This is a collection of old real analysis qualifier exam solutions.

August 2019

Problem 1

(a) Recall that the Cantor set \mathcal{C} is defined to consist of all $x \in [0,1]$ such that x only contains 0 and 2 in the ternary expansion of x. Writing $a \in [0,2]$ as

$$a = \sum_{k=0}^{\infty} \frac{a_k}{3^k},$$

where $a_k \in \{0,1,2\}$, we may then find a_k at each ternary expansion slot for k as follows:

- if $a_k = 0$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = c_k = 0$
- if $a_k = 2$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = 2$ and $c_k = 0$ or vice versa.
- if $a_k = 1$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_{k+1} = c_{k+1} = 2$.

Therefore, since every digit of every ternary expansion in [0,2] can be obtained from \mathbb{C} , we see that $\mathbb{C} + \mathbb{C} = [0,2]$.

(b) We may set B to be the union of all integer translates of \mathbb{C} , and set A = \mathbb{C} . This yields closed subsets of \mathbb{R} with Lebesgue measure zero that sum to \mathbb{R} .

Problem 2

Consider the sequence of functions

$$f_n(x) = n \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]},$$

defined on [0,1]. This sequence is pointwise convergent everywhere to zero, as $f_n(0) = 0$ and the Archimedean property give that for any $x \in (0,1]$, there is some n large enough that gives $\frac{1}{n} < x$. Furthermore, we see that

$$\int f_n d\mu = n \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
$$= \frac{1}{n+1}$$
$$\to 0.$$

Finally, we see that by taking suprema, we have the integral

$$\int \Phi d\mu = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

$$\to \infty.$$

Problem 4

Suppose toward contradiction that both f and 1/f are in $L_1(\mathbb{R})$. Then, from Hölder's Inequality, we have

$$\infty = \int 1 d\mu$$

$$\leq \left(\int f d\mu \right)^{1/2} \left(\int \frac{1}{f} d\mu \right)^{1/2}$$

$$\leq \infty.$$

which is a contradiction.

Problem 5

(a) Let $f \in L_2([-1,1])$. We may find $g \in C([-1,1])$ such that $\|f-g\|_{L_2} < \epsilon/2$. Similarly, we may find a polynomial p such that $\|g-p\|_{\mathfrak{U}} < \epsilon/4$, meaning that $|p(x)-g(x)| < \epsilon/4$ for all $x \in [-1,1]$. This yields

$$\|p - g\|_{L_2} = \left(\int_{-1}^{1} |p(x) - g(x)|^2 dx\right)^{1/2}$$

$$< \left(\int_{-1}^{1} \left(\frac{\varepsilon}{4}\right)^2 dx\right)^{1/2}$$

$$= \left(\frac{\varepsilon^2}{8}\right)^{1/2}$$

$$< \frac{\varepsilon}{2},$$

so $\|f - p\|_{L_2} < \varepsilon$, meaning that the closed linear span of the monomials is dense in L₂, and the Legendre polynomials form an orthonormal system.

(b) We see that at every step in evaluating the expression

$$L_n(x) = c_n \frac{d^n}{dx^n} \left(x^2 - 1\right)^n, \tag{*}$$

the degree of the polynomial increases by 1, so each $L_n(x)$ has degree n. To verify that the polynomials generated from (*) are orthogonal to each other, we let n>m without loss of generality, and use integration by parts to obtain

$$\begin{split} \langle L_n, L_m \rangle &= \int_{-1}^1 \left(\frac{d^n}{dx^n} \left(x^2 - 1 \right)^n \right) \left(\frac{d^m}{dx^m} \left(x^2 - 1 \right)^m \right) dx \\ &= \frac{d^{n-1}}{dx^{n-1}} \left(x^2 - 1 \right)^n \frac{d^m}{dx^m} \left(x^2 - 1 \right)^m \Big|_{-1}^1 - \int_{-1}^1 \frac{d^{n-1}}{dx^{n-1}} \left(x^2 - 1 \right)^n \frac{d^{m+1}}{dx^{m+1}} \left(x^2 - 1 \right)^m dx \\ &\vdots \\ &= (-1)^n \int_{-1}^1 \frac{d^{m+n}}{dx^{m+n}} \left(x^2 - 1 \right)^m dx \\ &= (-1)^n \int_{-1}^1 \frac{d^n}{dx^n} \left(\frac{d^m}{dx^m} \left(x^2 - 1 \right)^m \right) dx \\ &= (-1)^n \int_{-1}^1 \frac{d^n}{dx^n} L_m(x) dx \\ &= 0, \end{split}$$

seeing as we are taking n derivatives of a degree m < n polynomial.

January 2020

Problem 1

(a) This is false. If $A \subseteq [0,1]$ is the "fat Cantor set" constructed similar to the traditional Cantor, but obtained by deleting the middle fourth of each subinterval rather than the middle third, then $\mu(A) = \frac{1}{2}$, but A is nowhere dense, meaning that if $U \subseteq A$ is open, then $U = \emptyset$.

To see that A is nowhere dense, we see that A is closed, so if $x \in A \subseteq [0,1]$, and $\varepsilon > 0$, we may show that the interval $(x - \varepsilon, x + \varepsilon)$ is not contained in A. In the recursive construction of A, we may see that there is some step \mathfrak{n}_1 such that $\frac{1}{4^{\mathfrak{n}_1}} < 2\varepsilon$, implying that $(x - \varepsilon, x + \varepsilon)$ is not contained in the recursive construction at \mathfrak{n}_1 . Therefore $A^{\circ} = \emptyset$.

(b) This is true. By the definition of the Lebesgue outer measure, for any $\epsilon > 0$, there are $\{(a_k, b_k)\}_{k=1}^{\infty}$ such that

$$\mu(A) + \varepsilon < \mu \left(\bigcup_{k=1}^{\infty} (a_k, b_k) \right),$$

so by setting

$$U = \bigcup_{k=1}^{\infty} (a_k, b_k),$$

we have that U is open, meaning that by the definition of infimum, we get

$$\mu(A) = \inf\{U \mid A \subseteq U, U \text{ open}\}.$$

Remark: Part (a) can be solved by selecting $A = \mathbb{R} \setminus \mathbb{Q} \cap [0, 1]$.

Problem 3

- (a) Consider the algebra of polynomials on [0,1] without a constant term. Then, since linear combinations and multiplications still yield polynomials without constant term, and f(x) = x separates points in [0,1], this algebra satisfies the requirements of the question. Yet, since all elements of this algebra are equal to zero at x = 0, the uniform closure of the algebra yields all the continuous functions on [0,1] with f(0) = 0.
- (b) In order to satisfy the requirements of the Stone–Weierstrass theorem, we need the algebra $\mathcal A$ to include the constant functions.

Problem 4

We consider the signed measure on \mathcal{F} defined by

$$\nu(E) = \int_{E} f d\mu,$$

meaning that $\nu \ll \mu$, so the function $g \coloneqq \frac{d\nu}{d\mu}$, where $\frac{d\nu}{d\mu}$ denotes the Radon–Nikodym derivative of ν with respect to μ (where we restrict μ to $\mathcal F$), is $\mathcal F$ -measurable (by Radon–Nikodym) and in $L_1(\mathbb R,\mathcal F,\mu)$. This gives, for all $E \in \mathcal F$,

$$\int_{E} g \ d\mu = \int_{E} \frac{d\nu}{d\mu} \ d\mu$$
$$= \int_{E} d\nu$$
$$= \nu(E)$$
$$= \int_{E} f \ d\mu.$$

Problem 5

Let $M = \mu(X)$.

