WHAT IS CLAIMED IS:

2

10

. 1

2

9

10

A compound having the structure:

$$X^{1}$$
 X^{2}
 X^{1}

(I)

wherein, 3 R¹ is a member selected from —H, —OH, and (=O); R² is a member selected from H, reactive functional groups, alkyl groups 6 terminally substituted with a reactive functional group and internally 7 substituted alkyl groups terminally substituted with a reactive 8 functional group; X is a member selected from -O-, -S- and NH-; and 9 X^1 and X^2 are members independently selected from O and S.

- The compound according to claim 1, wherein R² is an internally 2. substituted alkyl group terminally substituted with a reactive functional group.
- 1 The compound according to claim 2, wherein the alkyl group is 3. 2 internally substituted with a functional group that is a member selected from —OH, (=O) 3 and combinations thereof.
- The compound according to claim 1, wherein the reactive 1 functional group is a member selected from —OR³, —NHR⁴, —COR⁵, —SH and 2 --CH₂X³3 wherein, 4 —OR³ is a member selected from hydroxy, alkyl sulfonate and aryl 5 sulfonate groups; 6 R⁴ is a member selected from H, C₁-C₆ alkyl, C₁-C₆ substituted alkyl, aryl .7 and substituted aryl groups; 8

R⁵ is a member selected from H, X³ and —OR⁶, wherein R⁶ a member

selected from alkyl, substituted alkyl, aryl, substituted aryl,

11	heteroaryl, substituted heteroaryl, heterocyclyl and substituted
12	heterocyclyl groups, and
13	X ³ is a halogen.
1	5. The compound according to claim 1, wherein the compound is a
2	single stereoisomer.
1	6. The compound according to claim 4, wherein R ³ is
	0
2	Ŭ O
3	wherein,
4	R ⁸ is a member selected from alkyl, substituted alkyl, aryl and substituted
5	aryl groups.
1	7. The compound according to claim 1, wherein the alkyl and the
2	internally substituted alkyl groups are members selected from C ₁ -C ₂₀ saturated straight-
3	chain, C ₁ -C ₂₀ saturated branched-chain, C ₁ -C ₂₀ unsaturated straight-chain, C ₁ -C ₂₀
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.
1	8. The compound according to claim 7, wherein the alkyl and
2	internally substituted alkyl groups are members selected from C ₅ -C ₁₀ saturated straight-
.3	chain, C ₅ -C ₁₀ saturated branched-chain, C ₅ -C ₁₀ unsaturated straight-chain, C ₅ -C ₁₀
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.
1	9. A compound according to claim 1, wherein R ² has the structure:
2	(CH2)nR7 (III)
3	wherein,
4	R ⁷ a reactive functional group; and
5	n is a number from 1 to 20, inclusive.
-1	10. The compound according to claim 9, wherein n is a number from 2
2	to 9, inclusive.

11.

A compound according to claim 1, wherein R² has the structure:

2		$ \begin{array}{c} O \\ \parallel \\(CH_2)_qC(CH_2)_sR^7 \end{array} $ (IV)	
3	wh	erein,	
4	R ⁷	is a reactive functional group; and	
5	q a	nd s are numbers independently selected from 1 to 20, inclusive.	
1	12.	The compound according to claim 11, wherein s is a number from	
2	2 to 9, inclusive.		
1	13.	A pharmaceutical formulation comprising a pharmaceutically	
2	acceptable carrier and a compound according to claim 1, said reactive functional group o		
3	said compound be	ing covalently bound to a biologically active agent.	
1	14.	The pharmaceutical formulation according to claim 13, wherein	

said biologically active agent is a member selected from antibiotics, immune stimulators

15. A compound having the structure:

$$\begin{array}{c|c}
H & R^2 \\
\hline
O & O \\
\end{array}$$
(II)

3 wherein,

and combinations thereof.

2

2

5 6

2

R¹ is a member selected from H, OH, and (=O); and

R² is a member selected from H, reactive functional groups, alkyl groups terminally substituted with a reactive functional group and internally substituted alkyl groups terminally substituted with a reactive functional group, with the proviso that when R² is —OH, R¹ is a member selected from OH, and (=O).

