

Distributing Candies

Леля Конг е приготвила n кутии с бонбони за учениците от близкото училище. Кутиите са номерирани с числата от 0 до n-1 и в началото са празни. Кутия с номер i ($0 \le i \le n-1$) има капацитет от c[i] бонбони.

Леля Конг прекарва q дни за подготвяне на кутиите. За ден j ($0 \le j \le q-1$), тя извършва действие, характеризирано от три цели числа $l[j], \ r[j]$ и v[j], където $0 \le l[j] \le r[j] \le n-1$ и $v[j] \ne 0$. За всяка кутия с номер k, удовлетворяващ $l[j] \le k \le r[j]$:

- Ако v[j]>0, то леля Конг добавя бонбони към кутията с номер k, един по един, докато тя не е добавила точно v[j] бонбона или кутията е станала пълна. Казано по друг начин, ако кутията има p бонбона преди това действие, то тя ще има $\min(c[k], p+v[j])$ бонбона след действието.
- Ако v[j] < 0, то леля Конг маха бонбони от кутията с номер k, един по един, докато тя не махне точно -v[j] бонбона или кутията не остане празна. Казано по друг начин, ако кутията има p бонбона преди това действие, то тя ще има $\max(0, p + v[j])$ бонбона след действието.

Вашата задача е да определите броя бонбони във всяка кутия след q-те дни.

Детайли по реализацията

Трябва да напишете следната функция:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: масив с дължина n. За всяко $0 \le i \le n-1, \ c[i]$ представлява капацитета на кутията с номер i.
- $l,\ r$ и v: три масива с дължина q. За ден j, където $0 \le j \le q-1$, леля Конг извършва действие, характеризирано с целите числа $l[j],\ r[j]$ и v[j], както е описано по-горе.
- Тази функция трябва да върне масив с дължина n. Нека го означим с s. За всяко $0 \le i \le n-1, \ s[i]$ трябва да е броят бонбони в кутия i след q-те дни.

Пример

Нека имаме следното извикване:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Това означава, че кутия 0 има капацитет от 10 бонбона, кутия 1 има капацитет от 15 бонбона, а кутия 2 има капацитет от 13 бонбона.

В края на ден $\,0$, кутия $\,0$ има $\,\min(c[0],0+v[0])=10\,$ бонбона, кутия $\,1$ има $\,\min(c[1],0+v[0])=15\,$ бонбона, а кутия $\,2$ има $\,\min(c[2],0+v[0])=13\,$ бонбона.

В края на ден 1, кутия 0 има $\max(0,10+v[1])=0$ бонбона, кутия 1 има $\max(0,15+v[1])=4$ бонбона. Понеже 2>r[1], няма промяна в броя бонбони в кутия 2. Броят бонбони в края на всеки ден е изобразен в следната таблица:

Ден	Кутия 0	Кутия 1	Кутия 2
0	10	15	13
1	0	4	13

Затова, функцията трябва да върне [0,4,13].

Ограничения

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \leq \overset{-}{c}[i] \leq 10^9$ (за всяко $0 \leq i \leq n-1$)
- $0 \leq l[j] \leq r[j] \leq n-1$ (за всяко $0 \leq j \leq q-1$)
- ullet $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (за всяко $0 \leq j \leq q-1$)

Подзадачи

- 1. (3 точки) $n,q \leq 2000$
- 2. (8 точки) v[j] > 0 (за всяко $0 \le j \le q-1$)
- 3. (27 точки) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 точки) l[j]=0 и r[j]=n-1 (за всяко $0\leq j\leq q-1$)
- 5. (33 точки) няма допълнителни ограничения.

Примерен грейдър

Примерният грейдър чете от стандартния вход в следния формат:

- ред 1: *n*
- ред 2: c[0] c[1] \dots c[n-1]
- ред 3: *q*
- ред 4+j ($0 \le j \le q-1$): $l[j] \ r[j] \ v[j]$

Примерният грейдър отпечатва вашите отговори в следния формат:

• ред 1: s[0] s[1] ... s[n-1]