Class Notes

AMSC460 - Computational Methods Professor Stefan University of Maryland, College Park

Wenyu Chen

Spring 2023

Contents

Т	v	บ
	0	3
	0 1	4
	· O	4
		5
	1.4 Machine Epsilon	6
2	Root Finding	7
	8	7
		7
		8
		9
	2.4 Secant Method	9
3	Linear Systems 1	
	3.1 Flop Count	
	3.1.1 Gaussian Elimination	
	3.1.2 Lu Decomposition	
	3.2 Pitfalls	
	3.3 Errors in Linear Systems	
	3.3.1 Errors for Ax=b	
	3.4 Iterative Methods	
	3.4.1 Jacobi Method	
	3.4.2 Gauss-Sedel Method	·U
4	Nonlinear Systems 1	7
	4.1 Multivariable Newton's Method	7
	4.1.1 Netwon Method	7
	4.1.2 Convergence Theory	8
_		_
5	Interpolation 1	
	5.1 Polynomial Interpolation	
	5.2 Lagrange Basis	
	5.3 Newton Basis	
	5.4 Interpolation Error and Chebyshev Interpolation	
	5.5 Hermite Interpolation	
	5.6 Piecewise Polynomial Interpolation	
	5.6.1 Error	
	5.6.2 Cubic Spline	
6	Linear Least Squares 2	5
	6.1 Derivation	25
	6.2 QR Decomposition	26
	6.3 Least Squares	
	6.3.1 Method	
	6.4 Approximation Theory	
	6.4.1 Problem	
	6.5 Weighted Least-Squares	
	6.5.1 Gram-Schmidt	
	6.5.2 Legendre Polynomials	0
7	Numerical Differentiation 3	1
•	7.1 Two Point Forward Difference Quotient	
	7.2 Two Point Backward Difference Quotient	

CONTENTS 2

	7.3	Centered Differencing	31
	7.4	Method of Undetermined Coefficient	32
	7.5	Error	32
	7.6	Richordson Extrapolation	3
8	Quad	drature 3	4
	8.1	Newton-Cotes Quadrature	34
		8.1.1 Midpoint Rule	
	8.2	Trapezoid Rule	35
	8.3	Simpson's Rule	35
	8.4	(Weighted) Gaussian Quadrature	6
9	Row	berg Integration 3	8
10	Unkı	nown 4	0
	10.1	Backward Euler Method	0
		10.1.1 Local Truncation Error	0
	10.2	Trapezoid Method	1
		Forward Euler Method on Systems	
		Leapfrog Method	
		10.4.1 Stability	

1 | Preliminary

Big O Notation

Definition 1.0.0.0.1

f(n) = O(g(n)) as $n \to \infty$ if $\exists N, M > 0$ such that

$$|f(n)| \le Mg(n) \forall n \ge N$$

Note: As $n \to 0^+$, n^2 dominates n^3 so $(n^3) = O(n^2)$ as $n \to 0^+$

Example: $n^2 = O(n^3)$ as $n \to \infty$. We want M, N such that

$$|n^2| \le Mn^3, \forall n \ge N$$

So let M=1, N=2 since $1 \le 1 \cdot n$ holds $\forall n \ge 2$

Example: $n^2 \neq O(n)$ as $n \to \infty$. Suppose $\exists M, N$ such that $n^2 \leq Mn$ for all $n \geq N$, then $n \leq M, \forall n \geq N$. However when n = max(M+1, n+1), then $n \geq M$, a contradiction.

Example: $n^3 + 2n^2 - n = O(n^3)$

Proof. By triangle inequality,

$$|n^3 + 2n^2 - n| \le n^3 + 2n^2 + n$$

 $\le n^3 + 2n^3 + n^3$
 $\le 4n^3$

for all $n \ge 1$

Definition 1.0.0.0.2

We say f(h) = O(g(h)) as $h \to 0^+$ if $\exists M, \sigma > 0$ such that

$$|f(h)| \le Mg(h)$$

 $\forall h \in (0, \delta)$

Example: $h^2 = O(h)$ as $h \to 0^+$. We want M, δ such that

$$|f(h)| \le Mg(h) \qquad \forall 0 < h < \delta$$

We can set $M = 2, \delta = 2$.

Theorem 1.1

Properties:

1. $O(n^p \pm n^q) = O(n^p)$ as $n \to \infty$ if and only if $p \ge q$. But if $n \to 0^+$, then $O(n^p \pm n^q) = O(n^q)$

2. $O(cn^p) = O(n^p)$ assumed c is constant dependent of n

3. $O(f_1f_2) = O(f_1)O(f_2)$

Taylor Expansions

Definition 2.0.0.0.1 Taylor Expansion

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)(x_0)}}{k!} (x - x_0)^k$$

Another version:

Let $x = x_0 + h$, then

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{1}{2}h^2f''(x_0) + \cdots$$

Truncating, we have

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n$$

Definition 2.0.0.0.2

Lagrange Remainder Term

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)(x_0)}}{k!} (x - x_0)^k + \frac{f^{n+1}(Cn_1x)}{(n+1)!} (x - x_0)^{n+1}$$
$$= \sum_{k=0}^{n} \frac{f^{(k)(x_0)}}{k!} (x - x_0)^k + O((x - x_0)^n + 1)$$

as $x \to x_0$. where Cn_1x is between x and x_0

Binary and Floating Point

Definition 3.0.0.0.1

Binary, $b_i = 0$ or 1, a bit. 1 byte = 8 bits. 1 kb = $2^10 = 1024$ bits.

$$x = \dots + b_{-2} \cdot 2^{-2} + b_{-1} \cdot 2^{-1} + b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots$$

Example: (terminating binary)

$$(100.1)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1}$$

= $(4.5)_{10}$

Example: (non terminating binary)

$$x = (.\overline{10})_2 = (.10101010 \cdots)_2$$

$$2^2x = (10.\overline{10})_2$$
, then

$$(2^2 - 1)x = (10)_2 = (2)_{10} \implies x = \left(\frac{2}{3}\right)_{10}$$

Decimal to Binary

Example: $(5.4)_{10}$

Integer Part: $(5)_{10}$, note that

$$\frac{5}{2} = 2R1$$
$$\frac{2}{2} = 1R0$$
$$\frac{1}{2} = 0R1$$

So we get 101 as result (keep track of remainders backward). Then, we consider the fractional part $(.4)_{10}$,

$$.4 \times 2 = .8 = .8 + 0$$

$$.8 \times 2 = 1.6 = .6 + 1$$

$$.6 \times 2 = 1.2 = .2 + 1$$

$$.2 \times 2 = .4 = .4 + 0$$

Notice it repeats to .4 So the answer is $(.\overline{0110})_2$ (keep track of remainder forward). Then the final answer is $(5.4)_{10} = (101.\overline{0110})_2$. So we can not store exactly on a computer!

Floating Point Numbers

To Normalized Base 2 Floats, we do

$$[\pm]1 \cdot \text{mantissa} \times 2^E$$

where $[\pm]$ is sign and 1 is the leading 1 (normalization), mantissa consists of bites $b_i = 0, 1$ and E is the exponent

Note: 0 is subnormal, i.e not normalized

Example:

$$(101.011)_2$$

 $= +1.01011 \times 2^2$ (note in base 2 times 2^2 will shift the decimial two times to the right

precision	sign	mantisa	exponent	Total Bits
Double	1 (bits)	52	11	64
Single	1	23	8	32

So How floats are stored internally? It is the process

$$x \in \mathbb{R} \to float(x) \to machine word$$

$$s(0,1) \mid E_1 \cdots \text{(Exponent bits } E_{-i} = 0,1) \cdots E_{11} \mid b_1 \cdots \text{(mantissa bits } b_{-i} = 0,1) \cdots b_{52}$$

Remark:

1. True Range for E is

$$-1022 \le E \le 1023$$
 in double

So 1023 + 1 + 1022 = 2046 possible exponents. Note that $2^{11} = 2048$ possible exponents, the missing two are used for special cases (0,subnormal, infty, NaN,...)

2. The sign of the true exponent is not stored. Instead we store $E + (2023)_{10}$ where $(1023)_{10}$ is the exponent bias, which avoids storing an extra sign Example: If E = 1, we store $E + 2023 = 1024 = 2^{10} = (01000 \cdots 00)_2$

Example: In order to store repeating number, we have to round, so

$$(9.4)_{10} = (1001.\overline{0110})_2$$

$$fl(9.4) = +1.(00101100 \cdots 1100)\overline{1100} \times 2^3$$

where the the number in paranthesis is b_{52} and we need to somehow round the rest bits

1.3.1 Rounding To Nearest Rule

Given a double precision floating number, we have

$$\pm 1.(b_1 \cdots b_{52})b_{53}b_{54} \times 2^E$$

Then,

- 1. if $b_{53} = 1$ and $b_n \neq 0$, for some n > 53. Then round up by adding 1 to b_{52}
- 2. if $b_{53} = 0$, round down by cutting away $b_n, \forall n \geq 53$
- 3. if $b_{53} = 1$ and $b_n = 0, \forall n > 53$, then if $b_{52} = 1$, round up by adding 1 to b_{52} and cutting remainder. If $b_{52} = 0$, round down by cutting remainder. The point is to cancel out equally likely errors.

Example:

$$(9.4)_{10} = (1001.\overline{0110})_2$$

$$fl(9.4) = +1.(00101100 \cdots 1100)\overline{1100} \times 2^3$$

By rounding rule (in double precision), we lose $.\overline{1100} \times 2^3 \times 2^{-52} = 0.8 \times 2^{-49}$ and by rounding b_{52} up, we gain $2^{-52} \times 2^3 = 2^{-49}$, and by rounding b_{52} up, we gain $2^{-2} \times 2^3 = 2^{-49}$. Therefore

$$fl(9.4) = +1.(00101100 \cdots 1101) \times 2^3$$

In decimial,

$$fl(9.4) = 9.4 - 0.8 \times 2^{-49} + 2^{-49}$$
$$= 9.4 + 0.2 \times 2^{-49}$$

which is actually stored in double precision.

Machine Epsilon

Definition 4.0.0.0.1

We define ϵ mach (or ϵ m) to be the distance between 1 and the next largest float.

Example:

$$fl(1) = +1.0 \cdots 0 \times 2^{0}$$

 $fl(1+\epsilon) = +1.0 \cdots 01 \times 2^{0}$
 $= 1 + 2^{-52}$

So in double precision,

$$\epsilon$$
mach= 2^{-52}

Definition 4.0.0.0.2

Relative Error: For normalized floats with rounding to nearest rule,

$$\frac{|fl(x) - x|}{|x|} \le \frac{1}{2}\epsilon m$$

for any storable $x \in \mathbb{R}$

Note: Some sources define $\frac{1}{2}(2^{-52}) = 2^{-53}$ as the machine epsilon.

2 Root Finding

Bisection Method

Root finding is find x such that f(x) = 0.

Theorem 1.1

Let f be a continuous function on [a,b]. If f changes sign from positive to negative, then there is a root $c \in [a,b]$ such that f(c) = 0

Given a function where it change sign on $[a_0, b_0]$, then we know by IVT, $\exists r \in [a, b]$ where f(r) = 0. Then, we bisect to get c_0 . If $f(a_0)f(c_0) < 0$, let $[a_1, b_1] = [a_0, c_0]$, else if $f(c_0)f(b_0) < 0$, let $[a_1, b_1] = [c_0, b_0]$. Else if $f(c_0) = 0$, let $f(c_0) = 0$, let f(

And we loop the entire process, until error tolerance reached.

Error Analysis:

$$c_0 = \frac{a_i + b_i}{2}$$

error
$$e_0 := |r - c_0| \le \frac{b_0 - a_0}{2}$$

error $e_1 := |r - c_1| \le \frac{b_0 - a_0}{2^2}$
 \vdots

error
$$e_n := |r - c_n| \le \frac{b_0 - a_0}{2^{n+1}}$$

If tolerence given,

$$\frac{b_0 - a_0}{2^{n+1}} < Tol$$

and solve for n to get number of steps needed.

Note that bisection can fail. For example, |x|

Fixed Point Iteration

Consider cos(x) = 0, then cos(x) + x = x. Setting g(x) = cos(x) + x, we have g(x) = x

Definition 2.0.0.0.1

A point x^* such that

$$f(x^*) = x^*$$

is called a fixed point of f

FPI: We guess x_0 for a solution, and

$$f(x_0) = x_1$$
$$f(x_1) = x_2$$
$$f(x_2) = x_3$$

In general, evaluate $x_{n+1} = f(x_n), x_0 = \text{starting guess}$. Then loop until error less than TOL. The code will be something like

$$x = x_0$$

While error < TOL:
 $x = f(x)$

Theorem 2.1

Let $f \in C[a,b]$. If FPI converges, it converges to solution.

Let $x_n \to x$, then

$$\lim_{n \to \infty} x_{n+1} = f(x_n)$$

$$\implies x = f(x)$$

Example:

1.
$$x=g(x)=\frac{1}{10}x+1$$
. Then $\begin{cases} x_{n+1}=\frac{1}{10}x_n+1\\ x_0=0 \end{cases}$. So we have
$$\begin{aligned} x_0&=0\\ x_1&=1\\ x_2&=1.11 \end{aligned}$$

$$\vdots\\ x_\infty&=1.\bar{1}=\frac{10}{9} \end{aligned}$$
 2. $x=g(x)=3x+1$. Then $\begin{cases} x_{n+1}=3x_n+1\\ x_0=0 \end{cases}$. So we have
$$\begin{aligned} x_0&=0\\ x_1&=1\\ x_2&=4\\ x_3&=13 \end{aligned}$$

Even though $x = -\frac{1}{2}$ is a solution, but we fail to find it with the method.

2.2.1 Convergence of FPI

Definition 2.1.0.0.1

A contraction on [a,b] f(x) satisfies that

$$|f(x) - f(y)| < L|x - y|$$

diverges!

For all $x, y \in [a, b]$ where $0 \le L < 1$

Theorem 2.2

Contraction Mapping Theorem:

Let $g:[a,b] \to [a,b]$ be a contraction on [a,b]. Then,

- 1. $\exists x^* \in [a, b] \text{ such that } g(x^*) = x^*$
- 2. FPI converges starting from any $x_0 \in [a, b]$

Remark: Suppose |g'(x)| < 1 for all $x \in [a, b]$. Then g is a contradiction.

Proof.

$$|g(x) - g(y)| = |g'(c)(x - y)|$$

By mean value theorem that $g'(c) = \frac{g(x) - g(y)}{x - y}$ for some c between x and y. Then

$$\leq L|x-y|$$

since |g'(x)| < 1 for all $x \in [a, b]$

Remark: If we know $g'(x^*) < 1$ at the fixed point, then FPI is logically convergent, i.e \exists a possibly small interval in [a,b] such that with any x_0 in the interval, FPI works. Remark: Stooping criterion

- 1. $|x_n x_{n-1}| < \text{TOL (absolute error)}$
- 2. $|g(x_n) x_n| < \text{TOL (backward error)}$
- 3. $\left| \frac{x_n x_{n-1}}{x_n} \right| < \text{TOL (relative error)}$

Newton Method

Recall, Taylor Expansion is

$$f(r) = f(x_0) + f'(x_0)(x - x_0) + O((x - x)^2)$$

$$\approx f(x_0) + f'(x_0)(x - x_0)$$

=: $\lambda(x)$

So

$$\lambda(x_1) = f(x_0) + f'(x_0)(x_1 - x_0)$$

So

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Here is the method,

$$\begin{cases} x_0 & = \text{ starting guess} \\ x_{n+1} & = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases} = g(x_n)$$

Local Convergence? Let r be the solution.

$$g'(r) = \left| 1 - \frac{(f'(r))^2 - f(r)f''(r)}{[f'(r)]^2} \right| = 0$$

locally convergent!

Secant Method

Recall Newton, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Then, we can approximate

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Therefore, the method is

$$\begin{cases} x_{n+1} = x_n - (x_n - x_{n-1}) \frac{f(x_n)}{f(x_n) - f(x_{n-1})} \\ x_0, x_1 = \text{starting guesses} \end{cases}$$

Rate of Convergence:

Let $e_n := |x_n - r|$, the absolute error. We say an iterative method convergence with order p if for some $c \in \mathbb{R}$, we have

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n^p} = c$$

For p = 1, we need 0 < c < 1

3 | Linear Systems

Example:

We want find $p \in P_{n-1}$ such that

$$y_i = p(x_i), \le i \le n$$

Let

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

Find $\{a_i\}_{i=0}^{n-1} = \vec{a}$ is a susyem of sequences in n unkown

$$A\vec{a} = \vec{y}$$

with $A \in \mathbb{R}^{n \times n}$.

$$\vec{x} \in \mathbb{R}^n, \vec{b} \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}$$

Solve

$$A\vec{x} = \vec{b}$$

Componentwise Calculations

- 1. $\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$
- 2. $(A\vec{x})_i = \sum_{i=1}^n a_{ij} x_j$
- 3. $(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

Flop Count

To computer $A\vec{x}$, for every $i \in \{i, \dots, n\}$, we need n-1 additions, **n** mulplications. So Total is 2n-1=O(n). Grand Total

$$n(2n-1) = 2n^2 - n$$
$$= O(n^2)$$

Cost to obtain AB is $O(n^2)$ i.e (AB)x cost $O(n^3)$ while A(Bx) costs $O(n^2)$

3.1.1 Gaussian Elimination

$$\begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 3 & 1 & 4 \\ 2 & -2 & 1 & 2 \end{pmatrix} \xrightarrow{R_3 - 2R_1} \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & -6 & 3 & -2 \end{pmatrix} \xrightarrow{R_3 + 2R_3} \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & 5 & 6 \end{pmatrix}$$

From here, backsolve to get

$$x_3 = \frac{6}{5}$$

$$x_2 = \frac{4 - x_3}{3} = \frac{14}{15}$$

$$x_1 = \frac{2 + x_3 - 2x_2}{1}$$

$$= 2 + \frac{14}{15} - 2\frac{6}{5} = \frac{4}{3s}$$

Note that elimination step is $\mathcal{O}(n^3)$ but backsolving is $\mathcal{O}(n^2)$

Algorithm:

Suppose have $A\vec{x} = \vec{c}$, and have eliminated to get

$$U\vec{x} = \vec{b}$$

where U is upper triangular Then

$$U_{11}x + 1 + U_{12}x_2 + \dots + U_{1n}x_n = b_1$$

$$U_{22}x_2 + \dots + U_{2n}x_n = b_2$$

$$\vdots = \vdots$$

$$u_{(n-1)(n-1)}x_{n-1} + u_{(n-1)n}x_n = b_{n-1}$$

$$u_{nn}x_n = b_n$$

Bavksolving: we will have

$$x_n = \frac{b_n}{u_{nn}}$$

Then, for $i = n - 1, n - 2, \dots, 2, 1$ we have

$$x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^n u_{ij} x_j \right)$$

Exercise: Show flop count to consturct \vec{x} is exactly n^2 .

MATLAB Code:

```
% Backsolving  x(n) = b(n)/u(n,n);  for i = n-1:-1:1  x(i) = (1/(u(i,i))) [b(i)-u(i,i+1:n)*x(i+1:n)];  end
```

3.1.2 Lu Decomposition

Matrix representation of Guass elmination:

$$A = LU$$

where L is lower triangular matrix and U is upper triangular matrix. To solve $A\vec{x} = b$, we have

$$LU\vec{x} = \vec{b}$$

Let $\vec{c} = U\vec{x}, L\vec{c} = \vec{b}$. Solve $L\vec{c} = \vec{b}$ for \vec{c} by forward substitution (costs $O(n^2)$) Then solve $U\vec{x} = \vec{c}$ by back substitution (costs $O(n^2)$)

Example:

$$A\vec{x}^{1} = \vec{b}^{1}$$

$$A\vec{x}^{2} = \vec{b}^{2}$$

$$\vdots = \vdots$$

$$A\vec{x}^{r} = \vec{b}^{r}$$

Suppose $r \approx n$. If using LU, costs to solve is

$$O(n^3 + n^2(2r)) = O(n^3)$$

where n^2 is elmination and $n^2(2r)$ is backward/forward solve.

If elminating each time, it cost

$$O(n^3 \cdot r + n^2(2r)) = O(n^4)$$

Obtaining LU

Example:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$

1 is the pivot entry. Subtract $2R_1$ from R_3 , 0R)1 from R_2 we have

$$\begin{pmatrix} 1 & 2 & -1 \\ (0) & 3 & 1 \\ (2) & -6 & 3 \end{pmatrix}$$

for the number in (), there are really 0 here, we are just storing the multipliers. Then, subtract $(-2) * R_2$ from R_3 , we have

$$\begin{pmatrix} 1 & 2 & -1 \\ (0) & 3 & 1 \\ (2) & (-2) & 5 \end{pmatrix}$$

Then, we get

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 5 \end{pmatrix}$$

Pitfalls

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Since 1 can not be eliminated, so A has no LU decomposition.

$$A = \begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{1}{\epsilon} & 1 \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ 0 & 1 - \frac{1}{\epsilon} \end{pmatrix}$$

with $\epsilon = 10^{-20}$ which is less than $\epsilon_m \approx 10^{-16}$. Therefore, in double precision

$$\begin{pmatrix} 1 & 0 \\ \frac{1}{\epsilon} & 1 \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ 0 & -\frac{1}{\epsilon} \end{pmatrix} = \begin{pmatrix} \epsilon & 1 \\ 1 & 0 \end{pmatrix} \neq A$$

Since $1 - \frac{1}{\epsilon} = 1 - 10^{20}$ which is stored as $= 10^{20}$. But if

$$\begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \epsilon & 1 + \epsilon \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix}$$

Pa=LU Decomposition

$$A = \begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} \implies PA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = LU$$

 $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is the permutation matrix, a matrix with a single 1 in each row and column. Therefore, PA = LU.

