测控技术实验

实验报告

姓	名:	刘侃
学	院:	机械工程学院
专	业:	机械工程
学	号:	3220103259
分	组:	组 10

浙江大学机械工程实验教学中心 2024年9月

实验名称:水下机器人虚拟仿真实验

一、实验目的

本实验旨在通过虚拟仿真平台完成自主式水下机器人(AUV)的设计与性能评估。通过本实验,学生将掌握 AUV 设计的基本方法,包括耐压材料选型、壁厚计算、导流外形设计、动力推进装置设计、能源系统配置、导航系统设计和控制策略等关键环节。实验还涵盖了 AUV 在水下的仿真测试,如巡航、定点任务以及接驳任务,检验设计的合理性并提高学生对水下机器人操作和维护的理解。

二、实验原理

自主式水下机器人(AUV)作为一种能够自主执行任务的水下设备,涉及多项技术原理。 其设计过程包括以下几个方面的关键技术:

1. 耐压材料及壁厚计算

根据水深的设计要求,选择合适的耐压材料(如铝合金或钛合金)和合理的壁厚,保证 AUV 能够在指定深度承受水压。

2. 流体力学原理

AUV 的外形设计需考虑水动力性能,选择适合的导流外形(如圆头或平头)以减少运行中的阻力,提升稳定性和能效。

3. 动力推进

根据 AUV 的任务需求,选择合适的推进器,确保推力与功率能够满足运行要求。

4. 能源管理

根据设计指标,计算 AUV 在执行任务时所需的能耗,合理选配锂电池组,确保任务时间和续航能力。

5. 导航与控制系统

AUV 在水下执行任务时,需要通过惯性导航系统、声学定位系统、压力传感器等设备来确定其位置和姿态,同时通过控制系统维持其预定的轨迹。

三、实验步骤

1. 登录实验平台

访问国家虚拟仿真实验教学平台,打开实验页面并注册/登录。完成后进入水下机器人虚拟仿真实验系统。

- 2. AUV 设计
- 设定设计目标

通过实验系统设定 AUV 的设计指标,如工作水深、目标速度等。

● 耐压舱设计

选择适合的耐压材料(如铝合金 7075-T6),并计算耐压舱的壁厚,确保其在目标水深下不发生结构性破坏。

● 导流外形设计

根据流体力学原理,选择圆头或平头导流罩,优化水动力性能。

● 动力推进装置设计

通过计算 AUV 的推力和功率需求,从组件库中选取合适的推进器,安装至 AUV 机体上。

● 能源系统设计

根据 AUV 的功率需求和运行时间,计算所需电池容量,选取适合的锂电池包并安装。

● 导航系统设计

根据任务需求,配置惯性导航系统(INS)、声学定位系统(USBL)和其他导航设备,确保 AUV 能够顺利完成巡航和定位任务。

● 控制系统设计

为 AUV 安装主控板和数据采集处理板,确保其能够接受外部指令并执行控制策略。

● 系统配平

通过计算 AUV 的重力和浮力,安装适量的浮力块和重力块,确保其具有微小的正浮力,以便在水下稳定运行。

3. AUV 水下实验

● AUV 海底管道巡检任务

设置 AUV 的运行轨迹,开始管道巡检任务。若 AUV 的壁厚或电池设计不合理,巡检任务会失败。

● AUV 定点巡航水下实训任务

设置若干任务点,运行 AUV 完成定点巡航,若 AUV 的壁厚、电池或导航系统设计不合理,任务将失败。

● AUV 水下接驳任务

设置接驳站坐标和偏角,运行 AUV 完成接驳任务,若 AUV 的壁厚、电池或导航系统设计不合理,任务将失败。

4. 提交实验报告

完成所有实验步骤后,系统会自动生成实验报告,学生可查看实验过程并上传成绩。("一、实验目的、二、实验原理、三、实验步骤"合计篇幅限定2页以内)

四、实验结果

ric D	All Tills des The	TT+A R+621	/大士 p→()コ	日本社会学体	-H4:tr	ATRICITATION (-)
序号	步骤名称	开始时间	结束时间	是否计算成绩	成绩	合理用时(s)
1	耐压舱材料	2024-10-06 13:29:21	2024-10-06 13:38:17	True	5	300
2	耐压舱壁厚	2024-10-06 13:38:17	2024-10-06 13:38:18	True	10	1200
3	导流外形设计	2024-10-06 13:38:18	2024-10-06 13:40:21	True	5	300
4	推进器选择	2024-10-06 13:40:21	2024-10-06 13:41:58	True	10	1200
5	电池选择	2024-10-06 13:41:58	2024-10-06 13:48:14	True	10	1200
6	导航系统选择	2024-10-06 13:48:14	2024-10-06 14:30:50	True	10	600
7	控制系统选择	2024-10-06 14:30:50	2024-10-06 14:31:42	True	10	600
8	系统配平	2024-10-06 14:31:42	2024-10-06 14:31:48	True	10	1200
9	巡检任务	2024-10-06 14:31:48	2024-10-06 14:35:38	True	10	600
10	定点任务	2024-10-06 14:35:38	2024-10-06 14:38:29	True	10	600
11	对接任务	2024-10-06 14:38:29	2024-10-06 14:40:02	True	10	600

实验名称	姓名	学号	实验结 果	实验成 绩	实验开始时间	实验结束时间	实验用 时	操作
水下机器人虚拟仿真实验 平台	刘侃	3220103259	完成	100	2024-10-06 13:27:10	2024-10-06 14:40:40	74	步骤详情