AMENDMENTS TO THE CLAIMS

1-3. (Cancelled)

4. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2H-pyran-2-one compound represented by the formula (IV):

$$(X_a)_p \xrightarrow{A} A \qquad (IV)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_a)_p$, X_a is a substituent on a carbon atom, and represents a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_a 's are the same or different;

III. In $(Y_a)_q$, Y_a is a substituent on a carbon atom, and represents a substituent of the following X_1 group or Y_1 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_a 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_a 's constitute a Z_1 group, and may be fused with an A ring;

(1) a X_1 group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_d-group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-CH-CH-

group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e")-NR_e""-R_d-group (R_e, R_e', R_e" and R_e" are the same or different, R_e, R_e' and R_e" are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group(R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, a X_a-group (X_a is as defined above) is excluded;

(2) a Y_1 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above) or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N — G_4 - G_5

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a –NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group, a thio group, a sulfinyl group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group (R₁ is as defined above)},

(c)
$$J_{3}^{J_2=J_1}N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$
 $(CH_2)_I \nearrow B_b$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group, or a thio group), or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (l and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }}, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c - R_e - R_e - R_e -group (R_e are as defined above), a R_e - R_e -group (R_e are as defined above), a R_e - R_e -group (R_e are as defined above), a R_e - R_e -group (R_e - R_e - R_e - R_e - R_e -group (R_e - R_e

(3) a Z_1 group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-Ogroup (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

IV. Q_A represents a hydroxyl group, a (b)-group ((b) is as defined above), an A_9 - B_6 - B_c -group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, B_c represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, B_c is not a sulfonyl group], an A_7 "- SO_2 - B_c -group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 - SO_2 - B_c -group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N- SO_2 - B_c -group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)- SO_2 - B_c -group ((b) and B_c are as defined above), an A_9 '- B_c -group (A_9 ' represents a substituent of the following A_7 ' group or A_8 ' group, and B_c is as defined above), a D_5 - R_4 - B_c -group (D_5 represents a substituent of the following D_5 group, D_7 group, and D_7 gro

(1) an A_7 group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R₂.B₁-R₄-group (R₂ and B₁ are as defined above, and R₄ is as defined above), a D₄-R₄-group (D₄ represents a substituent of the following D₄ group, and R₄ is as defined above), a D₅-R₄-group {D₁ represents a substituent of the following D₁ group, and R₄ is as defined above}, a (b)-R₄-group {(b) is as defined above, and R₄ is as defined above}, a (c)-R₄-group ((c) is as defined above, and R₄ is as defined above}, a D₂-R₄-group {D₂ represents a substituent of the following D₂ group, and R₄ is as defined above}, a D₃-R₄-group {D₃ represents a substituent of the following D₃ group, and R₄ is as defined above}, an A₄-SO₂-R₄-group {A₄ represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R₁R₁'N-group (R₁ and R₁' are as defined above), and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above); (2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;

(3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 and B_1 are as

defined above, and R_4 ' represents a C_2 -C10 alkylene group), a D_4 - R_4 '-group (D_4 and R_4 ' are as defined above), a D_1 - R_4 '-group (D_1 and D_4 ' are as defined above), a (b)- D_4 '-group ((b) and D_4 ' are as defined above), a (c)- D_4 '-group ((c) and D_4 ' are as defined above), a D_2 - D_4 -group (D_4 and D_4 ' are as defined above) or an D_4 - D_4 -group (D_4 and D_4 ' are as defined above) or an D_4 - D_4 -group (D_4 and D_4 ' are as defined above);

- (4) an A₈' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D_4 group: a hydroxyl group or an A_1 -O-group [A_1 represents a R_3 -(CHR_0)_m-(B_2 - B_3)_m-group { R_3 represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N(O)_nR_1$ ')-group (R_1 ' is as defined above, and n represents 0 or 1, B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, m is 0, and R_3 is not a hydrogen atom)}]; (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -(O)_n- $N=C(R_3)$ -group (A_1 , n and A_3 are as defined above), a A_1 - A_1 - A_2 - A_3 -group (A_3 -group), a thio group or a A_3 - A_4 - A_4 - A_4 - A_5 -group (A_4 - A_4 - A_5 -group), a A_4 - A_4 - A_4 - A_5 -group (A_4 - A_5 -group), a A_4 - A_4 - A_5 -group (A_4 - A_5 -group), a A_4 - A_5 -group (A_4 - A_5 -group), a A_4 - A_5 -group (A_4 - A_5 -group), a A_4 - A_5 -group (A_4 - A_5 -group), a A_5 -group (A_4 - A_5 -group), a A_5 -group (A_5 -group), a A_5 -group), a A_5 -group (A_5 -group), a A_5 -group), a A_5 -group (A_5 -group), a A_5 -group), a A_5 -group (A_5 -group), a A_5 -group), a A_5 -group), a A_5 -group (A_5 -group), a A_5 -group), a A_5 -group), a A_5 -group), a A_5 -group (A_5 -group), a A
- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A)-group (R_1 , R_1 ', n and N_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group.
- (v) a D_3 group: a nitro group or a R_1OSO_2 -group (R_1 is as defined above);
- (vi) an A₂ group:

1) an A₃-B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₄ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above) or an A₄-SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above};

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above),
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above); or
- 6) a $R_1A_1N-NR_1$ '-group (R_1 , R_1 and R_1 ' are as defined above);
- V. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when K_a is a hydrogen atom, L_a is a methyl group and an A ring is a benzene ring, p is 2, 3 or 4 in the case that q is 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in a range];

and an inert carrier;

5. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (V):

$$(X_b)_p \xrightarrow{(A)_q} A \xrightarrow{O \qquad Q_A'} K_a \qquad (V)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_b)_p$, X_b is a substituent on a carbon atom, and represents a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C2-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_b 's are the same or different;

III. In $(Y_b)_q$, Y_b is a substituent on a carbon atom, and represents a substituent of the following X_2 group or Y_2 group, q represents 0,1, 2, 3, 4 or 5, when q is 2 or more, Y_b 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_b 's constitutes a group of a Z_2 group, and may be fused with an A ring;

(1) a X_2 group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_d-group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R_O-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-

CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_d''-R_d-group (R_e, R_e' and R_e'' are the same or different, R_e has the same meaning as that of R_e', R_e'' has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e'')-NR_e'''-R_d-group (R_e, R_e', R_e'' and R_e''' are the same or different, R_e, R_e' and R_e'' are as defined above, R_e''' has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_e R_e'N-SO₂-R_d –group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that, when A represents a benzene ring, then, a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R and B are as described above) is excluded;

(2) a Y_2 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above) or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group, or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group, a thio group, a sulfinyl group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a NR_1 - group (R_1 is as defined above)},

(c)
$$J_{3}^{J_2=J_{1}}N$$
—

a (c)-group (in(c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d) group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow (CH_2)_I$$

an (e)-group (l and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }}, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c - R_e - R_e - R_e -group (R_e and R_e are as defined above), a R_e - R_e -group (R_e and R_e are as defined above), a R_e - R_e -group (R_e - R_e -group (R_e - R_e - R_e -group (R_e - R_e -group (R_e - R_e - R_e - R_e - R_e -group (R_e - R_e - R_e - R_e -group (R_e - R_e - R_e - R_e - R_e - R_e -group (R_e - R_e -R

(3) a Z_2 group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

III. Q_A' represents a (b)-group ((b) is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a -N((O)_mR₁-group (m represents 0 or 1, and R₁ is as defined above), provided that when A₉ is a hydrogen atom, then B_c is not a sulfonyl group], an A₇"-SO₂-B_c-group (A₇" represents a substituent of the following A₇" group, and B_c is as defined above), an A₈-SO₂-B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A₈ is not a hydrogen atom), a R₁R₁'N-SO₂-B_c-group (R₁ is as defined above, R₁' is the same as or different from R₁, and has the same meaning as that of R₁ and B_c is as defined above), a (b)-SO₂-B_c-group ((b) and B_c are as defined above), an A₉'-B_c-group (A₉' represents a substituent of the following A₇' group or A₈' group, and B_c is as defined above), a D₅-R₄-B_c-group (D₅ represents a substituent of the following D₅ group, R₄ represents a C1-C10 alkylene group, and B_c is as defined above), a M_c-B₃-B_c-group (B₃ represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c-group (M_c and B_c are as defined above);

(1) an A₇ group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R₂-B₁-R₄-group (R₂ and B₁ are as defined above, and R₄ is as defined above), a D₄-R₄-group (D₄ represents a substituent of the following D₄ group, and R₄ is as defined above), a D₅-R₄-group (D₅ represents a substituent of the following D₅ group, and R₄ is as defined above), a D₁-R₄-group {D₁ represents a substituent of the following D₁ group, and R₄ is as defined above}, a (c)-R₄-group ((c) is as defined above, and R₄ is as defined above), a D₂-R₄-group {D₂ represents a substituent of the following D₂ group, and R₄ is as defined above}, a D₃-R₄-group {D₃ represents a substituent of the following D₃ group, and R₄ is as defined above}, and A₄-SO₂-R₄-group {A₄ represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R₁R₁'N-group (R₁ and R₁' are as defined above), and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, a

(2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;

- (3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a C_2 - B_1 - R_4 '-group (C_2 and B_1 are as defined above, and R_4 ' represents a C2-C10 alkylene group), a D_4 - R_4 '-group (D_4 and D_4 ' are as defined above), a D_1 - D_4 '-group (D_1 and D_4 ' are as defined above), a (D_4 '-group (D_4) and D_4 ' are as defined above), a D_4 - D_4 '-group (D_4) and D_4 ' are as defined above), a D_4 - D_4 '-group (D_4) and D_4 ' are as defined above) or an D_4 - D_4 '-group (D_4) and D_4 ' are as defined above) or an D_4 - D_4 '-group (D_4) and D_4 ' are as defined above) or an D_4 - D_4 '-group (D_4) and D_4 ' are as defined above);
- (4) an A₈-group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇"-group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D_4 group: a hydroxyl group or an A_1 -O-group [A_1 represents a R_3 -(CHR₀)_m-(B₂-B₃)_m'-group { R_3 represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C11 alkynyl group, R_0 represents a hydrogen atom, C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_nR_1$ '-group (R_1 ' is as defined above, and n represents 0 or 1), B_3 is as defined above, and m' represents 0 or 1 and, when B_3 is a sulfonyl group, m is 0, and R_3 is not a hydrogen atom}]; (ii) a D_5 group: $O=C(R_3)$ group (R_3 is as defined above), an A_1 -(O)_n-N=C(R_3)-group (R_1 , n and R_3 are as defined above), an R_1 -B₀-CO-R₄-(O)_n-N=C(R_3)-group [R_1 , R_4 , n and R_3 are as defined above, and R_3 are as defined above)], a R_1 -B₀-CO-R₄-(R_3)-group (R_3)-group (
- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁-group (R₁, R₁', n and A₁ are as defined above), an A_1 N=C(-OR₂)-group (A₁ and R₂ are as defined above) or a NH₂-CS-group.

- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A₂ group:
- 1) an A₃-B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₄ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above) or an A₄-SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 provided that when B_4 is a thio group, R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above provided that a hydrogen atom is excluded, and R_1 is as defined above),
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above); or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- IV. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, p is 2, 3 or 4 in the case that q is 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the

same, while the selected substituents may be the same or different as far as they are selected in the range];

6. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (VI):

$$(Y_c)_q \xrightarrow{O} OH \\ (X_c)_p \xrightarrow{A} O O \\ \downarrow L_a$$
 (VI)

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_c)_p$, X_c is a substituent on a carbon atom, and represents a hydroxyl group, or a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a C2-C10 alkenyl group, or a R'-S(O)_l-group (R' represents a C1-C10 alkyl group, and l represents 0, 1 or 2), or a cyano group, or a C1-C10 alkoxycarbonyl group, or an aminocarbonyl group, or a $(R')_2N$ -group (R' is as defined above), or a R'CO-NH-group (R' is as defined above), or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_c 's are the same or different;

III. In $(Y_c)_q$, Y_c is a substituent on a carbon atom, and represents a substituent of the following X_3 group or Y_3 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_c 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_c 's constitute a group of a Z_3 group, and may be fused with an A ring;

(1) a X_3 group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_d-group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined

above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e"' are the same or different, R_e, R_e' and R_e" are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a hydroxy group, or a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a C2-C10 alkenyl group, or a R'-S(O)₁-group (R' represents a C1-C10 alkyl group, and I represents 0, 1 or 2), or a cyano group, or a C1-C10 alkoxycarbonyl group, or an aminocarbonyl group, or a (R')₂N-group (R' is as defined above), or a R'CO-NHgroup (R' is as defined above), or a nitro group or a C1-C10 alkoxy group is excluded; (2) a Y_3 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a

C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group) or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a –NR₁-group (R₁ is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \rightarrow B_b$$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow (CH_2)_1$$

an (e)-group (I and B_b are as defined above), R_d' is the same as or different from R_d, and has the same meaning as that of R_d}}, a M_c-B_a-group (M_c and B_a are as defined above), a M_c-CO-group (M_c is as defined above), a M_c-CO-group (M_c is as defined above), a M_c-CO-group (M_c is as defined above), a M_c-CO-NR_e-group (M_c and R_e are as defined above), a M_c-CO-NR_e-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-C(=NR_e')-NR_e''-group (M_c, R_e, R_e' and R_e'' are as defined above), a M_c-SO₂-NR_e-group (M_c and R_e are as defined above) or a M_cR_eN-SO₂-group (M_c and R_e are as defined above), provided that when P is 0, then a morpholino group, or a

phenyl group, or a phenoxy group substituted with a trifluoromethyl group, or a phenoxy group substituted with single or plural halogen atoms is excluded;

(3) a Z₃ group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group),

provided that when p is 0, then Y_c is not fused with an A ring to form a benzo[1,3]dioxol ring;

IV. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, then q is not 0 and, when an A ring is a benzene ring or a pyridine ring, then p and q are not 0 at the same time, in either case; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above, and between the plurality of substituents, a selection range of selected substituents is the same, while the selected range may be the same or different as far as they are selected in the range];

7. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2H-pyran-2-one compound represented by the formula (VII):

$$(X_l)_k \xrightarrow{O \quad Or_l} (VII)$$

[wherein X_I represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a R_I -S(O)_I-group (R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), a cyano group, a carboxy group, a C1-C4 alkoxycarbonyl group, a (R_I)₂N-group (R_I is as defined above), a R_I -CO-NH-group (R_I is as defined above), a R_I -CO-NH-group (R_I is as defined above) or a (R_I)₂N-CO-group (R_I represents a hydrogen atom or a C1-C4 alkyl group), X_I represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C1-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k' represents an integer of 0 to 4, when k is 0, k' is an integer of 2 to 4 and, when k' is 2 to 4, X_I 's may be different, and r_I is a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group], and a inert carrier;

8. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (VIII):

$$(X_{l})_{k} \xrightarrow{O \quad Or_{l}} (VIII)$$

[wherein X_I represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a R_I -S(O)_I-group (R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), a cyano group, a carboxy group, a C1-C4 alkoxycarbonyl group, a (R_I)₂N-group (R_I is as defined above), a R_I -CO-NH-group (R_I is as defined above), a R_I -CO-NH-group (R_I is as defined above) or (R_I ')₂N-CO-group (R_I ' represents a hydrogen atom or a C1-C4 alkyl group), X_I " represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C2-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k' represents an integer of 0 to 4, when k is 0, k' is an integer of 2 to 4 and, when k' is 2 to 4, X_I "s may be different, and r_I is a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group];

9. (Withdrawn) A 2H-pyran-2-one compound represented by the formula (IX):

$$(X_{l}"')_{K}" \xrightarrow{ll} O O H CH_{3}$$
 (IX)

[wherein X_I " represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a carboxy group, a C2-C4 alkoxycarbonyl group or a $(R_{II})_2N$ -group $(R_{II})_2N$ -group (R_{II}) represents a C2-C4 alkyl group), X_I " represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k" represents an integer of 0 to 2, when k is 0, k" is 2 and, when k" is 2, X"'s are different];

10. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2H-1-benzopyran-2-one compound represented by the formula (X):

$$(X_d)_p \xrightarrow{A} A Q_A (X)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_d)_p$, X_d is a substituent on a carbon atom, and represents a methoxy group or an ethoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different; III. In $(Y_d)_q$, Y_d is a substituent on a carbon atom, and represents a substituent of the following X_d group or Y_d group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_d 's are the same or different and, q is 2 or more, the adjacent two same or different Y_d 's constitute a group of a Z_d group, and may be fused with an A ring;

(1) a X₄ group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen, atom, a nitro group, a cyano group, a hydroxyl group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_d-group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CHgroup, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e'" are the same or different, R_e, R_e' and R_e" are as defined above, R_e'" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a methoxy group and an ethoxy group are excluded;

(2) a Y_4 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N — G_4 - G_5

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group

optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a –NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group} or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a –NR₁-group (R₁ is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (I and B_b are as defined above), R_d' is the same as or different from R_d, and has the same meaning as that of R_d}}, a M_c-B_a-group (M_c and B_a are as defined above), a M_c-CO-group (M_c is as defined above), a M_cO-CO-group (M_c is as defined above), a M_cCO-Group (M_c is as defined above), a M_cCO-NR_e-group (M_c and R_e are as defined above), a M_cCO-NR_e-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-C(=NR_e')-NR_e''-group (M_c, R_e, R_e' and R_e'' are as defined above), a M_c-SO₂-NR_e-group (M_c and R_e are as defined above) or a M_cR_eN-SO₂-group (M_c and R_e are as defined above);

(3) a Z_4 group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b " represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

IV. Q_A represents a hydroxyl group, a (b) group ((b) is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a –N((O)_mR₁)-group (m represents 0 or 1, and R₁ is as defined above), provided that when A₉ is a hydrogen atom, then B_c is not a sulfonyl group], an A₇"-SO₂-B_c-group (A₇" represents a substituent of the following A₇" group, and B_c is as defined above), an A₈-SO₂-B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A₈ is not a hydrogen atom), a R₁R₁"N-SO₂-B_c-group (R₁ is as defined above, R₁" is the same as or different from R₁, and has the same meaning as that of R₁, and B_c is as defined above), a (b)-SO₂-B_c-group ((b) and B_c are as defined above), an A₉"-B_c-group (A₉" represents a substituent of the following A₇" group or A₈" group, and B_c is as defined above), a D₅-R₄-B_c-group (D₅ represents a substituent of the following D₅ group, R₄ represents a C1-C10 alkylene group, and B_c is as defined above), a M_c-B₃-B_c-group (B₃ represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c-group (M_c and B_c are as defined above);

(1) an A₇ group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R₂-B₁-R₄-group (R₂ and B₁ are as defined above, and R₄ is as defined above), a D₄-R₄-group (D₄ represents a substituent of the following D₄ group, and R₄ is as defined above), a D₅-R₄-group (D₅ represents a substituent of the following D₅ group, and R₄ is as defined above), a D₁-R₄-group {D₁ represents a substituent of the following D₁ group, and R₄ is as defined above}, a (b)-R₄-group ((b) is as defined above, and R₄ is as defined above), a C₂-R₄-group {D₂ represents

a substituent of the following D₂ group, and R₄ is as defined above}, a D₃-R₄-group {D₃ represents a substituent of the following D₃ group, and R₄ is as defined above}, an A₄-SO₂-R₄-group {A₄ represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R₁R₁'N-group (R₁ and R₁' are as defined above), and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above); (2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;

- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as define above, and R₄' represents a C2-C4 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A₈' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and D₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D_4 group: a hydroxy group or an A_1 -O-group [A_1 represents a R_3 -(CHR_0)_m-(B_2 - B_3)_m'-group { R_3 represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_mR_1$ ')-group (R_1 ' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}]; (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -($O)_n$ -N= $C(R_3)$ -group (A_1 , n and A_3 are as defined above), a R_1 -B₀-CO-R₄-($O)_n$ -N= $C(R_3)$ -group [R_1 , R_4 , n and R_3 are as

defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1') and m are as defined above)], a D_2 - R_4 - $(O)_n$ -N= $C(R_3)$ -group (D_2, R_4, n) and R_3 are as defined above) or a R_1A_1N -N= $C(R_3)$ -group (R_1, A_1) and R_3 are as defined above);

- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁)-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group;
- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A₂ group:
- 1) an A_3 -B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridinyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₄ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above), a D₂-group (D₂ is as defined above), a D₃-R₄-group (D₃ and R₄ are as defined above) or an A₄-SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as that of B₄, provided that when B₄ is a thio group, then R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above),
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a $R_1A_1N-NR_1$ '-group (R_1 , A_1 and R_1 ' are as defined above);

V. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, in case that q and r are 0, then p is 2, 2, 3 or 4; and

the "as defined above" in the same symbol between a plurality of substituent indicates that the plurality of the substituents independently represent the same meaning as that of described above and, between the plurality of substituents, a selection range of the selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

and an inert carrier;

11. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XI):

$$(Y_d)_q \xrightarrow{Q_{A'}} (XI)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_d)_p$, X_d is a substituent on a carbon atom, and represents a methoxy group or an ethoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different; III. In $(Y_d)_q$, Y_d is a substituent on a carbon atom, and represents a substituent of the following X_d group or Y_d group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_d 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_d 's constitute a group of a Z_d group, and may be fused with an A ring;

(1) a X_4 group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR $_d$ -group (R_d is as defined above), a R_e -CO- R_d -

group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e"' are the same or different, R_e, R_e' and R_e" are as defined above, R_e"' has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a methoxy group and an ethoxy group are excluded;

(2) Y_4 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G₁, G₂, G₄ and G₅ represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G₃ represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a –NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10

alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3} > N -$$

a (c)-group (in (c), J_1 , J_2 , and J_3 are the same or different and, represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (l and B_b are as defined above), R_d' is the same as or different from R_d, and has the same meaning as that of R_d}}, a M_c-B_a-group (M_c and B_a are as defined above), a M_c-CO-group (M_c is as defined above), a M_cO-CO-group (M_c is as defined above), a M_cO-CO-group (M_c is as defined above), a M_cR_eN-group (M_c and R_e are as defined above), a M_c-CO-NR_e-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_e-group (M_c and R_e are as defined above) or a M_cR_eN-SO₂-group (M_c and R_e are as defined above); and R_d is as defined above];

(3) a Z₄ group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy

group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c$ -O- Y_c '-O-group (Y_c and Y_c ' are the same or different, and a C1-C10 alkylene group);

IV. Q_A ' represents a (b)-group ((b) is as defined above), an A_9 -B₆-BC-group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, B_c represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A_7 "-SO₂-B_c-group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 -SO₂-B_c-group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a R_1R_1 'N-SO₂-B_c-group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and R_2 is as defined above), a (b)-SO₂-B_c-group ((b) and R_2 are as defined above), an R_2 -B_c-group (R_2 represents a substituent of the following R_2 group, and R_2 is as defined above), a R_2 -R₂-group (R_2 represents a Substituent of the following R_2 group, and R_2 group, R_3 represents a C1-C10 alkylene group, and R_2 is as defined above), a R_2 -group (R_3 represents a C1-C10 alkylene group, and R_2 is as defined above), and R_2 -group (R_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and R_2 are as defined above) or a R_2 -group (R_3 are as defined above) or a R_2 -group (R_3 are as defined above).

