بسمه تعالى

نام و نام خانوادگی : نوید نادری علی زاده - شماره ی دانشجویی : ۸۶۱۰۸۷۴۴ - رشته : مهندسی برق -گروه : ۱ - زیر گروه : ۲ - تاریخ انجام آزمایش : ۸۷/۱/۳۱ - ساعت : ۲۰:۳۰ -دستیار آموزشی : خانم فضل علی

آزمایش شماره ی ۷

عنوان آزمایش: آونگ کاتر

هدف آزمایش: اندازه گیری شتاب ثقل زمین به کمک آونگ کاتر.

وسایل مورد نیاز: آونگ کاتر ، زمان سنج (کرونومتر) ، متر یا خط کش .

نظریه:

آونگ مرکب ، جسمی صلب (rigid) است که ممکن است هیچ گونه تقارنی از لحاظ ظاهر روی آن دیده نشود ؛ این جسم حول یک محور (در می دند . اگر فاصله ی این محور تا مرکز جرم را برابر G (CM) مجرم جسم را برابر G (G) شتاب ثقل زمین را با G (G) بختی دورانی (rotational inertia) جسم حول محور دوران را با G (G) و دوره ی نوسانات جسم حول آن محور را با G نشان دهیم ، رابطه ی زیر برقرا، است ،

$$T = \sqrt[3]{\frac{I}{mgd}} (*)$$

در این آزمایش ، ما به دنبال محوری به نام O' با فاصله ی d' از مرکز جرم می گردیم به طوری که دوره ی نوسانات جسم حول آن محور ، با دوره ی نوسان حول O برابر باشد . اگر لختی دورانی جسم : حول O' ا با I' نشان دهیم ، این رابطه نیز برقرار است

$$T = r\pi \sqrt{\frac{I'}{mgd'}}$$

از برابری دوره ی نوسانات در دو وضعیت داریم :

$$\sqrt{\frac{I'}{mgd'}} = \sqrt{\frac{I}{mgd}} \rightarrow \frac{I'}{d'} = \frac{I}{d} \rightarrow I' = \frac{d'}{d}I \ (**)$$

اگر لختی دورانی جسم حول مرکز جرم را با I_{CM} نشان دهیم ، از قضیه ی محورهای موازی (parallel axis theorem) داريم :

$$\begin{split} I &= I_{CM} + md^{\top}, \quad I' = I_{CM} + md^{\top^{\top}} \rightarrow I - I' = m(d^{\top} - d^{\top^{\top}}) \ (***) \\ (**), (***) &\rightarrow I - \frac{d'}{d}I = m(d^{\top} - d^{\top^{\top}}) \rightarrow \frac{d - d'}{d}I = m(d - d')(d + d') \\ I &= md(d + d') \xrightarrow{(*)} T = \gamma \pi \sqrt{\frac{d + d'}{g}} \end{split}$$

بنابراین اگر فاصله ی دو محور یعنی d+d' را d+d' بنامیم ، رابطه ی فوق به صورت زیر در می آید :

$$T = \gamma \pi \sqrt{\frac{L}{g}}$$

که رابطه ی دوره ی تناوب آونگ ساده است.پس با داشتن L و T ، می توان مقدار g را محاسبه کرد.

روند انجام آزمایش:

فاصله ی مهره های D و D را به ترتیب از تیغه های E و E برابر همدیگر و برابر فواصل خواسته شده در جدول قرار می دهیم . در هر مرحله ، پس از تنظیم فواصل بین مهره ها و تیغه ها ، آونگ را ابتدا حول تیغه ی E و سپس حول تیغه ی E به نوسان در می آوریم . قبل از به نوسان در آوردن آونگ ، تکیه گاه را با استفاده از پیچی که روی پایه ی آن تعبیه شده است ، طوری تنظیم می کنیم که تیغه های آونگ ، به طور کامل بر روی تکیه گاه قرار گیرند و در حین آزمایش نلغزند . سپس آونگ را حول تیغه ای که روی تکیه گاه قرار دارد ، با دامنه ی کم به نوسان در می آوریم . پس از انجام چند نوسان ، دکمه ی start زمان سنج را فشار می دهیم و زمان ۱۰۰ نوسان را اندازه می گیریم . سپس بدون دست زدن به مهره ها و تغییر مکان آنها ، آونگ را بر عکس می کنیم و به همان صورت ، آونگ را حول تیغه ی E به نوسان در می آوریم و زمان ۲۰ ، ۳۰ و ۴۰ سانتی متری نیز تکرار می کنیم .

نمودار زمان نوسانات را بر حسب فاصله ی مهره ها از تیغه ها ، بر روی کاغذ میلی متری رسم می کنیم . مشاهده می کنیم که نمودار های مربوط به تیغه های F و F در یک نقطه همدیگر را قطع می کنند . مولفه ی F مربوط به مختصات آن نقطه (که آنرا F می نامیم) را به طور تقریبی از روی نمودارها به دست می آوریم و این بار مهره ها را در فاصله ی F از دو تیغه قرار می دهیم و دوباره زمان ۱۰۰ نوسان را حول دو تیغه اندازه می گیریم که این دو زمان تقریبا باید با هم برابر باشند . میانگین دو زمان به دست آمده را محاسبه کرده ، تقسیم بر ۱۰۰ می کنیم تا دوره ی تناوب میانگین (F) بدست آید . از روی این دوره ی تناوب و فاصله ی F یعنی فاصله ی بین دو تیغه ی F و F ، شتاب ثقل زمین بدست می آید .

