# **SKRIPSI**

# KOREKSI KESALAHAN EJAAN TERHADAP *QUERY* PENCARIAN ARTIKEL PARIWISATA BERBAHASA INDONESIA MENGGUNAKAN ALGORITMA *LEVENSHTEIN DISTANCE* DAN *PART-OF-SPEECH* (POS) *TAGGING*



#### **Disusun Oleh:**

Aisyatur Radiah NIM 200411100116

Dosen Pembimbing 1 : Ika Oktavia Suzanti S.Kom., M.Cs

Dosen Pembimbing 2 : Husni S.Kom., M.T.

PROGRAM STUDI TEKNIK INFORMATIKA

JURUSAN TEKNIK INFORMATIKA

FAKULTAS TEKNIK

UNIVERSITAS TRUBARIS KE JOYO MADURA

BANGKALAN

2024

#### **ABSTRAK**

Spelling correction merupakan sebuah fitur otomatis yang digunakan untuk melakukan proses pengoreksian kesalahan ejaan kata atau query. Ketika kata kunci (query) yang diinputkan terjadi kesalahan ejaan pada kata-kata didalam query mesin pencarian (search engine), salah satunya search engine bahasa Indonesia (SEBI). Hal ini mengakibatkan pemprosesan query tersebut mengembalikan hasil yang tidak sesuai dengan kebutuhan informasi pengguna atau disebut dengan error spelling correction. Adanya kesalahan ejaan kata pada query ini dapat diatasi menggunakan algoritma yaitu Levenshtein Distance. Algoritma Levenshtein Distance merupakan sebuah matriks untuk menghitung jarak dari jumlah perbedaan dua string yaitu string sumber dan string target, dengan menghitung perubahan koreksi ejaan query yang diinputkan dengan melihat kamus bahasa Indonesia yang berkaitan dengan artikel pariwisata. Algoritma Levenshtein Distance mempunyai kekurangan yaitu tidak mampu mengoreksi kata yang bermakna banyak (ambiguitas kata), adanya Part-of-Speech (POS) Terdapat mengetahui adanya ambiguitas kata dengan pelabelan kelas kata dalam error spelling corection. Penerapan metode Levenshtein Distance dan Part-of-Speech (POS) Tagging diperoleh nilai presisi 97.59% dan 97.59% tanpa Part-of-Speech (POS) Tagging.

**Kata Kunci :** spelling correction, levenshtein distance, part-of-speech (POS) tagging, artikel pariwisata.

# **DAFTAR ISI**

| ABSTRAK                                 | 11   |
|-----------------------------------------|------|
| DAFTAR ISI                              | iii  |
| DAFTAR GAMBAR                           | vii  |
| DAFTAR TABEL                            | Viii |
| DAFTAR PROGRAM                          | ix   |
| BAB I                                   | 10   |
| PENDAHULUAN                             | 10   |
| 1.1 Latar Belakang                      | 10   |
| 1.2 Rumusan Masalah                     | 14   |
| 1.2.1 Permasalahan                      | 14   |
| 1.2.2 Metode Usulan                     | 14   |
| 1.2.3 Pertanyaan Penelitian             | 14   |
| 1.3 Tujuan dan Manfaat Penelitian       | 14   |
| 1.3.1 Tujuan Penelitian                 | 14   |
| 1.3.2 Manfaat Penelitian                | 15   |
| 1.4 Batasan Masalah                     | 15   |
| 1.5 Sistematika Penulisan               | 15   |
| BAB II                                  | 17   |
| KAJIAN PUSTAKA                          | 17   |
| 2.1 Spelling Correction (Koreksi Ejaan) | 17   |
| 2.1.1 Ejaan                             | 18   |
| 2.1.2 Typographical Error               | 19   |
| 2.2 Search Engine                       | 19   |
| 2.2.1 Information Retrieval (IR)        | 20   |
| 2.2.2 Query                             | 21   |
| 2.3 Artikel Berita Pariwisata           | 22   |

| 2.3.1 Data artikel berita pariwisata                              | 23 |
|-------------------------------------------------------------------|----|
| 2.3.2 Inverted Index                                              | 23 |
| 2.4 Text Preprocessing                                            | 24 |
| 2.5 Part-of-Speech (POS) Tagging Bahasa Indonesia                 | 24 |
| 2.6 Metode Part-of-Speech (POS) Tagging dengan Metode Rule Based  | 26 |
| 2.7 Pembobotan Term Frequency Inverse Document Frequency (TF IDF) | 26 |
| 2.8 Cosine Similarity                                             | 27 |
| 2.9 Algoritma Levenshtein Distance                                | 28 |
| 2.10 Evaluasi Sistem                                              | 30 |
| 2.10.1 Perhitungan <i>Precision</i>                               | 30 |
| 2.10.2 Perhitungan Recall                                         | 30 |
| 2.11 Penelitian Terkait                                           | 31 |
| BAB III                                                           | 35 |
| METODE USULAN                                                     | 35 |
| 3.1 Tahapan Penelitian                                            | 35 |
| 3.1.1 Studi Literatur                                             | 35 |
| 3.1.2 Analisis dan Perancangan Arsitektur Sistem                  | 35 |
| 3.1.3 Implementasi Sistem                                         | 37 |
| 3.1.4 Uji Coba Sistem                                             | 37 |
| 3.1.5 Analisa dan Evaluasi                                        | 38 |
| 3.2 Dataset                                                       | 38 |
| 3.2.1 Data Corpus                                                 | 38 |
| 3.2.2 Data Kamus                                                  | 38 |
| 3.2.3 Inverted Index                                              | 39 |
| 3.2.4 Data Uji                                                    | 36 |
| 3.3 Text Preprocessing                                            | 37 |
| 3.4 Arsitektur Sistem                                             | 30 |

| 3.5 <i>Flo</i> | owchart Algoritma                                             | 42 |
|----------------|---------------------------------------------------------------|----|
| 3.5.1          | Flowchart Levenshtein Distance                                | 42 |
| 3.5.2          | Perhitungan Metode Levenshtein Distance                       | 44 |
| 3.5.3          | Penerapan Part-of-Speech (POS) Tagging                        | 46 |
| 3.5.4          | TF-IDF dan Cosine Similarity                                  | 51 |
| 3.6 Ske        | enario Pengujian                                              | 53 |
| 3.7 Im         | nplementasi Dataset                                           | 54 |
| 3.7.1          | Dataset                                                       | 54 |
| 3.7.2          | Pelabelan Dataset                                             | 54 |
| 3.7.3          | Visualisasi Data dengan Word Cloud                            | 55 |
| 3.7.4          | Hasil Visualisasi Data                                        | 56 |
| 3.7.5          | Tahapan Preprocessing Data                                    | 56 |
| 3.8 Per        | kiraan Jadwal                                                 | 58 |
| BAB IV         |                                                               | 59 |
| HASIL I        | DAN PEMBAHASAN                                                | 59 |
| 4.1 Lin        | ıgkungan Uji Coba                                             | 59 |
| 4.2 Tah        | apan Visualisasi Kata                                         | 61 |
| 4.2.1 V        | isualisasi Data dengan WordCloud                              | 61 |
| 4.2.2 T        | Cahapan Preprocessing Data                                    | 63 |
| 4.3 Imp        | olementasi Function Program                                   | 65 |
| 4.3.1 <i>L</i> | evenshtein Distance dan Part-Of-Speech (POS) Tagging          | 65 |
| 4.3.2 F        | ungsi Koreksi Ejaan                                           | 66 |
| 4.3.3 F        | Yungsi Modul dalam Part-Of-Speech (POS) Tagging               | 68 |
| 4.3.4 F        | ungsi Menghitung Nilai Presisi                                | 68 |
| 4.3.5 F        | ungsi TF-IDF                                                  | 70 |
| 4.3.6 F        | Sungsi Inverted Index                                         | 71 |
| 4.3.7 F        | Sungsi Pencarian Artikel Berita Berdasarkan Cosine Similarity | 72 |
|                |                                                               |    |

| 4.4 Implementasi Program Koreksi Ejaan                                        | 73             |
|-------------------------------------------------------------------------------|----------------|
| 4.4.1 Implementasi Koreksi Ejaan terhadap Query Menggunakan Levenshtein Dist  | ance 73        |
| 4.4.2 Implementasi Koreksi Ejaan terhadap Query Menggunakan Levenshtein Dista | <i>nce</i> dan |
| Part-Of-Speech (POS) Tagging                                                  | 74             |
| 4.4.3 Implementasi Koreksi Ejaan terhadap Query Pencarian Artikel Pa          | riwisata       |
| Menggunakan Levenhstein Distance dan Part-Of-Speech (POS) Tagging             | 75             |
| 4.5 Analisa Hasil dan Uji Coba                                                | 79             |
| 4.5.1 Pengujian dan Analisis                                                  | 80             |
| 4.5.2 Hasil Skenario Pengujian Koreksi Ejaan dari Query Berita Pariwisata Be  | rbahasa        |
| Indonesia Menggunakan Levenshtein Distance dan Part-of-Speech (POS) Tagging   | 86             |
| 4.5.3 Analisa Hasil Skenario Uji Coba Sistem                                  | 103            |
| 4.6 Implementasi Sistem                                                       | 104            |
| 4.7 Evaluasi Sistem                                                           | 108            |
| BAB V                                                                         | 96             |
| KESIMPULAN                                                                    | 96             |
| 5.1 Kesimpulan                                                                | 96             |
| 5.2 Saran                                                                     | 96             |
| REFERENSI                                                                     | 97             |

# **DAFTAR GAMBAR**

| Gambar 3. 1 Diagram IPO                                                                                    | 6  |
|------------------------------------------------------------------------------------------------------------|----|
| Gambar 3. 2 Inverted index                                                                                 | 9  |
| Gambar 3. 3 Diagram Alur Preprocessing                                                                     | 7  |
| Gambar 3. 4 Arsitektur Sistem                                                                              | 9  |
| Gambar 3. 5 Flowchart Levenshtein Distance                                                                 | 3  |
| Gambar 3. 6 Percobaan metode Levenshtein Distance di Excel                                                 | 5  |
| Gambar 3. 7 Flowchart TF-IDF                                                                               | 52 |
| Gambar 3. 8 Part-Of-Speech (POS) Tagging Data Artikel Pariwisata                                           | 5  |
| Gambar 3. 9 WordCloud Data Artikel Pariwisata                                                              | 6  |
| Gambar 4. 1 Grafik Hasil Presisi 100 data <i>Query</i> tanpa <i>Part-Of_Speech</i> (POS) <i>Tagging</i> 10 | 2  |
| Gambar 4. 2 Grafik Hasil Presisi 100 data Query dan Part-Of-Speech (POS) Tagging 10                        | 13 |
| Gambar 4. 3 Tampilan inputan <i>query</i>                                                                  | 15 |
| Gambar 4. 4 inputan query menggunakan metode Levenshtein Distance tanpa Part-Of-Speed                      | :h |
| (POS) Tagging                                                                                              | 16 |
| Gambar 4. 5 Tampilan skenario Lavenshtein Distance dan Part-Of-Speech (POS) Tagging 10                     | 16 |
| Gambar 4. 6 Menampilkan hasil pencarian Artikel                                                            | 17 |
| Gambar 4. 7 Hasil koreksi ejaan                                                                            | 17 |
| Gambar 4. 8 Menampilkan Artikel tanpa <i>Part-Of-Speech</i> (POS) <i>Tagging</i>                           | 18 |

# **DAFTAR TABEL**

| Tabel 2. 1 Penelitian Terkait                          | 32  |
|--------------------------------------------------------|-----|
| Tabel 3. 1 Data Kamus                                  | 39  |
| Tabel 3. 2 Dokumen artikel pariwisata                  | 40  |
| Tabel 3. 3 Proses Hitung Term dalam setiap dokumen     | 34  |
| Tabel 3. 4 Inverted index                              | 36  |
| Tabel 3. 5 Data Uji                                    | 36  |
| Tabel 3. 6 Case Folding                                | 38  |
| Tabel 3. 7 Cleaning                                    | 38  |
| Tabel 3. 8 Tokenizing                                  | 38  |
| Tabel 3. 9 Tagset POS Tagging                          | 46  |
| Tabel 3. 10 Contoh Part-of-Speech (POS) Tagging        | 47  |
| Tabel 3. 11 Contoh artikel ambigu                      | 48  |
| Tabel 3. 12 Skenario Uji Coba                          | 53  |
| Tabel 3. 13 Jadwal Penenelitian                        | 58  |
| Tabel 4. 1 Spesifikasi Perangkat Keras                 | 59  |
| Tabel 4. 2 Spesifikasi Perangkat Lunak                 | 60  |
| Tabel 4. 3 Detail Operasi Pada Query Salah             | 80  |
| Tabel 4. 4 Hasil Nilai Presisi 100 Query               | 86  |
| Tabel 4. 5 Hasil 100 Query Nilai Presisi Search Engine | 94  |
| Tabel 4. 6 Hasil Skenario Uji Coba                     | 103 |

# **DAFTAR PROGRAM**

| Kode Program 4. 1 Inisiasi Variabel Visualisasi Data dengan WordCloud                   |
|-----------------------------------------------------------------------------------------|
| Kode Program 4. 2 Cleaning                                                              |
| Kode Program 4. 3 Inisiasi Fungsi Metode Levenshtein Distance                           |
| Kode Program 4. 4 Koreksi Ejaan                                                         |
| Kode Program 4. 5 Modul Part-Of-Speech (POS) Tagging                                    |
| Kode Program 4. 6 Inisiasi Fungsi Nilai Presisi                                         |
| Kode Program 4. 7 Inisiasi Fungsi <i>TF-IDF</i>                                         |
| Kode Program 4. 8 Inisiasi Fungsi <i>Inverted Index</i>                                 |
| Kode Program 4. 9 Inisiasi Fungsi Pencarian Artikel Menggunakan Cosine Similarity 72    |
| Kode Program 4. 10 Implementasi Sistem Koreksi Ejaan Menggunakan Algoritma Levenshtein  |
| Distance74                                                                              |
| Kode Program 4. 11 Koreksi Ejaan Terhadap query dan Part-Of-Speech (POS) Tagging 75     |
| Kode Program 4. 12 query Pencarian Artikel Pariwisata Levenhstein Distance dan Part-Of- |
| Speech (POS) Tagging75                                                                  |
| Kode Program 4. 13 Inisiasi Judul dan Konten Artikel menggunakan Part-Of-Speech (POS)   |
| Tagging                                                                                 |
| Kode Program 4. 14 Menampilkan Part-Of-Speech (POS) Tagging pada Judul, tanggal dan     |
| Konten Artikel                                                                          |

#### **BABI**

#### **PENDAHULUAN**

# 1.1 Latar Belakang

Bahasa Indonesia memiliki aturan kata dengan kompleks, sehingga kesalahan kata menjadi hal umum terjadi ketika user atau pengguna mengetik dan membuat query pencarian. Bahasa Indonesia berfungsi sebagai alat komunikasi dalam menyalurkan informasi, perasaan, sikap, gagasan, emosi[1]. Bahasa juga dapat digunakan sebagai sumber perspektif yang dicatat dalam bentuk laporan dokumen, dan menyampaikan serta mencari data informasi[2]. Ketika mencari informasi, baik informasi yang didapatkan melalui radio, televisi, koran, maupun media informasi lainnya. Hal ini dengan mudah semuanya tersedia di dalam internet. Ketika mencari informasi dan mengetik query (kata kunci yang terdiri dari satu atau beberapa kata kunci) di internet, nantinya akan muncul sebuah informasi pembenaran kata dan informasi sesuai kata kunci (query) yang dicari. Spelling correction merupakan salah satu poin utama yang akan dibahas pada topik penelitian kali ini, dimana informasi yang dicari berupa informasi mengenai pariwisata, yang berkaitan dengan artikel berita pariwisata. Berita merupakan informasi terkini dalam suatu peristiwa maupun fakta yang terjadi. Pemanfaatan media massa seperti berita ini, digunakan untuk menyampaikan sebuah pesan[3]. Berita online terbagi dalam beberapa bagian salah satunya artikel yang dimuat untuk menyampaikan informasi, diantaranya berita pariwisata[3].

Menurut [4] pariwisata dapat diartikan sebagai perjalanan dari suatu tempat ke tempat lain yang dilakukan oleh perorangan maupun kelompok yang dijadikan untuk usaha mencari sebuah keseimbangan maupun keserasian baik dalam kebahagiaan dengan lingkungan sekitar yang berdimensi sosial, budaya, maupun alam. Terdapat banyak kegiatan yang berkaitan dengan pariwisata, diantaranya perhotelan, kerajinan atau cinderamata, destinasi, dan *event*. Saat ini artikel berita sudah dapat diakses secara *online*, melalui *website*. Salah satu *website* yang berada di laman detik.com, dengan tampilannya dan memberikan informasi berita yang menarik terkait berita pariwisata[3]. Dalam hal ini, hanya dengan meng*input*kan suatu kata kunci (*query*) yang ada dalam mesin pencarian (*search engine*) bahasa

Indonesia (SEBI) nantinya sistem akan memberikan informasi berdasarkan query yang diberikan[5]. Pada saat ini mulai banyak bermunculan pencarian yang baru dengan berbagai kebutuhan sendiri, diantaranya Search Engine Bahasa Indonesia (SEBI). SEBI dilakukan pada tahun 2017 yang berfungsi untuk mengumpulkan halaman website dari internet, terdapat preprocessing, untuk membangun indeks dan menangani query serta mengkategorikan dokumen [6]. Namun seringkali hasil yang diperoleh user (pengguna) tidak sesuai dengan output yang diharapkan, karena adanya kesalahan pengetikan dalam memberikan sebuah kata kunci (query) yang tidak termasuk kata dalam kamus atau terdapat kesalahan dalam mengetik (typo)[7]. Ketika pengetikan yang dilakukan pada saat menulis dokumen terdapat tipografi, yang nantinya dapat membuat arti ataupun maksud yang berbeda[2]. Ketika melakukan koreksi ejaan kata pada query, kemudian menemukan kata yang salah sehingga perlu dilakukan pencarian kemungkinan kata yang tepat atau sesuai[8]. Pemeriksaan kesalahan yang bukan kata, dimana proses pemeriksaan ejaan kata pada query berfokus dalam penanganan kata yang mengalami kesalahan ejaan yang diakibatkan adanya kesalahan tipografi[9]. Adanya kesalahan kata dapat menghambat pencarian informasi yang akurat, terutama ketika mesin pencari tidak dapat memahami kata-kata yang salah ejaan. Maka dari itu terdapat satu topik untuk mengatasi permasalahan kesalahan ejaan kata dalam pencarian informasi dengan menggunakan query yaitu spelling correction (koreksi ejaan).

Spelling correction atau koreksi kesalahan ejaan merupakan sebuah fitur koreksi otomatis yang digunakan untuk melakukan sebuah proses pendeteksian dalam kesalahan ejaan kata dan juga pemberian sebuah saran kata dalam kesalahan ejaan pada teks[10]. Pada bagian ini, terdapat dua jenis dalam proses pemeriksaan ejaan diantaranya: pemeriksaan kesalahan yang bukan kata dan pemeriksaan kesalahan kata yang sebenarnya. Dalam pemeriksaan kesalahan bukan sebuah kata berfokus dalam penanganan kata yang salah ejaan, disebabkan oleh kesalahan tipografi. Sedangkan proses pemeriksaan kesalahan kata yang sebenarnya ditekankan dalam penanganan kesalahan pada kata yang ada pada kalimat[9]. Berdasarkan permasalahan diatas maka diperlukan sebuah metode untuk koreksi kata pada query. Metode Levenshtein Distance adalah metode pencarian solusi dalam bidang komputasi bahasa alami, dengan menentukan suatu matriks untuk

mengukur jumlah perbedaan antara dua *string*[8]. *Levenshtein Distance* merupakan metode dimana terdapat matriks untuk menghitung jumlah perbedaan yang terdapat pada *string input* (s) dan *string* target (t). Contohnya, apabila terdapat *string* sumber (s) yaitu "tihun" dan string target (t) "tahun", maka akan dilakukan proses *Levenshtein Distance* dengan menghasilkan jarak antara dua *string* yaitu 1. Maka proses tersebut merupakan sebuah operasi pergantian atau disebut dengan substitusi[11].

Algoritma *Levenshtein Distance* memiliki salah satu keunggulan untuk bekerja dengan cara mengubah source string menjadi target string, dengan melakukan operasi yang meliputi penyisipan, penghapusan, dan penggantian dari suatu karakter. Dalam menghitung jarak dari perbedaan antara dua string yaitu dengan menentukan minimum jumlah operasi perubahan yang mana dari string A menjadi string B. Sehingga algoritma ini sesuai untuk mengoreksi perbedaan antara 2 string [12]. Pada tahun 2023, terdapat aplikasi yaitu pengarsipan dan perncarian dari sebuah data anggota yang terdapat di megapro club Indonesia, dimana peneliti menunjukkan Levenshtein Distance lebih baik dari metode String Matching Knuth Morris Pratt, hasil kecepatan dan ketepatannya yaitu terdapat data anggota 0,02 untuk rata-rata pencarian algoritma Levenshtein Distance dan 0,022 untuk rata-rata pencarian algoritma knuth morris pratt [13]. Dalam interaksi antara komputer dengan manusia, terdapat teori yang membahas terkait pemprosesan bahasa alami atau biasa disebut dengan Natural Language Processing (NLP), dimana NLP berperan untuk permasalahan terkait ambiguitas kata dengan teknik pelabelan kelas kata menggunakan Part-of-Speech (POS) Tagging metode Rule based. Part-of-Speech (POS) Tagging salah satu tahapan yang terdapat dalam teori NLP untuk mengetahui ambiguitas kata dan melakukan kelas kata[1]. Data corpus yang digunakan untuk melakukan proses Part-of-Speech (POS) Tagging pada penelitian ini yaitu *corpus* bahasa Indonesia. Oleh sebab itu adanya proses penandaan dengan menggunakan Part-of-Speech (POS) Tagging diterapkan secara otomatis dengan menggunakan berbagai metode di dalamnya. Dalam penelitian [14] yang dilakukan tahun 2017 mengenai Part-of-Speech (POS) Tagging menggunakan metode HMM dan Rule Based, dimana dalam penelitian ini berfokus pada pelabelan kelas kata dan penggunaan corpus

Pemilihan metode Rule Based, dalam penelitian ini, memiliki kelebihan yaitu metode ini salah satu metode yang mempunyai algoritma Neuro Linguistic Programming (NLP) yang mempunyai pendekatan berbasis aturan yang lebih baik dalam pemberian tag kata yang digunakan dalam morfologi bahasa[15]. Pada penelitian sebelumnya yang sama-sama menggunakan metode Rule Based menghasilkam performa yang cukup baik dengan hasil yaitu 87,4%, tetapi perlu melakukan pemeriksaan kata morfologi dan kata slang, yang nantinya menghasilkan istilah khusus pada *corpus*[16]. Beberapa penelitian yang membahas mengenai pemeriksaan ejaan kata pada query lebih banyak membahas mengenai kesalahan kata yang dimana disebabkan oleh kesalahan tipografi. Penelitian [17] pada tahun 2017, dengan menggunakan metode pendekatan kamus berbasis Levenshtein Distance, dapat disimpulkan bahwa aplikasi hanya dapat melakukan koreksi dokumen sebanyak 6 halaman, dimana pengujian kesalahan ejaan kata dilakukan dengan memasukkan kata yang salah. Hasil yang diperoleh menunjukkan saran kata yang diprioritaskan yaitu kata yang benar, dan hasil pengujian kesalahan kata mempunyai akurasi sebesar 86%. Kemudian hasil pengujian terhadap struktur bahasa Indonesia dilakukan dengan memberikan kalimat dan *output* sistem pada penguji sebanyak 30 kalimat dan hasil nilai akurasi yang diperoleh 76,66%. Dan penelitian[18] untuk pencarian kamus obat (drugs e-dictionary) menggunakan Algoritma Levenshtein Distance, hasil akurasi yang diperoleh dari pengujian implementasi algoritma pada modul drugs e-dictionary dihasilkan akurasi, recall dan *precision* sebesar 90%.

Dengan beberapa alasan yang telah disebutkan, maka akan dibuat sebuah sistem untuk spelling correction atau koreksi kesalahan ejaan terhadap query pada pencarian artikel berita pariwisata berbahasa Indonesia dengan menggunakan Partof-Speech (POS) Tagging metode Rule Based untuk menganalisis ambiguitas kata sehingga dapat melakukan pemberian label pada kelas kata menggunakan metode Rule Based. Untuk mengatasi permasalahan yang ada pada penelitian spelling correction dalam kinerja search engine bahasa Indonesia dengan ambiguitas kata dan pelabelan kelas kata, diusulkan penggunaan Algoritma Levenshtein Distance dengan Part-of-Speech (POS) Tagging metode Rule Based pada artikel berita pariwisata.

#### 1.2 Rumusan Masalah

Rumusan masalah berisi permasalahan, solusi dari permasalahan, dan pertanyaan pada penelitian.

#### 1.2.1 Permasalahan

Terjadinya error spelling correction atau kesalahan ejaan pada kata-kata didalam kata kunci (query) pada suatu search engine bahasa Indonesia (SEBI) yang mengakibatkan hasil koreksi ejaan kata pada query tidak sesuai dengan kebutuhan informasi pengguna, dan kekurangan dari metode ini yaitu tidak mampu mengatasi kata yang bermakna banyak (ambiguitas kata) sehingga diperlukan metode untuk menyelesaikan permasalahan tersebut dengan menggunakan metode Levenshtein Distance dalam menyelesaikan permasalahan error spelling correction dan menerapkan Part-of-Speech (POS) Tagging untuk ambiguitas kata.

#### 1.2.2 Metode Usulan

Metode usulan yang akan digunakan dalam penelitian ini untuk mengatasi masalah koreksi ejaan pada *query* adalah menggunakan algoritma *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging* dalam artikel berita pariwisata berbahasa Indonesia.

# 1.2.3 Pertanyaan Penelitian

Pada uraian yang dijelaskan sebelumnya didapatkan pertanyaan penelitian sebagai berikut:

Berapa nilai *presisi* yang dihasilkan dalam penerapan koreksi kesalahan ejaan menggunakan algoritma *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging*?

#### 1.3 Tujuan dan Manfaat Penelitian

Tujuan dan Manfaat dari Penelitian ini adalah sebagai berikut :

#### 1.3.1 Tujuan Penelitian

Tujuan perancangan identifikasi salah ketik dan perbaikan kata pada mesin pencarian berita pariwisata adalah untuk mengetahui tingkat akurasi yang meliputi presisi dari koreksi kesalahan ejaan dengan menggunakan metode Levenshtein Distance dengan Part-of-Speech (POS) Tagging.

#### 1.3.2 Manfaat Penelitian

Manfaat dari penelitian yang dilakukan yaitu:

- Mengetahui koreksi kesalahan ejaan dari query (yang terdiri dari satu atau beberapa kata kunci) yang diberikan menggunakan algoritma Levenshtein Distance, dan mengetahui adanya kata ambigu atau ambiguitas kata dengan melakukan pemberian kelas kata menggunakan Part-of-Speech (POS) Tagging
- 2. Hasil dari penelitian dapat dijadikan untuk rujukan pada penelitian selanjutnya dalam topik yang berkaitan dengan koreksi ejaan (*spelling correction*).

#### 1.4 Batasan Masalah

Pada batasan masalah yang ada dalam batasan ini diperlukan agar dalam pengerjaannya tidak melebar dari sasaran yang diteliti. Adapun batasan permasalahan agar tidak meluas pada topik pembahasan penelitian ini, yaitu anatara lain sebagai berikut::

- 1. Penelitian ini menggunakan data berita pariwisata berbahasa Indonesia.
- 2. Menggunakan data korpus bahasa Indonesia yang diperoleh dari Fakultas Ilmu Komputer Universitas Indonesia.
- 3. *Output* berupa membenarkan kata dari kata kunci (*query*) menggunakan algoritma *Levenshtein Distance* dan informasi mengenai berita pariwisata dalam data *input* pada mesin pencarian (SEBI) dan saran perbaikan kata yang telah disesuaikan pada kamus, dengan memperhatikan apabila terdapat ambiguitas kata yang nantinya dilakukan pelabelan kelas kata (pemberian tag pada *query*) menggunakan *Part-of-Speech* (POS) *Tagging* metode *Rule Based*.

#### 1.5 Sistematika Penulisan

Sistematika yang diterapkan dalam penyusunan laporan tugas akhir ini digunakan untuk memberikan gambaran umum mengenai apa saja yang akan dibahas pada penelitian ini, sehingga secara sekilas pembaca akan mengetahui garis

besar dan poin-poin penting dalam penelitian ini. Sistematika terbagi dalam beberapa pokok bahasan sebagai berikut:

#### **BAB I PENDAHULUAN**

Bab 1 ini menguraikan latar belakang, rumusan masalah, tujuan dan manfaat dari penelitian, batasan masalah, dan sistematika penulisan laporan penelitian dan jadwal penelitian.

#### BAB II KAJIAN PUSTAKA

Bab 2 ini mejelaskan teori yang sudah ada atau dari penelitian-penelitian yan telah dilakukan dengan tujuan untuk mendukung serta mendasari dari sebuah sistem yang akan dibangun. Dasar teori sangat dibutuhkan agar tercapainya suatu tujuan sistem yang akan dibuat dan belajar dari kekurangan penelitian sebelumnya. Dasar teori dan konsep yang digunakan dalam penelitian ini adalah *spelling correction*, algoritma *Levenshtein Distance*, *Part-of-Speech* (POS) *Tagging* dengan metode *Rule Based*, *text preprocessing*, *search engine*, *kinerja search engine*, *precision* dan penelitian terkait.

### **BAB III METODE USULAN**

Bab 3 ini menyajikan garis besar mengenai metode yang digunakan dalam penelitian, dan analisa kebutuhan serta perancangan. Dimulai dari *dataset*, arsitektur sistem. Skenario pengujian, perhitungan metode, perhitungan, dan tahapan penelitian.

#### BAB IV METODE HASIL DAN PEMBAHASAN

Bab 4 ini membahas sekaligus menjelaskan mengenai lingkungan uji coba, bahasan dan hasil dari implementasi sistem berdasarkan rancangan yang telah dibahas di bab 3 sebelumnya.

#### **BAB V PENUTUP**

Bab 5 ini berisi terkait kesimpulan akhir dari penelitian yang telah dilakukan dan sara dari metode yang digunakan.

#### **BAB II**

#### KAJIAN PUSTAKA

# 2.1 Spelling Correction (Koreksi Ejaan)

Spelling correction adalah cara paling umum untuk mengidentifikasi dan memberikan saran atau ide pada kata-kata yang salah ejaannya dalam sebuah teks. Koreksi ejaan adalah sebuah sistem yang digunakan untuk dapat melakukan pengoreksian kesalahaan dalam ejaan. Kesalahan yang sering terjadi yaitu adanya karakter yang tidak sesuai, misalnya terdapat karakter yang berubah, atau kurangnya karakter dan terdapat penggantian karakter [8]. Misalnya dalam sebuah kata yang salah yaitu "Keuar", kemungkinan kata yang benar adalah "Keluar", penyebab kesalahan katanya adalah kurang huruf "l".

Sedangkan spelling corrector merupakan fitur atau aplikasi yang akan melakukan proses tersebut. Fitur ini mencari kata-kata yang salah berdasarkan data korpus yang digunakan aplikasi[9]. Selain itu, saran kata diberikan dengan perhitungan algoritma yang digunakan oleh aplikasi. Pemeriksa ejaan terbagi menjadi dua jenis, yaitu: pemeriksa kesalahan yang bukan kata dan pemeriksa kesalahan kata yang sebenarnya. Pemeriksa kesalahan yang bukan kata berfokus pada penanganan kata yang salah ejaan yang disebabkan oleh kesalahan tipografi. Sedangkan pemeriksa kesalahan kata yang sebenarnya ditekankan pada penanganan kesalahan penempatan kata dalam sebuah kalimat.

Sistem koreksi kesalahan ejaan otomatis merupakan sebuah sistem yang mempunyai tujuan untuk memverifikasikan serta memperbaiki sebuah kesalahan kata dengan menggunakan kumpulan kata-kata yang disarankan[8]. Selain itu penulis di Kukich, Toutabaris ke va dan Moore, serta Pirinen dan linden membagi kesalahan ejaan menjadi dua kategori menurut penyebabnya[19]:

1. Kesalahan *kognitif* (disebut juga *otografik* atau konsisten): Kesalahan ini disebabkan oleh kecacatan dalam menulis teks. Cara atau proses penulisannya yang benar tidak diketahui oleh penulisnya. Hal ini penulis bisa saja menderita *disleksia*, *disgrafia*, ataupun masalah *kognitif* lainnya. Hal ini, orang yang menulis teks hanya sedang mempelajari bahasanya, namun tidak dengan mengetahui bagaimana ejaan yang benar.

2. Kesalahan ketik (disebut kesalahan konvensional), biasanya berkaitan dengan keterbatasan teknik perangkat *input* yang dimana *keyboard* atau sistem OCR yang bergantung terhadap lingkungan, karena mengetik dengan tergesa-gesa sering kali menyebabkan penggantian dua tombol tutup. Kesalahan ketik yang disebabkan dengan pengetikan yang tergesa-gesa hal ini bersifat *agnostic* bahasa atau tidak berhubungan dengan bahasa penulis.

#### **2.1.1** Ejaan

Ejaan merupakan keseluruhan dari peraturan tentang bagaimana menggambarkan berbagai penulisan dan bagaimana interaksinya dalam sebuah bahasa. Adanya penggunaan ejaan mempunyai tujuan agar bahasa dapat dengan baik di pahami sehingga tidak terjadi kesalahpahaman makna bahasa yang diungkapkan. Terdapat Buku Pedoman Umum Ejaan Bahasa Indonesia, yang memuat empat hal utama yang menjadi aspek dalam kajian penulisan yang dibuat atau dibahas meliputi: pemakaian huruf, penulisan kata, pemakaian tanda baca dan penulisan unsur serapan. Dalam aspek - aspek ini mempunyai beberapa pokok pembahasan dalam kajian pada penelitian ini, diantaranya sebagai berikut[20]:

#### a) Pemakaian Huruf

Pemakaian huruf yang terdapat dalam sebuah buku Ejaan Bahasa Indonesia meliputi: huruf abjad, huruf vokal, huruf konsonan, gabungan huruf konsonan dan huruf kapital.

# b) Penulisan Kata

Penulisan kata dalam sebuah ejaan Bahasa Indonesia diantaranya, meliputi: tanda titik, koma, titik koma, titik dua, tanda hubung, tanda tanya,tanda seru, dan tanda petik.

#### c) Pemakaian Tanda Baca

Pemakaian tanda baca dalam sebuah buku Ejaan Bahasa Indonesia, diantaranya mencakup sebuah tanda titik, koma, titik koma, titik dua, tanda hubung, tanda kurung siku, garis miring, serta tanda penyingkat.

#### d) Penulisan Unsur Kata Serapan

Penulisan unsur kata serapan dalam bahasa Indonesia meliputi sebuah bahasa yang baik, bahasa daerah yang dimana terdapat bahasa asing. Dalam buku ejaan Bahasa Indonesia, sebuah penulisan unsur kata dalam serapan dibagi menjadi

dua, diantaranya penulisan kata serapan yang berfungsi untuk melakukan unsur kata asing.

#### 2.1.2 Typographical Error

Typographical error adalah suatu kesalahan dalam mengetik teks yang mengakibatkan perubahan arti dalam suatu kata maupun kalimat. Hal ini terjadi karena adanya ketidaktahuan penulis atau pengguna, dan kegagalan dalam mekanisme yaitu jari yang salah menekan tombol, dimana ketika menyebabkan kesalahan dalam proses pengetikan atau adanya typographical error. Pada bagian ini terdapat dua jenis kesalahan atau adanya typographical error yaitu sebagai berikut.

- 1. *Non-word error*: yaitu terjadinya kesalahan (*error*) dimana, tidak memiliki makna didalamnya. Misalnya kesalahan dari kalimat "Dia memberikan suatu commet yang sangat berguna", setelah dilakukan koreksi maka hasilnya "Dia memberikan komentar yang sangat berguna"
- 2. Realword error : adalah suatu kata yang tertulis dan bernilai benar serta mempunyai sebuah arti di dalam kamus, akan tetapi tidak dimasudkan dalam kalimat dan memiliki arti yang berbeda, bahkan terdapat tata bahasa yang keliru[11].

#### 2.2 Search Engine

Search engine adalah alat yang dikembangkan untuk sistem komputer, khususnya internet, untuk menemukan contoh kata atau frasa yang dapat ditemukan dalam dokumen yang mencakup dalam ruang lingkup alat tersebut[21]. Pengguna dapat melakukan pencarian yang ada di halaman web yang diperlukan melalui search engine. Mesin pencarian (search engine) merupakan salah satu mesin yang ulet dan teliti, dengan adanya eksplorasi dalam memberikan informasi yang sesuai dengan permintaan pengguna tanpa memandang kapan dan dimana waktu itu dilakukan. Search engine adalah sebuah website yang digunakan untuk mencari informasi yang ada di dalam sebuah layanan World Wide Web (www), file transfer protocol (ftp), mailing list. Dimana hasil dari pencarian ini nantinya akan menampilkan banyak data informasi yang berasal dari website sebagai penyedia informasi. Terdapat beberapa contoh dari mesin pencarian (search engine)

diantaranya: Google (http://www.google.com/), Yahoo (http://www.yahoo.com/), Amazone (http://www.amazon.com/)[22]. Search engine atau biasa disebut dengan mesin pencari merupakan salah satu teknik dari temu kembali informasi yang dimana menentukan dalam menemukan sebuah dokumen dan melakukan untuk mengeksekusi algoritma peringkat dan menemukan dokumen. [23]. Sebuah mesin pencarian (search engine) digunakan oleh pengguna internet, dalam mencari informasi. Hal ini menyebabkan banyaknya dokumen ketika disimpan dalam digital melonjak (penuh), dan mengakibatkan pengguna (user) mengalami kesulitan dalam menemukan artikel yang sesuai. Cara menggunakan mesin pencari yaitu dengan memasukkan kata kunci (query) yang ingin dicari, kemudian akan ditampilkan beberapa tautan yang mengarah ke situs atau informasi yang saling berkaitan dengan kata kunci yang dimasukkan[24].

# 2.2.1 Information Retrieval (IR)

Proses untuk mendapatkan sumber informasi atau mengesktraksi sumber informasi biasanya dokumen, dari sejumlah data besar biasanya teks, untuk memenuhi kebutuhan informasi disebut dengan *information retrieval* (IR) [11]. Sistem temu kembali informasi atau biasa disebut dengan *information retrieval* berguna untuk memperoleh informasi yang sesuai atau diinginkan oleh *user* (pengguna) ketika meng*input*kan *query* untuk mendapatkan informasi. *query* yang telah dimasukkan pengguna disini yaitu dokumen yang dicari[24]. Terdapat beberapa fungsi *Information Retrieval* yaitu sebagai berikut:

- 1. Untuk mengidentifikasi sumber informasi yang sesuai dengan target pengguna.
- 2. Digunakan untuk melakukan analisis dari sumber dokumen.
- 3. Melakukan atau mempresentasikan isi dari sumber yang dianalisis sehingga nantinya akan sesuai dalam *query* yang pengguna lakukan.
- 4. Melakukan analisis dari *query* pengguna dalam merepresentasikan sebuah *query* yang sama dengan database
- 5. Melakukan pencocokan langkah-langkah dalam pencarian yang digunakan untuk menyimpan didalam *database*.
- 6. Melakukan proses agar memperoleh sebuah informasi yang sesuai.

7. Melakukan pembuatan dalam pengaturan yang nantinya diperoleh dalam membuat sebuah informasi yang diciptakan didalam sistem berdasarkan kebutuhan yang didapat kembali dari pengguna.

Dalam information retrieval ini nantinya sebuah query, bukan hanya dilakukan untuk memperbaiki sebuah objek unik yang ada dalam kumpulan data, akan tetapi dalam sebuah query akan dapat menyesuaikan dalam berbagai objek yang berbeda dengan derajat kesamaan yang berbeda pula. Hal ini nantinya suatu objek akan melakukan satu entitas, sehingga merepresentasikan sebuah informasi yang berada dalam kumpulan data maupun database. Sehingga dalam sistem yang ada di Information Retrieval pada umumnya diterapkan dalam bentuk peringkat[25]. Sistem ini juga melakukan komputasi untuk menghitung mengenai kecocokan dalam setiap objek yang nanti didalamnya terdapat database dan query, dan menciptakan suatu sistem pemeringkat agar menghasilkan sebuah hasil berdasarkan perhitungan dari hasil yang diperoleh. Hasil dari peringkat yang paling tertinggi nantinya akan direpresentasikan pada pengguna dan dikatakan sebagai hasil yang paling sesuai. Sehingga diperlukan sebuah mesin pencari (search engine) yang mempunyai tujuan untuk memperoleh dokumen yang akan dicari [24].

# 2.2.2 *Query*

Dalam *search engine* mempunyai beberapa komponen penting yang membahas dokumen dan juga *query* didalamnya[25].

- 1. *Query interface* merupakan sebuah komponen yang terdapat dalam *search engine* dan tampilan maupun format yang menyediakan sebuah fasilitas dalam mesin pencarian (*search engine*).
- 2. *Query engine* sebuah program yang bertugas sebagai penerjemah dalam memenuhi keinginan *user* atau kata yang diketikkan dalam sebuah bahasa yang mudah dipahami oleh mesin komputer. Proses dalam *query* ini melakukan sebuah pengarsipan atau pencarian arsip dan dokumen yang sesuai dalam basis data.
- 3. *Database* merupakan gabungan dokumen yang diarsip dalam sebuah *website* yang ada pada internet. Semakin besar jumlah skala internet semakin besar kapasitas dalam penyimpanannya.

- 4. *Spider* merupakan proses pendataan dari sebuah *website* yang ada dalam internet atau disebut *web crawlers*.
- 5. *Indexer* ialah program yang digunakan untuk mempercepat dalam proses pencarian yang dimana pemanfaatan *index* dalam buku. Dan juga adanya teknik untuk malakukan penerapan *index* yang berguna untuk mendapatkan kecepatan dalam proses pencarian data informasi.

# 2.3 Artikel Berita Pariwisata

Berita merupakan informasi terkini dalam suatu peristiwa maupun fakta yang terjadi. Berita dibuat atau ditulis oleh seorang jurnalistik atau wartawan yang mengumpulkan sebuah fakta di lapangan melalui proses jurnalistik. Berita menjadi salah satu peranan yang sangat penting dalam masyarakat karena dengan adanya berita, dapat memberikan sebuah informasi. Sebagian berita pada umumnya hanya dibuat dalam versi cetaknya. Dan bahkan dapat melihat berita *online* yang sampai saat ini sudah berkembang sangat luas dan mudah diakses dengan jaringan internet. Berita yang terdapat dalam sebuah media massa menjadi suatu cara dalam menciptakan suatu realitas yang diinginkan mengenai peristiwa atau orang yang dilaporkan. Berita berisi mengenai informasi-informasi terbaru yang berada disekitar dan biasanya disajikan dalam bentuk tulisan. Berita *online* banyak terbagi dalam berbagai berita, salah satunya artikel yang dibuat atau dimuat untuk menyampaikan informasi, mengenai pariwisata, tempat pariwisata yang sesuai. Biasanya informasi ini didapatkan dalam detik *news* dan trimbun *news*[3].

Industri perjalanan wisata memiliki definisi yang berbeda-beda menurut berbagai sudut pandang, khususnya sebagaimana ditunjukkan dalam Peraturan No.10 Tahun 2009, industri perjalanan wisata dicirikan sebagai semacam pergerakan kawasan lokal yang berisi komponen-komponen industri perjalanan dengan kantor dan administrasi berbeda yang diberikan oleh jaringan tertentu, *visioner* bisnis, otoritas publik, dan negara-negara terdekat. Secara khusus, industri perjalanan disebut sebagai industri dengan organisasi yang terkait dengan pengaturan tenaga kerja dan produk untuk mengatasi masalah wisatawan yang mengunjungi kawasan wisata. Kemajuan industri perjalanan mempunyai potensi kemajuan yang luar biasa. Hal ini menjadi tujuan untuk memperoleh modal dengan

adanya industri pariwisata baik dalam segi ekonomi mengenai kesadaran dan tanggung jawab atas lingkungan, persaingan bisnis dan produk *kredibel* dan daya saing yang menciptakan sebuah nilai rantai usaha dalam beragam jenis sistem yang ada[4].

#### 2.3.1 Data artikel berita pariwisata

Data artikel berita yang digunakan dalam penelitian ini adalah data artikel berita pariwisata yang diperoleh dari laman website detik.com dengan data yang diperoleh berjumlah 332 dokumen yang, dengan artikel berita yang ada. Selanjutnya nantinya akan diolah untuk mempermudah dalam proses selanjutnya, dalam mengolah data artikel berita pariwisatanya ini nantinya akan dilakukan tahapan preprocessing mulai dari case folding, cleaning, tokenization, stopword removal dan stemming yang nantinya mempermudah dalam mengolah term (kata) dalam setiap dokumen yang ada didalam artikel berita pariwisata.

Kemudian nantinya data artikel berita pariwisata ini akan dilakukan proses *Part-of-Speech* (POS) *Tagging* dimana data artikel berita pariwisata ini akan dilakukan pengecekan apakah terdapat kata ambigu atau tidak, dengan teknik pelabelan kelas kata. Tujuan dari adanya pemberian tag atau pelabelan kelas kata, untuk mengetahui setiap kata yang ada dalam dokumen terdapat kata ambigu, sehingga nantinya dari kata ambigu ini dapat dilakukan pemberian tag, yang akan menjelaskan makna dari setiap kata yang ada dalam artikel berita pariwisata yang ditampilkan dari hasil *inputan query* yang sebelumnya sudah diperbaiki dan diberikan pelabelan kelas kata dan tag.

Hasil dari artikel berita pariwisata yang sudah diolah dan dilakukan pelabelan kelas kata atau tag dari artikel berita pariwisata yang ada, akan dilakukan tahapan *inverted index*, berfungsi untuk mengurutkan artikel dokumen yang mempunyai bobot, sehingga nantinya mempercepat dalam proses pencarian dokumen dari dokumen yang mempunyai bobot paling tinggi.

# 2.3.2 Inverted Index

Inverted index merupakan salah satu struktur data index yang digunakan untuk memudahkan dalam proses pencarian dari term yang berbeda untuk mendapatkan

suatu daftar *term* dalam sebuah dokumen. Tujuan adanya *inverted index* ini untuk meningkatkan kecepatan dan efisiensi dalam melakukan pencarian dari sekumpulan dokumen yang mengandung *query* (kata kunci) yang di*input*kan. *Inverted index* berisi daftar dokumen yang diurutkan, dimana pada setiap dokumen yang sudah diurutkan tersebut, mempunyai bobot dari setiap kata (*term*). Sehingga untuk melakukan *inverted index* pada sistem ini menggunakan TF-IDF.

# 2.4 Text Preprocessing

Text Preprocessing adalah sebuah cara dalam memproses untuk melakukan pengolahan terhadap suatu data mentah menjadi data yang siap digunakan. Pada preprocessing ini dilakukan ketika search engine menerima permintaan dari user, contohnya ketika mengetikkan kata kunci (query) "Karnaval" pada mesin pencarian, maka nantinya search engine atau mesin pencarian SEBI akan melakukan pencarian, dan apabila kata kunci (query) terdapat kesalahan, nantinya spelling correction akan melakukan pengecekan dengan membernarkan kata yang ada. Tujuan dilakukan proses preprocessing agar nantinya data lebih mudah diproses oleh sistem yang nantinya akan menghasilkan sebuah data term (data yang melalui proses preprocessing)[8].

*Preprocessing* data pada teks terdiri dari beberapa proses tahapan diantaranya sebagai berikut:

- 1. Case Folding: berfungsi dalam mengubah huruf pada teks dari huruf kapital (upper case) menjadi huruf kecil (lower case).
- 2. *Cleaning*: digunakan untuk membersihkan sebuah karakter tertentu yang tidak dibutuhkan seperti simbol dan angka.
- 3. *Tokenizing*: berfungsi dalam menguraikan sebuah kalimat yang menjadi kata perkata, berdasarkan karakter 'spasi' sebagai tanda pemisahnya.

#### 2.5 Part-of-Speech (POS) Tagging Bahasa Indonesia

Natural Language Processing ialah cabang ilmu komputer dan linguistic yang membahas mengenai bagian dalam pemprosesan bahasa alami. NLP mempunyai peran untuk mengatasi adanya ambiguitas kata pada teks berbahasa Indonesia. Partof-Speech (POS) Tagging Bahasa Indonesia adalah sebuah proses penandaan kelas

pada setiap kata berdasarkan *corpus* bahasa Indonesia. Tahapan NLP yang berguna untuk menangani ambiguitas kata yaitu *Part-of-Speech* (POS) *Tagging*. Dimana tahapan dalam *Part-of-Speech* (POS) *Tagging* yaitu untuk menentukan kelas kata, dan hasilnya pada dokumen dapat digunakan sebagai dasar penelitian yaitu *Natural Languages Processing* pada dokumen, *machine translation, information retrieval, text summarization*, dan *language generator*[1]. *Part-of-Speech* (POS) *Tagging* adalah proses memberi label pada setiap kata dalam kalimat dengan *Part-of-Speech* (POS) *Tagging* atau *tag* yang sesuai dengan kelas kata seperti kata kerja, kata keterangan, kata sifat, dan lainnya[1]. Diperlukan sebuah kamus atau *corpus* penggunaannya dalam menentukan kelas kata. Berikut merupakan kelas kata bahasa Indonesia sebagai berikut[14]:

# a. Kata benda (noun)

Kata benda yaitu kata atau gagasan kata sebagai pernyataan tentang sesuatu yaitu nama seseorang, nama tempat, binatang, sifat, ide, dan perbuatan.

# b. Kata kerja (*verb*)

Kata kerja ialah kata atau gagasan kata yang menerangkan atau menggambarkan sebuah kejadian, tingkah laku, perbuatan, peristiwa dan keadaan.

#### c. Kata sifat (*Adjective*)

Kata sifat adalah sebuah kata atau gagasan kata yang digunakan untuk menerangkan kata benda dengan menjelaskannya.

#### d. Kata keterangan (*Adverb*)

Kata keterangan adalah kata atau gagasan kata sebagai pembatas atau pemberi informasi lebih banyak tentang kata kerja.

# e. Kata bilangan (*Numeral*)

Kata bilangan merupakan kata atau gagasan yang menunjukkan suatu bilangan.

# f. Kata penghubung (Conjunction)

Kata penghubung adalah kata atau gagasan kata yang memperluas satuan kata dan sebagai penghubung dengan beberapa satuan kata bilangan yang lain.

#### g. Kata depan atau Preprosisi (*Preposisition*)

Kata depan adalah kata yang mempunyai posisi katanya ada di depan sebelum kata benda, kata kerja, dan kata keterangan lainnya.

# h. Kata injeksi atau kata seru (Interjection)

Kata seru adalah kata atau gagasan kata yang menunjukkan ungkapan rasa hati atau perasaan seseorang. Misalnya, kagum, heran, sedih, dan sebagainya.

i. Kata ganti orang (*Probaris ke un*)

Kata ganti adalah kata yang digunakan untuk mengganti nama, seperti *firt person* yaitu kata ganti orang pertama, kata ganti orang kedua, dan kata ganti orang ketiga.

# 2.6 Metode Part-of-Speech (POS) Tagging dengan Metode Rule Based

Rule Based adalah salah satu algoritma NLP dengan menerapkan rule atau aturan bahasa (grammar) agar memperoleh hasil kelas kata dalam sebuah kalimat, dimana algoritma ini menggunakan aturan bahasa. Algoritma Rule Based mempunyai 2 arsitektur, diantaranya algoritma yang pertama yaitu metode Rule Based dengan menggunakan kamus yaitu melakukan penandaan kata yaitu kelas kata (leksikon). Tahapan yang kedua menerapkan disambiguation rule dengan manual, kemudian diproses yang nantinya menjadi satu kelas kata dalam setiap kata[14]. Kemudian dari perubahan kelas kata ini yaitu kelas kata pertama dengan kelas kata terakhir nantinya akan dilakukan pencocokan rule (aixan) yang terdapat dalam kamus aturan. Dalam susunan rule pada kalimat yang terdapat dalam kamus aturan, jadi nantinya sistem tersebut akan menampilkan kata beserta kelas kata sebagai output. Apabila dalam perbedaan yang terdapat dalam kelas kata ditemukan adanya kelas kata yang ada dalam kamus, kemudian sistem nantinya akan langsung memberikan peringatan atau tanda dalam setiap kata dan dalam kelas kata yang benar dari kelas kata yang di dapat, maka nantinya akan ditampilkan oleh sistem. Dan juga *corpus* adalah sebuah kumpulan teks yang tersusun secara sistematis, dan teks yang terdapat didalam corpus digunakan dalam situasi dan kehidupan nyata[14].

# 2.7 Pembobotan Term Frequency Inverse Document Frequency (TF IDF)

Pada pembobotan *term* yaitu dengan menggunkaan frekuensi kemunculan *term* (kata)/*Term Frequency* atau *TF* yang berkaitan dengan suatu dokumen, dimana hal ini merupakan metode pembobotan paling sederhana. *Term Frequency* atau *TF* merupakan sebuah kuantitas dari *term* yang sering muncul dalam suatu

dokumen[26]. Pada proses untuk menghitung jumlah dari kemunculan (frekuensi)  $term\ t_i$  dalam setiap dokumen  $d_i$ [26].

$$W_{TF}(t_i, d_i) = f(t_i, d_i)$$
 (2.1)

Dimana:

 $W_{TF}(t_i, d_i)$  = nilai TF term ke I pada dokumen ke j

 $f(t_i, d_i)$  = jumlah kemunculan dari *term* ke I pada dokumen ke j

Inverse Document Frequency (IDF) merupakan perhitungan untuk mengetahui seberapa besar pengaruh term di dalam sebuah dokumen terhadap dokumen lainnya. Pada sebuah dokumen ini nantinya akan mengandung term yang sangat bernilai yang nantinya sangat jarang sekali ada atau muncul[26].

$$W_{TF} = 1 + \log \frac{D}{d(t_i)}$$
 (2.2)

Dimana:

 $W_{IDF}(t_i, d_i)$  = nilai IDF term ke I pada dokumen ke j

 $d_i$  = jumlah dokumen yang mengandung *term* ke i

D = jumlah dokumen

Rumus untuk menyatakan bobot ( $W_{\square}$ ) dari dokumen yang diproses terhadap dokumen kunci adalah:

$$W_{tf-idf}(t_i, d_i) = W_{TF}(t_i, d_i) \times W_{IDF}(t_i, d_i)$$
 (2.3)

Dimana:

 $W_{tf-idf}(t_i, d_i)$  = nilai *TF-IDF term* ke I pada dokumen ke j

 $W_{IDF}(t_i, d_i)$  = nilai *IDF term* ke I pada dokumen ke j

# 2.8 Cosine Similarity

Metode *cosine similarity* adalah sebuah metode yang dimana penggunaaanya dalam menghitung tingkat kesamaan antara satu objek dengan objek yang lain [27].

Pada penggunaan *cosine similarity* ini mempunyai tujuan untuk membandingkan tingkat kecocokan antara dua objek, karena *cosinus* 0° adalah 1 dan kurang dari 1 (<1) untuk nilai sudut yang lain. Maka suatu nilai kemiripan antara dua objek dikatakan mirip ketika nilai *cosinus* adalah 1. Ukuran kemiripan antara dua buah vektor pada suatu ruang dimensi didapatkan dari nilai *cosinus* sudut disebut *Cosine Similarity*. Ketika digunakan dalam ruang positif hasil dari *cosine similarity* dibatasi antara 0 dan 1.

Cosine similarity juga diterapkan dalam penentuan nilai kemiripan pada dua dokumen teks. Dimana dengan menggunakan sebuah parameter dari jumlah katakata pada dua dokumen teks yang nantinya membandingkan (misalnya D1 "Dokumen 1" dan D2 "Dokumen 2"). Berikut ini terdapat rumus umum dalam penerapan Cosine Similarity [26].

CosSim 
$$(d_i, d_j) \frac{t_i \cdot d_i}{|t_i| \cdot |d_i|} = \frac{\sum_{j=1}^t (q_{ij} \cdot d_{ij})}{\sqrt{\sum_{j=1}^t (q_{ij})^2 \cdot \sum_{j}^t (d_{ij})^{\square}}}$$
 (2.4)

Dimana:

 $q_{ij}$ = bobot istilah j pada dokumen i=TF-IDF

 $d_{ij}$ = bobot istilah j pada dokumen i=TF-IDF

# 2.9 Algoritma Levenshtein Distance

Pada algoritma ini merupakan sebuah algoritma yang digunakan untuk koreksi ejaan yaitu algoritma *Levenshtein Distance* yang ditemukan oleh seorang ilmuan dari Rusia pada tahun 1965 yang bernama Vladimir Levenshtein, dimana algoritma ini merupakan algoritma yang dimana suatu matriks dapat mengukur perbedaan suatu matriks, yang digunakan untuk mengukur perbedaan antara dua *string*. *Levensthein Distance* dua buah *string* merupakan jumlah dari minimum operasi yang dibutuhkan untuk mengubah sebuah *string* (*source string*) menjadi *string* yang lain (*string* target). Dalam algoritma *Levensthein Distance* ini merupakan suatu operasi yang melibatkan *insertion* (penyisipan), *deletion* (penghapusan), *substitution* (penggantian) dari suatu karakter tunggal[12]. Berikut ini merupakan penjelasan dari operasi algoritma *Levensthein Distance* sebagai berikut:

# 1. Operasi Penyisipan Karakter (Insertion)

Insertion merupakan sebuah operasi penyisipan karakter baru kedalam string. Dalam proses penyisipan karakter, dapat dilakukan di awal kalimat, maupun akhir kalimat.

# 2. Operasi Penghapusan Karakter (Deletion)

Deletion adalah operasi pengahapusan karakter yang berlebihan dalam suatu karakter. Contohnya kata "matematikan" nantinya akan dilakukan penghapusan sebuah kata yaitu hasilnya menjadi "matematika".

#### 3. Operasi pengubahan Karakter (Substitution)

Substitution yaitu operasi yang melakukan pergantian dalam suatu karakter dengan karakter lainnya yang bernilai benar. Misalnya sebuah kata "yamg" akan diganti menjadi kata "yang" dalam operasi pengubahan sebuah karakter yang dimana pada operasi ini nantinya huruf "m" akan diganti menjadi "n".

Perhitungan Levenshtein Distance ini didapat pada sebuah matriks yang digunakan dalam menghitung dari jumlah perbedaan yanf terdapat dalam dua string. Pada perhitungan jarak antara dua string yang ditentukan dari jumlah minimum operasi pada perubahan untuk membuat sebuah string A menjadi string B[12]. Fungsi Algoritma Levenshtein Distance yaitu matriks 2 dimensi yang digunakan untuk perhitungan nilai jarak dalam Levenshtein Distance. Dengan isi di dalam nilainya yaitu matriks yang mempunyai jumlah operasi penghapusan, penyisipan, dan penggantian yang diperlukan dalam mengubah sebuah string target. Berikut ini rumus algoritma Levenshtein Distance[28].

$$lev_{a,b}(i,j) = \begin{cases} max(i,j) & if \ min(i,j) = 0, \\ & \text{iii} \\ lev_{a,b}(i-1,j) + 1 \text{ (penghapusan)} \\ lev_{a,b}(i,j-1) + 1 \text{ (Penyisipan)} & otherwise \\ lev_{a,b}(i-1,j-1) + 1 \ if_{a_i \neq b_j}(\text{substitusi}) \end{cases}$$
 (2.5)

$$lev_{a,b}(i,j) = \min lev_{a,b}(i-1,j) + 1 \text{ (Penghapusan)}$$
 (2.6)

$$lev_{a,b}(i,j) = \min lev_{a,b}(i,j-1) + 1 \text{ (Penyisipan)}$$
 (2.7)

$$lev_{a,b}(i,j) = \min lev_{a,b} (i-1,j-1) + 1, ai \neq bj \text{ (Substitusi)}$$
 (2.8)

$$lev_{a,b}(i,j) = \min lev_{a,b} (i-1,j-1), ai = bj$$
 (Tidak ada (2. 9) perubahan)

#### Keterangan:

$$a =$$
 string Sumber $i = index$  baris  $string$  sumber $b =$  String Target $j = index$  baris  $string$  targetKondisi  $ai \neq bj$  $(a_i \neq b_j) =$  perlu menambahkan  $1 (+1)$ Kondisi  $ai \neq bj$  $(a_i = b_j) =$  tidak perlu menambahkan  $1 (+1)$ 

#### 2.10 Evaluasi Sistem

# 2.10.1 Perhitungan Precision

Pada proses perhitungan untuk sebuah efektivitas yang diperlukan dalam temu kembali informasi (*information retrieval*), dengan melakukan sebuah perhitungan untuk nilai presisi atau biasa disebut dengan nilai ketepatan, dan juga nilai perolehan (*recall*). *Precision* adalah sebuah kesamaan dalam permintaan informasi dari kata kunci pada sebuah sistem yang nantinya digunakan untuk menampilkan banyak dokumen ketika melakukan pencocokan dokumen yang dimana dokumen tersebut tidak *relevan*. Selanjutnya *recall* merupakan sebuah percobaan dalam jumlah dokumen yang nantinya dapat ditemukan dalam proses pencarian sistem temu kembali informasi atau *information retrieval*.

Pada proses *precision* (ketepatan) adalah rasio dari dokumen yang sesuai, dan juga jumlah dalam dokumen yang ditemukan dalam sebuah pencarian nantinya. Dalam presisi ini mempunyai kemampuan dalam sistem yang dimana untuk tidak memanggil dalam sebuah dokumen yang tidak relevan. Dalam menghitung nilai sebuah presisi atau nilai presisi, maka menggunakan persaman 2.5 berikut ini [11].

$$Presisi = \frac{Jumlah \ jawaban \ relevan \ sistem}{Total \ jawaban \ relevan \ pada \ sistem}$$
(2.3)

Perhitungan dalam kinerja sistem untuk koreksi kata atau *query* yang menerapkan dengan menggunakan metode presisi dan *recall*. Presisi adalah jumlah dalam dokumen yang mendapatkan kembali sebuah sistem yang sesuai. Sedangkan *recall* adalah jumlah dalam sebuah dokumen yang sesuai dengan yang dihasilkan dari adanya proses untuk mendapatkan kembali sebuah sistem.

#### 2.10.2 Perhitungan Recall

Selanjutnya adalah *recall* (perolehan) merupakan sebuah rasio yang digunakan sebagai perbandingan dari sebuah dokumen yang dapat ditemukan

dengan keseluruhan dokumen yang sesuai serta berada dalam sistem. *Recall* sama juga dalam kemampuan sebuah sistem untuk mengambil kembali sebuah dokumen yang relevan. Perhitungan nilai *recall* dapat digunakan dalam persamaan 2.6 berikut ini [11]

$$Recall = \frac{Jumlah jawaban relevan sistem}{Total jawaban relevan dalam teks}$$
 (2. 4)

#### 2.11 Penelitian Terkait

Pada tahun 2016[29], melakukan penelitian dengan melakukan koreksi kata dalam *preprocessing* analisis sentimen pengguna *twitter*, dimana hasil perbandingan dari metode yang digunakan yaitu *Levenshtein Distance* dan *Jaro-Winkler Distance* yaitu diperoleh hasil Metode *Levenshtein Distance* menghasilkan nilai tertinggi yaitu *accuracy* 72,40%, *recall* 72,07%, *fiscore* 79,11% sedangkan untuk hasil dari *Jaro-Winkler Distance* mempunyai *accuracy* 70%, *recall* 69,87% dan *f1score* 79,11%. Hal ini menunjukkan bahwa metode *Levenshtein Distance* lebih optimal untuk digunakan sebagai koreksi kata dalam *preprocessing*.

Pada tahun 2017[8], melakukan penelitian mengenai koreksi ejaan dengan menggunakan bahasa Indonesia untul metode *Levenshtein Distance*. Dimana hasil pengujian diperoleh yaitu sebanyak 90 data diantaranya terdapat 3 skenario meliputi *deletetion* (penghapusan) untuk akurasi sebesar 100% dengan waktu 23 mili detik, *insertion* (penyisipan) menghasilkan 93% dengan waktu 88 mili detik, dan *substitution* (substitusi) menghasilkan waktu 96% dengan waktu 5 mili detik.

Pada tahun 2018[1]. *Part-of-Speech* (POS) *Tagging* dengan menggunakan bahasa Indonesia digunakan peneliti untuk mengidentifikasi kelas kata ambigu. Dalam pemeriksaan ini dilakukan dengan menerapkan 71 prinsip sintaksis dalam melakukan perhitungan. Hasil yang diperoleh dari pengujian ini menunjukkan bahwa perhitungan menghasilkan nilai 92 kata dari banyaknya data 100 kata ambigu akurat, dua kata salah, dan enam kata yang tidak diselesaikan perhitungan. Ada beberapa penyebab yang mengakibatkan penyajian penghitungan, antara lain kelengkapan aturan, nama kelas (pelabelan kelas kata), dan korpus yang nanti dimanfaatkan dalam proses pelabelan fitur tata Bahasa (POS) *tagging*.

Pada tahun 2020[15] penelitian tentang *Part-of-Speech* (POS) *Tagging* metode *Rule Based*. Penulis menganalisa mengenai penggunaan untuk *Part-of-Speech* (POS) *Tagging* menggunakan bahasa inggris dengan pendekatan *rule based* lebih baik dibandingkan pendeka melalui *Stokastik*.

Pada tahun 2020[18] melakukan penelitian menggunakan *Autocorrect* pada pencarian obat atau disebut dengan *Drugs e-Dictionary*. Pada penelitian ini melakukan validasi *autocorrect*, untuk pencarian modul yang ada dalam *drugs e-dictionary*, dimana modul pencarian pada *drugs e-dictionary* dengan fitur *autocorrect* dapat mendeteksi kesalahan pengetikan dalam istilah yang dimasukkan dengan menghasilkan *output* istilah obat terdekat dalam database, selanjutnya melakukan secara otomatis memberikan saran perbaikan dan menampilkan hasil dari istilah obat yang ditingkatkan kepada pengguna, hal itu mencapai 90% akurasi kueri yang dimasukkan, dengan presisi 90% dan *recall* 90%.

Tabel 2. 1 Penelitian Terkait

| No. | Peneliti,<br>Tahun                                   | Permasalahan                                                                                                  | Metode                                                      | Hasil                                                                                                                                                                                                                                                                                                                                                    |
|-----|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | M.adnan<br>Nur<br>2016[29]                           | Melakukan<br>koreksi kata<br>dalam<br>preprocessing<br>analisis<br>sentimen<br>pengguna<br>twitter            | Perbandingan Levenshtein Distance dan Jaro-Winkler Distance | Metode Levenshtein Distance menghasilkan nilai tertinggi yaitu accuracy 72,40%, recall 72,07%, fiscore 79,11% sedangkan untuk hasil dari Jaro-Winkler Distance mempunyai accuracy 70%, recall 69,87% dan flscore 79,11%. Hal ini menunjukkan bahwa metode Levenshtein Distance lebih optimal untuk digunakan sebagai koreksi kata dalam preprocessing.   |
| 2.  | Muham<br>mad<br>Omar<br>Braddley<br>, dkk<br>2017[8] | Dengan<br>menggunakan<br>Levenshtein<br>Distance, kata<br>bahasa<br>Indonesia<br>dapat dikoreksi<br>ejaannya. | Levensthein<br>Distance                                     | Proses hasil pengujian diperoleh yaitu sebanyak 90 data diantaranya terdapat 3 skenario meliputi <i>deletetion</i> (penghapusan) untuk akurasi sebesar 100% dengan waktu 23 mili detik, <i>insertion</i> (penyisipan) menghasilkan 93% dengan waktu 88 mili detik, dan <i>substitution</i> (substitusi) menghasilkan waktu 96% dengan waktu 5 mili detik |

| No. | Peneliti,<br>Tahun                                                 | Permasalahan                                                                                                             | Metode                                                     | Hasil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.  | Dewi<br>Rosmala,<br>Zulfikar<br>Muham<br>mad<br>Risyad<br>2017[28] | Perhitungan Jarak Levenshtein pada Aplikasi Pencarian Kata Isu Kota Bandung di Twitter                                   | Algoritma<br>Levenshtein<br>Distance                       | Berdasarkan hasil pengujian yang dilakukan yaitu dengan menggunakan algoritma Levenshtein Distance mampu 100% mengubah kata dengan kesalahan ejaan pada tweet menjadi kata kunci pada kategori isu, isu yang diperoleh Pemerintah Kota Bandung menjadi lebih baik dan akurat.                                                                                                                                                                                                                                                                                                         |
| 4.  | Yazid & Fatwanto 2018[1]                                           | Peneliti melakukan proses penentuan kelas kata yang bersifat ambigu pada Part-of- Speech (POS) Tagging bahasa Indonesia. | Part-of-<br>Speech (POS)<br>Tagging                        | Pada data 100 kata ambigu dapat diatasi sebanyak 92 dengan kata ambigu (92%) dalam penggunaan <i>corpus</i> dihasilkan dimana korpus yang digunakan dalam proses <i>Part-f-Speech</i> (POS) <i>Tagging</i> mempengaruhi hasil dari proses pelabelan kata                                                                                                                                                                                                                                                                                                                              |
| 5.  | Pham & Student, 2020[15]                                           | Melakukan perbandingan untuk <i>Part-of- Speech</i> (POS) <i>Tagging</i> pada bahasa inggris                             | Pendekatan<br>Rule based<br>dan<br>pendekatan<br>Stokastik | Hasil penerapan dengan menggunakan pendekatan <i>rule Based</i> lebih efisien dan lebih cepat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.  | Halimah<br>Tus<br>Sadiah<br>dkk<br>2020[18]                        | Autocorrect pada Modul Pencarian Drugs e- Dictionary Menggunakan Algoritma Levenshtein Distance                          | Algoritma Levenshtein Distance                             | Hasil dari istilah obat yang ditingkatkan kepada pengguna, hal itu mencapai 90% akurasi kueri yang dimasukkan, dengan presisi 90% dan recall 90%, dimana menerapkan Algoritma Levenshtein Distance dan validasi autocorrect, dengan modul pencarian pada drugs e-dictionary memanfaatkan sebuah fitur autocorrect yang berfungsi untuk mendeteksi kesalahan pengetikan yang terdapat dalam istilah yang dimasukkan dengan output yaitu istilah obat terdekat dalam database, selanjutnyaa secara otomatis dapat smemberikan sebuah saran untuk perbaikan dan hasil dari istilah obat. |
| 7.  | K. Sakaguc hi, T. M. izumot, M. amoru                              | Melakukan penerapan koreksi kesalahan ejaan dan part- of-speech                                                          | Spelling<br>correction<br>dan POS<br>tagging               | Hasil yang diperoleh yaitu dengan melakukan pendekatan untuk memperbaiki kesalahan ejaan dan menetapkan tag <i>part-of-speech</i> (POS) <i>tagging</i> secara bersamaan untuk kalimat uang ditulis oleh pelajar bahasa inggris sebagai                                                                                                                                                                                                                                                                                                                                                |

| No. | Peneliti,<br>Tahun                                      | Permasalahan                                                                      | Metode | Hasil                                                                                                                                                                                                                                                                                                      |
|-----|---------------------------------------------------------|-----------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Komachi<br>, and Y.<br>M. ji<br>atsumot<br>2012<br>[30] | (POS) tagging<br>dalam tulisan<br>bahasa inggris<br>sebagai media<br>pembelajaran |        | bahasa kedua (ESL), menunjjukkan peningkatan yang signifikan secara statistik dalam penandaan POS dan koreksi ejaan, dengan hasil peningkatan nilai F sebesar 2,1% dan 3,8% untuk POS dan peningkatan nilai F sebesar 5,0% untuk koreksi kesalahan ejaan dibandingkan dengan baseline atau model pipeline. |

#### **BAB III**

#### METODE USULAN

Pada bab ini akan menjelaskan mengenai sebuah metode usulan maupun solusi yang direncanakan. Beberapa diantaranya yaitu tahapan penelitian, metode atau algoritma, arsitektur, dataset, dan evaluasi sistem serta skenario pengujian.

#### 3.1 Tahapan Penelitian

Pada tahapan penelitian ini, akan dilakukan beberapa tahapan antara lain:

#### 3.1.1 Studi Literatur

Pada tahapan ini melakukan atau mencari referensi baik membaca agar memperoleh informasi dan melakukan pengumpulan informasi yang dibutuhkan dan dipelajari agar nantinya membantu dalam menyelesaikan penelitian. Beberapa informasi yang diperoleh yaitu dengan membaca, mempelajari literatur dari buku, jurnal, laporan penelitian, dan situs-situs website yang berkaitan dengan proposal penelitian skripsi ini. Data yang dikumpukan yaitu berupa materi tentang atribut penyusunan koreksi ejaan query dengan menggunakan metode Levenshtein Distance dan Part-of-Speech (POS) Tagging.

# 3.1.2 Analisis dan Perancangan Arsitektur Sistem

Pada bagian analisis sistem ini yaitu berdasarkan hasil yang diperoleh dan dipelajari dari studi literatur yang dilakukan. Setelah melakukan analisa sebelumnya, maka selanjutnya merencanakan kerangka kerja sistem sebelum dilakukan pengimplementasian dengan menggunakan bahasa pemprograman. Pada penelitian ini, sistem yang akan dibangun adalah sebuah sistem koreksi kesalahan ejaan kata terhadap *query* pencarian artikel pariwisata berbahasa Indonesia menggunakan *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging*. Berikut ini terdapat rancangan arsitektur atau diagram IPO dari sistem koreksi kesalahan ejaan kata pada artikel berita pariwisata, dapat dilihat pada Gambar 3. 1 dibawah ini.



Gambar 3. 1 Diagram IPO

Dapat dilihat pada Gambar 3. 1 diketahui perencanaan sistem pada penelitian ini adalah:

#### 1. *Input* data

Proses awal yang dilakukan dengan meng*input*kan data berupa *query* (terdiri dari satu atau beberapa kata kunci) berita pariwisata pada mesin pencarian atau *search engine* bahasa Indonesia atau SEBI. Data yang di *input*kan berupa kata dari kata kunci (*query*) yang diinginkan sesuai dengan kebutuhan.

#### 2. Process pengolahan dan pelabelan kelas kata (tag) query berita pariwisata.

Tahap ini akan melakukan proses pengolahan data *query* berita pariwisata yang di*input*kan sebelumnya, dengan melakukan *preprocessing* data. Selanjutnya kamus yang sudah tersedia didalam *database* yaitu gabungan dari data kamus berita pariwisata dan kamus bahasa Indonesia yang diperoleh dari *github* dengan *link* https://github.com/*keyreply*/Bahasa-Indo-NLP-Dataset. Melakukan koreksi ejaan *query* dengan metode *Levenshtein Distance* dengan

menghitung sebuah matriks yang digunakan untuk menghitung jarak perbedaan dari dua *string* diantaranya *string* sumber dan *string* target.

Kemudian melakukan pelabelan kelas kata (tag) query menggunakan Partof-Speech (POS) Tagging dengan Rule Based yaitu metode berbasis aturan,
menggunakan corpus. Selanjutnya melakukan pembobotan setiap term di
dalam dokumen menggunakan TF-IDF, dengan mengukur similaritas antara
hasil koreksi ejaan query yang dibenarkan dengan query ejaan salah, yang
nantinya dibandingkan dengan kamus untuk melakukan pemeriksaan query
yang diinputkan menggunakan cosine similarity, serta menghitung nilai cosine
similarity untuk mengecek kesamaan dari kamus yang ada.

## 3. *Output* perbaikan *query* dari data yang di*input*kan.

Output perbaikan query dari koreksi ejaan meggunakan metode Levenshtein Distance dan memberikan tag pada query menggunakan Part-of-Speech (POS) Tagging untuk kata ambigu pada query pencarian (SEBI) berita pariwisata. Maka output yang diperoleh yaitu perbaikan query berita pariwisata pada mesin pencarian (SEBI) dan mengecek ambiguitas dengan memberikan tag dari hasil perbaikan query yang diinputkan. Kemudian menampilkan data artikel berita pariwisata yang sudah dilakukan pemberian tag dengan menggunakan Part-of-Speech (POS) Tagging dengan penerapan cosine similarity.

## 3.1.3 Implementasi Sistem

Rancangan sistem yang telah dibuat ini nantinya akan diimplementasikan, dimana tahapan dari implementasi ini dimulai dengan menyiapkan data yang digunakan untuk melakukan koreksi ejaan query berita pariwisata dengan menggunakan metode Levenshtein Distance dan Part-of-Speech (POS) Tagging. Selanjutnya membuat program untuk proses data, dan melakukan proses uji coba dengan data testing yang digunakan. Pada proses implementasi ini nantinya data akan diolah dengan menggunakan Python dan hasil akhir menggunakan framework yaitu streamlit App.

## 3.1.4 Uji Coba Sistem

Pada tahapan uji coba sistem, nantinya akan melakukan proses uji coba, dimana data diproses dengan menggunakan metode *Levenshtein Distance* sehingga

dapat melakukan pengoreksian ejaan *query* berita pariwisata dan mengatasi ambiguitas kata dengan teknik melakukan pemberian tag pada *query*.

#### 3.1.5 Analisa dan Evaluasi

Pada tahapan ini yaitu dilakukan untuk mengetahui nilai *presisi* dari koreksi ejaan *query* dengan menggunakan metode *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging*. Apabila nilai *presisi* dari proses pengujian tidak sesuai dengan harapan, maka nantinya akan dilakukan evaluasi terhadap rancangan arsitektur sistem yang dibuat.

#### 3.2 Dataset

Penelitian ini menggunakan dataset berita pariwisata bahasa Indonesia yang diperoleh dari penelitian terdahulu dengan melakukan *crawling* data berita pariwisata yang dimana data yang digunakan adalah data pada *website* yaitu laman *Detik.com* dengan data yang diperoleh sebanyak 332 dokumen dengan 133.403 kata. Hasil *crawling* data berita pariwisata yang diperoleh, terdapat judul, tanggal, link dan juga konten.

## 3.2.1 Data Corpus

Corpus adalah sebuah kumpulan teks yang tersusun dalam secara sistematis, dan teks yang terdapat didalam corpus digunakan dalam situasi dan kehidupan nyata[14]. Data corpus untuk melakukan proses Part-of-Speech (POS) Tagging yang digunakan dalam penelitian ini merupakan sebuah corpus bahasa Indonesia yang dibuat oleh ahli bahasa yang berasal dari Fakultas Ilmu Komputer Universitas Indonesia yang sudah diberi label dengan data corpus yang dapat di ambil di github https://github.com/famrashel/idn-tagged-corpus#readmemd-versi-bahasa, dan juga diambil dari link berikut http://bahasa.cs.ui.ac.id/postag/corpus.

#### 3.2.2 Data Kamus

Data kamus yang didapat dari gabungan data bahasa Indonesia dengan kategori berita pariwisata sebanyak 332 dokumen dengan 133.403 kata dan juga data kamus bahasa Indonesia dari *github* dengan *link* https://github.com/keyreply/Bahasa-Indo-NLP-Dataset sebanyak 14.555 kata yaitu dengan data kamus baru sebanyak 23.888 kata yang disimpan di *file csv*. Berikut ini adalah tabel 3.1 dihalaman selanjutnya.

Tabel 3. 1 Data Kamus

| Baris<br>ke | Kata    |
|-------------|---------|
| 1           | aba     |
| 2           | abad    |
| 3           | abadi   |
| 4           | abah    |
|             |         |
|             | •••     |
| 23884       | zum     |
| 23885       | zumba   |
| 23886       | zuna    |
| 23887       | zuroh   |
| 23888       | zusnali |

#### 3.2.3 Inverted Index

Pada proses *inverted index* dengan TF-IDF, yaitu pada *term* (kata) yang dibuat untuk mempresentasikan *term* (kata) yang unik dalam koleksi dokumen, kemudian frekuensi kemunculan setiap *term* pada dokumen disimpan, dan dibuat *inverted index* atau daftar dokumen dari setiap *term* yang dibuat. Selanjutnya diurutkan katanya (*term*) dimana setiap *term*nya mempunyai bobot kata, selanjutnya diurutkan dan diperoleh *inverted index*. Hasil dari *inverted index* berupa *term* (kata) yang sudah punya bobot atau artikel berita pariwisata yang sudah di *inverted index*, digunakan untuk mengurutkan kata yang memiliki bobot paling tinggi. Sehingga untuk menampilkan artikel berita pariwisata yang sudah di *inverted index* dengan *query* yang sudah dilakukan perbaikan, akan dilakukan atau di proses didalam *cosine similarity*. Berikut ini adalah *flowchart* dari *inverted index* pada gambar 3.3 yang berada dibawah ini.



Gambar 3. 2 Inverted index

Pada bagian ini adalah contoh proses *inverted index* dengan data yang sederhana yaitu sebagai berikut :

Misalkan terdapat 6 (enam) dokumen teks yang terdapat dalam tabel 3.2 dibawah ini yaitu sebagai berikut :

Tabel 3. 2 Dokumen artikel pariwisata

| Dokumen | Tokenization                                                                                                     |
|---------|------------------------------------------------------------------------------------------------------------------|
| Q       | Karnaval budaya di klaten                                                                                        |
| 1       | "['reog', 'hingga', 'pentas', 'tari', 'meriahkan', 'karnaval', 'budaya', 'di', 'klaten']"                        |
| 2       | "['karnaval', 'budaya', 'klaten', 'usung', 'berbagai', 'potensi', 'seni', 'budaya']"                             |
| 3       | "['siang', 'ini', 'ada', 'karnaval', 'budaya', 'di', 'pusat', 'kota', 'klaten', 'ini', 'pengalihan', 'arusnya']" |
| 4       | "['kesenian', 'kuda', 'kosong', 'meriahkan', 'helaran', 'budaya', 'di', 'cianjur']"                              |
| 5       | "['perhatian', 'asn', 'pemprov', 'dki', 'ini', 'aturan', 'uji', 'coba', 'wfh']"                                  |
| 6       | "['lomba', 'perahu', 'bidar', 'kembali', 'digelar', 'setelah', 'vakum', 'tahun']"                                |

Pertama yang perlu dilakukan yaitu membuat *inverted index* melalui membagi setiap dokumen menjadi token-token atau kata-kata individu. Hasil dari ketiga token tersebut nantinya seperti pada Tabel 3.2 yaitu Dokumen artikel pariwisata. Kedua membuat daftar unik yang dimana dari semua token yang ditemukan dalam dokumen-dokumen tersebut akan menjadi daftar unik atau menjadi kunci dalam *inverted index*. Ketiga membuat sebuah posting list untuk setiap token yang terdapat dalam daftar unik, dimana dalam *posting list* ini yaitu dimana token dari *query* yang sesuai dengan kata kunci "karnaval budaya klaten" dimana dalam token ini, dokumen mana saja yang berisi informasi yang mengandung token. Berikut adalah Tabel 3. 3 contoh dari perhitungan dari *term* dalam setiap dokumen yang berada dihalaman selanjutnya.

Tabel 3. 3 Proses Hitung Term dalam setiap dokumen

| T          | 0 |    |    | t         | f         |           |           | df | D/df | IDF(log    |         | W         | = TF*(ID | F(log D/d | <b>f</b> )) |           |         |
|------------|---|----|----|-----------|-----------|-----------|-----------|----|------|------------|---------|-----------|----------|-----------|-------------|-----------|---------|
| Term       | Q | D1 | D2 | <b>D3</b> | <b>D4</b> | <b>D5</b> | <b>D6</b> | aı | D/ai | D/df)      | D1      | <b>D2</b> | D3       | D4        | D5          | <b>D6</b> | Q       |
| reog       | 0 | 1  | 0  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0,77815 | 0         | 0        | 0         | 0           | 0         |         |
| hingga     | 0 | 1  | 0  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0,77815 | 0         | 0        | 0         | 0           | 0         | 0       |
| pentas     | 0 | 1  | 0  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0,77815 | 0         | 0        | 0         | 0           | 0         | 0       |
| tari       | 0 | 1  | 0  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0,77815 | 0         | 0        | 0         | 0           | 0         | 0       |
| meriahkan  | 0 | 1  | 0  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0,77815 | 0         | 0        | 0         | 0           | 0         | 0       |
| karnaval   | 1 | 1  | 1  | 1         | 0         | 0         | 0         | 3  | 2    | 0,30103    | 0,30103 | 0,30103   | 0,30103  | 0         | 0           | 0         | 0,30103 |
| budaya     | 1 | 1  | 2  | 1         | 1         | 0         | 0         | 5  | 1,2  | 0,07918125 | 0,07918 | 0,15836   | 0,07918  | 0,07918   | 0           | 0         | 0,07918 |
| di         | 1 | 1  | 0  | 1         | 1         | 0         | 0         | 3  | 2    | 0,30103    | 0,30103 | 0         | 0,30103  | 0,30103   | 0           | 0         | 0,30103 |
| klaten     | 1 | 1  | 1  | 0         | 0         | 0         | 0         | 2  | 3    | 0,47712125 | 0,47712 | 0,47712   | 0        | 0         | 0           | 0         | 0,47712 |
| usung      | 0 | 0  | 1  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0,77815   | 0        | 0         | 0           | 0         | 0       |
| berbagai   | 0 | 0  | 1  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0,77815   | 0        | 0         | 0           | 0         | 0       |
| potensi    | 0 | 0  | 1  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0,77815   | 0        | 0         | 0           | 0         | 0       |
| seni       | 0 | 0  | 1  | 0         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0,77815   | 0        | 0         | 0           | 0         | 0       |
| siang      | 0 | 0  | 0  | 1         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0,77815  | 0         | 0           | 0         | 0       |
| ini        | 0 | 0  | 0  | 1         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0,77815  | 0         | 0           | 0         | 0       |
| ada        | 0 | 0  | 0  | 1         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0,77815  | 0         | 0           | 0         | 0       |
| pusat      | 0 | 0  | 0  | 1         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0,77815  | 0         | 0           | 0         | 0       |
| kota       | 0 | 0  | 0  | 1         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0,77815  | 0         | 0           | 0         | 0       |
| pengalihan | 0 | 0  | 0  | 1         | 0         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0,77815  | 0         | 0           | 0         | 0       |
| arusnya    | 0 | 0  | 0  | 0         | 1         | 0         | 0         | 1  | 6    | 0,77815125 | 0       | 0         | 0        | 0,77815   | 0           | 0         | 0       |

| Term      |   |    |    | t         | f         |           |           | df | D/df | IDF(log    |    | W  | = TF*(ID | F(log D/d | <b>f</b> )) |         | 0 |
|-----------|---|----|----|-----------|-----------|-----------|-----------|----|------|------------|----|----|----------|-----------|-------------|---------|---|
| 1 erm     | Q | D1 | D2 | <b>D3</b> | <b>D4</b> | <b>D5</b> | <b>D6</b> | aı | D/ai | D/df)      | D1 | D2 | D3       | D4        | <b>D5</b>   | D6      | Q |
| kesenian  | 0 | 0  | 0  | 0         | 1         | 0         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0,77815   | 0           | 0       | 0 |
| kuda      | 0 | 0  | 0  | 0         | 1         | 0         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0,77815   | 0           | 0       | 0 |
| kosong    | 0 | 0  | 0  | 0         | 1         | 0         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0,77815   | 0           | 0       | 0 |
| helaran   | 0 | 0  | 0  | 0         | 1         | 0         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0,77815   | 0           | 0       | 0 |
| cianjur   | 0 | 0  | 0  | 0         | 1         | 0         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0,77815   | 0           | 0       | 0 |
| perhatian | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| asn       | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| pemprov   | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| dki       | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| aturan    | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| uji       | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| coba      | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| wfh       | 0 | 0  | 0  | 0         | 0         | 1         | 0         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0,77815     | 0       | 0 |
| lomba     | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| perahu    | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| bidar     | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| kembali   | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| digelar   | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| setelah   | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| vakum     | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |
| tahun     | 0 | 0  | 0  | 0         | 0         | 0         | 1         | 1  | 6    | 0,77815125 | 0  | 0  | 0        | 0         | 0           | 0,77815 | 0 |

Hasil dari proses *inverted index*nya yaitu mengurutkan dokumen dengan bobot tertinggi dan bertujuan memungkinkan proses pencarian dokumen yang efisien dan cepat dari *query* yang cari. Berikut ini Tabel 3. 4 dibawah ini hasil dari *inverted index* secara manual.

Tabel 3. 4 *Inverted index* 

| Token    | Dokumen     |
|----------|-------------|
| Karnaval | D1,D2,D3    |
| budaya   | D1,D2,D3,D4 |
| di       | D1,D3, D4   |
| Klaten   | D1, D2      |

# 3.2.4 Data Uji

Data uji ini dilakukan dengan membuat sebuah *query* salah dan *query* benar yang nantinya akan dilakukan dalam koreksi ejaan terhadap *query* bahasa Indonesia pada pencarian artikel berita pariwisata. Dalam *query* ini mencakup mengenai pariwisata. Data uji yang digunakan dalam penelitian ini berjumlah 100 data *query* salah tentang pariwisata yang diperoleh dari artikel berita pariwisata menggunakan *microsoft excel* dengan memasukkan kata yang terdapat didalam kamus. Kesalahan kata dalam data uji meliputi dari rincian *query* berupa operasi penyisipan, penghapusan, dan substitusi. Berikut ini Tabel 3.5 Data Uji *query*.

Tabel 3. 5 Data Uji

| Baris<br>ke- | Query Salah                    | Query Benar                     |  |  |
|--------------|--------------------------------|---------------------------------|--|--|
| 1.           | Kepalla Dienas                 | Kepala Dinas                    |  |  |
| 2.           | Pntas Tari Meriahkn Karrnaval  | Pentas Tari Meriahkan Karnaval  |  |  |
| ۷.           | Bdaya                          | Budaya                          |  |  |
| 3.           | Siagn Inie Adha Kanraval       | Siang Ini Ada Karnaval          |  |  |
| 4.           | Pemmuda lahraga daen Parwisata | Pemuda Olahraga dan Pariwisata  |  |  |
| 4.           | Pemkabb Klateen                | Pemkab Klaten                   |  |  |
| 5.           | Mengikti pawwai pembagnunan    | Mengikuti pawai pembangunan     |  |  |
| 6.           | Parriwsta                      | Pariwisata                      |  |  |
| 7.           | Pamerran tepradu sekttor       | Pameran terpadu sektor          |  |  |
| 7.           | perdagnagan, pariwisatta       | perdagangan, pariwisata         |  |  |
| 8.           | samppah di detinasi wista      | sampah di destinasi wisata      |  |  |
| 9.           | Pembangnan ppariwisata         | Pembangunan pariwisata          |  |  |
| 9.           | brkelanjutann                  | berkelanjutan                   |  |  |
| 10.          | Menterii Parriwisata ddan      | Menteri Pariwisata dan Ekobaris |  |  |
| 10.          | Ekonmoi Krreatif               | ke mi Kreatif                   |  |  |

## 3.3 Text Preprocessing

Pada tahapan ini yaitu dilakukan *preprocessing*, untuk membuat koleksi data siap untuk digunakan. Data mentah di proses pada tahap *preprocessing*. Proses *preprocessing* teks ini digunakan untuk mengurangi *noise* dan merapikan data, menyamakan bentuk kata, dan mengurangi volume data. Sehingga nantinya data yang sudah di *preprocessing* akan siap di proses, sedangkan data yang di proleh dari hasil *crawling* akan dihapus. Terdapat langkah-langkah dalam tahapan *preprocessing*. Pada Gambar 3. 3 dibawah ini adalah diagram alurnya.



Gambar 3. 3 Diagram Alur Preprocessing

Berikut merupakan deskripsi alur atau tahapan pada Gambar 3.3 dalam penelitian koreksi kesalahan ejaan antara lain:

## 1. Case Folding.

Case Folding yaitu cara paling umum untuk mengubah huruf kapital menjadi huruf kecil, dimana dalam setiap karakter a-z pada suatu kata maupun kalimat akan diubah dari huruf besar menjadi huruf kecil[31]. Berikut hasil dari case folding pada Tabel 3. 6 di halaman berikut.

Tabel 3. 6 Case Folding

| Kata Sebelum Case Folding               | Kata Setelah Case Folding               |  |  |  |  |
|-----------------------------------------|-----------------------------------------|--|--|--|--|
| Kesenian Kuda Kosong Meriahkan          | kesenian kuda kosong meriahkan          |  |  |  |  |
| Helaran Budaya di Cianjur               | helaran budaya di cianjur               |  |  |  |  |
| Bali Jadi Potret Pengelolaan Pariwisata | bali jadi potret pengelolaan pariwisata |  |  |  |  |
| Labuan Bajo                             | labuan bajo                             |  |  |  |  |

# 2. Cleaning

Cleaning merupakan proses membersihkan sebuah karakter tertentu yang tidak dibutuhkan seperti simbol dan angka dalam kata maupun kalimat [31]. Berikut contoh hasil dari *cleaning* pada Tabel 3.7 dibawah ini.

Tabel 3. 7 Cleaning

| Ka          | ta Sebe  | elum <i>Clea</i> | ning         | K                         | ata Set | elah <i>Cleat</i> | ning         |  |
|-------------|----------|------------------|--------------|---------------------------|---------|-------------------|--------------|--|
| kesenian    | kuda     | kosong           | meriahkan    | kesenian                  | kuda    | kosong            | meriahkan    |  |
| helaran bu  | ıdaya di | i cianjur        |              | helaran budaya di cianjur |         |                   |              |  |
| bali jadi p | otret p  | engelolaaı       | n pariwisata | bali jadi p               | otret p | engelolaaı        | n pariwisata |  |
| labuan baj  | jo       |                  |              | labuan baj                | jo      |                   |              |  |

# 3. Tokenizing

*Tokenizing* merupakan proses pemecahan suatu kalimat menjadi satuan-satuan terkecil (kata/token)[31]. Berikut contoh hasil dari *tokenizing* pada Tabel 3. 8 dibawah ini.

Tabel 3. 8 Tokenizing

| Kata Sebelum <i>Tokenizing</i>          | Kata Setelah <i>Tokenizing</i>             |
|-----------------------------------------|--------------------------------------------|
| kesenian kuda kosong meriahkan          | ['kesenian','kuda', 'kosong', 'meriahkan'] |
| bali jadi potret pengelolaan pariwisata | ['bali', 'jadi', 'potret', 'pengelolaan',  |
| labuan bajo                             | 'pariwisata', 'labuan','bajo']             |

## 3.4 Arsitektur Sistem



Gambar 3. 4 Arsitektur Sistem

Pada Gambar 3. 4 sebelumnya merupakan arsitektur sistem yang terdiri dari beberapa tahapan berikut ini:

Pada *query*, proses yang dilakukan meng*input*kan data *query* teks yang berkaitan dengan berita pariwisata, dimana *query* yang di*input*kan adalah *query* salah dari 100 data uji *query* yang dibuat yaitu *query* benar dan *query* salah. Setelah itu, melakukan *preprocessing* data *query*, dimana terdapat beberapa tahapan dalam *preprocessing*, diantaranya *case folding*, *cleaning*, *tokenization*. Dan menyiapkan data kamus (gabungan data hasil *crawling* yang diperoleh dari penelitian sebelumnya, dan dilakukan pada *website* atau laman *Detik.com* dengan kategori berita pariwisata dan data kamus bahasa Indonesia dari *github* dengan *link* https://github.com/keyreply/Bahasa-Indo-NLP-Dataset) yang nantinya disimpan di *database*.

