

FIG. 1
(PRIOR ART)

FIG. 2

FIG. 3

FIG. 4A

FIG. 4B

6/30

FIG. 4C

458

456

457

455

439

INSTRUCTION	OPERATION	DESCRIPTION
TRANSFER TYPE INSTRUCTIONS		
TSI	TRANSFER SYSTEM INBOUND	LOAD CONTROL PARAMETERS FOR INBOUND TRANSFER FROM SDB TO INBOUND FIFO.
TCI	TRANSFER CORE INBOUND	LOAD CONTROL PARAMETERS FOR INBOUND TRANSFER FROM INBOUND FIFO TO A CORE MEMORY.
TSO	TRANSFER SYSTEM OUTBOUND	LOAD CONTROL PARAMETERS FOR OUTBOUND TRANSFER FROM OUTBOUND FIFO TO SDB.
TCO	TRANSFER CORE OUTBOUND	LOAD CONTROL PARAMETERS FOR OUTBOUND TRANSFER FROM CORE MEMORY TO OUTBOUND FIFO.
BRANCH TYPE INSTRUCTIONS		
JMPcc	JUMP (PC-RELATIVE) CONDITIONAL	CONDITIONAL BRANCH TO A TPC-RELATIVE INSTRUCTION ADDRESS.
JMPDcc	JUMP (ABSOLUTE) CONDITIONAL	CONDITIONAL BRANCH TO AN ABSOLUTE TRANSFER INSTRUCTION ADDRESS (32 BIT).
CALLcc	CALL (PC-RELATIVE) CONDITIONAL	CONDITIONAL CALL. SAVE CURRENT TPC TO THE LINK PC (LINKPC) AND BRANCH TO A TPC-RELATIVE INSTRUCTION ADDRESS.
CALLDcc	CALL (ABSOLUTE) CONDITIONAL	CONDITIONAL CALL. SAVE CURRENT TPC TO THE LINK PC (LINKPC) AND BRANCH TO AN ABSOLUTE INSTRUCTION ADDRESS 32-BIT).
RETcc	RETURN CONDITIONAL	CONDITIONAL RETURN FROM CALL. RESTORE TPC FROM LINKPC AND FETCH THE NEXT INSTRUCTION FROM THE RESTORED ADDRESS.
STATE CONTROL TYPE INSTRUCTIONS		
RESTART	RESUME TRANSFER	RESTART SPECIFIED TRANSFER UNITS (CTU AND/OR STU).
CLEAR	CLEAR TRANSFER UNIT	SET STU, CTU OR BOTH TO AN INACTIVE STATE.
NOP	NO OPERATION	NO OPERATION (SKIP THIS INSTRUCTION)
SYNCHRONIZATION TYPE INSTRUCTIONS		
SIGNALcc	SIGNAL INTERRUPT, MESSAGE OR SEMAPHORE	SIGNAL WHEN A SEMAPHORE CONDITION IS TRUE. Allows GENERAL CONDITIONAL SIGNALING USING INTERRUPTS, MESSAGE, OR SEMAPHORE UPDATES.
WAITcc	WAIT FOR SEMAPHORE CONDITION	WAIT WHILE A SEMAPHORE CONDITION IS TRUE. PROVIDES ATOMIC UPDATE.
LOAD TYPE INSTRUCTIONS		
PEXLAT	LOAD PE TRANSLATE TABLE	LOAD PE IO TRANSLATION TABLE. THIS TABLE IS USED DURING PE ADDRESSING MODES TO TRANSLATE PE ADDRESS BITS
BITREV	LOAD "BIT-REVERSED" INDEX TRANSLATE TABLE	LOAD CONFIGURATION BITS WHICH SPECIFY AN ADDRESS TRANSLATION SUPPORTING BIT REVERSAL OF INDICES FOR FFT COMPUTATIONS.
LIMGR	LOAD IMMEDIATE GENERAL REGISTER	LOADS ONE OR MORE GENERAL REGISTERS (GR0-GR3) WITH IMMEDIATE VALUES.
LINSEM	LOAD SEMAPHORE REGISTERS	THIS INSTRUCTION ALLOWS LOADING OF SEMAPHORE REGISTERS WITH IMMEDIATE VALUES.

