# **Chapter 5.1**

# **Composite Functions**

## 5.1.1 Formation of a Composite Function

**DEFINITION** Composite Function

Figure 2

#### **EXAMPLE 1** Evaluating a Composite Function

# **5.1.2 Find the Domain of a Composite Function**

#### **EXAMPLE 2** Finding a Composite Function and Its Domain

**EXAMPLE 3** Finding the Domain of  $f \circ g$ 

**EXAMPLE 4** Finding a Composite Function and Its Domain

**EXAMPLE 5** Showing That Two Composite Functions Are Equal

## 5.1 Assess Your Understanding

## **Skill Building**

In determining the domain of a composite function  $(f \circ g)(x) = f(g(x))$  keep the following two thoughts in mind about the input x.

- 1. Any *x* not in the domain of *g* must be excluded.
- 2. Any x for which g(x) is not in the domain of f must be excluded.

## In Problems 21–28, find the domain of the composite function $f \circ g$ :

**21.** 
$$f(x) = \frac{3}{x-1}$$
;  $g(x) = \frac{2}{x}$ 

**Solution:** We can write  $Dom(f) = \{x \mid x \neq 1\}$  and  $Dom(g) = \{x \mid x \neq 0\}$ .

Now compute 
$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2}{x}\right) = \frac{3}{\frac{2}{x} - 1} = \frac{3x}{2 - x}$$

Hence,  $Dom(f \circ g) = \{x \mid x \neq 0, x \neq 2\}.$ 

**23.** 
$$f(x) = \frac{x}{x-1}$$
;  $g(x) = -\frac{4}{x}$ 

**Solution:** We can write  $Dom(f) = \{x \mid x \neq 1\}$  and  $Dom(g) = \{x \mid x \neq 0\}$ .

Now compute 
$$(f \circ g)(x) = f(g(x)) = f\left(-\frac{4}{x}\right) = \frac{-\frac{4}{x}}{-\frac{4}{x} - 1} = \frac{4}{x + 4}$$

Hence,  $Dom(f \circ g) = \{x \mid x \neq 0, x \neq -4\}.$ 

**25.** 
$$f(x) = \sqrt{x}$$
;  $g(x) = 2x + 3$ 

**Solution:** We can write  $Dom(f) = \{x \mid x \ge 0\}$  and Dom(g) = set of all real numbers.

Now compute 
$$(f \circ g)(x) = f(g(x)) = f(2x+3) = \sqrt{2x+3}$$

We know 
$$\sqrt{2x+3}$$
 is defined if  $2x+3 \ge 0 \Rightarrow x \ge -\frac{3}{2}$ 

Hence,  $Dom(f \circ g) = \{x \mid x \ge -3/2\}.$ 

**27.** 
$$f(x) = x^2 + 1$$
;  $g(x) = \sqrt{x-1}$ 

**Solution:** We can write  $Dom(f) = \text{set of all real numbers and } Dom(g) = \{x \mid x \ge 1\}.$ 

Now compute 
$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x-1}) = (\sqrt{x-1})^2 + 1 = x$$
  
Hence,  $Dom(f \circ g) = \{x \mid x \ge 1\}.$ 

In Problems 29-44, for the given functions f and g, find:

(a) 
$$f \circ g$$
 (b)  $g \circ f$  (c)  $f \circ f$  (d)  $g \circ g$ 

**(b)** 
$$g \circ f$$

$$(c) f \circ f$$

(d) 
$$g \circ g$$

State the domain of each composite function.

**29.** 
$$f(x) = 2x + 3$$
;  $g(x) = 3x$ 

#### **Solution**

- (a) We can write Dom(f) = set of all real numbers and Dom(g) = set of all real numbers.Now compute  $(f \circ g)(x) = f(g(x)) = f(3x) = 2(3x) + 3 = 6x + 3$ Hence,  $Dom(f \circ g) = \text{set of all real numbers}$ .
- (b) We can write Dom(f) = set of all real numbers and Dom(g) = set of all real numbers.Now compute  $(g \circ f)(x) = g(f(x)) = g(2x+3) = 3(2x+3) = 6x+9$ Hence,  $Dom(g \circ f) = \text{set of all real numbers}$ .
- (c) We can write Dom(f) = set of all real numbersNow compute  $(f \circ f)(x) = f(f(x)) = f(2x+3) = 2(2x+3) + 3 = 4x + 9$ Hence,  $Dom(f \circ f) = \text{set of all real numbers}$ .
- (d) We can write Dom(g) = set of all real numbersNow compute  $(g \circ g)(x) = g(g(x)) = g(3x) = 3(3x) = 9x$ . Hence,  $Dom(g \circ g) = \text{set of all real numbers}$ .

