

Calcul matriciel

Pr. Youssou DIENG

Fumio Hiai Dénes Petz

Introduction to Matrix Analysis and Applications

HINDUSTAN PROPRIES Springer

Email: ydieng@univ-zig.sn

Introduction

Les **opérations matricielles** sont au cœur de beaucoup problèmes de calcul scientifique.

▶D'où, l'Importance de disposer d'algorithmes efficaces pour les matrices

Objectifs généraux

Dans ce cours, ...

- **1. Chap 1 :** Une introduction à la théorie des matrices
- **2. Chap 2 :** Une introduction aux opérations sur les matrices

Calcul matriciel

Chapitre 1 : Une introduction à la théorie des matrices

Objectifs généraux

Nous allons, ...

- Passer en revue quelques concepts de base de la théorie des matrices;
- 2. Passer en revue certaines propriétés fondamentales sur les matrices.

Matrices et vecteurs

• Une matrice peut être défini comme étant un tableau, rectangulaire, de nombres.

Exemple : Une matrice $A = (a_{ij})$ de taille 2×3.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Matrices et vecteurs

• Une matrice peut être défini comme étant un tableau, rectangulaire, de nombres.

Exemple : Une matrice $A = (a_{ij})$ de taille 2×3.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

 Pour i = 1,2 et j = 1,2,3, a_{ij} est l'élément situé à la ligne i et à la colonne j.

Matrices

- Une matrice peut être défini comme étant un tableau, rectangulaire, de nombres.
- On utilise des lettres majuscules pour représenter les matrices, et les lettres minuscules correspondantes pour représenter leurs éléments.

Exemple : Une matrice $A = (a_{ij})$ de taille 2×3.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

 Pour i = 1,2 et j = 1,2,3, a_{ij} est l'élément situé à la ligne i et à la colonne j.

Matrices

L'ensemble de toutes les matrices m × n dont les éléments ont des valeurs réelles est noté R^{m×n}.

 D'une manière générale, l'ensemble des matrices m×n dont les éléments sont pris dans l'ensemble S est noté S^{m×n}.

Transposée de matrice

La transposée d'une matrice A est la matrice TA obtenue en échangeant les lignes et les colonnes de A.

Exemple: Pour une matrice

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right)$$

on a:

$$^{\mathsf{T}}A = \left(\begin{array}{cc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array}\right)$$

Matrice vecteur

Un vecteur est un tableau de nombres à une dimension.

 On utilise des lettres minuscules pour représenter les vecteurs, et le ième élément d'un vecteur x de taille n est notée x_i, pour i = 1,2,...,n. Exemple : Un vecteur x de taille 3

$$x = \left(\begin{array}{c} 2\\3\\5 \end{array}\right)$$

Remarque : La **forme standard** d'un vecteur est équivalente à une **matrice n × 1**.

Matrice vecteur

Vecteur ligne : la transposée d'un vecteur donne un vecteur ligne.

Exemple : Le vecteur x ci-dessous

$$x = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$$

a comme transposé : $^{T}x = (235)$.

Matrice vecteur

Le **vecteur unité** e_i est le vecteur dont le ième élément est égal à 1 et tous les autres éléments sont égaux à 0.

[Le plus souvent, la taille d'un vecteur unité est donnée par le contexte.]

Exemples: Les vecteur de taille 3

1

•
$$e_1 = 0$$

0

•
$$e_2 = 1$$
.

0

•
$$e_3 = 0$$

1

Matrice nulle

 Une matrice nulle, souvent notée 0,est une matrice dont tous les éléments sont égaux à 0.

Exemple: Matrice nulle, M, de taille 3×3

$$\begin{array}{cccc}
 0 & 0 & 0 \\
 M = 0 & 0 & 0 \\
 0 & 0 & 0
 \end{array}$$

C'est une matrice de taille $n \times n$.

- Il y a des matrices carrées particulièrement intéressantes.
- Matrice diagonale : C'est la matrice, notée diag, telle que a_{ij} = 0 ∀ i ≠ j.

$$\operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn}) = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

2. La matrice identité l_n est une matrice diagonale n×n avec des 1 sur la diagonale :

$$I_n = \operatorname{diag}(1, 1, \dots, 1)$$

$$= \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

La i^{eme} colonne d'une matrice identité est le vecteur unité e_i.

