1LAT

S2

Développements limités

Exercice 1.

Etablir pour chacune des fonctions f proposées ci-dessous un développement limité de f en 0 à l'ordre

a)
$$f(x) = e^x$$
 $n = 5$ b) $f(x) = \ln(1 + x^2)$ $n = 6$ c) $f(x) = \sin(2x) + \cos(x^2)$ $n = 7$

d)
$$f(x) = e^{3x} \sin(2x)$$
 $n = 4$ e) $f(x) = \frac{\ln(1+x)}{1+x}$ $n = 3$ f) $f(x) = \tan(x)$ $n = 5$

$$g) f(x) = \frac{\ln(1+x)}{e^x \sin(x)} \quad n = 3 \quad h) f(x) = (1+x)^{\frac{1}{x}} \quad n = 3 \quad i) f(x) = \frac{\ln(1+x)}{(1+x)^2} \quad n = 3$$

$$f(x) = \sqrt{1+x} \quad n = 4 \quad k) f(x) = \frac{1}{\sqrt{1-x}} \quad n = 3$$

Soit f la fonction définie par $f(x) = x^3 \sin\left(\frac{1}{x}\right)$ pour $x \neq 0$ et f(0) = 0. Exercice 2.

- 1. Montrer que f admet un développement limité à l'ordre 2 en 0.
- 2. La fonction est-elle deux fois dérivable en 0 ?

Calculer les limites suivantes (sans présupposer leur existence!). Exercice 3.

a)
$$\lim_{x \to 0} \frac{\sinh(x)}{\sin(x)}$$
 b) $\lim_{x \to 0} \frac{\sin(3x)}{3x - \frac{3}{2}\sin(2x)}$ c) $\lim_{x \to 0} \frac{1 - \cos(x) + \ln(\cos(x))}{x^4}$

$$d) \lim_{x \to 0} \frac{2 \tan(x) - \sin(2x)}{x(1 - \cos(3x))} \qquad e) \lim_{x \to 0} (\cos(x))^{\frac{1}{x^2}} \qquad f) \lim_{x \to 0} \frac{\ln(\cos(2x))}{\ln(\cos(3x))}$$

$$g) \lim_{x \to 0} \left(\frac{1}{x(e^x - 1)} - \frac{1}{x^2}\right) \qquad h) \lim_{x \to 0} \frac{1}{x} \ln\left(\frac{e^x - 1}{x}\right) \qquad i) \lim_{x \to +\infty} \frac{1}{x} \ln\left(\frac{e^x - 1}{x}\right)$$

$$g) \lim_{x \to 0} \left(\frac{1}{x(e^x - 1)} - \frac{1}{x^2} \right) \qquad h) \lim_{x \to 0} \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right) \qquad i) \lim_{x \to +\infty} \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right)$$

Calculer un développement limité de la fonction f pour chacun des cas suivants :

a)
$$f(x) = x^2 \ln(x)$$
 où x tend vers 1 et à l'ordre 5.

b)
$$f(x) = \sqrt{x+2}$$
 où x tend vers 0 et à l'ordre 3.

c)
$$f(x) = \ln(x+2)$$
 où x tend vers 0 et à l'ordre 2.

d)
$$f(x) = \sin(x)$$
 où x tend vers $\frac{\pi}{4}$ et à l'ordre 3.

e)
$$f(x) = x^3 + 4x^2 + x - 1$$
 à l'ordre 5, d'abord pour x tendant vers 0 puis pour x tendant vers 1.

f)
$$f(x) = \ln(\sin(x))$$
 au voisinage de $\frac{\pi}{2}$ et à l'ordre 3.

Exercice 5.

1. Donner un équivalent simple de
$$\ln(1+x)$$
 en 0. En déduire $\lim_{x\to 0} \frac{\ln(1+x)}{x}$

2. Donner un équivalent simple de
$$\sin(x)$$
 en 0. En déduire $\lim_{x\to 0} \frac{\sin(x)}{x}$

3. Donner un équivalent simple de
$$\sin(x) - x$$
 en 0. En déduire $\lim_{x\to 0} \frac{\sin(x) - x}{x^3}$

4. Donner un équivalent simple de
$$\sin(x) - x$$
 en 0. En déduire $\lim_{x\to 0} \frac{\sin(x) - x}{x^2}$

Exercice 6.

- 1. Soit f la fonction définie pour tout $x \in \mathbb{R}$ par : $f(x) = \arctan(x)$ En calculant le développement limité à l'ordre 4, au voisinage de 0 de la fonction dérivée f', en déduire le développement limité de f à l'ordre 5.
- 2. Calculer le développement limité à l'ordre 2, au voisinage de 0 de la fonction g définie par

$$g(x) = \frac{\arctan(x) - x}{\sin(x) - x}$$

Exercice 7. Déterminer le développement limité à l'ordre 4, au voisinage de $\frac{\pi}{3}$, de la fonction : $f(x) = \cos(x)$ Exercice 8.

Déterminer le développement limité à l'ordre 2, au voisinage de 1 de la fonction : $f(x) = \frac{\sqrt{1+x}}{x^2}$ Exercice 9.

Déterminer le développement limité à l'ordre 2, au voisinage de 0, de : $f(x) = \frac{\ln(\cosh(x))}{x \ln(1+x)}$ Exercice 10.

Déterminer le développement limité à l'ordre 3, au voisinage de 0 de la fonction $f(x) = \frac{\cos(x)-1}{\ln(1+x)\sin(x)}$

Exercice 11.

1. Déterminer le développement limité à l'ordre 3, au voisinage de 0, de :

$$f(x) = \ln(1 + \sinh(x))$$

2. Déterminer le développement limité à l'ordre 2, au voisinage de 0, de :

$$g(x) = \frac{\ln(1 + \sinh(x))}{\sin(x)}$$

3. Montrer que g est prolongeable par continuité en x = 0.

Exercice 12.

1. Déterminer le développement limité à l'ordre 4, au voisinage de 0 de la fonction définie par :

$$h(x) = \frac{\sin(x) \sinh(x)}{\sin(x^2)}$$

2. En déduire un équivalent de h(x) - 1 au voisinage de 0.

Exercice 13.

Déterminer la limite suivante, sans préjugée qu'elle existe :

$$\lim_{x\to 0} \frac{e^{\cos(x)} - e^{\cosh(x)}}{\cos(x) - \cosh(x)}$$