DELFT UNIVERSITY OF TECHNOLOGY

Bi-threshold Gates for Mechanical Logic in Intelligent Metamaterials

 $Authors: \\ Eoinlee Bley (5216737)$

Supervisors: Dr. Davood Farhadi Machekposhti Malte ten Wolde

in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

September 20, 2023

${\bf Abstract}$

Contents

	0.1 Elementary Cellular Automata Formalism	
1	Introduction	3
2	Results & Discussion	3
3	Conclusion	3
4	References	3
A	Supplementary Material	8

0.1 Elementary Cellular Automata Formalism

1. State Space: $S = \{0, 1\}$

2. Neighborhood Configuration: N

$$N = (N_{-1}, N_0, N_1)$$
 where $N_{-1}, N_0, N_1 \in S$

3. Rule Function: $f: S^3 \to S$

4. Rule Set: R

5. Cube Domain: $D \subset \mathbb{R}^3$

Each vertex directly corresponds to a neighborhood configuration N, and its state is

6. Separating Planes: P

Defined by a single normal vector **n** and different offsets $\{d_1, d_2, \dots, d_n\}$.

7. Domain Classification Function: $\Delta: D \to \{0, 1, 2, 3\}$

$$\Delta(x) = \sum_{i=1}^{n} H(n_x \cdot x_x + n_y \cdot x_y + n_z \cdot x_z - d_i)$$

$$H(z) = \begin{cases} 0 & \text{if } z < 0\\ 1 & \text{if } z \ge 0 \end{cases}$$

0.2 Wolfram Numbering Scheme for ECA

In the Wolfram numbering scheme for Elementary Cellular Automata (ECA), the rule set R can be uniquely identified by a single integer, which is the binary representation of the output states for all possible neighborhood configurations. For Rule 110, the binary representation is formed by considering all 8 possible 3-cell neighborhood configurations, starting from 111 down to 000.

For example, in Rule 110, the corresponding output states for these configurations are 01101110. Here's how it maps:

Neighborhood Configuration	Output State	Binary Position (b)
111	0	b_7
110	1	b_6
101	1	b_5
100	0	b_4
011	1	b_3
010	1	b_2
001	1	b_1
000	0	b_0

So, the Wolfram number for Rule 110 is obtained by reading the output states from b_7 to b_0 as a binary number: $01101110_2 = 110_{10}$.

1 Introduction

2 Results & Discussion

Geometric Representation of Cellular Automata Rules

Cellular automata (CA) are grid-based computational models where each cell evolves over time according to a rule set R. In Elementary Cellular Automata (ECA), the domain is one-dimensional and the state space is binary, $S = \{0, 1\}$. Each cell's future state is determined by its current state and those of its immediate neighbors.

Mathematically, for cell i at time t, the next state u_i^{t+1} is governed by a rule function $f: S^3 \to S$:

$$u_i^{t+1} = f(u_{i-1}^t, u_i^t, u_{i+1}^t)$$

With a binary state and 3-cell neighborhood, there are $2^8 = 256$ unique ECA rules. These are indexed from 0 to 255, following Wolfram's convention.

For example, Rule 110 is defined as:

$$f_{110}:(0,0,0)\to 0,\ (0,0,1)\to 1,\ \ldots,\ (1,1,1)\to 0$$

Figure 1: A. The transition rule and time evolution of the Rule 110 cellular automata. B. Cube representation Rule 110 with separating planes defined by normal vector \overrightarrow{n} and offset constants d_1 and d_2 .

Concept Mechanism

Working Principle

Simulation

- 3 Conclusion
- 4 References

Figure 2: This is a figure.

Figure 3: This is a figure.

Figure 4: This is a figure.

Figure 5: This is a figure.

Figure 6: This is a figure.

A Supplementary Material

Figure 7: 1D Cellular Automata