

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC143356 Page: 1 of 32

FCC Radio Test Report FCC ID: 2AEJ6-FF518

Original Grant

Report No. : TB-FCC143356

Applicant: ZheJiang Lucky Manufacturer Co.,Ltd

Equipment Under Test (EUT)

EUT Name: Fish Finder

Model No. : FF518

Brand Name : Lucky

Receipt Date : 2015-02-02

Test Date : 2015-02-02 to 2015-03-25

Issue Date : 2015-03-26

Standards : FCC Part 15, Subpart C (15.231e:2014), RSS 210 Issue 8: 2010

Test Method : ANSI C63.10:2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	5
	1.6 Test Facility	6
2.	TEST SUMMARY	8
3.	CONDUCTED EMISSION TEST	9
	3.1 Test Standard and Limit	9
	3.2 Test Setup	9
	3.3 Test Procedure	9
	3.4 Test Equipment Used	10
	3.5 Test Data	10
4.	RADIATED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	
	4.3 Test Procedure	13
	4.4 EUT Operating Condition	14
	4.5 Test Equipment	14
	4.7 Test Data	15
	Radiated Emission Bellow 1 GHz	15
5.	BANDWIDTH	21
	5.1 Test Standard and Limit	21
	5.2 Test Setup	21
	5.3 Test Procedure	21
	5.4 EUT Operating Condition	21
	5.5 Test Equipment	22
	5.6 Test Condition	22
	5.7 Test Data	23
6.	RELEASE TIME MEASUREMENT	24
	6.1 Test Standard and Limit	24
	6.3 Test Procedure	24
	6.4 EUT Operating Condition	24
	6.5 Test Equipment	25
	6.6 Test Condition	25
	6.7 Test Data	26

Page: 3 of 32

7.	DUTY CYCLE	28
	7.1 Test Standard and Limit	28
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	28
	7.5 Test Equipment	
	7.6 Test Condition	
	7.7 Test Data	30
8.	ANTENNA REQUIREMENT	32
	8.1 Standard Requirement	32
	8.2 Antenna Connected Construction	
	8.3 Result	

Page: 4 of 32

1. General Information about EUT

1.1 Client Information

Applicant	:	ZheJiang Lucky Manufacturer Co.,Ltd
Address : NO.2198 Cuntong Road, Jindong Industrial Zone, JinHua City, ZheJiang Province, China		, , , , , , , , , , , , , , , , , , , ,
Manufacturer : ZheJiang Lucky Manufacturer Co.,Ltd		ZheJiang Lucky Manufacturer Co.,Ltd
Address : NO.2198 Cuntong Road, Jindong Industrial Zone, JinHua (ZheJiang Province, China		NO.2198 Cuntong Road, Jindong Industrial Zone, JinHua City, ZheJiang Province, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Fish Finder		
Models No.	:	FF518		
Brand Name	:	Lucky		
Model	:	N/A		
Difference				
		Operation Frequency: 433.82 MHz		
Product		Out Power:	71.84 dBuV/m (PK Max.)	
Description	:	•		
		Antenna Gain: Integral Antenna(0 dBi)		
		Modulation Type:	ООК	
Power Supply	:	DC Voltage supplied from battery.		
Power Rating	:	DC Battery: DC 3V		
Connecting I/O	:	Please refer to the User's Manual		
Port(S)				

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 5 of 32

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a portable unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

Page: 6 of 32

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

1	Product SW/HW Version :	FF518
2	Radio SW/HW Version:	N/A
3	Test SW Version:	N/A
4	RF Power Setting in Test SW:	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
	Level Accuracy:		
Conducted Emission	9kHz~150kHz	±3.42 dB	
	150kHz to 30MHz	±3.42 dB	
Radiated Emission	Level Accuracy:	±4.60 dB	
Radiated Effission	9kHz to 30 MHz	±4.60 db	
Dedicted Emission	Level Accuracy:	14 40 dD	
Radiated Emission	30MHz to 1000 MHz	±4.40 dB	
Radiated Emission	Level Accuracy:	±4.20 dB	
Radiated Ellission	Above 1000MHz	14.20 UD	

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

Page: 7 of 32

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 32

2. Test Summary

FCC Part 15 Subpart (15.231)				
Standard Section	Test Item	Judgment	Remark	
15.203	Antenna Requirement	PASS		
	Conducted Emission	N/A		
	Release Time	PASS		
15.231	Radiation Emission	PASS		
	20 dB Bandwidth	PASS		
	Duty Cycle	PASS		

Page: 9 of 32

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 10 of 32

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		400004	Aug 09 2014	Aug 07, 2015
Receiver	SCHWARZ	ESCI	100321	Aug. 08, 2014	Aug.07, 2015
50ΩCoaxial	Anritsu	MP59B	X10321	Aug. 08, 2014	Aug.07, 2015
Switch	Aillisu	MESSE	X10321	Aug. 00, 2014	Aug.07, 2013
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 08, 2014	Aug.07, 2015
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 08, 2014	Aug.07, 2015

3.5 Test Data

The test is not applicable.

