

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 164 358 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.12.2001 Patentblatt 2001/51

(51) Int Cl.7: G01D 5/20

(21) Anmeldenummer: 00890192.8

(22) Anmeldetag: 16.06.2000

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SEBenannte Erstreckungsstaaten:
AL LT LV MK RO SI(71) Anmelder: AMO Automatisierung Messtechnik
Optik GmbH
5280 Braunau am Inn (AT)(72) Erfinder: Vasileiou, Victor, Dipl.-Ing.
5280 Braunau (AT)(74) Vertreter:
Patentanwälte BARGER, PISO & PARTNER
Mahlerstrasse 9 Postfach 96
1015 Wien (AT)

(54) Induktives Längenmesssystem

(57) Die Erfindung betrifft ein induktives Längenmesssystem, das durch die Abtastung von einem Maßstab mit einer Teilung von periodisch variabler Reluktanz und einem Spulenystem in einer linearen Anordnung Informationen betreffend die Position bzw. die Bewegung des Spulensystems bezüglich des Maßstabs erfassen kann.

Die Erfindung ist dadurch gekennzeichnet, daß die Spulenstruktur in Multilayer-Ausführung als Kombination von Spulen mit Konturen in Form quasigeschlossener Windungen besteht, mit mehreren Empfängerpaaren, wobei jedes Paar zwei differenziell geschaltete Empfängerelemente aufweist die für die Signalerzeugung für jeden der zumindest zwei Messkanäle zusammenge schaltet werden können, daß zumindest ein Emitterslement vorgesehen ist, das mit den Empfängerelementen in Abhängigkeit der relativen Lage in Messrichtung zur Maßverkörperung induktiv gekoppelt ist und so zumindest ein Ausgangssignal erzeugt, das in Offset und/oder Sinusform und/oder Amplitude kom pensiert ist.

Der Windungen besteht, mit mehreren Empfängerpaaren, wobei jedes Paar zwei differenziell geschaltete Empfängerelemente aufweist die für die Signalerzeugung für jeden der zumindest zwei Messkanäle zusammenge schaltet werden können, daß zumindest ein Emitterslement vorgesehen ist, das mit den Empfängerelementen in Abhängigkeit der relativen Lage in Messrichtung zur Maßverkörperung induktiv gekoppelt ist und so zumindest ein Ausgangssignal erzeugt, das in Offset und/oder Sinusform und/oder Amplitude kom pensiert ist.

FIG. 1

EP 1 164 358 A1

EP 1 164 358 A1

Beschreibung

[0001] Die Erfindung betrifft ein induktives Längenmesssystem, das durch die Abtastung von einem Maßstab mit einer Teilung von periodisch variabler Reluktanz und einem Spulen-System in einer linearen Anordnung Informationen 5 betreffend die Position bzw. die Bewegung des Spulensystems bezüglich des Maßstabs erfassen kann.

[0002] Ein derartiges Längenmesssystem ist aus der DE 19803249A1 bekannt.

[0003] Eine allgemeine Gegenüberstellung bekannter Messsysteme gibt folgendes Ergebnis:

[0004] Hauptmerkmale optoelektronischer Messsysteme:

hohe Genauigkeit für feine Teilungsperioden, extrem schmutzempfindlich, geringe Schock- Schwingungsbelastung

[0005] Hauptmerkmale magnetischer Messsysteme:

Mittlere Genauigkeit durch Teilungsgenauigkeit und Interpolationsfehler innerhalb der Teilungsperiode (Oberwellen- 10 Anteil und Signalabweichungen von einer Periode zu der anderen.); polarisierter Maßstab zieht magnetische Partikel an und kann durch äußere magnetische Störfelder gelöscht oder beschädigt werden.

[0006] Hauptmerkmale induktiver Messsysteme:

Viele Bauarten sind bekannt, allgemein eine sehr robuste Bauart, äußerst geringe Beeinflussung durch Temperatur, 15 basierend auf dem Transformatorprinzip, wobei die Übertragung zwischen Primär- und Sekundärspulen durch ein sich relativ zu den Spulen bewegendes Glied beeinflusst wird.

[0007] Einige konstruktive Beispiele für induktive Messsysteme:

Der Wandler vom Typ INDUCTOSYN (registrierte Marke) besteht aus zwei Elementen, Maßstab und Schlitten, beide 20 weisen in der Messfläche aktive primär- und sekundär- meanderförmige Planarwicklungen auf. Das Gerät hat eine hohe Genauigkeit, braucht aber durch sein Ablastprinzip eine große Kopplungsfläche zwischen den zwei Elementen. Es funktioniert in niedrigen Trägerfrequenzbereichen was die Verfahrgeschwindigkeit begrenzt und ist sehr aufwendig in der Konstruktion.

[0008] Induktive Taster sind zylinderförmige differentiale Transformatoren, bestehend aus einer Primärspule, gekoppelt mit zwei entgegen-geschalteten, konzentrisch gewickelten Sekundärspulen und einem Kern mit einer Marke unterschiedlicher Reluktanz. Das Gerät wandelt für einen definierten Messbereich, die relative Lage der Plunger-Kernspulen in ein annähernd lineares Ausgangssignal. Für kleine Messhübe können hohe Genauigkeiten erreicht werden, 25 das Gerät ist aber nicht geeignet für größere Messhübe und dynamische Anwendungen.

[0009] In der EP 0557608 B 1 wird eine Spiralspulenstruktur beschrieben, welche in Mehrlagen-Metall-Isolierschicht 30 auf einen weich- oder hartmagnetischen Träger in Dickschichttechnik aufgebaut ist. Ein Messgerät funktioniert auf dem Prinzip nur in Frequenzbereiche die nicht das Spulensubstrat in nichtlinearen magnetischen Bereichen bringt und durch die Phasenverschiebungserfassung in den nachgeschalteten Schwingkreis nicht für hohe Genauigkeiten geeignet.

[0010] Von selben Anmelder wird in der DE 19813497A1 das angewandte Messprinzip für eine Art "Induktives Potentiometer" beschrieben. In dem Fall wird die relativ grobe erreichbare Genauigkeit stark beeinflusst durch Klemmungen gegenüber Spulenebene.

[0011] In der EP 0805339A1 wird eine Messeinrichtung beschrieben, welche auf einem ähnlichen Funktionsprinzip, wie im vorherigen Beispiel dargestellt, funktioniert. Das Gerät verwendet eine planare mehrlagige Transformatorspule 40 in lehnanordnung für die Abtastung von einem verzahnten Messrad. Diese Anordnung besteht aus einer Primärspule in einer Ebene und zwei gegeneinander in Messrichtung versetzte Sekundärspulen. Die einzelnen Sekundärspulen bilden entweder zwei Messkanäle die durch den örtlichen Phasenversatz der Amplituden modulierte Signale die Richtungserkennung ermöglichen oder einen Messkanal wobei die Spulen differential geschaltet sind. In der ersten konstruktiven Ausführung (die ein nicht differentielle Anordnung zeigt), sind die erzeugten Signale, mit einem schwachen Modulationsgrad, von parasitären Einflüssen wie Temperatur, geometrischem Kippen der Spulen gegenüber dem 45 Messrad usw. stark beeinflusst, in der zweiten Ausführung ist die Bewegungsrichtungserkennung nur für hohe Geschwindigkeiten möglich (für langsame Punkt zu Punkt Positionierung tendiert die durch Geschwindigkeit induzierte Phasenverschiebung Richtung Null). Diese Druckschrift befasst sich nicht mit eventuellen Induktionswechselwirkungen von mehreren Spulen in einer und derselben Struktur. Das beschriebene Gerät, wie auch in den Beispielen der einfach digitalisierenden Auswertelektronik gezeigt, eignet sich nur für grobe Bewegungserfassung.

[0012] In der DE 19803249A1 (Fa. Mitutoyo) werden induktive, absolut arbeitende Positionswandler beschrieben. Dieses Gerät ist hauptsächlich für Schieblehren konzipiert. Für die absolute Wegerfassung werden mehrere parallel zueinander angeordnete Messspulen abgetastet. Die Messeinrichtung besteht aus einem metallstrukturierten Maßstab, eingebettet in dem Körper einer Schieblehre und einer prinzipiell differentiell arbeitenden Spulen- 50 Anordnung. In dem dazu genau geführten Schlitten untergebracht. Nur in Betrachtung der Inkrementalspur (feinste Meßspur) wird eine periodische Metallteilung von einem Spulenuntersystem abgetastet. Dieses planare System besteht hauptsächlich aus einer r Erregerspule und zwei Empfängerspulenkanälen die mit der Ersten induktiv gekoppelt sind und über die Messteilung bei einer relativen Bewegung die Position erfassen kann. Die zwei Empfängerspulenkanäle sind für die 55 Bewegungsrichtungserkennung zueinander phasenverschoben angeordnet (geometrisch zueinander versetzt).

EP 1 164 358 A1

[0013] Die Erregerspulenwindungen umgeben in der Strukturebene die Empfängerspulen die für jeden Kanal aus mehreren differentiell angeschlossenen Einzelwindungen bestehen. Das durch die Erregerspule erzeugte Magnetfeld hat keine gleichmäßige Verteilung über den ganzen inneren Spulenbereich, sondern ist wesentlich stärker in der Nähe seiner Windungen und nimmt in Richtung Spulenmitte ab. Durch diesen Effekt ist es geometrisch unmöglich zwei

5 differentielle, versetzte Spulen unter gleicher Feldform und Feldstärke innerhalb eines Emitterrahmens zu plazieren. Das bedeutet, daß für mindestens eine der zwei Messkanten die (vereinfacht dargestellt) als zwei gegeneinander geschaltete differentielle Empfängerspulen geschaltet sind, nicht symmetrisch zu dem Emitterrahmen angeordnet sind und durch unterschiedliche Magnetfeldstärken durchflossen sind. Dadurch ergibt sich im Falle einer relativen Bewe-
10 gung in Messrichtung zum Maßstab, nach Differenzbildung der induzierten Spannungen, daß das modulierte Nutzsi- gnal nicht um "Null" schwingt, sondern um einen Wert schwankt, der proportional zu der statischen Feldstärkendifferenz in den zwei Empfängerflächen ist. Dieser Wert, als Signaloffset bezeichnet, kann fast unmöglich in einer folgenden Auswerteelektronik komplett abgaglichen werden, da seine Amplitude zum Teil von Bewegungssekundäreffekte wie Abstand Spulen-Maßstab oder relative Kippungen beeinflußt wird und dadurch nicht konstant für einen ganzen Maßvorgang ist.

15 [0014] Der Verfasser dieser Patentschrift erkennt das Problem (Seite 10, Absatz 25), der konstruktive Vorschlag ist aber nicht wirksam, da die Plazierung der unsymmetrischen Empfängerwicklungspaare weiter weg von den Emitt-
10 erwicklungen in die Mitte der Emitterspulen, zwar diese in einem Bereich bringt wo das Erregerfeld und seine Gradienten schwächer sind aber damit verringert sich auch das induzierte Nutzsignal, so daß das Verhältnis Nutzsignal zum Si-
gnaloffset weiterhin ungünstig bleibt.

20 [0015] Es ist die Aufgabe der Erfindung, die Vorteile der optoelektronischen Längenmesseinrichtungen mit hohen Genauigkeiten und hohen erreichbaren Auflösungen im Bereich $\leq 1\mu\text{m}$ mit den Vorteilen der induktiven Einrichtungen, mit hoher Robustheit und Stabilität gegen Umweltinflüsse, zu vereinen.

25 [0016] Die weiters beschriebene Messeinrichtung eignet sich besonders durch die hohe Genauigkeit in μm Bereich und die hohe erreichbare Systemdynamik für Prozesssteuerungen in denen Maschinenelemente genau positioniert werden müssen.

30 [0017] Zu den vorherigen Vorteilen ist besonders der hohe Miniaturisierungsgrad und die günstigen Kosten der Her-
stellungstechnologie für Abtastsensork und die Maßverkörperung zu erwähnen.

35 [0018] Gemäß der Erfindung besteht das Gerät grundsätzlich aus drei Elementen (Fig. 1) und zwar Maßverkörperung (1), eine inaktive Skala mit periodischer Teilung in Längsrichtung, kompensierte Spulenstruktur (2) die induktive zu-
30 sammengekoppelte Emitter und Empfängerspulen beinhaltet und eine zu dieser Struktur angeschlossene Auswerteelektronik (3) die einerseits die Emitterspulen versorgt und andererseits die von der Struktur erzeugte Meßsignale auswertet.

40 [0019] Die Maßverkörperung ist fest verbunden mit einem ersten Maschinenteil und die Spulenstruktur zusammen mit der Auswerteelektronik (Abtasteinheit genannt) mit einem zweiten.

45 [0020] Bei der relativen Bewegung zwischen den zwei Maschinenteilen in Längsrichtung (X) wird das Emittfeld in der Empfängerebene durch die abwechselnd unterschiedliche Bereiche der Meßteilung in der Maßverkörperung mo-
duliert und von den Empfängerspulen erfasst und als Meßinformation an der Auswerteelektronik weitergeleitet.

50 [0021] Das Meßsystem kann grundsätzlich auf zwei Funktionsprinzipien beruhend betrieben werden, die sich durch geometrische Verhältnisse, konstruktive Einzelheiten und Erregerfrequenz unterscheiden. Das erste Funktionsprinzip basiert auf der Abtastung einer Skala mit periodisch abwechselnden Bereichen von unterschiedlicher elektrische Leit-
fähigkeit (Fig. 2a und 2b). Durch die Dimensionierung des Systems, die von den Emitterspulen in den leitfähigeren Bereichen des Maßstabes induzierten Wirbelströme und dadurch erzeugten elektromagnetischen Feldern wirken gegen das Emittfeld, sodaß in der Empfängerspulenebene in diesen Bereichen eine Abschwächung des gesamten Feldes entsteht. Diese periodische, lagenabhängige Feldstruktur wird von den Empfängerspulen erfasst und von der

55 Folgeelektronik weiterverarbeitet.
[0022] Das zweite Funktionsprinzip basiert auf der Abtastung einer Skala aus weichmagnetischem Stoff wobei durch eine periodischer Strukturierung der Maßverkörperung Bereiche von unterschiedlicher Reluktanz entstehen (Fig. 2c). Die Bereiche mit geringen Reluktanzen (Materialstege, Zähne) wirken für das von den Emitterspulen erzeugte Feld als Konzentratoren und bei einer relativen Bewegung der Maßverkörperung zu der Abtasteinheit in Längsrichtung wird dieses periodische Feldprofil von den Empfängerspulen erfasst.

60 [0023] Je nach Funktionsprinzip und Herstellungsmöglichkeiten kann die Maßverkörperung (Fig. 1.1 und Fig. 2) durch eine der folgenden Methoden realisiert werden:

65 [0024] Dünn- oder Dickschichttechnik: Strukturierung der Teilung in einer Metallschicht auf ein Isoliersubstrat (Fig. 2a und 2b); Strukturierung einer Metallfolie durch Ätzen oder Stanzen (Fig. 2c); Zusammenbauen einer strukturierten Folie (Fig. 2c) auf ein Metallträgerband (Fig. 2d); Montage einer strukturierten Folie auf ein massiven Träger oder
70 Maschinenteil Herstellung einer Teilung direkt in einem massiven Träger oder Metallfolie durch Ätzen oder mechanische Bearbeitung.

