Sheaf Cech Cohomology

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

September 17, 2023

Basic definitions of sheaf

Sheaf Definition

Definition (Structure Sheaf)

Suppose M is a Riemann surface, W is an open set on M. Let $\mathcal{O}(W)$ be the holomorphic function ring on W, define

$$\mathcal{O}(M) := \{\mathcal{O}(W) : \text{open set } W \subset M\}$$

 \mathcal{O} satisfies the following properties:

① if $V \subset W$, let $\rho_{W,V} : \mathcal{O}(W) \to \mathcal{O}(V)$ be the restriction of homomorphism, namely $\rho_{W,V}(f) = f|_V$, then

$$U \subset V \subset W \implies \rho_{W,U} = \rho_{VU} \circ \rho_{W,V}$$

② if $W = \bigcup_i W_i$, $W_i \subset M$ open, $\exists S_i \in \mathcal{O}(W_i)$, such that on $W_i \cap W_j$,

$$\rho_{W_i,W_i\cap W_j}(S_i)=\rho_{W_j,W_j\cap W_i}(S_j)$$

then $\exists S \in \mathcal{O}(W)$ m such that $\rho_{W,W_i}(S) = S_i$, $\forall i$.

③ if $W = \bigcup_i W_i$, $W_i \subset M$ open, if $S \in \mathcal{O}(W)$, such that $\forall i, \rho_{W,W_i}(S)$ is the zero element in $\mathcal{O}(W_i)$, then S = 0.

Then \mathcal{O} is called the structure sheaf of M.

Germs of holomorphic functions

Definition (Germs of holomorphic functions)

For each point $x \in M$, classify $\bigcup \{\mathcal{O}(U) : x \in U\}$ by the equivalence relation: suppose $S_w \in \mathcal{O}(W)$ and $S_V \in \mathcal{O}(V)$,

$$S_w \sim S_v \iff \exists U \subset W \cap V, \rho_{W,U}(S_W) = \rho_{V,U}(S_V).$$

Each equivalence class of

$$\bigcup \{\mathcal{O}(U): x \in U\}/\sim$$

is called a germ of holomorphic function at x. The set of all equivalence classes is denoted as $\mathcal{O}(x)$, and called the stalk at x.

Sheaf of holomorphic functions

Definition (Sheaf of holomorphic functions)

Define $\tilde{\mathcal{O}}$ as the set of all germs of holomorphic functions,

$$\tilde{\mathcal{O}} := \{\mathcal{O}(x) : x \in M\}.$$

Introduce a topology on $\tilde{\mathcal{O}}$: for any open set $W\subset M$, $\forall f\in\mathcal{O}(W)$, define $\bigcup_{x\in W}[f]_x$ is an open set of $\tilde{\mathcal{O}}$, $[f]_x$ is the germ in the stalk $\mathcal{O}(x)$. Such kind of open sets define the topology base, such that $\tilde{\mathcal{O}}$ becomes a topological space, the so-called sheaf of holomorphic functions.

Sheaf projection

Definition (Sheaf projection)

Define the sheaf projection map as

$$\pi: \tilde{\mathcal{O}} \to M: \quad \pi(\mathcal{O}(x)) = x.$$

 π maps an open set of $\tilde{\mathcal{O}}$ to an open set of M injectively, hence π is a local homeomorphism. $\pi^{-1}(x) = \mathcal{O}(x)$ is the stalk at x.

Sheaf section

Definition (Sheaf section)

Suppose W is an open set on M, if a continuous map $S:W\to \tilde{\mathcal{O}}$, satisfies

$$\pi \circ S = \mathrm{id}_W$$

then S is a section of $\tilde{\mathcal{O}}$ on W. The set of all sections of $\tilde{\mathcal{O}}$ on W is denoted as $\Gamma(\tilde{\mathcal{O}},W)$.

 $\{\tilde{\mathcal{O}},\pi\}$ is called the espace etalé of \mathcal{O} . In general, they are treated as the same.

