DAY 2

AREA OF A SECTOR OF A CIRCLE

Sector is the part which is covered with radii and their corresponding arc. Let AB be an arc of a circle whose centre is 0 then the region bounded by radii OA, OB and arc AB is called **sector** of the circle .The angle subtended by the two radii i.e \angle AOB is the angle of the sector.

- If \angle AOB is less than 180°, the sector OACB is called *minor sector* and sector OADB is called *major sector*. Angle of major sector is $(360^{\circ} \angle AOB)$
- Let us find the area of sector OAB of the circle having radius r and $\angle AOB = \theta^0$

Area of circular region = πr^2

i. e. Area of sector of degree measures $360^{0} = \pi r^{2}$

 \therefore Area of sector of degree measures $\theta = \pi r^2 \times \frac{\theta}{360^0}$ Hence

Area of sector(OAPB) =
$$\frac{\pi r^2 \theta}{360^0}$$
 = (Area of Circle) × $\frac{\theta}{360^0}$

• Area of **Major** sector (OAQB) of degree measures $(360^{\circ} - \theta) = \frac{\pi r^2 (360^{\circ} - \theta)}{360^{\circ}}$

or (Area of major sector OAQB) = (Area of circle) – (Area of minor sector OAPB)

LENGTH OF AN ARC:

Let APB is the corresponding arc of sector OAPB of circle with centre 0 subtends \angle AOB at the centre.

Circumference of circular region = $2\pi r$

i. e. Length of arc of degree measures $360^0 = 2\pi r$

$$\therefore$$
 Length of arc of degree $\theta = 2\pi r \times \frac{\theta}{360^0} = \frac{\pi r \theta}{180^0}$

Hence Length of arc(l) = Circumference of $circle \times \frac{\theta}{360^0} = \frac{\pi r \theta}{180^0}$

• If length of arc l is given then area of sector $= \frac{1}{2} \times l \times r$

SEGMENT OF A CIRCLE:-

We know a chord divides the circular region into two regions. The segment which is less than semi circular region is called *minor segment* otherwise *major segment*.

In the given figure, APBA is minor segment and AQBA is major segment of the circle.

• Area of Minor Segment APBA = (Area of sector OAPB) – (Area of $\triangle OAB$) $= \frac{\pi r^2 \theta}{360^0} - \frac{1}{2}r^2 \sin \theta$

[where
$$\frac{1}{2}r^2sin\theta$$
 is the area of ΔOAB]

• Area of Major Segment AQBA = $(Area of Circle) - {Area of minor \\ segment APBA}$

$$=\pi r^2 - \left(\frac{\pi r^2 \theta}{360^0} - \frac{1}{2}r^2 \sin\theta\right)$$

0r

Area of Major Segment AQBA = $(Area \ of \triangle OAB) + (Area \ of \ major \ AQBA)$

$$=\frac{1}{2}r^2sin\theta + \frac{\pi r^2(360^0 - \theta)}{360^0}$$

Now lets discuss some examples.

1. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60° . [Ex 12.2, Q1]

Sol:- Given
$$r = 6cm$$
, $\theta = 60^0$

Area of sector =
$$\frac{\pi r^2 \theta}{360^0} = \frac{22}{7} \times 7 \times 7 \times \frac{60^0}{360^0} = \frac{132}{7} \text{ cm}^2$$

2. Find the area of the sector of a circle with radius 4 cm if angle of the sector is 30^{0} . Also find the area of the corresponding major sector. $[\pi = 3.14]$

[Example 2]

Sol:- **Given** r = 4cm, $\theta = 30^{0}$

Area of Minor sector =
$$\frac{\pi r^2 \theta}{360^0}$$
 = 3.14 × 4 × 4 × $\frac{30^0}{360^0}$ = $\frac{1256}{300}$ = 4.187 cm²

Area of Major sector =
$$\frac{\pi r^2 (360^0 - \theta)}{360^0} = 3.14 \times 4 \times 4 \times \frac{(360^0 - 30^0)}{360^0}$$

$$= 3.14 \times 4 \times 4 \times \frac{330^{0}}{360^{0}} = 46.05 \text{ cm}^{2}$$

3. The length of a minute hand of a clock is 14 *cm.* Find the area swept by the minute hand in 5 minutes. [Ex 12.2, Q3]

Sol:- Length of a minute hand = radius of a circle (r) = 14 cm

Minute hand complete one circle in 60 minutes.

Area covered by minute hand in 60 minutes = πr^2

Area covered by minute hand in 1 minute = $\frac{\pi r^2}{60}$

Area covered by minute hand in 5 minutes = $\frac{\pi r^2}{60} \times 5 = \frac{1}{12} \pi r^2$ = $\frac{1}{12} \times \frac{22}{7} \times 14 \times 14 = \frac{154}{3} cm^2$

- 4. A chord of a circle of radius 20cm subtends a right angle at the centre. Find
 - i) Length of the arc ii) Area of the minor segment iii) Area of the major segment.

come-become-educated
$$[\pi=3.14]$$

Sol:- Here $r = 20 \text{ cm}, \theta = 90^{\circ}$

- i) Length of the arc = $\frac{\pi r \theta}{180^0}$ = 3.14 × 20 × $\frac{90^0}{180^0}$ = 31.4 cm
- ii) Area of Minor segment = $\frac{\pi r^2 \theta}{360^0} \frac{1}{2}r^2 sin\theta$ = $3.14 \times 20 \times 20 \times \frac{90^0}{20} - \frac{1}{2} \times 20 \times \frac{90^0}{20} = \frac{$

=
$$3.14 \times 20 \times 20 \times \frac{90^0}{360^0} - \frac{1}{2} \times 20 \times 20 \times \sin 90^0$$

= $314 - 200 = 114 \text{ cm}^2$

iii) Area of Major segment = (Area of circle) – (Area of minor segment) $= \pi r^2 - 114 = 3.14 \times 20 \times 20 - 114$ $= 1256 - 114 = \mathbf{1142} \ \mathbf{cm^2}$

Alter Method:

Area of Major Segment = (Area of
$$\Delta$$
OAB) + $\binom{\text{Area of major}}{\text{sector}}$
= $\frac{1}{2}r^2sin\theta + \frac{\pi r^2(360^0 - \theta)}{360^0}$
= $\frac{1}{2} \times 20 \times 20 \times sin90^0 + 3.14 \times 20 \times 20 \times \frac{(360^0 - 90^0)}{360^0}$
= $200 + 942 = 1142 \text{ cm}^2$

EXERCISE

- 1. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find i) Area of the sector ii) Length of the arc $[\pi = 3.14]$
- 2. The length of a minute-hand of a clock is 21 *cm* long. Find the area swept by the minute hand in 5 minutes.
- 3. Ex 12.2, Q 4,5,6,7

come-become-educated

