Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier

W. Xie D. Bindel A. Demers J. Gehrke

12 Aug 2015

1 / 1

PageRank Model

- Random surfer model: $x^{(t+1)} = \alpha P x^{(t)} + (1 \alpha)v$ where $P = AD^{-1}$
- Stationary distribution: Mx = b where $M = (I \alpha P), b = (1 \alpha)v$

2 / 1

Edge Weight vs Node Weight Personalization

Introduce personalization parameters $w \in \mathbb{R}^d$ in two ways:

Node weights: $M \times (w) = b(w)$ Edge weights: $M(w) \times (w) = b$

Edge Weight vs Node Weight Personalization

Node weight personalization is well-studied

- Topic-sensitive PageRank: fast methods based on linearity
- Localized PageRank: fast methods based on sparsity

Some work on edge weight personalization

- ObjectRank/ScaleRank: personalize weights for different edge types
- But lots of work incorporates edge weights without personalization

Our goal: General, fast methods for edge weight personalization

Model Reduction

Model reduction procedure from physical simulation world:

- Offline: Construct reduced basis $U \in \mathbb{R}^{n \times k}$
- Offline: Choose $\geq k$ equations to pick approximation $\hat{x} = Uy$
- Online: Solve for y(w) given w and reconstruct \hat{x}

Reduced Basis Construction: SVD (aka POD/PCA/KL)

Approximation Ansatz

Want $r = MUy - b \approx 0$. Consider two approximation conditions:

Method	Ansatz	Properties
Bubnov-Galerkin	$U^T r = 0$	Good accuracy empirically Fast for $P(w)$ linear
DEIM	$\min \ \textit{r}_{\mathcal{I}} \ $	Fast even for nonlinear $P(w)$ Complex cost/accuracy tradeoff

Similar error analysis framework for both (see paper):

$${\sf Consistency} + {\sf Stability} = {\sf Accuracy}$$

- Consistency: Does the subspace contain good approximants?
- Stability: Is the approximation subproblem far from singular?

Bubnov-Galerkin Method

• Linear case: w_i = probability of transition with edge type i

$$M(w) = I - \alpha \left(\sum_{i} w_{i} P^{(i)} \right), \quad \tilde{M}(w) = I - \alpha \left(\sum_{i} w_{i} \tilde{P}^{(i)} \right)$$

where we can precompute $\tilde{P}^{(i)} = U^T P^{(i)} U$

ullet Nonlinear: Cost to form $ilde{M}(w)$ comparable to cost of PageRank!

Discrete Empirical Interpolation Method (DEIM)

- Ansatz: Minimize $||r_{\mathcal{I}}||$ for chosen indices \mathcal{I}
- ullet Only need a few rows of M (and associated rows of U)
- Difference from physics applications: high-degree nodes!

Interpolation Costs

Consider subgraph relevant to one interpolation equation:

- ullet Really care about weights of edges incident on ${\cal I}$
 - Need more edges to normalize (unless A(w) is linear)
- High in/out degree are expensive but informative
- **Key question**: how to choose \mathcal{I} to balance **cost** vs **accuracy**?

Interpolation Accuracy

- Key: keep $M_{\mathcal{I},:}$ far from singular.
- If $|\mathcal{I}| = k$, this is a *subset selection* over rows of MU.
- Have standard techniques (e.g. pivoted QR)
- ullet Want to pick ${\mathcal I}$ once, so look at rows of

$$Z = \begin{bmatrix} M(w_1)U & M(w_2)U & \ldots \end{bmatrix}$$

for sample parameters $w^{(i)}$.

- Helps to explicitly enforce $\sum_i \hat{x}_i = 1$
- Several heuristics for cost/accuracy tradeoff (see paper)

Online Costs

If $\ell = \#$ PR components needed, online costs are:

Form
$$\tilde{M}$$
 $O(dk^2)$ for B-G More complex for DEIM Factor \tilde{M} $O(k^3)$ Solve for y $O(k^2)$ Form Uv $O(k\ell)$

Online costs **do not** depend on graph size! (unless you want the whole PR vector)

Example Networks

DBLP (citation network)

- 3.5M nodes / 18.5M edges
- Seven edge types seven parameters
- P(w) linear
- Competition: ScaleRank

Weibo (micro-blogging)

- 1.9M nodes / 50.7M edges
- Weight edges by topical similarity of posts
- Number of parameters = number of topics (5, 10, 20)

(Studied global and local PageRank – see paper for latter.)

Singular Value Decay

$$r = 1000 \text{ samples}, k = 100$$

14 / 1

DBLP Accuracy

15 / 1

DBLP Running Times (All Nodes)

Weibo Accuracy

Weibo Running Times (All Nodes)

Application: Learning to Rank

Goal: Given $T = \{(i_q, j_q)\}_{q=1}^{|T|}$, find w that mostly ranks i_q over j_1 . (c.f. Backstrom and Leskovec, WSDM 2011)

- Standard: Gradient descent on full problem
 - One PR computation for objective
 - One PR computation for each gradient component
 - Costs d + 1 PR computations per step
- With model reduction
 - Rephrase objective in reduced coordinate space
 - Use factorization to solve PR for objective
 - Re-use same factorization for gradient

DBLP Learning Task

(8 papers for training + 7 params)

The Punchline

Test case: DBLP, 3.5M nodes, 18.5M edges, 7 params

Cost per Iteration:

Method	Standard	Bubnov-Galerkin	DEIM-200
Time(sec)	159.3	0.002	0.033

Roads Not Taken

In the paper (but not the talk)

- Selecting interpolation equations for DEIM
- Localized PageRank experiments (Weibo and DBLP)
- Comparison to BCA for localized PageRank
- Quasi-optimality framework for error analysis

Room for future work! Analysis, applications, systems, ...

Questions?

Edge-Weighted Personalized PageRank: Breaking a Decade-Old Performance Barrier Wenlei Xie, David Bindel, Johannes Gehrke, and Al Demers

KDD 2015, paper 117

Sponsors:

- NSF (IIS-0911036 and IIS-1012593)
- iAd Project from the National Research Council of Norway