Preguntas de Repaso Capítulo 4

Revisión de términos y conceptos

¿Cuál es el nombre de un paquete de la capa de red? ¿Cuál es la diferencia fundamental entre un router y un switch de capa de enlace?

R2

¿Cuáles son las funciones principales del plano de datos? ¿Y del plano de control?

R3

¿Cuáles son las diferencias clave entre forwarding (reenvío) y ruteo?

R4

¿Cuál es el rol de la tabla de reenvío dentro de un router?

R5

¿Cuál es el modelo de servicio de la capa de red de Internet? ¿Qué garantías ofrece respecto de la entrega de datagramas entre hosts?

R6

¿Cuáles componentes del router se implementan en hardware y cuáles en software? ¿Qué parte del plano de datos/control se implementa en cada uno y por qué?

R7

¿Por qué cada puerto de entrada en un router de alta velocidad almacena una copia sombra (shadow) de la tabla de reenvío?

R8

¿Qué se entiende por reenvío basado en destino? ¿Cómo se diferencia del reenvío generalizado? ¿Qué enfoque adopta SDN?

R9

¿Qué regla aplica un router si un paquete coincide con varias entradas en la tabla de reenvío?

R10

Enumera y describe brevemente los tres tipos de estructura de conmutación. ¿Cuál permite envíos paralelos?

R11

¿Cómo puede ocurrir pérdida de paquetes en los puertos de entrada? ¿Cómo puede evitarse sin usar búferes infinitos?

R12

¿Cómo puede ocurrir pérdida de paquetes en los puertos de salida? ¿Puede evitarse aumentando la velocidad de la estructura de conmutación?

R13

¿Qué es el bloqueo por cabecera de línea (HOL)? ¿Dónde ocurre?

R14

¿Qué disciplina de planificación garantiza que los paquetes salgan en el orden en que llegaron? (FIFO, Prioridad, RR, WFQ)

R15

¿Por qué un operador de red podría priorizar una clase de paquetes sobre otra?.

R16

¿Cuál es la diferencia entre RR y WFQ? ¿Existe un caso en que se comporten igual?

R17

¿Cómo sabe la capa de red del Host B que debe pasar el segmento recibido a TCP, UDP u otro protocolo?

R18

¿Qué campo del encabezado IP limita el número de routers que puede atravesar un paquete?

R19

¿Los checksums del encabezado del segmento y del datagrama IP se calculan sobre bytes en común? Explica.

R20

¿Dónde se reensamblan los fragmentos de un datagrama grande?

R21

¿Los routers tienen direcciones IP? ¿Cuántas?

R22

¿Cuál es el equivalente binario de 32 bits de la IP 223.1.3.27?

R23

Para el sistema operativo de tu computadora, accede a la configuración de red asignada por DHCP y encuentra su IP, máscara, gateway y DNS asignado.

R24

Si hay tres routers entre origen y destino, ¿por cuántas interfaces pasa el datagrama y cuántas tablas de reenvío se consultan?

R25

Una app genera 40 bytes cada 20 ms. ¿Qué porcentaje del datagrama es sobrecarga y qué porcentaje son datos útiles?

R26

En una red doméstica con un router WiFi y 5 PCs, ¿cómo se asignan las IPs? ¿Se usa NAT? ¿Por qué?

R27

¿Qué es la agregación de rutas? ¿Por qué es útil?

R28

¿Qué significa que un protocolo sea plug-and-play o zeroconf?

R29

¿Qué es una dirección IP privada? ¿Debe aparecer en Internet pública? Explica.

R30

Compara los campos de los encabezados IPv4 e IPv6. ¿Tienen campos en común?

R31

¿Estás de acuerdo con que IPv6 trata a los túneles IPv4 como protocolos de capa de enlace? ¿Por qué?

R32

¿En qué se diferencia el reenvío generalizado del basado en destino?

R33

¿Diferencias entre tabla de reenvío tradicional y tabla de flujos de OpenFlow?

R34

¿Qué significa 'coincidencia + acción'? Da ejemplos en reenvío tradicional y SDN (3 campos y 3 acciones posibles).

R35

Nombra 3 campos del encabezado IP que pueden ser comparados en OpenFlow 1.0 y 3 que no pueden serlo.