Data structures and Algorithms

B-TREES

Nguyễn Ngọc Thảo nnthao@fit.hcmus.edu.vn

m-way Trees

The needs of m-way trees

- Binary trees allow for efficient manipulation in memory due to its simple representation.
 - Each node has one data item and at most two branches.
- However, it could not satisfy several practical needs.
 - Store data neatly in external storage → each unit to be stored should contain more than one data item.
 - Reduce cost for basic operations (i.e., search, insertion or removal)
 → a better tree architecture is required.
 - Optimal search for a data time → balanced search tree
- m-way trees are solution to the above issues.

m-way trees: A definition

- A m-way tree has every internal node of at most m children and at most (m-1) data items.
- The data items within a node are sorted in ascending order.
 - For any i^{th} data item, it is larger than every item in the i^{th} subtree, and smaller than every item in the $(i+1)^{th}$ subtree.

Example: An example of m-way tree

Insertion in a *m*-way tree

- Let *v* be the item to be inserted into a *m*-way tree.
- Traverse the tree until an empty subtree is found
- If the parent still has empty slot(s), insert v.
- Otherwise, create a new node and insert v into that node.

Example: Insert data item to a 3-way tree

Insert data item 8: Still an empty slot at node (6).

Example: Insert data item to a 3-way tree

Insert data item 27: No empty slot at node (28,30).

Removal in a m-way tree

- Let v be the item to be remove from a m-way tree.
- If v has no child (i.e., it is in between two empty subtrees) then delete v.
- Otherwise, find a substitution for v which is either an in-order predecessor or an in-order successor.

Example: Remove data item from a 3-way tree

Remove data item 8: Node (6,8) does not have the 2^{nd} child and 3^{th} child.

Example: Remove data item from a 3-way tree

Remove data item 16: The 1st subtree is available.

B-trees

B-trees (Bayer and McCreight, 1972)

- A B-tree is a self-balancing tree that maintains sorted data items and allows basic operations in logarithmic time.
 - Basic operations: search, sequential access, insertion, and deletion.
- It is a generalization of BST that allows for nodes with more than two children.
- B-tree is commonly used in databases and file systems.
 - It is well suited for storage systems that read and write relatively large blocks of data, such as disks.
 - Each node is filled at least 50%. In practice, it is normally ~70%.

Example: How many data items in a B-tree?

Data items in a B-tree of 1001 branches can be arranged in only 3 level → over one billions data items.

B-trees: A definition

- A B-tree of order m (m > 2) is a m-way tree that satisfies the following conditions
 - 1. Every node has at most m children.
 - 2. Every non-leaf node (except root) has at least $\lceil m/2 \rceil$ child nodes.
 - 3. The root has at least two children if it is not a leaf node.
 - 4. A non-leaf node with k children contains k-1 items.
 - 5. All leaves appear in the same level.
- Note that the above B-tree is derived from Knuth's definition, while that of Bayer and McCreight is slightly different.
- 2-3 trees and 2-3-4 trees are derivations of B-trees when m=3 and m=4, respectively.

Example: B-tree of order 5

Min # of subtrees is 3 and max is 5. Min # of data items is 2 and max is 4.

Example: B-tree of order 4

Checkpoint 01: Which of the following is a B-tree?

The height of a B-tree

- Let $n \ge 0$ be the number of data items in the tree.
- Let m be the maximum number of children a node can have.
 - Each node can have at most m-1 data items.
- The minimum height of a B-tree is $h_{min} = \lceil \log_m(n+1) \rceil$.
- Let d be the minimum number of children for an internal node. For an ordinary B-tree, $d = \lceil m/2 \rceil$
- The maximum height of a B-tree is $h_{max} = \left[\log_d\left(\frac{n+1}{2}\right)\right] + 1$.

^{*} Note that the height h starts from 1.

The height of a B-tree

- In the worst case the root has only one key and two children.
- Every other node has d-1 items and d children.

• The total number of items is $2d^{h-1} - 1$.

