Metodi Matematici per l'Informatica - Dispensa 9 (a.a. 23/24, I canale)

Docente: Lorenzo Carlucci (lorenzo.carlucci@uniroma1.it)

1 Caratterizzazioni di iniezioni, suriezioni e biiezioni

Proposizione 1. Se $f: X \to Y$ è iniettiva allora esiste $g: Y \to X$ tale che $(g \circ f): X \to X$ è l'identità su X, ossia per ogni $x \in X$

$$(g \circ f)(x) = x.$$

Dimostrazione. Sia $f: X \to Y$ iniettiva. Dato che vogliamo concludere l'esistenza di una funzione g con certe proprietà conviene ragionare in modo diretta, definendo una g desiderata. Dobbiamo assegnare un valore g(y) a ogni elemento g di g. Distinguiamo due casi.

Caso 1. y è nell'immagine di X via f (in simboli: $y \in f(X)$). In questo caso, dato che f è iniettiva siamo sicuri che esiste un unico $x \in X$ tale che f(x) = y. Definiamo g(y) come questo unico x.

Caso 2. y non è nell'immagine di X via f. In questo caso osserviamo che possiamo definire g(y) come un arbitrario elemento di X, perché il comportamento di g su $Y \setminus f(X)$ non può contribuire a violare la proprietà desiderata di g. Vogliamo infatti che per ogni $x \in X$ si abbia g(f(x)) = x, dunque ci interessa il comportamento di g solo su elementi di forma f(x) per $x \in X$, ossia su elementi di f(X).

Verifichiamo che la definizione di g soddisfa il vincolo desiderato. Innanzitutto si tratta di una funzione (a ogni elemento di Y viene associato uno e un solo elemento di X). In secondo luogo abbiamo g(f(x)) = x per definizione di g.

QED

Proposizione 2. Se esiste $g: Y \to X$ tale che $(g \circ f): X \to X$ è l'identità su X, allora $f: X \to Y$ è iniettiva.

Dimostrazione. Sia g come da ipotesi. Dato che di f non sappiamo nulla, conviene ragionare per assurdo. Assumiamo dunque la negazione della nostra tesi. La tesi è che f è iniettiva dunque assumiamo f non iniettiva. Questo significa che esistono $x, x' \in X$ distinti e tali che f(x) = f(x'). Applichiamo g a f(x) e f(x'):

$$g(f(x)) = (g \circ f)(x) = x$$

perché per ipotesi $(g \circ f)$ è l'identità su X.

$$q(f(x')) = (q \circ f)(x') = x'$$

perché per ipotesi $(g \circ f)$ è l'identità su X. Ma se f(x) = f(x'), necessariamente g(f(x)) = g(f(x')) perché g è una funzione! Dunque x = x', il che contraddice l'ipotesi per assurdo.

QED

Abbiamo ottenuto un *caratterizzazione* della nozione di funzione iniettiva in termini di composizione e identità:

Corollario 1 (Caratterizzazione dell'iniettività). $f: X \to Y$ è iniettiva se e solo se esiste $g: Y \to X$ tale che $(g \circ f): X \to X$ è l'identità su X.

Consideriamo ora la suriettività.

Proposizione 3. Se $f: X \to Y$ è suriettiva allora esiste $g: Y \to X$ tale che $(f \circ g): Y \to Y$ è l'identità su Y, ossia per ogni $y \in Y$

$$(f \circ g)(y) = y.$$

Dimostrazione. Sia $f: X \to Y$ suriettiva. Definiamo una $g: Y \to X$ che soddisfa il vincolo richiesto. Sia $y \in Y$. Vogliamo assegnare a y una immagine g(y) in X in modo tale che applicando f a questa immagine otteniamo di nuovo y. Basta scegliere un $x \in X$ che viene mandato da f in y. Dato che f è suriettiva siamo sicuri che almeno un tale x esiste. Possono esisterne però più di uno (questo accade se f non è iniettiva). Si osserva facilmente che per soddisfare il vincolo non è importante quale di questi io scelga: l'importante è che la sua immagine via f sia g. Definisco dunque $g: Y \to X$ ponendo g(g) = g un g tale che g tale g tale che g tale g tale che g tale che g tale g

QED

Proposizione 4. Se esiste $g: Y \to X$ tale che $(f \circ g): Y \to Y$ è l'identità su Y allora $f: X \to Y$ è suriettiva.

Dimostrazione. Supponiamo che esiste $g: Y \to X$ come da ipotesi. Supponiamo per assurdo che f non sia suriettiva. Per definizione di suriettività questo significa che esiste almeno un elemento del codominio di f che non è immagine di alcun elemento del dominio di f; ossia: esiste $y \in Y$ tale che per nessun $x \in X$ si ha f(x) = y. Sia y un tale elemento. Applicando ad esso la funzione g otteniamo un elemento $g(y) \in X$. Applicando ad esso la funzione f otteniamo f(g(y)) in f. Per ipotesi su f questo elemento deve coincidere con f: f: Contraddizione.

