AG313 Treasury Management & Derivatives Coursework Summary

LEWIS BRITTON

Academic Year 2019/2020

Table of Contents

1	Derivatives				
	1.1	Option	ns	1	
		1.1.1	Option vs. Forward Contracts	1	
		1.1.2	Spot vs. Future/Forward Prices	1	
		1.1.3	Short vs. Long Positions	1	
		1.1.4	Call vs. Put Options	1	
		1.1.5	Exchange vs. Over-the-Counter	2	
	1.2	Future	es Markets	2	
		1.2.1	Forward vs. Future	2	
		1.2.2	Margin 'Curtain Call' Call	2	
		1.2.3	Corn Futures Contract	3	
		1.2.4	Hedging vs. Speculating	3	
	1.3	Forwa	rd & Futures Prices	3	
		1.3.1	Shorting With Dividends	4	
		1.3.2	Spot-to-Forward Price	4	
	1.4	Hedging Strategies With Futures			
	1.5	Option Market Mechanics			
	1.6	Option	n Pricing	5	
		1.6.1	Binomial Option Tree: European Put	5	
		1.6.2	Binomial Option Tree: Converting to American Put	6	
	1.7	1.7 Stock Options			
		1.7.1	Call Lower-Bound	7	
		1.7.2	Put Lower-Bound	7	
		1.7.3	Put-Call Parity w/o Dividend (or 0 Interest)	7	
		1.7.4	Put-Call Parity w/ Divided	7	
		1.7.5	Black & Scholes Models	7	
2	Treasury Management				
	2.1	Foreig	n Exchange Market	8	
	2.2	Interes	st Parity Relationships	8	
		2.2.1	Interest Rate Arbitrage	8	
		2.2.2	Interest Rate No-Arbitrage	9	
		2.2.3	Absolute PPP	9	
		2.2.4	Relative PPP w/ Inflation	9	

2.3	Exchange Exposure			
	2.3.1	Variance of Two-Asset Folio	10	
	2.3.2	Variance of Three-Asset Folio	10	
	2.3.3	Economic Exposure	10	
2.4	Value	of A Multinational Corporation	10	
	2.4.1	Basic Values	10	
	2.4.2	Value Exchnage Conversion	11	
	2.4.3	Value of Each Domestic/Foreign Operation	11	
	2.4.4	Total Value of Multinational Corporation	12	
	2.4.5	How Can The Value Change?	12	
2.5	Interest Rate Risk			
	2.5.1	Duration	13	
	2.5.2	Forward Rate Agreements	13	
	2.5.3	Interest Rate Option	14	

1 Derivatives

1.1 Options

1.1.1 Option vs. Forward Contracts

- Option: Right to buy/sell, in future, at rate (no future exchange rate saftey)
- Future: Obligation to buy/sell, in future, at rate (future exchange rate safety)

1.1.2 Spot vs. Future/Forward Prices

- Spot Price: immediate delivery (S_0, S_T)
- Future/Forward Price: future delivery price (locked-in today) (F₀, F_T)
 - $F_{\rm T} < S_{\rm T} :$ Forward = Spot grossed up @ r
 - Spot expected to be > r growth

1.1.3 Short vs. Long Positions

- Short: Sell shares now $(S_0 = Spot)$, buy later $(S_T = Delivery)$
 - Expect fall in share price, in future
 - Futures price (\uparrow) , loss
 - $Profit = S_0 K$
- Long: Buy shares now
 - Expect rise in share price, in future
 - Futures price (↑), gain
 - $Profit = K S_T$

1.1.4 Call vs. Put Options

- "At The Money": $S_T = K$
- Call: Agreement to buy at specified time and Strike Price
 - Profit ("In The Money"): $S_T > K$
 - $\ Profit = N(S_T K) Cost; \ Cost = N(C_0)$
- Put: Agreement to sell at specified time and Strike Price

- Profit ("In The Money"): $\mathrm{K}>\mathrm{S}_{\mathrm{T}}$
- $\ \mathrm{Profit} = \mathrm{Cost} \mathrm{N}(\mathrm{K} \mathrm{S_T}); \ \mathrm{Cost} = \mathrm{N}(\mathrm{P_0})$
- European Option: exercised only on expiration
- American Option: exercised any time up-to expiration and expiration

1.1.5 Exchange vs. Over-the-Counter

- Exchange: \$60tn valuation; more standardized and regulated
 - Trades Futures contracts
- Over-the-Counter: \$600tn valuation; higher credit risk, higher prices
 - Trades Forward contracts

