Refractory status epilepticus

Sarah Schmitt, MD Nov. 2016

Refractory status epilepticus

 Refractory status epilepticus: Prolonged seizure activity that fails to respond to a first line agent (usually a benzodiazepine) and a second line medication

Status epilepticus treatment

Refractory status epilepticus

- Data on treatment = relatively limited
- Expert consensus guidelines: Convulsive status epilepticus → more aggressive therapy?
 - More clear risk of neuronal injury and death, based on animal data

Refractory status epilepticus

- Convulsions, motor manifestations of status epilepticus diminish with time
 - 16 patients convulsive status epilepticus at time of onset
 - By the time placed on IV anesthetic agent, 100% were nonconvulsive
- Continuous EEG monitoring is necessary to guide treatment in patients with status epilepticus
 - 89-92% seizures subclinical

Consequences

- Mortality ranges from 23-61%
 - 2.7x higher mortality in older patients
 - Higher mortality in patients with status epilepticus due to anoxia
 - Improved mortality in patients with seizures due to pre-existing epilepsy, alcohol abuse
- Morbidity in > 90% of survivors

How do we treat?

- Significant variability in practice!
- 2003 survey in the U.S. for patient in generalized convulsive status epilepticus:

Variability in treatment

• 2003 survey of European neurologists:

Treatment after failure of 1st and 2nd line agents

Time point after onset of status epilepticus at which anesthesia is used

Variability in treatment

 From 2012 survey of U.S. and Canadian neurologists' preferred 1st, 2nd and 3rd line agents in treating status epilepticus:

Current treatment

Treatment options include treatment with a different 2nd line antiepileptic drug or an IV anesthetic agent

- Propofol
- Midazolam
- Pentobarbital
- +/- Ketamine*
- Thiopental (not available in the U.S.)

^{*} Recommended in European Federation of Neurologic Society guidelines, but not recommended by Neurocritical Care Society or American Epilepsy Society guidelines

Anesthetics: weighing the risks

- Risk versus benefit
- Prolonged seizures → worse outcomes
- IV anesthetics / therapeutic coma not benign
 - IV benzodiazepines → ↑ hospital stays, ↑ intubation
 - ∘ IV anesthetics → 2.6x mortality, 3.9x infection
 - Controlling for etiology, age and epilepsy, IV anesthetics → 9x mortality ↑, 6.8x disability ↑
 - One study -> no association between IV anesthetics and outcome

Midazolam IV infusion

- Advantages:
 - Short half life (1.5 to 3.5 hours)
 - Rapid titration
 - Can be withdrawn quickly
 - Less hypotension than pentobarbital
- Disadvantages:
 - ~ 50% of patients have breakthrough sz as midazolam is tapered

Propofol IV infusion

• Advantages:

- Rapid onset (<1 minute) & elimination
- Less hypotension than pentobarbital

Disadvantages:

 Risk of "propofol infusion syndrome", a rare possibly fatal syndrome of acidosis, hyperkalemia and rhabdomyolysis with prolonged use

Pentobarbital / thiopental infusion

- Advantages:
 - Very effective (only 12% breakthrough seizures)
- Disadvantages:
 - Hypotension common most patients <u>will</u> require vasopressor agents
 - Long half life (20 60 hours) → patients in prolonged coma

Propofol vs. midazolam vs. pentobarbital

- Study of 193 patients with RSE → no difference in mortality between agents
- Pentobarbital → fewer breakthrough seizures but greater hypotension, longer time intubated

Anesthetic agents in SE

	Midazolam (N=55)	Propofol (N=35)	Pentobarbital (N=106)	Total (N=196)
Acute treatment failure	17%	26%	8%	13%
Breakthrough seizures	49%	20%	12%	24%
Hypotension →	31%	38%	68%	54%
pressors				
Treatment failure	11%	4%	3%	18%
Mortality	46%	52%	48%	48%

Ketamine infusion

- Ketamine advantages:
 - Does not produce cardiac depression, hypotension
 - Short half life (2-3 hours)
- Possible concerns regarding increased intracranial pressure (ICP)
 - Children sedated with ketamine for lumbar puncture had higher ICPs
 - Meta-analysis of 7 studies found no effect of ketamine on ICP

Ketamine infusion

- Largest study: Retrospective 58 patients at 10 centers
 - Ketamine → "possibly" or "probably" contributed to seizure control in 32%
 - No response to ketamine seen:
 - In patients seizing for > 8 days
 - In patients who had already failed 7 or more drugs
 - Mortality rate 43%, slightly lower than with other IV sedative medications

Ketamine infusion

- Meta-analysis of 22 studies:
 - Ketamine → electrographic seizure resolution in 56.5% adult, 63.5% pediatric patients
 - Low incidence of adverse effects (3% adults)

Other possibilities?

