

SVD para clasificación de imágenes

Teoría de Análisis Numérico

Daniel Chacón, Luis Rubiano, Martín Cárdenas Octubre 21 de 2022

Agenda

- 1) Motivación
- 2) Meta
- 3) Base de Datos
- 4) Algoritmo de Clasificación
- 5) Aproximación de rango k mediante SVD
- 6) Experimentos
- 7) Bibliografía

Motivación

- La factorización en SVD ha tenido resultados prometedores en tareas tales como reducir el número de parámetros de las redes neuronales.
- Ha permitido reducir uno de los problemas más comunes en Machine Learning: el Overfitting.
- También, se han incorporado capas a las redes convolucionales, en donde se descomponen matrices de covarianza de los datos por medio del SVD: facilitando la clasificación de imágenes
- i) Mejorando las métricas de *exactitud*
- ii) Reduciendo el tiempo de cómputo.

¿Qué es el Overfitting?

 El modelo no es capaz de generalizar adecuadamente a datos con los que no fue entrenado.

Meta del proyecto

 Estudiar el espacio de representación de imágenes mediante sus descomposiciones en valores singulares (SVD) para optimizar algoritmos de clasificación y prevenir el overfitting.

Datos

MNIST dataset

- Modified National Institute of Standards and Technology database por sus siglas en inglés.
- Creada en 1998. Consiste de dígitos escritos a mano por estudiantes y trabajadores del censo de Estados Unidos.

Each datapoint is a 8x8 image of a digit.

Classes	10
Samples per class	~180
Samples total	1797
Dimensionality	64

Algoritmo de clasificación

Support Vector Machine (SVM)

En Machine Learning, el SVM es un algoritmo que analiza los datos para la clasificación.

Tiene como objetivo encontrar un hiperplano en un espacio Ndimensional que de forma distinta clasifica cada punto de los datos

El Hiperplano óptimo es el de mayor margen (distancia)

Algoritmo de clasificación

Support Vector Machine (SVM)

Fórmula objetivo

Minimizar
$$\Phi(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2$$

Sujeto a: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

Minimizar Φ(**w**) =
$$\frac{1}{2}$$
 w^T**w** + $C\sum_{i} \xi_{i}$
Sujeto a: y_{i} (**w**^T ϕ (**x**_i)+b) $\geq 1 - \xi_{i}$

Aproximación de rango *k* mediante SVD

 La aproximación de rango k mediante SVD es la mejor aproximación de rango k a la matriz A.

$$||A - A_k||_{Fb} = \min\{||A - B||_{Fb} : \operatorname{rank}(B) \le k\}$$

Experimentos Línea Base

Confusion Matrix

A, U, V*

Experimentos	F1-score	Precision	Tiempo (segundos)
Línea base	0.93	0.93	0.155
Experimento 1	0.93	0.94	0.238

dataSVD[i] = np.concatenate((data[i],u.reshape(64,),vh.reshape(64,)), axis=0)

Experimento 6 Experimento 6

Confusion Matrix

UΣ, V*Σ (por error)

Experimentos	F1-score	Precision	Tiempo (segundos)
Línea base	0.93	0.93	0.155
Experimento 1	0.93	0.94	0.238

Experimento 6	0.56	0.57	0.267
---------------	------	------	-------

dataSVD6[i] = np.concatenate((u@s,vh@s), axis=0)

Confusion Matrix

$U\Sigma$, ΣV^*

Experimentos	F1-score	Precision	Tiempo (segundos)
Línea base	0.93	0.93	0.155
Experimento 1	0.93	0.94	0.238
Experimento 2	0.68	0.69	0.217

Experimento 6	0.56	0.57	0.267

dataSVD2[i] = np.concatenate((u@s,s@vh), axis=0)

