- 8. What is the material used for hydraulic tubing that is subjected to intense heat?
- 9. What type of line is used to connect moving parts?

thus government printing office 1984--746-018/16431 Region #4

INSTRUCTIONS

- Vapor Cycle Air-Conditioning System. You will be teaching yourself at your own speed. This is NOT a test, but a learning situation. There will always be an instructor available to answer any question you may have concerning the information being presented.
- 2. You will proceed from page to page, as in a conventional book. On each page, you will find one or more numbered sections. These sections are called "frames." You will go from frame to frame, using a piece of paper to cover upcoming frames. There is no advantage in peeking at new information. To be effective, you must follow the sequence. You must respond to each frame before you uncover the correct response. AFTER writing or selecting your response, be sure to check the left side of the next frame to see if your response was correct.
- 3. If your response was wrong, strike it out, reread the frame, and select another response. If your response was correct, continue with the next frame.
- 4. At the end of this program, there is a self-test to check what you have gained from the lesson.
- 5. Turn to page ii and read the objectives.

VAPOR CYCLE AIR-CONDITIONING SYSTEM

OBJECTIVES

The student will:

cooled. (Frame 16)

2.

5.

Select, from a list of statements, the statement that 1. describes the principle of operation of a vapor cycle air-conditioning system. (Frame 1)

Select, from a given list, the type of liquid refrigerant

- used in most vapor cycle systems. (Frame 3) Match a list of vapor cycle system components to their 3. purposes. (Frame 5)
- Complete a statement describing the driving device for 4. the compressor and the evaporator fan in a vapor cycle (Frame 11) system.
- Complete a statement describing the method of controlling the temperature in a vapor cycle system. (Frame 1山) 6. Select, from a list of statements, the statement that

indicates how the heat is removed from the space to be

Complete a statement describing air induction through 7. the condenser assembly during ground operation. (Frame 19)

scientific fact that a liquid can be vaporized at any temperature by changing the pressure about it.

14.7 psi, will boil if the temperature is raised to 212°F. The same water, at a pressure of 90 psi, will not boil until the temperature is raised to 320°F. If this same water has the pressure reduced by a vacuum pump to 0.95 psi, it will boil at 100°F.

EXAMPLE: Water, at sea-level pressure of approximately

If the pressure about a liquid is increased, the liquid will boil, or vaporize, at a ______ (higher/lower) temperature.

higher	If the pressure about a liquid is re	educed
	to below normal pressure by a vacuu	n pump

(Higher / Lower / Competition of

	makes use of the scientific fac	et that
a liquid can be	vaporized at any	by changing
the	about it.	
temperature	2. Select the statement below	that
pressure	describes the principle of	operation
	of a vapor cycle air-condit	tioning
system. Circle	the letter preceding your choice	9.
a. Vapor cycle	systems utilize the compression	of the
refrigerant	in the condenser to produce the	refrigerated
air.		
b. Vapor cycle	systems make use of the scienti	fic fact that
a liquid ca	n be vaporized by changing the p	ressure about
it.		
c. Vapor cycle	systems operate on the principl	e of thermal
agitation o	f the molecules in the refrigera	nt.
b. is correct.	3. This same scientific fact	applies to
	all liquids. However, liq	
boil, or vapori	ze, at low temperatures are most	

2

CONTINUE TO PAGE 3.

as in home air	conditioners and refrigerators. At sea-leve.
pressure, liqui	d Freon 12 will boil at -22°F.
	il, or vaporize, at (high/low)
temperatures ar	e most desirable as refrigerants.
low	At sea-level pressure, liquid Freon 12
	boils at minus degrees Fahrenheit.
22	The refrigerant used in most vapor cycle
	air-conditioning systems is liquid
Freon 12	4. Select, from the following list, the
	type of refrigerant used in most vapor
cycle air-condi	tioning systems. Circle the letter preceding
your choice.	
a. Freon 22.	
b. Freon 12.	
c. Carbon diox	ide.
d. Liquid ammo	nia.
A second	

in most vapor cycle refrigeration units in aircraft as well

SCHEMATIC, PAGE 23, WITH THE FOLLOWIN

INFORMATION.

