1. Considerá la siguiente especificación formal:  $h.n = \langle \exists k : 0 \leq k < n : n = k! \rangle$ a. Derivá el caso inductivo indicando claramente la HI antes de comenzar la derivación. b. Indicá cuál es la función generalizada (h\_gen) indicando su tipo y su especificación.  $\checkmark$ c. Definí h usando h\_gen. d. Derivá el caso inductivo de la función generalizada. M.n = < ]k; osk <n: n=k!) a) Delivo la especificación: (B) n.o = < ] k:0 < k<0 . n = 0!) = { logica Hango Vaco} (R) n.(n+1) = (]K: 0 (K( n+1: n+1 = K).) = { logica, Partición de rango } ( ]K: K=n+1:n+1=K!) V ( ]K:05K<n:n+1=K!) ={ Rango unitario } (n+1)=(n+1)! V < 3 K:0 < K < n: n+1 = K!> =igeneralizo} n.n.m = < 3k;06k<n;n+m=k1> (B) NO. m = < 3K; 05K < 0: m = K!> = { Logica, Rango vacio? (D) (n+1) m=(3k:04k(n+1:n+1+m=k!) = { logica, Particion de rango? < 3K: K=n+1:n+1+m=K!>V< 3K:05K<n;n+1+m=K!> =[Rango unitario] n+1+m=(n+1) V くまはこのられくかられより = { A Sociativided, m: - m+i, HE} 1+1+m=(n+1); V N.N.(m+1) = [ Defino Función Factorial ? (Modularización) F.n = < T10: 150cn: 1 > B @ F.(nt) = < ITL: LSUSATIONS (0) 9.0 = < IT : 1 < ( & U; ( ) = [ lajica, Partición de rango? = {logica, Rango Vacio}





| ={Der Suma, Termino Constante}                             |                                                                              |
|------------------------------------------------------------|------------------------------------------------------------------------------|
| o my May o be (x) y)                                       | COLLEGE COLES COLES                                                          |
| 0 (                                                        | (a)++b, ray \( C) \rangle Rales. a): Sum as                                  |
| = { Cambio de variable as (abas), Der Cancaten             | car, Pro?. del Constructor}                                                  |
| O max < Max as bs: x= a 1 xs=as++ os 1 Pares.              | (674): \$14 (674)                                                            |
| 0 Max ( 1 max 23) 85: N= a 1 x 3=054+ 05 1 (00 5).         | (4045) • 3014,(40345)/                                                       |
| = { Def de Pares, Def Sum?                                 |                                                                              |
| O may / May a land y a A XX - G x + box n 2                | 1 2 m ( 0 ;                                                                  |
| 0 max < Max as, bs: x= a 1xs= as++ bs 1 Pares c            | - 1419.05. 7750/11.455                                                       |
| ·= 2 generalización, eliminación de variable?              |                                                                              |
|                                                            | 2                                                                            |
| gh.xs.n.m = < Maxas, n, bs; xs = as++bs ^ n ^              | (arej.us.m + som us)                                                         |
| (B) qh. () . n. m = < Maxas, n, bs ; () = as ++bs 1 v      | n r Pares. as im + sum as                                                    |
|                                                            |                                                                              |
| = ? ProPconcatenar, eliminacione de variable?              |                                                                              |
| < Max n: n ^ ? ares. C]: m + sum. C]>                      |                                                                              |
| - (Det Com telesia Canst tel                               |                                                                              |
| = { Det Sum termino Constante}                             |                                                                              |
| l <u>m</u>                                                 |                                                                              |
| (D) 64 (174) 0 00 (M) 100 (D) 00 (D)                       | or Non Pares as materials                                                    |
| (A) gn. (x0xs). n.m = (Max.os, n, b): (x0xs) = as ++ b     | <del></del>                                                                  |
| = & logica, Distributividad del 1 cun el v, Rar            | ticion de rango {                                                            |
| < Tax ash by - (x Dx) - as +1 > "as - [] ^ n n Pares a     | 5: m+sumay max < Tax asp, bs. (KDX)= as++bs "as=(D) ~ n ~ Pares, as: m+sumay |
|                                                            |                                                                              |
| = 2 eliminación de variable Def Concat, Def Par            | es, Def sum?                                                                 |
| < Mark n: (x5x1) = 05 nn:m>                                |                                                                              |
|                                                            |                                                                              |
| ={termino constante}                                       |                                                                              |
| m max (ha a ) (ka) a o o o                                 |                                                                              |
| m max < tax asn, bs = (x Dx) = as ++ bs nc                 |                                                                              |
| = ¿Combió de variable. as (asas), ?or conceterar,?         | 107 constructor, Def Pares, Def Suma}                                        |
| m max < max as, n, bs: x = an xs=as++ bs n n               | A Pares a A Pares as - m tout a m as                                         |
|                                                            |                                                                              |
| = } elimina cioro de Variable, asociatividad del n asoc    | atividad de la suma?                                                         |
| m max < max as, 1, bs: xs = as ++bs 1(n x Pares.x)         | 12 Pares as 1 (mx+x) +5, mag                                                 |
|                                                            | ) (co c), (c), (c) (c) (c)                                                   |
| = EHI                                                      | gh: (Num) -> Num -> Num -> Num                                               |
| m max gh.xs, (n^ Pares, x). (m+x)                          | 9n.c7, n.m = m                                                               |
|                                                            | J. 2. 3. 2. 7. 2 11                                                          |
| $\langle \forall i : 0 \leq i < \#us : par.(us!i) \rangle$ | 9n. (xixx), n.m = m max gh.xs, (n rares, x). (m+x)                           |
| Pares, us = < \t. 04i < \$u5: Par.(us!i)>                  | Pares: (Num) -> Bool                                                         |
|                                                            | Pares. C) = true                                                             |
| @ Pares. (7=< 46:056(#t]: Par(C)(i))                       | Pares (no ms) = Parm 1 Pares ms.                                             |
| = [Def length, logica, Rango Vació]                        |                                                                              |



