Q1)
$$W = \{(x, y, z) \mid x - (y+1) + 2(z+1) = 1; x, y, z \in \mathbb{R}\}$$

firstly, $x, y, z \in \mathbb{R}$ $(x, y, z) = W \subseteq \mathbb{R}^3$, and we know \mathbb{R}^3 is a U, S .
(i) $(0,0,0)$ is the additive id of \mathbb{R}^3 .
O: $(x, y, z) = (0,0,0)$
and $0 - (0+1) + 2(0+1) = -1 + 2 = 1$
So $(0,0,0) \in W$

2 let
$$w, \tilde{w} \in W$$

 $w + \tilde{w} = (x + \tilde{x}, y + \tilde{y}, z + \tilde{z})$
observe $(x + \tilde{x}) - ((y + \tilde{y}) + 1) + 2((z + \tilde{z}) + 1)$
 $= (x + \tilde{x}) - y - \tilde{y} - 1 + 2z + 2\tilde{z} + 2$
we know $x - y - 1 + 2z + 2 = 1 = 2 \times - y + 2z = 0$
and that is $(x + \tilde{x}) - (y + \tilde{y}) + 2(z + \tilde{z})$
 $= x + \tilde{x} - y - \tilde{y} + 2z + 2\tilde{z} = (x - y + 2\tilde{z}) + (\tilde{x} - \tilde{y} + 2\tilde{z}) = 0 + 0 = 0$
So $w + \tilde{w} \in W$

hence Wis a V.S &

- Q2) ut W=1R2, with w,={(a,0)|ae123, we={(a,b)|be123}
 in this case w,+w,=(a,b) with o,be12

 50 V(x,y)e1R2, J(a,b)e0w,+w2 with o,be12

 50, w,+w=w.
- Q8) (it U, + Uq = (x, y, 0,0) + (0,0, 2, m) = (x, y, z, m) = S So S = { (x, y, z, w) | x, y, z, m & w }.
 - (1) additive is of 12" is (0,0,0,0) 0. (1,4,2,0) = (0,0,0,0), since OFR, (0,0,0,0) &S.
 - @ let 5,, 69 & S

 5, + 59 = (x, + x2, y, + y2, 2, + 22, to, + v2)

 Since x, + x2, if x, x2 & 12 is in 12, then 5, + 52 & 12 = 100
 - 3 (Ut S & S , λ & R λ S = λ (x, y, 7, w) = (λx, λy, λz, λ w) Since λx, λy, λ z , λ w & R , λ S & R = V hunce V, + Ve is a subspace of V. Ø
- Qu) let (0,0,0,0) & (x,y,2,w) & V,+V2 }

 V,+V2 = V mans & (0,0,0,0), I(x,y,2,w) s.t U,+V2 = V.

 in this case we can singly see if a=x,b=y,..,d=w. Hun

 (a,b,c,d) = (x,y,2,w) for all (a,b,c,d).

 So, V,+V2 = V &

Q5) $V_1 = \{(-2w_2, 2w_2) \mid w_2 \in \mathbb{R}^3\}$ $V_2 = \{(v_1, -v_1) \mid v_1 \in \mathbb{R}^3\}$ So, $V_1 + V_2 = (2w_2, 2w_2, 2w_2 - V_1)$ but observe $V_1 - 2w_2 = -(2w_2 - V_1)$ So, $V_1 + V_2$ can be written as $(x_1 - x_1)$ with $x = V_1 - 2w_2$.

You (at $(4,3) \in V = \mathbb{R}^2$ You $(4,3) \notin V_1 + V_2 = (x_1 - x_1)$ cause if $x = u_1 - x_1$ has to be $-4 \neq 3 - (=x_1 - x_2)$ So $V_1 + V_2 \neq V_1$