Progresión geométrica del Covid 19 - Programación en Python

Aruani, Juan* De Mezzo, Facundo[†] López, Emilia[‡] López, Bernardo[§] 2022-06-14

Introducción

A lo largo de este documento se procede a realizar un análisis de el comportamiento del Covid 19 mediante el uso del lenguaje Python

1. Lectura de datos desde un CSV

Para empezar, se importa la librería "csv" para poder trabajar con los datos correspondientes, y se los lee¹.

Se procede a importar la información y a mostrar los encabezados y las primeras filas para corroborar. Notese que se debe específicar el delimitador específico ";" en caso de que no sea una coma ",".

```
import csv

with open('casos.csv') as info:
    reader = csv.reader(info,delimiter=";")

contador = 0

for fila in reader:
    print(fila)

    if contador > 5:
        break

contador +=1
```

```
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
## ['05/03/2020', '1', '']
## ['06/03/2020', '2', '']
## ['07/03/2020', '2', '']
## ['08/03/2020', '12', '']
## ['09/03/2020', '17', '']
```

^{*}juan.aruani.99@gmail.com

 $^{^\}dagger em. cn. demezzo. facundo@gmail.com$

[‡]emilia.lop49@gmail.com

^{\$}bernilopezmorel@gmail.com

¹El archivo del que se extrae la información debe estár en la misma carpeta que el programa para poder obtener la información

2. Gráfico de la cantidad de casos

Se presenta un gráfico con la cantidad de contagios en las fechas correspondientes

```
import csv
import pandas as pd
from matplotlib import pyplot as pplot
with open('casos.csv') as info:
      reader = csv.reader(info, delimiter=";")
      next(reader)
      next(reader)
      i=0
      fechas=[]
      casos=[]
      for fila in reader:
          fechas.append(fila[0])
          casos.append(fila[1])
          i += 1
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
pplot.figure(figsize=(20, 10))
pplot.plot_date(fechas,casos)
pplot.grid(visible=True)
#pplot.show()
pplot.savefig("Gráfica de casos.jpg")
```


Figure 1: output

3. Histograma de contagios

pplot.savefig("Histograma de casos.png")

```
import csv
import pandas as pd
from matplotlib import pyplot as pplot
with open('casos.csv') as info:
    reader = csv.reader(info, delimiter=";")
    next(reader)
    next(reader)
    i=0
    fechas=[]
    casos=[]
    for fila in reader:
        fechas.append(fila[0])
        casos.append(fila[1])
        i += 1
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
pplot.figure(figsize=(20, 10))
pplot.grid(visible=True)
pplot.hist(casos,rwidth=0.5, label="Histograma de casos Covid 19")
#pplot.show()
## (array([5., 3., 3., 3., 3., 3., 4., 3., 4.]), array([0., 3.1, 6.2, 9.3, 12.4, 15.5, 18.6, 2
```


Figure 2: output

4. Densidad de casos

```
import csv
import pandas as pd
from matplotlib import pyplot as pplot
with open('casos.csv') as info:
   reader = csv.reader(info, delimiter=";")
   next(reader)
   next(reader)
   i=0
   fechas=[]
   casos=[]
   for fila in reader:
       fechas.append(fila[0])
       casos.append(fila[1])
        i += 1
#Cambiamos el tipo de variable
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
casosnum=[]
for caso in casos:
    casosnum.append(float(caso))
fig = pd.DataFrame(casosnum).plot(kind='density',title="Densidad de casos").get_figure()
fig.savefig('Densidad de casos.png')
```

5. Estadística de casos

```
import csv
import pandas as pd
from matplotlib import pyplot as pplot

with open('casos.csv') as info:
    reader = csv.reader(info, delimiter=";")
    next(reader)
    next(reader)
    i=0
    fechas=[]
    casos=[]
    for fila in reader:
        fechas.append(fila[0])
        casos.append(fila[1])
        i += 1
```


Figure 3: output

```
#Cambiamos el tipo de variable
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
casosnum=[]
for caso in casos:
    casosnum.append(float(caso))
df = pd.DataFrame(casosnum)
print(df.describe())
                    0
##
## count
            34.000000
           514.705882
## mean
## std
           571.416874
## min
             1.000000
## 25%
            36.750000
## 50%
           245.500000
## 75%
           995.500000
          1715.000000
## max
```

6. Cálculo del factor de contagios

Se puede calcular el factor de contagios F mediante el cociente entre los infectados de hoy y los de ayer

$$F = I_{n+1}/I_n$$

```
import csv
import pandas as pd
from matplotlib import pyplot as pplot
with open('casos.csv') as info:
   reader = csv.reader(info, delimiter=";")
   next(reader)
   next(reader)
   i=0
   fechas=[]
   casos=[]
   for fila in reader:
        fechas.append(fila[0])
       casos.append(fila[1])
        i += 1
#Cambiamos el tipo de variable
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
casosnum=[]
for caso in casos:
```

```
casosnum.append(float(caso))
m = len(casosnum)
F=[]
for i in range(0,m):
    F.append((casosnum[i])/(casosnum[i-1]))
n=len(F)-1
print("El Factor de contagios el último día registrado es:")
## El Factor de contagios el último día registrado es:
print(F[n])
## 1.0534398034398034
7. Estadísticos de F
import csv
import pandas as pd
from matplotlib import pyplot as pplot
with open('casos.csv') as info:
    reader = csv.reader(info, delimiter=";")
   next(reader)
    next(reader)
    i=0
    fechas=[]
    casos=[]
    for fila in reader:
        fechas.append(fila[0])
        casos.append(fila[1])
        i += 1
#Cambiamos el tipo de variable
## ['Covid Argentina', '', '']
## ['Fecha', 'Casos', 'E_P+1']
casosnum=[]
for caso in casos:
    casosnum.append(float(caso))
m = len(casosnum)
F=[]
for i in range(0,m):
    F.append((casosnum[i])/(casosnum[i-1]))
```

```
dfactor = pd.DataFrame(casosnum)
print(dfactor.describe())
```

```
## count 34.000000
## mean 514.705882
## std 571.416874
## min 1.000000
## 25% 36.750000
## 50% 245.500000
## 75% 995.500000
## max 1715.000000
```