Strength of Weak Type Theory – Dutch Categories and Types Seminar

Effective conservativity of

extensional type theory

over

weak type theory

Théo Winterhalter

joint work with Simon Boulier

Equality in type theory

Definitional

Objects are identified on the nose:

$$vec A (2 + 3) \equiv vec A 5$$

Proof simplification / witness property

Propositional

Internal notion of equality:

refl A u :
$$u =_A u$$

Reasoning about equaities

Equality in type theory

Definitional

Objects are identified on the nose:

$$vec A (2 + 3) \equiv vec A 5$$

Proof simplification / witness property

Propositional

Internal notion of equality:

refl A u :
$$u =_A u$$

Reasoning about equaities

Proofs by computation / reflection

Equality in type theory

Definitional

Objects are identified on the nose:

$$vec A (2 + 3) \equiv vec A 5$$

Proof simplification / witness property

Propositional

Internal notion of equality:

refl A u :
$$u =_A u$$

Reasoning about equaities

$$p : u =_A V$$

$$u \equiv v : A$$

Equality reflection

= ITT Reflection

Martin Hofmann (1995): ETT is conservative over ITT (categorically)

Nicolas Oury (2005): conservative translation (on paper)

ITT + congruence of application for heterogenous equality

with Nicolas Tabareau and Matthieu Sozeau (2019): conservative translation in Coq

no extra axiom needed!

with Nicolas Tabareau and Matthieu Sozeau (2019): conservative translation in Coq

no extra axiom needed!

with Nicolas Tabareau and Matthieu Sozeau (2019): conservative translation in Coq

no extra axiom needed!

with Simon Boulier (2019): conservative translation over WTT in Coq

Coq proof becomes much simpler!

correct design?

with Simon Boulier (2019): conservative translation over WTT in Coq

Coq proof becomes much simpler!

```
We want [.] such that
```

```
\Gamma \vdash t : A \quad implies \quad \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket A \rrbracket
\Gamma \vdash u \equiv v : A \quad implies \quad \llbracket \Gamma \rrbracket \vdash p : \llbracket u \rrbracket =_{\llbracket A \rrbracket} \llbracket v \rrbracket
for some p
```

```
We want [ • ] such that
```

```
\Gamma \vdash_x t : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_w \llbracket t \rrbracket : \llbracket A \rrbracket
\Gamma \vdash_x u \equiv v : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_w p : \llbracket u \rrbracket =_{\llbracket A \rrbracket} \llbracket v \rrbracket
```

We want [.] such that

```
\Gamma \vdash_{x} t : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} \llbracket t \rrbracket : \llbracket A \rrbracket
\Gamma \vdash_{x} u \equiv v : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} p : \llbracket u \rrbracket =_{\llbracket A \rrbracket} \llbracket v \rrbracket
```

$$\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \qquad \Gamma \vdash_{\mathsf{x}} \mathsf{A} \equiv \mathsf{B}$$

$$\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{B}$$

We want [•] such that

$$\Gamma \vdash_{x} t : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} \llbracket t \rrbracket : \llbracket A \rrbracket$$

$$\Gamma \vdash_{x} u \equiv v : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} p : \llbracket u \rrbracket =_{\llbracket A \rrbracket} \llbracket v \rrbracket$$

We want [•] such that

```
\Gamma \vdash_{x} t : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} \llbracket t \rrbracket : \llbracket A \rrbracket
\Gamma \vdash_{x} u \equiv v : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} p : \llbracket u \rrbracket =_{\llbracket A \rrbracket} \llbracket v \rrbracket
```

$$\frac{\Gamma \vdash_{\times} t : A \qquad \Gamma \vdash_{\times} A \equiv B}{\Gamma \vdash_{\times} t : B} \qquad \qquad \boxed{ \begin{bmatrix} \Gamma \end{bmatrix} \vdash_{w} \llbracket t \rrbracket : \llbracket A \rrbracket \\ \llbracket \Gamma \rrbracket \vdash_{w} p : \llbracket A \rrbracket =_{\llbracket Type \rrbracket} \llbracket B \rrbracket }$$

We want [•] such that

```
\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \quad \mathsf{implies} \quad \llbracket \Gamma \rrbracket \vdash_{\mathsf{w}} \llbracket \mathsf{t} \rrbracket : \llbracket \mathsf{A} \rrbracket
\Gamma \vdash_{\mathsf{x}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \quad \mathsf{implies} \quad \llbracket \Gamma \rrbracket \vdash_{\mathsf{w}} \mathsf{p} : \llbracket \mathsf{u} \rrbracket =_{\llbracket \mathsf{A} \rrbracket} \llbracket \mathsf{v} \rrbracket
```

$$\frac{\Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{A} \qquad \Gamma \vdash_{\mathsf{X}} \mathsf{A} \equiv \mathsf{B}}{\Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{B}}$$

$$\Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{B}$$

$$\mathsf{so} \qquad \llbracket \Gamma \rrbracket \vdash_{\mathsf{W}} \llbracket \mathsf{t} \rrbracket : \llbracket \mathsf{A} \rrbracket$$

$$\llbracket \Gamma \rrbracket \vdash_{\mathsf{W}} \mathsf{p} : \llbracket \mathsf{A} \rrbracket =_{\llbracket \mathsf{Type} \rrbracket} \llbracket \mathsf{B} \rrbracket$$

