РК ИУ5-63Б Гусева Валерия Вариант № 5

Условие задачи:

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

```
In [2]:
          import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
In [3]:
          data = pd.read csv('heart.csv', sep=',')
In [5]:
          data.head()
            age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca
                                                                                       thal ta
Out[5]:
         0
             63
                   1
                       3
                              145
                                    233
                                                   0
                                                         150
                                                                  0
                                                                          2.3
                                                                                 0
                                                                                     0
                                                                                           1
          1
             37
                   1
                              130
                                    250
                                                   1
                                                         187
                                                                          3.5
                                                                                 0
                                                                                     0
                                                                                          2
         2
                                    204
                                                   0
                                                                                          2
              41
                   0
                              130
                                                         172
                                                                  0
                                                                          1.4
                                                                                  2
                                                                                     0
         3
             56
                       1
                              120
                                    236
                                                   1
                                                         178
                                                                  0
                                                                         8.0
                                                                                  2
                                                                                     0
                                                                                          2
                   1
             57
                       0
                              120
                                    354
                                                   1
                                                         163
                                                                  1
                                                                         0.6
                                                                                  2
                                                                                     0
                                                                                          2
In [6]:
          data.dtypes
                         int64
         age
Out[6]:
         sex
                         int64
                         int64
         trestbps
                         int64
         chol
                         int64
                         int64
         fbs
         restecq
                         int64
         thalach
                         int64
                         int64
         exang
                       float64
         oldpeak
         slope
                         int64
         ca
                         int64
                         int64
         thal
                         int64
         target
         dtype: object
```

```
In [7]:
         data.isnull().sum()
                     0
Out[7]: age
                    0
        sex
        ср
        trestbps
        chol
        fbs
        restecg
        thalach
                    0
        exang
        oldpeak
        slope
        ca
        thal
        target
        dtype: int64
In [8]:
         data.info()
        <class 'pandas.core.frame.DataFrame'>
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
Column Non-Null Count Divos

#	Column	Non-Null Count	Dtype						
0	age	303 non-null	int64						
1	sex	303 non-null	int64						
2	ср	303 non-null	int64						
3	trestbps	303 non-null	int64						
4	chol	303 non-null	int64						
5	fbs	303 non-null	int64						
6	restecg	303 non-null	int64						
7	thalach	303 non-null	int64						
8	exang	303 non-null	int64						
9	oldpeak	303 non-null	float64						
10	slope	303 non-null	int64						
11	ca	303 non-null	int64						
12	thal	303 non-null	int64						
13	target	303 non-null	int64						
dtypes: float64(1), int64(13)									
memory usage: 33.3 KB									

Вывод:

Пропусков в данных не обнаруженно

Корреляционный анализ

```
In [13]: data.corr()
```

Out[13]:		age	sex	ср	trestbps	chol	fbs	restecg	
	age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-(
	sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-C
	ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	(
	trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-C
	chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-C
	fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-(
	restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	(
	thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1
	exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-(
	oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-(
	slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	C
	са	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-
	thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-C
	target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	

In [19]: sns.heatmap(data.corr())

Out[19]: <AxesSubplot:>

График ящик с усиками

```
In [15]: sns.boxplot(x=data['chol'])
```

Out[15]: <AxesSubplot:xlabel='chol'>


```
In [18]: sns.boxplot(x=data['trestbps'])
```

Out[18]: <AxesSubplot:xlabel='trestbps'>

In []: