

— North America 2023 -

Cilium Overview for Developers

Bill Mulligan, Joe Stringer, Jef Spaleta Isovalent

Agenda

- Architecture
- Core Concepts
- Structure / Internals
 - Programming the kernel (Datapath)
 - Observing the network (Hubble)
- Practical steps to get started

Architecture - High-level View

Declarative Intent:

cilium-agent watches K8s API objects:

- K8s Nodes
- K8s Pods
- Network Policies
- Services + Endpoints

Runtime Network & Security State:

cilium-agent on each node generates eBPF programs based on the label identity of each pod that provide:

- Pod-to-pod connectivity (IPAM, overlay / direct routing)
- Pod to/from external connectivity (NodePort, Masq, ...)
- Service-based Load Balancing
- Identity-aware Network policy filtering (Label, DNS).
- Identity-aware network flow visibility & metrics.
- Transparent Encryption (IPsec, WireGuard).
- Multi-cluster Routing & Security

Architecture - More Detail

Cloud Provider APIs
(if needed)

Architecture - Hubble

Architecture - Service Mesh

Architecture - Multicluster

Core Resources

Core Cilium Abstractions

Cilium Concept	K8s Resource	Source of Truth	Comments
Node	Node / CiliumNode	Kubernetes	Represents a Kubernetes worker node
Endpoint	Pod / CiliumEndpoint (CEP) / CiliumEndpointSlice (CES) /	Node	Each Cilium-managed Pod ⇒ endpoint
Security Identity	CiliumIdentity	Identity Store (K8s / kvstore)	Each unique set of pod labels ⇒ identity.
Policy	NetworkPolicy / CiliumNetworkPolicy / CiliumClusterwideNetworkPolicy	Kubernetes	Describes ingress / egress connectivity of an endpoint
Service	Service	Kubernetes	L3/L4 load-balancing

Cilium Abstractions

Resources tooling

- Nodes
 - o cilium-dbg node list
 - kubectl get ciliumnodes
- Cilium Endpoints
 - o cilium-dbg endpoint list
 - kubectl get ciliumendpoints --all-namespaces
- Network Policies
 - o cilium-dbg policy get
 - kubectl get [netpol|cnp|ccnp] --all-namespaces
- Security identities
 - cilium-dbg identity list
 - kubectl get ciliumidentities
- Services
 - o cilium-dbg service list
 - kubectl get svc --all-namespaces

Before Cilium
v1.15.0-pre.2,
cilium-dbg was
named cilium inside
the Cilium container

Additional Custom Resources

Feature	What does it do?	
CiliumExternalWorkload	Connect external nodes to the Cilium cluster	
CiliumLocalRedirectPolicy	Help with local-node redirects. Example: DNS	
CiliumEgressGatewayPolicy	Pods can connect outside the cluster with consistent IPs	
CiliumEnvoyConfig / CiliumClusterwideEnvoyConfig	Apply more detailed Envoy configurations	
CiliumBGPPeeringPolicy	Configure the way that Cilium connects to BGP peers	
CiliumLoadBalancerIPPool	Assign IP addresses to LoadBalancer services	
CiliumNodeConfig	Per-node Cilium configuration rather than cluster-wide	
CiliumCIDRGroup	Associate a set of IPs with a name for use in policy	
CiliumL2AnnouncementPolicy	Advertise service IPs onto the local area network	
CiliumPodIPPool	Provide greater control over IP address management for Pods	

Internal Architecture

cilium-agent Operations

Hive / Cell

- (Bee) Hive is where feature dependencies are registered
- Cells are structures within the Hive that are responsible for a specific feature.
 - Home for the flags related to the feature
 - Metrics for the feature
 - Start / Stop hooks
- Guide to the Hive goes into more details

Cilium Internal Architecture

Cilium Internal Architecture

Datapath / eBPF

How Cilium Uses eBPF

Cilium generates and attaches eBPF programs + maps:

- At socket for east<->west load-balancing
- At traffic control layer for intra-node connectivity & packet enforcement
- At XDP for efficient north<->south load-balancing

