Well-Posed Models of Memristive Devices

Tianshi Wang and Jaijeet Roychowdhury

Department of EECS, University of California, Berkeley

Memristor: the missing element

- 1971: postulated by Leon Chua
- 2008: "invented" by Stan Williams et al, HP Labs

Memristive Devices & Applications

devices

UMich, Stanford, HP, HRL Labs, Micron, Crossbar, Samsung, ...

Knowm

Compact Models

applications

- nonvolatile memories
- FPAAs
- neuromorphic circuits
- oscillators

- UMich RRAM model (2011)
- TEAM model (2012)

Verilog-A problems

- Simmons tunneling barrier model (2013)
- Yakopcic model (2013)
- Stanford/ASU RRAM model (2014)
- Knowm "probabilistic" model (2015)

idt(), \$bound_step,
\$abstime, @initial_step,
\$rdist_normal, ...

Good Compact Models

- "Simulation-ready"
 - → run in all analyses (DC, AC, TRAN, homotopy, PSS, ...)
 - run in all simulators

analysis-specific code

Well-posed

- a solution exists
- the solution is unique
- the solution's behavior changes continuously with the initial conditions.

https://en.wikipedia.org/wiki/Well-posed_problem

Challenges in Memristor Modelling

- hysteresis
 - → internal state variable

- model internal unks in Verilog-A
 - → use potentials/flows
- upper/lower bounds of internal unks
 - physical distance
 - clipping functions
- smoothness, continuity, finite precision issues, ...

How to Model Hysteresis Properly

$$\mathbf{ipn} = f\left(\mathbf{vpn}\right)$$

$$\frac{d}{dt}\mathbf{s} = f_2\left(\mathbf{vpn}, \ \mathbf{s}\right)$$

internal state variable "memory"

Example:

$$f_1(\mathbf{vpn}, \mathbf{s}) = \frac{\mathbf{vpn}}{R} \cdot (1 + \tanh(\mathbf{s}))$$

$$f_2\left(\mathbf{vpn}, \mathbf{s}\right) = \mathbf{vpn} - \mathbf{s}^3 + \mathbf{s}$$

multiple stability and abrupt change in DC sols

How to Model Hysteresis Properly

Template:

$$ipn = f_1 (vpn, s)$$

$$\frac{d}{dt}\mathbf{s} = f_2\left(\mathbf{vpn}, \ \mathbf{s}\right)$$

ModSpec:

$$\mathbf{ipn} = \frac{d}{dt} \underbrace{q_e \, (\mathbf{vpn}, \, \mathbf{s})}_{\mathbf{0}} + \underbrace{f_e \, (\mathbf{vpn}, \, \mathbf{s})}_{f_1}$$

$$0 = \frac{d}{dt} \underbrace{q_i \, (\mathbf{vpn}, \, \mathbf{s})}_{-\mathbf{s}} + \underbrace{f_i \, (\mathbf{vpn}, \, \mathbf{s})}_{f_2}$$

(b)

How to Model Hysteresis Properly

Internal Unknowns in Verilog-A

Template: $\frac{d}{dt} = f_1 \text{ (vpn s)}$ $\frac{d}{dt} = f_2 \text{ (vpn s)}$

Example:

$$f_1(\mathbf{vpn}, \mathbf{s}) = \frac{\mathbf{vpn}}{R} \cdot (1 + \tanh(\mathbf{s}))$$

 $f_2(\mathbf{vpn}, \mathbf{s}) = \mathbf{vpn} - \mathbf{s}^3 + \mathbf{s}$

DO NOT

- declare internal unks as "real" variables
- code time integration inside model
 - → with \$abstime, @initial_step and memory states
- use idt()
- use implicit contributions
 - unless you know what you are doing

Internal Unknowns in Verilog-A

```
\frac{\mathbf{ipn}}{dt} = \frac{\mathbf{vpn}}{R} \cdot (1 + \tanh(\mathbf{s}))
\frac{d}{dt}(\tau \cdot \mathbf{s}) = \mathbf{vpn} - \mathbf{s^3} + \mathbf{s}
use a potential or flow
```

```
1 `include "disciplines.vams"
                                            internal
  module hys(p, n);
                                             node
       inout p, n;
4 5
       electrical p, n, ns;
       parameter real R = 1e3 from (0:inf);
6
7
       parameter real k = 1 from (0:inf);
       parameter real tau = 1e-5 from (0:inf);
8
9
       real s;
10
       analog begin
11
            s = V(ns, n);
            I(p, n) <+ V(p, n)/R * (1+tanh(k*s));
12
            I(ns, n) \leftarrow V(p, n) - pow(s, 3) + s;
13
            I(ns, n) <+ ddt(-tau*s);</pre>
14
15
       end
16 endmodule
```


internal unknown

implicit differential equation

RRAM Model

Template:

RRAM:

$$ipn = f_1 (vpn, s)$$

$$f_1(\mathbf{vpn}, \mathbf{Gap}) = I_0 \cdot e^{-\mathbf{Gap}/g_0} \cdot \sinh(\mathbf{vpn}/V_0)$$

$$\frac{d}{dt}\mathbf{s} = f_2\left(\mathbf{vpn}, \ \mathbf{s}\right)$$

$$\frac{d}{dt}\mathbf{s} = f_2\left(\mathbf{vpn}, \mathbf{s}\right) \quad f_2\left(\mathbf{vpn}, \mathbf{Gap}\right) = -v_0 \cdot \exp\left(-\frac{E_a}{V_T}\right) \cdot \sinh\left(\frac{\mathbf{vpn} \cdot \gamma \cdot a_0}{t_{ox} \cdot V_T}\right)$$

