

Formation Data Scientist OpenClassrooms

Projet 7: Implémentez un modèle de scoring

Projet commencé avant le 14/12/2022

Etudiant: Monine Chan

Evaluateur: Kezhan Shi

Dimanche 26 Février 2023

- 1. Rappel la problématique et du jeu de données (5min)
- 2. Explication de l'approche de modélisation (10min)
- 3. Présentation du dashboard (5 min)
- 4. Conclusion

- 1. Rappel la problématique et du jeu de données (5min)
- 2. Explication de l'approche de modélisation (10min)
- 3. Présentation du dashboard (5 min)
- 4. Conclusion

1. RAPPEL DE LA PROBLÉMATIQUE ET DU JEU DE DONNÉES PROBLÉMATIQUE

La société financière « Prêt à dépenser » souhaite mettre en œuvre un outil de « Scoring crédit » pour calculer la probabilité qu'un client rembourse le crédit et classifier la demande en crédit accordé ou refusé en se fondant sur multiples sources de données.

Les clients souhaitent plus de transparence sur les raisons de la décision d'octroi du crédit.

- > Le but de ce projet est de :
 - Construire un modèle qui prédira la probabilité de faillite d'un client à rembourser le crédit (classification binaire).
 - Construire un dashboard interactif qui permet de faire la prédiction et d'aider à interpréter la décision d'octroi du prêt.

1. RAPPEL DE LA PROBLÉMATIQUE ET DU JEU DE DONNÉES

JEUX DE DONNEES

- ➤ Il y a 8 fichiers .csv listant les données des clients (transactions bancaires, salaire, demande de prêt etc.)
- ➤ La classe à prédire est TARGET :
 - TARGET = 0 ⇔ prêt accordé
 - TARGET = 1 ⇔ prêt refusé
- Le jeux de données application_train est utilisé pour l'entraînement et la validation des modèles : il contient TARGET.
- Le jeux de données application_test ne contient pas TARGET : utilisé pour la compétition Kaggle.
- ➤On utilise le kernel Kaggle fourni pour merger les 8 dataframes dont résulte un dataframe mergé de 307 511 lignes.

Source: https://www.kaggle.com/c/home-credit-default-risk/data

1. RAPPEL DE LA PROBLÉMATIQUE ET DU JEU DE DONNÉES

)

VARIABLES: DÉSÉQUILIBRE ET ÂGE

- ➤On voit tout d'abord que le jeu de données est déséquilibré puisque 92 % de la classe 0 est représenté contre seulement 8% pour la classe 1.
- ➤ On a également accès aux variables qui caractérisent les client comme leur âge.

1. RAPPEL DE LA PROBLÉMATIQUE ET DU JEU DE DONNÉES

Step 1 (Kernel Kaggle):
Merge des 8 dataframes

TRAITEMENT DES DONNÉES

Encodage et feature engineering

Step 2:

Traitement des NaN et suppression des valeurs 'inf'

Step 3:

Identification des outliers via boxplot et suppression

Step 4:

Préparation des jeux d'entraînement/validation et de test

(TARGET présente)

E X E M Création de la variable :

PAYMENT RATE =

AMT_ANNUITY / AMT_CREDIT

montant du crédit remboursé par an / montant du crédit

→ Taux de remboursement

NaN remplacé par la médiane.

Valeurs 'inf' supprimées

Suppression de TARGET pour les features (X)

Création du jeu de données y (TARGET uniquement)

N O T B

O K S P7_Step1_Traitement_Kernel_Ka ggle Nettoyage.ipynb

P7_Step2_Traitement_NaN_En codage.ipynb

P7_Step3a_Traitement_des_Outli ers_df_train_test.ipynb

P7_Step3b_Traitement_des_Outli ers df valid.ipynb

P7_Step4_Split_X_y_train_test _valid.ipynb

7

- 1. Rappel la problématique et du jeu de données (5min)
- 2. Explication de l'approche de modélisation (10min)
- 3. Présentation du dashboard (5 min)
- 4. Conclusion

CHOIX DES MÉTRIQUES

Matrice de confusion

Classe 0 : prêt accordé - Classe 1 : prêt non accordé

		Valeurs prédites		
		Prédit 0	Prédit 1	
Vraies Valeurs	Vrai 0	Vrai Négatif Prêt accordé et client solvable	Faux positif Prêt non accordé mais client solvable « Dommage, on aurait pu accorder le prêt »	
	Vrai 1	Faux négatif Prêt accordé mais client non solvable « On n'aurait jamais dû accorder le prêt !»	Vrai positif Prêt non accordé et client non solvable	

- ➤On choisit une métrique qui permet de se rendre compte du compromis entre faux positifs et faux négatifs : on choisit donc le score ROC_AUC qu'on pourra comparer au score de la compétition Kaggle.
- ➤On définira également un coût métier pour optimiser le modèle.

)

EVALUATION DE DIFFERENTS MODELES

ROC_AUC Dummy = 0.5

-

ROC_AUC Log Reg = 0.6719
C: 1
penalty = I2
solver: newton-cg

ROC_AUC LightGBM = 0.7814

learning_rate: 0.1, max_depth: 5, min_data_in_leaf: 50, num_iterations: 200, num_leaves: 20

- Les modèles Log Reg et Light GBM ont été chacun optimisés avec Grid SearchCV.
- ➤ Score ROC_AUC Kaggle de 0.7715/0.7754 (privé/public)
- ➤ Score ROC_AUC sur le jeu de données non vu durant l'entraînement : 0.766
- ➤ On choisira donc ce modèle LightGBM pour la suite de la modélisation.

