Computational Social Science

Word embeddings I

Dr. Thomas Davidson

Rutgers University

March 7, 2022

Plan

- 1. Course updates
- 2. The vector-space model review
- 3. Latent semantic analysis
- 4. Language models

Course updates

- Project proposal assignment on Canvas, due Friday at 5pm
 - ► A short description of the planned project
 - Data collection
 - Data cleaning
 - Data analysis
 - Data visualization
 - Team

Vector representations

- Last week we looked at how we can represent texts as numeric vectors
 - Documents as vectors of words
 - Words as vectors of documents
- ► A document-term matrix (*DTM*) is a matrix where documents are represented as rows and tokens as columns

Weighting schemes

- We can use different schemes to weight these vectors
 - \triangleright Binary (Does word w_i occur in document d_i ?)
 - ▶ Counts (How many times does word w_i occur in document d_j ?)
 - ▶ TF-IDF (How many times does word w_i occur in document d_j , accounting for how often w_i occurs across all documents $d \in D$?)
 - Recall Zipf's Law: a handful of words account for most words used; such words do little to help us to distinguish between documents

Cosine similarity

$$cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{\sum_{i} \vec{u_i} \vec{v_i}}{\sqrt{\sum_{i} \vec{u_i}^2} \sqrt{\sum_{i} \vec{v_i}^2}}$$

Limitations

- These methods produce high-dimensinal, sparse vector representations
 - Given a vocabulary of unique tokens N the length of each vector |V| = N.
 - Many values will be zero since most documents only contain a small subset of the vocabulary.

Limitations

Source: https://smltar.com/embeddings.html

Latent Semantic Analysis

- One approach to reduce dimensionality and better capture semantics is called Latent Semantic Analysis (LSA)
 - ▶ We can use a process called *singular value decomposition* to find a *low-rank approximation* of a DTM.
- ▶ This provides *low-dimensional*, *dense* vector representations
 - ▶ Low-dimensional, since |V| << N</p>
 - Dense, since vectors contain real values, with few zeros
- ► In short, we can "squash" a big matrix into a much smaller matrix while retaining important information.

$$DTM = U\Sigma V^T$$

Singular Value Decomposition

See the Wikipedia page for video of the latent dimensions in a sparse TDM.

Example: Shakespeare's writings

X is a TF-IDF weighted Document-Term Matrix of Shakespeare's writings from Project Gutenberg. There are 11,666 unique tokens (each of which occurs 10 or more times in the corpus) and 66 documents.

```
library(tidyverse)
library(ggplot2)

X <- as.matrix(read.table("data/shakespeare.txt"))

X <- X[, which(colSums(X) != 0)] # Drop zero columns

X <- X[, -which(colnames(X) %in% c("footnote", "sidenote"))]

dim(X)

## [1] 66 11664</pre>
```

Creating a lookup dictionary

We can construct a list to allow us to easily find the index of a particular token.

```
lookup.index.from.token <- list()

for (i in 1:length(colnames(X))) {
   lookup.index.from.token[colnames(X)[i]] <- i
}</pre>
```

Using the lookup dictionary

This easily allows us to find the vector representation of a particular word. Note how most values are zero since the character Hamlet is only mentioned in a handful of documents.

```
lookup.index.from.token["hamlet"]

## $hamlet

## [1] 8231

round(as.numeric(X[,unlist(lookup.index.from.token["hamlet"])]),3)

## [1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

## [13] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

## [25] 0.046 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

## [37] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

## [49] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

## [61] 0.014 0.000 0.000 0.002 0.000 0.000
```

Calculating similarties

The following code normalizes each *column* (rather than row normalization seen last lecture) and constructs a word-word cosine-similarity matrix.

```
normalize <- function(X) {
   for (i in 1:dim(X)[2]) {
      X[,i] <- (X[,i]/sqrt(sum(X[,i]^2)))
   }
   return(X)
}

X.n <- normalize(X)

sims <- t(X.n) %*% X.n
dim(sims)

## [1] 11664 11664</pre>
```

Most similar function

For a given token, this function allows us to find the n most similar tokens in the similarity matrix, where n defaults to 10.

Finding similar words

```
get.top.n("summer",sims)
                glass shade
##
     summer
                                 minutes
                                           winter
                                                       ages
                                                               poet
## 1.0000000 0.9449493 0.9447479 0.9424049 0.9365960 0.9217019 0.919979
##
                 lavs
      cures
## 0.9108892 0.9105933
get.top.n("fight", sims)
##
      fight retreat sword
                                  alarum
                                            field marching strengt
## 1.0000000 0.8477011 0.8346863 0.8130756 0.8023591 0.8010200 0.783610
      blood soldiers
##
## 0.7585464 0.7579380
get.top.n("romeo", sims)
             mercutio tybalt tybalts
                                          capulet benvolio montague
##
      romeo
## 1.0000000 0.9999330 0.9999318 0.9998235 0.9995140 0.9992019 0.998216
##
    sampson juliet
## 0.9923716 0.9906526
```

Singular value decomposition

The svd function allows us to decompose the DTM. We can then easily reconstruct it using the formula shown above.

```
# Computing the singular value decomposition
lsa <- svd(X)

# We can easily recover the original matrix from this representation
X.2 <- lsa$u %*% diag(lsa$d) %*% t(lsa$v) # X = U \Sigma V^T

# Verifying that values are the same, example of first column
sum(round(X-X.2,5))
## [1] 0</pre>
```

Singular value decomposition

This plot shows the magnitude of the singular values (the diagonal entries of Σ). The magnitude of the singular value corresponds to the amount of variance explained in the original matrix.

