ΛΗΜΜΑ ΑΝΤΛΗΣΗΣ για ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Το Λήμμα Άντλησης για Κανονικές Γλώσσες:

Έστω L μια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθμός n (μήκος άντλησης) τέτοιος ώστε κάθε $x \in L$ με $|\mathbf{x}| \geq n$ να μπορεί να γραφεί στην μορφή x = uvw όπου για τις συμβολοσειρές u, v και w ισχύει:

- $|uv| \leq n$
- $v \neq \varepsilon$
- $uv^mw \in L$ για κάθε φυσικό $m \geq 0$

Ιδιότητα	Συμβ/ρα	Δυναμη
·		
$\frac{\mathbf{I}\boldsymbol{\sigma}\boldsymbol{\delta}\boldsymbol{\tau}\boldsymbol{\eta}\boldsymbol{\tau}\boldsymbol{\alpha}}{\{0^n1^n\mid n\geq 0\}}$	$0^{p}1^{p}$	uv^2w
$\frac{\mathbf{A} \mathbf{v} \mathbf{\alpha} \mathbf{\lambda} \mathbf{o} \mathbf{v} \mathbf{i} \mathbf{\alpha}}{\{0^{2n} 1^{3n} \mid n \ge 0\}}$	$0^{2p}1^{3p}$	uv^2w
$\frac{\Pi \alpha \lambda \iota \nu \delta \rho o \mu / \tau \alpha}{\{w c w^R \mid w \in \{a, b\}^*\}}$	$a^p b^p c b^p a^p$	uv^2w
$\frac{\mathbf{Aνισότητα}}{\{a^nb^m \mid n \le m\}}$	$\alpha^p b^p$	uv^2w
$\{a^n b^m \mid n < m\}$		uv^2w

 $\{a^nb^m \mid n > m\}$ $\alpha^{p+1}b^p$

Συμμετρία στο Κέντρο $\{a^nb^mc^md^n|n,m\geq 0\}$

 $\{a^{n+m}b^mc^n|n,m\geq 0\}$

 $\overline{\{a^i b^j c^k | i = j \eta j = k\}}$

 $\{a^i b^j c^k | i = j + k\}$

 $\{a^i b^j c^k | i > j + k\}$

Παράθεση

uv^0w

 $\overline{\{a^nb^nc^md^m|n,m\geq 0\}} \alpha^pb^pc^pd^p$ $\{a^n b^{n+m} c^n | n, m \ge 0\}$ $\alpha^p b^{2p} c^p$ uv^2w

 $\alpha^p b^p c^p d^p$

 $\alpha^{2p}b^pc^p$

 $\alpha^{2p+1}b^pc^p$

 $\{a^i b^j c^k | j = i + k\}$ Διάζευξη Συμβ/ρών

 $\alpha^p b^p c^p$

 uv^2w

 $L_1 = {0^n 1^n | n \ge 0} - AΠΟΔΕΙΞΗ$

Η L είναι άπειρη. Υποθέτουμε ότι είναι κανονική. Έστω ρ το μήκος άντλησής της.

Η συμβολοσειρά $s = 0^p 1^p$ ανήκει στην γλώσσα και έχει μήκος $2p \ge p$. Η συμβολοσειρά μπορεί να γραφεί στην μορφή s = uvw με 0 < |v| και $|uv| \le p$. Επιπλέον για κάθε φυσικό k θα ισχύει $uv^kw \in L$

Επειδή $|uv| \le p$ έπεται ότι το uv θα περιέχεται στο 0^p . Έτσι η λέξη ε θα αποτελείται από τα εξής τμήματα:

 $u=0^i$ $v = 0^j$, i > 0 $w = 0^{p-i-j} 1^p$

Η συμβολοσειρά uv^2w θα είναι $0^{p+j}1^p$ συνεπώς δεν θα ανήκει στην L αφού δεν θα έχει ίσα 0 και 1

Άτοπο από το λήμμα άντλησης. Συνεπώς η γλώσσα δεν είναι κανονική.

(1) Επιλέγουμε μια συμβολοσειρά s που ανήκει στην γλώσσα που το πρώτο σύμβολο είναι (α) υψωμένο τουλάχιστον στην ρ

(β) ανήκει οριακά στην γλώσσα (2) Υπολογίζουμε το μήκος της συμβολοσειράς

που επιλέξαμε στο (1)

(3) Το υν θα περιέχεται στο πρώτο σύμβολο που έχουμε επιλέξει.

