שיעור 1 מכונות טיורינג

1.1 הגדרה של מכונת טיורינג

הגדרה 1.1 מכונת טיורינג (הגדרה היוריסטית)

הקלט והסרט

- מכונת טיורינג (מ"ט) קורא קלט.
- הקלט עצמו נמצא על סרט אינסופי מחולק למשבצות.
 - כל תו של הקלט כתוב במשבצת אחת של הסרט.
- במכונת טיורינג אנחנו מניחים שהסרט אינסופי לשני הכיוונים.
- ." $_{-}$ " משמאל לתחילת הקלט יש רצף אינסופי של תווי רווח $_{-}$ ".
 - $"_-$ מימין לסוף הקלט יש רצף אינסופי של תווי רווח *

הראש

• במצב ההתחלתי הראש בקצה השמאלי של הקלט.

- הראש יכול לזוז ימינה על הסרט וגם שמאלה על הסרט.
 - הראש קורא את התוכן של המשבצת שבה הוא נמצא.
- הראש יכול לכתוב על משבצת, אבל רק על המשבצת שבה הראש נמצא.

תאור העבודה של המכונה

- $_{-}$ ים. בתחילת הריצה, הקלט כתוב התחילת הסרט כאשר מימינו נמצא רצף אינסופי של תווי $_{-}$ ים.
 - q_0 הראש מצביע על התא הראשון בסרט והמכונה נמצאת במצב התחלתי ullet

- בכל צעד חישוב, בהתאם למצב הנוכחי ולאות שמתחת לראש (התו הנקרא), המכונה מחליטה:
 - * לאיזה מצב לעבור
 - * מה לכתוב מתחת לראש (התו הנכתב)
 - * לאן להזיז את הראש (תא אחד ימינה, או תא אחד שמאלה, או להישאר במקןם).
 - למכונה ישנם שני מצבים מיוחדים:
 - . אם במשך הריצה המכונה מגיעה ל- $q_{
 m acc}$ היא עוברת ומקבלת: *
 - . הוא עוברת היא עוברת ל- מגיעה המכונה הריצה הריצה במשך הריצה יוברת יוברת יוברת $q_{\rm rej} \, *$
 - . אם המכונה לא מגיעה ל $q_{
 m rej}$ או $q_{
 m acc}$ אם המכונה לא מגיעה ל

הגדרה 1.2 מכונת טיורינג

מצב דוחה יחיד

מכונת טיורינג (מ"ט) היא שביעיה

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$$

:כאשר

קבוצת מצבים סופית ולא ריקה Q $\subseteq \Sigma$ אלפבית הקלט $\Sigma \subseteq \Gamma, \subseteq \Gamma$ אלפבית הסרט $S \subseteq \Gamma, \subseteq \Gamma$ $\delta: (Q \setminus \{q_{\rm rej}, q_{\rm acc}\} \times \Gamma \to Q \times \Gamma \times \{L, R\}$ q_0 מצב התחלתי $q_{\rm acc}$

דוגמה 1.1

נבנה מכונת טיורינג אשר מקבלת מילה אם היא בשפה

$$L = \{ w \in \{a, b\}^* | \#a_w = \#b_w \} .$$

b ו a ותיות שונה אותיות מספר מספר כל המילים עם ז"א השפת כל המילים או

הרעיון של האלגוריתם של המכונה היא כדלקמן:

- נסרוק את הקלט משמאל לימין, נחפש את האות a הראשונה, נסמן אותה איכשהו כ"נקראת".
 - אחר כך נחפש b תואם.
 - אם מצאנו b תואם נסמן אותו כ"נקרא", נחזור לתחילת הקלט ונתחיל סיבוב חדש. *
 - * אם לא מצאנו b תואם אז המכונה תדחה.
 - :a אם נגיע לסיבוב שבו אינן נשארות אף אותיות לא
 - * אם יש b לא מסומן אז המכונה תדחה.
 - א המכונה תקבל. b לא נשאר אף b לא נשאר *

כעת נתאר את הפאודו-קוד של המכונה, כדלקמן.

פסאודו-קוד

- ב) סורקים את הקלט משמאול לימין.
- אם לא מצאנו a וגם לא מצאנו \bullet
- אם האות הראשונה שהראש מצא היא a, כותבים עליו √, חוזרים לתחילת הקלט ועוברים לשלב 2).
- אם האות הראשונה שהראש מצא היא d, כותבים עליו √, חוזרים לתחילת הקלט ועוברים לשלב 3).
 - 2) סורקים את הקלט משמאול לימין.
 - אם לא מצאנו $b \Rightarrow$ דוחה.
 - אם מצאנו b כותבים עליו √, חוזרים לתחילת הקלט וחוזרים לשלב 1).
 - 3) סורקים את הקלט משמאול לימין.
 - אם לא מצאנו a דוחה.
 - שלב 1). √ מצאנו a כותבים עליו √ חוזרים לתחילת הקלט וחוזרים לשלב 1.

כעת נתן הגדרה פורמלית של המכונת טיורינג שמבצעת את האלגוריתם הזה.

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\rm acc}, q_{\rm rei})$$

כאשר Q הקבוצת המצבנים הבאה:

$$Q = \{q_0, q_a, q_b, q_{\text{back}}, q_{\text{rej}}, q_{\text{acc}}\}.$$

המשמעותם של כל המצבים נרשמים בטבלה למטה:

q_0	המצב ההתחלתי. אליו נחזור אחרי כל סבב התאמה של זוג אותיות.
q_a	מצב שבו ראינו a ומחפשים b תואם.
q_b	מצב שבו ראינו b מחפשים a תואם.
$q_{ m back}$	מצב שנשתמש בו כדי לחזור לקצה השמאלי של הקלט ולהתחיל את הסריקה הבאה (סבב ההתאמה הבא).
$q_{ m acc}$	מצב מקבל.
q_{rej}	מצב דוחה.

 Γ , הינן: Γ , הינן: האלפבית של הסרט, Γ

$$\Sigma = \{a,b\}, \qquad \Gamma = \{a,b,_,\checkmark\}.$$

. מוגדרת כדלקמן היא מוגדרת $\delta:Q\times\Sigma\to Q\times\Gamma\times\{L,R\}$ היא מוגדרת הפונקצית הפונקצית המעברים

$$\begin{split} \delta\left(q_0,\mathbf{a}\right) &= \left(q_a,\checkmark,R\right) \ , \\ \delta\left(q_0,\mathbf{b}\right) &= \left(q_b,\checkmark,R\right) \ , \\ \delta\left(q_0,-\right) &= \left(q_{\mathrm{acc}},-,R\right) \ , \\ \delta\left(q_a,\checkmark\right) &= \left(q_a,\checkmark,R\right) \ , \\ \delta\left(q_a,\mathbf{a}\right) &= \left(q_a,\mathbf{a},R\right) \ , \\ \delta\left(q_a,\mathbf{b}\right) &= \left(\mathrm{back},\checkmark,L\right) \ , \\ \delta\left(q_b,\checkmark\right) &= \left(q_b,\checkmark,R\right) \ , \\ \delta\left(q_b,\mathbf{b}\right) &= \left(q_a,\mathbf{b},R\right) \ , \\ \delta\left(q_b,\mathbf{a}\right) &= \left(\mathrm{back},\checkmark,L\right) \ . \end{split}$$

כטבלה: לעתים קל יותר לרשום את פונקציית המעבירים ל

Q Γ	a	b	u	✓
q_0	(q_a, \checkmark, R)	(q_b, \checkmark, R)	$(q_{\mathrm{acc}}, _, R)$	(q_0, \checkmark, R)
q_a	(q_a, a, R)	$(\text{back}, \checkmark, L)$	$(q_{rej}, {\it __}, L)$	(q_a, \checkmark, R)
q_b	$(\text{back}, \checkmark, L)$	(q_b, b, R)	$(q_{rej}, {\scriptscriptstyle oldsymbol{oldsymbol{\sqcup}}}, L)$	(q_b, \checkmark, R)
back	(back,a,L)	(back, b, L)	(q_0, \ldots, R)	$(\text{back}, \checkmark, L)$

תרשים מצבים

- בכל צעד המכונה מבצעת שתי פעולות:
 - 1. כותבת אות במיקום הראש
- 2. זזה צעד אחד שמאלה או צעד אחד ימינה.
- . בכל צעד המכונה יכולה לעבור למצב אחר או להישאר באותו מצב.

