Курс математической логики по Штукенбергу Д.Г.

Daniyar Lolka Itegulov, Ignat Loskutov 22 января 2015 г.

Содержаніе

1	Опр	Определения (нужно знать идеально)				
	1.1	ИВ	3			
	1.2	Общезначимость, доказуемость, выводимость	4			
	1.3	Теорема о дедукции для ИВ	4			
	1.4	Теорема о полноте исчисления высказываний	4			
	1.5	ИИB	4			
	1.6	Теорема Гливенко	5			
	1.7	Порядки	5			
	1.8	Решетки (все свойства)	5			
	1.9	Булевы\псевдобулевы алгебры	5			
	1.10	Топологическая интерпретация ИИВ	6			
		Модель Крипке	6			
		Вложение Крипке в алгебры Гейтинга	7			
		Полнота ИИВ в алгебрах Гейтинга и моделях Крипке	7			
		Нетабличность ИИВ	7			
		Предикаты	7			
		Теорема о дедукции в предикатах	7			
		Теорема о полноте исчисления предикатов	8			
		Теории первого порядка, определение структуры и модели	8			
		Аксиоматика Пеано	8			
		Формальная арифметика - аксиомы	8			
		1.20.1 Аксиомы	9			
	1.21	Рекурсивные функции	9			
		Функция Аккермана	9			
		Существование рек.ф-й не явл. ф-ей Аккермана (определение конечной лем-				
		мы)	9			
	1.24	Представимость	9			
		Выразимость	10			
		Лемма о связи представимости и выразимости	10			
		Бета-функция Гёделя, Г-последовательность	10			
		Представимость рек.ф-й в ФА (знать формулы для самых простых)	10			
		Гёделева нумерация (точно)	11			
		Выводимость и рекурсивные функции (че там с Тьюрингом)	11			

	1.31	Непро	отиворечивость	11
	1.32	w-неп	ротиворечивость	11
	1.33	Перва	ия теорема Гёделя о неполноте	11
	1.34	Перва	ия теорема Гёделя о неполноте в форме Россера	12
			5	12
			ия Г-Б (наизусть)	12
			а о самоприменении	12
			я теорема Гёделя о неполноте ФА	12
			ия множеств	12
				12
	1.10		Аксиома равенства	12
			Аксиома пары	12
			Аксиома объединений	13
			Аксиома степени	13
			Схема аксиом выделения	13
			Аксиома выбора (не входит в ZF по дефолту)	13
		1.40.0	Аксиома выобра (не входит в 21 по дефолту)	13
				13
			Аксиома фундирования	13
	1 11		Схема аксиом подстановки	
			нальные числа, операции	13
			инальные числа, операции	14
			рнальный метод, теорема Лёвенгейма-Скулема	14
			докс Скулема	14
	1.45	Teope	ма Генцена о непротиворечивости ФА	15
2	Tick	et 1: ИІ	3	16
_	2.1		деления (исчисление, высказывание, оценка)	16
	2.1			16
	2.2		значимость, доказуемость, выводимость	
			ы аксиом и правило вывода	16
	2.4		ма о дедукции	17
	2.5	корре	ектность исчисления высказываний относительно алгебры Яськовского	17
3	Tick	et 2: по	олнота ИВ	18
	3.1		ота исчисления высказываний относительно алгебры Яськовского	18
	0.1	3.1.1	Контрапозиция	18
		3.1.2	Правило исключененного третьего	18
		3.1.3	Всякие очевидные вещи типа если выводится из А и из Б то из А и Б	10
		5.1.5	тоже	18
		3.1.4	Правило со звездочкой (14 доказательств)	18
		3.1.4	правило со звездочкой (т4 доказательств)	10
4 Ticket 3: ИИВ			ИВ	21
	4.1		структура, модель	21
	4.2		вергаемость исключенного третьего	21
	4.3	-	тки	22
	4.4		ра Гейтинга, булева алгебра	23
	4.5		ра Линденбаума-Тарского	23
	4.6		ма о полноте ИИВ относительно алгебры Гейтинга	
	1.0	- COPC	o recirrote sisib officestroubite mirrophitestisiin , , , , , , , , , , , , ,	

	4.7	Дизъюнктивность ИИВ	24
	4.8	Теорема Гливенко	
	4.9	Топологическая интерпретация	
5	Tick	et 4: ИИВ2	27
	5.1	Модели Крипке	27
	5.2	•	27
	5.3	Вложение Крипке в Гейтинга	27
	5.4	Полнота ИИВ в моделях Крипке	28
	5.5	Нетабличность интуиционистской логики	28
6	Tick	et 5: Логика 2 порядка	30
		Основные определения	30
		Теорема о дедукции	
	6.3	Корректность исчисления предикатов	
	Myk	khail Volkhov, 2538, 2014Sep-2015Jan Я не отвечаю за верность написанного - мно	ЭГО
ин	іфорі	мации я придумал сам, много достал из недостоверных источников.	

1. Базовые понятия

1.1. Формальные системы и модели

Сделано мной для меня самого, be careful

Мы работаем с формальными системами. Формальная система определяется сигнатурой, грамматикой, набором аксиом и набором правил вывода.

- 1. Сигнатура ФС это (Pr, F, C, Links, Misc, arity):
 - Pr описывает предикаты (число + заглавная буква латинского алфавита)
 - F множество функций (заглавные буквы латинского алфавита)
 - С описывает константы
 - Links множество связок $(\{" \to ", " \cap ", ""\})$
 - Misc дополнительные элементы ({"(", ")", " "})
 - arity: $Foo \cup Pr \cup C \rightarrow N$ возвращает арность
- 2. Грамматика описывает то, как мы можем строить выражения в соответствии с нашей сигнатурой.
- 3. Аксиомы выражения в нашей грамматике.
- 4. Правила вывода пары вида (List, List), где List список утверждений. Первый элемент посылки, второй то, что из них следует.

Иногда нам хочется что-то посчитать и мы прикручиваем к формальной системе модель - корректную структуру с оценкой. Структура - это сигнатура с интерпретацией и носителем.

- 1. Сигнатура структуры (R, F, C, arity):
 - Pr множество символов для предикатов
 - F функциональных символов
 - С символов констант
 - arity функция, определяющая арность $Pr \cup F \to N$.
- 2. Интерпретация это приписывание символам значения и правил действия (отображения из $\Pr \cup F \cup C$ в носитель)
- 3. Носитель это объединение множеств, в котором обязательно присутствует V множество истинностных значений. Если же мы рассматриваем только нульместные предикаты, на этом можно остановится, otherwise часто вводится P предметное множество, в которое отображаются элементы из F, C.

ТООО Эта реализация структуры не определяет ничего в районе аксиоматики, но аксиоматически заданные структуры существуют – например в ФА есть Пеано. Если все аксиомы тавтологии, то структура корректна. В таком случае она называется моделью.

Оценку иногда определяют раньше\позже чем модель, мне удобно думать о ней, как об отдельной сущности, потому что она связывает модель с Φ С. Оценка - это функция оценки и функция тавтологии.

- 1. Функция оценки отображение из (множества всех формул, сгенеренных грамматикой) х (какие-нибудь допаргументы) в V модели. Дополнительные аргументы например оценки элементов связки.
- 2. Функция тавтологии отображение из множества формул грамматики в $\{0,1\}$ является ли формула тавтологией. Тавтология использует функцию оценки. Например, тавтология
 - это выражение, оценка которого на любых аргументах

возвращает $\in V$ - какой-то элемент V.

Когда говорится "сигнатура модели" - имеется в виду ровно она. Когда говорится "сигнатура Φ С" - имеется в виду скорее всего объединение сигнатур, а может только сигнатура самой Φ С. Первый вариант тут предпочтительней.

2. Определения (нужно знать идеально)

Определения тут зачастую дублицируют то, что написано в самом конспекте, поэтому удаление этого блока сэкономит бумагу при печати.

2.1. ИВ

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0, 1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты это пропозициональные переменные. Аксиомы:

- 1. $a \rightarrow b \rightarrow a$
- 2. $(a \rightarrow b) \rightarrow (a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow c)$
- 3. $a \rightarrow b \rightarrow a \& b$
- 4. $a\&b \rightarrow a$
- 5. $a\&b \rightarrow b$
- 6. $a \rightarrow a \lor b$
- 7. $b \rightarrow a \lor b$
- 8. $(a \to b) \to (c \to b) \to (a \lor c \to b)$
- 9. $(a \rightarrow b) \rightarrow (a \rightarrow \neg b) \rightarrow \neg a$
- 10. $\neg \neg a \rightarrow a$

2.2. Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в S∞)
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

2.3. Теорема о дедукции для ИВ

Теорема, утверждающая, что из , $a \vdash b$ следует $\vdash a \to b$ и наоборот. Доказывается вправо поформульным преобразованием, влево добавлением 1 формулы. Работает в ИВ, ИИВ, предикатах.

2.4. Теорема о полноте исчисления высказываний

Типа исчисление предикатов полно относительно вот той булевой алгебры. Общий ход д-ва: строим док-ва для конкретных наборов перменных, 2^n , где n - количество возможных переменных. Потом их мерджим.

2.5. ИИВ

Это такое ИВ, в котором убрали десятую аксиому, а вместо нее добавили 10i. 10i: $a \to \neg a \to b$ Кстати она доказывается и в ИВ

1.
$$(a \to a \lor \neg a) \to (a \to a \lor \neg a \to (\neg a \to b)) \to a \to (\neg a \to b)$$

2.
$$a, a \lor \neg a, \neg a \vdash b$$

$$a$$

$$\neg a$$

$$b \to a$$

$$b \to \neg a$$

$$(b \to a) \to (b \to \neg a) \to \neg b$$

$$\neg b \to a$$

$$\neg b \to \neg a$$

$$(\neg b \to a) \to (\neg b \to \neg a) \to \neg \neg b$$

$$\neg b \to b$$

3.
$$a \rightarrow (\neg a \rightarrow b)$$

А еще в ИИВ главная фишка - недоказуемо $A \vee \neg A$ (можно подобрать модель).

2.6. Теорема Гливенко

Если в ИВ доказуемо а, то в ИИВ доказуемо $\neg \neg a$ Общий ход д-ва: говорим, что если в ИИВ доказуема F, то в ней же доказуема $\neg \neg F$. Доказываем руками двойное отрицание 10 аксиомы и то же самое для MP.

2.7. Порядки

Частичный порядок – рефлексивное, антисимметричное, транзитивное отношение. Частично упор. мн-во - множество с частичным порядком на элементах. Линейно упорядоч. мн-во - множество с частичным порядком, в котором два любых элемента сравнимы. Фундированное мн-во - частично упорядоч. множество, в котором каждое непустое подмножество имеет минимальный элемент. Вполне упорядоченное множество - фундированное множество с линейным порядком.

2.8. Решетки (все свойства)

• Решетка Решетка - это (L, +, *) в алгебраическом смысле и (L, \leq) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы: коммутативность, ассоциативность, поглощение. Решетку можно определить как упорядоченное множество через множество с частичным порядком на нем, тогда операции +, * определяются как sup и inf:

$$\sup p = \min\{u|u \ge alls \in p\}$$

$$\inf p = \max\{u|u \le alls \in p\}$$

$$a + b = \sup\{a, b\}$$

$$a * b = \inf\{a, b\}$$

Если для двух элементов всегда можно определить a + b и a * b, то такое множество назывется решеткой.

- Дистрибутивная решетка -- решетка, в которой работает дистрибутивность: a * (b + c) = (a * b) + (b * c)
- Импликативная решетка -- всегда существует псевдодополнение b $(b \to a)$ $a \to b = \max c | c \times a \leqslant b$ Имеет свойства, что в ней всегда есть максимальный элемент $a \to a$ и что она дистрибутивна.

2.9. Булевы\псевдобулевы алгебры

- Булева алгебра можно определить так:
 - 1. (L, +, *, -, 0, 1) с выполненными аксиомами коммутативность, ассоциативность, поглощение, две дистрибутивности и а * -а = 0, а + -а = 1.
 - 2. Импликативная решетка над фундированным множеством. Тогда мы в ней определим 1 как $a \to a$ (традиционно для импликативной), отрицание как $-a = a \to 0$, и тогда последняя аксиома из предыдущего определения будет свойством:

$$a*-a = a*(a \to 0) = a*(\max c: c*a \le 0) = a*0 = 0$$

Насчет второй аксиомы - должно быть 1. То есть лучше как-то через аксиомы определять, видимо.

$$a + -a = a + (a \to 0) = a + (maxc : c * a \le 0) = a + 0 = a$$

// не 1

• Псевдобулева алгебра - это импликативная решетка над фундированным множеством с $\neg a = (a \to 0)$

2.10. Топологическая интерпретация ИИВ

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве Rⁿ. Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества Rⁿ. Определим операции следующим образом:

- 1. $a+b => a \cup b$
- 2. $a * b => a \cap b$
- 3. $a \rightarrow b => Int(a^c \cup b)$
- 4. $-a => Int(a^c)$
- 5. 0 = > 0
- 6. $1 = > \emptyset \{ -L \}$

2.11. Модель Крипке

 $Var = \{P, Q, \dots\}$ Модель Крипке – это <W, \leq , v>, где

- W множество "миров"
- ≤ частичный порядок на W (отношение достижимости)
- v: $W \times Var \to \{0,1,_\}$ оценка перменных на W, монотонна (если v(x, P) = 1, x ≤ y, то v(y, P) = 1 формулу нельзя un'вынудить)

Правила:

- $W, x \models P \otimes v(x, P) = 1P \in Var$
- $W, x \models (A\&B) \otimes W, x \models A\&W, x \models B$
- $W, x \models (A \lor B) @@W, x \models A \lor W, x \models B$
- $W, x \models (A \rightarrow B) \otimes \otimes y \ge x (W, y \models A \otimes W, y \models B)$
- $\bullet \ \ W,x\models \neg A @@y \in x(W,x\neg \models A)$

В мире разрешается быть не вынужденной переменной и ее отрицанию одновремеменно. Формула называется тавтологией в ИИВ с моделью Крипке, если она истинна (вынуждена) в любом мире любой модели Крипке.

2.12. Вложение Крипке в алгебры Гейтинга

Возьмем модель Крипке, возьмем какое-то объединение поддеревьев со всеми потомками, каждое такое объединение пусть будет входить в алгебру Гейтинга. ≤ - отношение "быть подмножеством". Определим 0 как ⊚ (пустое объединение поддеревьев); Определим операции:

 $a \to b = \cup \{z \in H | z \le x^c \cup y\}$ Так созданное множество с операциями является импликативной решеткой, в которой мы определим $-a = a \to 0$, получим булеву алгебру.

2.13. Полнота ИИВ в алгебрах Гейтинга и моделях Крипке

ИИВ полно относительно алгебр Гейтинга и моделей Крипке. Общий ход доказательства первого сводится к вложению в Гейтинга алгебры Линденбаума-Тарского, а второго - к построению дизъюнктивного множества всех доказуемых формул, являющегося миром Крипке.

2.14. Нетабличность ИИВ

Не существует полной модели, которая может быть выражена таблицей (конечной – алгебра Гейтинга и Крипке не табличны, так как и там и там связки определяются иначе). От противного соорудим табличную модель и покажем, что она не полна, привев пример большой дизъюнкции из импликаций, для которой можно построить модель Крипке в которой она не общезначима.

2.15. Предикаты

Теория первого порядка, расширяющая исчисление высказываний. Добавляются две новые аксиомы $@x.A \to A[x:=]$, где θ свободна для подстановки в $A[x:=] \to \exists x.A, -//-$ Правила вывода:

$$\frac{A \to B}{A \to \forall x.B}$$

х не входит сводобно в А

$$\frac{A \to B}{\exists x. A \to B}$$

х не входит свободно в В

2.16. Теорема о дедукции в предикатах

Аналогично 1 теореме о дедукции в ИВ, но в доказательстве должны отсутствовать применения правил для кванторов по переменным входящих свободно в выражение γ , $\vdash a = >$ $\vdash \to a$

2.17. Теорема о полноте исчисления предикатов

Исчисление предикатов полно (заметим, что относительно любой модели). Суть в том, что если предикаты непротиворечивы, то у них есть модель. Если у них есть модель, то типа там можно по контрпозиции показать $\models a$.

2.18. Теории первого порядка, определение структуры и модели

Теория первого порядка - это формальная система с кванторами по функциональным символам, но не по предикатам. Рукомахательное определение – это фс с логикой первого порядка в основе, в которой абстрактные предикаты и функциональные символы определяются точно (а может такое определение даже лучше).

Структура по ДГ: Структурой теории первого порядка мы назовем упорядоченную тройку <D, F, P>, где F- списки оценок для 0-местных, 1-местных и т.д. функций, и P=hP 0, P 1, ...i — списки оценок для 0-местных, 1-местных и т.д. предикатов, D- предметное множество.

Понятие структуры — развитие понятия оценки из исчисления предикатов. Но оно касается только нелогических составляющих теории; истинностные значения и оценки для связок по-прежнему определяются исчислением предикатов, лежащим в основе теории. Для получения оценки формулы нам нужно задать структуру, значения всех свободных индивидных переменных, и (естественным образом) вычислить результат.

Структура по-моему: Все то же самое определение из ИВ. Мы просто забиваем на предикаты в ИВ (не определям их), расширяем нашу сигнатуру (добавляя конкретные предикаты и функциональные символы), определяем для нее интерпретацию.

И как всегда,.. Модель – это корректная структура (любое доказуемое утверждение должно быть в ней общезначимо).

2.19. Аксиоматика Пеано

Множество N удовлетворяет аксиоматике Пеано, если:

- 1. $0 \in N$
- 2. $x \in N, succ(x) \in N$
- 3. $x \in N : (succ(x) = 0)$
- 4. $(succ(a) = c \& succ(b) = c) \rightarrow a = b$
- 5. $P(0)\& n.(P(n) \rightarrow P(succ(n))) \rightarrow @n.P(n)$

2.20. Формальная арифметика - аксиомы

Формальная арифметика - это теория первого порядка, у которой сигнатура определена как: (циферки, логические связки, алгебр. связки, '), а интерпретацию сейчас будем определять. Интерпретация определяет два множества - V, P - истинностные и предметные значения. Пусть множество V = $\{0,1\}$ по-прежнему. P = $\{$ всякие штуки, которые мы можем получать из логических связок и $0\}$ Определим оценки логических связок естественным образом. Определим алгебраические связки так: +(a,0) = a + (a,b') = (a+b)'*(a,0) = 0*(a,b') = a*b+a

2.20.1. Аксиомы

1.
$$a = b \to a' = b'$$

2.
$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \to a = b$$

4.
$$\neg (a' = 0)$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a * 0 = 0$$

8.
$$a * b' = a * b + a$$

9.
$$\varphi[x:=0]$$
&@ $x.(\varphi o \varphi[x:=x']) o \varphi$ // φ содержит св.п х

2.21. Рекурсивные функции

$$Z(x)=0 \\ N(x)=x+1 \\ U(x_1,\ldots,x_n)=x \\ S\langle f,g_1,\ldots,g\rangle(x_1,\ldots,x)=f(g_1(x_1\ldots x),\ldots g(x_1,\ldots,x)) \\ R\langle f,g\rangle(x_1\ldots x,n)=\begin{cases} f(x_1\ldots x) & n=0 \\ g(x_1\ldots x,n,R\langle f,g\rangle(x_1\ldots x,n-1)) & n>0 \end{cases} \\ \mu\langle f\rangle(x_1,\ldots,x_n)\text{ - минимальное k, такое что } f(x_1\ldots x_n,k)=0 \end{cases}$$

2.22. Функция Аккермана

$$A(0,n) = n + 1$$

$$A(m,0) = A(m-1,1)$$

$$A(m,n) = A(m-1,A(m,n-1))$$

2.23. Существование рек.ф-й не явл. ф-ей Аккермана (определение конечной леммы)

Пусть $f(n_1 \dots n)$ - примитивная рекурсинвная функция, $k \ge 0$. $\exists J: f(n_1 \dots n) < A(J, \sum (n_1, \dots n))$ Доказывается индукцией по рекурсивным функциям.

2.24. Представимость

Функция $f:N\to N$ называется представимой в формальной арифметике, если существует отношение $a(x_1\dots x_{1})$, ее представляющее, причем выполнено следующее:

1.
$$f(a, b, ...) = x <=>\vdash a(a \sim, b \sim, ... x \sim)$$

2. $\exists ! x. f(a,b,\ldots x)$ (вот это свойство вроде бы не обязательно, но ДГ его писал).

2.25. Выразимость

Отношение n называется выразимым, если существует предикат N его выражающий, такой что

1.
$$n(x_1 ... x_n) = > \vdash N(x_1 - ... x -)$$

2.
$$n(x_1...x) = > \vdash \neg N(x_1 \sim ...x \sim)$$

2.26. Лемма о связи представимости и выразимости

Если n выразимо, то Cn представимо. Cn = 1 если n, и нулю если !n

2.27. Бета-функция Гёделя, Г-последовательность

 $\beta(b, c, i)$ = ki Функция, отображающая конечную последовательность из N (ai) в ki. Работает через магию, математику, простые числа и Гёделеву последовательность, которая подходит под условия китайской теоремы об остатках. $\beta(b, c, i)$ = b % ((i + 1) * c + 1)

2.28. Представимость рек.ф-й в ФА (знать формулы для самых простых)

Рекурсивные функции представимы в ФА

1.
$$z(a,b) = (a=a) & (b=0)$$

2.
$$n(a,b) = (a = b')$$

3.
$$u = (x_1 = x_1) \& \dots \& (x = x) \& (x_{1} = x)$$

4.
$$s(a_1 \ldots a, b) = \exists b_1 \ldots \exists b (G_1(a_1 \ldots a, b_1) \& \ldots \& Gn(a_1 \ldots a, b))$$

5.
$$r(x_1, ..., x_n, k, a) = \exists b \exists c (\exists k (\beta(b, c, 0, k) \& \varphi(x_1, ..., x_n, k)) \& B(b, c, x_{n+1}, a) \& \forall k (k < x_{n+1} \to \exists d \exists e (B(b, c, k, d) \& B(b, c, k', e) \& G(x_1 ... x, k, d, e))))$$

6.
$$m\langle F \rangle(x_1, \dots, x_{n+1}) = F(x_1, \dots, x_n, x_{n+1}, 0) \& \forall y ((y < x_{n+1}) \to \neg F(x_1, \dots, x_n, y, 0))$$

2.29. Гёделева нумерация (точно)

a	$\Box a \Box$	описание
(3	
)	5	
,	7	
\neg	9	
\rightarrow	11	
\vee	13	
&	15	
\forall	17	
\exists	19	
x_k	$21 + 6 \cdot k$	переменные
f_k^n	$23 + 6 \cdot 2^k \cdot 3^n$	п-местные функцион. символы (', +, *)
P_k^n	$25 + 6 \cdot 2^k \cdot 3^n$	п-местные предикаты (=)

2.30. Выводимость и рекурсивные функции (че там с Тьюрингом)

Основные тезисы по вопросу:

- Emulate(input, prog) = plog(R < f, g > (< `S, input, 0 > , , pb, pc, tb, tc, steps(-//-)), 1) == F
- $Proof(term, proof) = Emulate(proof, MY_PROOFCHECKER) \& \& (plog(proof, len(proof)) = term)$
- Любая представимая в Φ А Φ -я является рекурсивной $f(x_1 \dots x) = \operatorname{plog}(\langle S \langle G_{\varphi}, U_{n+1,1}, \dots, U_{n+1,n}, \mathbf{p} \rangle)$ об тут принимает n+2 аргумента: $x_1 \dots x_n, p, b$ и возвращает 0 если \mathbf{p} доказательство $\varphi(x_1 \dots x, p)$, представляющего \mathbf{f} .

2.31. Непротиворечивость

Теория непротиворечива, если в ней нельзя одновременно вывести a и $\neg a$. Одновременная выводимость $\neg a$ и a эквивалентна выводимости a& $\neg a$

2.32. w-непротиворечивость

Теория ω -непротиворечива, если из $\otimes \varphi(x) \vdash \varphi(x\sim)$ следует $\otimes \exists p \neg \varphi(p)$. Проще говоря, если мы взяли формулу, то невозможно вывести одновременно $\exists x \neg A(x)$ и $A(0), A(1), \ldots$

2.33. Первая теорема Гёделя о неполноте

- 1. Если формальная арифметика непротиворечива, то недоказуемо $\sigma(\dot{\sigma})$
- 2. Если формальная арифметика w-непротиворечива, то недоказуемо ¬(`~)

2.34. Первая теорема Гёделя о неполноте в форме Россера

Если формальная арифметика непротиворечива, то в ней найдется такая формула φ , что $@\varphi$ и $@\neg\varphi$

2.35. Consis

Consis - утверждение, формально доказывающее непротиворечивость ΦA To есть $\vdash Consis = >$ непротиворечива

2.36. Условия Г-Б (наизусть)

Пусть $\pi g(x, p)$ выражает $\operatorname{Proof}(x, p)$. $(x) = \exists t. g(x, t)$ действительно показывает, что выражение доказуемо, если

