24 Find the value of friction forces between the blocks *A* and B; and between B and ground. (Take, $g = 10 \text{ ms}^{-2}$)

- (a) 90 N, 5 N (b) 5 N, 90 N (c) 5 N, 75 N (d) 0 N, 80 N
- **25** A block of mass 5 kg is kept on a horizontal floor having coefficient of friction 0.09. Two mutually perpendicular horizontal forces of 3 N and 4 N act on this block. The acceleration of the block is (Take, $q = 10 \text{ ms}^{-2}$)
 - (a) zero
- (b) 0.1 ms^{-2} (c) 0.2 ms^{-2} (d) 0.3 ms^{-2}
- **26** Two masses A and B of 10 kg and 5 kg respectively are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown in figure. The coefficient of friction of A with the table is 0.2. The minimum mass of *C* that may be placed on A to prevent it from moving is equal to

(a) 15 kg

(b) 10 kg

(c) 5 kg

- (d) 20 kg
- **27** In the figure, pulleys are smooth and strings are massless, $m_1 = 1 \,\mathrm{kg}$ and $m_2 = \frac{1}{3}$ kg. To keep m_3 at rest, mass m_3 should be

- (a) 1 kg
- (b) $\frac{2}{3}$ kg

(c) $\frac{1}{4}$ kg

 m_3

29 A block of mass 1 kg is at rest relative to a smooth wedge moving leftwards with constant acceleration $a = 5 \,\mathrm{ms}^{-2}$.

Let *N* be the normal reaction between the block and the wedge. Then, (Take, $g = 10 \text{ ms}^{-2}$)

- (a) $N = 5\sqrt{5} \text{ N}$
- (b) N = 15 N
- (c) $\tan \theta = \frac{1}{3}$
- **30** A block of mass *m* is kept on an inclined plane of a lift moving down with acceleration of 2 ms⁻². What should be the coefficient of friction to let the block move down with constant velocity relative to lift?

- (a) $\alpha = \frac{1}{\sqrt{2}}$ (b) $\alpha = 0.4$ (c) $\alpha = 0.8$ (d) $\alpha = \frac{\sqrt{3}}{2}$
- **31** Two blocks of mass 5 kg and 3 kg are attached to the ends of a string passing over a smooth pulley fixed to the ceiling of an elevator. The elevator is accelerated upwards. If the acceleration of the blocks is $\frac{9}{32}g$, the acceleration of the elevator is
 - (a) $\frac{g}{3}$ (b) $\frac{g}{4}$ (c) $\frac{g}{8}$

- **32** A balloon of weight w is falling vertically downward with a constant acceleration $a \ll q$. The magnitude of the air resistance is
 - (a) w

- (b) $w\left(1+\frac{a}{a}\right)$
- (c) $w\left(1-\frac{a}{a}\right)$ (d) $w\frac{a}{a}$
- **33** A smooth inclined plane of length *L*, having an inclination θ with horizontal is inside a lift which is moving down with retardation a. The time taken by a block to slide down the inclined plane from rest will be