

Density functional theory in solid state physics

Lecture 13

Summary

- Lattice vibrations in solid materials can be well and readily treated within a DFT framework
- Two approaches:
 - Use numerical derivatives of the total energy, forces etc in combination with finite displacements of atoms
 - Calculate derivatives using perturbation theory (DFPT)
- Electron-phonon coupling calculations from DFPT: access to EPC induced band gap renormalizations, superconductivity, Kohn anomalies in metals
- Phonon-phonon interaction from DFPT: phonon self-energy, anharmonic effects, temperature-induced phonon renomalization
- Boltzmann Transport Equation: Electron and phonon dynamics from ab initio, using DFT input data
 - → thermal conductivity, electron and hole mobilities, ultrafast relaxation processes

Summary

- Molecular dynamics: use Newton's equations of motion to study the temporal evolution of the atomic structure
- Ab initio MD: accurate interatomic forces from DFT
- Introduce temperature through thermostats: system in contact with an external heat bath
- Similarly: Barostats can be used to regulate the pressure acting on the unit cell
- Access to a variety of properties:

- chemical reactions
- phase transitions
- diffusion
- phonons, dipole moments etc
- Advantage: anharmonic effects, phonon-phonon, electron-phonon interactions are automatically included
- Things to consider:
 - Discrete time-step Δt for propagation, algorithm needs to be stable
 - Thermostats and barostats contain parameters ("masses", "rise time") that need to be adjusted to well-behaved temperature/pressure control

Theoretical spectroscopy from ab initio

Electronic excitations:

- Optical excitations
- Electron energy loss (EEL)
- Inelastic x-ray scattering

- Photoemission & Inverse photoemission
- ..

- Excited electron and positive "hole" in the valence band bound by Coulomb interaction. "Exciton"
- Needs proper description of electron-hole and electron-electron interaction effects

Sharp features appear below the electronic band gap

S. Koch, "Quantum Theory of the Optical and Electronic Properties of Semiconductors"

Hydrogen model of excitons

Conduction band electron

Wannier Equation

$$\left(-\frac{1}{2}\nabla^2 - \frac{1}{\varepsilon r}\right)\phi(r) = E\phi(r)$$

- Reduction of "optical" band gaps compared to electronic band gaps
- Excitons can often be well described by hydrogen model, excitonic Rydberg series

• Example: GaAs

Electronic bandgap at small T: 1.52 eV

Calculated exciton binding energy: 4 meV, calculated exciton bohr radius: 12 nm

Sturge, Phys. Rev. 127, 768 (1962)

Adv. Solid. State Phys. 25, 299 (1985)

• Absoption coefficient in solids is related to dielectric tensor $\epsilon_{\alpha\beta}(\omega)$:

$$A_{\alpha\alpha}(\omega) = \frac{2\omega}{c} \kappa_{\alpha\alpha}$$

• Complex refractive index
$$n_{\alpha\beta}^*(\omega) = \underbrace{\sqrt{\frac{|\epsilon_{\alpha\alpha}(\omega)| + Re\epsilon_{\alpha\alpha}(\omega)}{2}}}_{n_{\alpha\beta}(\omega)} + i\underbrace{\sqrt{\frac{|\epsilon_{\alpha\alpha}(\omega)| - Re\epsilon_{\alpha\alpha}(\omega)}{2}}}_{\kappa_{\alpha\beta}(\omega)}$$

In exact QM theory, solve time-dependent Schrödinger Equation

$$\widehat{H}(t)\psi(\vec{r},t) = i\hbar \frac{\partial}{\partial t}\psi(\vec{r},t)$$

with additional time-dependent external potential (corresponding to the laser field)

- Resonance for particular frequencies ω_I , corresponding to electron excitation with many-body wavefunction ψ_I and excitation energy $\Delta E_I = E_I E_{gs}$
- Optical oscillator strength from Fermi's golden rule: $\Gamma_I \propto |\langle \psi_I | \hat{r} | \psi_{gs} \rangle|^2$

We can use DFT to derive optical spectra within "independent particle approximation"

Dielectric function
$$\epsilon_{\alpha\beta}(\omega) = \delta_{\alpha\beta} - \frac{1}{V\omega^2} \left[\sum_i f_{ik} \delta_{\alpha\beta} \sum_j (f_{ik} - f_{jk}) \frac{\langle \phi_{ik} | \vec{r}_{\alpha} | \phi_{jk} \rangle \langle \phi_{jk} | \vec{r}_{\beta} | \phi_{ik} \rangle}{\epsilon_{ik} - \epsilon_{jk} + \omega + i\eta} \right]$$
Fermi occupation

- Effectively sum over transitions between occupied and unoccupied electronic bands, "joint density of states"
- Singularities ("poles") in Im[∈] correspond to excitation energies of the system

But: No coupling between excited electrons and "holes" in the valence band in DFT
 DFT cannot capture excitonic effects in optical spectra, but can work well for systems with small excitonic effects

- Density functional theory is a reformulation of the time-independent Schrödinger Equation
- Is there an equivalent for the time-dependent Schrödinger Equation?
- Yes, time-dependent DFT (TDDFT)
- Formal basis: Runge-Gross theorem Phys. Rev. Lett. 52, 997 (1984)

For any system with a Hamiltonian of the form

Electron-electron interaction
$$H = T + U + V_{ext}$$
,

there exists a one-to-one mapping

External potential acting on electrons

$$n(r,t) \overset{\psi_0}{\leftrightarrow} V_{ext}(r,t)$$
 at any time t .

• The electron density determines the potential (and thus the physical properties) of the system at any time *t* up to a time-dependent function.

- How to find time-dependent density for given time-dependent potential?
- Use Dirac action $A[n] = A[\psi[n]] = \int_{t_0}^{t_1} \langle \psi(t) | i \frac{\partial}{\partial t} H(t) | \psi(t) \rangle dt$
- RG II: the true time-dependent density n_0 is the one that makes the action stationary

$$\left. \frac{\delta A[n]}{\delta n(\vec{r},t)} \right|_{n_0} = 0$$

Using the variational principle yields the time-dependent Kohn-Sham equations

$$\left[-\frac{1}{2} \nabla^2 + \underbrace{v_{eff}(\vec{r}, t)}_{v(\vec{r}, t) + v_H(\vec{r}, t) + v_{\chi_C}(\vec{r}, t)} \right] \varphi_j(r, t) = i \frac{\partial}{\partial t} \varphi_j(\vec{r}, t)$$

The unknowns are pushed into the time-dependent exchange-ocrrelation functional

$$v_{xc}(\vec{r},t) = \frac{\delta A_{xc}[n]}{\delta n(\vec{r},t)}$$

- Careful: $v_{xc}(r,t)$ contains *retardation* and *memory effects*, i.e. depends on the density on all previous times $t' \le t$.
- In principle exact theory, but A_{xc} is not known and needs to be approximated
- Adiabatic approximation: we neglect all retardation and memory effects and assume that v_{xc} changes instantaneously

$$v_{xc}(\vec{r},t) = \frac{\delta A_{xc}[n]}{\delta n(\vec{r},t)} \approx \frac{\delta E_{xc}[\tilde{n}]}{\delta \tilde{n}(\vec{r})} \bigg|_{\tilde{n}(\vec{r}) = n(\vec{r},t)}$$

 We can then use all XC functionals from time-independent DFT, e.g. adiabatic LDA (ALDA):

$$v_{xc}^{ALDA}(\vec{r},t) = v_{xc}^{ALDA}(n(\vec{r},t))$$

 Typical use: Time evolution of the electron density/orbitals/energies as a reaction to an external perturbation, for example under the effect of an external timedependent field

- We can do this by "propagating" the TD-KS equations to calculate the time evolution of the electron density
 - 1. Prepare the initial state, usually the ground state, by a time-independent calculation This yields the initial electron density $n(\vec{r},t=0)$ and orbitals $\phi_i^0(\vec{r})$
 - 2. Solve the TDKS equations $\left[-\frac{1}{2}\nabla^2+v_{eff}(\vec{r},t)\right]\phi_j(\vec{r},t)=i\frac{\partial}{\partial t}\phi_j(\vec{r},t)$ selfconsistently for the time range $t\in[0,T]$ through updating the potential $v_{eff}(\vec{r},t)$. This gives the TDKS orbitals $\phi_j(\vec{r},t)$ and the electron density $n(\vec{r},t)=\sum_i \left|\phi_j(\vec{r},t)\right|^2$. Conveniently express the orbitals through $\phi_j(\vec{r},t)=\sum_i a_{ij}(t)\phi_i^0(\vec{r})$
 - 3. Calculate observables of interest using the results.

