Exercise Sheet 3

Exercise 1: Neural Network Optimization (20 + 15 + 15 P)

Consider the one-layer neural network

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x}$$

applied to data points $\boldsymbol{x} \in \mathbb{R}^d$, and where $\boldsymbol{w} \in \mathbb{R}^d$ is the parameter of the model. We would like to optimize the mean square error objective:

 $J(\boldsymbol{w}) = \mathbb{E}_{\hat{p}} \left[\frac{1}{2} (\boldsymbol{w}^{\top} \boldsymbol{x} - t)^{2} \right],$

where the expectation is computed over an empirical approximation \hat{p} of the true joint distribution $p(\boldsymbol{x},t)$. The ground truth is known to be of type: $t|\boldsymbol{x}=\boldsymbol{v}^{\top}\boldsymbol{x}+\varepsilon$, with the parameter \boldsymbol{v} unknown, and where ε is some small i.i.d. Gaussian noise. The input data follows the distribution $\boldsymbol{x}\sim\mathcal{N}(\boldsymbol{\mu},\sigma^2I)$ where $\boldsymbol{\mu}$ and σ^2 are the mean and variance.

- (a) Compute the Hessian of the objective function J at the current location w in the parameter space, and as a function of the parameters μ and σ of the data.
- (b) Show that the condition number of the Hessian is given by: $\frac{\lambda_1}{\lambda_d} = 1 + \frac{\|\boldsymbol{\mu}\|^2}{\sigma^2}$.
- (c) Explain for this particular problem what would be the advantages and disadvantages of centering the data before training. You answer could include the following aspects: (1) condition number and speed of convergence, (2) ability to reach a low prediction error.

Exercise 2: Programming (50 P)

Download the programming files on ISIS and follow the instructions.