PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ

PRÓ-REITORIA DE PESQUISA, PÓS-GRADUAÇÃO E INOVAÇÃO PROGRAMA INSTITUCIONAL DE BOLSAS DE DESENVOLVIMENTO TECNOLÓGICO E INOVAÇÃO

PIBIC - 2021-2022

(ALTAIR OLIVO SANTIN)

PARALELISMO DE PROCESSAMENTO: QUÂNTICO OU CONVENCIONAL?

PROJETO DE ORIGEM:

Sistema de Detecção de Intrusão Integrado a Solução Segura baseada na Norma IEC-62443 para Tecnologia de Operação

PLANO DE ATIVIDADE DE PESQUISA DO ESTUDANTE
PIBIC

Curitiba Maio 2021

SUMÁRIO

1.	contextualização e justificativa do trabalho do estudante	. 1
2.	Objetivo	. 1
3.	plano de atividades do estudante	. 2
4.	Resultados Esperados	. 3
5.	Cronograma	. 3
6.	Referências	. 4

1. CONTEXTUALIZAÇÃO E JUSTIFICATIVA DO TRABALHO DO ESTUDANTE

A Computação Quântica é um tema que vem sendo muito estudado na última década, um computador quântico pode ser encarado como um computador tradicional que pode acessar e manipular informação quântica [1].

Uma maneira de tornar os computadores quânticos mais poderosos que os tradicionais é a utilização de uma forma peculiar de inicialização de seus bits quânticos (qubits), onde cada bit é inicializado com uma superposição de valores de bits normais, dessa forma ele pode ser 0, 1 ou uma superposição dos dois, essa inicialização dos qubits é chamada de "mágica" [2].

Ao inicializar os qubits de forma "mágica" temos uma proporção onde o n (número de qubits) é igual a 2ⁿ bits, dessa maneira temos uma progressão exponencial para os poderes computacionais dos computadores quânticos.

Com um computador quântico de 10 qubits o equivalente tradicional seria 1024 bits, já um computador com 13 qubits seria o equivalente a um computador tradicional de 8.192 bits (ou 1 kilobyte).

Os computadores modernos possuem uma arquitetura de 64 bits, um computador quântico com 64 qubits seria o mesmo que um computador tradicional de aproximadamente 18 quintilhões (10^18) de bits.

Esse poder computacional bruto junto com a capacidade de paralelização de operações pode ser utilizado para o processamento que pode ser "infinitamente" paralelizado, mas que não funciona bem para todas as categorias de aplicações que demandam paralelismo.

2. OBJETIVO

O principal objetivo do projeto é comparar abordagens tradicionais com computação quântica para propor o melhor uso das abordagens que demandam poder computacional em aplicações do mundo real, seja convencional ou quântico. Este objetivo está alinhado ao item 1 do projeto do professor.

3. PLANO DE ATIVIDADES DO ESTUDANTE

Este plano de trabalho concentra-se no estuda das técnicas de processamento paralelo convencional e quântico para grupos de atividades de processamento, visando identificar vantagens e limitação para os casos estudados e depois experimentados.

Para realizar estas atividades este subprojeto será dividido em 4 fases, sendo estas:

- 1. Revisão da literatura e definição do estado da técnica: Estudo das técnicas utilizadas em computação quântica. Para isso será realizado: Leitura de artigos científicos e documentação técnica referente a tecnologia em questão. Baseado nesta fase de estudo o aluno deverá ser capaz de propor uma abordagem para categorização de aplicações que demandam processamento intenso em computação tradicional e as que performam bem em computação quântica.
- 2. Construção do cenário para estudo de caso: Para a realização de testes com a utilização da tecnologia convencionais e quânticas, é sugerido a utilização de um ambiente para implementação e testes da nova tecnologia. Desta forma essa fase tem como foco a ambientação com as ferramentas que contempla as necessidades aqui apontadas.
- 3. Desenvolvimento de testes no cenário construído: Após configurado o ambiente (Etapa 2), é necessário implementar a técnica de configuração do ambiente usando computação quântica e convencional. Para isto é necessário integrar a solução desenvolvida no plano de testes das abordagens/categorias definidas para o estudo de caso, e realizar os ajustes necessários de implementação que vierem a ser necessárias.
- Divulgação e publicação dos resultados: será feita no SEMIC e possível submissão de artigo a evento da área.

4. RESULTADOS ESPERADOS

Ao final do projeto espera-se propor a melhor abordagem para uso de algoritmos em um computador quântico e quando não no convencional. Apesar do tema ser relativamente novo, e justamente por isso ter uma dificuldade maior em desenvolver o trabalho ao final o aluno deverá se capaz de implementar algoritmos que explorem o poder da computação quântica.

5. CRONOGRAMA

A seguir é apresentada a distribuição das principais etapas do projeto ao longo do período previsto para sua execução.

Exemplo de Atividades		20 21					20 22									
	AGO.	SET.	OUT.	NOV.	DEZ.	JAN.	FEV.	MAR.	ABR.	MAIO	JUN.	JUL.	AGO	SET	OUT	
Revisão da literatura e definição do estado da técnica	х	х														
Construção do cenário para estudo de caso		х	х	Х	х	Х	х	Х								
Relatório Parcial							Х									
Desenvolvimento de testes no cenário construído							х	х	Х	Х	Х					
Relatório Final											Х	Х				
SEMIC															Х	

6. REFERÊNCIAS

- 1. Knill, E. Quantum computing. Nature 463, 441–443 (2010). https://doi-org.ez433.periodicos.capes.gov.br/10.1038/463441a
- 2. Bartlett, S. Powered by magic. Nature 510, 345–347 (2014). https://doiorg.ez433.periodicos.capes.gov.br/10.1038/nature13504