Telecom Churn: Logistic Regression with PCA

With 21 predictor variables, we need to predict whether a particular customer will switch to another telecom provider or not. In telecom terminology, customer attrition is referred to as 'churn'.

Importing and Merging Data

```
In [144]: # Importing Pandas and NumPy
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
In [145]: # Importing all datasets
          churn data = pd.read csv("churn data.csv")
          customer data = pd.read csv("customer data.csv")
          internet data = pd.read csv("internet data.csv")
In [146]: print(len(churn data))
          print(len(customer_data))
          print(len(internet data))
          7043
          7043
          7043
In [147]: | #Merging on 'customerID'
          df_1 = pd.merge(churn_data, customer_data, how='inner', on='customerID')
In [148]: #Final dataframe with all predictor variables
          telecom = pd.merge(df_1, internet_data, how='inner', on='customerID')
```

Let's understand the structure of our dataframe

In [149]: # Let's see the head of our master dataset
telecom.head()

Out[149]:

	customerID	tenure	PhoneService	Contract	PaperlessBilling	PaymentMethod	Month
0	7590- VHVEG	1	No	Month- to-month	Yes	Electronic check	29.85
1	5575- GNVDE	34	Yes	One year	No	Mailed check	56.95
2	3668- QPYBK	2	Yes	Month- to-month	Yes	Mailed check	53.85
3	7795- CFOCW	45	No	One year	No	Bank transfer (automatic)	42.30
4	9237- HQITU	2	Yes	Month- to-month	Yes	Electronic check	70.70

5 rows × 21 columns

In [150]: telecom.describe()

Out[150]:

	tenure	MonthlyCharges	SeniorCitizen
count	7043.000000	7043.000000	7043.000000
mean	32.371149	64.761692	0.162147
std	24.559481	30.090047	0.368612
min	0.000000	18.250000	0.000000
25%	9.000000	35.500000	0.000000
50%	29.000000	70.350000	0.000000
75%	55.000000	89.850000	0.000000
max	72.000000	118.750000	1.000000

Data Preparation

```
In [151]: # Converting Yes to 1 and No to 0
    telecom['PhoneService'] = telecom['PhoneService'].map({'Yes': 1, 'No': 0})
    telecom['PaperlessBilling'] = telecom['PaperlessBilling'].map({'Yes': 1, 'No': 0})
    telecom['Churn'] = telecom['Churn'].map({'Yes': 1, 'No': 0})
    telecom['Partner'] = telecom['Partner'].map({'Yes': 1, 'No': 0})
    telecom['Dependents'] = telecom['Dependents'].map({'Yes': 1, 'No': 0})
```

Dummy Variable Creation

```
In [152]: # Creating a dummy variable for the variable 'Contract' and dropping the first
          cont = pd.get dummies(telecom['Contract'],prefix='Contract',drop first=True)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,cont],axis=1)
          # Creating a dummy variable for the variable 'PaymentMethod' and dropping the
           first one.
          pm = pd.get_dummies(telecom['PaymentMethod'],prefix='PaymentMethod',drop_first
          =True)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,pm],axis=1)
          # Creating a dummy variable for the variable 'gender' and dropping the first o
          gen = pd.get_dummies(telecom['gender'],prefix='gender',drop_first=True)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,gen],axis=1)
          # Creating a dummy variable for the variable 'MultipleLines' and dropping the
           first one.
          ml = pd.get_dummies(telecom['MultipleLines'],prefix='MultipleLines')
          # dropping MultipleLines No phone service column
          ml1 = ml.drop(['MultipleLines_No phone service'],1)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,ml1],axis=1)
          # Creating a dummy variable for the variable 'InternetService' and dropping th
          e first one.
          iser = pd.get dummies(telecom['InternetService'],prefix='InternetService',drop
          _first=True)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,iser],axis=1)
          # Creating a dummy variable for the variable 'OnlineSecurity'.
          os = pd.get_dummies(telecom['OnlineSecurity'],prefix='OnlineSecurity')
          os1= os.drop(['OnlineSecurity_No internet service'],1)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,os1],axis=1)
          # Creating a dummy variable for the variable 'OnlineBackup'.
          ob =pd.get_dummies(telecom['OnlineBackup'],prefix='OnlineBackup')
          ob1 =ob.drop(['OnlineBackup No internet service'],1)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,ob1],axis=1)
          # Creating a dummy variable for the variable 'DeviceProtection'.
          dp =pd.get_dummies(telecom['DeviceProtection'],prefix='DeviceProtection')
          dp1 = dp.drop(['DeviceProtection No internet service'],1)
          #Adding the results to the master dataframe
          telecom = pd.concat([telecom,dp1],axis=1)
          # Creating a dummy variable for the variable 'TechSupport'.
          ts =pd.get dummies(telecom['TechSupport'],prefix='TechSupport')
          ts1 = ts.drop(['TechSupport No internet service'],1)
          #Adding the results to the master dataframe
```

```
telecom = pd.concat([telecom,ts1],axis=1)

# Creating a dummy variable for the variable 'StreamingTV'.
st =pd.get_dummies(telecom['StreamingTV'],prefix='StreamingTV')
st1 = st.drop(['StreamingTV_No internet service'],1)
#Adding the results to the master dataframe
telecom = pd.concat([telecom,st1],axis=1)

# Creating a dummy variable for the variable 'StreamingMovies'.
sm =pd.get_dummies(telecom['StreamingMovies'],prefix='StreamingMovies')
sm1 = sm.drop(['StreamingMovies_No internet service'],1)
#Adding the results to the master dataframe
telecom = pd.concat([telecom,sm1],axis=1)
```

Dropping the repeated variables

```
In [154]: #The varaible was imported as a string we need to convert it to float
    telecom['TotalCharges'] =telecom['TotalCharges'].convert_objects(convert_numer
    ic=True)
    #telecom['tenure'] = telecom['tenure'].astype(int).astype(float)
```

C:\ProgramData\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: FutureWar ning: convert_objects is deprecated. Use the data-type specific converters p d.to_datetime, pd.to_timedelta and pd.to_numeric.

```
In [155]: telecom.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 7043 entries, 0 to 7042
          Data columns (total 32 columns):
                                                    7043 non-null object
          customerID
                                                    7043 non-null int64
          tenure
          PhoneService
                                                    7043 non-null int64
          PaperlessBilling
                                                    7043 non-null int64
          MonthlyCharges
                                                    7043 non-null float64
          TotalCharges
                                                    7032 non-null float64
                                                    7043 non-null int64
          Churn
          SeniorCitizen
                                                    7043 non-null int64
                                                    7043 non-null int64
          Partner
          Dependents
                                                    7043 non-null int64
          Contract_One year
                                                    7043 non-null uint8
          Contract Two year
                                                    7043 non-null uint8
          PaymentMethod Credit card (automatic)
                                                    7043 non-null uint8
          PaymentMethod Electronic check
                                                    7043 non-null uint8
          PaymentMethod Mailed check
                                                    7043 non-null uint8
          gender_Male
                                                    7043 non-null uint8
          MultipleLines No
                                                    7043 non-null uint8
          MultipleLines Yes
                                                    7043 non-null uint8
          InternetService Fiber optic
                                                    7043 non-null uint8
          InternetService No
                                                    7043 non-null uint8
          OnlineSecurity No
                                                    7043 non-null uint8
          OnlineSecurity_Yes
                                                    7043 non-null uint8
          OnlineBackup No
                                                    7043 non-null uint8
          OnlineBackup Yes
                                                    7043 non-null uint8
          DeviceProtection No
                                                    7043 non-null uint8
          DeviceProtection_Yes
                                                    7043 non-null uint8
                                                    7043 non-null uint8
          TechSupport No
          TechSupport_Yes
                                                    7043 non-null uint8
          StreamingTV_No
                                                    7043 non-null uint8
          StreamingTV Yes
                                                    7043 non-null uint8
          StreamingMovies No
                                                    7043 non-null uint8
          StreamingMovies Yes
                                                    7043 non-null uint8
          dtypes: float64(2), int64(7), object(1), uint8(22)
```

Now we can see we have all variables as integer.

memory usage: 756.6+ KB

Checking for Outliers

```
In [156]: # Checking for outliers in the continuous variables
num_telecom = telecom[['tenure','MonthlyCharges','SeniorCitizen','TotalCharge
s']]
```

In [157]: # Checking outliers at 25%,50%,75%,90%,95% and 99% num_telecom.describe(percentiles=[.25,.5,.75,.90,.95,.99])

Out[157]:

	tenure	MonthlyCharges	SeniorCitizen	TotalCharges
count	7043.000000	7043.000000	7043.000000	7032.000000
mean	32.371149	64.761692	0.162147	2283.300441
std	24.559481	30.090047	0.368612	2266.771362
min	0.000000	18.250000	0.000000	18.800000
25%	9.000000	35.500000	0.000000	401.450000
50%	29.000000	70.350000	0.000000	1397.475000
75%	55.000000	89.850000	0.000000	3794.737500
90%	69.000000	102.600000	1.000000	5976.640000
95%	72.000000	107.400000	1.000000	6923.590000
99%	72.000000	114.729000	1.000000	8039.883000
max	72.000000	118.750000	1.000000	8684.800000

From the distribution shown above, you can see that there no outliner in your data. The numbers are gradually increasing.

