Memory size in the Prisoner's Dilemma

Nikoleta E. Glynatsi

Dr. Vincent Knight Dr. Jonathan Gillard

William H. Press and Freeman J. Dyson. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary

opponent. 2012

WHICH IS THE BEST MEMORY ONE STRATEGY?

ARE THERE LIMITATIONS TO MEMORY ONE STRATEGIES?

WHICH IS THE BEST MEMORY ONE STRATEGY?

ARE THERE LIMITATIONS TO MEMORY ONE STRATEGIES?

$$p_3$$
 C p_4 p_5 p_6 p_6 p_7 p_8 p_8 p_8 p_9 $p_$

$$p = (p_1, p_2, p_3, p_4) \in \mathbb{R}^4_{[0,1]}$$

$$\begin{bmatrix} p_1q_1 & p_1\left(-q_1+1\right) & q_1\left(-p_1+1\right) & \left(-p_1+1\right)\left(-q_1+1\right) \\ p_2q_3 & p_2\left(-q_3+1\right) & q_3\left(-p_2+1\right) & \left(-p_2+1\right)\left(-q_3+1\right) \\ p_3q_2 & p_3\left(-q_2+1\right) & q_2\left(-p_3+1\right) & \left(-p_3+1\right)\left(-q_2+1\right) \\ p_4q_4 & p_4\left(-q_4+1\right) & q_4\left(-p_4+1\right) & \left(-p_4+1\right)\left(-q_4+1\right) \end{bmatrix}$$

$\max_{p} u_q(p)$ such that $p \in \mathbb{R}^4_{[0,1]}$

Lemma

 $ightharpoonup Q, \bar{Q} \in \mathbb{R}^{4 \times 4}$ $ightharpoonup c, ar{c} \in \mathbb{R}^{4 \times 1}$ $ightharpoonup a, \bar{a} \in \mathbb{R}$

 $u_q(p) = \frac{\frac{1}{2}pQp^T + c^Tp + a}{\frac{1}{2}p\bar{Q}p^T + \bar{c}^Tp + \bar{a}}$

PURELY RANDOM

$$p = (p, p, p, p)$$

$$\mathbf{S_q} = \mathbf{U}_{i=1}^{\mathbf{2N}} \lambda_{\mathbf{i}} \cup \{\mathbf{0},\mathbf{1}\}$$

$$1 \leq |S_{q(i)}| \leq 2N+2$$

$$\mathbf{S_q} = \mathbf{U}_{i=1}^{2\mathsf{N}} \lambda_{\mathbf{i}} \cup \{\mathbf{0},\mathbf{1}\}$$

$$1 \leq |S_{q(i)}| \leq 2N+2$$

Result: optimal behaviour using eigenvalues of companion matrix

REACTIVE

$$p = (p_1, p_2, p_1, p_2)$$

Result: optimal behaviour using Sylvester's resultant (Sylvester 1840)

$$\mathbf{b}' = \mathbf{b_0} + \mathbf{m} \times (\mathbf{p^{(i)}} - \mathbf{p^{(j)}})$$

	q_1	<i>q</i> ₂	<i>q</i> ₃	q 4	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	и _q	U_q
0	0.208461	0.481681	0.420538	0.859182	0.603430	0.435408	0.0	0.0	3.494901	3.467
	0.781368	0.692829	0.969659	0.032401	0.000000	0.000000	0.0	1.0	3.266885	3.328
2	0.546571	0.964307	0.063893	0.383576	0.389439	0.491920	0.0	0.0	4.659477	4.544
3	0.930557	0.381203	0.665347	0.999155	0.145812	0.480583	0.0	0.0	3.470172	3.454
4	0.300831	0.120804	0.346028	0.770327	0.566760	0.030305	0.0	0.0	2 878247	2 886

WHICH IS THE BEST MEMORY ONE STRATEGY?

ARE THEIR LIMITATIONS TO MEMORY ONE STRATEGIES?

	q_1	<i>q</i> ₂	<i>q</i> ₃	q 4	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	и _q	U_q
0	0.208461	0.481681	0.420538	0.859182	0.603430	0.435408	0.0	0.0	3.494901	3.467
	0.781368	0.692829	0.969659	0.032401	0.000000	0.000000	0.0	1.0	3.266885	3.328
2	0.546571	0.964307	0.063893	0.383576	0.389439	0.491920	0.0	0.0	4.659477	4.544
3	0.930557	0.381203	0.665347	0.999155	0.145812	0.480583	0.0	0.0	3.470172	3.454
4	0.300831	0.120804	0.346028	0.770327	0.566760	0.030305	0.0	0.0	2 878247	2 886

Limitations of memory size on the Iterated Prisoner's dilemma. (In preparation)

@NikoletaGlyn https://github.com/Nikoleta-v3