Введение в Data Science Занятие 0. Знакомство

Николай Анохин Михаил Фирулик

4 марта 2014 г.

TEXHOCФEPA@mail.ru

Ваши преподаватели

- ► Михаил Фирулик (m.firulik@corp.mail.ru / +7 916 730-97-66)
 - ▶ руководитель отдела анализа данных в Mail.Ru Group
 - многолетний опыт интеллектуального анализа данных
- ► Николай Анохин (n.anokhin@corp.mail.ru / +7 903 111-44-60)
 - ▶ программист-исследователь в Mail.Ru Group
 - ▶ более трех лет работы в области Data Mining

Права и обязанности

можно

- задавать вопросы преподавателю
- ▶ выносить идеи на общее обсуждение
- входить и выходить, не мешая коллегам

не можно

- нарушать порядок на занятии
- разговаривать по телефону в аудитории

общение

- с преподавателем на "Вы"
- с коллегами как удобно

Ваши правила?

План занятия

Одна (типичная) задача

Рекламная компания магазина зимней одежды: определить аудиторию

- A1 (data) acquisition
- A2 (data) analysis
- A3 (data) archiving
- A4 (data) architecture

Что делать?

- Разобраться в предметной области
- Общаться с пользователями данных
- ► Понимать "Big Picture"
- ▶ Изучить представление данных
- Произвести подготовку и анализ данных
- Визуализировать результат
- Учитывать этические соображения

Мы бы хотели, чтобы вы

- 1. получили практический опыт решения задач Data Mining
- 2. познакомились с инструментарием
- 3. поиграли и получили удовольствие

Что необходимо повторить

- 1. Линейная алгебра
- 2. Теория вероятностей
- 3. Алгоритмы и структуры данных

Модули курса

- 1. Задачи классификации (6 занятий)
- 2. Задачи кластеризации (3 занятия)
- 3. Мета-алгоритмы (4 занятия)

Модуль 1. Задачи классификации

Задача Разработать алгоритм, позволяющий определить класс произвольного объекта из некоторго множества

- Каждый объект заданного множества принадлежит классу из некоторого набора
- Дана обучающая выборка, в которой для каждого объекта известен класс

Примеры

- Определение спама
- Кредитный скоринг
- Распознавание лиц

Модуль 1. Содержание

- 1. Задача классификации и регрессии. Метрики ошибок
- 2. Линейная и логистическая регрессия
- 3. Решающие деревья
- 4. Байесовские алгоритмы
- 5. Метод опорных векторов

Задача модуля. Предсказание пола и возраста пользователей популярных социальных сервисов.

Модуль 2. Задачи кластеризации

Задача Разбить выборку объектов на подмножества (кластеры)

- ▶ Объекты внутри одного кластера должны быть похожи
- ▶ Объекты из разных кластеров должны существенно отличаться

Примеры

- Определение сообществ
- Сегментация изображений
- ▶ Исследование рынка

Модуль 2. Содержание

- 1. Задача кластеризации. Метрики качества
- 2. ЕМ-алгоритм
- 3. Различные алгоритмы кластеризации

Задача модуля. Разбиение на категории товаров, предлагаемых крупными интернет-магазинами.

Модуль 3. Мета-алгоритмы

- ▶ Какие факторы выбрать для решения задачи?
- Что, если алгоритмы не дают необходимого качества?
- ▶ Что, если данные не помещаются в памяти?

Модуль 3. Содержание

- 1. Метод ансамблей
- 2. Предобработка данных и выбор факторов
- 3. Вычислительная модель MapReduce

Задача модуля. Классификация пользоватей интернета с использованием реальных данных сервисов Mail.Ru.

CRISP-DM

SPSS, Teradata, Daimler AG, NCR Corporation, OHRA

Business understanding

На рыболовном предприятии автоматизируем сортировку улова

Data understanding 1

Какие факторы будем использовать?

Data understanding 2

- X множество объектов. Фактор $f_i:X o F_i$
 - ▶ Бинарные/Binary: $F_i = \{true, false\}$ (есть ли пятна, двойной ли плавник)
 - ▶ Номинальные/Categorical: F_i конечно (цвет, форма чешуи)
 - ▶ Порядковый/Ordinal: F_i конечно, определен порядок (категория возраста, количество плавников)
 - ightharpoonup Количественный/Numerical: $F_i = R$ (длина, вес)

Data preparation

Эта часть проекта занимает больше всего времени

- Удаление шума
- Заполнение отсутствующих значений
- Трансформация факторов
- Выбор факторов
- Использование априорных знаний

Результат. Обучающая выборка, в формате, подходящем для моделирования

Modeling 1

Модель – описание класса, выраженное, как правило, в математической форме. Цель – выбрать удачную модель и ее параметры так, чтобы она наилучшим образом описывала заданный класс.

- ▶ Статистические модели
- ▶ Модели машинного обучения

Modeling 2

Evaluation & Deployment

- Решает ли выбранная модель задачу достаточно эффективно?
- ▶ Удовлетворяет ли модель требованиям бизнеса?
- ▶ Что вообще может пойти не так?

1854 г. Эпидемия холеры в Лондоне

Программа TIA

- ▶ Наблюдаем 10⁹ человек
- ▶ Человек в среднем посещает отель раз в 100 дней
- ▶ Есть 10⁵ отелей на 100 человек каждый
- ▶ Проверим посещения за 1000 дней

Вероятность для конкретной пары встретиться в отеле в конкретный день:

$$p_1 = \left(\frac{1}{100}\right)^2 \cdot 10^{-5} = 10^{-9}$$

Всего пар людей

$$n_{pp} = C_2^{10^9} \approx \frac{(10^9)^2}{2} = 5 \cdot 10^{17}$$

а пар дней

$$n_{pd} = C_2^{10^3} \approx \frac{(10^3)^2}{2} = 5 \cdot 10^5$$

Ожидаемое количество "подозрительных" встреч в отелях

$$N = p_1^2 n_{pp} n_{pd} = 250000 >> 10$$

Принцип Бонферрони

Вычислить количество рассматриваемых событий при предположении их полной случайности. Если это количество намного превосходит количество событий, о котором идет речь в задаче, полученные результаты нельзя будет считать достоверными.

Что мы обсудили на сегодняшней лекции?

- ▶ Познакомились со стандартным процессом CRISP-DM
- Вспомнили, какие бывают виды факторов
- ▶ Узнали, для чего в Data Science используется моделирование
- ▶ Разобрались с принципом Бонферрони

Задача 1

Пусть имеется простая обучающая выборка, включающая в себя 4 признака: бинарный f_1 , номинальный f_2 , порядковый f_3 и количественный f_4 .

Ν	f_1	f_2	f ₃	f_4
1	true	Α	01	3.14
2	false	В	02	2.7
3	true	Α	O2	11.0
4	true	C	01	10.0

Предложенная модель работает только на бинарных признаках. Как преобразовать данную обучающую выборку в нужный формат? А если количественный? А номинальный?

Задача 2

Пусть имеется информация о покупках, совершенных 100 миллионами людей. Кажый из них идет за покупками в среднем 100 раз в год и покупает 10 из 1000 представленных товаров. Предположим, что два злоумышленника покупают одинаковые наборы товаров. Если мы ищем пары людей, купившие одинаковые наборы в течение года, сможем ли мы действительно определить террористов?

Спасибо!

Обратная связь