Comment enseigne-t-on aux algorithmes?

Régression Linéaire et Logistique

Cost Function

La Régression Linéaire

Comment évaluer les performances d'un algorithme ?

• Une hypothèse est une fonction (h) qui prend un ensemble X ($x_j \forall j \in \mathbb{N}$) de variables et qui sort une prédiction (\hat{y}).

→ Notre première hypothèse!

$$h(X) = \hat{y}$$

h : l'hypothèse

X : les variables

 \hat{y} : la prédiction

Comment évaluer les performances d'un algorithme ?

- La distance entre une *prédiction* (\hat{y}) et l'objectif (y) est une bonne façon d'évaluer le comportement d'un algorithme.
- ullet On appellera l'évaluation finale le coût (J).
- Plus une prédiction est loin de l'objectif, plus on aimerait que le coût soit grand.
- → Pour calculer la distance entre deux valeurs : <u>La soustraction</u>

$$J = \hat{y} - y$$

J : le coût

 \hat{y} : la prédiction

y: l'objectif

Comment évaluer les performances d'un algorithme ?

• Une relation linéaire est trop faible. On voudrait un *coût* beaucoup plus fort pour les *prédictions* fortement éloignées.

→ Donner un rapport logarithmique à la distance : <u>Mettre au carré</u>

$$J = (\hat{y} - y)^2$$

|J|: le coût

 \hat{y} : la prédiction

y : l'objectif

Comment évaluer les performances d'un algorithme ?

- On évalue un algorithme sur l'ensemble de ses prédictions et non une seule.
- On fait donc une moyenne des prédictions pour chaque donnée x^i ($\forall i \in [0,m]$). On dit qu'il y a m valeurs d'entrainement.
- → Pour faire une moyenne, on somme tous les coûts et on divise par le nombre de valeurs.

$$J = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

J: le coût

 \hat{y} : la prédiction

y: l'objectif

m : le nombre de valeurs total

Comment évaluer les performances d'un algorithme ?

- Rappel : $\hat{y} = h(X)$
- ullet Pour l'instant h(X) pourrait être n'importe quelle hypothèse !
- C'est simplement une fonction qui prend des variables en *input* et qui sort un chiffre en *output*.

$$J = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

J: le coût

 \hat{y} : la prédiction

y : l'objectif

m : le nombre de valeurs total

Exemple

# de chambres	Surface m^2	Année Construction	# de Cheminées	$Prix = \mathcal{Y}$
3	8450	2003	0	208500
3	9600	1976	1	181500
3	11250	2001	1	223500
3	9550	1915	1	140000
4	14260	2000	1	250000
1	14115	1993	0	143000
3	10084	2004	1	307000
3	10382	1973	2	200000
2	6120	1931	2	129900
2	7420	1939	2	118000
3	11200	1965	0	129500
4	11924	2005	2	345000
2	12968	1962	0	144000
3	10652	2006	1	279500
2	10920	1960	1	157000
2	6120	1929	0	132000

,	

$h(X) = \widehat{y}$	y
0,00	208500,00
0,00	181500,00
0,00	223500,00
0,00	140000,00
0,00	250000,00
0,00	143000,00
0,00	307000,00
0,00	200000,00
0,00	129900,00
0,00	118000,00
0,00	129500,00
0,00	345000,00
0,00	144000,00
0,00	279500,00
0,00	157000,00
0,00	132000,00

	4	3	2
7	1	$\frac{m}{}$	$(\widehat{\mathbf{v}} \cdot - \mathbf{v})^2$
J =	\overline{m}	$\sum_{i=1}^{\prime}$	$(y_i - y_i)^2$

2

 $(\hat{y} - y)^2$

43472250000,00

32942250000,00

49952250000,00

19600000000,00

62500000000,00

20449000000,00

94249000000,00

40000000000,00

16874010000,00

13924000000,00

16770250000,00

119025000000,00

20736000000,00

78120250000,00

24649000000,00

17424000000,00

$\sum (\hat{y} - y)^2$
6,71E+11

J 4,19E+10

4

moyenne	
mediane	

2,69	10313,44	1972,63	0,94	193025,00
3,00	10517,00	1974,50	1,00	169250,00

Exemple

1,01E+09

$$J = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

# de chambres	Surface m^2	Année Construction	Cheminée
3	8450	2003	0
3	9600	1976	1
3	11250	2001	1
3	9550	1915	1
4	14260	2000	1
1	14115	1993	0
3	10084	2004	1
3	10382	1973	2
2	6120	1931	2
2	7420	1939	2
3	11200	1965	0
4	11924	2005	2
2	12968	1962	0
3	10652	2006	1
2	10920	1960	1
2	6120	1929	0

