Claims:

5

10

25

1. A method for preparing compounds of the formula

$$X_3C$$
 Q Q R^1 I

and the enols and E and Z isomers thereof

in which X is in each case independently of one another fluorine, chlorine or bromine, and in which R¹ is alkyl, cycloalkyl, aryl or aralkyl, characterized in that a compound of the formula

$$X_3C$$
 OOO

in which X has the stated meaning, is initially converted by reacting the hydroxyl group with a compound of the formula $(R^2O)_2SO_2$ or with a compound of the formula Y-R² in which Y is tosyl, chlorine, bromine or iodine, and in which R² in each case has the abovementioned meaning, into a compound of the formula

$$\begin{array}{c} OR^2 \\ X_3C \\ O \end{array} \qquad O$$
 III,

in which R^2 is alkyl, cycloalkyl, allyl or benzyl, and X has the stated meaning, and the latter is then converted by reaction with a metal alcoholate of the formula $R^1O^{-\frac{1}{n}}M^{n+}$ in which R^1 is alkyl, cycloalkyl, aryl or aralkyl and M^{n+} is an alkali metal or alkaline earth metal cation and n=1 or 2, and further treatment with a strong acid, into compounds of the formula I and/or enols thereof.

2. A method for preparing enol ethers of the formula

$$X_1C$$
 O OR^2 O R^1 O

5 and the enols and E and Z isomers thereof

15

25

in which X is in each case independently of one another F, Cl or Br, and in which R¹ is alkyl, cycloalkyl, aryl or aralkyl, and R² is alkyl, cycloalkyl, allyl or benzyl, characterized in that a compound of the formula

10
$$X_3C$$
 O O II,

in which X has the stated meaning, is initially converted by reaction of the hydroxyl group with a compound of the formula $(R^2O)_2SO_2$ or with a compound of the formula Y-R² in which Y is tosyl, chlorine, bromine or iodine, and in which R² in each case has the abovementioned meaning, into a compound of the formula

$$OR^2$$
 OR^2
 OR^2

in which R^2 is alkyl, cycloalkyl, allyl or benzyl, and X has the stated meaning, and the latter is then converted by reaction with a metal alcoholate of the formula $R^1O^{-\frac{1}{n}}M^{n+}$ in which R^1 is alkyl, cycloalkyl, aryl or aralkyl and M^{n+} is an alkali metal or alkaline earth metal cation and n=1 or 2, and optionally further treatment with a weak acid into enol ethers of the formula Ib and/or enols thereof.

3. Compounds of the formula

5

15

$$X_3C$$
O
O
O

in which X is in each case independently of one another F, Cl or Br, and in which R^2 is alkyl, cycloalkyl, allyl or benzyl.

4. Compounds of the formula

allyl or benzyl.

10
$$O O R^2 O R^1$$
 Ib,

and the enols and E and Z isomers thereof in which X is in each case independently of one another fluorine, chlorine or bromine, and in which R^1 is alkyl, cycloalkyl, aryl or aralkyl, and in which R^2 is alkyl, cycloalkyl,