Project Report: Polygon Colorization

Saketh Nellutla

August 4, 2025

1 Model Architecture

1.1 Full FiLM-UNet Overview

- Input: RGB polygon image $3 \times 128 \times 128$ and an 8-dimensional one-hot color vector
- Color Embedding: One-hot \rightarrow Linear(8,256) \rightarrow ReLU \rightarrow Linear(256,64) \rightarrow ReLU
- Encoder (4 blocks):
 - 1. $3 \rightarrow 64$ feature maps, FiLM-modulated
 - 2. $64 \rightarrow 128$, FiLM-modulated
 - 3. $128 \rightarrow 256$, FiLM-modulated
 - 4. $256 \rightarrow 512$, FiLM-modulated

Each block: DoubleConv (Conv-BN-FiLM-ReLU)×2 + MaxPool

- Bottleneck: $512 \rightarrow 1024$ DoubleConv + FiLM
- Decoder (4 blocks):
 - 1. Transpose Conv 1024 \rightarrow 512; concat with Encoder-4; Double Conv + FiLM 1024 \rightarrow 512
 - 2. TransposeConv 512 \rightarrow 256; concat with Encoder-3; DoubleConv + FiLM 512 \rightarrow 256
 - 3. TransposeConv 256 \rightarrow 128; concat with Encoder-2; DoubleConv + FiLM 256 \rightarrow 128
 - 4. TransposeConv 128 \rightarrow 64; concat with Encoder-1; DoubleConv + FiLM 128 \rightarrow 64
- Output Layer: 1×1 Conv $64 \rightarrow 3$ (RGB)
- Skip Connections: Standard UNet links from each encoder block to corresponding decoder block
- FiLM Applications: 9 total (4 encoder + 1 bottleneck + 4 decoder)

1.2 FiLM Mechanism

Each FiLM layer generates scale (γ) and shift (β) parameters from the 64-dimensional color embedding:

$$\gamma, \beta = \text{MLP(color_embedding)} \tag{1}$$

$$output = \gamma \times features + \beta \tag{2}$$

2 Hyperparameters

Parameter	Value	Rationale
Epochs	75-300 (early stop)	Model converges earlier; training halts on no validation loss improvement
Batch Size	16 (train), 8 (val)	Fits GPU memory while providing stable gradients
Optimizer	Adam	Well-established performance for vision tasks
Learning Rate	1×10^{-4}	Optimal after testing range 10^{-3} to 10^{-4}
Scheduler	ReduceLROnPlate	auReduces LR by 0.5 after 10 epochs without improvement
Weight Decay	Light ($\approx 10^{-5}$)	Prevents overfitting on small dataset
Image Size	128×128	Balances detail retention with computational efficiency

Table 1: Final training hyperparameters

3 Training Configuration and Dynamics

3.1 Training Setup

- Dataset: PolygonColorDataset with paired RGB images and 8-class color labels
- Augmentation: Synchronized resize (144 \rightarrow 128), rotation ($\pm 30^{\circ}$), horizontal/vertical flips
- Loss Function: $\mathcal{L} = \alpha \cdot \text{MSE} + \beta \cdot \text{Consistency with } \alpha = 1, \beta = 2$
- Metrics: Pixel color accuracy, region color accuracy, validation loss (logged via Weights & Biases)
- Checkpointing: Best model saved based on lowest validation loss
- Gradient Clipping: Max norm 1.0 for training stability

3.2 Observed Learning Progression

- Rapid boundary learning in first 10 epochs
- Color fill improvement after consistency loss takes effect (around epoch 25)
- increasing learning rate decreased the accuracy
- tried to make the model learn using SSIM scores
- Early stopping typically occurs around epoch 40–50

4 Key Insights and Learnings

- 1. **FiLM Comparison:** Both full FiLM and decoder-only FiLM variants work effectively, but full FiLM provides marginally better consistency on irregular polygon shapes.
- 2. Efficient Loss Function: Adding a color-consistency term directly addressed the primary failure mode of correct boundaries but poor color fill. This domain-specific loss component was essential for quality results.
- 3. Augmentation Alignment: Synchronized transformations are critical—any misalignment between input and target images destroys the supervised learning signal.

- 4. Learning Rate Scheduling: Fixed learning rates tend to overshoot optimal solutions. Adaptive decay using ReduceLROnPlateau stabilized convergence significantly.
- 5. Early Stopping Efficiency: The model consistently peaks 30–40% before maximum epochs, demonstrating the value of early stopping for computational efficiency.
- 6. **Dataset Size Impact:** Small dataset size necessitated extensive data augmentation and careful regularization. This highlighted the importance of data quality and quantity in deep learning projects.
- One-hot vs Numerical Encoding: One-hot color encoding provided much clearer conditional signals compared to numerical color representations, leading to better color consistency.
- 8. **Dataset Importanece:** I've learned again how dataset is the most important part here, and how augmentations can be helpful in real case applications where there is data scarcity.