선형대수학팀

3팀 김진혁 김보근 노정아 심수현 이상혁

INDEX

- 1. 행렬식
- 2. 노름, 내적, 직교성
- 3. 정사영과 회귀적용
 - 4. 고유값 분해
 - 5. 특이값 분해

1

행렬식

행렬식 (Determinant)

행렬식 (Determinant)

 $n \times n$ 정사각행렬에 스칼라를 대응시키는 일종의 함수 det(A)라고 표현

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
일 때, 행렬식은 $det(A) = ad - cb$

3 × 3 행렬에서는 여인수분해를 통해 행렬식 계산

1 행렬식

행렬식의 기하학적 의미

선형변환을 하면 기저축이 변환됨

선형변환 후 공간이 얼마나 확장되거나 축소되는지에 대한 정보를

행렬식이 가지고 있음

1 행렬식

행렬식의 기하학적 의미

선형변환을 하면 기저축이 변환됨

선형변환 후 공간이 얼마나 확장되거나 축소되는지에 대한 정보를

행렬식이 가지고 있음

행렬식의 기하학적 의미

행렬
$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
을 통해 선형변환

기저벡터
$$\begin{bmatrix}1\\0\end{bmatrix}$$
, $\begin{bmatrix}0\\1\end{bmatrix}$ / 넓이 = 1 \longrightarrow 기저벡터 $\begin{bmatrix}3\\0\end{bmatrix}$, $\begin{bmatrix}0\\2\end{bmatrix}$ / 넓이 = 6

$$\det \begin{pmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \end{pmatrix} = 6 = \text{선형변환 후 평행사변형의 넓이}$$

행렬식의 기하학적 의미

행렬
$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
을 통해 선형변환

행렬식은 R^2 공간에서는 넓이, R^3 공간에서는 부피와 상관 있음

$$\det \begin{pmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \end{pmatrix} = 6 = \mathbf{\text{d}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{h}}\mathbf{\hat{g}}\mathbf{\hat{g}}\mathbf{\hat{h}}\mathbf{\hat{$$

행렬식이 음수인 것의 의미

의미 행렬식의 부호 = 공간의 반전 유무 행렬식의 기하학적

노란색으로의 선형변환

초록색으로의 선형변환

기저벡터를 모두 +2한 상황

기저벡터를 각각 -2, +2한 상황

행렬 $A = \begin{bmatrix} 2R^2 & 0 \\ 0 & 2 \end{bmatrix}$, $\det(A) = 4 = 0$, $R^3 = 2A = \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$, $\det(A) = 24$ 음

면적은 같지만 좌우반전됨

1 행렬식

행렬식의 기하학적 의미

행렬식이 0인 것의 의미

$$det(A) = 0$$

행렬 공간의 넓이, 부피가 없음

행렬식은행렬 A가 공간을 압축하는 선형변환임상관 있음

행렬식의 쓰임

행렬식을 통해 역행렬의 존재 유무 판단

역행렬이 존재함

=Ax=b 가 유일한 해를 가짐

= x 와 Ax 가 서로 일대일 대응

공간이 압축되는 선형변환의 경우 역행렬이 존재하지 않음

선형대수학팀 클린업 1주차 참고해주세요

det(A) = 0 인 경우 A의 역행렬은 존재하지 않음

행렬식의 쓰임

행렬식을 통해 역행렬의 존재 유무 판단

역행렬이 존재함

= Ax = b 가 유일한 해를 가짐

= x 와 Ax 가 서로 일대일 대응

공간이 압축되는 선형변환의 경우 역행렬이 존재하지 않음

선형대수학팀 클린업 1주차 참고해주세요

 $det(A) = 0 \Leftrightarrow$ 행렬 A가 공간 압축 선형변환

det(A) = 0 인 경우 A의 역행렬은 존재하지 않음

2

노름, 내적, 직교성

노름 (Norm)

$$\|\vec{v}\|_p = L_p = \sqrt[p]{|v_1|^p + |v_2|^p + \dots + |v_n|^p}$$

벡터의 크기를 의미

거리와 비슷한 개념으로 이해

일반적으로 P=1인 L1 Norm과 p=2인 L2 Norm을 주로 사용

L1 Norm(맨해튼 노름)

각 벡터들의 **절댓값**을 합한 결과

좌표축을 따라 움직이는 거리

Lasso Regression에서 사용됨

$$L1 = |v_1| + |v_2| + \dots + |v_n|$$

L2 Norm(유클리드 노름)

