MOS Capacitance

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- *Voltage drops

Gary Chun Zhao, PhD Chun.Zhao@xjtlu.edu.cn

April 2024

MOS Capacitors

MOS: Metal-Oxide-Semiconductor

MOS Capacitors

- Why capacitors
 - Foundation for understanding MOS transistors

Applications

- CCD camera
- Non-volatile memory
- Test structure during fabrication
- As a component

MOS Capacitor Structure

MOS capacitor (cross-sectional view)

Typical MOS capacitors and transistors in ICs today employ

- heavily doped polycrystalline Si
 - ("poly-Si") film as the gateelectrode material

- n⁺-type, for "n-channel" transistors (NMOS)
 - p+-type, for "p-channel" transistors (PMOS)
 - SiO₂ as the gate dielectric
 - band gap = 9 eV
 - $\varepsilon_{r,SiO2} = 3.9 \quad \sim \frac{1}{3} \mathcal{E}_{r,Si}$
 - Si as the semiconductor material
 - p-type, for "n-channel" transistors (NMOS)
 - n-type, for "p-channel" transistors(PMOS)

MOS Capacitor

parallel-plate capacitor

• Definition: $C = \varepsilon A/t = \varepsilon_r \varepsilon_o A/t$ where $\varepsilon_r (SiO_2) = 3.9$, $\varepsilon_o = 8.85 \times 10^{-14} \text{ F/cm}$

MOS Capacitance Measurement

- $V_{\rm b}$: dc biasing voltage and scanned slowly

•
$$V_g = V_b + V_{ac}$$

$$C = \left| \frac{dQ_{GATE}}{dV_g} \right| = \left| \frac{dQ_s}{dV_g} \right| = \left| \frac{dQ_s}{dV_{ac}} \right|$$

• Capacitive current due to V_{ac} is measured

$$i_{ac} = C \frac{dV_{ac}}{dt}$$

$$|V_b| >> |V_{ac}|$$

MOS Capacitance

OUTLINE

- MOS structure
- MOS energy band diagram

- Effects of applied biases
- *Voltage drops

Reference reading: Chapter 6.0-6.4

Which one is the p-type Si?

Which one is the heavily doped Si?

Poly-Si gate

Coordinate system

Guidelines for Drawing MOS Band Diagrams

Guidelines for Drawing MOS Band Diagrams

- 1) Fermi level E_F is flat (constant with distance x) in the Si
 - Since no current flows in the x direction, we can assume that equilibrium conditions prevail
- 2) Band bending is linear in the oxide
 - No charge in the oxide => $d\mathcal{E}/dx = \rho/\epsilon_{ox} = 0$, so \mathcal{E} is constant $=> dE_C/dx$ is **constant**

$$\mathcal{E} = -dV/dx$$

$$E_{C} = -qV$$

$$\xi = \frac{1}{9} \frac{d E_{C}}{dx}$$

Guidelines for Drawing MOS Band Diagrams

- 3) The barrier height for conduction-band electron flow from the <u>Si</u> into <u>SiO</u>₂ is 3.1 eV
 - This is equal to the electron-affinity difference (χ_{Si} and χ_{SiO2})
- 4) The barrier height for valence-band hole flow from the Si into SiO₂ is 4.8 eV
- 5) The vertical distance between the Fermi level in the metal, E_{FM}, and the Fermi level in the Si, E_{FS}, is equal to the applied gate voltage:

$$qV_G = E_{FS} - E_{FM}$$

MOS Equilibrium Energy-Band Diagram

MOS Equilibrium Energy-Band Diagram

Q1: Carrier and ion in silicon

Guideline 2:

$$E_{\rm C} = -qV$$

Q2: Carrier and ion in silicon

Q2: Carrier and ion in silicon

Flat-Band Voltage

Flat-Band Voltage

 The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband voltage* because the <u>resulting potential profile is</u> flat.

Flat-Band Condition

MOS Capacitance

<u>OUTLINE</u>

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- *Voltage drops

Reference reading: Chapter 6.0-6.4

Ec(O) and electric field direction

Effects of applied biases

Vg increase from "-" to "+":

1. Vg < V _{FB} <0	Accumulation: Majority carriers
2. Vg = V _{FB}	Flatband
3. V _m ≥Vg>V _{FB} including Vg=0	Depletion: Majority carriers
4.1 V _T > V g> V _m	Weak Inversion: Minority carriers
4.2 Vg≥V _T	Strong Inversion: Minority carrier

What is V_{FB} , V_{m} and V_{T} ?

