# 电过滤与电子放木

第3章 电路的暂态分析

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

#### 本章要求:

- 1. 了解电阻元件、电感元件与电容元件的特征;
- 2. 理解电路的暂态和稳态、零输入响应、零状态响应、全响应的概念,以及时间常数的物理意义;
- 3. 掌握换路定则及初始值的求法;
- 4. 掌握一阶线性电路分析的三要素法。

#### 稳定状态:

在指定条件下电路中电压、电流已达到稳定值。 暂态过程:

电路从一种稳态变化到另一种稳态的过渡过程。研究暂态过程的实际意义

- 1. 利用电路暂态过程产生特定波形的电信号如锯齿波、三角波、尖脉冲等,应用于电子电路。
- 2. 控制、预防可能产生的危害 暂态过程开始的瞬间可能产生过电压、过电流使 电气设备或元件损坏。

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

# 3.1 电阻元件、电感元件与电容元件

3.1.1 电阻元件

描述消耗电能的性质

根据欧姆定律: u = iR



即电阻元件上的电压与通过的电流成线性关系

金属导体的电阻与导体的尺寸及导体材料的电性能方式。表达式为一个

能有关,表达式为: 
$$R = \rho \frac{l}{S}$$

电阻的能量 
$$W = \int_0^t ui dt = \int_0^t Ri^2 dt \ge 0$$

表明电能全部消耗在电阻上,转换为热能散发。

### 3.1.2 电感元件

描述线圈通有电流时产生磁场、储存磁场能量的性质。



#### 1. 物理意义

电流通过一匝线圈产生 → Φ(磁通)

电流通过N匝线圈产生  $\rightarrow \psi = N \Phi$ (磁链)

电感: 
$$L = \frac{\psi}{i} = \frac{N\Phi}{i}$$
 (H)

线性电感: L为常数; 非线性电感: L不为常数

2. 自感电动势: 
$$e_L = -\frac{\mathrm{d}\psi}{\mathrm{d}t} = -L\frac{\mathrm{d}i}{\mathrm{d}t}$$

#### 3. 电感元件储能

根据基尔霍夫定律可得: 
$$u = -e_L = L \frac{di}{dt}$$

将上式两边同乘上 i , 并积分,则得:

$$\int_0^t ui \, dt = \int_0^i Li \, di = \frac{1}{2} Li^2$$
磁场能
$$W = \frac{1}{2} Li^2$$

即电感将电能转换为磁场能储存在线圈中,当电 流增大时, 磁场能增大, 电感元件从电源取用电能; 当电流减小时, 磁场能减小, 电感元件向电源放还 能量。

#### 3.1.3 电容元件

描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。

电容: 
$$C = \frac{q}{u}$$
 (F)

当电压u变化时,在电路中产生电流:

$$i = C \frac{\mathrm{d}u}{\mathrm{d}t}$$

#### 电容元件储能

将上式两边同乘上 u, 并积分,则得:

$$\int_0^t ui\,\mathrm{d}t = \int_0^u Cu\,\mathrm{d}u = \frac{1}{2}Cu^2$$



#### 电容元件储能

电场能
$$W = \frac{1}{2}Cu^2$$

即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。

本节所讲的均为线性元件,即R、L、C都是常数。

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

## 3.2 储能元件和换路定则

1. 电路中产生暂态过程的原因



图(a):

合S前: i = 0  $u_{R1} = u_{R2} = u_{R3} = 0$ 

合S后:电流i随电压u比例变化。

所以电阻电路不存在暂态过程 (R耗能元件)。

## 3.2 储能元件和换路定则



合S前:  $i_C = 0$ ,  $u_C = 0$ 

合S后: u 由零逐渐增加到U

所以电容电路存在暂态过程(C储能元件)

#### 产生暂态过程的必要条件:

- (1) 电路中含有储能元件 (内因)
- (2) 电路发生换路 (外因)

换路: 电路状态的改变。如:

电路接通、切断、短路、电压改

产生暂态过程的原因:

由于物体所具有的能量不能跃变而造成 在换路瞬间储能元件的能量也不能跃变

$$C$$
 储能:  $W_C = \frac{1}{2}Cu_C^2$   $u_C$  不能突变

若 uc 发生突变,

#### 2. 换路定则

设: t=0 — 表示换路瞬间 (定为计时起点)

t=0\_—表示换路前的终了瞬间

t=0<sub>+</sub>—表示换路后的初始瞬间(初始值)

电感电路:  $i_L(\mathbf{0}_+) = i_L(\mathbf{0}_-)$ 

电容电路:  $u_C(0_+) = u_C(0_-)$ 

注:换路定则仅用于换路瞬间来确定暂态过程中 $u_C$ 、 $i_L$ 初始值。

#### 3. 初始值的确定

初始值: 电路中各u、i在t=0+时的数值。

#### 求解要点:

- $(1) u_C(0_+)$ 、 $i_L(0_+)$ 的求法。
- 1) 先由t=0\_的电路求出  $u_C(0_-)$ 、 $i_L(0_-)$ ;
- 2) 根据换路定律求出  $u_{C}(0_{+})$ 、 $i_{L}(0_{+})$ 。
- (2)其它电量初始值的求法。
- 1) 由t=0+的电路求其它电量的初始值;
- 2) 在  $t=0_+$ 时的电压方程中  $u_C=u_C(0_+)$ 、  $t=0_+$ 时的电流方程中  $i_L=i_L(0_+)$ 。

#### 例1. 暂态过程初始值的确定



已知:换路前电路处稳态,

C、L均未储能。

试求: 电路中各电压和电

流的初始值。

解: (1)由换路前电路求  $u_c(0_-)$ ,  $i_L(0_-)$ 

由已知条件知  $u_C(0_-)=0$ ,  $i_L(0_-)=0$ 

根据换路定则得:  $u_C(0_+) = u_C(0_-) = 0$ 

$$i_L(0_+) = i_L(0_-) = 0$$

例1: 暂态过程初始值的确定



(2) 由t=0+电路,求其余各电流、电压的初始值

$$u_C(0_-)=0$$
,换路瞬间,电容元件可视为短路。

 $i_L(0_-)=0$ ,换路瞬间,电感元件可视为开路。

$$i_C(0_+) = i_1(0_+) = \frac{U}{R}$$
  $(i_C(0_-) = 0)$   $i_C \cdot u_L \stackrel{\text{reflex}}{=} 2$ 

$$u_L(0_+) = u_1(0_+) = U (u_L(0_-) = 0) u_2(0_+) = 0$$

例2: 换路前电路处于稳态。

试求图示电路中各个电压和电流的初始值。



解: (1) 由t = 0\_电路求  $u_C(0_-)$ 、 $i_L(0_-)$ 

换路前电路已处于稳态: 电容元件视为开路;

由t=0\_电路可求得:

电感元件视为短路。

$$i_L(0_-) = \frac{R_1}{R_1 + R_3} \times \frac{U}{R + \frac{R_1 R_3}{R_1 + R_3}} = \frac{4}{4 + 4} \times \frac{U}{2 + \frac{4 \times 4}{4 + 4}} = 1 \text{ A}$$

国中国对其大学

章目录 上一页 下一页 返回 1

例2: 换路前电路处于稳态。 试求图示电路中各个电压和电流的初始值。



解: (1)  $i_L(0_-) = 1$  A

$$u_C(0_-) = R_3 i_L(0_-) = 4 \times 1 = 4 \text{ V}$$

由换路定则:

$$i_L(0_+) = i_L(0_-) = 1 \text{ A}$$
  
 $u_C(0_+) = u_C(0_-) = 4 \text{ V}$ 

例2:换路前电路处稳态。

试求图示电路中各个电压和电流的初始值。



解: (2) 由 $t = 0_+$ 电路求  $i_C(0_+)$ 、 $u_L(0_+)$   $u_c(0_+)$   $i_L(0_+)$ 

由图可列出 
$$U = Ri(0_+) + R_2i_C(0_+) + u_C(0_+)$$

$$i(0_{+}) = i_{C}(0_{+}) + i_{L}(0_{+})$$

带入数据

$$8 = 2i(0_{+}) + 4i_{C}(0_{+}) + 4$$

$$i(0_{+}) = i_{C}(0_{+}) + 1$$

例2: 换路前电路处稳态。 试求图示电路中各个电压和电流的初始值。



解:解之得  $i_C(\mathbf{0}_+) = \frac{1}{3}\mathbf{A}$  并可求出

$$u_{L}(0_{+}) = R_{2}i_{C}(0_{+}) + u_{C}(0_{+}) - R_{3}i_{L}(0_{+})$$

$$= 4 \times \frac{1}{3} + 4 - 4 \times 1 = 1 \frac{1}{3} V$$

计算结果:



| 电量          | $u_C/V$ | $i_L/A$ | $i_C/A$       | $u_L/V$        |
|-------------|---------|---------|---------------|----------------|
| $t = 0_{-}$ | 4       | 1       | 0             | 0              |
| $t=0_{+}$   | 4       | 1       | $\frac{1}{3}$ | $1\frac{1}{3}$ |

换路瞬间, $u_C$ 、 $i_L$ 不能跃变,但 $i_C$ 、 $u_L$ 可以跃变。

# 结论

- 1. 换路瞬间, $u_{C_{N}}$   $i_{L}$ 不能跃变,但其它电量均可以跃变。
- 2. 换路前, 若储能元件没有储能, 换路瞬间(*t*=0<sub>+</sub>的等效电路中), 可视电容元件短路, 电感元件开路。
- 3. 换路前,若 $u_C(0-)\neq 0$ ,换路瞬间 ( $t=0_+$ 等效电路中),电容元件可用一理想电压源替代,其电压为 $u_c(0_+)$ ;换路前,若 $i_L(0-)\neq 0$ ,在 $t=0_+$ 等效电路中,电感元件可用一理想电流源替代,其电流为 $i_L(0_+)$ 。

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

# 3.3 RC电路的响应

- 一阶电路暂态过程的求解方法
- 一阶电路

仅含一个储能元件或可等效为一个储能元件的线 性电路,且由一阶微分方程描述,称为一阶线性电 路。

求解方法

- 1. 经典法: 根据激励(电源电压或电流),通过求解电路的微分方程得出电路的响应(电压和电流)。

# 3.3.1 RC电路的零输入响应

零输入响应: 无电源激励, 输

入信号为零,仅由电容元件的

初始储能所产生的电路的响应。

#### 实质: RC电路的放电过程

图示电路

 $u_C(\mathbf{0}_-) = U$ 换路前电路已处稳态  $u_C(0_-)=U$  t=0时开关  $S\to 1$ ,电容 C 经电阻 R 放电

## 1.电容电压 $u_C$ 的变化规律( $t \ge 0$ )

(1) 列 KVL方程 
$$u_R + u_C = 0$$

$$u_R = iR \qquad i_C = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$$
代入上式得  $RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0$ 

阶线性常系数 齐次微分方程

同对甚大學

(2) 解方程: 
$$RC\frac{du_C}{dt} + u_C = 0$$
 通解:  $u_C = Ae^{pt}$  特征方程  $RCP + 1 = 0$   $\therefore P = -\frac{1}{RC}$  齐次微分方程的通解:  $u_C = Ae^{pt}$ 

由初始值确定积分常数A

根据换路定则, $t = (0_+)$ 时, $u_C(0_+) = U$ ,可得

(3) 电容电压  $u_C$  的变化规律

$$u_C = U e^{-\frac{t}{RC}} = u_C(0_+) e^{-\frac{t}{\tau}} \quad t \ge 0$$

电容电压 $u_C$ 从初始值按指数规律衰减,衰减的快慢由RC决定。

#### 2. 电流及电阻电压的变化规律

电容电压

$$u_C = U e^{-\frac{l}{RC}}$$

放电电流

$$i_C = C \frac{\mathrm{d}u_C}{\mathrm{d}t} = -\frac{U}{R} \mathrm{e}^{-\frac{l}{RC}}$$

