1 Numerická kvadratura

Kvadratura V původním významu slova (ve starověkém Řecku) šlo o nalezení Euklidovské konstrukce¹ čtverce o stejném obsahu jako daný geometrický objekt.

Geometrický význam určitého integrálu Výpočet obsahu plochy pod grafem funkce.

Numerická integrace pomocí kvadratur Na intervalu [a,b] uvažujeme uzly $x_0 < x_1 < \ldots < x_n$, $x_i \in [a,b]$, dále uvažujeme váhy $\omega_0, \ldots, \omega_n$, kde $\omega_i \in \mathbb{R}$.

$$I(f) = \int_a^b f(x) dx \approx Q(f) = \sum_{i=0}^n \omega_i f(x_i).$$

Chybu budeme značit E(f) = I(f) - Q(f).

1.1 Newton-Cotesovy kvadraturní formule

Jde o kvadraturu na ekvidistantním dělení intervalu [a,b], tedy s volbou uzlů $a=x_0 < x_1 < \ldots < x_n = b$, kde $x_i=a+\frac{i}{n}(b-a)$, jež vzniká *přesnou* integrací Lagrangeova interpolačního polynomu $L_n(x)$ k funkci f(x); $L_n \approx f$.

$$I(f) = \int_{a}^{b} f(x) \, dx \approx \int_{a}^{b} L_{n}(x) \, dx = \sum_{i=0}^{n} f(x_{i}) \underbrace{\int_{a}^{b} \prod_{j \neq i} \frac{x - x_{j}}{x_{i} - x_{j}} \, dx}_{(a)} = Q(f)$$

Z vyjádření chyby Lagrangeovy interpolace plyne vyjádření chyby kvadraturní formule

$$E(f) = \int_{a}^{b} \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{j=0}^{n} (x - x_j) dx.$$

Obdélníkové pravidlo: n = 0, volíme $x_0 = \frac{a+b}{2}$.

Obecný tvar kvadratury; odhad chyby (je-li $f \in C^1([a,b])$):

$$Q(f) = f\left(\frac{a+b}{2}\right)(b-a);$$
 $E(f) = \frac{1}{2}f'(\xi)(b-a)^2 \text{ pro } \xi \in [a,b].$

Řád kvadratury je 1.

Lichoběžníkové pravidlo: n = 1, volíme $x_0 = a$, $x_1 = b$.

Obecný tvar kvadratury; odhad chyby (je-li $f \in C^2([a,b])$):

$$Q(f) = \frac{1}{2}(f(a) + f(b))(b - a); \qquad E(f) = -\frac{1}{12}f''(\xi)(b - a)^3 \text{ pro } \xi \in [a, b].$$

Rád kvadratury je 1.

¹Euklidovská konstrukce: Konstrukce pomocí kružítka a pravítka (s jednou hranou, bez značek pro měření).

Simpsonovo pravidlo: n=2, volíme $x_0=a$, $x_1=\frac{a+b}{2}$, $x_2=b$.

Obecný tvar kvadratury; odhad chyby (je-li $f \in C^4([a,b])$):

$$Q(f) = \frac{1}{6} \left(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right) (b-a);$$

$$E(f) = \frac{1}{2880} f^{(4)}(\xi) (b-a)^5 \text{ pro } \xi \in [a,b].$$

Řád kvadratury je 3.

Úloha 1. Aproximujte integrál $\int_0^2 e^{-x^2} dx = 0.882081...$ pomocí obdélníkového, lichoběžníkového a Simpsonova pravidla.

[Hint: Potřebujete-li, zaokrouhlete $e^{-1}\approx 0.37,\ e^{-2}\approx 0.14,\ e^{-3}\approx 0.05,\ e^{-4}\approx 0.02.$]

Úloha 2. Libovolná Newton-Cotesova kvadratura na intervalu [a, b] integruje přesně konstantní funkce. Využijte této vlastnosti k odvození vztahu pro součet vah.

Úloha 3. Ukažte, že váhy libovolné Newton-Cotes kvadratury $\sum_{i=0}^{n} \omega_i f(x_i)$ jsou "symetrické", tedy že

$$\omega_i = \omega_{n-i}$$
.

[Hint: Začněte se svými úvahami na intervalu [-1,1]. Pro n=2,3 si nakreslete lagrangeovské bázové funkce. Uvažujte nad vzájemnou symetrií bázových funkcí. Zobecněte vaše úvahy pro libovolné n a na libovolný interval [a,b].]

Úloha 4. Odvoďte Newton-Cotesovu formuli pro výpočet integrálu $\int_0^1 f(x) dx$ pro čtyři ekvidistantní uzly.

[Hint: Za použití výsledků Úloh 2 a 3 si zkuste co nejvíce zjednodušit výpočty. Mělo by vám stačit vypočítat jeden integrál.]

Úloha 5 (Navíc). Nalezněte kvadraturní formuli tvaru

$$\int_0^1 f(x) dx \approx \omega_0 f(0) + \omega_1 f(1),$$

která je přesná pro všechny funkce tvaru $\alpha e^x + \beta \cos(\pi x/2)$.

