

Универсальные вычислимые функции

Определение 18.1.

Пусть K- множество частичных функций вида $g \colon \mathbb{N}^n \to \mathbb{N}$. Функция $f(x_0, x_1, \dots, x_n)$ называется **универсальной для класса** K, если:

a) $\forall m \in \mathbb{N} : f(m, x_1, \dots, x_n) \in K$;

6) $\forall g(x_1, ..., x_n) \in K \ \exists m \in \mathbb{N} : \ g(x_1, ..., x_n) = f(m, x_1, ..., x_n),$

Если объединить два условия, то выходит, что класс

 $K = \{f(m, x_1, \dots, x_n) \mid m \in \mathbb{N}\}$. Или же, иными словами, функция fосуществляет нумерацию всех функций класса K.

кортеж х-ов это аргументы функции, а м - номер этой програ оимер C-runtime то есть мы пишем программу, её исполняет дргуая программа, для этого она получает адрес(у нас это номер) программы

Замечание 18.2.

Класс K имеет универсальную функцию \Leftrightarrow класс конечен или счётен. Доказательство: упражнение.

Следствие 18.3. т.к. т - натуральное, мы не сможем пересчитать континуальное число функций

Если класс K континуален, то он не имеет универсальной функции.

Доказательство: упражнение.

miro

Следствие 18.4.

Класс всех n-местных частичных функций не имеет универсальной функции. этот класс континуален, (может принимать действительные аргументы?)

Доказательство: упражнение.

Следствие 18.5.

Классы ПРФ, ОРФ, ЧРФ имеют универсальные функции.

Доказательство:

Покажем, что классы счетные, $\Pi P\Phi \subseteq OP\Phi \subseteq \Psi P\Phi = \Pi BT$.

Пусть А - алфавит, на котором записываются программы машин

Тьюринга. Тогда любая программа машины Тьюринга

следует из того, что алфавит счётен

$$\Pi \in \mathsf{A}^* = \{(a_1, \dots, a_m) \mid m \in \mathbb{N}, a_i \in \mathsf{A} \,\}$$

Множество A* - счётно, значит счётно и множество всевозможных программ машин Тьюринга. Следовательно, счётен и класс ПВТ.

Поэтому классы ПРФ, ОРФ и ЧРФ счётны.

Следствие 18.5 доказано.

Предложение 7.5.

Доказательство: упражнение.

Пример:

 $K = \{Sum(x, y), Mul(x, y)\}$

f(m, x, y) = (m%2)*Sum(x, y) + (1 - m%2)*Mul(x, y)

f(5, x, y) = 5%2*Sum(x, y) + (1 - 5%2)*Mul(x, y) = Sum(x, y)

f(12, x, y) = 12%2*Sum(x, y) + (1 - 12%2)*Mul(x, y) = Mul(x, y)

2. Если $\|A\| = \omega$, то $\|A^*\| = \omega$ (множество всех конечных

частичные функции == все функции. можно доказать,

характеристические функции для всех подмножеств

натуральных чисел (а таких подмножеств несчетное

количество). тогда функций континуум => их нельзя

пронумеровать => нет универсальных функций

что всех функций континуум. например,

Следствие 7.6.

1. Для любого языка программирования множество всех про-

2. Множество всех функций, вычислимых на машине Тьюринга,

3. Множество всех частично рекурсивных функций счётно.

Множество многочленов с целыми коэффициентами счётно

5. Множество всех алгебраических чисел счётно.

Доказательство: упражнение.

Замечание 18.6. Пусть $h: \mathbb{N} \to \mathbb{N}$ — взаимно-однозначное отображение, а $f(x_0, ..., x_n)$ — универсальная функция для класса K. Тогда функция $g(x_0, ..., x_n) = f(h(x_0, ..., x_n))$ также является универсальной для класса K.

Теорема 18.8.

- а) Не существует примитивно рекурсивной функции, универсальной для класса $\Pi P \Phi^n$; $np\phi$ om μ аргументов
- б) Не существует общерекурсивной функции, универсальной для класса ${\rm OP}\Phi^n;$
- в) Не существует частично рекурсивной функции, универсальной для класса ${\rm OP}\Phi^n.$

Доказательство.

а) Будем доказывать от противного. Допустим, что существует прф $f(x_0, ..., x_n)$, являющаяся универсальной для $\Pi P \Phi^n$. Рассмотрим функцию $g(x_1, ..., x_n) = f(x_1, x_1, ..., x_n) + 1$. Очевидно, что она является прф. Следовательно, найдется такое число $m \in \mathbb{N}$, что $g(x_1, ..., x_n) = f(m, x_1, ..., x_n)$. Тогда получим

 $f(m,\ldots,m)+1=g(m,\ldots,m)=f(m,\ldots,m).$

Пришли к противоречию.

Определение 18.1.

Пусть K- множество частичных функций вида $g: \mathbb{N}^n \to \mathbb{N}$. Функция $f(x_0, x_1, \dots, x_n)$ называется **универсальной для класса** K, если:

а) $\forall m \in \mathbb{N}: f(m, x_1, \dots, x_n) \in K$;

б) $\forall g(x_1,\dots,x_n) \in K \; \exists m \in \mathbb{N}: \; g(x_1,\dots,x_n) = f(m,x_1,\dots,x_n),$ Если объединить два условия, то выходит, что класс

 $K = \{f(m, x_1, \dots, x_n) \mid m \in \mathbb{N}\}$. Или же, иными словами, функция f осуществляет нумерацию всех функций класса K.

б) Доказывается аналогично.

miro

в) Будем доказывать от противного. Допустим, что существует чрф $f(x_0,...,x_n)$, являющаяся универсальной для $\mathrm{OP}\Phi^n$. Рассмотрим функцию $f(m_0,x_1,...,x_n)$, где $m_0\in\mathbb{N}$. По определению универсальной функции, она принадлежит классу $\mathrm{OP}\Phi^n$. Следовательно, для любых $m_0,m_1,...,m_n\in\mathbb{N}$ функция $f(m_0,m_1,...,m_n)$ определена. А, значит, $f\in\mathrm{OP}\Phi^{n+1}$.

Мы пришли к противоречию с тем, что не существует орф, универсальной для класса $\mathsf{OP}\Phi^n$.

Теорема 18.8 доказана.

miro

ТЕОРЕМА 18.9.

Класс K n-местных **чрф** имеет универсальную **чрф**.

Доказательство:

х_0 - номер программы

Рассмотрим $f(x_0, ..., x_n) = l(\mu y[|T^n(x_0, ..., x_n, l(y), r(y)) - 1| = 0])$. Очевидно, что f – **чрф**. Покажем, что f универсальна для $\mathbf{\Psi} \mathbf{P} \mathbf{\Phi}^n$:

- a) Пусть $m\in\mathbb{N}\Rightarrow f(m,x_1,\ldots,x_n)$ $\mathbf{чp}$ ф; по Основной Теореме о Вычислимых Функциях, g ЧРФ, значит она ПВТ
- б) Рассмотрим $g(x_1,\ldots,x_n)\in\mathbf{\Psi}\mathbf{P}\Phi^n$. Пусть программа П вычисляет g,

m - номер Π . по теореме о нормальной форме Клини

Тогда $g(\overline{x}) = l(\mu y[|T^n(m, \overline{x}, l(y), r(y)) - 1| = 0])$, т.е. $g(\overline{x}) = f(m, \overline{x})$, что и требовалось доказать.

Теорема доказана.

та же самая но от двух аргументо

4. $c_{n+1}(x_1,...,x_{n+1}) = c(c_n(x_1,...,x_n),x_{n+1}).$

а. Для любых $x_1,\dots,x_n\in\mathbb{N}$ если $c_n(x_1,\dots,x_n)=m$, то $c_k^n(m)=x_k,\ k\leq n.$

 $\binom{3}{4}\left(C_3\left(X,Y,\overline{\mathcal{X}}\right)\right)=\binom{2}{4}\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)=2\left(\ell\left(C_5\left(X,Y,\overline{\mathcal{X}}\right)\right)\right)$

 $c_n(c_1^n(m),\dots,c_n^n(m))=m.$

5. $c_k^{n+1}(m) = c_k^n(l(m)), k \le n$.

Определение 18.10.

Обозначим $\varphi^2(x_0, x_1) = l(\mu y[|T^1(x_0, x_1, l(y), r(y)) - 1| = 0]).$

Следствие 18.11. частный случай теоремы 18.9

 $\varphi^2(x_0,x_1)$ - **чрф**² универсальная для класса **ЧРФ**¹ Доказательство: упражнение.

Определение 18.12.

Обозначим $\varphi^{n+1}(x_0,\ldots,x_n) = \varphi^2(x_0,c^n(x_1,\ldots,x_n)).$

Предложение 18.13.

 φ^{n+1} - чрф, универсальная для ЧР Φ^n .

Доказательство:

Пусть $\,arphi^{n+1}\,$ - $\,$ чр $\,$ ф, поэтому: $\,$ так как у неё н аргументов, м уже передали, оно задано (ка

- а) Если $m \in \mathbb{N}$, то $\varphi^{n+1}(m, x_1, \dots / x_n) \in \mathbf{\Psi} \mathbf{P} \Phi^n$;
- б) Пусть $g(x_1, ..., x_n) \in \mathbf{\Psi} \mathbf{P} \Phi^n$.

Тогда рассмотрим $h(x)=g(c_1^n(x),\ldots,c_n^n(x))$. В - ЧРФ т.к. сі - ПРФ g - ЧРФ

Очевидно, что $h(x) \in \mathbf{\Psi} \mathbf{P} \Phi^1 \Rightarrow \exists m \in \mathbb{N} : h(x) = \varphi^2(m, x).$

Тогда $\varphi^{n+1}(m, x_1, \dots, x_n) = \varphi^2(m, c(x_1, \dots, x_n)) = h(c(x_1, \dots, x_n)) =$

 $=g(x_1,\ldots,x_n).$

Предложение доказано.

Определение 18.1. Пусть K- множество частичных функций вида $g\colon \mathbb{N}^n \to \mathbb{N}.$ Функция

 $f(x_0, x_1, \dots, x_n)$ называется **универсальной для класса** K, если: a) $\forall m \in \mathbb{N} : f(m, x_1, \dots, x_n) \in K$;

C'4 = 1

- 6) $\forall g(x_1,...,x_n) \in K \ \exists m \in \mathbb{N} : \ g(x_1,...,x_n) = f(m,x_1,...,x_n),$
- Если объединить два условия, то выходит, что класс

Определение 9.16. 1. $c_2(x, y) = c(x, y)$. 2. $c_1^2(m) = l(m)$.

3. $c_2^2(m) = r(m)$.

6. $c_{n+1}^{n+1}(m) = r(m)$.

б. Для любого т ∈ № выполнено

Замечание 9.18.

 $K = \{f(m, x_1, \dots, x_n) \mid m \in \mathbb{N}\}$. Или же, иными словами, функция fосуществляет нумерацию всех функций класса K.

 $N(C(x_1,...,x_n)) = Q(C_n(C(x_1,...x_n)),...,C_n(C(x_1,...x_n))) =$

miro

3

Определение 18.14. клиниевская нумерция выражается через канторовскую

Следующие функции называются клиниевскими скобками:

она выглядит так, потому что взаимно-однозначно conocmaвляет одно число двум дргуим и имеет полезные свойства кт мы дальше увидим [x, y] = c (l(x), c(r(x), y)).

Тогда

 $[x_1,\ldots,x_{n+1}]=[[x_1,\ldots,x_n],x_{n+1}];$

 $[k]_{21} = c(l(k), l(r(k)));$

 $[k]_{22} = r(r(k));$

 $[k]_{n,1} = [[k]_{21}]_{n-1,1};$

 $[k]_{n,n-1} = [[k]_{21}]_{n-1,n-1};$

 $[k]_{n,n} = [k]_{2,2}$.

Предложение 18.15.

Функции из Определения 18.14. являются прф.

