Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and Jaehyuk Huh, KAIST

USENIX ATC'22

Machine Learning Inference in GPUs

- GPU-based servers are widely used for ML Inference.
- Two requirements for ML inference request
 - For each request must provide a bounded latency to support a service-level objective(SLO)
 - Serve multiple heterogeneous ML models in a system

GPU underutilized

Training computation

VS

Inference computation

Batch Processing

Online Request Rate

Existing Work – Batch-Aware ML Inference

- Merge request inputs to a single large input
 - Improves utilization of GPU
 - Batch size could not be huge due to SLO

Waiting time + Batch Prepare time + Batch Exec time < every SLO

Existing Work – Temporal Scheduling

- Round-based interleaved execution of batches
 - Increase utilization by reducing idle time on GPU

Figure 2: Round-based execution of SBP for two models consolidated on a GPU. *Duty cycle* is the interval for a round.

Existing Work – Spatial Sharing

- Splits a GPU resource into multiple pieces
- Improves GPU utilization allowing high throughput without SLO violation.

Figure 3: Temporal scheduling (SBP) vs. spatial scheduling (greedy best-fit partitioning).

Motivation – Optimal Batch Size and Partition

- Opportunities for improving performance with better resource utilization
- Large batch size
 - The latency significantly drops as more resource is added.
- Small batch size
 - The latency is not largely affected by the amount of GPU resources

Figure 4: Batch inference latency as the fraction of computing resource assigned to the model inference changes from 20% to 100%, for the four ML models. Each curve represents a different batch size, and bn is a batch size of n.

Motivation – Schedulability and GPU Partitioning

- Add GPU Partitioning to Temporal-Sharing
- GPU partitioning is capable of putting wasted GPU compute power to use, enabling higher resource utilization

Figure 5: Number of schedulable scenarios when the SBP algorithm performs the scheduling *without* (left) and *with* (right) a fixed 1:1 GPU partitioning scheme.

Model 1 Model 2 ... Model 9
Orqs 100rqs 200rqs

3⁹ -1 scenarios

Motivation – Effective Partitioning

• Demonstrate the performance of cost-effective partitioning scheme

Figure 1: Multi-dimensional search space for providing globally optimal performance.

Motivation – Effective Partitioning

• Demonstrate the performance of cost-effective partitioning scheme

Figure 6: Comparison of SLO preserved throughput for temporal (SBP), spatial (greedy best-fit), and static ideal scheduling, normalized to spatial scheduling.

Motivation – Interference in Consolidated Executions

• The performance interference caused by multiple inference executions concurrently running on a GPU.

Figure 7: Cumulative distribution of latency overhead when pairs of inference executions are consolidated on a GPU.

Design – Gpulet

resource

• Gpulet: A share of spatial/temporal partition of GPU resource

Design – Overview

- Gpulet Scheduler:
 Decides and sends
 batched requests to
 the backend
 servers.
- Request Monitor

Figure 8: Overview of the scheduling framework with gpulets.

Design – Overview

- Executor:Dispatches requeststo GPUs
- Partition Manager: prepares the partitions on the GPUs

Figure 8: Overview of the scheduling framework with gpulets.

• Maximize Performance & Minimize Resource Usage

Figure 1: Multi-dimensional search space for providing globally optimal performance.

• Maximize Performance & Minimize Resource Usage

Name	Description		
L(b,p)	Latency function of batch size b and partition size p		
int f	Interference overhead function		
SLO_i	SLO (in latency) of model i		
gpulet.size	Actual partition size of gpulet		

Table 1: Definitions of variables for Algorithm 1.

Figure 4: Batch inference latency as the fraction of computing resource assigned to the model inference changes from 20% to 100%, for the four ML models. Each curve represents a different batch size, and bn is a batch size of n.

• Maximize Performance & Minimize Resource Usage

Algorithm 1: Gpulet Scheduling Algorithm ELASTICPARTITIONING(L(b,p), int f, SLO): for each period do // If rescheduling is required Sort every model by $rate_m \times SLO_m$ in ascending order for each model m do 3 while ISREMAINRATE() and ISREMAINGPULET() do $rate \leftarrow Remaining rate of model m$ $p_{\text{eff}} \leftarrow \text{MaxEfficientPartition}()$ $p_{\text{req}} \leftarrow \text{MINREQUIREDPARTITION}(rate)$ $p_{\text{ideal}} \leftarrow \text{MIN}(p_{\text{eff}}, p_{\text{req}})$ 8 $gpulet \leftarrow FINDBESTFIT(p_{ideal}, SLO_m, int f)$ Apply *gpulet* to system 10 end 11 end 12 13 end

Figure 8: Overview of the scheduling framework with gpulets.

