Centro de Estatística Aplicada

Gustavo Kanno¹ Rodrigo Marcel Araujo² Victor Ribeiro Baião Decanini³

Maio de 2021

Sumario		
Análica Descritiva		

 $^{^1\}mathrm{N\'umero}$ USP: 9795810

 $^{^2}$ Número USP: 9299208

³Número USP: 9790502

Análise Descritiva

```
setwd("C:\\Users\\Rodrigo Araujo\\Documents\\IME-USP\\CEA 1\\dados")
data = read_xlsx("IPCA_DADOS_AGRUPADOS.xlsx", sheet = 1)
head(data)
## # A tibble: 6 x 24
                          Arroz 'Avicultura de ~ 'Avicultura de ~ Banana Batata
##
    Data
                                                            <dbl> <dbl> <dbl>
##
     <dttm>
                                           <dbl>
                                           0.295
                                                             3.43 -2.86
## 1 2007-01-01 00:00:00 0.01
                                                                           0.75
                                                             2.82 -1.62 -3.83
## 2 2007-02-01 00:00:00 -0.68
                                           1.71
## 3 2007-03-01 00:00:00 -0.635
                                                                    1.05
                                                                          7.61
                                           2.26
                                                            10.1
## 4 2007-04-01 00:00:00 -0.635
                                          -0.56
                                                             1.31 -2.65 36.4
## 5 2007-05-01 00:00:00 0.13
                                          -0.13
                                                            -1.11 -1.46 11.6
## 6 2007-06-01 00:00:00 0.230
                                           0.27
                                                             4.93 -1.07 -5.17
## # ... with 18 more variables: Bovinocultura <dbl>, 'Cacau e produtos' <dbl>,
      Café <dbl>, Cebola <dbl>, 'Complexo soja' <dbl>, 'Complexo
      sucroalc.' <dbl>, Feijão <dbl>, Frutas <dbl>, Hortícolas <dbl>,
## #
      Indefinido <dbl>, 'Laranja e citros' <dbl>, Lácteos <dbl>, Mandioca <dbl>,
      Milho <dbl>, Pescado <dbl>, Suinocultura <dbl>, Tomate <dbl>, Trigo <dbl>
## #
zt0 <- ts(data[,2], frequency = 12, start = 2007, end = 2019)
zt1 <- ts(data[,3], frequency = 12, start = 2007, end = 2019)
zt2 <- ts(data[,4], frequency = 12, start = 2007, end = 2019)
zt3 <- ts(data[,5], frequency = 12, start = 2007, end = 2019)
zt4 <- ts(data[,6], frequency = 12, start = 2007, end = 2019)
zt5 <- ts(data[,7], frequency = 12, start = 2007, end = 2019)
zt6 <- ts(data[,8], frequency = 12, start = 2007, end = 2019)
zt7 <- ts(data[,9], frequency = 12, start = 2007, end = 2019)
zt8 <- ts(data[,10], frequency = 12, start = 2007, end = 2019)
zt9 <- ts(data[,11], frequency = 12, start = 2007, end = 2019)
zt10 <- ts(data[,12], frequency = 12, start = 2007, end = 2019)
zt11 <- ts(data[,13], frequency = 12, start = 2007, end = 2019)
zt12 <- ts(data[,14], frequency = 12, start = 2007, end = 2019)
zt13 \leftarrow ts(data[,15], frequency = 12, start = 2007, end = 2019)
zt14 <- ts(data[,16], frequency = 12, start = 2007, end = 2019)
zt15 <- ts(data[,17], frequency = 12, start = 2007, end = 2019)
zt16 <- ts(data[,18], frequency = 12, start = 2007, end = 2019)
zt17 <- ts(data[,19], frequency = 12, start = 2007, end = 2019)
zt18 <- ts(data[,20], frequency = 12, start = 2007, end = 2019)
zt19 <- ts(data[,21], frequency = 12, start = 2007, end = 2019)
zt20 <- ts(data[,22], frequency = 12, start = 2007, end = 2019)
zt21 <- ts(data[,23], frequency = 12, start = 2007, end = 2019)
zt22 <- ts(data[,24], frequency = 12, start = 2007, end = 2019)
```

plot(zt0,main="Série Temporal do Arroz", xlab= "Anos", ylab="IPCA")

Série Temporal do Arroz


```
par(mfrow = c(2, 2))
plot(zt1,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt2,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(zt3,main="Série Temporal da Banana", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal da Batata", xlab= "Anos", ylab="IPCA")
```

Série Temporal de Avicultura de Corte

Série Temporal de Avicultura de Postura

Série Temporal da Banana

Série Temporal da Batata


```
par(mfrow = c(3, 2))

plot(zt5,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt6,main="Série Temporal do Cacau e Produtos", xlab= "Anos", ylab="IPCA")
plot(zt7,main="Série Temporal do Café", xlab= "Anos", ylab="IPCA")
plot(zt8,main="Série Temporal da Cebola", xlab= "Anos", ylab="IPCA")
plot(zt9,main="Série Temporal do Complexo Soja", xlab= "Anos", ylab="IPCA")
plot(zt10,main="Série Temporal do Complexo Sucroalc.", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Bovinocultura

2008 2010 2012 2014 2016 2018 Anos

Série Temporal do Cacau e Produtos

Série Temporal do Café

Série Temporal da Cebola

Série Temporal do Complexo Soja

Série Temporal do Complexo Sucroalc.


```
par(mfrow = c(3, 2))

plot(zt11,main="Série Temporal do Feijão", xlab= "Anos", ylab="IPCA")
plot(zt12,main="Série Temporal das Frutas", xlab= "Anos", ylab="IPCA")
plot(zt13,main="Série Temporal das Horticulas", xlab= "Anos", ylab="IPCA")
plot(zt14,main="Série Temporal de Indefinido", xlab= "Anos", ylab="IPCA")
plot(zt15,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
plot(zt16,main="Série Temporal da Laranja e Citrus", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Feijão

2008 2010 2012 2014 2016 2018 Anos

Série Temporal das Frutas

Série Temporal das Horticulas

Série Temporal de Indefinido

Série Temporal do Lácteos

Série Temporal da Laranja e Citrus


```
par(mfrow = c(3, 2))

plot(zt17,main="Série Temporal da Mandioca", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal do Milho", xlab= "Anos", ylab="IPCA")
plot(zt19,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt20,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
plot(zt21,main="Série Temporal do Tomate", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal do Trigo", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Mandioca

Série Temporal do Milho

Série Temporal do Pescado

Série Temporal da Suínocultura

Série Temporal do Tomate

Série Temporal do Trigo

