98     | 1        | PGC11  | 7.9  | 3.2  |
| 26     | 1        | NOS3    | 81     | 1        | TS11   | 77.7 | 3.9  |
| 26     | 1        | NOS3    | 86     | 12       | IL-181 | 21.8 | 2    |
| 27     | 12       | N10     | 79     | 1        | RAGE3  | 8.8  | 99   |
| 27     | 12       | N10     | 81     | 1        | TS11   | 76.9 | 4    |
| 28     | 1        | AGT1    | 81     | 1        | TS11   | 59.6 | 3.4  |
| 28     | 1        | AGT1    | 86     | 12       | IL-181 | 23.8 | 2.1  |
| 29     | 3        | G1A3    | 86     | 12       | IL-181 | 22.5 | 2    |
| 30     | 23       | FGB3    | 37     | 23       | GP1ba  | 7.9  | 2.7  |
| 30     | 23       | FGB3    | 74     | 3        | LTA1   | 7.3  | 3.1  |
| 30     | 23       | FGB3    | 75     | 1        | LTA2   | 7.5  | 3.2  |
| 31     | 12       | APE2    | 51     | 23       | GP1a1  | 9.9  | 2.1  |
| 32     | 12       | MTHFR   | 79     | 1        | RAGE3  | 8.1  | 10.8 |
| 32     | 12       | MTHFR   | 81     | 1        | TS11   | 64.2 | 3.4  |
| 33     | 23       | MCP1    | 81     | 1        | TS11   | 75   | 3.8  |
| 33     | 23       | MCP1    | 86     | 12       | IL-181 | 24.7 | 2.1  |
| 35     | 1        | ESL2    | 38     | 12       | PONA1  | 11.4 | 2.1  |
| 36     | 23       | FGA1    | 79     | 1        | RAGE3  | 7.9  | 99   |
| 36     | 23       | FGA1    | 81     | 1        | TS11   | 48.1 | 3    |
| 36     | 23       | FGA1    | 98     | 1        | PGC11  | 8.7  | 3.6  |
| 38     | 12       | PONA1   | 74     | 3        | LTA1   | 9.5  | 2.3  |
| 38     | 12       | PONA1   | 75     | 1        | LTA2   | 9    | 2.3  |
| 39     | 23       | CRP1    | 74     | 3        | LTA1   | 11.2 | 3.5  |
| 39     | 23       | CRP1    | 75     | 1        | LTA2   | 9.1  | 3    |
| 40     | 3        | SAR     | 81     | 1        | TS11   | 49.6 | 3.1  |
| 42     | 1        | GCLM1   | 81     | 1        | TS11   | 46.5 | 2.9  |
| 43     | 1        | MTP1    | 81     | 1        | TS11   | 52.4 | 3.1  |

[図48-B]

|    |    |                |    |    |        |      |      |
|----|----|----------------|----|----|--------|------|------|
| 45 | 1  | LPL3           | 74 | 3  | LTA1   | 10.4 | 2.1  |
| 45 | 1  | LPL3           | 79 | 1  | RAGE3  | 11.7 | 99   |
| 45 | 1  | LPL3           | 81 | 1  | TS11   | 72.5 | 3.7  |
| 45 | 1  | LPL3           | 86 | 12 | IL-181 | 29.6 | 2.3  |
| 48 | 12 | ICAM1          | 81 | 1  | TS11   | 66.4 | 3.5  |
| 49 | 12 | GP61           | 79 | 1  | RAGE3  | 9.1  | 11.9 |
| 50 | 1  | $\beta$ 2AR4   | 81 | 1  | TS11   | 72.6 | 3.7  |
| 50 | 1  | $\beta$ 2AR4   | 86 | 12 | IL-181 | 21.9 | 2    |
| 51 | 23 | GP1a1          | 81 | 1  | TS11   | 62.2 | 3.6  |
| 51 | 23 | GP1a1          | 86 | 12 | IL-181 | 29.7 | 2.4  |
| 52 | 1  | MMP71          | 81 | 1  | TS11   | 79   | 3.9  |
| 52 | 1  | MMP71          | 86 | 12 | IL-181 | 25.6 | 2.1  |
| 54 | 12 | IL62           | 79 | 1  | RAGE3  | 7.3  | 10   |
| 54 | 12 | IL62           | 81 | 1  | TS11   | 64.2 | 3.4  |
| 55 | 3  | MPO            | 81 | 1  | TS11   | 52.7 | 3.1  |
| 55 | 3  | MPO            | 86 | 12 | IL-181 | 22.6 | 2.1  |
| 56 | 23 | HANP1          | 74 | 3  | LTA1   | 10.7 | 3.4  |
| 56 | 23 | HANP1          | 75 | 1  | LTA2   | 9.2  | 3    |
| 62 | 1  | APE3           | 74 | 3  | LTA1   | 10.7 | 3.7  |
| 62 | 1  | APE3           | 75 | 1  | LTA2   | 8.2  | 3    |
| 64 | 3  | TNF $\alpha$ 2 | 74 | 3  | LTA1   | 11.6 | 3.6  |
| 64 | 3  | TNF $\alpha$ 2 | 75 | 1  | LTA2   | 9.4  | 3.1  |
| 67 | 23 | 1A2            | 79 | 1  | RAGE3  | 9.3  | 12.1 |
| 67 | 23 | 1A2            | 81 | 1  | TS11   | 56.4 | 3.2  |
| 68 | 12 | BKR1           | 81 | 1  | TS11   | 88.1 | 3.8  |
| 69 | 1  | CD181          | 74 | 3  | LTA1   | 8.6  | 2.2  |
| 69 | 1  | CD181          | 75 | 1  | LTA2   | 7    | 2    |
| 69 | 1  | CD181          | 81 | 1  | TS11   | 35.1 | 2.8  |
| 70 | 3  | APM2           | 74 | 3  | LTA1   | 6.6  | 2    |
| 70 | 3  | APM2           | 81 | 1  | TS11   | 34.5 | 2.6  |
| 71 | 3  | REG1           | 74 | 3  | LTA1   | 9    | 3.2  |
| 71 | 3  | REG1           | 75 | 1  | LTA2   | 7.3  | 2.7  |
| 73 | 23 | VEGF5          | 79 | 1  | RAGE3  | 7.8  | 99   |
| 73 | 23 | VEGF5          | 81 | 1  | TS11   | 88.1 | 4.3  |
| 73 | 23 | VEGF5          | 86 | 12 | IL-181 | 27.9 | 2.2  |
| 74 | 3  | LTA1           | 76 | 23 | TS41   | 11.4 | 3.6  |
| 74 | 3  | LTA1           | 78 | 23 | ET1    | 7.7  | 2.3  |
| 74 | 3  | LTA1           | 84 | 1  | IL1B2  | 11.5 | 3.8  |
| 74 | 3  | LTA1           | 86 | 12 | IL-181 | 16   | 3.4  |
| 74 | 3  | LTA1           | 90 | 3  | IL-182 | 10.4 | 4.3  |
| 74 | 3  | LTA1           | 99 | 23 | PGC12  | 11   | 2.2  |
| 75 | 1  | LTA2           | 76 | 23 | TS41   | 9.7  | 3.1  |
| 75 | 1  | LTA2           | 78 | 23 | ET1    | 8    | 2.3  |
| 75 | 1  | LTA2           | 84 | 1  | IL1B2  | 9.2  | 3.2  |
| 75 | 1  | LTA2           | 86 | 12 | IL-181 | 15.1 | 3.2  |
| 75 | 1  | LTA2           | 90 | 3  | IL-182 | 10.4 | 4.3  |
| 75 | 1  | LTA2           | 99 | 23 | PGC12  | 10.4 | 2.2  |
| 78 | 23 | ET1            | 93 | 1  | TPO1   | 7.4  | 2    |
| 79 | 1  | RAGE3          | 80 | 23 | CCR2   | 11.9 | 99   |
| 79 | 1  | RAGE3          | 83 | 12 | 2C9-3  | 9    | 11.8 |
| 79 | 1  | RAGE3          | 87 | 1  | MS1    | 7.7  | 99   |
| 79 | 1  | RAGE3          | 89 | 23 | IL102  | 8.3  | 11.1 |
| 80 | 23 | CCR2           | 86 | 12 | IL-181 | 33   | 2.4  |
| 80 | 23 | CCR2           | 98 | 1  | PGC11  | 9.6  | 3.6  |
| 81 | 1  | TS11           | 86 | 12 | IL-181 | 68.2 | 3.6  |
| 81 | 1  | TS11           | 87 | 1  | MS1    | 55.8 | 3.3  |
| 81 | 1  | TS11           | 88 | 23 | VWF2   | 56.9 | 3.2  |
| 81 | 1  | TS11           | 89 | 23 | IL102  | 76.7 | 3.8  |
| 81 | 1  | TS11           | 96 | 1  | LRP1   | 77.9 | 3.9  |
| 81 | 1  | TS11           | 99 | 23 | PGC12  | 64   | 3.4  |
| 82 | 1  | IL103          | 86 | 12 | IL-181 | 30.6 | 2.3  |
| 86 | 12 | IL-181         | 88 | 23 | VWF2   | 21.1 | 2    |
| 86 | 12 | IL-181         | 89 | 23 | IL102  | 30.3 | 2.3  |
| 86 | 12 | IL-181         | 96 | 1  | LRP1   | 27   | 2.2  |
| 86 | 12 | IL-181         | 99 | 23 | PGC12  | 27.9 | 2.2  |
| 89 | 23 | IL102          | 98 | 1  | PGC11  | 9.9  | 3.6  |
| 93 | 1  | TPO1           | 98 | 1  | PGC11  | 8.9  | 99   |
| 96 | 1  | LRP1           | 98 | 1  | PGC11  | 6.8  | 2.9  |

