Neural Networks and Optimization IV

Dr. Parlett-Pelleriti

Bias Variance Tradeoff

Regularization

With great complexity comes great regularization

Regularization

- Penalization
- Bagging
- Dropout
- Early Stopping
- Batch Normalization

- Best for smaller networks
- Added to EACH layer
- L1, L2, L1 + L2

penalized loss = loss +
$$\lambda\Omega(\theta)$$

penalized loss = loss +
$$\lambda\Omega(\theta)$$

 $\Omega(\theta)$ is some penalty on the size of the parameters θ

Typically we only penalize the weights, not the biases in a network

penalized loss = loss + $\lambda\Omega(\theta)$

L₂ Penalization

penalized loss = loss + $\lambda\Omega(\theta)$

$$w_t = \underbrace{w_{t-1}}_{\text{old weights}} - \underbrace{\alpha * g_t}_{\text{update weights}}$$

$$w_t = \underbrace{(1 - \lambda \alpha)w_{t-1}}_{\text{shrink weights}} - \underbrace{\alpha * g_t}_{\text{update weights}}$$

L₁ Penalization

penalized loss = loss +
$$\lambda\Omega(\theta)$$

Bagging

BOOTSTRAPPING

Bagging

BOOTSTRAPPING

- Comparison to Random Forest Bagging/Feature Selection
- Applied to each layer
- Network can't over-rely on some connections

0.1	0.4	0.2	0.3	0.2
0.1	0	0.2	0.3	0.2
0.125	0	0.25	0.375	0.25

Dropout Only
Happens During
Training!

Ensemble of subnetworks

Early Stopping

Batch Normalization

With Batch Norm

From: https://www.linkedin.com/pulse/ways-improve-your-deep-learning-model-batch-adam-albuquerque-lima

Batch Normalization

- Speeds up training
- Lessens the impact of initial weights
- Regularizes your model

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.