

Dynamic Provider Deployment using Monitoring Data

Autori: Alexandru Palade

Email: alexandru.palade@loopback.ro

Conducători științifici:

prof. dr. Ing. Valentin Cristea as. drd. Ing. Alexandru Costan

Introduction

- Increasing need for storage space
 - TB/PB-sized files
- Cloud computing
 - "Grid computing made accessible to anyone with a credit card"
 - Already popular
 - Pay for what you use

Introduction

- Increasing need for storage space
 - TB/PB-sized files
- Cloud computing
 - "Grid computing made accessible to anyone with a credit card"
 - Already popular
 - Pay for what you use

Objectives

- Scale data storage systems up and down as needed
- Cut costs
- Auto-adaptive solution
- Be as less intrusive as possible

The Distributed File System BlobSeer

The Cloud Context Dynamic Deployment

Related Work

	Fine Grain Access	Concurrent Reads	Concurrent Writes	Concurrent Appends	Versioning
Regular FS	X	-	-	-	-
GFS, HFS	X	X	-	X	-
S3	-	Х	Х	-	-
DeepStore	Х	-	-	Х	Х
BlobSeer	Х	Х	Х	Х	Х

Extract from: Bogdan Nicolae, Luc Bouge, Gabriel Antoniu

BlobSeer: dealing with increasing storage demands of large-scale data-intensive distributed applications

Computer Science & Engineering Department

Technical Solution

Monitoring Data – MonALISA

10

Scoring Algorithm

- Factors
 - Internal: number of read/write accesses, replication degree
 - Physical: disk space, avg. bandwidth
- Heuristic

$$S = \sum_{i=1}^{n} wft_{i} \times wcf_{i}$$

Scenario Specification

Latency Time Test

- Complex system → not easy to compute
- Sum of multiple factors

$$t_{latency} = t_{mon} + t_{wait} + t_{list} + t_{analyze} + t_{provider}$$

- Network time not included (!)
- Local test yielded 2-3s total time

Intrusiveness Test

Overhead (microseconds)

Monitoring Data

Number of Records in the Database for 128MB of Useful Data

ber of ApMon messages Number of ApMon message

Credits

- Alexandru Costan
 - Support
 - Mentoring
- Alexandra Carpen-Amarie
 - Monitoring module help

Q&A