电阻电压:

$$u_R = i_C R = -U e^{-\frac{t}{RC}}$$

 $3. u_C$ 、 $i_C$ 、 $u_R$  变化曲线



#### 4. 时间常数

$$\Leftrightarrow: \quad \tau = RC$$

单位: S

$$\mathbf{\Omega} \frac{\mathbf{A} \cdot \mathbf{S}}{\mathbf{V}} = \mathbf{S}$$

时间常数 τ决定电路暂态过程变化的快慢

: 时间常数 $\tau$ 等于电压 $u_c$ 衰减到初始值 $U_0$ 的36.8  $\frac{1}{0}$ 所需的时间。

#### 时间常数T的物理意义

 $\tau$ 越大,曲线变化越慢, $u_c$ 达到稳态所需要的时间越长。

#### (3) 暂态时间

理论上认为  $t\to\infty$ 、 $u_c\to0$ 电路达稳态 工程上认为  $t=(3\sim5)\tau$ 、 $u_c\to0$ 电容放电基本结束。

e 7随时间而衰减

| t                     | τ              | $2\tau$               | $3\tau$               | 4τ                    | 5τ                    | 6τ       |
|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------|
| $e^{-\frac{t}{\tau}}$ | $e^{-1}$       | $e^{-2}$              | $e^{-3}$              | $e^{-4}$              | $e^{-5}$              | $e^{-6}$ |
| $u_{c}$               | 0.368 <i>U</i> | <b>0.135</b> <i>U</i> | <b>0.050</b> <i>U</i> | <b>0.018</b> <i>U</i> | <b>0.007</b> <i>U</i> | 0.002U   |

当 $t=5\tau$ 时,过渡过程基本结束, $u_C$ 达到稳态值。

## 3.3.2 RC电路的零状态响应

零状态响应: 储能元件的初始能量为零, 仅由电源激励所产生的电路的响应。

实质: RC电路的充电过程

分析: 在t = 0时, 合上开关S,

此时, 电路实为输入一

个阶跃电压u,如图。

与恒定电压不同,其

电压
$$u$$
表达式  $u = \begin{cases} 0 & t < 0 \\ U & t \ge 0 \end{cases}$ 





3.3.2 RC电路的零状态响应

1. uc的变化规律

(1) 列 KVL方程

$$u_R + u_C = U$$

$$RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = U$$



方程的通解 =方程的特解 + 对应齐次方程的通解

$$\mathbb{P} \quad u_C(t) = u'_C + u''_C$$

(2)解方程

求特解  $u'_C$ :  $RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = U 非 齐次微分方程$ 

一阶线性常系数

设:  $u'_C = K$  代入方程,  $U = RC \frac{dK}{dt} + K$ 解得: K = U 即:  $u'_C = U$ 

方程的通解:  $u_C = u'_C + u''_C = U + Ae^{RC}$ 

求特解 ----  $u'_{c}$  (方法二)

$$u'_{C}(t) = u_{C}(\infty) = U$$

求对应齐次微分方程的通解  $u_c''$ 

通解即: 
$$RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0$$
的解

其解:  $u_C'' = Ae^{pt} = Ae^{-RC}$ 

微分方程的通解为

$$u_C = u'_C + u''_C = U + Ae^{\tau} \quad (\diamondsuit \tau = RC)$$

确定积分常数A

根据换路定则在  $t=0_+$ 时,  $u_C(0_+)=0$ 

则
$$A = -U$$

## (3) 电容电压 $u_C$ 的变化规律

$$u_C = U - Ue^{-\frac{t}{RC}}$$

稳态分量

电路达到稳定  $u_C$   $u_C$   $u_C$   $v_C$   $v_$ 

 $u_{c}$ 

$$u_{c} = U(1-e^{-\frac{t}{RC}}) = U(1-e^{-\frac{t}{\tau}}) \quad (t \ge 0)$$

2.电流  $i_C$  的变化规律

$$i_C = C \frac{\mathrm{d}u_C}{\mathrm{d}t} = \frac{U}{R} e^{-\frac{t}{\tau}} \quad t \ge 0$$

