()	Or	T.O	en	ts

1. Definitions and examples

Definition. A category \mathcal{C} consists of:

- 1. a collection $ob(\mathcal{C})$ of objects A, B, C, ...,
- 2. a collection $mor(\mathcal{C})$ of morphisms f, g, h, ...,
- 3. two operations dom and cod from $mor(\mathcal{C})$ to $ob(\mathcal{C})$. We write $f: A \to B$ to mean f is a morphism and dom(f) = A and cod(f) = B.
- 4. an operation from $ob(\mathcal{C})$ to $mor(\mathcal{C})$ sending A to $\mathbb{1}_A:A\to A$.
- 5. a partial binary operation $(f,g) \mapsto fg$ on mor(C), such that fg is defined iff dom(f) = cod(g), and in this case dom(fg) = dom(g) and cod(fg) = cod(f).

and satisfies the following:

- 1. $f\mathbb{1}_A = f$ and $\mathbb{1}_A g = g$ when the composites are defined.
- 2. f(gh) = (fg)h whenever fg and gh are defined.

Remark.

- $ob(\mathcal{C})$ and $mor(\mathcal{C})$ are not necessarily sets. If they are, then \mathcal{C} is called a **small** category.
- An equivalent definition exists without using objects.
- fg means first apply g, then f.

Example.

- 1. **Set** = the category of all sets and functions between them. (Formally, a morphism of **Set** is a pair (f, B) where f is a set-theoretic function and B is its codomain).
- 2. Algebraic categories:
 - **Gp** is the category of groups and group homomorphisms.
 - Rng is the category of rings and ring homomorphisms.
 - \mathbf{Vect}_K is the category of vector spaces over a field K with linear maps.
- 3. Topological categories:
 - **Top** is the category of topological spaces and continuous maps.
 - **Met** is the category of metric spaces and non-expansive maps (i.e. $d(f(x), f(y)) \le d(x, y)$).
 - Mfd is the category of smooth manifolds and smooth (C^{∞}) maps.
 - **TopGp** is the category of topological groups and continuous homomorphisms.
- 4. Quotient categories:
 - **Htpy** is the category with same objects as **Top** but morphisms are homotopy classes of continuous maps.
 - In general, given a category \mathcal{C} and an equivalence relation \sim on $\operatorname{mor}(\mathcal{C})$ such that $f \sim g \Rightarrow (\operatorname{dom}(f) = \operatorname{dom}(g) \wedge \operatorname{cod}(f) = \operatorname{cod}(g))$, and $f \sim g \Rightarrow fh \sim gh$ when the composites fh and gh are defined, we can form a **quotient** category \mathcal{C}/\sim .
- 5. **Rel** is the category with the same objects as **Set** but with morphisms that are relations $R \subseteq A \times B$, with composition defined by $R \circ S = \{(a, c) : \exists b : (a, b) \in S \land (b, c) \in R\}$.
- 6. **Part** is the category of sets and partial functions.

Definition. For every category \mathcal{C} , the **opposite category** \mathcal{C}^{op} has the same objects and morphisms as \mathcal{C} , but dom and cod are interchanged and composition is reversed. This yields a **duality principle**: if P is a true statement about categories, then so is P^* (which is obtained by reversing arrows in P).

Definition. A **monoid** is a small category with one object * (a semigroup with an identity element). In particular, a group is a 1-object where all morphisms are isomorphisms.

Definition. A **groupoid** is a category where every morphism is an isomorphism.

Example. The fundamental groupoid of a space X, $\pi_1(X)$, is the category where objects are the points of X, and morphisms $x \to y$ are homotopy classes of path from x to y. (Note this depends only on X, whereas the fundamental group depends on X and a point $x \in X$).

Definition. A category is **discrete** if the only morphisms are identities.

Definition. A category \mathcal{C} is a **preorder** if for every pair of objects (A, B), there exists at most 1 morphism $A \to B$, then mor(C) becomes a reflexive and transitive relation on ob(C).

In particular, a poset is a small preorder where the only isomorphisms are identities.

Example. For a field K, the category \mathbf{Mat}_K has natural numbers as objects, morphisms $n \to m$ are $m \times n$ matrices with entries from K, and composition is matrix multiplication.