

Bachelorthesis-Aufgabe

für Ritz Luca

Seglias Lukas André

Fachbereich Informatik

Betreuung durch Marcus Hudritsch

Billiard-Al

Dieses Dokument beschreibt die Projektziele der Bachelor Thesis «Billiard-Al». Ziel ist es, einen intelligenten Billard-Tisch umzusetzen, welcher den Spieler unterstützt.

Die Bachelor Thesis basiert auf den Vorarbeiten einer Projekt-2-Arbeit mit folgendem Funktionsumfang:

- Erkennung der Position von Snooker-Kugeln auf dem Billard-Tisch mittels einer Kamera auf Knopfdruck.
- Projektion/Darstellung der Position der Kugeln auf dem Billard-Tisch mittels eines Projektors.

Dazu sind folgende Funktionen notwendig:

- Aufgrund eines Spielstandes (Position aller Kugeln auf dem Tisch) eine Suche nach möglichen/guten Stössen durchführen.
- Stösse sind aufgrund zu erarbeitender Kriterien zu bewerten und die Bewertung fliesst in die Suche ein.
- Die Suche soll physikalische Gesetzmässigkeiten wie Rollreibung, Reflektion an der Bande (exkl. Spin) berücksichtigen.
- Ein Stoss kann simuliert werden, wodurch der daraus folgende Spielstand ersichtlich wird.
- Ein Stoss kann auf dem Tisch animiert dargestellt werden.
- Die Klassifizierung der erkannten Kugeln aufgrund ihrer Farbe soll implementiert und deren Genauigkeit evaluiert werden.
- Die Ungenauigkeit der Detektion der Kugel-Positionen soll verbessert werden, resp. die festgestellte Messungenauigkeit erneut geprüft werden.
- Parallelisierung der Suche.

Weitere optionale Ideen:

- Die Gewichtung verschiedener Komponenten der Bewertungsfunktion können spielerabhängig eingestellt werden.
- Eine Suche kann möglicherweise auch über mehrere aufeinanderfolgenden Stösse durchgeführt werden, wobei der Endzustand nach simulierter Durchführung des ersten Stosses der Anfangszustand für den nächsten Stosses ist.
- Live-Detektion der Kugeln und Darstellung deren erkannter Positionen.
- 2D-Live-Detektion des Queue und dessen Spitze.
- Rekonstruktion der 3D-Position des Queue aufgrund von Tiefeninformationen einer

kalibrierten Tiefenkamera.

- Darstellung einer Linie, ausgehend von der Queue-Spitze in Richtung der 2D-Ausrichtung des Queue auf dem Tisch, reflektierend an den Banden mittels des Projektors auf dem Tisch
- Simulation und Animation des Stosses anhand der 2D-Ausrichtung des Queues und Darstellung mittels des Projektors auf dem Tisch.

Beginn der Arbeit 20. September 2021

Abschluss der Arbeit 20. Januar 2022

Der Betreuer:

Der Fachbereichsleiter: