The group G is isomorphic to the group labelled by [24, 8] in the Small Groups library. Ordinary character table of $G \cong (C6 \times C2) : C2$:

	1 <i>a</i>	2a	2b	3a	6a	6b	6c	2c	4a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1
χ_3	1	1	-1	1	1	-1	-1	1	-1
χ_4	1	1	-1	1	1	-1	-1	-1	1
χ_5	2	2	2	-1	-1	-1	-1	0	0
χ_6	2	2	-2	-1	-1	1	1	0	0
χ_7	2	-2	0	2	-2	0	0	0	0
χ_8	2	-2	0	-1	1	$E(3) - E(3)^2$	$-E(3) + E(3)^2$	0	0
χ_9	2	-2	0	-1	1	$-E(3) + E(3)^2$	$E(3) - E(3)^2$	0	0

Trivial source character table of $G \cong (C6 \times C2)$: C2 at p = 2:

Normalisers N_i		N_1		N_2		N_3			N	V_5	N_6	N_7	N_8
p-subgroups of G up to conjugacy in G			P_2		P_3			P_4	I	5	P_6	P_7	P_8
Representatives $n_j \in N_i$		3a	1a	3a	1a	3b	3a	1a	1a	3a	1a	1 <i>a</i>	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	8	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	8	-4	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	-2	4	-2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	0	0	2	2	2	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	4	-2	0	0	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	4	-2	0	0	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	0	0	0	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	2	2	2	0	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	-1	2	-1	2	-1	-1	0	2	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	0	2	0	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
```

- $N_1 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong (C6 \times C2) : C2 \\ N_2 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong (C6 \times C2) : C2 \\ N_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,12,5)(2,16,8)(3,18,10)(4,19,11)(6,21,14)(7,22,15)(9,23,17)(13,24,20), (1,11,12,4,5,19)(2,15,16,7,8,22)(3,17,18,9,10,23)(6,20,21,13,14,24)]) \cong C6 \times C2$
- $N_4 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20), (1,7)(2,4)(3,6)(5,22)(8,19)(9,13)(10,21)(11,16)(12,15)(14,18)(17,24)(20,23)]) \cong C2 \times C2$
- $N_6 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24)]) \cong D8$
- $N_7 = Group([(1,13,4,6)(2,9,7,3)(5,24,11,21)(8,23,15,18)(10,16,17,22)(12,20,19,14),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20)]) \\ \cong D8$
- $N_8 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong D8$

 $P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong C2$

 $P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24)]) \cong C2$

 $P_4 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20)]) \cong \mathbb{C}_2$

 $P_6 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20)]) \cong C2 \times C2$

 $P_7 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,13,4,6)(2,9,7,3)(5,24,11,21)(8,23,15,18)(10,16,17,22)(12,20,19,14)]) \cong C4$

 $P_8 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24),(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20)]) \\ \cong D_8 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3)(2,6)(4,9)(5,10)(17,21)(19,23)(22,24),(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20)]) \\ \cong D_8 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3)(21,24)(11,22)(14,23)(15,19)(17,21)(18,20)]) \\ \cong D_8 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(6,12)(14,23)(15,19)(14,23)(15,19)($