1(a)

 L^{+} = L, N, O, M, Q, R, S, P

 $M^+ = M, P$

 $N^{+} = N, M, Q, R, P$

 $O^+ = O, S$

L is superkey, M, N, O are not superkey.

So, M \rightarrow P, N \rightarrow MQR, O \rightarrow S violate BCNF.

1(b)

Split R by N \rightarrow MQR, N⁺ = MNPQR to

R1 = MNPQR

R2 = LNOS

Project FDs to R1

М	Ν	Р	Q	R	closure	FD
\checkmark					$M^{+} = MP$	M→P, not BCNF, split

Split R1 by M→P to

R3 = MP

R4 = MNQR

Project FDs to R3

М	Р	closure	FD
\checkmark		$M^{+} = MP$	M→P, M is superkey
	√	$P^{+} = P$	nothing
\checkmark	\checkmark	$MP^{+} = MP$	nothing

R3 is BCNF

Project FDs to R4

М	Ν	Q	R	closure	FD
√				$M^{+} = MP$	nothing
	\checkmark			$N^{+} = MNPQR$	N→MQR, N is superkey
		\checkmark		$Q^{\dagger} = Q$	nothing
			√	$R^{+} = R$	nothing
\checkmark	\checkmark			irrelevant, because contains superkey	weaker
\checkmark		\checkmark		$MQ^{+} = MPQ$	nothing
\checkmark			\checkmark	$MR^{+} = MPR$	nothing
	√	\checkmark		irrelevant, because contains superkey	weaker
	\checkmark		\checkmark	irrelevant, because contains superkey	weaker
		\checkmark	\checkmark	$QR^+ = QR$	nothing
\checkmark	\checkmark	\checkmark		irrelevant, because contains superkey	weaker
\checkmark	\checkmark		\checkmark	irrelevant, because contains superkey	weaker
		\checkmark	√	MQR ⁺ = MPQR	nothing
	\checkmark	\checkmark	√	irrelevant, because contains superkey	weaker
√		\checkmark	\checkmark	irrelevant, because contains superkey	nothing

R4 is BCNF

Project FDs to R2

L	Ν	0	S	closure	FD		
\checkmark				_ ⁺ = LMNOPQRS L→NOS, L is superkey			
	\checkmark			$N^{+} = MNPQR$	nothing		
		\checkmark		$O^+ = OS$	O→S, not BCNF, split		

Split R2 by $O \rightarrow S$ to

R5 = OS

R6 = LNO

Project FDs to R5

0	S	closure	FD
\checkmark		$O^+ = OS$	O→S, O is superkey
	\checkmark	$S^+ = S$	nothing
\checkmark	\checkmark	$OS^+ = OS$	nothing

R5 is BCNF

Project FDs to R6

L	Z	0	closure	FD		
\checkmark			$L^{+} = LMNOPQRS$	L→NO, L is superkey		
	\checkmark		$N^{+} = MNPQR$	nothing		
		>	$O^{\dagger} = OS$	nothing		
\checkmark	\checkmark		Irrelevant, because contains superkey	weaker		
	\checkmark	\checkmark	NO ⁺ = NMOPQRS	nothing		
\checkmark		\checkmark	irrelevant, because contains superkey	weaker		
\checkmark	$\sqrt{}$	$\sqrt{}$	irrelevant, because contains superkey	nothing		

R6 is BCNF

Final decomposition:

 $R3 = MP \text{ with FD } M \rightarrow P$

R4 = MNQR with FD $N \rightarrow MQR$

R5 = OS with FD $O \rightarrow S$

 $R6 = LNO with FD L \rightarrow NO$

1(c)

New schema preserves dependencies.

Original dependencies: { L \rightarrow NO, M \rightarrow P, N \rightarrow MQR, O \rightarrow S}

New dependencies: $\{M \rightarrow P, N \rightarrow MQR, O \rightarrow S, L \rightarrow NO\}$

They are exactly same, so I don't need to do closure check to say new schema preserves dependencies.

Assume (I,m,n,o,p,q,r,s) in R3 \bowtie R4 \bowtie R5 \bowtie R6, need to prove it must be in R. By composition we know R has these elements:

L	М	Ν	0	Р	Q	R	S
?	m	?	?	р	?	?	?
?	m	n	?	?	q	r	?
?	?	?	0	?	?	?	S
	?	n	0	?	?	?	?

By M→P, we know if 2 rows both have m, they must both have p:

L	М	Ν	0	Р	Q	R	S
?	М	?	?	р	?	?	?
?	m	n	?	р	q	r	?
?	?	?	0	?	?	?	S
1	?	n	0	?	?	?	?