493

7/30

FIG. 4D

TRANSFER PROGRAM COUNTER (TPC) REGISTER																															
3	3	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0

THE TRANSFER PROGRAM COUNTER (TPC) CONTAINS THE SYSTEM ADDRESS OF THE NEXT TRANSFER PROGRAM INSTRUCTION TO BE FETCHED. THIS REGISTER MAY BE READ AT ANY TIME AND MAY BE WRITTEN WHEN THE PROCESSOR IS IN AN IDLE STATE (TPC==WAITPC) OR WAITING DUE TO A WAIT INSTRUCTION.

FIG. 4E

WAIT PROGRAM COUNTER (WAITPC) REGISTER																																			
3	3	2	2	2	2	2	2	2	2	2	1	2	1	0	9	8	7	6	5	4	3	2	1	1	0	9	8	7	6	5	4	3	2	1	0

THE WAITPC REGISTER SPECIFIES A VALUE SUCH THAT WHEN TPC IS EQUAL TO WAITPC, THE INSTRUCTION CONTROL UNIT STOPS FETCHING INSTRUCTIONS AND PAUSES. WHEN TPC IS NOT EQUAL TO WAITPC, THE INSTRUCTION CONTROL UNIT PROCEEDS INSTRUCTION FETCHING AND EXECUTION NORMALLY.

8/30
FIG. 4F1

496

NAME	SYSTEM ADDRESS	DESCRIPTION
	TRANSFER CONTROLLER	
BASE ADDRESS (EXAMPLE)	0x00708000	
	REGISTER OFFSET	
RESUME	0x03	WRITE-ONLY ADDRESS. CAUSES THE TRANSFER CONTROLLER TO RESUME FETCHING AND DECODING INSTRUCTIONS WHEN IT IS IN THE WAIT STATE DUE TO A WAIT INSTRUCTION. THIS COMMAND OVERRIDES ANY CONDITION SPECIFIED IN THE WAIT INSTRUCTION.
497-CLEAR	0x04	WRITE-ONLY ADDRESS. CLEARS BOTH STU AND CTU OF TRANSFER PARAMETERS AND PLACES THEM IN THE INACTIVE STATE.
CLEARSTU	0x05	WRITE-ONLY ADDRESS. CLEARS STU OF TRANSFER PARAMETERS AND PLACES IT INTO THE INACTIVE STATE.
CLEARCTU	0x06	WRITE-ONLY ADDRESS. CLEARS CTU OF TRANSFER PARAMETERS AND PLACES IT INTO THE INACTIVE STATE.
498-RESTART	0x07	WRITE-ONLY ADDRESS. CAUSE BOTH STU AND CTU TO PERFORM A RESTART. IF EITHER TRANSFER UNIT HAS A ZERO CURRENT TRANSFER COUNT, THEN IT CURRENT COUNT IS RELOADED FROM ITS INITIAL TRANSFER COUNT. THE CURRENT TRANSFER PARAMETERS ARE USED TO RESTART AND CONTINUE THE TRANSFER, AND ALL OTHER PARAMETERS REMAIN THE SAME.
501-RESTARTSTU	0x08	WRITE-ONLY ADDRESS. CAUSE STU TO PERFORM A RESTART. IF THE STC IS ZERO, RELOAD FROM ISTC. IF CTC HAS NON-ZERO TRANSFER COUNT, THEN CONTINUE TRANSFER. IF CTC HAS ZERO TRANSFER COUNT, REMAIN IN CURRENT TRANSFER STATE.
RESTARTCTU	0x09	WRITE-ONLY ADDRESS. CAUSE CTU TO PERFORM A RESTART. IF THE CTC IS ZERO, RELOAD FROM ICTC. IF STC HAS NON-ZERO TRANSFER COUNT, THEN CONTINUE TRANSFER. IF STC HAS ZERO TRANSFER COUNT, REMAIN IN CURRENT TRANSFER STATE.
RESET	0x20	WRITE-ONLY ADDRESS. CAUSES RESET OF TRANSFER CONTROLLER. ALL REGISTERS INITIALIZED. TPC SET EQUAL TO WAITPC.
INITSTC	0x30	WRITE-ONLY ADDRESS + DATA (UPDATES BOTH STC AND ISTC).
INITSTC_START	0x31	WRITE-ONLY ADDRESS + DATA (UPDATES BOTH STC AND ISTC, THEN RESTARTS TRANSFER)
INITCTC	0x34	WRITE-ONLY ADDRESS + DATA (UPDATES BOTH CTC AND ICTC).
INITCTC_START	0x35	WRITE-ONLY ADDRESS + DATA (UPDATES BOTH CTC AND ICTC, THEN RESTARTS TRANSFER)
WRITESTC	0x38	WRITE-ONLY ADDRESS + DATA (UPDATES BOTH STC, NOT ISTC).
WRITESTC_START	0x39	WRITE-ONLY ADDRESS + DATA (UPDATES BOTH STC, NOT ISTC).

