Untitled

Introduction to R for Public Health Researchers

Contents

I am a section																				1
I am a subsection								 												

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com. **bold** *italicize* When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
library(stringr)
library(plyr)
library(pander)
bl = read.csv("http://www.aejaffe.com/winterR_2016/data/Bike_Lanes.csv", as.is =TRUE)
bl2$numLanes = factor(bl2$numLanes)
mod2 = lm(length ~ numLanes, data = bl2)
mod = lm(length ~ factor(numLanes), data = bl)
smod = summary(mod)
ci = confint(mod)
mat = cbind(smod$coefficients[, "Estimate"], ci)
mat = data.frame(mat)
colnames(mat) = c("Beta", "Lower", "Upper")
mat$CI = paste0("(", round(mat$Lower, 2),
                ", ", round(mat$Upper, 2), ")")
mat = mat[, c("Beta", "CI")]
mat$Variable = rownames(mat)
rownames(mat) = NULL
mat$Variable = str_replace(mat$Variable, fixed("factor(numLanes)"), "Number of Lanes: ")
mat = mat[, c("Variable", "Beta", "CI")]
mat$Variable = plyr::revalue(mat$Variable, c("(Intercept)" = "BO"))
```

I am a section

I am a subsection

```
pander(mat)
```

Variable	Beta	CI
B0 Number of Lanes: 1 Number of Lanes: 2	308.4 -30.48 -50.83	(189.53, 427.22) (-150.7, 89.75) (-171.42, 69.76)

pander(smod)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	308.4	60.59	5.09	4.006e-07
factor(numLanes)1	-30.48	61.29	-0.4972	0.6191
factor(numLanes)2	-50.83	61.48	-0.8267	0.4085

Table 3: Fitting linear model: length ~ factor(numLanes)

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
1631	277.7	0.001564	0.0003378

pander(mod)

Table 4: Fitting linear model: length \sim factor(numLanes)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	308.4	60.59	5.09	4.006e-07
factor(numLanes)1	-30.48	61.29	-0.4972	0.6191
factor(numLanes)2	-50.83	61.48	-0.8267	0.4085

You can also embed plots, for example:

My number of cars are 50.

```
pvals =smod$coefficients[, "Pr(>|t|)"]
pvals = ifelse(pvals < 0.001, "< 0.001", round(pvals, 2))</pre>
```

The beta coefficient was significant (308.3767969, p < 0.001)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.