We want [•] such that

```
\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \quad \mathsf{implies} \quad \llbracket \Gamma \rrbracket \vdash_{\mathsf{w}} \llbracket \mathsf{t} \rrbracket : \llbracket \mathsf{A} \rrbracket
\Gamma \vdash_{\mathsf{x}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \quad \mathsf{implies} \quad \llbracket \Gamma \rrbracket \vdash_{\mathsf{w}} \mathsf{p} : \llbracket \mathsf{u} \rrbracket =_{\llbracket \mathsf{A} \rrbracket} \llbracket \mathsf{v} \rrbracket
```

$$\frac{\Gamma \vdash_{\times} t : A \qquad \Gamma \vdash_{\times} A \equiv B}{\Gamma \vdash_{\times} t : B}$$

$$\Gamma \vdash_{\times} t : B$$

$$\Gamma \vdash_{\times} t :$$

```
We want [ • ] such that
```

```
\Gamma \vdash_{x} t : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} \llbracket t \rrbracket : \llbracket A \rrbracket
\Gamma \vdash_{x} u \equiv v : A \text{ implies } \llbracket \Gamma \rrbracket \vdash_{w} p : \llbracket u \rrbracket =_{\llbracket A \rrbracket} \llbracket v \rrbracket
```

We want [.] such that

$$\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \quad \text{implies} \quad \Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}'$$

$$\Gamma \vdash_{\mathsf{x}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \quad \text{implies} \quad \Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{u}' =_{\mathsf{A}'} \mathsf{v}'$$

$$\text{for } \Gamma' \in \llbracket\Gamma\rrbracket, \; \mathsf{A}' \in \llbracket\mathsf{A}\rrbracket, \; ...$$

conversion rule again:

$$\frac{\Gamma \vdash_{\times} t : A \qquad \Gamma \vdash_{\times} A \equiv B}{\Gamma \vdash_{\times} t : B}$$

$$\frac{\Gamma' \vdash_{w} t' : A'}{\Gamma'' \vdash_{w} p : A'' =_{T'} B'}$$

We want [.] such that

$$\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \quad \text{implies} \quad \Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}'$$

$$\Gamma \vdash_{\mathsf{x}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \quad \text{implies} \quad \Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{u}' =_{\mathsf{A}'} \mathsf{v}'$$

$$\text{for } \Gamma' \in \llbracket\Gamma\rrbracket, \; \mathsf{A}' \in \llbracket\mathsf{A}\rrbracket, \; ...$$

conversion rule again:

$$\frac{\Gamma \vdash_{\times} t : A \qquad \Gamma \vdash_{\times} A \equiv B}{\Gamma \vdash_{\times} t : B}$$

$$\frac{\Gamma' \vdash_{w} t' : A'}{\Gamma'' \vdash_{w} p : A'' =_{T'} B'}$$

```
We want [ . ] such that
```

$$\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \quad \text{implies} \quad \Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}'$$

$$\Gamma \vdash_{\mathsf{x}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \quad \text{implies} \quad \Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{u}' =_{\mathsf{A}'} \mathsf{v}'$$

$$\text{for } \Gamma' \in \llbracket\Gamma\rrbracket, \; \mathsf{A}' \in \llbracket\mathsf{A}\rrbracket, \; ...$$

conversion rule again:

we need to relate two translations of the same object (at possibly two different types)

Axiomatically

 $\Gamma \vdash u : A \qquad \Gamma \vdash v : B$

 $\Gamma \vdash u A=B V : Type$

Axiomatically

$$\Gamma \vdash u : A \qquad \Gamma \vdash v : B$$

$$\Gamma \vdash u A=B V : Type$$

Axiomatically

$$\Gamma \vdash u : A \qquad \Gamma \vdash v : B$$

$$\Gamma \vdash u _{A} =_{B} v : Type$$

hrefl A u :
$$u_{A}=_{A} u$$

eq_to_heq (p : $u_{A}=_{A} v$) : $u_{A}=_{A} v$

Axiomatically

$$\Gamma \vdash u : A \qquad \Gamma \vdash v : B$$

$$\Gamma \vdash u _{A} =_{B} v : Type$$

hrefl A u :
$$u_{A=A}$$
 u

eq_to_heq (p : $u_{A=A}$ v) : $u_{A=A}$ v

heq_to_eq (p : $u_{A=A}$ v) : $u_{A=A}$ v

Axiomatically

$$\Gamma \vdash u : A \qquad \Gamma \vdash v : B$$

$$\Gamma \vdash u _{A} =_{B} v : Type$$

```
hrefl A u : u_{A=A} u

eq_to_heq (p : u_{A=A} v) : u_{A=A} v

heq_to_eq (p : u_{A=A} v) : u_{A=A} v

heq_transp (p : A = B) (t : A) : t_{A=B} transp(p,t)
```

ITT realisation

$$a_{A}=B_{B}$$
 $b = \sum (p : A =_{Type} B). transp(p,a) =_{B} b$

with some provable constructions

```
hrefl A u : u_{A=A} u

eq_to_heq (p : u_{A=A} v) : u_{A=A} v

heq_to_eq (p : u_{A=A} v) : u_{A=A} v
```

heq_transp (p : A = B) (t : A) : $t_{A=B}$ transp(p,t)

ITT realisation

$$a_{A}=B_{B}$$
 $b = \sum (p : A =_{Type} B). transp(p,a) =_{B} b$

with some provable constructions

eq_to_heq (p :
$$u =_A v$$
) : $u \in_A v$

using UIP!

heq_to_eq (p :
$$u_A=_A v$$
) : $u=_A v$

heq_transp (p : A = B) (t : A) :
$$t_{A=B}$$
 transp(p,t)

ITT realisation

$$a_{A}=B$$
 $b = \sum (p : A =_{Type} B). transp(p,a) =_B b$

with some provable constructions

eq_to_heq (p :
$$u =_A v$$
) : $u \in_A v$

using UIP!

heq_to_eq (p :
$$u_A=_A v$$
) : $u_A=_A v$

```
heq_transp (p : A = B) (t : A) : t_{A=B} transp(p,t)
```



```
ETT term —— t = t' —— WTT term, a potential translation of t
```

```
t ⊏ t'

t ⊏ transp(p,t')
```

t ⊏ t' u ⊏ u' A ⊏ A' B ⊏ B' ∨ ⊏ ∨'

t \vdash transp(p,t') u $Q(x:A) \cdot B \lor \vdash u' Q(x:A') \cdot B' \lor$

 $t \vdash transp(p,t')$ u Q(x:A).

u @(x:A).B ∨ ⊏ u' @(x:A').B' ∨

Fundamental lemma

Given Γ and $t_0 \supset \Gamma t_1$, there exists a term p such that if $\Gamma \vdash_w t_0 : A$ and $\Gamma \vdash_w t_1 : B$ then $\Gamma \vdash_w p : t_0 \land_{A=B} t_1$.