9/30
FIG. 4F2

	WRITECTC	0x3c	WRITE-ONLY ADDRESS + DATA (UPDATES ONLY CTC NOT ICTC).
	WRITECTC_START	0x3d	WRITE-ONLY ADDRESS + DATA (UPDATES ONLY CTC NOT ICTC, THEN RESTARTS TRANSFER)
464	LOCKID0	0x50	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID1	0x51	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID2	0x52	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID3	0x53	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID4	0x54	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID5	0x55	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID6	0x56	READ-ADDRESS. READ RETURNS 1 IF LOCKED, 0 IF NOT LOCKED (LOCK GRANTED)
	LOCKID7	0x57	READ-ADDRESS. READ RETURNS ZERO IF LOCKED, 8 IF NOT LOCKED (LOCK GRANTED)
491	UWAITSO	0x60	READ-ADDRESS. IF SPECIFIED SEMAPHORE IS ZERO, RETURNS 0 FOR THE READ. IF SPECIFIED SEMAPHORE IS NON-ZERO, RETURN VALUE AND DECREMENT SEMAPHORE.
	INCS0	0x60	WRITE ADDRESS. INCREMENT SPECIFIED SEMAPHORE.
	UWAITS1	0x61	READ-ADDRESS. IF SPECIFIED SEMAPHORE IS ZERO, RETURNS 0 FOR THE READ. IF SPECIFIED SEMAPHORE IS NON-ZERO, RETURN VALUE AND DECREMENT SEMAPHORE.
	INCS1	0x61	WRITE ADDRESS. INCREMENT SPECIFIED SEMAPHORE.
	UWAITS2	0x62	READ-ADDRESS. IF SPECIFIED SEMAPHORE IS ZERO, RETURNS 0 FOR THE READ. IF SPECIFIED SEMAPHORE IS NON-ZERO, RETURN VALUE AND DECREMENT SEMAPHORE.
	INCS2	0x62	WRITE ADDRESS. INCREMENT SPECIFIED SEMAPHORE.
	UWAITS3	0x63	READ-ADDRESS. IF SPECIFIED SEMAPHORE IS ZERO, RETURNS 0 FOR THE READ. IF SPECIFIED SEMAPHORE IS NON-ZERO, RETURN VALUE AND DECREMENT SEMAPHORE.
	INCS3	0x63	WRITE ADDRESS. INCREMENT SPECIFIED SEMAPHORE.
	SWAITSO	0x64	READ-ADDRESS. SEMAPHORE IS TREATED AS A SIGNED TWO-COMPLEMENT INTEGER. IF SPECIFIED SEMAPHORE IS GREATER THAN ZERO, RETURN ITS VALUE THEN DECREMENT BY 1. IF LESS THAN OR EQUAL TO ZERO, RETURN VALUE AND DO NOT DECREMENT.
	DECS0	0x64	WRITE ADDRESS. DECREMENT SPECIFIED SEMAPHORE.
	SWAITS1	0x65	READ-ADDRESS. SEMAPHORE IS TREATED AS A SIGNED TWO-COMPLEMENT INTEGER. IF SPECIFIED SEMAPHORE IS GREATER THAN ZERO, RETURN ITS VALUE THEN DECREMENT BY 1. IF LESS THAN OR EQUAL TO ZERO, RETURN VALUE AND DO NOT DECREMENT.
	DECS1	0x65	WRITE ADDRESS. DECREMENT SPECIFIED SEMAPHORE.

