Math 531 Homework 1

Theo Koss

January 2021

1 Section 1.1

• Problem 1, Let $m, n, r, s \in \mathbb{Z}$. If $m^2 + n^2 = r^2 + s^2 = mr + ns$, prove that m = r and n = s.

Proof. Assume, to the contrary, that $m \neq r$ and $n \neq s$. Then it follows that m = r + a and n = s + b, for some $a, b \neq 0 \in \mathbb{Z}$. Then,

$$m^2 + n^2 = (r+a)^2 + (s+b)^2 = r^2 + 2ra + a^2 + s^2 + 2sb + b^2$$
 (1)

Also,

$$mr + ns = r^2 + ra + s^2 + sb \tag{2}$$

And since $r^2 + s^2 = mr + ns$, we deduce that

$$r^{2} + ra + s^{2} + sb = r^{2} + s^{2} \implies ra + sb = 0$$
 (3)

Since 1 and 2 are equal, we can set them equal and cancel terms, therefore:

$$r^2 + 2ra + a^2 + s^2 + 2sb + b^2 = r^2 + ra + s^2 + sb \implies a^2 + b^2 + ra + sb = 0$$
 (4)

By 3, ra + sb = 0, so

$$a^2 + b^2 = 0$$

gED

• Problem 2, List all the numbers between 6 and the next perfect number, including divisors and sums of those divisors. (Sorry, formatting is weird)

Numbers	7	8	9	10	11	12	13
Divisors	1,7	1,2,4,8	1,3,9	1,2,5,10	1,11	1,2,3,4,6,12	1,13
Sum of divisors	1	7	4	8	1	16	1
14	15	16	17	18	19	20	21
1,2,7,14	1,3,5,15	1,2,4,8,16	1,17	1,2,3,6,9,18	1,19	1,2,4,5,10,20	1,3,
10	9	15	1	21	1	22	11
22	23	24	25	26	27	28	
1,2,11,22	1,23	1,2,3,4,6,8,12,24	1,5,25	1,2,13,26	1,3,9,27	1,2,4,7,14,28	
14	1	36	6	16	13	28	

• Problem 9, Let $a, b, c \in \mathbb{Z}$ such that a + b + c = 0, show that if $n \in \mathbb{Z}$ divides two of the integers, it divides all three.

Proof. If n|a and n|b, then a=np, and b=nq. Then a+b+c=np+nq+c=0. So c=-n(p+q), therefore c is some multiple of n, thus n|c.

• Problem 15, For what $n \in \mathbb{Z}^+$ is $\gcd(n, n+2) = 2$. Conjecture: $n = 2k, k \in \mathbb{N}$.

Proof. Suppose $n = 2k, k \in \mathbb{N}$, (n is even). Then

$$\gcd(n,n+2)=\gcd(2k,2k+2)=\gcd(2k,2)$$

Since 2k is always even, 2|2k, and 2 is the largest divisor because the largest number than can divide 2 is 2. Therefore gcd(n, n + 2) = 2 when n = 2k.

2 Section 1.2

• Problem 4, {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59}. (For my work, sieved out all multiples of 2,3 and 5, this is what remained.)

• Problem 6, For each of 9,15,20,24,100, give a divisor diagram.

• Problem 10, Prove that $n^4 + 4$ is composite if n > 1.

Proof.

$$n^4 + 4 = (n^2 - 2n + 2)(n^2 + 2n + 2)$$

And since

$$(n^2 - 2n + 2) \in \mathbb{Z}$$

and

$$(n^2 + 2n + 2) \in \mathbb{Z}$$

and

$$(n^2 - 2n + 2) \neq (n^2 + 2n + 2)$$

for $n>1\in\mathbb{Z},$ this is a product of two integers, therefore it is composite. QED

• Problem 24, Prove that every positive integer can be uniquely expressed as the product of a square and a square-free integer. (Kinda lost on this one but I'll give it a try)

Proof. By the FTA, every positive integer can be uniquely expressed as the product of primes, like so:

$$a = (p_1^{n_1} p_2^{n_2} p_3^{n_3} ... p_k^{n_k}) = \prod_{i=1}^k p_i^{k_i}$$

(Ok I'm confused here, for example how is 6 created with a square? Does 1 count as a square? It must because there's no other way to get all the primes.) I was thinking about splitting a into parts, one square part and one square-free part, like:

$$a = \underbrace{(p_1^{n_1} p_2^{n_2} p_3^{n_3} ... p_k^{n_k})^2}_{\text{Squares}} \cdot \underbrace{(q_1^{m_1} q_2^{m_2} q_3^{m_3} ... q_l^{m_l})}_{\text{Square-frees}}$$

But I'm not sure if that's mathematically rigorous.

QED