In [1]:

```
# Dependencies and Setup
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

# Hide warning messages in notebook
import warnings
warnings.filterwarnings('ignore')

# File to Load (Remember to Change These)
mouse_drug_data_to_load = "data/mouse_drug_data.csv"
clinical_trial_data_to_load = "data/clinicaltrial_data.csv"

# Read the Mouse and Drug Data and the Clinical Trial Data
mouse_td = pd.read_csv(mouse_drug_data_to_load)
clinical_td = pd.read_csv(clinical_trial_data_to_load)
```

In [2]:

mouse_td.head()

Out[2]:

	Mouse ID	Drug
0	f234	Stelasyn
1	x402	Stelasyn
2	a492	Stelasyn
3	w540	Stelasyn
4	v764	Stelasyn

```
In [3]:
```

```
clinical_td.head()
```

Out[3]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	b128	0	45.0	0
1	f932	0	45.0	0
2	g107	0	45.0	0
3	a457	0	45.0	0
4	c819	0	45.0	0

In [4]:

Out[4]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Drug
0	b128	0	45.000000	0	Capomulin
1	b128	5	45.651331	0	Capomulin
2	b128	10	43.270852	0	Capomulin
3	b128	15	43.784893	0	Capomulin
4	b128	20	42.731552	0	Capomulin

```
In [5]:
```

merged_df.dtypes

Out[5]:

Mouse ID object
Timepoint int64
Tumor Volume (mm3) float64
Metastatic Sites int64
Drug object

dtype: object

Tumor Response to Treatment

In [6]:

Store the Mean Tumor Volume Data Grouped by Drug and Timepoint and create data
frame
mean_tumor_vol = pd.DataFrame(merged_df.groupby(['Drug', 'Timepoint']).mean()['T
umor Volume (mm3)'])

In [7]:

```
# Preview to DataFrame
mean_tumor_vol = pd.pivot_table(merged_df, index='Timepoint', columns='Drug', va
lues='Tumor Volume (mm3)', aggfunc = np.mean)
mean_tumor_vol
```

Out[7]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	45.000000	45.000000	45.000000	45.000000
5	44.266086	47.062001	47.389175	47.125589
10	43.084291	49.403909	49.582269	49.423329
15	42.064317	51.296397	52.399974	51.359742
20	40.716325	53.197691	54.920935	54.364417
25	39.939528	55.715252	57.678982	57.482574
30	38.769339	58.299397	60.994507	59.809063
35	37.816839	60.742461	63.371686	62.420615
40	36.958001	63.162824	66.068580	65.052675
45	36.236114	65.755562	70.662958	68.084082

In [8]:

```
# Create dataframe to store the Standard Error of Tumor Volumes Grouped by Drug
and Timepoint
tumorvol_sem = pd.DataFrame(merged_df.groupby(['Drug', 'Timepoint']).sem()['Tumo
r Volume (mm3)'])
```

In [9]:

```
# Reshape & preview DataFrame
tumorvol_sem = pd.pivot_table(merged_df, index='Timepoint', columns='Drug', valu
es='Tumor Volume (mm3)', aggfunc = np.mean)
tumorvol_sem
```

Out[9]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	45.000000	45.000000	45.000000	45.000000
5	44.266086	47.062001	47.389175	47.125589
10	43.084291	49.403909	49.582269	49.423329
15	42.064317	51.296397	52.399974	51.359742
20	40.716325	53.197691	54.920935	54.364417
25	39.939528	55.715252	57.678982	57.482574
30	38.769339	58.299397	60.994507	59.809063
35	37.816839	60.742461	63.371686	62.420615
40	36.958001	63.162824	66.068580	65.052675
45	36.236114	65.755562	70.662958	68.084082

```
# Generate the Plot with Error Bars (tumor volume changes over time for each tre
atment)
plt.errorbar(mean tumor vol.index, mean tumor vol['Capomulin'], yerr=tumorvol se
m['Capomulin'],
             color='r', marker='o', markersize=5, linestyle='--', linewidth=1)
plt.errorbar(mean tumor vol.index, mean tumor vol['Infubinol'], yerr=tumorvol se
m['Infubinol'],
             color='b', marker='o', markersize=5, linestyle='--', linewidth=1)
plt.errorbar(mean tumor vol.index, mean tumor vol['Ketapril'], yerr=tumorvol sem
['Ketapril'],
             color='g', marker='o', markersize=5, linestyle='--', linewidth=1)
plt.errorbar(mean tumor vol.index, mean tumor vol['Placebo'], yerr=tumorvol sem[
'Placebo'],
             color='black', marker='o', markersize=5, linestyle='--', linewidth=
1)
plt.xlim(0,50)
plt.ylim(30,80)
# Chart title
plt.title("Tumor Response to Treatment")
# x label
plt.xlabel("Time (Days)")
# y label
plt.ylabel("Tumor Volume (mm3)")
# legend
plt.legend(loc='upper left')
# Save the Figure
plt.savefig('tumorvolume time.png')
```



```
In [11]:
# Show the Figure
plt.show()
```

