Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 17: Compensator Design

Overview

In this Lecture, you will learn:

Lead-Lag Compensation

- Designing Leads
- Designing Lags
- Combining Leads and Lags

Notch Filters

- Providing extra zeros
- Eliminates annoying frequency components.

Recall: Pole-Zero Compensation

Definition 1.

A Pole-Zero Compensator is of the form

$$K(s) = \frac{s+z}{s+p}$$

Lead Compensation

- p < z
- Replaces Pure Zero

Lag Compensation

- z < p
- Replaces Integrator

Example

$$G(s) = \frac{1}{s(s+1)}$$

Asymptotes: $\pm 90^{\circ}$ **Intercept:** $\alpha = -.5$

$$\alpha = \frac{\sum p_i - \sum z_i}{n - m} = \frac{-1 - 0}{2 - 0} = -.5$$

Break Point: s = -.5

$$n'd + d'n = 2s + 1 = 0$$

Conclusion: At high gain, we get

- High Frequency Oscillation
- Lots of overshoot
- Fixed Settling Time

Example

Asymptotes: $\pm 90^{\circ}$ Intercept: $\alpha = -1$

$$\alpha = \frac{\sum p_i - \sum z_i}{n - m}$$
$$= \frac{-5 + 4}{2 - 0} + \frac{-1 - 0}{2 - 0} = -.5 - .5 = -1$$

Break Point: s = -.438

$$n'd + d'n$$

= $(s+5)(s^2+s) + (3s^2+12s+5)(s+4)$

Conclusion: At high gain, we get

- Improved Settling time
- Slightly less overshoot

Phase Interpretation

The effect of a Lead Compensator

• Add Phase at every point

$$\angle K(s)G(s) = \angle K(s) + \angle G(s)$$

Points compensate by moving left.

Pole Placement

Lead-Lag can be used to do pole-placement

$$G(s) = \frac{1}{s(s+1)}$$

Now suppose we want:

- 20% Overshoot
- $\omega_n = 2$
- $T_s < 4$

We choose a desired point on the root locus:

- The intersection of
 - $\sim \omega_n = 2$
 - *σ* < −1
 </p>

$$s_{1,2} = -1 \pm \sqrt{3}i$$

Question: Can we achieve this point exactly using Pole-Zero compensation?

Lead-Lag Compensation

Pole Placement

Lets start with a basic question:

Is s already on the root locus?

Lets check:

$$\angle G(s) = \sum \angle (s - z_i) - \sum \angle (s - p_i)$$

Working out the geometry:

$$\angle G(s) = -90^{\circ} - 120^{\circ} = -210^{\circ}$$

Not on the Root Locus!

The point s lacks 30° of phase.

Pole Placement

To place the point s on the root locus:

• we need to add 60° of phase at this point.

Phase is sum of zeros minus poles

- Zeros add phase
- Poles subtract phase.

We can add 30° if we use a pole-zero combo:

- Add a zero at 60°
- Add a pole at 30°

Pole Placement

$$K(s) = \frac{s-z}{s-p}$$

Use reverse geometry to find p and z.

Zero:

$$\tan 60^{\circ} = \frac{\sqrt{3}}{x}$$
$$x = \frac{\sqrt{3}}{\tan 60^{\circ}} = 1$$

Pole:

$$\tan 30^\circ = \frac{\sqrt{3}}{x}$$
$$x = \frac{\sqrt{3}}{\tan 30^\circ} = 3$$

$$p = -1 - x = -4$$

 $z = -1 - x = -2$

Pole Placement

Now, the root locus passes through s.

To find the gain at this point

- Use rlocfind
- Use $k = \frac{|d(s)|}{|n(s)|}$.

For this example,

$$k = 6.00$$

Potential Problem: May adversely affect other poles.

Root Locus Demo 2

Pole Placement

Wiley+ Root Locus Demo 2

Make the phase 180° .

Departure Angles

The other big use of root locus is to change **Departure Angles**. Recall the Suspension system problem with integral feedback:

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1} \frac{1}{s}$$

The poles are

- $p_{1.2} = -.957 \pm 1.23i$
- $p_{3.4} = -.0433 \pm .641i$

At pole $p_{3.4} = -.0433 + .641i$, the phase is -156° .

Departure Angle:

$$\angle_{dep} = \angle G(s) + 180^{\circ} = 24^{\circ}$$

Goal: Increase the departure angle to 90° or more.

