Lista de Exercícios 1

Universidade Tecnológica Federal do Paraná - Campus Pato Branco Programa de Pós-Graduação em Engenharia Elétrica Controle Ótimo e Multivariável Professor Dr. Rafael Cardoso

Descrição de Sistemas e Avaliação de Desempenho

Ex. 1 — Realizar uma resenha do artigo: F. J. ELLERT, C. W. MER-RIAM III, "Synthesis of Feedback Controls Using Optimization Theory - An Example", *IEEE Transactions on Automatic Control*, pp. 89-103, 1963.

Ex. 2 — Um veículo autônomo utiliza um motor CC para sua movimentação. A energia necessária é provida por baterias recarregáveis. Um modelo simplificado é ilustrado na figura 1. A saída do regulador de tensão é um sinal de controle e(t). O torque desenvolvido é $\lambda(t) = K_t i_f(t)$, onde K_f é uma constante conhecida; $\lambda_L(t)$ é o torque de carga. A velocidade do veículo deve ser o mais próxima possível de 5 Km/h sem necessitar de energia excessiva na saída do regulador de tensão de forma a prolongar a vida útil das baterias. Sejam $i_f(t)$ e $\dot{\theta}(t)$ as variáveis de estado.

- a) Escreva as equações de estado do sistema.
- b) Determina um conjunto de restrições fisicamente razoáveis para os estados e controle.
- c) Sugira um índice de desempenho se:
 - i) $L_f = 0$.
 - ii) $L_f \neq 0$.

Ex. 3 — Considere o problema de controle de atitude de um espaçonave controlada por um sistema de expulsão de gás ilustrada na figura (2). Considere com variáveis de estado a posição $\theta(t)$ e a velocidade angular $\dot{\theta}(t)$ e como controle o torque produzido pelos jatos de gás $\lambda(t)$. Suponha que o objetivo é mudar a atitude de uma condição inicial arbitrária para um ângulo

Figura 1: Modelo simplificado de veículo autônomo.

de $+15^{\circ}\pm0$, 1° em relação ao eixo de referência ilustrado. Esta manobra deve ser completada em 30 s com gasto mínimo de combustível.

- a) Determine as restrições de estados e controle.
- b) Sugira um critério de desempenho apropriado.

Figura 2: Controle de atitude de espaçonave.

Ex. 4 — Repita o exercício 3 considerando que a manobra deve ser completada em tempo mínimo.

Ex. 5 — A figura 3 mostra um foguete que é aproximado por uma partícula de massa instantânea m(t). A velocidade instantânea é v(t), T(t) é o empuxo e β é o ângulo de empuxo. Desconsiderando as forças gravitacionais, os efeitos aerodinâmicos e definindo $x_1 \triangleq x$, $x_2 \triangleq \dot{x}$, $x_3 \triangleq y$, $x_4 \triangleq \dot{y}$, $x_5 \triangleq m$, $u_1 \triangleq T$, $u_2 \triangleq \beta$, as equações de estado são

Figura 3: Representação simplificada de um foguete.

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = \frac{u_1(t)\cos u_2(t)}{x_5(t)}
\dot{x}_3(t) = x_4(t)
\dot{x}_4(t) = \frac{u_1(t)\sin u_2(t)}{x_5(t)}
\dot{x}_5(t) = -\frac{1}{c}u_1(t)$$

onde c é uma constante de proporcionalidade. O foguete parte do repouso no ponto $x=0,\,y=0.$

- a) Determine um conjunto de restrições de estado e controle fisicamente razoáveis.
- b) Sugira um critério de desempenho, e quaisquer restrições adicionais, se o objetivo for atingir $y(t_f) = 3 \ Km$ e maximizar $x(t_f)$ para t_f especificado.
- c) Sugira um critério de desempenho, e quaisquer restrições adicionais, se o objetivo for atingir x=500~Km,~y=3~Km em 2,5 min com a máxima massa possível do veículo.