Доказательство: упражнение.

ПРЕДЛОЖЕНИЕ 18.16.

a)
$$[[x_1, \ldots, x_n]]_{n,l} = x_l;$$

6)
$$[[k]_{n,1},\ldots,[k]_{n,n}]=k;$$

в) [] : $N^n o N$ - взаимно-однозначное отображение

ДОКАЗАТЕЛЬСТВО: УПРАЖНЕНИЕ.

аналогия с :

Замечание 9.18.

а. Для любых $x_1,\ldots,x_n\in\mathbb{N}$ если $c_n(x_1,\ldots,x_n)=m$, то $c_k^n(m) = x_k, \ k \le n.$

б. Для любого m ∈ \mathbb{N} выполнено

 $c_n(c_1^n(m), \dots, c_n^n(m)) = m.$

mire

ПРЕДЛОЖЕНИЕ 18.17.

a)
$$[c(x_0, x_1), x_2] = c(x_0, c(x_1, x_2));$$

6)
$$c^n(c(x_1, x_2), x_3, \dots, x_{n+1}) = c^{n+1}(x_1, \dots, x_{n+1});$$

B)
$$[x_1, \ldots, x_n] = [[x_1, \ldots, x_m], x_{m+1}, \ldots, x_n].$$

Доказательство: упражнение.

Значит $[x,y],[x]_{21}$ и $[x]_{22}$ – нумерационные функции для пар натуральных чисел. Их определенные преимущества перед канторовскими нумерационными функциями c(x,y), l(x) и r(x) будут видны позже.

Далее стандартным приемом индукцией по n определяются нумерационные $\phi y \mu \kappa u u u$ для наборов длины n натуральных чисел

$$\begin{aligned} [x_1,x_2,x_3,\ldots,x_n] &= [[x_1,x_2,x_3,\ldots x_{n-1}],x_n], \\ [x]_{n1} &= [[x]_{21}]_{n-1,1}, \ [x]_{n2} &= [[x]_{21}]_{n-1,2}, \end{aligned}$$

$$[x]_{n,n-1} = [[x]_{21}]_{n-1,n-1}, [x]_{n,n} = [x]_{22}.$$

Индукцией по n устанавливается справедливость равенств

$$[[x_1, x_2, x_3, \dots, x_n]]_{ni} = x_i, \quad [[x]_{n1}, [x]_{n2}, \dots, [x]_{nn}] = x.$$

В дальнейшем часто будет использоваться равенство

$$[x_1, x_2, x_3, \dots, x_m, x_{m+1}, \dots, x_n] = [[x_1, x_2, x_3, \dots, x_m], x_{m+1}, \dots, x_n],$$

справедливость которого сразу следует из определения функции

$$[x_1,x_2,x_3,\ldots,x_n].$$

Определение 18.18.

Следующие функции называются клиниевскими универсальными фун-

кциями:

$$[x, y] = c (l(x), c(r(x), y)).$$

$$K^{2}(x_{0}, x_{1}) = \varphi^{2}(l(x_{0}), c(r(x_{0}), x_{1}));$$

 $K^{n+1}(x_{0}, \dots, x_{n}) = K^{n}([x_{0}, x_{1}], x_{2}, \dots, x_{n}).$

Предложение 18.19.

 $K^{n}(c(x_{0}, x_{1}), x_{2}, \dots, x_{n}) = \varphi^{n+1}(x_{0}, \dots, x_{n}).$

Без доказательства.

Теорема 18.20. Функция K^{n+1} является универсальной для класса $\Psi P \Phi^n$.

$$K^{n+1}(X_0,...,X_n) = K^2([X_0,...,X_{n-1}],X_n)^{a \ K2 \ ecmb \ \phi u 2 \ komopoe \ явл \ ЧРФ$$

а) Так как $K^{n+1} \in \mathsf{ЧР}\Phi^{n+1}$, то для любого $m \in \mathbb{N}$ функция