1. Accumulation (p-type Si): Vg<V_{FB}<0

Accumulation: Majority carriers

- <u>Physical process</u>: Vg<0: holes attracted to the oxide/Si interface and accumulate there.
- Oxide: separation between "-" and "+" charges

1. Accumulation:

Energy band & block charge density

1. Capacitance in Accumulation

- As the gate voltage is varied, incremental charge is added/subtracted to/from the gate and substrate.
- The incremental charges are separated by the gate oxide.

1. Accumulation:

Capacitance-voltage (C-V) characteristics

2. Flatband Voltage, V_{FB}

The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the flatband voltage because the resulting potential profile is flat.

3. Depletion: $Vg > V_{FB}$

Depletion: Majority carriers

- Physical process:
 - holes repelled from the interface
 - fixed negative charge left behind
 - More "+" charges on the gate, holes are pushed further from the interface, to expose more "-" space charges.

o: Hole

3. Depletion:

Energy band diagram: Vg>V_{FB}

 $qVg = E_{FS} - E_{FM}$

3. Depletion Capacitor

Capacitance

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$

$$C_{dep} = \frac{\mathcal{E}_{Si}}{x_d}$$

- When Vg increases, Xd increases and C_{dep} reduces. This in turn reduces C.
- Solving Poisson's equation, we have

$$x_d = \left(\frac{2\varepsilon_{Si}V_S}{qN_a}\right)^{1/2}$$

$$C_{dep} = \frac{\mathcal{E}_{Si}}{x_d}$$

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$

3. Capacitance in Depletion

 As the gate voltage is varied, the width of the depletion region varies.

Incremental charge is effectively added/subtracted at a depth x_d in the substrate.

$$C = \frac{dQ}{dV_G}$$

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}} = \frac{1}{C_{ox}} + \frac{x_d}{\varepsilon_{Si}}$$

 $\epsilon_{Si} = \epsilon_{r'Si} \epsilon_{o}$, $\epsilon_{r'Si} = 11.9$ is the relative dielectric constant of silicon,.

3. Depletion:

Capacitance-voltage (C-V) characteristics

Midband: further increase Vg

- E_{FS} = Ei = (Ec+Ev)/2 at interface
- Silicon becomes "intrinsic" at surface
- This is 'Midband': Vg=Vm

$qVg = E_{FS} - E_{FM}$

4. Energy band diagram: Vg>V_m

Bulk Semiconductor Potential, ϕ_{F}

$$q\phi_F \equiv E_i - E_F$$

p-type Si:

$$\phi_F = \frac{kT}{q} \ln(N_A / n_i) > 0$$

$$E_F = \frac{q \phi_F}{q}$$

n-type Si:

$$\phi_F = -\frac{kT}{q} \ln(N_D / n_i) < 0$$

4. Inversion: large positive (Vg-V_{FB})

- Weak Inversion: $0 < \phi_n < \phi_F \ (\phi_F < \phi_S < 2\phi_F) \ \phi_S = \phi_F + \phi_n$
- Strong Inversion: $\phi_n \ge \phi_F$ ($\phi_S \ge 2\phi_F$), electron density at the interface \ge hole density in Si bulk.
- Vg for strong inversion: V_T 'threshold voltage'.

Maximum Depletion Depth, X_{d,max}

• As V_G is increased above V_T , ϕ_S and hence the **depth of the depletion region** (x_d) increases very slowly.

$$\phi_s \approx 2\phi_F$$

- This is because n increases exponentially with ϕ_S , whereas x_d increases with the square root of ϕ_S . Thus, most of the incremental negative charge in the semiconductor comes from additional conduction electrons rather than additional ionized acceptor atoms, when n exceeds N_A .
- \rightarrow $x_{\rm d}$ can be reasonably approximated to reach a maximum value $(x_{\rm d,max})$ for $V_{\rm G} \geq V_{\rm T}$.

$$x_{d,\text{max}} = \sqrt{\frac{2\varepsilon_{Si}(2\phi_F)}{qN_A}}$$

4. Capacitance in Inversion: Low Frequency

<u>CASE 1</u>: Inversion-layer charge can be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at the surface of the substrate.

4. Inversion:

CASE 1: Capacitance-voltage (C-V) characteristics

Example: p-Si

4. Capacitance in Inversion: High Frequency

CASE 2: Inversion-layer charge cannot be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth x_{dmax} in the substrate.

