Matemática Discreta

Exercícios

23 de março de 2025

Sumário

1	Elementos de Lógica	2
2	Conjuntos e Inteiros	5
3	Equivalência Assintótica	6
4	Piso e Teto	9
5	Indução	13

Os exercícios estão classificados de acordo com a seguinte legenda.

- -: exercícios de interesse marginal: complementam o assunto de alguma forma mas podem ser ignorados sem comprometer o entendimento.
- **@:** exercícios programados para discussão em aula: procure fazêlos antes de serem discutidos em aula.
- *: exercícios prioritários: na impossibilidade de fazer todos, dê prioridade a estes.
- $\#\text{:}\;$ exercícios mais difíceis e/ou trabalhosos: não comece por estes.

1 Elementos de Lógica

- $1^{@}$. Das proposições abaixo, indique as verdadeiras e as falsas.
 - (a) " $2 \le 3$ ".
 - (b) "10 > 20".
 - (c) " $x^2 \le x$ ".
- $2^{@}$. Das proposições abaixo, indique as verdadeiras e as falsas.
 - (a) (1 < 2) e $(2 < 3) \implies (1 < 3)$,
 - (b) $(1 < 2) \implies (10 < 30),$
 - (c) $1 > 2 \implies 2 < 3$,
 - (d) $1 > 2 \implies 2 > 3$.
- $3^{@}$. Sejam P e Q os seguintes predicados.

$$P(x) : x \le x^2$$

$$Q(x,y) : x \le y^2.$$

Das proposições abaixo, indique as verdadeiras e as falsas.

- (a) P(2).
- (b) P(1/2).
- (c) Q(1,1).
- (d) R(t) = Q(1, t).
- 4° . Seja P(x) o predicado " $x \le x^2$ ".

Das proposições abaixo, indique as verdadeiras e as falsas.

- (a) P(x), para todo $x \in \mathbb{R}$.
- (b) P(x), para algum $x \in \mathbb{R}$.
- (c) P(x), para todo $x \ge 1$.
- $(\mathrm{d}) \ P(x), \ \mathsf{para \ algum} \ 0 < x < 1.$
- 5*. Prove que se $A,\,B$ e C são proposições, então

- (a) $F \implies A$, ou seja, a partir de uma proposição falsa pode-se concluir qualquer coisa.
- (b) $A \implies B \equiv (\text{ não } A) \text{ ou } B$.
- (c) $(A \Longrightarrow B) \equiv ((\text{não } B) \Longrightarrow (\text{não } A))$, também conhecida como contrapositiva da implicação. Uma "prova de $A \Longrightarrow B$ por contrapositiva" é uma prova de que $((\text{não } B) \Longrightarrow (\text{não } A))$.
- (d) $(A \Longrightarrow F) \equiv \text{não } A$, ou seja, uma implicação cujo consequente é falso só pode ser verdadeira se o antecedente é falso. Este é o princípio por baixo das "provas por contradição".
- (e) $((A \Longrightarrow B) \text{ ou } (A \Longrightarrow C)) \equiv (A \Longrightarrow (B \text{ ou } C))$ (distributividade da disjunção pela implicação).
- (f) $((A \Longrightarrow B) e (A \Longrightarrow C)) \equiv (A \Longrightarrow (B e C))$ (distributividade da conjunção pela implicação).
- (g) $((B \Longrightarrow A) \text{ ou } (C \Longrightarrow A)) \equiv ((B \in C) \Longrightarrow A)$ (outra distributividade).
- (h) $((B \implies A) \in (C \implies A)) \equiv ((B \text{ ou } C) \implies A)$ (outra distributividade).
- (i) $((A \Longrightarrow B) \in (A \Longrightarrow (n\tilde{a}o B))) \Longrightarrow (n\tilde{a}o A)$ (outra maneira de expressar o princípio por baixo de uma prova por contradição).
- 6*. Considere os seguintes predicados.

