

移动对象的 时空轨迹相似性查询算法

姓名: 丁光伟

导师: 杨晓春 教授

学号: 1600894

专业: 计算机系统结构

目录

- > 研究背景介绍
- > 三维时空下样本点匹配算法
- > 时空轨迹相似性查询算法
- > 实验与分析
- > 总结

研究背景介绍

研究背景

问题定义

研究背景

移动对象的时空轨迹相似性查询!

问题定义

时空下对应点 匹配算法

时空归一化表示模型

DTW-BDS样本点匹配

对应点

对应轨迹段

基于时间信息的 轨迹表示模型(TTR)

序号	时间戳	空间坐标
0	t_0	(lat_0, lng_0)
1	t_1	(lat_1, lng_1)
2	t_2	(lat_2, lng_2)
3	t_3	(lat_3, lng_3)
4	t_4	(lat_4, lng_4)
5	t ₅	(lat_5, lng_5)

[1] Shang S, Ding R, Zheng K, et al. Personalized trajectory matching in spatial networks[J]. Vldb Journal, 2014, 23(3):449-468.

PTM算法[1]

[1] Shang S, Ding R, Zheng K, et al. Personalized trajectory matching in spatial networks[J]. Vldb Journal, 2014, 23(3):449-468.

例1:根据小偷逃跑所驾驶车辆轨迹,查询是否有过往车辆拍摄到小偷抛弃赃物,城市道路环境下,摄像头最远拍清200m,且以小偷的行车速度12.5s内可领先200m,则 I_{st} =16

例2:利用用户A平时上班轨迹寻找顺风车,A允许与自己空间距离相距500m,时间上允许相差5分钟,则 I_{st} =1.67

SNTR模型的好处(与TTR模型相比):

- -相似性查询过程中,不会产生时空对应关系混乱
- -便于时空距离计算

时空归一化表示模型(SNTR)

~ 机燃液小铁空灯儿					
表示模型	空间坐标	时间信息	语义信息	网格标号	时空坐标
STR	✓	_		_	
TTR	✓	✓	_	_	
TETR	✓	_	✓	_	_
CTR	_	✓	_	✓	
SNTR	_	_	_	_	✓

表1 劫流表示横刑对比

移动对象的时空轨迹相似性算法

对应点

$$\begin{cases} r_1 \leftrightarrow Q(r_1) \\ \dots \\ r_i \leftrightarrow Q(r_i) \\ \dots \end{cases}$$

DTW: 动态规划思想寻找整体最优的匹配方案

优势:保持时间有序

BDS: 寻找另一条轨迹上最近位置作为对应点

优势: 样本点更好地对齐

X

DTW: 动态规划思想寻找整体最优的匹配方案

优势:保持时间有序

缺点:只能与样本点匹配,对齐效果差

BDS: 寻找另一条轨迹上最近位置作为对应点

优势: 样本点更好地对齐

缺点: 未考虑时间, 对应点匹配结果时序错乱

BDS匹配结果

DTW匹配结果

DTW-BDS**对应点匹配**

获取DTW对应点

首先使用DTW算法,获取所有样本点之间的匹配关系

BDS算法更新对应点

以相邻样本点的对应点为BDS算法上下界,按序更新DTW对应点

前向更新

若新对应点时间戳后移,则需要进行前向更新

DTW-BDS对应点匹配过程

第一个点匹配

DTW-BDS(r_0) = BDS(r_0 , q_0 , DTW(r_1).first)

中间点匹配

DTW-BDS(r_i)= BDS(r_i ,DTW-BDS(r_{i-1}), DTW(r_{i+1}).first)

前向更新

 r_3 的对应点更新后,时间 戳后移。需要使用DTW-BDS (r_3) 作为新上界,更新 r_2 的对应点

保持时序性

逆向部分的匹配结果也能 保证时序性

保证时序性

DTW匹配结果

提升对齐效果

BDS匹配结果

DTW-BDS匹配结果

DTW-BDS算法优势:

- -匹配结果保持时序性
- -对齐效果好

对应轨迹段的三种情况

2、包含样本点(折线段)

3、单个点

时空轨迹 相似性查询算法

时空距离

形状影响

轨迹段距离

轨迹距离

轨迹相似性查询

東3に大学 Northeastern University

Yi B K et al.ICDE'1998

DTW相似性计算矩阵

Q & R

	0	q_0	q_1	q_2	q_3
0	0	$+\infty$	$+\infty$	$+\infty$	+∞
r_0	+∞	1	3.24	7.36	24.48
r_1	+∞	3.247.3624.39	2	4.24	19.37
	+∞	7.36	4.24	3	16.15
r_3	+∞	24.39	19.27	16.04	5

Q & S

	0	q_0	q_1	q_2	q_3
0	0	$+\infty$	$+\infty$	$+\infty$	+
s_0	+∞	2	4.5	8.62	25.65
s_1	+∞	4.83	3.5	5.74	20.77
s_2	+∞	9.30	6	4.5	17.54
s_3	+∞	26.42	21.07	17.54	5.5

采样策略不同会 记录下不同的轨 迹数据

(a) 稀疏样本点

(b)密集样本点

DTW(Q, R) < DTW(Q, S)

DTW(Q, R) > DTW(Q, S)

轨迹距离计算存在问题:

只依赖样本点的算法<mark>对采样策略较敏感</mark>,相同的移动会导致不同查询结果

断点的作用:

通过人为增加采样点,更细粒度地考虑轨迹段 $r_i r_{i+1}$ 的时空特征,使计算结果更准确。

η变大后

在一定精度范围内,使用 bp_2 代替从 nb_0 到 nb_1 间的所有消失的断点

断点权重与代 替的对应点个 数成正比

 2η

时空距离 =
$$\sum$$
 (点与对应点间距离 × 权重) $d_{st}(r_i r_{i+1}, Q(r_i) Q(r_{i+1})) = \sum_{v_j \in \{r_i, bp_0 \dots r_{i+1}\}} w_j \times d(v_j, Q(v_j))$

轨迹段时空距离:

使用断点考虑了更多轨迹段信息, 受采样策略影响更小

形状影响因素

形状影响因素

- > 轨迹段长度相同,对应轨迹段间夹角越小形状越相似
- > 相同夹角,轨迹段长度越长形状越相似

余弦距离:
$$\cos(\theta) = \frac{\vec{a} * \vec{b}}{|\vec{a}| * |\vec{b}|}, \theta \in [0, \pi]$$

投影: $|a'| = |\vec{a}|\cos(\theta) = \frac{\vec{a}*\vec{b}}{|\vec{b}|}$

从投影的值可以 看出轨迹段间形 状相似程度

形状影响因素

形状相似性

形状影响权值

$$I_{shape}(r_i r_{i+1}, Q(r_i) Q(r_{i+1})) = \frac{1}{1 + e^{sim_{shape}(r_i r_{i+1}, Q(r_i) Q(r_{i+1}))}} + \mu$$

轨迹段距离

轨迹段距离 =时空距离 × 形状影响权值

$$\begin{aligned} d_{segment} & \big(r_i r_{i+1}, Q(r_i) Q(r_{i+1}) \big) = \\ & I_{shape} & \big(r_i r_{i+1}, Q(r_i) Q(r_{i+1}) \big) \times d_{st} \big(r_i r_{i+1}, Q(r_i) Q(r_{i+1}) \big) \end{aligned}$$

 $d_{segment}$ 描述了对应轨迹段间:

- -时空距离,距离越远, $d_{segment}$ 越大
- -形状上的相似程度,形状越相似, $d_{segment}$ 越小

STS轨迹相似性查询算法

实验与分析

参数的影响

三维时空有效性研究

查询轨迹长度的影响

噪音的影响

实验设置

实验环境描述

类别	描述
CPU	Intel (R) Core(TM) i7-6700 3.40 GHz
硬盘	8. 00 GB
内存	1T
操作系统	Microsoft Windows 7(64位)
IDE	JetBrains PyCharm
编程语言	python
相关开发包	numpy, matplotlib, mpl_toolkits

轨迹数据集描述

轨迹数据集	轨迹条数	平均轨迹点数量
GeoLife(GL)	17621	843. 1
North America Road Network(NARN)	20000	61.6 (10-150)

真实轨迹

北京行人车辆轨迹 微软亚研院 182个志愿者 5年收集时间

(a) GL数据集

(b) NARN数据集

软件合成轨迹:

http://www.cs.utah.edu/~li feifei/SpatialDataset.htm

参数的影响

纵轴代表查准率,即查询结果中,真正与查询轨迹相似的比例。

(1) SNTR模型中时空转化参数 对查询结果的影响

时空转化参数代表时间的 重要程度。太小会忽视时间差 距的影响,太大会放大时间的 重要性,忽略空间上的差距。 因此需要适中的数值。

(2) 断点阈值对查询结果的影响

断点阈值越大,轨迹段中 断点数目越少,断点的作用越 小,查准率越低

参数的影响

(3) 形状敏感度参数对查询结果 的影响

形状敏感度参数太小会导 致形状因素占比重过大, 太大 会导致形状不起作用

(4) 轨迹距离阈值对查询结果的 影响

轨迹距离阈值是轨迹相似 与不相似的分界线。太小导致 查全率较低, 过大导致查准率 较低

(b) NARN数据集

查询轨迹长度的影响

参与比较的算法: DTW、SDTW、PTM、STS 变量为不同的查询轨迹的长度,通过调节算法参数,使用获得的最大的查 准率作为算法效果

结论:

DTW未考虑时间因素,查准率较低 SDTW受采样策略影响大,波动较大 PTM易造成时空混乱,查准率较低

STS查准率较高,较稳定,轨迹长度的变化未带来较大影响

验证SNTR模型有效性

参与比较的算法: DTW-2d、DTW-3d、STS 分别在欧式空间和三维时空下使用DTW算法,使用查准率的变化验证三维时空的有效性

结论:

SNTR模型对DTW-3d的查准率有较大提升,因此SNTR模型是有效的

噪音的影响

参与比较的算法: DTW、SDTW、PTM、STS 使用均匀分布的随机数添加噪音,噪音率α来表示不同程度的噪音

结论:

DTW查准率较低, PTM波动较大 SDTW与STS查准率较高, 较稳定

研究内容

贡献点

总结

- 提出了SNTR模型,解决相似性查询算法中时空混乱的问题。
- ▶ 提出了DTW-BDS对应点匹配算法,提升了对应点匹配效果。
- 设计了更加准确的轨迹距离计算方法,降低采样策略的影响。
- 基于以上工作,提出STS查询算法。
- 实验结果反映了本文提出的模型和算法的有效性和准确性。

谢谢

请各位老师批评指正