By N→MQR, we know if 2 rows both have n, they must both have mqr:

L	М	Ν	0	Р	Q	R	S
?	m	?	?	р	?	?	?
?	m	n	?	р	q	r	?
?	?	?	0	?	?	?	S
1	m	n	0	?	q	r	?

By $O \rightarrow S$, we know if 2 rows both have o, they must both have s:

,	,						
L	М	Ν	0	Р	Q	R	S
?	m	?	?	р	?	?	?
?	m	n	?	р	q	r	?
?	?	?	0	?	?	?	S
-	m	n	0	?	q	r	S

By M→P again, we know if 2 rows both have m, they must both have p:

Thate mi, they made beth have p							
	М	Z	0	Ρ	Q	R	S
?	m	?	?	р	?	?	?
?	m	n	?	р	q	r	?
?	?	?	0	?	?	?	S
-	m	n	0	р	q	r	S

In the last row of the table, we have (I,m,n,o,p,q,r,s). So any row in R3 \bowtie R4 \bowtie R5 \bowtie R6 is also in R, new schema is lossless.

2(a) 1. Split RHS get: $ACD \rightarrow E$ $B \rightarrow C$ $B \rightarrow D$ $BE \rightarrow A$ $BE \rightarrow C$ $BE \rightarrow F$ $D \rightarrow A$ $D \rightarrow B$ $E \rightarrow C$
2. Check if LHS has unnecessary attribute ACD→E: D ⁺ = A B C D E F so LHS reduce to D, Get D→E
BE \rightarrow A: B ⁺ = A B C D E F so LHS reduce to B, Get B \rightarrow A
BE \rightarrow C: B ⁺ = A B C D E F so LHS reduce to B, Get B \rightarrow C
BE \rightarrow F: B ⁺ = A B C D E F so LHS reduce to B, Get B \rightarrow F
Now we have: $D \rightarrow E$ $B \rightarrow C$ $B \rightarrow D$ $B \rightarrow A$ $B \rightarrow C$ $B \rightarrow F$ $D \rightarrow A$ $D \rightarrow B$ $E \rightarrow A$ $E \rightarrow C$
3. Check for redundant FD
D→E: Not redundant, because E not in other RHS Keep

```
B→C:
     Redundant, because there is another B→C below.
     Remove
B→D:
     Not redundant, because B^+ = A B C F, without itself.
     Keep
B→A:
     Redundant, because B^+ = A B C D E F, without itself.
     Remove
B \rightarrow C:
     Redundant, because B^+ = A B C D E F, without itself.
     Remove
B→F:
     Not redundant, because F not in other RHS
     Keep
D→A:
     Redundant, because D^{+} = A B C D E F, without itself.
     Remove
D \rightarrow B:
     Not redundant, because B not in other RHS
     Keep
E \rightarrow A
     Not redundant, because E^+ = C E, without itself.
     Keep
E \rightarrow C
     Not redundant, because E^+ = A E, without itself.
     Keep
Finally we have minimal basis:
B \rightarrow D
B \rightarrow F
D \rightarrow B
D \rightarrow E
E \rightarrow A
E \rightarrow C
```

2(b)

	On LHS	On RHS	
GH	X	X	In every key
-	\checkmark	X	In every key
ACF	X	\checkmark	In no key
BDE	\checkmark	\checkmark	Need to check

В	D	Е	Key	Closure
\checkmark			BGH	ABCDEFGH, key
	\checkmark		DGH	ABCDEFGH, key
		√	EGH	A C E G H, not key

No need to try other combination, because other combination will include at least one of B or D, so they are not key.

Keys are:

BGH

DGH

2(c)

1. Merge RHS, get:

 $B \rightarrow DF$

D→BE

 $E \rightarrow AC$

2. Set relations

R1(B, D, F), R2(D, B, E), R3(E, A, C)

3. No relation is superkey

So, add R4(B, G, H)

Final set of relations:

R1(B, D, F), R2(D, B, E), R3(E, A, C), R4(B, G, H)

2(d)

It does not allow redundancy.

Because every FD is preserved in one and only one relation.

In every relations that have FD within(R4 doesn't have FD), the LHS of all FDs is the superkey of that relation.

Showing here:

In R1, LHS is B, B^+ = BDF

In R2, LHS is D, D⁺ = BDE

In R3, LHS is E, E^+ = ACE

In R4, there is no FD

So, it does not allow redundancy.