Text mining

1. Введение в автоматическую обработку текстов

Дмитрий Ильвовский, Екатерина Черняк dilvovsky@hse.ru, echernyak@hse.ru

Национальный Исследовательский Университет – Высшая Школа Экономики НУЛ Интеллектуальных систем и структурного анализа

January 25, 2017

Краткая история AOT(1)

- 7 января 1954. Джорджтаунский эксперимент по машинному переводу с русского на английский;
- 1957. Ноам Хомский ввел "универсальную грамматику";
- 1961. Начинается сбор Брауновского корпуса;
- конец 1960-х. ELIZA программа, ведущая психотерапевтические разговоры;
- 1975. Солтон ввел векторную модель (Vector Space Model, VSM);
- до 1980-х. Методы решения задач, основанные на правилах;
- после 1980–х. Методы решения задач, основанные на машинном обучении и корпусной лингвистике;
- 1998. Понте и Крофт вводят языковую модель (Language Model, LM);

Краткая история АОТ (2)

- конец 1990-х. Вероятностные тематические модели (LSI, pLSI, LDA, и т.д.);
- 1999. Опубликован учебник Маннинга и Щютце "Основы статистической автоматической обработки текстов" ("Foundations of Statistical Natural Language Processing");
- 2009. Опубликован учебник Берда, Кляйна и Лопера "Автоматическая обработка текстов на Python" ("Natural Language Processing with Python");
- 2014. Deep learning in NLP. Mikolov, Tomas и др. "Efficient estimation of word representations in vector space".

Кривые развития АОТ (Э.Камбрия)

Основные задачи АОТ

- Машинный перевод
- Классификация текстов
 - Фильтрация спама
 - По тональности
 - ▶ По теме или жанру
- Кластеризация текстов
- Извлечение информации
 - Фактов и событий
 - Именованных сущностей
- Вопросно-ответные системы
- Суммаризация текстов
- Генерация текстов
- Распознавание речи
- Проверка правописания
- Оптическое распознавание символов
- Пользовательские эксперименты и оценка точности и качества методов

Основные техники

- Уровень символов:
 - ▶ Токенизация: разбиение текста на слова
 - Разбиение текста на предложения
- Уровень слов морфология:
 - ▶ Разметка частей речи
 - Снятие морфологической неоднозначности
- Уровень предложений синтаксис:
 - Выделенние именных или глагольных групп (chunking)
 - Выделенние семантических ролей
 - Деревья составляющих и зависимостей
- Уровень смысла семантика и дискурс:
 - Разрешение кореферентных связей
 - Анализ дискурсивных связей
 - Выделение синонимов
 - Анализ аргументативных связей

Основные подходы

- Методы, основанные на правилах
- Методы, основанные на статистическом анализе и машинном обучении
- 3 Комбинированные методы

Основные проблемы

- Неоднозначность
 - ▶ Лексическая неоднозначность
 - \star орган, парить, рожки, атлас
 - Морфологическая неоднозначность
 - ⋆ Хранение денег в банке.
 - Что делают белки в клетке?
 - Синтаксическая неоднозначность
 - Мужу изменять нельзя.
 - ★ Его удивил простой солдат.
- Неологизмы: печеньки, заинстаграммить, репостнуть, расшарить
- Разные варианты написания: Россия, Российская Федерация, РФ
- Нестандартное написание: каг дила?

How many meanings can you get for the sentence "I saw the man on the hill with a telescope"?

I saw the man. The man was on the hill. I was using a telescope.
I saw the man. I was on the hill. I was using a telescope.
I saw the man. The man was on the hill. The hill had a telescope.
I saw the man. I was on the hill. The hill had a telescope.
I saw the man. The man was on the hill. I saw him using a telescope.

АОТ в индустрии

Популярные задачи: суммаризация большого колчиества документов, анализ историй болезни, анализ тональности, рекомендательные системы, веб-аналитика

- Поисковые машины: Google, Baidu, Yahoo, Yandex
- Распознавание речи: Siri, Google Now, Xbox
- Аналитика: SAS Text Miner, IBM Watson, IBM Content Analytics, OntosMiner, Intersystems iKnow, SAP HANA, Oracle Text
- Проверка правописания: Word, Pages, iOS apps, Android apps

План

- Введение в автоматическую обработку текстов
- Введение в информационный поиск
- Вероятностное тематическое моделирование
- Классификация текстов по теме и по тональности
- Использование методов классификации последовательностей (sequence labelling) в задачах извлечения информации
- Кластеризация текстов
- Методы определения семантической близости

Сегодня

- 🕕 Введение
- 2 Токенизация и подсчет количества слов
- Морфологический анализ
- 4 Извлечение ключевых слов и словосочетаний
- Векторная модель коллекции текстов
- Синтаксический анализ

Сколько слов в этом предложении?

"На дворе трава, на траве дрова, не руби дрова на траве двора."

12 токенов: На, дворе, трава, на, траве, дрова, не, руби, дрова, на, траве, двора

8 - 9 типов: Н/на, дворе, трава, траве, дрова, не, руби, двора.

6 лексем: на, не, двор, трава, дрова, рубить

Токен и тип

Тип – уникальное слово из текста

Токен – тип и его позиция в тексте

N =число токенов

V — словарь (все типы)

|V| = количество типов в словаре

Как связаны N и |V|?

Закон Ципфа

В любом достаточно большом тексте ранг типа обратно пропорционален его частоте:

$$f=\frac{a}{r}$$

f — частота типа

r — ранг типа

а – параметр, для славянских языков – около 0.07

Закон Ципфа: пример

Закон Хипса

С увеличением длины текста (количества токенов), количество типов увеличивается в соответствии с законом :

$$|V| = K * N^b$$

N =число токенов

|V| = количество типов в словаре

K, b – параметры, обычно $K \in [10, 100], b \in [0.4, 0.6]$

Токенизация

- Разбиение текста на отдельные слова
- Сегментация предложений

Почему сложна токенизация?

- Простой пример: "В Нью-Йорке хороший маффин стоит 3.88\$".
 - "." это токен?
 - ▶ 3.88\$ это один токен или несколько?
 - ▶ Нью-Йорк это один токен или несколько?
- В реальных данных много шума: html-разметка, ссылки, лишние знаки пунктуации.
- В реальных данных много опечаток: аптом она сказла
- Точка не всегда означает конец предложения: р. Москва, к.т.н., 20-ые гг.

Токенизация с помощью регулярных выражений

Задаем шаблоны, описывающие токены.

```
Pегулярные выражения на Python

In[1]: import re

In[2]: prog = re.compile('[A-Za-z]+')

In[3]: prog.findall("Words, words, words.")

Out[1]: ['Words', 'words', 'words']
```

Сегментация предложений (1)

Как определить границы предложения?

- "?", "!" как правило, однозначны
- Точка "." не всегда означает конец предложения
- Прямая речь: Кто там? спросил дядя Фёдор. Это я!

Бинарный классификатор для сегментации предложений: для каждой точки "." определить, является ли она концом предложения или нет.

Бинарный классификатор

Бинарный классификатор $f:X\Longrightarrow 0,1$ получает на вход таблицу X (каждая строчка – одна точка в тексте, столбцы – признаки) и решает EndOfSentence (0) или NotEndOfSentence (1).

Сегментация предложений (2)

Какие признаки использовать для классификации?

- Количество пробелов после точки
- Заглавная или строчная буква после точки
- Принадлежит ли точка к аббревиатуре
- и т.д.

Нужно много разметки!

Natural Language Toolkit

Natural Language Toolkit умеет все

```
NLTK tokenizers
In[1]: from nltk.tokenize import RegexpTokenizer,
wordpunct_tokenize
In[2]: s = ''Good muffins cost $3.88 in New York. \n Please
buy me two of them. \n Thanks."
In[3]: tokenizer = RegexpTokenizer('\w+| \$ [\d \.]+ | S
\+')
In[4]: tokenizer.tokenize(s)
Out[1]:['Good', 'muffins', 'cost', '$3.88', 'in', 'New',
'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them',
'.', 'Thanks', '.']
In[5]: wordpunct_tokenize(s)
Out[2]: ['Good', 'muffins', 'cost', '$', '3', '.', '88',
'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two',
'of', 'them', '.', 'Thanks', '.']
```

Обучение токенизации

nltk.tokenize.punkt — это инструмент для обучения токенизации по размеченным данным. Содержит обученный токенизатор Punkt_tokenizer для текстов на английском языке.

```
Punkt_tokenizer
In[1]: import nltk.data
In[2]: sent_detector =
nltk.data.load('tokenizers/punkt/english.pickle')
In[3]: sent_detector.tokenize(s)
Out[1]: ['Good muffins cost $3.88 in New York.', 'Please buy me two of them.', 'Thanks.']
```

- Введение
- 2 Токенизация и подсчет количества слов
- Морфологический анализ
- 4 Извлечение ключевых слов и словосочетаний
- Бекторная модель коллекции текстов
- 6 Синтаксический анализ

Морфологический анализ

Задачи морфологического анализа:

- Разбор слова определение нормальной формы (леммы) и грамматических характеристик слова
- **Синтез слова** генерация слова по заданным грамматическим характеристикам

Морфологический процессор – инструмент морфологического анализа:

- Морфологический словарь
- Морфологический анализатор

Морфологический анализ

У каждого слова есть лемма (нормальная форма):

- кошке, кошку, кошкам, кошкой \implies кошка
- бежал, бежит, бегу \implies бежать
- белому, белым, белыми \implies белый

Часть речи [Manning, Schuetze, 1999]

Слова можно объединить в классы — части речи — в соответствии с их ситаксическими характеристиками. Основные части речи: существительные, предлоги и глаголы. Основные морфологические процессы: словоизменение (спряжение и склонение), словообразование (клуб — клубный), словосложение (земле+устройство).

Парадигма

Словоизменительная парадигма — список словоформ, принадлежащих одной лексеме и имеющих разные грамматические значения.

```
пальто- плакать рук-а плач-у рук-и плач-ешь рук-е плач-ет рук-ой плач-ете о рук-е плач-ут
```

Грамматические характеристики [Попов, 1982]

- Существительное: род (м.р., ж.р., с.р.), число (ед., мн.), падеж (им., род., дат., вин., твор., пред.), одушевленность (од., неод.)
- Полное прилагательное и причастие: пассивность (пасс., акт.), время (прош., наст.), род (м.р., ж.р., с.р.), число (ед., мн.), падеж (им., род., дат., вин., твор., пред.), одушевленность (од., неод.), вид (сов., несов.)
- Краткое прилагательное и причастие: пассивность (пасс., акт.), время (прош., наст.), род (м.р., ж.р., с.р.), число (ед., мн.)
- Глагол: пассивность (пасс., акт.), время (прош., наст.) род (м.р., ж.р., с.р.), число (ед., мн.)
- 🍑 Деепричастие: пассивность (пасс., акт.), время (прош., наст.), число (ед., мн.)
- Наречие: обстоятельственное (обст.), определительное (опред.)
- Количественное числительное: тип "1", "2", "5", дробное (дроб.), неопределенное (неопр.), именнованное (именнов.),
- Местоимение: класс: притяжательное (прит.), указательное (указ.), возвратное (возвр.,), возвратно-аттрибутивное (возвр.-атр.), третьего лица (3 л.); род (м.р., ж.р., с.р.), число (ед., мн.), падеж (им., род., дат., вин., твор., пред.)
- Союз: сочинительный (соч.), подчинительный (подч.)
- 🖣 Предлог: падеж (род., дат., вин., твор., пред.)
- Частица: вопросительная (вопр.), отрицательная (отр.)

Типы существительных [Попов, 1982]

					морфологические			тины	существительных							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Им. ед.	ø	ø	ø	a	я, ья	я	я	ь	ь, й	й	0	0	я	e	е, ье	e
Род. ед.	a	a	а	ы, и	и, ьи	и	и	11	я	я	а	a	и	a	я, ья	я
Дат. ед.	у	У	y	e	е, ье	e	111	13	ю	10	y	y	и	У	ю, ью	ю
Вин. ед.	'			y	ю, ью	10	10	ь			-					
Тв. ед.	om, em	ОМ	ом	ей, ой	ей, ьей	eä	eñ	ью	ем	ем	ом	621	ем	ем	ем, ьем	ем
Предл. ед.	e	e	e	e	е, ье	е	п	п	e	и	е	e	я	е	е, ье	и
Им. ми.	ы, п, ья	ы, н	а	ы, п	и, ьп	я	11	и	п	п	a	п, ья	а	а	я, ье	я
Род. мн.	ов, еп, ей, ьев	ø	ов	Ø	ей	й, ь. Ø	ŭ	ей	ей, св	ев	Ø, 011	Ø, ob,	ø	Ø, en	ий, ей	ű
Дат. мн.	ам, ьям	331	ач	ам	яч, ьям	ям	ям	ям	ям	ям	8M	ам, ьям	ам	ам	ям, ьям	ям
Вин. ин.	1		i	1				l		i	1		l			
Тв. мн.	ами, ьями	амп	амп	ами	HMRA HIAR	ями	ямп	ями	ями	ями	ами	ьями, ами	ами	амп	ями, ьями	ями
Предл. мн.	ах. ьях	ax	ax	ax	ьях, ях	ях	ях	ях	ях	ях	ax	ах, ьях	ax	ax	ях, ьях	ях
Приморы	Пропесс, брат	Грамм	Номер	Матрица	Ступпи,	Идоя	Липпи	Мишень	Забой,	Сапаторий	Тело	Дерево	Время	Полотенце	Поле, устье	Влияние

Стемминг

Слова состоят из морфем: word = stem + affixes. Стемминг позволяет отбросить аффиксы. Чаще всего используется алгоритм Портера.

1-ый вид ошибки: белый, белка, белье \implies бел

2-ой вид ошибки: трудность, трудный \implies трудност, труд, кротость \implies кротост, крот

3-ий вид ошибки: быстрый, быстрее \implies быст, побыстрее \implies побыст

Алгоритм Портера состоит из 5 циклов комманд, на каждом цикле – операция удаления / замены суффикса. Возможны вероятностные расширения алгоритма.

Разрешение морфологической неоднозначности

- Существительное или глагол: стали, стекло, течь, белила, падали
- Прилагательное или существительное: мороженое, простой
- Существительное или существительное: черепах

N-граммные морфологические анализаторы:

- unigram tagging: выбирает самый частый / вероятный разбор
- ngram tagging: анализирует контекст текущего слова п предыдущих слов (НММ, CRF, нейронные сети, нужно много данных для обучения)
- Временные затраты VS точность разбора VS количество неоднозначных слов ⇒ ансамбли морфологических анализаторов

Машинное обучение для морфологического анализа

- Классификаторы в признаковых пространствах Деревья решений, MaxEnt, SVD
- Графические модели HMM, CRF
- Нейронные сети
 - Sequence labelling: Senna
 - Structure learning: SyntaxNet

- 1 Введение
- 2 Токенизация и подсчет количества слов
- Морфологический анализ
- 4 Извлечение ключевых слов и словосочетаний
- Бекторная модель коллекции текстов
- 6 Синтаксический анализ

Классификация методов извлечения ключевых слов и словосочетаний

Ключевые слова и словосочетания сложно определить формально. Поскольку определений ключевых слов и словосочетаний множество, существует масса методов их извлечения:

- с учителем VS без учителя
- частотные VS по-сложнее
- из одного текста VS из коллекции текстов
- слова (униграммы) VS биграммы VS *N*-граммы
- термины VS именованные сущности VS коллокации
- последовательные слова VS с использованием окна

Методы извлечения ключевых слов и словосочетании с учителем

Построим бинарный классификатор с целевым признаком KeyWord (1) NotKeyWord (0). Возможные признаки для классификации:

- Слово употребляется в начале предложения
- Слово написано с заглавной буквы
- Частота слова
- Слово используется в качестве названия статьи или категории в Википедии
- Слово именованная сущность
- Слово термин
- И т.д.

Но нужны размеченные коллекции текстов.

Методы извлечения ключевых слов и словосочетании без учителя

- Морфологические шаблоны
- Меры ассоциации биграмм: PMI, T-Score, LLR
- Графовые методы: TextRank [Mihalcea, Tarau, 2004]
- Синтаксические шаблоны

Меры ассоциации биграмм (1)

```
w_1, w_2 – два слова f(w_1), f(w_2) – их частоты f(w_1, w_2) – частота биграммы w_1w_2 PMI(w_1, w_2) = \log \frac{f(w_1, w_2)}{f(w_1)f(w_2)}
```

Pointwise Mutual Information [Manning, Shuetze, 1999]

 $PMI(w_1, w_2)$ показывает сколько информации о появлении одного слова содержится в появлении другого слова.

Меры ассоциации биграмм (2)

```
w_1, w_2 — два слова f(w_1), f(w_2) — их частоты f(w_1, w_2) — частота биграммы w_1w_2 N — число слов T-score(w_1, w_2) = \frac{f(w_1, w_2) - f(w_1) * f(w_2)}{f(w_1, w_2)/N}
```

T-Score [Manning, Shuetze, 1999]

 $T-score(w_1,w_2)$ — это статистический t-test, используемый для извлечения ключевых словосочетаний. t-test измеряет разницу между ожидаемым и наблюдаемым средним значением, нормированную стандартным отклонением. Считается лучшей мерой ассоциацией биграмм. Уровень значимости при анализе, как правило, не используется.

Меры ассоциации биграмм (3)

 w_1,w_2 – два слова $O_{11}=f(w_1,w_2)$ – наблюдаемая частота биграммы w_1w_2 $E_{11}=rac{O_{11}+O_{12}}{N} imesrac{O_{11}+O_{21}}{N} imes N$ – ожидаемая частота биграммы w_1w_2

$$\begin{array}{c|cccc} & w_2 & \text{not } w_2 \\ \hline w_1 & O_{11} & O_{12} \\ \hline \text{not } w_1 & O_{21} & O_{22} \\ \end{array}$$

$$chi^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = |i \in 1, 2, j \in 1, 2| =$$

$$=\frac{N(O_{11}O_{22}-O_{12}O_{21})^2}{(O_{11}+O_{12})(O_{11}+O_{21})(O_{12}+O_{22})(O_{21}+O_{22})}$$

Меры ассоциации биграмм в NLTK

NLTK BigramCollocationFinder In[1]: from nltk.collocations import * In[2]: bigram_measures = nltk.collocations.BigramAssocMeasures() In[3]: finder = BigramCollocationFinder.from_words(tokens) In[4]: finder.apply_freq_filter(3) In[5]: for i in finder.nbest(bigram_measures.pmi, 20): ...

Меры ассоциации биграмм в NLTK:

- bigram_measures.pmi
- bigram_measures.student_t
- bigram_measures.chi_sq
- bigram_measures.likelihood_ratio

TextRank: использование мер центральности графов для излвечения ключевых слов и словосочетаний (1) [Mihalcea, Tarau, 2004]

- Вершины графа: слова
- Ребра графа могут определяться по следующим правилам:
 - Последовательные слова
 - ightharpoonup Слова внутри левого или правого окна в \pm 2-5 слов;

Ребра могут быть взвешенные или невзвегенные, направленные или ненправленные.

- Любая мера центральности графа использутся для определения важности вершин в графе. Слова, соответствующие наиболее важным вершинам, считаются ключевыми.
- Если две соседние вершины оказываются важными, соответствующие им слова формируют ключевое словосочетание.

http:

 $// web.\texttt{eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf} ~~ \texttt{papers/mihalcea.emnlp04.pdf} ~~ \texttt{pape$

TextRank (2)

Compatibility of systems of linear constraints over the set of natural numbers. Criteria of compatibility of a system of linear Diophantine equations, strict inequations, and nonstrict inequations are considered. Upper bounds for components of a minimal set of solutions and algorithms of construction of minimal generating sets of solutions for all types of systems are given. These criteria and the corresponding algorithms for constructing a minimal supporting set of solutions can be used in solving all the

FIG. 6

considered types systems and systems of mixed types.

TextRank (3)

$$G = (V, E)$$
 – граф, V – вершины, E – ребра $In(V_i)$ – множество исходящих ребер $Out(V_i)$ – множество входящих ребер Меры центральности

PageRank [Brin, Page, 1998]

$$PR(V_i) = (1-d) + d \times \sum_{V_j \in In(V_i)} \frac{PR(V_j)}{|Out(V_j)|}$$

HITS [Kleinberg, 1999]

$$\begin{array}{l} \textit{HITS}_{\textit{A}}(\textit{V}_{\textit{i}}) = \sum_{\textit{V}_{\textit{j}} \in \textit{In}(\textit{V}_{\textit{i}})} \textit{HITS}_{\textit{H}}(\textit{V}_{\textit{j}}) \\ \textit{HITS}_{\textit{H}}(\textit{V}_{\textit{i}}) = \sum_{\textit{V}_{\textit{j}} \in \textit{Out}(\textit{V}_{\textit{i}})} \textit{HITS}_{\textit{A}}(\textit{V}_{\textit{j}}) \end{array}$$

TextRank (4)

Найденные ключевые слова и словосочетания linear constraints; linear diophantine equations; natural numbers; nonstrict inequations; strict inequations; upper bounds

Меры контрастности для извлечения ключевых слов и словосочетаний

Рассмотрим некую коллекцию текстов. Требуется для данного текста определить слова и словосочетания, которые встречаются в нем **существенно** чаще, чем в других текстах.

