1

ESE 524 - Homework 1

Solution Outline
Assigned date: 01/22/19
Due Date: 02/05/19
Total Points: 100

These solutions are meant to be sketches. For full solutions we encourage you to fill in the details on your own or ask the TA in the office hours.

- (1) Transformation of Random Variables
 - a) Let $X \sim \text{Unif}[0,1]$ be a uniform random variable. Find the distribution of $Y = -\ln(X)$ where \ln

Solution:

Based on the transformation of random variables, we know that for univariate random variables

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$$

where g(x) is differentiable and monotonically increasing/decreasing function. In this case, $g(x) = -\ln(X)$ which is differentiable and monotonically decreasing function. Therefore, we can write the distribution of Y as

$$f_Y(y) = \frac{f_X(e^{-y})}{1/e^{-y}} = e^{-y} \quad \forall y > 0.$$

 $f_Y(y)$ is an exponential distribution with mean 1.

b) Let X and Y be independent univariate $\mathcal{N}(0,1)$ random variables. Let R denote the length of the vector [X,Y]', and let Θ denote the angle the vector makes with the x-axis. In other words, if X and Y are the Cartesian coordinates of a random point in the plane, then $R \geq 0$ and $-\pi < \Theta \leq \pi$ are the corresponding polar coordinates. Find the joint density of R and Θ .

Solution: The transformation $[r,\theta]^T=G(x,y)$ is given by

$$r = \sqrt{x^2 + y^2},$$

 $\theta = \text{angle}(x, y).$

The inverse transform $[x,y]^T=H(r,\theta)$ is the mapping that takes polar coordinates into the Cartesian coordinates. Hence, $H(r,\theta)$ is given by

$$x = r\cos\theta,$$
$$y = r\sin\theta.$$

The matrix $dH(r, \theta)$ is given by

$$dH(r,\theta) = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix},$$

and $\det(dH(r,\theta) = r$. Then,

$$f_{R,\Theta}(r,\theta) = f_{XY}(x,y)|x = r\cos\theta, y = r\sin\theta.|\det(H(r,\theta))|,$$

= $f_{XY}(r\cos\theta, r\sin\theta)r.$

Now, since X and Y are independent $\mathcal{N}(0,1)$, $f_{XY}(x,y) = f_X(x)f_Y(y) = e^{-(x^2+y^2)/2}/(2\pi)$, and $f_{R,\Theta}(r,\theta) = re^{-r^2/2} \cdot \frac{1}{2\pi}, r \geq 0, -\pi < 0 \leq \pi$.

Thus, R and Θ are independent, with R having a Rayleigh density and Θ having a uniform density.

(2) Probability

- a) Let $X \sim \text{Unif}[0,1]$ be a uniformly-distributed random variable. Suppose we know X+Y=1 in advance, then
 - i) derive the distribution of Y.
 - ii) derive the distribution of $Z = \max\{X, Y\}$.
 - iii) compute the expectation of Z and $M = \min\{X, Y\}$.

Solutions:

i) For $y \in [0, 1]$, we have

$$P(Y \le y) = P(1 - X \le y) = P(X \ge 1 - y) = 1 - (1 - y) = y.$$

Thus, $Y \sim \text{Unif}[0, 1]$.

ii)

$$P(Z \le z) = P(X \le z, Y \le z) = P(X \le z, 1 - X \le z) = P(X \le z, X \ge 1 - z)$$

For $z \in [1/2, 1]$, we have $P(Z \le z) = P(X \le z, X \ge 1 - z) = P(1 - z \le X \le z) = 2z - 1$ For $z \in [0, 1/2], P(Z \le z) = 0$.

We can see that the probability density of Z, i.e., $f_Z(z) = 2$, when $z \in [1/2, 1]$. Thus, $Z \sim \text{Unif}[1/2, 1]$.

iii) E[Z] = 3/4 because $Z \sim \text{Unif}[1/2, 1]$. Since E[M + Z] = E[X + Y], thus we have E[M] = E[X + Y] - E[Z] = 1 - 3/4 = 1/4.

(3) Estimator performance

a) Let X_1, \ldots, X_N be N independent and identically distributed (i.i.d.) samples drawn from $\mathcal{N}(\mu, \sigma^2)$, where the mean μ is known in advance, while the variance σ^2 is unknown. We have three estimators to estimate the variance,

$$\hat{\sigma}_{1}^{2} = \frac{1}{N} \sum_{i=1}^{N} (X_{i} - \mu)^{2},$$

$$\hat{\sigma}_{2}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(X_{i} - \frac{1}{N} \sum_{j=1}^{N} X_{j} \right)^{2},$$

$$\hat{\sigma}_{3}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} \left(X_{i} - \frac{1}{N} \sum_{j=1}^{N} X_{j} \right)^{2}.$$

- i) Check if $\hat{\sigma}_1^2$, $\hat{\sigma}_2^2$, and $\hat{\sigma}_3^2$ are unbiased.
- ii) For any biased estimator above, check if it is asymptotically unbiased.

