Department of Computer Science and Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW

Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

METHODS FOR HANDLING DEADLOCKS (Part-1)

Methods for Handling Deadlocks

- Deadlock Prevention: Ensure that the system will never enter a deadlock state.
- Deadlock Avoidance: Deadlock avoided at each request.
- Deadlock Detection: Let it happen, detect it and then deal with it.
- *Ignore the problem:* pretend that deadlocks never occur in the system; used by most operating systems, including UNIX (Ostrich Algorithm).

DEADLOCK PREVENTION

Deadlock Prevention

- Restrain the ways requests can be made and negate one condition for deadlock:
 - ➤ Mutual Exclusion not required for sharable resources; must hold for non-sharable resources.
 - Hold and Wait must guarantee that whenever a process requests a resource, it does not hold any other resources.
 - ➤ No Preemption If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released.
 - ➤ Circular Wait impose a total ordering of all resource types, and require that each process requests resources in an increasing order of enumeration.

DEADLOCK AVOIDANCE

Deadlock Avoidance_{1/2}

- Requires that the system has some additional a priori information available.
- Simplest and most useful model requires that each process declare the maximum number of *resources* of each type that it may need.
- The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circularwait condition.

Deadlock Avoidance_{2/2}

- Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes.
- A deadlock-avoidance algorithm dynamically examines the resourceallocation state to ensure that a circular-wait condition can never exist.
- The resource allocation state is defined by the number of available and allocated resources and the maximum demands of the *processes*.

References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2nd Edition, TMH.

