BlackBox

 $\bullet \bullet \bullet$

By: Rohit Manjunath

New Columns | Encoding Categorical Columns

• Some machine learning models perform better with numerical columns. So let us convert our Sound and Switch columns into numerical.

```
Code:

decision <- rep(0,nrow(bb))

decision2[bb$SOUND == "Beep"] <- 1

decision2[bb$SOUND == "Gargle"] <- 2

decision[bb$SWITCH == "Medium"] <- 2

decision2[bb$SOUND == "Hiss"] <- 3

decision2[bb$SOUND == "Kaboom"] <- 4

decision2[bb$SOUND == "Rumble"] <- 5

bb$SwitchNum <- decision

bb$SoundNum <- decision2
```

As you can see both columns range from 0 to 3(Switch) or 6(Sound).

Linear Regression

• Now we can use the linear regression model since we have the data completely in numerical values.

```
Code:
```

```
trainLm <- lm(SoundNum ~ INPUT1 + INPUT2 + INPUT3 + INPUT4 + SWITCH, data =
train)

predLm <- predict(trainLm, newdata = test)

decision3 <- rep(0, nrow(test))

decision3 <- round(predLm)
error <- mean(test$SoundNum != decision3)</pre>
```

• The 'error' rate is around 80%. We can get a better model than this. Hence, let's keep this as our base model.

LDA

 Using the LDA model let us pass in the parameters and the predicting column and see how it fares by calculating it's error.

Code:

```
trainLda <- lda(SOUND ~ INPUT1 + INPUT2 + INPUT3 + INPUT4 +
SWITCH, data = train)
predLda <- predict(trainLda, newdata = test)$class
error <- mean(test$SOUND != predLda)</pre>
```

 The 'error' rate is around 44%. This error rate is much better than our Linear regression model's error rate. However, We can get a better model than this.

Neural Net

• Using the Neural Net model let us pass in the parameters and the predicting column and see how it fares by calculating it's error.

Code:

```
trainNn <- nnet(SoundNum / 6 ~ INPUT1 + INPUT2 + INPUT3 + INPUT4 + SWITCH, data =
train, size = 5)
predNn <- predict(trainNn, newdata = test) * 6
decision4 <- rep(0, nrow(test))
decision4 <- round(predNn)
error <- mean(test$SoundNum != decision4)</pre>
```

- We divide 'SoundNum' by 6 because 'SoundNum' ranges from 0 to 6. We need to normalize to give us a range between 0 and 1.
- The 'error' rate is around 80%. This error rate is not better than our LDA model's error rate.

Decision Tree

 Using the Decision Tree model let us pass in the parameters and the predicting column and see how it fares by calculating it's error.

Code:

```
tree <- rpart(SOUND ~ INPUT1 + INPUT2 + INPUT3 + INPUT4 +
SWITCH, data = train)
rpart.plot(tree)
predtree <- predict(tree, newdata = test, type = "class")
error <- mean(test$SOUND != predtree)</pre>
```

• The 'error' rate is around 34%. This error rate is much better than our all our other model's error rate.

Cross Validation

• Using different values of cp, minbucket, and minsplit I could come up with a better model, by using a cp value of 0.001.

Code:

```
tree <- rpart(SOUND ~ INPUT1 + INPUT2 +
INPUT3 + INPUT4 + SWITCH, data = train,
control = rpart.control(cp = .001))
cross_validate(bb, tree, 5, 0.8)</pre>
```

 Cross Validating shows us that this control parameter gives us better results than the 'accuracy_all'

```
accuracy_subset accuracy_all

1     0.6779778     0.6658587

2     0.6755540     0.6450831

3     0.6762465     0.6554709

4     0.6693213     0.6398892

5     0.6686288     0.6475069
```

Conclusion

• We can conclude that out of the all the models tried, decision tree gives the best result as it has the lowest error rate.

Thank you!