Математические основы криптологии

Автор курса: Применко Эдуард Андреевич Составитель: Смирнов Дмитрий Константинович

Версия от 14:09, 10 апреля 2022 г.

2 ОГЛАВЛЕНИЕ

Оглавление

1	Дом	пашние задания	1
	1.1	Элементы теории групп	1
	1.2	Квадратичные вычеты, сравнения, символ Лежандра	4
2	Бил	еты	8
	2.1	Делимость в кольце целых чисел. НОД, алгоритм Евкли-	
		да. Критерий взаимной простоты двух чисел	8
	2.2	Сравнения и их свойства. Китайская теорема об остатках.	
		Кольцо вычетов. Функция Эйлера и её свойства	9
	2.3	Теоремы Эйлера и Ферма. Критерий обратимости, алго-	
		ритм вычисления обратного элемента	9
	2.4	Криптографическая теорема (обоснование криптосистемы	
		PCA)	9
	2.5	Теорема о цикличности мультипликативной группы по при-	
		марному модулю	9
	2.6	Решение сравнений первой степени	9
	2.7	Сравнения второй степени. Символ Лежандра и его свой-	
		ства	9
	2.8	Алгоритмы решения сравнений второй степени по просто-	
		му модулю	9
	2.9	Символ Якоби и его свойства. Числа Блюма и их свойства.	
		Эквивалентность задачи факторизации и решения сравне-	0
	0.10	ния второй степени	9
	2.10	Алгоритмы решения сравнений второй степени по примар-	0
	0.11	ному и составному модулю.	9
		Группа, порядок элемента. Теорема Лагранжа	9
	2.12	Нормальный делитель, фактор – группа, первая теорема	10
	0.19	о гомоморфизме	10
	2.13	Кольцо многочленов, идеал, теорема Безу, кольцо главных	10
	9 14	идеалов	10
	4.14	ля. Строение конечного поля. Теорема о примитивном эле-	
		монто	10

ОГЛАВЛЕНИЕ 3

2.15	Построение конечных полей. Алгоритм вычисления обрат-	1.0
	ного элемента. Арифметические операции в конечном поле.	10
2.16	Алгоритмы вычисления дискретного алгоритма	10
	Криптосистема Эль - Гамаля. Протокл Диффи - Хеллмана.	10
2.18	Минимальный многочлен и его свойства. Теорема об изо-	4.0
0.40	морфизме конечных полей одной мощности	10
2.19	Примитивный многочлен и его свойства. Теорема о разложении многочлена $f(x) = xp^n-x$ на неприводимые многочлены. Критерий принадлежности элемента поля собственному подполю	10
2.20	Теорема о группе автоморфизмов конечного поля	10
	Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их	
	свойства	10
2.22	ристическому многочлену. Теорема о ЛРП максимального	
	периода	10
2.23		
2 2 4	пы в виде прямого произведения своих подгрупп	10
	Теорема о примарной абелевой группе	10
2.25	Теорема о разложении конечной абелевой группы в произ-	11
0.00	ведение своих циклических подгрупп.	11
2.26	Нормализатор, централизатор, класс сопряженных элементов конечной группы. Теорема о числе множеств сопряженных с данным. Теорема о центре примарной группы.	
	Теорема Коши	11
2.27		11
2.28	Вторая и третья теоремы Силова	11
	Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы.	
2.20	$(\mathbf{y}_{\mathtt{T}}, 13.4)$	11
	Лемма Бернсайда	11
2.31	Регулярные и полурегулярные группы. Порядок полурегулярной группы.	11
2.32	Блоки и импримитивные группы. Критерий импримитив-	
	ности. Теорема о импримитивности транзитивной группы с интранзитивным нормальным делителем	11
2.33	Примитивные группы. Кратная транзитивность. Критерий кратной транзитивности.	11
2.34	Теорема о группе автоморфизмов конечной группы	11

2.35	Утверждение об изоморфизме стабилизатора и специаль-	
	ной группы автоморфизмов регулярной подгруппы (Ут .	
	13.5). Утверждение о порядке регулярного нормального	
	делителя кратно транзитивной группы	11
2.36	Простая группа. Теорема о простоте знакопеременной груп-	
	пы. Теорема о нормальном делителе симметрической груп-	
	пы	11

Часть 1

Домашние задания

1.1 Элементы теории групп

Задачи в этом разделе решаются со следующими параметрами:

p	g	k
23	-8	22

 $\mathbf{3}$ адача $\mathbf{1.1}$ Убедиться, что $g \in \mathbb{Z}_p^*$ – примитивный элемент \mathbb{Z}_p . Решение.