**35.** 
$$f(x) = \frac{3}{x-1}$$
;  $g(x) = \frac{2}{x}$ 

#### **Solution**

(a) We can write  $Dom(f) = \{x \mid x \neq 1\}$  and  $Dom(g) = \{x \mid x \neq 0\}$ .

Now compute 
$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2}{x}\right) = \frac{3}{\frac{2}{x} - 1} = \frac{3x}{2 - x}$$

Hence,  $Dom(f \circ g) = \{x \mid x \neq 0, x \neq 2\}.$ 

(b) We can write  $Dom(f) = \{x \mid x \neq 1\}$  and  $Dom(g) = \{x \mid x \neq 0\}$ .

Now compute 
$$(g \circ f)(x) = g(f(x)) = g\left(\frac{3}{x-1}\right) = \frac{2}{\frac{3}{x-1}} = \frac{2(x-1)}{3}$$

Hence,  $Dom(g \circ f) = \{x \mid x \neq 1\}.$ 

(c) We can write  $Dom(f) = \{x \mid x \neq 1\}$ 

Now compute 
$$(f \circ f)(x) = f\left(\frac{3}{x-1}\right) = \frac{3}{\frac{3}{x-1}-1} = \frac{3(x-1)}{4-x}$$

Hence,  $Dom(f \circ f) = \{x \mid x \neq 1, x \neq 4\}.$ 

(d) We can write  $Dom(g) = \{x \mid x \neq 0\}$ .

Now compute 
$$(g \circ g)(x) = g\left(\frac{2}{x}\right) = \frac{2}{\frac{2}{x}} = x$$
.

Hence,  $Dom(g \circ g) = \{x \mid x \neq 0\}.$ 

**39.**  $f(x) = \sqrt{x}$ ; g(x) = 2x + 3

## **Solution**

(a) We can write  $Dom(f) = \{x \mid x \ge 0\}$  and Dom(g) = set of all real numbers.

Now compute 
$$(f \circ g)(x) = f(g(x)) = f(2x+3) = \sqrt{2x+3}$$

We know 
$$\sqrt{2x+3}$$
 is defined if  $2x+3 \ge 0 \Rightarrow x \ge -\frac{3}{2}$ 

Hence,  $Dom(f \circ g) = \{x \mid x \ge -3/2\}.$ 

(b) We can write  $Dom(f) = \{x \mid x \ge 0\}$  and Dom(g) = set of all real numbers.

Now compute 
$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = 2\sqrt{x} + 3$$
  
Hence,  $Dom(g \circ f) = \{x \mid x \ge 0\}.$ 

(c) We can write  $Dom(f) = \{x \mid x \ge 0\}$ .

Now compute 
$$(f \circ f)(x) = f(\sqrt{x}) = \sqrt{\sqrt{x}} = (x^{1/2})^{1/2} = x^{1/4} = \sqrt[4]{x}$$

Hence,  $Dom(f \circ f) = \{x \mid x \ge 0\}.$ 

(d) We can write Dom(g) = set of all real numbers.Now compute  $(g \circ g)(x) = g(2x+3) = 2(2x+3) + 3 = 4x + 9$ . Hence,  $Dom(g \circ g) = \text{set of all real numbers.}$ 

**41.** 
$$f(x) = x^2 + 1$$
;  $g(x) = \sqrt{x-1}$ 

#### **Solution**

(a) We can write  $Dom(f) = \text{set of all real numbers and } Dom(g) = \{x \mid x \ge 1\}.$ 

Now compute 
$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x-1}) = (\sqrt{x-1})^2 + 1 = x$$
  
Hence,  $Dom(f \circ g) = \{x \mid x \ge 1\}.$ 

(b) We can write  $Dom(f) = \text{set of all real numbers and } Dom(g) = \{x \mid x \ge 1\}.$ 

Now compute 
$$(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \sqrt{x^2 + 1 - 1} = \sqrt{x^2} = x$$
  
Hence,  $Dom(g \circ f) = \text{ set of all real numbers.}$ 

(c) We can write Dom(f) = set of all real numbers.

