Algebra 2 - Exponentials and Logs

Stasya

"If I were again beginning my studies, I would follow the advice of Plato and start with mathematics." - Galileo Galilei

Note: It is expected that you try the examples to the best of your understanding, and complete the problem sets by the test date and ask for help where needed.

1 Graphing Exponential and Logs

Exponential functions are given in the form $f(x) = a(b)^{x-h} + k$. The two key points are (0,1) and (1,b) (after shifting of course). The exponential graph has a horizontal asymptote.

Logarithmic functions are given in the form $f(x) = a \cdot \log_b(x - h) + k$. The two key points are (1,0) and (b,1). The logarithmic graph has a vertical asymptote.

Note that the exponential and logarithmic function are inverses of each other.

Example: Graph $f(x) = -\log_2(x+1) + 5$.

Solution: Use Desmos

Properties of Logs $\mathbf{2}$

To convert from a logarithm to an exponential equation: $\log_b y = x$ is equal to

A log without a base is assumed to be base-10.

There are three properties of logs:

- 1. Product $\log_b(xy) = \log_b(x) + \log_b(y)$
- 2. Quotient $\log_b(\frac{x}{y}) = \log_b(x) \log_b(y)$ 3. Power $\log_b(x)^y = \log_b(x^y) = y \log_b(x)$

Example: Simplify $\log_2(4(x-1))$.

Solution: $4 + 2\log_2(x - 1)$

Solving Log Equations 3

Example: Solve $\log_2(x+3) + \log_2(x-4) = \log_2(8)$ for x.

Solution: x = 5

Solving Exponential Equations

Example: Solve $5^{x-1} = 3^x$ for x.

Solution: $x = -\frac{1}{\log_5(3)-1}$

5 Natural Log and Base e

The natural logarithm is $\log_e(x) = \ln(x)$.

Properties of natural logs:

$$\ln(e) = 1 \\
\ln(1) = 0$$

Example: Simplify $3 \ln(3) - 4 \ln(2)$.

Solution: $\ln\left(\frac{27}{16}\right)$

The formula for compounding continuously is $A = Pe^{rt}$, where A is the final amount, P is the initial amount, r is the rate, and t is time.

Example: What is the amount of a 1,000 investment after 10 years if 5% interest is compounded continuously?

Solution: \$1648.72