Checking for Missing Values and Inputing Them

It means that 11/7043 = 0.001561834 i.e 0.1%, best is to remove these observations from the analysis

```
In [158]: # Checking the percentage of missing values
           round(100*(telecom.isnull().sum()/len(telecom.index)), 2)
Out[158]: customerID
                                                     0.00
          tenure
                                                     0.00
          PhoneService
                                                     0.00
          PaperlessBilling
                                                     0.00
          MonthlyCharges
                                                     0.00
          TotalCharges
                                                     0.16
          Churn
                                                     0.00
           SeniorCitizen
                                                     0.00
          Partner
                                                     0.00
                                                     0.00
          Dependents
          Contract_One year
                                                     0.00
          Contract_Two year
                                                     0.00
          PaymentMethod_Credit card (automatic)
                                                     0.00
          PaymentMethod Electronic check
                                                     0.00
           PaymentMethod_Mailed check
                                                     0.00
           gender Male
                                                     0.00
          MultipleLines No
                                                     0.00
          MultipleLines_Yes
                                                     0.00
          InternetService Fiber optic
                                                     0.00
           InternetService No
                                                     0.00
          OnlineSecurity No
                                                     0.00
                                                     0.00
          OnlineSecurity Yes
          OnlineBackup No
                                                     0.00
          OnlineBackup_Yes
                                                     0.00
          DeviceProtection No
                                                     0.00
          DeviceProtection_Yes
                                                     0.00
          TechSupport No
                                                     0.00
           TechSupport_Yes
                                                     0.00
           StreamingTV No
                                                     0.00
          StreamingTV_Yes
                                                     0.00
          StreamingMovies_No
                                                     0.00
          StreamingMovies Yes
                                                     0.00
           dtype: float64
```

```
In [159]: # Removing NaN TotalCharges rows
telecom = telecom[~np.isnan(telecom['TotalCharges'])]
```

In [160]: # Checking percentage of missing values after removing the missing values round(100*(telecom.isnull().sum()/len(telecom.index)), 2) Out[160]: customerID 0.0 tenure 0.0 PhoneService 0.0 PaperlessBilling 0.0 MonthlyCharges 0.0 TotalCharges 0.0 Churn 0.0 SeniorCitizen 0.0 Partner 0.0 Dependents 0.0 Contract_One year 0.0 Contract_Two year 0.0 PaymentMethod_Credit card (automatic) 0.0 PaymentMethod Electronic check 0.0 PaymentMethod_Mailed check 0.0 gender Male 0.0 MultipleLines No 0.0 MultipleLines_Yes 0.0 InternetService Fiber optic 0.0 InternetService No 0.0 OnlineSecurity No 0.0 OnlineSecurity Yes 0.0 OnlineBackup No 0.0 OnlineBackup_Yes 0.0 DeviceProtection No 0.0 DeviceProtection Yes 0.0 TechSupport No 0.0 TechSupport Yes 0.0 StreamingTV No 0.0 StreamingTV_Yes 0.0 StreamingMovies_No 0.0

Now we don't have any missing values

StreamingMovies Yes

dtype: float64

Feature Standardisation

```
In [161]: # Normalising continuous features
df = telecom[['tenure','MonthlyCharges','TotalCharges']]
```

0.0

```
In [162]: normalized_df=(df-df.mean())/df.std()
          telecom = telecom.drop(['tenure', 'MonthlyCharges', 'TotalCharges'], 1)
          telecom = pd.concat([telecom,normalized_df],axis=1)
          telecom.head()
```

Out[162]:

	customerID	PhoneService	PaperlessBilling	Churn	SeniorCitizen	Partner	Dependen
0	7590- VHVEG	0	1	0	0	1	0
1	5575- GNVDE	1	0	0	0	0	0
2	3668- QPYBK	1	1	1	0	0	0
3	7795- CFOCW	0	0	0	0	0	0
4	9237- HQITU	1	1	1	0	0	0

5 rows × 32 columns

Checking the Churn Rate

```
In [163]: churn = (sum(telecom['Churn'])/len(telecom['Churn'].index))*100
          churn
```

Out[163]: 26.578498293515356

We have almost 27% churn rate

Model Building

Let's start by splitting our data into a training set and a test set.

Splitting Data into Training and Test Sets

```
In [164]: from sklearn.model_selection import train_test_split
    # Putting feature variable to X
    X = telecom.drop(['Churn','customerID'],axis=1)

# Putting response variable to y
    y = telecom['Churn']
    y.head()

Out[164]: 0    0
    1    0
    2    1
    3    0
    4    1
    Name: Churn, dtype: int64

In [165]: # Splitting the data into train and test
    X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.7,test_s ize=0.3,random_state=100)
```

Running Your First Training Model

```
In [166]: import statsmodels.api as sm
```

```
In [167]: # Logistic regression model
          logm1 = sm.GLM(y_train,(sm.add_constant(X_train)), family = sm.families.Binomi
          al())
          logm1.fit().summary()
```

Out[167]: Generalized Linear Model Regression Results

Dep. Variable:	Churn	No. Observations:	4922
Model:	GLM	Df Residuals:	4898
Model Family:	Binomial	Df Model:	23
Link Function:	logit	Scale:	1.0
Method:	IRLS	Log-Likelihood:	-2004.7
Date:	Wed, 25 Apr 2018	Deviance:	4009.4
Time:	20:12:47	Pearson chi2:	6.07e+03
No. Iterations:	7		

	coef	std err	z	P> z	[0.025	0.975]
const	-3.2783	1.187	-2.762	0.006	-5.605	-0.952
PhoneService	0.8213	0.588	1.396	0.163	-0.332	1.974
PaperlessBilling	0.3254	0.090	3.614	0.000	0.149	0.502
SeniorCitizen	0.3984	0.102	3.924	0.000	0.199	0.597
Partner	0.0374	0.094	0.399	0.690	-0.146	0.221
Dependents	-0.1430	0.107	-1.332	0.183	-0.353	0.067
Contract_One year	-0.6578	0.129	-5.106	0.000	-0.910	-0.405
Contract_Two year	-1.2455	0.212	-5.874	0.000	-1.661	-0.830
PaymentMethod_Credit card (automatic)	-0.2577	0.137	-1.883	0.060	-0.526	0.011
PaymentMethod_Electronic check	0.1615	0.113	1.434	0.152	-0.059	0.382
PaymentMethod_Mailed check	-0.2536	0.137	-1.845	0.065	-0.523	0.016
gender_Male	-0.0346	0.078	-0.442	0.658	-0.188	0.119
MultipleLines_No	0.1295	0.205	0.632	0.527	-0.272	0.531
MultipleLines_Yes	0.6918	0.392	1.763	0.078	-0.077	1.461
InternetService_Fiber optic	2.5124	0.967	2.599	0.009	0.618	4.407
InternetService_No	-3.4348	1.324	-2.594	0.009	-6.030	-0.839
OnlineSecurity_No	0.0905	0.058	1.558	0.119	-0.023	0.204
OnlineSecurity_Yes	0.0660	0.174	0.380	0.704	-0.275	0.407
OnlineBackup_No	-0.0088	0.055	-0.161	0.872	-0.116	0.098
OnlineBackup_Yes	0.1653	0.172	0.960	0.337	-0.172	0.503
DeviceProtection_No	-0.0832	0.056	-1.487	0.137	-0.193	0.026
DeviceProtection_Yes	0.2397	0.174	1.379	0.168	-0.101	0.580

