電気学会技術報告 第641%

保護リレーシステム基本技術体系

保護リレーシステム基本技術調査専門委員会

1997年7月

保護リレーシステム技術委員会

2.85 図 ソフトウェア構成

2.86 図 ディジタルリレーの演算プローチャート例

時間内に複数のリレー演算、シーケンス演算、自動監視演算が時分割で処理されることになる。この様相を2.87図に示す。

以下, リレー演算ソフトウェア, シーケンス演算ソフトウェアについて述べる。

(2) リレー演算ソフトウェア リレー演算ソフトウェアは、ディジタル値に変換された電圧、

電流情報をもとに各種のリレー要素を構成する。 リレー特性をソフトウェアで実現することの利点 は、

- (i) ハードウェアを増加することなく,多数の リレーを設けることができる。
- (ii) ハードウェアでは実現が困難であった複雑なリレー特性(アルゴリズム)が実現できる。

起肋)

, 7°

2.87 図 ディジタルリレーの時分割処理の例

ことである。

リレー演算ソフトウェアは数値演算が主体であ り、ディジタルフィルタ部、リレー演算部、動作 判定部から構成される。

- (a) ディジタルフィルタ演算部:電圧,電流情報から,高調波成分や直流成分を除去し,リレーに必要な基本波成分を取り出す演算を行う。
- (b) リレー演算部:次に示すような基本演算を 組み合せて構成される。
 - (i) 振幅値演算:電圧、電流の大きさを求める 演算。
 - (ii) 移相演算:電圧,電流の位相を進めたり, 遅らせたりする演算。
 - (ii) 位相差演算: 2個の交流量の位相関係を求める演算。
 - (a), (b)のアルゴリズム例を2.13表に示す。
 - (c) 動作判定部:リレー演算部の結果と整定値 から、リレー動作を判定する。
 - 2.88図にリレー演算ソフトウェアの例を示す。
- (3) シーケンス演算ツフトウェア シーケンス演算ソフトウェアはリレーソフトウェアの演算 結果を受けて、シーケンス処理を行う。シーケンスソフトウェアの演算は論理演算が主体であり、次に示すような内容がある。
- (a) 引外レシーケンス:リレー出力の論理演算, タイマ処理などを組み合せて構成され,遮断器へ

の引き外し出力を行う。

① データ入力処理② 常時監視処理

④ シーケンス制御処理

③ 単体リレー演算処理(全リレー)

(b) 表示・警報:リレー動作状態,装置の状態などを表示パネルへ表示するとともに,外部への動作警報出力を行う。

リップ指令および表示出力制御処理

- (c) 自動監視:システムの不良を検出するため の常時監視,自動点検演算を行う(2.4.4参照)。
- (d) その他:再閉路機能,整定機能,伝送機能,計測機能,記録機能などの演算を行う。
 - (4) 処理技術の発達
- (a) プロセッサ:ディジタルリレーのソフトウェアは1サンプリング時間内に多数の処理を高速に実行する必要があるため、高速演算が可能なプロセッサが適用されてきた。しかし、ディジタルリレーに対する要求機能の高度化、複雑化に伴い、演算処理量はますます増大してきている。この対策として、プロセッサ自身の高速化を図るとともに、1台のディジタルリレー内に複数のプロセッサをもち、その間をバスで接続するマルチプロセイッサ方式が採用され、膨大な演算量を分割処理することにより、高機能なシステムの構築が可能となった。
- (b) アナログ/ディジタル変換:従来,A/D変換は12ビット,サンプリング周波数は50Hz系で600Hz,60Hz系で720Hzが標準的に採用されてきた。近年,A/D変換器を高ビット化し,量子化誤差の低減,ダイナミックレンジの拡大により

2.13 表 リレー演算ソフトウェアのアルゴリズム例

種 別	演 算 原	理	説明.
ディジタル フィルタ演算	差分フィルタ $y (mT) = \frac{1}{2} x[(mT) - x(mT - 6T)] $ $= \frac{1}{2} (x_m - x_m - 6)$	ゲープ	直流分および偶数調波除去
	加算フィルタ y _m =x _m +x _{m-2}	ゲ2 1 0 f ₀ 2f ₀ 3f ₀ 4f ₀ 周波数	奇数調波除去
移相演算	$\theta = \tan^{-1} \frac{a \sin 30^{\circ}}{1 + a \cos 30^{\circ}}$	V _m α V _m α V _m + V _{m-1}	
振幅值演算	加算形 $k \mid V \mid = \sum_{i=0}^{5} \mid v_{m-i} \mid$	V _{m-3} V _{m-2} V _{m-1} (振幅値)∞(面積)	電気角30°ごとの データを 6 点加算 する。
· ·	$V_{m} = v_{m} + v_{m-3} $ $+1/2 v_{m} - v_{m-3} $ $k V = V_{m} + V_{m-1} + V_{m-2}$	V _{m-1} V _{m-2} V _{m-1} V	1.
8	積形 $ \dot{\mathbf{V}} ^2 = \mathbf{v}_{m}^2 + \mathbf{v}_{m-3}^2$	· (電気角)	電気角90°ごとの データを2乗して 2点加算する。
位相差演算	積形 $ \dot{\mathbf{V}} \cdot \dot{\mathbf{I}} \cos \theta$ $= \mathbf{v}_{\mathbf{m}} \cdot \dot{\mathbf{i}}_{\mathbf{m}} + \mathbf{v}_{\mathbf{m}-3} \cdot \dot{\mathbf{i}}_{\mathbf{m}-3}$ $ \dot{\mathbf{V}} \cdot \dot{\mathbf{I}} \sin \theta$ $= \mathbf{v}_{\mathbf{m}-3} \cdot \dot{\mathbf{i}}_{\mathbf{m}} - \mathbf{v}_{\mathbf{m}} \cdot \dot{\mathbf{i}}_{\mathbf{m}-3}$	900 i _m	

