ECOLE INTERNATIONALE DE LIBREVILLE

TRONC COMMUN LICENCE 1

Dr Arsène EYA'A MVONGBOTE

TEL: 066 53 41 09 (WHATSAPP)

FINAL MECANIQUE (2H)

(Dr A. EYA'A MVONGBOTE)

Partie I: Dynamique

Au tennis, un lob est réussi lorsque la balle passe audessus de l'adversaire et retombe avant la ligne de fond de court (12m du filet). Le joueur 1, situé à $d_1 = 2m$ du filet (de hauteur 1m), tape la balle à une hauteur $z_0 = 30$ cm et lui communique une vitesse \vec{v}_0 contenue dans un plan vertical, de valeur $v_0 = 36$ km.h⁻¹, et formant un angle $\alpha = 60^{\circ}$ avec l'horizontale. On négligera les forces de frottement. On prendra g = 9.8m.s⁻².

- 1. Déterminer les équations horaires du centre d'inertie G de la balle dans le repère $(0, \vec{l}, \vec{k})$ représenté sur la figure (la balle est frappée à la date t = 0).
- 2. En déduire l'équation de la trajectoire de la balle.
- 3. La balle passe-t-elle au dessus du filet?
- 4. Le joueur 2 est de l'autre coté du filet. Il tend sa raquette verticalement pour essayer de toucher la balle : le tamis de sa raquette est alors situé à une hauteur h = 2,3m. A quelle distance du filet le joueur 2 doit-il se placer ?
- 5. Si le joueur 2 se trouve à une distance $d_2 = 4m$ du filet, peut-il intercepter la balle ? Le lob est-il réussi ?
- 6. Caractériser le vecteur vitesse \vec{v} de la balle lors de son impact sur le sol.

Partie II: Oscillateurs

On considère un pendule simple avec des forces de frottements de la forme :

 $\vec{F} = -\beta \ \overrightarrow{v(t)}$ où v(t) est la vitesse du point m.

On considère que le pendule est écarté d'un angle α très faible ;

- 1°) Exprimer l'élongation x(t) du pendule en fonction de L et α .
- 2°) Exprimer la force de rappel F_r du pendule en fonction de m, g et α .
- 3°) Exprimer le principe fondamental de la dynamique, et montrer que :

$$\frac{d^2\alpha(t)}{dt^2} + \frac{\beta}{m} \frac{d\alpha(t)}{dt} + \frac{g}{l} \alpha(t) = 0$$

NB: on fera l'approximation $\cos(\alpha) = 1$ et $\sin(\alpha) = \alpha$.

- 4°) a) Résoudre l'équation (1), on posera $\delta=\frac{\beta}{2m}$ et $\omega_0^2=\frac{g}{l}$, on déterminera la solution oscillante.
 - b) Représenter l'allure de la solution.

Bon travail.

GROUPE EM GABON ECOLE INTERNATIONALE DE LIBREVILLE TRONC COMMUN LICENCE1 Dr Arsène EYA'A MVONGBOTE

TEL: 066 53 41 09 (WHATSAPP)

DATE:

RATTRAPAGE MECANIQUE 1 (2H)

(Dr A. EYA'A MVONGBOTE)

Partie I : Cinématique

On considère un point matériel M se déplaçant dans un référentiel $\Re(O,xyz)$ muni de la base $(\vec{\imath},\vec{\jmath},\vec{k})$. Les coordonnées du point M dans le référentiel \Re sont données par :

$$x(t) = t + 1$$
 , $y(t) = t^2 + 1$ et $z(t) = 0$. (t étant le temps)

- 1. Donner l'équation de la trajectoire de M dans \Re . En déduire sa nature.
- 2. Calculer la vitesse $\vec{V}(M/\Re)$ et l'accélération $\vec{\gamma}(M/\Re)$ du point M.

Partie II : Dynamique

Soient $\Re(O, \vec{t}, \vec{j}, \vec{k})$ un repère cartésien muni de la base $(\vec{t}, \vec{j}, \vec{k})$ et $\Re'(O, \vec{e}_{\rho}, \vec{e}_{\varphi}, \vec{k})$ le repère cylindrique muni de la base $(\vec{e}_{\rho}, \vec{e}_{\varphi}, \vec{k})$. Considérons un point matériel M de coordonnées cartésiennes (x, y, z) et cylindriques (ρ, φ, z) .

- 1) Faire une représentation des vecteurs des deux bases associées à \Re et \Re' et des coordonnées du point M.
- 2) Donner les expressions du vecteur position \overrightarrow{OM} et du déplacement élémentaire $d\overrightarrow{OM}$ dans les deux repères \Re et \Re' .
- 3) En déduire la surface et le volume d'un cylindre d'axe (Oz), de hauteur h et de rayon R.
- 4) Déterminer les expressions de x, y et z en fonction de ρ , φ et z.
- 5) Déterminer les expressions de ρ , φ et z en fonction de x, y et z.
- 6) Déterminer les expressions de \dot{x} , \dot{y} et \dot{z} en fonction de ρ , φ et z et leurs dérivées par rapport au temps $\dot{\rho}$, $\dot{\varphi}$ et \dot{z} .
- 7) Déterminer les expressions des vecteurs de la base $(\vec{i}, \vec{j}, \vec{k})$ en fonction de celles de la base $(\vec{e}_{\rho}, \vec{e}_{\varphi}, \vec{k})$.