원점에서 벡터에 연결된 직선거리

Ridge Regression에서 사용됨

$$L2 = \sqrt{|v_1|^2 + |v_2|^2 + \dots + |v_n|^2}$$

L2 Norm(유클리드 노름)

L1, L2 Norm육서 벡터에 연결된 직선거리

주로 머신러닝 분야에서 제약조건을 설정할 때 많이 사용

$$L2 = \sqrt{|v_1| + |v_2| + \dots + |v_n|}$$

내적 (Inner Product)

내적 (Inner Product)

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

= $||x|| ||y|| \cos \theta$

두 벡터의 성분끼리 곱한 후 더한 것

일반적으로 두 벡터의 방향이 얼마나 일치하는지를 알기 위한 용도로 사용

$$x^Ty = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1y_1 + x_2y_2 + \cdots + x_ny_n$$
 내적의 결과는 **상수**

내적 (Inner Product)

내적 (Inner Product)

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

= $||x|| ||y|| \cos \theta$

: 두 벡터의 길이 × 두 벡터가 이루는 사잇각의 코사인 값

내적의 기하학적 정의를 통해 두 벡터 사이의 각도 θ 를 구할 수 있음

$$x \cdot y = \|x\| \|y\| \cos \theta \qquad \xrightarrow{\text{old}} \qquad \cos \theta = \frac{x \cdot y}{\|x\| \|y\|}$$

$$\Rightarrow \qquad \theta = \cos^{-1} \left(\frac{x \cdot y}{\|x\| \|y\|} \right)$$

직교성 (Orthogonality)

직교성 (Orthogonality)

두 벡터가 직교함
$$\rightarrow cos(90^\circ) = 0 \rightarrow \vec{x} \cdot \vec{y} = 0$$

두 벡터의 내적값이 0임

$$v = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$v^T u = \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = -2 + 2 = 0$$

직교성 (Orthogonality)

직교성 (Orthogola) 벡터 u와 영벡터는 orthogonal 할까?

두 벡터가 90°를 이루는 것

두 벡터의 대적값이 이연 두 벡터는 직교함 두 벡터의 내적값이 이임

어떤 벡터든 영벡터와 내적하면 0이 됨

$$v = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

영벡터와 임의의 벡터는 직교함 2 + 2 = 0

2 노름, 내적, 직교성

직교성 (Orthogonality)

직교하는 벡터들의 집합 = 직교집합(orthogonal set) <mark>- 직교집합의 벡터 중점----</mark> ① 서로 **선형 독립** ② 직교집합의 벡터들의 span으로 만들어지는 벡터공간의 basis가 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $u = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

 $v^T u = [-1 \ 2]^{2} = -2 + 2 = 0$

정규직교성 (Orthonomality)

정규직교성 (Orthonomality)

두 벡터의 노름이 모두 1이면서 서로 직교하는 벡터

노름이 1이기 때문에 크기가 아닌 오로지 방향 성분만을 나타냄

벡터 x, y가 orthonomal하다

 \Leftrightarrow

내적 값 $x \cdot y$ 이 0 이며, ||x|| = ||y|| = 1 임

부분 공간의 직교 (Orthogonality of Subspace)

subspace S와 subspace T가 직교함
= **S 안에 있는 모든 벡터가 T 안에 있는 모든 벡터와 직교함**

부분 공간의 직교 (Orthogonality of Subspace)

2 노름, 내적, 직교성

부분 공간의 직교 (Orthogonality of Subspace)

Subspace T에 존재하는 v_t 와 subspace S에 존재하는 v_s 가 직교하지 않음

직교하지 않는 벡터가 존재하므로

두 부분 공간은 직교하지 않음

2 노름, 내적, 직교성

부분 공간의 직교 (Orthogonality of Subspace)

Subspace T에 존재하는 v_t 와 subspace S에 존재하는 v_s 가 직교하지 않음

직교하지 않는 벡터가

존재하므로

두 부분 공간은 직교하지 않음

부분 공간의 직교 (Orthogonality of Subspace)

두 부분공간이 직교하기 위해서는

각 부분 공간에 존재하는 모든 벡터가 서로 직교해야함

Subspace T에 존재하는 v_t 오 subspace S에 존재하는 v_s 기 직교하지 않음

영벡터가 아닌 다른 벡터에서 만나게 되면

직교하지 않는 벡터가 존재하게 되어 두 부분 공간은 직교하지 않음

부분 공간의 직교 (Orthogonality of Subspace)

두 부분 공간이 직교하기 위해서는

오직 <mark>원점</mark>에서만 두 공간이 만나야 함

(선형대수학팀 1주차 클린업 참고해 주세요!)

