

- Os métodos numéricos trabalham bem com integrandos suaves.
- Se existe um pólo ou descontinuidade pode ocorrer problemas.
- Podemos converter a integral original em outra equivalente

- A quadratura gaussiana fornece um resultado bem mais preciso que os métodos vistos anteriormente usando número de pontos semelhantes.
- Neste método, os pontos não são mais escolhidos pela pessoa que utiliza o método, mas segue um critério bem definido.
- O problema consiste em resolver a integral:

$$I = \int_{a}^{b} f(x) dx$$

 A dedução do método de Gauss que será apresentado é para dois pontos.

- O primeiro passo é mudar o intervalo de integração de [a,b] para [-1,1].
- A nova variável de integração "t" se relaciona com x como:

$$x = \frac{1}{2}(b-a)t + \frac{1}{2}(b+a)$$

$$I = \int_{a}^{b} f(x) dx = \int_{-1}^{1} F(t) dt$$

$$F(t) = \frac{1}{2}(b-a)f\left(\frac{1}{2}(b-a)t + \frac{1}{2}(b+a)\right)$$

 A fórmula de Gauss fornece valores exatos para a integração de polinômios de grau (2n -1), onde n é o número de pontos

- O primeiro passo é mudar o intervalo de integração de [a,b] para [-1,1].
- A nova variável de integração "t" se relaciona com x como:

$$x = \frac{1}{2}(b-a)t + \frac{1}{2}(b+a)$$

$$I = \int_{a}^{b} f(x) dx = \int_{-1}^{1} F(t) dt$$

$$F(t) = \frac{1}{2}(b-a)f\left(\frac{1}{2}(b-a)t + \frac{1}{2}(b+a)\right)$$

 A fórmula de Gauss fornece valores exatos para a integração de polinômios de grau (2n -1), onde n é o número de pontos

Para dois pontos a fórmula de Gauss é:

$$I = \int_{1}^{1} F(t) dt = A_{0} F(t_{0}) + A_{1} F(t_{1})$$

- Para determinar estas quatro incógnitas são necessárias quatro equações que podem ser obtidas ao se considerar F(t) = t^k, onde k = 0, 1, 2, 3, já que as constantes desconhecidas independem da função F.

 $I = \int_{-1}^{1} t^{k} dt = A_{0} F(t_{0}^{k}) + A_{1} F(t_{1}^{k})$

$$k=0 \to \int_{-1}^{1} t^{0} dt = 2 = A_{0} t_{0}^{0} + A_{1} t_{1}^{0}$$

$$k=1 \to \int_{-1}^{1} t^{1} dt = 0 = A_{0} t_{0}^{1} + A_{1} t_{1}^{1}$$

$$k=2 \to \int_{-1}^{1} t^{2} dt = 2/3 = A_{0} t_{0}^{2} + A_{1} t_{1}^{2}$$

$$k=3 \to \int_{-1}^{1} t^{0} dt = 0 = A_{0} t_{0}^{3} + A_{1} t_{1}^{3}$$

Resolvendo o sistema.

$$A_0 = A_1 = 1 t_0 = t_1 = 1/\sqrt{3}$$

$$A_0 + A_1 = 2$$

 $A_0 t_0^{1} + A_1 t_1^{1} = 0$
 $A_0 t_0^{2} + A_1 t_1^{2} = 2/3$
 $A_0 t_0^{3} + A_1 t_1^{3} = 0$

Logo a integral I é:

$$I = \int_{-1}^{1} F(t) dt = A_0 F(t_0) + A_1 F(t_1)$$

- É bom lembrar que a fórmula que foi deduzida nos slides anteriores é exata para polinômios de até terceiro grau.
- Para ordens superiores e para outras funções o erro de integração é da ordem

$$E = \frac{1}{135} F^{(IV)}(\xi) \qquad onde - 1 \le \xi \le 1$$

 A fórmula geral para a quadratura gaussiana é determinada por um processo semelhante ao que foi feito para dois pontos.

