facebook

Artificial Intelligence Research

How to solve an MDP incrementally: Approximate algorithms - Value Based

Pirotta Matteo

Facebook AI Research

Acknowledgments

Special thanks to Alessandro Lazaric for providing these slides from the RL class we teach in Paris.

How to solve approximately an RL problem

Approximate Value-based Algorithms

Policy Evaluation

- Distribution over the state space *D*
- Function approximation $V_{\theta}: S \to \mathbb{R}, \ \theta \in \mathbb{R}^d$ [e.g., linear, deepNet]
- Build training set of *n* samples

$$s_i \sim \mathcal{D}$$
 $R_i = \sum_{t=0}^{H} \gamma^t r_{t,i} = V^{\pi}(s_i) + \epsilon_i$ $(\mathbb{E}[\epsilon_i] = 0)$

Training (batch)

$$\widehat{\theta}_n = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n L(s_i, R_i; \theta) = \frac{1}{n} \sum_{i=1}^n \left(V_{\theta}(s_i) - R_i \right)^2$$

■ Testing (aka *generalization* error)

$$L(\widehat{\theta}_n) = \mathbb{E}_{\mathcal{D}}\left[\left(V^{\pi}(s) - V_{\widehat{\theta}_n}(s) \right)^2 \right]$$

Proposition (qualitative)

Let n be the number of samples used to build the Monte-Carlo training set. Let also $r(s,a) \in [0,r_{\max}]$ and trajectories to be as long as $H=1/(1-\gamma)$, then approximate Monte-Carlo has a generalization error

$$L(\widehat{\theta}_n) \le \min_{\theta} L(\theta) + O\left(\frac{1}{1-\gamma}\sqrt{\frac{d}{n}}\right)$$

- \bigcirc Tends to the best possible approximation as n tends to infinity
- **♥** Variance may be big

- Distribution over the state space \mathcal{D}
- Function approximation $V_{\theta}: S \to \mathbb{R}, \ \theta \in \mathbb{R}^d$ [e.g., linear, deepNet]
- Build training set of n samples

$$s_i \sim \mathcal{D}$$
 $R_i = \sum_{t=0}^{T_i} \gamma^t r_{t,i} = V^{\pi}(s_i) + \epsilon_i$ $(\mathbb{E}[\epsilon_i] = 0)$

Training (batch)

$$\widehat{\theta}_n = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n L(s_i, R_i; \theta) = \frac{1}{n} \sum_{i=1}^n \left(V_{\theta}(s_i) - R_i \right)^2$$

Testing (aka generalization error)

$$L(\widehat{\theta}_n) = \mathbb{E}_{\mathcal{D}} \left[\left(V^{\pi}(s) - V_{\widehat{\theta}_n}(s) \right)^2 \right]$$

- Distribution over the state space \mathcal{D}
- Function approximation $V_{\theta}: S \to \mathbb{R}$, $\theta \in \mathbb{R}^d$ [e.g., linear, deepNet]
- Build training set of n samples

$$s_i \sim \mathcal{D}$$
 $R_i = \sum_{t=0}^{T_i} r_{t,i} = V^{\pi}(s_i) + \epsilon_i$ $(\mathbb{E}[\epsilon_i] = 0)$

lacksquare Monte-Carlo with online training after each sample (s_i,R_i) with learning rate $lpha_i$

$$\widehat{\theta}_{i+1} = \widehat{\theta}_i - \alpha_i \nabla_{\theta} L(s_i, R_i; \theta_i)$$

$$= \widehat{\theta}_i - \alpha_i (V_{\theta_i}(s_i) - R_i) \nabla_{\theta} V_{\theta_i}(s_i)$$

Testing (aka generalization error)

$$L(\widehat{\theta}_n) = \mathbb{E}_{\mathcal{D}} \left[\left(V^{\pi}(s) - V_{\widehat{\theta}_n}(s) \right)^2 \right]$$

Policy Evaluation

Fixed policy π

```
For i = 1, \dots, n
```

- 1 Set t = 0
- 2 Set initial state s_0
- **3 While** $(s_{t,i} \text{ not terminal})$ [execute one trajectory]
 - 1 Take action $a_{t,i} = \pi(s_{t,i})$
 - Observe next state $s_{t+1,i}$ and reward $r_{t,i} = r(s_{t,i}, a_{t,i})$
 - 3 Set t = t + 1

