SEQUENCE LISTING

<110 > Genentech, Inc. Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey Wood, William, I.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> 10466-14
- <140> 09/665,350
- <141> 2000-09-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> US 60/143,048
- <151> 1999-07-07
- <150> US 60/145,698
- <151> 1999-07-26
- <150> US 60/146,222
- <151> 1999-07-28
- <150> PCT/US99/20594
- <151> 1999-09-08
- <150> PCT/US99/20944
- <151> 1999-09-13

```
<150> PCT/US99/21090
 <151 > 1999-09-15
 <150 > PCT/US99/21547
 <151 > 1999-09-15
 <150> PCT/US99/23089
 <151> 1999-10-05
 <150> PCT/US99/28214
 <151> 1999-11-29
 <150> PCT/US99/28313
 <151> 1999-11-30
 <150> PCT/US99/28564
 <151> 1999-12-02
 <150> PCT/US99/28565
 <151> 1999-12-02
 <150> PCT/US99/30095
 <151> 1999-12-16
 <150> PCT/US99/30911
 <151> 1999-12-20
<150> PCT/US99/30999
 <151> 1999-12-20
 <150> PCT/US00/00219
 <151> 2000-01-05
 <160> 423
 <210> 1
 <211> 1825
 <212> DNA
 <213> Homo sapiens
 <400> 1
 actgcacete ggttetateg attgaattee eeggggatee tetagagate cetegacete 60
 gacccacgeg teegggeegg ageageaegg eegeaggace tggageteeg getgegtett 120
 cocgoagege taccegocat gegeetgeeg egeegggeeg egetgggget cetgeegett 180
 ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
 cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
 ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
 ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
 gaggegeagg aggageacet ggaggeetgg tggetgeage tgaagagega atateetgae 480
 ttattegagt ggttttgtgt gaagacactg aaagtgtget geteteeagg aacetaeggt 540
 cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
 ageggagatg ggagcagaca gggcgaeggg teetgeeggt geeacatggg gtaecaggge 660
```

cegetgtgea etgactgeat ggacggetae tteagetege teeggaaega gacceacage 720 atetgeacag cetgtgaega gteetgeaag aegtgetegg geetgaecaa eagagaetge 780 ggegagtgtg aagtgggetg ggtgetggae gagggegeet gtgtggatgt ggaegagtgt 840 geggeegage egecteeetg cagegetgeg cagttetgta agaaegeeaa eggeteetac 900 aegtgegaag agtgtgaete cagetgtgtg ggetgeacag gggaaggeec aggaaaetgt 960 aaagagtgta tototggota ogogagggag caoggacagt gtgcagatgt ggacgagtgc 1020 teactageag aaaaaacetg tgtgaggaaa aacgaaaact getacaatac tecagggage 1080 taegtetgtg tgtgteetga eggettegaa gaaaeggaag atgeetgtgt geegeeggea 1140 gaggotgaag ocacagaagg agaaagooog acacagotgo octooogoga agacotgtaa 1200 tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260 ggatgeegte teetgeagtg gaeageggeg gggagagget geetgetete taaeggttga 1320 tteteatttg teeettaaac agetgeattt ettggttgtt ettaaacaga ettgtatatt 1380 ttgatacagt tetttgtaat aaaattgace attgtaggta atcaggagga aaaaaaaaaa 1440 aaaaaaaaaa aaagggegge egegaeteta gagtegaeet geagaagett ggeegeeatg 1500 geocaaettg tttattgeag ettataatgg ttacaaataa ageaatagea teacaaattt 1560 cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620 atettateat gtetggateg ggaattaatt eggegeagea eeatggeetg aaataacete 1680 tgaaagagga acttggttag gtaccttetg aggeggaaag aaccagetgt ggaatgtgtg 1740 teagttaggg tgtggaaagt ddddaggete dddaggagge agaagtatgd aagcatgdat 1800 ctcaattagt cagcaaccca gtttt 1825

<210 > 2

<211> 353

<212 > PRT

<213 > Homo sapiens

<400 > 2

Met Arg Leu Pro Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu Leu 15

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His 25

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr 40

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu 70 75

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala 85 90

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr 100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys 115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser 130

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg 145 150 155 160 Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu 165 170 Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr 180 185 His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly 195 Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp 220 215 Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro 225 230 235 Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly 260 265 Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys 275 280 Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys Ash Glu Ash Cys Tyr Ash Thr Pro Gly Ser Tyr Val Cys Val Cys Pro 305 310 315 320 Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala 325 330 Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp 345

Leu

<110> 3

<211> 2206

<212> DNA

<213> Homo sapiens

<400> 3

caggicoaac igcacciegg tictategat igaaticoc ggggateete tagagateec 60 tegacetega eecaegegie egecaggeeg ggaggegaeg egecageeg ictaaacggg 120 aacageectg getgagggag eigeagegea geagagtate igaeggegee aggitigegta 180 ggitgeggeae gaggagtiit eecggeageg aggaggieet gagcageatg geeeggagga 240

```
gegeetteee tgeegeegeg etetggetet ggageateet eetgtgeetg etggeaetge 300
gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360
caagagtact cataggattt gaagaagata teetgattgt tteagagggg aaaatggeac 420
ettttacaca tgatttcaga aaagegcaac agagaatgee agetatteet gtcaatatee 480
attecatgaa tittacetgg caagetgeag ggeaggeaga ataettetat gaatteetgt 540
cettgegete eetggataaa ggcateatgg cagatecaac egteaatgte cetetgetgg 600
gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660
atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720
tecaaacace teaaaatget atettettta aaacatgtea acaagetgag tgeecaggeg 780
qqtqccqaaa tqqaqqcttt tqtaatqaaa qacqcatctq cqaqtqtcct qatqqqttcc 840
acggacetea etgtgagaaa geeetttgta eeccaegatg tatgaatggt ggaetttgtg 900
tgacteetgg tttetgeate tgeecacetg gattetatgg agtgaaetgt gacaaagcaa 960
actgeteaac cacctgettt aatggaggga eetgttteta eeetggaaaa tgtatttgee 1020
ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080
gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140
gttcaaagec tgtctgegag cetggetgtg gtgcacatgg aacctgccat gaacccaaca 1200
aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260
teatacatgo cotgaggoca geaggogoco agoteaggoa geacaegoct teacttaaaa 1320
aggccgagga geggegggat ceaectgaat ecaattacat etggtgaact eegacatetg 1380
aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440
aaataatgtt cattacactt aagaatactg gootgaattt tattagotto attataaatc 1500
actgagetga tatttactet teettttaag tittetaagt aegtetgtag eatgatggta 1560
tagattttet tgttteagtg etttgggaca gattttatat tatgteaatt gateaggtta 1620
aaattttcag tgtgtagttg gcagatattt tcaaaattac aatgcattta tggtgtctgg 1680
gggcagggga acatcagaaa ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg 1740
atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800
tigttacatt tittaaaaatt gotottaatt tittaaactot caatacaata tattitgace 1860
ttaaacaata taatatatto taaacacaat gaaataggga atataatgta tgaacttttt 1980
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa qqqcqqccqc qactctaqaq tcqacctqca 2160
qaaqcttqqc cqccatqqcc caacttqttt attqcaqctt ataatq
                                                            2206
```

<210> 4

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser 1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala 50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65					70					75					80
Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Gln
Ala	Glu	Tyr	Phe 100	Tyr	Glu	Phe	Leu	Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	Gly
Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120	Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro
His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln
Asp 145	Gly	Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr
Cys	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys
Asn	Glu	Arg 195	Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Cys
Val 225	Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255	Cys
Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Cys	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
Cys	Glu	Ile 275	Ser	Lys	Cys	Pro	Gln 280		Cys	_		Gly 285	-	Lys	Cys
Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Cys	Ser	Lys	Gly	Tyr 300	Gln	Gly	Asp	Leu
Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Суѕ	Gly 315	Ala	His	Gly	Thr	Cys 320
His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330	Gly	Trp	His	Gly	Arg 335	His
Cys	Asn	Lys	Arg	Tyr	Glu	Ala	Ser	Leu 345		His	Ala	Leu	Arg	Pro	Ala

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 355 360 365	
Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 370 375	
<210> 5 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 5 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca	45
<210> 6 <211> 21 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 6 agagtgtatc tctggctacg c	21
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 7 taagteegge acattacagg te	22
<210> 8 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 8 cccacgatgt atgaatggtq qactttqtqt qactcctggt ttctqcatc	49

```
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 9
aaagacgcat ctgcgagtgt cc
                                                                   22
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 10
tgctgatttc acactgctct ccc
                                                                   2.3
<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens
<400> 11
eggaegegtg ggegteegge ggtegeagag ceaggaggeg gaggegegeg ggeeageetg 50
ggccccagcc cacacettca ccagggccca ggagccacca tgtggcgatg tecaetgggg 120
ctactgetgt tgetgeeget ggetggeeae ttggetetgg gtgeeeagea gggtegtggg 180
egeoggage tageadeggg tetgeacetg eggggeatee gggaegeggg aggeoggtae 240
tgccaggage aggacetgtg etgeegegge egtgeegaeg aetgtgeeet geeetaeetg 300
ggogddatot gttactqtqa cotottotqc aaccqcacqq totocqactq otqccctqac 360
ttotgggact totgoctogg ogtgocacco octittocco ogatocaagg atgtatgcat 420
ggaggtegta tetatecagt ettgggaaeg taetgggaca aetgtaaeeg ttgeaeetge 480
caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagege ettetgggge atgaeeetgg atgagggeat 600
tegetacege etgggeacea teegeeeate tteeteggte atgaacatge atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacetgatt catgageete ttgaeeaagg caactgtgea ggeteetggg cetteteeac 780
agoagotgtg goatoogato gtgtotcaat coattototg ggacacatga ogootgtoot 840
gtegeeceag aacetgetgt ettgtgaeae ceaecageag eagggetgee geggtggee 900
totogatggt gootggtggt tootgogtog cogaggggtg gtgtotgaco actgotacco 960
etteteggge egtgaaegag aegaggetgg eeetgegeee eeetgtatga tgeaeageeg 1020
agccatgggt eggggeaage geeaggeeae tgeeeactge eecaacaget atgttaataa 1080
caatgacate taccaggtea etectgteta eegeetegge tecaaegaca aggagateat 1140
gaaggagetg atggagaatg geeetgteea ageeeteatg gaggtgeatg aggaettett 1200
cetatacaag ggaggeatet acagecaeae gecagtgage ettgggagge cagagagata 1250
degeoggeat gggaccoact dagtdaagat dadaggatgg ggagaggaga dgdtgddaga 1320
```

2197

tggaaggaeg cteaaatact ggaetgegge caacteetgg ggeeeageet ggggegagag 1380 gggccactte egcategtge geggegteaa tgagtgegae ategagaget tegtgetggg 1440 cgtctggggc cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500 ggggtccggc ctgggatcca ggctaagggc cggcggaaga ggccccaatg gggcggtgac 1560 decageding decgaeagag decggggege aggegggege dagggegeta atdeceggege 1620 gggttdeget gaegeagege deegeetiggg ageegeggge aggegagaet ggeggagees 1680 ccagacetee cagtigggae ggggcagige etggcetggg aagageaeag etgeagatee 1740 caggeetetg gegeeeeae teaagaetae caaageeagg acaceteaag tetecageee 1800 ttgcccaggt tggagtgcag tggcccatca gggetcactg taacetcega etectqqqtt 1920 caagtgaccc tcccacctca gcctctcaag tagetgggac tacaggtgca ccaccacacc 1980 tggctaattt ttgtattttt tgtaaagagg ggggtctcac tgtgttgccc aggctggttt 2040 egaacteetg ggeteaageg gteeacetge etecquetee caaaqtqctq qqattqcaqq 2100 catgagedad tgcadedage detgtattet tattetteag atatttattt ttettttead 2160 tgttttaaaa taaaaccaaa gtattgataa aaaaaaa <210> 12 <211> 164 <212> PRT <213> Homo sapiens <400> 12 Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly 1.0 His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala 20 Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu 50 55 Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro 90 Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr 100 Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln 130 135 140 Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly 145 150 155 160

His Asp Pro Gly

```
<210> 13
 <211> 533
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> modified base
 <222> (33)
 <223> a, t, c or g
<220>
<221> modified base
<222> (80)
<223> a, t, c or g
<220>
<221> modified base
<222> (94)
<223> a, t, c or g
<220>
<221> modified base
<222> (144)
<223> a, t, c or g
<220>
<221> modified base
<223> (188)
<223 > a, t, c or g
<400> 13
aggeteettg geeettitte cacageaage tintgenate cegattegtt gieteaaate 60
caattetett gggacacatn acgcetgtee titingeecca gaacetgetg tettgtacae 120
ccaccaqcaq caqqqctqcc qcqntqqqcq totcqatqqt qcctqqtqqt tcctqcqtcq 180
cogaggints statetacc actschace cttetesses egitsaacsas acgasicities 240
contigence continuing the transfer of the continuing and the continuing the conti
tgcccaetgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
cognotoggo tocaacgaca aggagatoat gaaggagotg atggagaatg goodtgtoca 420
agreeteatg gaggtgeatg aggaettett cetataeaag ggaggeatet aeageeacae 480
gccagtgage cttgggagge cagagagata ccgccggcat gggacccact cag
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
                oligonucleotide probe
<400> 14
```

ttegaggeet etgagaagtg geee 2											
<210> 15 <211> 22 <u12> DNA <213> Artificial Sequence</u12>											
<pre><u20> <u20> <u20> <u20> <u20> <u20> <u20> <u20> <u20> <u20 <u20="" <u20<="" td=""><td></td></u20></u20></u20></u20></u20></u20></u20></u20></u20></u20></pre>											
<400> 15 ggoggtatet etetggeete ee 2:											
<210> 16 <011> 50 <u12> DNA <213> Artificial Sequence</u12>											
<.1.10>											
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
::400 > 15											
tuotocadag dagotgtggd atdogatogt gtotcaatod attototggg	50										
<pre><=10 > 17 <=E11 > 950 <=:E1 > DNA <=13 > Homo sapiens</pre>											
e400> 17 gotgottydd otgitgatgg daggottggd detgdagdd ggdaetgdd tgetgtgdagddagdagdag gddaeggtga gdaadgagga dtgdtgdag gtggagaadt gdaeddagd ggqqgagdag tgdtggaddg dgdaeddag dgdagttggd dteetgaddg tdatdagdagaggagdag tgdtgaadg tggatgactd acaggadtad tagtgggda agaagaadat daegtggtgt gadaedgadt tgtgdaadgd dagggggdd datgdetgd agedggtggd dagaedgadt tgtgdaadgd dagggggdd datgdetgd ggdaeddgag ggaddadad tgggatgtgt gddaedgg ggdaedgag gadaedgad tgggagdada tgggtgtggt gddecaggdd tetgtgdaadga tddtadagaa detggdadad tgggagddag tddtgggg ggdaedgag tgggagddag tddtgggagdad tddtadagaad datggadadad tgggagdadad tddtadagaad datggdagadad tddtadagaad tgggagdadad tddtaadgaad datggadadad tddtaadgaadad tgggagdadad tddtaadgaadad tddtaadgaadad tgggagdadad tddtaadgaadadadadadadadadadadadadadadada	120 180 240 300 360 420 480										
gtatgacdat gtatgtetge accoctgice decadediga decidedatig geoeteteed ggadteedad degregate agetetagig acacagated geotgeagat ggeoeteteed accordence digetgitte catggedoag catteredad ecitaacoot gigeteagge accordence deaggaagde treectgede accordence tigaettgage daggigtgie decegoacoo ageagggad aggeacteag gagggedoag taaaggetga gatgaagtig actgagtaga actggaggad aagagtegad gigagtiede agagaaggg deciggagged tigagggaagg ggedagged dacattegig gaggtedoorg aatggeagde tigaggaagag gigaggedoorg tigaggaagaaga gigagaagad tigaggaagaaga gedaaaaaaaa aatggeagdo tigaggaadag gtaggedoorg tigaggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	540 600 660 720 780 840 900										
<t10> 18 <t11> 189 <t12> PRT <t13> Homo sapiens</t13></t12></t11></t10>											

. 50
1.27
- "-
4.4
175.0
ţ
-
-
4.
. 227
1.5
_
· ··
.25
. =

<210> 20 <211> 24 <212> DNA

< 400)> 18	3													
Met 1	Thr	His	Arg	Thr 5	Thr	Thr	Trp	Ala	Arg 10	Arg	Thr	Ser	Arg	Ala 15	Val
Thr	Pro	Thr	Cys 20	Ala	Thr	Pro	Ala	Gly 25	Pro	Met	Pro	Cys	Ser 30	Arg	Leu
Pro	Pro	Ser 35	Leu	Arg	Cys	Ser	Leu 40	His	Ser	Ala	Cys	Cys 45	Ser	Gly	Asp
Pro	Ala 50	Ser	Tyr	Arg	Leu	Trp 55	Gly	Ala	Pro	Leu	Gln 60	Pro	Thr	Leu	Gly
Val 65	Val	Pro	Gln	Ala	Ser 70	Val	Pro	Leu	Leu	Thr 75	Asp	Leu	Ala	Gln	Trp 80
Glu	Pro	Val	Leu	Val 85	Pro	Glu	Ala	His	Pro 90	Asn	Ala	Ser	Leu	Thr 95	Met
Tyr	Val	Cys	Thr 100	Pro	Val	Pro	His	Pro 105	Asp	Pro	Pro	Met	Ala 110	Leu	Ser
Arg	Thr	Pro 115	Thr	Arg	Gln	Ile	Ser 120	Ser	Ser	Asp	Thr	Asp 125	Pro	Pro	Ala
Asp	Gly 130	Pro	Ser	Asn	Pro	Leu 135	Cys	Cys	Cys	Phe	His 140	Gly	Pro	Ala	Phe
Ser 145	Thr	Leu	Asn	Pro	Val 150	Leu	Arg	His	Leu	Phe 155	Pro	Gln	Glu	Ala	Phe 160
Pro	Ala	His	Pro	Ile 165	Tyr	Asp	Leu	Ser	Gln 170	Val	Trp	Ser	Val	Val 175	Ser
Pro	Ala	Pro	Ser 180	Arg	Gly	Gln	Ala	Leu 185	Arg	Arg	Ala	Gln			
<211 <212	> 19 > 24 > DN > Ar	IA	cial	Seq	luenc	:e									
<220 <223	> De		ptio ucle				ial	Sequ	ience	e: Sy	nthe	etic			
	> 19 gtgc		tcct	gcaa	a go	:CC									

24

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 20
                                                                   24
tgcacaagtc ggtgtcacag cacg
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg
                                                                   44
<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens
<400> 22
cocacgogte egaacetete cagegatggg ageogeoge etgetgeeca aceteaetet 60
gtgcttacag ctqctgattc tctqctqtca aactcaqtac qtgaqggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cqagtaccaa ctctacagca ggaccagtgg 180
caaqcacqtq caqqtcaccq qqcqtcqcat ctccqccacc qccqaqqacq qcaacaaqtt 240
tyccaagete atagtggaga eggacaegtt tygcageegg gttegeatea aaggggetga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
egeceggeae gagggetggt teatggeett eaegeggeag gggeggeece gecaggette 480
degrageege cagaaccage gegaggeeca etteateaag egeetetaee aaggeeaget 540
gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga ggcagggggc 660
ageagedect gggeegeete eecacecett teeettetta atecaaggae tgggetgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840
gaegggtgge aggeeetgga gaggaactga gtgteaccet gateteagge caccageete 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960
agacaacegt etggaggtgg etgteeteaa aatetgette teggatetee etcagtetge 1020
coccagocco caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080
tttcaggaaa aaagaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
acgacccagg cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200
<210> 23
<211> 205
<212> PRT
<213> Homo sapiens
```

<400> 23

Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met 20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp
65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg 130 135 140

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr
180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<400> 24

cagtacgtga gggaccaggg cgccatga

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 25
ccqqtqacct qcacqtqctt qcca
                                                                   24
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified base
<222> (21)
<123> a, t, c or g
<400> 25
geggatetge egeetgetea netggteggt catggegees t
                                                                   41
<310> 27
<111> 2479
<212> DNA
<113> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagagggc aacacaggct gataagacca gagacagcag ggagattatt 130
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
todagtoatt tigattitge igittattit tittiticitt tictittice caccacattg 240
tattttattt ccqtacttca qaaatqqqcc tacaqaccac aaaqtqqccc aqccatqqqq 300
cttttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tectggeetg cectagtgtg tgeegetgeg acaggaactt tgtetactgt aatgagegaa 420
gettgaeete agtgeetett gggateeegg agggegtaae egtaetetae eteeacaaca 480
accaaattaa taatgetgga ttteetgeag aactgeacaa tgtacagteg gtgeacaegg 540
totacotgta tggcaaccaa ctggacgaat tocccatgaa cottoccaag aatgtcagag 600
ttotocattt geaggaaaac aatatteaga eeattteaeg ggetgetett geeeagetet 660
tgaagottga agagotgood otggatgaca actocatato cacagtgggg gtggaagacg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaaccteet gaccaacaaq ggtategeeq agggeacett cagecatete accaagetea 960
aggaatttte aattqtacqt aattcqctqt cccaccctcc tcccqatctc ccaqqtacqc 1020
atetgateag getetatttg caggacaacc agataaacca catteetttg acagcettet 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
```

```
aaggggtttt tgataatote teeaacetga ageageteae tgeteggaat aaceettiggt 1200
tttgtgactg cagtattaaa tqqqtcacaq aatqqctcaa atatatccct tcatctctca 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320
taaatatgaa tettttgtee tgteecacea egaceeeegg eetgeetete tteaceeeag 1380
coccaagtad agottetoog accacteago etcocaccot etctatteca aaccetagoa 1440
gaagetacae geetecaact eetaceacat egaaacttee caegatteet gaetgggatg 1500
geagagaaag agtgaeecca ectatttetg aacggateea getetetate cattttgtga 1560
atgatactic catteaagte agetggetet etetetteae egigatggea tacaaactea 1620
catggqtgaa aatggqccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
gtgagaagca acacetgage etggttaact tagageeeeg atceacetat eggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatgo otoctatotg aacaacggca gcaacacago gtocagccat gagcagacga 1860
egteecacag catgggetee ceetttetge tggegggett gateggggge geggtgatat 1920
ttgtgetggt ggtettgete agegtetttt getggeatat geacaaaaag gggegetaca 1980
cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacgatca acteettaaa ggagatttea gactgeagee catttacace ceaaatgggg 2160
gcattaatta cacaqactqc catatcccca acaacatqcq atactgcaac aqcaqcqtqc 3220
caqacctqqa qcactqccat acqtqacaqc caqaqqccca qcqttatcaa qqcqqacaat 2280
tagactettg agaacacact egtgtgtgca cataaagaca egcagattae atttgataaa 2340
tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 1460
tetttgettt ttaaatett
<210> 28
<211> 660
<212> PRT
<213> Homo sapiens
<400> 28
Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
                                 25
Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
         3.5
                             40
Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
                         55
Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
 65
                     70
                                         75
Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr
Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
                                105
Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala
```

120

125

115

2479

Leu	Ala 130	Gln	Leu	Leu	Lys	Leu 135	Glu	Glu	Leu	His	Leu 140	Asp	Asp	Asn	Ser
Ile 145	Ser	Thr	Val	Gly	Val 150	Glu	Asp	Gly	Ala	Phe 155	Arg	Glu	Ala	Ile	Ser 160
Leu	Lys	Leu	Leu	Phe 165	Leu	Ser	Lys	Asn	His 170	Leu	Ser	Ser	Val	Pro 175	Val
Gly	Leu	Pro	Val 180	Asp	Leu	Gln	Glu	Leu 185	Arg	Val	Asp	Glu	Asn 190	Arg	Ile
Ala	Val	Ile 195	Ser	Asp	Met	Ala	Phe 200	Gln	Asn	Leu	Thr	Ser 205	Leu	Glu	Arg
Leu	Ile 210	Val	Asp	Gly	Asn	Leu 215	Leu	Thr	Asn	Lys	Gly 220	Ile	Ala	Glu	Gly
Thr 225	Phe	Ser	His	Leu	Thr 230	Lys	Leu	Lys	Glu	Phe 235	Ser	Ile	Val	Arg	Asn 240
Ser	Leu	Ser	His	Pro 245	Pro	Pro	Asp	Leu	Pro 250	Gly	Thr	His	Leu	Ile 255	Arg
Leu	Tyr	Leu	Gln 260	Asp	Asn	Gln	lle	Asn 265	His	Ile	Pro	Leu	Thr 270	Ala	Phe
Ser	Asn	Leu 275	Arg	Lys	Leu	Glu	Arg 280	Leu	Asp	Ile	Ser	Asn 285	Asn	Gln	Leu
Arg	Met 290	Leu	Thr	Gln	Gly	Val 295	Phe	Asp	Asn	Leu	Ser 300	Asn	Leu	Lys	Gln
Leu 305	Thr	Ala	Arg	Asn	Asn 310	Pro	Trp	Phe	Cys	Asp 315	Cys	Ser	Ile	Lys	Trp 320
Val	Thr	Glu	Trp	Leu 325	Lys	Tyr	Ile	Pro	Ser 330	Ser	Leu	Asn	Val	Arg 335	Gly
Phe	Met	Cys	Gln 340	Gly	Pro	Glu	Gln	Val 345	Arg	Gly	Met	Ala	Val 350	Arg	Glu
Leu	Asn	Met 355	Asn	Leu	Leu	Ser	Cys 360	Pro	Thr	Thr	Thr	Pro 365	Gly	Leu	Pro
Leu	Phe 370	Thr	Pro	Ala	Pro	Ser 375	Thr	Ala	Ser	Pro	Thr 380	Thr	Gln	Pro	Pro
Thr 385	Leu	Ser	Ile	Pro	Asn 390	Pro	Ser	Arg	Ser	Tyr 395	Thr	Pro	Pro	Thr	Pro 400
Thr	Thr	Ser	Lys	Leu	Pro	Thr	Ile	Pro	Asp	Trp	Asp	Gly	Arg	Glu	Arg

				405					410					415	
Val	Thr	Pro	Pro 420	Ile	Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Val
Asn	Asp	Thr 435	Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	Val	Met
Ala	Tyr 450	Lys	Leu	Thr	Trp	Val 455	Lys	Met	Gly	His	Ser 460	Leu	Val	Gly	Gly
Ile 465	Val	Gln	Glu	Arg	Ile 470	Val	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Leu 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Cys	Leu	Val	Pro 495	Leu
Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	Val	Glu 505	Asp	Thr	Ile	Cys	Ser 510	Glu	Ala
Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525	Ala	Ser	Ser
His	Glu 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540	Phe	Leu	Leu	Ala
Gly 545	Leu	Ile	Gly	Gly	Ala 550	Val	Ile	Phe	Val	Leu 555	Val	Val	Leu	Leu	Ser 560
Val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570	Arg	Tyr	Thr	Ser	Gln 575	Lys
Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585	Asp	Asp	Tyr	Сув	Glu 590	Ala	Gly
Thr	Lys	Lys 595	Asp	Asn	Ser	Ile	Leu 600	Glu	Met	Thr	Glu	Thr 605	Ser	Phe	Gln
Ile	Val 610	Ser	Leu	Asn	Asn	Asp 615	Gln	Leu	Leu	Lys	Gly 620	Asp	Phe	Arg	Leu
Gln 625	Pro	Ile	Tyr	Thr	Pro 630	Asn	Gly	Gly	Ile	Asn 635	Tyr	Thr	Asp	Cys	His 640
Ile	Pro	Asn	Asn	Met 645	Arg	Tyr	Cys	Asn	Ser 650	Ser	Val	Pro	Asp	Leu 655	Glu
His	Cys	His	Thr 660												
<210)> 29)													
<111	.> 21	-													
<212	:> DN	1A													

<213>	Artificial Sequence	
<120> 223	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> cggtct	29 tacct gtatggcaac c	21
<210><211><211><212><213>	22	
<220><223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gcagga	30 acaac cagataaacc ac	22
<210><211><211><212><213>	22	
<220><223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<:400>	31	
acgcag	gattt gagaaggetg te	22
<u10><u11><u11><u11><u11><u11><u11><u11></u11></u11></u11></u11></u11></u11></u11></u10>	4.5	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ttcacg		46
<210><211><211><212><213>	3449	
	33 gagca ageggeggeg geggagaeag aggeagagge agaagetggg geteegteet eecae gagegateee egaggagage egeggeeete ggegaggega	

gaggaagace egggtggetg egeceetgee tegetteeca ggegeeggeg getgeageet 180 tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240 teggacagat egtecteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300 ctaggggcag acacgetegg acceaecege agaeggeeet tetggagagt teetgtgaga 360 acaageggge agacetggtt tteateattg acageteteg eagtgteaac acceatgact $420\,$ atgeaaaggt caaggagtte ategtggaca tettgeaatt ettggacatt ggteetgatg 480 teaccegagt gggeetgete caatatggea geactgteaa gaatgagtte teecteaaga 540 cetteaagag gaagteegag gtggagegtg etgteaagag gatgeggeat etgteeaegg 500 gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca gaagcagagg 660 gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720 ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780 ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840 aggaccatgt etteettgtg gecaatttea gecagattga gaegetgaee teegtgttee 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960 gcatcaacat coctggotca tacgtotgea ggtgcaaaca aggotacatt otcaactegg 1020 atcagacgae ttgcagaate caggatetgt gtgccatgga ggaccacaac tgtgagcage 1080 tetgtytgaa tytgeeggge teettegtet geeagtgeta eagtggetae geeetggetg 1140 aggatgggaa gaggtgtgtg getgtggaet aetgtgeete agaaaaecae ggatgtgaae 1200 atgagtgtgt aaatgetgat ggeteetaee titgeeagtg eeatgaagga tittgetetta 1260 accoagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa cogggetgtg 1320 ageatgagtg egteaacatg gaggagaget actaetgeeg etgecacegt ggetacacte 1380 tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440 gtgagcaget gtgtetgaac aeggaggatt eettegtetg eeagtgetea gaaggettee 1500 teateaacga ggaceteaag acetgeteee gggtggatta etgeetgetg agtgaceatg 1560 gttgtgaata eteetgtgte aacatggaea gateetttge etgteagtgt eetgagggae 1620 acytyctocy caycyatygy aagacytyty caaaattyga ctottytyct ctygygyacc 1680 adagttgtga adattegtgt gtaagdagtg aagattegtt tgtgtgddag tgetttgaag 1740 gttatatact cogtgaagat ggaaaaacct gcagaaggaa agatgtotgo caagctatag 1800 accatggetg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgettgg 1860 agggatteeg getegetgag gatgggaaac getgeegaag gaaggatgte tgcaaatcaa 1920 occaseatgg etgegaacae atttgtgtta ataatgggaa tteetacate tgeaaatget 1980 cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040 ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100 tgaagcagtt tgtcactgga attatagatt cottgacaat ttcccccaaa googetcgag 2160 tggggetget ceagtattee acacaggtee acacagagtt cactetgaga aactteaact 2220 dagddaaaga datgaaaaaa gddgtggddd adatgaaata datgggaaag ggdtdtatga 2280 ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340 deetttedad aagggtgedd agagdagdda ttgtgttead cgadggadgg getcaggatg 2400 acgtotocga gtgggccagt aaagccaagg ccaatggtat cactatgtat gctgttgggg 2460 taggaaaago cattgaggag gaactacaag agattgooto tgagoocaca aacaagcato 2520 tettetatge egaagaette ageacaatgg atgagataag tgaaaaacte aagaaaggea 2580 tetgtgaage tetagaagae teegatggaa gacaggaete teeagcaggg gaactgecaa 2640 aaacggtcca acagccaaca gaatetgage cagtcaccat aaatatccaa gacctacttt 2700 cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760 ctacacaaaa gettteecat teaacaaaac etteaggaag eeetttggaa gaaaaacaeg 2820 atcaatgcaa atgtgaaaac ettataatgt teeagaacet tgcaaacgaa gaagtaagaa 2880 aattaacaca gegettagaa gaaatgacac agagaatgga ageeetggaa aategeetga 2940 gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000 gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060 aacaatcagt actgagaaac etggtttgec acagaacaaa gacaagaagt atacactaac 3120 ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180 gaatgaataa gotatgoaag gtattttgta atatactgtg gacacaactt gottotgoot 3240 categrate tagtgtgcaa teteatttga etataegata aagtttgeac agtettaett 3300

ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360 gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420 ttatacaata ttaaaattca ccacttcag 3449

<210> 34

<211> 915

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile 1 5 10 15

Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile 20 25 30

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu 35 40 45

Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser 50 55 60

Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile 65 70 75 80

Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
85 90 95

Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys 100 105 110

Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 115 120 125

His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu 130 135 140

Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn 145 150 155 160

Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser 165 170 175

Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe 180 185 190

Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
195 200 205

Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln 210 215 220

Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225					230					235					240
Met	Cys	Ser	Thr	Leu 2 4 5	Glu	His	Asn	Cys	Ala 250	His	Phe	Cys	Ile	Asn 255	Ile
Pro	Gly	Ser	Tyr 260	Val	Cys	Arg	Cys	Lys 265	Gln	Gly	Tyr	Ile	Leu 270	Asn	Ser
Asp	Gln	Thr 275	Thr	Cys	Arg	Ile	Gln 280	Asp	Leu	Cys	Ala	Met 285	Glu	Asp	His
Asn	Cys 290	Glu	Gln	Leu	Cys	Val 295	Asn	Val	Pro	Gly	Ser 300	Phe	Val	Cys	Gln
Cys 305	Tyr	Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315	Lys	Arg	Cys	Val	Ala 320
Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330	Cys	Glu	His	Glu	Cys 335	Val
Asn	Ala	Asp	Gly 340	Ser	Tyr	Leu	Cys	Gln 3 4 5	Cys	His	Glu	Gly	Phe 350	Ala	Leu
Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360	Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn
Lys	Pro 370	Gly	Cys	Glu	His	Glu 375	Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr
Cys 385	Arg	Cys	His	Arg	Gly 390	Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400
Ser	Arg	Val	Asp	His 405	Cys	Ala	Gln	Gln	Asp 410	His	Gly	Cys	Glu	Gln 415	Leu
Cys	Leu	Asn	Thr 420	Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Суѕ	Ser	Glu 430	Gly	Phe
Leu	Ile	Asn 435	Glu	Asp	Leu	Lys	Thr 440	-	Ser	Arg		Asp 445	Tyr	Cys	Leu
Leu	Ser 450	Asp	His	Gly	Cys	Glu 455	Tyr	Ser	Cys	Val	Asn 460	Met	Asp	Arg	Ser
Phe 465	Ala	Cys	Gln	Cys	Pro 470	Glu	Gly	His	Val	Leu 475	Arg	Ser	Asp	Gly	Lys 480
Thr	Cys	Ala	Lys	Leu 485	Asp	Ser	Cys	Ala	Leu 490	Gly	Asp	His	Gly	Cys 495	Glu
His	Ser	Cys	Val	Ser	Ser	Glu	Asp	Ser	Phe	Val	Cys	Gln	Cys	Phe	Glu

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val 520 Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp 535 Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp 550 555 Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly 565 570 Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys 585 580 590 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser 615 Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile 630 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arq Val Gly Leu Leu 645 650 Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn 660 Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser 695 Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 705 710 Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu 725 730 Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly 745 Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu 775 Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 785 790 795

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln 810 805 Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu 820 Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp 835 840 Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser 855 Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu 870 875 Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln 885 890 895 Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu 900 905 910 Arg Tyr Arg 915 <210> 35 <211> 23 <.11.2> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 35 gtgaccctgg ttgtgaatac tcc 23 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 36 22 acagccatgg totatagett gg <210> 37 <211> 45 <212> DNA

<213> Artificial Sequence

```
<220 >
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400 > 37
                                                                  45
qcctqtcaqt qtcctqaqqq acacqtgctc cgcagcqatg ggaag
<210> 38
<211 > 1813
<212 > DNA
<213 > Homo sapiens
<400> 38
ggageegeed tgggtgteag eggetegget eeegegeacg etceggeegt egegeageet 60
eggeaectge aggteegtge gteeegegge tggegeecet gaeteegtee eggeeaggga 120
gggccatgat ttecetceeg gggccectgg tgaccaaett getgeggttt ttgtteetgg 180
ggotgagtgo octogogodo ocotogoggg occagotgoa actgoacttg occgocaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtette ateccageca tgggaggtge cetttgtgat gtggttette aaacagaaag 360
aaaaqqaqqa tcaqqtqttq tootacatca atqgggtcac aacaagcaaa cotggagtat 420
cottageta atacatgosa tacaggaaca tetaatgag gatggagggt atacaggaga 480
aagactotgg coodtacage tgeteegtga atgtgcaaga caaacaaggc aaatctaggg 540
qccacaqcat caaaacctta qaactcaatg tactqqttcc tccagetcct ccatcctgcc 600
qtotocaqqq tqtqococat gtqqqqqqcaa acgtgaccot gagctgccag totocaagga 660
gtaageeege tgteeaatae eagtgggate ggeagettee ateetteeag aetttetttg 720
caccageatt agatgueate egugguett taageeteae caacettiteg tetteeatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tggaagtgag cacagggest ggagetgeag tggttgstgg agstgttgtg ggtassetgg 900
ttggadtggg gttgdtggdt gggdtggtdd tettgtadda degdeggggd aaggdddtgg 960
aggageeage caatgatate aaggaggatg ceattgetee eeggaeeetg ceetggeeca 1020
ayageteaga cacaatetee aagaatggga ceettteete tgteacetee gcacgagece 1080
teeggeeace ceatggeest escaggeetg gtgeattgas codeacgeed agteteteda 1140
gedaggedet gedeteacca agastgedea egadagatgg ggdddaddet caaccaatat 1200
decodated togtoggett tetteetetg gettgageog datgggtget gtgdetgtga 1260
tggtgddtgd ddagagtdaa gdtggdtdtd tggtatgatg addddaddad tdattggdta 1300
aaggatttgg ggteteteet teetataagg gteaceteta geacagagge etgagteatg 1380
ggaaagagte acaeteetga eeettagtae tetgeeeeca eetetettta etgtgggaaa 1440
accateteag taagaeetaa gtgteeagga gacagaagga gaagaggaag tggatetgga 1500
attgggagga geotecaece accortgact cotecttatg aagscagetg etgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
tetgtacece acceetatet aacaccacee tiggeteeca etceagetee etgtatigat 1680
ataacctgtc aggetggett ggttaggttt tactggggca gaggataggg aatetettat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
                                                                   1813
tttgtatgaa aaa
<110 > 39
<211> 390
<212> PRT
<213 > Homo sapiens
<400> 39
```

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1				5					10					15	
Phe	Leu	Gly	Leu 20	Ser	Ala	Leu	Ala	Pro 25	Pro	Ser	Arg	Ala	Gln 30	Leu	Gln
Leu	His	Leu 35	Pro	Ala	Asn	Arg	Leu 40	Gln	Ala	Val	Glu	Gly 45	Gly	Glu	Val
Val	Leu 50	Pro	Ala	Trp	Tyr	Thr 55	Leu	His	Gly	Glu	Val 60	Ser	Ser	Ser	Gln
Pro 65	Trp	Glu	Väl	Pro	Phe 70	Val	Met	Trp	Phe	Phe 75	Lys	Gln	Lys	Glu	Lys 80
Glu	Asp	Gln	Val	Leu 85	Ser	Tyr	Ile	Asn	Gly 90	Val	Thr	Thr	Ser	Lys 95	Pro
Gly	Val	Ser	Leu 100	Val	Tyr	Ser	Met	Pro 105	Ser	Arg	Asn	Leu	Ser 110	Leu	Arg
Leu	Glu	Gly 115	Leu	Gln	Glu	Lys	Asp 120	Ser	Gly	Pro	Tyr	Ser 125	Cys	Ser	Val
Asn	Val 130	Gln	Asp	Lys	Gln	Gly 135	Lys	Ser	Arg	Gly	His 140	Ser	Ile	Lys	Thr
Leu 145	Glu	Leu	Asn	Val	Leu 150	Val	Pro	Pro	Ala	Pro 155	Pro	Ser	Cys	Arg	Leu 160
Gln	Gly	Val	Pro	His 165	Val	Gly	Ala	Asn	Val 170	Thr	Leu	Ser	Cys	Gln 175	Ser
Pro	Arg	Ser	Lys 180	Pro	Ala	Val	Gln	Tyr 185	Gln	Trp	Asp	Arg	Gln 190	Leu	Pro
Ser	Phe	Gln 195	Thr	Phe	Phe	Ala	Pro 200	Ala	Leu	Asp	Val	Ile 205	Arg	Gly	Ser
Leu	3er 210	Leu	Thr	Asn	Leu	Ser 215	Ser	Ser	Met	Ala	Gly 220	Val	Tyr	Val	Cys
Lys 225	Ala	His	Asn	Glu	Val 230	Gly	Thr	Ala	Gln	Cys 235	Asn	Val	Thr	Leu	Glu 240
Val	Ser	Thr	Gly	Pro 245	Gly	Ala	Ala	Val	Val 250	Ala	Gly	Ala	Val	Val 255	Gly
Thr	Leu	Val	Gly 260	Leu	Gly	Leu	Leu	Ala 265	Gly	Leu	Val	Leu	Leu 270	Tyr	His
Arg	Arg	Gly 275	Lys	Ala	Leu	Glu	Glu 280	Pro	Ala	Asn	Asp	Ile 285	Lys	Glu	Asp

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 295 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 310 315 305 Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 325 330 Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 345 Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser 355 360 Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 375 380 Gln Ala Gly Ser Leu Val 385 390 <210: 40 <.111> 22 <112: DNA <213> Artificial Sequence <220⇒ <123> Description of Artificial Sequence: Synthetic oligonucleotide probe <400:-4022 agggteteda ggagaaagad te <.10> 41 <3115 24 <111: DNA <_13: Artificial Sequence <.1110:-<2235 Description of Artificial Sequence: Synthetic oligonucleotide probe <400: 41 24 attqtqqqcc ttqcagacat agac <210: 42 <211: 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc	50
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 43 gtgtgacaca gcgtgggc	18
<210> 44 <211> 18 <210> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<4005 44 gannggnagg ettetgeg	18
<210> 45 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 45 cagcagette agecaccagg agtgg	25
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <323> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 46 ctgagccgtg ggctgcagtc tcgc	24
< 110 > 47	

* 1.

<211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 47 ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc 45 <210> 48 <211> 2822 <212> DNA <213> Homo sapiens <400> 48 cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60 tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120 gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180 tcacaatttq tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240 ctaattqcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300 gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360 caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420 tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480 atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540 taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600 aatttqtaaa aaccqtqaat aattttqttc aaagggatac atttgtagtt tgggacaagt 660 tatetgtgaa teataggaga acacatetta caaaacteat geacaetgtt gaacaageta 720 ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780 tageteteaa agtittetti titgatteat ataacatgaa acatatteat eeteatatga 840 atatggatgg agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900 gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960 acaacttett attgaaacet caaaattatg ataattetga agaggaggaa agagteatat 1020 cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080 taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140 ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200 acteaaatga gacceacace teatgeeget gtaateacet gacacatttt geaattttga 1260 tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320 taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380 gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440 ctqaacttqt ttttcttqtt qqqatcaata caaatactaa taagctcttc tgttcaatca 1500 ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560 tacatotota totoattigtt qtqqqtqtoa totacaacaa gggattittig cacaagaatt 1620 tttatatett tggetateta ageccageeg tggtagttgg atttteggea geactaggat 1580 acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740 qttttataqq accaqcatqc ctaatcattc ttqttaatct cttggctttt ggagtcatca 1800 tatacaaagt tittegteae aetgeagggt tgaaaceaga agttagtige tittgagaaca 1850 taaggtettg tgeaagagga geeetegete ttetgtteet teteggeace acctggatet 1920 ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980 atgettteea ggggatgtte attttttat teetgtgtgt tttatetaga aagatteaag 2040 aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100 agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160

<210> 49

<211> 690

<212> PRT

<213> Homo sapiens

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
1 5 10 15

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
20 25 30

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe 35 40 45

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn 50 55 60

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly 65 70 75 80

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln 85 90 95

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn 100 105 110

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys 115 120 125

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln 130 135 140

Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile 145 150 155 160

Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys 165 170 175

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

			180					185					190		
Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340	Ser	Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe 355	Thr	Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370	Ala	Phe	Trp	Asn	Tyr 375	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385	Ser	Glu	Gly	Cys	Glu 390	Leu	Thr	Туr	Ser	Asn 395	Glu	Thr	His	Thr	Ser 400
Cys	Arg	Cys	Asn	His 405	Leu	Thr	His	Phe	Ala 410	Ile	Leu	Met	Ser	Ser 415	Gly
Pro	Ser	Ile	Gly 420	Ile	Lys	Asp	Tyr	Asn 425	Ile	Leu	Thr	Arg	Ile 430	Thr	Gln
Leu	Gly	Ile 435	Ile	Ile	Ser	Leu	Ile 440	Cys	Leu	Ala	Ile	Cys 445	Ile	Phe	Thr
Phe	Trp 450	Phe	Phe	Ser	Glu	Ile 455	Gln	Ser	Thr	Arg	Thr 460	Thr	Ile	His	Lys

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly 475 Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu 490 485 Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly 505 Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe 520 Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val 535 530 Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys 555 550 Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly 570 565 Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile 585 Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser 600 Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu 615 610 Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His 630 Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln 645 650 Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln 665 660 Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys 680 Leu Arg 690 <110> 50 <211> 589 <212> DNA

<.120>

<221> modified_base

<213> Homo sapiens

<222> (61)

```
<1:23> a, t, c or g
<400> 50
tggaaacata teeteeetea tatgaatatg gatggagaet acataaatat attteeaaag 60
ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120
qualityque ettiqettie alcaletqae aactiettat igaaacetea aaattatgat 180
aattotgaag aggaggaaag agtoatatot toagtaattt oagtotoaat gagotoaaac 240
ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
gataggtata ggagtetatg tggeattttg gaataeteae etgataeeat gaatggeage 360
tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt 420
aatcacctga cacattttge aattttgatg teetetggte etteeattgg tattaaagat 480
tataatatto ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 51
                                                                   20
gqtaatgagc tccattacag
<210> 52
<211> 18
<212> DNA
<313> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 52
                                                                    18
ggagtagwaa gcgcatgg
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 53
                                                                    22
cacctgatac catgaatggc ag
<210> 54
<211> 18
<212> DNA
```

<213> Artificial Sequence	
<pre>0.0.00 > 0.0.00 > 0.0.00</pre>	
<400> 54 ogagotogaa ttaattog	18
<210> 55 <211> 18 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 55 ggatdtddg agdtdagg	18
<pre><b10> 56 <b11> 23 <b10> DNA <b13> Artificial Sequence</b13></b10></b11></b10></pre>	
<pre><d20> <d220> <d220> c220> Description of Artificial Sequence: Synthetic oligonucleotide probe</d220></d220></d20></pre>	
4400 imes 56 ochagtigag igatocitgi aag	23
<pre>0010> 57 0011> 50 0010> DNA 0017> Artificial Sequence</pre>	
<pre><d200.0> <d200.0> <d200.0 artificial="" description="" of="" sequence:="" synthetic<="" td=""><td></td></d200.0></d200.0></d200.0></pre>	
<pre><:400> 57 atgagaceca caccteatge egetgtaate acctgacaea ttttgcaatt</pre>	50
<pre><210 > 58 <211 > 2137 <212 > DNA <213 > Homo sapiens</pre>	
<pre><400 > 58 gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcgggt caccccggct</pre>	

=

```
gggacaagaa googeegeet geetgeeegg geeeggggag ggggetgggg etggggeegg 180
aggeggggtg tgagtgggtg tgtgeggggg geggaggett gatgeaatee egataagaaa 240\,
tgetegggtg tettgggeae etaceegtgg ggeeegtaag gegetaetat ataaggetge 300
eggeeeggag eegeegegee gteagageag gagegetgeg teeaggatet agggeeaega 360
ccatoccaac coggoactea cagoccogea gogoatecog gtogoogooc agootecoge 420
accoccateg coggagetge geogagagee ceagggaggt gecatgegga gegggtgtgt 480
gqtqqtecac gtatgqatec tggeeggeet etggetggee gtggeeggge geecectege 540
etteteggae geggggeece aegtgeacta eggetgggge gaceceatee geetgeggea 600
cetqtacace teeqqeeece acqqqetete caqetqette etqeqeatee gtqeeqacqq 660
egtegtggae tgegegeggg geeagagege geaeagtttg etggagatea aggeagtege 720
tetgeggaee gtggeeatea agggegtgea eagegtgegg tacetetgea tgggegeega 780
eggeaagatg eaggggetge tteagtacte ggaggaagae tgtgettteg aggaggagat 840
cogeceagat ggetacaatg tgtacegate egagaageae egeeteeegg tetecetgag 900
cagtgodaaa cagoggoago tgtacaagaa dagaggottt ottocactot otcatttoot 960
geccatgety eccatggtee cagaggagee tgaggaeete aggggecaet tggaatetga 1020
catgitetet tegeceetgg agaeegaeag catggaeeca titgggettg teaeeggaet 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tyctyccagy gyctytygta cetycaycyt gygygacyty ettetacaay aacayteety 1200
aqtecaeqtt etqtttaget ttagqaaqaa acatetagaa gttgtacata tteagagttt 1260
tecattggea gtgecagttt etagecaata gaettgtetg atcataacat tgtaageetg 1320
tagettgeee agetgetgee tyggeeeeea ttetgeteee tegaggttge tygacaaget 1380
getgeaetgt eteagttetg ettgaatace tecategatg gggaacteae tteetttgga 1440
aaaattetta tyteaagety aaatteteta attttttete ateaetteee eaggageage 1500
cagaagacag geagtagttt taattteagg aacaggtgat eeactetgta aaacageagg 1560
taaattttdad toaacoccat gtgggaattg atotatatot otacttccag ggaccatttg 1620
cecttoccaa atecetecag gecagaactg actggageag geatggeeca ceaggettea 1680
qqaqtaqqqq aaqeetqqaq eeccacteea qeeetqqqae aaettqaqaa tteeecctqa 1740
ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
deatotedea gedeaceage estetgesea esteacatge steeceatgg attggggest 1860
\texttt{cecaggeece} \texttt{ceaecttatg} \texttt{teaacctgea} \texttt{cttettgtte} \texttt{aaaaateagg} \texttt{aaaagaaaag} \texttt{1920}
atttgaagas essaagtett gteaataaet tgetgtgtgg aageageggg ggaagaeeta 1980
gaaccettte cecageactt ggttttecaa catgatattt atgagtaatt tattttgata 2040
tytacatoto ttattttott adattattta tydodocaaa ttatatttat ytatytaayt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
```

```
<210> 59
```

<113> Homo sapiens

<400> 59

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

<211> 216

<212> PRT

	Asp 65	GIY	Val	Val	Asp	70	Ala	Arg	GIY	GIN	75	Ala	HIS	ser	ьeu	во 80	
	Glu	Ile	Lys	Ala	Val 85	Ala	Leu	Arg	Thr	Val 90	Ala	Ile	Lys	Gly	Val 95	His	
	Ser	Val	Arg	Tyr 100	Leu	Cys	Met	Gly	Ala 105	Asp	Gly	Lys	Met	Gln 110	Gly	Leu	
	Leu	Gln	Tyr 115	Ser	Glu	Glu	Asp	Cys 120	Ala	Phe	Glu	Glu	Glu 125	Ile	Arg	Pro	
	Asp	Gly 130	Tyr	Asn	Val	Tyr	Arg 135	Ser	Glu	Lys	His	Arg 140	Leu	Pro	Val	Ser	
	Leu 145	Ser	Ser	Ala	Lys	Gln 150	Arg	Gln	Leu	Tyr	Lys 155	Asn	Arg	Gly	Phe	Leu 160	
	Pro	Leu	Ser	His	Phe 165	Leu	Pro	Met	Leu	Pro 170	Met	Val	Pro	Glu	Glu 175	Pro	
	Glu	Asp	Leu	Arg 180	Gly	His	Leu	Glu	Ser 185	Asp	Met	Phe	Ser	Ser 190	Pro	Leu	
	Glu	Thr	Asp 195	Ser	Met	Asp	Pro	Phe 200	Gly	Leu	Val	Thr	Gly 205	Leu	Glu	Ala	
	Val	Arg 210	Ser	Pro	Ser	Phe	Glu 215	Lys									
<210> 60 <_11> 26 <_12> DNA <113> Artificial Sequence																	
<pre><u208 <u23=""> Description of Artificial Sequence: Synthetic oligonucleotide probe</u208></pre>																	
	<400:- 60 atdogoddag atggdtadaa tgtgta														26		
<pre><310> 61 <311> 42 <312> DNA <213> Artificial Sequence</pre>																	
	<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>																
	<400> 61 gcetceggt ctccetgage agtgccaaac agggggggtg ta													42			

```
<210> 62
<211> 22
<112> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 62
ccaqtccqqt qacaaqccca aa
                                                                22
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
cecagaagtt caagggeece eggeeteetg egeteetgee geegggaeee tegaeeteet 60\,
cagageages ggetgeegee eegggaagat ggegaggagg ageegeeace geeteeteet 130
getgetgetg egetacetgg tggtegecet gggetateat aaggeetatg ggttttetge 180
cecaaaaqae caacaaqtaq teacaqcaqt aqaqtaccaa gaggetattt tagcetgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttqtctac tatcaacaqa ctcttcaaqq tqattttaaa aatcgagctg agatgataga 360
tttcaatatc cqqatcaaaa atqtqacaag aagtgatgeg gggaaatatc gttgtgaagt 420
taqtqcccca tctqaqcaaq qccaaaacct qqaaqaqqat acagtcactc tggaagtatt 480
agtggeteca geagtteeat catgtgaagt accetettet getetgagtg gaactgtggt 540
ayaqctacqa tqtcaaqaca aaqaaqqqaa tccagctect gaatacacat ggtttaagga 600
toggatocgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atatteetgt qaageeeqca attetgttgg atategeagg tgteetggga aacgaatgea 780
aqtagatgat ctcaacataa gtggcatcat agcagcegta gtagttgtgg ccttagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccaq aaqaqtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 9%0
getcaegeet gtaateecag caetttggaa ggeegeggeg ggeggateae gaggteagga 1020
qttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agetgcttgg gagacaggag aatcacttga 1140
accogggagg oggaggttgc agtgagetga gatcacgoca etgcagtcca gcctgggtaa 1.300
1295
tgtagaattc ttacaataaa tatagcttga tattc
<210> 64
<111> 312
<212> PRT
<213> Homo sapiens
<400> 64
Met Ala Arq Arq Ser Arq His Arq Leu Leu Leu Leu Leu Leu Arg Tyr
                                                       15
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
```

25

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys 55 Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln Gly Asp Phe Lys Asn Arq Ala Glu Met Ile Asp Phe Asn Ile Arg Ile Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser 105 Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu 115 Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser 135 Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly 150 155 Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu 165 Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met 185 Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 195 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 215 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 230 235 Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu 245 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 265 Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 275 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala 295

Gly Gly Ser Arg Gly Gln Glu Phe

305		31	.0				
<210><211><211><212><213>	22 DNA	icial Seque	ence				
<220> <223>		iption of <i>P</i> nucleotide		Sequence: Sy	ynthetic		
<400> atcgtt		agttagtgcc	CC				22
<210><211><212><213>	23 DNA	icial Seque	ence				
<220> <223>		iption of <i>F</i> nucleotide		Sequence: Sy	ynthetic		
<400> acctgo		tccaacagaa	ttg				23
<210><211><212><213>	48 DNA	icial Seque	ence				
<220><223>		iption of <i>F</i> nucleotide		Sequence: Sy	ynthetic		
<400> ggaaga		acagtcactc	tggaagtatt	agtggctcca	gcagttcc		48
<210><211><212><213>	2639 DNA	sapiens					
agaaag gcatca aaataa catcaa ttggaa tggcat	cggag gaaga gaaga atgct aatga atatt caatg	ggaagatgtt gctattcctg attactcaat atatcattaa caattgtggc catttgacaa	gggcaacatt caaatactga ctcctatgac ggaaatagta actggcactt atgcaagcat	cttttcaaga tatttaacat agaagcatgg catctataca accttctctt atttcagtga cttccttatc ccattacatt	getecacage gatttaaata tactccacet ctccaatatg agaaaaactt aatcagetec	ccggaccctg ttttacttct tcaaaaagta catgacattt tgtggttcta tattgaactt	120 180 240 300 360 420
tgaag	gacat	gccactccga	attcatgtgc	tacttggcct	agctatcact	acactagtac	540

aagetgtaga taaaaaagtg gattgteeac ggttatgtac gtgtgaaate aggeettggt 600 ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660 taacttteec agecagattg ceagetaaca cacagattet teteetacag actaacaata 720 ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780 aaaacaattt atcttcaqtc accaatatta atqtaaaaaa qatqcctcaq ctcctttctq 840 tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900 acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960 ttggcctaca taatcttctt cgacttcate tcaattcaaa tagattgcag atgatcaaca 1020 gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080 teagaateaa agacatgaae tttaageete ttateaatet tegeageetg gttatagetg 1140 gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200 tetetttttta egataacagg ettattaaag taceecatgt tgetetteaa aaagttgtaa 1260 atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320 qcaatatqct acacttaaaa qaqttqqqqa taaataatat qcctqaqctq atttccatcq 1380 atagtettge tgtggataae etgecagatt taagaaaaat agaagetaet aacaacceta 1440 gattgtetta catteacece aatgeatttt teagacteee caagetggaa teacteatge 1500 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560 aggaaateag catacacagt aaccecatea ggtgtgactg tgtcateegt tggatgaaca 1620 tgaacaaaac caacattega ttcatggage cagatteact gttttgegtg gacceacetg 1680 aattocaagg toagaatgtt oggoaagtgo atttoaggga catgatggaa atttgtotoo 1740 ctcttataqc tcctqaqaqc tttccttcta atctaaatqt aqaaqctqqq aqctatqttt 1800 cettteactg tagagetact geagaaceae ageetgaaat etactggata acacettetg 1860 gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920 tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980 tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040 acaatqqctc tttqaatatt aaaataaqaq atattcaqqc caattcaqtt ttqqtqtcct 2100 ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg qacagccttt gtcaagactg 2160 aaaattetea tgetgegeaa agtgetegaa taecatetga tgteaaggta tataatetta 2220 ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280 aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340 atgaaaagaa taataccaca acacttatgg cotgtottgg aggcottotg gggattattg 2400 gtgtgatatg tettateage tgeetetete cagaaatgaa etgtgatggt ggacacaget 2460 atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520 taaatototg ggaagcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580 taggittacc aacaaatatg tootaaaaac caccaaggaa acctactoca aaaatgaac 2639

```
<210> 69
```

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile 1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu
20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
50 60

