NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA CR-159659 TRW 33572-6001-RU-00

(NASA-CR-159659) HEAT PIPE COOLED POWER MAGNETICS Final Report (TRW Defense and Space Systems Group) 176 p HC A09/MF A01

N80-13362

CSCL 09A

Unclas

G3/33 46347

HEAT PIPE COOLED POWER MAGNETICS

FINAL REPORT

DECEMBER 1979

PREPARED BY: M. S. CHESTER

POWER CONVERSION ELECTRONICS DEPARTMENT

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA LEWIS RESEARCH CENTER

CONTRACT NAS 3-21372

HEAT PIPE COOLED POWER MAGNETICS

FINAL REPORT

DECEMBER 1979

PREPARED BY: M. S. CHESTER

POWER CONVERSION ELECTRONICS DEPARTMENT

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA LEWIS RESEARCH CENTER

CONTRACT NAS 3-21372

FORWARD

The work described herein was performed in the Power Conversion Electronics Department of the Electrical System Laboratory within the Space Systems Division of TRW Defense and Space Systems Group. This department is managed by Mr. Bert J. McComb. The work was funded under Contract NAS 3-2:372 and monitored by Mr. Irving G. Hansen of the NASA Lewis Research Center. The key technical contributors were:

M. S. Chester	Project Manager and Project Engineer for Magnetics Design
E. E. Luedke	Project Engineer for Heat Pipes
M. Alper	Project Engineer for Mechanical Design and Magnetics Manufacturing Fixtures
B. M. Shupack	Project Engineer for Thermal Analysis of Heat Pipe Cooled Power Magnetics
L. Y. Inouye	Project Engineer for Filter Inductor Design Requirements

The author wishes to acknowledge the active support of Mr. : Irving G. Hansen who provided technical review and guidance and contributed to the final report.

TABLE OF CONTENTS

																									Ĭ	PAGE	NO.
FORW	ARD																									i	
1.0	SUMM	ARY														•		•	•	•	•					1	
2.0	INTRO	ODU	CT	NO1														•		•						3	
3.0	HEAT	PI	PE	CO()LE	D	POW	ER	MA	GNE	TIC	S	DES	IG	N .		•	•					•			4	
	3.1	HE	ΑT	PIF	ÞΕ	CO	OLE	D M	IAGI	NET	TICS	D	ESI	GN	01	3J	EC.	TI	VE	S	•	•	•	•	•	4	
	3.2	ΙD	EN.	TIF	ίED	P	₹OB	LEM	1 A	REA	AS.	•	•	•	•	•	•	•	•		•	•	•	•	•	4	
	3.3	TR	٩N:	SFOF	₹ME	R E	ELE	CTR	RIC	AL	DES	IG	N.	•	•	•	•	•	•	•	•	•	•	•	•	8	,
	3.4	HE	T /	PIF	ÞΈ	DES	SIG	N,	BE	AM	POV	IER	TR	AN	SF(DRI	ME	R	,	•	•	•	•	•	•	23	
	3.5	TR	\N	SFOF	RME	R	THE	RM/	IL I	ANA	LYS	IS	•	•	•	•	•	•	•	•	•	•	•	•	•	31	
	3.6	PR	ODI	UCT	DE	SI	ЗN		•	•		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	32	
	3.7	TE	ST	DES	SCR	IP.	[10	N A	ND	RE	ESUL	.TS	•	•	•	•	•	•	•	•	•	•	•	•	•	38	
	3.8	IN	DU	CTOF	₹E	LE	CTR	ICA	\L !	DES	SIGN	١.	•	•	•	•	•	•	•	•	•	•	•	•	•	46	
4.0	CONC	LUS	10	NS ,			•			•			•			•	•	•	•	•	•		•	. •	•	62	
APPE	NDIX	1 -																								1-1	
APPE	NDIX :	2 -	E	P301	IНР	Н	EAT	PI	ΙPE	CC	OOLE	D	INF	TU	F	ΙL	ΤE	R	I١	IDI	JCT	ΓOF	₹,			2-1	•
APPE	NDIX	3 -													-				_					•		3-1	
APPE	NDÍX	4 -	I	NPU"	ΓF	IL	TER	DE	SI	GN						•										4-1	
APPE	NDIX :	5 -	Н	EAT	ΡI	PE	MA	NUF	-AC	TUF	RING	S	KET	СН	ES	•										4-5	

LIST OF ILLUSTRATIONS

			PAGE NO
FIGURE	1	HEAT PIPE COOLED BEAM POWER TRANSFORMER SCHEMATIC DIAGRAM EP220HP	9
FIGURE	2	FINAL MECHANICAL CONFIGURATION	10
FIGURE	3	PICTURE OF HEAT PIPE COOLED TRANSFORMER EP220HP	11
FIGURE	4	HEAT PIPE COOLED TRANSFORMER HEAT FLOW PATHS	12
FIGURE	5	PICTURE OF HEAT PIPE COOLED TRANSFORMER 220HP AND CONDUCTION COOLED TRANSFORMER EP220	13
FIGURE	6	PHOTOGRAPH OF HEAT PIPES	24
FIGURE	7A	FIGURE OF MERIT IN ZERO-g FOR SELECTED WORKING FLUIDS	26
FIGURE	7B	VAPOR PRESSURE OF AMMONIA AND METHANOL	27
FIGURE	8A	COIL-FORM SHAPED HEAT PIPE	28
FIGURE	8B	FLATTENED TUBULAR HEAT PIPE	29
FIGURE	9	EP220HP BOTTOM VIEW	33
FIGURE	10	FRAME PHOTOGRAPH	34
FIGURE	11	MANUFACTURING FLOW CHART FOR HEAT PIPE COOLED TRANSFORMER EP220HP	37
FIGURE	12	MAGNETIC IN VACUUM SYSTEM	39
FIGURE	13	BEAM POWER PROCESSOR BREADBOARD CIRCUIT	40
FIGURE	14	TRANSFORMER THERMAL VACUUM AND CORONA TESTER	41
FIGURE	15	PRIMARY AND SECONDARY TEMPERATURE RISE WITH OVERPOWER	45
FIGURE	16	BASIC TWO STAGE INPUT FILTER	47
FIGURE	17	EP/PPU INPUT RIPPLE-LOAD BANK TESTS	48
FIGURE	18	EP301HP INDUCTANCE VS. DC CURRENT	50
FIGURE	19	HEAT PIPE COOLED INPUT FILTER INDUCTOR EP301HP	52
FIGURE	20	HEAT PIPE COOLED MAGNETIC - INDUCTOR HEAT PIPE ASSEMBLY	53
FIGURE	21	HEAT PIPE COOLED FIRST-STAGE FILTER INDUCTOR EP301HP.	54
FIGURE	22	COMPARISON OF HEAT PIPE COOLED VS. CONDUCTION COOLED INDUCTOR	55
FIGURE	23	FIRST-STAGE FILTER COMPONENT WEIGHT COMPARISON	56
FIGURE	24	HEAT PIPE ARRANGEMENT AND HEAT FLOW PATHS IN EP301HP INDUCTOR	57
FIGURE	25	EP301HP INDUCTOR HEAT FLOW/TEMPERATURE MAP	58
FIGURE	26	EVAP. HEAT LOAD, Q, WATTS HPCM INDUCTOR PIPE CAPACITY	60

LIST OF ILLUSTRATIONS (Continued)

		PAGE NO
TABLE 1	PERFORMANCE COMPARISON STUDY	16
TABLE 2	HEAT PIPE COOLED VS. CONDUCTION COOLED BEAM OUTPUT TRANSFORMER - WEIGHT COMPARISON	17
TABLE 3	HEAT PIPE COOLED VS. CONDUCTION COOLED BEAM OUTPUT TRANSFORMER, WATTS LOSS COMPARISON	19
TABLE 4	HEAT PIPE COOLED VS. CONDUCTION COOLED BEAM TRANSFORMER ELECTRICAL DESIGN DETAILS	21
TABLE 5	DEGREES CENTIGRADE TEMPERATURE RISE BEFORE AND AFTER TEMPERATURE CYCLING	43
TABLE 6	DEGREES CENTIGRADE WINDING TEMPERATURE RISE OF DP220HP MOUNTED VERTICALLY	44
TABLE 7	1ST STAGE FILTER DESIGN COMPARISON	49
TABLE 8	SUMMARY OF EP301HP THERMAL DESIGN ANALYSIS - BASELINE DESIGN	59

1.0 SUMMARY.

A high frequency, high power, low specific weight (0.57kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4kg/kW and the highest winding temperature rise was reduced from 40°C to 20°C in spite of 10W additional loss. The design loss/weight tradeoff was 18W/kg. Additionally, allowing the same 40°C winding temperature rise as in the original design, the kVA rating is increased to 4.2kVA demonstrating a specific weight of 0.28kg/kW with the internal losses increased by 50W.

This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic.

Another heat pipe cooled magnetic, a 3.7kW, 20A input filter inductor was designed, developed, built and tested. The incorporated heat pipes enabled a 40% weight reduction with a low (10°C) heat rise and a 5.5 watt loss increase at 12A nominal operation. Test results of 16W/kg of added losses for reduced weight is just shy of the program goal of 15W/kg. However, the improved magnetics allowed an overall input filter weight reduction of 0.34kg.

The heat pipe cooled magnetics are designed to be earth operated in any orientation. This desirable feature, while not a space flight requirement, resulted in the additional heat pipe development of a two condenser here pipe design used in the inductor. This requirement is satisfied in the case of the transformer using twice as many heat pipes as actually needed placed in back-to-back pairs. This caused some weight and loss penalty (estimated to be 100 grams and 1 watt). However, in space operation, this feature would provide the advantage of redundancy.

The program also realized the following improvements in heat pipe technology:

Heat Pipes for Components:

- All attitude concepts and designs developed back-to-back heat pipe configuration and two condenser operation.
- Larger diameter, shortened condenser heat pipe developed to reduce condenser footprint.
- Flattened evaporator section developed to reduce primary to secondary separation.

Advantages realized:

- Heat pipe designs permit power growth over conventional conduction cooled components by improving thermal control techniques.
- Provides new tradeoff technique for kg/kW optimization.
- Overcomes some limitations of potting compounds.
- Reduces operational life thermal cycle stresses.

2.0 INTRODUCTION.

TRW Defense and Space Systems Group has been developing high power processing equipment for application in direct broadcast communication and primary spacecraft electric propulsion programs. These applications have included high voltage, high power magnetic components operating in the frequencies range of 10K Hertz to 50K Hertz.

Due to the decrease size power magnetic component coupled with the increase power handling requirements, the internal heat loss density is raised tending towards higher operating temperatures. Since life and reliability are affected by operating temperature, it is important that new thermal control techniques such as heat pipes be incorporated in high power magnetics design. This program demonstrated that magnetic component size and weight are dramatically reduced by the application of heat pipe technology. Moreover, the life and reliability of power magnetics will be improved by lower and constant coil operating temperatures.

This program had two objectives, the first was to increase the power density of magnetic components by the use of heat pipe cooling to improve thermal control. This was demonstrated by a heat pipe cooled redesign of the beam transformer and first stage inductor. The second objective was to provide a technical foundation supporting increased power level magnetic component designs for future power processors.

3.0 Heat Pipe Cooled Power Magnetics Design.

3.1 Heat Pipe Cooled Magnetics Design Objectives.

One program objective was to reduce the transformer weight and enhance its long-term reliability by reducing its internal temperature rise. A second objective was to lower the internal temperature rise even though there is additional internal loss resulting from the weight reduction. A third objective was to develop methods for integrating heat pipes into high power magnetics, particularly those operated with high frequency, high AC currents, and high voltage. A fourth objective was to design, develop, manufacture, test and analyze two specific examples.

- 1. PE220HP 2.4kW (3kVA) EPPP Beam Power High Voltage Transformer.
- 2. EP301HP 3.7kW, 20A, EPPP Input Filter Inductor.

The fifth objective was that the hardware designs perform without damage when tested in earth's gravity field without restrictions on orientation.

3.2 <u>Identified Problem Areas</u>.

A preliminary design identified problem areas unique to the design of a heat pipe cooled power magnetic.

3.2.1 Losses Created by the Heat Pipe and Shield Collector.

Preliminary work in heat pipe materials selection identified the stainless steel case, stainless steel fiber wick, or sintered stainless steel wick with a fluid of methanol as the most promising heat pipe design choice.

This immediately raised the concern of an additional loss penalty in the heat pipe caused by the insertion of the stainless steel tubing and its wick into the high electromagnetic field between the primary and secondary windings. These losses would be generated by hysteresis effects in the stainless steel materials, by eddy current generation and by the proximity effect losses due to asymmetrical AC fields.

3.2.1 (Continued)

The design approach included some preliminary experiments to verify first, if the concerns were valid and second, to assess the extent of additional losses as a function of material, material thickness and material position.

Since previous development work performed on Contract NAS3-19730 identified additional losses in the copper electrostatic shield, pre-liminary experiments sought to determine the extent of these losses. To this end, an experiment was designed to access the additional losses in an electrostatic shield placed between the primary and the secondary windings. The losses were determined as a function of the material, material thickness, the material area and the asymmetry when placed between the primary and seconary windings energized with AC frequency and current levels under normal operation.

3.2.2 <u>Compatibility of the Stainless Steel with the Polyurethane Impregnating Saterial.</u>

This concerned interface details of the heat collector, the heat pipe and the potting compound.

Experience has shown that a separation of a small area, or even extremely thin area, can result in serious or even catastrophic deterioration of the thermal path. This is due to the severe difference in thermal conductivity between the materials and that of a vacuum. The results of a separation is a thermal profile which significantly departs from that of the intended design.

The separations result from differential thermal expansions, especially those due to non-operating cold and hot cycling. They are also the result of non-adhesion of the impregnating compound to the surfaces in question.

The design must assure orderly heat flow from the collector surface to the heat pipe. This suggests the materials should be the same. They could be attached by brazing or electrical arc weld bond or perhaps both. Using this design approach if the heat pipe were stainless steel, the collector would also be stainless steel. This raised speculation over the adhesion between the stainless steel collector and the impregnating compound.

However, a thin electrostatic shield collector of say 5 mils thick would be as stiff and as strong as a razor blade. While this approach solved the collector to heat pipe thermal attachment problem, a far more serious potential problem would be created.

Solution.

The potential problem of interface separation between the impregnating compound and the heat collecting electrostatic shield was solved by the following techniques.

The heat collector electrostatic shield is made of copper for good thermal conductivity. It consists of three mil thick sheet with chemically etched slots allowing the impregnating compound to link to itself, thus

3.2.2 (Continued)

preventing cleavage, or sheet separation, under thermal cycling. The three mil thick copper is ductile compared to beryllium copper or stainless steel and yields with mechanical stress. Before impregnation, a primer is applied to the copper sheet to improve the adhesion of the impregnating compound to the copper sheet.

The thermal attachment is made by plating the stainless steel tube with a nickle flash, then a selective copper plate and finally a selective solder plate. The collector made of three mil thick copper is selectively copper plated to thicken the region near the attachment to a total of six mils and then selectively solder plated. The collector and heat pipe are torch soldered between the solder plated sections resulting a very low thermal drop across the attachment bond. The collector is predominately three mils thick found by experiment to cause approximately 1/2 watt loss per section. Only in the region of the attachment is the collector thickened. This adds little in loss but satisfied the thermal drop requirements identified by thermal analysis.

3.2.3 All Attitude Operation.

The constraint of special testing is accommodated for large spacecraft heat pipes by very special test fixtures to enable earth testing. The constraint of special orientation for a component was considered to be a serious limitation. This is especially true in this case of two components, a transformer and a reactor, in each power processor unit because two power processors are mounted back-to-back as a pair called a bimod. The particular expected usage of these components might require not only very special care in testing but considerable rework of the power processor testing fixtures.

The heat pipe cooled transformer design proposed was reworked with the intent of developing a mechanical configuration of the heat pipes that would not exceed serious life reducing internal temperatures for any orientation. This criteria is defined as an "ALL ATTITUDE ORIENTATION" design.

3.2.3 (Continued)

The design problem was to meet all the project requirements including the weight reduction, loss control, retrofit footprint, retrofit dimensions, heat pipe design commonalty cost, and completion date.

The solution is briefly described here. Two heat pipes were used for each transformer coil instead of one, each capable of handling the full load requirement. The heat pipes were straight line placed back-to-back. The rationale was that under the best conditions on earth, or in any condition in space, both heat pipes would function and reduce the internal temperature rise. However, if placed in the worst possible attitude position on earth, at least one heat pipe per coil would operate to maintain the temperature rise within safe limits.

To maximize experience a different heat pipe configuration was designed for the reactor. It is a novel two condenser design. Under the best conditions on earth both condensers operate. The pipe performs as if there were two short pipes end-to-end with a transport capability of over 50 watts. However, if the earth orientation places the pipe in a vertical position, the pipe must overcome the effects of gravity. In this position while one condenser does not operate, the opposite condenser has 15 watts of transport capability which is more than enough for the worst case losses generated by the filter inductor.

3.3 Transformer Electrical Design.

The electrical, mechanical, thermal, and heat pipe designs are discussed separately but in fact are interrelated and were considered in concert for every detail decision.

The transformer schematic diagram is shown in Figure 1. The final mechanical configuration is shown in Figures 2 and 3. The schematic identifies the two coil construction and symbolizes the layers. The primary of each coil and secondary #2 are each 1 layer while secondary #1 has 4 layers on each coil. The electrostatic shield is split into 4 sections. Each section consists of two pieces of copper attached to a heat pipe. The heat flow paths are shown in Figure 4, which demonstrates the principle version of the heat pipe flow.

FIGURE 1 - HEAT PIPE COOLED BEAM POWER TRANSFORMER SCHEMATIC DIAGRAM EP220HP

FIGURE 2 - FINAL MECHANICAL CONFIGURATION

-10-

FIGURE 3 - PICTURE OF HEAT PIPE COOLED TRANSFORMER EP220HP

FIGURE 4 - HEATPIPE COOLED TRANSFORMER HEAT FLOW PATHS

FIGURE 5 - PICTURE OF HEAT PIPE COOLED TRANSFORMER 220HP AND CONDUCTION COOLED TRANSFORMER EP220.