0.0935	0.058	1.604	0.109	-0.021	0.208
0.0630	0.174	0.362	0.717	-0.278	0.404
-0.4016	0.133	-3.027	0.002	-0.662	-0.142
0.5581	0.267	2.094	0.036	0.036	1.081
-0.3459	0.133	-2.609	0.009	-0.606	-0.086
0.5024	0.266	1.886	0.059	-0.020	1.025
-1.5198	0.190	-8.015	0.000	-1.891	-1.148
-2.1817	1.160	-1.880	0.060	-4.456	0.092
0.7329	0.198	3.705	0.000	0.345	1.121
	0.0630 -0.4016 0.5581 -0.3459 0.5024 -1.5198 -2.1817	0.0630	0.0630 0.174 0.362 -0.4016 0.133 -3.027 0.5581 0.267 2.094 -0.3459 0.133 -2.609 0.5024 0.266 1.886 -1.5198 0.190 -8.015 -2.1817 1.160 -1.880	0.0630 0.174 0.362 0.717 -0.4016 0.133 -3.027 0.002 0.5581 0.267 2.094 0.036 -0.3459 0.133 -2.609 0.009 0.5024 0.266 1.886 0.059 -1.5198 0.190 -8.015 0.000 -2.1817 1.160 -1.880 0.060	0.0630 0.174 0.362 0.717 -0.278 -0.4016 0.133 -3.027 0.002 -0.662 0.5581 0.267 2.094 0.036 0.036 -0.3459 0.133 -2.609 0.009 -0.606 0.5024 0.266 1.886 0.059 -0.020 -1.5198 0.190 -8.015 0.000 -1.891 -2.1817 1.160 -1.880 0.060 -4.456

Correlation Matrix

```
In [168]:
          # Importing matplotlib and seaborn
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
```

```
In [169]: # Let's see the correlation matrix
          plt.figure(figsize = (20,10))
                                                # Size of the figure
          sns.heatmap(telecom.corr(),annot = True)
```

Out[169]: <matplotlib.axes._subplots.AxesSubplot at 0x290250a59b0>

Dropping highly correlated variables.

```
In [170]: X_test2 = X_test.drop(['MultipleLines_No','OnlineSecurity_No','OnlineBackup_N
          o','DeviceProtection_No','TechSupport_No','StreamingTV_No','StreamingMovies_N
          o'],1)
          X train2 = X train.drop(['MultipleLines No','OnlineSecurity No','OnlineBackup
          No', 'DeviceProtection_No', 'TechSupport_No', 'StreamingTV_No', 'StreamingMovies_N
          o'],1)
```

Checking the Correlation Matrix

After dropping highly correlated variables now let's check the correlation matrix again.

```
In [171]: plt.figure(figsize = (20,10))
          sns.heatmap(X_train2.corr(),annot = True)
```

Out[171]: <matplotlib.axes._subplots.AxesSubplot at 0x290291cdb70>

Re-Running the Model

Now let's run our model again after dropping highly correlated variables

```
logm2 = sm.GLM(y_train,(sm.add_constant(X_train2)), family = sm.families.Binom
logm2.fit().summary()
```

Out[172]: Generalized Linear Model Regression Results

Dep. Variable:	Churn	No. Observations:	4922
Model:	GLM	Df Residuals:	4898
Model Family:	Binomial	Df Model:	23
Link Function:	logit	Scale:	1.0
Method:	IRLS	Log-Likelihood:	-2004.7
Date:	Wed, 25 Apr 2018	Deviance:	4009.4
Time:	20:12:54	Pearson chi2:	6.07e+03
No. Iterations:	7		

	coef	std err	z	P> z	[0.025	0.975]
const	-3.9338	1.545	-2.545	0.011	-6.963	-0.905
PhoneService	0.9507	0.789	1.205	0.228	-0.595	2.497
PaperlessBilling	0.3254	0.090	3.614	0.000	0.149	0.502
SeniorCitizen	0.3984	0.102	3.924	0.000	0.199	0.597
Partner	0.0374	0.094	0.399	0.690	-0.146	0.221
Dependents	-0.1430	0.107	-1.332	0.183	-0.353	0.067
Contract_One year	-0.6578	0.129	-5.106	0.000	-0.910	-0.405
Contract_Two year	-1.2455	0.212	-5.874	0.000	-1.661	-0.830
PaymentMethod_Credit card (automatic)	-0.2577	0.137	-1.883	0.060	-0.526	0.011
PaymentMethod_Electronic check	0.1615	0.113	1.434	0.152	-0.059	0.382
PaymentMethod_Mailed check	-0.2536	0.137	-1.845	0.065	-0.523	0.016
gender_Male	-0.0346	0.078	-0.442	0.658	-0.188	0.119
MultipleLines_Yes	0.5623	0.214	2.628	0.009	0.143	0.982
InternetService_Fiber optic	2.5124	0.967	2.599	0.009	0.618	4.407
InternetService_No	-2.7792	0.982	-2.831	0.005	-4.703	-0.855
OnlineSecurity_Yes	-0.0245	0.216	-0.113	0.910	-0.448	0.399
OnlineBackup_Yes	0.1740	0.212	0.822	0.411	-0.241	0.589
DeviceProtection_Yes	0.3229	0.215	1.501	0.133	-0.099	0.744
TechSupport_Yes	-0.0305	0.216	-0.141	0.888	-0.455	0.394
StreamingTV_Yes	0.9598	0.396	2.423	0.015	0.183	1.736
StreamingMovies_Yes	0.8484	0.396	2.143	0.032	0.072	1.624
tenure	-1.5198	0.190	-8.015	0.000	-1.891	-1.148

MonthlyCharges	-2.1817	1.160	-1.880	0.060	-4.456	0.092
TotalCharges	0.7329	0.198	3.705	0.000	0.345	1.121

Feature Selection Using RFE

```
In [173]: from sklearn.linear model import LogisticRegression
          logreg = LogisticRegression()
          from sklearn.feature selection import RFE
          rfe = RFE(logreg, 13)
                                           # running RFE with 13 variables as output
          rfe = rfe.fit(X,y)
          print(rfe.support_)
                                      # Printing the boolean results
          print(rfe.ranking )
                                       # Printing the ranking
          [ True True False False True True False True False False True
           False True True False True False False False False True False
           False True False True False True]
          [ 1 1 2 18 6 1 1 11 1 12 14 1 8 1 1 4 1 15 5 13 10 7 1 3 16
            1 17 1 9 1]
In [174]: # Variables selected by RFE
          col = ['PhoneService', 'PaperlessBilling', 'Contract_One year', 'Contract_Two
           year',
                 'PaymentMethod Electronic check', 'MultipleLines No', 'InternetService Fi
          ber optic', 'InternetService No',
                 'OnlineSecurity_Yes','TechSupport_Yes','StreamingMovies_No','tenure','T
          otalCharges']
In [175]:
         # Let's run the model using the selected variables
          from sklearn.linear model import LogisticRegression
          from sklearn import metrics
          logsk = LogisticRegression(C=1e9)
          #logsk.fit(X train[col], y train)
          logsk.fit(X train, y train)
Out[175]: LogisticRegression(C=1000000000.0, class weight=None, dual=False,
                    fit intercept=True, intercept scaling=1, max iter=100,
                    multi class='ovr', n jobs=1, penalty='l2', random state=None,
                    solver='liblinear', tol=0.0001, verbose=0, warm start=False)
```

```
#Comparing the model with StatsModels
#logm4 = sm.GLM(y_train,(sm.add_constant(X_train[col])), family = sm.families.
Binomial())
logm4 = sm.GLM(y_train,(sm.add_constant(X_train)), family = sm.families.Binomi
al())
modres = logm4.fit()
logm4.fit().summary()
```

Out[176]: Generalized Linear Model Regression Results

Dep. Variable:	Churn	No. Observations:	4922
Model:	GLM	Df Residuals:	4898
Model Family:	Binomial	Df Model:	23
Link Function:	logit	Scale:	1.0
Method:	IRLS	Log-Likelihood:	-2004.7
Date:	Wed, 25 Apr 2018	Deviance:	4009.4
Time:	20:12:55	Pearson chi2:	6.07e+03
No. Iterations:	7		

	coef	std err	z	P> z	[0.025	0.975]
const	-3.2783	1.187	-2.762	0.006	-5.605	-0.952
PhoneService	0.8213	0.588	1.396	0.163	-0.332	1.974
PaperlessBilling	0.3254	0.090	3.614	0.000	0.149	0.502
SeniorCitizen	0.3984	0.102	3.924	0.000	0.199	0.597
Partner	0.0374	0.094	0.399	0.690	-0.146	0.221
Dependents	-0.1430	0.107	-1.332	0.183	-0.353	0.067
Contract_One year	-0.6578	0.129	-5.106	0.000	-0.910	-0.405
Contract_Two year	-1.2455	0.212	-5.874	0.000	-1.661	-0.830
PaymentMethod_Credit card (automatic)	-0.2577	0.137	-1.883	0.060	-0.526	0.011
PaymentMethod_Electronic check	0.1615	0.113	1.434	0.152	-0.059	0.382
PaymentMethod_Mailed check	-0.2536	0.137	-1.845	0.065	-0.523	0.016
gender_Male	-0.0346	0.078	-0.442	0.658	-0.188	0.119
MultipleLines_No	0.1295	0.205	0.632	0.527	-0.272	0.531
MultipleLines_Yes	0.6918	0.392	1.763	0.078	-0.077	1.461
InternetService_Fiber optic	2.5124	0.967	2.599	0.009	0.618	4.407
InternetService_No	-3.4348	1.324	-2.594	0.009	-6.030	-0.839
OnlineSecurity_No	0.0905	0.058	1.558	0.119	-0.023	0.204
OnlineSecurity_Yes	0.0660	0.174	0.380	0.704	-0.275	0.407
OnlineBackup_No	-0.0088	0.055	-0.161	0.872	-0.116	0.098
OnlineBackup_Yes	0.1653	0.172	0.960	0.337	-0.172	0.503
DeviceProtection_No	-0.0832	0.056	-1.487	0.137	-0.193	0.026
DeviceProtection_Yes	0.2397	0.174	1.379	0.168	-0.101	0.580