- 1. $\vdash a => \vdash (`a\sim)$
- 2. \vdash (`a~) \rightarrow (`(`a~)~)
- 3. $\vdash (\dot{a} \rightarrow b) \rightarrow (\dot{b} \rightarrow b) \rightarrow (\dot{b} \rightarrow b)$

2.37. Лемма о самоприменении

a(x) - формула, тогда $\exists b$ такой что

1.
$$\vdash a(`b\sim) \rightarrow b$$

2.
$$\vdash \rightarrow a(b)$$

2.38. Вторая теорема Гёделя о неполноте ФА

Если теория непротиворечива, в ней @Consis

2.39. Теория множеств

Теория множеств - теория первого порядка, в которой есть единственный предикат \in (в ΦA был =), есть связка \leftrightarrow , есть пустое множество, операции пересечения и объединения. $x \cap y = z$, тогда $@t(t \in z \leftrightarrow t \in x \& t \in y) \ x \cup y = z$, тогда $@t(t \in z \leftrightarrow t \in x \lor t \in y) \ Dj(x) @a@b(a \in x \& b \in x \& a \neq b \to a \cap b = @)$

2.40. ZFC

2.40.1. Аксиома равенства

 $@x @y @z((x=y \& y \in z) \to x \in z)$ Если два множества равны, то любой элемент лежащий в первом, лежит и во втором

2.40.2. Аксиома пары

$$@x @y (\lnot(x=y) o \exists p (x \in p \& y \in p \& @z (z \in p o (x=z \lor y=z)))) \ x \neq y$$
, тогда сущ. $\{ \mathsf{x}, \mathsf{y} \}$

2.40.3. Аксиома объединений

 $@x(\exists y(y\in x)\to\exists p@y(y\in p\leftrightarrow\exists s(y\in s\&s\in x)))$ Если x не пусто, то из любого семейства множеств можно образовать "кучу-малу", то есть такое множество p, каждый элемент y которого принадлежит по меньшей мере одному множеству s данного семейства s x

2.40.4. Аксиома степени

 $@x\exists p@y(y\in p\leftrightarrow y\in x)\ P(x)$ - множество степени x (не путать с 2x - булеаном) Это типа мы взяли наш x, и из его элементов объединением и пересечением например понаобразовывали кучу множеств, а потом положили их в p.

2.40.5. Схема аксиом выделения

 $@x\exists b @y(y \in b \leftrightarrow (y \in x \& \varphi(y)))$ Для нашего множества x мы можем подобрать множество побольше, на котором для всех элементов, являющихся подмножеством x выполняется предикат.

2.40.6. Аксиома выбора (не входит в ZF по дефолту)

Если a = Dj(x) и $a \neq 0$, то $x \in a \neq 0$

2.40.7. Аксиома бесконечности

$$\exists N (\emptyset \in N \& \emptyset x (x \in N \to x \cup \{x\} \in N))$$

2.40.8. Аксиома фундирования

 $@x(x = @ \lor \exists y(y \in x \& y \cap x = @)) @x(x \neq @ \to \exists y(y \in x \& y \cap x = @))$ Равноценные формулы.

Я бы сказал, что это звучит как-то типа "не существует бесконечно вложенных множеств"

2.40.9. Схема аксиом подстановки

 $@x\exists!y.\varphi(x,y)\to @a\exists b@c(c\in b\leftrightarrow (\exists d.(d\in a\&\varphi(d,c))))$ Пусть формула φ такова, что для при любом x найдется единственный y такой, чтобы она была истинна на x,y, тогда для любого a найдется множество b, каждому элементу которого c можно сопоставить подмножество a и наша функция будет верна на нем и на c Типа для хороших функций мы можем найти множество c отображением из его элементов в подмножество нашего по предикату.

2.41. Ординальные числа, операции

- Определение вполне упорядоченного множества (фундированное с линейныи порядком).
- Определение транзитивного множества Множество X транзитивно, если $@a@b((a \in b\&b \in x) \to a \in x)$
- Ординал транзитивное вполне упорядоченное отношением ∈ мн-во
- Верхняя грань множества ординалов S $C|\{C=min(X)\&C\in X|X=\{z|⊗(y\in S)(z≥y)\}\}$ $C=Upb(S)\ Upb(\{⊗\})=\{⊗\}$
- Successor ordinal (сакцессорный ординал?) Это $b = a' = a \cup \{a\}$
- Предельны ординал Ординал, не являющийся ни 0 ни successor'ом.
- Недостижимый ординал ε такой ординал, что $\varepsilon=w^{\varepsilon}$ ε_0 = Upb $(w,w^w,w^{w^w},w^{w^w},\dots)$ минимальный из ε
- Канторова форма форма вида $\sum (a^*w^b + c)$, где b ординал, последовательность строго убывает по b. Есть слабая канторова форма, где вместо $a(a \in N)$ пишут a раз w^b . В канторовой форме приятно заниматься сложениями и прочим, потому что всякие upb слишком ниочем.

$$x + 0 = x$$

$$x + c' = (x + c)'$$

$$x + \lim(a) = \text{Upb}\{x + c \mid c < a\}$$

$$x * 0 = 0$$

$$x * c' = x * c + x$$

$$x * \lim(a) = \text{Upb}\{x * c \mid c < a\}$$

$$x^{0} = 1$$

$$x^{c'} = (x^{c}) * x$$

$$x^{\lim(a)} = \text{Upb}\{x^{c} \mid c < a\}$$

2.42. Кардинальные числа, операции

Будем называть множества равномощными, если найдется биекция. Будем называть A не превышающим по мощности B, если найдется инъекция $A \to B(|A| \le |B|)$ Будем называть A меньше по мощности, чем B, если $|A| \le |B| \& |A| \ne |B|$ Кардинальное число - число, оценивающее мощность множества. Кардинальное число \emptyset - это ординальное число a, такое что \emptyset x \le a $|x| \le |a| \aleph_0 = w$ по определению; $\aleph_1 =$ минимальный кардинал, следующий за \aleph_0 Кардинальное число \emptyset - это ординальное число a, такое что = P(i-1) $0 = 0 + : |A| + |B| = \max(|A|, |B|)$ (если нет общих элементов) = $|A \cup B|$

2.43. Диагональный метод, теорема Лёвенгейма-Скулема

Диагональный метод - метод доказательства $|2^{X|} > |X|$

2.44. Парадокс Скулема

Мнимый парадокс, базирующийся на теореме Лёвенгейма-Скулема и том факте, что в формальной арифметике существуют несчетные множества. Заковырка в том, что "существует счетное мн-во" выражается в ФА "не существует биекции". И тогда прийти к противоречию нельзя.

2.45. Теорема Генцена о непротиворечивости ФА

Ну типа мы можем обернуть ΦA в теорию покруче, доказать что в ней невозможно доказать 0=1, а потом доказать, что если S∞ непротиворечива, то и S непротиворечива.

3. Ticket 1: ИВ

3.1. Определения (исчисление, высказывание, оценка...)

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты это пропозициональные переменные.

3.2. Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в $S\infty$)
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

3.3. Схемы аксиом и правило вывода

Аксиомы:

1.
$$\alpha \to \beta \to \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \to \beta \to \alpha \& \beta$$

4.
$$\alpha \& \beta \rightarrow \alpha$$

5.
$$\alpha \& \beta \rightarrow \beta$$

6.
$$\alpha \rightarrow \alpha \vee \beta$$

7.
$$\beta \rightarrow \alpha \vee \beta$$

8.
$$(\alpha \to \beta) \to (\gamma \to \beta) \to (\alpha \lor \gamma \to \beta)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Правило вывода М.Р.:

$$\frac{\alpha \quad (\alpha \to \beta)}{\beta}$$

3.4. Теорема о дедукции

- \Rightarrow Если нужно переместить последнее предположение вправо, то рассматриваем случаи -- аксиома или предположение, MP, это самое выражение.
 - 1. A $A \to \alpha \to A$ $\alpha \to A$
 - 2. (там где-то сзади уже было $\alpha \to A$, $\alpha \to A \to B$) $(\alpha \to A) \to (\alpha \to A \to B) \to (\alpha \to B) \\ (\alpha \to A \to B) \to (a \to B) \\ \alpha \to B$
 - 3. $A \rightarrow A$ умеем доказывать

 \Leftarrow Если нужно переместить влево, то перемещаем, добавляем $A \to B$ (последнее) A (перемещенное) B

3.5. Корректность исчисления высказываний относительно алгебры Яськовского

• Индукцией по доказательству -- если аксиома, то она тавтология, все ок. Если модус поненс, то таблица истинности для импликации и все ок

4. Ticket 2: полнота ИВ

4.1. Полнота исчисления высказываний относительно алгебры Яськовского

Кстати полноту можно доказывать маханием руками как для предикатов, и я не могу утверждать, что при таком подходе ИВ не будет полно относительно любой модели.

