Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilainilai yang diminta pada arsitektur neural network sesuai soal, ya, semangat! 😄

Pertama, masukkan dulu nilai initial value dan randomnya ya ...

Initial Value

X 1	X ₂	X ₃	α	Threshold	$Y_{d,6}$	
0.7	0.8	0.9	0.1	-1	0	

Initial Random

W 14	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ4	θ_5	θ_6
0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya 🙌

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$\begin{array}{lll} \mathsf{Y}_{4} & = Sigmoid \ (X_{1}W_{14} + X_{2}W_{24} + X_{3}W_{34} - \theta_{4}) \\ & = \frac{1}{(1 + e^{-((0.7 \times 0.5) + (0.8 \times 0.3) + (0.9 \times (-1)) - 0.2)}} \\ & = 0.377 \\ \mathsf{Y}_{5} & = Sigmoid \ (X_{1}W_{15} + X_{2}W_{25} + X_{3}W_{35} - \theta_{5}) \\ & = \frac{1}{(1 + e^{-((0.7 \times 0.6) + (0.8 \times 1.1) + (0.9 \times 0.1) - 0.3)}} \\ & = 0.748 \\ \mathsf{Y}_{6} & = Sigmoid \ (Y_{4}W_{46} + Y_{5}W_{56} - \theta_{6}) \\ & = \frac{1}{(1 + e^{-((0.377 \times (-1.1)) + (0.748 \times (-0.7)) - 0.4)}} \\ & = 0.207 \end{array}$$

e =
$$Y_{d,6} - Y_6$$

= 0 - 0.207
= -0.207

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₄ Y ₅		е	
0.377	0.748	0.207	-0.207	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 👍

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$\delta_{6}$$
 = $Y_{6} (1 - Y_{6}) e$
= 0.207 (1 - 0.207) (-0.207)
= -0.0339
 ∇_{46} = $\alpha \times Y_{4} \times \delta_{6}$
= 0.1 (0.377) (-0.0339)
= -0.0012
 ∇_{56} = $\alpha \times Y_{5} \times \delta_{6}$
= 0.1 (0.748) (-0.0339)
= -0.0025
 $\nabla\theta_{6}$ = $\alpha \times (-1) \times \delta_{6}$
= 0.1 (-1) (-0.0339)
= 0.00339

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	∇46	$ abla_{56}$	∇θ ₆
-0.0339	-0.0012	-0.0025	0.00339

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

$$\delta_4$$
 = $Y_4 (1 - Y_4) \delta_6 \times W_{46}$
= 0.377 (1 - 0.377) (-0.0339) (-1.1)
= 0.0087
 δ_5 = $Y_5 (1 - Y_5) \delta_6 \times W_{56}$
= 0.748 (1 - 0.748) (-0.0339) (-0.7)
= 0.0044

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ ₄	δ ₅
0.0087	0.0044

Langkah 4: Hitung weight corrections

$$\nabla W_{14} = \times X_1 \times \delta_4$$

$$= 0.1 (0.7) (0.0087)$$

$$= 0.000609$$

$$\nabla W_{24} = \times X_2 \times \delta_4$$

$$= 0.1 (0.8) (0.0087)$$

$$= 0.000696$$

$$\nabla W_{34} = \times X_4 \times \delta_4$$

$$= 0.1 (0.9) (0.0087)$$

$$= 0.000783$$

$$\nabla \theta_4 = \times (-1) \times \delta_4$$

$$= 0.1 (-1) (0.0087)$$

$$= -0.00087$$

$$\nabla W_{15} = \times X_1 \times \delta_5$$

$$= 0.1 (0.7) (0.0044)$$

$$= 0.000308$$

$$\nabla W_{25} = \alpha \times X_2 \times \delta_5$$

$$= 0.1 (0.8) (0.0044)$$

$$= 0.000352$$

$$\nabla W_{35} = \alpha \times X_3 \times \delta_5$$

$$= 0.1 (0.9) (0.0044)$$

$$= 0.000396$$

$$\nabla \theta_5 = \alpha \times (-1) \times \delta_5$$

$$= 0.1 (-1) (0.0044)$$

$$= -0.00044$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

∇w 14	∇w ₂₄	$\nabla \mathbf{w}_{34}$ $\nabla \theta_4$		∇w ₁₅	∇w ₂₅	∇w ₃₅	∇θ₅
0.000609	0.000696	0.000783	-0.00087	0.000308	0.000352	0.000396	-0.00044

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 🖔

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

$$W_{14} = W_{14} + \Delta W_{14}$$

$$= 0.5 + 0.000609$$

$$= 0.500609$$

$$W_{15} = W_{15} + \Delta W_{15}$$

$$= 0.6 + 0.000308$$

$$= 0.600308$$

$$W_{24} = W_{24} + \Delta W_{24}$$

$$= 0.3 + 0.000696$$

$$= 0.300696$$

$$W_{25} = W_{25} + \Delta W_{25}$$

$$= 1.1 + 0.000352$$

$$= 1.100352$$

$$W_{34} = W_{34} + \Delta W_{34}$$

$$= -1.0 + 0.000783$$

$$= -0.999217$$

$$W_{35} = W_{35} + \Delta W_{35}$$

$$= 0.1 + 0.000396$$

$$= 0.100396$$

$$\theta_4 = \theta_4 + \Delta \theta_4$$

$$= 0.2 + (-0.00087)$$

$$= 0.19913$$

$$\theta_5 = \theta_5 + \Delta \theta_5$$

$$= 0.3 + (-0.00044)$$

$$= 0.29956$$

$$\theta_6 = \theta_6 + \Delta \theta_6$$

$$= 0.4 + 0.00339$$

$$= 0.40339$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

W 14	W 15	W ₂₄	W 25	W 34	W 35	θ ₃	θ4	θ ₅
0.500609	0.600308	0.300696	1.10035 2	- 0.999217	0.100396	0.19913	0.29956	0.40339

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge, semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang~