逻辑回归与梯度下降原理详解

机器学习教程

目录

1	逻辑	回归识别手写数字教程	1
	1.1	代码概览	1
		1.1.1 导入库	1
	1.2	MNIST 数据集	1
	1.3	数据预处理	2
		1.3.1 展平图像	2
		1.3.2 归一化到 [0, 1]	2
	1.4	逻辑回归模型	2
		1.4.1 逻辑回归原理	2
		1.4.2 超参数解释	3
	1.5	模型评估	3
	1.6	逻辑回归核心数学公式	4
		1.6.1 二分类情况	4
		1.6.2 多分类情况(Softmax 函数)	4
2	逻辑	回归数学原理深度解析	4
_	2.1	逻辑回归的目标	4
	2.2	线性组合: $w^Tx + b$	4
	2.3	偏置项 b 的作用	5
	2.4	从线性模型到概率模型	5
	2.5	参数 w 和 b 的学习过程	5
		2.5.1 训练数据	5
		2.5.2 模型预测	5
		2.5.3 损失函数	6

1	逻辑	回归识别手写数字教程	2
		2.5.4 参数优化	6
3	梯度	下降原理详解	6
	3.1	直觉理解	6
	3.2	梯度下降思路	6
	3.3	数学解释	6
	3.4	学习率 η	7
	3.5	梯度下降示例	7
	3.6	逻辑回归中的梯度公式	7
	3.7	核心概念总结	8

1 逻辑回归识别手写数字教程

1.1 代码概览

这段代码的目标是:训练一个逻辑回归模型,让它识别 0 9 的手写数字。

import numpy as np
from sklearn.linear_model import LogisticRegression
from tensorflow.keras.datasets import mnist

1.1.1 导入库

- numpy: 科学计算库,用于操作矩阵、数组
- sklearn.linear_model: Scikit-Learn 的机器学习模块
- tensorflow.keras.datasets: Keras 自带的数据集

1.2 MNIST 数据集

(X_train , y_train), (X_test , y_test) = mnist.load_data() 自动下载并加载经典数据集:

• X_{train}: 训练图片 (60000 张 28×28 像素灰度图)

1 逻辑回归识别手写数字教程

3

• y_{train}: 对应的标签(09)

● X_{test}: 测试图片(10000 张)

• y_{test}: 测试标签

图片	标签
手写的"3"	3
手写的"7"	7

表 1: MNIST数据集示例

1.3 数据预处理

1.3.1 展平图像

$$X_{\text{train}} = X_{\text{train.reshape}}(-1, 784)$$

 $X_{\text{test}} = X_{\text{test.reshape}}(-1, 784)$

原始图片是 28×28 像素, 展平为 784 维向量。

1.3.2 归一化到 [0, 1]

$$X_{train} = X_{train.astype}('float32') / 255$$

 $X_{test} = X_{test.astype}('float32') / 255$

像素值从0255归一化到01区间。

1.4 逻辑回归模型

```
 \begin{array}{lll} {\rm clf} &=& {\rm LogisticRegression} \, (\, {\rm penalty="l1\,"} \, , & {\rm solver="saga"} \, , & {\rm tol=0.} \\ {\rm clf.fit} \, (\, {\rm X\_train} \, , & {\rm y\_train} \, ) \\ \end{array}
```

1.4.1 逻辑回归原理

逻辑回归是分类算法,预测样本属于某类的概率。输入图片向量 x,模型计算:

$$P(y = k \mid x) = \frac{e^{w_k^T x + b_k}}{\sum_{j=0}^{9} e^{w_j^T x + b_j}}$$

这就是 Softmax 回归(逻辑回归的多分类版本)。

其中:

- *w_k*: 第 *k* 个数字的权重向量(784维)
- b_k: 偏置
- 输出是每个数字的概率, 选概率最大的类别作为预测

1.4.2 超参数解释

- penalty="11": 使用 L1 正则化
- solver="saga": 优化算法,适合大数据和 L1
- tol=0.1: 容忍误差
- max_iter=100: 最大迭代次数

L1 正则化 (稀疏化): 训练时最小化损失函数:

$$L = -\sum_{i} \log P(y_i|x_i) + \lambda \sum_{i} |w_i|$$

第二项是正则项, 用来防止过拟合。

1.5 模型评估

计算测试集上的准确率:

$$accuracy = \frac{5}{2} \frac$$

输出约为: Test score with L1 penalty: 0.9187

5

1.6 逻辑回归核心数学公式

1.6.1 二分类情况

$$\hat{y} = \sigma(w^T x + b)$$

其中 Sigmoid 函数:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

将任意数转换为 01 之间的概率。

1.6.2 多分类情况(Softmax 函数)

$$P(y = k|x) = \frac{e^{w_k^T x + b_k}}{\sum_{j} e^{w_j^T x + b_j}}$$

2 逻辑回归数学原理深度解析

2.1 逻辑回归的目标

逻辑回归要解决的问题是:给定一组特征 x,预测它属于某个类别(比如"是否是数字3")的概率。

2.2 线性组合: $w^T x + b$

假设每个像素都是一个特征(总共784个),每个特征都有一个权重参数 w_i 表示重要程度。加权求和:

$$z = w_1 x_1 + w_2 x_2 + \dots + w_{784} x_{784} + b$$

或用矩阵形式:

$$z = w^T x + b$$

- x: 输入(784维向量)
- w: 模型参数 (784个数字)
- b: 偏置 (bias), 相当于"起点调整"