Insertion in a B-tree

- Let v be the item to be inserted into a B-tree.
- Locate an appropriate leaf node to insert v by traversing the tree following the order of items.
- If the leaf node still has an empty slot, insert $m{v}$ to this node while maintaining the order of items.
- Otherwise, split the node.
- The split can be back-propagated to upper nodes.
 - Worst case: the root node is split and a new root is created.

Example: Insert data item to a B-tree of order 3

Insert data item 19: The leaf node (20) still has an empty slot.

Example: Insert data item to a B-tree of order 3

Insert data item 21: The leaf node is full \rightarrow split the node \rightarrow move the middle item 20 to its parent node 19 20 21 28 30 22 26 20 22 26 28 30

Example: Insert data item to a B-tree of order 3

Checkpoint 02a: Insertion in a B-tree

What is the resultant B-tree of order 4 after inserting the keys in the following order? Insert: 5, 3, 21, 9, 1, 13, 2, 7, 10, 12, 4, 8.

Knowing that the "middle key" is right-biased.

Checkpoint 02b: Insertion in a B-tree

Insert the keys 78, 52, 81, 40, 33, 90, 85, 30 and 38 in this order in an initially empty B-tree of order 3.

Removal in a B-tree

- Let v be the item to be removed from a B-tree.
- If v is at the leaf node
 - If the number of items remained after removal $\geq \left\lceil \frac{m}{2} \right\rceil 1 \rightarrow \text{Stop!}$
 - Otherwise, borrow an item from a sibling node that has more than $\left[\frac{m}{2}\right] 1$ items.
 - If there is no such sibling node, merge the node with its sibling node and take one data item down from the parent node.
 - If the parent node becomes insufficient, apply the same procedure.
- If v is NOT at the leaf node
 - Find a substation for v at some leaf node and delete the actual slot at that leaf node.

Remove data item 26: Replace 26 by 28 → delete the slot that previously contains 28.

6

18

24

Remove data item 22:borrow 28 from a sibling node

.

Remove data item 18: Replace 18 by 8...the leaf node become insufficient.

Remove data item 18: ...merge the two sibling and the data items in the parent node → the parent node becomes insufficient.

Remove data item 18: ...borrow 22 in the sibling node and move corresponding subtrees.

B-trees: Implementation

```
class BNode{
 bool leaf;
                   // A flag for the leaf node
 unsigned int nItems; // The number of available data items
 ItemType keys[MAX-1]; // An array of data items
 // An array of pointers to subtrees
 unsigned long pointers[MAX];
 // Redundant data to completely fill the block
 char unused[K];
MAX and K are predefined constants.
```

B-tree vs. m-way tree

- *m*-way tree is not a balanced search tree.
 - Data insertion and removal are quite simple.
 - The tree grows toward the leaves.
- B-Tree is basically a balanced m-way tree.
 - Data insertion or removal may involve the split/merge of nodes.
 - It minimizes the number of accesses to external storage.
 - The tree grows towards the root.

- It is essential to have an efficient search method on the external storage.
- Let t be the time to read/write a block
- t = the time to move the reader to corresponding block
 - + the time to read/write the block into memory

 Here is a example of storing a binary tree, in which data items are grouped into blocks, to a disk storage.

- For a B-tree, the root should be cached for frequent access.
 - It is not necessary to perform the READ_ROOT
 - The WRITE_ROOT is only required when the root is modified.

A B-tree with data items that have no supplementary info

A B-tree with data items that have certain supplementary info

B+ Trees: A variant of B-tree

- Records (data) can only be stored in the leaf nodes while internal nodes can only store the key values.
 - Meanwhile, keys and records in a B-tree both can be stored in the internal and leaf nodes.
- The leaf nodes are linked together in the form of a singly linked lists to make the search queries more efficient.
- The internal nodes (keys to access records) are stored in the main memory, and leaves are in the secondary memory.

Exercises

01. Insertion in a B-tree

Consider the following B-tree of order 6.

 Draw the resulting tree after each insertion of the following keys: B, Q, L, and F

02. Removal in a B-tree

Consider the following B-tree of order 6.

Draw the resulting tree after each deletion of the following keys: F, M, G,
 D, and B

... the end.