Так как p=23 – простое число, то $\phi(p)=p-1=22$. Разложим это число на простые множители: $\phi(p)=2\cdot 11$. Тогда достаточно проверить следующие 2 неравенства:

$$g^{\frac{\phi(p)}{2}} = (-8)^{11} = 15 \cdot 15^{10} = 15 \cdot 18^5 = 17 \cdot 2^2 = 22 \not\equiv 1 \pmod{p},$$
$$g^{\frac{\phi(p)}{11}} = (-8)^2 = 18 \not\equiv 1 \pmod{p},$$

Делаем вывод, что g действительно является примитивным элементом $\mathbb{Z}_p.$

Задача 1.2 Найти образующий элемент h группы $\mathbb{Z}_{p^2}^*$ Решение.

Образующий элемент группы $\mathbb{Z}_{p^n}^*, n \geq 2$ имеет вид:

$$h = g + t_0 p, \ t_0 \not\equiv g \nu \pmod{p}; \ \nu = (\frac{g^{\frac{p-1}{2}} + 1}{p}) \pmod{p} \cdot (-2) \pmod{p}$$

Таким образом,

$$\nu = \left(\frac{(-8)^{\frac{23-1}{2}} + 1}{23}\right) \pmod{23} \cdot (-2) \pmod{23} = (1 \cdot (-2)) \pmod{23} = 21$$
$$t_0 \not\equiv (-8) \cdot 21 \pmod{23} = 16 \pmod{23}$$

$$t_1 = 1 \Rightarrow h = (-8) + 1 * 23 = 15$$

Следовательно, h=15 – образующий элемент группы $\mathbb{Z}_{23^2}^*$

Задача 1.3 Подсчитать число образующих группы $\mathbb{Z}_{p^3}^*$ **Решение.**

Число образующих группы $\mathbb{Z}_{23^3}^*$ равно $\phi(23^3)=(23-1)23^{3-1}=11638.$

Задача 1.4 Найти элемент a группы $\mathbb{Z}_{p^2}^*$ порядка k **Решение.**

Так как \forall натурального k>1 и простого $p\geq 3$ группа $\mathbb{Z}_{p^k}^*$ является циклической, то $\mathbb{Z}_{23^2}^*$ – циклическая группа. Элемент порядка k в циклической группе порядка N имеет вид h^r , где $r=\frac{N}{k}$. Таким образом,

$$a = h^{\frac{\phi(p^2)}{k}} = 15^{\frac{22*23}{22}} = 15^{23} = 130$$

Задача 1.5 Решить сравнение $a^x \equiv b \pmod{p}$ **Решение.**

р	a	b	
701	2	163	

I. Алгоритм согласования

1. Убедимся в том, что a=2 – примитивный элемент группы \mathbb{Z}_{701} .

$$\phi(701) = 700 = 2^2 \cdot 5^2 \cdot 7$$

$$g^{\frac{\phi(p)}{2}} = 2^{350} = 700 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{5}} = 2^{140} = 210 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{7}} = 2^{100} = 19 \not\equiv 1 \pmod{p},$$

$$g^{\phi(p)} = 2^{700} = 1 \equiv 1 \pmod{p},$$

Таким образом, порядок элемента a равен ord(a) = 700.

- 2. Выбираем минимальное $m : m^2 \ge ord(a) \Rightarrow m = 27$.
- 3. Вычисляем $c = a^m = 2^{27} = 62$.
- 4. Составляем два множества:

i	1	2		3	4	5	(3	7	8		9	10	11		12	13	14
c^i	62	33	9 6	89	658	138	3 14	44 5	16	447	3	75	117	244		407	699	577
i	15	16	17	18	3	19	20	21	2	2	23	24	2	25	26	27	7	
c^i	23	24	86	42	5 4	13	370	508	65	52	467	213	3 5	88	4	24	8	
	1							-1		-				-				
j	0		1	2	3	;	4	5	6		7	8	9	10		11	12	13
bas	^j 16	3	326	652	60	3 5	505	309	618	3 5	35	369	37	74		148	296	592

j	14	15	16	17	18	19	20	21	22	23	24	25	26
ba^j	483	265	530	359	17	34	68	136	272	544	387	73	146

В таблицах совпадают элементы под номерами i=22 и j=2.

