P8106 Midterm - Code

Group 2: Kate Colvin (KAC2301), Jeong Yun (Lizy) Choi (JC6452), and Flora Pang (FP2513)

Exploratory Analysis

Loading in Data

```
load("dat1.RData")
load("dat2.RData")

dat1 <- dat1 %>% janitor::clean_names()
dat2 <- dat2 %>%janitor::clean_names()
```

Producing Summary Table

Training and test data have the same distribution of demographic characteristics; there is a difference in time since vaccination and log-transformed antibody levels between training and test data

```
# Combining data for summary table, data cleaning
dat1_com <- dat1 %>% mutate(set = "Training Data")
dat2_com <- dat2 %>% mutate(set = "Testing Data")
dat <- dat1_com %>%
  rbind(dat2 com) %>%
  rename(days_vaccinated = time) %>%
  mutate(race = as.character(race), smoking = as.character(smoking)) %>%
  mutate(race = case_match(
        race, "1" ~ "White", "2" ~ "Asian", "3" ~ "Black", "4" ~ "Hispanic"),
         gender = case_match(gender, 1 ~ "Male", 0 ~ "Female"),
         smoking = case_match(
           smoking, "0" ~ "Never", "1" ~ "Former", "2" ~ "Current"))
# Summary table
dat %>% select(!id) %>%
  tbl_summary(
   by = set,
   label = list(age = "Age", gender = "Gender", race = "Race", smoking = "Smoking",
                 height = "Height (cm)", weight = "Weight (kg)", bmi = "BMI",
                 diabetes = "Diabetes", hypertension = "Hypertension",
                 sbp = "Systolic Blood Pressure (mmHg)", ldl = "LDL Cholesterol (mg/dL)",
                 days vaccinated = "Time Since Vaccinated (days)",
                 log_antibody = "Log-Transformed Antibody Level")) %>%
  add_overall() %>% add_p() %>%
  modify_caption("Summary of Patient Testing and Training Data (N=6000)") %>%
  as_gt() %>% tab_options(table.font.size = 10)
```

The following errors were returned during `as_gt()`:

Table 1: Summary of Patient Testing and Training Data (N=6000)

Characteristic	Overall $N = 6,000^{1}$	Testing Data $N = 1{,}000^{1}$	Training Data $N = 5{,}000^{1}$	p-value
Age	60.0 (57.0, 63.0)	60.0 (57.0, 63.0)	60.0 (57.0, 63.0)	
Gender				
Female	3,082 (51%)	509 (51%)	2,573 (51%)	
Male	2,918 (49%)	491 (49%)	2,427 (49%)	
Race				
Asian	333 (5.6%)	55 (5.5%)	278 (5.6%)	
Black	1,235 (21%)	199 (20%)	1,036 (21%)	
Hispanic	548 (9.1%)	83 (8.3%)	465 (9.3%)	
White	3,884 (65%)	663 (66%)	3,221 (64%)	
Smoking				
Current	589 (9.8%)	103 (10%)	486 (9.7%)	
Former	1,800 (30%)	296 (30%)	1,504 (30%)	
Never	3,611 (60%)	601 (60%)	3,010 (60%)	
Height (cm)	170.1 (166.1, 174.2)	170.2 (166.1, 174.2)	170.1 (166.1, 174.3)	
Weight (kg)	80 (75, 85)	80 (75, 84)	80 (75, 85)	
BMI	27.60 (25.80, 29.50)	27.60 (25.80, 29.60)	27.60 (25.80, 29.50)	
Diabetes	929 (15%)	157 (16%)	772 (15%)	
Hypertension	2,754 (46%)	456 (46%)	2,298 (46%)	
Systolic Blood Pressure (mmHg)	130 (124, 135)	130 (124, 135)	130 (124, 135)	
LDL Cholesterol (mg/dL)	110 (96, 124)	112 (96, 124)	110 (96, 124)	
Time Since Vaccinated (days)	116 (82, 152)	171 (140, 205)	106 (76, 138)	
Log-Transformed Antibody Level	$10.06 \ (9.65, \ 10.45)$	9.93 (9.50, 10.32)	10.09 (9.68, 10.48)	

