Week 7 - Solution November 5, 2021

1 Open Questions

Exercise 1. (**) Recall the exercise from last week where we used Bubble Sort, Selection Sort and Insertion Sort to sort the following sequence:

The pseudocode for all three is provided below

Algorithm 1 Bubble Sort for $i \leftarrow 1$ to n-1 do for $j \leftarrow 1$ to n-i do if $a_j > a_{j+1}$ then swap a_j and a_{j+1}

Algorithm 2 Selection Sort for $i \leftarrow 1$ to n-1 do $\min \leftarrow i+1$ for $j \leftarrow i+1$ to n do if $a_{\min} > a_j$ then $\min \leftarrow j$ if $a_i > a_{\min}$ then swap a_i and a_{\min}

Algorithm 3 Insertion Sort for $j \leftarrow 2$ to n do $i \leftarrow 1$ while i < j and $a_j > a_i$ do $i \leftarrow i + 1$ $m \leftarrow a_j$ for $k \leftarrow 0$ to j - i - 1 do $a_{j-k} \leftarrow a_{j-k-1}$ $a_i \leftarrow m$

- How many comparisons are done in each of the algorithms?
 Solution.
 - (a) Bubble sort:

The basic version of the algorithm performs $\frac{n(n-1)}{2} = 36$ comparisons. In the optimized version of the algorithm, number of comparisons can be reduced to 26.

(b) Selection sort:

The algorithm always performs n-1 comparisons at the first round and does one less per round, hence $\sum_{i=1}^{9-1} i = 36$ comparisons.

(c) Insertion sort:

The algorithm needs 20 comparisons for the given list of values.

- 2. How many swaps are done in each of the algorithms? **Solution.**
 - (a) Bubble sort:

The algorithm performs a swap each time an element is bigger than its neighbor, hence, in our case, 5+5+3=13 swaps.

(b) **Selection sort**:

The algorithm performs a swap each time a lower element is found per round, hence, in our case, 7 swaps.

(c) Insertion sort:

The algorithm does not swap but inserts the lowest element at the end of the sorted sublist, which requires, in our case, 3 + 4 + 4 + 4 + 3 = 18 insertions.

3. What is the approximate overall cost of the three algorithms for an input sequence of length n+1? Solution.

Algorithm	Comp.	Swaps
Bubble sort	$O(n^2)$	$O(n^2)$
Selection sort	$O(n^2)$	O(n)
Insertion sort	$O(n^2)$	$O(n^2)$

Exercise 2. (*)

1. Show that 5x is $o(x^2)$. Solution.

$$\lim_{x \to \infty} \frac{5x}{r^2} = \lim_{x \to \infty} \frac{5}{r} = 0$$

2. Show that $2x^2$ is not $o(x^2)$. Solution.

$$\lim_{x \to \infty} \frac{2x^2}{x^2} = \lim_{x \to \infty} \frac{2}{1} = 2 \neq 0$$

3. Show that 1/x is o(x). Solution.

$$\lim_{x\to\infty}\frac{\frac{1}{x}}{x}=\lim_{x\to\infty}\frac{1}{x^2}=0$$

Exercise 3. (**) Let f be arbitrary functions from \mathbf{N} to $\mathbf{R}_{>0}$.

Let g_1, g_2 be two functions from **N** to $\mathbf{R}_{>0}$ such that g_1 and g_2 are both $\Theta(f)$.

1. Show that the function $g_1 + g_2$ is $\Theta(f)$ or provide a counterexample.

Solution. $g_1 + g_2$ is $\Theta(f)$

The functions g_1, g_2 are $\Theta(f)$, i.e. there exist $c_1, d_1, c_2, d_2 > 0, k_1, k_2 > 0$, s.t.

$$\forall x > k_1 \quad c_1 f(x) < q_1(x) < d_1 f(x)$$

$$\forall x > k_2 \quad c_2 f(x) \le g_2(x) \le d_2 f(x)$$

Note that we dropped all absolute value signs because the co-domain is $\mathbf{R}_{>0}$. Let $k = \max\{k_1, k_2\}$. Then, for all x > k,

$$(c_1 + c_2)f(x) \le g_1(x) + g_2(x) \le (d_1 + d_2)f(x)$$

which implies that $g_1 + g_2$ is $\Theta(f)$.

