Proactive and Automated Control Kickoff

Guest Wi-Fi Instructions

- 1) Connect to USCGuest
- 2) Open a browser and head to wifi.sc.edu
- 3) Fill out form with email and phone number.

Wifi.sc.edu/guest/USCGuest_Cisco.php

Proactive and Automated Control for BMW

REMARKS FROM BMW

GENERAL INTRODUCTION

Overview

McNair Aerospace Center

Background

- Named in honor of a SC native and Challenger astronaut Ronald E. McNair, the 15,000 sq. ft. McNair Aerospace Center was founded in 2013 to meet the needs of a rapidly growing SC aerospace cluster.
- The McNair Center's mission is to grow South Carolina's knowledge-based economy and support industry through aerospace education, research leadership and industry advancement
- In 2018, the center expanded by another 20,000 sq. ft. to house other aerospace related activates in the College of **Engineering and Computing.**

Research Areas

Center for Predictive Maintenance

Industry 4.0. MSG, HUMS, CBM/CBM+, Component Testing

Additive Manufacturing

3D Metal Printing. 3D Composite Printing, **Automated Fiber Placement**

Drones & Unmanned Vehicles

Vehicle Design. Communications, Indoor Experiments

Combustion

Characterization. Fuel Formulation, Simulations 5 3 2

SIEMENS

Ingenuity for life

Honeywell

Advanced Robotics for Manufacturin g Institute

Demand for Aerospace in SC

Project Overview

Challenge

- BMW assembly processes integrate thousands of parts, sourced from a wide variety of suppliers, located around the world
- If these parts fail to arrive on time, costly delays and work stoppages follow
- Requires monitoring that is done manually by highly experienced supply chain professionals
- Tedious and expensive

Solution

- BMW seeks improved datadriven algorithms, systems and processes
- Successful solutions will capture, analyze and exploit datasets to enable optimized and proactive materials control, optimize specialized human expertise, and reduce line stoppages due to missing parts

Deliverables

- Al material planner assistant and model for forecasting part shortages
- This solution could be applied to other supply chain needs and could be scalable

Statement of Work

Phase 1: Data Collection and Development

- Data collection and analysis
- Develop models representing a wide range of data and interrelationships
- Identify subset of "easy to plan" parts, automate handling of these parts, suggest actions to take given a part's status
- Evaluate path to full automation of low-risk parts

Phase 2: Proactive and Automated Reporting Integration

- Validate and enhance developed models and AI material planner
- Develop dashboards and reporting

Tasks and Deliverables – Phase 1

Task #	Description	Deliverable	Time Range			
BMW1	Gather and provide the partners with historical BMW data	Historical BMW data delivered to partners	Months 0-1			
UofSC 1	Exploration of historical BMW and extraneous data for forecasting part deliveries	Document: Key figures from historical data, rich/poor areas, supplier ranking	Months 0-2			
FhUSA 1	Stakeholder interviews to identify how material planners approach problems	Prototype ER model, Presentation to stake holders	Months 0-2			
UofSC 2	Data formatting and interrogation to identify relationships in data and capabilities of forecasting model	Key capabilities for part-forecasting model and prepared data for model creation	Months 2-5			
BMW 2	Assist in AI material planner development	Active support and reviews	Months 2-5			
FhUSA 2	Create AI Material Planner Assistant Prototype	Software: AI model material planner prototype. Workshops with partners to prepare integration	Months 2-5			
UofSC 3	Develop parts forecasting model	Software: AI model prototyping forecasting capabilities	Months 4-6			
FhUSA 3	Al assistant model validation	Tutorial on AI model, signals and patterns. Updated AI Model	Months 5-6			
BMW3	Perform model validation and testing	Active support and reviews	Months 5-6			
Midterm Review – Demonstration of AI parts forecasting model and AI planning assistant prototypes						

Tasks and Deliverables – Phase 2

Task#	Description	Deliverable	Time Range
UofSC 4	Parts forecasting model validation	Software: Validated AI model	Months 7-9
FhUSA 4	Integrate forecasting model with AI Material Planner	AI Material planner framework with integrated AI forecasting model	Months 7-9
BMW4	Systems of record integration		Months 7-9
FhUSA 5	AI Material Planner with alerting and human readable steps created	Workshops: status updates, alerting functionalities, human readable action steps. Software: Alerting functionality, human readable action steps. Software support: support BMW with integration of system at BMW. Correction calibration of system	Months 9-12
BMW 5	Integration of combined parts forecasting model and AI material planner		Months 9-12
BMW 6	Visualization, dashboard and reporting		Months 7-11
BMW7	Feasibility study and testing	Document: Feasibility study report, final report	Months 10-12

Initial Timeline

BMW Team

Dr. Ken Kennedy

Manager of innovation and research lab.

