Universidad del Valle EISC

Septiembre 2018

- 2 Estrategias de solución de recurrencias no homogéneas
 - Cambio de variable
 - Método maestro

Contenido

1 Recurrencias lineales no homogéneas

- 2 Estrategias de solución de recurrencias no homogéneas
 - Cambio de variable
 - Método maestro

Solución a recurrencias No homogéneas

Sea $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+F(n)$, donde F(n) no es nula y $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$ es la relación de recurrencia homogénea asociada.

Ejemplo 1. $a_n = 2a_{n-1} + 1$ es una r.r no homogénea donde F(n) = 1

Ejemplo 2. $a_n = a_{n-1} + 2^n$ es una r.r no homogénea donde $F(n) = 2^n$

Ejemplo 3. $a_n=a_{n-1}+a_{n-2}+n^2+n+1$ es una r.r no homogénea donde $F(n)=n^2+n+1$

Teorema1

Si $\{a_n^{(p)}\}$ es una solución particular de $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+F(n)$ entonces toda la solución $\{a_n^{(p)}+a_n^{(h)}\}$ donde $\{a_n^{(h)}\}$ es solución de la homogénea asociada $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$.

Ejercicio 1

Determinar todas las soluciones de $a_n = 2a_{n-1} + 1$ (Hanoi) para $a_1 = 1$ (Hanoi) La solución de la relación de recurrencia

es $a_n=\{a_n^{(p)}+a_n^{(h)}\}$ donde $a_n^{(h)}$ es la solución de la homogénea asociada y $a_n^{(p)}$ es la solución polinómica. Dada la recurrencia $a_n=2a_{n-1}+1,\,F(n)=1$ estos son los pasos para resolverla:

$$Q_{n} = 2Q_{n-1} + 1$$

$$Q_{1} = 1$$

$$Q_{n} = Q_{n}^{(b)} + Q_{n}^{(p)}$$

$$Q_{n} = A2^{n}$$

$$Q_{n} = A2^{n} - 1$$

Ejercicio 1

- 1 Calculamos $a_n^{(h)}$ resolviendo la ecuación homogénea asociada $a_n=2a_{n-1}$, como hay un coeficiente, el de a_{n-1} la ecuación característica es r-2=0 por tanto la raíz r=2. Entonces $\{a_n^{(h)}\}=\alpha 2^n$
- 2 Ahora resolvemos $\widehat{a_n^{(p)}}$ igualando F(n)=1 con un polinomio de igual grado. entonces $a_n^{(p)}=A$ se iguala con la constante A por que F(n) es igual a una constante 1.
- Is iguiente paso es el de reemplazar $a_n^{(p)}=A$ en la recurrencia original (la no homogénea). Si reemplazamos $a_n=A$ entonces nos queda: A=2A+1 resolvemos ésta ecuación y entonces A=-1.

Ejercicio 1

- 3 Entonces como $a_n=\{a_n^{(p)}+a_n^{(h)}\}$ y $a_n^{(p)}=-1$ y $a_n^{(h)}=\alpha 2^n$ por lo tanto $a_n=\alpha 2^n-1$ Esta es una solución general pero faltaría calcular el valor de α
- 4 Ahora por último usamos el valor inicial para calcular el valor de α . Tomamos la solución general $a_n=\alpha 2^n-1$, Si $a_1=1,\ n=1$ entonces $1=\alpha 2-1$, despejando $\alpha=1$ y por tanto una solución particular

$$a_n = 2^n - 1$$

$$Q_{n} = 6 q_{n-1} + 7 q_{n-2} + 5$$

$$Q_{0} = 5 q_{1} = 10$$

$$Y^{2} - 6Y - 7 = 0$$

$$G_{n} = A (-1)^{n} + B (7)^{n}$$

$$Q_{n} = A (-1)^{n} + B (7)^{n} - \frac{5}{12}$$

$$C = 6C + 7C + 5$$

$$-|2C = 5|$$

$$C = -\frac{5}{12}$$

$$|0 = A + 7B - \frac{5}{12}$$

Ejercicio 2

Determinar todas las soluciones de lavrelación de recurrencia $a_n=5a_{n-1}-6a_{n-2}+7^n$ (a veces no hay muchas condiciones iniciales)

La solución de la relación de recurrencia es $a_n = \{a_n^{(p)} + a_n^{(h)}\}$ donde $a_n^{(h)}$ (homogénea) y $a_n^{(p)}$ (polinómica).