б) Пусть $g(x_1, ..., x_n) \in \mathsf{ЧР}\Phi^n$. Введем фиктивный аргумент и рассмотрим функцию $f(y,x_1,...,x_n)=g(x_1,...,x_n)=0\cdot y\,+\,g(x_1,...,x_n).$ Очевидно, что $f(y,x_1,...,x_n) \in \mathsf{ЧР}\Phi^{n+1}$. Следовательно, найдется такое число $a \in \mathbb{N}$, что

 $f(y,x_1,\dots,x_n)=\varphi^{n+2}(a,y,x_1,\dots,x_n)$. Тогда

 $K^{n+1}(c(a,y),x_1,...,x_n) = \varphi^{n+2}(a,y,x_1,...,x_n) = f(y,x_1,...,x_n) = g(x_1,...,x_n)$

Следовательно, для любого числа $k \in \mathbb{N}$, положив $m_k = c(a,k)$, получим $K^{n+1}(m_k,x_1,...,x_n)=g(x_1,...,x_n).$ И для $m_0=c(a,0)$ получим $g(x_1,...,x_n)=c(a,0)$ $K^{n+1}(m_0,x_1,\dots,x_n).$ т.е для КАЖДОЙ функции сущ бесконечное число клиниевских номеров

т.к. к - это игрек, а он фиктивный (зануляется)

Пусть K- множество частичных функций вида $g\colon \mathbb{N}^n \to \mathbb{N}$. Функция

 $f(x_0, x_1, ..., x_n)$ называется универсальной для класса K, если: a) $\forall m \in \mathbb{N} : f(m, x_1, \dots, x_n) \in K$;

6) $\forall g(x_1,\ldots,x_n) \in K \exists m \in \mathbb{N} : g(x_1,\ldots,x_n) = f(m,x_1,\ldots,x_n),$

Если объединить два условия, то выходит, что класс

 $K = \{f(m,x_1,\ldots,x_n) \mid m \in \mathbb{N}\}$. Или же, иными словами, функция fосуществляет нумерацию всех функций класса K.

miro

для ЧРФн+1 существует

Следствие 18.21. Любая частично рекурсивная функция имеет бесконечно много клиниевских номеров: для любой функции $g \in \mathsf{ЧР}\Phi^n$ существует бесконечно много номеров m_k , таких что

$$g(x_1,...,x_n) = K^{n+1}(m_k,x_1,...,x_n).$$

Доказательство: упражнение.

простая аналогия: f(x, y, z, t) = x + y + z + t S(x, y) = x + y g(x, y, z) = x + y + z f(x, y, z, t) = g(S(x, y), z, t)

Теорема 18.22. (s-m-n теорема) Для любых $m,n\in\mathbb{N}$ найдется примитивно рекурсивная функция $S_m^n(x_0,\dots,x_n)$ такая, что

$$K^{n+m+1}(x_0, ..., x_{n+m}) = K^{m+1}(S_m^n(x_0, ..., x_n), x_{n+1}, ..., x_{n+m}).$$

Доказательство. Положим
$$S_m^n(x_0, \dots, x_n) = [x_0, \dots, x_n]$$
. Тогда
$$K^{n+m+1}(x_0, \dots, x_{n+m}) = K^{n+m}([x_0, x_1], \dots, x_{n+m}) = K^{n+m-1}([x_0, x_1], x_2], \dots x_{n+m}) = K^{n+m-1}([x_0, x_1], x_2], \dots x_{n+m}) = K^{m+1}([x_0, x_1], x_2], \dots, x_n], x_{n+1}, \dots, x_{n+m}) = K^{m+1}([x_0, x_1], x_2], \dots, x_n], x_{n+1}, \dots, x_{n+m}).$$

$$= K^{m+1}([x_0, \dots, x_n], x_{n+1}, \dots, x_{n+m}).$$

$$[x_1, \dots, x_{n+1}] = [[x_1, \dots, x_n], x_{n+1}];$$

Теорема 18.22 доказана.

