Willkommen

Algorithmen I Tutorium 19

Wer? Florian Tobias Schandinat

Wo? 50.34, Raum -118

Wann? jeden Donnerstag 15:45-17:15

Material online

http://github.com/schandinat/algorithmen1_ss11

Grundprinzip

Abbildung einer (großen) Menge auf eine (kleinere) Menge

Grundprinzip

Abbildung einer (großen) Menge auf eine (kleinere) Menge

Beispiel 1: Nicht voll-assoziative Caches

unterer Adressteil

Grundprinzip

Abbildung einer (großen) Menge auf eine (kleinere) Menge

Beispiel 1: Nicht voll-assoziative Caches

unterer Adressteil

Beispiel 2: GIT

SHA1

 $MB \longrightarrow Bytes$

Grundprinzip

Abbildung einer (großen) Menge auf eine (kleinere) Menge

Beispiel 1: Nicht voll-assoziative Caches

unterer Adressteil

Beispiel 2: GIT

SHA1

 $\mathsf{MB} \longrightarrow \mathsf{Bytes}$

Zusatz

Rehashing

Abschluss: Hashing

Fragen?

Binärer Baum

Darstellung im Array A[i]

Beziehungen (sofern vorhanden)

Binärer Baum

Darstellung im Array A[i]

Beziehungen (sofern vorhanden)

Elternknoten $A[\lfloor \frac{i}{2} \rfloor]$

linkes Kind $A[2 \cdot i]$

rechtes Kind $A[2 \cdot i + 1]$

Binärer Baum

Darstellung im Array A[i]

Beziehungen (sofern vorhanden)

Elternknoten $A[\lfloor \frac{i}{2} \rfloor]$

linkes Kind $A[2 \cdot i]$

rechtes Kind $A[2 \cdot i + 1]$

Wie sieht der zugehörige Baum aus?

5 2 7 3 8 4

Eigenschaft

Schneller Zugriff auf das kleinste/größte Element

Eigenschaft

Schneller Zugriff auf das kleinste/größte Element

Ist ein absteigend/aufsteigend sortiertes Array ein Maximum/Minimum-Heap?

Eigenschaft

Schneller Zugriff auf das kleinste/größte Element

Ist ein absteigend/aufsteigend sortiertes Array ein Maximum/Minimum-Heap?

Ja!

Eigenschaft

Schneller Zugriff auf das kleinste/größte Element

Ist ein absteigend/aufsteigend sortiertes Array ein Maximum/Minimum-Heap?

Ja!

Übung: Maximum-Heap

Bauen Sie einen Maximum-Heap aus 5 2 7 3 8 4

Eigenschaft

Schneller Zugriff auf das kleinste/größte Element

Ist ein absteigend/aufsteigend sortiertes Array ein Maximum/Minimum-Heap?

Ja!

Übung: Maximum-Heap

- Bauen Sie einen Maximum-Heap aus 5 2 7 3 8 4
- Fügen Sie der Reihe nach folgenden Elemnte ein: 1, 9

Eigenschaft

Schneller Zugriff auf das kleinste/größte Element

Ist ein absteigend/aufsteigend sortiertes Array ein Maximum/Minimum-Heap?

Ja!

Übung: Maximum-Heap

- Bauen Sie einen Maximum-Heap aus 5 2 7 3 8 4
- Fügen Sie der Reihe nach folgenden Elemnte ein: 1, 9
- Entfernen Sie das Maximum

Heaps – Zusammenfassung

Heap Operationen

```
BUILD-MAX-HEAP O(n)
```

INSERT O(log(n))

MAXIMUM O(1)

EXTRACT-MAXIMUM O(log(n))

Vielen Dank für die Aufmerksamkeit!