Subarray Optimization (Genetic Algorithm)

That cookbook describes how to select M subarrays with several constraints (AR, MRS, beam elongation, sidelobe level) out of a main array configuration. Note that the representative frequency is 100 GHz.

1 Script execution

- Extract the folder GA_Subarray_Optimization.tar.
- Put in the folder **GA_Subarray_Optimization/GA_Subarray_Selection/Cfg_Input_Files** the main array configuration file in CASA format (e.g. array.cfg).
- Edit the file **GA_Subarray_Optimization/GA_Subarray_Selection/GA_Parameters.txt** for the configuration parameters (input file, plot, etc).
- Edit the file **GA_Subarray_Optimization/GA_Subarray_Selection/GA_Inputs.txt** with the parameters of the subarrays to be optimized and the GA.
- In the folder GA_Subarray_Optimization run the script **Ga_Subarray**. The duration time of the optimization depends on the size of the main array and the size of the subarrays.

2 Results of the optimization

In the folder $GA_Subarray_Optimization/GA_Subarray_Selection/Results$, for each optimization, a folder $Results_x$ is created whose name depends on the time x with :

- a folder Subarrays_Storage with the files *.cfg of the subarrays from the array solution in CASA format,
- a file Final_Constraints_Results.cfg of the results for the optimization (subarray properties, score, etc),
- a file GA_Parameters.txt of the parameters used for the optimization,
- a file **Score_Evolution.png** with the plot of the score of the best solution wrt. the iteration time during the optimization.

3 Subarrays metrics

• Fitness value of an array configuration :

$$Score_array_j = -\sum_{i=1}^{M} w_{subarray_i} \times Score_subarray_i$$

- -M: number of subarrays in the main array j,
- $w_{subarray_i}$: weight for subarray i (named "Weights_for_Subarrays" in the file **GA_Parameters.txt**, these weights assign importance to each subarray i in comparison to the other subarrays $i' \in [1, M]$),
- Score_subarray_i : fitness value of subarray i.
- Fitness value of a subarray :

$$\begin{split} Score_subarray_i &= w_{\theta_{res},i} \times \frac{|\theta_{res_obj,i} - \theta_{res,i}|}{\theta_{res_obj,i}} \\ &+ w_{\theta_{MRS},i} \times \frac{|\theta_{MRS_obj,i} - \theta_{MRS,i}|}{\theta_{MRS_obj,i}} \times sign(\theta_{MRS_obj,i} - \theta_{MRS,i}) \\ &+ w_{e,i} \times \frac{|e_{obj,i} - e_i|}{e_{obj,i}} \times sign(e_i - e_{obj,i}) \\ &+ w_{s,i} \times \frac{|s_{obj,i} - s_i|}{s_{obj,i}} \times sign(s_i - s_{obj,i}) \end{split}$$

- $-\#: \theta_{res} = \text{spatial resolution (arcsec)}, \theta_{MRS} = \text{Maximum Recoverable Scale (arcsec)}, e = \text{elongation}, s := \text{percentage of the sidelobe level},$
- $-w_{\#,i}$: constraint weight (named "Weight_for_#" in the file **GA_Parameters.txt**, these weights assign importance to each property # in comparison to the other properties of the subarray i),
- $-\#_{obj,i}$: objective constraint (objective value for θ_{res} , lower limit for θ_{MRS} , upper limit for e, s),
- $\#_i$: actual properties of subarray i.
- Score analysis:
 - Fitness value increasing with the iterations (except local minima). The larger value the better score.
 - Fitness value normalized by the subarrays and constraints weights.
 - Fitness value normalized for each constraints.

The final score should be comparable between different optimizations since the score is relative for each constraint and weighted for the subarrays.