جدول ها:

ونگ دو طرفه	ایجاد شرط ا	جدول ۱ –
-------------	-------------	----------

۴.	٣٠	۲٠	١٠	X، فاصله ی دو مهره از تیغه ها (cm)
118.10	۱۸۷.۰۵	184.97	۱۸۸.۹۸	زمان ۱۰۰ نوسان حول E (s)
۱.۸۶	۱.۸۷	۸۸.۲	۱.۸۹	دوره ی تناوب نوسانات حول S) E
۸۲.۶۷۱	۱۸۰.۵۹	۱۸۳.۹۳	74.641	زمان ۱۰۰ نوسان حول F (s)
١.٧٩	١٨١	1.14	1.90	دوره ی تناوب نوسانات حول S) F)

 X_N (cm) = 11.7

جدول ۲ - آونگ دو طرفه

٨٨.٠	L ، فاصله ی دو تیغه ی E و cm) F ،
71.11	زمان ۱۰۰ نوسان حول تیغه ی S) E
۱۸۸.۶۹	زمان ۱۰۰ نوسان حول تیغه ی S) F
١.٨٩	دوره ی تناوب میانگین (s) T _m

خواسته ها:

خواسته ی ۱ :

در نمودار فوق ، برای افزایش دقت اندازه گیری ، نمودار های توانی (power) را از نقاط اندازه گیری شده با استفاده از نرم افزار Excel عبور داده ایم که معادلات مربوطه هم در کنار هر نمودار نوشته شده است . برای به دست آوردن T ، کافیست عرض نقطه ی تلاقی دو نمودار را به دست آوریم :

$$\begin{aligned} 1.971x^{-\cdots} &= Y. \cdot 98x^{-\cdots^{k}} \to x^{\cdots^{k}} = \frac{Y. \cdot 98}{1.971} \cong 1. \cdot A. \to x^{\cdots} \cong 1. \cdot Y8 \to x^{-\cdots^{k}} \cong \cdot.970 \\ &\to T = 1.971x^{-\cdots^{k}} \cong 1.897s \end{aligned}$$

دوره ی تناوب میانگین بدست آمده در آزمایش (T_m) برابر ۱.۸۹ است که با دقت بسیار خوبی با مقدار تحلیلی T=1.۸۹ برابر است .

خواسته ی ۲:

برای بدست آوردن شتاب ثقل، از رابطه ی دوره ی تناوب آونگ ساده $T=\Upsilon\pi\sqrt{\frac{L}{g}}$ ساده می کنیم: $T=\Upsilon\pi\sqrt{\frac{L}{g}} \to g= \Upsilon\pi^{\intercal}\frac{L}{T^{\intercal}}= \Upsilon\pi^{\intercal}\frac{\Lambda\Lambda}{(1.\Lambda^{q})^{\intercal}}\cong \P\Upsilon\Upsilon.\Delta\Upsilon \ ^{CM}/_{S^{\intercal}}$

بنابراین درصد خطای نسبی از این رابطه ی بدست می آید:

$$E_{\rm rel} \cong \frac{9 \text{ YY.DY} - 9 \text{ VA}}{9 \text{ YY.DY}} = \frac{-0.57}{9 \text{ YY.DY}} \cong - \cdot .05$$

سوالات:

با استفاده از رابطه ی دوره ی تناوب و دقت اندازه گیری های طول و زمان، درصد خطای نسبی در اندازه گیری شتاب ثقل زمین را محاسبه کنید. درصد خطای نسبی محاسبه شده در خواسته ی ۲ با این مقدار چه رابطه ای دارد؟

$$g = \Re \pi^{\gamma} \frac{L}{T^{\gamma}} \rightarrow (\Delta g)^{2} = \left(\frac{\partial g}{\partial L} \Delta L\right)^{2} + \left(\frac{\partial g}{\partial T} \Delta T\right)^{2} = \left(4\pi^{2} \frac{\Delta L}{T^{2}}\right)^{2} + \left(-8\pi^{2} \frac{L\Delta T}{T^{8}}\right)$$

$$\rightarrow (\Delta g)^{2} = \left(4\pi^{2} \frac{0.1}{(1.89)^{2}}\right)^{2} + \left(-8\pi^{2} \frac{88*0.01}{(1.89)^{3}}\right)^{2}$$

$$\rightarrow (\Delta g)^{2} \cong 1.22 + 105.92 = 107.14 \rightarrow \Delta g \cong 10.35 \, \text{cm}/\text{s}^{2}$$

$$\rightarrow \frac{\Delta g}{g} \cong \frac{\text{V...YA}}{\text{RYY.AY}} \cong \text{V...FI}$$

خطای بدست آمده به این روش ، علامت را مشخص نمی کند ولی در روش قبل ، مشخص می شود که مقدار اندازه گیری شده از مقدار واقعی بیشتر است یا کمتر . همچنین مشاهده می شود که مقادیر دو خطا با هم متفاوتند ؛ یکی از دلایل هم این می تواند باشد که در روش قبل ، ما از مقدار واقعی g برای محاسبه ی خطا استفاده کردیم ؛ در حالیکه در روش اخیر ، از مقدار واقعی g ، هیچ استفاده ای نکردیم ؛ بنابراین می توان گفت که روش اول ، به علت استفاده از مقدار واقعی g ، دقیق تر و در عین حال ، محاسبه ی خطا به آن روش ، ساده تر از روش دوم است .