

PEPR IA / PDE AI

Mirror and Preconditioned Gradient Descent in Wasserstein Space

Clément Bonet¹, Théo Uscidda¹, Adam David², Pierre-Cyril Aubin-Frankowski³, Anna Korba¹

¹ENSAE, CREST, Institut Polytechnique de Paris ²TU Berlin ³CERMICS, ENPC

Motivations

Let $\mathcal{P}_2(\mathbb{R}^d) = \{ \mu \in \mathcal{P}(\mathbb{R}^d), \int ||x||_2^2 d\mu(x) < \infty \}, \ \mathcal{F} : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}.$

Goal:

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \ \mathcal{F}(\mu)$$

Applications:

- Sampling from $\nu \propto e^{-V}$ (Wibisono, 2018)
- Generative modeling
- Learning neural networks (Mei et al., 2018; Chizat and Bach, 2018)
- Modeling dynamic of population of cells (Schiebinger et al., 2019)

Example of functionals

- Free energies: $\mathcal{F}(\mu) = \int V d\mu + \int \int W(x,y) d\mu(x) d\mu(y) + \mathcal{H}(\mu)$ where $\mathcal{H}(\mu) = \int \log (\mu(x)) d\mu(x)$ for $\mu \ll \text{Leb}$
- $\mathcal{F}(\mu) = \mathrm{KL}(\mu||\nu) = \int V \mathrm{d}\mu + \mathcal{H}(\mu) + \mathrm{cst}$ for sampling from $\nu \propto e^{-V(x)}$
- $\mathcal{F}(\mu) = D(\mu, \nu)$ for sampling from ν

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent and Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$

Applications

Gradient Descent on \mathbb{R}^d

Let $f: \mathbb{R}^d \to \mathbb{R}$.

Goal: $\min_{x \in \mathbb{R}^d} f(x)$ via gradient flow

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla f(x_t), \quad x_0 = x_0$$

Gradient Descent on \mathbb{R}^d

Let $f: \mathbb{R}^d \to \mathbb{R}$.

Goal: $\min_{x \in \mathbb{R}^d} f(x)$ via gradient flow

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla f(x_t), \quad x_0 = x_0$$

Main algorithm: Gradient Descent (GD)

$$\begin{split} \forall k \geq 0, \ x_{k+1} &= x_k - \tau \nabla f(x_k) \\ &= \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|x - x_k\|_2^2 + \tau \langle \nabla f(x_k), x - x_k \rangle \end{split}$$

Gradient Descent on \mathbb{R}^d

Let $f: \mathbb{R}^d \to \mathbb{R}$.

Goal: $\min_{x \in \mathbb{R}^d} f(x)$ via gradient flow

$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = -\nabla f(x_t), \quad x_0 = x_0$$

Main algorithm: Gradient Descent (GD)

From (Bach, 2020)

$$\forall k \ge 0, \ x_{k+1} = x_k - \tau \nabla f(x_k)$$

$$= \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|x - x_k\|_2^2 + \tau \langle \nabla f(x_k), x - x_k \rangle$$

Convergence Analysis

- $f \ \beta$ -smooth $\implies f(x_{k+1}) \le f(x_k) \frac{1}{2\beta} \|\nabla f(x_k)\|_2^2 = f(x_k) \frac{\beta}{2} \|x_{k+1} x_k\|_2^2$
- $f \beta$ -smooth and α -convex $\implies f(x_k) f(x^*) \leq \frac{\beta \alpha}{2k} ||x_0 x^*||_2^2$

Reminder:

- $f \beta$ -smooth $\iff \forall x,y \in \mathbb{R}^d, \ f(x) f(y) \langle \nabla f(y), x y \rangle \leq \frac{\beta}{2} \|x y\|_2^2$
- $f \alpha$ -convex $\iff f \alpha \frac{\|\cdot\|_2^2}{2}$ convex