• Maximize Performance & Minimize Resource Usage

```
Algorithm 1: Gpulet Scheduling Algorithm
   ELASTICPARTITIONING(L(b,p), int f, SLO):
   for each period do // If rescheduling is required
        Sort every model by rate_m \times SLO_m in ascending order
 2
        for each model m do
 3
             while ISREMAINRATE() and ISREMAINGPULET()
              do
                  rate \leftarrow Remaining rate of model m
                  p_{\text{eff}} \leftarrow \text{MAXEFFICIENTPARTITION()}
 6
                  p_{\text{req}} \leftarrow \text{MINREQUIREDPARTITION}(rate)
                  p_{\text{ideal}} \leftarrow \text{MIN}(p_{\text{eff}}, p_{\text{req}})
                  gpulet \leftarrow FINDBESTFIT(p_{ideal}, SLO_m, int f)
                  Apply gpulet to system
10
             end
11
        end
12
13 end
```

- Peff: for each partition size
 - Get maximum batch size b with Latency(b) < SLO
 - Get throughput = b / Latency(b)

• Maximize Performance & Minimize Resource Usage

Figure 9: Max efficient partition (p_{eff}) and min required partition (p_{req}).

- As much as many costeffective partitions within rate
- One minimum partition for remaining rate

P-eff Gpulet	P-eff Gpulet	P-req Gpulet
\mathbf{M}	odel A request	

```
Algorithm 1: Gpulet Scheduling Algorithm
   ELASTICPARTITIONING(L(b,p), int f, SLO):
 1 for each period do // If rescheduling is required
        Sort every model by rate_m \times SLO_m in ascending order
        for each model m do
             while ISREMAINRATE() and ISREMAINGPULET()
              do
                  rate \leftarrow Remaining rate of model m
                  p_{\text{eff}} \leftarrow \text{MaxEfficientPartition}()
                  p_{\text{req}} \leftarrow \text{MINREQUIREDPARTITION}(rate)
                  p_{\text{ideal}} \leftarrow \text{MIN}(p_{\text{eff}}, p_{\text{req}})
                  gpulet \leftarrow FINDBESTFIT(p_{ideal}, SLO_m, int f)
                  Apply gpulet to system
10
             end
11
        end
12
13 end
```

• Maximize Performance & Minimize Resource Usage

```
Algorithm 1: Gpulet Scheduling Algorithm
   ELASTICPARTITIONING(L(b,p), int f, SLO):
  for each period do // If rescheduling is required
        Sort every model by rate_m \times SLO_m in ascending order
 2
        for each model m do
 3
             while ISREMAINRATE() and ISREMAINGPULET()
              do
                 rate \leftarrow Remaining rate of model m
                  p_{\text{eff}} \leftarrow \text{MaxEfficientPartition}()
 6
                 p_{\text{req}} \leftarrow \text{MINREQUIREDPARTITION}(rate)
                  p_{\text{ideal}} \leftarrow \text{MIN}(p_{\text{eff}}, p_{\text{req}})
                 gpulet \leftarrow FINDBESTFIT(p_{ideal}, SLO_m, int f)
                 Apply gpulet to system
10
             end
11
        end
12
13 end
```

• Maximize Performance & Minimize Resource Usage

```
FINDBESTFIT(p_{ideal}, SLO_m, int f):
14 Sort every remaining gpulets by size in ascending order
15 for gpulet in GETREMAINGPULETS() do
        if gpulet.size \ge p_{ideal} then
16
            if gpulet is unpartitioned then
17
                 Split and allocate gpulet to p_{ideal} size partition
18
            end
19
            b \leftarrow \operatorname{argmax}_{k \in \mathbb{N}}(L(k, gpulet.size) + int f \leq SLO)
20
            if b exists then
21
                  TEMPORALSCHEDULING(gpulet)
22
                 return gpulet
23
            end
24
        end
25
26 end
```

Gpulet 1 Gpulet 2 Gpulet 1 Gpulet 2

Duration of Gpulet decided Time

by squishy bin-packing [1]

• Scaling GPUs for request rate changes

```
Algorithm 2: GPU Scaling Algorithm
  SCALING(GPU_LIMIT):
1 for each period do
      N \leftarrow The number of used GPUs in previous period
      result ← ELASTICPARTITIONING with N GPUs
 3
      while result is fail and N < GPU\_LIMIT do
          N \leftarrow N + 1
          result ← ELASTICPARTITIONING with N GPUs
 6
      end
      if result is fail then
          Report an unschedulable event
      end
10
11 end
```

