Fisica 3 Corso del prof. Sozzi Marco

Francesco Sorce

Università di Pisa Dipartimento di Matematica A.A. 2023/24

Indice

L	Te	rmodinamica
1	Intr	roduzione
	1.1	Prime definizioni
	1.2	Definizione di temperatura
		1.2.1 Definizione di temperatura tramite gas
	1.3	Trasferimento di calore
		1.3.1 Conduzione
		1.3.2 Convezione
		1.3.3 Irraggiamento
	1.4	Relazione tra parametri indipendenti ed espressioni per l'energia

$\begin{array}{c} \text{Parte I} \\ \\ \text{Termodinamica} \end{array}$

Capitolo 1

Introduzione

La termodinamica è lo studio di sistemi dal punto di vista macroscopico. Le massime fondamentali della termodinamica sono

- L'energia dell'universo è costante
- L'entropia dell'universo tende ad aumentare.

1.1 Prime definizioni

Definizione 1.1 (Sistema termodinamico).

Un **sistema termodinamico** è un sistema omogeneo composto da "molti" elementi. Lo **stato** di un sistema termodinamico è univocamente determinato da un numero contenuto di parametri¹ detti **funzioni di stato**.

Il numero di funzioni di stato necessarie per specificare lo stato è detto **numero di** gradi di libertà.

Osservazione 1.2.

Le funzioni di stato di un sistema non dipendono da come esso è venuto ad esistere; se due procedimenti portano da un particolare stato ad un altro, le differenze nelle funzioni di stato dipendono univocamente dallo stato iniziale e quello finale.

Osservazione 1.3 (Sistema ambiente).

Spesso torna comodo considerare una coppia di sistemi, uno detto semplicemente sistema e l'altro **ambiente**.

Definizione 1.4 (Variabili estensive e intensive).

Dato un sistema termodinamico, delle variabili ad esso inerenti si dicono **estensive** se sono proporzionali alla quantità di materia contenuta nel sistema e **intensive** altrimenti.

Esempio 1.5.

Il volume e l'energia sono grandezze estensive mentre la pressione e la temperatura sono intensive.

Definizione 1.6 (Sistemi isolati, chiusi e aperti).

Un sistema termodinamico si dice

• isolato se non ammette scambio con l'ambiente,

¹Per esempio temperatura, pressione o volume.

- chiuso se non ammette scambio di materia con l'ambiente,
- aperto se ammette scambi con l'ambiente.

Per considerare più sistemi termodinamici dobbiamo considerarli come separati da una parete.

Definizione 1.7 (Tipi di parete).

Una parete tra due sistemi è

- adiabatica se non permette scambi,
- diatermica se non ammette scambi di materia,
- semipermeabile se fa passare alcuni tipi di materia.
- permeabile² se permette ogni tipo di scambio.

Definizione 1.8 (Equilibrio).

Un sistema è in **equilibrio** se le sue funzioni di stato restano "costanti" (per molto tempo rispetto alla scala temporale rilevante).

Un sistema è in **equilibrio termico** se non ci sono differenze di temperatura³.

Un sistema è in **equilibrio termodinamico** se è in equilibrio meccanico, termico e chimico.

Osservazione 1.9.

I sistemi tendono spontaneamente ed irreversibilmente all'equilibrio termodinamico.

Definizione 1.10 (Equazione di stato).

Se quando un sistema è in equilibrio vale una equazione tra le funzioni di stato, queste si dicono **equazioni di stato**.

Definizione 1.11 (Tipi di trasferimenti di energia).

Considerato un sistema termodinamico e l'ambiete definiamo le seguenti tipologie di scambi di energia:

- uno scambio di energia meccanica è detto lavoro,
- uno scambio di energia termica è detto calore,
- uno scambio di energia chimica è definito da

$$\Delta E = \int \mu dn,$$

dove n è il numero di particelle coinvolte e μ è il **potenziale chimico**.

Affermiamo per convenzione che uno scambio di energia ha segno *positivo* se il sistema acquista energia dall'ambiente.

$Osservazione \ 1.12.$

Il lavoro meccanico è dato da $W=\int \vec{F}\cdot d\vec{\ell}$. È un fatto generale che il lavoro ha la forma

$$\int$$
 (intensiva) d (estensiva).

 $^{^2}$ una parete permeabile è come se non ci fosse

³definiremo la temperatura in seguito.

⁴questa quantità ha senso solo per sistemi aperti.

Definizione 1.13 (Processi quasistatici).

Un sistema è **quasi in equilibrio** se è così vicino all'equilibrio che le equazioni di stato si possono considerare valide. Un **processo quasistatico** è descrivibile da una successione di variazioni infinitesime tra stati vicini all'equilibrio.

Se non sono presenti "attriti", un processo quasistatico è detto reversibile.

Un processo è detto **totalmente reversibile** se è reversibile e la sua interazione con l'ambiente è reversibile.

