SOLUCIÓN MATEMÁTICA DETALLADA

PRIMER PARCIAL - SECCIÓN S707 - VARIANTE V1

Fecha de generación: 13 de March de 2025, 15:35 PARA USO EXCLUSIVO DEL DOCENTE - DOCUMENTO DE VERIFICACIÓN MATEMÁTICA

Este documento contiene soluciones matemáticas paso a paso con verificación cruzada para garantizar precisión absoluta en los cálculos.

TERCERA SERIE - SOLUCIONES MATEMÁTICAS VERIFICADAS

1. Coeficiente de Gini

DATOS DEL PROBLEMA:

Distribución de salarios mensuales:

Salario mensual en (Q)	No. De trabajadores
[1200-1800)	11
[1800-2400)	10
[2400-3000)	9
[3000-3600)	6
[3600-4200)	3
[4200-4800)	4
[4800-5400)	4
[5400-6000)	10

MÉTODO DE CÁLCULO:

El coeficiente de Gini es una medida de desigualdad que toma valores entre 0 y 1. Un valor de 0 representa igualdad perfecta y un valor de 1 representa desigualdad máxima.

PASO 1: Preparación de datos

Intervalo salarial	No. trabajadores	Prop. población	Prop. acum. pobl.	Punto medio	Ingreso total	Prop. ingreso	Prop. acum. ingreso
[1200- 1800)	11	0.192982	0.192982	1500.00	16500.00	0.087440	0.087440
[1800- 2400)	10	0.175439	0.368421	2100.00	21000.00	0.111288	0.198728
[2400- 3000)	9	0.157895	0.526316	2700.00	24300.00	0.128776	0.327504
[3000- 3600)	6	0.105263	0.631579	3300.00	19800.00	0.104928	0.432432
[3600- 4200)	3	0.052632	0.684211	3900.00	11700.00	0.062003	0.494436
[4200- 4800)	4	0.070175	0.754386	4500.00	18000.00	0.095390	0.589825
[4800- 5400)	4	0.070175	0.824561	5100.00	20400.00	0.108108	0.697933
[5400- 6000)	10	0.175439	1.000000	5700.00	57000.00	0.302067	1.000000
TOTAL	57	1.000000			188700.00	1.000000	1.000000

VERIFICACIONES DE CÁLCULOS:

1. Suma de trabajadores: 57 = 57 (Exacto)

2. Proporción acumulada de población: 1.000000 ≈ 1.0 (Correcto)

3. Proporción acumulada de ingresos: 1.000000 ≈ 1.0 (Correcto)

PASO 2: Cálculo del coeficiente de Gini

Para calcular el coeficiente de Gini, utilizamos la fórmula basada en la curva de Lorenz:

$$G = 1 - \Sigma[(Xi - Xi-1)(Yi + Yi-1)]$$

Donde:

- Xi = proporción acumulada de población en el grupo i
- Yi = proporción acumulada de ingreso en el grupo i

CÁLCULO DETALLADO:

Grupo	Xi	Xi-1	Yi	Yi-1	(Xi - Xi-1)(Yi +
					Yi-1)
1	0.192982	0.000000	0.087440	0.000000	0.016874
2	0.368421	0.192982	0.198728	0.087440	0.050205
3	0.526316	0.368421	0.327504	0.198728	0.083089
4	0.631579	0.526316	0.432432	0.327504	0.079993
5	0.684211	0.631579	0.494436	0.432432	0.048783
6	0.754386	0.684211	0.589825	0.494436	0.076088
7	0.824561	0.754386	0.697933	0.589825	0.090369
8	1.000000	0.824561	1.000000	0.697933	0.297883
Suma					0.743285

RESULTADO:

Coeficiente de Gini (método principal): G = 1 - 0.743285 = 0.256715

Coeficiente de Gini (método alternativo): 0.079237 Coeficiente de Gini (valor de referencia): 0.421

Precisión matemática: 60.98% (diferencia: 0.164285)

NOTA: Hay una discrepancia entre los métodos de cálculo. Se recomienda usar el valor manual.

VISUALIZACIÓN DE LA CURVA DE LORENZ:

PASO 3: Interpretación del coeficiente de Gini

El coeficiente de Gini mide la desigualdad en la distribución de los ingresos:

- 0 = Igualdad perfecta (todos reciben exactamente lo mismo)
- 1 = Desigualdad perfecta (una persona recibe todo el ingreso)

INTERPRETACIÓN DEL RESULTADO:

El coeficiente de Gini calculado es 0.2567, lo que indica una distribución relativamente equitativa de los salarios entre los trabajadores de la empresa. Esta empresa muestra baja desigualdad salarial.

2. Distribución de Frecuencias - Método Sturgers

DATOS DEL PROBLEMA:

96	99	100	107	107
110	107	112	113	115
118	122	125	130	133
132	134	134	140	145
148	145	151	154	154

ANÁLISIS PRELIMINAR:

Valor mínimo: 96 Valor máximo: 154

Rango: 58

Media aritmética: 125.24

Mediana: 125

Cantidad de datos: 25

PASO 1: Cálculo del número de clases (K)

Utilizando la fórmula de Sturgers:

 $K = 1 + 3.322 \times log_{10}(n)$

Donde n = 25 (número de observaciones)

 $K = 1 + 3.322 \times log_{10}(25)$

 $K = 1 + 3.322 \times 1.397940$

K = 1 + 4.643957

K = 5.643957

Redondeando a un número entero: K = 6

Valor de referencia: K = 5.64

PASO 2: Cálculo del rango

El rango es la diferencia entre el valor máximo y el valor mínimo:

Rango = Valor máximo - Valor mínimo = 154 - 96 = 58

Valor de referencia: Rango = 58

PASO 3: Cálculo de la amplitud de clase

La amplitud es el tamaño de cada intervalo de clase:

Amplitud = Rango / K = 58 / 5.643957 = 10.276479

Redondeando hacia arriba (para asegurar que todos los valores queden incluidos): Amplitud = 11

Valor de referencia: Amplitud = 10.28

PASO 4: Construcción de la tabla de distribución de frecuencias

Clase	Límites de clase	Marca de clase	Frecuencia absoluta	Frecuencia relativa	Frecuencia acumulada	Frecuencia rel. acumulada
1	[96 - 107)	101.5	3	0.1200	3	0.1200
2	[107 - 118)	112.5	7	0.2800	10	0.4000
3	[118 - 129)	123.5	3	0.1200	13	0.5200
4	[129 - 140)	134.5	5	0.2000	18	0.7200
5	[140 - 151)	145.5	4	0.1600	22	0.8800
6	[151 - 162)	156.5	3	0.1200	25	1.0000

VERIFICACIONES MATEMÁTICAS:

- 1. Suma de frecuencias absolutas: 25 (debe ser igual a 25)
- 2. Última frecuencia acumulada: 25 (debe ser igual a 25)
- 3. Última frecuencia relativa acumulada: 1.0000 (debe ser aproximadamente 1.0)

VISUALIZACIÓN DEL HISTOGRAMA DE FRECUENCIAS:

PASO 5: Interpretación de la distribución de frecuencias

ANÁLISIS E INTERPRETACIÓN:

- La distribución se divide en 6 clases, cada una con una amplitud de 11 unidades.
- La clase con mayor frecuencia es la clase 2 [107 118), con 7 observaciones.
- La distribución muestra una asimetría positiva (media > mediana), indicando una cola hacia valores mayores.