.abbbaa את המילה בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה

```
back
                                                  b
                                                                а
                                                          \checkmark
back
                                                  b
                                                                 а
                                                                а
           q_0
                                                 b
                                                                 а
                                                 b
                                                                 а
                                                 b
                                                                а
                                                 q_b
                                                 \checkmark
                                                back
                                      back
                     \checkmark
                            back
                   back
                              \checkmark
         back
                     \checkmark
  _
back
           q_0
                              q_0
                                        q_0
                                               q_0
                                                         q_0
                                                                       acc
```

.aab מקבלת את המילה 1.1 מקבלת את המילה

פתרון:

הגדרה 1.3 קונפיגורציה

תהי M של של הינה מיורינג. קונפיגורציה מכונת מיורינג $M=(Q,q_0,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$

:כאשר משמעות

 $u, \mathbf{v} \in \Gamma^*$, $\sigma \in \Gamma$, $q \in Q$.

- מצב המכונה, q
- הסימון במיקום הראש σ
- תוכן הסרט משמאל לראש, u
 - v תוכן הסרט מימין לראש.

דוגמה 1.4 (המשך של דוגמה 1.3)

u	q	σ	v
_	q_0	a	ab_
_ ✓	q_a	a	b _
_ √ a	q_a	b	
_ ✓	back	a	√ _
	back	✓	a √ _
	back		√ a √ _
	q_0	✓	а √ _
_ ✓	q_0	a	√ _
_ ✓ ✓	q_a	✓	
_	q_a		_
_ ✓ ✓	rej	√	_

דוגמה 1.5

בנו מכונת טיורינג אשר מקבלת כל מילה בשפה

$$L = \{a^n \mid n = 2^k , \ k \in \mathbb{N}\}$$

2 אשר חזקה של a אותיות מספר בעלי מספר ז"א מילים אורים אותיות

פתרון:

ראשית נשים לב למשפט הבא:

משפט 1.1

עבורו m שווה לחזקה אי-שלילית של 2, כלומר $(k\geqslant 0)$ אם ורק אם קיים שלם m עבורו חילוק של $n=2^k$ עבורן פעמים נותן n

הוכחה:

⇒ כיוון

$$rac{n}{2^k}=1$$
 אם $k\geqslant 0$ -ו $n=2^k$ אם

 \Rightarrow כיוון

$$n=2^m$$
 אם קיים $0\geqslant 0$ עבורו $n=2^m$ אז $n=2^m$ אז תוכן $n\geqslant 0$ אם קיים

לאור המשפט הזה נבנה אלגוריתם אשר מחלק את מספר האותיות במילה ב- 2 בצורה איטרטיבית. אם אחרי סבב מסויים נקבל מספר אי-זוגי גדול מ- 1 אז מספר האותיות a במילה לא יכול להיות חזקה של 2. אם אחרי כל הסבבים לא קיבלנו מספר אי-זוגי גדול מ-1 אז מובטח לנו שיש מספר אותיות a אשר חזקה של 2.

• נתון הקלט

נעבור על סרט הקלט. משמאל לימין.

• מבצעים מחקיה לסירוגין של האות a כלומר אות אחת נמחק ואות אחת נשאיר וכן הלאה.

אם אחרי סבב הראשון

- 2 אין חזקה ב- 2 אין חזקה של ב- אין אותיות האחרון אין מספר אי-זוגי של אותיות האחרון \checkmark של אין אותיות בעולה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא אותיות a אותיות מספר אוגי איש a יש *
 - הראש חוזר לתו הראשון של הקלט

שות אחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות -

אם אחרי סבב השני

- 2 אין חזקה ב- 2 אין חזקה של ב אי-זוגי של אותיות מספר אי-זוגי של אין האחרון ⇒ קיבלנו מספר אי-זוגי של אותיות 4 אותיות במילה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא אחרי אוגי של אותיות מספר אוגי *
 - הראש חוזר לתו הראשון של הקלט

שות אחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות -

אם אחרי סבב השלישי

- 2 אין חזקה ב- בתו האחרון האחרון אין חזקה של אותיות מספר אי-זוגי של אותיות האחרון \checkmark שי אין חזקה של אין אותיות בתו האחרון היבלנו מספר אי-זוגי של אותיות בתילה.
 - . ומשיך לסבב הבא. 2 ונמשיך לסבב הבא. a יש a אחרי זוגי של מספר a יש a
 - הראש חוזר לתו הראשון של הקלט.

בסבב האחרון נשאר רק אות a בסבב

.2 אשר חזקה של a אותיות a אותיות מסספר אותיות a אשר חזקה של

המכונת טיורינכ אשר מקבלת מילים בשפה שעובדת לפי האלגוריתם המתואר למעלה מתואר בתרשים למטה.

המצבים:

מצב none: מצב התחלתי. עדיין לא קראנו a בסבב סריקה זה.

מצב one: קראנו a בודד.

. a קראנו מספר זוגי של even מצב

. a מצב odd: קראנו מספר אי-זוגי של

מצב back: חזרה שלמאלה.

דוגמה 1.6

בדקו אם המילה

aaaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.5.

1	none	а	а	а	а	[
_	\checkmark	one	а	а	а]
	\checkmark	а	even	а	а]
	\checkmark	а	\checkmark	odd	а	J
_	\checkmark	а	\checkmark	а	even]
	\checkmark	а	\checkmark	back	a	_
	\checkmark	а	back	\checkmark	a]
	\checkmark	back	а	\checkmark	a	_
_	back	\checkmark	а	\checkmark	а	J
back	J	\checkmark	а	\checkmark	а]

	none	\checkmark	a	\checkmark	а	_
	\checkmark	none	a	\checkmark	а	
	\checkmark	\checkmark	one	\checkmark	а	_
	\checkmark	\checkmark	\checkmark	one	a	_
	\checkmark	\checkmark	\checkmark	а	even	_
	\checkmark	\checkmark	\checkmark	back	а	_
	\checkmark	\checkmark	back	\checkmark	а	_
	\checkmark	back	\checkmark	\checkmark	а	_
	back	\checkmark	\checkmark	\checkmark	а	_
back	_	\checkmark	\checkmark	\checkmark	а	_
	none	\checkmark	\checkmark	\checkmark	а	_
	\checkmark	none	\checkmark	\checkmark	а	_
	\checkmark	\checkmark	none	\checkmark	а	_
	\checkmark	\checkmark	\checkmark	none	a	J
	\checkmark	\checkmark	\checkmark	\checkmark	one	
	√	√	√	acc	√	

u	q	σ	v
	none	a	aaa 🗀
_ ✓	one	a	aa _
_ √ a	even	a	а 🗆
_ √ a √	odd	a	_
_√a√a	even	_	
_ √ a √	back	a	_
_ √ a	back	✓	а 🗆
_ ✓	back	a	√ a _
_	back	✓	а√а∟
_	back	_	√a√a∟
_	none	✓	а√а∟
_√	none	a	✓ a _
_ ✓ ✓	one	✓	а 🗆
_	one	a	_
_√√√ a	even	_	
_	back	a	_
_ ✓ ✓	back	√ a	_
_ ✓	back	✓	✓ a _
_	back	✓	√√ a _
_	back	_	√√√ a _
_	none	<u> </u>	√ √ a _
_ ✓	none	\checkmark	√ a _
_ ✓ ✓	none	\checkmark	а 🗀
_	none	a	
_	one	_	_
_ \	acc	✓	_

בדקו אם המילה

aaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.5.

פתרון:

 none	а	а	а	
 \checkmark	one	а	а	_
 \checkmark	а	even	а	_
 \checkmark	a	\checkmark	odd	_
 \checkmark	а	\checkmark	_	rej

u	q	σ	v
	none	а	aa 🗀
_ ✓	one	a	а _
_ √ a	even	a	
_ √ a √	odd		
_ √ a √ _	rej		

דוגמה 1.8

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי $:q_0$
- .א אם אנחנו רואים a, עוברים למשבצת הבאה לימין הראש.
- אם אנחנו רואים b, עוברים למשבצת הבהאה לשמאל הראש. *
- ממשיכים כך עד שנגיע לתו רווח, כלומר לסוף המילה, ואז עוברים למשבצת לשמאל הראש, כלומר לתו האחרון של המילה.
 - (a אם אנחנו רואים a, המילה מתקבלת. (ז"א התו האחרון הינו *
 - אם אנחנו רואים b, המילה נדחית. (ז"א התו האחרון הינו d.) *
 - * אם אנחנו רואים תו-רווח המילה נדחית. (ז"א המילה הינה ריקה.)

תשובה סופית: המכונה מקבלת שפת המילים המסתיימות באות a.

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- * אם אנחנו רואים b, המילה נדחית.
- * אם אנחנו רואים _, המילה מתקבלת.
- q_1 אם אנחנו רואים a, כותבים עליה \perp ועוברים למשבצת הבאה לימין הראש, והמ"ט עוברת למצס \star
 - oxdot במצב q_1 אנחנו ראינו a וכתבנו עליה •
- q_1 אם אנחנו רואים במשבצת הבאה או d, ממשיכים למשבצת הבאה לימין והמ"ט נשארת או st
- אם אנחנו רואים תו רווח (כלומר הגענו לסוף המילה) הראש זז למשבצת השמאלי, כלומר לאות lpha האחרונה של המילה והמ"ט עוברת למצב q_2
 - . במצב q_2 ראינו a בתו הראשון, כתבנו עליה במצב q_2 במצב -
 - אם אנחנו רואים a המילה נדחית.
 - * אם אנחנו רואים _, המילה נדחית.
 - $.q_3$ בותים עוברת והמ"ט עוברת למצב והמ"ט עוברת *
 - . במצב q_3 קראנו b ומחקנו אותה, קראנו a בתו הראשון ומחקנו אותה a
 - q_0 הראש η ז משבצת אחת שמאלה עד שיגיע לתו הרשאון ומ"ט חוזרת למצב התחלת ullet

- המ"ט באופן איטרטיבי, עוברת על הקלט ובכל מעבר:
- , אחרת המילה המילה אותה ומחליפה אותה שם $_{-}$, אחרת המילה מורידה אותה $_{+}$
- . אחרת המילה של המילה של המילה אותה ומחליפה אותה של בסופה של המילה $_{-}$
- אם לאחר מספר מעברים כאלו הסרט ריק, המ"ט מקבלת, וזה יתקיים לכל מילה ורק למילים בשפה

$$\left\{a^n b^n \middle| n \geqslant 0\right\} .$$

תשובה סופית: המכונה מקבלת שפת המילים

$$\left\{a^n b^n \middle| n \geqslant 0\right\} .$$

דוגמה 1.10

μ	q	σ	ν
]	q_0	a	aaabbbb
	q_1	a	aabbbb
a	q_1	a	abbbb
aa	q_1	a	bbbb
aaa	q_1	Ъ	bbb
aaab	q_1	Ъ	bb
aaabb	q_1	Ъ	b
aaabbb	q_1	Ъ	
aaabbbb	q_1		
aaabbb	q_2	Ъ	
aaabb	q_3	Ъ	
aaab	q_3	Ъ	b
aaa	q_3	Ъ	bb
aa	q_3	a	bbb
a	q_3	a	abbb
	q_3	a	aabbb
]	q_3		aaabbb
	q_0	a	aabbb
	q_1	a	abbb
a	q_1	a	bbb
aa	q_1	Ъ	bb
aab	q_1	Ъ	Ъ
aabb	q_1	Ъ	
aabbb	q_1		
aabb	q_2	Ъ	
aab	q_3	Ъ	
aa	q_3	Ъ	Ъ
a	q_3	a	bb_
	q_3	a	abb

	q_3		aabb_
	q_0	a	abb
	q_1	a	bb
a	q_1	Ъ	b
ab	q_1	Ъ	
abb	q_1		
ab	q_2	Ъ	
a	q_3	Ъ	
	q_3	a	b
	q_3		ab
	q_0	a	b
	q_1	Ъ	
b	q_1		
	q_2	Ъ	
	q_3	_	
	q_0		

הגדרה 1.4 גרירה בצעד אחד

M מכונת של $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ מכונת אורינג, ותהיינה ווא מכונת של $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ נסמן

$$c_1 \vdash_M c_2$$

. בצעד ברים ל- c_2 עוברים ל- בצעד בודד. אם כשנמצאים ב- (c_2 גורר את בעד בודד.

דוגמה 1.11 (המשך של דוגמה 1.5)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.5 רק עם סימנוים שונים למצבים) מתקיים

$$\checkmark q_0 a \checkmark a \vdash_M \checkmark \checkmark q_1 \checkmark a$$

הגדרה 1.5 גרירה בכללי

Mשל פיגורציות ור ו- c_1 ו- c_2 ו- מכונת מיורינג, מכונת $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\mathrm{acc}},q_{\mathrm{rej}})$ מכונת נסמן

$$c_1 \vdash_M^* c_2$$

אם ניתן לעבור מ- c_1 ל- c_2 ב- c_1 או יותר צעדים.

דוגמה 1.12 (המשך של דוגמה 1.52)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.5 רק עם סימנוים שונים למצבים) מתקיים

 $\checkmark q_0 a \checkmark a \vdash_M^* \checkmark \checkmark \checkmark q_4 a$

$$\checkmark q_0 a \checkmark a \vdash_M \checkmark \checkmark q_1 \checkmark a$$
 $\vdash_M \checkmark \checkmark \checkmark q_1 a$

$$\vdash_M \checkmark \checkmark \checkmark q_4 a$$
.

 $\vdash_M \checkmark \checkmark \checkmark aq_2$

הגדרה 1.6 קבלה ודחייה של מחרוזת

: מכונת אומרים $w\in \Sigma^*$ - מכונת טיורינג, ו $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc}\,,\,q_{
m rej})$ תהי

מקבלת את w אם M

$$q_0 w \vdash_M^* u q_{\rm acc} \sigma v$$

. כלשהם $u, \mathbf{v} \in \Gamma^*$, $\sigma \in \Gamma$ כלשהם

אם w אם M ullet

$$q_0 w \vdash_M^* u q_{\text{rej}} \sigma v$$

. כאשר $\sigma \in \Gamma^*$ כלשהם $u, \mathbf{v} \in \Gamma^*$ כלשהם

הגדרה 1.7 הכרעה של שפה

תהי M מכריעה את מכריעה אומרים כי $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc}\,,q_{\mathrm{rej}})$ תהי $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc}\,,q_{\mathrm{rej}})$ מכרישה את לכל מכריש:

- w מקבלת את מקבלת $M \leftarrow w \in L$
 - w דוחה את $M \leftarrow w \notin L$

הגדרה 1.8 קבלה של שפה

תהי M מקבלת את אומרים כי M מכונת טיורינג, ו- ב Σ^* -שפה. אומרים מ $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\mathrm{acc}}\,,\,q_{\mathrm{rej}})$ אם אם אומרים: $w\in\Sigma^*$ מתקיים:

- w אז M מקבלת את $w \in L$ אם •
- $w \not \in L$ אז M לא מקבלת את $w \not \in L$ אם

-שפה L, נכתוב שה מקבלת את השפה M

$$L(M) = L$$
.

1.2 טבלת המעברים

דוגמה 1.13

בנו מכונת טיורינג שמכריעה את השפה

$$L = \{w = \{a, b, c\}^* | \#a_w = \#b_w = \#c_w\}$$

מצב	ניבה מצב חדש סימון בסרט		כתיבה	תזוזה	תנאי
q.S	σ	$q.(S \cup \{\sigma\})$	✓	R	$\sigma \notin S$
q.S	σ	q.S		R	$\sigma \in S$
$q/\{a,b,c\}$	a,b,c,\checkmark	back		L	
$q.\varnothing$		acc		R	
back	a,b,c,\checkmark	back		L	
back		$q.\varnothing$		R	

