高等代数选讲 Selection of Advanced Algebra

第七讲:线性变换

Lecture 7: Linear Transformations

主讲教师: 艾武

数学与统计学院 School of Mathematics and Statistics 桂林理工大学 Guilin University of Technology

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

知识点 1:线性变换的定义

知识点 2: 线性变换的运算与矩阵

知识点 3: 特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

知识点 1: 线性变换的定义

知识点 2: 线性变换的运算与矩阵

知识点 3:特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

(一) 线性变换的定义

数域 P 上的线性空间 V 的一个**变换** σ 称为**线性变换**, 如果对 V 中任意的向量 α , β 和数域 P 中的任意数 k, 都有

- $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$
- $\sigma(k\boldsymbol{\alpha}) = k\sigma(\boldsymbol{\alpha})$

注:

- (1) 设M是任意一个非空集合,M到M的任一映射都称为M的一个<mark>变换</mark>。
- (2) 数域 P 上的线性空间 V 的一个变换就是 V 到 V 的一个映射。
- (3) 数域 P 上的线性空间 V 的线性变换就是 V 的**保持向量的加法与数量乘法的变换**。

(二) 线性变换的相等

(1) 设 σ, τ 都是数域 P 上的线性空间 V 的线性变换,那么 $\sigma = \tau$ 当且仅当对 $\forall \alpha \in V$,有

$$\sigma(\alpha) = \tau(\alpha)$$

(2) 设 σ , τ 都是数域 P 上的 n 维线性空间 V 的线性变换, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V 的一组 基,那么 $\sigma=\tau$ 当且仅当

$$\sigma(\boldsymbol{\alpha}_k) = \tau(\boldsymbol{\alpha}_k) \quad (k = 1, 2, \dots, n)$$

(三) 线性变换的判别

设 σ 为数域 P 上线性空间 V 的一个变换, $\forall \alpha, \beta \in V, \forall k, l \in P$ 。

(1) σ 为 V 的线性变换当且仅当

- $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$
- $\sigma(k\alpha) = k\sigma(\alpha)$
 - (2) σ 为 V 的线性变换当且仅当

$$\sigma(k\boldsymbol{\alpha} + l\boldsymbol{\beta}) = k\sigma(\boldsymbol{\alpha}) + l\sigma(\boldsymbol{\beta})$$

(四) 线性变换的性质

设 V 是数域 P 上的线性空间, σ 为 V 的线性变换, $\forall \alpha_1, \alpha_2, \cdots, \alpha_s, \alpha \in V$, $k_1, k_2, \cdots, k_s \in P$ 。

- (1) $\sigma(\mathbf{0}) = \mathbf{0}, \sigma(-\alpha) = -\sigma(\alpha)$.
- (2) 线性变换保持向量的线性关系, 即若 $\alpha=k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s$, 则

$$\sigma(\boldsymbol{\alpha}) = k_1 \sigma(\boldsymbol{\alpha}_1) + k_2 \sigma(\boldsymbol{\alpha}_2) + \dots + k_s \sigma(\boldsymbol{\alpha}_s)$$

- (3) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则 $\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_s)$ 也线性相关。
- (4) 设线性变换 σ 为单射, 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, 则 $\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_s)$ 也 线性无关。

注: 设 V 是数域 P 上的线性空间, $\beta_1, \beta_2, \cdots, \beta_m, \gamma_1, \gamma_2, \cdots, \gamma_s$ 是 V 中的两个向量组, 如果

$$\beta_{1} = c_{11}\gamma_{1} + c_{12}\gamma_{2} + \dots + c_{1s}\gamma_{s}$$

$$\beta_{2} = c_{21}\gamma_{1} + c_{22}\gamma_{2} + \dots + c_{2s}\gamma_{s}$$

$$\dots$$

$$\beta_{m} = c_{m1}\gamma_{1} + c_{m2}\gamma_{2} + \dots + c_{ms}\gamma_{s}$$

$$(1)$$

将式(1)记为

$$(oldsymbol{eta}_1,oldsymbol{eta}_2,\cdots,oldsymbol{eta}_m)=(oldsymbol{\gamma}_1,oldsymbol{\gamma}_2,\cdots,oldsymbol{\gamma}_s) \left(egin{array}{cccc} c_{11} & c_{21} & \cdots & c_{m1} \ c_{12} & c_{22} & \cdots & c_{m2} \ dots & dots & dots & dots \ c_{1n} & c_{2n} & \cdots & c_{mn} \end{array}
ight)$$

于是, 若 dim $V = n, \alpha_1, \alpha_2, \dots, \alpha_n$ 是 V 的一组基, σ 是 V 的线性变换, $\beta_1, \beta_2, \dots, \beta_m$ 是 V 中任意一组向量, 则 $\sigma(\beta_1), \sigma(\beta_2), \dots, \sigma(\beta_m)$ 可以由基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出。设

$$\sigma(\beta_1) = b_{11}\alpha_1 + b_{12}\alpha_2 + \dots + b_{1n}\alpha_n$$

$$\sigma(\beta_2) = b_{21}\alpha_1 + b_{22}\alpha_2 + \dots + b_{2n}\alpha_n$$

$$\dots$$

$$\sigma(\beta_n) = b_{n-2} + b_{n-2} + \dots + b_{n-2}$$
(3)

 $\sigma(\boldsymbol{\beta}_m) = b_{m1}\boldsymbol{\alpha}_1 + b_{m2}\boldsymbol{\alpha}_2 + \dots + b_{mn}\boldsymbol{\alpha}_n$

再记

$$\sigma\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right) = \left(\sigma\left(\beta_{1}\right), \sigma\left(\beta_{2}\right), \cdots, \sigma\left(\beta_{m}\right)\right) \tag{4}$$

由式(1)、式(2)与式(4)知,式(3)就可以写成下列形式

$$\sigma\left(oldsymbol{eta}_1,oldsymbol{eta}_2,\cdots,oldsymbol{eta}_m
ight)=\left(oldsymbol{lpha}_1,oldsymbol{lpha}_2,\cdots,oldsymbol{lpha}_n
ight) \left(egin{array}{cccc} b_{11} & b_{21} & \cdots & c_{m1} \ b_{12} & b_{22} & \cdots & c_{m2} \ dots & dots & dots & dots \ b_{1n} & b_{2n} & \cdots & c_{mn} \end{array}
ight)$$

设
$$m{B} = \left(egin{array}{cccc} b_{11} & b_{21} & \cdots & c_{m1} \\ b_{12} & b_{22} & \cdots & c_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \cdots & c_{mn} \end{array}
ight), m{\eta}_1, m{\eta}_2, \cdots, m{\eta}_m$$
 是矩阵 $m{B}$ 的列向量组。

如果 B = O, 那么 $\sigma(\beta_1) = \sigma(\beta_2) = \cdots = \sigma(\beta_m) = 0$;

如果 $\boldsymbol{B} \neq \boldsymbol{O}$, 设 $\boldsymbol{\eta}_{i_1}, \boldsymbol{\eta}_{i_2}, \cdots, \boldsymbol{\eta}_i$ 是 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_m$ 的一个极大线性无关组, 那么 $\sigma(\boldsymbol{\beta}_{i_1}), \sigma(\boldsymbol{\beta}_{i_2}), \cdots, \sigma(\boldsymbol{\beta}_{i_r})$ 就是 $\sigma(\boldsymbol{\beta}_1), \sigma(\boldsymbol{\beta}_2), \cdots, \sigma(\boldsymbol{\beta}_m)$ 的一个极大线性无关组, 因此向量组 $\sigma(\boldsymbol{\beta}_1), \sigma(\boldsymbol{\beta}_2), \cdots, \sigma(\boldsymbol{\beta}_m)$ 的秩等于 $r(\boldsymbol{B})$ 。

(因 $\forall \alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n \in V, f : \alpha \mapsto (a_1, a_2, \dots, a_n)$ 是数域 P 上的线性 空间 V 到 P^n 的同构映射)

(五) 线性变换举例

- (1) 设V是数域P上的任一线性空间,那么
- 1) V 的**零变换** $o(o(\alpha) = \mathbf{0}, \forall \alpha \in V)$ 是 V 的线性变换;
- 2) V 的**恒等变换**或**单位变换** $\iota(\iota(\alpha) = \alpha, \forall \alpha \in V)$ 是 V 的线性变换;
- 3) **幂零线性变换**: 设 σ 是数域 P 上的线性空间 V 的线性变换, 如果存在正整数 m, 使得 $\sigma^m = o$, 就称 σ 为 V 的幂零线性变换;
- 4) **幂等线性变换**: 设 σ 是数域 P 上的线性空间 V 的线性变换, 如果 $\sigma^2 = \sigma$, 就称 σ 为 V 的 幂等线性变换。
 - (2) 设 $V = P^n$, 任意取定数域 P 上的一个 n 级方阵 A, 令

$$\sigma \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \forall \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in P^n$$

那么 σ 为 $V = P^n$ 的线性变换。

(3)
$$V = P[x], D(f(x)) = f'(x), \forall f(x) \in P[x],$$
那么 $D 为 V = P[x]$ 的线性变换。

(4)
$$V = P^{n \times n}$$
, $\mathbf{A} = (a_{ij})$ 是 V 中一固定矩阵, $\tau(\mathbf{X}) = \mathbf{A}\mathbf{X}$, $\forall \mathbf{X} \in P^{n \times n}$ 是 $V = P^{n \times n}$ 的线性变换。

(六) 可逆变换与可逆线性变换

1. 线性空间的可逆变换

数域 P 上的线性空间 V 的变换 σ 称为**可逆的**, 如果有 V 的变换 τ 存在, 使

$$\sigma \tau = \tau \sigma = \iota \quad (\iota \not EV)$$
 的恒等变换)

此时变换 τ 称为 σ 的**逆变换**, 记为 σ^{-1} 。

注:可逆变换的逆变换唯一。

2. 线性空间的可逆线性变换

1) 可逆线性变换的定义

设 V 是数域 P 上的线性空间, 如果 σ 既是 V 的线性变换又是 V 的可逆变换, 就称 σ 为 V 的可逆线性变换, 此时 σ 的逆变换 σ^{-1} 也是 V 的线性变换。

2) 线性变换可逆的判别

设 σ 是数域P上的线性空间V的线性变换,那么

- (1) σ 可逆当且仅当 σ 是 V 到 V 的一一对应或双射;
- (2) 若 dim $V = n, \alpha_1, \alpha_2, \cdots, \alpha_n$ 是 V 的任意一组基, 那么 σ 可逆当且仅当 $\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n)$ 也是 V 的一组基。

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

- 知识点 1:线性变换的定义
- 知识点 2: 线性变换的运算与矩阵
- 知识点 3:特征值、特征向量与对角矩阵
- 知识点 4: 线性变换的值域与核
- 知识点 5: 不变子空间

(一) 线性变换的加法、乘法、数量乘法

1. 线性变换的加法、乘法、数量乘法的定义

设 V 是数域 P 上的线性空间, σ , τ 是 V 的两个线性变换, 定义它们的和 σ + τ , 乘积 $\sigma\tau$ 分别为

$$(\sigma + \tau)(\alpha) = \sigma(\alpha) + \tau(\alpha), \quad (\sigma\tau)(\alpha) = \sigma(\tau(\alpha)), \quad \forall \alpha \in V$$
 (6)

任取 $k \in P$, 定义数量乘法 $k\sigma$ 为

$$(k\sigma)(\alpha) = k\sigma(\alpha), \quad \forall \alpha \in V$$
 (7)

 σ 的负变换 $-\sigma$ 为

$$(-\sigma)(\alpha) = -\sigma(\alpha), \quad \forall \alpha \in V$$
 (8)

则 $\sigma + \tau$, $\sigma \tau$, $k\sigma$ 与 $-\sigma$ 都是 V 的线性变换。

2. 线性变换的加法、乘法、数量乘法的运算规律

设 V 是数域 P 上的线性空间, σ, τ, ψ 都是 V 的线性变换, k, l 是 P 中任意数。

1) 加法

- (1) 交換律: $\sigma + \tau = \tau + \sigma$;
- (2) 结合律: $(\sigma + \tau) + \psi = \sigma + (\tau + \psi)$;
- (3) $o + \sigma = \sigma$;
- $(4) \ \sigma + (-\sigma) = o \ .$

2) 数量乘法

- (1) $(kl)\sigma = k(l\sigma)$;
- (2) $1\sigma = \sigma$.

3) 加法与数量乘法

- (1) $(k+l)\sigma = k\sigma + l\sigma$;
- (2) $k(\sigma + \tau) = k\sigma + k\tau$.

3. 线性变换的多项式

设 σ 是数域P上的线性空间V的线性变换,n是正整数,k,l为非负整数。

- (1) σ 的 n 次幂: $\sigma^n = \overbrace{\sigma\sigma\cdots\sigma}^{n\uparrow}$ 。
- (2) $\sigma^0 = \iota$ (ι 为 V 的恒等变换或单位变换)。
- (3) 指数法则: $\sigma^k \sigma^l = \sigma^{k+l}$, $(\sigma^k)^l = \sigma^{kl}$ 。
- (4) σ 的多项式: 任取 $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0 \in P[x]$, 定义

$$g(\sigma) = b_m \sigma^m + b_{m-1} \sigma^{m-1} + \dots + b_1 \sigma + b_0 \iota$$

那么 $g(\sigma)$ 是 V 的线性变换, $g(\sigma)$ 称为线性变换 σ 的多项式。

(5) 若 σ 可逆, 定义 $\sigma^{-n} = (\sigma^{-1})^n$ 。

注: 设 σ , τ 都是数域 P 上的线性空间 V 的线性变换, n 是正整数, 一般说来 $(\sigma\tau)^n \neq \sigma^n\tau^n$ 。

4. 线性变换构成的线性空间

设V是数域P上的线性空间, 今

$$L(V) = \{ \sigma \mid \sigma \Rightarrow V \text{ 的线性变换} \}$$

那么 L(V) 按线性变换的加法和数量乘法构成数域 P 上的线性空间。

(二) 线性变换的矩阵

1. 线性变换的矩阵

设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是数域 P 上的 n 维线性空间 V 的一组基, σ 是 V 的一个线性变换,则基向量的像 $\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n)$ 可以由基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表出,即

$$\sigma(\boldsymbol{\alpha}_{1}) = a_{11}\boldsymbol{\alpha}_{1} + a_{12}\boldsymbol{\alpha}_{2} + \dots + a_{1n}\boldsymbol{\alpha}_{n}$$

$$\sigma(\boldsymbol{\alpha}_{2}) = a_{21}\boldsymbol{\alpha}_{1} + a_{22}\boldsymbol{\alpha}_{2} + \dots + a_{2n}\boldsymbol{\alpha}_{n}$$

$$\dots$$

$$\sigma(\boldsymbol{\alpha}_{n}) = a_{n1}\boldsymbol{\alpha}_{1} + a_{n2}\boldsymbol{\alpha}_{2} + \dots + a_{nn}\boldsymbol{\alpha}_{n}$$
(9)

由式(3)式(5)可知,式(9)可写成下列形式

$$\sigma(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}) = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}) \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$
(10)

设

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$
 (11)

将式(11)中的矩阵 A 称为 σ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵。

注意, \mathbf{A} 的第 j 列 $(j=1,2,\cdots,n)$ 恰好是 $\sigma(\mathbf{\alpha}_j)$ 在基 $\mathbf{\alpha}_1,\mathbf{\alpha}_2,\cdots,\mathbf{\alpha}_n$ 下的坐标。

2. 线性变换的和、乘积、数量乘积、逆变换、负变换及多项式的矩阵

设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是数域 P 上的 n 维线性空间 V 的一组基, $\forall \sigma, \tau \in L(V)$, 它们在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵分别为 A, B, s 为任意正整数。

- (1) $\sigma + \tau, \sigma \tau, \sigma^s$ 与 $-\sigma$ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵分别为 $A + B, AB, A^s$ 与 -A 。
- (2) 任取 $k \in P, k\sigma$ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为 kA 。
- (3) 若 σ 为可逆线性变换,则 σ^{-1} 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的矩阵为 A^{-1} 。
- (4) 设 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$ 为数域 P 上的任一多项式,则

$$f(\sigma) = a_m \sigma^m + a_{m-1} \sigma^{m-1} + \dots + a_1 \sigma + a_0 \iota$$

在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为

$$f(\mathbf{A}) = a_m \mathbf{A}^m + a_{m-1} \mathbf{A}^{m-1} + \dots + a_1 \mathbf{A} + a_0 \mathbf{E}_n$$

- (5) σ 可逆当且仅当 A 可逆(有限维线性空间的线性变换可逆的判定定理)。
- (6) 令

$$f: L(V) \to P^{n \times n}, \quad \sigma \mapsto \mathbf{A}, \quad \forall \sigma \in L(V)$$

那么 f 是数域 P 上的线性空间 L(V) 到数域 P 上的线性空间 $P^{n \times n}$ 的同构映射, 因此 $L(V) \cong P^{n \times n}$, 于是 L(V) 是 n^2 维线性空间。

3. 向量在线性变换下像的坐标公式

设数域 P 上的 n 维线性空间 V 的线性变换 σ 在 V 的基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为 A, V 中的向量 ξ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的坐标为 (x_1, x_2, \cdots, x_n) , 则 $\sigma(\xi)$ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的坐标 (y_1, y_2, \cdots, y_n) 可按如下公式计算:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 (12)

4. 矩阵的相似

1) 矩阵相似的定义

设 A, B 是数域 P 上的两个 n 级方阵, 如果存在数域 P 上的 n 级可逆矩阵 T, 使得 $T^{-1}AT = B$, 就称在数域 $P \perp A$ 相似于 B, 记为在数域 $P \perp A \sim B$ 。

2) 矩阵相似的性质

设 A, B, C 都是数域 P 上的 n 级方阵。

性质 1 (反身性) $A \sim A$ 。

性质 2 (对称性) 若 $A \sim B$, 则 $B \sim A$ 。

性质 3 (传递性)若 $A \sim B$, $B \sim C$, 则 $A \sim C$ 。

性质 4 若 $T^{-1}AT = B$, 则对任意正整数 k, 有 $B^k = T^{-1}A^kT$ 。

3) 线性变换在不同基下的矩阵之间的关系

- (1) 设数域 P 上的 n 维线性空间 V 的线性变换 σ 在 V 的两组基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 与 $\beta_1, \beta_2, \dots, \beta_n$ 下的矩阵分别为 A 与 B, $\alpha_1, \alpha_2, \dots, \alpha_n$ 到 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为 T, 那么 $B = T^{-1}AT$, 即同一线性变换在不同基下的矩阵彼此相似。
- (2) 设 A, B 是数域 P 上的两个 n 级方阵, 且在数域 P 上 $A \sim B$, V 是数域 P 上的任一 n 维线性空间, 那么存在 V 的线性变换 σ , 使得 A, B 为 σ 在 V 的两组基下的矩阵。

注:矩阵的相似与数域有关。

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

知识点 1: 线性变换的定义

知识点 2: 线性变换的运算与矩

知识点 3:特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

(一) 矩阵的特征值与特征向量

1. 矩阵的特征多项式

设 $\mathbf{A} = (a_{ij})_{nn}$ 为数域 P 上的一个 n 级方阵, λ 是一个文字, 将矩阵 $\lambda \mathbf{E}_n - \mathbf{A}$ 的行列式

$$|\lambda \boldsymbol{E}_{n} - \boldsymbol{A}| = \begin{vmatrix} \lambda - a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda - a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$
(13)

称为矩阵 A 的特征多项式, 记为 $f_A(\lambda)$, 它是数域 P 上的一个 n 次多项式, 且

$$f_{\mathbf{A}}(\lambda) = |\lambda \mathbf{E}_{n} - \mathbf{A}|$$

$$= \lambda^{n} + (-1)(a_{11} + a_{22} + \dots + a_{nn})\lambda^{n-1} + \dots + (-1)^{n}|\mathbf{A}|$$

$$= \lambda^{n} + (-1)\operatorname{tr}(\mathbf{A})\lambda^{n-1} + \dots + (-1)^{n}|\mathbf{A}|$$
(14)

注: 将 $\lambda E_n - A$ 称为矩阵 A 的特征矩阵, $|\lambda E_n - A| = 0$ 称为矩阵 A 的特征方程。

2. 矩阵的特征值与特征向量的定义

n 级方阵 \boldsymbol{A} 的特征多项式 $f_{\boldsymbol{A}}(\lambda) = |\lambda \boldsymbol{E}_n - \boldsymbol{A}|$ 在复数域上的所有根都称为 \boldsymbol{A} 的<mark>特征值</mark>。

设 $\lambda_0 \in \mathbb{C}$ 是 \boldsymbol{A} 的特征值, 将齐次线性方程组 $(\lambda_0 \boldsymbol{E}_n - \boldsymbol{A}) \boldsymbol{x} = 0$ 的每个非零解都称为矩 阵 \boldsymbol{A} 的属于特征值 λ_0 的特征向量。

3. 矩阵的特征值与特征向量的判别

设 \mathbf{A} 为 n 级方阵, $\lambda_0 \in \mathbf{C}$ 。

- (1) λ_0 是矩阵 \mathbf{A} 的特征值当且仅当 $f_{\mathbf{A}}(\lambda_0) = |\lambda_0 \mathbf{E}_n \mathbf{A}| = 0$.
- (2) λ_0 是矩阵 A 的特征值当且仅当存在 $0 \neq \alpha \in \mathbb{C}^n$, 使得 $A\alpha = \lambda_0 \alpha$ 。
- (3) 设 λ_0 是矩阵 \boldsymbol{A} 的特征值, $\boldsymbol{0} \neq \boldsymbol{\alpha} = (a_1, a_2, \cdots, a_n) \in \mathbf{C}^n$, 则 $\boldsymbol{\alpha}$ 为矩阵 \boldsymbol{A} 的属于特征值 λ_0 的特征向量当且仅当 $(\lambda_0 \boldsymbol{E}_n \boldsymbol{A}) \boldsymbol{\alpha}' = \boldsymbol{0}$, 即 $\boldsymbol{\alpha}$ 是齐次线性方程组 $(\lambda_0 \boldsymbol{E}_n \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0}$ 的一个非零解。

4. 矩阵的特征值与特征向量的求法

设A为n级方阵。

第一步: 求 $f_A(\lambda) = |\lambda E_n - A|$ 在复数域上的所有根 $\lambda_1, \lambda_2, \dots, \lambda_n$ (重根按重数计算)。

第二步: 设 $\lambda_1, \lambda_2, \cdots, \lambda_s (1 \leq s \leq n)$ 是矩阵 \boldsymbol{A} 的所有不同的特征值, 对 $\lambda_k (k=1,2,\cdots,s)$, 解齐次线性方程组 $(\lambda_k \boldsymbol{E}_n - \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0}$, 得其一个基础解系

$$\eta_{k1}, \eta_{k2}, \cdots, \eta_{k,l_k} (l_k = n - r (\lambda_k \boldsymbol{E}_n - \boldsymbol{A}))$$

则 $\eta_{k1}, \eta_{k2}, \cdots, \eta_{k,l_k}$ 就是与矩阵 \boldsymbol{A} 的特征值 $\lambda_k (k=1,2,\cdots,s)$ 相对应的线性无关特征向量。矩阵 \boldsymbol{A} 的属于特征值 λ_k 的全部特征向量为

$$s_{k1}\eta_{k1} + s_{k2}\eta_{k2} + \dots + s_{k,l_k}\eta_{k,l_k}$$
 (15)

式(15) 中的 $s_{k1}, s_{k2}, \cdots, s_{k,l_k}$ 为不全为零的任意常数(复数)。

5. 重要结论

设A为n级方阵。

- (1) 若 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是矩阵 \boldsymbol{A} 的全部特征值, 则 \boldsymbol{A} 的迹 $\operatorname{tr}(\boldsymbol{A}) = \lambda_1 + \lambda_2 + \dots + \lambda_n, \boldsymbol{A}$ 的行列式 $|\boldsymbol{A}| = \lambda_1 \lambda_2 \dots \lambda_n$ 。
 - (2) 相似矩阵有相同的特征多项式,从而有相同的特征值、相同的迹、相同的行列式。
- (3) 设 $\lambda_0 \in \mathbb{C}$ 是矩阵 \boldsymbol{A} 的特征值, \boldsymbol{X}_0 是矩阵 \boldsymbol{A} 的属于特征值 λ_0 的特征向量, g(x) 为一复系数多项式. 那么
 - 1) $g(\lambda_0)$ 为 $g(\mathbf{A})$ 的特征值, \mathbf{X}_0 为 $g(\mathbf{A})$ 的属于特征值 $g(\lambda_0)$ 的特征向量;
- 2) 若 A 还是可逆矩阵, 则 $\frac{1}{\lambda_0}$ 与 $\frac{|A|}{\lambda_0}$ 分别为 A^{-1} 和 A^* 的特征值, X_0 为 A^{-1} 的属于特征值 $\frac{|A|}{\lambda_0}$ 的特征向量, X_0 为 A^* 的属于特征值 $\frac{|A|}{\lambda_0}$ 的特征向量;
- 3) 设 Q 是 n 级可逆矩阵, 则 λ_0 是 $Q^{-1}AQ$ 的特征值, $Q^{-1}X_0$ 是 $Q^{-1}AQ$ 的属于特征值 λ_0 的特征向量;

4) 若 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是矩阵 **A** 的全部特征值, 则 $g(\lambda_1), g(\lambda_2), \dots, g(\lambda_n)$ 就是 $g(\mathbf{A})$ 的 全部特征值; 若 **A** 还是可逆矩阵, 则 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ 为 \mathbf{A}^{-1} 的全部特征值, $\frac{|\mathbf{A}|}{\lambda_1}, \frac{|\mathbf{A}|}{\lambda_2}, \dots, \frac{|\mathbf{A}|}{\lambda_n}$ 为 \mathbf{A}^* 的全部特征值。

6. 矩阵的特征子空间

设A为n级方阵。

1) 矩阵的特征子空间的定义

设 λ_0 是矩阵 \boldsymbol{A} 的特征值, 则 $V_{\lambda_0} = \{ \boldsymbol{\alpha} \in \mathbf{C}^n \mid \boldsymbol{A}\boldsymbol{\alpha} = \lambda_0 \boldsymbol{\alpha} \}$ 是 \mathbf{C}^n 的子空间, 将 V_{λ_0} 称为矩阵 \boldsymbol{A} 的(属于特征值 λ_0 的)**特征子空间**。

2) 矩阵的特征子空间 V_{λ_0} 的求法

由 1) 知 V_{λ_0} 就是齐次线性方程组 $(\lambda_0 E_n - A) x = 0$ 的解空间, 因此只需求得

$$(\lambda_0 \boldsymbol{E}_n - \boldsymbol{A}) \, \boldsymbol{x} = \boldsymbol{0}$$

的一个基础解系 $\eta_1, \eta_2, \cdots, \eta_k (k = n - r(\lambda_0 E_n - A))$, 那么 $V_{\lambda_0} = L(\eta_1, \eta_2, \cdots, \eta_k)$.

