Linearne diferencialne enačbe 1. reda. So oblike $\dot{\overrightarrow{x}} = A\overrightarrow{x} + \overrightarrow{f}(t)$. Členu $A\overrightarrow{x}$ rečemo homogeni del, členu $\overrightarrow{f}(t)$ pa partikularni del. Če rešimo homogeni del, lahko na podlagi te rešitve konstruiramo tudi partikularno rešitev. Pri Matematiki III smo postopku rekli variacija konstante, pri Mafiji to obravnavamo kot konvolucijo $\int_0^\infty \overrightarrow{G}(\overrightarrow{f}(t'),t-t')\mathrm{d}t'$, kjer je $\overrightarrow{G}(\overrightarrow{x_0},t)=\overrightarrow{x}$ rešitev homogenega dela.

Imejmo zdaj sistem $\dot{\vec{x}} = A \overrightarrow{x}$.

Najprej si mislimo, da je A diagonalizabilna.

$$A = PDP^{-1}$$

$$P^{-1}\dot{\vec{x}} = P^{-1}PDP^{-1}\dot{\vec{x}}$$

Uvedemo spremenljivko $\overrightarrow{y} = P^{-1}\overrightarrow{x}$.

$$\frac{\dot{\vec{y}}}{\vec{y}} = D\vec{\vec{y}}$$

$$\vec{y} = e^{Dt}\vec{y}$$

Če A ni diagonalizabilna, jo damo v Jordanovo bazo:

$$A = PJP^{-1}$$

Jordanova matrika je sestavljena iz celic oblike

$$J_k = egin{bmatrix} \lambda_k & 1 & & & & \\ & \lambda_k & 1 & & & \\ & & \ddots & \ddots & \\ & & & \lambda_k & 1 \end{bmatrix}$$

Da jo damo v tako obliko, moramo poiskati korenske vektorje te matrike. Ko jih najdemo, je rešitev oblike

Harmonično nihanje. Harmonično nihanje opisuje sistem enačb

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$

(Uvedli smo spremenljivko $v=\dot{x}$, sicer gre za enačbo $\ddot{x}=-\frac{k}{m}x$) Uvedemo spremenljivki $y=\omega^{-1}v$ in $\tau=\omega t$.

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Zdaj uporabimo prej opisani postopek za $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ in dobimo sinusno nihanje.

Kritično dušenje. To imamo opravka z enačbo oblike $\ddot{x} + 2\omega\dot{x} + \omega^2 x = 0$ V matrični obliki ga zapišemo kot

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\omega \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$
$$\frac{\mathrm{d}}{\mathrm{d}\tau} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Ta matrika ni diagonalizabilna (koeficient dušenja mora biti $\beta=2\omega$). Uporabimo Jordanovo matriko in dobimo

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} e^{-\tau} \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} (x_0 + y_0)(1+\tau) - y_0 \\ y_0 - \tau(x_0 + y_0) \end{bmatrix}$$

Tu je matrika $\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$ prehodna matrika P. Za ostale matrike smo že poskrbeli.

Problem kompartmentov. Večina matrik je diagonalizabilnih. Problem kompartmentov je primer, ko se nediagonalizabilni matriki ne moremo izogniti. Mislimo si, da imamo tri kompartmente z vodo, vezane enega za drugim. V prvega dodamo nek topljenec in gledamo, kako se spreminja masa topljenec v naslednjih kompartmentih.

$$\dot{m}_1 = -\frac{\phi}{V}m_1$$

$$\dot{m}_2 = -\frac{\phi}{V}m_2 + \frac{\phi}{V}m_1$$

$$\dot{m}_3 = -\frac{\phi}{V}m_3 + \frac{\phi}{V}m_3$$

V matrični obliki to zapišemo kot

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \frac{\phi}{V} \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}$$

Tako je $m_1 = e^{-\lambda t} m_0$, $m_2 = C e^{-\lambda t} + A t e^{-\lambda t}$ in tako naprej. Tak sistem lahko rešimo s časovno zahtevnostjo $\mathcal{O}(n)$.