행렬의 부분공간 : 행렬 A로부터 만들 수 있는 벡터들이 존재할 수 있는 영역

행공간 : 행렬에서 행들의 선형결합으로 만들 수 있는 선형결합

열공간 : 행렬에서 열들의 선형결합으로 만들 수 있는 선형결합

영공간 : 선형변환 후에 모두 0을 출력하게 만들어주는 벡터들의 집합

Left null space : A^T 라는 선형변환 후에 모두 0을 출력하게 만들어주는 벡터들의 집합

(선형대수학팀 1주차 클린업 참고해 주세요!)

행렬의 부분공간: 행렬 A로부터 만들 수 있는 벡터들이 존재할 수 있는 영역

행공간 : 행렬에서 행들의 선형결합으로 만들 수 있는 선형결합

열공간: 행렬에서 열들의 선형결합으로 만들 수 있는 선형결합

영공간: 선형변환 후에 모두 0을 출력하게 만들어주는 벡터들의 집합

Left null space : A^T 라는 선형변환 후에 모두 0을 출력하게 만들어주는 벡터들의 집합

공간의 직교를 바탕으로 Ax = b 를 다시 한 번 생각해보자!

1. 행공간과 영공간의 관계

$$Ax = 0$$

$$Ax = \begin{bmatrix} -a_1 - \\ -a_2 - \\ \vdots \\ -a_m - \end{bmatrix} x = \begin{bmatrix} -a_1 x - \\ -a_2 x - \\ \vdots \\ -a_m x - \end{bmatrix} = 0$$

행공간에 있는 벡터와 영공간에 있는 벡터의 내적이 모두 0

내적이 0 = 두 벡터가 직교함

행공간과 영공간이 직교함

1. 행공간과 영공간의 관계

$$Ax = 0$$

$$\downarrow$$

$$Ax = \begin{bmatrix} -a_1 - \\ -a_2 - \\ \vdots \\ -a_m - \end{bmatrix} x = \begin{bmatrix} -a_1 x - \\ -a_2 x - \\ \vdots \\ -a_m x - \end{bmatrix} = 0$$

행공간에 있는 벡터와 영공간에 있는 벡터의 내적이 모두 0

내적이 0 = 두 벡터가 직교함

→ 행공간과 영공간이 직교함

1. 행공간과 영공간의 관계

Ex)

행공간과 영공간이 직교한다는 사실을 이용해 (2,3)이라는 벡터를 선형결합으로 표현할 수 있음

1. 행공간과 영공간의 관계

Ex)

행공간과 영공간이 직교한다는 사실을 이용해 (2,3)이라는 벡터를 선형결합으로 표현할 수 있음 행공간과 영공간이 선형변환의 정의역이 됨

2. 열공간과 Left Null Space의 관계

$$Ax = b$$

$$\downarrow$$

$$Ax = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= x_1 \begin{bmatrix} 1 \\ a_1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ a_2 \\ 1 \end{bmatrix} + \dots + x_n \begin{bmatrix} 1 \\ a_n \\ 1 \end{bmatrix} = b$$

Ax = b를 만족하는 벡터 b가 존재한다면 b는 행렬 A의 열공간 안에 존재

하지만 항상 해가 존재하는 것은 아님

2. 열공간과 Left Null Space의 관계

Ex) $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \xrightarrow{y}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\$

열공간과 left null space가 직교한다는 사실을 이용해 (-2,3)이라는 벡터를 선형결합으로 표현할 수 있음

2. 열공간과 Left Null Space의 관계

Ex)

열공간과 left null space가 직교한다는 사실을 이용해 (-2,3)이라는 벡터를 선형결합으로 표현할 수 있음

열공간과 left null space가 선형변환의 공역이 됨

3

정사영과 회귀적용

정사영의 회귀적용

연립선형방정식 Ax = b의 문자를 바꾸면 회귀문제로 생각 가능

$$Ax = b \rightarrow X\beta = y$$

행렬 A: 독립변수들의 집합 X

벡터 b: 종속변수 y

벡터 x: 회귀계수 β

정사영의 회귀적용

X로 y를 예측하고자 할 때 \mathbf{S} 차 발생 이때 오차를 최소화하는 방향으로 분석 진행

실제로 어떤 관계가 있는지 모르는 X로 y를 정사영 (Orthogonal Projection)

정사영(Orthogonal Projection)

투영(Projection)

