OPTIMAL TUNING OF SUBSAMPLING HAMILTONIAN MONTE CARLO

KHUE-DUNG DANG, MATIAS QUIROZ ROBERT KOHN, MINH-NGOC TRAN MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

OVERVIEW

- Hamiltonian Monte Carlo (HMC)
- HMC-ECS: HMC with Energy Conserving Subsampling
- Block-Poisson estimator of the likelihood
- **Signed HMC-ECS**
- Optimal tuning of HMC-ECS
- **■** Empirical results

THE METROPOLIS-HASTINGS (MH) ALGORITHM

■ Bayesian inference

$$\pi(\theta) \propto L(\theta)p(\theta)$$

- Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ..., N
 - 1. Sample $heta_p \sim q\left(\cdot| heta^{(i-1)}
 ight)$ (the **proposal distribution**)
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{L(\theta_p)p(\theta_p)}{L(\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_p\right)}{q\left(\theta_p|\theta^{(i-1)}\right)} \right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

PROBLEM #1 - LIKELIHOOD EVALUATIONS CAN BE COSTLY.

High-dimensional spatio-temporal problems (GMRFs)

Models where **numerical methods** are needed for evaluating $p(y_i|\theta)$ (ODEs, optimization, etc)

■ **Doubly intractable problems** with costly normalization constants (ERGMs)

■ So called **Big data** problems with many observations.

PROBLEM #2 - HIGH-DIMENSIONAL SPACES

- Hard to make good proposals in high dimensional parameter spaces.
- Random walk Metropolis

$$\theta_p | \theta^{(i-1)} \sim N(\theta^{(i-1)}, c \cdot \Sigma)$$

traverses the parameter space slowly in high dimensions.

- Small *c* high acceptance probability, but small steps.
- Large *c* large steps, but low acceptance probability.

HAMILTONIAN MONTE CARLO (HMC) - CONTINUOUS TIME

- Augment the posterior with **momentum** variables $\mathbf{r} \in \mathbb{R}^d$.
- **Extended target**:

$$ar{\pi}(\theta, \mathbf{r}) \propto \exp\left(-\mathcal{H}(\theta, \mathbf{r})\right), \quad \mathcal{H}(\theta, \mathbf{r}) = \mathcal{U}(\theta) + \mathcal{K}(\mathbf{r})$$

$$\mathcal{U}(\theta) = -\log L(\theta) - \log p(\theta) \quad \text{and } \mathcal{K}(\mathbf{r}) = \frac{1}{2}\mathbf{r}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{r}.$$

■ Proposal for (\mathbf{r}, θ) is generated by drawing $\mathbf{r} \sim N(\mathsf{O}, \mathbf{M}^{-1})$ and follow the Hamiltonian dynamics:

$$\begin{split} \frac{d\theta}{dt} &= \frac{\partial \mathcal{H}(\theta, \mathbf{r})}{\partial \mathbf{r}} = \mathbf{M}^{-1} \mathbf{r} \\ \frac{d\mathbf{r}}{dt} &= -\frac{\partial \mathcal{H}(\theta, \mathbf{r})}{\partial \theta} = -\frac{\partial \mathcal{U}(\theta)}{\partial \theta} \end{split}$$

- **Properties of Hamiltonian dynamics**:
 - 1. **Reversible** (one-to-one) [leaves target distribution invariant]
 - 2. Volume preserving [Jacobian is one]
 - 3. **Energy conserving** [MH acceptance probability is 1]

HAMILTONIAN MONTE CARLO (HMC) - DISCRETE TIME

- **Leap-frog discretization** of the Hamiltonian dynamics.
- Take *L* steps of size ϵ .
- MH acceptance probabilty is no longer 1.
- Problem: each of the *L* steps require computing posterior gradient $\frac{\partial \log \pi(\theta)}{\partial \theta}$ for each proposal draw. Costly!
- Naive solution: simulate the Hamiltonian dynamics on a subset of the data.
- Problem: **Energy is not conserved**. MH acceptance probability quickly drops with dimension.
- Our solution: use ideas from MCMC with estimates of the target posterior.