<211> 708

<212> PRT

<213> Homo sapiens

Ala 65	Arg	Leu	Pro	Ala	Asn 70	Thr	Gln	Ile	Leu	Leu 75	Leu	Gln	Thr	Asn	Asn 80
Ile	Ala	Lys	Ile	Glu 85	Tyr	Ser	Thr	Asp	Phe 90	Pro	Val	Asn	Leu	Thr 95	Gly
Leu	Asp	Leu	Ser 100	Gln	Asn	Asn	Leu	Ser 105	Ser	Val	Thr	Asn	Ile 110	Asn	Val
Lys	Lys	Met 115	Pro	Gln	Leu	Leu	Ser 120	Val	Tyr	Leu	Glu	Glu 125	Asn	Lys	Leu
Thr	Glu 130	Leu	Pro	Glu	Lys	Cys 135	Leu	Ser	Glu	Leu	Ser 140	Asn	Leu	Gln	Glu
Leu 145	Tyr	Ile	Asn	His	Asn 150	Leu	Leu	Ser	Thr	Ile 155	Ser	Pro	Gly	Ala	Phe 160
Ile	Gly	Leu	His	Asn 165	Leu	Leu	Arg	Leu	His 170	Leu	Asn	Ser	Asn	Arg 175	Leu
Gln	Met	Ile	Asn 180	Ser	Lys	Trp	Phe	Asp 185	Ala	Leu	Pro	Asn	Leu 190	Glu	Ile
Leu	Met	Ile 195	Gly	Glu	Asn	Pro	Ile 200	Ile	Arg	Ile	Lys	Asp 205	Met	Asn	Phe
Lys	Pro 210	Leu	Ile	Asn	Leu	Arg 215	Ser	Leu	Val	Ile	Ala 220	Gly	Ile	Asn	Leu
Thr 225	Glu	Ile	Pro	Asp	Asn 230	Ala	Leu	Val	Gly	Leu 235	Glu	Asn	Leu	Glu	Ser 240
Ile	Ser	Phe	Tyr	Asp 245	Asn	Arg	Leu	Ile	Lys 250	Val	Pro	His	Val	Ala 255	Leu
Gln	Lys	Val	Val 260	Asn	Leu	Lys	Phe	Leu 265	Asp	Leu	Asn	Lys	Asn 270	Pro	Ile
Asn	Arg	11e 275	Arg	Arg	Gly	Asp	Phe 280	Ser	Asn	Met	Leu	His 285	Leu	Lys	Glu
Leu	Gly 290	Ile	Asn	Asn	Met	Pro 295	Glu	Leu	Ile	Ser	Ile 300	Asp	Ser	Leu	Ala
Val 305	Asp	Asn	Leu	Pro	Asp 310	Leu	Arg	Lys	Ile	Glu 315	Ala	Thr	Asn	Asn	Pro 320
Arg	Leu	Ser	Tyr	Ile 325	His	Pro	Asn	Ala	Phe 330	Phe	Arg	Leu	Pro	Lys 335	Leu
Glu	Ser	Leu	Met	Leu	Asn	Ser	Asn	Ala	Leu	Ser	Ala	Leu	Tyr	His	Gly

340 345 350 Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn 360 Pro Ile Arq Cys Asp Cys Val Ile Arq Trp Met Asn Met Asn Lys Thr 375 Asn Ile Arq Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met 410 Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu 425 420 Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala 440 Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu 455 Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr 470 Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys 485 490 Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys 500 505 Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys 520 Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser 535 Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys 565 570 Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys 580 Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn

Asn Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 625 **б**30 635 Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 650 645 Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 665 Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys 675 680 Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro Thr Asn Met Ser <210> 70 <211> 1305 <212> DNA <213 > Homo sapiens <400> 70 gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agetgeagee ttttgaaaca egeaagaagg aaateaatag tgtggacagg getggaacet 120 ttaccacget tgttggagta gatgaggaat gggetegtga ttatgetgae attecageat 180 quatetggta gacetgtggt taaccegtte cetetecatg tgtetectee tacaaagttt 240 tigttettatig atactiqtiqct ticattetiqe caqtatiqtiqt cecaaiqqqet qtetttigtte 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360 tetteeteet gaaacagtet taetgtatet ggaeteeaat cagateacat etatteecaa 400 tqaaattttt aaqqacctcc atcaactqaq aqttctcaac ctqtccaaaa atggcattga 480 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgtc 540 cqacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aaccectgge actgcgactg tactctacag caagttctga ggagcatggc 660 gtocaatoat gagacagood acaacqtgat ctgtaaaacg tocgtgttgg atgaacatge 720 tggcagacca ttoctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaac 780 tacogattat godatgotgg toaccatgtt tggotggttc actatggtga totcatatgt 840 ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cottqccaaqc aqqcaqaaqa aaqcaqatqa acctqatqat attagcactg tggtatagtg 960 tecaaaetga etgteattga gaaagaaaga aagtagtttg egattgeagt agaaataagt 1020 ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt tttttttgaat 1080 tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140 cacccettaa ttgtaccccc gatggtatat ttetgagtaa getactatet gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag caaataaaag 1260 1305 <210> 71 <211> 259 <212> PRT

<400> 71

<213> Homo sapiens

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro 50 Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser 90 Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala 100 Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 120 His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 130 Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 165 170 Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala 180 Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr

215

230

245

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser

250

220

Thr Val Val

210

<210> 72 <211> 2290

<212> DNA <213> Homo sapiens <400> 72 accgageega geggaeegaa ggegegeeeg agatgeaggt gageaagagg atgetggegg 50 ggggegtgag gagcatgeec ageceectee tggeetgetg geageecate etectgetgg 120 tgetgggete agtgetgtea ggeteggeea egggetgeee geeeegetge gagtgeteeg 180 eccaggaceg egetgtgetg tgecacegea agtgetttgt ggeagteece gagggeatee 240 ccaccgagac gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacg 300 agttegecag ettecegeae etggaggage tggageteaa egagaacate gtgagegeeg 360 tggageeegg egeetteaae aacetettea aeeteeggae getgggtete egeageaaee 420 geetqaaget cateeegeta ggegtettea etggeeteag caacetgaee aageaggaea 480 tcaqcqaqaa caaqatcqtt atcctactqq actacatqtt tcaqqacctq tacaacctca 540 agtcactgga ggttggcgac aatgaceteg tetacatete teacegegee tteageggee 600 tcaacageet ggageagetg acgetggaga aatgeaacet gacetecate eccacegagg 660 cgctgtccca cctgcacggc ctcatcgtcc tgaggctccg gcacctcaac atcaatgcca 720 teegggaeta eteetteaag aggetgtaee gaeteaaggt ettggagate teecaetgge 780 cetacttgga caccatgaca cecaactgee tetacggeet caacctgacg tecetgteea 840 teacacactg caatetgace getgtgeect acetggeegt eegecaceta gtetatetee 900 getteeteaa eeteteetae aaceeeatea geaceattga gggeteeatg ttgeatgage 960 tgctccggct gcaggagate cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020 cetteegegg ceteaactae etgegegtge teaatgtete tggcaaccag etgaccacae 1080 tggaggaatc agtetteeac teggtgggea acetggagac acteateetg gaeteeaace 1140 egetggeetg egactgtegg eteetgtggg tgtteeggeg eegetggegg eteaacttea 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag ttcaaggact 1260 tecetgatgt getaetgeee aactaettea eetgeegeeg egeeegeate egggaeegea 1320 aggeccagea ggtgtttgtg gaegagggec acaeggtgea gtttgtgtge egggeegatg 1380 gegaccegec geoegecate etetggetet cacceeqaaa geacetggte teagecaaga 1440 geaatgggeg geteacagte tteectgatg geaegetgga ggtgegetae geecaggtae 1500 aggacaacgg cacqtacctq tgcatcqcqq ccaacqcqqq cqqcaacgac tccatgcccq 1560 decadetigea tigtigegeage tactegedeg actigededa teagedeaad aagadetteg 1620 ctttcatctc caaccagccg ggcgagggag aggccaacag cacccgcgcc actgtgcctt 1680 toccottega catcaagaco oteatoateg ocaccaccat gggotteato tetttoetgg 1740 gcgtcgtcct cttctgcctg gtgctqctqt ttctctggag ccggggcaag ggcaacacaa 1800 agcacaacat cgagategag tatgtqccc qaaagtegga cgcaggcatc agctccgccg 1860 acgogococg caagttcaac atgaagatga tatgaggoog gggegggggg cagggacocc 1900 cgggcggccg ggcaggggaa ggggcctggt cgccacctgc tcactctcca gtccttccca 1980 octootcoot accottotac acacqttote titletecete eegectregt eeeetgetge 2040 cccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160 ggcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220 attatggatt tttatgaaaa cttgaaataa taaaaagaga aaaaaactaa aaaaaaaaa 2280 2290 aaaaaaaaa <210> 73 <211> 620 <212> PRT <213> Homo sapiens <400> 73 Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

290

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Val Leu Gly Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys 75 Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro 105 Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn 135 Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp 150 155 Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp 165 170 Asn Asp Leu Val Tyr Ile Ser His Arq Ala Phe Ser Gly Leu Asn Jer Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr 195 Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His 215 Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg 230 235 Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr 245 Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arq His Leu Val Tyr 275 Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly

295

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly 310 Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr Leu Arq Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu 340 345 Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser 360 Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg 375 Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu 390 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro 405 410 Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His 455 Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly 465 470 Thr Leu Glu Val Arq Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Jer Met Pro Ala His Leu 500 505 His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr 520 Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr 535 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala 545 550 Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

	580					585					590			
Ile Glu I 5	le Glu 95	Tyr	Val	Pro	Arg 600	Lys	Ser	Asp	Ala	Gly 605	Ile	Ser	Ser	
Ala Asp A 610	la Pro	Arg	Lys	Phe 615	Asn	Met	Lys	Met	Ile 620					
<210> 74 <211> 22 <212> DNA <213> Art	ificia	l Sec	luenc	ce										
<220> <223> Des oli	cripti gonucl				cial	Sequ	ience	e: S <u>y</u>	ynthe	etic				
<400> 74 tdaddtgga	g eett	tatto	gg ce	2										22
<210> 75 <211> 23 <212> DNA <213> Art	ificia	l Sec	quenc	ce										
<220> <223> Des oli	cripti gonucl				cial	Seqı	ience	e: Sy	ynth:	etic				
<400> 75 ataccaget	a taac	caggo	st ge	g										23
<pre><010> 76 <011> 50 <010> DNA <013> Art</pre>	ificia	l Sed	luen:	cė.										
<000> <000> Des oli	cripti gonucl				cial	Seqi	uence	e: Sy	ynth:	etic				
<400> 76 caacagtaa gg	g tggt	ttgat	ig et	cctt	ccaa.	a tc1	tagag	gatt	ctg	atgai	tg			50 52
<210> 77 <211> 22 <212> DNA <213> Art	ificia	l Sec	quenc	ce										
<220> <223> Des oli	cripti gonucl				cial	Seqi	uence	e: Sy	ynth:	etic				

<400> 77 ceatgtgtet cetectacaa ag	22
<pre><010> 78 <211> 23 -212> DNA <113> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 78 ggqaatagat gtgatctgat tgg	23
<pre><210> 79 <211> 50 <212> DNA <213> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>	
$<\!400\!>.79$ candity and antical additional acctagagat officients	50
<pre>8210> 80 6211> D2 6212> DMA 6213> Artificial Sequence</pre>	
H220> H223> Description of Artificial Sequence: Synthetic cligonucleotide probe	
<pre>(400> 80 agnaaccyce tgaagctcat cc</pre>	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<pre><220> <221> Description of Artificial Sequence: Synthetic</pre>	
<400> 81 aaggegeggt gaaagatgta gaeg	24
<210> 82	

<400> 84

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 82
                                                                50
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 83
cccaegegte egeacetegg eccegggete egaagegget egggggegee ettteggtea 60
adateqtaqt ccaccecte eccatececa geoecegggg atteaggete gecagegece 120
agccaggag ceggeeggga agegegatgg gggeeceage egeetegete etgeteetge 180
tectgetgtt egeetgetge tgggegeeeg geggggeeaa ceteteceag gaegaeagee 240
agccctggac atctgatgaa acagtggtgg ctggtggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
agctcagcat cagcatcagc aatgtggccc tggcagacga gggcgagtac acctgctcaa 480
tetteaetat geetgtgega aetgeeaagt eeetegteae tgtgetagga atteeacaga 540
agoccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tecacqqaqa accaacceqe atacaqqaaq ateceaatgg taaaacette actgteagea 720
geteggtgae attecaggtt accegggagg atgatgggge gageategtg tgetetgtga 780
accatgaato totaaaggga gotgacagat coacototoa acgoattgaa gittitataca 840
caccaactgc gatgattagg ccagaccete eccatecteg tgagggeeag aagetgttge 900
tacactqtqa qqqtcqcqqc aatccaqtcc cccaqcaqta cctatgggag aaggagggca 950
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
adaddeteaa tgttaatgad eecagteegg tgeecteete etecageace taccaegeca 1140
teateggtgg gategtgget tteattgtet teetgetget cateatgete atetteettg 1200
gecaetaett gateeggeae aaaggaaeet aeetgaeaea tgaggeaaaa ggeteegaeg 1260
atgetecaga egeggaeacg gecateatea atgeagaagg egggeagtea ggaggggaeg 1320
acaagaagga atatttcatc tagaggegee tgeccaette etgegeeeee caggggeeet 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccaccc cctgtacaga atgtctgctt tgggtgcggt 1500
coettteegt ggettetetg catttgggtt attattattt ttgtaacaat cecaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
                                                                 1685
aaaca
<110> 84
<211> 398
<212> PRT
<213> Homo sapiens
```

275

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Phe Ala Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln 25 Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn 55 Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser 8.5 Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile 100 Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu 135 Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala 150 Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro 165 170 Thr Arq Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val 200 Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser 215 Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 225 230 Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly 250 Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe

280

	sn Ly: 90	s Ser	Asp	Ser	Gly 295	Thr	Tyr	Gly	Cys	Thr 300	Ala	Thr	Ser	Asn	
Met G 305	ly Ser	Tyr	Lys	Ala 310	Tyr	Tyr	Thr	Leu	Asn 315	Val	Asn	Asp	Pro	Ser 320	
Pro V	al Pro	Ser	Ser 325	Ser	Ser	Thr	Tyr	His 330	Ala	Ile	Ile	Gly	Gly 335	Ile	
Val A	la Phe	e Ile 340	Val	Phe	Leu	Leu	Leu 345	Ile	Met	Leu	Ile	Phe 350	Leu	Gly	
His T	yr Lei 35!		Arg	His	Lys	Gly 360	Thr	Tyr	Leu	Thr	His 365	Glu	Ala	Lys	
_	er Ası 70	Asp	Ala	Pro	Asp 375	Ala	Asp	Thr	Ala	Ile 380	Ile	Asn	Ala	Glu	
Gly G 385	ly Gli	n Ser	Gly	Gly 390	Asp	Asp	Lys	Lys	Glu 395	Tyr	Phe	Ile			
<210><211><211><212><213>	22	ficia	l Sed	quenc	ce										
<220> <223>	Desci	ripti onucl				cial	Seqı	uence	∋: Sy	ynthe	etic				
<400> gctag	85 gaatt	ccac	agaa	gc co	2										22
<210><211><211><212><212><213>	22	icia	l Sed	quenc	ce										
<220><223>	Desci	ripti				cial	Sequ	ience	e: S <u>J</u>	ynth:	etic				
<400> aacct	86 ggaat	gtca	ccga	gc to	3										22
<210><211><211><212><213>	26	ficia	l Sed	quenc	ce										
<220><223>	Desci	cipti	on o:	f Art	cific	cial	Sequ	ience	e: Sy	ynthe	etic				

oligonucleotide probe

<400> 87 cctagcacag tgacgagga cttggc 2											
<210> 88 <211> 50 <212> DNA <213> Art	ificial Sequ	ence									
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
<400> 88 aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50											
<210> 89 <211> 50 <212> DNA <213> Art	ificial Sequ	ence									
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
<400> 89 gccctggca	g acgagggcga	gtacacctgc	tcaatcttca	ctatgcctgt		50					
<210> 90 <211> 275 <212> DNA <213> Hon											
<400> 90											
	g gaggaaggaa	tccaccccca	ccccccaaa	cccttttctt	ctcctttcct	50					
ggcttcgga	c attggagcac	taaatgaact	tgaattgtgt	ctgtggcgag	caggatggtc	120					
	t tgtgatgaga										
	g gagacgtctc										
	c tgttcctgca										
	a agtctgcagc		_								
	t tccctcactc										
	c atggaaaaca										
	g aaaaggetge g etggaegate										
	g geettecagg										
	c ctacctgcca										
	g ctgaaaacgc										
	g ctagaggata										
	a aacattccca										
	g ggtaaagacc										
	t tctagtctcc										
	t cctttcaaga										

```
aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
agegaegggt ageteeagga acaaaceett agetaacagt ttaccetgee etgggggetg 1200
cagetgegae caeateecag ggtegggttt aaagatgaae tgeaacaaca ggaaegtgag 1260
cagettgget gatttgaage ecaagetete taaegtgeag gagettttee taegagataa 1320
caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga 1380
tetgggeaac aataacateg etaetgtaga gaacaacaet tteaagaace ttttggacet 1440
caggtggcta tacatggata gcaattacct ggacacgctg teeegggaga aattegeggg 1500
getgeaaaac etagagtace tgaacgtgga gtacaacget atecagetea teeteceggg 1560
caettteaat qeeatqeeca aactqaqqat ceteattete aacaacaace tgetgaggte 1620
cetquetqtq qaeqtqtteq etqqqqtete getetetaaa etcaqeetqe acaacaatta 1680
cttcatqtac ctcccqqtqq caqqqqtqct ggaccagtta acctccatca tccagataga 1740
cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800
acgettgggt teegaagtge tgatgagega eetcaagtgt gagaegeegg tgaaettett 1860
tagaaaggat ticatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920
ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca 1980
ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040
getggtgttt gteaceteeg eetteacegt ggtgggeatg etegtgttta teetgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160
gacagtetgt gactetteet actggeacaa tgggeettae aaegeagatg gggeeeacag 2220
aqtqtatgac tgtggctctc actogctctc agactaagac cccaacccca ataggggagg 2280
gcagagggaa ggcgatacat cettececae egcaggeace eegggggetg gaggggetg 2340
tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
quadaaccga aagggootga cocottactt agctcoctcc ttgaaacaaa gagcagactg 2460
tggagagetg ggagagegea gecagetege tetttgetga gageecettt tgacagaaag 3520
cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640
atatetattt tteecetgtg gattageece gtgatggete cetgttgget aegeagggat 2700
gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac
```

<210> 91

<211> 696

<212> PRT

<213> Homo sapiens

<400> 91

Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala 1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe 50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu
85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His 105 100 Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly 120 Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 135 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 150 155 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 215 Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 230 235 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 265 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 275 280 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 310 315 Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala 325 Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 345 Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 355 Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 390 395 Leu Ile Leu Leu Asp Leu Gly Asn Asn Ile Ala Thr Val Glu Asn 405 410 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser 425 420 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro 455 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 470 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 500 505 510 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 520 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 535 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr 550 545 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu 570 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His 580 585 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 615 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

670 660 665 Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 680 Cyu Gly Ser His Ser Leu Ser Asp 690 695 k#10 > 92 <211 > 22 <212 > DNA <213 Artificial Sequence <00002 <d23> Description of Artificial Sequence: Synthetic oligonucleotide probe <400s 91 22 gttggatdtg ggdaadaata ad -:210> 93 <211 + 24RICE - DNA Halls Artificial Sequence -:3.20 + Hadda Description of Artificial Sequence: Synthetic oligonucleotide probe 4(4)11 - 93 24 antiquidade aggetgagtt taag -...10 - 94 -0.0114 + 45HILL DNA will Go Artificial Sequence 4.120 -Hadda Description of Artificial Sequence: Synthetic oligonucleotide probe 45 qutuquetata catggatage aattacetgg acacgetgte eeggg <210 > 95 <211 > 2226 3212 > DNA <213> Homo sapiens <400 > 95 agtequetge greecetgta coeggegeea getgtgttee tgaccecaga ataactcagg 60 qetqeaneqq qeetqqeage geteeqeaca cattteetqt egeggeetaa gggaaactqt 120 tggccgctgg gcccgcgggg ggattcttgg cagttggggg gtccgtcggg agcgagggcg 180

```
gaggggaagg gaggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgagge eggegttege eetgtgeete etetggeagg egetetggee 360
egggeeggge ggeggegaae acceeactge egacegtget ggetgetegg eeteggggge 420\,
ctyctacago ctycaccaeg ctaccatgaa geggeaggeg geegaggagg cetgeateet 480
qeqaqqtqqq qeqeteaqea ceqtqeqtqe gggegeegag etgegegetg tgetegeget 540
cetqeqqqea qqcccaqqqc ceqqaqqqqq etecaaaqae etgetgttet gggtegeaet 600
qqaqqqaqq qqttcccact qcaccetqqa qaacqaqeet ttqcqqqqtt tctcctqqct 660
gtectecgae eeeggeggte tegaaagega caegetgeag tgggtggagg ageeecaaeg 720
ctcctqcacc gegeggagat gegeggtact ccaggecacc ggtggggteg agecegcagg 780
ctggaaggag atgcgatgec acctgegege caaeggetae etgtgeaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagetgeae agegeegete tggaetteag tecacetggg acegaggtga gtgegetetg 960
coggggacag ctcccgatct cagttacttg catcgcggac gaaatcggcg ctcgctggga 1020
caaacteteg ggegatgtgt tgtgteeetg eeeegggagg taceteegtg etggeaaatg 1080
cgcagagete cetaactgee tagacgaett gggaggettt geetgegaat gtgetaeggg 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggace ggggtgeeda ceaggegeed geeggecadt geaaccaged degtgeegea 1260
gaqaacatgg ccaatcaggg tegacgagaa getgggagag acaccaettg teeetgaaca 1320
agacaattca gtaacatcta ttootgagat tootegatgg ggatcadaga gcacgatgto 1380
taccetteaa atgteeette aageegagte aaaggeeast ateaceeeat cagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacage agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaag: tctgctttca cgaaagcooc tcttcccagc caaggaagga 1620
qtetatqqqe ecqeeqqqee tqqaqaqtqa teetqaqeee getgetttgg geteeagtte 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
qqqtqccttq ctqqcqqaqt cccctcttqq ctctaqtgat gcatagggaa acaggggaca 1800
tyqqcactcc tqtqaacaqt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttqtqtaact qacaatttct qcaqaaatcc cccttcctct aaattccctt tactccactg 1920
aggagetaaa teagaaetge acaeteette eetgatgata gaggaagtgg aagtgeettt 1990
aggatggtga tactggggga cogggtagtg ctggggagag atattttett atgtttatte 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttotaccaaa atggaaagga aatgttotat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2000
gttgat
                                                                  2226
<210> 95
<211> 490
<212> PRT
<213> Homo sapiens
<400> 9ธ์
Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
 1
Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser
                                 25
Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
```

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val

55

1 11 117

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly Pro Gly Pro Gly Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala 135 Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met 150 Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu 165 170 Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr 185 Arq Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val 215 Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys 245 Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu 265 Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg 295 Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro 305 310 Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln 325 330 Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

			340					345					350			
Ser	Thr	Met 355	Ser	Thr	Leu	Gln	Met 360	Ser	Leu	Gln	Ala	Glu 365	Ser	Lys	Ala	
Thr	Ile 370	Thr	Pro	Ser	Gly	Ser 375	Val	Ile	Ser	Lys	Phe 380	Asn	Ser	Thr	Thr	
Ser 385	Ser	Ala	Thr	Pro	Gln 390	Ala	Phe	Asp	Ser	Ser 395	Ser	Ala	Val	Val	Phe 400	
Ile	Phe	Val	Ser	Thr 405	Ala	Val	Val	Val	Leu 410	Val	Ile	Leu	Thr	Met 415	Thr	
Val	Leu	Gly	Leu 420	Val	Lys	Leu	Cys	Phe 425	His	Glu	Ser	Pro	Ser 430	Ser	Gln	
Pro	Arg	Lys 435	Glu	Ser	Met	Gly	Pro 440	Pro	Gly	Leu	Glu	Ser 445	Asp	Pro	Glu	
Pro	Ala 450	Ala	Leu	Gly	Ser	Ser 455	Ser	Ala	His	Cys	Thr 460	Asn	Asn	Gly	Val	
Lys 465	Val	Gly	Asp	Cys	Asp 470	Leu	Arg	Asp	Arg	Ala 475	Glu	Gly	Ala	Leu	Leu 480	
Ala	Glu	Ser	Pro	Leu 485	Gly	Ser	Ser	Asp	Ala 490							
<311 <312)> 9" .> 24 2> Di 3> Ai	1A 1	icia]	l Sed	quenc	ce										
<320											. 1					
<223			_	on o: eotid			cial	Sequ	ience	e: Sy	ynthe	etic				
)> 9" lagga		tgcga	atgc	ca co	ctg										24
<210)> 98	3		_												
	.> 20															
	2> D1			1 0-	~											
<213	3> A1	rtif:	lcia.	l Sed	quen	ce										
<020 <223	3 > De		-	on o: eotic			cial	Sequ	uence	e: Sy	ynth:	etic				
)> 98 cagt		ggaa	ggaca	ag											20

<210>	49	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide probe	
<400>		
acagag	gcaga gggtgccttg	20
222		
<210>		
<211>		
<212>		
<113>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
\J_	oligonucleotide probe	
	oligonacieotide probe	
<400>	100	
	gadaa gtggtgtdtd todd	24
22.		
<210>	101	
<111>	04	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<123>	Description of Artificial Sequence: Synthetic	
	oligonucleotide probe	
100	101	
<400>		24
ccaggg	gaagg agtgtgcagt totg	۷٦
<310>	102	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide probe	
<400>		
acagct	deeg ateteagtta ettgeatege ggaegaaate ggegeteget	50
<210>		
<211>		
<212>	DNA Homo sapiens	
<.:1:5>	HONO SADIENS	

```
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agegtegagt cagaeggeae cataategee tttaaaagtg ceteegeeet geeggeegeg 120
tateceeegg etacetggge egeceegegg eggtgegege gtgagaggga gegegeggge 180
agecgagege eggtgtgage cagegetget gecagtgtga geggeggtgt gagegeggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
getgecatga ggggegegaa egeetgggeg ceaetetgee tgetgetgge tgeegecaee 360
cagetetege ggeageagte eccagagaga cetgttttea catgtggtgg cattettact 410
ggagagtetg gatttattgg cagtgaaggt tttcctggag tgtaccetee aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccage geattggeeg ettetgtgge aettteegge etggageeet tgtgtecagt 660
qqcaacaaqa tqatqqtqca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacett eeggetettt taaaaeeeee aactggeeag aeegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
ggggaagtca acgatgctag aagaattgga aagtattgtg gtgatagtcc acctgcgcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cetgteacea ceacatteee tgtaaceaeg ggtttaaaae ceacegtgge ettgtgteaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
googgoactg ttatcacaac catcactogo gatgggagtt tgcacgccac agtotogato 1320
atcaacatct acaaaqaqqq aaatttgqcq attcagcagg cgggcaagaa catgagtgcc 1380
aggetgaetg tegtetgeaa geagtgeeet eteeteagaa gaggtetaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
actytyteea tttaagetyt attetyeeat tyeetttyaa agatetatyt teteteagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactette acatgatgga ggtatgagge etcegagata getgagggaa gttetttgee 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagectttgc cotgaggtgt tacaatettg tettgegttt 1980
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
                                                                  2026
<110> 104
<311> 415
<212> PRT
<213> Homo sapiens
```

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala 1 5 10 15

Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
20 25 30

Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
35 40 45

Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr 50 55 60 Val Pro Glu Gly Lys Val Val Leu Asn Phe Arg Phe Ile Asp Leu 75 Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly 90 His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro 105 100 Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser 120 Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala 135 Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg 145 Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu 190 180 185 Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys 195 Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala 215 Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val 235 225 Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu 250 Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu 265 260 Pro Thr Thr Thr Glu Gln Pro Val Thr Thr Thr Phe Pro Val Thr Thr 280 275 Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr 295 Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly 310 305 Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val 325 330

Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

			340					345					350			
Gly	Lys	Asn 355	Met	Ser	Ala	Arg	Leu 360	Thr	Val	Val	Cys	Lys 365	Gln	Cys	Pro	
Leu	Leu 370	Arg	Arg	Gly	Leu	Asn 375	Tyr	Ile	Ile	Met	Gly 380	Gln	Val	Gly	Glu	
Asp 385	Gly	Arg	Gly	Lys	Ile 390	Met	Pro	Asn	Ser	Phe 395	Ile	Met	Met	Phe	Lys 400	
Thr	Lys	Asn	Gln	Lys 405	Leu	Leu	Asp	Ala	Leu 410	Lys	Asn	Lys	Gln	Cys 415		
<220	> 2 >> D >> A	2	iptio	on of	E Art	tific	cial	Seqi	ience	e: Sy	ynth€	etic				
<400 aaga	_	05 ata g	gacct	tegag	ga gt	t										22
<220	> 2 > D > A > A	2	iptio	on of	f Art	tific	cial	Sequ	ience	e: Sy	ynth•	etic				
<400 gtda		06 agt (cctc	cacaa	at a	C										22
<210 <211 <212 <213	> 4 > D	5	icia	l Sec	quen	ce										
<230 <233	3 > D	escr: ligo:					cial	Seqı	uence	e: Sy	ynth:	etic				
<400 gtgt		07 atg g	gccat	tgcca	aa to	ggcca	agcg	c ati	tgga	eget	tct	gt				45
<210 <211 <212	. > 1	838														

<213> Homo sapiens <400> 108 eggaegegtg ggeggaegeg tgggeggeee aeggegeeeg egggetgggg eggtegette 60 tteettetee gtggeetaeg agggteecea geetgggtaa agatggeece atggeeceeg 120 aagggeetag teecagetgt getetgggge eteageetet teeteaacet eecaggacet 180 atotggeted agoodteted acotededag totteteded ogdeteaged coatdegtgt 240 catacetgee ggggaetggt tgacagettt aacaagggee tggagagaac cateegggac 300 aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360 gagaddddc tggtagaggt getggagggt gtgtgdagda agtdagadtt cgagtgddad 420 egeetgetgg agetgagtga ggagetggtg gagagetggt ggttteaeaa geageaggag 480 geoceggaee tettecagtg getgtgetea gattecetga agetetgetg eecegeagge 540 acctteggge cetectgeet teeetgteet gggggaaeag agaggeeetg eggtggetae 600 gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660 tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720 agecatetgg tatgttegge ttgttttgge eeetgtgeee gatgeteagg aeetgaggaa 780 teaaaetgtt tgeaatgeaa gaaggetgg geeetgeate aceteaagtg tgtagaeatt 840 gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattetgcgt gaacactgag 900 ggotootatg agtgoogaga otgtgooaag gootgootag gotgoatggg ggoagggooa 960 ggtegetgta agaagtgtag coetggetat cagcaggtgg getecaagtg tetegatgtg 1020 gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080 ggttateget geatetgige egagggetae aageagatgg aaggeatetg igigaaggag 1140 cagateceag agteageagg ettettetea gagatgaeag aagaegagtt ggtggtgetg 1200 cageagatgt tetttggeat cateatetgt geactggeea egetggetge taagggegae 1260 tuggtgttca cogcoatott cattggggct gtggcggcca tgactggcta ctggttgtca 1320 gagogoagtig acceptigitget ggagggettic atcaagggea gataategeg gecaccaect 1380 gtaggaeete eteccaeeca egetgeeece agagettggg etgeeeteet getggaeact 1440 caggacaget tggtttattt ttgagagtgg ggtaagcace eetacetgee ttacagagca 1500 geocaggtac ccaggecegg geagacaagg eceetggggt aaaaagtage eetgaaggtg 1560 qataccatqa getetteace tqqcqqqqac tqqcaqqett cacaatqtqt gaatttcaaa 1620 aqtttttteet taatggtgge tgetagaget ttggeedetg ettaggatta ggtggteete 1680 amaggggtgg ggecatcaca geteceteet gecagetgea tgetgecagt teetgttetg 1740 tqttdaddad atddddadad oddattgdda ottatttatt datdtdagga aataaagaaa 1800 ggtcttggaa agttaaaaaa aaaaaaaaaa aaaaaaaa <210> 109 <211> 420 <2:12> PRT <113> Homo sapiens <400> 109 Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser 20 25 Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile

55

50

Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu 155 150 Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly 170 165 Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His 200 Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro 210 215 Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His 230 235 Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu 295 290 Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln 315 310 Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr 325 Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala 345

Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln 355 360 365	
Met Phe Phe Gly Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys 370 380	
Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met 385 390 395 400	
Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe 405 410 415	
Ile Lys Gly Arg 420	
<210> 110 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 110 cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga	50
<pre><210> 111 <211> 22 <212> DNA <113> Antificial Sequence</pre>	
<pre><22000 <.02000 Description of Artificial Sequence: Synthetic cligonucleotide probe</pre>	
<400> 111 attotgogtg aacactgagg go	22
<pre><2108 112 <2118 22 <2128 DNA <2138 Artificial Sequence</pre>	
<pre><u20> <u20> <u20> Description of Artificial Sequence: Synthetic oligonucleotide probe</u20></u20></u20></pre>	
<400> 112 atotgottgt agoddoggo ad	22
<210> 113	