3. Une matrice tridiagonale T, on a $t_{ij} = 0$ si |i - j| > 1.

$$I_{n} = \operatorname{diag}(1, 1, \dots, 1)$$

$$= \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \cdot T = \begin{pmatrix} t_{11} & t_{12} & 0 & 0 & \dots & 0 & 0 & 0 \\ t_{21} & t_{22} & t_{23} & 0 & \dots & 0 & 0 & 0 \\ 0 & t_{32} & t_{33} & t_{34} & \dots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & t_{n-2,n-2} & t_{n-2,n-1} & 0 \\ 0 & 0 & 0 & 0 & \dots & t_{n-1,n-1} & t_{n-1,n} \\ 0 & 0 & 0 & 0 & \dots & 0 & t_{n,n-1} & t_{nn} \end{pmatrix}$$

4. On appelle matrice triangulaire supérieure une matrice U pour laquelle u_{ij} = 0

$$U = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Une matrice triangulaire supérieure est unitaire si sa diagonale est entièrement composée de 1.

5. On appelle matrice triangulaire inferieure une matrice L pour laquelle L_{ij} = 0 si

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix}.$$

Une matrice triangulaire inferieure est **unitaire** si sa diagonale est entièrement composée de 1.

6. Une *matrice de permutation P* comporte exactement un **1** dans chaque ligne ou colonne, et 0 partout ailleurs.

$$P = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

Une telle matrice est appelée matrice de permutation parce que

• la multiplication d'un vecteur *x* par une matrice de permutation a pour effet de permuter (réordonner) les éléments de *x*.

7. Une *matrice symétrique* A satisfait la condition $A = {}^{T}A$.

Exemple:

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 6 & 4 \\
3 & 4 & 5
\end{array}\right)$$

Calcul matriciel

Chapitre 2 : Une introduction aux opérations sur les matrices

Objectifs

- ➤ Adition de matrices;
- ➤ Produit scalaire;
- ➤ Multiplication de matrices ;
- ➤Inverse d'une matrice;
- ➤ Rang d'une matrice;
- ➤ Déterminant d'une matrice.

Introduction

Les éléments d'une matrice sont issus d'un système numérique particulier, tel : les nombres **réels**, les nombres **complexes** ou les **entiers** ...

• Ce système numérique définit la manière d'additionner et de multiplier les nombres.

L'objectif ici est d'étendre ces définitions pour y englober l'addition et la multiplication des matrices.

Addition

On définit l'*addition de matrices* de la manière suivante :

• Si $A = (a_{ij})$ et $B = (b_{ij})$ sont des matrices $m \times n$, alors leur somme $C = (c_{ij}) = A + B$ est la matrice $m \times n$ définie par

$$c_{ij} = a_{ij} + b_{ij}$$

pour i = 1, 2, ..., m et j = 1, 2, ..., n.

La matrice nulle est l'élément neutre de l'addition des matrices :

$$A + 0 = A$$
$$= 0 + A$$

Produit scalaire

Si λ est un nombre et $A = (a_{ij})$ une matrice, alors $\lambda A = (\lambda a_{ij})$ est le **produit scalaire** de A obtenu en multipliant chacune de ses éléments par λ .

Exemple:

Pour
$$\lambda = 2$$
 et $3 + 5 + 7$ $M = 2 + 1 + 0$ $5 + 8 + 9$

Opposé

• On définit l'**opposé** d'une matrice $A = (a_{ij})$ par $-1 \cdot A = -A$, de sorte que la $ij^{\text{ème}}$ élément de -A prend la valeur $-a_{ij}$.

$$A + 0 = A$$
$$= 0 + A$$

La soustraction d'une matrices est donc l'addition de l'opposé d'une matrice :

$$A - B = A + (-B)$$

Soit deux matrices A et B compatibles : le nombre de colonnes de A = nombre de lignes de B :

- $A = (a_{ij})$ est une matrice $m \times n$ et
- $B = (b_{jk})$ une matrice $n \times p$,

 $C = AB = (c_{ik})$, de taille $m \times p$, tel que C_{ij} est égal au produit scalaire de la ligne i de la matrice **A** par la colonne j de la matrice **B**.

$$c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$$
 pour $i = 1,2,...,m$ et $k = 1,2,...,p$.

