Adatbázisok 1. Relációs adatbázis tervezés – 1. rész

Funkcionális függőségek

Felbontások

Normálformák

	А		В		С	D	Е	F	G
1	teázó_vá	ros 🔻	teázó_	név 🔽	tulaj 🖪	tea 🗸	gyártó 🖪	ár_USD 🔻	ár_HUF 🔽
2	New York	k	Green	Teahouse	Joe	Brisk	Lipton	3	1200
3	New York	k	Green	Teahouse	Joe	Pyramid	Lipton	2,5	1000
4	Washing	ton	Green	Teahouse	Sue	Brisk	Lipton	3,5	1400
5	London		Frank's	s Twinings	Frank	Brisk	Lipton	3	1200
6	London		Frank's	Twinings	Frank	Earl Grey	Tetley	3,5	1400
7									
4	>	Felszo	lgál	(+)				· · · · · · · · · · · · · · · · · · ·	

	А			В	С		D	Е		F	G	
1	teázó_vá	ros 🔻	teázó_	név 🔽	tulaj	¥	tea 🔽	gyártó	√ á	r_USD 🔽	ár_HU	JF 🔻
2	New York	(Green	Teahouse	Jack		Brisk	Lipton		3	1	1200
3	New York		Green Teahouse		Joe		Pyramid	Lipton		2,5	1	1000
4	Washing	ton	Green	Teahouse	Sue		Brisk	Lipton		3,5	1	1400
5	London		Frank's	s Twinings	Frank		Brisk	Lipton		3	1	1200
6	London		Frank's	s Twinings	Frank		Earl Grey	Tetley		3,5	1	1400
7										•		
Felszolgál (+)												

	Α			В	3 C		Е	F	G
1	teázó_vá	ros 🔽	teázó_	név 🔽	tulaj 🧸	tea 🗸	gyártó 🔽	ár_USD 🔻	ár_HUF 🔽
2	New York	k	Green	Teahouse	Joe	Brisk	Lipton	4	1200
3	New York	k	Green	Teahouse	Joe	Pyramid	Lipton	2,5	1000
4	Washing	ton	Green	Teahouse	Sue	Brisk	Lipton	3,5	1400
5	London		Frank's	s Twinings	Frank	Brisk	Lipton	3	1200
6	London		Frank's	s Twinings	Frank	Earl Grey	Tetley	3,5	1400
7									
4	>	Felszo	lgál	(+)					

- Megtehetnénk, hogy valamennyi adatot egyetlen relációba tennénk:
 - Felhasználó szempontjából kényelmes
 - <u>Sok "felesleges" adat van benne</u> nem jó tárolási hatékonyság, az adatbázist ellentmondásossá teheti

- Előzők miatt valahogy a felhasználási eset fogalmait, kapcsolatait modellezni kell (pl. Egyed/Kapcsolat modellel, ld. későbbi előadáson)
- De még így is előfordulhat, hogy nem lesz elég "ügyes" a modellezés

 még mindig lehetnek felesleges adatok konkrét előfordulásnál

	Α	В	C D		Е	F	G
1	teázó_város 🔽	teázó_név 🕝	tulaj 🔽	tea 🗸	gyártó 🔽	ár_USD 🔽	ár_HUF 🔽
2	New York	Green Teahouse	Joe	Brisk	Lipton	3	1200
3<	New York	Green Teahouse	Joe	Pyramid	Lipton	2,5	1000
4	Washington	Green Teahouse	Sue	Brisk	Lipton	3,5	1400
Г	1	Frankla Turinina	Fuent	Dutale	1:	2	1200
	Felsz	olgál (+)					

- Fontos fogalom a redundancia (*redundancy*):
- Adott egy $R(A_1, ..., A_n)$ reláció. Ha valamely A_i attribútum értékét ki tudjuk az $\{A_j \mid j \neq i\}$ attribútumok értékeiből "következtetni" \rightarrow a relációt redundánsnak (redundant) nevezzük.
- A "következtetési szabályok" az ún. Armstrong-axiómák lesznek (ld. alább)

Funkcionális függőségek (functional dependencies)

- Másképp:
- teázó_város és teázó_név mezők egyezőségéből következik a tulaj mezők egyezősége

Funkcionális függőségek (functional dependencies)

- X ->Y egy R relációra vonatkozó megszorítás, miszerint ha két sor megegyezik X összes attribútumán, Y attribútumain is meg kell, hogy egyezzenek.
 - Jelölés: X, Y, Z,... attribútum halmazokat; A, B, C,... attribútumokat jelöl.
 - Jelölés: {A,B,C} attribútum halmaz helyett ABC-t írunk.

Funkcionális függőségek – dekompozíció

Jobboldalak szétvágása (ff)

- $X->A_1A_2...A_n$ akkor és csak akkor teljesül R relációra, ha $X->A_1$, $X->A_2$,..., $X->A_n$ is teljesül R-en.
- Példa: A->BC ekvivalens A->B és
 A->C függőségek kettősével.
- Baloldalak szétvágására nincs általános szabály.
- Általában FF-k jobboldalán egyetlen attribútum szerepel majd.

