Контрольна робота з математичного моделювання #4

Студента 2 курсу групи МП-21 Захарова Дмитра

24 травня 2023 р.

Варіант 4.

Завдання 1.

Умова. Коли цукор розчиняється у воді, кількість A(t), яка залишилась нерозчиненим після t хвилин, задовольняє диференціальне рівняння A'(t) = -kA(t) де $k \in \mathbb{R}^+ \setminus \{0\}$. Якщо 25% цукру розчинилась за $\tau = 1$ хвилину, то скільки потрібно часу T, щоб розчинилась половина цукру?

Розв'язок. Як відомо, диференціальне рівняння A'(t) = -kA(t) має розв'язок $A(t) = ae^{-kt}$, де $a \in \mathbb{R}$. Нехай уся початкова кількість цукру дорівнює A_0 , тобто $A(0) = A_0$. В такому разі нескладно бачити, що $a = A_0$. Отже, нехай маємо наступну функцію кількості нерозчиненого цукру від часу:

$$A(t) = A_0 e^{-kt}$$

Нам відомо, що через час τ в нас розчинилась $\frac{1}{4}$ частина цукру. Це означає, що через час τ маса *нерозчиненого* цукру стала $\frac{3}{4}A_0$. Отже:

$$A(\tau) = \frac{3}{4}A_0 \to e^{-k\tau} = \frac{3}{4} \to k = -\frac{\ln(3/4)}{\tau} = \frac{\ln(4/3)}{\tau}$$

Отже ми дізналися конкретне значення k (його можна на цьому етапі порахувати, проте поки не будемо).

Нам потрібно знайти за умовою момент часу T, коли розчинилося $\frac{1}{2}$ цукру, тобто кількість цукру стала дорівнювати $\frac{1}{2}A_0$. Тобто, розв'язуємо рівняння:

$$A(T) = \frac{1}{2}A_0 \to e^{-\frac{\ln(4/3)}{\tau}T} = \frac{1}{2} \to \left(\frac{3}{4}\right)^{T/\tau} = \frac{1}{2}$$

Звідси:

$$T = \tau \cdot \frac{\ln(1/2)}{\ln(3/4)} \approx 2.41\tau$$

Отже, половина цукру розчинеться через 2.41 хвилини.

Відповідь. 2.41 хвилини.

Завдання 2.

Умова. Чисельність P(t) популяції алігаторів задовольняє рівняння зникнення або вибуху $P'(t) = aP^2 - bP$, де $B(t) = aP^2(t)$ – швидкість народжень і D(t) = bP(t) – швидкість смертних випадків в момент t, a, b – сталі. Нехай початкова чисельність популяції дорівнює $P_0 = 100$ алігаторам і в місяць відбувається $\alpha = 10$ народжень і $\delta = 9$ випадків смерті в момент часу t = 0. Скільки місяців τ потрібно, щоб P(t) у q = 10 разів перевищила порогове значення чисельності популяції M?

Розв'язок. З умови нам відомо, що в початковий момент часу кількість народжень в місяць дорівнює $\alpha=10$. Оскільки за умовою швидкість народжень $B(t)=aP^2(t)$, то це по суті означає $B(0)=\alpha$. З іншого боку, це дорівнює $aP^2(0)=aP_0^2$. Тому маємо, що $a=\frac{\alpha}{P_0^2}$.

Аналогічним чином, $D(0) = \delta = bP_0$. Отже, $b = \frac{\delta}{P_0}$.

Таким чином, з урахуванням того, що ми дізналися значення a, b, наше

диференціальне рівняння тепер може бути записано як:

$$P'(t) = \alpha \left(\frac{P}{P_0}\right)^2 - \delta \left(\frac{P}{P_0}\right)$$

Розв'яжемо його з урахуванням того, що $P(0) = P_0$. Отже, якщо замінити $p = P/P_0$, то маємо:

$$P_0 p' = \alpha p^2 - \delta p, \ p(0) = 1$$

Далі:

$$\frac{dp}{\alpha p^2 - \delta p} = \frac{dt}{P_0} \to \int \frac{dp}{p(\alpha p - \delta)} = \frac{t}{P_0} + C, \ C = \text{const}$$

Вираз $\int \frac{dp}{p(\alpha p - \delta)}$ можна проінтегрувати, наприклад, записавши підінтегральний вираз у вигляді $\frac{\Box}{p} + \frac{\Box}{\alpha p - \delta}$. В будь-якому разі виходить:

$$\frac{1}{\delta} \ln \frac{\delta - \alpha p}{p} = \frac{t}{P_0} + C$$

Звідки

$$p(t) = \frac{\delta}{\alpha + c \exp\left(\frac{\delta t}{P_0}\right)}$$

3 умови p(0)=1 отримуємо $c=\delta-\alpha.$ Таким чином,

$$p(t) = \frac{\delta}{\alpha - (\alpha - \delta) \exp \frac{\delta t}{P_0}}$$

А наша початкова функція:

$$P(t) = \frac{\delta P_0}{\alpha - (\alpha - \delta) \exp \frac{\delta t}{P_0}}$$

Знайдемо, чому дорівнює порогове значення чисельності популяції M. Його можна знайти з форми запису P'(t) = kP(t)(P(t) - M) згідно означенню. Помітимо, що наше початкове рівняння можна записати як:

$$P'(t) = \frac{\alpha}{P_0^2} P(t) \left(P(t) - \frac{\delta}{P_0} \cdot \frac{P_0^2}{\alpha} \right) = \frac{\alpha}{P_0^2} P(t) \left(P(t) - \frac{\delta P_0}{\alpha} \right)$$

Видно, що $k=rac{lpha}{P_0^2}, M=rac{\delta P_0}{lpha}.$

Отже, за умовою, нам потрібно знайти момент часу au, коли P(au) = qM. Маємо:

$$\frac{\delta P_0}{\alpha - (\alpha - \delta) \exp \frac{\delta \tau}{P_0}} = \frac{q \delta P_0}{\alpha}$$

Або

$$1 - \left(1 - \frac{\delta}{\alpha}\right) \exp\frac{\delta\tau}{P_0} = \frac{1}{q}$$

Далі розв'язуємо відносно τ :

$$\exp\frac{\delta\tau}{P_0} = \frac{1 - 1/q}{1 - \delta/\alpha} \to \tau = \frac{P_0}{\delta} \ln\frac{1 - \frac{1}{q}}{1 - \frac{\delta}{\alpha}}$$

Підставляємо числа:

$$au=rac{100}{9}\lnrac{1-1/10}{1-9/10}=rac{100}{9}\ln 9pprox 24.41$$
 місяців

Відповідь. 24.41 місяців.