어떤 벡터를 다른 벡터의 공간에 옮겨 표현하는 것 어떤 벡터 b가 만드는 공간으로 <mark>공간을 압축시키는 선형변환</mark>과 같은 말

Projection은 선형변환의 일종

정사영(Orthogonal Projection)

투영(Projection)

어떤 벡터를 다른 벡터의 공간에 옮겨 표현하는 것 어떤 벡터 b가 만드는 공간으로 <mark>공간을 압축시키는 선형변환</mark>과 같은 말

Projection은 선형변환의 일종

정사영(Orthogonal Projection)

정사영(Orthogonal Projection)

벡터를 다른 벡터로 투영시킬 때 여러 각도로 투영 가능 정사영은 **직각을 이루어 투영시키는 것**을 의미

정사영(Orthogonal Projection)

정사영(Orthogonal Projection)

벡터를 다른 벡터로 투영시킬 때 여러 각도로 투영이 가능 어떤 벡터를 투영시킬면 반드시 원래 벡터와 차이 발생 이를 오차(Error)라고 하면

정사영(Orthogonal Projection)

정사영은 높은 차원의 부분공간에 속한 벡터를 저차원으로 낮춤

3차원 공간에서 선형변환으로 방정식의 해가 2차원 공간만을 구성

이는 회귀분석의 죄소제곱법(Least Square Method)에서 사용 회귀분석의 관점에서 정사영을 이해할 수 있음

정사영(Orthogonal Projection)

정사영은 높은 차원의 부분공간에 속한 벡터를 저차원으로 낮춤

정사영은

3차원 공간에 있는 벡터를 <mark>2차원 벡터로</mark> 바꾸어서 표현하는 방식

이는 회귀분석의 최소제곱법(Least Square Method)에서 사용

회귀분석의 관점에서 정사영을 이해할 수 있음

모든 데이터를 통과하는 직선을 구하는 것이 이상적인 목표 = 연립방정식의 해를 구하는 것이 선형대수의 목표

높은 확률로 모든 점을 통과하는 직선은 없음

이는 Ax = b에서 b가

행렬 A의 열공간에 존재하지 않는다는 의미

모든 데이터를 통과하는 직선을 구하는 것이 이상적인 목표 = 연립방정식의 해를 구하는 것이 선형대수의 목표

높은 확률로 모든 점을 통과하는 직선은 없음

이는 Ax = b에서 b가

행렬 A의 열공간에 존재하지 않는다는 의미

해가 존재하는 경우

열공간 안에 벡터 b 가 존재하는 간단한 경우

Gauss-Jordan Elimination 해 구하기

해가 없는 경우

열공간 안에 벡터 b 가 존재하지 않는 경우

벡터를 열공간으로 최단거리로 진교하여 투영

x 대신 추정값 \hat{x} 을 사용

투영된 벡터를 $\hat{p} = A\hat{x}$ 라고 표현

 $(b - A\hat{x})$ 가 열공간과 직교함

따라서 둘의 내적값이 0임을 이용하면

 \hat{x} 을 구할 수 있음

해가 없는 경우

열공간 안에 벡터 b 가 존재하지 않는 경우

벡터를 열공간으로 최단거리로 직교하여 투영

$$A^{T} \cdot (b - A\hat{x}) = 0 \rightarrow A^{T}b - A^{T}A\hat{x} = 0 \rightarrow A^{T}b = A^{T}A\hat{x}$$
$$\rightarrow \hat{x} = (A^{T}A)^{-1}A^{T}b$$

다중선형회귀에서 최적의 $\hat{\beta}$ 을 구하는 과정과 동일

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

근사한 해를 찾기 위해 **최단거리로 열공간에 투영**시켜 **차원을 낮추는 선형대수의 원리**가 적용됨

$$A^{T} \cdot (b - A\hat{x}) = 0 \rightarrow A^{T}b - A^{T}A\hat{x} = 0 \rightarrow A^{T}b = A^{T}A\hat{x}$$
$$\rightarrow \hat{x} = (A^{T}A)^{-1}A^{T}b$$

다중선형회귀에서 최적의 $\hat{\beta}$ 을 구하는 과정과 동일

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

근사한 해를 찾기 위해 **최단거리로 열공간에 투영**시켜 **차원을 낮추는 선형대수의 원리**가 적용됨

4

고유값과 고유벡터

고유값과 고유벡터

기저는 유일(unique)하지 않음

선형변환을 하게 되면 기저가 변환되어 새로운 벡터공간에서 새롭게 벡터가 생성

선형변환 이후에 방향이 변하지 않는 벡터가 있다면,

변환의 기준 축이 될 수 있지 않을까?

고유값과 고유벡터

고유벡터(Eigenvector)

방향은 변하지 않으면서 크기만 변하는 벡터

고유값(Eigenvalue)

고유 벡터의 길이가 변하는 정도

$$\begin{bmatrix}1\\0\end{bmatrix}$$
, $\begin{bmatrix}0\\1\end{bmatrix}$ 벡터에서 $\begin{bmatrix}3\\0\end{bmatrix}$, $\begin{bmatrix}1\\2\end{bmatrix}$ 벡터로의 선형 변환

초록색 벡터
$$\begin{bmatrix} 2\\1 \end{bmatrix}$$
는 $\begin{bmatrix} 3 & 1\\0 & 2 \end{bmatrix}$ $\begin{bmatrix} 2\\1 \end{bmatrix}$ = $\begin{bmatrix} 7\\2 \end{bmatrix}$ 로 매핑

초록색 벡터 ${2 \brack 1}$ 은 새로운 초록색 벡터 ${7 \brack 2}$ 와 서로 다른 직선 위에 있음

= $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 벡터가 span하는 공간에 $\begin{bmatrix} 7 \\ 2 \end{bmatrix}$ 벡터가 존재하지 않음

고유벡터의 기하학적 의미

초록색 사선은 변환 후에도 고유한 span 공간에 남아있음

행렬 변환을 벡터의 길이를 늘리고 줄이는 <mark>스칼라</mark>처럼 여기게 해 줌

고유벡터의 기하학적 의미

벡터 x 에 행렬 A 를 곱해도 방향은 유지한 채 길이만 변함 벡터 x 가 행렬 A 의 고유벡터

고유값, 고유벡터 계산

$$Ax = \lambda x \iff (A - \lambda I)x = 0$$

위 조건을 만족하는 벡터 x =**고유벡터**, $\lambda =$ **고유값**

① $(A - \lambda I)$ 역행렬이 존재하는 경우 ② 역행렬이 존재하지 않는 경우

양변에 $(A - \lambda I)^{-1}$ 을 곱해줌으로써 해결 가능

But, x = 0: trivial solution

고유벡터의 정의에 의해 <mark>영벡터는 고유벡터에서 제외됨</mark>

고유값, 고유벡터 계산

$$Ax = \lambda x \Leftrightarrow (A - \lambda I)x = 0$$

위 조건을 만족하는 벡터 x =고유벡터 $, \lambda =$ 고유값

① $(A - \lambda I)$ 역행렬이 존재하는 경우 ② 역행렬이 존재하지 않는 경우

자명하지 않은 해(nontrivial solution)를 구할 수 있음

$$\det(A - \lambda I) = 0$$

- ① 고유값을 구한다
- ② 고유값을 $Ax = \lambda x$ 에 대입해 고유벡터를 찾는다

고유값, 고유벡터 찾기

Ex)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
의 고유값, 고유벡터 찾기

①
$$det(A - \lambda I) = 0$$
을 풀어 고유값을 구함

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 1 = 0$$

$$\lambda^2 - 4\lambda + 3 = 0 \to (\lambda - 1)(\lambda - 3) = 0, \qquad \lambda = 1,3$$

 $\lambda_1 = 1$ \longrightarrow 어떤 고유벡터는 A라는 선형변환 후에 자기 자신과 같은 벡터가 됨

 $\lambda_2 = 3 \longrightarrow$ 또다른 고유벡터는 A라는 선형변환 후에 자기 자신의 3배가 됨

고유값, 고유벡터 찾기

Ex)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
의 고유값, 고유벡터 찾기

② 고유값을 $Ax = \lambda x$ 에 대입해 고유벡터를 찾음

$$if \ \lambda_{1} = 1,$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = 1 \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \rightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$if \ \lambda_{2} = 3,$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = 3 \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \rightarrow \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

고유값이 각각 1,3일 때 고유벡터= $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

고유값, 고유벡터 찾기

Ex)
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 의 고유값, 고유벡터 찾기

고유벡터 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 이 선형변환 후, 고유값 (3)만큼 길이가 늘어남

고유공간(Eigenspace)

고유공간 (Eigenspace)

각 고유값 λ 에 대해서 고유벡터들을 모아놓은 공간

앞의 예시에서 λ1의 고유공간은

선형변환 A 적용해도 길이가 1배가 되는 벡터의 span으로 형성됨

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -5 \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} n \\ -n \end{bmatrix} = \begin{bmatrix} n \\ -n \end{bmatrix}$$

