Технические Требования на блок БЦК-Е1

Общее описание

- 1. Блок-схема БЦК-Е1 представлена на рисунке выше
- 2. При разработке схемотехники блока БЦК-Е1 нужно ориентироваться на схемотехнику блока БЦК-О_v2.3 (в той части, которая не описана здесь и которая является общей для обоих блоков)
- 4. Физические размеры см. БЦК-O_v2.3
- 3. Основное напряжение питания блока 3.3В

Элементная база

- 1. MCU STM32F446ZET6
- 2. E1 LIU (Line Interface Unit) IDT82V2084
- 3. CPLD ALTERA EPM1270T144C4N (в перспективе замены в серийном изделии на младшую модель ALTERA EPM240T100C5N, когда будут определены задействованные ресурсы CPLD)
- 4. Остальное из схемотехники блока БЦК-O_v2.3

Системная шина

- 1. За основу схемотехники взять реализацию буфера системной шины блока БЦК-O_v2.3
- 2. Разрядность шины данных 16 бит (завести в MCU)
- 3. Разрядность шины адреса 4 бита (завести в CPLD)
- 4. #CS0...#CS4, #RD, #WR, BL, #RES, BUSR3, A0, A1 в CPLD
- 5. BUSR3 подключать к разъему X1 через диод (монтажное ИЛИ), как на БЦК-О_v2.3
- 6. Сигналы управления (OE, DIR) в CPLD

MCU

- 1. напряжение питания 3.3В
- 2. Кварцевый резонатор 16 МГц
- 3. JTAG разъем: на базе PBD-8 со следующим расположением контактов

1	JNTRST	2	JTDO
3	JTDI	4	3V3
5	JTCK	6	GND
7	JTMS	8	N.C.

- 4. SAI1 (SAI1_FS_A/B, SAI1_MCLK_A/B, SAI1_SCK_A/B, SAI1_SD_A/B) в CPLD
- 5. SAI2 (SAI2 FS A/B, SAI2 MCLK A/B, SAI2 SCK A/B, SAI2 SD A/B) B CPLD
- 6. SPI1 (SPI1 MOSI, SPI1 MISO, SPI1 SCK, SPI1 NSS) B CPLD
- 7. RCC (RCC_MC0_1 (PA8), RCC_MC0_2 (PC9)) в CPLD
- 8. FMC:

FMC_D15...FMC_D0 - на буферы шины данных системной шины FMC_A3...FMC_A0 - в CPLD FMC_NE1, FMC_NL, FMC_NOE, FMC_NWAIT, FMC_NWE - в CPLD

- 9. В качестве резерва часть неиспользуемых портов ввода/вывода завести в CPLD (не менее 8)
- 10. 8 неиспользуемых портов ввода/вывода использовать в качестве тестовых точек. Вывести их на разъем PLS-8
- 11. Вывести 6 светодиодов индикации. Схемотехника и положение (его можно скорректировать, т.к. оно не совпадает с положением отверстий на панели) как на блоке БЦК-O_v2.3

Для уточнения расположения выводов микросхемы можно использовать программу **STM32CubeMX** со следующими настройками:

Тип микросхемы: **STM32F446ZETx**

FMC:

Nor Flash/PSRAM/SRAM/ROM 1

Chip Select: NE1

Memory type: NOR Flash

Address: 4 bits Data: 16 bits Clock: Disable

Address valid: check Wait: Asynchronous

RCC:

High Speed Clock (HSE): Crystal/Ceramic Resonator

Low Speed Clock (LSE): Disable Master Clock Output 1: check Master Clock Output 2: check

SAI1:

SAI A:

Mode: Master with Master Clock Out

I2S/PCM Protocol: uncheck

SAI B:

Mode: Master with Master Clock Out

I2S/PCM Protocol: uncheck

SAI2:

SAI A:

Mode: Master with Master Clock Out

I2S/PCM Protocol: uncheck

SAI B:

Mode: Master with Master Clock Out

I2S/PCM Protocol: uncheck

SPI1:

Mode: Full-Duplex Master Hardware NSS Signal: check

E1 Driver

- 1. напряжение питания 3.3В
- 2. Необходимо использовать 2 любых порта (из 4-х), наиболее удобные для трассировки
- 3. Сигналы этих портов (LOSn, RCLKn, RDn/RDPn, CVn/RDNn, TCLKn, TDn/TDPn, TDNn) должны быть заведены в CPLD
- 4. ~CS, SCLK, SDI, SDO (последовательный порт управления) в CPLD
- 5. ~INT, ~RST, THZ, SCLKE, MCLK в CPLD
- 6. P/~S "0"
- 7. MCLKS "0"

Требования к портам Е1

- 1. Количество портов 2 шт
- 2. Типы разъемов RJ45
- 3. Распиновка разъемов стандартная Е1
- 4. Расположение разъемов нижняя часть блока
- 5. Волновое сопротивление линии 120 Ом
- 6. Схемы защиты от помех, согласование линии и гальваническая развязка в соответствии с документацией на IDT82V2048

CPLD

- 1. напряжение питания 3.3В
- 2. JTAG стандартный ALTERA JTAG, IDC10
- 3. 8 неиспользуемых портов ввода/вывода использовать в качестве тестовых точек. Вывести их на разъем PLS-8