Exercices thermodynamiques

1. Définition d'un système

Indiquez si les systèmes suivants sont fermés ou ouverts :

Indice

Attention:

à bien définir les systèmes (l'énoncé est parfois un peu flou, mais c'est de bonne guerre...);

à ne pas confondre échanges de matière et échanges d'énergie!

Système ouvert : échange de matière et de chaleur et de travail

Système fermé : échanges de chaleur et de travail

Isolé: Aucun échanges

vous

vous : définissons le système comme tout de qui est à l'intérieur de votre enveloppe corporelle (votre peau) : du moment que vous respirez, que vous transpirez il y a échange de matière avec l'extérieur, et vous êtes donc un système ouvert.

la pièce dans laquelle vous vous trouvez (vous inclus)

La pièce où vous êtes : si le système est constitué de tout ce qui se trouve à l'intérieur des murs de la pièce (y compris l'air), il ne peut s'agir d'un système fermé que si la pièce est parfaitement hermétique ; comme vous êtes dans la pièce, il faut aussi vous inclure dans le système pour que votre respiration ne soit pas un échange de matière avec l'extérieur.

une voiture qui roule

une voiture qui roule : si nous gardons la même définition du système que précédemment, nous constatons que pendant que la voiture roule, le niveau d'essence diminue, de l'air est aspiré par le filtre à air, et que des gaz d'échappement sortent à l'arrière. On a bien un système ouvert.

le circuit primaire d'une centrale nucléaire

le circuit primaire d'une centrale : en dehors des périodes d'entretien, on espère qu'il n'y a pas de fuite de matière, et c'est donc bien un système fermé.

la Terre, l'Univers

la Terre : reçoit beaucoup d'énergie du soleil, mais échange peu de matière (arrivées de météorites, départ de satellites) : on la considère le plus souvent comme un système fermé. L'Univers est par nature un système fermé, puisque par définition il n'y a pas de système matériel extérieur à l'univers.

2. **Le baromètre** au niveau de la mer indique 740 mm Hg. La tendance est-elle au beau temps ou au mauvais temps?

Au niveau de la mer, la pression moyenne est de 1 atmosphére = 1013 mbar = 760 torr (Parfois on utilise hectopascal notamment les bulletins météo marines, 1 atm = 1013hPa. 740mm Hg = pression inférieure à la pression moyenne, basses pressions=mauvais temps, le temps est à la pluie. Les fortes pressions sont associées au beau temps.

3. Le premier principe

En une année, la Terre effectue une rotation complète autour du soleil

Appliquer le premier principe a cette transformation

Définir le système qui doit être fermé, puis la transformation (état initial et état final)

Faire l'inventaire des actions extérieures et exprimer le travail, déterminer si il y a échange de chaleur.

L'énergie interne aa-t-elle variée?

Système: La terre; système fermé. Rappel: $\Delta U=W+Q$ La variation d'énergie interne d'un système est égale à la somme des énergies échangées avec le milieu extérieur sous la forme de travail et de chaleur:

La terre est soumise à la force de gravitation exercée par le Soleil. Cette force dérive d'un champ de potentiel, la Terre étant <u>revenue à sa position initiale</u> au bout d'un an donc, **son travail est nul**

au bout d'un an, la Terre <u>retrouve la même vitesse de déplacement</u> linéaire (autour du Soleil) et de rotation (autour de son axe) : il n'y a donc pas de variation d'énergie cinétique :

Pendant ectte année, la Terre a reçu **de la chaleur** du Soleil, et en a cédé (par rayonnement) au reste de l'Univers. Soit la chaleur nette reçue par la Terre

Pendant un an, l'énergie interne de la Terre a-t-elle varié ? On peut considérer que ses variables d'état (en particulier la température) sont approximativement les mêmes (si on néglige, à l'échelle d'une année, les variations de composition liées à des phénomènes naturels ou à l'activité humaine). Toute la chaleur reçue du Soleil est à son tour rayonnée vers le Cosmos. Si on admet que la Terre se retrouve dans le même état, **son énergie interne n'a pas variée** :

Si on applique le premier principe au Soleil seul (système fermé) sachant qu'il cède une quantité de chaleur à l'extérieur, on trouve que : : l'énergie interne du soleil diminue inéluctablement $\Delta Us=-Qs$

Revenez sur terre et appliquez le premier principe à votre ordinateur allumé en face de vous Pendant une durée de fonctionnement Δt :

 $\Delta U=W+Q$

Il reçoit une certaine énergie électrique (il y a une prise qui le relie au secteur), que nous assimilons à une énergie mécanique pour appliquer le premier principe. Soit $\bf W$ l'énergie électrique consommée pendant le temps Δt

L'ordinateur cède de la chaleur a l'extérieur. (toute la chaleur dégagée par effet Joule dans les conducteurs doit être évacuée $\,$ Q<0

On a donc: W+Q =0 ou Q=-W toute l'énergie électrique consommée par l'ordinateur est rétrocédée sous forme de chaleur à l'environnement, e

4. Transformations

Pour vous faire couler un bain à 35° C, vous disposez d'un robinet d'eau chaude à 80° C et d'un robinet d'eau froide à 20° C. La baignoire doit contenir 200 kg d'eau (soit 200 L). Quelles sont les masse Mc d'eau chaude et Mf d'eau froide utilisées

Le systéme est <u>A l'état initial</u>; les deux quantités d'eau chaude et froide qu'on va mélanger (état 1 figure) A l'état final : Le contenu de la baignoire (état 3 voir figure)

L'énergie du système interne ΔU =0 Q1+ Q2 =0 On néglige les pertes thermiques vers l'extérieur, ainsi que le travail de la pesanteur sur l'eau qui s'écoule des robinets, on a un système globalement isolé. O=mc ΔT

Tc = température de l'eau froide Tf=température de l'eau froide.

cMc(Tc-Tm) + cMf(Tf-Tm) = 0Mc(80-35) + Mf(20-35) = 0

Mc + Mf = 200 kg Mc = (200 - Mf) d'ou (200 - Mf) (80 - 35) + Mf (20 - 35) = 0 Mf = 150 kg

5. Pression osmotique

Une cellule vivante, de paroi semi-perméable contient un liquide composé essentiellement d'eau salée (7 g/L de NaCl). Que se passe-t-il si on la plonge dans l'eau pure ? dans de l'eau très salée ? L 'effet observé est-il du aux chocs avec les molécules d'eau ou de sel ?

La cellule éclatera passage d'eau vers le compartiement le plus concentré en soluté La cellule va diminuer en volume Molécules de sel

6. les gaz parfaits

L'hydrolyse de l'eau conduit à la formation de gaz oxygène et hydrogène. Quelles sont les volumes de ces gaz produits par l'hydrolyse de 1 g d'eau à pression atmosphérique et 20° C? Pour rappel l'hydrolyse d' 1mole H_2 0 donne 1 mole H_2 et 1/2 mole 0_2 1mole d'eau 18g/mole. Le volume d'une mole = 22.4L /mole. On part avec 1g c'est à dire 0.056 mole donc le volume initial : 1.25 litre = 1.25 10^{-3} m³ fle volume final : 0.084 mole donc le volume final est de on a 1.88 litre = 1.88 10^{-3} m³

7. Bilan énergétique Quantité de chaleur

8

a) Calculer la quantité de chaleur à fournir pour transformer 80 litres d'eau à 20°C en vapeur saturante (100°C) à pression atmosphérique.

On donne <u>les chaleurs spécifiques</u> <u>cglace</u> = 2,1 kJ kg⁻¹ K⁻¹, c_{liq} = 4,18 kJ kg⁻¹ K⁻¹ cvapeur = 2,0 kJ kg⁻¹ K⁻¹, <u>Les chaleurs latentes de changement d'état</u>: chaleur latente de fusion : Lf = 334 kJ/kg, chaleur latente de vaporisation : Lv = 2255 kJ/kg.

- b) Puis si l'on veut transformer 80 litres de glace a -10°C en vapeur saturante a 110°C.
- a) Pour transformer 80 litres d'eau liquide à 20°C en vapeur saturante à pression atmosphérique, il faut chauffer le liquide jusqu'à son point d'ébullition 100°C, puis vaporiser ce liquide à 100°C. Les quantités de chaleur mises en oeuvre sont :
- i) pour le chauffage du liquide $Q_{chauffage} = m \times Cp \times (\theta f \theta i) = 80 \times 4.18 \times (100 20) = 26752 \text{ kJ}$
- ii) pour la vaporisation $Q_{vaporisation}=m\times Lv=80\times(2255)=180400$ kJ, soit au total 26752+180400=207152 kJ

b)

- i) Chauffer la glace de -10°C a 0°C : Q glace:= $m \times Cp \times (\theta f \theta i) = 80 \times 2.1 \times (10) = 1680 \text{ kJ}$
- ii) Fusion: Passage a l'état liquide: Qfusion=mxLf=80x334= 26720 kJ
- iii) Passage de 0°C a 100°C: $Q_{chauffage}=m\times Cp\times (\theta f-\theta i)=80\times 4.18\times (100)=33440$ kJ
- iv) Vaporisation: Qvap=mxLv=80x2255= 180400 kJ
- v) Passage de 100°C a 110°C: $Q_{chauffage} = m \times Cv \times (\theta f \theta i) = 80 \times 2,0 \times (10) = 1600 \text{ kJ}$

Quantité de chaleur finale: 1680 KJ +26720 kJ + 33440 kJ + 180400 kJ + 1600 kJ = 243 840 kJ

9. Enthalpie de réaction chimique

La réaction de photosynthèse est-elle endothermique ou exothermique?

Exemple endothermique : Photosynthèse Les plantes ont besoin d'énergie : $6CO_2 + 6H_2O + Energie ---> C_6H_{12}O_6 + 6O_2$

10. Loi de Hess

Calculer l'enthalpie de la réaction suivante en utilisant la loi de Hess:

- -Pour une mole
- -Pour 33g de C₃H₈

$$C_3H_8(g) + 5O_2(g) ---> 3 CO2(g) + 4H_2O(l)$$

 $\Delta H^{\circ}f C_3H_8 = -103.88$ $\Delta H^{\circ}f O2 = 0$ $\Delta H^{\circ}f CO_2 = -393.52$ $\Delta H^{\circ}f H_2O = -285.1$ Pour une mole de C_3H_8 : $\Delta HR = 3 (-393.52) + 4(285.1) - (-103.88) = -2217 kJ$

Pour 33g de C_3H_8 quelle est la valeur de ΔH ? Masse molaire de C_3H_8 : 3 x12 + 8 = 44g/mol

Nombre de moles = Masse /M n = 33 / 44 = 0.75 mol $\Delta H_{33g} = 0.75 \times \Delta HR$ $0.75 \times -2217 = -1662$ kjoule

11. Energie de Gibbs enthalpie libre

Calculer l'énergie de Gibbs pour la réaction suivante : Combustion du glucose

 $C_6H1_2O_6(s) + 6O_2(g) --> 6CO_2(g) + 6H_2O(l)$

 Δ H° comb = -2808 (KJ/mol) Δ S° comb =+259 (J/mol.K)

 ΔG° com = ΔH comb - T ΔS comb = -2808.10³ - (298x259) = -2885 (kJ/mol)

La variation d'énergie libre ΔG° com accompagnant la combustion du glucose est dominée par la contribution enthalpique (97.5%) . Seul 2.5% de l'énergie rendue au système provient de la contribution entropique.