НЕФОРМАЛЬНО: то есть, пусть у нас есть какой-то преобразователь (напр. компилятор) который получает на вход один исходный код, на выход даёт другой, тогда, для любого "преобразователя" будет существовать такая программа, которая

Теорема 18.23.(о неподвижной точке) не измениться после работы этого преобразователя

Для любой $\mathbf{чр} \Phi^{n+1} h(x_1, \dots, x_{n+1})$ существует $\mathbf{пр} \Phi^n g(x_1, \dots, x_n)$ такая, молько в примере код, а у нас номер программы $K^2(h(x_1, \dots, x_n, g(x_1, \dots, x_n)), y) = K^2(g(x_1, \dots, x_n), y)$.

ДОКАЗАТЕЛЬСТВО: параметры: $K^2(z, y, x_1, \dots, x_n)$, ux + t + 2 получает на вход номер программы и аргументы, на выход возвращвет новую

Рассмотрим функцию $K^2(h(x_1,\ldots,x_n,[z,z,x_1,\ldots,x_n]),y)\in \mathbf{\Psi}\mathbf{P}\Phi^{n+2}$. программы и аргументы, на выход возвращвет новую программу, у - переданная программу, у - переданная программа

 $z=K^{n+3}(a,z,x_1,\ldots,x_n,y).$ Положим в качестве $g(x_1,\ldots,x_n)=[a,a,x_1,\ldots,x_n].$ Тогда Теорема 18.20. Функция K^{n+1} является универсальной для класса ЧР Φ^n .

$$K^{2}(h(x_{1},...,x_{n},g(x_{1},...,x_{n})),y) = K^{2}(h(x_{1},...,x_{n},[a,a,x_{1},...,x_{n}]),y) =$$

$$= K^{n+3}(a,a,x_{1},...,x_{n},y) \xrightarrow{(s-m-n) \text{ reop.}} K^{2}([a,a,x_{1},...,x_{n}],y) =$$

$$= K^{2}(g(x_{1},...,x_{n}),y).$$

Теорема доказана.

miro

Определение 18.24.

Функция $æ(n) = K^2(n,x)$ называется **клиниевской нумерацией ЧРФ** 1 , т.е. $æ: \mathbb{N} \to \mathbf{ЧР\Phi}^1$.

Следствие 18.25. следствтие из теоремы о неподвижной точке

$$\forall h(x) \in \mathbf{ЧP}\Phi^1 \; \exists n \in \mathbb{N} \; \text{такая, что } æ(h(n)) = æ(n).$$

miro

 $\searrow A \neq \mathsf{ЧР}\Phi^1$. Тогда множество номеров $B = \{n \mid \varkappa(n) \in A\}$ не рекурсивно, т.е.

функция $\chi_B(x) = \left\{ egin{align*} 0, & x \notin B \\ 1, & x \in B \end{array} \right.$ не является частично рекурсивной.

Доказательство. Будем доказывать от противного. Допустим, что $\chi_B(x)$ - частично рекурсивная функция. Так как $A \neq \emptyset$, то $B \neq \emptyset$, и, следовательно, найдется $a \in B$. Так как $A \neq \mathsf{ЧР}\Phi^1$, то найдётся частично рекурсивная функция $\in \bigcup \mathcal{P}\Phi$ $g \notin A$, пусть $g = \mathfrak{w}(b)$. Следовательно, нашёлся номер $b \notin B$.

Рассмотрим функцию $f(x)=b\chi_B(x)+a\,\overline{sg}\,(\chi_B(x))$. По Следствию 18.25 теоремы о неподвижной точке найдется такое n, что $\varpi(n)=\varpi(f(n))$. Будет ли функция $\varpi(n)$ принадлежать множеству A?

1) Если $æ(n) \in A$, то $n \in B$. Следовательно, $f(n) = b \notin B$. Тогда $æ(n) = æ(f(n)) = æ(b) \notin A$ — противоречие.

2) Если $\mathfrak{E}(n) \notin A$, то $n \notin B$. Следовательно, $f(n) = a \in B$. Тогда $\mathfrak{E}(n) = \mathfrak{E}(f(n)) = \mathfrak{E}(a) \in A$ – опять получили противоречие.

Отсюда следует, что $\chi_B(x)$ — не является частично рекурсивной функцией, т.е. множество номеров B не рекурсивно.

miro