$h(X) = \hat{y}$ y $206320,00$ $208500,00$ $209390,00$ $181500,00$ $220140,00$ $223500,00$ $203040,00$ $140000,00$ $298090,00$ $250000,00$ $107645,00$ $143000,00$ $214610,00$ $307000,00$ $213020,00$ $200000,00$ $124510,00$ $129900,00$ $131810,00$ $118000,00$ $286930,00$ $345000,00$ $161810,00$ $144000,00$		
209390,00 181500,00 220140,00 223500,00 203040,00 140000,00 298090,00 250000,00 107645,00 143000,00 214610,00 307000,00 213020,00 200000,00 124510,00 129900,00 131810,00 118000,00 286930,00 345000,00	$h(X) = \widehat{y}$	y
220140,00 223500,00 203040,00 140000,00 298090,00 250000,00 107645,00 143000,00 214610,00 307000,00 213020,00 200000,00 124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	206320,00	208500,00
203040,00 140000,00 298090,00 2500000,00 107645,00 143000,00 214610,00 307000,00 213020,00 2000000,00 124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	209390,00	181500,00
298090,00 250000,00 107645,00 143000,00 214610,00 307000,00 213020,00 2000000,00 124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	220140,00	223500,00
107645,00 143000,00 214610,00 307000,00 213020,00 2000000,00 124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	203040,00	140000,00
214610,00 307000,00 213020,00 2000000,00 124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	298090,00	250000,00
213020,00 200000,00 124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	107645,00	143000,00
124510,00 129900,00 131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	214610,00	307000,00
131810,00 118000,00 216270,00 129500,00 286930,00 345000,00	213020,00	200000,00
216270,00 129500,00 286930,00 345000,00	124510,00	129900,00
286930,00 345000,00	131810,00	118000,00
,	216270,00	129500,00
161810.00 144000.00	286930,00	345000,00
101010/00	161810,00	144000,00
217650,00 279500,00	217650,00	279500,00
151390,00 157000,00	151390,00	157000,00
124270,00 132000,00	124270,00	132000,00

moyenne

mediane

$(\widehat{y} - y)^2$
4,75E+06
7,78E+08
1,13E+07
3,97E+09
2,31E+09
1,25E+09
8,54E+09
1,70E+08
2,91E+07
1,91E+08
7,53E+09
3,37E+09
3,17E+08
3,83E+09
3,15E+07
5,98E+07

$$(\hat{y} - y)^2$$

4,75E+06

7,78E+08

1,13E+07

3,97E+09

2,31E+09

1,25E+09

8,54E+09

1,70E+08

2,91E+07

1,91E+08

7,53E+09

3,37E+09

3,17E+08

3,83E+09

3,15E+07

5,98E+07

$$\sum_{y} (\hat{y} - y)^2$$
3,24E+10

$$h(x) = 0$$

2,1E+10

$$h(x) = mean$$

2,32E+09

1,09E+09

$$h(x) = median$$

2,61E+09

$$h(x) = rand()$$

6,08E+09

Création d'une hypothèse de régression linéaire

- Une régression linéaire a plusieurs variables.
- Il faut assigner un poids à chaque variable.

# de chambres	Surface m^2	Année Construction	Cheminée	Prix
x_1	x_2	x_3	\mathcal{X}_4	y
3	8450	2003	0	208500

$$h_{\theta}(X) = \theta_0 + \theta_1 * 3 + \theta_2 * 8450 + \theta_3 * 2003 + \theta_4 * 0$$

• Pour *n* variables: $h_{\theta}(X) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$

Cost Function

La Régression Logistique

Création d'une hypothèse de régression logistique

- La classification n'est pas un problème linéaire.
- Fonction logistique :

$$(z = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n)$$

$$h_{\theta}(z) = \frac{e^z}{1 + e^z}$$

Création d'une fonction de coût pour la régression logistique

- y est soit 1 soit 0 donc on ne peut pas calculer de distance.
- Le coût sera représenté par la confiance de l'hypothèse dans sa prédiction.
- Ex: Si $h_{\theta}(X) = 0.51$, le résultat sera interprété comme un **1** mais il est raisonnable d'y lire que la *prédiction* n'est pas '**confiante**'.