为什么在 t=0时 电流最大? ✓

- $3. u_C \cdot i_C$ 变化曲线  $u_C = U \left( 1 - e^{-\frac{\iota}{RC}} \right)$
- 4. 时间常数 τ 的物理意义



$$u_C(\tau) = U(1 - e^{-1}) = 63.2\% U$$

τ表示电容电压uc从初始值上升到稳态值的 63.2% 时所需的时间。

## 3.3.3 RC电路的全响应

全响应: 电源激励、电容元 件的初始状态均不为零时电路 的响应。

#### 1. uc 的变化规律

根据叠加定理



全响应 = 零输入响应 + 零状态响应

$$\therefore u_C = U_0 e^{-\frac{t}{RC}} + U \left(1 - e^{-\frac{t}{RC}}\right) \quad (t \ge 0)$$

结论1: 全响应 = 零输入响应 + 零状态响应



结论2: 全响应 = 稳态分量 + 暂态分量





 $\tau$ 越大,曲线变化越慢, $u_c$ 达到稳态时间越长。 当  $t=5\tau$ 时,暂态基本结束, $u_c$ 达到稳态值。



# 第3章 电路的暂态分析

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

# 3.4一阶线性电路暂态分析的三要素法

仅含一个储能元件或可等效 为一个储能元件的线性电路, 无论简繁,它的微分方程都是 一阶常系数线性微分方程

#### 据经典法推导结果

$$u_C(0_+) = u_C(0_-) = U_0$$
 初始值  
$$u_C = u_C(\infty) + [u_C(0_+) - u_C(\infty)] e^{-RC}$$



在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式:

式中, 
$$f(t) = f(\infty) + [f(0_{+}) - f(\infty)] e^{-t/\tau}$$
 式中, 
$$f(t): \text{ 代表一阶电路中任一电压、电流函数}$$
 
$$\begin{cases} f(0_{+}) - \text{ 初始值} \\ f(\infty) - \text{ 稳态值} \\ \tau - \text{ 时间常数} \end{cases}$$

利用求三要素的方法求解暂态过程,称为三要素法。一阶电路都可以应用三要素法求解,在求得  $f(0_+)$ 、 $f(\infty)$ 和 $\tau$ 的基础上,可直接写出电路的响应(电压或电流)。

# 电路响应的变化曲线











章目录 上一页 下一页 返回 退出

## 三要素法求解暂态过程的要点

- (1) 求初始值、稳态值、时间常数;
- (2) 将求得的三要素结果代入暂态过程通用表达式;
- (3) 画出暂态电路电压、电流随时间变化的曲线。



## 响应中"三要素"的确定

#### (1) 稳态值 ƒ(∞) 的计算

求换路后电路中的电压和电流,其中电容 C 视为开路,电感L视为短路,即求解直流电阻性电路中的电压和电流。



### (2) 初始值 $f(0_{+})$ 的计算

- 1) 由t=0\_ 电路求  $u_{C}(0_{-})$ 、 $i_{L}(0_{-})$
- 3) 由t=0,时的电路,求所需其它各量的  $u(0_+)$ 或  $i(0_+)$

# 注意:

在换路瞬间  $t = (0_+)$  的等效电路中

- (1) 若 $u_c(0_-) = U_0 \neq 0$ ,电容元件用恒压源代替, 其值等于 $U_0$ ;若  $u_c(0_-) = 0$ ,电容元件视为短路。
- (2) 若 $i_L(0_-)=I_0 \neq 0$ ,电感元件用恒流源代替, 其值等于 $I_0$ ,若 $i_L(0_-)=0$ ,电感元件视为开路。