16. The compound according to claim 15, wherein the reactive functional group is a member selected from —OR³, —NHR⁴, —COR⁵, SH and CH₂X³ wherein,

4	—OR ³ is a member selected from hydroxy, and a species such that —OR ³		
5	is a leaving group;		
6	R ⁴ is a member selected from H, C ₁ -C ₆ alkyl, C ₁ -C ₆ substituted alkyl, aryl		
7	and substituted aryl groups;		
8	R ⁵ is a member selected from H, halogen and —OR ⁶ , wherein R ⁶ is		
9	species such that —OR ⁶ is a leaving group; and		
10	X ³ is a halogen.		
1	17. The compound according to claim 16, wherein R ³ is		
2	(V)		
3	wherein,		
4	R ⁸ is a member selected from alkyl, substituted alkyl, aryl and substituted		
5	aryl groups.		
1	18. The compound according to claim 16, wherein R ⁶ is a member		
2	selected from alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted		
3	heteroaryl, heterocyclyl and substituted heterocyclyl groups.		
1	19. The compound according to claim 15, wherein the alkyl and the		
2	internally substituted alkyl groups are members selected from C ₁ -C ₂₀ saturated straight-		
3	chain, C_1 - C_{20} saturated branched-chain, C_1 - C_{20} unsaturated straight-chain, C_1 - C_{20}		
ع ⊿.	unsaturated branched-chain alkyl and internally substituted alkyl groups.		
•	unsaturated branched-chain alkyr and internany substituted alkyr groups.		
1	20. The compound according to claim 19, wherein the alkyl and		
.2	internally substituted alkyl groups are members selected from C ₅ -C ₁₀ saturated straight-		
3	chain, C_5 - C_{10} saturated branched-chain, C_5 - C_{10} unsaturated straight-chain, C_5 - C_{10}		
4	unsaturated branched-chain alkyl and internally substituted alkyl groups.		
1	21. A compound according to claim 15, wherein R ² has the structure:		
2	(CH2)nR7 (III)		
3	wherein,		

R⁷ is a reactive functional group; and

5

n is a number from 1 to 20, inclusive.

- 1 22. The compound according to claim 21, wherein n is a number from
- 2 2 to 9, inclusive.
- 1 23. The compound according to claim 15, wherein R² is a member
- 2 selected from the group consisting of—COOH, —OH, —NH₂, and —SH.
- 1 24. The compound according to claim 21, wherein R⁷ is a member
- 2 selected from the group consisting of—COOH, —OH, —NH₂, and —SH.
- 1 25. A compound having a structure that is a member selected from:

$$\bigcup_{O} \bigcup_{O} \bigcup_{m} Z$$

$$\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\$$

$$\bigcup_{O} \bigcup_{O} \bigcup_{O} \bigcup_{O} \bigcup_{O} \bigcup_{O} Z$$

and

 $\begin{array}{c|c}
 & H \\
 & M \\$

3 wherein,

2

- 4 m is a number selected from 1 to 20, inclusive;
- 5 n is a number from 0 to 20, inclusive; and
- 6 Z is a reactive functional group.
- 1 26. The compound according to claim 25, wherein m and n are
- 2 numbers independently selected from 2 to 9, inclusive.
- 1 27. The compound according to claim 25, wherein Z is a member
- 2 selected from —NH₂, —COOH, —SH, and —OH.

1 28. An immobilized compound comprising a solid support to which is 2 attached a molecule comprising the structure:

4 wherein,

3

3

5 R¹ is a member selected from —H, —OH, and (=O);

R⁹ is a member selected from alkyl groups and substituted alkyl groups;

X is a member selected from —O—, —S— and —NH—;

 X^1 and X^2 are members independently selected from O and S.

- 29. The immobilized compound according to claim 28, wherein the solid support is a member selected from beads, particles, membranes, substantially planar surfaces and combinations thereof.
- The immobilized compound according to claim 28, wherein the solid support comprises a member selected from silica, metal, plastic and combinations thereof
- The immobilized compound according to claim 28, wherein R⁹
 comprises a spacer moiety situated between the molecule and the solid support.
- The immobilized compound according to claim 31, wherein the spacer moiety is selected from C₆-C₃₀ alkyl groups, C₆-C₃₀ substituted alkyl groups,
- 3 polyols, polyethers, polyamines, polyamino acids, polysaccharides and combinations

4 thereof.

- The immobilized compound according to claim 31, wherein the spacer moiety comprises a cleavable moiety.
- The immobilized compound according to claim 33, wherein the cleavable moiety is cleaved by a member selected from light, heat, oxidation, reduction, enzymatic action, hydrolysis and combinations thereof.