OF POOR QUALITY

3.3.1 Two Coil Configuration.

The original and conventional design magnetic EP220 is shown in Figure 5, and is fully described in NASA Technical Memorandum 79138. It is a one coil, 2 core configuration so chosen because weight was the most important design requirement. An equivalent two-coil paper design comparison was estimated to weigh 1865 grams compared to the 1746 grams actual weight of the selected one coil Figure 5 design.

The two coil configuration was chosen however for EP220HP for the following reasons. The all attitude objective required twice as many heat pipes as actually needed for space flight operation. A single coil would require 2 primary layers and 8 secondary #1 layers elevating the worst case temperature rise from layer to layer to get to the heat pipe. At least 4 pipes would be needed and perhaps more. This would so complicate the mechanical tolerances of parts placement during coil winding as to be judged impractical for an initial attempt. The advantages of the two coil design are:

- Each coil has a single layer primary with direct short thermal contact to the heat collector.
- The mean turn of each winding is reduced with lower resistance losses.
- Each heat pipe load was reduced, thus providing a performance margin.
- The potting weight would be slightly reduced somewhat off-setting the expected weight increase of the 2 coil design.
- A high degree of symmetry could be maintained thereby controlling proximity losses due to uneven electromagnetic fields.
- The reduced leakage inductance would improve coupling, thereby enhancing waveshape fidelity particularly in secondary #2.
- The doubling of heat pipes required for all attitude operation provides heat pipe redundancy in flight as only one heat pipe per coil is needed.
- It was known that there would be a weight and loss penalty associated with the extra heat pipes. It was estimated to be

(Continued)

- The flat profile minimized the thermal paths to the heat sink and lowered the center of gravity resulting in better shock and vibration capacility.
- The two coil secondary permits separate electrical rectification before stacking. This yields the same DC output with less transformer AC electrical stress thereby providing improved corona margin.

Although some extra weight would ne needed for the two coil design, the weight estimate indicated that the goal would be met.

3.3.2 Performance Comparison of the Beam Output Transformer.

The performance comparison of EP220HP predicted and obtained are shown compared to the conduction cooled design EP220 in Table 1.

3.3.3 Weight Comparison of the Beam Output Transformer.

Table 2 is a weight comparison of the EP220HP actual and predicted designs which are compared to the EP220 design and a predicted 2 coil version of the EP220 design.

The heat pipe cooled transformer weight goal was 1050 grams. The final weight was 1200 grams.

The additional 150 grams were distributed as 50 gram increases each in the core, the frame and the coil.

The calculated weight of the core assumed a core stacking factor of 82% and ignored the weight of the core impregnating compound. There is reason to believe the stacking factor is closer to 88%, an increase of 33 grams. This added to the 13 grams estimated for the core impregnating compound justifies the 50g increase in core weight. The core size could be reduced slightly to reduce this additional weight.

The frame is 50 grams heavier than predicted in part due to increasing the size of the heat pipe condenser aluminum blocks to accommodate two of the heat pipes which were shifted due to mechanical assembly interference. Another added weight contributer was the output terminals. Two extra terminals were provided to permit both retrofit to the conventional design, using three 600V rectifiers per leg and the added choice of using

HEAT PIPE COOLED VS. CONDUCTION COOLED BEAM TRANSFORMER PERFORMANCE COMPARISON SUMMARY

	FINAL DESIGN HEAT PIPE COOLED EP220HP	CONDUCTION COOLED EP220	ESTIMATE HEAT PIPE COOLED EP220HP
WEIGHT	1200 GRAMS	1750 GRAMS	1050 GRAMS
WATTS LOSS	40 WATTS	29.6 WATTS	40.8 WATTS
INCREASED LOSS	10.4 WATTS		10.5 WATTS
DECREASED WEIGHT	550 GRAMS		700 GRAMS
△WATTS/△KILOGRAMS	18.9 W/KG		15 W/KG
PRIMARY AVERAGE TEMP. RISE	18°C	35°C	18°C
SECONDARY AVERAGE TEMP. RISE	20°C	40°C	20°C

TABLE 1 - PERFORMANCE COMPARISON SUMMARY

HEATPIPE COOLED VS. CONDUCTION COOLED

BEAM OUTPUT TRANSFORMER - WEIGHT COMPARISON

	01								
2KW (2 COIL)	SIM. 10 EP220	1865g	770	515	200	140	220	20	1865g
2KW (1 COIL)	EFZZU	1746g	638	568	155	143	223	. 19	1746g
EAT PIPE COOLED 2KW (2 COTI) FP220HP	ACTUAL	1200g	475	340	50	170	135	30	1200g
HEAT PIPE COOLED 2KW (2 COTI) FP23	PREDICTED	Sncn7	430	300	50	150	100	20	1050g
OUTPUT POWER	WEIGHT		CORE	COPPER	COOLING	FRAME	POTTING	SCREWS & HARDWARE	TOTAL WEIGHT

TABLE 2

3.3.3 (Continued)

two rectifiers per leg rated at 1000V per rectifier. This gave the advantage of reducing the coil AC stress as mentioned earlier. The accelerator winding terminals were also upgraded from the earlier design. The additional weight of just these terminals was 18 grams. The total weight of the assembly bolts was misjudged by 10 grams. Altogether, this essentially accounts for the 50 grams additional frame weight. While some of this excess weight could have been recovered by special machining of the frame parts, it was not considered justifiable because of the additional complications and possible risk to the heat flow paths.

The coil weight overage was due to the desire to keep the DCR close to the predicted value necessitating additional strands of Litz wire. The final wire weight was misjudged by about 15 grams. Another weight contributant was the additional Trucast potting compound added between the coils and core to withstand shock and vibration. This weight is estimated to be 40 grams.

This weight of 1200 grams includes the extra weight associated with the all attitude design which was estimated at 75 grams but turned out to be just over 100 grams. Circuit modifications made recently in NASA program 3-21746 allows core reductions of 30% to 40%. Assuming 30% for this program amounts to a reduction of 146 grams in core weight. Readjustments in the coils could remove another 50 to 75 grams resulting in a final design weight under one kilogram.

3.3.4 Watts Loss Comparison of the Beam Output Transformer.

A detailed comparison of the watts loss of the two designs for both room start and final stabilized temperature with a 50^{0} heat sink is shown in Table 3.

The detailed loss of the windings are calculated using their DC resistance. Due to proximity losses and skin effect the actual AC values should be higher. However, the designs are symmetrical and use twisted Litz (Litzendraht) wire both in the primary and power secondary to essentially eliminate AC wire losses.

HEATPIPE COOLED VS. CONDUCTION COOLED BEAM OUTPUT TRANSFORMER, WATTS LOSS COMPARISON

			C:)LD			НОТ	
ŀ		EP220 WATTS	EP220HP WATTS	DIFFERENCE WATTS	EP220 WATTS	EP220HP WATTS	DIFFERENCE WATTS
	CORE LOSS	10.5	6.8	-3.7	10.5	6.8	-3.7
	PRI	7.2	11.9	+4.7	8.8	14.0	+5.2
	SEC 1	6.7	11.7	+5.0	8.5	13.9	+5. 4
1	SEC 2	.2	.1	-0.1	.2	.1	1
-19-	ESS	2.0	4. 0	+2.0	2.0	4. 0	+2.0
	Н. Р.		2. 0	+2.0		2.0	+2.0
		26.6W	36.5W	9. 9W	30. OW	40.8W	10. 8W

3.3.4 (Continued)

The losses of the electrostatic shield and the heat pipes are best estimates based on experiments. A test was performed on the EP220HP which extrapolated to 10 watts additional losses over the EP220 design. This is in excellent agreement with Table 3 and supports the loss distribution between the various loss sources.

3.3.5 <u>Electrical Design Details.</u>

Table 4 is a comparison of the heat pipe and conduction cooled conventional design details of the Beam Output Transformer.

3.3.6 Integrating Heat Pipes into Power Magnetics.

The developed heat pipes have been successfully integrated into the high power beam Transformer by following these basic principles.

- 3.3.6.1 Use non-magnetic materials, preferably resistive. The non-magnetic materials do not exhibit hysteresis losses. Eddy currents are reduced proportional to an increase in resistivity.
- 3.3.6.2 Where good thermal conductors are necessary use as thin cross section as practical. With few exceptions, nature chooses to make good thermal conductors to be good electrical conductors. The best heat collector choice was copper. In order to reduce eddy current losses in the copper collector, the thickness was reduced to 3 mils and selectively thickened to 6 mils adjacent to the evaporator.
- 3.3.6.3 Maintain physical symmetry particularly in the path of primary to secondary coupling. Since proximity losses are generated by conductors in a gradient field, they are reduced or eliminated by maintaining a uniform field. Symmetry improves field uniformity and should be maintained particularly when the heat collector and/or heat pipe is in the path of primary to secondary coupling.

HEATPIPE COOLED VS. CONDUCTION COOLED BEAM TRANSFORMER ELECTRICAL DESIGN DETAILS

	CONDUCTION COOLED	HEATPIPE COOLED
	EP220	EP220HP
OUTPUT POWER	2.2KW	2.2KW
CORE	.75x.438x2.375x1.000 (2 USED)	5/8x5/8x2.375x1 5/16
WT. GMS	638g	475g
LOSS WATTS	10.5W	6.8W
PRIMARY TURNS	16t; 22 1 COIL	28t; 14t 1g 2 COILS
WIRE	5-3-21-33	5-35-33
CURRENT AMP RMS	33A RMS	33A RMS
WEIGHT GMS	208g	110g
DCR	5.6 mΩ	10.9mΩ
LOSS	7.2W	11.9W
SECONDARY TURNS	204t	360t
WIRE	32/33	40/36
CURRENT	2.7A RMS	2.7A RMS
WEIGHT	350g	205g
DCR	.91Ω	1.62Ω
LOSS	6.6W	11.7W

- 3.3.6.4 Design the conduction interfaces to withstand adhesion deterioration due to thermal changes. Thermal conduction is radically reduced by even minute separations in the vacuum environment encountered in space. The gradual exercising of mechanical stresses generated by differential thermal expansion must be considered and controlled at the critical interfaces between the heat sources (windings) and heat sinks (heat collector and heat pipe). Finally, testing must be performed over a wider range than will be encountered in the application.
- 3.3.6.5 Reduce the thickness of the heat pipe to minimize the separation between the primary and secondary. This principle is desirable because the outer diameter grows proportional to the separation caused by inserting the heat pipe between the primary and secondary. The copper losses are increased proportional to π times the diameter increase. Also, as the separation grows, the non-uniformity increases and the proximity losses increase. Finally, the physical separation between windings is the source of leakage inductance and poor coupling. Bad coupling is the source of poor waveform fidelity and transient spikes.

3.4 Heat Pipe Design, Beam Power Transformer

The final heat pipe design is shown in Figure 6, Appendix 1, sheet 17. It is a special purpose design addressing the following requirements:

- · Minimum size and weight.
- Non-magnetic materials.
- High resistivity coefficients.
- o Thin wall.

electrical losses.

To minimize

- Heat transport capability of 20 watts for 50°C heatsink.
- s Straight line geometry.
- Operation temperature range -50°C to +100°C.
- Greater than 50,000 hour operation life.
- Snort condenser length to meet retrofit dimensions.
- This evaporator section to reduce primary to secondary physical separation.
- Must withstand impregnation cycle of vacuum and pressure.
- Suitably low leak rate hermotic seal.
- Must withstand torch soldering temperatures.
- Must have surface compatable with impregnating compound.

Six systems of case, wick and fluid were considered. Methanol fluid, stainless steel (300 series) case and wick were found to have characteristics consistent with the requirements. The six systems considered were:

- Ammonia fluid and Aluminum Case
- Ammonia fluid and Stainless Steel Case (300 series).
- Methanol fluid and Stainless Steel Case (300 series).
- Water fluid and Copper Case.
- Water fluid and Monel Case.
- Acetone fluid and Titanium Case.

FIGURE 6 - PHOTOGRAPH OF HEAT PIPES

3.4.1 Discussion of Heat Pipe System Choice.

The ammonia fluid system was considered too risky as the vapor pressure of ammonia is 900 psia at 100°C, raising serious concern about assuring a long-life, leak-free pressure vessel. The required wall thickness of the stainless steel would generate excessive eddy current losses. An aluminum case wall would generate even higher losses because it would not only be thicker, but also in a better electrical conductor. It was estimated the additional aluminum wall losses generated by eddy currents would be 10 to 15 watts for the four pipes.

The water fluid systems are unsuitable for the -50°C transport and storage. Fabrication of copper pressure vessels is difficult due to their low strength.

The acetone fluid titanium case system was deleted as acetone has a low figure of merit and also because of the high cost of the titanium pressure vessel case.

Figure 7A is a plot of Figure of Merit (FOM) in zero g versus heat sink temperature for the fluids considered. The figure of merit is a combination of the working fluid properties which determine their maximum heat transport capability. Figure 7B is a plot of vapor pressure in pounds per square inch absolute versus the fluid temperature. Methanol has a reasonable FCM which increases with temperature. This means its transport capability will improve as the heat sink temperature rises. A fluid with a negative coefficient, such as ammonia, can lead to thermal runaway. Figure 10 places the vapor pressure of methanol at 50 psia for 100°C. It is a very reasonable pressure to contain.

FIGURE 8A - COIL-FORM SHAPED HEAT PIPE

Curved Evaporator Tube for improving thermal contact between heat pipe and transformer windings. It also reduces the separation between primary and secondary windings when placed between them.

FIGURE 8B - FLATTENED TUBULAR HEAT PIPE

Flattened Evaporator Tube for Heat Pipe permits reduced separation between primary and secondary coils.

This is a low-cost design compared to the coil-form shaped heat pipe evaporator shown in Figure 8A.

3.4.2 Heat Pipe Geometry

There are several geometrics possible for magnetics heat pipe applications. Special shapes, such as that shown in Figure 8, offer the advantage of large surface heat input. However, since evaporation heat transfer coefficients are so high for methanol (\sim 1-2000 BTU/hr ft2°F) the large area provided by the contoured shape of Figure 8 would not provide sufficiently lower Δ T's than much simpler and lower cost configurations. Tubular shapes are most widely used due to their lower manufacturing cost and flexibility in application in a wide number of configurations.

For the current application an internally grooved 0.1875" o.d. stainless steel tube, with a homogeneous internal wick structure is a combination well suited to a wide range of transformer/inductor configurations. The wick structure is a TRW-developed metal fiber construction which offers simplicity of construction, ease of forming, and good thermal performance.

The final two diameter configuration was developed to reduce the condenser length. A single diameter tube condenser would be 2" long extending out of each side of the transformer, which is 2" longer than the available foot print. The total length constraints were satisfied by increasing the diameter, giving the same surface as the 2" long 3/16" diameter tube. The two diameter heat pipe required a special wick interface connection shown Section A-A, Figure 7. The wick slabs are stainless steel felt metal and the round wick is metal fiber.

The condensation heat transfer coefficient was improved by internally threading the tube with 150 threads per inch. In order to maintain symmetry and reduce separation between primary and secondary, the evaporation section is flattened from 0.184" dia to 0.084" as shown in Figure 8A. This flattened configuration somewhat improves the thermal contact between the collector and the evaporator due to its increased contact surface but not as much as the costly contoured shape. Since the length of the secondary mean turn is reduced, copper losses and weight are also reduced. Mounting bracket and impregnation material are also reduced with the smaller coil diameter.

3.4.3 Transformer Heat Pipe Integration Sequence

This sequence assures heat pipe performance before impregnation. The tube is drained to allow simple sweat soldering of the electrostatic shield heat collector to the heat pipe evaporator without fear of fluid deterioration or contaminate generation. Also, it permits the high temperature & pressure coil impregnating techniques required to assure insulation performance.

TRANSFORMER HEAT PIPE INTEGRATION SEQUENCE

- Heat Pipe Fabricated
- Filled for Test
- Tested for Performance Requirements
- Drained & Temporarily Sealed
- Seal Test
- Collector Fins Attached
- Assembled to Coil After Primary
 - •• Using Coil Mandrel Poisitioning Control
 - •• With Prefab Dimensioned Separators
- Coil Fabrication Completed Using Mandrel & Potting Mold
- Impregnation & Encapsulation of Coil & H.P. Assembly
- Removal of Coil Mandrel & Potting Mold
- Impregnate & Encapsulate Core & Coils
- Final Transformer Assembly
- Fill & Reactivate Heat Pipes
- Seal & Weld Heat Pipes
- Seal Test
- Thermal Characteristics Test
- Transformer Thermal Profile in Breadboard & Thermal Vacuum Environment

3.5 Transformer Thermal Analysis.

Refer to Appendix 3, "Thermal Analysis Report - Heat Pipe Cooled Power Magnetics."

3.6 Product Design.

3.6.1 Final Configuration

The final configuration is shown in Figure 2 showing top, side and both end views. It was designed to satisfy the requirements of reduced weight, improved thermal transfer and electrical behavior.

The basic product design features are one core two coils, with two heat pipes per coil. It has a low profile, and fits within the footprint dimensions of the EP220 design and its base, shown in Figure 9 Bottom View, retrofits with the screw pattern of earlier design. Advantages of the low profile are lower weight, shorter thermal path to base, more inherent tolerance to shock and vibration and gives the best configuration for scaling to higher kVA loads.

3.6.2 Frame and Condenser Block and Clamp Design.

The frame photograph is shown in Figure 10. It is as light as possible, consistent with the thermal requirements of conducting the heat from the heat pipe condenser to the heat sink on which the frame is mounted. The set of clamps and blocks bolt to the frame and grasp the heat pipes to provide the thermal conduction path. Although the blocks introduce an additional interface in this thermal path, the delta temperature drop is held low by carefully filling the block to frame interface with a thermally conducting adhesive, Trucast. Besides the obvious advantage of less complicated machining, the blocks allow some accommodation of coil assembly tolerance buildup. The critical thermal attachment to the heat pipe condensers is made by the clamps which are drilled and honed in sets to provide close tolerance. This interface is also filled with Trucast.

OF POOR QUALITY

FIGURE 10 - FRAME PHOTOGRAPH

3.6.3 Electrostatic Shield Heat Collector.

The electrostatic shield is required by the electrical design. It performs the function of providing a return path direct to ground for output winding transients such as commonly occur in plasma load arcs. Without this shield the transient event will be coupled into the primary circuit by way of the transformer distributed primary to secondary capacity causing possible damage to voltage sensitive components. Since it is physically located near the transformer hot spot and consists of a thin copper sheet, also it forms a natural heat collector for the heat pipe evaporator. Figure 4 shows the electrostatic shield and heat pipe assembly. There are two heat pipes per coil. The shield heat collector is formed as two separated sheets, one inside towards the primary and one outside towards the secondary. The two shields thus collect the heat generated, predominately by 1²R loss, in the coil winding wire. Two such shields are used to insure a smooth surface facing each winding, thus controlling the voltage gradients to meet the high voltage corona requirements. The shields are maintained separated by the use of a prepotted separator made of the same polyurethane material used subsequently for coil impregnation. The shields are slotted by an etching process which allows the impregnating compound to flow freely and to anchor the compound to the shield surface. The shield is pretreated with a primer to insure adhesion to the polyurethane impregnant which maintains the needed thermal heat flow path and prevents corona separations.

3.6.4 Manufacturing Aids.

The coil manufacture requires exact positioning of leads and heat pipes to hold the tolerances required in the impregnation mold and the final assembly. A special winding mandrel was devised which performed this task admirably.

A split mold was designed and fabricated for impregnating the coil during the vacuum and pressure processing which provides high voltage corona free performance.

Special tooling was made to flatten and shape the heat pipe evaporator section without damaging the very fine internal serrations.

3.6.5 Manufacturing Sequence.

A detailed flow chart of the manufacturing sequence is shown in Figure 11.

(3)

....

FOLDOUT FRAME

FIGURE 11 - Manufacturing Flow Chart

For

Heat Pipe Cooled

Transformer EP 220HP

3.7 Test Description and Results.

3.7.1 Test Description

The transformer EP220HP was attached to a heat sink fixture and mounted on a temperature controlled heat sink inside of a vacuum system as shown in Figure 12. The electrical connections to the transformer were taken thru the vacuum seal and connected into the breadboard circuit shown in Figure 13. Thermocouples attached to the transformer are connected to a strip chart recorder. A load bank is used which exercises the transformer to full load. Figure 14 shows a more complete view of the test setup and corona tester used to provide corona inception voltage data.

The test consisted of full load operation of the transformer at nominal, minimum and maximum input voltage. The test conditions are maintained in vacuum of about 5×10^{-6} torr until final temperatures as indicated by the strip chart recorder are reached. The test is stopped and DC resistance readings of the windings are taken every 30 seconds for 5 minutes. The DC resistance is then extrapolated back to time zero to establish the actual operating temperature.

The thermocouple data is plotted to check the analysis predicted by the thermal modeling.

The data is first taken with the heat pipes operated in the horizontal mode which simulates the conditions experienced under 0 gravity.

The transformer, attached to the fixture, was removed from the vacuum chamber and cycled in a temperature chamber from -50°C to +100°C for at least 10 cycles each lasting some 4.5 hours. The transition time was 45 minutes and the soak time 90 minutes at each extreme. The thermal time constant for the transformer was determined to be about 15 minutes. It was then reinstalled in the vacuum chamber and the temperature data repeated, to detect any deviation from the initial testing.

Additional data is then taken with overload conditions. In this case it was done with DC flowing in the primary and power secondary.

The fixture was removed and the magnetic positioned with the heat pipes vertical. The unit was again operated under full load in vacuum.

After the thermocouples were removed, corona data was taken to determine any change in corona inception voltage.

PAGE BLANK POLY - 4-70

-39PAGE BLANK NOT FLASED

FIGURE 13 - BEAM POWER PROCESSOR BREADBOARD CIRCUIT

3.7.2 Test Results

Table 5 presents the winding temperature rise data as a function of input voltage both before and after thermal cycling. The worst case occurs at high line input as in this application the circuit currents increase as the duty cycle decreases. As a result the transformer primary root mean square current increases.

The worst case vertical heat pipe orientation, test data is presented in Table 6. The heat rise is comfortably below the 40°C rise of the previous design EP220.

Experience has shown the maximum allowable temperature of the incapsulation material to be 40°C for this application. The total loss that may be controlled by the transformer with a 40°C temperature rise is estimated to be over 80 watts. (Fig. 15). This indicates operation at about (3.4 KVA) to be the maximum capability of this transformer.

TABLE 5

DEGREES CENTIGRADE TEMPERATURE RISE BEFORE AND AFTER TEMPERATURE CYCLING.**

INPUT VOLTAGE	PRIMARY		SCREEN S 1100V @	ECONDARY 2A	ACCEL SECONDARY 550V @ 0.1A		
	BEFORE THERMAL CYCLE	AFTER THERMAL CYCLE	BEFORE THERMAL CYCLE	AFTER THERMAL CYCLE	BEFORE THERMAL CYCLE	AFTER THERMAL CYCLI	
400V 300V 232V	16.0 13.8* 13.8*	16.0* 16.0* 11.6*	16.9 15.0 13.4	15.9 15.2 13.5	21.5 19.2 18.7	22.1 19.6 18.0	

^{*} This increment represents one digit or the limit of accuracy in meæsurement.

^{**} Measurements made on transformer EP220HP mounted on baseplate of 50°C temperature cycling: - 12 cycles, each 90 min at 100°C, 90 min at -50°C and 90 minutes transit.

TABLE 6

DEGREES CENTIGRADE WINDING TEMPERATURE RISE OF EP220HP MOUNTED VERTICALLY.*

INPUT VOLTAGE DC	PRIMARY TEMP. RISE IN °C	SCREEN SECONDARY TEMP. RISE IN °C	ACCEL SECONDARY TEMP RISE IN °C		
400V	31.7	31.8	32.5		
300V	27.1	29.0	27.4		
232V	24.8	26.3	27.2		

^{*}Measurements made on transformer EP220HP mounted on a baseplate of 50°C. This is the worst case terrestial mounting condition. Measurements made after thermal cycling.

3.8 Inductor Electrical Design

3.8.1 Analysis and Design of a Heat Pipe Cooled Input Filter Inductor

The basic two stage input filter (2) is shown in Figure 16.

The EP PPU input filter requirements reanalized. The previous design does not quite meet the specification for line measured input ripple generated by the convertor as shown in Figure 17. Table 7 is a comparison of 1st stage filter designs. The fully responsive input filter design is listed as "Calculated conformal version of EP301". This is compared with the present design EP301, with an optimized design and with a heat pipe cooled optimized design.

The major weight improvements realized by the optimized design are due to a thirty-six percent reduction in capacitor weight brought about by case weight reductions and to a three to 1 reduction in inductor weight. This dramatic inductor weight drop is achieved by optimizing the design for the 2.3A minimum DC condition using supermandur core material.

The optimized filter inductor requirements are shown in Figure 18. The main reason for the shift in design emphasis is that the optional filter inductor requirement is only 40 microhenries at 15ADC but 5.8 millihenries at 2.3ADC as shown in Figure 18. The requirement of 40 microhenries at 15ADC could be met by an air coil design without the core, therefore if the core is not fully utilized, it does not compromise the filter performance.

The actual performance of the EP301HP is shown as an overlay in the L1 requirements of Figure 18. It is a compromise between the light load inductance and the medium region DC inductance with the attempt to provide the 6db additional performance as a margin.

BASIC TWO STAGE INPUT FILTER

FIGURE 16

2nd STAGE (L2, C2) PROVIDES SWITCHING FREQUENCY PEAK CURRENT DEMAND. 1st STAGE (L1, C1, R1) CONTROLS RESONANT PEAKING OF BOTH STAGES.

FIGURE 17

EP/PPU INPUT RIPPLE-LOAD BANK TESTS

TABLE 7. 1ST STAGE FILTER DESIGN COMPARISON

1st STAGE	MEET EMI SPEC	FILTER INDUCTOR				FILTER CAPACITOR			1st STAGE FILTER	
FILTER INDUCTOR		mH @ 2.3ADC	GMS/ mH	WT. IN GRAMS	NOM. LOSSES(W)	μF	GMS/ μF	WT. IN GRAMS	TOTAL WEIGHT IN GRAMS	
Present Design EP 301	No	2.6	323	840	2.0	400	4.1	1640	2480	
Calculated Conformal Version of EP 301	Yes	3.8	323	1230	2.9	400	4.1	1640	2870	
Optimized Filter Values with Improved Inductor, No Heat- pipe	Yes	5.8	120	700	6.0	260	3.0	780	1480	
Optimized Filter Values with Improved Inducto, With Heatpipe	Yes	5.8	85	500	8.0	260	3.0	780	1220	

3.8.2 Final Heat Pipe Cooled Input Filter Design

The final Heat Pipe Cooled Input Filter Inductor, EP301HP, design is shown in Figure 19. The heat pipe coilform assembly is shown in Figure 6. Manufacturing drawings are included in Appendix 5. The heat pipe top drawing is shown in Figure 20. A picture of the finished unit is shown in Figure 21. The heat pipe cooled design is compared to the inductor cooled design in Figure 22. A picture of the 1st stage filter components is shown in Figure 23 highlighting the component weight comparison.

3.8.3 Inductor Thermal Analysis

Refer to Appendix 3, "Thermal Analysis Report - Heat Pipe Cooled Power Magnetics."

ENVELOPE AND INSTALLATION DWG & SCHEMATIC DIAGRAM.

FIGURE 19 - HEAT PIPE COOLED INPUT FILTER INDUCTOR EP301HP

FIGURE 20 - HEAT PIPE COOLED MAGNETIC - INDUCTOR HEAT PIPE ASSEMBLY

FIGURE 21 - HEAT PIPE COOLED FIRST-STAGE FILTER INDUCTOR EP301HP

FIGURE 22 - COMPARISON OF HEAT PIPE COOLED VS. CONDUCTION COOLED INDUCTOR

FIGURE 23 - FIRST-STAGE FILTER COMPONENT WEIGHT COMPARISON

ORIGINAL PAGE 19

ARROWS INDICATE HEAT PATHS
LEADS, LEAD BRACKETS & NEAR-SIDE HEATPIPE CLAMPS NOT SHOWN

FIGURE 24 - HEAT PIPE ARRANGEMENT AND HEAT FLOW PATHS IN EP301HP INDUCTOR

FIGURE 25 - EP301HP INDUCTOR HEAT FLOW/TEMPERATURE MAP

TABLE 8 - SUMMARY OF EP301HP THERMAL DESIGN ANALYSIS - BASELINE DESIGN

	Mode of Operation	Power Dissipation (Watts)	Winding Current (Amps)	Maximum Temperature		Temperature Rise Above Platform (°C)		Effective Thermal Resistance (C/Watt) Hot Spot to Mounting Platform	
-59-				Core	Coils	Core	Coils	Core	Coils
	Design Condition -10A Winding Current	7.4	10	58.3	59.7	8.3	9.7	1.12	1.31
	Normal -15A Winding Current	16.6	15	66.1	69.7	16.1	19.7	.97	1.19
	Normal -20A Winding Current	30.7	20	79.3	86.5	29.3	36.5	. 95	1.19
	One Heat Pipe Inoperative 10A Winding Current	7.5	10	·61 . 1	21.2	11.1	13.2	1.48	1.76
	One Heat Pipe Inoperative 15A Winding Current	16.9	15	71.1	76.2	21.2	26.2	1.25	1.55

3.8.4 <u>Heat Pipe Cooled Inductor Performance</u>

The heat pipe and collector was tested by attaching a resistive heater to the collector and monitoring the temperatures with attached thermocouples to the evaporator and condenser. The temperature difference versus the evaporator load for horizontal operation, and vertical operation at 45° inclination. These conditions respectively represent space orbit gravity free operation (horizontal), worst case earth orientation (vertical) and a severe earth orientation tilt (45°).

The performance indicates the design will meet the program objective of 40° C temperature rise for the worst case electrical requirement (8.3 Watts per pipe) when operated in the vertical position on earth.

The results of temperature rise test performed in a vacuum are presented in Figure 26. The performance matches the analysis shown in Appendix 3, "Thermal Analysis Report - Heat Pipe Cooled Power Magnetics".

4.0 CONCLUSIONS.

A heat pipe cooled version of the high frequency (20kHz) high power (3kVA) high voltage (1.52kV) reduced the already low specific weight of the conventional conduction cooled design from .57kg/kW to .4kg/kW. The worst case temperature rise was reduced from 40°C to 20°C even though the internal loss was increased from 28 watts to 40W (a tradeoff figure of 18.6 Watts/kg).

A 3.7kW, 20A input filter inductor was also redesigned with heat pipe cooling integrated into the coils enabling a 40% weight reduction and a low 10°C internal heat rise. A thermal vacuum test verified the tradeoff of 16W/kg.

Testing in a thermal vacuum chamber using the actual operating power circuit breadboard to excite the magnetics verified the internal heat flow and temperature rise predicted by the analytical thermal modeling program. Similarly the heat pipes performance verified the behaviour predicted by the thermal analysis.

Thus, it is concluded that heat pipes integrated into high power, high frequency, high voltage space flight magnetics will reduce weight and improve reliability by lowering internal temperatures.

Heat pipes also provide a practical means to realize higher power requirements in low specific weight transformers which are impractical to achieve by conventional conduction cooling techniques.

REFERENCES

- Dunn, P. D., and Reay, D. A., <u>Heat Pipes</u>, Pergamon, Elmsford, N.Y., 1978, 2nd Edition.
- 2. Hansen, I. G., "Description of a 2.3 kW Power Transformer for Space Applications," NASA TM-79138, 1979.
- 3. Biess, J. J., Inouye, L. Y., and Schoenfeld, A. D., "Electric Prototype Power Processor for a 30-cm Ion Thruster," TRW Defense and Space Systems Group, Redondo Beach, California, TRW-28014-6001-TU-00, March 1977. (NASA CR-135287)

APPENDIX 1

EP220HP

BEAM TRANSFORMER

FOR

ION PROPULSION THRUSTER

NOTES:

1. DIMENSIONS ARE IN INCHES UNLESS OTHERWISE SPEC-IFIED TOLERANCES ARE:

.XXX = + .010 .XX = + .03 .X = + .1

2. MAX WEIGHT 1200 GRAMS

SIZE	FSCM NO.		REV.
A	11982	.EP220HP	
CALE	NONE	SHEET	

Page 1 of 2

λĖΥ.

SHIET

3

TABLE I ELECTRICAL CHARACTERISTICS

P/N_ Test Test Conditions Limits D.C. Resistance Term 1-2 $0.9~m~\Omega~Max$ (3A-4A)3-4 .62 Ω Max 5-6 16.0 n Hax Inductance Term 1-2 f = 10 kHze = 0.5 V RMS $I_{DC} = 0$ 1.9mH + 10% 1KHZ 10V RMS Term $\frac{1-2}{3-4}$ (3A-4A) Turns Ratio 0.0778 +0.0002 and Polarity (3A-4A) **9.**4556 +0.0012 01707 +0.0009 Capacitance Term 1-Shield 474pf MAX Leakage Short Term Meas Term Inductance 1-2 3-4 (3A-4A) 9uh MAX 25uh MAX 1-2 5-7 Dielectric Term 1—Shield 1020 V RMS 3—Shield 3 - 6 (3A-4A) Withstanding 2485 V RMS Voltage 3130 V RMS Between Windings and Windings 10 K Megohms Min Insulation to Mounting Bracket Resistance Induced Voltage Apply 120 V RMS at 40 kHz to term 1-2 CODE IDENT NO. SIZE EP220HP 11932 A

SYSTEMS TRAL REV. 10-48

1-4

SCALE

TABLE I ELECTRICAL CHARACTERISTICS

Page 2

Test					
		Test Conditions		Limits	
Corona Inception Voltage (5 pC sens.)	Ten	π l—Shield 3—Shield 3-6 (3A-4A)	>650 >1060 >1520	V RMS V RMS V RMS	
Thermal Cycle	-50 1.5 ext tra 10 sta Las	perature Range: °C +3°C to +100 + 3 hrs. at temperature remes. 0.75 hr. nsition time. cycles. First cycle rts ambient to -50° t cycle finishes at	e C		
				·	
	SIZE	CODE IDENT NO.			REV

SYSTEMS 2624A REV. 10:08

TRM INTERNAL USE CHLY

Scope. The parts furnished to this document shall meet the requirements and quality assurance provisions of Sheets 3 & 4 & 30-34. The narts shall be manufactured in accordance with the following:

Applicable Documents.

The following documents, of the issue in effect on the date of the danufacturing Shop Order, form a part of this document. In case of conflict, this document shall take precedence.

SPECIFICATIONS

T W Systams Group

- PRID-18 TRANSFORMER & INDUCTOR, BOBBIN & TOROIDAL. FABRICATION OF
- PR3-29 SOLDERING, MANUAL TYPE, HIGH RELIABILITY
- PR4-16 IMPREGNATION AND EMBEDMENT OF TRANSFORMERS AND INDUCTORS
- PR4-24 EMBEDDING PARTS AND ASSEMBLIES WITH EPOXY RESINS
- PR4-34 ADHESIVE BONDING OF ELECTRONIC PARTS, WIRES, AND THREADED FASTENERS
- PR12-6 MARKING OF PARTS AND ASSEMBLIES
- PR6-5 SOLDER COATING, ELECTRODEPOSITED
- PR2-22 SURFACE PREPARATION FOR THE APPLICATION OF ADHESIVES, COATINGS, AND SEALANTS
- PR2-27 COATING, CHEMICAL CONVERSION, LOW ELECTRICAL RESISTANCE, ALUMINUM AND ALLUMINUM ALLOYS.
- P-9-162 HELICAL COIL WIRE SCREW-THREAD INSERTS, INSTALLATION REQUIREMENTS FOR

SIZE	FSCM NO.		REV.
A	11982	EP220HP	_
SCALE		DATE: 11/14/78 SHEET 5	

TRU INTERNAL USE ONLY

FABRICATION AND ASSEMBLY MOTES

- 1. Materials shall be in accordance with parts list-Sheets 8, 9 & 10.
- 2. Machanical configuration shall be in accordance with Sheets 1 & 6 & Datails.
- 3. Wind coil ser PRIC-18-1 and Sheets 13, 22 and 27.
- 4. Sulder per PR3-29.
 - 5. Coat all aluminum Alloy Parts per PR2-27-33, (Chem Film).
 - t. Install Halical coil inserts per PR9-162-1.
- 7. Band interfaces of heat pipes and items 15, 16, 17, 18, 20, 21, 25, 26, 27, and 1 Ref) using item 44. Mix and cure item 44 per PR4-24-7.
- 8. Parts chall be marked per PR12-6-0119, .06 inch high minimum (cure at 150 +10°F for two hours) with the following minimum information:

TRW Part No. EP220HP
Terminal Identification
Serial No. and Lot Identification
TRW Name or Symbol

- 9. Sond Hardware per PR4-34-1.
- 1°. Embed coils per PR4-16-4 using notting mold. TM22006 for Coil #1 & T.122026 for Coil #2.
- 11. Embed transformer per PR4-16-4 using encapsulation mold. TM22003.
- Secure band in place with 50 kg \pm 10kg tension. Solder seal in place yer P(3-29-1).
- (13.) Adjust gas length at pre-test to obtain proper inductance. Approximately .002 inch in each leg of cores.
- Surface to be masked, prior to molding, or spraying.
 - Spray and air dry using Primer PR420, made by P.R.C. Bag and seal in dry Nitrogen immediately after drying. Do not remove from bag until ready for assembly. If coil is not immediately potted, re-bag and seal in dry Nitrogen until potting can be accomplished.
- heat size fill tubes, .125 dia max, shall not exceed 2.0 inches in length before final sealing & .250 max, after final sealing.

SIZE	FSCM NO.					REV.
A _.	11982		EP220HP			
SCALE	MONE	D.	TE: 12/28/78	SHEET	7	

	CONFIGURATION					PARTS LIST		PARTS LIST				
QTY REQD -004	QTY REQD -003	QTY REQD -002	QTY REQD -001	PART OR IDENTIFYING NO. SK	CODE IDENT	NOMENCLATURE OR DESCRIPTION	SPECIFICATION OR MANUFACTURER	SHEET REF	ITEM NO.			
			2	22005 -2		C-CORE,	ARNOLD ENG.	12	1			
			AR			SOLDER, SN63, WRMAP 3	QQ-S-571		2			
			AR			TAPE, DACRON 1/4 x .0035	ELECTRO LOCK		3			
			AR	(C260185-001)		TAPE, GLASS, TYPE GFT	MIL-I-15126		4			
			2	22007-02		COIL FORM.900 I.D. x .015 WALL	MIL-P-25421. TP 7 CL2	15	5			
			AR			BAND-BERYLLIUM COPPER STRIP .007 x .375 1/4 HARD	QQ-C-533 BRUSH WELLMAN INC.	29	6			
			1	1294363		CRIMPING SEAL	WESTINGHOUSE ELECT.	29	7			
			4	22011-02		SEPARATOR-MAKE FROM 22011-01		19	8			
			4	22011-03		SEPARATOR-MAKE FROM 22011-01		19	9			
			4	22009		HEATPIPE		17	10			
			2	22010-01		ELECTROSTATIC SHIELD, LOWER	(C252582-323) QQ-C-576	18	11			
			4	22010-02		ELECTROSTATIC SHIELD, INNER	(C252582-323) QQ-C-576	18	12			
			2	22010-03		ELECTROSTATIC SHIELD, UPPER	(C252582-323) QQ-C-576	18	13			
									14			
			1	22012-01	· · · · · · · · · · · · · · · · · · ·	FRÁME, HEATSINK	(C252308-352) QQ-A-250/	11 20	15			
			1	22013-01	· · · · · · · · · · · · · · · · · · ·	CLAMP, HEATPIPE	(C252308-350) QQ-A-250/	11 21	16			
			1_	22013-02		CLAMP HEATPIPE	(C252308-350) QQ-A-250/	11_21	17			
	ON	E SPAC	-	TRY HERSE AND SPACE SYSTEMS CHOUP C. PEDONDO BEACH, CAL	LIFORNIA	A 11982	EP220HP (PARTS LIST)		REV.			
SYSTEMS 2	444 REV.	10-77				DATE 12	/22/78 SHEET	8				

	CONFIGURATION					PARTS LIST		
QTY REQD -004	QTY REQD -003	QTY REQD -002	QTY REQD -001		CODE	NOMENCLATURE OR SPECIFICATION S DESCRIPTION OR MANUFACTURER		ITEM NO.
		-	2	22013-03		CLAMP, HEATPIPE (C252308-353) QQ-A-250/1	21	18
			AR	2 OF 20 OZ KITS		POLY URETHANE EMBEDDING MAT'L P.R.C. 1564 AMBER	7	19
			1	22014-01		BLOCK, HEATPIPE (C252308-353) QQ-A-250/1	21 2	20
			1	22014-02		BLOCK, HEATPIPE (C252308-353) QQ-A-250/1	21 2	21
			14	MS122116 ·		INSERT, 4-40	2	22
			8	MS122118		INSERT, 6-32	2	23
			8	MS122119		INSERT, 8-32	2	24
			2	22015		SUPPORT, CORE (C252308-352) QQ-A-250/11	23 2	25
5			1	22016		CLAMP, CORE (C252308-3525)QQ-A-250/11	23 2	26
			1	22017		SUPPORT, TERMINAL (C252308-352) AL-ALLY, 6061-T651, .75 THICK (C252308-353) 00-A-250/11	24 2	27
			6	570-3485-01-01		TERMINAL, TURRET, TAP MOUNT CAMBION		28
			1	22018-01				29
			1	22018-02		TERMINAL, PRIMARY NO. 2 (C252582-301) QQ-C-576	25 3	30
			1	22019			25 3	31
			1	22020		BLOCK, INSULATING POLYIMIDE GLASS LAMINATE	25 3	32
			1	22021		INSULATOR, FLAT EPOXY-GLASS SHEET, TYPE GFB (C252539-015)		33
			6	NAS1100C04-7		SCREW, 4-40 x.44, CRES, PAN-HD		34
	01/1	E SPAC	a E PARH	TRW EFFASE AND SPACE SYSTEMS GROUP C • REDONDO BEACH, CALIFO	BNIA	A 11982 EP220HP (PARTS LIST)	R	REV.
SYSTEMS 2	2444 REV.	10-77				12/22/78 SHEET	9	

	CONFIG	URATIO	N				•		
QTY REQD	QTY REQD -003	QTY REQD -002	QTY REQD -001	PART OR IDENTIFYING NO. SK .	CODE	NOMENCLATURE OR SPE DESCRIPTION OR MA	CIFICATION NUFACTURER	SHEET REF	ITEM NO.
			4	NAS1100C06-7		SCREW, 6-32x.50L, CRES PAN-HD			35
ļ			4	NAS62000".		WASHER, NO. 6			36
			AR	(C260218-001)		MAT, NOMEX, .005x2.05			37
			14	NAS1100C04-4		SCREW, 4-40x.25L. CRES. PAN-HD			38
			22	NAS620C4L		WASHER, NO. 4			39
									40
-			2	22022		SCREW SPECIAL		26	41
			2	22023		SLEEVE, INSULATING		26	42
<u> </u>			_AR			KRAFT PAPER (GAP MAT'L.) DENNISON :	INC.		43
			AR	PE4-24-7		TRUCAST-BONDING MATERIAL			44
						(PRIMARY WINDING)			45
			AR	5-30-33		LITZ WIRE, CLASS 130, TYPE B2 MIL-W-583 (SECONDARY NO. 1)			46
			AR	40-36 -M2032		LITZ WIRE, CLASS 130, TYPE B2 MIL-W-583 (SECONDARY NO. 2)			47
			AR	(C256378-M2030		35 AWG WIRE, CLASS 220, TYPE M2 MIL-W-583 (FLEX LEADS, ATTACHED)	WAS		48
-			AR			#18 WIRE, INSULATED, 1000V	(PT3-38)	27	49
									50
					· · · · · · · · · · · · · · · · · · ·	SIZE FSCM NO.			51 REV.
	ON	E SPAC		TRW EFFISE AND SINCE SYSTEMS GROUP C • REDONDO BEACH, CAL	IFORNIA	Δ 11982	P220HP ARTS LIST)		HEV.
SYSTEMS	2444 REV.	10-77	···			12/22/78	SHEET	10	

DO NOT SCALE

DIMENSIONS IN INCHES, STANDARD TOLERANCES OR BETTER (SEE TABULATION) MATERIAL-SUPERMALLOY, 1/2 MIL THICK

NOTES

- 1. CORE TO BE LOW LOSS (8.2W/# @ 5KG & 20KHz).
- 2. STACKING FACTOR TO BE HIGH (.8 MIN; .82 GOAL).
- CORE PROCESSING TO PRODUCE STRAIGHT LEGS. 3.
- GAPS TO BE LAPPED AND ETCHED. 4.
- 5. POTTING MATERIAL ON LAMINATION EDGE SURFACES TO BE HELD TO A PRACTICAL MINIMUM.
- DXE DIAGONAL LISTED FOR REFERENCE IS TO BE HELD AS CLOSE AS PRACTICAL. 6.
- CORE JEIGHT IS A GOOD CONTROL OVER STACKING FACTOR AND WILL BE DEVELOPED 7. FOR THIS CORE FOR FUTURE PURCHASES.

P/N SK	D	E	F	G	DIAG	MFG PART NO.	WT
22005-1 22005-2 22005-3	.625 .625 .625	.625 .625 .625	1.375 1.375 1.312	2.125 2.188 2.188	.884 .884 .884	C00795-S500EA C00796-S500EA C00797-S500EA	455 Gms 485 Gms 510 Gms
		SIZE A	11982	CC		-TRANSFORM 22005	1ER REV.
SYSTEMS 2624 REV. 9-7		SCALE	NO SCALE	DATE: 9	·22·78	ma SHEET 12	

1-13

WINDING TABLE

BOTH (USE MANDREL NO. T22007 COILS COIL FORM: ITEM 5 LENGTH: 2.05 I.D: .900 WALL: .015

	WINDING NO.	1	2	3
COIL	WINDING NAME	1/2 PR1	ESS	1/2 SEC. NO. 1
NO. 1	WIRE SIZE	ITEM 46	ITEM 11-13	ITEM 47
	TURNS	13	-	168
	TURNS/LAYER	13	-	42
	NO. OF LAYERS	1	-	. 4
	LAYER INSULATION	-	-	ITEM 37(1X5MIL)
	WRAPPER ITEM 37	2X5MIL	4X5MIL	4X5MIL
1	LEADS	SELF	-	ITEM 49
]	LEAD LENGTH	2"- 2"	-	3"- 3 1/2"
	TERMINAL NO.	1 - 1A	-	3 - 3A

l					
	WINDING NO.	1	2	3	4
COIL	WINDING NAME	1/2 PR1	ESS	1/2 SEC. NO. 1	SEC. NO. 2
NO. 2	WIRE SIZE	ITEM 46	ITEM 11-13	ITEM 47	ITEM 48
	TURNS	12	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
				168	152
	TURNS/LAYERS	' 13	<u> </u>	42	152
	NO. OF LAYERS	1	-	4	1
1	LAYER INSULATION		-	ITEM 37(1X5MIL)	
·	WRAPPER ITEM 37	2X5MIL	4X5MIL	4X5MIL	3X5MIL
i	LEADS	SELF	_	ITEM 49	ITEM 49
į	LEAD LENGTH	2"- 2"	-	3"- 3 1/2"	3 1/2"- 4"
i	TERMINAL NO.	2 - 2A		4 - 4A	5 1/2 - 4
					3 - 0 1

	DASH NO.	INNER DIA +005 -000	WALL THICKNESS +005 -000	LENGTH ± .010
SK 2007	-01	.890	.015	2.03
	-05	.900	.015	2.03
	-03	.910	.015	2.03
	-04			2100
	-05			
	-00			
	-07			
	-08			
	-09			
	-10			
	-17	.890	.015	UNCUT
	-12	.900	.015	UNCUT
	-13	.910	.015	UNCUT
	-14			ONCO
	-15	.814	.015	UNCUT
	-16	.844	.015	UNCUT
	-17			OMCOI
	-18			
	-19			
	-20			

PRECISION FIBERGLAS PRODUCTS

SPECIFICATIONS:

PROCESS MIL-P-25421 TYPE 1 CL. 2

1231 PARAISO ST. SAN PEDRO, CA 90731

NEMA GRADE G10

TEL. 831-0844

SIZE	FSCM NO.		REV.
A	11982	COIL FORM TUBING EPOXY GLASS SK 22007	
SCALE	N/A	DATE: 9/25/78 SHEET 15	L

SLOTS IN ESS NOT SHOWN.

REF: FOR ANGULAR RELATIONSHIPS OF ESS' & HP'S SEE COIL WINDING DETAIL-SHEET 27

FOR COIL # 2

FOR COIL # 1

NOTES:

- 1. ASSEMBLY -01 IS A MIRROR IMAGE OF -04 ASSEMBLY -02 IS A MIRROR IMAGE OF -03
- 2. DATUM LINE HOLES SHALL ALIGN WITH HP CENTER LINES WITHIN .020.
- 3. ASSEMBLE IN FIXTURE SK T22008. SOLDER PER PR3-29.
- 4. AFTER ASSEMBLY, FINISH PER PR2-22 BLACK OXIDE "EBONOL".
- 5. CLEAN & PRIME PER- 1 STORE IN N2 FILLED CONTAINER TILL USED.

NEXT ASSY = 22006 COIL # 1 - 22006-01 COIL # 2 - 22006-02

A	11982	1	ELECTROSTATIC SHIELD - HEAT PIPE (ESS-HP) ASSY. 22008			
SCALE	NONE	DATE:	12/12/78	SHEET 16		

REVISED PLATING NOTE 12/18

NICKLE STRIKE PER QQ-N-290 COPPER PLATE PER PR6-33-3.

- SOLDER PLATE PER PR6-5-2.
- LENGTH 2.0 MAX BEFORE FINAL FILLING & SEALING
- FOR CONSTRUCTION INFO SEE SK78000.

NOTES:

TOLERANCES

 $.XX = \pm .010$ $.XXX = \pm .005$

SIZE	FSCM NO.			HEATPI	IPE .	REV.
A	11982				SK22009	À .
SCALE	NONE	DATE:	11/27/78	A . 2. 2	SHEET 17	<u> </u>
		7 70				

PART NO.	L (REF)	Α	В	NO REQD
SK22010-01	L1 = 2.12	A1 = .45	61 = 1.67	2
SK22010-02	L2 =1.82	A2 = .53	B2 = 1.29	4
SK22010-03	L = 2.12	A3 = .79	u3 = 1.33	2

ALL FEATURES AND DIMENSIONS OTHER THAN THE ABOVE ARE IDENTICAL FOR ALL THREE PART NOS.

T 9.

V!EW "D"

.044

VIEW "D"

REF

.03R.

DET "C"

-02

10. BOTH EDGES "E" MAY BE PLAIN I.E. NOTES 7, 8, & 9 & VIEWS "C" & "D" ARE OPTIONAL.

- 9. FLATTENED AREA; NO WIRE, -TIN NEARSIDE.
- 8. FORM EDGES USING TOOL T22010-05.
- 7. 22 AWG WIRE, COPPER TINNED (C256377-022).
- 6. BOTH EDGES "E" IDENTICAL ALL 3 P/N's.
- 5. SOLDER PLATE PR6-5-2. ARTWORK T22010-03. NEAR SIDE
- 4. ALL AREAS OTHER THAN 3. .003 THICK ± .001.
- 3. AREA .006 THICK ± .001 PER ARTWORK T22010-02.
- 2. ALL HOLES & SLOTS PER ARTWORK T22010-01.
- 1. MATERIAL: OXYGEN FREE COPPER. C252582-323 (.003 TH) IF PLATED UP TO .006 REF 3.

	SIZE	FSCM NO.	ELECTROSTATIC	SHIELD-ESS		REV.
TOLERANCES .X = ± 0.03	A	11982		SK22010-01 22010-02		A
$.XX = \pm .010$ $.XXX = \pm .005$			-UPPER	22010-02		
.XXX = 1.005	SCALE	:1 DETS 10:1 DA	TE: 1/4/79	SHEET	18	

SYNTEM 244 REV. 9-77

- 4. ALL TIES ARE ITEM 3.
- 3. INSIDE COIL FORM, KEEP 1/8" SPACE FREE FROM TIES TO AVOID INTERFERENCE WITH CORNERS OF CORE, 4 PLACES EACH COIL.
- 2. TIE SECONDARY WINDINGS & ATTACHED LEADS APPROXIMATELY AS SHOWN.
- 1. TIE PRIMARY WINDINGS AT 4 PLACES APPROXIMATELY AS SHOWN.

NOTES:

SIZE FSCM NO.			COIL WINDING DETAIL			
A	11982		EP220HP.			
SCALE	NONE	DATE	E: 12/18/78	SHEET 22		

SK22022 SCREW - STD, 4-40 CRES PHILLIPS PAN HEAD EXCEPT FOR DIMENSIONS SHOWN 2 REQ'D.

SK22023 SLEEVE, INSULATING
MAT'L. EPOXY GLASS ROD (C252551-011)
OR TUBE (252551-120)
OR EQUIV.

SIZE	11982	SCREW, SPECIAL SK22022 SLEEVE. INSULATING SK22023	REV.
SCALE	NONE	DATE 12-8-78 SHEET 26	

APPENDIX F fage 1 of 4

GROUP A INSPECTION TEST DATA

Part Description:	Transformer, Power	Part No.:	EP220-001
Manufacturer:	TRW Systems	Serial No:	
		MSO No.:	

INSPECTION OR TEST	TEST CONDITIONS	LIMITS		
	1231 CONDITIONS	REQUIRED	MEASURED	DATE
Visual and Mechanical	Case Size (Inch) Length Width Height Lead Length (Inch) Weight (Grams) Marking	4.0 Max 4.0 Max 3.7 Max 3.0 +0.3 1200 Max		
Electrical Characteristics (Initial)			,	
Inductance	Term 1-2			
	f = 10 kHz			
	e = 0.5 V RMS			
	$I_{DC} = 0$	1.9mH <u>+</u> 10%		
Thermal Shock	Temperature Range: -55°C+0 -3°C To +105°C+0 2 Hours at Temperature Extremes - 5 minutes Transition Time -5 Cycle	·S	·	
ea 1	(MIL-T-27)			

Sue 25 to 25	SCALE			sਸਵ ਵਾ 30	
	A	11982	EP220 HP		
Q.A. Insp.	SIZE	CODE IDENT NO.			REV
rest recn.					

1-3

APPEN	DIX	F	(CON'T)
PAGE	2		

GROUP INSPECTION TEST DATA

P/N	EP220 -001	

S/N

INSPECTION OR TEST	TEST CONDITIONS	LIM REQUIRED	IITS MEASURED	DATE
Dielectric Withstanding Voltage	Term 1-Shield 3-Shield 3-6 (3A-4A)	1820 V RMS 2485 V RMS 3120 V RMS		
Insulation Resistance	Between Windings & Windings to Mounting Bracket	10 K Megohms Min.		
Induced Voltage	Apply 120 V RMS at 40kHz to term 1-2			
Electrical Character- istics (Final) D.C. Resistance	Term 1-2 3-4 (3A-4A) 5-6	10.9 mΩ Max 1.62 Ω Max 16 Ω Max		
Inductance	Term 1-2, f=10kHz e = 0.5 V RMS, I _{DC} = 0	1.9mH <u>+</u> 10%		
Turns Ratio and Polarity	Term $\frac{1-2}{3-4}$ (3A-4A) $\frac{5-6}{3-4}$ (3A-4A) $\frac{1-2}{5-6}$	0.0774 <u>+</u> 0.0002 0.4524 <u>+</u> 0.0012 0.171 <u>+</u> 0.001		
Capacitance	Term 1-Shield	550pf <u>+</u> 20%		
Leakage Inductance	Meas Term Short Term 1-2 3-4 (3A-4A) 1-2 5-7	9սի MAX 40µh MAX		

To	c+	Tec	h
Te	SL	160	п.

Q.A. Insp.

3 ratioms 2624 45.. 473

SIZE	CODE IDENT N	Ο.		REV.
A	11982		EP22GIP	
SCALE			SHEET 31	<u> </u>

1-32

APPENDIX F (CON'T)
PAGE 3

GROUP IMSPECTION TEST DATA

7.11	FP220-001	

S/N _____

INCOCCTION OF TECT	7507 0000	LIM	ITS	UATE
INSPECTION OR TEST	TEST CONDITIONS	REQUIRED	MEASURED	3
Corona (5 pC Sens)	Term 1-Shield 3-Shield 3-5	> 650 V RMS >1060 V RMS >1520 V RMS		
Thermal Cycling	Temperature Range: -50°C +3°C To +100 +3°C 1.5 hrs. at temperature extremes. 0.75 hr. transition time: 10 cycles. First cycle starts ambient to -50°C. Last cycle finishes at 100°C To Ambient.	,		
Corona (5 pC SENS)	Term 1-Shield 3-Shield 3-5	> 650 V RMS >1060 V RMS >1520 V RMS		

Test Tech.	Te	st	Tech	
------------	----	----	------	--

Q.A. Insp.

restanda della medicalest

SIZE	CODE IDENT NO.		REV.		
A	11982	EP220 HP			
SCALE		SHEET 32	1		

APENDIX F (CONT.)
PAGE 4

GROUP A INSPECTION TEST DATA

P/N	EP220-001		,						S/N	
STE	P			•						
3 - POST COIL POTTING					1	w	J	PRI 1		
	5 - POST THERMAL CYCLE				2	w	J	PRI 2		
i .	8 - POST BANDING & POTTING 10 - POST ASSEMBLY & BONDING 12 - PRE FINIAL THERM VAC PROFILE			;	3		_	E.S.S.		
1:					4	w	J	SEC 1		
13 - FINIAL CORONA					5	w	J	SEC 2		
	CONDIT	ION			, STEF)		SPEC		
нот	GND	OPEN	3	5	8		·	RQMTS		
5	4	1,2,3				·		1600		
5	1,2,3,	-						1600		
4	3	1,2,5						1100		
4	1,2,3, 5	-						1100		
3	4	1,2,5						1100		
3	1,2,4,	-				·		1100		
3	2	1,4,5						700		
2	3	1,4,5						700		
2	1,3,4,	-			t			700		
2 DATE	1 1	3,4,5						700		
DATE	*		SIZE	CODE IDE	VI NO.	<u> </u>		, , , , , , , , , , , , , , , , , , ,		REV.
A .			1198	32	EP220HP					
			SCALE	1				SHEET 3	3	I
. 73 TE MS 242.	1 11				1-34					

APEND PAGE	IX F	(CONT.)	•
	S/N		
	3/ II		
PRI 1			
PRI 2			
E.S.S	•		
SEC 1			
SEC 2			
SPEC RQMTS			
1600			
1600			
1100			
1100			
700			

GROUP A INSPECTION

STE	Р			•				·
	3 - POST CO	OIL POTTING	3		1	uu	PRI 1	
5 - POST THERMAL CYCLE					2	uu	PRI 2	
8 - POST BANDING & POTTING 10 - POST ASSEMBLY & BONDING					3		E.S.S.	
ł	2 - PRE FII				4	ww	SEC 1	
1.	3 - FINIAL	CORONA			5	un.	SEC 2	
	CONDIT	ION	 		STEP)	SPEC	
нот	GND	OPEN	10	12	13		ROMTS	
5	3,4	1					1600	
5	1 3,	-					1600	
4	3	1, 5					1100	
4	1, 3, 5	-					1100	:
								į
		-	·				·	
•								
1	3	4,5					700	
1	3,4, 5	-					700	
DATE		_	+					
			SIZE	CODE IDE	1			REV.
			. A	119	82	EP	220HP	
	4 AEV. 9-73		SCALE		1-35		SHEET 34	

APPENDIX 2

EP301HP

HEAT PIPE COOLED

INPUT FILTER INDUCTOR

TABLE I ELECTRICAL CHARACTERISTICS

P/N EP301HP-001

Test		Test Conditions				Limits	7	
D. C. Resistance	Tern	1 1-2 3-4			30mΩ 30mΩ	Max Max		
Inductance	Tem f =	1 1-4 (2-3) 10kHz	IAC PTP mA	E _{RMS} (Approx. For Info.				
	I _{DC} =	1.75A	50	4.8V	3.8mH	MIN	1	
	I _{DC} =	3.25A	100	6.3V	1.5ml	MIN	1	
	I _{DC} =	5A	150	3.5A	0.52mH	MIN	1	
	I _{DC} =	7.5A	200	1.5A	0.25mH	MIN	1	
	IDC=	15A	400	0.7V	0.025ml	MIN	1	
Dielectric Withstanding Voltage	Betw Wind Brac	een Windings ing to Mount ket	and ing		1190 VF	RMS		
Insulation Resistance					10K Meg	ohems Min		
	Size	11982	10.		EP301HP			REV.
,	SCALE	11008				SHEET 2		

TRW INTERNAL, USE ONLY

The parts furnished to this document shall meet the requirements and quality assurance provisions of Sheets 10, 11, & 12. The parts shall be manufactured in accordance with the following:

Applicable Documents.

The following documents, of the issure in effect on the date of the Manufacturing Shop Order, form a part of this document. In case of conflict, this document shall take precedence.

SPECIFICATIONS

TRW Systems Group PR10-18

PR3-29

PR4-16

PR4-24

PR4-34

PR2-27

PR4-2

SIZE	FSCM NO.		REV.
A.	11982	EP301HP	
SCALE		SHEET 3	

SYSTEMS 2624 REV. 9-77

TRW INTERNAL USE ONLY

FABRICATION & ASSEMBLY NOTES

- 1. Materials shall be in accordance with Parts List. (Sheets 5 & 6)
- 2. Mechanical configuration shall be in accordance with Assembly DWG & Details
- 3. Wind coil per PR10-18-1 and Winding Table (Sheet 7), using mandrel T 30108.
- (4.) Remove sleeving, crimp terminal and solder per PR3-29-1.

 5. .125 DIA. Fill tube extends from heatpipe up to 2.0" before final sealing, & .250 max after final sealing.
 - 6. Embed coil per PR4-16-4, using mold TM 30106.
- 7. Fill interfaces of heatpipes & items 10, 11, 4, & screw heads with item 29. Wipe off excess. Mix & cure per PR4-24-7. Mounting surface shall be free of item 29.
- 8. Parts shall be marked per PR12-6-0119, .06 inch high minimum (cure at 150 \pm 10°F for two hours) with the fallowing minimum information:

TRW Part No. (EP301HP-001)

Terminal Identification

Serial No. and Lot Identification

TRW Name or Symbol

- 9. Install Helical Coil Screw Thread inserts (Items 12 & 21) per PR9-162.
- Secure band (Item 16) around core with 50kg ± 10kg tension. Solder in place per PR3-29-1.
 - 11. Adjust gap length at pre-test to obtain proper inductance. Approx. 004 inch in each leg of core.
- (12.) Torque all # 4 screws to 5 in lb.

SIZE	FSCM NO.		REV.
A	11982	EP301HP	-
SCALE		SHEET 4	

	CONFIGURATION					PARTS LIST								
	QTY REQD	QTY REQD	QTY REQD	QTY REQD	PART OR IDENTIFYING NO. SK P/N	CODE IDENT	NOMENCLATURE OR SPECIFICATION OR MANUFACTURER	CKT REF SHEET	ITEM NO.					
				1	30105 -2		C-CORE 11/16 x 3/8 x 5/8 x 1 9/16 SUPERMANDUR ARNOLD ENG.	13	2					
							SOLDER, SN63, WRMAP 3 QQ-S-571		3					
				1	30112		BASEPLATE (2.1 x 4.0 x .145) (C252308-350_) QQ-A-250	18	4					
									5 6					
				2	30108		COIL FORM, COPPER (C252582-334) 00-C-576	16	7					
2-6				AR 2	C256378-M2011 30109		WIRE, MAGNET, CLASS 220, TYPE M2 MIL-W-583 HEAT PIPE	16	8 q					
2,				4	30114		BLOCK, HEAT SINK (C252308-350) QQ-A-250	19	10					
				4	30113		CLAMP, HEAT SINK (C252308-352) QQ-A-250	19	11					
				22	MS122116		INSERT, (HELICOIL) 4-40		12					
				22	NAS1100C04-3		SCREW, PAN HEAD, 4.40 x 3/16		13					
				22	NAS620C4L		WASHER, NO. 4]4					
				1	12 9 4363		CRIMPING SEAL WESTINGHOUSE ELECT.		15					
				AR	BAND		.007 x .375 BERYLLIUM COPPER STRIP 1/4 H QQ-C-533		16					
				4	325069		TERMINAL AMP		17					
		ON	E SPAC	E PARI	TRY HERSE AND SPACE SYSTEMS GROUP	-IFORNIA	A 11982 EP301HP (PARTS LIST)		REV.					
5	YSTEMS :	2444 REV.	10-77	· · · · · · · · ·			DÂTE: 11/15/78 SHEET	5						

	CONFIG	URATIO	Н			PARTS LIST		
QTY REQD	QTY REQD	QTY REQD	QTY REQD	PART OR IDENTIFYING NO.	CODE	NOMENCLATURE OR SPECIFICATION OR MANUFACTURER	CXT REF	ITEM NO.
	•		AR			.005 THK NOMEX MAT. TYPE 410 (NYLON) DU PONT		18
			2	30110		SUPPORT, TERMINAL (C252308-352) QQ-A-	250 17	19
			2	30116		INSULATOR, TERMINAL SUPPT. TRGEE(C252539-119) MIL-P-	1817,7 20	20
			4	MS122118		INSERT, (HELICOIL) 6-32		21
			4			RIVET, UNIV. HD, 1/16		22
								23
			AR	PRC1564		POLYURETHANE PRC		24
			AT			GAP MATERIAL- KRAFT PAPER DENISON INC		25
1					ļ			26
			AR			TAPE, DACRON .0035 TH. X 1/4 WIDE (C260218-001) ELECT	ко цоск	37
					<u> </u>			
								
								-
								
	ON	IE SPAC	_	TRW	ALIFORNIA	SIZE FSCM NO. A 11982 EP301HP (PAR'S LIST)		REV.
EVETEUE	2444 REV.	16.7~				DATE: 11/15/78 SI	HEET 6	

Before Winding wrap 2 Layers of Item 18 (NOMEX MAT) WINDING TABLE 10 CORE NO. REQ'D MATCHED TO TURNS TOLERANCE 6 COIL FORM ITEM 7 ITEM 7 WIRE SIZE ITEM 8 ITEM 8 TURNS (TOTAL) 45 45 BIFILAR TAPE AVG TURNS/LAYERS See Note 19 19 NO OF LAYERS 3 LAYER INSULATION NONE NONE ITEM 18 WRAPPER WIDTH ÎTEM 18 4 LAYERS 4 LAYER WRAPPER THICKNESS LEADS (SELF OR OTHER) SELF SELF LENGTH (OUT OF COIL) LEAD WIRE SIZE LEAD INSULATION HIGH POT (REF) COIL RESISTANCE (OHM) SECTOR (DEGREES) BALANCE . SCHEMATIC DIAGRAM NOTE: WIND ALL COILS IN SAME DIRECTION STACKED SAME. Note: 1st 2 Layers 19 turns each, last layer 7 turns evenly distributed over full width. SIZE CODE IDENT NO. TRW SYSTEMS
TRW MC.
ONE SPACE PARK + REDONDO BEACH, CALIFORNIA 11982 A EP301HP SCALE

SYSTEMS 2624 REV. 3-46

GROUP INSPECTION

Part Description: Reactor, Filter

TEST DATA

P/N EP301HP-001

Manufacturer: TRW DSSG

S/N _____

INSPECTION OR TEST	TEST COMPLETIONS	LIM	DATE	
INSPECTION OR TEST	TEST CONDITIONS	REQUIRED	MEASURED	à
Visual and Mechanical	Case Size (Inch) Length Width Height Weight (grams) Marking	4.7 in. Max 2.11 in. Max 1.8 in. Max 510 Max		
Electrical Characteristics (Initial) Thermal Shock	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8mh Min 1.5mh Min 0.52mh Min 0.25mh Min 0.025mh Min		

Test Tech.

Q.A. Insp.

SIZE CODE IDENT NO.

A 11982 EP301HP

SCALE SHEET 10

5YSTEMS 2624 REV. 9-73

GROUP INSPECTION TEST DATA

O/N EP 301HP-001

S/N _____

11100000000000000000000000000000000000				LIMITS			DATE
INSPECTION OR TEST	TEST C	וטאטו	TIONS	REQUIRE	D	MEASURED	2
Seal	MIL-T-27						
Dielectric With- standing	Between W Between W Bracket	indi:	ngs ngs and	1190 VRMS	S		
Insulation Resistance				10K MΩ I	in		
Electrical Character- istics (Final) DC Resistance	1-2 3-4	,		30ma Maa	1		
Inductance	1-4 (2-3)	IAC	E _{RMS}		`		
	f = 10kHz I _{DC} =1.750A	50	4.8V		lin		
I	I _{DC} =3.25A I _{DC} =5A	100 150	6.3V 3.5V		lin lin		
	I _{DC} =7.5A	200	1.5V		in l		
	I _{DC} =15A	400	0.7V	0.025mh !	1		_
·							

Test	Tecl	h.
------	------	----

Q.A. Insp.

SIZE CODE IDENT NO.

A 11982 EP301HP

SCALE SHEET 11

SYSTEMS 2624 REV. 9-73

GROUP INSPECTION TEST DATA

Part	Number:
rait	number:

EP301HP-001 Serial No:

INSPECTION OF TEST	TEST COMPLETIONS	LIMITS		
INSPECTION OR TEST	TEST CONDITIONS	REQUIRED	MEASURED	DATE
Corona	1-2 to 3-4 1,2,3,4, to case and bracket	425 VRMS 425 VRMS		
Thermal Cycling	Temperature Range: -50°C +3°C to +100+3°C 1.5 hrs. at temperature extremes. 0.75 hr. Transition time. 10 cycles. First cycle starts ambient to -50°C. Last cycle finishes at 100°C to Ambient.			
Corona	1, 2 to 3, 4 1,2,3,4 to case and bracket	425 VRMS 425 VRMS		

To	st	Tec	h
	5 L	160	n.

Q.A. Insp.