If f not β -smooth: no guarantees for $\mathsf{GD} \to \mathsf{change}$ geometry

If f not β -smooth: no guarantees for $\mathsf{GD} \to \mathsf{change}$ geometry

Definition (Bregman Divergence)

Let $\phi:\mathbb{R}^d\to\mathbb{R}$ be strictly convex, then the Bregman divergence is defined as

$$\forall x, y \in \mathbb{R}^d, \ d_{\phi}(x, y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle.$$

If f not β -smooth: no guarantees for $\mathsf{GD} \to \mathsf{change}$ geometry

Definition (Bregman Divergence)

Let $\phi:\mathbb{R}^d \to \mathbb{R}$ be strictly convex, then the Bregman divergence is defined as

$$\forall x, y \in \mathbb{R}^d, \ d_{\phi}(x, y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle.$$

Mirror Descent algorithm:

$$\forall k \ge 0, \ x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ d_{\phi}(x, x_k) + \tau \langle \nabla f(x_k), x - x_k \rangle$$
$$= \nabla \phi^* \big(\nabla \phi(x_k) - \tau \nabla f(x_k) \big).$$

Remark: For $\phi(x) = \frac{1}{2} \|x\|_2^2$, MD = GD and $d_{\phi}(x, y) = \frac{1}{2} \|x - y\|_2^2$

If f not β -smooth: no guarantees for $\mathsf{GD} \to \mathsf{change}$ geometry

Definition (Bregman Divergence)

Let $\phi: \mathbb{R}^d \to \mathbb{R}$ be strictly convex, then the Bregman divergence is defined as

$$\forall x, y \in \mathbb{R}^d, \ d_{\phi}(x, y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle.$$

Mirror Descent algorithm:

$$\forall k \ge 0, \ x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \ d_{\phi}(x, x_k) + \tau \langle \nabla f(x_k), x - x_k \rangle$$
$$= \nabla \phi^* \big(\nabla \phi(x_k) - \tau \nabla f(x_k) \big).$$

Remark: For $\phi(x)=\frac{1}{2}\|x\|_2^2$, MD = GD and $\mathrm{d}_\phi(x,y)=\frac{1}{2}\|x-y\|_2^2$

Convergence analysis (Lu et al., 2018)

- f β -smooth relative to ϕ , i.e. $d_f(x,y) \leq \beta d_\phi(x,y)$ (equivalently $\beta \phi f$ convex) $\implies f(x_{k+1}) \leq f(x_k) \beta d_\phi(x_k, x_{k+1})$
- f β -smooth and α -convex relative to ϕ , i.e. $\alpha d_{\phi}(x,y) \leq d_{f}(x,y)$ (equivalently $f \alpha \phi$ convex) $\implies f(x_{k}) f(x^{*}) \leq \frac{\beta \alpha}{k} d_{\phi}(x^{*}, x_{0})$

Preconditioned Gradient Descent (Maddison et al., 2021)

Let $h: \mathbb{R}^d \to \mathbb{R}$ strictly convex, $g: \mathbb{R}^d \to \mathbb{R}$.

Preconditioned Gradient Descent scheme:

$$\forall k \ge 0, \ y_{k+1} = y_k - \tau \nabla h^* \left(\nabla g(y_k) \right)$$
$$= \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ h \left(\frac{y_k - y}{\tau} \right) \tau + \left\langle \nabla g(y_k), y - y_k \right\rangle$$

Preconditioned Gradient Descent (Maddison et al., 2021)

Let $h: \mathbb{R}^d \to \mathbb{R}$ strictly convex, $g: \mathbb{R}^d \to \mathbb{R}$.