Page: 11 of 32

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.231(e)

4.1.2 Test Limit

According to FCC 15.231(e) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m
40.66~40.70	1000	100
70~130	500	50
130~174	500 to 15001(**)	50 to 1501(**)
174~260	1500	150
260~470	1500 to 50001(**)	150 to 5001(**)
Above 470	5000	500

^{**} Linear interpolations

(1) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in Section 15.209(a).

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	2400/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Page: 12 of 32

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

So the field strength of emission limits have been calculated in below table.

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m
433.82 MHz	72.86 (Average)
433.82 MHz	92.86 (Peak)

4.2 Test Setup

Bellow 30MHz Test Setup

Page: 13 of 32

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by

Report No.: TB-FCC143356 Page: 14 of 32

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 08, 2014	Aug.07, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug.07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug.07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 06, 2015	Mar.05, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	11909A	185903	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 06, 2015	Mar.05, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 06, 2015	Mar.05, 2016
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 10, 2015	Feb.09, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

Page: 15 of 32

4.7 Test Data

Radiated Emission Bellow 1 GHz

EUT:			F	ish	Finde	er		Model Na	ıme :	FF:	518		
Temp	oeratu	re:	2	25 ℃				Relative I	Relative Humidity: 55%				
Test '	Voltag	je:	D	DC 3V									
Ant. I	Pol.		Н	Horizontal									
Test l	Mode:		S	Standby Mode									
Remark:													
80.0	dBuV/m												
									(RF)FCC	15C 3M Ra	diation		
										Ma	rgin -6	dB -	
30					4								
30									_				
		1	2 X	2 3 4 X	:		5 ¥	hadan kalan ka	i i	a haddyn de an haga	gyadenakin	digital and design of the	
W	Michigan Market	X			4 Y	. 1	1	Lander Completed Light, in	MIR Phylogen Contracts				
	Maye	medhin	Market L	الطينسا	mad healt	whether	happed and has been seen by the seen the seen	Market . 4					
-20													
30.0	100 40) 50	0 60) 70	80		(MHz)	300	400	500 600	700	1000.0	00
					_								
Ν	lo. Mł	۲.	Fred	٦.		ading evel	Correct Factor	Measure- ment	Limit	Ove	er		
			MHz		C	lBu∀	dB/m	dBuV/m	dBuV/m	dB		Detecto	r
1		46	3.016	32	3	5.56	-22.71	12.85	40.00	-27.	15	peak	(
2		61	.778	31	3	9.87	-24.36	15.51	40.00	-24.	49	peak	(
3	*	71	.831	19	3	9.16	-23.56	15.60	40.00	-24.	40	peak	(
4		85	.298	30	3	2.76	-22.97	9.79	40.00	-30.	21	peak	(
5		143	3.82	92	3	8.30	-21.67	16.63	43.50	-26.	87	peak	(
6		346	6.80	91	3	2.47	-14.81	17.66	46.00	-28.	34	peak	(