5. Таким образом, $x = mi - j = 27 \cdot 22 - 2 = 592$.

Ответ: x = 592.

II. Алгоритм Полига-Хеллмана

Порядок поля \mathbb{Z}_{701} равен $N=\phi(701)=700=2^2\cdot 5^2\cdot 7$. Количество простых множителей в разложении этого числа t=3.

1. Вычисляем матрицу с элементами $(i,j)=a^{j\frac{N}{p_i}}, i=\overline{1,t}, j=\overline{0,p_i-1}$:

	p_i	0	1	2	3	4	5	6
	2	$2^{0\cdot\frac{700}{2}}$	$2^{1\cdot\frac{700}{2}}$	-	-	-	-	-
Ī	5	$2^{0\cdot\frac{700}{5}}$	$2^{1\cdot\frac{700}{5}}$	$2^{2\cdot\frac{700}{5}}$	$2^{3\cdot\frac{700}{5}}$	$2^{4 \cdot \frac{700}{5}}$	-	-
	7	$2^{0\cdot\frac{700}{7}}$	$2^{1\cdot\frac{700}{7}}$	$2^{2 \cdot \frac{700}{7}}$	$2^{3\cdot\frac{700}{7}}$	$2^{4 \cdot \frac{700}{7}}$	$2^{5 \cdot \frac{700}{7}}$	$2^{6 \cdot \frac{700}{7}}$

p_i	0	1	2	3	4	5	6
2	1	700	-	-	-	-	-
5	1	210	638	89	464	-	-
7	1	19	361	550	636	167	369

2. Далее находим $x_i = \log_a b \pmod{p_i^{k_i}} = \gamma_0 + \gamma_1 p_i + \ldots + \gamma_{k_i-1} p_i^{k_i-1}, \gamma_j \in \mathbb{Z}_p.$

Последовательно находим γ_j из $M(p,\gamma_j)=b_j^{\frac{N}{p^{j+1}}}$, где $b_j=ba^{-\gamma_0-\gamma_1p-\dots-\gamma_{j-1}p^{j-1}}$, а M – определённая выше матрица.

a)
$$x_1 = \log_2 163 \pmod{2^2}$$
, $p = 2$, $k = 2$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{2}} = 1 \Rightarrow \gamma_0 = 0, \ b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-0} = 163$$

$$M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 163^{\frac{700}{4}} = 1 \Rightarrow \gamma_1 = 0$$

$$\Rightarrow x_1 = \gamma_0 + \gamma_1 p = 0 + 0 \cdot 2 = 0$$

б)
$$x_2 = \log_2 163 \pmod{5^2}, \ p = 5, \ k = 2$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{5}} = 638 \Rightarrow \gamma_0 = 2, \ b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-2} = 216$$

$$M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 216^{\frac{700}{25}} = 89 \Rightarrow \gamma_1 = 3$$

$$\Rightarrow x_2 = \gamma_0 + \gamma_1 p = 2 + 3 \cdot 5 = 17$$

B)
$$x_3 = \log_2 163 \pmod{7}, \ p = 7, \ k = 1$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{7}} = 636 \Rightarrow \gamma_0 = 4$$

$$\Rightarrow x_3 = \gamma_0 = 4$$

3. На основе вычисленных выше значений $x_1, x_2, ..., x_t$ и китайской теоремы об остатках находим искомый логарифм:

$$x = \sum_{i} x_{i} \frac{N}{p_{i}^{k_{i}}} \left[\left(\frac{N}{p_{i}^{k_{i}}} \right)^{-1} \pmod{p_{i}^{k_{i}}} \right] \pmod{N} = 0 \cdot \frac{700}{2^{2}} \left[\left(\frac{700}{2^{2}} \right)^{-1} \pmod{2^{2}} \right] + \frac{1}{2^{2}} \left[\left(\frac{N}{p_{i}^{k_{i}}} \right)^{-1} \pmod{p_{i}^{k_{i}}} \right] + \frac{1}{2^{2}} \left[\left(\frac{N}{p_{i}^{k_{i}}} \right) + \frac{1}{2^{2}} \left[\frac{N}{p_{i}^{k_{i}}} \right] +$$

$$+17 \cdot \frac{700}{5^2} [(\frac{700}{5^2})^{-1} \pmod{5^2}] + 4 \cdot \frac{700}{7} [(\frac{700}{7})^{-1} \pmod{7}] \pmod{700} =$$

$$= 476 \cdot [28^{-1} \pmod{25}] + 400 \cdot [100^{-1} \pmod{7}] \pmod{700} =$$

$$= 476 \cdot 17 + 400 \cdot 4 \pmod{700} = 592$$

Ответ: x = 592.

1.2 Квадратичные вычеты, сравнения, символ Лежандра.

Докажем вспомогательные леммы.

Лемма 2.1 Если $p=2^m+1$ – простое и $\left(\frac{a}{p}\right)=-1$, то $\langle a\rangle=\mathbb{Z}_p^*$.

✓ По определению первообразного корня достаточно доказать два утверждения: $a^{\phi(p)} = a^{2^m} \equiv 1 \pmod{p}$ и $a^{\frac{\phi(p)}{2}} = a^{2^{m-1}} \not\equiv 1 \pmod{p}$.

$$a^{2^{m-1}} = a^{\frac{p-1}{2}} = \left(\frac{a}{p}\right) = -1 \not\equiv 1 \pmod{p},$$
$$a^{2^m} = (a^{2^{m-1}})^2 = (-1)^2 = 1 \equiv 1 \pmod{p}.$$

Лемма 2.2 Если число $p = 2^m + 1$ – простое, m > 1, то $p \equiv 2 \pmod{3}$. \square По теореме о делении с остатком, число p представимо в виде:

$$p = 3k + t, 0 < t < 3.$$

Рассмотрим данное равенство при различных t.

- а) $t=0 \Rightarrow p=3k$, то есть, p не является простым числом при k>1 (а значит, при m>1). Противоречие $\Rightarrow t\neq 0$.
- б) $t=1\Rightarrow 2^m=3k$ этого не может быть ни при каком целом k по лемме Евклида (по крайней мере один из сомножителей числа 2^m должен делиться на 3). Следовательно, $t\neq 1$.

Тогда t = 2 – единственный вариант, p = 3k + 2.

Лемма 2.3 Если $p = 2^{2^n} + 1$, n > 1, то $p \equiv 2 \pmod{5}$.

- Докажем по индукции.
 - 1) При n=2 утверждение верно: $2^{2^2}+1=17\equiv 2\pmod 5$.

2) Пусть для n = m верно, докажем для n = m + 1:

$$2^{2^{m+1}} + 1 = (2^{2^m} + 1 - 1)^2 + 1 = (2 - 1)^2 + 1 = 2 \equiv 2 \pmod{5}.$$

Лемма 2.4 Если $p = 2^{2^n} + 1$, n = 2k, то $p \equiv 3 \pmod{7}$.

- ☑ Докажем по индукции.
 - 1) При k = 0 утверждение верно: $2^{2^0} + 1 = 3 \equiv 3 \pmod{7}$.
 - 2) Пусть для k=m верно, докажем для k=m+1:

$$2^{2^{2(m+1)}} + 1 = (2^{2^{2m}} + 1 - 1)^4 + 1 = (3-1)^4 + 1 = 17 \equiv 3 \pmod{7}$$

Лемма 2.5 Если $p = 2^{2^n} + 1$, n = 2k + 1, то $p \equiv 5 \pmod{7}$.

- ✓ Докажем по индукции.
 - 1) При k = 0 утверждение верно: $2^{2^1} + 1 = 5 \equiv 5 \pmod{7}$.
 - 2) Пусть для k = m верно, докажем для k = m + 1:

$$2^{2^{2(m+1)+1}} + 1 = (2^{2^{2m+1}} + 1 - 1)^4 + 1 = (5-1)^4 + 1 = 257 \equiv 5 \pmod{7}$$

Задача 2.1 Доказать, что сравнение $x^2+1\equiv 0\pmod p$ разрешимо тогда и только тогда, когда $p\equiv 1\pmod 4$.

Решение.

$$x^2+1\equiv 0\pmod p$$
 – разрешимо $\Leftrightarrow \left(\frac{-1}{p}\right)=1\Leftrightarrow (-1)^{\frac{p-1}{2}}=1\Leftrightarrow \frac{p-1}{2}=2k\Leftrightarrow p=4k+1\Leftrightarrow p\equiv 1\pmod 4$

Задача 2.2 Доказать, что сравнение $x^2 + 2 \equiv 0 \pmod{p}$ разрешимо тогда и только тогда, когда $p = 1, 3 \pmod{8}$.

Решение.

$$x^2 + 2 \equiv 0 \pmod{p} - \text{разрешимо} \Leftrightarrow \left(\frac{-2}{p}\right) = 1. \Leftrightarrow \left\{\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right) \cdot \left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{2}} \cdot (-1)^{\frac{p^2-1}{8}}\right\} \Leftrightarrow \frac{p-1}{2} + \frac{p^2-1}{8} = 2k \Leftrightarrow p^2 + 4p - 16k - 5 = 0.$$

Представим p, используя теорему о делении с остатком, в следующем виде: p = 8m + t, $0 \le t < 8$. Решим полученную систему относительно t.

$$(8m+t)^2 + 4(8m+t) - 16k - 5 = 0$$

 $t^2 + (16k+4)t + 64k^2 + 32k - 16m - 5 = 0$
 $t_{1,2} = -8k - 2 \pm \sqrt{16m+9} \pmod{8} = -2 \pm 3 \pmod{8} \Rightarrow t = 1, 3$

Тогда $p^2 + 4p - 16k - 5 = 0 \Leftrightarrow p = 1, 3 \pmod{8}$.

Задача 2.3 Доказать, что сравнение $x^2+3\equiv 0\pmod p$ разрешимо тогда и только тогда, когда $p\equiv 1\pmod 6$.

Решение.

Пусть
$$p = 3k + t, t < 3$$
.
 $x^2 + 3 \equiv 0 \pmod{p} \Leftrightarrow \left(\frac{-3}{p}\right) = 1$.
 $\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}} (-1)^{\frac{p-1}{2} \cdot \frac{3-1}{2}} \left(\frac{p}{3}\right) = (-1)^{3k+t-1} \left(\frac{t}{3}\right)$

a)
$$t = 0 \Rightarrow {0 \choose 3} = 0$$
, $(-1)^{3k+t-1} {t \choose 3} = 0 \neq 1$
6) $t = 1 \Rightarrow {1 \choose 3} = 1$, $(-1)^{3k+t-1} {t \choose 3} = (-1)^{3k} \cdot 1 = (-1)^{3k}$.
B) $t = 2 \Rightarrow {2 \choose 3} = -1$, $(-1)^{3k+t-1} {t \choose 3} = (-1)^{3k+1} \cdot (-1) = (-1)^{3k}$

$$(-1)^{3k} = 1 \Leftrightarrow k = 2m \Leftrightarrow p = 6m + 1 \Leftrightarrow p \equiv 1 \pmod{6}$$

Задача 2.4 Доказать, что если $p=2^n+1$ – простое, n>2, то $\left(\frac{3}{p}\right)=-1$ и $\langle 3 \rangle = \mathbb{Z}_p^*$.

Решение.

$$p=3k+2$$
 по лемме 2.2. $\left(\frac{3}{p}\right)=(-1)^{\frac{3-1}{2}\cdot\frac{2^n+1-1}{2}}\left(\frac{p}{3}\right)=(-1)^{2^{n-1}}\left(\frac{2}{3}\right)=-1$

Выполнены все условия леммы $2.1 \Rightarrow \langle 3 \rangle = \mathbb{Z}_p^*$.

Задача 2.5 Доказать, что если $p=2^n+1$ – простое и $\left(\frac{a}{p}\right)=-1$, то $\langle a \rangle = \mathbb{Z}_p^*$.

