Eliminacion Gaussiana. Factorizacion LU. Primera parte.

1. Resuelva los siguientes sistemas utilizando eliminacion gaussiana e identifique las matrices de eliminacion y/o permutacion utilizadas en cada caso:

a)
$$\begin{cases} x_2 + 4x_3 & = -5 \\ x_1 + 3x_2 - 5x_3 & = -2 \\ 3x_1 + 7x_2 + 7x_3 & = 6 \end{cases}$$

$$\begin{cases} 3x_1 + 7x_2 + 7x_3 &= 6 \\ x_1 - 3x_2 &= -4 \\ 3x_1 - 7x_2 + 7x_3 &= -8 \\ -4x_1 + 6x_2 - x_3 &= 7 \end{cases}$$

c)
$$\begin{cases} x_1 - 3x_2 &= 5\\ -x_1 + x_2 + 5x_3 &= 2\\ x_2 + x_3 &= 0 \end{cases}$$

Soluciones

a)
$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 3 & -5 \\ 3 & 7 & 7 \end{bmatrix}$$
, $P_{12}A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 1 & 4 \\ 3 & 7 & 7 \end{bmatrix}$, $E_{31}(-3)P_{12}A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 1 & 4 \\ 0 & -2 & 22 \end{bmatrix}$, $E_{32}(2)E_{31}(-3)P_{12}A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 1 & 4 \\ 0 & 1 & 4 \end{bmatrix}$, $c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$. Luego $x_3 = \frac{1}{15}$,

$$E_{32}(2) E_{31}(-3) P_{12}A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 1 & 4 \\ 0 & 0 & 30 \end{bmatrix}, c = \begin{bmatrix} -2 \\ -5 \\ 2 \end{bmatrix}. \text{ Luego } x_3 = \frac{1}{15},$$

$$x_2 = -5 - \frac{4}{15} = -\frac{79}{15} \text{ y } x_1 = -2 + \frac{5}{15} + 3\frac{79}{15} = \frac{212}{15}.$$

$$b) \ \ A = \begin{bmatrix} 1 & -3 & 0 \\ 3 & -7 & 7 \\ -4 & 6 & -1 \end{bmatrix}, E_{21} \left(-3 \right) A = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 2 & 7 \\ -4 & 6 & -1 \end{bmatrix}, E_{31} \left(4 \right) E_{21} \left(-3 \right) A = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 2 & 7 \\ 0 & -6 & -1 \end{bmatrix}, E_{32} \left(3 \right) E_{31} \left(4 \right) E_{21} \left(-3 \right) A = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 2 & 7 \\ 0 & 0 & 20 \end{bmatrix}, c = \begin{bmatrix} -4 \\ 4 \\ 3 \end{bmatrix}.$$
 Luego $x_3 = \frac{3}{20}, \ x_2 = \frac{1}{2} \left(4 - 7 \frac{3}{20} \right) = \frac{59}{40} \ \text{y} \ x_1 = -4 + 3 \frac{59}{40} = \frac{17}{40}.$

c) COMPLETAR.

2. Encuentre la operacion elemental de fila que transforma a la primer matriz en la segunda de cada item siguiente. Ademas determine cual es la operacion elemental de fila que transforma a la segunta en la primera.

$$a) \ \begin{bmatrix} 0 & -2 & 5 \\ 1 & 4 & -7 \\ 3 & -1 & 6 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 4 & -7 \\ 0 & -2 & 5 \\ 3 & -1 & 6 \end{bmatrix}.$$

$$b) \begin{bmatrix} 1 & 3 & -4 \\ 0 & -2 & 6 \\ 0 & -5 & 9 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 3 & -4 \\ 0 & 1 & -3 \\ 0 & -5 & 9 \end{bmatrix}.$$

$$b) \begin{bmatrix} 1 & 3 & -4 \\ 0 & -2 & 6 \\ 0 & -5 & 9 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 3 & -4 \\ 0 & 1 & -3 \\ 0 & -5 & 9 \end{bmatrix}.$$

$$c) \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 4 & -1 & 3 & -6 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 0 & 7 & -1 & -6 \end{bmatrix}.$$

$$d) \begin{bmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & -3 & 9 & 5 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

Soluciones

- a) P_{12} y P_{12} .
- b) $E_{22}\left(-\frac{1}{2}\right)$ y $E_{22}\left(-2\right)$.
- c) $E_{31}(-4)$ y $E_{31}(4)$.
- d) $E_{32}(3)$ y $E_{32}(-3)$.
- 3. Sean

$$A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 1 \end{bmatrix} \text{ y } B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- a) La primera fila de AB es una combinación lineal de todas las filas de B. ¿Cuales son los escalares de esta combinación y cual es la primera fila de AB? ¿Cual es la segunda fila?
- b) La primera columna de AB es una combinación lineal de todas las columnas de A. ¿Cuales son los escalares de esta combinación y cual es la primera columna de AB? ¿Cual es la segunda columna?

Soluciones

- a) COMPLETAR.
- b) La primer columna de AB es una combinación de las columnas de A con los escalares de la primer columna de B, es decir: $(AB)_1 =$ $1 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} y (AB)_2 = 1 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 0 \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}.$

- 4. Determinar la veracidad de las siguientes afirmaciones. Justificar y mostrar un contraejemplo en el caso de que sea falso.
 - a) Si la primera y la tercera columna de B son iguales, tambien lo son la primera y la tercera columna de AB.
 - b) Si la primera y la tercera fila de B son iguales, tambien lo son la primera y la tercera fila de AB.
 - c) Si la primera y la tercera fila de A son iguales, tambien lo son la primera y la tercera fila de AB.
 - d) $(AB)^2 = A^2B^2$.

- a) Verdadero pues $(AB)_1 = AB_1 = AB_3 = (AB)_3$.
- $b) \ \ \text{Falso. Por ejemplo:} \ \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right] \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array} \right] = \left[\begin{array}{cccc} 4 & 4 & 4 \\ 10 & 10 & 10 \\ 16 & 16 & 16 \end{array} \right].$
- c) COMPLETAR.
- d) Falso. Sean $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ y $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, luego $(AB)^2 = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$ pero $A^2B^2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.

- 5. Encontrar ejemplos de matrices de orden 2 por 2 tales que:
 - a) $A^2 = -I$, donde A tenga solo entradas reales.
 - b) $B^2 = 0$, aunque $B \neq 0$.
 - c) CD = -DC, dejando de lado el caso CD = 0.
 - d) EF = 0, aunque ninguna de las entradas de E o de F sea 0.

$$a) \ A = \left[\begin{array}{cc} 1 & -1 \\ 2 & -1 \end{array} \right].$$

$$b) \ B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}.$$

c)
$$C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 y $D = \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}$.

$$d) \ E = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right] \ \mathrm{y} \ F = \left[\begin{array}{cc} 2 & -2 \\ -2 & 2 \end{array} \right].$$

6. La matriz de rotacion del plano x-y por un angulo θ es:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Recordando algunas identidades trigonometricas, verifique que $A\left(\theta_{1}\right)A\left(\theta_{2}\right)=A\left(\theta_{1}+\theta_{2}\right)$. ¿Que matriz es $A\left(\theta\right)A\left(-\theta\right)$?

Solucion COMPLETAR.

7.

- a) Sean A y B dos matrices triangulares inferiores. Muestre que el producto AB es una matriz triangular inferior, y que si A es invertible, A^{-1} tambien es triangular inferior.
- b) Sean A y B dos matrices triangulares superiores. Muestre que el producto AB es una matriz triangular superior, y que si A es invertible, A^{-1} tambien es triangular superior.
- c) Sean A y B dos matrices triangulares diagonales. Muestre que el producto AB es una matriz diagonal, y que si A es invertible, A^{-1} tambien es diagonal.

- a) COMPLETAR.
- b) Podemos escribir a AB como $\left[\left(AB\right)^{t}\right]^{t}=\left[B^{t}A^{t}\right]^{t}$. Como B y A son triangulares inferiores entonces por el resultado anterior $B^{t}A^{t}$ es triangular inferior luego $\left[B^{t}A^{t}\right]^{t}=AB$ es triangular superior.
- c) Resulta evidente de considerar los resultados anteriores teniendo en cuenta que una matriz diagonal es triangular superior e inferior.
- 8. ¿Que le sucede a una matriz $A \in \mathcal{M}_{3\times3}$ si la premultiplicamos por E_{31} (4) o E_{23} (5)? ¿Que sucede si la postmultiplicamos por dichas matrices?

Solucion

Si premultiplicamos por $E_{ij}(\alpha)$, a la fila i de A se le suman α veces la fila j. Si postmultiplicamos por $E_{ij}(\alpha)$, a la columna j de A se le suman α veces la columna i.

- 9. Exhiba la matriz M de orden 3×3 que produce los siguientes pasos de eliminacion:
 - a) M suma 5 veces la fila 1 a la fila 2.
 - b) M suma -7 veces la fila 2 a la fila 3.
 - c) M intercambia las filas 1 y 2 y luego la 2 y 3.

Soluciones

a)
$$M = E_{21}(5) = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

b)
$$M = E_{32}(-7) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -7 & 1 \end{bmatrix}$$
.

c)
$$M = P_{23}P_{12} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

10.

a) Determina las matrices E_{21} , E_{31} y E_{32} que llevan a la matriz A a su forma triangular U, siendo

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{array} \right]$$

b) Calcula la matriz $E=E_{32}E_{31}E_{21}$ que realiza todos los pasos de la eliminacion: EA=U.

a)
$$E_{21}(-4)$$
, $E_{31}(2)$ y $E_{32}(-2)$.

$$b) \ E = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 10 & -2 & 1 \end{array} \right].$$

11. Considere el sistema de ecuaciones Ax = b, donde

$$A = \left[\begin{array}{ccc} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{array} \right], b = \left[\begin{array}{c} 2 \\ 2 \\ 5 \end{array} \right]$$

Factorizar A en LU y escribir el sistema triangular superior Ux = c que se obtiene despues de la eliminación gaussiana.

12. Encontrar la matriz inversa del producto

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -b & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution
$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$$
.

13. Sea el sistema de ecuaciones Ax = b dado por:

$$\begin{cases} 2x_1 + 4x_2 + 0x_3 + 2x_4 &= 6\\ 0x_1 + 3x_2 + 3x_3 + x_4 &= 4\\ 2x_1 + 7x_2 + 9x_3 + 7x_4 &= 8\\ 0x_1 + 0x_2 + 6x_3 + 5x_4 &= -4 \end{cases}$$

- a) Factorizar A en LU y resolver el sistema anterior.
- b) Resolver el sistema $Ax = b' \operatorname{con} b' = (6, 2, 10, 2)$.
- c) Resolver el sistema $Ax = b'' \operatorname{con} b'' = (5, 0, 2, 0)$.

a)
$$E_{31}(-1)A = \begin{bmatrix} 2 & 4 & 0 & 2 \\ 0 & 3 & 3 & 1 \\ 0 & 3 & 9 & 5 \\ 0 & 0 & 6 & 5 \end{bmatrix}$$
, $E_{32}(-1)E_{31}(-1)A = \begin{bmatrix} 2 & 4 & 0 & 2 \\ 0 & 3 & 3 & 1 \\ 0 & 0 & 6 & 4 \\ 0 & 0 & 6 & 5 \end{bmatrix}$, $E_{43}(-1)E_{31}(-1)A = \begin{bmatrix} 2 & 4 & 0 & 2 \\ 0 & 3 & 3 & 1 \\ 0 & 0 & 6 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} = U, L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.
$$Ax = L\underbrace{Ux}_{c} = b. \begin{cases} Lc & = b \\ Ux & = c \end{cases}$$
. Luego $c_{1} = 6$, $c_{2} = 4$, $c_{3} = 8 - 4 - 6 =$
$$-2$$
, $c_{4} = -4 + 2 = -2$ y $x_{4} = -2$, $x_{3} = \frac{1}{6}[-2 - 4(-2)] = 1$, $x_{2} = \frac{1}{3}(4 + 2 - 3) = 1$, $x_{1} = \frac{1}{2}(6 + 4 - 4) = 3$.
$$b) c_{1} = 6$$
, $c_{2} = 2$, $c_{3} = 10 - 6 - 2 = 2$, $c_{4} = 2 - 2 = 0$ y $x_{4} = 0$, $x_{3} = \frac{1}{6}(2 - 0) = \frac{1}{3}$, $x_{2} = \frac{1}{3}(2 - 0 - 3\frac{1}{3}) = \frac{1}{3}$, $x_{1} = \frac{1}{2}(6 - 0 - \frac{4}{3}) = \frac{7}{3}$.

Eliminacion Gaussiana. Factorizacion LU. Segunda parte.

1. Encontrar los factores L, D y U de la matriz

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

Resolver el sistema Ax = b, donde b = (6, 0, -6).

Solucion

COMPLETAR.

c) COMPLETAR.

2. Probar que AA^t y A^tA son siempre simetricas. Mostrar mediante un ejemplo que pueden no ser iguales. Mostrar que tambien $A + A^t$ es simetrica si A es cuadrada. ¿Que sucede con $A - A^t$?

Solucion

■ Sea
$$B = AA^t$$
, luego $B_{ij} = \sum_{k=1}^n a_{ik} a_{kj}^t = \sum_{k=1}^n a_{kj}^t a_{ik} = \sum_{k=1}^n a_{jk} a_{ki}^t = b_{ji}$.

Analogamente para $C = A^t A$. Si $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, entonces $A^t A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

y $AA^t = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.

- Sea $D = A + A^t$, luego $d_{ij} = a_{ij} + a_{ij}^t = a_{ij}^t + a_{ij} = a_{ji} + a_{ji}^t = d_{ji}$.
- COMPLETAR.

3. Mostrar que los pivotes de A son tambien los pivotes de A^t .

Solucion

Sea A = LDU luego $A^t = U^tD^tL^t = U^tDL^t$. Notar que U^t es triangular inferior y L^t es triangular superior.

4.

a) Hallar la factorizacion LDU de la matriz

$$A = \left[\begin{array}{rrr} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{array} \right]$$

b) Aprovechando lo hecho en el item anterior, resolver el sistema $A^t x = (2,5,5)$.

Soluciones

a)
$$E_{31}(-3)A = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & -1 \end{bmatrix} = U', D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{bmatrix}, U = \begin{bmatrix} 1 & \frac{3}{2} & \frac{3}{2} \\ 0 & 1 & \frac{7}{5} \\ 0 & 0 & 1 \end{bmatrix}$$
 y $L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$.

b) COMPLETAR.

5. Recordemos que la matriz $E_{ij}\left(a\right)$ (con i>j) esta definida por:

$$E_{ij}(a) = (m_{kl}) \text{ donde } m_{kl} = \begin{cases} 1 & k = l \\ a & k = i \land l = j \\ 0 \end{cases}$$

a) Probar que $\left[E_{ij}\left(a\right)\right]_{l}$ (que es la columna l de $E_{ij}\left(a\right)$) verifica:

$$\left[E_{ij}\left(a\right)\right]_{l} = \begin{cases} e_{l} & l \neq j \\ e_{j} + ae_{i} & l = j \end{cases}$$

b) Dado $r \in \mathbb{N}$, probar que $[E_{ij}(a)]^r = E_{ij}(ra)$.

c) Determinar la matriz $[E_{ij}(a)]^{-1}$.

d) Determinar la matriz $E_{ij}(a)$. $E_{i'j'}(b)$, donde i' > j', i < i' y j < j'.