ESTIMATING THE LIKELIHOOD

Likelihood estimator, $\hat{L}_m(\theta, \mathbf{u})$, based on m auxilliary random variables $\mathbf{u} = (u_1, ..., u_m)$. **Unbiased**:

$$\mathbb{E}_{u}\left[\hat{L}_{m}\left(\theta,\mathbf{u}\right)\right]=L\left(\theta\right).$$

- **Subsampling**:
 - $\mathbf{u} = (u_1, ..., u_m)$ index sampled observations
 - unbiased **log-likelihood estimator** $[\ell(\theta) \equiv \log L(\theta)]$

$$\hat{\ell}(\theta, \mathbf{u}) = \frac{n}{m} \sum_{i \in \mathbf{u}} p(y_i | \theta)$$

- bias-correction
- control variates to reduce variance
- For (much) more info, see our papers:
 - Speeding Up MCMC by Efficient Data Subsampling, JASA.[1]
 - · Subsampling MCMC an Intro for the Survey Statistician, Sankhya A.

PSEUDO-MARGINAL MH

- Initialize $(\theta^{(0)}, \mathbf{u}^{(0)})$ and iterate for i = 1, 2, ..., N
 - 1. Sample $\theta_p \sim q\left(\cdot|\theta^{(i-1)}\right)$ and $\mathbf{u}_p \sim p(\mathbf{u})$ to obtain the **unbiased** estimate $\hat{L}(\theta_p, \mathbf{u}_p)$
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{\hat{\mathbf{L}}\left(\theta_{p}, \mathbf{u}_{p}\right) p(\theta_{p})}{\hat{\mathbf{L}}\left(\theta^{(i-1)}, \mathbf{u}^{(i-1)}\right) p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_{p}\right)}{q\left(\theta_{p}|\theta^{(i-1)}\right)} \right)$$

- 3. With probability α set $\left(\theta^{(i)}, \mathbf{u}^{(i)}\right) = (\theta_p, \mathbf{u}_p)$ and $\left(\theta^{(i)}, u^{(i)}\right) = \left(\theta^{(i-1)}, \mathbf{u}^{(i-1)}\right)$ otherwise.
- Targets a joint distribution $\bar{\pi}_m(\theta, \mathbf{u})$ with marginal $\pi(\theta)$ [2]
- \blacksquare .. but low $\mathbb{V}\left(\hat{L}\left(\theta,\mathbf{u}\right)\right)$ crucial for **efficient sampling**.

HMC with Energy Conserving Subsampling

Pseudo-marginal extended target

$$\begin{split} \bar{\pi}_m(\theta, \mathbf{r}, \mathbf{u}) &\propto \exp\left(-\hat{\mathcal{H}}(\theta, \mathbf{r})\right) p_U(\mathbf{u}), \quad \hat{\mathcal{H}}(\theta, \mathbf{r}) = \hat{\mathcal{U}}(\theta) + \mathcal{K}(\mathbf{r}) \\ \hat{\mathcal{U}}(\theta) &= -\log \hat{L}(\theta) - \log p(\theta) \quad \text{and } \mathcal{K}(\mathbf{r}) = \frac{1}{2} \mathbf{r}^\mathsf{T} \mathbf{M}^{-1} \mathbf{r}. \end{split}$$

- Marginal of θ is still $\pi(\theta)$, if $\hat{L}(\theta)$ is unbiased.
- **■** HMC-within-Gibbs:
 - 1. θ , $\mathbf{r} | \mathbf{u}$ HMC with energy $\hat{\mathcal{H}}$ given the subsample \mathbf{u}
 - 2. $\mathbf{u}|\theta, \mathbf{r}$ Metropolis-Hastings update of subsample
- Crucial: the same $\hat{L}(\theta)$ is used in:
 - · The Hamiltonian dynamics and
 - · The MH acceptance probability
- HMC-ECS. Subsampling conserves energy.
- Distant proposals with high MH acceptance probability.

