Resueltos: Práctica 8

Análisis Avanzado

"Bueno. Pará, pará. Vos te quedás vigilando. ves, por ejemplo que no hay ningún peligro cercano. Ningún tipo, ningún tuburonazo, como vos que ande rondando. O algún tipo con su mujer que vicha. Los yanquis, los ingleses por ahí ven una mina que es una bestia increible y no se les mueve un pelo. Ni se dan vuelta. No dan bola. No son latinos. Entonces vos ves que no hay peligro cercano y planeás la cosa. Vos tenés una situación provilegiada. estás solo. Tenés tiempo. Tenés guita..."

El mundo ha vivido equivocado - Roberto Fontanarrosa

En lo que sigue \mathcal{M} será la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue.

1. Sea X un conjunto y sea

$$\mathcal{A} = \{A \subseteq X : A \text{ es contable o } X \setminus A \text{ es contable}\}.$$

Probar que A es una σ -álgebra.

Para demostrar que $A = \{A \subseteq X : A \text{ es contable o } X \setminus A \text{ es contable}\}$ es una σ -álgebra, debemos verificar que cumple las tres propiedades fundamentales de una σ -álgebra:

- 1. $X \in A$.
- 2. Si $A \in A$, entonces $A^c \in A$ (cerradura bajo complementos).
- 3. Si $A_n \in A$ para $n \in \mathbb{N}$, entonces $\bigcup_{n=1}^{\infty} A_n \in A$ (cerradura bajo uniones numerables).
- 1. $X \in A$

Por definición, $X \setminus X = \emptyset$, que es un conjunto contable. Por lo tanto, $X \in A$.

2. Cerradura bajo complementos

Supongamos que $A \in A$. Entonces, por definición, A es contable o $X \setminus A$ es contable.

- Si A es contable, entonces $X \setminus A$ (el complemento de A) es $X \setminus (X \setminus A) = A$, que es contable. - Si $X \setminus A$ es contable, entonces A es $X \setminus (X \setminus A)$, que también es contable.

En ambos casos, el complemento de A, es decir, $A^c = X \setminus A$, también está en A. Por lo tanto, A es cerrado bajo complementos.

3. Cerradura bajo uniones numerables

Supongamos que $\{A_n\}_{n\in\mathbb{N}}\subseteq A$. Queremos demostrar que $\bigcup_{n=1}^{\infty}A_n\in A$. Consideremos dos casos:

1. Caso 1: Alguno de los A_n es contable.

Supongamos que A_{n_0} es contable para algún $n_0 \in \mathbb{N}$. Entonces,

$$\bigcup_{n=1}^{\infty} A_n \subseteq A_{n_0} \cup \bigcup_{n \neq n_0} A_n.$$

Como A_{n_0} es contable y una unión numerable de conjuntos contables es contable, tenemos que $\bigcup_{n=1}^{\infty} A_n$ es contable.

2. Caso 2: Ninguno de los A_n es contable.

Esto implica que para cada $n \in \mathbb{N}$, $X \setminus A_n$ es contable. Consideremos el complemento de la unión:

$$X \setminus \bigcup_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} (X \setminus A_n).$$

La intersección numerable de conjuntos contables es contable. Por lo tanto,

$$X \setminus \bigcup_{n=1}^{\infty} A_n$$
 es contable.

Esto significa que $\bigcup_{n=1}^{\infty} A_n \in A$.

En ambos casos, $\bigcup_{n=1}^{\infty} A_n \in A$, lo que demuestra que A es cerrado bajo uniones numerables.

Conclusión

Dado que A cumple con las tres propiedades fundamentales de una σ -álgebra, podemos concluir que A es una σ -álgebra.

- 2. Sea X un conjunto y sea \mathcal{A} una σ -álgebra de subconjuntos de X. Probar que:
 - $a) \emptyset \in \mathcal{A}.$
 - b) Si $A, B \in \mathcal{A}$ entonces $A \setminus B \in \mathcal{A}$ y $A \triangle B \in \mathcal{A}$.
 - c) A es cerrada por intersecciones numerables.

Para demostrar estas propiedades de una σ -álgebra \mathcal{A} de subconjuntos de un conjunto X, sigamos los siguientes pasos:

(a)
$$\emptyset \in \mathcal{A}$$

Por la definición de una σ -álgebra, sabemos que $X \in \mathcal{A}$ y que \mathcal{A} es cerrada bajo complementos. Específicamente, dado que $X \in \mathcal{A}$, su complemento X^c también debe pertenecer a \mathcal{A} . Pero $X^c = \emptyset$. Por lo tanto,

$$\emptyset \in \mathcal{A}$$
.

(b) Si $A, B \in \mathcal{A}$, entonces $A \setminus B \in \mathcal{A}$ y $A\Delta B \in \mathcal{A}$

Parte 1: $A \setminus B \in \mathcal{A}$

Recordemos que $A \setminus B = A \cap B^c$.

- Dado que \mathcal{A} es una σ -álgebra, $B \in \mathcal{A}$ implica que $B^c \in \mathcal{A}$. - Dado que $A \in \mathcal{A}$ y $B^c \in \mathcal{A}$, y que una σ -álgebra es cerrada bajo intersecciones finitas, tenemos que $A \cap B^c \in \mathcal{A}$.

Por lo tanto,

$$A \setminus B \in \mathcal{A}$$
.

Parte 2: $A\Delta B \in \mathcal{A}$

Recordemos que $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

- Ya demostramos que $A \setminus B \in \mathcal{A}$ y por una razón análoga, $B \setminus A = B \cap A^c \in \mathcal{A}$. - Dado que \mathcal{A} es una σ -álgebra, es cerrada bajo uniones numerables. En particular, es cerrada bajo uniones finitas.

Por lo tanto,

$$A\Delta B = (A \setminus B) \cup (B \setminus A) \in \mathcal{A}.$$

(c) \mathcal{A} es cerrada bajo intersecciones numerables

Dado que \mathcal{A} es una σ -álgebra, sabemos que \mathcal{A} es cerrada bajo uniones numerables. Para demostrar que \mathcal{A} es cerrada bajo intersecciones numerables, usaremos la propiedad de los complementos y la cerradura bajo uniones numerables.

Supongamos que $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$. Consideramos la intersección numerable $\bigcap_{n=1}^{\infty}A_n$.

- Dado que \mathcal{A} es una σ -álgebra, $A_n \in \mathcal{A}$ implica que $A_n^c \in \mathcal{A}$ para cada n. - La unión de los complementos $\bigcup_{n=1}^{\infty} A_n^c$ también pertenece a \mathcal{A} porque \mathcal{A} es cerrada bajo uniones numerables.

Observamos que:

$$\left(\bigcap_{n=1}^{\infty} A_n\right)^c = \bigcup_{n=1}^{\infty} A_n^c.$$

Dado que $\bigcup_{n=1}^{\infty} A_n^c \in \mathcal{A}$, y que \mathcal{A} es cerrada bajo complementos, tenemos que:

$$\left(\bigcap_{n=1}^{\infty} A_n\right)^c \in \mathcal{A} \implies \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}.$$

Hemos demostrado que:

- (a) $\emptyset \in \mathcal{A}$.
- (b) Si $A, B \in \mathcal{A}$, entonces $A \setminus B \in \mathcal{A}$ y $A \Delta B \in \mathcal{A}$.
- (c) \mathcal{A} es cerrada bajo intersecciones numerables.

3. Probar que todo subconjunto numerable de \mathbb{R} es nulo.

Para probar que todo subconjunto numerable de \mathbb{R} es nulo con respecto a la medida de Lebesgue, primero recordemos algunas definiciones clave:

- Un conjunto $A \subseteq \mathbb{R}$ es numerable si es finito o contable infinito. - Un conjunto $A \subseteq \mathbb{R}$ es nulo con respecto a la medida de Lebesgue si m(A) = 0, donde m denota la medida de Lebesgue.

Paso 1: Propiedades de la medida de Lebesgue

La medida de Lebesgue tiene las siguientes propiedades relevantes:

1. Medida de un solo punto: La medida de Lebesgue de cualquier conjunto de un solo punto $\{x\}\subseteq\mathbb{R}$ es cero, es decir, $m(\{x\})=0$. 2. Aditividad numerable: Si A_1,A_2,\ldots son conjuntos medibles y disjuntos, entonces:

$$m\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} m(A_i).$$

3. Subaditividad: Para cualquier colección numerable de conjuntos medibles A_1, A_2, \ldots :

$$m\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} m(A_i).$$

Paso 2: Medida de un conjunto finito

Sea $A = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}$ un conjunto finito de n puntos. La medida de A es:

$$m(A) = m(\lbrace x_1 \rbrace) + m(\lbrace x_2 \rbrace) + \dots + m(\lbrace x_n \rbrace) = 0 + 0 + \dots + 0 = 0.$$

Paso 3: Medida de un conjunto contable infinito

Sea $A = \{x_1, x_2, x_3, \ldots\} \subseteq \mathbb{R}$ un conjunto contable infinito de puntos. La medida de A es:

$$m(A) = m\left(\bigcup_{i=1}^{\infty} \{x_i\}\right).$$

Dado que los puntos individuales son disjuntos y cada uno tiene medida cero:

$$m\left(\bigcup_{i=1}^{\infty} \{x_i\}\right) = \sum_{i=1}^{\infty} m(\{x_i\}) = \sum_{i=1}^{\infty} 0 = 0.$$

Conclusión

Hemos demostrado que cualquier conjunto finito de puntos tiene medida de Lebesgue cero, y cualquier conjunto contable infinito de puntos también tiene medida de Lebesgue cero debido a la aditividad numerable de la medida de Lebesgue y la propiedad de que la medida de un solo punto es cero. Por lo tanto, todo subconjunto numerable de $\mathbb R$ es un conjunto nulo con respecto a la medida de Lebesgue.

4. Probar que para todos $a, b \in \mathbb{R}$ los intervalos [a, b), [a, b], $[a, +\infty)$ son medibles Lebesgue, y calcular su medida.

Para demostrar que los intervalos [a,b), [a,b], y $[a,+\infty)$ son medibles con respecto a la medida de Lebesgue y calcular sus medidas, procedemos de la siguiente manera:

Medibilidad

La medida de Lebesgue en \mathbb{R} está diseñada para que todos los intervalos sean medibles. Específicamente, los intervalos de la forma [a,b), [a,b], y $[a,+\infty)$ son medibles.

1. Intervalo [a, b)

Medibilidad

El intervalo [a,b) es medible porque los intervalos de la forma $(-\infty,x]$ (y sus complementos) son medibles en la construcción de la medida de Lebesgue, y [a,b) se puede expresar como una combinación de tales intervalos:

$$[a,b) = (a,b) \cup \{a\}.$$

Medida

Para calcular la medida de [a,b), consideramos la diferencia entre b y a:

$$m([a,b)) = m(b-a) + m(\{a\}) = m(b-a) = b-a$$

2. Intervalo [a, b]

Medibilidad

El intervalo [a,b] es medible porque los intervalos cerrados son una de las clases básicas de conjuntos medibles en la construcción de la medida de Lebesgue.

