Calculus 1 - Exercise 9

December 25, 2020

All exercises should be submitted by January 3rd by 23:00. Delays won't be accepted aside for special cases which will be approved beforehand. These are the submission regulations (also available on the Moodle):

- 1. Exercises are personal and cannot be submitted in groups.
- 2. Write your name, ID and tutorial group in the header of the exercise.
- 3. They should be written clearly on A4 pages. Hard-to-read exercises will not be graded.
- 4. Serious effort has to be shown by the student. Unreadable or extremely partial answers will be disregarded.
- 5. Exercises submitted late without the TA's approval will not be accepted.

Questions:

- Define each of the following terms. Give a full and complete mathematical definition, without using any negation symbol, except for maybe ≠.
 If your definition includes a secondary term that was defined in class, you must define it as well! You do not have to define any term that appears prior to the words "Define the term".
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$. Define the term: f is not continuous on (a, b).
 - (b) Let f be a function defined on a deleted neighbourhood of $x_0 \in \mathbb{R}$. Define the term: x_0 is an essential discontinuity.

2.

- (a) Let 2 < r < 4. Prove that there exists an 1 < x < 4 for which $3x x^{3/2} = r$.
- (b) Let $0 < \alpha < 2$. Prove that there exists an 0 < x < 1 for which $2^x = \frac{\alpha}{x}$.
- (c) Let $f:[0,1] \to [0,1]$ continuous. Assume that f(0)=f(1). Prove that there exists an $0 \le x \le \frac{1}{2}$ such that $f(x)=f\left(x+\frac{1}{2}\right)$.
- 3. Prove or disprove each of the following statements:
 - (a) Let f be a function that is continuous continuous at $x_0 \in \mathbb{R}$. Then $g = f \cdot D$ is continuous at x_0 if and only if $f(x_0) = 0$, where $D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$.
 - (b) There exists an 0.33 < x < 0.34 for which $\ln(x)$ is irrational.
 - (c) Let $f:(0,\infty)\to\mathbb{R}$ be a function for which $f(x)\cdot f\left(\frac{1}{x}\right)<0$ for every $0< x\neq 1$. Suppose that f is continuous at $x_0=1$, then f(1)=0.

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous and bounded function that is not constant, and let $M = \sup Im(f)$, $m = \inf Im(f)$. Prove that $(m, M) \subseteq Im(f) \subseteq [m, M]$.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function that is continuous on \mathbb{Z} and discontinuous on $\mathbb{R} \setminus \mathbb{Z}$ (that is, continuous at x_0 if and only if $x_0 \in \mathbb{Z}$).
 - (a) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ that satisfies the above requirements.
 - (b) Student A has proven that there is no such function in the following way: Suppose, by way of contradiction, that such a function exists. Let $n \in \mathbb{Z}$. As f is continuous at n, then there exists a $\delta_1 > 0$ such that for every $|x - n| < \delta_1$ we have

$$|f(x) - f(n)| < \lceil \frac{\epsilon_0}{2} \rceil$$

As $\mathbb{R}\backslash\mathbb{Z}$ is dense, there exists an $x_1\in\mathbb{R}\backslash\mathbb{Z}$ such that $|x_1-n|<\delta_1$ which implies that

$$|f(x_1) - f(n)| < \boxed{\frac{\epsilon_0}{2}}$$

As f is not continuous at x_1 , then there exists an $\epsilon_0 > 0$ such that for every $\delta > 0$ there exists an $x \in \mathbb{R}$ such that $|x - x_1| < \delta$ but $|f(x) - f(x_1)| \ge \epsilon_0$.

Choose $\delta > 0$ to be small enough such that $n - \delta_1 < x_1 - \delta$ and $x_1 + \delta < n + \delta_1$ (surely, there exists such a δ). Then there exists an $x_2 \in \mathbb{R}$ such that $|x_2 - x_1| < \delta$ but $|f(x_2) - f(x_1)| \ge \epsilon_0$.

Note that $n - \delta_1 < x_1 - \delta < x_2 < x_1 + \delta < n + \delta_1$ and therefore $|x_2 - n| < \delta_1$, which implies that

$$|f(x_2) - f(n)| < \boxed{\frac{\epsilon_0}{2}}$$

By the 'trick' we obtain

$$|f(x_2) - f(x_1)| \le |f(x_2) - f(n)| + |f(x_1) - f(n)| < \lceil \frac{\epsilon_0}{2} \rceil + \lceil \frac{\epsilon_0}{2} \rceil = \epsilon_0$$

Contradiction!

Find and explain student A's mistake.