Лабораторная работа №1.1.6

Маллаев Руслан 12 октября 2020 г. **Цель работы:** ознакомиться с утройством осциллографа и изучить его основные характеристики.

Приборы, используемые в работе: осциллограф, генератор электрических импульсов, соединительные кабели.

1 Измерение амплитуды синусоидального сигнала

$$U_{max} = 10 \text{ B}, U_{min} = 60 \text{ MB}$$

$$eta = 20 log rac{U_{max}}{U_{min}} = 44.44$$
 дБ

2 Измерение частоты синусоидального сигнала

Таблица №1

$f_{3\Gamma}$, Γ ц	<u>ВРЕМЯ</u> ДЕЛ	Т, ДЕЛ	Т, мс	$f_{\scriptscriptstyle \rm H3M},~\Gamma$ ц	$ f_{\scriptscriptstyle 3\Gamma}-f_{\scriptscriptstyle \rm IIM} ,\ \Gamma$ Ц	$\frac{ f_{\text{3r}} - f_{\text{изм}} }{f_{\text{3r}}}$
1500	0.1мс/дел	6.6	0.660	1515	15	0.010
500	0.2мс/дел	9.8	1.960	510	10	0.020
100	1мс/дел	9.8	9.800	102	2	0.020
10000	10мкс/дел	9.8	0.098	10204	204	0.020
15000	10мкс/дел	6.7	0.067	14925	75	0.005

Влияние АЧХ на искажение сигнала 3

1)AC

• 500 Гц

4 Измерение разности фазовых сдвигов сигналов на выходах усилителей канала «Х» и канала «Y» при одновременной подаче на их входы одного и того же сигнала, т.е. разности фазово-частотных характеристик каналов «Х» и «Y»

Таблица №2

$f_{3\Gamma}$, к Γ ц	1	100	200	300	500	1000	1500
А,дел	3	3	3	3	3	3	3
В, дел	0.0	0.2	0.3	0.5	0.8	1.6	2.3
$\triangle \Phi_{xy}$	0.00	0.067	0.100	0.167	0.270	0.563	0.874
$f_{\scriptscriptstyle { m 3\Gamma}}, { m K}\Gamma$ ц	2000	2120	2500	3000	3500	4000	-
А, дел	3	3	3	3	3	3	-
В, дел	2.8	3.0	2.7	1.8	0.7	0.1	-
$\triangle \Phi_{xy}$	1.204	1.571	2.022	2.498	2.906	3.108	-

При $f_{\rm 3r}$ менее 2.12 МГц эллипс наклонен влево, а при больших частотах вправо. При низких $f_{\rm 3r}$ не измеряется.

Построим график зависимости $\ln(\Delta \Phi_{xy})$ от $\ln(f_{3r})$

График №1

Из графика можно сделать вывод, что $\Delta \Phi_{xy} = \alpha \cdot f_{\rm 3r}^{\beta}$, где $ln(\alpha) = b; \ \beta = k$

5 Наблюдение фигур Лиссажу при сложении колебаний во взаимно перпендикулярных направлениях

• 1:1

• 2:1

• 3:1

• 3 : 2

