

Álgebra - Curso de Verão - UFV

1^a Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Verifique se o conjunto $\mathbb{Q}_{>0}$ dos números racionais estritamente positivos com a operação dada é ou não um grupo. Justifique sua resposta.

(a)
$$(\mathbb{Q}_{>0},\cdot)$$
 (b) $(\mathbb{Q}_{>0},+)$

Exercício 2: Seja \mathcal{Q} o conjunto dado por

$$Q = \{I, A, A^2, A^3, B, BA, BA^2, BA^3\}$$

onde I é a matriz identidade e

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

onde $i \in \mathbb{C}$, $i^2 = -1$. Mostre que \mathcal{Q} é um grupo com a multiplicação usual de matrizes. **Exercício 3:** Seja $z = a + bi \in \mathbb{C}$, onde $a, b \in \mathbb{R}$. Definimos $|z| = \sqrt{a^2 + b^2}$. Prove que

Exercicio 5: Seja $z = a + m \in \mathbb{C}$, onde $a, b \in \mathbb{R}$. Definitios $|z| = \sqrt{a^2 + b^2}$. Prove que $G = \{z \in \mathbb{C} \mid |z| = 1\}$ é um grupo abeliano com a operação de multiplicação de números complexos.

Exercício 4: Mostre que o conjunto $\mathbb{Q}[\sqrt{2}]^* = \{a + b\sqrt{2} \in \mathbb{R}^* \mid a, b \in \mathbb{Q}\}$ é um grupo multiplicativo abeliano.

Exercício 5: Mostre que os seguinte conjuntos são grupos, com as operações indicadas:

- (a) $(M_n(\mathbb{R}), +)$: o conjunto das matrizes $n \times n$ com entradas reais com a soma usual de matrizes. Este grupo é abeliano? (O resultado é verdadeiro se considerarmos matrizes sobre \mathbb{Q} ou \mathbb{C} .)
- (b) $(GL_n(\mathbb{R}), \cdot)$: o conjunto das matrizes invertíveis $n \times n$ com entradas reais com o produto usual de matrizes. Este grupo é abeliano? (O resultado é verdadeiro se considerarmos matrizes sobre \mathbb{Q} ou \mathbb{C} .)

Exercício 6: Seja $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ o conjunto dos inteiros módulo n. Mostre que (\mathbb{Z}_n, \oplus) , onde para $\overline{a}, \overline{b} \in \mathbb{Z}_n, \overline{a} \oplus \overline{b} = \overline{a+b}$ é um grupo.

Exercício 7: Seja $\mathbb{Z}_n^* = \mathbb{Z}_n - \{\overline{0}\}$. O conjunto $(\mathbb{Z}_n^*, \otimes)$, onde para $\overline{a}, \overline{b} \in \mathbb{Z}_n^*, \overline{a} \otimes \overline{b} = \overline{ab}$ é um grupo? Caso contrário, qual a condição sobre n para que $(\mathbb{Z}_n^*, \otimes)$ seja grupo?

Exercício 8: Quais dos seguintes subconjuntos G de $\mathbb{Z}_{13} = \mathbb{Z}/13\mathbb{Z}$ são grupos com a operação de multiplicação?

(a)
$$G = \{\overline{1}, \overline{12}\};$$

(c)
$$G = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}, \overline{12}\}$$

(b)
$$G = \{\overline{1}, \overline{5}, \overline{8}, \overline{12}\};$$

$$(\mathrm{d}) \ G = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}\}.$$

Exercício 9: Seja (G, *) um grupo com elemento neutro e.

- (a) Seja G um grupo tendo e como elemento neutro. Prove que se $x^2 = e$, para todo $x \in G$, então G é um grupo abeliano.
- (b) Mostre que se $x \in G$ é tal que $x^2 = x$, então x é o elemento neutro.
- (c) Mostre que $(x^{-1})^{-1} = x$ para todo $x \in G$.
- (d) Mostre que $(a_1 a_2 \cdots a_{n-1} a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_2^{-1} a_1^{-1}$, para todo $n \ge 2$.

