1. TÉCNICA DE IMPLEMENTAÇÃO

É implementada a técnica de *multishooting*, ou seja, as variáveis de decisão consideram não apenas as ações de controle u, mas também os estados x atuais e futuros. Assim, para o processo de otimização, ambas são vistas em todo o horizonte de predição (Hp) desejado.

Observar:

- Não se tem apenas uma ação de controle ótima, mas toda a trajetória ótima futura;
- x_0 e u_0 são as condições atuais dos estados x e da ação de controle u atualmente aplicada ao processo controlado.

Assim, considerando $\omega = [x_0, \dots x_{Hp}, u_0, \dots, u_{Hp-1}]$ como sendo as variáveis de decisão, e um estado atual diretamente medido do processo (representado por $x_m = x_0$), a solução do NLP com a técnica multishooting pode ser escrito na forma:

$$\underbrace{\min_{\omega} \varphi(\omega)}$$

sujeito às seguintes restrições de desigualdade:

$$g_{1}(\omega) = \begin{bmatrix} g_{1}(x_{0}, u_{0}) \\ g_{1}(x_{1}, u_{1}) \\ \vdots \\ g_{1}(x_{Hp-1}, u_{Hp-1}) \\ g_{1}(x_{Hp}) \end{bmatrix} \ge 0$$
Eq. 1

e outras restrições de igualdade que vão "impor" a dinâmica futura do sistema a partir de uma condição inicial x_m , conhecida pela medição atual:

$$g_2(\omega) = \begin{bmatrix} x_m - x_0 \\ f(x_0, u_0) - x_1 \\ \vdots \\ f(x_{Hp-1}, u_{Hp-1}) - x_{Hp} \end{bmatrix} = 0$$
 Eq. 2

Importante notar que restrições de igualdade são "imposições", ou seja, tem de respeitar o valor definido. As restrições de desigualdade associam faixas, ou seja, graus de liberdade que refletem o espaço de busca da solução.

Observar ainda que, para o caso em que se tem o modelo de equações que representam o sistema dinâmico, o estado futuro pode ser obtido na forma $x_{k+1} = f(x_k, u_k)$ e as saídas controladas por setpoint são alguns dos estados que foram extraídos para estarem disponíveis na saída através da função $y_{k+1} = h(x_{k+1})$. A função h nada mais é senão um vetor/ matriz para seleção dos estados que vão ser apresentados na saída.

Para o caso em que usamos uma técnica de I.A. qualquer para representar o modelo dinâmico, os estados futuros serão preditos como uma função das ações de controle atuais aplicadas nos estados atuais do sistema $\hat{x}_{k+1} = f(x_k, u_k)$ e as saídas controladas por setpoint são obtidas pela mesma função $\hat{y}_{k+1} = h(\hat{x}_{k+1})$, mas agora representadas na forma de estimativas (acento circunflexo).

2. OBJETOS:

Objetos definidos no CaSAdi, seja para a inicialização ou para contas durante a simulação. ISSO TEM A VER COM A CODIFICAÇÃO E POSSIVELMENTE SERÁ MELHORADO EM BREVE

OBJ	DESCRIÇÃO		
casadi_solver	Criação do solver Casadi		
Нр	Horizonte de predição		
Нс	Horizonte de controle (Hc≤Hp)		
nx	Número de variáveis de entrada (estados) do processo		
nv.	Número de variáveis (saída do processo) que são controladas por setpoint		
ny	(no caso PChegada e Vazão)		
nu	Número de variáveis manipuladas (ações de controle possíveis) - no caso,		
	Freq e PMonAlvo		
PassoMPC	Número de amostragens até a atuação do MPC (no caso = 3)		
х0	Condição inicial para os estados das variáveis (até 1+Hp) em cada operação		
	do Solver		
du0	Condição inicial para guardar as ações de controle (DeltaU) em todo o		
	horizonte (Hc)		
ysp0	Condição inicial para guardar os setpoints ótimos calculados para as		
	variáveis controladas por setpoint		
u0	Valor da ação de controle que foi efetivamente aplicada no processo		
ModeloPreditor	Criação da variável para guardar modelo de preditor do processo e que será		
	utilizada pelo solver para a predição		
	Função para carregar uma única vez a 'f_Interpola_casadi_vazao_sym' e		
EstimaVazao	para, com base na frequência e na PChegada (atual ou futura) poder		
	proceder a estimativa da vazão (atual ou futura)		
Funcao_h	Para proceder a conta y=h(x) e obter as saídas em função da matriz h		
	definida		
lbx	Lower Bounds para os Estados do MPC		
ubx	Upper Bounds para os Estados do MPC		
lbg	Lower Bounds para as restrições [g] que forem criadas		
ubg	Upper Bounds para as restrições [g] que forem criadas		
contador	Variável para guardar o contador de passos de amostragem - usado para		
Jonadoi	definir momentos de atuação do MPC		