## [図49-A]

| SNP-No | Genotype | 遺伝子略称        | SNP-No | Genotype | 遺伝子略称 | kai  | odds |
|--------|----------|--------------|--------|----------|-------|------|------|
| 1      | 23       | ABCA1        | 81     | 1        | TS11  | 73.4 | 3.8  |
| 1      | 12       | DRD2         | 79     | 1        | RAGE3 | 9.1  | 12   |
| 2      | 23       | ESRa1        | 79     | 1        | RAGE3 | 7.2  | 10   |
| 3      | 23       | ESRa1        | 81     | 1        | TS11  | 80.5 | 4    |
| 3      | 23       | N1           | 74     | 3        | LTA1  | 12.7 | 4.4  |
| 3      | 23       | N1           | 75     | 1        | LTA2  | 10.6 | 3.6  |
| 3      | 1        | N7           | 81     | 1        | TS11  | 73.6 | 3.7  |
| 3      | 3        | PONA2        | 81     | 1        | TS11  | 66.3 | 3.4  |
| 4      | 3        | GP3A         | 79     | 1        | RAGE3 | 9.1  | 11.9 |
| 4      | 1        | PAR2         | 79     | 1        | RAGE3 | 9.7  | 99   |
| 4      | 1        | PAR2         | 98     | 1        | PGC11 | 9.2  | 3.5  |
| 5      | 3        | Tbm3         | 81     | 1        | TS11  | 52.4 | 3    |
| 5      | 23       | CF12         | 79     | 1        | RAGE3 | 7.1  | 9.8  |
| 7      | 23       | CF12         | 81     | 1        | TS11  | 72.8 | 3.6  |
| 7      | 12       | MMP12        | 79     | 1        | RAGE3 | 8.1  | 10.8 |
| 8      | 12       | HL1          | 79     | 1        | RAGE3 | 11.8 | 99   |
| 8      | 12       | HL1          | 81     | 1        | TS11  | 67   | 3.5  |
| 8      | 3        | FR1          | 79     | 1        | RAGE3 | 9    | 11.8 |
| 8      | 12       | S2AR         | 79     | 1        | RAGE3 | 8    | 10.8 |
| 10     | 12       | S2AR         | 81     | 1        | TS11  | 64   | 3.5  |
| 11     | 1        | GSY          | 81     | 1        | TS11  | 62.9 | 3.3  |
| 11     | 1        | CX37         | 79     | 1        | RAGE3 | 7.8  | 99   |
| 12     | 1        | CX37         | 98     | 1        | PGC11 | 9.2  | 3.7  |
| 13     | 23       | IRS1         | 79     | 1        | RAGE3 | 8    | 10.8 |
| 13     | 1        | AGTR1-3      | 81     | 1        | TS11  | 77   | 3.8  |
| 15     | 1        | AGTR1-3      | 98     | 1        | PGC11 | 7.9  | 3    |
| 16     | 12       | PAI          | 81     | 1        | TS11  | 88.9 | 4.3  |
| 16     | 12       | PAI          | 98     | 1        | PGC11 | 7.9  | 3.2  |
| 17     | 1        | NOS3         | 81     | 1        | TS11  | 77.7 | 3.9  |
| 17     | 12       | N10          | 79     | 1        | RAGE3 | 8.8  | 99   |
| 18     | 12       | N10          | 81     | 1        | TS11  | 76.9 | 4    |
| 18     | 1        | AGT1         | 81     | 1        | TS11  | 59.6 | 3.4  |
| 19     | 23       | FGB3         | 74     | 3        | LTA1  | 7.3  | 3.1  |
| 20     | 23       | FGB3         | 75     | 1        | LTA2  | 7.5  | 3.2  |
| 20     | 12       | MTHFR        | 79     | 1        | RAGE3 | 8.1  | 10.8 |
| 21     | 12       | MTHFR        | 81     | 1        | TS11  | 64.2 | 3.4  |
| 21     | 23       | MCP1         | 81     | 1        | TS11  | 75   | 3.8  |
| 21     | 23       | FGA1         | 79     | 1        | RAGE3 | 7.9  | 99   |
| 22     | 23       | FGA1         | 81     | 1        | TS11  | 48.1 | 3    |
| 23     | 23       | FGA1         | 98     | 1        | PGC11 | 8.7  | 3.6  |
| 24     | 23       | CRP1         | 74     | 3        | LTA1  | 11.2 | 3.5  |
| 24     | 23       | CRP1         | 75     | 1        | LTA2  | 9.1  | 3    |
| 25     | 3        | 3AR          | 81     | 1        | TS11  | 49.6 | 3.1  |
| 25     | 1        | MTP1         | 81     | 1        | TS11  | 52.4 | 3.1  |
| 26     | 1        | LPL3         | 79     | 1        | RAGE3 | 11.7 | 99   |
| 26     | 1        | LPL3         | 81     | 1        | TS11  | 72.5 | 3.7  |
| 27     | 12       | ICAM1        | 81     | 1        | TS11  | 66.4 | 3.5  |
| 27     | 12       | GP61         | 79     | 1        | RAGE3 | 9.1  | 11.9 |
| 28     | 1        | $\beta$ 2AR4 | 81     | 1        | TS11  | 72.6 | 3.7  |
| 28     | 23       | GP1a1        | 81     | 1        | TS11  | 62.2 | 3.6  |
| 29     | 1        | MMP71        | 81     | 1        | TS11  | 79   | 3.9  |
| 30     | 12       | IL62         | 79     | 1        | RAGE3 | 7.3  | 10   |
| 30     | 12       | IL62         | 81     | 1        | TS11  | 64.2 | 3.4  |
| 30     | 3        | MPO          | 81     | 1        | TS11  | 52.7 | 3.1  |
| 32     | 23       | HANP1        | 74     | 3        | LTA1  | 10.7 | 3.4  |
| 32     | 23       | HANP1        | 75     | 1        | LTA2  | 9.2  | 3    |
| 33     | 1        | APE3         | 74     | 3        | LTA1  | 10.7 | 3.7  |
| 33     | 1        | APE3         | 75     | 1        | LTA2  | 8.2  | 3    |
| 35     | 3        | TNFa2        | 74     | 3        | LTA1  | 11.6 | 3.6  |

[図49-B]

|    |    |       |    |    |        |      |      |
|----|----|-------|----|----|--------|------|------|
| 36 | 3  | TNFa2 | 75 | 1  | LTA2   | 9.4  | 3.1  |
| 36 | 23 | 1A2   | 79 | 1  | RAGE3  | 9.3  | 12.1 |
| 36 | 23 | 1A2   | 81 | 1  | TS11   | 56.4 | 3.2  |
| 38 | 12 | BKR1  | 81 | 1  | TS11   | 68.1 | 3.8  |
| 43 | 3  | REG1  | 74 | 3  | LTA1   | 9    | 3.2  |
| 45 | 23 | VEGF5 | 79 | 1  | RAGE3  | 7.8  | 99   |
| 45 | 23 | VEGF5 | 81 | 1  | TS11   | 88.1 | 4.3  |
| 48 | 3  | LTA1  | 76 | 23 | TS41   | 11.4 | 3.6  |
| 50 | 3  | LTA1  | 84 | 1  | IL1B2  | 11.5 | 3.8  |
| 50 | 3  | LTA1  | 86 | 12 | IL-181 | 16   | 3.4  |
| 51 | 3  | LTA1  | 90 | 3  | IL-182 | 10.4 | 4.3  |
| 52 | 1  | LTA2  | 76 | 23 | TS41   | 9.7  | 3.1  |
| 54 | 1  | LTA2  | 84 | 1  | IL1B2  | 9.2  | 3.2  |
| 54 | 1  | LTA2  | 86 | 12 | IL-181 | 15.1 | 3.2  |
| 55 | 1  | LTA2  | 90 | 3  | IL-182 | 10.4 | 4.3  |
| 56 | 1  | RAGE3 | 80 | 23 | CCR2   | 11.9 | 99   |
| 62 | 1  | RAGE3 | 83 | 12 | 2C9-3  | 9    | 11.8 |
| 62 | 1  | RAGE3 | 87 | 1  | MS1    | 7.7  | 99   |
| 64 | 1  | RAGE3 | 89 | 23 | IL102  | 8.3  | 11.1 |
| 67 | 23 | CCR2  | 98 | 1  | PGC11  | 9.6  | 3.6  |
| 67 | 1  | TS11  | 86 | 12 | IL-181 | 68.2 | 3.6  |
| 68 | 1  | TS11  | 87 | 1  | MS1    | 55.8 | 3.3  |
| 69 | 1  | TS11  | 88 | 23 | VWF2   | 56.9 | 3.2  |
| 69 | 1  | TS11  | 89 | 23 | IL102  | 76.7 | 3.8  |
| 69 | 1  | TS11  | 96 | 1  | LRP1   | 77.9 | 3.9  |
| 70 | 1  | TS11  | 99 | 23 | PGC12  | 64   | 3.4  |
| 73 | 23 | IL102 | 98 | 1  | PGC11  | 9.9  | 3.6  |
| 74 | 1  | TPO1  | 98 | 1  | PGC11  | 8.9  | 99   |

