第二章 指令系统原理与实例

- ❖ 2.1 简介
- ❖ 2.2 指令集系统结构的分类
- ❖ 2.3 存储器寻址
- ❖ 2.4 操作数的类型
- ❖ 2.5 指令系统的操作
- ❖ 2.6 控制流指令
- ❖ 2.7 指令系统的编码
- ❖ 2.8 编译器的角色
- ❖ 2.9 MIPS系统结构
- ❖ 2.10 谬误和易犯的错误
- **※ 2.11 结论**

❖ 指令的功能设计: 一种指令集结构中的指令到底要支持哪些类型的操作呢?

❖ 大多数指令集系统结构支持的操作:

操作类型	举例
算术和逻辑运算	定点算术和逻辑操作:加、减、与、或、乘、除
数据传输	Load-store指令(在REG-MEN结构计算机上是传送指令)
控制	条件转移、跳转、过程调用和返回、陷阱
系统	操作系统调用、虚拟存储器管理指令
浮点	浮点操作:加、减、乘、除、比较
十进制	十进制加、十进制乘、十进制到字符的转换
字符串	字符串传送、字符串比较、字符串匹配
图像	像素、顶点操作、压缩/解压缩操作

Figure A.12

操作类型	举例
算术和逻辑运算	定点算术和逻辑操作:加、减、与、或、乘、除
数据传输	Load-store指令(在REG-MEN结构计算机上是传送指令)
控制	条件转移、跳转、过程调用和返回、陷阱
系统	操作系统调用、虚拟存储器管理指令
浮点	浮点操作:加、减、乘、除、比较
十进制	十进制加、十进制乘、十进制到字符的转换
字符串	字符串传送、字符串比较、字符串匹配
图像	像素、顶点操作、压缩/解压缩操作

指令系统有一条共同的规律:

使用最多的是一些简单指令。一般所有的计算机都 提供前三类指令。指令集对后四类指令的支持数量 可能为0,也可能包含大量特殊指令。

MIPS Logical Operations

Instructions for bitwise manipulation

Operation	С	Java	MIPS	
Shift left	<<	<<	s11	
Shift right	>>	>>>	srl	
Bitwise AND	&	&	and, andi	
Bitwise OR			or, ori	
Bitwise NOT	~	~	nor	

Useful for extracting and inserting groups of bits in a word

Shift Operations

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- shamt: how many positions to shift
- Shift left logical
 - Shift left and fill with 0 bits
 - s11 by i bits multiplies by 2ⁱ
- Shift right logical
 - Shift right and fill with 0 bits
 - srl by i bits divides by 2i (unsigned only)

Logic Shifting sll 1.s

Shift Left: sll \$s1,\$s2,2 #s1=s2<<2</p>

 Store in \$s1 the value from \$s2 shifted 2 bits to the left (they fall off end), inserting 0's on right; << in C.

Before: 0000 0002_{hex}

0000 0000 0000 0000 0000 0000 0000 0010_{two}

After: 0000 0008_{hex}

0000 0000 0000 0000 0000 0000 10<u>00</u>two

Shift Right: srl is opposite shift; >>

COD 5e Exercise 2.3

- For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.
- ❖ 下面的C语言表达式对应的MIPS汇编代码是什么?假设变量f、g、h、i和j分别赋值给寄存器\$s0、\$s1、\$s2、\$s3和\$s4。假设数组A和B的基地址分别在寄存器\$s6和\$s7中。
- **♦** B[8] = A[i-j];

Answer

❖ For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.

```
B[8] = A[i-j];
sub $t0 , $s3 , $s4
sll $t0 , $t0 , 2
add $t0 , $t0 , $s6
lw $t1 , 0($t0)
sw $t1 , 32($s7)
```

Arithmetic Right Shifting

sra_1.s

- Shift right arithmetic moves n bits to the right (insert high order sign bit into empty bits)
- ❖ For example, if register \$s0 contained
 1111 1111 1111 1111 1111 1111 1110 0111_{two}= -25_{ten}
- - Unfortunately, this is NOT same as dividing by 2ⁿ
 - Fails for odd negative numbers
 - C arithmetic semantics is that division should round towards 0

Shift Left Logical sll 2.s

sll \$t2,\$s0,4 # reg \$t2 = reg \$s0 << 4 bits

ор	rs	rt	rd	shamt	funct	
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	
	<u> </u>			1		1
0	0	16	10	4	0	decimal
000000	00000	10000	01010	00100	000000	
6 bits	5 bits	5 bits	5 bits	5 bits	6	
000000	00000	10000	01010	00100	bits 000000	

0 0 1 0 5 1 0 0

AND Operations

and 1.s

Useful to mask bits in a word

Select some bits, clear others to 0

```
and $t0, $t1, $t2
```

```
$t2 | 0000 0000 0000 0000 00<mark>00 11</mark>01 1100 0000
```

