南京大学工程管理学院 20×× 级 工工/金工/自动化 专业

20××-20×× 学年第一学期

《运筹学》期末试卷

学	学号 姓名	得分
得	得 分	
1.	1. 如果一个线性规划问题有 n 个变量, m 个约为 m,则基本可行解的个数最多为(
	A. $m \uparrow$ B. $n \uparrow$ C. $C_n^m \uparrow$	D. $C_m^n \uparrow$
2.	2. 设运输问题的单位运价为 c_{ij} ,则检验数 λ_{ij} .	与对偶变量 u_i, v_j 之间满足()
	A. $\lambda_{ij} = c_{ij} - u_i - v_j$ B. $\lambda_{ij} =$	$c_{ij} + u_i - v_j$
	C. $\lambda_{ij} = c_{ij} - u_i + v_j$ D. $\lambda_{ij} =$	$c_{ij} + u_i + v_j$
3.	3. $\max z = 3x_1 + 2x_2$, s.t. $2x_1 + 3x_2 \le 14$, $x_1 + 0.5$ 应的线性规划最优解是(3.25, 2.5),它的图	2 . 2
	A. (3,2) B. (4,3) C. (4,3)	
	11. (3,2) B. (1,3) C. (1, 17 D. (2, 17
4.	4. 甲、乙两城市之间存在一公路网络,为了身 从甲城到乙城,应借助()	判断在两小时内能否有 6000 辆车
	A. 最小费用流法 B. 最小生成树法	C. 最短路法 D. 最大流法
5.	5. 已知某个含 10 个节点的树图, 其中 9 个节 1, 3, 1, 3, 则另一个节点的次为((点的次(度)为1,1,3,1,1, ()
	A. 1 B. 2 C. 3	D. 4
得	得 分 二 、(2'×5) 填空题:	
1.	1. $\c \c S_1 = \{x : x_1 + x_2 \le 1, x_1 \ge 0\}, \ S_2 = \{x : x_1 - x_2 \le 1, x_1 \ge 0\}$	$\leq 0, x_1 \leq 1$ 。令 $S = S_1 \cup S_2$,请判断

集合S是否为凸集? _____。

- 在资源配置优化的线性规划问题中,若某资源有剩余,则该资源的影子价格等于。
- 3. 若指派问题的系数矩阵的某一列元素分别加上一个常数 k ,最佳指派方案是否会发生变化?____。
- 4. 给一个图 G = (V, E),如果图 G' = (V', E'),使 $V' \subseteq V$ 及 $E' \subseteq E$,则称 G' 是 G 的一个_____。
- 5. 在图G = (V, E)中,所有点的次之和是边数的______倍。

得分 三、丹齐格街的两边都可以停车,家住在丹齐格街 1 号的埃德蒙正在准备一个大约 30 个人左右的聚会,有 15 辆车要过来停车。假设已知第i辆车的长度为 λ ,具体如下:

- (1) 为尽量减少对邻居的打扰,埃德蒙希望安排好这 15 辆车在街道两边的停车 方案,使得街道被占用的长度尽可能少。请建立合适的线性规划模型,无需 求解。
- (2) 如果要求恰好有一边被停车占用的道路长度不超过 15 米,请问模型应如何 修改?

得 分 四、考虑无约束优化问题:

$$\min f = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

求出所有的静止点,并判断哪些静止点是局部极小点?

[得分] 五、假设 g_1, \dots, g_m 是定义在 \mathfrak{R}^n 上的凹函数,f是定义在 \mathfrak{R}^n 上的凸函数, $\mu > 0$ 是一个常数。请证明:

$$\beta(\mathbf{x}) = f(\mathbf{x}) - \mu \sum_{i=1}^{m} \ln g_i(\mathbf{x})$$

在集合 $S = \{\mathbf{x} \in \mathfrak{R}^n | g_i(\mathbf{x}) > 0, i = 1, \dots, m\}$ 上是凸函数。

得分 六、"0-1 背包问题"是指给定n个物品,假设第i个物品的重量和价值分别 w_i 和 p_i ($i=1,2,\cdots,n$),在限定的总重量W内,如何选择物品放入背包,使得背包中物品的总价值最大。

- (1) 请写出该问题的数学规划模型。
- (2) 假设现有 4 个物品,每个物品的重量和价格如下表所示,限定的总重量为 14。 试用动态规划方法求解该背包问题。

	物品1	物品 2	物品3	物品4
重量	5	7	4	3
价值	8	11	6	4

得分 七、某风景区有 6 个海岛,相互间的距离如下表(单位: 哩)。现 欲架设海上浮桥,使各岛相连且与陆地相连。已知第 1 个海岛离海 岸最近,为 0.3 哩,求使架设浮桥长度最短的方案。

	2	3	4	5	6
1	1.0	3.0	2.5	5.0	4.0
2		2.6	1.7	4.2	3.2
3			1.0	2.5	1.3
4				2.6	1.8
5					1.3

得分 八、已知从 A 城到 B 城可能的途经路线如图所示。边防队拟建立足够数量的检查站以便使从 A 城到 B 城的每辆车至少经过一个检查站。建立检查站的费用根据各路段条件有所不同(如图中数字所示),请给出一个建设总费用最小的边防站设立方案。