Definizione 1.14 (Termostato).

Un **termostato** è un sistema grande a sufficienza in modo che anche se vi si aggiunge calore esso non cambia di temperatura. È dunque una sorgente ideale di calore.

Definizione 1.15 (Termometro).

Un **termometro** è un sistema piccola a sufficienza in modo che ogni scambio di calore è trascurabile.

1.2 Definizione di temperatura

Principio 0: Due sistemi in equilibrio termico con un terzo sono in equilibrio tra loro.

Proposizione 1.16 (Temperatura empirica).

Ogni sistema termodinamico ammette una funzione che è costante in stato di equilibrio. La costante è detta **temperatura empirica**.

Dimostrazione.

Consideriamo tre sistemi, con funzioni di stato (x_1, y_1) , (x_2, y_2) e (x_3, y_3) in equilibrio tra loro. Esistono dunque equazioni di stato della forma

$$\begin{cases} x_3 = f(x_1, y_1, y_3) \\ x_3 = g(x_2, y_2, y_3) \end{cases}$$

poiché i sistemi 1 e 2 sono in equilibrio, se eguagliamo le due equazioni sappiamo che ciò che otteniamo non dipende da y_3 , quindi

$$\begin{cases} f(x_1, y_1, y_3) = \phi_1(x_1, y_1)\zeta(y_3) + \eta(y_3) \\ g(x_2, y_2, y_3) = \phi_2(x_2, y_2)\zeta(y_3) + \eta(y_3) \end{cases}$$

dunque se 1 e 2 sono in equilibrio si ha che

$$\phi_1(x_1, y_1) = \phi_2(x_2, y_2),$$

ma i due membri dipendono da insiemi di variabili disgiunti, quindi esiste θ_0 tale che entrambe queste espressioni eguagliano θ_0 se sono in equilibrio. Il valore θ_0 è detto la temperatura empirica dei sistemi, i quali sono in equilibrio solo se hanno la stessa temperatura empirica.

Definizione 1.17 (Isoterme).

Dato un sistema termodinamico e un valore θ_0 di temperatura empirica, chiamiamo isoterma a livello θ_0 l'insieme degli stati del sistema la cui temperatura è θ_0 .

Fatto 1.18 (Punto triplo).

Considerando come sistema termodinamico dell'acqua esiste una precisa combinazione di temperatura e pressione tale per cui essa risulta in trasizione tra gli stati solido liquido e gassoso simultaneamente.

Questo stato si chiama **punto triplo** e i valori in questione sono una temperatura di 0.01°C e una pressione di 0.006 atm.

1.2.1 Definizione di temperatura tramite gas

A bassa pressione i gas si comportano tutti allo stesso modo⁵.

Se fissiamo il volume e la quantità di materia del gas possiamo definire θ in modo tale che $p = p_0(1 + \alpha\theta)$, cioè poniamo

$$\theta = \frac{1}{\alpha} \frac{p - p_0}{p_0}.$$

Se imponiamo che l'acqua congeli per $\theta=0$ e bollisca per $\theta=100$ allora si ricaviamo $1/\alpha=273.15$. Notiamo inoltre⁶

$$\frac{p_2}{p_1} = \frac{\alpha^{-1} + \theta_2}{\alpha^{-1} + \theta_1} = \frac{\theta_2'}{\theta_1'}.$$

Possiamo dunque definire la temperatura (in Kelvin) come

$$T = \lim_{p^{(PT)} \to 0} 273.16 \frac{p}{p^{(PT)}}$$

dove $p^{(PT)}$ è la pressione del gas nel termometro quando questo sistema è in equilibrio con il sistema di punto triplo con l'acqua. Il limite corrisponde a prendere gas sempre più rarefatti, cioè a lavorare nel limite dei gas perfetti dove vale la proporzionalità sopra.

Sfruttando questa definizione possiamo costruire un termometro a gas come in figura [FIGURA TERMOMETRO A GAS]

Quando il gas è alla temperatura che vogliamo misurare misuriamo la differenza di altezza tra il livello a contatto con il gas e il livello di controllo posto a pressione atmosferica. Questa differenza è proporzionale alla differenza di pressione e questo ci permette di ricavare la temperatura se la fissiamo per quando è nel punto critico.

1.3 Trasferimento di calore

Il trasperimento di calore, cioè di energia derivante da una differenza di temperatura, avviene in tre modi: conduzione, covezione ed irraggiamento.

1.3.1 Conduzione

Parliamo di **conduzione** quando il tresferimento di calore avviene per contatto ma senza scambio di materia (attraverso una parete diatermica).

Empiricamente riscontriamo

Fatto 1.19 (Legge di Fourier).

