

M.Tech Digital Manufacturing

BITS Pilani
Pilani Campus

Jayakrishnan J Guest Faculty

DMZG521- Design for Additive Manufacturing Session 9 & Lecture 17-18

Todays Lecture Overview

- Hybrid Methodologies
- Hybrid Manufacturing
- Hybrid AM
- Process planning for HAM
- Challenges in HAM

innovate achieve lead

Hybrid Methodologies

- Carbon fiber reinforced aluminum
- Hybrid circuits
- Composite layer printing

Source: Sealy, Michael P., et al. "Hybrid processes in additive manufacturing." *Journal of Manufacturing Science and Engineering* 140.6 (2018).

How Does Hybrid Manufacturing Work?

 One of the most common methods of hybrid manufacturing is to apply additive and subtractive processes in sequence.

It is also typically possible to alternate between additive

and subtractive in-process

This scaled-down <u>turbine casing</u> made on DMG MORI's Lasertec 65 3D was built up from Inconel 718 and bronze, and then machined only where necessary.

HM Processes

Source: Sealy, Michael P., et al. "Hybrid processes in additive manufacturing." *Journal of Manufacturing Science and Engineering* 140.6 (2018).

Hybrid Additive Manufacturing

- Combination of subtractive and additive manufacturing
- Hybrid systems most often consist of a machine tool such as a mill or lathe, or a robot arm, that is equipped with a directed energy deposition (DED) head for depositing metal powder or wire

Subtractive Hybrid Additive Additive Manufacturing Manufacturing Manufacturing (SM) (AM)

Why do we go for Hybrid Manufacturing?

Why HAM?

Hybrid Additive Manufacturing
☐ Customization and geometric freedom
☐ High productivity ☐ High accuracy and surface finish
☐ Functional material property
☐ Less material wastage

Source: Aamer Nazir and Jeng-Ywan Jeng (2019)

Material Efficiency

Buy-to-Fly ratio is the weight ratio between the raw material used for a component and the weight of the component itself.

Conventional Process

Quality

 $\boldsymbol{Blade}-Aerospace$

Cooled injection – Die & mould

Cutting knife— Automotive

Drill bit – Oil & gas

Turbine housing – Aerospace

Source: DMG MORI

Classification of hybrid-AM machining processes

	AM Process category	Material feedstock	Types of material	Material distribution
Laser				
Laser Welding + Machining	DED	Powder	Metal	Deposition Nozzle
Laser Cladding + Milling	DED	Powder	Metal	Deposition Nozzle
Laser Deposition + Milling	DED	Powder	Metal	Deposition Nozzle
Selective Laser Sintering + Milling	PBF	Powder	Metal	Powder Bed
Plasma Arc				
3D Welding + Milling	DED	Wire	Metal	Deposition Nozzle
Plasma Deposition + Milling	DED	Powder	Metal	Deposition Nozzle
Microcasting + Milling + Shot Peening	DED	Powder	Metal	Deposition Nozzle
Solid State Fusion				
Ultrasonic Welding + Milling	Sheet Lamination	Sheet	Metal	Sheet Stock
Layered Compaction Manufacturing + Milling + Sintering	PBF	Powder	Ceramic	High Density Green Compact

DED- Direct Energy Deposition, PBF- Powder Bed Fusion

Machine tool configuration in

Source: Flynn et. al (2015) & Hybrid Manufacturing technologies

Commercial HAM

> DMG MORI

- (i) LASERTEC 65 3D hybrid
- (ii) LASERTEC 4300 3D hybrid

> MAZAK

- (i) INTEGREX i-400 AM
- (ii) VC-500 AM
- (iii) INTEGREX i-200S AM
- (iv) INTEGREX i-300S AM
- (v) VARIAXIS j-600/5X AM

Source: DMG MORI, MAZAK

Commercial HAM

- (i) LASER EX series
- (ii) MU V LASER EX
- (iii) MULTUS U LASER EX

> WFL - WORLDWIDE MANUFACTURER

M80 MILLTURN

Source: OKUMA, TRUMPF, WFL

Commercial HAM

HERMLE

- **MITSUI SEIKI**
 - (I) VERTEX 55X H

Source: HERMLE, MITSUI SEIKI

Sodick OPM250ML

innovate	achieve	lead

Technical Specification	
Max size of molding object (W x D x H)	250×250×250mm
X axis stroke	260mm
Y axis stroke	260mm
U axis stroke	260mm
Molding tank inner dimensions (W x D)	290×290mm
Spindle Z-axis stroke	100mm
Max powder supply weight	90kg (Maraging steel)
Nitrogen supply capacity	32NL/min
Machine dimensions (Peripheral equipment not included)	1870×2230×2055mm
Machine weight (Peripheral equipment not included)	4500kg
Laser method	Yb fiber laser
Laser wavelength	1070nm
Max laser output	500W
Laser scan	Galvano method
Max main spindle rotation speed	45000min-1
Max main spindle torque	0.8Nm
Number of tools	0.8Nm
Number of tools	16
Tool holder method	Dual face contact holder HSK-E25

https://www.sodick.org/products/additive-manufacturing/opm250l.html

AM processes

innovate achieve lead

- 1. Vat photo polymerization
- 2. Material jetting
- 3. Binder jetting
- 4. Material extrusion
- 5. Powder bed fusion
- 6. Sheet Lamination
- 7. Directed Energy Deposition

