Исправление опечаток и грамматических ошибок в русскоязычных текстах при помощи BERT

Бунин Дмитрий, группа 792

Научный руководитель: Сорокин А. А.

Виды ошибок

- Грамматические ошибки (grammatical) Нарушение правил грамматики. Например, неправильное образование и употребление форм слова.
- 2 Орфографические ошибки (spelling) Неверное написание слов.
- Опечатки (typo)Ошибки в печатном тексте в результате случайности.

Анализ предметной области Задачи

- GEC grammatical error correction
- 2 Spelling correction

Анализ предметной области Метрики

1 F-мера

Пусть имеется текст из n предложений, тогда обозначим g_i

- множество корректных исправлений предложения i, а e_i
- множество наших исправлений.

$$R = \frac{\sum_{i=1}^{n} |g_{i} \cap e_{i}|}{\sum_{i=1}^{n} |g_{i}|},$$

$$P = \frac{\sum_{i=1}^{n} |g_{i} \cap e_{i}|}{\sum_{i=1}^{n} |e_{i}|}.$$

2 GLEU

Аналог BLEU для машинного перевода.

Датасеты, Английский язык

CoNLL-2014

■ Статья: Ng и др. (2014)

Метрика: F_{1/2}
 Train: 1М токенов

Test: 30k токенов

2 JFLEG

■ Статья: Napoles, Sakaguchi и Tetreault (2017)

Метрика: GLEU

■ All: 1.5k предложений

3 BEA-2019

Страница соревнования

■ Метрика: F_{1/2}

Train: 628k токеновValidation: 87k токенов

Test: 86k токенов

Датасеты, Русский язык

SpellRuEval

■ Статья: Sorokin, Baytin и др. (2016)

■ Страница соревнования

■ Validation: 2k предложений

■ Test: 2k предложений

Существующие подходы

- 1 Стандартные решения
 - GNU Aspell
 - Hunspell
 - JamSpell
 - Яндекс.Спеллер
- 2 Модель шумного канала
 - Модель на основе взвешенного расстояния Дамерау Левенштейна: Kernighan, Church и Gale (1990).
 - Улучшенная модификация с более сложной моделью ошибок: Brill и Moore (2000).
- 3 Поиск кандидатов, ранжирование Схема была предложена в Flor и Fugati (2012). Решение задачи состоит из этапов:
 - Поиск кандидатов для исправления ошибки
 - Ранжирование кандидатов

Существующие подходы

- Трансформеры Задачу можно рассматривать, как машинный перевод. Улучшения подобных моделей:
 - Копирование исходного текста: Zhao и др. (2019).
 - Генерация синтетических данных для обучения: Kiyono и др. (2020).
- 5 Sequence labeling
 При введении определенных классов трансформаций можно рассматривать GEC, как задачу sequence labeling.
 Модели:
 - Parallel Iterative Edit Model: Awasthi и др. (2020).
 - GECToR: Omelianchuk и др. (2020).

Результаты, Английский язык

GEC system	Ens.	CoNLL-2014 (test)	BEA-2019 (test)
Copy Aug. Transformer		59.8	_
PIE		59.7	_
Transformer (synt. data)		61.3	64.2
GECToR		65.3	72.4
Copy Transformer	√	61.2	_
PIE	\checkmark	61.2	_
Transformer (synt. data)	\checkmark	65.0	70.2
GECToR	√	66.5	73.6

Таблица: Сравнение результатов различных моделей для английского языка

Результаты, Русский язык

GEC system	Precision	Recall	F_1
Yandex.Speller	83.09	59.86	69.59
JamSpell	44.57	35.69	39.64
SpellRuEval Baseline	55.91	46.41	50.72
SpellRuEval Winner	81.98	69.25	75.07

Таблица: Сравнение результатов различных моделей для русского языка

Исследование _{Цель работы}

Исследование применимости модели BERT к задаче исправления опечаток и грамматических ошибок в русскоязычных текстах.

Исследование Архитектура модели

Было решено начать с модели, основанной на ранжировании в связи с небольшим количеством данных и хорошими показателями согласно SpellRuEval (см. Sorokin и Shavrina (2016)).

Поиск кандидатов будет осуществляться на основании расстояния Дамерау – Левенштейна при помощи префиксного бора. За основу будет взят spelling-correction модуль из библиотеки DeepPavlov.

Полученные кандидаты будут отранжированны на основе признаков:

- Взвешенное расстояние Дамерау Левенштейна (см. Brill и Moore (2000)).
- **2** Вероятность BERT MLM (см. Devlin и др. (2019)).

Beca для BERT будут взяты из RuBERT.

Исследование План работ

- 1 Создание модели, ранжирующей на основе BERT MLM, ее тестирование на русскоязычных и англоязычных датасетах.
- 2 Введение дополнительных признаков, как в решении-победителе SpellRuEval.
- Дообучение BERT на MLM для датасета.
- 4 Возможно, испытание других языковых моделей (например, GPT).

Литература I

Awasthi, Abhijeet и др. (2020). «Parallel iterative edit models for local sequence transduction». B: EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, c. 4260—4270, DOI: 10.18653/v1/419-1435. arXiv: 1910.02893.

Brill, Eric и Robert C. Moore (2000). «An improved error model for noisy channel spelling correction».
в: Kukich 1992, c. 286—293. DOI: 10.3115/1075218.1075255.

Devlin, Jacob и др. (2019). «BERT: Pre-training of deep bidirectional transformers for language understanding». в: NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference 1.MIm, c, 4171—4186. arXiv: 1810.04805.

Flor, Michael ν Yoko Fugati (2012). «On using context for automatic correction of non-word misspellings in student essays.». Β: Proceedings of the 7th workshop on innovative use of {NLP} for {Building} {Educational} {Applications}, c. 105—115. URL: http://aclweb.org/anthology/W/W12/W12-2012.pdf.

Kernighan, Mark D., Kenneth W. Church ν William A. Gale (1990). «A spelling correction program based on a noisy channel model». Β: c. 205—210. DOI: 10.3115/997939.997975.

Kiyono, Shun μ др. (2020). «An empirical study of incorporating pseudo data into grammatical error correction». B: EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, c. 1236—1242. DOI: 10.18653/v1/d19-1119. arXiv: 1909.00502.

Литература II

Napoles, Courtney, Keisuke Sakaguchi и Joel Tetreault (2017). «JFLEG: A fluency corpus and benchmark for grammatical error correction». в: arXiv 2, с. 229—234.

Ng, Hwee Tou и др. (2014). «The CoNLL-2014 Shared Task on Grammatical Error Correction». в: Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task. July. Stroudsburg, PA, USA: Association for Computational Linguistics, c. 1—14. DOI: 10.3115/v1/W14-1701. URL: http://aclweb.org/anthology/W14-1701.

Omelianchuk, Kostiantyn и др. (2020). «GECTOR – Grammatical Error Correction: Tag, Not Rewrite». в: April. c. 163—170. DOI: 10.18653/v1/2020.bea-1.16. arXiv: 2005.12592.

Sorokin, A. A., A. V. Baytin и др. (2016). «SPELLRUEVAL: The first competition on automatic spelling correction for Russian». в: Komp'juternaja Lingvistika i Intellektual'nye Tehnologii, с. 660—673. ISSN: 20757182.

Sorokin, A. A. и T. O. Shavrina (2016). «Automatic spelling correction for Russian social media texts». в: Komp'juternaja Lingvistika i Intellektual'nye Tehnologii, c. 688—701. ISSN: 20757182.

Zhao, Wei и др. (2019). «Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data». в: NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference 1, c. 156—165. DOI: 10.18653/v1/n19-1014. arXiv: 1903.00138.