To solve Ax = b effectively by PA = LU, we do

$$Ax = b$$
$$PAx - Pb$$
$$LUx = Pb$$

Let Ux = c. First solve Lc = Pb for c, cost is $O(n^2)$. Then, solve Ux = c for x, cost $O(n^2)$ Example: 3×3 example

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1 \end{pmatrix}$$

Swap R_1 and R_2 using $P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & \\ 0 & 0 & 0 \end{pmatrix}$. Then, we have

$$P_1 A = \begin{pmatrix} 4 & 4 & -4 \\ 2 & 1 & 5 \\ 1 & 3 & 1 \end{pmatrix}$$

And elminated, we get

$$\begin{pmatrix} 4 & 4 & -4 \\ (\frac{1}{2}) & -1 & 7 \\ (\frac{1}{4}) & 2 & 2 \end{pmatrix}$$

And Swap R_2 and R_3 using $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, we get

$$\begin{pmatrix} 4 & 4 & -4 \\ (\frac{1}{4}) & 2 & 2 \\ (\frac{1}{2}) & -1 & 7 \end{pmatrix}$$

And subtract $\left(-\frac{1}{2}\right)R_2$ from R_3 ,

$$\begin{pmatrix} 4 & 4 & -4 \\ (\frac{1}{4}) & 2 & 2 \\ (\frac{1}{2}) & (-\frac{1}{2}) & 8 \end{pmatrix}$$

Now,
$$P_2 P_1 A = L U = \begin{pmatrix} 1 & 0 & 0 \\ (\frac{1}{4}) & 1 & 0 \\ (\frac{1}{2}) & (-\frac{1}{2}) & 1 \end{pmatrix} \begin{pmatrix} 4 & 4 & -4 \\ 0 & 2 & 2 \\ 0 & 0 & 8 \end{pmatrix}$$
 and $P_2 P_1 = P$

Errors in Linear Systems

 $x_a = \text{approximate solutions. } Ax = b, x, b \in \mathbb{R}^n. \text{ Yhen}$

Definition 3.0.0.0.1 Residual:

$$r := Ax_n - b$$

 $\begin{array}{c} \text{Definition } 3.0.0.0.2 \\ Backward\ error \end{array}$

$$||r|| = ||Ax_a - b||$$

Definition 3.0.0.0.3 Forward Error

$$|x-x_a||$$

Definition 3.0.0.0.4

Norms on \mathbb{R}^n :

1. Euclian or 2-norm

$$||u||_2 = \left(\sum_{i=1}^n |u_i|^2\right)^{\frac{1}{2}}$$

2. 1-norm

$$||u||_1 = \sum_{i=1}^n |u_i|$$

3. Max norm

$$||u||_{\infty} = \max_{i \le \le n} |u_i|$$

4. $p norm, 1 \leq < \infty$

$$||u||_p = \left(\sum_{i=1}^n |u_i|^p\right)^{\frac{1}{p}}$$

Definition 3.0.0.0.5 *Matrix Norms:*

1. Frobeneous norm

$$||A||_F = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

2. Operator p-norm

$$||A||_p := max \frac{||Ax||_p}{||x||_p}$$

= $max_{||x||=1} ||Ax||_p$

where $x \neq 0$

Example:

$$||A||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right)$$

= maximum absolute column sum

Example:

$$||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{i=j}^{n} |a_{ij}| \right)$$

= max absolute row sum

Example:

$$||A||_2 = \sqrt{p(A^t A)}$$

where $p(b) = \max_{1 \le i \le n} |\lambda_i|$ where λ_i is an eigenvalue of B.

3.3.1 Errors for Ax=b

Let $A\widetilde{x} = \widetilde{b}$, where \widetilde{b} is computer store b in double precision. Then

$$A(x - \widetilde{x}) = b - \widetilde{b}$$

$$x - \widetilde{x} = A^{-1}(b - \widetilde{b})$$

$$||x - \widetilde{x}|| \le ||A^{-1}|| ||b - \widetilde{b}||$$

Also,

$$||b|| = ||Ax|| \le ||A||||x||$$

Combine them, we have

$$\frac{||x-\widetilde{x}||}{||A||||x||} \leq \frac{||A^{-1}||||b-\widetilde{b}||}{||b||}$$

Then,

$$\frac{||x - \widetilde{x}||}{||A||||x||} \le \frac{||A||_p ||A^{-1}||_p ||b - \widetilde{b}||_p}{||b||_p}$$

A matrix with large condition number is called ill conditioned

Theorem 3.1

In finite dimensions, all norms are equivalent

Iterative Methods

 $A\vec{x} = \vec{b}$. Then if $A \in \mathbb{R}^{10^5 \times 10^5}$, A has 10^10 entries. In double precision, each a_{ij} is 8 bytes of memory. Therefore, $8 \times 10^10 = 80$ Gb memory. So, we can only store $\approx 30 \times 10^3$ entries, which is

$$8(30 \times 10^3) = 24 \times 10^4$$
 bytes

Therefore, we had to store A as a sparse data structure.

Goal: We want to solve of the form

$$\vec{x}^{(n+1)} = \vec{g}(\vec{x}^n)$$

 $\vec{x}^{(0)} = \text{starting guess}$

3.4.1 Jacobi Method

:

$$Ax = b$$

Split A = D + R, where D is a diagonal matrix and R is matrix with 0 in diagonal line. Then, We have

$$(D+R)x = b$$

$$Dx = b - R_x$$

$$\implies x = D^{-1}(b - Rx)$$

Example:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$$

So Jacobi method:

$$\begin{cases} \vec{x}^{(n+1)} = D^{-1}(\vec{b} - R\vec{x}^n) \\ x\vec{0} = \text{starting guess} \end{cases}$$

Remark: D^{-1} is just take recipical of diagonal elements.

Remark: Convergence guranteed if

$$p(D^{-1}R) < 1$$

where p is spectral radius of $D^{-1}R$.

Remark: Convergence guranteed also If A is strictly diagonally dominant, i.e

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \forall i$$

Remark: Componentwise version:

$$\vec{x}_i^{(n+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} \vec{x}_j^n \right)$$

 $1 \le i \le n$ Example:

$$2x + y = 5$$
$$x + 3y = 4$$

Starting guess $x^0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Then note that

$$\begin{cases} x &= \frac{5-y}{2} \\ y &= \frac{4-x}{3} \end{cases}$$

We get $x^1 = \begin{pmatrix} \frac{5}{2} \\ \frac{4}{3} \end{pmatrix}$. Remark: When we stop? check if

1.
$$||A\vec{x}^n - \vec{b}|| < \text{TOl}$$

or $\frac{||\vec{x}^{n+1} - \vec{x}^n||}{||\vec{x}^n||}$

2. or if
$$n > N = (100)$$

3.4.2 Gauss-Sedel Method

Let A = L + D + U, then

$$\begin{cases} \vec{x}^{(n+1)} = (L+D)^{-1}L\vec{b} - U\vec{x}^{(b)} \\ \vec{x}^{(0)} = \text{starting guess} \end{cases}$$

Componentwise

$$\vec{x}_i^{(n+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} \vec{x}_j^{(n+1)} - \sum_{j > i} a_{ij} \vec{x}_i^n \right)$$

4 Nonlinear Systems

$$\begin{cases} \vec{x} = \vec{g}(\vec{x}) \\ \vec{x} \in \mathbb{R}^n \\ \vec{F}(\vec{x}) = \vec{0} \end{cases}$$
, and \vec{g} is possibly non linear.

$$f_1(x,y) = e^x - y = 0$$

 $f_2(x,u) = xy - e^x = 0$

Then,

$$\vec{F}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = 0\vec{0}$$

with
$$\vec{x} = \begin{pmatrix} x \\ j \end{pmatrix} = \mathbb{R}^2$$
.

Recall the 1d newton, f(x) = 0. And

$$f(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) + O((x_1 - x_0)^2)$$

as $x_1 \to x_0$. Set $L(x_1) = f(x_0) + f'(x_0)(x_1 - x_0)$. Note that

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Multivariable Newton's Method

$$\vec{F}(\vec{x}) = \vec{F}(\vec{x_0}) + D\vec{F}(\vec{x_0})(\vec{x} - \vec{x_0}) + \text{higher order terms}$$

Where

$$D\vec{F}(\vec{x_0}) = \begin{pmatrix} \partial_{x_1} f_1 & \partial_{x_2} f_1 & \cdots & \partial_{x_n} f_1 \\ \partial_{x_1} f_2 & \partial_{x_2} f_2 & \cdots & \partial_{x_n} f_2 \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \partial_{x_2} f_m & \cdots & \partial_{x_n} f_m \end{pmatrix} = \begin{pmatrix} \Delta f_1 \\ \Delta f_m \\ \vdots \\ \Delta f_m \end{pmatrix}$$

Set $\vec{x_1}$ such that

$$\begin{aligned} \vec{0} &= \vec{L}(\vec{x_1}) \\ &= \vec{F}(x_0) + D\vec{F}(\vec{x_0})(\vec{x_1} - \vec{x_0}) \\ -\vec{F}(x_0) &= D\vec{F}(\vec{x_0})(\vec{x_1} - \vec{x_0}) \end{aligned}$$

Therefore,

$$\vec{x_0} - [D\vec{F}(\vec{x_0})]^{-1}\vec{F}(\vec{x_0}) = \vec{x_1}$$

4.1.1 Netown Method

To solve $(\vec{F}(\vec{x}) = \vec{0})$, we do the following

1. Starting guess $\vec{x_0} \in \mathbb{R}^n$

2. At step n, have $\vec{x_n}$, to update, use

$$\vec{x_n} - [D\vec{F}(\vec{x_n})]^{-1}\vec{F}(\vec{x_0}) = \vec{x_{n+1}}$$

To avoid inverse, substitute $[D\vec{F}(\vec{x_n})]^{-1}\vec{F}(\vec{x_0})$ as \vec{s} . Then, solve

$$DF(\vec{x_n})\vec{s} = \vec{F}(\vec{x_n})$$

for \vec{s} . And then update

$$\vec{x_{n+1}} = \vec{x_n} - \vec{s}$$

Example:

$$f_1(x,y) = e^x - y = 0$$

 $f_2(x,u) = xy - e^x = 0$

Then

$$\vec{F}(x,y) = \begin{pmatrix} e^x - y \\ xy - e^x \end{pmatrix}$$
$$D\vec{F}(x,y) = \begin{pmatrix} \partial_x f_1 & \partial_y f_1 \\ \partial_x f_2 & \partial_y f_2 \end{pmatrix}$$
$$= \begin{pmatrix} e^x & -1 \\ y - e^x & x \end{pmatrix}$$

Let's try $\vec{x_0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ to start solve $D\vec{F}(0,0)\vec{s} = \vec{F}(0,0)$. Then

$$\begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\implies s_1 = 1, s_2 = 0, \vec{s} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Now
$$\vec{x}_1 = \vec{x_0} - \vec{s} = \vec{0} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

4.1.2 Convergence Theory

Get local convergence provided that

$$p(D\vec{G}(\vec{r})) < 1$$

where p() is the spectral radius, Then

$$\vec{G}(\vec{x}) = \vec{x} - [D\vec{F}(\vec{x})]^{-1}\vec{F}(\vec{x})$$

and \vec{r} is the actual solution.

5 Interpolation

Polynomial Interpolation

Suppose there are n+1 points. We can fit a unique $p_n \in P_n$ provided $\{x_i\}_{i=0}^n$ are distinct.

Proof. Suppose both $p, q \in P_n$ interpolate. Let h(x) = p(x) - q(x). Then, $h \in P_n$ and h(x) = 0 for all $\{x_i\}_{i=0}^n$ (i.e at n+1 points.)

Then, by fundemental theorem of algebra, h is zero polynomial. Therefore, p=q.