(4) Το πρώτο σύμβολο της s υψωμένο στην i

(5) Το πρώτο σύμβολο της s υψωμένο στην *i* (6) Ακριβώς ίδια συμβολοσειρά με την s όπου στον εκθέτη του 1ου σύμβολου θα έχει αφαιρεθεί

(7) Θα είναι: $uv^2w \acute{\eta}$

TO -i-j

 uv^0w

(8) Αντίστοιχα από την επιλογή μας στο (7)

- Θέτουμε + j στον 1° εκθέτη της s.
 - Θέτουμε -i στον 1° εκθέτη της s.
- (9) Αιτιολογούμε γιατί η συμβολοσειρά που έχουμε δεν ανήκει στην γλώσσα.

ΔΙΑΚΡΙΝΟΜΈΝΕΣ ΣΥΜΒΟΛΟΣΕΙΡΕΣ

Έστω L μια κανονική γλώσσα. Ορίζουμε ότι:

- Δύο συμβολοσειρές x,y είναι διακρινόμενες ανά δυο αν και μόνο αν υπάρχει συμβολοσειρά z τέτοια ώστε μια μόνο από τις χζ και γζ να ανήκει στην γλώσσα.
- ΘΕΩΡΗΜΑ: Αν μια γλώσσα έχει η διακρινόμενες ανά δύο συμβολοσειρές, τότε το αυτόματό της θα πρέπει να έχει τουλάχιστον η καταστάσεις.

Χρήση του ορισμού για να αποδείξουμε ότι η γλώσσα $L = \{0^n 1^n | n \ge 0\}$ δεν είναι κανονική

Απόδειξη:

Υποθέτουμε ότι είναι κανονική. Συνεπώς θα υπάρχει πεπερασμένο αυτόματο με η καταστάσεις που την αναγνωρίζει.

Θεωρούμε τις συμβολοσειρές $0, 0^2, 0^3, 0^4, ..., 0^m$ (όπου m>n)

Οι παραπάνω συμβολοσειρές είναι διακρινόμενες ανά δύο: Π.χ. Έστω 0^i και 0^j με $i \neq j$. Πρέπει να βρούμε ένα z τέτοιο ώστε ένα μόνο από τα $0^i z$ και $0^j z$ να ανήκει στην γλώσσα. Επιλέγουμε $z=1^i$ οπότε 0^i1^i ανήκει στην γλώσσα και $0^{j}1^{l}$ δεν ανήκει στην γλώσσα. Συνεπώς οι m συμβολοσειρές είναι διακρινόμενες ανά δύο.

Συνεπώς κάθε αυτόματό της θα έχει τουλάχιστον m>n καταστάσεις.

Άτοπο. Άρα η L δεν είναι κανονική.

Χρήση του ορισμού των διακρινόμενων συμβολοσειρών για να αποδείξουμε ότι ένα ΝΠΑ έχει ελάχιστο πλήθος καταστάσεων.

Απόδειξη: Το ακόλουθο ΝΠΑ της γλώσσας $L=\{w \in \{0,1\}^* \mid w\}$ τελειώνει με 00} έχει ελάχιστο πλήθος καταστάσεων:

Οι συμβολοσειρές $s_1 = \varepsilon$, $s_2 = 0$, $s_3 = 00$ είναι διακρινόμενες ανά δύο:

 s_1 και s_2 είναι διακρινόμενες. Επιλέγω z = 0 και έχουμε:

- $s_1 z = \varepsilon 0 = 0 \notin L$
- $S_2Z =$ 00 ∈ L

 S_1 και S_3 είναι διακρινόμενες. Επιλέγω $Z = \varepsilon$ και έχουμε:

- $s_1 z = \varepsilon \varepsilon = \varepsilon \notin L$
- $s_3 z = 00\varepsilon = 00 \in L$

 s_2 και s_3 είναι διακρινόμενες. Επιλέγω $z = \varepsilon$ και έχουμε:

- $s_2 z = 0\varepsilon = 0 \notin L$
- $s_3 z = 00\varepsilon = 00 \in L$

Συνεπώς οποιοδήποτε ΝΠΑ της L απαιτεί τουλάχιστον 3 καταστάσεις.