Kemudian hasil dari *preprocessing* pada *query*, akan dilakukan pengecekan apakah sesuai kamus (kamus dengan kategori artikel berita pariwisata) atau tidak. Apabila *query* yang di*inpu*tkan salah, akan dilakukan pengecekan dengan menggunakan metode *Levenshtein Distance* untuk menghitung jarak antara dua *string* yang bertujuan melakukan koreksi kesalahan ejaan dan mengetahui perbaikan ejaan kata dari *query* yang di*inputkan*, dengan melakukan pengecekan dengan membandingkan kamus yang ada di *database*. Sebaliknya, apabila *query* tersebut sesuai dengan kamus, maka akan menampilkan saran kata berupa *query* benar.

Metode Levenshtein Distance dilakukan dimana suatu matriks untuk mengukur jumlah perbedaan antara dua string atau karakter, yang memiliki panjang karakter yang sama dengan kata input. Levenshtein Distance dua buah string merupakan jumlah dari minimum operasi yang dibutuhkan untuk mengubah sebuah string (source string) menjadi string yang lain (string target). Dalam algoritma Levenshtein Distance ini merupakan suatu operasi yang melibatkan penyisipan (insertion), penghapusan (deletion), penggantian (substitution) dari suatu karakter tunggal.

Selanjutnya, dalam proses evaluasi sistem perbaikan *query* yang di*input*kan, yaitu menghitung nilai presisi dari *query* yang terdapat didalam 100 data uji *query* yang telah dibuat sebelumnya. Prosedur yang ada di dalam evaluasi sistem

perbaikan ini, apabila *query* yang di*input*kan sesuai maka akan menampilkan *query* benar, sebaliknya jika tidak berarti *query* tersebut adalah *query* salah. Kemudian, ketika *query* yang di*input*kan sudah benar, maka akan dilakukan proses *Part-of-Speech* (POS) *Tagging* untuk memberikan pelabelan kelas kata secara otomatis dalam suatu kalimat, dengan teknik melakukan pelabelan kelas kata (pemberian *tag*) dengan menggunakan *corpus* bahasa Indonesia.

Part-of-Speech (POS) Tagging dengan metode Rule Based digunakan sebagai dasar penelitian dari information retrieval yaitu melakukan pelabelan kelas kata dengan memberikan tag menggunakan corpus bahasa Indonesia. Tujuan dari adanya Part-of-Speech (POS) Tagging ini untuk mengetahui adanya ambiguitas kata atau kata ambigu, dengan memberikan informasi mengenai jenis kata atau kelas kata dalam suatu kalimat. Misalnya, kata "kosong" dapat memiliki dua makna yang berbeda, yaitu Rangkaian Helaran budaya itu dibuka dengan ikon khas Cianjur yakni Kuda Kosong. Pada konteks dengan menggunakan Part-of-Speech (POS) Tagging, dapat mengetahui apakah makna yang tepat dari kata tersebut berdasarkan konteks kalimatnya, yaitu kata "kosong" sebagai kata sifat yang berarti tidak berisi atau kata "kosong" sebagai nama suatu objek atau entitas nama tempat atau istilah lokal yang mungkin menjadi ikon khas Cianjur.

Kemudian, melakukan pembobotan kata dari *term* menggunakan *TF-IDF* untuk mengetahui frekuensi setiap kata didalam dokumen, dimana *term TF* diperhitungkan untuk pemberian bobot terhadap suatu kata, karena nantinya hasilnya pembobotan *TF-IDF* berupa angka. Hasil dari pembobotan kata ini nantinya dilakukan proses *inverted index* untuk melakukan pengurutan dengan memberikan *index* dari dokumen berita pariwisata yang memiliki bobot paling tinggi. Kemudian dari hasil *inverted index* ini dilakukan pengecekan dengan menggunakan *cosine similiarity* untuk mengukur seberapa sesuai suatu dokumen berita pariwisata dengan *query* yang di*input*kan oleh pengguna. Kemudian untuk melakukan pengecekan dari dua dokumen tersebut dapat diketahui dokumen yang mempunyai kemiripan paling tinggi dari kesamaan dengan *query* yang *input*kan oleh pengguna dengan mengecek kamus yang digunakan.

Setelah itu, *output* dari sistem ini adalah hasil koreksi ejaan *query* yang benar dimana dalam pengecekan pada *query* pencarian yang di *input*kan akan mengetahui

adanya ambiguitas kata dengan teknik pelabelan kelas kata (pemberian tag). Hasil dari pengecekan tersebut menampilkan informasi mengenai artikel berita pariwisata. Kemudian dari hasil *query* yang di*input*kan berupa perbaikan kata dan informasi terkait artikel berita pariwisata berbahasa Indonesia. Selanjutnya melakukan evaluasi sistem, untuk skenario uji coba dengan menghitung nilai akurasi berupa *presisi* dengan atau tanpa menggunakan *Part-of-Speech* (POS) *Tagging* dan menggunakan metode *Levenshtein Distance*.

Proses dataset, dalam proses dataset ini nantinya akan menghasilkan sebuah kamus, yang mana kamus yang dibuat berkaitan dengan dataset atau koleksi data yang berjumlah 332 dokumen yang dilakukan proses pembuatan kamus dengan melakukan persamaan pada kamus *indonesianword.txt*, kemudian dari dataset ini juga dilakukan proses *preprocessing* yang mana dalam proses ini nantinya akan dilakukan *case folding, cleaning, tokenization, stopword removal,* dan *stemming*. Setelah itu dilakukan *Part-of-Speech* (POS) *Tagging* dalam artikel berita pariwisata didalam dokumen tersebut, untuk mengetahui adanya kata ambigu, sehingga dilakukan pelabelan kelas kata, dengan tujuan untuk dapat menentukan makna kata yang tepat dari kata tersebut berdasarkan konteks kalimatnya. Dengan demikian penggunaan *Part-of-Speech* (POS) *Tagging* dapat memahami makna kata yang ambigu. Selanjutnya akan dilakukan pembobotan *TF-IDF*, yang nantinya hasil dari pembobotan kata dari berita pariwisata, nantinya akan dilakukan *inverted index* untuk mengurutkan kata yang sudah mempunyai bobot dari dokumen berita pariwisata yang memiliki bobot paling tinggi.

## 3.5 Flowchart Algoritma

#### 3.5.1 Flowchart Levenshtein Distance

Levenshtein Distance direpresentasikan yaitu dengan memulai dari bagian sudut kiri atas yang mempunyai sebuah array dua dimensi (matriks), yang sebelumnya dilakukan pengisian dari sejumlah karakter untuk string sumber maupun string target. Sehingga nantinya nilai yang di masukkan didalam matriks akan melakukan perhitungan dengan mempresentasikan sebuah nilai yang terkecil dari hasil perubahan yang diperoleh dalam karakter yang terdapat di dalam string sumber maupun string target. Hasil masukan dari perhitungan yang terdapat dalam

ujung kanan bawah matriks nantinya akan merepresentasikan nilai *distance* dengan menggambarkan jumlah perbedaan yang terdapat didalam dua *string*. Terdapat beberapa langkah-langkah dalam penerapan algoritma *Levenshtein Distance* untuk memperoleh nilai *distance*. Pada Gambar 3. 5 dihalaman selanjutnya, adalah *flowchart* dari algoritma *Levenshtein Distance*.



Gambar 3. 5 Flowchart Levenshtein Distance

Pada tahapan yang terdapat dalam gambar dalam algoritma *Levenshtein* Distance[32]. Dalam hal ini, dapat di representasikan untuk *string* sumber (s) dan *string* target (t), adapun langkah-langkah yang dilakukan yaitu:

- Langkah pertama melakukan inisiasi yaitu sebagai berikut:
- a. Menghitung panjang dari *string* sumber dan *string* target, dengan inisiasi yaitu
   m dan juga n
- b. Membuat sebuah matriks yang berukuran 0...m baris dan 0...n kolom
- c. Melakukan inisiasi pada baris pertama dengan 0...n
- d. Selanjutnya membuat sebuah inisiasi berupa kolom dengan 0...m

- Langkah kedua adalah proses selanjutnya ketika sudah melakukan langkah pertama
- a. Melakukan pengecekan atau memeriksa dari *string* sumber S[i] untuk 1 < i < n
- b. Melakukan pengecekan atau memeriksa dari *string* target T[j] untuk  $1 \le j \le m$
- c. Apabila terdapat *string* sumber sama dengan *string* target atau bisa dikatakan S[i] = T[j], maka entrinya yaitu berupa nilai yang terletak tepat di diagonal yang atas posisi sebelah kiri atau bisa diinisiasi d[i,j] = d[i-1,j-1]
- d. Selanjutnya, apabila terdapat *string* sumber tidak sama dengan *string* target S[i]
   ≠ T[j], maka entrinya yaitu berupa d[i,j] hasil minimum dari:

Sebuah nilai yang ada dan terletak tepat diatasnya, kemudian ditambah satu, yaitu dengan inisiasi d[i,j-1]+1

Setelah itu, apabila Nilai yang terletak tepat dikirinya, akan ditambah satu, yaitu d[i-1,j]+1

Dan terletak pada bagian tepat didiagonal atas sebelah kirinya, ditambah satu, yaitu d[i-1,j-1]+1

- Kemudian melakukan langkah ketiga, dimana dalam langkah ini, hasil dari entri matriks yang dilakukan pada baris ke -i dan pada kolom ke-j dapar diinisiasi, yaitu d[i,j].
- ➤ Hasil dari proses atau langkah yang dilakukan sebelumnya, maka proses atau langkah kedua dilakukan atau diulang kembali sehingga entri dari d[m,n] ditemukan.

## 3.5.2 Perhitungan Metode Levenshtein Distance

Pada perhitungan dengan menggunakan metode *Levenshtein Distance* terdapat sebuah *string* yang terdiri dari dua *string* (*string* sumber dan *string* target) yang digunakan dalam contoh perhitungan dari algoritma *Levenshtein Distance*. Berikut ini adalah rumus dari *Levenshtein Distance*.

$$lev_{a,b}(i,j) = \begin{cases} max(i,j) & if \ min(i,j) = 0, \\ lev_{a,b}(i-1,j) + 1 \ \text{(penghapusan)} \\ lev_{a,b}(i,j-1) + 1 \ \text{(Penyisipan)} & otherwise \\ lev_{a,b}(i-1,j-1) + 1 \ if_{a_i \neq b_j}(\text{substitusi}) \end{cases}$$

$$lev_{a,b}(i,j) = \min lev_{a,b} (i-1,j) + 1 \text{ (Penghapusan)}$$
(2.5)  

$$lev_{a,b}(i,j) = \min lev_{a,b} (i,j-1) + 1 \text{ (Penyisipan)}$$
(2.6)  

$$lev_{a,b}(i,j) = \min lev_{a,b} (i-1,j-1) + 1, aj \neq bi \text{ (Substitusi)}$$
(2.7)  

$$lev_{a,b}(i,j) = \min lev_{a,b} (i-1,j-1), aj = bi \text{ (Tidak ada}$$
(2.8)  
perubahan)

## Keterangan:

$$a = string$$
 Sumber $i = index$  baris  $string$  sumber $b = string$  Target $j = index$  baris  $string$  targetKondisi  $ai \neq bj$  $(a_i \neq b_j)$ = perlu menambahkan 1 (+1) $(a_i = b_j)$ = tidak perlu menambahkan 1 (+1)

Terdapat variabel  $\boldsymbol{a}$  merupakan string sumber (input) dan  $\boldsymbol{b}$  adalah string target, kedua string ini akan dilakukan perhitungan jarak  $lev_{a,b}$ . Panjang setiap string akan ditambahkan 1, kemudian dilakukan pencocokan string untuk mendapatkan jarak. Setiap karakter yang sama baik dari string sumber dan string target akan dinilai 0 dan yang berbeda akan diberi nilai 1. Pada proses ini akan dilakukan secara berurutan dengan melakukan operasi penyisipan (insertion), penghapusan (deletion), penggantian (substitution). Semakin kecil nilai jarak antara string, maka akan direkomendasikan sebagai perbaikan kata. Berikut ini adalah contoh dari penerapan algoritma Levenhstein Distance.

String sumber (S) Tulis

String target (T) Turis

| 0 1 2 3 4 5<br>t 1 0 1 2 3 4<br>u 2 1 0 1 2 3<br>1 3 2 1 1 2 3<br>i 4 3 2 2 1 2 | S/T |   | t | u | r | i | S |   |             |
|---------------------------------------------------------------------------------|-----|---|---|---|---|---|---|---|-------------|
| 1 3 2 1 1 2 3<br>i 4 3 2 2 1 2                                                  | 5/1 | 0 | 1 | 2 | 3 | 4 | 5 |   |             |
| 1 3 2 1 1 2 3<br>i 4 3 2 2 1 2                                                  | t   | 1 | 0 | 1 | 2 | 3 | 4 |   |             |
| 1 3 2 1 1 2 3<br>i 4 3 2 2 1 2                                                  | u   | 2 | 1 | 0 | 1 | 2 | 3 |   |             |
| i 4 3 2 2 1 2                                                                   | 1   | 3 | 2 | 1 | 1 | 2 | 3 |   |             |
| Nilai iamala                                                                    | i   | 4 | 3 | 2 | 2 | 1 | 2 |   |             |
| s 5 4   3   3   2   1 ->   INIIai jarak                                         | s   | 5 | 4 | 3 | 3 | 2 | 1 | → | Nilai jarak |

Gambar 3. 6 Percobaan metode Levenshtein Distance di Excel

Pada perhitungan metode *Levenshtein Distance* terdapat substitusi huruf dari kata yang sebelumnya "Tulis" menjadi "Turis", dengan hasil jarak yaitu 1 yang berada di kolom warna kuning, dan kolom warna hijau menunjukkan hasil operasi dari substitusi yaitu 1.

## 3.5.3 Penerapan Part-of-Speech (POS) Tagging

Penggunaan *Part-of-Speech* (POS) *Tagging* ini bertujuan untuk mengetahui adanya ambiguitas kata dengan teknik pelabelan kelas kata, dimana dari pelabelan kelas kata ini nantinya berpengaruh dalam mengetahui kata yang bermakna banyak. Sehingga dari data artikel berita pariwisata ini akan dilakukan *Part-of-Speech* (POS) *Tagging*, dan membutuhkan *corpus* yang berisi sebuah kata-kata dan kumpulan beberapa kalimat dengan memberikan pelabelan kelas katanya, dan *corpus* yang digunakan pada penelitian ini yaitu *corpus* bahasa Indonesia. Penelitian ini menggunakan data *corpus* bahasa Indonesia dari Fakultas Ilmu Komputer Universitas Indonesia atau POS *Tag-Corpus Site* (ui.ac.id). Berikut terdapat beberapa macam *tagset* beserta contohnya yang terdapat pada Tabel 3.9 dihalaman selanjutnya[33].

Tabel 3. 9 Tagset POS Tagging

| Tag | Keterangan                                  | Contoh                                                                                                                                                                               |
|-----|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CD  | Cardinal number                             | dua, juta, enam, 7916, sepertiga, 0,025, 0,525, banyak, kedua, ribuan, 2007, 25                                                                                                      |
| CC  | Coordinating conjunction                    | dan, tetapi, atau                                                                                                                                                                    |
| DT  | Determiner / article                        | Para, Sang, Si                                                                                                                                                                       |
| OD  | Ordinal number                              | ketiga, ke-4, pertama                                                                                                                                                                |
| FW  | Foreign word                                | climate change, terms and conditions                                                                                                                                                 |
| JJ  | Adjective                                   | bersih, panjang, hitam, lama, jauh, marah, suram, nasional, bulat                                                                                                                    |
| IN  | Preposition                                 | dalam, dengan, di, ke, oleh, pada, untuk                                                                                                                                             |
| MD  | Modal and auxiliary verb                    | boleh, harus, sudah, mesti, perlu                                                                                                                                                    |
| NN  | Noun                                        | monyet, bawah, sekarang, rupiah                                                                                                                                                      |
| NEG | Negation                                    | tidak, belum, jangan                                                                                                                                                                 |
| NNP | Proper noun                                 | Boediobaris ke , Laut Jawa, Indonesia, India,<br>Malaysia, Bank Mandiri, BBKP, Januari, Senin,<br>Idul Fitri, Piala Dunia, Liga Primer, Lord of the<br>Rings: The Return of the King |
| NND | Classifier, partitive, and measurement noun | orang, ton, helai, lembar                                                                                                                                                            |
| PR  | Demonstrative noun                          | ini, itu, sini, situ                                                                                                                                                                 |
| PRP | Personal noun                               | saya, kami, kita, kamu, kalian, dia, mereka                                                                                                                                          |
| RB  | Adverb                                      | sangat, hanya, justru, niscaya, segera                                                                                                                                               |

| Tag | Keterangan                | Contoh                                                                                                                      |
|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| RP  | Particle                  | pun, -lah, -kah                                                                                                             |
| SC  | Subordinating conjunction | sejak, jika, seandainya, supaya, meski, seolah-<br>olah, sebab, maka, tanpa, dengan, bahwa, yang,<br>lebih daripada, semoga |
| SYM | Symbol                    | IDR, +, %, @                                                                                                                |
| UH  | Interjection              | brengsek, oh, ooh, aduh, ayo, mari, hai                                                                                     |
| VB  | Verb                      | merancang, mengatur, pergi, bekerja, tertidur                                                                               |
| WH  | Question                  | siapa, apa, mana, kenapa, kapan, di mana,<br>bagaimana, berapa                                                              |
| X   | Unkbaris ke wn            | statemen                                                                                                                    |
| Z   | Punctuation               | "", ?, .                                                                                                                    |

## a. Contoh Part-of-Speech (POS) Tagging pada Query

Contoh dari *Part-of-Speech* (POS) *Tagging* yang dimana dengan menerapkan modul CRF *Tagger* bertujuan untuk memberikan tag secara otomatis dan berbasis aturan untuk mempermudah dalam pelabelan kelas kata, dengan data yang digunakan adalah *query* artikel berita pariwisata yaitu terdapat pada Tabel 3. 10 dibawah ini

Tabel 3. 10 Contoh Part-of-Speech (POS) Tagging

| Query benar                        | Hasil Part-of-Speech (POS) Tagging  |  |  |  |
|------------------------------------|-------------------------------------|--|--|--|
| Kesenian Kuda Kosong Meriahkan     | Kesenian/NN, kuda/NN, kosong /JJ,   |  |  |  |
| Helaran Budaya Cianjur             | meriahkan/VB,helaran/NN,            |  |  |  |
|                                    | budaya/NN, cianjur/JJ               |  |  |  |
| Bali Potret Pengelolaan Pariwisata | Bali/VB, potret/NN, pengelolaan/NN, |  |  |  |
| Labuan Bajo                        | pariwisata/NN, labuan/NN, bajo/NNP  |  |  |  |

## b. Contoh Part-of-Speech (POS) Tagging pada artikel berita Pariwisata

Pada bagian ini memaparkan mengenai contoh penerapan dari ambiguitas kata dengan menggunakan *Part-of-Speech* (POS) *Tagging* dimana dalam contoh ini terdapat kata ambigu dengan teknik memberikan tag pada setiap kata untuk memastikan kata tersebut termasuk kata sifat atau kata benda. Berikut ini adalah tabel yang mencontohkan kata ambigu dengan teknik *Part-of-Speech* (POS) *Tagging*.

Tabel 3. 11 Contoh artikel ambigu

| No.  | Data Artikel Berita                                                                                           | Ambiguitas Kata                                                                                                                                                        | Part-of-Speech (POS)                                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,00 | Pariwisata                                                                                                    | 11guivus 12                                                                                                                                                            | Tagging                                                                                                                                              |
| 1.   | Peserta dari 26<br>kecamatan dan<br>berbagai kelompok<br>berkumpul di depan<br>taman lampion Jalan<br>Veteran | Kata "berbagai kelompok" merujuk pada peserta yang berkumpul di depan taman lampion atau pada kelompok yang berbeda-beda dari 26 kecamatan.                            | Apakah "berbagai" berfungsi sebagai kata sifat (adjective) yang menggambarkan "kelompok" atau sebagai kata ganti (pronoun) yang mengacu pada peserta |
| 2.   | Dari Solo kita<br>arahkan dari<br>simpang tiga Ngigas                                                         | Dalam konteks menggunakan Part- of-Speech (POS) Tagging, kata "Solo" dapat menjadi kata benda (nama kota) atau kata sifat (sendiri)?, sehingga menimbulkan ambiguitas. | Kata "Solo" dapat<br>diinterpretasikan nama kota<br>atau kata sifat yang berarti<br>"sendiri".                                                       |
| 3.   | Jalan protokol yang<br>menjadi lintasan<br>pawai dipadati<br>warga di kanan<br>kirinya sejak Sabtu<br>subuh   | Kata "kanan" dan "kirinya" dapat diinterpretasikan sebagai arah atau sisi jalan (kata benda) atau sebagai kata sifat yang menggambarkan posisi (kata sifat), sehingga  | Dalam konteks <i>Part-of-Speech</i> (POS) <i>Tagging</i> , apakah kata "kanan" dan "kirinya" dapat menjadi kata benda atau kata sifat.               |

| NT- | Data Artikel Berita                                                                                                                     | A 1 17 - 4 -                                                                                                                                           | Part-of-Speech (POS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| No. | Pariwisata                                                                                                                              | Ambiguitas Kata                                                                                                                                        | Tagging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|     |                                                                                                                                         | menimbulkan<br>ambiguitas.                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 4.  | Namun tak hanya<br>budaya lokal,<br>kebudayaan<br>Indonesia juga turut<br>ditampilkan seperti<br>tarian dari Sumatera<br>dan barongsai. | Mengenai konteks  Part-of-Speech  (POS) Tagging,  apakah kata "turut"  dapat menjadi kata  kerja atau kata  sifat?, sehingga  menimbulkan  ambiguitas. | Kata "turut" bisa dikatakan kata kerja ( <i>verb</i> ) yang berarti ikut serta atau menjadi bagian dari, namun juga bisa dianggap sebagai kata sifat ( <i>adjective</i> ) yang berarti sama atau sejenis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 5.  | Selain itu, lanjut dia,<br>Helaran budaya juga<br>menjadi hiburan<br>rakyat di Kota<br>Santri.                                          | Dengan menggunakan Part- of-Speech (POS) Tagging, apakah kata "lanjut" dapat menjadi kata kerja atau kata benda?, sehingga menimbulkan ambiguitas.     | , and the second |  |  |  |  |  |  |
| 6.  | Bupati Cianjur Herman Suherman, mengatakan helaran budaya tersebut memang rutin digelar setiap                                          | Dalam konteks ini,<br>kata "rutin" dapat<br>menjadi kata benda<br>atau kata kerja,<br>sehingga                                                         | Menggunakan <i>Part-of- Speech</i> (POS) <i>Tagging</i> , jika kita Kata "rutin" dapat diinterpretasikan sebagai kata benda ( <i>pronoun</i> ) yang berarti rutinitas atau kata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

| NI. | Data Artikel Berita                                                                                                                                                                  | A 1 17 - 4 -                                                                                                                                                                   | Part-of-Speech (POS)                                                                                                                                                                                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Pariwisata                                                                                                                                                                           | Ambiguitas Kata                                                                                                                                                                | Tagging                                                                                                                                                                                                                                                |
|     | tahunnya dengan<br>menampilkan<br>beragam seni dan<br>kebudayaan dari<br>Kota Santri.                                                                                                | menimbulkan<br>ambiguitas.                                                                                                                                                     | kerja ( <i>verb</i> ) yang berarti<br>menjalankan sesuatu secara<br>teratur.                                                                                                                                                                           |
| 7.  | Selain itu, lanjut dia,<br>Helaran budaya juga<br>menjadi hiburan<br>rakyat di Kota<br>Santri.                                                                                       | Apakah kata "hiburan" dapat menjadi kata benda atau kata sifat sehingga menimbulkan ambiguitas.                                                                                | Jika dalam konteks menggunakan Part-of- Speech (POS) Tagging, kata "hiburan" dapat diinterpretasikan sebagai kata benda (pronoun) yang merujuk pada kegiatan menghibur atau kata sifat (adjective) yang menggambarkan sesuatu yang bersifat menghibur. |
| 8.  | Demikian halnya Kepala Desa Pujon Kidul Kecamatan Pujon Kabupaten Malang, Jawa Timur yang dinilai berhasil mengembangkan sektor pariwisata sehingga dapat menyejahterahkan warganya. | Dalam konteks ini, apabila menggunakan Partof-Speech (POS) Tagging, dimana kata "menyejahterahkan" dapat menjadi kata kerja atau kata benda?, sehingga menimbulkan ambiguitas. | Kata menyejahterahkan" dapat diinterpretasikan sebagai kata kerja (verb) yang berarti meningkatkan kesejahteraan atau kata benda (pronoun) yang merujuk pada keadaan sejahtera                                                                         |

| No. | Data Artikel Berita<br>Pariwisata                                                                                                                            | Ambiguitas Kata                                                                                                                                            | Part-of-Speech (POS)  Tagging                                                                                                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Mungkin sekitar 3 bulan (waduk terisi) dan Desember mulai diresmikan oleh Presiden, kata Bupati Lebak Iti Octavia Jayabaya kepada wartawan di Rangkasbitung. | Kata mungkin" dapat diinterpretasikan sebagai kata keterangan (adverb) yang merujuk pada kemungkinan atau kata sifat (adjective) yang berarti tidak pasti. | Dalam konteks menggunakan Part-of- Speech (POS) Tagging, "mungkin" dapat menjadi kata keterangan atau kata sifat?, sehingga menimbulkan ambiguitas.                                                                                           |
| 10. | Waduk ini akan<br>menjadi suplai air<br>baku untuk<br>Tangerang Raya dan<br>Jakarta.                                                                         | Apakah kata"suplai" dapat menjadi kata benda atau kata kerja, sehingga menimbulkan ambiguitas                                                              | Pada konteks dengan menggunakan <i>Part-of- Speech</i> (POS) <i>Tagging</i> , .Kata "suplai" dapat diinterpretasikan sebagai kata benda ( <i>pronoun</i> ) yang merujuk pada pasokan atau kata kerja ( <i>verb</i> ) yang berarti menyediakan |

## 3.5.4 TF-IDF dan Cosine Similarity

Pada tahapan ini, *dataset* yang sebelumnya dilakukan *preprocessing*, akan dilakukan proses TF-IDF dimana kumpulan dari dari setiap kata (*term*) akan diubah bentuk menjadi *numerical* (angka) dengan menghasilkan sebuah *matriks* vector. Hasil dari *preprocessing* di*input*kan, selanjutnya dicari kemunculan kata (*term*) pada setiap dokumen. Kemudian melakukan IDF untuk mencari nilai dari IDF dengan menggunakan rumus yang ada dan dilanjutkan dengan menghitung nilai dari tf-idf untuk mencari nilai dari kumpulan *term*, yang nantinya menghasilkan bobot dari setiap kata (*term*) dalam bentu *vector* atau angka.Berikut ini adalah Gambar 3. 7 yaitu *flowchart* TF-IDF yang terdapat dibawah ini:



Gambar 3. 7 Flowchart TF-IDF

Mencari IDF setiap kata pada dokumen dengan menghitung  $W_{IDF}$  dari kata , sehingga nantinya diperoleh nilai  $W_{IDF}$  dari kata dalam  $term\ matriks$  menggunakan rumus

$$W_{TF} = 1 + \log \frac{D}{d(t_i)},$$

1. Selanjutnya menghitung *TF-IDF* pada setiap kata dalam setiap dokumen dengan menghitung

$$W_{tf-idf}(t_i, d_i) = W_{TF}(t_i, d_i) \times W_{IDF}(t_i, d_i)$$

2. Kemudian menghitung *Cosine Similarity* setiap dokumen yang sudah didapatkan.

Penerapan metode *cosine similarity* agar dapat di proses untuk melakukan pencarian artikel berita pariwisata pada saat *query* yang di*input*kan sudah benar dan menampilkan artikel berita pariwisata, sebelum dihitung tingkat kesamaannya antara artikel berita pariwisata yang satu dengan yang lainnya sesuai dengan *query* yang dicari, maka dilakukan pembobotan kata pada masing-masing dokumen artikel berita pariwisatanya, dengan menggunakan TF-IDF. Ketika *query* diproses atau diperoleh, nantinya akan dicari di dalam *inverted index*, untuk mengetahui kata apa yang sama antara *query* yang di*input*kan dengan *inverted index* (dokumen yang sudah diurutkan). Sehingga untuk menemukan ataupun mendapatkan dokumen artikel dari variabel yang sudah diurutkan di *inverted index* bersama dengan *query* yang di*input*kan atau dicari oleh *user*. Hasil *inverted index* yaitu dokumen artikel yang diurutkan dengan *query*, maka dilakukan perhitungan kemiripan dokumen

menggunakan cosine similarity yang bekerja untuk menyamakan dua buah artikel untuk mencari kesamaannya antara bobot keyword dokumen pada artikel berita pariwisata dengan bobot keyword query, maka dilakukan perhitungan kemiripan dokumen menggunakan cosine similarity yang bekerja untuk menyamakan dua buah artikel untuk mencari kesamaannya antara bobot keyword dokumen pada artikel berita pariwisata dengan bobot keyword query, kemudian dilakukan perangkingan. Kemudian terakhir adalah mengukur kinerja sistem yaitu evaluasi sistem dengan menghitung nilai presisi.

## 3.6 Skenario Pengujian

Skenario pengujian dilakukan untuk mengetahui hasil nilai presisi dari koreksi ejaan terhadap query pencarian artikel pariwisata berbahasa Indonesia dengan Partof-Speech (POS) Tagging menggunakan algoritma Levenshtein Distance. Pada penelitian ini memerlukan uji coba sistem. Terdapat proses uji coba dalam sistem ini, yaitu uji coba pertama adalah mengetahui hasil koreksi kesalahan ejaan dari query artikel berita pariwisata berbahasa Indonesia menggunakan Levenshtein Distance dan Part-of-Speech (POS) Tagging. Uji coba kedua adalah mengetahui pengaruh dari Part-of-Speech (POS) Tagging dalam mengetahui nilai akurasi berupa presisi dengan algoritma Levenshtein Distance. Berikut ini Tabel 3. 12 untuk skenario uji coba dibawah ini.

Tabel 3. 12 Skenario Uji Coba

| Skenario | Tujuan                                                                               |
|----------|--------------------------------------------------------------------------------------|
|          | Mengetahui hasil akurasi berupa <i>presisi</i> dari koreksi ejaan dari q <i>uery</i> |
| 1.       | berita pariwisata berbahasa Indonesia menggunakan Levenshtein                        |
|          | Distance dan Part-of-Speech (POS) Tagging                                            |
|          | Mengetahui hasil akurasi berupa presisi dari query berita pariwisata                 |
| 2.       | berbahasa Indonesia menggunakan Levenshtein Distance tanpa Part-                     |
|          | of-Speech (POS) Tagging                                                              |

## 3.7 Implementasi Dataset

Pada implementasi dataset ini akan membahas mengenai bagaimana dataset diperoleh dan digunakan untuk menghasilkan skenario uji coba dan evaluasi sistem.

#### 3.7.1 Dataset

Dataset yang digunakan dalam penelitian ini adalah dataset berita pariwisata bahasa Indonesia yang diperoleh dari *crawling* pada halaman detik.com, dengan data yang diperoleh sebanyak 332 dokumen dengan 132.689 kata. Selanjutnya dataset ini akan dihasilkan sebuah kamus yang diambil dari gabungan artikel berita pariwisata yang berjumlah 332 dokumen dengan data kamus bahasa Indonesia dari *github* dengan *link* https://github.com/keyreply/Bahasa-Indo-NLP-Dataset sebanyak 14.555 kata yaitu dengan data kamus baru sebanyak 23.888 kata yang disimpan di *file csv*.