[図50]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称  | kai  | odds |
|--------|----------|-------|--------|----------|--------|------|------|
| 1      | 12       | DRD2  | 79     | 1        | RAGE3  | 9.1  | 12   |
| 2      | 23       | ESRa1 | 79     | 1        | RAGE3  | 7.2  | 10   |
| 3      | 23       | ESRa1 | 81     | 1        | TS11   | 80.5 | 4    |
| 3      | 23       | N1    | 74     | 3        | LTA1   | 12.7 | 4.4  |
| 4      | 3        | GP3A  | 79     | 1        | RAGE3  | 9.1  | 11.9 |
| 4      | 1        | PAR2  | 79     | 1        | RAGE3  | 9.7  | 99   |
| 5      | 23       | CF12  | 79     | 1        | RAGE3  | 7.1  | 9.8  |
| 7      | 12       | MMP12 | 79     | 1        | RAGE3  | 8.1  | 10.8 |
| 8      | 12       | HL1   | 79     | 1        | RAGE3  | 11.8 | 99   |
| 8      | 3        | FR1   | 79     | 1        | RAGE3  | 9    | 11.8 |
| 8      | 12       | S2AR  | 79     | 1        | RAGE3  | 8    | 10.8 |
| 11     | 1        | CX37  | 79     | 1        | RAGE3  | 7.8  | 99   |
| 13     | 23       | IRS1  | 79     | 1        | RAGE3  | 8    | 10.8 |
| 16     | 12       | PAI   | 81     | 1        | TS11   | 88.9 | 4.3  |
| 17     | 12       | N10   | 79     | 1        | RAGE3  | 8.8  | 99   |
| 18     | 12       | N10   | 81     | 1        | TS11   | 76.9 | 4    |
| 20     | 12       | MTHFR | 79     | 1        | RAGE3  | 8.1  | 10.8 |
| 21     | 23       | FGA1  | 79     | 1        | RAGE3  | 7.9  | 99   |
| 26     | 1        | LPL3  | 79     | 1        | RAGE3  | 11.7 | 99   |
| 27     | 12       | GP61  | 79     | 1        | RAGE3  | 9.1  | 11.9 |
| 30     | 12       | IL62  | 79     | 1        | RAGE3  | 7.3  | 10   |
| 36     | 23       | 1A2   | 79     | 1        | RAGE3  | 9.3  | 12.1 |
| 45     | 23       | VEGF5 | 79     | 1        | RAGE3  | 7.8  | 99   |
| 45     | 23       | VEGF5 | 81     | 1        | TS11   | 88.1 | 4.3  |
| 51     | 3        | LTA1  | 90     | 3        | IL-182 | 10.4 | 4.3  |
| 55     | 1        | LTA2  | 90     | 3        | IL-182 | 10.4 | 4.3  |
| 56     | 1        | RAGE3 | 80     | 23       | CCR2   | 11.9 | 99   |
| 62     | 1        | RAGE3 | 83     | 12       | 2C9-3  | 9    | 11.8 |
| 62     | 1        | RAGE3 | 87     | 1        | MS1    | 7.7  | 99   |
| 64     | 1        | RAGE3 | 89     | 23       | IL102  | 8.3  | 11.1 |
| 74     | 1        | TPO1  | 98     | 1        | PGC11  | 8.9  | 99   |

[図51]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | kai  | odds |
|--------|----------|-------|--------|----------|-------|------|------|
| 1      | 12       | DRD2  | 79     | 1        | RAGE3 | 9.1  | 12   |
| 2      | 23       | ESRa1 | 79     | 1        | RAGE3 | 7.2  | 10   |
| 4      | 3        | GP3A  | 79     | 1        | RAGE3 | 9.1  | 11.9 |
| 4      | 1        | PAR2  | 79     | 1        | RAGE3 | 9.7  | 99   |
| 5      | 23       | CF12  | 79     | 1        | RAGE3 | 7.1  | 9.8  |
| 7      | 12       | MMP12 | 79     | 1        | RAGE3 | 8.1  | 10.8 |
| 8      | 12       | HL1   | 79     | 1        | RAGE3 | 11.8 | 99   |
| 8      | 3        | FR1   | 79     | 1        | RAGE3 | 9    | 11.8 |
| 8      | 12       | S2AR  | 79     | 1        | RAGE3 | 8    | 10.8 |
| 11     | 1        | CX37  | 79     | 1        | RAGE3 | 7.8  | 99   |
| 13     | 23       | IRS1  | 79     | 1        | RAGE3 | 8    | 10.8 |
| 17     | 12       | N10   | 79     | 1        | RAGE3 | 8.8  | 99   |
| 20     | 12       | MTHFR | 79     | 1        | RAGE3 | 8.1  | 10.8 |
| 21     | 23       | FGA1  | 79     | 1        | RAGE3 | 7.9  | 99   |
| 26     | 1        | LPL3  | 79     | 1        | RAGE3 | 11.7 | 99   |
| 27     | 12       | GP61  | 79     | 1        | RAGE3 | 9.1  | 11.9 |
| 30     | 12       | IL62  | 79     | 1        | RAGE3 | 7.3  | 10   |
| 36     | 23       | 1A2   | 79     | 1        | RAGE3 | 9.3  | 12.1 |
| 45     | 23       | VEGF5 | 79     | 1        | RAGE3 | 7.8  | 99   |
| 56     | 1        | RAGE3 | 80     | 23       | CCR2  | 11.9 | 99   |
| 62     | 1        | RAGE3 | 83     | 12       | 2C9-3 | 9    | 11.8 |
| 62     | 1        | RAGE3 | 87     | 1        | MS1   | 7.7  | 99   |
| 64     | 1        | RAGE3 | 89     | 23       | IL102 | 8.3  | 11.1 |
| 74     | 1        | TPO1  | 98     | 1        | PGC11 | 8.9  | 99   |

[図52]

| SNP-No | GenoType |
|--------|----------|
| 81     | 1        |
| 86     | 12       |
| 74     | 3        |
| 75     | 1        |
| 3      | 1        |
| 98     | 1        |
| 51     | 23       |
| 8      | 3        |
| 99     | 23       |
| 45     | 1        |
| 89     | 23       |
| 96     | 1        |
| 52     | 1        |
| 7      | 1        |
| 50     | 1        |
| 4      | 23       |
| 93     | 1        |
| 26     | 1        |
| 20     | 1        |
| 33     | 23       |
| 73     | 23       |
| 27     | 12       |
| 1      | 23       |
| 79     | 1        |
| 88     | 23       |
| 37     | 23       |
| 69     | 1        |
| 31     | 12       |
| 55     | 3        |
| 30     | 23       |
| 16     | 12       |
| 28     | 1        |
| 38     | 12       |
| 54     | 12       |
| 78     | 23       |
| 42     | 1        |
| 24     | 1        |
| 25     | 12       |
| 53     | 1        |
| 77     | 3        |
| 80     | 23       |
| 19     | 1        |
| 13     | 23       |
| 17     | 3        |
| 32     | 12       |
| 21     | 1        |
| 70     | 3        |
| 22     | 1        |
| 29     | 3        |
| 82     | 1        |
| 48     | 12       |
| 12     | 3        |
| 36     | 23       |
| 67     | 23       |
| 18     | 12       |
| 43     | 1        |
| 35     | 1        |
| 62     | 1        |
| 87     | 1        |
| 40     | 3        |
| 68     | 12       |
| 11     | 1        |
| 83     | 12       |
| 2      | 12       |
| 15     | 12       |
| 23     | 23       |
| 64     | 3        |
| 49     | 12       |
| 10     | 3        |
| 76     | 23       |
| 84     | 1        |
| 47     | 23       |
| 56     | 23       |
| 5      | 23       |
| 39     | 23       |
| 71     | 3        |
| 90     | 3        |

[図53]

| SNP-No | GenoType |
|--------|----------|
| 81     | 1        |
| 74     | 3        |
| 75     | 1        |
| 98     | 1        |
| 86     | 1        |
| 3      | 1        |
| 25     | 12       |
| 24     | 1        |
| 79     | 1        |
| 89     | 23       |
| 77     | 3        |
| 13     | 23       |
| 38     | 23       |
| 52     | 1        |
| 4      | 23       |
| 37     | 1        |
| 7      | 1        |
| 8      | 3        |
| 54     | 12       |
| 50     | 1        |
| 32     | 12       |
| 73     | 23       |
| 45     | 1        |
| 30     | 1        |
| 26     | 1        |
| 20     | 1        |
| 33     | 23       |
| 96     | 1        |
| 31     | 3        |
| 67     | 23       |
| 48     | 12       |
| 16     | 12       |
| 12     | 3        |
| 99     | 23       |
| 1      | 23       |
| 27     | 12       |
| 18     | 12       |
| 53     | 12       |
| 88     | 23       |
| 43     | 1        |
| 55     | 3        |
| 51     | 23       |
| 87     | 1        |
| 28     | 1        |
| 68     | 12       |
| 40     | 3        |
| 78     | 23       |
| 93     | 1        |
| 22     | 23       |
| 23     | 12       |
| 5      | 3        |
| 64     | 3        |
| 76     | 23       |
| 84     | 1        |
| 35     | 12       |
| 56     | 23       |
| 39     | 23       |
| 36     | 3        |
| 90     | 3        |
| 62     | 1        |
| 80     | 23       |
| 11     | 1        |
| 69     | 12       |
| 2      | 1        |
| 21     | 1        |
| 71     | 3        |
| 29     | 12       |
| 42     | 3        |
| 15     | 23       |
| 10     | 3        |
| 17     | 3        |
| 47     | 3        |
| 49     | 12       |
| 82     | 12       |
| 83     | 12       |
| 19     | 12       |

