SMBH と 重い種BH シナリオ

始原ガス(ゼロ金属量)からの星形成

H2分子の解離方法

 $H_2+ \gamma -> 2H$

 $H^- + \gamma -> H + e$

力学的なショック加熱 衝突解離

 $H + H_2 -> 3H$

cold accretionにより高温高密ガスができて衝突解離が可能になる(?)
(Inayoshi & Omukai 2012)

cold accretion とは

ガスの (Ly α) 冷却時間 ≪落下時間 *r/v*

が満たされる場合

降着流がハローを貫通して ハロー中心へ流入する現象

low-zの銀河進化研究では

 $M_{\rm halo} \lesssim 10^{10-11} {\rm M}_{\odot}$

で起こることが知られる (e.g. Birnboim & Dekel 2003)

これまでの研究(Kiyuna+2023)

初期宇宙でもcold accretionが起こる? ⇒○

以下の図は z=18.0, $M_{\rm halo}\simeq 10^7 {\rm M}_{\odot}$ のケース

これまでの研究(Kiyuna+2023) cold accretion で超大質量星形成?⇒△

H2が衝突解離されたガスもあるが, 質量でsub-dominant.

衝突解離の効率は期待ほど良くなかった

H2が多い低温ガス $(T \leq 10^3 \text{K})$ の質量がdominantで、 **超大質量星は形成されず 通常の Pop.III 星が形成.**

このようにできる星からの 輻射フィードバックを考慮すれば 超大質量星形成可能?

手法

これまでの宇宙論シミュレーションに輻射フィードバックを追加

UVのH2自己遮蔽効果が重要となるので

流体と点光源からの輻射輸送をconsistentに解く

計算法

 $\neg - \vdash$: N-body+SPH"Gadget-3"(Springel 2005)

+RT (Susa 2006, Chon & Latif 2017)

計算領域: $(1 h^{-1} \text{cMpc})^3$

解像度: $m_{\rm br} \sim 10 \ h^{-1} \rm M_{\odot} \ (\lambda \sim 0.1 pc)$ sink形成条件: $n_{\rm H} \geq 10^8 \rm cm^{-3}$

LW 背景強度: $J_{21} = 10$

通常の Pop.III

sink(星)粒子からの輻射フィードバック:

光度はEddington $L(m) = 1.2 \times 10^{38} \text{erg s}^{-1} (m/1 \text{M}_{\odot})$ 質量降着率に応じて、有効温度 T_{eff} =5000,3×10⁴,10⁵K.

Pop.III 星, 超大質量星を mimic

(z=18.4)

結果 超大質量星が形成!

通常の Pop.III星ができた場所へ cold accretionでガスが流入し 重力不安定を起こして $m \gtrsim 10^5 \mathrm{M}_{\odot}$ の超大質量星に.

結果超大質量星の降着成長

※Bondi半径を分解して降着段階が追跡可能

- ・広いスケール $r\sim10^{-4}$ - $1r_{\rm vir}$ かつ
- ・長期 (~星の寿命 3Myr) に渡って

星粒子 $^{\dot{m}}\sim 0.01$ - $0.1 M_{\odot} {\rm yr}^{-1}$ の大降着率が維持

大降着率の要因 cold accretion

✓大規模構造からハローへ降着するガスは cold accretionを介してハロー中心へ 定常的に直接届けられる

大スケールからのガス質量降着率の見積もり

$$\dot{M}_{\rm gas} \sim \frac{f_{\rm br} M_{\rm halo}}{t} \simeq 0.04 {\rm M}_{\odot} {\rm yr}^{-1} (T_{\rm vir}/10^4 {\rm K})^{3/2}$$

ただし、この効果は角運動量が効く スケール ($\gtrsim 0.01r_{vir}$)まで

大降着率の要因 spiral armのトルク

✓ガス面密度が高いため 自己重力でガス円盤に腕が立つ ⇒円盤中心へ質量輸送

大降着率の要因 spiral armのトルク

✔ 円盤を介したガス降着率の見積もりM_{disc}

$$\dot{M}_{\rm disc} = \alpha \Sigma_{\rm gas} c_{\rm s}^2 \Omega^{-1}$$

$$Arr$$
 Toomre $Q \simeq \frac{c_{\rm s}\Omega}{\pi G \Sigma_{\rm gas}}$

$$\simeq \frac{\alpha}{\pi Q} \frac{c_{\rm S}^3}{G}$$

$$\sim 0.07 \rm{M}_{\odot} \rm{yr}^{-1} \left(\frac{T}{8000 K}\right)^{3/2} \frac{\alpha}{Q}$$

✓ガス円盤が高温なことが
効いている

大降着率の要因 輻射フィードバック

H2, H⁻光解離で

- ✔ガス円盤をH2-freeに
- ✔円盤分裂を防止
- ✔円盤での大降着率を実現

星が高密ガス円盤に埋まっているおかげで、 電離バブルは星付近に限定

議論 (原始)星の状態と輻射スペクトル

星からの輻射の有効温度は 質量降着率に応じて与える (Omukai+2008, Hosokawa+2013)

 $T_{\rm eff} = 5000 {
m K}$ for $\dot{M} > 0.04 {
m M}_{\odot} {
m yr}^{-1}$ (H-光解離に効果的)

 $T_{\rm eff} = 3 \times 10^4 {
m K}$ (振動状態) for $0.004 < \dot{M} < 0.04 {
m M}_{\odot} {
m yr}^{-1}$ (H-とH₂の光解離がそこそこ効く)

 $T_{
m eff} = 10^5 {
m K}$ for $\dot{M} < 0.004 {
m M}_{\odot} {
m yr}^{-1}$ (H₂ 光解離に効果的)

議論どの星からの輻射フィードバック?

H⁻光解離に効きやすいのは 今まさに大降着率で成長中の 入超大質量星(T_{eff} = 5000K)

- ・H₂光解離に効きやすいのは 比較的低密ガスにいて H₂ self-shieldingを受けづらい 通常のPop.III星(T_{eff} = 10⁵K)
- ・質量降着率が中間的な場合 $(T_{\rm eff} = 3 \times 10^4 {\rm K})$ は H_2 とH 両方にそこそこ効く

Summary

星の輻射フィードバックを加味した宇宙論シミュレーションにより cold accretion発現後に $m \gtrsim 10^5 {\rm M}_\odot$ の複数の超大質量星が形成

これは

- cold accetionによるハロー外から 中心円盤までのガス輸送
- ・円盤内でのarmのトルクによるガス輸送
- ・輻射フィードバックによるH2光解離 (円盤を高温維持)

により定常的な大降着率 ~ 0.01-0.1 M_☉yr⁻¹で実現

⇒重い種BHをハロー中心に自然にseeding. その後の成長にも有利