令和 5 年 2 月 20 日 (水)修士論文発表会

深層学習による灯謎問題の正解推定 システムの構築

創発ソフトウェア研究室

M2 陳 偉斉

発表の構成

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

発表の構成

1.はじめに

- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

はじめに

灯謎

謎面(問題) 謎目(ヒント) 謎底(答え)

百減一は何? |

|答えは一文字 |

白

- •「問題」,「ヒント」,「答え」のセット
- ・文字の形に注目する種類の問題のみ使用

漢字の意味の情報と形の情報

・灯謎を解くには, 漢字の意味の情報と形の情報が必要

漢字の形の情報

・本研究は漢字の画のみを対象

はじめに

研究目標

人工知能による灯謎の解答生成システムの 構築

本研究の課題

灯謎の正解推定システムの構築 灯謎のデータセットの構築

発表の構成

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

五筆字型入力方法

五筆字型

横棒(一) ⇒ 1 縦棒(|) ⇒ 2 左払い(J) ⇒ 3 点(`) ⇒ 4 折(フ) ⇒ 5

漢字の画を「横棒」、「縦棒」、「左払い」、「点」、「折」に分類し、それぞれ数字 1 から 5 に割当

生成した数字の列を「五筆字型」と呼称

• 五筆字型計算机漢字輸入技術. 河南科学技術出版社, 1985.

Levenshtein 距離

- Levenshtein 距離は2つの文字列の 最小編集回数を表示
- 本研究は漢字間の違いを表現するために使用

文字列「JULY」から「JELLY」に変形する手順

[JULY]

Step1.「JELY」(「U」を「E」に置換)

Step2.「JELLY」(「L」を挿入して終了)

Levenshtein 距離 = 2

•V. I. Levenshtein, et al. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10, pp. 707–710. Soviet Union, 1966.

Word2Vec

- ・漢字ベクトルの生成に使用
- 事前学習済みのモデル "Chinese Word Vectors" を使用
 - •T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. In Y. Bengio and Y. LeCun eds., 1st Interna_x0002_tional Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2–4, 2013, Workshop Track Proceedings, 2013.

Long Short-term Memory (LSTM)

- ・ゲート構造で勾配を制御
- ・メモリセルcで情報を記憶
- ・長期な記憶が可能

•W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. CoRR, abs/1409.2329, 2014.

Bidirectional Encoder Representation from Transformers (BERT)

- •事前学習済みの BERT モデル "bert-base-chinese" を使用
- *J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, June 2019.

発表の構成

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

データセット構築の手順

- ・ 中華灯謎データベースでは中国各地の灯謎愛好者が 収集,作成した灯謎問題 1,408,684 件を収録
- 本研究は収録した灯謎の問題, ヒント, 答えのみを使用 「問題 + ヒント + 答え」形式のデータを正解データと定義
- 研究対象は答えが一文字であり、文字の形に 注目する灯謎問題 (72,937件)

•[中华灯谜库]: http://www.zhgc.com/mk/index.asp.

データセット構築の手順

・ 以降では、便宜的に以下のように呼称

正解データ: 灯謎データベースから収集したデータ 問題 + ヒント + 本来の正解を表示する漢字 正解データセット: 正解データで構成するデータセット

不正解データ:同じ問題とヒントに対して別の答えを付与したデータ 問題 + ヒント + 人為的設定した不正解を表示する漢字 不正解データセット:不正解データで構成するデータセット

不正解データセット構築の手順

- 正解データによる漢字を辞書型データの作成
 - 1. 正解データから漢字を収集
 - 2. 答えとして使用される漢字の頻度の 辞書型データを作成
 - 3. 五筆入力方法により五筆字型の 辞書型データを作成

辞書型データ生成の例

収集した

正解頻度辞書型データ

日:74

白:45

百:32

拍:14

正解とした 回数統計

五筆字型入力方法

横棒(一) ⇒ 1 縦棒(|) ⇒ 2

点(丶) ⇒ 4 折(フ) ⇒ 5 五筆字型辞書型データ

日:2511

白:32511

百:132511

拍:12132511

不正解データセット構築の手順

・ 以降では、便宜的に以下のように呼称

難易度の低い漢字: Levenshtein 距離が大きい漢字

不正解データセット(難易度低い):

「問題 + ヒント + 難易度の低い漢字」 形式のデータセットで 構成する不正解データセット

難易度の高い漢字: Levenshtein 距離が小きい漢字

不正解データセット(難易度高い):

「問題 + ヒント + 難易度の高い漢字」 形式のデータセットで 構成する不正解データセット

不正解データセット構築の手順

- 不正解データを表示する漢字の難易度設定
 - 1. 正解漢字と全部漢字の五筆字型間の Levenshtein 距離を計算
 - 1. 正解漢字に対して, 難易度の低い漢字と難易度の高い漢字を設定
 - 1. 不正解データセット (難易度低い) と不正解 データセット (難易度高い) を構築

不正解漢字設定(難易度低いの例)

五筆字型辞書型データ Levenshtein 距離

<u>正解</u> 日:3511 白:32511 百:132511

拍:12132511

白:1 百:2

拍:4

正解頻度辞書型データ

日:74

白:45

百:32

. . .