Now compute 
$$(f \circ f)(x) = f(x^2 + 1) = (x^2 + 1)^2 + 1 = x^4 + 2x^2 + 2$$
  
Hence,  $Dom(f \circ f) = \text{set of all real numbers.}$ 

(d) We can write  $Dom(g) = \{x \mid x \ge 1\}$ .

Now compute 
$$(g \circ g)(x) = g(\sqrt{x-1}) = \sqrt{\sqrt{x-1}-1}$$
. Now  $\sqrt{\sqrt{x-1}-1}$  is defined if  $\sqrt{x-1}-1 \ge 0$  or if  $\sqrt{x-1} \ge 1$  or if  $x-1 \ge 1$  or if  $x \ge 2$ .  
Hence,  $Dom(g \circ g) = \{x \mid x \ge 2\}$ .

# Chapter 5.2

# **One-to-One Functions; Inverse Functions**

#### 5.2.1 Determine Whether a Function Is One-to-One

#### **DEFINITION**

Figure 8

## **EXAMPLE 1** Determining Whether a Function Is One-to-One

#### **THEOREM**

#### **Horizontal-line Test**

If every horizontal line intersects the graph of a function in at most one point, then *f* is one-to-one.

#### Figure 9

## **EXAMPLE 2** Using the Horizontal-line Test

## Figure 10

#### **THEOREM**

A function that is increasing on an interval *I* is a one-to-one function on *I* and a function that is decreasing on an interval *I* is a one-to-one function on *I*.

## 5.2.2 Determine the Inverse of a Function Defined by a Map or a Set of Ordered Pairs

#### **DEFINITION**

#### **EXAMPLE 4** Finding the Inverse of a Function Defined by a Set of Ordered Pairs

## Figure 11

## Figure 12

#### **EXAMPLE 5 Verifying Inverse Functions**

#### **EXAMPLE 6 Verifying Inverse Functions**

| 5.2.3 | Obtain the | Graph of the | <b>Inverse Function</b> | from the Gra | ph of the Function |
|-------|------------|--------------|-------------------------|--------------|--------------------|
|       |            |              |                         |              |                    |

Figure 13

**THEOREM** 

Figure 14

**EXAMPLE 7** Graphing the Inverse Function

Figure 15

5.2.4 Find the Inverse of a Function Defined by an Equation

**EXAMPLE 8** How to Find the Inverse Function

Figure 16

**Procedure for Finding the Inverse of a One-to-One Function** 

**EXAMPLE 9** Finding the Inverse Function

If a function is not one-to-one, it has no inverse function. Sometimes, though, an appropriate restriction on the domain of such a function will yield a new function that is one-to-one. Then the function defined on the restricted domain has an inverse function. Let's look at an example of this common practice.

**EXAMPLE 10** Finding the Inverse of a Domain-restricted Function

Figure 17

# 5.2 Assess Your Understanding

## **Concepts and Vocabulary**

- **5.** If  $x_1$  and  $x_2$  are two different inputs of a function f, then f is one-to-one if  $f(x_1) \neq f(x_2)$ .
- **6.** If every horizontal line intersects the graph of a function *f* at no more than one point, then *f* is a *one-to-one* function.
- 7. If f is a one-to-one function and f(3) = 8, then  $f^{-1}(8) = 3$ .
- **8.** If  $f^{-1}$  denotes the inverse of a function f, then the graph of f and  $f^{-1}$  are symmetric with respect to the line y = x.
- **9.** If the domain of a one-to-one function f is  $[4, \infty)$ , the range of its inverse,  $f^{-1}$ , is  $[4, \infty)$ .

## **Skill Building**

In Problems 11–18, determine whether the function is one-to-one.

**15.** {(2,6),(-3,6),(4,9),(1,10)}

**Solution:** Let  $f = \{(2,6), (-3,6), (4,9), (1,10)\}.$ 

Since two different inputs 2 and -3 in f have the same output 6, f is not one-to-one.

**17.** {(0,0),(1,1),(2,16),(3,81)}

**Solution:** Let  $\{(0,0),(1,1),(2,16),(3,81)\}$ 

The function f is one-to-one because no two different inputs have the same output.

