Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Programming languages are essential for software development. Ideally, the programming language best suited for the task at hand will be selected. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Scripting and breakpointing is also part of this process. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Also, specific user environment and usage history can make it difficult to reproduce the problem. Different programming languages support different styles of programming (called programming paradigms). However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. There exist a lot of different approaches for each of those tasks. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Code-breaking algorithms have also existed for centuries. There are many approaches to the Software development process. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. There are many approaches to the Software development process. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware.