Cálculo de Programas

Licenciatura em Engenharia Informática

Ficha 7

1. Considere o seguinte tipo de dados:

```
\mathbf{data} \ \mathsf{LTree} \ a = \mathsf{Leaf} \ a \mid \mathsf{Branch} \ (\mathsf{LTree} \ a) \ (\mathsf{LTree} \ a)
```

- (a) Enuncie e demonstre a lei de fusão dos catamorfismos para este tipo.
- (b) Considere as seguintes funções:

```
\begin{array}{lll} \operatorname{soma} :: \operatorname{LTree\ Int} \to \operatorname{Int} \\ \operatorname{soma\ } (\operatorname{Leaf\ } x) &= x \\ \operatorname{soma\ } (\operatorname{Branch\ } l\ r) = \operatorname{soma\ } l + \operatorname{soma\ } r \\ \operatorname{join\ } :: \operatorname{LTree\ } (\operatorname{LTree\ } a) \to \operatorname{LTree\ } a \\ \operatorname{join\ } (\operatorname{Leaf\ } x) &= x \\ \operatorname{join\ } (\operatorname{Branch\ } l\ r) &= \operatorname{Branch\ } (\operatorname{join\ } l)\ (\operatorname{join\ } r) \end{array}
```

Implemente estas funções no estilo *point-free* usando catamorfismos. Desenhe os respectivos diagramas.

(c) Demonstre que $\mathsf{map}_{\mathsf{LT}} f = (\mathsf{in}_{\mathsf{LT}} \circ (f + \mathsf{id}))_{\mathsf{LT}}$ corresponde à seguinte definição pointwise:

```
\begin{array}{ll} \mathsf{map}_\mathsf{LT} :: (a \to b) \to \mathsf{LTree} \ a \to \mathsf{LTree} \ b \\ \mathsf{map}_\mathsf{LT} \ f \ (\mathsf{Leaf} \ x) &= \mathsf{Leaf} \ (f \ x) \\ \mathsf{map}_\mathsf{LT} \ f \ (\mathsf{Branch} \ l \ r) = \mathsf{Branch} \ (\mathsf{map}_\mathsf{LT} \ f \ l) \ (\mathsf{map}_\mathsf{LT} \ f \ r) \end{array}
```

- (d) Demonstre que soma \circ join = soma \circ map_{LT} soma, assumindo que soma \circ uncurry Branch = plus \circ (soma \times soma).
- 2. Considere o seguinte tipo de dados para representar árvores binárias sem conteúdo.

$$\mathbf{data} \ \mathsf{STree} = \mathsf{Tip} \mid \mathsf{Fork} \ \mathsf{STree} \ \mathsf{STree}$$

- (a) Defina as funções out_T em Haskell no estilo pointwise e in_T no estilo point-free.
- (b) Desenhe o diagrama dos catamorfismos para este tipo, e identifique a respectiva lei universal.
- (c) Defina no estilo *point-free* usando catamorfismos as funções $nfolhas::STree \rightarrow Int$ (conta o número de folhas) e $mirror::STree \rightarrow STree$ (espelha uma árvore).
- (d) Demonstre que nfolhas o mirror = nfolhas, assumindo que a adição é comutativa, ou seja, plus o swap = plus.
- 3. Considere o seguinte tipo de dados para representar listas onde não só é possível inserir elementos à cabeça (Cons), mas também na cauda da lista (Snoc).

$$\mathbf{data} \, \mathsf{Seq} \, a = \mathsf{Nil} \, | \, \mathsf{Cons} \, a \, (\mathsf{Seq} \, a) \, | \, \mathsf{Snoc} \, a \, (\mathsf{Seq} \, a)$$

- (a) Atendendo ao isomorfismo Seq $a \cong 1 + (a \times \text{Seq } a + a \times \text{Seq } a)$, defina as funções outs em Haskell no estilo *pointwise* e ins no estilo *point-free*.
- (b) Desenhe o diagrama dos catamorfismos para este tipo, e identifique a respectiva lei universal.
- (c) A função folds :: $b \to (a \to b \to b) \to (a \to b \to b) \to \mathsf{Seq}\ a \to b$ pode ser definida como folds $z \ f \ g = (\underbrace{z} \ \nabla \ (\mathsf{ap} \circ (f \times \mathsf{id}) \ \nabla \ \mathsf{ap} \circ (g \times \mathsf{id})))$. Derive a respectiva definição no estilo pointwise.
- (d) Uma das vantagens destas listas é que é possível definir a seguinte função de inversão, que executa em tempo linear.

```
\begin{array}{l} \operatorname{rev} :: \operatorname{Seq} \ a \longrightarrow \operatorname{Seq} \ a \\ \operatorname{rev} \ \operatorname{Nil} = \operatorname{Nil} \\ \operatorname{rev} \ (\operatorname{Cons} x \ l) = \operatorname{Snoc} x \ (\operatorname{rev} \ l) \\ \operatorname{rev} \ (\operatorname{Snoc} x \ l) = \operatorname{Cons} x \ (\operatorname{rev} \ l) \end{array}
```

Defina rev no estilo point-free usando um catamorfismo e demonstre que a essa definição é equivalente à apresentada acima.

- (e) Demonstre que $rev \circ rev = id$.
- 4. Considere o seguinte tipo de dados para representar números naturais.

$$\mathbf{data} \ \mathsf{Nat} = \mathsf{Zero} \ | \ \mathsf{Succ} \ \mathsf{Nat}$$

- (a) Defina a função double :: Nat \rightarrow Nat no estilo point-free usando um catamorfismo.
- (b) Verifique, derivando a respectiva versão *pointwise*, que a função $\mathsf{add} :: \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}$ pode ser definida como $\mathsf{add} = (\c id \c \nabla \c \mathsf{Succ} \circ \mathsf{ap})_{\mathsf{N}}.$
- (c) Na definição anterior, a recursividade é feita sobre o primeiro argumento. Apresente uma definição alternativa para a função add, usando também um catamorfismo, assumindo que o primeiro parâmetro é fixo e que a recursividade é feita sobre o segundo, ou seja, add $n = \{ \dots \}_N$.
- 5. Considere o seguinte tipo de dados para representar (algumas) expressões *point-free* com variáveis.

- (a) Defina as funções out em Haskell no estilo pointwise e in no estilo point-free.
- (b) Desenhe o diagrama dos catamorfismos para este tipo, e identifique a respectiva lei universal.
- (c) Defina, usando um catamorfismo, a função vars:: $\mathsf{Exp} \to [\mathsf{String}]$, que extrai as variáveis de uma expressão.
- (d) Defina, usando um catamorfismo, a função subst :: (String $\to \mathsf{Exp}) \to \mathsf{Exp} \to \mathsf{Exp}$, que aplica uma substituição a todas as variáveis de uma expressão. Assuma que o primeiro parâmetro é fixo e que a recursividade é feita sobre o segundo, ou seja subst $f = (| \dots |)_{\mathsf{E}}$.
- (e) Demonstre que subst Var = id.