Preconditioned Gradient Descent scheme:

$$\forall k \ge 0, \ y_{k+1} = y_k - \tau \nabla h^* \left(\nabla g(y_k) \right)$$
$$= \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ h \left(\frac{y_k - y}{\tau} \right) \tau + \left\langle \nabla g(y_k), y - y_k \right\rangle$$

Closely related to MD (Kim et al., 2023) as for $g=\phi^*$, $h^*=f$, $y=\nabla\phi(x)$,

$$\nabla \phi(x_{k+1}) = \nabla \phi(x_k) - \tau \nabla f(x_k) \iff x_{k+1} = \nabla \phi^* (\nabla \phi(x_k) - \tau \nabla f(x_k)).$$

Preconditioned Gradient Descent (Maddison et al., 2021)

Let $h: \mathbb{R}^d \to \mathbb{R}$ strictly convex, $g: \mathbb{R}^d \to \mathbb{R}$.

Preconditioned Gradient Descent scheme:

$$\forall k \ge 0, \ y_{k+1} = y_k - \tau \nabla h^* \left(\nabla g(y_k) \right)$$
$$= \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ h\left(\frac{y_k - y}{\tau} \right) \tau + \left\langle \nabla g(y_k), y - y_k \right\rangle$$

Closely related to MD (Kim et al., 2023) as for $g=\phi^*$, $h^*=f$, $y=\nabla\phi(x)$,

$$\nabla \phi(x_{k+1}) = \nabla \phi(x_k) - \tau \nabla f(x_k) \iff x_{k+1} = \nabla \phi^* (\nabla \phi(x_k) - \tau \nabla f(x_k)).$$

Convergence analysis (Maddison et al., 2021)

- h^* β -smooth relative to $g^* \implies h^*(\nabla g(y_{k+1})) \leq h^*(\nabla g(y_k)) \beta d_g(y_{k+1}, y_k)$
- h^* β -smooth and α -convex relative to g^* $\implies \forall k \geq 1, \ h^* \big(\nabla g(y_k) \big) h^*(0) \leq \frac{\alpha \beta}{k} \big(g(y_0) g(y^*) \big)$
 - $\implies \forall k \ge 0, \ g(y_k) g(y^*) \le (1 \alpha/\beta)^k (g(y_0) g(y^*))$

Relation between MD and Preconditioned GD

Dual Space Preconditioning for Gradient Descent Chris J. Maddison^{1,4,*}, Daniel Paulin^{2,*}, Yee Whye Teh³, and Arnaud Doucet³

Algorithm Mirror descent $\nabla \omega(x_{i+1}) = \nabla \omega(x_i) - \frac{1}{r} \nabla f(x_i)$

Algorithm 1.1 Dual preconditioned gradient descent $x_{i+1} = x_i - \frac{1}{T_*} \nabla k(\nabla f(x_i))$

Figure: Taken from a tweet of Konstantin Mishchenko ¹

¹ https://mobile.x.com/konstmish/status/1431983100561592323/photo/1

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent and Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$

Applications

Wasserstein Geometry (Ambrosio et al., 2005)

Definition (Wasserstein distance)

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ and denote by $\Pi(\mu, \nu)$ the set of coupling between μ, ν . Then, the Wasserstein distance is

$$W_2^2(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \int ||x - y||_2^2 d\gamma(x, y).$$

Properties:

- W_2 distance, $(\mathcal{P}_2(\mathbb{R}^d), W_2)$: Wasserstein space
- Riemannian structure (with geodesics and tangent space $\mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d})\subset L^{2}(\mu)$)

• Wasserstein gradient
$$\nabla_{W_2} \mathcal{F}(\mu) \in \mathcal{T}_{\mu} \mathcal{P}_2(\mathbb{R}^d)$$
 of \mathcal{F} at μ satisfies for all $T \in L^2(\mu)$,
$$\mathcal{F}(T_{\#}\mu) = \mathcal{F}(\mu) + \langle \nabla_{W_2} \mathcal{F}(\mu), T - \operatorname{Id} \rangle_{L^2(\mu)} + o(\|T - \operatorname{Id}\|_{L^2(\mu)})$$

Example

- $\mathcal{V}(\mu) = \int V d\mu$, $\nabla_{W_2} \mathcal{V}(\mu) = \nabla V$
- $W(\mu) = \frac{1}{2} \iint W(x-y) d\mu(x) d\mu(y), \nabla_{W_2} W(\mu) = \nabla W \star \mu$

Wasserstein Gradient Descent

$$T_{\mu_k}\mathcal{P}_2(\mathbb{R}^d)\subset L^2(\mu_k)$$

$$\mu_k$$

$$T_{k+1}=\operatorname{Id}-\tau\nabla_{\operatorname{W}_2}\mathcal{F}(\mu_k)$$

$$\mu_{k+1}=(\operatorname{T}_{k+1})_\#\mu_k$$

$$\mathcal{P}_2(\mathbb{R}^d)$$

Wasserstein Gradient Descent:

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^{2}(\mu_{k})} \ \frac{1}{2} \|\mathbf{T} - \operatorname{Id}\|_{L^{2}(\mu_{k})}^{2} + \tau \langle \nabla_{\mathbf{W}_{2}} \mathcal{F}(\mu_{k}), \mathbf{T} - \operatorname{Id} \rangle_{L^{2}(\mu_{k})} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_{k} \end{cases}$$

Taking the FOC: $T_{k+1} = Id - \tau \nabla_{W_2} \mathcal{F}(\mu_k)$

Particle approximation: $\hat{\mu}_k^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i^k}$, $x_i^{k+1} = T_{k+1}(x_i^k)$ for all $i \in \{1, \dots, n\}$.

Contributions

Study schemes of the form

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \ d(\mathbf{T}, \mathrm{Id}) + \tau \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k, \end{cases}$$

and provide convergence conditions.

Considered divergences:

- For $d(T, Id) = \frac{1}{2} ||T Id||_{L^2(u)}^2$: Wasserstein gradient descent
- For $d_{\phi_{\mu}}(T, Id) = \phi_{\mu}(T) \phi_{\mu}(Id) \langle \nabla \phi_{\mu}(Id), T Id \rangle_{L^{2}(\mu)}$ (Bregman divergence on $L^{2}(\mu)$): extends Mirror Descent (Beck and Teboulle, 2003) to $\mathcal{P}_{2}(\mathbb{R}^{d})$.
- For $d(T, Id) = \int h(T(x) x) d\mu(x)$: extends **Preconditioned Gradient Descent** (Maddison et al., 2021) to $\mathcal{P}_2(\mathbb{R}^d)$.

Table of Contents

Detour by \mathbb{R}^{6}

Wasserstein Gradient Flows

Mirror Descent and Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$

Applications

Background on $L^2(\mu)$

Definition (Bregman Divergence (Frigyik et al., 2008))

Let $\phi_{\mu}: L^2(\mu) \to \mathbb{R}$ be convex. The Bregman divergence is defined for all $T, S \in L^2(\mu)$ as

$$d_{\phi_{\mu}}(T,S) = \phi_{\mu}(T) - \phi_{\mu}(S) - \langle \nabla \phi_{\mu}(S), T - S \rangle_{L^{2}(\mu)}.$$

- If $\phi_{\mu}(T) = \frac{1}{2} \|T\|_{L^{2}(\mu)}^{2}$, $d_{\phi_{\mu}}(T, S) = \frac{1}{2} \|T S\|_{L^{2}(\mu)}^{2}$
- We call ϕ_μ pushforward compatible if there exists $\phi:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$ such that

$$\forall \mu \in \mathcal{P}_2(\mathbb{R}^d), \ \forall \mathbf{T} \in L^2(\mu), \ \phi_{\mu}(\mathbf{T}) = \phi(\mathbf{T}_{\#}\mu).$$

In this case, if ϕ is W_2 -differentiable, then ϕ_μ is Fréchet differentiable and $\nabla \phi_\mu(T) = \nabla_{W_2} \phi(T_\# \mu) \circ T$

Relative Convexity and Smoothness

Let $\phi_{\mu}, \psi_{\mu} : L^{2}(\mu) \to \mathbb{R}$ convex, $\mathcal{F}, \mathcal{G} : \mathcal{P}_{2}(\mathbb{R}^{d}) \to \mathbb{R}$. Define $\tilde{\mathcal{F}}_{\mu}(T) = \mathcal{F}(T_{\#}\mu)$, $\tilde{\mathcal{G}}_{\mu}(T) = \mathcal{G}(T_{\#}\mu)$.

