Suites numériques

1BSF 1 et 2

Pr. Latrach Abdelkbir

Æ. Activité @:

- 1. Compléter avec deux chiffres qui correspondent à la séquence de chacune des listes suivantes :
- $0, 3, 6, 9, \dots$
- 1, 2, 4, 8, ...
- c. $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$
- **2.** Quelle est la relation que l'on adopte dans chaque liste pour passer d'un terme au terme suivant ?

Application (17):

Soit la suite (u_n) définie par : $(\forall n \in \mathbb{N}^*)$: $u_n = 2 + \frac{3}{n}$.

- **1.** Calculer les trois premiers termes de (u_n) .
- **2.** Calculer $u_n + 1$, u_{n+1} , u_{2n} et u_{2n+1} pour tout $n \in \mathbb{N}^*$.
- **3.** Trouver l'indice n tel que $u_n = \frac{43}{21}$

On considère les suites (u_n) et (v_n) définies respectivement

$$\text{par } \begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{1 + u_n}; \ n \in \mathbb{N} \ \text{et} \\ \begin{cases} v_0 = 2 \text{ , } v_1 = -1 \\ v_{n+2} = 2v_{n+1} + v_n; \ n \in \mathbb{N} \end{cases}. \end{cases}$$

- **1.** Calculer u_1, u_2, v_3 et v_4 .
- **2.** Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $u_n = \frac{2}{2n+1}$.

🗷 Activité @:

Soit la suite (u_n) définie par $u_n = \frac{n+4}{n+1}$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que $u_n \le 4$ pour tout $n \in \mathbb{N}$.
- **2.** Montrer que $u_n \ge 1$ pour tout $n \in \mathbb{N}$.
- **3.** En déduire que $1 \le u_n \le 4$ pour tout $n \in \mathbb{N}$.

On considère la suite (u_n) définie par

$$\begin{cases} U_0 = 4 \\ U_{n+1} = \frac{4U_n - 3}{U_n} & \forall n \in \mathbb{N} \end{cases}. \text{Montrer que } \left(\forall n \in \mathbb{N} \right) : U_n \geq 3 \,.$$

On considère la suite (u_n) définie par

$$\begin{cases} U_0 = 0 \\ U_{n+1} = \frac{2U_n + 1}{U_n + 2} & \forall n \in \mathbb{N} \end{cases}.$$

Montrer que $(\forall n \in \mathbb{N}): 0 \le U_n \le 1$.

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ dans les cas **1.** $u_n = \frac{3}{n+1}$ **2.** $u_n = n^2 + 2n$ **3.** $u_n = \sqrt{n+1}$ Soit

1.
$$u_n = \frac{3}{n+1}$$

2.
$$u_n = n^2 + 2n$$

3.
$$u_n =$$

Soit (u_n) la suite définie par : $\begin{cases} u_0=6\\ u_{n+1}=4-\frac{3}{u_n} \end{cases}$; $\ \forall n\in\mathbb{N}$

- **1.** Calculer u_1 et u_2 .
- **2.** Montrer que $(\forall n \in \mathbb{N})$: $u_n > 3$.
- **3.** a. Montrer que $(\forall n \in \mathbb{N}): U_{n+1} U_n = \frac{(1 U_n)(U_n 3)}{U_n}$.
 - b. Etudier la monotonie de la suite (u_n) .
 - c. En déduire que $(\forall n \in \mathbb{N})$: $u_n \leq 6$.

🗷 Exercice ②:

Soit (v_n) la suite définie par : $\begin{cases} v_0 = 3 \\ v_{n+1} = \frac{1}{2} \left(v_n + \frac{4}{v_n} \right) ; \forall n \in \mathbb{N} \end{cases}$

- **1.** Calculer v_1 et v_2 .
- **2.** Montrer que la suite (v_n) est minorée par 2.
- **3.** Etudier la monotonie de la suite (v_n) .
- **4.** En déduire que la suite (v_n) est majorée par 3.

🗷 Activité 🛭:

Soit la suite (u_n) définie par $u_n = 3n + 2$ pour tout $n \in \mathbb{N}$.