Решение.

Доказано в качестве леммы 2.1.

Задача 2.6 Доказать, что если $p=4q+1,\, p$ и q – простые, то $\langle 2\rangle=\mathbb{Z}_p^*.$ Решение.

По определению первообразного корня достаточно доказать три утверждения:

1)
$$2^{\phi(p)} = 2^{4q} \equiv 1 \pmod{p}$$
,

2)
$$2^{\frac{\phi(p)}{2}} = 2^{2q} \not\equiv 1 \pmod{p}$$
,

3)
$$2^{\frac{\phi(p)}{q}} = 2^4 \not\equiv 1 \pmod{p}$$
.

Начнём с третьего. Представим 2^4 в следующем виде: $2^4=pk+t,$ $0 \le t < p$. Значит, нам нужно доказать, что $t \ne 1$. Предположим, что это не так, тогда $pk=2^4-1=15$. Обратим внимание на условие: если и p, и

q — простые числа, то p не может быть ни 3, ни 5. Значит, в левой части равенства содержится простой множитель, которого нет в правой части. Мы получили противоречие, а значит, $t \neq 1 \Rightarrow 2^{\frac{\phi(p)}{q}} = 2^4 \not\equiv 1 \pmod{p}$.

Рассмотрим теперь второе утверждение. Заметим, что:

$$\left(\frac{2}{4q+1}\right) = 2^{\frac{4q+1-1}{2}} = 2^{2q} \pmod{4q+1}.$$

Вычислим $\left(\frac{2}{4q+1}\right)=(-1)^{\frac{(4q+1)^2-1}{8}}=(-1)^{2q^2+q}=\left\{q$ – нечет $\right\}=-1$. Тем самым мы доказали второе утверждение.

Поскольку $2^{4q} = (2^{2q})^2 = (-1)^2 = 1 \pmod{4q+1}$, то первое утверждение становится следствием второго.

Задача 2.7 Доказать, что если $p=2^{2^n}+1$ – простое и $\left(\frac{a}{p}\right)=-1$, то $\langle a \rangle = \mathbb{Z}_p^*.$

Решение.

Приняв $m=2^n$ в лемме 2.1, получим справедливость данного утверждения.

Задача 2.8 Доказать, что если $p = 2^{2^n} + 1$ – простое, n > 2, то $\langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle = \mathbb{Z}_p^*$.

Решение.

Покажем
$$\left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = \left(\frac{7}{p}\right) = -1.$$
 $2^{2^n} + 1 = 3k + 2$ по демме 2.2.

$$\left(\frac{3}{p}\right) = (-1)^{\frac{3-1}{2} \cdot \frac{2^{2^n} + 1 - 1}{2}} \left(\frac{p}{3}\right) = (-1)^{2^{2^n - 1}} \left(\frac{3k + 2}{3}\right) = \left(\frac{2}{3}\right) = 2^{\frac{3-1}{2}} \pmod{3} = -1$$

 $2^{2^n} + 1 = 5k + 2$ по лемме 2.3.

$$\left(\frac{5}{p}\right) = (-1)^{\frac{5-1}{2} \cdot \frac{2^{2^n} + 1 - 1}{2}} \left(\frac{p}{5}\right) = (-1)^{2^{2^n}} \left(\frac{5k + 2}{5}\right) = \left(\frac{2}{5}\right) = 2^{\frac{5-1}{2}} \pmod{5} = -1$$

 $2^{2^n} + 1 = 7k + 3, \ n = 2t$ по лемме 2.4.

$$\left(\frac{7}{p}\right) = (-1)^{\frac{7-1}{2}, \frac{2^{2^n}+1-1}{2}} \left(\frac{p}{7}\right) = (-1)^{2^{2^n}} \left(\frac{7k+3}{7}\right) = \left(\frac{3}{7}\right) = 3^{\frac{7-1}{2}} \pmod{7} = -1$$

 $2^{2^n} + 1 = 7k + 5$, n = 2t + 1 по лемме 2.5.

$$\left(\frac{7}{p}\right) = \left(\frac{5}{7}\right) = 5^{\frac{7-1}{2}} \pmod{7} = -1.$$

Осталось применить лемму 2.1, и исходное утверждение будет доказано.

