BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 2 7 JAN 2005

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 003 032.4

Anmeldetag:

21. Januar 2004

Anmelder/Inhaber:

Saurer GmbH & Co KG, 41069 Mönchengladbach/DE

Bezeichnung:

Verfahren zum Herstellen eines Effektgarnes

IPC:

D 02 G, D 01 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 19. November 2004

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

1) Sia

Brosia

A 9161 03/00 EDV-L

Beschreibung:

Verfahren zum Herstellen eines Effektgarnes

Die Erfindung betrifft ein Verfahren zum Herstellen eines Effektgarnes gemäß dem Oberbegriff des Anspruchs 1.

Als Effektgarn wird ein Garn bezeichnet, in dem Dickstellen mit vorgegebenen größeren Durchmessern und mit vorgegebenen Längen, die so genannten Effekte, vorhanden sind. Die dazwischen liegenden Garnabschnitte mit geringerem Durchmesser, das heißt, die effektfreien Abschnitte, werden als Stege bezeichnet. Zu den Effektdaten gehören insbesondere die Effektlängen, Effektdurchmesser, die Effekthäufigkeit und die jeweils effektfreie Fadenlänge oder Steglänge.

Effektgarne gewinnen zunehmend an Bedeutung. Anwendungsgebiete sind beispielsweise Jeansstoffe, Stoffe für Freizeitkleidung und Heimtextilien.

Auch auf Rotorspinnmaschinen lassen sich Effektgarne herstellen. Dabei wird beispielsweise die Faserzufuhr zur Auflösewalze der Rotorspinneinrichtung verändert, indem die Drehzahl der Einzugswalzen variiert wird. Hierzu werden mechanische Getriebe angesteuert, die maschinenlange durchgehende Wellen antreiben. Mittels dieser Wellen werden die Einzugswalzen in Rotation versetzt. Durch die große Masse der bewegten Teile eines derartigen Antriebssystems und das Getriebespiel ist jedoch eine exakte und sprunghafte Veränderung der Garndicke zu Beginn und Ende eines Effektes nicht oder nur schwer erzielbar. Die Geschwindigkeit beim Spinnen von Effektgarn muss gegebenenfalls gegenüber der

Geschwindigkeit beim Spinnen von effektfreiem Garn stark herabgesetzt werden.

Die DE 44 04 503 Al beschreibt eine Rotorspinnmaschine, bei der jede Einzugswalze mit ihrer Antriebswelle direkt mit einem zugeordneten Schrittmotor verbunden ist. Jeder Schrittmotor ist über eine Ansteuereinheit ansteuerbar. Mit einem Zufallsgenerator können zufällige Geschwindigkeitsänderungen des Faserbandeinzuges erzeugt werden. Ein Effektgarn mit vorgegebenen Effekten lässt sich mit dieser bekannten Rotorspinnmaschine nicht herstellen.

Jedoch sind inzwischen Programme zur Steuerung der Rotorspinnmaschinen, insbesondere von deren Einzugswalze, entwickelt worden, mit denen Effekte zielgerichtet eingestellt werden können. Die Ausbildung des Effektgarnes beim Rotorspinnen hängt jedoch nicht allein von der Steuerung der Einzugswalze ab, sondern wird beispielsweise auch durch den Unterdruck in der Spinnvorrichtung oder durch die Garndrehung beeinflusst. Daher kann es leicht vorkommen, dass die diversen Einflussgrößen unzureichend abgestimmt sind und die Ausbildung des hergestellten Effektgarnes von der vorgegebenen Ausbildung des Effektgarnes in unerwünschtem Ausmaß abweicht. Eine Veränderung der Spinneinstellungen auf der Basis einer visuellen qualifizierenden Überprüfung des Garns führt oftmals zu aufwändigen und sehr zeitraubenden Abstimmungsvorgängen.

Es ist Aufgabe der Erfindung, ein Verfahren vorzuschlagen, das die Übereinstimmung des hergestellten Effektgarnes mit der vorgegebenen Ausbildung des Effektgarnes verbessert.

Diese Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.

Eine vorteilhafte Ausgestaltung der Erfindung ist Gegenstand der Unteransprüche.