1.2 Futures Markets

- Regulated by Commodities Futures Trading Commission (CFTC)
- Clearing House: always used in Futures Market to ensure payment method
- Central Clearing Parties: similar job to the above
- Haircut: difference between Market Value and Collateral usage of an asset
- Bilateral Clearing: group agree terms to trade w/ eash-other to minimise risk
- Limit Order: trader identifies worst at which trade can take place

1.2.1 Forward vs. Future

- Futures based on a shorter period than Forwards
- Futures usually don't have final cash settlements

1.2.2 Margin 'Curtain Call' Call

- Broker's demand that investor adds funds to retain minimum value of fund, daily
- Options up-to 9 months must be bought in full; post-9-months margin can be taken
- The seller posts the margin
- Margin acounts adjusted daily for gain/loss
- Reduce systematic risk \rightarrow ensure funds available \rightarrow reduce risk of back-out
- Margin Call when: Loss > (Initial Margin Maintenance Margin)
 - α If Short: ea. \$1 rise in price is a \$1 per-unit loss; find = to above
 - β Add the per-unit rise to the per-unit price
 - γ If Long: ea. \$1 rise in price is a \$1 per-unit gain; find = to above
 - δ Add the per-unit rise to the per-unit price

1.2.3 Corn Futures Contract

- Initiated by party w/ Short Position; 'Notice of Intention' [to deliver]
- Exchange goes through procedure of choosing party to take Long Position

1.2.4 Hedging vs. Speculating

- *Hedging*: e.g. expect volatility, perhaps price rise to take Futures contract to lock in a better price now
- Speculating: e.g. act upon volatility expectation perhaps where there's expected fall in price, take a Short position and buy back for profit
- \bullet Hedgers hold Long, Speculators hold Short: (F $_{\rm T} > {\rm S}_{\rm T})$

1.3 Forward & Futures Prices

- Future Price quoted as no. of US\$ per-unit of foreign currency
- Lenders cannot issue instructions
- Investment Asset: traded but not usually physically usable or tangible
- Consumption Asset: traded and usable for consumption (e.g. Copper)
- Convenience Yield: 0/(+), measures benefit of owning rather than Forward/Future
 - Having real value vs. locked-in F value
 - Investment: 0
 - Consumption: (+)
 - Increase: F as % of S \downarrow ; more convenie int to own
 - Decrease: F as % of S \uparrow ; more convenient to F
- Dividend Yield: Div.'s as a % of stock price at t of Div. payment
- Contango: $F_T > S_T$ abnormally

1.3.1 Shorting With Dividends

- 1. Sell now (S_0) , buy later (S_T) (Gain-Per-Share $= S_0 S_T$)
- 2. Pay Dividend (Gain-Per-Share = $S_0 S_T Div.$)

1.3.2 Spot-to-Forward Price

$$F_T = S_0 e^{rT}$$

$$F_T = (S_0 - Income)e^{rT}$$

$$\label{eq:Income} Income = Y_t e^{-rT} + ... + Y_{t+n} e^{-rT}$$

$$F_T = \mathrm{ER}_0 \mathrm{e}^{(r_1 - r_2)T}$$

1.4 Hedging Strategies With Futures

- Futures delivery month should be as close as possible to purchase of asset
- "Tailing the Hedge": corrects for daily settlement
- Hedging Futures leads to predictability

$$Basis = Spot_{At\ Close} - Futures_{At\ Close\ (For\ Maturity)}$$

Price Recieved = Basis + Futures_{At Purchase} (ForMaturity)

Optimal Hedge Ratio =
$$\rho_{A,B} \left(\frac{\sigma_A}{\sigma_B} \right)$$

"Movement in S price to movement in F price"

$$Optimal\ Folios = (\beta_{Current} - \beta_{Desired}) \left(\frac{V_{Folio}}{F_0 F_N} \right)$$

If (+): Short

If (-): Long

$$P_{Total} = w_{Hedged} P_{Hedged} + w_{Not-Hedged} P_{Not-Hedged}$$

Where:

Given
$$S_0, F_0, S_T, F_T$$

$$P_{Hedged} = S_T - (F_0 F_T)$$

$$P_{\rm Not-Hedged} = S_{\rm T}$$

1.5 Option Market Mechanics

- Option Class: All Calls or Puts on a stock
- Option Series: All options on a certain stock type
- LEAPS: Long-Term Equity Anticipation Securities w/ long maturities
- Stock Split

$$- E.g.: N = 100, K = 20, 2-for-1 Split;$$

- Ans.:
$$N = 2(100) = 200, K = \frac{1}{2}(20) = 10$$

• Stock Dividend

$$- \text{ E.g.: } N = 100, K = 20, \text{ Div. } = 25\%;$$

– Ans.: N = 1.25(100) = 125, K =
$$\frac{4}{5}$$
(20) = 16

- Cash Dividend
 - No effect
- Option Value = Time Value + Intrinsic Value
 - At-the-Money Time Value = 0 so Option Value = Intrinsic Value
 - Call: $(S_T K, 0)$
 - Put: $(K S_T, 0)$

1.6 Option Pricing

1.6.1 Binomial Option Tree: European Put

Step 1

$$u = e^{\sigma \sqrt{\Delta t}}$$

$$d = e^{-\sigma \sqrt{\Delta t}} = \frac{1}{u}$$

 $p=\frac{e^{r\Delta t}-d}{u-d}=Risk\ Neutral\ Probability\ of\ Up\ Movement}$ $(1-p)=Risk\ Neautral\ Probability\ of\ Down\ Movement}$

Step 2

 $S_{u/d} = Value of Stock Upon Increase/Decrease$

$$\mathrm{S}_{\mathrm{u}}=\mathrm{Pu}$$

$$S_d = Pd$$

$$S_{u,u} = Pu^2 \\$$

$$S_{u,d} = Pud$$

$$S_{d,d} = Pd^2$$

Step 3

 $P_{u/d} = Value of Option Upon Increase/Decrease$

$$\begin{split} P_{u,u} &= 0 \\ P_{u,d} &= K - S_{u,d} \\ P_{d,d} &= K - S_{d,d} \\ P_u &= \left((pP_{u,u}) + ((1-p)P_{u,d}) \right) e^{-r\Delta t} \\ P_d &= \left((pP_{u,d}) + ((1-p)P_{d,d}) \right) e^{-r\Delta t} \\ P_0 &= \left((pP_u) + ((1-p)P_d) \right) e^{-r\Delta t} \end{split}$$

1.6.2 Binomial Option Tree: Converting to American Put

$$P_d = \max\{K - S_d, P_d\}$$

$$P_{d_A} = Larger\ Outcome;\ P_{u_A} = Remains\ Same$$

$$P_{0_A} = ((pP_{u_A}) + ((1-p)P_{d_A}))\,e^{-r\Delta t}$$

1.7 Stock Options

- Stock Price (\uparrow): Call (\uparrow); Put (\downarrow)
- Strike Price (↑): Call (↓); Put (↑)
- Volatility (↑): Call Payoff (↑); Put Payoff (↑)
- Dividends (\uparrow): Stock Price (\downarrow); Call (\downarrow); Put (\uparrow)
- Interest Rate (↑): Call (↑); Put (↓)
- Time-Maturity (\uparrow): European Options (\uparrow / \downarrow)

1.7.1 Call Lower-Bound

$$S_0 - \mathrm{Ke}^{-rT}$$

1.7.2 Put Lower-Bound

$$\mathrm{Ke^{-rT}} - \mathrm{S}_0$$

1.7.3 Put-Call Parity w/o Dividend (or 0 Interest)

$$C_0 + Ke^{-rT} = P_0 + S_0$$

$$C_0 + K = P_0 + S_0$$

1.7.4 Put-Call Parity w/ Divided

$$C_0 + Ke^{-rT} = P_0 + (S_0 - Div.)$$

1.7.5 Black & Scholes Models

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + T\left(r + \frac{\sigma^2}{2}\right)}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

$$\begin{split} C_0 &= S(N(d_1)) - Ke^{-rT}(N(d_2)) \\ C_0 &= Se^{-yT}(N(d_1)) - Ke^{-rT}(N(d_2)) \\ P_0 &= K(1-N(d_1)) - Se^{-rT}(1-N(d_2)) \end{split}$$

