BERT和ERNIE谁更强?这里有一份4大场景的细致评测

量子位 2019-06-17

允中 发自 凹非寺 量子位 报道 | 公众号 QbitAI

BERT和ERNIE, NLP领域近来最受关注的2大模型究竟怎么样?

刚刚有人实测比拼了一下,结果在中文语言环境下,结果令人意外又惊喜。

具体详情究竟如何?不妨一起围观下这篇技术评测。

1. 写在前面

随着2018年ELMo、BERT等模型的发布,NLP领域终于进入了"大力出奇迹"的时代。采用大规模语料上进行无监督预训练的深层模型,在下游任务数据上微调一下,即可达到很好的效果。曾经需要反复调参、精心设计结构的任务,现在只需简单地使用更大的预训练数据、更深层的模型便可解决。

随后在2019年上半年,百度的开源深度学习平台PaddlePaddle发布了知识增强的预训练模型ERNIE,ERNIE通过海量数据建模词、实体及实体关系。相较于BERT学习原始语言信号,ERNIE直接对先验语义知识单元进行建模,增强了模型语义表示能力。

简单来说,百度ERNIE采用的Masked Language Model是一种带有先验知识Mask机制。可以在下图中看到,如果采用BERT随机mask,则根据后缀"龙江"即可轻易预测出"黑"字。引入了词、实体mask之后,"黑龙江"作为一个整体被mask掉了,因此模型不得不从更长距离的依赖("冰雪文化名城")中学习相关性。

Learnt by BERT

Learnt by ERNIE

哈尔滨是黑龙江的省会,国际冰雪文化名城

除此之外,百度ERNIE还引入了DLM(对话语言模型)任务,通过这种方式来学习相同回复对应的query之间的语义相似性。实验证明DLM的引入对LCQMC(文本相似度计算)系

列任务带来了较大的帮助。最终ERNIE采用多源训练数据,利用高性能分布式深度学习平台 PaddlePaddle完成预训练。

2. 亲测

到底百度ERNIE模型所引入训练机制有没有起到作用,只有实践了以后才知道。为此,我亲自跑了BERT和ERNIE两个模型,在下面的几个场景中得到了预测结果。

2.1 完形填空

完形填空任务与预训练时ERNIE引入的知识先验Mask LM任务十分相似。从下图的比较中我们可以看到,ERNIE对实体词的建模更加清晰,对实体名词的预测比BERT更准确。例如BERT答案"周家人"融合了相似词语"周润发"和"家人"结果不够清晰;"市关村"不是一个已知实体;"菜菜"的词边界是不完整的。ERNIE的答案则能够准确命中空缺实体。

输入句子	BERT 结 果	ERNIE 结果	答案
对甄子丹饰演的孙悟空赞不绝口,称其为"宇宙最强美猴王"。	周家人	周润发	周润发
昨天,市人大代表、中关村管委会主任郭洪在参加市人大分组讨论会时透露,2014年起,	市关村	中关村	中关村
买菜的市民告诉记者,往年节前少有一元以及一元以下的菜价,今年一元左右的菜那么多,真的很便宜。	菜菜	价格	价格 量子位

2.2 NER (命名实体识别)

在同样为token粒度的NER任务中,知识先验Mask LM也带来了显著的效果。对比MSRA-NER数据集上的F1 score表现,ERNIE与BERT分别为93.8%、92.6%。在PaddleNLP的LAC数据集上,ERNIE也取得了更好的成绩,测试集F1为92.0%,比BERT的结果90.3%提升了1.7%。分析二者在MSRA-NER测试数据中二者的预测结果。可以观察到:

- 1.) ERNIE对实体理解更加准确: "汉白玉"不是实体类型分类错误;
- 2.) ERNIE对实体边界的建模更加清晰:"美国法律所"词边界不完整,而"北大"、"清华"分别是两个机构。

Case对比:摘自MSRA-NER数据测试集中的三段句子。B_LOC/I_LOC为地点实体的标签,B_ORG/L_ORG为机构实体的标签,O为无实体类别标签。下表分别展现了 ERNIE、BERT模型在每个字上的标注结果。

文本	我	随	-	群	人	登	上	汉	白	玉	台	阶	
ERNI E	0	0	0	0	0	0	0	0	О	0	0	0	0
BERT	0	0	0	0	0	0	0	B_LO C	I_LO C	I_LO C	0	0 1	0

文本	 本	案	所	适	用	的	美	国	法	律	所	基	于	的	
ER NIE	0	0	0	0	0	0	B_L OC	I_L OC	0	0	0	0	0		
BER T	0	0	0	0	0	0	B_O RG	I_O RG	I_O RG	I_O RG	I_O RG	0	0	是是	子 <u>(立</u>

文本	 有	-	两	个	考	上	北	大	清	华	的	
ERNI E	0	0	0	0	0	0	B_OR G	I_OR G	B_OR G	I_OR G	0	
BERT	0	0	0	0	0	0	B_OR G	I_OR G	I_OR G	I_OR G	0 量	子位

2.3 相似度

ERNIE在训练中引入的DLM能有效地提升模型对文本相似度的建模能力。因此,我们比较文本相似度任务LCQMC数据集上二者的表现。从下表的预测结果可以看出,ERNIE学习到了中文复杂的语序变化。最终ERNIE与BERT在该任务数据的预测准确率为87.4%、87.0%.

输入A	输入 B	BERT结果	ERNIE 结果	Label
这叫什么高跟鞋	这种高跟鞋叫什么 呀	不相似	相似	相似
搞笑的电影给推荐 几部	推荐几部搞笑的电 影	不相似	相似	相似
电炒锅什么牌子好	什么牌子的电炒锅 好	不相似	相似	相似。量子位

2.4 分类

输入	BERT 结果	ERNIE 结果	Label
我已经不敢告诉别人林丹是我的偶像了	积极	消极	消极
不是很喜欢	积极	消极	消极
后备箱,大的物件啥也不能放,上次去岳父家装了点 菜就满了。	积极	消极	消极
酒店装修有些旧, 电梯都是最老式的。但房间应该重新装修过, 比较大也比较干净。位置极好, 离汽车总站很近, 对面有新一佳也很方便。	消极	积极	积极 量子位

最后,比较应用最广泛的情感分类任务。经过预训练的ERNIE能够捕捉更加细微的语义区别,这些句子通常含有较委婉的表达方式。下面展示了PaddleNLP情感分类测试集上ERNIE与BERT的打分表现:在句式"不是很…"中含有转折关系,ERNIE能够很好理解这种关系,将结果预测为"消极"。在ChnSentiCorp情感分类测试集上finetune后ERNIE的预测准确率为95.4%,高于BERT的准确率(94.3%)。

从以上数据我们可以看到,ERNIE在大部分任务上都有不俗的表现。尤其是在序列标注、完 形填空等词粒度任务上,ERNIE的表现尤为突出,一点都不输给Google的BERT。有兴趣的 开发者可以一试:

https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE

一完一