Durch das erfindungsgemäße Verfahren wird eine Kontrolle der Ausbildung des Effektgarnes vorgenommen, die einen Abgleich auf der Basis quantifizierter Eigenschaften des Effektgarnes ermöglicht. Ein Abgleich kann solange erfolgen, bis eine hinreichende Übereinstimmung zu der vorgegebenen Ausbildung des Effektgarnes erreicht ist. Das heißt, es ist gemäß vorliegender Erfindung möglich, in mehreren Zyklen das Ergebnis der jeweiligen Veränderung von Parametern zu überprüfen und erneut eine Veränderung einzuleiten. Auf diese Weise kann ein Garn erzeugt werden, welches der vorgegebenen Ausbildung des Effektgarnes weitgehend entspricht.

Die Überprüfung der Übereinstimmung kann jeweils entweder durch statistische Erfassung, insbesondere tabellarische Erfassung der Effekte, das heißt, ihrer Dicke, Länge und Verteilung oder auch ihre Darstellung auf einem Bildschirm erfolgen. Die Darstellung auf einem Bildschirm kann zum Beispiel mittels des Systems Oasys® der Firma Zweigle vorgenommen werden. Eine tabellarische Vorgabe in Form einer so genannten Effekttabelle beschreibt den Rapport des Effektgarnes und sei beispielhaft erläutert. Zeilen mit Angaben zu als Steg ausgebildeten Abschnitten und mit Angaben zu als Effekt ausgebildeten Abschnitten des Effektgarnes wechseln sich in der Effekttabelle jeweils aufeinander folgend ab. Die erste Zeile der Effekttabelle enthält die Angabe einer Steglänge und der Stegdicke. Die zweite Zeile enthält die

Angabe einer Effektlänge und einer Effektdicke. Darauf folgt wieder eine Zeile mit Steglänge und Stegdicke usw.. Nach Auflistung aller vorgegebenen Effekte und Stege in der vorgegebenen Reihenfolge liegt ein so genannter Garnrapport des Effektgarnes vor. Die Summierung aller Steg- und Effektlängen der Effekttabelle ergibt die Rapportlänge. Bei der Herstellung des Effektgarnes wird zunächst gemäß der Vorgabe der ersten Zeile der vorbeschriebenen Effekttabelle zum Beispiel ein Steg ausgebildet, anschließend ein Effekt gemäß der Vorgabe der zweiten Zeile der Effekttabelle, gefolgt von einem Steg gemäß der Vorgabe der dritten Zeile usw. bis zur letzten Zeile der Effekttabelle. Nach der letzten Zeile der Effekttabelle beginnt der Zyklus von neuem mit der der ersten Zeile der Effekttabelle. Um ein so genanntes "Bild" zu vermeiden, kann nach mehrmaliger Wiederholung des Garnrapportes mit einer unveränderten ersten Zeile ein Garnrapport mit veränderter erster Zeile eingeschoben werden. Die Veränderung kann zum Beispiel bei der Steglänge oder der Effektlänge vorgenommen werden. Als nächster Garnrapport nach einer solchen so genannten "Störung" wird dann wieder ein Garnrapport mit einer unveränderten ursprünglichen ersten Zeile aufgerufen. Der Zyklus wird mit sporadisch eingeschobenen "Störungen" solange wiederholt, bis die vorgegebene Garnlänge auf der Spule aufgewickelt worden ist. Die Effektausbildung, die anhand der Auswertung der gemessenen Durchmesserwerte bestimmt wird, wird mit der Effektausbildung verglichen, die durch die Effekttabelle vorgegeben ist. Die Dicken und Längen der in der Effekttabelle aufgelisteten Effekte und Stege bilden dabei die SOLL-Werte, deren Übereinstimmung mit den gemessenen IST-Werten geprüft wird.

