PRESSURE-RESISTANT PLANE DISC VIEHPORTS FROM ALLYL DIGLYCOL CREBONATE PLASTIC FOR HYPERBARIC CHAMBERS(U) NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA J D STACHIM SEP 85 NOSC/TR-1080 F/G 11/9 RD-R168 807 1/1 UNCLASSIFIED lacksquare3 .7 Q (0 Ď. **(***) ÷

MICROCOPY

CHART

TR 1080

Technical Report 1080

September 1985

PRESSURE-RESISTANT PLANE DISC VIEWPORTS FROM ALLYL DIGLYCOL CARBONATE PLASTIC FOR HYPERBARIC CHAMBERS

J. D. Stachiw

Naval Ocean Systems Center

San Diego, California 92152-5000

Approved for public release, distribution unlimited

NAVAL OCEAN SYSTEMS CENTER

San Diego, California 92152-5000

F. M. PESTORIUS, CAPT, USN
Commender

R. M. HILLYER Technical Director

ADMINISTRATIVE INFORMATION

The research reported herein was conducted for the Naval Civil Engineering Laboratory under project Y1316 over the period October 1984 to September 1985.

Released by J.D. Stachiw. Technical Staff

Under authority of I.P. Lemaire, Head Ocean Engineering Division

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE							
18 REPORT SECUR	ITY CLASSIFICATION			16 RESTRICTIVE MARKINGS			
UNCLASSIF	TED			İ			
28 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABI	LITY OF REPORT				
26 DECLASSIFICATION DOWNGRADING SCHEDULE			Approved for pul	Approved for public release; distribution is unlimited.			
4 PERFORMING OF	GANIZATION REPORT	NUMBERIS	· · · · · · · · · · · · · · · · · · ·	5 MONITORING ORGANIZA			
NOSC TR	1080]			
NOSC TR 1	ORMING ORGANIZATIO	ÓN	6b OFFICE SYMBOL	78 NAME OF MONITORING	ORGANIZATION		
			(if applicable)				
Naval Ocean	1 Systems Cen State and ZIP Code:	iter	 	7b ADDRESS (City State and	d ZIP Codei		
San Diego,	CA 92152-50	00		!			
8a NAME OF FUND	ING SPONSORING OR	IGANIZATION	8b OFFICE SYMBOL (if applicable)	9 PROCUREMENT INSTRUM	MENT IDENTIFICATION N	UMBER	
Naval Civil	Engineering L	aboratory	1]			
BL ADDRESS (City				10 SOURCE OF FUNDING N	UMBERS		
				PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT NO
Post Huanas	ne, CA 93043						
	ecurity Classification	· 		63725N	Y1316	94-YA94	-
PRESSURE- HYPERBAR	IC CHAMBLE	PLANE DISC (S	VIEWPORTS FROM A	ALLYL DIGLYCOL	CARBONATE	PLASTIC FOR	₹
JD Stachiw	•						
*3a *YPE OF REPO	PT	13b TIME CO	overed Oct 1984 _{TO} Sep 1985	14 DATE OF REPORT (Year.	Month. Day:	15 PAGE COL	JNT
Research	NOTATION	FROM	10	September 1985			
							i
** OSATI CODES			18 SUBJECT TERMS (Continue	e on reverse if necessary and idea	ntify by block number:		
F1E, D	GROUP	SUB GROUP					
	ļ		Acrylic windows. I	Hyperbaric chambers	. Pressure test	ing.	
* 4 ABS*8AC* (O//	tinge on reverse it nece	essary and dentify by bin		CR-39 allyl diglycol	<u> </u>		
The suitability of allyl diglycol carbonate plastic for use as windows in hyperbaric chambers is evaluated. Its resistance to organic solvents abrasion pitting and radiation appears to make it a better candidate material for this application than acrylic plastic. Problems of production, testing, and the establishment of standards are discussed.							
	ALABABA TV IF ABST IFIE - CALIMITEE	TRA	ROT THE ESERS	21 ABSTRACT SECURITY			
	PONSIBLE INDIVEDIAL			UNCLASSIFIED 226 TELEPHONE monde Area code 221 OFFICE SYMBOL			
1D Stachiw			(6)9) 225-7262		Code 9402		

EXECUTIVE SUMMARY

OBJECTIVE

Acrylic plastic viewports have been used for over 40 years in pressure vessels for human occupancy without any catastrophic failure resulting in a loss of life. However, there are special applications, such as hyperbaric chambers for medical purposes, in which the susceptibility of flex-stressed acrylic plastic to surface crazing and cracking in the presence of common organic solvents contained in antibacterial sprays is a distinct disadvantage. To solve this problem, a search has been initiated for transparent plastics that are not attacked by organic solvents and can be cast economically in thick sections.

APPROACH.

Allyl diglycol carbonate plastic appears not only to satisfy the above requirement, but also to provide better resistance to abrasion, pitting, and X-ray or gamma irradiation than acrylic plastic. Short-term, long-term, and cyclic pressure testing has been conducted on over one hundred allyl diglycol carbonate plane disc viewports with t/D ratio in the 0.06 to 0.4 range and at temperatures in the +40 to +125 F range.

Double

FINDINGS

It appears that plane discs cast from allyl diglycol carbonate plastic can perform safely as pressure-resistant viewports in pressure vessels for human occupancy. Karangordan Actual Community Comm

It is recommended that the <u>design pressure</u> of plane disc windows made from allyl diglycol carbonate plastic not exceed a fraction of their <u>short-term critical pressure</u> (STCP) at an ambient temperature of 75°F. At <u>design temperatures</u> of 75, 100, and 125°F the design pressure of plane disc windows should not exceed 6.5, 5.0, and 3.3 percent of their respective STCPs at 75°F.

Accesio	on For		
NTIS DTIC Unanno Justific	ounced 🔲		
By Distrib		\	
A	vailability Codes	SHECTEL	
Dist	Avail a:id/or Special	3	'/
A-1			

CONTENTS

INTRODUCTION	1
BACKGROUND	2
Chemical Characteristics	2
Properties of Cast CR-39 Plastic	3
Design of Pressure-resistant CR-39 Plastic Windows	4
EXPERIMENTAL TEST PROGRAM	6
Selection of Window Shapes	6
Fabrication of Test Specimens	6
Test Arrangement	6
Test Procedures	7
Test Results	7
Short-Term Pressurizations	7
Long-Term Pressurization	8
Cyclic Pressurization	9
Chemical Stress Corrosion	9
Surface Imperfections	9
DISCUSSION	10
Design Criteria Approach	10
Structural Criteria	11
Conversion Factors	11
Quality Control Procedures	12
CONCLUSIONS	13
RECOMMENDATIONS	14
REFERENCES	15
TABLES	17
FIGURES	30
ADDENIATY. OF CHIPS OF HVIDOSTABLE TESTING OF CD. 20 PLAT ALSO HINDOHS	5 2

INTRODUCTION

Pressure vessels for human occupancy (PVHO) require viewports in the opaque hulls for their safe operation. In the case of submersibles, diving bells, and personnel transfer capsules, the viewports allow the occupants to observe the wet hydrospace outside the vessel while they remain in a shirt-sleeve environment. A different case presents itself for hyperbaric chambers, in which the viewports permit the chamber operators to observe in comfort the behavior of the personnel inside.

The first use of viewports in such pressure vessels has been lost in antiquity. Reference to their use becomes, however, quite frequent by the l6th century (Reference 1). In almost all cases the viewports consisted of plane glass disc windows seated on leather, cork, or rubber gaskets and held securely in place by steel retaining rings bolted around their circumference to the hull of the pressure vessel.

This state of technology continued until the middle of the 20th century, when glass was replaced by polymethyl methacrylate (acrylic plastic). Acrylic plastic, invented in the 1930's by Rohm and Hass in Germany, made feasible the economical casting of large-diameter, thick windows capable of safely withstanding high pressures. Furthermore, the ductility of the acrylic plastic made the windows fabricated from this material less sensitive to casting imperfections and more resistant to point impacts and dynamic loadings than windows fabricated from glass.

To assure the safe performance of the newly introduced acrylic plastic windows in PVHO's, a safety standard for their design, fabrication, and pressure testing was developed and published by the American Society of Mechanical Engineers in 1977 (Reference 2). With this safety standard, acrylic plastic windows have been designed and successfully operated at pressures in the -15 to $\pm 20,000$ psi range. Their safety record is outstanding. To date there have been no fatal accidents caused by failure of acrylic plastic windows operated at or below their design pressure and temperature.

One cannot state, however, that there are no operational problems associated with the use of acrylic plastic windows in PVHOs. The acrylic plastic scratches easily, degrades rapidly under X-ray and nuclear radiation, and is very susceptible to stress corrosion crazing and cracking in the presence of organic solvents (Reference 3). In such environments, acrylic plastic windows must be replaced often.

The viewports in hyperbaric chambers used in medical research or for medical treatment are often exposed to organic solvents and subjected to mechanical abrasion during cleaning with disinfectants and germicides. In addition, some of the windows are also exposed to high doses of X-ray radiation during treatment of patients inside the pressurized chambers from a radiation source located outside the chamber and beaming its radiation through the viewport.

As a result of frequent exposure to solvent in germicides, the acrylic plastic windows exhibit stress-induced crazing on their surfaces that with time grows into a fine network of interconnected cracks. The exposure to X-ray radiation induces gradual discoloration and progressive degradation of the physical properties. The onset of surface crazing, discoloration, and degradation of physical properties decreases the structural performance of the windows to such a degree that they must be replaced. In this hostile environment, the service life of acrylic plastic windows may be shortened to less than a year, whereas in a benign environment, it would be in excess of 20 years.

Because of the expense of frequent replacement of acrylic plastic windows, the Naval Facilities Engineering Command has initiated an exploratory search for a transparent plastic that is more resistant to solvent-induced stress corrosion crazing, abrasion, and radiation than acrylic plastic and yet possesses the optical clarity and structural performance of that plastic. Such a plastic has been tentatively identified as allyl diglycol carbonate, commercially available as CR-39 resin from Pittsburgh Plate Glass Industries (PPGI). This report summarizes the results of an evaluation of allyl diglycol carbonate plastic for service as pressure-resistant windows in viewports for hyperbaric chambers.

BACKGROUND

CHEMICAL CHARACTERISTICS

CR-39 allyl diglycol carbonate, also called "diethylene glycol bisallyl carbonate," is a monomer from which transparent, rigid thermoset plastics can be cast. This monomer has two allylic double bonds in its structure, as shown by the formula below:

The two allylic double bonds make it feasible for the monomer to be polymerized and crosslinked as a unit of homopolymers, or copolymers.

The CR-39 homopolymers are clear and colorless. The monomer is usually catalyzed with 3 percent of benzoyl peroxide (BP) or disopropyl percarbonate (IPP). The polymerization cure typically consists of placing the mix into an air oven or water bath at 70°C for approximately 48 hours. After removal from the mold, the casting is post-cured at 115°C for 2 hours. No water or gases are evolved during polymerization and allylic crosslinking. The resulting thermoset plastic is a rigid, high-strength material with excellent dimensional and optical stability.

The CR-39 copolymers can be formulated by the caster to meet a specific combination of properties, such as improved thermal and chemical stability or the ability to be thermoformed. Typical copolymers with CR-39 are vinyl acetate, methyl methacrylate, and unsaturated alkyd resins.