Fundamental lemma

Given Γ and $t_0 \supset \Gamma t_1$, there exists a term p such that if $\Gamma \vdash_w t_0 : A$ and $\Gamma \vdash_w t_1 : B$ then $\Gamma \vdash_w p : t_0 \land_{A=B} t_1$.

Fundamental lemma

Given Γ and $t_0 \supset \Gamma t_1$, there exists a term p such that if $\Gamma \vdash_W t_0 : A$ and $\Gamma \vdash_W t_1 : B$ then $\Gamma \vdash_W p : t_0 \land_{A=B} t_1$.

•

Fundamental lemma

Given Γ and $t_0 \supset \Gamma t_1$, there exists a term p such that if $\Gamma \vdash_w t_0 : A$ and $\Gamma \vdash_w t_1 : B$ then $\Gamma \vdash_w p : t_0 \land_{A=B} t_1$.

••

Fundamental lemma

```
Given \Gamma and t_0 \supset \Gamma t_1, there exists a term p such that if \Gamma \vdash_w t_0 : A and \Gamma \vdash_w t_1 : B then \Gamma \vdash_w p : t_0 \land_{A=B} t_1.
```


Fundamental lemma

```
Given \Gamma and t_0 \supset \Gamma t_1, there exists a term p such that if \Gamma \vdash_w t_0 : A and \Gamma \vdash_w t_1 : B then \Gamma \vdash_w p : t_0 \land_{A=B} t_1.
```

Sets of valid judgements (with derivations)

```
\vdash_{\mathsf{w}} \Gamma' \in \llbracket \vdash_{\mathsf{x}} \Gamma \rrbracket when \Gamma \sqsubseteq \Gamma'
```

Sets of valid judgements (with derivations)

```
\vdash_{\mathsf{w}} \Gamma' \in \llbracket \vdash_{\mathsf{x}} \Gamma \rrbracket \quad \text{when} \quad \Gamma \sqsubseteq \Gamma' \Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \rrbracket \quad \text{when} \quad \Gamma \sqsubseteq \Gamma', \; \mathsf{t} \sqsubseteq \mathsf{t}', \; \mathsf{A} \sqsubseteq \mathsf{A}'
```

Sets of valid judgements (with derivations)

```
\vdash_{\mathsf{w}} \Gamma' \in \llbracket \vdash_{\mathsf{x}} \Gamma \rrbracket \quad \text{when} \quad \Gamma \sqsubseteq \Gamma'
\Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \rrbracket \quad \text{when} \quad \Gamma \sqsubseteq \Gamma', \; \mathsf{t} \sqsubseteq \mathsf{t}', \; \mathsf{A} \sqsubseteq \mathsf{A}'
\Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{u}' _{\mathsf{A}'} =_{\mathsf{A}''} \mathsf{v}' \in \quad \text{when} \quad \Gamma \sqsubseteq \Gamma', \; \mathsf{A} \sqsubseteq \mathsf{A}', \; \mathsf{A} \sqsubseteq \mathsf{A}'', \\ \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \rrbracket \qquad \qquad \mathsf{u} \sqsubseteq \mathsf{u}', \; \mathsf{v} \sqsubseteq \mathsf{v}'
```

Sets of valid judgements (with derivations)

```
\vdash_{\mathsf{w}} \Gamma' \in \llbracket \vdash_{\mathsf{x}} \Gamma \rrbracket \quad \text{when} \quad \Gamma \sqsubseteq \Gamma'
\Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \rrbracket \quad \text{when} \quad \Gamma \sqsubseteq \Gamma', \; \mathsf{t} \sqsubseteq \mathsf{t}', \; \mathsf{A} \sqsubseteq \mathsf{A}'
\Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{u}' _{\mathsf{A}'} =_{\mathsf{A}''} \mathsf{v}' \in \quad \text{when} \quad \Gamma \sqsubseteq \Gamma', \; \mathsf{A} \sqsubseteq \mathsf{A}', \; \mathsf{A} \sqsubseteq \mathsf{A}'', \quad \mathsf{u} \sqsubseteq \mathsf{u}', \; \mathsf{v} \sqsubseteq \mathsf{v}'
```

Translation theorem

If $\vdash_x \Gamma$ then there exists $\vdash_w \Gamma' \in \llbracket \vdash_x \Gamma \rrbracket$

Sets of valid judgements (with derivations)

Translation theorem

```
If \vdash_{\mathsf{x}} \Gamma then there exists \vdash_{\mathsf{w}} \Gamma' \in \llbracket \vdash_{\mathsf{x}} \Gamma \rrbracket
If \Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} then for any \vdash_{\mathsf{w}} \Gamma' \in \llbracket \vdash_{\mathsf{x}} \Gamma \rrbracket, there exists \Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \rrbracket
```

Sets of valid judgements (with derivations)

Translation theorem

```
If \vdash_{\mathsf{X}} \Gamma then there exists \vdash_{\mathsf{W}} \Gamma' \in \llbracket \vdash_{\mathsf{X}} \Gamma \rrbracket

If \Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{A} then for any \vdash_{\mathsf{W}} \Gamma' \in \llbracket \vdash_{\mathsf{X}} \Gamma \rrbracket,

there exists \Gamma' \vdash_{\mathsf{W}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{A} \rrbracket

If \Gamma \vdash_{\mathsf{X}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} then for any \vdash_{\mathsf{W}} \Gamma' \in \llbracket \vdash_{\mathsf{X}} \Gamma \rrbracket,

there exists \Gamma' \vdash_{\mathsf{W}} \mathsf{p} : \mathsf{u}' _{\mathsf{A}' = \mathsf{A}'}, \mathsf{v}' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{u} \equiv \mathsf{v} : \mathsf{A} \rrbracket
```

