ROBOTICA

a.a. 2021-2022

Industrial Robotics Exercise

valid for exams taken from 06/08/2022 to 09/25/2022

Pietro Muraca

 $8 \; \mathsf{June} \; 2022$

Figure 1:

The following D-H table models the supporting structure of the anthromorphic robot in figure 1:

link	a (m)	α	d (m)	θ
1	0	$\frac{\pi}{2}$	0	θ_1
2	0.9	0	0	θ_2
3	0.9	0	0	θ_3

The reference systems (0) and (b) are linked by the following rototranslation matrix:

$$\hat{R}_0^b = \begin{pmatrix} 1 & 0 & 0 & 0.5 \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Referring to the SR_b , the following 3 points are assigned:

$$P_{1} = \begin{pmatrix} 0.8 \\ 0.8 \\ 0.5 \end{pmatrix}; P_{2} = \begin{pmatrix} 1.2 \\ 0.8 \\ 0.5 \end{pmatrix}; P_{3} = \begin{pmatrix} 1.0 \\ 1.2 \\ 0.5 \end{pmatrix};$$

Determine the time trends of the joint variables (position and velocity) so that the origin of the SR_3 :

- 1. describe a triangle according to the sequence $P_1 > P_2 > P_3 > P_1$
- 2. describes a circle passing through the points $P_1 > P_2 > P_3 > P_1$

in both cases the total travel time of the curve must be 40sec.

P.S. - distances are expressed in metres; angles in radians.