Lemma

$$\Gamma(\tilde{\mathcal{O}},W)=\mathcal{O}(W).$$

Sheaf

Definition (Sheaf)

Suppose M is a topological space, a sheaf $\mathcal F$ on M is a family $\{\mathcal F(U): U \text{ open set on } M\}$, where $\mathcal F(U)$ is an Abelian group, and $\forall U \subset W$, \exists restriction homomorphism map

$$\rho_{W,U}: \mathcal{F}(W) \to \mathcal{F}(U),$$

which is a group homomorphism. \mathcal{F} and $\rho_{W,U}$ satisfies the following properties:

① if $V \subset W$, let $\rho_{W,V} : \mathcal{F}(W) \to \mathcal{F}(V)$ be the restriction of homomorphism, namely $\rho_{W,V}(f) = f|_{V}$, then

$$U \subset V \subset W \implies \rho_{W,U} = \rho_{VU} \circ \rho_{W,V}$$

② if $W = \bigcup_i W_i$, $W_i \subset M$ open, $\exists S_i \in \mathcal{O}(W_i)$, such that on $W_i \cap W_j$,

$$\rho_{W_i,W_i\cap W_i}(S_i) = \rho_{W_i,W_i\cap W_i}(S_j)$$

then $\exists S \in \mathcal{F}(W)$ m such that $\rho_{W,W_i}(S) = S_i$, $\forall i$.

3 if $W = \bigcup_i W_i$, $W_i \subset M$ open, if $S \in \mathcal{F}(W)$, such that $\forall i, \rho_{W,W_i}(S)$ is the zero element in $\mathcal{F}(W_i)$, then S = 0.

Germs

Definition (Germs)

For each point $x \in M$, classify $\bigcup \{\mathcal{F}(U) : x \in U\}$ by the equivalence relation: suppose $f_w \in \mathcal{F}(W)$ and $f_V \in \mathcal{F}(V)$,

$$f_{w} \sim f_{v} \iff \exists U \subset W \cap V, \rho_{W,U}(f_{W}) = \rho_{V,U}(f_{V}).$$

Each equivalence class of

$$\bigcup \{\mathcal{F}(U): x \in U\}/\sim$$

is called a germ at x. The set of all equivalence classes is denoted as $\mathcal{F}(x)$, and called the stalk at x.

Sheaf of functions

Definition (Sheaf of functions)

Define \tilde{F} as the set of all germs,

$$\tilde{\mathcal{F}} := \{ \mathcal{F}(x) : x \in M \}.$$

Introduce a topology on $\tilde{\mathcal{F}}$: for any open set $W \subset M$, $\forall f \in \mathcal{F}(W)$, define $\bigcup_{x \in W} [f]_x$ is an open set of $\tilde{\mathcal{F}}$, $[f]_x$ is the germ in the stalk $\mathcal{F}(x)$. Such kind of open sets define the topology base, such that $\tilde{\mathcal{F}}$ becomes a topological space, the so-called sheaf of functions.

Sheaf projection

Definition (Sheaf projection)

Define the sheaf projection map as

$$\pi: \tilde{\mathcal{F}} \to M: \quad \pi(\mathcal{F}(x)) = x.$$

 π maps an open set of $\tilde{\mathcal{F}}$ to an open set of M injectively, hence π is a local homeomorphism. $\pi^{-1}(x) = \mathcal{F}(x)$ is the stalk at x.

Sheaf section

Definition (Sheaf section)

Suppose W is an open set on M, if a continuous map $S:W \to \tilde{\mathcal{F}}$, satisfies

$$\pi \circ S = \mathrm{id}_W$$

then S is a section of $\tilde{\mathcal{F}}$ on W. The set of all sections of $\tilde{\mathcal{F}}$ on W is denoted as $\Gamma(\tilde{\mathcal{F}},W)$.

 $\{\tilde{\mathcal{F}},\pi\}$ is called the espace etalé of \mathcal{F} . In general, they are treated as the same.

Lemma

$$\Gamma(\tilde{\mathcal{F}},W)=\mathcal{F}(W).$$

Suppose M is a Riemann surface, $U \subset M$ is an open set on M, the followings are common sheaves:

- $\mathcal{O}(U)$ sheaf of holomorphic function germs, holomorphic functions on U;
- $\mathcal{A}^0(U)$ sheaf of C^{∞} function germs, C^{∞} functions on U;
- $\mathcal{A}^p(U)$ sheaf of C^∞ *p*-form germs, C^∞ *p*-forms on U, p=0,1,2;
- $\mathcal{A}^{p,q}(U)$ sheaf of C^{∞} (p,q)-form germs, C^{∞} (p,q)-forms on U, $0 \le p,q \le 1$;

Suppose M is a Riemann surface, $U \subset M$ is an open set on M, L is a holomorphic line bundle on M, the followings are common sheaves:

• $\Omega(L)(U)$ - sheaf of holomorphic sections of L, the group of all holomorphic sections $\{S:U\to L\}$ of L on U, $\Omega(L)(M)=\Gamma(M)$; if U is trivalization neighborhood, then

$$\Omega(L)(U) \cong \mathcal{O}(U),$$

and then $S = \{S_{\alpha} : S_{\alpha} = f_{\alpha\beta}S_{\beta}\}.$

• $\mathcal{A}^0(L)(U)$ - sheaf of C^{∞} sections of L, the group of all C^{∞} sections $f: U \to L$ on U, $\pi \circ f = \mathrm{id}_U$;

 $\mathcal{A}^p(L)(U)$ - sheaf of *L*-valued C^∞ *p*-form germs, C^∞ *p*-forms on U, p=0,1,2;

$$\mathcal{A}^{p}(L)(U) = \mathcal{A}^{p}(U) \otimes_{\mathcal{A}^{0}(U)} \mathcal{A}^{0}(L)(U)$$

$$= \left\{ \sum_{i} S_{i} \otimes S_{i} : \omega_{i} \ C^{\infty} \ p - \text{form}, S_{i} \ C^{\infty} \text{ section of L on U} \right\}$$

 $\mathcal{A}^p(L)(U)$ is a module on the commutative ring $\mathcal{A}^0(U)$. $\forall S, S' \in \mathcal{A}^0(L)(U), \ \omega, \omega' \in \mathcal{A}^p(U)$

$$\omega(S + S') = \omega S + \omega S'$$
$$(\omega + \omega')S = \omega S + \omega' S$$
$$f(\omega S) = (f\omega)S = \omega(fS), \forall f \in \mathcal{A}^{0}(U)$$

 $\mathcal{A}^{p,q}(U)$ - sheaf of L-valued C^{∞} (p,q)-form germs, C^{∞} (p,q)-forms on U, $0 \le p,q \le 1$;

$$\mathcal{A}^{p,q}(L)(U) = \mathcal{A}^{p,q}(U) \otimes_{\mathcal{A}^0(U)} \mathcal{A}^0(L)(U)$$

$$= \left\{ \sum_i S_i \otimes S_i : \omega_i \ C^{\infty} \ (p,q) - \text{form}, S_i \ C^{\infty} \text{ section of L on U} \right\}$$

Sheaf Homomorphism

Definition (Sheaf homomorphism)

Suppose M is a topologial space, \mathcal{F} and \mathcal{G} are two sheaves on M, assume $\mathcal{U}=\{U\}$ is the total set of all open sets on M, if there are a family of group (ring) homomorphisms $\{\varphi_U\}$ $\varphi_U:\mathcal{F}(U)\to\mathcal{G}(U)$, such that the diagram

$$\begin{array}{ccc} \mathcal{F}(W) & \stackrel{\varphi_W}{\longrightarrow} & \mathcal{G}(W) \\ \rho_{W,U} & & & \downarrow \rho'_{W,U} \\ \mathcal{F}(U) & \stackrel{\varphi_U}{\longrightarrow} & \mathcal{G}(U) \end{array}$$

commutes $\forall U, W \in \mathcal{U}, \ U \subset W$. We call $\varphi = \{\varphi_U\}$ as the sheaf homomorphism from \mathcal{F} to \mathcal{G} . If each U is a group (ring) isomorphism, then φ is a sheaf isomorphism.

espace etalé

For any sheaf homomorphism $\varphi = \{\varphi_U : \mathcal{F} \to \mathcal{G}\}$, it induces a map between their espace etalé's, $\tilde{\varphi} : \tilde{\mathcal{F}} \to \tilde{\mathcal{G}}$, such that for each $x \in M$,

$$\tilde{\varphi}([f]_X) = [\varphi(f)]_X.$$

 φ is a sheaf isomorphism if and only if $\tilde{\varphi}$ restricted on each stalk is an isomorphism from $\mathcal{F}(x)$ to $\mathcal{G}(x)$.

Sheaf Exact Sequence

Definition (sheaf exact sequence)

 $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \cdots, \mathcal{A}_k, \cdots$ are sheaves on the topological space M, $i_k : \mathcal{A}_k \to \mathcal{A}_{k+1}$ is a sheaf homomorphism, $k = 0, 1, 2, \cdots$

$$\mathcal{A}_0 \xrightarrow{i_0} \mathcal{A}_1 \xrightarrow{i_1} \mathcal{A}_2 \xrightarrow{i_2} \mathcal{A}_3 \xrightarrow{i_3} \cdots$$

is called a sheaf exact sequence, if $\forall x \in M$,

$$A_0(x) \xrightarrow{i_0} A_1(x) \xrightarrow{i_1} A_2(x) \xrightarrow{i_2} A_3(x) \xrightarrow{i_3} \cdots$$

is a group (ring) exact sequence.

Short Sheaf Exact Sequence

We use 0 to represent zero sheaf,

Definition (Short sheaf exact sequence)

If $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are sheaves

$$0 \to \mathcal{A} \xrightarrow{i} \mathcal{B} \xrightarrow{j} \mathcal{C} \to 0$$

is called a short sheaf exact sequence.

- **1** $i: A \rightarrow B$ is injective;
- 2 $j: \mathcal{B} \to \mathcal{C}$ is surjective;
- **3** $j: \mathcal{B}/\mathcal{A} \to \mathcal{C}$ is a sheaf isomorphism.

Cech Cohomology

Cech Cochain

Definition (Cěch Cochain)

Suppose $\mathcal S$ is a sheaf on M, $\mathcal U=\{U_\alpha\}$ is an open covering of M. For $q\in\mathbb Z_{\geq 0}$, consider the mapping f, which maps any q+1 ordered open sets $U_0,\,U_1,\ldots,\,U_q$ in $\mathcal U$ to a section of $\mathcal S$ on $U_0\cap U_1\cap\ldots U_q$, $f(U_0,\,U_1,\ldots,\,U_q)$, such that

- When two open sets are exchanged,

$$f(\cdots, U_i, \cdots, U_j, \cdots) = -f(\cdots, U_j, \cdots, U_i, \cdots).$$

we call f a q-cochain in the open covering \mathcal{U} , the set of all q-cochains is denoted as $C^q(\mathcal{U},\mathcal{S})$, which is an Abel group under the addition, the so-called q dimensional cochain group. When q<0, $C^q(\mathcal{U},\mathcal{S})$ is zero.

Cech Cochain

Definition (Coboundary δ -operator)

Define homomorphism $\delta: C^q(\mathcal{U},\mathcal{S}) \to C^{q+1}(\mathcal{U},\mathcal{S})$ as follows:

$$\delta f(U_0, U_1, \cdots, U_{q+1}) = \sum_{i=0}^{q+1} (-1)^i f(U_0, U_1, \cdots, \hat{U}_i, \cdots, U_{q+1}),$$

where \hat{U}_i means the component U_i is removed, and the summation is the summation of sections restricted on $U_0 \cap U_1 \cap \cdots \cap U_{q+1}$.

Lemma

 δ has the property

$$\delta^2 = \delta \circ \delta = 0$$

Cech Cohomology

Definition (Cech Cohomology Group)

If $\delta f=0$, then f is called a q-closed cochain, the subgroup of all q-closed chains is denoted as $Z^q(\mathcal{U};\mathcal{S})$; if $f=\delta g$, then f is called a q-boundary cochain, the subgroup of all q-boundary cochains is denoted as $B(\mathcal{U};\mathcal{S})$. The quotient group

$$H^q(\mathcal{U};\mathcal{S}) = \frac{Z^q(\mathcal{U};\mathcal{S})}{B^q(\mathcal{U};\mathcal{S})}$$

is called the q degree Cech cohomology associated with the open cover \mathcal{U} and the coefficient group of the sections of the sheaf \mathcal{S} .

Cech Cohomology

Lemma

$$H^0(\mathcal{U};\mathcal{S}) = \Gamma(\mathcal{S}).$$

Proof.