THE BLOCK-POISSON ESTIMATOR

- The **Block-Poisson estimator** of the likelihood $L(\theta)$:
 - Draw $\mathcal{X}_1, ..., \mathcal{X}_\lambda \overset{iid}{\sim} \text{Pois} (1)$.
 - For $l = 1, ..., \lambda$, draw \mathcal{X}_l mini-batches of data of size m.
 - · Compute unbiased mini-batch estimators

$$\hat{\ell}_m^{(h,l)}$$
, for $h = 1, ..., \mathcal{X}_l$

• Construct likelihood estimate for some constant $a \in \mathbb{R}$

$$\hat{L}_B(\theta) \equiv \prod_{l=1}^{\lambda} \xi_l \text{ where } \xi_l \equiv \exp\left(\frac{a+\lambda}{\lambda}\right) \prod_{h=1}^{\mathcal{X}_l} \left(\frac{\ell_m^{(h,l)} - a}{\lambda}\right).$$

What really matters for MH is the variance of

$$\log \frac{\hat{\boldsymbol{\rho}}(\mathbf{y}|\theta_{p},\mathbf{u}_{p})}{\hat{\boldsymbol{\rho}}(\mathbf{y}|\theta^{(i-1)},\mathbf{u}^{(i-1)})}$$

■ Product form of $\hat{L}_B(\theta)$: can use **Block Pseudo Marginal (BPM)**.

PROPERTIES OF THE BLOCK-POISSON ESTIMATOR

$$\hat{L}_B(\theta) = \prod_{l=1}^{\lambda} \xi_l$$
, where $\xi_l = \exp\left(\frac{a+\lambda}{\lambda}\right) \prod_{h=1}^{\mathcal{X}_l} \left(\frac{\hat{\ell}_m^{(h,l)} - a}{\lambda}\right)$

- Unbiased: $\mathbb{E}\left(\hat{L}_B(\theta)\right) = L(\theta)$ for all $\theta \in \Theta$. Proof parts:
 - $\mathbb{E}\left(\hat{L}_{B}(\theta)\right) = \mathbb{E}_{\mathcal{X}_{1:\lambda}} \mathbb{E}_{\mathbf{u}|\mathcal{X}_{1:\lambda}} \left(\hat{L}_{B}(\theta)\right)$
 - Poisson expectation becomes a power series in ℓ .
 - Taylor series expansion of $L(\theta) = \exp(\ell(\theta))$.
- **Positive**: $\hat{L}_B(\theta)$ is almost surely positive only if $\hat{\ell}_m^{(h,l)} \geq a$ almost surely for all h and l.
- For a given λ , $\mathbb{V}(\hat{L}_B(\theta))$ is minimized for $a = \ell \lambda$.

SIGNED HMC-ECS

- Forcing a to be a **lower bound** for all $\hat{\ell}_m^{(h,l)}$ is impractical:
 - Usually need to know ℓ_i for all data points.
 - $a = \ell \lambda$ implies that λ will be large. Costly!
- Soft lower bound: $\Pr(\hat{\ell}_m^{(h,l)} \ge a)$ close to one. More efficient, but $\hat{L}_B(\theta) < 0$ possible.
- Signed HMC-ECS [3]
 - Run HMC-ECS on absolute value $|\hat{L}_B(\theta)| p(\theta)$
 - Correct for sign $s = \operatorname{Sign}(\hat{L}_B(\theta))$ using importance sampling

$$\widehat{\mathbb{E}\psi(\theta)} = \frac{\sum_{i=1}^{N} \psi(\theta^{(i)}) s^{(i)}}{\sum_{i=1}^{N} s^{(i)}}.$$

OPTIMAL TUNING OF SIGNED HMC-ECS

- Standard (No U-turn) HMC tuning of:
 - number of leapfrog L
 - $oldsymbol{\cdot}$ step size ϵ
 - mass matrix M.
- **Optimal** λ and m minimizes **Computational Time (CT)**:

$$\mathrm{CT}(\lambda,m) \propto m\lambda \cdot \frac{\mathrm{IF}\left[\sigma_{\log\left|\hat{L}_{B}\right|}^{2}(\lambda,m)\right]}{\left(2\tau(\lambda,m)-1\right)^{2}}$$

- Optimal λ and m balances
 - 1. The **cost** of computing \hat{L}_B , which is $m\lambda$ on average
 - 2. MH inefficiency, IF
 - 3. Probability of a **positive sign** $\tau(\lambda, m) \equiv \Pr(\hat{L}_B \geq 0)$.