Kemudian dari dataset tersebut dibuat sebuah *query* sebanyak 100 data sebagai uji coba untuk proses koreksi ejaan terhadap *query* pencarian, sehingga nantinya dari data *query* salah yang dibuat, dan disiapkan *query* benar, akan dilakukan pengecekan baik dari *query* yang di*input*kan, selanjutnya dilakukan *Part-of-Speech* (POS) *Tagging*. Hasilnya nantinya akan dilakukan evaluasi berupa hasil nilai presisinya.

#### 3.7.2 Pelabelan Dataset

Pelabelan *dataset* dilakukan secara manual (dilakukan manusia) yang dibantu dengan sistem komputer, dan juga menggunakan modul *crf tagger* yang nantinya terdapat sebuah code program dengan mencakup modul *crf tagger* dari data berita pariwisata yang diperoleh. Terdapat dua jenis pelabelan dataset diantaranya sebagai berikut :

#### a. Pelabelan dataset *query*

Pelabelan dataset terhadap *query* ini dilakukan ketika *query* yang di*input*kan sudah benar dan sudah dikoreksi kesalahan ejaannya. Sehingga hasil dari *query* benar tersebut akan dilakukan pelabelan dengan menggunakan modul crf tagger yaitu tag idn dari *Part-of-Speech* (POS) *Tagging*.

#### b. Pelabelan dataset artikel berita

Tahapan selanjutnya adalah pelabelan dataset pada artikel berita pariwisata yang dilakukan secara manual (dilakukan oleh manusia) dengan bantuan sistem komputer dan juga menggunakan modul crf tagger, dan kamus bahasa Indonesia. Dalam proses pelabelan dengan memberikan tag pada setiap kata dalam artikel berita pariwisata, dengan bantuan salah satu guru pakar Bahasa Indonesia yaitu Ibu Sinarsih, S.Pd, status pengajar di SMA Negeri 1 Torjun, Jl. Raya Torjun, Kecamatan Torjun, Kabupaten Sampang, Provinsi Jawa Timur. Pada tanggal 23 Februari 2024 telah terverifikasi atau sudah tervalidasi oleh Ibu Sinarsih, S.Pd selaku koordinator dan sebagai validator Tugas Akhir yang dipercaya sebagai pakar untuk pelabelan dataset. Hasil dataset yang dilakukan pelebelan dengan menggunakan *Part-of-Speech* (POS) *Tagging* yaitu dari 332 dokumen dengan 157.692 kata. Berikut ini Gambar 3. 8 adalah hasil tag kata atau pelebelan kelas kata dengan menggunakan *Part-of-Speech* (POS) *Tagging* yang terdapat dibawah ini.

Konten [(kabupaten', NN), (klaten', NN), (menyelenggarakan', VB), (karnaval', NN), (budaya', NN), (digelar', NN), (stang', NN), (jalan', NN),

Gambar 3. 8 Part-Of-Speech (POS) Tagging Data Artikel Pariwisata

#### 3.7.3 Visualisasi Data dengan Word Cloud

Pada bagian ini yaitu melakukan visualisasi data dimana tujuan adanya visualisasi untuk mengekstrak sebuah informasi dalam bentuk topik seperti: data artikel berita pariwisata, dengan banyaknya teks konten artikel yang tersedia sehingga mendapatkan informasi yang menurut penting. Penelitian ini menggunakan sebuah word cloud yang digunakan untuk memvisualisasikan hasil data konten berita pariwisata. Adanya word cloud menjadi representasi sebuah data yang menampilkan kumpulan kata yang sering muncul dan penting sehingga

semakin banyaknya kata yang sering muncul, nantinya akan ditampilkan didalam word cloud, maka akan begitu besar pula frekuensi munculnya kata didalam data tersebut.

#### 3.7.4 Hasil Visualisasi Data

Berikut ini adalah Gambar 3. 9 yaitu hasil visualisasi data yang diperoleh dari menggunakan *word cloud* pada artikel berita pariwisata.



Gambar 3. 9 WordCloud Data Artikel Pariwisata

## 3.7.5 Tahapan Preprocessing Data

Pada tahapan *preprocessing* data ini, sebelum melakukan proses koreksi kesalahan ejaan terhadap *query* pencarian *Search Engine* Bahasan Indonesia (SEBI), perlu dilakukan tahapan *preprocessing* terlebih dahulu. Tujuannya, untuk membersihkan data menjadi terstruktur dan berbobot, sehingga data akan dengan mudah diproses pada tahapan selanjutnya. Pada *preprocessing* ini akan dilakukan dengan bantuan *library* python, berikut ini adalah tahapan dari *preprocessing* yang digunakan.

## 1. Case Folding

Tahapan pertama yang dilakukan dalam *text preprocessing* yaitu proses *case folding*, mengubah huruf kapital menjadi huruf kecil.

## 2. Cleaning

Pada tahapan ini digunakan untuk membersihkan sebuah karakter tertentu yang tidak dibutuhkan seperti simbol dan angka.

# 3. Tokenization

Tahapan ini berfungsi dalam menguraikan sebuah kalimat yang menjadi kata perkata, berdasarkan karakter 'spasi' sebagai tanda pemisahnya.

# 3.8 Perkiraan Jadwal

Adapun jadwal yang dibuat dalam melakukan penelitian ini yaitu terdapat pada Tabel 3. 13

Tabel 3. 13 Jadwal Penenelitian

| Ъ         |                                      |         |   |   |   |         |   |   |   |         |   |   | BU | LA      | N |   |   |         |   |   |   |         |   |   |   |
|-----------|--------------------------------------|---------|---|---|---|---------|---|---|---|---------|---|---|----|---------|---|---|---|---------|---|---|---|---------|---|---|---|
| Bar<br>is | Kegiatan                             | Bulan-1 |   |   |   | Bulan-2 |   |   |   | Bulan-3 |   |   |    | Bulan-4 |   |   |   | Bulan-5 |   |   |   | Bulan-6 |   |   |   |
| ke        |                                      | 1       | 2 | 3 | 4 | 1       | 2 | 3 | 4 | 1       | 2 | 3 | 4  | 1       | 2 | 3 | 4 | 1       | 2 | 3 | 4 | 1       | 2 | 3 | 4 |
| 1         | Pengumpulan data dan Studi literatur |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 2         | Analisis permasalahan                |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 3         | Perancangan Sistem                   |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 4         | Implementasi Sistem                  |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 5         | Ujicoba Sistem                       |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 6         | Analisa dan Evaluasi                 |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 7         | Penyusunan Laporan                   |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |
| 8         | Dokumentasi                          |         |   |   |   |         |   |   |   |         |   |   |    |         |   |   |   |         |   |   |   |         |   |   |   |

#### **BAB IV**

#### HASIL DAN PEMBAHASAN

Pada bab ini membahas mengenai pengimplementasian sistem dan proses pengujian sistem yang telah diimplementasikan sistem berdasarkan perancangan dan metodologi yang telah dijelaskan pada bab sebelumnya serta pembahasan dari hasil pengujian sistem. Terdapat beberapa tahapan yang akan dilakukan dalam proses ini, yaitu lingkungan uji coba, pelabelan data, *text preprocessing*, pengujian sistem, mulai dari pengujian sistem terhadap koreksi ejaan maupun terhadap temu kembali informasi (*information retrieval*), beserta analisis dan evaluasi sistem yang dihasilkan

## 4.1 Lingkungan Uji Coba

Pada bagian ini, menjelaskan mengenai ruang lingkup dalam implementasi uji coba sebuah program yang telat dibuat. Tahapan ini membahas mengenai sebuah sistem yang diuraikan mengenai perangkat lunak maupun perangkat keras yang digunakan dalam mengimplementasikan penelitian dari awal pengumpulan data sampai pengujian sistem. Terdapat Tabel 4. 1 dibawah ini adalah sebuah tabel lingkungan uji coba sistem atau program yang akan diterapkan.

Tabel 4. 1 Spesifikasi Perangkat Keras

| No. | Kebutuhan         | Spesifikasi                                     |
|-----|-------------------|-------------------------------------------------|
| 1.  | CPU               | AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz |
| 2.  | Sistem<br>Operasi | Windows 11 Home Single Language                 |
| 2   | CPU               | AMD Ryzen 5                                     |
| 4   | RAM               | 8,00 GB (7,33 GB <i>usable</i> )                |

Tabel 4. 2 Spesifikasi Perangkat Lunak

| No. | Kebutuhan   | Versi   | Fungsi                                                                   |
|-----|-------------|---------|--------------------------------------------------------------------------|
|     |             |         | Berfungsi untuk text editor yang                                         |
|     | Visual      |         | digunakan untuk menulis bahasa                                           |
| 1   | Studio Code | 3.9.1   | program, maupun meng-edit file                                           |
|     |             |         | pemprograman serta mengeksekusi <i>code</i>                              |
|     |             |         | atau menjalankan aplikasi.                                               |
|     |             |         | Sebagai Web Server lintas platform open-                                 |
|     | V           | 2 2 0   | source yang terdiri dari apache HTTO                                     |
| 2   | Xampp       | v3.3.0  | server, database MySQLMengolah dan<br>membaca dataset kamus dalam bentuk |
|     |             |         | tabel.                                                                   |
|     |             |         | Berfungsi untuk menulis, menjalankan,                                    |
| 3.  | Google      | Reguler | dan berbagi kode python melalui web                                      |
|     | Colabority  | Reguler | browser.                                                                 |
|     |             |         | Berfungsi sebagai salah satu bahasa                                      |
| 4.  | Python      | 3.10.12 | pemprograman yang digunakan untuk                                        |
|     |             |         | implementasi pada penelitian ini.                                        |
|     |             |         | Library yang digunakan untuk                                             |
| 3   | pandas      | 1.4.2   | menganalisis, memuat, dan menampilkan                                    |
|     |             |         | data.                                                                    |
|     |             |         | Berfungsi untuk melakukan manipulasi                                     |
| 4   | numpy       | 1.22.4  | dalam sebuah <i>matriks</i> dan operasi                                  |
|     |             |         | matematika.                                                              |
|     |             |         | Library yang berfungsi sebagai pustaka                                   |
|     |             |         | python sederhana yang nantinya                                           |
| 5.  | Sastrawi    | 1.0.1   | memungkinkan untuk mereduksi kata-                                       |
|     |             |         | kata infleksi dalam Bahasa Indonesia ke                                  |
|     |             |         | bentuk dasarnya.                                                         |
| 6.  | NLTK        | 3.7     | Library yang berfungsi dan digunakan                                     |
| 0.  | NLIK        | 3.1     | dalam pemprosesan data, salah satunya                                    |
|     |             |         | yaitu dalam proses tokenisasi data.                                      |

| No. | Kebutuhan                 | Versi  | Fungsi                                                                                                                                    |
|-----|---------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 8.  | Streamlite                | 1.15.1 | Sebuah <i>framework</i> berbasis python dan bersifat <i>open-source</i> yang dibuat untuk memudahkan dakam membangun sebuah aplikasi web. |
| 9.  | streamlit-<br>option-menu | 0.3.2  | Berfungsi untuk memungkinkan <i>user</i> memilih satu item dari daftar opsi dalam menu.                                                   |

# 4.2 Tahapan Visualisasi Kata

Pada tahapan ini dilakukan proses visualisasi yang bertujuan untuk mengekstrak informasi dalam bentuk topik. Penelitian ini menggunakan word cloud yaitu memvisualisasikan hasil data artikel pariwisata pada bagian konten. Data artikel pariwisata dilakukan indentifikasi berdasarkan banyaknya frekuensi kata dalam konten artikel pariwisata. Berikut ini adalah fungsi dan potongan dari penerapan word cloud untuk melihat sekaligus merepresentasikan data dengan menampilkan kumpulan kata yang paling banyak muncul dan penting yaitu sebagai berikut

## 4.2.1 Visualisasi Data dengan WordCloud

```
482
    st.write("""## Visualisasi""") #menampilkan judul
483
    halaman dataframe
        uploaded files = st.file uploader("Please choose a
484
     CSV file", type=['csv'])
485
        if uploaded files is baris ke t Baris ke ne:
             data = pd.read csv(uploaded files,
486
    error bad lines=False)
            all text = ' '.join(data['Konten'])
487
488
             # Try using default font or specify a font
     family
490
             font path =
     r"C:\xampp\htdocs\RISET DIA\AGENCYB.TTF" # Use default
     font or specify a font file path
491
                # Tetapkan family font sebagai 'AGENCYB'
492
             #font family = 'AGENCYB'
493
                 # Buat objek WordCloud dengan menyertakan
    parameter font path dan font family
494
```

```
495
            wordcloud = WordCloud (width=800, height=400,
    background color='white',
    font path=font path).generate(all_text)
496
497
            # Display WordCloud
498
            plt.figure(figsize=(10, 5))
499
            plt.imshow(wordcloud, interpolation='bilinear')
500
            plt.axis('off')
501
            plt.show()
502
            # Tampilkan WordCloud menggunakan streamlit
503
            st.image(wordcloud.to array(),
    use column width=True)
```

Kode Program 4. 1 Inisiasi Variabel Visualisasi Data dengan WordCloud

## Penjelasan Program:

- 1. Menampilkan Judul Halaman yaitu dengan menggunakan kode st.write("""## Visualisasi""")
- 2. Pada kode program baris 484 yaitu untuk mengunggah file CSV dan menampilkan sebuah komponen yang di unggah dengan pesan "Please choose a CSV file" dan hanya menerima file dengan format CSV.
- Pada kode program baris 485 digunakan unruk memeriksa file yang telah di upload. Apabila ada akan dilakukan blok untuk kode yang akan dieksekusi.
- 4. Pada kode program baris ke 486 untuk membaca file CSV dengan menggabungkan teksnya dalam DataFrame data. Parameter berguna untuk mengabaikan baris yang bermasalah. Kemudian pada baris ke 487 menggabungkan semua teks yang tersimpan dalam kolom "Konten" dari dataframe data menjadi satu string yang besar yang dipisahkan oleh spasi, nantinya akan disimpan dalam all text
- Selanjutnya baris ke 490 menentukan Path Font yang dimana untuk menetapkan sebuah path ke file font yang akan digunakan dakam word cloud
- 6. Kemudian, baris ke 495 kode wordcloud yang digunakan untuk membuat sebuah objek word cloud yang lebar = 800 piksel, tinggi = 400 piksel, dengan latar belakang berwarna putih, dan membuat sebuah font oleh font\_path. Pada kode generate(all\_text) yang nantinya menghasilkan word cloud berdasarkan sebuah teks yang digabungkan dalam sebuah all\_text

- 7. Pada kode program baris ke 498 sampai baris ke 501 menampilkan sebuah *word cloud* menggunakan Matplotlib dengan beberapa fungsi dibawah ini
  - plt.figure(figsize=(10, 5)) digunakan untuk membuat figure (plot) ukuran 10 inci x 5 inci
  - plt.imshow(wordcloud, interpolation='bilinear')
    berfungsi untuk menampilkan gambar WordCloud dengan
    interpolasi bilinear dalam membuat tampilan lebuh halus
  - plt.axis('off') plt.show() digunakan untuk mebaris ke naktifkan sumbu plot yang sudah dibuat
  - plt.show() digunakan untuk menampilkan plot yang sudah dibuat.
- 8. Pada kode program baris ke 503, berfungsi untuk menampilkan hasil *Word Cloud* dengan menggunakan *streamlit*.
- 9. Sehingga proses yang digunakan untuk menampilkan hasil visualisasi data terdapat pada gambar 3.9 yaitu *Word Cloud* visualisasi artikel berita pariwisata.

## 4.2.2 Tahapan *Preprocessing* Data

Pada tahapan *preprocessing* data ini, sebelum melakukan proses koreksi kesalahan ejaan terhadap *query* pencarian *Search Engine* Bahasan Indonesia (SEBI), perlu dilakukan tahapan *preprocessing* terlebih dahulu. Tujuannya, untuk membersihkan data menjadi terstruktur dan berbobot, sehingga data akan dengan mudah diproses pada tahapan selanjutnya. Pada *preprocessing* ini akan dilakukan dengan bantuan *library* python, berikut ini adalah tahapan dari *preprocessing* yang digunakan.

#### 1. Case Folding

Tahapan pertama yang dilakukan dalam *text preprocessing* yaitu proses *case folding*, mengubah huruf kapital menjadi huruf kecil.

```
524 user input = user input.lower()
```

Pada code program baris 524 tersebut teks *input* diubah menjadi huruf kecil menggunakan lower ().

## 2. Cleaning

Pada tahapan ini digunakan untuk membersihkan sebuah karakter tertentu yang tidak dibutuhkan seperti simbol dan angka. Berikut ini *code* programnya

Kode Program 4. 2 Cleaning

1. Pada baris ke 525 sampai baris ke 527 yaitu for i in range (len(user\_input)):untuk melakukan looping (perulangan) yang akan berjalan sebanyak karakter yang ada dalam string user\_input. clean\_result = re.sub("@[A-Za-z0-9\_]+","", user\_input[i]) #clenasing mention berguna untuk menghapus mention mulai dari @ yang diikuti dengan huruf, angka, maupun garis bawah, sehingga nantinya karakter yang terdapat dalam user\_input yang hasilnya disimpan dalam clean\_result.

2. Kemudian baris ke 528 clean\_result1 = re.sub("#[A-Za-z0-9\_]+","", clean\_result) #clenasing hashtag yang digunakan untuk membersihkan teks yang dimana untuk menghapus semua hashtag yang dimulai dari tanda # yang diikuti dengan huruf, angkat atau garis bawah. Selanjutnya baris ke 529 clean\_result2 = re.sub(r'http\S+', '', clean\_result1) #cleansing url link berguna untuk memberishkan teks yang berfungsi untuk menghapus semua url yang dimulai dengan 'http' yang disimpan dalam clean\_result2. Dan baris ke 530 clean\_result3 = re.sub("[^a-zA-Z]+"," ", clean\_result2) #cleansing character dan baris ke 531 clean.append(clean\_result3), setelah membersihkan semua elemen yang terdapat dalam teks dalam daftar clean yang nantinya mempunyai tujuan untuk menyimpan semua karakter yang telah dibersihkan dan dilakukan analisis selanjutnya.

#### 3. Tokenization

Tahapan ini berfungsi dalam menguraikan sebuah kalimat yang menjadi kata perkata, berdasarkan karakter 'spasi' sebagai tanda pemisahnya, berikut ini *code* programnya.

```
533 tokenize = user input.split()
```

#### 4.3 Implementasi Function Program

Pada bagian ini terdapat beberapa *function* yang akan dibuat dalam implementasi program koreksi ejaan terhadap *query* pencarian artikel pariwisata berbahasa Indonesia menggunakan metode *Levenshtein Distance* dan *Part-Of-Speech* (POS) *Tagging* yang dapat dilihat pada kode program dibawah ini, diantaranya sebagai berikut:

## 4.3.1 Levenshtein Distance dan Part-Of-Speech (POS) Tagging

```
#Fungsi Algoritma Levenshtein Distance
26
  def levenshtein distance(s1, s2):
27
      m, n = len(s1), len(s2)
28
      dp = [[0] * (n + 1) for in range(m + 1)]
29
30
       for i in range(m + 1):
31
           dp[i][0] = i
32
       for j in range(n + 1):
33
           dp[0][j] = j
34
35
       for i in range (1, m + 1):
36
           for j in range(1, n + 1):
37
               cost = 0 if s1[i - 1] == s2[j - 1] else 1
38
               dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1]
    1, dp[i - 1][j - 1] + cost)
39
       return dp[m][n]
```

Kode Program 4. 3 Inisiasi Fungsi Metode Levenshtein Distance

#### Penjelasan Program:

- 1. Pada kode program baris ke 26 sampai baris ke 28 adalah fungsi levenshtein distance dengan definisi fungsinya sebagai berikut:
  - Fungsi levenshtein\_distance digunakan untuk menerima dua string yaitu s1, s2
  - Variabel m, n digunakan untuk panjang dari string s1, s2
- Variabel dp digunakan untuk menyimpan hasil perhitungan jarak edit distance dengan tabel 2D yang berukuran (n + 1) x (m + 1) dengan inisiasi 0.
- 2. Pada kode program baris ke 30 sampai baris ke 33 adalah inisiasi dari tabel DP dengan inisiasi sebagai berikut :
  - Pada dua *loop* pertama digunakan untuk mengisi baris pertama dan kolom pertama pada tabel dp

- Pada dp[i][0] = I digunakan untuk membuat jarak edit dari *string* s1 ke *string* kosong untuk mengahapus semua karakter dari s1
- Pada dp[i][0] = j digunakan untuk membuat sebuah jarak edit dari string s2 untuk melakukan penyisipan dalam semua karakter dari s2
- 3. Pada kode program baris ke 35 sampai baris ke 38 melakukan proses inisiasi untuk mengisi tabel DP yaitu sebagai berikut:
  - Pada proses baris ke 35 dan baris ke 36 melakukan proses mengisi tabel
     dp yaitu i = 1 dan j = 1, i = m dan j = m
  - Pada proses baris ke 37 terdapat variabel cost = 0 atau I jika berbeda,
     dimana jika ada karakter s1[i 1] sama dengan s1[i 1]. Proses
     ini adalah operasi substitusi apabila dibutuhkan
  - Pada proses baris ke 38 yaitu mengisi nilai minimum dari 3 operasi yang terdapat dalam variabel dp[i][j]. Diantaranya terdapat operasi penghapusan ((dp[i 1][j] + 1), penyisipan (dp[i][j 1] + 1,), dan substitusi (dp[i 1][j 1]) atau tidak ada operasi apapun jika sama.
- 4. Pada kode program baris ke 40 digunakan untuk mengembalikan nilai dp [m] [n] yang dimana adalah jarak edit antara s1, s2.

### 4.3.2 Fungsi Koreksi Ejaan

```
78
    def correct spelling(input word, word list):
79
        min distance = float('inf')
80
        corrected word = input word
81
82
        for word in word list:
83
            if input word == word:
84
                return input word
85
86
            for i in range(len(input word)):
87
                edited word = input word[:i] +
88
    input_word[i+1:]
                distance = levenshtein distance (edited word,
89
    word)
90
                if distance < min distance:</pre>
91
                    min distance = distance
92
                    corrected word = word
93
94
            for i in range(len(input word) + 1):
95
                for char in 'abcdefghijklmbaris ke
    pqrstuvwxyz':
```

```
96
                     edited word = input word[:i] + char +
    input word[i:]
97
                     distance =
    levenshtein distance (edited word, word)
98
                     if distance < min distance:</pre>
99
                         min distance = distance
100
                         corrected word = word
101
102
            for i in range(len(input word)):
103
                 for char in 'abcdefghijklmbaris ke
    pqrstuvwxyz':
104
                     edited word = input word[:i] + char +
105
    input word[i+1:]
106
                     distance =
    levenshtein distance (edited word, word)
107
                     if distance < min distance:</pre>
108
                         min distance = distance
109
                         corrected word = word
110
        return corrected word
```

Kode Program 4. 4 Koreksi Ejaan

- 1. Pada kode program baris ke 79 membuat fungsi correct\_spelling digunakan untuk menerima dua parameter diantaranya input\_word, kata yang diperbaiki dan word\_list) kata yang nantinya akan dibandingkan untuk menemukan kata yang benar.
- 2. Pada kode program baris ke 80 terdapat variabel min\_distance dengan inisiasi nilai tak hingga = float('inf'), digunakan untuk menyimpan jarak edit menimun yang ditemukan selama perbandingan.
- 3. Pada kode program baris ke 81 terdapat variabel corrected\_word digunakan untuk menyimpan kata paling mirip berdasarkan jarak edit minimum.
- 4. Pada kode program baris ke 83 sampai baris ke 85 adalah proses memeriksa kata yang terdapat dalam word\_list. Apabila input\_word sama dengan kata dalam word\_list nantinya fungsi ini akan mengembalikan input\_word dimana kata-kata tersebut sudah benar.
- 5. Pada kode program baris ke 87 sampai baris ke 89 digunakan untuk operasi penghapusan yaitu melakukan loop pertama iterasi untuk setiap indeks pada input word, selanjutnya terdapat variabel edited word

- berguna untuk menghapus karakter pada indeks I dalam input\_word, kemudian nantinya akan dihitung didalam variabel distance.
- 6. Pada kode program baris ke 98 sampai baris ke 100 berfungsi jika distance lebih kecil dari min\_distance, nantinya min\_distance diperbarui dengan distance, dan corrected\_word akan diperbarui dengan word
- 7. Pada kode program baris ke 102 sampai baris ke 105 digunakan untuk operasi penyisipan, dimana dalam input\_word akan melakukan loop iterasi melalui setiap indeks yang nantinya iterasi tersebut juga akan melalui setiap karakter alfabet, sehingga variabel edited\_word dibuat dengan meyisipkan char pada indeks i dari input word.
- 8. Pada kode program baris ke 106 sampai baris ke 108 digunakan untuk operasi penggantian atau substitusi yaitu dengan melakukan loop melalui indeks dalam input\_word yang nantinya setelah menggatikan karakter akan dihutung variabel distance antara edited word dan word.
- 9. Pada kode program baris ke 110 digunakan untuk mengembalikan kata yang diperbaiki yaitu kata yang paling mirip dari input\_word berdasarkan jarak edit minimum.

### 4.3.3 Fungsi Modul dalam Part-Of-Speech (POS) Tagging

```
data = CRFTagger()

model_path =

'/xampp/htdocs/SKRIPSI_DIA/all_indo_man_tag_corpus_mode

l.crf.tagger'

data.set_model_file(model_path)
```

Kode Program 4. 5 Modul Part-Of-Speech (POS) Tagging

### Penjelasan Program:

Pada kode program baris ke 541 sampai baris ke 544 digunakan untuk mengimplementasikan modul dengan menggunakan CRFTagger dan corpus all\_indo\_man\_tag\_corpus\_model.crf.tagger yang disimpan dalam model\_path.

### 4.3.4 Fungsi Menghitung Nilai Presisi

```
def calculate_precision(test_data, dictionary):
```

```
434
        true positives = 0
435
        false positives = 0
436
437
        for test word, true word in test data:
438
            corrected word = correct spelling(test word,
439 dictionary)
            if test_word == true word: # Kata asli sudah
440
   benar
441
                if corrected word != test word:
442
                    false positives += 1
443
            else: # Kata asli salah
444
                if corrected word == true word:
                    true positives += 1
445
446
                else:
447
                    false positives += 1
448
449
        precision = true positives / (true positives +
   false positives) if (true positives + false positives) >
   0 else 0
450
451
        return precision
```

Kode Program 4. 6 Inisiasi Fungsi Nilai Presisi

- 1. Pada kode program baris ke 433 melakukan fungsi yang dinamakan dengan calculate precision dan menerima dua parameter yaitu
  - Parameter test\_data adalah pasangan kata yaitu dari test\_word, true\_word, Dimana test\_word yaitu kata yang di uji dan true word kata yang benar.
  - Parameter dictionary digunakan sebagai kamus untuk koreksi ejaan.
- 2. Pada kode program baris ke 434 sampai ke 435 melakukan inisiasi melalui data uji dimana terdapat dua variabel true\_positives dan false\_positif untuk menghitung jumlah kasus positif benar dan positif salah.
- 3. Pada kode program baris ke 437 sampai ke 438 melakukan looping dari test\_word, true\_word, yang terdapat dalam test\_data. Sedangkan corrected\_word yaitu hasil fungsi dari correct\_spelling yang mencoba memperbaiki test\_word dengan menggunakan dictionary.
- 4. Pada kode program baris ke 440 sampai baris ke 442, yaitu apabila test\_word sudah benar atau sama dengan true\_word, tetapi sistem

- koreksi mengubahnya, nantinya akan dihitung sebagai false positives.
- 5. Pada kode program baris ke 433 sampai baris ke 447 yaitu melakukan penentuan positif benar dan positif salah, apabila test word salah maka:
  - Apabila koreksi sistem sama dengan true\_word, maka hal ini dihitung sebagai true positives
  - Apabila salah maka akan dihitung sebagai false\_positives.
- 6. Pada kode program baris ke 449 yaitu melakukan perhitungan nilai presisi dimana presisi dihitung sebagai rasio true\_positives terhadap total positif (true\_positives + false\_positives). Jika tdiak ada positif atau denominator nol dimana nilai presisi diatur menjadi 0.
- 7. Pada kode program baris 451 melakukan proses pengembalian nilai presi

### 4.3.5 Fungsi TF-IDF

```
def calculate_tfidf_from_database():
    corpus = fetch_text_from_database()
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(corpus)
    return tfidf_matrix, vectorizer
```

Kode Program 4. 7 Inisiasi Fungsi TF-IDF

- 1. Padakode program baris ke 201 membuat fungsi calculate\_tfidf\_from\_database() yang digunakan untuk menghitung nilai TF-IDF dari kumpulan teks yang diambil dari database.
- 2. Pada kode program baris ke 202 berfungsi untuk mengambil teks dari database yang dimana terdapat variabel corpus untuk menyimpan kumpulan teks yang disimpan dari database, dimana terdapat fungsi fetch\_text\_from\_database() untuk mengambil teks dari database dan mengembalikan dalam bentuk list atau array.
- 3. Pada kode baris ke 203 digunakan untuk membuat objek TF-IDF Vectorizer untuk mengubah kumpulan dokumen teks menadi representas matriks TF-IDF dan memiliki bobot pada setiap kata dalam dokumen.

- 4. Pada kode baris ke 204 digunakan untuk menghitung matriks TF-IDF dengan menggunakan fit\_transform(corpus), dimana fit berfungsi untuk memahami kosakata dan idf dari corpus. Dan transform untuk mengubah corpus menjadi matriks TF-IDF.
- 5. Pada kode program baris ke 205 berfungsi untuk mengembalikan hasil dari dua objek yaitu tfidf matrix, vectorizer.

### 4.3.6 Fungsi *Inverted Index*

```
208 def create inverted index from database():
209
        corpus = fetch text from database()
210
        inverted index = {}
211
        for i, doc in enumerate(corpus):
212
            words = set(doc.split())
213
            for word in words:
214
                if word not in inverted index:
215
                    inverted index[word] = [i]
216
217
                    inverted index[word].append(i)
218
        return inverted index
```

Kode Program 4. 8 Inisiasi Fungsi Inverted Index

- 1. Pada kode program baris ke 208 digunakan untuk membuat fungsi *inverted index* dari kumpulan teks yang diambil dalam database.
- 2. Pada kode program baris ke 209 digunakan untuk mengembalikan teks data database, yang diambil dari variabel corpus. Kemudian mengembalikan dalam bentuk list atau array.
- 3. Pada kode program baris ke 210 berfungsi untuk menginisiasi *inverted index* yang digunakan untuk menyimpan kata kunci dan daftar indeks sebuah dokumen sebagai nilai.
- 4. Pada kode program baris ke 211 sampai baris ke 212 untuk membuat inverted index dimana melakukan loop pertama pada for i, doc in enumerate(corpus), kemudian mengambil kata-kata unik dari sebuah dokumen yang dipecah menjadi kata-kata, dan set disini untuk mendapatkan kata unik dan menghindari duplikasi dalam inverted index.
- 5. Pada kode program baris ke 215 sampai baris ke 217 untuk membuat *inverted index*, dimana loop ini digunakan untuk mengiterasi setiap kata unik words dalam dokumen. Apabila kata tidak ada dalam

inverted\_index, maka nantinya akan dibuat sebuah entri baru dimana dengan kata sebagai kata kunci dan terdapat nilai berupa daftar yang berisi indeks dokumen ke [i]. Jika kata sudah terdapat dalam inverted\_index, indeks dokumen saat ini nantinya akan ditambahkan ke dalam daftar dokumen yang mengandung kata tersebut.

6. Pada kode program, baris ke 218 digunakan untuk mengembalikan *inverted index* dimana kunci adalah kata-kata dan nilai adalah daftar indeks dokumen

### 4.3.7 Fungsi Pencarian Artikel Berita Berdasarkan Cosine Similarity

```
224 def search news(query, tfidf matrix, vectorizer,
   documents):
225
       query vec = vectorizer.transform([query])
226
       cosine similarities = cosine similarity(query vec,
   tfidf matrix).flatten()
227
       related docs indices =
   cosine similarities.argsort()[::-1]
       results = []
228
       for i in related docs indices:
229
230
           results.append((documents[i],
   cosine similarities[i]))
       return results
```

Kode Program 4. 9 Inisiasi Fungsi Pencarian Artikel Menggunakan *Cosine* Similarity

- Pada kode baris ke 224 digunakan untuk membuat fungsi search\_news untuk menerima 4 parameter diantaranya query, tfidf\_matrix, vectorizer, documents.
- 2. Pada kode program baris ke 225 digunakan untuk melakukan transformasi query ke vector TF-IDF, dimana terdapat variabel query\_vec dengan parameter vectorizer.transform([query]) mengubah kueri pengguna menjadi vector TF-IDF.
- 3. Pada kode program baris ke 226 berfungsi untuk menghitung kesamaan kosinus dengan menggunakan *cosine similarity*, dimana untuk mengitung kesamaan kosinus dengan vector query dan vector dokumen dalam tf-idf matriksmenggunakancosine\_similarity(query\_vec,tfidf\_matrix) kemudian nantinya akan diubah menjadi array Id.

- 4. Pada kode program baris ke 227 dan baris ke 228 digunakan untuk mengurutkan indeks dokumen berdasarkan kesamaan, dimana terdapat variabel related\_docs\_indices array yang berisi indeks dokumen, dilanjutkan dengan mengembalikan indeks yang akan mengurutkan array cosine\_similarity dan [::-1]untuk mengebalikan urutan yang nantinya indeks yang kesamaannya tertinggi berada di awal.
- 5. Pada kode program baris ke 229 sampai baris ke 231 digunakan untuk mengumpulkan hasil pencarian, dimana terdapat daftar untuk menyimpan dokumen dengan nilai kesamaannya dalam variabel results, dan melakukan *looping* untuk setiap indeks dokumen yang diurutkan, sehingga hasil kesamaannya akan ditambahkan ke dalam variabel results.

### 4.4 Implementasi Program Koreksi Ejaan

### 4.4.1 Implementasi Koreksi Ejaan terhadap *Query* Menggunakan *Levenshtein Distance*

```
742
   st.title("Skenario Levenshtein Distance Tanpa POS Tagging ")
743
            col1, col2 = st.columns([3, 1]) # Adjust the column
    ratios as needed
744
            # Kunci unik untuk form masukan
745
            text key = "koreksi input"
746
           user input = coll.text input ("Masukkan Query",
    key=text key)
747
           col2.write("")
748
            col2.write("")
749
            # Menyediakan kunci unik untuk tombol
750
           button key = "koreksi button"
751
           periksa = col2.button("Koreksi Query",
   key=button key)
752
            if periksa:
753
                #st.write(user input)
754
                if user input == "":
755
                    st.warning("silahkan masukkan")
756
                else:
757
                    user input = user input.lower()
758
                    clean =[]
759
                    for i in range (len(user_input)):
760
                        clean result = re.sub("@[A-Za-z0-
         ,"", user input[i]) #clenasing mention
761
                        clean result1 = re.sub("\#[A-Za-z0-
          "", clean result) #clenasing hashtag
762
                        clean result2 = re.sub(r'http\S+', '',
    clean result1) #cleansing url link
763
                        clean result3 = re.sub("[^a-zA-Z]+"," ",
   clean result2) #cleansing character
```

```
clean.append(clean result3)
764
765
766
                     tokenize = user input.split()
767
768
                     result = ""
769
                     for input word in tokenize:
770
                         corrected word =
   correct spelling deletion (input word)
771
                         result += str(corrected word) + " "
772
                     st.success(f"hasil correction: {result}")
773
774
                    hasil1 =result.split()
```

Kode Program 4. 10 Implementasi Sistem Koreksi Ejaan Menggunakan Algoritma Levenshtein Distance tanpa Part-of-Speech (POS) Tagging

- 1. Pada kode program baris ke 742 berfungsi menampilkan judul aplikasi atau sistem.
- 2. Pada kode program baris ke 743 sampai baris ke 751 digunakan untuk membuat kolom inputan dan tombol koreksi.
- 3. Pada kode program baris ke 752 sampai baris ke 756 digunakan untuk malakukan validasi input pengguna, dengan memeriksa apakah inputan pengguna kosong, apabila kosong akan menampilkan peringatan, jika tidak kosong, akan dilanjutkan ke blok else.
- 4. Pada kode program baris ke 757 sampai baris ke 764 digunakan untuk melakukan *cleaning* atau pembersihan data dari *input*an pengguna.
- 5. Pada kode program baris ke 766 sampai baris ke 771, digunakan untuk melakukan tokenisasi dari *input* yang dibersihkan menjadi token (kata-kata). Selanjutnya melakukan koreksi setiap kata dengan menggunakan fungsi correct\_spelling\_deletion, dan menggabungkan kata yang dikoreksi menjadi satu *string*.
- 6. Pada kode program baris ke 773 sampai baris ke 774 digunakan untuk menampilkan hasil koreksi pengguna

### 4.4.2 Implementasi Koreksi Ejaan terhadap *Query* Menggunakan *Levenshtein Distance* dan *Part-Of-Speech* (POS) *Tagging*

```
data = CRFTagger()

model_path

='/xampp/htdocs/RISET_DIA/all_indo_man_tag_corpus_model.crf.
tagger'
```

```
hasil1 = result.split()
data.set_model_file(model_path)
judul = data.tag_sents([result.split()])

st.success(f"hasil Part-of-Speech (POS)
Tagging:{judul}")
```

Kode Program 4. 11 Koreksi Ejaan Terhadap *query* dan *Part-Of-Speech* (POS) *Tagging* 

- 1. Pada kode program baris ke 541 berfungsi untuk inisiasi objek CRFTagger yang berbasis *Conditional Random Fields* (CRF) yang digunakan untuk melakukan *Part-of-Speech* (POS) *Tagging*.
- 2. Pada kode program baris ke 542 untuk menetapkan path atau lokasi dari file model CRF yang digunakan untuk melakukan POS *Tagging*.
- 3. Pada kode program baris ke 543 digunakan untuk memecah teks *input* yaitu dengan menjadi daftar kata, dan memisahkan *string* berdasarkan spasi.
- 4. Pada kode baris ke 544 sampai baris ke 545 memuat model POS *Tagging* pada bagian judul, sehingga nantinya ketika sudah dihasilkan *input*an benar, akan dilakukan *Part-of-Speech* (POS) *Tagging* menggunakan tag\_sents.
- 5. Pada kode program baris ke 547 digunakan untuk menampilkan hasil judul yang dilakukan *Part-of-Speech* (POS) *Tagging*.

## 4.4.3 Implementasi Koreksi Ejaan terhadap *Query* Pencarian Artikel Pariwisata Menggunakan *Levenhstein Distance* dan *Part-Of-Speech* (POS) *Tagging*

```
mycursor.execute(f"SELECT *
                                 FROM
   data berita pariwisata 2 WHERE judul LIKE '%{result}%'
   or konten LIKE '%{result}%'")
835
                judul list = mycursor.fetchall()
836
                #st.write(f"judul list")
837
                mycursor.close()
838
                if len(judul list) == 0:
839
                    st.warning("Tidak Ada Berita")
840
841
                    # Ambil konten artikel dari judul_list
842
                    corpus = [judul[4] for judul in
   judul list]
```

Kode Program 4. 12 query Pencarian Artikel Pariwisata Levenhstein Distance dan Part-Of-Speech (POS) Tagging

### Penjelasan Kode Program:

- 1. Pada kode baris ke 834 digunakan untuk menjalankan *query* SQL untuk mengambil semua data dari tabel.
- 2. Pada kode baris ke 835 digunakan untuk mengambil hasil *query* yang dimana menyimapan hasil *query* dari variabel judul list.
- 3. Pada kode baris ke 837 digunakan untuk menutup koneksi *cursor* untuk mengosongkan sumber daya.
- 4. Pada kode baris ke 838 sampai baris ke 840 digunakan untuk mengecek hasil *query*, apabila tidak ada data akan menampilkan pesan peringatan "Tidak Ada Berita", sebaliknya pada kode baris ke 841 dan baris ke 842 jika data ditemukan akan mengambil konten artikel dari hasil *query* dan menyimpan dalam variabel corpus.

```
665
     displayed documents = []
666
                          judul tersimpan = []
667
                          for i in
      related docs indices[:min(5, len(judul list))]:
668
                               if i <= len(judul list):</pre>
669
                                   # st.header(f"Judul:
      {judul list[i][1]}")#menampilkan judul artikel
670
     judul tersimpan.append(judul list[i][1])
671
                                   #st.write(f"Konten:
      {judul list[i][4]}") #menampilkan artikel
672
                                   st.markdown(
673
                                       f'<h3><a style="color:
      #778899;"
      href="{judul list[i][3]}">{judul list[i][1]}</a></h3>'
      , unsafe allow html=True)
674
     st.write(f"{judul list[i][2]}") #menampilkan tanggal
      dan waktu
675
     st.markdown(judul list[i][4][:200])
                                   #judul tagged =
      judul tagged[0] # Kembalikan ke bentuk yang
      diharapkan
                                   #judul tagged = '
      '.join([f'{word}/{tag}' for word, tag in
      judul tagged]) # Gabungkan kembali kata-kata dengan
      tag
676
                                   # POS Tagging pada judul
      artikel
671
                                   judul tagged =
      judul list[i][1].split()
```

```
judul tagged =
     data.tag_sents([judul_tagged])
                                   #judul tagged ='test'
683
                                  st.success(f"Hasil Part-
     of-Speech (POS) Tagging untuk judul artikel:
      {judul tagged}")
      #displayed_documents.append(judul_list[i][1])
                                  # POS Tagging pada judul
      artikel
                                  # tanggal tagged =
      judul list[i][2].split()
                                  # tanggal tagged =
     data.tag sents([tanggal tagged])
                                   #judul_tagged ='test'
                                   # print(tanggal tagged)
                                  # st.success(f"Hasil Part-
      of-Speech (POS) Tagging untuk judul artikel:
      {tanggal tagged}")
      #displayed documents.append(judul list[i][2])
                                  # POS Tagging pada konten
     artikel
                                  konten tagged =
693
     judul list[i][4].split()
694
                                  konten tagged =
     data.tag sents([konten tagged])
                                  # st.success(f"Hasil Part-
      of-Speech (POS) Tagging untuk konten artikel:
      {konten tagged}")
698
     displayed documents.append(judul list[i][4])
```

```
for i in related docs indices[:min(5, len(judul list))]:
667
                                 if i < len(judul list):</pre>
668
                                     st.header(f"Judul:
669
   {judul list[i][1]}") #menampilkan judul artikel
                                     st.subheader(f"Tanggal:
605
    {judul list[i][2]}") #menampilkan tanggal dan waktu
                                     #st.write(f"Konten:
606
    {judul list[i][4]}")#menampilkan artikel
                                     st.markdown(
607
                                         f'<h3><a
608
   style="color: #FFFFFF;"
   href="{judul list[i][3]}">{judul list[i][1]}</a></h3>',
   unsafe allow html=True)
   st.markdown(judul list[i][4][:200])
609
```

```
#judul tagged =
                      # Kembalikan ke bentuk yang diharapkan
    judul tagged[0]
611
                                     #judul tagged = '
    '.join([f'{word}/{tag}' for word, tag in judul tagged])
   # Gabungkan kembali kata-kata dengan tag
612
                                     # POS Tagging pada judul
   artikel
613
                                     judul tagged =
   judul list[i][1].split()
614
                                     judul tagged =
   data.tag sents([judul tagged])
615
                                     #judul tagged = 'test'
616
                                     print(judul tagged)
617
                                     st.success(f"Hasil Part-
   of-Speech (POS) Tagging untuk judul artikel:
   {judul tagged}")
```

Kode Program 4. 13 Inisiasi Judul dan Konten Artikel menggunakan *Part-of-Speech (POS) Tagging* 

- 1. Pada kode baris ke 602 dan baris ke 603 digunakan untuk melakukan iterasi pada indeks dalam dokumen terkait yang dibatasi maksimal 5 artikel atau sebanyak jumlah artikel dalam judul\_list dimana memastikan indeks i tidak melebihi panjang i < len(judul list).
- 2. Pada kode baris ke 604 sampai baris ke 606 digunakan untuk menampilkan informasi artikel yaitu judul dan tanggal artikel menggunakan streamlit.
- 3. Pada kode baris ke 607 sampai baris ke 609 digunakan menampilkan link dan konten artikel, dimana ketika judul artikel sebagai link yang dapat diklik, dan menampilkan konten artikel sebanyak 500 karakter.
- 4. Pada kode baris ke 613 sampai baris ke 614 digunakan untuk *Part-Of-Speech* (POS) *Tagging* pada judul artikel yaitu dengan memecah menjadi daftar katakata, melakukan POS *Tagging* pada daftar kata dengan CRFTagger
- 5. Pada kode baris ke 615 sampain 617 digunakan untuk menampilkan hasil *Part-Of-Speech* (POS) *Tagging* pada judul artikel.

```
# POS Tagging pada judul

artikel

tanggal_tagged =

judul_list[i][2].split()

tanggal_tagged =

data.tag_sents([tanggal_tagged])
```

```
622
                                      #judul tagged = 'test'
623
                                      print(tanggal tagged)
                                      st.success(f"Hasil Part-
624
    of-Speech (POS) Tagging untuk judul artikel:
    {tanggal tagged}")
625
626
                                      # POS Tagging pada
    konten artikel
627
                                      konten tagged =
    judul list[i][4].split()
628
                                      konten tagged =
   data.tag sents([konten tagged])
629
                                      print(konten tagged)
630
                                      st.success (f"Hasil Part-
    of-Speech (POS) Tagging untuk konten artikel:
    {konten tagged}")
```

Kode Program 4. 14 Menampilkan *Part-Of-Speech* (POS) *Tagging* pada Judul, tanggal dan Konten Artikel

- 1. Pada kode program baris ke 619 sampai baris ke 620digunakan untuk melakukan *Part-Of-Speech* (POS) *Tagging* pada judul artikel, yaitu memecah *string* tanggal artikel menjadi daftar kata-kata, selanjutnya melakukan POS *Tagging* daftar kata dengan CRF *Tagger*, kemudian kode baris ke 623 sampai baris ke 624 menampilkan *Part-Of-Speech* (POS) *Tagging* untuk tanggal artikel.
- 2. Pada kode program baris ke 626 sampai baris ke 630 digunakan untuk melakukan *Part-Of-Speech* (POS) *Tagging* pada konten artikel , yaitu memecah *string* konten artikel menjadi daftar kata-kata, selanjutnya melakukan POS *Tagging* daftar kata dengan CRF*Tagger*, kemudian menampilkan *Part-Of-Speech* (POS) *Tagging* untuk konten artikel.

### 4.5 Analisa Hasil dan Uji Coba

Pada umumnya, suatu sistem akan melalui proses perancangan dan pembuatan sebuah sistem, kemudian proses selanjutnya yaitu melakukan pengujian sistem tersebut. Tujuan dari adanya pengujian sistem ini mempunyai tujuan yaitu sistem yang dibuat memilikifungsionalitas dengan baik atau tidak, dan menguji apakah sesuai dengan hasil perhitungan manual yang dilakukan sebelumnya dengan yang diterapkan dalam sistem, serta mengetahui seberapa pengaruh adanya metode *Part-of-Speech* (POS) *Tagging* dalam proses koreksi ejaan pada *query* pencarian

artikel pariwisata yaitu dalam mengetahui kata ambigu dalam pelabelan kelas kata (tag) pada sistem dan nilai presisi yang dihasilkan setiap query yang diinputkan. Pengujian yang akan dilakukan dalam sistem terdiri dari pengujian untuk mengetahui nilai presisi dari koreksi ejaan terhadap query yang berjumlah 100 data menggunakan Levenshtein Distance dan Part-of-Speech (POS) Tagging. Selanjutnya melakukan pengujian sistem untuk mengetahui nilai presisi dari koreksi ejaan terhadap query berita pariwisata berbahasa Indonesia menggunakan Levenshtein Distance tanpa Part-of-Speech (POS) Tagging.

### 4.5.1 Pengujian dan Analisis

Pada bagian ini yaitu melakukan analisa dan uji coba, dimana uji coba dilakukan sebanyak 3 tahap seperti skenario uji coba pada Tabel 3. 12 Data uji yang digunakan sama untuk setiap uji coba yang dilakukan yaitu berjumlah 100 query pada Tabel 4. 3 Data uji yang digunakan berjumlah 100 data query salah tentang artikel pariwisata. Data uji bervariasi mulai dari 2-5 kata pada kalimat query dengan total kata keseluruhan 128 kata, dan 57 kesalahan ejaan, dimana dalam pengujian ini melakukan pengecekan kesalahan ejaan secara manual yaitu dengan mengoreksi menggunakan metode Levenshtein Distance, dimana nilai jarak serta kesalahan yang terjadi dalam setiap query pada tiga (3) operasi diantaranya, operasi penyisipan, operasi penghapusan, dan operasi subsitusi, sehingga hal ini dapat diketahui masing-masing kesalah dalam setiap kata pada 100 data query yang dibuat, diantaranya

- 23 penyisipan
- 21 penghapusan
- 13 substitusi

Tabel 4. 3 Detail Operasi Pada Query Salah

| NO. | <i>QUERY</i> BENAR                  | <i>QUERY</i> SALAH                |   | OPERASI |   |  |
|-----|-------------------------------------|-----------------------------------|---|---------|---|--|
|     | ZOZNI BENIM                         | gozar grazia                      | D | I       | S |  |
| 1   | karnaval budaya kabupaten<br>klaten | karnval budaya kbupaten<br>klaten |   | 2       |   |  |
| 2   | kunjungan wisatawan                 | kunjungan wista                   | 1 | 1       |   |  |

| NO. | <i>QUERY</i> BENAR                              | <i>QUERY</i> SALAH                                               | OPERASI |   |   |
|-----|-------------------------------------------------|------------------------------------------------------------------|---------|---|---|
| NO. | QUERI BENAR                                     | QUERI SALAII                                                     | D       | I | S |
| 3   | objek wisata                                    | objek wisataa                                                    | 1       |   | 1 |
| 4   | Jalan menuju kawasan wisata                     | jalan menuju kawasan wista                                       |         | 1 |   |
| 5   | Destinasi Wisata Sejarah                        | destinasi wista indinesia<br>terbaru                             |         | 1 | 1 |
| 6   | kawasan Waduk Jatigede                          | kawsan wadk Jatigede                                             |         | 2 |   |
| 7   | Dinas Kebudayaan dan<br>Pariwisata Banjarnegara | dinas kebudyan dan pariwista<br>banjarnegara                     |         | 2 |   |
| 8   | Mendongkrak kunjungan<br>wisatawan              | mendongkrak knjungan<br>wisatawan                                |         | 1 |   |
| 9   | Upacara Tabuik, Tradisi<br>Religius Masyarakat  | upacara tabuik, tradisi<br>religius masyrakat                    |         | 1 |   |
| 10  | Lomba Hias dan Balap Perahu<br>di Majalengka    | lomba hias dan blap perahu di<br>majalengka                      |         | 1 |   |
| 11  | Wisatawan yang datang ke<br>pantai              | wisatawa <mark>nn</mark> yang datan <mark>gg</mark> ke<br>pantai | 2       |   |   |
| 12  | Bus pariwisata terbakar                         | Bus pariwista terbaka <mark>rr</mark>                            | 1       | 1 |   |
| 13  | Gencarnya promosi wisata                        | Gencarnya promosi wista                                          |         | 1 |   |
| 14  | Pantai Amed menawarkan<br>wisata bahari         | Pantai Amed menawrkan<br>wisata bahari                           |         | 1 |   |
| 15  | Pasir di pantai berwarna hitam                  | Pasir di pantai berwarna<br>hita <mark>mm</mark>                 | 1       |   |   |
| 16  | jumlah turis asing                              | jumla <mark>hh</mark> turis asing                                | 1       |   |   |
| 17  | Seluk-beluk Tercetusnya<br>Menara               | Seluk-beluk Tercetusny <mark>aa</mark><br>Menara                 | 1       |   |   |
| 18  | Genjot Potensi Wisata Jabar                     | Genjot Potinsi Wisata jabar                                      |         |   | 1 |
| 19  | mendorong lalu lintas turis                     | mendorong lalu lintas turi <mark>ss</mark>                       | 1       |   |   |
| 20  | kawasan pariwisata unggulan                     | kawasan pa <mark>rr</mark> iwisata<br>unggulan                   | 1       |   |   |
| 21  | wisatawan asing di Indonesia                    | wisatawa <mark>nn</mark> asing di<br>Indonesia                   | 1       |   |   |

| NO. | OHEDV DENIA D                                   | OUEDV CAL AII                                                                                               | OPERASI |   |   |
|-----|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------|---|---|
| NO. | QUERY BENAR                                     | QUERY SALAH                                                                                                 | D       | I | S |
| 22  | pariwisata di Bali                              | pariwisata di Bal <mark>ii</mark>                                                                           | 1       |   |   |
| 23  | sektor pariwisata                               | ssektor ppariwisata                                                                                         | 1       |   |   |
| 24  | wisatawan asing                                 | wistawan asin <mark>gg</mark>                                                                               | 1       | 1 | 1 |
| 25  | pariwisata berkembang dan<br>menarik            | pariwista berkemban <mark>gg</mark> dan<br>menarik                                                          | 1       | 1 |   |
| 26  | festival budaya                                 | festival buday <mark>aa</mark>                                                                              | 1       |   |   |
| 27  | Destinasi wisata Indonesia<br>terbaru           | Destinasi wista indinesia<br>terbaru                                                                        |         | 1 | 1 |
| 28  | Promo Liburan Indonesia                         | Promo linuran Indonesia                                                                                     |         |   | 1 |
| 29  | Event Pariwisata Indonesia                      | Event pariwisata indonesua                                                                                  |         |   | 1 |
| 30  | Kuliner halal bali                              | Kuli <mark>nr</mark> halal bali                                                                             |         | 1 |   |
| 31  | Wisata Tersembunyi di<br>Indonesia              | Wista te <mark>re</mark> sembunyi di<br>Indonesia                                                           | 1       | 1 |   |
| 32  | Balap Sepeda sambil Berwisata                   | Balp <mark>Ss</mark> epeda sambi <mark>ll</mark><br>Bewisata                                                | 2       | 2 |   |
| 33  | Wisata murah di Indonesia                       | Wista murah di Indonesia                                                                                    | 1       |   |   |
| 34  | Harga tiket wisata malang                       | Harga tiket wista malamg                                                                                    |         | 1 | 1 |
| 35  | Bus Wisata Terbakar Hebat di<br>Jalan Solo      | Bus Wista Terbkar Hebatt di<br>Jaln Solo                                                                    | 1       | 3 |   |
| 36  | Klaten menyelenggarakan karnaval buday          | Klaten menyelnggarakan<br>karnval budaya                                                                    |         | 2 |   |
| 37  | Kepala Dinas                                    | Kepa <mark>ll</mark> a Din <mark>ys</mark>                                                                  | 1       |   | 1 |
| 38  | Pentas Tari Meriahkan Karnaval<br>Budaya        | Pntas Tari Meriahkn<br>Ka <mark>rr</mark> naval <mark>Bd</mark> aya                                         | 1       | 3 |   |
| 39  | Siang Ini Ada Karnaval                          | Sia <mark>mg</mark> In <mark>ie</mark> Adha Karaval                                                         | 1       | 1 | 1 |
| 40  | Pemuda Olahraga dan<br>Pariwisata Pemkab Klaten | Pe <mark>mm</mark> uda lahraga da <mark>en</mark><br>Parwisata Pemka <mark>bb</mark> Klat <mark>ee</mark> n | 4       | 2 |   |
| 41  | Mengikuti pawai pembangunan                     | Mengikti pa <mark>ww</mark> ai<br>pembang <mark>in</mark> an                                                | 1       | 1 | 1 |
| 42  | Pariwisata Indonesia                            | Pa <mark>rr</mark> iwsta                                                                                    | 1       | 2 |   |

| NO  | OUEDV DENIA D                                    | OUEDV CAL AII                                                                                                         | OPERASI |    |   |
|-----|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|----|---|
| NO. | QUERY BENAR                                      | QUERY SALAH                                                                                                           | D       | I  | S |
| 43  | Pameran terpadu sektor perdagangan, pariwisata   | Pame <mark>rr</mark> an terpadu sek <mark>tt</mark> or<br>perdag <mark>in</mark> gan, pariwisa <mark>tt</mark> a      | 3       |    | 1 |
| 44  | sampah di destinasi wisata                       | sam <mark>pp</mark> ah di detinasi wista                                                                              | 1       | 2  |   |
| 45  | Pembangunan pariwisata<br>berkelanjutan          | Pembangnan <mark>pp</mark> ariwisata<br>brkelanjuta <mark>nn</mark>                                                   | 2       | 2  |   |
| 46  | Menteri Pariwisata dan Ekobaris<br>ke mi Kreatif | Menter <mark>ii</mark> Pa <mark>rr</mark> iwisata <mark>dd</mark> an<br>Eko <mark>nm</mark> i K <mark>rr</mark> eatif | 4       |    | 1 |
| 47  | pengembangan wisata ramah<br>muslim              | pengembanga <mark>nn</mark> wysta ramah<br>muslim                                                                     | 1       | 11 |   |
| 48  | ikon pariwisata dalam negeri                     | ikon pa <mark>rr</mark> iwisata dalam<br>neger <mark>ii</mark>                                                        | 2       |    |   |
| 49  | Seorang sopir pariwisata di Bali                 | Sseorang sopyr pariwisaty di<br>Bali                                                                                  | 2       |    | 2 |
| 50  | mengimbau masyarakat atau<br>wisatawan           | mengimbau masyara <mark>kk</mark> at atau<br>wisatawan                                                                | 2       | 1  |   |
| 51  | Beragam peristiwa terjadi di<br>Jawa Barat       | Beraga <mark>mm</mark> peristiwa terjadi<br>di Jawa Bara <mark>tt</mark>                                              | 2       |    |   |
| 52  | Seorang sopir pariwisata                         | Seoran <mark>gg</mark> soyir pariwisat <mark>aa</mark>                                                                | 2       | 1  |   |
| 53  | harga tiket dan sejenisnya                       | harga tike <mark>tt</mark> dan sejenisny <mark>aa</mark>                                                              | 2       |    |   |
| 54  | membangun ekosistem pariwisata                   | mem <mark>bb</mark> angun ekosist <mark>em</mark><br>pariwisata                                                       | 1       |    | 1 |
| 55  | perjalanan wisatawan nusantara                   | pperjalanan wiratawan<br>nusantara                                                                                    | 1       |    | 1 |
| 56  | parkir objek wisata Pantai                       | parkir objek wisat <mark>aa</mark> Pantai                                                                             | 1       |    |   |
| 57  | daya tarik wisata                                | daya tarik wisat <mark>aa</mark>                                                                                      | 1       |    |   |
| 58  | restoran yang menyediakan<br>makanan             | rrestoran yang menyediakan<br>makanan                                                                                 | 1       |    |   |
| 59  | kunjungan wisatawan<br>meningkat.                | kunjungann w <mark>ii</mark> satawan<br>meningkat                                                                     | 1       |    |   |
| 60  | Kunjungan Turis Naik<br>Signifikan               | kunjunga <mark>nn</mark> turis naik<br>signifikan                                                                     | 1       |    |   |

| NO. | OHEDV DENAD                                    | OHEDV CAL AII                                                          | OPERASI |   |   |
|-----|------------------------------------------------|------------------------------------------------------------------------|---------|---|---|
| NO. | QUERY BENAR                                    | QUERY SALAH                                                            | D       | I | S |
| 61  | pengunjung restoran                            | penggunjung restorann                                                  | 1       |   |   |
| 62  | mengelola usaha pariwisata                     | m <mark>ee</mark> ngelola ushaa pariwisata                             | 2       | 1 |   |
| 63  | destinasi pariwisata berdaya<br>saing          | ddestinasi pariwisata berdaya<br>sain <mark>gg</mark>                  | 2       |   |   |
| 64  | mengelola bisnis pariwisata                    | mengelola bbisnis pariwisata                                           | 1       |   |   |
| 65  | desa wisata dan destinasi<br>pariwisata        | desa wisata dan destinasi<br>pariwisat <mark>aa</mark>                 | 1       |   | 1 |
| 66  | pariwisata hijau dan energi<br>hijau.          | pariwisat <mark>ah</mark> hijau dan energi<br>hijau.                   | 1       |   |   |
| 67  | pergelaran angklung terbesar                   | ppergelaran angkluny terbesar                                          | 1       |   | 1 |
| 68  | Pemuda Olah dan Pariwisata                     | Pemuda Olah dan Pariwisat                                              |         | 1 |   |
| 69  | Pantai Teluk Penyu                             | pantai teluk peny <mark>uu</mark>                                      | 1       |   |   |
| 70  | pergi ke Pantai Pasir Putih                    | pergi ke pantai pasir pputih                                           | 1       |   |   |
| 71  | kekayaan modalitas sosial<br>budaya            | kekayaan modalita <mark>ss</mark> sosial<br>bu <mark>dd</mark> aya     | 2       |   |   |
| 72  | dekorasi lukisan batik karya<br>Museum         | d <mark>ee</mark> korasi lukisan batik karya<br>mmu <mark>se</mark> um | 2       |   | 1 |
| 73  | taman dan kolam khas Bali.                     | tam <mark>ay</mark> dan kola <mark>mm</mark> khas bali                 |         | 1 | 1 |
| 74  | perumahan tradisional                          | perumaham tradysional                                                  |         | 1 | 1 |
| 75  | mengunjungi tempat-tempat<br>bersejarah        | mmengunjungi ttempat-<br>tempat bersejarah                             | 1       |   |   |
| 76  | kerjasama di berbagai sektor                   | kerjasama di beibagai setkor                                           |         |   | 2 |
| 77  | Biaya untuk layanan umum                       | bia <mark>yy</mark> a untuk layanan umum                               | 1       |   |   |
| 78  | rekreasi dan pendidikan                        | rekre <mark>ha</mark> si dan pendidika <mark>nn</mark>                 | 1       |   | 1 |
| 79  | Harga mobil listrik di negara                  | Harg <mark>ay</mark> mobil listrik di<br>negar <mark>aa</mark>         | 1       |   | 1 |
| 80  | kerja sama ekobaris ke mi dan<br>sosial budaya | ketja sama ekonbaris ke mi<br>dan so <mark>ss</mark> ial budaya        | 1       |   | 1 |
| 81  | video pariwisata Bali                          | video <mark>pp</mark> ariwisata bal <mark>ii</mark>                    | 2       |   |   |

| NO. | QUERY BENAR                               | <i>QUERY</i> SALAH                                                      | OPERASI |   |   |
|-----|-------------------------------------------|-------------------------------------------------------------------------|---------|---|---|
| NO. | QUERT BENAR                               | QUERI SALAH                                                             | D       | I | S |
| 82  | Penampilan tarian Bali                    | panampilan tarian <mark>bb</mark> ali                                   | 1       |   | 1 |
| 83  | pembangunan Taman Mini<br>Indonesia       | pembanguna <mark>nn</mark> Taman Mini<br>Idinesia                       | 1       | 1 | 1 |
| 84  | rekor pertunjukan angklung<br>terbesar    | reko <mark>rr</mark> pertunjukkan angklung<br>terbesr                   | 1       | 1 |   |
| 85  | hadir di Festivall Perahu Rakit           | had <mark>ur</mark> di Festival Perah <mark>uy</mark><br>Rakit          | 1       |   | 1 |
| 86  | warisan budaya tradisional                | wari <mark>ss</mark> an bidaya tradisional                              | 1       |   | 1 |
| 87  | peragaan busana                           | perag <mark>aa</mark> n bu <mark>ss</mark> ana                          | 2       |   |   |
| 88  | pekerja bangunan arsitektur<br>Bali.      | pekerja <mark>be</mark> ngunan arsitektur<br>Bali.                      |         |   | 1 |
| 89  | Wisatawan dari luar negeri                | Wisatawin dari luar negery                                              |         |   | 2 |
| 90  | alunan musik kesenian                     | alunan musyk kesunian                                                   |         |   | 2 |
| 91  | objek wisata religi                       | obje <mark>kk</mark> wisata religi                                      | 1       |   |   |
| 92  | dampak positif bagi sektor<br>pariwisata  | dampa <mark>kk</mark> positif bagi se <mark>kk</mark> tor<br>pariwisata | 2       |   |   |
| 93  | melestarikan budaya Indonesia             | elestarikan buda <mark>yy</mark> a<br>Ind <mark>onesia</mark>           | 1       | 2 | 1 |
| 94  | Pantai Berawa                             | antai Berawa                                                            |         | 1 |   |
| 95  | Destinasi wisata Candi<br>Borobudur       | D <mark>ee</mark> stinasi wisata <mark>Cc</mark> andi<br>Borobudur      | 2       |   |   |
| 96  | bus pariwisata di Bali                    | bu <mark>ss</mark> pa <mark>rr</mark> iwisata di Bali                   | 2       |   |   |
| 97  | memanfaatkan potensi<br>pariwisata.       | memmanfaatkan poten <mark>sy</mark><br>pariwisat <mark>aa</mark>        | 1       | 1 | 1 |
| 98  | kualitas desa wisata                      | kualits desa wi <mark>ss</mark> ata                                     | 1       |   | 1 |
| 99  | Pengembangan pariwisata                   | pengembangn ppariwisata                                                 | 1       | 1 |   |
| 100 | Menteri Pariwisata dan<br>Ekonomi Kreatif | menter <mark>ii</mark> pariwista dan<br>ekonomi Kreati <mark>ff</mark>  | 2       | 1 |   |