EndWhile

EndFor

Return: Estimate of the value function $\widehat{V}^{\pi}(\cdot)$

Approximate TD As *Pseudo*-Gradient Descent

- Run π over a single trajectory $(s_0, r_0, s_1, r_1, s_2, r_2, \ldots, s_n, r_n)$
- TD loss using bootstrapped target

$$\widetilde{L}(s_t, \widetilde{R}_t; \theta) = (V_{\theta}(s_t) - \widetilde{R}_t)^2 = (V_{\theta}(s_t) - r_t - \gamma V_{\theta_t}(s_{t+1}))^2$$

■ TD *online* update with learning rate α_t

$$\begin{split} \widehat{\theta}_{t+1} &= \widehat{\theta}_t - \underbrace{\alpha_t \nabla_{\theta} \widetilde{L}(s_t, \widetilde{R}_t; \theta_t)}_{= \widehat{\theta}_t - \alpha_t \left(V_{\theta_t}(s_t) - r_t - \gamma V_{\theta_t}(s_{t+1}) \right) \nabla_{\theta} V_{\theta_t}(s_t) \end{split}$$

Approximate TD As *Pseudo*-Gradient Descent

- Run π over a single trajectory $(s_0, r_0, s_1, r_1, s_2, r_2, \ldots, s_n, r_n)$
- TD loss using bootstrapped target

$$\widetilde{L}(s_t, \widetilde{R}_t; \theta) = (V_{\theta}(s_t) - \widetilde{R}_t)^2 = (V_{\theta}(s_t) - r_t - \gamma V_{\theta_t}(s_{t+1}))^2$$

■ TD *online* update with learning rate α_t

$$\begin{aligned} \widehat{\theta}_{t+1} &= \widehat{\theta}_t - \alpha_t \nabla_{\theta} \widetilde{L}(s_t, \widetilde{R}_t; \theta_t) \\ &= \widehat{\theta}_t - \alpha_t \big(V_{\theta_t}(s_t) - r_t - \gamma V_{\theta_t}(s_{t+1}) \big) \nabla_{\theta} V_{\theta_t}(s_t) \end{aligned}$$

Not really a gradient method...

Linear space to approximate value functions

$$\mathcal{F} = \left\{ V_{\theta}(s) = \sum_{j=1}^{d} \theta_{j} \varphi_{j}(s), \ \theta \in \mathbb{R}^{d} \right\} \qquad \text{with features } \varphi_{j} : S \to [0, \underline{L}]$$

Compact notation

$$\phi(s) = [\varphi_1(s) \dots \varphi_d(s)]^\top \in \mathbb{R}^d \Rightarrow V_\theta(s) = \phi(s)^\top \theta$$

$$\Phi = [\phi(s_1)^\top; \phi(s_2)^\top; \dots \phi(s_S)^\top] \in \mathbb{R}^{S \times d} \Rightarrow V_\theta = \Phi \theta$$

Linear TD update equation

$$\widehat{\theta}_{t+1} = \widehat{\theta}_t - \alpha_t \big(V_{\theta_t}(s_t) - r_t - \gamma V_{\theta_t}(s_{t+1}) \big) \nabla_{\theta} V_{\theta_t}(s_t)$$

$$= \widehat{\theta}_t - \alpha_t \big(\phi(s_t)^\top \theta_t - r_t - \gamma \phi(s_{t+1})^\top \theta \big) \phi(s_t)$$

$$= \widehat{\theta}_t - \alpha_t \big(\phi_t^\top \theta_t - r_t - \gamma \phi_{t+1}^\top \theta \big) \phi(s_t)$$

Theorem

Let $D \in \mathbb{R}^{S \times S}$ be the matrix of the stationary distribution of π , i.e., $D = diag(\rho^{\pi}(s_1), \rho^{\pi}(s_2), \dots, \rho^{\pi}(s_S))$. Then the linear TD estimate converges to θ^* , which is the fixed point of the projected Bellman operator

$$\Phi \theta^* = \Pi_D T^\pi \Phi \theta^*$$

and it has error

$$L_D(\theta^*) \le \frac{1}{\sqrt{1-\gamma^2}} \min_{\theta} L_D(\theta)$$

where Π_D is the orthogonal projection in D norm and L_D is the expected loss w.r.t. the stationary distribution D.