Let $(f_n)_n \to f$ in measure, and let $\varepsilon > 0$. If we let

A =
$$\{x \mid |f_n(x) - f(x)| > \varepsilon/2M\}$$

B = $\{x \mid |f_n(x) - f(x)| \le \varepsilon/2M\}$,

we have

$$\begin{split} \int_X min(1,|f_n-f|) \; d\mu &= \int_A min(1,|f_n-f|) \; d\mu + \int_B min(1,|f_n-f|) \; d\mu \\ &\leqslant \mu(A) + \epsilon/2 \\ &< \epsilon/2 + \epsilon/2 \\ &= \epsilon. \end{split}$$

Meanwhile, if

$$\int_X \min(1, |f_n - f|) \, \mathrm{d}\mu \to 0,$$

then by Chebyshev's Inequality, we have, for a fixed $0 < \varepsilon \le 1$,

$$\mu(\lbrace x \mid |f_n - f| \ge \varepsilon\rbrace) = \mu(\lbrace x \mid \min(1, |f_n - f|) \ge \varepsilon\rbrace)$$

$$\le \frac{1}{\varepsilon} \int_X \min(1, |f_n - f|) d\mu$$

$$\to 0,$$

so $(f_n)_n \to f$ in measure.

August 2020

Problem 1

This is false. To see this, let $\mathfrak{C}(x)$ denote the Cantor–Lebesgue function, and let

$$h(x) = \sum_{n = -\infty}^{\infty} \mathfrak{C}(x - n) + n.$$

Then, since $\mathfrak{C}(x)$ has derivative zero almost everywhere, the sum of a number of translates of $\mathfrak{C}(x)$ still has derivative zero almost everywhere. Then, setting

$$f(x) = h(x) + x,$$

we get that f(x) has derivative equal to 1 almost everywhere. However, at the same time, f(2) - f(1) = 2.

Problem 2

We show the inverse problem, which is that every closed set in \mathbb{R}^2 is G_δ . To do this, we let $A \subseteq \mathbb{R}^2$ be closed, nonempty, and proper (if $A = \emptyset$ or $A = \mathbb{R}^2$ the answer is trivial).

Then, there is some $x \in A^c$, and specifically there is $x \in A^c$ with rational coordinates (else, select $y \in \mathbb{Q}^2$ within the ball of radius ε that allows A^c to be open). Furthermore, since \mathbb{R}^2 is a metric space, \mathbb{R}^2 is regular, so there are open U_x and V_x such that $A \subseteq U_x$, $x \in V_x$, and $U_x \cap V_x = \emptyset$.

Therefore, we get

$$A = \bigcap \{ U_x \mid x \in \mathbb{Q}^2 \setminus A \},\,$$

meaning that A is G_{δ} . Taking complements, we thus get that every open set is F_{σ} .

Problem 3

(a) We see that

$$\begin{split} \left\langle \mathsf{Pf_i}, \mathsf{f_j} \right\rangle &= \delta_{i+1,j} \\ &= \delta_{i,j-1} \\ &= \left\langle \mathsf{f_i}, \mathsf{f_{j-1}} \right\rangle \\ &= \left\langle \mathsf{f_i}, \mathsf{P}^* \mathsf{f_j} \right\rangle, \end{split}$$

so that $Pf_n = f_{n-1}$ if n > 1. Else, if n = 1, then $P^*f_n = 0$.

(b) We see that, acting on the orthonormal basis $(f_n)_n$, $P^*P(f_n) = f_n$, and

$$PP^*(f_n) = \begin{cases} 0 & n = 1 \\ 1 & else, \end{cases}$$

so that $P^*P = I$ and PP^* is as above.

Problem 4

We see that

$$\mu(\{x \mid f_n(x) > t\}) = \mu(X) - \mu(\{x \mid f_n(x) \le t\}),$$

so by taking limits, we find that

$$\lim_{n\to\infty} \mu(\{x\mid f_n(x)>t\}) = \begin{cases} 1 & t<0\\ 0 & t\geqslant 0 \end{cases}.$$

So, if $\varepsilon > 0$, then

$$\begin{split} \mu(\{x \mid |f_{n}(x)| > \epsilon\}) &= \mu(\{x \mid f_{n}(x) < -\epsilon\}) + \mu(\{x \mid f_{n}(x) > \epsilon\}) \\ &\leq \mu(\{x \mid f_{n}(x) \leq -\epsilon\}) + \mu(\{x \mid f_{n}(x) > \epsilon\}) \\ &\to 0. \end{split}$$

August 2022

Problem 1

We note that

$$\left| \frac{n \sin(x/n)}{x(1+x^2)} \right| \le \left| \frac{n(x/n)}{x(1+x^2)} \right|$$
$$= \frac{1}{1+x^2},$$

and since $\frac{1}{1+x^2}$ is integrable, we may use Dominated Convergence to switch limit and integral, giving

$$\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x(1+x^2)} dx = \int_0^\infty \lim_{n \to \infty} \frac{n \sin(x/n)}{x(1+x^2)} dx$$

$$= \int_0^\infty \lim_{n \to 0} \frac{\frac{1}{h} \sin(hx)}{x(1+x^2)} dx$$

$$= \int_0^\infty \frac{x}{x(1+x^2)} dx$$

$$= \frac{\pi}{2}.$$

Problem 2

(a) Let f be Lipschitz, and let M denote the Lipschitz constant — i.e., $|f(x) - f(y)| \le |x - y|$ for all $x, y \in [a, b]$. Set $\delta = \frac{\varepsilon}{M}$. Then, if $\{(\alpha_j, b_j)\}_{j=1}^k$ is a partition such that $\sum_{j=1}^k |b_j - a_j| < \delta$, we have

$$\sum_{j=1}^{k} |f(b_j) - f(a_j)| \le M \sum_{j=1}^{k} |b_j - a_j|$$

$$< \varepsilon$$

Thus, f is absolutely continuous. Now, if $x, x + h \in [a, b]$, we have that

$$\left|\frac{f(x+h)-f(x)}{h}\right|\leqslant M,$$

meaning that

$$|f'(x)| = \lim_{h \to 0} \left| \frac{f(x+h) - f(x)}{h} \right|$$

 $\leq M,$

and since f'(x) exists for a.e. $x \in [a,b]$, we have that $\operatorname{ess\,sup}_{x \in [a,b]} |f'(x)| \leq M$, so $f' \in L_{\infty}([a,b])$.

Let f be absolutely continuous with bounded derivative. Then, if M is the essential supremum of the f', the fundamental theorem of calculus gives

$$|f(y) - f(x)| = \left| \int_{x}^{y} f'(t) dt \right|$$

$$\leq \int_{x}^{y} |f'(t)| dt$$

$$\leq \int_{x}^{y} M dx$$

$$= M|y - x|,$$

so f is Lipschitz.

(b) If f is such that f'(x) exists, then for $x, x + h \in [a, b]$, we have

$$\left| \frac{f(x+h) - f(x)}{h} \right| \le \|f\|_{\text{Lip'}}$$

so by taking limits, we have

$$|f'(x)| \leqslant \|f\|_{Lip}.$$

Thus, this ordering must respect essential suprema, meaning

$$\|f'\|_{L_{\infty}} \leqslant \|f\|_{\operatorname{Lip}}.$$

Furthermore, if $\varepsilon > 0$, there are $x, y \in [a, b]$ with x < y such that

$$\begin{aligned} \|f\|_{\operatorname{Lip}} - \varepsilon &< \left| \frac{f(y) - f(x)}{y - x} \right| \\ &= \frac{1}{|y - x|} \left| \int_{x}^{y} f'(t) \, dt \right| \\ &\leqslant \frac{1}{|y - x|} \int_{x}^{y} |f'(t)| \, dt \\ &\leqslant \frac{1}{|y - x|} \int_{x}^{y} \|f'\|_{L_{\infty}} \, dt \\ &= \|f'\|_{L_{\infty'}} \end{aligned}$$

and since ε is arbitrary, we have $\|f\|_{Lip} \le \|f'\|_{L_{\infty}}$.

