Cours MP2I

Alexandre

. In	nduction
1.	
1.	a. Notion de champ
	b. Sources du champ magnétique
2.	
۷.	Chap 2
[. E	nergie d'un point materiel
1.	Puissance et travail d'un force
	Puissance et travail d'un force
	Puissance et travail d'un force
IIM	Puissance et travail d'un force
1. 1. 2.	Puissance et travail d'un force
1. 1.	Puissance et travail d'un force foment cinétique d'un point matériel Moment cinétique

I. Induction

1. Champ Magnétique

a. Notion de champ

Définition 1 (type de champ)

Un champ est une grandeur physique définie ne tout point M de l'espace et qui dépend de sa position et du temps.

- On parle de champ scalaire quand la valeur définie en tout point est un scalaire (température, pression...)
- On parle de champ vectoriel quand la valeur définie en tout point est un vecteur

Définition 2 (caractéristique du champ)

De mannière générale un champ dépend de deux variables. Dans des cas particulié on parle de :

- champ stationnaire quand il ne dépend que de la position. Il a la même valeur à tout instant.
- champ uniforme quand il ne dépend que du temps. Il a la même valeur en tout point.

Définition 3

Une ligne de champ d'un champ vectoriel est une ligne qui est tangente au vecteur présent en chacun des points du champ.

b. Sources du champ magnétique

Proposition 4 (champ magnétique d'un fil)

Pour un fil droit rectiligne infini par courue par un courant I, le champ magnétique à une distance r est donné par :

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \vec{U_\theta}$$

Proposition 5

On parle de solénoide pour une bobine de N spires, de longueur L et rayon R telle que L >> R. Dans un solénoide, le champ magnétique intérieur est constant et le champ magnétique extérieur est nul. On a la relation :

$$\vec{B} = \mu_0 n I \vec{U_z}$$
 où $n = \frac{N}{L}$

2. chap 2

force de laplace, rails, puissance couple magnétique effet d'orientation, équilibre champ tournant, machine synchrone

II. Energie d'un point materiel

1. Puissance et travail d'un force

Définition 6 (travail d'une force)

C'est l'énergie fournie par cette force lorsque son point d'application se déplace.

Définition 7 (energie d'un système)

Un système possède de l'énergie s'il est capable de fournir un travail. On distingue deux types d'énergie :

- L'énergie cinétique : si un travail peut être fourni par une modification de vitesse
- L'énergie potentielle : si un travail peut être fourni par une modification de position

III. Moment cinétique d'un point matériel

1. Moment cinétique

On s'interesse tout d'abord à un point matériel M de masse m et animé de la vitesse \vec{v}_R dans un référentiel R.

Définition 8 (quantité de mouvement)

La quantité de mouvement du point M est :

$$\vec{p}_R = m \cdot \vec{v}_R$$

Définition 9 (moment cinétique par rapport à un point)

Le moment cinétique du point M par rapport au point O est :

$$\vec{L_O}(M) = \vec{OM} \wedge \vec{p}$$

 $\vec{L_O}(M)$ s'exprime en $kg \cdot m^2 \cdot s^{-1}$ et est orthogonal à \vec{OM} et \vec{v}

Remarque 10

On peut faire un changement d'origine d'un point O vers un point O':

$$\vec{L_{O'}}(M) = \vec{O'O} \wedge m\vec{v} + \vec{L_O}(M)$$

Définition 11 (moment cinétique par rapport à un axe)

Soit un axe Δ dirigé par un vecteur unitaire \vec{u} .

On définit le moment cinétique $L_{\Delta}(M)$ du point M par rapport à l'axe Δ par :

$$L_{\Delta}(M) = \vec{L_O}(M) \cdot \vec{u}$$

2. Moment d'une force

Définition 12 (moment d'une force par rapport à un point)

Le moment de la force \vec{F} qui s'exerce au point M par rapport au point O est donnée par la relation :

$$\vec{M}_O(\vec{F}) = \vec{OM} \wedge \vec{F}$$

 $\vec{M}_O(\vec{F})$ s'exprime en $N \cdot m$.