2 Treasury Management

2.1 Foreign Exchange Market

Domestic in terms of foreign; foreign in terms of domestic

$$Spread = \frac{Ask - Bid}{Ask}$$

Direct Quotation =
$$\mathcal{L}/\$ = \frac{1}{\$/\mathcal{L}}$$

Indirect Quotation =
$$\$/\pounds = \frac{1}{\pounds/\$}$$

$$\text{Cross Rate} = \$/\pounds = \text{EUR}/\pounds\frac{1}{\text{EUR}/\$}$$

2.2 Interest Parity Relationships

2.2.1 Interest Rate Arbitrage

$$A_n = \left(\frac{A_h}{S}\right)(1+i_f)(S(1+p))$$

$$S(1+p) = F$$

 $A_{h,n} = Home/New Home Currency$

 $i_{h,f} = \mathrm{Home}/\mathrm{Foreign}\ \mathrm{Currency}$

 $S = Spot Exchange Rate = N of \mathcal{L} Per Unit of $$

F = Forward (Locked) Exchange Rate = N of £ Per Unit of \$

 $p = Forward Premium = Amount By Which F is \uparrow / \downarrow Than S$

Convert To
$$\$: \left(\frac{A_h}{S}\right)$$

End of Period $\Priripal \ \& \ Interest: \ \left(\frac{A_h}{S}\right)(1+i_f)$

$$\$$
 Principal & Interest Back to $\pounds:\ \left(\frac{A_h}{S}\right)(1+i_f)F$

2.2.2 Interest Rate No-Arbitrage

$$A_h(1+i_h) = A_h(1+i_f)(1+p)$$

 $A_h(1+i_h) = Investing w / Home Interest = Investing w / Foreign Interest w / p$

$$\therefore p = \frac{(1+i_h)}{(1+i_f)} - 1 \therefore p \approx i_h - i_f$$

2.2.3 Absolute PPP

$$S_f^d = \frac{P_s^d}{P_s^f}$$

$$As: P_s^d = S_f^d P_s^f$$

2.2.4 Relative PPP w/ Inflation

$$P_{h}(1 + \pi_{h})$$

$$P_f(1+\pi_f)$$

If $\pi_h > \pi_f$: PP is greater when buying foreign goods \rightarrow foreign cheaper If $\pi_h < \pi_f$: PP is greater when buying domestic goods \rightarrow domestic cheaper

Adjust for Change in Currency:

$$P_f(1+\pi_f)(1+e_f)$$

 $e_f = \%$ Change Per Unit of Foreign Currency In Domestic Currency

Hence:

$$P_h(1+\pi_h) = P_f(1+\pi_f)(1+e_f)$$

$$e_f = \frac{P_h(1+\pi_h)}{P_f(1+\pi_f)} - 1 = \frac{(1+\pi_h)}{(1+\pi_f)}$$

Given
$$P_h = P_f$$
:

If $\pi_h > \pi_f$: e_f (+): foreign should appreciate; domestic depreciate If $\pi_h < \pi_f$: e_f (-): foreign should depreciate; domestic appreciate

For Relatively Low Inflation:

$$e_f = \frac{(1 + \pi_h)}{(1 + \pi_f)} - 1 \approx (\pi_h - \pi_f)$$

2.3 Exchange Exposure

2.3.1 Variance of Two-Asset Folio

$$\sigma_{x,y}^2 = \sigma_x^2 + \sigma_y^2 + 2(cov_{x,y})$$

Hence:

$$p = \{x, y\}$$

$$cov_{x,y} = \rho_{x,y}\sigma_x\sigma_y$$

$$\sigma_{\mathrm{p}}^2 = \sigma_{\mathrm{x}}^2 + \sigma_{\mathrm{y}}^2 + 2(\rho_{\mathrm{x,y}}\sigma_{\mathrm{x}}\sigma_{\mathrm{y}})$$

2.3.2 Variance of Three-Asset Folio

$$\sigma_{p}^2 = \sigma_{x}^2 + \sigma_{y}^2 + \sigma_{z}^2 + 2(\rho_{x,y}\sigma_{x}\sigma_{y}) + 2(\rho_{x,z}\sigma_{x}\sigma_{z}) + 2(\rho_{y,z}\sigma_{y}\sigma_{z})$$

2.3.3 Economic Exposure

$$V_{\rm MNC} = \sum \frac{\sum (E(CF_{\rm j,t})E(ER_{\rm j,t}))}{(1+k)^{\rm t}} \label{eq:VMNC}$$

Where:

 $E(\mathrm{CF}_{j,t}) = \mathrm{Expected}~\mathrm{CF}$ in Currency j Recieved At End of Period t

 $\mathrm{E}(\mathrm{ER})_{j,t} = \mathrm{Expeced} \ \mathrm{ER}$ of Currency j At End of Peiod t

k = Weighted Average Cost of Capital (WACC) of MNC

2.4 Value of A Multinational Corporation

- Value of Parent Company (p, perhaps in USD)
- Value of Subsidiary 1 (s1, perhasp in EUR)
- Value of Subsidiary 2 (s2, perhaps in GBP)