 Neste caso a fórmula geral para n pontos é baseada na propriedade dos polinômios de Legendre.

$$I = \int_{-1}^{1} F(t) dt = \sum_{i=0}^{n-1} A_i F(t_i)$$

• O erro é dado pela seguinte fórmula.

$$E = \frac{2^{2n+1}(n!)^4}{(2n+1)((2n)!)^3} F^{(2n)}(\xi) \qquad onde - 1 \le \xi \le 1$$

Para n = 1 até 3

n	i	t	A _i
1	0	0,00000000	2,00000000
2	0	-0,57735027	1,00000000
	1	0,57735027	1,00000000
3	0	0,77459667	0,5555556
	1	-0,77459667	0,5555556
	2	0,00000000	0,8888889

• de n =4 até 6

Quadratura Gaussiana

n	i	t	A_{i}
4	0	0,86113631	0,34785484
	1	-0,86113631	0,34785484
	2	0,33998104	0,65214516
	3	-0,33998104	0,65214516
5	0	0,90617985	0,23692688
	1	-0,90617985	0,23692688
	2	0,53846931	0,47862868
	3	-0,53846931	0,47862868
	4	0,00000000	0,56888886
6	0	0,93246951	0,17132450
	1	-0,93246951	0,17132450
	2	0,66120939	0,36076158
	3	-0,66120939	0,36076158
	4	0,23861919	0,46791394
	5	-0,23861919	0,46791394

• de n =7 até 8

Quadratura Gaussiana

n	i	t	A_{i}
7	0	0,94910791	0,12948496
	1	-0,94910791	0,12948496
	2	0,74153119	0,27970540
	3	-0,74153119	0,27970540
	4	0,40584515	0,38183006
	5	-0,40584515	0,38183006
	6	0,00000000	0,41795918
8	0	0,96028986	0,10122854
	1	-0,96028986	0,10122854
	2	0,79666648	0,22238104
	3	-0,79666648	0,22238104
	4	0,52553242	0,31370664
	5	-0,52553242	0,31370664
	6	0,18343464	0,36268378
	7	-0,18343464	0,36268378

- Passos para o programa.
 - Mudança de variável x para t, que se relacionam como: $x = \frac{1}{2}(b-a)t + \frac{1}{2}(b+a)$

 Com esta mudança o intervalo de integração será [-1,1]. Não será necessário variáveis para definir o intervalo inferior e superior na variável t.

$$I = \int_{a}^{b} f(x) dx = \int_{-1}^{1} F(t) dt$$

- A nova função é:

$$F(t) = \frac{1}{2}(b-a)f\left(\frac{1}{2}(b-a)t + \frac{1}{2}(b+a)\right)$$

- Definir o número de pontos n.

- Para ver valores de A_i e t_i consulte http://www.holoborodko.com/pavel/numerical-meth ods/numerical-integration/#gauss_quadrature_abs cissas table
- O resultado da integração será:

$$I = \int_{-1}^{1} F(t) dt = \sum_{i=0}^{n-1} A_i F(t_i)$$

- Integre numericamente as seguintes funções e compare com os outros métodos de integração.
 - Cos x / (1 + x) no intervalo de 0 a 1;
 - -3x + 2 no intervalo de 3 à 6;
 - $1/x^2$ no intervalo de 4 à 4,5;

12

Se existem descontinuidades nas derivadas,
 separe a integral em duas partes

$$\int_{-1}^{1} |x| f(x) dx = \int_{-1}^{0} (-x) f(x) dx + \int_{0}^{1} x f(x) dx$$

 Se existe um fator do tipo x^{1/n} com n>1, pode fazer a transformação x = yⁿ obtendo

$$\int_0^1 x^{1/n} f(x) \, dx = \int_0^1 n y^n f(y^n) \, dy$$

Se existe um pólo ou outra singularidade

$$\mathcal{P} \int_{-1}^{2} \frac{f(x)}{x} dx = \int_{-1}^{2} \frac{f(x) - f(0)}{x} dx + f(0) \mathcal{P} \int_{-1}^{2} \frac{1}{x} dx$$

Se f(x) é analítica em x=0, a primeira integral do lado direito pode ser calculada numericamente, tratando com cuidado o caso x=0. A segunda pode ser calculada analiticamente.

• Exemplos: Tente calcular as integrais abaixo utilizando os métodos diretos e utilizando os "truques" dos slides anteriores

$$\int_0^1 x^{1/3} \, dx = 0.75 \; ,$$

$$\int_0^1 x^{1/4} e^{-x} dx = 0.4769591535856598 ,$$

$$\int_{-1}^{+1} |x - 0.5| \sin x \, dx = -0.4185487713402663$$

$$\mathcal{P} \int_{-1}^{2} \frac{e^{-x^2}}{x} dx = 0.1078022909928357$$