Wstęp do teorii mnogości

Stanisław Migórski

Spis treści

1	Program					
2	Literatura					
3	3 Zasady oceniania					
4	Spójniki logiczne 4.1 Standardowe					
	Rachunek funkcyjny 5.1 Funkcja zdaniowa					

1 Program

- 1. Dowody i elementy logiki.
- 2. Zbiory i działania na nich.
- 3. Relacje równoważności.
- 4. Funkcje.
- 5. Własności funkcji.
- 6. Zbiory równoliczne i nierównoliczne.
- 7. Relacje porządku.
- 8. Konstukcje liczbowe.
- 9. Lemat Kuratowskiego-Zorna.

2 Literatura

- 1. K. Kustowski, A. Mostowski, Teoria mnogości, PWN, 1994
- 2. H. Rosiowa, Wstęp do matematyki, PWN, 2004
- 3. W. Marek, J. Onyszkiewicz, Elementy logiki i teorii mnogości w zadaniach, PWN, 1996

3 Zasady oceniania

 $\mathbf{WTM:} \left\{ \begin{array}{l} \text{\'ewiczenia 30h, $\mathbf{2}$ obecności bez usprawiedliwienia.} \\ \text{wykład 30h.} \end{array} \right.$

Ocenia końcowa: 20% $\underline{\text{oceny}}$ z ćwiczeń + 80% $\underline{\text{oceny}}$ z egzaminu (I, II termin).

Pegaz: zestawy zadań: A, B - obowiązkowe. Dowody do oceny "DDO".

4 Spójniki logiczne

4.1 Standardowe

 \neg (negacja), \land (koniunkcja), \lor (alternatywa), \Rightarrow (implikacja), \Leftrightarrow (równoważność)

4.2 Inne spójniki

1. Alternatywa rozłączna α i β , oznaczamy $\alpha \oplus \beta$. Czytamy "... albo ..." lub "albo ..., albo ...".

α	β	$\alpha \oplus \beta$
0	0	0
0	1	1
1	0	1
1	1	0

$$(\alpha \oplus \beta) \Leftrightarrow (\neg \alpha \Leftrightarrow \beta) \Leftrightarrow (\alpha \Leftrightarrow \neg \beta) \Leftrightarrow (\neg (\alpha \Leftrightarrow \beta))$$

2. **Dyzjunkcja** (kreska Sheffera) α i β , oznaczamy $\alpha \mid \beta$. Czytamy "albo nie ..., albo nie .."

α	β	$\alpha \mid \beta$
0	0	1
0	1	1
1	0	1
1	1	0

$$(\alpha \mid \beta) \Leftrightarrow (\neg(\alpha \land \beta))$$

3. Binegacja (strzałka Pierce'a, funktor Łukasiewicza) α i β , oznaczamy $\alpha \downarrow \beta$.

Czytamy "ani ..., ani .."

α	β	$\alpha \downarrow \beta$
0	0	1
0	1	0
1	0	0
1	1	0

$$(\alpha \downarrow \beta) \Leftrightarrow (\neg \alpha \land \neg \beta)$$

4.3 Związki z OAK

Spójniki logiczne mają przyporządkowane bramki logiczne.

• NOT: $\alpha \longmapsto \neg \alpha \text{ (negacja)}$

• **AND:** $\alpha, \beta \longmapsto \alpha \wedge \beta$ (koniunkcja)

• NAND: $\alpha, \beta \longmapsto \neg(\alpha \land \beta)$ (dyzjunkcja)

• OR: $\alpha, \beta \longmapsto \alpha \vee \beta$ (alternatywa)

• NOR: $\alpha, \beta \longmapsto \neg(\alpha \lor \beta) \Leftrightarrow (\neg \alpha \land \neg \beta) \Leftrightarrow (\alpha \downarrow \beta)$ (binegacja)

• XOR: $\alpha, \beta \longmapsto \alpha \oplus \beta$ (alternatywa rozłączna)

• XNOR: $\alpha, \beta \longmapsto \neg(\alpha \oplus \beta)$ (negacja alternatywy rozłącznej)

5 Rachunek funkcyjny

5.1 Funkcja zdaniowa

Niech x_1, \ldots, x_n będą zbiorami.

