

EXPLORATORY DATA ANALYSIS

CLASS #3

OBJECTIVES

- After this class you should be able to:
 - Compare and contrast measures of central tendency (mean, median, mode)
 - Use the pandas library to analyze datasets using basic descriptive statistics
 - Create data visualizations in pandas including boxplots, histograms and scatter plots - to discern trends in the data

FOUNDATIONAL STATISTICS REQUIRED FOR EDA

- Descriptive statistics vs inferential statistics
- Measures of central tendency and spread
- Plots
 - Boxplot
 - Histogram
 - Scatterplots
- Correlation and covariance

POPULATIONS AND SAMPLES

Descriptive Statistics

- Information actually observed about samples
 - "What were sales"
 - "Average score"
 - "How correlated were ..."

Inferential Statistics

- Making statements about populations based on samples
 - "Layout A will result in more conversions than B"
 - "Smoking triples the odds of developing lung cancer"
 - "This trend is likely to continue"

WHAT IS DATA SCIENCE?

EDA IS CONCERNED WITH SAMPLES

Exploratory data analysis is an open-ended investigate of the data as a sample, using descriptive statistics

MEASURES OF CENTRAL TENDENCY AND MEASURES OF SPREAD

CENTRAL TENDENCY

If you want to describe the data with a single number

- Mean
 - · "The average"
- Median
 - "The middle value"
- Mode
 - "The most common value"

CENTRAL TENDENCY

If you want to describe the data with a single number

Mean

- Pros
 - Commonly used and well understood
 - Extensively used in probability and statistics (expected value)
- Cons
 - Sensitive to outliers
 - Value probably isn't in dataset

Median

- Pros
 - Robust against outliers
 - Value is in the dataset (with odd row counts)
- Cons
 - Less often used in inferential statistics
 - Sensitive to bimodal distributions

Mode

- Pros
 - Actually the most common value
- Cons
 - Might not be a clear mode

Stumbling point examples

- Mean
 - Issue
 - "The average number of limbs humans have is less than four"
 - Solution
 - "The median number of limbs humans have is four"

Stumbling point examples

Median

- Issue
 - The median human height is 5' 7"
- Solution
 - The median height of men is 5' 10" and women is 5' 4"
 - The modes of human height are 5'
 4" and 5' 10"

SPREAD

- Measures of central tendency
 - "What is typical or common"
 - Mean, median, mode
- Measures of spread
 - "How far do values stray from the center"
 - Variance, standard deviation, range, Interquartile range

Variance and Standard Deviation

- Variance
 - "The average squared distance from the mean"

$$var = \sum_{i=0}^{n} \frac{(x_i - \mu)^2}{n}$$

- Standard deviation
 - "The square root of the variance"
 - In the same units as the original data

$$\sigma = \sqrt{var} = \sqrt{\sum_{i=0}^{n} \frac{(x_i - \mu)^2}{n}}$$

PLOT THE DATA - BOXPLOTS

Median, Range, Interquartile Range; no outliers

BOXPLOTS

Median, Range, Interquartile Range; with outliers

PLOTTHE DATA - HISTOGRAMS

HISTOGRAMS

Display the true distribution when central tendency can be misleading

PLOT THE DATA - SCATTER PLOTS

HISTOGRAMS

Scatter plots display the relationship between two continuous variables

What is the (linear) association between two variables?

- Ranges from -1 to 1
 - 1: Both variables "move" together
 - 0: Variables don't have any "linear relationship"
 - -1: Both variables move in opposite directions

What is the (linear) association between two variables?

PLOTTING

Don't always rely on summary statistics - plot the data

Scatter plot appears to be a simple linear relationship, corresponding to two variables correlated and following the assumption of normality.

regression line.

Distribution is linear, but with a different regression line, which is offset by the one outlier which exerts enough influence to alter the

Not distributed normally; while an obvious relationship between the two variables can be observed, it is not linear, and the linear correlation is not relevant.

Example when one outlier is enough to produce a high correlation coefficient, even though the relationship between the two variables is not linear.

Property	Value
Mean of x	9
Sample variance of x _i	11
Mean of y	7.50
Sample variance of Y ₁	4.122 or 4.127
Correlation between x _i and y _i	0.816
Linear regression line in each case	y _i = 3.00 + 0.500 x _i

QUESTIONS?

LET'S DO THIS STUFF IN PANDAS