Metastatic Response to Treatment

```
In [12]:
```

```
# Store the Mean Met. Site Data Grouped by Drug and Timepoint
mean_metasite = pd.DataFrame(merged_df.groupby(['Drug', 'Timepoint']).mean()['Me
tastatic Sites'])
```

In [13]:

```
# Reshape and preview DataFrame
metastatic_response= mean_metasite.pivot_table(index='Timepoint',columns='Drug',
values='Metastatic Sites')
metastatic_response
```

Out[13]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.160000	0.280000	0.304348	0.375000
10	0.320000	0.666667	0.590909	0.833333
15	0.375000	0.904762	0.842105	1.250000
20	0.652174	1.050000	1.210526	1.526316
25	0.818182	1.277778	1.631579	1.941176
30	1.090909	1.588235	2.055556	2.266667
35	1.181818	1.666667	2.294118	2.642857
40	1.380952	2.100000	2.733333	3.166667
45	1.476190	2.111111	3.363636	3.272727

In [14]:

```
# Store the Standard Error associated with Met. Sites Grouped by Drug and Timepo
int
metasite_se = pd.DataFrame(merged_df.groupby(['Drug', 'Timepoint']).sem()['Metas
tatic Sites'])
```

In [15]:

```
# Reshape and preview dataframe
metastatic_response_sem = metasite_se.pivot_table(index='Timepoint',columns='Dru
g',values='Metastatic Sites')
metastatic_response_sem
```

Out[15]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.074833	0.091652	0.098100	0.100947
10	0.125433	0.159364	0.142018	0.115261
15	0.132048	0.194015	0.191381	0.190221
20	0.161621	0.234801	0.236680	0.234064
25	0.181818	0.265753	0.288275	0.263888
30	0.172944	0.227823	0.347467	0.300264
35	0.169496	0.224733	0.361418	0.341412
40	0.175610	0.314466	0.315725	0.297294
45	0.202591	0.309320	0.278722	0.304240

plt.show()

```
# Generate the Plot with Error Bars (the number of metastatic sites changes over
time for each treatment)
plt.errorbar(metastatic response.index, metastatic response['Capomulin'], yerr=m
etastatic_response sem['Capomulin'],
             color='r', marker='o', markersize=5, linestyle='--', linewidth=0.5)
plt.errorbar(metastatic_response.index, metastatic_response['Infubinol'], yerr=m
etastatic response sem['Infubinol'],
             color='b', marker='o', markersize=5, linestyle='--', linewidth=0.5)
plt.errorbar(metastatic response.index, metastatic response['Ketapril'], yerr=me
tastatic response sem['Ketapril'],
             color='g', marker='o', markersize=5, linestyle='--', linewidth=0.5)
plt.errorbar(metastatic response.index, metastatic response['Placebo'], yerr=met
astatic response sem['Placebo'],
             color='black', marker='o', markersize=5, linestyle='--', linewidth=
0.5)
# Chart title
plt.title("Metastatic Spread During Treatment")
# x label
plt.xlabel("Treatment Duration (Days)")
# y label
plt.ylabel("Metastatic Sites")
# legend
plt.legend(loc='upper left')
# Save the Figure
plt.savefig('metasiteschangesovertime.png')
# Show the Figure
```


Survival Rates

In [17]:

