Project Development Phase Model Performance Test

Date	18 November 2022
Team ID	PNT2022TMID31293
Project Name	Project – Web Phishing Detection
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter Metrics	Values Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	Screenshot			
1.			In [32]: ecomputing the classification report of the model. print(extrics.classification_report(y_text, y_text_gbc)) print(extrics.classification_report(y_text, y_text_gbc)) print(extrics.classification_report(y_text, y_text_gbc)) 1			
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wilcoxon signed-rank test In [18]: #FOXD and Cross well-derive Front from triply-state import wilcome from triply-state import wilcome from triply-state import well-enteresting-desiration from tribun-constraint import found-interesting-desiration from tribun-import well-enteresting-desiration from tribun-import well-entered from the important important import constraint to = loss / l			

1. METRICS:

CLASSIFICATION REPORT:

	657.4			3505
-1	0.99	0.96	0.97	976
1	0.97	0.99	0.98	1235
accuracy			0.97	2211
macro avg	0.98	0.97	0.97	2211
weighted avg	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	17.88T0(47.55)*(1.5) 2.536.525.25	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0,989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0,454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

```
In [58]: #HYPERPARAMETER TUNING
         grid.fit(X_train, y_train)
Out[58]:
                                                            GridSearchCV
          GridSearchCV(cv=5,
                       estimator=GradientBoostingClassifier(learning rate=0.7,
                                                           max depth=4),
                       param grid={'max features': array([1, 2, 3, 4, 5]),
                                   'n_estimators': array([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
                 140, 150, 160, 170, 180, 190, 200])})
                                                estimator: GradientBoostingClassifier
                                    GradientBoostingClassifier(learning_rate=0.7, max_depth=4)
                                                     GradientBoostingClassifier
                                     GradientBoostingClassifier(learning_rate=0.7, max_depth=4)
  In [59]: print("The best parameters are %s with a score of %0.2f"
                 % (grid.best_params_, grid.best_score_))
           The best parameters are {'max_features': 5, 'n_estimators': 200} with a score of 0.97
```

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
         from scipy.stats import wilcoxon
         from sklearn.datasets import load_iris
         from sklearn.ensemble import GradientBoostingClassifier
         from xgboost import XGBClassifier
         from sklearn.model selection import cross val score, KFold
         # Load the dataset
         X = load_iris().data
         y = load_iris().target
         # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n estimators=100)
         model2 = XGBClassifier(n_estimators=100)
         kf = KFold(n_splits=20, random_state=None)
         # Extract results for each model on the same folds
         results_model1 = cross_val_score(model1, X, y, cv=kf)
         results model2 = cross_val_score(model2, X, y, cv=kf)
         stat, p = wilcoxon(results model1, results model2, zero method='zsplit');
         stat
Out[78]: 95.0
```

5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined ftest 5x2cv
         from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from mlxtend.data import iris_data
         # Prepare data and clfs
         X, y = iris_data()
         clf1 = GradientBoostingClassifier()
         clf2 = DecisionTreeClassifier()
         # Calculate p-value
         f, p = combined_ftest_5x2cv(estimator1=clf1,
                                   estimator2=clf2,
                                   X=X, y=y,
                                   random seed=1)
         print('f-value:', f)
         print('p-value:', p)
         f-value: 1.72727272727233
         p-value: 0.2840135734291782
```