75 [0025] Die Sensorstruktur (Fig. 1.2 und Fig. 3) bestehend aus einer mehrlagigen (Metall-Isolierschicht-Kombination

EP 1 164 358 A1

mit durchkontakteerten Anschlüssen) Spiralspulenanordnung die auf ein Substrat (34) aufgebracht wird, wird hauptsächlich die Emitterspule (31) mit einer Wechselspannung versorgt.

5

$$V_R = U_0 \sin \omega t \quad (1.1)$$

[0026] Diese Erregerspannung muß nicht unbedingt sinusförmig sein, sondern je nach den konstruktiven Daten kann Rechteck, Dreieck oder dergleichen ausgeführt werden, was nicht die weiteren Betrachtungen beeinflußt.

10 [0027] Das Empfängerspulensystem, vereinfacht in Fig. 3 dargestellt, weist zwei geometrisch phasenverschobene (φ) Empfängerspulenpaare auf (32 und 33), wobei jedes der zwei Empfängerspulenpaare aus zwei differential geschalteten gegenphasigen ($\lambda/2$) Spulenelementen mit gleichen Form und Windungszahlen (331, 332 und 321, 322) besteht.

[0028] Abhängig von der relativen Lage in Messrichtung X zwischen Sensorstruktur und Maßverkörperung werden in den Empfängerspulen folgende Idealspannungen induziert. (siehe Diagramm Fig. 5)

15

$$V_{331} = K_{10} U_0 \sin \omega t + K_{11} U_0 \sin (2\pi x/\lambda) \sin \omega t \quad (1.2)$$

20

$$V_{332} = K_{20} U_0 \sin \omega t + K_{21} U_0 \sin (2\pi x/\lambda + \pi) \sin \omega t \quad (1.3)$$

und

25

$$V_{321} = K_{10} U_0 \sin \omega t + K_{11} U_0 \sin (2\pi x/\lambda + \varphi) \sin \omega t \quad (1.4)$$

$$V_{322} = K_{20} U_0 \sin \omega t + K_{21} U_0 \sin (2\pi x/\lambda + \varphi + \pi) \sin \omega t \quad (1.5)$$

30

wobei: λ = Teilungsperiode, äquivalent zu elektrischen Winkel 2π
 $K_{10}, K_{11}, K_{20}, K_{21}$ → transformatorähnliche Übertragungsfaktoren
 φ Phasenversatz örtlich ist.

[0029] In der vereinfachten Annahme:

35

$K_{10} = K_{20}$ und $K_{11} \approx K_{21}$, wird die Spannung in den beiden Empfängerspulenpaaren:

$$V_0 s = V_{331} - V_{332} = 2 K_{11} U_0 \sin (2\pi x/\lambda) \sin \omega t \quad (1.6)$$

40 und

$$V_0 c = V_{321} - V_{322} = 2 K_{11} U_0 \sin (2\pi x/\lambda + \varphi) \sin \omega t \quad (1.7)$$

45

[0030] Da meistens $\varphi = 2K\pi + \pi/2$ (entsprechend $n\lambda + \lambda/4$ geometrischer Versatz) und mit der Konvention

$$2\pi x/\lambda = \alpha$$

50

$$2 K_{11} U_0 = K$$

werden die zwei idealen Ausgangsspannungen in folgender Form dargestellt:

55

$$V_0 s \approx K \sin \alpha \sin \omega t \quad (1.8)$$

EP 1 164 358 A1

$$V_0c = K \cos \alpha \sin \omega t \quad (1.9)$$

(wie im Diagram Fig. 6a)

- 5 [0031] Aus diesen zwei Signalen kann durch die Auswertelektronik (Fig. 1.3) nach Konditionieren, Demodulieren (Fig. 6b) und eventuell Rechteckumwandeln im ratiometrischen Verfahren mit verfeinerter Auflösung (Interpolation) die genaue Lageinformation ausgegeben werden. Aus diesem Grund entsteht die Notwendigkeit, daß die Sensorstruktur zwei, durch in der Meßrichtung mit Versatz plazierten zwei Empfängergruppen, phasenvorschobene Signale erzeugen muß.
- 10 [0032] Eine solche Spulenstruktur, in Verbindung mit der Maßverkörperung, kann auch in verwandter umgekehrter Weise betrieben werden indem die "Empfängerspulen" gespeist werden und das in den "Emitterspulen" induzierte Signal ausgewertet wird. In dieser Betriebsart können wiederum zwei Varianten erwähnt werden. In einer ersten Variante werden die "Sinus- und Cosinus- Empfänger" mit einem in Phase und Amplitude gleichen Signal versorgt und im "Emitterspulensystem" wird ein lageabhängiges in Amplitude moduliertes Signal induziert, oder in der zweiten Variante werden die "Sinus- und Cosinus- Empfänger" mit zwei in Amplituden gleichen und in Phase um 90° verschobenen Signalen versorgt und im "Emitterspulensystem" ein lageabhängiges in Phase moduliertes Signal erzeugt.
- 15 [0033] Alle weitere Bestimmungen gelten für alle Betriebsarten und Funktionsprinzipien und sind nur in Dimensionierung des Gerätes abhängig von den verschiedenen Ausführungen. In diesem Sinne wird weiter nur die zuerst beschriebene Ausführung als Beispiel verfolgt.
- 20 [0034] Prinzipiell sind die Auswerteverfahren im Ermessen eines Fachmannes und können von diesem in Kenntnis der Erfindung leicht adaptiert und an die jeweils vorliegenden Verhältnisse angepaßt werden. Aus dem Grund werden sie hier nicht eingehend erläutert, sondern es werden nur zusätzliche Sonderfunktionen einer Auswertelektronik behandelt.
- 25 [0035] Die Hauptaufgabe der Erfindung ist die Bestimmung von Sensorstrukturen die mit extrem geringeren Abweichungen zu den idealen Signalen (Gleichungen 1.8 und 1.9) Messinformationen liefern und weitgehend unabhängig von Umwelteinflüssen und Abstandsschwankungen (d) In technisch akzeptablen Toleranzen sind.
- 30 [0036] Es werden im folgenden einige mögliche Spulenanordnungen innerhalb der Sensorstrukturen analysiert, woraus ersichtlich wird, daß nur eine durch bestimmte Maßnahmen eigenkompensierte Struktur in der Lage ist, hohe Meßgenauigkeiten zu erreichen. Diese Kompensationsvarianten werden anschließend erläutert.
- [0037] Zur vereinfachten Darstellung werden folgende Benennungen verwendet:

E, EI - Emitterspule

B, BI - Induktion

S+ - Sinusspulenelement 0° elektrisch

95 S- - Sinusspulenelement 180° elektrisch (entspricht λ/2 geometrischer Versatz)

C+ - Cosinusspulenelement 0° elektrisch

C- - Cosinusspulenelement 180° elektrisch

- 40 [0038] Allgemein wird für die weitere Betrachtung angenommen, daß ein Spulensystem als mehrlagiger ebener Aufbau aus einer Emitterspule (Einzelemittersystem) oder mehreren (Multiemittersystem) und zwei Empfängerkanälen besteht, wobei letztere mit ersteren induktiv gekoppelt sind, um π/2 (λ/4 geometrisch) verschobene elektrische Signale zu liefern.
- 45 [0039] Ein Empfängerkanal besteht aus mindestens einer Gruppe von zwei Spulenlementen, die um π elektrisch (λ/2 geometrisch) verschoben und differenziell zusammengeschaltet sind, allerdings für eine gleichzeitige Abtastung von mehreren Maßstabsperioden, so daß zur Unterdrückung der einzelnen TELLUNGSABWEICHUNGEN DURCH EINE MITTELWERT-BILDUNG UND FÜR EINEN HÖHEREN SIGNALGEWINN IN DER REGEL AUS MEHREREN UM EINE GANZZAHLLIGE PERIODE "nλ" PLAZIERTE UND IN SERIE GEschALTETEN GRUPPEN GEBILDET WIRD. Weiter wird es oft für die vereinfachte Beschreibung ein Empfängerkanal nur mit einer einzigen Spulengruppe dargestellt.
- 50 [0040] In Fig. 4 wird eine Einzelemitter-Grundstruktur erläutert, wobei die Gesamtwirkungen einer Spule als Einzelleiterbahn gezeichnet wurden. Für die Versorgung der Emitterspule mit einer Primär Wechselspannung (Gleichung 1.1) entsteht ein elektromagnetisches Feld dessen Intensitätsverlauf in der Empfängerebene (S+, S-, C+, C-) im Diagramm dargestellt wird. Es ist offensichtlich, daß durch den Feldgradienten keine konstante Intensität realisierbar ist und das Feld stärker in der Nähe des Emitter-Leiterbahnbereiches ist und in Richtung Emitterspulenmitte deutlich abnimmt.
- 55 [0041] In der Annahme, daß die Empfänger der Sinus- bzw. Cosinusgruppe wie in Fig. 4 positioniert sind und alle Empfängerspulenelemente die gleiche Windungszahl aufweisen, ergibt sich durch Ihren geometrischen Versatz im Emittersfeld in jeder Einzelspulenelementechse die Induktion:

EP 1 164 358 A1

Bs+ ≠ Bs-, Bc+ ≠ Bc-

- 5 die zu unterschiedlichen "Sekundärspannungen" führt. Bei einer relativen Bewegung in Meßrichtung der Spulenstruktur zu der Maßverkörperung werden diese Signale moduliert. Die Differenzbildung der induzierten Spannungen in den Spulenelementen S+, S- und C+, C- soll den unmodulierten Signalanteil (Gleichung 1.2 und 1.3) wie in den Gleichungen 1.6 und 1.7 komplett abheben.
- 10 [0042] Solangs aber funktionsbedingt die Spulen zueinander in der Empfängerebene versetzt werden müssen, liefert eine derartige Spulenanordnung offsetbehaftete Signale wie in Fig. 7 dargestellt, da $K_{10} \neq K_{20}$. In diesem Bild wird der Offset des Sinuskanals mit ΔOs und der des Cosinuskanals mit ΔOc bezeichnet, und stellt eine Abweichung zu den idealen Signalen dar. Da durch Abstandsänderungen (Maß "d" in Fig. 3) zwischen Abtasteinheit und Maßverkörperung mit denen im Betrieb eines solchen Systems, innerhalb gewisser Toleranzen, zu rechnen ist, auch die Primärfeldverteilung beeinflußt wird, bleibt die Induktionsdifferenz $(Bs+ - Bs-)$ und $(Bc+ - Bc-)$ nicht konstant. Damit werden die Werte ΔOs und ΔOc variabel sein.
- 15 [0043] Diese abstandsbedingten Offsetänderungen führen zu der Unmöglichkeit, diese in der Auswerteelektronik abgleichen zu können, wodurch es zu verhältnismäßigen Meßsystemgenauigkeiten kommt.
- [0044] In Fig. 8 wird auch eine Einzelemittergrundstruktur dargestellt, wobei die Wicklungen der Emitterspule die ganze Sensorabtastfläche decken (Fig. 8a) und die Empfänger sich parallel zu dieser Ebene befinden. Auch in dieser Ausführung ist die Feldverteilung nicht gleichmäßig in der Empfängerebene (Diagramm Fig. 8c). Eine mögliche symmetrische Plazierung der z.B. s. Sinuselemente S+, S- zu der Emittergeometrie (Maß "m" Fig. 8b) führt zu gleichen Induktionen in deren Ebenen $Bs+ = Bs-$ und zu einem Offset $\Delta Os = 0$.
- 20 [0045] Damit wird das Problem aber nicht gelöst, da die Cosinusspulen funktionsbedingt zu den Sinusspulen versetzt positioniert werden müssen und dadurch nicht mehr symmetrisch zum Emitter $Bc+ \neq Bc-$ sind, was zu einem Offset $\Delta Oc \neq 0$ führt.
- 25 [0046] In einem weiteren Beispiel kommt eine Multiemitterstruktur in Betracht wie in Fig. 9 symbolisch dargestellt. In dieser Ausführung ist jeder Empfängerkanal von eigenen Emitterspulen angeregt. Das ganze Prinzip gilt genauso wenn ein Empfängerkanal aus mehreren Spulengruppen bestehen würde und jede Gruppe mit ihren zwei differziellen Spulenelementen von eigenen Emittoren angeregt würde oder noch erweitert jedes Einzelement mit seinem eigenen Emitter gekoppelt würde.
- 30 [0047] In dieser Anordnung, wenn nur einer der zwei Emittoren E1 oder E2 gespeist werden, würde der entsprechende Empfängerkanal durch die Symmetrie und gleiche Windungszahl ein offsetfreies Signal erzeugen. Wenn aber funktionsbedingt beide Emittoren aktiv sind durch die Wechselwirkungen in beiden möglichen Induktionsrichtungen (gleiche Richtung Flg. 9c, Gegenrichtung Fig. 9d) entstehen unterschiedliche Induktionen in den Elementarspulenebenen $Bs+ \neq Bs-$ und $Bc+ \neq Bc-$ und dadurch offsetbehaftete Signale. Es ist auch ersichtlich, daß jede andere Kombination auch für gemischte Spulenelemente von zwei Kanälen auf ein Emitter zu keiner Lösung führen.
- 35 [0048] Ein erweiterte Mutlemitterstruktur in einer vier-Emitterausführung ist in Fig. 10 dargestellt. Auch hier für gleiche Induktionsrichtungen (Fig. 10a) und für gegen Induktionsrichtungen (Fig. 10b) führen die Einflüsse der beiden Endemitter in der ganzen Sensorstruktur zu einer ungleichmäßigen Feldintensitätsverteilung. Dieses gilt auch für Multiemitterstrukturen mit einer großen Anzahl von Emittoren.
- 40 [0049] Aus allen bisherigen Ausführungsvarianten die analysiert wurden, zieht man die Schlußfolgerung, daß nur eine durch konstruktive Maßnahmen in sich kompensierte Sensorstruktur in Verbindung mit der Maßverkörperung und Auswerteelektronik zu ausgeglichenen Ausgangssignalen führen kann (Fig. 5). Um die Bedeutung einer Kompensation zu unterstreichen, soll erwähnt werden, daß das modulierte Nutzsignal eines Spulenelements (Gleichung 1.2) im Bereich eines Faktors ~10 bis 100 kleiner ($K_{11} << K_{10}$) ist als das Trägersignal und daß die Differenzbildung mit dem gesparten Element das Trägersignal sehr genau auf Nulloffset drücken muss.
- 45 [0050] Diese Kompensationsmaßnahmen betreffen die Geometrien, die Windungszahl und die Form und die relativiven Lagen der Emitter- und Receiverspulen innerhalb der Struktur. Damit wird erreicht, daß, obwohl die einzelnen Spulenelemente mit unterschiedlichen Feldstärken angeregt werden, nach der Differenz und Summenbildung des Gesamtsignals durch zusammengeschaltete Elemente pro Messkanal ein offsetfreies Signal erzeugt wird.
- 50 [0051] Weiter werden einige Beispiele für Kompensationsmethoden erläutert. In Fig. 11 ist eine Einzelemitterstruktur mit mehreren Empfängerelementen für die Bildung der zwei Messkanälen SINUS und COSINUS dargestellt. Durch die Zusammenschaltung der einzelnen Spulen elementen werden die zwei Maßsignale folgendermaßen gewonnen:

$$\begin{aligned} Vos &= (S_{1+} - S_{1-}) + (S_{2+} - S_{2-}) + \dots \\ &\quad \dots + (S_{i+} - S_{i-}) + \dots + (S_{n+} - S_{n-}) \end{aligned}$$

55

EP 1 164 358 A1

und

$$V_{oc} = (C_{1+} - C_{1-}) + (C_{2+} - C_{2-}) + \dots$$

$$\dots + (C_{l+} - C_{l-}) + \dots + (C_{n+} - C_{n-})$$

[0052] Wie bereits erklärt, ist das Erregerfeld in der Empfängerebene nicht gleich stark. Um dieser Ungleichmäßigkeit entgegen zu wirken, können, wie in Fig. 12 dargestellt, die einzelnen Spulenelemente (In dem Fall Si+ und Si-) unterschiedliche Windungsanzahl aufweisen $n_+ \neq n_-$. Das Verhältnis n_+ / n_- ist umgekehrt proportional zu dem für diese Spulenelemente entsprechenden Induktionsverhältnis B_{i+}/B_{i-} , sodaß für diese beiden Spulen, in Abwesenheit der Maßverkörperung, die ja lagebedingt diese Ströme beeinflußt, gleiche Spannungen (im Betrag) induziert werden..

[0053] In der Spulenstruktur kann rechnerisch bis zu einem beliebigen Genauigkeitsgrad diese Methode für die Spulenlementenpaare S_{1+}, S_{1-} und C_{1+}, C_{1-} bis zu C_{n+}, C_{n-} eingesetzt werden, wobei sich durch Symmetrie $n_+/n_- = n_{l+}/n_{l-}$ für das erste und letzte Paar ergibt, und sich dies analog bis zur Emittersymmetriachse fortsetzt. Offensichtlich ist die Differenz $\Delta I > \Delta i$ mit $\Delta I = I_{n+} - I_{n-}$ und $\Delta i = I_{l+} - I_{l-}$ und nimmt Richtung Strukturachse von beiden Seiten kontinuierlich ab.

[0054] Eine äquivalente Kompensationsmethode für die in Fig. 11 dargestellte Einzelmutterstruktur ist die Anpassung der Empfängerspulenfläche (Fig. 13a) umgekehrt proportional zur Erregerfeldstärke, so daß für unterschiedliche $B_{i+} \neq B_{i-}$ durch unterschiedliche Empfangsflächen $A_{i+} \neq A_{i-}$ gleiche Magnetfeldflüsse für die zwei differenziellen Elemente eines Spulenpaars erreicht werden. Eine Änderung der Spulenabmessung "1" senkrecht zu Meßrichtung beeinflusst das in dieser Spule induzierte Signal nur quantitativ und macht diese erwähnte Anpassung möglich. Eine noch feinere Flussanpassung kann auch nur durch die geometrische Änderung einer oder einiger Windungen einer Spule erreicht werden (siehe Fig. 13b).

[0055] Eine dritte Kompensationsmethode einer Einzelmutterstruktur ist in Fig. 14 dargestellt. Da handelt es sich um zusätzliche Empfängerelemente wie ksin und kcos, plaziert außerhalb (Fig. 14a) oder innerhalb (Fig. 14b) der Emittersfläche in Meßrichtung, die durch die in ihnen induzierten Signale den entsprechenden inneren Empfängerelementen entgegenwirken, sodaß die Zusammenschaltung pro Kanal zu einem ausgeglichenen, offsetfreien Signal führt. Dabei können alle bisher beschriebenen Kompensationsmethoden wie Anpassung der Windungsanzahl und Empfängerfläche eingesetzt werden.

[0056] Wie man in der Darstellung (14a) beobachten kann, sind die Kompensationsspulen ksin und kcos um 180° elektrisch versetzt, da die Induktionsrichtung außerhalb der Emitterspule als Vektor auch entgegenwirkt.

[0057] In der Fig. 15 ist eine Multimutterstruktur dargestellt. Durch die Verkettung der einzelnen Emittfelder entsteht, wie bereits erwähnt, eine ungleiche Gesamtfeldverteilung. Eine erste hier vorgestellte Kompensationsmethode sieht zusätzliche Kompensationssmitter EK1 und EK2 gekoppelt mit den Kompensationsempfänger (C_{K+}, C_{K-} und S_{K+}, S_{K-}) vor. Diese können sich von den anderen analogen Emittern und Empfängern durch ihre Fläche und (oder) Windungszahl eventuell auch Windungsrichtung unterscheiden. Diese Unterschiede führen dazu, daß in der Gesamtstruktur, mit zusammengeschalteten Elementen, durch die Entgegenwirkung dieser Kompensationssignale ihre Abweichungen unterdrückt werden.

[0058] In zwei vereinfachter Form weiter dargestellten Varianten dieser Anordnung werden als Kompensationselemente entweder nur zusätzliche Emitt (Fig. 16) oder zusätzliche Empfänger (Fig. 17) verwendet. In einer ähnlichen Weise wie oben beschrieben werden die ohne diese Kompensationselemente vorhandenen Signaloffsetwerte kompensiert.

[0059] In den Fig. 18 (axonometrische Darstellung) und Fig. 19 (Strukturquerschnitt und Induktionsberechnungen) wird eine andere Kompensationsmethode dargestellt, die für beide Einzelmutterstrukturen und Multimutterstrukturen eingesetzt werden kann. In dieser Ausführung hat die Struktur in einer zu den anderen Spulenlementen parallel zu deren Ebenen angeordnete Kompensationsspulen KS und KC. Durch die entsprechende Versorgung, Geometrie und Lage dieser Kompensationsspulen können zusätzliche Induktionen ($\bar{B}_{ks+}, \bar{B}_{ks-}$ und $\bar{B}_{kc+}, \bar{B}_{kc-}$) in der Empfängerebene erzeugt werden, die entgegen der Abweichungen der Standardemitter $\Delta s = (\bar{B}_{s+} - \bar{B}_{s-})$ und $\Delta c = (\bar{B}_{c+} - \bar{B}_{c-})$ wirken und nach der Überlagerung deren Effekte zu einem gleichmäßigen totalen Erregerfeld führen: $(\bar{B}_{Ts+}) = (\bar{B}_{Ts-})$ und $(\bar{B}_{Tc+}) = (\bar{B}_{Tc-})$. Dabei gilt: $(\bar{B}_{s+}) + (\bar{B}_{ks+}) = (\bar{B}_{s-}) + (\bar{B}_{ks-}) = (\bar{B}_{Ts+}) = (\bar{B}_{Ts-})$ und $(\bar{B}_{c+}) + (\bar{B}_{kc+}) = (\bar{B}_{c-}) + (\bar{B}_{kc-}) = (\bar{B}_{Tc+}) = (\bar{B}_{Tc-})$

(siehe Vektordiagramm 19a und 19b)

[0060] In Fig. 19a wird die Ausführung zweier Emitt gleicher Induktionsrichtung und in Fig. 19b zweier Emitt mit gegeneinander gerichteter Induktionsrichtung dargestellt. In beiden Fällen werden zuerst die Standard-Emitterinduktionen B mit ihren Lageabweichungen, dann die Kompensationssinduktionen Bk und die gesamtkompensierte Induktion

EP 1 164 358 A1

B_T dargestellt.

[0061] Für all diese bisher beschriebene Strukturen wurden Lösungen für die Signaloffsetunterdrückung vorgestellt.

[0062] Die erzeugten Signale müssen aber für ein hochauflösendes Messsystem auch eine gute "Sinusförmigkeit" aufweisen, das bedeutet daß die lageabhängigen Oberwellen (auch Klirrfaktor genannt) auf ein Minimum reduziert werden müssen. Man kann theoretisch berechnen, daß für die bisherigen Idealstrukturen die induzierten Signale je nach Betriebsart und Geometrien, überlagert auf die örtliche Hauptsinusschwüngung in unterschiedlichen Anteilen mit geraden und ungeraden Oberwellen behaftet sind.

