

MATAKULIAH TEORI BAHASA & AUTOMATA

Rahmiati, M.Kom

Sejarah Mesin Turing (1)

- Diusulkan pada tahun 1936 oleh Alan Turing, seorang matematikawan Inggris sebagai model matematis sederhana sebuah komputer.
- Meskipun sederhana, Mesin Turing memiliki kemampuan untuk menggambarkan perilaku komputer general-purpose.
- Mesin Turing dapat digunakan untuk menghitung kelas fungsi bilangan bulat yang dikenal sebagai fungsi rekursif sebagian (partial recursive function).

 Alan Mathison Turing, (23 June) 1912 – 7 June 1954), was an English mathematician, logician, <u>cryptanalyst</u>, and <u>computer scientist</u>. He was highly influential in the development of computer science, providing a formalisation of the concepts of "algorithm" and "computation" with the **Turing** machine, which played a significant role in the creation of the modern computer. Turing is widely considered to be the father of computer science and artificial intelligence.[3]

Sumber: Wikipedia.org

Sejarah Mesin Turing (2)

- Sama seperti Finite State Automata dan Push Down Automata yang dapat mengenali bahasa formal, maka mesin Turing juga dapat berperan sebagai mesin pengenal bahasa formal.
- Bahasa yang dikenali oleh Mesin Turing adalah bahasa tanpa-pembatasan (non-restricted language), yang disebut juga himpunan terenumerasi rekursif (recursively enumerable set).

Model Mesin Turing (1)

- Sebuah mesin Turing terdiri dari komponen-komponen :
 - 1. Pengendali berhingga (finite control)
 - 2. Pita masukan dengan sifat:
 - panjangnya tidak berhingga
 (ujung kiri terbatas, ujung kanan tidak terbatas)
 - dapat dibaca maupun ditulis
 - sel yang tidak berisi simbol masukan akan berisi simbol kosong (blank = B)
- Pada keadaan awal, n sel pertama dari pita masukan berisi rangkaian simbol yang harus dikenali (dinyatakan sebagai a_1 , a_2 , ..., a_n). Sel di sebelah kanan rangkaian simbol berisi B.

Model Mesin Turing (2)

Model Mesin Turing (3)

Perbedaan mesin Turing dengan FSA dan PDA

FSA/PDA	Mesin Turing
1. Pita masukan hanya dapat dibaca.	1. Pita masukan dapat dibaca dan ditulis.
Head hanya dapat digerakkan ke kanan	2. <i>Head</i> dapat digerakkan ke kiri maupun ke kanan.
3. Pita masukan hanya berisi string masukan.	3. Pita masukan juga berfungsi sebagai tempat penyimpanan yang pada pengaksesannya tidak dibatasi. *)

^{*)} Bandingkan dengan tempat penyimpanan PDA yang hanya dapat diakses sebagai *stack*

Aksi Mesin Turing

- Perilaku mesin Turing bergantung pada simbol masukan yang berada pada posisi head baca/tulis dan status dari Finite Control.
- Dalam setiap gerakannya, mesin Turing dapat melakukan salah satu dari aksi berikut:
 - 1. Berubah status.
 - 2. Menuliskan simbol pada pita masukan. Aksi penulisan ini mengubah simbol yang sebelumnya berada pada sel tsb.
 - 3. Menggerakkan *head* ke kiri atau ke kanan.

Contoh: Mesin Turing M akan digunakan untuk mengenali bahasa $L = \{0^n1^n \mid n \ge 1\}$. Contoh *string* di dalam L misalnya 01, 0011, 000111, 00001111, dst.

Cara kerja mesin Turing untuk mengenali bahasa L dinyatakan dengan algoritma berikut:

- 1. Ganti simbol '0' paling kiri dengan simbol 'X'.
- 2. Gerakkan *head* ke kanan hingga dijumpai simbol '1'.
- 3. Ganti simbol '1' paling kiri dengan simbol 'Y'
- 4. Gerakkan head ke kiri hingga dijumpai simbol 'X'
- 5. Geser head ke kanan (akan diperoleh '0' paling kiri).
- 6. Kembali ke langkah 1.

- Jika pada saat bergerak ke kanan untuk mencari '1', mesin Turing M menjumpai simbol B, maka berarti banyaknya '0' lebih dari banyaknya '1'.
 Kesimpulannya, string masukan tidak dikenali.
- Jika pada saat bergerak ke kiri *M* tidak menjumpai lagi '0', maka *M* memeriksa apakah masih ada '1'. Bila habis maka *string* diterima (dikenali).
- Jika sebuah string diterima (dikenali), maka mesin Turing M berhenti. Untuk string yang tidak dikenali (ditolak) ada kemungkinan M tidak berhenti (looping).

Contoh: String masukan adalah 000111

Kesimpulan: string '000111' dikenali oleh mesin M.