고유벡터 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 에 상수배 한 후 선형변환하면, 자기 자신이 나옴

고유공간 = span(
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
)

고유공간(Eigenspace)

고유공간 (Eigenspace)

각 고유값 λ 에 대해서 고유벡터들을 모아놓은 공간

앞의 예시에서 λ_1 의 고유공간은

선형변환 A 적용해도 길이가 1배가 되는 벡터의 span으로 형성됨

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -5 \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} n \\ -n \end{bmatrix} = \begin{bmatrix} n \\ -n \end{bmatrix}$$

고유벡터 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 에 상수배 한 후 선형변환하면, 자기 자신이 나옴

고유공간 = span(
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
)

고유값 분해(Eigen Decomposition)

$$(x^{2}-4x+3)^{4} = 0$$

$$[(x-1)(x-3)]^{4} = (x-1)^{4}(x-3)^{4} = 0$$

$$x = 1 \text{ or } 3$$

복잡한 방정식의 해를 구할 때 사용하는 인수분해라는 도구처럼

어떤 복잡한 행렬 계산에서 간단히 해를 구하기 위해 활용

대각화

대각행렬

비대각 성분이 모두 0인 행렬

행렬식, 거듭제곱, 역행렬 계산 등에서 이점을 가짐

$$D = \begin{bmatrix} C_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & C_2 \end{bmatrix}$$

$$A = \begin{matrix} 3 & 0 & 0 \\ A = 0 & 7 & 0 \\ 0 & 0 & 1 \end{matrix} \rightarrow A^2 = \begin{matrix} 3^2 & 0 & 0 \\ 0 & 7^2 & 0 \\ 0 & 0 & 1^2 \end{matrix} \rightarrow A^n = \begin{matrix} 3^n & 0 & 0 \\ 0 & 7^n & 0 \\ 0 & 0 & 1^n \end{matrix}$$

대각화

대각행렬

비대각 성분이 모두 0인 행렬

행렬식, 거듭제곱, 역행렬 계산 등에서 이점을 가짐

어떤 행렬 $A \in \mathbb{R}^{nxn}$ 이 대각행렬 $D \in \mathbb{R}^{nxn}$ 로 대각화 가능하다면, 행렬 A의 행렬식, 거듭제곱 등을 쉽게 계산할 수 있음

$$D = P^{-1}AP, P \in R^{nxn}$$

고유값 분해는 대각화의 한 종류

고유값 분해(Eigen Decomposition)

$$Av = \lambda v$$
 v = 고유벡터, λ =고유값

행렬 A가 $n \times n$ 정방행렬이고, n개의 고유벡터, 고유값을 가진다고 가정

$$AV = A[v_1 \ v_2 \cdots v_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \ \cdots \lambda_n v_n]$$

행렬 A의 고유벡터들로만 구성된

$$= [v_1 \ v_2 \ \cdots v_n] \begin{bmatrix} \lambda_1 \\ 0 \\ 0 \end{bmatrix}$$

역행렬이 존재하는 행렬
$$= \begin{bmatrix} v_1 \ v_2 \ \cdots v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & 0 \\ & \vdots & \ddots & \vdots \\ 0 & \vdots & & 1 \end{bmatrix} = V\Lambda$$

행렬 A의 고유값을

대각성분의 원소로 갖는 대각행렬

$$= V\Lambda$$

고유값 분해(Eigen Decomposition)

고유값 분해(Eigen Decomposition)

고유값 분해

행렬 A를 **고유벡터들을 열벡터**로 하는 행렬과 **고유값을 대각원소**로 하는 행렬의 곱으로 **대각분해** 하는 것

행렬 A의 고유벡터들로만 구성된 역행렬이 존재하는 행렬 $AVV^{-1} = V\Lambda V^{-1}$ $A = V\Lambda V^{-1}$ 행렬 A의 고유값을 대각원소로 갖는 대각행렬

고유값 분해를 이용한 다양한 계산

행렬식

$$\det(A) = \det(V \Lambda V^{-1}) = \det(V) \det(\Lambda) \det(V^{-1}) = \det(\Lambda) = \lambda_1 \lambda_2 \cdots \lambda_n$$

거듭제곱

$$A^{k} = (V\Lambda V^{-1})^{k} = (V\Lambda V^{-1})(V\Lambda V^{-1})\cdots(V\Lambda V^{-1}) = V\Lambda^{k}V^{-1}$$

$$tr(A) = tr(V\Lambda V^{-1}) = tr(V^{-1}V\Lambda) = tr(\Lambda) = \lambda_1 + \dots + \lambda_n$$

고유값 분해의 기하학적 이해

고유값 분해

행렬 A를 3가지 행렬, 3가지 선형변환으로 분해하는 것

*선형변환 = 기저벡터(축)를 바꾸는 것

P=고유벡터로 구성된 행렬 V

D=고유값으로 구성된 대각행렬 Λ

행렬 V의 선형변환은 회전과 유사한 형태를 보임

행렬 V: 축의 방향을 돌려줌

• 대각행렬 $\Lambda:$ 몇 배만큼 늘려주는지 결정

고유값 분해의 기하학적 이해

그렇다면 V 선형변환은 회전 변환인가?

선형일반적으로 방향을 회전시키면 는 것

기저벡터의 크기가 약간 변하고, 뒤집어지며 변환할 가능성이 있음

또한 변환 이후 기저벡터들의 각도가 90도가 아닐 수 있음

완전히 일치하진 않고, 유사한 형태를 보임

다만, 행렬 A가 대칭행렬인 경우에는

회전을 시키는 단계에서 기저벡터의 크기가 변하지 않음

대칭행렬에 대한 고유값 분해

$$A = A^T$$
에 대한 고유값 분해

$$(V\Lambda V^{-1}) = (V\Lambda V^{-1})^{T} \to V\Lambda V^{-1} = (V^{-1})^{T}\Lambda^{T}V^{T}$$
 Λ 는 대각행렬이므로 대칭행렬 $\Lambda = \Lambda^{T}$ 따라서 식을 정리하면 $V\Lambda V^{-1} = (V^{-1})^{T}\Lambda V^{T} \to V^{-1} = V^{T}, \ \ V^{T}V = I$

대칭행렬에 대한 고유값 분해

let V=[
$$v_1 \ v_2 \cdots v_n$$
], $V^T V = \begin{bmatrix} -v_1 \ -v_2 \ \vdots \ -v_n \end{bmatrix} [v_1 \ v_2 \cdots v_n]$

$$= \begin{bmatrix} v_1^2 & \cdots & v_1 v_n \\ \vdots & \ddots & \vdots \\ v_n v_1 & \cdots & v_n^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{bmatrix} = I \quad (\because v_1 v_2 = v_2 v_3 = \dots = 0)$$

내적이 0이므로 직교함

대칭행렬에 대한 고유값 분해

행렬 A가 대칭행렬이면,

 $\begin{bmatrix} -V_1 - \end{bmatrix}$ let V=감,고유벡터끼리 서로 \mathbf{Z} 주교한다 \mathbf{v}_n

(모든 고유벡터 간의 <mark>내적이 0</mark>이기 때문)

$$= \begin{bmatrix} V_1^2 & \cdots & V_1 V_n \\ \vdots & \ddots & \vdots \\ V_n V_1 & \cdots & V_n^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & & \\ \vdots & \vdots & & \ddots & \\ 0 & \cdots & & & \ddots & \\ 1 \end{bmatrix} = I \quad (\because V_1 V_2 = V_2 V_3 = \cdots = 0)$$

항상 고유값 대각화가 가능

직교행렬로 대각화가 가능

이 특징을 공분산 행렬에 적용한 것: 주성분 분석(PCA)

고유값 분해

고유값 분해가 가능하려면,

선형독립이 아닌 벡터들 사이에서 $n \times n$ 행렬 A의 고유벡터 n개를 찾는 것이 불가능하기 때문에

정방행렬 A의 열벡터가 모두 선형독립

고유값 분해

그러나, 정방행렬이 아니거나

열벡터가 선형독립이 아닌 행렬도

고유법 분해와 비슷한 방식으로 행렬을 분해할 수 있음

특이값 분해

정방행렬 A의 열벡터가 모두 선형독립

5

특이값 분해

특이값 분해(SVD)의 목적

특이값 분해 (Singular Value Decomposition)

직교하는 벡터 집합에 대하여, 선형변환 후에 그 크기는 변하지만 여전히 직교하는 직교집합을 찾는 것

특이값 분해(SVD)의 목적

특이값 분해 (Singular Value Decomposition)

직교하는 벡터 집합에 대하여, 선형변환 후에 그 크기는 변하지만 여전히 직교하는 직교집합을 찾는 것

> 벡터 x, y 가 직교할 때, A라는 선형변환 후에도 Ax, Ay 는 직교할까?