Datapath tooling

- eBPF and XDP (eXpress Data Plane)
 - Dynamic features controlled by map state cilium bpf *, bpftool map show
 - Features are pre-compiled into programs bpftool {net,prog} show
- Routing
 - o policy-based routing ip rule
 - o routing tables ip route
- Traffic Control
 - tc qdisc tc qdisc show
 - o tc filter tc filter show dev *
- Encryption
 - WireGuard cilium bpf ipcache list
 - ipsec policy ip xfrm policy
- Netfilter
 - o iptables iptables-save -c

Hubble

Hubble Visibility

- Caches data on-node for near-term troubleshooting history
- Enables central querying of current + recent flow data across many nodes
 - Hubble API
 - Hubble CLI
 - Hubble UI
- Efficient aggregation/filtering/export of flow data to external systems:
 - Prometheus metrics on pod connectivity data.
 - Log collection / Security Information Event Management (SIEM)

Hubble Architecture

Hubble Basic Usage:

Basic query of Hubble API:

kubectl exec -n kube-system <cilium-pod> -- hubble observe --since 5m -n <namespace>

```
May 3 17:42:32.521 192.168.24.253:36546
                                                    questbook/frontend-59f5db8cfb-hqlxc:80(http)
                                                                                                    to-endpoint FORWARDED TCP Flags: SYN
May 3 17:42:32.521 guestbook/frontend-59f5db8cfb-hglxc:80(http)
                                                                 192.168.24.253:36546
                                                                                                              FORWARDED TCP Flags: SYN, ACK
                                                                                                    to-stack
May 3 17:42:32.522 192.168.24.253:36546
                                                     guestbook/frontend-59f5db8cfb-hglxc:80(http)
                                                                                                     to-endpoint FORWARDED TCP Flags: ACK
May 3 17:42:32.522 guestbook/frontend-59f5db8cfb-halxc:80(http)
                                                                 192.168.24.253:36546
                                                                                                               FORWARDED TCP Flags: ACK, FIN
                                                                                                     to-stack
May 3 17:42:32.522 192.168.24.253:36546
                                                    questbook/frontend-59f5db8cfb-halxc:80(http)
                                                                                                     to-endpoint FORWARDED TCP Flags: ACK, FIN
May 3 17:42:32.523 192.168.24.253:36546
                                                     questbook/frontend-59f5db8cfb-hglxc:80(http)
                                                                                                     to-endpoint FORWARDED TCP Flags: ACK
May 3 17:42:37.684 guestbook/redis-slave-96685cfdb-9vdgg:40722
                                                                 guestbook/redis-master-596696dd4-lhng5:6379(redis) to-stack
                                                                                                                              FORWARDED TCP Flags: ACK, PSH
May 3 17:42:37.684 guestbook/redis-slave-96685cfdb-9vdgg:40722
                                                                 questbook/redis-master-596696dd4-lhnq5:6379(redis) to-endpoint FORWARDED TCP Flags: ACK, PSH
May 3 17:42:37.684 guestbook/redis-master-596696dd4-lhng5:6379(redis) guestbook/redis-slave-96685cfdb-9vdgg:40722
                                                                                                                              FORWARDED TCP Flags: ACK
May 3 17:42:37.684 guestbook/redis-master-596696dd4-lhng5:6379(redis)
                                                                    guestbook/redis-slave-96685cfdb-9vdgg:40722
                                                                                                                    to-endpoint FORWARDED TCP Flags: ACK
```

<timestamp> < SRC + DST namespace, pod-name, port > <tracepoint> <verdict> <TCP flags>

What can I do now?

Jef's Picks for Good, Good First Issues

Cleaning up documentation is a great first contribution:

https://github.com/cilium/cilium/issues/14177

https://github.com/cilium/cilium/issues/15394

https://github.com/cilium/cilium/issues/18005

https://github.com/cilium/cilium/issues/21986

But there a lot more to choose from:

Ref: https://github.com/cilium/cilium/labels/good-first-issue

Ref: https://github.com/orgs/cilium/projects/3/views/1

Prerelease Testing

Great way to contribute while you're learning about Cilium features

New users/contributors:

- Test for documentation regressions
- Test feature interactions

Existing users/contributors:

Great way to test for regressions in "production-like" configurations

Current Pre-release:

https://github.com/cilium/cilium/releases/tag/v1.15.0-pre.2

Docs: https://docs.cilium.io/en/v1.15.0-pre.2/

Pre-release Testing Issue Template:

Appendix

Reference links

- Getting started developing Cilium
- Getting started developing Tetragon
- Good first issues
- Cilium Community Repo

Resources deep dive

Cilium Nodes

- A node represents the networking status of a node in the cluster
- IP Address Management (IPAM):
 - By default Cilium uses the IP address range assigned to the host for IPAM
 - IPAM is pluggable, many alternative options are available
- Cilium reserves an extra couple of IP addresses from this range:
 - Attach an IP address to cilium_host interface for local connectivity
 - Optionally reserve an IP address for traffic using Service Mesh Ingress
- Each node is associated with a number of endpoints which are locally scoped
- A list of all Cilium nodes within a cluster can be inspected with:
 - cilium-dbg node list
 - kubectl get ciliumnodes

Cilium Endpoints

- cilium
- An endpoint represents the networking state of a single pod on a node
- CNI ADD: cilium-cni calls cilium-agent in order to create an endpoint
 - Cilium assigns IP addresses (IPv4/IPv6)
 - Cilium generates BPF programs to implement all connectivity/visibility for the endpoint
- Cilium "regenerates" an endpoint when config state change (e.g., policies)
- State Includes:
 - Configured state:
 - IP address(es), MAC, Linux device
 - Security-identity
 - Per-endpoint configured policy (including default-deny status)
 - Realized state:
 - Regeneration status and the log of recent regenerations.
 - Policy in terms of low-level identities
- Host-networking pods are not managed by Cilium ⇒ don't show up in CEP
 - Internals: special endpoint representing the host itself

Inspecting Cilium Endpoints

- All cilium endpoints on a host can be inspected with
 - cilium-dbg endpoint list
 - cilium-dbg endpoint get <endpoint-id>
 - Contains deep detail of configured and realized state
- All Cilium endpoints in the cluster can be inspected with
 - kubectl get ciliumendpoints --all-namespaces
- The CiliumEndpoint CRD is used internally by Cilium to share information between cilium-agent pods
 - Endpoints are still node-local
 - Frequently changing endpoint state is not synced to CRD.
 - Example: by default, no policy enforcement status updates

Cilium Security Identities

- Global Identity for each source/destination of a network connection for the purposes of more efficient datapath security enforcement/visibility
- Each endpoint has an identity.
- Pod "replicas" are different endpoints, but can share same identity.
 - app-xxxxx, app-yyyyy, app-zzzzz ⇒ 3 endpoints
 - identity=4323 ⇒ 1 identity
- The Cilium identity store ensures consistent identities across all worker nodes
- Useful commands:
 - cilium-dbg identity list
 - kubectl get ciliumidentities

Cilium Security Identities

Cilium Policies

- Policies define limits to ingress and/or egress connectivity of endpoints
- Policy state is defined centrally via the K8s API as
 - Standard Kubernetes NetworkPolicy objects
 - More feature-rich CiliumNetworkPolicy and CiliumClusterwideNetworkPolicy objects
 - DNS-aware policy, L7-aware policy, host firewall, etc...
- cilium-agent syncs both types of policies and implements filtering via BPF
- Cilium follows core policy behaviors from K8s network policy spec:
 - Example: Default allow for ingress/egress if no policy is applied to endpoint.
- Useful commands:
 - cilium-dbg policy get
 - kubectl get networkpolicy --all-namespaces
 - kubectl get ciliumnetworkpolicy --all-namespaces
 - kubectl get ciliumclusterwidenetworkpolicy --all-namespaces

Cilium Services

- A **service** describes L4 load-balancing for pods
- Maps directly to Kubernetes Services + endpoints
 - Cilium watches this data from the K8s API
 - Creates BPF state in datapath to perform service to endpoint LB
- Behaviour:
 - Cilium performs pod-to-pod LB by default on all kernels
 - Remaining LB behaviour (NodePort, etc...) is controlled by kube-proxy-replacement flag
- Useful commands:
 - cilium-dbg service list
 - kubectl get svc --all-namespaces

Resource data flow

Cilium Data Flow

Cilium Data Flow

Services, Intra-node Routing Connectivity,
Inter-node Routing

Security, Network Policy