Variance explained by singular values

Truncated singular value decomposition

In the example above retained the original matrix dimensions. The point of latent semantic analysis is to compute a truncated SVD such that we have a new matrix in a sub-space of X. In this case we only want to retain the first k dimensions of the matrix.

```
k <- 20 # Dimensions in truncated matrix

# We can take the SVD of X but only retain the first k singular values
lsa.2 <- svd(X, nu=k, nv=k)

# In this case we reconstruct X just using the first k singular values
X.trunc <- lsa.2$u %*% diag(lsa.2$d[1:k]) %*% t(lsa.2$v)

# But the values will be slightly different since it is an approximatio
# Some information is lost due to the compression
sum(round(X-X.trunc,2))
## [1] 7.75</pre>
```

Recalculating similarties using the LSA matrix

```
words.lsa <- t(lsa.2$v)
colnames(words.lsa) <- colnames(X)

round(as.numeric(words.lsa[,unlist(lookup.index.from.token["hamlet"])])
## [1] 0.00 0.01 0.00 -0.03 0.11 0.03 -0.03 0.01 -0.04 0.01 -0.
## [13] -0.01 0.00 0.00 -0.04 0.00 0.00 -0.01 -0.02</pre>
```

Recalculating similarties using the LSA matrix

```
words.lsa.n <- normalize(words.lsa)
sims.lsa <- t(words.lsa.n) %*% words.lsa.n</pre>
```

```
get.top.n("summer",sims)
                glass shade
##
                                  minutes
                                             winter
                                                                  poet
     summer
                                                         ages
## 1.0000000 0.9449493 0.9447479 0.9424049 0.9365960 0.9217019 0.919979
##
                 lavs
      cures
## 0.9108892 0.9105933
get.top.n("summer",sims.lsa)
##
                dance
                           eyes deface
                                          breath
                                                        flesh
                                                                  flam
     summer
## 1.0000000 0.9159871 0.9061238 0.8969820 0.8934762 0.8930085 0.891249
       half
##
                birds
## 0.8886182 0.8863785
bind_cols(names(get.top.n("summer",sims)), names(get.top.n("summer",sim
## # A tibble: 10 x 2
##
     ...1 ...2
##
     <chr> <chr>
##
    1 summer
             summer
```

```
get.top.n("fight",sims)
                                                   marching strengt
##
      fight retreat sword
                                  alarum
                                             field
## 1.0000000 0.8477011 0.8346863 0.8130756 0.8023591 0.8010200 0.783610
##
      blood soldiers
## 0.7585464 0.7579380
get.top.n("fight",sims.lsa)
##
      fight sword blood seat
                                          children
                                                     chance
                                                               thron
## 1.0000000 0.9375718 0.9265156 0.9222373 0.9192967 0.9182052 0.912325
      field
##
                 whos
## 0.9015076 0.8990767
bind_cols(names(get.top.n("fight",sims)), names(get.top.n("fight",sims.
## # A tibble: 10 x 2
##
     ...1 ...2
##
     <chr> <chr>
              fight
##
   1 fight
```

```
get.top.n("romeo", sims)
##
      romeo mercutio tybalt tybalts capulet benvolio montague
## 1.0000000 0.9999330 0.9999318 0.9998235 0.9995140 0.9992019 0.998216
##
    sampson juliet
## 0.9923716 0.9906526
get.top.n("romeo", sims.lsa)
##
      romeo montagues tybalts tybalt mercutio mercutios
                                                             capule
## 1.0000000 0.9999960 0.9999946 0.9999940 0.9999925 0.9999911 0.999988
##
   capulets
               romeos
## 0.9999838 0.9999668
```

```
get.top.n("hamlet", sims)
##
     hamlet horatio marcellus
                                  ophelia polonius barnardo
                                                               laerte
## 1.0000000 0.9829677 0.9824643 0.9607921 0.9600178 0.9591448 0.958729
## voltemand lucianus
## 0.9465517 0.9308989
get.top.n("hamlet", sims.lsa)
##
      hamlet fortinbras
                           laertes
                                      hamlets
                                                 horatio
                                                           ophelia
##
    1.0000000 0.9997027
                         0.9992680
                                    0.9992437
                                               0.9988308
                                                         0.9987964
##
    gertrude ophelias
                            danish
   0.9986344 0.9985602 0.9985404
##
```

Execise

Re-run the code above with a different value of k (try lower or higher). Compare some terms in the original similarity matrix and the new matrix. How does changing k affect the results?

```
get.top.n("", sims)

## [1] NA NA NA NA NA NA NA NA NA NA
get.top.n("", sims.lsa)

## [1] NA NA NA NA NA NA NA NA NA NA
```