Calculamos $a_n^{(h)}$ resolviendo $a_n=5a_{n-1}-6a_{n-2}$ como hay dos coeficientes, el de a_{n-1} y el de a_{n-2} la ecuación característica es $r^2-5r+6=0$ por tanto las raíces son $r_1=3$ y $r_2=2$. Entonces $\{a_n^{(h)}\}=\alpha_13^n+\alpha_22^n$ (por Teorema 1)

Ejercicio 2

- 2 Ahora resolvemos $a_n^{(p)}$ igualando $F(n) = 7^n$ con un polinomio de igual grado. Entonces $a_n^{(p)} = C7^n$ se iguala con la constante $C7^n$ porque F(n) es igual \widetilde{a} la constante elevada a la n.
- $\mathbf{3}$ Reemplazamos $a_n^{(p)} = C7^n$ en la recurrencia original (la no homogénea)

$$C7^{n} = 5(C7^{n-1}) - 6(C7^{n-2}) + 7^{n}$$
$$C7^{n} = 7^{n}(5/7C - 6/49C + 1), C = 49/20$$

Por lo tanto la solución general de $\{a_n\}$ es

$$a_n = \alpha_1 3^n + \alpha_2 2^n + (49/20)7^n$$

Forma de las soluciones particulares

- orma do lao colacionos particulares	
F(n)	$a_n^{(p)}$
C_1	A
	$A_1n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
$n^t, t \in Z^+$	$A_t n^t + A_{t-1} n^{t-1} + \ldots + A_1 n + A_0$
$r^n, r \in R$	Ar^n
$\sin(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$\cos(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \ldots + A_{1}n + A_{0})$
$\overline{r}^n \sin(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$
$r^n \cos(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$

Solucionar la recurrencia $a_n = 3a_{n-1} + 2^n$, $a_0 = 1$

 $Q_{n} = AZ^{n} + B_{n}Z^{n} + 9_{*}3^{n} + 0 + 4$ $Q_{0} = 2$ 2=A+9+4 A=-11 4= 2A+2B+27+1+4 > 4=2B+10

$$Q_{0} = -11 \times 2^{0} - 302^{0} + 9 \times 3^{0} + 0 + 4$$

$$Q_{1} = 5Q_{1-1} + 6Q_{1-2} + 2^{n} + 3^{n} + (n+1)$$

$$Q_{1} = 8$$

$$Q_{2} = 8$$

$$Q_{1} = 8$$

$$Q_{1} = 8$$

$$Q_{2} = 8$$

$$Q_{2} = 8$$

$$Q_{3} = 8$$

$$Q_{1} = 8$$

$$Q_{1} = 8$$

$$Q_{2} = 8$$

$$Q_{3} = 8$$

$$Q_{1} = 8$$

$$Q_{2} = 8$$

$$Q_{3} = 8$$

$$Q_{3} = 8$$

$$Q_{1} = 8$$

$$Q_{2} = 8$$

$$Q_{3} = 8$$

5E + 6E + 1

-5E + 5F - 12E + 6F + Y

$$F : -\frac{57}{100}$$

$$9_{0:} A(6)^{0} + B(-1)^{0} - \frac{1}{3} \times 2^{0} - \frac{1}{10} - \frac{57}{100}$$

$$Q_{0} = A(6)^{0} + B(-1)^{0} - \frac{1}{3} \times 2^{0} - \frac{1}{3} = \frac{3}{3} = \frac{3}{3}$$

$$Q_{0}=2$$

$$Q_{0}=A(6)^{2}+B(-1)^{2}-\frac{1}{3}x^{2}^{2}-\frac{1}{3}x^{2}$$

$$Q_{0}=2$$

$$Q_{0}=2$$

8=6A-B-1-1-1-57

91=8

Dada la recurrencia $a_n = 2a_{n-1} + n + 5$ determine la solución para $a_0=4$

- 1 Una solución general es $a_n = \{a_n^{(h)} + a_n^{(p)}\}$
- **2** La solución de la homogénea: $a_n^{(h)} = \alpha 2^n$
- 3 La solución polinómica: $a_n^{(p)} = An + B$ para F(n) = n + 5
- 4 Entonces por términos semejantes An + B = 2(A(n-1) + B) + n + 5, A = -1 y B = -7
- 5 Por lo tanto $a_n = \alpha 2^n n 7$ es una solución general de la recurrencia.
- Sea $a_n = \alpha 2^n n 7$, para $a_0 = 4$ entonces $\alpha = 11$. Por lo tanto la solución de la recurrencia:

