Natural Language Processing And Text Analysis

Python Course

Dirk Hovy

dirk.hovy@unibocconi.it

Text is an exploding data source

Exabytes = 1M TB

120_[

- You read ~9000 words per day
- = 200.000.000 words in a lifetime
- \bullet = 0.4 GB of data

60

44 billion GB of new data each day

60-80% GROWTH/YEAR

UNSTRUCTURED DATA

STRUCTURED DATA

Bocco2017

NLP is booming

Some examples

BEDDINGS

SVD

Trump
Obama oak, now apple. citrus 104 103 guy, vote vote, hell, win win, homble 102 101 100 99 reiburg im Breisgau

Today's Goals

- Learn to apply text classification
- Understand bag of words (BOW) representations and TFIDF
- Learn about preprocessing
- Understand evaluation metrics
- Understand regularization

Ham or Spam?

From: offr4u@rsph.com

Subject: Unique wealth offerings

To: dirk.hovy@unibocconi.it

Greetings dear friend

We have an amazing offer 4U: Click here to get access to a free consultation for serious wealth benefits! Urgent: offer expires soon.

Works guaranteed! Triple your income.

Spam terms:

- 4U
- click
- amazing
- free
- guarantee
- offer
- urgent
- dear friend
- income
- serious

Pre-processing

```
<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>
```

GOAL: MINIMIZE VARIATION

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I've been in New York in 2011, but didn't like it. I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I've been in New York in 2011, but didn't like it.

I preferred Los Angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

I 've been in New York in 2011, but did n't like it.

I preferred Los Angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

```
i 've been in new york in 0000, but did n't like it.
```

i preferred los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

```
i have be in new york in 0000, but do not like it.
```

i prefer los angeles.

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

i new york 0000, like

i prefer los angeles .

- Remove formatting (e.g. HTML)
- Segment sentences

new york 0000 like

Tokenize words

prefer los angeles

- Normalize words
 - numbers
 - lemmas vs. stems

CONTENT = (NOUN, VERB, NUM)

- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

- Remove formatting (e.g. HTML)
- Segment sentences
- Tokenize words
- Normalize words
 - numbers
 - lemmas vs. stems
- Remove unwanted words
 - stopwords
 - content words (use POS tagging!)
- join collocations

new york 0000 like

prefer los angeles

```
<div id="text">I've been in New York
in 2011, but didn't like it. I
preferred Los Angeles.</div>
```


"BAG OF WORDS"

new_york 0000 like

prefer los_angeles

Discrete Representations

Terminology

Bags of words (BOW)

N-grams

"As Gregor Samsa awoke one morning from uneasy dreams, he found himself transformed in his bed into a gigantic insect-like creature."

```
Unigrams As, Gregor, Samsa, awoke, one, morning, from,
     uneasy, dreams, ...
```

```
Trigrams As_Gregor_Samsa, Gregor_Samsa_awoke,
Samsa_awoke_one, awoke_one_morning, ...
```

```
4-grams As_Gregor_Samsa_awoke, Gregor_Samsa_awoke_one, Samsa_awoke_one_morning, ...
```


Some Words are Just More Interesting...

Karen Spärck Jones

1935-2007

- Became a teacher before starting CS career at Cambridge
- Laid the foundation for modern NLP, Google Search, text classification
- Campaigned for more women in CS
- Namesake of prestigious CS prize

Document and Term Frequency

(SUM): 9 TF

Putting it Together

HOW OFTEN WE SAW THE WORD

TFIDF(w) =
$$TF(w) \cdot (log \frac{N}{df(w)})$$

ADJUSTED BY

HOW MANY

DOCUMENTS

Document and Term Frequency

word	tf	idf	tfidf
ye	467	4.257380	148.497079
chapter	171	5.039475	147.504638
whale	1150	3.262357	139.755743
man	525	3.982412	106.932953
ahab	511	4.019453	103.357774