Function type lemma*

```
Given \Gamma' \vdash_{W} t': C' \in \llbracket \Gamma \vdash_{X} t : A \rightarrow B \rrbracket,
there exists \Gamma' \vdash_{W} t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_{X} t : A \rightarrow B \rrbracket
```

^{*} actually applies to any type former

Function type lemma*

```
Given \Gamma' \vdash_{w} t': C' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket,
there exists \Gamma' \vdash_{w} t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket
```

* actually applies to any type former

Proof

 $A \rightarrow B \sqsubset C'$

Function type lemma*

```
Given \Gamma' \vdash_{w} t': C' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket,
there exists \Gamma' \vdash_{w} t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket
```

* actually applies to any type former

Proof

 $A \rightarrow B \subset C'$ is obtained from a certain number of applications of

Function type lemma*

```
Given \Gamma' \vdash_{w} t': C' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket,
there exists \Gamma' \vdash_{w} t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket
```

* actually applies to any type former

Proof

A
$$\rightarrow$$
 B \sqsubset C' is obtained from a certain number of applications of
$$\frac{t \; \sqsubset \; t'}{t \; \sqsubset \; transp(p,t')}$$
 followed by
$$\frac{A \; \sqsubset \; A' \quad B \; \sqsubset \; B'}{A \rightarrow \; B \; \sqsubset \; A' \rightarrow \; B'}$$

Function type lemma*

```
Given \Gamma' \vdash_{w} t': C' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket, there exists \Gamma' \vdash_{w} t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket
```

* actually applies to any type former

Proof

Function type lemma*

```
Given \Gamma' \vdash_{\mathsf{W}} \mathsf{t}': C' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{t} : A \to B \rrbracket, there exists \Gamma' \vdash_{\mathsf{W}} \mathsf{t}'': A' \to B' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{t} : A \to B \rrbracket
```

* actually applies to any type former

Proof

A \rightarrow B \sqsubset C' is obtained from a certain number of applications of $\frac{t \; \sqsubset \; t'}{t \; \sqsubset \; transp(p,t')}$ followed by $\frac{A \; \sqsubset \; A' \quad B \; \sqsubset \; B'}{A \rightarrow \; B \; \sqsubset \; A' \rightarrow \; B'} \quad \text{we thus have} \quad A' \rightarrow \; B' \; \sqsupset \; A \rightarrow \; B \; \sqsubset \; C'$

by the fundamental lemma, they are heterogeneously equal, and by heq_to_eq they are equal: $e : C' = A' \rightarrow B'$

Function type lemma*

```
Given \Gamma' \vdash_{w} t': C' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket, there exists \Gamma' \vdash_{w} t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_{x} t : A \rightarrow B \rrbracket
```

* actually applies to any type former

Proof

A \rightarrow B \sqsubset C' is obtained from a certain number of applications of t \sqsubset transp(p,t')

followed by
$$\frac{A \sqsubset A' \qquad B \sqsubset B'}{A \rightarrow B \sqsubset A' \rightarrow B'}$$
 we thus have $A' \rightarrow B' \sqsupset A \rightarrow B \sqsubset C'$

by the fundamental lemma, they are heterogeneously equal, and by heq_to_eq they are equal: e : C' = A' > B'

so
$$\Gamma' \vdash_{w} transp(e,t') : A' \rightarrow B' \in [\Gamma \vdash_{x} t : A \rightarrow B]$$

Function type lemma*

```
Given \Gamma' \vdash_i t': C' \in \llbracket \Gamma \vdash_x t : A \rightarrow B \rrbracket,
there exists \Gamma' \vdash_i t'': A' \rightarrow B' \in \llbracket \Gamma \vdash_x t : A \rightarrow B \rrbracket
```

* actually applies to any type former

Choice of type lemma

```
Given \Gamma' \vdash_{\mathsf{W}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{A} \rrbracket, and \Gamma' \vdash_{\mathsf{W}} \mathsf{A}'' : \mathsf{Type} \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{A} : \mathsf{Type} \rrbracket, there exists \Gamma' \vdash_{\mathsf{W}} \mathsf{t}'' : \mathsf{A}'' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{A} \rrbracket
```

Conversion rule

$$\frac{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \qquad \Gamma \vdash_{\mathsf{x}} \mathsf{A} \equiv \mathsf{B}}{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{B}}$$

$$\Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{A}' \qquad \text{Type} = \text{Type} \quad \mathsf{B}' \in \mathsf{B}$$

Conversion rule

Conversion rule

Conversion rule

$$\frac{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \qquad \Gamma \vdash_{\mathsf{x}} \mathsf{A} \equiv \mathsf{B}}{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{B}} \qquad \qquad \Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{A}' =_{\mathsf{Type}} \mathsf{B}'$$

from the choice of type lemma and the other IH:

$$\Gamma' \vdash_{\mathsf{w}} \mathsf{t}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \rrbracket$$

Conversion rule

$$\frac{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \qquad \Gamma \vdash_{\mathsf{x}} \mathsf{A} \equiv \mathsf{B}}{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{B}} \qquad \qquad \Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{A}' =_{\mathsf{Type}} \mathsf{B}'$$

from the choice of type lemma and the other IH: $\Gamma' \vdash_{w} t'$: A' $\in \llbracket \Gamma \vdash_{x} t$: A \rrbracket

```
so: \Gamma' \vdash_{W} transp(p,t') : B' \in [\Gamma \vdash_{X} t : B]
```

