Assignment: Predict expected_total_claim_amount Using Regression.

1. Objective

You have an insurance dataset with various features such as age, policy_annual_premium, insured_hobbies, capital-gains, incident_severity, and more. Your goal is to build a regression model that predicts the total claim amount for each record.

2. Dataset Overview

Focus on identifying relevant

predictors (e.g., age, policy_annual_premium, insured_sex, insured_hobbies, capital-gains, etc.) that can help estimate total_claim_amount.

- Explore the dataset and identify features relevant to risk
 (e.g., age, policy_annual_premium, insured_hobbies, capital-gains, capital-loss, etc.).
- 2. Clean and preprocess the data, handling missing values, encoding categorical features, and creating any derived features that may help predict a risk score.
- 3. Train a regression model
- 4. Evaluate the model's performance using metrics such as RMSE (Root Mean Squared Error) or MAE (Mean Absolute Error) etc
- 5. Try to design a parameter Risk Score based on expected_total_claim_amount and other fields.
- 6. Good to have Categorize policies into high, medium, and low risk using classification or clustering techniques
- 7. High level architecture to solve this problem with advanced LLM models like OpenAI, Gemini, DeepSeek etc

3. Deliverables

- Code and Notebook
 - o A Jupyter Notebook, Google Colab or equivalent demonstrating:
 - Data loading and preprocessing steps (handling missing values, encoding, scaling).
 - Model training, evaluation, and interpretation (e.g., classification report, cluster centroids).
- Results and Visualizations
 - o For classification:
 - Accuracy, precision, recall, F1-scores, and confusion matrix.
 - Optional ROC curves (if treating it as a one-vs-rest or binary problem).
 - For clustering:
 - Cluster assignment distribution (how many items in each cluster).

- Centroid analysis or average feature values per cluster.
- Silhouette scores or elbow plot (if applicable).
- Short Report or Presentation
 - o Methodology: Explain why you chose classification or clustering (or both).
 - Key Findings: Summarize which features are most influential and how the model or clusters identify high, medium, and low risk.
 - Limitations and Next Steps: Discuss any data constraints, potential improvements, and how this approach could be integrated into a production environment.