Bon travail.

Samedi 11 Janvier 2025

DR Arsène EYA'A MVONGBOTE

TEL: 066 53 41 09 (WHATSAPP)

INTRA MECANIQUE 1 (2H)

(Dr A. EYA'A MVONGBOTE)

Partie I : système de coordonnées

Calculer la position, le déplacement élémentaire et la vitesse en coordonnées cartésiennes, polaire, cylindrique et sphérique.

Partie II: Mouvement relatif

Soient $\Re(O,x,y,z)$ un référentiel absolu supposé galiléen muni de la base orthonormée directe $(\vec{t},\vec{j},\vec{k})$ et $\Re_1(O,x_1,y_1,z_1)$ un référentiel relatif muni de la base orthonormée directe $(\vec{e}_\rho,\vec{e}_\varphi,\vec{t})$. Au cours du temps, les axes (Ox) et (Ox_1) restent colinéaires. Dans le plan vertical (yOz), une tige circulaire de centre C et de rayon a est maintenue fixe. Un anneau M de masse m glisse sans frottement sur la tige circulaire. Il est repéré par $\overrightarrow{OM} = 2asin\varphi\vec{e}_\rho$ où $\varphi = (\vec{j}, \overrightarrow{OM})$. On désigne par $(\vec{\tau}, \vec{n}, \vec{t})$ la base de Frénet comme l'indique la figure $(\vec{n}$ est le

N.B: Toutes les expressions vectorielles doivent être exprimées dans la base $(\vec{e}_{\rho}$, \vec{e}_{φ} , \vec{t}).

- 1) Vérifier que la vitesse de rotation de \Re_1 par rapport à \Re est donnée par $\vec{\Omega}(\Re_1/\Re) = \phi \vec{\imath}$.
- 2) a) Calculer $\vec{V}_r(M)$ et $\vec{V}_a(M)$ respectivement les vitesses relative et absolue de M.
- b) En déduire $\vec{\tau}$ le vecteur tangent à la trajectoire.
- c) Déterminer \vec{n} le vecteur normal à la trajectoire.
- 3) Déterminer $\vec{\gamma}_r(M)$ l'accélération relative de M.
- 4) Déterminer $\vec{\gamma}_e(M)$ l'accélération d'entrainement de M.
- 5) Déterminer $\vec{\gamma}_c(M)$ l'accélération de Coriolis de M.
- 6) En déduire $\vec{\gamma}_{\alpha}(M)$ l'accélération absolue de M.

NB:

$$\overrightarrow{Y}_e(M) = \frac{d^2 \overrightarrow{oo}}{dt^2} + \frac{d\overrightarrow{a}}{dt} \wedge \overrightarrow{O'M} + \overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \times \overrightarrow{O'M}) \text{ ou } \overrightarrow{\Omega} \text{ est la vitesse angulaire, et}$$

$$\overrightarrow{Y}_c(M) = 2 \overrightarrow{\Omega} \wedge \overrightarrow{v}_r(M) \text{ Ou } \overrightarrow{v}_r(M) \text{ est la vitesse relative du point M.}$$

Partie III: Théorème énergie cinétique

On laisse glisser sans vitesse initiale au sommet A d'une sphère de rayon r=2m un morceau de glace suppose ponctuelle et de masse m=100 g.

- 1) En négligeant tout frottement, donner l'expression de la vitesse V du glaçon pour une position M tel que $AOM=\alpha$ en fonction de r, g, et α .
- 2) Donner les composantes des forces qui s'exercent sur la sphère dans le repère de Frenet où \vec{T} est le vecteur tangentiel et \vec{N} le vecteur normal en M.
- 3) Déterminer l'accélération au point M (préciser ses composantes tangentiels et normales).
- 4) Donner l'expression de la réaction \vec{R} de la sphère sur le glaçon en M.
- 5) En quel point D le glaçon va-t-il quitter la sphère ? (Cette position sera repérée par l'angle θ =AOD) Donner la valeur numérique de θ . On donne α =30

BON TRAVAIL

Andulatine I, F.
Systeme d'explanation
Busparlique

Partie II: THEOREME DE LENERGIE CINETIQUE

Un point matériel de masse mest lancé avec une vitesse initiale $\overline{V_A}$ sur un plan incliné faisant un angle α avec l'horizontal. Après avoir parcouru une distance \mathbf{d} ce point matériel arrive sur un ressort de longueur a vide \mathbf{l}_0 et de raideur \mathbf{k} .

Ce dernier subi alors une compression.

- 1) Déterminer les forces appliquées sur le point matériel.
- 2) Calculer les travaux de toutes ces forces le long du trajet allant de la position A a la position correspondant au ressort compressé.
- 3) Calculer la vitesse maximale atteinte par le point matériel.
- 4) Déterminer la compression maximale du ressort.