In Problems 25–32, find the inverse of each one-to-one function. State the domain and the range of each inverse function.

**29.** {(-3,5),(-2,9),(-1,2),(0,11),(1,-5)}

**Solution:** Let  $f = \{(-3,5), (-2,9), (-1,2), (0,11), (1,-5)\}.$ 

Then  $f^{-1} = \{(5, -3), (9, -2), (2, -1), (11, 0), (-5, 1)\}.$ 

Therefore,  $Dom(f^{-1}) = \{5, 9, 2, 11, -5\}$  and  $Range(f^{-1}) = \{-3, -2, -1, 0, 1\}$ .

In Problems 33–42, verify that the functions f and g are inverses of each other by showing that and Give any values of x that need to be excluded from the domain of f and the domain of g.

**35.** 
$$f(x) = 4x - 8$$
;  $g(x) = \frac{x}{4} + 2$ 

**Solution:** Compute  $f(g(x)) = f\left(\frac{x}{4} + 2\right) = 4\left(\frac{x}{4} + 2\right) - 8 = x + 8 - 8 = x$ 

$$g(f(x)) = g(4x-8) = \frac{4x-8}{4} + 2 = x-2+2 = x$$

Therefore, by definition, f and g are inverses of each other.

**39.** 
$$f(x) = \frac{1}{x}$$
;  $g(x) = \frac{1}{x}$ 

**Solution:** First find  $Dom(f) = \{x \mid x \neq 0\} = Dom(g)$ .

Now compute 
$$f(g(x)) = f\left(\frac{1}{x}\right) = \frac{1}{1/x} = x$$
 provided  $x \neq 0$ 

$$g(f(x)) = g\left(\frac{1}{x}\right) = \frac{1}{1/x} = x \text{ provided } x \neq 0$$

Therefore, by definition, f and g are inverses of each other.

**41.** 
$$f(x) = \frac{2x+3}{x+4}$$
;  $g(x) = \frac{4x-3}{2-x}$ 

**Solution:** First find  $Dom(f) = \{x \mid x \neq -4\}$  and  $Dom(g) = \{x \mid x \neq 2\}$ .

Now compute 
$$f(g(x)) = f\left(\frac{4x-3}{2-x}\right) = \frac{2 \times \frac{4x-3}{2-x} + 3}{\frac{4x-3}{2-x} + 4} = \frac{8x-6+6-3x}{4x-3+8-4x} = \frac{5x}{5} = x \text{ provided } x \neq 2$$

$$g(f(x)) = g\left(\frac{2x+3}{x+4}\right) = \frac{4 \times \frac{2x+3}{x+4} - 3}{2 - \frac{2x+3}{x+4}} = \frac{8x+12-3x-12}{2x+8-2x-3} = \frac{5x}{5} = x \text{ provided } x \neq -4$$

Therefore, by definition, f and g are inverses of each other.

**EXAMPLE 9** 
$$f(x) = \frac{2x+1}{x-1}, x \ne 1$$

**Solution:** 

**Step I:** Replace f(x) with y in  $f(x) = \frac{2x+1}{x-1}$  to obtain  $y = \frac{2x+1}{x-1}$ .

**Step II:** Interchange the variables x and y to obtain  $x = \frac{2y+1}{y-1}$  which defines  $f^{-1}$  implicitly

**Step III:** To find the explicit form of  $f^{-1}$  solve  $x = \frac{2y+1}{y-1}$  for y to get

$$x(y-1) = 2y+1 \Rightarrow xy-x = 2y+1 \Rightarrow xy-2y = 1+x \Rightarrow y = \frac{1+x}{x-2}$$

Hence, 
$$f^{-1}(x) = \frac{1+x}{x-2}$$
.

### Check

$$f^{-1}(f(x)) = f^{-1}\left(\frac{2x+1}{x-1}\right) = \frac{1 + \frac{2x+1}{x-1}}{\frac{2x+1}{x-1} - 2} = \frac{x-1+2x+1}{2x+1-2x+2} = x \quad \text{provided } x \neq 1$$

$$f(f^{-1}(x)) = f\left(\frac{1+x}{x-2}\right) = \frac{2 \times \frac{1+x}{x-2} + 1}{\frac{1+x}{x-2} - 1} = \frac{2+2x+x-2}{1+x-x+2} = x \quad \text{provided } x \neq 2$$

#### **Exploration**

We noticed that if  $f(x) = \frac{2x+1}{x-1}$  then  $f^{-1}(x) = \frac{1+x}{x-2}$ .

Comparing the vertical and horizontal asymptotes of f and  $f^{-1}$ , we get

(i) The vertical asymptote of f is x = 1 and the horizontal asymptote of f is y = 2 because as  $x \to -\infty$  or as  $x \to +\infty$ , the improper integral  $f(x) = \frac{2x+1}{x-1} \to 2$  for

$$f(x) = \frac{2x+1}{x-1} = \frac{2(x-1)+3}{x-1} = 2 + \frac{3}{x-1} \to 2$$
 since  $\frac{3}{x-1} \to 0$  as  $x \to -\infty$  or as  $x \to +\infty$ 

(ii) The vertical asymptote of  $f^{-1}$  is x = 2 and the horizontal asymptote of  $f^{-1}$  is y = 1.

In Problems 49-60, the function f is one-to-one. Find its inverse and check your answer. Graph f,  $f^{-1}$  and y = x on the same coordinate axes.

**49.** 
$$f(x) = 3x$$

**Solution:** Replace f(x) with y in f(x) = 3x to obtain y = 3x.

Interchanging the variables x and y to obtain x = 3y and then solve this equation for y to obtain  $y = \frac{1}{3}x$ .

Hence, 
$$f^{-1}(x) = \frac{1}{3}x$$
.

#### **Check**

$$f^{-1}(f(x)) = f^{-1}(3x) = \frac{1}{3}(3x) = x$$

and 
$$f(f^{-1}(x)) = f\left(\frac{1}{3}x\right) = 3\left(\frac{1}{3}x\right) = x$$



**51.** 
$$f(x) = 4x + 2$$

**Solution:** Replace f(x) with y in f(x) = 4x + 2 to obtain y = 4x + 2.

Interchanging the variables x and y to obtain x = 4y + 2 and then solve this equation for y to obtain

$$x = 4y + 2 \Rightarrow 4y = x - 2 \Rightarrow y = \frac{1}{4}(x - 2)$$

Hence, 
$$f^{-1}(x) = \frac{1}{4}(x-2)$$
.

#### **Check**

$$f^{-1}(f(x)) = f^{-1}(4x+2) = \frac{1}{4}[(4x+2)-2] = x \text{ and } f(f^{-1}(x)) = f\left(\frac{1}{4}(x-2)\right) = 4\left(\frac{1}{4}(x-2)\right) + 2 = x$$



**53.** 
$$f(x) = x^3 - 1$$

**Solution:** Replace f(x) with y in  $f(x) = x^3 - 1$  to obtain  $y = x^3 - 1$ .

Interchanging the variables x and y to obtain  $x = y^3 - 1$  and then solve this equation for y to obtain

$$x = y^3 - 1 \Rightarrow y^3 = x + 1 \Rightarrow y = \sqrt[3]{x + 1}$$

Hence,  $f^{-1}(x) = \sqrt[3]{x+1}$ .

## Check

$$f^{-1}(f(x)) = f^{-1}(x^3 - 1) = \sqrt[3]{x^3 - 1 + 1} = x$$
 and  $f(f^{-1}(x)) = f(\sqrt[3]{x + 1}) = (\sqrt[3]{x + 1})^3 - 1 = x$ 



**55.** 
$$f(x) = x^2 + 4, x \ge 0$$

**Solution:** Replace f(x) with y in  $f(x) = x^2 + 4$  to obtain  $y = x^2 + 4$ .

Interchanging the variables x and y to obtain  $x = y^2 + 4$  and then solve this equation for y to obtain

$$x = y^2 + 4 \Rightarrow y^2 = x - 4 \Rightarrow y = \sqrt{x - 4}$$
 provided  $x \ge 0$ 

Hence, 
$$f^{-1}(x) = \sqrt{x-4}$$
.

