## Variation in cross-habitat energy flows to mobile estuarine consumers along a latitudinal gradient

## Supplemental material

Supplemental Table 1. Trophic position, the percent contribution [median (lower 95% CI, upper 95% CI)] of the primary production sources to marsh-associated and mobile estuarine consumers for each geographic region sampled.

| Site | Species          | Trophic position | Epiphytes          | POM                | Saltmarsh MPB       | C4 marsh vegetation |
|------|------------------|------------------|--------------------|--------------------|---------------------|---------------------|
| LA   | Blue crab        | 1.87 ± 0.03      | 0.56 (0.40, 0.75)  | 0.19 (0.07, 0.30)  | 0.02 (0.002, 0.06)  | 0.23 (0.13, 0.32)   |
|      | Killifish        | $2.27 \pm 0.03$  | 0.42 (0.27, 0.56)  | 0.10 (0.02, 0.19)  | 0.04 (0.001, 0.12)  | 0.44 (0.36, 0.51)   |
|      | Red drum         | $3.07 \pm 0.04$  | 0.49 (0.32, 0.73)  | 0.40 (0.18, 0.53)  | 0.006 (0.001, 0.02) | 0.11 (0.02, 0.21)   |
|      | Spotted seatrout | 4.41 ± 0.08      | 0.45 (0.11, 0.87)  | 0.3 (0.03, 0.58)   | 0.01 (0.001, 0.09)  | 0.22 (0.04, 0.40)   |
| NC   | Blue crab        | $2.8 \pm 0.03$   | 0.22 (0.11, 0.37)  | 0.47 (0.39, 0.54)  | 0.03 (0.003, 0.11)  | 0.27 (0.15, 0.39)   |
|      | Killifish        | $2.88 \pm 0.03$  | 0.11 (0.03, 0.29)  | 0.55 (0.46, 0.62)  | 0.02 (0.001, 0.12)  | 0.30 (0.14, 0.41)   |
|      | Red drum         | $3.22 \pm 0.03$  | 0.24 (0.11, 0.43)  | 0.38 (0.28, 0.46)  | 0.03 (0.002, 0.13)  | 0.34 (0.17, 0.48)   |
|      | Flounder         | $3.57 \pm 0.04$  | 0.11 (0.02, 0.36)  | 0.51 (0.39, 0.60)  | 0.03 (0.001, 0.19)  | 0.32 (0.12, 0.44)   |
|      | Spotted seatrout | $2.98 \pm 0.03$  | 0.71 (0.52, 0.90)  | 0.16 (0.05, 0.30)  | 0.02 (0.001, 0.11)  | 0.08 (0.02, 0.23)   |
| NJ   | Blue crab        | 2.48 ± 0.01      | 0.07 (0.004, 0.29) | 0.55 (0.42, 0.62)  | 0.03 (0.002, 0.12)  | 0.33 (0.25, 0.40)   |
|      | Killifish        | $1.79 \pm 0.004$ | 0.01 (0, 0.02)     | 0.02 (0.005, 0.04) | 0.003 (0, 0.02)     | 0.97 (0.95, 0.99)   |
|      | Striped bass     | $3.74 \pm 0.01$  | 0.04 (0.002, 0.27) | 0.67 (0.54, 0.74)  | 0.02 (0.001, 0.09)  | 0.24 (0.15, 0.31)   |
|      | Flounder         | 2.97 ± 0.01      | 0.13 (0.002, 0.40) | 0.71 (0.53, 0.83)  | 0.03 (0.001, 0.20)  | 0.08 (0.02, 0.17)   |
| MA   | Blue crab        | 1.71 ± 0.05      | 0.05 (0.003, 0.22) | 0.35 (0.15, 0.62)  | 0.03 (0.002, 0.13)  | 0.55 (0.27, 0.73)   |
|      | Killifish        | $2.41 \pm 0.05$  | 0.02 (0.001, 0.23) | 0.68 (0.12, 0.92)  | 0.01 (0.001, 0.09)  | 0.26 (0.05, 0.70)   |
|      | Striped bass     | 4.24 ± 0.05      | 0.04 (0.002, 0.34) | 0.51 (0.10, 0.76)  | 0.02 (0.001, 0.16)  | 0.36 (0.14, 0.73)   |
|      | Flounder         | 2.95 ± 0.06      | 0.02 (0.001, 0.18) | 0.77 (0.21, 0.94)  | 0.01 (0.001, 0.07)  | 0.18 (0.04, 0.6)    |

Supplemental Figure 1.  $\delta^{13}$ C and  $\delta^{34}$ S biplots for all basal resources and taxa sampled across four sampling sites: Louisiana, North Carolina, New Jersey and Massachusetts. Colored points indicate raw isotope values for consumer taxa. Black dots circles represent mean basal resource isotope values and error bars indicate standard deviations.