בנו מכונת טיורינג שמכריעה את השפה

$$\{x_1 \dots x_k \# y_1 \dots y_k \# z_1 \dots z_k \mid x_i, y_i, z_i \in \{0, \dots, 3\}, \forall i, x_i \geqslant z_i \geqslant y_i\}$$

L={X, X, # Y, Y # = = | X, 1/2, = , e {0,1,2,3} Vi X2=, 2 X;}

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ	$X\sigma*$	✓	R	
X * *	✓	X * *	✓	R	
$X\sigma*$	$0,1,\ldots,9,\checkmark$	$X\sigma*$		R	
$X\tau *$	#	$Y\tau *$		R	
$Y\tau *$	σ	$Y\tau\sigma$		R	
$Y\tau *$	✓	$Y\tau *$		R	
$Y\tau\sigma$	$0,1,\ldots,9,\checkmark$	$Y\tau\sigma$		R	
$Y \tau_1 \tau_2$	#	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	✓	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	σ	back	✓	L	
Z**	_	acc		R	
back	$0,1,\ldots,9,\checkmark$	back		L	
back	_	X * *		R	

1.3 חישוב פונקציות

f מכונת טיורינג שמחשבת פונקציה 1.9 הגדרה

תהי $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{
m acc},q_{
m rej})$ ותהי ותהי והי בי $f:\Sigma_1^*\to \Sigma_2^*$ אומרים כי M מחשבת את אם:

. $\Sigma_2\subset\Gamma$ -1 $\Sigma=\Sigma_1$ •

$q_0w \vdash q_{\mathrm{acc}}f(w)$ מתקיים $w \in \Sigma_1^*$ •

דוגמה 1.15 חיבור אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 1^{i} # 1^{j}

ומחזירה את פלט

 1^{i+j} .

פתרון:

דוגמה 1.16 כפל אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 1^{i} # 1^{j}

ומחזירה את פלט

 $1^{i\cdot j}$.

- לדוגמה, נניח שהקלט הוא 2 כפול 2.
 - .11#11 הקלט הוא
- נרצה להבדיל בין הקלט לבין הפלט.
 לכן בתחילת הריצה, נתקדם ימינה עד סוף הקלט ונוסיף שם את התו \$.
 לאחר מכן נחזור לתחילת הקלט.
- .\$ על כל אות במילה השמאלית נעתיק את המילה השמאלית במילה במילה $^{\circ}$
- לאחר מכן נשאיר רק את התווים שלאחר סימן ה \$. כלומר, נמחק את כל מה שאינו פלט.

μ	q	σ	ν
	q_0	1	1#11_
_11 # 11	q_1	1	_
_11 # 11	q_1	\$	_
_	q_1]	11#11\$
_	q_2	1	1 # 11\$
	q_3	1	#11\$
1 #	q_4	1	1\$
1#√	q_5	1	\$
1 #√ 1\$	q_5		_
1 #√ 1\$1	q_6]	_
1 #	q_6	\checkmark	1\$1 <u></u>
1 #√	q_4	1	\$1 _
1#√√	q_5	\$	1 _
_ <i>_1#√√</i> \$1	q_5]	_
_ <i>_1#√√</i> \$11	q_6	_	_
_ <i>_</i> 1#√	q_6	\checkmark	\$11_
_ <i>_1#√√</i>	q_4	\$	11_
1 #√	back	\checkmark	\$11_
_	back]	1 # 11\$11_
J	q_2	1	#11\$11_
	q_3	#	11\$11_
#	q_4	1	1\$11_

#✓	q_5	1	\$11_
# √1\$11	q_5	_	
#√1\$111	q_6	_]
#	q_6	\checkmark	1\$111_
#√	q_4	1	\$111_
#√√	q_5	\$	111_
# / / \$111	q_5	_	
# / \\$1111	q_6	_	_
#√	q_4	\checkmark	\$1111
#√√	q_4	\$	1111
#√	back	√\$	1111
	back		#11\$1111
	q_2	#	11\$1111
	q_7	1	1\$1111
	q_7	\$	1111
	acc	1	111