[0063] Diese Oberwellen könnten, falls sie im konstanten Verhältnis zur Hauptwelle stehen, durch aufwendige elektronische Auswertung unterdrückt werden (wie z.B. eine punktuelle "Look-up table" Korrektur). Da aber dieses Verhältnis vom Abstand "d" (Fig.3) abhängt, lassen sie sich kaum für den gesamten Funktionsbereich eliminieren, was jedoch für hohe Genauigkeiten notwendig ist. Daraus ergibt man, daß auch oberwellenmäßig nur eine in sich kompensierte Struktur zu den gewünschten Anforderungen führen kann.

[0064] Es läßt sich berechnen, daß die Messsystemübertragungsfunktion durch bestimmte geometrische Maßnahmen beeinflusst werden kann. Diese Maßnahmen werden weiter als Korrekturen zu einer theoretisch idealen Struktur erläutert. Für eine solche korrigierte Struktur kann gezielt jede störende Oberwellenordnung mit einer der im folgenden näher erläuterten Maßnahmen unterdrückt werden. Grundsätzlich können zur Unterdrückung mehrerer Oberwellenordnungen durch Überlagerung der Effekte mehrere Korrekturmaßnahmen für die selbe Struktur eingesetzt werden.

[0065] Eine erste vorgestellte Korrekturmethode betrifft die Emitterspulengeometrie. Von einem Emitter, wie er in Fig. 20a dargestellt ist, mit Idealmaß durch den Additions -oder Subtraktionswert "k" in der Emitterbreite in Messrichtung, kann, um eine bestimmte Oberwellenordnung zu unterdrücken, die induzierte Signalform in den Empfängern S+ und S- beeinflusst werden. Ebenso kann durch die Verteilung der einzelnen Wicklungen in der Emitterebene in Abweichung von der regelmäßigen Distribution (Fig.21a), so, wie in Fig. 21b und 22c dargestellt, Signaleinflüsse erzielt werden.

[0066] Eine zweite Korrekturmethode betrifft die Empfängergeometrie und die Empfängerlage in Messrichtung. In Fig.22a wird die Ideal - Empfängerebene vereinfacht für einen einzelnen Messkanal (Sinus), bestehend aus mehreren Empfängergruppen mit Bemaßung dargestellt. Durch eine Korrektur "k" geänderte Spulenelementbreite (Fig.22b) oder Spulenelementen - Abstand in einer Empfänger - Differentialgruppe (Fig.22c) oder durch die Abstände der Empfängergruppen in der Empfängerreihe (Fig.22d), sowie durch die Einzelwicklungsverteilung eines Empfängerspulenelements (Fig.21b) können verschiedene Oberwellen unterdrückt werden.

[0067] Eine dritte Korrekturmethode betrifft die Maßverkörperung. Das Verhältnis zwischen den Bereichen mit höherer elektrischer Leitfähigkeit oder geringerer Reluktanz (Maß "a" in Fig. 3) und den Bereichen mit niedrigerer Leitfähigkeit oder höherer Reluktanz (Maß "b" in Fig. 3) im Rahmen einer Teilungsperiode λ , kann auch die Signalform beeinflussen. Für einen bestimmten Korrekturwert "k" (Fig.23b) kann eine bestimmte Oberwellenordnung durch den Maßstab eliminiert werden. Die Unterdrückung einer Oberwellenordnung kann in der Maßverkörperung durchgeführt werden, indem die Grenzbereiche w.o. beschrieben im Rahmen der Teilungsperiode einen bestimmten Winkel $\alpha \neq 90^\circ$ zur Messrichtung aufweisen (Fig.23c).

[0068] Die Ermittlung aller dieser Oberwellenkorrekturwerte für ein definiertes Messsystem mit seiner bestimmten Übertragungsfunktion nach der Festlegung der Funktionsart und der idealen Geometrie, Spulenstruktur, Maßstab und Genauigkeitsanforderungen liegt in Kenntnis der Erfindung im Ermessen eines Fachmannes.

[0069] Ein zusätzlicher Aspekt in Betrachtung des Messsystems ist die Abhängigkeit der Signalamplituden mit dem Abstand "d" der Spulenstruktur zum Maßstab (Fig.3). Obwohl, wie bereits erwähnt, die Auswertelektronik ein ratiometrisches Verfahren für die Ermittlung des elektrischen Winkels α verwendet, sodaß die Signalamplituden der zwei Meßkanälen weitgehend nicht direkt im Ergebnis zu finden sind, sondern nur ihr Verhältnis, können für die Erweiterung des Funktionsbereiches durch eine weiter unten beschriebene Methode diese Amplituden annähernd konstant gehalten werden.

[0070] In Fig.24 ist ein Blockdiagramm dargestellt, mit dem die Messsignale V_{os} und V_{oc} durch Operationsverstärker in der Eingangsstufe der Auswertelektronik mit variablen Verstärkungsfaktoren bearbeitet werden. Der Verstärkungsfaktor wird bestimmt von dem U_{komp} -Signal nach Konditionierung und ist proportional zu dem Abstand zwischen Maßverkörperung und Spulenstruktur. Das U_{komp} -Signal wird gewonnen von einer zusätzlichen Spule A_{komp} (Fig. 25, Fig.26) die sich in einer Parallelebene zur Emitterspule in der Gesamtspulenstruktur befindet und durch ihre Geometrie ein abstandsabhängiges Signal liefert (Maß der magnetischen Kopplung zwischen Emitter E und A_{komp}), das exponentiell vom Abstand "d" beeinflusst wird. Die Spule A_{komp} ist so gestaltet, daß ihr induziertes Signal U_{komp} nicht durch Bewegung in Messrichtung moduliert wird (z.B. eine Breite von $\sim n\lambda$ wie in Fig.25). Da das U_{komp} -Signal so wie V_{os} und V_{oc} mit größerem Abstand "d" abnehmen, jedoch der Verstärkungsfaktor größer sein muss, soll dieses Signal vor dem Anschluß an den VGA's entsprechend konditioniert werden.

[0071] Alle bisher erwähnten Kompensations - und Korrekturmethoden wurden aus Gründen der Vereinfachung nur für eine Spulenebene dargestellt und einheitlich als "Spule" bezeichnet. Diese gelten aber in analog auch dann, wenn eine Spule aus mehreren übereinander positionierten und zusammengeschalteten Spulenschichten besteht.

[0072] In der konstruktiven Umsetzung für die Herstellung einer mehrlagigen Spulenstruktur können durch die Über-

EP 1 164 358 A1

einanderplazierung der einzelnen Spulenebenen, je nach Betriebsfrequenzen und Impedanzen zusätzlich zu den magnetischen Kopplungen unerwünschte kapazitive Kopplungen entstehen. Um diese zu vermeiden und auch die gesamte Struktur von äusseren Einflüssen abzuschirmen, können zwischen den aktiven Spulenebenen und/oder ausserhalb großflächige metallische Dünnschichtebenen (Fig.27/S1 und S2) vorgesehen werden. Durch deren Anschluss

5 an ein festes Potential wird die Struktur kapazitiv entkoppelt.

[0073] Als konstruktives Beispiel sei folgendes besprochen:

[0074] Anhand einer elementaren Spule, wie in Fig. 28 dargestellt, wird im folgenden eine konstruktive Ausführung als Beispiel für die komplette Spulenstruktur, wie sie in Fig. 29 dargestellt ist, beschrieben, wobei nur einige der bisher erläuterten Kompensationsmethoden eingesetzt werden. Je nach Systemdimensionierung und Anforderungen können 10 beliebig andere von den für jeden Signalparameter angegebene Korrekturprinzipien in einem gemeinsamen gebildeten Konzept angewandt werden.

[0075] Für die weitere Betrachtung wird angenommen, dass die Spulenstruktur aus abwechselnden Metall (MET) und Isolationschichten (ISO) besteht. Die Isolationsschichten weisen Durchkontaktierungen (Vias) auf, die die elektrischen Zwischenschichtanschlüsse realisieren. Diese gesamte Multilayeranordnung wird auf ein, aus technologischer 15 Sicht bestimmtes Substrat aufgebaut und über entsprechende Kontakte mit der Versorgungseinheit und der Auswerteelektronik verbunden. Eine derartige Multilayeranordnung kann durch bekannte Technologien ähnlich wie bei gedruckten Schaltungen oder in photolithographischer Dünnschichttechnik realisiert werden.

[0076] Das Spulenelement in Fig. 28 kann, wenn funktionell notwendig, in ähnlicher Weise auch in mehr als zwei Metallebenen gebildet werden. Die Maßverkörperung besteht aus einer Metallfolie, entweder aus Eisen oder Eisenlegierung, magnetisch oder weichmagnetisch oder aus Nichteisenlegierung mit angeätzter periodischer Struktur (Teilung) oder, was wegen der erreichbaren höheren Tellungsgenauigkeit bevorzugt wird, aus einer doppelseitig in Koinzidenz photolithographisch geätzten Folie, die auf einen metallischen oder nichtmetallischen Untergrund aufgebracht wird.

[0077] Die in Fig. 29 dargestellte Multi-Emitterspulenstruktur mit den angegebenen geometrischen Verhältnissen 25 besteht im konkreten Fall (ohne die Praxis darauf zu beschränken) aus sechs Emittoren (E_1 bis E_6) überlagert auf jeweils drei "Sinus" und "Cosinus" Empfängergruppen (S_1 , S_2 , S_3 und C_1 , C_2 , C_3) mit denen diese dadurch induktiv gekoppelt sind. Mit den Emittoren E_1 und E_6 sind die Abstandskompensationsspulen KOMP induktiv gekoppelt.

[0078] Zwischen den Spulenebenen können zur kapazitiven Entkopplung Schirmflächen vorgesehen werden.

[0079] Die Emittoren werden, entweder alle in Serie oder parallel zusammengeschaltet und mit Wechselspannung 30 gespeist. Es besteht auch die Möglichkeit diese nur zum Teil auf oben angeführte Weise zusammen zuschalten. In diesem Fall werden die restlichen Emittoren, in Phase mit den anderen aber getrennt versorgt. Dadurch können diese zur Erreichung einer gewünschten Gleichmäßigkeits des Erregerfeldes mit unterschiedlichen Spannungen (bzw. Strömen) gespeist werden.

[0080] Diese Emittoren (z.Bsp. E_1 und E_6) werden als Kompensationsemitter betrachtet. Die Windungsanzahl der 35 Emittoren kann entweder identisch für alle oder aber unterschiedlich, symmetrisch zur Strukturachse in Meßrichtung, für den Ausgleich der Emittereinzelfeld-Wechselwirkungen, realisiert werden.

[0081] Eine Empfängergruppe (z.B. S_1) besteht aus zwei Empfängerelementen (S_{1+} und S_{1-}), welche differential geschaltet sind. Jeder der beiden Meßkanäle "Sinus" und "Cosinus" wird durch die Serienschaltung der entsprechenden Gruppen gebildet.

[0082] Wenn nicht durch die Emittorbeschaffenheit kompensiert, können zusätzlich zu dieser ersten Maßnahme, für 40 die Erreichung eines gesamten offsetreduzierten Signals, wie bereits weiter oben erläutert, die Empfängerelemente mit unterschiedlichen Windungsanzahlen oder Geometrien für den Ausgleich des Emitterfeldgradienten, gestaltet werden.

[0083] Die idealen Abstände zwischen den Empfängerspulengruppen eines Kanals (siehe Fig. 29) können durch 45 Korrekturwerte (K_2 , K_3), ermittelt aus der berechneten Übertragungsfunktion, für die Unterdrückung bestimmter Oberwellen angepasst werden.

[0084] Das Abstandskompensationssignal, induziert in den KOMP 1 und KOMP 2 Spulen (in Serie geschaltet), hat 50 eine Amplitude, die umgekehrt proportional zum Abstand der Spulenstruktur von der Maßverkörperung ist. Diese soll nicht oder nur geringfügig von deren relativer Bewegung in Meßrichtung beeinflußt werden (Ripple-Erscheinung). Das wird erreicht durch die Anpassung der Kompensationsspulenbreite, korrigiert von dem Idealwert (Periodengenauigkeit).

[0085] Eine weitere störende Ausgangssignaloberwelle kann in der Maßverkörperung durch die Korrektur K_1 unterdrückt werden.

[0086] Zur Systemvereinfachung können selbstverständlich für die Realisierung der Spulenstruktur je nach Genauigkeitsanforderungen auch wenige Metalllayer verwendet werden.

[0087] Der Vollständigkeit halber sei noch auf eine rotative Ausführungsform verwiesen:

[0088] Die gesamten Bestimmungen für das Längenmesssystem können identisch für eine Winkelmesserfassung eingesetzt werden. Der einzige Unterschied besteht darin, dass die Maßverkörperung einen zylindrischen Teil darstellt (Nr. 1 in Fig. 30) und die Spulenstruktur bogenförmig oder als mit der Maßverkörperung konzentrische Polygonalfläche

EP 1 164 358 A1

realisiert wird (Nr. 2 in Fig. 30).

[0089] Da derartige Messsysteme, schon im Stand der Technik mit entsprechenden Computerprogrammen entwickelt und ausgelegt werden, besteht für den Fachmann in Kenntnis der Erfindung die Möglichkeit, die jeweils benutzten Computerprogramme mit Modulen bzw. Routinen auszustatten, die die erfundungsgemäßen Korrekturen vornehmen. Dabei kann durchaus ein iterativer Weg eingeschlagen werden, bei dem beispielsweise erfundungsgemäße Korrekturen in vorbestimmten Ausmaß vorgenommen werden, die dadurch erreichte Verbesserung überprüft und die noch notwendige Korrektur (der Korrektur) vorgenommen wird, bis die erhaltenen Ergebnisse im Rahmen der angestrebten Resultate liegen. Es kann selbstverständlich in Kenntnis der Erfindung auch eine Analyse der notwendigen Korrektur vorgenommen werden, um schon im ersten Schritt zum gewünschten Resultat zu kommen.

10

Patentansprüche

1. Messeinrichtung zur Positionserfassung, bestehend aus einer Spulenstruktur und einer Maßverkörperung mit mindestens einer Teilung von variabler Reluktanz oder Leitfähigkeit, dadurch gekennzeichnet, daß die Spulenstruktur in Multilayer - Ausführung als Kombination von Spulen mit Konturen in Form quasigeschlossener Windungen besteht, mit mehreren Empfängerpaaren, wobei jedes Paar zwei differenziell geschaltete Empfängerelemente aufweist die für die Signalerzeugung für jeden der zumindest zwei Messkanäle zusammengeschaltet werden können, daß zumindest ein Emittorelement vorgesehen ist, das mit den Empfängerelementen in Abhängigkeit der relativen Lage in Messrichtung zur Maßverkörperung induktiv gekoppelt ist und so zumindest ein Ausgangssignal erzeugt, das in Offset und/oder Sinusform und/oder Amplitude kompensiert ist.
2. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Empfängerspulen entsprechend der Emitterfeldverteilung in Messrichtung, unterschiedliche Windungsanzahl aufweisen, um offsetkompensierte Ausgangssignale zu erzeugen.
3. Messeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Empfängerspulen entsprechend der Emitterfeldverteilung in Messrichtung zumindest für einen Teil ihrer Windungen unterschiedliche Längen quer zur Messrichtung aufweisen, um offsetkompensierte Ausgangssignale zu erzeugen.
4. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Empfängerspulen mit zumindest einem zusätzlichen Kompenstationsempfängerelement versehen sind, das durch die Zusammenschaltung mit den Standard - Empfängerspulen zu offsetkompensierten Ausgangssignalen durch den Ausgleich der Emitterfeldungleichmäßigkeit führt.
5. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Emitter aus mehreren Spulen besteht und daß zumindest ein zusätzlicher Kompenstationsemitter vorgesehen ist, der in Messrichtung oder in einer Parallelebene zu den Emittoren angeordnet ist und zu einer kompensierten, gleichmäßigen Erregerfeldverteilung in der Empfängerebene führt.
6. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Emitter aus mehreren Spulen besteht, die, in Messrichtung angeordnet, mit unterschiedlichen Windungszahlen, Windungsverteilungen, Windungsformen, Breite, Länge oder Versorgungsströmen versorgt, ausgebildet sind, sodaß in der Empfängerebene durch die Effektüberlagerung der einzelnen Felder in Messrichtung ein gleichmäßiges Gesamterregerfeld erzeugt wird.
7. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Emitter aus mehreren Spulen besteht und daß zumindest ein zusätzlicher Kompenstationsemitter vorgesehen ist, der in Messrichtung in einer Parallelebene zu den Emittoren angeordnet ist und unabhängig von den Emittoren versorgt werden kann, um eine gleichmäßige Gesamterregerfeldverteilung in den Empfängerebenen zu erreichen und/oder offsetfreie Signale in den Empfängerspulen zu erzeugen.
8. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen des Ausgangssignals die Emitterbreite $n\lambda +/-k$ beträgt, wobei gilt: n ist eine natürliche Zahl, λ ist die Teilungsperiode und k ist ein Korrekturwert.
9. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen im Ausgangssignal in der Emitterebene die Wicklungsaufteilung der Emitter nicht periodisch