[図54]

| SNP-No | GenoType |
|--------|----------|
| 81     | 1        |
| 25     | 12       |
| 73     | 23       |
| 86     | 1        |
| 74     | 3        |
| 77     | 3        |
| 75     | 1        |
| 98     | 1        |
| 3      | 1        |
| 79     | 1        |
| 67     | 1        |
| 90     | 3        |
| 23     | 12       |
| 93     | 1        |
| 32     | 3        |
| 51     | 3        |
| 5      | 3        |
| 16     | 3        |
| 38     | 1        |
| 54     | 3        |
| 24     | 23       |
| 12     | 12       |
| 1      | 3        |
| 21     | 3        |
| 22     | 23       |
| 31     | 12       |
| 78     | 23       |
| 30     | 1        |
| 87     | 23       |
| 26     | 23       |
| 33     | 1        |
| 96     | 23       |
| 13     | 1        |
| 15     | 23       |
| 42     | 3        |
| 36     | 1        |
| 99     | 12       |
| 20     | 3        |
| 53     | 1        |
| 70     | 12       |
| 2      | 12       |
| 7      | 12       |
| 8      | 23       |
| 10     | 3        |
| 17     | 3        |
| 29     | 23       |
| 37     | 12       |
| 40     | 23       |
| 43     | 12       |
| 45     | 1        |
| 47     | 3        |
| 49     | 12       |
| 50     | 12       |
| 52     | 12       |
| 80     | 23       |
| 82     | 12       |
| 83     | 12       |
| 11     | 1        |
| 18     | 12       |
| 19     | 12       |
| 28     | 12       |
| 69     | 12       |
| 88     | 12       |
| 89     | 23       |
| 4      | 23       |
| 55     | 23       |
| 27     | 12       |
| 39     | 23       |
| 62     | 12       |
| 84     | 12       |

[図55]

| SNP-No | GenoType |
|--------|----------|
| 81     | 1        |
| 74     | 3        |
| 75     | 1        |
| 86     | 1        |
| 3      | 1        |
| 5      | 3        |
| 98     | 1        |
| 54     | 3        |
| 23     | 12       |
| 25     | 1        |
| 79     | 1        |
| 13     | 1        |
| 12     | 12       |
| 32     | 3        |
| 1      | 3        |
| 21     | 3        |
| 77     | 3        |
| 70     | 3        |
| 76     | 12       |
| 15     | 23       |
| 42     | 3        |
| 16     | 1        |
| 96     | 23       |
| 26     | 23       |
| 33     | 1        |
| 51     | 3        |
| 99     | 12       |
| 22     | 23       |
| 20     | 3        |
| 35     | 1        |
| 67     | 1        |
| 36     | 1        |
| 93     | 1        |
| 2      | 12       |
| 7      | 12       |
| 8      | 23       |
| 10     | 3        |
| 17     | 3        |
| 24     | 12       |
| 29     | 23       |
| 30     | 12       |
| 31     | 23       |
| 37     | 12       |
| 40     | 23       |
| 43     | 12       |
| 45     | 1        |
| 47     | 3        |
| 49     | 12       |
| 50     | 12       |
| 52     | 12       |
| 80     | 23       |
| 82     | 12       |
| 83     | 12       |
| 18     | 12       |
| 19     | 12       |
| 28     | 12       |
| 53     | 23       |
| 69     | 12       |
| 78     | 12       |
| 88     | 12       |
| 89     | 23       |
| 4      | 23       |
| 11     | 1        |
| 38     | 23       |
| 27     | 12       |
| 55     | 23       |
| 73     | 23       |
| 87     | 1        |

[図56]

| SNP-No | Genotype | 遺伝子略称  | SNP-No | Genotype | 遺伝子略称  | SNP-No | Genotype | 遺伝子略称 | kai   | odds |
|--------|----------|--------|--------|----------|--------|--------|----------|-------|-------|------|
| 8      | 23       | PONA2  | 81     | 23       | TS11   |        |          |       | 113.4 | -4.2 |
| 8      | 23       | PONA2  | 86     | 3        | IL-181 |        |          |       | 59.9  | -2.5 |
| 17     | 23       | FR1    | 81     | 23       | TS11   |        |          |       | 111.8 | -4.1 |
| 17     | 23       | FR1    | 86     | 3        | IL-181 |        |          |       | 57.8  | -2.4 |
| 22     | 1        | ESL1   | 86     | 3        | IL-181 |        |          |       | 58.4  | -2.5 |
| 32     | 12       | MTHFR  | 81     | 23       | TS11   |        |          |       | 89.8  | -3.9 |
| 45     | 12       | LPL3   | 81     | 23       | TS11   |        |          |       | 111.1 | -4.1 |
| 45     | 12       | LPL3   | 86     | 3        | IL-181 |        |          |       | 58.3  | -2.5 |
| 52     | 1        | MMP71  | 86     | 3        | IL-181 |        |          |       | 56.1  | -2.5 |
| 54     | 3        | IL62   | 74     | 1        | LTA1   |        |          |       | 7     | -2.8 |
| 54     | 3        | IL62   | 75     | 3        | LTA2   |        |          |       | 7     | -2.9 |
| 63     | 1        | HANP2  | 81     | 23       | TS11   |        |          |       | 113.8 | -4.2 |
| 63     | 1        | HANP2  | 86     | 3        | IL-181 |        |          |       | 60    | -2.5 |
| 74     | 1        | LTA1   | 84     | 23       | IL1B2  |        |          |       | 7.1   | -3.5 |
| 75     | 3        | LTA2   | 84     | 23       | IL1B2  |        |          |       | 7.2   | -3.5 |
| 80     | 23       | CCR2   | 86     | 3        | IL-181 |        |          |       | 53.9  | -2.4 |
| 81     | 23       | TS11   | 96     | 12       | LRP1   |        |          |       | 110.3 | -4.1 |
| 82     | 1        | IL103  | 86     | 3        | IL-181 |        |          |       | 56.6  | -2.5 |
| 83     | 1        | 2C9-3  | 86     | 3        | IL-181 |        |          |       | 58.7  | -2.5 |
| 86     | 3        | IL-181 | 96     | 12       | LRP1   |        |          |       | 54.9  | -2.4 |

[図57]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | kai   | odds |
|--------|----------|-------|--------|----------|-------|--------|----------|-------|-------|------|
| 8      | 23       | PONA2 | 81     | 23       | TS11  |        |          |       | 113.4 | -4.2 |
| 17     | 23       | FR1   | 81     | 23       | TS11  |        |          |       | 111.8 | -4.1 |
| 32     | 12       | MTHFR | 81     | 23       | TS11  |        |          |       | 89.8  | -3.9 |
| 45     | 12       | LPL3  | 81     | 23       | TS11  |        |          |       | 111.1 | -4.1 |
| 63     | 1        | HANP2 | 81     | 23       | TS11  |        |          |       | 113.8 | -4.2 |
| 74     | 1        | LTA1  | 84     | 23       | IL1B2 |        |          |       | 7.1   | -3.5 |
| 75     | 3        | LTA2  | 84     | 23       | IL1B2 |        |          |       | 7.2   | -3.5 |
| 81     | 23       | TS11  | 96     | 12       | LRP1  |        |          |       | 110.3 | -4.1 |

[図58]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | kai   | odds |
|--------|----------|-------|--------|----------|-------|--------|----------|-------|-------|------|
| 8      | 23       | PONA2 | 81     | 23       | TS11  |        |          |       | 113.4 | -4.2 |
| 17     | 23       | FR1   | 81     | 23       | TS11  |        |          |       | 111.8 | -4.1 |
| 45     | 12       | LPL3  | 81     | 23       | TS11  |        |          |       | 111.1 | -4.1 |
| 63     | 1        | HANP2 | 81     | 23       | TS11  |        |          |       | 113.8 | -4.2 |
| 81     | 23       | TS11  | 96     | 12       | LRP1  |        |          |       | 110.3 | -4.1 |

[図59]

| SNP-No | GenoType |
|--------|----------|
| 86     | 3        |
| 81     | 23       |
| 93     | 3        |
| 76     | 12       |
| 62     | 23       |
| 18     | 1        |
| 23     | 12       |
| 8      | 12       |
| 13     | 1        |
| 28     | 3        |
| 75     | 3        |
| 84     | 23       |
| 54     | 3        |
| 74     | 1        |
| 2      | 1        |
| 7      | 1        |
| 40     | 1        |
| 88     | 1        |
| 11     | 12       |
| 10     | 23       |
| 15     | 12       |
| 17     | 23       |
| 24     | 12       |
| 47     | 23       |
| 50     | 12       |
| 29     | 23       |
| 49     | 12       |
| 63     | 1        |
| 12     | 23       |
| 45     | 12       |
| 30     | 12       |
| 20     | 12       |
| 26     | 12       |
| 37     | 12       |
| 43     | 12       |
| 96     | 12       |
| 21     | 12       |
| 55     | 23       |
| 19     | 12       |
| 31     | 23       |
| 87     | 12       |
| 42     | 12       |
| 79     | 23       |
| 98     | 23       |
| 69     | 12       |
| 70     | 23       |
| 77     | 12       |
| 78     | 12       |
| 38     | 23       |
| 80     | 23       |
| 89     | 23       |
| 25     | 12       |
| 51     | 12       |
| 33     | 23       |
| 4      | 23       |
| 3      | 23       |
| 67     | 23       |
| 48     | 12       |
| 73     | 23       |
| 16     | 23       |
| 27     | 23       |
| 99     | 23       |
| 36     | 12       |
| 71     | 3        |
| 90     | 12       |
| 53     | 12       |
| 1      | 23       |
| 64     | 12       |
| 83     | 1        |
| 22     | 1        |
| 82     | 1        |
| 52     | 1        |
| 32     | 12       |
| 68     | 23       |

