logo		Fach Mathematik Klassenarbeit 1						Punkte	Note	Klassendurchschnitt Sonstiger Leistungsstand
								VOI	51	
Vor- und Nachname							Klasse	Datum	Kenntnisnahme der Eltern	
								10c	10.10.20	23
Thema: Zeit:										
Question	1	2	3	4	5	6	7	Total		
Marks	4	6	4	7	7	19	4	51		

Übersichtlichkeit, Darstellung und Rechtschreibung werden bewertet. Rechnungen müssen nachvollziehbar gestaltet werden. Achte bei allen Größen auf die richtige Einheit.

Teil 1: Keine Hilfsmittel zugelassen

Question 1 (4 marks)

Löse das folgende lineare Gleichungssystem:

$$\begin{vmatrix} 3x - 7y &= 5 \\ -2x + 4y &= -7 \end{vmatrix}$$

Question 2 (6 marks)

Im abgebildeten Koordinatensystem befinden sich

- der Punkt P in der x_1x_2 -Ebene,
- der Punkt Q in der x_2x_3 -Ebene,
- der Punkt R in der x_1x_3 -Ebene.
- (a) Bestimme die Koordinaten der drei Punkte P, Q und R.
- (b) Gib den Ortsvektor \overrightarrow{OP} an und zeichne ihn ein.
- (c) Zeichne den Punkt M(-5|2|-4) ein.

Question 3 (4 marks)

Widerlege die folgenden Aussagen:

- (a) Wenn bei einem Vektor zwei Komponenten negativ sind, dann müssen bei einem anderen, parallelen Vektor diese Komponenten auch negativ sein.
- (b) Wenn zwei Geraden einen gemeinsamen Spurpunkt haben, dann sind sie parallel oder identisch.

Teil 2: mit Taschenrechner und Formelsammlung

Question 4 (7 marks)

Es ist eine Pyramide mit quadratischer Grundfläche *ABCD* und Spitze *S* gegeben (vgl. die angefügte, nicht maßstabsgetreue Abbildung einer Pyramide mit quadratischer Grundfläche).

Von der Grundfläche sind die folgenden drei Punkte bekannt:

$$A(-5|-3|0)$$
, $C(12|4|0)$ und $D(0|9|0)$.

Die Spitze S liegt bei S(3.5|0.5|5).

- (a) Bestimme die Koordinaten des Eckpunktes B.
- (b) Berechne den Abstand des Mittelpunktes M_{CD} der Seite CD von der Spitze S der Pyramide.

Question 5 (7 marks)

Untersuche die Lagebeziehung der folgenden Geraden zueinander und bestimme gegebenenfalls den Schnittpunkt.

$$g: \vec{x} = \begin{pmatrix} \frac{2}{7} \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ -3 \\ -4 \end{pmatrix} \quad \text{und} \quad h: \vec{x} = \begin{pmatrix} 0 \\ 9 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -5 \\ -7 \\ -7 \end{pmatrix}$$

Question 6 (19 marks)

Zwei Flugzeuge fliegen mit je konstanter Geschwindigkeit auf gradlinigen Flugbahnen. Die Position der Flugzeuge wird bezüglich eines Koordinatensystems mit der Längeneinheit 1 km angegeben, die x_3 -Koordinate gibt die Flughöhe an. Um 8:00 Uhr ist das Flugzeug 1 im Punkt $P_1(-10|0|0)$ und das Flugzeug 2 im Punkt $P_2(-25|-30|8)$.

Wir betrachten im folgenden die Zeit t in min ab 8:00 Uhr: Nach vier Minuten hat das Flugzeug 1 die Position $Q_1(6|16|4)$ erreicht. Nach fünf Minuten hat das Flugzeug 2 die Position $Q_2(20|30|8)$ erreicht.

6.1 Erläutere, warum die Gleichung

$$g_1: \overrightarrow{OX} = \begin{pmatrix} -10 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix}$$

die Position des Flugzeugs 1 in Abhängigkeit von der Zeit angibt.

- 6.2 Ermittle analog zur Gleichung in (a)-1 eine Gleichung g_2 , die die Position des Flugzeugs 2 in Abhängigkeit von der Zeit angibt.
- 6.3 Berechne die Geschwindigkeit des Flugzeugs 1 in $\frac{km}{h}$.

Der Luftraum, der von den Flugzeugen genutzt wird, wird von zwei verschiedenen Radarstationen überwacht. Die "'Übergabe" der Flugzeuge erfolgt, wenn die Flugzeuge die x_2x_3 -Ebene durchfliegen.

- 6.4 Bestimme den Zeitpunkt und die Positions des Flugzeugs 1 bei der Übergabe.
- 6.5 Ermittle, zu welchem Zeitpunkt das Flugzeug 1 eine Flughöhe von 8 km erreicht und wie groß zu diesem Zeitpunkt der Abstand der beiden Flugzeuge ist.

Question 7 (4 marks)

Gegeben sei ein Vektor \vec{v} mit einem noch unbestimmten Eintrag $a \in \mathbb{R}$:

$$\vec{v} = \begin{pmatrix} 17 \\ a \\ 8 \end{pmatrix}$$

Beurteile, ob es Werte a gibt, für die der Vektor \vec{v} die Länge 18 hat.