Relative smoothness/convexity on $L^2(\mu)$

• ϕ_{μ} is β -smooth relative to ψ_{μ} if for all $T, S \in L^{2}(\mu)$, $d_{\phi_{\mu}}(T, S) \leq \beta d_{\psi_{\mu}}(T, S)$.

• ϕ_{μ} is α -convex relative to ψ_{μ} if for all $T, S \in L^{2}(\mu)$, $d_{\phi_{\mu}}(T, S) \geq \alpha d_{\psi_{\mu}}(T, S)$.

Relative smoothness/convexity on $\mathcal{P}_2(\mathbb{R}^d)$

Relative smoothness/convexity along a curve $\mu_t = (T_t)_{\#}\mu$ with $T_t = (1-t)S + tT$ for all $t \in [0,1]$, $T,S \in L^2(\mu)$.

•
$$\mathcal{F}$$
 β -smooth relative to \mathcal{G} along $t\mapsto \mu_t$ if $\forall s,t\in[0,1]$,
$$\mathrm{d}_{\tilde{\mathcal{F}}_u}(\mathrm{T}_s,\mathrm{T}_t)\leq\beta\mathrm{d}_{\tilde{\mathcal{G}}_u}(\mathrm{T}_s,\mathrm{T}_t)$$

• \mathcal{F} α -convex relative to \mathcal{G} along $t\mapsto \mu_t$ if $\forall s,t\in[0,1]$,

$$\mathrm{d}_{\tilde{\mathcal{F}}_{u}}(\mathrm{T}_{s},\mathrm{T}_{t}) \geq \alpha \mathrm{d}_{\tilde{\mathcal{Q}}_{u}}(\mathrm{T}_{s},\mathrm{T}_{t})$$

Mirror Descent on the Wasserstein Space

Let $\phi_{\mu}: L^2(\mu) \to \mathbb{R}$ be strictly convex, proper and differentiable.

Mirror Descent scheme:

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \ d_{\phi_{\mu_k}}(\mathbf{T}, \mathrm{Id}) + \tau \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k. \end{cases}$$

By FOC: $\nabla \phi_{\mu_k}(T_{k+1}) = \nabla \phi_{\mu_k}(Id) - \tau \nabla_{W_2} \mathcal{F}(\mu_k)$

Computing the scheme:

- For $\phi_{\mu}(T) = \int V \circ T d\mu$, $T_{k+1} = \nabla V^* \circ (\nabla V \tau \nabla_{W_2} \mathcal{F}(\mu_k))$
- For ϕ_{μ} pushforward compatible (i.e. $\phi_{\mu}(T) = \phi(T_{\#}\mu)$ with $\phi: \mathcal{P}_{2}(\mathbb{R}^{d}) \to \mathbb{R}$):

$$\nabla_{\mathbf{W}_2} \phi(\mu_{k+1}) \circ \mathbf{T}_{k+1} = \nabla_{\mathbf{W}_2} \phi(\mu_k) - \tau \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k)$$

In general: implicit in $T_{k+1} \rightarrow Newton method$

Descent Lemma

Let $\phi_{\mu}: L^2(\mu) \to \mathbb{R}$ be strictly convex, proper and differentiable.

Mirror Descent scheme:

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \ d_{\phi_{\mu_k}}(\mathbf{T}, \mathrm{Id}) + \tau \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathrm{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k. \end{cases}$$

Proposition (Descent Lemma)

Assumptions:

• For all $k \geq 0$, $\mathcal F$ is β -smooth relative to ϕ along $t \mapsto \big((1-t)\mathrm{Id} + t\mathrm{T}_{k+1}\big)_{+\!\!\!/}\mu_k$

Then, for all
$$k \geq 0$$
,

Then, for all $k \geq 0$,

$$\mathcal{F}(\mu_{k+1}) \le \mathcal{F}(\mu_k) - \beta d_{\phi_{\mu_k}}(\mathrm{Id}, \mathrm{T}_{k+1}).$$

Convergence

Proposition

Assumptions: Let $\beta > 0, \alpha \geq 0$ and $T_{\phi_{\mu_k}}^{\mu_k, \mu^*} = \operatorname{argmin}_{T_{\#}\mu_k = \mu^*} d_{\phi_{\mu_k}}(T, \operatorname{Id}).$

- \mathcal{F} eta-smooth relative to ϕ along $t\mapsto ig((1-t)\mathrm{Id}+t\mathrm{T}_{k+1}ig)_{\mu}\mu_k$
- \mathcal{F} α -convex relative to ϕ along $t \mapsto \left((1-t) \mathrm{Id} + t \mathrm{T}_{\phi_{uv}}^{\mu_k, \mu^*} \right)_{\#} \mu_k$
- Assume $d_{\phi_{\mu_k}}(T_{\phi_{\mu_k}}^{\mu_k,\mu^*},T_{k+1}) \geq d_{\phi_{\mu_{k+1}}}(T_{\phi_{\mu_{k+1}}}^{\mu_{k+1},\mu^*},Id)$

Then, for all $k \geq 1$, $\mathcal{F}(\mu_k) - \mathcal{F}(\mu^*) \leq \frac{\beta - \alpha}{k} d_{\phi_{\mu_0}}(T_{\phi_{\mu_0}}^{\mu_0, \mu^*}, \mathrm{Id})$.

If
$$\alpha > 0$$
, for all $k \ge 0$, $d_{\phi_{\mu_k}}(T_{\phi_{\mu_k}}^{\mu_k, \mu^*}, Id) \le \left(1 - \frac{\alpha}{\beta}\right)^k d_{\phi_{\mu_0}}(T_{\phi_{\mu_0}}^{\mu_0, \mu^*}, Id)$.

Let ϕ_{μ} be pushforward compatible. Define the OT problem:

$$W_{\phi}(\nu,\mu) = \inf_{\gamma \in \Pi(\nu,\mu)} \phi(\nu) - \phi(\mu) - \int \langle \nabla_{W_2} \phi(\mu)(y), x - y \rangle \, d\gamma(x,y)$$

$$\leq d_{\phi_n}(T,S) \quad \text{for} \quad (T,S)_{\#} \eta \in \Pi(\nu,\mu)$$

Property: If $\mu \ll \text{Leb}$ and $\nabla_{W_2}\phi(\mu)$ is invertible, then $\gamma^* = (T_{\phi_\mu}^{\mu,\nu}, \text{Id})_\#\mu$, and $W_{\phi}(\nu,\mu) = d_{\phi_\mu}(T_{\phi_\mu}^{\mu,\nu}, \text{Id})$.

Preconditioned GD

Let $h: \mathbb{R}^d \to \mathbb{R}$ strictly convex, proper and differentiable.

Preconditioned Gradient Descent scheme: Let $\phi_{\mu}^{h}(T) = \int h \circ T \ d\mu$,

$$\begin{cases} \mathbf{T}_{k+1} = \operatorname{argmin}_{\mathbf{T} \in L^2(\mu_k)} \ \phi_{\mu_k}^h \left(\frac{\mathbf{Id} - \mathbf{T}}{\tau} \right) \tau + \langle \nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k), \mathbf{T} - \mathbf{Id} \rangle_{L^2(\mu_k)} \\ \mu_{k+1} = (\mathbf{T}_{k+1})_{\#} \mu_k \end{cases}$$