若不画  $t=(0_+)$  的等效电路,则在所列  $t=0_+$  时的方程中应有  $u_C=u_C(0_+)$ 、 $i_L=i_L(0_+)$ 。

(3) 时间常数τ的计算

对于一阶RC电路

$$\tau = R_0 C$$

对于一阶RL电路



- 1) 对于简单的一阶电路, $R_0=R$ ;
- 2) 对于较复杂的一阶电路, R<sub>0</sub>为换路后的电路 除去电源和储能元件后,在储能元件两端所求得的 无源二端网络的等效电阻。



#### 应用举例

例1: 电路如图,t=0时合上开关S,合S前电路已处于稳态。试求电容电压 $u_c$ 和电流 $i_2$ 、 $i_C$ 。



解:用三要素法求解

$$u_C = u_C(\infty) + \left[u_C(0_+) - u_C(\infty)\right]e^{-\tau}$$

(1)确定初始值  $u_{C}(0_{+})$ 

由t=0\_电路可求得 $u_C(0_-)=9\times10^{-3}\times6\times10^3=54$  V 由换路定则  $u_C(0_+)=u_C(0_-)=54$  V

(2) 确定稳态值  $u_c(\infty)$ 

由换路后电路求稳态值 $u_c(\infty)$ 

$$u_C(\infty) = 9 \times 10^{-3} \times \frac{6 \times 3}{6+3} \times 10^3$$
  
= 18 V



(3) 由换路后电路求 时间常数 τ

$$\tau = R_0 C$$

$$= \frac{6 \times 3}{6+3} \times 10^3 \times 2 \times 10^{-6}$$

$$= 4 \times 10^{-3} \text{ S}$$





 $u_C$ 的变化曲线如图

$$i_C = C \frac{du_C}{dt} = 2 \times 10^{-6} \times 36 \times (-250)e^{-250t}$$
  
= -0.018e<sup>-250t</sup> A



例2:电路如图,开关S闭合前电路已处于稳态。

t=0时S闭合,试求:  $t \ge 0$ 时电容电压 $U_{C}$ 和电流 $i_{C}$ 、

 $i_1$ 和 $i_2$ 。

解:用三要素法求解

求初始值  $u_{C}(0_{+})$ 

由t=0-时电路

$$u_C(0_-) = \frac{6}{1+2+3} \times 3 = 3 \text{ V}$$

$$u_C(0_+) = u_C(0_-) = 3 \text{ V}$$
6V





t=0\_等效电路





求稳态值 $u_C(\infty)$   $u_C(\infty)=0$  求时间常数 $\tau$  由右图电路可求得

$$\tau = R_0 C = \frac{2 \times 3}{2 + 3} \times 5 \times 10^{-6} = 6 \times 10^{-6} \text{ S}$$

$$\therefore u_C(t) = u_C(\infty) + \left[ u_C(0_+) - u_C(\infty) \right] U e^{-\frac{t}{\tau}}$$

$$= 0 + 3e^{-\frac{10^6}{6}t} = 3e^{-1.7 \times 10^5 t} \text{ V}$$

$$i_{C}(t) = C \frac{du_{C}}{dt}$$

$$= -2.5e^{-1.7 \times 10^{5}t} A \xrightarrow{6V} \underbrace{i_{1}}_{t=0}^{1\Omega} \underbrace{i_{2}}_{i_{1}} \underbrace{i_{2}}_{t_{2}} \underbrace{i_{2}}_{3\Omega}$$

$$(u_{C}, i_{C} \neq \mathbb{K})$$

$$i_{2}(t) = \frac{u_{C}}{3} = e^{-1.7 \times 10^{5}t} A$$

$$i_{1}(t) = i_{2} + i_{C}$$

$$= e^{-1.7 \times 10^{5}t} - 2.5e^{-1.7 \times 10^{5}t}$$

$$= -1.5e^{-1.7 \times 10^{5}t} A$$

# 第3章 电路的暂态分析

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

### 3.5 微分电路和积分电路

微分电路与积分电路是矩形脉冲激励下的*RC*电路。若选取不同的时间常数,可构成输出电压波形与输入电压波形之间的特定(微分或积分)的关系。

## 3.5.1 微分电路

1. 电路





- $(1) \tau = RC << t_{\rm p}$
- (2)输出电压从电阻 R 端取出

条件

#### 2. 分析

由KVL定律

$$u_1 = u_C + u_2$$

当R很小时 $\rightarrow u_2 = u_R$ 很小,

$$u_1 \approx u_C$$

$$\therefore u_2 = i_C R = RC \frac{du_C}{dt}$$

$$\approx RC \frac{du_1}{dt}$$
由公式可知

输出电压近似与输入电 压对时间的微分成正比。

3. 波形





# 不同T时的u2波形



$$\tau = 0.05 t_{\rm p}$$

#### 应用:

用于波形变换 $\tau$ = 0.2 $t_p$  作为触发信号。

$$\tau = 10t_{\rm p}$$





章目录 上一页 下一页 返回 退出

## 3.5.2 积分电路

#### 1.电路





#### 条件

(1) 
$$\tau = RC \gg t_{\rm p}$$
;

(2) 从电容器两端输出。

#### 2.分析

曲图: 
$$u_1 = u_R + u_2 \approx u_R = iR$$
  $(\tau >> t_p)$  输出电压与输入电

$$i \approx \frac{u_1}{R}$$

$$i \approx \frac{u_1}{R}$$

$$\therefore u_2 = u_C = \frac{1}{C} \int i dt \approx \frac{1}{RC} \int u_1 dt$$

压近似成积分关系。

### 3. 波形



应用:

用作示波器的扫描锯齿波电压

# 第3章 电路的暂态分析

- 3.1 电阻元件、电感元件、电容元件
- 3.2 储能元件和换路定则
- 3.3 RC电路的响应
- 3.4 一阶线性电路暂态分析的三要素法
- 3.5 微分电路和积分电路
- 3.6 RL电路的响应

## 3.6 RL 电路的响应

3.6.1 RL 电路的零输入响应

1. RL 短接



(1)i,的变化规律

$$i_L = i_L(\infty) + [i_L(\mathbf{0}_+) - i_L(\infty)] e^{-t/\tau}$$
 (三要素公式)

- 1) 确定初始值  $i_L(0_+)$   $i_L(0_+) = i_L(0_-) = \frac{U}{R}$
- 2) 确定稳态值 $i_L(\infty)$   $i_L(\infty) = 0$  3) 确定电路的时间常数  $\tau$   $\tau =$

$$i_{L} = \frac{U}{R} e^{-\frac{R}{L}t}$$

$$u_{L} = L \frac{di}{dt} = -U e^{-\frac{R}{L}t}$$

$$u_{R} = i_{L}R = U e^{-\frac{R}{L}t}$$



# (2) 变化曲线





### 2. RL直接从直流电源断开

- (1) 可能产生的现象
- 1)刀闸处产生电弧

$$:: i_L(\mathbf{0}_{\scriptscriptstyle{-}}) = \frac{U}{R}$$

$$i_L(\mathbf{0}_+) = \mathbf{0}$$
  $\therefore$   $u_L = -e_L = L \frac{\mathrm{d}i}{\mathrm{d}t} \to \infty$ 

2) 电压表瞬间过电压



- (2) 解决措施
- 1)接放电电阻 R'



2) 接续流二极管D





### 3.6.2 RL电路的零状态响应



 $(i_{I}(0_{-})=0 \ U=0)$ 

## $1.i_L$ 变化规律

三要素法

$$i_L = i_L(\infty) + [i_L(0_+) - i_L(\infty)] e^{-\tau}$$

$$i_L(\infty) = \frac{U}{R} \qquad i_L(0_+) = i_L(0_-) = 0 \qquad \tau = \frac{L}{R}$$

$$i_L = \frac{U}{R} + (0 - \frac{U}{R})e^{-\frac{R}{L}t} = \frac{U}{R}(1 - e^{-\frac{R}{L}t})$$

