

Statistika Non Parametrik TSD - Ganjil 2024/2025

Minggu Ke-3: "Binomial Test dan Wilcoxon Test"

Pedoman Memilih Teknik Statistik Non Parametrik Pengujian Hipotesis Satu Sampel

Skala yang	Alat Analisis Pengujian Hipotesis Satu Sampel							
Digunakan								
Nominal	Uji Run							
	Uji Sign							
	Uji Binomial							
Ordinal	Uji Wilcoxon Signed Rank							

Ketentuan

- 1. Binomial test digunakan untuk menguji satu populasi yang mempunyai hanya dua grup.
- 2. Skala data untuk populasinya adalah skala Nominal
- 3. Proporsi grup pertama adalah p dan proporsi grup kedua adalah q = 1 p.

Fungsi:

Menguji perbedaan proporsi untuk grup-grup pada populasi, yang mana sampel yang digunakan adalah sampel tunggal.

Bila n adalah banyaknya seluruh observasi, maka peluang untuk mendapatkan x observasi dalam salah satu grup dan mendapatkan (n - x) observasi dalam grup lainnya adalah

$$P(x) = \binom{n}{x} p^x (q)^{n-x}$$

dengan:

p =proporsi yang diharapkan untuk salah satu grup

$$q = 1 - p$$

Tahap Pengujian

Menentukan hipotesis

$$H_0: p = \frac{1}{2}$$

 $H_1: p \neq \frac{1}{2}; H_1: p < \frac{1}{2}; H_1: p > \frac{1}{2}$

- Menentukan tingkat signifikansi α
- 3. Menentukan uji statistik
 - Menentukan banyaknya observasi N
 - b. Menentukan banyaknya observasi pada grup pertama dan pada grup kedua, masing-masing diberikan notasi n_p dan n_q
 - c. Jika banyaknya observasi ≤ 25 dan $p=q=\frac{1}{2}$ maka dapat digunakan **Tabel Binomial**

$$\begin{aligned} & \textbf{p-value} = \sum_{i=1}^{x} \binom{N}{i} p^i q^{N-i} \\ & x = \min(n_p, n_q) \end{aligned}$$

- d. Jika banyaknya observasi ≤ 25 dan $p \neq \frac{1}{2}$, maka dapat menggunakan **Table of Binomial** tapi terbatas untuk N=20
- e. Jika observasi berukuran > 25 dapat didekati dengan distribusi Normal

$$z = \frac{(x \pm 0.5) - Np}{\sqrt{Npq}} \begin{cases} x + 0.5, jika \ x < NP \\ x - 0.5, jika \ x \ge NP \end{cases}$$

Nilai z yang diperoleh digunakan untuk menghitung nilai p-value

- 4. Menentukan daerah penolakan Tolak H_0 jika p-value $< \alpha$
- Mengambil kesimpulan

Contoh 1

Dilakukan penelitian untuk mengetahui kecenderungan masyarakat dalam memilih perawatan kecantikan. Berdasarkan 20 anggota sampel yang dipilih secara acak, ternyata 8 orang memilih perawatan kecantikan di salon dan 12 lainnya lebih memilih klinik kecantikan.

Ujilah bahwa peluang masyarakat dalam memilih perawatan kecantikan di salon dan di klinik kecantikan adalah sama! Gunakan taraf signifikansi 5%.

Solusi

Misalkan A: salon dan B: klinik kecantikan

1.
$$H_0: p = q = \frac{1}{2}$$

 $H_1: p \neq q$

2.
$$\alpha = 5\%$$

3.
$$N = 20$$
, $n_A = 8$, $n_B = 12$
 $x = \min(n_A, n_B) = \min(8,12) = 8$
 $p\text{-value} = \sum_{i=1}^{8} {N \choose i} p^i q^{N-i} = 0,252$

Karena dua sisi maka $2 \times p - value = 2 \times 0,252 = 0,504$

- Gagal tolak H₀ karena p-value > α
- Peluang masyarakat memilih salon dan klinik kecantikan adalah sama

Table A.1 (continued) Binomial Probability Sums $\sum_{x=0}^{r} b(x; n, p)$

_							p				
\boldsymbol{n}	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
19	0	0.1351	0.0144	0.0042	0.0011	0.0001					
	1	0.4203	0.0829	0.0310	0.0104	0.0008	0.0000				
	2	0.7054	0.2369	0.1113	0.0462	0.0055	0.0004	0.0000			
	3	0.8850	0.4551	0.2631	0.1332	0.0230	0.0022	0.0001			
	4	0.9648	0.6733	0.4654	0.2822	0.0696	0.0096	0.0006	0.0000		
	5	0.9914	0.8369	0.6678	0.4739	0.1629	0.0318	0.0031	0.0001		
	6	0.9983	0.9324	0.8251	0.6655	0.3081	0.0835	0.0116	0.0006		
	7	0.9997	0.9767	0.9225	0.8180	0.4878	0.1796	0.0352	0.0028	0.0000	
	8	1.0000	0.9933	0.9713	0.9161	0.6675	0.3238	0.0885	0.0105	0.0003	
	9		0.9984	0.9911	0.9674	0.8139	0.5000	0.1861	0.0326	0.0016	
	10		0.9997	0.9977	0.9895	0.9115	0.6762	0.3325	0.0839	0.0067	0.0000
	11		1.0000	0.9995	0.9972	0.9648	0.8204	0.5122	0.1820	0.0233	0.0003
	12			0.9999	0.9994	0.9884	0.9165	0.6919	0.3345	0.0676	0.0017
	13			1.0000	0.9999	0.9969	0.9682	0.8371	0.5261	0.1631	0.0086
	14				1.0000	0.9994	0.9904	0.9304	0.7178	0.3267	0.0352
	15					0.9999	0.9978	0.9770	0.8668	0.5449	0.1150
	16					1.0000	0.9996	0.9945	0.9538	0.7631	0.2946
	17						1.0000	0.9992	0.9896	0.9171	0.5797
	18							0.9999	0.9989	0.9856	0.8649
	19							1.0000	1.0000	1.0000	1.0000
20	0	0.1216	0.0115	0.0032	0.0008	0.0000					
	1	0.3917	0.0692	0.0243	0.0076	0.0005	0.0000				
	2	0.6769	0.2061	0.0913	0.0355	0.0036	0.0002				
	3	0.8670	0.4114	0.2252	0.1071	0.0160	0.0013	0.0000			
	4	0.9568	0.6296	0.4148	0.2375	0.0510	0.0059	0.0003			
	5	0.9887	0.8042	0.6172	0.4164	0.1256	0.0207	0.0016	0.0000		
	6	0.9976	0.9133	0.7858	0.6080	0.2500	0.0577	0.0065	0.0003		
	7	0.9996	0.9679	0.8982	0.7723	0.4159	0.1316	0.0210	0.0013	0.0000	
	8	0.9999	0.9900	0.9591	0.8867	0.5956	0.2517	0.0565	0.0051	0.0001	
	9	1.0000	0.9974	0.9861	0.9520	0.7553	0.4119	0.1275	0.0171	0.0006	
	10		0.9994	0.9961	0.9829	0.8725	0.5881	0.2447	0.0480	0.0026	0.0000
	11		0.9999	0.9991	0.9949	0.9435	0.7483	0.4044	0.1133	0.0100	0.0001
	12		1.0000	0.9998	0.9987	0.9790	0.8684	0.5841	0.2277	0.0321	0.0004
	13			1.0000	0.9997	0.9935	0.9423	0.7500	0.3920	0.0867	0.0024
	14				1.0000	0.9984	0.9793	0.8744	0.5836	0.1958	0.0113
	15					0.9997	0.9941	0.9490	0.7625	0.3704	0.0432
	16					1.0000	0.9987	0.9840	0.8929	0.5886	0.1330
	17						0.9998	0.9964	0.9645	0.7939	0.3231
	18						1.0000	0.9995	0.9924	0.9308	0.6083
	19							1.0000	0.9992	0.9885	0.8784
_	20								1.0000	1.0000	1.0000

Wilcoxon Signed Rank Test for 1 Population

- Uji wilcoxon merupakan uji peringkat bertanda.
- Pada uji ini dilakukan pada hasil selisih data dengan median yang dihipotesiskan (tanpa memperhatikan tanda).
- Setelah diperingkat baru diberi tanda sesuai hasil selisihnya.