	Number of cases	Comments
Allopregnanolone	2	In ongoing clinical trials
Cannabidiol	2	
CSF drainage		Older therapy
Electroconvulsive therapy	8	87% success
Hypothermia	9	High rate of complications
Immunotherapy		Unknown effectiveness
Inhaled anesthetics	27	41% success
Lidocaine	300+, widely used	47-56% success
Magnesium	3	
Neurosurgery	36	75% success
Stiripental	5	60% success
Trancranial magnetic stimulation	21	74% success rate
Vagus nerve stimulator	4	Unclear success

Depth of suppression

- When initiating treatment with IV anesthetic agents, disagreement about depth of sedation:
 - EFNS guidelines: Titrate to either burstsuppression or isoelectric EEG
 - NCS guidelines: Titrate to burst-suppression (8-20 second intervals), diffuse beta, seizure cessation or isoelectric EEG

Depth of suppression

Study of 37 pts with RSE weaned off anesthetic agents:

- 17 successful weans, 20 unsuccessful weans
 - Interburst interval, burst-suppression ratio, length of bursts did not predict successful weans

 - Lower amplitude bursts (< 125 μV) → increased success

Outcome after refractory status

Outcome	n = 596
Death	207 (35%)
Severe neurological deficit	79 (13%)
Mild neurological deficit	80 (13%)
Undefined neurological deficit	22 (4%)
Recovery to baseline	208 (35%)

- New Onset Refractory Status Epilepticus:
 - First described in a group of young women in Singapore
 - Previous healthy patients
 - Etiology unknown (at least initially) despite extensive investigation for infectious etiologies

- NORSE features:
 - CSF: mild lymphocytosis or normal CSF
 - EEG: Repetitive, refractory seizures with focal, multifocal or generalized epileptiform activity
 - Imaging: Highly variable abnormalities, but many patients are normal

Largest case series: 130 cases

- 52% cryptogenic → higher rate of tx failure
- 18% paraneoplastic
- 19% nonparaneoplastic autoimmune
- 7.7% infectious
- ∘ 3.3% other

- Bimodal age distribution (median ages 28.5 and 65.6)
- Female predominance 2:1 (especially in older patients)
- 38% → more than 2 IV anesthetic agents
- 54% of cryptogenic cases → immunotherapy, 69% of cases with an identified etiology received immunotherapy
- Anesthetics → more complications, BUT length of status epilepticus was associated with a higher degree of complications

FIRES

Fever-Induced Refractory Epilepsy Syndrome

- Refractory seizures begin a few days after an infection in previously healthy children
- Cryptogenic etiology
- Surviving patients have significant cognitive deficits after resolution of seizures

FIRES

- Subjects:
 - 77 patients with FIRES
 - Median age 8 year old
- Etiology:
 - Most → extensive metabolic and infectious workup
 - Only 35% tested for autoimmune etiologies
- Treatment:
 - Median of 8 AEDs
 - 39% received IVIg
 - 38% received steroids
 - Immunotherapy was reported to be beneficial in only rare cases

FIRES

- None of the agents used shortened the disease course, except:
 - Ketogenic diet (25% efficacy, used in 5% of cases)
 - IVIg (effective in 6.7% of patients)
- Increased time spent in burst suppression → worse cognitive outcome

FIRES vs. NORSE

	NORSE	FIRES
Age	18-81 (peaks at 29 & 66 years)	2-17 (median 8) years
Gender	F>M (4:1-2:1)	M>F (3:2)
Preceding fever?	34-71%	100%
Autoimmune etiology?	34-37%	4% (but only 35% of patients tested)
CSF	Abnormal 73%	Abnormal 57%
MRI	62% abnormal	32% abnormal early in illness
Outcome	62% poor outcome / deceased	70% poor outcome / deceased
Post-STE epilepsy	92% survivors	97% of survivors

FIRES and NORSE

- Both conditions → inflammation on brain biopsy
- Both conditions → development of refractory epilepsy
- Different gender ratios, response to treatment in two conditions
- Increased understanding of autoimmune disease may provide etiology for previously "cryptogenic" cases

Conclusions

- Treatment of refractory status epilepticus remains challenging due to limited data
- Trials of second line agents and IV anesthetics are reasonable treatment options
- The optimal depth of sedation for patients being treated with IV anesthetics is uncertain
- NORSE and FIRES remain challenging entities to treat. Understanding about these conditions is limited.