Confusion Matrix

U, V*

Experimentos	F1-score	Precision	Tiempo (segundos)
Línea base	0.93	0.93	0.155
Experimento 1	0.93	0.94	0.238
Experimento 2	0.68	0.69	0.217
Experimento 3	0.1	0.01	0.412
			2
			6
Experimento 6	0.56	0.57	0.267

deta CVP2 [:]

dataSVD3[i] = np.concatenate((u.reshape(64,),vh.reshape(64,)), axis=0)

Σ, U, V*

Experimentos	F1-score	Precision	Tiempo (segundos)
Línea base	0.93	0.93	0.155
Experimento 1	0.93	0.94	0.238
Experimento 2	0.68	0.69	0.217
Experimento 3	0.1	0.01	0.412
Experimento 4	0.24	0.15	0.502
Experimento 6	0.56	0.57	0.267

dataSVD4[i] = np.concatenate((s,u.reshape(64,),vh.reshape(64,)), axis=0)

Experimento 5 Experimento 5

 \sum

Experimentos	F1-score	Precision	Tiempo (segundos)
Línea base	0.93	0.93	0.155
Experimento 1	0.93	0.94	0.238
Experimento 2	0.68	0.69	0.217
Experimento 3	0.1	0.01	0.412
Experimento 4	0.24	0.15	0.502
Experimento 5	0.24	0.14	0.266
Experimento 6	0.56	0.57	0.267

dataSVD5[i] = s

A_3

Experimentos	F1-score	Precision	Tiempo (segundos)
Rank 8	0.93	0.93	0.186
Rank 3	0.92	0.93	0.172

```
u, s, vh = np.linalg.svd(image, full_matrices=True)
sn = np.diag(s[0:n])
dataSVD7[i] = (u[:,:n]@sn@vh[:n,:]).reshape(64,)
```


Experimentos	F1-score	Precision	Tiempo (segundos)
Rank 8	0.93	0.93	0.186
Rank 5	0.93	0.94	0.175
Rank 3	0.92	0.93	0.172

```
u, s, vh = np.linalg.svd(image, full_matrices=True)
sn = np.diag(s[0:n])
dataSVD7[i] = (u[:,:n]@sn@vh[:n,:]).reshape(64,)
```


Bibliografía

- 1. Wang, W., Dang, Z., Hu, Y., Fua, P., & Salzmann, M. (2021). Robust differentiable SVD. IEEE transactions on pattern analysis and machine intelligence.
- 2. Yu, B., Xu, Z. B., & Li, C. H. (2008). Latent semantic analysis for text categorization using neural network. Knowledge-Based Systems, 21(8), 900-904.
- 3. Li, C. H., & Park, S. C. (2009). An efficient document classification model using an improved back propagation neural network and singular value decomposition. Expert Systems with Applications, 36(2), 3208-3215.
- 4. Mateen, M., Wen, J., Song, S., & Huang, Z. (2018). Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry, 11(1), 1.
- 5. Wu, C., Berry, M., Shivakumar, S., & McLarty, J. (1995). Neural networks for full-scale protein sequence classification: Sequence encoding with singular value decomposition. Machine Learning, 21(1), 177-193.
- 6. Xue, J., Li, J., & Gong, Y. (2013, August). Restructuring of deep neural network acoustic models with singular value decomposition. In Interspace (pp. 2365-2369).
- 7. Xue, J., Li, J., Yu, D., Seltzer, M., & Gong, Y. (2014, May). Singular value decomposition based low-footprint speaker adaptation and personalization for deep neural network. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6359-6363). IEEE.
- 8. Wang, Y., & Zhu, L. (2017, May). Research and implementation of SVD in machine learning. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (pp. 471-475). IEEE.
- 9. Narwaria, M., & Lin, W. (2011). SVD-based quality metric for image and video using machine learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 347-364.
- 10. Shnayderman, A., Gusev, A., & Eskicioglu, A. M. (2006). An SVD-based grayscale image quality measure for local and global assessment. IEEE transactions on Image Processing, 15(2), 422-429

