Experiment 6-Band Pass Sallen-Key Filter

Arnav Yadnopavit - EE24BTECH11007 Prajwal - EE24BTECH11051

March 18, 2025

1 Objective

- 1. To design and implement a bandpass filter using separate Sallen-Key Low Pass Filter (LPF) and High Pass Filter (HPF).
- 2. To analyze and compare the frequency response of LPF, HPF, and the final bandpass filter.
- 3. To plot the magnitude response (gain vs. frequency) of all three filters.

2 Theory

A bandpass filter (BPF) allows only the frequencies within a specific range and does not allow outside it.

- A High Pass Filter (HPF) to remove low-frequency components.
- A Low Pass Filter (LPF) to remove high-frequency components.
- The combined response results in a bandpass characteristic.

2.1 Sallen-Key Second-Order Filters:

- It is an active filter topology using operational amplifiers.
- Provides a Butterworth, Bessel, or Chebyshev response based on component selection.
- The transfer function is given by:

$$H(s) = \frac{s^2}{s^2 + (\omega_c/Q)s + \omega_c^2} \tag{1}$$

where

 ω_c is the cutoff frequency

$$\omega_c = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}} \tag{2}$$

Q is the quality factor

$$Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{C_2 (R_1 + R_2)} \tag{3}$$

2.2 Components and Equipment Required:

• Operational Amplifiers (e.g., TL074, TL081, or LM358)

• Resistors: R_1 , R_2 , R_3 , R_4 (in $k\Omega$)

 \bullet Capacitors: $C_1, C_2, \, C_3, \, C_4$ (in nF)

• Function Generator

• Oscilloscope or Spectrum Analyzer

• DC Power Supply (±12V)

• Breadboard and connecting wires

3 Circuit design:

3.1 High pass Sallen-Key filter design:

Figure 1: High Pass Sallen-Key Filter-Circuit design

- \bullet Here $R_1{=}R_2{=}1000\Omega$ and $C_1{=}C_2{=}1\mu F$
- \bullet Cutoff frequency f_{c_1} (also lower cutoff frequency of the bandpass filter)

• Standard Sallen-Key HPF formula:

$$f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}\tag{4}$$

Substituting values:

$$f_c = \frac{1}{2\pi\sqrt{(1000)(1000)(1\times10^{-6})(1\times10^{-6})}}$$
 (5)

$$f_c = 159.15 \text{ Hz}$$
 (6)

• Angular cutoff frequency:

$$\omega_c = 2\pi f_c = 2\pi \times 159.15 = 1000 \text{ rad/sec}$$
 (7)

• Quality factor:

$$Q = \frac{1}{2} = 0.5 \tag{8}$$

• Transfer function of the High Pass Filter:

$$H(s) = \frac{s^2}{s^2 + \frac{\omega_c}{O}s + \omega_c^2} \tag{9}$$

where:

s is the complex frequency variable, $s = j\omega$

 $\omega_c = 1000 \text{ rad/sec}$

Q = 0.5

Experimental Data

Frequency (Hz)	Input Voltage (V)	Output Voltage (V)	Experimental Gain	Theoretical Gain	l
100	1.0	0.24	-10.46	-10.96	l
160	1.0	0.44	-7.12	-6.2	ı
200	1.0	0.56	-5.04	-4.26	l
1000	1.0	0.76	-0.238.	-0.217	ı

Table 1: Comparison of Experimental and Theoretical Gain for High Pass Filter

(a) Input

(b) Output

Figure 2: Experimental results for high pass filter

Figure 3: High Pass Filter Frequency Response

3.2 Low pass Sallen-Key filter design:

Figure 4: Low Pass Sallen-Key Filter-Circuit design

- \bullet Here $R_1{=}R_2{=}1000\Omega$ and $C_1{=}C_2{=}1\mu F$
- \bullet Cutoff frequency f_{c_2} (also upper cutoff frequency of the bandpass filter)
- $\bullet\,$ Standard Sallen-Key LPF formula:

$$f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}\tag{10}$$

Substituting values:

$$f_c = \frac{1}{2\pi\sqrt{(1000)(1000)(1\times10^{-6})(1\times10^{-6})}}$$
 (11)

$$f_c = 159.15 \text{ Hz}$$
 (12)

• Angular cutoff frequency:

$$\omega_c = 2\pi f_c = 2\pi \times 159.15 = 1000 \text{ rad/sec}$$
 (13)

• Quality factor:

$$Q = \frac{1}{2} = 0.5 \tag{14}$$

• Transfer function of the Low Pass Filter:

$$H(s) = \frac{\omega_c^2}{s^2 + \frac{\omega_c}{Q}s + \omega_c^2} \tag{15}$$

where:

s is the complex frequency variable, $s=j\omega$

 $\omega_c = 1000 \text{ rad/sec}$ Q = 0.5

Experimental Data

Frequency (Hz)	Input Voltage (V)	Output Voltage (V)	Experimental Gain	Theoretical Gain
100	1.8	1.62	-2.38	-2.88
160	1.0	0.88	-5.36	-6.08
500	1.0	0.124	-18.12	-20.72
1000	1.0	0.48	-28.2	-31.5

Table 2: Comparison of Experimental and Theoretical Gain for Low Pass Filter

(a) Input

(b) Output

Figure 5: Experimental results for low pass filter

Figure 6: Low Pass Filter Frequency Response

3.3 Bandpass Sallen-Key Filter Design:

Figure 7: band Pass Sallen-Key Filter-Circuit design

- The bandpass filter is constructed by cascading a high-pass filter and a low-pass filter.
- Components in the high-pass filter: $R_1 = R_2 = 1000\Omega$ and $C_1 = C_2 = 1\mu F$.
- Components in the low-pass filter: $R_1 = R_2 = 100\Omega$ and $C_1 = C_2 = 1\mu F$.
- The output of the high-pass filter is connected to the input of the low-pass filter.

• The overall transfer function of the bandpass filter is the product of the individual transfer functions of the high-pass and low-pass filters:

$$H_{\rm BPF}(s) = H_{\rm HPF}(s) \cdot H_{\rm LPF}(s)$$
 (16)

where:

$$H_{\rm HPF}(s) = \frac{s^2}{s^2 + \frac{\omega_{c1}}{Q_1} s + \omega_{c1}^2}$$
 (17)

$$H_{\rm LPF}(s) = \frac{\omega_{c2}^2}{s^2 + \frac{\omega_{c2}}{Q_2}s + \omega_{c2}^2}$$
 (18)

• The cutoff frequencies for the high-pass and low-pass filters are:

$$f_{c1} = 159.15 \text{ Hz} \quad \text{(High Pass)}$$
 (19)

$$f_{c2} = 1591.5 \text{ Hz} \text{ (Low Pass)}$$
 (20)

• The bandpass filter allows frequencies between f_{c1} and f_{c2} .

Experimental Data

Frequency (Hz)	Input Voltage (V)	Output Voltage (V)	Experimental Gain	Theoretical Gain	
50	1.0	0.80	-21.94	-20.84	
160	1.0	0.44	-7.14	-6.02	
1000	1.0	0.90	-3.56	-3.8	
1600	1.0	0.	-6.66	-6.12	

Table 3: Comparison of Experimental and Theoretical Gain for Bandpass Filter

(a) Input

(b) Output

Figure 8: Experimental results for bandpass filter

Figure 9: Bandpass Filter Frequency Response

4 Conclusion

• From the above observation we can say that cascading the low pass and high pass filter provides a good stability and response

For codes refer this link