```
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1461)
<223> a, t, c or q
<400> 113
tgagaddetd etgdagdett etdaagggad agdddaatt tgddtettgd teetddaggg 60
caquadcatq dagocootgt ggototgotg ggoadtetgg gtgttgoddd tggodagddd 120
cggggccgcc ctgaccgggg agcagctcct gggcagcctg ctgcggcagc tgcagctcaa 180
aqaqqtqccc accetqgaca gggccgacat ggaggagetg gtcatcccca cccacgtgag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagecagage tteegagagg tggeeggeag gtteetggeg ttggaggeea geacacacet 360
getggtgtte ggeatggage ageggetgee geecaaeage gagetggtge aggeegtget 420
geggetette eaggageegg teeccaagge egegetgeac aggeaeggge ggetgteecc 480
gogcagogoc ogggocoggg tyacogtoga gtggotycge gtocgogacg acggotocaa 540
cogoacetee eteatogaet coaggetggt gtoogtocae gagagegget ggaaggeett 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg teggtgeaga gggageatet gggeeegetg gegteeggeg eecacaaget 720
ggtocgettt geetogeagg gggegecage egggettggg gageeceage tggagetgea 780
caccotggac ottggggact atggagetea gggegactgt gaccotgaag caccaatgac 840
cqaqqqcacc cqctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagd ddddgggdtt ddtggdttat gagtgtgtgg gdaddtgddg 900
quaquoucuq qaqqoottgg cottoaagtq googtttotq qqqootogad aqtqoatogo 1020
ctoggagaet gaetogetge ceatgatogt cagcatoaag gagggaggca ggaecaggee 1080
ccaqqtqqte ageetgeeca acatgagggt geagaagtge agetgtgeet eggatggtge 1140
qeteqtqeea aqqaqqetee aqceataqqe qeetaqtgta qeeategagg gaettgaett 1200
qtqtqttt ctqaaqtqtt cqaqqqtacc aqqaqagctq gcgatgactq aactgctgat 1000
ggadaaatge totgtgetet etagtgaged etgaattige tidetetgad aagttadete 1320
adotaatttt tgetteteag gaatgagaat etttggeede tggagageed ttgeteagtt 1380
ttototatto ttattattoa otgoactata ttotaagoac ttacatgtgg agatactgta 1440
acctgaggge agaaageeca ntgtgteatt gtttacttgt eetgteaetg gatetggget 1500
asagtocted accadeacte tggadetaag acctggggtt aagtgtgggt tgtgdateed 1560
caatccagat aataaagact ttgtaaaaca tgaataaaac acattttatt ctaaaa
<210> 114
<211> 366
<212> PRT
<213> Homo sapiens
<400> 114
Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
  1
Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
                                 25
```

Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met

40

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu 55 Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln Ser Phe Arq Glu Val Ala Gly Arq Phe Leu Ala Leu Glu Ala Ser Thr His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu 105 Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala 115 Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg 135 Val Thr Val Glu Trp Leu Arq Val Arq Asp Asp Gly Ser Asn Arg Thr 150 Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Glr Leu Ser Arg 185 Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu 195 Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln 215 Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu 230 235 Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro 245 Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu 265 Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe 275 280 Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu Ala Phe Lys Trp Pro Phe Leu Gly Pro Arq Gln Cys Ile Ala Ser Glu 310 Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr 330 325

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser 340 345 350	
Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro 355 360 365	
<210> 115 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 115 aggactgcca taacttgcct g	21
<210> 116 <211> 22 <012> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>	
<400> 116 ataggagttg aagcageget ge	22
<pre><010> 117 <211> 45 <112> DNA <213> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>	
<400> 117 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc	45
<210> 118 <211> 1857 <212> DNA <213> Homo sapiens	
<pre><400> 118 gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaca aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat</pre>	120

aateetqtqa aqttqteetq tqeetaeteg ggettttett eteecegtgt ggagtggaag 240 tttgaccaag gagacaccae cagactegtt tgctataata acaagateac agetteetat 300 gaggaccggg tgaccttett gecaactggt atcacettca agtecgtgac acgggaagac 360 actqqqacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420 gtcaagetea tegtgettgt gestecates aagestacag ttaacatess etsetetges 480 accattggga accgggcagt getgacatge teagaacaag atggtteece accttetgaa 540 tacacctqqt tcaaaqatqq qataqtgatg cctacgaatc ccaaaagcac ccgtgccttc 600 agcaactett cetatgteet gaateeeaca acaggagage tggtetttga teeeetgtea 660 qcctctgata ctggagaata cagctgtgag gcacggaatg ggtatgggac acccatgact 720 tcaaatqctq tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780 cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840 ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900 agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960 geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeecetgat 1020 gtotgtagtt toacaggatg cottatttgt ottotacaco coacagggco coctacttot 1080 toggatgtgt tittaataat gicagotatg tgooccatoo toottoatgo cotocctooc 1140 tttectacca etgetgagtg geetggaact tgtttaaaagt gtttatteec catttetttg 1200 agggatcagg aaggaatcet gggtatgeea ttgaetteee ttetaagtag acageaaaaa 1260 tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320 aggtatettg agettggtte tgggetettt eettgtgtae tgacgaccag ggecagetgt 1380 tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440 teetteeate tetggggeee aetetettet gtetteeeat gggaagtgee aetgggatee 1500 ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560 agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620 accepted taaaqaaaaq asaactggag getgggegea gtggeteaeg eetgtaatee 1680 cagaggetga ggeaggegga teacetgagg tegggagtte gggateagee tgaceaacat 1740 ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800 agetgeteag gageetggea acaagageaa aacteeaget caaaaaaaaa aaaaaaa

```
<210> 119
```

<400> 119

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile 1 5 10 15

Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His 20 25 30

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe 50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

<211> 299

<212> PRT

<213> Homo sapiens

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 135 Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro 155 150 Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn 170 165 Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 180 185 Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly 200 195 Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 235 230 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly 250 245 Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly 265 Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 275 280 Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 290 295 <210> 130 <211> 24 <212> DNA <213> Artificial Sequence <2205 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 120

<210> 121 <211> 50

tegeggaget gtgttetgtt teec

<212><213>	DNA Artificial Sequence	
	•	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400>	121	
tgatcg	gegat ggggacaaag gegcaagete gagaggaaac tgttgtgeet	50
<210>		
<211>		
<212><213>	Artificial Sequence	
	-	
<220>	Determination of Butificial Community Combine	
<££43>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400>	122	
adaddt	ggtt caaagatggg	20
<210>	123	
<211 >	24	
<212>	DNA	
<213→	Artificial Sequence	
<220.>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
< 4 () () .	123	
taggaa	agagt tgctgaaggc acgg	24
<210>	104	
<211>		
<212>		
<113>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400>	124	
ttgaat	tact caggtgctac	20
<210>	125	
<211>		
<212>		
<213>	Artificial Sequence	
<2200>		
2003 V	Description of Artificial Sequence: Synthetic	

. -

oligonucleotide probe

02290;;;;;;			
<400> 125 actcagcagt ggtaggaaag			20
<210> 126 <211> 1210 <212> DNA <213> Homo sapiens			
gagegtggeg aacagggget geetggage egeegage geteaggete gtgeceaece teacetggeg etgegacagg ggattgage atgtacecag geaeeggegt eagetgeet ageaggegag ggegetgega eggecaeeca atgagateet eaggaatge	tgtggggaca gcatgagcgg ctgggcctgg cgctgctgct ccgctttcca ccccgacctc accaagttcc agtgccgcac gacttggact gcagcgatgg aaagggcaat gcccaccgcc tctgggggaa ctgacaagaa ctccgttgca cgctgagcga gactgtcccg actccagcga gatgccacaa ccatggggcc acaaccatgg ggccccctgt	gctgctcggc ctcggactag tgcccaggcc gcaggcccca cagtggctta tgcgtgccc cagcgatgag gaggagtgca ccctggcctc ccctgcccct actgcgcaac tgcagccgcc tgactgcatt ccactcacgt cgagctcggc tgtggaacca ccctgtgacc ctggagagtg gaccctggag agtgtcccct	120 180 240 300 360 420 480 540 600 660
gggttattgc agctgctgcg tgtcctggct ccgagcccag agtccctgct gctgtcagaa ccgtcactca gccctgggcg	tectetgeeg gagaceagte gtgeteagtg caageetggt gagegeetee geeeactggg cagaagaeet egetgeeetg tageeggaea ggaggagage	caccgccacc ctcctcttt gttactggtg gccatgaagg aggacaagca cttgccacca agtgatgcgg atgggtaccc	780 840 900 960
teetgeagaa gtggeeetgg agetaggatg gggaacetge	acctgagttc ttetggccac agattgaggg tccctggaca cacagccaga actgaggggc ttaagacact ccctgctgcc	ctccctatgg agatccgggg tggccccagg cagctcccag	1080 1140
<210> 127 <211> 282 <212> PET <213> Homo sapiens			
	et Ala Gln Val Gly Ala 10		
Leu Gly Leu Ala Leu Leu 20	eu Leu Leu Gly Leu 25	Gly Leu Gly Leu Glu 30	
Ala Ala Ala Ser Pro Lo	eu Ser Thr Pro Thr Ser 40	Ala Gln Ala Ala Gly 45	
Pro Ser Ser Gly Ser C	ys Pro Pro Thr Lys Phe 55	Gln Cys Arg Thr Ser 60	
• •	eu Thr Trp Arg Cys Asp 70 75	Arg Asp Leu Asp Cys 80	

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser 115 Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp 150 155 Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly 170 Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser 185 Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val 195 200 Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala 230 235 Ser Leu Val Thr Ala Thr Leu Leu Leu Leu Ser Trp Leu Arg Ala Gln 245 Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu 260 Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro 280 <210> 128 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 128

aagttccagt gccgcaccag tggc

```
<211> 24
<111> DNA
<213> Artificial Sequence
<2205
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 129
                                                                   24
ttggttccac agccgagete gtcg
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 130
                                                                   50
gaggaggagt geaggattga geeatgtace cagaaaggge aatgeeeace
<010> 131
<111> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<2223 (1837)
<1113> a, t, d or g
<400> 131
decadqeqte eqqteteget egetegegea geggeggeaq cagaggtege geacagatge 60
gygttagact ggcggggga ggaggeggag gagggaagga agetgeatge atgagaecca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
qdaatqqaqa tqqatttcta qaqcaqcaqc aqcaqcaqca qcaacctcaq tccccccaqa 240
gactottgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
egggegggtt egatgacett caagtgtgtg etgaceeegg catteeegag aatggettea 360
ggacccccag cggaggggtt ttotttgaag gototgtage cegattteac tgecaagaeg 420
gattcaaget gaagggeget acaaagagae tgtgtttgaa geattttaat ggaaccetag 480
gotggatoco aagtgataat tooatotgtg tgcaagaaga ttgoogtato ootcaaatog 540
aagatgetga gatteataac aagacatata gacatggaga gaagetaate atcacttgtc 600
atgaaggatt caagateegg taeeeegaee taeacaatat ggttteatta tgtegegatg 660
atggaacgtg gaataatetg eccatetgte aaggetgeet gagaceteta geetetteta 720
atggetatgt aaacatetet gageteeaga eeteetteee ggtggggaet gtgateteet 780
atogotyctt tocoggattt aaacttgatg ggtotgogta tottgagtgo ttacaaaaacc 840
ttatotggto gtocagodda doddggtgdd ttgototgga agdddaagto tgtocactad 900
ctccaatqqt qaqtcacqqa qattteqtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgegate ctggctacag ceteaceage gactacaagt 1020
acateacety ceagtatgga gagtggttte ettettatea agtetactge ateaaateag 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
```

eggcaaceag tgtgetgetg gtgetgetge tegteateet ggecaggatg ttecagaeca 1200 agtteaagge eeacttteee eeeaggggge etceeggag ttecageagt gaceetgaet 1260 ttgtggtggt agaeggetg eeegteatge teeegteeta tgaegaaget gtgagtggeg 1320 gettgagtge ettaggeece gggtacatgg eetetgtggg eeagggetge eeettaeeeg 1380 tggaegaeca gageeeeea geataeeeeg geteaggga eaeggaeaea ggeeeagggg 1440 agteagaace etgtgaeage gteteagget ettetgaget geteeaaagt etgtatteae 1500 etceeaggtg eeaagaage aeeeaeeetg etteggaeaa eeetgaeata attgeeagea 1560 eggeagagga ggtggeatee aeeageeeag geateeatea tgeeeaetgg gtgttgttee 1620 taagaaaetg ggagttgatt eettteette tettggttt agaeaaatg aaacaaaget 1740 etgateetta aaattgetat getgatagag tggtgaggge tggaagettg ateaagteet 1800 gtttettett gaeacagaet gattaaaaa taaaagnaaa aaa 1843

<210 > 132

<211> 490

<212> PRT

<213 > Homo sapiens

<400> 132

Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln
1 5 10 15

Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val 20 25 30

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr 35 40 45

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu 50 55 60

Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val 65 70 75 80

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys 85 90 95

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser 100 105 110

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu 115 120 125

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile 130 135 140

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile 165 170 175

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

			180					185					190		
Ile	Ser	Glu 195	Leu	Gln	Thr	Ser	Phe 200	Pro	Val	Gly	Thr	Val 205	Ile	Ser	Tyr
Arg	Cys 210	Phe	Pro	Gly	Phe	Lys 215	Leu	Asp	Gly	Ser	Ala 220	Туr	Leu	Glu	Cys
Leu 225	Gln	Asn	Leu	Ile	Trp 230	Ser	Ser	Ser	Pro	Pro 235	Arg	Cys	Leu	Ala	Leu 240
Glu	Ala	Gln	Val	Cys 245	Pro	Leu	Pro	Pro	Met 250	Val	Ser	His	Gly	Asp 255	Phe
Val	Cys	His	Pro 260	Arg	Pro	Cys	Glu	Arg 265	Tyr	Asn	His	Gly	Thr 270	Val	Val
Glu	Phe	Туг 275	Cys	Asp	Pro	Gly	Tyr 280	Ser	Leu	Thr	Ser	Asp 285	Tyr	Lys	Tyr
Ile	Thr 290	Cys	Gln	Tyr	Gly	Glu 295	Trp	Phe	Pro	Ser	Tyr 300	Gln	Val	Tyr	Cys
Ile 305	Lys	Ser	Glu	Gln	Thr 310	Trp	Pro	Ser	Thr	His 315	Glu	Thr	Leu	Leu	Thr 320
Thr	Trp	Lys	Ile	Val 325	Ala	Ph∈	Thr	Ala	Thr 330	Ser	Vāl	Leu	Leu	Val 335	Leu
Leu	Leu	Val	Ile 340	Leu	Ala	Arg	Met	Phe 345	Gln	Thr	Lys	Phe	Lys 350	Ala	His
Phe	Pro	Pro 355	Arg	Gly	Pro	Pro	Arg 360	Ser	Ser	Ser	Ser	Asp 365	Pro	Asp	Phe
Val	Val 370	Val	Asp	Gly	Val	Pro 375	Val	Met	Leu	Pro	Ser 380	Tyr	Asp	Glu	Ala
Val 385	Ser	Gly	Gly	Leu	Ser 390	Ala	Leu	Gly	Pro	Gly 395	Tyr	Met	Ala	Ser	Val 400
Gly	Gln	Gly	Cys	Pro 405	Leu	Pro	Val	Asp	Asp 410	Gln	Ser	Pro	Pro	Ala 415	Tyr
Pro	Gly	Ser	Gly 420	Asp	Thr	Asp	Thr	Gly 425	Pro	Gly	Glu	Ser	Glu 430	Thr	Cys
Asp	Ser	Val 435	Ser	Gly	Ser	Ser	Glu 440	Leu	Leu	Gln	Ser	Leu 445	Tyr	Ser	Pro
Pro	Arg	Cys	Gln	Glu	Ser	Thr	His	Pro	Ala	Ser	Asp	Asn	Pro	Asp	Ile

Ile 465	Ala	Ser	Thr	Ala	Glu 470	Glu	Val	Ala	Ser	Thr 475	Ser	Pro	Gly	Ile	His 480	
His	Ala	His	Trp	Val 485	Leu	Phe	Leu	Arg	Asn 490							
<210 <211 <212 <213	.> 21 !> DI	3 NA	icia	l Sec	quen	ce										
<220 <223	> De		_	on of			cial	Sequ	ience	e: Sy	ynthe	etic				
<400 atct			gctg	cttt	ad di	39										23
<210 <211 <212 <213	> 21 2> DI	3 NA	icia	l Sed	quen	ce										
<220 <223	s > D		_	on of eotic			cial	Seq	uence	e: Sy	ynthe	etic				
<400 aged			gcag	taaaa	ac t	cc										23
<210 <211 <311 <213	L> 5 L> D	0 NA	icia	l Sed	quen	ce										
<220 <223	8 > D		-	on o: eotic			cial	Seq	uence	e: Sy	ynth:	etic				
<400 attt			gatg	ggtc	tg c	gtat	cttg	a gt	gctta	acaa	aac	ctta	tct			50
<210 <211 <213 <213	i > 1 2 > D	815 N A	sapi	ens												
gato cegt taca	acge getg Lage agge	gta etg gaa egt	ccgc cgag gctg	ggtt: tgtc: ctgg:	gc a gg g cc g	gttg gggc tgct	tege geac getg	g ca c cg g tg	cgcct agtc gggct	tctg gggc tgcg	ccc cate ggc	gcca gagg cgcg	gcc ccg acg	cgct ggaa ggtc	cctaga ccaccg ccgcgc gcctgc cacaga	120 180 240

```
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
qqactqatqq caqcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
gegaggtetg egtggteatg taccateage categgeace egetggeate ggaggeecet 660
acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
gagaagetge ettgaatetg geetacatee taateeecag catteeectt etecteetee 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccctag cacaaagaag caacacca tetggeeete teeteaccag ggaaacagee 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380
ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440
tecccaegae etectgttgg acceccaegt tttggetgta teetttatee eagecagtea 1500
tecagetega cettatgaga aggtacettg eccaggtetg geacatagta gagteteaat 1560
aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620
aaagatgggc tgtggagctt ggaaaaccac ctctgttttc cttgctctat acagcagcac 1680
atattatcat acaqacaqaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740
ttggcctgtg catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800
                                                                  1815
agcaggaaaa aaaaa
<110> 137
<211> 382
<1112> PRT
<113> Homo sapiens
```

<400> 137

Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu 1

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe 50

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser 75 70

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn 85

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu 105 100

Glu	Lys	Gln 115	Ser	Asn	Ser	Thr	Ala 120	Cys	Gln	Asp	Leu	Tyr 125	Ala	Trp	Thr
Asp	Gly 130	Ser	Ile	Ser	Gln	Phe 135	Arg	Asn	Trp	Tyr	Val 140	Asp	Glu	Pro	Ser
Cys 145	Gly	Ser	Glu	Val	Cys 150	Val	Val	Met	Tyr	His 155	Gln	Pro	Ser	Ala	Pro 160
Ala	Gly	Ile	Gly	Gly 165	Pro	Tyr	Met	Phe	Gln 170	Trp	Asn	Asp	Asp	Arg 175	Cys
Asn	Met	Lys	Asn 180	Asn	Phe	Ile	Cys	Lys 185	Tyr	Ser	Asp	Glu	Lys 190	Pro	Ala
Val	Pro	Ser 195	Arg	Glu	Ala	Glu	Gly 200	Glu	Glu	Thr	Glu	Leu 205	Thr	Thr	Pro
Val	Leu 210	Pro	Glu	Glu	Thr	Gln 215	Glu	Glu	Asp	Ala	Lys 220	Lys	Thr	Phe	Lys
Glu 225	Ser	Arg	Glu	Ala	Ala 230	Leu	Asn	Leu	Ala	Tyr 235	Ile	Leu	Ile	Pro	Ser 240
Ile	Pro	Leu	Leu	Leu 245	Leu	Leu	Val	Val	Thr 250	Thr	Val	Val	Cys	Trp 255	Val
Trp	Ile	Cys	Arg 260	Lys	Arg	Lys	Arg	Glu 265	Gln	Pro	Asp	Pro	Ser 270	Thr	Lys
Lys	Gln	His 275	Thr	Ile	Trp	Pro	Ser 280	Pro	His	Gln	Gly	Asn 285	Ser	Pro	Asp
Leu	Glu 290	Val	Tyr	Asn	Val	Ile 295	Arg	Lys	Gln	Ser	Glu 300	Ala	Asp	Leu	Ala
Glu 305	Thr	Arg	Pro	Asp	Leu 310	Lys	Asn	Ile	Ser	Phe 315	Arg	Val	Cys	Ser	Gly 320
Glu	Ala	Thr	Pro	Asp 325	Asp	Met	Ser	Cys	Asp 330	Tyr	Asp	Asn	Met	Ala 335	Val
Asn	Pro	Ser	Glu 340	Ser	Gly	Phe	Val	Thr 345	Leu	Val	Ser	Val	Glu 350	Ser	Gly
Phe	Val	Thr 355	Asn	Asp	Ile	Tyr	Glu 360	Phe	Ser	Pro	Asp	Gln 365	Met	Gly	Arg
Ser	Lys 370	Glu	Ser	Gly	Trp	Val 375	Glu	Asn	Glu	Ile	Tyr 380	Gly	Tyr		

<211> 50 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>	
<400> 138 gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca	50
<210> 139 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 139 aagccaaaga agcctgcagg aggg	24
<pre><210> 140 <211> 24 <d12> DNA <d13> Artificial Sequence</d13></d12></pre>	
<pre><b20> <b203> Description of Artificial Sequence: Synthetic oligonucleotide probe</b203></b20></pre>	
<pre><400> 140 cagtecaage ataaaggtee tgge</pre>	24
<pre><110> 141 <111> 1514 <112> DNA <1213> Homo sapiens</pre>	
ed00> 141 ggggtetece teagggeegg gaggeacage ggteeetget tgetgaaggg etggatgtac geateegeag gtteeegeg acttggggge geeegetgag eeeegggege egeagaagae ttgtgtttge eteetgeage eteaaceegg agggeagega gggeetacea eeatgateae tggtgtgtte ageatgeget tgtggaeeee agtgggegte etgaeetege tggeggtaetg egaeegeage etgetgaagt tgaaaatggt geaggtegtg tttegaeaeg gggeteegga getgaeggag geegatggee agtgteeggt teeteteaag eegeteeege tggaggagea ggtagagtgg aaceeceage tattagaggt eeeaeeceae egaeegeage etgetgaega ggtagagtgg aaceeceage tattagaggt eeeaeeceae acteagttg attacaeagt eaceaateta getggtggte egaaaceata teeteettae gaeteteaat aceatgagae eaceetgaag gggggeatgt ttgetgggea getgaeeaag gtgggeatge ageaaatgtt tgeettggga gagagaetga ggaagaacta tggggaagae atteeettte ttteaeeaae eegttgtttg etggetggge tttteeagtg	120 180 240 300 360 420 480 540 660

.

-

teagaaagaa ggacceatca teatecadae tgatgaagea gatteagaag tettgtatee 780 eaactaceaa agetgetga geetgaggea gagaaceaga ggeeggagge agactgeete 840 tttacageea ggaateteag aggatttgaa aaaggtgaag gacaaggatgg geattgacag 900 eeteccaage tgeeccatge tgaaggatt tgeacggatg ategaacaga gagetgtgga 1020 eacateettg tacatactge ecaaggaaga cagggaaagt etteagatgg eagtaggee 1080 attecteeae atectagaga geaacetget gaaagecatg gactetgeea etgeeccega 1140 eaagateaga aagetgtate tetatgegge teatgatgtg acetteatae egetettaat 1200 gaccetgggg attittgace acaaatggee acegtttget gttgacetga ecatggaact 1260 ttaccageae etggaateta aggagtggt tgtgeagete tattaceaeg ggaaggagea 1320 ggtgeegaga ggttgeectg atgggetetg eeegetggae atgttettga atggeatgt 1380 agttgaaat gaagagtaae tgattataa aageaggatg tgttgattt aaaaaag 1500 geetttatae aatg

<210> 142

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val 1 5 10 15

Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala 20 25 30

Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu 35 40 45

Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro 50 55 60

Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu 65 70 75 80

Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu 85 90 95

Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu 100 105 110

Thr Thr Leu Lys Gly Gly Met Phe Ala Gly Gln Leu Thr Lys Val Gly 115 120 125

Met Gln Gln Met Phe Ala Leu Gly Glu Arg Leu Arg Lys Asn Tyr Val 130 135 140

Glu Asp Ile Pro Phe Leu Ser Pro Thr Phe Asn Pro Gln Glu Val Phe 145 150 155 160

Ile Arg Ser Thr Asn Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu 165 170 175

.

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His 180 Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys 200 Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu 215 Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 230 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val 250 Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg 265 Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile 280 Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe 295 Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr 310 Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val 325 330 Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp 340 Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu 360 Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val 370 375 Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys 410 405 Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu 420

<210> 143

<211> 24

<212> DNA

<213> Artificial Sequence

	Description of Ar oligonucleotide p		equence:	Synthetic		
<400> 1	143 acca aagctgctgg a	ıgcc				24
<210 > 1 <211 > 2 <212 > 1 <213 > 2	24	ıce				
	Description of Ar oligonucleotide p		equence:	Synthetic		
<400> 3	144 ctat taccacggga a	agga				24
<210> 1 <211> 2 <212> I <213> A	24	ıce				
	Description of Ar oligonucleotide p		Sequence:	Synthetic		
<400> 1	145 cegt ggtaatagag c	etge				24
<210> 0 <211> 4 <212> 1 <213> 2	45	ıce				
	Description of Ar oligonucleotide p		Sequence:	Synthetic		
<400> : ggdagag	146 gaac cagaggcegg a	aggagactgc	ctctttaca	ag ccagg		4 5
<210> (211> (211> (212>)))	1586					
cttaaa	147 ttaa catacttgca g tttc agctcatcac c catt tgcaccagac c	cttcacctgc	cttggtcat	tg gctctgctat	tctccttgat	120