By definition $H^0(\mathcal{U}; \mathcal{S}) = Z^0(\mathcal{U}; \mathcal{S})$. For $f \in Z^0(\mathcal{U}; \mathcal{S})$,

$$\begin{split} \delta f &= 0 \iff f(U_{\beta}) - f(U_{\alpha}) = \delta f(U_{\alpha}, U_{\beta}) = 0, \quad \forall U_{\alpha}, U_{\beta} \in \mathcal{U} \\ &\iff f(U_{\beta})|_{U_{\alpha} \cap U_{\beta}} = f(U_{\alpha})|_{U_{\beta} \cap U_{\alpha}} \\ &\iff \exists i(f) \in \Gamma(\mathcal{S}), \ s.t. \ i(f)|_{U_{\alpha}} = f(U_{\alpha}), \quad \forall U_{\alpha} \in \mathcal{U}. \end{split}$$

Therefore $i: Z^0(\mathcal{U}; \mathcal{S}) \to \Gamma(\mathcal{S})$ is isomorphic.

Sheaf Homomorphism

Suppose $\varphi: \mathcal{S} \to \mathcal{T}$ is a sheaf homomorphism, it induces homomorphism between cochain groups $\varphi^*: C^q(\mathcal{U}; \mathcal{S}) \to C^q(\mathcal{U}; \mathcal{T})$:

$$(\varphi^*f)(U_0,U_1,\cdots,U_q)=\varphi\circ f(U_0,U_1,\cdots,U_q).$$

It is easy to show $\delta \varphi^* f = \varphi^* \delta f$, therefore φ induces the homomorphism between cohomology groups

$$\varphi^*: H^q(\mathcal{U}; \mathcal{S}) \to H^q(\mathcal{U}; \mathcal{T}).$$

Subdivision - Cech Cohomology

If \mathcal{U}, \mathcal{V} are two open coverings, and \mathcal{U} is a subdivision of \mathcal{V} , namely there is a subdivision mapping: $\tau: \mathcal{U} \to \mathcal{V}$, such that $U_{\alpha} \subset \tau(U_{\alpha})$. Then τ induces a cochain group homomorphism: $\tau^*: C^q(\mathcal{V}; \mathcal{S}) \to C^q(\mathcal{U}; \mathcal{S})$

$$(\tau^* f)(U_0, U_1, \cdots, U_q) = f(\tau(U_0), \tau(U_1), \cdots, \tau(U_q)),$$

 au^* and δ are exchangable, hence induces the group homomorphism:

$$\tau^*: H^q(\mathcal{V}; \mathcal{S}) \to H^q(\mathcal{U}; \mathcal{S}).$$

Open Cover Independent Cech Cohomology

Definition (*q*-th degree Cech cohomology group)

Suppose S is a sheaf on M, consider all possible open covers of M, let

$$H^q(M; S) = \coprod_{\mathcal{U}} H^q(\mathcal{U}; S) / \sim,$$

where equivalence relation \sim is defined as follows:

 $[f] \in H^q(\mathcal{U}; \mathcal{S}) \sim [g] \in H^q(\mathcal{V}; \mathcal{S})$, if and only if there exists a common subdivision \mathcal{W} of both \mathcal{U} and \mathcal{V} , such that $\tau_1^*[f] = \tau_2^*[g]$, where $\tau_1: \mathcal{W} \to \mathcal{U}$ and $\tau_2: \mathcal{W} \to \mathcal{V}$ are the subdivision mappings. $H^q(M, \mathcal{S})$ is called the q-th degree Cech cohomology group with coefficients in the sheaf \mathcal{S} .

Cech Cohomology Group

- $H^0(M; S) = \Gamma(S)$;
- the quotient map $i: H^1(\mathcal{U}; \mathcal{S}) \to H^1(M; \mathcal{S})$ is injective;
- If $H^1(M; \mathcal{R}) = 0$, then the short exact sequence

$$0 \to \mathcal{R} \xrightarrow{i} \mathcal{S} \xrightarrow{j} \mathcal{T} \to 0$$

induces the short exact sequence of the Abelian groups

$$0 \to \Gamma(\mathcal{R}) \xrightarrow{i^*} \Gamma(\mathcal{S}) \xrightarrow{j^*} \Gamma(\mathcal{T}) \to 0$$

Sheaf Cohomology

Problem

Suppose f is a harmonic function defined on a Riemann surface M, whether there is a holomorphic function h, such that Re(h) = f?

Select an open cover $\mathcal{U}=\{U_{\alpha}\}$. On each open set U_{α} , there is a holomorphic function h_{α} , such that $Re(h_{\alpha})=f|_{U_{\alpha}}$. On $U_{\alpha}\cap U_{\beta}$, $Re(h_{\beta}-h_{\alpha})=0$, therefore $h_{\beta}-h_{\alpha}$ is local constant functions, which is a 1-cochain of the constant sheaf \mathbb{C} , denoted as i(f). Clearly, i(f) is a closed cochain. If $H^1(M,\mathbb{C})=0$, then there is a 0-cochain g, $i(f)=\delta g$, on $U_{\alpha}\cap U_{\beta}$, we have

$$h_{\beta}-h_{\alpha}=g_{\beta}-g_{\alpha} \implies h_{\beta}-g_{\beta}=h_{\alpha}-g_{\alpha},$$

therefore there is a holomorphic function h defined on M, such that $h|_{U_{\alpha}} = h_{\alpha} - g_{\alpha}$. Therefore Re(h) - f is a local constant harmonic function on M, after minusing constants, we can assume Re(h) = f.

Mittag-Leffler Problem

Problem (Mittag-Leffler)

Given a set of discrete points $\{p_i\} \subset M$, a finite sum $f_i = \sum_{j \geq 1} a_j z^{-j}$ in the neighborhood of each p_i . Find a meromorphic function f, such that $f - f_i$ is holomorphic in the neighborhood of p_i .

Select an open cover $\mathcal{U}=\{U_{\alpha}\}$, on U_{α} there is a meromorphic function h_{α} , such that when $p_{i}\in U_{\alpha}$, $h_{\alpha}-f_{i}$ is holomorphic in the neighborhood of p_{i} . Therefore, on $U_{\alpha}\cap U_{\beta}$, $h_{\beta\alpha}=h_{\beta}-h_{\alpha}$ is holomorphic, $h_{\beta\alpha}\in\mathcal{O}(U_{\alpha}\cap U_{\beta})$ is a closed 1-cochain. If $H^{1}(M,\mathcal{O})=0$, there are holomorphic functions $\{g_{\alpha}\}$, such that $h_{\alpha\beta}=g_{\beta}-g_{\alpha}$. Hence

$$h_{\alpha\beta} = h_{\beta} - h_{\alpha} = g_{\beta} - g_{\alpha} \implies h_{\beta} - g_{\beta} = h_{\alpha} - g_{\alpha}$$

there is a globally defined meromorphic function h, $h|_{U_{\alpha}} = h_{\alpha} - g_{\alpha}$.

Trivial Line Bundle

Problem (Trivial Line Bundle)

When is a holomorphic line bundle isomorphic to a trivial bundle?

Suppose L is a holomorphic line bundle over M, $\{U_{\alpha}\}$ is a local trivialization open cover, $f_{\beta\alpha}$ the transit functions. We treat $f_{\beta\alpha}$ as the local section on $U_{\alpha} \cap U_{\beta}$ of the sheaf O^* , satisfying the cocycle condition,

$$f_{\beta\alpha} \cdot f_{\alpha\gamma} \cdot f_{\gamma\beta} = 1.$$

So $\{f_{\beta\alpha}\}$ is a closed 1-cochain. If $H^1(M; \mathcal{O}^*) = 0$, then there is non-zero holomorphic functions $\{f_{\alpha}\}$ on U_{α} , such that $f_{\beta\alpha} = f_{\alpha}/f_{\beta}$, therefore L is trivial.

Short-Long Exact Sequence

short-long exact sequence

Theorem (short-long exact sequence)

Given a short exact sequence of sheaves $0 \to \mathcal{R} \xrightarrow{i} \mathcal{S} \xrightarrow{J} \mathcal{T} \to 0$, there is a connecting homomorphism $\delta_q^*: H^q(M; \mathcal{T}) \to H^{q+1}(M; \mathcal{R})$, such that the following is a long exact sequence of Abelian groups

$$0 \to H^{0}(M; \mathcal{R}) \xrightarrow{i^{*}} H^{0}(M; \mathcal{S}) \xrightarrow{j^{*}} H^{0}(M; \mathcal{T})$$

$$\xrightarrow{\delta_{0}^{*}} H^{1}(M; \mathcal{R}) \xrightarrow{i^{*}} H^{1}(M; \mathcal{S}) \xrightarrow{j^{*}} H^{1}(M; \mathcal{T})$$