Departure Angles

Suppose we want a departure angle of $\angle_{dep}=100^{\circ}.$

Recall

$$\angle_{dep} = \angle G(s) + 180^{\circ}$$

• Required Phase $\angle G(s)$

$$\angle_{req}G(s) = \angle_{dep} - 180^{\circ} = -80^{\circ}$$

• Required Phase Change:

$$\Delta \angle G(s) = \angle_{req}G(s) - \angle G(s) = -80 + 156^{\circ} = 76^{\circ}$$

Departure Angles

We need to add 76° .

- Zero at 90° .
- Pole at 14°.

Recall departure point is $p_3 = -.0433 + .641i$

Zero:

- $\theta = 90^{\circ}$,
- $\Delta x = 0$
- z = -.0433

Pole:

$$\tan 14^{\circ} = \frac{.641}{\Delta x}$$
$$\Delta x = \frac{.641}{\tan 14^{\circ}} = 2.57$$

So
$$p = -.0433 - \Delta x = -2.61$$
.

Controller:

$$K(s) = \frac{s + .0433}{s + 2.61}$$

Steady-State Error

Predict the Steady-State Error.

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}$$

$$K(s) = \frac{s - z}{s - p} = \frac{n_K(s)}{d_K(s)}$$

$$e_{ss} = \lim_{s \to 0} \frac{1}{1 + G(s)K(s)}$$

$$= \frac{d_K(0)}{d_K(0) + kn_K(0)G(0)}$$

$$= \frac{-p}{-p + -zkG(0)}$$

lf

- p is small
- z is large

Then

$$e_{ss} \cong \frac{p}{kz} \frac{1}{G(0)}$$

Steady-State Error

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}$$

Say we want steady-state error less than .01.

$$e_{ss} \cong \frac{p}{kz} \frac{1}{G(0)} = \frac{p}{kz} = \le .01$$

or $p \leq .01kz$

- Assume k > 10
- Choose p = .1
- Result: z = 100

Alternatively,
$$p = 1$$
, $z = 1000$.

But there are dangers!

Notice some negative effects of Lag

• Asymptotes still at $\pm 90^\circ$

Center of Asymptotes:

$$\begin{split} \alpha &= \frac{\sum p_i - \sum z_i}{n - m} \\ &= \frac{\sum p_{i,old} - \sum z_{i,old}}{n - m} + \frac{\sum p_{i,new} - \sum z_{i,new}}{n - m} \\ &= \alpha_{old} + \frac{p - z}{2} \end{split}$$

Creates a Shift in Asymptotes by

$$\Delta\alpha\cong\frac{z}{2}=-50$$

for the suspension problem.

M. Peet

Lead-Lag Compensation

Mitigate the effect of lag compensation

- Add some Lead Compensation
 - ightharpoonup Zero at z=.01
 - Pole at p=20

Phase at s_1

$$\angle G(s) = -25.8^{\circ}$$

Departure Angle:

$$\angle_{dep} = 180 + \angle G(s) = 154.25^{\circ}$$

Lead-Lag Compensation

Use rlocfind to pick off

• Maximum stable gain

$$k = .7768$$

Notch-Filters

Conclusion:

- Lead-Lag Improves Performance
- · Can't do everything.

Problem Can't Stabilize those poles at

$$s = -.0433 \pm .641\imath$$

One solution is to use a Notch Filter.

Definition 2.

A Notch Filter consists of

- Two Complex Zeros
 - Used to Capture Troublesome Poles
- Two Real Poles far out in the LHP

Notch-Filter Example

To attack the poles at

$$s = -.0433 \pm .641i$$

Lets use a notch filter at

$$z_{1,2} = -.5 \pm .641i$$

Poles at

$$p_{1,2} = -20$$

$$K(s) = \frac{(s + .5 + .641i)(s + .5 - .641i)}{(s + 20)^2}$$
$$= \frac{s^2 + s + .66}{s^2 + 40s + 400}$$

Notch-Filter Example

Combining the Notch-Filter with the Lag filter.

• Using rlocfind, we pick off the point

$$k = 10$$

Notch-Filter Example

Notch-Filter Example

Don't Forget about the other poles!

$$k_{max} = 19.4$$

25 / 28

M. Peet Lecture 17: Control Systems

Notch-Filter Example

What about 30% overhoot?

Notch-Filter Example

What about 30% overhoot?

Don't forget those other poles!

M. Peet Lecture 17: Control Systems 27 / 28

Summary

What have we learned today?

Lead-Lag Compensation

- Designing Leads
- Designing Lags
- Combining Leads and Lags

Notch Filters

- Providing extra zeros
- Eliminates annoying frequency components.

Next Lecture: The Frequency Domain