TechSupport_No	0.0935	0.058	1.604	0.109	-0.021	0.208
TechSupport_Yes	0.0630	0.174	0.362	0.717	-0.278	0.404
StreamingTV_No	-0.4016	0.133	-3.027	0.002	-0.662	-0.142
StreamingTV_Yes	0.5581	0.267	2.094	0.036	0.036	1.081
StreamingMovies_No	-0.3459	0.133	-2.609	0.009	-0.606	-0.086
StreamingMovies_Yes	0.5024	0.266	1.886	0.059	-0.020	1.025
tenure	-1.5198	0.190	-8.015	0.000	-1.891	-1.148
MonthlyCharges	-2.1817	1.160	-1.880	0.060	-4.456	0.092
TotalCharges	0.7329	0.198	3.705	0.000	0.345	1.121

```
In [177]: X_test[col].shape
          #res = modres.predict(X_test[col])
```

Out[177]: (2110, 13)

Making Predictions

```
In [178]: # Predicted probabilities
          y_pred = logsk.predict_proba(X_test)
          # Converting y_pred to a dataframe which is an array
          y_pred_df = pd.DataFrame(y_pred)
          # Converting to column dataframe
          y_pred_1 = y_pred_df.iloc[:,[1]]
          # Let's see the head
          y_pred_1.head()
```

Out[178]: _____

	1
0	0.437703
1	0.326774
2	0.004873
3	0.576256
4	0.007747

```
In [179]: # Converting y_test to dataframe
          y_test_df = pd.DataFrame(y_test)
          y_test_df.head()
```

Out[179]:

	Churn
942	0
3730	1
1761	0
2283	1
1872	0

```
In [180]:
          # Putting CustID to index
          y_test_df['CustID'] = y_test_df.index
          # Removing index for both dataframes to append them side by side
          y_pred_1.reset_index(drop=True, inplace=True)
          y_test_df.reset_index(drop=True, inplace=True)
          # Appending y_test_df and y_pred_1
          y_pred_final = pd.concat([y_test_df,y_pred_1],axis=1)
          # Renaming the column
          y_pred_final= y_pred_final.rename(columns={ 1 : 'Churn_Prob'})
          # Rearranging the columns
          y_pred_final = y_pred_final.reindex_axis(['CustID','Churn','Churn_Prob'], axis
          =1)
          # Let's see the head of y_pred_final
          y_pred_final.head()
```

Out[180]:

	CustID	Churn	Churn_Prob
0	942	0	0.437703
1	3730	1	0.326774
2	1761	0	0.004873
3	2283	1	0.576256
4	1872	0	0.007747

```
In [181]: # Creating new column 'predicted' with 1 if Churn_Prob>0.5 else 0
          y_pred_final['predicted'] = y_pred_final.Churn_Prob.map( lambda x: 1 if x > 0.
          5 else 0)
          # Let's see the head
          y_pred_final.head()
```

Out[181]:

	CustID	Churn	Churn_Prob	predicted
0	942	0	0.437703	0
1	3730	1	0.326774	0
2	1761	0	0.004873	0
3	2283	1	0.576256	1
4	1872	0	0.007747	0

Model Evaluation

```
In [182]: from sklearn import metrics
In [183]: # Confusion matrix
          confusion = metrics.confusion_matrix( y_pred_final.Churn, y_pred_final.predict
          ed )
          confusion
Out[183]: array([[1354, 174],
                 [ 248, 334]], dtype=int64)
In [184]: # Predicted
                          Churn not_churn __all__
          # Actual
          # Churn
                             1359
                                    169
                                            1528
          # not churn
                              256
                                    326
                                             582
                                    751
          # __all__
                             1615
                                             2110
In [185]: #Let's check the overall accuracy.
          metrics.accuracy_score(y_pred_final.Churn, y_pred_final.predicted)
```

Out[185]: 0.80000000000000004

```
In [186]: def draw_roc( actual, probs ):
              fpr, tpr, thresholds = metrics.roc curve( actual, probs,
                                                         drop intermediate = False )
              auc score = metrics.roc auc score( actual, probs )
              plt.figure(figsize=(6, 6))
              plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score )
              plt.plot([0, 1], [0, 1], 'k--')
              plt.xlim([0.0, 1.0])
              plt.ylim([0.0, 1.05])
              plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
              plt.ylabel('True Positive Rate')
              plt.title('Receiver operating characteristic example')
              plt.legend(loc="lower right")
              plt.show()
              return fpr, tpr, thresholds
```

In [187]: draw_roc(y_pred_final.Churn, y_pred_final.predicted)


```
Out[187]: (array([ 0.
                                 0.11387435, 1.
                                                        ]),
           array([ 0.
                                 0.57388316,
                                                        ]),
           array([2, 1, 0], dtype=int64))
```

```
#draw_roc(y_pred_final.Churn, y_pred_final.predicted)
In [188]:
          "{:2.2f}".format(metrics.roc_auc_score(y_pred_final.Churn, y_pred_final.Churn_
          Prob))
```

Out[188]: '0.83'

We see an overall AUC score of 0.83 looks like we did a decent job.

- But we did spend a lot of effort on the features and their selection.
- · Can PCA help reduce our effort?

PCA on the data

Note -

- While computing the principal components, we must not include the entire dataset. Model building is all about doing well on the data we haven't seen yet!
- So we'll calculate the PCs using the train data, and apply them later on the test data

```
In [189]: X train.shape
          # We have 30 variables after creating our dummy variables for our categories
Out[189]: (4922, 30)
In [190]: #Improting the PCA module
          from sklearn.decomposition import PCA
          pca = PCA(svd solver='randomized', random state=42)
In [191]:
          #Doing the PCA on the train data
          pca.fit(X_train)
Out[191]: PCA(copy=True, iterated_power='auto', n_components=None, random_state=42,
            svd_solver='randomized', tol=0.0, whiten=False)
```

