DEL 1 Uten hjelpemidler

Oppgave 1 (5 poeng)

Deriver funksjonene

- a) $f(x) = 2 \cdot e^{3x}$
- b) $g(x) = 2x \cdot \ln(3x)$
- c) $h(x) = \frac{2x-1}{x+1}$

Oppgave 2 (3 poeng)

Polynomfunksjonen P er gitt ved

$$P(x) = x^3 - 6x^2 + 11x - 6$$

- a) Vis at divisjonen P(x):(x-1) går opp, uten å utføre divisjonen.
- b) Utfør polynomdivisjonen og løs ulikheten $P(x) \ge 0$.

Oppgave 3 (2 poeng)

I $\triangle ABC$ er AB = 10.0 cm og $\angle C = 90^{\circ}$. Høyden h fra C til AB er 4.0 cm.

Konstruer △ABC gitt at BC er den lengste kateten. Forklar hva du har gjort.

Oppgave 4 (2 poeng)

En elev skulle løse en likning og begynte slik:

$$2^{3x-1} = 2^2 + 2^2 + 2^2 + 2^2$$

$$2^{3x-1} = 4 \cdot 2^2$$

Fullfør løsningen av likningen.

Oppgave 5 (4 poeng)

Vi har gitt vektorene $\vec{a} = [1, 3], \vec{b} = [3, 2]$ og $\vec{c} = [-1, 2]$.

- a) Tegn vektorene $\vec{u} = \vec{a} + 2\vec{b}$ og $\vec{v} = \vec{b} 2\vec{c}$ i et koordinatsystem.
- b) Avgjør ved regning om $\vec{u} \perp \vec{v}$.

Oppgave 6 (5 poeng)

En funksjon f er gitt ved

$$f(x) = -\frac{1}{3}x^3 + 2x^2, \qquad D_f \in \mathbb{R}$$

- a) Bestem f'(x) og f''(x).
- b) Bestem koordinatene til eventuelle topp-, bunn- og vendepunkter på grafen til f.
- c) Lag en skisse av grafen til f. Bruk denne til å avgjøre for hvilke x-verdier f'(x) > 0 og samtidig f''(x) < 0.

Oppgave 7 (3 poeng)

To sirkler S_1 og S_2 er gitt ved

$$S_1: x^2 + y^2 = 25$$

$$S_2$$
: $(x-a)^2 + y^2 = 9$

- a) Tegn sirklene i et koordinatsystem når a = 6.
- b) For hvilke verdier av a vil sirklene tangere hverandre?

DEL 2 Med hjelpemidler

Oppgave 1 (6 poeng)

Når grafen til en polynomfunksjon tangerer x-aksen i x = a, har funksjonen minst to like (sammenfallende) nullpunkter i x = a.

a) Grafen til en andregradsfunksjon f er vist på figur 1. Grafen tangerer x-aksen i x=2.

Forklar at $f(x) = 2 \cdot (x-2)^2$

b) Grafen til en tredjegradsfunksjon g er vist på figur 2. Grafen tangerer x-aksen i x=3.

Forklar at funksjonsuttrykket til g kan skrives på formen $g(x) = k \cdot (x-3)^2 \cdot (x+1)$ Bestem k.

c) Grafen til en fjerdegradsfunksjon h er vist på figur 3. Grafen tangerer x-aksen i x = -2 og i x = 2.

Bestem funksjonsuttrykket h(x).

Oppgave 2 (4 poeng)

Funksjonen f er gitt ved

$$f(x) = \frac{2x-1}{x+1} \quad , \quad D_f = \mathbb{R} \setminus \{-1\}$$

a) Bestem asymptotene til f. Tegn grafen til f med asymptoter.

Funksjonen g er gitt ved

$$g(x) = x - 1$$
 , $D_f = \mathbb{R}$

b) Bestem skjæringspunktene mellom grafene til f og g ved regning.

Oppgave 3 (6 poeng)

Figuren til høyre viser grafen til funksjonen f gitt ved

$$f(x) = x^2 + 21$$
, $x \in \langle 0, \rightarrow \rangle$

Rektangelet PSRQ lages slik at P ligger på grafen til f, punktene S og R ligger på x-aksen, og R og Q har førstekoordinat x = 12. Punktet S ligger mellom origo og R.

a) Forklar at arealet av rektanglet PSRQ kan skrives som

$$A(x) = -x^3 + 12x^2 - 21x + 252$$
, $x \in \langle 0, 12 \rangle$

- b) Bestem A'(x) og bruk denne til å bestemme største og minste verdi som arealet av rektanglet kan ha.
- c) Tegn grafen til A, og kontroller om svarene dine fra oppgave b) stemmer.

Oppgave 4 (4 poeng)

En sirkel med radius r og sentrum i origo er gitt ved

$$x^2 + y^2 = r^2$$

Punktet P(x,y) er et vilkårlig punkt på den øvre halvsirkelen. Se skissen nedenfor.

- a) Bestem koordinatene til punktene A og B uttrykt ved r. Bestem vektorkoordinatene til \overrightarrow{PA} og \overrightarrow{PB} .
- b) Vis ved vektorregning at $\angle APB = 90^{\circ}$.

Oppgave 5 (6 poeng)

Ved en videregående skole skal elevene velge fag. Hendelsene M og F definerer vi slik:

M : Eleven velger matematikk.

F: Eleven velger fysikk.

Vi får opplyst at P(M) = 0.64, P(F) = 0.32 og $P(\overline{M \cup F}) = 0.30$.

- a) Bestem $P(M \cap F)$ og $P(M \cap \overline{F})$.
- b) Bestem $P(F \mid M)$. Undersøk om hendelsene M og F er uavhengige.
- c) Bruk Bayes' setning til å bestemme $P(M \mid F)$.

Oppgave 6 (8 poeng)

I et koordinatsystem har vi gitt punktene A(-3, -3), B(3, 1) og D(-2, 2).

a) Bestem $\angle BAD$ og arealet av $\triangle ABD$.

Et punkt C er gitt ved at $DC \parallel AB \text{ og } \angle ABC = 90^{\circ}$.

b) Bestem ved regning koordinatene til C.

En parameterframstilling for linjen I som går gjennom C og D, er gitt ved

$$I: \begin{cases} x = -2 + 3t \\ y = 2 + 2t \end{cases}$$

Et punkt E har koordinatene (s, 2s-2).

- c) Bestem ved regning en verdi for s slik at E ligger på 1.
- d) Bestem koordinatene til punktet E når $|\overrightarrow{AE}| = |\overrightarrow{BE}|$.

Oppgave 7 (2 poeng)

Løs likningen med hensyn på x

$$n^2 \cdot \left(\frac{x}{n}\right)^{\lg(x)-2} = x^2$$
, $x > 0 \land n > 0$

Eksamen REA3022 Matematikk R1 Hausten/Høsten 2013