¹ Median (Q1, Q3); n (%)

```
## x For variable `age` (`set`) and "p.value" statistic: The package "cardx" (>=
## 0.2.3) is required.
## x For variable `bmi` (`set`) and "p.value" statistic: The package "cardx" (>=
## 0.2.3) is required.
## x For variable `days_vaccinated` (`set`) and "p.value" statistic: The package
## "cardx" (>= 0.2.3) is required.
## x For variable `diabetes` (`set`) and "p.value" statistic: The package "cardx"
     (>= 0.2.3) is required.
## x For variable `gender` (`set`) and "p.value" statistic: The package "cardx"
## (>= 0.2.3) is required.
## x For variable `height` (`set`) and "p.value" statistic: The package "cardx"
   (>= 0.2.3) is required.
## x For variable `hypertension` (`set`) and "p.value" statistic: The package
## "cardx" (>= 0.2.3) is required.
## x For variable `ldl` (`set`) and "p.value" statistic: The package "cardx" (>=
## 0.2.3) is required.
## x For variable `log_antibody` (`set`) and "p.value" statistic: The package
   "cardx" (>= 0.2.3) is required.
## x For variable `race` (`set`) and "p.value" statistic: The package "cardx" (>=
   0.2.3) is required.
## x For variable `sbp` (`set`) and "p.value" statistic: The package "cardx" (>=
   0.2.3) is required.
## x For variable `smoking` (`set`) and "p.value" statistic: The package "cardx"
    (>= 0.2.3) is required.
## x For variable `weight` (`set`) and "p.value" statistic: The package "cardx"
     (>= 0.2.3) is required.
```

Histograms of Differing Variables by Training and Test Set

```
# Antibody level
plot_sets <- dat %>%
```

```
ggplot(aes(x = log_antibody,
             fill = set,
             color = set)) +
  geom_density(alpha = 0.3, linewidth = 1) +
  labs(x = "Log-Transformed Antibody Level",
       y = "Density",
       title = "Figure 1: Distribution of Log-Transformed Antibody Level, by Data Set") +
  theme minimal()
# Time since vaccination (days)
plot_days <- dat %>%
  ggplot(aes(x = days_vaccinated,
             fill = set,
             color = set)) +
  geom_density(alpha = 0.3, linewidth = 1) +
  labs(x = "Time Since Vaccinated (days)",
       y = "Density",
       title = "Figure 2: Distribution of Days Since Vaccination, by Data Set") +
  theme_minimal()
plot_sets
```

Figure 1: Distribution of Log-Transformed Antibody Level, by Data Set

3

plot_days

0.0050
0.0050
0.0025
0.0000
Time Since Vaccinated (days)

Figure 2: Distribution of Days Since Vaccination, by Data Set

Plots of Log-Transformed Antibody Level, by Categorical Variables


```
strip_markdown <- function(x) {gsub("\\*\\*", "", x)}

dat %>% select(gender, log_antibody) %>%
   tbl_summary(by = gender) %>% add_p() %>%
   modify_caption("Log-Transformed Antibody Level, by Gender") %>%
   as_kable() %>%
   footnote(general_title = "", general = "Median (Q1, Q3), Wilcoxon Rank Sum Test") %>%
   strip_markdown()
```

```
## The following errors were returned during `as_kable()`:
## x For variable `log_antibody` (`gender`) and "p.value" statistic: The package
## "cardx" (>= 0.2.3) is required.
```

Table 2: Log-Transformed Antibody Level, by Gender

Characteristic	Female $N = 3,082$	Male $N = 2,918$	p-value
log_antibody	10.20 (9.79, 10.58)	9.93 (9.51, 10.30)	

Median (Q1, Q3), Wilcoxon Rank Sum Test

```
theme_minimal()
plot_race
```

Figure 4: Distribution of Log-Transformed Antibody Level, by Race


```
## The following errors were returned during `as_kable()`:
## x For variable `log_antibody` (`race`) and "p.value" statistic: The package
## "cardx" (>= 0.2.3) is required.
```

Table 3: Log-Transformed Antibody Level, by Race

Characteristic	Asian $N = 333$	Black $N = 1,235$	Hispanic $N = 548$	White $N = 3,884$	p-value
log_antibody	10.06 (9.62, 10.44)	10.08 (9.65, 10.44)	10.03 (9.61, 10.42)	10.06 (9.65, 10.46)	

Median (Q1, Q3), Kruskal-Wallis Rank Sum Test

```
# Antibody level, by smoking status
plot_smoking <- dat %>%
```

Figure 5: Distribution of Log-Transformed Antibody Level, by Smoking


```
## The following errors were returned during `as_kable()`:
## x For variable `log_antibody` (`smoking`) and "p.value" statistic: The package
## "cardx" (>= 0.2.3) is required.
```

Table 4: Log-Transformed Antibody Level, by Smoking Status

Characteristic	Current $N = 589$	Former $N = 1,800$	Never $N = 3,611$	p-value
log_antibody	9.91 (9.46, 10.28)	10.10 (9.66, 10.48)	10.07 (9.68, 10.46)	

Median (Q1, Q3), Kruskal-Wallis Rank Sum Test

Correlation Matrix of Numerical Variables

```
cor matrix <- dat %>%
  select(age, height, weight, bmi, sbp, ldl, days_vaccinated, log_antibody) %>%
  rename("Age" = age,
         "Height" = height,
         "Weight" = weight,
         "BMI" = bmi,
         "SBP" = sbp,
         "LDL" = 1d1,
         "Days Vaccinated" = days_vaccinated,
         "Log(Antibody)" = log_antibody) %>%
  cor()
cor_plot <- corrplot(cor_matrix,</pre>
                     main = "Figure 6: Correlation Matrix of Numerical Variables",
                     mar=c(0,0,1,0), cex.main = 1,
                     method = "color",
                     addCoef.col = "black",
                     tl.col = "black",
                     number.cex = 0.8,
                     tl.srt = 45,
                     order = 'original',
                     diag = F)
```


Plots of Log-Transformed Antibody Level vs. Selected Numerical Variables

```
# Antibody level vs. BMI
plot_bmi <- dat %>% ggplot(aes(x = bmi, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) +
  geom_smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "BMI",
       title = "Figure 7: Log-Transformed Antibody Level vs. BMI") +
  theme minimal()
# Antibody level vs. Weight
plot_weight <- dat %>%
  ggplot(aes(x = weight, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) +
  geom smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "Weight",
       title = "Figure 8: Log-Transformed Antibody Level vs. Weight") +
  theme minimal()
# Antibody level vs. Age
plot_age <- dat %>% ggplot(aes(x = age, y = log_antibody, fill = set, color = set)) +
  geom_point(alpha = 0.3, size = 2) + geom_smooth(method = "lm") +
  labs(y = "Log-Transformed Antibody Level", x = "Age",
       title = "Figure 9: Log-Transformed Antibody Level vs. Age") +
  theme_minimal()
plot_bmi
```


Figure 8: Log-Transformed Antibody Level vs. Weight

Figure 9: Log-Transformed Antibody Level vs. Age

Model Training

Since the response variable (log_antibody) is continuous, this project will consider the following models:

- Multiple Linear Regression (MLR) as a baseline.
- LASSO Regression to improve predictive performance by selecting important predictors.
- Random Forest Regression to capture nonlinear relationships.

After comparing model performance, the best model will be based on cross-validation results.

Data Pre-processing

```
# Converting categorical variables into factors
dat1 <- dat1 %>%
  mutate(
    gender = factor(gender, levels = c(0, 1), labels = c("Female", "Male")),
   race = factor(race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic")),
   smoking = factor(smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current")),
   diabetes = factor(diabetes),
   hypertension = factor(hypertension)
dat2 <- dat2 %>%
  mutate(
   gender = factor(gender, levels = c(0, 1), labels = c("Female", "Male")),
   race = factor(race, levels = c(1, 2, 3, 4), labels = c("White", "Asian", "Black", "Hispanic")),
   smoking = factor(smoking, levels = c(0, 1, 2), labels = c("Never", "Former", "Current")),
   diabetes = factor(diabetes),
   hypertension = factor(hypertension)
sum(is.na(dat1))
## [1] 0
sum(is.na(dat2))
## [1] 0
dat1 <- dat1 %>% select(-id)
dat2 <- dat2 %>% select(-id)
# Split training data into training (80%) and validation (20%)
set.seed(123)
train_index <- createDataPartition(dat1$log_antibody, p = 0.8, list = FALSE)
train_data <- dat1[train_index, ]</pre>
valid_data <- dat1[-train_index, ]</pre>
```

Results