Die fortlaufende Messung des Durchmessers des Effektgarnes ermöglicht eine Beurteilung aufgrund quantifizierter Eigenschaften, wodurch gegenüber einer lediglich qualifizierenden visuellen Beurteilung der Abgleich zielgerichteter und schneller erfolgen kann. Zur Anpassung an die vorgegebene Ausbildung des Effektgarnes werden Veränderungen der bisherigen Daten vorgenommen. Die Veränderung bestimmter Spinnparameter hat bestimmte Auswirkungen auf den Garnquerschnitt. Einige Parameter lassen sich selbsttätig verändern. Insbesondere ist dies bei der Regelung der Faserzufuhr zur Auflösewalze mittels Steuerung der Einzugswalze möglich. Wenn die Einzugswalze gegenüber der Drehzahl, die zur Herstellung eines Stegabschnittes eingestellt ist, temporär schneller umläuft, wird mehr Fasermaterial pro Zeiteinheit zur Bildung des Fadens zugeführt. Dadurch entsteht ein dickerer Fadenabschnitt bzw. ein Effekt. Die Effektdicke ist dabei der Drehzahl der Einzugswalze proportional. Wird zum Beispiel festgestellt, dass die gemessene Effektdicke verglichen mit der im Garnrapport vorgegebenen Effektdicke zu gering ist, wird die Drehzahl der Einzugswalze entsprechend erhöht. Ist die gemessene Effektdicke dagegen zu groß, wird die Drehzahl der Einzugswalze entsprechend verringert. Wird beispielsweise durch die Auswertung der gemessenen Durchmesserwerte des Fadens festgestellt, dass der Effekt zu spät beginnt bzw. der vorhergehende Steg zu lang ist und dadurch die Länge des Effektes nicht ausreichend ist, kann der Beginn der Phase, in der die Einzugswalze schneller dreht und damit mehr Fasermaterial zur Auflösewalze fördert, entsprechend auf einen früheren Zeitpunkt gelegt werden. Damit wird der Effekt verlängert. Endet der Effekt zu spät und ist dadurch zu lang, kann das Ende der Phase, in der die Einzugswalze schneller

dreht und damit mehr Fasermaterial zur Auflösewalze fördert, entsprechend auf einen früheren Zeitpunkt gelegt werden. Bei Abweichungen der Lage, des Durchmessers und der Länge der Stege wird entsprechend der vorbeschriebenen Vorgehensweise bei Effekten verfahren.

Dem Fachmann sind daneben weitere Veränderungsmöglichkeiten von Spinnparametern bekannt, die Auswirkung auf den Garnquerschnitt haben. So kann durch die Veränderung der Rotordrehzahl die Drehung des Fadens und damit einhergehend die Dicke des Fadens beeinflusst werden. Bei einer höheren Drehung wird der Faden mehr eingeschnürt. Auch die Einstellung des Unterdrucks in der Spinnvorrichtung hat Einfluss auf die Effektausbildung und kann als Stellgröße für die Effektausbildung genutzt werden. Weitere Einflussmöglichkeiten bietet die Wahl der Drehzahl der Auflösewalze und deren Ausbildung, insbesondere deren Garnitur, oder die Auswahl weiterer Spinnmittel wie beispielsweise des Spinnrotors. Die den Effekt beeinflussende Auskämmleistung der Auflösewalze wird sowohl durch die Art der Garnitur als auch durch die Umfangsgeschwindigkeit der Auflösewalze bestimmt. Mit einer erhöhten Drehzahl der Auflösewalze oder einer aggressiveren Garnitur, die mehr Fasern aus der durch die Einzugswalze zugeführten Faservorlage herauslöst, lassen sich Schwankungen beziehungsweise Veränderungen der Faserzufuhr schneller umsetzen. Zumindest die Richtung, in der sich eine Veränderung der Spinnparameter auswirkt, ist jeweils bekannt, so dass bei einer Abweichung von der vorgegebenen Ausbildung des Effektgarns eine Reduzierung der Abweichung vorgenommen werden kann. Die Auswirkungen der Veränderung werden durch einen erneuten Abgleich daraufhin überprüft, ob sie zu einer Verminderung der Abweichung geführt hat und ob und

gegebenenfalls in welcher Richtung weitere Veränderungen in einem nächsten Schritt vorzunehmen sind.