Pour
$$y = 1$$
:

$$cost(h_{\theta}(X)) = -\log(h_{\theta}(X))$$

Pour
$$y = 0$$
:

$$cost(h_{\theta}(X)) = -\log(1 - h_{\theta}(x))$$

Création d'une fonction de coût pour la régression logistique

Version finale

$$J = -y \log(h_{\theta}(x)) - (1-y) \log(1-h_{\theta}(x))$$

$$J : le coût$$

$$y : l'objectif$$

Pour y = 1:

$$1 - y = 0$$

Donc:

$$J = \log(h_{\theta}(x))$$

Pour y = 0:

$$-y=0$$

Donc:

$$J = \log(1 - h_{\theta}(x))$$

Création d'une fonction de coût pour la régression logistique

Version finale

$$J = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

J : le coûty : l'objectif

Date du match	Pluie?	Ecart avec le dernier match	•••	Bléssé? = y
				0
				1
				1
				1

Création d'une fonction de coût pour la régression logistique

• Encore une fois, il faut moyenner sur les *m* valeurs présentes dans le jeu de données.

Version finale :

$$J = -\frac{1}{m} \sum_{i=1}^{m} -y^{i} \log(h_{\theta}(x^{i})) - (1 - y^{i}) \log(1 - h_{\theta}(x^{i}))$$

J: le coût

y : l'objectif

m : le nombre de valeurs

Gradient Descent

ullet On veut trouver la combinaison des paramètres $heta_i$ qui réduirait un maximum la fonction de coût.

Exemple en régression linéaire sur un cas

• Trouver les valeurs de $\theta_0, \theta_1, \theta_2, \theta_3, \theta_4$ qui réduiraient le coût de J.

$$h_{\theta}(x^{1}) = \theta_{0} + \theta_{1} * 3 + \theta_{2} * 8450 + \theta_{3} * 2003 + \theta_{4} * 0$$
$$J = (h_{\theta}(x^{1}) - 208500)^{2}$$

<u>1ère solution</u>: Générer la fonction pour tous les points et trouver le minimum local.

- → Trop coûteux computationellement et en capacité de mémoire.
- → Se rappeler des exemples en théorie des graphes.

Exemple en régression linéaire sur un cas

• Trouver les valeurs de $\theta_0, \theta_1, \theta_2, \theta_3, \theta_4$ qui réduiraient le coût de ${\it J}$.

$$h_{\theta}(x^{1}) = \theta_{0} + \theta_{1} * 3 + \theta_{2} * 8450 + \theta_{3} * 2003 + \theta_{4} * 0$$
$$J = (h_{\theta}(x^{1}) - 208500)^{2}$$

<u>2ème solution</u>: Prendre un point aléatoire et suivre le gradient vers le bas de façon itérative : **Gradient Descent!**

ightharpoonup Cela demande juste de réaliser une dérivée partielle et locale, puis de mettre à jour les poids θ .

Exemple en régression linéaire sur un cas

- α est un paramètre que l'on nomme le 'Learning Step', qui est la taille du saut de la nouvelle valeur de θ .
- α est un hyperparamètre sensible et important car il est au coeur de l'apprentissage de beaucoup de modèles et d'algorithmes en ML.

Exemple en régression linéaire sur un cas

$$h_{\theta}(x^{1}) = \theta_{0} + \theta_{1} * 3 + \theta_{2} * 8450 + \theta_{3} * 2003 + \theta_{4} * 0$$
$$J = (208500 - h_{\theta}(x^{1}))^{2}$$

Pour chaque θ

Nouvelle valeur de
$$\theta_j$$

$$\theta_j := \theta_j - \alpha \frac{\partial J}{\partial \theta_j}$$
 Gradient descent de θ_i Ancienne valeur de θ_i Learning step

Et on répète jusqu'à convergence (quand on atteint un minimum et que donc $\dfrac{\partial J}{\partial heta_j} pprox 0$) .

Exemple en régression linéaire sur tout les cas

• On applique le *gradient descent* sur chaque valeur dans le jeu de données pour trouver des poids moyens pour chaque θ .

$$J = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

$$\theta_j := \theta_j - \alpha \frac{\partial J}{\partial \theta_j}$$

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 * x_j^i$$