J-CAMD 110

# Development of an automatic estimation system for both the partition coefficient and aqueous solubility

## Takahiro Suzuki

Department of Chemical Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

Received 12 May 1990 Accepted 9 August 1990

Key words: Aqueous solubility; Partition coefficient; Hydrophobicity; Group contribution method; Drug design; Structure-property correlation

## **SUMMARY**

A computer program has been developed for estimating both the partition coefficient between 1-octanol and water phases and the aqueous solubility from the structural formula. This system is an extended version of a previously described program entitled CHEMICALC for the automatic estimation of the partition coefficient. The aqueous solubility is estimated via two pathways. The first is based on the linear relationship between logarithms of the aqueous solubilities of 497 compounds and their estimated 1-octanol/water partition coefficients. In the second, combined handling of two available group contribution methods of Irmann [Chem. Ing. Tech., 37 (1965) 789] and Wakita et al. [Chem. Pharm. Bull., 34 (1986) 4663] is adopted according to compound type. Some revisions and extensions of the methods for estimating the aqueous solubility have been made in both pathways, and the accuracy of the estimated aqueous solubilities for 497 compounds is discussed.

## INTRODUCTION

The partition coefficient and aqueous solubility have been widely used in the study of structure-activity relationships, primarily with pharmaceuticals. In most cases, absorption of an administered drug in the gastrointestinal tract and wall depends on passive transport. The combined effect of the partition coefficient and aqueous solubility on absorption is one of the most important factors in drug metabolism. According to available data, drugs having logarithms of 1-octanol/water partition coefficients ( $\log P$ ) greater than or equal to 2 and aqueous solubilities greater than 10 mg/l are supposed to be well absorbed [1].

Extensive quantitative structure-activity relationship studies usually require such properties for a large set of compounds, and there is an ever-increasing need for automatic estimation.

In a previous paper, we proposed a convenient method for estimating log *P* based on the group-contribution method and developed a program entitled CHEMICALC for automatic estimation

of log P [2]. We have developed an extended program entitled CHEMICALC2 which is capable of predicting both log P and the aqueous solubility from the structure of a molecule. This paper describes our efforts to develop CHEMICALC2 and discusses the accuracy of the calculated values of aqueous solubilities.

## **ESTIMATION METHOD**

There are many ways for estimating aqueous solubility [3]. From a practical viewpoint, the following two basically different approaches are adopted in this system for reliably estimating the aqueous solubility.

# Pathway 1 – Estimation from log P

Various regression equations were reported that correlate the aqueous solubility with the 1-octanol/water partition coefficient, but existing equations have some limited applicability and do not always give good estimations [3]. Furthermore, many of the reported correlations have been used primarily to test a theory; few have actually been presented as predictive means. Therefore, we have re-examined a relationship between the aqueous solubility and the 1-octanol/water partition coefficient. The relationship is assumed to be described by the following equation:

$$\log 1/S = a \log P + b (T_{\rm m} - 25) + c \tag{1}$$

where S is the molar solubility of the compound in water,  $T_{\rm m}$  is the melting point in °C, and a, b and c are constants to be determined. The second term on the right side of Eq. 1 is a correction factor for solids. If the compound is liquid at 25°C, then 25°C is used instead of the melting point. To determine a, b and c, the experimental log 1/S values taken from the literature [4-6] of 497 compounds were used, including 348 liquids (70 aliphatic hydrocarbons, 23 aromatic hydrocarbons, 81 halogenated hydrocarbons, 22 ethers and oxygen-containing ring compounds, 71 alcohols, 1 phenol, 5 aldehydes, 17 ketones, 30 esters, 8 nitro compounds, 2 nitriles, 1 amine, 2 thiols, 3 sulfides, and 12 multifunctional compounds) and 149 solids (34 aromatic hydrocarbons, 60 halogenated hydrocarbons, 9 oxygen-containing compounds, 9 nitrogen-containing compounds, 3 sulfur-containing compounds, and 34 multifunctional compounds). The log P values of all compounds were estimated by using CHEMICALC.

The following excellent correlation was obtained by regression analysis:

$$\log 1/S = 1.050 \log P + 0.00956(T_{\rm m} - 25) - 0.515$$

$$(n = 497, r = 0.976, s = 0.505)$$

$$(regression range: -1.05 \le \log P \le 8.85)$$

Equation 2 covers a wide range of  $\log 1/S$  values from -1.96 to 10.49 and chemical classes. It is highly significant that the coefficient of  $(T_{\rm m}-25)$  in Eq. 2 is close to the theoretical values of 0.0095 [4] and 0.01 [5]. Figure 1 shows the relationship between the observed  $\log 1/S$  value and the estimated value based on Eq. 2 for 497 compounds in the data set. The average absolute error of all compounds was 0.39  $\log S$  units.



Fig. 1. Observed log 1/S values plotted against values estimated based on Eq. 2.

# Pathway 2 - Group contribution methods

Generally, structure is the most useful basis for estimating molecular properties. The simplest and most general method based on structure is the group contribution method (GCM). For estimating aqueous solubility, only two group contribution methods have a degree of general applicability.

A group contribution method proposed by Irmann [4] is shown in the following equation:

$$\log 1/S = a + \sum n_i b_i + \sum n_i c_i + 0.0095(T_m - 25)$$
(3)

where S is in  $g/gH_2O$ , a is the contribution of the compound type,  $b_i$  is the contribution of the ith atom type which occurs  $n_i$  times,  $c_j$  is the contribution of the jth structural element which occurs  $n_i$  times, and  $T_m$  is the melting point of the solid in °C.

Another group contribution method, developed by Wakita et al. [6], can be described by the following equation:

$$\log 1/S = \sum n_i f s_i \tag{4}$$

where S is in mol/l,  $fs_i$  is the fragment constant (contribution) for the ith fragment which occurs  $n_i$  times in a molecule.

The two methods differ in the descriptors used and their applicability. The applicability of the Irmann method is restricted to hydrocarbons and halogenated hydrocarbons. In contrast, the method of Wakita et al. is applicable to compounds having diverse functionalities. This method, however, is not complete for organic solids [8], because it employs melting points treating as a fragment constant in estimating the heat of fusion for organic solids. The melting point coefficient is 0.0037 for aliphatic solids and 0.0143 for aromatic solids. These values are inconsistent with each other and smaller or larger than the theoretical range of 0.0095-0.01 [4,7].

As the accuracy of these two group contribution methods has not been analyzed elsewhere, we compared them for 173 organic liquids containing 93 hydrocarbons and 80 halogenated hydro-

carbons. In order to compare the relative accuracy of the methods, the absolute and bias error with respect to the experimental data were calculated for each compound for which these methods were applicable. A summary of the overall error statistics for the methods by compound class is presented in Table 1. It can be seen that Irmann's estimated log 1/S values are closer to the experimental ones than those calculated by the method of Wakita et al. for aromatic and halogenated hydrocarbons. On the other hand, the method of Wakita et al. showed somewhat better results for aliphatic hydrocarbons. It is interesting to note that these two methods showed a trend in bias (i.e., tendency to continually overestimate or underestimate log 1/S). As can be seen from Table 1, the method of Wakita et al. showed negative bias except for aromatic halogenated hydrocarbons, while Irmann's method showed weak positive bias except for cycloaliphatic hydrocarbons.

Based on this evaluation, our system employs both methods according to the classes of the compounds as described below, but some revisions and extensions of the methodology have been made as follows: First, for applying the method of Wakita et al. to calculate organic solids, the same correction factor,  $0.0095(T_{\rm m}-25)$ , as used in Irmann's method is employed in this system. The modified version of Eq. 4 is as follows:

$$\log 1/S = \sum n_i f s_i + 0.0095 (T_m - 25) \tag{4'}$$

Second, since both methods are insufficient to cover all of the structures which require their aqueous solubilities, pure atomic increments were determined as complements. Their increments were obtained with Eq. 5 based on the same data set used for Eq. 2:

$$\log 1/S = \sum n_i a_i + 0.0095(T_{\rm m} - 25)$$

$$(n = 497, r = 0.881, s = 0.802)$$
(5)

TABLE 1 COMPARISON OF THE GROUP CONTRIBUTION METHODS OF IRMANN AND WAKITA ET AL.

|                          |                     |               | Irma              | ann   | Wakit      | a et al. |
|--------------------------|---------------------|---------------|-------------------|-------|------------|----------|
| Chemical class           | Number of compounds | Data<br>range | Ave. errora       | Biasb | Ave. error | Bias     |
| Hydrocarbons             |                     |               |                   |       |            |          |
| Saturated aliphatic      | 17                  | C2-C9         | 0.19              | 0.14  | 0.13       | -0.09    |
| Unsaturated aliphatic    | 38                  | C2-C10        | 0.22              | 0.20  | 0.21       | -0.14    |
| Cycloaliphatic           | 15                  | C3-C8         | 0.19              | -0.18 | 0.15       | -0.10    |
| Aromatic                 | 23                  | C6-C13        | 0.10              | 0.03  | 0.29       | -0.11    |
| Halogenated hydrocarbons |                     |               |                   |       |            |          |
| Aliphatic                | 56                  | C1–C5         | $0.15^{c}$        | 0.08  | 0.30       | -0.14    |
| Aromatic                 | 24                  | C6-C12        | 0.11 <sup>d</sup> | 0.02  | 0.20       | 0.03     |
| Total                    | 173                 | C1-C13        | 0.16              | 0.07  | 0.23       | -0.10    |

<sup>&</sup>lt;sup>a</sup> Ave. error =  $\Sigma |\log 1/S(\text{obsd}) - \log 1/S(\text{estd})|$  /number of compounds. S is in mol/l in both methods.

<sup>&</sup>lt;sup>b</sup> Bias =  $\sum (\log 1/S(\text{obsd}) - \log 1/S(\text{estd})) / \text{number of compounds}$ .

<sup>°</sup> Number of compounds which could be calculated is 53.

<sup>&</sup>lt;sup>d</sup> Number of compounds which could be calculated is 23.

In this equation, S is in mol/l,  $n_i$  is the number of atoms of type i, and  $a_i$  is the contribution of the corresponding atom type. The average absolute error of all compounds was 0.61 log S units.

The determined  $a_i$  values are given in Table 2. It is reasonable for the contribution values for carbon, hydrogen and halogens to be positive and for oxygen, nitrogen and sulfur to be negative. However, it should be noted that the relative magnitude of these values is not so rigid, and these contributions cannot be used for purposes of estimating the distribution of lipophilicity on molecular structures, because these contributions are mean values for various atom types in the organic structure and some contribution values are influenced by a small data set.

Although the group contribution method is to be preferred when the required group contributions have been determined, this zero-th order additivity scheme presently covers all possible organic compounds containing C, H, N, O, S, or halogens.

## **ALGORITHMS**

A general schematic for the program organization and processing order is shown in Fig. 2. The steps are as follows:

- (1) Input of the molecule of interest is accelerated by the method described in the previous paper [2]. After the molecule has been entered, the structural information is stored in a connection table. For the compound that is a solid at 25 °C, the user is requested to input the melting point (although this is not absolutely necessary, as the solubility of the supercooled liquid is given for the solid whose melting point is not available).
- (2) The structural features are perceived from the stored connection table. Carbon and nitrogen atoms are classified in terms of their environment. The carbon atoms are categorized as follows: single-bonded, double-bonded, triple-bonded, aromatic, and aromatic fused carbon. Similarly, nitrogen atoms are categorized into single-bonded, double-bonded, and aromatic nitrogen. General atomic groups, CH<sub>3</sub>, CH<sub>2</sub>, CH, = CH, OH, NH<sub>2</sub>, NO<sub>2</sub>, SH, -C=O, and such, are identified. The 'basic groups' (usually consisting of a general atomic group and its neighboring atoms) defined by us [2] are identified in the subsequent sections.
- (3) The octanol-water partition coefficient value ( $\log P$ ) is calculated using the computer program CHEMICALC.

TABLE 2 ATOMIC CONTRIBUTIONS TO THE NEGATIVE LOGARITHM OF THE AQUEOUS SOLUBILITY IN MOL/L

| Atom type | Contribution | No. of compounds | Frequency of use |
|-----------|--------------|------------------|------------------|
| С         | 0.31         | 497              | 3717             |
| Н         | 0.03         | 484              | 5040             |
| O         | -0.59        | 216              | 336              |
| N         | -0.21        | 53               | 64               |
| S         | -0.30        | 10               | 10               |
| F         | 0.16         | 19               | 48               |
| Cl        | 0.55         | 98               | 298              |
| Br        | 0.65         | 31               | 53               |
| I         | 1.00         | 15               | 22               |



Fig. 2. Schematic flow diagram of CHEMICALC2 program.

- (4) The aqueous solubility is calculated by substituting the  $\log P$  value from step 3 in Eq. 2. In this step, the program checks extrapolation. If the input value of  $\log P$  is outside the range of original  $\log P$  values, the message with the estimated  $\log P$  value is output.
- (5) The applicability of the two group contribution methods of Irmann and Wakita et al. is checked. If the program detects the presence of any unavailable group values for both methods, the groups are output and the program goes to step 9.
- (6) The chemical type of the compound is perceived. If the compound belongs to aromatic hydrocarbons or halogenated hydrocarbons, the program goes to step 7. If the compound belongs to one of the other types, the program goes to step 8.
  - (7) The  $\log 1/S$  value is calculated by summing all structural contributions based on Eq. 3.
  - (8) The  $\log 1/S$  value is calculated based on Eq. 4'.
- (9) The approximate aqueous solubility value is calculated by summing up the pure atomic increments from Table 2 based on Eq. 5.
- (10) The estimated log P value and the two sets of estimated aqueous solubility values in mol/l via two pathways are output.

This program has been written entirely in Fortran-77 under the MS-DOS operating system on a NEC-9800 series microcomputer. Software conversion to other machines can be readily accomplished.

EVALUATION RESULTS AND COMPARISON WITH EXISTING METHODS FOR ESTIMATING THE AQUEOUS SOLUBILITY TABLE 3

| Chemical class                      | Mimborof  | etec    | Av   | erage absolu | Average absolute error in estimated Log $1/S$ [S:mol/l] by method of: | stimated Lo | g 1/S [S:mol        | /l] by method | of:                 |
|-------------------------------------|-----------|---------|------|--------------|-----------------------------------------------------------------------|-------------|---------------------|---------------|---------------------|
| CIRCINCAL CIASS                     | compounds | range   | GCM  | Eq.2         | Kenagab                                                               | Chioue      | Briggs <sup>d</sup> | Mackaye       | Hansch <sup>f</sup> |
| Liquids                             | :         |         |      |              |                                                                       |             |                     |               |                     |
| Aliphatic hydrocarbons              | 70        | C2-C10  | 0.18 | 0.32         | 0.63                                                                  | 0.35        | 0.27                | 0.30          | 0.27                |
| Aromatic hydrocarbons               | 23        | C6-C13  | 0.10 | 0.18         | 68.0                                                                  | 09.0        | 0.28                | 0.17          | 0.53                |
| Halogenated hydrocarbons            | 81        | CI-C12  | 0.15 | 0.32         | 1.14                                                                  | 0.54        | 0.47                | 0.34          | 0.49                |
| Ethers and O-containing ring compd. | 22        | C4-C8   | 0.35 | 0.50         | 1.41                                                                  | 0.36        | 0.82                | 0.63          | 0.48                |
| Alcohols and phenols                | 72        | C4-C12  | 0.12 | 0.51         | 1.61                                                                  | 0.54        | 0.91                | 99.0          | 99.0                |
| Aldehydes and ketones               | 22        | C4-C10  | 0.10 | 0.21         | 1.12                                                                  | 0.48        | 0.46                | 0.30          | 0.26                |
| Esters                              | 30        | C3-C12  | 0.22 | 0.23         | 1.00                                                                  | 0.62        | 0.24                | 0.13          | 0.41                |
| N-containing compounds              | =         | C1-C7   | 0.13 | 0.39         | 0.77                                                                  | 0.91        | 0.21                | 0.25          | 0.58                |
| S-containing compounds              | 5         | C2-C7   | 0.18 | 0.07         | 1.06                                                                  | 0.27        | 0.45                | 0.21          | 0.22                |
| Multifunctional compounds           | 12        | C4-C14  | 0.65 | 0.49         | 0.97                                                                  | 0.67        | 0.29                | 0.41          | 0.50                |
| Solids                              |           |         |      |              |                                                                       |             |                     |               |                     |
| Aromatic hydrocarbons               | 34        | C10-C24 | 0.35 | 0.42         | 0.78                                                                  | 0.48        | 0.37                | 0.38          | 09.0                |
| Halogenated hydrocarbons            | 09        | CI-C19  | 0.38 | 0.47         | 69.0                                                                  | 1.02        | 0.46                | 0.45          | 0.74                |
| O-containing compounds              | 6         | C5-C18  | 0.72 | 0.71         | 1.17                                                                  | 1.59        | 0.83                | 69.0          | 1.29                |
| N-containing compounds              | 6         | C2-C8   | 0.44 | 0.49         | 0.51                                                                  | 1.14        | 0.48                | 0.38          | 0.95                |
| S-containing compounds              | 3         | C7      | 0.09 | 0.24         | 0.29                                                                  | 1.77        | 0.27                | 0.13          | 0.24                |
| Multifunctional compounds           | 34        | C6-C19  | 0.45 | 0.50         | 0.55                                                                  | 1.22        | 0.51                | 0.52          | 1.01                |
| F                                   |           |         | (    | 4            | ;                                                                     | ;           | :                   |               |                     |
| lotal                               | 497       | C1-C24  | 0.25 | 0.39         | 0.98                                                                  | 0.65        | 0.49                | 0.40          | 0.56                |

<sup>&</sup>lt;sup>a</sup> Average absolute error =  $\Sigma \log 1/S(\text{obsd}) - \log 1/S(\text{estd}) / \text{number of compounds}$ .

 $<sup>^{</sup>b} \log S = -0.922 \log P + 4.184 \text{ [S:mg/l] [Ref.9]}.$   $^{c} \log S = -1.49 \log P + 7.46 \text{ [S: \mu mol/l] [Ref.10]}.$ 

<sup>&</sup>lt;sup>d</sup>  $\log S = -\log P - 0.01 - (0.01T_m - 0.25)$  [S:mol/l,  $T_m$ .°C] [Ref.11]. °  $\ln S = 7.494 - \ln P + 6.79$  (1 –  $T_m/T$ ) [S:mol/m³,  $T_m$ :K, T = 298K] [Ref.12].

 $<sup>^{\</sup>rm f}\log 1/S = 1.339\log P - 0.978$  [S:mol/1] [Ref.13].

<sup>&</sup>lt;sup>g</sup> Number of compounds calculated by the methods of Eq.3, Eq.4, and Eq.5 are 261, 235, and 1, respectively.

## **ESTIMATION RESULTS**

Since evaluation of calculated  $\log P$  values using CHEMICALC was discussed in our previous paper [2], the evaluation of estimated values of aqueous solubilities is presented here. Results of the evaluations for 497 compounds (using regression Eq. 2) are summarized in Table 3. Average absolute errors are shown for individual families of compounds. For estimation pathway 1, comparison with five existing equations [9-13] is also shown in Table 3. The actual compounds and their values of  $\log 1/S$  and  $\log P$  are relegated to Appendix Table A1.

The proposed estimation pathway 1, based on Eq. 2, produced more accurate results in comparison with the available correlations for most compound classes. The regression equation reported by Mackay et al. [12] gave comparable estimation results with Eq. 2. Except for some compound classes, the results using the group contribution methods were as good or better than the correlations between  $\log 1/S$  and  $\log P$ . However, the average absolute errors for multifunctional compounds by estimation pathway 2 were more than twice as large as those for monofunctional compounds.

Since the present group contribution methods employed are not optimal for all compounds, estimation pathway 1 will be useful for covering such drawbacks. For example, Table 4 lists those compounds showing large errors, greater than 1.0 log S units, based on the group contribution methods. The method based on Eq. 2 produced more accurate results than the group contribution methods except for a few compounds. In summary, the errors for the adopted two estimation pathways are usually small enough for practical purposes. These results confirmed the usefulness of this system.

TABLE 4 LIST OF COMPOUNDS SHOWING ERRORS GREATER THAN 1.0 LOG S UNITS USING THE GROUP CONTRIBUTION METHODS

|                                          | Absolute er         | rror <sup>a</sup> using: |
|------------------------------------------|---------------------|--------------------------|
| Compound                                 | GCM <sup>b, c</sup> | Eq.2                     |
| Ethyl malonate                           | 1.40                | 0.56                     |
| Divinyl ether                            | 1.93                | 0.03                     |
| Cyclopropyl vinyl ether                  | 1.53                | 0.40                     |
| 1,1-Diethoxyethane                       | 1.55                | 0.04                     |
| 1,2-Diethoxyethane                       | 1.27                | 0.40                     |
| 3-Chlorobiphenyl                         | 1.06                | 0.66                     |
| 2-Nitroaniline                           | 1.28                | 0.53                     |
| 2-Nitrophenol                            | 1.42                | 0                        |
| Coronene                                 | 2.09*               | 1.64                     |
| 3,3'-Dichlorobenzidine                   | 1.83                | 0.57                     |
| 2,4-Dimethylphenol                       | 1.78                | 1.35                     |
| 3,3',4,4'-Tetrachlorobiphenyl            | 1.67*               | 1.56                     |
| 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl | 1.47*               | 0.10                     |
| Decachlorobiphenyl                       | 2.12*               | 0.51                     |
| Thymol                                   | 1.64                | 2.16                     |
| o-Toluidine                              | 1.83                | 1.70                     |
| o-Nitroacetanilide                       | 1.21                | 0.51                     |

<sup>&</sup>lt;sup>a</sup> Absolute error =  $|\log 1/S(\text{obsd}) - \log 1/S(\text{estd})|$ .

<sup>&</sup>lt;sup>b</sup> GCM = group contribution method.

<sup>&</sup>lt;sup>c</sup> The values denoted by an asterisk were calculated based on Eq. 3. Others were calculated based on Eq. 4'.

## CONCLUSION

A computer program, CHEMICALC2 (the extended version of its predecessor CHEMICALC), for estimating both the 1-octanol/water partition coefficient and the aqueous solubility from structural formula has been implemented and tested. Comparison of experimental values of aqueous solubilities and those estimated by this program show good agreement. This system will be useful not only for quantitative structure-activity studies with a large set of compounds but also for preliminary selection of experimental conditions to measure the partition coefficient and/or aqueous solubility.

## REFERENCES

- 1 Yalkowsky, S. H. and Morzowich, W., In Ariens, E. J. (Ed.), Drug Design, Vol. IX, Academic Press, New York, 1985, p. 238.
- 2 Suzuki, T. and Kudo, Y., J. Comput.-Aided Mol. Design, 4 (1990) 155.
- 3 Lyman, W.J., In Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H. (Eds.), Handbook of Chemical Property Estimation Methods (Environmental Behavior of Organic Compounds), McGraw-Hill, New York, 1982, p. 2-1.
- 4 Irmann, F., Chem. Ing. Tech., 37 (1965) 789.
- 5 Baker, R.J., Acree, W.E. and Tsai, C.-C., Quant. Struct.-Act. Relat., 3 (1984) 10.
- 6 Wakita, K., Yoshimoto, M., Miyamoto, S. and Watanabe, H., Chem. Pharm. Bull., 34 (1986) 4663.
- 7 Yalkowsky, S. H., Orr, R.J. and Valvani, S.C., Ind. Eng. Chem. Fundam., 18 (1979) 351.
- 8 Yoshimoto, Y., In Ono, S. (Ed.), Computer Chemistry, Maruzen, Tokyo, 1988, pp. 143-167.
- 9 Kenaga, E.E. and Goring, C.A.I., Paper presented at ASTM 3rd Aquatic Toxicology Symposium, October 1978, ASTM STP 707, Philadelphia, PA, 1980.
- 10 Chiou, C.T., Freed, V.H., Schmedding, D.W. and Kohnert, R.L., Environ. Sci. Tech., 11 (1977) 475.
- 11 Briggs, G.G., J. Agric. Food Chem., 29 (1981) 1050.
- 12 Mackay, D., Bobra, A., Shiu, W.Y. and Yalkowsky, S.H., Chemosphere, 9 (1980) 701.
- 13 Hansch, C., Quinlan, J.E. and Lawrence, G.L., J. Org. Chem., 33 (1968) 347.

## **APPENDIX**

The list of the experimental and estimated  $\log 1/S$  values for 497 compounds is shown in Table A1.

TABLE AI LIST OF THE ORGANIC COMPOUNDS USED FOR THE ANALYSIS

| Compound                   | Empirical                      |                 | log 1/S | log 1/S [S:mol/!] |       | og P  |                     | Compound                    | Empirical                      |       | log 1/S | log 1/S [S:mol/I] |       | log P   |                    |
|----------------------------|--------------------------------|-----------------|---------|-------------------|-------|-------|---------------------|-----------------------------|--------------------------------|-------|---------|-------------------|-------|---------|--------------------|
|                            | tormula                        | Obsd.           | Eq 4'   | Eq. 3             | Eq. 2 | Estd. | I <sub>m</sub> [°C] |                             | formula                        | Obsd. | Eq. 4'  | Eq 3.             | Eq. 2 | Estd. 7 | $I_{m}[^{\circ}C]$ |
|                            | A. Or                          | A. Organic liqu | spin    |                   |       |       |                     | 32. 1,5-Hexadiene           | C <sub>6</sub> H <sub>10</sub> | 2.69  | 2.76    | 2.46              | 2.24  | 2.63    |                    |
|                            |                                |                 |         |                   |       |       |                     | 33. Cyclohexene             | C <sub>6</sub> H <sub>10</sub> | 2.58  | 2.69    | 2.81              | 2.37  | 2.75    |                    |
|                            |                                |                 |         |                   |       |       |                     | 34. 2,3-Dimethyl-1,3-       | C <sub>6</sub> H <sub>10</sub> | 2.40  | 2.56    | 2.26              | 3.00  | 3.35    |                    |
| Aliphatic hydrocarbons     |                                |                 |         |                   |       |       |                     | butadiene                   |                                |       |         |                   |       |         |                    |
| 1. Acetylene               | C <sub>2</sub> H <sub>2</sub>  | -0.29           | 0.05    | -0.38             | 0.00  | 0.49  |                     | 35.1-Hexene                 | $C_6H_{12}$                    | 3.23  | 3.33    | 3.08              | 2.79  | 3.15    |                    |
| 2. Ethane                  | $C_2H_6$                       | 1.37            | 1.46    | 1.23              | 1.09  | 1.53  |                     | 36. Cyclohexane             | $C_6H_{12}$                    | 3.18  | 3.26    | 3.43              | 3.10  | 3.21    |                    |
| 3. Propyne                 | C₃H₄                           | 0.41            | 99.0    | 0.30              | 92.0  | 1.21  |                     | 37. Methylcyclopentane      | $C_6H_{12}$                    | 3.30  | 3.16    | 3.33              | 2.78  | 3.14    |                    |
| 4. Propene                 | $C_3H_6$                       | 1.28            | 1.50    | 1.27              | 1.24  | 1.67  |                     | 38. 2-Methyl-1-pentene      | C <sub>6</sub> H <sub>12</sub> | 3.03  | 3.23    | 2.98              | 2.83  | 3.19    |                    |
| 5. Cyclopropane            | $C_3H_6$                       | 1.07            | 1.83    | 1.62              | 1.18  | 1.61  |                     | 39. 4-Methyl-1-pentene      | C <sub>6</sub> H <sub>12</sub> | 3.24  | 3.23    | 2.98              | 2.72  | 3.08    |                    |
| 6. Propane                 | $C_3H_8$                       | 1.90            | 2.07    | 1.89              | 1.65  | 2.06  |                     | 40. <i>n</i> -Hexane        | C <sub>6</sub> H <sub>14</sub> | 3.96  | 3.90    | 3.69              | 3.34  | 3.67    |                    |
| 7. Butadiyne               | C₄H₂                           | 0.44            | -0.14   | -0.65             | 0.42  | 0.89  |                     | 41. 2-Methylpentane         | C <sub>6</sub> H <sub>14</sub> | 3.79  | 3.80    | 3.59              | 3.27  | 3.60    |                    |
| 8.1-Butene-3-yne           | C₄H₄                           | 1.09            | 0.70    | 0.32              | 0.91  | 1.36  |                     | 42. 3-Methylpentane         | C <sub>6</sub> H <sub>14</sub> | 3.83  | 3.80    | 3.59              | 3.27  | 3.60    |                    |
| 9, 1-Butyne                | C₁H <sub>6</sub>               | 0.88            | 1.27    | 0.93              | 0.99  | 1.44  |                     | 43. 2,2-Dimethylbutane      | C <sub>6</sub> H <sub>14</sub> | 3.67  | 3.70    | 3.49              | 3.50  | 3.53    |                    |
| 10. 1,3-Butadiene          | C₄H <sub>6</sub>               | 1.48            | 1.54    | 1.28              | 1.40  | 1.82  |                     | 44. Cycloheptatriene        | C,H,                           | 2.17  | 2.16    | 2.16              | 2.38  | 2.76    |                    |
| 11.1-Butene                | C₄H <sub>8</sub>               | 1.90            | 2.11    | 1.90              | 1.67  | 2.08  |                     | 45. 1,6-Heptadiyne          | C <sub>7</sub> H <sub>8</sub>  | 1.75  | 1.69    | 1:1               | 1.47  | 1.89    |                    |
| 12. cis-2-Butene           | C₄H <sub>8</sub>               | 1.93            | 2.11    | 1.90              | 1.99  | 2.39  |                     | 46. 1-Heptyne               | C,H <sub>12</sub>              | 3.01  | 3.10    | 2.68              | 2.68  | 3.05    |                    |
| 13. <i>trans</i> -2-Butene | C₄H <sub>8</sub>               | 2.04            | 2.11    | 1.90              | 1.99  | 2.39  |                     | 47. 2-Heptyne               | $C_7H_{12}$                    | 2.64  | 3.10    | 2.68              | 2.88  | 3.23    |                    |
| 14. 2-Methylpropene        | C <sub>4</sub> H <sub>8</sub>  | 1.99            | 2.01    | 1.80              | 1.85  | 2.25  |                     | 48. 2-Methyl-3-hexyne       | $C_7H_{12}$                    | 2.59  | 3.00    | 2.58              | 2.80  | 3.16    |                    |
| 15. Butane                 | C4H10                          | 2.51            | 2.68    | 2.51              | 2.22  | 2.60  |                     | 49. 1,6-Heptadiene          | $C_7H_{12}$                    | 3.34  | 3.37    | 3.03              | 2.81  | 3.17    |                    |
| 16. Isobutane              | C4H10                          | 2.46            | 2.58    | 2.41              | 2.14  | 2.53  |                     | 50. Cycloheptene            | $C_7H_{12}$                    | 3.16  | 3.30    | 3.38              | 2.94  | 3.29    |                    |
| 17.1-Pentyne               | $C_5H_8$                       | 1.64            | 1.88    | 1.53              | 1.56  | 1.98  |                     | 51.1-Methylcyclohexene      | C,H <sub>12</sub>              | 3.27  | 3.20    | 3.28              | 2.98  | 3.33    |                    |
| 18. 1,4-Pentadiene         | $C_5H_8$                       | 2.08            | 2.15    | 1.88              | 1.56  | 1.98  |                     | 52. 2-Heptene               | C,H,4                          | 3.82  | 3.94    | 3.64              | 3.54  | 3.87    |                    |
| 19. Cyclopentene           | $C_5H_8$                       | 2.10            | 2.08    | 2.23              | 1.82  | 2.22  |                     | 53. Cycloheptane            | C <sub>7</sub> H₁₄             | 3.51  | 3.87    | 3.99              | 3.42  | 3.75    |                    |
| 20. 2-Methyl-1,3-butadiene | C <sub>5</sub> H <sub>8</sub>  | 2.03            | 2.05    | 1.78              | 2.19  | 2.58  |                     | 54. Methylcyclohexane       | C <sub>7</sub> H <sub>14</sub> | 3.85  | 3.77    | 3.89              | 3.34  | 3.67    |                    |
| 21.1-Pentene               | C <sub>5</sub> H <sub>10</sub> | 2.67            | 2.72    | 2.50              | 2.24  | 2.62  |                     | 55. n-Heptane               | $C_7H_{16}$                    | 4.53  | 4.51    | 4.25              | 3.91  | 4.21    |                    |
| 22. 2-Pentene              | C <sub>5</sub> H <sub>10</sub> | 2.54            | 2.72    | 2.50              | 2.43  | 2.80  |                     | 56. 2,2-Dimethylpentane     | $C_7H_{16}$                    | 3.67  | 4.31    | 4.05              | 3.75  | 4.06    |                    |
| 23. Cyclopentane           | $C_6H_{10}$                    | 2.65            | 2.65    | 2.85              | 2.64  | 2.68  |                     | 57. 2,4-Dimethylpentane     | C,H16                          | 4.39  | 4.31    | 4.05              | 3.75  | 4.06    |                    |
| 24. 2-Methyl-1-butene      | C5H10                          | 2.73            | 2.62    | 2.40              | 2.28  | 5.66  |                     | 58. 4-Vinylcyclohexene      | $C_8H_{12}$                    | 3.34  | 3.24    | 3.23              | 3.01  | 3.36    |                    |
| 25. 2-Methyl-2-butene      | $C_5H_{10}$                    | 2.56            | 2.62    | 2.40              | 2.60  | 2.97  |                     | 59. 1 - Octyne              | C <sub>8</sub> H <sub>14</sub> | 3.66  | 3.71    | 3.24              | 3.25  | 3.59    |                    |
| 26. <i>n</i> -Pentane      | $C_5H_{12}$                    | 3.27            | 3.29    | 3.11              | 3.04  | 3.14  |                     | 60. 2,2-Dimethyl-3-hexyne   | C <sub>8</sub> H₁₄             | 3.03  | 3.51    | 3.04              | 3.30  | 3.63    |                    |
| 27. Neopentane             | $C_5H_{12}$                    | 3.12            | 3.09    | 2.91              | 2.62  | 2.99  |                     | 61.1-Octene                 | $C_8H_{16}$                    | 4.62  | 4.55    | 4.20              | 3.93  | 4.23    |                    |
| 28. 2-Methylbutane         | $C_5H_{12}$                    | 3.18            | 3.19    | 3.01              | 2.70  | 3.06  |                     | 62. Cyclooctane             | $C_8H_{16}$                    | 4.15  | 4.48    | 4.55              | 3.99  | 4.29    |                    |
| 29. 1,4-Cyclohexadiene     | C <sub>6</sub> H <sub>8</sub>  | 5.06            | 2.12    | 2.20              | 1.64  | 2.05  |                     | 63. 1,2-Dimethylcyclohexane | $C_8H_{16}$                    | 4.27  | 4.28    | 4.35              | 3.83  | 4.14    |                    |
| 30. 1 - Hexyne             | $C_6H_{10}$                    | 2.36            | 2.49    | 2.11              | 2.12  | 2.51  |                     | 64. n-Octane                | $C_8H_{18}$                    | 5.24  | 5.12    | 4.81              | 4.46  | 4.74    |                    |
| 31. 3-Hexyne               | $C_6H_{10}$                    | 1.99            | 2.49    | 2.11              | 1.99  | 2.39  |                     | 65. 2,2,4-Trimethylpentane  | $C_8H_{18}$                    | 4.67  | 4.82    | 4.51              | 4.24  | 4.53    |                    |

TABLE Al (continued)

| Compound                                | Empirical                       |       | log 1/S | log 1/S [S:mol/I] |       | og P  |        | Compound                        | Empirica!                                     |       | log 1/S     | log 1/S [S:mol/I] |       | log P        |
|-----------------------------------------|---------------------------------|-------|---------|-------------------|-------|-------|--------|---------------------------------|-----------------------------------------------|-------|-------------|-------------------|-------|--------------|
|                                         | Politicia                       | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2 | Estd. | 7m[°C] |                                 | rormula                                       | Obsd. | Eq. 4′      | Eq. 3             | Eq. 2 | Estd. 7m[°C] |
| 66.1,8-Nonadiyne                        | C <sub>9</sub> H <sub>12</sub>  | 2.98  | 2.91    | 2.23              | 2.59  | 2.96  |        | 96. Chloroform                  | CHCI3                                         | 0.92  | 1.67        | 1.08              | 1.31  | 1.74         |
| 67.1-Nonyne                             | $C_9H_{16}$                     | 4.24  | 4.32    | 3.79              | 3.81  | 4.12  |        | 97. Dibromomethane              | CH <sub>2</sub> Br <sub>2</sub>               | 1.18  | 1.38        | 1.33              | 1.54  | 1.96         |
| 68. 2,2,5-Trimethyl-3-hexyne            | $C_9H_{16}$                     | 3.51  | 4.02    | 3.49              | 4.09  | 4.39  |        | 98. Bromochloromethane          | CH <sub>2</sub> BrCl                          | 1.16  | 1.21        | 1.08              | 1.20  | 1.64         |
| 69. 2,2,5-Trimethylhexane               | $C_9H_{20}$                     | 5.05  | 5.43    | 90.9              | 4.80  | 5.06  |        | 99. Dichloromethane             | CH <sub>2</sub> Cl <sub>2</sub>               | 0.63  | 1.04        | 0.78              | 98.0  | 1.31         |
| 70. 2,2,5,5-Tetramethyl-3-              | $C_{10}H_{18}$                  | 3.69  | 4.53    | 3.94              | 4.59  | 4.86  |        | 100. Diiodomethane              | CH <sub>2</sub> I <sub>2</sub>                | 2.34  | 2.08        | 2.18              | 2.57  | 2.94         |
| ћехупе                                  |                                 |       |         |                   |       |       |        | 101. Iodomethane                | CH3I                                          | 1.00  | 1.13        | 1.50              | 1.26  | 1.69         |
|                                         |                                 |       |         |                   |       |       |        | 102. Tetrachloroethylene        | C <sub>2</sub> Cl <sub>4</sub>                | 2.53  | 3.15        | 1                 | 2.07  | 2.46         |
| Aromatic hydrocarbons                   |                                 |       |         |                   |       |       |        | 103. Chloropentafluoro-         | $C_2CIF_5$                                    | 2.79  | 2.65        | 2.31              | 1.85  | 2.25         |
| 71. Benzene                             | $C_6H_6$                        | 1.64  | 1.80    | 1.64              | 1.79  | 2.20  |        | ethane                          |                                               |       |             |                   |       |              |
| 72. Toluene                             | C,H <sub>8</sub>                | 2.29  | 2.41    | 2.21              | 2.24  | 2.62  |        | 104. 1,1 - Dichlorotetrafluoro- | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub> | 2.93  | 2.70        | 2.45              | 2.45  | 2.82         |
| 73. Styrene                             | C <sub>8</sub> H <sub>8</sub>   | 2.81  | 2.45    | 2.17              | 2.55  | 2.92  |        | ethane                          |                                               |       |             |                   |       |              |
| 74. Ethylbenzene                        | $C_8H_{10}$                     | 2.88  | 3.02    | 2.78              | 2.78  | 3.14  |        | 105. 1,2-Dichlorotetrafluoro-   | C <sub>2</sub> Cl <sub>2</sub> F <sub>4</sub> | 2.74  | 2.70        | 2.45              | 1.68  | 2.09         |
| 75. 1,2-Dimethylbenzene                 | $C_8H_{10}$                     | 2.78  | 3.02    | 2.78              | 2.68  | 3.04  |        | ethane                          |                                               |       |             |                   |       |              |
| 76. 1,3-Dimethylbenzene                 | $C_8H_{10}$                     | 2.73  | 3.02    | 2.78              | 2.67  | 3.04  |        | 106. Tetrafluoroethylene        | C₂F₄                                          | 1.60  | (1.26 atom) | om)               | 1.09  | 1.53         |
| 77. 1,4-Dimethylbenzene                 | $C_8H_{10}$                     | 2.73  | 3.02    | 2.78              | 2.67  | 3.04  |        | 107. 1,1,2,2-Tetrachloro-       | $C_2F_2CI_4$                                  | 3.19  | 2.80        | 2.72              | 2.37  | 2.75         |
| 78. Indan                               | $C_9H_{10}$                     | 3.03  | 2.99    | 3.07              | 2.72  | 3.09  |        | difluoroethane                  |                                               |       |             |                   |       |              |
| 79. n-Propylbenzene                     | $C_9H_{12}$                     | 3.30  | 3.63    | 3.33              | 3.33  | 3.67  |        | 108. 1,1,2-Trichloro-           | $C_2F_3Cl_3$                                  | 3.04  | 2.75        | 2.59              | 2.03  | 2.42         |
| 80. Isopropylbenzene                    | $C_9H_{12}$                     | 3.38  | 3.53    | 3.23              | 3.44  | 3.77  |        | trifluoroethane                 |                                               |       |             |                   |       |              |
| 81.1,2,4-Trimethylbenzene               | $C_9H_{12}$                     | 3.32  | 3.63    | 3.33              | 3.11  | 3.46  |        | 109. Trichloroethylene          | $C_2HCl_3$                                    | 1.95  | 2.30        | 1.82              | 1.62  | 2.03         |
| 82. 1,3,5-Trimethylbenzene              | $C_9H_{12}$                     | 3.09  | 3.63    | 3.33              | 3.11  | 3.46  |        | 110. Pentachloroethane          | $C_2HCI_5$                                    | 2.61  | 2.27        | 2.11              | 2.00  | 2.40         |
| 83. n-Butylbenzene                      | C <sub>10</sub> H <sub>14</sub> | 3.94  | 4.24    | 3.88              | 3.90  | 4.21  |        | 111, 2-Bromo-2-chloro-          | $C_2HBrCIF_3$                                 | 1.70  | 2.29        | 1.53              | 2.43  | 2.80         |
| 84. s-Butylbenzene                      | C <sub>10</sub> H <sub>14</sub> | 3.67  | 4.14    | 3.78              | 4.00  | 4.30  |        | 1,1,1-trifluoroethane           |                                               |       |             |                   |       |              |
| 85. t-Butylbenzene                      | C <sub>10</sub> H <sub>14</sub> | 3.60  | 4.04    | 3.68              | 3.94  | 4.24  |        | 112. 1,1,2,2-Tetrabromo-        | $C_2H_2Br_4$                                  | 2.73  | 2.32        | 2.37              | 3.52  | 3.84         |
| 86. <i>p</i> -Cymene                    | C <sub>10</sub> H <sub>14</sub> | 3.76  | 4.14    | 3.78              | 3.88  | 4.19  |        | ethane                          |                                               |       |             |                   |       |              |
| 87.1-Methylnaphthalene                  | $G_{11}H_{10}$                  | 3.70  | 3.37    | 3.65              | 3.50  | 3.82  |        | 113. cis-1,2-Dichloro-          | $C_2H_2Cl_2$                                  | 1.10  | 1.45        | 1.24              | 1.17  | 1.60         |
| 88. t-Amylbenzene                       | $C_{11}H_{16}$                  | 4.15  | 4.65    | 4.22              | 4.32  | 4.60  |        | ethylene                        |                                               |       |             |                   |       |              |
| 89. 1-Ethylnaphthalene                  | $C_{12}H_{12}$                  | 4.16  | 3.98    | 4.19              | 4.03  | 4.33  |        | 114. trans-1,2-Dichloro-        | $C_2H_2CI_2$                                  | 1.19  | 1.45        | 1.24              | 1.17  | 1.60         |
| 90. 2-Ethylnaphthalene                  | $C_{12}H_{12}$                  | 4.29  | 3.98    | 4.19              | 4.03  | 4.33  |        | ethylene                        |                                               |       |             |                   |       |              |
| 91. 1,3-Dimethylnaphthalene             | $C_{12}H_{12}$                  | 4.29  | 3.98    | 4.19              | 3.93  | 4.23  |        | 115, 1, 1, 2, 2-Tetrachloro-    | C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub> | 1.76  | 1.64        | 1.57              | 1.64  | 2.05         |
| 92. 1,4-Dimethylnaphthalene             | $C_{12}H_{12}$                  | 4.14  | 3.98    | 4.19              | 3.93  | 4.23  |        | ethane                          |                                               |       |             |                   |       |              |
| 93. 1,4,5-Trimethylnaphtha-             | C <sub>13</sub> H <sub>14</sub> | 4.92  | 4.59    | 4.73              | 4.33  | 4.65  |        | 116. 2-Bromo-2-chloro-          | C <sub>2</sub> HBrCIF <sub>3</sub>            | 1.70  | 2.29        | 1.53              | 2.43  | 2.80         |
| lene                                    |                                 |       |         |                   |       |       |        | 1,1,1-trifluoroethane           |                                               |       |             |                   |       |              |
| 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                                 |       |         |                   |       |       |        | 117. 2-Chloro-1,1,1-tri-        | $C_2H_2CIF_3$                                 | 1.15  | 1.79        | 1.04              | 1.47  | 1.89         |
| Halogenated hydrocarbons                | ē                               | ,     | ,       |                   | i     | ļ     |        | fluoroethane                    | ;                                             |       |             | ;                 | 1     |              |
| 94. Tetrachloromethane                  | †<br>CC1 <sup>†</sup>           | 2.28  | 2.29    | 1.99              | 1.76  | 2.17  |        | 118. 1,1,1-Trichloroethane      | $C_2H_3Cl_3$                                  | 2.01  | 2.18        | 1.83              | 1.73  | 2.14         |
| 95. Bromoform                           | CHB <sub>r3</sub>               | 1.90  | 2.18    | 1.76              | 2.34  | 2.72  |        | 119. 1,1,2-Trichloroethane      | C <sub>2</sub> H <sub>3</sub> Cl <sub>3</sub> | 1.46  | 1.31        | 1.33              | 1.28  | 1.71         |

TABLE AI (continued)

| Compound                       | Empirical                                     |       | log 1/S | log 1/S [S:mol/l] |       | log P |                     | Compound                                    | Empirical                                     |       | log 1/S | log 1/S [S:mol/l] |       | log P |                     |
|--------------------------------|-----------------------------------------------|-------|---------|-------------------|-------|-------|---------------------|---------------------------------------------|-----------------------------------------------|-------|---------|-------------------|-------|-------|---------------------|
|                                | formula                                       | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2 | Estd. | T <sub>m</sub> [°C] |                                             | formula                                       | Obsd. | Eq. 4′  | Eq. 3             | Eq. 2 |       | 7 <sub>m</sub> [°C] |
| 120. 1-Chloro-1,1-difluoro-    | $C_2H_3CIF_2$                                 | 1.20  | 2.08    | 1.11              | 1.39  | 1.81  |                     | 150. 3-Chloropentane                        | C <sub>5</sub> H <sub>11</sub> Cl             | 2.63  | 2.95    | 2.53              | 2.60  | 2.97  |                     |
| ethane                         |                                               |       |         |                   |       |       |                     | 151. 1,2,4-Trichlorobenzene                 | $C_6H_3Cl_3$                                  | 3.72  | 4.02    | 3.66              | 3.72  | 4.03  |                     |
| 121.1,2-Dibromoethane          | $C_2H_4Br_2$                                  | 1.64  | 1.32    | 1.56              | 1.20  | 1.63  |                     | 152. 1,2-Dibromobenzene                     | $C_6H_4Br_2$                                  | 3.50  | 3.34    | 3.46              | 3.31  | 3.64  |                     |
| 122. 1,1 - Dichloroethane      | C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> | 1.29  | 1.55    | 1.25              | 1.36  | 1.79  |                     | 153. 1,3-Dibromobenzene                     | $C_6H_4Br_2$                                  | 3.38  | 3.34    | 3.46              | 3.70  | 4.02  |                     |
| 123. 1,2-Dichloroethane        | $C_2H_4CI_2$                                  | 1.04  | 0.98    | 1.05              | 1.04  | 1.48  |                     | 154. 2-Bromochlorobenzene                   | C <sub>6</sub> H <sub>4</sub> BrCl            | 3.19  | 3.31    | 3.25              | 3.31  | 3.64  |                     |
| 124. 1-Chloro-2-bromo-         | C <sub>2</sub> H <sub>4</sub> BrCl            | 1.32  | 1.15    | 1.33              | 1.06  | 1.50  |                     | 155. 3-Bromochlorobenzene                   | C <sub>6</sub> H <sub>4</sub> BrCl            | 3.21  | 3.31    | 3.25              | 3.43  | 3.76  |                     |
| ethane                         |                                               |       |         |                   |       |       |                     | 156. 1,2-Dichlorobenzene                    | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub> | 3.01  | 3.28    | 3.02              | 3.03  | 3.38  |                     |
| 125. 1 - Chloro - 2 - fluoro - | C <sub>2</sub> H <sub>4</sub> CIF             | 0.51  | 0.93    | 0.47              | 0.20  | 0.68  |                     | 157. 1,3-Dichlorobenzene                    | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub> | 3.08  | 3.28    | 3.02              | 3.16  | 3.50  |                     |
| ethane                         |                                               |       |         |                   |       |       |                     | 158. 2-Chloroiodobenzene                    | C <sub>6</sub> H <sub>4</sub> CII             | 3.54  | 3.53    | 3.68              | 3.67  | 3.99  |                     |
| 126.1,1-Difluoroethane         | $C_2H_4F_2$                                   | 0.57  | 1.45    | 0.48              | 0.30  | 0.78  |                     | 159. 3-Chloroiodobenzene                    | C <sub>6</sub> H <sub>4</sub> CII             | 3.55  | 3.53    | 3.68              | 3.83  | 4.14  |                     |
| 127. Bromoethane               | $C_2H_5Br$                                    | 1.06  | 1.39    | 1.26              | 1.14  | 1.58  |                     | 160. 1,2-Difluorobenzene                    | $C_6H_4F_2$                                   | 2.00  | 1.98    | 1.94              | 2.32  | 2.70  |                     |
| 128. 3-Chloropropene           | $C_3H_5C$                                     | 1.28  | 1.26    | 1                 | 1.15  | 1.59  |                     | 161. 1,3-Difluorobenzene                    | $C_6H_4F_2$                                   | 2.00  | 1.98    | 1.94              | 2.32  | 2.70  |                     |
| 129. lodoethane                | $C_2H_5I$                                     | 1.60  | 1.74    | 1.74              | 1.46  | 1.88  |                     | 162. 1,4-Difluorobenzene                    | $C_6H_4F_2$                                   | 1.97  | 1.98    | 1.94              | 2.32  | 2.70  |                     |
| 130. 1,2-Dibromopropane        | $C_3H_6Br_2$                                  | 2.14  | 1.83    | 2.00              | 2.32  | 2.70  |                     | 163. Bromobenzene                           | C <sub>6</sub> H <sub>5</sub> Br              | 2.55  | 2.57    | 2.62              | 2.75  | 3.11  |                     |
| 131.1,3-Dibromopropane         | $C_3H_6Br_2$                                  | 2.08  | 1.93    | 2.10              | 1.76  | 2.17  |                     | 164. Chlorobenzene                          | C <sub>6</sub> H <sub>5</sub> Cl              | 2.36  | 2.54    | 2.35              | 2.48  | 2.85  |                     |
| 132.1,2-Dichloropropane        | $C_3H_6CI_2$                                  | 1.61  | 1.49    | 1.50              | 1.33  | 1.76  |                     | 165. Fluorobenzene                          | $C_6H_5F$                                     | 1.79  | 1.89    | 1.80              | 2.06  | 2.45  |                     |
| 133.1,3-Dichloropropane        | $C_3H_6Cl_2$                                  | 1.61  | 1.59    | 1.60              | 1.87  | 2.27  |                     | 166. lodobenzene                            | C <sub>6</sub> H <sub>5</sub> I               | 2.77  | 2.79    | 3.06              | 3.16  | 3.50  |                     |
| 134. 1-Bromopropane            | C <sub>3</sub> H <sub>7</sub> Br              | 1.73  | 2.00    | 1.81              | 1.70  | 2.11  |                     | 167. 2-Chlorophenoi                         | $C_6H_5CIO$                                   | 1.05  | 0.92    | ı                 | 2.06  | 2.45  |                     |
| 135. 2-Bromopropane            | $C_3H_7B_1$                                   | 1.63  | 1.90    | 1.71              | 2.27  | 2.65  |                     | 168. α-Chlorotoluene                        | C <sub>6</sub> H <sub>7</sub> Cl              | 2.43  | 2.17    | 2.30              | 2.31  | 5.69  |                     |
| 136. 1 - Chloropropane         | C3H,CI                                        | 1.53  | 1.83    | 1.50              | 1.56  | 1.98  |                     | 169. a,a,a-Trifluorotoluene                 | C,H <sub>5</sub> F <sub>3</sub>               | 2.51  | 2.98    | 2.68              | 2.86  | 3.21  |                     |
| 137. 2-Chloropropane           | C <sub>3</sub> H,Ci                           | 1.36  | 1.73    | 1.40              | 1.48  | 1.90  |                     | 170. 1 - Bromo-2-ethyl-                     | $C_8H_9Br$                                    | 3.67  | 3.79    | 3.69              | 3.54  | 4.05  |                     |
| 138.1-lodopropane              | C <sub>3</sub> H <sub>7</sub> I               | 2.29  | 2.35    | 2.28              | 2.02  | 2.41  |                     | benzene                                     |                                               |       |         |                   |       |       |                     |
| 139. 2-lodopropane             | Ç,+,1                                         | 2.09  | 2.25    | 2.18              | 2.78  | 3.14  |                     | 171.1-Bromo-2-propyl-                       | C <sub>9</sub> H <sub>11</sub> Br             | 4.19  | 4.30    | 4.12              | 4.39  | 4.67  |                     |
| 140. Hexachlorobutadiene       | င္နင္ပါ                                       | 4.91  | 4.16    | 1                 | 3.66  | 3.98  |                     | benzene                                     |                                               |       |         |                   |       |       |                     |
| 141.1,1-Dichlorobutane         | C <sub>4</sub> H <sub>8</sub> Cl <sub>2</sub> | 2.40  | 2.77    | 2.35              | 2.86  | 3.22  |                     | 172. 2,4-Dichlorobiphenyl                   | $C_{12}H_8CI_2$                               | 5.20  | 4.84    | 5.20              | 5.19  | 5.43  |                     |
| 142. 1 - Bromobutane           | C <sub>4</sub> H <sub>9</sub> Br              | 2.37  | 2.61    | 2.36              | 2.27  | 2.65  |                     | 173. 2,5-Dichlorobiphenyl                   | $C_{12}H_8CI_2$                               | 5.59  | 4.84    | 5.20              | 5.19  | 5.43  |                     |
| 143. 2-Methyl-1-bromo-         | C₄H₃Br                                        | 2.43  | 2.51    | 2.26              | 2.19  | 2.58  |                     | 174. 3-Chlorobiphenyl                       | $C_{12}H_9CI$                                 | 5.16  | 4.10    | 4.58              | 4.50  | 4.78  |                     |
| propane                        |                                               |       |         |                   |       |       |                     |                                             |                                               |       |         |                   |       |       |                     |
| 144. 1-Chlorobutane            | C <sub>4</sub> H <sub>3</sub> Cl              | 2.14  | 2.44    | 2.07              | 2.13  | 2.52  |                     | Ethers and oxygen-containing ring compounds | ring compour                                  | spı   |         |                   |       |       |                     |
| 145. 2-Methyl-1-chloro-        | C <sub>4</sub> H <sub>9</sub> Cl              | 2.00  | 2.34    | 1.97              | 5.06  | 2.45  |                     | 175. Divinyl ether                          | $C_4H_6O$                                     | 96.0  | -0.97   | ı                 | 0.99  | 1.43  |                     |
| propane                        |                                               |       |         |                   |       |       |                     | 176. Tetrahydrofuran                        | C₄H <sub>8</sub> O                            | -0.62 | -0.47   | 1                 | 0.16  | 0.64  |                     |
| 146.1-lodobutane               | C <sub>4</sub> H <sub>9</sub> I               | 2.96  | 2.96    | 2.81              | 2.58  | 2.95  |                     | 177. Diethyl ether                          | C₄H₁₀0                                        | 90.0  | 0.17    | ı                 | 0.64  | 1.10  |                     |
| 147. 3-Methyl-1-bromo-         | C <sub>5</sub> H <sub>11</sub> Br             | 2.89  | 3.12    | 2.80              | 2.75  | 3.11  |                     | 178. Methyl n-propyl ether                  | C4H100                                        | 0.37  | 0.17    | 1                 | 0.69  | 1.15  |                     |
| butane                         |                                               |       |         |                   |       |       |                     | 179. Methyl isopropyl ether                 | C4H100                                        | 0.03  | 0.07    | 1                 | 0.49  | 96.0  |                     |
| 148.1-Chloropentane            | C <sub>6</sub> H <sub>11</sub> C              | 2.73  | 3.05    | 2.63              | 2.70  | 3.06  |                     | 180. Cyclopropyl vinyl ether                | $C_5H_8O$                                     | 1.10  | -0.53   | ı                 | 0.70  | 1.16  |                     |
| 149. 2-Chloropentane           | C <sub>5</sub> H <sub>11</sub> Cl             | 2.63  | 2.95    | 2.53              | 2.60  | 2.97  |                     | 181. Cyclopropyl ethyl ether                | C <sub>5</sub> H <sub>10</sub> O              | 0.64  | 0.04    | 1                 | 0.52  | 0.99  |                     |

TABLE Al (continued)

| Compound                    | Empirical                        |       | log 1/S | log 1/S [S:mol/I] |       | log P   |                     | Compound                    | Empirical                        |       | log 1/S | log 1/S [S:mol/I] | 1     | log P                     |
|-----------------------------|----------------------------------|-------|---------|-------------------|-------|---------|---------------------|-----------------------------|----------------------------------|-------|---------|-------------------|-------|---------------------------|
|                             | rormuia                          | Obsd. | Eq. 4′  | Eq. 3             | Eq. 2 | Estd. 7 | 7 <sub>m</sub> [°C] |                             | Tormula                          | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2 | Estd. T <sub>m</sub> [°C] |
| 182. Pentamethyleneoxide    | C <sub>6</sub> H <sub>10</sub> O | -0.05 | 0.14    | 1                 | 0.72  | 1.18    |                     | 214. 2-Methyl-1-pentanol    | C <sub>6</sub> H <sub>14</sub> O | 1.11  | 1.03    | ı                 | 1.46  | 1.88                      |
| 183. a-Methyltetramethy-    | C <sub>5</sub> H <sub>10</sub> O | -0.31 | 0.04    | 1                 | 0.52  | 0.99    |                     | 215. 4-Methyl-1-pentanol    | C <sub>6</sub> H <sub>14</sub> O | 1.14  | 1.03    | 1                 | 1.46  | 1.88                      |
| leneoxide                   |                                  |       |         |                   |       |         |                     | 216. 2-Ethyl-1-butanol      | C <sub>6</sub> H₁₄O              | 1.17  | 1.03    | 1                 | 1.46  | 1.88                      |
| 184. β-Methyltetramethy-    | $C_6H_{10}O$                     | -0.09 | 0.04    | ı                 | 0.64  | 1.10    |                     | 217. 2,2-Dimethyl-1-butanol | C <sub>6</sub> H <sub>14</sub> O | 1.04  | 0.93    | 1                 | 1.38  | 1.81                      |
| leneoxide                   |                                  |       |         |                   |       |         |                     | 218, 1-Hexanol              | C <sub>6</sub> H <sub>14</sub> O | 1.21  | 1.13    | ı                 | 1.53  | 1.95                      |
| 185. Methyl n-butyl ether   | $C_5H_{12}O$                     | 0.99  | 0.78    | 1                 | 1.25  | 1.68    |                     | 219. 2-Hexanol              | C <sub>6</sub> H <sub>14</sub> O | 0.87  | 98.0    | 1                 | 1.33  | 1.76                      |
| 186. Methyl isobutyl ether  | $C_6H_{12}O$                     | 0.90  | 0.68    | 1                 | 1.18  | 1.61    |                     | 220. 3-Hexanol              | C <sub>6</sub> H <sub>14</sub> O | 0.80  | 98.0    | 1                 | 1.33  | 1.76                      |
| 187. Methyl s-butyl ether   | $C_6H_{12}O$                     | 0.73  | 0.68    | ı                 | 1.05  | 1.49    |                     | 221. 2-Methył-2-pentanol    | C <sub>6</sub> H <sub>14</sub> O | 0.49  | 0.41    | 1                 | 1.17  | 1.60                      |
| 188. Methyl t-butyl ether   | $C_5H_{12}O$                     | 0.21  | 0.58    | ı                 | 0.89  | 1.34    |                     | 222. 2-Methyl-3-pentanol    | C <sub>6</sub> H <sub>14</sub> O | 0.70  | 0.76    | 1                 | 1.26  | 1.69                      |
| 189. Ethyl n-propyl ether   | $C_6H_{12}O$                     | 0.67  | 0.78    | 1                 | 1.20  | 1.63    |                     | 223. 3-Methyl-2-pentanol    | C <sub>6</sub> H <sub>14</sub> O | 0.71  | 9/.0    | 1                 | 1.26  | 1.69                      |
| 190. Ethyl isopropyl ether  | C <sub>5</sub> H <sub>12</sub> O | 0.55  | 0.68    | ı                 | 0.99  | 1.44    |                     | 224. 3-Methyl-3-pentanol    | C <sub>6</sub> H <sub>14</sub> O | 0.36  | 0.41    | ı                 | 1.17  | 1.60                      |
| 191. Diallyl ether          | C <sub>6</sub> H <sub>10</sub> O | 0.02  | 0.25    | ł                 | 1.12  | 1.56    |                     | 225. 4- Methyl-2-pentanol   | C <sub>6</sub> H <sub>14</sub> O | 0.79  | 92.0    | ı                 | 1.26  | 1.69                      |
| 192. n-Propyl ether         | C <sub>6</sub> H <sub>14</sub> O | 1.32  | 1.39    | ı                 | 1.76  | 2.17    |                     | 226. 2,3-Dimethyl-2-butanol | C <sub>6</sub> H <sub>14</sub> O | 0.37  | 0.31    | ı                 | 1.09  | 1.53                      |
| 193. Propyl isopropyl ether | C <sub>6</sub> H <sub>14</sub> O | 1.34  | 1.29    | 1                 | 1.56  | 1.98    |                     | 227. 2,3-Dimethyl-1-butanol | C <sub>6</sub> H <sub>14</sub> O | 0.37  | 0.93    | ı                 | 1.38  | 1.80                      |
| 194. Diisopropyl ether      | C <sub>6</sub> H <sub>14</sub> O | 1.70  | 1.19    | ı                 | 1.36  | 1.79    |                     | 228. 3,3-Dimethyl-1-butanol | C <sub>6</sub> H₁₄O              | 1.13  | 0.93    | 1                 | 1.38  | 1.81                      |
| 195. Anisole                | C,H <sub>8</sub> O               | 2.88  | 2.49    | I                 | 1.60  | 2.01    |                     | 229. 3,3-Dimethyl-2-butanol | C <sub>6</sub> H <sub>14</sub> O | 0.61  | 99.0    | 1                 | 1.19  | 1.62                      |
| 196. n-Butyl ether          | $C_8H_{18}O$                     | 2.77  | 2.61    | 1                 | 2.89  | 3.24    |                     | 230. <i>m</i> -Cresol       | C <sub>7</sub> H <sub>8</sub> O  | 99.0  | 0.79    | 1                 | 1.39  | 1.81                      |
|                             |                                  |       |         |                   |       |         |                     | 231. Benzył alcohol         | C,H <sub>8</sub> O               | 0.45  | 0.45    | ı                 | 0.46  | 0.93                      |
| Alcohols and phenols        |                                  |       |         |                   |       |         |                     | 232. 1 - Heptanol           | C,H160                           | 1.81  | 1.74    | 1                 | 2.09  | 2.49                      |
| 197, 1-Butanol              | C4H100                           | -0.03 | -0.09   | ı                 | 0.41  | 0.88    |                     | 233. 2-Methyl-2-hexanol     | $C_7H_{16}O$                     | 1.07  | 1.02    | 1                 | 1.73  | 2.14                      |
| 198. 2-Butanol              | C4H100                           | -0.29 | -0.36   | ŀ                 | 0.21  | 69.0    |                     | 234. 3-Methyl-3-hexanol     | C <sub>2</sub> H <sub>16</sub> O | 96.0  | 1.02    | 1                 | 1.73  | 2.14                      |
| 199. 2-Methyl-1-propanol    | C4H100                           | -0.10 | -0.19   | ı                 | 0.33  | 0.81    |                     | 235. 3-Ethyl-3-pentanol     | $C_7H_{16}O$                     | 0.83  | 1.02    | ı                 | 1.73  | 2.14                      |
| 200. 1-Penten-3-ol          | C <sub>6</sub> H <sub>10</sub> O | -0.02 | -0.32   | 1                 | 0.37  | 0.84    |                     | 236. 2,2-Dimethyl-3-        | $C_7H_{16}O$                     | 1.15  | 1.27    | 1                 | 1.74  | 2.15                      |
| 201. 3-Penten-2-ol          | C <sub>5</sub> H <sub>10</sub> O | -0.06 | -0.32   | 1                 | 0.56  | 1.02    |                     |                             |                                  |       |         |                   |       |                           |
| 202. 4-Penten-1-ol          | $C_5H_{10}O$                     | 0.15  | -0.05   | 1                 | 0.43  | 0.90    |                     | 237. 2,3-Dimethyl-2-        | $C_7H_{16}O$                     | 0.87  | 0.92    | 1                 | 1.66  | 2.07                      |
| 203. 1 - Pentanol           | $C_5H_{12}O$                     | 0.59  | 0.52    | 1                 | 0.98  | 1.42    |                     | pentanol                    |                                  |       |         |                   |       |                           |
| 204. 2-Pentanol             | $C_6H_{12}O$                     | 0.28  | 0.25    | 1                 | 0.78  | 1.23    |                     | 238. 2,3-Dimethyl-3-        | $C_7H_{16}O$                     | 0.84  | 0.92    | ı                 | 1.66  | 2.07                      |
| 205. 3-Pentanol             | $C_5H_{12}O$                     | 0.21  | 0.25    | 1                 | 0.78  | 1.23    |                     | pentanol                    |                                  |       |         |                   |       |                           |
| 206. 2-Methyl-1-butanol     | $C_5H_{12}O$                     | 0.46  | 0.42    | ı                 | 0.89  | 1.34    |                     | 239. 2,4-Dimethyl-2-        | C,H160                           | 0.93  | 0.92    | 1                 | 1.66  | 2.07                      |
| 207. 2-Methyl-2-butanol     | $C_6H_{12}O$                     | -0.15 | -0.20   | ı                 | 0.61  | 1.07    |                     | pentanol                    |                                  |       |         |                   |       |                           |
| 208, 3-Methyl-1-butanol     | $C_6H_{12}O$                     | 0.51  | 0.42    | ı                 | 0.89  | 1.34    |                     | 240. 2,4-Dimethyl-3-        | $C_7H_{16}O$                     | 1.22  | 1.27    | 1                 | 1.74  | 2.15                      |
| 209. 3-Methyl-2-butanol     | $C_5H_{12}O$                     | 0.18  | 0.15    | i                 | 69.0  | 1.15    |                     | pentanol                    |                                  |       |         |                   |       |                           |
| 210. Cyclohexanol           | $C_6H_{12}O$                     | 0.42  | 0.22    | 1                 | 0.86  | 1.31    |                     | 241. 2-Heptanol             | $C_7H_{16}O$                     | 1.55  | 1.47    | ı                 | 1.90  | 2.30                      |
| 211. 1-Hexen-3-ol           | $C_6H_{12}O$                     | 0.59  | 0.29    | 1                 | 0.92  | 1.37    |                     | 242. 3-Heptanol             | $C_7H_{16}O$                     | 1.44  | 1.47    | ı                 | 1.90  | 2.30                      |
| 212. 2-Hexen-4-ol           | $C_6H_{12}O$                     | 0.40  | 0.29    | 1                 | 1.12  | 1.56    |                     | 243. 4-Heptanol             | C,H,60                           | 1.40  | 1.47    | I                 | 1.90  | 2.30                      |
| 213. 2-Methyl-4-penten-3-ol | C <sub>6</sub> H <sub>12</sub> O | 0.50  | 0.19    | ı                 | 0.85  | 1.30    |                     | 244. 2-Methyl-3-hexanol     | C,H160                           | 1.32  | 1.37    | ı                 | 1.82  | 2.22                      |

log P

0.36 0.77 0.77 0.30 1.36 1.28 0.78 1.25 1.25 1.66 2.50 1.89

TABLE A1 (continued)

| Componing                   | - Inperior                        |        | c/1 gol | [1/lom:c] c/l go |       | 7 go    |                 | Compound                    | Empirical                                     |       | log 1/5 | log 1/S [S:mol/l] | <u>_</u> |
|-----------------------------|-----------------------------------|--------|---------|------------------|-------|---------|-----------------|-----------------------------|-----------------------------------------------|-------|---------|-------------------|----------|
|                             | tormula                           | Obsd.  | Eq. 4′  | Eq. 3            | Eq. 2 | Estd. 7 | <i>I</i> _m["C] |                             | tormula                                       | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2    |
| 245. 5- Methyl-2-hexanol    | C,H,60                            | 1.38   | 1.37    | ı                | 1.82  | 2.22    |                 | 272. Isobutyraldehyde       | C <sub>4</sub> H <sub>8</sub> O               | -0.10 | 0.03    | 1                 | -0.14    |
| 246. 2,2-Dimethyl-1-        | C,H160                            | 1.52   | 1.54    | 1                | 1.94  | 2.34    |                 | 273. 2-Pentanone            | C <sub>5</sub> H <sub>10</sub> O              | 0.17  | 0.25    | 1                 | 0.35     |
| pentanol                    |                                   |        |         |                  |       |         |                 | 274. 3-Pentanone            | C <sub>5</sub> H <sub>10</sub> O              | 0.23  | 0.25    | I                 | 0.29     |
| 247. 2,4-Dimethyl-1-        | C,H,60                            | 1.60   | 1.54    | į                | 1.94  | 2.34    |                 | 275. 3-Methyl-2-butanone    | C <sub>5</sub> H <sub>10</sub> O              | 0.12  | 0.15    | 1                 | -0.20    |
| pentanol                    |                                   |        |         |                  |       |         |                 | 276. 2-Hexanone             | $C_6H_{12}O$                                  | 0.78  | 98.0    | ı                 | 0.91     |
| 248. 4,4-Dimethyl-1 -       | $C_7H_{16}O$                      | 1.55   | 1.54    | ŧ                | 1.94  | 2.34    |                 | 277. 3-Hexanone             | $C_6H_{12}O$                                  | 0.83  | 98.0    | ı                 | 0.85     |
| pentanol                    |                                   |        |         |                  |       |         |                 | 278. 3-Methyl-2-pentanone   | C <sub>6</sub> H <sub>12</sub> O              | 0.67  | 0.76    | 1                 | 0.36     |
| 249. 2,3,3-Trimethyl-2-     | C <sub>7</sub> H <sub>16</sub> O  | 0.71   | 0.82    | 1                | 1.59  | 2.00    |                 | 279. 4-Methyl-2-pentanone   | $C_6H_{12}O$                                  | 0.71  | 92.0    | ı                 | 0.83     |
| butanol                     |                                   |        |         |                  |       |         |                 | 280, 4-Methyl-3-pentanone   | $C_6H_{12}O$                                  | 0.81  | 9/.0    | 1                 | 0.30     |
| 250. 1 - Octanol            | $C_8H_{18}O$                      | 2.35   | 2.35    | 1                | 5.66  | 3.02    |                 | 281.3,3-Dimethyl-2-butanone |                                               | 0.71  | 99.0    | 1                 | 0.79     |
| 251. 2-Octanol              | C <sub>6</sub> H <sub>18</sub> O  | 5.09   | 2.08    | 1                | 2.46  | 2.83    |                 | 282. Benzaldehyde           | C,H <sub>6</sub> O                            | 1.21  | 1.21    | 1                 | 1.23     |
| 252. 2-Ethyl-1-hexanol      | C <sub>8</sub> H <sub>18</sub> O  | 2.11   | 2.25    | ı                | 2.58  | 2.95    |                 | 283. Heptaldehyde           | C,H,40                                        | 1.96  | 1.96    | ı                 | 2.11     |
| 253. 2-Methyl-2-heptanol    | C <sub>8</sub> H <sub>18</sub> O  | 1.72   | 1.63    | 1                | 2.29  | 2.67    |                 | 284. 2-Heptanone            | C <sub>7</sub> H <sub>14</sub> O              | 1.42  | 1.47    | 1                 | 1.47     |
| 254. 3-Methyl-3-heptanol    | C <sub>8</sub> H <sub>18</sub> O  | 1.60   | 1.63    | ı                | 2.29  | 2.67    |                 | 285. 4-Heptanone            | C,H,40                                        | 1.44  | 1.47    | ı                 | 1.42     |
| 255. 2,2,3-Trimethyl-3-     | $C_8H_{18}O$                      | 1.27   | 1.43    | 1                | 2.14  | 2.53    |                 | 286. 2,4-Dimethyl-3-        | C,H140                                        | 1.30  | 1.27    | ı                 | 0.31     |
| pentanoi                    |                                   |        |         |                  |       |         |                 | pentanone                   |                                               |       |         |                   |          |
| 256. 1 - Nonanol            | $C_9H_{20}O$                      | 3.01   | 2.96    | ı                | 3.22  | 3.56    |                 | 287. Acetophenone           | C <sub>8</sub> H <sub>8</sub> O               | 1.34  | 1.34    | 1                 | 1.31     |
| 257. 2-Nonanol              | $C_9H_{20}O$                      | 2.74   | 2.69    | 1                | 3.02  | 3.37    |                 | 288. 5-Nonanone             | C <sub>9</sub> H <sub>18</sub> O              | 2.58  | 2.69    | ı                 | 2.54     |
| 258. 3-Nonanol              | $C_9H_{20}O$                      | 2.66   | 2.69    | 1                | 3.02  | 3.37    |                 | 289. Carvone                | C <sub>10</sub> H <sub>14</sub> O             | 2.06  | 1.22    | 1                 | 2.13     |
| 259. 4-Nonanol              | $C_9H_{20}O$                      | 2.59   | 5.69    | 1                | 3.02  | 3.37    |                 | 290. Menthone               | $C_{10}H_{18}O$                               | 2.35  | 2.36    | ı                 | 1.92     |
| 260. 5-Nonanol              | $C_9H_{20}O$                      | 2.49   | 2.69    | ı                | 3.02  | 3.37    |                 |                             |                                               |       |         |                   |          |
| 261. 7-Methyl-1-octanol     | $C_9H_{20}O$                      | 2.49   | 2.86    | ı                | 3.15  | 3.49    |                 | Esters                      |                                               |       |         |                   |          |
| 262. 2,2-Diethyl-1-pentanol | $C_9H_{20}O$                      | 2.42   | 2.76    | ı                | 3.08  | 3.42    |                 | 291. Ethyl formate          | $C_3H_6O_2$                                   | -0.08 | -0.44   | 1                 | -0.38    |
| 263. 2,6-Dimethyl-4-        | C <sub>3</sub> H <sub>20</sub> O  | 2.51   | 2.49    | 1                | 2.87  | 3.22    |                 | 292. Methyl acetate         | $C_3H_6O_2$                                   | -0.52 | -0.44   | ı                 | -0.56    |
| heptanol                    |                                   |        |         |                  |       |         |                 | 293. Ethyl acetate          | C4H8O2                                        | 0.04  | 0.17    | 1                 | -0.04    |
| 264. 3,5-Dimethyl-4-        | $C_9H_{20}O$                      | 2.51   | 2.49    | ı                | 2.87  | 3.22    |                 | 294. n-Propyl formate       | $C_4H_8O_2$                                   | 0.49  | 0.17    | 1                 | 0.18     |
| heptanol                    |                                   |        |         |                  |       |         |                 | 295. Isopropyl formate      | $C_4H_8O_2$                                   | 0.63  | 0.07    | 1                 | -0.02    |
| 265. α-Terpineol            | $C_{10}H_{18}O$                   | 1.89   | 1.44    | 1                | 2.41  | 2.79    |                 | 296. Methyl propionate      | $C_4H_8O_2$                                   | 0.0   | 0.17    | 1                 | -0.04    |
| 266. 1-Decanol              | $C_{10}H_{22}O$                   | 3.63   | 3.57    | 1                | 3.79  | 4.10    |                 | 297. Isobutyl formate       | $C_5H_{10}O_2$                                | 1.00  | 0.68    | I                 | 99.0     |
| 267. 2-Undecanol            | C <sub>11</sub> H <sub>24</sub> O | 2.94   | 3.91    | ı                | 4.15  | 4.44    |                 | 298. Ethyl propionate       | C <sub>6</sub> H <sub>10</sub> O <sub>2</sub> | 0.64  | 0.78    | í                 | 0.46     |
| 268. 1-Dodecanol            | $C_{12}H_{26}O$                   | 4.80   | 4.79    | ı                | 4.91  | 5.17    |                 | 299. Methyl butyrate        | $C_5H_{10}O_2$                                | 0.78  | 0.78    | 1                 | 0.51     |
|                             |                                   |        |         |                  |       |         |                 | 300. n-Propyl acetate       | $C_5H_{10}O_2$                                | 0.73  | 0.78    | ı                 | 0.52     |
| Aldehydes and ketones       |                                   |        |         |                  |       |         |                 | 301. Isopropyl acetate      | $C_6H_{10}O_2$                                | 0.52  | 0.68    | ı                 | 0.33     |
| 269. Propionaldehyde        | C <sub>3</sub> H <sub>6</sub> O   | -0.52  | -0.48   | 1                | -0.15 | 0.35    |                 | 302. Isoamyl formate        | $C_6H_{12}O_2$                                | 1.52  | 1.29    | 1                 | 1.23     |
| 270. 2-Butanone             | C <sub>4</sub> H <sub>8</sub> O   | - 0.68 | -0.36   | ı                | -0.22 | 0.28    |                 | 303. n-Butyl acetate        | $C_6H_{12}O_2$                                | 1.37  | 1.39    | ı                 | 1.08     |
| 271 Buturaldohudo           | C = C                             | 000    | 012     |                  | 0.0   | 000     |                 |                             |                                               |       |         |                   |          |