拍:14

正解頻度辞書型データ

日:74

白:45

百:32

拍:13

データセットの統計

データセット	データ数
正解データ	72,937
不正解データ(難易度低い)	72,937
不正解データ(難易度高い)	72,937

• 正解と不正解のデータ数を揃えた

発表の構成

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

提案手法

・ 漢字の画情報を利用した 灯謎問題正解推定モデル

対象とする灯謎問題の 「問題 + ヒント + 答え」部分を 順次に入力, データの前文により 答えは正解か不正解かを推定

漢字の分散表現生成に 漢字の画情報を導入

漢字の画の分散表現の生成

5次元ベクトルは漢字を構成の「横棒」,「縦棒」, 「左払い」,「点」,「折」の出現回数を表示

画情報を含まれた分散表現の生成

- 漢字分散表現と画分散表現を 結合
- 漢字分散表現と分散表現は 同じ300次元

発表の構成

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

実験説明

実験用データセットは3つの手法を使用

BERT+MLP:

事前学習済みの BERT モデル "bert-base-chinese" を使用 BERTモデルで灯謎データの分散表現を生成し, 2 値分類 MLP で 灯謎の答えは正解か不正解かを推定

LSTM+Word2Vec:

事前学習済みの "Chinse Word Vectors" を使用 LSTM で前文との関係を考慮した分散表現を生成し, 最後に全結合層に入力して灯謎の答えは正解か不正解かを推定

LSTM+Word2Vec+Stroke

本研究の提案手法, LSTM+Word2Vec 手法の上漢字の画情報を考慮

実験説明

実験用データセットは2つを使用

以降では以下のように呼称 難易度の低いデータセット: 正解データセット + 不正解データセット (難易度低い) 難易度の高いデータセット: 正解データセット + 不正解データセット (難易度高い)

- ・ 入力データは「問題;ヒント;答え」形式(; は分割符号)
- 比較するために, 画情報入れ込まない LSTM + Word2Vec と BERT + MLP モデルを使用

実験データの処理

難易度の低いデータセット	訓練データ	テストデータ
データ総数	106,464	26,616
正解データ	53,277	13,263
不正解データ	53,187	13,353
難易度の高いデータセット	訓練データ	テストデータ
難易度の高いデータセット データ総数	訓練データ 106,464	テストデータ 26,616

- ・実験用データを8対2で訓練データ,テストデータに分割
- •2 つのデータセットは正解データは同じであり, 不正解 データのみ不同

提案手法の実験条件

パラメータ	数值
分散表現の次元数	300
画分散表現の次元数	30
隠れ層の次元数	256
バッチサイズ	128
Dropout	0.5
損失関数	Cross-Entropy Loss
最適化手法	Adam
学習率	0.00003
Epoch 数	400

・画情報入れ込まない LSTM + Word2Vec は同じパラメータを使用

BERTの実験条件

パラメータ	数值
隠れ層の次元数	256
バッチサイズ	128
Dropout	0.5
損失関数	Cross-Entropy Loss
最適化手法	AdamW
学習率	0.00005
Epoch 数	400

実験結果

難易度の低いデータセットによる実験結果

手法	Accuracy	Pricision	Recall	F1 値
BERT+MLP	73.26%	74.08%	72.40%	73.22%
LSTM+Word2Vec	81.68%	79.73%	84.78%	82.18%
LSTM+Word2Vec+Stroke	85.76%	85.55%	85.94%	85.74%

難易度の高いデータセットによる実験結果

手法	Accuracy	Pricision	Recall	F1 値
BERT+MLP	61.53%	61.13%	61.53%	61.33%
LSTM+Word2Vec	76.88%	75.80%	78.70%	77.22%
LSTM+Word2Vec+Stroke	79.61%	78.76%	80.89%	79.81%

• 結果として提案手法は比較的に有効

提案手法によるテストデータの精度推移

難易度の低いデータセットの 精度推移

難易度の高いデータセットの 精度推移

• 人工知能の灯謎の対する能力は人類と類似

テストデータの例

問題: 十八学士 (唐代十八人の政治家の意味)

ヒント: 7 筆字 (答えは 7 画の漢字)

正解: 李

(「十八」は「木」を表し、「学士」は「子」を表現

故に「十+八+子=李」が正解)

難易度の高い漢字:季(正解に高類似性)

難易度の低い漢字:惨(正解に低類似性)

・ 提案手法は推定成功が,他の手法では推定失敗

発表の構成

- 1.はじめに
- 2.要素技術
- 3.データセット
- 4.提案手法
- 5.実験
- 6.まとめと今後の課題

まとめと今後の課題

まとめ

灯謎の正解推定システムの構築

灯謎データセットの構築

画情報の導入は灯謎の正解推定に有効

• 今後の課題

モデルの精度向上の考案

別の種類の灯謎を用いてデータセットを構築

人工知能による灯謎の解答生成システムの構築

ご清聴ありがとうございました