\$t0 | 0000 0000 0000 00<mark>00 11</mark>00 0000 0000

OR Operations

or 1.s

Useful to include bits in a word

Set some bits to 1, leave others unchanged

```
$t2 0000 0000 0000 0000 00<mark>00 11</mark>01 1100 0000
```

\$t1 | 0000 0000 0000 000<mark>11 11</mark>00 0000 0000

\$t0 | 0000 0000 0000 000<mark>11 11</mark>01 1100 0000

NOT Operations

not 1.s

- Useful to invert bits in a word
 - Change 0 to 1, and 1 to 0
- MIPS has NOR 3-operand instruction
 - a NOR b == NOT (a OR b)

```
nor $t0, $t1, $zero ←
```

Register 0: always read as zero

```
$t1 0000 0000 0000 0001 1100 0000 0000
```

\$t0 | 1111 1111 1111 1111 1100 0011 1111 1111

COD 5e Exercise 2.19.1

- **Assume the following register contents:**
- ❖ 假设如下寄存器内容:
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- ❖ [1] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- ❖ 对于以上的寄存器内容, 执行下面的指令序列后\$t2的值是 多少?
- \$\displays18 \text{sl1} \text{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\text{\$\exittin{\$\text{\$\exittin}\$}}}\$}\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$}}}\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tet
- or \$t2, \$t2, \$t1

COD 5e Exercise 2.19.1

- **Assume the following register contents:**
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- **⋄** [1] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- * sl1 \$t2, \$t0, 04
- or \$t2, \$t2, \$t1

COD 5e Exercise 2.19.1

- **Assume the following register contents:**
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- **⋄** [1] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- \$\displays18 \text{st1} \text{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittity}}}\$}\text{\$\texitt{\$\text{\$\text{\$\text{\$\}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\
- or \$t2, \$t2, \$t1

OxBABEFEF8

2.19.2

- **Assume the following register contents:**
- ❖ 假设如下寄存器内容:
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- ❖ [2] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- ❖ 对于以上的寄存器内容, 执行下面的指令序列后\$t2的值是 多少?
- * sll \$t2, \$t0, 4
- * andi \$t2, \$t2,-1

2.19.2

- **Assume the following register contents:**
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- ❖ [2] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- * sll \$t2, \$t0, 4
- * andi \$t2, \$t2,-1

2.19 (2)

- **Assume the following register contents:**
- * \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- **⋄** [2] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- * sll \$t2, \$t0, 4

0xAAAAAAA0

2.19.3

- **Assume the following register contents:**
- ❖ 假设如下寄存器内容:
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- **⋄** [3] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- ❖ 对于以上的寄存器内容, 执行下面的指令序列后\$t2的值是 多少?
- \$\disp\ \text{srl} \quad \text{\$\text{\$\text{\$\text{\$t0,3}}}
- andi \$t2, \$t2, 0xFFEF

2.19 (3)

- **Assume the following register contents:**
- \$t0 = 0xAAAAAAAA, \$t1 = 0x12345678
- **⋄** [3] For the register values shown above, what is the value of \$t2 for the following sequence of instructions?
- * srl \$t2, \$t0, 3
- andi \$t2, \$t2, 0xFFEF

 0×00005545

Example COD 5e Exercise 2.20

- Find the shortest sequence of MIPS instructions that extracts bits 16 down to 11 from register \$t0 and uses the value of this field to replace bits 31 down to 26 in register \$t1 without changing the other 26 bits of register \$t1.
- 找出完成如下功能的最短的MIPS指令序列:从寄存器\$t0中 提取第16位到第11位,然后使用这些位替换寄存器\$t1的第 31位到第26位,保持其他位不变。

COD 5e Exercise 2.20

Find the shortest sequence of MIPS instructions that extracts bits 16 down to 11 from register \$t0 and uses the value of this field to replace bits 31 down to 26 in register \$t1 without changing the other 26 bits of register \$t1.

2.20

Find the shortest sequence of MIPS instructions that extracts bits 16 down to 11 from register \$t0 and uses the value of this field to replace bits 31 down to 26 in register \$t1 without changing the other 26 bits of register \$t1.

```
srl $t2, $t0, 11
sll $t2, $t2, 26
sll $t3, $t1, 6
srl $t3, $t3, 6
or $t4, $t2, $t3
```

❖80X86中执行最多的前10类指令:

排名	80x86指令	定点平均值(占百分比)
1	载入(MOV)	22%
2	条件转移	20%
3	比较	16%
4	存储(MOV)	12%
5	加	8%
6	与	6%
7	减	5%
8	Reg-Reg传输	4%
9	调用	1%
10	返回	1%
总计		95%

80X86上运行的 定点程序中,10类 占96%。 因此,它们是最 常用的指令,执行 起来应该尽量快。

Figure A.13