This report is for evaluation purposes only. There are 23 days remaining in your free trial (Expires on 4/20/2018).

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Linear Regression Plot Section -

This report is for evaluation purposes only.

There are 23 days remaining in your free trial (Expires on 4/20/2018).

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Run Summary Section -

Parameter	Value	Parameter	Value
Dependent Variable 10	CYCLOMATIC_COMPLEX	(ITY	Rows Processed
Independent Variable	no_of_ISSUES	Rows Used in Estimation	10
Frequency Variable	None	Rows with X Missing	0
Weight Variable	None	Rows with Freq Missing	0
Intercept	-21459.5168	Rows Prediction Only	0
Slope	5.3850	Sum of Frequencies	10
R-Squared	0.9936	Sum of Weights	10.0000
Correlation	0.9968	Coefficient of Variation	0.0150
Mean Square Error	1893317	Square Root of MSE	1375.979

Summary Statement -

The equation of the straight line relating CYCLOMATIC_COMPLEXITY and no_of_ISSUES is estimated as: CYCLOMATIC_COMPLEXITY = (-21459.5168) + (5.3850) no_of_ISSUES using the 10 observations in this dataset. The y-intercept, the estimated value of CYCLOMATIC_COMPLEXITY when no_of_ISSUES is zero, is -21459.5168 with a standard error of 3244.3190. The slope, the estimated change in CYCLOMATIC_COMPLEXITY per unit change in no_of_ISSUES, is 5.3850 with a standard error of 0.1529. The value of R-Squared, the proportion of the variation in CYCLOMATIC_COMPLEXITY that can be accounted for by variation in no_of_ISSUES, is 0.9936. The correlation between CYCLOMATIC_COMPLEXITY and no_of_ISSUES is 0.9968.

A significance test that the slope is zero resulted in a t-value of 35.2119. The significance level of this t-test is 0.0000. Since 0.0000 < 0.0500, the hypothesis that the slope is zero is rejected.

The estimated slope is 5.3850. The lower limit of the 95% confidence interval for the slope is 5.0324 and the upper limit is 5.7377. The estimated intercept is -21459.5168. The lower limit of the 95% confidence interval for the intercept is -28940.9298 and the upper limit is -13978.1038.

This report is for evaluation purposes only. There are 23 days remaining in your free trial (Expires on 4/20/2018).

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Regression Estimation Section —

	Intercept	Slope
Parameter	B(0)	B(1)
Regression Coefficients	-21459.5168	5.3850
Lower 95% Confidence Limit	-28940.9298	5.0324
Upper 95% Confidence Limit	-13978.1038	5.7377
Standard Error	3244.3190	0.1529
Standardized Coefficient	0.0000	0.9968
T Value	-6.6145	35.2119
Prob Level (T Test)	0.0002	0.0000
Reject H0 (Alpha = 0.0500)	Yes	Yes
Power (Alpha = 0.0500)	0.9999	1.0000
Regression of Y on X	-21459.5168	5.3850
Inverse Regression from X on Y	-22189.9529	5.4198
Orthogonal Regression of Y and X	-22165.7499	5.4186

Notes:

The above report shows the least-squares estimates of the intercept and slope followed by the corresponding standard errors, confidence intervals, and hypothesis tests. Note that these results are based on several assumptions that should be validated before they are used.

Estimated Model

(-21459.5168270823) + (5.38504722710456) * (no_of_ISSUES)

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Correlation and R-Squared Section —

	Pearson		Spearman Rank
	Correlation		Correlation
Parameter	Coefficient	R-Squared	Coefficient
Estimated Value	0.9968	0.9936	1.0000
Lower 95% Conf. Limit (r dist'n)	0.9844		
Upper 95% Conf. Limit (r dist'n)	0.9991		
Lower 95% Conf. Limit (Fisher's z)	0.9860		1.0000
Upper 95% Conf. Limit (Fisher's z)	0.9993		1.0000
Adjusted (Rbar)		0.9928	
T-Value for H0: Rho = 0	35.2119	35.2119	
Prob Level for H0: Rho = 0	0.0000	0.0000	0.0000

Notes:

The confidence interval for the Pearson correlation assumes that X and Y follow the bivariate normal distribution. This is a different assumption from linear regression which assumes that X is fixed and Y is normally distributed.

Two confidence intervals are given. The first is based on the exact distribution of Pearson's correlation. The second is based on Fisher's z transformation which approximates the exact distribution using the normal distribution. Why are both provided? Because most books only mention Fisher's approximate method, it will often be needed to do homework. However, the exact methods should be used whenever possible.

The confidence limits can be used to test hypotheses about the correlation. To test the hypothesis that rho is a specific value, say r0, check to see if r0 is between the confidence limits. If it is, the null hypothesis that rho = r0 is not rejected. If r0 is outside the limits, the null hypothesis is rejected.

Spearman's Rank correlation is calculated by replacing the orginal data with their ranks. This correlation is used when some of the assumptions may be invalid.

Summary Matrices ———

	X'X	X'X	Χ'Y	X'X Inverse	X'X Inverse
Index	0	1	2	0	1
0	10	210224	917471	5.559347	-0.0002596919
1	210224	4.500364E+09	1.972337E+10	-0.0002596919	1.23531E-08
2 (Y'Y)			8.653794E+10		
Determina	ant	8.095131E+08			1.23531E-09

Variance - Covariance Matrix of Regression Coefficients ————

	VC(b)	VC(b)
Ind	lex 0	1
0	1.052561E+07	-491.6791
1	-491.6791	0.02338834

This report is for evaluation purposes only. There are 23 days remaining in your free trial (Expires on 4/20/2018).