COMPLETAR.

6. Resolver mediante intercambio de filas cuando sea necesario:

$$\begin{cases} u + 4v + 2w &= -2 \\ -2u - 8v + 3w &= 32 \\ v + w &= 1 \end{cases}$$

Solucion

$$A = \begin{bmatrix} 1 & 4 & 2 \\ -2 & -8 & 3 \\ 0 & 1 & 1 \end{bmatrix}, E_{21}(2) A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 0 & 7 \\ 0 & 1 & 1 \end{bmatrix}, P_{23}E_{21}(2) A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 7 \end{bmatrix} = E_{31}(2) P_{23}A = U, L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}. \text{ Sea } \tilde{A} = P_{23}A, \text{ luego } \tilde{A} = LU.$$

COMPLETAR.

7. Encontrar la factorización PA = LDU de las matrices

a)
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
.
b) $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \\ 1 & 1 & 1 \end{bmatrix}$.

Soluciones

COMPLETAR.

8. ¿Cuales son los valores de a y b que conducen a intercambio de filas y cuales son los que hacen la matriz singular?

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ a & 8 & 3 \\ 0 & b & 3 \end{array} \right]$$

Solucion

- $E_{21}(-a)A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 8-2a & 3-2a \\ 0 & b & 3 \end{bmatrix}$, luego si $8-2a=0 \iff 4=a$ necesitaremos intercambio de filas (siempre que $b \neq 0$).
- COMPLETAR.
- 9. Demostrar los siguientes enunciados:
 - a) Si $E_{ij}(-a)$ sustrae de una ecuación un multiplo de otra, entonces $\left[E_{ij}(-a)\right]^{-1}$ lo suma nuevamente.
 - b) Si P_{ij} intercambia dos filas, entonces P_{ij}^{-1} las vuelve a intercambiar, es decir $P_{ij}^{-1} = P_{ij}$.
 - c) Si D es una matriz diagonal, conentradas en la diagonal d_1, \ldots, d_n no nulas, entonces D^{-1} es tambien diagonal con entradas en la diagonal $\frac{1}{d_1}, \ldots, \frac{1}{d_n}$.

Soluciones

COMPLETAR.

10. Una matriz es de permutacion si es cuadrada, con entradas 0 o 1 y con un solo 1 en cada fila y en cada columna. Probar que si P es una matriz de permutacion, entonces $P^t = P^{-1}$. Comparar con el ejercicio 22b.

Solucion

COMPLETAR.

11. Encontrar, cuando sea posible, las matrices inversas de las matrices de coeficientes del ejercicio 1, utilizando el metodo de Gauss-Jordan.

Soluciones

Foliationes
$$a) \begin{bmatrix} 0 & 1 & 4 & 1 & 0 & 0 \\ 1 & 3 & -5 & 0 & 1 & 0 \\ 3 & 7 & 7 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -5 & 0 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 3 & 7 & 7 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -5 & 0 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 30 & 2 & -3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -5 & 0 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{11}{15} & -\frac{1}{10} & \frac{1}{30} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -5 & 0 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{11}{15} & -\frac{1}{10} & \frac{1}{30} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ 0 & 1 & 0 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & -\frac{1}{10} & \frac{1}{30} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ 0 & 1 & 0 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & \frac{2}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & \frac{11}{15} & -\frac{1}{10} & \frac{1}{30} \end{bmatrix}.$$

$$b) COMPLETAR$$

- b) COMPLETAR.
- c) COMPLETAR.