

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Krakow

Szybki generator funkcyjny sterujący drabinką R-2R

Piotr Kowol, Mateusz Kulak, Piotr Łętowski Opiekun projektu:Ernest Jamro

Akademia Górniczo-Hutnicza w Krakowie

Plan Prezentacji

- Założenia projektowe
- Schemat blokowy układu
 - Akumulator fazy
 - Pamięć próbek
 - Serializer
 - PRzetwornik C/A
 - Filtr dolnoprzepustowy
 - Mikroprocesor
 - Generacja zegara

- Odtwarzanie sygnałów wykorzystując bezpośrednią syntezę cyfrową
- Wykorzystanie dedykowanych serializerów w celu uzyskania wyższej częstotliwości odtwarzania
- Możliwość załadowania próbek sygnału do pamięci

Rysunek: Schemat blokowy generatora.

Akumulator fazy

- Składa się z rejestru i sumatora
- Z każdym taktem LS_CLK zwiększa zawartość rejestru o zadany krok fazowy
- Adresuje pamięć próbek

Pamięć próbek

- Pamięć dwu-portowa jeden port tylko do zapisu, a drugi tylko do odczytu
- Przechowuje wartości generowanego przebiegu
- Przekazuje próbki do serializera z każdym taktem LS_CLK
- Zrealizowana w postaci pamięci BRAM

Serializer

- Wykorzystuje 8 dedykowanych układów OSERDESE2 w konfiguracji serializerów 8 do 1
- Przekazuje próbki do przetwornika C/A przy każdym zboczu HS_CLK (DDR)

przetwornik C/A

- Drabinka R-2R na zewnątrz układu FPGA
- Zamienia próbki na schodkowy sygnał analogowy

Filtr dolnoprzepustowy

- Usuwa składowe wysokoczęstotliwościowe z generowanego sygnału
- Pozwala uzyskać przebieg analogowy z sygnału schodkowego

Mikroprocesor

- Konfiguruje pracę poszczególnych bloków
- Odbiera wartości próbek i dane konfiguracyjne z komputera za pośrednictwem protokołu UART
- Przekazuje próbki do pamięci
- Zrealizowany w postaci procesora ZYNQ w układzie FPGA
- Realizaja UARTu poprzez program napisany w C

Generacja zegara

- Szybki zegar HS_CLK do taktowania układów OSERDESE2 o częstotliwości 500 MHz (1 Gb/s)
- Wolny zegar LS_CLK do taktowania pozostałej logiki oraz procesora ZYNQ o częstotliwości $\frac{1}{4}f_{HS_CLK} = 125 \text{ MHz}$
- Wykorzystuje dedykowane bufory z programowalnym dzielnikiem częstotliwości BUFR do generowania LS_CLK

Dziękujemy za uwagę.

Piotr Kowol, Mateusz Kulak, Piotr Łętowski

Bibliografia I

- [1] Hong-fei Zhang Chun-li Luo Peng-yi Tang Ke Cui Sheng-zhao Lin Ge Jin. "High-speed arbitrary waveform generator based on FPGA". W: IEEE Nuclear Science Symposium and Medical Imaging Conference (2014).
- [2] AVNET. ZedBoard Technical Documents.
- [3] AMD/Xilinx. Vivado Design Suite 7 series FPGA and Zyng 7000 SoC Libraries Guide (UG935).