Learning Theory Bridges Loss Functions

July 13rd, 2020

Han Bao (The University of Tokyo / RIKEN AIP)

Han Bao (包含)

https://hermite.jp/

- 2nd-year Ph.D. student @ Sugiyama-Honda-Yokoya Lab
- Research Interests: robustness and knowledge transfer via loss function

robustness

Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification. (AISTATS2020)

Calibrated Surrogate Losses for Adversarially Robust Classification. (COLT2020)

Calibrated surrogate maximization of Dice. (MICCAI2020)

knowledge transfer learning transfer learning similarity

learning

Unsupervised Domain Adaptation Based on Source-guided Discrepancy. (AAAI2019)

Similarity-based Classification: Connecting Similarity Learning to Binary Classification. (preprint)

Classification from Pairwise Similarity and Unlabeled Data. (ICML2018)

Training

feature (x) label (y)

Prediction

feature (x)

Training

Evaluation

Machine Learning, 20, 273-297 (1995)

© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Support-Vector Networks

CORINNA CORTES
VLADIMIR VAPNIK
AT&T Bell Labs., Holmdel, NJ 07733, USA

corinna@neural.att.com vlad@neural.att.com

$$\min_{w,b} \sum_{i} \max \left\{ 0, 1 - y_i(w^{\mathsf{T}} x_i + b) \right\}$$

hinge loss minimization

misclassification rate

margin maximization

1 if $Y \neq \text{sign}(f(X))$,

0 if Y = sign(f(X))

Background: Binary Classification

- Input
 - ▶ sample $\{(x_i, y_i)\}_{i=1}^n$: pair of feature $x_i \in \mathcal{X}$ and label $y_i \in \{\pm 1\}$
- Output
 - ▶ classifier $f: \mathcal{X} \to \mathbb{R}$
 - ▶ predict class by $sign(f(\cdot))$
 - riteria: misclassification rate $R_{01}(f) = \mathbb{E}\left[\mathbf{1}[Y \neq \text{sign}(f(X))]\right]$

Loss function and Risk

Goal of classification: minimize misclassification rate

$$R_{01}(f) = \mathbb{E}\left[\mathbf{1}[Y \neq \text{sign}(f(X))]\right]$$

0-1 risk

- Misclassification rate = expectation of 0-1 loss $\mathbf{1}[Y \neq \text{sign}(f(X))] = \phi_{01}(Yf(X))$
- Minimizing R_{01} is NP-hard [Feldman+ 2012]

Target Loss vs. Surrogate Loss

Target loss (0-1 loss)

- Final learning criterion
- Hard to optimize
 - ▶ nonconvex, no gradient

Surrogate loss

- Different from target loss
- Easily-optimizable criterion
 - usually convex, smooth

Elements of Learning Theory

(empirical) surrogate risk

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

(population) **surrogate risk**

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

Generalization theory:

If model is not too complicated, then converges (roughly speaking)

Key ingredient:

Calibration theory for loss functions

target risk

$$R_{01}(f) = \mathbb{E}[\ell_{01}(Yf(X))]$$

What surrogate is desirable?

$$R_{\phi}(f_m) \stackrel{m \to \infty}{\to} R_{\phi}^* \implies R_{01}(f_m) \stackrel{m \to \infty}{\to} R_{01}^*$$

How to check risk convergence?

[Steinwart 2007]

Definition. ϕ is ψ -calibrated for a target loss ψ if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all f,

$$R_{\phi}(f) - R_{\phi}^* < \delta \implies R_{\psi}(f) - R_{\psi}^* < \varepsilon.$$

surrogate (excess) risk target (excess) risk

Idea: write δ as function of ε (by using contraposition)

Definition. (calibration function)

$$\delta(\varepsilon) = \inf_{f} R_{\phi}(f) - R_{\phi}^{*} \quad \text{s.t.} \quad R_{\psi}(f) - R_{\psi}^{*} \ge \varepsilon$$
surrogate (excess) risk target (excess) risk

If $\delta(\varepsilon) > 0$ for all $\varepsilon > 0$, surrogate is calibrated!

Main Tool: Calibration Function

Definition. (calibration function)

$$\delta(\varepsilon) = \inf_{f} R_{\phi}(f) - R_{\phi}^{*} \quad \text{s.t.} \quad R_{\psi}(f) - R_{\psi}^{*} \geq \varepsilon$$
 surrogate (excess) risk target (excess) risk

- Provides iff condition
 - $\blacktriangleright \psi$ -calibrated $\iff \delta(\varepsilon) > 0$ for all $\varepsilon > 0$
- monotonically Provides excess risk bound increasing

$$\blacktriangleright$$
 ψ -calibrated $\Longrightarrow R_{\psi}(f) - R_{\psi}^* \le (\delta^{**})^{-1} \left(R_{\phi}(f) - R_{\phi}^* \right)$

target excess risk surrogate excess risk

 δ^{**} : biconjugate of δ

Example: Binary Classification (ϕ_{01})

[Bartlett+ 2006]

Theorem. If surrogate ϕ is convex, it is ϕ_{01} -calibrated iff

- differentiable at 0
- $\phi'(0) < 0$

Counterintuitive Result

■ e.g. multi-class classification ⇒ maximize prediction margin

Crammer-Singer loss max{0,1 – pred. margin} [Crammer & Singer 2001]

one of multi-class extensions of hinge loss

Crammer-Singer loss is not calibrated to 0-1 loss!

(similar extension of logistic loss is calibrated)

[Zhang 2004]

Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based vector machines. Journal of machine learning research, 2(Dec), 265-292

Zhang, T. (2004). <u>Statistical analysis of some multi-category large margin classification methods</u>. *Journal of Machine Learning Research*, *5*(Oct), 1225-1251.

Summary: Calibration Theory

Surrogate vs. Target loss

Target loss is often hard to optimize ⇒ replace with surrogate loss

Calibrated Surrogate

leading to minimization of target

Binary Classification

Hinge, logistic is calibrated Calibrated iff $\phi'(0) < 0$

Multi-class Classification

CS-loss (MC-hinge loss) is not calibrated!

cross-entropy is calibrated (omitted)

Stringent justification of surrogate loss!

When target is not 0-1 loss

H. Bao and M. Sugiyama.

<u>Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification</u>. In *AISTATS*, 2020.

Is accuracy appropriate?

Our focus: binary classification

accuracy: **0.8** accuracy: **0.8**

Accuracy can't detect unreasonable classifiers under class imbalance!

Is accuracy appropriate?

F-measure is more appropriate under class imbalance

positive negative

accuracy: 0.8

F-measure: 0.75

accuracy: 0.8

F-measure: 0

F-measure
$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$\mathsf{TP} = \mathbb{E}_{X,Y=+1}[1_{\{f(X)>0\}}]$$

$$\mathsf{FP} = \mathbb{E}_{X,Y=-1}[1_{\{f(X)>0\}}]$$

$$\mathsf{TN} = \mathbb{E}_{X,Y=-1}[1_{\{f(X)<0\}}]$$

$$FN = \mathbb{E}_{X,Y=+1}[1_{\{f(X)<0\}}]$$

Training and Evaluation

Usual training with accuracy

Training with accuracy but evaluating with F-measure

Not only F₁, but many others

Q. Can we handle in the same way?

Accuracy
$$Acc = TP + TN$$

$$WAcc = \frac{w_1TP + w_2TN}{w_1TP + w_2TN + w_3FP + w_4FN}$$

F-measure
$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$BER = \frac{1}{\pi}FN + \frac{1}{1-\pi}FP$$

$$GLI = \frac{TP + TN}{TP + \alpha(FP + FN) + TN}$$

$$Jac = \frac{IP}{TP + FP + FN}$$

Unification of Metrics

Actual Metrics

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$Jac = \frac{TP}{TP + FP + FN}$$

$$TN = \mathbb{P}(Y = -1) - FP$$

 $FN = \mathbb{P}(Y = +1) - TP$

$$FN = \mathbb{P}(Y = +1) - TP$$

linear-fraction

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$

 a_k, b_k, c_k : constants

Unification of Metrics

linear-fraction

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$

expectation divided by expecation

- \blacksquare TP, FP = expectation of 0/1-loss
 - ► TP = $\mathbb{E}_{X,Y=+1}$ [$\mathbf{1}[f(X) > 0]$] positive data && positive prediction
 - ► FP = $\mathbb{E}_{X,Y=-1}$ [$\mathbf{1}[f(X) > 0]$]
 negative data && positive prediction

Goal of This Talk

Given a metric (utility)
$$U(f) = \frac{a_0 \mathrm{TP} + b_0 \mathrm{FP} + c_0}{a_1 \mathrm{TP} + b_1 \mathrm{FP} + c_1}$$

Q. How to optimize U(f) directly?

without estimating class-posterior probability

labeled sample
$$\{(x_i, y_i)\}_{i=1}^n$$
 i.i.d. \mathbb{P} metric U

classifier
$$f: \mathcal{X} \to \mathbb{R}$$

classifier
$$f: \mathcal{X} \to \mathbb{R}$$

s.t. $U(f) = \sup_{f'} U(f')$

Related: Plug-in Classifier

[Koyejo+ NIPS2014; Yan+ ICML2018]

Estimating class-posterior probability is costly!

O. O. Koyejo, N. Natarajan, P. K. Ravikumar, & I. S. Dhillon. Consistent binary classification with generalized performance metrics. In *NIPS*, 2014.

B. Yan, O. Koyejo, K. Zhong, & P. Ravikumar. Binary classification with Karmic, threshold-quasi-concave metrics. In *ICML*, 2018.

Convexity & Statistical Property

Q. How to make tractable surrogate?

Accuracy

tractable (convex)

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

calibrated

intractable

$$R_{01}(f) = \mathbb{E}[\phi_{01}(Yf(X))]$$

Linear-fractional Metrics

1) tractable?

???

2 calibrated?

intractable

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

Non-concave, but quasi-concave

$$\frac{f(x)}{g(x)}$$
 is quasi-concave

if f: concave, g: convex,

$$f(x) \ge 0$$
 and $g(x) > 0$ for $\forall x$

(proof) Show $\{x | f/g \ge \alpha\}$ is convex.

$$\frac{f(x)}{g(x)} \ge \alpha \iff f(x) - \alpha g(x) \ge 0$$

NB: super-level set of concave func. is convex

$$\therefore \{x | f/g \ge \alpha\}$$
 is convex for $\forall \alpha \ge 0$

non-concave, but unimodal ⇒ efficiently optimized

- quasi-concave ⊇ concave
- super-levels are convex

Surrogate Utility

Idea: bound true utility from below

$$U(f) = \frac{a_0 \mathsf{TP} + b_0 \mathsf{FP} + c_0}{a_1 \mathsf{TP} + b_1 \mathsf{FP} + c_1} = \frac{a_0 \mathbb{E}_{\mathsf{P}} + b_0 \mathbb{E}_{\mathsf{N}} + c_0}{a_1 \mathbb{E}_{\mathsf{P}} + b_1 \mathbb{E}_{\mathsf{N}} + c_1}$$

non-negative sum of concave

⇒ concave

numerator from below

non-negative sum of convex

⇒ convex

denominator from above

Surrogate Utility

Idea: bound true utility from below

$$U_{\phi}(f) = \frac{a_0 \mathbb{E}_{P} [1 - \phi(f(X))] + b_0 \mathbb{E}_{N} [-\phi(-f(X))] + c_0}{a_1 \mathbb{E}_{P} [1 + \phi(f(X))] + b_1 \mathbb{E}_{N} [\phi(-f(X))] + c_1}$$

$$:= \frac{\mathbb{E}[W_{0,\phi}]}{\mathbb{E}[W_{1,\phi}]} : Surrogate Utility$$

Hybrid Optimization Strategy

- Note: numerator can be negative
 - $ightharpoonup U_{\phi}$ isn't quasi-concave only if numerator < 0
 - make numerator positive first (concave), then maximize fractional form (quasi-concave)

Hybrid Optimization Strategy

Strategy

- 1) update gradient-ascent direction while $\mathbb{E}[W_0] < 0$
- 2 maximize fraction by normalized-gradient ascent [Hazan+ NeurlPS2015]

numerator is always concave

Hazan, E., Levy, K., & Shalev-Shwartz, S. (2015). Beyond convexity: Stochastic quasi-convex optimization. In Advances in Neural Information Processing Systems (pp. 1594-1602).

Convexity & Statistical Property

Q. How to make surrogate calibrated?

Accuracy

tractable (convex)

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

intractable

$$R_{01}(f) = \mathbb{E}[\phi_{01}(Yf(X))]$$

Linear-fractional Metrics

intractable

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

Special Case: F1-measure

Theorem

$$U_{\phi}(f_n) \stackrel{n \to \infty}{\to} 1 \Longrightarrow U(f_n) \stackrel{n \to \infty}{\to} 1 \quad \forall \{f_n\}$$

if ϕ satisfies

- ▶ $\exists c \in (0,1)$ s.t. $\sup_{f} U_{\phi}(f) \ge \frac{2c}{1-c}$, $\lim_{m \to +0} \phi'(m) \ge c \lim_{m \to -0} \phi'(m)$
- $\blacktriangleright \phi$ is non-increasing
- $\blacktriangleright \phi$ is convex

Note: informal

■ Example

non-differentiable at m=0

Intuition:

trade off TP and FP by gradient steepness

Experiment: F₁-measure

$\overline{\text{(F}_{1}\text{-measure)}}$	Proposed		Baselines		
Dataset	U-GD	U-BFGS	ERM	W-ERM	Plug-in
adult	0.617 (101)	0.660 (11)	0.639 (51)	0.676 (18)	0.681 (9)
australian	0.843(41)	0.844(45)	0.820(123)	0.814(116)	0.827(51)
breast-cancer	0.963(31)	0.960(32)	0.950(37)	0.948(44)	0.953(40)
cod-rna	0.802(231)	0.594(4)	0.927(7)	0.927(6)	0.930(2)
diabetes	0.834(32)	0.828(31)	0.817(50)	0.821(40)	0.820(42)
fourclass	0.638(70)	0.638(64)	0.601(124)	0.591(212)	0.618(64)
german.numer	0.561 (102)	0.580(74)	0.492(188)	0.560(107)	0.589(73)
heart	0.796(101)	0.802(99)	0.792(80)	0.764(151)	0.764(137)
ionosphere	0.908(49)	0.901(43)	0.883 (104)	0.842(217)	0.897(54)
madelon	0.666(19)	0.632 (67)	0.491 (293)	0.639 (110)	0.663(24)
mushrooms	1.000(1)	0.997(7)	1.000(1)	1.000(2)	0.999(4)
phishing	0.937(29)	0.943(7)	0.944(8)	0.940(12)	0.944(8)
phoneme	0.648(27)	0.559(22)	0.530 (201)	0.616(135)	0.633(35)
skin_nonskin	0.870(3)	0.856(4)	0.854(7)	0.877(8)	0.838(5)
sonar	0.735(95)	0.740(91)	0.706(121)	0.655(189)	0.721 (113)
spambase	0.876(27)	0.756(61)	0.887(42)	0.881(58)	0.903(18)
splice	0.785(49)	0.799(46)	0.785(55)	0.771(67)	0.801 (45)
w8a	0.297 (80)	0.284 (96)	0.735(35)	0.742(29)	0.745(26)

(F₁-measure is shown)

model: $f_{\theta}(x) = \theta^{\mathsf{T}} x$

surrogate loss: $\phi(m) = \max\{\log(1 + e^{-m}), \log(1 + e^{-\frac{m}{3}})\}$

Loss for Complicated Metrics

Linear-fractional metrics

contains F-measure, Jaccard often used with imbalanced data

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$

Provides guideline of designing loss for complicated metrics!

When adversary presents

H. Bao, C. Scott, and M. Sugiyama. Calibrated Surrogate Losses for Adversarially Robust Classification. In *COLT*, 2020.

Adversarial Attacks

[Goodfellow+ 2015]

Adding inperceptible small noise can fool classifiers!

original data

 $+.007 \times$

x
"panda"
57.7% confidence

sign($\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)$)

"nematode"

8.2% confidence

perturbed data

=

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

Penalize Vulnerable Prediction

Usual Classification

usual 0-1 loss

$$\ell_{01}(x, y, f) = \begin{cases} 1 \text{ if } yf(x) \le 0\\ 0 \text{ otherwise} \end{cases}$$

Robust Classification

robust 0-1 loss

$$\mathcal{C}_{\gamma}(x, y, f) = \begin{cases} 1 & \text{if } \exists \Delta \in \mathbb{B}_{2}(\gamma) . yf(x + \Delta) \leq 0 \\ 0 & \text{otherwise} \end{cases}$$

prediction too close to boundary should be penalized

$$\mathbb{B}_2(\gamma) = \{x \in \mathbb{R}^d \mid ||x||_2 \le \gamma\} \colon \gamma\text{-ball}$$

