סיכומי הרצאות - חדו"א 1א

מיכאל פרבר ברודסקי

אינטגרל רימן 1

[a,b] הגדרה: יהי $\Pi=\{x_0,\ldots,x_n\}$ קטע סגור. קבוצה סופית של נקודות :טא

$$a = x_0 < x_1 < \ldots < x_n = b$$

.iלקטע (x_{i-1}, x_i קוראים תת הקטע ה־

הגדרה: $\lambda\left(\Pi\right)=\max_{i=1,\ldots,n}\left(x_{i}-x_{i-1}\right)$ הגדרה:

(ובפרט גם) $\Pi_1\subseteq\Pi_2$ יהיו של Π_1 אם: Π_1 אם: [a,b] ובפרט גם (ובפרט גם) $\lambda(\lambda(\Pi_1) \geq \lambda(\Pi_2)$

הגדרה: תהי $\{t_1, \dots, t_n\}$ נקודות של [a,b] חלוקה של $\Pi = \{x_0 < \dots < x_n\}$ נקודות מתאימות $t_i \in [x_{i-1}, x_i]$:לחלוקה אם

: נגדיר: $\Pi = \{x_0 < \ldots < x_n\}\,, f: [a,b] o \mathbb{R}$ מתאימות ל־וח. נגדיר:

$$S(f, \Pi, \{t_i\}_{i=1}^n) = \sum_{i=1}^n \overbrace{\Delta x_i}^{x_i - x_{i-1}} f(t_i)$$

עם [a,b] עם בקטע רימן אינטגרבילית אינטגרבילית תהי $f:[a,b] o \mathbb{R}$ מהי רימן בקטע $I \in \mathbb{R}$ אם:

לכל $\lambda\left(\Pi\right)<\delta$ עם $\delta>0$ ולכל בחירה של נקודות לכל $\delta>0$ קיים $\delta>0$ קיים $\delta>0$ $\{t_i\}_{i=1}^n$ מתאימות מתאים:

$$|S(f,\Pi,\{t_i\}_{i=1}^n) - I| < \delta$$

 $I = \int_a^b f$ ורסמן $f \in R[a,b]$ ונסמן

אינטגרל לא מסוים

תהי F'(x)=f(x) , $x\in I$ אם לכל ב־I אם אלי השמאלי הקרא קדומה של F'(x)=f(x) וובקצה השמאלי $(F_{-}^{\prime}\left(x
ight)=f\left(x
ight)$ ובקצה הימני $F_{+}^{\prime}\left(x
ight)=f\left(x
ight)$ ב: מסומן שלו ומסומן ביI ב־f שלו ומסומן ב:

$$\int f = \int f dx = \{F: I \to \mathbb{R} \mid F' = f\}$$

 $\int f = F + C$: לכן נרשום: $F_1 = F_2 + C$ אז איז $F_1 = F_2 + C$ לכן נרשום:

טענה: אם ל־f אין את תכונת ערך הביינים אז אין לה פונקציה קדומה (כי אחרת היא הייתה מקיימת את תכונת דרבו).

Iבים אם f רציפה ב־I אז יש לה קדומה ב־

שיטות אינטגרציה 2.1

אינטגרלים בסיסיים

$$\int x^{\alpha}, \alpha \neq -1 \qquad \frac{x^{\alpha+1}}{\alpha+1} + C$$

$$\int \frac{1}{7} \qquad \ln|x| + C$$

$$\int \ln(x) \qquad x \ln(x) - x + C$$

$$\int \frac{1}{\cos^2(x)} \qquad \tan(x) + C$$

$$\int \sin(x) \qquad -\cos(x) + C$$

אינ: אזירות. אזירות פונקציות $u,v:I o \mathbb{R}$ יהיו

$$\int uv' = uv - \int u'v$$

: מתקיים: תהי $g\left(x\right)$ גזירה משתנים: עבור פונקציה $F\left(t\right)=\int f\left(t\right)dt$ החלפת ההי בעלת בעלת החלפת החלפת

$$\int f(g(x)) g'(x) dx = F(g(x))$$

כלומר אם t = g(x) אז:

$$\int f(t) dt = \int f(g(x)) g'(x) dx$$