Sowohl effektbezogene Daten wie insbesondere die Steuerung der Faserzufuhr als auch maschinenbezogene Daten, wie Rotordrehzahl, Auflösewalzendrehzahl und Auswahl der Spinnmittel werden in den Abgleichsprozess einbezogen, um möglichst schnell zu optimal ausgewählten bzw. eingestellten Spinnparametern zu gelangen. Durch Speichern der Daten nach dem Abgleich ist das erneute Herstellen dieses optimierten Garnes jederzeit wieder möglich, wobei die Reproduzierbarkeit sehr gut ist.

Die der Rotorspinnmaschine wieder zuzuführenden Daten sind für verschiedene Steuereinrichtungen wirksam. Dementsprechend enthalten die Daten Adressen von Steuereinrichtungen, für die sie bestimmt sind. Dies führt beim Download zur bestimmungsgemäßen Zuordnung der Daten. Dabei sind auch Daten eingeschlossen, die lediglich an einem Display der zentralen Steuereinrichtung zur Anzeige gebracht werden. Dies betrifft insbesondere Daten, die nicht von der Maschine selbst umgesetzt werden können. Beispielhaft sei die Auswahl der Spinnmittel genannt.

Gemäß Ansprüchen 5 bis 12 wird ein Verfahren für die Auswertung der gemessenen Garnwerte zur Bestimmung der Effekte durchgeführt, mit dessen Hilfe es möglich ist, die Ausbildung der hergestellten Effekte zu kennzeichnen und diese Effekte mit denen zu vergleichen, die beispielsweise tabellarisch in einer Effekttabelle vorgegeben sind.

Das erfindungsgemäße Verfahren ist anhand einer Rotorspinnmaschine erläutert.

Es zeigen:

- Fig. 1 eine Prinzipdarstellung einer Spinnstelle,
- Fig. 2 die Auflöseeinrichtung einer Spinnstelle in vereinfachter Prinzipdarstellung in Teilansicht,
- Fig. 3 eine Prinzipdarstellung der Steuerung insbesondere von Einzugswalzen einer Rotorspinnmaschine,
- Fig. 4 ein Effektgarn, das durch die Aneinanderreihung von Messwerten des Garndurchmessers dargestellt ist und
- Fig. 5 die Prinzipdarstellung eines Garneffektes.

Aus der Vielzahl der Spinnstellen einer Rotorspinnmaschine ist eine einzelne Spinnstelle 1 in Seitenansicht gezeigt. An der Spinnstelle 1 wird aus einer Faserbandkanne 2 ein Faserband 3 durch einen so genannten Verdichter 4 in die Spinnbox 5 der Rotorspinneinrichtung eingezogen. Die in der Spinnbox 5 angeordnete Einrichtung zum Vereinzeln der Fasern und deren Einspeisung in den Spinnrotor 6 sind aus dem Stand der Technik bekannt und deshalb nicht näher erläutert. Angedeutet ist der Antrieb des Spinnrotors 6, der aus einem längs der Maschine verlaufenden Riemen 7 besteht, mit dem alle Rotoren der an einer Längsseite der Spinnmaschine installierten Spinnstellen angetrieben werden. Alternativ sind allerdings auch Einzelantriebe der Rotoren möglich. Der Riemen 7 liegt auf dem Rotorschaft 8 des Spinnrotors 6 auf.

Im Spinnrotor 6 wird der Faden 9 gebildet, der durch das Fadenabzugsröhrchen 10 mittels der Abzugswalzen 11 abgezogen wird. Anschließend passiert der Faden 9 einen Sensor 12, der Teil eines so genannten Reinigers 13 zur Qualitätsüberwachung des Fadens 9 ist. Zum Erkennen eines Garnfehlers werden die gemessenen Durchmesser in Relation zur durchlaufenden Fadenlänge erfasst. Beim Erkennen eines Garnfehlers wird zum Beispiel die Rotation der in Figur 2 dargestellten Einzugswalze 27 gestoppt und dadurch eine Fadenunterbrechung hervorgerufen. Von einem Fadenführer 14 wird der Faden 9 so geführt, dass er in Kreuzlagen auf eine Kreuzspule 15 aufgespult wird. Die Kreuzspule 15 wird von einem Spulenhalter 16 getragen, der am Maschinengestell schwenkbar gelagert ist. Die Kreuzspule 15 liegt mit ihrem Umfang auf der Spultrommel 17 auf und wird von dieser so angetrieben, dass der Faden 9 im Zusammenwirken mit dem Fadenführer 14 in Kreuzlagen aufgewickelt wird. Die Drehrichtungen der Kreuzspule 15 und der Spultrommel 17 sind durch Pfeile angedeutet. Der Sensor 12 ist über die Leitung 18 mit einer Steuerungseinheit 20 der Spulstelle verbunden. Die Steuerungseinheit 20 ist über die Leitung 21 mit einem Zentralrechner 22 der Rotorspinnmaschine verbunden. Der Schrittmotor 23 der Einzugswalze ist über die Leitung 24 mit der Steuereinrichtung 25 verbunden.