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Tests of Assumptions Section -

	Test	Prob	Is the Assumption Reasonable at the 0.2000
Assumption/Test	Value	Level	Level of Significance?
Residuals follow Normal Distribu	ution?		
Shapiro Wilk	0.9634	0.823831	Yes
Anderson Darling	0.2294	0.808741	Yes
D'Agostino Skewness	-0.2366	0.812971	Yes
D'Agostino Kurtosis	0.0268	0.978640	Yes
D'Agostino Omnibus	0.0567	0.972051	Yes
Constant Residual Variance?			
Modified Levene Test	1.6036	0.241014	Yes
Relationship is a Straight Line?			
Lack of Linear Fit F(0, 0) Test	0.0000	0.000000	No

No Serial Correlation?

Evaluate the Serial-Correlation report and the Durbin-Watson test if you have equal-spaced, time series data.

Notes

A 'Yes' means there is not enough evidence to make this assumption seem unreasonable. This lack of evidence may be because the sample size is too small, the assumptions of the test itself are not met, or the assumption is valid.

A 'No' means the that the assumption is not reasonable. However, since these tests are related to sample size, you should assess the role of sample size in the tests by also evaluating the appropriate plots and graphs. A large dataset (say N > 500) will often fail at least one of the normality tests because it is hard to find a large dataset that is perfectly normal.

Normality and Constant Residual Variance:

Possible remedies for the failure of these assumptions include using a transformation of Y such as the log or square root, correcting data-recording errors found by looking into outliers, adding additional independent variables, using robust regression, or using bootstrap methods.

Straight-Line:

Possible remedies for the failure of this assumption include using nonlinear regression or polynomial regression.

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Residual Plots Section -

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

7

Linear Regression Report

Dataset Untitled

Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Procedure Input Settings —

Autosaved Template File

C:\Users\KASATLA\Documents\NCSS 12\Procedure Templates\Autosave\Linear Regression and Correlation -Autosaved 2018_3_30-0_52_52.t153

Variables Tab

Variables	
-----------	--

Y: Dependent Variable(s): CYCLOMATIC COMPLEXITY

X: Independent Variable: no of ISSUES Frequency Variable: <Empty> Weight Variable: <Empty>

-- Model Specification -----

Remove Intercept Unchecked

-- Resampling (Increases computation time) ------

Calculate Bootstrap C.I.'s Unchecked Run Randomization Tests Unchecked

-- Alpha Levels -----

Alpha for C.I.'s and Tests: 0.050 Alpha for Assumptions: 0.20

Reports Tab

-- Select Report / Plot Group ------

Select a Group of Reports and Plots: Display only those items that are CHECKED BELOW

Show Notes Checked Show All Rows Checked

-- Select Reports ------

Run Summary Checked Summary Statement Checked Descriptive Statistics Unchecked Correlation and R-Squared Checked **Summary Matrices** Checked

·· Estimation ······

Regression Estimation Checked

·· ANOVA ······

ANOVA Unchecked

·· Assumptions ·····

Assumptions Checked Levene Groups: 2 Durbin-Watson Unchecked

PRESS Unchecked

Linear Regression Report

Dataset Untitled
Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Procedure Input Settings (Continued)

Reports Tab (Continued)	
·· Prediction ·····	
Predict Y at these X values:	<empty></empty>
Predicted Y - C.L.	Unchecked
Predicted Y - P.L.	Unchecked
·· Row-by-Row Lists ·····	
Original Data	Unchecked
Predicted Y Means	Unchecked
Predicted Y Individuals	Unchecked
Simultaneous Bands	Unchecked
Predicted X Means	Unchecked
Predicted X Individuals	Unchecked
·· Regression Diagnostics ······	
Residuals	Unchecked
Residual Diagnostics	Unchecked
Leave One Row Out	Unchecked
Outlier Detection Chart	Unchecked
Influence Detection Chart	Unchecked
Outlier-Influence Chart	Unchecked
Report Options Tab	
Report Options	
Precision:	Single
Variable Names:	Names
·· Decimal Places ·····	
Probability:	4
Beta (Coefficients):	4
SE:	4
T:	4
R2:	4
X:	4
Y:	4
Residuals:	4
Std Residuals:	4
Sum Squares:	All
Matrix:	All

Linear Regression Report

Dataset Untitled

Y = CYCLOMATIC_COMPLEXITY X = no_of_ISSUES

Procedure Input Settings (Continued)

Plots Tab Select Plots	
Y vs X	Checked
RStudent vs X	Checked
Histogram	Checked
Residuals vs X	Checked
Residuals vs Row	Checked
Probability Plot	Checked
Residuals vs X	Checked
Serial Correlation	Checked
Plot Options	
Y vs X Plot Size:	Medium
All Other Plot Sizes:	Small
Resampling Tab	
Bootstrap Calculation Options	
Carripining	
Samples (N):	3000 Observations
Sampling Method: Retries:	50
Netiles.	30
·· Estimation ·····	
Percentile Type:	Ave X(p[n+1])
C.I. Method:	Reflection
Bootstrap Confidence Coefficients:	0.90 0.95 0.99
Randomization Test Options	
Monte Carlo Samples:	1000
Storage Tab	
Storage Option:	Do not store data
-	