Notes on the Repertoire Method for Solving Recurrences

Geoffrey Matthews 2004

The repertoire method is presented in *Concrete Mathematics, a Foundation* for *Computer Science*, by Graham, Knuth, and Patashnik, Addison-Wesley, 1989.

This is the greatest book on discrete math ever written.

Solve:

$$r_0 = 1$$
 $r_n = r_{n-1} + 3n + 5$

First, get some cases

$$r_0 = 1$$

 $r_n = r_{n-1} + 3n + 5$
 $r_1 = r_0 + 3(1) + 5 = 1 + 3 + 5 = 9$
 $r_2 = r_1 + 3(2) + 5 = 9 + 6 + 5 = 20$
 $r_3 = r_2 + 3(3) + 5 = 20 + 9 + 5 = 34$

It's easy enough to do this by hand, or write a little throw-away program to calculate them for you.

n	0	1	2	3	4	5
r_n	\parallel 1	9	20	34	51	71

Quick, what's the next number in this sequence? Hmmm... nothing occurs to me.

Unsimplified cases.

$$r_0 = 1$$
 $r_n = r_{n-1} + 3n + 5$

Let's try that a little slower:

$$r_{1} = r_{0} + 3(1) + 5 = 1 + 3 + 5$$

$$r_{2} = r_{1} + 3(2) + 5$$

$$= 1 + 3 + 5 + 3(2) + 5$$

$$= 1 + 3(3) + 5(2)$$

$$r_{3} = r_{2} + 3(3) + 5$$

$$= 1 + 3(3) + 5(2) + 3(3) + 5$$

$$= 1 + 3(6) + 5(3)$$

$$r_{4} = r_{3} + 3(4) + 5$$

$$= 1 + 3(6) + 5(3) + 3(4) + 5$$

$$= 1 + 3(10) + 5(4)$$

A pattern in the unsimplified cases.

$$r_0 = 1$$

 $r_n = r_{n-1} + 3n + 5$
 $r_0 = 1(1) + 3(0) + 5(0)$
 $r_1 = 1(1) + 3(1) + 5(1)$
 $r_2 = 1(1) + 3(3) + 5(2)$
 $r_3 = 1(1) + 3(6) + 5(3)$
 $r_4 = 1(1) + 3(10) + 5(4)$

It looks like our solution could be:

$$r_n = 1A(n) + 3B(n) + 5C(n)$$

where A, B and C are simple functions of n.

Solve one function with three others.

$$r_0 = 1$$

 $r_n = r_{n-1} + 3n + 5$
 $r_0 = 1(1) + 3(0) + 5(0)$
 $r_1 = 1(1) + 3(1) + 5(1)$
 $r_2 = 1(1) + 3(3) + 5(2)$
 $r_3 = 1(1) + 3(6) + 5(3)$
 $r_4 = 1(1) + 3(10) + 5(4)$
 $r_n = 1A(n) + 3B(n) + 5C(n)$

It's pretty easy to guess that A(n) = 1 and C(n) = n.

What about B(n)?

Use that fantastic brain of yours...

$$r_0 = 1$$

$$r_n = r_{n-1} + 3n + 5$$

$$r_0 = 1(1) + 3(0) + 5(0)$$

$$r_1 = 1(1) + 3(1) + 5(1)$$

$$r_2 = 1(1) + 3(3) + 5(2)$$

$$r_3 = 1(1) + 3(6) + 5(3)$$

$$r_4 = 1(1) + 3(10) + 5(4)$$

$$r_n = 1A(n) + 3B(n) + 5C(n)$$

$$= 1 + 3B(n) + 5n$$

B(n)	0	1	3	6	10	15	21	

Where have I seen those numbers before?

Aha!

n	0	1	2	3	4	5	6	
B(n)	0	1	3	6	10	15	21	

$$B(n) = \sum_{i=0}^{n} i$$
$$= \frac{n(n+1)}{2}$$

We did it!

$$r_{0} = 1$$

$$r_{n} = r_{n-1} + 3n + 5$$

$$r_{0} = 1(1) + 3(0) + 5(0)$$

$$r_{1} = 1(1) + 3(1) + 5(1)$$

$$r_{2} = 1(1) + 3(3) + 5(2)$$

$$r_{3} = 1(1) + 3(6) + 5(3)$$

$$r_{4} = 1(1) + 3(10) + 5(4)$$

$$r_{n} = 1A(n) + 3B(n) + 5C(n)$$

$$= 1 + \frac{3n(n+1)}{2} + 5n$$

$$= \frac{3}{2}n^{2} + \frac{13}{2}n + 1$$

Summarizing

If our wild assumption is correct, the solution to

$$r_0 = 1$$

$$r_n = r_{n-1} + 3n + 5$$

is

$$r_n = \frac{3}{2}n^2 + \frac{13}{2}n + 1$$

How can we know for sure?

Testing

$$r_0 = 1$$
 $r_n = r_{n-1} + 3n + 5$
 $r_n = \frac{3}{2}n^2 + \frac{13}{2}n + 1$

Test it out with another little program:

n	0	1	2	3	4	5
r_n	1	9	20	34	51	71
$(3/2)n^2 + (13/2)n + 1$	1	9	20	34	51	71

Yay! It works! It must be true!

Is there a better way?

Prove it by induction

$$r_0 = 1$$

$$r_n = r_{n-1} + 3n + 5$$

$$r_n = \frac{3}{2}n^2 + \frac{13}{2}n + 1$$

Now let's start over.

$$r_0 = 1$$
 $r_n = r_{n-1} + 3n + 5$

Can we use what we've learned in a better way, and without needing the **Aha!** in the middle?

First we generalize:

$$r_0 = 1$$

 $r_n = r_{n-1} + 3n + 5$

Let's solve this where the constants 1, 3 and 5 have been replaced by variables α , β , and γ :

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

But isn't that harder?

Not really.

Cases of our generalized version

Again, let's work up by hand some simple cases.

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

n	0	1	2	3
r_n	α	$\alpha + \beta + \gamma$	$(\alpha + \beta + \gamma) + 2\beta + \gamma$	$(\alpha + 3\beta + 2\gamma) + 3\beta + \gamma$
			$= \alpha + 3\beta + 2\gamma$	$= \alpha + 6\beta + 3\gamma$

Again, it looks like we have some α 's, some β 's, and some γ 's in the solution.

But how many of each?

Wild assumption:

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

Let's assume that there are three fixed functions, A, B, and C, such that the solution to the above always has this form:

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

We don't know this is true, but the evidence suggests it.

Can we figure out what A, B and C are? Yes!

Is this easier than the original problem? Yes!

Here's How

We assume that any recurrence defined by:

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

has a solution that looks like:

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

no matter what α , β , and γ are.

Different α , β , and γ will define different r_n .

Very Important Point:

Many different recurrences that look like

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

are solved by

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

 α , β , and γ might be different for each one, but...

A(n), B(n), and C(n) are the same for all of them!

What does this buy us?

For any α , β , and γ , the equations:

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

are always solved by:

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

If we pick really simple functions (with really easy values for α , β and γ) we can *solve* for A, B, and C!

And once we have A, B and C, we have a solution to the general recurrence!

Let's give it a try.

Easy Solutions

Now let's see if some *easy* functions are solutions of these equations, both the recurrence and the closed form, with different α , β , and γ .

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$

First Easy Solution

Let's try $r_n = 1$. That's an easy function. Plugging it into:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$

gives:

$$1 = \alpha$$

$$1 = 1 + \beta n + \gamma$$

$$1 = \alpha A(n) + \beta B(n) + \gamma C(n)$$

Solve the result

After plugging, we have:

$$1 = \alpha$$

$$1 = 1 + \beta n + \gamma$$

$$1 = \alpha A(n) + \beta B(n) + \gamma C(n)$$

Which can be solved for one of the unknown functions:

$$\alpha = 1$$

$$\beta = 0$$

$$\gamma = 0$$

$$A(n) = 1$$

We have found A(n)!

$r_n = 1$ has consequences!

If our wild assumption is correct, A(n) = 1 for *all* solutions of our equations, and so this:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$

becomes:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha + \beta B(n) + \gamma C(n)$

We're making progress!

Our general solution is closer to being solved.

Progress

The general solution to

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

looks like this:

$$r_n = \alpha + \beta B(n) + \gamma C(n)$$

Now we only need to find B(n) and C(n).

Let's try another easy function!

Let's try $r_n = n$.

Is this a solution? In general, we have:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha + \beta B(n) + \gamma C(n)$

Plugging gives:

$$0 = \alpha$$

$$n = n - 1 + \beta n + \gamma$$

$$n = \alpha + \beta B(n) + \gamma C(n)$$

Solving after plugging $r_n = n$

$$0 = \alpha$$

$$n = n - 1 + \beta n + \gamma$$

$$1 = \beta n + \gamma$$

$$\alpha = 0$$

$$\beta = 0$$

$$\gamma = 1$$

$$n = \alpha + \beta B(n) + \gamma C(n)$$

$$= C(n)$$

Aha! More progress! C(n) = n

More Progress

Since A(n) = 1 and C(n) = n, this:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$

becomes:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha + \beta B(n) + \gamma n$

Our general solution has become:

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha + \beta B(n) + \gamma n$

Only B left!

Let's find another simple function!

Let's try $r_n = n^2$

Plugging into

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha + \beta B(n) + \gamma n$

gives

$$0 = \alpha$$

$$n^{2} = (n-1)^{2} + \beta n + \gamma$$

$$n^{2} = \alpha + \beta B(n) + \gamma n$$

Solving after plugging $r_n = n^2$

$$0 = \alpha$$

$$n^{2} = (n-1)^{2} + \beta n + \gamma$$

$$= n^{2} - 2n + 1 + \beta n + \gamma$$

$$2n-1 = \beta n + \gamma$$

$$\alpha = 0$$

$$\beta = 2$$

$$\gamma = -1$$

$$n^{2} = \alpha + \beta B(n) + \gamma n$$

$$= 2B(n) - n$$

$$B(n) = (n^{2} + n)/2$$

Still More Progress!

Since A(n) = 1, $B(n) = (n^2 + n)/2$ and C(n) = n, we know that the solution to

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

Looks like

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

= $\alpha + \beta (n^2 + n)/2 + \gamma n$

We have solved the general equation!

Assuming our wild assumption was correct...

Note

We found the solution for B without any Aha!'s.

$$B(n) = \frac{n^2 + n}{2} = \frac{n(n+1)}{2}$$

Summarizing

The solution to any recurrence like this:

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

is

$$r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$$

Let's try it out!

The solution to any recurrence like this:

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

is

$$r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$$

Here's our original problem:

$$r_0 = 1$$
 $r_n = r_{n-1} + 3n + 5$

Plug and Chug

$$r_0 = \alpha$$

$$r_n = r_{n-1} + \beta n + \gamma$$

$$r_0 = 1$$

$$r_n = r_{n-1} + 3n + 5$$

$$\alpha = 1 \quad \beta = 3 \quad \gamma = 5$$

$$r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$$

$$= 1 + 3(n^2 + n)/2 + 5n$$

$$= \frac{3}{2}n^2 + \frac{13}{2}n + 1$$

This is the same thing we got the first time.

Summations

Recurrences like these:

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

with solution:

$$r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$$

Can be used to solve summations like these:

$$\sum_{i=0}^{n} (3i+2)$$

Summations

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

$$r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$$

Let's define S_n like this:

$$S_n = \sum_{i=0}^n (3i+2)$$

Then we can write a recurrence for S_n :

$$S_0 = 2$$

$$S_n = S_{n-1} + 3n + 2$$

Summations

$$r_0 = \alpha$$

 $r_n = r_{n-1} + \beta n + \gamma$
 $r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$
 $S_0 = 2$
 $S_n = S_{n-1} + 3n + 2$
 $\alpha = 2$
 $\beta = 3$
 $\gamma = 2$
 $S_n = 2 + (3/2)(n^2 + n) + 2n$
 $= (3/2)n^2 + (7/2)n + 2$
 $= \sum_{i=0}^{n} (3i+2)$

Summarizing Summations

$$r_0 = \alpha$$
 $r_n = r_{n-1} + \beta n + \gamma$

$$r_n = \alpha + \beta (n^2 + n)/2 + \gamma n$$

$$\sum_{i=0}^{n} (3i + 2) = (3/2)n^2 + (7/2)n + 2$$

You can also solve this the old fashioned way:

$$\sum_{i=0}^{n} (3i+2) = \sum_{i=0}^{n} 3i + \sum_{i=0}^{n} 2$$

$$= 3 \sum_{i=0}^{n} i + \sum_{i=0}^{n} 2$$

$$= 3(n(n+1)/2) + 2(n+1)$$

Did we get the same answer?

Let's try something harder.

Solve this one:

$$r_0 = 1$$

$$r_n = 2r_{n-1} + n$$

(It's the one from your textbook.)

Cases

$$r_0 = 1$$

$$r_n = 2r_{n-1} + n$$

n	0	1	2	3	4	5
r_n	1	3	8	19	42	89

Recognize those numbers?

Me neither.