Ketentuan

Null Hypothesis

$$H_0$$
: $\widetilde{\mu} = \widetilde{\mu}_0$

- 2. Hitung **selisih** masing-masing sampel terhadap nilai $\tilde{\mu}_0$. Selisih yang nilainya **nol** tidak diikutkan dalam perhitungan. Dan n adalah banyaknya data selisih
- Ranking 1 diberikan untuk nilai mutlak selisih yang paling kecil, ranking 2 diberikan untuk nilai mutlak selisih paling kecil kedua, dan seterusnya.
- Ketika ditemukan nilai mutlak yang sama, maka rankingnya diberikan nilai rata-rata dari ranking keduanya. Contoh: ranking ke-5 dan ranking ke-6 memiliki nilai nilai mutlak selisih yang sama sehingga ranking untuk keduanya adalah 5,5.
- 5. Hitung total ranking untuk selisih yang bernilai negatif dan berikan notasi w_- dan hitung total ranking untuk selisih yang bernilai positif dan berikan notasi w_+ , kemudian $min(w_-, w_+) = w$

Tolak H_0 , jika w_- atau w_+ atau $w \le$ titik kritis

Data berikut ini merupakan jumlah jam dari suatu pengisian tabung oksigen:

1,5; 2,2; 0,9; 1,3; 2,0; 1,6; 1,8; 1,5; 2,0; 1,2; 1,7

Dengan menggunakan Wilcoxon sign ranked test dan taraf signifikansi 5%, uji apakah jumlah jam pengisian tabung oksigen memiliki median 1,8

Solusi

- 1. $H_0: \tilde{\mu} = 1.8$
- 2. $H_1: \tilde{\mu} \neq 1.8$
- 3. $\alpha = 5\%$

4. Perhitungan:

	•										
sampel	1.5	2.2	0.9	1.3	2	1.6	1.8	1.5	2	1.2	1.7
selisih	-0.3	0.4	-0.9	-0.5	0.2	-0.2	0	-0.3	0.2	-0.6	-0.1
ranking	5.5	7	10	8	3	3		5.5	3	9	1
w-	42										
w+	13										
w	13										

n=10, sehingga daerah kritisnya adalah $w \leq 8$

w = 13 tidak berada pada daerah kritis

6. Kesimpulan: Gagal Tolak H_0 , artinya median dari pengisian tabung oksigen tidak berbeda secara signifikan dari 1,8 jam

FAKULTAS TEKNOLOGI MAJU DAN MULTIDISIPL

Table A.16 Critical Values for the Signed-Rank Test

n	One-Sided $\alpha = 0.01$ Two-Sided $\alpha = 0.02$	One-Sided $\alpha = 0.025$ Two-Sided $\alpha = 0.05$	One-Sided $\alpha = 0.05$ Two-Sided $\alpha = 0.1$
5	CONTRACTOR CONTRACTOR		1
6		1	2 4
7	0	2	4
8	2	4	6
9	3	6	8
10	5	8	11
11	7	11	14
12	10	14	17
13	13	17	21
14	16	21	26
15	20	25	30
16	24	30	36
17	28	35	41
18	33	40	47
19	38	46	54
20	43	52	60
21	49	.59	68
22	56	66	75
23	62	73	83
24	69	81	92
25	77	90	101
26	85	98	110
27	93	107	120
28	102	117	130
29	111	127	141
30	120	137	152

Reproduced from F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Procedures, American Cyanamid Company, Pearl River, N.Y., 1964, by permission of the American Cyanamid Company.

Wilcoxon Signed Rank Test for Large Samples

Ketika $n \ge 15$, maka $W_+(atau\ W_-)$ dapat didekati dengan distribusi Normal dengan mean dan variansi masing-masing adalah

$$\mu_{W_{+}} = \frac{n(n+1)}{4}$$

$$\sigma_{W_{+}}^{2} = \frac{n(n+1)(2n+1)}{24}$$

Ketika nilai n lebih besar tidak tersedia di dalam Tabel, maka statistik berikut

$$Z = \frac{W_+ - \mu_{W_+}}{\sigma_{W_+}}$$

dapat digunakan sebagai titik kritis untuk pengujian

Latihan

Seorang dokter mengatakan bahwa ia dalam setahun melakukan visit per pasien di RS dengan nilai median 5 kali. Untuk membuktikan validitas pernyataanya, ia secara acak memilih sepuluh pasien dan menghitung jumlah visit di RS selama setahun terakhir. Data yang diperoleh untuk jumlah kunjungan per pasien selama setahun adalah 9, 10, 8, 4, 8, 3, 0, 10, 15, 9. Apakah dengan data tersebut dapat dibuktikan pernyataannya bahwa ia jumlah kunjungan per pasien oleh dokter adalah 5, dengan $\alpha = 0.05$?

