ADAMAS UNIVERSITY

ADAMAS UNIVERSITY PURSUE EXCELLENCE	END-SEMESTER EXAMINATION: JANUARY 2021 (Academic Session: 2020 – 21)		
Name of the Program:	B. Tech.	Semester:	III
Paper Title :	Electrical Machines – I	Paper Code:	EEE42105
Maximum Marks :	40	Time duration:	3 hours
Total No of questions:	8	Total No of Pages:	2
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) Under what condition regulation of a transformer can be zero? Discuss.
 - **b)** What is the difference between a coil and a winding?
 - c) Discuss core loss in a transformer. What are the components of this core loss?
 - **d)** Discuss briefly the polarity test in a single phase transformer.
 - e) Discuss the advantages/disadvantages of a single unit three phase transformer and a three phase transformer bank.

GROUP-B

Answer *any three* of the following

 $3 \times 5 = 15$

- 2. (a) State Faraday's first law and second law.
 - (b) State Lenz's law.
 - (c) Interpret and explain Lenz's law with the support of an experiment.

(1+1+3=5)

- **3.** (a) Draw the equivalent circuit of a single phase transformer on no-load. Draw the related phasor diagram with proper labelling.
 - (b) A 230/110 V single phase transformer takes an input of 350 VA at no-load and rated voltage. The core loss is 110 W. Find (i) the iron loss component of no-load current, (ii) the magnetising component of no-load current and (iii) the power factor at no-load. (2 + 3 = 5)
- (a) Derive the expression for efficiency of a single phase transformer having a load fraction x4. and power factor cos θ. Consider the rated VA of the transformer to be S, rated iron loss P_i and rated copper loss P_c.
 - (b) Derive the condition for maximum efficiency of a single phase transformer at any load fraction x. (3 + 2 = 5)

5. Draw the circuit diagram of a Y- Δ connected three phase transformer and show that the power on both the primary side and the secondary side are equal and is expressed by $\sqrt{3}$ VI, where V and I are the line voltage and line current respectively. (5)

GROUP -C

Answer any two of the following

 $2 \times 10 = 20$

- **6.** (a) What are the conditions for parallel operation of two single phase transformers? Discuss why these conditions are very much necessary.
 - (b) Two single phase transformers A and B are operating in parallel and carry current I_A and I_B respectively while feeding a common load. Derive expressions for the currents I_A , I_B and the circulating current I_C considering slight imbalance. Also, find expressions for the VA loads shared by transformers if their equivalent impedances are Z_1 and Z_2 respectively. (All the symbols in bold face are phasors). (3 + 7 = 10)
- **7.** (a) What is open delta or V-V connection of a three phase transformer? Discuss with winding diagram.
 - (b) What are the advantages or disadvantages of such a connection?
 - (c) Show using relevant circuit diagram that if a Δ - Δ transformer is used for V-V operation, keeping the load unchanged, the overload on each of the the remaining two transformers is 73 per cent. (3+4+3=10)
- **8.** (a) Describe, with diagram, the operating principle of a DC generator.
 - (b) Describe, with diagram, the operating principle of a DC motor.
 - (c) Discuss the speed control of a DC shunt motor by controlling the field flux. (3 + 3 + 4 = 10)