Example(6): Calculate the volume of a $0.4 \ mol$ of a gas in a container at $265 \ K$ and $0.9 \ atm$.

$$(R = 0.0821 L atm K^{-1} mol^{-1})$$

Solution:

$$n = 0.4 \, mol$$
 $T = 265 \, K$ $P = 0.9 \, atm$ $V = ?$

Using ideal gas law, PV = nRT;

$$V = \frac{nRT}{P}$$

$$V = \frac{0.4 \ mol \times 0.0821 \ L \ atm \ K^{-1} mol^{-1} \times 265 \ K}{0.9 \ atm} = 9.7 \ L$$

Check: The given conditions of temperature and pressure are close to STP. Thus $0.4\ mol$ of gas may occupy approximately $10\ L$.