$$I(x) \equiv x \in \mathbb{Z},$$

 $P(f,x) \equiv I(x) \Longrightarrow I(f(x)),$
 $Q(f,x) \equiv I(f(x)) \Longrightarrow I(x).$

Dê um exemplo de função $g: \mathbb{R} \to \mathbb{R}$ que

- (a) não satisfaz o predicado P(g,x), para todo $x \in \mathbb{R}$.
- (b) satisfaz o predicado Q(g, x), para todo $x \in \mathbb{R}$.
- 7*. Considere os seguintes predicados.

$$\begin{array}{rcl} L(f) & \equiv & \lim f(n) = 0, \\ P(n,f,g,h) & \equiv & f(n) = g(n)(1+h(n)), \\ B(f,g,h) & \equiv & L(h) \ \mathrm{e} \ (P(n,f,g,h), \ \mathrm{para} \ \mathrm{todo} \ n \in \mathbb{N}), \\ A(f,g) & \equiv & B(f,g,h), \ \mathrm{para} \ \mathrm{algum} \ h \colon \mathbb{N} \to \mathbb{R}. \end{array}$$

Dê um exemplo de funções $f, g: \mathbb{N} \to \mathbb{R}$ que

- (a) satisfazem A(f, g).
- (b) não satisfazem A(f, g).
- 8#. Seja O(f) o seguinte predicado (onde $f: \mathbb{N} \to \mathbb{R}$).

$$(((n \geq k \implies |f(n)| \leq c), \text{ para algum } k > 0), \text{ para algum } c > 0), \text{ para todo } n \geq k.$$

Avalie as seguintes proposições justificando cada uma, isto é, apresentando uma prova de se são verdadeiras ou falsas.

- (a) O(n/(n-1)),
- (b) O(n),
- (c) O(10+1/n),
- (d) $O(\log n)$,
- (e) O(42).
- 9[#]. Considere os seguintes predicados.

$$\begin{array}{lcl} P_1(f,g,c,n) & \equiv & |f(n)| \leq c |g(n)|, \\ P_2(f,g,c,k) & \equiv & P_1(f,g,c,n), \text{ para todo } n \geq k, \\ P_3(f,g,c) & \equiv & P_2(f,g,c,k), \text{ para algum } k \in \mathbb{N}, \\ O(f,g) & \equiv & P_3(f,g,c), \text{ para algum } c \in \mathbb{R}. \end{array}$$

Para cada par de funções $f,g\colon \mathbb{N}\to \mathbb{R}$, classifique as proposições abaixo como verdadeiras ou falsas.

- (a) O(f,g), para $f(n) = n e g(n) = n^2$.
- (b) O(g, f), para $f(n) = n e g(n) = n^2$.
- (c) O(f,g), para f(n) = n/2 e g(n) = n.
- (d) O(g, f), para f(n) = n/2 e g(n) = n.
- $10^{\#}$. Sejam D(x,y,d) e M(x,y) os seguintes predicados, respectivamente.

$$D(x, y, d)$$
: $|x - y| < d$,

$$M(x,y)$$
: $x > y$.

Use os predicados D(x, y, d) e M(x, y) para expressar os seguintes predicados.

$$L_1(f, a, l)$$
: $\lim_{x \to a} f(x) = l$.

$$L_2(f,l)$$
: $\lim_{x\to\infty} f(x) = l$.

$$L_3(f,a)$$
: $\lim_{x\to a} f(x) = \infty$.

$$L_4(f)$$
: $\lim_{x\to\infty} f(x) = \infty$

2 Conjuntos e Inteiros

11[®]. Seja A um conjunto finito e seja $B \subseteq A$. Prove que

$$A = (A - B) \cup B$$
,

 12^{\star} . Sejam A, B e C conjuntos finitos. Prove que

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C),$$

13*. Dados $f,g\colon A\to \mathbb{C}$ e $X\subseteq A$ e $c\in \mathbb{C},$ é verdade que

(a)
$$\prod_{x \in X} c = c|X|?$$

(b)
$$\prod_{x \in X} (f(x) + g(x)) = \prod_{x \in X} f(x) + \prod_{x \in X} g(x)?$$

(c)
$$\sum_{x \in X} f(x)g(x) = \left(\sum_{x \in X} f(x)\right) \left(\sum_{x \in X} g(x)\right)?$$

Justifique.

