2323-MA378: Class Test in Week 9 (Wed, 28 Feb) (with solutions)

.....

Some useful formulae.

• Cauchy's theorem: If p_n be the polynomial of degree n that interpolates f at the n+1 points $a=x_0 < x_1 < \cdots < x_n = b$. Then, for any $x \in [a,b]$ there is a $\tau \in (a,b)$ such that

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\tau)}{(n+1)!} \pi_{n+1}(x), \tag{1}$$

where $\pi_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$ denotes the nodal polynomial.

- $\|g\|_{\infty}$ denotes $\max_{a \le x \le b} |g(x)|$.)
- If l be the linear spline interpolant to a function f on the equally spaced points $a = x_0 < x_1 \cdots < x_N = b$ with $h = x_i x_{i-1} = (b-a)/N$, then

$$||f - l||_{\infty} \le \frac{h^2}{8} ||f''||_{\infty},$$
 (2)

• If S is the Piecewise Cubic Hermite Interpolating Polynomial that interpolates the function f at the equally spaced points $\{a=x_0 < x_1 < \cdots < x_N = b\}$ with $x_i-x_{i-1}=(b-a)/N=:h$, then

$$||f - S||_{\infty} := \max_{a \le x \le b} |f(x) - S(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(iv)}(x)|.$$
(3)

In all the questions below, the function f is

$$f(x) = e^{x/2}$$

Q1. (50 marks)

(a) Write down the Lagrange form for the polynomial, $p_2(x)$, that interpolates f at the points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.

Answer: [25 Marks] The Lagrange for an interpolant of degree 2 to f is

$$p_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2).$$

For this problem

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{x(x-1)}{(-1)(-2)} = \frac{1}{2}x(x-1),$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x+1)(x-1)}{(1)(-1)} = -(x+1)(x-1),$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x+1)x}{(2)(1)} = \frac{1}{2}(x+1)x.$$

Using that $f(x_0) = f(-1) = e^{-1/2}$, $f(x_1) = f(0) = 1$ and $f(x_2) = f(1) = e^{1/2}$, we get that the Lagrange form is

$$p_2(x) = e^{-1/2} \frac{x(x-1)}{2} - (x+1)(x-1) + e^{1/2} \frac{(x+1)x}{2}$$

Notes: It is not required to simplify p_2 any further. In fact, you would get full marks for writing the solution as $p_2(x) = e^{-1/2}L_0(x) + L_1(x) + e^{1/2}L_2(x)$, providing the formulae for the L_i are given.

(b) Evaluate $p_2(1/2)$. [5 Marks] $p_2(1/2) = -(1/8)e^{-1/2} + 3/4 + (3/8)e^{1/2} \approx 1.29245$.

(c) What bound does (1) give for $|f(1/2) - p_2(1/2)|$?

Answer: [20 Marks] Equation (1) gives $f(1/2) - p_2(1/2) = \frac{f'''(\tau)}{3!} \pi_3(1/2)$, for some (unknown) $\tau \in (-1,1)$. So the bound on $|f(1/2) - p_2(1/2)|$ is

$$|f(1/2) - p_2(1/2)| \le \frac{\max_{-1 \le x \le 1} |f'''(x)|}{3!} |\pi_3(1/2)|. \tag{*}$$

Differentiating f, we get $f'''(x)=(1/8)e^{x/2}$. Since this is a positive function that is increasing on [-1,1], we get

$$\max_{-1 \le x \le 1} |f'''(x)| = f'''(1) = e^{1/2}/8 \approx 0.206.$$

Also, 1/(3!) = 1/6. And $\pi_3(x) = (x+1)x(x-1) = x^3 - x$, so $\pi_3(1/2) = 1/8 - 1/2 = -3/8$. Substituting into (*), gives

$$|f(1/2) - p_2(1/2)| \le \frac{0.2061}{6} \frac{3}{8} \approx 0.01288.$$

Although not asked, if you computed the actual value of $|f(1/2) - p_2(1/2)|$, you'd get $|f(1/2) - p_2(1/2)| \approx |1.2840 - 1.2925| = 0.0084$.

Q2. (30 marks)

(a) Give a formula for the piecewise linear interpolant, l(x), that interpolates f, at the points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.

Answer: [10 Marks]

$$l(x) = \begin{cases} f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0} & x_0 \le x \le x_1 \\ f(x_1) \frac{x - x_2}{x_1 - x_2} + f(x_2) \frac{x - x_1}{x_2 - x_1} & x_1 < x \le x_2 \\ 0 & \text{otherwise} \end{cases}$$

Using that $f(x_0) = e^{-1/2}$, $f(x_1) = 1$ and $f(x_2) = e^{1/2}$, we get that this simplifies as

$$l(x) = \begin{cases} e^{-1/2}(-x) + (x+1) & -1 \le x \le 0 \\ (1-x) + e^{1/2}x & 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

- (b) Evaluate l(1/2). $\{ [5 \text{ MARKS}] \ l(1/2) = (1-1/2) + e^{1/2}(1/2) \approx 1.32436. \}$
- (c) Use (2) to give an upper bound for $||f(x) l(x)||_{\infty}$.

Answer: [10 Marks] (2) is

$$||f - l||_{\infty} \le \frac{h^2}{8} ||f''||_{\infty}.$$

In this instance h=1. Also, $f''(x)=e^{x/2}/4$, so $\|f''\|_{\infty}=f''(1)=e^{1/2}/4=\approx 0.41218$. So

$$||f - l||_{\infty} \le \frac{1}{8}0.41218 = 0.05152.$$

(d) What value of N would you have to choose so that $||f - l||_{\infty} \le 10^{-6}$?

Answer: [5 Marks] We need h such that $\frac{h^2}{8} \|f''\|_{\infty} \le 10^{-6}$. That is $h \le \sqrt{8 \times 10^{-6}/0.41218} = \sqrt{1.940898 \times 10 - 5} = 4.4056 \times 10^{-3}$. Also, $h = (x_2 - x_1)/N = 2/N$, so $N \ge 2/h = 453.971$. **Take** N = 454.

Q3. (18 marks) Suppose that S is the **PCHIP** interpolant to the function f at the N+1 equally spaced points $\{x_0=-1 < x_1 < \cdots < x_N=1\}$. What value of N should one take to ensure that $\|f-S\|_{\infty}$ is no more than 10^{-6} ?

Answer: We'll use (3):

$$||f - S||_{\infty} := \max_{a \le x \le b} |f(x) - S(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(iv)}(x)|.$$

We wish to choose h so that $\frac{h^4}{384}M_4 \leq 10^{-6}$, where $M_4 := \max_{-1 \leq x \leq 1} |f^{(4)}(x)|$. That is, we need h to satisfy $h^4 \leq \frac{384}{M_4}10^{-6}$. To compute M_4 , calculate the 4th derivative of f, finding that $f^{(iv)}(x) = e^{x/2}/16$. Since this is a positive, increasing function, we get that $M_4 = f^{(iv)}(1) = e^{1/2}/16 \approx 0.1030$. So now we know that we need h to satisfy $h \leq (\frac{384}{0.1030}10^{-6})^{1/4} \approx (3.7265 \times 10^{-3})^{1/4} \approx 0.247$. Then, since N = 2/h, we get than N must be at least 8.095. However, since N is an integer, we should take $N \geq 9$.

Q4. (2 marks) Could there ever be a situation where, if we use the same values of f and N in (2) and (3), the error bound for the linear spline interpolant could be *less* than that PCHIP interpolant? If so, suggest an example.

Answer: Yes. We could, say, choose an f such that $\|f^{(iv)}(x)\|_{\infty}$ is much larger than $\|f''\|_{\infty}$. Suppose we set $f(x)=e^{\alpha x}$, and keep $x_0=-1$, and $x_N=1$. Then $\|f^{(iv)}(x)\|_{\infty}=\alpha^2\|f''\|_{\infty}$. Then, given an h we can choose α such that $\frac{h^2}{8}\leq \frac{h^4}{384}\alpha^2$. That is, take $\alpha>\frac{384}{8h^2}$.