<u>=</u>Q

下载APP

24 | 离线评估: 常用的推荐系统离线评估方法有哪些?

2020-12-07 王喆

深度学习推荐系统实战 进入课程》

讲述: 王喆

时长 12:45 大小 11.69M

你好,我是王喆。今天我们要进入一个全新的章节,模型评估篇。

在推荐系统这个行业,所有人都在谈效果。就像我们在学习推荐模型篇的时候,你肯定也有过这样的疑问:

DIEN 这个模型的效果到底怎么样啊?

我们用深度学习来构建模型到底能让推荐系统效果提高多少啊?

DeepFM 的效果是不是会比 Wide&Deep 好呢?

那这个所谓的"效果"到底指的是什么呢?我们一般用什么方法来衡量这个"效果"呢? 我们又应该如何根据效果评估的结果来更新模型呢?这就是模型评估篇要解决的问题。 在所有推荐系统的评估方法中,离线评估是最常用、最基本的。顾名思义,"离线评估"就是我们将模型部署于线上环境之前,在离线环境下进行的评估。由于不用部署到生产环境,"离线评估"没有线上部署的工程风险,也不会浪费宝贵的线上流量资源,而且具有测试时间短,可多组并行,以及能够利用丰富的线下计算资源等诸多优点。

因此,在模型上线之前,进行大量的离线评估是验证模型效果最高效的手段。这节课,我们就来讲讲离线评估的主要方法,以及怎么在 Spark 平台上实现离线评估。

离线评估的主要方法

离线评估的基本原理是在离线环境下,将数据集分为"训练集"和"测试集"两部分,"训练集"用来训练模型,"测试集"用于评估模型。但是如何划分测试集和训练集,其实这里面有很多学问。我总结了一下,常用的离线评估方法主要有五种,分别是:Holdout 检验、交叉检验、自助法、时间切割、离线 Replay。接下来,我们一一来看。

Holdout 检验、交叉检验和自助法

首先,我们来看 Holdout 检验。 Holdout 检验是最基础,最常用的离线评估方法,它将原始的样本集合随机划分为训练集和测试集两部分,所以 Holdout 检验的关键词就是"随机"。举例来说,对于一个推荐模型,我们可以把样本按照 70%-30% 的比例随机分成两部分。其中,70% 的样本用于模型的训练,30% 的样本用于模型的评估。

虽然 Holdout 检验很简单实用,但它的缺点也很明显,就是评估的结果有一定随机性,因为训练集和验证集的划分是随机的,所以如果只进行少量的 Holdout 检验,得到的评估指标会存在一定的波动。那为了消除这种随机性,我们就要使用"交叉检验"的方法。

为了进行交叉检验,我们需要先将全部样本划分成 k 个大小相等的样本子集,然后依次遍历这 k 个子集,每次把当前遍历到的子集作为验证集,其余所有的子集作为训练集,这样依次进行 k 次模型的训练和评估。最后,我们再将所有 k 次评估指标的平均值作为最终的评估指标。在我们的实践中, k 经常取 10,也就是依次进行 10 次检验然后取指标均值。

不管是 Holdout 检验还是交叉检验,都是基于划分训练集和测试集的方法进行模型评估的。然而,当样本规模比较小时,将样本集进行划分会让训练集进一步减小,这往往会影响模型的训练效果。那有没有能维持训练集样本规模的验证方法呢?

"自助法"就可以在一定程度上解决这个问题。我这里所说的**自助法 (Bootstrap) 是基于自助采样的检验方法**,它的主要过程是:对于总数为 n 的样本集合,我们先进行 n 次有放回地随机抽样,得到大小为 n 的训练集。在 n 次采样过程中,有的样本会被重复采样,有的样本没有被抽出过,我们再将这些没有被抽出的样本作为验证集进行模型验证,这就是自助法的验证过程。

虽然自主法能够保持训练集的规模,但是它的缺点也很明显,它其实改变了原有数据的分布,有可能让模型产生一定程度的偏差。至于,到底是自助采样增加训练样本规模的收益大,还是数据分布被改变带来的损失大,这就需要我们在实践中进行验证了。