OPTIMAL TUNING OF SIGNED HMC-ECS

- To **compute** $CT(\lambda, m)$, we need expressions for:
 - IF(•) • $\sigma_{\log|\hat{L}_B|}^2(\lambda, m)$ • $\tau(\lambda, m)$
- Need to assume the **distribution of** $\hat{\ell}_m^{(h,l)}$
 - Normal (or CLT)
 - Mixture of Normals (universal approximator)
- The **derivation of IF** is an extension of the theory in [4] to blocked signed PMMH.
- **Guidelines** based on **idealized assumptions**. But accurate in experiments.
- Conservative guidelines: $m\lambda$ is not suggested too small.

$\Pr(\hat{L}_B \geq o)$

■ Under the minimum variance condition $a = \ell - \lambda$

$$\hat{L}_B(\theta) = \prod_{l=1}^{\lambda} \xi_l$$
, where $\xi_l = \exp\left(\frac{\ell}{\lambda}\right) \prod_{h=1}^{\mathcal{X}_l} \left(\frac{\hat{\ell}_m^{(h,l)} - \ell}{\lambda} + 1\right)$

- lacksquare $\hat{L}_B(\theta) > 0$ whenever an even number of ξ_l are negative.
- $\xi_l >$ 0 whenever even number of $\frac{\ell_m^{(h,l)}-\ell}{\lambda}+$ 1 are negative.
- Applying a result from Feller's first book twice:

$$\Pr(\hat{L}_B \ge 0) = \frac{1}{2} \left[1 + (1 - 2\Psi(m, \lambda))^{\lambda} \right]$$

$$\Psi(m,\lambda) \equiv \Pr(\xi_l < 0) = \frac{1}{2} \sum_{j=1}^{\infty} \left[1 - (1 - 2\Pr(A_m < 0))^j \right] \Pr(\mathcal{X}_l = j),$$

$$\mathcal{X}_l \overset{iid}{\sim} \operatorname{Pois}(1) \text{ and } A_m = \frac{\hat{\ell}_m^{(h,l)} - \ell}{\lambda} + 1.$$

$$\sigma_{\log|\hat{L}_B|}^2(\lambda, m)$$

■ Under the condition $a = \ell - \lambda$ we have

$$\log |\hat{L}| = \ell + \sum_{l=1}^{\lambda} \sum_{h=1}^{\chi_l} \log \left(\left| \frac{\hat{\ell}_m^{(h,l)} - \ell}{\lambda} + 1 \right| \right)$$
$$= \ell + \frac{1}{2} \sum_{l=1}^{\lambda} \sum_{h=1}^{\chi_l} \log \left(\frac{\hat{\ell}_m^{(h,l)} - \ell}{\lambda} + 1 \right)^2$$

- $\hat{\ell}_m^{(h,l)} \sim \text{Normal} \Rightarrow \sigma_{\log|\hat{L}_B|}^2(\lambda, m)$ is the variance of a random sum of logs of non-central χ^2 variables.
- Non-central χ^2 is a Poisson mixture of central χ^2 [5]
- Moments of log central χ^2 are known from [6]
- Law of total variance

OPTIMAL TUNING - NORMAL CASE

- Assume $\hat{\ell}_m^{(h,l)} \sim \text{Normal}$.
- Both $\Pr(\hat{L}_B \ge 0)$ and $\sigma^2_{\log|\hat{L}_B|}(\lambda, m)$ are functions of the variance of $\hat{\ell}_m^{(h,l)}$

$$\mathbb{V}(\hat{\ell}_m^{(h,l)}(\theta)) = \frac{n^2}{m} \sigma_{\ell_i}^2(\theta)$$

- lacksquare Optimal tuning therefore depends on $\sigma_{\ell_i}^2(\theta)$.
- Solution: estimate $\sigma_{\ell_i}^2(\theta)$ from a subsample for some selected θ .
- What if $\hat{\ell}_m^{(h,l)}$ are not normal?
- Set m= 20 and rely on the CLT. Optimize only λ .
- However, numerical experiments tell us that m = 1 is optimal.

