Homework 2

ALECK ZHAO

February 20, 2018

Chapter 14: The Riemann-Stieltjes Integral

29. Show that $|S_{\alpha}(f, P, T)| \leq ||f||_{\infty} V(\alpha, P)$.

Proof. We have $V(\alpha, P) \ge |\alpha(b) - \alpha(a)| \ge \alpha(b) - \alpha(a)$ for any partition P. Thus,

$$S_{\alpha}(f, P, T) = \sum_{i=1}^{n} f(t_{i}) \left[\alpha(x_{i}) - \alpha(x_{i-1})\right] \le \sum_{i=1}^{n} \|f\|_{\infty} \left[\alpha(x_{i}) - \alpha(x_{i-1})\right]$$
$$= \|f\|_{\infty} \sum_{i=1}^{n} \left[\alpha(x_{i}) - \alpha(x_{i-1})\right] = \|f\|_{\infty} \left[\alpha(b) - \alpha(a)\right]$$
$$\le \|f\|_{\infty} V(\alpha, P)$$

31. Let a < c < b, and suppose that $f \in \mathcal{R}_{\alpha}[a,c] \cap \mathcal{R}_{\alpha}[c,b]$. Show that $f \in \mathcal{R}_{\alpha}[a,b]$ and that $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$. In fact, if any two of these integrals exist, then so does the third and the equation above still holds.

Proof. Since $f \in \mathcal{R}_{\alpha}[a,c]$ and $f \in \mathcal{R}_{\alpha}[c,b]$, let I_1 and I_2 be $\int_a^c f \, d\alpha$ and $\int_c^b f \, d\alpha$, respectively. Let $\varepsilon > 0$. There exists partitions P^* and Q^* of [a,c] and [c,b] such that

$$|S_{\alpha}(f, P, T_1) - I_1| < \frac{\varepsilon}{2}$$
$$|S_{\alpha}(f, Q, T_2) - I_2| < \frac{\varepsilon}{2}$$

for all $P \supset P^*$ and $Q \supset Q^*$ and all choices T_1 and T_2 . Then let $R^* = P^* \cup Q^*$ be a partition of [a, b]. Then for any $R \supset R^*$,

$$|S_{\alpha}(f, R, T_3) - (I_1 + I_2)| \left| \left[S_{\alpha}(f, P, T_1) + S_{\alpha}(f, P, T_2) \right] - (I_1 + I_2) \right| \le |S_{\alpha}(f, P, T_1) - I_1| + |S_{\alpha}(f, Q, T_2) - I_2|$$

$$i + + i$$

j++*i*

- 36. If $\alpha \in BV[a,b]$ and $f \in \mathcal{R}_{\alpha}[a,b]$, show that $f \in \mathcal{R}_{\alpha}[c,d]$ for every subinterval $[c,d] \subset [a,b]$.
- 39. Given $\alpha \in BV[a,b]$, let p and n be the positive and negative variations of α . Show that $\mathcal{R}_{\alpha} = \mathcal{R}_{p} \cap \mathcal{R}_{n}$ and that $\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, dp \int_{a}^{b} f \, dn$ for any $f \in \mathcal{R}_{\alpha}$.

Proof. Since
$$\alpha = p + n$$
, it follows that $R_p \cap R_n \subset R_{p+n} = R_{\alpha}$.

Homework 2 Honors Analysis II

j++j

41. Suppose that (α_n) is a sequence in BV[a,b] and that $V_a^b(\alpha_n - \alpha) \to 0$. Show that $\int_a^b f \, d\alpha_n \to \int_a^b f \, d\alpha$ for all $f \in C[a,b]$.

Proof. Since $f \in C[a, b]$, it is integrable, $f \in \mathcal{R}_{\alpha} \cap \mathcal{R}_{\alpha_n}$, so

$$\left| \int_{a}^{b} f \, d\alpha_{n} - \int_{a}^{b} f \, d\alpha \right| = \left| \int_{a}^{b} f \, d(\alpha_{n} - \alpha) \right|$$

From the result of Problem 29, we have

$$|S_{\alpha_n-\alpha}(f,P,T)| \le ||f||_{\infty} V(\alpha_n-\alpha,P) \le ||f||_{\infty} V_a^b(\alpha_n-\alpha) \to 0$$

Thus,
$$\left| \int_a^b f \, d(\alpha_n - \alpha) \right| \to 0$$
, so $\left| \int_a^b f \, d\alpha_n - \int_a^b f \, d\alpha \right| \to 0$.

- 42. Suppose that φ is a strictly increasing continuous function from [c,d] onto [a,b]. Given $\alpha \in BV[a,b]$ and $f \in \mathcal{R}_{\alpha}[a,b]$, show that $\beta = \alpha \circ \varphi \in BV[c,d]$ and that $g = f \circ \varphi \in \mathcal{R}_{\beta}[c,d]$. Moreover, $\int_{c}^{d} g \, d\beta = \int_{a}^{b} f \, d\alpha$.
- 50. If f is continuous on [a, b], and if $\int_a^b |f(x)| dx = 0$, show that f = 0.