Good Question

marcaas 202228000206085

2023年4月18日

1 660

问题 1.1.

$$\lim_{x \to \infty} x^2 (2^{\frac{1}{x}} - 2^{\frac{1}{x+1}}) =$$

解. $\diamondsuit x = \frac{1}{t}, x \to \infty, t \to 0$, 记原式 = I

$$I = \lim_{t \to 0} \frac{2^t - 2^{\frac{t}{t+1}}}{t^2}$$

$$= \lim_{t \to 0} 2^t \frac{1 - 2^{\frac{t}{t+1} - t}}{t^2}$$

$$= \lim_{t \to 0} \frac{1 - 2^{\frac{-t^2}{t+1}}}{t^2}$$

$$= \lim_{t \to 0} \frac{\frac{t^2}{t+1} \ln 2}{t^2}$$

$$= \ln 2$$

问题 1.2. 设 a,b 为常数,且 $\lim_{x\to\infty} \left(\sqrt[3]{1-x^6}-ax^2-b\right)=0$.则 $a=(),b=()$.

问题 1.3.
$$f(x) = x^2(x+1)^2(x+2)^2 \cdots (x+n)^2$$
,则 $f''(0) =$

解. 设 $g(x) = (x+1)^2(x+2)^2 \cdots (x+n)^2$, 则 $f(x) = x^2 g(x)$, 此时

$$f''(x) = (x^2)''g(x) + 2(x^2)'g'(x) + x^2g'(x)$$

当 x = 0 时, $2(x^2)'g'(x) + x^2g'(x) = 0$, 所以

$$f''(0) = (x^2)''g(x)|_{x=0} = 2g(0)$$

$$g(0) = 1^2 \cdot 2^2 \cdots n^2$$
$$= (n!)^2$$

故原式 = $2(n!)^2$

问题 1.4. 设 y = y(x) 由参数方程 $\begin{cases} x = \frac{1}{2}\ln(1+t^2) \\ y = \arctan t \end{cases}$ 确定,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = (\quad), \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = (\quad), y = y(x)$ 在任意点处的 曲率 $k = (\quad)$

解.

$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{1}{2} \cdot \frac{2t}{1+t^2} = \frac{t}{1+t^2} \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \frac{1}{1+t^2} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{1}{1+t^2} \cdot \frac{1+t^2}{t} = \frac{1}{t} \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= \frac{\mathrm{d}(1/t)}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{t^2} \cdot \frac{1+t^2}{t} = -\frac{1+t^2}{t^3} \end{aligned}$$

关于曲率,在直角坐标方程下有

$$K = \frac{|y''|}{(1 + y'^2)^{3/2}}$$

在参数方程下有

$$K = \frac{|\varphi'(t)\omega''(t) - \omega'(t)\varphi''(t)|}{|\varphi'^{2}(t) - \omega'^{2}(t)|^{3/2}}$$

曲率半径

$$\rho = \frac{1}{K}$$

问题 1.5. 设 $f(x) = \ln \frac{1-2x}{1+3x}, n \ge 2$,则 $f^{(n)}(0) = ($)

解. 对 f(x) 进行变形

$$f(x) = \ln(1 + 2x) - \ln(1 + 3x)$$

当 $x \rightarrow 0$ 时,有

$$f(x) = \sum_{n=1}^{\infty}$$

问题 1.6. 设有界函数 f(x) 在 $(c, +\infty)$ 内可导, 且 $\lim_{x \to +\infty} f'(x) = b$, 则 b = ()

解(分析). 方法 1

若知道以下事实: 由 $\lim_{x\to\infty} f'(x) = b > 0 (< 0)$

问题 1.7.

$$I = \int \frac{\sqrt{x+1} + 2}{(x+1)^2 - \sqrt{x+1}} \, \mathrm{d}x.$$

问题 1.8. 设 $\lim_{x\to 0} \frac{\sin 6x - (\sin x)f(x)}{x^3} = 0$,则 $\lim_{x\to 0} \frac{6 - f(x)}{x^2} = ($)

问题 1.9. 设 f(x) 在 $[a, = +\infty)$,连续,则" $\exists x_n \in [a, +\infty)$,有 $\lim_{n \to \infty} x_n = +\infty$ 且 $\lim_{n \to \infty} f(x_n) = \infty$ ",是 f(x) 在 $[a, +\infty)$ 无界的 ()条件.