1.74 2.91 2.52 2.32 0.13 0.45 0.45 0.66 0.47 0.45 1.12 0.93 0.98 0.99 0.80 0.80 1.52 1.45

TABLE A1 (continued)

|                           |                                               |       |         |                   |       |       |                            | TABLE AT (Continued)                        |                                                |                   |         |                   |       |       |                            |
|---------------------------|-----------------------------------------------|-------|---------|-------------------|-------|-------|----------------------------|---------------------------------------------|------------------------------------------------|-------------------|---------|-------------------|-------|-------|----------------------------|
| Compound                  | Empirical                                     |       | log 1/5 | log 1/S [S:mol/I] |       | log P |                            | Compound                                    | Empirical                                      |                   | log 1/S | log 1/S [S:mol/I] |       | log P |                            |
|                           |                                               | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2 | Estd. | <i>T</i> <sub>m</sub> [°C] |                                             | Tormula                                        | Obsd.             | Eq. 4'  | Eq. 3             | Eq. 2 | Estd. | <i>I</i> <sub>m</sub> [°C] |
| 305. n-Propyl propionate  | $C_6H_{12}O_2$                                | 1.34  | 1.39    | ı                 | 1.02  | 1.47  |                            | Multifunctional compounds                   |                                                |                   |         |                   |       | 1     |                            |
| 306. Isopropyl propionate | $C_6H_{12}O_2$                                | 1.29  | 1.29    | 1                 | 0.83  | 1.28  |                            | 337. (CICH <sub>2</sub> CH <sub>2</sub> )2S | C4HRCI3S                                       | 2.37              | 1.51    | ı                 | 1.36  | 1.79  |                            |
| 307. Ethyl butyrate       | $C_6H_{12}O_2$                                | 1.28  | 1.39    | 1                 | 1.03  | 1.47  |                            | 338. 1,1 - Diethoxyethane                   | C <sub>6</sub> H <sub>14</sub> O,              |                   | -1.22   | ı                 | 0.37  | 0.84  |                            |
| 308. Amyl acetate         | C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> | 1.86  | 2.00    | 1                 | 1.65  | 2.06  |                            | 339. 1,2-Diethoxyethane                     | C <sub>6</sub> H <sub>14</sub> O <sub>3</sub>  |                   | -1.12   | 1                 | 0.55  | 1.01  |                            |
| 309. Isoamyl acetate      | C <sub>2</sub> H <sub>14</sub> O <sub>2</sub> | 1.91  | 1.90    | ı                 | 1.56  | 1.98  |                            | 340. 2-Nitroanisole                         | C,H,NO                                         |                   | 2.33    | 1                 | 5.09  | 2.48  |                            |
| 310. n-Propyl butyrate    | C <sub>2</sub> H <sub>14</sub> O <sub>2</sub> | 1.91  | 2.00    | 1                 | 1.60  | 2.01  |                            | 341. Ethyl malonate                         | C,H,,04                                        |                   | -0.51   | ı                 | 0.33  | 0.81  |                            |
| 311. Ethyl valerate       | C <sub>7</sub> H <sub>14</sub> O <sub>2</sub> | 1.77  | 2.00    | 1                 | 1.60  | 2.01  |                            | 342. Ethyl succinate                        | C <sub>8</sub> H <sub>14</sub> O <sub>4</sub>  |                   | 0.10    | 1                 | 0.48  | 0.95  |                            |
| 312. Methyl benzoate      | $C_8H_8O_2$                                   | 1.53  | 1.60    | 1                 | 1.66  | 2.07  |                            | 343. Ethyl glutamate                        | C3H160                                         | 1.33              | 0.71    | ı                 | 0.40  | 0.87  |                            |
| 313. Hexyl acetate        | $C_8H_{16}O_2$                                | 2.05  | 2.61    | 1                 | 2.20  | 2.59  |                            | 344. Ethyl adipate                          | C <sub>10</sub> H <sub>18</sub> O <sub>2</sub> | 1.68              | 1.32    | ı                 | 0.97  | 1.41  |                            |
| 314. Amyl propionate      | $C_8H_{16}O_2$                                | 2.25  | 2.61    | 1                 | 2.15  | 2.54  |                            | 345. Ethyl pimelate                         | C1.H2004                                       | 2.04              | 1.93    | ı                 | 1.53  | 195   |                            |
| 315. Ethyl hexanoate      | $C_8H_{16}O_2$                                | 2.36  | 2.61    | ı                 | 2.15  | 2.54  |                            | 346. Ethyl suberate                         | C1,H2,O4                                       | 2.53              | 2.54    | 1                 | 2.09  | 2.48  |                            |
| 316. Ethyl benzoate       | $C_9H_{10}O_2$                                | 2.28  | 2.21    | 1                 | 2.17  | 2.56  |                            | 347. Ethyl azelate                          | C <sub>13</sub> H <sub>24</sub> O <sub>4</sub> | 2.99              | 3.15    | 1                 | 2.66  | 3.02  |                            |
| 317. Ethyl heptanoate     | $C_9H_{18}O_2$                                | 2.74  | 3.22    | 1                 | 2.72  | 3.08  |                            | 348. Ethyl sebacate                         | C <sub>14</sub> H <sub>26</sub> O <sub>4</sub> | 3.51              | 3.76    | 1                 | 3.21  | 3.55  |                            |
| 318. Ethyl octanoate      | $C_{10}H_{20}O_{2}$                           | 3.39  | 3.83    | ı                 | 3.28  | 3.61  |                            |                                             | 2                                              |                   | ;       |                   | į     |       |                            |
| 319. Ethyl nonanoate      | $C_{11}H_{22}O_2$                             | 3.80  | 4.44    | 1                 | 3.84  | 4.15  |                            |                                             |                                                |                   |         |                   |       |       |                            |
| 320. Ethyl decanoate      | $C_{12}H_{24}O_{2}$                           | 4.10  | 5.05    | ı                 | 4.41  | 4.69  |                            |                                             |                                                |                   |         |                   |       |       |                            |
|                           |                                               |       |         |                   |       |       |                            |                                             | B. Or                                          | B. Organic solids | ids     |                   |       |       |                            |
| N-containing compounds    |                                               |       |         |                   |       |       |                            |                                             |                                                | 2                 | 1       |                   |       |       |                            |
| 321. Nitromethane         | CH <sub>3</sub> NO <sub>2</sub>               | -0.19 | -0.37   | 1                 | -1.32 | -0.77 |                            |                                             |                                                |                   |         |                   |       |       |                            |
| 322. Nitroethane          | $C_2H_5NO_2$                                  | 0.24  | 0.24    | ı                 | -0.11 | 0.38  |                            | Aromatic hydrocarbons                       |                                                |                   |         |                   |       |       |                            |
| 323. Propionitrile        | $C_3H_5N$                                     | -0.28 | 0.05    | ı                 | -0.32 | 0.19  |                            | 349. Naphthalene                            | ر<br>ب<br>پ                                    | 3.57              | 3.28    | 3.63              | 3.58  | 3.40  | 80                         |
| 324. Acrylonitrile        | $C_3H_3N$                                     | -0.18 | -0.52   | 1                 | -0.52 | 0.00  |                            | 350. 2-Methylnaphthalene                    | Ç.F.                                           | 3.75              | 3.46    | 3.74              | 3.58  | 3.82  | 34                         |
| 325. 1-Nitropropane       | $C_3H_7NO_2$                                  | 0.81  | 0.85    | 1                 | 0.45  | 0.92  |                            | 351. Biphenyl                               | C12H10                                         | 4.31              | 3.78    | 4.36              | 4.25  | 4.14  | 69                         |
| 326. 2-Nitropropane       | $C_3H_7NO_2$                                  | 0.73  | 0.75    | ı                 | 0.20  | 0.68  |                            | 352. Acenaphthene                           | C <sub>12</sub> H <sub>10</sub>                | 4.59              | 4.01    | 4.60              | 4.08  | 3.74  | 95                         |
| 327. 1-Nitrobutane        | C <sub>4</sub> H <sub>9</sub> NO <sub>2</sub> | 1.35  | 1.46    | 1                 | 1.01  | 1.45  |                            | 353. 1,5-Dimethylnaphthal-                  | C <sub>12</sub> H <sub>12</sub>                | 4.68              | 4.51    | 4.73              | 4.46  | 4.23  | 81                         |
| 328. Nitrobenzene         | $C_6H_5NO_2$                                  | 1.78  | 1.64    | 1                 | 1.51  | 1.93  |                            | ene                                         |                                                |                   |         |                   |       |       |                            |
| 329. Aniline              | C <sub>6</sub> H <sub>2</sub> N               | 0.41  | 0.41    | ı                 | 0.44  | 0.91  |                            | 354. 2,3-Dimethylnaphthal-                  | C <sub>12</sub> H <sub>12</sub>                | 4.72              | 4.71    | 4.93              | 4.66  | 4.23  | 102                        |
| 330. 2-Nitrotoluene       | C <sub>2</sub> H <sub>2</sub> NO <sub>2</sub> | 2.32  | 2.25    | ı                 | 1.95  | 2.35  |                            | ene                                         |                                                |                   |         |                   |       |       |                            |
| 331. 3-Nitrotoluene       | $C_7H_7NO_2$                                  | 2.44  | 2.25    | 1                 | 1.95  | 2.35  |                            | 355. 2,6-Dimethylnaphthal-                  | C <sub>12</sub> H <sub>12</sub>                | 4.89              | 4.77    | 4.98              | 4.72  | 4.23  | 108                        |
|                           |                                               |       |         |                   |       |       |                            | ene                                         |                                                |                   |         |                   |       |       |                            |
| S-containing compounds    |                                               |       |         |                   |       |       |                            | 356. Fluorene                               | C <sub>13</sub> H <sub>10</sub>                | 4.92              | 4.19    | 5.09              | 4.60  | 4.04  | 116                        |
| 332. Ethanethiol          | $C_2H_6S$                                     | 09.0  | 09.0    | ı                 | 92.0  | 1.21  |                            | 357. Phenanthrene                           | C <sub>14</sub> H <sub>10</sub>                | 5.15              | 4.44    | 5.22              | 5.03  | 4.59  | 101                        |
| 333. Dimethyl sulfide     | $C_2H_6S$                                     | 0.45  | 0.77    | ı                 | 0.39  | 0.86  |                            | 358. Anthracene                             | C <sub>14</sub> H <sub>10</sub>                | 6.38              | 5.53    | 6.32              | 6.13  |       | 16                         |
| 334. Diethyl sulfide      | C4H10S                                        | 1.45  | 1.99    | ı                 | 1.53  | 1.95  |                            | 359. 2-Methylanthracene                     | $C_{15}H_{12}$                                 | 69.9              | 6.03    | 6.73              | 6.46  | 5.01  | 204                        |
| 335. Thiophenol           | $C_6H_6S$                                     | 2.12  | 2.12    | ı                 | 2.16  | 2.55  |                            | 360. 9-Methylanthracene                     | C <sub>15</sub> H <sub>12</sub>                | 5.87              | 4.86    | 5.57              | 5.41  |       | 81                         |
| 336. Thioanisole          | $C_7H_8S$                                     | 2.39  | 2.39    | 1                 | 2.36  | 2.74  |                            | 361. Pyrene                                 | C <sub>16</sub> H <sub>10</sub>                | 6.18              | 5.32    | 6.30              | 6.04  | 5.05  | 150                        |
|                           |                                               |       |         |                   |       |       |                            |                                             |                                                |                   |         |                   |       |       | 3                          |

TABLE A1 (continued)

| TABLE A1 (continued)               | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |         |                   |       |       |                     | TABLE A1 (continued)           |                                                |       |         |                  |       |        | ļ                   |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------------|-------|-------|---------------------|--------------------------------|------------------------------------------------|-------|---------|------------------|-------|--------|---------------------|
| Compound                           | Empirical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | log 1/S | log 1/S [S:mol/I] |       | log P |                     | Compound                       | Empirical                                      |       | log 1/S | og 1/S [S:mol/l] |       | log P  |                     |
|                                    | Binding of the control of the contro | Obsd. | Eq. 4′  | Eq. 3             | Eq. 2 | Estd. | 7 <sub>m</sub> [°C] |                                | lormula                                        | Obsd. | Eq. 4′  | Eq. 3            | Eq. 2 | Estd.  | 7 <sub>m</sub> [°C] |
| 362. Fluoranthene                  | C <sub>16</sub> H <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.90  | 4.46    | 5.83              | 5.46  | 4.94  | 107                 | 391. 1,2,4,5-Tetrachloro-      | C <sub>6</sub> H <sub>2</sub> Cl <sub>4</sub>  | 5.56  | 5.83    | 5.36             | 5.35  | 4.56   | 138                 |
| 363. 9,10-Dimethylanthra-          | $C_{16}H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.57  | 6.43    | 7.06              | 6.93  | 99.9  | 182                 | benzene                        |                                                |       |         |                  |       |        |                     |
| cene                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | 392. 1,2,4,5-Tetrabromo-       | C <sub>6</sub> H <sub>2</sub> Br <sub>4</sub>  | 6.98  | 6.37    | 6.52             | 6.32  | 5.08   | 182                 |
| 364. 1,2-Benzofluorene             | $C_{17}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.9  | 6.42    | 7.12              | 6.54  | 5.24  | 187                 | benzene                        |                                                |       |         |                  |       |        |                     |
| 365. 2,3-Benzofluorene             | C <sub>17</sub> H <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.27  | 6.04    | 7.33              | 6.75  | 5.24  | 209                 | 393. 1,2,4-Tribromobenzene     | C <sub>6</sub> H <sub>3</sub> Br <sub>3</sub>  | 4.50  | 4.29    | 4.44             | 4.44  | 4.55   | 44                  |
| 366. Chrysene                      | C <sub>18</sub> H <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.06  | 6.87    | 8.05              | 7.76  | 5.78  | 256                 | 394. 1,3,5-Tribromobenzene     | C <sub>6</sub> H <sub>3</sub> Br <sub>3</sub>  | 5.60  | 5.02    | 5.17             | 5.58  | 4.93   | 121                 |
| 367. Triphenylene                  | $C_{18}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.73  | 6.29    | 7.47              | 7.18  | 5.78  | 195                 | 395, 1,2,3-Trichlorobenzene    | C <sub>6</sub> H <sub>3</sub> Cl <sub>3</sub>  | 3.76  | 4.27    | 3.91             | 3.61  | 3.90   | 51                  |
| 368. Naphthacene                   | C <sub>18</sub> H <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.69  | 7.83    | 9.01              | 8.73  | 5.78  | 357                 | 396. 1,3,5-Trichlorobenzene    | C <sub>6</sub> H <sub>3</sub> Cl <sub>3</sub>  | 4.44  | 4.38    | 4.02             | 4.19  | 4.14   | 63                  |
| 369. 1,2-Benzanthracene            | $C_{18}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.21  | 5.93    | 7.11              | 6.81  | 5.78  | 157                 | 397.1,4-Dibromobenzene         | C <sub>6</sub> H <sub>4</sub> Br <sub>2</sub>  | 4.07  | 3.93    | 4.05             | 4.30  | 4.02   | 87                  |
| 370. Perylene                      | $C_{20}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.80  | 7.43    | 9.30              | 9.05  | 6.24  | 277                 | 398. 4-Bromochloro-            | C <sub>6</sub> H <sub>4</sub> BrCl             | 3.63  | 3.70    | 3.64             | 3.82  | 3.76   | 99                  |
| 371. 3,4-Benzopyrene               | $C_{20}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.82  | 6.47    | 7.83              | 7.47  | 6.24  | 175                 | benzene                        |                                                |       |         |                  |       |        |                     |
| 372. Benzo[e]pyrene                | $C_{20}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.72  | 6.47    | 7.84              | 7.48  | 6.24  | 176                 | 399. 4-Chloroiodobenzene       | C <sub>6</sub> H <sub>4</sub> CII              | 4.03  | 3.80    | 3.94             | 4.10  | 4.14   | 53                  |
| 373. Benzo[ $b$ ]fluoranthene      | $C_{20}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.23  | 6.40    | 7.76              | 7.40  | 6.24  | 168                 | 400.1,4-Dichlorobenzene        | C <sub>6</sub> H <sub>4</sub> Cl <sub>2</sub>  | 3.28  | 3.56    | 3.29             | 3.44  | 3.50   | 54                  |
| 374. Benzo[j]fluoranthene          | $C_{20}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.00  | 6.38    | 7.99              | 7.60  | 6.24  | 166                 | 401.1,2-Diiodobenzene          | C <sub>6</sub> H <sub>4</sub> I <sub>2</sub>   | 4.24  | 3.80    | 4.29             | 4.53  | 4.79   | 27                  |
| 375. Benzo[ $k$ ]fluoranthene      | $C_{20}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.50  | 7.20    | 8.56              | 8.21  | 6.24  | 252                 | 402. 1,3-Diiodobenzene         | C <sub>6</sub> H <sub>4</sub> I <sub>2</sub>   | 4.57  | 3.92    | 4.41             | 4.65  | 4.79   | 40                  |
| 376. 9,10-Dimethyl-1,2-            | $C_{20}H_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.63  | 6.81    | 7.82              | 7.60  | 6.85  | 121                 | 403.1,4-Diiodobenzene          | C <sub>6</sub> H <sub>4</sub> I <sub>2</sub>   | 5.25  | 4.79    | 5.28             | 5.53  | 4.79   | 131                 |
| benzanthracene                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | 404. 4-Bromotoluene            | C,H,Br                                         | 3.19  | 3.19    | 3.16             | 3.19  | 3.53   | 26                  |
| 377. 3-Methylcholanthrene          | $C_{21}H_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.97  | 7.33    | 8.64              | 7.96  | 6.67  | 179                 | 405. 2-Bromo-1-isopropyl-      | C <sub>9</sub> H <sub>11</sub> Br              | 4.19  | 5.07    | 4.89             | 5.17  | 4.68   | 106                 |
| 378. Benzo[ <i>g,h,i</i> ]perylene | $C_{22}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.02  | 7.32    | 8.86              | 8.45  | 6.70  | 227                 | benzene                        |                                                |       |         |                  |       |        |                     |
| 379. Indeno[1,2,3- <i>cd</i> ]-    | $C_{22}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.16  | 7.78    | 9.33              | 8.92  | 6.70  | 276                 | 406. Decachlorobiphenyl        | $C_{12}C_{10}$                                 | 10.49 | 13.42   | 12.61            | 11.00 | 8.42   | 305                 |
| pyrene                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | 407. 2,2′,3,3′4,4′,5,5′,6-     | C <sub>12</sub> HCl <sub>9</sub>               | 9.62  | 11.74   | 11.09            | 9.72  | 8.10   | 206                 |
| 380. Dibenz[a,h]anthracene         | C <sub>22</sub> H <sub>14</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.74  | 7.96    | 9.51              | 9.14  |       | 269                 | Nonachlorobiphenyl             |                                                |       |         |                  |       |        |                     |
| 381. Dibenz[a,j]anthracene         | $C_{22}H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.51  | 8.04    | 9.60              | 9.23  |       | 278                 | 408. 2,2',3,3',4,4',5,5'-Octa- | $C_{12}H_2CI_8$                                | 9.16  | 10.55   | 10.06            | 8.94  | 7.78   | 159                 |
| 382. Coronene                      | $C_{24}H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.33  | 9.70    | 11.42             | 10.97 | 7.16  | 440                 | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | 409. 2,2',3,3',5,5',6,6'-Octa- | $C_{12}H_2CI_8$                                | 9.83  | 10.58   | 10.08            | 10.09 | 8.85   | 162                 |
| Halogenated hydrocarbons           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |
| 383. Tetrabromomethane             | CBr₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.14  | 3.57    | 3.40              | 3.73  | 3.47  | 88                  | 410. 2,2',3,4',5,5',6-Hepta-   | $C_{12}H_3Cl_7$                                | 8.89  | 9.72    | 9.37             | 9.41  | 8.32   | 149                 |
| 384. Triiodomethane                | CHI3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.55  | 4.18    | 3.90              | 4.83  |       | 125                 | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |
| 385. Hexachloroethane              | $C_2CI_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.67  | 4.44    | 4.51              | 3.91  | 2.74  | 187                 | 411. 2,2',3,3',4,4'-Hexa-      | C <sub>12</sub> H <sub>4</sub> Cl <sub>6</sub> | 8.91  | 8.99    | 8.79             | 8.17  | 7.13   | 150                 |
| 386. 1,2-Diiodoethylene            | $C_2H_2I_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.22  | 3.24    | 3.05              | 3.34  | 3.23  | 73                  | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |
| 387. Hexachlorobenzene             | င်္ပငါ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.76  | 8.16    | 7.42              | 5.75  |       | 227                 | 412. 2,2',3,3',4,5-Hexa-       | C <sub>12</sub> H <sub>4</sub> Cl <sub>6</sub> | 8.63  | 8.37    | 8.18             | 7.54  | 7.13   | 85                  |
| 388. Pentachlorobenzene            | CeHCIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.65  | 6.04    | 5.44              | 4.59  | 4.34  | 82                  | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |
| 389. 1,2,3,4-Tetrachloro-          | $C_6H_2CI_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.70  | 4.96    | 4.48              | 3.91  | 4.02  | 46                  | 413. 2,2',3,3',5,6-Hexa-       | $C_{12}H_4Cl_6$                                | 8.60  | 8.51    | 8.32             | 8.26  | . 19.1 | 100                 |
| benzene                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |
| 390. 1,2,3,5-Tetrachloro-          | C <sub>6</sub> H <sub>2</sub> Cl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.79  | 2.00    | 4.52              | 4.29  | 4.35  | 20                  | 414. 2,2',4,4',5,5'-Hexa-      | $C_{12}H_4Cl_6$                                | 8.54  | 8.35    | 8.35             | 8.41  | 7.79   | 103                 |
| benzene                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |                   |       |       |                     | chlorobiphenyl                 |                                                |       |         |                  |       |        |                     |

TABLE A1 (continued)