Store the Count of Mice Grouped by Drug and Timepoint (W can pass any metric)
mice_count = pd.DataFrame(merged_df.groupby(['Drug', 'Timepoint']).count()['Mous
e ID'])

In [18]:

```
# Preview the Data Frame
Survival_rates = pd.pivot_table(mice_count, index='Timepoint', columns='Drug', v
alues='Mouse ID', aggfunc = np.mean)
Survival_rates
```

Out[18]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	25	25	25	25
5	25	25	23	24
10	25	21	22	24
15	24	21	19	20
20	23	20	19	19
25	22	18	19	17
30	22	17	18	15
35	22	12	17	14
40	21	10	15	12
45	21	9	11	11

In [19]:

```
# Preview survival rate dataframe in precentage
Survival_percentage = Survival_rates.copy()
Survival_percentage = round(Survival_percentage.apply(lambda c: c / c.max() * 10
0, axis=0),2)
Survival_percentage
```

Out[19]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	100.0	100.0	100.0	100.0
5	100.0	100.0	92.0	96.0
10	100.0	84.0	88.0	96.0
15	96.0	84.0	76.0	80.0
20	92.0	80.0	76.0	76.0
25	88.0	72.0	76.0	68.0
30	88.0	68.0	72.0	60.0
35	88.0	48.0	68.0	56.0
40	84.0	40.0	60.0	48.0
45	84.0	36.0	44.0	44.0

```
In [20]:
```

```
# Create plot a scatter plot showing the number of mice and their survival rate
plt.errorbar(Survival_percentage.index, Survival percentage['Capomulin'],
             color='r', marker='o', markersize=5, linestyle='--', linewidth=0.5)
plt.errorbar(Survival percentage.index, Survival percentage['Infubinol'],
             color='b', marker='o', markersize=5, linestyle='--', linewidth=0.5)
plt.errorbar(Survival percentage.index, Survival percentage['Ketapril'],
             color='g', marker='o', markersize=5, linestyle='--', linewidth=0.5)
plt.errorbar(Survival percentage.index, Survival percentage['Placebo'],
             color='black', marker='o', markersize=5, linestyle='--', linewidth=
0.5)
# Chart title
plt.title("Survival During Treatment")
# x label
plt.xlabel("Treatment Duration (Days)")
# y label
plt.ylabel("Survival Rate (%)")
# legend
plt.legend(loc='lower left')
# Save the Figure
plt.savefig('survivalrate micecount.png')
# Show the Figure
plt.show()
```


Summary Bar Graph

```
# Calculate the percent changes for each drug
tvol change percent = ((mean tumor vol.iloc[-1]-mean tumor vol.iloc[0])/mean tu
mor vol.iloc[0]) * 100
# Display the data to confirm
tvol change percent
Out[21]:
Drug
Capomulin -19.475303
Infubinol
            46.123472
Ketapril
            57.028795
            51.297960
Placebo
dtype: float64
In [22]:
tvol change percent
drug = list(tvol change percent.index)
drug
Out[22]:
['Capomulin', 'Infubinol', 'Ketapril', 'Placebo']
In [23]:
# Store all Relevant Percent Changes into a Tuple
tvol change data = tvol change percent.tolist()
tvol change data
Out[23]:
[-19.475302667894155, 46.12347172785184, 57.02879468660604, 51.29796]
048315153]
In [24]:
# Indicate colors: red for tumor growth and green for tumor reduction
colors
      = ['r' if tpc > 0 else 'g'
                                           for tpc in tvol change data]
colors
Out[24]:
```

In [21]:

['g', 'r', 'r', 'r']

```
x_axis = np.arange(len(tvol_change_data))
x axis
Out[25]:
array([0, 1, 2, 3])
In [26]:
# Plot bar graph
plt.bar(x axis, tvol change data, color = colors, align="center")
# Label bars on the bar graph
tick locations = [value for value in x axis]
plt.xticks(tick_locations, tvol_change_percent.index)
# Label chart
plt.title("Tumor Change Over 45 Day Treatment")
plt.xlabel("Drugs")
plt.ylabel("% Tumor Volume Change")
# Save the Figure
plt.savefig("tumor vol change.png")
# Show the Figure
plt.show()
```


In [25]: