Recordação: síntese lógica combinatório (procedimento clássico)

- 1. Especificação: Tabela verdade.
- 2. Extração da(s) função(ões) canônica(s):

- 3. Minimização lógica
- 4. Mapeamento tecnológico
 18/05/2020 Prof. Duarte L. Oliveira Divisão de Engenharia Eletrônica do ITA

Procedimento: síntese lógica

- Especificação: Tabela primitiva de fluxo de estados.
- 2) Minimização de estados:
- 3) Assinalamento de estados: livre de corrida crítica
- 4) Minimização lógica livre de risco (hazard) lógico: arquitetura alvo máquina de Huffman.
- 5) Mapeamento tecnológico livre de risco lógico
- 6) Verificação e tratamento de risco essencial

Máquina de Huffman: Modelo Moore

Máquina de Huffman: Modelo Mealy

Descrição do problema: Tabela Primitiva de

T Estados	0	1	Z
а	a	þ	0
b	С	b	1
С	С	d	1
d	а	d	0

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-2:

Enquanto X0=0 == > Z=0

Quando X0=1 e houver a primeira variação de X1 == > Z=1

Z deve permanecer insensível a novas variações de X1

Saída Z retornará a zero quando X0=0

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-2:

Enguanto X0=0 == > Z=0

Quando X0=1 e houver a primeira variação de X1 == > Z=1

Z deve permanecer insensível a novas variações de X1

Saída Z retornará a zero quando X0=0

Diagrama de Temporização

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-2:

Enquanto X0=0 == > Z=0

Quando X0=1 e houver a primeira variação de X1 == > Z=1

Z deve permanecer insensível a novas variações de X1

Saída Z retornará a zero quando X0=0

Estados to					
Estados 77	00	0 1	11	10	Z
а	a	b		С	0
b	а	b	d		0
С	а		е	C	0
d		b	d	f	0
е		b	e	f	1
f	а		е	f	1

Tabela Primitiva de Fluxo de Estados

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-3:

Enquanto X0=0 == > Z=0

Quando X0=1 e houver a primeira variação de X1 == > Z=1
Z deve permanecer insensível a novas variações de X1

Saída Z retornará a zero quando X0=0

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-3:

Saída Z retornará a zero quando X0=0

Tabela Primitiva de Fluxo de Estados

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-4:

Tabela de Operações

CLK	_ T	Q(t+1)		
X	x	Q(t)		
\uparrow	0	Q(t)		
<u></u>	1	Q(t)		

Sinal periódico não necessariamente simétrico

Descrição do problema: Tabela Primitiva de Fluxo de Estados → Exemplo-4:

Tabela Primitiva de Fluxo de Estados

Descrição do problema: Tabela Primitiva de

Fluxo de Estados → Exemplo-5:

Tabela de Operações

C	LK	D	Q(t+1)	D Q —
	X	X	Q(t)	CIK
-	1	0	0	Q
	1	1	1	
			·	CLK

Sinal periódico não necessariamente simétrico

Descrição do problema: Tabela Primitiva de Fluxo de Estados → Exemplo-5:

Tabela de Operações

CLK	D	Q(t+1)		
X	X	Q(t)		
\uparrow	0	0		
<u> </u>	1	1		

Sinal periódico não necessariamente simétrico

Estados					
Estados	00	0 1	11	10	Q
а	a	b		С	0
b	а	b	d		0
С	а		е	C	0
d		f	d	g	1
е		b	e	С	0
f	h	f	d		1
g	h	_	d	g	1
h	h	f		С	1

Tabela Primitiva de Fluxo de Estados

Descrição do problema: Tabela Primitiva de Fluxo de Estados → Exemplo-6:

Um controlador (máquina de estado finito) de **semáforo assíncrono** operando no **modo fundamental** será instalado em uma passagem de nível na estrada de ferro de sentido único. Sem trem se aproximando, a luz verde do semáforo está acessa. Quando um trem se aproxima da passagem de nível e está no limite de 2000 pés da passagem, o semáforo muda de luz verde para luz vermelha. A mudança de vermelho para verde somente ocorre quando o trem inteiro atravessou a passagem de nível e a parte traseira do trem está a 300 pés longe da passagem. Assuma que o comprimento do trem não excede 1500 pés e a distância mínima entre os trens é de 3000 pés. Defina o **menor número de variáveis de entrada e de saída** e obtenha a **tabela de estados primitiva modelo Mealy**.

Exemplo-6 → Solução: TPFE

Um controlador (máquina de estado finito) de **semáforo assíncrono** operando no **modo fundamental** será instalado em uma passagem de nível na estrada de ferro de sentido único. Sem trem se aproximando, a luz verde do semáforo está acessa. Quando um trem se aproxima da passagem de nível e está no limite de 2000 pés da passagem, o semáforo muda de luz verde para luz vermelha. A mudança de vermelho para verde somente ocorre quando o trem inteiro atravessou a passagem de nível e a parte traseira do trem está a 300 pés longe da passagem. Assuma que o comprimento do trem não excede 1500 pés e a distância mínima entre os trens é de 3000 pés. Defina o **menor número de variáveis de entrada e de saída** e obtenha a **tabela de estados primitiva modelo Mealy**.

Exemplo-6 → Solução síncrona: TPFE x GTE

Um controlador (máquina de estado finito) de **semáforo assíncrono** operando no **modo fundamental** será instalado em uma passagem de nível na estrada de ferro de sentido único. Sem trem se aproximando, a luz verde do semáforo está acessa. Quando um trem se aproxima da passagem de nível e está no limite de 2000 pés da passagem, o semáforo muda de luz verde para luz vermelha. A mudança de vermelho para verde somente ocorre quando o trem inteiro atravessou a passagem de nível e a parte traseira do trem está a 300 pés longe da passagem. Assuma que o comprimento do trem não excede 1500 pés e a distância mínima entre os trens é de 3000 pés. Defina o **menor número de variáveis de entrada e de saída** e obtenha a **tabela de estados primitiva modelo Mealy**.