$$\xrightarrow{\delta_{1}^{*}} H^{2}(M; \mathcal{R}) \xrightarrow{i^{*}} H^{2}(M; \mathcal{S}) \xrightarrow{j^{*}} H^{2}(M; \mathcal{T})$$

$$\dots$$

$$\xrightarrow{\delta_{p-1}^{*}} H^{p}(M; \mathcal{R}) \xrightarrow{i^{*}} H^{p}(M; \mathcal{S}) \xrightarrow{j^{*}} H^{p}(M; \mathcal{T})$$

short-long exact sequence

Namely

$$0 \to \Gamma(\mathcal{R}) \xrightarrow{i^*} \Gamma(\mathcal{S}) \xrightarrow{j^*} \Gamma(\mathcal{T})$$

$$\xrightarrow{\delta_0^*} H^1(M; \mathcal{R}) \xrightarrow{i^*} H^1(M; \mathcal{S}) \xrightarrow{j^*} H^1(M; \mathcal{T})$$

$$\xrightarrow{\delta^*} H^2(M; \mathcal{R}) \xrightarrow{i^*} H^2(M; \mathcal{S}) \xrightarrow{j^*} H^2(M; \mathcal{T})$$

$$\cdots$$

$$\xrightarrow{\delta_{p-1}^*} H^p(M; \mathcal{R}) \xrightarrow{i^*} H^p(M; \mathcal{S}) \xrightarrow{j^*} H^p(M; \mathcal{T})$$

Most powerful theorem in homology algebra.

Chase on the graph

Lemma (Connecting Homomorphism)

Given a short exact sequence of sheaves $0 \to \mathcal{R} \xrightarrow{i} \mathcal{S} \xrightarrow{j} \mathcal{T} \to 0$, there is a connecting homomorphism $\delta^* : H^p(M; \mathcal{T}) \to H^{p+1}(M; \mathcal{R})$.

The proof is based on the classical method in homological algebra chase on the graph.

Figure: Step 0: Communative diagram, the columns are exact sequences.

Figure: Step 1: Choose $t \in Z^p(M, T)$, since $j^* : C^p(M, S) \to C^p(M, T)$ is surjective, $\exists s \in C^p(M, S)$, such that $j^*(s) = t$.

Figure: Step 2: $\delta \circ j^*(s) = \delta(t) = 0$. Because the diagram commutes, $j^* \circ \delta(s) = 0$.

Figure: Step 3: Because $j^* \circ \delta(s) = 0$, $\delta(s) \in \text{Ker}J^*$. Since each column is a short exact sequence, $\text{Ker}j^* = \text{Img}i^*$, therefore $\exists r \in C^{p+1}(M,R)$, such that $i^*(r) = \delta(s)$.

Figure: Step 4: Because $\delta \circ i^*(r) = \delta \circ \delta(s) = 0$, the diagram commutes, $i^*\delta(r) = 0$. Because the 4-th column is exact, i^* is injective, hence $\delta(r) = 0$, $r \in Z^{p+1}(M,R)$.

Figure: Finally, we obtain the connecting homomorphis $\delta^*: Z^p(M, T) \to Z^{p+1}(M, R), \ \delta^*(t) = r.$

Lemma

The following sequences are exact:

$$H^{p}(M,T) \xrightarrow{\delta^{*}} H^{p+1}(M,R) \xrightarrow{i^{*}} H^{p+1}(M,S)$$

 $H^{p}(M,S) \xrightarrow{j^{*}} H^{p}(M,T) \xrightarrow{\delta^{*}} H^{p+1}(M,R)$

We want to show $H^p(M,T) \xrightarrow{\delta^*} H^{p+1}(M,R) \xrightarrow{i^*} H^{p+1}(M,S)$ is exact, namely

- extstyle ext

Since $\delta^*(t) = r$, $i^*(r) = \delta(s)$, $\delta(s) = 0$ in $H^{p+1}(M, S)$, therefore $i^* \circ \delta^*(t) = 0$, $\operatorname{Img} \delta^* \subset \operatorname{Ker} i^*$.

Show $H^p(M,T) \xrightarrow{\delta^*} H^{p+1}(M,R) \xrightarrow{i^*} H^{p+1}(M,S)$ is exact.

Figure: Step 1. choose $r \in \text{Ker}i^*$, namely $r \in Z^{p+1}(M, R)$, $i^*(r) = 0$ in $H^{p+1}(M, S)$, hence $\exists s \in C^p(M, S)$, such that $i^*(r) = \delta(s)$.

