Część III: Rachunek całkowy

Definicja 1.

Niech f będzie funkcją określoną na przedziale [a,b]. **Funkcją pierwotną** funkcji f nazywamy funkcję F określoną na [a,b], która spełnia warunek $\forall x \in [a,b]: F'(x) = f(x).^1$

Twierdzenie 2.

Jeśli f jest funkcją ciągłą w przedziale [a, b], to ma funkcję pierwotną w [a, b].

Uwaga 3.

Jeśli funkcja F jest funkcją pierwotną funkcji f oraz C jest dowolną liczbą rzeczywistą, to również funkcja G określona wzorem G(x) := F(x) + C jest pierwotną funkcji f.

Przykład 4. Funkcją pierwotną do funkcji f(x) = 2x jest np. $g(x) = x^2$ (bo pochodna z x^2 to 2x). Ale dobrym przykładem będzie też $h(x) = x^2 + 4$, czy $k(x) = x^2 - 2022$.

Definicja 5.

Niech f będzie funkcją określoną na przedziale [a, b]. Całką nieoznaczoną funkcji f nazywamy zbiór wszystkich jej funkcji pierwotnych³. Zapisujemy to następująco⁴

$$\int f(x) \, dx = F(x) + C,$$

gdzie F jest pewną pierwotną funkcji f, zaś C dowolną liczbą rzeczywistą.

Twierdzenie 6 (liniowość całki).

Jeśli funkcje f i g są całkowalne na przedziale [a,b] oraz $k \in \mathbb{R} \setminus \{0\}$, to

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$
 (addytywność)
$$\int k \cdot f(x) dx = k \int f(x) dx$$
 (jednorodność)

Większość podstawowych wzorów na całki otrzymujemy dzięki znajomości pochodnych konkretnych funkcji. W ogólności znajdywanie całek, nawet pozornie prostych, jest znacznie trudniejszym zadaniem niż szukanie pochodnych.

Twierdzenie 7 (wzory na całki z funkcji elementarnych).

1.
$$\int 0 \, dx = C$$

2. $\int 1 \, dx = x + C$
3. $\int x^{\alpha} \, dx = \frac{x^{\alpha+1}}{\alpha+1} + C \, da \, \alpha \neq -1$
4. $\int \frac{1}{x} \, dx = \ln|x| + C$
5. $\int a^x \, dx = \frac{a^x}{\ln a} + C$
6. $\int e^x \, dx = e^x + C$
7. $\int \sin x \, dx = -\cos x + C$
8. $\int \cos x \, dx = \sin x + C$
9. $\int \frac{1}{\cos^2 x} \, dx = \operatorname{tg} x + C$
10. $\int \frac{1}{\sin^2 x} \, dx = -\operatorname{ctg} x + C$
11. $\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \operatorname{arc} \operatorname{tg} \frac{x}{a} + C$
12. $\int \frac{1}{x^2 + 1} \, dx = \operatorname{arc} \operatorname{tg} x + C$
13. $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \operatorname{arc} \sin \frac{x}{a} + C$

 $^{^{1}}$ Zauważmy, że użycie pochodnej wymusza, by funkcja F była różniczkowalna (czyli też ciągła). Nie oznacza to oczywiście, że f musi być ciągła, bo istnieją funkcje różniczkowalne, których pochodne nie są ciągłe.

 $^{^2}$ Zwróćmy uwagę, że twierdzenie jest w formie implikacji. To oznacza, że nic nie mówi ono o funkcjach nieciągłych. Można wskazać przykład funkcji nieciągłej, która ma funkcję pierwotną.

 $^{^3}$ Jeszcze bardziej formalnie całkę nieoznaczoną definiuje się jako klasę abstrakcji pewnej relacji równoważności. Dla zainteresowanych: Na zbiorze wszystkich funkcji pierwotnych dla funkcji ciągłych definiujemy relację $F\sim G \Leftrightarrow F-G$ jest stała.

⁴Symbol całki pochodzi od wydłużonej litery s i zawdzięczamy go Leibnizowi, który zaadaptował go od łacińskiego słowa *summa*. Symbol ten został przez niego użyty po raz pierwszy 29 października 1675 roku w manuskrypcie *Analyseos tetragonisticae pars secunda*.

Twierdzenie 8 (całkowanie przez części).