Exercício 10: Sejam (G, *) e (H, \diamond) dois grupos. No conjunto $G \times H$ defina a operação

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1 * g_2, h_1 \diamond h_2).$$

Mostre que $(G \times H, \cdot)$ é um grupo. Tal grupo é chamado de **produto direto** de G com H.

Exercício 11: Sejam H e K dois subgrupos de um grupo G. Mostre que $H \cap K$ é um subgrupo de G. De maneira geral, mostre que se $\{H_{\alpha}\}_{{\alpha}\in\Gamma}$ é uma família de subgrupos de G, então $\cap_{{\alpha}\in\Gamma}H_{\alpha}$ é um subgrupo de G.

Exercício 12: Seja G um grupo e seja S um subconjunto de G. Mostre que $\langle S \rangle$ é o menor subgrupo de G contendo S e que $\langle S \rangle$ é a interseção de todos os subgrupos de G que contém S.

Exercício 13: Sejam H e K subgrupos de um grupo G (com notação multiplicativa).

- (a) Prove que $H \cup K$ é subgrupo de G se, e somente se, $H \subseteq K$ ou $K \subseteq H$.
- (b) Demonstre que $HK = \{hk \mid h \in H, k \in K\}$ é subgrupo de G se, e somente se, HK = KH.

Exercício 14: Seja G um grupo abeliano e considere o subconjunto $T(G) = \{\alpha \in G \mid |\alpha| < \infty\}$. Mostre que T(G) é um subgrupo de G. Tal subgrupo é chamado de **torção** de G.

Exercício 15: Seja $G = GL_2(\mathbb{Q})$ e tome

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}.$$

Mostre que $A^4 = B^6 = I$, onde I é a matriz identidade, mas $(AB)^n \neq I$ para todo $n \geq 1$. Conclua que AB pode ter ordem infinita apesar de A e B terem ordem finita (isso não acontece em grupos finitos).

Exercício 16: Defina o grupo especial linear por

$$SL(2,\mathbb{R}) = \{ A \in GL_2(\mathbb{R}) \mid \det(A) = 1 \}.$$

Prove que $SL(2,\mathbb{R})$ é um subgrupo de $GL_2(\mathbb{R})$.

Exercício 17: Seja

$$\mathcal{V} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \right\}.$$

Verifique que \mathcal{V} é um subgrupo de S_4 .

Exercício 18: Se H e K são subgrupos de um grupo G tais que |H| e |K| são relativamente primos, então $H \cap K = \{1\}$.

Exercício 19: Seja G um grupo de ordem 4. Prove que ou G é cíclico ou $x^2 = 1$ para todo $x \in G$. Conclua que G é abeliano.

Exercício 20: Seja G um grupo e seja $g \in G$, $g \neq e$.

- (a) Mostre que g tem ordem 2 se, e somente se, $g = g^{-1}$.
- (b) Mostre que se |g| = mn, então $|g^m| = n$.
- (c) Mostre que $|g^{-1}| = |g|$.

Exercício 21: Seja $G = S_3$, o grupo das permutações de 3 elementos.

- (a) Procure todos os subgrupos H de S_3 com suas ordens.
- (b) Para cada subgrupo H de S_3 , determinar as suas classes laterais à esquerda e à direita.
- (c) Exiba um subgrupo próprio H de S_3 tal que

$$Hx = xH$$

para todo $x \in S_3$.

(d) Exiba um subgrupo próprio K de S_3 para o qual exista $x \in S_3$ tal que $Kx \neq xK$.

Exercício 22: Seja H um conjunto não vazio de um grupo finito G. Mostre que H é um subgrupo de G se, e somente se, H é fechado, isto é, se dados a e $b \in H$, então $ab \in H$. Dê um exemplo que esta propriedade falha se G for um grupo infinito.