Inspecting the latent dimensions

We can analyze the meaning of the latent dimensions by looking at the terms with the highest weights in each row. In this case I use the raw LSA matrix without normalizing it. What do you notice about the dimensions?

```
for (i in 1:dim(words.lsa)[1]) {
  top.words <- sort(words.lsa[i,], decreasing=T)[1:5]
  print(paste(c("Dimension: ",i), collapse=" "))
  print(top.words)
## [1] "Dimension: 1"
##
                        bened
                                       bero
                                                    botes
             amv
                                                                   cas
## -1.183045e-06 -1.183045e-06 -1.183045e-06 -1.183045e-06 -1.183045e-06
## [1] "Dimension:
##
        iago othello cassio desdemona
                                             emilia
  0.6565950 0.4270426 0.4018033 0.3006999 0.1657854
   [1] "Dimension: 3"
    benedick leonato
                                            claudio
                       beatrice
                                    pedro
```

Limitations of Latent Semantic Analysis

- Bag-of-words assumptions and document-level word associations
 - We still treat words as belonging to documents and lack finer context about their relationships
 - Although we could theoretically treat smaller units like sentences as documents
- ▶ Matrix computations become intractable with large corpora
- ▶ A neat linear algebra trick, but no underlying language model

Intuition

- A language model is a probabilistic model of language use
- Given some string of tokens, what is the most likely token?
 - Examples
 - Auto-complete
 - Google search completion

Bigram models

- ▶ $P(w_i|w_{i-1})$ = What is the probability of word w_i given the last word, w_{i-1} ?
 - ► P(Jersey|New)
 - ► P(Brunswick|New)
 - ► P(York|New)
 - ► P(Sociology | New)

Bigram models

- We use a corpus of text to calculate these probabilities from word co-occurrence.
 - ▶ $P(Jersey|New) = \frac{C(New\ Jersey)}{C(New)}$, e.g. proportion of times "New" is followed by "Jersey", where C() is the count operator.
- More frequently occurring pairs will have a higher probability.
 - ▶ We might expect that $P(York|New) \approx P(Jersey|New) > P(Brunswick|New) >> P(Sociology|New)$

Incorporating more information

- We can also model the probability of a word, given a sequence of words
- ▶ P(x|S) = What is the probability of some word x given a partial sentence S?
- ightharpoonup A = P(Jersey | Rutgers University is in New)
- $ightharpoonup B = P(Brunswick|Rutgers\ University\ is\ in\ New)$
- $ightharpoonup C = P(York|Rutgers\ University\ is\ in\ New)$
- ► In this case we have more information, so "York" is less likely to be the next word. Hence,
 - $ightharpoonup A \approx B > C.$

Estimation

We can compute the probability of an entire sequence of words by using considering the *joint conditional probabilities* of each pair of words in the sequence. For a sequence of n words, we want to know the joint probability of $P(w_1, w_2, w_3, ..., w_n)$. We can simplify this using the chain rule of probability:

$$P(w_{1:n}) = P(w_1)P(w_2|w_1)P(w_3|w_{1:2})...P(w_n|w_{1:n-1})$$

$$= \prod_{k=1}^{n} P(w_k|w_{1:k-1})$$

Estimation

The bigram model simplifies this by assuming it is a first-order Markov process, such that the probability w_k only depends on the previous word, w_{k-1} .

$$P(w_{1:n}) \approx \prod_{k=1}^{n} P(w_k|w_{k-1})$$

These probabilities can be estimated by using Maximum Likelihood Estimation on a corpus.

See https://web.stanford.edu/~iurafsky/slp3/3.pdf for an excellent review of language models

Empirical applications

- ▶ Danescu-Niculescu-Mizil et al. 2013 construct a bigram language model for each month on BeerAdvocate and RateBeer to capture the language of the community
 - For any given comment or user, they can then use a measure called *cross-entropy* to calculate how "surprising" the text is, given the assumptions about the language model
- ► The theory is that new users will take time to assimilate into the linguistic norms of the community

https://en.wikipedia.org/wiki/Cross_entropy

Empirical applications

Danescu-Niculescu-Mizil, Cristian, Robert West, Dan Jurafsky, Jure Leskovec, and Christopher Potts. 2013. "No Country for Old Members: User Lifecycle and Linguistic Change in Online Communities." In Proceedings of the 22nd International Conference on World Wide Web, 307–18. ACM. https://dl.acm.org/citation.cfm?id=2488416.

Limitations of N-gram language models

- ► Language use is much more complex than N-gram language models
- Three limitations
 - ▶ Insufficient data to sufficiently model language generation
 - Complex models become intractable to compute
 - Limited information on word order
- Next lecture we will see how advances in neural network models and the availability of large text corpora have opened up new avenues for language modeling and semantic analysis

Summary

- Limitations of sparse representations of text
 - ► LSA allows us to project sparse matrix into a dense, low-dimensional representation
- Probabilistic language models allow us to directly model language use
- ► Next lecture: How neural language models allow us to create more meaningful semantic representations of texts