Jun Young Kim

jun31kim@gmail.com | 647-519-3364 | Portfolio | Linkedin

Education

Bachelor of Applied Science in Electrical Engineering, Honors, Co-op

Expected Graduation 2028

Waterloo, ON

University of Waterloo

Skills

Software/Languages Altium, LTspice, MATLAB, AutoCAD, SOLIDWORKS, C++, Verilog, HTML, Java

Technical: PCB Assembly, Soldering, DMM, Oscilloscope, HV Supply, Hot Air Station, Crimping

Protocols: I2C, SPI, isoSPI, USB, UART, CAN

Experience

Hardware Engineer Intern, Midnight Sun - Waterloo, ON

Sept 2024 - December 2024

- Redesigned Battery Management System board for the MSXV solar car using Altium Designer, ensuring robust isolation, improved safety features, and seamless subsystem communication via SPI, I2C, and isoSPI protocols.
- Managed a hardware team in developing the center console PCB for the solar car's display dashboard, optimizing driver display ergonomics, conducting PCB/schematic reviews, and training teammates on Altium Designer and advanced PCB workflows.
- Assembled many high-level PCBs, meticulously soldering and validating with DMMs, oscilloscopes, and other precision testing equipment, performing continuity testing and in-circuit testing to ensure circuit functionality.
- Redeveloped solar car's wiring harness to enhance reliability, ensuring proper wire gauges, verifying continuity, and implementing systematic cable management and crimping techniques for robust electrical connections.

Microsoft Azure AI Project Intern, University of Waterloo - Waterloo, ON

January 2024 – April 2024

• Engineered an AI healthcare chatbot pipeline using Microsoft Azure, facilitated team alignment through clear communication, and identified sustainable revenue models like subscriptions, licensing, and partnerships.

Projects

AC-DC Flyback Converter

Altium 365 Link

- Designed an 80%-efficient AC-DC flyback converter with TNY288DG IC, supporting 90-132 VAC input and dual low-voltage outputs (5V and 9V at 1A), including a custom transformer, RCD clamp, rectification, and filtering.
- Developed a PCB layout with high-voltage/low-voltage galvanic isolation and authored detailed design documentation to share insights on switching-mode power supply design.

Multimeter Business Card PCB

Altium 365 Link

- Designed a compact STM32F042-powered multimeter with five measurement modes (current, voltage, inductance, capacitance, and resistance) and support for up to 4A current and -40V to +40V voltage ranges.
- Integrated fault-protected LiPo battery with USB-C charging, an I2C-controlled OLED display, and assembled using reflow soldering for SMD components and manual FPC display soldering.

MSXV Battery Management System Carrier

Altium 365 Link

- Redesigned the battery management system carrier PCB for the Midnight Sun Solar Race Car, ensuring robust high-voltage/low-voltage galvanic isolation, seamless communication between subsystems (SPI, I2C, isoSPI, CAN), and integration with motor controllers and external cell balancing PCB boards.
- Designed a precharge protection system using a low-side shunt resistor in the 150V battery loop, with a comparator monitoring voltage drop and a firmware/hardware toggle to safely activate the main motor relay only after capacitive charging reaches steady-state zero current condition.

Bionic EVO: Prosthetic Arm

Github Link

• Leveraging electromyography sensors to capture muscle movement and utilizing two years of SOLIDWORKS experience, created an intuitive and affordable prosthetic hand design.

Jun Young Kim

junyoungkim.ca | (647)-787-3364 | Jun31kim@gmail.com | LinkedIn

MSXV BATTERY MANAGEMENT SYSTEM CARRIER

October 2024 - December 2024

Skills: Altium, Schematic Design, PCB Design, PCB Assembly, Reflow Oven, Soldering, PCB Testing **Purpose:**

- Redefined the battery management carrier PCB layout and schematic for the 15th Midnight Sun Solar Race Car to optimize functionality and integration.
- Ensured robust high-voltage and low-voltage isolation for critical systems, including the motor controller interface, precharge circuits, AFE isoSPI interface, and the isolated I2C current sensing interface.
- Designed a precharge check mechanism to mitigate inrush current, improving the safety and reliability of high-voltage systems.
- Established communication with three AFE boards responsible for managing cell balancing across nine battery modules in the car's battery pack.
- Assembled and rigorously tested the board to ensure seamless integration with the vehicle's broader electrical systems.