In Case of Linear Predictors

linear predictors $\mathcal{F}_{lin} = \{x \mapsto \theta^{\mathsf{T}} x \mid \|\theta\|_2 = 1\}$

robust 0-1 loss

Formulation of Classification

Usual Classification

minimize 0-1 risk

$$R_{\phi_{01}}(f) = \mathbb{E}\left[\phi_{01}(Yf(X))\right]$$

Robust Classification

minimize γ -robust 0-1 risk

$$R_{\phi_{\gamma}}(f) = \mathbb{E}\left[\phi_{\gamma}(Yf(X))\right]$$

(restricted to linear predictors)

Existing Approaches

Direct optimization of robust risk $R_{\phi_{\gamma}}(f)$ is intractable

Taylor approximation

Convex upper bound

Both do not necessarily lead to true minimizer!

Shaham, U., Yamada, Y., & Negahban, S. (2018). Understanding adversarial training: Increasing local stability of supervised models through robust optimization. *Neurocomputing*, 195-204.

Wong, E., & Kolter, Z. (2018,). Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope. In *International Conference on Machine Learning* (pp. 5286-5295).

What surrogate is calibrated?

Usual Classification

Robust Classification

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). Convexity, classification, and risk bounds. *Journal of the American Statistical Association*, 101(473), 138-156.

Isn't it a piece of cake?

Theorem. If surrogate ϕ is convex, it is ϕ_{01} -calibrated iff

- differentiable at 0
- $\phi'(0) < 0$

Usual 0-1 loss

Robust 0-1 loss

If $\phi'(\gamma) < 0$, then calibrated to robust 0-1 loss?

No convex calibrated surrogate

Theorem. Any convex surrogate is not ϕ_{γ} -calibrated.

(under linear predictors)

Proof Sketch

Idea: to show $\delta(\varepsilon) = 0$ for some $\varepsilon > 0$

calibration function convex in
$$f$$

$$f \text{ is non-robust } (|f(x)| < \gamma)$$

$$\delta(\varepsilon) = \inf_{f} \frac{R_{\phi}(f) - R_{\phi}^{*}}{R_{\phi}(f)} \text{ s.t. } R_{\phi_{\gamma}}(f) - R_{\phi_{\gamma}}^{*} \ge \varepsilon$$

$$\delta(\varepsilon) = 0$$

$$\inf_{f: R_{\phi_{\gamma}}(f) - R_{\phi_{\gamma}}^* \ge \varepsilon} R_{\phi}(f) = \inf_{f} R_{\phi}(f)$$
 "non-robust" optimal minimizer
$$(|f(x)| < \gamma)$$

No convex calibrated surrogate

Theorem. Any convex surrogate is not ϕ_{γ} -calibrated.

(under linear predictors)

Proof Sketch

non-robust minimizer!

surrogate conditional risk is plotted

How to find calibrated surrogate? 47

Idea. To make conditional risk not minimized in non-robust area

surrogate conditional risk is plotted

consider a surrogate ϕ such that conditional risk is quasiconcave

Example: Shifted Ramp Loss

Ramp loss

$$\phi(\alpha) = \text{clip}_{[0,1]} \left(\frac{1-\alpha}{2} \right)$$

Shifted ramp loss

$$\phi_{\beta}(\alpha) = \text{clip}_{[0,1]} \left(\frac{1 - \alpha + \beta}{2} \right)$$

conditional risk $(p(y = 1 | x) > \frac{1}{2})$

calibration function

assume $0 < \beta < 1 - \gamma$

Loss for Robust Learning

"Embed" robustness into loss function

loss function can not only accommodate classification performance but also robustness

Inability of convex loss

convex loss is minimized in non-robust area

non-robust correct

robust objective

Calibration theory helps to reveal classifiers' property!

Summary

Binary Classification

Linear-fractional Metrics

quasi-concave surrogate utility

Adversarial Robustness

no convex & calibrated surrogate

Surrogate vs. Target loss

Calibrated loss

Binary Classification

Multi-class Classification

Linear-fractional

$$\frac{a_0\mathsf{TP} + b_0\mathsf{FP} + c_0}{a_1\mathsf{TP} + b_1\mathsf{FP} + c_1}$$

more complicated metrics

Adversarial Robustness

classification performance!

noise/distribution robustness

hypothesis testing

metric elicitation

representation learning

More applications?