1

NCERT 10.5.3 10Q

EE22BTECH11010 - Venkatesh D Bandawar *

Question: Show that a_0 , a_1 , a_2 , ..., a_n , ... form an AP where an is defined as below:

1) $a_n = (3 + 4n)$

2) $a_n = (9 - 5n)$

Also find the sum of the first 15 terms in each case.

Solution:

Parameter	Description	Value
		(3+4n)u(n)
$x_i(n)$	<i>i</i> th Discrete signal	(9-5n)u(n)
		3
$x_i(0)$	First term of <i>i</i> th AP	9
		4
d_i	common difference of <i>i</i> th AP	-5

TABLE 2: Given parameters

formation,

$$y(14) = \frac{1}{2\pi j} \int Y(z)z^{13}dz$$
 (5)
= $\frac{1}{2\pi j} \int \frac{3 \cdot z^{15}}{(z-1)^2} dz + \frac{1}{2\pi j} \int \frac{4 \cdot z^{15}}{(z-1)^3} dz$ (6)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$
(7)

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{3 \cdot z^{15}}{(z - 1)^2} \right)$$
 (8)

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{4 \cdot z^{15}}{(z - 1)^3} \right)$$
(10)

$$= 420$$
 (11)

$$\implies y(14) = R_1 + R_2 \tag{12}$$

$$= 465$$
 (13)

1) From equation (??)

$$X(z) = \frac{3}{1 - z^{-1}} + \frac{4 \cdot z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
 (1)

$$y(n) = x(n) * u(n)$$
 (2)

$$Y(z) = X(z)U(z)$$
 (3)

$$= \left[\frac{3}{(1-z^{-1})^2} + \frac{4z^{-1}}{(1-z^{-1})^3} \right] \tag{4}$$

Fig. 1: $x_1(n) = (3 + 4n)u(n)$

Using contour integration for inverse Z trans-

Fig. 1: $x_1(n) = (2n^2 + 5n + 3)u(n)$

2) From equation (??)

$$X(z) = \frac{9}{1 - z^{-1}} - \frac{5 \cdot z^{-1}}{(1 - z^{-1})^2}; |z| > 1$$
 (14)

$$y(n) = x(n) * u(n)$$
 (15)

$$Y(z) = X(z)U(z)$$
 (16)

$$= \left[\frac{9}{\left(1 - z^{-1}\right)^2} - \frac{5z^{-1}}{\left(1 - z^{-1}\right)^3} \right] \tag{17}$$

Using contour integration for inverse Z transformation,

$$y(14) = \frac{1}{2\pi j} \int Y(z)z^{13}dz$$
 (18)
= $\frac{1}{2\pi j} \int \frac{9 \cdot z^{15}}{(z-1)^2} dz - \frac{1}{2\pi j} \int \frac{5 \cdot z^{15}}{(z-1)^3}$ (19)

$$\therefore R = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right)$$

$$R_1 = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \cdot \frac{9 \cdot z^{15}}{(z - 1)^2} \right)$$
(21)

$$= 135 \tag{22}$$

$$R_2 = \frac{1}{2!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \cdot \frac{5 \cdot z^{15}}{(z - 1)^3} \right)$$
(23)

$$= 525$$
 (24)

$$\implies y(14) = R_1 - R_2 \tag{25}$$

$$= -390$$
 (26)

Fig. 2: $x_2(n) = (9 - 5n)u(n)$

Fig. 2: $x_2(n) = (-5n^2 + 13n + 18)u(n)$