Conversion rule

$$\frac{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{A} \qquad \Gamma \vdash_{\mathsf{x}} \mathsf{A} \equiv \mathsf{B}}{\Gamma \vdash_{\mathsf{x}} \mathsf{t} : \mathsf{B}} \qquad \qquad \Gamma' \vdash_{\mathsf{w}} \mathsf{p} : \mathsf{A}' =_{\mathsf{Type}} \mathsf{B}'$$

from the choice of type lemma and the other IH: $\Gamma' \vdash_{\mathsf{W}} \mathsf{t}'$: $\mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{X}} \mathsf{t} : \mathsf{A} \rrbracket$

so:
$$\Gamma' \vdash_{W} transp(p,t')$$
 : $B' \in [\Gamma \vdash_{X} t : B]$

Other typing rules similar, for application rule we also use the function type lemma

```
\Gamma, X : A \vdash_X t : B \Gamma \vdash_X u : A
```

```
\Gamma \vdash_{x} (\lambda (x : A). B. t) e^{(x:A).B} u \equiv t\{ x := u \} : B\{ x := u \}
```

```
\Gamma, x : A \vdash_{x} t : B \qquad \qquad \Gamma \vdash_{x} u : A \Gamma \vdash_{x} (\lambda (x : A). B. t) @^{(x:A) \cdot B} u \equiv t\{ x := u \} : B\{ x := u \} \Gamma' \vdash_{w} u' : A' \in \llbracket \Gamma \vdash_{x} u : A \rrbracket
```

```
\Gamma, X : A \vdash_X t : B
                                                                                                  \Gamma \vdash_{\mathsf{x}} \mathsf{u} : \mathsf{A}
      \Gamma \vdash_{\mathsf{x}} (\lambda (x : A). B. t) \ e^{(x:A).B} \ u \equiv t\{x := u\} : B\{x := u\}
                                    \Gamma' \vdash_{\mathsf{w}} \mathsf{u}' : \mathsf{A}' \in \llbracket \Gamma \vdash_{\mathsf{x}} \mathsf{u} : \mathsf{A} \rrbracket
                   \Gamma', X : A' \vdash_{w} t' : B' \in \llbracket \Gamma, X : A \vdash_{x} t : B \rrbracket
\Gamma' \vdash_{w} \beta t' u' : (\lambda (x : A'). B'. t') e^{(x:A').B'} u' = t' \{ x := u' \}
                                                 we conclude using eq_to_heq
```

Conservativity

```
If \vdash_w A: Type and \vdash_x t: A then there exists \vdash_w t': A \in \llbracket \vdash_x t: A \rrbracket
```

Conservativity

```
If \vdash_w A: Type and \vdash_x t: A then there exists \vdash_w t': A \in \llbracket \vdash_x t: A \rrbracket
```

Proof using the choice of type lemma

Conservativity

```
If \vdash_{w} A: Type and \vdash_{x} t: A then there exists \vdash_{w} t': A \in \llbracket \vdash_{x} t: A \rrbracket
```

Proof using the choice of type lemma

Relative consistency

```
If \vdash_x t : \bot
then there exists \vdash_w t' : \bot
```

Conservativity

```
If \vdash_w A: Type and \vdash_x t: A then there exists \vdash_w t': A \in \llbracket \vdash_x t: A \rrbracket
```

Proof using the choice of type lemma

Relative consistency

```
If \vdash_x t : \bot
then there exists \vdash_w t' : \bot
```

Proof using conservativity

= ITT Reflection

WTT

propositional computation rules

heterogenous equality with congruence proofs

= ITT Reflection

WTT

propositional computation rules

heterogenous equality with congruence proofs

Ideally, heterogenous equality should be interpreted just like in ITT

what is the correct design?

```
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : \ u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
```

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma, x : Pack A_{1} A_{2} \vdash_{w} pB : B_{1}[x := Proj_{1} x] = B_{2}[x := Proj_{2} x]
\Gamma \vdash_{w} pu : u_{1} \sqcap_{(x:A_{1}).B_{1}} = \sqcap_{(x:A_{2}).B_{2}} u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2}
```

```
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
```

```
\Gamma \vdash_{W} A_{1}, A_{2} : Type
```

 $\Gamma \vdash_{W} Pack A_1 A_2 : Type$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma, x : Pack A_{1} A_{2} \vdash_{w} pB : B_{1}[x := Proj_{1} x] = B_{2}[x := Proj_{2} x]
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1} = \Pi(x:A_{2}).B_{2} u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2}
\Gamma \vdash_{w} cong_{app} B_{1} B_{2} pu pA pB pv : u_{1} Q(x:A_{1}).B_{1} v_{1} B_{1}[x := v_{1}] = B_{2}[x := v_{2}] u_{2} Q(x:A_{2}).B_{2} v_{2}
```

 $\Gamma \vdash_{W} A_1$, A_2 : Type $\Gamma \vdash_{W} p$: Pack $A_1 A_2$

 $\Gamma \vdash_{W} Pack A_1 A_2 : Type \qquad \Gamma \vdash_{W} Proj_1 p : A_1$

```
\Gamma \vdash_{W} pA : A_1 = A_2
                \Gamma, x : Pack A_1 \ A_2 \ \vdash_w pB : B_1[x := Proj_1 \ x] = B_2[x := Proj_2 \ x]
                  \Gamma \vdash_{W} pu : U_{1} \sqcap_{(X:A_{1}).B_{1}} = \prod_{(X:A_{2}).B_{2}} U_{2}
\Gamma \vdash_{W} pv : V_{1} \mid_{A_{1}} = \prod_{A_{2}} V_{2}
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
                                                       \Gamma \vdash_{W} p : Pack A_1 A_2
                                                                                                        \Gamma \vdash_{W} p : Pack A_1 A_2
        \Gamma \vdash_{W} A_{1}, A_{2} : Type
    \Gamma \vdash_{W} Pack A_1 A_2 : Type \qquad \Gamma \vdash_{W} Proj_1 p : A_1
                                                                                                           \Gamma \vdash_{W} Proj_{2} p : A_{2}
```

```
\Gamma \vdash_{W} pA : A_1 = A_2
               \Gamma, x : Pack A_1 \ A_2 \ \vdash_w pB : B_1[x := Proj_1 \ x] = B_2[x := Proj_2 \ x]
                  \Gamma \vdash_{W} pu : U_{1} \sqcap_{(X:A_{1}).B_{1}} = \prod_{(X:A_{2}).B_{2}} U_{2}
\Gamma \vdash_{W} pv : V_{1} \mid_{A_{1}} = \prod_{A_{2}} V_{2}
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
                                                       \Gamma \vdash_{W} p : Pack A_1 A_2
                                                                                                        \Gamma \vdash_{W} p : Pack A_1 A_2
        \Gamma \vdash_{W} A_{1}, A_{2} : Type
                                                                                                          \Gamma \vdash_{W} Proj_{2} p : A_{2}
    \Gamma \vdash_{W} Pack A_1 A_2 : Type \qquad \Gamma \vdash_{W} Proj_1 p : A_1
                                                        \Gamma \vdash_{W} p : Pack A_1 A_2
```

