Linformer

Monday, June 28, 2021 3:30 AM

• Paper link https://arxiv.org/pdf/2006.04768.pdf

- Abstract

- => Self aftention mechanism in transformers take O(n²) time and space.
- =) It can, however, be approximated by a low-rank matrix.
- \Rightarrow This reduces the complexity from $O(n^2)$ to O(n).
- => The resulting model that uses the mechanism above, called linformer, performs on par with standard transformer models.

- Intro

- => Question: How to avoid quadratic time complexity of self-attention mechanism?
- > Approaches
 - Child et al. 2019 -> O(n Vh) [Link]
 - Large performance drop (2%)
 with limited speedup (20%)
 - Kitaer et al. 2020 -> O(n log n) [Link]
 - Lo uses locality sensitive hashing
 -) gains only appear with length 7 2048
 - l> multi-round hashing -> increased sequential operations
- => Insight: self-attention is low rank
 - The stochastic matrix formed by self-attention can be approximated by a low-rank matrix through the

approximate l by a low-rank matrix through the Johnson-Lindenstrauss lemma.

- Turn the scaled dot product attention to a number of smaller attentions through linear projections.
- => Linformer models performed well compared to standard transformers
 - pretraining performance
 - fine-funed performance
- =) O(n) complexity leads to significant training and inference speedup.

- Background

=> Transformers are made of multi-head attention (MHA) blocks.

MHA (Q, V, K) = Concat (head, ..., headh) WO

where Q, V, K & Rhadm

dm = embeding dimension

n = sequence length.

WOE Rhdy x dm

dy = dimension of the projection subspace of each head.

=> For each head,

head; = Attention (QW;, KW;, VW;)

= softmax (QWi (KWiK)T) VWi

where Will Wike Rdmxdk

Wile Rdmxdv

Wive Rdmxdv dx = dimension of the embeddings of the keys and quivies. ⇒ Define P = softmax (QW: LKW:K)T) Context mapping matrix " => Computing $P \in \mathbb{R}^{n \times n}$ involves multiplying $QW_i^Q \in \mathbb{R}^{n \times d_k}$ and $KW_i^K \in \mathbb{R}^{n \times d_k}$ which takes O(n2/4) - Self-attention is low-rank. => The context mapping matrix P is low-rant. - The paper took two pretrained transformer models => ROBERTA - base (12 layers) => RoBERTa - large (24 layers) - They computed P over different layers, different heads, over lok sentences. - They find the Singular values of the matrices and plotted the cumulative normalized strigular value graphs. The graphs are then averaged. - The graphs look kind of like this.

> ies 512 RoBERTa-large

RoBERTa - base

- So it seems that 90% of the mass of the singular values are located in the first 128.
- In higher layers, the mass concentrates on the large singular values even more.
- => Theoretically, we have the following result.

Thm For any Q, K, V & Rnxd and W, W, W, W, & Rdxd for any column vector we Rn of matrix VW! , there exists a random motorix $\widetilde{P} \in \mathbb{R}^n \times \mathbb{R}^n$ of rank $(\log n)$ s.t. Pr (|| PWT - PWT || < & || PWT ||) > 1 - O(1)

- => The proof uses the distributional Jonson-Lindenstrauss lemma
- \Rightarrow In fact, $\hat{P} = PR^TR$ where R is a ken matrix whose entries are sampled from the distribution LN(0,1).

- Model

- => First, let us say that dx = dv = d to simplify stuffs.
- => We introduce linear mappings E;, F; & Rkxn when computing the keys and values. So,

=> So, the new head function becomes

head; = Attention (QWi, EiKWi, FiVWi)

= softmax QW; (E; KW;)T F; VW; kxd

Pe Rnxk

Note that the calculation above can be carried out in O(nolk) time, which is linear in n if k is not a function of n.

=> Thm Let $k = c \min \left\{ \frac{q \operatorname{dlog} d}{\epsilon^2}, \frac{5 \log n}{\epsilon^2} \right\}$. There exists a way to sample E_i , $F_i \in \mathbb{R}^{k \times n}$ such that, for any now vector W of $QW_i^Q(kW_i^k)^T/\sqrt{d}$, we have that

 $Pr(\| sntmax(wE_i^T)F_i VW_i^V - sottmax(w)VW_i^V\| \le \varepsilon \| sottmax(w)VW_i^V\|)$ < 1 - O(1).

=> The forms of E; and F; are

 $E_i = SR$, $F_i e^{-S}R$

where $R \in \mathbb{R}^{k \times n}$ is a matrix whose entries are sampled from the distribusion $\frac{1}{k} \mathcal{M}(\sigma, 1)$.

=> Note that the projection matrices can be shared between heads and layers. Moreover, we can use the same matrix for the keys and values.

- Experiments

- => Pretraining performance
 - Measured with peoplerity curves.
 - Linformer with k = 128, n = 512 } are already on par with standard fransformer k = 256, n = 1024
 - The paper also evaluated projection matrix sharing schemes, and it found that performances were similar.
 - If we fix k and increase n, we find that performance

degrades when the model is not trained to convergence. However, performances become about the same after convergence.

- > Finetuning performance
 - Linformer with n= 512, k= 128 performed on par with ROBERTa
 - k= 256 actually performed better.
 - Best results were obtained by sharing one projection matrix across the whole model.