## **Check**

$$f^{-1}(f(x)) = f^{-1}(x^2 + 4) = \sqrt{(x^2 + 4) - 4} = x$$
 and  $f(f^{-1}(x)) = f(\sqrt{x - 4}) = (\sqrt{x - 4})^2 + 4 = x$ 



**57.** 
$$f(x) = \frac{4}{x}$$

**Solution:** Replace f(x) with y in  $f(x) = \frac{4}{x}$  to obtain  $y = \frac{4}{x}$ .

Interchanging the variables x and y to obtain  $x = \frac{4}{y}$  and then solve this equation for y to obtain

$$x = \frac{4}{y} \Rightarrow y = \frac{4}{x}$$

Hence,  $f^{-1}(x) = \frac{4}{x}$ .

### **Check**

$$f^{-1}(f(x)) = f^{-1}\left(\frac{4}{x}\right) = \frac{4}{4/x} = x \text{ and } f(f^{-1}(x)) = f\left(\frac{4}{x}\right) = \left(\frac{4}{4/x}\right) = x$$



**59.** 
$$f(x) = \frac{1}{x-2}$$

**Solution:** Replace f(x) with y in  $f(x) = \frac{1}{x-2}$  to obtain  $y = \frac{1}{x-2}$ .

Interchanging the variables x and y to obtain  $x = \frac{1}{y-2}$  and then solve this equation for y to obtain

$$x = \frac{1}{y-2} \Rightarrow y-2 = \frac{1}{x} \Rightarrow y = \frac{1}{x} + 2 = \frac{1+2x}{x}$$

Hence,  $f^{-1}(x) = \frac{1+2x}{x}$ .

#### **Check**

$$f^{-1}(f(x)) = f^{-1}\left(\frac{1}{x-2}\right) = \frac{1+2\times\frac{1}{x-2}}{\frac{1}{x-2}} = \frac{x-2+2}{1} = x$$

$$f(f^{-1}(x)) = f\left(\frac{1+2x}{x}\right) = \frac{1}{\frac{1+2x}{x}-2} = \frac{x}{1+2x-2x} = x$$



# Chapter 5.3

# **Exponential Functions**

## 5.3.1 Evaluate Exponential Functions

## **EXAMPLE 1** Using a Calculator to Evaluate Powers of 2

## THEOREM Laws of Exponents

If s, t, a and b are real numbers with a > 0 and b > 0, then

(a) 
$$a^s \cdot a^t = a^{s+t}$$
 (b)  $(a^s)^t = a^{st}$ 

(b) 
$$(a^s)^t = a^{st}$$

(c) 
$$(ab)^{s} = a^{s} \cdot b^{s}$$

(d) 
$$1^s = 1$$

(e) 
$$a^{-s} = \frac{1}{a^s} = \left(\frac{1}{a}\right)^s$$
 (f)  $a^0 = 1$ 

(f) 
$$a^0 = 1$$

## **Introduction to Exponential Growth**

#### **Definition**

An **exponential function** is a function of the form

$$f(x) = Ca^x$$

where a is a positive real number, a > 0,  $a \ne 1$  and  $C \ne 0$  is a real number. The domain of f is the set of all real numbers. The base a is the **growth factor** and the number C is called the **initial value**.

## **Theorem**

For an exponential function  $f(x) = Ca^x$ , where a > 0 and  $a \ne 1$ , if x is any real number, then

$$\frac{f(x+1)}{f(x)} = a \quad \text{or} \quad f(x+1) = af(x)$$

# **5.3.2 Graph Exponential Functions**

**EXAMPLE 3** Graphing an Exponential Function



## **Properties of the Exponential Function** $f(x) = a^x$ , a > 1

- 1. The domain of f is the set of all real numbers and the range is the set of positive real numbers.
- 2. There are no *x*-intercepts and the *y*-intercept is 1.
- 3. The x-axis ( y = 0 ) is a horizontal asymptote as  $x \to -\infty$ , i.e.  $\lim_{x \to -\infty} a^x = 0$ .
- 4.  $f(x) = a^x$ , for a > 1, is an increasing function and is one-to-one.
- 5. The graph of f contains the points  $\left(-1, \frac{1}{a}\right)$ , (0,1) and (1, a).
- 6. The graph of f is smooth and continuous with no corners or gaps.