First generalize

$$r_0 = 1$$

$$r_n = 2r_{n-1} + n$$

$$r_0 = \alpha$$
 $r_n = \beta r_{n-1} + \gamma n$

Cases first

$$r_0 = 1$$
 $r_n = 2r_{n-1} + n$
 $r_0 = \alpha$
 $r_n = \beta r_{n-1} + \gamma n$

	0 1		2	3		
r_n	α	$\beta \alpha + \gamma$	$(\beta \alpha + \gamma)\beta + 2\gamma$	$((\beta\alpha + \gamma)\beta + 2\gamma)\beta + 3\gamma$		

This doesn't look promising, since the α 's β 's and γ 's are getting mixed up. Perhaps it's *too* general?

Let's try again

$$r_0 = 1$$

$$r_n = 2r_{n-1} + n$$

Don't generalize on the 2:

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

We also threw in an extra constant, γ . In our example, it is 0. Did we need that?

Try leaving it out and seeing how far you get.

The trick is to generalize *just enough*, but not too much.

Cases again

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

n	0	1	2	3		
r_n	α	$2\alpha + \beta + \gamma$	$2(2\alpha + \beta + \gamma) + 2\beta + \gamma$	$2(4\alpha+4\beta+3\gamma)+3\beta+\gamma$		
			$=4\alpha+4\beta+3\gamma$	$=8\alpha+11\beta+7\gamma$		

OK! Still a mess, but at least the α 's, β 's and γ 's are not getting mixed up. This gives us hope that there is some solution of the form

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

Somewhat justified wild assumption:

All solutions to:

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

Have the form:

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$$

for some fixed functions A, B and C.

Let's go!

Let's try $r_n = 1$

$$r_{0} = \alpha$$

$$r_{n} = 2r_{n-1} + \beta n + \gamma$$

$$r_{n} = \alpha A(n) + \beta B(n) + \gamma C(n)$$

$$1 = \alpha$$

$$1 = 2 + \beta n + \gamma$$

$$1 = \alpha A(n) + \beta B(n) + \gamma C(n)$$

$$\alpha = 1$$

$$\beta = 0$$

$$\gamma = -1$$

$$1 = A(n) - C(n)$$

Plugging $r_n = 1$

We concluded that

$$C(n) = A(n) - 1$$

SO

$$r_0 = \alpha$$

 $r_n = 2r_{n-1} + \beta n + \gamma$
 $r_n = \alpha A(n) + \beta B(n) + \gamma C(n)$
 $= \alpha A(n) + \beta B(n) + \gamma (A(n) - 1)$
 $= (\alpha + \gamma)A(n) + \beta B(n) - \gamma$

Let's try $r_n = n$

$$r_{0} = \alpha$$

$$r_{n} = 2r_{n-1} + \beta n + \gamma$$

$$r_{n} = (\alpha + \gamma)A(n) + \beta B(n) - \gamma$$

$$0 = \alpha$$

$$n = 2(n-1) + \beta n + \gamma$$

$$= 2n - 2 + \beta n + \gamma$$

$$-n+2 = \beta n + \gamma$$

$$\beta = -1$$

$$\gamma = 2$$

$$n = (\alpha + \gamma)A(n) + \beta B(n) - \gamma$$

$$= 2A(n) - B(n) - 2$$

$$B(n) = 2A(n) - n - 2$$

More progress

$$r_{0} = \alpha$$

$$r_{n} = 2r_{n-1} + \beta n + \gamma$$

$$B(n) = 2A(n) - n - 2$$

$$r_{n} = (\alpha + \gamma)A(n) + \beta B(n) - \gamma$$

$$= (\alpha + \gamma)A(n) + \beta (2A(n) - n - 2) - \gamma$$

$$= (\alpha + \gamma)A(n) + 2\beta A(n) - \beta n - 2\beta - \gamma$$

$$= (\alpha + 2\beta + \gamma)A(n) - (n+2)\beta - \gamma$$

Let's try $r_n = n^2$

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

$$r_n = (\alpha + 2\beta + \gamma)A(n) - (n+2)\beta - \gamma$$

$$0 = \alpha$$

$$n^2 = 2(n-1)^2 + \beta n + \gamma$$

$$= 2n^2 - 4n + 2 + \beta n + \gamma$$

$$-n^2 + 4n - 2 = \beta n + \gamma$$

This will go nowhere. Since we don't have something for the n^2 term, we can't solve.

It seems that our recurrence is *not* true for $r_n = n^2$, no matter what constants we choose.

We need a different function to try.

Let's try $r_n = 2^n$

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

$$r_n = (\alpha + 2\beta + \gamma)A(n) - (n+2)\beta - \gamma$$

$$1 = \alpha$$

$$2^n = 2(2^{n-1}) + \beta n + \gamma$$

This one's easy! $\beta = \gamma = 0$

Why?