QED

Abbiamo così ottenuto una caratterizzazione della suriettività in termini di composizione e identità.

Corollario 2 (Caratterizzazione della suriettività). $f: X \to Y$ è suriettiva se e soltanto se esiste esiste $g: Y \to X$ tale che $(f \circ g): Y \to Y$ è l'identità su Y.

Dato che una funzione è biiettiva se e solo se è sia suriettiva che iniettiva otteniamo il corollario seguente:

Corollario 3 (Caratterizzazione della biiettività). $f: X \to Y$ è biiettiva se e solo se

- 1. Esiste $g: Y \to X$ tale che $(f \circ g): Y \to Y$ è l'identità su Y, e
- 2. Esiste $h: Y \to X$ tale che $(h \circ f): X \to X$ è l'identità su X.

Che relazione corre tra g e h nel corollario qui sopra? Dire che esiste g e che esiste h non implica che siano la stessa funzione.

Proposizione 5. Sia $f: X \to Y$ biiettiva e sia $g: Y \to X$ tale che $(g \circ f): X \to X$ è l'identità su X. Allora $(f \circ g): Y \to Y$ è l'identità su Y.

Dimostrazione. Ragioniamo per assurdo: supponiamo che $(f \circ g) : Y \to Y$ non sia l'identità su Y. Questo significa che per almeno un $y \in Y$ vale

$$(f \circ g)(y) \neq y$$
.

f è biiettiva dunque in particolare suriettiva, per cui y è immagine di un qualche $x \in X$ via f, ossia esiste $x \in X$ tale che f(x) = y. Sostituiamo f(x) a y nella disequazione di sopra:

$$(f \circ g)(f(x)) \neq f(x),$$

ossia

$$f(g(f(x))) \neq f(x)$$
.

Ma allora, dato che f è una funzione, necessariamente deve valere

$$g(f(x)) \neq x$$

il che contraddice l'ipotesi che $(g \circ f)$ è l'identità su X.

In modo perfettamente analogo possiamo dimostrare che

Proposizione 6. Sia $f: X \to Y$ biiettiva e sia $g: Y \to X$ tale che $(f \circ g): Y \to Y$ è l'identità su Y. Allora $(g \circ f): X \to X$ è l'identità su X.

Mettendo insieme le informazioni di sopra abbiamo che se $f: X \to Y$ è biiettiva allora esiste una funzione $g: Y \to X$ tale che valgono entrambe le condizioni seguenti:

- 1. $(g \circ f)$ è l'identità su X, e
- 2. $(f \circ g)$ è l'identità su Y.

Sappiamo già che vale anche il viceversa. Abbiamo dunque la seguente caratterizzazione della biiettività:

Corollario 4 (Caratterizzazione della biiettività). $f: X \to Y$ è biiettiva se e solo se esiste $g: Y \to X$ tale che

- 1. $(g \circ f)$ è l'identità su X, e
- 2. $(f \circ g)$ è l'identità su Y.

Esempio 1. Sia $N = \{0, 1, 2, 3, ...\}$ l'insieme dei numeri naturali e $P = \{0, 2, 4, 6, ...\}$ l'insieme dei pari. Consideriamo le seguenti funzioni:

$$g: \mathbf{N} \to P; g(n) = 2n,$$

$$h: P \to \mathbf{N}; h(n) = \frac{n}{2}.$$

Consideriamo le loro composte:

$$(g \circ h): P \to P$$

, e

$$(h \circ q) : \mathbf{N} \to \mathbf{N}.$$

Come si comportano? Per ogni $n \in P$:

$$(g \circ h)(n) = g(h(n)) = g(\frac{n}{2}) = 2 \times \frac{n}{2} = n,$$

dunque $(g \circ h)$ è l'identità su P.

Per ogni $n \in \mathbb{N}$:

$$(h \circ g)(n) = h(g(n)) = h(2n) = \frac{2n}{2} = n,$$

dunque $(h \circ g)$ è l'identità su \mathbf{N} .

Per quanto dimostrato sopra, sappiamo che

 $(h \circ g)$ è l'identità su **N** implica che g è iniettiva ,

mentre

 $(g \circ h)$ è l'identità su P implica che g è suriettiva .

Dunque possiamo concludere che g è una biiezione tra \mathbf{N} e P.

2 Funzione inversa, immagine inversa

Data una funzione $f: I \to O$ in alcune situazione siamo interessati a risalire da un elemento del codominio O a un elemento del dominio di cui esso è immagine. Se $x \in I$ e $y \in O$ sono tali che f(x) = y abbiamo già chiamato y immagine di x; chiamiamo x pre-immagine di y.

In generale un elemento del codominio non ha necessariamente una unica pre-immagine. Anzi: possono esistere elementi del codominio senza alcuna pre-immagine ed elementi del codominio con più di una pre-immagine. Il primo caso si ha per $y \in O$ che non sono in f(I).