4.1.1. Контрапозиция

Лемма 4.1.
$$(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$$

Доказательство. Докажем, что $(\alpha \to \beta)$, $\neg \beta \vdash \neg \alpha$:

- (1) $\alpha \to \beta$ Допущение
- (2) $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ Cx. akc. 9
- (3) $(\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha$ M.P. 1,2
- (4) $\neg \beta \to \alpha \to \neg \beta$ Сх. акс. 1 После применения теоремы о дедукции 2

- (5) $\neg \beta$ Допущение (6) $\alpha \to \neg \beta$ М.Р. 5,4
- (7) $\neg \alpha$ M.P. 6,3

раза получим как раз то, что нужно

4.1.2. Правило исключененного третьего

С помощью контрапозиции доказываем два утверждения:

- $\neg(A|\neg A) \rightarrow \neg A$ (один раз контрапозицию от этого обратную, там $A \rightarrow (A|\neg A)$ акс)
- $\neg(A|\neg A) \to \neg \neg A$ Потом девятую аксиому и снимаем двойное отрицание

4.1.3. Всякие очевидные вещи типа если выводится из А и из Б то из А и Б тоже

4.1.4. Правило со звездочкой (14 доказательств)

- 1. $\alpha, \beta \vdash \alpha \lor \beta$
 - α
 - $\alpha \to \alpha \vee \beta$
 - $\alpha \vee \beta$
- 2. $\alpha, \neg \beta \vdash \alpha \lor \beta$
 - c
 - $\alpha \to \alpha \vee \beta$
 - $\alpha \vee \beta$
- 3. $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - β
 - $\beta \to \alpha \vee \beta$
 - $\alpha \vee \beta$

5.
$$\alpha, \beta \vdash \alpha \& \beta$$
 α
 β
 $\alpha \to \beta \to \alpha \& \beta$
 $\beta \to \alpha \& \beta$
 $\alpha \& \beta$

6.
$$\alpha, \neg \beta \vdash \neg(\alpha \& \beta)$$

 $\neg \beta$
 $((\alpha \& \beta) \to \beta) \to ((\alpha \& \beta) \to \neg \beta) \to \neg(\alpha \& \beta)$
 $\alpha \& \beta \to \beta$
 $(\alpha \& \beta \to \neg \beta) \to \neg(\alpha \& \beta)$
 $\neg \beta \to \alpha \& \beta \to \neg \beta$
 $\alpha \& \beta \to \neg \beta$
 $\neg(\alpha \& \beta)$

7.
$$\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$$
 аналогично

8.
$$\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$$
 аналогично

9.
$$\alpha, \beta \vdash \alpha \rightarrow \beta$$

$$\beta$$

$$\beta \rightarrow \alpha \rightarrow \beta$$

$$\alpha \rightarrow \beta$$

10.
$$\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$$
 α
 $\neg \beta$
 $\neg \beta \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta)$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $\alpha, \neg \beta, \alpha \rightarrow \beta \vdash \beta$
 α
 $\alpha \rightarrow \beta$
 β
 $((\alpha \rightarrow \beta) \rightarrow \beta)$
 $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$
 $((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$
 $\neg \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $\neg(\alpha \rightarrow \beta)$

11.
$$\neg \alpha, \beta \vdash \alpha \rightarrow \beta$$
 β
 $\beta \rightarrow \alpha \rightarrow \beta$
 $\alpha \rightarrow \beta$

- 12. $\neg \alpha, \neg \beta \vdash \alpha \to \beta$ Ну тут типо очевидно (на самом деле тут боль и страдания)
- 13. *α* ⊢ ¬¬*α*Схема аксиом 9
- 14. $\neg \alpha \vdash \neg \alpha$ $\neg \alpha$

5. Ticket 3: ИИВ

5.1. ИИВ, структура, модель

Сигнатура - (R, F, C, r): R - множество символов для предикатов, F - функциональных символов, C - символов констант, r – функция, определяющая арность $x \in R \vee F$. Интерпретация - это приписывание символам значения и правил действия Структура - это носитель М (множство истинностных значений), сигнатура и интерпретация над носителем. Если все аксиомы верны, то структура корректна. В таком случае она называется моделью. Выкидываем 10 аксиому, добавляем $\alpha \to \neg \alpha \to \beta$.

Она доказывается и в ИВ:

Лемма 5.1. $\alpha, \alpha \vee \neg \alpha, \neg \alpha \vdash \beta$

(1)	α	Допущение
(2)	$\neg \alpha$	Допущение
(3)	$\alpha \to \neg \beta \to \alpha$	Сх. акс. 1
(4)	$\neg \beta \to \alpha$	M.P. 1,3
(5)	$\neg \alpha \to \neg \beta \to \neg \alpha$	Сх. акс. 1
(6)	$\neg \beta \rightarrow \neg \alpha$	M.P. 2,5
(7)	$(\neg \beta \to \alpha) \to (\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	Сх. акс. 9
(8)	$(\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	M.P. 4,7
(9)	$\neg \neg \beta$	M.P. 6,8
(10)	$\neg\neg\beta\to\beta$	Сх. акс. 10
(11)	eta	M.P. 9,10

Таким образом мы умеем доказывать $\alpha \to \alpha \vee \neg \alpha \to \neg \alpha \to \beta$ применив 3 раза теорему о дедукции

Лемма 5.2. $\alpha \to \alpha \vee \neg \alpha \to \neg \alpha \to \beta, \alpha \vee \neg \alpha \vdash \alpha \to \neg \alpha \to \beta$

```
\begin{array}{llll} \text{(1)} & (\alpha \to \alpha \vee \neg \alpha) \to (\alpha \to \alpha \vee \neg \alpha \to (\neg \alpha \to \beta)) \to (\alpha \to (\neg \alpha \to \beta)) & \text{Cx. акс. 2} \\ \text{(2)} & \alpha \vee \neg \alpha \to \alpha \to \alpha \vee \neg \alpha & \text{Cx. акс. 1} \\ \text{(3)} & \alpha \vee \neg \alpha & \text{Допущение} \\ \text{(4)} & \alpha \to \alpha \vee \neg \alpha & \text{M.P. 3,2} \\ \text{(5)} & (\alpha \to \alpha \vee \neg \alpha \to (\neg \alpha \to \beta)) \to (\alpha \to (\neg \alpha \to \beta)) & \text{M.P. 4,1} \\ \text{(6)} & \alpha \to \alpha \vee \neg \alpha \to \beta & \text{Допущение} \\ \text{(7)} & \alpha \to \neg \alpha \to \beta & \text{M.P. 6,5} \end{array}
```

5.2. Опровергаемость исключенного третьего

Вводим в наше множество истинностных значений дополнительный элемент H (сокращение от слова <<Hеизвестно>>). Отождествим H с $\frac{1}{2}$, так что $\Pi < H < \Pi$. Определим операции на этом множестве истинностных значений:

- конъюнкция: минимум из двух значений (например $\mathsf{V}\&\mathsf{H}=\mathsf{H}$).
- дизъюнкция: максимум из двух значений (например $V \lor H = V$).
- импликация: И $\rightarrow \alpha = \alpha$, Л $\rightarrow \alpha = \mathsf{N}$, Н \rightarrow Л = Л, Н \rightarrow Н = И, Н \rightarrow Н = И.

• отрицание: $\neg H = \Pi$, а для остальных элементов все так же.

Назовем формулу 3-тавтологией, если она принимает значение И при любых значениях переменных из множества {И, ЛН}. Теперь нужно всего-лишь проверить, что все аксиомы являются 3-тавтологиями и, что если посылка импликации является тавтологией, то и заключение является тавтологией. Второе очевидно по определению тавтологии, а аксиомы просто проверяются вручную.

Значит любая интуиционистски выводимая формула 3-тавтология. Теперь заметим, что формула $\alpha \vee \neg \alpha$ принимает значение H при $\alpha = \mathsf{H}$. Следовательно она не 3-тавтология, а значит невыводима.