 $\Gamma \vdash_{W} Proj_{e} p : Proj_{1} p_{A_{1}} =_{A_{2}} Proj_{2} p$

```
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
```

Pack
$$A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 X_2$$

 $Proj_1 p := p.1$ $Proj_2 p := p.2.1$ $Proj_e p := p.2.2$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma, x : Pack A_{1} A_{2} \vdash_{w} pB : B_{1}[x := x.1] = B_{2}[x := x.2.1]
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1} = \Pi(x:A_{2}).B_{2} u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2}
```

```
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
```

Pack
$$A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 X_2$$

 $Proj_1 p := p.1$ $Proj_2 p := p.2.1$ $Proj_e p := p.2.2$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma, x : Pack A_{1} A_{2} \vdash_{w} pB : B_{1}[x := x.1] = B_{2}[x := x.2.1]
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1} = \Pi(x:A_{2}).B_{2} u_{2} \qquad \Gamma \vdash_{w} pv : V_{1} A_{1} = A_{2} V_{2}
```

```
\Gamma \vdash_{w} cong\_app B_1 B_2 pu pA pB pV : u_1 @(x:A_1) \cdot B_1 V_1 B_1[x := v_1] = B_2[x := v_2] u_2 @(x:A_2) \cdot B_2 V_2
```

Pack
$$A_1 A_2 := \Sigma (x_1 : A_1) (x_2 : A_2). x_1 A_1 = A_2 X_2$$

$$a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b$$

```
we want to use J on \Gamma \vdash_{w} pA : A_{1} = A_{2} abstracting the rest \Gamma, \chi : Pack A_{1} A_{2} \vdash_{w} pB : B_{1}[\chi := \chi.1] = B_{2}[\chi := \chi.2.1] \Gamma \vdash_{w} pu : u_{1} \prod_{(\chi:A_{1}).B_{1}} = \prod_{(\chi:A_{2}).B_{2}} u_{2} \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2}
```

```
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2
```

```
Pack A_1 A_2 := \Sigma (x_1 : A_1) (x_2 : A_2). x_1 A_1 = A_2 X_2
a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b
```

```
we want to use J on \Gamma \vdash_{w} pA : A_{1} = A_{2} abstracting the rest \Gamma, \chi: Pack A_{1} A_{2} \vdash_{w} pB : B_{1}[\chi := \chi.1] = B_{2}[\chi := \chi.2.1] \Gamma \vdash_{w} pu : u_{1} \Pi(\chi:A_{1}).B_{1} = \Pi(\chi:A_{2}).B_{2} u_{2} \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2} \Gamma \vdash_{w} pv : v_{1} A_{2} = A_{2} v_{2}
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$B_1' := \lambda x. B_1 \qquad B_2' := \lambda x. B_2$$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
using \beta and eq\_trans \quad \Gamma, \quad x : Pack \quad A_{1} \quad A_{2} \vdash_{w} pB : B_{1}' \quad x.1 = B_{2}' \quad x.2.1
\Gamma \vdash_{w} pu : u_{1} \quad \Pi(x:A_{1}).B_{1} = \Pi(x:A_{2}).B_{2} \quad u_{2} \qquad \qquad \Gamma \vdash_{w} pv : V_{1} \quad A_{1} = A_{2} \quad V_{2}
\Gamma \vdash_{w} cong\_app \quad B_{1} \quad B_{2} \quad pu \quad pA \quad pB \quad pv : u_{1} \quad @^{(x:A_{1}).B_{1}} \quad V_{1} \quad B_{1}[x := v_{1}] = B_{2}[x := v_{2}] \quad u_{2} \quad @^{(x:A_{2}).B_{2}} \quad V_{2}
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_{A=B} \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}). B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{w} pu : u_{1} \Pi_{(x:A_{1}).B_{1}} = \Pi_{(x:A_{2}).B_{2}} u_{2} \qquad \Gamma \vdash_{w} pv : V_{1} A_{1} = A_{2} V_{2}
\Gamma \vdash_{w} cong\_app B_{1} B_{2} pu pA pB pv : u_{1} @^{(x:A_{1}).B_{1}} V_{1} B_{1}[x := v_{1}] = B_{2}[x := v_{2}] u_{2} @^{(x:A_{2}).B_{2}} V_{2}
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}). B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{w} pu : u_{1} \prod_{(x:A_{1}).B_{1}} = \prod_{(x:A_{2}).B_{2}} u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2}
\Gamma \vdash_{w} cong\_app B_{1} B_{2} pu pA pB pv : u_{1} @^{(x:A_{1}).B_{1}} v_{1} B_{1}[x := v_{1}] = B_{2}[x := v_{2}] u_{2} @^{(x:A_{2}).B_{2}} v_{2}
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

$$\Gamma \vdash_{w} pA : A_{1} = A_{2}$$

$$\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}) . B_{1}' x.1 = B_{2}' x.2.1$$

$$\Gamma \vdash_{w} pu : u_{1} \prod_{(x:A_{1}).B_{1}} = \prod_{(x:A_{2}).B_{2}} u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1} = A_{2} v_{2}$$

$$\Gamma \vdash_{w} cong_app \ B_1 \ B_2 \ pu \ pA \ pB \ pv : u_1 \ Q(x:A_1) \cdot B_1 \ V_1 \ B_1[x := V_1] = B_2[x := V_2] \ u_2 \ Q(x:A_2) \cdot B_2 \ V_2$$

to abstract over B_1 ' and B_2 ' we need extensionality of Π !

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b_2 := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}). B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1}' x=\Pi(x:A_{2}).B_{2}' x u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1}=A_{2} v_{2}
\Gamma \vdash_{w} cong\_app B_{1} B_{2} pu pA pB pv : u_{1} @^{(x:A_{1}).B_{1}} v_{1} B_{1}[x := v_{1}]=B_{2}[x := v_{2}] u_{2} @^{(x:A_{2}).B_{2}} v_{2}
```

```
Pack A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2
a_1 = B \ b := \Sigma \ (e : A = B). \ transp(e,a) = b
pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2
```

