Übungen zur Einführung in die komplexe Analysis – Blatt 1

Aufgabe 1. (Teilmengen von \mathbb{C} , 1+1+1+1+1+1 Punkte) Man beschreibe folgende Teilmengen in \mathbb{C} geometrisch:

(i)
$$\{z \mid \text{Re}(z) = 1/2\}$$
, (ii) $\{z \mid |\text{Re}(z)| < 1/2, |z| > 1\}$, (iii) $\{z \mid 1/z = \bar{z}\}$,

(iv)
$$\{z \mid \text{Re}(z) = |z|\}$$
, (v) $\{z \mid |z - z_1| = |z - z_2|\}$ bei gegebenen $z_1 \neq z_2$.

Aufgabe 2. (Polardarstellung, 1+1+1+1 Punkte)

Wie sehen die folgenden Mengen in der komplexen Zahlenebene $\mathbb C$ aus:

(i)
$$\{z = re^{i\theta} \mid \theta = \pi/2\}$$
, (ii) $\{z = re^{i\theta} \mid r = 1\}$,

(iii)
$$\{z = re^{i\theta} \mid 0 < \theta \le \pi\}$$
, (iv) $\{z = re^{i\theta} \mid r \ne 0, 0 < \theta < \pi\}$.

Aufgabe 3. (Berechnung komplexer Zahlen, 1+1+1+2 Punkte) Man berechne Real- und Imaginärteil folgender komplexer Zahlen:

(i)
$$\frac{5}{-3+4i}$$
, (ii) $1+2i+\frac{1}{1+2i}$, (iii) $e^{i\pi/4}$, (iv) $(1+i)^n+(1-i)^n$

Aufgabe 4. (Inversion und Spiegelung am Einheitskreis, 4 Punkte) Man veranschauliche sich die beiden Abbildungen $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, z \mapsto 1/z$, und $g: \mathbb{C} \setminus \{0\} \to \mathbb{C}, z \mapsto 1/\bar{z}$ und vergleiche sie. Für welche $z \in \mathbb{C}$ gilt f(z) = g(z)? Wie sehen die Fixpunktmengen $\{z \mid f(z) = z\}$ und $\{z \mid g(z) = z\}$ aus?

Aufgabe 5. (Additionstheorem für (hyperbolische) (Ko)sinusfunktionen, 3+3 Punkte)

1. Sei $z \in \mathbb{C}$, so dass $\sin(z/2) \neq 0$. Man beweise für beliebiges $n \in \mathbb{N}$ die Formel

$$\frac{1}{2} + \cos(z) + \cos(2z) + \dots + \cos(nz) = \frac{\sin((n+1/2)z)}{2\sin(z/2)}.$$

2. Man definiert die hyperbolische Kosinus und Sinusfunktion als

$$\cosh(z) := \frac{1}{2}(e^z + e^{-z}) \text{ und } \sinh(z) := \frac{1}{2}(e^z - e^{-z}).$$

Man entwickle beide als Potenzreihen und beweise die Additionstheoreme

$$\cosh(z_1 + z_2) = \cosh(z_1)\cosh(z_2) + \sinh(z_1)\sinh(z_2)$$

und

$$\sinh(z_1+z_2)=\sinh(z_1)\cosh(z_2)+\cosh(z_1)\sinh(z_2).$$

Abgabe: Freitag 20.4. vor(!) der Vorlesung.

Aufgabe 6. (Dreiecksungleichung, 1+2+1 Punkte)

Man beweise für alle $z, w \in \mathbb{C}$ die folgenden Ungleichungen:

- 1. $|z| \le |z w| + |w|$.
- 2. $||z|-|w|| \leq |z-w|.$ Man finde ein Beispiel, in dem die strikte Ungleichung gilt.
- 3. $|\operatorname{Re}(z)| \le |z|$ und $|\operatorname{Im}(z)| \le |z|$.

Aufgabe 7. (Einheitswurzeln, 1+1+1 Punkte)

Man gebe die n-ten Einheitswurzeln, also alle $z \in \mathbb{C}$ mit $z^n = 1$, in Polarkoordinaten an. Man beschreibe sie geometrisch für $n \leq 6$. Wie sehen die Lösungen der Gleichung $z^n = re^{it}$ aus?