```
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agetgecage ggaaccecta gtggtatttt gtatgageca ceageagaaa aagageaaaa 360
ggtcctcate caatcagtea gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte tecceagtee eagagggtgt eaggetgget gaeggeeetg ggeattgeaa 540
gggacgcgtg gaagtgaage accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaacce ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtccctc tctccctcct tcagagaccg gaaatgctat ggccctgggg ttggccgcat 1020
ctggctggat aatgttegtt geteagggga ggageagtee etggageagt geeageacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tettetgecc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggtotagtt otdaggodat dagadatagt tiggaactad atdaccaddt tiddtatgtd 1380
tocacattge acacagoaga ttoccagoot coataattgt gtgtatcaac tacttaaata 1440
catteteaca cacacacaca cacacacaca cacacataca ceatttgtee 1500
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaattag atataaaatt otggtaactt tatttacaat aataaagata gcactatgtg 1680
ttcaaa
<210> 148
<211> 347
<212> PRT
<213> Homo sapiens
<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
  1
                  5
Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
             2.0
                                 25
Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
     50
Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
                                          75
Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
                 85
                                      90
Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
                                 105
            100
```

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu 120 115 Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro 135 Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 150 145 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 200 195 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 215 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 230 225 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg 245 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn 265 Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly 280 275 Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 295 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu 310 305 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 330 His Gln Glu Asp Val Ala Val Ile Cys Ser Val <210 > 149 <211 > 24

<220>

<212 > DNA

<213 > Artificial Sequence

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 149 ttcagctcat caccttcacc tgcc	24
<210> 150 <211> 24 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 150 ggctcataca aaataccact aggg	24
<pre><210> 151 <211> 50 <212> DNA <213> Artificial Sequence</pre>	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 151 gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt	50
<210> 152 <211> 1427 <212> DNA <213> Homo sapiens	
<400> 152	
actgoactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgacctcg	50
acccacgegt cegeggaege gtgggeggae gegtgggeeg getaccagga agagtetgee	120
gaaggtgaag gecatggaet teateacete cacagecate etgeceetge tgtteggetg	180
cotgggegte treggeetet teeggetget geagtgggtg egegggaagg ectaeetgeg	3.00
gaatgotgtg gtggtgatca caggogocae etcagggotg ggcaaagaat gtgcaaaagt ettotatgot gegggtgota aactggtget etgtggeegg aatggtgggg cectagaaga	
gctcatcaga gaacttaccg cttctcatgc caccaaggtg cagacacaca agccttactt	
ggtgacette gaceteacag actetgggge catagttgca geageagetg agateetgea	480
gtgctttggc tatgtcgaca tacttgtcaa caatgctggg atcagctacc gtggtaccat	540
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt	600
tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc	650
catcagcage atccagggea agatgageat teettttega teageatatg cageeteeaa	720
gcacgcaacc caggetttet ttgactgtet gegtgeegag atggaacagt atgaaattga	780
ggtgaccgtc atcageceeg getacateea caccaacete tetgtaaatg ceatcacege	840
ggatggatet aggtatggag ttatggaeae caccacagee cagggeegaa geeetgtgga	900
ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaagatgtga tcctggctga	960
cttactgcct tccttggctg tttatcttcg aactctggct cctgggctct tcttcagcct	1020
catggcetec agggecagaa aagageggaa atecaagaae teetagtaet etgaeeagee	1080

agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140 ttqttqaqac tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 1200 gtgcagatct gctggcagag gacaatcaaa aacgacaaca agcttcttcc cagggtgagg 1260 ggaaacactt aaggaataaa tatggagetg gggtttaaca etaaaaacta gaaataaaca 1320 teteaaacag taaaaaaaaa aaaaaaggge ggeegegaet etagagtega eetgeagaag 1380 cttggccgcc atggcccaac ttgtttattg cagcttataa tggttac <210> 153 <211> 310 <212> PRT <213> Homo sapiens <400> 153 Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys 25 Ala Tyr Leu Arg Asn Ala Val Val Val Ile Thr Gly Ala Thr Ser Gly 40 Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu 55 50 Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu 90 Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala Ala 105 100 Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 120 Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 130 Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 155 150 145 Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala 170 165 Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr

185

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 200

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

21	. 0				215					220					
Ile Hi 225	s Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240	
Tyr Gl	y Val	. Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu	
Val Al	a Glr	1 Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val	
Ile Le	eu Ala 275	_	Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu	
Ala Pr	_	/ Leu	Phe	Phe	Ser 295	Leu	Met	Ala	Ser	Arg 300	Ala	Arg	Lys	Glu	
Arg Ly 305	rs Sei	Lys	Asn	Ser 310											
<210><211><211><212><213>	24 DNA	icia	l Se	quen	ce										
<2205 <2235	Desc:					cial	Seqi	uence	e: S	ynth:	etic				
<400: ggtgat		tggt	gata	tg t	ggc										24
<210><2110><2110><2112><213>	20 DNA	ficia	l Se	quen	ce										
<0000 <0000		ripti onucl				cial	Seq	uence	e: S	ynth	etic				
<400 s cagggo		tgag	catt	cc											20
<210 > <211 > <212 > <213 >	24 DNA	ficia	l Se	quen	ce										
<220 <i>></i> <223 <i>></i>		ripti onucl				cial	Seq	uenc	e: S	ynth	etic				

```
<400> 156
                                                                24
tcatactqtt ccatctcggc acgc
<210> 157
<211> 50
<212> DNA
<113> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 157
                                                                50
aatqqtqqqq ccctagaaga gctcatcaga gaactcaccg cttctcatgc
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cctcctgctt ctcccgttac tgatcgtctg ctccctagag tccttcgtga agctttttat 180
tectaagagg agaaaateag teaceggega aategtgetg attacaggag etgggeatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataaq catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
tcataccttt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat getggtgtag tetatacate 480
agatttgttt gctacacaag atcctcagat tgaaaagact tttgaagtta atgtacttgc 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 640
aagcaagttt getgetgttg gattteataa aaetttgaea gatgaaetgg etgeettaea 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
geatgggatt etgaetgage agaagatgat ttttatteea tettetatag ettttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttecaa qattatttqt qgeteacetg aaggetttge aaaatttgta ecataacegt 1320
ttatttaaca tatattttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
tttctgttct acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
gctagaggtg gatacacgtg ttgcaagtat aaaagcatca ctgggattta aggagaattg 1620
agagaatgta cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaa 1680
1771
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a
```

<211> 300

<212> PRT <213> Homo sapiens <400> 159 Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile Val 10 Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val 55 Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 70 Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly 105 Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 120 115 Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 135 130 Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 155 150 Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 165 Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala 185 180 Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 200 Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 215 210 Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 235 230 Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 250 245

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu 200 265 270	Arg Ile
Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser V 275 280 285	Val Lys
Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln 290 295 300	
<210> 160 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 160 ggtgaaggca gaaattggag atg	23
<210> 161 <211> 24 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>	
<400> 161 ateccatgea teageetgtt tace	24
<210> 162 <211> 48 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic</pre>	
<400> 162 gctggtgtag tctatacatc agatttgttt gctacacaag atcetcag	48
<210> 163 <211> 2076 <212> DNA <213> Homo sapiens	
<400> 163 cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc c tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat g	gcccgcggc 60 gtggaaggtg 120

```
attgtttcgc tggtcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagetg ggaagateea aaaaggaaga gaattgagtt tggteggeee ttteeeagga 300
ctqaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttettetggt tetteecage teagataeag eeagaagatg eeceagtagt tetetggeta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
quaqtuaatq aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 710
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat tootgtacca aattggottg ttggatgaga agcaaaaaaa gtacttocag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcategtgg cagetgeect gacagagege teettgatgg geatggaetg gaaaggatee 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1580
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attotoaaat gtataaagto ttagaacaaa agaattottt 2040
                                                                  2076
qaaataaaaa tattatatat aaaaqtaaaa aaaaaa
<210> 164
<211> 476
<212> PRT
<213> Homo sapiens
<400> 164
```

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met 1 5 10 15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser 20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr 35 40 45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly 50 55 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65					70					75					80
Asn	Lys	Thr	Tyr	Asn 85	Ser	Asn	Leu	Phe	Phe 90	Trp	Phe	Phe	Pro	Ala 95	Gln
Ile	Gln	Pro	Glu 100	Asp	Ala	Pro	Val	Val 105	Leu	Trp	Leu	Gln	Gly 110	Gly	Pro
Gly	Gly	Ser 115	Ser	Met	Phe	Gly	Leu 120	Phe	Val	Glu	His	Gly 125	Pro	Tyr	Val
Val	Thr 130	Ser	Asn	Met	Thr	Leu 135	Arg	Asp	Arg	Asp	Phe 140	Pro	Trp	Thr	Thr
Thr 145	Leu	Ser	Met	Leu	Tyr 150	Ile	Asp	Asn	Pro	Val 155	Gly	Thr	Gly	Phe	Ser 160
Phe	Thr	Asp	Asp	Thr 165	His	Gly	Tyr	Ala	Val 170	Asn	Glu	Asp	Asp	Val 175	Ala
Arg	Asp	Leu	Tyr 180	Ser	Ala	Leu	Ile	Gln 185	Phe	Phe	Gln	Ile	Phe 190	Pro	Glu
Tyr	Lys	Asn 195	Asn	Asp	Phe	Tyr	Val 200	Thr	Gly	Glu	Ser	Tyr 205	Alā	Gly	Lys
Tyr	Val 210	Pro	Ala	Ile	Ala	His 215	Leu	Ile	His	Ser	Leu 220	Asn	Pro	Val	Arg
Glu 225	Val	Lys	Ile	Asn	Leu 230	Asn	Gly	Ile	Ala	Ile 235	Gly	Asp	Gly	Tyr	Ser 240
Asp	Pro	Glu	Ser	Ile 245	Ile	Gly	Gly	Tyr	Ala 250	Glu	Phe	Leu	Tyr	Gln 255	Ile
Gly	Leu	Leu	Asp 260	Glu	Lys	Gln	Lys	Lys 265	Tyr	Phe	Gln	Lys	Gln 270	Cys	His
Glu	Cys	Ile 275	Glu	His				Gln				Glu 285	Ala	Phe	Glu
Ile	Leu 290	Asp	Lys	Leu	Leu	Asp 295	Gly	Asp	Leu	Thr	Ser 300	Asp	Pro	Ser	Tyr
Phe 305	Gln	Asn	Val	Thr	Gly 310	Cys	Ser	Asn	Tyr	Tyr 315	Asn	Phe	Leu	Arg	Cys 320
Thr	Glu	Pro	Glu	Asp 325	Gln	Leu	Tyr	Tyr	Val 330	Lys	Phe	Leu	Ser	Leu 335	Pro
Glu	Val	Arg	Gln	Ala	Ile	His	Val	Gly	Asn	Gln	Thr	Phe	Asn	Asp	Gly

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn 375 380 Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu 390 395 Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys 405 410 Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile 425 Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly Gly His 440 Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg 455 450 Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly 470 <210> 165 < 0.11 > 0.24<212> DNA <_13> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 165 24 ttocatqcca cctaagggag actc <210> 166 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 166 24 tggatgaggt gtgcaatggc tggc <210> 167 <211> 24 <312> DNA <213> Artificial Sequence

```
<120>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 167
                                                                24
ageteteaga ggetggteat aggg
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 158
                                                                50
gtoggoodt toocaggaot gaacatgaag agttatgoog gottoctoac
<210 > 169
<211> 2477
<212> DNA
<213 > Homo sapiens
<400> 169
egagggettt teeggeteeg gaatggeaca tgtgggaate eeagtettgt tggetacaac 60
attittecct ttectaacaa gitetaacag eigitetaac agetagigat caggggitet 120
tettgetgga gaagaaaggg etgagggeag ageagggeae teteaeteag ggtgaeeage 180
teettgeete tetgtggata acagagcatg agaaagtgaa gagatgcage ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cetggagage etgggggagg geetgeetaa caagetttea aaaaacagga gegaetteea 360
ctqqqctqqq ataaqacqtg ccqgtaggat agggaagact gggtttagtc ctaatatcaa 420
attqactqqc tqqqtqaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaqqatqq qqaccetqqq teaggecage etetttgete eteceggaaa ttattttttg 720
tetgaeeact etgeettgtg tittgeagaa teatgigagg gecaaceggg gaaggiggag 780
caqatqaqca cacacaqqaq cogteteete acegeegeee eteteageat ggaacagagg 840
cagecotyge coegggeest ggaggtggas agecgetetg tygteetget etcagtggts 900
tgggtgetge tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatogtgact ggacetteaa ceaettgace gteeaceaag ggaeggggge egtetatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggecag aagaggacaa caagtetegt taccegecee teategtgea geeetgeage 1140
gaagtgetea eesteaceaa caatgteaac aagetgetea teattgaeta etetgagaac 1200
egectgetgg cetgtgggag cetetaceag ggggtetgea agetgetgeg getggatgae 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggeacggetg tggatgggaa geaggattae tteeegaeee tgteeageeg gaagetgeee 1440
cgagacectg agtectcage catgetegae tatgagetae acagegattt tgteteetet 1500
etcateaaga teeetteaga eaccetggee etggteteee aetttgaeat ettetaeate 1560
tacggetttg ctagtggggg etttgtetae ttteteaetg tecageeega gaeeeetgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680
```

```
aaggatgace ecaagitieca eteataegig teeetgeeet teggetgeae eegggeeggg 1740
gtggaatacc gcctcctgca ggctgcttac ctggccaagc ctggggactc actggcccag 1800
gccttcaata tcaccagcca ggacgatgta ctctttgcca tcttctccaa agggcagaag 1860
cagtateace accepeceda toactetoec etototoet tecetateeg ggecateaac 1920
ttgcagatca aggagegeet geagteetge taccagggeg agggeaacet ggageteaac 1980
tqqctqctqq qqaaqqacqt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
tqtqqactqq acatcaacca qcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca geagggaeeg eatgaeetet gtggeeteet aegtttaeaa eggetaeage 2160
qtqqtttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtgg 2280
agatttaact ataggcaact ttattttett ggggaacaaa ggtgaaatgg ggaggtaaga 2340
aggggttaat titgtgactt agctictage tacticciec agccaicagt caitgggtat 2400
gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaact ttaagaaggt 2460
acatctgcaa aagcaaa
<210> 170
<211> 552
<212> PRT
<213> Homo sapiens
<400> 170
Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
                                                      3.0
                                 25
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
                         55
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val
 65
Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
                                                     110
            100
                                105
Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr
        115
                            120
Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp
                                            140
                        135
Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val
                    150
145
Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser
                165
                                    170
```

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys 180 185 Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys 200 Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly 215 210 Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys 250 Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His 260 265 Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly 295 290 Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val 310 Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg 325 330 Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr 360 Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser 375 370 Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala 410 Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu 420 Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr 440 Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

4	50				455					4 60					
Gln P: 465	ro Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
Thr S	er Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
Tyr S	er Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
Arg V	al Tyr 515		Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
	er Leu 30	Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
Leu T; 545	yr Phe	Leu	Gly	Glu 550	Gln	Arg									
<220>	20	iptic	on o:	f Art	cific	cial	Sequ	ıence	e: Sy	ynthe	∍tic				
<400> tggaa	171 taccg	cctc	ctgca	ag											20
<210><211><211><212><213>	24	icia.	l Sed	queno	ce										
<220><223>	Descr oligo					cial	Seqı	ıence	e: Sy	ynthe	etic				
<400>	172 gecet	ttgga	agaa	ga tọ	ggc										24
<210><211><211><212><213>	43	icia	l Sed	quen	ce										
<223>	Descr oligo					cial	Sequ	uence	e: Sy	ynthe	etic				

```
<400> 173
                                                                  42
ggacteactg geccaggect teaatateac cagecaggae gat
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1683)
<223> a, t, c or g
<400> 174
aggeteeege gegeggetga gtgeggaetg gagtgggaae eegggteeee gegettagag 60
aacacgegat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgeggeteeg ceategaeag etggggetge aggeeaaggg etggaaette atgetggagg 240
attocacctt ctggatette gggggeteca tecactattt cegtgtgeec agggagtaet 300
ggagggaceg cetgetgaag atgaaggeet gtggettgaa cacceteaec acctatgtte 360
cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctgggaac ctggacctgg 420
aggeettegt eetgatggee geagagateg ggetgtgggt gattetgegt eeaggeeeet 480
acatotgoag tgagatggac otogggggot tgoccagotg gotactocaa gaccotggca 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttee tataataaag acceegeata catgeeetae gteaagaagg 720
cactggagga cogtggcatt gtggaactgc tootgacttc agacaacaag gatgggctga 780
geaaggggat tgtecaggga gtettggeea ceateaaett geagteaaea caegagetge 840
agetaetgae caeetttete tteaaegtee aggggaetea geecaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggeac caactttggc ttcatgaatg gagecatgea ettecatgae tacaagteag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
adatgaaget tegagaette tteggeteda teteaggeat dectetedet decedadetg 1200
accttettee caagatgeeg tatgageest taacgeeagt ettgtacetg tetetgtggg 1260
aegeceteaa gtaeetgggg gagecaatea agtetgaaaa geceateaae atggagaace 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cetegtetgg catecteagt ggccaegtge atgategggg geaggtgttt gtgaacacag 1440
tatecatagg attettggae tacaagaeaa egaagattge tgteeceetg atecagggtt 1500
acaccytyct gaggatetty gtggagaate gtgggegagt caactatggg gagaatatty 1560
atgaccageg caaaggetta attggaaate tetatetgaa tgatteaeee etgaaaaaet 1620
teagaateta tageetggat atgaagaaga gettetttea gaggttegge etggaeaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
getecaegee tigtgaeaee titetgaage tiggagggetg ggagaagggg gitgtatiea 1800
teaatggeea gaaeettgga egttaetgga acattggaee eeagaagaeg etttaeetee 1860
caggiocotg gitgageage ggaateaace aggioategt tittgaggag acgatggegg 1920
geoetgeatt acagtteacg gaaacccccc acctgggcag gaaccagtac attaagtgag 1990
eggtggcace coetectget ggtgccagtg ggagactgcc gcctcctctt gacctgaage 2040
etggtggetg etgeeceace ceteaetgea aaageatete ettaagtage aaceteaggg 2100
actggggget acagtetgee detgteteag etcaaaacce taageetgea gggaaaggtg 2160
ggatggetet gggeetgget ttgttgatga tggettteet acageeetge tettgtgeeg 2220
aggetgtegg getgteteta gggtgggage agetaateag ategeeeage etttggeeet 2280
```

```
cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
qactcaqqcq tqctctttqc tqqttcctqq gaggcttggc cacatccctc atggccccat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagetgaet ttgttettee tteacaacet tetgageett etttgggatt etggaaggaa 2520
cteggegtga gaaacatgtg actteceett teeetteeca etegetgett eecacagggt 2580
gacaggetgg getggagaaa cagaaateet caccetgegt etteceaagt tageaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catecaggga ggaggacaga aggeecaget cacatgtgag teetggeaga agecatggee 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
aqccatqqcc catqtctqca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
tcctggcaga agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2940
caqtqqcccc cqctccccac cccccacgcc cgaacagcag gggcagagca gccctccttc 3000
gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060
qqctcactqt cctgagttgc agtaaagcta taaccttgaa tcacaa
<210> 175
<211> 636
<212> PRT
<213> Homo sapiens
<220>
<221> MOD RES
<222> (539)
<223> Any amino acid
<400> 175
Met Thr Thr Trp Ser Leu Arg Arg Arg Pro Ala Arg Thr Leu Gly Leu
                                     10
Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
             20
                                 25
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
                             40
Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
     50
Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr
                                     90
Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
                                105
            100
Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
                            120
Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
    130
                        135
```

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu 150 145 Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp 165 His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp 200 Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile 215 Val Glu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly 230 235 Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu 245 Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro 265 Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly 280 Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala 295 Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly 310 315 Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys 325 Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile 355 360 Ser Gly Ile Pro Leu Pro Pro Pro Pro Asp Leu Leu Pro Lys Met Pro 375 Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu 395 390 Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu 405 Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu 420 425

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His 440 435 Asp Arq Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp 455 Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val 470 465 Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn 490 485 Ile Asp Asp Gln Arq Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp 505 Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser 515 520 Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr 535 Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr 545 550 555 Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln 585 Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln 600 595 Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 615 Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 625 <210> 176 <211> 2505 <312> DNA <213> Homo sapiens <400> 176 ggggacgegg agetgagagg etcegggeta getaggtgta ggggtggaeg ggteceagga 60 ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120 aaggggagca aagceggget eggeeegagg eeeceaggae etecatetee caatgttgga 180 ggaateegae aegtgaeggt etgteegeeg teteagaeta gaggageget gtaaaegeea 240 tggctcccaa gaagetgtee tgeettegtt eeetgetget geegeteage etgaegetae 300 tgetgeecea ggeagacaet eggtegtteg tagtggatag gggteatgae eggtttetee 360

tagacgggge ceeqtteege tatgtgtetg geageetgea etaetttegg gtacegeggg 420

```
tqctttqqqc cqaccqqctt ttqaagatgc gatggagcgg cctcaacgcc atacagtttt 480
atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540
accteattge etttetgaat gaggeagete tagegaacet gttggteata etgagaecag 600
gaccttacat ctgtgcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctqaaattca tctaaqaacc tcaqatccag acttccttgc cgcagtggac tcctggttca 720
aggtettget geecaagata tateeatgge tttateacaa tgggggeaac ateattagea 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900
ctgaaggact caagtgtggc teecteeggg gactetatac caetgtagat tttggcccag 960
ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020
taaactotga gtactacaca ggotggotgg attactgggg ccagaatcac tocacacggt 1080
ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
tqtacatqtt ccatqqaqqt accaactttg gatattggaa tggtgccgat aagaagggac 1200
getteettee gattactace agetatgaet atgatgeace tatatetgaa geaggggaee 1260
ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
gacctttacc tecceegage eccaagatga tgettggace tgtgactetg cacetggttg 1380
ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440
caatqacett tqaqqetqte aagcaggace atggetteat gttgtacega acctatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
teagetttgg gtetaacage agtgaettea agggeetgtt gaagecacca attetgggge 1740
aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860
actocaaaac atttccaatt ttaggotcag ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980
ggocamaama gaccetetae gtgecaagat teetgetgtt teetagggga geceteaaca 2040
aaattacatt gotggaacta gaagatgtac ototocagoo ocaagtocaa tttttggata 2100
agectatect caatageact agtactttge acaggacaca tateaattee ettteagetg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
teaggaette aagaeeagee tggeeaacat ggtgaaacee egteteeact aaaaatacaa 2340
aaattageeg ggegtgatgg tgggeacete taateecage taettgggag getgagggea 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460
                                                                  2505
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
```

```
<210> 177
```

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu 1 5 10 15

Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr 35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala 50 55 60

<211> 654

<212> PRT

<213> Homo sapiens

Asp 65	Arg	Leu	Leu	Lys	Met 70	Arg	Trp	Ser	Gly	Leu 75	Asn	Ala	Ile	Gln	Phe 80
Tyr	Val	Pro	Trp	Asn 85	Tyr	His	Glu	Pro	Gln 90	Pro	Gly	Val	Tyr	Asn 95	Phe
Asn	Gly	Ser	Arg 100	Asp	Leu	Ile	Ala	Phe 105	Leu	Asn	Glu	Ala	Ala 110	Leu	Ala
Asn	Leu	Leu 115	Val	Ile	Leu	Arg	Pro 120	Gly	Pro	Tyr	Ile	Cys 125	Ala	Glu	Trp
Glu	Met 130	Gly	Gly	Leu	Pro	Ser 135	Trp	Leu	Leu	Arg	Lys 140	Pro	Glu	Ile	His
Leu 145	Arg	Thr	Ser	Asp	Pro 150	Asp	Phe	Leu	Ala	Ala 155	Val	Asp	Ser	Trp	Phe 160
Lys	Val	Leu	Leu	Pro 165	Lys	Ile	Tyr	Pro	Trp 170	Leu	Tyr	His	Asn	Gly 175	Gly
Asn	Ile	Ile	Ser 180	Ile	Gln	Val	Glu	Asn 185	Glu	Tyr	Gly	Ser	Tyr 190	Arg	Ala
Cys	Asp	Phe 195	Ser	Tyr	Met	Arg	His 200	Leu	Ala	Gly	Leu	Phe 205	Arg	Ala	Leu
Leu	Gly 210	Glu	Lys	Ile	Leu	Leu 215	Phe	Thr	Thr	Asp	Gly 220	Pro	Glu	Gly	Leu
Lys 225	Cys	Gly	Ser	Leu	Arg 230	Gly	Leu	Tyr	Thr	Thr 235	Val	Asp	Phe	Gly	Pro 240
Ala	Asp	Asn	Met	Thr 245	Lys	Ile	Phe	Thr	Leu 250	Leu	Arg	Lys	Tyr	Glu 255	Pro
His	Gly	Pro	Leu 260	Val	Asn	Ser	Glu	Tyr 265	Tyr	Thr	Gly	Trp	Leu 270	Asp	Tyr
Trp	Gly	Gln 2 7 5	Asn	His	Ser	Thr	Arg 280	Ser	Val	Ser	Ala	Val 285	Thr	Lys	Gly
Leu	Glu 290	Asn	Met	Leu	Lys	Leu 295	Gly	Ala	Ser	Val	Asn 300	Met	Tyr	Met	Phe
His 305	Gly	Gly	Thr	Asn	Phe 310	Gly	Tyr	Trp	Asn	Gly 315	Ala	Asp	Lys	Lys	Gly 320
Arg	Phe	Leu	Pro	Ile 325	Thr	Thr	Ser	Tyr	Asp 330	Tyr	Asp	Ala	Pro	Ile 335	Ser
Glu	Ala	Gly	Asp	Pro	Thr	Pro	Lys	Leu	Phe	Ala	Leu	Arg	Asp	Val	Ile

Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu Ala Phe Leu Asp Leu Leu Cys Pro Arq Gly Pro Ile His Ser Ile Leu Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu

Asn Se	er Thr	Ser	Thr	Leu 630	His	Arg	Thr	His	Ile 635	Asn	Ser	Leu	Ser	Ala 640	
Asp Th	ır Leu	Ser	Ala 645	Ser	Glu	Pro	Met	Glu 650	Leu	Ser	Gly	His			
<210> 178 <211> 24 <212> DNA <213> Artificial Sequence															
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															
	00> 178 getactee aagaeeetgg catg													24	
<210><211><211><212><213>	24	ic i a]	l Sed	quen	ce										
<220> <223>	Descr oligo:					cial	Seq	uence	e: Sy	ynthe	etic				
<400> tggaca	179 aaatc	cccti	tgct	ca g	CCC										24
<210><211><212><213>	50	icia	l Sed	quen	ce										
<220><223>	20> 23> Description of Artificial Sequence: Synthetic oligonucleotide probe														
<400> gggctt	180 ccacc	gaag	cagt	gg a	cctt	tatt	t tg	accad	cctg	atg	tcca	3 99			50
<210><211><211><212><213>	22	icia	l Se	quen	ce										
<220> <223>	Descr oligo	-				cial	Seq	uence	e: S	ynth:	etic				
<400>		ctato	gato	ca c	c										22

```
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 182
                                                                   24
tggcacccag aatggtgttg gctc
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 183
                                                                   50
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc
<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
qcacccacaa tatggcttac atgttgaaaa agctteteat cagttacata tecattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt eqaaaaaqte aqaqaaqaga geagttttag tgacatteea gatgteaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctgtt catgctgtcg ggggtgcccg atgctgtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagttagt cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
```

gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380 ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440 cagcccagct gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500 tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560 ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620 agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680 cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740 aatgtttgta gggttttaag tcattcattt ccaaatcatt ttttttttc ttttggggaa 1800 agggaaggaa aaattataat cactaatctt ggttctttt aaattgttg taacttggat 1860 gctgccgcta ctgaatgttt acaaaatagc tgcctgctaa agaaaaaaa 1920 ttttcttact aaaaaaaaaa aaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile 1 5 10 15

Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg 20 25 30

Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser 35 40 45

Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His 50 55 60

Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe 65 70 75 80

Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His
85 90 95

Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln
100 105 110

Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala 115 120 125

Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro 130 135 140

Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser 165 170 175

Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val

L.

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu 215 Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser 235 Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu 250 Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn 265 Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys 280 Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln 295 Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile 310 305 Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu 345 340 Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val 360 Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile 375 Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu 390 395 385 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys 410 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser 425 420 Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg 455 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

480 470 475 465 Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro 485 Phe Ala Asn Gly Ile 500 <210> 186 <211> 21 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 186 21 cctccctcta ttacccatgt c <210> 187 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 187 gaccaacttt ctctgggagt gagg 24 <210> 188 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 188 gtcactttat ttctctaaca acaagctcga atccttacca gtggcag 47 <210> 189 <211> 2917 <212> DNA <213> Homo sapiens <400> 189 eccaeqcqte eggeettete tetggaettt geatttecat teetttteat tgacaaactg 60 actititita titettitit tecatetetg ggecagettg ggateetagg eegeeetggg 120 aagacatttg tgttttacac acataaggat ctgtgtttgg ggtttcttct tcctcccctg 180

```
acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240
quantitatet geetaggtae ategaagtet titgaeetee atacagtgat tatgeetgte 300
atcgctggtg gtatcctggc ggccttgctc ctgctgatag ttgtcgtgct ctgtctttac 360
ttcaaaatac acaacgcgct aaaagctgca aaggaacctg aagctgtggc tgtaaaaaat 420
cacaacccag acaaggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480
tettgteetg eeetgeagtg etgtgaagga tatagaatgt gtgeeagttt tgatteeetg 540
ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600
gcagagecet gaagaettea atgatgteaa tgaggecaee tgtttgtgat gtgeaggeae 660
agaagaaagg cacageteee cateagttte atggaaaata acteagtgee tgetgggaac 720
cagctgctgg agatccctac agagagcttc cactgggggc aacccttcca ggaaggagtt 780
ggggagagag aaccctcact gtggggaatg ctgataaacc agtcacacag ctgctctatt 840
ctcacacaaa tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900
gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca gcgccttgcc 960
aaaatggagc ttgtaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020
gagctgacaa tggcggaggc tgaaggcaat gcaagctgca cagtcagtct agggggtgcc 1080
aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140
tggacaatag aaagaccaga aaacaaaagc atcagaatta tetttteeta tgtecagett 1200
gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac ctccagcaat 1260
gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320
tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtcttt 1380
gtcttctact acttcttctc tcctaacatc tctattccaa actgtggcgg ttacctggat 1440
accttggaag gatccttcac cagccccaat tacccaaagc cgcatcctga gctggcttat 1500
tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560
ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620
accaactctg gcctgattgg acaagtctgt ggccgtgtga ctcccacctt cgaatcgtca 1680
tcaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740
gcttcctaca cctcaattta tgcagaaaac atcaacacta catctttaac ttgctcttct 1800
gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc taatgggaat 1860
aacttgcaac taaaagaccc aacttgcaga ccaaaattat caaatgttgt ggaattttct 1920
gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980
aatataatca ccttttctgc atcctcaact tctgaagtga tcacccgtca gaaacaactc 2040
cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100
gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag catggctctt 2160
tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220
caaactettt ttgttcaagt tagtetgeac aceteagate caaatttggt ggtgtttett 2280
gatacetgta gageetetee caectetgae titigeatete caaectaega eetaateaag 2340
agtggatgta gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400
ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460
gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520
agcaaacgag acatttette atataaatgg aaaacagatt ccatcatagg acccattegt 2580
ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcggaa 2640
gaaactccaa accagcettt caacagtgtg catetgtttt cettcatggt tetagetetg 2700
aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760
aaataccaga agctgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820
tccaggatgc caaaggaaat gctacctcgt ggctacacat attatgaata aatgaggaag 2880
                                                                  2917
ggcctgaaag tgacacacag gcctgcatgt aaaaaaa
```

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

Met 1	Glu	Leu	Val	Arg 5	Arg	Leu	Met	Pro	Leu 10	Thr	Leu	Leu	Ile	Leu 15	Ser
Cys	Leu	Ala	Glu 20	Leu	Thr	Met	Ala	Glu 25	Ala	Glu	Gly	Asn	Ala 30	Ser	Cys
Thr	Val	Ser 35	Leu	Gly	Gly	Ala	Asn 40	Met	Ala	Glu	Thr	His 45	Lys	Ala	Met
Ile	Leu 50	Gln	Leu	Asn	Pro	Ser 55	Glu	Asn	Cys	Thr	Trp 60	Thr	Ile	Glu	Arg
Pro 65	Glu	Asn	Lys	Ser	Ile 70	Arg	Ile	Ile	Phe	Ser 75	Tyr	Val	Gln	Leu	Asp 80
Pro	Asp	Gly	Ser	Cys 85	Glu	Ser	Glu	Asn	Ile 90	Lys	Val	Phe	Asp	Gly 95	Thr
Ser	Ser	Asn	Gly 100	Pro	Leu	Leu	Gly	Gln 105	Val	Cys	Ser	Lys	Asn 110	Asp	Tyr
Val	Pro	Val 115	Phe	Glu	Ser	Ser	Ser 120	Ser	Thr	Leu	Thr	Phe 125	Gln	Ile	Val
Thr	Asp 130	Ser	Ala	Arg	Ile	Gln 135	Arg	Thr	Val	Phe	Val 140	Phe	Tyr	Tyr	Phe
Phe 145	Ser	Pro	Asn	Ile	Ser 150	Ile	Pro	Asn	Cys	Gly 155	Gly	Tyr	Leu	Asp	Thr 160
Leu	Glu	Gly	Ser	Phe 165	Thr	Ser	Pro	Asn	Tyr 170	Pro	Lys	Pro	His	Pro 175	Glu
Leu	Ala	Tyr	Cys 180	Val	Trp	His	Ile	Gln 185	Val	Glu	Lys	Asp	Tyr 190	Lys	Ile
Lys	Leu	Asn 195	Phe	Lys	Glu	Ile	Phe 200	Leu	Glu	Ile	Asp	Lys 205	Gln	Cys	Lys
Phe	Asp 210	Phe	Leu	Ala	Ile	Tyr 215	Asp	Gly	Pro	Ser	Thr 220	Asn	Ser	Gly	Leu
Ile 225	Gly	Gln	Val	Cys	Gly 230	Arg	Val	Thr	Pro	Thr 235	Phe	Glu	Ser	Ser	Ser 240
Asn	Ser	Leu	Thr	Val 245	Val	Leu	Ser	Thr	Asp 250	Tyr	Ala	Asn	Ser	Tyr 255	Arg
Gly	Phe	Ser	Ala 260	Ser	Tyr	Thr	Ser	Ile 265	Tyr	Ala	Glu	Asn	Ile 270	Asn	Thr
Thr	Ser	Leu 275	Thr	Cys	Ser	Ser	Asp 280	Arg	Met	Arg	Val	Ile 285	Ile	Ser	Lys

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys 295 Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val 310 315 Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile 325 330 Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val 345 Ile Thr Arq Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile 375 Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe 395 390 Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val 405 410 Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp 420 425 Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg 455 Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe 470 475 Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu 485 Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys 505 Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys 515 520 Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg 530 535 Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu 555 Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

	565	570		575
Leu Ala Leu Asn 580	Val Val Thr V	Val Ala Thr 1 585		cg His Phe 80
Val Asn Gln Arg 595		Lys Tyr Gln I 600	Lys Leu Gln As 605	sn Tyr
<210> 191 <211> 21 <212> DNA <213> Artificial	l Sequence			
<220> <223> Description oligonucle	on of Artific eotide probe	ial Sequence:	: Synthetic	
<400> 191 tetetattee aaact	tgtggc g			21
<pre><010> 192 <011> 22 <212> DNA <013> Artificial</pre>	l Sequence			
<220> <223> Description oligonucle	on of Artific eotide probe	ial Sequence	: Synthetic	
<400> 192 tttgatgacg atteg	gaaggt gg			22
<pre><d10> 193 <d11> 47 <d12> DNA <d13> Artificial</d13></d12></d11></d10></pre>	l Sequence			
<220> <223> Description oligonucle	on of Artific: eotide probe	ial Sequence:	: Synthetic	
<400> 193 ggaaggatee ttead	ccagec ccaatta	accc aaagccgo	cat cctgagc	47
<210> 194 <211> 2362 <212> DNA <213> Homo sapie	ens			
<400> 194 gacggaagaa cagcg cgggacatgc ggccc ctgctgctgc cgccg	ccagga gctccc	cagg ctcgcgtt	cc cgttgctgc	gttgctgttg 120

```
gaqteeetqq acqeeeqeca qetgeeeqeg tgqtttgace aggeeaagtt eggeatette 240
atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300
caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360
aaatatgaaq attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
gatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctgtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacaqcacaq gcttcttggc ctggttatat aatgaaagcc cagttcgggg cacagtagtc 840
accaatqatc qttqqqqaqc tqgtagcatc tgtaagcatg gtggcttcta tacctgcagt 900
qatcqttata acccaqqaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactqtcct qqqqctataq qaqqqaaqct ggaatctctg actatcttac aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactaq atqqcaccat ttctqtaqtt tttgaggagc gactgaggca agtggggtcc 1140
tqqctaaaaq tcaatqqaqa aqctatttat qaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttettaaat ggeecacate aggacagetg tteettggee ateceaaage tattetgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catqtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
tttttttttqt qccaacatca taqaqtgtat ttacaaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact qtaqqcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
qaatqqaqct tacaqqactq gaagttgctc tgggtgagtc agtgagtgaa tgtgaaggcc 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttot ttottoaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacqtttt aatttttaaa acctttttqq ctcttttqta ataacactta qcttaaaaca 2340
                                                                  2362
taaactcatt gtgcaaatgt aa
```

```
<210> 195
```

<400> 195

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu Leu 1 5 10 15

Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala 35 40 45

<211> 467

<212> PRT

<213> Homo sapiens

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe 100 105 Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr 120 Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser 135 Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp 150 Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg 165 Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu 185 190 Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys 200 Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val 215 Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser 230 Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr 245 250 Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly 265 Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro 275 His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr 295 Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val 310 Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn 325 330

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg

Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr

Glu	Thr 370	Tyr	Thr	Trp	Arg	Ser 375	Gln	Asn	Asp	Thr	Val 380	Thr	Pro	Asp	Val	
Trp 385	Tyr	Thr	Ser	Lys	Pro 390	Lys	Glu	Lys	Leu	Val 395	Tyr	Ala	Ile	Phe	Leu 400	
Lys	Trp	Pro	Thr	Ser 405	Gly	Gln	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile	
Leu	Gly	Ala	Thr 420	Glu	Val	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn	
Trp	Ile	Ser 435	Leu	Glu	Gln	Asn	Gly 440	Ile	Met	Val	Glu	Leu 445	Pro	Gln	Leu	
Thr	Ile 450	His	Gln	Met	Pro	Cys 4 55	Lys	Trp	Gly	Trp	Ala 460	Leu	Ala	Leu	Thr	
Asn 465	Val	Ile														
<210)> 19	96														
<21	1 > 2.	3														
	2 > DI			_												
<213	3 > A	rtif:	lcia.	l Sec	quen	ce										
<220					-			_			1					
<221				on of eotic			cial	Sequ	lence	e: S	yntne	etic				
< 40	0 > 19	96														
tgg	tttg	acc a	aggco	caagt	t c	9 9										23
<21	0 > 19	97														
<21	1> 2	4														
<21	2 > DI	AV														
<21	3 > A	rtif	icia	l Sec	quen	ce										
<221					.		2 7	C		- C		otia				
<22				on of eotic			clal	seq	uence	e: S	ÀIICII	etic				
< 40	0 > 1	97														
			tcaad	ggaag	ga g	cgg										24
			•		_											
<21	0 > 1	98														

```
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 198
                                                                  24
aacttgcagc atcagccact ctgc
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 199
                                                                   45
ttccqtqccc agcttcqqta gcgagtggtt ctggtggtat tggca
<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens
<400> 200
agcagggaaa teeggatgte teggttatga agtggageag tgagtgtgag ceteaacata 60
gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 180
gtgttgcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240
gaagagettt ccatccaggt gtcatgcaga attatgggga tcaccettgt gagcaaaaag 300
qcqaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactcgg tggcatcccc ttactctaca atacctgccc ctactactac tcctcctgct 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
qaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgcttgc tctcctcttc 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aagagtccaa gcaaaactac cgtgcgatgc ctggaagctg aagtttagat gagacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260
traggartge cattggarta tggagtgrar raaagagaat gecettetee ttattgtaar 1320
cctgtctgga tcctatcctc ctacctccaa agettcccac ggcctttcta gcctggctat 1380
gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
```

teateaqtat ceagtggtaa aaaggeetee tggetgtetg aggetaggtg ggttgaaage 1500 caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac cctttcttca 1560 gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccgg taagagcaaa 1620 aqaatqqcaq aaaaqtttag cccctgaaag ccatggagat tctcataact tgagacctaa 1680 tetetgtaaa getaaaataa agaaatagaa caaggetgag gatacgacag tacaetgtea 1740 gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800 cactotttaq aacacacaca cttacttttt ctgqtctcta ccactgctga tattttctct 1860 aggaaatata cttttacaag taacaaaaat aaaaactctt ataaatttct attttatct 1920 gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980 ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040 tgtaattgaa tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100 ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160 gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220 atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280 caaatgtatc actagccctc ctttttccaa caagaaggga ctgagagatg cagaaatatt 2340 tgtgacaaaa aattaaagca tttagaaaac tt

<210> 201

<211> 322

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Thr Ser Ile Trp Thr 1 5 10 15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala 35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu 50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala 65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val 85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys 115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile 130 135 140

<211> 22 <212> DNA

<213> Artificial Sequence

Thr 145	Thr	Lys	Asp	Pro	Ile 150	Phe	Asn	Thr	Gln	Thr 155	Ala	Thr	Gln	Thr	Thr 160	
Glu	Phe	Ile	Val	Ser 165	Asp	Ser	Thr	Tyr	Ser 170	Val	Ala	Ser	Pro	Tyr 175	Ser	
Thr	Ile	Pro	Ala 180	Pro	Thr	Thr	Thr	Pro 185	Pro	Ala	Pro	Ala	Ser 190	Thr	Ser	
Ile	Pro	Arg 195	Arg	Lys	Lys	Leu	Ile 200	Cys	Val	Thr	Glu	Val 205	Phe	Met	Glu	
Thr	Ser 210	Thr	Met	Ser	Thr	Glu 215	Thr	Glu	Pro	Phe	Val 220	Glu	Asn	Lys	Ala	
Ala 225	Phe	Lys	Asn	Glu	Ala 230	Ala	Gly	Phe	Gly	Gly 235	Val	Pro	Thr	Ala	Leu 240	
Leu	Val	Leu	Ala	Leu 245	Leu	Phe	Phe	Gly	Ala 250	Ala	Ala	Gly	Leu	Gly 255	Phe	
Cys	Tyr	Val	Lys 260	Arg	Tyr	Val	Lys	Ala 265	Phe	Pro	Phe	Thr	Asn 270	Lys	Asn	
Gln	Gln	Lys 275	Glu	Met	Ile	Glu	Thr 280	Lys	Val	Val	Lys	Glu 285	Glu	Lys	Ala	
Asn	Asp 290	Ser	Asn	Pro	Asn	Glu 295	Glu	Ser	Lys	Lys	Thr 300	Asp	Lys	Asn	Pro	
Glu 305	Glu	Ser	Lys	Ser	Pro 310	Ser	Lys	Thr	Thr	Val 315	Arg	Cys	Leu	Glu	Ala 320	
Glu	Val															
<211 <212	0 > 20 L > 24 2 > DI 3 > A:	4 NA	icial	l Sed	quenc	ce										
<220 <223	3 > De		iptio nucle				cial	Seq	uence	e: Sy	ynthe	etic				
	0> 20 cttt		tccag	ggtg	tc a	-gc										
<210	0 > 2	03														

<220>		
<223> I	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 3 gtcagtq		22
<210> 2 <211> 2 <212> 1 <213> 2	24	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 2		24
<210> 3 <211> 3 <212> 1 <213> 4	50	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 3		50
<210> 2 <211> 3 <212> 1 <213> 1	1620	
<222>	modified_base (973) a, t, c or g	
<222>	modified_base (977) a, t, c or g	
<222>	modified_base (996) a, t, c or g	
<220>	modified base	

```
<222> (1003)
<223> a, t, c or g
<400> 206
agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga ctttcacgat 60
qqctcqccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120
qqaaactqcc qccqctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180
actttgactg gagagaagtg gagatcctga tgtttctcag tgccattgtg atgatgaaga 240
accgcagate cateactgtg gageaacata taggcaacat tttcatgttt agtaaagtgg 300
ccaacacaat tetttette egettggata ttegeatggg cetaetttac ateacactet 360
gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420
acttcaatqa taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
tggagttctt tgccaattgg tctaatgact gccaatcatt tgcccctatc tatgctgacc 540
tctcccttaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600
ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660
tqatcctqtt ccaaqqtqqc aaggagqcaa tqcqqcqqcc acaqattqac,aagaaaggac 720
gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840
tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960
gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020
totgatttta aaqaqqcatc taqqqaattg toaggcaccc tacaggaagg cotgocatgo 1080
tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140
ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200
tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260
agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320
aaggactett getteettaa geeettetgg ettegttaat ggtetteatt aaaagtataa 1380
qcctaacttt qtcqctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440
gacaatattg aacaaccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
actttccttt qtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560
acatactccc cacacccagt tgatggcttt ccgtaataaa aagattggga tttccttttg 1620
<210> 207
<211> 296
<212> PRT
<213> Homo sapiens
<400> 207
Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg
                                     10
Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu
             2.0
Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly
Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg
Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn
```

Arg	Arg	Ser	Ile	Thr 85	Val	Glu	Gln	His	Ile 90	Gly	Asn	Ile	Phe	Met 95	Phe
Ser	Lys	Val	Ala 100	Asn	Thr	Ile	Leu	Phe 105	Phe	Arg	Leu	Asp	Ile 110	Arg	Met
Gly	Leu	Leu 115	Tyr	Ile	Thr	Leu	Cys 120	Ile	Val	Phe	Leu	Met 125	Thr	Cys	Lys
Pro	Pro 130	Leu	Tyr	Met	Gly	Pro 135	Glu	Tyr	Ile	Lys	Tyr 140	Phe	Asn	Asp	Lys
Thr 145	Ile	Asp	Glu	Glu	Leu 150	Glu	Arg	Asp	Lys	Arg 155	Val	Thr	Trp	Ile	Val
Glu	Phe	Phe	Ala	Asn 165	Trp	Ser	Asn	Asp	Cys 170	Gln	Ser	Phe	Ala	Pro 175	Ile
Tyr	Ala	Asp	Leu 180	Ser	Leu	Lys	Tyr	Asn 185	Cys	Thr	Gly	Leu	Asn 190	Phe	Gly
Lys	Val	Asp 195	Val	Gly	Arg	Tyr	Thr 200	Asp	Val	Ser	Thr	Arg 205	Tyr	Lys	Val
Ser	Thr 210	Ser	Pro	Leu	Thr	Lys 215	Gln	Leu	Pro	Thr	Leu 220	Ile	Leu	Phe	Glr
Gly 225	Gly	Lys	Glu	Ala	Met 230	Arg	Arg	Pro	Gln	Ile 235	Asp	Lys	Lys	Gly	Arc 240
Ala	Val	Ser	Trp	Thr 245	Phe	Ser	Glu	Glu	Asn 250	Val	Ile	Arg	Glu	Phe 255	Asr
Leu	Asn	Glu	Leu 260	Tyr	Gln	Arg	Ala	Lys 265	Lys	Leu	Ser	Lys	Ala 270	Gly	Asp
Asn	Ile	Pro 275	Glu	Glu	Gln	Pro	Val 280	Ala	Ser	Thr	Pro	Thr 285	Thr	Val	Ser
Asp	Gly 290	Glu	Asn	Lys	Lys	Asp 295	Lys								
<211 <212	0> 20 L> 24 2> DN 3> An	1 1A	icial	l Sed	quenc	ce									
<220 <223	3> De				f Art de pi		cial	Sequ	ience	e: Sy	ynthe	etic			

<400> 208

gcttggatat tcgcatgggc ctac

<210> 209 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 209 tggagacaat atccctgagg	20
<210> 210 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 210 aacagttggc cacagcatgg cagg	24
<210> 211 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 211 ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag	50
<210> 212 <211> 1985 <212> DNA <213> Homo sapiens	
cacagegee accaged acca	120 180 240 300 360 420 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga qqtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt	600

```
ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
ctgtgcagag caggctgcgg tggtggcctc ctttgagcag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
qttqcccqq caqccctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
cegecacege egectgeace getatgatgt attetgette getactgeec teaaggggeg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagetettt gecgeetgga agttecatgg 1020
cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtggttca 1080
cccgcatcct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140
gcagagccgc ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380
aatcatgett geteeeetgg geeatttgeg gttttgtggg ettetggagg gtteeeegee 1440
atccaggctg gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggcctgtct 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgggg 1560
gaagaagagg geeteggggg ceteeggage tgggetttgg geeteteetg eccaeeteta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tetaggette caggegaaat etgagggaag gaagaaacte eeetceeegt teeeetteee 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
aaaaa
<210> 213
<211> 360
<212> PRT
<213> Homo sapiens
<400> 213
Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
 1
Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
                               25
Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
        35
Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
                       55
Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
                                       75
                    70
Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
                              105
```

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

<220>

125 120 115 Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr 135 Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu 155 Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg 170 Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly 195 Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr 215 Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro 225 Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp 250 Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu 265 His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu 280 275 Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys 295 Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Ala Asp Gly Ser 305 310 Val Arg Tyr Pro Val Val His Pro His Pro Asn Cys Gly Pro Pro Glu 325 Pro Gly Val Arg Ser Phe Gly Phe Pro Asp Pro Gln Ser Arg Leu Tyr Gly Val Tyr Cys Tyr Arg Gln His 355 <210> 214 <211> 18 <212> DNA <213> Artificial Sequence

	on of Artificial	Sequence:	Synthetic	
_	eotide probe			
<400> 214 tgcttcgcta ctgc	cctc			18
<010> 215 <211> 18 <212> DNA <213> Artificia	l Sequence			
	on of Artificial eotide probe	Sequence:	Synthetic	
<400> 215 ttcccttgtg ggtt	ggag			18
<210> 216 <211> 18 <212> DNA <213> Artificia	l Sequence			
	on of Artificial eotide probe	Sequence:	Synthetic	
<400> 216 agggctggaa gcca	gttc			18
<210> 217 <211> 18 <212> DNA <213> Artificia	l Sequence			
-	on of Artificial eotide probe	Sequence:	Synthetic	
<400> 217 agccagtgag gaaa	tgcg			18
<210> 218 <211> 24 <212> DNA <213> Artificia	l Sequence			
-	on of Artificial eotide probe	Sequence:	Synthetic	
<400> 218 tgtccaaagt acad	acacct gagg			24

```
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 219
                                                                45
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gettetgttg etactgagge aeggggeeca ggggaageea teeccagaeg eaggeectea 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggettt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
geageagegg cacataeggg acteggtgag egeggeetgg gacaegtaeg acaeggaeeg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
gcggcgtttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
ageottectq caccecqaqq aqttecetca catgegggac ategtgattg etgaaaccet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
cogggactto ogggatotga acaaggatgg gcacotggat gggagtgagg tgggocactg 840
ggtgctgccc cctgcccagg accagccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
ageacegege acetgeeaca geeteagagg ceegeacaat gaceggagga ggggeegetg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgcccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cageccagae ecagggaece ttggeeccaa geteagetet aagaacegee ecaacecete 1320
cagetecaaa tetgageete caccacatag aetgaaaete eeetggeeee ageeetetee 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccggg 1440
1503
aaa
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His
```

1				5					10					15	
Gly	Ala	Gln	Gly 20	Lys	Pro	Ser	Pro	Asp 25	Ala	Gly	Pro	His	Gly 30	Gln	Gly
Arg	Val	His 35	Gln	Ala	Ala	Pro	Leu 40	Ser	Asp	Ala	Pro	His 45	Asp	Asp	Ala
His	Gly 50	Asn	Phe	Gln	Tyr	Asp 55	His	Glu	Ala	Phe	Leu 60	Gly	Arg	Glu	Val
Ala 65	Lys	Glu	Phe	Asp	Gln 70	Leu	Thr	Pro	Glu	Glu 75	Ser	Gln	Ala	Arg	Leu 80
Gly	Arg	Ile	Val	Asp 85	Arg	Met	Asp	Arg	Ala 90	Gly	Asp	Gly	Asp	Gly 95	Trp
Val	Ser	Leu	Ala 100	Glu	Leu	Arg	Ala	Trp 105	Ile	Ala	His	Thr	Gln 110	Gln	Arg
His	Ile	Arg 115	Asp	Ser	Val	Ser	Ala 120	Ala	Trp	Asp	Thr	Tyr 125	Asp	Thr	Asp
Arg	Asp 130	Gly	Arg	Val	Gly	Trp 135	Glu	Glu	Leu	Arg	Asn 140	Ala	Thr	Tyr	Gly
His 145	Tyr	Ala	Pro	Gly	Glu 150	Glu	Phe	His	Asp	Val 155	Glu	Asp	Ala	Glu	Thr 160
Tyr	Lys	Lys	Met	Leu 165	Ala	Arg	Asp	Glu	Arg 170	Arg	Phe	Arg	Val	Ala 175	Asp
Gln	Asp	Gly	Asp 180	Ser	Met	Ala	Thr	Arg 185	Glu	Glu	Leu	Thr	Ala 190	Phe	Leu
His	Pro	Glu 195	Glu	Phe	Pro	His	Met 200	Arg	Asp	Ile	Val	Ile 205	Ala	Glu	Thr
Leu	Glu 210	Asp	Leu	Asp	Arg	Asn 215		Asp	Gly	Tyr	Val 220	Gln	Val	Glu	Glu
Tyr 225	Ile	Ala	Asp	Leu	Tyr 230	Ser	Ala	Glu	Pro	Gly 235	Glu	Glu	Glu	Pro	Ala 240
Trp	Val	Gln	Thr	Glu 245	Arg	Gln	Gln	Phe	Arg 250	Asp	Phe	Arg	Asp	Leu 255	Asn
Lys	Asp	Gly	His 260	Leu	Asp	Gly	Ser	Glu 265	Val	Gly	His	Trp	Val 270	Leu	Pro
Pro	Ala	Gln	Asp	Gln	Pro	Leu	Val	Glu	Ala	Asn	His	Leu 285		His	Glu

Ser As		Asp	Lys	Asp	Gly 295	Arg	Leu	Ser	Lys	Ala 300	Glu	Ile	Leu	Gly	
Asn Tr	p Asn	Met	Phe	Val 310	Gly	Ser	Gln	Ala	Thr 315	Asn	Tyr	Gly	Glu	Asp 320	
Leu Th	r Arg	His	His 325	Asp	Glu	Leu									
<210><211><211><212><213>	20 DNA	icia:	l Sed	queno	ce										
<220> <223>	Descr oligo	_				cial	Seq	uence	e: S	ynthe	etic				
<400> cgcago		catg	gcca	3 9											20
<210><211><211><212><213>	18 DNA	icia	l Sed	quen	ce										
<220> <223>	Descr					cial	Seq	uenc	e: S	ynth:	etic				
<400> gaaato		gtaa	ttgg												18
<210><211><211><212><213>	23 DNA	icia	l Se	quen	ce										
<220> <223>	Descr oligo					cial	Seq	uenc	e: S	ynth	etic				
<400> gtgcgc		ctca	cagc	tc a	tc										23
<210><211><212><212><213>	44	icia	l Se	quen	ce										
<220> <223>	Descr oligo						Seq	uenc	e: S	ynth	etic				

<400> 225						
ccccctgag	cgacgctccc	ccatgatgac	gcccacggga	actt		44
<210> 226						
<211> 2403						
<212> DNA						
<213> Homo	sapiens					
<400> 226						
	cttccqcact	caaacacaac	cgggtggatc	tcgagcaggt	gcggagcccc	60
aaacaacaaa	cacaaataca	agggatecet	gacgcctctg	tecetatte	tttqtcqctc	120
			cgcctccccg			
			gegeeteeca			
			ctctgcgccg			
			ctcccgcacc			
cctctctccc	aggtataagc	agcctatcag	tcaccatgtc	cacaacctaa	atcccqqctc	420
tegacetega	tatatatata	ctactactac	cggggcccgc	adacyacaya	ggagccgct.c	480
ccattcctat	cacatotttt	accadaddct	tggacatcag	gaaagagaaa	gcagatgtcc	540
tatagggaag	gagatacact	accagagget	tctctgtgta	taggaacata	gtatatgctt	Б 00
atatatagaa	gggetgeet	actactatac	acaggggagt	aatcagcaac	traddddaar	660
ctgtaccgag	catatgcggg	getgetgee	aaaactattc	ctcagtagat	accaataaca	700
tagagtata	antagtetat	agatggtgag	cttctttcac	actaactaaa	gacaaaagta	780
atagagaga	aatgetttet	agacggcccg	ccacagcaca	tccaccaaca	ggtaaacgac	810
gracacagga	ggccacagga	caagcagcgc	ataaagattg	taaaggagag	attocattto	900
taattaataa	accegagaag	attagagaga	ataaagattg	tttagagaag	aatttatta	960
rgattgatgg	tataatatta	accegggcage	gccgatttaa	agatatagaa	attattaaa	1000
gaaaagtggc	tagananta	ggaattggaa	cagaaggacc	tagatgagge	aaagatgttt	1020
ccagtgaaca	LCCCaaaata	gaatttaact	tgaaaaactt	gastagaga	aaagacgccc	1140
tgtttgccat	aaaggaagta	ggtttcagag	ggggtaattc	caacacagga	atagaaaaa	1000
agcatactgc	tcagaaattc	tteaeggtag	atgctggagt	aagaaaaaggg	accectaaag	1750
tggtggtggt	atttattgat	ggttggcctt	ctgatgacat	cgaggaagca	ggcattgtgg	1200
ccagagagtt	tggtgtcaat	gtatttatag	tttctgtggc	caageetate	cotgaagaac	1000
tggggatggt	tcaggatgtc	acatttgttg	acaaggctgt	ctgtcggaat	atagtagaa	1.440
tetettacea	catgcccaac	tggtttggca	ccacaaaata	egtaaageet	ctggtacaga	1440
agctgtgcac	tcatgaacaa	atgatgtgca	gcaagacctg	ttataactca	gigaacatig	1.500
cetttetaat	tgatggctcc	agcagtgttg	gagatagcaa	ttteegeete	atgettgaat	1500
ttgtttccaa	catagccaag	acttttgaaa	tctcggacat	tggtgecaag	atagetgetg	1020
			tcagtttcac			
atgtcctagc	tgtcatcaga	aacatccgct	atatgagtgg	tggaacagct	actggtgatg	1/40
ccatttcctt	cactgttaga	aatgtgtttg	gccctataag	ggagagcccc	aacaagaact	1800
			atgatgatgt			
cacatgatgc	aggaatcact	atcttctctg	ttggtgtggc	ttgggcacct	ctggatgacc	1920
			ctcacgcttt			
gattagaacc	aattgtttct	gatgtcatca	gaggcatttg	tagagatttc	ttagaatccc	2040
agcaataatg	gtaacatttt	gacaactgaa	agaaaaagta	caaggggatc	cagtgtgtaa	2100
attgtattct	cataatactg	aaatgcttta	gcatactaga	atcagataca	aaactattaa	2160
gtatgtcaac	agccatttag	gcaaataagc	actcctttaa	agccgctgcc	ttctggttac	2220
aatttacagt	gtactttgtt	aaaaacactg	ctgaggcttc	ataatcatgg	ctcttagaaa	2280
ctcaggaaag	aggagataat	gtggattaaa	accttaagag	ttctaaccat	gcctactaaa	2340
tgtacagata	tgcaaattcc	atagctcaat	aaaagaatct	gatacttaga	ccaaaaaaaa	
aaa						2403

<211> 550 <212> PRT <213> Homo sapiens <400> 227 Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile 25 Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn 55 Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg 75 Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln 105 Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser 115 Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys 150 155 Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile 170 165 Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala 185 Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln 195 Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly 230 235

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe

Thr	Val	Asp	Ala 260	Gly	Val	Arg	Lys	Gly 265	Ile	Pro	Lys	Val	Val 270	Val	Val
Phe	Ile	Asp 275	Gly	Trp	Pro	Ser	Asp 280	Asp	Ile	Glu	Glu	Ala 285	Gly	Ile	Val
Ala	Arg 290	Glu	Phe	Gly	Val	Asn 295	Val	Phe	Ile	Val	Ser 300	Val	Ala	Lys	Pro
Ile 305	Pro	Glu	Glu	Leu	Gly 310	Met	Val	Gln	Asp	Val 315	Thr	Phe	Val	Asp	Lys 320
Ala	Val	Cys	Arg	Asn 325	Asn	Gly	Phe	Phe	Ser 330	Tyr	His	Met	Pro	Asn 335	Trp
Phe	Gly	Thr	Thr 340	Lys	Tyr	Val	Lys	Pro 345	Leu	Val	Gln	Lys	Leu 350	Cys	Thr
His	Glu	Gln 355	Met	Met	Cys	Ser	Lys 360	Thr	Cys	Tyr	Asn	Ser 365	Val	Asn	Ile
Ala	Phe 370	Leu	Ile	Asp	Gly	Ser 375	Ser	Ser	Val	Gly	Asp 380	Ser	Asn	Phe	Arg
385			Glu		390					395					400
Asp	Ile	Gly	Ala	Lys 405	Ile	Ala	Ala	Val	Gln 410	Phe	Thr	Tyr	Asp	Gln 415	Arg
			Ser 420			_		425		_			430		
Val	Ile	Arg 435	Asn	Ile	Arg	Tyr	Met 440	Ser	Gly	Gly	Thr	Ala 445	Thr	Gly	Asp
	450		Phe			455					460				
Pro 465	Asn	Lys	Asn	Phe	Leu 470	Val	Ile	Val	Thr	Asp 475	Gly	Gln	Ser	Tyr	Asp 480
Asp	Val	Gln	Gly	Pro 485	Ala	Ala	Ala	Ala	His 490	Asp	Ala	Gly	Ile	Thr 495	Ile
Phe	Ser	Val	Gly 500	Val	Ala	Trp	Ala	Pro 505	Leu	Asp	Asp	Leu	Lys 510	Asp	Met
Ala	Ser	Lys 515	Pro	Lys	Glu	Ser	His 520	Ala	Phe	Phe	Thr	Arg 525	Glu	Phe	Thr
Gly	Leu 530	Glu	Pro	Ile	Val	Ser 535	Asp	Val	Ile	Arg	Gly 540	Ile	Cys	Arg	Asp

Phe Leu Glu Ser Gln Gln 545 550	
<pre><010> 228 <011> 18 <012> DNA <013> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 228 tggtctcgca caccgatc	18
<210> 229 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 229 etgetgteca caggggag	18
<210> 230 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe <400> 230 ccttgaagca tactgctc	18
<210> 231 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 231 gagatagcaa tttccgcc	18
<210> 232	

..

<211> 18 <212> DNA <213> Artif	icial Seque	ence						
	ciption of A	artificial S probe	Sequence: Sy	rnthetic				
<400> 232 ttcctcaaga	gggcagcc					18		
<210> 233 <211> 24 <212> DNA <213> Artif	Ficial Seque	ence						
	ription of <i>F</i> onucleotide	Artificial S probe	Sequence: Sy	vnthetic				
<400> 233 cttggcacca	atgtccgaga	tttc				24		
<210> 234 <211> 45 <212> DNA <213> Artificial Sequence								
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe								
<400> 234 getetgagga	aggtgacgcg	cggggcctcc	gaacccttgg	ccttg		4 5		
<210> 235 <211> 2586 <212> DNA <213> Homo	sapiens							
ccggcggcct gtcggggcgg gcctgctgct	cccggcggga cggctgcggg ggcggcggcg	gcgagcagat cgcagagcgg gtccccacgg	ccagtccggc agatgcagcg ccccgcgcc	ccgcagcgca gcttggggcc cgctccgacg	cacccgcagc actcggtcca accctgctgt gcgacctcgg	120 180 240		
tgttccgcga aagagatgga tacctcccag atgtgcaccg agacagttat	ggttgaggaa ggcagaagaa ctatcacaat agaaattcac cacatctgtg	ctgatggagg gctgctgcta gagaccaaca aagataacca ggagacgaag	acacgcagca aagcatcatc cagacacgaa acaaccagac aaggcagaag	caaattgcgc agaagtgaac ggttggaaat tggacaaatg gagccacgag	ctcaatgaga agcgcggtgg ctggcaaact aataccatcc gtcttttcag tgcatcatcg acctgccagc	360 420 480 540 600		
					gaccagctgt			

