### Band 55 protein

|                           | 10            | 20           | 30          | 40          | 50      |
|---------------------------|---------------|--------------|-------------|-------------|---------|
| ISR                       | MESAEEPLPARP  |              |             |             |         |
| MOUSE<br>RAT              | -DRDS-@-      | S            |             | IV          |         |
| HUMAN                     | RQS-S         |              | r           | IV          | V-F     |
|                           |               |              |             |             |         |
|                           | 60            | 70           | 80          | 90          | 100     |
| ISR                       | LSVRLRALRQRQI |              | AVVKRQEALA  | aarlrmqedli | IAQVEKH |
| MOUSE                     | L             | ET           | J           |             |         |
| RAT                       | L             | E            | J           |             |         |
| HUMAN                     | A             | R-A-AV\      | /           | KE          |         |
|                           |               |              |             |             |         |
|                           | 110           | 120          | 130         | 140         | 150     |
| ISR                       | KEKLRQLEEEKRE | ROKIEMWDSMQE | EGRSYRRNPGI | RPQEEDGPGPS | TSSSVT  |
| MOUSE                     |               |              | KS-         |             | -/I     |
| RAT                       |               |              | K           |             | -/I     |
| HUMAN                     | K             |              | KKG-AKI     | K5          | -/      |
|                           |               |              |             |             |         |
|                           | 160           | 170          | 180         | 189         |         |
| ISR                       | RKGKSDKKPLRGN |              |             |             |         |
| MOUSE                     | P             |              | S           |             |         |
| RAT                       | P             |              | ۸ ۵         |             |         |
| HUMAN                     | /-RRC         | }S           | A- S        |             |         |
|                           |               |              |             |             |         |
| @=R or S                  |               |              |             |             |         |
| * = R  or  Q              |               |              |             |             |         |
| $\underline{A}$ = mixture | of A and V    |              |             |             |         |

Figure 1



Figure 2

**Band 55 Liver** 





SUBSTITUTE SHEET (RULE 26)RO/AU

**Band 55 Adipose Tissue** 

Figure 2(ii)





SUBSTITUTE SHEET (RULE 26)RO/AU



Figure 3
SUBSTITUTE SHEET (RULE 26)RO/AU

The Hall the first of the first



Figure 3(i)

Band 60 v. Body Weight - B animals

Band 60 v. Body Weight - C animals



Figure 3(ii)



Figure 3(iii)



Figure 4
SUBSTITUTE SHEET (RULE 26)RO/AU

LIVER



Figure 4(i)

SUBSTITUTE SHEET (RULE 26)RO/AU

Figure 4(ii)

11/20



SUBSTITUTE SHEET (RULE 26)RO/AU

Adipose tissue - Band 38 v triglycerides  $R^2 = 0.4132$ 

 $^{\circ}$ Triglycerides 200 10 10 10 10 8s basa



Liver - Band 38 v. Triglycerides

SUBSTITUTE SHEET (RULE 26)RO/AU

Figure 4(iii)

Genomic structure of the human band 55 gene



Figure 5

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 6
SUBSTITUTE SHEET (RULE 26)RO/AU

| 1   | <u>C</u> AGGGCTGGG       | CGGCGGCGGC     | GGCGGCGGTC          | ATGGAACGCC | AAGAGGAGTC    |
|-----|--------------------------|----------------|---------------------|------------|---------------|
|     | Transcript start exon    | ion initiat    | ion site            | translatio | n start codon |
| 51  |                          | · <del>-</del> | TGGAGACCGA          | GGGGCTGCGC | TTCCTGCACA    |
| 101 | CCACGGGTGA               | GTCGTTGCGG     | GGCAGCCGGG          | egegegeege | CACTTTTGCG    |
|     | T<br>end                 | exon 1         |                     |            |               |
| 151 | ACGCGCAGÇC               | ATGATGGGTG     | GGTCGTCCGC          | CGCTGCACCG | GGCGCCGGAG    |
| 201 | CCTGGGAGGC               | CTGGGAACGG     | TCGGGCGTTG          | GCGCTTACGC | GGACCTTGGG    |
| 251 | CAGCAGGCCC               | GGACCTTGCG     | CGGAGGCTTC          | TCGGGAGCCG | CACTTCCCTG    |
| 301 | GGCGGCTCGG               | CTGTCCCTTG     | TTTGCGCAAG          | TCTTTTTTGC | GAACCAAGCC    |
| 351 | CTTCCTGTGG               | TAGTTACTGG     | GGTCACTCGG          | CCGTTGGCGT | TTGCCTCTGG    |
| 401 | GACCCGTCCC               | ACACAGCCCC     | ATACACACTC          | CTGACTCCCC | GCGCTGTCAC    |
| 451 | CCCTTTCTAT               | GTGGCTCTGA     | AAGGCCTTTG          | CCTTCCTGAT | TCAGATTAGT    |
| 501 | TGCTCTTCAT               | TCTTCAAAAC     | CCAGTTGCTG          | TGCCCTCCAC | ACTCTAACTG    |
| 551 | CCCCCGACTC               | CCCAGATGGT     | TGGGAAGTCT          | CACTTCTCAG | TGATCCCTGA    |
| 601 | ATTGTCGCAC               | TTCTTGAGTT     | CGTGTTTTAA          | CGATCTACTT | AGGAGGCTTT    |
| 651 | TTCCTCAGCC               | TAGACCATGA     | AGGCTTTGAG          | GGCAGGAGTT | ACACTTTGTG    |
| 701 | TTTGTTGAGT               | CTTATGGAAA     | GGTCAACTAG          | TAGTGTCATT | TTTAGTTTTT    |
| 751 | TGAAAACTGT               | TTTTCTTTTC     | AG <u>T</u> GGGCTCC | CTGCTGGCCA | CCTATGGCTG    |
|     |                          |                | start e             | con 2      |               |
| 801 | GTACATCGTC               | TTCAGCTGCA     | TCCTTCTCTA          | CGTGGTCTTT | CAGAAGCTTT    |
| 851 | CCGCCCGGCT               | AAGAGCCTTG     | AGGCAGAGGC          | AGCTGGACCG | AGCTGCGGCT    |
| 901 | GCTGTG <u>G</u> GTT<br>♠ | AGTGCCTGAT     | AACCGAAATG          | AAAGCGGTGG | TTTTGCACCT    |
|     | end exc                  | on 2           |                     |            |               |

Figure 6(i)
SUBSTITUTE SHEET (RULE 26)RO/AU

951 CCTTTATATT AAGAGTTAGT CTCTTAGTAA AAGTAAGAGG GGCCACAGA 1001 GAAGACCCTG TCTCTATTTA AAAAAAAAA AAATAGCCGG GAGTGGCGGC ACGCACCTGT AGTCCCAGCT GCTCAGGAGG CTGAGGCGGG ATAATCACTT 1051 GAGTCCAGGG AGTCAAAGCT GCAGTGGGCT ATGCTCGGGC CACACTACAC 1101 1151 TCCAGCCTGG GCAATTGATT GAGACCTTGT CTTTAAAAAA AAAAAAAAA AAAAAGTAGG AAGTATATGG TTCTCGGTGG GGCGCGGTGG CTCACACCTG 1201 1251 TAATCCCAGC ACTTTGGGAA GCCGAGGCAG GAGGATGACT TGAGGTCAGG 1301 GGTTCGAGAA CAGCCTGGCC AACATGGTGA AACCCTGTCT CTACTAAAAA TACAAATATT AGTGGGGCGT GGTGACGGGC ACCTGTAATC CCAGCTATTA 1351 1401 GGGTGGCTGA GGCAGGAGAA ATCGCTTGAA CCTGGGAGCT GGAGATTGCA GTGAGCTGAG ATTGTGCCAC TGCACTCCAG CCTGGGCAAC AGAGTGAGAC 1451 TGTCTTTTCT TTCTTTTTTT TTTTTTTTC TATGAGATGG AGTCTAGCCT 1501 1551 TGTTGCAAAG AGCGAGACTC TATGAGTAGA CGTTATGAAT AGAAATGAGT TCATTTCTAT TCATAATGCT ATTTGGAAGG ATTTTTCTTT TCTGTAGAAA 1601 CAAATACTTA AGAATCTTCT GCGCTAATTA AGGGATGGAT AATGATTTAG 1651 1701 AAAACTTTAT ATTTCCTTGG TAGTCTTCCA GGATTCTAGT CAGCCTAGAG ACTGTGGGTG TCACTGAGGT ATCCAAGATG TGCTCTGTGT GGCCACTATC 1751 1801 CCAGGCTTTA TGAATCGGAA TTGCTCAGGG GAACTCAGAA ATTGGCATTT CTAACAGATT TCTGGTGATG TAGATATTTC GGGCTAAAAT CCGTGGCTCA 1851 1901 GCAACAGACC CCTGCCCCCT GAAGCAGTAA AATGTATGCA GAGGGGTTAG GAGTACTTAT GTAAAAATAT GTTGTTTCAT TGTCTGATAT CCATACCTCT 1951 2001 TTATACTTTT AATAATATGG ACACTCAAAA GTTTCTATTT TATATTGTAC

# Figure 6(ii) SUBSTITUTE SHEET (RULE 26)RO/AU

2901

## 17/20

| 2051         | ACAGTGCTTT | ATCTCCATTT      | TTTTCTGACA | TTTTAGAACC | TGATGTTGTT      |  |  |
|--------------|------------|-----------------|------------|------------|-----------------|--|--|
|              |            |                 |            | sta        | art exon 3      |  |  |
| 2101         | GTTAAACGAC | AAGAAGCTTT      | AGCAGCTGCT | CGACTGAAAA | TGCAAGAAGA      |  |  |
| 2151         | ACTAAATGCG | CAAGTTGAAA      | AGCATAAGGA | AAAACTGAAA | CAAGTATGAA      |  |  |
|              |            |                 |            |            | T<br>end exon 3 |  |  |
| 2201         | CTGGTTTCAG | TTTGAATGTG      | TGCATAGAAA | TTGTCTGAGG | TTTAGTGGCT      |  |  |
| 2251         | AACGATGCCT | GTGTCTGTGT      | TGTCTATAAG | CTTCTAGGAC | CAGGTCCTAT      |  |  |
| 2301         | CCCATTAGAT | TCAATAAGCA      | TTTCAGTTCC | TACCATGTAA | GTATTGGTGA      |  |  |
| 2351         | TATCAAGAAG | AATACACGAT      | TGTTAGGGAA | CACTAGATGT | GTGAATATAT      |  |  |
| 2401         | TACCATGAAA | GGTCCAGAGC      | ACAAAAGGAG | GGACAGGCTG | GAGCAGGGAG      |  |  |
| 2451         | CATGTGAGTG | TGTGTGTGCA      | TGTGCCTGTG | TCTTCCCCAT | TACCAAAAAT      |  |  |
| 2501         | GTCCTGACAG | GAGTGAGTTT      | CAGAAGAATG | GAGTCAGTAA | TCTTTTTCAT      |  |  |
| 2551         | GAAACATTTT | GCTTTCTTTA      | ATAGTGTACA | AAAACCAAAG | CTGCTCTATG      |  |  |
| 2601         | TGAGTTAAAC | TCACACTACC      | AGATCACAAC | AGTTTTATTA | ACTAAAGAAA      |  |  |
| 2651         | ACGAGGGTGA | AGTTTGTTCT      | GAAAGACATT | TAAATTAAGA | ATTATCAGAG      |  |  |
| 2701         | TTAGCTTTGT | CTTTGAGAGA      | AATGGCAGCT | TCTGAATTCT | TTCTGTAAAA      |  |  |
| 2751         | TGTGATTGTT | TCTCAGCTTG<br>▲ | AAGAAGAAAA | AAGGAGACAG | AAGATTGAAA      |  |  |
| start exon 4 |            |                 |            |            |                 |  |  |
| 2801         | TGTGGGACAG | CATGCAAGAA      | GGAAAAGTT  | ACAAAGGAAA | TGCAAAGAAG      |  |  |
| 2851         | CCCCAGGTGA | CTGGAGACCT      | CGGCCGGCTG | GCATGCGGTA | GATGAAGATT      |  |  |
|              | end exon 4 |                 |            |            |                 |  |  |

# Figure 6(iii) SUBSTITUTE SHEET (RULE 26)RO/AU

GCCAAGTAGA ATGTTTTAAT TGCTTCTTAC ACTACTGTGT GTGTTCAAAC

AGGAGGAAGA CAGTCCTGGG CCTTCCACTT CATCTGTCCT GAAACGGAAA

\*\*
start exon 5

3001 TCGGACAGAA AGCCTTTGCG GGGAGGAGGT AAGCACCACT GATGTCAAAT

end exon 5

3051 GTTAACAGAT TTTCAACACT TACAGGATAT AGTTACCTTT TAAGAACAAG 3101 ATTGTTTGTT TCTTTGTCCA TAAATTAAGA CTAATTCCTT AGGATTGTGA 3151 AGATTCAATA AAGGAAACAG ATGCAAATCA CCTCCTAGGT CCTCACTAAG 3201 TACTTAGAAG GATTGTACTT ATAGTATTCT AACTTGATCC TTCTGCAGCC 3251 CCGTAGAGGG AGAGCTAAGT AGGGTGAGGA ATTGTCTGCC AATCTTCAGA 3301 TGAGTGTCAA GGAGCTGGAA CACAGTGGTT TTGGTCTTTC TGGCTGGGAC 3351 CACCTTGTTT CTTGCAAATA ACAAGGAGTA GCAGACAGAT GCTCATCCAA 3401 AGCTGCTTCC TGTGTGCAGC ACTGCCCCGG GGACTCTGGA TGATGCCACA 3451 GCAGTCTGTC TTCATCCCAT CCCTGAGAAT TTCAAATCTG GGAAGATGGG 3501 ACTCACAAAC GAAAATAAGC AATCCTTGGT GATTCTGGCT AAGAGTTGCA 3551 AGTTACTGCT GAGGAAGGAA AGAACAAACA CACTAGAACA CTGTAGGAAC 3601 CAAGGCGGAA GATTTTGTAT CCTCCATAGG AGGAGAGGGG CACCGCAGAG 3651 GCCCTGATGG TGTCTTTGAG GACTGAGGAA AGACTGGGGC ATGGGCTCCA 3701 AGGCAGCAGG GCCACAGACT TGGCTGACCT TAAACGCTGA GCTGTAATCC 3751 CCTTTGTGTC AGAAGACTAA ACCTGGCTTG CTGTAGAGAA GGTGATGCAT 3801 CTGGAAAGAA AATGCTATTT TTAAATGGTC CTGCCGGAAG CTTATTTTTA GACACATAGA GGTGATATTT AGGAGAGGAA TGGAAATCGT AGAAGATGGA 3851 3901 ATGCAGGGTG TGCTTGCCTG CACGGCCTCT TTCAGCATCC CCAGCATTTC 3951 TGAGCTGGGA CTTTTGACTA GCCTGGCTTT ACAAATAAGG AAACTGAGGC

### Figure 6(iv)

| 4001 | ACAGTGTTTA        | ATTGCCCAAA | GATTCCACTA         | TAAGTAAGGA  | GTAAAAGTAA         |
|------|-------------------|------------|--------------------|-------------|--------------------|
| 4051 | CATTTAAGTT        | CTGGGTGGCC | CTAGAACCTT         | AGCACTCAAC  | CAGGTTACCA         |
| 4101 | GTTGTGCACT        | GACTTTGGGA | AGCTCATGAG         | GGAGTGGGGT  | GGTTGGGGGT         |
| 4151 | AGGGAAGGAT        | ACAGAAGACC | CCGTTCTGAC         | TGGTAGAAGT  | GACAAGTTTG         |
| 4201 | ACTCTTGATT        | TTTTTTAATC | TGTTTTCTGT         | AGCGTGAACA  | GCCCTTATTT         |
| 4251 | GAATGTATGA        | GTTTTAGTAA | GCACTGTGAT         | AGGAGGATTC  | ATATACTTAA         |
| 4301 | ATCAGGCCCT        | CTTGAGAGAG | TTTTTTGGTG         | ACCCTTTTGC  | ATGTGTTTCG         |
| 4351 | GAGGTTGGGA        | CAAAGAAGCT | GAATGACTTŢ         | TTTCCCCACC  | AGACAATCAG         |
| 4401 | TTCAAATGGC        | AATCACAATA | TAAAGGTTTT         | TTTTTTTTC   | ACATAGCTAA         |
| 4451 | AAGGTTTTTT        | TAAATGTCCC | TTAGGATCTG         | TATCTTTGCA  | GTGCTTTGCG         |
| 4501 | TGTCACTCTC        | ATAATTTTAT | TGTGGATATA         | CAATGTTCCC  | AGATTTTCAG         |
| 4551 | ATTTTTATCA        | ATACTGTTGT | GCTGCTTTTC         | TGTCCTCCCA  | GGTTATAACC         |
|      |                   |            |                    | s           | T<br>tart exon 6   |
| 4601 | CGTTGTCTGG        | TGAAGGAGGC | GGAGCTTGCT         | CCTGGAGACC  | TGGACGCAGA         |
| 4651 | GGCCCGTCAT        | CTGGCGGATG | <u>A</u> GGCTAAGAA | TCTTGTTAGT  | GTCACTTTTG         |
|      |                   |            | translati          | on stop cod | on                 |
| 4701 | ACATTAGCAA        | GATGAACCCT | TAACCCTCGA         | TTCAATTGCC  | TTACGCACGC         |
| 4751 | TTTTCACAGT        | GACTAGCCAA | GGGGAGGTGG         | GGTTGATTTC  | TGTTCCTAAC         |
| 4801 | TACACCTGCA        | TATGTCAGGG | CTCCAGTCAG         | CAAAAGGTAT  | AGATGTTGCC         |
| 4851 | <b>TCTAGGCATG</b> | AGGTCATTGG | TCACATTCTA         | CTTGGAGACA  | GTGATTGCAT         |
| 4901 | TCATTGATTT        | CATGGTTAAT | TGCTAGTTGG         | TAGGTAAAGG  | CCTCTAGATG         |
| 4951 | ATTAGCAATC        | TTGATAAAAG | AGGCCTAGTA         | ATGTTCTTTT  | GAGGTTAGAA         |
| 5001 | ATCCTTGCTG        | CTAGGACAGT | CTCTGTGACA         | GGTTGCGTTG  | <b>ΔΔΨ</b> CΔΨCΨCΨ |

Figure 6(v) SUBSTITUTE SHEET (RULE 26)RO/AU

| · .  | transcripti<br>end exon 6 | ion terminat | tion site  |            |            |
|------|---------------------------|--------------|------------|------------|------------|
| 25,1 | <u>C</u><br><b>★</b>      |              |            |            |            |
| 201  | AGATTTATGG                | ACTTCAATTT   | GTCTATCAAA | CATTAAATAG | CTTTTTATTA |
| 5151 | CGAAACTATT                | TAAAAAACAA   | GAATAACATT | TTTAGCATCT | TTATTCAAGG |
| 101  | ATGGGGTTTG                | TTTCTGTATA   | TTTATTTTTA | TGTACAGAAC | TTTGTAAAAA |
| 051  | TCCTTATCAA                | TGGTGAGCCC   | ACCAGTGAGG | ATTACTGATG | TGGACAGTTG |

Figure 6(vi)