Aufgabe 1

a)
	1

<u>u j</u>											
P	P		P				P				
000	001	001	010	010	011	011	100	100	10 <mark>1</mark>	10 <mark>1</mark>	1 <mark>1</mark> 0
1	0	1	0	1	0	1	$\overline{0}$	1	0	1	0
1	1	0	0	1	0	0	1	1	0	1	1

1		`
	1	١
	J	J
		,

P	P		P				P				
000	001	00 <mark>1</mark>	010	010	011	011	100	100	10 <mark>1</mark>	10 <mark>1</mark>	1 <mark>1</mark> 0
1	0	1	0	1	0	1	$\overline{0}$	1	0	1	0
0	0	1	0	1	0	0	1	1	0	1	1

P	P		P				P				
000	001	001	010	010	011	011	100	100	10 <mark>1</mark>	10 <mark>1</mark>	1 <mark>1</mark> 0
1	0	1	0	1	0	1	0	1	0	1	0
1	1	0	0	0	1	1	1	0	1	1 -	0
										0	

Aufgabe 2

a)

Zur Absicherung werden 9 (4 davon Prüfbits) zusätzliche Bits benötigt.

$$m = 8$$

$$ld(m) + 2 = 5$$
 entspricht 62,5%

$$m = 16$$

$$1d(16) + 2 = 6$$
 enspricht 37,5%

$$m = 32$$

$$1d(32) + 2 = 7$$
 enspricht 21,875%

$$m = 64$$

$$1d(64) + 2 = 8$$
 enspricht 12,5%

$$m = 128$$

1d(128) + 2 = 9 enspricht 7%

Aufgabe 3

Aufgabe 4

a)

$$(\neg x_1 \wedge \neg x_2 \wedge \neg x_{3)} \vee (x_1 \wedge \neg x_2 \wedge \neg x_{3)} \vee (x_1 \wedge x_2 \wedge \neg x_{3)}$$

b)

$$(x_1 \vee x_2 \vee \neg x_{3)} \wedge (x_1 \vee \neg x_2 \vee x_{3)} \wedge (x_1 \vee \neg x_2 \vee \neg x_3)$$

Aufgabe 5

a)

b) Multiplexer