Determinismo vs non Determinismo nei push down.

deterministico PDA: DPDA

Transizioni permesse:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\overbrace{q_1} \xrightarrow{\lambda, b \to w} \overbrace{q_2}$$

(scelte deterministiche)

Transizioni permesse:

scelte deterministiche

Non permesse:

(scelte non deterministiche)

Deterministico PDA esempio

$$L(M) = \{a^n b^n : n \ge 0\}$$

Definition:

Un linguaggio L è deterministico context-free

Se esiste un DPDA che lo accetta

Esempio:

Il linguaggio
$$L(M) = \{a^n b^n : n \ge 0\}$$

è deterministico context-free

Esempio di Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 $\downarrow q_0$ $\lambda, \lambda \rightarrow \lambda$ $\downarrow q_1$ $\lambda, \$ \rightarrow \$$ $\downarrow q_2$

Non è permeso in DPDA

IPDA

hanno più potere dei

DPDA

Vale la relazione:

deterministico
Context-Free
linguaggi
(DPDA)

Context-Free
linguaggi
PDA

Poichè ogni DPDA è anche un PDA

Dimostriamo che:

Definiremo un linguaggio context-free L che non è Accettato da un DPDA

Il linguaggio è:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

Dobbiamo dimostrare che:

· L è context free

· L non è deterministico context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Il linguaggio $\,L\,$ è context-free

Grammatica Context-free per :
$$L$$

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda$$

$$\{a^nb^{2n}\}$$

Teorema:

Il linguaggio
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

non è deterministico context-free

(nessun DPDA accetta L)

Dim: Assumiamo per assurdo che

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

è deterministico context free

quindi:

Esiste un DPDA M che accetta L

DPDA M con $L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

accetta $a^n b^n$

DPDA
$$M$$
 con $L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

Un tale cammino deve esistere a causa del determinismo

Fatto 1: Il linguaggio $\{a^nb^nc^n\}$ not è context-free

(si prova per pumping lemma "per i" context free)

Fatto 2: Il linguggio $L \cup \{a^nb^nc^n\}$ non è context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(usando pumping lemma per linguaggi context-free)

Ora costruiamo un PDA che accetta:

$$L \cup \{a^nb^nc^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

Che è una contradizione!

$$L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

un PDA che accetta $L \cup \{a^nb^nc^n\}$

Connettiamo lo stato finale MCon lo stato finale di M'

poichè $L \cup \{a^nb^nc^n\}$ è accettato da PDA

È context-free

Contradizione!

(poichè
$$L \cup \{a^n b^n c^n\}$$
 non è context-free)

quindi:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Non è deterministico context free

non esiste DPDA che lo accetta

Fine context free