The liquid refrigerant is directed to an expansion valve that is mounted directly to the evaporator. The purpose of the expansion valve is to cause a rapid expansion of the refrigerant to a vapor by passing it through a small orifice (restriction).

	Expansion Valve	
Liquid →	Valve T	Expanding Vapor
Orifice		

refrigerant from	n a	(liquid/vapor)	to a
	(liquid/vapor).		
liquid	The refrigerant e	enters the expan	 nsion valv

_____(liquid/vapor).

A small orifice in the expansion valve changes the

vapor

directly to the evaporator, and as the

liquid Freon 12 changes to a vapor, the evaporator becomes the expansion chamber for this vapor. As the refrigerant changes to a vapor, it absorbs great amounts of heat surrounding the coils of the evaporator. The refrigerant leaves the evaporator as a superheated vapor.

refrigerant	(condenses/vaporizes).
vaporizes	The refrigerant leaves the evaporator as a
	superheated (liquid/vapor).
vapor	The expansion chamber for the refrigerant
	vapor is the
(condenser/eva)	porator).

Heat is absorbed from the surrounding area as the Freon 12

	(evaporator assembly/expansion valve).
expansion valve	When the refrigerant vaporizes, it is capable of
(absorbing/diss	ipating) large amounts of
(coldness/heat)	from the surrounding area.
absorbing	7. Reuse of the refrigerant vapor requires
heat	that it be condensed. To do so, the
	heat must be transferred to some
substance, such	as air or water. In aircraft vapor cycle
systems, air is	normally used. The refrigerant is changed
back to a liquio	d by increasing the pressure with a
compressor, whi	le the heat is transferred to the air
surrounding the	condenser.

___ expansion of the liquid in the __

CONTINUE TO PAGE 7.

cue v	ghor	13	rran	121 61	rrec	1 00	une				<u></u>		(8	LA. I.ª.	/ W	ยบ	91,	1
the v	ດກຸດກຸ	វិច	tnon	n a ff A Y	mad	1 +0	the	3	•				(-	ir,	/**	n +	071	,
While	the	ref	rige	rant	Vε	por	1ខ	bein	g	cond	len:	sed,	, h	ıөa	t	fr	om	

air	Reuse	of	the	refrigerant	requires	that	it
1	be			(conder	nsed/vapor	rized)	٠.

condensed	8.	The	heat	within	the	space	to	bе	000]	Led
	الم	is	absorl	oed into	o the	refr	ige	rant	; vap	or
A compressor m	вөуо	this :	heate	d vapor	from	the	evaj	pore	ator	to

In the space to be cooled, the heat is removed by the refrigerant _____ (liquid/vapor).

the condenser. As the vapor condenses, the heat is

transferred to the ambient air.

vapor

9. Many components are necessary in a vapor cycle air-conditioning system

for cooling and to allow reuse of the refrigerant.

REFER TO THE APPENDIX, PAGE 24--VAPOR CYCLE AIR-CONDITIONING SYSTEM COMPONENTS AND PURPOSES. REFER TO THE APPENDIX AND THE VAPOR CYCLE SYSTEM FLOW SCHEMATIC AND STUDY THESE COMPONENTS. AFTER SUFFICIENT STUDY, CONTINUE WITH THE FOLLOWING QUESTIONS.

The refrigerant	is condensed in the
condenser	The expansion chamber for the refrigerant
	to vaporize and absorb heat is the
	•

	expansion of the refrigerant is the
expansion valve	The component that builds a differential pressure across the expansion valve is the
compressor	Oil is separated from the refrigerant by the
oil separator	Surplus refrigerant is stored in the
receiver	The liquid refrigerant is cleaned and water is removed by the action of the
filter dryer	Surges in the refrigerant flow rate are prevented by the

receiver	10. Mato	ch the following list of components		
	to t	their purposes. Write the letter		
preceding the c	preceding the component in the space provided before each			
purpose.				
<u>Component</u>		Purpose		
a. Receiver		Maintains the pressure differ-		
b. Evaporator		ential required for operation of the expansion valve.		
c. Compressor		Separates the oil from the		
d. Expansion va	alve	refrigerant and returns it to the compressor.		
e. Oil separato	or	Condenses the refrigerant to a liquid.		
f. Filter dryer	1	•		
g. Condenser		Stores surplus refrigerant and prevents surges in the refrigerant flow rate.		
		Cleans and removes any water from the liquid refrigerant.		
		Causes a rapid expansion of the refrigerant to a vapor.		
		Acts as an expansion chamber for the refrigerant changing to a vapor to absorb the heat which surrounds the coils.		

<u>ق</u> •	compressor and the evaporator fan		
a. f.	are each driven by a hydraulic motor.		
d. b.	A hydraulic motor will develop more		
D ,	A Hydradile motor, will develop more		
	power than an electric motor of		
comparable size.			
The compressor	and evaporator fan are each driven by		
a(n)	(electric/hydraulic) motor.		
	1		
hydraulic	For a comparable size of motor, more power		
	can be developed with the		
(electric/hydraulic) motor.			
	10 The speed of the bridgestic motor is		
hydraulic	12. The speed of the hydraulic motor is		
controlled by an electrical signal			
from a pressure transducer in the low-pressure refrigerant			
line. Controll	ing the speed of the compressor do		
the flow rate of the refrigerant t			
therefore, the amount of vapori			
evaporator.			
CONTINUE TO PAGE 12.			

TIOW rate of the refrigerant and, therefore, the amount			
	(condensation/vaporization) in the		
evaporator.			
vaporization	13. Complete the following statement b		
	provided.		
In the vapor cycle air-conditioning system, the compress and the evaporator fan are each driven by a(n)			
hydraulic motor	14. During the vaporization of the refrigerant, large amounts of heat		
	are absorbed; hence, the cooling		
process takes place. Decreasing the speed of the compre			
results in less vaporization and reduced cooling. Incre			
ing the speed of the compressor results in more vaporize			
and increased cooling.			

CONTINUE TO PAGE 13.

(increases/decreases).		
increases	If the speed of the compressor increases,	
of	the amount of cooling increases because (more/less) vaporization in the	
more	The temperature of the cooled air in the vapor cycle system is controlled by the	
speed of the	(condenser/compressor).	
compressor	15. Complete the following statement by circling the letter preceding your	
	choice.	
Temperature is o	controlled in the vapor cycle air-conditioni	
system by contro	olling the	
a. speed of the evaporator fan.		
b. engine bleed air.		
c. high-speed turbine.		
d. speed of the	e compressor motor.	

1	the air surrounding the evaporator coils. A compress
	carries this heated vapor to the condenser which is l
	outside the space being air conditioned.
	The heat is transferred by the refrigerant
	(liquid/vapor).
	vapor 17. In the condenser, the heat is
Control of the Contro	transferred from the refrigerar
	the outside air as the vapor is changed to a liquid.
	makes the Freon 12 ready for reuse by the system.
	The refrigerant vapor is changed back to a liquid and
	heat removed in the (compressor/conder

- Circle the letter preceding your choice.
- a. The heat of the space to be air conditioned is

b.

- reflected by the use of light colors and by utilizing the cool ambient air of high altitudes.
- into the refrigerant vapor as it flows through the evaporator coils.

 c. The heat of the space to be air conditioned is dissipated by forced air entering from an outside source.

The heat of the space to be air conditioned is absorbed

- b. is correct. 19. During ground operation, insufficient air will be flowing across the
- condenser to allow all the refrigerant vapor to condense. Therefore, air must be drawn (induced) across the condenser coils.

15

CONTINUE TO PAGE 16.

	(contacting / reacy)
sufficient air	flowing across the
(condenser/evap	orator).
condense	20. During ground operation, ejector
condenser	nozzles are used to induce (draw) a
	across the condenser coils.
High-pressure a	ir, from the engines, enters the ejector
nozzles and cre	ates a low-pressure area behind the
condenser assem	bly, inducing air into the condenser scoop
This airflow co-	ols the condenser assembly. (Refer to the
vapor cycle sys	tem flow schematic.)
Airflow, to coo	l the condenser assembly during ground
operation, is is	nduced (drawn) into the scoop by the
	(low/high)-pressure area created by the
ejector nozzles	•

	ejector nozzles from the engine, is		
controlled by an ejector air shutoff valve. This valve is			
operated by an a	air/ground safety switch. When airborne,		
the valve is clo	osed by the safety switch.		
The ejector nozzles receive high-pressure engine bleed air			
outh auteu cue as	afety switch is in the		
(air/ground) position.			
ground	22. During ground operation, high-pressure		
	engine bleed air flowing through the		
ejector nozzles creates a (high/low)-pressure			
area behind the (condenser/evaporator)			
assembly, inducing (drawing) air into the air scoop.			
Therefore, sufficient air will flow through the			
(evaporator/condenser) assembly.			

