Esame di *Calcolo delle probabilità e statistica* (per studenti di Informatica) corso A

Università degli studi di Bari Aldo Moro Docente: Stefano Rossi

01-02-2021

Esercizio 1. Una moneta equa viene lanciata N volte, dove N è una variabile aleatoria geometrica di parametro p, cioè $P[N=k]=(1-p)^{k-1}p$, $k\geq 1$, con 0< p<1. Indichiamo con X il numero di teste ottenute.

- (1) Calcolare P[X=0], verificando che $P[X=0] = \frac{p}{1+p}$.
- (2) Calcolare P[N=2|X=0], la probabilità che siano stati fatti 2 lanci sapendo che non si sono avute teste.
- (3) Determinare p affinché la probabilità determinata sopra sia pari a $\frac{1}{16}$.

(Ricordare che $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$ per ogni $q\in\mathbb{R}$ tale che |q|<1.)

Esercizio 2. Dato il parametro $\theta > 0$, si considera la funzione $f(x;\theta) := cx$ per $0 \le x \le \theta$ e $f(x;\theta) = 0$ altrove. Determinare c affinché f sia la densità di probabilità di una variabile aleatoria X, verificando che $c = \frac{2}{\theta^2}$.

- (1) Determinare il valore atteso della variabile aleatoria X
- (2) Usare il valore determinato sopra per ricavare uno stimatore corretto del parametro θ in corrispondenza a un campione (X_1, X_2, \dots, X_n) di rango n.
- (3) Determinare lo stimatore di massima verosimiglianza di θ in corrispondenza a un campione (X_1, X_2, \dots, X_n) di rango n.

Esercizio 3. Un'azienda vinicola imbottiglia vini in due stabilimenti diversi. Si vuole controllare se il contenuto medio di una bottiglia di vino sia lo stesso nei due stabilimenti. A tal scopo si prendono a caso n=30 bottiglie per ciascuno dei due stabilimenti e si trovano le medie campionarie $\overline{x_1}=748\text{cl}$ e $\overline{x_2}=751\text{cl}$, rispettivamente. Assumendo che i contenuti medi siano variabili aleatorie gaussiane con la stessa varianza $\sigma^2=40\text{cl}^2$:

- (1) Dire quale test occorre eseguire se si vuole verificare che il contenuto medio delle bottiglie sia lo stesso per i due stabilimenti, specificando se si tratta di un test unilaterale o bilaterale.
- (2) Condurre il test a un livello di significatività del 10% e del 5%.
- (3) Calcolare il *p*-value del test.