Exemple:

$$\begin{array}{ccccc}
1 & 2 & 0 \\
 \bullet A = 3 & 4 & 5 \\
 & 6 & 4 & 7
\end{array}$$

$$1 \times 1 + 2 \times 2 + 0 \times 5$$
 $1 \times 6 + 2 \times 4 + 0 \times 3$
• C = AB = $3 \times 1 + 4 \times 2 + 5 \times 5$ $3 \times 6 + 4 \times 4 + 5 \times 3$
 $6 \times 1 + 4 \times 2 + 7 \times 5$ $6 \times 6 + 4 \times 4 + 7 \times 3$

$$5$$
 14
• C = AB = 36 49
49 73

- La matrice identité est l'élément neutre de la multiplication :
- Exemple : pour une matrice m ×
 n quelconque A, on a :

$$I_m A = AI_n = A$$

• Exemple :

• La multiplication par la matrice nulle donne une matrice nulle :

$$A 0 = 0$$

• La multiplication des matrices est **associative** :

$$A(BC) = (AB)C$$

pour des matrices compatibles *A*, *B* et *C*.

• **Distributive** par rapport à l'addition :

$$A(B+C) = AB+AC$$
,
 $(B+C)D = BD+CD$.

- Non commutative, sauf si n = 1.
- Exemple :

si
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, alors

$$AB = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

et

$$BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

 Les produits matricevecteur ou vecteur-vecteur sont définis comme si le vecteur était la matrice n × 1 équivalente (ou une matrice 1 × n, dans le cas d'un vecteur ligne). Si A est une matrice $m \times n$ et x un vecteur de taille n, alors Ax est un vecteur de taille m.

Si x et y sont des vecteurs de taille n, alors n

$$^{\mathrm{T}}xy = \sum_{i=1}^{N} x_i y_i$$

est un nombre appelé *produit scalaire* de *x* et *y*.

Inversions de matrice

On définit l'*inverse* d'une matrice A de taille $n \times n$ comme étant une matrice $n \times n$, notée A^{-1} (si elle existe), telle que $AA^{-1} = I_n = A^{-1} A$.

Exemple:

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^{-1} = \left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right)$$

On considère les matrices $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ où $a,\,b,\,c$ et d sont des réels.

- 1. Justifier que $A \times B = (ad bc)I_2$.
- 2. (a) Montrer que si $ad bc \neq 0$, la matrice A est inversible et préciser l'inverse de A.
 - (b) Réciproquement, montrer que si A est inversible alors $ad bc \neq 0$.
- 3. On considère la matrice $C = \begin{pmatrix} 4 & 3 \\ 6 & 5 \end{pmatrix}$ et la matrice $D = \begin{pmatrix} 3 & -2 \\ 9 & -6 \end{pmatrix}$.

C est-elle inversible? Si oui, donner C^{-1} . Même question pour D.

On considère les matrices $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ où $a,\,b,\,c$ et d sont des réels.

- 1. Justifier que $A \times B = (ad bc)I_2$.
- 2. (a) Montrer que si $ad bc \neq 0$, la matrice A est inversible et préciser l'inverse de A.
 - (b) Réciproquement, montrer que si A est inversible alors $ad bc \neq 0$.
- 3. On considère la matrice $C = \begin{pmatrix} 4 & 3 \\ 6 & 5 \end{pmatrix}$ et la matrice $D = \begin{pmatrix} 3 & -2 \\ 9 & -6 \end{pmatrix}$. C est-elle inversible? Si oui, donner C^{-1} . Même question pour D.

IR existe B tille que:

A, B = I et B x A = I

Gn dit alors que

B est P inverse de A

et on mote A-1 = B

On considère les matrices $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ où $a,\,b,\,c$ et d sont des réels.

- 1. Justifier que $A \times B = (ad bc)I_2$.
- 2. (a) Montrer que si $ad bc \neq 0$, la matrice A est inversible et préciser l'inverse de A.
 - (b) Réciproquement, montrer que si A est inversible alors $ad bc \neq 0$.
- 3. On considère la matrice $C = \begin{pmatrix} 4 & 3 \\ 6 & 5 \end{pmatrix}$ et la matrice $D = \begin{pmatrix} 3 & -2 \\ 9 & -6 \end{pmatrix}$.

C est-elle inversible? Si oui, donner C^{-1} . Même question pour D.

Il existe B tille que

A. B = I et B x A = I

Gn dit alors que

B est P inverse de A

On considère les matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ où a, b, c et d sont des réels.

- 1. Justifier que $A \times B = (ad bc)I_2$.
- (a) Montrer que si $ad bc \neq 0$, la matrice A est inversible et préciser l'inverse de A.
 - (b) Réciproquement, montrer que si A est inversible alors $ad bc \neq 0$.
- 3. On considère la matrice $C = \begin{pmatrix} 4 & 3 \\ 6 & 5 \end{pmatrix}$ et la matrice $D = \begin{pmatrix} 3 & -2 \\ 9 & -6 \end{pmatrix}$.

C est-elle inversible? Si oui, donner C^{-1} . Même question pour D. Gon sout que: Ax B = (ad - bc) Iz Donc (can ad - octo

Matrices : inverse d'une matrice carrée d'ordre 2

On considère les matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ où a, b, c et d sont des réels.

- 1. Justifier que $A \times B = (ad bc)I_2$.
- (a) Montrer que si $ad bc \neq 0$, la matrice A est inversible et préciser l'inverse de A.
 - (b) Réciproquement, montrer que si A est inversible alors $ad bc \neq 0$.

3. 0 on a:
$$A^{-1} = \frac{\wedge}{ad-bt} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 9 & -6 \end{pmatrix}$$
. A est inversible C b) On suppose A inversible.

Si ad $-bt = 0$ aloo $A \times B = 0$

Si $A + bt = 0$ aloo $A \times B = 0$

Si $A + bt = 0$ aloo $A \times B = A^{-1} \times 0$

Si $A + bt = 0$ aloo $A \times B = A^{-1} \times 0$

Si $A + bt = 0$ aloo $A \times B = 0$

Si $A + bt = 0$ aloo $A \times B = 0$

Si $A + bt = 0$ aloo $A \times B = 0$

Si $A + bt = 0$ aloo $A \times B = 0$

Si $A + bt = 0$ aloo $A \times B = 0$

Si $A + bt =$

- 2. (a) Montrer que si $ad bc \neq 0$, la matrice A est inversible et préciser l'inverse de A.
 - (b) Réciproquement, montrer que si A est inversible alors $ad bc \neq 0$.
- 3. On considère la matrice $C=\begin{pmatrix} 4 & 3 \\ 6 & 5 \end{pmatrix}$ et la matrice $D=\begin{pmatrix} 3 & -2 \\ 9 & -6 \end{pmatrix}$.

C est-elle inversible? Si oui, donner C^{-1} . Même question pour D.

On a: A-1 = $\frac{1}{ad-bc}$ (d -b)

A est inversible

By

Hx5- Lx3 = 2 \pmo 0

Druc C cot inversible et C= 1 (5 -3)

A, B=I et BxA=I

The cot inversible et C= 1 (5 -3)

A, B=I et BxA=I

By

Druc D n'est pas inversible.

B est P inverse Le A

Inversions de matrice

Le nombre ad - bc est appelé déterminant de la matrice A

De nombreuses matrices $n \times n$ n'ont pas d'inverse, bien que n'étant pas nulles.

Une matrice sans inverse est dite *non inversible*, ou *singulière*.

Exemple:

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

Une matrice possédant un inverse, est dite *inversible*, ou *non singulière*.

Si A et B sont deux matrices n ×
 n non singulières, alors

$$(BA)^{-1} = A^{-1}B^{-1}$$

• L'opération inversion est commutative avec l'opération transposition :

$$^{\mathrm{T}}(A^{-1}) = (^{\mathrm{T}}A)^{-1}$$
.

Inversions de matrice

- Les vecteurs x_1, x_2, \ldots, x_n sont linéairement dépendants s'il existe des coefficients c_1, c_2, \ldots, c_n non tous nuls, tels que $c_1x_1 + c_2x_2 + \cdots + c_nx_n = 0$.
- Si des vecteurs ne sont pas linéairement dépendants, ils sont dits linéairement indépendants.

Si A est une matrice non nulle de taille $m \times n$:

- Le *rang colonne* de A est la taille du plus grand ensemble linéairement indépendant de colonnes de A.
- Le *rang ligne* de *A* est la taille du plus grand ensemble linéairement indépendant de lignes de *A*.

Une propriété fondamentale d'une matrice A quelconque est:

 le rang ligne de A = rang colonne de A.

Il suffit donc de parler de *rang* de *A*.

- Le rang d'une matrice $m \times n$ est un entier compris entre 0 et min(m, n), inclus.
- Le rang d'une matrice nulle vaut 0,
- Le rang d'une matrice identité n × n est égal à n.

- Une matrice carrée n×n a un rang plein si son rang est égal à n.
- Une matrice m×n a un rang colonne plein si son rang vaut n.

Théorème 1: Une matrice carrée a un rang plein si et seulement si elle est non singulière.

• Un *vecteur d'annulation* d'une matrice *A* est un vecteur non nul *x* tel que *Ax* = 0.

Théorème 2: Une matrice A a un rang colonne plein si et seulement si elle ne possède pas de vecteur d'annulation.

Corollaire 3: Une matrice carrée A est singulière si et seulement si elle possède un vecteur d'annulation.

 Considérons la matrice A de dimension 2 × 2 :

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

• On a:

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

Exemple

Soit la matrice

$$A = \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}$$

Le déterminant de A est ainsi

$$\det(A) = \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix}$$

Exercice

Calculez le déterminant des matrices 2×2 suivantes :

$$a.\begin{pmatrix} 1 & 3 \\ 5 & -2 \end{pmatrix}$$
 $b.\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$

$$b.\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

$$c.\begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$$
 $d.\begin{pmatrix} 4 & -3 \\ 1 & 2 \end{pmatrix}$

$$d.\begin{pmatrix} 4 & -3 \\ 1 & 2 \end{pmatrix}$$

Exercice

Calculez le déterminant des matrices 2×2 suivantes :

$$a.\begin{pmatrix} 1 & 3 \\ 5 & -2 \end{pmatrix}$$
 $b.\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$

$$b.\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$$

$$c.\begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix} \qquad d.\begin{pmatrix} 4 & -3 \\ 1 & 2 \end{pmatrix}$$

$$d.\begin{pmatrix} 4 & -3 \\ 1 & 2 \end{pmatrix}$$

Solutions:

- a) -17
- b) 0
- c) 5
- d) 11

Le *ij*^{ème} *mineur* d'une matrice A de taille n × n, pour n > 1, est la matrice A[ij] de taille (n - 1) × (n - 1) obtenue en supprimant la *i*ème ligne et la *j*ème colonne de A.

Mineur: Exemple

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 5 & 2 & 3 \\ 8 & 7 & 3 \end{pmatrix}$$

Le mineur M_{12} est le déterminant de la matrice obtenue en éliminant la 1ère rangée et la $2^{\rm e}$ colonne de A, c'est-à-dire

$$M_{12} = \begin{vmatrix} 5 & 3 \\ 8 & 3 \end{vmatrix} = 5.3 - 3.8 = 15 - 24 = -9$$

Le mineur M_{22} est le déterminant de la matrice obtenue en éliminant la 2^e rangée et la 2^e colonne de A, c'est-à-dire

$$M_{22} = \begin{vmatrix} 2 & 4 \\ 8 & 3 \end{vmatrix} = 2.3 - 4.8 = 6 - 32 = -26$$

Définition d'un cofacteur

Le cofacteur, \mathcal{C}_{ij} , d'une matrice A est défini par la relation

$$C_{ij} = (-1)^{i+j} M_{ij}$$

Vous constaterez que le cofacteur et le mineur ont toujours la même valeur numérique, à l'exception parfois de leur signe.

Considérons à nouveau la matrice

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 5 & 2 & 3 \\ 8 & 7 & 3 \end{pmatrix}$$

Nous avons déjà montré que le mineur $M_{12}=-9$. Ainsi, le cofacteur correspondant, C_{12} , est

$$C_{12} = (-1)^{1+2} M_{12} = -1.(-9) = 9$$

 Le déterminant d'une matrice A de taille n × n peut être défini récursivement en fonction de ses mineurs par :

$$\det(A) = \begin{cases} a_{11} & \text{si } n = 1, \\ \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{[1j]}) & \text{si } n > 1. \end{cases}$$

Pour une matrice 3×3 , cela voudrait dire qu'en choisissant de faire une expansion le long de la première rangée, le déterminant serait

$$\det A = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

Exemple

Quel est le déterminant de la matrice A?

