Secure Deduplication Across Files

Nithin V Nath

Advisor: Dr. Bhavana Kanukurthi

Department of Computer Science and Automation Indian Institute of Science

23-Jun-2016

Outline

- Introduction
 - Deduplication
 - Deduplication Example
 - Secure Deduplication
 - Related Work
 - Preliminaries
 - Contributions
 - Road-map
- 2 Construction
 - DD-Across
- 3 Conclusion

Deduplication

- Large amount of data stored in cloud storage.
- Multiple users store the same file.
- Service providers need to employ space saving techniques to keep cost down.

Definition

Technique that enables storage providers to store a single copy of the data.

Deduplication in Action

- Alice uploads a file M to the server S.
- Bob requests to upload his copy of the same file M to S.
- The server identifies that M is already stored and simply updates the metadata associated with M to show that the file is owned by both Alice and Bob.
- Make this an image

Secure Deduplication

- Deduplication along with privacy is a conflicting idea
- Users would like their data to be encrypted
- Storage providers would like to identify the file uploaded by user to enable deduplication.

Motivation

- Photos taken one after the other are often almost identical to each other.
- These multiple files are not supported in traditional file level deduplication.
- Challenge: Identify that plaintexts underneath these ciphertexts are close to each other and store only the difference.

Problem Statement

Related Work

- Convergent Encryption (year?)
- Message Locked Encryption
- Interactive Message Locked Encryption

Convergent Encryption

- Deterministic cryptosystem that produces identical ciphertext files from identical plaintext files.
- K = H(M)
- C = E(K, M)
- M = D(K, C)

Message Locked Encryption

- A cryptographic primitive. MLE = (P, K, E, D, T).
- $\mathcal{K}_P(M)$ derives the key from the message.
- \bullet \mathcal{T} is the tag generation algorithm.
- Semantic security cannot be achieved using MLE.
- [Include an image]

Interactive Message Locked Encryption

- Extension of MLE.
- Uses interaction.
- Defined using one algorithm and three protocols
 - **1** Init(1^{λ}) The initialization algorithm.
 - 2 Reg Register a client with the server.
 - **1** Put (M, σ_C) Puts a plaintext M and returns f, an identifier
 - **4** Get (f, σ_C) Fetches the file f.

Entropy

- Entropy is a measure of randomness
- Min-entropy of X is the negative log of maximum predictability.

$$H_{\infty}(X) = -log(\max_{x} \Pr[X = x])$$

Statistical Distance

Extractors

Deterministic Encryption

- SE = (E, D)
- $c \leftarrow \mathsf{E}(1^{\lambda}, k, m)$
- $m \leftarrow D(1^{\lambda}, k, c)$
- Why is this meaningful in this setting?

Error Correcting Codes

- (\mathcal{M}, K, τ) -code C.
- C is a subset $\{w_0, w_1, \ldots, w_K\}$ of \mathcal{M} .
- $\tau > 0$ is the largest number such that there is at most one valid code word $c \in C$ for a message w such that $\operatorname{dis}(w,c) \leq \tau$.
- Enc The map from i to w_i .
- Dec The map that finds, given w, the $c \in \mathcal{C}$ such that $\operatorname{dis}(w,c) \leq \tau$

Collision Resistant Hash Functions

- $\mathcal{H}: \{0,1\}^n \to \{0,1\}^m$
- Collision resistant if
 - *m* < *n* and
 - for all PPT \mathcal{A} , there exists a negligible function $\operatorname{negl}(\lambda)$ such that for all security parameters $\lambda \in \mathbb{N}$,

$$\Pr[(x_0, x_1) \leftarrow \mathcal{A}(1^{\lambda}, \mathcal{H}) : x_0 \neq x_1 \land \mathcal{H}(x_0) = \mathcal{H}(x_1)] \leq \mathsf{negl}(\lambda)$$

• Family of hash functions: $H = (\mathcal{HK}, \mathcal{H})$

Our Work

 DD – Across (deduplication across files) which enables deduplication even for files that are close to each other.

Road-map

- Setting
- Adversarial Model
- Privacy Games
- DD Across construction
- DD − Across proof

Setting

- An honest-but-curious server.
- A set of clients.
- \bullet \mathcal{A} can control a subset of these clients.
- Formally modelled using a game G.
- G sets up and controls an instance of a server.

Adversarial Model

- ullet Adversary ${\cal A}$ is invoked with access to a set of procedures.
- Msg procedure allows adversary to set up multiple clients and to send arbitrary messages to the server.
- INIT procedure starts protocol instances on behalf of a legitimate client *L*, using inputs chosen by *A*.
- STEP procedure advances a protocol instance by running the next step algorithm.
- STATE procedure returns the server's state including stored ciphertexts, public parameters, etc. Only read only access is gained using this.

Games

DD-Across Ingredients

- A metric space (M, dis) with hamming distance as the distance metric.
- An (I, m, κ, ϵ) -strong extractor.
- An error-correcting code $C = (\mathcal{M}, K, \tau)$.
- A collision resistant hash function family $H = (\mathcal{HK}, \mathcal{H})$.
- SE = (E, D) denotes a symmetric encryption scheme.

DD-Across Construction

- DD − Across[C, H, SE].
- Server maintains 3 tables
 - fil: which contains the encryptions of the files uploaded by the clients.
 - **delt**: which stores the Δ .
 - own: which stores the ownership information.

DD-Across Construction - Init

Init

$$\frac{\operatorname{Init}}{S \leftarrow \$ \{0,1\}^{s(\lambda)}}$$

$$K_h \leftarrow \$ \mathcal{HK}(1^{\lambda})$$

$$p = (S||K_h)$$

$$\mathbf{U} \leftarrow \phi$$

$$\operatorname{fil} \leftarrow \phi; \operatorname{delt} \leftarrow \phi$$

$$\operatorname{own} \leftarrow \phi$$

$$\operatorname{Ret} \sigma_S = (p, \mathbf{U}, \operatorname{fil}, \operatorname{delt}, \operatorname{own})$$

DD-Across Construction - Reg

DD-Across Construction - Put

DD-Across Construction - Get

DD-Across Recovery

- Recovery is guaranteed.
- For A to win, a mismatch in the plaintext m put on the server and the plaintext m' recovered using Get.
- Immutability of the tables means once put, it cannot be changed.
- Only possibility is hash collision.

DD-Across Privacy

Definition

The error-correcting code $C = (\mathcal{M}, K, \tau)$ is said to be compatible with a source S with min-entropy $\mu(\lambda)$ iff $2^{\mu(\lambda)-\tau}$ is negligible.

Theorem

If \mathcal{E} is CPA-secure and the code $C = (\mathcal{M}, K, \tau)$ is compatible with the source S, then $DD - Across_{RO}[\mathcal{E}, C]^a$ is PRIV-secure.

 ${}^{\rm a}{\rm DD}-{\rm Across}_{\it RO}$ is the ROM analogue of DD - Across which models H as a random oracle

DD-Across Privacy Hybrids

31 / 37

DD-Across Privacy Hybrids

DD-Across Privacy Hybrids

Figure: The Put protocol in game H_4

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

Open Problems and Future Work

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.