时间切割

说完了前三种方法,我们再来看时间切割法。在"**⊘**模型实战准备(二)"那节课里,我们曾经讲过一个概念,叫"未来信息"。它是说,如果我们在 t 时刻进行模型预测,那么 t+1 时刻的信息就是未来信息。在构建特征工程的时候,我们要避免引入"未来信息"。

其实,在进行模型评估的时候,我们同样不应该在训练集中包含"未来"的样本。怎么理解这句话呢?比如,我们所有的样本数据分布在 t_0 到 t_n 这样的时间轴上,如果训练样本是通过随机采样得到的,那么训练数据也会分布在 t_0 到 t_n 上,同样,测试数据也会分布在 t_0 到 t_n 上。

如果你细想,这个事情其实是有点反常理的。因为训练模型的时候,我们已经使用了 t_n这个时间窗口的数据,结果你却用它来预测 t₀的事件,这不是很荒谬吗?这就相当于你有一个时光机,已经穿越到了明天,知道股票会涨,结果你又穿越回来,预测说明天股票会涨,这哪是预测呢?这就是"作弊"。

为了防止这类"信息穿越"导致的模型作弊现象发生,我们一般会使用时间切割的方案去划分训练集和测试集,它的做法很简单。比如,你一共处理了 30 天的样本,从第 25 天末开始切割,前 25 天的样本作为训练集,后 5 天的样本作为测试集,这样我们就从根源上切断了引入"未来信息"的可能。当然切割的比例到底如何,也需要根据你的实践来定,一般来说我们控制训练集跟测试集的比例在 3:1 到 10:1 之间,比例太小训练样本不够,比例太大测试结果不够稳定。

离线 Replay

时间切割的方法虽然能避免"信息穿越",但也不是没有缺点的。它的缺点就在于整个评估过程是静态的,模型不会随着评估的进行而更新,这显然是不符合事实的。就拿我们刚才举的例子来说,用前 25 天的数据做训练集,用后 5 天的数据做测试集。如果在生产环境中,模型是日更新的,那后 5 天的评测过程就不准确,因为在离线测试中,我们并没有在后 5 天的评测过程中做到日更模型。

那怎么解决这个问题呢?我们也可以在离线状态下对线上更新过程进行仿真,让整个评估过程"动"起来。**业界把这样离线仿真式的评估方式叫做离线 Replay。**

下图就是动态的 Replay 评估法与静态的时间分割评估法的对比示意图。我们可以看到, "Replay 评估方法" 先根据产生时间对测试样本,由早到晚地进行排序,再让模型根据样本时间的先后进行预测。在模型更新的时间点上,模型需要增量学习更新时间点前的测试样本,更新模型后,再继续评估更新点之后的样本。

图1 静态时间分割评估与动态Replay评估 (出自《深度学习推荐系统》)

你应该也发现了, Replay 评估的过程更接近于真实的线上环境, 因为它在线下还原了模型在线上的更新、预估过程。这也让 Replay 方法的评估结果更加权威可信, 毕竟, 我们最终的目标是让模型在线上产生更好的效果。

当然,Replay 评估方法也有弊端,因为它需要在评估过程中不断更新模型,这让评估过程的工程实现难度加大,因为包含了模型训练的时间,所以整个评估过程的总时长也会加长,影响评估和调参的效率。到底是要评估的准确性,还是要评估的效率,这又是一个需要权衡的问题,我们需要根据自己工程上的侧重点进行选择。

基于 Spark 的离线评估方法实践

熟悉了离线环节的主要模型评估方法,就又到了实践的环节。其实,无论是基于 Python 的 TensorFlow 还是基于 Scala 的 Spark,都有很多支持离线评估的库,这里我们选择了 Spark 进行实践,主要是因为在业界数据集很大的情况下, Spark 在分布式环境下划分训练集和测试集的效率是最高的。

下面,我就来看一下如何使用 Spark 实现 Holdout 检验、交叉检验和时间切割评估法。至于另外两种方法,由于自助法不太常用,离线 Replay 又涉及过多的附加模块,我们暂时就不在项目里实现。