5.3. Решетки

Просто решетка -- это (L,+,*) в алгебраическом смысле и (L,\leq) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы:

• Аксиомы идемпотентность

$$\alpha + \alpha = \alpha$$
$$\alpha * \alpha = \alpha$$

• Аксиомы коммутативности

$$\alpha + \beta = \beta + \alpha$$
$$\alpha * \beta = \beta * \alpha$$

• Аксиомы ассоциативности

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
$$(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$$

• Аксиомы поглощения

$$\alpha + (\alpha * \beta) = \alpha$$
$$\alpha * (\alpha + \beta) = \alpha$$

Также решетку можно определить как упорядоченное множество с частичным порядком на нем. Тогда операции +,* определяются как sup и inf ($sup(\varphi) = min\{u|u \ge \forall x \in \varphi\}$, $inf(\varphi) = max\{u|u \le \forall x \in \varphi\}$).

$$\alpha + \beta = \sup(\{\alpha, \beta\})$$

$$\alpha * \beta = \inf(\{\alpha, \beta\})$$

Если для любых двух элементов из множества S можно определить эти две операции, то S называется решеткой.

Дистрибутивная решетка -- решетка, в которой добавляется дистрибутивность: $\alpha*(\beta+\gamma)=\alpha*\beta+\alpha*\gamma$

Импликативная решетка -- решетка, в которой для любых двух элементов α и β из множества существует псевдодополнение α относительно β ($\alpha \to \beta$), которое определяется так:

$$\alpha \to \beta = \max\{\gamma | \gamma * \alpha \le \beta\}$$

Свойства импликативной решетки:

- Существует максимальный элемент $\alpha \to \alpha$, обычно обозначаемый как 1
- Всякая импликативная решетка дистрибутивна

5.4. Алгебра Гейтинга, булева алгебра

Булева алгебра -- (L, +, *, -, 0, 1), с аксиомами:

• Аксиомы коммутативности

$$\alpha + \beta = \beta + \alpha$$
$$\alpha * \beta = \beta * \alpha$$

• Аксиомы ассоциативности

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
$$(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$$

• Аксиомы поглощения

$$\alpha + (\alpha * \beta) = \alpha$$
$$\alpha * (\alpha + \beta) = \alpha$$

• Аксиомы дистрибутивности

$$\alpha + (\beta * \gamma) = (\alpha + \beta) * (\alpha + \gamma)$$

$$\alpha * (\beta + \gamma) = (\alpha * \beta) + (\alpha * \gamma)$$

• Аксиомы дополнительности

$$\alpha * \neg \alpha = 0$$
$$\alpha + \neg \alpha = 1$$

Также Булеву алгебру можно определить как импликативную решетку над фундированным множеством. Тогда 1 в ней будет $\alpha \to \alpha$, $\neg \alpha = \alpha \to 0$. Тогда $\alpha * \neg \alpha = 0$ будет уже свойством, а $\alpha + \neg \alpha = 1$ все еще аксиомой.

Псевдобулева алгебра (алгебра Гейтинга) -- это импликативная решетка над фундированным множеством с $\neg \alpha = \alpha \to 0$

5.5. Алгебра Линденбаума-Тарского

Пусть V -- множество формул ИИВ

Порядок для решетки:

$$\alpha \leq \beta \Leftrightarrow \alpha \vdash \beta$$
$$\alpha \sim \beta \Leftrightarrow \alpha \vdash \beta \& \beta \vdash \alpha$$

Определим операции и 0, 1:

$$0 - \alpha \& \neg \alpha = \bot$$

$$1 - \alpha \to \alpha = T$$

$$\alpha \& \beta = \alpha * \beta$$

$$\alpha \lor \beta = \alpha + \beta$$

$$\neg \alpha = -\alpha$$

Получившаяся алгебра называется алгеброй Линденбаума-Тарского и является алгеброй Гейтинга, т.к. для нее выполняется аксиома $\alpha * \neg \alpha = 0$ (по определению).

25

 Λ емма 5.3. $\forall \beta \in V \perp \vdash \beta$ (Из лжи следует все)

Доказательство. $\alpha \& \neg \alpha \vdash \beta$

- (1) $\alpha \& \neg \alpha$ Допущение
- (2) $\alpha \& \neg \alpha \rightarrow \alpha$ Cx. akc. 4
- (3) $\alpha \& \neg \alpha \rightarrow \neg \alpha$ Cx. akc. 5
- (4) α M.P. 1,2
- (5) $\neg \alpha$ M.P. 1,3
- (6) $\alpha \rightarrow \neg \alpha \rightarrow \beta$ Cx. akc. 10
- (7) $\neg \alpha \rightarrow \beta$ M.P. 4,6
- (8) β M.P. 5,7

5.6. Теорема о полноте ИИВ относительно алгебры Гейтинга

Возьмем в качестве алгебры Гейтинга алгебру Λ инденбаума-Тарского - ξ . Она очевидно является моделью.

Теорема 5.4. $\models \alpha \Rightarrow \vdash \alpha$

Доказательство. $\models \alpha \Rightarrow \llbracket \alpha \rrbracket^{\xi} = 1$

 $\llbracket \alpha \rrbracket^{\xi} = 1 \Rightarrow 1 \leq \llbracket \alpha \rrbracket^{\xi}$ (По определению алгебры Λ -Т)

 $\beta \to \beta \vdash \alpha$ (По определению \leq в алгебре Λ -Т)

Т.к. $\beta \to \beta$ - тавтология, то и α - тавтология

5.7. Дизъюнктивность ИИВ

Используем алгебру Гёделя $\Gamma(A)$ (γ - функция преобразования). Можно преобразовать любую алгебру Гейтинга, возьмем алгебру Λ -Т. Алгебра Гёделя использует функцию преобразования: $\gamma(a)=b$ значит, что в алгебре A элементу a соответствует элемент b из алгебры Гёделя. Порядок сохраняется естественным образом. Также добавим еще один элемент ω ($\gamma(1)=\omega$). Таким образом $\Gamma(A)=A\cup\{\omega\}$. Порядок в $\Gamma(A)$:

- $\forall a \in \Gamma(A) \setminus \{1\} \ a \le \omega$
- $\omega \leq 1$

a+b	b=1	$b = \gamma(v)$
a=1	1	1
$a = \gamma(u)$	1	$\gamma(u+v)$

a * b	b = 1	$b = \gamma(v)$
a = 1	1	$\gamma(a*v)$
$a = \gamma(u)$	$\gamma(u*b)$	$\gamma(u*v)$

$a \rightarrow b$	b=1	$b = \gamma(v)$
a=1	1	$\gamma(a \to v)$
$a = \gamma(u)$	1	$u \to v$

a	$\neg a$
a=1	$\gamma(\neg a)$
$a = \gamma(u)$	$\neg u$

Лемма 5.5. Гёделева алгебра является Гейтинговой

Доказательство. Необходимо просто доказать аксиомы коммутативности, ассоциативности и поглощения. \Box

Теорема 5.6. $\vdash \alpha \lor \beta \Rightarrow$ либо $\vdash \alpha$, либо $\vdash \beta$

Доказательство. Возьмем A, построим $\Gamma(A)$. Если $\vdash \alpha \lor \beta$, то $\llbracket \alpha \lor \beta \rrbracket^A = 1$ и $\llbracket \alpha \lor \beta \rrbracket^{\Gamma(A)} = 1$. Тогда по определению + в алгебре Γ ёделя, $\llbracket \alpha \rrbracket^{\Gamma(A)} = 1$, либо $\llbracket \beta \rrbracket^{\Gamma(A)} = 1$. Тогда оно такое же и в алгебре Λ -T, а алгебра Λ -T полна.

5.8. Теорема Гливенко

Теорема 5.7. Если в ИВ доказуемо α , то в ИИВ доказуемо $\neg \neg \alpha$.

Доказательство. Разберем все втречающиеся в изначальном доказательстве формулы

1. Заметим, что если в ИИВ доказуемо α , то $\neg\neg\alpha$ так же доказуемо.