Figur 2 zeigt Einzelheiten der Auflösung des Faserbandes 3 in Einzelfasern. Das durch den Verdichter 4 eingezogene Faserband 3 wird zwischen dem Klemmtisch 26 und der Einzugswalze 27 geklemmt und der schnell rotierenden Auflösewalze 28 vorgelegt. Die Einzugswalze 27 ist über die Antriebsverbindung 29 mit dem Schrittmotor 23 verbunden. Der

Schrittmotor 23 ist über die Leitung 24 ansteuerbar. Die Drehrichtung der Auflösewalze 28 ist durch den Pfeil 30 angedeutet.

Der prinzipielle Aufbau einer Einzugswalzensteuerung ist in Figur 3 schematisch dargestellt.

Zunächst wird die Ausbildung des Effektgarns in eine schematisch dargestellte Eingabeeinrichtung 31 eingegeben oder eingelesen und diese Daten an eine Garngestaltungseinheit 32 übermittelt. Die Übermittlung wird durch den Pfeil 33 angedeutet. In der Garngestaltungseinheit 32 werden mittels einer Garngestaltungssoftware die für das Spinnen auf einer Rotorspinnmaschine erforderlichen Daten generiert. Diese Daten werden über ein Bussystem 34 an eine Zentralsteuereinrichtung 35 der Rotorspinnmaschine übermittelt. Die Übermittlung kann auch alternativ mit transportablen Datenträgern, wie zum Beispiel einer Compact-Flash-Karte, erfolgen.

Die Zentralsteuereinrichtung 35 ist über die Datenleitung 36 mit dem Zentralrechner 22 verbunden.

Die Steuereinrichtung 25 umfasst die Steuerung von
24 Schrittmotoren 23 der jeweiligen Einzugswalzen 27 über eine
Leitung 24. Alle 24 Spulstellen sind gleichartig aufgebaut.
Auf die Steuereinrichtung 25 ist mittels einer
Anschlussvorrichtung 39 eine Steuerungskarte 40 angeschlossen.
Die für die Herstellung von Effektgarn erforderlichen Daten
zur Steuerung der Schrittmotoren 23 werden über ein
Bussystem 41 von der Zentralsteuereinrichtung 35 an die
Steuerungskarte 40 übermittelt. Die Steuerungskarte 40 setzt

zur Herstellung von Effektgarn die Daten über Dicke und Länge der Effekte und der Stege unter Anpassung an die übrigen Spinneinstellungen in Steuerdaten für die Schrittmotore 23 zur Erzeugung der Drehbewegung der Einzugswalzen 27 um. Über das Bussystem 42 als Fortsetzung des Bussystems 41 werden die für die Steuerung der Schrittmotoren der Einzugswalzen erforderlichen Daten an weitere nicht dargestellte Steuerungskarten, die an Steuereinrichtungen weiterer Abschnitte der Rotorspinnmaschine angeschlossen sind, übertragen. Eine der weiteren Steuereinrichtungen ist gestrichelt angedeutet. Die weiteren Steuereinrichtungen sind wie die Steuereinrichtung 25 aufgebaut, weisen eine gleiche Anschlussvorrichtung und eine angeschlossene gleiche Steuerungskarte auf. Jede weitere Steuereinrichtung steuert jeweils die Spinnstellen eines aus 24 Spinnstellen gebildeten Abschnitts der Rotorspinnmaschine.

