

North South University

<u>Course</u>	<u>CSE-231</u>
<u>Gropup</u>	<u>5</u>
Submitted to	<u>Dr Mohammad</u> <u>Monirujjaman Khan</u>
<u>Date</u>	<u>10-05-2021</u>

Submitted by:

<u>Name</u>	<u>ld</u>
Istiak Ahmed Sheam	<u>1911139642</u>
Md Saeem Hossain Shanto	<u>1912218642</u>
Nur Kalam Mahin	<u>1912254642</u>
Farzana Haque	<u>1821386042</u>

Our project was to show (EEE-2111) in seven segment display with the help of 555 timer. To complete this project, we have divided our work into two part.

- 1. Combinational Circuit Part
- 2. Sequential Circuit Part

Combinational Circuit Part:

We have 7 items to display. If we take 3 bit input, then we can display total 2^3=8 outputs. So, to display (EEE-211), we can use 3 bit input.

First we have to draw the truth table with 3 bit input and expected output (output in seven segment display). Then for equations, we will k-map.

Combinational Circuit Making Process:

Truth Table:

Output in 7 segment display	A	В	С	а	b	С	d	е	f	g
E	0	0	0	1	0	0	1	1	1	1
E	0	0	1	1	0	0	1	1	1	1
E	0	1	0	1	0	0	1	1	1	1
-	0	1	1	0	0	0	0	0	0	1
2	1	0	0	1	1	0	1	1	0	1
1	1	0	1	0	1	1	0	0	0	0
1	1	1	0	0	1	1	0	0	0	0
х	1	1	1	х	х	x	х	х	х	х

K-Map:(SOP)

<u>For – a:</u>

A BC	0_0		0 1	1 1	1 0	
0	1		1	0	1	
1	1		0	x	0	

$$a = A'C' + A'B' + B'C'$$

<u>For – b:</u>

A BC	BC 0 0 0		1 1	1 0
0	0	0	0	0
1	1	1	x	1

$$b = A$$

<u>For – c:</u>

A BC	0 0	0 1	1 1	1 0
0	0	0	0	0
1	0	1	х	1

$$c = AC + AB$$

<u>For - d :</u>

A BC	0 0	0 0 0 1		1 1 1 0	
0	1	1	0	1	
1	1	0	x	0	

$$d = A'C' + A'B' + B'C'$$

For - e :

A BC	0 0		0 1	1 1	1 0		
0		1		1	0	1	
1		1		0	x	0	

$$e = B'C' + A'C' + A'B'$$

<u>For - f :</u>

A BC	0 0	0 1	1 1	1 0
0	1	1	0	1
1	0	0	x	0

$$f = A'B' + A'C'$$

<u>For - g :</u>

A BC	0 0		0 1	1 1	1 0
0		1	1	1	1
1		1	0	x	0

$$g = A' + B'C'$$

Combinational Circuit for (EEE-211) by SOP:

K-Map:(POS)

<u>For – a:</u>

A BC	0 0	0 1	1	1	1 0
0	1	1	(0	1
1	1	0	,	ĸ	0

$$a = (B'+C')(A'+C')(A'+B')$$

<u>For – b:</u>

A BC	0 0	0 1	1 1	1 0
0	0	0 0		0
1	1	1	×	1

$$b = A$$

<u>For – c:</u>

A BC	0 0	0 1	1 1	1 0
0	0	0	0	0
1	0	1	х	1

$$c = A(B+C)$$

<u>For - d :</u>

A BC	0 0	0 1	1 1	I	1 0	
0	1	1	0		1	
1	1	0	х		0	

$$d = (B'+C')(A'+C')(A'+B')$$

For - e :

Nbn

A BC	0 0	0 1	1 1	1 0
0	1	1	0	1
1	1	0	х	0
				_

$$e = (B'+C')(A'+C')(A'+B')$$

<u>For - f :</u>

A BC	0 0	0 1	1 1	1 0	
0	1	1	0	1	
1	0	0	x	0	

$$f = A'(B'+C')$$

For - g :

A BC	0 0	0 1 1 1		1 0
0	1	1	1	1
1	1	0	х	0

$$g = (A'+C')(A'+B')$$

Combinational Circuit for (EEE-211) by POS:

project by POS

Sequential Circuit Part:

Sequential circuit will produce our continuous input with the help of 555 timer. For sequential part we are going to use **Synchronous Counter by T-FlipFlop**.

Required Equipment:

555 Timer IC:

The **555 timer IC** is an **integrated circuit** (**chip**) used in a variety of **timer**, delay, pulse generation, and oscillator applications.

T-FlipFlop:

Toggle Flip-flops are sequential logic circuits frequently used as single bit bistable storage elements in counters, memory devices or as frequency dividers in response to a clock pulse

Sequential Circuit Making Process:

We have used 3 bit input for combinational circuit. Now to produce that 3 bit continuous input we are going to use 3 bit synchronous counter.

Loop for synchronous counter:

Excitation Table for T-FlipFlop:

Q	Output	Т
0	0	0
0	1	1
1	0	1
1	1	О

State Table:

Output in 7 segment display	Decimal number	Present	state		Next	State		Next	State	Decoder
		Q 2	Q1	Q 0	Q ₂	Q1	Q ₀	T 2	T ₁	T ₀
E	0	0	0	0	0	0	1	0	0	1
E	1	0	0	1	0	1	0	0	1	1
E	2	0	1	0	0	1	1	0	0	1
-	3	0	1	1	1	0	0	1	1	1
2	4	1	0	0	1	0	1	0	0	1
1	5	1	0	1	1	1	0	0	1	1
1	6	1	1	0	<u>0</u>	<u>0</u>	<u>0</u>	1	1	0
	7	1	1	1	<u>0</u>	<u>0</u>	<u>0</u>	1	1	1

K-map for T2:

Q2 Q1Q0	0 0	0 1	1 1		1 0	
0	0	0	1		0	
1	0	0		1	1	

$$T2 = Q1Q0 + Q2Q1$$

K-map for T1:

Q2 Q1Q0	0 0	0 1	1 1	1 0	
0	0	1	1	0	
1	0	1	1	1	

$$T1 = Q0 + Q2Q1$$

K-map for T0:

Q2 Q1Q0	0 0	0 1		1 1		1 0			
0	1		1		1		1		
1	1		1		1			0	

Logic Design for Sequential Circuit in Logisim:

To design this we need 555 Timer IC. But in logisim, we don't have 555 Timer IC. But we can use clock pulse in logisim instate of them.

displaying EEE-211 by synchronous counter input

Screenshots:

Md Saeem Hossain Shanto 1912218642

POS Circuit implementation with basic gates

Implementation with NOR