• Like for molecular dynamics, we use a discrete time step Δt to propagate

$$\varphi_j(\vec{r}, t + \Delta t) = Texp\left(-i\int_0^t \widehat{H}(t')dt'\right)\varphi_j(\vec{r}, t)$$

- Several algorithms exist for the propagation. We want to keep choose Δt as large as possible but keep the algorithm stable
- Propagator should be unitary, have a systematically improvable error and be stable
- Example: Crank-Nicolson algorithm:

$$\varphi_{j}(\vec{r},t+\Delta t) \approx \frac{1-i\frac{\Delta t}{2}\widehat{H}}{1+i\frac{\Delta t}{2}\widehat{H}}\varphi_{j}(\vec{r},t) \rightarrow \left[I+i\frac{\Delta t}{2}\widehat{H}\right]\varphi_{j}(\vec{r},t+\Delta t) = \left[I-i\frac{\Delta t}{2}\widehat{H}\right]\varphi_{j}(\vec{r},t)$$

- More accuracy: 1. Solve equation to estimate $\varphi_j(\vec{r}, t + \Delta t)$
 - 2. Estimate $\hat{H}(t + \Delta t)$ ("predictor")
 - 3. Build "corrected" $\widehat{H}(t + \frac{\Delta t}{2}) = \frac{1}{2} \left[\widehat{H}(t + \Delta t) + \widehat{H}(t) \right]$ and use that to obtain better $\varphi_i(\vec{r}, t + \Delta t)$

For example: Apply a short perturbative field representing a pulsed laser

http://benasque.org/2012tddft/talks_contr/ 071_Benasque_1-2.pdf

• The longer the simulation time *T*, the better the energy resolution

fs

- Previous approach does not work for solids, because of periodic boundary conditions and bad computational scaling
- Alternative for optical spectra: Linear response
- Approach: Assume that perturbation of external potential, $\delta v(\vec{r}, t)$, is small, so that

$$n(\vec{r},t) = n_0(\vec{r}) + \delta n(\vec{r},t)$$

First-order density response

- Standard response theory: $\delta n(\vec{r},t) = \int_0^\infty \int \chi(\vec{r},\vec{r}';t,t') \, \delta v(\vec{r}',t') dr' dt'$
- Interested in the density-density response function $\chi(\vec{r}, \vec{r}'; t, t') = \frac{\delta n(\vec{r}, t)}{\delta v(\vec{r}, t')} \Big|_{v_0}$
- $\chi(\vec{r}, \vec{r}, '; \omega)$ is directly related to the dielectric function of a system \rightarrow access to optical properties

Dyson-like equation

$$\chi (\vec{r}, \vec{r}', \omega) = \chi^{0}(\vec{r}, \vec{r}', \omega) + \chi^{0}(\vec{r}, \vec{r}', \omega) * \left(\frac{1}{|\vec{r} - \vec{r}'|} + f_{xc}(\vec{r}, \vec{r}'; \omega)\right) * \chi (\vec{r}, \vec{r}', \omega)$$

"XC kernel"

For ALDA:
$$f_{xc}^{ALDA}(\vec{r}, \vec{r}'; t) = \delta(\vec{r} - \vec{r}') \frac{dv_{xc}^{LDA}[n]}{dn} \Big|_{n=n(\vec{r},t)}$$

• χ^0 is the non-interacting susceptibility from time-independent KS:

Orbitals from time-independent Kohn-Sham calculation

$$\chi^{0}(\vec{r}, \vec{r}', \omega) = \sum_{i,j} (f_{i} - f_{j}) \frac{\varphi_{i}^{*}(\vec{r})\varphi_{j}(\vec{r})\varphi_{j}(\vec{r}')\varphi_{i}^{*}(\vec{r}')}{\varepsilon_{i} - \varepsilon_{j} + \omega + i\eta}$$

- Poles of χ correspond to the excitation energies of the system, shifted compared to χ^0 through effect of electron-electron interaction
- We can get the optical properties from the results of time-independent KS without explicit propagation of the TD-KS equations

Often used for solids: Dyson Equation in reciprocal space

$$\chi_{G,G'}(\vec{q},\omega) = \chi_{G,G'}^{0}(\vec{q},\omega) + \sum_{G''} \chi_{G,G'}^{0}(\vec{q},\omega) \left[\frac{4\pi}{\left| \vec{q} + \vec{G}'' \right|^{2}} + f_{xc}(\vec{q},\vec{G},\vec{G}'') \right] \chi_{G'',G'}(\vec{q},\omega)$$

• Simple form for the microscopic inverse dielectric function in this case:

$$\epsilon_{G,G'}^{-1}(\vec{q},\omega) = \delta_{G,G'} + \frac{4\pi}{\left|\vec{q} + \vec{G}\right|^2} \chi_{G,G'}(\vec{q},\omega)$$

• Macroscopic dielectric function: $\epsilon_M(\omega) = \lim_{\vec{q} \to 0} \frac{1}{\left[\epsilon_{G,G'}^{-1}(\vec{q},\omega)\right]_{G,G'=0}}$

This includes local field effects due to Interaction of light with the electronic charge

• Need to iteratively solve the Dyson equation, with $\chi^0_{G,G'}$ as starting guess

LR-TDDFT calculation scheme

- In finite systems: excitation energies are discrete
- In this case, one can use the Casida equations

$$\begin{bmatrix} \overrightarrow{A} & \overrightarrow{B} \\ \overrightarrow{B}^* & \overrightarrow{A}^* \end{bmatrix} \begin{bmatrix} \overrightarrow{X}_j \\ \overrightarrow{Y}_j \end{bmatrix} = \omega_j \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \overrightarrow{X}_j \\ \overrightarrow{Y}_j \end{bmatrix}$$

to obtain the excitation energies ω_i (i.e. the poles of χ) of the system of interest.

• Under the adiabatic approximation: $B_{ik,jl} = \int \phi_i^*(r)\phi_k(r)\phi_l(r')\phi_j^*(r')\left(\frac{1}{|r-r'|} + f_{xc}\right)drdr'$

$$A_{ik,jl} = \delta_{ij,kl}(\varepsilon_i - \varepsilon_k) + B_{ik,lj}$$

- Tamm-Dancoff approximation (TDA): neglect de-excitation effects, i.e. $\overrightarrow{B} = 0$
- \vec{X}_j and \vec{Y}_j contain information about the excited states, can be used to derive optical oscillator strengths of excitations using Fermi's Golden rule

- TDDFT-based approaches are quite popular in chemistry due to computational simplicity, relative accuracy and the possibility of combining TDDFT with molecular dynamics
- How does TDDFT perform in solid state physics?
- ALDA+TDDFT is good for simple metals, e.g. plasmon dispersion in Al

For such systems, ALDA is a correction to the RPA case

ALDA+TDDFT works rather well for electron energy loss (EELS) spectra

$$EEL[\vec{q} + \vec{G}, \omega] = -\frac{4\pi}{|\vec{q} + \vec{G}|^2} Im[\chi_{G,G'}]$$

Phys. Rev. Lett. 88, 037601 (2002)

Graphene

Rad. Eff. Def. Sol. 173, 8 (2018)

Peak positions and relative intensities ok, small difference to using the RPA

- ALDA does <u>not</u> work well for absorption spectra (or excitons in general):
 - Absorption edge red-shifted (band gap underestimation, missing electron-electron interaction)
 - Intensity of excitonic first peak strongly underestimated compared to experiment

Rep. Prog. Phys. 70, 357 (2007)

Phys. Rev. Lett. 88, 066404 (2002)

• Absorption corresponds to $Im[\epsilon_M] = -\lim_{\vec{q} \to 0} \frac{4\pi}{|\vec{q} + \vec{G}|^2} Im[\bar{\chi}_{G,G}]$

with the modified response function

- ALDA behaves like constant for q→0, hence small effect on optical properties, lack of long-range interactions
- ALDA cannot decribe excitonic neutral excitations or Rydberg series thereof
- Problem smaller for finite systems, as influence of long-range interactions is less important there

· Several corrections available

Empirical parameter

Phys. Rev. Lett. 88, 066404 (2002)

• Long-range corrected TDDFT:
$$f_{xc,G,G'}^{LRC}(\vec{q},\vec{G},\vec{G}') = \frac{\alpha}{|\vec{q}+\vec{G}|^2}$$

- Bootstrap kernel: $f_{xc}^{boot}(\vec{q}, \vec{G}, \vec{G}', \omega) = \frac{\epsilon_{G,G'}^{-1}(\vec{q}, 0)}{\chi_{0.0}^{0}(\vec{q}, 0)}$ Phys. Rev. Lett. 89, 096402 (2002)
- "Jellium-with-gap" model: $f_{xc}^{JGM}(\vec{q};n,E_g) \propto \frac{4\pi}{q^2}$ Phys. Rev. B 87, 205143 (2013)

• ...

- Qualitative shape of optical spectra can be very good (at least for selected materials)
- Despite recent progress, accuracy for exciton binding energies is still not consistently satisfactory
 - → more work necessary

Optical spectra from bootstrap kernel 30 Ge Diamond 20 10 AIN 45 Si (ω) 30 15 30 RPA 20 GaAs Expt.1 SiC 20 Expt.2 10 **TDDFT** 10 9 12 Energy(eV) 15 Energy(eV)

Phys. Rev. Lett. 107, 186401 (2011)

Phys. Rev. B 95, 205136 (2017)

• The scaled bootstrap kernel $f_{xc}^{scaledB} = A(x)f_{xc}^{boot}$ was fitted to give good exciton binding energies, but in exchange, it overestimates optical oscillator strengths

The band gap problem is not solved

Phys. Rev. B 95, 205136 (2017)