Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

Demonstration of SIR model where R_{e} is linearly reduced to 0.75 at the end of the sequence:

False Positives Demonstration

Use 0.21% from US est. incidence above as estimated daily incidence *Prevalence* estimated as avg. infected period of 2 weeks X incidence

99% accuracy of test 0.21% X 14 = 2.940%

Positive Negative
test pos 2.911% 0.971% 3.88%
test neg 0.029% 96.089% 96.12%
2.940% 97.060% 100.00%

False pos. is a bit over 1/4 of total positives!

TRUE + 2.911%/3.88% 75.0%

FALSE + 0.971%/3.88% <u>25.0%</u>

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

100.00%

Reducing the R_e while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. This case about 17:1000 benefit (21%).

USA Excess Deaths (from CDC data):

Annualized on 48 weeks

Total

	All Cause	All Cause, excl. CV19	CV19
3 yr average before 2020	855:100,000	855:100,000	-
2020	978:100,000	890:100,000	-
Diff.	123:100,000	35:100,000	88:100,000
Diff.	+14.4%	+4.1%	+10.3%

3 yr average weighted 859:100,000

 $29\%\,$ of All-Cause excess deaths are non-CV19

Here are some demonstrations of SIR model, using R_e, gamma, and beta