Hipotesis

 H_0 : M = 5

 $H_1 : M \neq 5$

Penghitungan

Subyek	X	D = X - M	Rank of D	Signed rank of D
1	9	4	5.5	5.5
2	10	5	8	8
3	8	3	3.5	3.5
4	4	-1	1	-1
5	8	3	3.5	3.5
6	3	-2	2	-2
7	0	-5	8	-8
8	10	5	8	8
9	15	10	10	10
10	9	4	5.5	5.5
			∑ T +	44
			∑ T-	11

Keputusan

Dengan nilai $\alpha = 0.05$ dan n = 10 dan menggunakan tabel nilai T kritis wilcoxon signed-ranks maka diperoleh nilai Ttabel uji hipotesa dua arah (two tailed) = 8, maka:

Untuk uji hipotesis dua arah (two tailed) Ttabel = 8 < Thitung = 11, sehingga hipotesis nol tidak ditolak atau jumlah kunjungan per pasien oleh dokter 5 kali.

Kesimpulan

Dapat disimpulkan data yang dikumpulkan mengindikasikan bahwa sampel 10 obyek berasal dari populasi dengan nilai median 5 atau cukup bukti bahwa dokter melakukan kunjungan per pasien dengan median = 5.

Seorang dosen beranggapan bahwa median IP mahasiswa suatu kelas pada semester tertentu kurang dari 3.40. Ujilah anggapan dosen tersebut jika IP dari 10 orang mahasiswa yang diambil secara acak dari kelas tersebut adalah seperti yang tersaji dalam tabel berikut: (Gunakan taraf nyata 5%)

Mahasiswa ke	1	2	3	4	5	6	7	8	9	10
IP	3.35	3.45	3.30	3.25	3.52	3.38	3.10	3.42	3.42	3.38

Wilcoxon Test for 2 Population

Merupakan perluasan dari uji wilcoxon untuk 1 sampel.

Asumsi:

- Data pengamatan berupa sampel acak dari n pasangan (Xi,Yi); i = 1,2,....,n yang diperoleh dari hasil pengukuran subyek yang sama atau subyek berbeda yang telah dipasangkan
- Hasil pengukuran tiap pasangan saling bebas
- Skala pengukuran minimal ordinal

Hipotesis Dua Arah

 H_0 : Median populasi beda (selisih) = 0 atau M_D = 0

 H_1 : Median populasi beda (selisih) $\neq 0$ atau $M_D \neq 0$

- **Statistik uji**: T = T' = min (T+ , T-)
- Daerah Penolakan: Tolak H_0 jika $T' < T n_0 \alpha/2$

Hipotesis Satu Arah Kanan

 H_0 : Median populasi beda (selisih) ≤ 0 atau $M_D \leq 0$

 H_1 : Median populasi beda (selisih) > 0 atau M_D > 0

- Statistik uji: T = T-
- Daerah Penolakan: tolak H_0 jika $T < T n_0 \alpha/2$

Hipotesis Satu Arah Kiri

 H_0 : Median populasi beda (selisih) ≥ 0 atau $M_D \geq 0$

 H_1 : Median populasi beda (selisih) < 0 atau M_D < 0

- Statistik uji: T = T+
- Daerah Penolakan: tolak H_0 jika $T+ < T n_0 \alpha/2$

Contoh:

Dickie dkk mengkaji perubahan-perubahan hermodinamik pada pasien-pasien dengan pulmonary thromboembolism yang akut. Tabel berikut memperlihatkan tekanan arteri paru rata-rata yang teramati pada sembilan orang dari pasien-pasien sebelum dan 24 jam setelah terapi urokinase. Kita ingin tahu apakah data ini menyediakan bukti yang cukup untuk menunjukkan bahwa terapi urokinase menurunkan tekanan arteri paru? (Misalkan $\alpha=0.05$)

Pasien	1	2	3	4	5	6	7	8	9
0 jam (X)	33	17	30	25	36	25	31	20	18
24 jam (Y)	21	17	22	13	33	20	19	13	9

Jawaban

Hipotesis

 H_0 : Median populasi beda (selisih) ≥ 0 atau $M_D \geq 0$

 H_1 : Median populasi beda (selisih) < 0 atau M_D < 0

X	Y	D = Y - X	D
33	21	12	7
17	17	0	Abaikan
30	22	8	4
25	13	12	7
36	33	3	1
25	20	5	2
31	19	12	7
20	13	7	3
18	9	9	5
			T+ = 0

Dari Tabel uji peringkat bertanda Wilcoxon dengan n=8 menunjukkan bahwa peluang untuk mendapatkan suatu nilai T+=0, adalah 0,0039, dimana Nilai tersebut **KURANG** dari 0,05 sehingga kita cukup bukti untuk **menolak** H_0 .

