

General Information

Entry name LIP1_CANRU

Accession number P20261

XP-002230351

Created Rel. 17, 1-FEB-1991

Sequence update Rel. 27, 1-OCT-1993

Annotation update Rel. 41, 15-JUN-2002

P.D. 01-02-FAJ
P. 1 - 7 7

Description and origin of the Protein

Description Lipase 1 precursor (EC 3.1.1.3).

Gene name(s) LIP1.

Organism source *Candida rugosa* (Yeast) (*Candida cylindracea*).

Taxonomy Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; mitosporic Saccharomycetales; Candida.

NCBI TaxID 5481

References

[1] Longhi,S., Fusetti,F., Grandori,R., Lotti,M., Vanoni,M., Alberghina,L.,
Cloning and nucleotide sequences of two lipase genes from *Candida cylindracea*.
 (1992) *Biochim. Biophys. Acta* **1131**:227-232

Position SEQUENCE FROM N.A.

Comments STRAIN=ATCC 14830;

Medline 92305068

PubMed 1610906

[2] Kawaguchi,Y., Honda,H., Taniguchi-Morimura,J., Iwasaki,S.,
The codon CUG is read as serine in an asporogenic yeast *Candida cylindracea*.
 (1989) *Nature* **341**:164-166

Position SEQUENCE OF 12-549 FROM N.A., AND PARTIAL SEQUENCE.

Comments STRAIN=ATCC 14830 / MS-5;

Medline 89384874

PubMed 2506450

[3] Grochulski,P., Li,Y., Schrag,J.D., Bouthillier,F., Smith,P., Harrison,D., Rubin,B., Cygler,M.,
Insights into interfacial activation from an open structure of *Candida rugosa* lipase.
 (1993) *J. Biol. Chem.* **268**:12843-12847

Position X-RAY CRYSTALLOGRAPHY (2.06 ANGSTROMS).

Medline 93286131

PubMed 8509417

[4] Grochulski,P., Bouthillier,F., Kazlauskas,R.J., Serreqi,A.N., Schrag,J.D., Ziomek,E., Cygler,M.,
Analogs of reaction intermediates identify a unique substrate binding site in *Candida rugosa* lipase.
 (1994) *Biochemistry* **33**:3494-3500

Position X-RAY CRYSTALLOGRAPHY (2.05 ANGSTROMS).

Medline 94190867

PubMed 8142346

[5] Benjamin,S., Pandey,A.,
***Candida rugosa* lipases: molecular biology and versatility in biotechnology.**
 (1998) *Yeast* **14**:1069-1087

Position REVIEW.

Medline 98451816

PubMed 9778794

Comments

CATALYTIC ACTIVITY

TRIACYLGLYCEROL + H(2)O = DIACYLGLYCEROL + A FATTY ACID ANION.

SIMILARITY

BELONGS TO THE TYPE-B CARBOXYLESTERASE/LIPASE FAMILY.

Copyright

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See <http://www.isb-sib.ch/announce/> or send an email to license@isb-sib.ch).

Database cross-references

EMBL	X64703;CAA45957.1;--. X16712;CAA34684.1;--.
PIR	S05684;S05684. S23448;S23448. 1CRL;31-JAN-94. 1LPM;20-APR-95. 1LPN;20-APR-95.
PDB	1LPO;20-APR-95. 1LPP;20-APR-95. 1LPS;08-MAR-95. 1TRH;31-JAN-94.
InterPro	IPR002018;CarbesteraseB. IPR000379;Ser_estrs_site.
Pfam	PF00135;COesterase;1.
PROSITE	PS00122;CARBOXYLESTERASE_B_1;1. PS00941;CARBOXYLESTERASE_B_2;1.

Keywords

Hydrolase; Lipid degradation; Signal; Glycoprotein; Multigene family; 3D-structure;

Features

Key	Begin	End	Length	Description
SIGNAL	1	15	15	
CHAIN	16	549	534	LIPASE 1.
ACT_SITE	224	224	1	
ACT_SITE	356	356	1	
ACT_SITE	464	464	1	
DISULFID	75	112	38	
DISULFID	283	292	10	
CARBOHYD	329	329	1	N-LINKED (GLCNAC...).
CARBOHYD	366	366	1	N-LINKED (GLCNAC...).
VARIANT	398	398	1	G -> Q.