14[#]. Seja A um conjunto e seja $k \in \mathbb{N}$. Vamos denotar por $\binom{A}{k}$ o conjunto dos subconjuntos de k elementos de A, isto é,

$$\binom{A}{k} = \{ S \subseteq A \mid |S| = k \}.$$

Dado $a \in A$, sejam

$$A^{-} = \binom{A - \{a\}}{k},$$

$$A^{+} = \binom{A - \{a\}}{k - 1},$$

$$\overline{A} = \{S \cup \{a\} \mid S \in A^{+}\}.$$

Prove que

$$\binom{A}{k} = A^- \cup \overline{A},$$

3 Equivalência Assintótica

15*. Prove que se $f,g\colon \mathbb{N}\to \mathbb{R}$ são tais que $f(n)\sim g(n)$ e g(n) não é assintoticamente nula, então

$$\lim \frac{f(n)}{g(n)} = 1.$$

16[®]. Prove que

$$\binom{n}{2} \sim \frac{n^2}{2}$$

17*. Seja $P \colon \mathbb{N} \to \mathbb{R}$ dado por

$$P(n) = a_0 n^0 + a_1 n^1 + a_2 n^2 + \ldots + a_k n^k,$$

com $a_k \neq 0$, um polinômio de grau k.

Prove que

$$P(n) \sim a_k n^k$$
.

 18^{*} .

$$\sum_{i=1}^{n} i \sim \frac{n^2}{2}$$

 $19^\star.~$ É verdade que

$$\lg n \sim \log n?$$

Justifique.

20[⋆]. Prove que

$$\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \sim \left(\frac{1+\sqrt{5}}{2}\right)^n$$

21*. Seja $c \in \mathbb{C} - \{0, 1\}$ e seja

$$s(n) = \sum_{i=0}^{n} c^{i}.$$

Prove que

- (a) se 0 < c < 1, então $s(n) \sim \frac{1}{1-c}$.
- (b) se c = 1, então s(n) = n + 1.
- (c) se c > 1, então $s(n) \sim \frac{c^{n+1}}{c-1}$,

 22^{\star} . Sabendo que

$$\lim H(n) - \ln n = \gamma \in \mathbb{R},$$

prove que

$$H(n) \sim \ln n$$
.

23*. Prove que

$$\sum_{k=0}^{n} \frac{x^k}{k!} \sim e^x.$$

24*. A partir da aproximação de Taylor

$$\sum_{i=0}^n \frac{x^i}{i!} \sim e^x, \text{ para todo } x \in \mathbb{C},$$

conclua que

$$\sum_{i=0}^{n} (-1)^{i} \frac{1}{i!} \sim \frac{1}{e}.$$

25[®]. A partir da aproximação de Stirling,

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

prove que

 $\log_b n! \sim n \log_b n$, para todo b > 1.

26[®]. Use o resultado do Exercício 25 para provar que

$$\sum_{i=1}^n \log_b i \sim n \log_b n, \text{ para todo } b > 1$$

27*. Sejam $F, f, g, h: \mathbb{N} \to \mathbb{R}$ e $n_0 \in \mathbb{N}$ tais que $F(n) \sim f(n), F(n) \sim h(n),$ e

$$f(n) \le g(n) \le h(n)$$
, para todo $n \ge n_0$,

Prove que, neste caso,

$$F \sim f \sim g \sim h$$
.

28*. Prove que, se $f,g,h\colon \mathbb{N}\to \mathbb{R},$ então

- (a) $f(n) \sim f(n)$.
- (b) Se $f(n) \sim g(n)$, então $g(n) \sim f(n)$.
- (c) Se $f(n) \sim g(n)$ e $g(n) \sim h(n)$ então $f(n) \sim h(n)$.

29*. Sejam $f, g: \mathbb{N} \to \mathbb{R}$. É possível que $f(n) \sim g(n)$ e $\lim f(n) - g(n) = \infty$? Justifique.

4 Piso e Teto

 30^* . Prove que [x] é o único inteiro que satisfaz

$$x \leq \lceil x \rceil < x + 1$$
,

para todo $x \in \mathbb{R}$.

31*. Prove que

$$\max \left\{ k \in \mathbb{Z} \mid k < x \right\} = \left\lceil x - 1 \right\rceil,$$

para todo $x \in \mathbb{R}$.

 32^{\star} . Prove que

$$\lceil x \rceil + z = \lceil x + z \rceil$$
.

para todo $x \in \mathbb{R}$ e todo $z \in \mathbb{Z}$.

33*. Prove que, para todo $x \in \mathbb{R}$, temos que min $\{k \in \mathbb{Z} \mid k > x\}$ é o único inteiro m satisfazendo $x < m \le x+1$ e conclua daí que

$$\min\left\{k\in\mathbb{Z}\mid k>x\right\}=\lfloor x\rfloor+1.$$

34[®]. Prove que

$$\frac{n}{2} < 2^{\lfloor \lg n \rfloor} \le n \le 2^{\lceil \lg n \rceil} < 2n,$$

para todo $n \in \mathbb{N}$

- 35^* . Prove que, para todo n > 0,
 - (a)

$$\frac{1}{2}<\frac{n}{2^{\lceil \lg n \rceil}} \leq 1 \leq \frac{n}{2^{\lfloor \lg n \rfloor}} < 2.$$

(b)

$$\left| \frac{n}{2^{\lfloor \lg n \rfloor}} \right| = 1.$$

(c)

 $\left\lfloor \frac{n}{2^x} \right\rfloor = 0$ se e somente se $x > \lg n$.

- (d) $\lfloor \lg n \rfloor > \lfloor \lg (n-1) \rfloor \ \text{se e somente se } n \text{ \'e potência de 2}.$

(f)
$$\lceil \lg(n+1) \rceil = \lfloor \lg n \rfloor + 1.$$

- 36*. É verdade que $\lfloor f(n) \rfloor \sim f(n)$ para toda $f \colon \mathbb{N} \to \mathbb{R}$? Justifique.
- 37*. É verdade que $\sum_{i=1}^n \lfloor f(i) \rfloor \sim \sum_{i=1}^n f(i)$ para toda $f \colon \mathbb{N} \to \mathbb{R}$? Justifique.
- 38*. Prove que, para todo $n \in \mathbb{N}$,
 - $\bullet \left| \frac{n+1}{2} \right| = \left\lceil \frac{n}{2} \right\rceil$
 - $\bullet \left\lceil \frac{n-1}{2} \right\rceil = \left\lfloor \frac{n}{2} \right\rfloor$
- 39*. Algoritmos sobre vetores baseados na ideia conhecida como "divisão e conquista" frequentemente recebem como entrada um vetor indexado por [a..b] e executam recursivamente sobre os vetores indexados por [a..m] e [m+1..b], onde $m:=\left\lfloor\frac{a+b}{2}\right\rfloor$. O objetivo deste exercício é expressar corretamente os tamanhos dos subvetores em função do tamanho n:=b-a+1 do vetor original.

Prove que, para todo $a,b\in\mathbb{Z},$

- (a) a + b é par se e somente se n é impar.
- (b) $m a + 1 = \left\lceil \frac{n}{2} \right\rceil$.
- (c) $(m+1) b + 1 = \lfloor \frac{n}{2} \rfloor$.
- (d) $(m-1)-a+1=\left\lfloor \frac{n-1}{2} \right\rfloor$.

