

automorphism group of a cyclic group

 ${\bf Canonical\ name} \quad {\bf Automorphism Group Of A Cyclic Group}$

Date of creation 2013-03-22 18:42:35 Last modified on 2013-03-22 18:42:35

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 6

Author rm50 (10146) Entry type Theorem Classification msc 20A05 Classification msc 20F28 **Theorem 1.** The automorphism group of the cyclic group $\mathbb{Z}/n\mathbb{Z}$ is $(\mathbb{Z}/n\mathbb{Z})^{\times}$, which is of order $\phi(n)$ (here ϕ is the Euler totient function).

Proof. Choose a generator x for $\mathbb{Z}/n\mathbb{Z}$. If $\rho \in \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$, then $\rho(x) = x^a$ for some integer a (defined up to multiples of n); further, since x generates $\mathbb{Z}/n\mathbb{Z}$, it is clear that a uniquely determines ρ . Write ρ_a for this automorphism. Since ρ_a is an automorphism, x^a is also a generator, and thus a and n are relatively prime¹. Clearly, then, every a relatively prime to n induces an automorphism. We can therefore define a surjective map

$$\Phi: \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}: \rho_a \mapsto a \pmod{n}$$

 Φ is also obviously injective, so all that remains is to show that it is a group homomorphism. But for every $a, b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, we have

$$(\rho_a \circ \rho_b)(x) = \rho_a(x^b) = (x^b)^a = x^{ab} = \rho_{ab}(x)$$

and thus

$$\Phi(\rho_a \circ \rho_b) = \Phi(\rho_{ab}) = ab \pmod{n} = \Phi(\rho_a)\Phi(\rho_b)$$

References

[1] Dummit, D., Foote, R.M., Abstract Algebra, Third Edition, Wiley, 2004.

¹If they were not, say (a, n) = d, then $(x^a)^{n/d} = (x^{a/d})^n = 1$ so that x^a would not generate.