

Description

Image

Caption

1. Titanium bulkhead for F15 jet fighter before and after pressing by the Alcoa 50,000 ton press. © Jet Lowe, US National Park Service - Public domain 2. Titanium glasses. © Chris Lefteri

The material

Titanium is the seventh most abundant metal in the Earth's crust, but extracting the metal from the oxide in which it occurs naturally is unusually difficult. This makes titanium, third member of the light alloy trio, by far the most expensive of the three (more than ten times the price of aluminum). Despite this, the use of titanium is growing, propelled by its remarkable properties. It has a high melting point (1677 C), it is light, and - although reactive - its resists corrosion in most chemicals, protected by a thin film of oxide on its surface. Titanium has unusually low thermal and electrical conductivity, and low expansion coefficients.

Composition (summary)

> 99% Ti

General properties

General properties				
Density	281	-	282	lb/ft^3
Price	* 4.55	-	5	USD/lb
Date first used	1910			
Mechanical properties				
Young's modulus	14.5	-	15.2	10^6 psi
Shear modulus	5.22	-	7.4	10^6 psi
Bulk modulus	16	-	19.6	10^6 psi
Poisson's ratio	0.35	-	0.37	·
Yield strength (elastic limit)	39.2	-	87	ksi
Tensile strength	65.3	-	94.3	ksi
Compressive strength	39.2	-	87	ksi
Elongation	5	-	25	% strain
Hardness - Vickers	155	-	165	HV
Fatigue strength at 10 ⁷ cycles	* 29	-	43.5	ksi
Fracture toughness	50.1	-	54.6	ksi.in^0.5
Mechanical loss coefficient (tan delta)	0.002	-	0.003	
Thermal properties				
Melting point	3.03e3	-	3.05e3	°F
Maximum service temperature	752	-	842	°F
Minimum service temperature	-460			°F
·				

Commercially pure titanium

Thermal conductor or insulator?

Thermal conductivity

Specific heat capacity

Thermal expansion coefficient

Poor conductor

9.24 - 10.4 BTU.ft/h.ft^2.F

0.127 - 0.129 BTU/lb.°F

4.72 - 5.17 µstrain/°F

Electrical properties

Electrical conductor or insulator? Good conductor

Electrical resistivity 55 - 57 µohm.cm

Optical properties

Transparency Opaque

Processability

 Castability
 3

 Formability
 2
 - 4

 Machinability
 1
 - 3

 Weldability
 4
 - 5

 Solder/brazability
 1
 - 2

Durability: water and aqueous solutions

Water (fresh) Excellent
Water (salt) Excellent
Soils, acidic (peat) Excellent
Soils, alkaline (clay) Excellent
Wine Excellent

Durability: acids

Acetic acid (10%) Excellent Acetic acid (glacial) Acceptable Citric acid (10%) Acceptable Hydrochloric acid (10%) Acceptable Hydrochloric acid (36%) Limited use Hydrofluoric acid (40%) Limited use Nitric acid (10%) Excellent Nitric acid (70%) Excellent Phosphoric acid (10%) Excellent Phosphoric acid (85%) Acceptable Sulfuric acid (10%) Acceptable Sulfuric acid (70%) Limited use

Durability: alkalis

Sodium hydroxide (10%) Excellent Sodium hydroxide (60%) Excellent

Durability: fuels, oils and solvents

Amyl acetate Excellent Benzene Excellent Carbon tetrachloride Limited use Chloroform Excellent Crude oil Excellent Diesel oil Excellent Excellent Lubricating oil Paraffin oil (kerosene) Excellent Petrol (gasoline) Excellent Silicone fluids Excellent

Commercially pure titanium

Toluene Excellent
Turpentine Excellent
Vegetable oils (general) Excellent
White spirit Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde Excellent
Acetone Excellent
Ethyl alcohol (ethanol) Excellent
Ethylene glycol Excellent
Formaldehyde (40%) Excellent
Glycerol Excellent

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

C2 (oxygen gas)

Sulfur dioxide (gas)

Excellent

Excellent

Excellent

Durability: built environments

Industrial atmosphereExcellentRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Excellent
Tolerance up to 150 C (302 F)

Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production 1.97e5 ton/yr Reserves 7.14e8 I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production * 5.94e4 - 6.57e4 kcal/lb CO2 footprint, primary production * 37.1 - 41 lb/lb Water usage * 12.3 - 13.7 gal(US)/lb Eco-indicator 99 3.05e3 millipoints/kg

Material processing: energy

Casting energy * 1.38e3 1.53e3 kcal/lb Extrusion, foil rolling energy * 987 - 1.09e3 kcal/lb Rough rolling, forging energy * 509 562 kcal/lb Wire drawing energy * 3.62e3 - 4e3 kcal/lb * 4.95e3 5.46e3 kcal/lb Metal powder forming energy Vaporization energy * 1.58e6 1.74e6 kcal/lb kcal/lb Coarse machining energy (per unit wt removed) * 124 137 Fine machining energy (per unit wt removed)

Commercially pure titanium

	* 768	-	849	kcal/lb
Grinding energy (per unit wt removed)	* 1.48e3	-	1.65e3	kcal/lb
Non-conventional machining energy (per unit wt removed)	1.58e4	-	1.74e4	kcal/lb
Material processing: CO2 footprint				
Casting CO2	* 0.955	-	1.06	lb/lb
Extrusion, foil rolling CO2	* 0.683	-	0.755	lb/lb
Rough rolling, forging CO2	* 0.352	-	0.389	lb/lb
Wire drawing CO2	* 2.5	-	2.77	lb/lb
Metal powder forming CO2	* 3.66	-	4.03	lb/lb
Vaporization CO2	* 1.09e3	-	1.21e3	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0853	-	0.0943	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.532	-	0.588	lb/lb
Grinding CO2 (per unit wt removed)	* 1.03	-	1.14	lb/lb
Non-conventional machining CO2 (per unit wt removed)	10.9	-	12.1	lb/lb
Material recycling: energy, CO2 and recycle for	raction			
Recycle	✓			

Recycle	✓			
Embodied energy, recycling	* 7.84e3	-	8.68e3	kcal/lb
CO2 footprint, recycling	* 5.69	-	6.29	lb/lb
Recycle fraction in current supply	22	-	24	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	✓			
Biodegrade	×			
Toxicity rating	Non-toxic	;		
A renewable resource?	×			

Environmental notes

Extracting titanium from its ores is very energy intensive. It can be recycled provided it is not contaminated with oxygen.

Supporting information

Design guidelines

Titanium is expensive, requiring vacuum processing to prevent take up of oxygen, which makes it brittle. But it is unusually strong, light and corrosion resistant, so much so that pure titanium can be implanted in the body to repair broken bones. The drive to miniaturize consumer electronics gives titanium a growing importance in product design. The casings of mobile phones and portable computers are now so thin that polymers cannot take the strain - they are not stiff or strong enough. The strength and low density of titanium makes it - despite its cost - an attractive replacement.

Technical notes

Titanium is an allotropic metal that can exist in two different crystal structures (iron is another). At room temperature it is hexagonal, called alpha-titanium. At 884 C it transforms to a body-centered cubic structure called beta-titanium. Alloying elements stabilize one or other of the two structures giving great scope for manipulating properties by alloying and heat treatment. See the record for Titanium alloys for more.

Typical uses

Chemical engineering; heat exchangers; bioengineering; medical applications including surgical implants; eyeglass frames; sports equipment such as golf clubs and bicycles; casings for mobile phones and portable computers.

Links

Reference

ProcessUniverse

Producers

Page 5 of 5