OPTIMAL TUNING - MIXTURE OF NORMALS CASE

- Assume that $\hat{\ell}_m^{(h,l)}$ follows a **mixture of normals.**
- Mixture of normals are universal approximators.
- Both $\Pr(\hat{L}_B \ge 0)$ and $\sigma^2_{\log|\hat{L}_B|}$ are still **tractable**.
- lacksquare ... but estimating $\sigma^2_{\ell_i}(\theta)$ is not enough anymore.
- How to fit a mixture of normals to $\hat{\ell}_m^{(h,l)}$?

■ Matching characteristic functions (c.f.)

- 1. Fit any distribution to a subsample of ℓ_i 's and get the c.f. $\varphi_\ell(t)$.
- 2. Compute the c.f. of $\hat{\ell}_m^{(h,l)}$ as $\varphi_{\hat{\ell}_m}(t) = (\varphi_\ell(t/m))^m$.
- 3. Approximate the distribution of $\hat{\ell}_m^{(h,l)}$ by a normal mixture by L2-matching of c.f.'s. Plancherel's theorem.

MATCHING A 1-COMPONENT MON TO SKEWED NORMAL

MATCHING A 5-COMPONENT MON TO SKEWED NORMAL

RELATIVE CT - LOGISTIC SPLINE REGRESSION 81-DIM

■ Performance measure:

$$RCT = \frac{CT \text{ of algorithm}}{CT \text{ of Perturbed HMC-ECS}}$$

RCT	HMC	$\mathrm{HMC\text{-}ECS}_{\mathrm{S}}$	$\operatorname{SG-HMC}_1$	$\operatorname{SG-HMC}_2$	SGLD
min	358.5	1	7.0	48.6	53.9
median	466.8	2.2	9.5	100.2	230.1
max	683.6	7.2	538.7	246.4	2784.2

POSTERIOR PERTURBATION (BIAS)

CONCLUSIONS

- Subsampling to speed up MCMC and HMC.
- **Block-Poisson** is an **unbiased** and **efficient** estimator of the likelihood.
- Optimal tuning of Signed HMC-ECS with Block-Poisson estimator.
- **Very large speed-ups** compared to regular HMC and state-of-the-art subsampling algorithms.
- Can be used to optimally tune Signed HMC in **doubly** intractable problems.

References

- - M. QUIROZ, R. KOHN, M. VILLANI, AND M.-N. TRAN, "SPEEDING UP MCMC BY EFFICIENT DATA SUBSAMPLING," JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, NO. FORTHCOMING, PP. 1–35, 2018.
- C. Andrieu and G. O. Roberts, "The pseudo-marginal approach for efficient Monte Carlo computations," *The Annals of Statistics*, pp. 697–725, 2009.
 - A.-M. Lyne, M. Girolami, Y. Atchade, H. Strathmann, D. Simpson, *et al.*, "On russian roulette estimates for bayesian inference with doubly-intractable likelihoods," *Statistical science*, vol. 30, no. 4, pp. 443–467, 2015.
- M. K. PITT, R. D. S. SILVA, P. GIORDANI, AND R. KOHN, "ON SOME PROPERTIES OF MARKOV CHAIN MONTE CARLO SIMULATION METHODS BASED ON THE PARTICLE FILTER," JOURNAL OF ECONOMETRICS, VOL. 171, NO. 2, PP. 134–151, 2012.
- C. WALCK, "HAND-BOOK ON STATISTICAL DISTRIBUTIONS FOR EXPERIMENTALISTS," TECH. REP., 1996.

 HTTP://INSPIREHEP.NET/RECORD/1389910/FILES/SUF9601.PDF.

S. E. PAV, "MOMENTS OF THE LOG NON-CENTRAL CHI-SQUARE DISTRIBUTION," ARXIV PREPRINT ARXIV:1503.06266, 2015.