

Fenomenología Cuántica y Relativista

Licenciatura en Física | Plan 2020 Universidad Veracruzana

Información General

Profesor: Emmanuel Isaac Juárez Caballero

Ârea Académica: Técnica **Q Créditos:** 10

♣ Horas / Semana / Mes:
6 h/s/m (4 teóricas, 2 prácticas)

Modalidad:
Escolarizado

Repositorio del Curso: github.com/eisaacjc

(Notas de clase, código y visualizaciones)

1 Descripción y Competencias

Unidad de Competencia

El alumno argumenta e hipotetiza respecto a la naturaleza de los fenómenos cuánticos y relativistas, mostrando dominio de las teorías clásicas, la transformación de Lorentz y la hipótesis de cuantización. Compara los conceptos clásicos con los desarrollados a principios del siglo XX, además de desarrollar habilidades investigativas y didácticas, mostrando tolerancia y apertura para el trabajo en equipo con la finalidad de comprender el mundo cuántico y aplicar los conceptos en nuevos desarrollos.

Descripción del Curso

Este curso tiene el propósito de conocer desde una perspectiva teórico-práctica la fenomenología asociada a los fenómenos cuánticos y relativistas. Se imparte en la modalidad curso-taller, 6 h/s/m, 4 teóricas y 2 prácticas, con 10 créditos y forma parte del área de formación disciplinar. Es la Experiencia Educativa que sirve como puente entre los conceptos clásicos revisados hasta ahora y los que se requieren para abordar las descripciones cuánticas y relativistas. La estrategia metodológica consiste en abordar conceptos y fenómenos nuevos y contrastar con los clásicos, haciendo partícipe al alumno en este proceso. Se encargan trabajos, exposiciones, investigaciones y tareas como formas de evaluación.

.

Justificación

Esta experiencia educativa es de gran valor para el Licenciado en Física, formándolo en la naturaleza del método científico utilizado en física y cómo a partir de éste se han propuesto esquemas teóricos más complejos. Esto le da familiaridad al alumno para asimilar muchos conceptos novedosos asociados a la teoría cuántica. Por otra parte, se enfatizan los fundamentos filosóficos de la disciplina y de los nuevos conceptos que sustentan las teorías actuales. Esta EE contribuye al perfil de egreso haciendo una revisión de la rica fenomenología cuántica, necesaria para adentrarse posteriormente al formalismo matemático y sienta las bases para que el futuro profesionista se adentre en el uso de los nuevos conceptos.

2 Contenido Temático (Saberes)

2.1 Saber Teórico

- Relatividad especial: El alumno conoce las transformaciones de Lorentz. Derivadas de las T de L y aplicación en escenarios diversos. Se revisan los conceptos relativistas de energía, masa y momento.
- Introducción del cuanto de energía: Radiación térmica. Cuerpo negro, Densidad de energía. Catástrofe Ultravioleta, fórmula de Planck. Efecto fotoeléctrico. Efecto Compton. Experimento de Franck-Hertz.
- Fenomenología atómica: Modelos atómicos: Rutherford, Bohr. Series de emisión, cuantización del momento angular. Efecto Zeeman. Movimiento orbital del electrón. Espín del electrón y experimento de Stern-Gerlach.
- **Dualidad onda-partícula:** Ondas de De Broglié. Experimento de Davisson-Germer. Difracción de electrones en términos de la función de onda. Paquetes de onda. Principio de Incertidumbre y valores esperados.

2.2 Saber Heurístico

- Compara diversos sistemas de referencia y los resultados de la transformación de Galileo y la de Lorentz. Aplica la transformación a sistemas clásicos y electromagnéticos.
- Graficando los diversos resultados encontrados para la radiación térmica en términos de la temperatura y de la frecuencia, compara los esquemas teóricos desarrollados.
- Compara los modelos atómicos y grafica los niveles energéticos. Aplica los resultados en átomos hidrogenoides.
- Comparar la descripción corpuscular y la ondulatoria. Interpretar usando la postura de Born. Comparar los valores absolutos de las funciones de onda.

2.3 Saber Axiológico

- Con apertura y tolerancia para asimilar nuevos conocimientos. Con curiosidad e interés cognitivo para apropiarse de los conceptos nuevos que propone la relatividad de Einstein.
- Con apertura, interés cognitivo y realizando trabajo en equipo.
- Con interés cognitivo y apertura para la asimilación de nuevos conceptos. Con tolerancia a la frustración que generan los conceptos que contradicen el sentido común.
- Con apertura para asimilar conceptos nuevos, trabajando en equipo con interés cognitivo.

_

Estrategias Metodológicas 3

Estrategias de Enseñanza y Aprendizaje

O De Aprendizaje

♣☐ De Enseñanza

compañeros, realizando trabajos escritos y resolviendo problemas, además de realizar varias lecturas y buscar en fuentes diversas.

Preguntando al profesor, apoyándose de sus Uso de diapositivas, videos, cuadros sinópticos. Uso del pizarrón, gis de colores y soluciones por computadora que simulan los sistemas a estudiar.

Evaluación y Acreditación 4

4.1 Evidencia y Criterios de Desempeño

Evidencia de Desempe-	Criterio de Desempeño	Campos de Aplica-
ño		ción
Exámenes parciales	Solución correcta de los reactivos que se le presen-	
	tan.	
Tareas	Comprensión de los conceptos, realización de inves-	
	tigación y solución de problemas.	
Investigación de tópicos	Presentar un trabajo que cumpla los estándares del	
especializados	instrumento de evaluación.	
Proyecto integrador	Presentación de un proyecto terminado.	

Acreditación 4.2

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60 %.

Bibliografía

5.1 Fuentes de Información Básica

- 1. Gatreau, Savin. (2009). *Modern Physics*. México: McGrawHill, Serie Schaum. Caps. del 1 al 15.
- 2. Kenneth Krane. (1983). Modern Physics. USA: John Wiley & Sons, Caps. 2, 3, 4 y 6.
- 3. Pfeffer, Nir. (2000). Modern Physics, an introduction. Israel: Imperial College. Caps 1, 2 y 3.
- 4. Taylor, Wheeler. (1992). Space time physics. USA: W. H. Freeman Editors.

5.2 Fuentes de Información Complementaria

- 1. Biblioteca Virtual UV.
- 2. Einstein, A. (1999). Sobre la teoría de la relatividad especial. México: Altaya. Caps. 1 al 17.
- 3. Arnold B. Arons. (1970). Evolución de los conceptos de la física. México: Trillas. Caps. 33, 35 y 36.

7. L. G. (20	100). Max Pian	ck, a 150 anos	de su nacimien	to. México: El Co	iegio inacionai