1.2 Gaussova kvadratura

Fakt, že pro některá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro vhodně umístěné uzly může mít kvadratura vyšší algebraický stupeň. V Gaussově kvadratuře jsou uzly a váhy zvoleny tak, aby řád kvadratury byl maximální: pro n+1 uzlů x_0, \ldots, x_n získáme maximální řád přesnosti 2n+1 (tj. pro prostor dimenze 2n+2).

Shrnutí myšlenky Gaussovy kvadratury: Nechť $f \in P_{2n+1}$, L_{n+1} je polynom stupně n+1 kolmý na P_n . Pak existují polynomy $q, r \in P_n$ tak, že platí $f(x) = L_{n+1}(x)q(x) + r(x)$ (dělení polynomu f polynomem L_{n+1} se zbytkem r).

Uvažujeme kvadraturu s uzly $x_0 ... x_n$ odpovídajícími kořenům polynomu L_{n+1} . Víme, že kvadratura s n+1 uzly a vahami odpovídajícími integrálům lagrangeovým bázovým funkcím bude přesná alespoň pro P_n . Nyní rozepíšeme integrál a kvadraturu polynomu f:

$$I(f) = \int L_{n+1}(x)q(x) + \int r(x) = \underbrace{I(r) = Q(r)}_{\text{přesná pro } P_n},$$

$$Q(f) = Q(L_{n+1}q) + Q(r) = \sum_{i=0}^{n} \omega_i \left(\underbrace{L_{n+1}(x_i)}_{0} q(x_i) + r(x_i)\right) = Q(r).$$

Uzly x_0, \ldots, x_n už tedy nebudou ekvidistantní. Jak lze získat váhy kvadraturní formule?

Úloha 6. Odvoďte dvoubodovou Gaussovu kvadraturní formuli pro $\int_{-1}^{1} f(x) dx$. Tedy najděte x_0, x_1, ω_0 a ω_1 tak, aby kvadraturní formule $Q(f) = \omega_0 f(x_0) + \omega_1 f(x_1)$ byla přesná pro polynomy stupně nejvýše β .

Pro numerický výpočet zadaného integrálů na intervalu (a, b) musíme pomocí lineární substituce buď převést zadaný integrál na intervalu (-1, 1), nebo, což je v praxi obvyklejší postup, přeškálovat kvadraturní uzly a váhy.

Úloha 7. Pomocí přeškálování uzlů a vah z Úlohy 6 odvoďte dvoubodovou Gaussovu kvadraturní formuli pro $\int_2^8 f(x) dx$.

[Hint: Najděte předpis lineární funkce, která bod -1 zobrazí do 2 a bod 1 zobrazí do 8.]

[Hint: Využijte vlastnost, že součet všech vah je roven b-a.]

Úloha 8 (Navíc). Dokážete napsat obecný vzorec pro přeškálování uzlů a vah z intervalu (-1,1) na interval (a,b)?

Úloha 9. Uvažujme kvadraturní formuli tvaru

$$\int_{-1}^{1} f(x) dx \approx f(\alpha) + f(-\alpha).$$

- a) Pro jaké hodnoty α bude tato kvadraturní formule přesná pro všechny polynomy stupně nejvýše 1?
- b) Pro jaké hodnoty α bude tato kvadraturní formule přesná pro všechny polynomy stupně nejvýše 3?
- c) Pro jaké hodnoty α bude tato kvadraturní formule přesná pro všechny polynomy tvaru $a + bx + cx^2 + dx^4$, kde $a, b, c, d \in \mathbb{R}$?

Úloha 10 (Navíc). Dokažte, že nelze najít kvadraturu o n+1 uzlech, která by byla algebraického řádu 2n+2.

[Hint: Pro obecnou kvadraturu s danými n+1 uzly a vahami najděte polynom stupně 2n+2, pro který tato kvadratura nemůže být přesná.]

[Hint: Zkuste najít polynom, kterému sice kvadratura přiřadí nulu, ale jeho integrál bude nenulový.]

Úloha 11 (Navíc). Ukažte, že váhy Gaussovy kvadratury jsou vždy kladné.

[Hint: Integrujte vhodně zvolený polynom stupně 2n, kde n + 1 je počet uzlů kvadratury.]

1.3 Metoda polovičního kroku

Nevýhodou apriorního odhadu chyby E(f) výše je, že může být velmi nadsazený, nebo nemusíme mít k dispozici odhad derivace funkce f. Proto hledáme metodu aposteriorního odhadu chyby. Touto metodou je metoda polovičního kroku z přednášky.

Nejen že nám metoda polovičního kroku pomůže s aposteriorním odhadem chyby, ale zároveň nám dá přesnější výsledek každým rozpůlením intervalů.

Úloha 12. Určete, kolik nových funkčních hodnot $f(x_k)$ je potřeba spočítat, pokud jsme původně měli jen jeden interval délky h a nyní z něj vytvoříme dva intervaly délky $\frac{h}{2}$ a používáme

- a) čtyřbodovou Newton-Cotesovu metodu,
- b) čtyřbodovou Gaussovu metodu.