(1) an A_7 group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R₂-B₁-R₄-group (R₂ and B₁ are as defined above, and R₄ is as defined above), a D₄-R₄-group (D₄ represents a substituent of the following D₄ group, and R₄ is as defined above), a D₅-R₄-group (D₅ represents a substituent of the following D₅ group, and R₄ is as defined above), a D₁-R₄-group {D₁ represents a substituent of the following D₁ group, and R₄ is as defined above}, a (b)-R₄-group ((b) is as defined above, and R₄ is as defined above), a (c)-R₄-group {D₂ represents a substituent of the following D₂ group, and R₄ is as defined above}, a D₃-R₄-group {D₃ represents a substituent of the following D₃ group, and R₄ is as defined above}, and A₄-SO₂-R₄-group {A₄ represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R₁R₁'N-group (R₁ and R₁' are as defined above), and R₄ is as defined above} or an

- A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above);
- (2) an A₈ group: a hydrogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as defined above, and R₄' represents a C2-C10 alkylene group), a D₄-R₄' group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a D₃-R₄'-group (D₃ and R₄' are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A₉' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D_4 group: a hydroxy group or an A_1 -O-group [A_1 represents a R_3 -(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_nR_1')$ -group (R_1' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}]; (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -($O)_n$ -N= $C(R_3)$ -group (A_1 , n and A_3 are as defined above), a A_1 -B₀-CO-R₄-(O)_n-N= $C(R_3)$ -group [A_1 , n and A_2] are as defined above, and A_3] represents an oxy group, a thio group or a A_1 -(A_1)-group (A_1) and m are as defined above)], a A_2 -R₄-(A_1)-N= A_2 -(A_2)-group (A_2)-group (A_3)-group (A_3)-group (A_4)-group (A_4

- (iii) a D_1 group: a (R)- $(O)_k$ A₁N- $(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁)-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1 N=C-(OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group;
- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A₂ group:
- 1) an A₃-B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₄ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above) or an A₄-SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, R_2 is not a hydrogen atom), or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a $R_1A_1N-NR_1$ '-group (R_1 , A_1 and R_1 ' are as defined above);
- V. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, in case that q is 0, then p is 2, 3 or 4; and

the "as defined above" between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

12. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XII):

$$(X_e)_p \xrightarrow{A} A OOH (XII)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_e)_p$, X_e represents a hydroxy group, a halogen atom, a C1-C10 alkyl group, a R'-S(O)l-group (R' represents a C1-C10 alkyl group, and l represents 0, 1 or 2), a cyano group, a HOCO-CH=CH-group, a $(R')_2$ N-group (R' is as defined above), a R' CO-NH-group (R' is as defined above), a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different;

III. In $(Y_e)_q$, Y_e is a substituent on a carbon atom, and represents a substituent of the following X_5 group or Y_5 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_e 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_e 's constitute a group of a Z_5 group, and may be fused with an A ring;

(1) a X_5 group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_d-group (R_d represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined

above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e.' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e" are the same or different, R_e, R_e' and R_e" are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a X_e-group (X_e is as defined above) is excluded;

(2) a Y_5 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 -B₁-group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkenyl group, or a C3-C10 alkenyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group,

an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (l and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c - R_e - R_e -group (R_e are as defined above), a R_e - R_e -group (R_e are as defined above), a R_e - R_e -group (R_e are as defined above), a R_e - R_e -group (R_e - R_e - R_e -group (R_e - R_e - R_e -group (R_e - R_e - R_e - R_e -group (R_e - R_e - R_e - R_e - R_e - R_e -group (R_e - R_e -

(3) a Z_5 group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b '-group (Y_b and Y_b ' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a

halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c$ -O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group),

provided that when p is 0, then Y_e is not fused with an A ring to form a benzo[1,3]dioxol ring;

IV. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, then q is not 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

13. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XIII):

$$(X_{|I})_k \xrightarrow{\overline{I}} O O r_I$$
 (XIII)

[wherein X_{II} represents a hydrogen atom, or a hydroxyl group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C3-C4 alkoxy group, or a R_{I} -S(O)_I-group (R_{I} represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a (R_{I})₂N-group (R_{I} is as defined above), or a R_{I} -CO-N_I-group (R_{I} is as defined above), or a R_{I} -CO-NH-group (R_{I} is as defined above), or a (R_{I})₂N-CO-group (R_{I} represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents an integer of 1 to 4 and, when k is an integer of 2 to 4, X_{II} 's may be different, and r_{I} represents a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group];

14. (Withdrawn) A 2H-1-benzopyran-2-one compound represented by the formula (XIV):

$$X_{||}$$
 $(X_{||})_{m}$
 $(X_{||})_{m}$
 $(X_{||})_{m}$

[wherein X_{II} ' represents a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, a C2-C4 alkenyl group, a C2-C4 alkynyl group, a C3-C4 alkoxy group, a R_{II} -S(O)_I-group (R_{II} represents a C2-C4 alkyl group, and I represents an integer of 0 to 2), a cyano group, a carboxy group, a C_1 -C4 alkoxycarbonyl group, a (R_{II})₂N-group (R_{II} is as defined above), a R_I -CO-NH-group (R_I represents a C1-C4 alkyl group), a R_I O-CO-NH-group (R_I is as defined above), a R_I NH-CO-NH-group (R_I is as defined above), a (R_I ')₂N-CO-group (R_I ' represents a hydrogen atom or a C1-C4 alkyl group) or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), X_{II} " represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group or a C3-C4 alkoxy group, m represents 1 or 2 and, when m is 2, X_{II} "s may be different];

15-16. (Cancelled)

17. (Currently amended) A composition comprising a 2(1H)-pyridinone compound represented by the formula (XVIII):

wherein X_{III}' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C2-C4 alkoxy group, or a R_I-S(O)_I-group (wherein R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, a

 $(R_{II})_2$ N-group (wherein R_{II} represents a C2-C4 alkyl group), or a R_I -CO-NH-group (wherein R_I is as defined above), or a R_I O-CO-NH-group (wherein R_I is as defined above), or a R_I NH-CO-NH-group (wherein R_I is as defined above), or a $(R_I)_2$ N-CO-group (wherein R_I represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (wherein B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), X_{III} represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, or a C1-C4 alkoxy group, m represents 1 or 2, when m is 2, X_{III} "s may be different, and r_{II} and r_{II} are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group

$$(X_{|||})_{k} \stackrel{O}{\underset{||}{\text{V}}} CH_{3}$$

wherein XIII represents a hydrogen atom, or a hydroxy group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C1-C4 alkoxy group, or a R4-S(O)4 group (wherein R4 represents a C1-C4 alkyl group, or a C1-C4 alkoxycarbonyl group, or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a (R4)2N-group (wherein R4 represents a C1-C4 alkyl group), or a R4-C0-NH-group (wherein R4 is as defined above), or a R4O-C0-NH-group (wherein R4 is as defined above), or a R4O-C0-NH-group (wherein R4 is as defined above), or a C1-C4 alkyl group) or a RB-group (wherein B4 represents a hydrogen atom or a C1-C4 alkyl group) or a RB-group (wherein B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), K represents an integer of 1 to 4, when k is an integer of 2 to 4, X41's may be different, r41 and r41' are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group; and an inert carrier.

18. (**Previously Presented**) A 2(1H)-pyridinone compound represented by the formula (XVIII):

$$(X_{|||})_{m} \xrightarrow{O \quad Or_{||}} CH_{3}$$

wherein $X_{\rm III}$ ' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkoxy group, or a R_I-S(O)_I-group (wherein R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, a $(R_{\rm II})_2$ N-group (wherein R_{II} represents a C2-C4 alkyl group), or a R_I-CO-NH-group (wherein R_I is as defined above), or a R_IO-CO-NH-group (wherein R_I is as defined above), or a R_INH-CO-NH-group (wherein R_I is as defined above), or a (R_I')₂N-CO-group (wherein R_I' represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (wherein B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), $X_{\rm III}$ " represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, or a C1-C4 alkoxy group, m represents 1 or 2, when m is 2, $X_{\rm III}$ "s may be different, and $r_{\rm II}$ and $r_{\rm II'}$ are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group.

19. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-quinolinone compound represented by the formula (XIX):

$$(Y_f)_q$$
 A
 O
 Q_A
 (XIX)
 T_A

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(Y_f)_q$, Y_f is a substituent on a carbon atom, and represents a group of the following X group or Y group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_f 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_f 's constitute a group of a Z group, and may be fused with an A ring;

(1) a X group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_dgroup (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e'N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e" are the same or different, Re, Re' and Re" are as defined above, Re" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group];

(2) a Y group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 -B₁-group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B₁ represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3}^{1} J_{2} = J_{1}$$

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$
 $(CH_2)_1 \nearrow B_b$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow (CH_2)_I$$

an (e)-group (l and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as

defined above), a M_cR_eN-group (M_c and R_e are as defined above), a M_c-CO-NR_e-group (M_c and R_e are as defined above), a M_cO-CO-NR_e-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-C(=NR_e')-NR_e''-group (M_c, R_e, R_e' and R_e'' are as defined above), a M_c-SO₂-NR_e-group (M_c and R_e are as defined above) or a M_cR_eN-SO₂-group (M_c and R_e are as defined above); and R_d is as defined above];

(3) a Z group:

a –N=C(Y_a)-Y_a'-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a -Y_b-Y_b'-Y_b"-group (Y_b and Y_b' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a -Yc-O-Yc'-Ogroup (Y_c and Y_c' are the same or different, and represent a C1-C10 alkylene group); III. Q_A represents a hydroxy group, a (b)-group ((b) is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A₇"-SO₂-B_c-group (A₇" represents a substituent of the following A₇" group, and B_c is as defined above), an A₈-SO₂-B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A₈ is not a hydrogen atom), a R₁R₁'N-SO₂-B_cgroup $(R_1 \text{ is as defined above}, R_1' \text{ is the same as or different from } R_1, \text{ and has the same meaning})$ as that of R₁, and B_c is as defined above), a (b)-SO₂-B_c-group ((b) and B_c are as defined above), an A₉'-B_c-group (A₉' represents a substituent of the following A₇' group or A₈' group, and B_c is as defined above), a D₅-R₄-B_c-group (D₅ represents a substituent of the following D₅ group, R₄ represents a C1-C10 alkylene group, and B_c is as defined above), a M_c-B₃-B_c-group (B₃ represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c-group (M_c and B_c are as defined above);

(1) an A_7 group:

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R₂-B₁-R₄-group (R₂ and B₁ are as defined above, and R₄ is as defined above), a D₄-R₄-group (D₄ represents a substituent of the following D₄ group, and R₄ is as defined above), a D₅-R₄-group (D₅ represents a substituent of the following D₅ group, and R₄ is as defined above), a D₁-R₄-group {D₁ represents a substituent of the following D₁ group, and R₄ is as defined above}, a (c)-R₄-group ((c) is as defined above, and R₄ is as defined above), a D₂-R₄-group {D₂ represents a substituent of the following D₂ group, and R₄ is as defined above}, a D₃-R₄-group {D₃ represents a substituent of the following D₃ group, and R₄ is as defined above}, and A₄-SO₂-R₄-group {A₄ represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R₁R₁'N-group (R₁ and R₁' are as defined above), and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an A₂-CO-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above} or an

- (2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as defined above, and R₄' represents a C2-C10 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A₈' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);

- (i) a D_4 group: a hydroxy group or an A_1 -O-group [A_1 represents a R_3 -(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_nR_1')$ -group (R_1' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}]; (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -($O)_n$ -N= $C(R_3)$ -group (A_1 , n and A_3 are as defined above), a A_1 -B₀-CO-R₄-(O)_n-N= $C(R_3)$ -group [A_1 , n and A_2] are as defined above, and A_3] are as defined above, and A_4] and A_5] are as defined above)], a A_4 -(A_4) and A_5] are as defined above)], a A_4 -(A_4) and A_5] are as defined above)], a A_4 -(A_4) and A_5] are as defined above);
- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁)-group (R_1 , R_1 ', n and A_1 are as defined above), an A_1 N=C(-OR₂)-group (A_1 and R_2 are as defined above) or a NH₂-CS-group;
- (v) a D_3 group: a nitro group or a R_1OSO_2 -group (R_1 is as defined above);
- (vi) an A₂ group:
- 1) an A₃-B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a R_a-(R₄)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R₄ and m are as defined above), or a C1-C10 alkyl group substituted with a (b)-R₄-group ((b) and R₄ are as defined above), a (c)-R₄-group ((c) and R₄ are as defined above), a R₂-B₁-R₄-group (R₂, B₁ and R₄ are as defined above), a D₄-R₄-group (D₄ and R₄ are as defined above), a D₅-group (D₅ is as defined above), a D₁-R₄-group (D₁ and R₄ are as defined above) or an A₄-SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above},

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined above, B₄' is the same as or different from B₄, and has the same meaning as that of B₄, provided that when B₄ is a thio group, then R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group (D₂, R₄ and B₄ are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- IV. T_A represents a hydrogen atom, an A_9 '-group (A_9 ' is as defined above), a D_5 - R_4 -group (D_5 and R_4 are as defined above) or a M_c -group (M_c is as defined above);
- V. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

and an inert carrier;

20. (Withdrawn) A 2(1H)-pyridinone compound represented by the formula (XX):

$$(X_h)_p \xrightarrow{A} A \qquad (XX)$$

[wherein

I. A represents a benzene ring or a pyridine ring;

II. In $(X_h)_p$, X_h represents a hydroxy group, a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxycarbonyl group, a $(R')_2N$ -group $(R')_2N$ -group $(R')_2N$ -group $(R')_2N$ -group, a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_h 's are the same or different, provided that when p is 2 or more, and in case that X_h is selected from a hydroxy group, a halogen atom, a C1-C10 alkyl group and a C1-C10 alkoxy group, then X_h 's do not represent the same group or atom at the same time;

III. In $(Y_h)_q$, Y_h is a substituent on a carbon atom, and represents a substituent of the following X_7 group or Y_7 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_h 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_h 's constitute a group of a Z_7 group, and may be fused with an A ring;

(1) a X_7 group:

a M_a-group [M_a represents a R_b-group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d-group (R_d is as defined above), a R_e-CO-R_dgroup (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e-CO-O-R_d-group (R_e and R_d are as defined above), a R_eO-CO-R_d-group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e, and R_d is as defined above), a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above), a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and Re" are the same or different, Re and Re' are as defined above, Re" has the same meaning as that of R_e, and R_d is as defined above), a R_eR_e"N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e"' are the same or different, Re, Re' and Re" are as defined above, Re" has the same meaning as that of R_e, and R_d is as defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a X_h -group (X_h is as defined above) is excluded;

(2) a Y_7 group:

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3$$
 N— G_4 - G_5

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group, a thio group, a sulfinyl group, a sulfinyl group or a Sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3}^{1} \int_{3}^{1} N$$

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \rightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group)

or

(e)
$$B_b = (CH_2)_I$$

an (e)-group (I and B_b are as defined above), R_d' is the same as or different from R_d, and has the same meaning as that of R_d}}, a M_c-B_a-group (M_c and B_a are as defined above), a M_c-CO-group (M_c is as defined above), a M_cO-CO-group (M_c is as defined above), a M_cCO-Group (M_c is as defined above), a M_cCO-Group (M_c and R_e are as defined above), a M_cCO-NR_e-group (M_c and R_e are as defined above), a M_cCO-NR_e-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-C(=NR_e')-NR_e''-group (M_c, R_e, R_e' and R_e'' are as defined above), a M_c-SO₂-NR_e-group (M_c and R_e are as defined above) or a M_cR_eN-SO₂-group (M_c and R_e are as defined above);

(3) a \mathbb{Z}_7 group:

a $-N=C(Y_a)-Y_a$ '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-Ogroup (Y_c and Y_c ' are the same or different, or a C1-C10 alkylene group), provided that when p is 0, then Y_b does not fused with an A ring to form a benzo[1,3]dioxol ring;

IV. Q_A represents a hydroxy group, a (b)-group ((b) is as defined above), an A_9 -B₆-B_c-group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((O)_mR_1$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A_7 "-SO₂-B_c-group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 -SO₂-B_c-group (A_8 represents a substituent of the following A_8 group, and A_8 is as defined above, provided that A_8 is not a hydrogen atom), a A_1 R₁'N-SO₂-B_c-group (A_8 is as defined above, A_8 is the same as or different from A_8 , and has the same meaning as that

of R_1 , and B_c is as defined above), a (b)-SO₂-B_c-group ((b) and B_c are as defined above), an A_9 '-B_c-group (A_9 ' represents a substituent of the following A_7 ' group or A_8 ' group, and B_c is as defined above), a D_5 -R₄-B_c-group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a M_c -B₃-B_c-group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c -B_c-group (M_c and M_c are as defined above);

(1) an A₇ group:

- a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R₂-B₁-R₄-group (R₂ and B₁ are as defined above, and R₄ is as defined above), a D₄-R₄-group (D₄ represents a substituent of the following D₄ group, and R₄ is as defined above), a D₅-R₄-group (D₅ represents a substituent of the following D₁ group, and R₄ is as defined above), a D₁-R₄-group {D₁ represents a substituent of the following D₁ group, and R₄ is as defined above}, a (b)-R₄-group ((b) is as defined above, and R₄ is as defined above), a D₂-R₄-group {D₂ represents a substituent of the following D₂ group, and R₄ is as defined above}, a D₃-R₄-group {D₃ represents a substituent of the following D₃ group, and R₄ is as defined above}, an A₄-SO₂-R₄-group {A₄ represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R₁R₁'-N-group (R₁ and R₁' are as defined above), and R₄ is as defined above} or an A₂-CO₂-R₄-group (A₂ represents a substituent of the following A₂ group, and R₄ is as defined above); (2) an A₈ group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A₇' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as defined above, and R₄' represents a C2-C10 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a D₃-R₄'-group (D₃ and R₄' are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (4) an A₈' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A_7 " group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - R_4 '-group

(R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);