3. Formato CaSAdi

Para a implementação no modelo CaSAdi, os estados MPC devem ser colocados na forma [X(:); U(:); Ysp(:)], onde:

- Os estados do MPC precisam ser passados na forma de colunas, razão pela qual usamos a sintaxe (:).
- X terá a dimensão de 1+Hp linhas (estado atual x_0 + estados futuros de x_1 até x_{Hp}), e nx colunas, cada uma delas correspondentes a respectiva variável.
- U terá a dimensão de Hp linhas (ação atual u_0 + ações calculadas do horizonte u_1 até u_{Hp-1}), e nu colunas, cada uma delas correspondentes a respectiva variável.
- Ysp terá a dimensão de uma linha e *ny* colunas. Neste caso, considerando que o *setpoint* para as variáveis controladas por *setpoint* é também uma variável de decisão, poderíamos incluir estas decisões para o horizonte futuro. Não consideramos isso na nossa função custo, pois:
 - \circ As saídas y nada mais são do que parte dos estados x. Assim, como os estados futuros já estão sendo vistos e suas restrições (atuais e futuras) sendo tratadas, de uma forma

indireta, as saídas, quaisquer que sejam as variáveis selecionadas pela matriz h, já estão sendo tratadas;

- A formulação pela saída controlada por setpoint atende a teoria. No caso, porém, o foco não está no uso dos setpoints para estas variáveis, mas sim em seguir o alvo desejado pela engenharia, o que altera o foco do controlador e não parece haver motivação para tratar todo o Ysp futuro. Neste cenário, a variável Ysp que contém os setpoints ótimos estarão disponíveis para visualização, mas observe que não fazem parte do que será oferecido para o controle da planta;
- Inserir o horizonte futuro de Ysp nas variáveis de decisão certamente fará aumentar o esforço computacional do otimizador.

OBS: Neste início do documento mantivemos a ação de controle u, mas no caso específico da aplicação, optamos por usar o Δu (e não u) como variável de decisão. Isso será tratado na sequência deste doc e na a implementação .

4. Formatação do problema de otimização

O problema de otimização do MPC deve atender as seguintes condições:

$\widehat{\mathbf{x}}(k+j) = \widehat{\mathbf{f}}(\widehat{\mathbf{x}}(k+j-1), u(k+j-1))$	$j=1,\ldots H_p$
$\hat{y}(k+j) = \boldsymbol{h}(\hat{x}(k+j))$	$j=1,\ldots H_p$
$\hat{x}_k = x_0$ $\hat{y}_k = y_0$	
$u_k = u_0$	k = 0
Para efeito de simulação, extrairemos condições reais do processo para serem usadas como condições iniciais	

4.1. Função custo

$J_k(x,u) = \left(\sum_{j=1}^{H_p} \ \hat{\mathbf{y}}(k+j) - \mathbf{y}_{sp} + e_y\ _{Q_y}^2\right) + \left(\sum_{j=1}^{H_c} \ u(k+j) - u_{eng}\ _{Q_u}^2\right)$	Eq. 3
$+ \left(\sum_{j=1}^{H_c-1} \ \Delta u(k+j)\ _R^2 \right) + \ e_x\ _{Q_x}^2$	

Onde:

- $O \in \mathbb{R}^{nx \times nx}$
- $Q_y \in \mathbb{R}^{ny \times ny}$
- $Q_u \in \mathbb{R}^{nu \times nu}$
- $R \in \mathbb{R}^{nu \times nu}$

 $\hat{\mathbf{y}}(k+j) - \mathbf{y}_{sp}$ representa a diferença entre as saídas estimadas em todo Hp e o valor de setpoint calculado pelo otimizador para as variáveis controladas por setpoint

 $e_y = y(k) - \hat{y}(k-1)$ corresponde ao erro atual entre as saídas medidas e a estimação das saídas feitas no instante anterior. Avaliado apenas no primeiro instante (não em todo horizonte futuro)

 $u(k+j)-u_{eng}$ é a diferença entre a ação de controle aplicada na planta e os alvos definidos pela engenharia, em todo o Hc

 $\Delta u(k+j) = u(k+j) - u(k+j-1)$ é a variação na ação de controle analisada em todo o futuro até Hc

 $e_x = x(k) - \hat{x}(k-1)$ corresponde ao erro entre os estados medidos e a estimação dos estados feita no instante anterior. Avaliado apenas no primeiro instante (não em todo horizonte futuro)

4.2. Variáveis de decisão do MPC e suas restrições em lbx/ubx:

É necessário lembrar que os chamados estados do MPC estão na forma: [X(:); $\Delta u(:)$; Ysp(:)], onde

- X terá a dimensão de $[1+Hp \times nx]$, todos com limites em $[-\inf]^*$;
- Δu terá a dimensão de $[Hc \times nu]^{**}$, todos com limites em $[-dumax, dumax]^{***}$;
- Ysp terá a dimensão $[1 \times ny]$, todos com limites em [-inf, +inf]
- * Observar que os estados X (variáveis do processo e mesmo as saídas que nada mais são senão parte dos estados) têm limites que mudam em função da frequência, neste caso, as restrições para estas variáveis serão tratadas em lbg/ubg e por isso foram "liberadas" em lbx/ubx.
- ** Importante observar que em sendo Hp > Hc, será necessário calcular a ação de controle ótima até o horizonte Hp-1. Por outro lado, a ponderação das ações de controle na função custo deve considerar apenas até o horizonte Hc.
- *** Fizemos experimentos na tentativa de tratar por faixas, ou seja, dumax>dumin>0, o que corresponderia a busca do solver as faixas [-dumax até dumin], [zero], [dumin até dumax]. Não vale a pena pois esta descontinuidade viola condições do solver, o qual assume a premissa de que as restrições são diferenciáveis, portanto, não devem existir descontinuidades no espaço de busca da solução.

4.3. Restrições de igualdade em lbg/ubg

Observe que temos a função do estimador que nos oferece $\hat{x}_{k+1} = f(x_k, u_k)$ e as saídas controladas por setpoint são obtidas pela função $\hat{y}_{k+1} = h(\hat{x}_{k+1})$. Assim, dada uma condição atual x_0 na entrada do processo e uma ação de controle u_0 atualmente aplicada, podemos estimar $\hat{x}_1 = f(x_0, u_0)$.

O papel do otimizador começa na busca da primeira ação de controle u_1 ótima (u_1^*) que atenderá as restrições definidas. Uma vez conhecido o estado futuro \hat{x}_1 e a ação de controle ótima futura u_1^* , é possível estimar um estado futuro para o passo seguinte $\hat{x}_2 = f(\hat{x}_1, u_1^*)$. A sequência até o horizonte de predição desejado, nos leva a completar a seguinte tabela:

Estado	Ação Atual	Instante k futuro
$x_k = x_0 = x_m$	$u_k = u_0$	k=0 (atual)
$\hat{x}_1 = f(x_0, u_0)$	Cálculo de u_1^st	k=1
$\hat{x}_2 = f(\hat{x}_1, u_1^*)$	Cálculo de u_2^st	k=2
:	:	:
$\hat{x}_{Hp-1} = f(\hat{x}_{Hp-2}, u_{Hp-2}^*)$	Cálculo de u_{Hp-1}^st	k=Hp-1