Частота терма [Luhn, 1957]

Важность терма в тексте пропорциональная его частоте.

Обратная документная частота [Spaerck Jones, 1972]

Специфичность терма в тексте обратнопропорциональна числу текстов, в которых терм встречается.

 $tfidf(term, text, collection) = tf(term, document) \times idf(term, collection)$

Используемые TF и IDF веса

```
tf(term, document) =
```

- бинарный вес: 1, если терм встречается в тексте, 0, иначе
- частота: f_{t,d}
- ullet нормированная частота: $log(1+f_{t,d})$

- унарный вес: 1
- обратная частота: $\log \frac{N}{n_t}$, где N число текстов в коллекции, n_t число текстов, в которых встречается терм t
- ullet сглаженная обратная частота: $\log rac{N}{n_t+1}$

Самая популярная комбинация весов: $f_{t,d} imes \log \frac{N}{n_t+1}$

- 1 Введение
- 2 Токенизация и подсчет количества слов
- Морфологический анализ
- 4 Извлечение ключевых слов и словосочетаний
- 5 Векторная модель коллекции текстов
- 6 Синтаксический анализ

Использование меры tf-idf для измерения сходства текстов

Пусть каждый текст d_i из коллекции текстов D представлен вектором $d_i = (w_1^i, w_2^i, ..., w_{|V|}^i)$, где V – это словарь, |V| – общее число термов (типов) в словаре. Получается векторное пространство размерности |V|, где каждое измерение задано одним термом. w_k^i – это вес терма k в тексте i – чаше всего, вычисленный по мере tf – idf. Сходство между двумя текстами может быть определено как косинус между соответствующими векторами.

Косинусная мера близости в векторной модели Cosine similarity in Vector Space Model (VSM) [Salton et. al, 1975]

$$cos(d_i, d_j) = \frac{d_i \times d_j}{||d_i||||d_j||} = \frac{\sum_k w_k^i \times w_k^j}{\sqrt{(\sum_k w_k^i)^2} \sqrt{(\sum_k w_k^j)^2}}$$

Векторная модель коллекции текстов

- 1 Введение
- 2 Токенизация и подсчет количества слов
- Морфологический анализ
- 4 Извлечение ключевых слов и словосочетаний
- Бекторная модель коллекции текстов
- Синтаксический анализ

Синтаксический анализ

- Выделение синтаксических связей между словами
- Каждое предложение представляется в виде дерева
- Выделяют деревья двух видов:
 - ▶ Деревья составляющих (constituency tree)
 - ▶ Деревья зависимостей (dependency tree)

Генеративная модель языка

- Язык множество цепочек слов
- Правила порождения цепочек описываются формальными грамматиками Хомского
- Грамматика: правила вида [aAbB] o [aBc], слева и справа цепочки терминальных и нетерминальных символов
- 4 вида грамматик:
 - Неограниченные грамматики
 - ▶ Контекстно-зависимые и неукорачивающие грамматики
 - ▶ Контекстно-свободные грамматики
 - Регулярные грамматики
- Для естественных языков используются контекстно-свободные грамматики вида A o aBa
 - Слева ровно один нетерминальный символ
 - Справа произвольная цепочка
- Дерево вывода цепочки-предложения дерево составляющих

Пример дерева составляющих

- S, NP, VP нетерминальные символы
- V, N, Det терминальные символы

Пример дерева зависимостей

- Все слова в предложении связаны отношением типа "хозяин-слуга", имеющим различные подтипы
- Узел дерева слово в предложении
- Дуга дерева отношение подчинения

Деревья зависимостей

- Правила (rule-based)
 - ▶ Набор шаблонов, схем, правил вывода, использующих лингвистические сведения
 - Зависит от языка
 - ▶ ЭТАП-3
- Машинное обучение
 - ▶ Корпуса с морфологической и синтаксической разметкой
 - Не требуется знание специфики языка
 - MaltParser
- Предложение с проективными связями может быть преобразовано в дерево составляющих

Демо

- Berkley Tomcat constituency parser http: //tomato.banatao.berkeley.edu:8080/parser/parser.html
- Stanford CoreNLP dependency parser http://nlp.stanford.edu:8080/corenlp/
- ARK dependency parser (Carnegie Melon) http://demo.ark.cs.cmu.edu/parse