Лабораторна робота 2 ФІЛЬТРАЦІЯ БІОСИГНАЛІВ ФІЛЬТРАМИ ЗІ СКІНЧЕННОЮ ІМПУЛЬСНОЮ ХАРАКТЕРИСТИКОЮ

Мета роботи:

- 1. Дослідити основні властивості цифрових фільтрів з скінченною імпульсною характеристикою.
- 2. Ознайомитися з варіантами застосування таких фільтрів для зменшення шумів і артефактів біосигналів.

Короткі теоретичні відомості

Фільтрація біосигналів змінює їх спектральний склад. Для послаблення високочастотних шумів у сигналах використовують фільтри нижніх частот, для усунення постійної складової та низькочастотних артефактів використовують фільтри верхніх частот.

Фільтрами зі скінченною імпульсною характеристикою (CIXфільтр) називають фільтри, у яких імпульсна характеристика ϵ кінцевою послідовністю.

Цифровий CIX-фільтр можна описати різницевим рівнянням (у часовій області):

$$y(n) = \sum_{k=0}^{N-1} b_k x(n-k) = \sum_{k=0}^{N-1} h(k) x(n-k),$$

або передавальною функцією (у частотній області)
$$H(z) = \sum_{k=0}^{N-1} b_k z^{-k} = \sum_{k=0}^{N-1} h(k) z^{-k} \,.$$

Тут і далі y(n), x(n) — вихідний і вхідний сигнали фільтру; N — порядок фільтру; b_k — коефіцієнти різницевого рівняння і передавальної функції фільтру.

Для СІХ-фільтра коефіцієнти b_k співпадають зі значеннями імпульсної характеристики. Обмежена довжина характеристики забезпечує кінцеву тривалість перехідних процесів у фільтрі. СІХ-фільтр не рекурсивний, тобто не використовує зворотний зв'язок, і завжди стійкий.

Фільтр ковзного середнього (ФКС) згладжує випадковий шум в сигналі при гарній передачі його фронтів. Через невелику кількість обчислень може застосовуватися при обробленні сигналів в реальному часі. Різницеве рівняння ФКС N-го порядку:

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(n-k).$$

Порядок ФКС для конкретного застосування обирають, враховуючи необхідний ступінь послаблення шуму і допустимий рівень спотворення форми сигналу.

Фільтри поліноміального згладжування використовують згладжування блока послідовних відліків даних шляхом заміни кожного відліку в момент *п* значенням полінома (зазвичай 2-го порядку), що будується методом найменших квадратів (рис. 2.1). Коефіцієнти полінома залежать від довжини блоку даних, але незмінні для всіх блоків даних заданої довжини. Фільтри поліноміального згладжування подавляють шум менше у порівнянні з іншими СІХ-фільтрами.

Рис. 2.1. Поліноміальне згладжування даних

Для сигналів із широким спектром фільтри поліноміального згладжування працюють краще фільтрів ковзного середнього, які видаляють значну частину високочастотних складових сигналу.

Режекторні фільтри використовуються для видалення (ослаблення) перешкоди певної частоти (наприклад, від мережі живлення) або в деякому діапазоні частот. Передавальна функція режекторних фільтрів повинна мати нулі на одиничному колі в точках, що відповідають частоті перешкоди (шуму) та її гармонікам.

Диференціатори реалізують операцію обчислення похідної в часовій області та ϵ фільтрами високих частот, що видаляють постійну складову сигналу, але лінійно посилює високі частоти. Диференціатори можна описати таким різницевим рівнянням загального виду

$$y(n) = (x(n) - x(n-N))/N.$$

При $N \ge 2$ передавальну функцію диференціатора можна представити добутком передавальних функцій двоточкового диференціатора і двоточкового ФКС, тому він згладжує високочастотні шуми в сигналі.

Команди MATLAB для вивчення

Використовуйте команду help у MATLAB, вивчіть призначення та варіанти застосування таких функцій (команд): abs, angle, detrend, filt, filter, freqz, roots, unwrap, zplane.

Завдання і методичні вказівки до виконання роботи

1. Дослідження фільтра Хеннінга

1.1. Фільтр згладжування Хеннінга має різницеве рівняння:

$$y(n) = (x(n) + 2x(n-1) + x(n-2))/4.$$

Задайте вектор коефіцієнтів різницевого рівняння фільтра Хеннінга і обчисліть його АЧХ і ФЧХ (функція freqz). Побудуйте графіки характеристик (використовуйте лінійний масштаб на осях), подайте їх в звіті.

Програмний код обчислення АЧХ і ФЧХ такий:

```
b = [1\ 2\ 1]/4; \ a = 1; \ n = 512; \\ [h,w] = freqz(b,a,n); \\ mag = abs(h); \ phase = angle(h)*180/pi; \\ subplot(211); \ plot(w/(2*pi)*fs,mag), \ grid \ on \\ subplot(212), \ plot(w/(2*pi) *fs,unwrap(phase)), \ grid \ on \\
```

За графіком АЧХ визначте нормовану частоту зрізу фільтру.

Чому дорівнює част от а зрізу фільт ру Хеннінга за част от и дискрет изації сигналу $f_s = 1000 \, \Gamma$ ц?

1.2. Запишіть вираз для передавальної функції фільтра, визначте нулі фільтра (функція roots), подайте значення у звіті.

1.3. Завантажте сигнал ЕКГ із шумом (файл ecg117.dat). Видаліть постійну складову з сигналу (функція detrend). Виконайте фільтрацію сигналу фільтром Хеннінга:

$$y = filter(b, a, ecg);$$

Побудуйте в одному вікні графіки нефільтрованого і відфільтрованого сигналів ЕКГ. Для зручності спостереження ефекту фільтрації виділіть одну-дві хвилі сигналу ЕКГ (виберіть необхідний діапазон на осі **X** функцією xlim).

У чому проявляєт ься ефект фільт рації ЕКГ сигналу?

2. Дослідження фільтра поліноміального згладжування

2.1. Задайте вектори коефіцієнтів фільтра поліноміального згладжування по п'яти точкам відповідно до рівняння:

$$y(n) = (-3x(n) + 12x(n-1) + 17x(n-2) + 12x(n-3) - 3x(n-4))/35.$$

Для фільтру: 1) побудуйте графіки АЧХ і ФЧХ; 2) обчисліть нулі; 3) побудуйте карту нулів і полюсів (функція zplane). Наведіть у звіті отримані результати.

2.2. Виконайте фільтрацію ЕКГ (файл ecg117.dat). Побудуйте графіки вихідних сигналів фільтру.

У чому проявляється ефект фільт рації ЕКГ?

2.3. Порівняйте властивості згладжування сигналу фільтром Хеннінга та поліноміальним фільтром.

Який з цих фільт рів забезпечує кращу фільт рацію шуму?

3. Дослідження режекторного фільтра

3.1. Дослідіть властивості режекторного фільтра з різницевим рівнянням

$$y(n) = x(n) + 0.618x(n-1) + x(n-2),$$

(частота дискретизації $f_s = 200 \, \Gamma$ ц).

Для цього фільтру: 1) обчисліть АЧХ і ФЧХ, побудуйте графіки; 2) обчисліть нулі; 3) побудуйте карту нулів і полюсів; 4) запишіть аналітичний вираз для передавальної функції.

Обчислити АЧХ і ФЧХ з урахуванням частоти дискретизації можна таким кодом:

$$[h, f] = freqz(b, a, n, fs);$$

Наведіть результати у звіті.

На яких част от ах розташовані нулі фільт ра? Як т реба змінит и передавальну функцію фільт ра, щоб його коефіцієнт передачі дорівнював I на част от і $\omega=0$?

3.2. Завантажте сигнал ЕКГ з мережевою перешкодою частотою 60 Гц (файл ecg2x60.dat). Виконайте фільтрацію сигналу режекторним фільтром. Побудуйте в одному вікні графіки початкової та відфільтрованої ЕКГ. Для зручності спостереження ефекту фільтрації виділить одну—дві хвилі сигналу ЕКГ.

У чому виявляєт ься ефект фільт рації перешкоди?

4. Дослідження цифрових диференціаторів

4.1. Дослідіть властивості диференціаторів, що реалізують операції диференціювання за такими рівняннями

$$y(n) = x(n) - x(n-1);$$

 $y(n) = (x(n) - x(n-2))/2.$

Обчисліть передавальні функції кожного з диференціаторів і подайте їх у звіті. Побудуйте графіки АЧХ і ФЧХ кожного з диференціаторів.

В якому діапазоні част от кож ен з диференціат орів задовільно апроксимує похідну сигналу?

4.2. Дослідіть процес диференціювання ЕКГ з шумом (файл ecg117.dat) обома диференціаторами (функція filter). Побудуйте графіки фільтрованих процесів.

Який із дослідж ених диференціат орів дає кращі результ ат и при робот і з ЕКГ з шумом ?

Контрольні запитання

- 1. Яка математична операція використовується для обчислення відліків вихідного сигналу цифрового фільтра?
- 2. Чому дорівнює тривалість перехідного процесу в СІХфільтрі?
 - 3. Як визначити частотну характеристику цифрового фільтру?
- 4. Як пов'язані передавальна функція і частотна характеристика цифрового фільтра?
 - 5. У чому переваги фільтра Хеннінга?