Example usage:

- •Re- work of articles
- •3D objects
- •End use parts

Materials Used in DED:

- Metals (Ti, Co, Cr etc.,)
- •Powder or wire (Metals) Limitations
- Accuracy, surface finish
- Difficult to process complex parts (Due to support structures)

Schematic representation of DED

Parts made by DED:

Source: STRATOSMITH technologies

Source: Dragonfly S.R.L

innovate achieve lead

DED process schematics

Fig. 4 Schematic representation of DMD process

Fig. 5 Part fabrication using DMD process

(Courtesy: CMTI, Bangalore)

Video: Direct Energy Deposition

innovate

achieve

lead

Hybrid Manufacturing Process

Hybrid Manufacturing Process (Courtesy: DMG MORI)

Laser deposition involving DED with milling

Laser Deposition Welding

lead

Milling

Laser Deposition Welding

generation

Laser Deposition Welding

Milling

11: Milling of the flange and the inner contour

12: Milling of the inner circular pockets

Material Complexity

Material complexity: Material can be processed one point, or one layer, at a time as a single material or as a combination of materials

Material composition in different areas of Functionally Graded Material (Cu-Ni)

Design for AM

The developed methodology for the design of AM and machining process sequence (source: Le et al. (2017))

Process planning in Hybrid Additive Manufacturing

Process planning in Hybrid Additive Manufacturing (source: Le et al. (2017))

Layer manufacturing for metals

Various slicing techniques

Slicing

"Process of converting the model into a series of thin

layers"

Sliced model source: ITI techigroup

Basic types of Slicing

- 2.5D slicing
- Multi- directional

Slicing

Factors to be consider in slicing

- Build time
- Surface quality
- Orientation of the part
- Minimum overhangs

Methods of Slicing

- Constant thickness slicing
- Adaptive slicing

Multi directional slicing of overhang part [3]

Part with different build direction with support structure[4]

11/14/2019

Multi-direction slicing

Developing a multi-direction slicing algorithm for hybrid additive manufacturing system, to add the material for complex geometric features is challenging"

3D Modelling and Tessellation

Feature edges extraction

Representation of triangular facets with different normal directions

If $\Theta = 0$, both the triangles are in the same plane If $\Theta \neq 0$, it is a feature edge.

Give, $\Theta > \Theta_{\text{threshold}}$ as per the required threshold value. Threshold value is user defined.

For a given geometry two types of edges possible

- 1.Concave edges
- 2.Convex edges

Identification of concave and convex edges

Fig. (i) Concave edge, (ii) Convex edge representation

$$\emptyset_{ab} = (n_i \times n_j).\overrightarrow{ab} \longrightarrow 2$$

From the fig the value of ø represents the type of the edge it belongs to.

If $\phi_{ab} > 0$, the edge represented is a concave edge. If $\phi_{ab} < 0$, the edge represented is a convex edge.

Illustration with a model geometry

Fig. CAD model of overhang part

Validation results of overhang model

Illustration

Fig. Thruster CAD model

Fig. Validation results of Thruster model

Video: Hybrid Additive Manufacturing

Process planning system

CONVENTIONAL TURBINE BLADE REPAIR

The defective turbine blade is initially deposited by a <u>vby a welding bead</u> by ladenevelding. They lased welding. The bead acovers the more than the ea defective area

A digitized CAD represented is then generated and the actual turbine blade is then programmed into a CNC machine for subtractive process and finishing

DED PROCESS USED IN BLADE REPAIR

Tool Path Planning

Software for HAM part preparation

- Siemens NX
- Vericut

Challenges in Process Planning for Hybrid Manufacturing

5- Axis configuration
"Three linear (X, Y & Z), one rotating (C), one tilting (B)

What is currently available in COTS tools?

- Decomposition of Features
- Merging of features
- Sub-dividing Volumes axially and radially

Courtesy: Siemens NX

Hybrid System Configuration:

Challenges in Slicing for Hybrid Manufacturing

What is needed?

- Overhang volume decomposition and slicing
- Complex internal cavity generation
- Machining delta volume compensation

End of Lecture 17-18