Jeśli funkcje f i g mają ciągłe pochodne w przedziale [a, b], to

$$\int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x)g(x) \, dx.$$

Przykład 9. Obliczymy całkę $\int x \sin x \, dx$. W celu uproszczenia zapisu wprowadźmy podstawienie⁵

$$\begin{bmatrix} u = x & v' = \sin x \\ u' = 1 & v = -\cos x \end{bmatrix}.$$

Mamy zatem $\int x \sin x \, dx = -x \cos x - \int 1 \cdot (-\cos x) \, dx = -x \cos x + \sin x + C$.

Twierdzenie 10 (całkowanie przez podstawienie).

Jeśli funkcja g ma ciągłą pochodną oraz funkcja f jest ciągła na przedziale [c,d]=g([a,b]), to

$$\int f(g(x)) \cdot g'(x) dx = \int f(t) dt = F(g(x)) + C,$$

gdzie t = g(x).

Przykład 11. Obliczymy całkę $\int \cos 3x \, dx$. Tak jak wcześniej, stosowanie wprost bardzo formalnego zapisu i oznaczeń z twierdzenia byłoby bardzo kłopotliwe. Dlatego również tutaj posłużymy się skróconym rozumowaniem.

Podstawiany nową zmienną t=3x. Wtedy różniczkując obie strony⁶ mamy dt=3dx, skąd zaś $dx=\frac{dt}{3}$. Podstawiając otrzymane wyniki do całki otrzymujemy

$$\int \cos 3x \, dx = \int \cos t \, \frac{dt}{3} = \int \frac{1}{3} \cos t \, dt = \frac{1}{3} \int \cos t \, dt = \frac{1}{3} \sin t + C = \frac{1}{3} \sin 3x + C$$

Definicja 12.

Niech $a, b \in \mathbb{R}, a < b$. Wprowadzamy następujące definicje:

- Podziałem przedziału [a,b] nazywamy układ punktów (t_0,t_1,\ldots,t_k) , gdzie $k\geqslant 1$, taki że $a=t_0< t_1<\ldots< t_k=b$. Układ ten oznaczamy literą P.
- Średnicą podziału $P = (t_0, t_1, \dots, t_k)$ przedziału [a, b] nazywamy liczbę $\delta(P) := \max\{t_j t_{j-1} : j \in \{1, 2, \dots, k\}\}.$
- $j \in \{1, 2, \dots, k\}\}$. • Ciąg podziałów $(P_n)_{n=1}^{\infty}$ nazywamy normalnym, gdy $\lim_{n \to +\infty} \delta(P_n) = 0$.
- Układem punktów pośrednich dla danego podziału (t_0, t_1, \dots, t_k) nazywamy $\xi = (\xi_1, \dots, \xi_k)$, taki że $\xi_j \in [t_{j-1}, t_j]$ dla $j \in \{1, \dots, k\}$.

Definicja 13.

Niech dana będzie funkcja f określona na przedziale [a,b]. Ustalmy podział $P=(t_0,t_1,\ldots,t_k)$ oraz układ punktów pośrednich $\xi=(\xi_1,\ldots,\xi_k)$ dla podziału P. Wtedy **sumą (całkową) Riemanna** funkcji f na przedziale [a,b] dla podziału P i układu punktów pośrednich ξ nazywamy liczbę

$$S(f, P, \xi) := \sum_{j=1}^{k} f(\xi_j) \cdot (t_j - t_{j-1}).$$

 $^{^5}$ Zauważmy, że u odpowiada f(x), zaś v' odpowiada g'(x). Zatem pierwszy wiersz odpowiada wyrażeniom pod całką. W drugim wierszu odpowiednio obliczamy pochodną oraz całkę z funkcji z wiersza pierwszego. A zatem u' odpowiada f'(x), a v odpowiada g(x). Dzięki temu drugi wiersz to wyrażenia pod całką po prawej stronie wzoru, a przekątna to wyrażenie przed całką. Ten zapis pozwala mnemotechnicznie zapamiętać liczenie całek tą metodę, bez konieczności zapamiętywania skomplikowanego wzoru.

⁶I dopisując tak zwaną różniczkę funkcji.

Definicja 14.

Funkcję f nazywamy **całkowalną w sensie Riemanna** na przedziale [a,b] jeśli istnieje liczba $I \in \mathbb{R}$, taka że dla dowolnego normalnego ciągu podziałów $(P_n)_{n=1}^{\infty}$ oraz związanego z nim ciągu układów punktów pośrednich $(\xi_n)_{n=1}^{\infty}$ zachodzi

$$\lim_{n \to \infty} S(f, P_n, \xi_n) = I.$$

Liczbę Inazywamy całką Riemanna funkcji fna [a,b]i oznaczamy $\int\limits_a^b f(x)\,dx.$

Wniosek 15 (Interpretacja geometryczna całki Riemanna).

Jeśli funkcja f jest ciągła w przedziale [a,b] oraz w tym przedziale przyjmuje wartości nieujemne, to pole P obszaru ograniczonego osią Ox, wykresem funkcji f oraz prostymi x=a oraz x=b wyraża się wzorem $P=\int\limits_a^b f(x)\,dx$.

Uwaga 16.

Przyjmujemy

$$\int_{a}^{a} f(x) dx = 0 \qquad \text{oraz} \qquad \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$$

Twierdzenie 17 (wzór Newtona-Leibniza/Podstawowe twierdzenie rachunku całkowego). Jeśli f jest funkcją ciągłą na przedziale [a,b] oraz F jest dowolną funkcją pierwotną f, to zachodzi wzór

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Twierdzenie 18 (liniowość całki Riemanna).

Jeśli funkcje f i g są całkowalne w sensie Riemanna na przedziale [a,b] oraz $k \in \mathbb{R}$, to

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (addytywność)
$$\int_{a}^{b} k \cdot f(x) dx = k \int_{a}^{b} f(x) dx$$
 (jednorodność)

Twierdzenie 19 (całkowanie przez części).

Jeśli funkcje f i g mają ciągłe pochodne w przedziale [a, b], to

$$\int_a^b f(x) \cdot g'(x) \, dx = \left[f(x) \cdot g(x) \right] \Big|_a^b - \int_a^b f'(x) g(x) \, dx.$$

Twierdzenie 20 (całkowanie przez podstawienie).

Jeśli funkcja $g:[\alpha,\beta]\to[a,b]$ ma ciągłą pochodną oraz funkcja f jest ciągła na przedziale [a,b] oraz $g(\alpha)=a,\ g(\beta)=b,$ to

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f((g(t)) \cdot g'(t) dt.$$

Przykład 21.

Chcemy wyliczyć $\int_{0}^{\frac{\pi}{6}} \cos 3x \, dx$. Rozwiążemy to zadanie na dwa sposoby⁷.

Sposób I

Korzystając z przykładu (11) wiemy, że pierwotną funkcji $\cos 3x$ jest $\frac{1}{3}\sin 3x$. Używając wzoru Newtona-Leibniza otrzymujemy

$$\int_{0}^{\frac{\pi}{6}} \cos 3x \, dx = \left[\frac{1}{3} \sin 3x \right] \Big|_{0}^{\frac{\pi}{6}} = \frac{1}{3} \sin \left(3 \cdot \frac{\pi}{6} \right) - \frac{1}{3} \sin 0 = \frac{1}{3} \cdot 1 = \frac{1}{3}.$$

Sposób II

Podstawiamy t=3x. Ponieważ zmienna x przebiega zbiór $[0,\frac{\pi}{6}]$, to zmienna t będzie od 0 do $3\cdot\frac{\pi}{6}=\frac{\pi}{2}$.

Ponadto dt = 3dx, a więc $dx = \frac{dt}{3}$. Z twierdzenia o całkowaniu przez podstawienie mamy zatem

$$\int_{0}^{\frac{\pi}{6}} \cos 3x \, dx = \frac{1}{3} \int_{0}^{\frac{\pi}{2}} \cos t \, dt = \frac{1}{3} \sin t \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{3} (\sin \frac{\pi}{2} - \sin 0) = \frac{1}{3} \cdot 1 = \frac{1}{3}.$$

Zauważmy, że funkcja $f(x)=\cos 3x$ w przedziale $[0,\frac{\pi}{6}]$ jest nieujemna. Zatem otrzymana całka to pole powierzchni pomiędzy wykresem funkcji f, a osią Ox w danym przedziale.

Twierdzenie 22 (addytywność względem przedziałów całkowania).

Jeśli funkcja f jest całkowana w sensie Riemanna na przedziale [a,b] oraz $c\in(a,b),$ to

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

 $^{^{7}}$ Różniące się de facto tylko sposobem zapisu. Cała treść merytoryczna jest taka sama. W pierwszym sposobie korzystamy z twierdzenia o całkowaniu przez podstawienie dla całek nieoznaczonych, a w drugim bezpośrednio z twierdzenia o całkowaniu przez podstawienie dla całek Riemanna.