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 2 & 0 & -2 \end{pmatrix}$$

Suivons le processus proposé plus haut (expansion par cofacteurs) :

- Choisir une rangée ou une colonne de A... Pour l'instant, choisissons la première rangée.
- Multiplier chacun des éléments de cette rangée par leurs cofacteurs correspondants... Les éléments de la première rangée sont $a11=2,a12=1,et\,a13=3$ que l'on multiple avec les cofacteurs correspondants, c'est-à-dire C_{11},C_{12} et C_{13} qui sont

Suivons le processus proposé plus haut (expansion par cofacteurs) :

- Choisir une rangée ou une colonne de A... Pour l'instant, choisissons la première rangée.
- Multiplier chacun des éléments de cette rangée par leurs cofacteurs correspondants... Les éléments de la première rangée sont a11=2, a12=1, et a13=3 que l'on multiple avec les cofacteurs correspondants, c'est-à-dire C_{11}, C_{12} et C_{13} qui sont

$$C_{11} = (-1)^{1+1} M_{11} = 1 \begin{vmatrix} 0 & 2 \\ 0 & -2 \end{vmatrix} = 1(0.(-2) - 2.0) = 0$$

$$C_{12} = (-1)^{1+2} M_{12} = (-1) \begin{vmatrix} 1 & 2 \\ 2 & -2 \end{vmatrix} = 1(1 \times (-2) - 2 \times 2) = 6$$

$$C_{13} = (-1)^{1+3} M_{13} = 1 \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = 1(1 \times (0) - 2 \times 0) = 0$$

Suivons le processus proposé plus haut (expansion par cofacteurs) :

- Choisir une rangée ou une colonne de A... Pour l'instant, choisissons la première rangée.
- Multiplier chacun des éléments de cette rangée par leurs cofacteurs correspondants... Les éléments de la première rangée sont a11 = 2, a12 = 1, et a13 = 3 que l'on multiple avec les cofacteurs correspondants, c'est-à-dire C_{11} , C_{12} et C_{13} qui sont

$$C_{11} = (-1)^{1+1} M_{11} = 1 \begin{vmatrix} 0 & 2 \\ 0 & -2 \end{vmatrix} = 1(0.(-2) - 2.0) = 0$$

$$C_{12} = (-1)^{1+2} M_{12} = (-1) \begin{vmatrix} 1 & 2 \\ 2 & -2 \end{vmatrix} = 1(1 \times (-2) - 2 \times 2) = 6$$

$$C_{13} = (-1)^{1+3} M_{13} = 1 \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = 1(1 \times (0) - 2 \times 0) = 0$$

Finalement, il s'agit de faire le calcul

$$\det A = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$

Suivons le processus proposé plus haut (expansion par cofacteurs) :

- Choisir une rangée ou une colonne de A... Pour l'instant, choisissons la première rangée.
- Multiplier chacun des éléments de cette rangée par leurs cofacteurs correspondants... Les éléments de la première rangée sont a11 = 2, a12 = 1, et a13 = 3 que l'on multiple avec les cofacteurs correspondants, c'est-à-dire C_{11} , C_{12} et C_{13} qui sont

$$C_{11} = (-1)^{1+1} M_{11} = 1 \begin{vmatrix} 0 & 2 \\ 0 & -2 \end{vmatrix} = 1(0.(-2) - 2.0) = 0$$

$$C_{12} = (-1)^{1+2} M_{12} = (-1) \begin{vmatrix} 1 & 2 \\ 2 & -2 \end{vmatrix} = 1(1 \times (-2) - 2 \times 2) = 6$$

$$C_{13} = (-1)^{1+3} M_{13} = 1 \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} = 1(1 \times (0) - 2 \times 0) = 0$$

Finalement, il s'agit de faire le calcul

$$det A = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$
$$det A = 2 \times 0 + 6 \times 1 + 3 \times 0 = 6$$

Théorème 4: (Propriétés du déterminant) *Le déterminant d'une matrice carrée A possède les propriétés suivantes :*

- \triangleright Si une ligne ou une colonne quelconque de A est égale à zéro, alors $\det(A) = 0$.
- \blacktriangleright Le déterminant de A est multiplié par λ si les éléments d'une ligne (ou colonne) quelconque de A sont tous multipliés par λ .
- Le déterminant de A reste inchangé si les éléments d'une ligne (resp.colonne)sont ajoutées à ceux d'une autre ligne (resp. colonne).
- ► Le déterminant de A est égal au déterminant de TA.
- ▶Le déterminant de A est multiplié par -1 si deux lignes (resp. colonnes) sont échangées.

D'autre part, pour deux matrices carrées A et B quelconques, on a det(AB) = det(A) det(B).

Théorème 5 : Une matrice A de taille $n \times n$ est singulière si et seulement si det(A) = 0.

• MERCI