Page: 16 of 32

Test Voltage: DC 3V Ant. Pol. Vertical	EUT:	Fish Finder		Model Nam	e :	FF518				
Ant. Pol. Vertical Test Mode: Standby Mode Remark: 80.0 dBuV/m No. Mk. Freq. Reading Level Factor Factor ment Limit Over 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	Temperature:	25 ℃		Relative Hu	ımidity:	55%				
Standby Mode Stan	Test Voltage:	DC 3V								
Reading Correct Measure MHz dBuV dB/m dBuV/m dBuV/m	Ant. Pol.	Vertical	/ertical							
80.0 d8uV/m No. Mk. Freq. Reading Level Factor Measurement Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector dB/m dBuV/m dBuV/m dB Detector dB/m dBuV/m dB/m dBuV/m dB/m dBuV/m dB/m dB	Test Mode:	Standby Mode								
No. Mk. Freq. Reading Level Factor Measurement Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector	Remark:									
No. Mk. Freq. Reading Level Factor Measure— ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	80.0 dBuV/m									
No. Mk. Freq. Reading Level Factor Measure— ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak										
No. Mk. Freq. Reading Level Factor Measure— ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak										
No. Mk. Freq. Reading Level Factor Measure— Himit Over MHz MBuV MBuV/m MBuV					(RF)FCC 15C	3M Radiation				
No. Mk. Freq. Reading Level Factor Measure-ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector						Margin -6	dB [
No. Mk. Freq. Reading Level Factor Measure-ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector										
No. Mk. Freq. Reading Level Factor Measure-ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector	30									
No. Mk. Freq. Reading Level Factor Measure- Factor Measure- MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	2	3		6			ليسا			
No. Mk. Freq. Reading Level Factor Measure- Factor Measure- MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	\ \ \ \ \ \ \ \		5 X	×	harlageneralesprop	y-my-blodgedylph-yddynaus	Wilder strans			
No. Mk. Freq. Reading Level Correct Factor ment Measure-ment Limit Over 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	Magazine Ma land		and the state of t	Burgh Indian Magnetic Belgins and	hall-the state					
No. Mk. Freq. Reading Level Correct Factor ment Measure-ment Limit Over 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	- The Contract of the Contract	Marian generally with a city (Maria Car	· pinget is							
No. Mk. Freq. Reading Level Correct Factor ment Measure-ment Limit Over 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak										
No. Mk. Freq. Reading Level Correct Factor Measurement Limit Over 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak										
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	30.000 40 50	60 70 80	(MHz)	300	400 500	600 700	1000.000			
MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB Detector 1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak		Reading	Correct	Measure-						
1 41.4215 35.56 -20.76 14.80 40.00 -25.20 peak 2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	No. Mk. Fre	eq. Level	Factor	ment	Limit	Over				
2 45.8551 39.65 -22.64 17.01 40.00 -22.99 peak 3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	MH	∃z dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector			
3 * 71.8319 44.09 -23.56 20.53 40.00 -19.47 peak 4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	1 41.42	215 35.56	-20.76	14.80	40.00	-25.20	peak			
4 85.5977 32.32 -22.95 9.37 40.00 -30.63 peak 5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	2 45.85	551 39.65	-22.64	17.01	40.00	-22.99	peak			
5 143.8291 37.19 -21.67 15.52 43.50 -27.98 peak 6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	3 * 71.83	319 44.09	-23.56	20.53	40.00	-19.47	peak			
6 287.9904 36.20 -17.32 18.88 46.00 -27.12 peak	4 85.59	977 32.32	-22.95	9.37	40.00	-30.63	peak			
	5 143.8	291 37.19	-21.67	15.52	43.50	-27.98	peak			
Emission Level= Read Level+ Correct Factor	6 287.9	904 36.20	-17.32	18.88	46.00	-27.12	peak			
	Emission Level=	Read Level+ Cor	rect Factor	r						

Note:

- (1) All Readings are Peak Value.
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss
- (3) The QP measurement was not performed when the peak measured data under the limit of QP detection.

Page: 17 of 32

Fundamental and Harmonics emissions

Below 1G

EUT:		Fi	sh Finder			Mod	del Name :		FF518
Temperature:		25	5 ℃			Rela	ative Humi	dity:	55%
Test Voltage:	st Voltage: DC 3V								
Test Mode:		T	K Mode						
Remark:									
Freq.	Ant.P	-		ion Level uV/m)			it 3m ıV/m)	Marg	jin(dB)
(MHz)	H/V		PK	AV	PI	K	AV	PK	AV
434.49	Н		71.81	60.86	92.	86	72.86	21.05	12.00
868.08	Н		43.99	33.04	72.	86	52.86	28.87	19.82
434.49	V		71.84	60.89	92.	86	72.86	21.02	11.97
868.08 V		52.48	41.53	72.	86	52.86	20.38	11.33	
Average Value	e=Peal	۷ V	alue-10.95						

Page: 18 of 32

Above 1G

Page: 19 of 32

EUT	:		Fisl	n Find	er		N	l lod	el Na	me :		FF51	FF518	
Tem	peratur	e:	25	25 ℃					Relative Humidity: 55%					
Test	Voltage	e:	DC	DC 3V										
Ant.	Pol.		Ver	tical										
Test	Mode:		TX	TX Mode										
Rem	Remark:													
100.0) dBuV/m													7
										(I	RF) FCC	PART 15C (P	EAK)	
														1
	1 X		3 X	5	2	7 ₹					(RF) FCC	PART 15C (AVG)	
50	2		4 X	6 X		} <								-
	×		^	×										-
														-
0.0														
10	000.000 140	0.00 1	800.00	2200).00 2600	0.00 3000	.00	3400).00 ;	3800.00	4200.	.00	5000.00	MHz
				Re	ading	Correc	t N	Mea	sure-					
Ν	lo. Mk.	Fre	eq.		evel	Facto			ent		nit	Over		
		MH	Ηz	C	lBuV	dB/m		dB	uV/m	dB	uV/m	dB	Dete	ctor
1		1300	.000	5	9.36	-5.39		53	3.97	74	1.00	-20.0	3 ре	ak
2		1300	.000	4	8.41	-5.39		43	3.02	54	1.00	-10.9	8 A\	/G
3		1736	.000	5	7.98	-3.12		54	1.86	74	1.00	-19.1	4 ре	ak
4		1736	.000	4	7.03	-3.12		43	3.91	54	1.00	-10.0	9 A\	/G
5		2168	000	5	1.62	-0.16		51	1.46	74	1.00	-22.5	4 pe	ak
6		2168	.000	4	0.67	-0.16		40).51	54	1.00	-13.4	9 A\	/G
7		2604	.000	5	5.47	1.85		57	7.32	74	1.00	-16.6	8 pe	ak
8	*	2604	.000	4	4.52	1.85		46	3.37	54	1.00	-7.63	3 A\	/G
Emi	ssion L	evel=	Read	d Leve	el+ Corr	ect Fact	or							