10/30

FIG. 4F3

SWAITS2	0x66	READ-ADDRESS. SEMAPHORE IS TREATED AS A SIGNED TWO-COMPLEMENT INTEGER. IF SPECIFIED SEMAPHORE IS GREATER THAN ZERO, RETURN ITS VALUE THEN DECREMENT BY 1. IF LESS THAN OR EQUAL TO ZERO, RETURN VALUE AND DO NOT DECREMENT.
DECS2	0x66	WRITE ADDRESS. DECREMENT SPECIFIED SEMAPHORE.
SWAITS3	0x67	READ-ADDRESS. SEMAPHORE IS TREATED AS A SIGNED TWO-COMPLEMENT INTEGER. IF SPECIFIED SEMAPHORE IS GREATER THAN ZERO, RETURN ITS VALUE THEN DECREMENT BY 1. IF LESS THAN OR EQUAL TO ZERO, RETURN VALUE AND DO NOT DECREMENT.
DECS3	0x67	WRITE ADDRESS. DECREMENT SPECIFIED SEMAPHORE.
CLEARSO	0x68	READ ADDRESS. READ CAUSES CLEAR OF SPECIFIED SEMAPHORE. RETURNS VALUE PRIOR TO CLEARING.
SETSO	0x68	WRITE ADDRESS. WRITE CAUSES SET OF SPECIFIED SEMAPHORE TO A VALUE OF 1.
CLEARS1	0x69	READ ADDRESS. READ CAUSES CLEAR OF SPECIFIED SEMAPHORE. RETURNS VALUE PRIOR TO CLEARING.
SETS1	0x69	WRITE ADDRESS. WRITE CAUSES SET OF SPECIFIED SEMAPHORE TO A VALUE OF 1.
CLEARS2	0x6a	READ ADDRESS. READ CAUSES CLEAR OF SPECIFIED SEMAPHORE. RETURNS VALUE PRIOR TO CLEARING.
SETS2	0x6a	WRITE ADDRESS. WRITE CAUSES SET OF SPECIFIED SEMAPHORE TO A VALUE OF 1.
CLEARS3	0x6b	READ ADDRESS. READ CAUSES CLEAR OF SPECIFIED SEMAPHORE. RETURNS VALUE PRIOR TO CLEARING.
SETS3	0x6b	WRITE ADDRESS. WRITE CAUSES SET OF SPECIFIED SEMAPHORE TO A VALUE OF 1.
INITPC	0x100	WRITE-ONLY ADDRESS + DATA. VALUE IS WRITTEN TO BOTH TPC AND WAITPC AND IS INTERPRETED AS A DMA INSTRUCTION ADDRESS.
WAITPC	0x104	READ/WRITE WAITPC REGISTER.
TPC	0x108	READ/WRITE TPC REGISTER.
LINKPC	0x10c	READ/WRITE ADDRESS FOR LINKPC REGISTER.
SEM	0x110	READ/WRITE SEM (S0,S1,S2,S3) REGISTER.
EAR0	0x114	READ/WRITE ADDRESS FOR EAR0 REGISTER.
EAR1	0x118	READ/WRITE ADDRESS FOR EAR1 REGISTER.
BITREV	0x11c	READ/WRITE ADDRESS FOR "BIT-REVERSE" ADDRESS MODE REGISTER.
GR0	0x120	READ/WRITE GENERAL REGISTER 0
GR1	0x124	READ/WRITE GENERAL REGISTER 1
GR2	0x128	READ/WRITE GENERAL REGISTER 2
GR3	0x12c	READ/WRITE GENERAL REGISTER 3
PETABLE	0x130	READ/WRITE ADDRESS PE ID TRANSLATION TABLE
ITCNT	0x134	READ/WRITE ADDRESS FOR INITIAL TRANSFER COUNT REGISTER (CONTAINS BOTH ISTC AND ICTC).

463

FIG. 4F4

TCNT	0x138	READ/WRITE ADDRESS FOR CURRENT TRANSFER COUNT REGISTER (CONTAINS BOTH STC AND CTC).
LOCK	0x13c	READ-ONLY ADDRESS FOR RETURNING CURRENT OWNER OF THE WAITPC LOCK.
TSR	0x140	READ-ONLY. TRANSFER CONTROLLER STATUS REGISTER.
EXTSIG	0x150	READ/WRITE EXTERNAL SIGNAL SELECT AND ENABLE REGISTER.

FIG. 5A

12/30

FIG. 5B

Diagram illustrating Register 575. The register is shown as a 32-bit word with the following bit values from left to right: 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0. An arrow points to bit 0, which is labeled "RESERVED". Another arrow points to bit 1, which is labeled "LOCKID".