- (i) a D_4 group: a hydroxy group or an A_1 -O-group [A_1 represents a R_3 -(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 -B₁-group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_nR_1')$ -group (R_1' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}]; (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an A_1 -($O)_n$ -N= $C(R_3)$ -group (A_1 , N and A_3 are as defined above), a R_1 -B₀-CO-R₄-(O)_n-N= $C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and R_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' and m are as defined above)], a D_2 -R₄-(O)_n-N= $C(R_3)$ -group (D_2 , D_3 , n and D_3 are as defined above) or a D_3 -R₄-(D_3 -R₄-(D_3 -R₃-group (D_3 -R₄, n and D_3 -group (D_3 -R₄-(D_3 - D_3 -group (D_3 - D_3 -group (D_3 - D_3 - D_3
- (iii) a D_1 group: a $(R_1-O)_k$ - $)A_1N$ - $(O)_k$ '-group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- (iv) a D_2 group: a cyano group, a R_1R_1 'NC(=N-(O)_n-A₁-group (R₁, R₁', N and A₁ are as defined above), an A_1 N=C(-OR₂)-group (A₁ and R₂ are as defined above) or a NH₂-CS-group;
- (v) a D₃ group: a nitro group or a R₁OSO₂-group (R₁ is as defined above);
- (vi) an A₂ group:
- 1) an A₃-B₄-group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkynyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R_a -(R_4)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)- R_4 -group ((b) and R_4 are as defined above), a (c)- R_4 -group ((c) and R_4 are as defined above), a R_2 -B₁-R₄-group (R_2 , B₁ and R_4 are as defined above),

a D_4 -R₄-group (D_4 and R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1 -R₄-group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 -R₄-group (D_3 and D_4 are as defined above) or an D_4 -group (D_4 is as defined above, and D_4 is as defined above),

 B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ -group (R_1 and m are as defined above), provide that when A_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as B_4 , provided that when B_4 is a thio group, then R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a R₁A₁N-NR₁'-group (R₁, A₁ and R₁' are as defined above);
- V. T_A represents a hydrogen atom, an A₉'-group (A₉' is as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above) or a M_c-group (M_c is as defined above);
- VI. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, then q is not 0 and, when an A ring is a benzene ring or a pyridine ring, then p and q are not 0 at the same time, in either case; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

21. (Withdrawn) A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-quinolinone compound represented by the formula (XXI):

$$(X_{IV})_{k} = (XXI)$$

[wherein $X_{\rm IV}$ represents a hydrogen atom, or a hydroxy group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C1-C4 alkoxy group, or a $R_{\rm I}$ -S(O)_I-group ($R_{\rm I}$ represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a ($R_{\rm I}$)₂N-group ($R_{\rm I}$ is as defined above), or a $R_{\rm I}$ -CO-NH-group ($R_{\rm I}$ is as defined above), or a $R_{\rm I}$ -O-CO-NH-group ($R_{\rm I}$ is as defined above), or a ($R_{\rm I}$)₂N-CO-group ($R_{\rm I}$ represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents an integer of 1 to 4 and, when k is an integer of 2 to 4, $X_{\rm IV}$'s may be different, and $r_{\rm II}$ and $r_{\rm II}$ are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group]; and an inert carrier;

22. (Withdrawn) A 2(1H)-quinolinone compound represented by the formula (XXII):

$$(X_{|V''})_{m} \xrightarrow{O} Or_{||} (XXII)$$

[wherein X_{IV} ' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C2-C4 alkoxy group, or a R_I-S(O)_I-group (R_I represents a C1-C4 alkyl group, and I represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C2-C4 alkoxycarbonyl group, or a (R_{II})₂N-group (R_{II} represents a C2-C4 alkyl group), or a R_I-CO-NH-group (R_I is as defined above), or a R_IO-CO-NH-group (R_I is as defined above), or a (R_I')₂N-CO-group (R_I' represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), X_{IV} " represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group or a C1-C4 alkoxy group, m represents 1 or 2 and, when m is 2, X_{IV} "s may be different, and r_{II} and r_{II}' are the same or different, and represent a hydrogen atom or a C1-C4alkyl group];

23-24. (Cancelled)

- **25.** (Withdrawn) A composition for improving tissue fibrosis, which comprises a compound according to claim 5, and an inert carrier;
- **26.** (Withdrawn) A method for improving tissue fibrosis, which comprises administering an effective amount of a compound according to claim 5 to a mammal in need thereof;

27. (Cancelled)

U.S. Serial No. 10/572,705 Attorney Docket No. 2006_0367A August 6, 2010

28. (Withdrawn) A composition for suppressing the activity of TGF- β , which comprises a compound according to claim 5, and an inert carrier;

29. (Cancelled)

- **30.** (Withdrawn) A composition for hair growth which comprises a compound according to claim 5, and an inert carrier;
- **31.** (Withdrawn) A method for growing hair, which comprises administering an effective amount of a compound according to claim 5 to a mammal in need thereof;

32-33. (Cancelled)

- **34.** (Withdrawn) A method for improving tissue fibrosis, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.
- **35.** (Withdrawn) A method for improving tissue fibrosis, which comprises administering an effective amount of a compound according to claim 1 to a mammal in need thereof;

36. (Cancelled)

37. (Withdrawn) A method for suppressing the activity of TGF- β , which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.

38. (Cancelled)

39. (Withdrawn) A method for growing hair, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.

- **40.** (Withdrawn) A method for growing hair, which comprises administering an effective amount of a compound according to claim 1 to a mammal in need thereof;
- **41. (Withdrawn)** A 2(1H)-pyridinone compound represented by the formula (XXIII):

42. (Withdrawn) A 2(1H)-pyridinone compound represented by the formula (XXIV):

$$\bigcirc \mathsf{N} \bigcirc \mathsf{O} \bigcirc \mathsf{O} \mathsf{H} \qquad (XIV)$$

- **43. (Withdrawn)** A method for suppressing transcription of a type I collagen gene, which comprises administering an effective amount of the composition according to claim 17 to a mammal in need thereof.
 - **44. (New)** A compound represented by the formula:

53