To find $P_n \in P_n$ interplotating $\{(x_i, y_i)\}_{i=0}^n$, we need a basis of P_n , which is

$$\mathcal{B} = \{1, x, x^2, \cdots, x^n\}$$

spans P_n and is linearly independent. So let

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

for unknown $\{a_i\}_{i=0}^n$. We force $y_i = p(x_i), \forall i$, to get

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Solve $V\vec{a} = \vec{y}$ for \vec{a} .

Remark: If $\{x_i\}$ distinct, then V^{-1} exists, so we can find \vec{a}

Remark: V is called a Vandermonde matrix which becomes very ill-conditioned for large n.

Intutively, for large n, basis vectors x^n become very similar, so columns of V get close to linear dependence (so V close to being singular)

Lagrange Basis

$$P_1 \to p_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

 $\frac{x-x_1}{x_0-x_1}=l_0(x)$ and $y_1\frac{x-x_0}{x_1-x_0}=l_1(x)$. They are called Lagrange Basis of P_1 .

Note:

$$l_i(x_k) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Note: $p = a_0 l_0(x) + a_1 l_1(x)$, we get the systm

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

where cond(I) = 1, best possible.

In general, for n+1 data point,

$$p(x) = \sum_{i=0}^{n} y_i l_i(x)$$

where

$$l_i(x) = \prod_{i=0, j \neq i}^{n} \left(\frac{x - x_j}{x_i - x_j} \right)$$

Example: (1,2), (3,7), (5,8)

$$p(x) = 2\frac{(x-3)(x-5)}{(1-3)(1-5)} + 7\frac{(x-1)(x-5)}{(3-1)(3-5)} + 8\frac{(x-1)(x-3)}{(5-1)(5-3)}$$

Newton Basis

$$\{(x_n, y_n)\}_{n=0}^{n+1}$$

 $p \in P_n$ interplotion. Then,

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1}(x - x_{n-1})$$

or, if prefered we can said

$$\begin{cases} N_0(x) = 1 \\ N_i(x) = \sum_{j=0}^{i-1} (x - x_j) \text{ for } 1 \le i \le n \end{cases}$$

Example: 3 points case.

$$y_0 = p(x_0) = a_0$$

$$y_1 = p(x_1) = a_0 + a_1(x_1 - x_0)$$

$$y_2 = p(x_2) = a_0 + a_1(x_1 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

can efficiently solve in $O(n^3)$ time by forward solving.

5.3.1 Divided differences

x	y	1st div difference	2nd div difference
1	1		
2	5	$\frac{5-1}{2-1} = \frac{4}{1}$	
3	4	$\frac{4-5}{3-2} = -1$	$\frac{-1-4}{3-1} = -\frac{5}{2}$

We will use the diagonal lines. Therefore,

$$p(x) = 1 + 4(x - 1)$$
$$= -\frac{5}{2}(x - 1)(x - 2)$$

Since

$$f(x) = a_0 + a_1(x - x_0a_2(x - x_0)(x - x_1))$$

- 1. $y_0 = f(x_0) = a_0$ We define $f[x_0] := f(x_0)$, the 0th divided difference.
- 2. $y_1 = f(x_1) = a_0 + a_1(x_1 x_0)$ This implies

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
$$= \frac{f[x_1] - f[x_0]}{x_1 - x_0} = f[x_0, x_1]$$

the second divided difference.

General Theory

Let

$$f[x_0] = a_0$$

$$f[x_0, x_1] = a_1$$

$$f[x_0, x_1, x_2] = a_2$$

$$\vdots$$

where $f[x_0] = f(x_0)$ and we recursively define

$$f[x_i, \dots, x_j] = \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j-1}]}{x_j - x_i}$$

for $0 \le i < j \le n$.

Then, the interploent is

$$p(x) = \sum_{k=0}^{n} f[x_0, \dots, x_j] \prod_{i=0}^{j-1} (x - x_j)$$

with $\prod_{i=0}^{-1} (x - x_1) := 1$

Interpolation Error and Chebyshev Interpolation

Error

1.
$$||f - p||_{L^2(a,b)} = \left(\int_a^b |f(x) - p(x)|^2 dx \right)$$

2.
$$||f - p||_{L^{\infty}[a,b]} = \max_{x \in [a,b]} |f(x) - p(x)|$$

Theorem 4.1

Let $f \in C^{n+1}[a,b]$, and let $p \in P_n$ interpolate f at $\{x_0, x_1, \dots, x_n\}$ (distinct points.) Then, $\forall x \in [a,b]$, we have

$$e(x) := f(x) - p(x) = \frac{f^{(n+1)}(C_{n,x})}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

Where $C_{n,x} \in (a,b)$

Note:

$$||f - p||_{L^{\infty}[a,b]} \le \frac{||f^{(n+1)}||_{L^{\infty}[a,b]}}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

Which $\{x_j\}_{j=0}^n$ minimize

$$\omega(x) = \prod_{j=0}^{n} (x - x_j)$$

Note the polynomial.

Theorem 4.2

Optimal Node Spacing for P_n interpolation

Fix f. Fix $n \in \mathbb{N}$ (degree of polynomial in P_{n-1})

Theorem 4.3

$Chebyshev's\ Theorem$

The choice of $\{x_j\}_{j=1}^n$ that minimize $|\omega(x)|$ on [-1,1] is

$$x_j = \cos \frac{(2i-1)\pi}{2n} (i=1,1,2,\cdots,n)$$

and

$$||\omega||_{L^{\infty}[-1,1]} \le \frac{1}{2^{n-1}}$$

Example: Find an upper bound on error for approximating $f(x) = e^x$ on [-1,1] using $p \in P_4$. Using Chebyshev nodes, we know $x_j = \cos\frac{(2i-1)\pi}{2(5)}$, We get $p \in P_r$ satisifying $j = 1, \dots, n$. Then

$$||e^x - p||_{L^{\infty}[-1,1]} \le \frac{||f^{(5)}||_{L^{\infty}[-1,1]}}{5!} \prod_{j=1}^{5} |x - x_k|$$

$$\le \frac{e^1}{5!} \frac{1}{2^{5-1}}$$

Let $y = T(x) = \frac{b-a}{2}x + \frac{b+a}{2}$. Then $T : [-1,1] \to [a,b]$ is linear. So $\{x_j\}_{k=1}^n$ Chebyshev on [-1,1], become $\{y_j\} = \{T(x_j)\}_{j=1}^n$ on [a,b].

How does error transform?

$$|\omega(y)| = \left| \prod_{j=1}^{n} (y - y_j) \right|$$

$$= \left| \left(\frac{b - a}{2} \right)^n \prod_{j=1}^{n} (x - x_j) \right|$$

$$\leq \left(\frac{b - a}{2} \right)^n \frac{1}{2^{n-1}}$$

upper bound for $|\omega(y)|$ on [a,b]

Hermite Interpolation

Goal:Interploate $f(x_i)$ and also $f^{(e)}(x_i)$.

Let

$$p(x) = a + bx + cx^2$$

and force p to nterpolate (0,1),(1,-1) and p'(1)=-1 and solve for a,b,c Example: Taylor polynomial

$$p(x) = \sum_{k=0}^{n} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k}$$

is a Hermite interpolent satisfying $p^l(x_0) = f^l(x_0)$ for $0 \le l \le n$

x_1	$y_1 = f[x_1]$		
x_2	$y_2 = f[x_2]$	$f[x_1, x_2]$	
x_3	$y_3 = f[x_3]$	$f[x_2,x_3]$	$f[x_1, x_2, x_3]$

circle the diagonal entries, we have Newton form of $P_2(x)$, which is

$$p_2(x) = f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

Let $x_2 \to x_1$, we have

$$p_2(x) = f[x_1] + \lim_{x_2 \to x_1} f[x_1, x_2](x - x_1) + \lim_{x_2 \to x_1} f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

$$p_2(x) = f[x_1] + f[x_1, x_1](x - x_1)f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

Example:

x	$\mid y \mid$		
1	$y_1 = -1$		
0	$y_2 = -1$ slope constraint at $x = 1$	-1	
0	$y_3 = 1$	$\frac{1-(-1)}{0-1}=-2$	$\frac{-2-(-1)}{0-1}=1$

So
$$P_2 = -1 - 1(x - 1) + 1(x - 1)^2$$

Remark:

- 1. Repeated points have to be grouped together
- 2. For points with mulpllicity of m (m copies of x_i), we suppose we know

$$f^{(l)}(x_i)$$

for $0 \le l \le m-1$. for Existinces, uniqueess

3. $f[x_j, \dots, x_j] = \frac{f^{m-1}(x_j)}{(m-1)!}$ where x_j has m repeations.

Example: Interpolate $f^{(l)}(x_0), 0 \le l \le 2$ with $p_2 \in \mathbf{P}_2$, note that then

x	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_{i-1}, x_i, x_{i+1}]$
x_0	$f(x_0)$		
x_0	$f(x_0)$	$\frac{f'(x_0)}{1!}$	
x_0	$f(x_0)$	$\frac{f'(x_0)}{1!}$	$\frac{f''(x_0)}{2!}$

then

$$p_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

Piecewise Polynomial Interpolation

Have an $[x_{i-1}, x_i]$ the interpolant where

$$s_i(x) = f(x_{i-1}) + f[x_{n-1}, x_i](x - x_{i-1})$$

We want to check at x_{i-1} , we will have $\begin{cases} s_i(x_{i-1}) = f(x_{i-1}) \\ s_i(x_i) = f(x_i) \end{cases}$

5.6.1 Error

Suppose $\{(x_i, y_i)\}$ are obtained from some f(x) and let s(x) be the piecewise linear interpolant on [a, b].

We know that $[x_{i-1}, x_i]$

$$|f(x) - s_i()| = \left| \frac{f^{(2)(c_i)}}{2!} \right| |(x - x_i)(x - x_{i-1})|$$

Note that

$$\frac{f^{(2)(c_i)}}{2!} \le \frac{||f''||_{L^{\infty}[a,b]}}{2}$$

Set $\phi(x) = (x - x_i)(x - x_{i-1})$.

Note:

$$|\phi'(x)| = 0$$

$$\implies (x - x_i) + (x - x_{i-1}) = 0$$

$$\implies x = \frac{x_i + x_{i-1}}{2}$$

so max of $|\phi|$ is $\left|\phi\left(\frac{x_i+x_{i-1}}{2}\right)\right| = \left|\left(\frac{x_{i-1}-x_i}{2}\right)\left(\frac{x_i-x_{i-1}}{2}\right)\right|$

So Let's set $h := \max_i (x_i - x_{i-1})$, so $|f(x) - Si(x)| \le \frac{||f''||_{\infty}}{2} \frac{h^2}{4}$, this implies that

$$||f-s||_{L^{\infty}[a,b]} \le \frac{h^2}{8} ||f'||_{L^{\infty}}[a,b]|$$

5.6.2 Cubic Spline

Definition 6.0.0.0.1

A spline is a piecewise $c^k[a,b]$ function that is globally in $c^{k-1}[a,b]$

$$s_1(x) = y_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3$$

$$\dots$$

$$s_{n-1}(x) = y_{n-1} + b_{n-1}(x - x_{n-1}) + c_{n-1}(x - x_{n-1})^2 + d_{n-1}(x - x_{n-1}) \qquad x_{n-1} \le x \le x_n$$

unknowns are $\{(b_i,c_i,d_i)\}_{i=1}^{n-1}$, so there are 3n-3 unknowns.

- 1. Enforce continuity at interior points, $s_i(x_i) = s_{i+1}(x_i)$ for $1 \le i \le n-1$. Get n-1 equations
- 2. Enforce $s'_{i}(x_{i}) = s'_{i+1}(x_{i}), 2 \le i \le n-2, n-2$ equations
- 3. Enforce $s_i''(x_i) = s_{i+1}''(x_i), 2 \le i \le n-1, n-2$ equations

So there are total of 3n-5 equations

6 | Linear Least Squares

Example: $\{x_i, y_i\}_{i=1}^n$ where n >> 1, we want to fit a line y = mx + c, where m, c appear linearly. And we force the data to fit model

$$\begin{cases} mx_c = y_1 \\ \vdots mx_n + c = y \end{cases}$$

We get

$$\begin{pmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix} \begin{pmatrix} m \\ c \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$\implies A \begin{pmatrix} m \\ c \end{pmatrix} = \vec{b}$$

We want to find $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} - b$ is minimized in the 2 - norm, i.e

$$\vec{x} = \operatorname{argmin}_{x \in \mathbb{R}^n} ||Ax - b||_2$$

where $||Ax - b||_2$ is the residual error.

Calc III:

Set $\delta_x ||Ax0b||_2 = \vec{0}$ and solve for x. We get

$$A^T A \vec{x} = A^T b$$

the normal equation, which can be solved for \vec{X}

Derivation

Derivation of $A^T A \vec{x} = A^T b$.

We force $b - A\bar{x} \perp Ax, \forall x \in \mathbb{R}^n$ in order to minimize the residual error. Also note that $||x||_2 = \langle x, x \rangle$, the dot inner product and $\langle x, y \rangle = x^T y$ And because $b - A\bar{x} \perp Ax$

$$\langle b - A\bar{x}, Ax \rangle = 0$$
$$(b - A\bar{x})^T Ax = 0$$
$$(b^T - \bar{x}^T A^T) Ax = 0$$
$$(b^T A - \bar{x}^T A^T A)x = 0$$
$$X^T (Ab^T - A^T A\bar{x}) = 0$$

for all $x \in \mathbb{R}^n$ By lemma below, we get

$$A^T b - A^T A \vec{x} = 0$$

Lemma 1.0.1

If $\langle x, y \rangle = 0$, for all $\vec{x} \in \mathbb{R}^n$, then $\vec{y} = \vec{0}$

Proof. Let
$$x = y$$
, then $\langle y, y \rangle = 0 \implies y = 0$

Theorem 1.1

If columns of A are linearly independent, then A^TA is invertible

Example: $A = \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon \\ 1 & 1 \end{pmatrix}$, where $0 < \epsilon < \sqrt{\epsilon_{mach}} \approx 10^{-8}$, then

$$A^{T}A = \begin{pmatrix} \epsilon & 0 & 1 \\ 0 & \epsilon & 1 \end{pmatrix} \begin{pmatrix} \epsilon & 0 \\ 0 & \epsilon \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 + \epsilon^{2} & 1 \\ 1 & 1 + \epsilon^{2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

So $A^TAx = A^Tb$ is a singular system numerically

QR Decomposition

Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$ so it is overdetermined system. Then, we can decompose A in the following

$$A = QR$$

where Q is orthogonal $Q \in \mathbb{R}^{m \times n}$ and $R = \begin{pmatrix} r_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ O & \cdots & r_{nn} \\ \hline O & \ddots & O \\ & \ddots & \vdots \end{pmatrix}$ where the upper part is size $n \times n$

and the bottom part is size $(m-n) \times n$.

Definition 2.0.0.0.1

Orthogonal matrix means

1.
$$Q^{-1} = Q^T$$

2. columns of Q are orthogonormal and Q is square matrix

Idea: Qr encodes the gram schmidt process

Matlab Code: [Q, R] = qr(A)

We can also write as

$$A = QR = \begin{bmatrix} \hat{Q} & \overline{Q} \end{bmatrix} \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix} = \hat{Q}\hat{R}$$
 Reduced QR

where $\hat{R} = \begin{pmatrix} r_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ O & \cdots & r_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n}$ and $\hat{Q} \in \mathbb{R}^{m \times n}$, this potentially not square but still has orthonormal columns.

Matlab Code: $[\hat{Q}, \hat{R}] = qr(A, 0)$ for reduced QR

Theorem 2.1

 $Orthogonal\ matrices\ Q\ are\ isometries.\ i.e$

$$||Qx||_2 = ||x||_2$$

Corollary 2.1.1

$$||Q^T x||_2 = ||x||_2$$

Least-Sqaures

Back to the least=squares,

$$Ax = b$$

Note that

$$\overline{x} = \operatorname{argmin}_{x \in \mathbb{R}^n} ||Ax - b||_2$$

Suppose we have A = QR, so

$$||Ax - b||_2$$

= $||QRx - b||_2$
= $||Q^T(QRx - b)||_2$
= $||Rx - Q^Tb||_2$

which is the min.

Example: Let $A \in \mathbb{R}^{4 \times 2}, b \in \mathbb{R}^4$ then

$$||Rx - Q^T b||_2 = \left\| \begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} \right\|_2$$

Then, choose $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ such that

$$\begin{pmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

or $\hat{R}\vec{x} = \vec{c}_{1:2}$. Then we end up with $||Ax - b||_2 = \left| \left| \begin{pmatrix} 0 \\ 0 \\ c_3 \\ c_4 \end{pmatrix} \right| \right| = \sqrt{c_3^2 + c_4^2}$ as the minimal value

6.3.1 Method

To solve $A\vec{x} = \vec{b}$ in the least square sense, form $A = QR = \hat{Q}\hat{R}$ and let $\vec{c} = Q^T\vec{b}$, and solve $\hat{R}\vec{x} = \vec{c}_{1:n}$ for \bar{x} , which is the least square solution

Approximation Theory

Goal: Approximate f by some simpler function in the sense of least squares

Definition 4.0.0.0.1

Let V be a vector space. A **norm** $||\cdot||: V \to \mathbb{R}$ satisfies:

- 1. $||f|| \ge 0$, and ||f|| = 0 if and only if f = 0
- 2. $||\alpha f|| = |\alpha|||f||$ for all $\alpha \in \mathbb{R}$
- 3. $||f + g|| \le ||f|| + ||g||$

Let $f \in C[a, b]$, then the norm choices can be

- 1. $||f||_{L^2[a,b]} = \left(\int_a^b |f(x)|^2 dx\right)^{\frac{1}{2}}$
- 2. $||f||_{L^1[a,b]} = \int_a^b |f(x)| dx$
- 3. $||f||_{L^{\infty}[a,b]} = \max_{x \in [a,b]} |f(x)|$

Definition 4.0.0.0.2

Distance:

$$||f-g||_{L^2[a,b]}$$

Definition 4.0.0.0.3 Inner Product

$$\langle f, g \rangle := \int_a^b f(x)g(x)dx$$

Axioms

- 1. $\langle f, g \rangle = \langle g, f \rangle$
- 2. < f + g, h > = < f, h > + < g, h >
- $\textit{3. } < \alpha f, g > = \alpha < f, g > = < f, \alpha g >, \forall \alpha \in \mathbb{R}$
- 4. $< f, f > \ge 0$ and < f, f > = 0 if and only if f = 0

6.4.1 Problem

Let $f \in V$, and let V_n be a finite dimensional space with basis $\{g_i\}_{i=1}^n$, so

$$V_n = \operatorname{span}\{g_1, \cdots, g_n\}$$

Goal: Find $v \in V_n$ such that the error

$$||f = v||_{L^2[a,b]}$$

is minimal

Let

$$v(x) = \sum_{i=1}^{n} c_i g_i(x)$$

where c_i is unknwn coefficients. Then

$$\begin{split} &||f-v||_{L^{2}}^{2}\\ =&||f||_{L^{2}}^{2}-2 < f_{1}, v> +||v||_{L^{2}}^{2}\\ =&||f||_{L^{2}}^{2}-2 < f_{1}, \sum_{i=1}^{n}c_{i}g_{i}> + < \sum_{i=1}^{n}c_{i}g_{i}, \sum_{j=1}^{n}c_{i}g_{i}> \\ =&||f||_{L^{2}}^{2}-2 \sum_{i=1}^{n}c_{i} < f, g_{i}> + \sum_{i=1}^{n} \sum_{j=1}^{n}c_{i}g_{i} < g_{i}, g_{j}> \\ =&\phi(\vec{c}) \end{split}$$

where $\vec{c} = (c_1, \dots, c_n)$. To minimize, set

$$\Delta_c \phi(\vec{c}) = \vec{0}$$

We will do this componentwise, i.e show $\frac{\partial}{\partial c_k}\phi(\vec{c})=0, \forall k=1,\cdots,n$. Note that

$$\phi(\vec{c}) = ||f||_{L^{2}}^{2} - 2\sum_{i=1}^{n} c_{i} < f, g_{i} > + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}g_{i} < g_{i}, g_{j} >$$

$$\frac{\partial}{\partial c_{k}} \phi(\vec{c}) = 0 = 2\sum_{i=1}^{n} \frac{\partial c_{i}}{\partial c_{k}} < f, g_{i} > + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial c_{k}} (c_{i}c_{j}) < g_{i}, g_{j} >$$

Note that $\frac{\partial c_i}{\partial c_k} = \delta_{ki} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$ and $\frac{\partial}{\partial c_k}(c_i c_j) = c_j \delta_{kj} + c_j \delta_{ki}$.

Therefore,

$$0 = -2 < f, g_k > + \sum_{i=1}^{n} c_i < g_i, g_k > + \sum_{j=1}^{n} c_j < g_k, g_j >$$

$$= -2 < f, g_k > +2 \sum_{i=1}^{n} c_i < g_i, g_k >$$

Finally,

$$\sum_{i=1}^{n} c_i < g_i, g_k > = < f, g_h >$$

This is a linear system for unknowns $\vec{c} = \begin{pmatrix} c_1 \\ \vdots \\ v_n \end{pmatrix}$, $A\vec{c} = \vec{b}$, where $A_{ik} = \langle g_i, g_k \rangle$ and $b_k = \langle f, g_k \rangle$.

If we have an orthonormal basis of V_n , say $\{g_1, \dots, g_n\}$ with $\langle g_i, g_j \rangle = 0$ if $i \neq j$ and $\langle g_i, g_i \rangle = 1$ Then, $\langle g_i, g_k \rangle = \delta_{ij}$, and so

$$c_k = < f, g_k >$$

and we get

$$v = \sum_{k=1}^{n} \langle f, g_k \rangle g_k = \operatorname{proj}_{v_n} f$$

as our least squares solution. Note that

$$\operatorname{proj}_{\vec{x}} \vec{y} = \frac{\langle \vec{y}, \vec{x} \rangle}{||\vec{x}||} \vec{x}$$

Weighted Least-Squares

$$||f||_{w} = ||f||_{L_{w}^{2}[a,b]} = \left(\int_{a}^{b} |f(x)|^{2} w(x) dx\right)^{\frac{1}{2}}$$

and

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x)dx$$

To find $v \in V_n$, the finite dimensional space best approximating f in the $L^2 + w$ -sense, i.e

$$v = \operatorname{argmin}_{u \in V_n} ||f - u||_{L^2_w}$$

Set $V(x) = \sum_{i=1}^{n} \langle f, g_i \rangle_{L_w^2} g_i(x) = \operatorname{proj}_{V_n} f$, where $\{g_i\}_{i=1}^n$ is a basis of V_n .

Here are some assumptions on w weighted function:

- 1. $w(x) \ge 0$
- 2. w(x) = 0 at at a finite number of x

Example: $w(x) = \frac{1}{\sqrt{1-x^2}}$ on (-1,1) (chebyshev weight)

Note that

$$\min_{u \in V_n} \int_{-1}^{1} |f(x) - u(x)|^2 \frac{1}{\sqrt{1 - x^2}} dx$$

The weight ensures that our least-squares solution approximation f much more closely near endpoints -1 and 1. It is to choose a weight that is large on [a, b] (where good datas lie) and small on [b, c] (where bad data lie)

Example: Let w(x) = x on [0,1], approximate e^x on [0,1] in L_w^2 -sense with $p \in P_1$. We need ONB of P_1 on [0,1] with w(x) = x. Give a basis $\{1,x\}$, note that $\langle 1,x \rangle = \int_0^1 1 \cdot x \cdot x dx \neq 0$. Therefore, we need Gram-Schmiat.

$$v_1 = 1$$

$$v_2 = x - \frac{\langle x, 1 \rangle}{||1||^2} \cdot 1 \text{ (proj}_1 x) = x \cdot \frac{\int_0^1 x \cdot 1 \cdot x dx}{\int_0^1 x dx} \cdot 1$$

$$= x - \frac{\frac{1}{3}}{\frac{1}{2}}$$

$$= x - \frac{2}{3}$$

Then, we need normalized.

$$e_1 = \frac{v_1}{||v_1||_w} = \frac{1}{\left(\int_0^1 1^2 \cdot x dx\right)^{\frac{1}{2}}} = \sqrt{2}$$

$$e_2 = \frac{v_1}{||v_1||_2} = \frac{x - \frac{2}{3}}{\left(\int_0^1 \left(x - \frac{2}{3}\right)\right)^2 x dx}^{\frac{1}{2}} = K(x - \frac{2}{3})$$

Just to check orthogonality,

$$\langle x - \frac{2}{3}, 1 \rangle = \int_0^1 \left(x - \frac{2}{3} \right) x dx$$

= $\frac{1}{3} - \frac{2}{3} \frac{1}{2} = 0$

Then solution is

$$v = \langle e^x, \sqrt{2} \rangle_w \sqrt{2} + \langle e^x, K\left(x - \frac{2}{3}\right) \rangle K\left(x - \frac{2}{3}\right)$$

Projection formula

$$\operatorname{proj}_{\vec{x}} \vec{y} = \frac{\langle \vec{y}, \vec{x} \rangle}{||\vec{x}||^2} \vec{x}$$

The orthogonal is

$$\langle x, y - \frac{\langle y, x \rangle}{||x||^2} x \rangle$$

6.5.1 Gram-Schmidt

Suppose $\{w_1, w_2, w_3\}$ is a basis for vector space V. To orthogonolize, use new basis $\{v_1, v_2, v_3\}$, where

$$v_1 = w_1$$

 $v_2 = w_2 - \text{proj}_{v_1} w_2$
 $v_3 = v_3 - \text{proj}_{v_1} w_3 - \text{proj}_{v_2} w_3$

6.5.2 Legendre Polynomials

$$w(x) = 1$$
 on $[-1, 1]$
 $P_0(x) = 1$, $P_1(x) = x$. Then

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0n \ge 1$$

when
$$n = 1$$
, $2P_2(x) - 3x \cdot x + 1 \cdot 1 = 0$, so $P_2(x) = \frac{3x^2 - 1}{2}$.

To get Legendre p(x) on [a,b], use a linear change of variable. So on [a,b], with w(x)=1, an orthogonal basis of P_1 is $\{1,2t-1\}$

7 Numerical Differentiation

Note that slope $f'(x) \approx \frac{f(x_2) - f(x_1)}{x_2 - x_1}$, and

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Two Point Forward Difference Quotient

given x, x + h, then

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Error

$$\frac{f(x+h) - f(x)}{h} = \frac{f(x) + hf'(x) + \frac{h^2}{2}f''(\xi) - f(x)}{h}$$
$$= f'(x) + \frac{h}{2}f''(\xi)$$

The error term. And error estimate will be

$$||f'(x) - D_h f(x)||_{L^{\infty}[a,b]} \le \frac{h}{2} ||f''||_{L^{\infty}[a,b]}$$

So Theoretically, as $h \to 0$, we get $D_h f \to f'$

Two Point Backward Difference Quotient

given x, x + h, then

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

Have

$$\frac{f(x) - f(x+h)}{h} = \frac{f(x) - (f(x) - hf'(x) + \frac{h^2}{2}f''(\xi))}{h}$$
$$= f'(x) - \frac{h}{2}f''(\xi)$$

So for backward error, we still get

$$||f'(x) - \frac{f(x) - f(x-h)}{h}||_{L^{\infty}[a,b]} \le \frac{h}{2}||f''||_{L^{\infty}[a,b]}$$

Centered Differencing

Given x - h, x, x + h. Note that using taylor,

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(\xi_1)$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(\xi_2)$$

Subtracting them, we have

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{6}(f'''(\xi_1) + f'''(\xi_2))$$

So

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{h^2}{12} [f'''(\xi_1) + f'''(\xi_2)]$$

$$f'''(\xi_1) + f'''(\xi_2) = 2f'''(\xi) \text{ by Intermediate value theorem with } \xi \text{ between } \xi_1 \text{ and } \xi_2$$

Therefore

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{h^2}{6} [2f'''(\xi)]$$

So

$$||f'(x) - \frac{f(x+h) - f(x-h)}{2h}|| \le \frac{h^2}{6}||f'''||_{\inf} = O(h^2)$$

Theorem 3.1

Intermediate Value Theorem

Let $f \in C[a, b]$ and $a_i > 0$ or $(a_i < 0)$ for all i. Then, $\exists d \in [a, b]$ such that

$$\sum_{i=1}^{n} n a_{i} f(x_{i}) = f(d) \sum_{i=1}^{n} a_{i}$$

Method of Undetermined Coefficient

Supposed we want f'(x) approximation using f(x), f(x+h). Find best possible formula

$$f'(x) = Af(x) + Bf(x+h) = Af(x) + B[f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)]$$

Let's set

$$A + B = 0$$
$$Bh = 1$$

This implies $B = \frac{1}{h}, A = -\frac{1}{h}$. So we get

$$f'(x) = -\frac{1}{h}f(x) + \frac{1}{h}f(x+h) + \frac{h}{2}f'''(\xi)$$
$$= \frac{f(x+h) - f(x)}{h} + \frac{h}{2}f''(\xi)$$

Error

Recall if

$$D_h f(x) := \frac{f(x+h) - f(x)}{h}$$

then

$$||f' - D_h f||_{L^{\infty}} \le \frac{h}{2} ||f''||_{L^{\infty}}$$

In finite preicsion

$$\widetilde{f}(x) = f(x) + e(x)$$

Since D_h is a linear operation, then

$$D_h \widetilde{f}(x) = D_h f(x) - G_h e(x)$$

And note that

$$D_h e(x) = \frac{e(x+h) - e(x)}{h}$$

And

$$|D_h e(x)| = \left| \frac{e(x+h) - e(x)}{h} \right|$$

$$\leq \frac{|e(x+h)| + |e(x)|}{h}$$

$$\leq \frac{2\epsilon}{h}$$

where $\epsilon \approx \epsilon_{mach}$.

$$||D_h\widetilde{f} - D_hf||_{L^{\infty}} \le \frac{2\epsilon}{h}$$

Then,

$$||f' - D_h \widetilde{f}||_{L^{\infty}}$$

$$= ||f' - D_h f + D_h f - D_h \widetilde{f}||_{L^{\infty}}$$

$$\leq ||f' - D_h f||_{L^{\infty}} + ||D_h f - D_h \widetilde{f}||_{L^{\infty}}$$

$$\leq \frac{h}{2}||f''||_{L^{\infty}} + \frac{2\epsilon}{h}$$

Set $m = ||f''||_{L^{\infty}}$.

To minimize error bound, set

$$\frac{d}{dh}\left(\frac{h}{2}m + \frac{2\epsilon}{h}\right) = 0$$

$$\frac{m}{2} - \frac{2\epsilon}{h^2} = 0$$

$$h = \sqrt{\frac{4\epsilon}{m}} \approx 10^{-8}$$

Richordson Extrapolation

Recall

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(\xi)$$
$$Q = F_2(h) + O(h^2)$$

where 2 for $F_2(h)$ is the error order.

The extrapolation formula is

$$Q \approx \frac{2^n F_n\left(\frac{h}{2}\right) - F_n(h)}{2^n - 1}$$

Here, $F_n(h)$ has $O(h^n)$ error, and approximates Q.

And $F_{n+1}(h)$ is an (at least) $O(h^{+1})$ method for approx Q, i.e $F_{n+1}(h) + O(h^{n+1})$ For centered differences, get

$$f'(x) = \frac{2^2 \left(\frac{f(x+\frac{h}{2}) - f(x-\frac{h}{2})}{2(\frac{h}{2})}\right) - \frac{f(x+h) - f(x-h)}{2h}}{2^2 - 1} + O(h^3)$$

using n=2,

$$=\frac{1}{6h}\left(f(x-h)-9f\left(x-\frac{h}{2}\right)+8f\left(x+\frac{h}{2}\right)-f(x+h)\right)$$

Note that Error is $O(n^4)$. This since the above equation as unchanged when replacing h with -h, so error can only depend on even powers of h

Proof. Supposed

$$Q = F_n(h) + Kh^n + O(h^m)$$
$$2^n Q = 2^n F_n\left(\frac{h}{2}\right) + K\left(\frac{h}{2}\right)^n + O(h^m)$$

subtract to get

$$(2^{n} - 1)Q = 2^{n} F_{n} \left(\frac{h}{2}\right) + F_{n}(h) + O(h^{m})$$

$$Q = \frac{2^{n} F_{n} \left(\frac{h}{2}\right) - F_{n}(h)}{2^{n} - 1} + O(h^{m})$$

8 Quadrature

Quadrature numerical integration. The common way is

$$\int_{a}^{v} f(x)dx \approx \sum_{i=0}^{n-1} f(x_i^*)(x_{i+1} - x_i)$$
$$\int_{a}^{v} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_i^*)\delta x_i$$

Note that

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} f(x_i)w_i + \text{ Error}$$

where x_i is nodes and w_i is weights.

Newton-Cotes Quadrature

Uses

$$\int_{a}^{v} f \approx \int_{a}^{b} p$$

, where P is an interpolating polynomial at equally spaced nodes.

closed rules includes endpoints values f(a), f(b). open rule is do not use the endpoints values f(a), f(b)

8.1.1 Midpoint Rule

use the mid point $\frac{a+b}{2}$. By Taylor,

$$f(x) = f(m) + (x - m)f'(m) + \frac{(x - m)^2}{2}f''(\xi_x)$$

$$\int_a^b f(x) = \int_a^b f(m) + \int_a^b (x - m)f'(m) + \int_a^b \frac{(x - m)^2}{2}f''(\xi_x)$$

$$= f(m)(b - a) + 0 + \frac{f''(\xi)}{2} \int_a^b (x - m)^2 dx$$

$$= f(m)(b - a) + 0 + \frac{1}{2}f''(\xi)\frac{(b - a)^3}{12}$$

we used Intgeral Mean Value Theorem.

Theorem 1.1

IF $f \in C[a,b]$ and $g \ge 0$ or $g \le 0$ on [a,b], then $\exists \xi \in (a,b)$ such that

$$\int_{a}^{b} fg = f(\xi) \int_{a}^{b} g$$

So Mid point rule tells us

$$\int_{a}^{b} = f(m)(b-a) + \frac{1}{24}f''(\xi)(b-a)^{3}$$

or

$$\left| \int_{a}^{b} f dx - f(m)(b-a) \right| \le \frac{(b-a)^{3}}{24} ||f''||_{L^{\infty}[a,b]}$$

Trapezoid Rule

Recall langurage remainder interpolate is

$$f(x) = f(a)\frac{x-b}{a-b} + f(b)\frac{x-a}{b-a} + \frac{f''(\xi)}{2!}(x-a)(x-b)$$

where $\xi \in (a, b)$. We do integrate, we have

$$\int_{a}^{b} f = \int_{a}^{b} f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a} + \int_{a}^{b} \frac{f''(\xi)}{2!} (x-a)(x-b)$$

$$= \frac{1}{2} (b-a)(f(a)+f(b)) + \frac{1}{2} f''(\xi) \int_{a}^{b} (x-a)(x-b) dx$$

$$= \frac{1}{2} (b-a)(f(a)+f(b)) + \frac{1}{2} f''(\xi) - \frac{1}{6} (b-a)^{3}$$

So Trapezoid rule give us

$$\int_{a}^{b} = \frac{b-a}{2}(f(a)+f(b)) - \frac{1}{12}(b-a)^{3}f''(\xi)$$

Simpson's Rule

Given $a, b, m = \frac{a+b}{2}$ Then.

$$\int_{a}^{b} = \frac{b-a}{6} [f(a) + f(b) + 4f(m)] - \frac{(b-a)^{5}}{90(32)} f^{5}(\xi)$$

Note: Simpsons is exact for $p \in P_e$. So

$$\left| \int_{a}^{b} f - \sum w_{i} f(x_{i}) \right| \leq \frac{|b - a|^{5}}{90(32)} ||f^{4}||_{\infty}$$

we have Given 2n + 1 nodes, we have 2n subintervals, and $h = \frac{b-a}{2n} = \text{cosnstant}$. Then Simpsons' Rule on $[x_{2i}, x_{2i+1}]$ is

$$\int_{x_{2i}}^{x_{2i+2}} \approx \frac{2h}{6} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) - \frac{(2h)^5}{90 \cdot 32} f^{(4)}(\xi_i)$$

where ξ_i is between x_{2i} and x_{2i+2} So,

$$\int_{a}^{b} f = \sum_{i=0}^{n-1} \int_{x_{2i}}^{x_{2i+2}} f$$

$$= \frac{h}{3} \sum_{i=0}^{n-1} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] - \frac{h^{5}}{90} \sum_{i=0}^{n-1} f^{4}(\xi_{i})$$

where $\sum_{i=0}^{n-1} f^4(\xi_i) = nf^4(\xi)$ by IVT for some $\xi \in (a,b)$. Therefore

$$= \frac{h}{3} \sum_{i=0}^{n-1} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] - \frac{h^5 n}{90} f^4(\xi)$$

use $hn = \frac{b-a}{2}$, we have

$$= \frac{h}{3} \sum_{i=0}^{n-1} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})] - \frac{b-a}{180} h^4 f^4(\xi)$$

Therefore, error is $-\frac{b-a}{180}h^4f^4(\xi)$. And also

$$x_i = a + ih = a + i\frac{b - a}{2n}$$

for $0 \le i \le 2n$

(Weighted) Gaussian Quadrature

$$\int_{a}^{b} f(x)w(x)dx \approx \sum_{i=1}^{n} A_{i}f(x_{i})$$

where A_i is quadrature weights and x_i is nodes. Very general many options:

$$\int_{-1}^{1} e^{x} \cdot 1$$
$$\int x e^{x} \frac{1}{x}$$
$$\int 1 \cdot e^{x}$$

Orthogonal Polynomial

Recall $\{P_i\} \subseteq P_n$ are orthogonal on [a,b] with w(x) if

$$\langle p_i, p_j \rangle_w = \int_a^b p_i(x)p_j(x)w(x)dx$$

Theorem 4.1

If $\{p_i\}_{i=0}^n \subseteq P_n$ is orthogonal and $deg(p_i) = i$, then p_i has exactly i distinct zeroes

Example: $\{1, x, \frac{3}{2}, \frac{3}{2}(x^2 - \frac{1}{3})\}$ and the first legrendre polynomial with w(x) = 1 on [-1, 1].

Guass-Legrende quadrature

Fix n. Let $\{x_i\}_{i=1}^n$ be the n zeros of the degree n legendre polynomial $P_n(x)$. Then,

$$\int_{-1}^{1} f(x) \cdot 1 dx \approx \sum_{i=1}^{n} A_i \cdot f(x_i)$$

with $\{A_i\}$ given by undetermined coefficients and the rule is exact for any $f \in P_{2n-1}$

Example: $\int_{-1}^{1} f(x) \cdot 1 dx$

Gauss-Legrende with two nodes. Degree legrende polynomial is

$$\frac{3}{2}(x^2 - \frac{1}{2})$$

with zeros $x = \pm \sqrt{\frac{1}{3}}$, so

$$\int_{-1}^{1} f(x)dx \approx A_1 f\left(-\frac{1}{\sqrt{3}}\right) + A_2 f\left(\frac{1}{\sqrt{3}}\right)$$

It will be exact for $f \in P_3$

Force rule to be exact for f = 1, x, we have

$$\implies 2 = \int_{-1}^{1} 1 = A_1 + A_2$$

$$0 = \int_{-1}^{1} x = A_1 f\left(-\frac{1}{\sqrt{3}}\right) + A_2 f\left(\frac{1}{\sqrt{3}}\right)$$

$$\implies A_1 = A_2 = 1$$

For x^2 , check

$$\int_{-1}^{1} x^2 = \frac{2}{3} = f\left(-\frac{1}{\sqrt{3}}\right)^2 + f\left(\frac{1}{\sqrt{3}}\right)^2$$

Explicit quadrature weight formula:

$$\int_{a}^{b} f(x)w(x)dx \approx \sum_{i=1}^{n} A_{i}f(x_{i})$$

Let $P_{n-1}(x) = \sum_{i=1}^n f(x_i)l_i(x)$, where L_i is the lagrange basis, be the interpolant through

$$\{(x_i, f(x_i))\}_{i=1}^n$$

So

$$\int_{a}^{b} f(x)w(x)dx$$

$$\approx \int_{a}^{b} P_{n-1}w(x)dx$$

$$= \sum_{i=1}^{n} f(x_{i}) \left(\int_{a}^{b} l_{i}(x)w(x)dx \right)$$

And $\left(\int_a^b l_i(x)w(x)dx\right)$ is weights A_i , i.e $A+i=\int_a^b l_i(x)w(x)dx$

Composite Faussian Rules

$$\int_{a}^{b} f(x)w(x)dx$$

$$= \sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} f(x)w(x)dx$$

where

$$\int_{x_i}^{x_{i+1}} f(x)w(x)dx = \frac{x_{i+1} - x_i}{2} \int_{-1}^{1} f(\phi(t))w(\phi(t))dt$$

where $\phi(t) = \frac{x_i + x_{i+1}}{2} + \frac{x_{i+1} - x_i}{2}t$ and can approximate the \int_{-1}^{1} integral with Gaussian rule.

Proof. Let $p \in P_{2n-1}$. Let $\{x_i\}_{i=1}^n$ be ther zeros of the degree n orthogonal $p_n(x)$ on [a,b] with w(x). By long division

$$p(x) = s(x)p_n(x) + r(x)$$

where $deg(s), deg(r) \leq n - 1$. Also note $p(x_i) = r(x_i)$ then, integrate,

$$\int_{a}^{b} p(x)w(x)dx = \int_{a}^{b} s(x)p_{n}(x) + \int_{a}^{b} r(x)w(x)dx$$

Note that $\int_a^b s(x)p_n(x) = 0$ since $s(x) = \sum_{i=0}^{n-1} c_i p_i(x)$ where $p_i(x)$ is our orthogonal basis, and then use $(x) < p_i, P_n >_w = 0$ And note that $f(x) = \sum_{i=1}^n f(x_i)l_i(x)$ where $l_i(x)$ is the lagrange basis.

$$\int_{a}^{b} p(x)w(x)dx = \sum_{i=1}^{n} p(x_i) \left(\int_{a}^{b} l_i(x)w(x)dx \right)$$

9 Rowberg Intergration

Subdividing partition until error tolerance met on each subinterval. What we do is given a, b we take the mid point $\frac{1}{a+b}$, and then take $\frac{a+\frac{a+b}{2}}{2}$ again, until we are satisified.

Fact:

$$I(f) = \int_{a}^{b} (f) = \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{i=1}^{n} f(x_i) \right) + \sum_{i=1}^{n} c_i h^{2i}$$
$$= T(h) + c_1 h^2 + c_2 h^4 + c_3 h^6 + \cdots$$

Each Richardson extrapolation gains a power of 2 with h, and

$$c_i \sum f^{2i}(x_0)$$

And the subinterval width will be

$$h_1 = b - a$$

$$h_2 = \frac{h_1}{a} = \frac{b - a}{2}$$

$$h_3 = \frac{h_1}{4} = \frac{b - a}{2^2}$$

$$\vdots = \vdots$$

$$h_j = \frac{b - a}{2^{j-1}}$$

And we have

$$R_{1,1} := T(h_1) = \frac{h_1}{2} [f(a) + f(b)]$$

$$R_{2,1} := T(h_2) = \frac{h_2}{2} [f(a) + f(b) + 2f(a + h_2)]$$

$$= \frac{1}{2} R_{1,1} + h_2 f(a + h_2)$$

$$\vdots = \vdots$$

$$2^{j-2}$$

$$R_{j,i} := T(h_j) = \frac{1}{2}R_{j-1,1} + h_j \sum_{i=1}^{2^{j-2}} f(a + (2u - 1)h_j)$$

for $j \geq 2$. Also,

$$R_{2,2} = \frac{2^2 R_{2,1} - R_{1,1}}{2^2 - 1}$$
$$= \frac{2^2 T\left(\frac{h_1}{2}\right) - T(h_1)}{2^2 - 1}$$

Then the Table of Extrapolations is

$R_{1,1}$				
$R_{2,1}$	$R_{2,2}$			
$R_{3,1}$	$R_{3,2}$	$R_{3,3}$		
:				
$R_{j,1}$				

The first column has composite trapeziod rules with error $O(h^2)$ Second column has errors $O(h^4)$, and for third column error is $O(h^6)$

Also,

$$R_{2,2} = \frac{2^2 R_{2,1} - R_{1,1}}{2^2 - 1}$$

$$= \frac{2^2 T\left(\frac{h_1}{2}\right) - T(h_1)}{2^2 - 1}$$

$$R_{3,2} = \frac{2^2 R_{3,1} - R_{2,1}}{2^2 - 1}$$

$$R_{3,3} = \frac{2^4 R_{3,2} - R_{2,2}}{2^4 - 1}$$

Here, $R_{j,i}$, j represents $T(h_j)$ is using subinterval width h_j , and k will represent number of extrapolating.