Medida

Para calcular la medida de [a,b], también consideramos la diferencia entre b y a:

$$m([a,b]) = m((-\infty,a)^c \cap (b,+\infty)^c) = b-a.$$

3. Intervalo $[a, +\infty)$

Medibilidad

El intervalo $[a, +\infty)$ es medible porque los intervalos de la forma $(-\infty, x]$ y sus complementos son medibles en la construcción de la medida de Lebesgue, y $[a, +\infty)$ se puede expresar como:

$$[a, +\infty) = (-\infty, a)^c$$

Medida

Para calcular la medida de $[a, +\infty)$, observamos que el intervalo se extiende infinitamente hacia la derecha. Por lo tanto, su medida es infinita:

$$m([a, +\infty)) = +\infty.$$

Resumen

- El intervalo [a, b) es medible y su medida es b - a. - El intervalo [a, b] es medible y su medida es b - a. - El intervalo $[a, +\infty)$ es medible y su medida es $+\infty$.

Por lo tanto, hemos demostrado que estos intervalos son medibles con respecto a la medida de Lebesgue y hemos calculado sus medidas.

- 5. Sea $A \subseteq \mathbb{R}$.
 - a) Probar que si A es abierto entonces $A \in \mathcal{M}$.
 - b) Deducir que si A es cerrado entonces $A \in \mathcal{M}$.

Para demostrar las afirmaciones sobre los conjuntos medibles de Lebesgue en \mathbb{R} , sigamos estos pasos:

(a) Si A es abierto, entonces $A \in \mathcal{M}$.

Demostración

Una construcción típica de la medida de Lebesgue comienza definiendo la medida de intervalos abiertos y luego extendiéndola a la σ -álgebra generada por estos intervalos. Dado que los intervalos abiertos son conjuntos abiertos, y la σ -álgebra generada por estos intervalos incluye todos los conjuntos abiertos (porque cualquier conjunto abierto puede ser expresado como una unión numerable de intervalos abiertos), concluimos que:

$$A \in \mathcal{M}$$
 si A es abierto.

(b) Deducir que si A es cerrado entonces $A \in \mathcal{M}$.

Demostración

Para mostrar que los conjuntos cerrados son medibles, usaremos la propiedad de los complementos en una σ -álgebra. Recordemos que una σ -álgebra es cerrada bajo complementos y uniones numerables. Específicamente, si un conjunto pertenece a una σ -álgebra, su complemento también pertenece a esa σ -álgebra.

Supongamos que $A \subseteq \mathbb{R}$ es un conjunto cerrado. Necesitamos demostrar que $A \in \mathcal{M}$.

1. Sabemos que el complemento de A, $A^c = \mathbb{R} \setminus A$, es abierto porque A es cerrado. 2. Por la parte (a) de la demostración, cualquier conjunto abierto pertenece a \mathcal{M} . Por lo tanto,

$$A^c \in \mathcal{M}$$
.

3. Dado que \mathcal{M} es una σ -álgebra y es cerrada bajo complementos, concluimos que:

$$A \in \mathcal{M}$$
.

6. Calcular la medida de Lebesgue de \mathbb{Q} y la de los irracionales del [0,1]. ¿Por qué son medibles estos conjuntos?

Medida de Lebesgue de \mathbb{Q} y de los Irracionales en [0,1]

Medida de Lebesgue de \mathbb{Q}

El conjunto de los números racionales, \mathbb{Q} , es numerable.

Dado que $\mathbb Q$ es numerable, su medida de Lebesgue es:

$$m(\mathbb{Q}) = 0.$$

Medida de Lebesgue de los Irracionales en [0, 1]

Los irracionales en [0,1] son los números en [0,1] que no son racionales. Denotemos este conjunto por $\mathbb{I} \cap [0,1]$, donde \mathbb{I} representa el conjunto de los números irracionales.

