(RS 5)

5 T(a|St) Q(St, a) = VT(St)

Now When The Tit optimal
then V4 = V*, 90 = 94

and the assigns non-zero probabilities only to
those actions (a' & A (sel)) which assign
the maximum value to Pro(St. a)

e, lose can avrite this es:-

V*(SE) = 5 TH (a/SE) 9/4 (SE, Q)

Au I)	Current state (s)	actions a EAG)	next State (s1)	newerds (2)	p(s, r s,a)
	high	bearth	high	Isearch	K
	high	search	low	Icsearch	(-K
	low	search	high	-3	(- B
	low	search	low	Research	B
	high	wait	high	rwait	1
per color of the color of the color	low	wait	low	e wait	
	low.	Seethorge	high	0	1
tea Also	he table a sition graph six p(s', z 1s,	es obtain given a)=1 +s,	in the proble	using the book for ac AG	figure of e that problem J. So it is right

Aug 3) (3.15) and 3.16) Signs of the removeds are inveloperant Secause that so they can be changed by adding appropriate court. E' to all suwards and suwards are something that we decide Now the interval to of the values was are important of they show the relative preferences of states. and those intervals can get affected in different ways by adding a constant c', based on the fast is episodic or continuous. for Episodic: V(s) = Ea [G'_t | S_t = s]o, G_t = R_{t+1} + R_t = + R_t The Company of the source of t $G'_{k} = \underbrace{\sum_{k=1}^{M} \chi^{k}}_{k+1} + C\left(\frac{1-\gamma^{M}}{1-\gamma}\right) \xrightarrow{M \text{ steps}}_{k}.$ $=) V_{\overline{a}}(s) = E_{\overline{a}} \left[G_{+} + c \left(\frac{1 - \gamma M}{1 - \gamma} \right) \right] S_{+} = s$ = E = [Gt | St = S] + . E [c(1-2m) | St = s] Va(S) = 9 Va(S) + C(1-2M) Lisconst.

1-2) M<00 with probability=1

and 1 mallon bo, if M is smaller, then to ((1-1m) usil to smaller, so states closer to (0002(1) (1-1) tourination will see smaller in vicease in their preference.

for Continuous task: - G' = G + \(\frac{5}{4} = G_{\frac{1}{4}} + \frac{5}{1-2} = G_{\frac{1}{4}} + \frac{5}{1-2} Va(S) = Em [G+ + = 1 | St = S] $\int V_a(s) = V_a(s) + \left(\frac{c}{1-2}\right)$ So, In this case, a each values in offset by the Same Constant C 1-7 10, the relative preferences of states doesn't change. Example of changing the effect in Episodic tast: Suppose given $R_1 = 0.5$ $R_2 = 0.5$ $R_3 = 1$ marker So here $V_{tr}(s_{0}) = 0$, $V_{tr}(s_{1}) = 1$ how let C= 100 and V=0.1 10, V== tova

1-11-0.13)+0=111 (1-2m) 10, for $V_n'(s_0) = 100(1-(0.1)^3) + 0 = 111$ $V_{\tau}(S_{1}) = 100(1-(0.0^{2})) + 1.5 = 4111.5$ $V_{\alpha}(S_2) = 160(1-6.0) + 1 = 101$ (50) Va (52) > Va (50) but Va (50) (Va (50) /