Példa: FF

Főnökök(név, cím, kedveltTeák, gyártó, kedvencTea)

- FF-k, amelyek vszleg teljesülnek:
 - 1. név -> cím kedvencTea
 - Ez az FF ugyanaz, mint név -> cím és név -> kedvencTea.
 - 2. kedveltTeák -> gyártó.

Példa: egy lehetséges előfordulás

Relációk kulcsai

- K szuperkulcs R relációra, ha K funkcionálisan meghatározza R attribútumait.
- K kulcs R-en, ha K szuperkulcs, de egyetlen valódi részhalmaza sem szuperkulcs.

Példa: szuperkulcs

Főnökök(név, cím, kedveltTeák, gyártó, kedvencTea)

- ☐ {név, kedveltTeák} szuperkulcs, hiszen a két attribútum meghatározza funkcionálisan a maradék attribútumokat.

 - ▶ kedveltTeák -> gyártó

Példa: kulcs

- {név, kedveltTeák} kulcs, hiszen sem {név}, sem {kedveltTeák} nem szuperkulcs.
 - név -> gyártó; kedveltTeák -> cím nem teljesülnek.
- Az előbbin kívül nincs több kulcs, de számos szuperkulcs megadható még.
 - Minden olyan halmaz, amit tartalmazza {név, kedveltTeák}-t.

Kis kombinatorika

- Feladat: R relációnak legyenek A₁,..., A_n az attribútumai. Adjuk meg n függvényeként, hogy R-nek hány szuperkulcsa van, ha
 - (a) csak A₁ kulcs,
 - (b) A₁ és A₂ kulcsok,
 - (c) $\{A_1, A_2\}, \{A_3, A_4\}$ kulcsok,
 - (d) $\{A_1, A_2\}, \{A_1, A_3\}$ kulcsok.

Hogyan kaphatjuk meg a kulcsokat?

- 1. Szimplán megadunk egy *K* kulcsot, mert a specifikáció alapján eldönthető.
 - Az FF-k K -> A alakúak, ahol A "végigmegy" az összes attribútumon
- Vagy: megadjuk az FF-ket, és ezekből következtetjük ki a kulcsokat.

Még egy természetesen adódó FF

 Példa: az "ugyanabban az időben nem lehet két előadás ugyanabban a teremben" lefordítva:

idő terem -> előadás.

FF-k kikövetkeztetése (inferring)

- Legyenek $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$,..., $X_n \rightarrow A_n$ adott FF-ek, szeretnénk tudni, hogy $Y \rightarrow B$ teljesül-e olyan relációkra, amire az előbbi FF-ek teljesülnek.
 - Példa: A -> B és B -> C teljesülése esetén A -> C biztosan teljesül.
- Ez az adatbázis sémájának megtervezésekor lesz majd fontos.

Armstrong-axiómák I.

- (A1) Reflexitivitás (*reflexivity*): ha $Y \subseteq X \subseteq R$, akkor $X \to Y$. Az ilyen függőségeket triviális függőségeknek nevezzük.
- (A2) Bővítés (augmentation): ha X → Y teljesül, akkor tetszőleges Z ⊆ R-ra XZ → YZ teljesül.
- (A3) Tranzitivitás (transitivity): ha $X \rightarrow Y$ és $Y \rightarrow Z$, akkor $X \rightarrow Z$.
- Példák a személy (sz_ig_szám, TAJ, név, anyja_neve, születés, kor, fizetés) tábla esetén:
 - (A1) (név, születés) → név
 - (A2) születés → kor, akkor (születés, név) → (kor, név)
 - (A3) TAJ \rightarrow születés, születés \rightarrow kor, akkor TAJ \rightarrow kor.

Példa levezetésre

- Legyen R = ABCD és F = $\{A \rightarrow C, B \rightarrow D\}$:
 - 1. $A \rightarrow C$ adott.
 - 2. AB \rightarrow ABC (A2) alapján.
 - 3. $B \rightarrow D$ adott.
 - 4. ABC \rightarrow ABCD (A2) alapján.
 - 5. AB \rightarrow ABCD (A3) alapján 2-ből és 4-ből.
- Példa: bizonyítsuk be levezetéssel, hogy
 { X → Y, XY → Z }-ből következik { X → Z }.

Újabb feladat

- Feladat: mutassuk meg, hogy az alábbiak <u>nem érvényes szabályok</u> funkcionális függőségekre:
 - ha A \rightarrow B, akkor B \rightarrow A,
 - ha AB \rightarrow C és A \rightarrow C, akkor B \rightarrow C,
 - ha AB \rightarrow C, akkor A \rightarrow C vagy B \rightarrow C.