2. EXPLICATION DE L'APPROCHE DE MODÉLISATION PRISE EN COMPTE DU DÉSÉQUILIBRE DES CLASSES AVEC LIGHTGBM

ROC_AUC Réf. = 0.7814
learning_rate: 0.1, max_depth: 5,
min_data_in_leaf: 50, num_iterations:
200, num_leaves: 20

ROC_AUC class_weight = 0.7819 Réf. + class_weight={0: 0.35, 1: 0.65} ROC_AUC undersampling = 0.7787 Réf.

- ➤ 2 méthodes : utiliser le paramètre class_weight de LightGBM (optimisation via GridSearchCV) ou faire un undersampling.
- ➤ La technique qui donne de meilleurs résultats est class_weight : on conservera ce modèle.

FONCTION COÛT MÉTIER

$$coût\ m\acute{e}tier = FN + 10FP$$

- FN: Nombre de Faux Négatifs, FP: Nombre de Faux Positifs
- ➤On considère que la présence d'un faux négatif (personne non solvable qui s'est vu attribuée un prêt) est 10 fois plus coûteuse que la présence d'un faux positif (personne solvable qui s'est vu refuser un prêt).
- Le but va être de trouver le seuil de la probabilité que le client fasse défaut tel que ce seuil minimise le coût (le client fait défaut quand il appartient à la classe 1).

2. EXPLICATION DE L'APPROCHE DE MODÉLISATION DÉTERMINATION DU SEUIL POUR LE COUT METIER

- ➤On trace le courbe de coût métier pour différentes valeurs de seuils.
- Le minimum du coût métier est réalisé pour un seuil de 0.159.
- ➤ Si la probabilité de faire défaut est > 0.159, le prêt ne sera pas accordé.

INTERPRÉTABILITÉ GLOBALE DU MODÈLE

- Les paramètres les plus importants et communs aux 2 méthodes sont :
 - PAYMENT_RATE: taux de remboursement,
 - EXT_SOURCE_2, EXT_SOURCE_3: scores issus d'autres institutions.

)

INTERPRÉTABILITÉ LOCALE DU MODÈLE

- ➤ Pour ce client (7395), le prêt a été refusé.
- ➤On retrouve le paramètre EXT_SOURCE_3 comme étant le plus déterminant pour ce client dans le refus de sa demande de prêt.

- 1. Rappel la problématique et du jeu de données (5min)
- 2. Explication de l'approche de modélisation (10min)
- 3. Présentation du dashboard (5 min)
- 4. Conclusion

)

FRAMEWORKS UTILISÉS

	Framework	Pour faire quoi?	Lien
ml <i>flow</i>	MLFlow	Générer le code pour transformer le modèle LightGBM pour créer une API	https://github.com/mochan97/OpenClassrooms-Project-7-API-ML-Flow
<u>L</u>	Microsoft Azure Machine Learning Studio	Déployer un modèle de machine learning dans le cloud	URL du Endpoint de l'API (utilisé par le dashboard Streamlit): https://ocr-p7-api-mlflow-proba-qljnp.francecentral.inference.ml.azure.com/score
	Streamlit	Créer le dashboard	https://github.com/mochan97/OpenClassrooms-Project-7- Dashboard
	Microsoft Azure Web App	Déployer le dashboard dans le cloud	https://streamlit-dashboard-p7.azurewebsites.net/
	Github	Versionner le code Déploiement CI/CD pour le dashboard	https://github.com/mochan97/OpenClassrooms-Project-7

)

PIPELINE DE DEPLOIEMENT CONTINU

)

VUE UTILISATEUR: PRÉDICTION ET FEATURES LOCALES

NB: Les valeurs SHAP ne sont pas calculées dans le dashboard mais chargées (le calcul a été fait dans le Notebook Jupyter). Pas de solution trouvée avec Azure pour déployer dans le cloud autrement.

VUE UTILISATEUR: PRÉDICTION ET COMPARAISON AUTRES CLIENTS

D

VUE UTILISATEUR: PRÉDICTION ET FEATURES LOCALES

NB: Les valeurs SHAP ne sont pas calculées dans le dashboard mais chargées (le calcul a été fait dans le Notebook Jupyter). Pas de solution trouvée avec Azure pour déployer dans le cloud autrement.

)

VUE UTILISATEUR: PRÉDICTION ET COMPARAISON AUTRES CLIENTS

- 1. Rappel la problématique et du jeu de données (5min)
- 2. Explication de l'approche de modélisation (10min)
- 3. Présentation du dashboard (5 min)
- 4. Conclusion

)

- ➤ Un modèle de classification binaire a été mis en place avec une performance correcte.
- Le déséquilibre des classes a été pris en compte.
- ➤ Nous avons introduit une fonction coût métier pour minimiser les faux négatifs.

Modèle: Light GBM

Ce modèle LightGBM a ensuite été déployé dans le cloud via une API et utilisable via l'interface du dashboard.

Recommendations pour de futures améliorations:

- Affiner l'optimisation du modèle avec des balayages plus important et fins des hyperparamètres (limitation de ma machine).
- ➤ Tester d'autres modèles (RandomForrest Classifier, HistGradientBoostingClassifier)
- > Recherche d'une fonction de coût plus complexe pour améliorer l'optimisation du coût.

Merci de votre attention!