[図60]

| SNP-No | GenoType |
|--------|----------|
| 81     | 23       |
| 62     | 23       |
| 13     | 1        |
| 76     | 12       |
| 84     | 23       |
| 93     | 3        |
| 28     | 3        |
| 40     | 1        |
| 88     | 1        |
| 18     | 1        |
| 35     | 1        |
| 86     | 1        |
| 90     | 12       |
| 23     | 12       |
| 74     | 1        |
| 75     | 3        |
| 24     | 23       |
| 64     | 12       |
| 67     | 1        |
| 10     | 23       |
| 17     | 23       |
| 22     | 12       |
| 50     | 12       |
| 2      | 12       |
| 8      | 23       |
| 15     | 12       |
| 29     | 23       |
| 47     | 23       |
| 49     | 12       |
| 83     | 12       |
| 11     | 12       |
| 26     | 12       |
| 52     | 12       |
| 63     | 1        |
| 82     | 12       |
| 7      | 12       |
| 12     | 23       |
| 45     | 12       |
| 96     | 12       |
| 37     | 12       |
| 55     | 23       |
| 79     | 23       |
| 20     | 12       |
| 30     | 12       |
| 43     | 12       |
| 42     | 12       |
| 19     | 12       |
| 21     | 12       |
| 31     | 23       |
| 87     | 12       |
| 98     | 23       |
| 69     | 12       |
| 54     | 12       |
| 78     | 12       |
| 70     | 23       |
| 77     | 12       |
| 89     | 23       |
| 38     | 23       |
| 33     | 23       |
| 25     | 12       |
| 51     | 12       |
| 48     | 12       |
| 32     | 12       |
| 4      | 23       |
| 80     | 23       |
| 73     | 23       |
| 27     | 23       |
| 99     | 23       |
| 3      | 23       |
| 36     | 12       |
| 16     | 23       |
| 53     | 12       |
| 68     | 12       |
| 1      | 23       |
| 71     | 3        |

[図61]

| SNP-No | GenoType |
|--------|----------|
| 81     | 23       |
| 62     | 23       |
| 13     | 12       |
| 28     | 3        |
| 40     | 1        |
| 88     | 1        |
| 76     | 12       |
| 90     | 12       |
| 84     | 23       |
| 86     | 1        |
| 23     | 12       |
| 24     | 23       |
| 64     | 12       |
| 67     | 1        |
| 2      | 12       |
| 10     | 23       |
| 17     | 23       |
| 22     | 12       |
| 47     | 23       |
| 50     | 12       |
| 15     | 12       |
| 26     | 12       |
| 8      | 23       |
| 29     | 23       |
| 52     | 12       |
| 63     | 1        |
| 82     | 12       |
| 12     | 23       |
| 45     | 12       |
| 37     | 12       |
| 96     | 12       |
| 79     | 23       |
| 30     | 12       |
| 55     | 23       |
| 19     | 12       |
| 11     | 1        |
| 75     | 23       |
| 74     | 12       |
| 51     | 12       |
| 36     | 3        |
| 93     | 23       |
| 99     | 23       |
| 27     | 23       |
| 49     | 12       |
| 83     | 12       |
| 7      | 12       |
| 20     | 12       |
| 16     | 23       |
| 43     | 12       |
| 39     | 3        |
| 42     | 12       |
| 31     | 23       |
| 87     | 12       |
| 21     | 12       |
| 68     | 12       |
| 98     | 23       |
| 80     | 23       |
| 54     | 12       |
| 69     | 12       |
| 78     | 12       |
| 77     | 12       |
| 70     | 23       |
| 3      | 23       |
| 89     | 23       |
| 38     | 23       |
| 33     | 23       |
| 25     | 12       |
| 48     | 12       |
| 32     | 12       |
| 73     | 23       |
| 4      | 23       |
| 53     | 12       |
| 5      | 3        |
| 18     | 3        |
| 1      | 3        |

[図62]

| SNP-No | GenoType |
|--------|----------|
| 81     | 3        |
| 99     | 3        |
| 28     | 23       |
| 86     | 3        |
| 96     | 23       |
| 24     | 23       |
| 54     | 3        |
| 18     | 1        |
| 62     | 23       |
| 37     | 23       |
| 93     | 3        |
| 12     | 12       |
| 33     | 1        |
| 23     | 12       |
| 40     | 1        |
| 69     | 3        |
| 52     | 23       |
| 13     | 12       |
| 88     | 1        |
| 1      | 3        |
| 76     | 12       |
| 53     | 1        |
| 48     | 23       |
| 78     | 1        |
| 29     | 12       |
| 8      | 12       |
| 36     | 3        |
| 84     | 23       |
| 20     | 23       |
| 11     | 23       |
| 74     | 1        |
| 32     | 3        |
| 43     | 23       |
| 27     | 3        |
| 75     | 3        |
| 17     | 12       |
| 98     | 1        |
| 77     | 3        |
| 90     | 12       |
| 70     | 12       |
| 67     | 1        |
| 3      | 1        |
| 5      | 3        |
| 89     | 1        |
| 87     | 3        |
| 25     | 3        |
| 2      | 23       |
| 68     | 3        |
| 19     | 23       |
| 16     | 3        |
| 51     | 3        |
| 50     | 23       |
| 64     | 12       |
| 21     | 3        |
| 4      | 3        |
| 38     | 3        |
| 73     | 1        |
| 55     | 12       |
| 30     | 23       |
| 31     | 12       |
| 7      | 23       |
| 42     | 3        |
| 79     | 3        |
| 56     | 3        |
| 80     | 12       |
| 83     | 23       |
| 26     | 23       |
| 71     | 12       |
| 45     | 1        |
| 35     | 1        |
| 95     | 3        |
| 39     | 12       |
| 49     | 12       |
| 15     | 1        |

[図63]

| SNP-No | Genotype | 遺伝子略称          | SNP-No | Genotype | 遺伝子略称          | SNP-No | Genotype | 遺伝子略称          | kai  | odds |
|--------|----------|----------------|--------|----------|----------------|--------|----------|----------------|------|------|
| 1      | 12       | ABCA1          | 81     | 1        | TS11           |        |          |                | 67.7 | 2.5  |
| 3      | 23       | ACE 1D         | 64     | 12       | TNF $\alpha$ 2 |        |          |                | 7.2  | 2.4  |
| 4      | 12       | ESRa1          | 81     | 1        | TS11           |        |          |                | 45.9 | 2.1  |
| 7      | 23       | N7             | 45     | 3        | LPL3           |        |          |                | 9.2  | 12.7 |
| 11     | 1        | PAR2           | 64     | 12       | TNF $\alpha$ 2 |        |          |                | 8.6  | 2.6  |
| 12     | 3        | Tbm3           | 86     | 12       | IL-181         |        |          |                | 49.7 | 2.2  |
| 15     | 23       | MMP12          | 81     | 1        | TS11           |        |          |                | 8.6  | 2.3  |
| 16     | 12       | HL1            | 81     | 1        | TS11           |        |          |                | 67.4 | 2.5  |
| 17     | 1        | FR1            | 73     | 23       | VEGF5          |        |          |                | 8.4  | 99   |
| 18     | 12       | S2AR           | 81     | 1        | TS11           |        |          |                | 42   | 2    |
| 19     | 1        | MMP9           | 81     | 1        | TS11           |        |          |                | 40.3 | 2    |
| 20     | 1        | GSY            | 64     | 12       | TNF $\alpha$ 2 |        |          |                | 6.7  | 2.3  |
| 20     | 1        | GSY            | 86     | 12       | IL-181         |        |          |                | 49.5 | 2.2  |
| 21     | 1        | CX37           | 81     | 1        | TS11           |        |          |                | 49.3 | 2.2  |
| 25     | 1        | PAI            | 45     | 3        | LPL3           |        |          |                | 8.6  | 7.4  |
| 25     | 1        | PAI            | 81     | 1        | TS11           |        |          |                | 36.2 | 2    |
| 27     | 12       | N10            | 81     | 1        | TS11           |        |          |                | 72.8 | 2.6  |
| 30     | 1        | FGB3           | 63     | 23       | HANP2          |        |          |                | 9.2  | 12.8 |
| 30     | 1        | FGB3           | 81     | 1        | TS11           |        |          |                | 54.2 | 2.2  |
| 31     | 3        | APE2           | 64     | 12       | TNF $\alpha$ 2 |        |          |                | 10.5 | 3.4  |
| 32     | 3        | MTHFR          | 39     | 12       | CRP1           |        |          |                | 8.5  | 11.6 |
| 32     | 3        | MTHFR          | 48     | 1        | ICAM1          |        |          |                | 14.1 | 2.2  |
| 36     | 23       | FGA1           | 81     | 1        | TS11           |        |          |                | 78.4 | 2.7  |
| 38     | 23       | FGA1           | 86     | 12       | IL-181         |        |          |                | 48.9 | 2.1  |
| 38     | 12       | PONA1          | 81     | 1        | TS11           |        |          |                | 42   | 2    |
| 40     | 3        | 3AR            | 81     | 1        | TS11           |        |          |                | 52.6 | 2.2  |
| 40     | 3        | 3AR            | 83     | 23       | 2C9-3          |        |          |                | 7.7  | 2.6  |
| 42     | 1        | GCLM1          | 81     | 1        | TS11           |        |          |                | 49.2 | 2.2  |
| 43     | 1        | MTP1           | 81     | 1        | TS11           |        |          |                | 50.1 | 2.2  |
| 51     | 1        | GP1a1          | 81     | 1        | TS11           |        |          |                | 35.6 | 2    |
| 53     | 23       | $\beta$ 2AR-1  | 81     | 1        | TS11           |        |          |                | 62.6 | 2.4  |
| 55     | 3        | MPO            | 76     | 1        | TS41           |        |          |                | 6.7  | 99   |
| 55     | 3        | MPO            | 86     | 12       | IL-181         |        |          |                | 40.7 | 2    |
| 64     | 12       | TNF $\alpha$ 2 | 67     | 23       | 1A2            |        |          |                | 14.4 | 4.3  |
| 84     | 12       | TNF $\alpha$ 2 | 74     | 23       | LTA1           |        |          |                | 10.8 | 4.7  |
| 84     | 12       | TNF $\alpha$ 2 | 78     | 23       | ET1            |        |          |                | 7.7  | 3.3  |
| 68     | 12       | BKR1           | 81     | 1        | TS11           |        |          |                | 78.9 | 2.7  |
| 69     | 23       | CD181          | 81     | 1        | TS11           |        |          |                | 38.8 | 2    |
| 70     | 12       | APM2           | 81     | 1        | TS11           |        |          |                | 49.2 | 2.2  |
| 73     | 23       | VEGF5          | 86     | 12       | IL-181         |        |          |                | 45.6 | 2.1  |
| 74     | 23       | LTA1           | 81     | 1        | TS11           |        |          |                | 74.9 | 2.6  |
| 74     | 23       | LTA1           | 86     | 12       | IL-181         |        |          |                | 47.3 | 2.1  |
| 75     | 12       | LTA2           | 81     | 1        | TS11           |        |          |                | 73.8 | 2.6  |
| 77     | 23       | APM12          | 81     | 1        | TS11           |        |          |                | 40.2 | 2    |
| 79     | 3        | RAGE3          | 81     | 1        | TS11           |        |          |                | 52.4 | 2.2  |
| 81     | 1        | TS11           | 82     | 23       | IL103          |        |          |                | 12.7 | 2.1  |
| 81     | 1        | TS11           | 88     | 12       | VWF2           |        |          |                | 51.7 | 2.2  |
| 81     | 1        | TS11           | 89     | 12       | IL102          |        |          |                | 43   | 2.1  |
| 81     | 1        | TS11           | 93     | 12       | TPO1           |        |          |                | 89.1 | 2.9  |
| 81     | 1        | TS11           | 99     | 12       | PGC12          |        |          |                | 45.2 | 2.1  |
| 5      | 12       | N1             | 7      | 23       | N7             | 62     | 1        | APE3           | 6.6  | 2.5  |
| 13     | 3        | CF12           | 28     | 23       | AGT1           | 49     | 23       | GP61           | 9    | 12.6 |
| 24     | 1        | AGTR1-3        | 52     | 23       | MMP71          | 78     | 23       | ET1            | 10.3 | 2.2  |
| 26     | 23       | NOS3           | 29     | 12       | G1A3           | 50     | 1        | $\beta$ 2AR4   | 7.6  | 4.6  |
| 26     | 23       | NOS3           | 37     | 23       | GP1ba          | 90     | 12       | IL-182         | 7.8  | 99   |
| 26     | 23       | NOS3           | 42     | 1        | GCLM1          | 52     | 23       | MMP71          | 9.2  | 3.6  |
| 26     | 23       | NOS3           | 52     | 23       | MMP71          | 70     | 12       | APM2           | 9.2  | 3.8  |
| 26     | 23       | NOS3           | 52     | 23       | MMP71          | 78     | 23       | ET1            | 15.5 | 11.2 |
| 28     | 23       | AGT1           | 33     | 12       | MCP1           | 35     | 23       | ESL2           | 7.3  | 6.4  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 47     | 3        | TNF $\alpha$ 1 | 6.7  | 3.3  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 62     | 1        | APE3           | 8.4  | 4.6  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 71     | 3        | REG1           | 6.8  | 3.6  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 98     | 3        | PGC11          | 7.8  | 5.2  |
| 33     | 12       | MCP1           | 35     | 23       | ESL2           | 93     | 12       | TPO1           | 7    | 2.7  |
| 35     | 23       | ESL2           | 51     | 1        | GP1a1          | 56     | 3        | HANP1          | 6.6  | 2.8  |
| 35     | 23       | ESL2           | 51     | 1        | GP1a1          | 62     | 1        | APE3           | 10.1 | 4.1  |
| 35     | 23       | ESL2           | 51     | 1        | GP1a1          | 71     | 3        | REG1           | 8.5  | 3.5  |
| 37     | 23       | GP1ba          | 77     | 23       | APM12          | 80     | 1        | CCR2           | 7    | 10.3 |
| 50     | 1        | $\beta$ 2AR4   | 52     | 23       | MMP71          | 78     | 23       | ET1            | 9.6  | 2.2  |

[図64]

| SNP-No | Genotype | 遺伝子略称          | SNP-No | Genotype | 遺伝子略称          | SNP-No | Genotype | 遺伝子略称          | kai  | odds |
|--------|----------|----------------|--------|----------|----------------|--------|----------|----------------|------|------|
| 7      | 23       | N7             | 45     | 3        | LPL3           |        |          |                | 9.2  | 12.7 |
| 17     | 1        | FR1            | 73     | 23       | VEGF5          |        |          |                | 8.4  | 99   |
| 25     | 1        | PAI            | 45     | 3        | LPL3           |        |          |                | 8.6  | 7.4  |
| 30     | 1        | FGB3           | 63     | 23       | HANP2          |        |          |                | 9.2  | 12.8 |
| 31     | 3        | APE2           | 64     | 12       | TNF $\alpha$ 2 |        |          |                | 10.5 | 3.4  |
| 32     | 3        | MTHFR          | 39     | 12       | CRP1           |        |          |                | 8.5  | 11.6 |
| 55     | 3        | MPO            | 76     | 1        | TS41           |        |          |                | 6.7  | 99   |
| 64     | 12       | TNF $\alpha$ 2 | 67     | 23       | 1A2            |        |          |                | 14.4 | 4.3  |
| 64     | 12       | TNF $\alpha$ 2 | 74     | 23       | LTA1           |        |          |                | 10.8 | 4.7  |
| 64     | 12       | TNF $\alpha$ 2 | 78     | 23       | ET1            |        |          |                | 7.7  | 3.3  |
| 13     | 3        | CF12           | 28     | 23       | AGT1           | 49     | 23       | GP61           | 9    | 12.6 |
| 26     | 23       | NOS3           | 29     | 12       | G1A3           | 50     | 1        | $\beta$ 2AR4   | 7.6  | 4.6  |
| 26     | 23       | NOS3           | 37     | 23       | GP1ba          | 90     | 12       | IL-182         | 7.8  | 99   |
| 26     | 23       | NOS3           | 42     | 1        | GCLM1          | 52     | 23       | MMP71          | 9.2  | 3.6  |
| 26     | 23       | NOS3           | 52     | 23       | MMP71          | 70     | 12       | APM2           | 9.2  | 3.8  |
| 26     | 23       | NOS3           | 52     | 23       | MMP71          | 78     | 23       | ET1            | 15.5 | 11.2 |
| 28     | 23       | AGT1           | 33     | 12       | MCP1           | 35     | 23       | ESL2           | 7.3  | 6.4  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 47     | 3        | TNF $\alpha$ 1 | 6.7  | 3.3  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 62     | 1        | APE3           | 8.4  | 4.6  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 71     | 3        | REG1           | 6.8  | 3.6  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2           | 98     | 3        | PGC11          | 7.8  | 5.2  |
| 35     | 23       | ESL2           | 51     | 1        | GP1a1          | 62     | 1        | APE3           | 10.1 | 4.1  |
| 35     | 23       | ESL2           | 51     | 1        | GP1a1          | 71     | 3        | REG1           | 8.5  | 3.5  |
| 37     | 23       | GP1ba          | 77     | 23       | APM12          | 80     | 1        | CCR2           | 7    | 10.3 |

[図65]

| SNP-No | Genotype | 遺伝子略称          | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称        | kai  | odds |
|--------|----------|----------------|--------|----------|-------|--------|----------|--------------|------|------|
| 7      | 23       | N7             | 45     | 3        | LPL3  |        |          |              | 9.2  | 12.7 |
| 17     | 1        | FR1            | 73     | 23       | VEGF5 |        |          |              | 8.4  | 99   |
| 25     | 1        | PAI            | 45     | 3        | LPL3  |        |          |              | 8.6  | 7.4  |
| 30     | 1        | FGB3           | 63     | 23       | HANP2 |        |          |              | 9.2  | 12.8 |
| 32     | 3        | MTHFR          | 39     | 12       | CRP1  |        |          |              | 8.5  | 11.6 |
| 55     | 3        | MPO            | 76     | 1        | TS41  |        |          |              | 6.7  | 99   |
| 64     | 12       | TNF $\alpha$ 2 | 67     | 23       | 1A2   |        |          |              | 14.4 | 4.3  |
| 64     | 12       | TNF $\alpha$ 2 | 74     | 23       | LTA1  |        |          |              | 10.8 | 4.7  |
| 13     | 3        | CF12           | 28     | 23       | AGT1  | 49     | 23       | GP61         | 9    | 12.6 |
| 26     | 23       | NOS3           | 29     | 12       | G1A3  | 50     | 1        | $\beta$ 2AR4 | 7.6  | 4.6  |
| 26     | 23       | NOS3           | 37     | 23       | GP1ba | 90     | 12       | IL-182       | 7.8  | 99   |
| 26     | 23       | NOS3           | 52     | 23       | MMP71 | 78     | 23       | ET1          | 15.5 | 11.2 |
| 28     | 23       | AGT1           | 33     | 12       | MCP1  | 35     | 23       | ESL2         | 7.3  | 6.4  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2  | 62     | 1        | APE3         | 8.4  | 4.6  |
| 28     | 23       | AGT1           | 35     | 23       | ESL2  | 98     | 3        | PGC11        | 7.8  | 5.2  |
| 35     | 23       | ESL2           | 51     | 1        | GP1a1 | 62     | 1        | APE3         | 10.1 | 4.1  |
| 37     | 23       | GP1ba          | 77     | 23       | APM12 | 80     | 1        | CCR2         | 7    | 10.3 |

