CS1231 Review 14

- 1. Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}$. An integer \overline{a} such that $\underline{\mathbb{Q} \cdot \overline{a}} = \underline{\mathbb{Z}} \mod m$ is called an inverse of a modulo m.
- 2. Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then the inverse of a modulo m exists iff $\underline{gcd(a,m)=1}$.

 The inverse, if exists, is unique modulo m, i.e., if c, d are inverses, then $\underline{d} = \underline{c} \quad \underline{modm}$.
- 3. (Fermat's Little Theorem) If p is a prime and $a \in \mathbb{Z}$ such that gcd(p, a) = 1, then $\underline{ \alpha^{P-1} \equiv 1 \mod p}.$