Primary focus new technologies into BMW Group

Allen Godsey

Manger of Innovation and

Digitalization

Josh Abel
Innovation and Digitalization
Team

Artificial Intelligence Institute of UofSC Team

Dr. Amit Sheth

Dr. Forest Agostinelli

Dr. Pankesh Patel

Ralph Gleaton

Fraunhofer USA Team

Dr. Jeno Szep

Michael Miller

Dr. Prahlad Menon

Brook Stacy

McNair Aerospace Center Team

Dr. Abdel-moez **Bayoumi**

Rhea **Matthews**

Evan **Barnett**

Andre Calderon

Clint Saidy

Rhiannon **Bullard**

Evan Meaney

Burton Rhodes

PROJECT INTRODUCTION

McNair Aerospace Center Tasks

Boeing SC Supply Chain – Introduction

Boeing SC sought to reduce the supply chain risk of the Boeing 787 along with its operating costs. This reduction was targeted by determining parts that are frequently late, and with relatively low dollar value.

Boeing SC Supply Chain – Lessons Learned

- Delivery time and delivered quality are two main attributes of assessing vendor performance
- The Markov Chain Model allows us to calculate the Long Run Average Penalty Cost, which is one way to assess and rank vendor performance
- Monetizing vendor performances allows a company to more critically evaluate vendors and make more informed financial decisions
- Other factors can also influence a decision to continue use of a vendor or not (international treaties, political influence, etc.)

UofSC Initial Roadmap

Parts Forecasting Model

<u>Literature Research – Supplier Evaluation</u>

- Two types of criteria: tangible (price, delivery time) and intangible (quality, flexibility, experience, etc.)
- Intangible criteria is ranked against each other (left) and consistency factor (right) is used to confirm subjective rankings

$$cf = \left| 1 - \left[\frac{(A/C)}{(A/B) * (B/C)} \right] \right|$$

or

$$cf = \left| 1 - \left[\frac{(A/B) * (B/C)}{(A/C)} \right] \right|$$

<u>Literature Research – Supplier Evaluation</u>

- If cf is close to zero, weights (w_i) can be calculated and raw scores (x_i) assigned
- Weighted mean \bar{x} (left) is used to quantify value of relevant intangible criteria which can be used to rank suppliers

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Evaluation criterion	Weight	ight Sup. A		Sup. B		Sup. C		Sup. D	
Evaluation enterior	w_i	x_1	$w_1 * x_1$	x_2	$w_2 * x_2$	x_3	$w_3 * x_3$	x_4	$w_4 * x_4$
Quality of product or service	0.25	3	0.75	4	1	5	1.25	4	1
Organizational potential	0.18	2	0.36	4	0.72	5	0.9	5	0.9
Financial standing	0.22	3	0.66	4	0.88	3	0.66	3	0.66
Experience	0.17	4	0.68	4	0.68	4	0.68	5	0.85
Flexibility and adaptability	0.18	5	0.9	5	0.9	4	0.72	5	0.9
Total	1.00	_	3.35	_	4.18	_	4.21	_	4.31

Literature Research - Probability Theory

- Probability Theory is used when a large enough amount of historical data is available
- If there is not enough data, there is access to experience or experts' knowledge, other theories can be used to produce viable models

Object	Uncertainty Theory	Grey Systems Theory	Probability Theory	Fuzzy Math
Research Objects	Cognitive uncertainty	Small sample uncertainty	Large sample uncertainty	Cognitive uncertainty
Foundation	Uncertainty distribution	Information coverage	Probability distribution	Fuzzy sets
Requirement	Experience	Few data points	Large number of data points	Experts knowledge
Data Requirement	Uncertainty distribution	Any distribution	Probability distribution	Known membership
Objecti ve	Laws of uncertainty	Laws of reality	Laws of statistics	Cognitive expression

Literature Research - Methods and Models

Categorical Method

8 Step Method through that quantifies vendor performance through Critical, Objective, and Subjective Measures

Step 8: Supplier performance measures are calculated.