Vale la relazione

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = -\kappa \frac{\Delta T}{\Delta X},$$

dove T è la temperatura, X è la distanza tra i punti tra cui stiamo calcolando la differenza di temperatura, A è l'area ortogonale alla direzione lungo la quale si propaga il calore e κ è una costante detta **conducibilità termica**.

⁵rispettano l'equazione di stato $pV = f(\theta)$

 $^{^6}$ l'addizione di α^{-1} corrisponde alla traslazione che trasforma gradi Celsius in gradi Kelvin.

L'unità di misura della conducibilità termica è

$$[\kappa] = \frac{W}{mK} \approx \begin{cases} 10^2 & \text{metalli} \\ 0.1 & \text{gas} \end{cases}.$$

Possiamo precisare la legge di Fourier introducendo la **corrente di calore** \vec{J}_Q . La legge assume la forma

 $\vec{J}_O = -k\vec{\nabla}T.$

Concentrandosi su uno dei sistemi possiamo scrivere

$$\delta Q = cm\delta T$$

dove m è la massa e c è il **calore specifico**.

Possiamo calcolare il calore totale che entra dentro una superficie per unità di tempo come

$$\int_V c \frac{\partial T}{\partial t} \rho dV = \frac{1}{\Delta t} \int_{\partial V} \delta Q = - \int_{\partial V} \vec{J}_Q \cdot \vec{d\Sigma} = - \int_V \nabla \cdot \vec{J}_Q dV = \int_V k \nabla^2 T dV.$$

Ricaviamo dunque

$$\boxed{\frac{\partial T}{\partial t} = \frac{\kappa}{\rho c} \nabla^2 T}$$

Questa è la famosa equazione del calore.

1.3.2 Convezione

Parliamo di **convezione** quando il trasferimento di calore avviene tramite lo spostamento di materia.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = h\Delta T,$$

dove h è il coefficiente convettivo.

1.3.3 Irraggiamento

Parliamo di **irraggiamento** quando un corpo semplicemente emette energia come radiazione.

La formula rilevante in questo caso è

$$\frac{1}{A}\frac{\delta Q}{\Delta t} = \varepsilon \sigma (T^4 - T_0^4),$$

dove T_0 è la temperatura dell'ambiente, σ è una costante uguale per tutti i materiali e ε dipende dai materiali.

1.4 Relazione tra parametri indipendenti ed espressioni per l'energia

Fatto 1.20 (Relazione tra parametri indipendenti e espressioni per l'energia). Il numero di parametri di un sistema indipendenti è pari al numero di coppie di variabili che compaiono nelle espressioni per l'energia.

Esempio 1.21 (Filo).

Un filo ha come funzioni di stato la lunghezza, la tensione e la temperatura, che indichiamo $L,~\tau$ e T rispettivamente.

Le formule per l'energia contengono τ ed L per il lavoro ($\delta W = \tau dL$) e L e T per il calore⁷. Segue che il sistema filo ha due parametri indipendenti, dunque deve esistere una equazione che lega i parametri citati. In questo caso è la legge di Hooke $(\tau = -k(L-L_0))$.

Esempio 1.22 (Fluidi).

Ragioniamo in modo simile a prima, stavolta i parametri sono volume, pressione e temperatura.

 $^{^7}L$ appare implicitamente in quanto unica grandezza estensiva.

Capitolo 2

Gas ideale

Definizione 2.1 (Mole).

Una mole di una sostanza corrisponde a $6.02 \cdot 10^{23}$ particelle di quella sostanza. La costante è detta numero di Avogadro e la indichiamo con N_a mol⁻¹.

Definizione 2.2 (Condizioni standard).

Un gas è in **condizioni standard** (STP) se è alla temperatura di 0° C e alla pressione di 1 atm = 101.3245 kPa.

Per i gas ideali valgono le seguenti leggi:

Fatto 2.3 (Legge di Boyle).

 $Se\ T\ \grave{e}\ costante$

$$V \propto \frac{1}{p}$$

Fatto 2.4 (Legge di Charles).

 $Se p \ \dot{e} \ costante$

$$V \propto (1 + \alpha T)$$

Fatto 2.5 (Legge di Gay-Lussac).

Se V è costante

$$p \propto T$$

Fatto 2.6 (Legge di Avogadro).

Se p e T sono fissate, tutti i gas occupano lo stesso volume se consistono della stessa quantità di materia, in particolare

$$V \propto n$$
.

Una mole di gas in condizioni standard occupa un volume di 22.4ℓ (litri).

Combinando le leggi appena citate arriviamo alla legge dei Gas perfetti

$$pV = nRT$$

dove p è la pressione, V è il volume, n è il numero di moli, T è la temperatura e R è la costante fondamentale dei gas e vale $8.314 \frac{\text{J}}{\text{K mol}}$.

Definizione 2.7 (Costante di Boltzmann).

Definiamo la **costante di Boltzmann** k_b in modo tale che

$$R = N_a k_b$$
.

Formulario