实现 Holdout 检验的时候,我们要清楚如何利用 Spark 随机划分测试集和训练集。它的关键代码只有下面这一行,就是利用 randomSplit 函数把全量样本 samples 按比例分割成 trainingSamples 和 testSamples。在 Spark 的后端,这个 randomSplit 函数会在各个节点分布式执行,所以整个执行效率是非常高的。源代码你可以参考 com.wzhe.sparrowrecsys.offline.spark.featureeng.FeatureEngForRecModel 中的 splitAndSaveTrainingTestSamples 函数。

```
□ 复制代码
1 val Array(trainingSamples, testSamples) = samples.randomSplit(Array(0.9, 0.1))
```

实现交叉检验的过程相对比较复杂,好在,Spark 已经提供了交叉检验的接口可以直接使用,我们直接看一下这部分的关键代码。

```
1 val cv = new CrossValidator()
2    .setEstimator(modelPipeline)
3    .setEvaluator(new BinaryClassificationEvaluator)
4    .setEstimatorParamMaps(paramGrid)
5    .setNumFolds(10) // Use 3+ in practice
6 val cvModel = cv.fit(training)
```

这段代码中有三个关键参数,一是 setEstimator,这是我们要评估的对象,它需要把我们构建的模型 pipeline 设置进去;二是 setEvaluator,它用来设置评估所用的方法和指标;三是 setNumFolds,它设置的是交叉检验中 k 的值,也就是把样本分成多少份用于交叉检验。本质上 Spark 的 CrossValidator 其实是通过交叉检验来选择模型的最优参数,但也可以通过模型中 cvModel.avgMetrics 参数查看模型的评估指标。

接下来,我们来实现时间切割方法。既然是要按时间划分,如果你知道样本的时间跨度,直接用 where 语句就可以把训练集和测试集划分开了,这也是我最推荐的方法,因为它最高效,不用专门判断切割点。

如果你不知道样本的时间跨度,就要按照时间求取样本的分位数。具体来说就是,通过 Spark 的 approxQuantile 函数,我们可以找到划分样本集为 8:2 的训练集和测试集的时间戳的值。那么接下来我们根据这个值通过 where 语句划分就可以了。我把这个过程的关键代码贴到了下面,供你参考。完整的源代码,你可以参考 com.wzhe.sparrowrecsys.offline.spark.featureeng.FeatureEngForRecModel 中的 splitAndSaveTrainingTestSamplesByTimeStamp 函数。

```
1 //找到时间切割点
2 val quantile = smallSamples.stat.approxQuantile("timestampLong", Array(0.8), 0
3 val splitTimestamp = quantile.apply(0)
4 //切割样本为训练集和测试集
5 val training = smallSamples.where(col("timestampLong") <= splitTimestamp).drop
6 val test = smallSamples.where(col("timestampLong") > splitTimestamp).drop("timestamp).drop("timestamplong")
```

小结

这节课,我们学习了五种主流的推荐模型离线评估方法,它们分别是 Holdout 检验、交叉检验、自助法、时间切割和离线 Replay。

其中, Holdout 检验最简单常用, 它通过随机划分的方式把样本集划分成训练集和测试 集。而交叉检验的评估效果更加稳定准确, 它通过划分样本集为 k 份, 再进行 k 次评估取 平均的方式得到最终的评估指标。 自助法是为了解决样本量过少而提出的,它可以通过有放回采样的方式扩充训练集,但有改变数据本身分布的风险。而时间切割法在某个时间点上把样本分成前后两份,分别用于模型训练和评估,避免引入未来信息。最后是离线 Replay,它通过仿真线上模型更新过程来进行评估,是最接近线上环境的离线评估方法,但实现起来比较复杂。

总之,各种评估方法都有优有劣,你需要根据实践中的侧重点选择使用,我把它们的优缺点也总结在了文稿的表格里,方便你进行对比。

评估方法	优点	缺点
Holdout检验	简单直接	单次评估结果不稳定,会引入未来信息
交叉检验	多次评估,结果稳定准确	无法解决引入未来信息的问题,实现较复杂
自助法	解决训练样本量少的问题	会改变原数据分布
时间切割法	避免了引入未来信息的问题	与线上真实模型更新过程不符
Replay	最接近线上真实环境, 评估结果更加可信	实现非常复杂