LOCKID	THIS REGISTER RECORDS THE ID OF THE TASK (OR PROCESSOR) WHICH HOLDS THE LOCK. IT IS USED IN CONJUNCTION WITH A RANGE OF 8 READ-ONLY ADDRESSES TO IMPLEMENT MUTUAL-EXCLUSIVE ACCESS TO THE TRANSFER INSTRUCTION LIST.
LOCKED	0=LOCK AVAILABLE 1=LOCK IN USE

FIG. 5C

Diagram illustrating Register 577. The register is shown as a 32-bit word with the following bit values from left to right: 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0. An arrow points to bit 0, which is labeled "LINKPC". Another arrow points to bit 1, which is labeled "0 0".

LINKPC	0 0
THE LINKPC REGISTER IS USED TO SAVE THE ADDRESS OF THE NEXT INSTRUCTION TO BE EXECUTED AFTER A CALL INSTRUCTION. EXECUTING THE CALL INSTRUCTION (WHEN THE CALL CONDITION IS TRUE) CAUSES THE ADDRESS OF THE NEXT INSTRUCTION AFTER TO CALL (WHOSE ADDRESS IS CALLED THE "RETURN ADDRESS") TO BE COPIED TO THE LINKPC. WHEN THE SUBROUTINE IS COMPLETE, A RET (RETURN) INSTRUCTION IS EXECUTED WHICH RESTORES THE SAVED TPC VALUE FROM THE LINKPC REGISTER CAUSING A DIRECT BRANCH BACK TO THE RETURN ADDRESS.	

13/30

FIG. 5D

578

SEMAPHORE CONDITION	ALWAYS EQUAL NOT EQUAL HIGHER THAN HIGHER THAN OR EQUAL LOWER THAN LOWER THAN OR EQUAL CTUeot (CTU AT END-OF-TRANSFER) STUeot (STU AT END-OF-TRANSFER) NotCTUeot (CTU NOT AT END-OF-TRANSFER) NotSTUeot (STU NOT AT END-OF-TRANSFER) GREATER THAN OR EQUAL GREATER THAN LESS THAN OR EQUAL LESS THAN
------------------------	--

FIG. 5E

- 579

THE SEMAPHORE REGISTERS ARE USED TO GENERATE CONDITIONS FOR ALL CONDITIONAL INSTRUCTIONS, AND PROCESSOR-TRANSFER SYNCHRONIZATION. THESE REGISTERS MAY BE READ/WRITTEN (AS A GROUP) DIRECTLY AT THE SEM ADDRESS, OR INDIRECTLY AT OTHER READ/WRITE ADDRESSES WHICH CAUSE SPECIFIC SEMAPHORE SIDE-EFFECTS. THE LIMSEM INSTRUCTION ALSO MAY BE USED TO LOAD AN IMMEDIATE VALUE INTO ANY OR ALL OF THESE REGISTERS. DIFFERENT IMPLEMENTATIONS MAY HAVE A GREATER OR LESSER NUMBER OF SEMAPHORE REGISTERS AND THERE IS NO SPECIAL RESTRICTION ON SIZE. A PREFERRED EMBODIMENT USES FOUR 8-BIT SEMAPHORE REGISTERS.

S0	SEMAPHORE REGISTER 0
S1	SEMAPHORE REGISTER 1
S2	SEMAPHORE REGISTER 2
S3	SEMAPHORE REGISTER 3

FIG. 6

FIG. 7

FIG. 8A

17/30

FIG. 8B

875

tsi.block tc=200, addr=0x00010000;	TRANSFER-SYSTEM-INBOUND. STU RECEIVES THIS INSTRUCTION AND LOADS PARAMETERS. TRANSFER FROM SYSTEM DATA BUS TO INBOUND DATA QUEUE (IDQ). TRANSFER COUNT IS 200 UNITS, SYSTEM DATA BUS ADDRESS IS 0x00010000;
tci.block.x tc=200, addr=0x0010;	TRANSFER-CORE-INBOUND INSTRUCTION. CTU RECEIVES THIS INSTRUCTION AND LOADS PARAMETERS. TRANSFER FROM INPUT DATA QUEUE TO THE DMA BUS USING BLOCK ADDRESS MODE (SEQUENTIAL ADDRESSES). TRANSFER COUNT IS 100 UNITS AND STARTING DMA BUS ADDRESS IS 0x0010. THE '.X' EXTENSION CAUSES THE "EXECUTE" BIT TO BE SET SO THAT BOTH THE STU AND CTU ARE STARTED IMMEDIATELY AFTER LOADING THIS INSTRUCTION.

