

Centro Universitário da FEI

Dependência Linear e Bases

RESUMO TEÓRICO E EXERCÍCIOS

Baseado na bibliografia básica **EQUIPE MAG110**

Agosto - 2020

Dependência Linear e Bases Livro texto págs. 32-58

Combinação Linear

Dados os vetores $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}...\overrightarrow{v_n}$ e os números reais $\alpha_1, \alpha_2, \alpha_3$ e α_n o vetor

 $\vec{u} = \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \alpha_3 \vec{v}_3 + \dots + \alpha_n \vec{v}_n$ é uma combinação linear de \vec{v}_1 , \vec{v}_2 , \vec{v}_3 ... \vec{v}_n . Ex:

$$\vec{u} = 2\vec{v}_1 + 5\vec{v}_2$$

$$\vec{w} = \vec{u} + \frac{2}{3}\vec{v}$$

Vetores Linearmente Dependentes (*ld*) Vetores Linearmente Independentes (*li*)

Definição: Dois ou mais vetores são **LD** se, e somente se, um deles for **CL** dos demais.

$$\vec{w} = \vec{u} + \frac{2}{3}\vec{v}$$

Definição: Dois ou mais vetores são **LI** se, e somente se, nenhum deles for **CL** dos demais.

Visão Geométrica da Dependência Linear

a) Um vetor

$$\vec{v} = \vec{0} \rightarrow LD$$

$$\vec{v} \neq \vec{0} \rightarrow LI$$

b) Dois Vetores

Sejam \vec{a} e \vec{b} dois vetores. Pela definição:

 \vec{a} e \vec{b} são LD \longrightarrow um deles é CL do outro;

- $\vec{a} = \alpha \vec{b} \text{ ou } \vec{b} = \beta \vec{a};$
- \vec{a} e \vec{b} têm a mesma direção;
- $\vec{a} \parallel \vec{b}$ (paralelos)

Visão Geométrica da Dependência Linear

b) Dois Vetores (cont.)

Obs. 1: Qualquer que seja \vec{a} , $\vec{0} = 0\vec{a}$, e portanto, \vec{a} e $\vec{0}$ são sempre LD.

Obs. 2: Considere a igualdade $\alpha \vec{u} + \beta \vec{v} = \vec{0}$.

Se $\alpha \neq 0$ (ou $\beta \neq 0$), pode-se escrever: $\vec{u} = -\frac{\alpha}{\beta}\vec{v}$ e concluir que são LD.

Ou: se \vec{u} e \vec{v} são LI e $\alpha \vec{u} + \beta \vec{v} = \vec{0}$, temos que concluir que $\alpha = 0$ e $\beta = 0$ (caso contrário volta na afirmação acima - LD).

c) Três Vetores

Sejam \vec{a} , \vec{b} e \vec{c} três vetores. Pela definição:

 \vec{a} , \vec{b} e \vec{c} são LD \longrightarrow um deles é combinação linear dos outros dois.

Supondo que \vec{c} seja CL de \vec{a} e \vec{b} , isto é, $\vec{c} = \alpha \vec{a} + \beta \vec{b}$

Todos os vetores são coplanares. Se três vetores são LD, eles são coplanares.

Três vetores Linearmente Independentes - não coplanares.

Obs.: No caso de Três vetores temos que: $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$

a) Se um dos números α , β e γ for diferente de 0, os vetores são LD.

Se $\alpha \neq 0$, então teremos: $\vec{u} = -\frac{\beta}{\alpha} \vec{v} - \frac{\gamma}{\alpha} \vec{w}$ e então são LD.

b) Se os vetores são LI, então $\alpha=\beta=\gamma=0$.

d) Quatro ou mais Vetores

Estamos trabalhando no Espaço Vetorial V^3 e neste caso Quatro ou mais vetores são sempre LD.

 \vec{a} , \vec{b} \vec{e} \vec{c} são três vetores não coplanares, ainda assim é possível tirar uma paralela ao PC e escrever o vetor $\vec{u} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$

Chama-se BASE de V uma sequência de vetores Linearmente Independentes - LI.

1) Base na Reta: Um conjunto unitário $B = (\overrightarrow{v_1})$, com $\{\overrightarrow{v_1}\}$ LI, ou seja $\overrightarrow{v_1} \neq \overrightarrow{0}$.

$$\overrightarrow{\overrightarrow{v_1}} \neq \overrightarrow{0} \qquad \overrightarrow{\overrightarrow{v_2}} = m\overrightarrow{v_1}, m \in \mathcal{R}$$

2) Base no Plano: Uma dupla ordenada $B = (\overrightarrow{v_1}, \overrightarrow{v_2})$, com $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ Linearmente Independente (não nulos e não paralelos), então é possível escrever um $\overrightarrow{v_3}$ coplanar e como combinação linear de $\overrightarrow{v_1}, \overrightarrow{v_2}$, tais que $\overrightarrow{v_3} = \alpha \overrightarrow{v_1} + \beta \overrightarrow{v_2}$.

3) Base no Espaço: Uma terna ordenada $B=(\overrightarrow{v_1},\overrightarrow{v_2},\overrightarrow{v_3})$, com $\{\overrightarrow{v_1},\overrightarrow{v_2},\overrightarrow{v_3}\}$ Linearmente Independentes (não nulos e não coplanares), então é possível escrever um $\overrightarrow{v_4}$ como combinação linear de $\overrightarrow{v_1},\overrightarrow{v_2}$ e $\overrightarrow{v_3}$ tais que $\overrightarrow{v_4}=\alpha\overrightarrow{v_1}+\beta\overrightarrow{v_2}+\gamma\overrightarrow{v_3}$.

BASE Qualquer

Base Ortogonal e Ortonormal

$$\vec{\iota} \perp \vec{\jmath} \perp \vec{k} \ e \ |\vec{\iota}| = |\vec{\jmath}| = |k| = 1$$

Coordenadas de um Vetor: Se o conjunto de vetores $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$ é uma base do espaço, então um vetor \vec{v} pode ser escrito, de maneira única, como combinação linear dos vetores $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ e $\overrightarrow{v_3}$.

Notação:
$$\vec{\boldsymbol{v}} = a_1 \vec{v_1} + a_2 \vec{v_2} + a_3 \vec{v_3}$$
 $\vec{v} = (a_1, a_2, a_3)$ ou $\vec{v} =$

$$\vec{v} = (a_1, a_2, a_3)$$

ou
$$\vec{v} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Operações com vetores em coordenadas

Adição/Subtração e Multiplicação por escalar

Exemplo: Dados os vetores $\vec{u} = (-1,2,5), \ \vec{v} = (2,-1,3) \ \text{e} \ \vec{w} = (-1,0,-2)$ calcule os vetores abaixo:

a)
$$\vec{x} = \vec{u} + \vec{v} = (-1,2,5) + (2,-1,3) = (-1+2,2-1,5+3) = (1,1,8)$$

b)
$$\vec{y} = \vec{u} - \vec{v} = (-1,2,5) - (2,-1,3) = (-1-2,2-(-1),5-3) = (-3,3,2)$$

c)
$$\vec{p} = 2\vec{u} - 3\vec{w} = 2(-1,2,5) - 3(-1,0,-2) = (-2,4,10) + (3,0,6) = (1,4,16)$$

Dependência Linear através das coordenadas

1) Dois vetores

 \vec{a} e \vec{b} são LD se, e somente se, $\vec{a} = \alpha \vec{b}$ ou $\vec{b} = \beta \vec{a}$;

Se os vetores forem dados em coordenadas essa afirmação se transforma em:

 \vec{a} e \vec{b} são LD se, e somente se, as coordenadas de um deles forem respectivamente múltiplos, das coordenadas do outro.

Exemplos:

- a) $(2,-1, 3)_B e (4,-2, 6)_B LD$
- b) $(0,\sqrt{2},\sqrt{2})_B$ e $(0, 5, 5)_B$ LD
- c) $(0,3,\sqrt{2})_B$ e $(1,5,9)_B$ LI

Dependência Linear através das coordenadas

2) Três vetores

 \vec{a} , \vec{b} e \vec{c} são LD se, e somente se, um deles for combinação lin<mark>ear dos</mark> outros dois.

$$\vec{c} = \alpha \vec{a} + \beta \vec{b}$$

Se os vetores forem dados em coordenadas essa afirmação se transforma em :

Três vetores são LD se, e somente se, as coordenadas de um deles forem respectivamente, combinações lineares das coordenadas dos outros dois.

Nesse caso, podemos aplicar um teorema sobre determinantes: O determinante de uma matriz quadrada é ZERO se, e somente se, uma das suas linhas for combinação linear das outras.

Dependência Linear através das coordenadas

2) Três vetores (cont.)

Para verificar se três vetores são LD ou LI, formamos com as coordenadas de cada vetor uma linha de uma matriz 3x3 e calc<mark>ulamos</mark> o determinante dessa matriz.

- Se der ZERO: uma das linhas da matriz é CL das outras, ou seja, um dos vetores é combinação linear dos outros - eles são LD.
- Se NÃO der ZERO: nenhuma linha é CL das outras eles são Ll.

Exemplo: Verificar se $\vec{a} = (2,1,9), \vec{b} = (0,-1,2)$ e $\vec{c} = (2,5,3)$ são LD/LI?

$$\Delta = \begin{vmatrix} 2 & 1 & 9 \\ 0 & -1 & 2 \\ 2 & 5 & 3 \end{vmatrix} \neq 0 \quad \therefore \quad os \ vetores \ s\~{ao} \ LI$$

Exemplos: Nos exemplos a seguir todos os vetores são dados em relação a uma mesma base fixada $B = (\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$.

- 1) Verifique a Dependência Linear dos seguintes conjuntos de Vetores:
- a) $\{(1, 2, -3), (2, -5, 1)\}$

$$(1,2,-3) = \alpha(2,-5,1), \alpha \in R$$

$$\begin{cases}
1 = 2\alpha & \alpha = \frac{1}{2} \\
2 = -5\alpha & \alpha = -\frac{2}{5} \\
-3 = \alpha & \alpha = -3
\end{cases}$$
 não existe CL :: LI

b)
$$\{(1, 2, -3), (2, -5, 1), (2, 4, -6)\}$$

$$\Delta = \begin{vmatrix} 1 & 2 & -3 \\ 2 & -5 & 1 \\ 2 & 4 & -6 \end{vmatrix} = 0 : LD$$

c)
$$\{(1,3,0), (-2,-6,0)\}$$

$$(1,3,0) = \alpha(-2,-6,0), \alpha \in R$$

$$\begin{cases}
1 = -2\alpha & \alpha = -\frac{1}{2} \\
3 = -6\alpha & \alpha = -\frac{3}{6} = -\frac{1}{2} \\
0 = 0\alpha & \forall \alpha \in R
\end{cases}$$
 existe CL :: LD

2) Determine o valor de $m \in R$ para que o conjunto de vetores seja LD $\{(1, 2, -3), (2, -5, 1), (2, 4, -6)\}$

$$\Delta = \begin{vmatrix} 1 & 2 & -3 \\ 2 & -5 & 1 \\ 2 & m & -6 \end{vmatrix} = 0 : m = 4 \text{ para que o conjunto seja LD}$$

Bibliografia:

- 1) Loreto, A. C. C.; Junior, A. P. L. VETORES E GEOMETRIA ANALÍTICA Teoria e Exercícios. 4° Ed. LCTE Editora. 2014. São Paulo.
- 2) Watanabe, R. G., Mello, D. A. VETORES E UMA INICIAÇÃO A GEOMETRIA ANALÍTICA. 2° Ed. LF Editorial. 2011. São Paulo.