- **1.** Vérifier que $u_1 = u_0 + 3$, $u_2 = u_1 + 3$ et $u_3 = u_2 + 3$.
- **2.** Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} = u_n + 3$.

Application ©:

Soit
$$(u_n)$$
 la suite définie par :
$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{2u_n - 1}{u_n} \end{cases} ; \ (\forall n \in \mathbb{N})$$

On pose :
$$\forall n \in \mathbb{N} \; ; \; v_n = \frac{1}{u_n - 1}$$

Montrer que (v_n) est une suite arithmétique , préciser sa raison et son premier terme.

$\boldsymbol{\mathscr{L}}$ Application $\boldsymbol{\mathscr{O}}$:

Soit (u_n) une suite arithmétique telle que $u_1 = 5$ et r = 2.

- **1.** Calculer u_5 ; u_{10} et u_{100} .
- **2.** Déterminer le terme général de la suite (u_n) .
- **3.** Est-ce que 203 est un terme de la suite (u_n) .

Application 8:

Soit (v_n) une suite arithmétique telle que $v_3 = 2$ et $v_7 = 14$.

- 1. Détermine la raison r de cette suite et son premier
- **2.** Exprimer v_n en fonction de n.
- **3.** Calculer la somme : $S = v_4 + v_5 + v_6 + \dots + v_{25}$.

Soit
$$(u_n)$$
 la suite définie par :
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{5u_n - 1}{u_n + 3} \end{cases} ; (\forall n \in \mathbb{N})$$
On pose : $\forall n \in \mathbb{N}$; $v_n = \frac{1}{u_n - 1}$.

- **1.** Montrer que : $(\forall n \in \mathbb{N})$: $u_n > 1$.
- **2.** Etudier la monotonie de la suite (u_n) .
- **3.** Montrer que (v_n) est une suite arithmétique, préciser sa raison et son premier terme.
- **4.** Exprimer v_n puis u_n en fonction n.
- **5.** Calculer la somme : $S = v_0 + v_1 + v_2 + ... + v_n$.

🗷 Activité 🟵:

On considère la suite (u_n) définie par $u_n = 3 \times 2^n$ pour tout

- **3.** Vérifier que $u_1 = 2u_0$, $u_2 = 2u_1$ et $u_3 = 2u_2$.
- **4.** Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} = u_n + 3$.

Soit
$$(u_n)$$
 la suite définie par :
$$\begin{cases} u_0 = -2 \\ u_{n+1} = \frac{2}{3}u_n - 1 \end{cases} ; \quad (\forall n \in \mathbb{N})$$

On pose : $\forall n \in \mathbb{N}$; $\mathbf{v}_n = u_n + 3$

Montrer que (v_n) est une suite géométrique, préciser sa raison et son premier terme.

Application @@:

Soit (v_n) une suite de raison q=2 et de premier terme $v_1=$

- **1.** Calculer u_4 .
- **2.** Exprimer v_n en fonction de n.

$\boldsymbol{\mathscr{L}}$ Application $\boldsymbol{\mathscr{Q}}\boldsymbol{\mathscr{Q}}$:

Soit (u_n) une suite géométrique telle que q=3 et $U_4=12$.

Calculer la somme $S = U_4 + U_5 + U_6 + ... + U_{2006}$.

Soit
$$(u_n)$$
 la suite définie par :
$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2u_n + 3}{u_n + 4} \end{cases} ; \quad (\forall n \in \mathbb{N})$$
 On pose : $\forall n \in \mathbb{N}$; $v_n = \frac{u_n - 1}{u_n + 3}$.

- **1.** Montrer que : $(\forall n \in \mathbb{N})$: $0 < u_n < 1$.
- **2.** En déduire la monotonie de la suite (u_n) .
- **3.** Montrer que (v_n) est une suite géométrique , préciser sa raison et son premier terme.
- **4.** Exprimer v_n puis u_n en fonction n.

Calculer la somme : $S = v_0 + v_1 + v_2 + \dots + v_n$.