Keterangan : **D** = Jumlah operasi penghapusan (deletion) pada *Query* 

I = Jumlah operasi penambahan (insertion) pada Query

**S** = Jumlah operasi pergantian atau (*substitution*) pada *Query* 

= Letak operasi penghapusan (*deletion*) pada kata

= Letak operasi penambahan (insertion) pada kata

= Letak operasi pergantian (substitution) pada kata

# 4.5.2 Hasil Skenario Pengujian Koreksi Ejaan dari *Query* Berita Pariwisata Berbahasa Indonesia Menggunakan *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging*

Pada bagian ini yaitu melakukan proses pengujian dari 100 data *query* yang dibuat. Sehingga hasil dari nilai presisi yang diperoleh dalam pengujian *Levenshtein Distance* dan tanpa menggunakan *Part-Of-Speech* (POS) *Tagging* diperoleh nilai presisi sebagai berikut :

Hasil Nilai Presisi Uji Testing Data Query 100 Levenshtein Distance dan Tanpa Part-Of-Speech (POS) Tagging

Berikut ini hasil nilai presisi dari 100 query pada Tabel 4. 4 berikut ini:

Tabel 4. 4 Hasil Nilai Presisi 100 Query

| Query<br>Salah | Levenshtein Distance |             | Levenshtein Distance dan Part-of-<br>Speech (POS) Tagging |             |  |
|----------------|----------------------|-------------|-----------------------------------------------------------|-------------|--|
| Salali         | Hasil Koreksi        | Precision   | Hasil Koreksi                                             | Precision   |  |
| 1              | karnaval budaya      | 0,5         | karnaval budaya                                           | 0,125       |  |
|                | kabupaten klaten     | 0,5         | kabupaten klaten                                          | 0,123       |  |
| 1              | kunjungan wisata     | 0,5         | kunjungan wisata                                          | 0,5         |  |
| 2              | objek wisata         | 0,5         | objek wisata                                              | 0,5         |  |
| 3              | jalan menuju         | 0,25        | jalan menuju kawasan                                      | 0,25        |  |
|                | kawasan wisata       | 0,23        | wisata                                                    | 0,25        |  |
| 4              | destinasi wisata     | 0,5         | destinasi wisata                                          | 0,25        |  |
|                | indonesia terbaru    | 0,0         | indonesia terbaru                                         | 0,20        |  |
| 5              | kawasan waduk        | 0,666666667 | kawasan waduk jatigede                                    | 0,166666667 |  |
|                | jatigede             | 3,000007    |                                                           | 3,10030007  |  |

| Ower           | Levenshtein Distance |                 | Levenshtein Distance a   | lan Part-of- |
|----------------|----------------------|-----------------|--------------------------|--------------|
| Query<br>Salah | Levensniein 1        | <i>Jisiance</i> | Speech (POS) Ta          | egging       |
| Salali         | Hasil Koreksi        | Precision       | Hasil Koreksi            | Precision    |
|                | dinas kebudayaan     |                 | dinas kebudayaan dan     |              |
| 6              | dan pariwista        | 0,2             | pariwista banjarnegara   | 0,2          |
|                | banjarnegara         |                 |                          |              |
|                | mendongkrak          |                 | mendongkrak kunjungan    |              |
| 7              | kunjungan            | 0,333333333     | wisatawan                | 0,333333333  |
|                | wisatawan            |                 |                          |              |
|                | upacara tabuik       |                 | upacara tabuik tradisi   |              |
| 8              | tradisi religius     | 0,2             | religius masyarakat      | 0,2          |
|                | masyarakat           |                 |                          |              |
|                | lomba hias dan       |                 | lomba hias dan balap     |              |
| 9              | balap perahu di      | 0,142857143     | perahu di majalengka     | 0,142857143  |
|                | majalengka           |                 |                          |              |
| 10             | wisatawan yang       | 0,4             | wisatawan yang datang    | 0,1          |
| 10             | datang ke pantai     | 0,4             | ke pantai                | 0,1          |
| 11             | bus pariwista        | 0,333333333     | bus pariwista terbakar   | 0,333333333  |
| 11             | terbakar             | 0,33333333      |                          | 0,33333333   |
| 12             | gencarnya            | 0,333333333     | gencarnya promosi        | 0,333333333  |
| 12             | promosi wisata       | 0,33333333      | wisata                   | 0,33333333   |
|                | pantai amed          |                 | pantai amed              |              |
| 13             | menawarkan           | 0,2             | menawarkan wisata        | 0,2          |
|                | wisata bahari        |                 | bahari                   |              |
| 14             | pasir di pantai      | 0,2             | pasir di pantai berwarna | 0,2          |
| 11             | berwarna hitam       | 0,2             | hitam                    | 0,2          |
| 15             | jumlah turis asing   | 0,333333333     | jumlah turis asing       | 0,166666667  |
|                | sebelum              |                 | sebelum tercetusnya      |              |
| 16             | tercetusnya          | 0,666666667     | menara                   | 0,166666667  |
|                | menara               |                 |                          |              |
| 17             | gendit potensi       | 0,5             | gendit potensi wisata    | 0,125        |
|                | wisata jabar         |                 | jabar                    | 3,123        |

| Query     | •                   |             | Levenshtein Distance dan Part-of- |             |  |
|-----------|---------------------|-------------|-----------------------------------|-------------|--|
| Salah     |                     |             | Speech (POS) Tagging              |             |  |
| ~ <b></b> | Hasil Koreksi       | Precision   | Hasil Koreksi                     | Precision   |  |
| 18        | mendorong lalu      | 0,25        | mendorong lalu lintas             | 0,25        |  |
| 10        | lintas turis        | 0,23        | turis                             | 0,23        |  |
|           | kawasan             |             | kawasan pariwisata                |             |  |
| 19        | pariwisata          | 0,333333333 | unggulan                          | 0,333333333 |  |
|           | unggulan            |             |                                   |             |  |
| 20        | wisatawan asing di  | 0,25        | wisatawan asing di                | 0,125       |  |
| 20        | indonesia           | 0,23        | indonesia                         | 0,123       |  |
| 21        | pariwisata di balai | 0,333333333 | pariwisata di balai               | 0,333333333 |  |
| 22        | sektor pariwisata   | 1           | sektor pariwisata                 | 0,25        |  |
| 23        | wistawan asing      | 0,5         | wistawan asing                    | 0,5         |  |
|           | pariwista           |             | pariwista berkembang              |             |  |
| 24        | berkembang dan      | 0,25        | dan menarik                       | 0,25        |  |
|           | menarik             |             |                                   |             |  |
| 25        | festival budaya     | 0,5         | festival budaya                   | 0,5         |  |
| 26        | destinasi wisata    | 0,5         | destinasi wisata                  | 0,25        |  |
| 20        | indonesia terbaru   | 0,5         | indonesia terbaru                 | 0,23        |  |
| 27        | promo liburan       | 0,333333333 | promo liburan indonesia           | 0,333333333 |  |
| 27        | indonesia           | 0,33333333  |                                   | 0,33333333  |  |
| 28        | event pariwisata    | 0,333333333 | event pariwisata                  | 0,333333333 |  |
| 20        | indonesia           | 0,55555555  | indonesia                         | 0,33333333  |  |
| 29        | kuliner halal bali  | 0,333333333 | kuliner halal bali                | 0,166666667 |  |
|           | wisata              |             | wisata tersembunyi di             |             |  |
| 30        | tersembunyi di      | 0,5         | indonesia                         | 0,125       |  |
|           | indonesia           |             |                                   |             |  |
| 31        | bala sepeda sambil  | 1           | bala sepeda sambil                | 0,125       |  |
| 31        | berwisata           | 1           | berwisata                         | 0,123       |  |
| 32        | wisata murah di     | 0,25        | wisata murah di                   | 0,125       |  |
| 32        | indonesia           | 0,23        | indonesia                         | 0,123       |  |
|           |                     |             |                                   |             |  |

| Ouerv | Query Levenshtein Distan |             | Levenshtein Distance a  | lan Part-of- |
|-------|--------------------------|-------------|-------------------------|--------------|
| Salah |                          |             | Speech (POS) Ta         | igging       |
| Salan | Hasil Koreksi            | Precision   | Hasil Koreksi           | Precision    |
| 33    | harga tiket wisata       | 0,5         | harga tiket wisata      | 0,25         |
| 33    | malang                   | 0,3         | malang                  | 0,23         |
|       | bus wisata               |             | bus wisata terbakar     |              |
| 34    | terbakar hebat di        | 0,571428571 | hebat di jln solo       | 0,142857143  |
|       | jln solo                 |             |                         |              |
|       | klaten                   |             | klaten                  |              |
| 35    | menyelenggarakan         | 0,5         | menyelenggarakan        | 0,25         |
|       | karnaval budaya          |             | karnaval budaya         |              |
| 36    | kepala dinas             | 1           | kepala dinas            | 0,25         |
| 37    | pentas tari meriah       | 0,8         | pentas tari meriah      | 0,1          |
| 31    | karnaval budaya          | 0,8         | karnaval budaya         | 0,1          |
| 38    | siang ini agha           | 1           | siang ini agha karnaval | 0,125        |
| 36    | karnaval                 | 1           |                         | 0,123        |
|       | pemuda olahraga          |             | pemuda olahraga daun    |              |
| 39    | daun pariwisata          | 1           | pariwisata pemkab       | 0,083333333  |
|       | pemkab klaten            |             | klaten                  |              |
| 40    | mengikuti pawai          | 1           | mengikuti pawai         | 0,166666667  |
| 40    | pembangunan              | 1           | pembangunan             | 0,10000007   |
| 41    | pariwista                | 1           | pariwista               | 0            |
|       | pameran terpadu          |             | pameran terpadu sektor  |              |
| 42    | sektor                   | 0,8         | perdagangan pariwisata  | 0,1          |
| 72    | perdagangan              | 0,0         |                         | 0,1          |
|       | pariwisata               |             |                         |              |
| 43    | sampah di                | 0,75        | sampah di destinasi     | 0,125        |
|       | destinasi wisata         | <u> </u>    | wisata                  | 5,125        |
|       | pembangunan              |             | pembangunan pariwisata  |              |
| 44    | pariwisata               | 1           | berkelanjutan           | 0,166666667  |
|       | berkelanjutan            |             |                         |              |

| Опому          | Levenshtein Distance |                 | Levenshtein Distance dan Part-of |             |  |
|----------------|----------------------|-----------------|----------------------------------|-------------|--|
| Query<br>Salah | Levensniein 1        | <i>Jisiance</i> | Speech (POS) Ta                  | igging      |  |
| Salali         | Hasil Koreksi        | Precision       | Hasil Koreksi                    | Precision   |  |
|                | menteri pariwisata   |                 | menteri pariwisata dan           |             |  |
| 45             | dan ekonomi          | 1               | ekonomi kreatif                  | 0,1         |  |
|                | kreatif              |                 |                                  |             |  |
|                | pengembangan         |                 | pengembangan pesta               |             |  |
| 46             | pesta ramah          | 0,5             | ramah muslim                     | 0,125       |  |
|                | muslim               |                 |                                  |             |  |
| 47             | ikon pariwisata      | 0,5             | ikon pariwisata dalam            | 0,25        |  |
| 7              | dalam negeri         | 0,5             | negeri                           | 0,23        |  |
| 48             | seseorang sopir      | 0,6             | seseorang sopir                  | 0,1         |  |
| 40             | pariwisata di bali   | 0,0             | pariwisata di bali               | 0,1         |  |
|                | mengimbau            |                 | mengimbau masyarakat             |             |  |
| 49             | masyarakat atau      | 0,25            | atau wisatawan                   | 0,25        |  |
|                | wisatawan            |                 |                                  |             |  |
|                | beragam peristiwa    |                 | beragam peristiwa                |             |  |
| 50             | terjadi di jawa      | 0,333333333     | terjadi di jawa barat            | 0,083333333 |  |
|                | barat                |                 |                                  |             |  |
| 51             | seorang sopir        | 1               | seorang sopir pariwisata         | 0,166666667 |  |
|                | pariwisata           | _               |                                  | 3,1000000   |  |
| 52             | harga tiket dan      | 0,5             | harga tiket dan                  | 0,25        |  |
|                | sejenisnya           |                 | sejenisnya                       | 3,23        |  |
|                | membangun            |                 | membangun ekosistem              |             |  |
| 53             | ekosistem            | 0,333333333     | pariwisata                       | 0,166666667 |  |
|                | pariwisata           |                 |                                  |             |  |
|                | perjalanan           |                 | perjalanan wisatawan             |             |  |
| 54             | wisatawan            | 0,666666667     | nusantara                        | 0,166666667 |  |
|                | nusantara            |                 |                                  |             |  |
| 55             | parkir objek wisata  | 0,25            | parkir objek wisata              | 0,25        |  |
|                | pantai               |                 | pantai                           | ·           |  |
| 56             | daya tarik wisata    | 0,333333333     | daya tarik wisata                | 0,333333333 |  |

| Owarry         | Levenshtein Distance |                 | Levenshtein Distance dan Part-of- |             |  |
|----------------|----------------------|-----------------|-----------------------------------|-------------|--|
| Query<br>Salah | Levensniein 1        | <i>Jisiance</i> | Speech (POS) To                   | agging      |  |
| Salali         | Hasil Koreksi        | Precision       | Hasil Koreksi                     | Precision   |  |
|                | restoran yang        |                 | restoran yang                     |             |  |
| 57             | menyediakan          | 0,25            | menyediakan makanan               | 0,125       |  |
|                | makanan              |                 |                                   |             |  |
|                | kunjungan            |                 | kunjungan wisatawan               |             |  |
| 58             | wisatawan            | 0,333333333     | meningkat                         | 0,333333333 |  |
|                | meningkat            |                 |                                   |             |  |
| 59             | kunjungan turis      | 0,25            | kunjungan turis naik              | 0,125       |  |
| 37             | naik signifikan      | 0,23            | signifikan                        | 0,123       |  |
| 60             | pengunjung           | 1               | pengunjung restoran               | 0,25        |  |
| 00             | restoran             | 1               |                                   | 0,23        |  |
| 61             | mengelola ustaz      | 0,666666667     | mengelola ustaz                   | 0,166666667 |  |
|                | pariwisata           | 0,00000007      | pariwisata                        | 0,10000000  |  |
|                | destinasi            |                 | destinasi pariwisata              |             |  |
| 62             | pariwisata berdaya   | 0,5             | berdaya saing                     | 0,125       |  |
|                | saing                |                 |                                   |             |  |
| 63             | mengelola bisnis     | 0,333333333     | mengelola bisnis                  | 0,333333333 |  |
|                | pariwisata           | -,              | pariwisata                        | .,          |  |
|                | desa wisata dan      |                 | desa wisata dan                   |             |  |
| 64             | destinasi            | 0,4             | destinasi pariwisata              | 0,1         |  |
|                | pariwisata           |                 |                                   |             |  |
| 65             | pariwisata hijau     | 0,2             | pariwisata hijau dan              | 0,2         |  |
|                | dan energi hijau     | ,               | energi hijau                      | ,           |  |
| 66             | pergelaran           | 0,666666667     | pergelaran angklung               | 0,166666667 |  |
|                | angklung terbesar    | ,               | terbesar                          | ,           |  |
| 67             | pemuda olah dan      | 0,25            | pemuda olah dan                   | 0,25        |  |
|                | pariwisata           |                 | pariwisata                        | ·           |  |
| 68             | pantai teluk penyu   | 0,333333333     | pantai teluk penyu                | 0,333333333 |  |
| 69             | pergi ke pantai      | 0,2             | pergi ke pantai pasir             | 0,2         |  |
|                | pasir putih          | ,               | putih                             | ,           |  |

| Query | Levenshtein Distance                              |             | Levenshtein Distance dan Part-of-<br>Speech (POS) Tagging |                     |
|-------|---------------------------------------------------|-------------|-----------------------------------------------------------|---------------------|
| Salah | Hasil Koreksi                                     | Precision   | Hasil Koreksi                                             | Precision Precision |
| 70    | kekayaan<br>modalitas sosial<br>budidaya          | 0,5         | kekayaan modalitas<br>sosial budidaya                     | 0,25                |
| 71    | dekorasi lukisan<br>batik karya<br>museum         | 0,4         | dekorasi lukisan batik<br>karya museum                    | 0,1                 |
| 72    | tama dan kolam<br>khas bali                       | 0,4         | tama dan kolam khas<br>bali                               | 0,1                 |
| 73    | perumahan<br>tradisional                          | 1           | perumahan tradisional                                     | 0,25                |
| 74    | mengunjungi<br>tempatnya<br>bersejarah            | 0,666666667 | mengunjungi tempatnya<br>bersejarah                       | 0,166666667         |
| 75    | kerjasama di<br>berbagai setor                    | 0,5         | kerjasama di berbagai<br>setor                            | 0,25                |
| 76    | biaya untuk<br>layanan umum                       | 0,25        | biaya untuk layanan<br>umum                               | 0,125               |
| 77    | rekreasi dan<br>pendidikan                        | 0,666666667 | rekreasi dan pendidikan                                   | 0,166666667         |
| 78    | harga mobil listrik<br>di negara                  | 0,4         | harga mobil listrik di<br>negara                          | 0,1                 |
| 79    | ketua sama<br>ekonomis ke mi<br>dan sosial budaya | 0,375       | ketua sama ekonomis ke<br>mi dan sosial budaya            | 0,0625              |
| 80    | video pariwisata<br>balai                         | 0,666666667 | video pariwisata balai                                    | 0,333333333         |
| 81    | penampilan tarian<br>bali                         | 0,666666667 | penampilan tarian bali                                    | 0,166666667         |

| 0              | Levenshtein 1       | Distance        | Levenshtein Distance dan Part-of- |             |
|----------------|---------------------|-----------------|-----------------------------------|-------------|
| Query<br>Salah | Levensniein 1       | <i>Jisiance</i> | Speech (POS) Tagging              |             |
| Salali         | Hasil Koreksi       | Precision       | Hasil Koreksi                     | Precision   |
|                | pembangunan         |                 | pembangunan taman                 |             |
| 82             | taman mini          | 0,5             | mini indonesia                    | 0,125       |
|                | indonesia           |                 |                                   |             |
|                | rekor               |                 | rekor pertunjukkan                |             |
| 83             | pertunjukkan        | 0,5             | angklung terbesar                 | 0,125       |
|                | angklung terbesar   |                 |                                   |             |
| 84             | hadir di festival   | h:              | hadir di festival perahu          | 0,1         |
| 64             | perahu rakit        | 0,4             | rakit                             | 0,1         |
| 0.5            | warisan budaya      | 0.66666667      | warisan budaya                    | 0.16666667  |
| 85             | tradisional         | 0,666666667     | tradisional                       | 0,166666667 |
| 86             | peragaan busana     | 0,5             | peragaan busana                   | 0,5         |
| 87             | pekerja bangunan    | 0,25            | pekerja bangunan                  | 0,25        |
| 67             | arsitektur bali     |                 | arsitektur bali                   |             |
| 88             | wisatawan dari      | 0,5             | wisatawan dari luar               | 0,125       |
| 00             | luar negeri         |                 | negeri                            | 0,123       |
| 89             | alunan musik        | 0,666666667     | alunan musik kesenian             | 0,333333333 |
| 0)             | kesenian            | 0,00000007      |                                   | 0,33333333  |
| 90             | objek wisata religi | 0,333333333     | objek wisata religi               | 0,166666667 |
|                | dampak positif      |                 | dampak positif bagi               |             |
| 91             | bagi sektor         | 0,4             | sektor pariwisata                 | 0,1         |
|                | pariwisata          |                 |                                   |             |
| 92             | lestarikan budaya   | 0,666666667     | lestarikan budaya                 | 0,166666667 |
| , -            | indonesia           | 0,0000000       | indonesia                         | 0,1000000   |
| 93             | santai berawa       | 0,5             | santai berawa                     | 0,25        |
| 94             | destinasi wisata    | 0,5             | destinasi wisata candi            | 0,125       |
|                | candi borobudur     |                 | borobudur                         | 0,120       |
| 95             | bus pariwisata di   | 0,5             | bus pariwisata di bali            | 0,125       |
|                | bali                |                 |                                   | 0,120       |

| Query<br>Salah | Levenshtein Distance                        |             | Levenshtein Distance dan Part-of-<br>Speech (POS) Tagging |             |
|----------------|---------------------------------------------|-------------|-----------------------------------------------------------|-------------|
| Salali         | Hasil Koreksi                               | Precision   | Hasil Koreksi                                             | Precision   |
| 96             | memanfaatkan<br>potensi pariwisata          | 1           | memanfaatkan potensi<br>pariwisata                        | 0,166666667 |
| 97             | kualitas desa<br>wisata                     | 0,666666667 | kualitas desa wisata                                      | 0,166666667 |
| 98             | pengembangan<br>pariwisata                  | 1           | pengembangan<br>pariwisata                                | 0,25        |
| 99             | menteri pariwista<br>dan ekonomi<br>kreatif | 0,4         | menteri pariwista dan<br>ekonomi kreatif                  | 0,1         |

➤ Hasil Nilai Presisi Data *Query* Pencarian *Levenshtein Distance* dan Tanpa *Part-Of-Speech* (POS) *Tagging*.

Pada bagian ini merupakan hasil pencarian dari artikel berita pariwisata, dimana ketika *query* di*input*kan, kemudian hasil *query* benar ini nantinya akan menampilkan data artikel pariwisata yaitu pada bagian judul yang sesuai dengan *query* yang di*input*kan. Berikut ini tabel 4.5 dibawah ini.

Tabel 4. 5 Hasil 100 Query Nilai Presisi Search Engine

|   | Search Engine Levenshtein Distance |                     | Search Engine Levenshtein Distance<br>dan Part-of-Speech (POS) Tagging |                     |
|---|------------------------------------|---------------------|------------------------------------------------------------------------|---------------------|
|   |                                    |                     |                                                                        |                     |
| 1 | karnaval budaya                    | 0,6                 | karnaval budaya                                                        | 0,6                 |
| 2 | puncak ijen                        | 1,0                 | Puncak ijen                                                            | 1,0                 |
| 3 | tarian reog klaten                 | Tidak ada<br>berita | tarian reog klaten                                                     | Tidak ada<br>berita |
| 4 | perahu                             | 0,6                 | perahu                                                                 | 0,6                 |
| 5 | cianjur                            | 0,3                 | Cianjur                                                                | 0,3                 |

|     | Search Engine Levenshtein                        |                         | Search Engine Levenshtein Distance            |                         |
|-----|--------------------------------------------------|-------------------------|-----------------------------------------------|-------------------------|
|     | Distar                                           | ice                     | dan Part-of-Speech (POS) Tagging              |                         |
| No. | Hasil Koreksi                                    | Precision Search Engine | Hasil Koreksi                                 | Precision Search Engine |
| 6   | kawasan waduk<br>jatigede                        | Tidak ada<br>berita     | kawasan waduk<br>jatigede                     | Tidak ada<br>berita     |
| 7   | tariann tradisional<br>klaten                    | Tidak ada<br>berita     | tarian tradisional<br>klaten                  | Tidak ada<br>berita     |
| 8   | kunjungan<br>wisatawan                           | 0,0                     | kunjungan<br>wisatawan                        | 0,0                     |
| 9   | upacara tabuik<br>tradisi religius<br>masyarakat | Tidak ada<br>berita     | upacara tabuik tradisi<br>religius masyarakat | Tidak ada<br>berita     |
| 10  | lomba hias dan<br>balap perahu di<br>majalengka  | Tidak ada<br>berita     | lomba hias dan balap<br>perahu di majalengka  | Tidak ada<br>berita     |
| 11  | pantai                                           | 1,0                     | pantai                                        | 1,0                     |
| 12  | kesenian                                         | 0,2                     | kesenian                                      | 0,2                     |
| 13  | Pantai amed                                      | 1,0                     | Pantai amed                                   | 1,0                     |
| 14  | pawai                                            | 0,4                     | pawai                                         | 0,4                     |
| 15  | pasir di pantai<br>berwarna hitam                | Tidak ada<br>berita     | pasir di pantai<br>berwarna hitam             | 0,2                     |
| 16  | Pawwaii HUT RI<br>Padangg                        | Tidak ada<br>berita     | Pawwaii HUT RI<br>Padangg                     | Tidak ada<br>berita     |
| 17  | Monumennt<br>Tentara Pelajarr<br>Klaten          | Tidak ada<br>berita     | Monument Tentara<br>Pelajar Klaten            | Tidak ada<br>berita     |
| 18  | potensi wisata<br>jabar                          | Tidak ada<br>berita     | gendit potensi wisata<br>jabar                | Tidak ada<br>berita     |
| 19  | mendorong lalu<br>lintas turis                   | 0,0                     | mendorong lalu<br>lintas turis                | 0,0                     |

|     | Search Engine                               | Levenshtein         | Search Engine Levens                  | shtein Distance     |
|-----|---------------------------------------------|---------------------|---------------------------------------|---------------------|
|     | Distar                                      | ice                 | dan Part-of-Speech (POS) Tagging      |                     |
| No. | Hasil Koreksi  Search Engine  Hasil Koreksi | Hasil Koreksi       | Precision  Search  Engine             |                     |
| 20  | kawasan<br>pariwisata<br>unggulan           | 0,0                 | kawasan pariwisata<br>unggulan        | 0,0                 |
| 21  | wisatawan asing di<br>indonesia             | 0,0                 | wisatawan asing di<br>indonesia       | 0,0                 |
| 22  | waduk karian<br>lebak                       | Tidak ada<br>berita | waduk karian lebak                    | Tidak ada<br>berita |
| 23  | Karnaval                                    | 0,8                 | karnaval                              | 0,8                 |
| 24  | asean indo pacificc                         | 1,0                 | Asean indo pacificc                   | 1,0                 |
| 25  | Pariwisata Sungai                           | Tidak ada<br>berita | Pariwisata sungai                     | Tidak ada<br>berita |
| 26  | festival budaya                             | 0,5                 | festival budaya                       | 0,5                 |
| 27  | destinasi wisata indonesia terbaru          | Tidak ada<br>berita | destinasi wisata<br>indonesia terbaru | 0,25                |
| 28  | Presiden Jokowi<br>Gelar 3 Budaya           | Tidak ada<br>berita | promo liburan<br>indonesia            | Tidak ada<br>berita |
| 29  | Pemprov Bali<br>Objek Wisata                | Tidak ada<br>berita | Pemprov Bali Objek<br>Wisata          | Tidak ada<br>berita |
| 30  | kuliner halal bali                          | Tidak ada<br>berita | kuliner halal bali                    | Tidak ada<br>berita |
| 31  | wisata<br>tersembunyi di<br>indonesia       | Tidak ada<br>berita | wisata tersembunyi<br>di indonesia    | Tidak ada<br>berita |
| 32  | Pasar<br>Pengembangan<br>UMKM               | Tidak ada<br>berita | Pasar pengembangan<br>umkm            | Tidak ada<br>berita |

| Search Engine Levenshtein |                                                     |                         | Search Engine Levens                                | shtein Distance         |
|---------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------------------|-------------------------|
|                           | Distar                                              | ıce                     | dan Part-of-Speech (                                | POS) Tagging            |
| No.                       | Hasil Koreksi                                       | Precision Search Engine | Hasil Koreksi                                       | Precision Search Engine |
| 33                        | wisata murah di<br>indonesia                        | Tidak ada<br>berita     | wisata murah di<br>indonesia                        | Tidak ada<br>berita     |
| 34                        | harga tiket wisata<br>malang                        | Tidak ada<br>berita     | harga tiket wisata<br>malang                        | Tidak ada<br>berita     |
| 35                        | klaten menyelenggarakan karnaval budaya             | 0,75                    | klaten menyelenggarakan karnaval budaya             | 0,75                    |
| 37                        | kepala dinas                                        | 0,0                     | kepala dinas                                        | 0,0                     |
| 38                        | pentas tari meriah<br>karnaval budaya               | Tidak ada<br>berita     | pentas tari meriah<br>karnaval budaya               | Tidak ada<br>berita     |
| 39                        | siang ini ada<br>karnaval                           | 1,0                     | siang ini ada<br>karnaval                           | 1,0                     |
| 40                        | pemuda olahraga<br>daun pariwisata<br>pemkab klaten | Tidak ada<br>berita     | pemuda olahraga<br>daun pariwisata<br>pemkab klaten | Tidak ada<br>berita     |
| 41                        | pawai<br>pembangunan                                | 1,0                     | pawai pembangunan                                   | 1,0                     |
| 42                        | sektor<br>perdagangan<br>pariwisata                 | Tidak ada<br>berita     | sektor perdagangan<br>pariwisata                    | Tidak ada<br>berita     |
| 43                        | Produk Pameran<br>Meksiko                           | Tidak ada<br>berita     | Produk Pameran<br>Meksiko                           | Tidak ada<br>berita     |
| 44                        | Perjanjian Dagang                                   | 1,0                     | Perjanjian dagang                                   | 1,0                     |
| 45                        | pembangunan<br>pariwisata                           | 0,0                     | pembangunan<br>pariwisata                           | 0,0                     |
| 46                        | turis                                               | 0,6                     | turis                                               | 0,6                     |