MULTIMETER BUSINESS CARD

October 2024 - December 2024

Skills: Altium, Schematic Design, PCB Design, PCB Assembly, Reflow Oven, Soldering, PCB Testing **Purpose:**

- Designed STM32F042 series powered multimeter on a small business card form factor.
- Integrated 5 measurement modes, able to measure current, voltage, inductance, capacitance and resistance each with its own circuitry for measurement.
- Able to measure rated current up to 4A and a rated voltage measure from -40V to +40V at 100mA.
- 3.7V 300mAh lipo battery powered with proper OVP, UVP, OCC, OCD, and SCP fault detection, and usb-c for charging.
- Uses a I2C specced and controlled OLED display.
- Used a reflow oven to solder SMD components, and manually soldered FPC display.

Full Portfolio:

AC-DC FLYBACK CONVERTER October 2024

Skills: Altium, Schematic Design, PCB Design, PCB Assembly, Reflow Oven, Soldering, PCB Testing **Purpose:**

- Designed an AC-DC flyback topology converter utilizing the TNY288DG switching IC, achieving an 80% power efficiency.
- Rated for input voltages of 90 VAC to 132 VAC, with a nominal input of 120 VAC at 60 Hz, aligning with the standard line voltage ranges in the United States and Canada. Outputs were stepped down to provide two low-voltage channels: 5V 1A and 9V 1A.
- Engineered a custom transformer with optimized primary and secondary windings to ensure stable and precise 5V and 9V outputs.
- Designed the PCB layout with dedicated high-voltage and low-voltage sections to maintain proper isolation and adhere to safety standards.
- Compiled a comprehensive <u>design document</u> to facilitate knowledge sharing on switching-mode power supplies and to provide detailed justifications for design decisions.

October 2024 - December 2024

Skills: Altium, Schematic Design, PCB Design, PCB Assembly, Reflow Oven, Soldering, PCB Testing, Project Management **Purpose:**

- Directed the end-to-end development of the center console PCB for the 15th Midnight Sun solar race car.
- Optimized the design and placement of dashboard digital displays to significantly improve driver visibility and ergonomic accessibility.
- Delivered in-depth training sessions to team members on Altium Designer, covering advanced topics such as component selection based on electrical characteristics multilayer PCB layout optimization, and design rule checks.
- Conducted rigorous PCB reviews to validate circuit integrity, verify compliance with team standards.
- Led the hands-on assembly process, introducing advanced soldering techniques, overseeing the precise operation of reflow ovens, and demonstrating effective ultrasonic cleaning methods to ensure optimal functionality of the PCB.

Full Portfolio:

Skills: C++, SOLIDWORKS, LaTeX, 3D Printing, STM32 CUBE IDE **Purpose:**

- Designed and implemented an advanced prosthetic arm to help amputees regain functionality.
- Aimed to mimic the capabilities of a real human arm for performing daily activities.
- Utilized STM32 Microcontroller, 5 servo motors, and EMG sensor for muscle-controlled movement.
- Developed an efficient control system using 75+ months of C++ programming and circuitry design expertise.
- Created a functional 3D design in SOLIDWORKS based on human anatomy measurements.

November 2024 - December 2024

Skills: Crimping, High Voltage Harnessing, Harnessing **Purpose:**

- Redesigned the internal wiring harness for the MSXV Solar Race Car, optimizing the layout to enhance efficiency and reliability
- <u>Documented</u> all vehicle connections in detail using Excel, including connection types, wire colors, and gauges, to create a comprehensive and accessible reference for the team.
- Selected appropriate wire gauges to accommodate varying amperage requirements, ensuring safe and efficient high- and low-current connections.
- Implemented meticulous cable management practices, maintaining a clean and organized harness design with precise labeling and color-coding for power, ground, signal, isoSPI, CAN, and other connection types to streamline diagnostics and maintenance.
- Applied advanced crimping techniques for Molex and other connector types, ensuring robust and stable connections capable of withstanding vibrations and dynamic stresses during race conditions.
- Verified electrical continuity and integrity through rigorous testing to eliminate potential points of failure, ensuring the car operated seamlessly without disconnections or electrical faults.