Jadi, kita dapat menyimpulkan bahwa median populasi beda (selisih) kurang dari nol, artinya terapi urokinase dapat menurunkan tekanan arteri paru.

Catatan: Nilai d didapatkan dari Tabel A.3 di slide berikutnya

Jawaban

Kesimpulan: gagal menolak H₀

Terapi urokinase dapat menurunkan tekanan arteri paru

TABLE A.3 Probability levels for the Wilcoxon signed-rank test

r	P	7	P	7	P	7	P	T	P	7	P
n = 5		n = 8	0	n = 1	10	n = 1	11	n = 1	2	n = 1	3
•0	.0313	0	.0039	0	.0010	0	.0005	0	.0002	0	.0001
1	.0625	1	.0078	1	.0020	1	.0010	1	.0005	1	.0002
2	.0938	2	.0117	2	.0029	2	.0015	2	.0007	2	,0004
3	.1563	3	.0195	3	.0049	3	.0024	3	.0012	3	.0006
4	.2188	4	.0273	4	.0068	4	.0034	4	.0017	4	.0009
5	.3125	*5	.0391	5	.0098	5	.0049	5	.0024	5	.0012
6	.4063	6	.0547	6	.0137	6	.0068	6	.0034	6	.0017
7	.5000	7	.0742	7	.0186	7	.0093	7	.0046	7	.0023
		8	.0977	8	.0244	8	.0122	8	.0061	8	.0031
7 = 6		9	.1250	9	.0322	9	.0161	9	.0081	9	.0040
0	.0156	10	.1563	*10	.0420	10	.0210	10	.0105	10	.0052
1	.0313	11	.1914	11	.0527	11	.0269	11	.0134	11	.0067
*2	.0469	12	.2305	12	.0654	12	.0337	12	.0171	12	.0085
3	.0781	13	.2734	13	.0801	*13	.0415	13	.0212	13	.0107
4	.1094	14	.3203	14	.0967	14	.0508	14	.0261	14	.0133
5	.1563	15	.3711	15	.1162	15	.0615	15	.0320	15	.0164
6	.2188	16	.4219	16	.1377	16	.0737	16	.0386	16	.0199
7	.2813	17	.4727	17	.1611	17	.0874	*17	.0461	17	.0239
8	.3438	18	.5273	18	.1875	18	.1030	18	.0549	18	.0287
9	.4219	n = 9		19	.2158	19	.1201	19	.0647	19	.0341
10	.5000	0	.0020	20	.2461	20	.1392	20	.0757	20	.0402
		1	.0039	21	.2783	21	.1602	21	.0881	*21	.0471
7 = 7		2	.0059	22	.3125	22	.1826	22	.1018	22	.0549
0	.0078	3	.0098	23	.3477	23	.2065	23	.1167	23	.0636
1	.0156	4	.0137	24	.3848	24	.2324	24	.1331	24	.0732
2	.0234	5	.0195	25	.4229	25	.2598	25	.1506	25	.0539
*3	.0391	6	.0273	26	.4609	26	.2886	26	.1697	26	.0955
4	.0547	7	.0371	27	.5000	27	.3188	27	.1902	27	.1082
5	.0781	*8	.0488			28	.3501	28	.2119	28	.1219
6	.1094	9	.0645			29	.3823	29	.2349	29	.1367
7	.1484	10	.0820			30	.4155	30	.2593	30	.1527
8	.1875	11	.1016			31	.4492	31	.2847	31	*.1698
9	.2344	12	.1250			32	.4829	32	.3110	32	.1879
10	.2891	13	.1504			33	.5171	33	.3386	33	.2072
11	.3438	14	.1797					34	.3667	34	.2274
12	.4063	15	.2129					35	.3955	35	.2487
13	.4688	16	.2480					36	.4250	36	.2709
14	.5313	17	.2852					37	.4548	37	.2939
		18	.3262					38	.4849	38	.3177
		19	.3672					39	.5151	39	.3424
		20	.4102					0.000		40	.3677
		21	.4551							41	.3934
		22	.5000							42	.4197
		9.5%	8515165			0.0				43	.4463
										44	.4730
										45	.5000

