Interpretation of Regression Coefficients with Log-Transformed Variables

	Functional Form	Relationship	Interpretation	Exact Method	Approximate Method ^a
				a change in x of	a change in x of
Case 1 ^b	$ ln(y) = \alpha + \beta x $	x possesses a linear relationship with $\ln(y)$	a change in x will produce a % change in y	x_2-x_1 results in a $\left(e^{eta(x_2-x_1)}-1 ight)*100\%$ change in y	x_2-x_1 results in a $eta(x_2-x_1) * 100\%$ change in y
Case 2	$y = \alpha + \beta \ln(x)$	$\ln(x)$ possesses a linear relationship with y	a % change in x will produce a change in y	a change in x of $\left(\frac{x_2}{x_1}-1\right)*100\%$ results in a $\beta \ln \left(\frac{x_2}{x_1}\right)$ change in y	a change in x of 1% results in a $\frac{\beta}{100}$ change in y
Case 3	$\ln(y) = \alpha + \beta \ln(x)$	$\ln(x)$ possesses a linear relationship with $\ln(y)$	a % change in x will produce a % change in y	a change in x of $\left(\frac{x_2}{x_1}-1\right)*100\%$ results in a $\left(\left(\frac{x_2}{x_1}\right)^{\beta}-1\right)*100\%$ change in y	a change in x of 1% results in a $\beta\%$ change in y

^aThe approximate method uses log differences as a consistent estimator of percent changes. Bias increases as the percent changes increase. Therefore, this method should generally only be used with small % increases (ie, 1-10%).

^bThe simplest method for this case is to assume a $\Delta x = 1$. If the results are not easily interpretable (large or very small percentages), you can adjust Δx by orders of magnitude to fit the scale of your data (ie., multiply or divide by 10, 100, 1000, etc.).

[Case (:)
$$ln(y) = x + \beta x$$
 $7. \Delta y = \begin{pmatrix} y = \\ y = -1 \end{pmatrix}$ approximation $7.$

A corts

Pelotively

(a) $ln(y) = x + \beta x$

The proximation $7.$

A change in x of $(x_2 - x_1)$ loads to a bat $ln(y) = x + \beta x$

[Solve $ln(y) = x + \beta x$
 $ln($

approximation 7. By = In (42)

relatively small $ln(yz) - ln(yi) = (x+\beta xz) - (x+\beta xi)$ $\left(n\left(\frac{4z}{4!}\right) = \beta x_2 - \beta x_1\right)$ $= \beta(x_2-x_1)$ "A chage in X of (x2-X,) leads to a [B (x2-x1)] ×1007. change in y." (for sufficiently small To change Implication of Functional Formi

There is a linear relationship

between changes in x and percent changes in y.

Case 2:)
$$y = \alpha + \beta \ln(x)$$

$$Ay = y_2 - y_1$$

$$y_2 - y_1 = (\alpha + \beta \ln(x_2)) - (\alpha + \beta \ln(x_2))$$

$$y_{2}-y_{1} = \left(\alpha + \beta \ln(x_{2})\right) - \left(\alpha + \beta \ln(x_{1})\right)$$

$$= \beta \left(\ln(x_{2}) - \ln(x_{1})\right)$$

$$= \beta \ln\left(\frac{x_{2}}{x_{1}}\right)$$

"
An $\left[\frac{x_2}{x_1} - 1\right] \times 100\%$ change in x_1 leads to a $\beta \ln \left(\frac{x_2}{x_1}\right)$ change in y."

Implication of Functional Form:

There is a linear relationship between percent changes in x and drages in y.

> "A 17. chage in x leads to a \$/100 change in y."

Case 3:
$$|n(y) = \alpha + \beta |n(x)$$
7.
$$\Delta y = \frac{\sqrt{2}}{y'} - 1$$
10 rewrite
$$\alpha + \beta |n(x)$$

$$= \alpha \times \beta |n($$

I'A
$$\left[\frac{\kappa_z}{\kappa_x} - 1\right] \times 100\%$$
 change

in χ leads to a

 $\left[\frac{\kappa_z}{\kappa_x}\right] - 1$ $\times 100\%$ change

in γ .

approximation! $\ln\left(\frac{\gamma_z}{\gamma_x}\right) = \left(\kappa + \beta \ln(\kappa_z)\right) - \left(\kappa + \beta \ln(\kappa_x)\right)$
 $= \beta \left(\ln(\kappa_z) - \ln(\kappa_x)\right)$
 $= \beta \left(\ln(\kappa_z)\right)$
 $= \beta \left(0.01\right)$

19. increase in χ
 $\ln\left(\frac{\gamma_z}{\gamma_x}\right) \times (00\% = \beta \left(0.01\right) \times (00\% = \beta \right)$

11 A 17. increase in X
leads to a BT. increase
in y. (for sufficiently small
To changes in y).

Implications For Functional Form:

There is a linear relationship between percent changes in x a) percent changes in y.