得分	教师签名	批改日期

课程编号_____1800450001______

深圳大学实验报告

课程名称:_	大学物理实验 (二)	
实验名称:_	密立根油滴实验	
学 院:	计算机与软件学院	
指导教师 <u>:</u>	高阳	
报告人:	<u> </u>	_
学号2020	0281061 实验地点204B	
实验时间:_	2021 年 12 月 22	_日
提交时间:	2021年12月22日	

1

一、实验目的

- 1、了解油滴法测电子(静态法)电量的基本原理和实验方法;
- 2、验证电荷的不连续性;
- 3、测量基本电荷电量 e。

二、实验原理

用油滴法测量电子的电荷,可以用静态(平衡)测量法或动态(非平衡)测量法,也可以通过改变油滴的带电量,再用静态法或动态法测量油滴带电量的改变量。

静态(平衡)测量法:

用喷雾器将油喷入两块相距为d的水平放置的平行极板之间。油在喷射撕裂成油滴时,一般都带电的。设油滴的质量为m,所带的电荷为q,两极板间的电压为U,则油滴在平行极板间将同时受到重力mg和静电力qE的作用,如图3-18-1所示。如果调节两极板间的电压U可使该两力达到平衡,这时有

$$mg = qE = q\frac{U}{d}$$

图 3-18-1 油滴的受力分析

(3-18-1)

从式(3-18-1)可见,为了测出油滴所带的电量q,除了需测定平衡电压U和极板间距离d/外,还需要测量油滴的质量m。因m很小,需用如下特殊方法测定:平行极板不加电压时,油滴受到重力而加速下降,由于空气阻力的作用,下降一段距离达到某一速度 v_g 后,阻力 f_r 与重力mg平衡(空气浮力忽略不计),油滴将匀速下降。根据斯托克斯定律,油滴匀速下降时有

$$f_r = 6\pi a \eta v_g = mg \tag{3-18-2}$$

其中n为空气的粘滞系数; a为油滴的半径(由于表面张力的原因,油滴总是呈小球状)。

设油的密度为 ρ 油滴的质量m,则有

$$m = \frac{4}{3}\pi a^3 \rho {(3-18-3)}$$

由式(3-18-1)和式(3-18-2),得到油滴的半径为

$$a = \sqrt{\frac{9\eta v_g}{2\rho g}}$$

(3-18-4)

对于半径小到 10-6 m 的小球, 空气的粘滞系数n应作如下修正:

$$\eta' = \frac{\eta}{1 + \frac{b}{Pa}}$$

这时斯托克斯定律应改为

$$f_r = \frac{6\pi a \eta v_g}{1 + \frac{b}{Pa}}$$

式中b为修正常数, $b = 6.17 \times 10^{-6} m \cdot cmHg$,P 为大气压强(单位cmHg),得

$$a = \sqrt{\frac{9\eta v_g}{2\rho g} \frac{1}{1 + \frac{b}{\rho_a}}} \tag{3-18-5}$$

上式根号中还包含油滴的半径a,但因它处于修正中,可以不十分精确,因此可用式(3-18-4)计算,将式(3-18-5)带入式(3-18-3),得

$$m = \frac{4}{3}\pi \left[\frac{9\eta v_g}{2\rho g} \frac{1}{1 + \frac{b}{\rho_g}}\right]^{\frac{3}{2}} \rho \tag{3-18-6}$$

至于油滴匀速下降的速度 v_a ,可用下法测出。

当两极板的电压 U 为零时,设油滴匀速下降的距离为l,时间为 t_a ,则

$$v_g = \frac{l}{t_g} \tag{3-18-7}$$

将式(3-18-7)代人式(3-18-6), 式(3-18-6)代人式(3-18-1),得

$$q = \frac{18\pi}{\sqrt{2\rho g}} \left[\frac{\eta l}{t_{g}(1 + \frac{b}{\rho_{p}})} \right]^{\frac{3}{2}} \frac{d}{U}$$
 (3-18-8)

式(3-18-8)就是静态(平衡)测量法测量油滴电量的测量公式,其中

空气粘滞系数: $\eta = 1.83 \, kg \cdot m^{-1} \cdot s^{-1}$

大气压强: P = 76.0 cmHg 重力加速度: $g = 9.8 \text{ m} \cdot \text{s}^{-2}$

油滴半径: $a = \sqrt{\frac{9\eta l}{2\rho t_g}}$

斯托克斯公式修正常数: $b = 6.17 \times 10^{-6} m \cdot cmHg$

平行板的距离: $d = 5.00 \times 10^{-3} m$

实验用油的密度随温度的变化如下所示:

t(°C)	0	. 10	20	30	40
$\rho/(kg/m^3)$	991	986	981	976	971

通常可取 $t = 20^{\circ}C$ 时油的密度 $\rho = 981kg/m^3$ 计算,引起的最大相对误差($t = 0^{\circ}C$ 或 $40^{\circ}C$ 时)为

$$E_{\rho} = \frac{1}{2} \frac{\Delta \rho}{\rho} = \frac{1}{2} \times \frac{10}{981} = 0.5\%$$