Design – Modeling Interference

Interference prediction

- L2 utilization
- DRAM bandwidth utilization

 $interference_factor = c_1 \times L2_{m_1} + c_2 \times L2_{m_2} + c_3 \times mem_{m_1} + c_4 \times mem_{m_2} + c_5$

Design – Modeling Interference

Interference prediction

 $interference_factor = c_1 \times L2_{m_1} + c_2 \times L2_{m_2} + c_3 \times mem_{m_1} + c_4 \times mem_{m_2} + c_5$

Figure 10: Cumulative distribution of relative error rate. Proposed analytical model can predict up-to 95% of cases with less than 13.98 % error rate.

Design – Dynamic reorganization

- 1. spawning a new process
- 2. loading kernels used by PyTorch
- 3. loading required models, and warming up.

Design – Dynamic reorganization

Figure 11: Illustration of dynamic partition reorganization.

System Overview

System Overview			
CPU 20-core, Xeon E5-2630 v4			
GPU	$2 \times RTX 2080 Ti$		
Memory Capacity	192 GB DRAM		
Operating System Ubuntu 18.04			
CUDA	10.2		
NVIDIA Driver	440.64		
ML framework	PyTorch 1.10		
G	PU Specification		
CUDA cores	4,352		
Memory Capacity	11 GB GDDR6		
Memory Bandwidth	616 GB/sec		

Table 2: The evaluated system specifications.

• 2 Applications

Figure 12: Two multi-model applications: game and traffic.

ML models used in the evaluation

Model	Input Data (Dimension)	SLO (ms)	
GoogLeNet (goo)	ImageNet (3x224x224))	66	
LeNet (le)	MNIST (1x28x28)	5	
ResNet50 (res)	ImageNet (3x224x224)	108	
SSD-MobileNet (ssd)	Camera Data (3x300x300)	202	
VGG-16 (vgg)	ImageNet (3x224x224)	142	
MnasNet (nas)	ImageNet (3x224x224)	62	
Mobilenet_v2 (mob)	ImageNet(3x224x224)	64	
DenseNet (den)	ImageNet(3x224x224)	202	
Base Bert (be)	Rand. Index Vector(1x14)	22	

Table 3: List of ML models used in the evaluation.

• 5 scenarios

Name	Group Composition by Memory Footpri				
	<1GB	1GB - 2GB	>2GB		
scen1	mob,be	nas,goo	22		
scen2	=	den	vgg		
scen3	mob	res	vgg		
scen4	ssd	nas,den			
scen5	le	ssd,nas	vgg		

Table 4: Five request scenarios, each of which represents a particular composition of multiple models based on memory footprint. The amount of requests per model in a group is equal across the models in the group.

Evaluation – SLO preserved max throughput

- **SLO** violate < 1 %
- Best performance when both time and spatial scheduling enabled
- throughput increased by an average 61.7% than time-share

Figure 13: SLO preserved max throughput of the two multimodel applications (game and traffic) and five scenarios.

Evaluation – The effect of interference model

Figure 14: SLO violation rates of two multi-model applications and five scenarios. Request rates are increased until both gpulet and gpulet +int concluded the rate to be *Not Schedulable*.

Evaluation – Evaluation of scalability

res

Minimize Resource Usage

vgg

Evaluation – Comparison to the ideal scheduler

Figure 16: Comparison of the numbers of schedulable scenarios between the ideal scheduler and gpulet +int scheduler.

Model 1 Model 2 ... Model 9

0rqs 100rqs 200rqs

3⁹ -1 scenarios

Advantage

- Improve the performance of ML inference by spatial-temporal scheduling.
- Predicting interference effect when scheduling.
- Scaling resource efficiently.

Features	Batch Tuning	Multi Model	GPU Scaling	Temporal Schedule		Interference Prediction
Clipper [15]	√	1	1	✓	X	X
MArk [45]	1	X	1	×	X	X
INFaaS [36]	1	1	1	✓	X	X
Nexus [38]	1	1	1	✓	X	×
GSLICE [17]	1	1	X	×	V	X
Gpulet	1	1	1	1	✓	1

Disadvantage

Table 5: Comparison with prior work.

- Heterogeneous hardware environments are not taken into account
- Not enough considerations for interference model.