Lycée Berthollet MPSI² 2023-24

DM4 de mathématiques en autocorrection (entraînement au raisonnement)

Les documents, téléphones portables, ordinateurs et calculatrices sont interdits.

Sauf mention explicite, toute réponse à une question devra être argumentée.

Exercice 1 Analysons, synthétisons...

Déterminer **soigneusement** l'ensemble S des réels x tels que $\frac{1}{1+x} \le \frac{1}{\sqrt{1+x^2}} \le \frac{1}{x}$.

Exercice 2 Besoin d'une injection... ou d'une surjection, voire d'une bonne correction Soient E, F, G trois ensembles, f une application de E vers F et g une application de F vers G. On définit en outre l'application h de E vers G par : $\forall x \in E, \ h(x) = g(f(x))$. Montrer que

- 1. si h est injective, alors f est injective;
- 2. si h est surjective, alors g est surjective.

Problème 1 La fenêtre tordue

On note \mathcal{P} le plan euclidien orienté usuel muni d'un ROND, ce qui permet de faire la correspondance habituelle avec \mathbb{C} .

- 1. Soit $z \in \mathbb{C}^*$. Exprimer Re z et Im z en fonction de |z| et Arg z.
- 2. Soient $z, z' \in \mathbb{C}^*$. Montrer que

$$\begin{cases} \operatorname{Re}(z'\overline{z}) &= |z||z'|\cos\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right) \\ \operatorname{Im}(z'\overline{z}) &= |z||z'|\sin\left(\operatorname{Arg}\left(\frac{z'}{z}\right)\right). \end{cases}$$

- 3. En déduire que pour tous points A, M et M' de \mathcal{P} , si on note z l'affixe de \overrightarrow{AM} et z' l'affixe de $\overrightarrow{AM'}$:
 - (a) $\overrightarrow{AM} \cdot \overrightarrow{AM'} = \operatorname{Re}(z'\overline{z});$
 - (b) L'aire algébrique du triangle AMM' (*i.e.* comptée positivement si le triangle est direct et négativement sinon) vaut $\frac{1}{2}\text{Im}(z'\overline{z})$.
- 4. Soient $M,M' \in \mathcal{P}$ d'affixes z,z'. On note N le point situé au tiers du segment [MM'] (*i.e.* tel que $\overrightarrow{MN} = \frac{1}{3}\overrightarrow{MM'}$) et P le point situé au deux tiers de ce même segment.

Montrer que l'affixe de N est $\frac{2z+z'}{3}$ et celui de P est $\frac{z+2z'}{3}$.

Dans la suite de l'exercice, on considère un quadrilatère quelconque de sommets A, B, C, D (énumérés dans le sens direct) et on note pour $i \in \{1, 2\}$, I_i (resp. J_i , K_i , L_i) le point tel que $\overrightarrow{AI_i} = \frac{i}{3}\overrightarrow{AB}$ (resp. $\overrightarrow{BJ_i} = \frac{i}{3}\overrightarrow{BC}$, $\overrightarrow{CK_i} = \frac{i}{3}\overrightarrow{CD}$, $\overrightarrow{DL_i} = \frac{i}{3}\overrightarrow{DA}$).

- 5. Faire une figure dans le cas le plus général possible.
- 6. Calculer les affixes des huit points ci-dessus en fonction des affixes a, b, c, d des points A, B, C, D.
- 7. Calculer l'affixe du point situé au tiers du segment $[I_1K_2]$ et celui du point situé au tiers du segment $[L_2J_1]$. En déduire que l'affixe du point d'intersection E de ces deux segments est $e = \frac{1}{9}(4a + 2b + c + 2d)$.
- 8. Sans écrire sur la copie de démonstration ni de calcul, donner l'affixe f (resp. g, h) de F (resp. G, H), le point d'intersection de $[J_1L_2]$ et $[I_2K_1]$ (resp. de $[K_1I_2]$ et $[J_2L_1]$, de $[L_1J_2]$ et $[K_2I_1]$).
- 9. Représenter le quadrilatère *EFGH* sur le dessin et montrer que son aire est le neuvième de l'aire de *ABCD*.

Problème 2 Points entiers d'une hyperbole

- 1. (a) Déterminer le terme général de la suite définie par $u_0 = 1$, $u_1 = 3$ et $(\forall n \in \mathbb{N}, u_{n+2} = 6u_{n+1} u_n)$.
 - (b) En déduire que, pour tout $n \in \mathbb{N}$, $\left(3 2\sqrt{2}\right)^n + \left(3 + 2\sqrt{2}\right)^n$ est un entier pair.
 - (c) Redémontrer le résultat précédent en utilisant la formule du binôme de Newton.
- 2. Montrer que l'application $\varphi: \left\{ \begin{array}{ccc} \mathbb{Z} \times \mathbb{Z} & \longrightarrow & \mathbb{R} \\ (a,b) & \longmapsto & a+b\sqrt{2} \end{array} \right.$ est injective.
- 3. Ce qui précède permet de définir de manière unique les suites $(x_n), (y_n) \in \mathbb{N}^{\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \ (3 + 2\sqrt{2})^n = x_n + y_n \sqrt{2}.$$

Expliquer pourquoi.

- 4. Pour $n \in \mathbb{N}$, exprimer x_{n+1} et y_{n+1} en fonction de x_n et y_n .
- 5. Montrer que l'équation $x^2 2y^2 = 1$ admet une infinité de solutions dans $\mathbb{N} \times \mathbb{N}$.
- 6. Calculer les termes généraux des suites (x_n) et (y_n) à l'aide de la première question.
- 7. L'application φ est-elle bijective?
- 8. Que dire de l'injectivité et de la surjectivité de l'application ψ : $\begin{cases} \mathbb{Q} \times \mathbb{Q} & \longrightarrow \mathbb{R} \\ (a,b) & \longmapsto a+b\sqrt{2} \end{cases}$?

Exercice 3 \star *Log-disque*

Déterminer l'ensemble E des complexes $z=x+\mathrm{i}\,y$ $(x,y\in\mathbb{R})$ tels que le point du plan d'affixe e^z soit dans le disque fermé (*i.e.* y compris le bord) de centre $\Omega(1,0)$ et de rayon 1 en donnant, pour chaque y possible, l'ensemble des x tels que $z\in E$.

Représenter graphiquement E.