Halting Problem Part 3

Adam Wyner CS3518, Spring 2017 University of Aberdeen

Back to the Halting Problem

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$$

Recall:

 $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input string } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof strategy (called proof by reduction):

– We use the undecidability of A_{TM} to prove the undecidability of $HALT_{TM}$

Halting Problem (Cont'd)

- Assume (to obtain contradiction) R decides $HALT_{TM}$
- S = On input $\langle M, w \rangle$ where M is a TM and w is a string:
 - 1. Run R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject. i.e. $\{\langle M, w \rangle \text{ does not halt} \}$
 - 3. If R accepts, i.e. $\{\langle M, w \rangle \text{ halts} \}$, then simulate M on w until it halts.
 - 4. If M accepts w, accept; If M rejects w, reject.
- By assumption, R decides $HALT_{TM}$ so S decides A_{TM} . But A_{TM} is undecidable so R doesn't decide $HALT_{TM}$
- It follows that HALT_{TM} is undecidable!

Halting Problem (Cont'd)

A_{TM} can be seen as consisting of two problems:

Given $\langle M, w \rangle$,

- 1. Decide whether $\langle M, w \rangle$ halts (yes/no)
- 2. a. If yes then decide whether M accepts w.
 - b. If no then reject.

Halting Problem (Cont'd)

Halting Problem (summary)

- A_{TM} "reduces" to HALT_{TM}
- Since A_{TM} is undecidable, HALT_{TM} is also undecidable
- Reduction (restating an unknown problem in terms of a known problem and solution) is a key strategy in
 - the theory of computability
 - the theory of computational complexity

- Definition: A language is co-Turing-recognisable
 iff it is the complement of a Turing-recognisable language
- Theorem: A language is decidable if and only if it is Turingrecognisable and co-Turing-recognisable

Some things that follow:

- The complement of A_{TM} is not Turing-recognisable
 - We have seen: A_{TM} is Turing-recognisable
 - If the complement of A_{TM} were also Turing-recognisable, A_{TM} would be decidable (and it isn't)
- Review question:

Consider $L = \{ \langle M, w \rangle \mid M \text{ loops on } w \}$.

Does there exists a TM for L that is a recogniser?

Review question:

Consider $L = \{ \langle M, w \rangle \mid M \mid loops on w \}$

Does there exists a TM for L that is a recogniser?

No!

Suppose X was a recogniser for L.

Consider any M and any w. If M loops on w then X accepts <M,w> (in finitely many steps). If M does not loop on w then M either accepts or rejects w (in finitely many steps). Hence, a decider for A_{TM} can be constructed as follows:

Suppose X recognised L. Then K would decide A_{TM} :

```
K = On input \langle M, w \rangle where M is a TM and w is a string:
      1a. Run X on \langle M, w \rangle. (a recogniser!)
      1b. Simultaneously, Run U on \langle M, w \rangle. (a recogniser!)
       Either M loops on w or M does not loop on w.
      If M loops on w then X accepts \langle M, w \rangle (in finite time)
          so K rejects (M,w)
      If M doesn't loop on w, U accepts or rejects (M,w)
          If U accepts \langle M, w \rangle then K accepts \langle M, w \rangle
          If U rejects (M,w) then K rejects (M,w)
```

```
K = On input \langle M, w \rangle where M is a TM and w is a string:
      1a. Run X on \langle M, w \rangle. (a recogniser!)
      1b. Simultaneously, Run U on \langle M, w \rangle. (a recogniser!)
      Either M loops on w or M does not loop on w.
      If M loops on w then X accepts \langle M, w \rangle (in finite time)
          so K rejects (M,w)
      If M doesn't loop on w, U accepts or rejects (M,w)
          If U accepts \langle M, w \rangle then K accepts \langle M, w \rangle
          If U rejects (M,w) then K rejects (M,w)
```

• But A_{TM} is undecidable. It follows that X cannot recognise L. So, L cannot be recognised

Reduction

- Reduction is an important technique, not just in proving decidability (and other computability) results, but also in proving complexity results (e.g., "solving problem X takes exponential time")
- Another example of using reduction to prove the undecidability of a problem:

Problem No. 2

- Problem: determine if a Turing machine does not accept any input, that is, its language is empty (Compare the old E_{DFA})
- Let $E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$
- Theorem: E_{TM} is undecidable
- Proof strategy: proof by reduction again
 - Assume that E_{TM} is decidable and
 - Show that A_{TM} is decidable: a contradiction
- Let R be a TM that decides E_{TM}
- We use R to build S that decides A_{TM}

Problem No. 2 (Cont'd)

- We run R on a modification of (M):
 - We modify (M) to ensure M rejects all strings except w
 - On input w, M works as usual

```
M_1 = On input x:
```

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does.
- The only string M₁ may now accept is w:

$$M_1 = \{w\} \text{ or } M_1 = \Phi$$

$$L(M_1)$$
 is non-empty \Leftrightarrow M_1 accepts w

Problem No. 2 (Cont'd)

Proof that E_{TM} is undecible. Assume TM R decides E_{TM} Build TM S (using R) that decides A_{TM} :

```
S = On input \langle M, w \rangle where M is a TM and w is a string:
```

- 1. Use M and w to build M_1 as explained
- 2. Run R on input $\langle M_1 \rangle$.
- 3. If R accepts (so L(M1) = Φ), reject (M rejects w) If R rejects (so L(M1) $\neq \Phi$), accept (M accepts w).
- S would decide A_{TM} but that's not possible
- Hence, E_{TM} must be undecidable

Problem No. 2 (Cont'd)