Definicja 5.1 (Funkcja zdaniowa). Funkcją (formą) zdaniową n zmiennych nazywamy wyrażenie (formulę) $\varphi(x_1,\ldots,x_n)$, w którym występuje n zmiennych x_1,\ldots,x_n , które zmienia się w zdanie logiczne, gdy za zmienne x_1,\ldots,x_n podstawimy nazwę dowolnego elementu ze zbiorów X_1,\ldots,X_n .

Definicja 5.2 (Dziedzina funkcji zdaniowej). *Dziedziną* (zakresem zmienności) funkcji zdaniowej $\varphi(x_1,\ldots,x_n)$ nazywamy iloczyn kartezjański $x_1 \times \ldots \times x_n$ i zapisujemy $Z(\varphi) = x_1 \times \ldots \times x_n$.

Definicja 5.3. Mówimy, że n-tka uporządkowona $(a_1, \ldots, a_n) \in X_1 \times \ldots \times X_n$ spełnia funkcję zdaniową $\varphi(x_1, \ldots, x_n)$, jeżeli zdanie $\varphi(a_1, \ldots, a_n)$ jest prawdziwe.

Definicja 5.4 (Zbiór spełniania funkcji zdaniowej). **Zbiór spełniania** funkcji zdaniowej $\varphi(x_1, \ldots, x_n)$ określamy następująco:

$$S(\varphi) = \{(a_1, \dots, a_n) \in X_1 \times \dots \times X_n : \varphi(a_1, \dots, a_n) = 1\}$$

Funkcja zdaniowa $\varphi(x_1, \ldots, x_n)$ jest prawdziwa w zbiorze $X_1 \times \ldots \times X_n$, jeżeli $S(\varphi) = X_1 \times \ldots \times X_n$.

Twierdzenie 5.1. Niech $\varphi(x_1 \times \ldots \times x_n)$, $\psi(x_1 \times \ldots \times x_n)$, $gdzie x_i \in X_i$, $i = 1, \ldots, n$ będą funkcjami zdaniowymi. Wtedy:

- 1) $S(\varphi \wedge \psi) = S(\varphi) \cap S(\psi)$
- 2) $S(\varphi \lor \psi) = S(\varphi) \cup S(\psi)$
- 3) $S(\neg \varphi) = (X_1 \times \ldots \times X_n) \setminus S(\varphi)$
- 4) $S(\varphi \Rightarrow \psi) = ((X_1 \times \ldots \times X_n) \setminus S(\varphi)) \cup S(\psi)$
- $\mathbf{5}) \ S(\varphi \Leftrightarrow \psi) = (S(\varphi) \cap S(\psi)) \cup (((X_1 \times \ldots \times X_n) \cap ((X_1 \times \ldots \times X_n) \setminus S(\psi))))$

Definicja 5.5. Funkcje zdaniowe $\varphi(x_1,\ldots,x_n)$ i $\psi(x_1,\ldots,x_n)$ nazywamy równoważnymi jeżeli

$$S(\varphi) = S(\psi).$$

Zapisujemy:

$$\varphi(x_1,\ldots,x_n) \equiv \psi(x_1,\ldots,x_n)$$

5.2 Kwantyfikatory

- Kwantyfikator ogólny: \forall , \bigwedge (dla każdego)
- Kwantyfikator szczególny: \exists , \bigvee (istnieje) \exists ! , (istnieje dokładnie jeden)

5.3 Prawa rachunku funkcyjnego

Twierdzenie 5.2 (Prawa de Morgana).

$$\begin{cases} \neg(\exists x \in X : \varphi(x)) \Leftrightarrow \forall x \in X : \neg\varphi(x) \\ \neg(\forall x \in X : \varphi(x)) \Leftrightarrow \exists x \in X : \neg\varphi(x) \end{cases}$$

Twierdzenie 5.3 (Prawo egzemplifikacji).

$$(\forall x \in X : \varphi(x)) \Rightarrow (\exists x \in X : \varphi(x))$$

Twierdzenie 5.4 (Prawo przestawiania kwantyfikatorów).

$$(\forall x \in X, \forall y \in Y : \varphi(x,y)) \Leftrightarrow (\forall y \in Y, \forall x \in X : \varphi(x,y))$$

$$(\exists x \in X, \exists y \in Y : \varphi(x,y)) \Leftrightarrow (\exists y \in Y, \exists x \in X : \varphi(x,y))$$

$$(\exists x \in X, \forall y \in Y : \varphi(x,y)) \Rightarrow (\forall y \in Y, \exists x \in X : \varphi(x,y))$$

 \Leftarrow nie zachodzi!!