$$a_n = 11 \cdot 2^n - n - 7$$

Teorema 2

Supongamos que $\{a_n\}$ es solución de la relación de recurrencia lineal no homogénea $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+F(n)$, donde $c_1,c_2,\ldots c_k$ son números reales y $F(n)=(b_tn^t+b_{t-1}n^{t-1}+\ldots+b_1n+b_0)S^n$ esto es cuando F(n) es un polinomio multiplicando a S^n donde S es una constante. Entonces existe dos tipos de solución:

Si S no es una raíz de la ecuación característica de la homogénea asociada, entonces existe una solución particular de la forma:

$$(p_t n^t + p_{t-1} n^{t-1} + \ldots + p_1 n + p_0) S^n$$

■ Cuando S es raíz de dicha ecuación característica y tiene multiplicidad m, existe una solución particular de la forma $n^m(p_tn^t + p_{t-1}n^{t-1} + ... + p_1n + p_0)S^n$

Encontrar la solución general de la recurrencia

$$a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3n$$

- Una solución general es $a_n = \{a_n^{(h)} + a_n^{(p)}\}$
- 2 La solución de la homogénea: $a_n^{(h)}=\alpha 3^n+\beta 2^n$ 3 La solución polinómica: $a_n^{(p)}=nC2^n+An+B$ para $F(n) = 2^n + 3n$
- 4 Entonces por términos semejantes:

$$nC2^{n} + An + B = 5[(n-1)C2^{n-1} + A(n-1) + B]$$
$$-6[(n-2)C2^{n-2} + A(n-2) + B] + 2^{n} + 3n$$

Encontrar la solución general de la recurrencia

$$a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3n$$

4 Solucionando:

$$nC2^n = 5C(n-1)2^{n-1} - 6C(n-2)2^{n-2} + 2^n$$

 $nC = 5/2C(n-1) - 6/4C(n-2) + 1; 3C - 5/2C + 1 = 0, C = -2$

$$An + B = 5A(n-1) + 5B(n-1) + 5B - 6A(n-2) - 6B + 3n$$

$$An - 5An + 6An - 3n = 0; n(A - 5A + 6A - 3) = 0 \rightarrow 2A - 3 = 0, A = 3/2,$$

$$B = -5A + 5B + 12A - 6B; B = 21/4$$
 La solución de la recurrencia es: $a_n = \alpha 3^n + \beta 2^n - n2^{n+1} + 3/2n + 21/4$

Resolver la R.R

$$\frac{T(n)}{T(0)} = 3T(n-1) + 4T(n-2) + 1 + 4^n + n$$

$$T(0) = 2 \int_{0}^{\infty} T(1) = 8$$

$$T(n) = T(n)^{n} + T(n)^{n}$$

$$T(n)^{n} = 3T(n-1) + 4T(n-2) + 1 + 4^n + n$$

$$T(n)^{n} = 7(n)^{n} + 7(n)^{n}$$

$$A_{5} = 3A - A - A_{5}$$
 $A_{5} = 3A - A_{5}$
 $A_{5} = A_{5} + A_{5} + D$
 $A_{5} = A_{5} + A_{5} + D$

$$f(n) = \frac{1}{2} + \frac{4^{n}}{4} + 0$$

$$C q^{n} \qquad D^{n} + E$$

$$C_{n} q^{n}$$

$$C_{n} q^{n} + D_{n} + E = 3 C (n - 1) q^{n-1}$$

$$C_{0}4^{0}$$

 $C_{0}4^{0}$ + Dn+ E = 3 c ($(-1)4^{0-1}$ +3p($(-1)+3$) E
 4 C ($(0-2)4^{0-2}$ +4p ($(0-2)$ +4)

$$4c (n-2) 4^{n-2} + 3p(n-1) + 3e$$
 $4c (n-2) 4^{n-2} + 4p(n-2) + 3e$
 $4c (n-2) 4^{n-2} + 4p(n-2) + 3e$
 $4c (n-2) 4^{n-2} + 3p(n-3) + 3e$