- (SPM)=CFM(X×OFM+(1-X)×SFM)
 - Where X is the relative importance of objective factor indecision making
- Possibly allows for combination of several techniques

Literature Research – Methods and Models

Analytical Network Process (ANP)

Extension of AHP but replaces a hierarchical structure with a network structure.

Step 1: Model construction and problem structuring

Step 2: Pairwise comparisons matrices of interdependent component levels

Step 3: Supermatrix formation

Step 4: Analyze principles of logistics attributes and evaluate alternative evaluations

Literature Research – Methods and Models

Make or Buy Model

Main Criteria:

- Product strategy
- Quality strategy
- Cost and finance strategy
- Manufacturing technology strategy
- Supply chain management and logistics strategy

PROJECT INTRODUCTION

Al Institute Tasks

Brief - AllSC (Al Institute of UofSC)

- First university-wide Al Inst in US SE
- Core research on AI topics such as deep learning, NLP, knowledge infused learning, neuro-symbolic and brain-inspired computing, collaborative & conversational agents
- Translational research with nearly all colleges at UofSC: clinical/dHealth, public health, epidemiology, pharma, nursing, disasters/epidemic, smart manufacturing, education
- More at: http://j.mp/AII0720

Core Al Research (Inner) - Translational Al (Outer)

- Understand the business problem from BMW
- Review Literature & Background Research

Specify and Prepare

BMW Data
Acquisition &
Preparation

- Historical data provided by BMW
- Data and Domain Understanding, ER model, Policies
- Data cleaning and preparation

• Develop parts forecasting model

 Research and compare existing parts forecasting models Model

MLOps

 Validate model with actual (mock/ scrambled) data

 User Acceptance Testing (Al Material Planner) Analyze

Roll-out

A Smart Model for Data Science Projects.
This model is based on Industry guideline such as CRISP-DM (Cross-Industry Standard Process for Data Mining) and experience of practitioners.

Parts
Forecasting
Model Validation
and Dashboard

Deployment of model and Dashboard

Evaluation path of low-risk parts

Test and Monitor

Monitoring

 Monitor Accuracy in live scenario

Proprietary

Server Tools

System

Next step...

- Understand Data and Domain
- Identify the right method for parts forecasting model selection
- Apply Broad knowledge of many AI Techniques and choose the right one

PROJECT INTRODUCTION

Fraunhofer USA Tasks

The Fraunhofer Organization at a Glance

"Bridging the Innovation Gap."

Fraunhofer Gesellschaft

Since 1949: Applied research of direct utility to private and public enterprises benefitting society

Fraunhofer USA

Building the Fraunhofer competence Bridge since 1994 as a non-profit applied research organization

Center for Manufacturing Innovation CMI

- Energy Technologies, Brookline, MA
- Automation, Brookline, MA
- Biomedical Manufacturing, Brookline, MA

Center Midwest CMW

- Coatings and Diamond Technology, East Lansing, MI
- Laser Applications, Plymouth, MI

Center Mid-Atlantic CMA

- Software Systems Engineering, Riverdale, MD
- Biotechnology, Newark, DE
- South Carolina Alliance Office, Columbia, SC

Headquarter, Plymouth, Michigan

Fraunhofer USA

1. Data

- When, how, and to what data shall we have access
- Requirements regarding data access, data handling, and storage
- Documents describing the data

2. Interview

- Are there documents about the processes in supply chain planning
- Documents that would help us prepare for the interviews with supply chain professionals
- Planning the interviews when and with whom should we start the interview process

3. Al-based Material Planner Assistant (MPA)

- Assumptions
- Dependencies
- Constraints
- Actors/Roles
- User requirements
- Expected design principles
- What will be key performance indicators (KPIs)?
- Acceptance criteria

DATA DISCUSSION

Working Lunch

DISCUSSION ON WAY AHEAD

Timeline, Group Meetings, Task Roadmap, Task Leads and Points of Contact, Objectives, Reporting, etc.

