Assignment 3

Q1)

Jen-Schmidt Algorithm for Ear Decomposition

- 1. Find a rooted DFS tree.
- 2. Give DFS number to each vertex.
- 3. Direct Edges in the DFS tree towards the root vertex
- 4. Direct Non Tree edges away from the root vertex.
- 5. Have {visited, not-visted} flag for each vertex.
- 6. Take the Non tree edge with minimum DFS number(min(dfsnum(u), dfsnum(v)))
- 7. Trace the simple cycle traced by that edge and mark all vertices in the cycle as visited
- 8. All edges in this cycle belong to a EAR component
- 9. Loop:
- i. Take the Non tree edge with minimum DFS number(min(dfsnum(u), dfsnum(v)))
- ii. Trace the simple cycle traced by that edge until we reach a vertex that is visted.
- iii. Mark all vertices in the cycle as visited
- Iv. All edges traversed till finding the visited vertex belong to a EAR component

Our Question

- We are asked used a Non-DFS tree instead of DFS tree.
- One direct observation is in a Non DFS tree there might be cross edges, where as in DFS tree only back edges exist.[graph is un-directional]
- So what essentially happens assume there is cross edge, then it will form a cycle with LCA of the two vertices, which need not be one of u,v.
- The problem is when X->(lca(u,v)) is not one of u,v.
- In which case path to both u and v from X will contain only edges going towards the root, only edge
 (u, v) away from the root.
- In which case, simple cycle does(need) not exist for all these nodes in the path so edge (u, v) has possibilty of not ending up in any ear.
- We can see from this directed graph for jen algorithm below(which the directed graph with BFS tree rooted at 1), that there is simple cycle induced by non tree edge (3,5)
- So Any spanning tree will not work, DFS trees works becuase there are no cross edges, cross edges
 as non tree edges need not induce a simple cycle, when directions are given according to our
 algorithm.
- Back edges dont cause these problem
- Graph:

• BFS tree:

• Directed graph for jen schmidt

Question 2

Jen schmidt algorithm

• Non tree edges:

edge(u,v) -> DFS number

1. (1,5) -> 1

- 2. (1,4) -> 1
- 3. (2,4) -> 2
- 4. (2,6) -> 2
- 5. (2,8) -> 2
- 6. (3,8) -> 3
- 7. (7,6) -> 4
- 8. (8,4) -> 5
- 9. (6,3) -> 6
- Now the Ear each non tree edge induces:
- 1. $(1,5) \rightarrow [(1,5),(5,4),(4,6),(6,8),(8,7),(7,3),(3,2),(2,1)]$, vis = [1,2,3,4,5,6,7,8]
- 2. $(1,4) \rightarrow [(1,4)]$, vis = [1,2,3,4,5,6,7,8]
- 3. $(2,4) \rightarrow [(2,4)]$, vis = [1,2,3,4,5,6,7,8]
- 4. $(2,6) \rightarrow [(2,6)]$, vis = [1,2,3,4,5,6,7,8]
- 5. $(2,8) \rightarrow [(2,8)]$, vis = [1,2,3,4,5,6,7,8]
- 6. $(3,8) \rightarrow [(3,8)]$, vis = [1,2,3,4,5,6,7,8]
- 7. $(7,6) \rightarrow [(7,6)]$, vis = [1,2,3,4,5,6,7,8]
- 8. $(8,4) \rightarrow [(8,4)]$, vis = [1,2,3,4,5,6,7,8]
- 9. $(6,3) \rightarrow [(6,3)]$, vis = [1,2,3,4,5,6,7,8]

Ramachandran algorithm

• Tree rooted at vertex 1

vertex	Preoder number		
1	1		
2	6		
3	8		
4	5		
5	2		
6	3		
7	4		
8	7		

• Non tree edges:

index	edge(u,v)	LCA	Preder Number
1.	(1,4)	1	1
2.	(4,2)	1	1
3.	(6,2)	1	1
4.	(4,6)	5	2
5.	(4,8)	1	1
6.	(3,8)	2	6
7.	(6,8)	1	1
8.	(7,8)	1	1
9.	(7,3)	1	1

• Sort non tree edges by their preorder number LCA

Sort Number	edge(u,v)	LCA	Preder Number
1.	(1,4)	1	1
2.	(4,2)	1	1
3.	(6,2)	1	1
4.	(6,8)	1	1
5.	(7,8)	1	1
6.	(7,3)	1	1
7.	(4,8)	1	1

Sort Number	edge(u,v)	LCA	Preder Number	
8.	(4,6)	5	2	
9.	(3,8)	2	6	

• Labeling Tree edges:

Index	edge(u,v)	lables of cycle in which present	label of edge
1.	(1,2)	2,3,4,5,6,7	2
2.	(1,5)	1,2,3,4,5,6,7	1
3.	(5,4)	1,2,7,8	1
4.	(5,6)	3,4,5,6,8	3
5.	(6,7)	5,6	5
6.	(2,8)	4,5,7,9	4
7.	(2,3)	6,9	6

- Final Ear decomisition:
 - Label 1: [(1,4),(1,5),(5,4)]
 - Label 2: [(4,2),(1,2)]
 - Label 3: [(6,2),(5,6)]
 - Label 4: [(6,8),(2,8)]
 - Label 5: [(7,8),(6,7)]
 - Label 6: [(7,3),(2,3)]
 - Label 7: [(4,8)]
 - Label 8: [(4,6)]
 - Label 9: [(3,8)]
- We can move intial non tree edge to Label 0(here the above in itself ear decompsed):
 - Label 0 [(1,4)]
 - Label 1: [(1,5),(5,4)]
 - Label 2: [(4,2),(1,2)]
 - Label 3: [(6,2),(5,6)]
 - Label 4: [(6,8),(2,8)]
 - Label 5: [(7,8),(6,7)]
 - Label 6: [(7,3),(2,3)]
 - Label 7: [(4,8)]
 - Label 8: [(4,6)]
 - Label 9: [(3,8)]

Question 3

Algorithm

- We have seen in class that if we multiply Adjacency matrix with itself it gives no of paths of length 2 between(i,j).
- Now for it form a triangle there should path on length 1 ans 2 between given vertices (i, j)
- And we also known that AxA [i,j] gives no of paths of length 2 between (i, j)
- So total number of triangles = sum of all{ (AxA[i,j] * A[i,j])}/3
- division by 3 comes becuase of each edge in traingle will given one value to the sum.
- Pseudo Code:
- 1. Sum ← 0
- 2. compute A2
- 3. for i = 1 . . . n do
- 4. for j = 1 ... n do
- 5. Sum \leftarrow Sum + A[i,j] \cdot (A*A) [i,j]
- 6. return Sum/3

Timecomplexity

- Basically finally triangle couting after matrix multplication cause $O(N^2)$
- Matrix Multuplication fastest known is O(N^2.37)

• So overall time complexity is $-0(N^2)+0(N^2.37) = 0(N^2.37)$