By FOC: $T_{k+1} = Id - \tau \nabla h^* \circ \nabla_{W_2} \mathcal{F}(\mu_k)$

Under relative smoothness and convexity of $\phi_u^{h^*}$ relative to \mathcal{F}^* :

$$\forall k \geq 0, \ \phi_{\mu_k+1}^{h^*} \left(\nabla_{\mathbf{W}_2} \mathcal{F}(\mu_{k+1}) \right) \leq \phi_{\mu_k}^{h^*} \left(\nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k) \right) - \beta d_{\tilde{\mathcal{F}}_{\mu_k}} (\mathbf{T}_{k+1}, \mathrm{Id}),$$
$$\forall k \geq 1, \ \phi_{\mu_k}^{h^*} \left(\nabla_{\mathbf{W}_2} \mathcal{F}(\mu_k) \right) - h^*(0) \leq \frac{\beta - \alpha}{k} \left(\mathcal{F}(\mu_0) - \mathcal{F}(\mu^*) \right).$$

Table of Contents

Detour by \mathbb{R}^d

Wasserstein Gradient Flows

Mirror Descent and Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$

Applications

Showing Relative Smoothness and Convexity

Smoothness and convexity of $\mathcal{F}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ relative to $\phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$?

- Let $\mathcal{F}(\mu) = \int V d\mu$ and $\phi(\mu) = \int U d\mu$:
 - V β -smooth relative to $U \Longrightarrow \mathcal{F}$ β -smooth relative to ϕ V α -convex relative to $U \Longrightarrow \mathcal{F}$ α -convex relative to ϕ
- Let $\mathcal{F}(\mu)=\iint W(x-y)\;\mathrm{d}\mu(x)\mathrm{d}\mu(y)$ and $\phi(\mu)=\iint K(x-y)\;\mathrm{d}\mu(x)\mathrm{d}\mu(y)$:

$$W$$
 β -smooth relative to $K \Longrightarrow \mathcal{F}$ β -smooth relative to ϕ W α -convex relative to $K \Longrightarrow \mathcal{F}$ α -convex relative to ϕ

- For $\mathcal{F}=\mathcal{G}+\mathcal{H}$, $\mathrm{d}_{\tilde{\mathcal{F}}_{\mu}}=\mathrm{d}_{\tilde{\mathcal{G}}_{\mu}}+\mathrm{d}_{\tilde{\mathcal{H}}_{\mu}}$ and \mathcal{F} 1-convex relative to \mathcal{G} and \mathcal{H}
- In general: look at the Hessian

Mirror Descent on Interaction Energy

Goal: Let $\Sigma \in S_d^{++}(\mathbb{R})$ possibly ill-conditioned,

$$\min_{\mu} \ \mathcal{W}(\mu) = \iint W(x-y) \ \mathrm{d}\mu(x) \mathrm{d}\mu(y) \quad \text{with} \quad W(z) = \frac{1}{4} \|z\|_{\Sigma^{-1}}^4 - \frac{1}{2} \|z\|_{\Sigma^{-1}}^2$$

Bregman potential: $\phi_{\mu}(T) = \iint K(T(x) - T(y)) d\mu(x) d\mu(y)$ with

$$K_2(z) = \frac{1}{2} \|z\|_2^2, \quad K_2^{\Sigma}(z) = \frac{1}{2} \|z\|_{\Sigma^{-1}}^2,$$

$$K_4(z) = \frac{1}{4} \|z\|_2^4 + \frac{1}{2} \|z\|_2^2, \quad K_4^{\Sigma}(z) = \frac{1}{4} \|z\|_{\Sigma^{-1}}^4 + \frac{1}{2} \|z\|_{\Sigma^{-1}}^2.$$

Mirror Descent on Gaussian

Goal:

$$\min_{\mu} \mathcal{F}(\mu) = \int V d\mu + \mathcal{H}(\mu) \quad \text{with} \quad V(x) = \frac{1}{2} x^T \Sigma^{-1} x$$

 $\rightarrow \text{minimum } \mu^{\star} = \mathcal{N}(0, \Sigma).$

Comparison between:

- Forward-Backward (FB) on the Bures-Wasserstein space (Diao et al., 2023)
- Preconditioned Forward-Backward (PFB) scheme with $\phi(\mu) = \int V d\mu$
- NEM: MD with $\phi(\mu) = \mathcal{H}(\mu)$ and restriction to Gaussian

Preconditioned GD on Single-Cells

 $\begin{array}{l} \textbf{Goal}\colon \min_{\mu} \ \mathcal{F}(\mu) = D(\mu,\nu) \ \text{with} \ \mu_0 \ \text{untreated cell and} \ \nu \ \text{perturbed cell} \\ \text{Use PGD with} \ h^*(x) = (\|x\|_2^a + 1)^{1/a} - 1 \ \text{with} \ a \in \{1.25, 1.5, 1.75\}, \ \text{which is well} \\ \text{suited to minimize functions growing in} \ \|x - x^*\|^{a/(a-1)} \ \text{near} \ x^*. \\ \end{array}$

- Rows: 2 profiling technologies
- ullet Columns/subcolumns: Different objectives $\mathcal{F}/\text{measure}$ of convergence and number of iterations to converge
- Points: For treatment $i, z_i = (x_i, y_i)$ with x_i value of $\mathcal{F}(\hat{\mu}) = D(\hat{\mu}, \nu)$ (1st subcolumn) or number of iterations (2nd subcolumn) without preconditioning and y_i with preconditioning
- Colors: treatments
 - \rightarrow Points below the diagonal: PGD provides a better minimum or converges faster

Conclusion

Conclusion:

- Mirror Descent on $\mathcal{P}_2(\mathbb{R}^d)$
- Preconditioned Gradient Descent on $\mathcal{P}_2(\mathbb{R}^d)$
- Convergence analysis of the discrete schemes
- Also in the paper: analysis of the Bregman Forward-Backward scheme

Perspectives:

- Find more examples satisfying the conditions
- Analyze the Gaussian MD scheme

Conclusion

Thank you!

Paper: https://arxiv.org/abs/2406.08938

References I

- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows: in Metric Spaces and in the Space of Probability Measures.* Springer Science & Business Media, 2005.
- Francis Bach. Effortless optimization through gradient flows, 2020. URL https://francisbach.com/gradient-flows/.
- Amir Beck and Marc Teboulle. Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization. *Operations Research Letters*, 31 (3):167–175, 2003.
- Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. *Advances in neural information processing systems*, 31, 2018.
- Michael Ziyang Diao, Krishna Balasubramanian, Sinho Chewi, and Adil Salim. Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space. In *International Conference on Machine Learning*, pages 7960–7991. PMLR, 2023.
- Bela A Frigyik, Santosh Srivastava, and Maya R Gupta. Functional Bregman divergence. In *2008 IEEE International Symposium on Information Theory*, pages 1681–1685. IEEE, 2008.

References II

- Jaeyeon Kim, Chanwoo Park, Asuman Ozdaglar, Jelena Diakonikolas, and Ernest K Ryu. Mirror Duality in Convex Optimization. *arXiv preprint* arXiv:2311.17296, 2023.
- Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively Smooth Convex Optimization by First-Order Methods, and Applications. *SIAM Journal on Optimization*, 28(1):333–354, 2018.
- Chris J Maddison, Daniel Paulin, Yee Whye Teh, and Arnaud Doucet. Dual Space Preconditioning for Gradient Descent. *SIAM Journal on Optimization*, 31(1): 991–1016, 2021.
- Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer neural networks. *Proceedings of the National Academy of Sciences*, 115(33):E7665–E7671, 2018.
- Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon, Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. *Cell*, 176(4):928–943, 2019.

References III

Andre Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization problem. In *Conference on Learning Theory*, pages 2093–3027. PMLR, 2018.