K-TIRADS Modeling Log

번 호	를 네트워크		를 전처리 파라미터조정	를 학습 정보	를 비고
1	Resnet 50,Resnet101,Resnet101v2,VGGNet, DenseNet	히스토그램 평 활화 (Histogram Equalization)	•createCLAHE(clipLimit=1.0, tileGridSize=(7,8))	• IMAGE_SIZE = (256,256),(512, 512) • BATCH_SIZE = 16, 32, 64 64이상으로 하면 Out of memory(memory 과부하) error로 인해 훈련을 정상적으로 진행하지 못하고 오류가 발생 • VGGNet, ResNet, DenseNet은 확률적 경사 하강법(Stochastic Gradient Descent, SGD)] 을 사용했고, 학습률 = '0.0001'을 적용함	•openCV를 활용하여 : 내 픽셀의 값을 밝기별를 히스토그램으로 정렬한 히스토그램 평준화를 한 드이다. 히스토그램 평 를 통해서 그림의 화질; 을 시킬 수 있다. • 초기 상선 모델로 가장 과적 적게나타나는 Resne1(V2 를사용함
<u>2</u>	Resnetv2	FFT(빠른 푸리 에 변환 (Fast Fourier transform))	•FFT에 적용된 파라미터는 다음과 같음 sin1 = sin_wave(1, 10, time) sin2 = sin_wave(2, 5, time) sin3 = sin_wave(4, 1, time) * f는 Hz 단위의 주파수	• ResNetV2은 가장 기본적 이며 CNN에 최적화된 모델 로, 성능이 우수하여 사용함 •Densnet,VGG과 다른 Resnet을 비교하였을 때, 손 실값이 가장 낮았음	•디지털 신호로 발생 되 모델에 들어갈 결절 이다 를 FFT 처리
<u>3</u>	Resnet101v2	히스토그램 평 활화 (Histogram Equalization)	•FFT 적용에있어서 히스토그 램보다 학습률이 저하되어 추 가연구가 필요하여 히스토그램 평활화로 변경	• ResNetV2 에서 Resnet101v2로 변경	• Resnetv2에서 학습 ₹ 실을 최소화하기 위해 〔 값이 가장 낮은 Resnet v2로 모델을 결정
4	InceptionV3	히스토그램 평 활화 (Histogram Equalization)	•createCLAHE(clipLimit=2.0, tileGridSize=(8,8))	• 모델의 최상위 2개 층은 제 거하고 Global Average Pooling층과 FC층을 추가 함. • GAP은 별도의 파라미 터 최적화 작업이 필요 없고 플래튼(Flatten)층과 달리 공 간 정보를 반영하기 때문에 과적합(Overfitting)을 피할 수 있음. • 활성 함수는 Softmax를 사용.(소프트맥 스는 최종 출력에서 가장 높 은 확률값을 정답 클래스로 분류함.)	• 파라미터 값 변경으로 질개선 및 성능 검증 완 함
<u>5</u>	InceptionResNetV2	히스토그램 평 활화 (Histogram Equalization)	변경없음	•Resnetv2와 InceptionV3 를 앙상블한 InceptionResNetv2를 사용 하여 모델 성능최적화 기대	• InceptionResNetv2[용하였지만, Loss값이 려가지 않아 대책 고안
<u>6</u>	Inception V3	히스토그램 평 활화 (Histogram Equalization)	변경없음	• IMAGE_SIZE = (299,299) • BATCH_SIZE = 32	• FFT를 적용하지않고 스토그램 평활화로 전치 후, Inception V3를 사는 는 것이 성능이 높게나의 Inception V3를 적용함
7	Inception V3	히스토그램 평 활화 (Histogram Equalization)	변경없음	•미세조정 레이어 dropout (Dropout) global_average_pooling2d lobalAveragePooling2D) dropout_1 (Dropout) dense (Dense) •Lr: Adam(<i>learning_rate</i> = 5e-4)	• InceptionResNetv2 ^C 는 적합한 Layer를 추출 여 Inception v3에 추기 며 미세조정 •Inception 에레이어를 추가했기에 위계층에 GlobalAveragePoolin 추가

K-TIRADS Modeling Log 1

번 호	≡ 네트워크			≡ 학습 정보	≣ 비고
8	Inception V3	스칼라 연산 (scalar)	central_crop 0.975 resize_bilinear squeeze subtract multiply	변경없음	• Inception_V3의 논문 분석하여 각 레이어 마다 해당하는 최적의 이미지 선방법을 추론함 • 202: 12월 15일 기준 최종모

K-TIRADS Modeling Log 2