# **EXAMPLE 4** Graphing an Exponential Function



# **Properties of the Exponential Function** $f(x) = a^x$ , 0 < a < 1

- 1. The domain of f is the set of all real numbers and the range is the set of positive real numbers.
- 2. There are no x-intercepts and the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as  $x \to \infty$ , i.e.  $\lim_{x \to \infty} a^x = 0$ .
- 4.  $f(x) = a^x$ , for 0 < a < 1, is a decreasing function and is one-to-one.
- 5. The graph of f contains the points  $\left(-1, \frac{1}{a}\right)$ , (0,1) and (1, a).
- 6. The graph of f is smooth and continuous with no corners or gaps.

# **EXAMPLE 5 Graphing Exponential Functions Using Transformations**

#### 5.3.3 Define the Number e

Many problems that occur in nature require the use of an exponential function whose base is a certain irrational number, symbolized by the letter e. The letter e was chosen to represent this irrational number in honor of the Swiss mathematician Leonhard Euler (pronounced "oiler") (1707-1783).

#### **Definition**

The number e is defined as the number that the expression

$$\left(1+\frac{1}{n}\right)^n$$

approaches as  $n \to \infty$ .

In calculus, this is expressed using limit notation as

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

## **EXAMPLE 6 Graphing Exponential Functions Using Transformations**

## **5.3.4 Solve Exponential Equations**

#### **Definition**

Equations that involve terms of the form  $a^x$ , where a > 0 and  $a \ne 1$ , are referred to as **exponential equations.** Such equations can sometimes be solved by appropriately applying the Laws of Exponents with the property given by

If 
$$a^u = a^v$$
 then  $u = v$ 

#### **EXAMPLE 7** Solving Exponential Equations

Solve each exponential equation

(a) 
$$3^{x+1} = 81$$
 (b)  $4^{2x-1} = 8^{x+3}$ 

**Solution:** 

(a) 
$$3^{x+1} = 81 \Rightarrow 3^{x+1} = 3^4 \Rightarrow x+1=4 \Rightarrow x=4-1 \Rightarrow x=3$$

Hence the solution is x = 3.

(b) 
$$4^{2x-1} = 8^{x+3} \Rightarrow (2^2)^{2x-1} = (2^3)^{x+3} \Rightarrow 2^{4x-2} = 2^{3x+9}$$

Using formula, we get

$$4x-2=3x+9 \Rightarrow 4x-3x=9+2 \Rightarrow x=11$$

Hence the solution is x = 11.

## **EXAMPLE 8** Solving an Exponential Equation

Solve the exponential equation  $e^{-x^2} = (e^x)^2 \cdot \frac{1}{e^3}$ 

**Solution:** Using Laws of Exponents, we can write

$$e^{-x^2} = (e^x)^2 \cdot \frac{1}{e^3} = e^{2x} \cdot e^{-3} \implies e^{-x^2} = e^{2x-3}$$

$$\Rightarrow -x^2 = 2x - 3 \Rightarrow x^2 + 2x - 3 = 0$$

$$\Rightarrow$$
  $(x+3)(x-1) = 0 \Rightarrow x = -3 \text{ or } x = 1$ 

Hence the solution is (x, y) = (-3, 1).

# **SUMMARY** Properties of the Exponential Function

# 5.3 Assess Your Understanding

# **Skill Building**

In Problems 41-52, use transformations to graph each function. Determine the domain, range, and horizontal asymptote of each function.

In Problems 53–60, begin with the graph of [Figure 27] and use transformations to graph each function. Determine the domain, range, and horizontal asymptote of each function.

# Solve the following exponential equations:

**63.** 
$$2^{-x} = 16$$

**63.** 
$$2^{-x} = 16$$
 **65.**  $\left(\frac{1}{5}\right)^x = \frac{1}{25}$  **67.**  $2^{2x-1} = 4$  **69.**  $3^{x^3} = 9^x$ 

**67.** 
$$2^{2x-1} = 4$$

**69.** 
$$3^{x^3} = 9^x$$

**71.** 
$$8^{-x+14} = 16^{-x}$$

**73.** 
$$3^{x^2-7} = 27^{2x}$$

**71.** 
$$8^{-x+14} = 16^x$$
 **73.**  $3^{x^2-7} = 27^{2x}$  **75.**  $4^x \cdot 2^{x^2} = 16^2$  **77.**  $e^x = e^{3x+8}$ 

**77.** 
$$e^x = e^{3x+8}$$

**79.** 
$$e^{x^2} = e^{3x} \cdot \frac{1}{e^2}$$