)処理

態,装置の状態 もに,外部への

を検出するため (2.4.4参照)。 定機能, 伝送機 [算を行う。

レーのソフトウ ・数の処理を高速 変算が可能をタル なり、ディジタル なり、複雑化に伴い、 でいる。こととも とと数のプロセットるマルチプロセット す量を分割処理す な構築が可能と

!: 従来, A/D変 皮数は50Hz系で 動に採用されて ット化し, 量子 ッジの拡大により

保護リレー性能の向上が図られた。また、サンプリング周波数を高めることが可能となり、アナログフィルタの回路簡素化および高性能ディジタルフィルタ処理による信頼性の向上が図られた。

(c) プログラム生成:従来,プログラム言語としては,機械語に近く,実行速度効率が最もよいアセンブリ言語が使用されてきた。近年,プロセッサ自身の高速化により,実行速度効率は落ちるが,理解が容易な C 言語などの高級言語の適用が可能となった。また,主にシーケンス演算の論理回路を作画イメージで入力することにより,ソ

フトウェアが自動生成されるディジタルリレー専用のツールが開発された。これらによりソフトウェアの作成効率, 信頼性の大幅な向上が図られた。

(d) アルゴリズム:ディジタルリレー導入当初は、アナログリレーの特性をソフトウェアで置き換えたものが主体であった。しかし、ディジタルリレーではベクトル演算、微分方程式の解の算出などが容易に行えることから、複雑な演算に基づいた新しいリレーアルゴリズムの開発が進んだ。2.89図にアナログリレーでは実現しえないインピーダンスを直接演算する距離リレーアルゴリズム

[直接インピーダンス演算方式の距離リレーの例]

系統事故時のモデルとして下図を想定すると、リレー設置点における電圧・電流および系統の インダクタンス分、抵抗分の間には次の微分方程式が成立する。

 $V = L \cdot j + R \cdot i + V_F$ (j = di / dt)

 $V_F = R_F \cdot i(R_F$ は事故点抵抗)とすると、異なる時刻(k、l)において、

 $V_k = L \cdot j_k + (R + R_F) \cdot i_k$ $V_l = L \cdot j_l + (R + R_F) \cdot i_l$

連立方程式として解くことにより、インダクタンス分、抵抗分が求められ事故点を測距できる。

 $L = (i_k \cdot V_1 - i_l \cdot V_k) / (i_k \cdot j_l - i_l \cdot j_k)$ $R = (j_l \cdot V_k - j_k \cdot V_l) / (i_k \cdot j_l - i_l \cdot j_k)$ (k, 11はサンプリング時点)

jは直接導入できないため数値近似を用いる。周波数特性はこの微分近似式で想定され高調波 領域の周波数特性を良くするため下式で求める。

 $j_n \approx k_1(i_n - i_{n-1}) + k_2(i_{n+1} - i_{n-2})$

2.89図 アルゴリズム例

の例を示す。

- (e) 通信処理:多様なディジタル伝送系とのインタフェースが容易なことから、多量なデータを用いた方式、システムの構築が可能となった。
- (f) 表示,記録機能:従来,リレー動作時の表示はLEDの点灯/消灯,セグメント表示器による数字表現のみであった。近年,フラットディスプレイの適用により,詳細でわかりやすい表示が可能となった。またリレー動作時にアナログ入力量や演算結果などの詳細データを保存し,パソコンやプリンタを介して出力する記録機能の充実が図られた。

2.4.4 自 動 監 視(2)

(1) 自動監視の効果 保護リレーにはその責務から高い信頼度が要求される。このため構成す

るハードウェア自身の信頼度を向上させるととも に、自動監視機能が具備される。

自動監視の効果は次に示すとおりである。

- (i) 不良の早期発見により、システム信頼度が 向上できる。
- (ii) 定期点検周期の延長,点検時間の短縮など 保守業務が消滅できる。
- (2) ディジタルリレーの自動監視 自動監視 は常時監視と自動点検に大別され、アナログリレーでは常時監視は誤動作側の不良の発見を目的とし、自動点検は誤不動作側の不良の発見を目的としていた。ディジタルリレーの場合、一つの不良が誤動作側に影響する場合と、誤不動作側に影響する場合の双方があるため、必ずしもこの定義はあてはまらず、ほとんどの不良は常時監視で発見

ィジタルリレー専 らによりソフトウ :向上が図られた。 ルリレー導入当初 フトウェアで望かし、ディジタル 方程式の解の算に基づ の開発が進んだ。 現しえないインピ レーアルゴリズム