CODE IDENT NO. SIZE 11982 ЕРЗ01НР SCALE SHEET 12

SYSTEMS 2624 REV 9-73

DO NOT SCALE

DIMENSIONS IN INCHES, STANDARD TOLERANCES OR BETTER (SEE TABULATION)

MATERIAL-SUPERMANDUR, 4 MILS THICK

NOTES

- 1. SATURATION FLUX DENSITY 21KG
- 2. SPACE FACTOR .94 OR GREATER
- 3. PROCESS CORE FOR LOWEST POSSIBLE CORE LOSS
- 4. CORE PROCESSING TO PRODUCE STRAIGHT LEGS

P/N SK	D	E	F	G	ARNOLD PART NO.	NOM WT IN GMS
30105-1	.633	.375	.625	1.625	C00798-R004 EA	195
30105-2	.688	.375	.625	1.563	C00799-R004 EA	190
30105-3	.688	.375	.625	1.500	C00800-R004 FA	185

SIZE	11982	C CORE-IN SK 3010		REV.
SCALE	No Scale	9-22-78	SHEET 13	

SYSTEMS 2624 REV. 9-73

FINISH:
COIL-FORM - EXCEPT IN SOLDERED AREA
"EBONOL C"BLACK OXIDE PER PR 2-22

HEATPIPE EVAPORATOR*

COPPER FLASH & SOLDER PL.

PER PR 6-5

USE FIXTURE T-30107-01 & -02

 $Tors: X = \pm .08$

 $\cdot XX = \pm .03$

.XXX= ± .010

A 11982 HEATPIPE COILFORM ASSY BOUNDS

SYSTEMS 2624 REV. 9-77

SK 30109 - HEATPIPE, INDUCTOR (2 REQ'D)

4. MASK AND SOLDER PLATE .13" SECTOR PER PR6-5-2.

- NICKEL STRIKE FULL CIRCUMFERENCE IN AREA SHOWN PER QQ-N-290 COPPER PLATE FULL CIRCUMFERENCE IN AREA SHOWN PER PR6-33-3.
- 2. FILL TUBE. -. 125 DIA MAX AFTER FINAL SEAL.
- REF SK78001 HEATPIPE CONSTRUCTION NOTES:

SK 30108 COIL FORM-HEAT COLLECTOR

MATERIAL: COPPER -QQ-C-576, .016 THICK. C252582-334 OR EQUIV.

SIZE	FSCM NO.	COIL FORM-INDUCTOR SK30108	REV.
A	11982	HEATPIPE-INDUCTOR SK30109	A
		DETAILS	-
SCALE	1:1	DATE 11-10-78 A 13/18 SHEET 16	

SYSTEMS 2624 REV. 9-77

FINISH: CHEM FILM PER PR2-27-3 MATERIAL: AL ALLOY 6061-T651

TOLERANCES .XX ± .010 .XXX ± .005

SYSTEMS 2824 REV. 9-77

A	FSCM NO. 11982		SUPPORT, TER INDUCTOR	30110		REV.
SCALE	2:1	REV A	11/27/78	 SHEET	17	

3. FINISH: CHEM FILM, PER PR2-27-3

2. MATERIAL: AL ALLOY 6061-T651

1. PART IS SYMETRICAL ABOUT BOTH AXES

NOTES:

TOLERANCES $.XX = \pm .010$.XXX = \pm .005

FSCM NO. SIZE 11982 SCALE

1:1

BASE PLATE HP COOLED INPUT FILTER INDUCTOR

SK 30112

SHEET 18 REV.

DATE :

10/27-78

BLOCK - SK30114

- 3. .094 RADIOUS +001. FINAL REAM OR BORE WITH CLAMPS & BLOCKS ATTACHED WITH "A" SURFACES FLUSH WITHIN .005.
- 2. 4-40 NC-2B INSERT, MS122116. INSTALL PER PR9-162-1
- 1. MATERIAL: AL ALLOY 6061-T651. FINISH: CHEM FILM PER PR2-27-3

SIZE	CODE IDENT NO.		REV.
A _.	11982	CLAMP, HP. INDUCTOR SK 30113 BLOCK, HEATSINK, INDUCTOR SK 30114	
SCALE	2:1	DATE: 10/26/78 SHEET 19	

SYSTEMS 2624 REV. 9-73

SYSTEMS 2624 REV. 9-77

.XXX = \pm .005

2-21

SCALE

DET & INSTALLATION

SK30116

SHEET 20

APPENDIX 3

THERMAL ANALYSIS REPORT

HEAT PIPE COOLED POWER MAGNETICS

TO:

M. S. Chester

FROM:

B. M. Shupack

SUBJECT:

Thermal Analysis - Heat Pipe Cooled Power Magnetics.

INTRODUCTION:

Design support thermal analyses were conducted on two heat pipe cooled power magentic devices [Ref. (1)] designed to operate in a hard vacuum environment mounted to an isothermal platform maintained at 50°C. One of the devices is a 2.2kW EPPP Beam Power High Voltage Transformer (designated EP220HP and shown in Figure 1), and the other is a 3.7kW, 20A Input Filter Inductor (designated EP301HP and shown in Figure 2).

The thermal analyses were conducted as part of the design evolution of both devices to evaluate the design concepts considered.

The analyses conducted considered the design condition and conditions where heat pipes were inoperative.

The power dissipations considered for the design condition for the devices are:

• EP220HP 2.2kW Transformer

45.2 Watts

EP301HP 3.7kW Inductor

7.4 Watts

FIGURE 1. HEAT PIPE COOLED 2.2 KW EPPP BEAM POWER HIGH VOLTAGE TRANSFORMER (E P 2 2 0 H P)

FIGURE 2. HEAT PIPE COOLED 3.7 KW INPUT FILTER INDUCTOR (E P 3 0 1 H P)

CONCLUSIONS:

Based on the design goal of achieving a maximum coil potting material temperature of 75°C for both the EP220HP Transformer and the EP301HP Inductor for the design condition, the analyses shows that the criteria are met and that the design is acceptable from the standpoint of this thermal performance criterion.

RESULTS:

The results of the analysis for the design condition of the EP220HP Transformer are shown in Table 1 and Figures 3 and 4 showing a heat flow map of the transformer.

A summary of the temperatures for other than the design condition is shown in Table 2.

The results of the analysis for the design condition of the EP301HP inductor are shown in Table 3 and Figure 5 showing a heat flow map of the inductor.

A summary of the temperatures for other than the design condition is shown in Table 4.

 ≇EP220 4	PE	FPPP	TR	A	(SFJR	4FE	? 7	THE	R:	MAL	ANALYSIS
NORMAL	CPE	RATI	DN	-	ALL	4F A	T	ΡI	P	FS	FUNCTIONING

BM SHUPACK

TA	RI	F	1	
• 47	UL			•

								PA	GE	1/4	,	
* RA*		NODES IN PANGE	*	*		******** * TEMP _# :	******* * NODE	* MINIMUM ******** * TEMP. * *(DEG C)*	***** 30CN	**	AVERAGE TEMP.	
* 100 *	1010	10	MOUNTING FRAME	*	0.00000	* 60.10 *	1009	* 50.33 *	1004	*	55.79	* 9.8 *
*ω 3004 *δ	3035	33	CORF	*	6.30000	* 73.90 *	3020	* 68.81 *	3026	*	72.68	* 5.0 °
* 2007	7 5031 NODE LIS	20 (T)	CORF/COIL FORM GAP FILLER	*	0.0000	* 72.84 *	4009	* 71.21 *	5007	*	71.63	* 1.6 *
6001 *	602J	20	COIL FORM	*	0.0000	* 70.26 *	6003	* 69.19 *	6020	*	69.71	* 1.1 *
700	7020	20	PRIMARY WINDING	*	14.15729	* 70.30 *	7003	* 68.88 *	7015	*	69.46	* 1.1 *
* 8001 *	8020	20	NOMEX ABOVE PRIMAR Y WINDING	*	0.00000	* 68.97 *	8003	* 67.87 *	8015	*	69.38	1.0
* 9001 *	9040	43	ELECTROSTATIC SHIE LD EAE	*	2.33563	* 68.82 *	9008	* 65.73 *	9025	*	67.31	3.1
* 9301 *	L 9320	20	HEAT PIPE LAYER	*	0,0000	* 57.80	9303	* 67.00 *	9315	*	67.38	* 8

BINAL PAGE S

EEP 220 HP= TRANSFORMER THERMAL

ANALYSIS SUMMARY
----FOULVALENT FULL MODEL---

TABLE 1.

BM SHUPACK

BM SHUPACK

*EP2204P= EPPP TRANSFORMER THERMAL ANALYSIS NORMAL OPERATION - ALL HEAT PIPES FUNCTIONING

计分类存储器 医多克氏性 医克洛氏性 医克洛氏性 医克洛氏性 医克格氏性 医克格氏性 医多种性 医多种性 计

ડ

****	TEMP. RANGE (DEG C)	; -1	i i		-			3.6	7.	
*****	* * * * *	62.71 *	57.50 *	60.11 *	61.59 #	55.60 *	58.60 *	÷ 65.79	68.99 # +	
+	AVE TO TE	62	57	09	19 +	* 55 *	58	4 67	6.0	
PAGE 2/	4UM TE4P. * NODE C) *NUMBER	9384			9394			9625	10015	
PAGE	KINIMUM TE4P	62.65			61.53			65.64	68.55	
	* * * *	4 385 4		• !	* 26E6			\$ 608°#	10003 #	
1	MAXIMUM TEMP.	62.75			61.63			59.22	69.34	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * * * *	1.00000	*00000°0	* *00000°0	1.00000*	* *00000*0	* *00000°0	2.66437*	•00000°0	
	DESCRIPTION OF NODES *	* 0° <	UPPER HEAT PIPE CO * NDEMSER CASING *	UPPFR HEAT PIPE ME * THANOL *	LOWER HEAT PIPE EV * APOPATOR CASING *	LOWFR HEAT PIFE CO * NDENSER CASING *	LOWER HEAT PIPE ME # THANDL #	AT	NOMEX ABOVE FLECTR * OSTATIC SHIELD *	
4	NJDES IN RANGE	# # *	-	: 	ī.	; 	-	0.4	20	
		# # * * * * * * * * * * * * * * * * * *			4986			0496	10020	
	NODE NUMBER 'S RANGE NAME NAME NAME NAME NAME NAME NAME NAM	# 0 9 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9385		0390	9395	6366	9601	10001	

SEP220HPS EPPP TRANSFORMER THERMAL ANALYSIS NORMAL OPERATION - ALL HEAT PIPFS FUNCTIONING

BM SHUPACK

	TABLE 1	- щ - С	** = EP 220 HP= ** ANALYSI **EQUIVALE ** BM SHUOACK	HPS TRANSFJRME LYSIS SUMMARY VALENT FULL MD	YER THE	THERMAL L	* * * *					
	1	4	医骨骨 经收益 计分子 计二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	* -	种种种的 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	* * * * * * * * * * * * * * * * * * *	*		PAG	4	•	•
DE NU	BER *	NODES	DESCP. TION OF NODES	######################################) 4	# () # I X			MANAGE TOTAL	A WEIGHTE	*	
KANGE +++++	HIGH *	RANGE +			*	K A .		TEMP	.0	AVERAGE A TEMP. 4 (DEG C) 4		RANGE *
11001	11020	20	SECUNDARY WINDING	* 3°536	**************************************	***** 70°¤2	11003	* * * * * * * * * * * * * * * * * * *	**************************************	******* * 70°46 *	ar 34 34	**************************************
12001	12020	20	NOMEX ABOVE SECOND ARY WINDING 1	00°0 *	* *00000 *	71.09	12003	~	70.43 12015	70.78	! ! ** **	4 * *
13001 8	13020	20	SECONDARY WINDING 2	* 3.544 *	54407* 7	71.34	13008) ~	70.79 13015	71.09	**	4 * *
14001	14020	20	NOMEX AROVE SECOND ARY WINDING 2	* *00000*0 *	2 *000	1,53	14008	26	70.99 14015	71.27	**	i.
15001	15020	20	SECONDARY WINDING 3	\$ 3.548 *	21*	71.72	15008	7.	71.19 15015	71.45	**	بر * *
16001	16020	20	NOMEX ABOVE SECOND ARY WINDING 3	* *00000*0 *	7	1.31	16008	12	. 26 16015	71.51	**	\$ * *
17601	17020	5.5	SECONDARY 4 AND TE RTIARY WINDING	+ 3.91037* + +	7	1.90	1700E	17	.32 17015	71.57	**	9
18001	18020	20	NJMEX ABOVE SECOND ARY 4 AND TERTIARY	* *^^^^^		1. ao	19008	71.	.12 19015	71.42	* *	# * + 00
:												-

MEP220HPM EPPP TRANSFORMER THERMAL ANALYSIS NORMAL OPERATION - ALL HEAT PIPES FUNCTIONING

BM SHUPACK

S

	***	***	· * * ·	* * *	
	####### TEMP。 RANGE	*(DEG C)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6	0.0
1	/4. ********* * WEIGHTED#	TEMP。 4 (OEG C) 4(DEG C) 4 ************************************	* 0		50.00 * 0.03
	PAGE 47 4 A MAXIMUM TEMP & MINIMUM TEMP & WENGE + TEMP & WEIGHTED & TEMP & WINIMUM TEMP & WEIGHTED & TEMP & WEIGHTED & TEMP & A LINDUT & A A A A A A A A A A A A A A A A A A	0.00000* 71.90 19009 # 70.60 19015 *	70.28 50015		50°00 99002 *
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# # # # # # # # # # # # # # # # # # #	. .	# 1	* *
***	######################################	+NC4BE	5000A	- 1	Z0065
T468MA	* * * * * * * * * * * * * * * * * * *	(DEG C) ****** 71.90	71.90		00.00
######################################	**************************************	**************************************	0.00000 71.90	***************************************	* * * * * * * * * * * * * * * * * * *
20 HP= T ANALYSIS QUIVALEN UPACK	400ES #	******** TI *	F C *	* 01	# #
** *EP 220 H ** ANAL ** ANAL ** ANAL ** BY SHUPAC ***********************************	FNODE NUMBER * NJDES * DESCRIPTION OF NODES * RANGE * IN * TRANGE	19001 19020 20 POLYURETHANE POTTI	OUTER SURFACE OF COIL	SPACECRAFT INTERIO	R/MOUNTING SURFACE
****	######################################	****** POLYURE NG ON O		SPACECR	R/MOUNT
п Д	***** NJDES IN RANGE *	20	20	2	
TABLE 1.	44444 44444 44444 4164 +	19020	50020	99005	
	**************************************	19001 19020	1 50001	99001 99002	/8

424496830

4

<u>-</u>

FIGURE 4 EP220HP TRANSFORMER HEAT FLOW/TEMPERATURE MAP

TABLE 2. SUMMARY OF EP220HP THERMAL DESIGN ANALYSIS - BASELINE DESIGN

	Power		rrent (Amps)	Core	Coils			Effective	
Mode of Operation	Dissipation (Watts)	Primary	Secondary	Maximum Temper		Above	rature Rise Platform (°C)	Hot Spot	e (C/Watt) to Mounting
				(°C)		Core	Coil	Platform	
								Core	Coils
Design Condition	42.5	33	2.7	73.8	71.9	23.8	21.9	.560	.516
Upper Heat Pipes Inoperative	44.0	3 3	2.7	86.4	88.4	36.4	38.4	.827	.873
Lower Heat Pipes Inoperative	44.4	33	2.7	90.3	93.1	40.3	43.1	.908	.971
All Heat Pipes Inoperative	>52. 8	33	2.7	>165	>187	>115	>137	>2.18	>2.59
All Heat Pipes Functional	82.3	47	3.8	89	94.5	39.	44.5	.474	.541

PRE	LIMINARY	Y DESIGN	I SUPPORT THERMAL AN	ALYSI	. S	BM SHU	PACK							
	TABL	E 3.	************ ** *EP 310 H ** ** EQUIVALEN ** BM SHUPAC ***********	SUMM T. FUL K	ARY L MODEL 9/5/78			*						
									Р	AGE	1/3	·		
RAN *****	1GE		DESCRIPTION OF NOD	*. **		******** * TEMP. *	****** NODE	****	**** MP.	******* * NODE	**	AVERAGE TEMP.	*	RANGE_
1001	1006	6	MOUNTING FRAME	.* .*	0.00000	55.71	1005	**** * 5 *	2.16	1002	***	54.07	***	3.5
2007	2011	5	CORE/COIL FORM GAP FILLER (BELOW)	*	0.00000+	57.22	2009	* 5 *	7.16	2011	*	57.20	*	.1 1
ယှ 3004 ယ	3036	33	CORE	*	•50000+	58.32	3009	* 5°	7.28	3036	*	57.74	*	1.0
4004	4011	5	CORE/COIL FORM GAP FILLER (ABOVE)	*	0.00000*	58.65	4009	* 51 *	8.46	4011	+	58.56	*	.2
5007	5011	5	CORE/COIL FORM GAP FILLER (LEFT)	*	0•00000 *	58.61	5009	* 51 *	8.48	5011	\$ *	58.55	*	•1
5027	5031	5	CORE/COIL FORM GAP FILLER (RIGHT)	*	0.00000+ +	58.90	5029	* 51 *	8.73	5031	*	58.82	*	.2
6001	6020	20	COIL FORM	*	0.00000+ +	59.39	6008	* 5 *	7.04	6015	*	59.67	*	2.3
8001	8020	20	NOMEX ABOVE COIL F	*	0.00000*	59. 53	8003	* 50 *	36	8015	*	59.16	*	1.2

. . . .

			•		•				
TABLE	, wj	######################################	**************************************	44444444444444444444444444444444444444			1		
	,	***************	*	**********	*****	PAGE	2/3		
**************************************	######################################	######################################	**************************************	teepeepeepeepeepeepeepeepeepeepeepeepeep	**************************************	**************************************	4444444 IEMP. 4	WEIGHTED	TEMP. +
**************************************	RANGE		* 1	TEMP. # NC	* *	. ~ 1	* NODE *	TEMP. (DEG C)	(DEG C)*
9380 9384 5		HEAT PIPE EVAPORA TOR CASING	* 0.00000 57.0	# # #	9381 #	57,03 9	* 5866	57.05	0
9385		FUD HEAT PIPE COND ENSER CASING	*00000*0 *				* *	55.11	
6 866 3-14		HEAT PIPE METHAND L	* 0°00000 *				**	55.93	
9395	7	AFT HEAT PIPE COND ENSER CASING	*00000°0 *				**	55.11	
11001 11020	20	AINDING 1	* 2.30891*	59.60 11	11003 *	59.00 11015	015 *	59.38	9
13001 13020	20	WINDING 2	* 2.30975*	59.65	13003 *	59.25 13	13015 *	59.49	
15001 15020	50	ALEDING 3	* 2.31002*	59.65	15003 *	59.33 15	15015 #	59,52	m
18001 18020	20	NOMEX ABOVE WINDIN G LAYER 3	*00000 *	59.64	18008	59.22 18	18015 *	59.44	* +

		######################################	5 # 1.6 #	##	
		WEIGHTED AVERAGE TEMP (DEG C)	58.55	50.00	
	PAGE 3/3	######################################	58.05 50015 * *	•	
SHUPACK	* * * * * * * * * * * * * * * * * * * *		\$ * * * *		
ac co	**************************************	# # # # # # # # # # # # # # # # # # #	0.00000* 0.00000*	*00000°0	7.428694
DR INDUCTOR ANALYSIS	######################################	* * * * * * * * * * * * * * * * * * * *	** **	•	٦
POWER PROCESS PORT THERMAL	**************************************	**************************************	OUTER SURFACE OF COIL SPACECRAFT INTERIOR	MOUNTING SURFACE	- O.
VIC PROPULSION Hary design sup	TABLE 3.	**************************************	120 20	1	
ELECTRONIC PRELIMINARY	H H	**************************************	50001 50020 99001	99101	3-15

ORIGINAL PACK

EP 301 HP INDUCTOR HEAT FLOW MAP Total Power Dissipation = 7.4 Watts .5 Watts (Radiation) 59.7 °C Winding Layer 3 2.30 Watts 59.7 °C Winding Layer 2 2.30 Watts 59.6 °C Winding Layer 1 2.30 Watts 5.8 WATTS 59.4 •50 Watts Core Coil Form 5&3 °C 5.8 Watts Heat Pipe Condenser Methanol 55.9 °C Condenser I.I Watts 55.1 °C | Evaporator Case 57.1 °C 22.1 °C 2.92 2.92 Watts Watts Frame 54-1 °C AVG Mounting Platform 50°C

3-16
FIGURE 5 EP301HP INDUCTOR HEAT FLOW/TEMPERATURE MAP

TABLE 4. SUMMARY OF EP301HP THERMAL DESIGN ANALYSIS - BASELINE DESIGN

Mode of Operation	Power Winding Dissipation Current (Watts) (Amps)		Maximum Temperature (°C)		Temperato	ure Rise atform (°C)	Effective Thermal Resistance (C/Watt) Hot Spot to Mountin Platform		
			Core	Coils	Core	Coils	Core	Coils	
Design Condition -10A Winding Current	7.4	10	58,3	59.7	8.3	9.7	1.12	1:31	
Normal -15A Winding Current	16.6	15	66.1	69.7	16.1	19.7	.97	1, 19	
Normal -20A Winding Current	30.7	20	79,3	86.5	29,3	3.5	.95	1,19	
One Heat Pipe Inoperative 10A Winding Current	7.5	10	61.1	21.2	11.1	13,2	1.48	1.76	
One Heat Pipe Inoperative 15A Winding Current	16.9	15	71,2.	76.2	21.2	26.2	1,25	1.55	

DISCUSSION:

Design Features -

EP220HP 2.2kW EPPP Beam Power High Voltage Transformer.

The mechanical configuration of the EP220HP transformer is similar to the 2kW EPPP Beam Transformer shown in Ref. (1) except that the EP220HP is heat pipe cooled. The mounting envelope for the EP220 is 4.67 X 5.00 X 3.25 high (75.9 in. 3) and for the EP220HP it is 4.01 X 5.00 X 2.25 high (45.1 in. 3). The cooling of the EP220HP transformer coils is achieved by incorporating two heat pipes in each of the transformer coils as shown in Figures 6 and 7. The heat pipes are angularly spaced at 110° which provides the lowest overall thermal resistance configuration taking into account the heat transfer to the heat pipe from the coils and between heat pipe and transformer frame. The circular cross-section heat pipe condenser is mounted into two 180° saddles which are part of the mounting frame. The radial gap between them is assumed to be 1 mil. The mounting frame is considered to have an RTV filler between it and the mounting platform resulting in an interface conductance of 5.27 Watts/in²-c(1440 BTU/hr-ft²-F).

The performance of the methanol heat pipes is based on data from E. Luedke and is as follows:

Vapor interface heat transfer coefficient (evaporator) = 3.66 Watts/in^2 -c (1000 BTU/hr-ft²-F).

Liquid interface heat transfer coefficient (condenser) = 2.93 Watts/in²-c (800 BTU/hr-ft²-F)

In order to minimize the temperature rise for the heat conduction through the electrostatic shield (ESS), the ESS is thickened locally (within \pm 90° of the connection to the heat pipe evaporator) to 6 mils but remains 3 mils elsewhere. The effect of the local thickening is to reduce coil temperatures by approximately 5°C for the design condition.

EP310HP 3.7KW Inductor

The two heat pipes for the EP301HP Inductor are soldered to the copper coil form supporting the windings. A heat pipe has a central evaporator section and at each end there is a condenser section. A pictorial of the EP301HP Inductor and the heat pipe is shown in Figures 8 and 9.

FIGURE 6 HEAT PIPE ARRANGEMENT AND HEAT FLOW PATHS IN EP220HP TRANSFORMER

FIGURE 7 EP220HP HEAT PIPE

ARROWS INDICATE HEAT PATHS
LEADS, LEAD BRACKETS & NEAR-SIDE HEATPIPE CLAMPS NOT SHOWN

FIGURE 8 HEAT PIPE ARRANGEMENT AND HEAT FLOW PATHS IN EP301HP INDUCTOR

2. Power Dissipation

The power dissipation in the coils for both the EP220HP Transformer and the EP301HP Inductor are based on a constant current and resistance at 20°C. The change in resistance as a function of temperature was programmed into the thermal model and the power dissipation was determined by recalculating the total resistance as the temperature changed. The power dissipations in the core and electrostatic shield were taken as constants. The power dissipations for the various segments of the transformer and inductor are shown in Tables 1 and 3, respectively.

3. Thermal Environment

The external environment for both the EP220HP Transformer and EP301HP Inductor is a 50°C isothermal surface for conduction mounting and a radiation sink temperature of 50°C. Both units are assumed to be operating in a hard vacuum environment.

4. Material Properties

The relevant properties of the materials in the EP220HP Transformer and EP301HP Inductor used in the analysis are as follows:

Material	Thermal Condu	ctivity
	Watt/in-C	BTU/hr-ft-F
OFHC Copper	9.93	226.
Nomex Insulation	.00369	.084
Polyeurethane Potting	.00369	.084
Stainless Steel	.439	10.0
Core - Laminated Supermalloy Parallel to Lamination	.738	16.8
Perpendicular to Lamination	.088	2.0

Epoxy Glass Laminate

Parallel to Lamination	.0075	.17
Perpendicular to Lamination	.0066	.15
Trucast Epoxy Adhesive	.0185	.42
RTV (Unfilled)	.0053	.12
.995 Pure BeO @125°C	5.14	117
.995 Pure Alumina @122°C	.75	17.
6061-T6 Aluminum	4.25	96.7

The emissivity of the coil outer surface (polyurethane potting) is 0.85.

5. Thermal Models.

The thermal models used for these analyses were developed by making modifications to the thermal model used for the analysis reported in Ref. (2). The models were modified to accept a heat pipe in addition to the conduction/radiation cooling that existed for the previous referenced analysis. The model represents a 1/2 symmetrical section of the entire unit.

A listing of the thermal model utilized with the SINDA Thermal Analyzer Program is shown in Appendix A. The thermal model consists of 459 nodes (volumes) and 1312 thermal conductors connecting the nodes.

A listing of the thermal model is shown in Appendix B. The thermal model consists of 229 nodes (volumes) and 573 thermal conductors connecting the nodes.

The physical dimensions of the EP220HP Transformer coils are shown in Table 5.

The physical dimensions of the EP301HP Inductor coils are shown in Table 6.

. COIL DIMENSIONS FOR MEP 220 HP = 2 COIL/1 CORE TRANSFORMER

نے

ITEM	NER RADIUS	DIAMETER ES)	PADIAL THICKNESS (INCHES)	OUTER RADIUS	DIAMETER ES)
CORE DIAGONAL				0025	₹
COIL FORM	47	95	5	5	S
PRIMARY WINDING	~	25	35	20	101
NOMEX ABOVE PRIMARY WINDING	.5975	1.1950		•6075	1.2150
ELECTROSTATIC SHIELD #A#	07	5	03	610	.221
HEAT PIPE LAYER	10	21	• 0840	694	389
ELECTROSTATIC SHIELD #8#	94	g G	• 0030	169	.395
NOMEX ABOVE ESS	97	1.3750	• 0200	717	.43
	17	1,4350	*0444	761	.523
NOMEX ABOVE SECONDARY WINDING 1	4	1,5238	• 00 50	766	533
7	56	1.5338	* 0444	811	.622
>	~	1.6226	•0050	918	.632
DARY WINDING 3	16	32	*****	9	.72
ABOVE	90	1.7214	05	55	.731
NDARY 4 AND TERTIARY WIN	52			36	
ABOVE SEC	1 .936	1.8724	.0150	5	
OUTER DIAMETER POTTING	.9512	1.9024	•0520	. ^	1.9524

HEAT PIPE CONDENSER ACTIVE LENGTH 1.00
HEAT PIPE WALL THICKNESS .00800
HEAT PIPE CONDENSER J.D. .37500
HEAT PIPE CONDENSEP I.D. .35500
SEMI-MINJR AXIS OF EVAPORATOR ELLIPTICAL SECTION .04200
SEMI-MAJOR AXIS OF EVAPORATOR ELLIPTICAL SECTION .10210

ADDED LOCAL THICKNESS TO FLECTROSTATIC SHIELD THICKNESS = .00306 ANGULAR WIDTH = 1.5738 RADIANS

COIL DIMENSIONS FOR MEP, 301 MPM 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #ADDIUSA REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MAJOR AXIS OF THE ELLIPSE). THE TERM #DIAMETERN REFERS TO THE VERTICAL DISTANCE BETWEEN THE THO POINTS IS ON ECCRES APART (THE MAJOR AXIS OF THE ELLIPSE). THE SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MAJOR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) FOOTTED GAP BETWEEN CORE AND COIL FORM (INCHES) FOOTTED GAP BETWEEN CORE OF THE CORE TO THE POINT OF INTEREST COIL DIMENSIONS FOR SEPEN TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THO POINTS 180 DEGREES APART (THE MINOR AXIS FOOTTED GAP BETWEEN CORE AND COIL FORM (INCHES) THE SEMI-MINOR AXIS OF THE ELLIPSE). THE SEMI-MINOR AXIS OF THE ELLIPSE AND THESE DISTANCES ARE ALONG THE MINOR OF THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THO POINTS 180 DEGREES APART (THE MINOR AXIS THE SEMI-MINOR AXIS OF THE VERTICAL DISTANCE BETWEEN THE THO POINTS 180 DEGREES APART (THE MINOR AXIS THE SEMI-MINOR AXIS OF THE ELLIPSE). THE SEMI-MINOR AXIS OF THE ELLIPSE AND THESE DISTANCES ARE ALONG THE MINOR OF THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THO POINT OF THE POINT OF THE FROM THE CORE TO THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE POINT OF THE POINT OF THE FROM THE CORE TO THE CORE TO THE CORE TO THE CORE TO THE VERTICAL DISTANCE BETWEEN THE				· P	O X				
FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MAJOR AXIS OF THE ELLIPSE). THE TERM BUILDMETERS REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MAJOR AXIS OF THE ELLIPSE). THE SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MAJOR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM (INCHES) FOR THE ELLIPSE). THE SEMI-MINDING SEMINARY OF THE WINDINGS IS AN ELLIPSE AND THESE COIL FORM MINDING 1 5597 1.1075 .0160 .5697 1.1395 COIL FORM 5697 1.1395 .0080 .6427 1.2855 WINDING 2 6447 1.2894 .0680 .7727 1.4254 WINDING 3 77149 1.4299 .0680 .7227 1.4254 WINDING 3 77149 1.4299 .0680 .7227 1.4254 WINDING 3 THE SEMI-MINDING 3 COIL DIMENSIONS FOR SEP 301 HPS 2.COIL/1 CORE INDUCTOR NOTE: THE TERM SEADLUSS REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDINGS IS AN ELLIPSE). THE SEMI-MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDING XIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) OUTER RADIUS DIAMETER (INCHES) OUTER RADIUS DIAMETER OUTER RADIUS DIAMETER (INCHES) OUTER RADIUS DIAMETER OUTER RADIUS DIAMETER (INCHES) OUTER RADIUS DIAMETER OUTER DIAMETER OUTER DIAMETER OU	COIL DIMENSIONS FOR MEP. 30] HPM 2 CO	IL/1 CORE IND	UCTOR		5				
THE TERM # POINTS 180 DEGREES APART (THE MAJOR AXIS BETWEEN THE TWO POINTS 180 DEGREES APART (THE MAJOR AXIS OF THE ELLIPSE). THE SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MAJOR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM (INCHES) FOUTHOUR STATES OF THE WINDINGS IS AN ELLIPSE AND THESE (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM (INCHES) POTTED GAP BETWEEN THE WINDING SI AN ELLIPSE AND THESE THE THE TERM # # ADIAL THE CORE TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE THE THE THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE THE THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE POTTING (INCHES) THE SEMI-HANDING SI SAN ELLIPSE AND THESE DISTANCE BETWEEN THE THE POTTING SIS AN ELLIPSE AND THESE DISTANCES BETWEEN THE THE POTTING SIS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE	NOTE: INC ICKN EXAUTORS KETEKS IN IN	C TERILORE UL	31A46E	Ž.	Ž				
THE TERM # POINTS 180 DEGREES APART (THE MAJOR AXIS BETWEEN THE TWO POINTS 180 DEGREES APART (THE MAJOR AXIS OF THE ELLIPSE). THE SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MAJOR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM (INCHES) FOUTHOUR STATES OF THE WINDINGS IS AN ELLIPSE AND THESE (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM (INCHES) POTTED GAP BETWEEN THE WINDING SI AN ELLIPSE AND THESE THE THE TERM # # ADIAL THE CORE TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE THE THE THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE THE THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE THE CORE TO THE VERTICAL DISTANCE BETWEEN THE THE THE THE POTTING (INCHES) THE SEMI-HANDING SI SAN ELLIPSE AND THESE DISTANCE BETWEEN THE THE POTTING SIS AN ELLIPSE AND THESE DISTANCES BETWEEN THE THE POTTING SIS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE			INTEREST	2 i	♀ ≥				
DISTANCES ARE ALONG THE MAJOR AXIS. INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) DIAMETER (INCHES				· · · · · · · · · · · · · · · · · · ·					
DISTANCES ARE ALONG THE MAJOR AXIS. INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) DIAMETER (INCHES	THE TERM #DIAMETER# REFERS TO	THE VERTICAL	DISTANCE	ී් :	ĕ				
DISTANCES ARE ALONG THE MAJOR AXIS. INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) DIAMETER (INCHES	BETWEEN THE TWO POINTS 180 DEG	REES APART (T	HE MAJOR AX	IS ≥ {	2				
DISTANCES ARE ALONG THE MAJOR AXIS. INNER RADIUS DIAMETER RADIAL THICKNESS (INCHES) DIAMETER (INCHES		v .				· · · · · · · · · · · · · · · · · · ·			
INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES)			THESE	स्					
CINCHES CINCHES	·			r die ministra de des mes a par marcialis de de de					
POTTED GAP BETWEEN CORE AND COIL FORM .5537 1.1075 .0160 .5697 1.1395 NOMEX ABOVE COIL FORM5697 1.1395 .0050 .5747 1.1495 WINDING 1 .5747 1.1495 .0680 .6427 1.2855 WINDING 2 .6447 1.2894 .0680 .7127 1.4254 WINDING 3 .7146 1.4293 .0680 .7826 1.5653 WINDING 3 .7146 1.4293 .0680 .7826 1.5653 OUTER DIAMETER POTTING .8026 1.5653 .0200 .8026 1.6053 OUTER DIAMETER POTTING .8026 1.5653 .0250 .8026 1.6053 COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM **RADIUS** REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM **BOILMETER* REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THE SEMI-MINDR AXIS OF THE ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM .2200 .4400 .0160 .2360 .4720 MOMEX ABOVE COIL FORM .2260 .4720 .0050 .2410 .4820 WINDING 1 .2410 .4820 .0680 .3090 .6180									
POTTED GAP BETWEEN CORE AND COIL FORM .5537 1.1075 .0160 .5697 1.1395 NOMEX ABOVE COIL FORM5597 1.1395 .0050 .5747 1.1495 WINDING 1 .5747 1.1495 .0080 .6427 1.2855 WINDING 2 .6447 1.2894 .0080 .7127 1.4255 WINDING 3 .7146 1.4293 .0080 .7127 1.4254 WINDING 3 .7146 1.4293 .0080 .7826 1.5653 NOMEX ABOVE WINDING 3 .7026 1.5653 .0200 .8026 1.0053 OUTER DIAMETER POTTING .8026 1.6053 .0250 .8026 1.6053 COIL DIMENSIONS FOR MEP 301 HPM 2 COIL/1 CORE INDUCTOR NOTE: THE TERM MERADIUSM REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTERST (THE SEM1-MINDR AXIS OF THE FLLIPSE). THE TERM MOIAMETERM REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO PDINTS 180 DEGREES APART (THE MINDR AXIS DF THE ELLIPSE). THE SEM2 OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM .2200 .4400 .0160 .2360 .4720 WINDING 1 .2410 .4820 .0050 .2410 .4820 WINDING 1 .2410 .4820 .0050 .2390 .6180					(INCH	ES)			
OUTER DIAMETER POTTING -8026 1.5053 -COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THL SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM 2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2260 .4620 .0050 .2410 .4820 WINDING 1 .2410 .4820 .00680 .3090 .6180	DOTTED CAD RETUEEN CODE AND COTI EDDM			. 0325					
OUTER DIAMETER POTTING -8026 1.5053 -COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THL SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM 2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2260 .4620 .0050 .2410 .4820 WINDING 1 .2410 .4820 .00680 .3090 .6180	COIL FORM	•5537	1.1075	•0160	•5697	1.1395			
OUTER DIAMETER POTTING -8026 1.5053 -COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THL SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM 2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2260 .4620 .0050 .2410 .4820 WINDING 1 .2410 .4820 .00680 .3090 .6180	NOMEX ABOVE COIL FORM	. 5697	1.1395	• 0050	.5747	1.1495			
OUTER DIAMETER POTTING -8026 1.5053 -COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THL SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM 2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2260 .4620 .0050 .2410 .4820 WINDING 1 .2410 .4820 .00680 .3090 .6180	WINDING 1	.5747	1.1495	•0680	•6427	1.2855			
OUTER DIAMETER POTTING -8026 1.5053 -COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THL SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM 2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2260 .4620 .0050 .2410 .4820 WINDING 1 .2410 .4820 .00680 .3090 .6180	WINDING 2	.6447	1.2894	.0680	•7127	1.4254			
OUTER DIAMETER POTTING -8026 1.5053 -COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINDR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINDR AXIS OF THE ELLIPSE). THL SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINDR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) POTTED GAP BETWEEN CORE AND COIL FORM 2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2260 .4620 .0050 .2410 .4820 WINDING 1 .2410 .4820 .00680 .3090 .6180	WINDING 3	7146	1.4293	.0680	.7826	1.5653			
COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINOR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINOR AXIS OF THE ELLIPSE). THU SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINOR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) FOTTED GAP BETWEEN CORE AND COIL FORM COIL FORM **2200*** 4400*** 0325** COIL FORM **2200*** 4400*** 0360*** 0350*** 2410*** 4820*** NOMEX ABOVE COIL FORM **2360*** 4720*** 0050*** 2410*** 4820**** 4820**** 3090*** 6180*** WINDING 1 **2410*** 4820**** 3090*** 6180*****	NOMEX ABOVE WINDING 3	.7826	1.5653	•0200	.8026	1.6053			
COIL DIMENSIONS FOR #EP 301 HP# 2 COIL/1 CORE INDUCTOR NOTE: THE TERM #RADIUS# REFERS TO THE VERTICAL DISTANCE FROM THE CENTER OF THE CORE TO THE POINT OF INTEREST (THE SEMI-MINOR AXIS OF THE ELLIPSE). THE TERM #DIAMETER# REFERS TO THE VERTICAL DISTANCE BETWEEN THE TWO POINTS 180 DEGREES APART (THE MINOR AXIS OF THE ELLIPSE). THU SHAPE OF THE WINDINGS IS AN ELLIPSE AND THESE DISTANCES ARE ALONG THE MINOR AXIS. ITEM INNER RADIUS DIAMETER RADIAL THICKNESS OUTER RADIUS DIAMETER (INCHES) FOTTED GAP BETWEEN CORE AND COIL FORM COIL FORM **2200*** 4400*** 0325** COIL FORM **2200*** 4400*** 0360*** 0350*** 2410*** 4820*** NOMEX ABOVE COIL FORM **2360*** 4720*** 0050*** 2410*** 4820**** 4820**** 3090*** 6180*** WINDING 1 **2410*** 4820**** 3090*** 6180*****	OUTER DIAMETER POTTING	.8026	1.6053	• 0250	.8026	1.6053			
POTTED GAP BETWEEN CORE AND COIL FORM COIL FORM NOMEX ABOVE COIL FORM 2360 .4720 2360 .4720 2410 .4820 2610 .4820 2610 .4820 2700 .6180	HOTE: THE TERM **RADIUS** REFERS TO THE FROM THE CENTER OF THE CORE TO (THE SEMI-MINOR AXIS OF THE ELL THE TERM **DIAMETER** REFERS TO THE BETWEEN THE TWO POINTS 180 DEGREE OF THE ELLIPSE). THE SHAPE OF THE WINDINGS IS AN	VERTICAL DIS THE POINT OF LIPSE). THE VERTICAL D REES APART (TH	TANCE INTEREST						
POTTED GAP BETWEEN CORE AND COIL FORM .2200 .4400 .0160 .2360 .4720 NOMEX ABOVE COIL FORM .2360 .4720 .0050 .2410 .4820 WINDING 1 .2410 .4820 .0680 .3090 .6180	ITEM	(INCH	ES)	RADIAL THICKNESS (INCHES)	OUTER RADIUS	DIAMETER S)			
COIL FORM	POTTED GAP BETWEEN CORE AND COIL FORM			•0325	ere ere ere ere og				
NOMEX ABOVE COIL FORM .2360 .4720 .0050 .2410 .4820 WINDING 1 .2410 .4820 .0680 .3090 .6180 WINDING 2 .3109 .6219 .0680 .3789 .7579 WINDING 3 .3809 .7618 .0680 .4489 .8978 .0080 .4689 .9378 .0080 .4689 .9378 .0080 .4689 .9378		•2200	.4400	.0160	•2360	.4720			
WINDING 1 .2410 .4820 .0680 .3090 .6180 WINDING 2 .3109 .6219 .0680 .3789 .7579 WINDING 3 .3809 .7618 .0680 .4489 .8978 NUMEX ABOVE WINDING 3 .4489 .8978 .0200 .4689 .9378 DUTER DIAMETER POTTING .4689 .9378 .0250 .6689 .9378	NOMEX ABOVE COIL FORM	.2360	.4720	.0050	.2410				
WINDING 2 .3109 .6219 .0680 .3789 .7579 WINDING 3 .3809 .7618 .0680 .4489 .8978 NUMEX ABOVE WINDING 3 .4489 .8978 .0200 .4689 .9378 DUTER DIAMETER POTTING .4689 .9378 .0250 .4689 .9378	WINDING 1	.2410	.4820	• 0680	•3090	.6180			
WINDING 3 .3809 .7618 .0680 .4489 .8978 NDMEX ABOVE WINDING 3 .4489 .8978 .0200 .4689 .9378 DUTER DIAMETER POTTING .4689 .9378 .0250 .4689 .9378	WINDING 2	•3109	.6219	•0680	.3789	.7579			
NOMEX ABOVE WINDING 3 .4489 .8978 .0200 .4689 .9378 OUTER DIAMETER POTTING .4689 .9378 .0250 .4689 .9378	WINDING 3	•3809	.7618	0680	.4489	.8978			
OUTER DIAMETER POTTING .4689 .9378 .0250 .4689 .9378	NOMEX ABOVE WINDING 3	•4489	•8978	•0200	•4689	.9378			
	OUTER DIAMETER POTTING	.4689	.9378						