4. Inversion

CASE 2: Capacitance-voltage (C-V) characteristics

Example: p-Si

A MOS capacitor has:

```
Xox=40nm, Nd=10^{21}m<sup>-3</sup>, \phi_F=0.3V, \epsilon_{ox}=3.9, \epsilon_s=11.8
```

- Determine:
 - (i) C(HF) in accumulation; (ii) C(HF) in strong inversion
 - (iii) C(LF) in strong inversion
- Solution:

• An MOS capacitor is made on uniformly doped p type material. With -20V on the gate with respect to the substrate it has a capacitance of 20pF. With +20V on the gate it has a capacitance of 10pF. What is the thickness of the depletion layer if the capacitor has an area of 10-6m².

Solution

A MOS capacitor has:

```
Xox=10nm, Na=10<sup>17</sup>m<sup>-3</sup>, ε_{ox}=3.9, ε_{s}=11.8
```

- Determine:
 - (i) C(HF) in accumulation;
 - (ii) C(HF) in strong inversion;
 - (iii) C(LF) in strong inversion

Summary: Three diagrams

- 1. Block charge density diagram
- 2. Energy band diagram
- 3. CV diagram

Vg change from – to +: from accumulation to inversion (p-type sub.)

Summary

Biasing Conditions for p-type Si

Summary

MOS Capacitance

OUTLINE

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- *Voltage drops

Voltage dropped in the silicon

 \mathbf{M}

 $E_{\rm c} = E_{\rm FM}$

 $E_{\rm v}$

Surface Potential

$$q\phi_{\scriptscriptstyle S}=qV_{\scriptscriptstyle S}$$

$$q\phi_S = E_i(bulk) - E_i(surface)$$

$$q\phi_S = E_C(bulk) - E_C(surface)$$

$$q\phi_S = E_V(bulk) - E_V(surface)$$

V_{ox} is the voltage dropped across the oxide

Voltage Drops in the MOS System

Voltage Drops in the MOS System

In general,

$$V_G = V_{FB} + V_{ox} + \phi_s$$

where

$$qV_{FB} = \Phi_{MS} = \Phi_{M} - \Phi_{S}$$

 V_{ox} is the voltage dropped across the oxide (V_{ox} = total amount of band bending in the oxide)

 ϕ_s is the voltage dropped in the silicon (total amount of band bending in the silicon)

$$q\phi_S = E_i(bulk) - E_i(surface)$$

For example: When $V_G = V_{FB}$, $V_{ox} = \phi_s = 0$ *i.e.* there is no band bending

Voltage Drops in the MOS System

$$V_G = V_{FB} + V_{ox} + \phi_s$$

$$Vg=V_T \rightarrow \phi_s = 2\phi_F$$

$$V_T = V_{FB} + V_{ox} + 2\phi_F$$

$$V_{ox} = -\frac{\sqrt{2qN_D \varepsilon_{Si} |2\phi_F|}}{C_{ox}}$$

$$V_T = V_{FB} + 2\phi_F - \frac{\sqrt{2qN_D \varepsilon_{Si} |2\phi_F|}}{C_{ox}}$$

A MOS capacitor has:

Xox=40nm, Nd=10²¹m⁻³,
$$\phi_F$$
=0.3V, ε_{ox} =3.9, ε_{s} =11.8

- Determine:
 - (i) C(HF) in accumulation; (ii) C(HF) in strong inversion (iii) C(LF) in strong inversion
- Solution:

(i)
$$C(HF) = C_{ox} = \varepsilon_o \varepsilon_{ox} / Xox$$

=8.85E-12×3.9/4.0E-8
=8.63E-4 F/m²

(ii) In inversion
$$V_s=2\phi_F=0.6V$$
 $x_d=8.85E-7 \text{ m}$ $C_s=\epsilon_o\epsilon_s/x_d=1.18E-4F/\text{ m}^2$ $C(HF)=C_{ox}C_s/(C_{ox}+C_s)=1.04E-4F/\text{ m}^2$ (iii) $C(LF)=C_{ox}=8.63E-4 \text{ F/m}^2$

Problem

• An MOS capacitor is made on uniformly doped p type material. With -20V on the gate with respect to the substrate it has a capacitance of 20pF. With +20V on the gate it has a capacitance of 10pF. What is the thickness of the depletion layer if the capacitor has an area of 10⁻⁶m².

Solution

- With negative bias on the top electrode: C = Cox. (20pF)
- With positive bias: 1/C = 1/Cox + 1/Cs
- since Cs= $(1/C 1/Cox)^{-1}$ = $(1/10 1/20)^{-1}$ =20 pF. The thickness of the depletion layer xd is obtained from Cs= $A\varepsilon_s\varepsilon_0/x_d$,
- $\mathbf{x}_d = 10^{-6} \times 12^{*} 8.8 \times 10^{-12} / 20 \times 10^{-12} = \mathbf{5} \times \mathbf{10}^{-6} \mathbf{m}$