 Dari penjelasan di atas, terlihat ada empat modus kerja yang berbeda dari mesin Turing:

Status	Aksi	Keterangan
$q_0^{}$	JUMPA 0	Menemukan simbol '0'
$q_{_1}$	CARI 1	Mencari simbol '1' ke arah kanan
$q_2^{}$	CARI X	Mencari simbol X ke arah kiri
q_3	SISA	Memeriksa simbol yang tersisa pada pita masukan

- Dalam setiap modus kerja (status), aksi yang dilakukan mesin Turing mungkin menerima/membaca berbagai simbol pada pita.
- Aksi yang dilakukan dalam setiap modus kerja (status) dapat berbeda-beda.
- Perilaku/gerakan yang lengkap dari mesin Turing pengenal 0ⁿ1ⁿ ditunjukkan pada tabel berikut:

	0	1	X	Υ	В
JUMPA 0 (q ₀)	status q_1 tulis 'X' kanan	-	_	Status q_3 kanan	-
CARI 1 (q ₁)	kanan	status q ₂ tulis 'Y' kiri	-	kanan	-
CARI X (q_2)	kiri	-	status $q_{_0}$ kanan	kiri	
SISA (q ₃)	-	-	-	kanan	status $q_{_4}^{}-$

string dikenali

<u>Cara membaca tabel ini</u>: Misalkan dalam status q_0 , jika mesin menerima simbol '0' maka mesin berubah ke status q_1 , mengganti simbol '0' dengan X dan menggerakkan *head* ke kanan

Notasi yang lebih ringkas:

Tripel (q, a, D) menyatakan aksi bahwa mesin berubah ke status q, menuliskan simbol a, dan menggerakkan head ke arah D.

	0	1	X	Y	В
$q_{0}^{}$	(q_1, X, R)	-	-	(q_3, Y, R)	-
$q_{_1}$	$(q_1, 0, R)$	(q_2, Y, L)	-	(q_1, Y, R)	-
q_2	$(q_2, 0, L)$	-	(q_0, X, R)	$(q_2 Y, L)$	-
q_3	-	-	-	(q_3, Y, R)	(q_4, B, R)

Definisi Formal Mesin Turing

Sebuah mesin Turing M dilambangkan dengan notasi formal sbb:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

yang dalam hal ini,

Q: himpungan berhingga status (a, b, c, ... atau $q_0, q_1, q_2, ...)$

Γ: himpunan berhingga simbol-simbol yang muncul di pita

 $B \subseteq \Gamma$: melambangkan simbol *blank*

Σ: himpunan symbol *input*, subset dari Γ

δ: fungsi pergerakan yang memetakan $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}^{*}$

 $q_0 \subseteq Q$: status awal

 $F \subseteq Q$: himpunan status akhir atau *accepted states*

^{*)} L dan R menyatakan gerakan head ke kiri/kanan

• Dengan menggunakan notasi formal tersebut, maka mesin Turing pengenal bahasa $L = \{0^n1^n \mid n \ge 1\}$ dapat ditulis sbb:

vanishing perigerial bands at
$$Z = \{0, 1, 1, 1, 2, 1\}$$
 diapate dituits 355.
$$M = \{Q, \sum, \Gamma, \delta, q_0, B, F\}$$
 yang dalam hal ini,
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Gamma = \{0, 1, X, Y, B\}$$

$$\sum = \{0, 1, B\}$$

$$q_0 = q_0$$

$$F = \{q_4\}$$

$$\delta(q_0, 0) = (q_1, X, R); \quad \delta(q_0, Y) = (q_3, Y, R);$$

$$\delta(q_1, 0) = (q_1, 0, R); \quad \delta(q_1, 1) = (q_2, Y, L); \quad \delta(q_1, Y) = (q_1, Y, R);$$

$$\delta(q_2, 0) = (q_2, 0, L); \quad \delta(q_2, X) = (q_0, X, L); \quad \delta(q_2, Y) = (q_2, Y, L);$$

$$\delta(q_3, Y) = (q_3, Y, R); \quad \delta(q_3, B) = (q_4, B, R);$$

Figure 8.10: Transition diagram for a TM that accepts strings of the form 0^n1^n

Sekuens gerakan mesin Turing ketika menerima input '0011':

$$q_0 = -----> (q_1, X, R) = -----> (q_1, 0, R) = -----> (q_2, Y, L) = -----> (q_2, 0, L) = -----> (q_0, X, R) = -----> (q_1, X, R) = -----> (q_1, Y, R) = -----> (q_2, Y, L) = -----> (q_2, Y, L) = -----> (q_2, Y, L) = -----> (q_3, Y, R) = -----> (q_4, B, R)$$

Deskripsi Sesaat

- Keadaan sebuah Mesin Turing setiap saat dicirikan oleh tiga hal:
 - 1. Status sekarang (q)
 - 2. Simbol yang sedang diterima/dibaca
 - 3. Posisi head ("nomor sel" yang sedang dibaca) pada pita.