STRAND	18	20	3
TURN	22	23	2
STRAND	26	28	3
STRAND	30	31	2
STRAND	36	42	7
STRAND	44	44	1
HELIX	49	51	3
TURN	52	53	2
STRAND	58	58	1
TURN	64	65	2
STRAND	67	67	1
STRAND	69	69	1
STRAND	74	74	1
TURN	80	81	2
HELIX	88	97	10
TURN	98	98	1
HELIX	100	105	6
STRAND	108	108	1
STRAND	114	119	6
TURN	121	122	2
TURN	125	126	2
STRAND	129	135	7
TURN	139	141	3
TURN	146	147	2
HELIX	151	159	9
TURN	160	161	2
STRAND	165	169	5
HELIX	174	178	5
HELIX	182	187	6
TURN	188	188	1
TURN	190	191	2
HELIX	192	207	16
HELIX	208	211	4
TURN	212	212	1
STRAND	213	223	11
TURN	224	224	1
HELIX	225	235	11
HELIX	236	239	4
STRAND	242	243	2
TURN	244	245	2
STRAND	246	247	2
STRAND	251	255	5
TURN	265	266	2
HELIX	268	281	14

TURN	282	282	1
TURN	284	285	2
HELIX	289	295	7
HELIX	298	306	9
TURN	307	307	1
TURN	311	312	2
TURN	314	317	4
HELIX	334	339	6
TURN	340	341	2
STRAND	348	353	6
TURN	354	354	1
STRAND	355	355	1
TURN	356	357	2
HELIX	358	361	4
HELIX	362	364	3
TURN	365	366	2
HELIX	370	380	11
TURN	382	383	2
HELIX	386	395	10
HELIX	400	402	3
TURN	406	407	2
TURN	409	412	4
HELIX	418	429	12
TURN	430	430	1
HELIX	431	440	10
STRAND	446	451	6
TURN	453	456	4
TURN	458	460	3
STRAND	463	463	1
TURN	464	465	2
HELIX	466	472	7
TURN	473	473	1
TURN	477	478	2
HELIX	479	482	4
TURN	483	483	1
HELIX	484	492	9
HELIX	495	498	4
STRAND	507	507	1
TURN	510	511	2
STRAND	517	520	4
STRAND	525	528	4
HELIX	534	541	8
HELIX	544	547	4

Sequence Information

Length: 549 aa, molecular weight: 58550 Da, CRC64 checksum: 27A40BD318757CE0

MELALALSLI	ASVAAAPTT	LANGDTITGL	NAIINEAFLG	IPFAEPPVGN	LRFKDPVPYS	60
GSLDGQKFTS	YGPSCMQQNP	EGTYEEENLPK	AALDLVMSK	VFEAVSPSSE	DCLTINVRP	120
PGTKAGANLP	VMLWIFGGGF	EVGGTSTFPP	AQMITKSIAAM	GKPIIHVSVN	YRVSSWGFLA	180
GDEIKAEGSA	NAGLKQDQLG	MQWVADNIAA	FGGDPTKVTI	FGESAGSMSV	MCHILWNDGD	240
NTYKGKPLFR	AGIMQSGAMV	PSDAVDGIYG	NEIFDLLASN	AGCGSASDKL	ACLRGVSSDT	300
LEDATNNTPG	FLAYSSLRLS	YLPRPDGVNI	TDDMYALVRE	GKYANIPVII	GDQNDEGTFF	360
GTSSLNVTTD	AOAREYFKQS	FVHASDAEID	TLMTAYPGDI	TQGSPFDTGI	LNALTPOQFKR	420
ISAVLGDLGF	TLARRYFLNH	YTGGTKYSFL	SKQLSGLPVL	GTFHSNDIVF	QDYLLGSGSL	480
IYNNAFIAFA	TDLDPNTAGL	LVKWPEYTSS	SQSGNNLMMI	NALGLYTGKD	NFRTAGYDAL	540
FSNPPSFFV						549