2. Show that the function g_1g_2 is $\Theta(f^2)$ or provide a counterexample.

Solution. g_1g_2 is $\Theta(f^2)$

The same notation used as the previous question. For all x > k,

$$c_1c_2 \cdot f^2(x) \le g_1(x)g_2(x) \le d_1d_2 \cdot f^2(x)$$

which implies that g_1g_2 is $\Theta(f^2)$.

Let g_3, g_4 be two functions from **N** to **R** such that g_3 and g_4 are both $\Theta(f)$.

3. Show that the function $g_3 + g_4$ is $\Theta(f)$ or provide a counterexample.

Solution. $g_3 + g_4$ is **not** $\Theta(f)$

This time we can no longer omit the absolute value symbols, since the co-domain is **R**. Simply take $g_3 = -g_4$. Then $g_3 + g_4 \equiv 0$. Shouldn't be too hard to find f such that 0 is **not** $\Omega(f)$.

4. Show that the function g_3g_4 is $\Theta(f^2)$ or provide a counterexample.

Solution. g_3g_4 is $\Theta(f^2)$

Because $|f^2| = |f| \cdot |f|$, $|g_3g_4| = |g_3| \cdot |g_4|$, the reasoning in Exercise 2.2 will still hold, in spite of the absolute value.

Let g be a function from N to $\mathbb{R}_{>0}$ such that g is O(f).

5. Show that 2^g is $O(2^f)$, or provide a counterexample.

Solution. 2^g is not $O(2^f)$

Take
$$g(x) = 2x$$
 and $f(x) = x$. Then $2^f = 2^x$, $2^g = 2^{2x} = (2^f)^2$

 2^g is not $O(2^f)$ for the same reason why x^2 is not O(x)

Exercise 4. (*) What is the largest n for which one can solve within a minute using an algorithm that requires f(n) bit operations, where each bit operation is carried out in 10^{-12} seconds, with these functions f(n)?

a. $\log n$

Solution. Each bit operation is carried out in 10^{-12} seconds: $T = 10^{-12}$ seconds.

The algorithm can take at most 1 minute which contains 60 seconds, while there are $\frac{t}{T} = \frac{60}{10^{-12}} = 60 \times 10^{12}$ possible bit operations in 60 seconds.

Algorithm requires f(n) = log n bit operations:

$$\log n = 60 \times 10^{12}$$

Note: The logarithm has base 2, because bits only have 2 possible values.

$$\log_2 n = 60 \times 10^{12}$$

Let us take the exponential with base 2 of each side of the previous equation:

$$n = 2^{60 \times 10^{12}}$$

b. 1,000,000n

Solution. Each bit operation is carried out in 10^{-12} seconds: $T = 10^{-12}$ seconds.

The algorithm can take at most 1 minute which contains 60 seconds, while there are $\frac{t}{T} = \frac{60}{10^{-12}} = 60 \times 10^{12}$ possible bit operations in 60 seconds.

Algorithm requires f(n) = 1,000,000n bit operations:

$$1,000,000n = 60 \times 10^{12}$$

$$n = 60 \times 10^6 = 60,000,000$$

c. n^2

Solution. Each bit operation is carried out in 10^{-12} seconds: $T = 10^{-12}$ seconds.

The algorithm can take at most 1 minute which contains 60 seconds, while there are $\frac{t}{T} = \frac{60}{10^{-12}} = 60 \times 10^{12}$ possible bit operations in 60 seconds.

