PARCIAL ANÁLISIS NUMÉRICO

JOHANNA LIZETH BOLÍVAR CALDERÓN

27/08/2021

Punto 3 a

Teorema del punto fijo:

Sea g : [a, b] \rightarrow R una función derivable que cumpla con:

- $g([a, b]) \subseteq (a, b)$,
- max x ∈[a,b]

Entonces existe un único $s \in [a, b]$ tal que g(s) = s

Para todo $x_0 \in [a, b]$, la sucesión $\{x_n\}$ generada por la iteración $x_{n+1} = g(x_n)$ con verge a s

Código

```
#Parcial Johanna Bolívar Punto 3
import math

def PuntoFijo(f, p, TOL):
    error = 1
    iteraciones = 0
    while error > TOL:
        p_new = f(p)
        error = abs(p_new - p)
        p = p_new
        iteraciones += 1
        print(f'p{iteraciones} = {p: 0.5f}')
    print(f'Raiz: {p}\nIteraciones: {iteraciones}')

if __name__ == '__main__':
    f = lambda x: (2+math.sin(x)-x)
    PuntoFijo(f, 0, 1e-5)
```

Resultados

Diagrama de flujo

Conclusión: El método de punto fijo converge con precisión y rapidez, no es necesario usar un intervalo para que funcione sino únicamente un punto perteneciente al intervalo donde esté la raíz. Algo negativo de usar el método es que no garantiza una convergencia.