Sistem enačb s pasovno matriko - prevajanje toplote. Imejmo matriko, ki ima neničelne vrednosti le na glavni diagonali in diagonalah ob njej. Primer take matrike je sistem enačb za prevajanje toplote (med kompartmenti).

$$m_1 c \dot{T}_1 = h(T_2 - T_1)$$

$$m_2 c \dot{T}_2 = h(T_1 - T_2) + h(T_3 - T_2)$$

$$m_3 c \dot{T}_3 = h(T_2 - T_3) + h(T_4 - T_3)$$

In tako naprej za naslednje kompartmente. V matrični obliki to enačbo zapišemo kot

$$\begin{bmatrix} m_1c & & & \\ & m_2c & & \\ & & m_3c & \\ & & & \ddots \end{bmatrix} \stackrel{\mathbf{d}}{=} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ \vdots \end{bmatrix} = h \begin{bmatrix} -1 & 1 & \dots & \\ 1 & -2 & 1 & \\ \vdots & 1 & 2 & \ddots \\ & & \ddots & \ddots \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ \vdots \end{bmatrix}$$

Imamo enačbo oblike $M\overrightarrow{T}=K\overrightarrow{T}$ Imamo posplošen primer lastnih vrednosti:

$$\overrightarrow{T} = \overrightarrow{T_n} e^{\lambda t}$$

Lastne vrednosti dobimo iz enačbe $det(K - \lambda M) = 0$.

Lastni načini. V limiti $n \to \infty$, kjer n predstavlja število enačb, naša enačba $\dot{T}_n = T_{n-1} - 2T_n + T_{n+1}$ predstavlja drugi odvod po kraju. Dobimo torej

$$\frac{\partial}{\partial t}T = \Delta x^2 \nabla^2 T - qT$$

ali difuzijsko enačbo. Njena rešitev je kombinacija funkcij oblike $T = e^{\lambda t} T(x)$, ki jih imenujemo lastni načini. Pri tem mora veljati:

$$\lambda T = \Delta x^2 \nabla^2 T$$

Rešujemo z nastavkom $T = A\cos(kx)$

$$A\lambda T = \Delta x^2 A(-k^2)T$$

$$\lambda = -k^2 - 1$$

Kompleksne rešitve 2D sistemov. Recimo, da sistem opisuje matrika $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Tedaj je

$$e^{At} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} = I\cos t + A\sin t$$

Tako lastnost imajo tri bazne matrike:

$$i\sigma_x = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \quad i\sigma_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad i\sigma_z = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

Te matrike imenujemo tudi Pavlijeve matrike. Imajo sledeče lastnosti:

$$\sigma_x \sigma_y = i \sigma_z \sigma_y \sigma_z = i \sigma_x \sigma_z \sigma_x = i \sigma_y$$

Vrh tega lahko z njimi generiramo rotacijske matrike.

Eulerjeva delta. Označimo \overrightarrow{n} ... os rotacije in σ_i ... Pavlijeva matrika.

$$e^{i(n_i\sigma_i)=\cos\frac{\varphi}{2}+i\sigma_in_i\sin\frac{\varphi}{2}}$$

Dušeno vrtenje. Imamo sistem

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}, \quad A = \begin{bmatrix} -\beta & \omega \\ -\omega & -\beta \end{bmatrix}$$

Vidimo, da je A linearna kombinacija ene od Pavlijevih matrik in identitete. To pomeni, da je

$$e^{At} = e^{(-\beta I + \omega(i\sigma_y))t} = e^{-\beta t}e^{w(i\sigma_y)t} = e^{-\beta t}\begin{bmatrix}\cos\omega t & \sin\omega t\\ -\sin\omega t & \cos\omega t\end{bmatrix}$$

To smemo storiti, ker I komutira z $i\sigma_i$ - sicer eksponent vsote ne bi bil enak produktu eksponentov.

Gibanje naboja v elektro-magnetnem polju. Mislimo si, da imamo opravka še z dušenjem, koeficient katerega označimo z γ .

$$m \dot{\overrightarrow{v}} = e \overrightarrow{E} - \gamma \overrightarrow{v} + e \overrightarrow{v} \times \overrightarrow{B}$$

$$m \begin{bmatrix} \dot{v}_x \\ \dot{v}_y \end{bmatrix} = e \begin{bmatrix} E_x \\ E_y \end{bmatrix} + \gamma \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} + eB \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

Opravka imamo z matrično enačbo

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrika je točno enaka $i\sigma_y$, ki pa je samo rotirana matrika $i\sigma_z$, ki ima lastni vrednosti $\pm i$.

