MLDS 401/IEMS 404-1 (Fall 2023): Lab 7 – 11/14/2023

Question 1

You are working in sales. You keep calling you clients and track the number of calls you make until you get a sale:

You are going to fit a Geometric distribution, which has a probability mass function of

$$p(z) = (1 - \theta)^{z-1}\theta \text{ if } z \ge 1.$$

What is the maximum likelihood estimate of θ ?

7.2 (Nonconvergence of MLEs in logistic regression) This exercise is based on Allison (2008). Consider completely separated data in the following table.

\overline{x}	-5	-4	-3	-2	-1	+1	+2	+3	+4	+5
\overline{y}	0	0	0	0	0	1	1	1	1	1

Because these data are symmetric, it can be shown that β_0 in the simple logistic regression model can be taken to be zero. So the likelihood function can be treated as a function only of the slope parameter β_1 .

- a) Write the log-likelihood function and plot it versus β_1 for these data and check that it approaches the maximum value of 0 (i.e., the likelihood function approaches the maximum value of 1) as $\beta_1 \to \infty$. So the MLE of β_1 does not exist and the algorithm to find it does not converge.
- b) Next consider quasi-separated data obtained by adding two observations (x, y) = (0, 0) and (x, y) = (0, 1) to the above data set and repeat the exercise. Check that the log-likelihood function approaches a number less than 0 as $\beta_1 \to \infty$. So again the MLE of β_1 does not exist and the algorithm to find it does not converge.
- **7.8** (Radiation therapy) Twenty four cancer patients were treated with radiation therapy for different number of days (x) and the presence (y = 0) or absence (y = 1) of tumor was observed.

Days (x)	Response (y)	Days (x)	Response (y)
21	1	51	1
24	1	55	1
25	1	25	0
26	1	29	0
28	1	43	0
31	1	44	0
33	1	46	0
34	1	46	0
35	1	51	0
37	1	55	0
43	1	56	0
49	1	58	0

Source: Tanner (1996), p. 28.

- a) Fit a binary logistic regression model to the data.
- b) Calculate a 95% confidence interval for the odds of absence of tumor vs. presence of tumor if the number of days of therapy is increased by 5 days.
- c) Calculate the estimated success probabilities \widehat{p}_i for the 24 patients in the sample. Find the optimum threshold p^* that maximizes the correct classification rate (CCR). Calculate sensitivity, specificity and the F_1 -score for this p^* .

Question 4 Program Choice Example

The goal is to model the program choices of high school students based on a variety of attributes.

- Dependent variable: prog. The program choices are general program, vocational program and academic program.
- Attributes:
 - o gender: female, male
 - o ses: social/economic status (low, middle, high)
 - o schtype: school type (private, public)
 - o read
 - o write
 - o math
 - o science
 - o honors: enrolled, not enrolled
 - o awards: number of awards received
- IDs: id, cid
- 1. Fit a multinomial regression with ses and write. Choose "academic" as the reference class.
- 2. If write is increased by 1 unit, how will the log-odds of being in general program vs. academic program change? What about the log-odds of being in vocation program vs. academic program?
- 3. If moving from ses = "low" to "high", how will the log-odds of being in general program vs. academic program change? What about moving from ses = "low" to "middle"?
- 4. Compute the z-statistics and p-values for the variables in the model. Are there any significant terms?
- 5. Split the data set into training (odd index) and test (even index) sets. Fit a multinomial regression using all the variables and the training set. Compute the training and test accuracies.