//

General	Description	References	Comments	Links	Keywords	Features	Sequence
---------	-------------	------------	----------	-------	----------	----------	----------

Title: EP02009616_0010.PROT**Application Date: 07-Feb-2003**

>>SWALL:LIP1_CANRU P20261 Lipase 1 precursor (EC 3.1.1.3 (549 aa) 01-Feb-1991
 initn: 3466 init1: 3466 opt: 3468 Z-score: 3919.8 bits: 735.1 E(): 3.8e-210
 Smith-Waterman score: 3468; 96.276% identity (96.276% ungapped) in 537 aa overlap (11·

10	20	30	40	50	
EP0200 SMNSRGPAGRLGSVPTATLANGDTITGLNAIINEAFLGIPFAEPPVGNLRFKDPVPYS:::.....:::.....:::.....:::.....:::.....:::					
SWALL: MELALALSLIASVAAAPTATLANGDTITGLNAIINEAFLGIPFAEPPVGNLRFKDPVPYS 10 20 30 40 50 60					
60	70	80	90	100	110
EP0200 GSLDGQKFTSYGPSCMQQNPEGTYEENLPKAALDLVMQSKVFEAVSPSSEDCLTINVVRP :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: GSLDGQKFTSYGPSCMQQNPEGTYEENLPKAALDLVMQSKVFEAVSPSSEDCLTINVVRP 70 80 90 100 110 120					
120	130	140	150	160	170
EP0200 PGTKAGANLPVMLWIFGGGFEVGGTSTFPPAQMITKSIAMGKPIIHVSVNYRVSSWGFLA :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: PGTKAGANLPVMLWIFGGGFEVGGTSTFPPAQMITKSIAMGKPIIHVSVNYRVSSWGFLA 130 140 150 160 170 180					
180	190	200	210	220	230
EP0200 GDEIKAEGSANAGLKDQRGMQWVADNIAAFGGDPTKVTIFGESAGSMSVMCHILWNDGD :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: GDEIKAEGSANAGLKDQRGMQWVADNIAAFGGDPTKVTIFGESAGSMSVMCHILWNDGD 190 200 210 220 230 240					
240	250	260	270	280	290
EP0200 NTYKGKPLFRAGIMQSGAMVPSDAVDGVYGNEIFDLLASDAGCGSASDKLACLRGVSSDT :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: NTYKGKPLFRAGIMQSGAMVPSDAVDGIYGNEIFDLLASNAGCGSASDKLACLRGVSSDT 250 260 270 280 290 300					
300	310	320	330	340	350
EP0200 LEDATNNTPGFLAYSSLRLSYLPRPDGVVNITDDMFALVREGKYASVPVIIGDQNDEGTFF :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: LEDATNNTPGFLAYSSLRLSYLPRPDGVVNITDDMYALVREGKYANIPVIIGDQNDEGTFF 310 320 330 340 350 360					
360	370	380	390	400	410
EP0200 GTSSLNNTDAEARQYFTQSFVHASDAELDTLMTAYPQDITQGSPFDTGVNLALTQFQFKR :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: GTSSLNNTDAQAREYFKQSFVHASDAEIDTLMTAYPGDITQGSPFDTGILNALTPQFKR 370 380 390 400 410 420					
420	430	440	450	460	470
EP0200 ISAVLGDLAFIHARRYFLNHYTGGTKYSFLSKQLSGLPVLTGFHSNDIVFQDYLLGSGSL :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: ISAVLGDLGFTLARRYFLNHYTGGTKYSFLSKQLSGLPVLTGFHSNDIVFQDYLLGSGSL 430 440 450 460 470 480					
480	490	500	510	520	530
EP0200 IYNNAFIAFATDLDPTAGLLVKWPEYTSSSQSGNNLMMINALGLYTGKDNRRTAGYDAL :::.....:::.....:::.....:::.....:::.....:::.....:::					
SWALL: IYNNAFIAFATDLDPTAGLLVKWPEYTSSSQSGNNLMMINALGLYTGKDNRRTAGYDAL 490 500 510 520 530 540					

540

EP0200 FSNPPSFFV

: : : : :
SWALL: FSNPPSFFV