Plugging $r_n = 2^n$

$$r_{0} = \alpha$$

$$r_{n} = 2r_{n-1} + \beta n + \gamma$$

$$1 = \alpha$$

$$2^{n} = 2(2^{n-1}) + \beta n + \gamma$$

$$= 2^{n} + \beta n + \gamma$$

$$\beta = 0$$

$$\gamma = 0$$

$$2^{n} = (\alpha + 2\beta + \gamma)A(n) - (n+2)\beta - \gamma$$

$$= A(n)$$

And we have A

Summarizing

If our wild assumption is correct, then

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

has the general solution:

$$r_n = (\alpha + 2\beta + \gamma)2^n - (n+2)\beta - \gamma$$

Let's try our specific problem again

$$r_{0} = \alpha$$

$$r_{n} = 2r_{n-1} + \beta n + \gamma$$

$$r_{n} = (\alpha + 2\beta + \gamma)2^{n} - (n+2)\beta - \gamma$$

$$r_{0} = 1$$

$$r_{n} = 2r_{n-1} + n$$

$$\alpha = 1$$

$$\beta = 1$$

$$\gamma = 0$$

$$r_{n} = 3(2^{n}) - n - 2$$

Is this solution correct?

Problem Solved

$$r_0 = 1$$

$$r_n = 2r_{n-1} + n$$

$$r_n = 3(2^n) - n - 2$$

Cases give us confidence:

n	0	1	2	3	4	5
r_n	1	3	8	19	42	89
$3(2^n)-n-2$	1	3	8	19	42	89

But to be *really* sure, prove it by induction!

Remember, to solve a specific problem:

$$r_0 = 1$$

$$r_n = 2r_{n-1} + n$$

We solved a general problem:

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

To solve the general problem:

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

We investigated some small cases, and guessed that all solutions looked like:

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

for some functions A, B, and C.

To solve for A, B, and C, we tried to find simple functions $r_n = f(n)$ and constants α , β and γ that satisfied these conditions:

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

and then plugged them into

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

to learn something about A, B, and C.

We tried $r_n = 1$ and found that this worked with $\alpha = 1$, $\beta = 0$ and $\gamma = -1$.

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

Which got us the equation

$$1 = A(n) - C(n)$$

We tried $r_n = n$ and found that this worked with $\alpha = 0$, $\beta = -1$ and $\gamma = 2$.

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

Which got us the equation

$$n = -B(n) + 2C(n)$$

We tried $r_n = 2^n$ and found that this worked with $\alpha = 1$, $\beta = 0$ and $\gamma = 0$.

$$r_0 = \alpha$$

$$r_n = 2r_{n-1} + \beta n + \gamma$$

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

Which got us the equation

$$2^n = A(n)$$

The first time through, we plugged each of our equations in to simplify the expression

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

resulting (eventually) in

$$r_n = (\alpha + 2\beta + \gamma)2^n - (n+2)\beta - \gamma$$

This time, let's just collect our three equations:

$$\begin{array}{rcl}
1 & = & A(n) & & -C(n) \\
n & = & -B(n) & +2C(n) \\
2^n & = & A(n)
\end{array}$$

Clearly we have a system of three equations in three unknowns.

We know how to solve these!

$$\begin{array}{rcl}
1 & = & A(n) & & -C(n) \\
n & = & -B(n) & +2C(n) \\
2^n & = & A(n)
\end{array}$$

Subtracting the first from the third gives:

$$2^n - 1 = C(n)$$

Adding twice the first to the second gives:

$$n+2 = 2A(n) - B(n)$$

= $2(2^n) - B(n)$
 $B(n) = 2^{n+1} - n - 2$

Solving

$$\begin{array}{rcl}
1 & = & A(n) & & -C(n) \\
n & = & -B(n) & +2C(n) \\
2^n & = & A(n)
\end{array}$$

gives

$$A(n) = 2^{n}$$

$$B(n) = 2^{n+1} - n - 2$$

$$C(n) = 2^{n} - 1$$

Plugging

$$A(n) = 2^{n}$$

$$B(n) = 2^{n+1} - n - 2$$

$$C(n) = 2^{n} - 1$$

into

$$r_n = \alpha A(n) + \beta B(n) + \gamma C(N)$$

gives

$$r_n = \alpha(2^n) + \beta(2^{n+1} - n - 2) + \gamma(2^n - 1)$$

which, on rearranging, is equivalent to our original

$$r_n = (\alpha + 2\beta + \gamma)2^n - (n+2)\beta - \gamma$$