理想流体力学演習問題(0)

0-1. もし $\phi(x,y,z)=3x^2y-y^3z^2$ で表されるとき、点 (1,-2,-1) における $\nabla \phi$ を求めよ.

0-2. $\phi = \ln |\vec{r}|$ で表されるとき $\nabla \phi$ を求めよ. ここで $\vec{r} = xi + yj + zk$ である.

0-3. $\phi=2x^3y^2z^4$ で表されるとき, (1) $\nabla\nabla\phi$ ($div\ grad\phi$) の値を求めよ.(2) $\nabla\nabla\phi=\nabla^2\phi$ なることを示せ.

$$where \ \nabla^2\phi = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

0-4. $\overline{A}=x^2yi-2xzj+2yzk$ なるとき $curl\ curl \overline{A}$ を求めよ.

0-5. $\phi = 1/|\overline{r}|$ として $\nabla \phi$ を求めよ. ここで $\overline{r} = xi + yj + zk$ である.

0-6. $\nabla^2(1/|\overline{r}|)=0$ なることを証明せよ.ここで $\overline{r}=xi+yj+zk$ である.

0-7. もし $\overline{A} = xzi - yzj + xyzk$ で表されるとき点 (1,-1,1) における $\nabla \overline{A}(div\overline{A})$ を求めよ.

0-8. 次の式を証明せよ.

(1)
$$\nabla \times (\nabla \phi) = 0(\operatorname{curl} \operatorname{grad} \phi = 0), \ (2) \ \nabla (\nabla \times \overline{A}) = 0 \ (\operatorname{div} \operatorname{curl} \overline{A} = 0)$$