

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit - V

SEQUENCE AND SERIES

Part - B

1. The sequence $\left\{\frac{1}{n}\right\}$ converges to _____.

(A) 0 (B) 1 (C) $\frac{1}{2}$

Solution:

$$a_n = \frac{1}{n}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\{a_n\} \text{ converges to 0. (Option A)}$$

2. The sequence $\left\{\frac{n+1}{2n+3}\right\}$ converges to ______.

- (A) 0
- **(B)** 1
- $(C) \frac{1}{2}$

 $(\mathbf{D}) \infty$

 $(\mathbf{D}) \infty$

Solution:

$$a_n = \frac{n+1}{2n+3}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n\left(1 + \frac{1}{n}\right)}{n\left(2 + \frac{3}{n}\right)} = \frac{1}{2}$$

 $\{a_n\}$ converges to $\frac{1}{2}$. (**Option C**)

3. Test the convergence of the series $\sum \frac{1}{\sqrt{n+1}}$.

(A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{1}{\sqrt{n+1}} = \frac{1}{\sqrt{n\left(1+\frac{1}{n}\right)}}$$

Let
$$v_n = \frac{1}{\sqrt{n}}$$

Now
$$\frac{u_n}{v_n} = \frac{1}{\sqrt{1 + \frac{1}{n}}}$$

$$\lim_{n\to\infty}\frac{u_n}{v_n}=1$$

$$\sum v_n = \sum \frac{1}{\sqrt{n}} = \sum \frac{1}{n^{1/2}}$$
 is divergent.

Hence by comparison test, Σu_n is divergent. (**Option B**)

- 4. Test the convergence of the series $1 + \frac{1}{3} + \frac{1}{5} + \cdots$.
 - (A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{1}{2n-1} = \frac{1}{n\left(2-\frac{1}{n}\right)}$$

Let
$$v_n = \frac{1}{n}$$

Now
$$\frac{u_n}{v_n} = \frac{1}{2 - \frac{1}{n}}$$

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\frac{1}{2}$$

$$\sum v_n = \sum \frac{1}{n}$$
 is divergent.

Hence by comparison test, Σu_n is divergent. (**Option B**)

5. Test the convergence of the series $\sum \frac{x^n}{n!}$ where x > 0.

(A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{x^n}{n!}, \quad u_{n+1} = \frac{x^{n+1}}{(n+1)!}$$

Now
$$\frac{u_{n+1}}{u_n} = \frac{x}{n+1} = \frac{x}{n\left(1 + \frac{1}{n}\right)}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{x}{n\left(1 + \frac{1}{n}\right)} = 0 < 1$$

Hence by Ratio test, Σu_n is convergent. (**Option A**)

6. Test the convergence of the series $\sum \frac{n!}{n^n}$.

(A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{n!}{n^n}, \quad u_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}}$$

Now
$$\frac{u_{n+1}}{u_n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\frac{1}{e}<1$$

Hence by Ratio test, Σu_n is convergent. (Option A)

7. The series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$ is _____.

(A) absolutely convergent

(B) diverges to $+\infty$

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{x^{n-1}}{(n-1)!}, \quad u_{n+1} = \frac{x^n}{n!}$$

Now
$$\frac{u_{n+1}}{u_n} = \frac{x}{n}$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = 0 < 1$$

Hence the series is absolutely convergent. (Option A)

- 8. Test the convergence of the series $\sum \frac{n^3}{3^n}$.
- (A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{n^3}{3^n}, \quad (u_n)^{1/n} = \frac{(n^{1/n})^3}{3}$$

$$\lim_{n \to \infty} (u_n)^{1/n} = \frac{1}{3} < 1$$

Hence by Root test, Σu_n is convergent. (Option A)

- 9. Test the convergence of the series $\sum \frac{3^n n!}{n^n}$.
- (A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

$$u_n = \frac{3^n n!}{n^n}, \quad u_{n+1} = \frac{3^{n+1} (n+1)!}{(n+1)^{n+1}}$$

Now
$$\frac{u_{n+1}}{u_n} = \frac{3}{\left(1 + \frac{1}{n}\right)^n}$$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\frac{3}{e}>1$$

Hence by Ratio test, $\sum u_n$ is divergent. (**Option B**)

- 10. Test the convergence of the series $\sum \frac{1}{n^2}$.
- (A) converges

(B) diverges

(C) oscillates finitely

(D) oscillates infinitely

Solution:

By Harmonic Series test or p-test, $\sum \frac{1}{n^2}$ converges. **Option** (A)