In general,

$$R_{j,k} = \frac{1}{2^{2k-2}} \left(2^{2k-2} R_{j,k-1} - R_{j-1,k-1} \right)$$

Stopping Criteria:

$$|R_{j,j} - R_{j+1,j+1}| < TOL$$

Then $R_{j+1,j+1}$ is the best approximation of $\int_a^b f$

10 Unknown

Backward Euler Method

$$\begin{cases} y = f(t, y(t)) & t \in [0, T] \\ y(0) = y_0 \end{cases}$$

We approximate

$$y'(t) \approx \frac{y(t) - y(t-h)}{h}$$

where $h = t_{i+1} - t_i$ is constant. Therefore,

$$y(t) \approx y(t-h) + hf(t, y(t))$$

$$\implies y(t_i) \approx y(t_{i-1}) + hf(t_i, y(t_i))$$

Let $w_i \approx y(t_i)$, discrete approximating solution values. Then,

$$w_i = w_{i-1} + hf(t_i, w_i)$$

Then it give backward euler method as following

$$w_{i+1} = w_i + hf(t_{i+1}, w_{i+1})$$
$$w_0 = y_0$$

This is an implicit method, since we need to solve for w_{i+1} , set $z = w_{i+1}$, then we need to find root of

$$F(z) = z - [w_i + h f(t_{i+1}, z)]$$

using newton, bisection, fzero

10.1.1 Local Truncation Error

Given

$$w_{i+1} - [w_i + hf(t_{i+1}, w_{i+1})]$$

Replace, we have

$$y(t_i + h) - [y(t_i) + hy'(t_i + h)]$$

$$= y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i) - y(t_i) - h[y'(t_i) + hy''(\eta_i)]$$

$$= h^2 \left[\frac{1}{2}y''(\xi_i) - y''(\eta_i)\right]$$

$$= O(h^2)$$

Since local error is $O(h^2)$, global error is O(h). Why local $O(h^p)$ becomes $O(h^{p-1})$ globally? Set

$$h = \frac{T - t_0}{N}$$

where $[t_0, T]$ ODE time interval and N = number of time steps. Therefore, global error is apprixmately $N \cdot O(h^p)$, which is $\frac{T - t_0}{h} O(h^p) = O(h^{p-1})$

Stability?

Test equation $\begin{cases} y' = \lambda y \\ y(0) = 1 \end{cases}$, where $\lambda < 0$, Solution is $y(t) = e^{\lambda t} \to 0$ as $t \to \infty$.

Apply Backward Euler, we have

$$w_{i+1} = w_i + h f(t_{i+1}, w_{i+1})$$

$$= w_i + h(\lambda w_{i+1})$$

$$\implies w_{i+1} = \left(\frac{1}{1 - h\lambda}\right) w_i = \dots = \left(\frac{1}{1 - h\lambda}\right)^i w_0$$

As $i \to \infty$, need

$$\left|\frac{1}{1-h\lambda}\right| < 1$$

so that $w_i \to 0$. since

$$\lim_{i \to \infty} c^i = 0$$

provided |c| < i

Recall h > 0 is a positive constant. But this is true for any h > 0, so backward euler is A-stable (abosolutely stable)

Trapezoid Method

Given

$$y' = f(t, y(t))$$

$$\int_{t_i}^{t_{i+1}} y'(t)dt = \int_{t_i}^{t_{i+1}} f(t, y(t))dt$$

$$y(t_{i+1}) - y(y_i) = \int_{t_i}^{t_{i+1}} f(t, y(t))dt$$

Note that

$$\int_{t_i}^{t_{i+1}} f(t, y(t)) dt \approx \frac{h}{2} \left(f(t_i, y(t_i)) + f(t_{i+1}, y(t_{i+1})) \right)$$

using trapezoid rule. And the method we have is the following

$$\begin{cases} w_{i+1} = w_i + \frac{h}{2} \left(f(t_i, w_i) + f(t_{i+1}, w_{i+1}) \right) \\ w_0 = y_0 \end{cases}$$

where $w_{i+1} = w_i + h f(t_i, w_i)$

This is implicit method, and one step. The local error is $O(h^3)$, and this is A stable

Forward Euler Method on Systems

$$\vec{y}(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$$

$$\begin{cases} \frac{d}{dt}\vec{y}(t) = \vec{f}(t, \vec{y}(t)) \\ \vec{y}(t_0) = \vec{y_0} \end{cases}$$

Let
$$\vec{w_i} \approx \vec{y}(t_i)$$
, then
$$\begin{cases} \vec{w_{i+1}} = \vec{w_i} + h\vec{f}(t_i, \vec{w_i}) \\ \vec{w_0} = \vec{y_0} \end{cases}$$

Or componentwise, for k = 1, 2, we have $\begin{cases} \vec{w_{i+1}}^k = \vec{w_i}^k + h\vec{f}^k(t_i, \vec{w_i}) \\ \vec{w_0}^k = \vec{y_0}^k \end{cases}$, where $h = t_{i+1} - t_i$.

Also note that $\vec{w_{ii}}^{k}$, i is the iteration index for time t_i and k

Example: Suppose
$$\vec{f}(t, \vec{h}) = \begin{pmatrix} t + y^{(n)}(t) \\ y^{(1)}(t)y^2(t) \end{pmatrix}$$
 and $\vec{y_0} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

LEt $h = \frac{1}{2}$, and compute $\vec{w_1} = \vec{y} \left(\frac{1}{2}\right)$ using Forward Euler. Then we have

$$\vec{w_1} = \vec{w_0} + \frac{1}{2}\vec{f}(0, \vec{w_0})$$

$$= \begin{bmatrix} 2\\4 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 + w_0^1\\w_0^{(1)}w_0^2 \end{bmatrix}$$

$$= \begin{bmatrix} 2\\4 \end{bmatrix} + \frac{1}{2} \begin{pmatrix} 2\\2(4) \end{pmatrix}$$

$$= \begin{bmatrix} 3\\8 \end{bmatrix}$$

Therefore, $\vec{y}\left(\frac{1}{2}\right) \approx \begin{bmatrix} 3\\8 \end{bmatrix}$

Leapfrog Method

$$\begin{cases} y' = f(t, y(t)) \\ y(0) = y_0 \end{cases}$$

we are arrpximate

$$y'(t) = \frac{y(t+h) - y(t-h)}{2h} + O(h')$$

using Centered Differences. We get

$$y(t_i + h) \approx y(t_i - i) + 2hf(t_i.y(t_i))$$

So with $w_i \approx y(t_i)$, we get

$$\begin{cases} w_{i+1} = w_{i-1} + 2hf(t_i.w_i) \\ w_0 = y_0, w_1 = y_0 + hf(t_0, y_0) \end{cases}$$

where w_1 is obtained by other method

Remark: This is a two-step, explicit method with $O(h^3)$ local trunction error. So $O(h^2)$ global error

10.4.1 Stability

$$\begin{cases} y\lambda y\\ y(0) = 1 \end{cases}$$

With leapfrog, we get $w_{i+1} = w_{i-1} + 2h(\lambda w_i)$. Assume $w_i = r^i$ and find r such that this is a solution, we have

$$r^{i+1} = r^{i-1} + 2h\lambda r^i$$
$$r = r^{-1} + 2h\lambda$$

Solutions are

$$r = r_{\pm} = -h\lambda \pm \sqrt{1 + (h\lambda)^2}$$

A general solution is

$$w_i = c_1 r_+^i + c_2 c^i$$

for some c_1, c_2 . Note that

$$r_{\pm} = -h\lambda + \sqrt{1 + (h\lambda)^2} > 1$$

for any h > 0. So for any h > 0, we have

$$w_i \to \infty$$

Therefore Leapfrog is totally unstable

For ODE45, the 4 in the name stands for having an order of 4 ODE solver, with global error $O(h^4)$ to get z_i , approximating values at t_i ; And the 5 in the name stands for having an order of 5 solver, with global error $O(h^5)$ to get y_i , approximating value at t_i .

Let $e_i = |z_i - y_i|$, if $e_i < \text{TOL}$, then timestep and the value y_i is accepted, and proceed to t_{i+1} .

Definition 4.0.0.0.1

For an informal definition, an ODE is said to be stiff provided that explicit numerical solver require very small h for stability.

Example: The following ODE is an example of stiff ODE:

$$\begin{cases} y' = y^2(1-y) \\ y(0) = 10^{-6} \end{cases}$$

ODE45 solver uses 10^6 timesteps, and ODE15s uses 117 timesteps, while the ODE15s gives better solution.

Runge-Kutta Methods

1-stage RK method is one-step, explicit, first order, and not stable. For deriving the method, suppose we are given an ODE system

$$\begin{cases} y' = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

We write $w_i \approx y(t_i)$. Suppose we can write $w_{i+1} = w_i + as_1$, where $s_1 = hf(t_i, w_i)$ is the state of the method. We are interested in finding a suitable constant value for a such that the method has a smallest local truncation error. Consider we write the following:

$$w_{i+1} - (w_i + ahf(t_i, w_i)) = y(t_i + h) - (y(t_i) + ahy'(t_i))$$

comparing with Taylor expansion $y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i)$, and choosing a = 1, we obtain the error term $(h^2/2)y''(\xi_i)$, and $w_{i+1} = w_i h f(t_i, w_i)$, which yields the forward Euler's method.

The 2-stage RK method is two-step, explicit, second order, and not stable. Assuming here that we have $w_{i+1} = w_i + as_1 + bs_2$, where $s_1 = hf(t_i, w_i)$, and $s_2 = hf(t_i + \alpha h, w_i + \beta s_i)$. Here we are interested in, using the two stages, finding suitable constants for a, b, α, β such that the method has a smallest local truncation error. Expanding we obtain:

$$w_{i+1} - (w_i + ahf(t_i, w_i) + bhf(t_i + \alpha h, w_i + \beta hf(t_i, w_i)))$$

= $y(t_i + h) - (y(t_i) + ahy'(t_i) + bhf(t_i + \alpha h, y(t_i) + \beta hy'(t_i)))$

Denoting the term $y(t_i + h)$ as (*) and the term $f(t_i + \alpha h, y(t_i) + \beta h y'(t_i))$ as (**), we can write:

$$(*) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + O(h^3)$$
$$(**) = f(t_i, y(t_i)) + \alpha h f_t(t_i, y(t_i)) + \beta h y'(t_i) f_y(t_i, y(t_i)) + O(h^2)$$

combining to solve for the appropriate α, β, a, b , we obtain a system of equations:

$$\begin{cases} 1-a-b=0\\ 1/2-\alpha b=0\\ 1/2-b\beta=0 \end{cases}$$

that is there exists a set of infinitely many solutions for the system, for which a natural choice is a = b = 1/2, with $\alpha = \beta = 1$, yielding the explicit Trapezoid method.