CODE No.: 19BT30201 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-19) Regular Examinations February – 2021

ELECTRICAL MACHINES-I

[Electrical and Electronics Engineering]

Max. Marks: 60

Time: 3 hours

11me: 3 nours		iours			Max. Marks: 60			
Answer One Question from each Unit All questions carry equal marks								
		UNIT-I						
1.	a)	Explain the constructional features of a DC machine with the help of neat sketch.	6 Marks	L1	CO1	PO1		
	b)	An 8 pole, DC shunt generator with 770 wave connected armature conductors and running at 500 r.p.m supplied a load of 12.5 Ω resistance at a terminal voltage of 250V. Armature resistance is 0.24 Ω and field resistance is 250 Ω . Find armature current and induced EMF. Also find the flux per pole. (OR)	6 Marks	L3	CO1	PO4		
2.	a) b)	Derive the EMF equation of a DC generator. A compound generator delivers a load current of 50A at 500V. The resistances are R_a =0.05 Ω , R_{se} = 0.064 Ω and R_{ah} = 250 Ω . The brush contact drop is 1 volt/brush. Find the induced EMF and Armature current when the machine connected as: i) long shunt. ii) short shunt.	6 Marks 6 Marks	L2 L3	CO1 CO1	PO1 PO2		
3.	a)	What is armature reaction? Describe the effects of armature reaction on the operation of DC machine and how the armature reaction is minimized.	6 Marks	L4	CO1	PO1		
	b)	A 4 pole lap wound generator having 480 armature conductors. Supplies a current of 150A. If the brushes are given a lead of 10°. Calculate demagnetizing amperes turns/pole and cross magnetising ampere turns/pole. (OR)	6 Marks	L3	CO1	PO1		
4.	a)	What is commutation? Explain the methods of improving commutation.	6 Marks	L4	CO1	PO3		
	b)	What are the conditions for voltage build up of a dc shunt generator?	6 Marks	L2	CO2	PO2		
_	`	(UNIT-III)	CM 1	T 1	002	DO2		
5.	a)	Explain the Speed-Current, Torque-Current and Speed-Torque characteristics of a DC shunt and series motors.	6 Marks	L1	CO3	PO3		
	b)	A 250V shunt motor has an R_a =0.2 Ω and R_{sh} = 250 Ω . The motor draws 25A runs at 1000 r.p.m. Calculate the speed when the line current is 50A, if armature reaction weakens the field by 3%. Determine the torque in both cases. (OR)	6 Marks	L3	CO3	PO2		
6.	a) b)	Derive torque equation of a DC motor from first principles. A 4 pole series motor has 944 wave connected armature conductors. At a certain load flux per pole is 34.6mwb and the total mechanical torque developed is 209N-m. Calculate the line current taken by the motor and speed at which it will run with an applied voltage of 500V. Total armature resistance is 3Ω .	6 Marks 6 Marks	L1 L3	CO3 CO3	PO1 PO2		

UNIT-IV

7.	a)	Draw the phasor diagram of loads for single phase transformer.	6 Marks	L2	CO4	PO2				
	b)	Derive the EMF equation of a single phase transformer.	6 Marks	L1	CO4	PO1				
		(OR)								
8.	a)	Explain clearly how to perform the OC test on single phase	6 Marks	L3	CO4	PO4				
		transformer. Write the formulae.								
	b)	A 15KVA, 2200/220V, 50Hz transformer gave the following	6 Marks	L3	CO4	PO2				
		results.								
		OC test (L.V side): V =220V, I=2.742A, P=185W.								
		SC test (H.V side): V = 112V, I=6.3A, P=197W.								
		Compute the efficiency at full load 0.8 p.f lead.								
UNIT-V										
9.	a)	Give the merits and demerits of star delta connected three phase	6 Marks	L2	CO4	PO1				
		transformers. Explain the function.								
	b)	Explain about the Scott connection with neat sketch.	6 Marks	L3	CO4	PO2				
(OR)										
10.	a)	Give the merits and demerits of delta connected three phase	6 Marks	L2	CO4	PO1				
		transformers. Explain the function.								
	b)	Illustrate the various types of three phase transformers	6 Marks	L1	CO4	PO1				
		connections.								

(A) (B) (B)