$\hat{x}_{Hp} = f(\hat{x}_{Hp-1}, u_{Hp-1}^*)$	k=Hp

Como comentado pela técnica do *multishooting*, as restrições de igualdade devem impor a dinâmica (ver Eq. 2). Assim, observada a primeira coluna da tabela anterior, podemos escrever as restrições de igualdade na forma:

$$\begin{bmatrix} x_m - x_0 \\ \hat{x}_1 - x_1 \\ \vdots \\ \hat{x}_{Hp} - x_{Hp} \end{bmatrix} = 0$$

Lembrar que o solver atua com variáveis simbólicas e variáveis de decisão. Conclua que a técnica *multishooting* propõe assumir os estados x como variáveis de decisão, no entanto, não dá grau de liberdade para isso, fazendo com que os estados sejam exatamente iguais aos estados (atuais e preditos). Assim, a busca do solver focará nas demais variáveis de decisão, que no nosso caso são o Δu (atual e futuro) e o *setpoint* para as variáveis controladas por *setpoint*.

4.4. Restrições de desigualdade em lbg/ubg

Apenas para efeito de esclarecimento, quando usamos a expressão $\forall k$, é importante entender que estamos nos referindo ao instante atual e a qualquer outro instante futuro predito. Isso é importante, por exemplo, para entender que as ações de controle futuras também precisam considerar as restrições dinâmicas futuras, que dependem da própria ação de controle (frequência) futura. Da mesma forma, a estimação da vazão é feita com base na Frequência e na PChegada, portanto, estados futuros da vazão dependem de valores futuros da Frequência e da PChegada e as restrições futuras da futura vazão também precisam estar contempladas.

- Os estados preditos (atuais e futuros) precisam estar dentro dos limites operacionais calculados em função da frequência, ou seja $x_{min}(Frequencia(k)) \le x(k) \le x_{max}(Frequencia(k))$, $\forall k$
- As saídas controladas por setpoint (atuais e futuras) precisam estar dentro dos limites operacionais calculados em função da frequência, ou seja, $y_{min}(Frequencia(k)) \le y(k) \le y_{max}(Frequencia(k))$, $\forall k$
- As variáveis de entrada a serem aplicadas no sistema (ações de controle que são Frequência e PMovAlvo, representadas como $[u_{Freq}(k) \ u_{Pmon}(k)]$), precisam respeitar os limites operacionais, ou seja, $u_{min} \le u(k) \le u_{max} \ \forall k$
- A ação de controle correspondente a PMonAlvo $(u_{Pmon}(k))$ precisa respeitar os limites dinâmicos correspondentes a PChegada, que mudam em função da frequência, ou seja, $u_{min}(PChegada(k)) \le u_{Pmon}(k) \le u_{max}(PChegada(k)) \ \forall k$
- A variação no esforço de controle a ser aplicado, precisa respeitar os limites operacionais, ou seja, $-\Delta u_{max} \leq \Delta u(k) \leq \Delta u_{max} \ \forall k$, sendo $\Delta u(k) = u(k) u(k-1)$
- Na ação de controle correspondente frequência, definida como $u_{Freq}(k)$, a variação máxima deve respeitar limites definidos pelo fabricante. No caso do JUB27, no máximo 1Hz a cada 7,5min

Observação 1:

Os limites mínimos e máximos das variáveis do processo são calculados de forma dinâmica, em função da frequência. Estes limites correspondem a valores de alarmes L e H definidos pela empresa.

Considerando que há alarmes que podem causar trip da planta, a implementação do código deve considerar a possibilidade de uma margem de tolerância percentual definida pelo usuário, tal qual indica a formulação seguinte. A definição de uma *MargemPercentual* = ZERO faz com que os limites originalmente calculados sejam mantidos

$$LimiteMax = LimiteMax * \left(1 - \frac{MargemPercentual}{100}\right)$$

$$LimiteMin = LimiteMin * \left(1 + \frac{MargemPercentual}{100}\right)$$

Observação 2:

Para implementar a última restrição, sabemos que a variação máxima permitida para a frequência é de 1Hz (MaxDeltaHz=1) a cada 7,5min (TempoLimite=450s).

Das configurações originais do sistema, temos um PassoMPC = 3 e um tempo de amostragem (Ts) = 10s. Assim, o tempo de atuação do MPC é dado por TempoMPC = PassoMPC*Ts = 3 * 10 = 30s.

Em uma janela de 7,5min (TempoLimite=450s) a quantidade máxima de atuações do controlador sobre a frequência é dada por *QteMaxDeltaFreq* = TempoLimite/TempoMPC = 450/30 = 15.

Observar que existem duas ações de controle. Nesta formulação representaremos a ação correspondente a frequência pela variável $u_{Freq}(k)$ e sua variação é dada por $\Delta u_{Freq}(k)$

Para implementação no instante k, teremos de ofertar ao controlador, um vetor com as últimas 14 atuações $\Delta u_{Freq}(k)$ do controlador. Para calcular o $\Delta u_{Freq}(k+1)$, o otimizador deve então considerar as seguintes restrições:

$$\left| \left(\sum_{j=1}^{14} \Delta u_{Freq}(k+1-j) \right) + \Delta u_{Freq}(k+1) \right| \le 1$$

Importante lembrar que esta restrição vale $\forall k$, ou seja, precisará ser vista para todo o horizonte futuro das ações de controle preditas, independentemente do tamanho do horizonte futuro.

5. Implementação em código

5.1. Obter dados no instante atual do processo

O bloco deve receber:

- Medições dos estados atuais da planta
- Informação atual da ação de controle que foi efetivamente aplicada na planta
- Alvos de engenharia definidos pelo usuário (Freq e PMonAlvo)

5.2. Variáveis de decisão para o solver

A definição das variáveis de decisão para o solver será: [X; Δu ; Ysp], em formato de coluna única

- X terá a dimensão de $[1+Hp \times nx]$
- Δu terá a dimensão de $[Hc \times nu]$
- Ysp terá a dimensão $[1 \times ny]$

A dimensão das variáveis de decisão será então: (1 + Hp).nx + Hc.nu + ny, lembrando que pelo método *multishooting*, a variável X é tratada com restrições de igualdade, ou seja, não requer busca do solver e as variáveis de decisão efetivamente utilizadas são o Δu (em todo o horizonte Hc) e o Ysp.

5.3. Parâmetros para serem enviados para o solver

Para cada chamado do solver, teremos de atualizar os parâmetros que lhe serão enviados, e que deverão compor um vetor coluna na forma:

$$P = [x_0; u_0; \Delta u_0; \Delta u_0; AlvoEng; e_x; e_y; Buffer\Delta u; Reservatório_ESN]$$

Onde:

- x_0 deve conter a medição atual das variáveis do processo, mas a variável precisará levar também os valores para todo o Hp
- u_0 deve conter o valor da ação de controle atual efetivamente aplicada no processo
- Δu_0 deve conter o valor da variação na ação de controle que foi efetivamente aplicado no processo, mas a variável precisará levar também os valores para todo o Hc
- *AlvoEng* é o alvo correspondente ao ponto de operação definido pela engenharia (valor para a Frequência e PMonAlvo desejados)
- $e_x = x(k) \hat{x}(k-1)$ corresponde ao erro entre os estados medidos e a estimação dos estados feita no instante anterior
- $e_y = y(k) \hat{y}(k-1)$ corresponde ao erro atual entre as saídas medidas e a estimação das saídas feitas no instante anterior
- $Buffer\Delta u$ traz os 14 últimos valores de Δu efetivamente aplicados ao processo
- Reservatório_ESN são os estados do reservatório da ESN que precisam ser atualizados a cada passo de amostragem para que a ESN não se perca ao longo do tempo.

Observar que:

- x_0 terá a dimensão de $[1+Hp \times nx]$
- u_0 terá a dimensão de $[1 \times nu]$
- Δu_0 terá a dimensão de $[Hc \times nu]$
- AlvoEng terá a dimensão de $[1 \times nu]$
- e_x terá a dimensão de $[1 \times nx]$
- e_v terá a dimensão de $[1 \times ny]$
- Reservatório_ESN terá a dimensão do reservatório da ESN utilizada com preditor no MPC