- 1 35. The immobilized compound according to claim 34, wherein the cleavable moiety is a member selected from disulfides and esters.
- 1 36. A method for isolating a microbial receptor binding to a molecule 2 comprising the formula:

$$\mathbb{R}^9$$
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1
 \mathbb{R}^1

4 wherein,

3

6

7

5 R¹ is a member selected from —H, —OH, and (=O);

R⁹ is a member selected from alkyl groups and substituted alkyl groups;

X is a member selected from —O—, —S— and—NH—;

8 X^1 and X^2 are members independently selected from O and S;

9 the method comprising:

10 contacting a microbial preparation comprising the receptor with the
11 immobilized compound according to claim 28, thereby forming a
12 complex between the receptor and the immobilized compound.

- 1 37. The method according to claim 36, further comprising separating the complex from components of the microbial preparation not comprising the receptor.
- 1 38. The method according to claim 37, further comprising disrupting
 2 the complex between the immobilized compound and the receptor, thereby separating the
 3 receptor from the immobilized compound.
- 1 39. An immunogenic conjugate comprising a target component 2 comprising the structure:

$$X^{1}$$
 R^{9}
 R^{1}

(IX)

4 wherein,

3.

5 R¹ is a member selected from —H, —OH, and (=O);

6 R⁹ is a member selected from alkyl groups and substituted alkyl groups;

X is a member selected from —O—, —S— and —NH—; and

 X^1 and X^2 are members independently selected from O and S.

1 40. The immunogenic conjugate according to claim 39, wherein the 2 target component comprises the structure:

$$\begin{array}{c|c}
 & R^9 \\
\hline
 & R^1 \\
\hline
 & O \\$$

4 wherein,

R¹ is a member selected from H, OH, and (=O); and

R⁹ is a member selected from alkyl and substituted alkyl groups.

1 41. The immunogenic conjugate according to claim 40, wherein the 2 target component has the structure:

$$(XI)$$

4 wherein,

3

5

m is a number from 0 to 30, inclusive.

1 42. The immunogenic conjugate according to claim 39 having the

2 structure:

$$\begin{array}{c|c}
R^9 - P \\
R^1 \\
X^2
\end{array}$$

4 wherein,

3

- 5 R¹ is a member selected from —H, —OH, and (=O);
- 6 R⁹ is a member selected from alkyl groups and substituted alkyl groups;
- 7 X is a member selected from —O—, —S— and —NH—;
- 8 X^1 and X^2 are members independently selected from O and S; and
- 9 P is a protein carrier.

10

- The immunogenic conjugate according to claim 42, wherein the protein carrier has a molecular weight of greater than or equal to 5000 daltons.
- 1 44. The immunogenic conjugate according to claim 43, wherein the 2 protein carrier is a member selected from albumin and hemocyanin.
- 1 45. The immunogenic conjugate according to claim 39, wherein R⁹
 2 comprises a spacer moiety situated between the target component and the protein carrier.
- 1 46. The immunogenic conjugate according to claim 45, wherein the
- 2 spacer moiety is selected from C₆-C₃₀ alkyl groups, C₆-C₃₀ substituted alkyl groups,
- 3 polyols, polyethers, polyamines, polyamino acids, polysaccharides and combinations
- 4 thereof.
- The immunogenic conjugate according to claim 45, wherein the spacer moiety comprises a cleavable moiety.
- 1 48. The immunogenic conjugate according to claim 47, wherein the
- 2 cleavable moiety is cleaved by a member selected from light, heat, oxidation, reduction,
- 3 enzymatic action, hydrolysis and combinations thereof.
- 1 49. The immunogenic conjugate according to claim 48, wherein the
- 2 cleavable moiety is a member selected from disulfides and esters.

