MATH 8150 Homework 2

Dahlen Elstran

February 19, 2025

Problem 1. Prove that

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$$

Proof. First note that

$$\int_0^\infty e^{ix^2} = \int_0^\infty \cos(x^2) dx + i \int_0^\infty \sin(x^2) dx.$$

Then by the hint, we know that

Problem 2. Show that

$$\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2}.$$

Proof. First, consider the following function $f(z) = \frac{e^{iz}}{z}$ and contour γ :

Because the function is holomorphic on the closed contour, we can apply Cauchy's theorem to find that

$$\oint_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \int_{\gamma_3} f(z)dz + \int_{\gamma_4} f(z)dz = 0.$$

First, we evaluate the integrals over real numbers:

$$\int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz = \int_{-R}^{-\varepsilon} f(z)dz + \int_{\varepsilon}^{R} f(z)dz$$

Using u-substitution and switch variables, we get

$$\int_{\varepsilon}^{R} \frac{e^{ix}}{x} dx - \int_{\varepsilon}^{R} \frac{e^{-ix}}{x} dx = \int_{\varepsilon}^{R} \frac{e^{ix} - e^{-ix}}{x} dx$$

$$= 2i \int_{\varepsilon}^{R} \frac{e^{ix} - e^{-ix}}{(2i)x} dx$$

$$= 2i \int_{\varepsilon}^{R} \frac{\sin(x)}{x} dx$$

$$\to 2i \int_{0}^{\infty} \frac{\sin(x)}{x} dx \text{ as } R \to \infty \text{ and } \varepsilon \to 0.$$

Next, we evaluate the γ_2 integral with the following parametrization:

$$z = \gamma(t) = \varepsilon e^{i(\pi - t)} \text{ where } t \in [0, \pi]$$
$$dz = \gamma'(t)dt$$
$$= -i\varepsilon e^{i(\pi - t)}dt$$
$$= -i\gamma(t)dt$$

So then

$$\int_{\gamma_2} \frac{e^{iz}}{z} dz = \int_0^{\pi} \frac{e^{i\gamma(t)}}{\gamma(t)} dt$$
$$= -i \int_0^{\pi} e^{i\gamma(t)} dt$$
$$= -i \int_0^{\pi} e^{i\varepsilon e^{i(\pi - t)}} dt$$

As $\varepsilon \to 0$, this approaches

$$-i\int_0^{\pi} 1 \cdot dt = -i\pi.$$

For the last integral, use the following parametrization:

$$z = \gamma(t) = Re^{it}$$
$$dz = \gamma'(t)dt$$
$$= Re^{it}dt$$
$$= \gamma(t)dt$$

So we have

$$\begin{split} \int_{\gamma_4} f(z)dz &= \int_0^\pi \frac{e^{i\gamma(t)}}{\gamma(t)} \gamma(t) dt \\ &= \int_0^\pi e^{i\gamma(t)} dt \\ &= \int_0^\pi e^{iRe^{it}} dt \\ &= \int_0^\pi e^{iR(\cos(t) + i\sin(t))} dt. \end{split}$$

Then note that

$$\begin{split} \left| \int_0^\pi e^{iR(\cos(t) + i\sin(t))} dt \right| &\leq \int_0^\pi \left| e^{iR(\cos(t) + i\sin(t))} \right| dt \\ &= \int_0^\pi \left| e^{iR\cos(t)} \right| \left| e^{-R\sin(t)} \right| dt \\ &= \int_0^\pi 1 \cdot \left| e^{-R\sin(t)} \right| dt \\ &= \int_0^\pi e^{-R\sin(t)} dt \\ &\to 0 \text{ as } R \to \infty. \end{split}$$

So we find that this integral must be 0. Finally, we have

$$\oint_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \int_{\gamma_3} f(z)dz + \int_{\gamma_4} f(z)dz$$

$$= 2i \int_0^{\pi} \frac{\sin(x)}{x} dx - i\pi + 0$$

$$= 0.$$

Thus,

$$\int_0^\pi \frac{\sin(x)}{x} dx = \frac{\pi}{2}.$$

Problem 1.

Proof.

Problem 1.

Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	П
Proof.	

Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	
Problem 1.	
Proof.	