TSS-BIP32 Simple Flow

AMIS June 24, 2021

CONTENTS

Let G be the base point of the elliptic curve group of $\mathrm{secp256k1}$, and $\mathrm{secp256k1}_N$ be the order of this group.

Algorithm 1 Master key share

Input: Alice's (i.e. \mathscr{P}_0) private seed s_0 , and the rank n_0 . Bob's (i.e. \mathscr{P}_1) private seed s_1 and the rank n_1

Output: a share \tilde{s}_i , Birkhoff parameter (x_i, n_i) , the associated public key P, and the chain-code C.

- 1: Each participant \mathcal{P}_i (i.e. means Alice and Bob)
 - a. Randomly chooses a random value $r_i \in [0, \text{secp256k1}_N]$.
 - b. Randomly chooses a x-coordinate $x_i \neq 0$.
 - c. Generates a garbled circuit \mathcal{G}_i with his input: r_i and the seed s_i .
 - d. Broadcasts the x-coordinate x_i , the rank n_i , and the generating garbled circuit \mathcal{G}_i to \mathcal{P}_{1-i}
- 2: Each participant \mathcal{P}_i
 - a. Verifies the set (x_i, n_i) can be recovered Birkhoff coefficient.
 - b. Performs OT to get the other people's random wires.
- 3: Each participant \mathcal{P}_i
 - a. Uses obtained random wires and the garbled circuit \mathcal{G}_i to learn the secret called \hat{s}_i (i.e. $= I_L + r_{1-i}$) and the same chain code C. Here $I := \text{HMAC512}(\text{"Bitcoin seed"}, s_0||s_1)$ with $I = I_L||I_R$, where the byte length of I_L is equal to 32.
 - b. Broadcasts hash commitments $H(\hat{s} \cdot G)$ and $H(r_i \cdot G)$.
- 4: Each participant \mathcal{P}_i
 - a. Randomly chooses $a_{i,1} \in [0, \text{secp256k1}_N]$.
 - b. Broadcasts the decommitments of $H(\hat{s}_i \cdot G)$ and $H(r_i \cdot G)$ and $a_{i,1} \cdot G$.
- 5: Each participant \mathcal{P}_i
 - a. Verifies the decommitments of $H(\hat{s}_i \cdot G)$ and $H(r_i \cdot G)$. If the verification is failure, then stop it.
 - b. Verifies $P := \hat{s}_0 \cdot G r_1 \cdot G = \hat{s}_1 \cdot G r_0 \cdot G$. If the verification is failure or P is the identity element of the elliptic curve group, then stop it. Let P be the public Key.
 - c. Sets $f_i(x) := a_{i,1} * x + \hat{s}_i r_i$ and computes $f_i^{n_i}(x_i) \mod \text{secp256k1}_N$ and $f_i^{n_{l-i}}(x_{1-i}) \mod \text{secp256k1}_N$.
 - d. Sends $f_i^{n_{1-i}}(x_{1-i})$ to the participant P_{1-i} .
- 6: Each participant \mathcal{P}_i
 - a. Verifies the Feldmann commitment of $f_{1-i}^{n_i}(x_i)$. If the verification is failure, then stop it.
 - b. Sets the share as $\tilde{s}_i := \frac{f_i^{n_i}(x_i) + f_{1-i}^{n_i}(x_i)}{2} \mod \text{secp256k1}_N$.

Algorithm 2 Child key share

Input: Alice's (i.e. \mathcal{P}_0) private parent share s_0 , the associated public key P, the chain-code C, the key-index i, and her Birkhoff parameter (x_0, n_0) . Bob's (i.e. \mathcal{P}_1) private parent share s_1 , the associated public key P, the key-index i, the chain-code C, and his Birkhoff parameter (x_1, n_1)

Output: a share \tilde{s}_i , the associated public key P_{child} , and the chain-code C_{child} .

- 1: Each participant \mathcal{P}_i (i.e. means Alice and Bob)
 - a. Generates a garbled circuit \mathcal{G}_i with his input: s_i , the chain-code C and the key-index i.
 - b. Computes $s_i \cdot G$ and its Schnorr proof.
 - c. Broadcasts Schnorr proof.
- 2: Each participant \mathscr{P}_i
 - a. Verifies Schnorr proof and $b_0 \cdot (s_0 \cdot G) + b_1 \cdot (s_1 \cdot G) = P$. If the verification is failure, then stop it.
 - b. Performs Quid Pro Quo-tocols: Strengthening Semi-Honest Protocols with Dual Execution.
- 3: Each participant \mathcal{P}_i
 - a. Learns the $I = \text{HMAC-SHA512}(\text{Key} = C, \text{Data} = 0x00||\text{ser}_{256}(\text{"private key"})||\text{ser}_{32}(i))$ (ref: the notations can be found in the official document of Bip32).
 - b. Splits I into two 32-byte sequences, I_L and I_R . Here $I = I_L || I_R$ with the byte length of I_L and I_R are both 32.
 - c. If $parse_{256}(I_L) \ge secp256k1_N$, then stop it.
 - d. If $P_{child} := \operatorname{parse}_{256}(I_L) \cdot G + P$ is the identity element in the elliptic curve group, then stop it.
 - e. Sets the chain-code is $C_{child} := I_R$ and the child share is $\tilde{s}_i := s_i + \frac{\operatorname{parse}_{256}(I_L)}{2}$ mod $\operatorname{secp256k1}_N$.