Tema 4. Mapping - Robótica Móvil

SLAM (Simultaneous Localization And Mapping): Consiste en predecir la posición del robot y mapear a la vez el entorno a partir de una serie de inputs: el control y los sensores. **Occupancy grid**: Los usamos para representar el workspace del robot como un grid discreto, la información se toma de los sensores (láseres, cámaras, sensores...) o del conocimiento *a priori*. Luego representamos como **obstáculo**, **libre** y **desconocido**.

Comandos

```
sudo apt install ros-humble-turtlebot3-cartographer
```

Diferentes terminales:

```
source /opt/ros/humble/setup.bash
export ROS_LOCALHOST_ONLY=1
export TURTLEBOT3_MODEL=burger
ros2 launch turtlebot3_gazebo turtlebot3_house.launch.py
```

```
source /opt/ros/humble/setup.bash
export ROS_LOCALHOST_ONLY=1
export TURTLEBOT3_MODEL=burger
ros2 run turtlebot3_teleop teleop_keyboard
```

```
source /opt/ros/humble/setup.bash
export ROS_LOCALHOST_ONLY=1
export TURTLEBOT3_MODEL=burger
ros2 launch turtlebot3_cartographer \
  cartographer.launch.py use_sim_time:=True
```

Hacer fotitos:

```
source /opt/ros/humble/setup.bash
export ROS_LOCALHOST_ONLY=1
ros2 run nav2_map_server map_saver_cli -f ./map
```

ROSBAGS

```
ros2 bag record /clock /map /map_updates /odom /robot_description /scan
/scan_matched_points2 /submap_list /tf /tf_static
```

Verificar con rviz (va todo junto)

```
rviz2 -d
opt/ros/humble/share/turtlebot3_cartographer/rviz/tb3_cartographer.rviz
```

Diferentes métodos de SLAM

RTAB-Map

```
sudo apt install ros-humble-rtabmap-ros
```

```
ros2 launch rtabmap_demos \
   turtlebot3_scan.launch.py \
   use_sim_time:=True
```

- Cartographer (es el que hemos visto antes)
- SLAM Toolbox

```
sudo apt install ros-humble-slam-toolbox
```

```
ros2 launch slam_toolbox \
  online_async_launch.py \
  use_sim_time:=True
```

Diferencias clave entre Local SLAM y Global SLAM

Aspecto	Local SLAM	Global SLAM
Propósito	Construir submapas localmente consistentes.	Optimizar y alinear submapas globalmente.
Fuente de datos	Escaneos filtrados y extrapolación de poses.	Submapas generados por el SLAM local.
Correcciones	No corrige deriva acumulativa.	Corrige errores y deriva acumulada.
Procesamiento	En tiempo real.	En segundo plano (tareas de fondo).
Resultados	Sucesión de submapas locales.	Mapa global coherente y preciso.