Twierdzenie 5.5 (Prawo włączania i wyłączania kwantyfikatorów).

$$\begin{cases} \forall x \in X : (\varphi(x) \lor \psi) \Leftrightarrow (\forall x \in X : \varphi(x)) \lor \psi \\ \exists x \in X : (\varphi(x) \lor \psi)? (\exists x \in X : \varphi(x)) \lor \psi \\ \dots \end{cases}$$

Twierdzenie 5.6 (Prawo rodzielności kwantyfikatora ogólnego względem koniunkcji).

$$\begin{cases} \forall x \in X : (\varphi(x) \land \psi(x)) \Leftrightarrow (\forall x \in X : \varphi(x)) \land (\forall x \in X : \psi(x)) \\ \forall x \in X : (\varphi(x) \lor \psi(x)) \Leftarrow (\forall x \in X : \varphi(x)) \lor (\forall x \in X : \psi(x)) \\ \dots \end{cases}$$

Przykład. Prawo rozdzielności kwantyfikatora ogólnego względem implikacji.

$$(\forall x \in X : (\varphi(x) \Rightarrow \psi(x))) \Rightarrow ((\forall x \in X : \varphi(x)) \Rightarrow (\forall x \in X : \psi(x)))$$

 $\Leftarrow \textit{nie zachodzi}$

Niech:

$$\varphi(x) = \{x \in \mathbb{R} : x < 0\}$$

$$\psi(x) = \{x \in \mathbb{R} : x + 1 > 0\}$$

$$X = \mathbb{R}$$

Wtedy:

$$\underbrace{(\forall x \in \mathbb{R} : (x < 0 \Rightarrow x + 1 > 0))}_{falsz} \leftarrow \underbrace{((\forall x \in \mathbb{R} : x < 0))}_{falsz} \Rightarrow \underbrace{(\forall x \in \mathbb{R} : x + 1 > 0))}_{falsz}$$

Przykład. Prawo rodzielności kwantyfikatora szczególnego względem koniunkcji.

$$(\exists x \in X : (\varphi(x) \land \psi(x))) \Rightarrow ((\exists x \in X : \varphi(x)) \land (\exists x \in X : \psi(x))$$

$$\Leftarrow nie \ zachodzi$$

Niech:

$$\begin{split} \varphi(x) &= \{2 \mid x : x \in \mathbb{N}\} parzyste \\ \psi(x) &= \{\neg 2 \mid x : x \in \mathbb{N}\} nieparzyste \\ X &= \mathbb{N} \end{split}$$

Wtedy:

$$\underbrace{(\exists x \in \mathbb{N} : (2 \mid x \land \neg 2 \mid x))}_{falsz} \leftarrow \underbrace{((\exists x \in \mathbb{N} : 2 \mid x))}_{prawda} \land \underbrace{(\exists x \in \mathbb{N} : \neg 2 \mid x))}_{prawda}$$

Uwaga:

1. Dla formy zdaniowej jednej zmiennej zachodzi:

$$(\forall x : P(x) \Rightarrow (\exists x \in X : P(x)))$$

2. Dla formy zdaniowej dwóch zmiennych zachodzi:

$$\begin{array}{cccc} (\forall x, \forall y: P(x,y)) & \Longleftrightarrow & (\forall y, \forall x: P(x,y)) \\ \Downarrow & & \Downarrow \\ (\exists x, \forall y: P(x,y)) & & (\exists y, \forall x: P(x,y)) \\ \Downarrow & & \Downarrow \\ (\forall y, \exists x: P(x,y)) & & (\forall x, \exists y: P(x,y)) \\ \Downarrow & & \Downarrow \\ (\exists y, \exists x: P(x,y)) & & (\exists x, \exists y: P(x,y)) \end{array}$$

6 Zbiory i działania na zbiorach