Algorithm requires $f(n) = n^2$ bit operations:

$$n^2=60\times 10^{12}$$

Take the square root of each side of the previous equation:

$$n = \sqrt{60 \times 10^{12}} \approx 7.745967 \times 10^6 = 7,745,967$$

2 Exam Questions

Exercise 5. (***) How many comparisons among list elements does insertion sort perform when sorting the following list of length 2n, $n \ge 1$, in ascending order:

$$2n-1, 2n-3, \ldots, 3, 1, 2n, 2n-2, \ldots, 4, 2$$

$$\bigcap \frac{1}{2}(n^2+3n-2)$$

$$\sqrt{\frac{1}{2}(n^2+5n-4)}$$

$$\bigcirc \frac{1}{2}(n^2 + 7n - 6)$$

$$\bigcap \frac{1}{2}(n^2+n)$$

Solution. 2n-1 causes zero comparison. 2n-3 causes 1 comparision(with 2n-1); 2n-5 causes 1 comparision(with 2n-3); 2n-7 causes 1 comparision(with 2n-5); ...; 3 causes 1 comparision(with 5); 1 causes 1 comparision(with 3). After n-1 comparisions, the list becomes

$$1, 3, \ldots, 2n - 3, 2n - 1, 2n, 2n - 2, \ldots, 4, 2$$

2n causes n comparisions, with $[1,3,\ldots,2n-1]$. Note that 2n does not compare with itself(would not be a reasonable algorithm design anyway). 2n-2 causes n comparisions, with $[1,3,\ldots,2n-3,2n-1]$; 2n-4 causes n-1 comparisions, with $[1,3,\ldots,2n-3]$; 2n-6 causes n-2 comparisions, with $[1,3,\ldots,2n-5]$; ...; 4 causes 3 comparisions, with [1,3,5]; 2 causes 2 comparisions, with [1,3].

If we sum up the number of comparisions, it would be

$$(n-1) + n + [n + (n-1) + \dots + 2] = 2n - 1 + \frac{1}{2}(n-1)(n+2) = \frac{1}{2}(n^2 + 5n - 4)$$

Exercise 6. (***) Which of the following functions has the fastest growth when n goes to infinity?

$$\bigcirc 2^{(\log_2(\log_2 n))^2}$$

$$\checkmark (\log_2 n)^{2(\log_2 n)^2}$$

$$\bigcirc (\log_2(n^2))^{\log_2(n^2)}$$

$$\bigcirc n^{\log_2(\log_2 n)}$$

Solution. We can simply the expressions by taking log. For simplicity, we omit the base 2 in logarithm. Denote the four expressions as A, B, C, D

$$\log A = (\log \log n)^2 = \log \log n \cdot \log \log n$$
$$\log B = 2(\log n)^2 \cdot \log \log n$$
$$\log C = (2\log n) \cdot (1 + \log \log n) = 2\log n + 2\log n \cdot \log \log n$$
$$\log D = \log n \cdot \log \log n$$

Divide both sides by $\log \log n$,

$$\begin{split} \log A/\log\log n &= \log\log n \\ \log B/\log\log n &= 2(\log n)^2 \\ \log C/\log\log n &= \frac{2\log n}{\log\log n} + 2\log n \\ \log D/\log\log n &= \log n \end{split}$$

After this, it shouldn't be hard to see that B grows the fastest.

Exercise 7. (**) Which function below grows fastest when n goes to infinity?

 $\checkmark (\log_3(33))^{n-3}$

 $\bigcirc 3^n$

 $\bigcap n^{3\log_3(n)}$

 $\bigcap n^3 \log_3(n)$

Solution. Between $(\log_3(33))^{n-3}$ and 3^n

$$3 = \log_3(3^3) = \log_3(27) < \log_3(33) \implies (\log_3(33))^{n-3}$$
 grows faster than 3^n

Between 3^n and $n^{3\log_3(n)}$

$$n^{3\log_3 n} = (3^{\log_3 n})^{3\log_3 n} = 3^{3(\log_3 n)^2}$$

n grows faster than $3(\log_3 n)^2 \implies 3^n$ grows faster than $3^{3(\log_3 n)^2}$

Lastly, $n^3 \log n$ is obviously slower than 3^n .

Exercise 8. (**) Consider the two statements below, where k and ℓ are constants with $k > \ell \geq 2$ and $m \to \infty$:

$$\log_m(k)$$
 is $\Theta(\log_m(\ell))$ $k^{\log_\ell(m)}$ is $O(\ell^{\log_k(m)})$.

