DSC 211 Introduction to Optimization Winter 2024 — Instructor: Jun-Kun Wang

Scribe: Yunzhou Yan March 4, 2024

Editors/TAs: Merlin Chang, Marialena Sfyraki

Lecture 16: (Continue) Min-Max Optimization

1 Saddle points in min-max optimization

The goal of min-max optimization

Consider the following optimization problem:

$$\inf_{x \in X} \sup_{y \in Y} g(x, y)$$

where $g: X \times Y \to \mathbb{R}$ is a given function, X and Y are sets over which the optimization is performed, inf denotes the infimum (or greatest lower bound), and sup denotes the supremum (or least upper bound).

Definition of saddle points

Definition 1 (Saddle Points/Nash Equilibrium). Let $x \in X$ and $y \in Y$ and $g(\cdot, \cdot)$: $X \times Y \to \mathbb{R}$. A pair of points $(x_*, y_*) \in X \times Y$ is a saddle point of $g(\cdot, \cdot)$ if

$$g(x_*, y) \le g(x_*, y_*) \le g(x, y_*), \forall x \in X, y \in Y.$$

Remark. This condition implies that at the saddle point, $g(x_*, y_*)$ represents a Nash equilibrium in the sense that no player can unilaterally improve their payoff by changing their strategy from x_* or y_* .

Theorem 1. Let $g: X \times Y \to \mathbb{R}$, where X and Y are non-empty sets. A point (x_*, y_*) is a saddle point of g if and only if the following conditions are satisfied:

- 1. The supremum in $\sup_{y\in Y}\inf_{x\in X}g(x,y)$ is attained at y_* .
- 2. The infimum in $\inf_{x \in X} \sup_{y \in Y} g(x, y)$ is attained at x_* .
- 3. Moreover, $\sup_{y \in Y} \inf_{x \in X} g(x, y) = \inf_{x \in X} \sup_{y \in Y} g(x, y)$.

Remarks.

1. If inf sup and sup inf have different values, then there is no saddle point.

2. If a saddle point exists, then:

- There might be multiple ones, all of them must have the same minimax value, i.e., $\sup_{y \in Y} \inf_{x \in X} g(x, y) = \inf_{x \in X} \sup_{y \in Y} g(x, y)$
- The set of saddle points is the Cartesian product $X_* \times Y_*$ when nonempty.
- The set x_* is the optimal solution to $\inf_{x \in X} \sup_{y \in Y} g(x, y)$.
- The set y_* is the optimal solution to $\sup_{y \in Y} \inf_{x \in X} g(x, y)$.

Example of No Saddle Points

Consider the function $g(x,y) = (x-y)^2$ with X = [-1,1] and Y = [-1,1]. Then, we evaluate the infimum and supremum as follows:

$$\inf_{x \in X} \sup_{y \in Y} (x - y)^2 = \inf_{x \in X} (1 + |x|)^2 = 1,$$

where the infimum is taken over the maximum value the function can achieve for each x, realizing that the maximum occurs at the endpoints of Y. Similarly,

$$\sup_{y \in Y} \inf_{x \in X} (x - y)^2 = \sup_{y \in Y} 0 = 0,$$

where the infimum for each y is achieved when x = y, leading to a minimum value of 0 for all y.

This discrepancy between the infimum of the supremum and the supremum of the infimum indicates that there are no saddle points for $g(x,y) = (x-y)^2$ over the given domain.

2 Metric to measure the progress of min-max optimization

In the context of min-max optimization, it is paramount to quantify the progress of optimization from the perspectives of participating entities. For a given function $g: X \times Y \to \mathbb{R}$, where X and Y represent the strategy sets for two players within the optimization problem, we define two metrics, $\ell(x)$ and h(y), to assess progress from the viewpoints of the x-player and y-player respectively.

For the x-Player

Define $\ell(x)$ as the supremum of g(x,y) over all $y \in Y$:

$$\ell(x) := \sup_{y \in Y} g(x, y).$$

From the x-player's perspective, the progress is measured as:

$$\ell(x) - \inf_{x \in X} \ell(x).$$

For the y-Player

Define h(y) as the infimum of g(x,y) over all $x \in X$:

$$h(y) := \inf_{x \in X} g(x, y).$$

For the y-player's perspective, the progress is captured by:

$$\sup_{y \in Y} h(y) - h(y).$$

Let $g: X \times Y \to \mathbb{R}$ be a given function, and $\hat{x} \in X$, $\hat{y} \in Y$ represent specific selections within their respective domains. By the definition of sup and inf, the following relation holds:

$$\sup_{y \in Y} g(\hat{x}, y) \ge g(\hat{x}, \hat{y}) \ge \inf_{x \in X} g(x, \hat{y}).$$

Combining the optimality gap of each player, we have that

$$\begin{split} \operatorname{Gap}(\hat{x}, \hat{y}) &:= \ell(\hat{x}) - \inf_{x \in X} \ell(x) + \sup_{y \in Y} h(y) - h(\hat{y}) \\ &= \sup_{y \in Y} g(x, y) - \inf_{x \in X} \sup_{y \in Y} g(x, y) + \sup_{y \in Y} \inf_{x \in X} g(x, y) - \inf_{x \in X} g(x, y) \\ &= \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}), \end{split}$$

where the second-to-the-last line is by the assumptoin that assuming the existence of a saddle point.

Definition 2 (Duality Gap). The duality gap $Gap(\hat{x}, \hat{y})$ is defined as:

$$Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}),$$

Remark. Duality gap is always non-negative even if the saddle point does not exist. By the definition of sup and inf, we have

$$\sup_{y \in Y} g(\hat{x}, y) \ge g(\hat{x}, \hat{y}) \ge \inf_{x} g(x, \hat{y})$$

Therefore,

$$\begin{split} \operatorname{Gap}(\hat{x}, \hat{y}) &:= \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}) \\ &= \sup_{y \in Y} g(\hat{x}, y) - g(\hat{x}, \hat{y}) + g(\hat{x}, \hat{y}) - \inf_{x} g(x, \hat{y}) \\ &> 0. \end{split}$$

ϵ -equilibrium / ϵ -saddle point

Assume a saddle point of $g(\cdot,\cdot)$ exists. Let us define the value v_* as follows:

$$v_* = \inf_{x \in X} \sup_{y \in Y} g(x, y) = \sup_{y \in Y} \inf_{x \in X} g(x, y).$$

Definition 3 (ϵ -equilibrium / ϵ -saddle point). A pair $(\hat{x}, \hat{y}) \in X \times Y$ is an ϵ -equilibrium or ϵ -saddle point if

$$v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon.$$

Remark. This definition extends the concept of a saddle point by introducing a margin of ε , allowing for a near-optimal equilibrium within an ε range of the optimal value v_* . Using the following inequality,

$$\sup_{y \in Y} g(\hat{x}, y) \geq g(\hat{x}, \hat{y}) \geq \inf_{x \in X} g(x, \hat{y}),$$

we can derive the following two inequalities

$$v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le g(\hat{x}, \hat{y})$$
$$g(\hat{x}, \hat{y}) \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon$$

Thus, the above definition implies that

$$v_* - \epsilon \le g(\hat{x}, \hat{y}) \le v_* + \epsilon.$$

Lemma 1. Given that the duality gap $Gap(\hat{x}, \hat{y}) \leq \varepsilon$ and assuming the existence of a saddle point, it follows that the pair $(\hat{x}, \hat{y}) \in X \times Y$ constitutes an ε -equilibrium or ε -saddle point.

Proof. By definition of the duality gap

$$Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}) \le \varepsilon$$

$$\Leftrightarrow \sup_{y \in Y} g(\hat{x}, y) \le \inf_{x \in X} g(x, \hat{y}) + \varepsilon.$$

Given the optimal value

$$v_* = \inf_{x \in X} \sup_{y \in Y} g(x, y),$$

it follows from the definition that

$$v_* \le \sup_{y \in Y} g(\hat{x}, y).$$

Therefore, we can establish the chain of inequalities

$$v_* = \inf_{x \in X} \sup_{y \in Y} g(x, y) \le \sup_{y \in Y} g(\hat{x}, y) \le \inf_{x \in X} g(x, \hat{y}) + \varepsilon.$$

This sequence demonstrates the relationship between the optimal value v_* , the supremum over y for a fixed \hat{x} , and the adjusted infimum over x for a fixed \hat{y} by an ε margin, reflecting the bounds within which v_* is situated.

The duality gap for a pair (\hat{x}, \hat{y}) is defined as:

$$Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}) \le \varepsilon$$

This can be equivalently expressed as:

$$\sup_{y \in Y} g(\hat{x}, y) \le \inf_{x \in X} g(x, \hat{y}) + \varepsilon \le \sup_{y \in Y} \inf_{x \in X} g(x, y) + \varepsilon = v_* + \varepsilon$$

Using similar arguments, we can prove the left side of the chain of inequalities. Therefore, we have proven that

$$v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon.$$

Definition 4. Given a pair $(\hat{x}, \hat{y}) \in X \times Y$, it is considered to be an ε -equilibrium or ε -saddle point if the following condition holds:

$$v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon.$$

3 The algorithmic aspect of min-max optimization

Review of online convex optimization

Algorithm 1 Online convex optimization

- 1: **for** $t = 1, 2, \dots$ **do**
- 2: Commit a point z_t with its convex decision space $Z \subset \mathbb{R}^d$.
- 3: Receive a loss function $\ell_t(\cdot): Z \to \mathbb{R}$ and incurs a loss $\ell_t(z_t)$.
- 4: end for

The goal of online convex optimization is to learn to be competitive with the best-fixed predictor from the convex set S, which is captured by minimizing the regret. Formally, the regret of the algorithm relative to any fixed benchmark z^* in Z when running on a sequence of T examples is defined as

Regret_T(z_{*}) =
$$\sum_{t=1}^{T} l_t(z_t) - \sum_{t=1}^{T} l_t(z_*)$$
.

The regret of the algorithm relative to a convex set Z is defined as

$$Regret_T(Z) = \operatorname*{argmax}_{z_* \in Z} Regret_T(z_*)$$

The x-Player Perspective

Consider the x-player who, at each time step t, plays a strategy $x_t \in X$. Upon choosing this strategy, the x-player receives a loss function defined as:

$$\ell_t(x) := g(x, y_t),$$

where $g: X \times Y \to \mathbb{R}$ is a given function that determines the loss based on the player's choice x_t and the strategy y_t chosen by the opponent at time t.

The y-Player Perspective

From the perspective of the y-player, the game proceeds as follows: at each time step t, the y-player selects a strategy $y_t \in Y$. Upon making this selection, the y-player receives a loss function, which is defined as:

$$h_t(y) := -g(x_t, y),$$

where $g: X \times Y \to \mathbb{R}$ is the function determining the outcome based on the strategy x_t chosen by the opponent and the y-player's own choice y at time t.

Meta-algorithm for solving min-max problems

Algorithm 2 Meta-algorithm for Solving Min-Max Problems

- 1: Initialize $OAlg^x$ (OCO Algorithm for x) and $OAlg^y$ (OCO Algorithm for y).
- 2: Define weight sequence $\alpha_1, \alpha_2, \dots, \alpha_T$.
- 3: **for** t = 1, 2, ..., T **do**
- 4: $x \text{ plays } x_t \leftarrow \text{OAlg}^x(\alpha_1 \ell_1, \alpha_2 \ell_2, \dots, \alpha_{t-1} \ell_{t-1})$
- 5: $y \text{ plays } y_t \leftarrow \text{OAlg}^y(\alpha_1 h_1, \alpha_2 h_2, \dots, \alpha_{t-1} h_{t-1})$
- 6: $x \text{ receives } \alpha_t \ell_t(x) := \alpha_t g(x, y_t)$
- 7: $y \text{ receives } \alpha_t h_t(y) := -\alpha_t g(x_t, y)$
- 8 end for
- 9: Output the average strategies x_T and y_T , where:

$$x_T := \frac{\sum_{t=1}^T \alpha_t x_t}{A_T}, \quad y_T := \frac{\sum_{t=1}^T \alpha_t y_t}{A_T},$$
 with $A_T := \sum_{t=1}^T \alpha_t$.

From the x-player perspective:

- Play $x_t \in X$.
- Receives the loss function at t, $\alpha_t \ell_t(x) := \alpha_t g(x, y_t)$.

(Weighted) Regret of the x-player:

$$\alpha\text{-}Regret^x := \sum_{t=1}^T \alpha_t \ell_t(x_t) - \inf_{x \in X} \sum_{t=1}^T \alpha_t \ell_t(x).$$

(Weighted) Average regret of the x-player:

$$\overline{\alpha - \text{Regret}^x} := \frac{\alpha - Regret^x}{A_T},$$

where $A_T := \sum_{t=1}^T \alpha_t$.

From the *y*-player perspective:

- Play $y_t \in Y$.
- Receives the loss function at t, $h_t(y) := -\alpha_t g(x_t, y)$.

(Weighted) Regret of the y-player:

$$\alpha\text{-}Regret^y := \sum_{t=1}^{T} \alpha_t h_t(y_t) - \inf_{y \in Y} \sum_{t=1}^{T} \alpha_t h_t(y).$$

(Weighted) Average regret of the y-player:

$$\overline{\alpha - \text{Regret}^y} := \frac{\alpha - Regret^y}{A_T},$$

where $A_T := \sum_{t=1}^T \alpha_t$.

Guarantees of the meta-algorithm

Theorem 2. Let g(x,y) be convex w.r.t x and concave w.r.t. y. The output $(\overline{x}_T, \overline{y}_T)$ of the meta-algorithm is an ϵ -equilibrium of $g(\cdot, \cdot)$, where

$$\epsilon := \overline{\alpha - \mathrm{Regret}^x} + \overline{\alpha - \mathrm{Regret}^y}.$$

Also, the duality gap is bounded as

$$\operatorname{Gap}(\overline{x}_T, \overline{y}_T) := \sup_{y \in Y} g(\overline{x}_T, y) - \inf_{x \in X} g(x, \overline{y}_T) \le \overline{\alpha - \operatorname{Regret}^x} + \overline{\alpha - \operatorname{Regret}^y}.$$

x-perspective $\ell_t(x) = g(x, y_t)$

$$\frac{1}{A_T} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) = \frac{1}{A_T} \sum_{t=1}^{T} \alpha_t \ell_t(x_t)$$

This expression can further be decomposed into the infimum over x in X of the weighted outcomes, adjusted by the weighted regret for the x-player, and be simplified by using the definition of α -Regret^x and $\overline{\alpha$ -Regret^x:

$$= \inf_{x \in X} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x, y_t) \right) + \frac{\alpha - Regret^x}{A_T}$$

$$= \inf_{x \in X} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x, y_t) \right) + \overline{\alpha - Regret^x}$$
(1)

Using the Jensen's inequality, we have

$$\leq \inf_{x \in X} g\left(x, \sum_{t=1}^{T} \frac{\alpha_t}{A_t} y_t\right) + \overline{\alpha - Regret^x}$$
 (2)

$$\leq \sup_{y \in Y} \inf_{x \in X} g(x, y) + \overline{\alpha \operatorname{-}Regret^x}$$
 (3)

y-perspective $h_t(y) = -g(x_t, y)$

$$\frac{1}{A_T} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) = \frac{1}{A_T} - \sum_{t=1}^{T} \alpha_t h_t(y_t)$$

This expression can further be decomposed into the infimum over y in Y of the weighted outcomes, adjusted by the weighted regret for the y-player, and be simplified by using the definition of α -Regret^y and $\overline{\alpha$ -Regret^y:

$$= -\inf_{y \in Y} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x, y_t) \right) - \frac{\alpha - Regret^y}{A_T}$$
$$= \sup_{y \in Y} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x_t, y) \right) - \overline{\alpha - Regret^y}$$

Using the Jensen's inequality, we have

$$\geq \sup_{y \in Y} g\left(\sum_{t=1}^{T} \frac{\alpha_t}{A_t} x_t, y\right) - \overline{\alpha - Regret^y} \tag{4}$$

$$\geq \inf_{x \in X} \inf_{y \in Y} g(x, y) - \overline{\alpha \operatorname{-Regret}^{y}} \tag{5}$$

Thus, from (2) and (4), we have

$$\frac{1}{A_T} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) \le \inf_{x \in X} g\left(x, \sum_{t=1}^{T} \frac{\alpha_t}{A_t} y_t\right) + \overline{\alpha - Regret^x},$$

and

$$\frac{1}{A_T} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) \ge \sup_{y \in Y} g\left(\sum_{t=1}^{T} \frac{\alpha_t}{A_t} x_t, y\right) - \overline{\alpha - Regret^y},$$

which implies that

$$\operatorname{Gap}(\bar{x}_T, \bar{y}_T) := \sup_{y \in Y} g(\bar{x}_T, y) - \inf_{x \in X} g(x, \bar{y}_T) \le \overline{\alpha - \operatorname{Regret}^x} + \overline{\alpha - \operatorname{Regret}^y}.$$

First implication

Recall the Theorem:

Theorem 3. Let g(x,y) be convex w.r.t x and concave w.r.t. y. The output $(\overline{x}_T, \overline{y}_T)$ of the meta-algorithm is an ϵ -equilibrium of $g(\cdot, \cdot)$, where

$$\epsilon := \overline{\alpha - \text{Regret}^x} + \overline{\alpha - \text{Regret}^y}.$$

Also, the duality gap is bounded as

$$\operatorname{Gap}(\overline{x}_T, \overline{y}_T) := \sup_{y \in Y} g(\overline{x}_T, y) - \inf_{x \in X} g(x, \overline{y}_T) \le \overline{\alpha - \operatorname{Regret}^x} + \overline{\alpha - \operatorname{Regret}^y}.$$

We have the following implication:

Let g(x,y) be convex w.r.t x and concave w.r.t. y. If the descision space X and Y are convex and compact and $g(\cdot,\cdot)$ is Lipschitz continuous, then we know there are sublinear regret algorithms. This implies our second implication.

Second implication

Theorem 4. Let X,Y be compact convex subsets of \mathbb{R}^n and \mathbb{R}^m respectively. Let $g(x,y): X \times Y \to \mathbb{R}$ be convex in its first argument and concave in its second, and Lipschitz with respect to both. Then,

$$\min_{x \in X} \max_{y \in Y} g(x, y) = \max_{y \in Y} \min_{x \in X} g(x, y).$$

Proof. From (3) and (5), we have

$$\frac{1}{A_T} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) \le \sup_{y \in Y} \inf_{x \in X} g(x, y) + \overline{\alpha - Regret^x}$$

and

$$\frac{1}{A_T} \sum_{t=1}^{T} \alpha_t g(x_t, y_t) \ge \inf_{x \in X} \inf_{y \in Y} g(x, y) - \overline{\alpha - Regret^y}$$

we can derive that

$$\sup_{y} \inf_{x} g(x,y) + \overline{\alpha \operatorname{-}Regret^{x}} \ge \inf_{x} \sup_{y} g(x,y) - \overline{\alpha \operatorname{-}Regret^{y}}$$

$$\Leftrightarrow \sup_{y} \inf_{x} g(x,y) + \overline{\alpha - Regret^{x}} + \overline{\alpha - Regret^{y}} \geq \inf_{x} \sup_{y} g(x,y)$$

Recall the following lemma in the last lecture:

Lemma 2. Let $g(\cdot, \cdot): X \times Y \to \mathbb{R}$, where X and Y are not empty. Then,

$$\inf_{x \in X} \sup_{y \in Y} g(x, y) \ge \sup_{y \in Y} \inf_{x \in X} g(x, y)$$

Therefore, we get

$$\min_{x \in X} \max_{y \in Y} g(x, y) = \max_{y \in Y} \min_{x \in X} g(x, y).$$

The above result together with the following theorem that we saw in the last lecture imply that a saddle point exsits for when g(x,y) is convex w.r.t x and concave w.r.t. y, $g(\cdot, \cdot)$ is Lipschitz continuous, and the descision space X and Y are convex and compact.

Theorem 5. Let $g(x,y): X \times Y \to \mathbb{R}$, where X and Y are not empty. A point (x_*, y_*) is a saddle point if and only if

- The supremum in $\sup_{y \in Y} \inf_{x \in X} g(x, y)$ is attained at y_* & the infimum in $\inf_{x \in X} \sup_{y \in Y} g(x, y)$ is attained at x_* .
- Also, $\sup_{y \in Y} \inf_{x \in X} g(x, y) = \inf_{x \in X} \sup_{y \in Y} g(x, y)$.

4 Applications of the min-max theorem

Boosting as a bilinear game

Denote the training set $\{z_j \in \mathbb{R}^d, l_j = \{+1, -1\}\}_{j=1}^m$. Let $H := \{h_i(\cdot)\}_{i=1}^n$ be a set of prediction functions, i.e.,

$$h_i(\cdot): \mathbb{R}^d \to \{+1, -1\}.$$

We can construct the misclassification matrix as

$$A_{i,j} = \begin{cases} 1 & \text{if } h_i(z_j) \neq l_j, \\ 0 & \text{otherwise.} \end{cases}$$

We have that

$$\min_{x \in \Delta_n} \max_{y \in \Delta_m} x^\top A y := \min_{x \in \Delta_n} \max_{y \in \Delta_m} \sum_{i=1}^n \sum_{j=1}^m x[i] y[j] \mathbb{I}\{h_i(z_j) \neq l_j\}$$

Assume the existence of a weak learning oracle, i.e.,

$$\sum_{j=1}^{m} y[j] \mathbb{I}\{h_{i_*}(z_j) \neq l_j\} \leq \frac{1}{2} - \gamma,$$

where $\gamma > 0$. Here, i_* is the index of the predictor that gives a y-weighted error better than chance. Furthermore, for any $y \in \Delta_m$,

$$\min_{x \in \Delta_n} x^\top A y \le e_{i_*}^\top A y \le \frac{1}{2} - \gamma.$$

Recall $v_* = \max_{y \in \Delta_m} \min_{x \in \Delta_n} x^{\top} Ay$. These imply that

$$v_* \le \frac{1}{2} - \gamma < \frac{1}{2}.$$

Thus,

$$\max_{y \in \Delta_m} \min_{x \in \Delta_n} x^\top A y = v_* \le \frac{1}{2} - \gamma.$$

As we know the Nash equilibrium/Saddle points (x_*, y_*) exist,

$$x^{*\top} A y_* = v_* \le \frac{1}{2} - \gamma.$$

The above implies that there exists $x_* \in \Delta_n$ such that

$$\forall j \in [m] : \sum_{i=1}^{n} x_*[i] \mathbb{I}\{h_i(z_j) \neq l_j\} = x^{*\top} A e_j \le v_* \le \frac{1}{2} - \gamma < \frac{1}{2}.$$

Less than half of the base predictors misclassify when weighted by $x_*[i]$ for each sample $j \in [m]$. The above implies that

$$\sum_{i=1}^{n} x_*[i] \mathbb{I}\{h_i(z_j) \neq l_j\} = x^{*\top} A e_j \le v_* \le \frac{1}{2} - \gamma < \frac{1}{2}.$$

We can correctly classify all the samples using a weighted majority vote.

5 Meta-algorithm for solving min-max problems (Simultaneously Play)

Instance of the meta-algorithm

$$OAlg^x = FTRL, OMD, OptimisticMD, ...$$

Algorithm 3 Meta-algorithm for solving min-max problems (Simultaneously Play)

- 1: $OAlg^x$ (OCO Alg. of x) and $OAlg^y$ (OCO Alg. of y).
- 2: Weight sequence $\alpha_1, \alpha_2, \ldots, \alpha_T$.

3: **for**
$$t = 1, 2, ..., T$$
 do

4:
$$\begin{cases} x \text{ plays } x_t \leftarrow \text{OAlg}^x(\alpha_1 \ell_1, \alpha_2 \ell_2, \dots, \alpha_{t-1} \ell_{t-1}) \\ y \text{ plays } y_t \leftarrow \text{OAlg}^y(\alpha_1 h_1, \alpha_2 h_2, \dots, \alpha_{t-1} h_{t-1}) \end{cases}$$
5:
$$\begin{cases} x \text{ receives } \alpha_t \ell_t(x) := \alpha_t g(x, y_t) \\ y \text{ receives } \alpha_t h_t(y) := -\alpha_t g(x, y) \end{cases}$$

7: Output:
$$\left(\overline{x}_T := \frac{\sum_{t=1}^T \alpha_t x_t}{A_T}, \overline{y}_T := \frac{\sum_{t=1}^T \alpha_t y_t}{A_T}\right)$$
, where $A_T := \sum_{t=1}^T \alpha_t$.

$$OAlq^y = FTRL, OMD, OptimisticMD, ...$$

Assume that $\alpha_t = 1$ and $\overline{x_T}$ and $\overline{y_T}$ are ϵ -equilibrium points

$$\epsilon = \frac{\mathbf{Regret}_T(\mathrm{OMD})}{T} + \frac{\mathbf{Regret}_T(\mathrm{OMD})}{T} = \frac{\mathcal{O}(\sqrt{T})}{T} \to 0$$
, as $T \to \infty$

Question: Can we get a better rate than $\mathcal{O}(\frac{1}{\sqrt{T}})$? Yes!

Recall Online Mirror Descent

The function $\ell_t(z)$ is convex but not necessarily differentiable. $g_t \in \partial \ell_t(z_t)$ is the subgradient of $\ell_t(\cdot)$ at z_t .

Algorithm 4 Online Mirror Descent

- 1: **for** $t = 1, 2, \dots$ **do**
- $z_{t+1} = \arg\min_{z \in C} \langle g_t, z z_t \rangle + \frac{1}{n} D_{z_t}^{\phi}(z).$
- 3: end for

Mirror Descent has

$$\sum_{t=1}^{T} \ell_t(z_t) - \ell_t(z^*) \le \frac{1}{\eta} D_{z_1}^{\phi}(z^*) + \sum_{t=1}^{T} \frac{\eta}{2} ||g_t||_*^2,$$

for any benchmark $z^* \in Z$.

If the loss $\ell_t(\cdot)$ is scaled by α_t ,

$$\alpha$$
-Regret_z $(z^*) \le \frac{1}{\eta} D_{z_1}^{\phi}(z^*) + \sum_{t=1}^{T} \frac{\eta}{2} \|\alpha_t g_t\|_*^2,$

for any benchmark $z^* \in Z$.

Assume there is a good guess m_t of g_t .

Algorithm 5 Optimistic Mirror Descent

- 1: **for** $t = 1, 2, \dots$ **do**
- 2: $z_{t-\frac{1}{2}} = \arg\min_{z \in C} \alpha_{t-1} \langle g_{t-1}, z \rangle + \frac{1}{\eta} D_{z_{t-\frac{3}{4}}}^{\phi}(z).$
- 3: $z_t = \arg\min_{z \in C} \alpha_t \langle \mathbf{m}_t, z \rangle + \frac{1}{\eta} D_{z_{t-\frac{1}{2}}}^{\phi}(z).$
- 4: end for

We have that

$$\alpha$$
-Regret^z $(z^*) \le \frac{1}{\eta} D_{z_1}^{\phi}(z_*) + \sum_{t=1}^T \frac{\eta}{2} \|\alpha_t(g_t - m_t)\|_*^2,$

for any benchmark $z^* \in Z$.

By putting two Optimistic Mirror Descent against each other, we can get $\mathcal{O}(\frac{1}{T})$ in a min-max problem, see e.g., [3] for details.

6 Bibliographic notes

More materials about min-max optimization can be found in [1],[2],[3],[4].

References

- [1] Francesco Orabona, A Modern Introduction to Online Learning, Chapter 11.
- [2] Jun-Kun Wang, Jacob Abernethy, and Kfir Y. Levy, No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization, Mathematical Programming, 2023.
- [3] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire, Fast Convergence of Regularized Learning in Games, NeurIPS 2015.
- [4] Robert E. Schapire and Yoav Freund, *Boosting: Foundations and Algorithms*, MIT Press, 2012.