Cela traduit la capacité de la force \vec{F} à faire tourner le point M autour du point O. C'est toujours possible sauf si \vec{F} est colinéaire à $O\vec{M}$

Remarque 13

On peut faire un changement d'origine d'un point O vers un point O':

$$\vec{M}_{O'}(\vec{F}) = \vec{O'}O \wedge \vec{F} + \vec{M}_{O}(\vec{F})$$

Définition 14 (moment d'une force par rapport à un axe)

Soit un axe Δ dirigé par un vecteur unitaire \vec{u} .

On définit le moment d'une force $M_{\Delta}(\vec{F})$ du point M par rapport à l'axe Δ par :

$$M_{\Delta}(\vec{F}) = \vec{M}_O(\vec{F}) \cdot \vec{u}$$

 $\vec{M}_O(\vec{F})$ s'exprime en $N \cdot m$.

Cela traduit la capacité de la force \vec{F} à faire tourner le point M autour de l'axe Δ . C'est toujours possible sauf si \vec{F} et \vec{OM} sont coplanaire.

Remarque 15

 $M_{\Delta}(\vec{F})$ est indépendant du choix du point sur l'axe Δ .

Notion de bras de levier

TODO

3. Théorème du moment cinétique

Théorème 16 (théorème du moment cinétique vectoriel)

Soit O un point fixe du reférentiel R galiléen.

Soit M un point materiel du masse m, animé de la vitesse \vec{v} et soumis a un ensemble de forces $\sum_i \vec{f_i}$. On a :

$$\frac{d\vec{L_O}(M)}{dt} = \sum_i \vec{M_O}(\vec{F_i})$$

Démonstration 17

On démontre le théorème du moment cinétique vectoriel :

$$\frac{d\vec{L_O}(M)}{dt} = \frac{d\vec{OM}}{dt} \wedge m\vec{v} + \vec{OM} \wedge \frac{d(m\vec{v})}{dt}$$

$$\frac{d\vec{L_O}(M)}{dt} = \vec{OM} \wedge m\vec{a}$$

$$\frac{d\vec{L_O}(M)}{dt} = \vec{OM} \wedge \sum_i \vec{f_i}$$

$$\frac{d\vec{L_O}(M)}{dt} = \sum_i (\vec{OM} \wedge \vec{f_i})$$

$$\frac{d\vec{L_O}(M)}{dt} = \sum_i \vec{M_O}(\vec{F_i})$$

Théorème 18 (théorème du moment cinétique scalaire)

On projete le théorème du moment cinétique sur un axe dirigé par le vecteur unitaire \vec{u} :

$$\frac{dL_{\Delta}(M)}{dt} = \sum_{i} M_{\Delta}(\vec{F}_{i})$$

Exemple 19

On peut appliquer le théorème du moment cinétique sur un pendule simple ou sur une bille dans une cuvette.

4. Cas des forces centrales

a. Définition

Définition 20 (force centrale)

Une force \vec{F} est dite centrale si sa droite support passe en permanance par le point fixe O.

Conséquence 21

Le moment de la force \vec{F} est donc nul :

$$\vec{M_O} = \vec{OM} \wedge \vec{F} = \vec{0}$$

 \vec{F} ne fait pas trourner le point M autour de O

Conséquence 22 (conséquence sur le TMC)

Soit un point M soumis à un ensemble de forces centrales de resultante \vec{F} . On a :

$$\frac{d\vec{L_O}(M)}{dt} = \vec{M_O}(\vec{F}) = \vec{0}$$

 $\mathrm{Donc}:$

$$\vec{L_O}(M) = \vec{const}$$

TODO

The first desired and the control of	IV.	Mouvement	dans	un	champ	newtonien
--	-----	-----------	------	----	-------	-----------