

PCT/JP2004/011157

09.8.2004

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年 8月 6日
Date of Application:

出願番号 特願2003-288283
Application Number:
[ST. 10/C]: [JP2003-288283]

出願人 シーシーエス株式会社
Applicant(s):

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

2004年 9月16日

特許庁長官
Commissioner,
Japan Patent Office

小川洋

出証番号 出証特2004-3083639

【書類名】 特許願
【整理番号】 200301044
【あて先】 特許庁長官 殿
【国際特許分類】 F21S 2/00
【発明者】
【住所又は居所】 京都府京都市上京区烏丸通下立売上ル桜鶴円町374番地 シー
シエス株式会社内
【氏名】 米田 賢治
【発明者】
【住所又は居所】 京都府京都市上京区烏丸通下立売上ル桜鶴円町374番地 シー
シエス株式会社内
【氏名】 杉田 隆
【特許出願人】
【識別番号】 596099446
【氏名又は名称】 シーシーエス株式会社
【代理人】
【識別番号】 100121441
【弁理士】
【氏名又は名称】 西村竜平
【手数料の表示】
【予納台帳番号】 192752
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1

【書類名】特許請求の範囲**【請求項 1】**

複数の光ファイバの光導出端部を一列又は複数列に密に配列し、それらが所定幅を有した直線状となるように構成した光射出部及びその光射出部の前方であって前記列方向に沿って延伸するように配置した柱状レンズを対で有し、直線状に収斂するライン光を射出する複数の発光部と、

光照射対象であるワークに対向して配置され、そのワークを観測するための観測孔が貫通させてあるものであって、前記各発光部から射出されるライン光の光軸面が所定線上で略交わるようにそれら発光部を保持する保持体とを備えているライン光照射装置。

【請求項 2】

前記各発光部から射出されるライン光の光軸面が前記列方向からみて放射状をなすように、それら各発光部を前記保持体に配設している請求項 1 記載のライン光照射装置。

【請求項 3】

前記各柱状レンズが、前記列方向から見て略一直線上に配置されている請求項 1 又は 2 記載のライン光照射装置。

【請求項 4】

前記光射出部が、一对の狭持板をさらに備えたものであり、それら狭持板が前記複数の光導出端部を挟み込んで保持している請求項 1、 2 又は 3 記載のライン光照射装置。

【請求項 5】

前記光ファイバの光導入端部を結束して結束部を形成し、その結束部に光源からの光を導入するように構成している請求項 1、 2、 3 又は 4 記載のライン光照射装置。

【請求項 6】

前記光源を保持体に支持させたものであって、前記光ファイバの全て又は一部の長さを異ならせ、前記光射出部の中心線に対し、前記結束部がいずれか片方に偏るように構成している請求項 5 記載のライン光照射装置。

【請求項 7】

前記光ファイバに光を導入する光源が 200 mA 以上の電流を流すことの可能なパワーレンジである請求項 1、 2、 3、 4、 5 又は 6 記載のライン光照射装置。

【請求項 8】

前記光射出部と柱状レンズとの距離を変え得るように構成している請求項 1、 2、 3、 4、 5、 6 又は 7 記載のライン光照射装置。

【書類名】明細書

【発明の名称】ライン光照射装置

【技術分野】

【0001】

本発明は、ワーク表面の欠陥検出やマーク認識等に用いられる製品検査用等の照明装置に関し、特にライン状の光を照射するライン光照射装置に関するものである。

【背景技術】

【0002】

従来、ワーク表面の検査等を行うための種々の照明装置（光照射装置）が開発されており、例えば特許文献1に示すように、周囲からローランブル光を照射するリング型の照明装置や、ライン光がワークに照射されるように構成したライン型の照明装置等、ワークの様態やその照射目的に応じた種々のものが知られている。

【0003】

特にこのようなライン型の照明装置のうち集光タイプのものは、従来、砲弾型のLEDを直線状に一列に並べ、その前方にシリンドリカルレンズを配置して細い直線状の光がワークに照射されるようにしてある。

【特許文献1】特開平10-21729号公報

【発明の開示】

【発明が解決しようとする課題】

【0004】

ところが、前記LEDはある程度の発光面積を有し、点光源と見なせないため、例えばコンパクト化を図るべく焦点距離の短いレンズを用いると集光しきれず、十分な照明光度を得られないという不具合がある。一方、焦点距離の長いレンズを用いれば、そこそこ集光できるものの、今度はレンズが非常に大きくなり、コンパクト化や低コスト化を困難にする。特にシリンドリカルレンズを複数列配設しようとした場合にレンズの大きさの問題点が顕著になるため、従来は、互いに照射立体角度の異なる複数列のライン光を集光照射できるようにしたものはない。

