H21T1A4

Sei $\mathbb D$ die offene Einheitskreisscheibe der komplexen Ebene $\mathbb C$.

a) (i) Es sei $f: \mathbb{D} \setminus \{0\} \to \mathbb{C}$ holomorph und f habe in z=0 eine Polstelle. Zeigen Sie: Es existiert ein $R \in [0, \infty)$ derart, dass

$$\mathbb{C} \setminus \{z \in \mathbb{C} : |z| \le R\} \subseteq f(\mathbb{D} \setminus \{0\}).$$

Hinweis: Betrachten sie 1/f.

(ii) Es sei $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ holomorph und es existiert ein $R \in [0, \infty)$ derart, dass

$$\mathbb{C} \setminus \{z \in \mathbb{C} : |z| \le R\} \subseteq f(\mathbb{C} \setminus \{0\}).$$

Hat f dann eine Polstelle in z = 0?

b) Es sei $f: \overline{\mathbb{D}} \to \mathbb{C}$ stetig, holomorph in \mathbb{D} und $|f(z)| \leq 1$ für alle $z \in \mathbb{D}$. Weiter seien $w_1, w_2 \in \mathbb{D}$, $w_1 \neq w_2$, Nullstellen von f und

$$g: \overline{\mathbb{D}} \to \mathbb{C}, \quad g(z) = \frac{w_1 - z}{1 - \overline{w_1}z} \cdot \frac{w_2 - z}{1 - \overline{w_2}z}.$$

Zeigen Sie:

$$|f(z)| \le |g(z)|$$
 für jedes $z \in \mathbb{D}$.

Hinweis: Betrachten Sie f/g.

Lösungsvorschlag:

a) (i) Da z in 0 eine Polstelle besitzt, ist $\lim_{z\to 0} |f(z)| = \infty$. Wir folgern, dass ein $\delta \in (0,1)$ und ein C>0 existiert, sodass $|f| \geq C$ auf $B_{\delta}(0)$. Letztere Menge beschreibt die offene Kreisscheibe um den Nullpunkt mit Radius δ . Dann ist $g: B_{\delta}(0) \to \mathbb{C}$,

$$g(z) := \begin{cases} \frac{1}{f(z)} & z \neq 0\\ 0 & z = 0 \end{cases}$$

eine holomorphe Abbildung nach dem Riemannschen Hebbarkeitssatz. Insbesondere gibt es nach dem Satz der offenen Abbildung (g ist wegen des Pols von f nicht konstant!) ein $\varepsilon > 0$, sodass

$$B_{\varepsilon}(0) \subseteq g(B_{\frac{\delta}{2}}(0)). \tag{1}$$

Hierbei ist zu beachten, dass $B_{\frac{\delta}{2}}(0)$ ein Gebiet ist. (??) bedeutet aber insbesondere, dass für jedes $v \in B_{\varepsilon}(0)$ ein $z \in B_{\frac{\delta}{2}}(0)$ existiert, sodass v = g(z). Ist $v \neq 0$, dann ist sogar $v = \frac{1}{f(z)}$, also $\frac{1}{v} = f(z)$. Mit der Bijektivität der Abbildung

$$h: B_{\varepsilon}(0) \setminus \{0\} \to \mathbb{C} \setminus \{z \in \mathbb{C} : |z| \leq \frac{1}{\varepsilon}\}, \quad h(u) := \frac{1}{u} \ \forall u \in B_{\varepsilon}(0) \setminus \{0\}$$
 folgt die Behauptung, wenn man $R = \frac{1}{\varepsilon}$ wählt.

- (ii) Nein. Man betrachte etwa die Identitätsabbildung f(z)=z für alle $z\in\mathbb{C}\setminus\{0\}.$
- b) Es sei $h: \overline{\mathbb{D}} \setminus \{w_1, w_2\} \to \mathbb{C}$ durch $h:=\frac{f}{g}$ gegeben. Da f Nullstellen in w_1 und w_2 besitzt, sieht man nach Potenzreihenentwicklung, dass die Singularitäten w_1 und w_2 von h hebbar sind. Es existiert also eine Fortsetzung $\hat{h}: \mathbb{D} \to \mathbb{C}$ von h, sodass \hat{h} auf \mathbb{D} holomorph und auf $\overline{\mathbb{D}}$ stetig ist. Hierbei wurde verwendet, dass g als Quotient von Polynomen holomorph ist. Nach dem Maximumsprinzip ist entweder \hat{h} konstant (dann wäre f=g und

die Aussage gezeigt) oder es existiert ein
$$z^* \in \mathbb{C}$$
 mit $|z^*| = 1$, sodass für alle $z \in \overline{\mathbb{D}} \setminus \{w_1, w_2\}$ gilt:
$$\left|\frac{f(z)}{g(z)}\right| \leq \left|\frac{f(z^*)}{g(z^*)}\right| \tag{2}$$

Dann ist $|f(z^*)| \leq 1$ wegen der Stetigkeit von f (Approximiere z^* durch eine Folge im Inneren von $\overline{\mathbb{D}}$ und betrachte den Limes). Weiter gilt:

$$\left| \frac{w_1 - z^*}{1 - \overline{w_1} z^*} \right| = \frac{|w_1 - z^*|}{|z^*||1 - \overline{w_1} z^*|} = \frac{|w_1 - z^*|}{|z^* - w_1|} = 1$$

Man beachte hier insbesondere $z^* \neq w_1$ für die Wohldefiniertheit des Nenners. Ganz genauso zeigt man $\left|\frac{w_2-z^*}{1-\overline{w_2}z^*}\right|=1$, woraus insbesondere $|g(z^*)|=1$ folgt. Eingesetzt in $(\ref{eq:condition})$ folgt

$$\left| \frac{f(z)}{g(z)} \right| \le \left| \frac{f(z^*)}{g(z^*)} \right| \le 1$$

für alle $z \in \overline{\mathbb{D}} \setminus \{w_1, w_2\}$. Das gibt die gewünschte Gleichung für $z \in \overline{\mathbb{D}} \setminus \{w_1, w_2\}$, und, weil w_1, w_2 Nullstellen sind, durch Limesbildung und Ausnutzung der Stetigkeit auch für alle $z \in \mathbb{D}$.

(JR)