FIG. 8C

885

tsi.block tc=200, addr=0x00010000;	TRANSFER-SYSTEM-INBOUND. STU RECEIVES THIS INSTRUCTION AND LOADS PARAMETERS. TRANSFER FROM SYSTEM DATA BUS TO INBOUND DATA QUEUE (IDQ). TRANSFER COUNT IS 200 UNITS, SYSTEM DATA BUS ADDRESS IS 0x00010000;
tci.block tc=200, addr=0x0010;	TRANSFER-CORE-INBOUND INSTRUCTION. CTU RECEIVES THIS INSTRUCTION AND LOADS PARAMETERS. TRANSFER FROM INPUT DATA QUEUE TO THE DMA BUS USING BLOCK ADDRESS MODE (SEQUENTIAL ADDRESSES). TRANSFER COUNT IS 100 UNITS AND STARTING DMA BUS ADDRESS IS 0x0010. SINCE THERE IS NO ".X" EXTENSION, THE TRANSFER DOES NOT BEGIN IMMEDIATELY.
WAIT;	WAIT UNTIL HOST PROCESSOR PERFORMS A RESTART ACTION.

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 9D

988

tso.block tc =200, addr=0x00010000;	TRANSFER-SYSTEM-INBOUND. STU RECEIVES THIS INSTRUCTION AND LOADS PARAMETERS. TRANSFER FROM ODO TO SYSTEM DATA BUS. TRANSFER COUNT IS 200 UNITS, SYSTEM DATA BUS ADDRESS IS 0x00010000;
tso.block.x tc =50, addr=0x00000310;	TRANSFER-CORE-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM SPECIFIED LOCAL MEMORY ADDRESS IN BLOCK ADDRESSING MODE. START TRANSFER IMMEDIATELY.
tso.block.x tc=50, addr=0x00200400;	TRANSFER-CORE-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM SPECIFIED LOCAL MEMORY ADDRESS IN BLOCK ADDRESSING MODE. START TRANSFER IMMEDIATELY.
tso.stride.x tc=50, addr=0x00210200, sride=16, hold=10;	TRANSFER-CORE-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM SPECIFIED LOCAL MEMORY ADDRESS IN STRIDE ADDRESSING MODE. START TRANSFER IMMEDIATELY.
tso.circ.x tc=50, addr=0x00230600, bufinit=0, bufsize=128;	TRANSFER-CORE-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM SPECIFIED LOCAL MEMORY ADDRESS IN CIRCULAR ADDRESSING MODE. START TRANSFER IMMEDIATELY.
wait;	WAIT HERE AFTER TRANSFERS.

FIG. 9E

989

tso.block tc =200, addr=0x00010000;	TRANSFER-CORE-OUTBOUND. CTU RECEIVES THIS INSTRUCTION AND LOADS PARAMETERS. TRANSFER FROM DMA BUS TO ODQ. TRANSFER COUNT IS 200 UNITS, DMA BUS ADDRESS IS 0x00010000;
tso.block.x tc =50, addr=0x00000310;	TRANSFER-SYSTEM-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM ODQ TO SPECIFIED SDB ADDRESS IN BLOCK ADDRESSING MODE. START TRANSFER IMMEDIATELY.
tso.block.x tc=50, addr=0x00200400;	TRANSFER-SYSTEM-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM ODQ TO SPECIFIED SDB ADDRESS IN BLOCK ADDRESSING MODE. START TRANSFER IMMEDIATELY.
tso.stride.x tc=50, addr=0x00210200, sride=16, hold=10;	TRANSFER-SYSTEM-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM ODQ TO SPECIFIED SDB ADDRESS IN STRIDE ADDRESSING MODE. START TRANSFER IMMEDIATELY.
tso.circ.x tc=50, addr=0x00230600, bufinit=0, bufsize=128;	TRANSFER-SYSTEM-OUTBOUND INSTRUCTION. TRANSFER 50 DATA ELEMENTS, FROM ODQ TO SPECIFIED SDB ADDRESS IN CIRCULAR ADDRESSING MODE. START TRANSFER IMMEDIATELY.
wait;	WAIT HERE AFTER TRANSFERS.