[図66]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称  | kai  | odds |
|--------|----------|-------|--------|----------|-------|--------|----------|--------|------|------|
| 7      | 23       | N7    | 45     | 3        | LPL3  |        |          |        | 9.2  | 12.7 |
| 17     | 1        | FR1   | 73     | 23       | VEGF5 |        |          |        | 8.4  | 99   |
| 25     | 1        | PAI   | 45     | 3        | LPL3  |        |          |        | 8.6  | 7.4  |
| 30     | 1        | FGB3  | 63     | 23       | HANP2 |        |          |        | 9.2  | 12.8 |
| 32     | 3        | MTHFR | 39     | 12       | CRP1  |        |          |        | 8.5  | 11.6 |
| 55     | 3        | MPO   | 76     | 1        | TS41  |        |          |        | 6.7  | 99   |
| 13     | 3        | CF12  | 28     | 23       | AGT1  | 49     | 23       | GP61   | 9    | 12.6 |
| 26     | 23       | NOS3  | 37     | 23       | GP1ba | 90     | 12       | IL-182 | 7.8  | 99   |
| 26     | 23       | NOS3  | 52     | 23       | MMP71 | 78     | 23       | ET1    | 15.5 | 11.2 |
| 28     | 23       | AGT1  | 33     | 12       | MCP1  | 35     | 23       | ESL2   | 7.3  | 6.4  |
| 28     | 23       | AGT1  | 35     | 23       | ESL2  | 98     | 3        | PGC11  | 7.8  | 5.2  |
| 37     | 23       | GP1ba | 77     | 23       | APM12 | 80     | 1        | CCR2   | 7    | 10.3 |

[図67]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称  | kai  | odds |
|--------|----------|-------|--------|----------|-------|--------|----------|--------|------|------|
| 7      | 23       | N7    | 45     | 3        | LPL3  |        |          |        | 9.2  | 12.7 |
| 17     | 1        | FR1   | 73     | 23       | VEGF5 |        |          |        | 8.4  | 99   |
| 25     | 1        | PAI   | 45     | 3        | LPL3  |        |          |        | 8.6  | 7.4  |
| 30     | 1        | FGB3  | 63     | 23       | HANP2 |        |          |        | 9.2  | 12.8 |
| 32     | 3        | MTHFR | 39     | 12       | CRP1  |        |          |        | 8.5  | 11.6 |
| 55     | 3        | MPO   | 76     | 1        | TS41  |        |          |        | 6.7  | 99   |
| 13     | 3        | CF12  | 28     | 23       | AGT1  | 49     | 23       | GP61   | 9    | 12.6 |
| 26     | 23       | NOS3  | 37     | 23       | GP1ba | 90     | 12       | IL-182 | 7.8  | 99   |
| 26     | 23       | NOS3  | 52     | 23       | MMP71 | 78     | 23       | ET1    | 15.5 | 11.2 |
| 28     | 23       | AGT1  | 33     | 12       | MCP1  | 35     | 23       | ESL2   | 7.3  | 6.4  |
| 37     | 23       | GP1ba | 77     | 23       | APM12 | 80     | 1        | CCR2   | 7    | 10.3 |

[図68]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称  | kai  | odds |
|--------|----------|-------|--------|----------|-------|--------|----------|--------|------|------|
| 7      | 23       | N7    | 45     | 3        | LPL3  |        |          |        | 9.2  | 12.7 |
| 17     | 1        | FR1   | 73     | 23       | VEGF5 |        |          |        | 8.4  | 99   |
| 25     | 1        | PAI   | 45     | 3        | LPL3  |        |          |        | 8.6  | 7.4  |
| 30     | 1        | FGB3  | 63     | 23       | HANP2 |        |          |        | 9.2  | 12.8 |
| 32     | 3        | MTHFR | 39     | 12       | CRP1  |        |          |        | 8.5  | 11.6 |
| 55     | 3        | MPO   | 76     | 1        | TS41  |        |          |        | 6.7  | 99   |
| 13     | 3        | CF12  | 28     | 23       | AGT1  | 49     | 23       | GP61   | 9    | 12.6 |
| 26     | 23       | NOS3  | 37     | 23       | GP1ba | 90     | 12       | IL-182 | 7.8  | 99   |
| 26     | 23       | NOS3  | 52     | 23       | MMP71 | 78     | 23       | ET1    | 15.5 | 11.2 |
| 37     | 23       | GP1ba | 77     | 23       | APM12 | 80     | 1        | CCR2   | 7    | 10.3 |

[図69]

| SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称 | SNP-No | Genotype | 遺伝子略称  | kai  | odds |
|--------|----------|-------|--------|----------|-------|--------|----------|--------|------|------|
| 7      | 23       | N7    | 45     | 3        | LPL3  |        |          |        | 9.2  | 12.7 |
| 17     | 1        | FR1   | 73     | 23       | VEGF5 |        |          |        | 8.4  | 99   |
| 30     | 1        | FGB3  | 63     | 23       | HANP2 |        |          |        | 9.2  | 12.8 |
| 32     | 3        | MTHFR | 39     | 12       | CRP1  |        |          |        | 8.5  | 11.6 |
| 55     | 3        | MPO   | 76     | 1        | TS41  |        |          |        | 6.7  | 99   |
| 13     | 3        | CF12  | 28     | 23       | AGT1  | 49     | 23       | GP61   | 9    | 12.6 |
| 26     | 23       | NOS3  | 37     | 23       | GP1ba | 90     | 12       | IL-182 | 7.8  | 99   |
| 26     | 23       | NOS3  | 52     | 23       | MMP71 | 78     | 23       | ET1    | 15.5 | 11.2 |
| 37     | 23       | GP1ba | 77     | 23       | APM12 | 80     | 1        | CCR2   | 7    | 10.3 |

[図70]

| SNP-No | GenoType |
|--------|----------|
| 81     | 1        |
| 86     | 12       |
| 36     | 23       |
| 74     | 23       |
| 20     | 1        |
| 55     | 3        |
| 30     | 1        |
| 73     | 23       |
| 12     | 3        |
| 16     | 12       |
| 27     | 12       |
| 68     | 12       |
| 53     | 23       |
| 1      | 12       |
| 40     | 3        |
| 93     | 12       |
| 42     | 1        |
| 79     | 3        |
| 43     | 1        |
| 18     | 12       |
| 21     | 1        |
| 88     | 12       |
| 99     | 12       |
| 19     | 1        |
| 4      | 12       |
| 75     | 12       |
| 38     | 12       |
| 70     | 12       |
| 77     | 23       |
| 89     | 12       |
| 69     | 23       |
| 25     | 1        |
| 64     | 12       |
| 51     | 1        |
| 32     | 3        |
| 48     | 1        |
| 82     | 23       |
| 83     | 23       |
| 52     | 23       |
| 8      | 1        |
| 45     | 3        |
| 78     | 23       |
| 28     | 23       |
| 22     | 23       |
| 26     | 23       |
| 80     | 1        |
| 87     | 23       |
| 63     | 23       |
| 50     | 1        |
| 90     | 12       |
| 17     | 1        |
| 33     | 12       |
| 15     | 23       |
| 7      | 23       |
| 37     | 23       |
| 29     | 12       |
| 3      | 23       |
| 11     | 1        |
| 67     | 23       |
| 96     | 3        |
| 24     | 1        |
| 31     | 3        |
| 76     | 1        |
| 2      | 23       |
| 13     | 3        |
| 39     | 12       |
| 54     | 12       |
| 98     | 3        |
| 35     | 23       |
| 5      | 12       |
| 47     | 3        |
| 62     | 1        |
| 71     | 3        |
| 84     | 1        |
| 10     | 12       |
| 23     | 12       |
| 49     | 23       |
| 56     | 3        |
| 95     | 3        |

[図71]

| SNP-No | GenoType |
|--------|----------|
| 81     | 1        |
| 93     | 12       |
| 55     | 23       |
| 64     | 12       |
| 18     | 3        |
| 51     | 1        |
| 43     | 3        |
| 4      | 1        |
| 26     | 23       |
| 90     | 12       |
| 16     | 1        |
| 2      | 23       |
| 19     | 23       |
| 33     | 12       |
| 83     | 23       |
| 7      | 23       |
| 99     | 1        |
| 38     | 1        |
| 82     | 23       |
| 15     | 23       |
| 30     | 23       |
| 70     | 12       |
| 11     | 23       |
| 86     | 1        |
| 5      | 12       |
| 45     | 3        |
| 35     | 23       |
| 74     | 3        |
| 75     | 1        |
| 36     | 3        |
| 96     | 23       |
| 22     | 23       |
| 50     | 23       |
| 12     | 12       |
| 53     | 1        |
| 28     | 12       |
| 28     | 23       |
| 80     | 1        |
| 48     | 1        |
| 52     | 23       |
| 27     | 1        |
| 32     | 23       |
| 89     | 3        |
| 21     | 23       |
| 78     | 23       |
| 68     | 1        |
| 8      | 12       |
| 42     | 1        |
| 49     | 23       |
| 39     | 12       |
| 1      | 3        |
| 13     | 3        |
| 24     | 23       |
| 77     | 23       |
| 25     | 3        |
| 40     | 1        |
| 63     | 23       |
| 79     | 12       |
| 87     | 23       |
| 17     | 1        |
| 76     | 1        |
| 69     | 23       |
| 98     | 3        |
| 3      | 1        |
| 67     | 23       |
| 54     | 23       |
| 31     | 3        |
| 73     | 3        |
| 88     | 23       |
| 84     | 23       |
| 37     | 23       |
| 71     | 3        |
| 47     | 12       |
| 20     | 23       |
| 95     | 3        |
| 56     | 3        |
| 62     | 12       |
| 10     | 12       |
| 23     | 12       |