Let's plot the principal components and try to make sense of them

· We'll plot original features on the first 2 principal components as axes

In [192]: pca.components_

```
1.76113503e-02,
Out[192]: array([[
                                         6.73236050e-02,
                                                            3.33558780e-02,
                     9.81025382e-02,
                                         1.45144894e-02,
                                                            2.99711219e-02,
                     8.03474721e-02,
                                         4.45137169e-02,
                                                            1.03838839e-02,
                    -9.64778216e-02,
                                         5.46455027e-04,
                                                           -1.44992416e-01,
                     1.62603767e-01,
                                                           -1.23559445e-01,
                                         1.38408762e-01,
                     1.07552300e-02,
                                         1.12804215e-01,
                                                           -2.93144081e-02,
                     1.52873853e-01,
                                        -3.66586107e-02,
                                                            1.60218056e-01,
                     2.26069096e-03,
                                        1.21298754e-01,
                                                           -5.19779044e-02,
                     1.75537350e-01,
                                        -5.32208106e-02,
                                                            1.76780256e-01,
                                        4.64768058e-01,
                     4.50041974e-01,
                                                            5.64467383e-01],
                  [ -1.58225213e-02,
                                        -1.51382114e-01,
                                                           -7.60391859e-02,
                     1.10808074e-01,
                                        1.15262476e-01,
                                                            5.70934546e-02,
                     1.99196237e-01,
                                        6.98211144e-02,
                                                           -1.94953309e-01,
                     7.22696236e-02,
                                        6.84716202e-03,
                                                            3.64391587e-02,
                    -5.22616800e-02,
                                        -2.53405153e-01,
                                                            2.28888352e-01,
                                         5.11764215e-02,
                    -2.80064773e-01,
                                                           -2.29155531e-01,
                                                            1.52920583e-03,
                     2.67178910e-04,
                                        -2.30417558e-01,
                    -2.74825798e-01,
                                        4.59374458e-02,
                                                           -1.48754387e-01,
                    -8.01339654e-02,
                                        -1.50215959e-01,
                                                           -7.86723933e-02,
                     4.33270268e-01,
                                        -4.56258849e-01,
                                                            1.27410027e-01],
                  [ -9.12291058e-02,
                                        -2.84369927e-02,
                                                           -1.24001243e-02,
                     5.63239688e-02,
                                                           -7.62225596e-04,
                                        4.78714602e-02,
                     2.57781910e-02,
                                         5.81002273e-02,
                                                           -7.61267399e-02,
                    -2.15070492e-02,
                                        -8.51174807e-03,
                                                           -8.76630128e-02,
                    -3.56609297e-03,
                                        -9.44615765e-02,
                                                           -1.92982686e-01,
                    -2.70477190e-02,
                                        2.20030405e-01,
                                                            7.09799469e-02,
                     1.22002739e-01,
                                         2.79335424e-01,
                                                           -8.63527377e-02,
                     1.14699466e-01,
                                        7.82832203e-02,
                                                            4.96232463e-01,
                    -3.03249777e-01,
                                        4.89684449e-01,
                                                           -2.96701763e-01,
                     2.43036444e-01,
                                        -1.22710705e-01,
                                                            8.38171907e-02],
                  [ -1.52582548e-02,
                                        -8.53395795e-02,
                                                           -1.24482551e-01,
                    -1.15607472e-01,
                                        1.35706616e-02,
                                                            6.18957244e-02,
                    -2.55122762e-02,
                                         1.08439476e-02,
                                                           -1.54943819e-01,
                     1.50132655e-01,
                                        -3.27194885e-02,
                                                            3.35259920e-01,
                    -3.50518175e-01,
                                        -9.95677606e-02,
                                                           -1.49234454e-01,
                    -1.94633301e-01,
                                        3.43867755e-01,
                                                            1.37892828e-02,
                     1.35445172e-01,
                                        -7.12015820e-02,
                                                            2.20436036e-01,
                    -2.81687409e-01,
                                        4.30921863e-01,
                                                            6.78808741e-02,
                     8.13535803e-02,
                                        6.63634814e-02,
                                                            8.28709730e-02,
                    -2.84331268e-01,
                                         2.16875383e-01,
                                                           -5.64112933e-03],
                  [ -1.14905477e-01,
                                        -3.91805880e-02,
                                                           -2.43453437e-02,
                                                           -7.39508732e-02,
                     9.22236587e-02,
                                        8.22694189e-02,
                     1.11130926e-01,
                                         5.20967416e-02,
                                                           -4.54904532e-02,
                    -1.28556843e-02,
                                        2.36253723e-02,
                                                           -2.38918946e-01,
                     1.24013469e-01,
                                        -1.13486010e-01,
                                                           -7.56624541e-02,
                    -2.67674094e-03,
                                        7.83391950e-02,
                                                            6.40827206e-01,
                    -5.65164752e-01,
                                                            2.01905438e-01,
                                        -1.26242983e-01,
                    -9.84497332e-02,
                                        1.74112187e-01,
                                                            4.01689953e-02,
                     3.54934588e-02,
                                                            9.81900865e-02,
                                        -2.25276324e-02,
                     3.70542100e-02,
                                        -6.07852630e-02,
                                                           -6.31576961e-02],
                                        2.12864636e-02,
                  [ 3.64322765e-02,
                                                            4.16857747e-03,
                     3.12327904e-01,
                                         2.07866485e-01,
                                                            8.80938644e-02,
                    -2.10506892e-02,
                                        1.98347068e-02,
                                                            8.59334323e-02,
                    -1.24909455e-01,
                                        4.63903329e-02,
                                                            5.41058303e-01,
                    -5.04626027e-01,
                                        7.84512080e-02,
                                                           -3.51118051e-02,
                     1.62939067e-01,
                                        -1.27827262e-01,
                                                            1.91948712e-01,
                    -1.56836907e-01,
                                        -3.60056963e-02,
                                                            7.11175015e-02,
```

```
2.33630834e-01,
                     -1.98519029e-01,
                                        -9.70663787e-03,
   4.48184430e-02,
                      4.16890950e-02,
                                        -6.57728987e-03,
   2.28607186e-01,
                     -2.06491922e-02,
                                         8.76347710e-02],
  2.37558672e-02,
                      3.68307201e-02,
                                        -5.24480693e-02,
   2.34251271e-01,
                      2.68532524e-01,
                                        -4.31941644e-02,
   4.59426788e-02,
                                         7.86145743e-02,
                     -9.63796664e-02,
   1.24589062e-02,
                     -1.11887496e-01,
                                         3.03343294e-02,
  -6.57846219e-03,
                     -1.05198190e-02,
                                         6.34620160e-03,
  -1.37533195e-01,
                      1.31186993e-01,
                                         7.11834413e-02,
  -7.75296429e-02,
                      5.65951236e-01,
                                        -5.72297438e-01,
  -1.62317117e-01,
                      1.55970916e-01,
                                        -1.66257206e-01,
   1.59911004e-01,
                     -1.35056505e-01,
                                         1.28710304e-01,
   1.91083205e-03,
                                        -1.28038995e-02],
                      3.49478688e-02,
[ -4.49367286e-02,
                     -4.47541098e-02,
                                        -7.15283654e-02,
   5.72645409e-01,
                      5.63228733e-01,
                                         1.39533786e-02,
  -4.78769773e-02,
                     -5.80186925e-02,
                                         1.86761580e-02,
   4.75212017e-02,
                     -8.56435722e-02,
                                        -2.04751136e-01,
   1.59814408e-01,
                                        -3.39057422e-02,
                     -2.78756283e-02,
   4.73805254e-02,
                     -1.34747832e-02,
                                        -1.71471202e-01,
   2.05376944e-01,
                     -1.90547868e-01,
                                         2.24453611e-01,
   3.77595251e-02,
                     -3.85378286e-03,
                                         3.01358694e-02,
   3.76987280e-03,
                      6.72221021e-02,
                                        -3.33163599e-02,
  -2.56902570e-01,
                      6.08435868e-02,
                                        -1.48787319e-01],
[ -1.99321058e-01,