由此可见,静态测量法需要测量两个变量:一个是平衡电压U,另一个是油滴匀速下降一段距离l所需的时间 t_a 。一般取l=1mm比较合适。

实验发现,对于某一颗油滴,如果我们改变它所带的电量q,则能够使油滴达到平衡的电压必须是某些特定值 U_n ,研究这些电压变化的规律,可发现,它们都满足下列方程:

$$q = mg \frac{d}{U_n}$$

(3-18-9)

式中 $n = \pm 1$, ± 2 ,…而e则是一个不变的值,可见所有带电油滴所带电量q都是最小电量e的整数倍,这就证明了电荷的不连续性.且最小电量e就是电子的电荷值:

$$e = \frac{q}{n}$$

(3-18-10)

三、实验仪器:

油滴盒、THQMD-1型密立根油滴仪、HQMD-1型密立根油滴仪

四、实验内容:

- 1.仪器调整:
- ①调节水准仪, 使主机放置平稳, 打开主机与显示器电源;
- ②喷油前,需要打开油雾孔开关,使得小铁片上的孔与油雾孔对齐。
- 2.练习控制油滴:
- ①熟悉 0V 电压、工作电压、提升电压、记时、联动,喷油,调节显微镜焦距,在屏上找到油滴移动速度缓慢的油滴(若一直找不到油滴,注意落油孔是否堵住)。
 - ②选择电量合适的油滴
 - a:速度不能太快, 否则计时误差大
 - b:带电量不能太大,否则无法反应电子量子性
 - c:质量不能太小, 否则油滴做布朗运动

建议:平衡电压 200V~300V,下降 1.0mm (4 格) 所用时间 10~20s。

- 3.正式测量:
- ①将油滴移动至某条横线上,调节工作电压,使油滴在此位置附近漂移不大,认为此时电压为平衡电压 ${\rm U}_{\circ}$
 - ②测出油滴匀速下落 1.5 mm 所用时间 t_g 。
 - ③对同一油滴测量 5 次,同时选择不同的几颗油滴进行测量。
 - ④填写表格并计算出最后结果。

五、数据记录:

组号: ___19___; 姓名____吴艇

油滴	-	1	2)	,	3	4	
	t/s	U/V	t/s	U/V	t/s	U/V	t/s	U/V
1								
2								
3								
4								
5								

六、数据处理

油滴		1	2			3	4	
	t/s	U/V	t/s	U/V	t/s	U/V	t/s	U/V
1								
2								
3								
4								
5								
平均								

$$n = \frac{q}{e} \ , \quad q = \frac{18\pi}{\sqrt{2\rho g}} \left[\frac{\eta l}{t_g \left(1 + \frac{b}{\rho_a} \right)} \right]^{\frac{3}{2}} \frac{d}{U} = \frac{18\times 3.14}{\sqrt{2\times 981\times 9.8}} \left[\frac{1.8\times 10^{-5}\times 1.50\times 10^{-3}}{t\times \left(1 + \frac{6.17\times 10^{-6}}{0.76\times a} \right)} \right]^{\frac{3}{2}} \frac{5\times 10^{-3}}{U}$$

已知 $e = 1.591 \times 10^{-19}$ C

油滴	1	2	3	4
$\bar{q}/10^{-19}$ C				
n _o				
n(取整)				
$e_i/10^{-19}$ C				

取平均值得: \bar{e} =

已知标准值 $e_s=1.591\times 10^{-19}C$,求得相对误差: $s=\left|\frac{\bar{e}-e_s}{e_s}\right|\times 100\%=$

绝对误差 $\Delta = |\bar{e} - e_s|$ =

求 A 类不确定度: 由 $u_{\rm A} = \sqrt{\frac{\sum_{\rm i=1}^{\rm n}(e_{\rm i}-e)^2}{\rm n(n-1)}}$ 得: $u_{\rm A} =$

最终结果: e =

、买验/	总结与思考题				
	阅 音 贝 ·				
导教师批	阅意见:				
	阅意见:				
绩评定:	阅意见:				
绩评定 : 预习	操作及记录	数据外理与结里陈·录 30 公	思考题 10 分	报告整体	□ ↔
绩评定 :		数据处理与结果陈述 30 分	思考题 10 分	报告整体 印象	总分