[図72]

| SNP-No | GenoType |
|--------|----------|
| 64     | 12       |
| 86     | 1        |
| 18     | 3        |
| 26     | 23       |
| 99     | 1        |
| 90     | 12       |
| 38     | 1        |
| 82     | 23       |
| 75     | 1        |
| 16     | 1        |
| 7      | 23       |
| 19     | 23       |
| 51     | 3        |
| 43     | 3        |
| 2      | 23       |
| 36     | 3        |
| 5      | 12       |
| 53     | 1        |
| 15     | 23       |
| 11     | 23       |
| 31     | 12       |
| 83     | 23       |
| 35     | 23       |
| 4      | 1        |
| 1      | 3        |
| 45     | 3        |
| 29     | 12       |
| 28     | 23       |
| 24     | 23       |
| 27     | 1        |
| 70     | 12       |
| 73     | 1        |
| 22     | 23       |
| 81     | 1        |
| 80     | 1        |
| 69     | 23       |
| 79     | 12       |
| 13     | 3        |
| 50     | 23       |
| 3      | 1        |
| 39     | 12       |
| 67     | 23       |
| 89     | 1        |
| 49     | 23       |
| 93     | 1        |
| 52     | 23       |
| 33     | 12       |
| 30     | 23       |
| 25     | 3        |
| 40     | 1        |
| 87     | 23       |
| 68     | 1        |
| 32     | 3        |
| 21     | 23       |
| 42     | 1        |
| 77     | 3        |
| 12     | 12       |
| 63     | 23       |
| 76     | 1        |
| 17     | 1        |
| 78     | 23       |
| 48     | 1        |
| 54     | 23       |
| 8      | 1        |
| 74     | 3        |
| 96     | 23       |
| 20     | 23       |
| 55     | 3        |
| 71     | 12       |
| 98     | 1        |
| 84     | 23       |
| 88     | 23       |
| 37     | 23       |
| 62     | 1        |
| 10     | 12       |
| 47     | 12       |
| 23     | 12       |
| 56     | 3        |
| 95     | 3        |

[図73]

| SNP-No | GenoType |
|--------|----------|
| 86     | 1        |
| 82     | 23       |
| 64     | 12       |
| 7      | 23       |
| 26     | 23       |
| 74     | 3        |
| 99     | 1        |
| 75     | 1        |
| 27     | 1        |
| 36     | 3        |
| 43     | 3        |
| 38     | 1        |
| 19     | 23       |
| 18     | 3        |
| 5      | 12       |
| 90     | 12       |
| 31     | 12       |
| 11     | 23       |
| 16     | 1        |
| 29     | 12       |
| 53     | 1        |
| 2      | 23       |
| 15     | 23       |
| 22     | 23       |
| 83     | 23       |
| 45     | 3        |
| 51     | 3        |
| 28     | 23       |
| 67     | 1        |
| 4      | 1        |
| 49     | 23       |
| 39     | 12       |
| 35     | 23       |
| 1      | 1        |
| 69     | 3        |
| 70     | 12       |
| 93     | 1        |
| 52     | 23       |
| 73     | 1        |
| 48     | 3        |
| 24     | 23       |
| 50     | 23       |
| 33     | 12       |
| 3      | 1        |
| 40     | 1        |
| 25     | 3        |
| 12     | 12       |
| 32     | 3        |
| 87     | 23       |
| 77     | 3        |
| 80     | 1        |
| 78     | 23       |
| 68     | 3        |
| 21     | 23       |
| 76     | 1        |
| 79     | 12       |
| 63     | 23       |
| 84     | 23       |
| 89     | 1        |
| 30     | 1        |
| 17     | 1        |
| 8      | 1        |
| 71     | 12       |
| 13     | 3        |
| 20     | 23       |
| 42     | 1        |
| 54     | 3        |
| 55     | 12       |
| 81     | 1        |
| 37     | 23       |
| 88     | 23       |
| 96     | 23       |
| 98     | 12       |
| 23     | 12       |
| 47     | 12       |
| 10     | 12       |
| 56     | 3        |
| 62     | 12       |
| 95     | 3        |

[図74]



[図75]



[図76]



[図77]



## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/JP2004/015292

**A. CLASSIFICATION OF SUBJECT MATTER**  
Int.Cl<sup>7</sup> G06F19/00

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
Int.Cl<sup>7</sup> G06F19/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004  
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  
JICST FILE (JOIS), WPI, INSPEC (DIALOG)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                         | Relevant to claim No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y         | WO 02/061659 A2 (SCIONA LTD.),<br>08 August, 2002 (08.08.02),<br>Whole Claims; pages 52 to 54<br>& CA 2435682 A1 & EP 1395938 A2<br>& JP 2004-525448 A & US 2003-023387 A1 | 1-53                  |
| Y         | JP 2003-061677 A (Olympus Optical Co., Ltd.),<br>04 March, 2003 (04.03.03),<br>Claims; Par Nos. [0043] to [0044], [0054] to<br>[0065], [0093] to [0106]<br>(Family: none)  | 1-53                  |

Further documents are listed in the continuation of Box C.

See patent family annex.

- \* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "B" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search  
13 January, 2005 (13.01.05)

Date of mailing of the international search report  
01 February, 2005 (01.02.05)

Name and mailing address of the ISA/  
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

**INTERNATIONAL SEARCH REPORT**International application No.  
PCT/JP2004/015292**C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                            | Relevant to claim No. |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y         | IZAWA, H. et al., Prediction of Genetic Risk for Hypertension, 24 March, 2003 (24.03.03) [retrieved on 05 January, 2005 (05.01.05)], Retrieved from the internet: <URL: <a href="http://hyper.ahajournals.org/cgi/content/full/41/5/1035">http://hyper.ahajournals.org/cgi/content/full/41/5/1035</a> doi:10.1161/01.HYP.0000065618.56368.24> | 1-53                  |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/JP2004/015292

**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.:  
because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.:  
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

It appears that there is a technical relationship involving "special technical features" among claims 1-11, 20-28, 29-37, 38-44 and 45 in the use of a negative relationship between genetic polymorphism and disease index; among claims 12-15, 46, 47, 50 and 51 in the use of genetic polymorphism set shown in any of Figs. 1-9; and among claims 16-19, 48, 49, 52 and 53 in the use of genetic polymorphism set shown in any of Figs. 56-58. However, among these three claim groups, it does not appear that there is a technical relationship involving "special technical features".

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**

The additional search fees were accompanied by the applicant's protest.  
 No protest accompanied the payment of additional search fees.

## A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 G06F19/00

## B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C17 G06F19/00

## 最小限資料以外の資料で調査を行った分野に含まれるもの

|             |            |
|-------------|------------|
| 日本国実用新案公報   | 1922-1996年 |
| 日本国公開実用新案公報 | 1971-2004年 |
| 日本国登録実用新案公報 | 1994-2004年 |
| 日本国実用新案登録公報 | 1996-2004年 |

## 国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

JICSTファイル (JOIS), WPI, INSPEC (DIALOG)

## C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                            | 関連する<br>請求の範囲の番号 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Y               | WO 02/061659 A2 (SCIONA LIMITED) 2002.08.08, whole claims, p p. 52-54 & CA 2435682 A1 & EP 1395938 A2 & JP 2004-525448 A & US 2003-023387 A1 | 1-53             |
| Y               | JP 2003-061677 A (オリンパス光学工業株式会社) 2003.03.04, 特許請求の範囲, 段落番号【0043】-【0044】 , 【0054】-【0065】 , 【0093】-【0106】(ファミリーなし)                             | 1-53             |

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

## \* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

## の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

## 国際調査を完了した日

13.01.2005

## 国際調査報告の発送日

01.2.2005

## 国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

## 特許庁審査官（権限のある職員）

岩間 直純

5L

9287

電話番号 03-3581-1101 内線 3560

| C (続き) . 関連すると認められる文献 |                                                                                                                                                                                                                                                                                                              |                  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 引用文献の<br>カテゴリー*       | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                                                                                                                                                                                            | 関連する<br>請求の範囲の番号 |
| Y                     | IZAWA H, et al., Prediction of Genetic Risk for Hypertension, 2003.03.24 [retrieved on 2005.01.05], Retrieved from the internet: <URL: <a href="http://hyper.ahajournals.org/cgi/content/full/41/5/1035">http://hyper.ahajournals.org/cgi/content/full/41/5/1035</a> doi:10.1161/01.HYP.0000065618.56368.24> | 1-53             |

## 第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1.  請求の範囲 \_\_\_\_\_ は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
2.  請求の範囲 \_\_\_\_\_ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.  請求の範囲 \_\_\_\_\_ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

## 第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1-11, 20-28, 29-37, 38-44, 45は、遺伝子多型と疾患の指標の負の関連性を用いる点、請求の範囲12-15, 46, 47, 50, 51は、図1-9のいずれかに記載する遺伝子多型セットを用いる点、請求の範囲16-19, 48, 49, 52, 53は、図56-58のいずれかに記載する遺伝子多型セットを用いる点、において、それぞれ「特別な技術的特徴」を含む技術的な関係があると認める。しかしながら、3つの請求項群の間には、「特別な技術的特徴」を含む技術的な関係があると認めることができない。

1.  出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2.  追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.  出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.  出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

## 追加調査手数料の異議の申立てに関する注意

追加調査手数料の納付と共に出願人から異議申立てがあつた。  
 追加調査手数料の納付と共に出願人から異議申立てがなかつた。