$$i_{L} = \frac{U}{R} (1 - e^{-\frac{R}{L}t})$$

$$u_{L} = L \frac{di}{dt} = U e^{-\frac{t}{\tau}} = U e^{-\frac{R}{L}t}$$

$$u_{R} = i_{L}R = U(1 - e^{-\frac{R}{L}t})$$

## $2. i_L \setminus u_L \setminus u_R$ 变化曲线







3.6.3 RL电路的全响应  $(U \neq 0 \ i_L(0_-) \neq 0)$ 



1.i<sub>c</sub>变化规律 (三要素法)

$$i_L = i_L(\infty) + [i_L(0_+) - i_L(\infty)] e^{-\frac{t}{\tau}}$$

$$i_L(0_+) = i_L(0_-) = \frac{U}{R_1 + R_2} = \frac{12}{4 + 6} = 1.2 \text{ A}$$

$$i_{L}(\infty) = \frac{U}{R_{1} + \frac{R_{2} \times R_{3}}{R_{2} + R_{3}}}$$

$$= 2 A$$

$$\tau = \frac{L}{R_{0}}$$

$$= \frac{L}{R_{1} + \frac{R_{2} \times R_{3}}{R_{2} + R_{3}}}$$

$$= \frac{1}{S}$$





# 2.u(t)变化规律

$$u = iR_3 = \frac{R_2}{R_2 + R_3} \times i_L \times R_3$$

$$u = \frac{6 \times 3}{6 + 3} (2 - 0.8e^{-6t}) = 4 - 1.6e^{-6t} \text{ V } (t \ge 0)$$

用三要素法求u

$$u = u(\infty) + [u(0_{+}) - u(\infty)] e^{-\frac{t}{\tau}}$$

$$u(0_{+}) = \frac{6}{6+3} \times 1.2 \times R_{3}$$

$$= \frac{2}{3} \times 1.2 \times 3 = 2.4 \text{ V}$$

$$t = 0_{+}$$
等效电路



$$u(\infty) = \frac{R_2}{R_2 + R_3} i_L(\infty) \times R_3$$

$$= \frac{6}{4} \times 2 \times 3 = 4 \text{ V}$$

$$\tau = \frac{L}{R_0} = \frac{1}{6} S$$

$$u = 4 + (2.4 - 4)e^{-6t}$$

$$= 4 - 1.6e^{-6t} \text{ V } (t \ge 0)$$

# $i_L$ 变化曲线

$$i_L = 2 - 0.8e^{-6t}$$
 A



## u变化曲线

$$u = 4 - 1.6e^{-6t} V$$



例: 己知: S 在 t=0 时闭合,换路前电路处于稳态。

求: 电感电流  $i_L$ 和电压 $u_L$ 。



解:用三要素法求解

(1)  $\Re u_L(0_+)$ ,  $i_L(0_+)$ 

由t=0-等效电路可求得

$$i_L(0_-) = \frac{2}{1+2} \times 3 = 2 \text{ A}$$
 $i_L(0_+) = i_L(0_-) = 2 \text{ A}$ 







$$i_L(0_+) = i_L(0_-) = 2 A$$

由t=0+等效电路可求得

$$u_L(0_+) = -i_L(0_+) \times (\frac{2 \times 2}{2+2} + 1)$$
  
= -4 V

(2) 求稳态值  $i_L(\infty)$ 和 $u_L(\infty)$ 由 $t = \infty$ 等效电路可求得  $i_L(\infty) = 0$  V  $u_L(\infty) = 0$  V









### (3) 求时间常数 $\tau$

$$R_0 = R_1 // R_2 + R_3$$

$$\tau = \frac{L}{R_0} = \frac{1}{2} = 0.5 \text{ S}$$

$$i_L = 0 + (2 - 0) e^{-2t}$$

$$= 2 e^{-2t} A$$

$$u_L = 0 + (-4 - 0) e^{-2t}$$

$$= -4 e^{-2t} V$$





章目录 上一页 下一页 返回 退出