•		50.	repliantiaceutical formulation comprising the minutogenic
2	conjugate acc	ording	to claim 39 and a pharmaceutically acceptable carrier.
1		51.	The pharmaceutical formulation according to claim 50, wherein the
2	pharmaceutic	al form	ulation is a vaccine effective for preventing or reducing microbial
3	infection in a subject to whom the vaccine is administered.		
1		52.	An antibody that binds specifically to the immunogenic conjugate
2	according to claim 39.		
-1		53.	An isolated nucleic acid encoding the antibody according to claim
2	52 .	. •	
1		54.	The isolated nucleic acid according to claim 53, further comprising
2	a promoter operably linked to the nucleic acid sequence encoding the antibody.		
1		55.	An expression vector comprising the nucleic acid according to
2	claim 53.		
1		56.	A host cell comprising the expression vector according to claim 55.
.1		57.	The antibody according to claim 52, further comprising a member
2	selected from detectable labels, biologically active agents and combinations thereof		
3	covalently attached to the antibody.		
1		58.	The antibody according to claim 57, wherein the detectable label is
2	a member sele	ected fro	om the group consisting of radioactive isotopes, fluorescent agents,
3	fluorescent agent precursors, chromophores, enzymes and combinations thereof.		
1		59.	The antibody according to claim 58, wherein the biologically active
2	agent is a mer	nber sel	lected from antibiotics, immune stimulators and combinations
3	thereof.		
1.		60.	A pharmaceutical formulation comprising the antibody according
2.	to claim 52 and a pharmaceutically acceptable carrier.		

1	6	1.	A method for treating or preventing a disease in a subject caused
2	by a microorgan	ism,	the method comprising administering to the subject an amount of the
3	antibody accordi	ng t	o claim 52 effective to reduce or prevent the disease state.
1.	6	2.	A method for treating or preventing a disease in a subject caused
2			the method comprising administering to the subject an amount of the
3			claim 51 effective to reduce or prevent the disease state.
	vaccino accordin	.g .u	or o
1	6.	3.	A method for treating or preventing a disease in a subject caused
2	by a microorgan	ism,	the method comprising administering to the subject an amount of the
3	immunogenic co	njug	gate according to claim 39 effective to reduce or prevent the disease
4	state.		
1	64	4.	The method according to claim 61, wherein the disease is a
2	microbial infecti	on.	
1	6:	5.	The method according to claim 62, wherein said microbial
2			es cystic fibrosis.
	•		
1 .	. 60	5.	The method according to claim 74, wherein said microbial
2	infection has a ca	ausa	tive agent comprising P. aeruginosa.
1	6	7.	A method for preventing or disrupting the formation of a biofilm,
2	the method comp	risi	ng contacting a microbial culture capable of forming a biofilm with
3	an antibody according to claim 52.		
1	68	3 .	The method according to claim 67, wherein said biofilm comprises
2	P. aeruginosa.	•	
_	. 1 . wor ug.mosu.		
1	69	9.	The method according to claim 67, wherein said biofilm is
2	associated with a	n in	aplanted medical device.
1	70).	The method according to claim 67, wherein said biofilm is
2	associated with a	n or	gan in vivo.

- 1 71. A method for controlling autoinducer responsive gene expression 2 in a microorganism, the method comprising contacting the microorganism with an 3 antibody according to claim 52 effective to control said gene expression.
- 1 72. A method for controlling autoinducer responsive gene expression 2 in a microorganism, the method comprising contacting the microorganism with an 3 antibody according to claim 51 effective to control said gene expression.
- 1 73. A method for controlling autoinducer responsive gene expression 2 in a microorganism, the method comprising contacting the microorganism with an 3 antibody according to claim 39 effective to control said gene expression.
- The method according to claim 71, wherein the microorganism is bacteria.
- The method according to claim 74, wherein said bacteria is P. 2 aeruginosa.
- 1 76. A library of compounds comprising a structure according to 2 Formula I:

3 4 wherein, R¹ is a member selected from —H, —OH, and (=O); 5 R⁹ is a member selected from alkyl groups and substituted alkyl groups; 6 X is a member selected from —O—, —S— and —NH—; 7 X¹ and X² are members independently selected from O and S, the library 8 comprising a first compound according to Formula I and a second compound according to 9 10 Formula I, wherein the first compound differs from the second compound in the identity of a member selected from R¹, R⁹, X, X¹, X and combinations thereof. 11