and operational checks. Most system components are set at the factory, and because of the special equipment necessary, adjustments cannot ordinarily be made in the field. As an Aviation Electrician's Mate, you will

the vapor cycle air-conditioning system

other than making required inspections

be required to understand the system to be able to perform the required inspections and the operational checks.

condenser

condenser

NO RESPONSE REQUIRED.

YOU HAVE COMPLETED THIS PROGRAM. TURN TO PAGE 11 AND READ
THE OBJECTIVES AGAIN. IF YOU DO NOT FULLY UNDERSTAND ANY
OBJECTIVE, REVIEW THE APPROPRIATE SECTION OF THE PROGRAM OR

ASK THE INSTRUCTOR FOR CLARIFICATION. IF YOU UNDERSTAND ALL THE OBJECTIVES, CONTINUE TO THE SELF-TEST.

VAPOR CYCLE AIR-CONDITIONING SYSTEM

SELF-TEST

- 1. Select the statement below that describes the princip of operation of a vapor cycle air-conditioning system Circle the letter preceding your choice.
 - a. Vapor cycle systems operate on the principle of thormal agitation of the molecules in the refrigerant.
 - b. Vapor cycle systems utilize the compression of the refrigerant in the condenser to produce the refrigerated air.
 - c. Vapor cycle systems make use of the scientific fs that a liquid can be vaporized by changing the pressure about it.
- 2. Select, from the following list, the type of refriger used in most vapor cycle air-conditioning systems. Circle the letter preceding your choice.
 - a. Liquid ammonia.
 - b. Carbon dioxide.
 - c. Froon 12.
 - d. Froon 22.

3•	to their purpose	ving list of vapo es. Place the le e space provided	tter preceding t	the
	Component		Purpose	
a.	Compressor	Condenses	the refrigerant	t to a

liquid. Oil separator Causes a rapid expansion of the

refrigerant to a gas. Condenser C. assembly Separates the oil from the

b.

g.

Evaporator

Receiver refrigerant and returns it to d. the compressor. Filter dryer

θ. Acts as an expansion chamber for the refrigerant to absorb ſ. Expansion valve the heat surrounding the coils.

assembly from the liquid refrigerant. Maintains the pressure differential required for the operation of the expansion valve.

Cleans and removes any water

Stores surplus refrigerant and prevents surges in the refrigerant flow rate.

In the vapor cycle air-conditioning system, the compressor and the evaporator fan are each driven by a(n)

5. Complete the following statement. Circle the letter preceding your choice.

Temperature is controlled in the vapor cycle air-conditioning system by controlling the

- a. speed of the evaporator fan.
- b. speed of the compressor motor.
- c. engine bleed air.
- d. high-speed turbine.

your choice. The heat of the space to be air conditioned is absorbed into the refrigerant vapor as it flows through the evaporator coils. The heat of the space to be air conditioned is b. reflected by the use of light colors. The heat of the space to be air conditioned is c. dissipated by forced air entering from an outside source. Complete the following statements describing air 7. induction during ground operation. Write in the spaces provided your selection from the words following each space. During ground operation, sufficient airflow is induced through the (evaporator/condenser) assembly by directing high-pressure bleed air, from the engines, through the ejector nozzles into the vapor cycle air scoop. This creates a _____ (low/high)-pressure area behind the ____ (evaporator/condenser) assembly.

Vapor cycle system flow schematic.

VAPOR CYCLE AIR-CONDITIONING SYSTEM COMPONENTS AND PURPOS

COMPRESSOR -- Maintains the pressure differential required the operation of the expansion valve.

CONDENSER--Condenses the refrigerant to a liquid.

EVAPORATOR ASSEMBLY--Acts as an expansion chamber for the refrigerant changing to a vapor to absorb the heat surrounding the coils.

