Inteligencia Artificial Generativa Para la Ciencia de Datos

Juan Camilo Vega Barbosa

Consultor IA - Ingeniero IA/ML

Optimización y Ejecución de Modelos de Lenguaje

Stack de trabajo para LLM

Google Colab: Nuestro laboratorio en la nube

Google Colab es nuestra plataforma principal para experimentar con LLMs **3**. Ofrece GPUs gratuitas (Tesla T4) y elimina barreras técnicas para acceder a hardware de deep learning.

© Ventajas clave

- GPU gratuita: Tesla T4 con 16GB VRAM
- Setup cero: Python preinstalado
- Colaborativo: Compartir notebooks
- Escalable: Upgrade a Colab Pro

Acceso: colab.research.google.com

Hugging Face: El GitHub de la IA

Hugging Face es el ecosistema central para modelos de lenguaje 📴. Combina repositorio de modelos, datasets y herramientas que democratizan el acceso a IA de vanguardia.

III Componentes principales

- Model Hub: +500k modelos preentrenados
- Transformers: Biblioteca unificada
- Accelerate: Optimización automática
- **Spaces**: Demos interactivos

Importancia estratégica HF eliminó la fricción para usar modelos state-of-theart. Antes: semanas. Ahora: 3 líneas de código.

Acceso: huggingface.co

Token: Requerido para Llama-2

X Stack tecnológico completo

Nuestro **stack integra lo mejor de cada herramienta** para crear un ambiente completo de desarrollo con LLMs *.

Arquitectura: Colab (compute) + HF (modelos) + APIs externas (escalabilidad)

Infraestructura

- Google Colab: Compute y GPUs
- Hugging Face: Modelos y datasets
- Ollama: Deployment local
- Groq: APIs ultra-rápidas

Enlaces importantes

- Colab: colab.research.google.com
- HF Hub: huggingface.co
- Ollama: ollama.ai
- Groq: console.groq.com

¿Por qué necesitamos optimización?

Los modelos de lenguaje modernos son masivos 🚌. Por ejemplo, Llama-2-7b tiene 7 mil millones de parámetros, requiriendo ~28 GB solo para cargar. Durante inferencia se agregan activaciones y cache KV, duplicando o triplicando el uso de memoria.

Sin optimización, ejecutar Llama-2-7b requiere GPUs con +40GB de VRAM, limitando acceso a hardware empresarial costoso.

Números que importan

- Llama-2-7b: ~28 GB parámetros
- + Activaciones: ~15-25 GB adicionales
- + Cache KV: Crece con contexto
- Total: 50-80 GB inferencia óptima

© Objetivo optimizaciones: Ejecutar en hardware accesible sin sacrificar rendimiento

Experiencia: Cache KV crece exponencialmente. 2K tokens = 4GB, 8K tokens = 16GB adicionales.

Por qué las GPUs son cruciales?

Las GPUs fueron diseñadas para gráficos 3D pero resultan perfectas para deep learning 🙉 🛂 🥮. CPUs: pocos núcleos potentes. GPUs: miles de núcleos simples trabajando en paralelo.

CPU vs GPU

- CPU: 8-16 núcleos, ~3 GHz
- **GPU**: 2,000-10,000 núcleos, ~1 GHz
- Paralelismo: Secuencial vs Masivo

Tip clave: Para LLMs, **VRAM es más crítica que velocidad**. Si no cabe en memoria, es imposible ejecutarlo.

Prioridad: VRAM > Núcleos CUDA > Velocidad

X Técnicas: Cuantización

Tipos de cuantización

- FP32: Precisión completa
- FP16: Mitad memoria, ~mismo rendimiento
- INT8: Cuarto memoria, ligera pérdida

H Impacto en Llama-2-7b

- **FP32**: ~28 GB
- **FP16**: ~14 GB
- **INT8**: ~7 GB

BitsAndBytes mantiene parámetros críticos en alta precisión mientras cuantiza el resto.

† Técnicas: Accelerate

Accelerate maneja distribución automática del modelo y optimiza memoria 🚀. Permite device mapping inteligente y offloading a CPU.

Beneficios

- Auto-distribución de capas
- Memory offloading inteligente
- Mixed precision automática

- GPU limitada: Offload a CPU
- Multi-GPU: Distribución automática
- Memoria insuficiente: Checkpointing

Nuestros 4 Métodos

Implementamos **cuatro enfoques diferentes** para ejecutar Llama-2-7b, optimizados para distintos escenarios **3**.

Método	Complejidad	Recursos	Velocidad	Caso de uso
Pipeline 🚀	Baja	Alta GPU	Media	Prototipos
Optimizado 🗲	Media	Media GPU	Alta	Producción
Ollama 🥣	Baja	Baja GPU	Media	Desarrollo
Groq 👛	Mínima	Sin GPU	Muy Alta	Apps rápidas

El **pipeline es la forma más simple** Hugging Face abstrae complejidad pero sacrifica control y eficiencia.

Ventajas

- Setup inmediato: 3 líneas código
- Sin configuración: Todo automático
- Ideal prototipos: Pruebas rápidas

X Limitaciones

- Alto uso memoria: Sin optimizaciones
- Velocidad limitada: No aprovecha hardware

¿Cuándo usarlo? - Primeros experimentos con LLMs - Validación rápida de conceptos -Aprendizaje conceptos básicos

Perfecto para entender LLMs sin preocuparse por detalles técnicos.

★ Método 2: Accelerate + BitsAndBytes

Combinación estado del arte en optimización 🟆. Accelerate maneja distribución mientras BitsAndBytes aplica cuantización inteligente.

© Características

- Cuantización 8-bit: Reduce 75% memoria
- Mixed precision: FP16 velocidad
- Device mapping: Distribución automática

Beneficios

- Cabe en T4: 16GB suficientes
- Velocidad óptima: Máximo rendimiento

Técnica favorita producción

Configuración que usan startups IA para ejecutar modelos grandes en hardware accesible.

Ideal para: Aplicaciones producción, máximo rendimiento, calidad crítica

Método 3: Ollama

Ollama está diseñado para ejecución local , pero lo ejecutamos en Google Colab usando comandos Linux . Abstrae complejidad técnica completamente.

K Características

- Instalación: curl | sh en Colab
- **Gestión**: ollama pull llama2:7b
- **Servidor**: API REST localhost:11434

En Colab

- Simula entorno local
- Comandos: curl , nohup , pkill
- Aprendizaje: Deploy en servidores

¿Por qué en Colab? - Simular servidor Linux

- Aprender comandos administración - Entender APIs REST locales

Info: ollama.ai

Método 4: Groq

Groq ofrece inferencia ultra-rápida mediante hardware especializado (LPUs) 🚀. Arquitectura determinística elimina variabilidad en latencia.

Ventajas técnicas

- **Velocidad extrema**: 500+ tokens/segundo
- Latencia baja: <100ms respuesta
- Sin hardware local: Todo en nube

Modelo económico

- **Tier gratuito**: Generoso desarrollo
- Pay-per-use: Solo pagas lo usado

Opción enterprise Para aplicaciones que requieren respuestas instantáneas.

Registro: console.groq.com

Casos: Chatbots tiempo real, APIs alta

frecuencia

Comparación de Métodos

Método	Velocidad	Uso GPU	Configuración	Costo	Ideal para
Pipeline	Media	Alta	Fácil	Gratis	Prototipos
Optimizado	Alta	Media	Intermedia	Gratis	Producción local
Ollama	Media	Baja	Fácil	Gratis	Desarrollo
Groq	Muy Alta	Ninguna	Fácil	Freemium	Apps rápidas

Recomendaciones

• Para aprender: Pipeline

• Para máximo rendimiento: Optimizado

• Para desarrollo local: Ollama

• Para producción: Groq

© Parte práctica

Abran el Script_Sesion2 que está dentro del repo del curso.

- Hands-on: Implementación 4 métodos
- Configuración: Setup APIs y secretos
- Comparación: Medición rendimiento

Repositorio GitHub

- Acceso permanente a notebooks, scripts, datasets y documentación técnica completa.
- Actualizaciones continuas con las últimas versiones y nuevos casos de uso empresariales.

† Enlaces:

- GitHub del curso
- Profesor:

LinkedIn - Camilo Vega