PROPERTIES OF CAST CR-39 PLASTIC

In the discussion of CR-39, comparisons will frequently be made to acrylic plastic since the properties of that material are well known throughout the industry and it is widely used in structural applications.

The optical transmittance in the visible region is approximately equal to optical glass or acrylic plastic of similar thickness (Figure 1). The index of refraction is just below the refractive index of crown glass (Table 1). Contact with solvents, age, or stress does not cause the plastic to craze or crack readily. The transmittance is not affected by the magnitude of strain to which the plastic is subjected.

Abrasion resistance surpasses that of acrylic plastic, and under certain conditions it approaches that of glass. The Tabor test performed on sheets shows that CR-39 is 30 to 40 times, and glass 2000 to 3000 times, more mar resistant than acrylic plastic. The falling emery test, however, shows that both CR-39 plastic and glass are only approximately 10 times more resistant to surface marring than acrylic plastic (Figure 2).

Impact resistance measured by the standard notched and unnotched Izod specimens is approximately one-half that of acrylic plastic. When measured by the falling steel ball impact test, resistance to fracture initiation surpasses, at low temperatures, that of acrylic plastic. When compared to glass, the impact resistance of CR-39 plastic is superior over the whole temperature range of -80 to +150°F.

Resistance to radiation generated by radioactive materials or X-ray machines is superior to that of acrylic plastic. Compared to acrylic plastic, C-39 plastic requires an approximately 50 times larger dose of radiation to reduce its physical properties by 50 percent. A radiation exposure of 10 roentgens produces a 5-percent loss of optical transmittance in CR-39 and a 45-percent loss in acrylic plastic. The outstanding resistance to radiation makes the CR-39 plastic a natural choice for pressure-resistant windows in nuclear laboratories and in medical institutions conducting radiation therapy on patients in a pressurized-oxygen environment.

Chemical and solvent resistance of CR-39 plastic is superior in all aspects to acrylic plastic. Acrylic plastic is soluble in ketones, esters, aromatic hydrocarbons, and chlorinated hydrocarbons (i.e., acetone, ethyl acetate, chloroform, benzene, toluene, methyl ethyl ketone, carbon tetrachloride) and is attacked by alcohol, while CR-39 plastic is not (Figures 3-7). One approach to alleviating this situation is to coat the surfaces of acrylic plastic with transpare $^+$, hard, and chemically inert compounds. Unfortunately, commercially available abrasion-resistant coatings provide only limited protection for acrylic plastic against attack by solvents. In some

cases the presence of abrasion-resistant castings has lowered the critical pressure of acrylic windows exposed to solvents (Figures 8 and 9). The CR-39 plastic is attacked (etched) only by concentrated oxidizing acids and alkalies (i.e., sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, ammonium hydroxide, etc.). Weak concentrations of oxidizing acids and alkalies do not attack CR-39 or acrylic plastics.

Because of its resistance to hydrocarbons, weak acids and weak alkalies, the CR-39 surfaces do not craze in their presence when stressed. This allows CR-39 windows to be used in applications where they may be accidentally exposed to such chemicals during their operational lifetime. It is this resistance which makes CR-39 superior to acrylic plastic in applications where the contact with chemicals and solvents presents a real threat to the structural integrity of pressurized acrylic plastic windows. Such applications are, for example, viewports in hyperbaric chambers used for (1) medical research treatment requiring periodic disinfection with strong alcohol-based germicides or (2) industrial pressure testing of equipment used in hydrospace, in which some leakage of hydraulic fluids inside the pressure vessel could be expected during the operation of equipment in a simulated hydrospace environment.

The structural properties of CR-39 plastic casting (Table 1) are somewhat less desirable than those of acrylic plastic (Table 2). At room temperature, its flexural strength, tensile strength, and modulus of elasticity are approximately 30 to 40 percent less than the values for acrylic plastic. The differences in physical properties increase even further at temperatures above 125°F. For example, the short-term flexural strength of acrylic plastic (MIL-P 5425) at 125 and 150°F is 12,000 and 8,000 psi, while for CR-39 plastic it is 5,000 and 3,500 psi, respectively. The tensile and compressive strengths drop off similarly with higher temperatures. For this reason windows fabricated from pure CR-39 plastic will fail at significantly lower pressures than windows of equal thickness fabricated from acrylic plastic. Developmental casting resins CR-39 ITS are, however, being developed by PPGI that promise to increase the thermal stability of plastic castings significantly.

The photoelastic constant of CR-39 (80 psi/fringe/inch of thickness) is significantly lower than that of acrylic plastic. This allows viewing of cast sheets under polarized light to be a sensitive technique for the detection of residual stresses (Reference 7). The high photoelastic sensitivity of allyl diglycol carbonate makes it also a desirable material for construction of structural scale models used in photoelastic investigation of stress magnitude in full-size structures.

DESIGN OF PRESSURE-RESISTANT CR-39 PLASTIC WINDOWS

Proper design of pressure-resistant windows for viewports in pressure vessels requires that all the conceivable loading combinations to which the windows may be subjected during their service lifetime be considered. That includes predictable short-term overpressurizations, long-term and cyclic pressurizations, and in addition, unpredictable dynamic pressurizations, point

impacts, overheating, and excessive clamping forces due to uneven tightening of retaining ring bolts. The stresses generated in the windows by the various loading combinations are generally of a triaxial nature, whose peak values, because of material creep over the service lifetime of the windows, may vary with loading duration and temperature variation.

Because of the difficulties encountered in analytical calculations, many assumptions have to be made about the creep of material. This makes the magnitude of calculated stresses in windows somewhat questionable. For this reason the majority of plastic windows in pressure-resistant viewports have been designed empirically on the basis of published experimental data derived from hydrostatic testing of different window shapes.

The accepted empirical approach to the design of acrylic plastic windows consists of finding (1) an experimentally generated short-term critical pressure (STCP) curve for the desired window shape over a wide range of t/D, ratios at 75°F ambient temperature and (2) applying the appropriate conversion factor to the chosen design pressure. The conversion factors relate the STCP at 75°F to the design pressure and temperature. The magnitude of the conversion factors is quite large as they must take into account static fatigue, cyclic fatigue, and variation in the physical properties of commercially available plastic in thick sheet or custom casting. The ASME Safety Standard for Pressure Vessels for Human Occupancy (PVHO-1) contains a series of experimentally generated STCP curves for different acrylic plastic window shapes and tables with conversion factors formulated on the basis of extensive operational experience. To date none of the acrylic plastic windows designed on the basis of ANS/AME PVHO-1 has failed in service, proving the soundness of this design approach.

Since the CR-39 cast plastic is very similar in its physical properties to acrylic plastic, the same design approach should be considered for windows fabricated from CR-39 plastic. To accomplish this (1) critical pressure curves have to be experimentally generated over a wide range of t/D_i ratios for different window shapes fabricated from CR-39 plastic; (2) conversion factors have to be developed that relate the critical pressure to design pressures and design temperatures; and (3) a quality assurance standard has to be formulated that will ensure reproducible physical properties in CR-39 plastic castings.

Unfortunately, funds are not available at the present time to generate the critical pressure data for all the window shapes currently being fabricated from acrylic plastic. Yet, an immediate need exists for plastic windows that are resistant to solvent and stress crazing. To satisfy the immediate need, the U.S. Navy Facilities Engineering Command (NAVFAC) has sponsored an exploratory study on plane disc windows machined from cast CR-39 plastic sheets. The remainder of this report summarizes the findings of that study.

EXPERIMENTAL TEST PROGRAM

SELECTION OF WINDOW SHAPES

The plane disc shape was selected for the exploratory study on CR-39 plastic windows because it is widely used, inexpensive to fabricate from commercially available sheets, and lends itself to hydrostatic testing in existing test fixtures (Reference 3). The data generated by hydrostatic testing are also relatively easy to interpret because the plane discs fail only in one mode; i.e., when the tensile strain in the center of the low-pressure face exceeds the maximum strain value at which the plastic material fails under short-term, long-term, or cyclic loading.

FABRICATION OF TEST SPECIMENS

The plane disc windows were machined from H-911 plastic sheets supplied by Homalite Inc. The machining consisted of cutting the discs to specified diameters. No attempt was made to face them off to a specified thickness as this would have made the test specimens significantly more expensive and also would have introduced the surface finish as an additional experimental variable. The surface finish could then vary from one specimen to another, causing specimens of the same thickness to fail at significantly different pressures.

Three different diameters (D) were chosen for the plane discs: 7.750, 5.00 and 3.00 inches. The nominal thicknesses of the discs were: 7.75-inch-diameter discs were 0.5, 0.75, 1.0, 1.25 inches; 5.00-inch-diameter discs were 1.0, 1.25, 1.75, and 2.0 inches; and 3.00-inch-diameter discs were 0.25 inch.

TEST ARRANGEMENT

The window test specimens were seated individually for testing in metallic fixtures that provided bearing support to each disc around its edge and also made it feasible to provide a watertight seal on its circumference (Figure 10). The dimensions of the seats were as follows:

7.770/6.28 inches, outside/inside diameters 5.050/4.00 inches, outside/inside diameters 3.020/2.40 inches, outside/inside diameters

The fixtures were designed to provide a 1.25 ratio between the outside and inside diameters of the seat. This is the minimum D/D ratio allowed by ANSI/ASME PVHO-1 for plane discs of acrylic plastic and was thought to be applicable also to CR-39 plastic windows. Neoprene gaskets were used in all tests. The 3.0-inch-diameter seat was covered with a 0.020-inch-thick gasket, while the 5.00- and 7.75-inch-diameter seats utilized 0.063-inch-thick gaskets. Thicker gaskets were used with larger windows as it was known that the latter deviated more than small windows from an ideal plane surface.

The 3.0-inch-diameter windows were sealed in place with a 0.125-inch-thick neoprene gasket compressed between the edge of the window's high-pressure face and a retaining ring with a 2.4-inch-diameter opening (Figure 11). The 5.0- and 7.75-inch-diameter windows were sealed in the test fixture with a compliant 3M Windo-Weld ribbon (Part No. 08631) squeezed into the annular space between the edge of the disc window and the wall of the seat activity (Figures 12 and 13).

TEST PROCEDURES

The test procedure consisted of (1) placing the neoprene bearing gasket on the window seat in the test fixture, (2) inserting the window test specimen into the seat, (3) sealing the test specimen around its circumference, (4) tightening the window retaining ring, (5) inserting the window test fixture inside the pressure vessels, (6) locking the pressure vessel end closure, and (7) pressurizing the interior of the vessel with tap water. diameter windows were tested in a vessel that incorporated the test fixture into its structure (Figure 14). The 5- and 7.75-inch-diameter windows were tested by mounting the windows in the end closure of a large pressure vessel (Figure 15). The pressurization was conducted with a hand pump that raised the pressure inside the vessel at the rate of approximately 650 psi per minute. The pressure was increased until the specified pressure was reached or the window failed catastrophically. Temperature of the water was measured immediately before and after short-term pressurization. During sustained pressure testing, the temperature was measured at the initiation of the test and daily thereafter.

For some of the tests the window test specimens were instrumented at the center of their low-pressure face with electric resistance straingages and the strains were recorded during pressurization. At the conclusion of each test, the failed window test specimens were removed from the test fixture and photographed.

TEST RESULTS

Short-Term Pressurizations

Short-term pressurizations were conducted until catastrophic failure of the window test specimens took place with a sudden release of pressure (Figure 16). The fracture patterns were similar, if not identical, to those observed previously on plane discs of acrylic plastic (References 4-6, Figures 17 and 18). The thin discs $(t/D_i<0.20)$ failed in a typical membrane flexure mode, with cracks radiating from the center of the disc to its edge; the strains at the center of the disc were linear almost to critical pressure (Figures 19 and 20). The thick discs $(t/D_i>0.2)$ failed in a typical shear cone mode, with the apex of the cone located at the center of the high-pressure face (Figures 21 and 22). Catastrophic failure of the thick disc was preceded by audible cracking, which generally occurred at approximately 1,000 psi below the critical pressure.

When the STCPs of the plane discs are plotted against their thickness-to-unsupported diameter (t/D_1) ratios, a critical pressure curve is obtained which is very similar to the one for acrylic plastic plane discs, except that the critical pressures of CR-39 plastic discs are consistently lower (Figure 23). The critical pressure for any given t/D_1 ratio varied widely; the highest standard deviation for critical pressure was calculated to be 980 psi for a group of discs with a nominal t/D_1 ratio of 0.312 and average critical pressure of 4,260 psi.

There were no apparent experimental reasons for this wide variation in STCP of windows with the same $t/D_{\rm i}$ ratios and D . Critical pressures generated by plane discs with different diameters appeared to follow the same relationship between $t/D_{\rm i}$ ratio and critical pressures. This would seem to indicate that the strength of CR-39 plastic is not a function of the test specimen volume, as is the case for glass. The large variation in critical pressures between specimens of the same $t/D_{\rm i}$ ratio would seem to indicate, however, a significant variation in physical properties of the many cast plastic sheets from which the windows were machined (Appendix A).

The effect of ambient temperature on the STCP was very significant, but predictable. The critical pressure for thin windows with $t/D_1=0.104$ varied over 50 percent in the 32 to 125°F range (Figure 24). The decrease in STCP of these thin windows roughly parallels the decrease in flexural and tensile strength of CR-39 over the same temperature range (Figures 25 and 26). Although only a few thick windows were tested at ambient temperatures above or below 75°F, there are indications that the decrease in STCP with temperature increase is similar to thin windows.

Long-Term Pressurization

courses versions described described linearing

Long-term pressurization testing was not extensive enough to establish the static fatigue curves for all t/D_i ratios over a broad temperature range. Static fatigue curves were established only for nominal $t/D_i = 0.104$ at $75^{\circ}F$ and $125^{\circ}F$ ambient environments (Figures 27 and 28). The sustained pressurization data indicate that the static fatigue of CR-39 plastic disc windows under sustained pressure equal to 40 percent of STCP at $75^{\circ}F$ is 10° minutes in a $75^{\circ}F$ environment. For sustained pressure equal to 20 percent of STCP at 75° , the static fatigue is extrapolated to be $>10^{\circ}$ minutes in a 75° environment (Figure 27).

At ambient temperatures above 75°F , the static fatigue decreases dramatically. Thus, at an ambient temperature of 125°F , the static fatigue for sustained pressure equal to 40 percent of STCP at 75°F was measured to be 1 minute, and for sustained pressure equal to 20 percent of STCP at 75°F it was measured to be 10° minutes. For sustained pressure equal to 10 percent of STCP at 75°F , the static fatigue in 125°F environment is extrapolated to be $>10^{\circ}$ minutes (Figure 28).

The strain at the center of the low-pressure discs with $0.08 < t/D_i < 0.5$ ratios appeared to be totally elastic at sustained pressures equal to 10 percent STCP at ambient environment in the 70 to $75^{\circ}F$ range (Figures 29 and

30). At higher pressures there was noticeable creep that resulted in varying amounts of permanent deformation, whose magnitude was a function of sustained pressure and its duration (Figure 31). The strains on discs under sustained pressure equal to 5 percent STCP at 75°F were found to be elastic in tests in a 125°F ambient environment.

Cyclic Pressurization

Cyclic pressurization testing was not extensive enough to establish the cyclic fatigue curves for all t/D_1 ratios over a broad range of temperatures. A cyclic fatigue curve was established only for nominal $t/D_2 = 0.104$ at $125^{\circ}F$ ambient environment (Figure 32). The cyclic pressurization data indicate that the cyclic fatigue of a CR-39 plastic disc window at maximum cyclic pressure equal to 20 percent of STCP at $75^{\circ}F$ is in excess of 2 cycles. At maximum cyclic pressure equal to 4 percent of STCP at $75^{\circ}F$, the cyclic fatigue is extrapolated to be in excess of 10° cycles. The typical pressure cycle consisted of 60-minute sustained pressurization followed by 60° minutes of relaxation.

Chemical Stress Corrosion

Chemical stress corrosion testing has shown that methyl alcohol, glycol, acetone, benzene, and methyl ethyl ketone do not initiate crazing on the face of CR-39 plane disc windows that have been subjected to sustained 2,000-psi tensile flexure stress for 60 minutes. Subsequently, when these plane disc windows were tested to failure under short-term pressurization, the STCP was found to be approximately the same as that of plane disc windows not exposed to these solvents.

By comparison, when acrylic plastic plane disc windows with the same t/D_i ratio were subjected to sustained 2,000-psi tensile flexure stress in the presence of ethyl or methyl alcohol, they immediately began to craze (Figures 3-9). When subsequently tested to implosion, the STCP was significantly lower than that of acrylic plastic discs with the same t/D_i ratio that were not crazed by alcohol (Table 3). Similar observations were made of discs formed from stock (ACRIVUE A) incorporating an abrasion-resistant coating (Table 4). These tests provide convincing proof that CR-39 is significantly less susceptible to chemical stress corrosion failure than acrylic plastic.

Surface Imperfections

Scratched disc windows of CF-39 plastic were found to fail at lower STCP than unscratched disc windows. For CR-39 plane disc windows with $t/D_i = 0.104$, the STCP of specimens notched radially 0.020 inch deep x 0.060 inch wide on the low-pressure face was approximately 77 percent less than that of unscratched specimens at 75°F ambient temperature (Figure 33). Similar scratch tests performed on acrylic plastic plane discs with $t/D_i = 0.104$ ratio have also shown a decrease in STCP. However, surprisingly enough, the difference between the STCP of scratched and unscratched acrylic plastic discs

was less (approximately 45 percent) than that for CR-39 plastic (Table 5). This certainly would seem to indicate the CR-39 plastic is more notch sensitive than acrylic plastic, and therefore greater care must be exercised not to scratch CR-39 windows during installation and subsequent servicing.

Similar test results were obtained from CR-39 windows abraded with sandpaper. The STCP of CR-39 windows with $t/D_1 = 0.104$ decreased 52 percent after they were scratched with 80-grit sandpaper. The STCP of acrylic windows with the same t/D_1 ratio and scratches decreased only 28 percent (Table 6). The scratches were generated on the window surfaces by applying a bearing pressure of 2 psi against a 1-inch-square patch of sandpaper being stroked radially four times across the low-pressure face of the window (Figures 34-37). The average STCP of 0.25-inch-thick unscratched windows with $t/D_1 = 0.104$ at 75°F ambient temperature was in the $\overline{540-}$ to $\overline{580-}$ psi range for both acrylic plastic and CR-39 windows.

It is interesting to note that the STCP of acrylic plastic discs (at 75° F) with $t/D_{\star} = 0.104$ is significantly lowered by the application of hard, brittle, abrasion-resistant coatings like ACRIVUE A even before exposure to solvents (Table 7). This behavior is probably attributable to the fact that the brittle coating cracks at a much lower stress level than acrylic plastic and that these cracks propagate readily into the acrylic plastic base material, causing it to fracture prematurely.

DISCUSSION-

The experimental data generated in this exploratory study by pressure testing of plane disc windows and ASTM material test specimens, plus the data provided by the suppliers of CR-39 resin and castings, make a strong case for utilizing CR-39 casting in structural applications where transparency, resistance to chemical corrosion, and resistance to surface scratching are desirable material attributes. This is not to be construed, however, as a finding that cast CR-39 plastic is structurally equivalent to, or superior to acrylic plastic and thus should be used to replace acrylic plastic on a one-to-one basis in all of its current structural applications.

What is really suggested is that CR-39 plastic, because of its outstanding chemical resistance, scratch resistance, good optics, and acceptable mechanical properties, is an acceptable choice for those applications where acrylic plastic, because of its sensitivity to organic solvent, is only marginally acceptable. But before CR-39 plastic windows can be considered for installation in hyperbaric chambers, design and quality control criteria must be developed for structural application of this plastic.

DESIGN CRITERIA APPROACH

wasseries beautions bearings consisted

The selection of structural design criteria for CR-39 windows has been patterned after the process used for acrylic plastic windows, which yielded the criteria incorporated in ANSI/ASME PVHO-1 Safety Standard. This design

approach requires that there must be available (1) an experimentally generated STCP curve for the chosen window shape in 75°F ambient temperature environment, (2) an empirically derived set of conversion factors that relate the design pressure and temperature to STCP at 75°F ambient environment, and (3) a set of quality control procedures that ensure the conformance of the CR-39 casting to a minimum level of structural performance.

STRUCTURAL CRITERIA

The STCP curve for plane disc windows of CR-39 at 75°F ambient temperature environment has been generated in this study and can be used by the designer in the selection of window thickness, providing he uses for this purpose the lower bound of the failure region. There are, however, no proven, optimized conversion factors and quality control procedures, as they cannot be tightly defined without operational experience with CR-39 windows.

This is the heart of the problem; without the availability of conversion factors, the windows cannot be designed and placed in service, and without the windows in service, there will never accrue a pool of operational experience to draw upon. A similar problem also exists with quality control procedures for the acquisition of properly cured CR-39 castings.

CONVERSION FACTORS

Thus, in order to place the CR-39 windows in service so that they may begin accumulating operational experience, a preliminary set of conversion factors has been formulated by the author. When the design pressure of a window at the maximum design temperature is multiplied by the appropriate conversion factor shown below, the resulting product represents the required STCP of the window at 75° F ambient temperature.

This set of conversion factors is considered to be very conservative and should preclude catastrophic failure of windows due to any unforeseen set of service conditions. The proposed conversion factors are:

- CF = 15 for design temperature of 75°F
- CF = 20 for design temperature of 100°F
- CF = 30 for design temperature of 125°F

The magnitude of the proposed conversion factors provides for (1) static fatigue in excess of 40,000 hours (2.4 x 10 minutes) and (2) cyclic fatigue in excess of 10,000 cycles (each of 240 minutes duration) in the presence of some slight scratches, and minor variation in physical properties of CR-39 castings. In the future, the magnitude of the conversion factors may be increased or decreased as a result of operational experience. No conversion factors are proposed at the present time for design temperatures in excess of 125°F, as the creep of CR-39 material at these temperatures calls for uneconomically thick windows in order to reduce the stresses to acceptable levels.

QUALITY CONTROL PROCEDURES

The proposed conversion factors are more than adequate, providing the physical properties of the CR-39 castings do not deviate significantly from typical values. Since allyl diglycol carbonate monomer can be polymerized and cross-linked either as a homopolymer or copolymer with widely differing physical properties, quality controls have to be developed that, with a minimum of tests, will determine whether a piece of plastic is a fully polymerized homopolymer CR-39 casting.

The difficulty in devising such a quality control procedure lies in the fact that the number of tests to be performed on each casting lot must be minimized to keep the cost of the test procedure within reason. Since there is at present no single set of tests that is accepted by the industry as definitive for the determination of the structural properties in CR-39 castings, the author would like to propose one that addresses itself specifically to structural applications of CR-39 castings in pressure-resistant windows (Table 8).

Each of the castings to be used for the machining of windows would have material coupons cut off from it and tested for the physical properties shown on Table 8. If the measured values of these physical properties meet the specified values of Table 8, the casting is considered to be acceptable for fabrication of windows. The quality control test performed on material test coupons from a single casting could be used to certify not only the particular castings from which they were taken, but also, under special circumstances, an entire lot of castings.

The tests performed according to Table 8 on one sheet casting chosen at random from a lot of cast CR-39 sheets would serve to certify all sheets of the same thickness from that lot, provided the manufacturer positively and permanently identifies each sheet so certified with a lot number. A casting lot is considered here to be a single production run of 2,000 lb or less, poured from the same mix of resin and catalyst made at the same time, and undergoing identical thermal processing from monomer to polymer, i.e., at the same time and in the same oven.

There is a very real possibility that experience will show the specified minimum values of Table 8 to be either too high or too low, and they will have to be adjusted to meet the typical physical properties of castings produced by the industry. But until sufficient experimental data accumulate from the quality control testing of CR-39 plastic castings with different thicknesses, the proposed set of minimum values for the physical properties listed in Table 8 may have to serve as the sole quality control criteria.

The performance of the quality control test on a CR-39 casting for window fabrication will add anywhere from \$750 to \$1,000 to the total cost of the lot. Since the cost increase due to quality control tests is independent of the lot size, it is to the advantage of the window buyer to order as many windows as possible at one time so that the cost of the quality control tests will be spread over many sheets from the same lot. Even so, the increase in the price of windows due to quality control testing will never be less than 10

percent. This increase in cost should be gladly paid by the pressure chamber fabricator, as it represents inexpensive performance insurance for the windows, whose catastrophic failure may otherwise result in an expensive liability suit due to personal injury or fatality.

Before undertaking the quality assurance tests listed in Table 8, simple hardness tests may be performed on all castings to identify substandard lots and thereby avoid further expense. Hardness tests have been shown to be a reliable indicator of polymerization completion (Figure 38). Only if the results of hardness tests performed at several locations on both sides of a sheet casting show hardness in excess of Knoop 15 or Rockwell M95 is it worthwhile to perform the remainder of the tests called out in Table 8. Furthermore, to check on the uniformity of polymerization in a large lot comprising many sheet castings, each sheet should be tested for hardness at several locations on both viewing surfaces. Sheets whose hardness is found to be less than the value specified on Table 8 should be removed from that lot.

CONCLUSIONS

- l. Preliminary test results indicate that CR-39 allyl diglycol carbonate plastic castings in the form of thick plates can be successfully used in the fabrication of plane disc windows 0.25 to 2.0 inches thick for viewports in hyperbaric chambers.
- 2. The CR-39 plane disc windows have been found to perform satisfactorily under short-term, long-term, or cyclic pressure loading in the 32 to 125°F temperature range when the working pressure was only a small fraction of the STCP.
- 3. The thickness of any plane disc window fabricated from CR-39 plastic casting for any given design pressure, design temperature, and window seat diameter (D_1) exceeds the thickness of an acrylic window designed for the same set of operational requirements (Reference 4).
- 4. The physical properties of commercially available CR-39 castings have been found to vary significantly from one lot to another, making it necessary to apply large safety factors in the design of plane disc windows for hyperbaric chambers.
- 5. The resistance of CR-39 plastic windows to marring and chemical attack by hydrocarbon solvents is superior to that of acrylic plastic windows.
- 6. Incomplete polymerization of allyl diglycol polycarbonate castings significantly affects their mechanical properties.

RECOMMENDATIONS

- l. The manufacturers of CR-39 castings, fabricators of windows, and potential users of CR-39 plastic windows in hyperbaric chambers should pool their technical experience and operations requirements and prepare cost-effective quality control specifications which, with a minimum of tests, will differentiate between structurally acceptable and unacceptable CR-39 castings for window fabrication.
- 2. The conversion factors proposed in this report should be utilized in the design of CR-39 plane disc windows for man-rated pressure vessels until sufficient operational experience accumulates to serve as a basis for increasing or decreasing their magnitude.

REFERENCES

- 1. Robert H. Davis, Deep Diving and Submarine Operations, Parts I and II, Sixth Edition, Siebe, Gorman and Co. Ltd., London, 1955.
- 2. Safety Standard for Pressure Vessels for Human Occupancy, ANSI/ASME PVHO-1, the American Society of Mechanical Engineers, New York, 1977.
- 3. Jerry D. Stachiw, Acrylic Plastic Viewports, First Edition, Marcel Dekker Inc., New York 1982.
- 4. Jerry D. Stachiw, G. M. Dunn, K. O. Gray, "Windows for External or Internal Hydrostatic Pressure Vessels; Part II Flat Acrylic Windows Under Short-Term Pressure Applications," Technical Report R-527, Naval Civil Engineering Laboratory, Port Hueneme, CA, 1967.
- 5. Jerry D. Stachiw, "Critical Pressure of Flat Acrylic Windows Under Short-Term Hydrostatic Loading," Paper No. 67-WA/Unt-1, American Society of Mechanical Engineers, Winter Annual Meeting, 1967.
- 6. Jerry D. Stachiw, "Flat Disc Acrylic Plastic Windows for Manrated Hyperbaric Chambers at the USN Experimental Diving Unit," Technical Note N-1127, Naval Civil Engineering Laboratory, Port Hueneme, CA, 93041.
- 7. D. J. Coolidge, "An Investigation of the Mechanical and Stress Optical Properties of Columbia Resin CR-39," Proceedings of the Society Experimental Stress Analysis, Volume VI, No. 1, 1948.

Table 1. Typical Properties of CR-39 Plastic Castings.

Table 1. Typical Properties of CR-39 FI	astic Castings.
Mechanical Properties	4 CT14 D 700
Flexural Strength, (psi)	ASTM D 790
-10°C (14°F)	13,000
0°C (32°F)	9,000
23°C (73°F)	7,500
50°C (122°F)	5,500
70°C (158°F)	3,500
Flexural Modulus, (psi)	ASTM D 790
-10°C	400,000
0°C	375,000
23 °C	350,000
50°C	200,000
70°C	130,000
Tensile Strength, (psi)	ASTM D 638
0°C	8,000
23°C	6,000
50°C	2,500
70°C	1,250
Tensile Modulus, (psi)	ASTM D 638
0°C	330,000
23°C	250,000
50°C	93,000
70°C	60,000
Tensile Elongation, (percent)	ASTM D 638
0°C	3.0
23°C	2.5
50°C	5.0
70°C	3.0
Compressive Strength, (psi)	ASTM D 695
0°C	26,000
23°C	24,000
50°C	18,000
70°C	14,000
Compressive Modulus. (psi)	ASTM D 695
O°C	375,000
23°C	300,000
50°C	135,000
70° C	75,000
Compressive Deformation, (percent) at 4000 psi for 24 hours	ASTM D 638
0°C	013
23°C	0.40

50°C

70°C

36

97

Table 1. Typical Properties of CR-39 Plastic Castings. (Contd)

1. Mechanical Properties (continued)

Impact Strength, (ft-lb/in.)	ASTM D 256
IZOD, notched, 0°C	0.25
IZOD, notched, 23°C	03
IZOD, notched, 70°C	0 25
IZOD, not notched, 23°C	2
Charpy, notched, 23°C	0 2
Charpy, not notched, 23°C	3

Hardness

Rockwell	M95
Peters	12 4
Barcol (15 seconds)	24
Knoop	15
Shore D	88
Shear, 23°C. (psi), ASTM D 732	4500
Density, (g. cm³), ASTM D 792	1 32
aber abrasion (X acrylic plastic) ASTM D 1044	30
Bayer abrasion F735	6
Poisson's ratio	04

2 Thermal Properties

Thermal conductivity, (BTU/in./hr ft², °F), ASTM C 177	1 45
Specific heat, (BTU/ lb °F), ASTM C 351	0 55
Deflection temperature, (.01 in. at 24 psi), ASTM D 648	180
Flammability; burn rate (in./min), ASTM D 635	1

Thermal expansion, (linear coeff: °C X 10 ⁻⁵)	ASTM D 690	
-40 to -10°C	70	
-10 to +25°C	8 7	
25 to +50°C	10 7	
Self-ignition temperature, °F, ASTM 1929	720	

3 Optical properties

Index of refraction	ASTM D 542
η ^B 20 (706 5 nm)	1 4929
η ^C 20 (656 3 nm)	1 4956
$\eta^{ {\sf D}} $ 20 (589 3 nm)	1 4980
η ^E 20 (546 1 nm)	1 5001
η ^f 20 (486 1 nm)	1 5040
Dispersion Factor	60

Transmittance, 27 mm thickness. (percent)

Ultraviolet 280 380 nm	58
Visible 400-700 nm	9 0
Near infrared 700 1100 nm	90
Stress optical coefficient 23 C	n 124 08

Table 1. Typical Properties of CR-39 Plastic Castings. (Contd)

А	Floatival Proportion	
4	Electrical Properties Volume resistivity, (megohms-in.), ASTM D 257	4 X 10 ¹⁴
	· · · · · · · · · · · · · · · · · · ·	,
	Surface resistivity, (megohms), at 480 volts DC, 26.5°C, 50% R. H.	3.4 X 10
	Dielectric Strength, (V/10 ⁻³ in.) ASTM D 149	354
	Dielectric Strength, (V/10 ⁻³ in.) ASTM D 149	
	50-100 cycles	4.4
	10 ³ cycles	4.2
	10 ⁶ cycles	3.6
	Dissipation factor, ASTM D 150	_
	50-100 cycles	6 X 10 ^{.3}
	10 ³ cycles	8 X 10 ⁻³
	10 ⁶ cycles	41 X 10
5	Chemical Resistance	
	Percent gain in weight after 7 days immersion at 25°C	
	Distilled water	0.7
	30% H ₂ \$O ₄	0.5
	3% H ₂ \$O ₄	0.7
	10% HNO ₃	0.7
	10% HCL	04
	10% NH ₄ OH	0.8
	10% NaOH	05
	1% Na ₂ CO ₃	0.6
	2% Na ₂ CO ₃	06
	1% NaCL	06
	3% H ₂ O ₂	0 7
	95% Ethyl Alcohol	0 1
	50% Ethyl Alcohol	05
	Acetone	05
	Ethyl Acetate	03
	Carbon Tetrachloride	06
	Chloroform	1 5
	5% Acetic Acid	0.6
	Gasoline	01
	Oleic Acid	0 2
	Benzene	07
	Toluene	06
6	Permeability	
	Water vapor transmission rate	
	100% BH, 0.021 in. thick	
	22°C, (g. m ² . day)	2 5
	Oxygen transmission rate	
	24° C, 100° o O ₂ , 0.021 in, thick (cc. m ² day)	
	(cc m ² day) ²	2 9

Table 2. Typical Properties of Acrylic Plastic Castings.