Text Classification

Text Classification

Examples

Fitting

Predicting

Evaluating Performance

Performance Problems

	predicted		
g		1	0
O 	1	TP	FN
d	0	FP	TN

True and False

```
TARGET = ANIMAL
  frog 1
  deer 1 1
  wolf 1 1 true positive
  dog 1 1
  bear 1 1
  fish
  bird 1
            false negative
  cat
  stone 0 1 false positive
  tree 0
        0 true negative
```

```
accuracy = (TP+TN) / (P + N)

precision = TP / (TP + FP)

recall = TP / (TP + FN)

F1 = 2 (prec x rec) / (prec + rec)
```

```
ACCURACY = 7110 = 0.7

PRECISION = 617 = 0.86

RECALL = 618 = 0.75

FI = 0.81
```

	predicted		
g		1	0
O 	1	TP	FN
d	0	FP	TN

Changing Target Class

```
TARGET = THING
  frog
  deer 0 0
  wolf 0 0 true negative
  dog
       0 0
  bear
       0 \quad 0
  fish
  bird 0 1
             false positive
  cat
  stone 1 0 false negative
  tree 1 1 true positive
```

```
accuracy = (TP+TN) / (P + N)
  precision = TP / (TP + FP)
  recall = TP / (TP + FN)
  \mathbf{F1} = 2 \text{ (prec x rec)} / \text{ (prec + rec)}
ACCURACY = 7110 = 0.7
 PRECISION = 113 = 0.33
   RECALL = 1/2 = 0.5
         F1 = 0.4
```

predicted

g 1 0 0
0 1 TP FN
d 0 FP TN

o micro Averaging

WEIGH BY CLASS SIZE

```
ANIMAL THING
```

```
x y ŷ x y ŷ frog 1 1 frog 0 0 0 deer 1 1 deer 0 0 wolf 1 1 wolf 0 0
```

```
accuracy = (TP+TN) / (P + N)
precision = TP / (TP + FP)
recall = TP / (TP + FN)
F1 = 2 (prec x rec) / (prec + rec)
```

```
Wolf
dog 1 1
            dog
            bear 0
bear 1 1
                     \mathsf{O}
            fish 0 0
fish
            bird
bird 1 1
                  0 0
                    O
        O
cat
            cat
stone 0
            stone 1
                     O
        O
     O
tree
            tree
```

0
$$ACC = (7+7)I(10+10) = 14I20 = 0.7$$

0 $PREC = (6+1)I(7+3) = 7110 = 0.7$
0 $REC = (6+1)I(8+2) = 7110 = 0.7$
1 $FI = 0.7$

predicted TP FN FP TN

MACROAVERAGING

WEIGH ALL CLASSES EQUALLY

ANIMAL THING

X frog Odeer 0 0

wolf O O

frog 1 1 deer 1 1 Wolf dog 0 dog 1 1 bear 1 1 bear 0 fish fish 0 bird bird O 0 1 OOcat cat stone 0 stone 1 O \bigcirc tree tree

accuracy = (TP+TN)/(P+N)precision = TP / (TP + FP)recall = TP / (TP + FN) $\mathbf{F1} = 2 \text{ (prec x rec) / (prec + rec)}$

ACC = (0.7 + 0.7) / 2 = 0.7OPREC = (0.86 + 0.33) / 2 = 0.6REC = (0.5 + 0.75) / 2 = 0.63FI = 0.61

g

predicted Baseline: Total Recall

PREDICT MAJORITY CLASS FOR ALL

```
1 TP FN
  FP TN
```

TARGET = ANIMAL

```
frog 1 1
deer 1 1
wolf 1 1
dog 1 1
```

bear 1 1

fish 1 1

bird 1 1

cat 1 1

stone 0 1

tree

```
recall = TP / (TP + FN)
                 \mathbf{F1} = 2 \text{ (prec x rec) / (prec + rec)}
true positive ACCURACY = 8/10 = 0.8
```

precision = TP / (TP + FP)

accuracy = (TP+TN) / (P + N)

false positive

Metrics Overview

- accuracy can be too general
- precision and recall are per-class measures
- precision = how many of instances labeled as target class are actually in target class?
- recall = how many of all target class instances in data identified correctly?
- F1 = symmetric mean of precision and recall

Beware: Overgeneralization Hovy/Spruit, 2016

FALSE POSITIVES

June 6 2019

Dear (Ms) Hovy,

Congratulations on reaching retirement age!

Also, you're on a no-fly list because of your political views and religious beliefs.

Regularization

Regularization

Regularization Norms

LI NORM

$$||W||_1 = \sum_{i=1}^{N} |w_i|$$

SPARSE

L2 NORM

$$||W||_2 = \sqrt{\sum_{i=1}^N w_i^2}$$
EVENLY DISTRIBUTED

Regularization Norms

Wrapping Up

Take home points

- Texts can be represented as sparse, discrete feature vectors over TFIDF counts
- Choose the appropriate performance metric
- Choose an informative baseline
- Regularize, regularize, regularize
- Feature selection can improve performance and provide insights
- Ask yourself: "Am I comfortable having my system classify myself?"