Wird der Schrittmotor 23 so angesteuert, dass er schneller läuft, transportiert die Einzugswalze 27 mehr Fasermaterial zur Auflösewalze 28. Dies hat zur Folge, dass pro Zeiteinheit mehr Fasermaterial in den Rotor 6 gelangt und der gesponnene Faden dicker wird. Die Länge der Dickstelle ist abhängig von der Zeitdauer der erhöhten Faserzufuhr. Der Durchmesser der Dickstelle ist abhängig von der Geschwindigkeit des Schrittmotors 23 beziehungsweise der Einzugswalze 27.

Über die Leitung 43 wird vom Zentralrechner 22 ebenfalls die Steuereinrichtung 25 angesteuert, wobei über Steuerbefehle vorgegeben wird, ob die Steuereinrichtung 25 die Herstellung von Effektgarn oder die Herstellung von effektfreiem Garn steuert.

Durch den Sensor 12 wird das frisch gesponnene Garn ausgemessen und die Messwerte an die Garngestaltungseinheit 32 übermittelt, die auch mit einem nicht dargestellten Display versehen ist, um das aktuelle Effektgarn wiederzugeben oder Abweichungen von der Vorgabe zu quantifizieren. Entspricht das Aussehen bzw. die statistische Beschreibung des frisch gesponnenen Garnes nicht der vorgegebenen Ausbildung des Effektgarns, sind weitere Änderungen vorzunehmen. Diese Änderungen können sowohl in der Änderung der Effektparameter bestehen, die in der Garngestaltungseinheit eingegeben werden als auch in der Änderung von Maschinenparametern, die in der Regel am Zentralrechner 22 einzugeben sind. Dazu sind Steuerverbindungen 44 am Zentralrechner vorhanden, die beispielsweise zu einer Steuereinrichtung 45 für die Abzugswalzen 11 oder einer Steuereinrichtung 46 für die Spinnrotoren 6 führen können, wobei die Steuereinrichtungen 45 und 46 beispielsweise durch Frequenzumrichter gebildet sind. Ein Display 47 am Zentralrechner zeigt auch die ausgewählten Spinnmittel an, die, wie bereits erwähnt, einen nicht unerheblichen Einfluss auf die Ausbildung der Effekte haben.

Fig. 4 zeigt die Darstellung des Effektgarnes als Aneinanderreihung von Messwerten. Effekte 48 und Stege 49 sind zwar erkennbar, doch sind Beginn und Ende der Effekte 48 sowie die Effektdicke bzw. der Effektdurchmesser D_E und die Stegdicke bzw. der Stegdurchmesser D_{ST} , nicht eindeutig und damit nicht ausreichend erkennbar.

Der Sensor 12 misst fortlaufend den Garndurchmesser D und übermittelt die Messdaten zur Auswertung über den Zentralrechner 22 an die Garngestaltungseinheit 32. Der Garndurchmesser D wird jeweils nach 2 mm Garnlänge

registriert. Ein Takt repräsentiert eine Messlänge von 2 mm Garn. In der Darstellung der Fig. 5 ist der Garndurchmesser D in Prozent über die Garnlänge L_{G} als Kurve 10 dargestellt. Die Kurve 50 repräsentiert in der Darstellung der Fig. 5 von links beginnend bis zum Punkt 51 den Stegdurchmesser D_{ST} . Ab dem Punkt 51 steigt die Kurve 50 an und passiert am Punkt 52 den Wert des Grenzdurchmessers DGR. Am Punkt 53 ist die vorbestimmte Garnlänge L_V seit Erreichen des Punktes 52 durchgelaufen. Nachdem am Punkt 52 eine Durchmesserzunahme von 15 % registriert wird und die Überschreitung des Grenzdurchmessers D_{GR} über die vorbestimmte Länge \mathbf{L}_{V} zum Beispiel sechs Takte bzw. 12 mm lang anhält, wird der Punkt 52 als Beginn des Effektes definiert. Die Kurve 50 unterschreitet den Grenzdurchmesser D_{GR} am Punkt 54. Die Unterschreitung hält bis zum Punkt 55 und somit über die vorbestimmte Länge L_{V} an. Damit wird der Punkt 54 als Ende des Effektes definiert. Aus Beginn und Ende des Effektes zwischen Punkt 52 und Punkt 54 wird die Effektlänge L_{E} ermittelt. Aus den vier größten Durchmessern 56 innerhalb des Effektes wird ein arithmetischer Mittelwert gebildet. Dadurch ist die Angabe des Effektdurchmessers weitestgehend unabhängig von natürlichen Duchmesserschwankungen im Effektbereich. Als Effektdurchmesser D_{E} wird dieser arithmetische Mittelwert definiert.

