14. Funny Numbers

Condition:

Mubashir was playing with some numbers and found some funny numbers. Funny numbers are defined as follows:

- $89 \rightarrow 8^1 + 9^2 = 89 * 1$
- $695 \rightarrow 6^2 + 9^3 + 5^4 = 1390 = 695 * 2$
- $46288 \rightarrow 4^3 + 6^4 + 2^5 + 8^6 + 8^7 = 2360688 = 46288 * 51$

Create a program that accepts a number ` $\bf n$ ` and a positive integer ` $\bf p$ ` and returns a positive integer ` $\bf k$ `, such that the sum of the digits of ` $\bf n$ `, raised to successive powers of ` $\bf p$ `, is equal to $\bf n*k$.

Put simply, we are looking for whether an integer $\grave{}$ exists k $\grave{}$, for which it is satisfied:

$$(a \cdot p + b \cdot (p+1) + c \cdot (p+2) + d \cdot (p+3) + ...) = n * k$$

The program should return -1 if such k does not exist.

Input:

- Integer ` \mathbf{n} `: the number for which we are checking if an integer exists
 - ` k ` , such that the sum of its digits raised to successive powers of ` p ` , to be equal to $n\ ^*\ k$.
- Positive integer ` **p** `: power to which the digits of the the number ` **n** `.

Output:

- Integer `k`, which satisfies the condition:
 - o The sum of the digits of \mathbf{n} , raised to successive powers of \mathbf{p} , to be equal to $\mathbf{n} * \mathbf{k}$.
- If such ` ${\bf k}$ ` does not exist, the function should return -1.

Examples:

Input	Output
-------	--------

92	-1
1	
695 2	2
2	