

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars

Machine Learning

Content-based recommendations

Content-based recommender systems

Add 1 more feature

(intercept feature)

For each user j, learn a parameter $\underline{\theta^{(j)}} \in \mathbb{R}^3$. Predict user j as rating movie $(\theta \otimes h) h x^{(i)} (\theta^{(j)})^T x^{(i)}$ stars.

rating movie
$$(\theta W)^T x^{(4)} (\theta S)^T x^{(5)} Stars$$
. Predict user j=1; movie i=3

$$(3) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0$$

Feature of

1st movie

Features

Problem formulation

- $\rightarrow (r(i,j))=1$ if user j has rated movie i (0 otherwise)
- $y^{(i,j)}$ = rating by user j on movie i (if defined)
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- $\rightarrow (x^{(i)})$ = feature vector for movie i
- \rightarrow For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})^T$

B.c "m" const -> can remove it

- $\rightarrow (m^{(j)})$ = no. of movies rated by user j
- To learn $\theta^{(j)}$:

Min When minimize

$$\frac{1}{(i,j)^2} \left((6^{(i)})^{T} (x^{(i)}) - y^{(i,j)} \right)$$

"n": # of features we have per movie

Sum only when r(i, j)=1

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Regularization term

Compute the 1st

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k=0)$$

i:r(i,j)=1

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) (\text{for } k \neq 0)$$

This is the difference with linear regression

2(0(1) (Na))

Machine Learning

Collaborative filtering

Problem motivation

· · · · · · · · · · · · · · · · · · ·						V	
Movie	Alice (1)	Bob (2) ⊖ ⁽²⁾	Carol (3) ⊖ ^{⊌J}	Dave (4) _ව ජා	x_1 (romance)	x_2 (action)	
Love at last	5	5	0	0	0.9	0	_
Romance forever	5	?	?	0	1.0	0.01	NTI-
Cute puppies of love	?	4	0	?	0.99	0	X = [0.0
Nonstop car chases	0	0	5	4	0.1	1.0	
Swords vs. karate	0	0	5	?	0 Predic	0.9	$\times_{(i)}$
-> Alice like love but ction movie	[0] [a(2)]		$a(3) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	O(4)		d movie	(O(1), x, x2

st: bias; 2nd: love; 3rd: ction -> Alice like love but ate action movie $\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}, \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$ $\theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$ $\theta^{(5)} x^{(1)} x^{($

Problem motivation

i robiem n		V		X ₀ =			
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
Love at last	7 5	7 5	<u> </u>	7 0	1.1.0	A 0-1	<u> </u>
Romance forever	5	?	;	0	?	ý	x0= [10]
Cute puppies of love	?	4	0	?	?	?	(0.0)
Nonstop car chases	0	0	5	4	?	?	~(1)
Swords vs. karate	0	0	5	?	?	?	~1 (1)
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(e) (e)	(8)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5)

Theta for each user

Optimization algorithm

Feature set for movie "i"

Regularization term

"n": # of features
having for each movie

Given $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Collaborative filtering algorithm

NOTE: **Collaborative filtering** is **unsupervised learning algorithm**

Machine Learning

Collaborative filtering optimization objective

Then
$$r^{(1)}$$
 are times to $\rho^{(1)}$

$$\Rightarrow \text{Given } x^{(1)}, \dots, x^{(n_m)}, \text{ estimate } \theta^{(1)}, \dots, \theta^{(n_u)} : \\ \Rightarrow \left[\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \left\{ \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 \right\} \right]$$

$$\Rightarrow$$
 Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:

$$= \sum_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1 \\ x^{(1)} \dots x^{(n_m)}, \theta^{(1)}, \dots, x^{(n_m)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^$$

Andrew Ng

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, \ldots, n_u, i = 1, \ldots, n_m$:

every
$$j = 1, \dots, n_u, i = 1, \dots, n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

$$\left(\bigcirc^{(i)} \right)^{\mathsf{T}} \left(\times^{(i)} \right)$$

XOCI XER, OER

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	^	^	1	1

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering / X (ii) ' <

$$(\mathcal{O}_{e_J})_{\mathcal{A}}(x_{(i,j)})$$

$$= \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} \\ -(x^{(2)})^{T} - \end{bmatrix}$$

$$\Box = \begin{bmatrix} -(\phi^{(i)})^{T} \\ -(\phi^{(i)})^{T} \\ -(\phi^{(i)})^{T} \end{bmatrix}$$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find
$$\underline{\text{movies } j}$$
 related to $\underline{\text{movie } i}$?

Small $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$ and i are "similar"

5 most similar movies to movie i:

Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Implementational detail: Mean

You run a movie empire, and want to build a movie recommendation system based on collaborative filtering. There 1/1 point were three popular review websites (which we'll call A, B and C) which users to go to rate movies, and you have just acquired all three companies that run these websites. You'd like to merge the three companies' datasets together to build a single/unified system. On website A, users rank a movie as having 1 through 5 stars. On website B, users rank on a scale of 1 - 10, and decimal values (e.g., 7.5) are allowed. On website C, the ratings are from 1 to 100. You also have enough information to identify users/movies on one website with users/movies on a different website. Which of the following statements is true?

ation

Users who have not rated any movies

			•		V						
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		Г~	_	0	0	
→ Love at last	_5	5	0	0	30		5	5	0	0	
Romance forever	5	?	?	0		V	$\begin{vmatrix} 5 \\ 2 \end{vmatrix}$			0	9
Cute puppies of love	?	4	0	?	5 <mark>۵</mark>	Y =		4	U		
Nonstop car chases	0	0	5	4	Ş <mark>□</mark>			0	G	4	2
Swords vs. karate	0	0	5	?	∂ S		Γ_{Ω}	U	Э	U	•

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ (i,j): r(i,j)=1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{$$

This technique **solves the problem** that user not watch any movie

Mean Normalization:

$$u = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

$$\Rightarrow (O^{(i)})^{T}(\chi^{(i)}) + \mu_{i}$$

User 5 (Eve):