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}). B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1}' x=\Pi(x:A_{2}).B_{2}' x u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A_{1}=A_{2} v_{2}
\Gamma \vdash_{w} cong\_app B_{1} B_{2} pu pA pB pv : u_{1} \underbrace{Q(x:A_{1}).B_{1}}_{Q(x:A_{1}).B_{1}} v_{1} \underbrace{B_{1}[x := v_{1}]}_{B_{2}[x := v_{2}]} u_{2} \underbrace{Q(x:A_{2}).B_{2}}_{Q(x:A_{2}).B_{2}} v_{2}
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}) . B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1}' x = \Pi(x:A_{2}).B_{2}' x u_{2} \qquad \Gamma \vdash_{w} pv : V_{1} A_{1} = A_{2} V_{2}
```

→ annotations were useful for the proof, now we can drop them!

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b_2 := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

```
\Gamma \vdash_{\mathsf{w}} \mathsf{pA} : \mathsf{A}_1 = \mathsf{A}_2
          \Gamma \vdash_{W} pB' : \Pi (x : Pack A_1 A_2). B_1' x.1 = B_2' x.2.1
I \vdash_{W} pu : U_{1} \sqcap_{(X:A_{1}).B_{1}}, x=\Pi_{(X:A_{2}).B_{2}}, x U_{2} \Gamma \vdash_{W} pv : V_{1} \mid_{A_{1}}=A_{2} \mid_{A_{2}}
\Gamma \vdash_{w} cong\_app \ B_1 \ B_2 \ pu \ pA \ pB \ pV : U_1 \ V_1 \ B_1[X := V_1] = B_2[X := V_2] \ U_2 \ V_2
             Pack A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 x_2
                   a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b
              pB' := \lambda x.pB
                                             B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2
```

```
\Gamma \vdash_{\mathsf{w}} \mathsf{pA} : \mathsf{A}_1 = \mathsf{A}_2
          \Gamma \vdash_{W} pB' : \Pi (x : Pack A_1 A_2). B_1' x.1 = B_2' x.2.1
I \vdash_{W} pu : U_{1} \sqcap_{(X:A_{1}).B_{1}}, x=\Pi_{(X:A_{2}).B_{2}}, x U_{2} \Gamma \vdash_{W} pv : V_{1} \mid_{A_{1}}=A_{2} \mid_{A_{2}}
      \Gamma \vdash_{w} cong\_app B_1 B_2 pu pA pB pV : u_1 V_1 B_1, V_1 = B_2, V_2 u_2 V_2
             Pack A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 X_2
                  a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b
```

 $B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$

 $pB' := \lambda x.pB$

```
\Gamma \vdash_{w} pA : A_{1} = A_{2}
\Gamma \vdash_{w} pB' : \Pi (x : Pack A_{1} A_{2}) . B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{w} pu : u_{1} \Pi(x:A_{1}).B_{1}' x=\Pi(x:A_{2}).B_{2}' x u_{2} \qquad \Gamma \vdash_{w} pv : V_{1} A_{1}=A_{2} V_{2}
\Gamma \vdash_{w} ?e : u_{1} V_{1} B_{1}' V_{1}=B_{2}' V_{2} u_{2} V_{2}
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_1 = A_2 \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$pB' := \lambda x.pB \qquad B_1' := \lambda x.B_1 \qquad B_2' := \lambda x.B_2$$

```
\Gamma \vdash_{\mathsf{W}} \mathsf{pA} : \mathsf{A}_1 = \mathsf{A}_2
           \Gamma \vdash_{W} pB' : \Pi (x : Pack A_1 A_2). B_1' x.1 = B_2' x.2.1
I \vdash_{W} pu : U_{1} \sqcap_{(X:A_{1}).B_{1}}, x=\Pi_{(X:A_{2}).B_{2}}, x U_{2} \Gamma \vdash_{W} pv : V_{1} \mid_{A_{1}}=A_{2} \mid_{A_{2}}
                              \Gamma \vdash_{W} ?e : U_{1} \lor_{1} B_{1}, V_{1} = B_{2}, V_{2} U_{2} \lor_{2}
              Pack A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 X_2
                    a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b
               D_1 := \lambda \times D_1 := \lambda \times D_1 := \lambda \times D_2 := \lambda \times D_2
```

```
we can now use J on \Gamma \vdash_{w} pA : A_{1} = A_{2} abstracting the rest
            \Gamma \vdash_{W} pB' : \Pi (x : Pack A_1 A_2). B_1' x.1 = B_2' x.2.1
  I \vdash_{W} pu : U_{1} \sqcap_{(X:A_{1}).B_{1}}, x=\Pi(X:A_{2}).B_{2}, x U_{2} Γ \vdash_{W} pv : V_{1} \mid_{A_{1}}=A_{2}, V_{2}
                            \Gamma \vdash_{W} ?e : U_{1} \lor_{1} B_{1}, V_{1} = B_{2}, V_{2} U_{2} \lor_{2}
               Pack A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 x_2
                    a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b
               D_1 := \lambda \times D_1 := \lambda \times D_1 := \lambda \times D_2 := \lambda \times D_2
```

```
\Gamma \vdash_{W} pB' : \Pi (x : Pack A A). B_{1}' x.1 = B_{2}' x.2.1
\Gamma \vdash_{W} pu : u_{1} \Pi_{(X:A).B_{1}'} x=\Pi_{(X:A).B_{2}'} x u_{2} \qquad \Gamma \vdash_{W} pv : v_{1} A=A v_{2}
```

$$\Gamma \vdash_{w} ?e : u_{1} \lor_{1} B_{1}, v_{1} = B_{2}, v_{2} u_{2} \lor_{2}$$

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2) \cdot x_1 \ A_1 = A_2 \ x_2$$

$$a_{A=B} \ b := \Sigma \ (e : A = B) \cdot transp(e,a) = b$$

from this and computation equalities for sums we prove Π (x : A). B_1 ' x = B_2 ' x

$$\Gamma \vdash_{w} pB' : \Pi (x : Pack A A). B_{1}' x.1 = B_{2}' x.2.1$$

$$\Gamma \vdash_{w} pu : u_{1} \Pi(x:A).B_{1}' x = \Pi(x:A).B_{2}' x u_{2} \qquad \Gamma \vdash_{w} pv : v_{1} A = A V_{2}$$

$$\Gamma \vdash_{W} ?e : u_{1} \lor_{1} B_{1}, v_{1} = B_{2}, v_{2} u_{2} \lor_{2}$$

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_{A=B} \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

from this and computation equalities for sums, and funext we prove $B_1' = B_2'$

$$\Gamma \vdash_{w} pB' : \Pi (x : Pack A A). B_{1}' x.1 = B_{2}' x.2.1$$

$$\Gamma \vdash_{w} pu : u_{1} \Pi(x:A).B_{1}' x = \Pi(x:A).B_{2}' x u_{2} \qquad \Gamma \vdash_{w} pv : V_{1} A = A V_{2}$$

$$\Gamma \vdash_{W} ?e : u_{1} \lor_{1} B_{1}, v_{1} = B_{2}, v_{2} u_{2} \lor_{2}$$

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2) \cdot x_1 \ A_1 = A_2 \ x_2$$

$$a_{A=B} \ b := \Sigma \ (e : A = B) \cdot transp(e,a) = b$$

```
\Gamma \vdash_{W} pu : U_1 \sqcap_{(x:A).B} = \sqcap_{(x:A).B} U_2
```

$$\Gamma \vdash_{W} pv : V_1 A =_A V_2$$

$$\Gamma \vdash_{W} ?e : u_1 \lor_1 B_{\lor_1} =_{B_{\lor_2}} u_2 \lor_2$$

Pack
$$A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 X_2$$

$$a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b$$

$$\Gamma \vdash_{W} ?e : u_1 \lor_1 B_{\lor_1} =_{B_{\lor_2}} u_2 \lor_2$$

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_{A=B} \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

$$\Gamma \vdash_{w} pu : u_1 = u_2$$

$$\Gamma \vdash_{W} pv : V_1 = V_2$$

$$\Gamma \vdash_{W} ?e : u_1 \lor_1 B_{\lor_1} =_{B_{\lor_2}} u_2 \lor_2$$

Pack
$$A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2 X_2$$

$$a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b$$

$$\Gamma \vdash_{W} pv : V_1 = V_2$$

$$\Gamma \vdash_{W} ?e : u \lor_{1} B \lor_{1} = B \lor_{2} u \lor_{2}$$

Pack
$$A_1 A_2 := \sum (x_1 : A_1) (x_2 : A_2) \cdot x_1 A_1 = A_2$$

$$a_{A=B} b := \Sigma (e : A = B). transp(e,a) = b$$

```
\Gamma \vdash_{\mathsf{W}} ?\mathsf{e} : \mathsf{u} \lor \mathsf{B} \lor \mathsf{E} \mathsf{B} \lor \mathsf{u} \lor
```

Pack
$$A_1 \ A_2 := \Sigma \ (x_1 : A_1) \ (x_2 : A_2). \ x_1 \ A_1 = A_2 \ x_2$$

$$a_{A=B} \ b := \Sigma \ (e : A = B). \ transp(e,a) = b$$

```
\Gamma \vdash_{w} \text{refl} : B \lor = B \lor
\Gamma \vdash_{w} ?p : \text{transp}(\text{refl}, u \lor) = u \lor
\text{Pack } A_{1} A_{2} := \Sigma (X_{1} : A_{1}) (X_{2} : A_{2}) . X_{1} A_{1} = A_{2} X_{2}
a_{A} = B b := \Sigma (e : A = B) . \text{transp}(e, a) = b
```

```
\Gamma \vdash_{w} \text{refl} : B \lor = B \lor
\Gamma \vdash_{w} \text{transp\_comp} : \text{transp(refl, } u \lor) = u \lor
\text{Pack } A_{1} A_{2} := \Sigma (X_{1} : A_{1}) (X_{2} : A_{2}) . X_{1} A_{1} = A_{2} X_{2}
a_{A} = B b := \Sigma (e : A = B) . \text{transp(e,a)} = b
```


Reflection

HEq-WTT

propositional computation rules

heterogenous equality with congruence proofs

WTT

propositional computation rules
UIP

binder extensionality

Probably have all the tools (sound and complete checker) but still very tedious to formalise!

Perspectives

Proof certificates

de Bruijn: A Plea for Weaker Frameworks

Problem: proof terms are too big which brings us back to WTT design

Local computation

Example: parallel plus

$$\lambda x \cdot x + 0 \equiv \lambda x \cdot x$$

gets translated to

$$\lambda x$$
. $x + 0 = \lambda x$. x using funext

Also extended to 2 level type theories!

