

What ASSET does?

- ASSET is a free and open-source tool based on python and PSS/E
 to automatically examine and assess large-scale systems for
 multiple system operating conditions and contingencies, and their
 impact on system strength. Calculation results from ASSET are
 summarized in both tabularized form and can be further visualized
 on a map.
- This manual contains
 - ➤ Installation guide
 - Summary of steps for using ASSET
 - > Example on a 23-bus case

Installation

- ASSET is free and open source on GitHub: https://github.com/NREL/ASSET
- Python and PSS/E need to be installed and licensed, If necessary. Python 2.7 and PSS/E v34 were used for developing this tool, while other versions have not been tested. Detailed installation steps include:
 - Create a Python project and put all files/folders in the GitHub repo into that project folders.
 - Install the following packages to the Python environment: numpy and pandas.
 - > Set up the file path to PSS/E API in lines 45-67 of main.py and in lines 37-50 of assetlib.py. Users should change to match the required PSS/E version. The following gives an example for PSS/E v34.

```
pssbindir = r'C:\Program Files (x86)\PTI\PSSE34\PSSBIN'
sys.path.append(pssbindir)
pssepydir = r'C:\Program Files (x86)\PTI\PSSE34\PSSPY27'
os.environ['PATH'] += ';' + pssbindir
os.environ['PATH'] += ';' + pssepydir
```

If the users do not know the installation folder, they can use pssepath package for auto-setup. Here's the download link: https://pypi.org/project/pssepath/. Then, add the following to main.py.

```
import pssepath
pssepath.add_pssepath()
```

Initialization for ASSET

Configure simulation parameters in lines 88-98 of main.py.

Simulation Parameters	Description
GUIinput_powerflowfile	File path and name of the power flow data in .sav format
GUIinput_poidata	File path and name of the point of interconnection data in .csv format (Please look at the example on how to prepare a POI list)
GUlinput_outputfolder	Path of the output folder
GUIinput_DiscAllOwu	Flag, allow fault current contribution from IBR units at non-tested POIs? 1 – Yes, 0 – No.
GUIinput_SimMode	Simulation mode: 0 - Critical N-1/N-2 mode; 1 - Contingency scan mode
GUlinput_K	Currents on branches K-level away from the tested POI are considered for picking critical N-1/N-2. Used only when GUIinput_SimMode = 0.
GUIinput_contfolder	Path of the input subfolder storing contingency files in .csv format. Used only when GUIinput_SimMode = 1.
busNlimit	Limit of number of buses specified when launching a PSS/E instance
ctg_num	Number of contingencies. Used only when GUIinput_SimMode = 1.

Interpreting the results

- Then, users can go ahead and execute main.py.
- The analysis will be performed automatically, and the results will be created and stored in the output subfolder.
- If GUIinput_SimMode = 0, there will be three output files: "result_brch.csv", "result_SCMVA.csv", and "result_SCR".
- If GUIinput_SimMode = 1, there will be one output file: "results_CTG_SCAN_yyyy-mm-dd_hh-mm-ss.csv."

Example

On a 23 bus system

Example 1: Critical N-1/N-2

 The 23-bus case coming with PSS/E install is used in this example.

Set simulation parameters as follows:

Set simulation parameters as follows.						
Simulation Parameters	Description					
GUlinput_powerflowfile	"\input\savnw.sav"					
GUlinput_poidata	"\input\poidata.csv"					
GUIinput_outputfolder	"\output"					
GUlinput_DiscAllOwu	0					
GUIinput_SimMode	0					
GUlinput_K	10					
GUIinput contfolder	N/A					
busNlimit	50					
ctg num	N/A					

> ASSET_20241212 > input

Name

Example 1: Critical N-1/N-2

Example 2: Contingency Scan

Set simulation parameters as follows, where most parameters are same as in example 1:

Simulation Parameters	Description
GUIinput_powerflowfile	"\input\savnw.sav"
GUlinput_poidata	"\input\poidata.csv"
GUlinput_outputfolder	"\output"
GUlinput_DiscAllOwu	0
GUIinput_SimMode	1
GUlinput_K	N/A
GUlinput_contfolder	"\ctg"
busNlimit	50
ctg_num	5

Example 2: Contingency Scan

 Execute main.py and obtain the results.

Α	В	С	D	Е	F	G	Н	1	J	K	L	M
POI	SCMVA_0	SCR_0	SCMVA_1	SCR_1	SCMVA_2	SCR_2	SCMVA_3	SCR_3	SCMVA_4	SCR_4	SCMVA_5	SCR_5
151	7915.079	79.15079	7732.502	77.32502	7595.087	75.95087	7709.132	77.09132	5749.405	57.49405	7368.364	73.68364
152	6382.914	63.82914	5947.455	59.47455	5781.601	57.81601	5631.891	56.31891	5597.314	55.97314	5391.94	53.9194
153	5862.376	58.62376	5663.524	56.63524	5450.32	54.5032	3447.586	34.47586	5268.817	52.68817	4960.834	49.60834
154	6356.777	63.56777	6271.063	62.71063	6173.19	61.7319	5964.185	59.64185	5863.056	58.63056	5569.971	55.69971
201	6901.365	69.01365	6769.936	67.69936	6901.345	69.01345	6839.977	68.39977	5898.841	58.98841	6399.653	63.99653
202	5811.167	58.11167	5597.98	55.9798	5572.284	55.72284	5620.859	56.20859	5188.585	51.88585	5141.362	51.41362
203	4955.567	49.55567	4872.849	48.72849	4825.015	48.25015	4952.906	49.52906	4588.037	45.88037	4486.826	44.86826
3011	4576.523	45.76523	4152.484	41.52484	4529.369	45.29369	4551.295	45.51295	4500.776	45.00776	1721.385	17.21385

Citing ASSET

• If you use ASSET for research or consulting, please cite the following paper in your publication.

P. Sharma, L. Rese, B. Wang, B. Vyakaranam, S. Shah, "Grid Strength Analysis for Integrating 30 GW of Offshore Wind Generation by 2030 in the US Eastern Interconnect," 22nd Wind & Solar Integration Workshop, Copenhagen, Denmark, Sept. 2023.

P. Sharma and S. Shah, "Application of the Extra Element Theorem for Grid Strength Analysis in IBR-Dominated Systems," 2025 IEEE Power & Energy Society General Meeting (PESGM), Austin, Texas, USA, 2025

Thank you

Shahil Shah

Principal Engineer

shahil.shah@nrel.gov

Power Systems Engineering Center National Renewable Energy Laboratory

This work was authored by the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy --- Grid Deployment Office --- is gratefully acknowledged. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.