O They are both false.

 \checkmark Only the first is true.

Only the second is true.

O They are both true.

Solution. Because $\log_m(x) = \frac{\log_2(x)}{\log_2(m)}$ both $\log_m(k)$ and $\log_m(\ell)$ are of order $\frac{1}{\log_2(m)}$; in particular $\log_m(k)$ is $\Theta(\log_m(\ell))$.

Writing $k = \ell^{\log_{\ell}(k)}$ and $\log_{k}(m) = \frac{\log_{\ell}(m)}{\log_{\ell}(k)}$ the comparison for the second problem is between $k^{\log_{\ell}(m)} = \ell^{\log_{\ell}(k)\log_{\ell}(m)}$ and $\ell^{\log_{k}(m)} = \ell^{\log_{\ell}(m)/\log_{\ell}(k)}$. Because $k > \ell \geq 2$ we find that $k^{\log_{\ell}(m)} = \ell^{\log_{\ell}(m)} = m^{c}$ for the constant $c = \log_{\ell}(k) > 1$ and that $\ell^{\log_{k}(m)} = \ell^{(\log_{\ell}(m))/c} = m^{1/c}$. It follows that $k^{\log_{\ell}(m)}$ is not $O(\ell^{\log_{k}(m)})$.

Exercise 9. (*) Consider the following two statements:

$$f$$
 is $o(f)$ f is $o(g)$ implies f is $O(g)$.

 \checkmark Only the second is true.

O They are both false.

Only the first is true.

O They are both true.

Solution. The statement "f if o(f)" would imply that for any function f it is the case that $\lim_{x\to\infty}\frac{|f(x)|}{|f(x)|}=0$. That is clearly incorrect: for instance for the function f(x)=1 it is the case that $\lim_{x\to\infty}\frac{|f(x)|}{|f(x)|}=\frac{1}{1}=1$. Thus the first statement is not correct.

The statement "f is o(g)" implies that $\lim_{x\to\infty}\frac{|f(x)|}{|g(x)|}=0$, and thus that for any $\epsilon>0$ there exists an x_0 such that $\frac{|f(x)|}{|g(x)|}<\epsilon$ for all $x>x_0$, implying that $|f(x)|<\epsilon|g(x)|$ for all $x>x_0$, which in turn implies that f is O(g). Thus the second statement is correct.

Exercise 10. (**) Given the two statements below, where d > 0 is an integer constant and a_i are strictly positive integers for all $i \in \mathbf{Z}$, with $\max_{i \in \mathbf{Z}} a_i = D$, $\min_{i \in \mathbf{Z}} a_i = M$ for D > 0, M > 0,

$$\sum_{i=0}^{n} a_i i^d \text{ is } \Theta(n^{d+1}) \qquad \qquad \sum_{i=0}^{d} a_i n^i \text{ is } \Theta(n^d)$$

- \checkmark They are both true.
- Only the first is true.
- Only the second is true.
- O They are both false.

Solution. For the first, we know

$$\sum_{i=0}^{n} a_i i^d = a_0 0^d + a_1 1^d + \dots + a_{n-1} (n-1)^d + a_n n^d \le D \cdot n \cdot n^d = D n^{d+1}$$

Let's assume for simplicity that n is even. For the more general case, simply change $\frac{n}{2}$ into $\lfloor \frac{n}{2} \rfloor$.

$$\sum_{i=0}^{n} a_i i^d = a_0 0^d + a_1 1^d + \dots + a_{n-1} (n-1)^d + a_n n^d$$

$$\geq a_{n/2} (n/2)^d + a_{n/2+1} (n/2+1)^d + \dots + a_{n-1} (n-1)^d + a_n n^d$$

$$\geq M \cdot \left[(n/2)^d + (n/2+1)^d + \dots + (n-1)^d + n^d \right]$$

$$\geq M \cdot \left(\frac{n}{2} \right) \cdot \left(\frac{n}{2} \right)^d = \frac{M}{2^{d+1}} \cdot n^{d+1}$$

The second is just a polynomial of degree d and thus behaves like its highest order term.