$$C = \frac{16}{3}C + \frac{16}{4}C + \frac{16}{3}C +$$

$$C = \frac{16}{16} C_{3} C_{3} C_{4} C_{5} C_{7} C_$$

 $T(n)^{P} = \frac{16}{26}n y^{n} - \frac{17}{26}n - \frac{17}{36}$

• 2= A + B - 17

@ 979:-A+4B ,

 $T(n) = A(-1)^n + B(4)^n + \frac{16}{26}n4^n - \frac{1}{26}n - \frac{17}{36}$

 $8 = -A + 4B + \frac{64}{20} - \frac{1}{6} - \frac{17}{36}$

$$= \frac{3}{4}c + \frac{4c}{16} \quad \begin{cases} 0 = -\frac{3}{4}c - \frac{8}{16}c + 1 \\ 0 = -\frac{3}{4}c - \frac{8}{16}c + 1 \end{cases}$$

$$D = 3D + 4D + 1 \quad E = -\frac{3}{2}D + \frac{3}{2}E - \frac{8}{2}D + \frac{1}{2}C + \frac{1}{2}E + \frac{1$$

+40 +1
$$E = -30 + 3E - 8D + 1 + 4E$$

$$C = \frac{16}{20}$$

$$E = -110 + 7E + 1$$

$$-6D = 2$$

$$E = -110 + 1$$

F=-17

T(0)= 2

T(1)=8

$$c Y^n = AY^n$$

$$T(n)^P = C_n Y^n + D_n + E$$

$$T(n) = 5T(n-1) - 4T(n-2) + 4n + 4^n$$

$$T(0) = 5 T(1) = 10$$

$$T(n) = T(n)^n + T(n)^n$$

$$T(n) = 5T(1) - 4T(n-2) + 4n + 4^n$$

$$T(n) = 5T(1) - 4T(n-2) + 4n + 4^n$$

$$T(n) = 5T(1) - 4T(n)^n$$

$$T(n) = 5T(1) - 4T(n)$$

$$C = 5c - 4c$$

$$C = C$$

$$-y = 6c$$

$$C = -\frac{2}{3}$$

$$0 = \frac{5E}{4} + \frac{8}{16}E + 1$$

$$0 = 5c - 5D - |6C + 8D|$$

$$0 = -11C + 3D$$

$$0 = -11C + 3D$$

$$0 = -\frac{22}{3}$$

$$T(0) = A(4)^{0} + B - \frac{2}{3} \cdot \frac{6}{9} - \frac{22}{3} \cdot \frac{44}{3} \cdot \frac{40}{3}$$

$$T(0) = S$$

$$\frac{70 + 4 \times 25}{9} = -3A$$

$$\frac{25}{9} = -3A$$

$$\frac{25}{27} = A$$

$$T(0) = \frac{25}{27} + B$$

$$T(0) = \frac{25}{27} + \frac{110}{27} - \frac{27}{3} - \frac{27}{9} + \frac{44}{3} + \frac{44}{3}$$

$$T(0) = 5$$

$$T(2) = 54$$

$$T(2) = 54$$

$$T(3) = \frac{25}{27} + \frac{110}{3} - \frac{8}{3} + \frac{44}{3} + \frac{128}{3}$$

Contenido

```
//Para la house

r^2-2r+1

T(n) = 2T(n-1)-T(n-2)+n^2+3^n

Esta es el reto de la noche mogéneas
```

- 2 Estrategias de solución de recurrencias no homogéneas
 - Cambio de variable
 - Método maestro

Estrategias de solución de recurrencias

Introducción

Supongamos que un algoritmo recursivo divide un problema de tamaño n en a subproblemas y que cada subproblema tiene tamaño n/b, supongamos también que se requieren g(n) operaciones en lo que podríamos llamar la etapa de conquista y sea T(n) el número de operaciones necesarias para resolver el problema de tamaño n. Entonces se tiene que T satisface la relación de recurrencia

Estrategias de solución de recurrencias

Métodos de solución

- Cambio de variable
- Método maestro

 - Por iteración FADA
 - Funciones generatrices×

Sea
$$T(n)=2T(n/2)+2$$
 (máximo y mínimo de una lista para n par)

1 Supongamos $n = 2^k$

$$+_{k=2} +_{k-1} +_{2}$$
 $\leftarrow T(2^{k}) = 2T(2^{k}/2) +_{2} = 2T(2^{k-1}) +_{2}$
 $T(2^{k}) = t_{k}$