특이값 분해(SVD)의 개념

 $A: m \times n$ rectangular matrix (직사각 행렬)

 $U: m \times m$ orthogonal matrix (직교 행렬)

 Σ : $m \times n$ diagonal matrix (대각 행렬)

 V^T : $\mathbf{n} \times \mathbf{n}$ orthogonal matrix (직교행렬)

특이값 분해(SVD)의 개념

 UAA^T 의 고유벡터로 구성된 직교행렬

A:m×n rectangular matrix (직자각 행렬)

$$\Sigma = m \times (AA^T = U(\Sigma \Sigma^T)U^T) = 0$$

 V^T : n \times n orthogonal matrix (직교행렬)

특이값 분해(SVD)의 개념

 AA^T , A^TA 를 고유값 분해해서 나오는 고유값들의 Square root를 대각원소(특이값)로 하는 $m \times n$ 직사각 대각행렬

-A:m×n rectangular matrix (직자각 행렬)

특이값 분해(SVD)의 개념

A:m×n rectangular matrix (직자각 행렬)

 UA^TA 의 고유벡터로 구성된 직교행렬

$$\Sigma : m \times (A^T A) = V(\Sigma \Sigma^T) V^T) = 0$$

 V^T : n \times n orthogonal matrix (직교행렬)

$$A = U\Sigma V^T$$

양변에 직교행렬 V를 곱해보자!

$$(V^T V = V^{-1} V = I)$$

$$\vdots$$

$$AV = U\Sigma$$

 $AV = U\Sigma$

특이값 분해(SVD)

 $AV = U\Sigma$

특이값 분해(SVD)

V 에 있는 열벡터를 행렬 A 를 통해 선형변환 했을 때,

크기는 σ 만큼 변하지만

여전히 직교하는 벡터(U의 열벡터)를 찾을 수 있다

특이값 분해의 기하학적 의미

 $x \to V^T x \to \Sigma V^T x \to U \Sigma V^T x (Mx)$

- ① V^T : 정의역의 표준 기저에서 다른 기저로 기저 변환 (회전변환)
- ② Σ : 새로운 기저에서 특이값(σ)만큼 크기 변환
 - ③ *U*: 회전을 통해 기저 변환 (회전변환)

특이값 분해의 이점

$$=\begin{pmatrix} | & | & | & | \\ u_1 & u_2 & \cdots & u_m \\ | & | & | \end{pmatrix}\begin{pmatrix} \sigma_1 & & \\ \ddots & & \\ \sigma_m \end{pmatrix}\begin{pmatrix} - & v_1^T & - \\ - & v_2^T & - \\ \vdots & & \\ - & v_n^T & - \end{pmatrix}$$
$$=\sigma_1 u_1 v_1^T + \cdots + \sigma_m u_m v_m^T$$

특이값 분해의 이점

A 와 같은 크기를 갖는 행렬들의 합으로 생각할 수 있음 이때 각 원소의 크기는 σ 값에 의해 결정

특이값 분해의 이점

기존 Full SVD는 연산량이 많아 간략화

$$\sigma_1$$
 σ_S

Thin SVD

$$V_r^{\mathsf{T}}$$

Compact SVD

$$\sigma_1$$
 σ_t

Truncated SVD

기존 Full SVD는 연산량이 많아 간략화

 σ_1 σ_{S}

Thin SVD

Σ 행렬 아랫부분(비대각 파트)과 U 에서 이에 대응되는 부분 제거

제거한 부분은 연산을 진행해도 0이므로

A 복원 가능

기존 Full SVD는 연산량이 많아 간략화

Thin SVD

$$A = U_r$$

 σ_1 . σ_r

 V_r^T

Compact SVD

$$A' = U_t$$

 V_t^T

대응하는 U 와 V^T 요소 제거

Σ 행렬에서 비대각 파트, 특이값이 0인 부분 제거

→ 특이값이 양수인 부분만 남김

제거한 부분은 <mark>연산을 진행해도</mark> 0이므로 *A* **복원 가능**

기존 Full SVD는 연산량이 많아 간략화

5 특이값 분해(SVD) 응용

Truncated SVD 이미지 압축

원본 이미지, 행렬 A (600 * 367)

Truncated SVD 이미지 압축

Truncated SVD, 특이값 367개 중 100개만 사용

5 특이값 분해(SVD) 응용

Truncated SVD 이미지 압축

Truncated SVD, 특이값 367개 중 20개만 사용

5

Truncated SVD 이미지 압축

특이값 367개 중 20개만 사용

다음 주 예고

1. 주성분 분석

2. 특이값 분해 응용

3. 커널과 커널트릭

감사합니다