(二) 线性变换的特征值与特征向量

1. 线性变换的特征值与特征向量的定义

设 σ 是数域 P 上的线性空间 V 的线性变换, $\lambda_0 \in P$, 若存在 $\mathbf{0} \neq \alpha \in V$, 使得 $\sigma(\alpha) = \lambda_0 \alpha$, 就称 λ_0 为 σ 的一个特征值, α 为 σ 的一个属于特征值 λ_0 的特征向量。

2. 线性变换的特征多项式

设 σ 是数域 P 上的 n 维线性空间 V 的线性变换,则 σ 在 V 的不同基下的矩阵彼此相似,而相似矩阵具有相同的特征多项式,所以 σ 在 V 的不同基下矩阵的特征多项式是相同的,于是任取 V 的一组基 $\alpha_1,\alpha_2,\cdots,\alpha_n$,设 σ 在该基下的矩阵为 A,称矩阵 A 的特征多项式 $f_A(\lambda) = |\lambda E_n - A|$ 为 σ 的特征多项式,记为 $f_\sigma(\lambda) = |\lambda E_n - A|$,即线性变换 σ 的特征多项式为其在 V 的任意基下矩阵的特征多项式。

3. 有限维线性空间的线性变换的特征值与特征向量

1) 判别

设 σ 是数域 P 上的 n 维线性空间 V 的线性变换, σ 在 V 的基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵 为 A, $0 \neq \alpha \in V$, $\alpha = a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n$, $\lambda_0 \in \mathbf{C}$ 。

- (1) λ_0 是 σ 的特征值当且仅当 $\lambda_0 \in P$, 且 $f_{\sigma}(\lambda_0) = |\lambda_0 E_n A| = 0$, 即 λ_0 是 σ 的特征 多项式 $f_{\sigma}(\lambda) = |\lambda E_n A|$ 在 P 中的根。
- (2) 设 λ_0 是 σ 的特征值, 那么 α 是 σ 的属于特征值 λ_0 的特征向量当且仅当 $(a_1, a_2, \cdots, a_n)'$ 是齐次线性方程组 $(\lambda_0 E_n A) x = 0$ 的非零解。

2) 求法

设 σ 是数域P上的n维线性空间V的线性变换。

第一步: 取定 V 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 求出 σ 在该基下的矩阵 A 。

第二步: 求 $f_{\sigma}(\lambda) = |\lambda E_n - A|$ 在 P 中的所有根 $\lambda_1, \lambda_2, \cdots, \lambda_m$ $(0 \le m \le n, \text{ 重根按重数计算, 且 } m = 0$ 表示 σ 无特征值)。

第三步: 若 m > 0, 设 $\lambda_1, \lambda_2, \cdots, \lambda_t (1 \le t \le m)$ 是 σ 的所有不同的特征值, 对 $\lambda_k (k = 1, 2, \cdots, t)$, 求齐次线性方程组 $(\lambda_k \boldsymbol{E}_n - \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0}$ 的一个基础解系

$$\eta_{k1}, \eta_{k2}, \cdots, \eta_{k,l_k}$$
 $(l_k = n - r(\lambda_k \boldsymbol{E}_n - \boldsymbol{A}))$

则 σ 的属于特征值 λ_k 的线性无关特征向量为

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n) \, \boldsymbol{\eta}_{kj} \, (j=1,2,\cdots,l_k)$$

 σ 的属于特征值 λ_k 的全部特征向量为

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n) \left(s_{k1} \boldsymbol{\eta}_{k1} + s_{k2} \boldsymbol{\eta}_{k2} + \cdots + s_{k, l_k} \boldsymbol{\eta}_{k, l_k} \right)$$
(16)

式**(16)**中的 $s_{k1}, s_{k2}, \cdots, s_{k,l_k}$ 为 P 中不全为零的任意常数。

(三) 线性变换的特征子空间

1. 定义

设 σ 是数域 P 上的线性空间 V 的线性变换, λ_0 是 σ 的特征值, 则 $V_{\lambda_0} = \{ \boldsymbol{\alpha} \in V \mid \sigma(\boldsymbol{\alpha}) = \lambda_0 \boldsymbol{\alpha} \}$ 是 V 的子空间,将其称为 σ 的(属于特征值 λ_0 的)**特征子空**间。

注:设 σ 是数域 P 上的 n 维线性空间 V 的线性变换, λ_0 是 σ 的特征值, 那么 $\dim V_{\lambda_0}$ 称为 σ 的特征值 λ_0 的几何重数, 而 λ_0 作为 σ 的特征多项式 $f_{\sigma}(\lambda)$ 的根, 其重数称为 λ_0 的代数重数, 且 λ_0 的几何重数小于或等于 λ_0 的代数重数。

2. 有限维线性空间的线性变换的特征子空间求法

设 σ 是数域P上的n维线性空间V的线性变换, λ_0 是 σ 的特征值。

第一步: 取定 V 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 求得 σ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为 A 。

第二步: 求齐次线性方程组 $(\lambda_0 E_n - A) x = 0$ 的一个基础解系

$$\eta_1, \eta_2, \cdots, \eta_k \quad (k = n - r (\lambda_0 \boldsymbol{E}_n - \boldsymbol{A}))$$

令

$$\gamma_j = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n) \, \boldsymbol{\eta}_j \quad (j = 1, 2, \cdots, k)$$
 (17)

那么式 (17)中的 $\gamma_1, \gamma_2, \dots, \gamma_k$ 就是 σ 的(属于特征值 λ_0 的)特征子空间 V_{λ_0} 的一组基,于是 $V_{\lambda_0} = L(\gamma_1, \gamma_2, \dots, \gamma_k)$ 。

(四) 矩阵与线性变换可对角化

- 1. 矩阵可对角化
- 1) 矩阵可对角化的定义

设 A 是数域 P 上的一个 n 级方阵, 如果存在数域 P 上的一个 n 级可逆矩阵 T, 使得 $T^{-1}AT$ 为对角矩阵, 就称矩阵 A 在数域 P 上**可对角化**或 A 在数域 P 上与对角矩阵相似。

如无特殊说明,矩阵可对角化指的是该矩阵在复数域上可对角化。

2) 矩阵特征值的代数重数与几何重数

设 $\lambda_1, \lambda_2, \cdots, \lambda_k$ 是 n 级方阵 A 的所有不同的特征值, A 的特征多项式

$$f_{\mathbf{A}}(\lambda) = |\lambda \mathbf{E}_n - \mathbf{A}| = (\lambda - \lambda_1)^{l_1} (\lambda - \lambda_2)^{l_2} \cdots (\lambda - \lambda_k)^{l_k}$$
(18)

式(18) 中的 $l_i(i=1,2,\cdots,k)$ 为正整数。

称式(18)中的正整数 $l_i(i=1,2,\cdots,k)$ 为矩阵 \boldsymbol{A} 的特征值 λ_i 的代数重数。称 $s_i=n-r(\lambda_i\boldsymbol{E}_n-\boldsymbol{A})$ $(i=1,2,\cdots,k)$ 为矩阵 \boldsymbol{A} 的特征值 λ_i 的几何重数。

注:

- (1) 设齐次线性方程组 $(\lambda_i E_n A) x = 0$ 的解空间为 W_i , 那么 A 的特征值 λ_i 的几何重数 $s_i = \dim W_i$, 而 $W_i = V_{\lambda_i} = \{ \alpha \in \mathbb{C}^n \mid A\alpha = \lambda \alpha \}$, 因此 $s_i = \dim V_{\lambda_i}$ 。
- (2) $s_i \leqslant l_i \quad (i = 1, 2, \cdots, k)$.

3) 矩阵可对角化的判别

- (1) n 级方阵 A 可对角化当且仅当 A 有 n 个线性无关的特征向量。
- (2) 若 n 级方阵 A 有 n 个不同的特征值, 则 A 可对角化。
- (3) n 级方阵 A 可对角化当且仅当 A 的每个特征值的代数重数都等于几何重数。

4) 求可逆矩阵 T, 使 $T^{-1}AT$ 为对角矩阵

已知n级方阵A可对角化。

第一步: 求矩阵 A 的特征值。

第二步: 设 $\lambda_1, \lambda_2, \dots, \lambda_t$ 是 **A** 的所有不回的特征值, 对 $\lambda_k(k=1,2,\dots,t)$, 求出与其相 应的线性无关的特征向量

$$\eta_{k1}, \eta_{k2}, \cdots, \eta_{k,l_k}$$
 $(l_k = n - r (\lambda_k E_n - A), l_1 + l_2 + \cdots + l_t = n)$

第三步: 令
$$T=(\eta_{11},\cdots,\eta_{1,l_1},\eta_{21},\cdots,\eta_{2,l_2},\cdots,\eta_{t1},\cdots,\eta_{t,l_t})$$
, 有

5) 求 Ak (k 为正整数)

已知n级方阵A可对角化。

第一步: 求n级可逆矩阵T. 使得

$$oldsymbol{T}^{-1}oldsymbol{A}oldsymbol{T} = \left(egin{array}{ccc} \lambda_1 & & & & & \ & \lambda_2 & & & & \ & & \ddots & & & \ & & & \lambda_n \end{array}
ight) = oldsymbol{\Lambda}$$

为对角矩阵。

第二步: $A = T\Lambda T^{-1}$, 推出

$$oldsymbol{A}^k = oldsymbol{T} \left(egin{array}{cccc} \lambda_1^k & & & & \ & \lambda_2^k & & & \ & & \ddots & & \ & & & \lambda_n^k \end{array}
ight) oldsymbol{T}^{-1}$$

2. 线性变换可对角化

1) 线性变换可对角化的定义

设 σ 是数域P上的n维线性空间V的线性变换,如果存在V的一组基,使得 σ 在该下的矩阵为对角矩阵,就称 σ **可对角化**。

2) 线性变换可对角化的判别

设 σ 是数域 P 上的 n 维线性空间 V 的线性变换, σ 在 V 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的 矩阵为 $A, \lambda_1, \lambda_2, \cdots, \lambda_k$ 是 n 级方阵 A 的所有不同的特征值。

- (1) σ 可对角化当且仅当 σ 有 n 个线性无关的特征向量。
- (2) 若 σ 有 n 个不同的特征值, 则 σ 可对角化。
- (3) 若 $\lambda_1, \lambda_2, \dots, \lambda_k \in P$, 则 σ 可对角化当且仅当对 $i = 1, 2, \dots, k, \lambda_i$ 的代数重数等于 λ_i 的几何重数。

注: λ_i 的几何重数 = $\dim V_{\lambda_i}$, 其中 $V_{\lambda_i} = \{ \boldsymbol{\alpha} \in V \mid \sigma(\boldsymbol{\alpha}) = \lambda_i \boldsymbol{\alpha} \}$ 为 σ 的属于特征值 λ_i 的特行子空间, 也等于 $n - r(\lambda_i E_n - \boldsymbol{A})$, 即齐次线性方程组 $(\lambda_i E_n - \boldsymbol{A}) \boldsymbol{x} = \boldsymbol{0}$ 的解空间的维数。而 λ_i 的代数重数等于 λ_i 作为 σ 的特征多项式 $f_{\sigma}(\lambda)$ 的根的重数。

(4) 若 $\lambda_1, \lambda_2, \dots, \lambda_k$ 中至少有一个不在数域 P 中,则 σ 不可对角化。

3) 求过渡矩阵 T 及基

已知数域 P 上的 n 维线性空间 V 的线性变换 σ 可对角化, 求 V 的一组基, 使得 σ 在该基下的矩阵为对角矩阵, 并求过渡矩阵。

第一步: 取定 V 一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 求出 σ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵 A。

第二步: 求可逆矩阵 T, 使 $T^{-1}AT$ 为对角矩阵, T 就是所求的过渡矩阵。

第三步: 令 $(\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n) T, \beta_1, \beta_2, \cdots, \beta_n$ 就是所求的基, σ 在基 $\beta_1, \beta_2, \cdots, \beta_n$ 下的矩阵为对角矩阵 $T^{-1}AT$ 。

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

- 知识点 1: 线性变换的定义
- 知识点 2: 线性变换的运算与矩
- 知识点 3:特征值、特征向量与对角矩阵
- 知识点 4: 线性变换的值域与核
- 知识点 5: 不变子空间

(一) 线性变换的值域与核的定义

设 σ 是数域 P 上的线性空间 V 的线性变换, σ 的全体像组成的集合称为 σ 的<mark>值域</mark>, 用 σV 表示;

V 中所有被 σ 变成零向量的向量组成的集合称为 σ 的 δ , 用 $\sigma^{-1}(0)$ 表示。

若用集合记号则

$$\sigma V = \{ \sigma(\alpha) \mid \alpha \in V \}, \quad \sigma^{-1}(\mathbf{0}) = \{ \alpha \mid \sigma(\alpha) = \mathbf{0}, \alpha \in V \}$$
(19)

式(19)中的 σV 与 $\sigma^{-1}(\mathbf{0})$ 都是 V 的子空间。 (σV 与 $\sigma^{-1}(\mathbf{0})$ 也可分别记为 $\operatorname{Im} \sigma$ 与 $\operatorname{Ker} \sigma$ 。)

(二) 线性变换的秩与零度

设 σ 是数域 P 上的线性空间 V 的线性变换。

 σ 的值域 σV 的维数 dim(σV) 称为 σ 的 \mathfrak{R} ;

 σ 的核 $\sigma^{-1}(\mathbf{0})$ 的维数 dim $(\sigma^{-1}(\mathbf{0}))$ 称为 σ 的零度。

(三) 重要结论

设 σ 是数域P上的线性空间V的线性变换。

(1) 令
$$g(x), h(x) \in P[x], f(x) = g(x)h(x),$$
 如果 $(g(x), h(x)) = 1$, 那么
$$(f(\sigma))^{-1}(\mathbf{0}) = (g(\sigma))^{-1}(\mathbf{0}) \oplus (h(\sigma))^{-1}(\mathbf{0})$$

(2)
$$\sigma$$
 可逆当且仅当 $\sigma^{-1}(\mathbf{0}) = \{\mathbf{0}\}$, 且 $\sigma V = V$ 。

(四) 有限维线性空间的线性变换的值域与核

1. 重要结论

设 σ 是数域 P 上的 n 维线性空间 V 的线性变换, σ 在 V 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为 A, 任取 $\alpha = a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n \in V$ 。

- (1) $\alpha \in \sigma^{-1}(0)$ 当且仅当 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标 $(a_1, a_2, \dots, a_n)'$ 是齐次线性 方程组 Ax = 0 的解。
 - (2) 设 W 是齐次线性方程组 Ax=0 的解空间, 任取 $\beta=\sum_{i=1}^n b_i\alpha_i\in\sigma^{-1}(0)$, 令

$$f: \sigma^{-1}(\mathbf{0}) o W, \quad oldsymbol{eta} \mapsto \left(egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight)$$

由(1)与线性空间同构的重要结论知 f 是双射, 且保持 V 的线性运算, 因此 f 是 $\sigma^{-1}(\mathbf{0})$ 到 W 的同构映射, 于是 $\sigma^{-1}(\mathbf{0}) \cong W$ 。

(3) 设 $\eta_1, \eta_2, \dots, \eta_{n-r(A)}$ 是齐次线性方程组 Ax = 0 的一个基础解系, 那么 $\eta_1, \eta_2, \dots, \eta_{n-r(A)}$ 是 Ax = 0 的解空间 W 的一组基, 令

$$\gamma_k = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n) \, \boldsymbol{\eta}_k \quad (k = 1, 2, \cdots, n - r(\boldsymbol{A}))$$

由(2)知 $\gamma_1, \gamma_2, \cdots, \gamma_{n-r(A)}$ 是 $\sigma^{-1}(\mathbf{0})$ 的一组基, 于是

$$\dim \left(\sigma^{-1}(\mathbf{0})\right) = n - r(\mathbf{A})$$

且.

$$\sigma^{-1}(\mathbf{0}) = L\left(\gamma_1, \gamma_2, \cdots, \gamma_{n-r(\mathbf{A})}\right)$$

$$= \left\{k_1 \gamma_1 + k_2 \gamma_2 + \cdots + k_{n-r(\mathbf{A})} \gamma_{n-r(\mathbf{A})} \mid k_1, k_2, \cdots, k_{n-r(\mathbf{A})} \in P\right\}$$

知 σ 的零度为 $n-r(\mathbf{A})$ 。

- (4) $\sigma V = L(\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n)), \sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n)$ 的一个极大线性,果存在) 就是 σV 的一组基,而 $\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_n)$ 的秩等于 r(A), 所以 σ 的秩为 r(A)。
 - (5) σV 的一组基的原像及 $\sigma^{-1}(\mathbf{0})$ 的一组基合起来就是 V 的一组基, 因此

$$\dim(\sigma V) + \dim\left(\sigma^{-1}(\mathbf{0})\right) = n$$

(6)
$$\sigma$$
 可逆当且仅当 $\sigma^{-1}(\mathbf{0}) = \{\mathbf{0}\}$ 或 $\sigma V = V$ 。

2. $\sigma^{-1}(0)$ 与 σV 的求法

1) $\sigma^{-1}(\mathbf{0})$ 的求法

若
$$\sigma = o$$
, 则 $\sigma^{-1}(\mathbf{0}) = V$; 若 $\sigma \neq o$,

第一步: 取定 V 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 求出 σ 在该基下的矩阵 A 。

第二步:解齐次线性方程组 Ax=0,如果 Ax=0 只有零解,郡么如果 Ax=0 有非零解,求出它的一个基础解系 $\eta_1\eta_2,\cdots,\eta_{n-(A)}$ 转第

$$\sigma^{-1}(0) = L\left(\gamma_1, \gamma_2, \cdots, \gamma_{n-r(\mathbf{A})}\right)$$

$$= \left\{k_1 \gamma_1 + k_2 \gamma_2 + \cdots + k_{n-r(\mathbf{A})} \gamma_{n-r(\mathbf{A})} \mid k_1, k_2, \cdots, k_{n-r(\mathbf{A})} \in P\right\}$$

2) σV 的求法

若 $\sigma = o$, 则 $\sigma V = \{\mathbf{0}\};$ 若 $\sigma \neq 0$,

第一步: 取定 V 的一组基 $\alpha_1, \alpha_2, \dots, \alpha_n$, 求出 σ 在该基下的矩阵 A 。

第二步: 设矩阵 \boldsymbol{A} 的列向量组为 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_n$,求出 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \cdots, \boldsymbol{\eta}_n$ 的一个极大线性无关组 $\boldsymbol{\eta}_{i_1}, \boldsymbol{\eta}_{i_2}, \cdots, \boldsymbol{\eta}_{i_{(1)}}$,得到 $\boldsymbol{\sigma}(\boldsymbol{\alpha}_1), \boldsymbol{\sigma}(\boldsymbol{\alpha}_2), \cdots, \boldsymbol{\sigma}(\boldsymbol{\alpha}_n)$ 的一个极大线性无关组 $\boldsymbol{\sigma}(\boldsymbol{\alpha}_{i_1}), \boldsymbol{\sigma}(\boldsymbol{\alpha}_{i_2}), \cdots, \boldsymbol{\sigma}(\boldsymbol{\alpha}_{i_{(i_1)}})$,也就是 $\boldsymbol{\sigma}V$ 的一组基,于是

$$\sigma V = L\left(\sigma\left(\boldsymbol{\alpha}_{i_{1}}\right), \sigma\left(\boldsymbol{\alpha}_{i_{2}}\right), \cdots, \sigma\left(\boldsymbol{\alpha}_{i_{(41)}}\right)\right)$$

$$= \left\{l_{i_{1}}\sigma\left(\boldsymbol{\alpha}_{i_{1}}\right) + l_{i_{2}}\sigma\left(\boldsymbol{\alpha}_{i_{2}}\right) + \cdots + l_{i_{(\lambda1)}}\sigma\left(\boldsymbol{\alpha}_{i_{1}(\lambda)}\right) \mid l_{i_{1}}, l_{i_{2}}, \cdots, l_{i_{(1)}} \in P\right\}$$

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

- 知识点 1: 线性变换的定义
- 知识点 2: 线性变换的运算与矩阵
- 知识点 3:特征值、特征向量与对角矩阵
- 知识点 4: 线性变换的值域与核
- 知识点 5: 不变子空间

(一) 不变子空间的定义

设 σ 是数域 P 上的线性空间 V 的线性变换, W 是 V 的子空间。如果 W 中的向量在 σ 的像仍在 W 中,即对 $\forall \alpha \in W$,都有 $\sigma(\alpha) \in W$ (也即 $\sigma(W) \subseteq W$),就称 W 是 σ 的不变子空间。

(二) 不变子空间举例

- (1) 设 V 是数域 P 上的线性空间,那么 $\{\mathbf{0}\}$ 与 V 都是 V 的任一线性变换的不变子空间。
- (2) 设 σ 是数域 P 上的线性空间 V 的线性变换, λ 是 σ 的任意一个特征值, 那么 σ 的特征子空间 $V_{\lambda} = \{ \alpha \mid \sigma(\alpha) = \lambda \alpha, \alpha \in V \}$ 是 σ 的不变子空间。
- (3) 线性变换的循环子空间: 设 σ 是数域 P 上的 n>0 维线性空间 V 的线性变换, 任取 $\mathbf{0} \neq \alpha \in V$, 必存在正整数 m, 使得 $\alpha, \sigma(\alpha), \cdots, \sigma^{m-1}(\alpha)$ 线性无关, 而 $\alpha, \sigma(\alpha), \cdots, \sigma^m(\alpha)$ 线性相关, 令 $W = L\left(\alpha, \sigma(\alpha), \cdots, \sigma^{m-1}(\alpha)\right)$, 则 W 是 σ 的不变子空间, 称 W 为 σ 的循环子空间。

(三) 线性变换在其不变子空间上的限制

1. 定义

设 σ 是数域P上的线性空间V的线性变换,W是 σ 的不变子空间,那么

$$\sigma|_{W}: W \to W, \boldsymbol{\alpha} \mapsto \sigma(\boldsymbol{\alpha}), \forall \boldsymbol{\alpha} \in W$$

是 W 上的线性变换, 称 $\sigma|_{W}$ 为 σ 在 W 上的限制。

2. 性质

设 σ 是数域 P 上的 n 维线性空间 V 的线性变换, W 是 σ 的不变子空间, $0 < \dim W = m < n$, 取 W 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_m$, 将其扩充为 V 的一组基 $\alpha_1, \alpha_2, \cdots, \alpha_m, \alpha_{m+1}, \cdots, \alpha_n$, 那么 σ 在该基下的矩阵为 $\begin{pmatrix} A_1 & A_2 \\ O & A_3 \end{pmatrix}$, 其中 A_1 为 $\sigma|_W$ 在 W 的基 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 下的矩阵。

内容概要

1 知识点归纳与要点解析

- 一、线性变换的概念与判别
- 二、线性变换的运算、矩阵
- 三、特征值、特征向量与对角矩阵
- 四、线性变换的值域与核
- 五、线性变换的不变子空间

2 典型例题

知识点 1:线性变换的定义

知识点 2: 线性变换的运算与矩阵

知识点 3:特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

例 7.1 在线性空间 P^n 中定义变换 $\sigma: \sigma(x_1, x_2, \dots, x_n) = (0, x_2, \dots, x_n)$ 。 证明: σ 是 P^n 的线性变换。

