МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка характеристик надежности программ по структурным схемам надежности

Студент гр. 6304	Цыганов М.А.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург

Формулировка задания

Выполнить расчет характеристик надежности вычислительной системы по структурной схеме надежности. В качестве оцениваемых характеристик рассматриваются:

- а) Вероятность безотказной работы системы в заданный момент времени;
- b) Среднее время до отказа системы

Ход работы

Вариант 17

Вариант	N1			N2		N3			
	комбинат. соединения	λ_1	λ_2	λ_3	λ_4	комб. соедин.	λ	комб. соедин.	λ
17	C(3)	4.0	3.8	2.28	-	(2,2)	2.8	(1,3)	1.8

1. Граф надежности (рис. 1). Добавлен переход из N2 в N3 – вершина 8, и конечная вершина 13.

Рисунок 1. Граф надежности.

2. Ручной расчет.

$$\begin{split} P_{N1} &= e^{-(\lambda_1 + \lambda_2 + \lambda_3)t} \\ P_{4,5} &= P_{6,7} = e^{-2\lambda_4 t}, \text{ t.k. } \lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 \\ P_{N2} &= 1 - (1 - P_{4,5})(1 - P_{6,7}) = 1 - (1 - e^{-2\lambda_4 t})^2 \\ P_9 &= e^{-\lambda_9 t} \\ P_{10,11,12} &= e^{-3\lambda_9 t}, \text{ t.k. } \lambda_9 = \lambda_{10} = \lambda_{11} = \lambda_{12} \\ P_{N3} &= 1 - (1 - P_9)(1 - P_{10,11,12}) = 1 - (1 - e^{-\lambda_9 t})(1 - e^{-3\lambda_9 t}) \\ R &= P_s = P_{N1} * P_{N2} * P_{N3} \end{split}$$

$$\begin{split} &=e^{-(\lambda_1+\lambda_2+\lambda_3)t}*(1-(1-e^{-2\lambda_4t})^2)*(1-(1-e^{-\lambda_9t})(1-e^{-3\lambda_9t}))\\ &R=e^{-(4.0*0.00001+3.8*0.00001+2.28*0.00001)*2}(1-(1-e^{-2*2.8*0.00001*2})^2)\\ &(1-(1-e^{-1.8*0.00001*2})(1-e^{-3*1.8*0.00001*2}))=\textbf{0.9997984038929}\\ &MTTF=\int\limits_0^\infty P_S(t)dt\\ &P_S(t)=P_{N1}*P_{N2}*P_{N3}\\ &=e^{-(\lambda_1+\lambda_2+\lambda_3+4\lambda_4+4\lambda_9)t}-2e^{-(\lambda_1+\lambda_2+\lambda_3+2\lambda_4+4\lambda_9)t}\\ &-e^{-(\lambda_1+\lambda_2+\lambda_3+4\lambda_4+3\lambda_9)t}+2e^{-(\lambda_1+\lambda_2+\lambda_3+2\lambda_4+3\lambda_9)t}\\ &-e^{-(\lambda_1+\lambda_2+\lambda_3+4\lambda_4+3\lambda_9)t}+2e^{-(\lambda_1+\lambda_2+\lambda_3+2\lambda_4+\lambda_9)t}\\ &\int_0^\infty e^{-\lambda t}dt=\frac{1}{\lambda}\\ &MTTF=\int\limits_0^\infty P_S(t)dt=\frac{1}{\lambda_1+\lambda_2+\lambda_3+4\lambda_4+3\lambda_9}+\frac{2}{\lambda_1+\lambda_2+\lambda_3+2\lambda_4+3\lambda_9}\\ &-\frac{1}{\lambda_1+\lambda_2+\lambda_3+4\lambda_4+\lambda_9}+\frac{2}{\lambda_1+\lambda_2+\lambda_3+2\lambda_4+\lambda_9}\\ &MTTF=100000(\frac{1}{2848}-\frac{2}{22.88}-\frac{1}{26.68}+\frac{2}{21.08}-\frac{1}{23.08}+\frac{2}{21.748}) \end{split}$$

= 7618.41

3. Программный расчет.

Рисунок 2. Схема RSSA

007004000000110	7010 00500000150
99/984038929112	7612.695039869159
	997904030929112

Рисунок 3. Результат расчета RSSA надежности R и среднего времени безотказной работы T.

Вывод:

В данной лабораторной работе был выполнен ручной и программный расчет характеристик надежности вычислительной системы по структурной схеме надежности. Результаты ручного и программного расчётов совпадают.