Page: 20 of 32

Other harmonics emissions are lower than 20dB below the allowable limit.

Note:

- (1) A All Readings are Peak Value and AV. And AV is calculated by the following: Average =Peak Value + 20log(Duty Cycle), Final AV=PK-10.95
- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Pulse Desensitization Correction Factor

Note:

(1)The shortest Pulse Width (PW)= 0.4ms

(2) 2/PW=2/0.4 (ms)= 5 kHz<100 kHz

Because 2/PW<RBW, so the PDCF is not needed.

Page: 21 of 32

5. Bandwidth

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.231

5.1.2 Test Limit

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)
433.82 MHz	1.0845

5.2 Test Setup

5.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

5.4 EUT Operating Condition

The Equipment Under Test was Programmed to be in continuously transmitting mode.

Page: 22 of 32

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 08, 2014	Aug.07, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug.07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug.07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 06, 2015	Mar.05, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	11909A	185903	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 06, 2015	Mar.05, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 06, 2015	Mar.05, 2016
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 10, 2015	Feb.09, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Condition

Temperature	:	25 ℃
Relative Humidity	:	65 %
Pressure	:	1010 hPa
Test Power	:	DC 3V

Page: 23 of 32

5.7 Test Data

Frequency (MHz)	20 dBc Bandwidth (kHz)	99% OBW (kHz)	Result
433.82	45.000	121	PASS

Page: 24 of 32

6. Release Time Measurement

6.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.231 (e)

5.1.2 Test Limit

According to FCC Part 15.231 (e), the duration of each transmission shall not be greater than one secondand the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.2 Test Setup

6.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

6.4 EUT Operating Condition

The EUT was set to work in transmitting mode.

Page: 25 of 32

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 08, 2014	Aug.07, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug.07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug.07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 06, 2015	Mar.05, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	11909A	185903	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 06, 2015	Mar.05, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 06, 2015	Mar.05, 2016
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 10, 2015	Feb.09, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

6.6 Test Condition

Temperature	:	25 ℃
Relative Humidity	:	65 %
Pressure	:	1010 hPa
Test Power	:	DC 3V

Page: 26 of 32

6.7 Test Data

Release Time (s)	Limit (s)	Result
0.252	1	PASS
Silent period (s)	Limit (s)	Result
15.36	>10s >10* Release Time	PASS

Page: 27 of 32

Silent period

Page: 28 of 32

7. Duty Cycle

7.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.231

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.

7.4 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

Page: 29 of 32

7.5 Test Equipment

Equipmen t	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 08, 2014	Aug.07, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 08, 2014	Aug.07, 2015
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 08, 2014	Aug.07, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 06, 2015	Mar.05, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	11909A	185903	Mar. 06, 2015	Mar.05, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 06, 2015	Mar.05, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 06, 2015	Mar.05, 2016
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 10, 2015	Feb.09, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

7.6 Test Condition

Temperature	:	25 ℃
Relative Humidity	:	65 %
Pressure	:	1010 hPa
Test Power	:	DC 3V

Page: 30 of 32

7.7 Test Data

Please refer the following pages:

Plot 1: transmit once in 100ms, and each cycle is 46.60 ms there are two kinds of pulse in each cycle, the large pulses total 1, the small pulses total 15

Plot 2: one large pulse in a time period of 7.2 ms

Plot 3: one small pulse in a time period of 0.4 ms.

Duty Cycle=ON/Total=(1*7.2+15*0.4)/46.6=13.2/46.6=28.32% 20 log(Duty Cycle)=-10.95 Average=Peak Value+ 20log(Duty Cycle), AV=PK-10.95

Plot 1

Plot 2

Plot 3

Page: 32 of 32

8. Antenna Requirement

8.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

8.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

8.3 Result

The EUT antenna is a Integral Antenna. It complies with the standard requirement.

The second secon				
Antenna Type				
	▽ Permanent attached antenna			
	□ Unique connector antenna			
	□ Professional installation antenna			