证明:【解题思路】用线性变换的定义或判别定理。

任取
$$\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n) \in P^n, k, l \in P, 有$$

$$k\alpha + l\beta = (ka_1 + lb_1, ka_2 + lb_2, \dots, ka_n + lb_n)$$

于是

$$\sigma(k\boldsymbol{\alpha} + l\boldsymbol{\beta}) = (0, ka_2 + lb_2, \cdots, ka_n + lb_n)$$

$$= k(0, a_2, \cdots, a_n) + l(0, b_2, \cdots, b_n)$$

$$= k\sigma(\boldsymbol{\alpha}) + l\sigma(\boldsymbol{\beta})$$

因此 σ 是 P^n 的线性变换。

例 7.2 在 \mathbf{R}^3 中定义变换 $\sigma(x_1, x_2, x_3) = (x_1^2, x_2 + x_3, 0)$, 试证: σ 不是 \mathbf{R}^3 的线性变换。

 $证明: 【解题思路】只需说明<math>\sigma$ 不满足线性变换定义中的某一条即可。

取
$$\alpha_0 = (1,0,0) \in \mathbf{R}^3$$
, 有 $2\alpha_0 = (2,0,0)$, 于是 $\sigma(2\alpha_0) = \sigma(2,0,0) = (4,0,0)$, 但 $2\sigma(\alpha_0) = 2\sigma(1,0,0) = 2(1,0,0) = (2,0,0)$, 所以 $\sigma(2\alpha_0) \neq 2\sigma(\alpha_0)$, 因此命题成立。

例 7.3 在线性空间 $P^{n\times n}$ 中定义变换 $\sigma: \sigma(\mathbf{A}) = \mathbf{A}', \forall \mathbf{A} \in P^{n\times n}$, 证明: $\sigma \in P^{n\times n}$ 上的对合线性变换, 即 σ 是满足 $\sigma^2 = \iota$ ($P^{n\times n}$ 上的恒等变换) 的线性变换。

证明:【解题思路】用线性变换的定义或判断定理及线性变换的相等。

任取 $\mathbf{A}, \mathbf{B} \in P^{n \times n}, k, l \in P$, 有

$$\sigma(k\mathbf{A} + l\mathbf{B}) = (k\mathbf{A} + l\mathbf{B})' = k\mathbf{A}' + l\mathbf{B}' = k\sigma(\mathbf{A}) + l\sigma(\mathbf{B})$$

所以 σ 是 $P^{n\times n}$ 的线性变换。

因为
$$\sigma^2(\mathbf{A}) = \sigma(\sigma(\mathbf{A})) = \sigma(\mathbf{A}') = (\mathbf{A}')' = \mathbf{A} = \iota(\mathbf{A}), \forall \mathbf{A} \in P^{n \times n}$$
, 所以 $\sigma^2 = \iota$.

例 7.4 (天津大学, **2007** 年)设 V 是数域 P 上的线性空间, W_1, W_2 都是 V 的子空间, 且 $V = W_1 \oplus W_2, \sigma_1, \sigma_2$ 分别是 W_1 与 W_2 的线性变换, 定义法则 σ 如下:

$$\sigma\left(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right)=2\sigma_{1}\left(\boldsymbol{\alpha}_{1}\right)-3\sigma_{2}\left(\boldsymbol{\alpha}_{2}\right),\forall\boldsymbol{\alpha}_{1}\in W_{1},\boldsymbol{\alpha}_{2}\in W_{2}$$

证明: σ 是 V 的线性变换。

证明: 【解题思路】首先说明 σ 是 V 的变换; 再用线性变换的定义或判别定理。

任取 $\alpha \in V$, 因为 $V = W_1 \oplus W_2$, 所以存在唯一的 $\alpha_1 \in W_1, \alpha_2 \in W_2$, 使得 $\alpha = \alpha_1 + \alpha_2$ 。 又 σ_1, σ_2 分别是 W_1, W_2 上的线性变换, 知 $2\sigma_1(\alpha_1) \in W_1$ 且唯一, $-3\sigma_2(\alpha_2) \in W_2$ 且唯一, 进而有 $\sigma(\alpha) = \sigma(\alpha_1 + \alpha_2) = 2\sigma_1(\alpha_1) - 3\sigma_2(\alpha_2) \in V$ 且唯一, 于 是对 $\forall \alpha \in V$, 存在 V 中唯一的元素 $2\sigma_1(\alpha_1) - 3\sigma_2(\alpha_2)$ 与之对应, 所以 σ 是 V 上的变换。

再任取 $\beta \in V$, 则存在唯一的 $\beta_1 \in W_1$, $\beta_2 \in W_2$, 使得 $\beta = \beta_1 + \beta_2$, 于是 $\alpha_1 + \beta_1 \in W_1$, $\alpha_2 + \beta_2 \in W_2$, 而 σ_1, σ_2 分别是 W_1 , W_2 上的线性变换, 且

$$\boldsymbol{\alpha} + \boldsymbol{\beta} = (\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + (\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2) = (\boldsymbol{\alpha}_1 + \boldsymbol{\beta}_1) + (\boldsymbol{\alpha}_2 + \boldsymbol{\beta}_2)$$

所以

$$\sigma(\boldsymbol{\alpha} + \boldsymbol{\beta}) = 2\sigma_1 (\boldsymbol{\alpha}_1 + \boldsymbol{\beta}_1) - 3\sigma_2 (\boldsymbol{\alpha}_2 + \boldsymbol{\beta}_2)$$

$$= (2\sigma_1 (\boldsymbol{\alpha}_1) - 3\sigma_2 (\boldsymbol{\alpha}_2)) + (2\sigma_1 (\boldsymbol{\beta}_1) - 3\sigma_2 (\boldsymbol{\beta}_2))$$

$$= \sigma(\boldsymbol{\alpha}) + \sigma(\boldsymbol{\beta})$$

对 $\forall k \in P$, 有 $k\boldsymbol{\alpha} = k\boldsymbol{\alpha}_1 + k\boldsymbol{\alpha}_2, k\boldsymbol{\alpha}_1 \in W_1, k\boldsymbol{\alpha}_2 \in W_2$ 。 又 σ_1, σ_2 分别是 W_1, W_2 上的 线性变换, 得 $\sigma(k\boldsymbol{\alpha}) = \sigma\left(k\boldsymbol{\alpha}_1 + k\boldsymbol{\alpha}_2\right) = 2\sigma_1\left(k\boldsymbol{\alpha}_1\right) - 3\sigma_2\left(k\boldsymbol{\alpha}_2\right) = k\left(2\sigma_1\left(\boldsymbol{\alpha}_1\right) - 3\sigma_2\left(\boldsymbol{\alpha}_2\right)\right) = k\sigma(\boldsymbol{\alpha})$, 因此 命题成立。

68/118

例 7.5 (大连交通大学, 2014 年) 在 $P^{n \times n}$ 中定义变换:

$$\sigma(X) = AXB + CX + XD$$
 ($\forall X \in P^{n \times n}, A, B, C, D \in P^{n \times n}$ 取定)

证明: (1) σ 是线性变换。

- (2) 当 C = D = O 时, σ 是可逆线性变换的充分必要条件为 A, B 都是可逆矩阵。
- 证明: (1)【解题思路】用线性变换的定义或判别定理。

对 $\forall k, l \in P, \forall X_1, X_2 \in P^{n \times n}$, 有

$$\sigma(kX_1 + lX_2) = A(kX_1 + lX_2)B + C(kX_1 + lX_2) + (kX_1 + lX_2)D$$

$$= k(AX_1B + CX_1 + X_1D) + l(AX_2B + CX_2 + X_2D)$$

$$= k\sigma(X_1) + l\sigma(X_2)$$

所以 σ 是线性变换。

(2)【解题思路】用可逆线性变换的定义。

因为 C = D = O, 所以 $\sigma(X) = AXB$, $\forall X \in P^{n \times n}$.

必要性: 因为 $\sigma\sigma^{-1}(\mathbf{E}_n) = \sigma(\sigma^{-1}(\mathbf{E}_n)) = \mathbf{A}(\sigma^{-1}(\mathbf{E}_n))\mathbf{B} = \imath(\mathbf{E}_n) = \mathbf{E}_n$, 所以 \mathbf{A}, \mathbf{B} 都是可逆矩阵。

充分性: 因为 A, B 都是可逆矩阵, 令 $\tau(X) = A^{-1}XB^{-1}$, 所以 τ 是 $P^{n\times n}$ 上的变换, 且对 $\forall X \in P^{n\times n}$, 有

$$\sigma\tau(\boldsymbol{X}) = \sigma(\tau(\boldsymbol{X})) = \sigma\left(\boldsymbol{A}^{-1}\boldsymbol{X}\boldsymbol{B}^{-1}\right) = \left(\boldsymbol{A}\boldsymbol{A}^{-1}\right)\boldsymbol{X}\left(\boldsymbol{B}^{-1}\boldsymbol{B}\right) = \boldsymbol{X}$$
$$\tau\sigma(\boldsymbol{X}) = \tau(\sigma(\boldsymbol{X})) = \tau(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = \left(\boldsymbol{A}^{-1}\boldsymbol{A}\right)\boldsymbol{X}\left(\boldsymbol{B}\boldsymbol{B}^{-1}\right) = \boldsymbol{X}$$

所以 $\sigma \tau = \tau \sigma = i$, 知 σ 是可逆线性变换。

内容概要

- 1 知识点归纳与要点解析
 - 一、线性变换的概念与判别
 - 二、线性变换的运算、矩阵
 - 三、特征值、特征向量与对角矩阵
 - 四、线性变换的值域与核
 - 五、线性变换的不变子空间

2 典型例题

知识点 1: 线性变换的定义

知识点 2: 线性变换的运算与矩阵

印识点 3:特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

例 7.6 设 σ 是线性空间 \mathbf{R}^3 的线性变换, 满足对任意的 $\boldsymbol{\alpha} = (x, y, z) \in \mathbf{R}^3$, 有

$$\sigma(\alpha) = (x+y, y+z, z+x)$$

求 σ 在基 $\alpha_1 = (0,1,1), \alpha_2 = (1,0,1), \alpha_3 = (1,1,0)$ 下的矩阵 **B** 。

解:【解题思路】用线性变换矩阵的定义或线性变换在不同基下矩阵之间的关系。

方法 1: 用线性变换的矩阵的定义。

设

$$\sigma(\boldsymbol{\alpha}_1) = x_{11}\boldsymbol{\alpha}_1 + x_{12}\boldsymbol{\alpha}_2 + x_{13}\boldsymbol{\alpha}_3$$

$$\sigma(\boldsymbol{\alpha}_2) = x_{21}\boldsymbol{\alpha}_1 + x_{22}\boldsymbol{\alpha}_2 + x_{23}\boldsymbol{\alpha}_3$$

$$\sigma(\boldsymbol{\alpha}_3) = x_{31}\boldsymbol{\alpha}_1 + x_{32}\boldsymbol{\alpha}_2 + x_{33}\boldsymbol{\alpha}_3$$

那么
$$oldsymbol{B}=\left(egin{array}{ccc} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{array}
ight)$$
,且

$$(\boldsymbol{\alpha}_{1}', \boldsymbol{\alpha}_{2}', \boldsymbol{\alpha}_{3}') \begin{pmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{pmatrix} = (\sigma(\boldsymbol{\alpha}_{1})', \sigma(\boldsymbol{\alpha}_{2})', \sigma(\boldsymbol{\alpha}_{3})') .$$

由题设可知 $\sigma(\alpha_1) = (1, 2, 1), \sigma(\alpha_2) = (1, 1, 2), \sigma(\alpha_3) = (2, 1, 1)$, 于是

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
(20)

由式(20)得

$$\boldsymbol{B} = \begin{pmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

方法 2: 用线性变换在不同基下矩阵之间的关系。

取 \mathbf{R}^3 的基 $\boldsymbol{\varepsilon}_1 = (1,0,0), \boldsymbol{\varepsilon}_2 = (0,1,0), \boldsymbol{\varepsilon}_3 = (0,0,1), 则$

$$(\boldsymbol{lpha}_1, \boldsymbol{lpha}_2, \boldsymbol{lpha}_3) = (\boldsymbol{arepsilon}_1, \boldsymbol{arepsilon}_2, \boldsymbol{arepsilon}_3) \left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight)$$

知
$$\varepsilon_1, \varepsilon_2, \varepsilon_3$$
 到 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵为 $T = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 。