- Por tanto la recurrencia $t_k=2t_{k-1}+2$ tiene solución: $t_k^{(h)}=\alpha 2^k$ y $t_k^{(p)}=A$
- Entonces A = 2A + 2; A = -2 Por lo tanto la solución general es $t_k = \alpha 2^k 2$
- 4 Como $n=2^k$ entonces $T(n)=\alpha n-2$ es decir, T(n) es O(n)

$$T(3^{k}) = 9T(3^{k-1}) + 3^{k}$$
 $T_{K} = 9T_{K-1} + 3^{k}$
 $T_{K} = 9T_{K-1} + 3^{k}$
 $T_{K} = A(9)^{k}$
 $T_{K} = B3^{k}$
 $T_{K} = A(3^{k})^{2} - \frac{1}{2}3^{k}$
 $T_{K} = A(3^{k})^{2} - \frac{1}{2}3^{k}$

0=3k

T(1)=9

 $T(n) = 9T(\frac{n}{2}) + 0$

$$7 = A - \frac{1}{2}$$

$$8 = A - \frac{1}{2}$$

$$9 = A - \frac{$$

$$T(n) = ST(n) + 3 \quad T(1) = 7$$

$$N = 2^{k}$$

$$T_{k} = 5T_{k-1} + 3$$

$$T_{k} = A(5)^{k}$$

$$B = 5B + 3$$
 $T_{k} = B$ $T_{k} = A(5)^{k} - \frac{3}{4}$

$$B = -\frac{3}{4} \qquad \left[\int_{k=A(5)^{k}} -\frac{3}{4} \right]$$

$$A = -\frac{3}{4} \qquad \left[\int_{k=$$

T(1)=7

7= A -3 31=A

 $T(n) = \frac{31}{4} \int_{0}^{1} \frac{9}{2}(s) = \frac{3}{4} = 37, 999 = 38$ $T(2) = \frac{31}{4} \int_{0}^{2} \frac{3}{2}(s) = \frac{3}{4} = 37, 999 = 38$

77 p B

Recuerda:
$$a^k=a^{\log_b n}=n^{\log_b a}$$
 Sea $T(n)=5T(n/2)+3$ y $T(1)=7$ para n par

$$T(2^k) = 5T(2^k/2) + 3$$

$$T(2^k) = t_k$$

2 Por tanto la recurrencia $t_k=5t_{k-1}+3$ tiene solución: $t_k^{(h)}=\alpha 5^k$ y $t_k^{(p)}=A$

- Entonces A=5A+3; A=-3/4 Por lo tanto la solución general es: $t_k=\alpha 5^k-3/4$
- 4 Para encontrar α y evaluar T(1) se obtiene la recurrencia en función de n. Como $n=2^k$ entonces $T(n)=\alpha 5^{\log_2 n}-3/4$ es decir, para $T(1)=7,\,\alpha=31/4$.

$$T(n) = 31/4(5)^{\log_2 n} - 3/4$$

 $5^{\log_2 n} = n^{\log_2 5}$ ($a^{\log_b n} = n^{\log_b a}$) Por lo tanto T(n) es $O(n^{\log_2 5})$

Sea
$$T(n) = 9T(n/3) + n$$

Supongamos $n = 3^k$

$$T(3^k) = 9T(3^k/3) + 3^k$$

$$T(3^k) = t_k$$

- 2 Por tanto la recurrencia $t_k=9t_{k-1}+3^k$ tiene solución: $t_k^{(h)}=\alpha 9^k$ y $t_k^{(p)}=A3^k$
- Entonces $A3^k=3^k[3A+1], A=-1/2$ Por lo tanto la solución general es: $t_k=\alpha 9^k-(1/2)3^k$ $t_k=\alpha (3^k)^2-(1/2)3^k$ $T(n)=\alpha n^2-1/2n$
- 4 Por lo tanto T(n) es $O(n^2)$

Mostrar que
$$T(n)=3T(n/4)+n\log n$$
 es $O(n\log n)$
$$(n=4^k) \text{ entonces}$$

$$\log n = \log 4^k \qquad \qquad \text{ for all } n \in k\log_4 4 \qquad \text{.} \quad \text{ and } n \in k \log_4 4 \qquad \text{.} \quad \text{ and$$