Prehod v lastni sistem je ekvivalenten uvedbi nove spremenljivke $w=v_x+iv_y$. Imamo torej le eno kompleksno enačbo

$$m\dot{w} = e(E_x + iE_y) - \gamma w - eBiw$$

Homogeni del
: $w = w_0 e^{-\frac{\gamma + eBi}{m}t}$

Partikularni del: Označimo $f = e(E_x + iE_y)$

$$0 = f - (\gamma - eBi)w$$

$$w = \frac{f}{\gamma + eBi}$$

Za v_x in v_y samo vzamemo realni in imaginarni del te rešitve.

Faucaltovo nihalo (nihalo v vrtečem se koordinatnem sistemu) Opravka imamo z diferencialno enačbo

$$m \dot{\overrightarrow{x}} = 2m \overrightarrow{\Omega} \times \dot{\overrightarrow{x}} - m \frac{g}{l} \overrightarrow{x} - m \overrightarrow{g}$$

V matrični obliki jo zapišemo kot

$$\begin{bmatrix} m\ddot{u} \\ m\ddot{v} \end{bmatrix} = 2m \begin{bmatrix} 0 & -\Omega \\ \Omega & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \end{bmatrix} - \frac{mg}{l} \begin{bmatrix} u \\ v \end{bmatrix}$$

Spet uvedemo spremenljivko w in dobimo

$$\ddot{w} = 2\Omega i\dot{w} - \omega_0^2 w$$

Rešimo z nastavkom $w = w_0 e^{i\omega t}$, ki nam da karakteristično enačbo

$$-\omega^2 = 2\Omega(-\omega) - \omega_0^2$$

$$\omega = \Omega \pm \sqrt{\Omega^2 + \omega_0^2}$$

$$w = w_1 e^{i(\Omega + \sqrt{\Omega^2 + \omega_0^2})t} + w_2 e^{i(\Omega \pm \sqrt{\Omega^2 + \omega_0^2})t}$$

Če začnemo v koordinatnem izhodišču: $w_1 = -w_2$

$$w = 2w_1 e^{i\Omega t} \sin\left(\sqrt{\Omega^2 + \omega_0^2}\right) t$$

Tu w_1 redstavlja začetno hitrost (in je kompleksen, torej predstavlja tako x kot y smer). $e^{i\Omega t}$ predstavlja vrtenje ravnine nihanja, sin $\left(\sqrt{\Omega^2 + \omega_0^2}\right)t$ pa nihanje samo.

Kvaternioni. Postopek, kakršnega smo uporabili pri obravnavi Faucaltovega nihala, je možen v dveh dimenzijah, kjer si lahko pomagamo s kompleksnimi števili. V treh dimenzijah potrebujemo kvaternione. Nekako gre za opis vektorskega prostora, katerega baze so Pavlijeve matrike in identiteta.

$$Q = a_0 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k$$
$$i^2 = j^2 = k^2 = -1$$
$$ij = k = -ji$$
$$jk = i = -kj$$
$$ki = j = -ik$$

$$i \leftrightarrow i\sigma_x j \leftrightarrow i\sigma_y k \leftrightarrow i\sigma_z$$

Rotacijo P lahko predstavimo kot $P=\cos\frac{\varphi}{2}+\overrightarrow{n}\cdot(i,j,k)\sin\frac{\varphi}{2}$ Inverz te rotacije P^* dobimo tako, da namesto i vstavimo -i in tako naprej. Količino $Q=a_1i+a_2j+a_3k$ pa si lahko predstavljamo kot vektor. To pomeni, da lahko na nek način seštevamo skalarje in vektorje:

$$A = s + \overrightarrow{v} = s + v_x i + v_y j + v_z k$$

$$B = t + \overrightarrow{w} = t + w_x i + w_y j + w_z k$$

$$AB = st - \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{t} \times \overrightarrow{w} + s\overrightarrow{w} + t\overrightarrow{v}$$

To je uporabno, zaenkrat pa omenimo bolj kot zanimivost.