¹Sugestão: Use o Exercício 38

 40^* . Prove que, para todo $x \in \mathbb{R}$,

(a)
$$x - |x| < 1$$
.

(b)
$$[x] - x < 1$$
.

(c)
$$\lfloor x \rfloor = \lceil x \rceil$$
 se e somente se $x \in \mathbb{Z}$

(d)
$$[x] - |x| \in \{0, 1\}.$$

41*. A soma

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor$$

aparece com certa frequência em aplicações ligadas à computação². O objetivo deste exercício é provar que

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor \sim n \lg n.$$

(a) Prove que

$$|\lg i| = k$$
, para todo $i \in [2^k..2^{k+1} - 1]$.

(b) Prove que, para todo $\ell \in \mathbb{N}$, se $n = 2^{\ell} - 1$, então

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = \sum_{k=1}^{\ell} \sum_{i=2^{k}}^{2^{k+1}-1} \lfloor \lg i \rfloor.$$

(c) Combine os itens anteriores para concluir que, se $n=2^{\ell}-1$, então

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = \sum_{k=1}^{\ell} k 2^{k}.$$

(d) Sabendo que

$$\sum_{k=0}^n k2^k = 2^{n+1}(n-1)+2, \text{ para todo } n \in \mathbb{N},$$

conclua que, se $n=2^{\ell}-1$, então

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor = n \lfloor \lg n \rfloor - \left(2^{\lfloor \lg n \rfloor + 1} - \lfloor \lg n \rfloor - 2 \right).$$

²Veja o Exercício ?? para um exemplo.

(e) Prove que³

$$\sum_{i=1}^{n} \lfloor \lg i \rfloor \sim n \lg n.$$

- (f) As proposições acima podem ser generalizadas para logaritmos em outras bases além de 2? Como?
- 42⁻. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função crescente e contínua satisfazendo

$$f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$$
, para todo $x \in \mathbb{R}$.

Prove que

$$\lceil f(\lceil x \rceil) \rceil = \lceil f(x) \rceil$$
, para todo $x \in \mathbb{R}$.

43*. Seja k um inteiro positivo e seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por

$$f(x) = \frac{x}{k}.$$

Prove que

- (a) f uma função contínua.
- (b) f uma função crescente.
- (c) $f(x) \in \mathbb{Z} \implies x \in \mathbb{Z}$, para todo $x \in \mathbb{R}$.
- 44[®]. Prove que

$$\lg n \sim \lfloor \lg n \rfloor \sim \lceil \lg n \rceil$$

45*. Dê um exemplo de uma função $f \colon \mathbb{N} \to \mathbb{R}$ tal que f(n) não é inteiro para uma quantidade infinita de valores de $n \in \mathbb{N}$ e $\sum_{i=1}^n \lfloor f(i) \rfloor \sim \sum_{i=1}^n f(i)$.

³Sugestão: use o resultado do Exercício 35

5 Indução

46[⋆]. Prove que

$$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1},$$

para todo $n \in \mathbb{N}$ e todo $c \in \mathbb{C} - \{0, 1\}$.

47*. Prove por indução que

$$\sum_{i=0}^{n} i2^{i} = 2^{n+1}(n-1) + 2,$$

para todo $n \in \mathbb{N}$.

48*. Dados $n, k \in \mathbb{N}$, o coeficiente binomial $\binom{n}{k}$ é definido da seguinte maneira

$$\binom{n}{k} := \begin{cases} 1, & \text{se } k = 0, \\ \binom{n-1}{k} + \binom{n-1}{k-1}, & \text{se } 1 \le k \le n, \\ 0, & \text{caso contrário.} \end{cases}$$

Prove, por indução em n que, se $0 \le k \le n$, então

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \text{ para todo } n \in \mathbb{N}.$$

49*. Prove que (cfr. Exercício 48)

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}, \text{ para todo } n, k \in \mathbb{N}.$$

50*. Prove por indução em n que, dados $x, y \in \mathbb{C}$,

$$\sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i} = (x+y)^{n},$$

para todo $n \in \mathbb{N}$ e n > 0 4.