La recurrencia $t_k=3t_{k-1}+4^kk$ tiene como solución general $\{t_k^{(h)}+t_n^{(p)}\}$ $t_k^{(h)}=\alpha 3^k$ $t_k^{(p)}=(Ak+B)4^k$

$$(Ak + B)4^{k} = 3[(A(k - 1) + B)4^{k-1}] + 4^{k}k$$
$$(Ak + B)4^{k} = 4^{k}(3/4[(A(k - 1) + B)] + k)$$
$$Ak + B = 3/4Ak - 3/4A + 3/4B + k$$

$$T_{k} = 3T(n/4) + n \log n \text{ es } O(n \log n)$$

$$T_{k} = 3T_{k-1} + 4 \times K(2)$$

$$T_{k} = A(3) \times T_{k} = 4 \times (.8 + 0)$$

$$4^{k}(Bk+C) = 3, \frac{4^{k}}{4}(Bk-B+C) + 2k4^{k}$$
 $4^{k}(Bk+C) = 3, \frac{4^{k}}{4}(Bk-B+C) + 2k4^{k}$
 $4^{k}(Bk+C) = 3, \frac{4^{k}}{4}(Bk-B+C) + 2k4^{k}$
 $4^{k}(Bk+C) = 3, \frac{4^{k}}{4}(Bk-B+C) + 2k4^{k}$
 $4^{k}(Bk+C) = 3, \frac{4^{k}}{4}(Bk-B+C) + 2k4^{k}$

$$B = \frac{3}{4}B + 2$$

$$C = -6 + \frac{3}{4}C$$

$$C = -6 + \frac{3}{4}C$$

$$C = -6 + \frac{3}{4}C$$

$$\int_{-1}^{1} \frac{1}{4} c = -6 + \frac{3}{4} c = -24$$

$$A(3)^{k} + 4^{k} (8k - 24)$$

$$A(3)^{k} + 6^{k} (8k - 24)$$

$$T_{k=1}A(3)^{k}+y^{k}(8k-2y)$$

$$N=y^{k}$$

$$K=\log_{y}(n)$$

$$T(n)=A3^{\log_{y}(n)}+N(8\log_{y}(n)-2y)$$

$$N=y^{\log_{y}(n)}$$

$$T(n)=A3^{\log_{y}(n)}+8\log_{y}(n)-2y$$

80/095(U)

Mostrar que
$$T(n) = 3T(n/4) + n \log n$$
 es $O(n \log n)$

Entonces
$$Ak=k(3/4A+1)$$
, $A=4$ y $B=-3/4A+3/4B$, $B=-12$

$$t_k = \alpha 3^k + 4^k (4k - 12) = \alpha 3^k + 4^k 4k - 4^k 12$$

= $\alpha 3^{\log n} + 4n \log n - 12n$

como las funciones son crecientes en n=70 entonces $4n\log n>12n$

$$T(n)$$
es $O(n \log n)$

Solucionar T(n) = 22 + 3T(2n/3) para T(1) = 6

- Entonces $n = (3/2)^k$ y $k = \log_{3/2} n$
- $T((3/2)^k) = 22 + 3T(3^{k-1}/2^{k-1})$ por tanto

$$t_k = 22 + 3t_{k-1}$$

- $t_k^{(h)} = \alpha 3^k$ y A = 22 + 3A, A = -11
- Solución general $t_k = \alpha 3^k 11$

$$T(n) = \alpha 3^{\log_{3/2} n} - 11$$

Luego $\alpha = 17 \operatorname{con} T(1) = 6$

$$T(n) = 173^{\log_{3/2} n} - 11$$

Por lo tanto como $3^{\log_{3/2} n} = n^{\log_{3/2} 3}$ se dice que:

$$T(n) \text{ es } O(n^{\log_{3/2} 3})$$

Resumen método de cambio de variable

Método Maestro

Sea T una función creciente que satisface la relación de recurrencia

$$T(n) = aT(n/b) + cn^d$$

Siempre que $n=b^k$, donde k es un entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números reales tales que c>0 y $d\geq 0$, Entonces,

$$T(n) \quad es \left\{ \begin{array}{ll} O(n^d) & \text{ si } a < b^d \\ O(n^d \log n) & \text{ si } a = b^d \\ O(n^{\log_b a}) & \text{ si } a > b^d \end{array} \right\}$$