·.	TRW	PREPARED BY: ATTACHMEN	NT PAGE
PROJECT	AUBJECT	8/7/78	OF

EP 220 HP THERMA MUDICE

Rabus (Index) PROJECT SUBJECT Mountay France DATE OF

ľ

PROJECT SUBJECT ESS "B" THEKMAL MODEL 9/20/78

ŧ

•	TRW	PREPARED BY: ATTACHMENT	PAGE
PROJECT	ESS "A" THERMAL MODEL	9/2-/78	OF

APPENDIX 4

INPUT FILTER DESIGN

INPUT FILTER

The basic two stage input filter is shown in Figure 1. The first stage consisting of L_1 , C_1 , R_1 , controls the resonant peaking of both stages. The second stage L_2 , C_2 supplies most of the peak current demanded by the converter operating at a switching frequency F.

In the Ion Thruster Power Processor, separate second sections are required for the three DC to AC series resonant inverters to minimize interaction between the three inverters. The configuration of the input filter is shown in Figure 2.

Swinging chokes are utilized for the first and secong stage inductors since maximum attenuation is required at the lowest line current.

ION THRUSTER POWER PROCESSOR.

Input Filter Requirements.

To limit the current ripple injected on the solar array bus during steady-state operation to 1% peak-to-peak of the average current value.

The following Table lists the average input current, the AC current component, switching frequency, and required attenuation of the switching current for various input line voltage and beam current conditions.

For $J_B = 2A$			•
v _{IN}	2007	300V	400V
Currents Beam	11.82 A	7.88 A	5.91 A
Disch.	2.93 A	1.95 A	1.46 A
Mult.	357A	238A	.179A
Total I _{IN}	15.107A	10.068A	7.549A
For Beam Inverter:			
$^{\mathrm{I}}$ ac	27.2A	35A	39A
Freq.	36kHz	23kHz	17kHz
Atten. Req'd	230	442	655
For $J_B = 1A$			
v _{in}	200V	300V	400V
Currents Beam	5.91 A	3.98 A	2.960A
Disch.	1.40 A	.935A	.701A
Mult.	357A	238A	179A
Total I _{IN}	7.667A	5.153A	3.840A
For Beam Inverter:			
Iac	21A	22A	23A
Freq.	18kHz	11kHz	8kHz
Atten. Req'd	345	549	749

For $J_B = 0.5A$

V _{IN}		200V	300V	400V
Currents	Beam	2.96 A	1.97 A	1.48 A
	Disch.	.795A	.530A	.398A
	Mult.	<u>.357A</u>	.238A	.179A
Total I	N	4.112A	2.738A	2.057A
For Beam	Inverter:			
	Iac	11.2A	11.4A	11.5A
	Freq.	9.0kHz	5.9kHz	4.2kHz
	Atten.Req'd	379	578	774

It can be seen from the preceding Table that the highest attenuation is required at the lowest input dc current. Also this attenuation requirement occurs at the lowest switching frequency. To minimize filter weight and size, swinging chokes are utilized for the first and second stage inductors.

The input filter design was based on the attenuation requirements of the beam inverter since the beam inverter requires the highest attenuation. It is assumed the interaction between the three inverters is small since the input filter has three separate second sections which effectively isolates the three inverters.

Design Constraints - Input Filter.

Ripple Voltage - Second-Stage Capacitor.

 $\Delta V \approx 10\%$

at
$$V_{dc} = 200V$$
 $\Delta V \approx 20V$

$$_{oo}^{\circ} C = \frac{it}{\Delta V} = \frac{55 \times 20 \times 10^{-6}}{20} = 55 \mu F$$

 $C_2 = 50\mu F$ was used.

First-stage capacitor value.

 $C_1 = 400 \mu F$

The factor C_2/C_1 should be sufficiently small to permit a real solution.

For this design $C_{2/C_{1}} = \frac{50}{400} = 0.125$ therefore OK.

The factor L_2/L_1 should be less than unity to avoid the second-stage peaking. In typical designs, L_2/L_1 = 0.25 to 0.5.

For this design $L_2/L_1 = .333$ is used.

Procedure used in design of Ion Thruster Input Filter.

- Fundamental component of ripple current (Fip) and ripple frequency (F)
 determined.
- Required attenuation (A) calculated.

$$A = \frac{\text{Fip}}{0.01} I_{dc}$$

ullet Second-stage capacitor ${\bf C_2}$ selected.

Let second-stage ripple $\Delta V \cong 10\%$ of V_{dc}

$$\delta_{c} \Delta V = 20V \quad 0 \quad V_{dc} = 200V$$

$$_{6}^{\circ} C_{2} \cong \frac{55 \times 20 \times 10^{-6}}{20} = 55 \mu F$$

use
$$C_2 = 50\mu F$$

Select first-stage capacitor C₁.

The ratio
$$C_{2/C_1}$$
 <0.225

$$C_1$$
 value = $400\mu F$

$$c_{2/C_{1}} = 0.125$$

• Select L_{2/L₁} ratio.

 $L_{2/L_{1}}$ should be less than unity to avoid second-stage peaking.

$$L_{2/L_{1}} = 1/3 = .333$$

• Calculate damping factor D.

$$D^{2} = \frac{1 - P1^{2} \left(\frac{C2}{C1}\right)^{2}}{P1^{2} \left[1 - \frac{C2}{C1} \left(1 + \frac{L2}{L1}\right)\right]^{2} - 1}$$

where P1 = $\sqrt{2}$ for +3db peaking.

 For any given set of A and F, the first-stage corner frequency fl may be calculated.

$$\frac{F}{f1} \qquad \sqrt[3]{\frac{\left(\frac{f2}{f1}\right)^2 \times D \times A}{\left(\frac{L2}{f1}\right)}} \quad D$$

where
$$\left(\frac{f2}{f1}\right)^2 = \frac{L1C1}{L2C2}$$

L1 is determined from

$$L1 = \frac{1}{(2\pi f1)^2} C1$$

and determine L2 from selected L2/_{L1} ratio.

• R1, the damping resistor is calculated from

$$R_1 = D \sqrt{\frac{L_1}{C_1}}$$

Since attenuation and frequency values vary widely for different operating conditions (loading), a family of inductor values is calculated to obtain the inductor design requirements shown in Figure 3.

APPENDIX 5

HEAT PIPE MANUFACTURING SKETCHES

i

ENGINEERING	SKETCH	TRUS EYSTEMS GROUP ONE SPACE PARK • REDONDO BEACH, CALIFORNIA					CALIFORNIA
ORIGINATOR	DATE						
David Autoniok	8/30/79	L "	<i>C</i> , , .		CIUR	HEAT	PIPE ASSY
		<u> </u>					_
	1.	SIZE	CODE IDE	NT NO.	SK	780	7 /
MJC		A	119	82	on	/ 6 00	<i>-</i> /
		SCALE	~ 3/1			SHEET	1 OF

REVISIONS

DESCRIPTION

LTR

DATE

APPROVED

TEIGINAL PAGE OF POOR QUALITY

MATL: 304 CRES

SIZE : BX

ALL DIMENSIONS : INCHES

NOTE :

1. INTERNAL THREADS NOT FULL DEPTH, NO MATING PART

DETAIL A-SECTION 25 x

ENGINEERING	SKETCH	0	NE SPACE	PARK •	CVCTCA	S GROUP DNDO BEACH, CALIFORNIA	
E.E.LUEDKE	7/ _{20/78}	HE	EAT	PIF	PE	TUBING	-
МЈО		SIZE	119		SK	(-78004	
		SCALE		5.5		SHEET 1 OF	

REVISIONS

LTR DESCRIPTION DATE APPROVED

MATL: 304 CRES (SHEET STOCK)

Scale-4x

ENGINEERING	Of	TRUS. SYSTEMS GROUP ONE SPACE PARK • REDONDO BEACH, CALIFORNIA					
ORIGINATOR	DATE	- H1	PCM	EN!	D CA	PL	
мло		SIZE A SCALE	1198	17 NO. 32	SK 7	18005	OF

REVISIONS

DESCRIPTION

DATE APPEDVED

MATL : 304 CRES (SHEET STOCK)

Scale-8x

-I END CAP DETAIL SHOWN

-Z END CAP SAME AS -I EXCEPT AS NOTED

ENGINEERIN	TRU! SYSTEMS GROUP ONE SPACE PARK • REDONDO BEACH, CALIFORNIA					
ORIGINATOR	DATE				D CAP S	-
MJO		size A	CODE IDEN	1T NO.	SK 78006	-
		SCALE			SHEET 1 OF	

5-7

WATERIA PAR MENT 12 71

REVISIONS

LTR DESCRIPTION DATE APPROVED

SCALE ~ 4/1

MATIL: 304 CRES SHEET STOCK

ENGINEERING S	TRUS SYSTEMS GROUP ONE SPACE PARK • REDONDO BEACH, CALIFORNIA					
ORIGINATOR DATE		HPCM COUPLING				
		SIZE	code iden	T NO.	SK78007	-
MJO		SCALE			SHEET 1 OF	

REVISIONS

TR DESCRIPTION

DATE

APPROVED

WICK CROSS SECTION

Scale - 10x

MATERIAL : 304 CRES

0.0035" WIRE

VOLUME DENSITY: 22 % ± 2 %

ENGINEERING	TRIV. SYSTEMS GROUP ONE SPACE PARK • REDONDO BEACH, CALIFORNIA						
ORIGINATOR E.E. LUEDKE	DATE 7/26/78	L HI	PC M	W	ICK	- I	-
OLM.		SIZE	CODE IDEN		SK	78008	-
		SCALE			•	SHEET 1 OF 1	

REVISIONS

LTR DESCRIPTION

DATE APPROVED

- 0.064 + :010 DIA

WICK CROSS SECTION

SCALE ~ 20/1

MATERIAL : 304 CRES

WIRE: 0.0035" DIA

VOLUME DENSITY : 30% ± 2%

ENGINEERING SKETCH			TRIN SYSTEMS GROUP ONE SPACE PARK • REDONDO BEACH, CALIFORNIA					
ORIGINATOR	DATE	-	PCM WIC			-		
D. ANTONIUK	8/8/78	L '	,	·	•	_		
		<u> </u>						
		SIZE	CODE IDENT NO.	CV -	70000	-		
MJO	<u> </u>	A	11982	∫oν ∖	0003	_		
		SCALE	5=17		SHEET 1 OF			

ORIGINAL PAGE IN OF POOR QUALITY

	321 STAINLESS		.020"	ANNEALED, I HR @ 1000 °C		
ORIGINATOR		RIAL	WALL TH.	CONDITION		
	DATE	TITLE		ENGINEERING SKETCH		
V, REINEKING	6-24-7	FILL	TUBE	TRW. NYTHIN MADE CINE SPACE PARK - REGIONDO BEACH, CALIFORNIA		
MJO	<u> </u>	-		SK 002014		
\$YSTEM\$ 528 REV. 5-67		1	E 11	SHEET / OF /		