|     | Search Engine                                 | Levenshtein             | Search Engine Levens                       | shtein Distance         |
|-----|-----------------------------------------------|-------------------------|--------------------------------------------|-------------------------|
|     | Distar                                        | ıce                     | dan Part-of-Speech (POS) Tagging           |                         |
| No. | Hasil Koreksi                                 | Precision Search Engine | Hasil Koreksi                              | Precision Search Engine |
| 47  | Wisata Sejarah<br>Palas                       | Tidak ada<br>berita     | Wisata Sejarah Palas                       | Tidak ada<br>berita     |
| 48  | makanan khas<br>lombok                        | 1,0                     | makanan khas<br>lombok                     | 1,0                     |
| 49  | pariwisata di bali                            | 0,4                     | pariwisata di bali                         | 0,4                     |
| 50  | wisatawan                                     | 0,0                     | wisatawan                                  | 0,0                     |
| 51  | beragam peristiwa<br>terjadi di jawa<br>barat | 0,0                     | beragam peristiwa<br>terjadi di jawa barat | 0,0                     |
| 52  | seorang sopir<br>pariwisata                   | 0,0                     | seorang sopir<br>pariwisata                | 0,0                     |
| 53  | harga tiket dan                               | Tidak ada               | harga tiket dan                            | Tidak ada               |
|     | sejenisnya                                    | berita                  | sejenisnya                                 | berita                  |
| 54  | Pariwisata Jabar                              | 1,0                     | membangun<br>ekosistem pariwisata          | 1,0                     |
| 55  | Pantai Usaha                                  | Tidak ada               | perjalanan wisatawan                       | Tidak ada               |
|     | Terkikis                                      | berita                  | nusantara                                  | berita                  |
| 56  | parkir objek wisata<br>pantai                 | 0,0                     | parkir objek wisata<br>pantai              | 0,0                     |
| 57  | wisata                                        | 1,0                     | wisata                                     | 1,0                     |
| 58  | restoran yang<br>menyediakan<br>makanan       | 0,0                     | restoran yang<br>menyediakan<br>makanan    | 0,0                     |
| 59  | kunjungan<br>wisatawan<br>meningkat           | Tidak ada<br>berita     | kunjungan<br>wisatawan<br>meningkat        | Tidak ada<br>berita     |

|     | Search Engine                            | Levenshtein             | Search Engine Levens                  | shtein Distance         |
|-----|------------------------------------------|-------------------------|---------------------------------------|-------------------------|
|     | Distar                                   | nce                     | dan Part-of-Speech (POS) Tagging      |                         |
| No. | Hasil Koreksi                            | Precision Search Engine | Hasil Koreksi                         | Precision Search Engine |
| 60  | kunjungan turis<br>naik signifikan       | Tidak ada<br>berita     | kunjungan turis naik<br>signifikan    | Tidak ada<br>berita     |
| 61  | pengunjung<br>restoran                   | 0,0                     | pengunjung restoran                   | 0,0                     |
| 62  | Mengelola<br>pariwisata                  | Tidak ada<br>berita     | mengelola pariwisata                  | Tidak ada<br>berita     |
| 63  | destinasi<br>pariwisata berdaya<br>saing | 0,0                     | destinasi pariwisata<br>berdaya saing | 0,0                     |
| 64  | mengelola bisnis<br>pariwisata           | 0,0                     | mengelola bisnis<br>pariwisata        | 0,0                     |
| 65  | bisnis wisata                            | Tidak ada<br>berita     | bisnis wisata                         | Tidak ada<br>berita     |
| 66  | pariwisata hijau<br>dan energi hijau     | Tidak ada<br>berita     | pariwisata hijau dan<br>energi hijau  | Tidak ada<br>berita     |
| 67  | pergelaran<br>angklung terbesar          | 1,0                     | pergelaran angklung<br>terbesar       | 1,0                     |
| 68  | pemuda olah dan<br>pariwisata            | 0,0                     | pemuda olah dan<br>pariwisata         | 0,0                     |
| 69  | pantai teluk penyu                       | 1,0                     | pantai teluk penyu                    | 1,0                     |
| 70  | pergi ke pantai<br>pasir putih           | 0,0                     | pergi ke pantai pasir<br>putih        | 0,0                     |
| 71  | budidaya                                 | 0,0                     | budidaya                              | 0,0                     |
| 72  | museum                                   | 1,0                     | museum                                | 1,0                     |
| 73  | festival                                 | 0,8                     | festival                              | 0,8                     |
| 74  | perumahan<br>tradisional                 | Tidak ada<br>berita     | perumahan<br>tradisional              | Tidak ada<br>berita     |

|     | Search Engine                              | Levenshtein                      | Search Engine Levens                              | shtein Distance         |
|-----|--------------------------------------------|----------------------------------|---------------------------------------------------|-------------------------|
|     | Distar                                     | ıce                              | dan Part-of-Speech (POS) Tagging                  |                         |
| No. | Hasil Koreksi                              | Precision Search Engine          | Hasil Koreksi                                     | Precision Search Engine |
| 75  | karnaval                                   | 0,8                              | karnaval                                          | 0,8                     |
| 76  | kerjasama di<br>berbagai setor             | Tidak ada<br>berita              | kerjasama di<br>berbagai setor                    | Tidak ada<br>berita     |
| 77  | biaya untuk<br>layanan umum                | Tidak ada<br>berita<br>Tidak ada | biaya untuk layanan<br>umum<br>rekreasi dan       | Tidak ada<br>berita     |
| 78  | rekreasi dan<br>pendidikan                 | berita                           | pendidikan                                        | Tidak ada<br>berita     |
| 79  | harga mobil listrik<br>di negara           | 0,0                              | harga mobil listrik di<br>negara                  | 0,0                     |
| 80  | budaya                                     | 0,8                              | ketua sama ekonomis<br>ke mi dan sosial<br>budaya | 0,8                     |
| 81  | pariwisata                                 | 0,4                              | video pariwisata<br>balai                         | 0,333333333             |
| 82  | bali                                       | 1,0                              | bali                                              | 1,0                     |
| 83  | pembangunan<br>taman mini<br>indonesia     | 0,0                              | pembangunan taman<br>mini indonesia               | 0,0                     |
| 84  | rekor<br>pertunjukkan<br>angklung terbesar | Tidak ada<br>berita              | rekor pertunjukkan<br>angklung terbesar           | Tidak ada<br>berita     |
| 85  | hadir di festival<br>perahu rakit          | Tidak ada<br>berita              | hadir di festival<br>perahu rakit                 | Tidak ada<br>berita     |
| 86  | warisan budaya<br>tradisional              | 0,0                              | warisan budaya<br>tradisional                     | 0,0                     |
| 87  | peragaan busana                            | 0,0                              | peragaan busana                                   | 0,0                     |

|     | Search Engine Levenshtein                   |                         | Search Engine Levenshtein Distance       |                           |
|-----|---------------------------------------------|-------------------------|------------------------------------------|---------------------------|
|     | Distar                                      | nce                     | dan Part-of-Speech (POS) Tagging         |                           |
| No. | Hasil Koreksi                               | Precision Search Engine | Hasil Koreksi                            | Precision  Search  Engine |
| 00  | pekerja bangunan                            | Tidak Ada               | pekerja bangunan                         | Tidak ada                 |
| 88  | arsitektur bali                             | berita                  | arsitektur bali                          | berita                    |
| 89  | wisatawan dari<br>luar negeri               | 0,0                     | wisatawan dari luar<br>negeri            | 0,0                       |
| 90  | alunan musik<br>kesenian                    | 0,0                     | alunan musik<br>kesenian                 | 0,0                       |
| 91  | objek wisata religi                         | 0,0                     | objek wisata religi                      | 0,0                       |
| 92  | dampak positif<br>bagi sektor<br>pariwisata | Tidak ada<br>berita     | dampak positif bagi<br>sektor pariwisata | Tidak ada<br>berita       |
| 93  | lestarikan budaya indonesia                 | 0,0                     | lestarikan budaya<br>indonesia           | 0,0                       |
| 94  | pantai berawa                               | 0,6                     | pantai berawa                            | 0,6                       |
| 95  | destinasi wisata<br>candi borobudur         | Tidak ada<br>berita     | destinasi wisata<br>candi borobudur      | Tidak ada<br>berita       |
| 96  | bus pariwisata di<br>bali                   | 0,0                     | bus pariwisata di bali                   | 0,0                       |
| 97  | memanfaatkan                                | Tidak ada               | memanfaatkan                             | Tidak ada                 |
| 97  | potensi pariwisata                          | berita                  | potensi pariwisata                       | Berita                    |
| 98  | kualitas desa<br>wisata                     | 0,0                     | kualitas desa wisata                     | 0,0                       |
| 99  | pengembangan<br>pariwisata                  | 0,0                     | pengembangan<br>pariwisata               | 0,0                       |
| 100 | menteri pariwista<br>dan ekonomi<br>kreatif | 0,0                     | menteri pariwista<br>dan ekonomi kreatif | 0,0                       |

➤ Grafik dari hasil nilai presisi uji *testing* data *query* 100 menggunakan algoritma *Levenshtein Distance* dan Tanpa *Part-Of-Speech* (POS) *Tagging*.

Berikut ini merupakan grafik dari hasil nilai presisi uji testing data *query* 100 *Levenshtein Distance* dan Tanpa *Part-Of-Speech* (POS) *Tagging* pada gambar dibawah ini:

Grafik Nilai Presisi dari hasil 100 data query Levenshtein Distance tanpa Part-Of-Speech (POS)

Pada bagian ini menampilkan gambar grafik dengan total nilai presisi yang dihasilkan untuk menghitung berapa jumlah kata yang berhasil dikoreksi, dengan total jumlah kesalahan kata, algoritma *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging* dari 100 data *query*, menghasilkan grafik dengan hasil presisi. Dimana total nilai presisi diperoleh dari kata yang telah dikoreksi, selanjutnya presisi dihitung dengan membandingkannya dengan kamus atau daftar kata yang benar. Sehingga hasil presisi ini dihitung sebagai jumlah kata yang dikoreksi dengan benar dibagi dengan jumlah total kata yang telah dikoreksi. Maka hasil total nilai presisi ini, adalah jumlah kata yang berhasil diperbaiki dibagi jumlah dari semua nilai presisi yaitu seperti pada gambar 4.1 dibawah ini.



Gambar 4. 1 Grafik Hasil Presisi 100 data *Query* tanpa *Part-Of\_Speech* (POS) *Tagging* 

❖ Gambar Grafik Nilai Presisi dengan *Part-Of-Speech* (POS) *Tagging* 

Pada bagian ini menampilkan gambar grafik dengan total nilai presisi yang dihasilkan untuk menghitung berapa jumlah kata yang berhasil dikoreksi, dengan total jumlah kesalahan kata, dari 100 data *query*, menggunakan algoritma *Levenshtein Distance* dan *Part-of-Speech* (POS) *Tagging* menghasilkan grafik dengan hasil presisi yaitu 97.59% seperti pada gambar 4.2 dibawah ini.



Total Precision: 97.59

Gambar 4. 2 Grafik Hasil Presisi 100 data *Query* dan *Part-Of-Speech* (POS) *Tagging* 

## 4.5.3 Analisa Hasil Skenario Uji Coba Sistem

Pada pengujian dari skenario uji coba sistem yang dilakukan dengan beberapa data *query* diperoleh hasil skenario uji coba sistem dengan nilai presisi yang terdapat pada tabel 4. 6 di bawah ini:

Tabel 4. 6 Hasil Skenario Uji Coba

Levenshtein Distance Part-Of-Speech (POS

| NO | Levenshtein Distance |                  |            | Part-Of-Speech (POS) Tagging |                  |            | - Keterangan                                                                                                                      |
|----|----------------------|------------------|------------|------------------------------|------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|
|    | Query                | Nilai<br>Presisi | Waktu      | Query                        | Nilai<br>presisi | Waktu      | Keterangan                                                                                                                        |
| 1  | 100                  | 97.59%           | 3<br>Detik | 100                          | 20.41%           | 5<br>Detik | Data dengan<br>jumlah banyak<br>dan banyak<br>kesalahan<br>ejaannya akan<br>menghabiskan<br>waktu yang<br>cukup lama<br>ketika di |

|   |    |        |            |    |        |            | koreksi dan di<br>uji.                                                                                                                             |
|---|----|--------|------------|----|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | 10 | 51.41% | 1<br>Detik | 10 | 21.01% | 2<br>Detik | Data dengan<br>jumlah sedikit<br>dan sedikit<br>kesalahan<br>ejaannya akan<br>mempermudah<br>dalam koreksi<br>dan tidak<br>menghabiskan<br>waktu.  |
| 3 | 50 | 27.41% | 2<br>Detik | 50 | 22.55% | 2<br>Detik | Data dengan jumlah cukup akan tetapi terdapat banyak kesalahan kata yang dibenarkan dan tidak ada dikamus akan menyebabkan nilai presisinya kecil. |

## 4.6 Implementasi Sistem

Pada bagian ini menjelaskan mengenai pembuatan *user interface* aplikasi berbasis *website* yang sederhana sehingga mempermudah *user* dalam menggunakan aplikasi dalam koreksi kesalahan ejaan diimplementasikan terhadap sistem sesuai dengan perancangan dalam sistem koreksi ejaan terhadap *query* pencarian artikel pariwisata. Aplikasi ini membantu *user* dalam mengoreksi kesalahan ejaan kata pada *query* (yang terdiri dari beberapa kata kunci) dalam mesin pencarian untuk menemukan artikel berita pariwisata. Berikut ini adalam tampilan dan hasil aplikasi atau sistem yang dibuat, antara lain sebagai berikut:

- Tampilan Sistem
- Inputan query
- Output query pencarian artikel pariwisata
- 100 data *query*

• Query artikel pariwisata

Berikut adalah hasil dari implementasi sistem koreksi ejaan terhadap *query* pencarian Artikel Pariwisata:

 Tampilan Sistem Koreksi Kesalahan Ejaan Terhadap Query Pencarian Artikel Pariwisata



Gambar Tampilan Sistem Koreksi Ejaan

• Inputan query salah data artikel pariwisata dan hasil koreksi ejaan menggunakan Levenshtein Distance dan Part-Of-Speech (POS) Tagging dapat dilihat pada Gambar 4. 3 dibawah ini.

# Skenario Levenshtein Distance & POS Tagging



Gambar 4. 3 Tampilan *inputan query* 

• Inputan query salah data artikel pariwisata menggunakan Levenshtein Distance tanpa Part-Of-Speech (POS) Tagging dan hasil koreksi ejaan dapat dilihat pada Gambar 4. 4 dibawah ini.

# Skenario Levenshtein Distance Tanpa POS Tagging



Gambar 4. 4 inputan query menggunakan metode *Levenshtein Distance* tanpa *Part-Of-Speech (POS) Tagging* 

Dari hasil Koreksi Ejaan terhadap *query* Pencarian Menggunakan Metode *Levenshtein Distance* dan *Part-Of-Speech* (POS) *Tagging* yang dilakukan diperoleh implementasi sistem seperti Gambar 4. 4 di bawah ini.

• Tampilan hasil koreksi ejaan menggunakan Metode *Levenshtein Distance* dan *Part-Of-Speech* (POS) *Tagging* seperti Gambar 4. 5 di bawah ini.

## Sistem Koreksi Ejaan Levenshtein Distance dan Part-of-Speech (POS) Tagging

## Skenario Levenshtein Distance & POS Tagging



Gambar 4. 5 Tampilan skenario *Lavenshtein Distance* dan *Part-Of-Speech* (POS) *Tagging* 

Tampilan hasil Pencarian Artikel Pariwisata menggunakan Levenshtein
 Distance dan Part-Of-Speech (POS) Tagging yang menampilkan artikel,
 diperoleh implementasi sistem seperti Gambar 4. 5 di bawah ini.

## Judul: Karnaval Budaya Klaten 2023 Usung Berbagai Potensi Seni Budaya

Tanggal: 19 Agu 2023 14:44

## <u>Karnaval Budaya Klaten 2023 Usung Berbagai Potensi Seni</u> <u>Budaya</u>

Karnaval budaya Kabupaten Klaten tahun 2023 digelar siang ini di jalan utama kota. Berbagai jenis kesenian dan potensi kebudayaan disajikan peserta.Pantauan detikJateng, sekitar pukul 13.00 WIB para p

Hasil Part-of-Speech (POS) Tagging untuk judul artikel: [[('Karnaval', 'NNP'), ('Budaya', 'NNP'), ('Klaten', 'NNP'), ('2023', 'CD'), ('Usung', 'NNP'), ('Berbagai', 'NNP'), ('Potensi', 'NNP'), ('Seni', 'NNP'), ('Budaya', 'NNP')]]

 $Hasil\ Part-of-Speech\ (POS)\ Tagging\ untuk\ judul\ artikel:\ [[('19', 'CD'), ('Agu', 'NNP'), ('2023', 'CD'), ('14:44', 'CD')]]$ 

Gambar 4. 6 Menampilkan hasil pencarian Artikel

 Tampilan hasil koreksi ejaan query menggunakan Levenshtein Distance Tanpa Part-Of-Speech (POS) Tagging yang menampilkan koreksi, diperoleh implementasi sistem seperti Gambar 4. 7 di bawah ini.

## Sistem Koreksi Ejaan Levenshtein Distance dan Part-of-Speech (POS) Tagging

## Skenario Levenshtein Distance Tanpa POS Tagging



Gambar 4. 7 Hasil koreksi ejaan

 Tampilan hasil pencarian artikel menggunakan Levenshtein Distance Tanpa Part-Of-Speech (POS) Tagging yang menampilkan koreksi, diperoleh implementasi sistem seperti Gambar 4. 8 di bawah ini. Judul: Karnaval Budaya Klaten 2023 Usung Berbagai Potensi Seni Budaya

Tanggal: 19 Agu 2023 14:44

link: https://www.detik.com/jateng/berita/d-6884810/karnaval-budaya-klaten-2023-usung-berbagai-potensi-seni-budaya

<u>Karnaval Budaya Klaten 2023 Usung Berbagai Potensi Seni</u> Budaya

Karnaval budaya Kabupaten Klaten tahun 2023 digelar siang ini di jalan utama kota. Berbagai jenis kesenian dan potensi kebudayaan disajikan peserta.Pantauan detikJateng, sekitar pukul 13.00 WIB para p

Nilai Precision: 0.75

Gambar 4. 8 Menampilkan Artikel tanpa Part-Of-Speech (POS) Tagging

4.7 Evaluasi Sistem

Pada bagian evaluasi sistem ini dilakukan sebagai langkah selanjutnya setelah sistem yang sebelumnya berhasil dibuat. Tujuan adanya evaluasi sistem untuk menjelaskan kembali hasil pengujian dan menjelaskan kendala atau permasalahan yang terjadi dalam penelitian yang telah dilakukan. Berdasarkan hasil pengujian menunjukkan bahwa *Levenshtein Distance* dapat melakukan perbaikan koreksi ejaan kata dengan baik pada beberapa *query* yang kurang tepat dalam kesalahan penulisan kata dapat dilihat pada Gambar 4. 1 di halaman sebelumnya.

Berdasarkan hasil pengujian pada setiap kesalahan kata pada *query* tersebut diperoleh nilai presisi pada skenario *Levenshtein Distance* dan *Part-Of-Speech* (POS) *Tagging* menghasilkan nilai presisi 97.59%. Adapun kendala yang dihadapi yaitu ketika menghasilkan nilai presisi kecil karena dataset yang digunakan dalam *search engine* atau mesin pencarian datasetnya kurang, karena seharusnya data yang digunakan dalam *search engine* berjumlah miliaran. Sehingga ketika mesin pencarian ingin melakukan pencarian data atau dokumen, data yang diperoleh dan ditampilkan sesuai *query* yang di*input*kan menghasilkan hasil pencarian yang sedikit. Kemudian untuk memperoleh data relevan (sesuai) yang dimana sebanyak 5 data relevan (sesuai) dari hasil *query* pencariannya mengalami kesulitan, karena data yang digunakan berjumlah sedikit.

Selanjutnya pada pengujian koreksi kesalahan ejaan terhadap *query* pencarian artikel pariwisata menggunakan metode *Levenshtein Distance* tanpa *Part-of-Speech* (POS) *Tagging* menghasilkan hasil koreksi dengan nilai presisi yang siginifikan yaitu 51.41%., karena nilai presisinya kecil disebabkan terdapat kata yang harusnya dikoreksi akan tetapi sistem tidak mampu dikoreksi, karena tagnya berbeda.

Berdasarkan hasil pengujian yang dilakukan sebelumnya, dapat disimpulkan bahwa terdapat beberapa faktor yang mempengaruhi yaitu

- 1. Data yang digunakan sedikit
- 2. Setiap hasil koreksi ejaan kata, terdapat bagian yang tidak sesuai dengan hasil koreksinya, yang dimana kata tersebut seharusnya dikoreksi akan tetapi tidak dikoreksi.
- 3. Pada setiap satu kali pencarian dari *query* yang di*input*kan tidak selalu menampilkan 5 (lima) pencarian dokumen, dan hasil pencariannya dokumen yang relevan sesuai dengan *query* yang di*input*kan hasilnya sedikit.

#### **BAB V**

### **KESIMPULAN**

## 5.1 Kesimpulan

Berdasarkan rangkaian uraian penelitian sistem koreksi ejaan terhadap query pencarian artikel pariwisata berbahasa Indonesia dengan menggunakan Levenshtein Distance dan Part-of-Speech (POS) Tagging, menggunakan 100 data uji query diperoleh nilai presisi 97.59% dan tanpa Part-of-Speech (POS) Tagging nilai presisi 51.41%. Hasil analisa dan pembahasan dalam proses koreksi ejaan menggunakan metode Levenshtein Distance mampu melakukan koreksi ejaan dengan baik, dan sistem dengan cepat mengkoreksi dan metode Part-of-Speech (POS) Tagging melakukan pelabelan tag untuk mengetahui adanya ambiguitas kata atau kata yang bermakna banyak.

### 5.2 Saran

Berdasarkan hasil kinerja sistem yang dilakukan pada koreksi kesalahan ejaan terhadap *query* pencarian artikel pariwisata, terdapat permasalahan yaitu sebagai berikut:

- 1. Nilai presisi yang diperoleh kecil karena data yang digunakan sedikit.
- 2. Data kamus yang digunakan memuat beberapa kata yang tidak baku, sehingga data *query* yang dilakukan dengan pengoreksian secara manual tidak sesuai dengan hasil koreksi pada sistem. Sehingga daftar hasil *query* benar mengikuti hasil koreksi pada kamus.
- 3. Adanya *Part-Of-Speech* (POS) *Tagging* tidak direkomendasikan dalam penerapan koreksi ejaan karena selain mempengaruhi nilai presisinya, *corpus* yang terdapat dalam *Part-Of-Speech* (POS) *Tagging* yang tersedia,datanya tidak terdapat kelas kata secara signifikan.

### **REFERENSI**

- [1] A. Subhan Yazid, A. Fatwanto, T. Informatika Fakultas Sains dan Tekbaris ke logi, and U. Sunan Kalijaga Yogyakarta Jl Laksda Adisucipto, "Penentuan Kelas Kata Pada Part Of Speech Tagging Kata Ambigu Bahasa Indonesia," *Jurnal Informatika Sunan Kalijaga)*, vol. 2, baris ke 3, pp. 157–166, 2018, Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.14421/jiska.2018.23-05
- [2] R. Martin, D. Santun Naga, and V. Christanti Mawardi, "Penggunaan Spelling Correction Dengan Metode Peter Baris ke rvig dan N-Gram." Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.24912/jiksi.v9i1.11591
- [3] A. Y. R. Fitriani and L. E. Rahmawati, "Analisis kesalahan penggunaan tanda baca dan huruf miring dalam teks berita online detiknews dan tribunnews," *BAHASTRA*, vol. 40, baris ke 1, p. 10, Apr. 2020, doi: 10.26555/bahastra.v40i1.14695.
- [4] U. Pembangunan *et al.*, "Penggunaan Bahasa pada Perkembangan Industri Pariwisata di Surabaya: Studi Kasus Objek Wisata Museum Sepuluh Baris ke pember Ilmatus Sa'diyah," 2023. Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.12928/mms.v4i2.8072
- [5] R. Ariyansyah, R. Nanda, and O. Wiranda, "Search Engine Menggunakan Metode Information Retrival," 2022. Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.58794/santi.v2i1.68
- [6] Husni, I. O. Suzanti, Y. D. Pramudita, S. S. Putro, and L. Heryawan, "Web Service for Search Engine Bahasa Indonesia (SEBI)," in *Journal of Physics: Conference Series*, IOP Publishing Ltd, Jul. 2020. doi: 10.1088/1742-6596/1569/2/022087.
- [7] S. Kusumadewi, L. Rosita, and C. I. Ratnasari, "A Baris ke n-Word Error Spell Checker for Patient Complaints in Bahasa Indonesia," 2017. [Online]. Available: https://www.researchgate.net/publication/318927640
- [8] M. O. Braddley, M. Fachrurrozi, and N. Yusliani, "Pengoreksian Ejaan Kata Berbahasa Indonesia Menggunakan Algoritma Levensthein Distance," 2017.
- [9] M. S. Simanjuntak, H. Sujaini, and N. Safriadi, "Spelling Corrector Bahasa Indonesia dengan Kombinasi Metode Peter Baris ke rvig dan N-Gram," *Jurnal Edukasi dan Penelitian Informatika (JEPIN)*, vol. 4, baris ke 1, p. 17, Jun. 2018, doi: 10.26418/jp.v4i1.24075.
- [10] D. Markuci *et al.*, "Implementasi Spelling Corrector untuk mengatasi Typographical Error pada Fitur Pencarian Aplikasi Kamus Istilah Informatika," vol. 17, baris ke 1, 2023, doi: 10.47111/JTI.
- [11] A. I. Fahma, I. Cholissodin, and R. S. Perdana, "Identifikasi Kesalahan Penulisan Kata (Typographical Error) pada Dokumen Berbahasa Indonesia Menggunakan Metode N-gram dan Levenshtein Distance," 2018. [Online]. Available: http://j-ptiik.ub.ac.id

- [12] Y. Purnama Sari, G. Aditra Pradnyana, and I. Made Agus Wirawa, "Pengembangan Aplikasi Bahasa BIMA-Bahasa Indonesia Menggunakan Algoritma Levenshetin Distance Sebagai Spell Checker Berbasis Android," 2001. Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.23887/karmapati.v8i2.17964
- [13] Nurul Huda and Muhammad Khafidurrohman, "Perbandingan Efisiensi Algoritma String Matchinng Knuth Morris Pratt Dan Algoritma Levenshtein Pada Aplikasi Pengarsipan Dan Pencarian Data Anggota Honda Megapro Club Indonesia," *JUPITER*, vol. 15 baris ke 1, baris ke Program Studi Teknik Informatika, Universitas Bina Darma Palembang. Jl. Jenderal A. Yani Baris ke 3, 9/10 Ulu, Seberang Ulu I, Palembang, Sumatera Selatan 30111 e-mail: \*nurul\_huda@binadarma.ac.id, \*mhd.khafi26@gmail.com, pp. 787–798, Apr. 4AD, Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.5281./6639/15.jupiter.2023.04
- [14] K. Widhiyantil and A. Harjoko2, "POS Tagging Bahasa Indonesia Dengan HMM dan Rule Based."
- [15] B. Pham and B. P. Student, "Parts of Speech Tagging: Rule-Based Parts of Speech Tagging: Rule-Based Parts of Speech Tagging: Rule-Based," 2020. [Online]. Available: https://digitalcommons.harrisburgu.edu/cisc\_student-coursework
- [16] K. K. Purnamasari and I. S. Suwardi, "Rule-based Part of Speech Tagger for Indonesian Language," in *IOP Conference Series: Materials Science and Engineering*, Institute of Physics Publishing, Sep. 2018. doi: 10.1088/1757-899X/407/1/012151.
- [17] T. Aprilianto and A. Badawi, "Sistem Koreksi Kata dan Pengenalan Struktur Kalimat Berbahasa Indonesia dengan Pendekatan Kamus Berbasis Levenshtein Distance," 2017.
- [18] S. K. Dirjen *et al.*, "Terakreditasi SINTA Peringkat 2 Autocorrect pada Modul Pencarian Drugs e-Dictionary Menggunakan Algoritma Levenshtein Distance," *masa berlaku mulai*, vol. 1, baris ke 3, pp. 64–69, 2017.
- [19] D. Hládek, J. Staš, and M. Pleva, "Survey of automatic spelling correction," *Electronics (Switzerland)*, vol. 9, baris ke 10. MDPI AG, pp. 1–29, Oct. 01, 2020. doi: 10.3390/electronics9101670.
- [20] Y. Apriani *et al.*, "Basastra: Jurnal Kajian Bahasa dan Sastra Indonesia KESALAHAN EJAAN BAHASA INDONESIA PADA BERITA KORAN".
- [21] nuraini.ahmad and anis.masruri, "Penerapan Information Retrieval Pada Search Engine," *Jurnal Ibaris ke vasi Hasil Penelitian dan Pengembangan*, vol. 1, baris ke p-ISSN: 2809-4042 | e-ISSN: 2809-4034, pp. 15–23, Dec. 2021.
- [22] H. Artanto, F. Nurdiyansyah, and U. Widyagama Malang, "Penerapan SEO (Search Engine Optimization) Untuk Meningkatkan Penjualan Produk," Journal of Information Techbaris ke logy and Computer Science

- (JOINTECS), vol. 1, baris ke 2, 2017, [Online]. Available: http://info.cern.ch/
- [23] R. Ariyansyah, R. Nanda, and O. Wiranda, "Search Engine Menggunakan Metode Information Retrival," 2022. Accessed: Jan. 19, 2024. [Online]. Available: DOI: https://doi.org/10.58794/santi.v2i1.68
- [24] R. Ridlo Baihaqi, "Temu Kembali Informasi pada Berita Olahraga Berbahasa Indonesia dengan Seleksi Fitur Term Frequency dan Metode BM25," 2020. [Online]. Available: http://j-ptiik.ub.ac.id
- [25] E. Esyudha Pratama and J. H. Hadari Nawawi, "Information Retrieval pada Proses Penyimpanan dan Pencarian Dokumen Digital Menggunakan Metode Text Mining," 2018.
- [26] E. L. Amalia<sup>1</sup>, A. J. Jumadi, I. A. Mashudi<sup>3</sup>, W. Wibowo<sup>4</sup>, P. N. Malang, and P. Korespondensi, "Analisis Metode Cosine Similarity Pada Aplikasi Ujian Online Esai Otomatis (Studi Kasus JTI POLINEMA) Cosine Similarity Method Analysis On Automatic Esai Online Test Application", doi: 10.25126/jtiik.202184356.
- [27] R. Fitri, A. Baris ke or Asyikin, and S. Pengajar Jurusan Teknik Elektro Politeknik Negeri Banjarmasin Ringkasan, "Aplikasi Penilaian Ujian Essay Otomatis Menggunakan Metode Cosine Similarity," vol. 7, baris ke 2, pp. 54–105, 2015.
- [28] D. Rosmala and Z. M. Risyad, "Algoritma Levenshtein Distance dalam Aplikasi Pencarian Kata Isu di Kota Bandung pada Twitter," *MIND Journal* | *ISSN*, vol. ISSN, baris ke 2, pp. 1–12, 2017, doi: 10.26760/mindjournal.
- [29] M. Adnan Nur, "Perbandingan Levenshtein Distance Dan Jaro-Winkler Distance Untuk Koreksi Kata Dalam Preprocessing Analisis Sentimen Pengguna Twitter," Jurnal Fokus Elektroda Jurnal Fokus Elektroda: Energi Listrik, Telekomunikasi, Komputer, Elektronika dan Kendali) Teknik Elektro Universitas Halu Oleo Kendari Sulawesi Tenggara, vol. 06 Baris ke 02, baris ke e-ISSN: 2502-5562, pp. 88–93, 2016.
- [30] K. Sakaguchi, T. M. izumot, M. amoru Komachi, and Y. M. ji atsumot, "Joint English Spelling Error Correction and POS Tagging for Language Learners Writing," 2012.
- [31] N. Hamidah, N. Yusliani, D. Rodiah, and 3, "Spelling Checker using Algorithm Damerau Levenshtein Distance and Cosine Similarity," 2020. [Online]. Available: http://sjia.ejournal.unsri.ac.id
- [32] R. Adawiyah and N. E. Saragih, "Implementasi Algoritma Levenshtein Distance Dalam Mendeteksi Plagiarisme."
- [33] M. Kurniawan, K. Kusrini, and M. R. Arief, "Part of Speech Tagging Pada Teks Bahasa Indonesia dengan BiLSTM + CNN + CRF dan ELMo," *Jurnal Eksplora Informatika*, vol. 11, baris ke 1, pp. 29–37, Jan. 2022, doi: 10.30864/eksplora.v11i1.506.