| Compound                                 | Empirical                                              |              | log 1/ | log 1/S [S:mol/I] | Ę,    | log P |             | Compound                                       | Empirical                                      |       | log 1/5 | log 1/S [S:mol/I] |          | log P |                     |
|------------------------------------------|--------------------------------------------------------|--------------|--------|-------------------|-------|-------|-------------|------------------------------------------------|------------------------------------------------|-------|---------|-------------------|----------|-------|---------------------|
|                                          | e nou                                                  | Obsd.        | Eq. 4' | Eq. 3             | Eq. 2 | Estd. | _<br>7_[°C] |                                                | formula                                        | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2    |       | 7 <sub>m</sub> [°C] |
| 415. 2,2',4,4',6,6'-Hexa-                | C <sub>12</sub> H <sub>4</sub> Cl <sub>6</sub>         | 8.60         | 8.45   | 8.45              | 8.76  | 8.02  | 114         | 437. 2-Chlorobiphenyl                          | C <sub>12</sub> H <sub>9</sub> Cl              | 4.50  | 4.19    | 4.66              | 4.59     | 1     | 35                  |
| chlorobiphenyl                           | ;                                                      |              |        |                   |       |       |             | 438. 4-Chlorobiphenyl                          | C <sub>12</sub> H <sub>9</sub> Cl              | 5.21  | 4.60    | 5.08              | 5.01     | 4.78  | 78                  |
| 416. 2,2,3,4,5-Pentachioro-<br>hinhamyl  | $C_{12}H_6CI_5$                                        | 7.52         | 7.77   | 7.73              | 7.13  | 09.9  | 100         | 439. DDT                                       | C <sub>14</sub> H <sub>9</sub> Cl <sub>5</sub> | 8.47  | 7.47    | 7.64              | 7.54     | 6.92  | 108                 |
| 417. 2,2',3,4,5'-Pentachloro-            | C <sub>12</sub> H <sub>5</sub> Cl <sub>5</sub>         | 7.86         | 7.89   | 7.84              | 7.59  | 6.93  | 112         | 440. 6- Fluoro-7-methyl-<br>henzfal-anthracene | $C_{19}H_{13}F$                                | 7.72  | 6.19    | 7.29              | 7.20     | 6.57  | 110                 |
| biphenyl                                 |                                                        |              |        | •<br>•            | 2     |       | 1<br>-<br>- | 441 5-Flioro-7-methyl.                         | ر<br>ت                                         | 77.0  | 9       | 7                 | ,<br>,   | 1     | ,                   |
| 418. 2,2',3,4,6-Pentachloro-             | $C_{12}H_5CI_5$                                        | 7.43         | 7.77   | 7.73              | 7.48  | 6.93  | 100         |                                                | C191 131                                       | 71.1  | 94.0    | 60.7              | 0G'/     | /6.0  | 142                 |
| alphenyl 22, 4 E E, Bossocklass          | =                                                      | 1            | i<br>i | i                 | 1     |       |             | 442. 9-Chioro-7-methyl-                        | C <sub>19</sub> H <sub>13</sub> Cl             | 7.44  | 7.29    | 8.26              | 8.07     | 6.97  | 158                 |
| +13. 2,2 ,4,3,3 -remacmore-<br>biphenyl  | C <sub>12</sub> H <sub>5</sub> Cl <sub>5</sub>         | 06.7         | 7.55   | 7.51              | 7.61  | 7.26  | 77          | benz[a]-anthracene                             |                                                |       |         |                   |          |       |                     |
| 420. 2,3,4,5,6-Pentachloro-              | C <sub>12</sub> H <sub>5</sub> Cl <sub>5</sub>         | 7.68         | 8.00   | 7.95              | 7.03  | 6.28  | 124         | O-containing compounds                         |                                                |       |         |                   |          |       |                     |
| biphenyl                                 |                                                        |              |        |                   |       |       |             | 443. 2.2 - Dimethyl - 1 - propanol             | C.H.                                           | 0.39  | 0.58    | ı                 | 1 00     | 1 27  | i c                 |
| 421. 2,2',3,3'-Tetrachloro-              | $C_{12}H_6CI_4$                                        | 6.93         | 7.23   | 7.33              | 7.21  | 6.49  | 121         | 444. 2,4-Dimethylphenol                        | C <sub>0</sub> H <sub>10</sub> O               | 3.19  | 1 41    | I                 | 2 7      | 7 2.7 | 20<br>20            |
| bipheny)                                 |                                                        |              |        |                   |       |       |             | 445. Thymol                                    | C,1H,1                                         | 1.10  | 2.75    | ı                 | 3.26     | 3.38  | 49                  |
| 422. 2, 2, 3, 5-Tetrachloro-             | $C_{12}H_6CI_4$                                        | 6.23         | 6.91   | 7.00              | 7.01  | 6.61  | 87          | 446. Menthol                                   | C <sub>10</sub> H <sub>20</sub> O              | 2.57  | 2.53    | ı                 | 3.04     | 3.23  | 43                  |
| Dipnenyi<br>433 237 447 Tamashirii       | ē                                                      | 0            | !      |                   |       |       |             | 447. Diphenyl ether                            | C <sub>12</sub> H <sub>10</sub> O              | 3.97  | 3.47    | ı                 | 3.60     | 3.89  | 28                  |
| 423. 2,2 ,4,4 - Letrachioro-<br>hinhonyl | C <sub>12</sub> H <sub>6</sub> Cl <sub>4</sub>         | 6.63         | 6.47   | 6.57              | 69.9  | 6.72  | 41          | 448, 1 - Tetradecanol                          | C <sub>14</sub> H <sub>30</sub> O              | 5.84  | 6.13    | 1                 | 6.16     | 6.24  | 38                  |
| 424 2 2' F F' Tottochloss                | =                                                      | 1            | Š      | 1                 | ,     |       |             | 449, 1-Pentadecanol                            | $C_{15}H_{32}O$                                | 6.35  | 6.81    | I                 | 6.79     | 6.78  | 45                  |
| hiphenyl                                 | 012 T6 C14                                             | 06./         | 9.9    | 90.7              | 7.13  | 6.72  | 87          | 450. 1-Hexadecanol                             | $C_{16}H_{34}O$                                | 7.00  | 7.45    | I                 | 7.38     | 7.31  | 48                  |
| 425.2.3' 4 4'-Tetrachloro-               | ے<br>ت                                                 | 02.3         | 06.7   | 7,00              | ,     | Č     | ,           | 451. 1-Octadecanol                             | $C_{18}H_{38}O$                                | 8.40  | 8.76    | 1                 | 8.60     | 8.38  | 58                  |
| biphenvl                                 | C12116 C14                                             | 0.70         | 06.7   | 66.7              | 4.    | 0.0   | 87.         |                                                |                                                |       |         |                   |          |       |                     |
| 426 234 5-Tatrachloro                    | 3                                                      | ,            | 6      | 1                 | 0     | 1     |             | N-containing compounds                         |                                                |       |         |                   |          |       |                     |
| hiphenyl                                 | <b>C</b> 12∏6 <b>C</b> 14                              | <u>0</u> - / | 06.0   | cn./              | 6.38  | 5.96  | 95          | 452. Methyl carbamate                          | $C_2H_5NO_2$                                   |       | -0.90   | 1                 |          | -1.05 | 52                  |
| 427 2 3' 4' 5-Tetrachloro                | ر<br>د                                                 | 200          | 100    | 1                 | 1     | č     |             | 453. Ethyl carbamate                           | $C_3H_7NO_2$                                   |       | -0.33   | I                 | - 0.88   | -0.56 | 48                  |
| hiphenyl                                 | C12116 C14                                             | 0.00         | /.0./  | / 1 /             | 81./  | 6.61  | 104         | 454. Propyl carbamate                          | $C_4H_9NO_2$                                   | 0.13  | 0.39    | 1                 | -0.21    | -0.03 | 09                  |
| 428 33' 4 4'-Tetrachloro-                | ر<br>ا                                                 | 6 22         | 7.70   | 0                 | 0     | ,     | ,           | 455. Isobutyl carbamate                        | $C_5H_{11}NO_2$                                | 0.77  | 0.97    | 1                 | 0.35     | 0.44  | 29                  |
| hinhenvl                                 | 012116                                                 | 77.0         | 6/./   | 7.63              | 9.78  | 6.43  | 282         | 456. Isoamyl carbamate                         | $C_6H_{13}NO_2$                                | 1.44  | 1.41    | ı                 | 0.73     | 0.97  | 49                  |
| 429 2 2' F Trickle achieved              | <u>-</u>                                               | ,            | i<br>L |                   |       |       |             | 457. Benzamide                                 | C <sub>2</sub> H <sub>2</sub> NO               | 1.32  | 0.82    | 1                 | 1.63     | 0.64  | 130                 |
| 429. 2, 2, 3-1 lichloropiphenyi          | ر <sub>12</sub> H <sub>7</sub> C <sub>13</sub><br>: 3: | 6.16         | 97.6   | 5.99              | 6.05  | 90.9  | 44          | 458. 4-Nitrotoluene                            | C <sub>7</sub> H <sub>7</sub> NO <sub>2</sub>  | 2.49  | 2.51    | ı                 | 2.21     |       | 52                  |
| 450. 2 ,3,4- Irichioropiphenyl           | C <sub>12</sub> H <sub>7</sub> Cl <sub>3</sub>         | 6.52         | 5.91   | 6.14              | 90.9  | 5.96  | 09          | 459. <i>o</i> -Toluidine                       | C,H,N                                          | 0.85  | 2.68    | ı                 | 2.55     |       | 200                 |
| 431. 2,4,4 - Trichlorobiphenyl           | $C_{12}H_7Cl_3$                                        | 6.48         | 5.88   | 6.11              | 6.17  | 6.08  | 22          | 460. Acetanilide                               | C, H, NO                                       | 141   | 0.50    | i                 | 1 49     |       | 110                 |
| 432. 2,4,5-Trichlorobiphenyl             | $C_{12}H_7Cl_3$                                        | 6.45         | 90'9   | 6.31              | 6.25  | 5.96  | 78          |                                                |                                                | •     | )       |                   | <u>}</u> |       | 2                   |
| 433. 3,4,4' - Trichlorobiphenyl          | $C_{12}H_7Cl_3$                                        | 7.23         | 6.18   | 6.41              | 6.35  | 5.96  | 88          | S-containing compounds                         |                                                |       |         |                   |          |       |                     |
| 434. 2,2'-Dichlorobiphenyl               | $C_{12}H_8CI_2$                                        | 5.17         | 5.18   | 5.54              | 5.53  | 5.43  | 61          | 461. o-Toluenesulfonamide                      | C,H,NO,S                                       | 2.02  | 1.33    | i                 | 1.59     | 0.93  | 143                 |
| 435. Z,4 - Dichlorobiphenyl              | $C_{12}H_8Cl_2$                                        | 5.54         | 5.01   | 5.37              | 5.36  | 5.43  | 43          | 462. m-Toluenesulfonamide                      | C,H <sub>9</sub> NO,S                          | 1.34  | 1.00    | 1                 | 1.25     |       | ? 8                 |
| 436. 4,4'-Dichlorobiphenyl               | $C_{12}H_8CI_2$                                        | 6.56         | 6.02   | 6.38              | 6.37  | 5.43  | 149         | 463. p-Toluenesulfonamide                      | C,H <sub>9</sub> NO <sub>3</sub> S             | 1.73  | 1 27    | ı                 | 1 53     | 0.00  | 127                 |
|                                          |                                                        |              |        |                   |       |       |             |                                                | 17) / )                                        | :     | 1       |                   | 3        |       | 3/                  |

Estd. 7<sub>m</sub>[°C]

Eq. 2

Eq. 3

Eq. 4'

Obsd.

log P

log 1/S [S:mol/I]

TABLE A1 (continued)

151 214 116 130 88 95

1.65 0.84 1.74 0.92 1.26 2.28

2.42 2.17 2.18 1.45 1.41 2.54

0.70 1.30 1.45 1.35 1.42

1.91 2.22 1.04 1.99 2.59 134 74 68

1.41 1.80 2.82

2.01 1.84 2.86

2.00 1.90 2.22

1.10 2.33 2.89 56 132 52 61 75 71 69 82

2.33 3.65 2.87 3.41 3.94 4.48 5.01

2.23 4.34 2.76 3.41 4.10 4.62 5.17 6.98

2.33 3.08 2.91 3.60 4.35 4.92 5.51 7.46

2.76 4.91 3.35 3.95 4.60 5.40 6.00 7.80

TABLE A1 (continued)

| Compound                  | Empirical                                      |       | log 1/5 | log 1/5 [5:mol/1] |       | d Bol |                     | Compound                       | Empirical                                                   |
|---------------------------|------------------------------------------------|-------|---------|-------------------|-------|-------|---------------------|--------------------------------|-------------------------------------------------------------|
|                           | Dillinia                                       | Obsd. | Eq. 4'  | Eq. 3             | Eq. 2 | Estd. | 7 <sub>m</sub> [°C] |                                | tormula                                                     |
| Multifunctional compounds |                                                |       |         |                   |       |       |                     | 481. o-Nitroacetanilide        | C,H,N,O                                                     |
| 464. 1,3-Dinitrobenzene   | $C_6H_4N_2O_4$                                 | 2.41  | 2.08    | 1                 | 1.82  | 1.65  | 88                  | 482. p-Nitroacetanilide        | C <sub>8</sub> H <sub>8</sub> N <sub>2</sub> O <sub>3</sub> |
| 465. 2-Nitrophenol        | C <sub>6</sub> H <sub>5</sub> NO <sub>3</sub>  | 1.62  | 0.20    | 1                 | 1.62  | 1.86  | 44                  | 483. Ethyl p-hydroxybenzoate   | C <sub>3</sub> H <sub>10</sub> O <sub>3</sub>               |
| 466. 3-Nitrophenol        | C <sub>6</sub> H <sub>5</sub> NO <sub>3</sub>  | 99.0  | 69.0    | ı                 | 1.33  | 1.12  | 96                  | 484. p-Acetanisidine           | C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub>              |
| 467. 4-Nitrophenol        | C <sub>6</sub> H <sub>6</sub> NO <sub>3</sub>  | 0.63  | 0.85    | 1                 | 1.49  | 1.12  | 112                 | 485. Ethyl p-aminobenzoate     | C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub>              |
| 468. 2-Nitroaniline       | $C_6H_6N_2O_2$                                 | 1.97  | 69.0    | 1                 | 1.44  | 1.44  | 71                  | 486. Propyl p-hydroxy-         | C <sub>10</sub> H <sub>12</sub> O <sub>3</sub>              |
| 469. 3-Nitroaniline       | $C_6H_6N_2O_2$                                 | 2.06  | 1.08    | ı                 | 0.98  | 0.63  | 112                 | benzoate                       | !<br>!                                                      |
| 470. 4-Nitroaniline       | $C_6H_6N_2O_2$                                 | 2.28  | 1.43    | 1                 | 1.33  | 0.63  | 149                 | 487. Phenacetin                | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub>             |
| 471. m-Phenylenediamine   | $C_6H_8N_2$                                    | -0.34 | -0.61   | ı                 | -0.55 | -0.39 | 64                  | 488. Propyl $p$ -aminobenzoate | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub>             |
| 472. p-Phenylenediamine   | $C_6H_8N_2$                                    | 0.47  | 1.11    | ı                 | 1.18  | -0.39 | 245                 | 489. Butyl p-hydroxy-          | C <sub>11</sub> H <sub>14</sub> O <sub>3</sub>              |
| 473. p-Nitrobenzaldehyde  | C <sub>2</sub> H <sub>6</sub> NO <sub>3</sub>  | 1.8   | 1.81    | ı                 | 1.69  | 1.38  | 105                 | benzoate                       |                                                             |
| 474. m-Nitrobenzaldehyde  | C <sub>7</sub> H <sub>5</sub> NO <sub>3</sub>  | 1.97  | 1.35    | ı                 | 1.24  | 1.38  | 22                  | 490. Butyl p-aminobenzoate     | C <sub>11</sub> H <sub>15</sub> NO <sub>2</sub>             |
| 475. 4-Nitroanisole       | C <sub>7</sub> H <sub>7</sub> NO <sub>3</sub>  | 2.41  | 2.61    | ı                 | 1.58  | 1.73  | 54                  | 491. 3,3'-Dichlorobenzidine    | C12H10Cl2N2                                                 |
| 476. Phenylthiourea       | C <sub>2</sub> H <sub>8</sub> N <sub>2</sub> S | 1.86  | 1.25    | ı                 | 1.24  | 0.50  | 154                 | 492. Pentyl p-aminobenzoate    | C <sub>12</sub> H <sub>17</sub> NO <sub>2</sub>             |
| 477. Vanillin             | $C_8H_8O_3$                                    | 1.18  | 0.80    | ı                 | 0.93  | 0.88  | 8                   | 493. Hexyl p-aminobenzoate     | C <sub>13</sub> H <sub>19</sub> NO <sub>2</sub>             |
| 478. Methyl p-hydroxy-    | $C_8H_8O_3$                                    | 1.84  | 0.94    | ı                 | 1.77  | 1.26  | 126                 | 494. Heptyl p-aminobenzoate    | C <sub>14</sub> H <sub>21</sub> NO <sub>2</sub>             |
| benzoate                  |                                                |       |         |                   |       |       |                     | 495. Octyl $p$ -aminobenzoate  | C <sub>15</sub> H <sub>23</sub> NO <sub>2</sub>             |
| 479. Methyl p-amino-      | $C_8H_9NO_2$                                   | 1.60  | 1.07    | 1                 | 1.16  | 0.78  | 115                 | 496. Nonyl p-aminobenzoate     | C <sub>16</sub> H <sub>25</sub> NO <sub>2</sub>             |
| benzoate                  |                                                |       |         |                   |       |       |                     | 497. Dodecyl p-amino-          | C <sub>19</sub> H <sub>31</sub> NO <sub>2</sub>             |
| 480. Phthalimide          | C.H.N.O.                                       | 239   | -0.14*  | ı                 | 0.55  | -0 02 | 220                 | hanzoata                       |                                                             |

<sup>a</sup>Original method [Ref.6] gives 2.40.