【0005】

このように従来のこの種のライン型の照明装置では、集光効率（光利用効率）とコンパクト化とがトレードオフの関係になるため、中途半端な構成になりがちで、設計自由度が低く種々の照明ニーズに応えにくい。さらにLEDを並べた場合、それらを密に連続させても、光源としてみれば隣り合うLED間に隙間ができ、結果としてライン方向に照明のムラが生じるといった不具合もある。

【0006】

本発明はかかる不具合に鑑みなされたものであって、コンパクトでありながら集光効率を向上させることができ、しかも照明ムラのほとんど無いライン光照射装置を提供することをその主たる課題としたものである。

【課題を解決するための手段】

【0007】

すなわち本発明に係るライン光照射装置は、複数の光ファイバの光導出端部を一列又は複数列に密に配列し、それらが所定幅を有した直線状となるように構成した光射出部及びその光射出部の前方であって前記列方向に沿って延伸するように配置した柱状レンズを対で有し、直線状に収斂するライン光を射出する複数の発光部と、光照射対象であるワークに対向して配置され、そのワークを観測するための観測孔が貫通させてあるものであって、前記各発光部から射出されるライン光の光軸面が所定線上で略交わるようにそれら発光部を保持する保持体とを備えていることを特徴とするものである。

【0008】

ここで「密」にとは隣り合う光導出端部同士がほぼ隙間無く配置されている状態のことである。

【0009】

互いに異なる立体角度で周囲から光を照射することができるようには、前記各発光部から射出されるライン光の光軸面が前記列方向からみて放射状をなすように、それら各発光部を前記保持体に配設しているものが好ましい。

【0010】

ムラのない照明のためのより好ましい実施態様としては、各発光部からのライン光を隙間無く隣接させ連続した立体角度の光にすることがよい。そしてそのためには、前記各柱状レンズが、前記列方向から見て略一直線上に配置されているものが好適である。

【0011】

多数の光導出部を無理なくまとめて保持するには、前記光射出部が、一対の狭持板をさらに備えたものであり、それら狭持板が前記複数の光導出端部を挟み込んで保持するようにしたものが望ましい。

【0012】

各光ファイバに効率よく、しかも均一に光を導入する構成としては、前記光ファイバの光導入端部を結束して結束部を形成し、その結束部に光源からの光を導入するように構成しているものが好適である。

【0013】

光ファイバは単独では湾曲可能な可撓性を有するものであるが、上述のごとく結束した光ファイバ群では、光ファイバを曲げて結束部を前記列方向に偏位させることは非常に難しい。したがって例えばこの光ファイバ群を中心に対して線対称な形状とすると、複数の発光部を設ける場合に、光源を縦に配置せざるを得なくなり、厚み方向のコンパクト性が失われてしまう。そこで、複数の光源を保持体に列方向に沿って配置しても光ファイバ群を無理なく取り付けられるようにし、厚み方向にコンパクトな形状とするには、前記光射出部の中心線に対し、前記結束部がいずれか片方に偏るように構成しているものが好ましい。

【0014】

具体的な光源の態様としては、前記光ファイバに光を導入する光源が200mA以上の電流を流すことの可能なパワーLEDを挙げることができる。

【0015】

ライン光の照射幅を変更できるようにし、さらに種々の態様の光照射を可能とするには、前記光射出部と柱状レンズとの距離を変え得るように構成しているものが望ましい。

【発明の効果】

【0016】

このように構成した本発明によれば、光射出部から非常に細い線状の光を射出することができるため、焦点距離の短い柱状レンズを用いてこれを光射出部に近接させ発光部をコンパクト化しても、非常に細い線状に収斂するライン光を得ることができる。したがって複数の発光部を設けて種々の光照射態様を可能にしつつも、非常にコンパクトな構成とすることが可能であり、しかも理想的に線状に収斂する非常に集光効率の高いライン光を得ることができる。また光導出端部同士が密に配設されているため、ライン光にムラができることがなく、均一度の高い照明が可能になる。

【発明を実施するための最良の形態】

【0017】

以下に本発明の一実施形態について図面を参照して説明する。

【0018】

本実施形態に係るライン光照射装置1は、図1～図4に示すように、線状に収斂するライン光L1を射出する複数の発光部2と、それら発光部2を保持する保持体であるケーシング3とを備えている。