1		//.	The library according to claim /6, comprising at least 10	
2	compounds.			
1		· 78.	The library according to claim 77, comprising at least 100	
2 -	compounds			
1	· ·	79.	The library according to claim 78 comprising at least 1000	
2	compounds.			
1		80.	The library according to claim 79 comprising at least 100,000	
2	compounds.			
1		81.	A method of detecting an autoinducer in a sample, the method	
2	comprising the steps of:			
3		(a) co	ontacting the sample with an antibody that specifically binds to the	
4			autoinducer; and	
5	(b) determining whether the sample contains the autoinducer, thereby			
6			detecting said autoinducer.	
1		82.	The method of claim 81, wherein the antibody is a monoclonal	
2	antibody.			
1		83.	The method of claim 81, wherein the antibody is a polyclonal	
2	antibody.			
1		84.	The method of claim 81, wherein the step of determining whether	
2	the sample contains an autoinducer comprises detecting the antibody in an assay selected			
3	from the group consisting of an ELISA assay, a western blot, an immunohistochemical			
4	assay, an immunofluorescence assay, and a real time imaging assay.			
1		85.	The method of claim 81, wherein the step of determining whether	
2	the sample co	ntains	an autoinducer further comprises quantitating the amount of	
3	autoinducer i	n the sa	mple.	
1		86.	The method of claim 81, wherein the antibody is bound to a solid	
2	substrate.			

1	87. The method of claim 81, wherein the sample is selected from the			
2	group consisting of a cultured cell, and a patient sample.			
1	88. The method of claim 87, wherein the patient sample is a blood			
- 2	sample.			
1	89. The method of claim 87, wherein the patient sample is from a			
2	human patient.			
1	90. The method of claim 81, wherein the antibody is covalently linked			
2	to a detectable moiety.			
1	91. The method of claim 90, wherein the antibody is covalently linked			
2	to a member selected from a biotin moiety, a radioactive moiety, an enzyme moiety and			
3	combinations thereof.			
1	92. A method of monitoring the amount of autoinducer in a patient			
2	treated with an agent that inhibits the growth of an organism producing the autoinducer,			
. 3	the method comprising:			
4	(a) providing a sample from the patient treated with the growth inhibiting			
5	agent;			
6	(b) contacting the sample with an antibody that specifically binds to an			
7	autoinducer; and			
8	(c) determining the amount of autoinducer in the patient sample by			
. 9	detecting the antibody and comparing the amount of antibody			
10	detected in the patient sample to a standard curve, thereby			
11	monitoring the amount of autoinducer in the patient.			
1	93. The method of claim 92, further comprising the step of adjusting			
2	the dose of the growth inhibiting agent administered to the patient.			
1	94. The method of claim 92, wherein the sample is a blood sample.			
1	95. The method according to claim 94, wherein said blood sample is			
2	derived from a patient having cystic fibrosis and an infection comprising P. aeruginosa.			

. 1		70. The method of claim 92, wherein the antibody is a monocional		
2	antibody.			
1		97. The method according to claim 92, wherein said antibody is a		
2	polyclonal	ntibody.		
, 1		98. The method of claim 92, wherein the antibody is covalently linked		
2	to a detectal	ole moiety.		
1		99. The method of claim 98, wherein the antibody is covalently linked		
2	to a member	selected from a biotin moiety, a radioactive moiety, an enzyme moiety and		
3	combination			
1		100. The method of claim 92, wherein the antibody is bound to a solid		
2	substrate.			
1	•	101. A method of isolating an autoinducer, the method comprising the		
2	steps of:			
3		(a) providing a sample comprising the autoinducer;		
4		(b) contacting the sample with an antibody that specifically binds to the		
5		autoinducer, thereby forming an autoinducer-antibody complex; an		
6		(c) isolating the autoinducer-antibody complex by isolating the antibody.		
1		102. The method of claim 101, wherein the antibody is a monoclonal		
2	antibody.			
1		103. The method of claim 101, wherein the antibody is covalently		
2	linked to me	d to member selected from a biotin moiety, a radioactive moiety, an enzyme moiety		
3	and combina	tions thereof.		
1		104. The method of claim 101, wherein the antibody is bound to a solid		
2	substrate.			
1		105. A method of detecting an antibody that specifically binds to an		
2	autoinducer,	the method comprising the steps of:		
3		(a) providing a sample		

4		(b) co	ntacting the sample with a peptide that specifically binds to the
5		•	antibody; and
6		(c) de	tecting the antibody.
1		106.	The method of claim 105, wherein the step of detecting the
2	antibody co	mprises a	an ELISA assay.
1		107.	The method of claim 105, wherein the peptide is bound to a solid
2	substrate.		
1		108.	A kit for detecting an autoinducer in a sample, the kit comprising
2 ·		(a) an	antibody that binds specifically to the autoinducer;
3	(b) directions for using the antibody to detect the autoinducer.		