- Linear TD converges
- The error is related to the best possible error

$$V_{TD} = \Phi \theta^* = \Pi_D T^{\pi} \Phi \theta^* = \Pi_D T^{\pi} V_{TD}$$

Approximate TD

Approximate TD may not converge (i.e., it might diverge) if

- Linear approximation but states s_i are obtained by following a different policy (off-policy learning)
- **Non-linear approximation** and states s_i are obtained by following π

Approximate TD – Extensions

- Approximate $TD(\lambda)$
- GTD, GTD2, TDC (and others): convergence guarantees for off-policy and "mildly" non-linear approximators
- Averagers are specific stable approximators (mostly interpolators)
- Approximate TD is a *true* gradient method in reversible Markov chains
- Many variance reduction techniques can be applied

How to solve incrementally an RL problem

Reinforcement Learning Algorithms

Policy Learning

Approximate QL As *Pseudo*-Gradient Descent

- Run π over a single trajectory $(s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_n, a_n, r_n)$
- QL loss using bootstrapped target

$$\widetilde{L}(s_t, a_t, \widetilde{R}_t; \theta) = (Q_{\theta}(s_t, a_t) - \widetilde{R}_t)^2 = \left(Q_{\theta}(s_t, a_t) \underbrace{-r_t - \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a')}_{\text{target}}\right)^2$$

 \blacksquare QL *online* update with learning rate α_t

$$\begin{split} \widehat{\theta}_{t+1} &= \widehat{\theta}_t - \underline{\alpha_t} \nabla_{\theta} \widetilde{L}(s_t, a_t, \widetilde{R}_t; \theta_t) \\ &= \widehat{\theta}_t - \alpha_t \big(Q_{\theta_t}(s_t, a_t) - r_t - \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a') \big) \nabla_{\theta} Q_{\theta_t}(s_t, a_t) \end{split}$$

Approximate QL As *Pseudo*-Gradient Descent

- Run π over a single trajectory $(s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_n, a_n, r_n)$
- QL loss using bootstrapped target

$$\widetilde{L}(s_t, a_t, \widetilde{R}_t; \theta) = (Q_{\theta}(s_t, a_t) - \widetilde{R}_t)^2 = \left(Q_{\theta}(s_t, a_t) \underbrace{-r_t - \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a')}_{\text{target}}\right)^2$$

 \blacksquare QL *online* update with learning rate α_t

$$\begin{aligned} \widehat{\theta}_{t+1} &= \widehat{\theta}_t - \alpha_t \nabla_{\theta} \widetilde{L}(s_t, a_t, \widetilde{R}_t; \theta_t) \\ &= \widehat{\theta}_t - \alpha_t \left(Q_{\theta_t}(s_t, a_t) - r_t - \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a') \right) \nabla_{\theta} Q_{\theta_t}(s_t, a_t) \end{aligned}$$

abla It may diverge even with linear function approximation...

Approximate QL As *Pseudo*-Gradient Descent

- Sequential updates ⇒ *correlated samples*
- From Q-values to policy, from policy to Q-values, ... ⇒ oscillations
- Scale of Q-values unknown ⇒ gradients with different scales
- \blacksquare QL update using $\max_{a'}Q(s,a')\Rightarrow \textit{over-estimation}$

- Sequential updates ⇒ *correlated samples*
 - ⇒ experience replay
- From Q-values to policy, from policy to Q-values, ... ⇒ oscillations
- Scale of Q-values unknown ⇒ gradients with different scales
- \blacksquare QL update using $\max_{a'}Q(s,a')\Rightarrow \textit{over-estimation}$

- Sequential updates ⇒ *correlated samples*
 - ⇒ experience replay
- From Q-values to policy, from policy to Q-values, ... ⇒ oscillations ⇒ target network
- Scale of Q-values unknown ⇒ gradients with different scales
- \blacksquare QL update using $\max_{a'}Q(s,a')\Rightarrow \textit{over-estimation}$

- Sequential updates ⇒ *correlated samples*
 - ⇒ experience replay
- $lue{}$ From Q-values to policy, from policy to Q-values, ... \Rightarrow oscillations
 - ⇒ target network
- Scale of Q-values unknown ⇒ gradients with different scales
 - ⇒ reward normalization
- \blacksquare QL update using $\max_{a'}Q(s,a')\Rightarrow \textit{over-estimation}$