```
gtgtctgggg tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780
accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840
tqtqcacacc cctqcccqtq qagggcgagc tttgccatga ccccgccagc cggcttctgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtg 960
gcctcctctg ccagccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020
ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
ttggcagett catggaggag gtgcgccagg agetggagga cetggagagg ageetgaetg 1140
aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
teccetetgg ettgacagea tgaggtgttg tgeatttgtt eageteeee aggetgttet 1380
ccaggettea cagtetggtg ettgggagag teaggeaggg ttaaactgea ggageagttt 1440
qccacccctq tccaqattat tqqctqcttt qcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
cagctgttgc agatgaaatg ttctgttcac cctgcattac atgtgtttat tcatccagca 1740
gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
teteteagea cageetgggg agggggteat tgtteteete gteeateagg gateteagag 1860
geteagagae tgeaagetge ttgeecaagt cacacageta gtgaagaeca gageagttte 1920
atctggttgt gactctaagc tcagtgctct ctccactacc ccacaccagc cttggtgcca 1980
ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
attaaggtca aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160
ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340
tqtqtqaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
taaaqttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520
2586
aaaaaa
<210> 236
<211> 350
<212> PRT
<213> Homo sapiens
<400> 236
Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala
 1
                 5
                                    10
Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val
                                25
Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn
                            40
         35
```

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Lys

Ala	Ser	Ser	Glu	Val 85	Asn	Leu	Ala	Asn	Leu 90	Pro	Pro	Ser	Tyr	His 95	Asn
Glu	Thr	Asn	Thr 100	Asp	Thr	Lys	Val	Gly 105	Asn	Asn	Thr	Ile	His 110	Val	His
Arg	Glu	Ile 115	His	Lys	Ile	Thr	Asn 120	Asn	Gln	Thr	Gly	Gln 125	Met	Val	Phe
Ser	Glu 130	Thr	Val	Ile	Thr	Ser 135	Val	Gly	Asp	Glu	Glu 140	Gly	Arg	Arg	Ser
His 145	Glu	Cys	Ile	Ile	Asp 150	Glu	Asp	Cys	Gly	Pro 155	Ser	Met	Tyr	Cys	Gln 160
Phe	Ala	Ser	Phe	Gln 165	Tyr	Thr	Cys	Gln	Pro 170	Cys	Arg	Gly	Gln	Arg 175	Met
Leu	Cys	Thr	Arg 180	Asp	Ser	Glu	Cys	Cys 185	Gly	Asp	Gln	Leu	Cys 190	Val	Trp
Gly	His	Cys 195	Thr	Lys	Met	Ala	Thr. 200	Arg	Gly	Ser	Asn	Gly 205	Thr	Ile	Cys
Asp	Asn 210	Gln	Arg	Asp	Cys	Gln 215	Pro	Gly	Leu	Cys	Cys 220	Ala	Phe	Gln	Arg
Gly 225	Leu	Leu	Phe	Pro	Val 230	Cys	Thr	Pro	Leu	Pro 235	Val	Glu	Gly	Glu	Leu 240
Суз	His	Asp	Pro	Ala 245	Ser	Arg	Leu	Leu	Asp 250	Leu	Ile	Thr	Trp	Glu 255	Leu
Glu	Pro	Asp	Gly 260	Ala	Leu	Asp	Arg	Cys 265	Pro	Cys	Ala	Ser	Gly 270	Leu	Leu
Cys	Gln	Pro 275	His	Ser	His	Ser	Leu 280	Val	Tyr	Val	Cys	Lys 285	Pro	Thr	Phe
Val	Gly 290	Ser	Arg	Asp	Gln	Asp 295	Gly	Glu	Ile	Leu	Leu 300	Pro	Arg	Glu	Val
Pro 305	Asp	Glu	Tyr	Glu	Val 310	Gly	Ser	Phe	Met	Glu 315	Glu	Val	Arg	Gln	Glu 320
Leu	Glu	Asp	Leu	Glu 325	Arg	Ser	Leu	Thr	Glu 330	Glu	Met	Ala	Leu	Gly 335	Glu
Pro	Ala	Ala	Ala 340	Ala	Ala	Ala	Leu	Leu 345	Gly	Gly	Glu	Glu	11e 350		

<211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic oligonucleotide probe	
<400> 237 ggagetgeac ceettge	17
<210> 238 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 238 ggaggactgt gccaccatga gagactette aaacccaagg caaaattgg	4 9
<210> 239 <211> 24 <312> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 239 gcagagcgga gatgcagcgg cttg	24
<210> 240 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 240 ttggcagctt catggagg	18
<210> 241 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 241 cctqqqcaaa aatqcaac	18

<210> 242 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 242 ctccagetec tggcgcaect cete	24
<210> 243 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 243 ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg	45
<210> 244 <211> 3679 <212> DNA <213> Homo Sapien	
<400> 244 aaggaggetg ggaggaaaga ggtaagaaag gttagagaac etacetcaca	50
tetetetggg eteagaagga etetgaagat aacaataatt teageeeate	100
cactotectt coctoccaaa cacacatgtg catgtacaca cacacataca	150
cacacataca ectteetete etteaetgaa gaeteaeagt eacteaetet	200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc	250
attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg	300
ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg	350
tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg	400
agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc	450
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt	
gaatecagga ggeggaggat geagteaget gagtgeaeeg etgeaeteea	550
geetgggtga cagaatgaga etetgtetea aacaaacaaa caegggagga	600

------ ggggtagata etgettetet geaaceteet taaetetgea teetettett 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccett accetgcaaa acacaaagag caggacteca gacteteett 850 gtgaatggte ceetgeeetg cageteeace atgaggette tegtggeeec 900 actettgeta gettgggtgg etggtgeeae tgeeaetgtg eeegtggtae 950 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaactteegg eeeetggeea acetgegtag eetggtgeta geaggeatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agectetect tetatgacaa ecagetggee egggtgeeca ggegggeact 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agegggtagg geegggggae tttgeeaaca tgetgeaect taaggagetg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 ccttcatcca cccccgcgcc ttccaccacc tgccccagat ggagaccctc 1900 atgeteaaca acaaegetet eagtgeettg caccageaga eggtggagte 1950 cetgeecaac etgeaggagg taggteteca eggeaacece ateegetgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ceaecetgtg tgeggageet eeggacetee agegeeteee 2100 ggteegtgag gtgeeettee gggagatgae ggaccaetgt ttgeeeetea 2150 totococacy aagetteece ccaageetee aggtageeag tggagagage 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggeaggge tatacacetg tgtggeecag aacetggtgg gggetgaeae 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggetggag eteegggtge aggagaeeea eecetateae 2500 atoctgotat ottgggtoac occacecaac acagtgtoca ccaaceteac 2550 ctggtccagt geotectccc teeggggeca gggggecaca getetggece 2600 geotgeeteg gggaacceac agetacaaca ttaccegeet cetteaggee 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 qttqqcttqt qtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 ccttagggga tegteetggg eteattgeea teetggetet egetgteett 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggegge etetecetee ageetggget ttetgggget 2900 ggagtgdddd tidigiaegg gitgigiaig diodddigi ceigdddigg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250 ctccaaggaa caggaggac tttggctaga gcctcctgcc tccccatctt 3300 ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350 ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400 ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgcc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro $20 \ 25 \ 30$

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser \$35\$ \$40\$ \$45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu 50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu
65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe 95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His
125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn	Gln	Leu	Tyr	Arg 155	Ile	Ala	Pro	Arg	Ala 160	Phe	Ser	Gly	Leu	Ser 165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu	Val	Pro	Phe	Arg	Glu	Met	Thr	Asp	His	Cys

	1
	á
	·
	Ni Si
÷	
	::::
	-35
	-
	: i
ì	Ψ,
	22

				410					415					420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435
Ala	Ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 5 1 0
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
				575				Thr	580					585
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 645
				650				Gln	655					660
Gly	Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Trp	Ala 670	Phe	Trp	Gly	Trp	Ser 675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp 685 680 Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu 700 Leu Pro Pro Leu Ser Gln Asn Ser 710 <210> 246 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 246 aacaaggtaa gatgccatcc tg 22 <210> 247 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 247 aaacttgtcg atggagacca gctc 24 <210> 248 <211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45 <210> 249 <211> 3401 <212> DNA <213> Homo Sapien <400> 249 gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50 aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200 accgcaccta ccgctgtgcc caccccctgg ccacactctt caagatcctg 250 gegteettet acateageet agteatette taeggeetea tetgeatgta 300 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400 ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450 gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgetggaca ageteeggea geggeteace 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgateceega egtgaeeate eegeeeagea ttgeeeaget caegggeete 700 aaggagetgt ggetetaeca cacageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaaget gecacaggtg gteacagatg tgggegtgea eetgeagaag 1000 ctgtccatca acaatgaggg caccaagete ategteetea acageeteaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatececea etecatette ageeteeaca acetgeagga gattgaeete 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagateg agaagateee caeceagete ttetaetgee geaagetgeg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 geeteetgea gaaceteeag aacetageea teaeggeeaa eeggategag 1450 acgetecete eggagetett eeagtgeegg aagetgeggg eeetgeacet 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagetgggeg agtgeceact geteaagege ageggettgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agectcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtete aagagegeag tatttggata atcagggtet eeteeetgga 2000 ggccagctct gccccagggg ctgagctgcc accagaggtc ctgggaccct 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggetgeettt teecettgte ettatttage gatgeegeeg 2200 ggcatttaac acceaectgg actteageag agtggteegg ggegaaceag 2250 ccatgggacg gtcacccage agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagage aggcetecag etggaaagge caggeetgga gettgeetet 2350 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagteteag ggeagggtgg eagttteeet tgageaaage ageeagaegt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 totggagotg ccaaggaggg aggagactog ggttggotaa toccoggatg 2800

aaceggtgete cattegeace teecetecte gtgeetgeee tegeeteete 2850 egeacagtgt taaggageea agaggageea ettegeeeag actttgtte 2900 eeeaceeteet geggeatggg tgtgteeagt geeacegetg geeteegetg 2950 ettecateag eeetgtegee acetggteet teatgaagag eagacaetta 3000 gaggetggte gggaatgggg aggtegeeee tgggaaggea ggegttggtt 3050 eeaageeggt teecegteet ggegeetgga gtgeacaeag eeeagtegge 3100 acetggtgge tggaageeaa eetgetttag ateacteggg teeceacett 3150 agaagggtee eegeettaga teatacegt ggacaetaag geacgtttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 tttteeggt egtgteattg gatataatee teagaaataa tgeacaetag 3300 eetetgacaa eeatgaagea aaaateegtt acattgggt etgaacettg 3350 agaeteggte acagtateaa ataaaateta taacagaaaa aaaaaaaaa 3400 a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile
1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 25 30

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg 35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe 50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu 80 85 90

Ser Ile Arq Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

				95					100					105
Asn	Asp	Phe	Ala	Phe 110	Met	Leu	His	Leu	Ile 115	Asp	Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125	Phe	Ala	Val	Phe	Leu 130	Ser	Glu	Val	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140	Leu	Asn	Leu	Asn	Asn 145	Glu	Trp	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	Ala 160	Gln	Asp	Lys	Leu	Glu 165
Leu	His	Leu	Phe	Met 170	Leu	Ser	Gly	Ile	Pro 175	Asp	Thr	Val	Phe	Asp 180
Leu	Val	Glu	Leu	Glu 185	Val	Leu	Lys	Leu	Glu 190	Leu	Ile	Pro	Asp	Val 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Trp	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile	Glu 220	Ala	Pro	Ala	Leu	Ala 225
Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser		Leu	Ser	Lys	Leu		Gln	Val	Val	Thr	
Val	Glv	Val	His	290 Len	Gln	Lvs	Len	Ser	295 Tle	Asn	Asn	Glu	Glv	300 Thr
vai	Giy	vai	1112	305	GIII	пув	neu	DCI	310	11511	11011	014	O. J	315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360

Asn	Leu	Lys	Thr	Ile 365	Glu	Glu	Ile	Ile	Ser 370	Phe	Gln	His	Leu	His 375
Arg	Leu	Thr	Cys	Leu 380	Lys	Leu	Trp	Tyr	Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro	Ile	Gln	Ile	Gly 395	Asn	Leu	Thr	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn	Arg	Asn	Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg	Lys	Leu	Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu	Pro	Ala	Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile	Thr	Ala	Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	Gln 465
Cys	Arg	Lys	Leu	Arg 470	Ala	Leu	His	Leu	Gly 475	Asn	Asn	Val	Leu	Gln 480
Ser	Leu	Pro	Ser	Arg 485	Val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	Ile 495
Glu	Leu	Arg	Gly	Asn 500	Arg	Leu	Glu	Cys	Leu 505	Pro	Val	Glu	Leu	Gly 510
Glu	Cys	Pro	Leu	Leu 515	Lys	Arg	Ser	Gly	Leu 520	Val	Val	Glu	Glu	Asp 525
Leu	Phe	Asn	Thr	Leu 530	Pro	Pro	Glu	Val	Lys 535	Glu	Arg	Leu	Trp	Arg 540
Ala	Asp	Lys	Glu	Gln 545	Ala									
<2110: <211: <212: <213:	> 20 > DN	A	cial	Seq	uenc	e								
<220: <223:		nthe	tic	Olig	onuc	leot	ide	Prob	e					
<400:			ggca	ccaa	gc 2	0								

<210> 252 <211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50
gegetetece gteeegeggt ggttgetget getgeegetg etgetgggee 100
 tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
 tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
 ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
 ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
 gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
 ccaggetgee agteteetat ttgtggataa teeegtggge actgggttea 400
 gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
 tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
 ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
 cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
 aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
 tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700
```

aagacaaagg tetggeagag gtgtetaagg ttgeagagea agtaetgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaaq cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgtcagege caegtgagae acetacaaeg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctqa ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactqqat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 qqqctqqaqa tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattettee etgtatetaa etggggetgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

<400> 255

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu 1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp
20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

Arg	Lys	Asp	Ala	Tyr 50	Met	Phe	Trp	Trp	Leu 55	Tyr	Tyr	Ala	Thr	Asn 60
Ser	Cys	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	Val	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val	Arg	His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly

				305					310					315
Pro I	le	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly G	ly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met L	ys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile A	sn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr M	let	Gly	Gln	Glu 380	Ala	Trp	Val	Arg	Lys 385	Leu	Lys	Trp	Pro	Glu 390
Leu P	ro,	Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro L	ys	Ser	Leu	Glu 410	Thr	Ser	Ala	Phe	Val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu A	la	Phe	Tyr	Trp 425	Ile	Leu	Lys	Ala	Gly 430	His	Met	Val	Pro	Ser 435
Asp G	ln	Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	Val	Thr	Gln 450
Gln G	lu													
<210><211><211><212><213>	110 DNA	7) ()	apier	n										
<400> ggccg			gagga	aggc	ca t	gggc	gagag	g cg	gggc	gctg	ctg	ctgg	cgc	50
tgctg	gate	ggc 1	tagg	gctg	ga c	tcag	gaag	c cg	gagt	egea	gga	ggcg	gcg	100
ccgtt	ato	cag (gacca	atgc	gg c	cgac	gggt	c ato	cacg	tege	gca	tcgt	ggg	150
tggag	gagg	gac (gccga	aact	cg g	gcgt1	tggc	c gt	ggca	gggg	agc	ctgc	gcc	200
tgtgg	ggat	tc (ccac	gtat	gc g	gagt	gagc	c tg	ctca	gcca	ccg	ctgg	gca	250
ctcac	ggg	gg (cgca	ctgc	tt t	gaaa	ccta	t ag	tgac	ctta	gtg	atcc	ctc	300
cgggt	gga	atg (gtcc	agtt	tg g	ccag	ctga	c tt	ccat	gcca	tcc	ttct	gga	350
geete	gcas	ggc	ctac	taca	cc c	gtta	cttc	g ta	tcga	atat	cta	tctg	agc	4 00

tgcacctgtc acctacacta acctatgac attgccttgg tgaagetgtc 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600 tcaggtcgc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggcggga aggatgctg cttcggtgac tcaggtggac ccttggcctg 750 tacacaagaat ggactgtgt atcagattgg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggcggga aggatgcctg cttcggtgac tcaggtggac ccttggcctg 750 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800 gctgtggtcg cccaatcgg cccggtgtct acaccaatat cagccaccac 850 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagcaga 900 cccctcctgg ccactactct ttttccctct tctctgggct ctcccactcc 950 tgggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000 agtcaggccc tggttcttctt ctgtcttgtt tggtaataaa cacattccag 1050 ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaa aaaaaaaaa 1100

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly 35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
65 70 75

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu
80 85 90

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

Ser	Asp	Pro	Ser	Gly 95	Trp	Met	Val	Gln	Phe 100	Gly	Gln	Leu	Thr	Ser 105
Met	Pro	Ser	Phe	Trp 110	Ser	Leu	Gln	Ala	Tyr 115	Tyr	Thr	Arg	Tyr	Phe 120
Val	Ser	Asn	Ile	Tyr 125	Leu	Ser	Pro	Arg	Tyr 130	Leu	Gly	Asn	Ser	Pro 135
Tyr	Asp	Ile	Ala	Leu 140	Val	Lys	Leu	Ser	Ala 145	Pro	Val	Thr	Tyr	Thr 150
Lys	His	Ile	Gln	Pro 155	Ile	Cys	Leu	Gln	Ala 160	Ser	Thr	Phe	Glu	Phe 165
Glu	Asn	Arg	Thr	Asp 170	Cys	Trp	Val	Thr	Gly 175	Trp	Gly	Tyr	Ile	Lys 180
Glu	Asp	Glu	Ala	Leu 185	Pro	Ser	Pro	His	Thr 190	Leu	Gln	Glu	Val	Gln 195
Val	Ala	Ile	Ile	Asn 200	Asn	Ser	Met	Cys	Asn 205	His	Leu	Phe	Leu	Lys 210
Tyr	Ser	Phe	Arg	Lys 215	Asp	Ile	Phe	Gly	Asp 220	Met	Val	Cys	Ala	Gly 225
Asn	Ala	Gln	Gly	Gly 230	Lys	Asp	Ala	Cys	Phe 235	Gly	Asp	Ser	Gly	Gly 240
Pro	Leu	Ala	Cys	Asn 245	Lys	Asn	Gly	Leu	Trp 250	Tyr	Gln	Ile	Gly	Val 255
Val	Ser	Trp	Gly	Val 260	Gly	Cys	Gly	Arg	Pro 265	Asn	Arg	Pro	Gly	Val 270
Tyr	Thr	Asn	Ile	Ser 275	His	His	Phe	Glu	Trp 280	Ile	Gln	Lys	Leu	Met 285
Ala	Gln	Ser	Gly	Met 290	Ser	Gln	Pro	Asp	Pro 295	Ser	Trp	Pro	Leu	Leu 300
Phe	Phe	Pro	Leu	Leu 305	Trp	Ala	Leu	Pro	Leu 310	Leu	Gly	Pro	Val	
<210 <211														

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggecatece caetgaceet ceacaeggtg caaaaatgge tettggcage 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggeet tggeceecca tgtggaettt gtggggggae 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagecaage etgtgeecag tteetggage agtattteea tgaeteagae 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatect tecaggaace ttteeteate acaaatgaaa ttgttgaeta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagetgt aacgaagtte etgageteta geeceeacet geeaceatee 1350 agttacttca atgecagtgg cegtgeetae ceagatgtgg etgeaettte 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500 gagcacagga tccttagtgg ccgccccct cttggctttc tcaacccaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctqaaqactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 qtcccctqcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cetacectga catecagaaa caatggeete cagtgeatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 cettacttag ettecaggie tiaacttete tgaetaetet tgietteete 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 5 10 15

				20					25					30
Leu	Pro	Pro	Gly	Trp 35	Val	Ser	Leu	Gly	Arg 40	Ala	Asp	Pro	Glu	Glu 45
Glu	Leu	Ser	Leu	Thr 50	Phe	Ala	Leu	Arg	Gln 55	Gln	Asn	Val	Glu	Arg 60
Leu	Ser	Glu	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70	Pro	Ser	Ser	Pro	Gln 75
Tyr	Gly	Lys	Tyr	Leu 80	Thr	Leu	Glu	Asn	Val 85	Ala	Asp	Leu	Val	Arg
Pro	Ser	Pro	Leu	Thr 95	Leu	His	Thr	Val	Gln 100	Lys	Trp	Leu	Leu	Ala 105
Ala	Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115	Thr	Gln	Asp	Phe	Leu 120
Thr	Cys	Trp	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala	Glu	Phe	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val
Val	Arg	Ser	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
His	Val	Asp	Phe	Val 170	Gly	Gly	Leu	His	Arg 175	Phe	Pro	Pro	Thr	Ser 180
Ser	Leu	Arg	Gln	Arg 185	Pro	Glu	Pro	Gln	Val 190	Thr	Gly	Thr	Val	Gl _y 195
Leu	His	Leu	Gly	Val 200	Thr	Pro	Ser	Val	Ile 205	Arg	Lys	Arg	Tyr	Asr 210
Leu	Thr	Ser	Gln	Asp 215	Val	Gly	Ser	Gly	Thr 220	Ser	Asn	Asn	Ser	Glr 225
Ala	Cys	Ala	Gln	Phe 230	Leu	Glu	Gln	Tyr	Phe 235	His	Asp	Ser	Asp	Let 240
Ala	Gln	Phe	Met	Arg 245	Leu	Phe	Gly	Gly	Asn 250	Phe	Ala	His	Gln	Ala 259
Ser	Val	Ala	Arg	Val 260		Gly	Gln	Gln	Gly 265		Gly	Arg	Ala	Gl ₃ 270
Ile	Glu	Ala	Ser	Leu 275		Val	Gln	Tyr	Leu 280		Ser	Ala	Gly	Ala 289

Asn	Ile	Ser	Thr	Trp 290	Val	Tyr	Ser	Ser	Pro 295	Gly	Arg	His	Glu	Gly 300
Gln	Glu	Pro	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala	Leu	Pro	His	Val 320	His	Thr	Val	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 4 90	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	Val 5 4 5	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260 gccgcgcgc

geegegeget eteteeegge geecacacet gtetgagegg egeagegage 50

cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100

attccagggc tectetteet tetettett etgetetgtg etgttgggca 150

agtgagecet tacagtgeee eetggaaace caettggeet geatacegee 200

tecetgtegt ettgeeceag tetaceetea atttageeaa geeagaettt 250

ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300

taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350

atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400

tacatectea geagtagtgg agatggggee caacacegag acteagggte 450

ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500

tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550

gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600

cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650

cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700

cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750

gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800

atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850

aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900

gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950

caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000

ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050

ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100

ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200 ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagaggg 1300 ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgt tgtgtgtgg 1350 tgtgtgtgaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400 tgactggctt tactatttga aaactggttt gtgtatcata tcatataca 1450 tttagggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550 caaactttga ttttattc atctgaactt gtttcaaaga tttatattaa 1600 atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

<400> 261

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu 1 5 10 15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 45

Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
50 55 60

Val Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu
65 70 75

Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90

Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile

95 100 105

Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120

Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240
Ile	Gly	Met	Asp	Tyr 245	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255
His	Lys	Arg	Lys	Phe 260	Met	Lys	Ile	Gly	Val 265	Ser	Pro	Pro	Ala	Lys 270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Cys 295	Asp	Val	Lys	Asp	Glu 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Cys	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	Val 320	Tyr	Val	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	Gln 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 3 4 0	Ser	Gly	His	Gln	Trp 345
Val	Asp	Met	Asn	Gly 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	Gln	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

<210> 262 <211> 1378 <212> DNA

<213> Homo Sapien

<400> 262 gcatcgccct gggtctctcg agcctgctgc ctgctccccc gccccaccag 50 ccatggtggt ttctggagcg cccccagccc tgggtggggg ctgtctcggc 100 accttcacct ccctgctgct gctggcgtcg acagccatcc tcaatgcggc 150 caggatacct gttcccccag cctgtgggaa gccccagcag ctgaaccggg 200 ttgtgggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250 atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300 ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagegg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 geogagegea acaggeoegg ggtetacate ageotetetg egeacegete 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtggggc ceteagggca eegageeagg getetgggge egeegegee 1000 tectagggeg cagegggaeg eggggetegg atetgaaagg eggeeagate 1050 cacatetgga tetggatetg eggeggeete gggeggttte eecegeegta 1100 aataggetea tetaeeteta eetetggggg eeeggaegge tgetgeggaa 1150

aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggece egeceaacgg ceteatgtee eegeceecac gaetteegge 1250 cccqcccccq ggccccagcq cttttgtgta tataaatgtt aatgattttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263 Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Cys Leu 5 Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His 85 Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys 115 Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys 125 Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala 160 165

Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp

175

180

Gly Ser	Ile	Gln	Asp 185	Gly	Val	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln Lys	Leu	Lys	Val 200	Pro	Ile	Ile	Asp	Ser 205	Glu	Val	Cys	Ser	His 210
Leu Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Cys	Leu	Gly 240
Asp Ser	Gly	Gly	Pro 245	Leu	Met	Cys	Gln	Val 250	Asp	Gly	Ala	Trp	Leu 255
Leu Ala	Gly	Ile	Ile 260	Ser	Trp	Gly	Glu	Gly 265	Cys	Ala	Glu	Arg	Asn 270
Arg Pro	Gly	Val	Tyr 275	Ile	Ser	Leu	Ser	Ala 280	His	Arg	Ser	Trp	Val 285
Glu Lys	Ile	Val	Gln 290	Gly	Val	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315
Arg Ser													
<210> 26 <211> 24 <212> DN <213> Ar	ΙA	cial	Seqi	uence	9								
<220>													
<223> Sy	nthet	tic (Olig	onuc:	leot	ide !	Prob	e					
<400> 26 gtccgca		atge	ctaca	at g	tta:	2 4							
<210> 26 <211> 19 <212> DN <213> Ar	5 IA												
<220> <223> Sy	nthe	tic	Olig	onuc	leot	ide	Prob	e					
<400> 26 gcagagg		ctaa	ggtt	g 19									
<210> 26 <211> 24													

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 266
 agetetagae caatgeeage ttee 24
 <210> 267
 <211> 45
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 267
 gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
 ggggaattca ccctatgaca ttgcc 25
<210> 269
 <211> 24
 <212> DNA
<213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 269
  gaatgccctg caagcatcaa ctgg 24
 <210> 270
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic Oligonucleotide Probe
 <400> 270
  gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
```

```
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 272
cagecetgee acatgtge 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 274
 ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 275
 gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
 gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 278
 tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
 gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic Oligonucleotide Probe

```
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
tggaggggga gegggatget tgtetgggeg acteeggggg ececeteatg 50
tgccaggtgg a 61
<210> 283
<111> 119
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 283
coctcagaco etgeagaage tgaaggttee tateategae teggaagtet 50
 gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
 gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
 ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
```

agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatecee gaeggeetea gaeatgetge acatgagatg ggaegaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagege gggegeegeg gegagaatet gttegeeate acagaegagg 300 gcatggaegt geogetggee atggaggagt ggeaccaega gegtgageae 350 tacaacetea gegeegeeae etgeageeea ggeeagatgt geggeeaeta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactecg tgeteccaat gteeetetgg ctaccaetge aagaaeteee 600 totgtgaacc catoggaagc coggaagatg ctcaggattt goottacctg 650 gtaactgagg coccatoott cogggogact gaagcatcag actotaggaa 700 aatgggtact cettetteee tageaacggg gatteegget ttettggtaa 750 cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800 caggocccaa ottoottago aacgaaagac cogocctoca tggcaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 geotgeeste ettggatgag gageeagtta eetteeceaa ategaceeat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggage ccagagaact ctctggacce caagatgtee ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgectectt ceagtgaggt ettggeetea gttttteeag eeeaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtecetgee caattteece aatacetetg ceacegetaa tgecaegggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagectage gttgtgteag ggetgaaete gggeeetggt catgtgtggg 1350 geoeteteet gggactactg eteetgeete etetggtgtt ggetggaate 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450
catcttcccc accetgtccc cagcccctaa acaagatact tcttggttaa 1500
ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600
ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650
ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgtc 1700
tgcccacaca gcatgtgcgc tctccctgag tgcctgtta gctggggatg 1750
gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800
tgagtggggg aggcaggac gagggaagga aagtaactcc tgactctca 1850
ataaaaacct gtccaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu 1 5 10 15

Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe
80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys
110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

			_		~1	~	~]	0	***	D 1	G	al. .	T	T
Lys	Thr	Glu	Arg	11e 140	Gly	Cys	GIY	ser	145	Pne	Cys	GIU	гÀг	150
Gln	Gly	Val	Glu	Glu 155	Thr	Asn	Ile	Glu	Leu 160	Leu	Val	Cys	Asn	Tyr 165
Glu	Pro	Pro	Gly	Asn 170	Val	Lys	Gly	Lys	Arg 175	Pro	Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Tyr 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	11e 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser 415 Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser 430 425 Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly 445 440 Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe 460 455 <210> 286 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 286 teetgeagtt teetgatge 19 <210> 287 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 287 ctcatattgc acaccagtaa ttcg 24 <210> 288 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45 <210> 289 <211> 3662 <212> DNA <213> Homo Sapien <400> 289 qtaactqaag tcaggctttt catttgggaa gcccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150 caaggcaagt tocatgagec accttcaaag cettegagaa gtgaaactga 200 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300 acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagettt ttgggggetg ageaacatgg aaattttgea getggaeeat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtetttae aaggeaatge atttteacaa atgaagaaae tgeaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350

tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750 gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacaget geacagetea gaacagtgea ggaagtattt cageaaatge 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agecetecee etaaaetgaa etggaecaaa gatgatagee eattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 1250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tetteagaaa gtggaageea eeaceagttt gteacatett eaggtgetgg 2550 atttttotta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 geagtgaage tgatgtggaa getgeeacag atetgtteet ttgteegttt 2650 ttgggateca caggeeetat gtatttgaag ggaaatgtgt atggeteaga 2700

toottttgaa acatatoata caggttgoag tootgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 qtqqccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttqqacaqcc atcaqattqt caqccaagag ccttttattt gaaagctcat 3100 tettececag aettggaete tgggteagag gaagatggga aagaaaggae 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tecaaatttt cagtettatg acttggacac atagaetgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tatttttata atgccagatt tctttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tqtcaatttq aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His

1 5 10 15

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
20 25 30

Ala	Ser	Ser	Met	Ser 35	His	Leu	Gln	Ser	Leu 40	Arg	Glu	Val	Lys	Leu 45
Asn	Asn	Asn	Glu	Leu 50	Glu	Thr	Ile	Pro	Asn 55	Leu	Gly	Pro	Val	Ser 60
Ala	Asn	Ile	Thr	Leu 65	Leu	Ser	Leu	Ala	Gly 70	Asn	Arg	Ile	Val	Glu 75
Ile	Leu	Pro	Glu	His 80	Leu	Lys	Glu	Phe	Gln 85	Ser	Leu	Glu	Thr	Leu 90
Asp	Leu	Ser	Ser	Asn 95	Asn	Ile	Ser	Glu	Leu 100	Gln	Thr	Ala	Phe	Pro 105
Ala	Leu	Gln	Leu	Lys 110	Tyr	Leu	Tyr	Leu	Asn 115	Ser	Asn	Arg	Val	Thr 120
Ser	Met	Glu	Pro	Gly 125	Tyr	Phe	Asp	Asn	Leu 130	Ala	Asn	Thr	Leu	Leu 135
Val	Leu	Lys	Leu	Asn 140	Arg	Asn	Arg	Ile	Ser 145	Ala	Ile	Pro	Pro	Lys 150
Met	Phe	Lys	Leu	Pro 155	Gln	Leu	Gln	His	Leu 160	Glu	Leu	Asn	Arg	Asn 165
Lys	Ile	Lys	Asn	Val 170	Asp	Gly	Leu	Thr	Phe 175	Gln	Gly	Leu	Gly	Ala 180
Leu	Lys	Ser	Leu	Lys 185	Met	Gln	Arg	Asn	Gly 190	Val	Thr	Lys	Leu	Met 195
Asp	Gly	Ala	Phe	Trp 200	Gly	Leu	Ser	Asn	Met 205	Glu	Ile	Leu	Gln	Leu 210
Asp	His	Asn	Asn	Leu 215	Thr	Glu	Ile	Thr	Lys 220	Gly	Trp	Leu	Tyr	Gly 225
Leu	Leu	Met	Leu	Gln 230	Glu	Leu	His	Leu	Ser 235	Gln	Asn	Ala	Ile	Asn 240
Arg	Ile	Ser	Pro	Asp 245	Ala	Trp	Glu	Phe	Cys 250	Gln	Lys	Leu	Ser	Glu 255
Leu	Asp	Leu	Thr	Phe 260	Asn	His	Leu	Ser	Arg 265	Leu	Asp	Asp	Ser	Ser 270
Phe	Leu	Gly	Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg	Val	Ser	Tyr	Ile	Ala	Asp	Cys	Ala	Phe	Arg	Gly	Leu	Ser	Ser

				290					295					300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 3 7 0	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 4 25	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450
Ile	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro		Thr	Phe	Ala	Trp		Lys	Asp	Asn	Glu	Leu 480
Len	Цiс	Acn	Δla	470	Met	Glu	Δsn	Tyr	475 Ala	His	Leu	Ara	Ala	
пси	1111	АБР	7114	485	1100	ora	11011	- 1 -	490			5		495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
Val	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	M et 550	Asp	Leu	Thr	Ile	Arg 555

Ala	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570
Ala	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Phe	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
Cys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
Leu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 74 0	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr	Asp	Glu	Thr	Asn	Leu	Pro	Ala	Asp	Ile	
				785					790					795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810

Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 975
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln		Ser 1000	Asp	Cys	Gln		Arg 1005
Ala	Phe	Tyr		Lys 1010	Ala	His	Ser		Pro 1015	Asp	Leu	Asp		Gly 1020
Ser	Glu	Glu		Gly 1025	Lys	Glu	Arg		Asp 1030	Phe	Gln	Glu		Asn 1035
His	Ile	Cys		Phe 10 4 0	Lys	Gln	Thr		Glu 1045	Asn	Tyr	Arg		Pro 1050
Asn	Phe	Gln		Tyr 1055	Asp	Leu	Asp	Thr						

<210> 291 <211> 2906 <213> Homo Sapien

<400> 291 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tettgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggteeta ggtttaacag ggeeetattt gaeeeeetge ttgtggtget 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 getgaacete catgagaace aaateeagat cateaaagtg aacagettea 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaceatece gaatggaget titgtataet 1250

tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaacette agteactagt ggagateaac etggeacaca ataatetaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcage 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacacteet eecaatetaa aggggaggta cattggagag etegaeeaga 1850 attacttcac atgetatget deggtgattg tggagedede tgcagadete 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cotgacatot gtatottgga ttactocaaa tggaacagto atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttoogttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactacted titetettad titteaaceg teacagtaga gaetatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 totacaagat gaggaagcag caccategge aaaaccatea egeceeaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550

catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln 35 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser 65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu
140 145 150

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser

				155					160					165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	11e 255
Gln	Val	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	His 300
Asn	Pro	Trp	Asn	Cys 305	Asn	Cys	Asp	Ile	Leu 310	Trp	Leu	Ser	Trp	Trp 315
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 340	Ile	Gly	Glu	Leu	Asp 345
Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420

Thr	Gly	Met	Tyr	Thr 425	Cys	Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr	Ala	Ser	Ala	Thr 440	Leu	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val	Val	Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln	Ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala	Val	Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg	Gln	Asn	His	His 560	Ala	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro	Met	Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser	Ile	His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser	Lys	Asp	Asn	Val 635	Gln	Glu	Thr	Gln	Ile 640					
0.7.5		2												
<210:														
<211:	> 40	53												

<212> DNA

<213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttcttttcg 50

gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150 gagggcgggc gtgcaccete ggctggaagt ttgtgccggg ccccgagcgc 200 gegeeggetg ggagettegg gtagagaeet aggeegetgg accgegatga 250 gegegeegag ceteegtgeg egegeegegg ggttgggget getgetgtge 300 geggtgetgg ggegegetgg eeggteegae ageggeggte geggggaaet 350 cgggcagccc tetggggtag ccgecgageg cccatgeecc actaectgec 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatettte ateaaggeaa gtteeatgag eeacetteaa ageettegag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagetecaaa etgeatttee ageeetacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatete agetateeea eecaagatgt ttaaaetgee eeaaetgeaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag cettttgtgc gattgccagc 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 tccgggccca aggtggcgag gtgatggagt ataccaccat ccttcggctg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatectact etgtcaaage caagettaca gtaaatatge 2050 tteceteatt caccaagace eccatggate teaccateeg agetggggee 2100 atggcacget tggagtgtge tgetgtgggg cacccagece cecagatage 2150 ctggcagaag gatgggggca cagactteec agetgeaegg gagagaegea 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700

gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggctca gatcettttg aaacatatca tacaggttgc agteetgace 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tecttcagaa gaateetgeg aaeggagett 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 actotoacaa tgaaggacot ggaatgaaaa atotgtgtot aaacaagtoo 3300 tetttagatt ttagtgeaaa teeagageea gegteggttg eetegagtaa 3350 ttotttoatg ggtacetttg gaaaagetet caggagacet cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagctc attcttcccc agacttggac tctgggtcag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtatttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000

tttaataaaa tqtqtcaatt tqaaaaaaaa aaaaaaaaa aaaaaaaaa 4050

aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu

1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly
20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys 50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 110 115 120

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 185 190 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

		215					220					225
Lys Ile Ly	s Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu Lys Se	er Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp Gly Al	a Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp His As	sn Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285
Leu Leu Me	et Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300
Arg Ile Se	er Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315
Leu Asp Le	eu Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330
Phe Leu Gl	ly Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg Val Se	er Tyr	Ile 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu Lys Th	nr Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu Asp Me	et Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu Ile Le	eu Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe Thr G	ly Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala Ile Me	et Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu Gln G	ln Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Сув 450
Gln Leu Ly	ys Trp	Leu 4 55	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser Phe Va	al Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480

Arg	Ser	Ile	Phe	Ala 485	Val	Ser	Pro	Asp	Gly 490	Phe	Val	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	Gln 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	Ser	Ala 510
Ile	Lys	Gly	Ser	Asn 515	Leu	Ser	Phe	Ile	Cys 520	Ser	Ala	Ala	Ser	Ser 525
Ser	Asp	Ser	Pro	M et 530	Thr	Phe	Ala	Trp	Lys 535	Lys	Asp	Asn	Glu	Leu 540
Leu	His	Asp	Ala	Glu 545	Met	Glu	Asn	Tyr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala	Ser 575	Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser 590	Tyr	Ser	Val	Lys	Ala 595	Lys	Leu	Thr	Val	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
Phe	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
Cys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750

Leu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Tyr 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
Arg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
Val	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
Trp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Ser	Tyr	Leu	Ser	Ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
Tyr	Val	Ser	Ser	Glu 875	Ser	Gly	Ser	His	His 880	Gln	Phe	Val	Thr	Ser 885
Ser	Gly	Ala	Gly	Phe 890	Phe	Leu	Pro	Gln	His 895	Asp	Ser	Ser	Gly	Thr 900
Cys	His	Ile	Asp	Asn 905	Ser	Ser	Glu	Ala	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Val 935	Tyr	Gly	Ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Cys	Ser	Pro 950	Asp	Pro	Arg	Thr	Val 955	Leu	Met	Asp	His	Tyr 960
Glu	Pro	Ser	Tyr	Ile 965	Lys	Lys	Lys	Glu	Cys 970	Tyr	Pro	Cys	Ser	His 975
Pro	Ser	Glu	Glu	Ser 980	Cys	Glu	Arg	Ser	Phe 985	Ser	Asn	Ile	Ser	Trp 990
Pro	Ser	His	Val	Arg 995	Lys	Leu	Leu	Asn	Thr 1000	Ser	Tyr	Ser		Asn 1005
Glu	Gly	Pro	Gly	Met	Lys	Asn	Leu	Cys	Leu	Asn	Lys	Ser	Ser	Leu

1020 1010 1015 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn 1025 1030 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu 1040 1045 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg 1060 1055 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly 1075 1070 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1090 1085 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro 1100 1105 Asn Phe Gln Ser Tyr Asp Leu Asp Thr 1115 <210> 295 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 295 ggaaccgaat ctcagcta 18 <210> 296 <211> 19 <112> DNA <213> Artificial Sequence < 220 > <223> Synthetic Oligonucleotide Probe <400> 296 cctaaactga actggacca 19 <210> 297 <211> 19 <212> DNA <113> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe

```
<400> 297
 ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 298
 acagetgeac ageteagaac agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
 gggtcttggt gaatgagg 18
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<110> 302
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
geggecactg ttggaccgaa ctgtaaccaa gggagaaaca geegteetac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 305
 tactgeetea tgaeetette acteeettge atcatettag agegg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 306
 actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<.110> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
 caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
 cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
 gegeegeteg gegeeggge geageaggga aggggaaget gtggtetgee 150
 ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
 ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
 cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
 gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
 gaggaggeag aacageetge etggtteeat cageeetgge geecaggege 400
```

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agecegggee tggeecagee geggteaget geeceegaga etgtgeetgt 650 teccaggagg gegtegtgga etgtggeggt attgaeetge gtgagtteee 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gageteteee ggetgeaeeg getggagaea 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tetgtgtace tgcacaacaa caagetggca gacgeeggge 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tecageaact teetgegeea egtgeeeaag caeetgeege etgeeetgta 1150 caagetgeae eteaagaaca acaagetgga gaagateeee eegggggeet 1200 teagegaget gageageetg egegagetat acetgeagaa caactacetg 1250 actgacgagg gcctggacaa cgagacette tggaagetet ccageetgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 egegeageet ggtgetgetg caettggaga agaaegeeat eeggagegtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaageggtt geacaeggtg caeetgtaca acaaegeget ggagegegtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacagge attggeegeg aagaetttge caccacetae tteetggagg 1650 ageteaacet cagetacaac egeateacea geecacaggt geacegegae 1700

TV

cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250 qaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296 <210> 311 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 311 gcattggccg cgagactttg cc 22 <210> 312 <211> 22 <212> DNA <213> Artificial Sequence <120> <223> Synthetic Oligonucleotide Probe <400> 312 geggeeaegg teettggaaa tg 22 <210> 313 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 313 tggaggaget caaceteage tacaacegea teaceageee acagg 45 <210> 314 <211> 3003 <212> DNA <213> Homo Sapien <400> 314 gggaggggc teegggegee gegeageaga cetgeteegg eegegeeet 50

cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100

gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150 caacetgtte etegegegee actgegetge geeceaggae eegetgeeca 200 acatggattt teteetggeg etggtgetgg tateeteget etaeetgeag 250 geggeegeeg agttegaegg gaggtggeee aggeaaatag tgteategat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gettegatet eatgtatatt ggaggeaaat atcaatgtea tgaeatagae 850 gaatgeteae ttggteagta teagtgeage agetttgete gatgttataa 900 cgtacgtggg tectacaagt geaaatgtaa agaaggatae cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg atteetgatg ttggaagtae ttggtggeet eegaagaeae 1100 catatattee teetateatt accaacagge etaettetaa gecaacaaca 1150 agacetacae caaagecaae accaatteet actecaceae caccaceace 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250 caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gacceteaga aacceagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400 gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tetgacagtg teggeageea aagccccagg 1500 gggaaaaget geacgettgg tgetacetet eggeegeete atgeatteag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctt ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt eeetettgae eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 tototocott atggcaatoo tagcagtatt aaagaaaaaa ggaaactatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550 acaceggeag acettteett caceteatea gtatgattea gtttetetta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtette tgteatttaa eetggtaaag geagggetgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003 <210> 315 <211> 509 <212> PRT <213> Homo Sapien <400> 315 Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val 25 Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu 85 Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met 105 95 100 Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met 130 125 Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg

Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg

155

165

Thr	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys	Cys	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln	Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys	Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Cys	Val	Tyr 255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Cys	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp	Leu	His	Trp	Glu	Pro		Arg	Asp	Pro	Ala	Gly
				410					415					420
Gly	Gln	Tyr	Leu	Thr	Val	Ser	Ala	Ala	Lys	Ala	Pro	Gly	Gly	Lys

425 430 435 Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly 445 440 Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser 460 455 Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala 475 470 Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg 500 505 <210> 316 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 316 gatggttcct gctcaagtgc cctg 24 <110> 317 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 317 ttgcacttgt aggacccacg tacg 24 <210> 318 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 318 ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50 <210> 319 <211> 2110 <212> DNA

<213> Homo Sapien

<400> 319 cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggegtea gaggteagge ectetaceta ecegteeact atggetteea 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgaccct gacatgccat gtggaagggg 550 gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteettte tecceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atccccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aageteaaae atttteagge eatgaagatg etetggatga 1250 cttcqqaata tatqaatttq ttqcttttcc aqatgtttct ggtgtttcca 1300 qqattccaaq caqqtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttqcacaqta caqtqtatqa aqttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 qqaqaqteqt teteatgetg acggggagaa egaaagtgac aggggtttec 1700 tcataaqttt tqtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta teetgtetea eetacaaatg 1800 tqqaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaa 2110

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe
35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

Pro	His	Thr	Met	Pro 65	Lys	Tyr	Leu	Leu	Gly 70	Ser	Val	Asn	Lys	Ser 75
Val	Val	Pro	Asp	Leu 80	Glu	Tyr	Gln	His	Lys 85	Phe	Thr	Met	Met	Pro 90
Pro	Asn	Ala	Ser	Leu 95	Leu	Ile	Asn	Pro	Leu 100	Gln	Phe	Pro	Asp	Glu 105
Gly	Asn	Tyr	Ile	Val 110	Lys	Val	Asn	Ile	Gln 115	Gly	Asn	Gly	Thr	Leu 120
Ser	Ala	Ser	Gln	Lys 125	Ile	Gln	Val	Thr	Val 130	Asp	Asp	Pro	Val	Thr 135
Lys	Pro	Val	Val	Gln 140	Ile	His	Pro	Pro	Ser 145	Gly	Ala	Val	Glu	Tyr 150
Val	Gly	Asn	Met	Thr 155	Leu	Thr	Cys	His	Val 160	Glu	Gly	Gly	Thr	Arg 165
Leu	Ala	Tyr	Gln	Trp 170	Leu	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser	Thr	Tyr	Ser	Phe 185	Ser	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro	Val	Thr	Lys	Glu 200	Asp	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn	Pro	Val	Ser	Glu J15	Met	Glu	Ser	Asp	Ile 220	Ile	Met	Pro	Ile	11e 225
Tyr	Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
Lys	Val	Gly	Glu	Val J45	Phe	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
Phe	Asp	Cys	Ser	Ala 260	Asp	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
Ile	Arg	Arg	Thr	Asp 275	Asn	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
Arg	Leu	Glu	Val	Ala 290	Ser	Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
Tyr	Val	Cys	Cys	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr	His	Phe	Thr	Val	Ile	Ile	Thr	Ser	Val	Gly	Leu	Glu	Lys	Leu

330 325 320 Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly 335 340 Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp 355 350 Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe 395 Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro 410 Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr 430 Glu Val Ile Gln His Ile Pro Ala Gln Gln Asp His Pro Glu 445 440 <210> 321 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 321 gatectgtea caaagecagt ggtgc 25 <210> 322 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 322 cactgacagg gttcctcacc cagg 24 <210> 323 <211> 45 <212> DNA <213> Artificial Sequence

<220> <223> Synthetic Oligonucleotide Probe <400> 323 ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45 <210> 324 <211> 2397 <212> DNA <213> Homo Sapien <400> 324 gcaageggeg aaatggegee eteegggagt ettgeagtte eeetggeagt 50 cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150 tggatgatag aattttatge eeegtggtge eetgettgte aaaatettea 200 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cocgtttcat catggtttgg tocaggttct 450 gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacagoca tacccataco ottoaaaaaa attattatoa gaatotgoac 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900

aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950

ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttotoa tttgatataa tttttototg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaacttcaac ttgaaattgt tttttttttc tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 totgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

ř.

aaacctttct aaccacttca ttaaagctga aaaaaaaaa aaaaaaa 2397

<210> 325 <211> 280 <212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val 1 5 10 15

Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn

20

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly 35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly 80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser 170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu 185 190 195

Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys 200 205

Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu

220 225 215 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu 230 235 Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu 245 250 Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser 265 260 Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser 275 <210> 326 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 326 tgaggtgggc aagcggcgaa atg 23 <210> 327 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 327 tatgtggatc aggacgtgcc 20 <210> 328 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 328 tgcagggttc agtctagatt g 21 <210> 329 <211> 25 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtettge agtteeetg geagteetgg tgetgttget ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
 gegagtgtee agetgeggag accegtgata attegttaac taatteaaca 50
 aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
 ggacaggegg attggaagag egggaaggte etggeecaga geagtgtgae 150
 acttccctct qtqaccatga aactctgggt gtctgcattg ctgatggcct 200
 ggtttggtgt cctgagctgt gtgcaggccg aattettcac ctctattggg 250
 cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
 agagtacatc cttgtggagg aagccaaget ttccaagatt aagagctggg 350
 ccaacaaaat ggaagcettg actagcaagt cagetgetga tgetgaggge 400
 tacctggctc accetgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
 agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
 ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
 gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
 ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
 caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
 gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
```

gettgatgee ggggaggagg ceaecacaac caagteacag gtgetggaet 800

gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332

<211> 533

<212> PRT

<213> Homo Sapien

<400> 332

Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys 35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser 50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp 65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val 80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu 95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg 110 115 120

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala 125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile 140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser 155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly 170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln 185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Thr Lys Ser Gln Val Leu 200 205 210

Asp	Tyr	Leu	Ser	Tyr 215	Ala	Val	Phe	Gln	Leu 220	Gly	Asp	Leu	His	Arg 225
Ala	Leu	Glu	Leu	Thr 230	Arg	Arg	Leu	Leu	Ser 235	Leu	Asp	Pro	Ser	His 240
Glu	Arg	Ala	Gly	Gly 245	Asn	Leu	Arg	Tyr	Phe 250	Glu	Gln	Leu	Leu	Glu 255
Glu	Glu	Arg	Glu	Lys 260	Thr	Leu	Thr	Asn	Gln 265	Thr	Glu	Ala	Glu	Leu 270
Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	11e 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480

```
Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
                 485
                                      490
 Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
 Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
                                      520
                 515
 Pro Cys Gly Ser Thr Glu Val Asp
                 530
<210> 333
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 333
ccaggcacaa tttccaga 18
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 334
ggaccettet gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 335
 ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Synthetic Oligonucleotide Probe

<400> 336 acactcagca ttgcctggta cttg 24 <210> 337 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 337 gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45 <210> 338 <211> 2789 <212> DNA <213> Homo Sapien <400> 338 gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50 teccagtgtg agtgaaattg attgttteat ttattacegt tttggetggg 100 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200 getetgtett tggeeteatt gaeeceaggt tetetggtta aaactgaaag 250 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400 gtgcagcetg ageeteetge gggttteetg gateeagggg gagggagaag 450 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500 tcgagagete ggetagaeca aagtgatgaa gaetteaaae eeeggattgt 550 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600 ggtacatcca gacagagetg ggetecegtg ageggttget ggtggetgte 650 ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750

cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800

gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050 ggccacatet ggatggctgc cgaggagaca ttetcagtgc ccgtcctgac 1100 gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 totggagttg gagogggott acagtgaaat agaacaactg caggotcaga 1350 teeggaacet gaeegtgetg acceeegaag gggaggeagg getgagetgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1500 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtget gecaeteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetytty etgytetacy gyccaegaga agytygeegt gyageteeag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tettecttae cacegtgtgg acaaggeetg ggeecgaagt ceteaacege 2150
tgtegeatga atgecatete tggetggeag geettettte cagteeattt 2200
ceaggagtte aateetgeee tgteaecaca gagateaece ecagggeece 2250
egggggetgg eeetgaeeee eceteeete etggtgetga eceeteeegg 2300
ggggeteeta taggggggag atttgaeegg eaggettetg eggagggetg 2350
ettetaeaae getgaetaee tggeegeeeg ageeeggetg geaggtgaae 2400
tggeaggeea ggaagaggag gaageeetgg agggetgga ggtgatggat 2450
gttteetee ggtteteagg geteeaeete tttegggeeg tagageeagg 2500
getggtgeag aagtteteee tgegagaetg eageeeaegg eteagtgaag 2550
acetetaeea eegetgeege eteageaee tggagggget aggggeegt 2600
geeeagetgg etatggetet etttgageag gageaggeea atageaetta 2650
geeegeetgg gggeeetaae eteattaeet tteetttgte tgeeteagee 2700
ecaggaaggg eaaggeaaga tggtggaeag atagagaatt gttgetgtat 2750
tttttaaata tgaaaatgtt attaaaeatg tettetgee 2789

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 5 10 15

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala 35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg 80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

	95				100					105
Val Leu Thr	Ser Arg 110	Ala Thr	Leu	Ser	Thr 115	Leu	Ala	Val	Ala	Val 120
Asn Arg Thr	Val Ala 125	His His	Phe	Pro	Arg 130	Leu	Leu	Tyr	Phe	Thr 135
Gly Gln Arg	Gly Ala 140	Arg Ala	Pro	Ala	Gly 145	Met	Gln	Val	Val	Ser 150
His Gly Asp	Glu Arg 155	Pro Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His Leu His	Thr His 170	Phe Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met Gln Asp	Asp Thr 185	Tyr Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala Gly His	Leu Ser 200	Ile Asn	. Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu Glu Phe	Ile Gly 215	Ala Gly	Glu	Gln	Ala 220	Arg	Tyr	Cys	His	Gly 225
Gly Phe Gly	Tyr Leu 230	Leu Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro His Leu	Asp Gly 245	Cys Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp Glu Trp	Leu Gly 260	Arg Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys Val Ser	Gln His 275	Gln Gly	Gln	Gln	Tyr 180	Arg	Ser	Phe	Glu	Leu 285
Ala Lys Asn	Arg Asp 290	Pro Glu	Lys	Glu	Gly 195	Ser	Ser	Ala	Phe	Leu 300
Ser Ala Phe	Ala Val 305	His Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg Leu His	Lys Arg 320	Phe Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser Glu Ile	Glu Gln 335	Leu Glr	ı Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 3 4 5
Leu Thr Pro	Glu Gly 350	Glu Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360

Pro	Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420
Arg	Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe	Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Туr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu	Cys	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu	Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro	Glu	Val	Leu	Asn 605	Arg	Cys	Arg	Met	Asn 610	Ala	Ile	Ser	Gly	Trp 615
Gln	Ala	Phe	Phe	Pro 620	Val	His	Phe	Gln	Glu 625	Phe	Asn	Pro	Ala	Leu 630

Ser	Pro	Gln	Arg	Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro	Pro	Ser	Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	Ile 660
Gly	Gly	Arg	Phe	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	Gly	Cys	Phe	Tyr 675
Asn	Ala	Asp	Tyr	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Gly	Glu	Leu 690
Ala	Gly	Gln	Glu	Glu 695	Glu	Glu	Ala	Leu	Glu 700	Gly	Leu	Glu	Val	Met 705
Asp	Val	Phe	Leu	Arg 710	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu	Pro	Gly	Leu	Val 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys	Ser	Pro 735
Arg	Leu	Ser	Glu	Glu 740	Leu	Tyr	His	Arg	Cys 745	Arg	Leu	Ser	Asn	Leu 750
Glu	Gly	Leu	Gly	Gly 755	Arg	Ala	Gln	Leu	Ala 760	Met	Ala	Leu	Phe	Glu 765
Gln	Glu	Gln	Ala	Asn 770	Ser	Thr								

<210> 340

<.111> 1572

<...12> DNA

<213> Homo Sapien

<400> 340

eggagtggtg egecaacgtg agaggaaace egtgegege tegegettee 50
tgteeccaag eegttetaga egegggaaaa atgetteetg aaageagete 100
ctttttgaag ggtgtgatge ttggaageat tttetgtget ttgateacta 150
tgetaggaca cattaggatt ggteatggaa atagaatgea eeaccatgag 200
cateateace tacaagetee taacaaagaa gatatettga aaattteaga 250
ggatgagege atggagetea gtaaggett tegagtatae tgtattatee 300
ttgtaaaace caaagatgtg agtetttgg etgeagtaaa ggagaettgg 350
accaaacact gtgacaaage agagttette agttetgaaa atgttaaagt 400

gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 500 tteettgeae geeceactae gtttgetate attgaaaaee taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tetetagttg tgaatttgtg attaaagtaa aacttttage 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 qttccaatqq atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

<4003 Met 1	> 341 Leu	Ser	Glu	Ser 5	Ser	Ser	Phe	Leu	Lys 10	Gly	Val	Met	Leu	Gly 15
Ser	Ile	Phe	Cys	Ala 20	Leu	Ile	Thr	Met	Leu 25	Gly	His	Ile	Arg	Ile 30
Gly	His	Gly	Asn	Arg 35	Met	His	His	His	Glu 40	His	His	His	Leu	Gln 45
Ala	Pro	Asn	Lys	Glu 50	Asp	Ile	Leu	Lys	Ile 55	Ser	Glu	Asp	Glu	Arg 60
Met	Glu	Leu	Ser	Lys 65	Ser	Phe	Arg	Val	Tyr 70	Cys	Ile	Ile	Leu	Val 75
Lys	Pro	Lys	Asp	Val 80	Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90
Thr	Lys	His	Cys	Asp 95	Lys	Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105
Lys	Val	Phe	Glu	Ser 110	Ile	Asn	Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120
Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr	Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135
Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg	Pro 145	Thr	Thr	Phe	Ala	Ile 150
Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160	Lys	Asp	Pro	Ser	Gln 165
Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly	Asp	Leu	Glu	Tyr 180
Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu	Ser	Met	Lys 195
Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Cys	Pro	Glu	Gln 210
Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	Val 225
Cys	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235		Ala	Glu	Asp	Ala 2 4 0
Asp	Gly	Lys	Asp	Val 245	Phe	Asn	Thr	Lys	Ser 250	Val	Gly	Leu	Ser	Ile 255
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Суз