• Jika $\alpha_2 = a\beta$, maka konfigurasi sesaat mesin Turing pada gambar di atas dapat dinyatakan secara tekstual oleh deskripsi sesaat (*instantaneous description*):

$$\alpha_1 q \alpha_2$$

yang artinya:

- mesin sedang berada pada status q
- $\alpha_1 \alpha_2$ adalah string yang tertera pada pita
- mesin sedang membaca simbol paling kiri dari $\alpha_{\scriptscriptstyle 2}$

• Contoh gerakan ke kiri oleh $\delta(p, X_i) = (q, Y, L)$: $X_1 X_2 ... X_{i-1} p X_i X_{i+1} ... X_n + X_1 X_2 ... q X_{i-1} Y X_{i+1} ... X_n$

- Contoh gerakan ke kanan oleh $\delta(p, X_i) = (q, Y, R)$: $X_1 X_2 \dots X_{i-1} p X_i X_{i+1} \dots X_n \vdash X_1 X_2 \dots X_{i-1} Y q X_{i+1} \dots X_n$
- Sebuah *string* (kalimat) diterima oleh mesin Turing $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ jika mesin tersebut mencapai status akhir. Dengan kata lain suatu kalimat w diterima oleh M jika terdapat rangkaian deskripsi sesaat:

$$q_0^* w \mid \alpha_1 p \alpha_2$$

yang dalam hal ini $p \in F$ dan $\alpha_1 \alpha_2 \in \Gamma^*$

• Contoh: Q = $\{q_0, q_1, q_2, q_3, q_4\}$, $\Gamma = \{0, 1, X, Y, B\}$, $\Sigma = \{0, 1, B\}$ $q_0 = q_0$, $F = \{q_4\}$, dan fungsi transisi δ dinyatakan oleh tabel berikut:

	0	1	X	Y	В
$q_{_{0}}$	(q_1, X, R)	-	-	(q_3, Y, R)	-
$q_{_1}$	$(q_1, 0, R)$	(q_2, Y, L)	-	(q_1, Y, R)	-
q_2	$(q_2, 0, L)$	-	(q_0, X, R)	$(q_2 Y, L)$	-
q_3	-	-	-	(q_3, Y, R)	(q_4, B, R)

maka komputasi string '0011' oleh mesin Turing M dinyatakan dalam rangkaian deskripsi sesaat berikut: $q_00011 \mid Xq_1011 \mid X0q_111 \mid Xq_20Y1 \mid q_2X0Y1 \mid Xq_00Y1 \mid XXq_1Y1 \mid XXYq_11 \mid XXq_2YY \mid Xq_2XYY \mid XXQ_1YY \mid XXYYq_2B \mid XXYYBq_1B \ (accepted!)$

Sumber:

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction To Automata Theory, Languanges, and Computation 3rd Edition, Addison Wesley, 2007.
- 2. Hans Dulimarta, Catatan Kuliah Matematika Informatika (Bagian Mesin Turing), Program Magister Informatika ITB, 2003.

Mesin turing mempunyai 7

Tuple M = (Q,
$$\sum$$
, Γ , δ , S,

$$F, \theta$$
 = himpunan state

$$\sum$$
 = Himpunan simbol input

$$\Gamma$$
 = simbol pada pita

$$\delta$$
 = fungsi transisi

S = state awal,
$$S \in Q$$

Contoh:

Terdapat mesin turing dengan

konfigurasi

$$Q = \{q_1, q_2\}$$

 $\sum = \{a, b\}$
 $\Gamma = \{a, b, b\}$

$$F = \{q_2\}$$

$$S = \{ q_1 \}$$

Fungsi transisi

$$\delta (q_1, a) = (q_1, a, R)$$

$$\delta (q_1, \overline{b}) = (q_1, \overline{a}, R)$$

$$\delta(q_1, b) = (q_2, b, L)$$

$$-\delta (q_1, a) = (q_1, a, R)$$

State q_1 , head menunjuk karakter 'a' pada pita menjadi state q_1 , head bergerak ke kanan.

$$-\delta(q_1, b) = (q_1, a, R)$$

State q₁, head menunjuk karakter 'b' pada pita menjadi state q₁, head menulis karakter 'a' lalu bergerak ke kanan

$$-\delta (q_1, b) = (q_2, b, L)$$

Pada State q_1 , head menunjuk karakter 'b' pada pita menjadi state q_2 , head bergerak ke kiri.

Jika mesin turing tersebut menerima input 'abbaa', apakah diterima oleh mesin turing atau ditolak

Head menunjuk ' b ' lalu head bergerak ke kiri

State berhenti pada diterima.

q₂, q₂ adalah final state, maka state input ' abbaa'