- Sequential updates ⇒ *correlated samples*
 - ⇒ experience replay
- $lue{}$ From Q-values to policy, from policy to Q-values, ... \Rightarrow oscillations
 - ⇒ target network
- Scale of Q-values unknown ⇒ gradients with different scales
 - ⇒ reward normalization
- lacksquare QL update using $\max_{s}Q(s,a')\Rightarrow \textit{over-estimation}$
 - ⇒ double Q-learning

Experience Replay

- \blacksquare To help remove correlations, store dataset $\mathcal D$ from prior experience
- QL online with replay buffer
 - Sample experience from the dataset

$$(s, a, r, s') \sim \mathcal{D}$$

Online update

$$\widehat{\theta}_{t+1} = \widehat{\theta}_t - \alpha_t \left(Q_{\theta_t}(s, a) \underbrace{-r - \gamma \max_{a'} Q_{\theta_t}(s', a')} \right) \nabla_{\theta} Q_{\theta_t}(s, a)$$

- Execute policy (e.g., ε-greedy or softmax)
- Add new sample to dataset

Target Network

Issue: weights are updated and the target changes \implies non-stationarity

- To help improve stability, fix the target weights used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- \blacksquare Let $\overline{\theta}$ be the parameters of the target network

Target Network

- QL online with replay buffer and target network
 - Sample experience from the dataset

$$(s, a, r, s') \sim \mathcal{D}$$

Compute target

$$y_t = r + \gamma \max_{a'} Q_{\overline{\theta}}(s', a')$$

Online update

$$\widehat{\theta}_{t+1} = \widehat{\theta}_t - \alpha_t (Q_{\theta_t}(s, a) - y_t) \nabla_{\theta} Q_{\theta_t}(s, a)$$

- Execute policy (e.g., ϵ -greedy or softmax)
- Add new sample to dataset
- Update target network $\overline{\theta}$ every C steps
- * it is possible to do also a smooth update of the target network $\overline{\theta} = \tau \overline{\theta} + (1 \tau)\theta_t$ with $\tau \approx 1$. Less used than full updates.

Mini-batch Update

Issue: online update is inefficient with modern tools (e.g., NN)

Perform update on a *mini-batch* $\mathcal{D}_{\mathsf{mini}}$ sampled from \mathcal{D}

- Let $\overline{\theta}$ the target function
- Mini-batch loss

$$\widetilde{L}_{\mathcal{D}_{\mathsf{mini}}}(\theta) = \mathbb{E}_{(s_i, a_i, s_{i+1}, r_i) \sim \mathcal{D}} \left[\left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} \frac{Q_{\overline{\theta}}(s_{i+1}, a')}{2} \right)^2 \right]$$

 \blacksquare Update θ using SGD on $\widetilde{L}_{\mathcal{D}_{\mathrm{mini}}}(\theta)$

Mini-Batch Update

lacksquare Sample m transitions from replay buffer ${\cal D}$

$$\Lambda_t = \{(s_i, a_i, r_i, s_i')\}_{i=1}^m$$

Compute loss

$$L(\theta|\Lambda_t, \overline{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (Q_{\theta}(s, a) - r_i - \gamma \max_{a'} Q_{\overline{\theta}}(s'_i, a'))^2$$

Update by SGD

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta} L(\theta | \Lambda_t, \overline{\theta})$$

Target Network

Learn optimal policy π^*

```
Initialize \theta and \overline{\theta}
For i = 1, \ldots, n
  11 Set t = 0
  \square Set initial state s_0
  3 While (s_{t,i} \text{ not terminal}) [execute one trajectory]
         1 Take action a_{t,i} [using \epsilon-greedy or softmax]
             Observe next state s_{t+1,i} and reward r_{t,i} = r(s_{t,i}, a_{t,i})
         Set t = t + 1
         4 Store transition (s_{t,i}, a_{t,i}, s_{t+1,i}, r_{t,i}) into an experience replay buffer \mathcal{D}
             Perform update of \theta on a mini-batch \mathcal{D}_{\mathsf{mini}} sampled from \mathcal{D} using target \overline{\theta}
         6 Every C steps \overline{\theta} \leftarrow \theta
```

EndWhile

EndFor

Return: Estimate of the optimal policy $\widehat{\pi}^*$

Image preprocessing: grey-scale, crop to 84x84

State definition

Time definition: 4 last frames

Action-value function: deepNet with as many heads as actions

Performance

Ablation

DQN

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Summary

- Update rule of approximate TD and the properties of its linear version
- Update rule of approximate QL and the DQN algorithm

Bibliography

Thank you!

facebook Artificial Intelligence Research