                      1.28143552e-01,
                                        -2.76612593e-02,
   1.18692098e-03,
                     -1.33525239e-03,
                                         2.09147058e-02,
   2.03651182e-02,
                      3.75548892e-03,
                                         1.98669459e-02,
  -2.50873854e-02,
                      3.35839251e-01,
                                        -8.30605070e-02,
  -1.16260550e-01,
                     -2.00194898e-01,
                                        -1.12524144e-01,
   5.27226188e-01,
                     -4.14702044e-01,
                                        -5.97458675e-02,
   1.72270012e-01,
                      1.11507832e-01,
                                         1.01631195e-03,
  -2.65655371e-01,
                      3.78179515e-01,
                                         3.26632791e-02,
   7.98608653e-02,
                      7.22825848e-03,
                                         1.05295886e-01,
   8.04802828e-02,
                     -1.41092824e-01,
                                        -3.25688162e-02],
[ -1.31187206e-01,
                      1.42382500e-01,
                                         2.93814462e-02,
  -4.22359444e-02,
                     -9.13274583e-02,
                                         4.45203489e-02,
                                         2.39395079e-02,
  -1.97375623e-02,
                      6.77191208e-02,
  -1.02780272e-01,
                     -9.06612283e-01,
                                        -3.49326686e-02,
  -9.62545372e-02,
                     -1.18359923e-01,
                                        -5.26355284e-02,
                                        -1.50972398e-03,
   1.67901386e-01,
                     -1.15265857e-01,
   5.41452523e-02,
                     -1.23184461e-02,
                                         6.49539744e-02,
  -2.30498121e-02,
                      7.56853405e-02,
                                         3.20045531e-02,
   2.06309753e-02,
                     -3.91320120e-02,
                                         9.17675404e-02,
   7.35224250e-02,
                     -1.08014857e-01,
                                        -2.66003355e-02],
[ -3.49879546e-01,
                      1.04381424e-01,
                                         2.80953095e-02,
  -3.48183263e-02,
                     -4.90519748e-02,
                                         2.13964832e-01,
  -1.60535217e-01,
                     -5.50706965e-02,
                                         2.54308048e-01,
  -1.75624151e-01,
                      1.72038848e-01,
                                        -1.91412168e-01,
  -1.58467378e-01,
                     -3.24634497e-01,
                                        -1.37460083e-01,
                      3.27588938e-01,
  -1.90128855e-01,
                                        -1.66314733e-02,
   1.54091557e-01,
                      4.98402187e-02,
                                         8.76198648e-02,
                     -1.55452146e-01,
                                        -3.15985635e-03,
   2.92912229e-01,
   1.40619940e-01,
                     -1.71289326e-01,
                                         3.08749409e-01,
   1.95901009e-02,
                                        -7.31480884e-02]
                     -1.96864140e-01,
[ -9.12683105e-02,
                      2.24720585e-02,
                                        -2.37045985e-02,
  -7.69677984e-02,
                     -1.95091796e-02,
                                         1.87880802e-02,
  -4.57773605e-03,
                      5.66215034e-02,
                                        -3.12527703e-02,
  -1.99335109e-02,
                     -2.05789615e-02,
                                        -7.97160167e-02,
```

```
-1.15522938e-02,
                     -8.85214748e-02,
                                        -4.39111566e-02,
   2.92010275e-04,
                      4.36191463e-02,
                                         3.23120593e-02,
   1.15990973e-02,
                      1.02217625e-02,
                                         3.36893941e-02,
   6.15661271e-02,
                     -1.76549705e-02,
                                        -5.01861411e-01,
   5.45772568e-01,
                      4.69601826e-01,
                                        -4.25690669e-01,
   9.92700901e-03,
                     -4.78727339e-02,
                                        -1.96081921e-02],
[ 5.15736298e-02,
                                         7.78486130e-02,
                      1.92090527e-01,
   3.21859309e-02,
                     -6.91660131e-02,
                                        -1.81790324e-01,
   1.00480781e-01,
                     -4.73708557e-01,
                                         6.61754494e-01,
  -1.77428321e-01,
                     -1.08878739e-02,
                                         6.12083829e-02,
  -9.63475311e-03,
                      4.78667618e-02,
                                         7.18831540e-02,
  -1.28569541e-01,
                      5.66863866e-02,
                                        -3.62635139e-02,
  -3.56196400e-02,
                     -1.56663195e-01,
                                         8.47800406e-02,
  -2.39522731e-01,
                      1.67639577e-01,
                                         1.67545497e-02,
  -8.86377037e-02,
                      1.14493456e-01,
                                        -1.86376610e-01,
   5.83606761e-02,
                     -3.41088604e-02,
                                        -1.08141420e-02],
 1.12540380e-01,
                      1.04754644e-01,
                                         2.01958885e-02,
   2.61566597e-02,
                      4.35742917e-03,
                                         7.49475248e-01,
  -5.17810424e-01,
                     -7.60966376e-02,
                                         3.19631316e-02,
   2.67713561e-02,
                     -9.65693153e-04,
                                        -1.84411426e-02,
   1.30981523e-01,
                      6.60001206e-02,
                                         8.40532859e-02,
  -3.03312662e-02,
                     -5.37220197e-02,
                                         6.20662858e-02,
  -1.46119572e-01,
                     -3.11032646e-02,
                                        -5.29500214e-02,
  -1.83563066e-01,
                      9.95097797e-02,
                                        -1.01356512e-03,
  -8.30397208e-02,
                      4.08872568e-02,
                                        -1.24940543e-01,
   2.34534386e-02,
                     -1.16417906e-02,
                                         8.78640864e-02],
  6.64399911e-02,
                      6.64868623e-01,
                                         8.36378984e-02,
   7.71690147e-02,
                      4.28265468e-02,
                                        -7.37325025e-02,
   2.37133513e-02,
                      5.23718670e-01,
                                        -9.87360270e-02,
  -3.76083796e-01,
                      1.04019679e-01,
                                         4.72330915e-02,
   1.92068996e-02,
                      5.96400549e-02,
                                         6.97585182e-02,
  -1.54318265e-01,
                      8.45597470e-02,
                                        -5.62667300e-02,
  -1.34917881e-02,
                     -5.48129319e-02,
                                        -1.49455862e-02,
  -1.19891424e-01,
                      5.01329063e-02,
                                         1.16683113e-03,
  -7.09253493e-02,
                     -9.12739390e-03,
                                        -6.06311242e-02,
  -8.20950938e-02,
                      1.19639617e-02,
                                        -1.23848529e-01],
[ -3.75219113e-02,
                      6.36070910e-01,
                                        -1.07982597e-02,
                      2.38155130e-02,
   4.22922840e-04,
                                        -7.76788055e-02,
   2.32114140e-02,
                     -3.79907809e-01,
                                        -2.61143105e-01,
   5.72999577e-01,
                      2.47005651e-03,
                                        -1.35320618e-03,
  -3.61687052e-02,
                     -3.96543612e-02,
                                        -1.32212820e-02,
  -9.22748752e-03,
                      2.24487695e-02,
                                         3.97368647e-02,
                     -2.11254955e-02,
  -2.65155827e-02,
                                         3.43467776e-02,
   1.14758865e-01,
                     -1.01537583e-01,
                                         6.61264229e-03,
                     -3.71701054e-03,
   6.60863972e-03,
                                         1.69382926e-02,
   4.10971250e-02,
                     -5.67868728e-02,
                                         9.77400645e-02],
[ -6.42314627e-02,
                     -1.07042095e-01,
                                         6.96289265e-01,
   4.94894995e-01,
                     -4.42672947e-01,
                                        -4.63966136e-02,
  -5.57445836e-02,
                      1.37992977e-03,
                                        -1.26834655e-01,
   1.12181055e-01,
                      1.85530168e-02,
                                        -5.03047899e-03,
  -5.92009838e-02,
                     -5.91700299e-03,
                                        -7.52148739e-03,
  -3.73900725e-02,
                      4.49115599e-02,
                                        -1.09502296e-02,
   1.84717170e-02,
                      1.99115090e-02,
                                        -1.23900216e-02,
  -6.28547597e-02,
                      7.03762471e-02,
                                        -2.89567467e-02,
   3.64782340e-02,
                      1.26199850e-02,
                                        -5.09849758e-03,
  -6.57729166e-02,
                     -2.13310254e-02,
                                        -1.87746975e-02],
[ -6.29527960e-02,
                     -4.23815881e-02,
                                         6.68576397e-01,
```

```
-4.58402078e-01,
                      5.72297440e-01,
                                        -6.56620264e-03,
  -6.05907281e-03,
                     -1.28634041e-03,
                                         1.11261262e-03,
   2.93631520e-02,
                     -8.00267719e-03,
                                        -8.38644638e-03,
  -5.45663496e-02,
                      4.32867338e-02,
                                         5.29293625e-03,
   1.87739836e-03,
                     -7.17033461e-03,
                                         1.03662971e-03,
                     -1.48353179e-02,
  -6.32956597e-03,
                                         9.54238164e-03,
  -2.54509470e-02,
                                         2.94534341e-03,
                      2.01580107e-02,
  -8.23827966e-03,
                     -4.82270721e-03,
                                        -4.70229044e-04,
   2.94223402e-02,
                     -1.62910120e-02,
                                         3.06362337e-02],
[ 5.72948911e-01,
                      3.30290813e-02,
                                         1.29919132e-01,
  -1.31384672e-02,
                      2.49030224e-03,
                                         6.32435773e-02,
   1.04575808e-01,
                     -4.25297703e-02,
                                         2.11843581e-02,
  -5.14680269e-02,
                                         2.49503821e-01,
                     -9.21577354e-04,
   3.23445090e-01,
                     -6.39775067e-01,
                                        -9.67647857e-02,
   8.81962776e-02,
                      8.56850815e-03,
                                         4.71397337e-02,
   4.96250521e-02,
                      4.11403389e-02,
                                         5.56244469e-02,
   1.11477293e-01,
                     -1.47125072e-02,
                                         2.51103720e-02,
   7.16544137e-02,
                      2.41516547e-02,
                                         7.26131310e-02,
   1.20404317e-02,
                      5.13460683e-02,
                                        -6.18374046e-02],
[ -1.92741060e-02,
                      1.48925758e-02,
                                         3.72041945e-02,
  -2.05683940e-02,
                     -3.68803457e-02,
                                         3.20881446e-01,
   3.61033750e-01,
                     -2.53245289e-01,
                                        -2.27688221e-01,
  -1.35707348e-01,
                      8.43728098e-03,
                                        -1.91981617e-02,
  -7.59443712e-05,
                      1.99858786e-01,
                                        -3.37085941e-02,
  -1.17991290e-02,
                      4.55077231e-02,
                                        -2.70212256e-02,
   6.07298197e-02,
                      3.06810135e-03,
                                         3.06404928e-02,
   1.07425357e-02,
                      2.29660584e-02,
                                         1.38938473e-03,
   3.23192094e-02,
                      8.19388964e-04,
                                         3.28892051e-02,
   3.34907489e-01,
                      2.27639259e-01,
                                        -6.42407120e-01],
[ -2.72767838e-03,
                     -1.93018158e-02,
                                        -1.93627564e-02,
  -1.57236941e-02,
                      2.82987476e-02,
                                        -2.28946550e-01,
  -2.96986396e-01,
                     -4.84588230e-01,
                                        -5.10231870e-01,
  -5.76418652e-01,
                      7.75029934e-03,
                                         2.92320591e-03,
  -5.65088429e-03,
                     -4.74306198e-02,
                                         1.49011092e-02,
  -7.03288986e-03,
                     -7.86821932e-03,
                                         1.96849149e-03,
                     -1.11816550e-02,
                                        -3.71945417e-03,
  -1.68696007e-02,
  -1.87140919e-02,
                      3.81298272e-03,
                                        -1.35589379e-02,
  -1.34217131e-03,
                     -1.24243714e-02,
                                        -2.47673773e-03,
  -6.99823286e-02,
                     -5.78788956e-02,
                                         1.34497113e-01],
  7.38350600e-02,
                     -3.96135956e-02,
                                        -4.43430271e-02,
  -1.46608268e-02,
                      2.69936275e-02,
                                        -4.00447291e-01,
  -6.29924666e-01,
                      1.16084030e-01,
                                         6.22954483e-02,
   1.81976312e-01,
                      2.27652840e-03,
                                         3.74165169e-02,
   3.64185431e-02,
                     -1.79010164e-02,
                                        -1.83435439e-02,
  -2.69524656e-02,
                      4.52960096e-02,
                                        -1.19466536e-02,
   3.02901975e-02,
                     -2.73269414e-02,
                                         4.56704854e-02,
  -4.16517296e-02,
                                        -2.09229565e-02,
                      5.99952735e-02,
   3.92665004e-02,
                     -2.21235347e-02,
                                         4.04670787e-02,
   4.50602734e-01,
                      1.09097778e-01,
                                        -3.84693458e-01],
[ -2.99022929e-01,
                      5.35042308e-04,
                                        -1.11219964e-03,
   1.13356455e-03,
                                        -9.85106280e-04,
                     -1.43359627e-03,
  -1.51274106e-04,
                      6.35650382e-04,
                                         9.91521055e-04,
   4.11139360e-04,
                     -1.97154554e-04,
                                        -1.00028207e-01,
  -1.98994722e-01,
                     -4.95024115e-01,
                                         2.23630891e-01,
                     -1.61455935e-01,
  -6.21749560e-02,
                                        -6.24676364e-02,
  -1.61163254e-01,
                     -6.16188725e-02,
                                        -1.62012018e-01,
  -6.23321503e-02,
                     -1.61298740e-01,
                                        -1.28236736e-02,
```

```
-2.10807217e-01,
                     -1.28750684e-02,
                                        -2.10755822e-01,
   1.27331923e-03,
                      5.97464532e-01,
                                        -1.82730782e-03],
  0.00000000e+00,
                     -1.40905131e-16,
                                        -1.43410469e-16,
   1.41191596e-16,
                      2.00553844e-16,
                                         1.82560934e-18,
  -1.96421234e-16,
                     -6.78502107e-17,
                                        -1.14531033e-16,
   1.05614642e-16,
                      9.26471013e-17,
                                         9.22424395e-16,
   1.17098423e-15,
                                        -3.24776739e-01,
                      1.16953775e-15,
  -5.29781333e-01,
                     -5.29781333e-01,
                                         1.50670388e-01,
   1.50670388e-01,
                     -3.05603035e-01,
                                        -3.05603035e-01,
   5.19421952e-02,
                      5.19421952e-02,
                                         1.67571901e-01,
   1.67571901e-01,
                      1.40423145e-01,
                                         1.40423145e-01,
  -4.20725378e-17,
                                         1.59998040e-17],
                     -1.43849774e-15,
  0.00000000e+00,
                                        -6.95872810e-18,
                     -5.83384446e-17,
  -8.55200389e-17,
                      1.31373668e-16,
                                        -2.27252330e-17,
  -2.09945117e-16,
                     -1.33530098e-16,
                                        -4.74472624e-17,
   1.37359212e-16,
                      3.49138630e-18,
                                         3.38745992e-16,
   4.88662654e-16,
                      2.46927133e-16,
                                        -2.48426864e-01,
  -1.62652515e-01,
                     -1.62652515e-01,
                                        -6.42559144e-02,
  -6.42559144e-02,
                      3.19885027e-01,
                                         3.19885027e-01,
                                         3.16327010e-01,
  -2.29207095e-01,
                     -2.29207095e-01,
   3.16327010e-01,
                     -4.28523376e-01,
                                        -4.28523376e-01,
  -3.87461060e-17,
                     -4.70990476e-16,
                                         8.33129929e-17],
  0.00000000e+00,
                     -7.96309904e-17,
                                         8.75102375e-17,
   4.86244156e-17,
                      1.53128592e-17,
                                         6.09799837e-17,
   4.42240075e-17,
                                        -1.04989321e-16,
                      2.28241718e-16,
   8.21764340e-17,
                                         2.50855407e-16,
                     -1.04200286e-16,
   3.32545872e-16,
                      3.44531205e-16,
                                         9.24267395e-02,
  -8.42502665e-02,
                     -8.42502665e-02,
                                         3.94341795e-01,
   3.94341795e-01,
                      2.10781858e-01,
                                         2.10781858e-01,
  -4.57937403e-01,
                     -4.57937403e-01,
                                        -1.83439613e-01,
  -1.83439613e-01,
                      2.12930369e-01,
                                         2.12930369e-01,
  -1.50346748e-17,
                     -4.35218008e-16,
                                        -2.34914971e-18],
[ -0.00000000e+00,
                     -1.13634729e-16,
                                         3.31737269e-17,
   2.03782917e-17,
                     -4.80371507e-17,
                                        -5.10574161e-17,
   9.53585315e-17,
                     -5.80622738e-17,
                                        -2.24765004e-16,
                                         4.69241362e-16,
  -1.86747312e-16,
                     -1.78034193e-16,
   5.93470267e-16,
                      5.18606846e-16,
                                        -1.42222563e-01,
   3.05682769e-01,
                      3.05682769e-01,
                                        -1.02590725e-01,
  -1.02590725e-01,
                     -3.58054329e-01,
                                        -3.58054329e-01,
  -3.94732439e-01,
                     -3.94732439e-01,
                                         3.00911635e-01,
   3.00911635e-01,
                      1.06560527e-01,
                                         1.06560527e-01,
  -1.23263775e-16,
                     -6.53362345e-16,
                                        -6.48535461e-17],
[ 0.0000000e+00,
                      2.37438197e-16,
                                        -2.03598756e-16,
   4.89193059e-17,
                      8.05365288e-17,
                                        -6.17053949e-17,
   8.62892515e-18,
                                         6.41313673e-17,
                      8.75270630e-17,
   1.62188764e-16,
                     -5.07031490e-17,
                                         4.34569671e-16,
   4.23398229e-16,
                      4.95206451e-16,
                                         7.38958565e-01,
  -2.84064215e-02,
                     -2.84064215e-02,
                                         1.99406164e-01,
   1.99406164e-01,
                      1.53836324e-02,
                                         1.53836324e-02,
   1.05321735e-01,
                      1.05321735e-01,
                                         4.17344597e-01,
   4.17344597e-01,
                                         2.99088569e-02,
                      2.99088569e-02,
   6.43474022e-17,
                     -4.54451866e-16,
                                        -1.07250377e-16],
[ 0.0000000e+00,
                      9.17159453e-17,
                                        -6.40719927e-17,
   1.40478525e-16,
                      3.61353009e-17,
                                         6.55893398e-17,
  -5.83609547e-19,
                     -2.19386115e-16,
                                        -7.70983454e-18,
   9.40644405e-17,
                      8.37665765e-17,
                                        -5.55044958e-17,
  -9.02151703e-17,
                     -1.88983788e-16,
                                         8.92997367e-02,
```

```
-1.70378728e-01, -1.70378728e-01,
                                     -4.52632837e-01,
 -4.52632837e-01,
                    2.62510579e-01,
                                      2.62510579e-01,
 -7.51869990e-02, -7.51869990e-02,
                                     1.04797254e-01,
  1.04797254e-01,
                   4.20190468e-01,
                                      4.20190468e-01,
  -6.45357414e-17,
                  1.27167910e-16,
                                      2.26890377e-17],
[ -5.77350269e-01, -2.22044605e-16,
                                      2.77555756e-17,
  0.00000000e+00, -1.66533454e-16,
                                     -1.11022302e-16,
  1.11022302e-16, -1.24900090e-16,
                                      4.85722573e-17,
  7.11236625e-17,
                   -8.19656842e-17,
                                      5.77350269e-01,
  5.77350269e-01,
                    4.99600361e-16,
                                     -1.52655666e-16,
  7.52869989e-16,
                    7.63278329e-16,
                                     -1.76941795e-16,
 -9.71445147e-17,
                    5.62050406e-16,
                                      6.52256027e-16,
  5.62050406e-16,
                    6.38378239e-16, -4.97865638e-16,
 -3.88578059e-16,
                    2.60208521e-17, 2.08166817e-16,
 -1.15359111e-16, -8.04911693e-16, -1.87350135e-16]])
```

```
In [193]: | colnames = list(X train.columns)
          pcs_df = pd.DataFrame({'PC1':pca.components_[0],'PC2':pca.components_[1], 'Fea
          ture':colnames})
          pcs_df.head()
```

Out[193]:

	Feature	PC1	PC2
0	PhoneService	0.017611	-0.015823
1	PaperlessBilling	0.067324	-0.151382
2	SeniorCitizen	0.033356	-0.076039
3	Partner	0.098103	0.110808
4	Dependents	0.014514	0.115262

```
In [194]:
          %matplotlib inline
          fig = plt.figure(figsize = (8,8))
          plt.scatter(pcs_df.PC1, pcs_df.PC2)
          plt.xlabel('Principal Component 1')
          plt.ylabel('Principal Component 2')
          for i, txt in enumerate(pcs_df.Feature):
              plt.annotate(txt, (pcs_df.PC1[i],pcs_df.PC2[i]))
          plt.tight layout()
          plt.show()
```


We see that the fist component is in the direction where the 'charges' variables are heavy

These 3 components also have the highest of the loadings

Looking at the screeplot to assess the number of needed principal components

```
In [195]: pca.explained variance ratio
Out[195]: array([
                    3.27847827e-01,
                                      1.75765007e-01,
                                                         6.03450801e-02,
                    4.55648825e-02,
                                      3.71944481e-02,
                                                         3.44939196e-02,
                    3.21953215e-02,
                                      3.12085042e-02,
                                                         3.00721929e-02,
                    2.81455178e-02,
                                      2.67941203e-02,
                                                         2.51671298e-02,
                    2.45802775e-02,
                                      2.36931522e-02,
                                                         2.27788300e-02,
                    2.10982912e-02,
                                      1.53183204e-02,
                                                         1.12792045e-02,
                    8.45904722e-03,
                                      7.12080502e-03,
                                                         5.92788522e-03,
                    4.90401247e-03,
                                      4.62235942e-05,
                                                         2.05310042e-33,
                    2.05310042e-33,
                                      2.05310042e-33,
                                                         2.05310042e-33,
                    2.05310042e-33,
                                      2.05310042e-33,
                                                         2.18456080e-35])
In [196]:
          #Making the screeplot - plotting the cumulative variance against the number of
           components
           %matplotlib inline
           fig = plt.figure(figsize = (12,8))
           plt.plot(np.cumsum(pca.explained_variance_ratio_))
           plt.xlabel('number of components')
           plt.ylabel('cumulative explained variance')
           plt.show()
             1.0
```


Looks like 16 components are enough to describe 95% of the variance in the dataset

We'll choose 16 components for our modeling

```
In [197]:
          #Using incremental PCA for efficiency - saves a lot of time on larger datasets
          from sklearn.decomposition import IncrementalPCA
          pca_final = IncrementalPCA(n_components=16)
```

In [199]:

Basis transformation - getting the data onto our PCs

```
df train pca = pca final.fit transform(X train)
In [198]:
          df train pca.shape
Out[198]: (4922, 16)
```

Creating correlation matrix for the principal components - we expect little to no correlation

#creating correlation matrix for the principal components

```
corrmat = np.corrcoef(df_train_pca.transpose())
In [200]:
          #plotting the correlation matrix
          %matplotlib inline
          plt.figure(figsize = (20,10))
          sns.heatmap(corrmat,annot = True)
```

Out[200]: <matplotlib.axes._subplots.AxesSubplot at 0x29027e52320>


```
In [201]:
          # 1s -> 0s in diagonals
          corrmat_nodiag = corrmat - np.diagflat(corrmat.diagonal())
          print("max corr:",corrmat_nodiag.max(), ", min corr: ", corrmat_nodiag.min(),)
          # we see that correlations are indeed very close to 0
```

max corr: 0.00181652621921 , min corr: -0.00107516919037

Indeed - there is no correlation between any two components! Good job, PCA!

 We effectively have removed multicollinearity from our situation, and our models will be much more stable

```
In [202]: #Applying selected components to the test data - 16 components
          df_test_pca = pca_final.transform(X_test)
          df test pca.shape
Out[202]: (2110, 16)
```

Applying a logistic regression on our Principal Components

- We expect to get similar model performance with significantly lower features
- If we can do so, we would have done effective dimensionality reduction without losing any import information

```
In [203]:
          #Training the model on the train data
          from sklearn.linear model import LogisticRegression
          from sklearn import metrics
          learner pca = LogisticRegression()
          model pca = learner pca.fit(df train pca,y train)
```

Note

Note that we are fitting the original variable y with the transformed variables (principal components). This is not a problem becuase the transformation done in PCA is linear, which implies that you've only changed the way the new x variables are represented, though the nature of relationship between X and Y is still linear.

```
In [204]: #Making prediction on the test data
          pred_probs_test = model_pca.predict_proba(df_test_pca)[:,1]
           '{:2.2}".format(metrics.roc_auc_score(y_test, pred_probs_test))
Out[204]: '0.83'
```

Impressive! The same result, without all the hard work on feature selection!

Why not take it a step further and get a little more 'unsupervised' in our approach? This time, we'll let PCA select the number of components basen on a variance cutoff we provide

```
In [205]: pca_again = PCA(0.90)
```

```
In [206]:
          df train pca2 = pca again.fit transform(X train)
          df train pca2.shape
          # we see that PCA selected 14 components
Out[206]: (4922, 14)
In [207]:
          #training the regression model
          learner_pca2 = LogisticRegression()
          model_pca2 = learner_pca2.fit(df_train_pca2,y_train)
In [208]: | df_test_pca2 = pca_again.transform(X_test)
          df_test_pca2.shape
Out[208]: (2110, 14)
In [209]:
          #Making prediction on the test data
          pred_probs_test2 = model_pca2.predict_proba(df_test_pca2)[:,1]
          "{:2.2f}".format(metrics.roc auc score(y test, pred probs test2))
Out[209]: '0.83'
```

So there it is - a very similar result, without all the hassles. We have not only achieved dimensionality reduction, but also saved a lot of effort on feature selection.

Before closing, let's also visualize the data to see if we can spot any patterns

```
In [210]:
          %matplotlib inline
          fig = plt.figure(figsize = (8,8))
          plt.scatter(df_train_pca[:,0], df_train_pca[:,1], c = y_train.map({0:'green',1}
          :'red'}))
          plt.xlabel('Principal Component 1')
          plt.ylabel('Principal Component 2')
          plt.tight_layout()
          plt.show()
```


Looks like there is a good amount of separation in 2D, but probably not enough

Let's look at it in 3D, and we expect spread to be better (dimensions of variance, remember?)

```
In [211]:
          %matplotlib notebook
          from mpl_toolkits.mplot3d import Axes3D
          fig = plt.figure(figsize=(8,8))
          ax = Axes3D(fig)
          # ax = plt.axes(projection='3d')
          ax.scatter(df_train_pca[:,2], df_train_pca[:,0], df_train_pca[:,1], c=y_train.
          map({0:'green',1:'red'}))
```

11/04/2019	Logistic+Regression+-	Telecom+Churn+-+with+PCA+v0.2_modified
Out[211]: <mpl< td=""><td>toolkits.mplot3d.art3d.Path3</td><td>BDCollection at 0x29028f9a320></td></mpl<>	toolkits.mplot3d.art3d.Path3	BDCollection at 0x29028f9a320>
000[===]. \p=_		

So let's try building the model with just 3 principal components!

```
In [212]: pca_last = PCA(n_components=3)
          df_train_pca3 = pca_last.fit_transform(X_train)
          df_test_pca3 = pca_last.transform(X_test)
          df_test_pca3.shape
Out[212]: (2110, 3)
In [213]:
          #training the regression model
          learner_pca3 = LogisticRegression()
          model_pca3 = learner_pca3.fit(df_train_pca3,y_train)
          #Making prediction on the test data
          pred_probs_test3 = model_pca3.predict_proba(df_test_pca3)[:,1]
          "{:2.2f}".format(metrics.roc_auc_score(y_test, pred_probs_test3))
Out[213]: '0.82'
```

0.82! Isn't that just amazing!