January 2023

Problem 1

By using Fatou's Lemma, and assuming WLOG that $(f_n)_n \to f$ pointwise everywhere, we get

$$\int_{X} |f|^{p} d\mu = \int_{X} \liminf_{n \to \infty} |f_{n}|^{p} d\mu$$

$$\leq \liminf_{n \to \infty} \int_{X} |f_{n}|^{p} d\mu$$

$$\leq 1.$$

so $\|f\|_{L_p} \le 1$.

Problem 2

Let

$$f(t) = \mu(E \cap (-\infty, t)),$$

and for any sequence $(t_n)_n$, define

$$E_n = E \cap (-\infty, t_n).$$

We will show that f is left- and right-continuous, hence continuous. To start, if $(t_n)_n \searrow t$, then

$$\bigcap_{n\in\mathbb{N}} E_n = E \cap (-\infty, t],$$

so

$$\begin{split} f(t) &= \mu \Biggl(\bigcap_{n \in \mathbb{N}} E_n \setminus \{t\} \Biggr) \\ &= \mu \Biggl(\bigcap_{n \in \mathbb{N}} E_n \Biggr) - \mu (\{t\}). \end{split}$$

Since μ is atomless, we see that $\mu(\{t\}) = 0$, so since $\mu(E) < \infty$,

$$f(t) = \mu \left(\bigcap_{n \in \mathbb{N}} E_n \right)$$
$$= \lim_{n \to \infty} \mu(E_n)$$
$$= \lim_{n \to \infty} f(t_n).$$

Thus, f is right-continuous. Similarly, if f is left-continuous, and $(t_n)_n \nearrow t$, then

$$\bigcup_{n\in\mathbb{N}}\mathsf{E}_n=\mathsf{E}\cap(-\infty,\mathsf{t}),$$

so by continuity from below,

$$f(t) = \mu \left(\bigcup_{n \in \mathbb{N}} E_n \right)$$
$$= \lim_{n \to \infty} \mu(E_n)$$
$$= \lim_{n \to \infty} f(t_n).$$

Therefore, f is continuous. Since

$$\lim_{t \to -\infty} f(t) = 0$$
$$\lim_{t \to \infty} f(t) = \mu(E)$$
$$> 0,$$

the intermediate value theorem gives some $t_0 \in \mathbb{R}$ such that

$$\begin{split} f(t_0) &= \mu(E \cap (-\infty, t_0)) \\ &= \frac{1}{2} \mu(E). \end{split}$$

Problem 4

Let $(f_n)_n$ be Cauchy in $W_p([0,1])$. Then, for all $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \ge N$,

$$\|f_n - f_m\|_{W_p} = |f_n(0) - f_m(0)| + \|f'_n - f'_m\|_{L_p}$$

< ε ,

meaning that both

$$\begin{split} |f_n(0) - f_m(0)| &< \epsilon \\ \|f_n' - f_m'\|_{L_p} &< \epsilon. \end{split}$$

Since $\mathbb C$ and $L_p([0,1])$ are complete, there is $c\in\mathbb C$ and $g\in L_p([0,1])$ such that

$$f_n(0) \to c$$

 $f'_n \to g$.

Define

$$f(x) = c + \int_0^x g(t) dt.$$

Then, we note that by the Fundamental Theorem of Calculus,

$$f'(x) = g(x)$$

$$\in L_p([0,1]),$$

so $f \in W_p([0,1])$. Finally, we see that

$$\begin{split} \|f_n - f\|_{W_p([0,1])} &= |f_n(0) - f(0)| + \|f'_n - f'\|_{L_p} \\ &= |f_n(0) - c| + \|f'_n - g\|_{L_p} \\ &\to 0, \end{split}$$

so $(f_n)_n \to f$ in W_p , meaning W_p is complete.