 $^{^4}$ Sugestão: Use a definição de $\binom{n}{k}$ dada no Exercício 48

Conclua a partir daí que

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n,$$

para todo $n \in \mathbb{N}$ e n > 0.

 $51^{\text{@}}$. Prove por indução em n que

$$2^n < n!$$
, para todo $n \ge 4$.

- 52@. Prove que todo inteiro $n \geq 2$ pode ser escrito como produto de número primos.
- 53®. A sequência de Fibonacci é a função $F\colon \mathbb{N} \to \mathbb{N}$ dada por

$$F(n) = \begin{cases} n, & \text{se } n \le 1 \\ F(n-1) + F(n-2), & \text{se } n > 1. \end{cases}$$

(a) Prove por indução em n que

$$F(n) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right), \text{ para todo } n \in \mathbb{N}$$

(b) Conclua que

$$F(n) \sim \frac{\sqrt{5}}{5} \left(\frac{1 + \sqrt{5}}{2} \right)^n$$

54*. Prove que

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^n = \left(\begin{array}{cc} F(n+1) & F(n) \\ F(n) & F(n-1) \end{array}\right), \text{ para todo } n>0,$$

onde F é a sequência de Fibonacci (cfr Exercício 53)⁵.

⁵Este é um dos algoritmos mais eficientes para o cálculo da sequência de Fibonacci.

 55^* . Prove por indução em n que

$$(\sqrt{2})^{n-1} \le F(n) \le 2^{n-1} \text{ para todo } n \ge 3,$$

onde F(n) denota a sequência de Fibonacci (cfr Exercício 53).

 56^* . O número de comparações no pior caso de uma execução do algoritmo MergeSort para um vetor de n elementos é dado pela função

$$T(n) = \begin{cases} 0, & \text{se } n < 2, \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

Prove que $T^-(n) \leq T(n) \leq T^+(n)$ para todo $n \in \mathbb{N}$, onde T^+ e T^- são as seguintes funções.

$$T^-(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^-\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 1, & \text{se } n \geq 2, \end{cases}$$

$$T^{+}(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^{+}\left(\left\lceil \frac{n}{2}\right\rceil\right) + n - 1, & \text{se } n \ge 2. \end{cases}$$

 57^* . Dados n_1, \ldots, n_k , o coeficiente multinomial é definido por

$$\binom{n_1+\ldots+n_k}{n_1,\ldots,n_k} := \frac{(n_1+\ldots+n_k)!}{n_1!n_2!\ldots n_k!}.$$

Observe que o coeficiente multinomial é uma generalização do coeficiente binomial, pois

$$\binom{n}{n_1} = \binom{n}{n_1, n - n_1}.$$

Prove por indução em k que

$$\binom{n_1+\ldots+n_k}{n_1,\ldots,n_k}=\binom{n_1+\ldots+n_{k-1}}{n_1,\ldots,n_{k-1}}\binom{n_1+\ldots+n_k}{n_k}, \text{ para todo } k\geq 2.$$

58*. Considere o seguinte algoritmo que recebe um vetor ordenado v indexado por [a..b] e um valor x.

15

 $\mathsf{Busca}(x,v,a,b)$

Se a > b

Devolva a-1

$$\begin{array}{l} m \leftarrow \left\lfloor \frac{a+b}{2} \right\rfloor \\ \mathrm{Se} \ x < v[m] \end{array}$$

Devolva Busca(x, v, a, m - 1)

Devolva Busca(x, v, m + 1, b)

Prove que $\mathsf{Busca}(x,v,a,a+n-1)$ é o único inteiro em [a-1..a+n-1]satisfazendo

$$x < v[i]$$
 para todo $i \in [\mathsf{Busca}(x, v, a, a + k - 1) + 1..a + n - 1]$

Use o fato de que se A e B são conjuntos finitos e disjuntos entre si então

$$|A \cup B| = |A| + |B|,$$

para provar, por indução em n que, se A_1, \ldots, A_n são conjuntos finitos dois a dois disjuntos entre si, então,

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|$$

 60° . Prove por indução em n que se A_1, \ldots, A_n e B são conjuntos, então

$$\left(\bigcup_{i=1}^{n} A_i\right) \cap B = \bigcup_{i=1}^{n} (A_i \cap B),$$

Prove, por indução em |X| que, se X é um conjunto finito e $c \in \mathbb{C}$, então

$$\prod_{x \in X} c = c^{|X|}.$$

Prove, por indução em |X| que, se X é um conjunto finito e $c \in \mathbb{C}$, então

$$\sum_{x \in X} c = c|X|.$$

63*. Prove, por indução em |X| que, que se $f,g\colon A\to\mathbb{C}$ e $X\subseteq A$ é um conjunto finito, então

$$\sum_{x \in X} \left(f(x) + g(x) \right) = \sum_{x \in X} f(x) + \sum_{x \in X} g(x).$$

64*. Prove, por indução em |X| que, que se $f\colon A\to\mathbb{C}$ e $X\subseteq A$ é um conjunto finito, e $c\in\mathbb{C}$, então

$$\sum_{x \in X} cf(x) = c \sum_{x \in X} f(x).$$

- 65. Exercício intencionalmente deixado em branco
- 66*. Seja $f: \mathbb{N} \to \mathbb{C}$ satisfazendo

$$f(n) = f(n-1) + 1$$
, para todo $n \ge 1$.

Prove, por indução em n, que

$$f(n) = f(0) + n$$
, para todo $n \ge 0$.

67*. Seja $a \in \mathbb{C}$ e seja $f : \mathbb{N} \to \mathbb{C}$ satisfazendo

$$f(n) = f(n-1) + a$$
, para todo $n \ge 1$.

Prove⁶, por indução em n, que

$$f(n) = f(0) + na$$
, para todo $n \ge 0$.

68*. Sejam $f, s \colon \mathbb{N} \to \mathbb{C}$ satisfazendo

$$f(n) = f(n-1) + s(n)$$
, para todo $n \ge 1$.

 $Prove^7$, por indução em n que

$$f(n) = f(0) + \sum_{i=1}^{n} s(i), \text{ para todo } n \ge 0.$$

⁶Observe que este exercício generaliza o Exercício 66.

⁷Observe que este exercício generaliza o Exercício 67.

69*. Sejam $f: \mathbb{N} \to \mathbb{C}$ e $a \in \mathbb{C}$ tais que

$$f(n) = af(n-1)$$
, para todo $n \ge 1$.

Prove por indução em n que

$$f(n) = a^n f(0)$$
, para todo $n \ge 0$.

70*. Sejam $f, m : \mathbb{N} \to \mathbb{C}$ tais que

$$f(n) = m(n)f(n-1)$$
, para todo $n \ge 1$.

Prove⁸, por indução em n, que

$$f(n) = f(0) \prod_{i=1}^{n} m(i), \text{ para todo } n \ge 0.$$

71*. Sejam $f, s, m : \mathbb{N} \to \mathbb{C}$ tais que

$$f(n)=m(n)f(n-1)+s(n), \text{ para todo } n\geq 1.$$

Prove (por indução em n) que⁹

$$f(n)=f(0)\prod_{i=1}^n m(i)+\sum_{j=1}^n \left(s(j)\prod_{i=j+1}^n m(i)\right), \text{ para todo } n\geq 0.$$

⁸Observe que este exercício generaliza o Exercício 69.

⁹Observe que este exercício generaliza o Exercício 70.

Referências