这节课我们讲了评估模型效果的方法之一,离线评估。但我们并没有具体来讲"效果"的 衡量指标到底是什么。别着急,下节课我们就来学习推荐系统主要使用的效果评估指标, 也会利用这节课学习到的评估方法来生成这些指标。

课后思考

你觉得离线 Replay 这个方法,跟我们之前讲过的增强学习有什么相似之处吗?你知道它们两个还有什么更深层次的关系吗?

期待在留言区看到你的发现和思考,我们下节课见!

提建议

更多学习推荐

机器学习训练营

成为能落地的实干型机器学习工程师

王然 众微科技 AI Lab 负责人

戳此加入♀

© 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 23 | 实战:如何用深度学习模型实现Sparrow RecSys的个性化推荐功能?

下一篇 25 | 评估指标: 我们可以用哪些指标来衡量模型的好坏?

精选留言 (7)

张弛 Conor

2020-12-07

思考题: 离线Replay和RL都是动态更新模型的,都需要不断的测试和再训练模型。增强学习(如DRN)是通过不断接受反馈,在线更新模型的,所以评估方法不能引入未来信息,而简单的时间切割评估方法又不能模拟模型的更新频率,所以离线Replay是增强学习的唯一离线评估方法。

展开٧

作者回复: 我的天, 说的太好了, 我本来以为这是一道比较难的思考题。基本就是我想要的答案, 给你点赞。

https://time.geekbang.org/column/article/317319

KongTzeSing

2020-12-11

老师,我想问问,如果模型用early_stop来调整训练轮数,需要单独拿1天数据当验证集吗,然后测试集是验证集后一天的数据。就是想问上线之后每天跑是否也需要有"验证集"的概念?

作者回复: 没有绝对,但early stop最好是有验证集,通过验证集来确定训练收敛的轮数,上线之后我一般会确定训练轮数来避免一些不可控的问题。

浣熊当家

2020-12-08

如果通过划分userID来划分训练集和测试集,是不是也可以避免引入未来信息呢?

作者回复: 可以是可以, 但效果会非常糟。你想想效果为什么会非常糟。

那时刻

2020-12-07

文中提到自助法在 n 次采样之后,将这些没有被抽出的样本作为验证集进行模型验证。如果n次采样之后导致没有被抽出的样本比较多,从而导致验证集比较大,这种情况下,需要抛弃这次采样么?

另外,请问老师一个样本数据有偏斜的问题。比如正例样本有10000例,而反例样本之... 展开 >

作者回复: 1、一般不建议这样做,需要n的规模比较大,进行充分的采样。

2、关注下一节课,选取AUC等合适的评估指标。

浩浩

2020-12-21

可以用来离线模拟和评估强化学习的在线过程

展开~

作者回复: 是这样

浣熊当家

2020-12-08

老师我突然想不清楚了,模型训练中,我们的输入是各种用户 , 产品, 场景的特征, 然后输出是什么来着?

比如说其中一条sample的输入特征会是某个用户A在时间点t (-5) 到 t(0) 的观影序列, t (0) 的 场景特征, t (-5) 到 t(0) 时刻的 产品特征, 然后要预测的是t(1) 时刻, 用户A点击(或者评论)的 物品ID这样吗? 这个物品ID也是个embedding向量吗?

展开٧

作者回复: 训练的输出是预测这个样本的标签, 也就是0或者1。 最终模型的输出是预测的概率, 也就是预测这个样本标签为1的概率。

Geek 3c29c3

2020-12-07

老师,书中8.4节有淘宝数据集和亚马逊数据集的AUC对比,请问这些数据源和模型baseline可以在哪里获得啊?

展开٧

作者回复: 书中的对比是原paper中的数据,是别人公司的内部数据。

能不能获得要看别人开不开放数据集和源代码。