2 逻辑回归数学原理深度解析

6

• $w^T x$: 内积(dot product)

这一步的本质是: 把一个高维输入 x, 通过加权求和压缩成一个实数 z。

2.3 偏置项 b 的作用

如果没有 b,函数就一定过原点 (0,0),灵活性太低。加上 b 就相当于给整个函数"上下平移"的自由度。

2.4 从线性模型到概率模型

 $z=w^Tx+b$ 的结果可能是任意实数,但我们希望输出是概率(0 1之间)。引入 **Sigmoid 函数**:

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

这样:

- 当 z 很大时, $\hat{y} \rightarrow 1$
- 当 z 很小时, $\hat{y} \rightarrow 0$

所以:

$$\hat{y} = P(y = 1|x) = \sigma(w^T x + b)$$

2.5 参数 w 和 b 的学习过程

参数不是人工设定的,而是通过训练数据"学出来"的。

2.5.1 训练数据

$$(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$$

2.5.2 模型预测

对每个样本:

$$\hat{y_i} = \sigma(w^T x_i + b)$$

2.5.3 损失函数

逻辑回归使用交叉熵损失:

$$L(w,b) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

2.5.4 参数优化

通过梯度下降最小化损失函数:

$$w := w - \eta \frac{\partial L}{\partial w} \tag{1}$$

$$b := b - \eta \frac{\partial L}{\partial b} \tag{2}$$

3 梯度下降原理详解

3.1 直觉理解

损失函数 L(w,b) 告诉我们模型预测的误差。目标是最小化这个误差,就像在山地地形图上找最低点。

3.2 梯度下降思路

站在山上某一点(当前 w,b),要走到谷底(最小点),需要沿着最陡的下坡方向走,即梯度的反方向。

3.3 数学解释

梯度是损失函数对参数的偏导数组:

$$\nabla L = \left[\frac{\partial L}{\partial w}, \frac{\partial L}{\partial b} \right]$$

梯度下降更新公式:

$$w_{\text{new}} = w_{\text{old}} - \eta \frac{\partial L}{\partial w} \tag{3}$$

$$b_{\text{new}} = b_{\text{old}} - \eta \frac{\partial L}{\partial b} \tag{4}$$

3.4 学习率 η

学习率控制每次"下山"的步长:

• 太小: 收敛慢, 训练时间长

• 太大: 可能震荡或不收敛

3.5 梯度下降示例

以简单二次函数为例:

$$L(w) = (w-3)^2$$

求导:

$$\frac{dL}{dw} = 2(w-3)$$

梯度下降:

$$w := w - \eta \times 2(w - 3)$$

迭代	当前 w	梯度 $2(w-3)$	新的 $w (\eta = 0.1)$
0	0.0	-6.0	$0 - 0.1 \times (-6) = 0.6$
1	0.6	-4.8	$0.6 - 0.1 \times (-4.8) = 1.08$
2	1.08	-3.84	$1.08 - 0.1 \times (-3.84) = 1.464$
3	1.464	-3.072	$1.464 - 0.1 \times (-3.072) = 1.7712$
			最终逼近 $w=3$

表 2: 梯度下降迭代过程

3.6 逻辑回归中的梯度公式

逻辑回归损失函数:

$$L(w,b) = -\frac{1}{N} \sum_{i} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

其中:

$$\hat{y_i} = \sigma(w^T x_i + b)$$

3 梯度下降原理详解

9

求导结果:

$$\frac{\partial L}{\partial w} = \frac{1}{N} \sum_{i} (\hat{y}_i - y_i) x_i \tag{5}$$

$$\frac{\partial L}{\partial w} = \frac{1}{N} \sum_{i} (\hat{y}_i - y_i) x_i$$

$$\frac{\partial L}{\partial b} = \frac{1}{N} \sum_{i} (\hat{y}_i - y_i)$$
(6)

核心概念总结 3.7

概念	含义
L(w,b)	损失函数,越小表示模型越准
$\frac{\partial L}{\partial w}$	告诉我们 w 应该往哪个方向改才能让损失变小
η	学习率,控制每次改多少
更新公式	$w := w - \eta rac{\partial L}{\partial w}$
结果	经过多次迭代,最终找到让损失最小的 w,b

表 3: 梯度下降核心概念