Para encontrar la medida de Lebesgue de los irracionales en [0,1], podemos usar el hecho de que [0,1] está compuesto por los racionales y los irracionales:

$$[0,1] = (\mathbb{Q} \cap [0,1]) \cup (\mathbb{I} \cap [0,1]).$$

La medida de [0,1] es 1:

$$m([0,1]) = 1.$$

Dado que $\mathbb{Q} \cap [0,1]$ es un subconjunto numerable de [0,1], su medida de Lebesgue es 0:

$$m(\mathbb{Q} \cap [0,1]) = 0.$$

Dado que la medida de un conjunto es aditiva y $\mathbb{Q} \cap [0,1]$ y $\mathbb{I} \cap [0,1]$ son disjuntos, tenemos:

$$m([0,1]) = m(\mathbb{Q} \cap [0,1]) + m(\mathbb{I} \cap [0,1]).$$

Sustituyendo las medidas conocidas:

$$1 = 0 + m(\mathbb{I} \cap [0, 1]).$$

Por lo tanto,

$$m(\mathbb{I} \cap [0,1]) = 1.$$

Medibilidad de \mathbb{Q} y $\mathbb{I} \cap [0,1]$

 \mathbb{Q} es medible

- Los conjuntos numerables son medibles porque cualquier conjunto de medida cero es medible. - Dado que $\mathbb Q$ es numerable, $\mathbb Q$ es medible.

 $\mathbb{I} \cap [0,1]$ es medible

- [0,1] es un intervalo cerrado, y por lo tanto, es medible. $\mathbb{Q} \cap [0,1]$ es un subconjunto numerable de [0,1] y es medible. La medibilidad es cerrada bajo complementos. Dado que $\mathbb{I} \cap [0,1] = [0,1] \setminus (\mathbb{Q} \cap [0,1])$, $\mathbb{I} \cap [0,1]$ es medible como complemento de un conjunto medible dentro de un conjunto medible.
- 7. Probar que todo conjunto acotado de \mathcal{M} tiene medida finita. Mostrar un conjunto de \mathcal{M} que tenga medida de Lebesgue finita pero que no sea acotado. #TO-DO

- 8. Si $A, B \in \mathcal{M}$ entonces $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$. #TO-DO
- 9. Sea $A \in \mathcal{M}$. Probar que si $\mu(A) = 0$ entonces $A^{\circ} = \emptyset$. ¿Vale la vuelta?

Demostración

Supongamos, por contradicción, que $A^{\circ} \neq \emptyset$. Esto significa que existe un punto $x \in A^{\circ}$ tal que A° contiene un intervalo abierto alrededor de x. Es decir, existe $\epsilon > 0$ tal que $(x - \epsilon, x + \epsilon) \subseteq A^{\circ} \subseteq A$.

La medida de Lebesgue de un intervalo abierto $(x - \epsilon, x + \epsilon)$ es 2ϵ . Dado que $(x - \epsilon, x + \epsilon) \subseteq A$ y la medida de un subconjunto es menor o igual a la medida del conjunto que lo contiene, tendríamos:

$$\mu(A) \ge \mu((x - \epsilon, x + \epsilon)) = 2\epsilon.$$

Sin embargo, esto contradice la hipótesis de que $\mu(A) = 0$. Por lo tanto, nuestra suposición de que $A^{\circ} \neq \emptyset$ es falsa. Concluimos que:

$$A^{\circ} = \emptyset$$
.

10. Sea $A \subseteq [0,1]$ un conjunto medible Lebesgue tal que $\mu(A) = 1$. Probar que A es denso en [0,1].

Para probar que un conjunto medible de Lebesgue $A \subseteq [0,1]$ tal que $\mu(A) = 1$ es denso en [0,1], sigamos los siguientes pasos:

Definición de denso

Un conjunto $A \subseteq [0,1]$ es denso en [0,1] si para todo intervalo abierto no vacío $(a,b)\subseteq [0,1], A\cap (a,b)\neq \emptyset$.

Demostración

Para demostrar que A es denso en [0,1], supondremos por contradicción que A no es denso en [0,1].

Paso 1: Suposición de contradicción

Supongamos que existe un intervalo abierto $(a,b) \subseteq [0,1]$ tal que $A \cap (a,b) = \emptyset$. Esto implica que $A \subseteq [0,1] \setminus (a,b)$.