2.4.1 Basic Values

$$V_t = \frac{E(C_{t+1})}{(1+r)^{t+1}} + \frac{E(C_{t+2})}{(1+r)^{t+2}} + \frac{E(C_{t+3})}{(1+r)^{t+3}}$$

Value of Cash Flows in USD Functional Currency:

$$V_{t,p} = \frac{E(C_{t+1,\$})}{(1+r_{\$})^{t+1}} + \frac{E(C_{t+2,\$})}{(1+r_{\$})^{t+2}} + ... + \frac{E(C_{t+n,\$})}{(1+r_{\$})^{t+n}}$$

Value of Cash Flows in EUR:

$$V_{t,s1} = \frac{E(C_{t+1,EUR})}{(1+r_EUR)^{t+1}} + \frac{E(C_{t+2,EUR})}{(1+r_EUR)^{t+2}} + ... + \frac{E(C_{t+n,EUR})}{(1+r_EUR)^{t+n}}$$

Value of Cash Flows in GBP:

$$V_{t,s2} = \frac{E(C_{t+1,\pounds})}{(1+r_{\pounds})^{t+1}} + \frac{E(C_{t+2,\pounds})}{(1+r_{\pounds})^{t+2}} + ... + \frac{E(C_{t+n,\pounds})}{(1+r_{\pounds})^{t+n}}$$

2.4.2 Value Exchnage Conversion

Value of Cash Flows in USD Functional Currency:

$$V_{t,p} = \frac{E\left(C_{t+1,\$}\left(\frac{\$}{\$}\right)_{t+1}\right)}{(1+r_{\$})^{t+1}} + \frac{E\left(C_{t+2,\$}\left(\frac{\$}{\$}\right)_{t+2}\right)}{(1+r_{\$})^{t+2}} + ... + \frac{E\left(C_{t+n,\$}\left(\frac{\$}{\$}\right)_{t+3}\right)}{(1+r_{\$})^{t+n}}$$

Value of Cash Flows in USD Converted from EUR:

$$\begin{split} V_{t,p} &= \frac{E\left(C_{t+1,EUR}\left(\frac{\$}{EUR}\right)_{t+1}\right)}{(1+r_\$)^{t+1}} + \frac{E\left(C_{t+2,EUR}\left(\frac{\$}{EUR}\right)_{t+2}\right)}{(1+r_\$)^{t+2}} + ... \\ &+ \frac{E\left(C_{t+n,EUR}\left(\frac{\$}{EUR}\right)_{t+3}\right)}{(1+r_\$)^{t+n}} \end{split}$$

Value of Cash Flows in USD Converted from GBP:

$$V_{t,p} = \frac{E\left(C_{t+1,\pounds}\left(\frac{\$}{\pounds}\right)_{t+1}\right)}{(1+r_{\$})^{t+1}} + \frac{E\left(C_{t+2,\pounds}\left(\frac{\$}{\pounds}\right)_{t+2}\right)}{(1+r_{\$})^{t+2}} + ... + \frac{E\left(C_{t+n,\pounds}\left(\frac{\$}{\pounds}\right)_{t+3}\right)}{(1+r_{\$})^{t+n}}$$

2.4.3 Value of Each Domestic/Foreign Operation

Hence Total Value of Parent Corporation (p):

$$V_{t,p} = \sum_{i=1}^{n} \frac{E(C_{t+i,\$})}{(1+r_{\$})^{t+i}}$$

Hence Total Value of European Subsidiary (s1):

$$V_{t,s1} = \sum_{i=1}^{n} \frac{E\left(C_{t+i,EUR}\left(\frac{\$}{EUR}\right)_{t+i}\right)}{(1+r_{\$})^{t+i}}$$

Hence Total Value of British Subsidairy (s2):

$$V_{t,s2} = \sum_{i=1}^{n} \frac{E\left(C_{t+i,\pounds}\left(\frac{\$}{\pounds}\right)_{t+i}\right)}{(1+r_{\$})^{t+i}}$$

