

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Métodos Formales

motodoo i oimaroo									
Clave:	Semestre:	stre: Eje temático:			No. Créditos:				
	7-8	Integrad	ción Teoría-Prá	10					
Carácter: Otativa			Horas		Horas por semana	Total de Horas			
Tipo: Teórico-Práctica			Teoría:	Práctica:					
Tipo. Te	OHCO-Practica		3	4	7 112				
Modalidad: Curso			Duración del programa: Semestral						

Asignatura con seriación indicativa antecedente: Autómatas y Lenguajes Formales;

Inteligencia Artificial: Ingeniería de Software

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivos generales:

Presentar y comprender las técnicas formales de especificación y verificación enfatizando los fundamentos teóricos de los formalismos que las sustentan.

Comprender el panorama representativo de los métodos formales basados en lógica, delineado con las características de expresividad, complejidad, y con el rasgo semántico o sintáctico de cada método.

Usar la herramienta básica de automatizadas para especificación y verificación formal.

Implementar el prototipo de una herramienta automatizada para un formalismo de verificación.

Elegir un formalismo para modelar un sistema y verificar algunas de sus propiedades.

Conocer y aplicar las tendencias actuales en el área de métodos formales, y la perspectiva de su desarrollo, resaltando las dificultades conocidas.

Índice temático						
Unidad	Tomas	Horas				
	Temas	Teóricas	Prácticas			
	Visión general	3	4			
II	Métodos basados en lógica temporal	13	18			
Ш	Métodos basados en lógica de primer orden	16 21				
IV	Métodos basados en otros formalismos lógicos	16 21				
	Total de horas:	48	64			
Suma total de horas:		112				

Contenido temático				
Unidad	Tema			
I Visión general				
I.1	Necesidad de verificación formal.			
1.2	Comprender las consecuencias que se derivan de no usar métodos formales.			
1.3	Métodos Formales. El enfoque lógico.			
1.4	Métodos semánticos y métodos sintácticos.			
II Métodos	basados en lógica temporal			
II.1	Modelación con sistemas de transición de estados.			
II.2	Especificación con Lógica temporal. CTL, LTL, CTL*.			
II.3	Un verificador de modelos para CTL y LTL.			
11.4	Un algoritmo para verificación de modelos de la CTL.			
II.5	Extensiones de CTL.			
III Métodos	s basados en lógica de primer orden			
III.1	Lógica de primer orden (FO). Alcances y limitaciones.			
III.2	Lógica relacional y extensiones de FO (FO+TC, FO+LFP).			
III.3	Especificación con FO+TC.			
III.4	Un constructor de modelos.			
III.5	Especificación con FO (contraste con FO+TC).			
III.6	Un demostrador automático para FO.			
IV Métodos	s basados en otros formalismos lógicos			
IV.1	Sintaxis y semántica.			
IV.2	Expresión de propiedades.			
IV.3	Herramienta automatizada.			

Bibliografía básica:

- 1. M.Huth M, M. Ryan., Logic in computer science: modelling and reasoning about systems 2004.
- 2. Baier C, Katoen J.P., *Principles of Model Checking*, MIT Press 2008.

Bibliografía complementaria:

- 3. E. Clarke, O. Grumberg, D. Peled, *Model Checking*, MIT Press, 2000.
- 4. Baier C, Katoen J.P., Principles of Model Checking, MIT Press 2008.
- 5. WWW. Model Checking at CMU. http://www-2.cs.cmu.edu/~modelcheck/. 2009.
- 6. WW. NuSMV: a new symbolic model checker. http://nusmv.irst.itc.it/. 2010.
- 7. D. Jackson, Software Abstractions: Logic, Language, and Analysis, 2006.
- 8. N. Martí, M. Palomino, A. Vallejo, A tutorial on specifying data structures in Maude, 2005.
- 9. www. Alloy Community. http://alloy.mit.edu/. 2009.
- 10. www. Prover9 and Mace4. www.cs.unm.edu/~mccune/prover9/ 2007.
- 11. www. The Maude System. http://maude.cs.uiuc.edu/. 2007.

12. www. Prism: Probabilistic mode	el check	er. www.prismmodelchecker.org. 2009.	
Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Lecturas obligatorias Trabajo de investigación Prácticas de taller o Prácticas de campo Otras:	(X) (X) (X) (X) (X) (X) ()	Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Prácticas de laboratorio Exposición de seminarios por los Participación en clase Asistencia Proyectos de programación Proyecto final Seminario Otras:	(X) (X) (X) () (X) () () ()

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o Matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.