Lemma IR For all primes p, \sqrt{p} is irrational.

Proof. Suppose not. That is let $\sqrt{p} \in \mathbb{Q}$. By definition, $\sqrt{p} = \frac{a}{b}$ for $a, b \in \mathbb{Z}$. Suppose $\frac{a}{b}$ is irreducible such that (a, b) = 1. Squaring both sides,

$$p = \frac{a^2}{b^2},$$
$$pb^2 = a^2.$$

Since $p|a^2$, p must be a prime factor of a. Thus a=pk for some $k\in\mathbb{Z}$. Substituting,

$$pb^2 = (pk)^2,$$
$$b^2 = pk^2.$$

Notice that both a and b share the prime factor p. Since primes are greater than 1, this contradictions the assumption that (a,b)=1. Thus, for all primes p, \sqrt{p} is irrational.

2.19 Theorem. There do not exist natural numbers m and n such that $7m^2 = n^2$.

Proof. Let natural numbers m, n be given. Suppose $7m^2 = n^2$. By the Fundamental Theorem of Arithmetic,

$$7(q_1^{2t_1}q_2^{2t_2}...q_s^{2t_s}) = p_1^{2r_1}p_2^{2r_2}...p_m^{2r_m}.$$

By Lemma 2.8,

$$7 = p_i^{2r_i},$$

$$\sqrt{7} = p_i^{r_i}.$$

We know that prime numbers are natural numbers, and therefore rational numbers. Yet, by Lemma IR, $\sqrt{7}$ is irrational. Thus, we have a contradiction. Hence, there do not exist natural numbers m and n such that $7m^2 = n^2$. \square