Herbst 12 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ und $f : \mathbb{C} \to \mathbb{C}$ analytisch mit |f(z) - z| < |z| auf dem Rand von \mathbb{D} . Beweisen Sie, dass $|f'(1/2)| \le 8$ gilt, und dass f in \mathbb{D} genau eine Nullstelle hat.

Lösungsvorschlag:

Für alle $z \in \partial \mathbb{D}$ gilt |f(z)| = |f(z) - z + z| < 2|z| = 2; nach dem Maximumsprinzip folgt also $f(z) \leq 2$ für alle $z \in \mathbb{D}$.

Wir betrachten jetzt die, nach Riemanns Hebbarkeitssatz analytische, Funktion

$$g: \mathbb{C} \to \mathbb{C}, \ g(z) = \begin{cases} \frac{f(z) - f(\frac{1}{2})}{z - \frac{1}{2}}, & z \neq \frac{1}{2} \\ f'(\frac{1}{2}), & z = \frac{1}{2} \end{cases}.$$

Für $z \in \partial \mathbb{D}$ gilt $|g(z)| \leq \frac{|f(z)| + |f(\frac{1}{2})|}{|z| - \frac{1}{2}} \leq \frac{2+2}{\frac{1}{2}} = 8$. Nach dem Maximumsprinzip folgt also $|g(\frac{1}{2})| = |f'(\frac{1}{2})| \leq 8$.

Nach dem Satz von Rouche besitzt f = z + (f - z) auf \mathbb{D} genau so viele Nullstellen wie z, also genau eine. Dabei wurde die Ungleichung |f(z) - z| < |z| benutzt, aus der zusätzlich $|f(z)| \ge |z| - |f(z) - z| > 0$ folgt, weshalb f keine Nullstelle auf $\partial \mathbb{D}$ besitzt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$