Der Garnreiniger 37 ermittelt fortlaufend, ob die vom Sensor 12 detektierten Durchmesserwerte des Fadens 9 aus einem Bereich stammen, der als Steg 49 oder als Effekt 48 definiert ist. Die Schwankungsbreite B_S bezeichnet den Abstand zwischen dem Durchmesser des Effektes 48 und dem Durchmesser des Steges 49. Stammen die Durchmesserwerte des Fadens 9 aus einem Bereich, der als Steg 49 definiert ist, werden diese Durchmesserwerte mit der dem Stegdurchmesser D_{ST} zugeordneten Grenzwerten, dem Grenzwert RG_{STO} und dem Grenzwert RG_{STO}

verglichen. Stammen die Durchmesserwerte des Fadens 9 aus einem Bereich, der als Effekt 48 definiert ist, werden diese Durchmesserwerte mit der dem Effektdurchmesser D_E zugeordneten Grenzwerten, dem Grenzwert RG_{EO} und dem Grenzwert RG_{EU} verglichen.

Die Grenzwerte sind derart ausgewählt, dass ihre Überschreitung eine untolerierbare Abweichung bedeutet. Eine untolerierbare Abweichung löst eine Veränderung der Spinnparameter aus. Wenn beispielsweise ein Effekt nicht die richtige Dimension hat, weil die Dicke dieses Effektes zu gering ist, wird die Faserzuführung für die Phase, in der dieser Effekt gebildet wird, mittels einer Erhöhung der Drehzahl der Einzugswalze angehoben und auf diese Weise die Abweichung von der vorgegebenen Effektdicke verringert oder beseitigt.

Der Garnreiniger 37 kann so eingerichtet sein, dass alternativ entweder nur Abweichungen in Stegbereichen oder nur Abweichungen in Effektbereichen berücksichtigt werden.

Entsprechend der Überprüfung der Durchmesser des Fadens 9 können auch die Steglänge und die Effektlänge mit vorgegebenen Längen verglichen werden, ohne dass ein Überschreiten von Durchmessergrenzwerten vorliegt, und mit Hilfe von Längengrenzwerten entschieden werden, ob untolerierbare Abweichungen vorliegen.

Patentansprüche:

1. Verfahren zur Herstellung eines Effektgarnes, bei dem eine Effektausbildung vorgegeben wird und aus dieser Daten generiert werden, die die gewählte Effektausbildung repräsentieren, und bei dem Spinneinstellungen generiert werden, denen diese Daten zugrunde liegen,

dadurch gekennzeichnet,

dass das Effektgarn nach seiner Bildung in einer Spinnvorrichtung durch eine Sensoreinrichtung geführt und mittels der Sensoreinrichtung der Durchmesser des Effektgarnes fortlaufend gemessen wird, dass aus den Durchmessermesswerten die Effektausbildung des hergestellten Garns bestimmt und mit der vorgegebenen Effektausbildung verglichen wird und dass die Spinneinstellungen solange verändert werden, bis eine ausreichende Übereinstimmung zwischen der vorgegebenen Effektausbildung und der Effektausbildung des hergestellten Garns erreicht wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass sowohl effektbezogene Daten wie insbesondere die Steuerung der Faserzufuhr als auch maschinenbezogene Daten, wie Rotordrehzahl, Auflösewalzendrehzahl und Auswahl der Spinnmittel in den Abgleichsprozess einbezogen werden.

- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach Abschluss des Abgleichsprozesses sowohl die effektbezogenen Daten als auch die maschinenbezogenen Daten gespeichert werden.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Daten mit Adressen versehen sind und an die jeweils für die entsprechenden Steueroperationen vorgesehenen Steuereinheiten (22, 45, 46) adressiert werden.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Effektbereich dadurch bestimmt wird, dass der Beginn des Effektes durch Erfüllen eines ersten Kriteriums und dass das Ende des Effektes durch Erfüllen eines zweiten Kriteriums definiert wird, dass zwischen Beginn und Ende des Effektes eine festlegbare Anzahl größter Durchmesser ermittelt werden, dass aus den ermittelten Durchmessern ein Mittelwert gebildet wird, der als Durchmesser des Effektes festgelegt wird, und dass aus Beginn und Ende des Effektes die Effektlänge bestimmt wird.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Stegdurchmesser D_{ST} ermittelt wird, um die relative Effektdicke zu bestimmen.
- 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass zur Bestimmung des Stegdurchmessers D_{ST} zunächst ein arithmetischer Mittelwert des Garndurchmessers aus einer vorbestimmten Länge Garn als Referenzdurchmesser gebildet wird,

dass der Referenzdurchmesser von den Einzelwerten des Garndurchmessers subtrahiert wird, und dass dann der Stegdurchmesser D_{ST} als arithmetischer Mittelwert aus allen negativen Werten gebildet wird, die benachbart zu anderen negativen Werten gemessen wurden.

- 8. Verfahren nach einem der Ansprüche 5, 6 oder 7, dadurch gekennzeichnet, dass der Durchmesser D_E des Effektes als Mittelwert aus den vier größten Durchmessern zwischen Beginn und Ende des Effektes gebildet wird.
- 9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass als erstes Kriterium das Überschreiten eines Grenzdurchmessers D_{GR} gilt, der um einen definierten Betrag größer ist als der Stegdurchmesser D_{ST} , und dass das Überschreiten über eine vorbestimmte Garnlänge L_V andauert und dass als zweites Kriterium das Unterschreiten des Grenzdurchmessers D_{GR} gilt und das Unterschreiten über eine vorbestimmte Garnlänge L_G andauert.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Grenzdurchmesser D_{GR} 15 % größer ist als der Stegdurchmesser D_{ST} .
- 11. Verfahren nach Anspruch 9 oder 10 dadurch gekennzeichnet, dass die vorbestimmte Garnlänge dann als erreicht angenommen wird, wenn das Kriterium über sechs aufeinander folgende Messwerte erfüllt wird.

12. Verfahren nach einem der Ansprüche 5 bis 11 dadurch gekennzeichnet, dass beim Messen des Garndurchmessers alle zwei Millimeter ein Messwert erfasst wird.

Zusammenfassung:

Verfahren zum Herstellen eines Effektgarnes

Es ist Aufgabe der Erfindung, ein Verfahren vorzuschlagen, das die Übereinstimmung des hergestellten Effektgarnes mit der vorgegebenen Ausbildung des Effektgarnes verbessert.

Gemäß dem erfindungsgemäßen Verfahren wird das Effektgarn nach seiner Bildung in einer Spinnvorrichtung durch eine Sensoreinrichtung geführt und mittels der Sensoreinrichtung der Durchmesser des Effektgarnes fortlaufend gemessen.

Aus den Durchmessermesswerten wird die Effektausbildung des hergestellten Garns bestimmt und mit der vorgegebenen Effektausbildung verglichen. Der Abgleich wird solange durchgeführt, bis eine ausreichende Übereinstimmung zwischen der vorgegebenen Effektausbildung und der Effektausbildung des hergestellten optimierten Garns erreicht wird.

(Fig. 1)

FIG. 1

FIG. 1

FIG. 2

FIG. 5

IP SERVICES

Home IP Services PATENTSCOPE® Patent Search

Results of searching in PCT for: NL0571661: 0 records

[Search Summa

Refine Search NL0571661

No records matching your query found in PCT

Search Summary

NL0571661: 0 ocurrences in 0 records. Search Time: 0 seconds.