【0019】

発光部2は、非常に細い（この実施形態では直径0.25mm）多数の光ファイバ4の光導出端部4aを所定方向P（図5、図6に示す）一列又は複数列で密に配列してなる光射出部21及びその光射出部21の前方であって前記列方向Pに沿って延伸するように配

置いた柱状レンズであるロッドレンズ22を対で有したものである。

[0020]

【0020】この光射出部21は、図5～図7に示すように平板状をなす一对の狭持板21a、21bを備えており、これら狭持板21a、21bで光ファイバ4の光導出端部4aを挟み込むことにより、光導出端面が所定幅(0.25mm～1mm程度)を有する直線となるよう略隙間無く数列並ぶように構成している。ロッドレンズ22は、断面が円形状をなす中実の円柱状透明体であり、その中心軸が、前記光射出部21から射出される光の光軸面T上に位置するように配置してある。

[0021]

ケーシング3は、図1～図4に示すように、略直方体状をなす中空のものであり、その底面を光照射対象であるワークWに対向して配置される。そしてこのケーシング3の頂板3 1及び底板3 2には、前記ワークWを観測するための帯状の観測孔3 a、3 bがそれぞれ貫通させてある。

{0022}

[0023]

また、このケーシング3の側板33には、各発光部2に対応するようにそれらと同数の光源6が角柱状をなすブラケット35を介して取り付けてある。各光源6は、単一のパワーLED(図示しない)と、そのパワーLEDの前方に配置したレンズ機構(図示しない)と、これらパワーLED及びレンズ機構を収容する円筒状の筐体61とを備えたものであり、本実施形態では、これら光源6を各側板33に2づつ、奥行き方向に隣接させて外側から取り付けている。そしてそのために、ブラケット35には外側方に開口する光源取着穴35aを設けている。光源6はその発光端部をこの光源取着穴35aに嵌合させ止めねじB1を用いて着脱可能に取り付けてある。ここでパワーLEDとは200mA以上の電流を流すことの可能な高輝度タイプのLEDのことである。

[0024]

一方、前記光ファイバ4は、ケーシング3の内部に収容してあり、図5～図7に示すように、それらの光導入端部4bを発光部2毎に円筒状をなす結束具7で密に結束して結束部41を形成し、その結束部41を前記プラケット35に設けた結束部取着穴35bに内部41を形成し、その結束部41を前記プラケット35に設けた結束部取着穴35bに嵌合させ、止側方から取り付けている。具体的には前記結束具7を結束部取着穴35bに嵌合させ、止めねじB2を用いてこの結束部取着穴35bに着脱可能に取着している。

[0025]

この結束部取着穴 35 b は、一端を前記プラケット 35 の内側方に開口し、他端を前記光源取着穴 35 a の底面に開口するもので、当該光源取着穴 35 a と軸を一致させてある。そしてこれら光源取着穴 35 a 及び結束部取着穴 35 b にそれぞれ光源 6 及び結束部 7 を取り付けることにより、前記光源 6 からの光、すなわち前記パワー LED からの光が、この結束部 41 と略同一径に集光されて、光ファイバ 4 の光導入端面からほぼ漏れなく導入されるようにしている。

[0026]

なお本実施形態では、図5、図6に示すように、前記光ファイバ4の全て又は一部の長さを互いに異ならせ、前記光射出部21の中心線に対し、平面視前記結束部41がいずれか片方に偏るように構成している。光ファイバ4は単独では湾曲可能な可撓性を有するものであるが、上述のごとく結束した光ファイバ群4Aにおいて、結束部41を前記列方向

Pに偏らせるのは非常に難しいためであり、厚み方向のコンパクト性を担保すべく、光源6を奥行き方向（列方向）Pに並べ、各光源6が発光部2の中心線に対して偏位するよう構成している本実施形態では、それに合わせて予め結束部41を偏らせておるが非常に有効なものとなる。この実施形態では同一の光ファイバ群4Aを4つ形成しており、表裏を逆にして取り付けるようにしている。

【0027】

このように構成した本実施形態によれば、光射出部21が、非常に小さい点発光源と見なせる光ファイバ4の先端部を一列又は数列に密に配列してなるものであり、非常に細い線状の光を射出するものであるため、焦点距離の短いロッドレンズ22を前記光射出部21に近接させて集光しても、やはり非常に細い線状に収斂するライン光LLとなる。したがって、各発光部2を非常にコンパクトにして省スペースでの構成を可能としながらも、理想的に線状に収斂する非常に集光効率の高い、言い換えれば明るい照明を得ることができる。

【0028】

また、光導出端部4a同士が密に配設されているため、ライン光LLにムラができることがなく、均一度の高い照明が可能になる。さらにロッドレンズ22という安価なレンズを利用できるのでコストダウンも図れる。

【0029】

なお、本発明は前記実施形態に限られるものではない。

【0030】

例えば、前記観測孔3a、3b上にハーフミラーを傾斜姿勢で設け、観測孔3a、3bからも光がワークWに照射されるようにしてもよい。さらに、この観測孔3a、3bをガラス板等の透明部材で閉塞し、ケーシング内部に埃等が侵入するのを防止するようにしてもよい。

【0031】

また光射出部と柱状レンズとの距離を変え得るようにしたものでも構わない。このようにすればワークに照射されるライン光の照射幅を変更することができるうえ、各発光部から射出されるライン光の光軸面をそれぞれ調整する際の利便性が向上する。柱状レンズもロッドレンズに限らず、例えばかまぼこ型のシリンドリカルレンズでもよいし、フレネルレンズ等でも構わない。

【0032】

さらに、光源と結束部との間に、光を均一化するロッドレンズ等の光均一化部材を介在させてもよい。このようにすれば、各光ファイバへ導入される光の強度がより等しくなるので、ライン光の照度ムラをより低減させることができる。ライン光の照度ムラ低減の他の態様としては、光射出部と柱状レンズとの間にレンチキュラーレンズ等の拡散板を介在させるようにしたものも考えられる。

【0033】

加えて各発光部から射出されるライン光の色を互いに異ならせたり、あるいは変えられるようにしたものでもよい。

【0034】

もちろん、光源は保持体の頂面等、適宜な場所に取り付ければよく、さらに言えば必ずしも保持体に取り付ける必要はない。例えば、光ファイバを長くして、光源を保持体とは別に設置しても構わない。光源の数も前記実施形態に限られず、さらに多くしても構わないし、LEDを用いたものに限られるものではない。

【0035】

その他、各発光部を、前記列方向からみて例えば円弧上に配置してもよい。

【図面の簡単な説明】

【0036】

【図1】本発明の一実施形態におけるライン光照射装置の全体斜視図。

【図2】同実施形態におけるライン光照射装置の概略縦断面図。

【図3】同実施形態におけるライン光照射装置のロッドレンズを取り付けた状態でのケーシングを示す平面図。

【図4】同実施形態におけるケーシングの側面図。

【図5】同実施形態における光ファイバの結束態様を示す斜視図。

【図6】同実施形態における光ファイバの結束態様を示す平面図。

【図7】同実施形態における光ファイバの結束態様を示す正面図。

【符号の説明】

【0037】

- 1 … ライン光照射装置
- 2 … 発光部
- 2 1 … 光射出部
- 2 2 … 柱状レンズ（ロッドレンズ）
- 2 1 a、2 1 b … 狹持板
- 3 … 保持体（ケーシング）
- 3 a、3 b … 観測孔
- 4 … 光ファイバ
- 4 1 … 結束部
- 4 a … 光導出端部
- 6 … 光源
- P … 列方向
- L L … ライン光
- W … ワーク

【書類名】 図面
【図 1】

【図 2】

【図 3】

【図4】

【図5】

【図6】

【図 7】

【書類名】要約書

【要約】

【課題】コンパクトでありながら集光効率を向上させることができ、しかも照明ムラのほとんど無いライン光照射装置を提供する。

【解決手段】複数の光ファイバ4の光導出端部4aを一列に密に配列してなる光射出部21及びその光射出部21の前方であって前記列方向Pに沿って延伸するように配置した柱状レンズを対で有し、線状に収斂するライン光LLを射出する複数の発光部2と、光照射対象であるワークWに対向して配置され、そのワークWを観測するための観測孔3a、3bが貫通させてあるものであって、前記各発光部2から射出されるライン光LLの光軸面が所定線上で交わるようにそれら発光部2を保持する保持体3とを具備させた。

【選択図】図2

認定・付加情報

特許出願の番号	特願2003-288283
受付番号	50301307273
書類名	特許願
担当官	第四担当上席 0093
作成日	平成15年 8月 7日

<認定情報・付加情報>

【提出日】 平成15年 8月 6日

特願 2003-288283

出願人履歴情報

識別番号

[596099446]

1. 変更年月日

2001年 4月11日

[変更理由]

住所変更

住 所

京都府京都市上京区烏丸通下立売上ル桜鶴円町374番地

氏 名

シーシーエス株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.