2.1 Funzioni inverse

La nozione di funzione inversa è piuttosto naturale nella pratica matematica: sappiamo cosa vuol dire che $x \mapsto x-1$ è l'inversa di $x \mapsto x-1$; o che $n \mapsto \frac{n}{2}$ è l'inversa di $n \mapsto 2n$. In generale abbiamo la seguente definizione.

Definizione 1 (Funzione inversa). Sia $f: X \to Y$ una funzione. Una funzione $g: Y \to X$ si dice l'inversa di f sse

- 1. $(g \circ f)$ è l'identità su X, e
- 2. $(f \circ g) \ \dot{e} \ l'identit \dot{a} \ su \ Y$.

La funzione inversa di f si denota con f^{-1} .

Sappiamo già che l'esistenza di una g come nella definizione qui sopra equivale alla biiettività di f; dunque una tale g non esiste per f arbitrarie.

Definizione 2 (Funzione invertibile). Una funzione $f: X \to Y$ è invertibile se esiste la funzione inversa f^{-1} .

Quanto visto sopra si riassume nel nuovo linguaggio così:

Proposizione 7 (Invertibilità). Una funzione $f: X \to Y$ è invertibile se e solo se è biiettiva.

2.2 Immagini inverse di funzioni

Risulta in molti casi naturale considerare l'insieme delle pre-immagini di un sottinsieme del dominio di una funzione.

Definizione 3 (Immagine inversa). Sia $f: X \to Y$ e sia $A \subseteq Y$. Definiamo $f^{-1}(A)$ come l'insieme che contiene tutte e sole le pre-immagini via f di elementi di A, in simboli

$$f^{-1}(A) = \{ x \in X : f(x) \in A \}.$$

Attenzione: Il simbolo f^{-1} non indica necessariamente una funzione. Si tratta di una associazione tra sottinsiemi del codominio O e sottinsiemi del dominio I ma non si tratta in generale di una funzione da O a I. Quando f^{-1} esiste come funzione (i.e. quando f è biiettiva) la notazione introdotta $f^{-1}(A)$ per la pre-immagine di A sotto f coincide con la notazione già introdotta $f^{-1}(A)$ come immagine dell'insieme A sotto la funzione f^{-1} .

Esempio 2. Consideriamo la funzione $f: \{1, 2, 3, 4, 5\} \rightarrow \{a, b, c\}$ definita come segue:

$$f(1) = a, f(2) = a, f(3) = a, f(4) = b, f(5) = b.$$

Abbiamo che $f^{-1}(\{a,b,c\}) = \{1,2,3,4,5\}$. L'elemento a ha 3 pre-immagini, l'elemento b ha 2 pre-immagini, mentre l'elemento c non ha alcuna pre-immagine. Non abbiamo un modo univco per leggere f all'inverso, associando uno e un unico elemento di $\{1,2,3,4,5\}$ a ogni elemento di $\{a,b,c\}$.

Osservazione 1. Data una funzione $f:I\to O$ possiamo senz'altro definire sempre una funzione preimmagine di tipo:

$$\pi: O \to \mathcal{P}(I)$$

associando a ogni elemento del codominio di f l'insieme delle sue pre-immagini. Si noti che in questo caso è ammesso associare l'insieme vuoto come insieme delle pre-immagini. Questo accade ogni volta che consideriamo un elemento del codominio che non possiede pre-immagini.

Esempio 3. Nel caso dell'esempio precedente, la funzione pre-immagini è di tipo:

$$\pi: \{a, b, c\} \to \mathcal{P}(\{1, 2, 3, 4, 5\}),$$

e si comporta così:

$$\pi(a) = \{1, 2, 3\}; \pi(b) = \{4, 5\}; \pi(c) = \emptyset.$$

La seguente proposizione mostra come $f^{-1}(A)$ interagisce con le operazioni insiemistiche di base.

Proposizione 8. Sia $f: X \to Y$ e siano $A, B \subseteq X$. Allora:

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B),$$

e

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B),$$

Dimostrazione. Dimostriamo l'inclusione

$$f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B).$$

Sia x nel membro a sinistra, allora $f(x) \in A \cap B$ dunque $f(x) \in A$ e $f(x) \in B$. Ma $f(x) \in A$ implica $x \in f^{-1}(A)$ e $f(x) \in B$ implica $x \in f^{-1}(B)$. Dunque x è anche nel membro a destra.

Dimostriamo l'inclusione inversa

$$f^{-1}(A \cap B) \supseteq f^{-1}(A) \cap f^{-1}(B).$$

Sia x nel membro a destra: allora $f(x) \in A$ e $f(x) \in B$. Dunque $f(x) \in A \cap B$. Dunque x è anche nel membro a sinistra.

La dimostrazione dell'identità relativa all'unione è lasciata al lettore.

QED