$$T(n) = 9T(\frac{n}{3}) + n$$

$$T(n) = aT(n/b) + cn^{d}$$

$$Q = 9 \quad b = 3 \quad (=1 \quad d = 1)$$

$$Si \quad 9 \in b^{d} \quad 9 < 3^{2} \times 3^{d}$$

$$\begin{array}{ccc} 2^{1} & \delta > \rho_{1} & d > 3 \\ 2^{1} & \delta = \rho_{1} & d = 3 \end{array}$$

$$\frac{d>3}{d=3_{1}} \times O(\sqrt{\log \theta_{0}})$$

 $T(n) = aT(n/b) + cn^d$

■ Mostrar que T(n)=9T(n/3)+n es $O(n^2)$ usando el método maestro. $a=9,\,b=3$ y d=1 $a>b^d,\,9>3^1$ $O(n^{\log_3 9})=O(n^2)$ T(n) es $O(n^2)$

- Mostrar que T(n) = T(2n/3) + 1 es $O(\log n)$ usando el m.m a=1, b=3/2 y d=0 $a=b^d$ por tanto $1=3/2^0$ $O(n^0\log n) = O(\log n)$
 - T(n) es $O(\log n)$
- Mostrar que T(n)=T5(n/2)+3 es $O(n^{\log_2 n})$ usando el m.m $a=5,\,b=2$ y d=0 $a>b^d$ por tanto $5>2^0$ $O(n^{\log_2 5})$

Teorema

Sea T una función creciente que satisface la relación de recurrencia

$$T(n) = aT(n/b) + c \int_{0}^{\infty} dz dz$$

cuando n es divisible por b, donde $a \ge 1$, b > 1 y $c \in R^+$. Entonces

$$T(n) \quad es \left\{ \begin{array}{ll} O(\log n) & \text{si } a = 1 \\ O(n^{\log_b a}) & \text{si } a > 1 \end{array} \right\}$$

Además, cuando $n=b^k$ y a
eq 1, donde k es un entero positivo,

$$T(n) = C_1 n^{\log_b a} + C_2$$

edonde
$$C_1 = T(1) + c/(a-1)$$
 y $C_2 = -c/(a-1)$

$$T(n) = ST(\underbrace{n}) + 3 \quad T(\underline{1}) = 7$$

$$T(n) = \underbrace{\frac{31}{4} n}_{0} \underbrace{\frac{9}{2}(s)}_{0} = \frac{3}{4} \qquad Q > 1$$

$$T(n) \leq C_{x} n \underbrace{\frac{9}{2}(s)}_{0} = \frac{3}{4} \qquad Q > 1$$

$$T(n) \leq C_{x} n \underbrace{\frac{9}{2}(s)}_{0} = \frac{3}{4} \qquad Q > 1$$

$$V = V_{K}$$
 $d \neq J$ $V = \left(\frac{3}{3}\right)_{K}$

Sea T(n)=22+3T(2n/3) para T(1)=6 mostrar que T(n) es $O(n^{\log_{3/2}3})$ y obtenga una solución particular usando el teorema.

- Sea a > 1, aplicando el teorema T(n) es $O(n^{\log_{3/2} 3})$
- Una solución general:

$$T(n) = C_1 n^{\log_{3/2} 3} + C_2$$

■ $C_1 = 6 + 22/(3-1)$ y $C_2 = -22/(3-1)$ por tanto $C_1 = 17$ y $C_2 = -11$, de ahí que una solución particular de T(n) es:

$$T(n) = 17n^{\log_{3/2} 3} - 11$$

¿Se puede usar cambio de variable para resolver ?

$$T(n) = T(n/2) + 1$$
 para $T(1) = 1$

Por el m.m

$$a=1,\,b=2$$
 y $d=0$ $a=b^d$ por tanto $1=2^0$ $O(n^0\log n)=O(\log n)$ $T(n)$ es $O(\log n)$

Resumen:

$$T(n) = aT(n/b) + cn^d$$

Revisar los casos y aplicar la solución.

12+27

Referencias

Kenneth H. Rosen.

Discrete Mathematics and Its Applications.

McGraw-Hill Higher Education, 7th edition, 2011.

Chapter 8. Advanced Counting Techniques.

Gracias

Próximo tema:

Grafos:). Ha llegado la hora de la verdad.