Solution:

i)

$$E(\hat{\sigma}_{1}^{2}) = \frac{1}{N} \sum_{i=1}^{N} E(X_{i} - \mu)^{2} = \frac{1}{N} * N\sigma^{2} = \sigma^{2},$$

$$E(\hat{\sigma}_{2}^{2}) = \frac{1}{N} \sum_{i=1}^{N} E\left(X_{i} - \frac{1}{N} \sum_{j=1}^{N} X_{j}\right)^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} E\left(\frac{N-1}{N}(X_{i} - \mu) - \frac{1}{N} \sum_{j\neq i} (X_{j} - \mu)\right)^{2}$$

$$\vdots$$

$$= \frac{N-1}{N} \sigma^{2}$$

$$E(\hat{\sigma}_{3}^{2}) = \frac{N}{N-1} E(\hat{\sigma}_{2}^{2}) = \sigma^{2}.$$

Thus, $\hat{\sigma}_1^2$ and $\hat{\sigma}_3^2$ are unbiased estimators for σ^2 , while $\hat{\sigma}_2^2$ is not.

ii) When $N \to +\infty$, we can see that $\hat{\sigma}_2^2 \to \sigma^2$, which means that $\hat{\sigma}_2^2$ is asymptotically unbiased.

(4) Sufficient Statistics

Find a sufficient statistic for the following distributions.

a) (Normal distribution)

We consider a joint normal distribution for which the mean μ is unknown, but the variance σ^2 is known:

$$f(x_1, \dots, x_n | \mu) = (2\pi)^{-n/2} \sigma^{-n} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2)$$

what about the case when neither σ nor μ is known?

b) (Uniform distribution)

Now suppose the X_i s are uniformly distributed on $[0, \theta]$ where θ is unknown, with the joint density given as

$$f(x_1,\ldots,x_n|\theta)=\theta^{-n}\mathbb{I}(x_i\leq\theta,\forall i)$$

where $\mathbb{I}(\cdot)$ is the indicator function.

c) (Gamma distribution)

Now suppose X_i s have gamma distribution with β known and α unknown:

$$f(x_1, \dots, x_n | \alpha) = \frac{\beta^{n\alpha}}{\Gamma(\alpha)^n} (\prod_{i=1}^n x_i^{\alpha-1}) \exp(-\beta \sum_{i=1}^n x_i)$$

Solution:

a)

$$f(x_1, \dots, x_n | \mu) = (2\pi)^{-n/2} \sigma^{-n} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2)$$

$$\vdots$$

$$= (2\pi)^{-n/2} \sigma^{-n} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 - \frac{n\mu^2}{2\sigma^2}) \cdot \exp(\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i)$$

Since σ^2 is known, by the factorization theorem, we have the sufficient statistics as $T = \sum_{i=1}^n X_i$. When we don't know σ , by the factorization, we need to have jointly sufficient statistics given as

$$T_1 = \sum_{i=1}^n X_i, T_2 = \sum_{i=1}^n X_i^2$$

b) Note that $x_i \leq \theta, \forall i$ if and only if $\max\{x_1, x_2, \dots, x_n\} \leq \theta$. Thus we have

$$f(x_1,\ldots,x_n|\theta) = \theta^{-n}\mathbb{I}(\max\{x_1,\ldots,x_n\} \le \theta)$$

And by the factorization theorem, this shows that $T = \max\{X_i\}$ is a sufficient statistic.

c) We can write

$$\prod_{i=1}^{n} x_i^{\alpha - 1} = \exp((\alpha - 1) \sum_{i=1}^{n} \ln(x_i))$$

Thus by factorization, $T = \sum_{i=1}^{n} \ln(X_i)$ is a sufficient statistics.

(5) Matlab Problem: Exploring Bias. Let x[n], n=0,...,N-1 be i.i.d. samples from a Normal distribution with mean μ and variance σ^2 . In an algebraic mishap, you are given estimators of the form

$$\hat{\mu} = \frac{1}{N-1} \sum_{n=0}^{N-1} x[n]$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=0}^{N-1} (x[n] - \frac{1}{N} \sum_{n=0}^{N-1} x[n])^2$$

(i) (5 pts) Compute the theoretical bias of $\hat{\mu}$. Note that you have already computed the bias of the variance estimator in a previous problem.

Solution:

$$E(\hat{\mu}) = \frac{1}{N-1} \mathbb{E}(\sum_{n=0}^{N-1} x[n] = 1/(N-1)\mu$$
. Then the bias is $1/(N-1) - 1\mu$.

- (ii) (5 pts) For a fixed variance, $\sigma^2 = 1$, vary μ from 0, 10, 20, 30, ..., 100. Generate 1000 random samples x[n] of length N=50 in MATLAB and compute the estimator of μ for each realization. Compute the average value of the estimator, and create a table comparing the true value of μ and the bias of $\hat{\mu}$. Solution: See HW1.m on canyas.
- (iii) (5 pts) For a fixed mean $\mu = 0$, vary σ^2 from 1, 5, 10, 15, ..., 50. Again generate 1000 random samples of length N=50 and compute the estimator of σ^2 for each realization. Compute the average value and variacne of the estimator and create a table comparing the true value of σ^2 , the average estimate of σ^2 , and the estimator variance for each value of σ^2 .
- (iv) (5 pts) Fix $\mu=10$ and $\sigma^2=5$. Generate 1000 random samples for each N from 10,50,100,200,...,1000, and compute the average and variance of both estimators. What happens to the estimator bias and variance as N increases? Does the variance approach the Cramer Rao bound? **Solution:** As N increases, the variance of the estimators does approach the CRB.