FILTER DRYER--Cleans and removes any water from the liqui refrigerant.

OIL SEPARATOR -- Separates the oil from the refrigerant and returns it to the compressor.

the refrigerant flow rate.

EXPANSION VALVE--Causes a rapid expansion of the refriger

RECEIVER -- Stores surplus refrigerant and prevents surges

EXPANSION VALVE--Causes a rapid expansion of the refriger to a vapor.

THE UNITED STATES NAVY

GUARDIAN OF OUR COUNTRY

The United States Navy is responsible for maintaining control of the sea and is a ready force on watch at home and overseas, capable of strong action to preserve the peace or of instant offensive action to win in war.

It is upon the maintenance of this control that our country's glorious future depends, the United States Navy exists to make it so.

WE SERVE WITH HONOR

Tradition, valor, and victory are the Navy's heritage from the past. To these may be added dedication, discipline, and vigilance as the watchwords of the present and the future.

At home or on distant stations we serve with pride, confident in the respect of our country, our shipmates, and our families.

Our responsibilities sober us, our adversities strengthen us.

Service to God and Country is our special privilege. We serve with honor.

THE FUTURE OF THE NAVY

The Navy will always employ new weapons, new techniques, and greater power to protect and defend the United States on the sea, under the sea, and in the air.

Now and in the future, control of the sea gives the United States her greatest advantage for the maintenance of peace and for victory in war.

Mobility, surprise, dispersal, and offensive power are the keynotes of the new Navy. The roots of the Navy lie in a strong belief in the future, in continued dedication to our tasks, and in reflection on our heritage from the past.

Never have our opportunities and our responsibilities been greater.

NAVAL LEADERSHIP

GENERAL ORDER NO 21

NAVY DEPARTMENT WASHINGTON, D. C., 1 May 1963

LEADERSHIP IN THE UNITED STATES NAVY AND MARINE CORPS

Part 1-Discussion

The United States Navy-Marine Corps records of victorious achievements on land, at sea, and in the air in peace and war have won for these services in honored position in our great nation. This heritage was passed on to us by our leaders, both officer and enlisted, whose outstanding examples of courage, integrity and devotion to duty are historically significant. They accomplished their missions successfully by high caliber leadership and personal example. The strength of our nation and of our services depends upon courageous, highly motivated and responsible individuals.

Part II—Objective

The objective of this general order is to achieve an ever-improving state of combat readiness by:

- a. I implicationing that successful leadership at all levels is based on personal example and moral responsibility.
- b. Insuring that every man and woman are themselves examples of military ideals.
- c. Responsing personal attribution to and supervision of subordinates

Part III—Action

- 1. The Chief of Savid Operations and the Commandant of the Marine Corps shall be directly responsible for maintaining optimion leadership standards. The Under Secretary of the Navy shall be responsible for the proper implementation of this order.
- 2. There, Force, Type and Administrative commanders shall review each command's leadership posture as an integral part of includes my ections and shall include their evaluation in inspection reports.
- 3. Every committed and every major office and bureau of the Navy Department shall, on a continuing basis, tevies are leader-stop searchards, each shall take effective measures to improve them and shall develop an awareness of the need for good leadership by providing programs for instruction in leadership principles and practices.
- 1. All persons in responsible positions, military and civilian, shall require that their subordinates discharge their duties in accordance with traditional concepts of Navy and Marine Corps standards, paying particular attention to
 - Moral responsibility
 (Article o '02A', Navy Regulations Paragraph 5390, Marine Corps Manual.)
 - b. Personal example of Schavior and performance (Article 1210, 25 vs. Regulations - Paragraph 5300, Marine Corps Manual.)
 - Established standards for personnel development (Article 0210, Navy Regulations - Paragraph 1500, Matine Corps Manual.)
 - d. Integration of principles and practices of leadership into everyday routine.
 (Article (1997), Mass. Regulations Paragraph 5390, Matine Corps Manual.)
 - c. I Herrive organization and administration (Article 0.04, Navy Regulations). Paragraph 3000, Marine Corps Manual.)

FRED KORTH
Secretary of the Navy

MAVPENS 19404

TOWN CER THAN CER THAN SER THAN CER THAN CER THAN CER THAN CER THAN CER THAN CERT THAN CHESTAM