Paso 2: Medida del intervalo (a, b)

El intervalo (a,b) es un conjunto medible de Lebesgue con medida $\mu((a,b)) = b-a$. Dado que $A \cap (a,b) = \emptyset$, tenemos que A está contenido en $[0,1] \setminus (a,b)$.

Paso 3: Medida de $[0,1] \setminus (a,b)$

El conjunto $[0,1] \setminus (a,b)$ se puede descomponer como la unión de dos intervalos:

$$[0,1] \setminus (a,b) = [0,a] \cup [b,1].$$

La medida de $[0, a] \cup [b, 1]$ es:

$$\mu([0,a] \cup [b,1]) = \mu([0,a]) + \mu([b,1]) = a + (1-b) = 1 - (b-a).$$

Dado que b - a > 0, tenemos:

$$\mu([0,a] \cup [b,1]) = 1 - (b-a) < 1.$$

Paso 4: Contradicción

Hemos supuesto que $A \subseteq [0, a] \cup [b, 1]$. Esto implica que la medida de A es como máximo la medida de $[0, a] \cup [b, 1]$, que es menor que 1:

$$\mu(A) \le \mu([0, a] \cup [b, 1]) < 1.$$

Sin embargo, esto contradice la hipótesis de que $\mu(A) = 1$.

Conclusión

La suposición de que existe un intervalo abierto $(a,b) \subseteq [0,1]$ tal que $A \cap (a,b) = \emptyset$ lleva a una contradicción. Por lo tanto, no puede existir tal intervalo, lo que implica que para cualquier intervalo abierto $(a,b) \subseteq [0,1]$, $A \cap (a,b) \neq \emptyset$.

Así, hemos demostrado que A es denso en [0, 1].

NOTA: Otra manera de hacerlo es pensar que A es denso en [0,1] si y solo si $\overline{A}=[0,1]$

11. Sea $A \subseteq \mathbb{R}$. Probar que las siguientes afirmaciones son equivalentes:

$$a) A \in \mathcal{M}.$$

b) Existen una sucesión $(F_n)_{n\in\mathbb{N}}$ de conjuntos cerrados contenidos en A y un conjunto Z de medida nula tales que

$$A = \left(\bigcup_{n \in \mathbb{N}} F_n\right) \cup Z.$$

c) Existen una sucesión $(G_n)_{n\in\mathbb{N}}$ de conjuntos abiertos que contienen a A y un conjunto H de medida nula tales que

$$A = \left(\bigcap_{n \in \mathbb{N}} G_n\right) \setminus H.$$

#TO-DO

- 12. Sea $A \subseteq \mathbb{R}$. Probar que $A \in \mathcal{M}$ si y sólo si para todo $\varepsilon > 0$ existen conjuntos G abierto y F cerrado tales que $F \subseteq A \subseteq G$ y $\mu(G \setminus F) < \varepsilon$. #TO-DO
- 13. Sea $(A_n)_{n\in\mathbb{N}}\subseteq \mathcal{M}$ y $B\in \mathcal{M}$ tales que $\lim_{n\to\infty}\mu(A_n\triangle B)=0$. Probar que $\lim_{n\to\infty}\mu(A_n)=\mu(B)$. #TO-DO
- 14. Recordemos que para $c \in \mathbb{R}$ y $A \subseteq \mathbb{R}$ denotamos

$$cA = \{ca : a \in A\}.$$

- a) Probar que si $A \in \mathcal{M}$ entonces $cA \in \mathcal{M}$.
- b) Probar que si c > 0 entonces $\mu(cA) = c\mu(A)$.
- c) ¿Qué se puede decir de $\mu(cA)$ en el caso c < 0?

#TO-DO

15. Probar que existe una función sobreyectiva $f:[0,1] \to \mathbb{R}$ que vale 0 en casi todo punto de [0,1]. ¿Puede una tal función ser continua?

#TO-DO