

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- The research attempts to identify the factors for a successful rocket landing. To make this determination, the following methodologies where used:
- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data to create success/fail outcome variable
- **Explore** data with data visualization techniques, considering the following factors: payload, launch site, flight number and yearly trend
- Analyze the data with SQL, calculating the following statistics: total payload, payload range for successful launches, and total # of successful and failed outcomes
- **Explore** launch site success rates and proximity to geographical markers
- Visualize the launch sites with the most success and successful payload ranges
- **Build Models** to predict landing outcomes using logistic regression, support vector machine (SVM), decision tree and K-nearest neighbor (KNN)

Introduction

• SpaceX, a leader in the space industry, strives to make space travel affordable for everyone. Its accomplishments include sending spacecraft to the international space station, launching a satellite constellation that provides internet access and sending manned missions to space. SpaceX can do this because the rocket launches are relatively inexpensive (\$62 million per launch) due to its novel reuse of the first stage of its Falcon 9 rocket. Other providers, which are not able to reuse the first stage, cost upwards of \$165 million each. By determining if the first stage will land, we can determine the price of the launch. To do this, we can use public data and machine learning models to predict whether SpaceX – or a competing company – can reuse the first stage.

Methodology

- Collect data using SpaceX REST API and web scraping techniques
- Wrangle data to create success/fail outcome variable
- **Explore** data with data visualization techniques, considering the following factors: payload, launch site, flight number and yearly trend
- Analyze the data with SQL, calculating the following statistics: total payload, payload range for successful launches, and total # of successful and failed outcomes
- **Explore** launch site success rates and proximity to geographical markers
- Visualize the launch sites with the most success and successful payload ranges
- Build Models to predict landing outcomes using logistic regression, support vector machine (SVM), decision tree and K-nearest neighbor (KNN)

Data Collection

- Data are collected via
 - Web scraping SpaceX Wikipedia page
 - SpaceX REST API

Data Collection - SpaceX API

Github

- Request data from SpaceX API (rocket launch data)
- **Decode response** using .json() and convert to a dataframe using .json_normalize()
- Request information about the launches from SpaceX API using custom functions
- Create dictionary from the data
- Create dataframe from the dictionary
- Filter dataframe to contain only Falcon 9 launches
- Replace missing values of Payload Mass with calculated .mean()
- Export data to csv file

Data Collection - Scraping

• Github Link

- Request data (Falcon 9 launch data) from Wikipedia
- Create BeautifulSoup object from HTML response
- Extract column names from HTML table header
- Collect data from parsing HTML tables
- Create dictionary from the data
- Create dataframe from the dictionary
- Export data to csv file

EDA with Data Visualization

- Github link
- Create charts to analyze relationships and show comparisons

EDA with SQL

• Github link

• Query the data to understand more about the data

Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

%sql select landing_outcome, count(*) as cnt from spacextable group by landing_outcome having date between '2010-06-04' and '2017-03-20'

* sqlite:///my_data1.db
Done.

:	Landing_Outcome	cnt
	No attempt	21
	Success (drone ship)	14
	Success (ground pad)	9
	Failure (drone ship)	5
	Controlled (ocean)	5
	Uncontrolled (ocean)	2
	Precluded (drone ship)	1

Build an Interactive Map with Folium

• Github Link

• Create maps to visualize launch sites, view launch outcomes and see distance to proximities

Build a Dashboard with Plotly Dash

- Create dashboard
- Pie chart showing successful launches
- Scatter chart showing Payload Mass vs. Success Rate by Booster Version
- <u>Link</u>

Predictive Analysis (Classification)

- Github Link
- Create NumPy array from the Class column
- Standardize the data with StandardScaler. Fit and transform the data.
- **Split** the data using train_test_split
- Create a GridSearchCV object with cv=10 for parameter optimization
- **Apply** GridSearchCV on different algorithms: logistic regression (LogisticRegression()), support vector machine (SVC()), decision tree (DecisionTreeClassifier()), K-Nearest Neighbor (KNeighborsClassifier())
- Calculate accuracy on the test data using .score() for all models
- Assess the confusion matrix for all models
- Identify the best model using Jaccard_Score, F1_Score and Accuracy

Results

- Model Performance: The models performed similarly on the test set with the decision tree model slightly outperforming
- **Equator:** Most of the launch sites are near the equator for an additional natural boost due to the rotational speed of earth which helps save the cost of putting in extra fuel and boosters
- Coast: All the launch sites are close to the coast.
- Launch Success: Increases over time
- KSC LC-39A: Has the highest success rate among launch sites. Has a 100% success rate for launches less than 5,500 kg
- Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate
- Payload Mass: Across all launch sites, the higher the payload mass (kg), the higher the success rate

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

sqlite	:///my_da		here launch_s					
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome
2010- 04-06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Succes
2010- 08-12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Succes
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Succes
2012- 08-10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Succes
2013- 01-03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Succe

Total Payload Mass

```
# sqlite://my_data1.db
Done.

sum(payload_mass_kg_)

45596
from spacextable where customer='NASA (CRS)'

* sqlite://my_data1.db
Done.
```

Average Payload Mass by F9 v1.1

```
%sql select avg(payload_mass_kg_) from spacextable where booster_version like 'F9 v1.1%'

* sqlite:///my_datal.db
Done.

avg(payload_mass_kg_)

2534.66666666666665
```

First Successful Ground Landing Date

```
%sql select min(date) from spacextable where landing_outcome='Success (ground pad)'
    * sqlite://my_datal.db
Done.
: min(date)
    2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Launch Sites

Launch Outcomes

Distance to Proximities

Launch Success By Site

SpaceX Launch Records Dashboard

Launch Success (KSC LC-29A)

SpaceX Launch Records Dashboard

Payload Mass and Success

Payload range (Kg):

Correlation Between Payload and Success for All Sites

Classification Accuracy

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.800000	0.800000	0.800000	0.800000
F1_Score	0.888889	0.888889	0.888889	0.888889
Accuracy	0.833333	0.833333	0.833333	0.833333

Confusion Matrix

Conclusions

- Model Performance: The models performed similarly on the test set with the decision tree model slightly outperforming
- Equator: Most of the launch sites are near the equator for an additional natural boost due to the rotational speed of earth - which helps save the cost of putting in extra fuel and boosters
- Coast: All the launch sites are close to the coast
- Launch Success: Increases over time
- KSC LC-39A: Has the highest success rate among launch sites. Has a 100% success rate for launches less than 5,500 kg
- Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate
- Payload Mass: Across all launch sites, the higher the payload mass (kg), the higher the success rate

Appendix

• https://github.com/ScottLiao920/IBMDS_Coursera/tree/main

