

圖 5-2 通道長度調變效應下的輸出特性 $I_D - V_D$ 曲線,其有類似 BJT 的 Early 效 應與電壓 V_A 。

5.1.2 速度飽和 (velocity saturation)

在§4.4.4 節中曾提到,有兩個因素使得MOSFET 反轉層中的載子遷移率 μ_{eff} 並不是一個常數。已介紹了 μ_{eff} 會隨有效橫貫電場 E_{eff} (或說成閘極電壓 V_G)的增加而降低,如(4.36)式所示;而另一個因素就是本節要討論的速度飽和。圖 5-3 為在矽中電子與電洞漂移速度表示為電場的關係圖。明顯地,在低電場時漂移速度與電場成正比關係,且比例常數即為電子或電洞的遷移率。當電場逐漸增加時,漂移速度的增加率趨緩。直到足夠大的電場時,漂移速度趨近於一個極限值稱為飽和速度(saturation velocity) v_{sat} ,且將此現象稱為速度飽和(velocity saturation)。

例如矽中電子的漂移速度在電場約為 $4\times10^4\text{V/cm}$ 時,會達到一個約 10^7cm/sec 的飽和速度值。至於電洞的飽和速度值由圖 5-3 可知是稍小於電子的,而且由於電洞有較低的遷移率,所以電洞的速度飽和是發生在較高的電場下(約 10^5V/cm)。注意,上述發生速度飽和的高電場值與短通道 MOSFET 元件中的通道電場值(即圖 4-14 中的 E_y)為同一數量級(舉典型的 $0.25\mu\text{m}$ CMOS 製程為例, $V_{DD}=2.5\text{V}$ 與 $L=0.25\mu\text{m}$,通道的平均水平電場為 10^5V/cm),所以短通道元件必須考慮速度飽和效應。