2 880

问题 2.1. 设 f(x) 在 $(-\infty, +\infty)$ 内为连续的奇函数, a 为常数,则必为偶函数的是()

a)
$$\int_0^x du \int_a^u t f(t) dt$$

b)
$$\int_a^x du \int_0^u f(t) dt$$

c)
$$\int_0^x du \int_a^u f(t) dt$$

d)
$$\int_a^x du \int_0^u t f(t) dt$$

问题 2.2. 设数列 a_n 满足 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$,且 |q| < 1,证明: $\lim_{n\to\infty} a_n = 0$

问题 2.3. 设数列 $x_n = (1+a)^n + (1-a)^n$, 证明:

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \begin{cases} 1 + |a|, & a \neq 0, \\ 1, & a = 0, \end{cases}$$

问题 2.4. 证明: $\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} = \max\{a_1 \cdot a_2 \cdot \dots \cdot a_k\}$ $(a_i > 0, i = 1, 2, \dots, k)$

3 ZY

问题 3.1.

$$\lim_{x \to 0} \frac{\int_{\sin x}^{x} \sqrt{3 + t^2} \, \mathrm{d}t}{x(e^{x^2} - 1)} =$$

问题 3.2.

$$\lim_{x \to 0} \frac{1}{x} \left(\cot x - \frac{1}{x} \right) =$$

问题 3.3. 求函数 $f(x) = \lim_{n \to \infty} \frac{x^{n+2} - x^{-n}}{x^n + x^{-n}}$ 的间断点,并判别间断点的类型。

问题 3.4. 设函数 $f(x) = \lim_{n \to \infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 - n\sin^2 \pi x}$,分析 f(x) 的间断情况。

问题 3.5. 设函数 $f(x) = \lim_{n \to \infty} \cos^n \frac{1}{n^x}$ $(0 < x < +\infty)$, 则 f(x) 在其间断点处的值为?

问题 3.6. 记 $f(x) = 27x^3 + 5x^2 - 2$ 的反函数为 f^{-1} ,求极限

$$\lim_{x \to \infty} \frac{f^{-1}(27x) - f^{-1}(x)}{\sqrt[3]{x}}$$

问题 3.7.

$$\lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^2[1 - \ln(1+x)]}{x}$$

问题 3.8.

$$\lim_{x \to 0} \frac{1 + \frac{1}{2}x^2 - \sqrt{1 + x^2}}{(\cos x - e^{\frac{x^2}{2}})\sin\frac{x^2}{2}}$$

问题 3.9.

$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - (1+2x)^{\frac{1}{2x}}}{\sin x}$$

问题 3.10. 设函数 $f(x) = (1+x)^{\frac{1}{x}}$ (x>0), 证明: 存在常数 A,B, 使得当 $x\to 0^+$ 时, 恒有

$$f(x) = e + Ax + Bx^2 + o(x^2)$$

并求常数 A, B.

问题 3.12. 设 $\alpha \ge 5$ 且为常数,则 k 为何值时极限

$$I = \lim_{x \to +\infty} [(x^{\alpha} + 8x^4 + 2)^k - x]$$

存在,并求此极限值.

问题 3.13. 求
$$\lim_{n\to\infty} \left[\sqrt{n}(\sqrt{n+1}-\sqrt{n}) + \frac{1}{2} \right]^{\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}}$$

问题 3.14. 设当 $a \le x \le b$ 时, $a \le f(x) \le b$, 并设存在常数 $k, 0 \le k < 1$, 对于 [a, b] 上的任意两点 x_1 与 x_2 , 都有

$$|f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

证明:

- 1. 存在唯一的 $\epsilon \in [a,b]$ 使 $f(\epsilon) = \epsilon$;
- 2. 对于任意给定的 $x_1 \in [a,b]$ 定义 $x_{n+1} = f(x_n), n=1,2,\cdots,$ 则 $\lim_{n \to \infty} x_n$ 存在, 且 $\lim_{n \to \infty} x_n = \epsilon$.