Resolução da questão 3

(a) f é diferenciável em $]-\frac{\pi}{2},\frac{\pi}{2}[$ por ser o produto da função identidade (diferenciável) com uma composição de funções diferenciáveis (exponencial após tangente, esta última diferenciável em $]-\frac{\pi}{2},\frac{\pi}{2}[$). Nesse intervalo temos

$$f'(x) = e^{\tan x} + e^{\tan x} (\sec^2 x) \, x = e^{\tan x} (1 + x \, \sec^2 x),$$

cujo sinal é dado pelo segundo fator. Este calculado em $-\frac{\pi}{4}$ devolve-nos o valor $1-\frac{\pi}{2}$, que é negativo, logo $f'(-\frac{\pi}{4})<0$. Como f' é contínua em $]-\frac{\pi}{2},\frac{\pi}{2}[$ (a justificação é análoga à feita acima para a diferenciabilidade de f), então tem que haver um intervalo aberto contendo $-\frac{\pi}{4}$ e contido em $]-\frac{\pi}{2},\frac{\pi}{2}[$ onde f' se mantém menor do que zero. Assim, para além de ser diferenciável nesse intervalo, f é aí estritamente decrescente, logo injetiva, logo invertível.

Aparte: Alguns alunos acharam que poderiam concluir a injetividade da função em $]-\frac{\pi}{2},\frac{\pi}{2}[$ pelo facto de as funções $e^{\tan x}$ e x serem aí estritamente crescentes, julgando que o produto de funções estritamente crescentes seria sempre estritamente crescente. Ora, isso é falso, sendo a função presente um exemplo disso.

(b) Pelo Teorema da derivada da função inversa, e atendendo a que, como vimos acima, $f'(-\frac{\pi}{4})$ não é zero,

$$(f^{-1})'\Big(f(-rac{\pi}{4})\Big)=rac{1}{f'(-rac{\pi}{4})}=rac{1}{e^{-1}(1-rac{\pi}{2})}=rac{2e}{2-\pi}.$$