Isotope Stability Classifier

Nicholas March 4/24/2024

Agenda

- Background and Objective
- Feature and Class Selection
- Data Preprocessing and Visualization
- Classification Scheme
- Results and Analysis

Background

NuDat 3.0 and the Chart of Nuclides

- Comprehensive online database containing up-to-date properties for the entire Chart of Nuclides.
- Maintained by National Nuclear Data Center at Brookhaven National Lab.
- Provides information about atomic structure, stability and radioactivity, nuclear reactions, etc..

Objective: Produce a classification model capable of predicting decay type.

Feature and Class Selection

Features:

- Proton number (Z)
- Mass number (A)
- Neutron to Proton Ratio (N/Z)
- Mass defect (M A)

Classes:

- Stable
- Beta minus decay (B⁻)
- Neutron decay (N)
- Alpha decay (A)
- Proton emission (P)
- Electron Capture (EC)
- Spontaneous Fission (SF)
- Other

Data Preprocessing

- Feature and label data extracted from nuclear_data package as two lists.
- Decays besides primary are removed from label data.
- 3. Multi-emissions/rare labels consolidated.
- 4. LabelEncoder() applied to label data.
- All data recast as numpy arrays.
- Data split into training and testing arrays.
- 7. Model weighting set to "balanced" when applicable to account for label imbalance.

Data Visualization

Feature Training Data Shape: (2338, 4) Feature Testing Data Shape: (1002, 4) Target Training Data Shape: (2338,) Target Testing Data Shape: (1002,)

Feature Pair Plot

Class Distribution

Classification Scheme

Parameter Space:

- Ridge: alpha [0.1, 1.0, 10.0]
- RF: n_estimators [50, 100, 200]
- RF: max_depth [None, 10, 20, 30]
- KNN: n_neighbors [3, 5, 7, 10]
- MLP: Ir_init [0.001, 0.01, 0.1]
- MLP: hidden_layers [(64,), (128,), (128, 64), (256, 128, 64)]

Best Model:

Ridge(alpha=10), RandomForest(max_depth=10, n_estimators=50)

KNN(n_neighbors=7), MLP(Ir_init=0.001, hidden_layers=(256, 128,64))

Results and Analysis

Log Loss: 0.50228

Mean Brier Score: 0.03086

	precision	recall	f1-score	support
А	0.66	0.79	0.72	150
В-	0.93	0.95	0.94	379
EC	0.84	0.90	0.87	325
N	0.30	1.00	0.46	3
Other	0.00	0.00	0.00	5
P	0.56	0.15	0.23	34
SF	0.33	0.05	0.08	21
Stable	0.66	0.48	0.56	85
accuracy			0.82	1002
macro avg	0.53	0.54	0.48	1002
weighted avg	0.80	0.82	0.80	1002

4/24/2024

Results and Analysis

B- Calibration Curve

A Calibration Curve

NuDat 3.0 Reproduction

References

- NuDat 3, Brookhaven National Lab, https://www.nndc.bnl.gov/nudat3/
- A. Boehnlein et al., "Colloquium: Machine learning in nuclear physics," Reviews of Modern Physics, vol. 94, no. 3, Sep. 2022. doi:10.1103/revmodphys.94.031003
- L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, "Bayesian approach to model-based extrapolation of nuclear observables," Physical Review C, vol. 98, no. 3, Sep. 2018. doi:10.1103/physrevc.98.034318
- Z. M. Niu, H. Z. Liang, B. H. Sun, W. H. Long, and Y. F. Niu, "Predictions of nuclear β-Decay Half-Lives with Machine Learning and Their Impact on r-process Nucleosynthesis," Physical Review C, vol. 99, no. 6, Jun. 2019. doi:10.1103/physrevc.99.064307
- U. B. Rodríguez, C. Z. Vargas, M. Gonçalves, S. B. Duarte, and F. Guzmán, "Alpha half-lives calculation of superheavy nuclei with q α -value predictions based on the Bayesian neural network approach," Journal of Physics G: Nuclear and Particle Physics, vol. 46, no. 11, p. 115109, Oct. 2019. doi:10.1088/1361-6471/ab2c86
- Morgan, Dane, et al. "Machine Learning in Nuclear Materials Research." arXiv.Org, 16 Nov. 2022, arxiv.org/abs/2211.09239.
- "Scientific Machine Learning for Nuclear Engineering." American Nuclear Society, www.ans.org/meetings/mc2021/session/view-793/.