2.4.4 Total Value of Multinational Corporation

Hence Total Value of Multinational Corporation:

$$V_p = V_{s1} + V_{s2}$$

Hence For 3 Currency Example Over n Periods (i):

$$V_{t,MNC} = \sum_{i=1}^{n} \frac{E(C_{t+i,\$})}{(1+r_{\$})^{t+i}} + \sum_{i=1}^{n} \frac{E\left(C_{t+i,EUR}\left(\frac{\$}{EUR}\right)_{t+i}\right)}{(1+r_{\$})^{t+i}} + \sum_{i=1}^{n} \frac{E\left(C_{t+i,\pounds}\left(\frac{\$}{\pounds}\right)_{t+i}\right)}{(1+r_{\$})^{t+i}}$$

Hence Generalised for 3 Unknown Currencies Over n Periods (i):

$$V_{t,MNC} = \sum_{i=1}^{n} \frac{E\left(C_{t+i,1}(ER_1)_{t+i}\right)}{(1+r_\$)^{t+i}} + \sum_{i=1}^{n} \frac{E\left(C_{t+i,2}(ER_2)_{t+i}\right)}{(1+r_\$)^{t+i}} + \sum_{i=1}^{n} \frac{E\left(C_{t+i,3}(ER_3)_{t+i}\right)}{(1+r_\$)^{t+i}}$$

Hence Generalised for n Unkown Currencies (j) Over n Periods (i):

$$V_{t,MNC} = \sum_{i=1}^n \left(\sum_{i=1}^n \frac{E\left(C_{t+i,j}(ER_j)_{t+i}\right)}{(1+r_\S)^{t+i}} \right)$$

2.4.5 How Can The Value Change?

If $C_{t+i,j} < E(C_{t+i})_j$: $V_{t,MNC}$ lower than expected country business risk

If $r_\$ > Er_\$ \colon \, V_{t,MNC}$ lower than expected country policy risk

If $(ER_{\$})_{t+i} < (ER_{\pounds})_{t+i}$: $V_{t,MNC}$ lower than expected foreign exchange risk (where \$ is domestic)

2.5 Interest Rate Risk

- $\frac{1}{100}$ of a %pt. is a 'Basis Point'
- Must convert period to days

$$R = Simple Interest Rate$$

$$r = \frac{R}{m} = \text{Periodic Interest Rate}$$

"m periods per n"

$$(1+r)^{mn} - 1 = Compound Interest Rate$$

$$EAR = (1+r)^{\frac{year}{days}} - 1$$

2.5.1 Duration

$$\Delta B = -DB\Delta y$$

$$B = \sum \frac{CF_t}{(1+v)^t}$$

$$D = \sum t \left(\frac{\frac{CF_t}{(1+y)^t}}{P} \right) = \sum tw_t$$

$$y = Yield on Bond$$

$$P = Bond Price$$

$$D_{Zero-Coupon} = Maturity = T$$

Constant Maturity :
$$D(\uparrow)$$
, $CF(\downarrow)$

Constant Coupon :
$$D(\uparrow)$$
, $T(\uparrow)$

Constant All Other:
$$D(\uparrow)$$
, $y(\downarrow)$

2.5.2 Forward Rate Agreements

Payoff = (Notional Amount) (LIBOR – Agreed Upon Rate)
$$\left(\frac{m}{360}\right)$$

Payoff = (Notional Amount)
$$\left((\text{LIBOR}) - \text{Agreed Upon Rate} \right) \frac{\left(\frac{\text{m}}{360}\right)}{\left(1 + \text{LIBOR}\right)\left(\frac{\text{m}}{360}\right)} \right)$$

2.5.3 Interest Rate Option

$$\begin{split} \operatorname{Payoff}_{\operatorname{Call}} &= \left(\operatorname{Notional\ Amount} \right) \left(\operatorname{Max} \left(0, \operatorname{LIBOR} - X \right) \left(\frac{m}{360} \right) \right) \\ & \quad \operatorname{If\ LIBOR} > X : \ \operatorname{Exercise} \\ & \quad \operatorname{Payoff}(\uparrow), \ \operatorname{LIBOR}(\uparrow) \end{split}$$

Protection Against Rising i (e.g. future borrowing)

$$\begin{split} \operatorname{Payoff}_{\operatorname{Put}} &= (\operatorname{Notional\ Amount}) \left(\operatorname{Max} \left(0, X - \operatorname{LIBOR} \right) \left(\frac{m}{360} \right) \right) \\ & \quad \operatorname{If\ LIBOR} < X : \ \operatorname{Exercise} \\ & \quad \operatorname{Payoff}(\uparrow), \ \operatorname{LIBOR}(\downarrow) \end{split}$$

Protection Against Falling i (e.g. future investing)