EP 1 164 358 A1

gleichmäßig ist.

10. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen im Ausgangssignal die Empfängerelemente eine Breite von $\lambda/2 \pm k$ aufweisen, wobei gilt: λ ist die Teilungsperiode und k ein Korrekturwert.
11. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen des Ausgangssignals die Empfängerelemente im Rahmen eines Empfängerdifferentialpaars in Messrichtung einen Abstand zueinander von $\lambda/2 +/- k$ aufweisen, wobei gilt: λ ist die Teilungsperiode und k ein Korrekturwert.
12. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen des Ausgangssignals die Empfängerdifferentialpaare im Rahmen eines Messkanals in Messrichtung einen Abstand zueinander von $n\lambda \pm k$; ($i \in \{0, n\}$) aufweisen, wobei gilt: n ist eine natürliche Zahl, λ ist die Teilungsperiode, k ist ein Korrekturwert und i ist Null oder eine natürliche Zahl.
13. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen des Ausgangssignals das Verhältnis der Teilbereiche im Rahmen einer Teilungsperiode in der Maßverkörperung zwischen dem Bereich mit niedrigerer Reluktanz und dem Bereich mit höherer Reluktanz $(\lambda/2-k)/(\lambda/2+k)$ beträgt, wobei gilt: λ ist die Teilungsperiode und k ein Korrekturwert.
14. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß für die Unterdrückung der Oberwellen des Ausgangssignals der Winkel β zwischen den Grenzen der Maßverkörperung und der Messrichtung ungleich 90° ist.
15. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, in der Empfängerstruktur zumindest eine Abstandskompensationsspule angeordnet ist, die ein geprägt abstandsabhängiges Signal liefert, mit dem in der Auswerteelektronik die Messsignalamplituden nachgeregelt werden können.
16. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß zwischen und/oder außerhalb der Spulenstrukturebenen für die Abschirmung und/oder die kapazitive Entkopplung großflächige Metallschichten vorgesehen sind, die an einem festen Potential angeschlossen sind.
17. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Maßverkörperung eine zylindrische Form aufweist, die innen oder außen die periodische Teilung aufweist und daß die Spulenstruktur in einer dazu passenden Form angeordnet ist.
18. Messeinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Maßverkörperung an der Stirnfläche eines zylindrischen Bauteiles angeordnet ist und daß die Spulenstruktur in einer dazu parallelen Stirnfläche angeordnet ist.

45

50

55

EP 1 164 358 A1

FIG. 1

EP 1 164 358 A1

FIG. 2

EP 1 164 358 A1

FIG. 3

EP 1 164 358 A1

FIG. 4

EP 1 164 358 A1

FIG. 5

EP 1 164 358 A1

FIG. 6

EP 1 164 358 A1

FIG. 7

EP 1 164 358 A1

FIG. 8

EP 1 164 358 A1

FIG. 9

EP 1 164 358 A1

FIG. 10

EP 1 164 358 A1

FIG.11

FIG.12

FIG.13

EP 1 164 358 A1

FIG. 14

EP 1 164 358 A1

FIG. 15

FIG. 16

FIG. 17

EP 1 164 358 A1

FIG. 18

EP 1 164 358 A1

FIG. 19

EP 1 164 358 A1

FIG.20

FIG.21

EP 1 164 358 A1

FIG. 22

EP 1 164 358 A1

FIG. 23

EP 1 164 358 A1

FIG. 24

EP 1 164 358 A1

FIG. 25

FIG. 26

EP 1 164 358 A1

FIG. 27

EP 1 164 358 A1

FIG. 28

ISO | MET | ISO | MET | ISO

EP 1 164 358 A1

FIG. 29

EP 1 164 358 A1

FIG. 30

EP 1 164 358 A1

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 00 89 0192

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kenntzeichnung des Dokumentes mit Angabe, soweit erforderlich, der maßgeblichen Teile	Bereit Anspruch	KLAFFIKATION DER ANMELDUNG (Int.CI.)
X	US 4 737 698 A (MCMULLIN FRANCIS ET AL) 12. April 1988 (1988-04-12) * Spalte 16, Zeile 55 - Spalte 18, Zeile 59; Abbildungen 22-29 *	1	G01D5/20
Y	* Spalte 11, Zeile 19 - Zeile 37; Abbildungen 8,9 *	2	
A	—	15	
Y	EP 0 743 508 A (MITUTOYO CORP) 20. November 1996 (1996-11-20) * Seite 9, Zeile 32 - Zeile 37; Abbildungen 1,6A-6D *	2	
A	DE 196 21 886 A (HEIDENHAIN GMBH DR JOHANNES) 4. Dezember 1997 (1997-12-04) * Spalte 5, Zeile 68 - Spalte 6, Zeile 5; Abbildung 4 *	1,5-7	
A	GB 1 554 388 A (KARLEN R) 17. Oktober 1979 (1979-10-17) * das ganze Dokument *	4,15	RECHERCHIERTE SACHGEBIETE (Int.CI.)
A	US 5 434 504 A (HOLLIS RALPH L ET AL) 18. Juli 1995 (1995-07-18) * das ganze Dokument *	5-7	G01D
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	15. November 2000	Chapple, I.	
KATEGORIE DER GENANNTEN DOKUMENTE			
X: von besonderer Bedeutung erachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichttechnische Offenbarung P: Zwischenbericht			
T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentedokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

EP 1 164 358 A1

**ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT
ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.**

EP 00 89 0192

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am
Diese Angaben dienen nur zur Orientierung und erfolgen ohne Gewähr.

15-11-2000

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 4737698 A	12-04-1988	IE 55855 B CA 1276037 A DE 3585908 A EP 0182085 A GB 2167563 A, B US 4853604 A JP 61159101 A	30-01-1991 06-11-1990 27-05-1992 28-05-1986 29-05-1986 01-08-1989 18-07-1986
EP 0743508 A	20-11-1996	CN 1157910 A JP 8313295 A US 6011389 A	27-08-1997 29-11-1996 04-01-2000
DE 19621886 A	04-12-1997	KEINE	
GB 1554388 A	17-10-1979	SE 401901 B DE 2722544 A FR 2352278 A SE 7605723 A	05-06-1978 08-12-1977 16-12-1977 21-11-1977
US 5434504 A	18-07-1995	KEINE	

EPOFOR101

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82