FIG. 9F

- 990

FIG. 96

- 991

3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	0 0	0 0	0 0
RESERVED	STU Re- start Sem	STU Re- start CC	CTU Re- start Sem	CTU Re- start CC	RSRVD	E1PCWait	E1eot	E1STUeot	E1CTUeot	RSRVD	E0PCWait	E0eot	E0STUeot	E0CTUeot	E0	EVENTS	E0	EVENTS															
E0CTUeot	1 = TRIGGER EO ACTION(S) WHEN CTUeot BECOMES TRUE (CTC:1 → 0)																																
E0STUeot	1 = TRIGGER EO ACTION(S) WHEN STUeot BECOMES TRUE (STC:1 → 0)																																
E0TCzero	1 = TRIGGER EO ACTION(S) WHEN BOTH CTC AND STC BECOME ZERO. (THE LATER COUNTER TO REACH ZERO TRIGGERS THE ACTION. IF THIS BIT IS SET, E0CTUeot AND E0STUeot ARE IGNORED.)																																
E0TPCWait	1 = TRIGGER EO ACTION(S) WHEN TPC BECOMES EQUAL WAITPC.																																
E0IncDreg	0 = NO POST-INCREMENT OF DREG 1 = POST-INCREMENT DREG IF IT IS A GENERAL REGISTER (GR0-GR3 ONLY)																																
E1CTUeot	1 = TRIGGER E1 ACTION(S) WHEN CTUeot BECOMES TRUE (CTC:1 → 0)																																
E1STUeot	1 = TRIGGER E1 ACTION(S) WHEN STUeot BECOMES TRUE (STS:1 → 0)																																
E1TCzero	1 = TRIGGER E1 ACTION(S) WHEN BOTH CTC AND STC BECOME ZERO.																																
E1TPCWait	1 = TRIGGER E1 ACTION(S) WHEN TPC BECOMES EQUAL WAITPC.																																
E1IncDreg	0 = NO POST-INCREMENT OF DREG 1 = POST-INCREMENT DREG IF IT IS A GENERAL REGISTER (GR0-GR3 ONLY)																																
CTU RestartCC	THIS FIELD SPECIFIES THE CONDITION WHICH, WHEN TRUE, CAUSES THE CTU TO RESTART AUTOMATICALLY (IF IT HOLD VALID TRANSFER PARAMETERS), AND UPDATES THE SEMAPHORE SPECIFIED BY CTURestartSem. 00 = DECREMENT 'CTURestartSem' WHEN CONDITION (Sem! = 0) BECOMES TRUE, AND INITIATE A CTU RESTART OPERATION. 01 = RESERVED 10 = RESERVED 11 = NO RESTART OPERATION																																
CTU RestartSem	SPECIFIES THE SEMAPHORE TO TEST FOR ZERO TO OBTAIN A TRUTH VALUE FOR CTURestartCC WHEN THE CTUWaitCC FIELD IS 00. 00 = S0 01 = S1 10 = S2 11 = S3																																
STU RestartCC	THIS FIELD SPECIFIES THE CONDITION WHICH, WHEN TRUE, CAUSES THE STU TO RESTART AUTOMATICALLY (IF IT HOLD VALID TRANSFER PARAMETERS), AND UPDATES THE SEMAPHORE SPECIFIED BY STURestartSem. 00=DECREMENT 'STURestartSem' WHEN CONDITION (Sem!=0) BECOMES TRUE AND INITIATE A STU RESTART OPERATION. 01 = RESERVED 10 = RESERVED 11 = NO RESTART OPERATION																																
STU RestartSem	SPECIFIES THE SEMAPHORE TO TEST FOR ZERO TO OBTAIN A TRUTH VALUE FOR STU RestartCC 00 = S0 01 = S1 10 = S2 11 = S3																																

24/30

FIG. 9H1

- 992

FIG. 9H2

Dreg	WHEN Sigmod = 00 OR Sigmod = 10 (INDIRECT DATA), THIS FIELD SPECIFIES THE REGISTER TO BE SENT AS DATA ON THE SYSTEM CONTROL BUS. IF THIS FIELD CONTAINS '1111', THEN NO MESSAGE IS SENT REGARDLESS OF THE VALUE OF Sigmod. THE FOLLOWING REGISTER ASSIGNMENTS INDICATE THAT SEVERAL INTERNAL REGISTERS MAY BE USED AS MESSAGE DATA, INCLUDING GRx REGISTERS, TSR (STATUS) REGISTERS, TPC REGISTER AND THE SEM (SEMAPHORE) REGISTER.
	0000-GRO
	0001-GR1
	0010-GR2
	0011-GR3
	1000-TSR0
	1001-TSR1
	1010-TSR2
	1011-TSR3
	1100-TPC
	1101-SEM
	1111-DO NOT SEND MESSAGE
Sem ID	SPECIFIES A SEMAPHORE TO UPDATE WHEN SIGNAL IS PERFORMED. 00 = SEMAPHORE 0 01 = SEMAPHORE 1 10 = SEMAPHORE 2 11 = SEMAPHORE 3
Sem Op	00 = NO CHANGE TO SEMAPHORE 01 = DECREMENT THE SEMAPHORE BY 1 10 = INCREMENT THE SEMAPHORE BY 1 11 = CLEAR SEMAPHORE TO ZERO

26/30

FIG. 911

- 993

27 / 30

FIG. 912

E1 Areg	SPECIFIES A REGISTER WHICH PROVIDES THE MESSAGE ADDRESS WHEN E1 EVENT OCCURS. 00-GRO 01-GR1 10-GR2 11-GR3
E1Sig0	0 = DO NOT ASSERT INTERRUPT SIGNAL 0. 1 = ASSERT INTERRUPT SIGNAL 0 ACTIVE 1 FOR 2 CYCLES WHEN E1 EVENT OCCURS.
E1Sig1	0 = DO NOT ASSERT INTERRUPT SIGNAL 1. 1=ASSERT INTERRUPT SIGNAL 1 ACTIVE 1 FOR 2 CYCLES WHEN E1 EVENT OCCURS.
E0 S0-S3 Op	EACH 2-BIT FIELD SPECIFIES THE ACTION WHEN E1 EVENT OCCURS, ONE FIELD PER SEMAPHORE: 00 = NO CHANGE TO SEMAPHORE 01 = DECREMENT THE SEMAPHORE 10 = INCREMENT THE SEMAPHORE BY 1 11 = CLEAR SEMAPHORE TO ZERO

FIG. 9J

- 994

THE GENERAL (MESSAGE) REGISTERS GR0, GR1, GR2, AND GR3 ARE USED TO STORE ADDRESSES AND DATA FOR SENDING CONTROL MESSAGES TO SCB DEVICES. THEY MAY BE LOADED USING THE LIMGR INSTRUCTION, OR BY DIRECT WRITE BY AN SCB BUS MASTER.

FIG. 10A

FIG. 10B

- 1082

FIG. 10C

1083

SYSTEM BUFFER IS 1K WORDS, SPLIT INTO 4 256 WORD BUFFERS. THE PRODUCER TASK IS GENERATING DATA INTO THESE BUFFERS IN A CIRCULAR FASHION. THE CONSUMER TASK (ON THE DSP) HAS ONLY A 256 WORD BUFFER, SPLIT INTO 4x64 WORD BLOCKS. EVERY TIME THE PRODUCER TASK FINISHES FILLING A BUFFER IT SIGNALS SEMAPHORE S1 BY WRITING TO THE APPROPRIATE COMMAND ADDRESS ON THE SCB. THE LIMEAR INSTRUCTION HAS CONFIGURED THE TRANSFER CONTROLLER TO RESTART THE STU ANYTIME IT IS IDLE AND S1 IS NON-ZERO, SINCE THE CTU HAS A NON-ZERO TRANSFER COUNT, IT ENTERS THE TRANSFER STATE AND 64 WORDS OF DATA ARE MOVED TO THE CONSUMER TASK BUFFER (THE MINIMUM OF 256 AND 64).

linear STUrestart=s1, CTUrestart=s0, E0=STUeot, A0=assert(0), E1=CTUeot, A1=(msgaddr=mbox1, msdata=GRO),	LIMEAR instruction: IF S1 NOT ZERO AT STU EOT THEN DECREMENT S1 AND RESTART STU. IF S0 NOT ZERO AT CTU EOT THEN DECREMENT S0 AND RESTART CTU. AT STU EOT ASSERT SIGNAL 0. AT CTU EOT SEND CONTENTS OF GRO TO SCB ADDRESS "mbox1".
tsi.circular tc = 256, addr = 0x12000000 bufinit = 0, bufsize = 1024;	LOAD STU FOR INBOUND TRANSFER OF 256 WORDS WITHIN A CIRCULAR BUFFER OF 1K WORDS.
tsi.circular tc = 64, addr = 0x00200300, bufinit = 0, bufsize = 256;	LOAD CTU FOR INBOUND TRANSFER OF 64 WORDS WITHIN A CIRCULAR BUFFER OF 256 WORDS.
Wait;	WAIT UNTIL A PROCESSOR WRITES A RESUME COMMAND.