(a)
$$\theta$$
 (log(log (n))) $T(n) = \log(\log n)$

As i is approaching towards n by squaring itself, thus in the end $2^{2^{h}} = n$ $\log n = 2^{h}$ $\log(\log n) = k$ where k is the number of times the logo is run.

(b) the inner logo runs at $\log 0$ of θ (k^{2}) and i is changing as a multiplier of \sqrt{n} , $i = C\sqrt{n}$, with in each if statement $T(n) = \sum_{i=1}^{n} (\theta(1)) + \sum_{i=1}^{n} k^{2} \theta(1)$ there are \sqrt{n} if \sqrt{n} within n. so the if \sqrt{n} which \sqrt{n} is \sqrt{n} in \sqrt{n} in