PROPERTY	ASTM Method	UNITS	Average Value for 0.250-in. Thickness (1)
Mechanical			
Specific Gravity	D792-66		1.19
Tensile Strength (Rupture) Elongation, Rupture Modulus of Elasticity	L638-67T	psi % psi	9,000-11,000 4,0-4.8 400,000-500,000
Flexural Strength (Rupture) Modulus of Elasticity	D790-66	psi psi	14,000-16,500 475,000
Compressive Strength (Yield) Modulus of Elesticity	D695-63T	psi psi	18,000 400,000-480,000
Compressive Deformation Under Load 4000 psi, 122°F, 24 hr	D621-64	oʻo	0.7-0.8
Shear Strength	D732-46(1961)	psi	9,000
Impact Strength Izud Milled Notch	D256-56(1961)	ft-lb/in, of notch	0.35-0.40*
Rockwell Hardness Barcol Hardness	D785-65 D2583-67		M94-102* 49-51*
Residual Shrinkage ⁽²⁾ (Internal Strain) Polycast Polycast Mil Spec	D702-64T	**************************************	approx. 2 less than 1
Optical			
Based on Clear Material			
Retractive Index	D542 50(1965)		1 49
Luminous Transmittance As Cast Parallel Total Haze	D1003 61		91* 92* iess than 1*
Luminous Transmittance After 1000 hr Accelerated Weathering. Parallel Total Haze	D1003-61 D1499-64		91 ° 92 ° less than 1 °
Effect of Accelerated Weathering on Appearance Crazing Discoloration Warping	D1499-65		none none none
Ultraviolet Transmission at 320 nm			0
Displacement Factor	D637 50(1965)		50

⁽¹⁾ All values shown are for 0.250 in Thick sheet unless noted otherwise. Asterisked (*) values will change with thickness (2) Difference in length and width, as measured at room temperature, before and after heating above 300. f

Table 2. Typical Properties of Acrylic Plastic Castings. (Contd)

PROPERTY	ASTM Method	UNITS	Average Value for 0.250-in. Thickness (1
Thermal			
Hot Forming Temperature (2)		°F	290-360 ⁽³⁾ •
Deflection Temperature under load (Hear Distortion Temp.) 66 psi 264 psi	D-648-56(1961)	°F	230° 195-210°
Maximum Recommended Continuous Service Temperature		°F	180-200
Coefficient of Linear Thermal Expansion	D696-44(1961)	in./ɪn./°F	.000042
Cofficient of Thermal Conductivity (K-Factor)	Cenco-Fitch ⁽⁴⁾	<u>Btu</u> (hr)(sq.ft)([°] Frin.)	1.3 ⁽⁴⁾
Flammability (Burning Rate)	D635-63	in./min.	1.1-1.3*
Self-Ignition Temperature	D1929-62T	F	800-860*
Specific Heat at 77°F	DuPont 900 ⁽⁴⁾ Therm, An. Cal.	<u>Btu</u>	0.35
Smoke Density	ASTM D2843		5-27°
Dielectric Strength Short-Time Test	D149-64 (1/8-in, thickness)	volts/mil	430*
Dielectric Constant 60 cycles 1,000 cycles 1,000,000 cycles	D150-65T		3.5 3.2 2.7
Dissipation Factor 60 cycles 1,000 cycles 1,000,000 cycles	D150-65T		0.06 0.04 0.02
Power Factor 60 cycles 1,000 cycles 1,000,000 cycles	D150 65T		0.06 0.04 0.02
Lass Factor 60 cycles 1,000 cycles 1,000,000 cycles	D150 65T		0.21 0.13 0.06
Arc Resistance	D495-61		No Tracking
Valume Resistivity	D257-66	ohms cm	1.6 × 10 ¹⁶
Surface Resista.rty	D257 66	ohms	1.9 x 10 ¹⁵

 $^{^{(1)}}$ All values shown are for 0.250 in, thick sheet unless noted otherwise. Asterisked (*) values will change with rhickness $^{(2)}$ Unshrunk sheet will shrink in size by approximately 2% and increase in thickness by approximately 4% when heated $^{(2)}$

to forming temperature (3) Temperature curies with thickness 4) Not ASTM method

Table 3 Effects of Solvents and Long Term Pressur zation on the Short Term Critical Pressure of Acrysic Plastic Windows,

	UNCOATED ACRYLIC	VIRGIN CONDITION	
SPECIMEN NO	SOLVENT	DEPTH OF CRAZING	STCP, ps
4 a1u	none	none	480
4a2u			580
4a3u			560
4a4u			520
4 ₄ 5u			540
Average			• 536
Stif Dev			38.5

UNCOATED ACRYLIC PRESSURIZED AT 100 psi FOR 10 MIN				
SPECIMEN NO	SOLVENT	DEPTH OF CRAZING	STCP*, ps	
1d1	none	none	620	
1a2			460	
103			550	
1:14			500	
1a5			620	
Average			• 550	
Sta. Dev			63.9	

	UNCOATED ACRYLIC	PRESSURIZED AT 100 psi FOR 10 SEC	
SPECIMEN NO	SOLVENT	DEPTH OF CRAZING, in.	STCP*, ps
141	MEOH	0.032	350
1a2	MEOH	0.010	420
1a3	MEOH	0.040	410
1a 4	MEOH	0 039	400
1 _d 5	MEOH	0 034	300
Average		0.031	• 382
Std. Dev		0 014	55 6

	UNCOATED ACRYLIC PRE	SSURIZED AT 100 psi FOR 2 MIN	
SPECIMEN NO.	SOLVENT	DEPTH OF CRAZING, n.	STCP* psi
161	MEOH	0.053	430
162	MEOH	0.050	420
163	MEOH	0.061	440
164	MEOH	0.047	460
165	MEOH	0.040	480
Average		0.050	• 446
Std. Dec		0 008	24.1

	UNCOATED ACRYLIC	PRESSURIZED AT 100 psi FOR 10 MIN	
SPECIMEN NO	SOLVENT	DEPTH OF CRAZING in	STCP* ps
1. 1	MEOH	0.105	360
1(2	MEOH	0.139	420
1:3	MECH	0.138	390
1:4	71EOH	0.111	3.70
1.5	MEOH	0.135	360
Average		0.126	*380
Std Dev		0.015	.'.' 8

Table 3. Effects of Solvents and Long-Term Pressurization on the Short-Term Critical Pressure of Acrylic Plastic Windows. (Contd)

UNCOATED ACRYLIC - PRESSURIZED AT 100 psi FOR 10 MIN			
SPECIMEN NO.	SOLVENT	DEPTH OF CRAZING, in.	STCP*, psi
5b1u	isopropyl alcohol	0.119	240
5b2u	methyl alcohol	0.150	360
5b3u	acetone	0.064	160
5b4u	methyl ethyl ketone	0.068	170
5b5u 1	Vandalex 20	0.053	150
5b5u 2	Vandalex 20	0.055	140

UNCOATED ACRYLIC - PRESSURIZED AT 100 psi FOR 60 MIN			
SPECIMEN NO.	DISINFECTANT	DEPTH OF CRAZING, in.	STCP*, psi
6b1u	Viro-Tec	0.129	250
6b2u	Lysoi	0.159	220
6b3u	methyl alcohol	0.184	120
6b4u	Staphene	0.126	300
6b5u	Amphyl	0.162	200

Note 1. The disc dimensions are: $D_0 = 3$ in., t = 0.25 in., $t/D_i = 0.104$ 2. MEOH — methyl alcohol, 99 percent pure.

- 3. STCP* short-term critical pressure at 75° F of discs after the conclusion of long-term pressurization to 100 psi.
- 4. The solvents and disinfectants were applied during pressurization only to the low-pressure face of the disc.
- 5. Virgin condition as delivered by the fabricator of windows.

Table 4. Effect of Solvents and Long-Term Pressurization on the Short-Term Critical Pressure of Coated Acrylic Plastic Windows.

COATED ACRYLIC - VIRGIN CONDITION			
SPECIMEN NO.	SOLVENT	DEPTH CRAZING	STCP, ps
4 b1c	none	none	380
4b2c			480
4b3c			420
4b4c			380
4b5c		-	410
Average			414
Std. Dev.			40.9

	COATED ACRYLIC - PRESSU		
SPECIMEN NO.	SOLVENT	DEPTH CRAZING, in.	STCP*, psi
5a1c	isopropyl alcohol	0.135	200
5a2c	methyl alcohol		420
5a3c	acetone	0.012	340
5a4c	methyl ethyl ketone	0.098	160
5a5c	Vandalex 20		failed after
			8 min

	COATED ACRYLIC - PRESSU	IRIZED AT 100 psi FOR 60 MIN	
SPECIMEN NO.	DISINFECTANT	DEPTH CRAZING, in.	STCP*, psi
6a1c	Viro-Tec	0.117	270
6a2c	Lysol		failed after
			18.5 min
6a3c	methyl alcohol		failed after
			25 min
6a4c	Staphene		420
6a5c	Amphyl		420

Note 1. The disc dimensions are: D_O = 3 in., t = 0.25 in., t/D₁ = 0.104.

2. STCP*. short-term critical pressure at 75°F of discs at the conclusion of long-term pressure at 100 psi.

^{3.} Coated acrylic plastic discs were machined from Swedlow's ACRIVUE A.

Table 5. Effect of Notches on the Short-Term Critical Pressure of Acrylic Plastic and Allyl Diglycol Carbonate Windows.

UNCOATED ACRYLIC - VIRGIN CONDITION			
SPECIMEN NO.	SOLVENT	DEPTH OF NOTCH	STCP, ps
4 a1u	none	none	480
4a2u			580
4a3u			560
4a4u			520
4a5u			540
Average			536
Std. Dev.			38.5

UNCOATED ACRYLIC - NOTCHED .010 in, DEEP			
SPECIMEN NO.	SOLVENT	DEPTH OF NOTCH, in.	STCP, ps
10,1.1	-	0.010	360
10.1.2		0.010	36 0
10.1.3		0.010	320
10.1.4		0.010	310
10.1.5		0.010	280
Average			326
Std. Dev.			34.4

UNCOATED ACRYLIC - NOTCHED 0.20 in. DEEP			
SPECIMEN NO.	SOLVENT	DEPTH OF NOTCH, in.	STCP, psi
10.2.1		0.020	300
10.2.2		0.020	280
10.2.3		0.020	270
10.2.4		0.020	280
10.2.5		0.020	280
Average			282
Std. Dev.			11.0

UNCOATED ALLYL DIGLYCOL CARBONATE - VIRGIN CONDITION			
SPECIMEN NO.	SOLVENT	DEPTH OF NOTCH	STCP, ps
01	none	none	515
02	-		670
03		- 	640
04			400
05			380
Average			557

SPECIMEN NO.	SOLVENT	DEPTH OF NOTCH, in.	STCP, ps
06	none	0.020	120
07		0.020	135
08		0.020	121
09		0.020	142
10		0.020	140
Average		,	132

Note 1. The disc dimensions are $|D_O| \le 3$ in., t = 0.25 in., $t/D_1 = 0.104$. 2. The radial notches are 0.060 in. wide and located 45° apart.

Table 6. Effect of Scratches on the Short-Term Critical Pressure of Acrylic Plastic and Allyl Diglycol Carbonate Windows.

UNCOATED ACRYLIC - VIRGIN CONDITION			
SPECIMEN NO.	STCP, ps		
4a1u	480		
4 a2u	580		
4a3u	560		
4a4u	520		
4a5u	540		
Average	536		
Std. Dev.	38.5		

(CCO) (CSS) CASA SANCOS CONTROLS (CONTROLS CONTROLS CONTROLS (CONTROLS CONTROLS CONT

UNCOATED ACRYLIC - SANDED WITH 80 GRIT		
SPECIMEN NO.	STCP, ps	
2a1u	400	
2a2u	410	
2a3u	380	
2a4u	380	
2a5u	370	
Average	388	
Std. Dev.	16.4	

UNCOATED ACRYLIC - SANDED WITH 150 GRIT		
SPECIMEN NO.	STCP, ps	
2b1u	390	
2b2u	380	
2b3u	400	
2b4u	340	
2b5u	380	
Average	378	
Std. Dev.	22.8	

UNCOATED ACRYLIC - SA	ANDED WITH 200 GRIT
SPECIMEN NO.	STCP, ps
2c1u	490
2c2u	420
2c3u	380
2c4u	420
2c5u	420
Average	426
Std. Dev.	39.7

	UNCOATED ALLYL DIGLYCOL CARBONATE	VIRGIN CONDITION	
SPECIMEN NO.			STCP, ps
01			515
02			670
03			640
04			400
05			380
A.verage			557

Table 6. Effect of Scratches on the Short-Term Critical Pressure of Acrylic Plastic and Allyl Diglycol Carbonate Windows. (Contd)

UNCOATED ALLYL DIGLYCOL CARBONATE - SANDED WITH 80 GRIT		
SPECIMEN NO.	STCP, psi	
06	265	
07	225	
08	345	
09	280	
10	280	
Average	279	

Note 1. STCP – short-term critical pressure of discs at 75°F.

^{2.} The scratches are applied radially to the disc at eight locations with 1-in.-square sandpaper pad applied with 2-psi force.

Table 7. Effect of Hard, Brittle, Abrasion-Resistant Coating ACRIVUE A on the Short-Term Critical Pressure of Acrylic Plastic Windows.

UNCOATED ACRYLIC - VIRGIN CONDITION				
SPECIMEN NO.	SOLVENT	DEPTH OF CRAZING	STCP, psi	
4a1u	none	none	480	
4a2u			580	
4a3u			560	
4a4u		-	520	
4 a5u			540	
Average			53 6	
Std. Dev.			38.5	

	COATED ACRYLIC - VIRGIN CONDITION		
SPECIMEN NO.	SOLVENT	DEPTH OF CRAZING	STCP, ps
4b1c	none	none	380
4b2c			480
4b3c			420
4b4c	±		380
4b5c		<u></u>	410
Average			414
Std. Dev.		-,	40.9

- Note 1. The disc dimensions are: $D_0 = 3$ in., t = 0.25 in., $t/D_1 = 0.104$. 2. STCP: short-term critical pressure of discs at $75^{\circ}F$.

 - 3. Virgin condition: as delivered by the fabricator of windows.
 - 4. Coated acrylic plastic discs were machined from Swedlow's ACRIVUE A.

Table 8. Specified Minimum Properties for CR-39 Plastic Castings.

Test Procedure ASTM	Physical Property	Specified Value
D 639	Tensile ultimate strength Elongation at break Modulus of elasticity	>5000 psi >2 percen >250,000
D 695	Compressive strength Modulus of elasticity	>20,000 >290,000
D 621	Compressive deformation At 4000 psi and 122°F	<5 percer
E 308	Ultraviolet transmittance (for 0.5 inch thickness)	⊊5 percer
D 702	Visual clarity	Must pass readability test
D 785	Hardness Both sides of sheet 4 places each side	·M95 Rockwell

est passings somes someon minute and and

Figure 1. Transmittance of CR-39 plastic casting 0.125 inch thick.

Figure 2. Comparison between scratch resistances of several optical materials.

Figure 3. Crazing of plane disc acrylic plastic window with t/D_i = 0.104 ratio, wetted on the low-pressure face with methyl alcohol while under 100 psi sustained pressure at 75°F ambient temperature; after 10 seconds of sustained loading.

Figure 4. Same window as in Figure 3, but after 30 seconds of sustained loading.

Figure 5. Same window as in Figure 3, but after 120 seconds of sustained loading.

Figure 6. Same window as in Figure 3, but after 600 seconds of sustained loading.

Figure 7. Same window as in Figure 3, but after 60,000 seconds of sustained loading under 100-psi hydrostatic pressure at 75. Flambient temperature.

Figure 8. Crazing of plane disc acrylic plastic window with t $D_{\rm p}=0.104$ ratio, wetted on the low pressure face with methyl alcohol while under 100 psi sus tained pressure at 75. Flambient temperature after 60 m mates of sosta ned loading. Depth of crazing 0.18 meth.

Figure 9. Failed plane disc acrylic plastic window with Acrivue A abrasion-resistant coating. The plane disc window is identical in size and material to the uncoated specimen in Figure 8 and was also wetted with methyl alcohol during pressurization. The failure took place after only 25 minutes of sustained loading under 100 psi pressure at 75°F ambient temperature.

Figure 10. Fixtures used in hydrostatic testing of plane disc windows.

Figure 11. Test fixture for applying biaxial flexure to disc specimen by hydrostatic pressurization method.

Figure 12. Test fixture for 7.75-inch-diameter disc windows.

Figure 13. Sealing of the 7.75-inch-diameter disc window in the test fixture with 3M Windo-Weld mastic tape.

Figure 14. Manually operated pressurization system for pressure testing of 3-inch-diameter disc windows.

Figure 15. Pressure vessel with a 0.75-inch-thick, 7.75-inch-diameter plane disc window mounted in a pressure vessel closure with 6.2-inch-diameter (D₁) opening.

ca recover especies reviewed becoming especies.

Figure 16. Pressure vessel shown in Figure 15 after catastrophic failure of the plane disc window during hydrostatic pressurization.

Figure 17. Low-pressure faces of 5-inch-diameter allyl diglycol carbonate plastic windows with 1.0-, 1.25-, 1.75- and 2-inch thicknesses after short-term pressurization to failure at 75°F ambient temperature. Note that the diameter of the fracture cone matches the 4-inch opening in the test fixture.

Figure 18. High-pressure faces of disc windows described in Figure 17. Note that the diameter of the penetration through the high-pressure face is inversely proportional to disc thickness.

Figure 19. Plane disc CR-39 plastic window with 0.725-inch thickness and 6.2-inch unsupported diameter after catastrophic failure during short-term pressurization to 520 psi at 75°F ambient temperature.

cocococo significant secondos significados

Figure 20. Strain at the center of the low-pressure face on plane disc CR-39 plastic window with 0.725-inch thickness and 6.2-inch unsupported diameter under short-term pressurization to failure at 72°F ambient temperature.

Figure 21. Plane disc CR-39 plastic window with 1.727-inch thickness and 4.0 inch unsupported diameter after catastrophic failure during short-term pressurization at 6500 psi at 125°F ambient temperature; high-pressure face detail.

and paragraph declara selection and a

and the second s

Figure 22. Plane disc window shown on Figure 21 low-pressure face detail. Note the shear fracture cone, whose apex penetrates the high-pressure face and whose base diameter is defined by the unsupported diameter (D_i) of the window seat in the test fixture.

Figure 23. STCP of plane disc CR-39 plastic windows at ambient temperature in the 70-85° F range.

Figure 24. Effect of temperature on the STCP of thin, plane CR-39 discs.

Figure 25. Effect of ambient temperature on the tensile strength and modulus of elasticity in CR-39 plastic under uniaxial tension.

Figure 26. Effect of ambient temperature on the tensile strain in CR-39 plastic under uniaxial tensile loading.

Figure 27. Static fatigue of plane disc CR-39 plastic windows with $t/D_1 = 0.104$ at ambient temperatures in the 70-80°F range.

AL DODGES AND SECTION OF CONTRACT CONTRACTOR OF CONTRACTORS

Figure 28. Static fatigue of plane disc CR-39 plastic windows with $t/D_i = 0.104$ at ambient temperatures in the 120-125°F range.

Figure 29. Strain at the center of the low-pressure face on plane disc CR-39 plastic window with $t/D_j = 0.245$ during the pressure cycle. The maximum pressure during sustained loading is equal to 10 percent of the window's STCP.

Figure 30. Strain at the center of the low-pressure face on plane disc CR-39 plastic window with $t/D_i = 0.368$ subjected to long-term pressure loading at 68°F. The maximum pressure during sustained loading is 10 percent of the window's STCP. Note that the strains relax completely after unloading.

Figure 31. Strain at the center of the low-pressure face on plane disc CR-39 plastic window with 0.725-inch thickness and 6.2-inch unsupported diameter after different sustained pressure loadings at 74°F ambient temperature. Note that material creep occurs only at pressure loadings in excess of 0.1 STCP.

Figure 32. Cyclic fatigue of plane disc CR-39 plastic windows with $t/D_i = 0.104$ atambient temperatures in the 120-125°F range. Each cycle consists of 60-minute-long sustained pressure followed by 60 minutes of relaxation at 0 psi.

Figure 33. Notched CR-39 disc window with $t/D_{\tilde{i}}$ = 0.104 mounted in the test fixture for 3-inch discs.

Figure 34a. Fixture for sanding of disc windows under controlled conditions, assembled.

Figure 34b. Fixture for sanding of disc windows under controlled conditions, disassembled.

Figure 35. Acrylic plastic disc window after four strokes with a 1-inch-square pad of 80-grit sandpaper.

Figure 36. Acrylic plastic disc window after four strokes with a 1-inch-square pad of 150-grit sandpaper.

Figure 37. Acrylic plastic disc window after four strokes with a 1-inch-square pad of 200-grit sandpaper.

Figure 38. Effect of curing time and temperature on properties of CR 39 casting.

APPENDIX

Results of Hydrostatic Testing of CR-39 Flat Disc Windows

Table A-1. Tensile Strength of CR-39 Plastic Under Short-Term Loading.

SPECIFICATION: Homalite H: 911 TEST METHOD : ASTM D 638-82a

THE CARRACT SOCIETY SOCIETY TO SOCIETY OF

TENSILE ULTIMATE STRENGTH, MODULUS AND ELONGATION

RATE OF TEST: 0.20 INCHES/MINUTE							
			MAXIMUM	ULT	TIMATE	TENSILE	
SPECIMEN	THICKNESS	WIDTH	LOAD	STF	RENGTH	MODULUS	ELONGATION
=======	*=======	=====	2======	===	:====	======	~======
MATERIAL	[inche I.D.: CR-39 PLASTIC		pounds		PS1	PSIx10+4	%
TEST CONDITIO	OMS :TESTED AT 100+-	5 DEG. F AFTE	R 15 MINUTES AT	100+-5	DEG. F		
1	0.256	0.495	547		4,320	1.79	6 .6
2	0.257	0.496	535		4,200	1.70	6.3
3			498				
_			AVERAGE	=	4, 160	1.76	
	2055	STANDARI	DEVIATION VARIATION	=	183	0,052	0.51
	COEF	ICIENT OF	VARIATION	=	4.40%	2.95%	8.23%
TEST CONDITI 1 2 3	0.254 0.247	0.498 0.499 0.500	313 339 328 AVERAG	E =	2,530 2,670 2,660 2,620	9.53 9.37	6.0 5.9 5.7
	COEF	STANDAR FICIENT O	D DEVIATIO F VARIATIO	N = N =	78 2,98%	0.235 2.51%	
TEST CONDIT	IONS :TESTED AT 150	+-5 DEG. F AFT	ER 15 MINUTES A	T 150+	-5 DEG. F		
1	0.249	0,497	135		1.090	5.50	2.6
2			182				
3	0.247		158				
_	2 · · ·	- · · · · · · · ·			1,280		
		STANDAR	RD DEVIATIO	N =	190	0.364	1.38
	COE		F VARIATIO			6.15%	

23598-01

Table A-1. Tensile Strength of CR-39 Plastic Under Short-Term Loading. (Contd)

SPECIFICATION:

TEST METHOD : ASTM D 638-82a

TENSILE ULTIMATE STRENGTH, MODULUS AND ELONGATION

RATE OF TEST: 0.20 INCHES/MINUTE							
		ŗ	1AX I MUM	UL.		TENSILE	
ECIMEN	THICKNESS	WIDTH	LOAD	STE	RENGTH	MODULUS	ELONGATION
======	========	===== :	======	==:	=====	======	=========
	[inch	ies) p	oounds		-PSI	PS1x10+5	%
	I.D.: CK-39 PLAS1						
EST CONDITIO	DNS :TESTED AT 32	2+-5 Deg. F After 1	15 MINUTES AT 32	2+-5	DEG. F		
1		0.499					2.7
2 3	0.251	0.495	1,050		8,450	3,42	3.6
3	0.253		1,030				
			AVERAGE	=	7,930	3.34	3.2
		STANDARD	DEVIATION	=	667	0.106	0.47
	CO	FFICIENT OF					14.59%
TEST CUMDITI	UNS ETESTED AT 5	0+-5 DEG. F AFTER	15 MINUTES AT 5	0+-5	DEG. F		
1	0.248	0.496	832		6,760	3.04	2.8
2 3	0.249	0.497	816		6,590	3.06	2.6
3	0.254	0.49 <i>7</i>	830		6,570	2.98	2.8
			AVERAGE	=	6,640	3.03	2.7
		STANDARD	DEVIATION	=	104	0.041	0.12
	CO	EFFICIENT OF	VARIATION	=	1.57%	1.38%	4.44%
4555 00							
EST CONDITIO	DNS :TESTED AT RO	IOH TREMPERATURE (7	5+-5 DEG. F)				
1		0.496					
2 3		0.498					
3	0.250	0.49 <i>7</i>	649				
			AVERAGE	=	5,410	2.45	3.9
		STANDARD	DEVIATION	=	257	0.045	0.93
	CO	EFFICIENT OF	VARIATION	=	4.75%	1.89%	23.85%

Note: 1.The test specimens were-machined from 0.25-inch-thick CR-39 sheet casting procured from Homalite Inc. as H-911 composition.

^{2.} Hardness tests performed on the sheet indicate that the casting was totally polymerized as specified by the purchase order to the vendor.

Table A-2. STCP of 3-Inch Flat Disc CR-39 Plastic Windows.

Specimen	Outside Diameter, inches	Thickness, inches	Temperature, °F	Critical Pressure, psi
1	2.985	0.226	47	947
	2.985	0.220	44	880
3	2.985	0.234	46	660
4	2.985	0.229	46	840
2 3 4 5	2.985	0.231	45	710
Summary:	min 660 psi; av 807	psi; max 947 psi		
6	2.985	6.250	80	550
7	2.983	0.248	80	670
6 7 8 9	2.983	0.247	80	640
9	2.985	0.250	80	400
10	2.985	0.256	80	380
11	2.985	0.256	80	460
12	2.985	0.260	80	580
13	2.985	0.260	76	780
Summary:	min 380 psi; av 557	psi; max 780 psi		
14	2.985	0,242	125	240
15	2.985	0.242	118	370
16	2.985	0.242	116	320
17	2.982	0.245	117	342
18	2.984	0.243	115	330

Summary: min 240 psi; av 320 psi; max 370 psi

NOTES: 1. Windows were seated on 2.40-inch-inside-diameter aluminum seat covered with 0.02-inch-thick Fairprene gasket.

2. Pressure rise was in the 500 to 700 psi/minute range.

Table A-3. STCP of 5-Inch Flat Disc CR-39 Plastic Windows.

Specimen		tside r, inches	Thickness, inches	Temperature,	Critical Pressure, psi
1 2 3 4 5	5.(5. 5. 5.(00 00 00	1.000 0.992 0.992 0.992 0.982	70 71 70 70 70	3,000 3,500 3,300 2,100 2,000
Summary:	min 2,000 ps	i; av 3,380 ps	i; max 3,500 psi		
6 7 8 9 10	5.0 5.0 5.0 5.0	00 00 00	1.195 1.195 1.250 1.117 1.220	70 71 70 70 70	5,800 4,400 3,500 4,000 3,600
Summary:	min 3,500 ps	i; av 4,260 ps	i; max 5,800 psi		
11 12 13 14 15	5.0 5.0 5.0 5.0	00 00 00	1.469 1.484 1.484 1.484 1.472	69 72 72 70 68	6,600 6,500 7,700 7,000 6,250
Summary:	min 6,250 psi	; av 6,810 ps	i; max 7,700 psi		
16 17 18 19 20	5.(5.(5.(5.(00 00 00	1.609 1.750 1.688 1.703 1.735	70 69 70 69 70	7,500 9,000 8,000 8,000 8,700
Summary:	min 7,500 psi	i; av 8,240 ps	i; max 9,000 psi		
21 22 23 24 25	5.0 5.0 5.0 5.0	00 00 00	1.656 1.644 1.727 1.719 1.711	132 132 132 132 130	5,900 5,700 6,500 6,250 7,000
Summary:	-		i; max 7,000 psi	· · · · · · · · · · · · · · · · · · ·	
26 27 28 29 30	5.0 5.0 5.0 5.0	00 00 00	1.969 1.961 2.000 2.039 1.965	70 70 70 70 70	15,000 14,500 15,000 15,000

Summary: min 14,500 psi; av 14,900 psi; max 15,000 psi

Windows were seated on 4.00-inch-inside-diameter steel seat, covered with 60-Durometer-hardness, 0.063-inch-thick neoprene gasket.
 Pressure rise was in the 500 to 600 psi/minute range. NOTES: 1.

Table A-4. STCP of 7.75-Inch Flat Disc CR-39 Plastic Windows.

Specimen	Outside Diameter, inches	Thickness, inches	Temperature, °F	Critical Pressure, psi
1	7.75	0.455	38	120
2	7.75	0.435	40	200
3	7.75	0.461	38	170
4	7.75	0.445	40	170
5	7.75	0.458	39	180
Summary:	min 120 psi; av 168 ps	si; max 200 psi		
6	7.75	0.498	82	218
7	7.75	0.495	78	380
8	7.75	0.492	78 78	460
9	7.75 7.75	0.492	80	260
10	7.75	0.492	80	260
Summary:	min 218 psi; av 315 ps	si; max 460 psi	- , 	
11	7.75	0.470	80	560
12	7.75	0.465	80	290
13	7.75	0.480	83	370
14	7.75	0.463	83	320
15	7.75	0.475	81	300
Summary:	min 290 psi; av 368 ps	si; max 560 psi		
16	7.75	0.487	110	90
17	7.75	0.473	110	110
18	7.75	0.475	110	80
19	7.75	0.480	110	180
20	7.75	0.482	109	120
Summary:	min 80 psi; av 116 ps	i; max 180 psi		
21	7.75	0.732	70	300
22	7.75	0.725	72	500
23	7.75	0.725	72	484
24	7.75	0.730	74	420
25	7.75	0.735	73	440
Summary:	min 300 psi; av 429 ps	si; max 500 psi		
26	7.75	1.008	72	1550
27	7.75	0.971	72	1520
28	7.75	1.000	73	1850
29	7.75	0.982	75	1200
	7.75	0.995	72	1480

Summary: min 1200 psi; av 1520 psi; max 1850 psi

NOTES: 1. Windows were seated on 6.20-inch-inside-diameter steal seat, covered with 60-Durometer-hardness, 0.063-inch-thick neoprene gasket.

2. Pressure rise was in the 500 to 700 psi/minute range.

Table A-5. STCP of 7.75-Inch Flat Disc Acrylic Plastic Windows.

Specimen	Outside Diameter, inches	Thickness, inches	Temperature,	Critical Pressure, psi
1	7.750	0.470	38	500
2	7.750	0.465	40	350
3	7.750	0.465	40	375
4	7.750	0.475	40	375
5	7.750	0.471	40	400
Summary:	min 350 psi; av 400	psi; max 500 ps	i	
6	7.750	0.470	80	540
7	7.750	0.465	80	290
8	7.750	0.480	83	480
9	7.750	0.463	82	320
10	7.750	0.469	78	560
Summary:	min 290 psi; av 438	3 psi; max 560 ps	si	
11	7.750	0.465	118	3 20
12	7.750	0.460	110	460
13	7.750	0.468	110	300
14	7.750	0.465	110	270
15	7.750	0.469	111	300

Summary: min 270 psi; av 330 psi; max 460 psi

NOTES: 1. Windows were seated on 6.20-inch-inside-diameter steel seat, covered with 60-Durometer-hardness, 0.963-inch-thick Neoprene gasket.

2. Pressure rise was in the 500 to 700 psi/minute range.

Table A-6. Strain at Center of Flat Disc CR-39 Plastic Window.

Outside Diameter: 5.00 inches

Thickness: 0.982 inch

Temperature: 70° F

Seat Diameter: 4.00 inches

Bearing Gasket: 60-Durometer, 0.063-inch-thick Neoprene

_	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch	
	0	0	0	
		100	+990	
Q		200	+2100	
PRESSURIZED	1	300	+3010	
SUF	15	300	+3300	
γES	30	300	+3500	
ш.	45	300	+3590	
	60	300	+3680	
_	0	0	+ 700	
	15	0	+ 380	
	30	0	+ 300	
ED	45	0	+ 240	
IR 12	6 0	0	+ 100	
SSU	75	0	+ 53	
UNPRESSURIZED	105	0	+ 16	
Š	110	0	+ 0	
	120	0	+ 0	

NOTE: Under short-term loading, the window cracked at 650 psi and imploded at 2,000 psi.

Table A-7. Strain at Center of Flat Disc CR-39 Plastic Window.

5.00 inches

Thickness:

1.220 inches

Temperature:

72°F

Seat Diameter:

4.00 inches

Bearing Gasket: 60-Durometer, 0.063-inch-thick Neoprene

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch	
	0	0	0	
		100	+ 630	
		200	+1380	
_		300	+1930	
ZED		400	+2580	
URI	1	440	+2650	
PRESSURIZED	15	440	+2060	
ď	30	440	+2060	
	45	440	+2060	
	60	440	+2060	
0	0	0	+ 170	
UNPRESSURIZED	15	0	- 150	
	30	0	- 200	
'nRES	45	0	- 250	
UNE	60	0	- 300	

NOTE: Under short-term loading, the window cracked at 1,000 psi and imploded at 3,600 psi.

Table A-8. Strain at Center of Flat Disc CR-39 Plastic Window.

5.00 inches

Thickness:

1.472 inches

Temperature:

68° F

Seat Diameter:

4.00 inches

Bearing Gasket: 60-Durometer, 0.063-inch-thick Neoprene

n	Time, ninutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	0
		100	+ 700
		200	+1400
		300	+2200
		400	+2760
<u>a</u> :		500	+3100
PRESSURIZED		600	+2700
SSUF	1	700	+3110
PRES	15	700	+3350
	30	700	+3710
	45	700	+3760
	60	700	+3790
ZED	1	0	+ 760
IR I 2	15	0	+ 220
UNPRESSURIZED	30	0	+ 60
PRE	45	0	+ 10
Ś	60	0	- 10

NOTE: Under short-term loading, the window cracked at 2,000 psi and imploded at 6,250 psi.

Table A-9. Strain at Center of Flat Disc CR-39 Plastic Window.

Outside Diameter: 5.00 inches

Thickness: 1.735 inches

Temperature: 70° F

Seat Diameter: 4.00 inches

Bearing Gasket: 60-Durometer, 0.063-inch-thick Neoprene

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	
		100	+ 300
		200	+ 500
		300	+ 700
		400	+ 900
Ω		500	+1100
17E		600	+1400
PRESSURIZED		700	+1700
RES	2	800	+1900
LI.	15	800	+2000
	30	800	+2020
	45	800	+2020
	60	800	+2040
	1	0	+ 220
371	15	0	- 60
UNPRESSURIZED	30	0	- 10
RES	45	0	0
UNE	60	0	0

NOTE: Under short-term loading, the window cracked at 4,000 psi and imploded at 8,700 psi.

Table A-10. Strain at Center of Flat Disc CR-39 Plastic Window.

5.00 inches

Thickness:

1.965 inches

Temperature:

70°F

Seat Diameter:

4.00 inches

Bearing Gasket:

60-Durometer, 0.063-inch-thick Neoprene

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	0
		200	480
		300	670
		400	850
		500	1010
		600	1200
ZED		700	1470
JR I		800	1660
PRESSURIZED		900	1790
PRE		1000	1900
		1100	2090
		1200	2220
		1300	2360
		1400	2530
	2	1500	2680
	15	1500	2710
	30	1500	2690
	45	1500	2550
	60	1500	2550
ED	1	()	+ 80
R I 2	15	Θ	-560
UNPRESSURIZED	3()	0	-700
PRE	45	0	- 74()
2071	60	()	-800

NOTE: Under short-term loading the window cracked at 8,200 psi and imploded at 15,000 psi.

Table A-11. Strain at Center of Flat Disc CR-39 Plastic Window.

Outside Diameter: 7.750 inches

Thickness:

0.460 inch

Temperature:

71° F

Seat Diameter:

6.2 inches

Bearing Gasket:

	Time, ninutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	000
		10	+1030
۵		20	+1700
RIZE	1	30	+2200
PRESSURIZED	4	30	+2320
PR	10	30	+2330
	60	30	+2330
UNPRESSURIZED	0	0	+ 300
	7	0	30
	15	0	6
UNPR	60	0	0

Table A-12. Strain at Center of Flat Disc CR-39 Plastic Window.

7.750 inches

Thickness:

BEEN SAMED SECURE SOCIETY IN

0.460 inch

Temperature:

94° F

Seat Diameter:

6.2 inches

Bearing Gasket:

Time, minutes		Pressure psi	Maximum Strain, microinches/inch	
	0	0	000	
		10	+ 1100	
		20	+ 1780	
IZED	0	30	+ 2770	
PRESSURIZED	15	30	+ 2817	
PRE	19	30	+ 2815	
	22	30	+ 2806	
ZED	0	0	+ 700	
URI.	3	0	+ 115	
DEPRESSURIZED	9	0	+ 12	
DEP	12	0	0	

Table A-13. Strain at Center of Flat Disc CR-39 Plastic Window.

Outside Diameter: 7.750 inches

Thickness:

0.460 inch

Temperature:

108°F

Seat Diameter:

6.2 inches

Bearing Gasket:

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	+ 000
		10	+1200
		20	+1950
	1	30	+2600
(ED	2	30	+2880
PRESSURIZED	5	30	+2950
SSI	8	30	+3000
PRE	10	30	+3040
	12	30	+3087
	23	30	+3167
	33	30	+3186
_	0	0	
ZED	2	0	+ 900
URI	13	0	+ 421
DEPRESSURIZED	30	0	+ 260

Table A-14. Strain at Center of Flat Disc CR-39 Plastic Window.

7.750 inches

Thickness:

0.460 inch

Temperature:

71° F

Seat Diameter:

6.2 inches

Bearing Gasket:

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	+ 000
		10	+0740
		20	+1 350
		30	+2200
٥		40	+3000
32 I	3	50	+3850
SUR	5	50	+4093
PRESSURIZED	10	50	+4140
Δ.	15	. 50	+4160
	150	50	+4230
	1200	50	+4560
	0	0	+3500
۵	3	0	+ 470
125	5	0	+ 356
UNPRESSURIZED	1200	0	- 177
UND			

Table A-15. Strain at Center of Flat Disc CR-39 Plastic Window.

Outside Diameter: 7.750 inches

Thickness: 0.460 inch

Temperature: 72° F

Seat Diameter: 6.2 inches

Bearing Gasket: None

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch	
-	0	0	000	
		10	+1010	
		20	+1560	
		30	+2180	
		40	+2900	
ΈD		50	+3600	
JR I		60	+4400	
PRESSURIZED	1	70	+5200	
PRE	2	70	+5460	
	7	70	+5615	
	35	70	+5691	
	60	70	+5700	
_	0	0	+1500	
<u>a</u>	3	0	+ 480	
17E	5	0	+ 300	
SSUF	10	0	+ 198	
DEPRESSURIZED	144	0	+ 35	

Table A-16. Strain at Center of Flat Disc CR-39 Plastic Window.

7.750 inches

Thickness:

0.460 inch

Temperature:

71° F

Seat Diameter:

6.2 inches

Bearing Gasket:

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch	
	0	0	0	
		20	+2000	
		40	+2920	
		60	+4660	
ED		80	+6250	
PRESSUR I ZED	3	100	+7940	
SSU	15	100	+9120	
PRE	45	100	+9270	
	60	100	+9230	
	240	100	+9500	
	0	0	+2900	
_	5	0	+1130	
ZEC	20	0	+ 560	
URI	35	0	+ 387	
ESS	60	0	+ 256	
UNPRESSURIZED	180	0	+ 001	

Table A-17. Strain at Center of Flat Disc CR-39 Plastic Window.

7.750 inches

Thickness:

0.725 inch

Temperature:

74° F

Seat Diameter:

6.20 inches

Bearing Gasket: 60-Durometer, 0.063-inch-thick Neoprene

	Time, minutes	Pressure, psi	Maximum Strain, microinches/inch
	0	0	000
		10	+ 460
		20	+ 950
ED		30	+1 385
PRESSURIZED		40	+2006
SSU	1	50	+2300
PRE	5	50	+2348
	45	50	+2445
	85	50	+2420
	150	50	+2380
	210	50	+2400
_	0	0	+ 000
ZEC	1	0	+ 130
UNPRESSURIZED	180	0	- 16

Table A-18. Strain at Center of Flat Disc CR-39 Plastic Window.

7.750 inches

Thickness:

0.725 inch

Temperature:

74 ° F

Seat Diameter:

6.20 inches

Bearing Gasket:

60-Durometer, 0.063-inch-thick Neoprene

Time, minutes	Pressure, psi	Maximum Strain, microinches/inch
0 SSGR 12ED 3 5 7 13 25 70 240 1860 2600 4650 5500 5500	0 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100 100 100	000 + 580 +1230 +1310 +2070 +2370 +2654 +3104 +3600 +4010 +4475 +4676 +4718 +4733 +4858 +4941 +5196 +5903 +6162 +6735 +7145
UNPRESSURIZED 0921 0000 0000 0000 0000 0000 0000 0000	0 0 0	+2890 +1860 + 860

Table A-19. Strain at Center of Flat Disc CR-39 Plastic Window.

Outside Diameter: 7.750 inches

Thickness: 0.725 inch

Temperature: 72 $^{\circ}$ F

Seat Diameter: 6.20 inches

Bearing Gasket: 60-Durometer, 0.063-inch-thick Neoprene

Time, minutes	Pressure, psi	Maximum Strain, microinches/inch	
0	0	+000	
	10	+930	
	20	+1005	
	30	+1500	
	40	+1761	
	50	+2400	
	60	+2950	
	70	+3280	
<u> </u>	80	+3750	
	90	+4162	
•	100	+4550	
)	110	+5090	
2	120 130	+5500	
-	140	+5960 +6455	
3	150	+6935	
3 5	150	+7310	
20	150	+7612	
80	150	+7869	
525	150	+8351	
8750	150	+12300	
		. 12 300	
0	0	+6400	
15	0	+4765	
165	0	+3844	
465	0	+3235	
15 165 465	*		

Table A-20. Strain at Center of Flat Disc CR-39 Plastic Window.

7.750 inches

Thickness:

secon marketes. Especial recessor seconos seconos seconos seconos recessor marketes especial marketes.

0.725 inch

Temperature:

74 ° F

Seat Diameter:

6.20 inches

Bearing Gasket:

60-Durometer, 0.063-inch-thick Neoprene

Time, Pressure, minutes psi		Maximum Strain, microinches/inch		
0	0	000		
	10	+620		
	20	+900		
	30	+1420		
	40	+1720		
	50	+2160		
	60	+2540		
	70	+2970		
	80	+3350		
	90	+3880		
	100	+4260		
	120	+5090		
PRESSURIZAT 10N	140	+6090		
-	160	+6880		
ZA	180	+7780		
RI	200	+8790		
ns	220	+9680		
ES	240	+10490		
PR	260	+11380		
	280	+12300		
	300	+13580		
	320	+14480		
	340	+14990		
	360	+15980		
	380	+17040		
	400	+17900		
	500	+23830		
6	520	+26640 Implosion		

Table A-21. 3-Inch-Diameter Flat Disc CR-39 Plastic Windows Under Long-Term Pressurization.

pecimen	Outside Diameter, inches	Thickness, inches	Temperature, °F	Pressure, psi	Time at Failure, minutes
1	2.988	0.245	75	300	600
2	2.985	0.227	80	300	548
3	2.988	0.237	80	350	286
4	2.988	0.237	75	400	0.5
5	2.988	0.227	120	250	0.5
6	2,985	0.233	120	200	108
7	2.985	0.230	120	200	10.75
8	2.987	0.228	120	200	0.1
9	2.985	0.249	120	200	0.8
10	2,982	0.237	120	150	8
11	2.986	0.242	118	150	34
12	2.985	0.237	120	130	62
13	2.980	0.236	120	130	41
14	2.984	0.230	120	100	630
15	2.986	0.236	120	100	224
16	2.985	0.224	120	100	940
17	2.983	0.240	120	100	4710
18	2.988	0.241	125	120	2
19	2.987	0.231	117	100	11760

OTES: 1. Windows were seated on 2.40-inch-inside-diameter aluminum seat covered with 0.02-inch-thick Fairprene gasket.

^{2.} The pressurization medium was heated tap water.

Table A-22. 3-Inch-Diameter Flat Disc CR-39 Plastic Windows Under Cyclic Pressurization.

Specimen	Outside Diameter, inches	Thickness, inches	Temperature, °F	Pressure, psi	Cycles to Failure
1	2.985	0.238	125	100	6
2	2.985	0.240	125	100	3
3	2.985	0.241	125	80	150
4	2.983	0.242	125	80	106
5	2.987	0.247	125	100	1
6	2.986	0.238	125	100	8

NOTES: 1. Windows were seated on an aluminum seat (2.40-inch-inside-diameter, 3.0-inch-outside-diameter) covered by a 0.02-inch-thick Fairprene gaskets.

2. The typical pressure cycle consisted of pressurizing to maximum pressure at 650 psi/minute and maintaining the pressure for 60 minutes, depressurizing to zero at 650 psi/minute, and relaxing at zero pressure for 60 minutes.