Докажем, что α $\vdash \neg \neg \alpha$

(1)	α	Допущение	
(2)	$\alpha \to \neg \alpha \to \alpha$	Сх. акс. 1	
(3)	$\neg \alpha \to \alpha$	M.P. 1,2	
(4)	$\neg \alpha \to (\neg \alpha \to \neg \alpha)$	Сх. акс. 1	
(5)	$(\neg \alpha \to (\neg \alpha \to \neg \alpha)) \to (\neg \alpha \to ((\neg \alpha \to \neg \alpha) \to \neg \alpha)) \to (\neg \alpha \to \neg \alpha)$	Сх. акс. 2	
(6)	$(\neg \alpha \to ((\neg \alpha \to \neg \alpha) \to \neg \alpha)) \to (\neg \alpha \to \neg \alpha)$	M.P. 4,5	Зна-

 $(\neg \alpha \to ((\neg \alpha \to \neg \alpha) \to \neg \alpha)) \to (\neg \alpha \to \neg \alpha)$ M.P. 4,5 (6) (7) $(\neg \alpha \rightarrow ((\neg \alpha \rightarrow \neg \alpha) \rightarrow \neg \alpha))$ Сх. акс. 1

M.P. 7,6 (8) $\neg \alpha \rightarrow \neg \alpha$

 $(\neg \alpha \to \alpha) \to (\neg \alpha \to \neg \alpha) \to \neg \neg \alpha$ Сх. акс. 9 (9)

(10) $(\neg \alpha \rightarrow \neg \alpha) \rightarrow \neg \neg \alpha$ M.P. 3,9

(11) $\neg \neg \alpha$ M.P. 8,10

чит, если α - аксиома с 1-ой по 9-ую, то $\neg\neg\alpha$ так же может быть доказано

2. Пусть α получилось по 10-ой аксиоме $\neg\neg\alpha \to \alpha$. Докажем, что $\vdash \neg\neg(\neg\neg\alpha \to \alpha)$

(1) $\alpha \rightarrow \neg \neg \alpha \rightarrow \alpha$ Сх. акс. 1

(2) $\neg(\neg\neg\alpha\to\alpha)\to\neg\alpha$ Контрпозиция

(3) $\neg \alpha \rightarrow \neg \neg \alpha \rightarrow \alpha$ Сх. акс. 10

(4) $\neg(\neg\neg\alpha\to\alpha)\to\neg\neg\alpha$ Контрпозиция

 $(5) \quad (\neg(\neg\neg\alpha\to\alpha)\to\neg\alpha)\to(\neg(\neg\neg\alpha\to\alpha)\to\neg\neg\alpha)\to\neg\neg(\neg\neg\alpha\to\alpha)$ Сх. акс. 9

M.P. 2,5 (6) $(\neg(\neg\neg\alpha\to\alpha)\to\neg\neg\alpha)\to\neg\neg(\neg\neg\alpha\to\alpha)$ (7) $\neg \neg (\neg \neg \alpha \rightarrow \alpha)$ M.P. 4,6

- 3. Приведем конструктивное доказательство:
 - Если α аксиома, то $\neg\neg\alpha$ доказывается с помощью 1-го и 2-го пунктов
 - Если был применен М.Р., то в изначальном доказтельстве были α , $\alpha \to \beta$, β . По индукционному предположению мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$. Нужно доказать $\neg \neg \beta$.

Давайте для начала докажем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$, $\neg\beta$, α , $\alpha \to \beta \vdash \beta$.

Допущение

(2) $\alpha \to \beta$ Допущение

M.P. 1,2

Значит мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$, $\neg\beta$, $\alpha \vdash (\alpha \to \beta) \to \beta$. Теперь докажем, **что** $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$, $\neg\beta$, α , $(\alpha \to \beta) \to \beta \vdash \neg\alpha \to \beta$.

(1) $((\alpha \to \beta) \to \beta) \to ((\alpha \to \beta) \to \neg \beta) \to \neg(\alpha \to \beta)$ Сх. акс. 9

(2) $((\alpha \rightarrow \beta) \rightarrow \beta)$ Допущение

(3) $\neg \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow \neg \beta$ Сх. акс. 1

(4) $\neg \beta$ Допущение M.P. 4,3

(5) $(\alpha \to \beta) \to \neg \beta$

(6) $((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg (\alpha \rightarrow \beta)$ M.P. 2,1

(7) $\neg(\alpha \rightarrow \beta)$ M.P. 5,6

Теперь мы знаем, что $\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta \vdash \alpha \to \neg(\alpha \to \beta)$. Докажем, что $\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta, \alpha \to \neg(\alpha \to \beta) \vdash \neg\alpha$.

(1)
$$(\alpha \to \neg(\alpha \to \beta)) \to (\alpha \to \neg\neg(\alpha \to \beta)) \to \neg\alpha$$
 Cx. akc. 9

(2)
$$\alpha \to \neg(\alpha \to \beta)$$
 Допущение

(3)
$$\neg \neg (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \neg \neg (\alpha \rightarrow \beta)$$
 Cx. akc. 1

(4)
$$\neg \neg (\alpha \rightarrow \beta)$$
 Допущение

(5)
$$\alpha \rightarrow \neg \neg (\alpha \rightarrow \beta)$$
 M.P. 4,3

(6)
$$(\alpha \to \neg \neg (\alpha \to \beta)) \to \neg \alpha$$
 M.P. 2,1

(7)
$$\neg \alpha$$
 M.P.5,6

Теперь мы знаем, что $\neg\neg\alpha, \neg\neg(\alpha \to \beta) \vdash \neg\beta \to \neg\alpha$. Наконец докажем, что $\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta \to \neg\alpha \vdash \neg\neg\beta$.

(1)
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\neg \beta \rightarrow \neg \neg \alpha) \rightarrow \neg \neg \beta$$
 Cx. akc. 9

(2)
$$\neg \beta \rightarrow \neg \alpha$$
 Допущение

(3)
$$\neg \neg \alpha \rightarrow \neg \beta \rightarrow \neg \neg \alpha$$
 Cx. akc. 1

$$(4)$$
 $\neg \neg \alpha$ Допущение

(5)
$$\neg \beta \rightarrow \neg \neg \alpha$$
 M.P. 4,3

(6)
$$(\neg \beta \rightarrow \neg \neg \alpha) \rightarrow \neg \neg \beta$$
 M.P. 2,1

(7)
$$\neg \neg \beta$$
 M.P. 5,6

5.9. Топологическая интерпретация

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве \mathbb{R}^n . Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества \mathbb{R}^n . Определим операции следующим образом:

•
$$\alpha + \beta = \alpha \cup \beta$$

•
$$\alpha * \beta = \alpha \cap \beta$$

•
$$\alpha \to \beta = Int(\alpha^c \cup \beta)$$

•
$$-\alpha = Int(\alpha^c)$$

•
$$0 = \emptyset$$

•
$$1 = \cup \{V \subset L\}$$

6. Ticket 4: ИИВ2

6.1. Модели Крипке

W -- множество миров

V -- множество вынужденных переменных

Введем отношение частичного порядка на W - \leq (отношение достижимости). W введем оценку переменной $v:W\times V\to\{0,1\}.$ v должна быть монотонна (Если v(x,P)=1 и $x\leq y$, то v(y,P)=1). Если пременная x истинна в мире w, то мы пишем $w\Vdash x$.

Модель Крипке -- это $< W, \le, v >$.

Теперь можно определить истинность любой формулы (в данном мире) индукцией по построению формулы. Правила:

- $w \Vdash A \& B \Leftrightarrow w \Vdash A$ и $w \Vdash B$;
- $w \Vdash A \lor B \Leftrightarrow w \Vdash A$ или $w \Vdash B$;
- $w \Vdash A \to B \Leftrightarrow$ в любом мире $u \ge w$, в котором истинна A, истинна так же истинна и B;
- $w \Vdash \neg A \Leftrightarrow$ ни в каком мире $u \geq w$ формула A не является истинной;

6.2. Корректность ИИВ относительно моделей Крипке

Теорема 6.1. Если формула выводима в ИИВ, то она истинна в моделях Крипке.

Доказательство. Проверим М.Р. и аксиомы (что они истинны во всех мирах):

- М.Р.: по определению импликации в моделях Крипке, если в мире истинно $A,A \to B$, то истинно и B
- Аксиомы:
 - 1. $A \rightarrow (B \rightarrow A)$

Пусть где-нибудь истинна A, в силу монотонности она истинна во всех б`ольших мирах, так что $B \to A$ тоже будет истинно.

