Greedy Algorithms and Techniques

- Priyansh Agarwal

0(12/1)

pick up a susset whose sam is mon, if there are more than 1 such subset, pick the subset with max no of elimints Sorrer dy [-tw, -w, Zeros)

Intornal Problem 1: Exchange Agua Given an array of integers find the minimum absolute difference between any two elements of the array. (1 <= N <= 1e5) $(1 \le \alpha i) \le (1 \le \alpha i)$ 20 Solution: Sort and consider all adjacent Ans = 🎏

 \rightarrow n

time complexity

—) nlogn -) gosting

n -) iterative

Claim then (a;, a;+1) 1+i < 1 smaller difference than (a;, a;) have a Will $\alpha_j \geqslant \alpha_{j-1} \geqslant \alpha_{j-2}$ $(Q_{j+1} - Q_i) \leq (Q_j - Q_i)$

Problem 2:

Given an array of integers, you want to transfer every element from it to another array (initially empty). The cost of moving an element X on the ith step is i * X. Find minimum total cost.

array A in decrasif order Sout start moving elements from and to smallest lorgest 912 -- 9n [a102 - - - an -) (α_{10}) , α_{2-2} , $\alpha_{3.3}$ --- $(a_1 > a_1 - b_1 - b_1$

Sum + sum 2 + sum 3 + (bi. i + qi. j)

A -> B

Sum1 + sum2 + sum3 + Sum3 + Sum1

Proving - Jour Lument solution - A) called 0 -> which is the optimal solution of such that 0 gives you a setter onewer than Disprov this statement Enchange Argunins

Problem 3:

Given an array of positive integers, select 3 elements from it such that they can form a triangle and perimeter of the triangle is maximized. $(1 \le N \le 1e5)$

4.0			_		
10	6	2	4	3	∣ 1

1234610

Choosing 6, 4, 2 will give the best biggest perimeter

Moke a triangle by selecting 3 elements and monimize the proimter sort the array

a, >, a, - - a,

R-2 K-1 All 3 consecutive elements and see the highest k for which ak-2+9x1>9x

$$for (i - (o - n))$$

$$for (j - (i+1-n))$$

$$for (k - (j+1-n))$$

Problem 4: Activity Selection Link

Given N event with start and end times, find the maximum number of events you can attend such that no two selected events overlap.

$$(1 \le N \le 1e5)$$
, $(1 \le start times \le end times \le 1e9)$

events somed on end Sort the -2 (5-6) (5-6) (5-6)1-2 3-7 5-6 (9-9) \rightarrow 8-9 8-9 7-10 0 7 - 10 10-11 () — () start; < end; < end; +1 = - < end,

segment you can always gick end () end, end, end > starty end x > starty knd x >starty 1997 end, (start)

Cament Segment -> &-Inf, -Inf & Soot based on end foint for (i=0; icn; itt) 2 if (intersecting (sy(i), current) rontinul gnott (uiHat = ry(i)

Bonus: Weighted Activity Selection

Given N event with start, end times and profits, find the maximum number of events you can attend such that no two selected events overlap.

 $(1 \le N \le 1e5)$, $(1 \le start times \le end times \le 1e9)$ $(1 \le profits \le 1e9)$

To be covered after Dynamic Programming

Programming + Binony

2 Custom Comparation Set cint > S Set C int, into s

Problem 5: Fractional Knapsack y_i/χ_i Given N items with each item having 2 parameters X_i and Y_i which means

Given N items with each item having 2 parameters X_i and Y_i which means picking X_i units of item i will give you a profit of Y_i points. You are not required to pick all X_i units of an item. You are also given a value D. You can pick up to D units in total. Find the maximum profit you can make.

Sort (Hems based on Jilai) -) decrasign for (i=0, i<n; i+t) man-unit = mia(ni, D) ans ± (yi/ni) · max - unit

Cout 2 aous reendli

Produms Trudy Imy Unintation Idea

Problem 6: Link Homework