

X4-Class **Power MOSFET**

IXTH60N20X4

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25$ °C to 175°C $T_J = 25$ °C to 175°C, $R_{GS} = 1M\Omega$	200 200	V	
V_{GS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25} I _{DM}	$T_c = 25$ °C $T_c = 25$ °C, Pulse Width Limited by T_{JM}	60 106	A A	
I _A E _{AS}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	30 350	A mJ	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	50	V/ns	
$\overline{P_{D}}$	T _c = 25°C	250	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C	
T _L	Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10s	300	°C	
M_d	Mounting Torque	1.13 / 10	Nm/lb.in	
Weight		6	g	

		acteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	200		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5 V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			5 μA 300 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$		17.6	21.0 mΩ

 $\mathbf{V}_{\mathtt{DSS}}$ 200V 60A $21m\Omega$ $R_{\rm DS(on)}$

D = Drain G = Gate S = Source Tab = Drain

Features

- International Standard Package
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

DS101046A(10/21) © 2021 Littelfuse, Inc.

Symbol (T ₁ = 25°C, 1	Symbol Test Conditions Chara $(T_1 = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic \ Typ.	/alues ∣ Max
g_{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	34	56	S
R_{Gi}	Gate Input Resistance		7.45	Ω
C _{iss}			2450	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		406	pF
C _{rss}			0.95	pF
	Effective Output Capacitance			
C _{o(er)}	Energy related		240	pF
C _{o(tr)}	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		880	pF
t _{d(on)}	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		13	ns
\mathbf{t}_{r}			22	ns
t _{d(off)}			52	ns
t _f	$R_{\rm G} = 5\Omega$ (External)		10	ns
Q _{g(on)}			33	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		9	nC
\mathbf{Q}_{gd}			11	nC
R _{thJC}				0.60 °C/W
R _{thCS}			0.21	°C/W

Source-Drain Diode

•			acteristic Values		
$(1_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			60	Α
SM	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			240	Α
V _{SD}	$I_F = I_S, V_{GS} = 0V, \text{Note 1}$			1.4	V
t _{rr} Q _{RM} }	$I_F = 30A$, -di/dt = 200A/ μ s $V_R = 100V$		107 920 17		ns nC A

Note 1: Pulse test, $t \leq 300 \mu s,$ duty cycle, d $\leq 2~\%$

IXTH60N20X4

80

70

60

50

40

30

20

10

0

0.2

0.4

0.6

8.0

5V

1.8

1.6

Fig. 2. Extended Output Characteristics @ $T_J = 25$ °C

1.2

1.4

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 30A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 30A$ Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

IXTH60N20X4

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

Littelfuse reserves the right to change limits, test conditions and dimensions.

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

Pulse Width - Second

© 2021 Littelfuse, Inc.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Littelfuse reserves the right to change limits, test conditions and dimensions