Next we show $H^p(M,T) \xrightarrow{\delta^*} H^{p+1}(M,R) \xrightarrow{i^*} H^{p+1}(M,S)$ is exact.

Figure: Step 2. Each column is exact, hence $j^* \circ i^*(r) = j^*(\delta(s)) = 0$. Because the diagram commutes, $j^* \circ \delta(s) = 0$ implies $\delta \circ j^*(s) = 0$, hence $t = j^*(s) \in Z^p(M,T)$. By definition, $\delta^*(t) = r$, $r \in \operatorname{Img} \delta^*$, this shows $\operatorname{Ker} i^* \subset \operatorname{Img} \delta^*$. Hence $\operatorname{Ker} i^* = \operatorname{Img} \delta^*$.

We want to show $H^p(M,S) \xrightarrow{j^*} H^p(M,T) \xrightarrow{\delta^*} H^{p+1}(M,R)$ is exact, namely

- $\bullet \operatorname{Img} j^* \subset \operatorname{Ker} \delta^*$
- ② $\operatorname{Ker} \delta^* \subset \operatorname{Img} j^*$

Show $H^p(M,S) \xrightarrow{j^*} H^p(M,T) \xrightarrow{\delta^*} H^{p+1}(M,R)$ is exact,

Figure: Step 1. Choose any $s \in Z^p(M,S)$, $t = j^*(s)$, $r = \delta^*(t)$, $\delta(s) = 0 \implies j^* \circ \delta(s) = 0 \implies \delta \circ j^*(s) = 0 \implies \delta(t) = 0 \implies t \in Z^p(M,T)$ $\delta(s) = 0 \implies i^*(r) = 0 \implies r = 0 \implies \delta^*(t) = 0 \implies t \in \operatorname{Ker}\delta^* \implies \operatorname{Img}j^* \subset \operatorname{Ker}\delta^*$

48 / 50

Show $H^p(M,S) \xrightarrow{j^*} H^p(M,T) \xrightarrow{\delta^*} H^{p+1}(M,R)$ is exact,

Figure: Step 2. Choose $0 = r \in Z^{p+1}(M, R)$, $r = 0 \implies i^*(r) = 0 \implies \delta(s) = 0 \implies j^* \circ \delta(s) = 0 \implies \delta \circ j^*(s) = 0$ $\delta(s) = 0 \implies s \in Z^p(M, S), t = j^*(s) \in Z^p(M, T) \implies \operatorname{Ker} \delta^* \subset \operatorname{Img} j^*$

Connecting Homomorphism δ^*

Lemma

Given a short exact sequence of sheaves $0 \to \mathcal{R} \xrightarrow{i} \mathcal{S} \xrightarrow{J} \mathcal{T} \to 0$, there is a connecting homomorphism $\delta^* : H^0(M; \mathcal{T}) \to H^1(M; \mathcal{R})$.

Proof.

$$f \in \Gamma(\mathcal{T}) \implies \exists g_{\alpha} \in \Gamma(U_{\alpha}, \mathcal{S}), s.t. \ j^*g_{\alpha} = f \quad j^* \text{surjective} \ \implies j^*(g_{\beta} - g_{\alpha}) = f|_{U_{\beta}} - f|_{U_{\alpha}} = 0, \text{ on } U_{\alpha} \cap U_{\beta} \ (g_{\beta} - g_{\alpha}) \in \text{Ker } j^* \implies g_{\alpha\beta} \in \Gamma(U_{\alpha} \cap U_{\beta}, \mathbb{R}), i^*g_{\alpha\beta} = (g_{\beta} - g_{\alpha}) \ \text{since Img } i^* = \text{Ker } j^* \ i^*g_{\alpha\beta} + i^*g_{\beta\gamma} + i^*g_{\gamma\alpha} = 0 \implies g_{\alpha\beta} + g_{\beta\gamma} + g_{\gamma\alpha} = 0 \quad i^* \text{ injective} \ \{g_{\alpha\beta}\} \text{ closed } \implies [\{g_{\alpha\beta}\}] \in H^1(M; \mathcal{R}) \ \delta^* : [f] \to [\{g_{\alpha\beta}\}], H^0(M; \mathcal{T}) \to H^1(M; \mathcal{R}).$$