Часть 2

Билеты

2.1 Делимость в кольце целых чисел. НОД, алгоритм Евклида. Критерий взаимной простоты двух чисел.

Теорема 1.1 (о делении с остатком) Пусть a>0 и b>0 — целые числа. Тогда a единственным образом представимо в виде

$$a = bq + r, \ 0 \le r < b.$$

Число q – неполное частное

Билеты 9

2.2 Сравнения и их свойства. Китайская теорема об остатках. Кольцо вычетов. Функция Эйлера и её свойства.

- 2.3 Теоремы Эйлера и Ферма. Критерий обратимости, алгоритм вычисления обратного элемента.
- 2.4 Криптографическая теорема (обоснование криптосистемы РСА).
- 2.5 Теорема о цикличности мультипликативной группы по примарному модулю.
- 2.6 Решение сравнений первой степени.
- 2.7 Сравнения второй степени. Символ Лежандра и его свойства.
- 2.8 Алгоритмы решения сравнений второй степени по простому модулю.
- 2.9 Символ Якоби и его свойства. Числа Блюма и их свойства. Эквивалентность задачи факторизации и решения сравнения второй степени.
- 2.10 Алгоритмы решения сравнений второй степени по примарному и составному модулю.
- 2.11 Группа, порядок элемента. Теорема Лагранжа.

- 2.12 Нормальный делитель, фактор группа, первая теорема 10 о гомоморфизме.
- 2.12 Нормальный делитель, фактор группа, первая теорема о гомоморфизме.
- 2.13 Кольцо многочленов, идеал, теорема Безу, кольцо главных идеалов.
- 2.14 Конечное поле. Теорема о простом подполе конечного поля. Строение конечного поля. Теорема о примитивном элементе.
- 2.15 Построение конечных полей. Алгоритм вычисления обратного элемента. Арифметические операции в конечном поле.
- 2.16 Алгоритмы вычисления дискретного алгоритма.
- 2.17 Криптосистема Эль Гамаля. Протокл Диффи - Хеллмана.
- 2.18 Минимальный многочлен и его свойства. Теорема об изоморфизме конечных полей одной мощности.
- 2.19 Примитивный многочлен и его свойства. Теорема о разложении многочлена $f(x) = xp^n x$ на неприводимые многочлены. Критерий принадлежности элемента поля собственному подполю.
- 2.20 Теорема о группе автоморфизмов конечного поля.
- 2.21 Рекуррентные последовательности над конечным полем, линейные рекуррентные последовательности (ЛРП). Характеристический и минимальный многочлен ЛРП и их свойства.
- 2.22 Теорема об определении структуры ЛРП по её характеристическому многочлену. Теорема о ЛРП максимального периода.
- 2.23 Прямое произведение групп. Теорема о пред-

Билеты 11

2.25 Теорема о разложении конечной абелевой группы в произведение своих циклических подгрупп.

- 2.26 Нормализатор, централизатор, класс сопряженных элементов конечной группы. Теорема о числе множеств сопряженных с данным. Теорема о центре примарной группы. Теорема Коши.
- 2.27 Двойные смежные классы и их свойства. Теорема Силова (первая)
- 2.28 Вторая и третья теоремы Силова.
- 2.29 Группы подстановок. Инвариантное множество, орбита. Теорема об индексе стабилизатора группы. Теорема о транзитвности нормализатора подгруппы транзитвной группы. (Ут. 13.4).
- 2.30 Лемма Бернсайда.
- 2.31 Регулярные и полурегулярные группы. Порядок полурегулярной группы.
- 2.32 Блоки и импримитивные группы. Критерий импримитивности. Теорема о импримитивности транзитивной группы с интранзитивным нормальным делителем.
- 2.33 Примитивные группы. Кратная транзитивность. Критерий кратной транзитивности.
- 2.34 Теорема о группе автоморфизмов конечной группы.
- 2.35 Утверждение об изоморфизме стабилизатора и специальной группы автоморфизмов регулярной подгруппы (Ут. 13.5). Утверждение о порядке регулярного нормального делителя кратно транзитивной группы.
- 2.36 Простая группа. Теорема о простоте знако-