由
$$\sigma$$
 的定义知 $\sigma(\varepsilon_1) = (1,0,1), \sigma(\varepsilon_2) = (1,1,0), \sigma(\varepsilon_3) = (0,1,1),$ 因此
$$\sigma(\varepsilon_1,\varepsilon_2,\varepsilon_3) = (\varepsilon_1,\varepsilon_2,\varepsilon_3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, 得 \sigma 在基 \varepsilon_1, \varepsilon_2, \varepsilon_3 下的矩阵为$$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
, 所以 σ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$m{B} = m{T}^{-1} m{A} m{T} = \left(egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}
ight) \left(egin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}
ight) = \left(egin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}
ight)$$

方法 3: 取 \mathbb{R}^3 的基 $\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0), \varepsilon_3 = (0,0,1), 则$

$$(oldsymbol{lpha}_1,oldsymbol{lpha}_2,oldsymbol{lpha}_3)=(oldsymbol{arepsilon}_1,oldsymbol{arepsilon}_2,oldsymbol{arepsilon}_3)\left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight)$$

由式 (21) 得

$$(oldsymbol{arepsilon}_1, oldsymbol{arepsilon}_2, oldsymbol{arepsilon}_3) = (oldsymbol{lpha}_1, oldsymbol{lpha}_2, oldsymbol{lpha}_3) \left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight)^{-1}$$

由 σ 的定义得 $\sigma(\alpha_1) = (1, 2, 1), \sigma(\alpha_2) = (1, 1, 2), \sigma(\alpha_3) = (2, 1, 1),$ 所以

$$\sigma\left(\boldsymbol{lpha}_{1}, \boldsymbol{lpha}_{2}, \boldsymbol{lpha}_{3}
ight) = \left(arepsilon_{1}, arepsilon_{2}, arepsilon_{3}
ight) \left(egin{array}{ccc} 1 & 1 & 2 \ 2 & 1 & 1 \ 1 & 2 & 1 \end{array}
ight)$$

76/118

(21)

(22)

(23)

由式 (22)与式 (23) 得

$$\sigma\left(oldsymbol{lpha}_1,oldsymbol{lpha}_2,oldsymbol{lpha}_3
ight)=\left(oldsymbol{lpha}_1,oldsymbol{lpha}_2,oldsymbol{lpha}_3
ight)\left(egin{array}{ccc} 0 & 1 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight)^{-1}\left(egin{array}{ccc} 1 & 1 & 2 \ 2 & 1 & 1 \ 1 & 2 & 1 \end{array}
ight)$$

由式 (24) 得 σ 在 α_1 , α_2 , α_3 下的矩阵为

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)^{-1} \left(\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right)$$

(24)

M 7.7 设 $\alpha_1, \alpha_2, \alpha_3$ 为线性空间 V 的一组基, σ 是 V 的线性变换, 且

$$\sigma\left(\boldsymbol{\alpha}_{1}\right)=\boldsymbol{\alpha}_{1}, \sigma\left(\boldsymbol{\alpha}_{2}\right)=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, \sigma\left(\boldsymbol{\alpha}_{3}\right)=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}$$

- (1) 证明: σ是可逆线性变换。
- (2) 求 $2\sigma \sigma^{-1}$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵。
- (1) 证明:【解题思路】用有限维线性空间上的线性变换可逆的判别定理。 由题设可知 σ 在 V 的基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

因为 $|A| = 1 \neq 0$, 所以 A 是可逆矩阵, 因此 σ 是可逆线性变换。

(2) **解**: $2\sigma - \sigma^{-1}$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$2\mathbf{A} - \mathbf{A}^{-1} = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

例 7.8 (天津大学, 2008 年) 设 \mathbf{R}^2 的线性变换 σ 在基 $\boldsymbol{\alpha}_1 = (1,2), \boldsymbol{\alpha}_2 = (2,1)$ 下的矩阵 为 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, 线性变换 τ 在基 $\boldsymbol{\eta}_1 = (1,1), \boldsymbol{\eta}_2 = (1,2)$ 下的矩阵为 $\boldsymbol{B}_2 = \begin{pmatrix} 3 & 3 \\ 2 & 4 \end{pmatrix}$.

- (1) 求 $\sigma + \tau$ 在基底 η_1, η_2 下的矩阵。
- (2) 求 $\sigma\tau$ 在基底 α_1, α_2 下的矩阵。
- (3) 设 $\boldsymbol{\xi} = (3,3)$, 求 $\sigma(\boldsymbol{\xi})$ 在 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 下的坐标。
- (4) 求 $\tau(\boldsymbol{\xi})$ 在 $\boldsymbol{\eta}_1,\boldsymbol{\eta}_2$ 下的坐标。
- **解**: (1) (2) 【解题思路】利用线性变换在不同基下的矩阵之间的关系求出 τ 在基 α_1,α_2 下的矩阵 B_1 及 σ 在基 η_1,η_2 下的矩阵 A_2 ,则可求出 $\sigma+\tau$ 在基底 η_1,η_2 下的矩阵 $A_2+B_2,\sigma\tau$ 在基底 α_1,α_2 下的矩阵 A_1B_1 。

取 \mathbf{R}^2 的基 $\varepsilon_1 = (1,0), \varepsilon_2 = (0,1), 则$

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2) = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 (25)

由式(25)得

$$(\boldsymbol{\eta}_1, \boldsymbol{\eta}_2) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) \begin{pmatrix} \frac{1}{3} & 1 \\ \frac{1}{3} & 0 \end{pmatrix}$$
(26)

由式(26)得

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2) \begin{pmatrix} \frac{1}{3} & 1 \\ \frac{1}{3} & 0 \end{pmatrix}^{-1} = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2) \begin{pmatrix} 0 & 3 \\ 1 & -1 \end{pmatrix}$$
 (27)

分别由式 (26)、式(27)知 α_1, α_2 到 η_1, η_2 的过渡矩阵 $T = \begin{pmatrix} \frac{1}{3} & 1 \\ \frac{1}{3} & 0 \end{pmatrix}, \eta_1, \eta_2$ 到 α_1, α_2 的过渡矩阵 $T^{-1} = \begin{pmatrix} 0 & 3 \\ 1 & -1 \end{pmatrix}$,于是 σ 在基 η_1, η_2 下的矩阵为

$$\boldsymbol{A}_2 = \boldsymbol{T}^{-1} \boldsymbol{A}_1 \boldsymbol{T} = \begin{pmatrix} 0 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 1 \\ \frac{1}{3} & 0 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ -\frac{2}{3} & -1 \end{pmatrix}$$

 τ 在基 α_1, α_2 下的矩阵为

$$\boldsymbol{B}_1 = \boldsymbol{T}\boldsymbol{B}_2\boldsymbol{T}^{-1} = \begin{pmatrix} \frac{1}{3} & 1\\ \frac{1}{3} & 0 \end{pmatrix} \begin{pmatrix} 3 & 3\\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 3\\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 4\\ 1 & 2 \end{pmatrix}$$

(1) $\sigma + \tau$ 在基底 n_1, n_2 下的矩阵为

$$\mathbf{A}_2 + \mathbf{B}_2 = \begin{pmatrix} 5 & 6 \\ -\frac{2}{3} & -1 \end{pmatrix} + \begin{pmatrix} 3 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 8 & 9 \\ \frac{4}{3} & 3 \end{pmatrix}$$

(2) $\sigma\tau$ 在基底 α_1, α_2 下的矩阵为

$$\boldsymbol{A}_1\boldsymbol{B}_1 = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right) \left(\begin{array}{cc} 5 & 4 \\ 1 & 2 \end{array}\right) = \left(\begin{array}{cc} 7 & 8 \\ 13 & 14 \end{array}\right)$$

(3)【解题思路】因为已经知道 σ 在基 α_1, α_2 下的矩阵 $A_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$,所以只需需基 α_1, α_2 下的华标。

因为
$$\boldsymbol{\xi} = (3,3) = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \begin{pmatrix} 3 \\ 3 \end{pmatrix} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
,所以 $\boldsymbol{\xi}$ 在基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 下的坐标为 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 。又 $\boldsymbol{\sigma}$ 在基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 下的矩阵 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$,于是 $\boldsymbol{\sigma}(\boldsymbol{\xi})$ 在 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 下的坐 $\boldsymbol{A}_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$

(4) 解颢思路与(3) 相同。

因为
$$\boldsymbol{\xi} = (3,3) = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \begin{pmatrix} 3 \\ 3 \end{pmatrix} = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2) \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2) \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
,所以 $\boldsymbol{\xi}$ 在基 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2$ 坐标为 $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ 。又 τ 在基 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2$ 下的矩阵 $\boldsymbol{B}_2 = \begin{pmatrix} 3 & 3 \\ 2 & 4 \end{pmatrix}$,于是 $\tau(\boldsymbol{\xi})$ 在 $\boldsymbol{\eta}_1, \boldsymbol{\eta}_2$ 下的坐标为 $\boldsymbol{B}_2 \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}$ 。

内容概要

1 知识点归纳与要点解析

- 一、线性变换的概念与判别
- 二、线性变换的运算、矩阵
- 三、特征值、特征向量与对角矩阵
- 四、线性变换的值域与核
- 五、线性变换的不变子空间

2 典型例题

知识点 1: 线性变换的定义

知识点 2: 线性变换的运算与矩

知识点 3: 特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

例 7.9 试求矩阵
$$\mathbf{A} = \begin{pmatrix} 3 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 0 & 5 & -3 \\ 4 & -1 & 3 & -1 \end{pmatrix}$$
 的特征值与相应的特征向量, 矩阵 \mathbf{A} 是否可

对角化? 为什么?

解: 由于

$$f_{\mathbf{A}}(\lambda) = \begin{vmatrix} \lambda - 3 & 1 & 0 & 0 \\ -1 & \lambda - 1 & 0 & 0 \\ -3 & 0 & \lambda - 5 & 3 \\ -4 & 1 & -3 & \lambda + 1 \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 1 \\ -1 & \lambda - 1 \end{vmatrix} \begin{vmatrix} \lambda - 5 & 3 \\ -3 & \lambda + 1 \end{vmatrix} = (\lambda - 2)^4,$$

所以 A 的特征值为 2,2,2,2。

解齐次线性方程组
$$(2\mathbf{E}_4 - \mathbf{A})\mathbf{x} = \mathbf{0}$$
, 得其一个基础解系 $\mathbf{\eta}_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$, $\mathbf{\eta}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$,

所以矩阵 A 的属于特征值 2 的全部特征向量为 $k_1\eta_1 + k_2\eta_2$, 其中 k_1, k_2 为任意不全为零的常数 (复数)。因为矩阵 A 只有一个不同的特征值就是 2 , 而特征值 2 的代数重数为 4 , 几何重数为 4-r ($2E_4 - A$) = 2 < 4, 因此矩阵 A 不能对角化。

例 7.10 设 σ 是线性空间 \mathbf{R}^3 的线性变换, 满足对任意的 $\boldsymbol{\alpha} = (x, y, z) \in \mathbf{R}^3$, 有

$$\sigma(\boldsymbol{\alpha}) = (x+y, y+z, z+x)$$

- (1) 求 σ 的特征值与相应的线性无关特征向量。
- (2) σ 是否可对角化? 为什么?

解: (1) 取
$$\mathbf{R}^3$$
 的基 $\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0), \varepsilon_3 = (0,0,1)$, 由 σ 的定义知

$$\sigma(\varepsilon_1) = (1, 0, 1), \sigma(\varepsilon_2) = (1, 1, 0), \sigma(\varepsilon_3) = (0, 1, 1)$$
 (28)

由式(28) 有 $\sigma(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, 得 σ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
, 于是 σ 的特征多项式为

$$f_{\sigma}(\lambda) = f_{\mathbf{A}}(\lambda) = |\lambda \mathbf{E}_3 - \mathbf{A}| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 1 & -1 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 2)(\lambda^2 - \lambda + 1)$$
 (29)

由式 (29)知 σ 只有一个特征值 2 。 对特征值 2 ,解齐次线性方程组 $(2E_3 - A)x = 0$,得其一 $\begin{pmatrix} 1 \end{pmatrix}$

个基础解系
$$\eta = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
,于是对特征值 2 得其线性无关的特征向量

$$oldsymbol{\gamma} = (oldsymbol{arepsilon}_1, oldsymbol{arepsilon}_2, oldsymbol{arepsilon}_3) \, oldsymbol{\eta} = (oldsymbol{arepsilon}_1, oldsymbol{arepsilon}_2, oldsymbol{arepsilon}_3) \, oldsymbol{\eta} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} \, .$$

特征向量 (或 σ 的线性无关的特征向量的个数达不到 3 个), 因此 σ 不能对角化。

(2) 由 (1) 知 σ 的特征多项式的根不都是 σ 的特征值, 所以 σ 不存在 3 个线性无关的

91/118

例 7.11 已知矩阵
$$\mathbf{A} = \mathbf{PQ}$$
, 其中 $\mathbf{P} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{Q} = (2, -1, 2)$, 求矩阵 $\mathbf{A}, \mathbf{A}^2, \mathbf{A}^{100}$ 。

解

$$\mathbf{A} = \mathbf{PQ} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} (2, -1, 2) = \begin{pmatrix} 2 & -1 & 2 \\ 4 & -2 & 4 \\ 2 & -1 & 2 \end{pmatrix}$$
$$f_{\mathbf{A}}(\lambda) = \begin{vmatrix} \lambda - 2 & 1 & -2 \\ -4 & \lambda + 2 & -4 \\ -2 & 1 & \lambda - 2 \end{vmatrix} = \lambda^{2}(\lambda - 2)$$

因此 A 的特征值为 0,0,2 。

对 \boldsymbol{A} 的特征值 0, 解齐次线性方程组 $(0\boldsymbol{E}_3 - \boldsymbol{A})\boldsymbol{x} = \boldsymbol{0}$, 得其一个基础解系 $\boldsymbol{\eta}_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$,

$$\eta_2 = \left(\begin{array}{c} 0 \\ 2 \\ 1 \end{array} \right)$$
 .

对 A 的特征值 2, 解齐次线性方程组 $(2E_3 - A)x = 0$, 得其一个基础解系 $\eta_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

。
$$\diamondsuit$$
 $oldsymbol{T}=(oldsymbol{\eta}_1,oldsymbol{\eta}_2,oldsymbol{\eta}_3)=\left(egin{array}{ccc}1&0&1\\2&2&2\\0&1&1\end{array}
ight)$,则

$$T^{-1} = \begin{pmatrix} 0 & \frac{1}{2} & -1 \\ -1 & \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} & 1 \end{pmatrix}, T^{-1}A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
。于是

$$\mathbf{A}^{2} = \mathbf{T} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{2} \mathbf{T}^{-1} = \begin{pmatrix} 4 & -2 & 4 \\ 8 & -4 & 8 \\ 4 & -2 & 4 \end{pmatrix}$$
$$\mathbf{A}^{100} = \mathbf{T} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{100} \mathbf{T}^{-1} = \begin{pmatrix} 2^{100} & -2^{99} & 2^{100} \\ 2^{101} & -2^{100} & 2^{101} \\ 2^{100} & -2^{99} & 2^{100} \end{pmatrix}$$

例 7.12 设 V 是数域 P 上的 3 维线性空间

$$\tau: V \to V, x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 \mapsto (x_1 + x_2)\alpha_1 + (x_1 + x_2)\alpha_2$$
 线性变换

问 τ 是否可对角化?如果可对角化,求V的一组菖并求 $\alpha_1,\alpha_2,\alpha_3$ 到该基的过渡矩阵T。

 \mathbf{M} : 由 τ 的定义知

$$\tau(\alpha_1) = \alpha_1 + \alpha_2, \tau(\alpha_2) = \alpha_1 + \alpha_2, \tau(\alpha_3) = 0$$
(30)

由式 (30) 得 τ 在基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 下的矩阵 $\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 于是 τ 的特征多项式为

$$f_{\tau}(\lambda) = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ -1 & \lambda - 1 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda^{2}(\lambda - 2)$$
 (31)

由式(31) 知 τ 的特征值为 0,0,2 。

对 τ 的特征值 $\mathbf{0}$, 解齐次线性方程组 $(0E_3 - \mathbf{A})\mathbf{x} = \mathbf{0}$, 得其一个基础解系

$$oldsymbol{\eta}_1=\left(egin{array}{c}1\\-1\\0\end{array}
ight),oldsymbol{\eta}_2=\left(egin{array}{c}0\\0\\1\end{array}
ight)$$

对 τ 的特征值 **2**,解齐次线性方程组 $(2E_3-A)$ x=0,得其一个基础解系 $\eta_3=\begin{pmatrix}1\\1\\0\end{pmatrix}$

。 令 $\gamma_3 = (\alpha_1, \alpha_2, \alpha_3) \eta_3 = \alpha_1 + \alpha_2$, 则 γ_3 是 τ 的属于其特征值 2 的线性无关的特征向量。

于是 τ 有3个线性无关特征向量 $\gamma_1,\gamma_2,\gamma_3$,因此 τ 能够对角化,且 $\gamma_1,\gamma_2,\gamma_3$ 是V的一组基, τ 在基 $\gamma_1,\gamma_2,\gamma_3$ 下的矩阵是对角矩阵 $\begin{pmatrix}0\\0\\2\end{pmatrix}$ (因

$$\tau\left(\boldsymbol{\gamma}_{1}\right)=0, \tau\left(\boldsymbol{\gamma}_{2}\right)=0, \tau\left(\boldsymbol{\gamma}_{3}\right)=2\boldsymbol{\gamma}_{3}\right), \ \overrightarrow{\text{m}}\left(\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}, \boldsymbol{\gamma}_{3}\right)=\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)\left(\begin{array}{ccc} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) \Leftrightarrow$$

$$m{T} = (m{\eta}_1, m{\eta}_2, m{\eta}_3) = \left(egin{array}{ccc} 1 & 0 & 1 \ -1 & 0 & 1 \ 0 & 1 & 0 \end{array}
ight)$$

那么T就是所求的过渡矩阵。

例 7.13 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & -6 & -3 \\ 0 & -5 & -3 \\ 0 & 6 & 4 \end{pmatrix}$$
。

- (1) 求矩阵 A 的全部特征值和特征向量。
- (2) 矩阵 A 是否可对角化? 若可对角化, 求可逆矩阵 T, 使得 $T^{-1}AT$ 为对角矩阵。

解: (1)
$$f_{\mathbf{A}}(\lambda) = |\lambda E_3 - \mathbf{A}| = \begin{vmatrix} \lambda - 1 & 6 & 3 \\ 0 & \lambda + 5 & 3 \\ 0 & -6 & \lambda - 4 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2)$$
, 所以 **A** 的

特征值为 1,1,-2

对 \boldsymbol{A} 的特征值 $\boldsymbol{1}$,解齐次线性方程组 $(1E_3 - \boldsymbol{A})\boldsymbol{x} = 0$,得其一个基础解系

$$\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \eta_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, 于是矩阵 A 的属于特征值 1 的全部特征向量为$$

$$k_1 \eta_1 + k_2 \eta_2 = \begin{pmatrix} k_1 \\ k_2 \\ -2k_2 \end{pmatrix} \tag{32}$$

式 (32) 中的 k_1, k_2 为不全为零的任意常数。

对 A 的特征值 -2,解齐次线性方程组 $(-2E_3 - A)x = 0$,得其一个基础解系

$$\eta_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \text{于是矩阵 } \boldsymbol{A} \text{ 的属于特征值 } -2 \text{ 的全部特征向量为}$$

$$k_3 \eta_3 = \begin{pmatrix} k_3 \\ k_3 \\ -k_3 \end{pmatrix} \tag{33}$$

式 (33) 中的 k_3 为不为零的任意常数。

(2) 因为矩阵 A 有 3 个线性无关特征向量, 所以矩阵 A 可对角化。令

$$m{T} = (m{\eta}_1, m{\eta}_2, m{\eta}_3) = \left(egin{array}{ccc} 1 & 0 & 1 \ 0 & 1 & 1 \ 0 & -2 & -1 \end{array}
ight)$$

那么
$$T$$
是可逆矩阵,且 $T^{-1}AT=\left(egin{array}{ccc}1&&&\\&1&\\&&-2\end{array}
ight)$ 为对角矩阵。

例 7.14 (浙江大学, 2014 年) 已知 $A = \begin{pmatrix} O & E_n \\ E_n & O \end{pmatrix}$, 问 A 是否可对角化并给出理由。若 A 可对角化为 C, 给出可逆矩阵 P, 使得 $P^{-1}AP = C$ 。

解

$$f_{\mathbf{A}}(\lambda) = \begin{vmatrix} \lambda \mathbf{E}_n & -\mathbf{E}_n \\ -\mathbf{E}_n & \lambda \mathbf{E}_n \end{vmatrix} = \begin{vmatrix} \lambda \mathbf{E}_n & -\mathbf{E}_n \\ \mathbf{O} & \lambda \mathbf{E}_n - \frac{1}{\lambda} \mathbf{E}_n \end{vmatrix} = |\lambda \mathbf{E}_n| |\lambda \mathbf{E}_n - \frac{1}{\lambda} \mathbf{E}_n| = |\lambda^2 \mathbf{E}_n - \mathbf{E}_n|$$
所以 **A** 的全部特征值为 $\lambda_1 = \lambda_2 = \dots = \lambda_n = 1, \lambda_{n+1} = \lambda_{n+2} = \dots = \lambda_{2n} = -1$ 。

对 $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 1$, 解齐次线性方程组 $(1E_{2n} - A)x = 0$,得其一个基础解系

$$\eta_1 = \varepsilon_1 + \varepsilon_{n+1}, \eta_2 = \varepsilon_2 + \varepsilon_{n+2}, \cdots, \eta_n = \varepsilon_n + \varepsilon_{2n}$$
(34)

式 (34) 中的 $\varepsilon_i = (0, \dots, 0, 1, 0, \dots, 0) (i = 1, 2, \dots, 2n)$ 是 2n 维单位向量。

对 $\lambda_{n+1}=\lambda_{n+2}=\cdots=\lambda_{2n}=-1$,解齐次线性方程组 $(-1\textbf{\textit{E}}_{2n}-\textbf{\textit{A}})$ $\textbf{\textit{x}}=\textbf{\textit{0}}$ 得其一个基础解系

$$\eta_{n+1} = \varepsilon_1 - \varepsilon_{n+1}, \eta_{n+2} = \varepsilon_2 - \varepsilon_{n+2}, \cdots, \eta_{2n} = \varepsilon_n - \varepsilon_{2n}$$
(35)

式 (35)中的 $\varepsilon_i = (0, \dots, 0, 1, 0, \dots, 0) (i = 1, 2, \dots, 2n)$ 是 2n 维单位向量。由式 (7.34)、式 (7.35) 知 A 有 2n 个线性无关的特征向量 $\eta_1, \eta_2, \dots, \eta_n, \eta_{n+1}, \eta_{n+2}, \dots, \eta_{2n}$, 所以 A 可对 角化。目可逆矩阵

$$m{P}=(m{\eta}_1,m{\eta}_2,\cdots,m{\eta}_n,m{\eta}_{n+1},m{\eta}_{n+2},\cdots,m{\eta}_{2n})$$
 $m{P}^{-1}m{A}m{P}=\left(egin{array}{cc} m{E}_n & \mathbf{0} \ m{O} & -m{E}_n \end{array}
ight)$

例 7.15 (苏州大学, 2005 年) 设 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 10 & -3 & 5 \\ 4 & 0 & -1 \end{pmatrix}$, $\lambda_0 \in \mathbf{A}$ 最大的特征值, 求 \mathbf{A} 的属于 λ_0 的特征子空间的基。

解:
$$f_{\mathbf{A}}(\lambda) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ -10 & \lambda + 3 & -5 \\ -4 & 0 & \lambda + 1 \end{vmatrix} = (\lambda + 3)^2 (\lambda - 3)$$
, 所以 **A** 最大的特征值为 3。

对 A 最大的特征值 3,解齐次线性方程组 $(3E_3 - A)x = 0$,得其一个基础解系 $\eta_1 = \begin{pmatrix} 2 \\ 5 \\ 2 \end{pmatrix}$, η_1 也是 A 的属于其最大特征值 3 的特征子空间的基。

例 7.16 (浙江大学, 2006年)设矩阵

解:【解题思路】因为 $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}^*\mathbf{P} + 2\mathbf{E}_3 = \mathbf{P}^{-1}(\mathbf{A}^* + 2\mathbf{E}_3)\mathbf{P}$, 所以先求出 \mathbf{A} 的特征值和特征向量, 接着求出 \mathbf{A}^* , 进而求出 $\mathbf{A}^* + 2\mathbf{E}_3$ 的特征值和特征向量, 最后求出 \mathbf{B} 的特征值和特征向量。

先求 A 的特征值和特征向量。

知 A 的特征值为 1,1,7 。

$$f_{\mathbf{A}}(\lambda) = \begin{vmatrix} \lambda - 3 & -2 & -2 \\ -2 & \lambda - 3 & -2 \\ -2 & -2 & \lambda - 3 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 7)$$

对 A 的特征值 1, 解齐次线性方程组 $(1E_3 - A)x = 0$, 得其一个基础解系

$$\eta_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \eta_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \eta_1, \eta_2 \text{ if } A \text{ harteness in } A \text{ harteness in } A \text{ harteness in } A$$

对 A 的特征值 7, 解齐次线性方程组 $(7E_3 - A)x = 0$, 得其一个基础解系

$$\eta_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \eta_3$$
 就是 \boldsymbol{A} 的属于特征值 $\boldsymbol{7}$ 的线性无关特征向量。

再求 A^* , $A^* + 2E_3$ 的特征值和特征向量。

因为
$$|\mathbf{A}| = \begin{vmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{vmatrix} = 7 \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 7$$
,所以 \mathbf{A}^* 的特征值为 $\frac{7}{1} = 7, \frac{7}{1} = 7, \frac{7}{7} = 1$,

进而知 $A^* + 2E_3$ 的特征值为 $7 + 2 = 9, 7 + 2 = 9, 1 + 2 = 3, A^* + 2E_3$ 的属于特征值 9 的线性无关特征向量为 $\eta_1, \eta_2, A^* + 2E_3$ 的属于特征值 3 的线性无关特征向量为 η_3 。

最后求 B 的特征值和特征向量。

因为 B 与 $A^* + 2E_3$ 相似, 所以 B 的特征值为 9, 9, 3, B 的属于特征值 9 的线性无关特征向量为 $P^{-1}\eta_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $P^{-1}\eta_2 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$, 所以 B 的属于特征值 9 的全部特征向量为

$$k_1 \mathbf{P}^{-1} \boldsymbol{\eta}_1 + k_2 \mathbf{P}^{-1} \boldsymbol{\eta}_2 = \begin{pmatrix} k_1 - k_2 \\ -k_1 - k_2 \\ k_2 \end{pmatrix}$$
 (36)

式 (36) 中的 k_1, k_2 为任意两个不全为零的常数。

$m{B}$ 的属于特征值 3 的线性无关特征向量为 $m{P}^{-1}m{\eta}_3=\left(egin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)$, 所以 $m{B}$ 的属于特征值 3

的全部特征向量为

$$k_3 \mathbf{P}^{-1} \boldsymbol{\eta}_3 = \begin{pmatrix} 0 \\ k_3 \\ k_3 \end{pmatrix} \tag{37}$$

式 (37) 中的 k_3 为任意不为零的常数。

内容概要

1 知识点归纳与要点解析

- 一、线性变换的概念与判别
- 二、线性变换的运算、矩阵
- 三、特征值、特征向量与对角矩阵
- 四、线性变换的值域与核
- 五、线性变换的不变子空间

2 典型例题

知识点 1:线性变换的定义

知识点 2:线性变换的运算与矩阵

知识点 3: 特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

例 7.17 设 V 是数域 P 上的 **3** 维线性空间, $\alpha_1, \alpha_2, \alpha_3$ 为它的一组基。线性变换求 τ 的 核 $\tau^{-1}(\mathbf{0})$ 和值域 τV 。

$$\tau: V \to V, x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + x_3\boldsymbol{\alpha}_3 \mapsto 2x_1\boldsymbol{\alpha}_1 + 3x_2\boldsymbol{\alpha}_2 + 4x_3\boldsymbol{\alpha}_3$$

 \mathbf{M} : 由 τ 的定义知 $\tau(\boldsymbol{\alpha}_1)$

为
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
, 而 $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ 是可逆矩阵, 所以 τ 是 V 上的可逆线性变换, 知 $\tau^{-1}(\mathbf{0}) = \{\mathbf{0}\}, \tau V = V$ 。

110/118

例 7.18 (大连交通大学, 2014 年) 设 σ 是 \mathbb{R}^3 的线性变换, 且

$$\sigma(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, x_2 + x_3, x_1 + x_2 - 2x_3)$$

求: (1) 值域 $\sigma \mathbf{R}^3$ 及它的一组基和维数。

(2) 核 $\sigma^{-1}(0)$ 及它的一组基和维数。

 \mathbf{M} : 取 \mathbf{R}^3 的一组基 $\boldsymbol{\varepsilon}_1 = (1,0,0), \boldsymbol{\varepsilon}_2 = (0,1,0), \boldsymbol{\varepsilon}_3 = (0,0,1)$, 由 σ 的定义知

$$\sigma(\varepsilon_1) = (1, 0, 1), \sigma(\varepsilon_2) = (2, 1, 1), \sigma(\varepsilon_3) = (-1, 1, -2)$$

得
$$\sigma$$
 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ 。

(1)
$$\sigma \mathbf{R}^3 = L\left(\sigma\left(\varepsilon_1\right), \sigma\left(\varepsilon_2\right), \sigma\left(\varepsilon_3\right)\right)$$
, 因为 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 所

以
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ 为 \boldsymbol{A} 的列向量组的一个极大线性无关组, 因此

$$\sigma(\varepsilon_1) = (1,0,1), \sigma(\varepsilon_2) = (2,1,1)$$
 为 $\sigma \mathbf{R}^3$ 的一组基, 进而知

$$\sigma \mathbf{R}^3 = \{(k_1 + 2k_2, k_2, k_1 + k_2) \mid k_1, k_2 \in \mathbf{R}\}, \quad \dim(\sigma \mathbf{R}^3) = 2$$

(2) 因为
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, 得齐次线性方

程组
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 的一个基础解系 $\boldsymbol{\eta} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$, 进而得 $\sigma^{-1}(0)$ 的一组基

$$(\varepsilon_1, \varepsilon_2, \varepsilon_3)$$
 $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = (3, -1, 1),$ 因此

$$\sigma^{-1}(\mathbf{0}) = \{(3k, -k, k) \mid k \in \mathbf{R}\}, \quad \dim(\sigma^{-1}(\mathbf{0})) = 1$$

内容概要

1 知识点归纳与要点解析

- 一、线性变换的概念与判别
- 二、线性变换的运算、矩阵
- 三、特征值、特征向量与对角矩阵
- 四、线性变换的值域与核
- 五、线性变换的不变子空间

2 典型例题

知识点 1: 线性变换的定义

知识点 2: 线性变换的运算与矩

知识点 3:特征值、特征向量与对角矩阵

知识点 4: 线性变换的值域与核

知识点 5: 不变子空间

例 7.19 设实数域 \mathbf{R} 上的 $\mathbf{2}$ 维线性空间 V 的线性变换 σ 在 V 的一组基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 下的矩阵 为 $\boldsymbol{A} = \begin{pmatrix} 0 & 1 \\ 1-a & 0 \end{pmatrix}$,求 σ 的所有不变子匠间。

 \mathbf{M} : $\{0\}, V \in \sigma$ 的两个不变子空间。

设 W 是 σ 的任意一个不等于 $\{0\}$, V 的不变子空间, 因为 $\dim V = 2$, 所以 $\dim W = 1$ 。 设 α 为 W 的一组基, 那么 $W = \{k\alpha \mid k \in \mathbf{R}\}$ 。 因为 W 是 σ 的不变子空间, 所以 $\sigma(\alpha) \in W$, 于是存在 $\lambda_0 \in \mathbf{R}$, 使得 $\sigma(\alpha) = \lambda_0 \alpha$, 因此 α 是 σ 的属于特征值 λ_0 的特征户量, 知 W 是 σ 的特征子空间的 **1** 维子空间, 因此下面求 σ 的特征子空间。

因为
$$f_{\sigma}(\lambda) = f_{\mathbf{A}}(\lambda) = \begin{vmatrix} \lambda & -1 \\ -1 + a & \lambda \end{vmatrix} = \lambda^2 - (1 - a)$$
, 所以

- (1) 当 a > 1 时, σ 没有特征值, 因此此时 σ 只有两个不变子空间 $\{0\}, V$ 。
- (2) 当 a<1 时, σ 有两个不同的特征值 $\lambda_1=\sqrt{1-a}, \lambda_2=-\sqrt{1-a}$, 下面求 σ 的特征 子空间 $V_{\lambda_1}, V_{\lambda_2}$ (它们都是 **1** 维的。

- 1) 求 σ 的属于特征值 $\lambda_1 = \sqrt{1-a}$ 的特征子空间 V_{λ_1} 。 对特征值 $\lambda_1 = \sqrt{1-a}$,解齐次线性方程组 $\left(\sqrt{1-a}\mathbf{E}_2 \mathbf{A}\right)\mathbf{x} = \mathbf{0}$,得其一个基础解系 $\eta_1 = (1, \sqrt{1-a})'$,进而得到 V_{λ_1} 的一组基 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) \boldsymbol{\eta}_1 = \boldsymbol{\alpha}_1 + \sqrt{1-a}\boldsymbol{\alpha}_2$,于是 $V_{\lambda_1} = L\left(\boldsymbol{\alpha}_1 + \sqrt{1-a}\boldsymbol{\alpha}_2\right) = \left\{k\left(\boldsymbol{\alpha}_1 + \sqrt{1-a}\boldsymbol{\alpha}_2\right) \mid k \in \mathbf{R}\right\}$
- 2) 求 σ 的属于其特征值 $\lambda_2 = -\sqrt{1-a}$ 的特征子空间 V_{λ_2} 。 对特征值 $\lambda_2 = -\sqrt{1-a}$,解齐次线性方程组 $\left(-\sqrt{1-a}E_2 A\right)x = 0$,得其一个基础解系 $\eta_1 = (1, -\sqrt{1-a})'$,进而得到 V_{λ_1} 的一组基 $(\alpha_1, \alpha_2) \eta_1 = \alpha_1 \sqrt{1-a}\alpha_2$,于是 $V_{\lambda_2} = L\left(\alpha_1 \sqrt{1-a}\alpha_2\right) = \left\{k\left(\alpha_1 \sqrt{1-a}\alpha_2\right) \mid k \in \mathbf{R}\right\}$ 。 因此当 a < 1 时, σ 有四个不变子空间 $\{0\}, V, V_{\lambda_1}, V_{\lambda_2}$ 。
- (3) 当 a=1 时, σ 有两个相同的特征值 $\lambda_1=\lambda_2=0$, 下面求 σ 的特征子空间 $V_{\lambda=0}$ 。

对特征值 0,解齐次线性方程组 $(0E_2-A)$ x=0,得其一个基础解系 $\eta_3=(1,0)'$,进而得到 $V_{\lambda=0}$ 的一组基 $(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2)$ $\eta_3=\boldsymbol{\alpha}_1$,于是 $V_{\lambda=0}=L\left(\boldsymbol{\alpha}_1\right)=\left\{k\boldsymbol{\alpha}_1\mid k\in\mathbf{R}\right\}$ 。

因此当 a=1 时, σ 有三个不变子空间 $\{0\}, V, V_{\lambda=0}$ 。

例 7.20 设 σ 是实数域 **R** 上的 3 维线性空间 V 的一个线性变换, 对 V 的一组基 $\dot{\alpha}_1, \alpha_2, \alpha_3$, 有 $\sigma(\alpha_1) = 3\alpha_1 + 6\alpha_2 + 6\alpha_3, \sigma(\alpha_2) = 4\alpha_1 + 3\alpha_2 + 4\alpha_3, \sigma(\alpha_3) = -5\alpha_1 - 4\alpha_2 - 6\alpha_3$, 设 $\tau = \sigma^3 - 5\sigma$, 求 τ 的一个非平凡的不变[[空间]]。

解:【解题思路】若 λ 为 σ 的特征值, α 为 σ 的属于其特征值 λ 的特征向量, 则 $\lambda^3 - 5\lambda$ 就是 τ 的特征值, α 为 τ 的属于特征值 $\lambda^3 - 5\lambda$ 的特征向量, 进而 $L(\alpha)$ 就是 τ 的一个非平凡的不变子空间, 因此先求 σ 的特征值与相应的特征向量。

$$\sigma$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $\mathbf{A} = \begin{pmatrix} 3 & 4 & -5 \\ 6 & 3 & -4 \\ 6 & 4 & -6 \end{pmatrix}$, 于是 σ 的特征多项式为

$$f_{\sigma}(\lambda) = \begin{vmatrix} \lambda - 3 & -4 & 5 \\ -6 & \lambda - 3 & 4 \\ -6 & -4 & \lambda + 6 \end{vmatrix} = (\lambda - 3) (\lambda^2 + 3\lambda + 4)$$

所以 3 是 σ 的特征值, 于是 $3^3 - 5 \cdot 3 = 12$ 是 τ 的特征值。

对 σ 的特征值 3, 解齐次线性方程组 $(3E_3 - A)x = 0$, 得其一个基础解系 $\eta = \begin{pmatrix} 8 \\ 15 \\ 12 \end{pmatrix}$,

于是 $\alpha=8\alpha_1+15\alpha_2+12\alpha_3$ 为 σ 的属于特征值 3 的线性无关特征向量, 进而 $\alpha=8\alpha_1+15\alpha_2+12\alpha_3$ 为 τ 的属于其特征值 12 的线性无关特征向量, 因此得到 τ 的一个 非平凡的不变子空间 $V_{\lambda=12}=\{a\alpha\mid a\in\mathbf{R}\}$ 。