SCC120 Fundamentals of Computer Science

Searching and Sorting Unit 3

UNIT 3 – SORTING WITH TREES

Previous unit

Four comparison-based sorting techniques

Selection sort

Insertion sort

Quick sort

Merge sort

This Unit

tree-based sorting

Tree sort

Heap sort

TREE SORT

Tree-sort

insert items into a binary tree, then retrieve

Stage 1 Insertion

```
Place first item at root;
then, for later items,
if (item < root-value)
Insert recursively into left sub-tree;
else
Insert recursively into right sub-tree;
```

Stage 2 Retrieval

retrieval items by an in-order traversal of the tree

Tree-sort example

insert the following words into a binary tree:

nasty injuries may affect young people on defective skateboards

Tree-sort example: The built tree

Tree-sort example: Sorting (retrieval)

in-order traversal:

affect defective injuries may nasty on people skateboards young

Tree-sort example: Insertion

nasty injuries may affect young people on defective skateboards

value comparisons (total 17)

nasty: 0; injuries: 1; may: 2; affect: 2;

young: 1; people: 2; on: 3; defective: 3; skateboards: 3

Tree-sort: Best case efficiencies

We do two things in Tree-sort:

- 1. Construct the tree (insertion)
- 2. Retrieval O(N)

Insertion

Best case for *balanced* trees each insertion resembles a binary search, so O(log₂N)

Tree-sort: Sorting efficiencies

Best case for tree-sort

Building the tree: inserting one item is $O(log_2N)$, N items will be $O(Nlog_2N)$

Retrieval: each node visited just once -O(N)

Putting it together: $O(N) + O(N\log_2 N) \sim O(N\log_2 N)$

Average case

randomly distributed keys results in a partially unbalanced tree – detailed analysi shows:

 $A(N) \approx 1.38 N \log_2 N$

know the details!

Tree-sort: Sorting efficiency

Worst case

extremely unbalanced tree

in general: $W(N) = (N-1)+(N-2)+..+1= \frac{1}{2}N(N-1)$ so complexity class $O(N^2)$ – like a linked list

The sort-tree as a store

If we have a fixed set of words to store for searching, e.g. dictionary, can use a sort-tree

but: words often supplied in alphabetic order (worst case)

HEAP SORT

Probably the most complex type of sort to get your head round.

Definitions of Heap

- A memory region
 - Unit 8 of DS: Regions of memory
- A balanced binary tree with a heap property
- The two definitions have little in common

Heap-sort

Aim: to control the tree shape in order to get as close as possible to a balanced tree

uses a min-heap (or, for reverse order, a max-heap)

a min-heap is a kind of left-complete binary tree (LCBT)

• A left-complete binary tree is a tree where

every level (row) is full, except for the bottom level which is filled from left to right

• When a complete binary tree is built, its first node must be the root.

• The second node of a complete binary tree is always the left child of the root...

...and the third node is always the right child of the root.

The next nodes must always fill the next level from left to right.

a binary tree built by adding nodes in breath-first, left-toright order:

Min-heap

• a LCBT in which no node has a greater value than any of its children

A min-heap

QUICKSORT

Note: not a unique solution – one of several possibilities

Adding to a min-heap

To insert 'G' in the QUICKSORT min-heap: add G at the *next available* position

but this is no longer a min-heap

Bubbling-up

G < Q : so switch

Bubbling-up efficiency

Worst case

Have to bubble-up the full height of the tree, so insertion is limited by the tree height, $log_2(N+1)$

 \rightarrow Heap-insertion is complexity class $O(\log_2 N)$

So, to build a min-heap of N nodes (i.e. N insertions), primary efficiency is $O(Nlog_2N)$

Remember: worst-case insertion into a *sorted-tree* was $O(N^2)$

Removal from a min-heap

First item off the heap is the root (by definition)

- remove root and replace value with last value in tree
 - → no longer a min heap!

'Trickle-down'

'Trickle-down'

'Trickle-down'

Final result – a min-heap again

Trickle-down efficiency

Worst case

element must trickle down full height of tree, so removal is limited by the tree height, O(log₂N)

 \rightarrow Heap-retrieval is complexity class $O(\log_2 N)$

So, to retrieve a tree of N nodes (i.e. N retrievals), primary efficiency is $O(Nlog_2N)$

Array storing of heaps

for node k (A[k]):

left child - A[2k]

right child - A[2k+1]

parent - A[k/2] (rounding down)

Heap sort examples

 Heap sort with playing cards (and some weird music)
 Note: Ace is high

- http://www.youtube.com/watch?v=WYII2Oau VY
- Heap sort (better music & dancing)
- Note: order is reversed (max-heap)

- See if you can follow the different stages!
- http://www.youtube.com/watch?v=ZbUbCe0WpBE
- Overall comparison:
- http://www.sorting-algorithms.com/

Unit 3 Summary

Tree sort

simple and flexible (can easily add items later) sort-tree can be used for fast sorting and searching sort by traversing tree in-order

for sorting:

average case efficiency is $O(Nlog_2N)$ but worst case efficiency is $O(N^2)$

Unit 3 Summary

Heap sort

uses left-complete binary tree avoids inefficient trees by controlling tree shape efficient storage as linear arrays heap-insertion/removal is complexity class O(log₂N)

for sorting: efficiency O(Nlog₂N)

