Problem 1

Describe a polynomial-time reduction from Vertex Cover to Set Cover. Definition of Set Cover: The input is U, C, k where U is a set, $C = \{S1, S2, ..., Sm\}$ is a collection of subsets of U, and k is an integer. The output is yes if there is a set cover in C of size k, and no otherwise. A set cover is a collection C C of sets in C such that the union of the sets in C is U. The size of C is the number of sets in C.

Given an instance $\langle G = (V, E), k \rangle$ of Vertex Cover, the reduction outputs the instance $\langle U, C, k \rangle$ of Set Cover, where U, C, and k are defined as follows:

Let U = E be the set of edges in G;

let C_i be the number of edges touched by V_i , that is $C_i = \{e_{V_i V_i} | e_{V_i V_i} \in E\}$;

Let k be k from the Vertex Cover problem.

Here is why the reduction can be computed in polynomial time:

Constructing C will require at worst a loop over the edge set for each vertex, resulting in O(VE) time, which is polynomial.

Here is a proof that the reduction is correct.

Lemma 1. Given any instance $\langle G, k \rangle$ of Vertex Cover, let $\langle U, C, k \rangle$ be the instance of Set Cover produced by the reduction. Then G has a vertex cover of size k if and only if there is a set $C' \subseteq C$ of size k where $\bigcup_{i=1}^k C'_i = U$.

Proof (long form).

- 1. First we show the "only if" direction.
- 2. Assume that G has a vertex cover of size k.
- 2.1. Let I be the vertex cover of size k in G.
- 2.2. Take C' to be the set of sets in C corresponding to the vertices in I.
- 2.3. Then C' has size k, and the union of all sets in C' equal U because each set in C', C'_i corresponds to the edges touched by including vertex V_i .
- 2.4. So there is a subset of size k of C such that the union over them all will equal U.
- 3. Next we show the "if" direction.
- 4. Assume there is a set of at least i ingredients that have total discord at most p.
- 4.1. Let S be a set of at i ingredients that have total discord at most p. Note i = k and p = 0.
- 4.2. Take I to be the vertices corresponding to ingredients in S.
- 4.3. Then I has size i, and is an independent set because each pair (i, j) of vertices in I corresponds to a pair of ingredients with zero discord $(D_{ij} \le p = 0)$, so there is no edge (i, j).
- 4.4. There is an independent set of size k = i in G.
- 5. By blocks 2 and 4, G has an independent set of size k if and only if there is a set of i ingredients that have total discord at most p.

Problem 2

Given an instance $\langle G = (V, E) \rangle$ of Directed Ham Cycle, the reduction outputs the instance $\langle G' = (V', E') \rangle$ of Undirected Ham Cycle, where V' and E' are defined as follows:

For each vertex $v \in V$, add three *clone* vertices v^1, v^2, v^3 to V'; add edges (v^1, v^2) and (v^2, v^3) to E'. For each edge $(u, w) \in E$, add edge (w^3, v^1) to E'.

Here is why the reduction can be computed in polynomial time:

The reduction as described makes a single pass over the vertices and edges of G to build G'. So it takes linear time.

Here is a proof that the reduction is correct.

Lemma 2. Given any instance $\langle G = (V, E) \rangle$ of DIRECTED HAM CYCLE, let $\langle G' = (V', E') \rangle$ be the instance of Underected Ham Cycle produced by the reduction. Then G has a directed Hamiltonian cycle if and only if G' has an undirected Hamiltonian cycle.

Proof (long form).

- 1. First we show the "only if" direction.
- 2. Assume that G has a directed Hamiltonian cycle.
- 2.1. Let $C = (v_1, v_2, \dots, v_n, v_1)$ be such a cycle.
- 2.2. Obtain C' from C by replacing each vertex v_i by its three clones v^1, v^2, v^3 .
- 2.3. So $C' = (v_1^1, v_1^2 v_1^3, v_1^1, v_2^1, v_2^3, \dots, v_n^1, v_n^2, v_n^3, v_1^1, v_1^2, v_1^3).$
- 2.4. Since C is a Hamiltonian cycle, each edge (v_i, v_{i+1}) is present in G, and each vertex v in G is visited exactly once by C.
- 2.5. So each edge (v_i^3, v_{i+1}^1) is present in G' (by the reduction), and each vertex v_i^{ℓ} is visited exactly once by C'.
- 2.6. Also, for each i, each edge (v_i^1, v_i^2) and (v_i^2, v_i^3) is present in G' (by the reduction).
- 2.7. So C' is a Hamiltonian cycle in G'.
- 3. Next we show the "if" direction.
- 4. Assume that G' has a undirected Hamiltonian cycle.
- 4.1. Let C' be such a cycle.
- 4.2. For each $v \in V$, the vertex v^2 has edges only to v^1 and v^3 , so edges (v^1, v^2) and (v^2, v^3) are present in C'. Further, each v^3 has edges only to vertices w^1 such that $(v, w) \in E$.
- 4.3. So (starting the cycle C' at an arbitrary vertex v^1 , and orienting it so that v^2 is the second vertex on the cycle), by a simple induction, the 3n vertices in G' can be ordered so that

$$C' = (v_1^1, v_1^2 v_1^3, v_2^1, v_2^2, v_2^3, \dots, v_n^1, v_n^2, v_n^3, v_1^1, v_1^2, v_1^3).$$

- 4.4. Let $C = (v_1, v_2, \dots, v_n, v_1)$ be obtained by replacing each clone triple (v_i^1, v_i^2, v_i^3) in V' by its original vertex v_i in G. So each vertex v in G is visited exactly once by C.
- 4.5. Each edge (v_i^3, v_{i+1}^1) is present in G', so, by the reduction, each edge (v_i, v_{i+1}) is present in G.
- 4.6. So C is a Hamiltonian cycle in G.
- 5. By blocks 2 and 4, G has a directed Hamiltonian cycle if and only if G' has an undirected Hamiltonian cycle.

Problem 3

Given an instance $\langle G = (V, E) \rangle$ of Directed Ham Cycle, the reduction outputs the instance $\langle \Phi \rangle$ of SAT, defined as follows:

Let n = |V|. The Boolean variables for the formula Φ are $X = \{x_{ij} : i \in V, j \in \{1, 2, ..., n\}\}$, with the interpretation that setting x_{ij} to be true should correspond to having a Hamiltonian cycle in G with vertex i at position j.

For any set of variables $S \subseteq X$, define $\mathsf{one}(S)$ to be the formula $(\bigvee_{x \in S} x) \land \neg (\bigvee_{x, x' \in S: x \neq x'} x \land x')$. So $\mathsf{one}(S)$ is satisfied if and only if exactly one of the variables in S is assigned true.

Take Φ to be logical and of the following expressions:

- 1. For each vertex i, one($\{x_{i1}, x_{i2}, \ldots, x_{in}\}$). (Each vertex should have one position.)
- 2. For each position j, one($\{x_{1j}, x_{2j}, \dots, x_{nj}\}$). (Each position should have one vertex.)
- 3. For each position j, and pair of vertices i, i' such that $(i, i') \notin E$, add clause $\neg(x_{ij} \land x_{i',j+1})$ or, if j = n, then add clause $\neg(x_{ij} \land x_{i',1})$. (In other words, vertex i' cannot follow vertex i on the cycle if there is no edge (i, i')).

Here is why the reduction can be computed in polynomial time:

 Φ can be built as described above in time $O(|V|^2 + |E||V|)$ by appropriately enumerating the vertices $i \in V$ and positions $j \in \{1, ..., n\}$.

Here is a proof that the reduction is correct.

Lemma 3. Given any instance $\langle G = (V, E) \rangle$ of DIRECTED HAM CYCLE, let Φ be the instance of SAT produced by the reduction. Then G has a directed Hamiltonian cycle if and only if Φ is satisfiable.

Proof (long form).

- 1. First we show the "only if" direction.
- 2. Assume that G has a directed Hamiltonian cycle.
- 2.1. Let C be such a cycle.
- ... Somehow show that, since C exists in G, there must be an assignment A to the variables of Φ that makes Φ true...
- 2.2. Φ is satisfiable.
- 3. Next we show the "if" direction.
- 4. Assume that Φ is satisfiable.
- 4.1. Let A be an assignment to the variables of Φ that makes Φ true.
 - \dots Somehow show that, since A exists, there must be a directed Hamiltonian cycle C in G...
- 4.2. There is an directed Hamiltonian cycle in G.
- 5. By blocks 2 and 4, G has a directed Hamiltonian cycle if and only if Φ is satisfiable.