Jiang, Z., Wong, H. (2014). Stanford University Resistive-Switching Random Access Memory (RRAM) Verilog-A Model. nanoHUB.

$$minGap \leq Gap \leq maxGap$$

hybrid model

RRAM Model

Template:

RRAM:

ipn =
$$f_1$$
 (vpn, s) f_1 (vpn, Gap) = $I_0 \cdot e^{-\text{Gap}/g_0} \cdot \sinh(\text{vpn}/V_0)$

$$\frac{d}{dt}\mathbf{s} = f_2\left(\mathbf{vpn}, \mathbf{s}\right) \quad f_2\left(\mathbf{vpn}, \mathbf{Gap}\right) = -v_0 \cdot \exp\left(-\frac{E_a}{V_T}\right) \cdot \sinh\left(\frac{\mathbf{vpn} \cdot \gamma \cdot a_0}{t_{ox} \cdot V_T}\right)$$

 $\times F_{window}(\mathbf{Gap})$

Biolek, Jogelkar, Prodromakis, UMich, TEAM/VTEAM, Yakopcic, etc.

RRAM Model

clipping functions

Analogy: MEMS switch Zener diode voltage regulator

Guan X, Yu S, Wong H S. A SPICE compact model of metal oxide resistive switching memory with variations[J]. IEEE electron device letters, 2012.

Vourkas I, Sirakoulis G C. Memristor-Based Nanoelectronic Computing Circuits and Architectures[M]. Springer, 2015.

Memristor Models

Another (deeper) problem with f2

Memristor Models

$$\frac{d}{dt}\mathbf{s} = f_2\left(\mathbf{vpn}, \ \mathbf{s}\right)$$

Available f2:

linear ion drift

$$f_2 = \mu_v \cdot R_{on} \cdot f_1(\mathbf{vpn}, s)$$

nonlinear ion drift

$$f_2 = a \cdot \mathbf{vpn}^m$$

Simmons tunnelling barrier

$$f_2 = \begin{cases} c_{off} \cdot \sinh(\frac{i}{i_{off}}) \cdot \exp(-\exp(\frac{s - a_{off}}{w_c} - \frac{i}{b}) - \frac{s}{w_c}), & \text{if } i \ge 0\\ c_{on} \cdot \sinh(\frac{i}{i_{on}}) \cdot \exp(-\exp(\frac{a_{on} - s}{w_c} + \frac{i}{b}) - \frac{s}{w_c}), & \text{otherwise,} \end{cases}$$

- TEAM model
- 5 Yakopcic model
- Stanford/ASU $f_2 = -v_0 \cdot \exp(-\frac{E_a}{V_T}) \cdot \sinh(\frac{\mathbf{vpn} \cdot \gamma \cdot a_0}{t_{ox} \cdot V_T})$

$$\mathbf{ipn} = f_1 \left(\mathbf{vpn}, \ \mathbf{s} \right)$$

Available f1:

- 1 $f_1 = (R_{on} \cdot s + R_{off} \cdot (1-s))^{-1} \cdot \mathbf{vpn}$
- $f_1 = \frac{1}{R_{con}} \cdot e^{-\lambda \cdot (1-s)} \cdot \mathbf{vpn}$
- $\mathbf{3} \quad f_1 = s^n \cdot \beta \cdot \sinh(\alpha \cdot \mathbf{vpn}) + \chi \cdot (\exp(\gamma \cdot) 1)$
- $f_{2} = \begin{cases} c_{off} \cdot \sinh(\frac{i}{i_{off}}) \cdot \exp(-\exp(\frac{s a_{off}}{w_{c}} \frac{i}{b}) \frac{s}{w_{c}}), & \text{if } i \geq 0 \\ c_{on} \cdot \sinh(\frac{i}{i_{on}}) \cdot \exp(-\exp(\frac{a_{on} s}{w_{c}} + \frac{i}{b}) \frac{s}{w_{c}}), & \text{otherwise,} \end{cases}$ $\mathbf{f}_{1} = \begin{cases} A_{1} \cdot s \cdot \sinh(B \cdot \mathbf{vpn}), & \text{if } \mathbf{vpn} \geq \mathbf{0} \\ A_{2} \cdot s \cdot \sinh(B \cdot \mathbf{vpn}), & \text{otherwise.} \end{cases}$
 - $f_1 = I_0 \cdot e^{-\mathbf{Gap}/g_0} \cdot \sinh(\mathbf{vpn}/V_0)$ $\mathbf{Gap} = s \cdot minGap + (1 - s) \cdot maxGap.$
 - set up boundary
 - fix f₂ flat regions
 - smooth, safe funcs, scaling, etc.

Memristor Models

A collection of 30 models:

- all smooth, all well posed
- not just RRAM, but general memristive devices
- not just bipolar, but unipolar
- not just DC, AC, TRAN, but homotopy, PSS, ...

PSS using HB

Challenges in Memristor Modelling

- hysteresis
 - → internal state variable

- model internal unks in Verilog-A
 - → use potentials/flows
- upper/lower bounds of internal unks
 - → filament length, tunneling tap size
 - clipping functions
- smoothness, continuity, finite precision issues, ...
 - → use smooth functions, safe functions
 - → GMIN
 - → scaling of unks/eqns
 - → SPICE-compatible limiting function (the only smooth one)