- 2. $(A \to B) \to ((A \to (B \to C)) \to (A \to C))$ Пусть где-нибудь истинно $A \to B$, тогда необходимо доказать, что истинно и $((A \to (B \to C)) \to (A \to C))$.
 - Пусть истинны A,B. Тогда если истинно $A \to (B \to C)$, то истинно и C по монотонности A и B. A,B,C истинны, значит $A \to C$ истинно.
 - Пусть не истинны ни A, ни B. Тогда $A \to (B \to C)$ не истинно и C не истинно. Значит $A \to C$ не может быть истинно, т.к. ни A, ни B, ни C не истинны.
- 3. Подобным образом доказываем все аксиомы

6.3. Вложение Крипке в Гейтинга

Не нужно

П

6.4. Полнота ИИВ в моделях Крипке

Теорема 6.2. ИИВ полно относительно моделей Крипке

Доказательство. Докажем в несколько шагов

- 1. Дизъюнктивное множество M такое множество, что если в $M \vdash a \lor b$, то $a \in M$ или $b \in M$. Докажем, что если $M \vdash a$, то $a \in M$: Пусть это не так. Рассмотрим $a \to a \lor \neg a$. Раз $M \vdash a$, то $M \vdash a \lor \neg a$. Т.к. $a \not\in M$, то $\neg a \in M$ по определению дизъюнктивности M. Но тогда из $M \vdash a$ и $M \vdash \neg a$ мы можем доказать, что $M \vdash a \& \neg a$.
- 2. Возьмем множество всех дизъюнктивных множеств с формулами из ИИВ. Мы можем это сделать, т.к. ИИВ дизъюнктивно. Для любого элемента $W_i \vdash a, a \in W_i$, значит в этом мире a вынуждено. Построим дерево с порядком "быть подмножеством". Докажем, что это множество модель Крипке. Проверим 5 свойств:
 - (a) $W,x \Vdash P \Leftrightarrow v(x,P) = 1$ если $P \in V$ (V множество вынужденных переменных). Монотонность выполняется по определению дерева
 - (b) $W,x \Vdash (A\&B) \Leftrightarrow W,x \Vdash A$ и $W,x \Vdash B$ С помощью аксиомы $A\&B \to A$ доказываем $W \vdash A$, значит $A \in W$. Аналогично с B
 - (c) $W,x \Vdash (A \lor B) \Leftrightarrow W,x \Vdash A$ или $W,x \Vdash B$ Очевидно по определению дизъюнктивности
 - (d) $W,x \Vdash (A \to B) \Leftrightarrow \forall y \geq x (W,y \Vdash A \Rightarrow W,y \Vdash B)$ Мы знаем, что $W \vdash A \to B$. Пусть в W есть A, тогда по М.Р. докажем, что B. Пусть в W есть B, тогда мы уже получили B.
 - (e) $W,x \Vdash \neg A \Leftrightarrow \forall y \geq x (W,x \not\Vdash A)$ Если где-то оказалось A, то оно доказуемо, а значит мы сможем доказать и $A \& \neg A$

3. $\Vdash A$, тогда $W_i \Vdash A$. Рассмотрим $W_0 = \{$ все тавтологии ИИВ $\}$. $W_0 \Vdash A$, т.е. $\vdash A$.

6.5. Нетабличность интуиционистской логики

Теорема 6.3. Не существует полной модели, которая может быть выражена таблицей

Доказательство. Докажем от противного. Построим табличную модель и докажем, что она не полна. В ИВ мы обычно пользуемся алгеброй J_0 Яськовского $V=\{0,1\}, 0\leq 1$. Пусть имеется $V=\{...\}, |V|=n$ - множество истиностных значений. Пусть его размер больше 2. Тогда построим формулу $\vee_{(1\leq j< i\leq n+1)}(p_i\to p_j)$ - такая большая дизъюнкция из импликаций

1. Она общезначима, т.к. всего таких импликаций у нас будет $C_n^2 >= n$ (по принципу Дирихле встретятся два одинаковых значения и она будет верна, тогда все выражение будет верно)

2. Недоказуемость. Построим такую модель Крипке, в которой она будет не общезначима.

 J_0 - алгебра Яськовского. Определим последовательность алгебр L_n по следующим правилам: $L_0=J_0,\,L_n=\Gamma(L_{n-1}).$ Таким образом L_n - упорядоченное множество $\{0,w_1,w_2,...,1\}.$ Пусть f - оценка в L_n , действующая по следующим правилам на нашу формулу: $f(a_1)=0,\,f(a_{n+1})=1,\,f(a_i)=w_i$ при $j< if(a_i\to a_j)=f(a_i)\to f(a_j)=f(a_j).$ Последнее выражение не может являться 1, так что формула недоказуема. (ИИВ полно относительно алгебры Гейтинга)

7. Ticket 5: Логика 2 порядка

7.1. Основные определения

Смотрим коснпект ДГ

7.2. Теорема о дедукции

Теорема 7.1. Если $\Gamma, \alpha \vdash \beta$, и в доказательстве отсутствуют применения правил для кванторов, использующих свободные переменные из формулы α , то $\Gamma \vdash \alpha \to \beta$

Доказательство. Будем рассматривать формулы в порядке сверху вниз. На i-ой строке встретили формулу δ_i . Тогда докажем, что $\alpha \to \delta_i$. Разберем случаи:

- 1. δ_i старая аксиома, совпадает с α или выводится по правилу М.Р. Тогда мы знаем, что делать из Теоремы о дедукции для ИВ
- 2. δ_i новая аксиома Тогда все то же самое, что и в старой аксиоме, но нужно так же проверить условие.
- 3. $\exists x(\psi) \to \varphi$ новое правило вывода
 - Докажем вспомогательную лемму:

Лемма 7.2.
$$(\alpha \to (\beta \to \gamma)) \to (\beta \to (\alpha \to \gamma))$$

Доказательство. Докажем, что $\alpha \to (\beta \to \gamma), \beta, \alpha \vdash \gamma$:

- (1) $\alpha \to \beta \to \gamma$ Допущение
- (2) α Допущение
- (3) $\beta \rightarrow \gamma$ M.P. 2,1
- β Допущение
- (5) γ M.P. 4,3
- По индукционному преположению мы знаем, что $\alpha \to \psi \to \varphi$. Тогда докажем, что $\alpha \to \psi \to \varphi$, $(\alpha \to \psi \to \varphi) \to (\psi \to \alpha \to \varphi) \vdash \alpha \to \exists x(\psi) \to \varphi$:

- (1) $(\alpha \to \psi \to \varphi) \to (\psi \to \alpha \to \varphi)$ Допущение
- (2) $\alpha \to \psi \to \varphi$ Допущение
- (3) $\psi \to \alpha \to \varphi$ M.P. 2,1
- (4) $\exists x(\psi) \to \alpha \to \varphi$ Правило вывода 1 (5) $(\exists x(\psi) \to \alpha \to \varphi) \to (\alpha \to \exists x(\psi) \to \varphi)$ Допущение
- (6) $\alpha \to \exists x(\psi) \to \varphi$ M.P. 4,5
- 4. $\varphi \to \forall x(\psi)$ новое правило вывода
 - Докажем вспомогательную лемму 1

Лемма 7.3.
$$(\alpha \& \beta \to \gamma) \to (\alpha \to \beta \to \gamma)$$

Доказательство. Докажем, что $(\alpha \& \beta \to \gamma), \alpha, \beta \vdash \gamma$:

(1) α

Допущение

(2) β

- Допущение
- (3) $\alpha \to \beta \to \alpha \& \beta$
- Сх. акс. 1
- (4) $\beta \rightarrow \alpha \& \beta$ M.P. 1,3
- (5) $\alpha \& \beta$

- M.P. 2,4
- (6) $\alpha \& \beta \rightarrow \gamma$
- Допущение

(7) γ

M.P. 5,6

• Докажем вспомогателньую лемму 2

Лемма 7.4.
$$(\alpha \to \beta \to \gamma) \to (\alpha \& \beta \to \gamma)$$

Доказательство. Докажем, что $\alpha \to \beta \to \gamma$, $\alpha \& \beta \vdash \gamma$:

- (1) $\alpha \& \beta \rightarrow \alpha$ Cx. akc. 4
- (2) $\alpha \& \beta$ Допущение
- (3) α M.P. 2,1 (4) $\alpha \& \beta \to \beta$ Cx. akc. 5

- $(5) \quad \beta$
- M.P. 2,4
- (6) $\alpha \to \beta \to \gamma$ Допущение
- (7) $\beta \to \gamma$ M.P. 3,6 (8) γ M.P. 5,7

- По индукционному предположению мы знаем, что $\alpha \to \psi \to \varphi$. Тогда докажем, что $\alpha \to \psi \to \varphi \vdash \alpha \to \psi \to \forall (\varphi)$.
 - (1) $(\alpha \to \psi \to \varphi) \to (\alpha \& \psi \to \varphi)$
- Вспомогательная лемма 1

(2) $\alpha \to \psi \to \varphi$

Допущение M.P. 2,1

(3) $\alpha \& \psi \rightarrow \varphi$

- Правило вывода 2
- (5) $(\alpha \& \psi \to \forall (\varphi)) \to (\alpha \to \psi \to \forall (\varphi))$ Вспомогательная лемма 2

(6) $\alpha \to \psi \to \forall (\varphi)$

(4) $\alpha \& \psi \rightarrow \forall (\varphi)$

M.P. 4,5

7.3. Корректность исчисления предикатов

Смотрим конспект ДГ