

# Foundations of Machine Learning in Python

Moritz Wolter

July 14, 2022

High Performance Computing and Analytics Lab, Uni Bonn

#### **Overview**

Derivatives and Gradients

Optimization

Foundations of Machine Learning in Python

The Python Control of t

Overview

Derivatives and Gradients

Optimization

TODO

# **Optimization**

Traditionally, optimization means minimizing using a cost function f(x). Given the cost, we must find the cheapest point  $x^*$  on the function, or in other words,

$$x^* = \min_{x \in \mathbb{R}} f(x) \tag{1}$$

#### **Functions**

Functions are mathematical mappings. Consider for example the quadratic funtion,  $f(x) : \mathbb{R} \to \mathbb{R}$ :

$$f(x) = x^2 \tag{2}$$



#### Where is the minimum?



In this case we immediately see it's at zero. Finding it algorithmically requires derivate information.

# **Derivatives and Gradients**

#### The derivative

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{3}$$





TODO





# Derivation of the parabola derivative

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
 (4)

$$=\lim_{h\to 0}\frac{2xh+h^2}{h}\tag{5}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h} \tag{6}$$

$$= \lim_{h \to 0} 2x + h \tag{7}$$

$$=2x \tag{8}$$

Foundations of Machine Learning in Python

Derivatives and Gradients

Derivation of the parabola derivative

 $h = \lim_{h \to 0} \frac{2xh + h^2}{h}$   $= \lim_{h \to 0} \frac{h(2x + h)}{h}$   $= \lim_{h \to 0} \frac{h}{h}$   $= \lim_{h \to 0} 2x + h$  = 2x

#### Derive on the board:

$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x$$
(9)
(10)

# Steepest descent

To find a minumum we descent along the gradient, with n denoting the step number,  $\alpha \in \mathbb{R}$  the step size and  $\frac{df}{dx}$  the derivate of f along  $x \in \mathbb{R}$ :

$$x_n = x_{n-1} - \alpha \cdot \frac{df}{dx}.$$
 (14)

# Steepest descent on the parabola

Working with the initial position  $x_0=5$  and a step size of  $\alpha=0.1$  for 25 steps leads to:



# Multidimensional problems

The Rosenbrock test function:

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$
 (15)



**Figure:** Rosenbrock function with a=1 and b=100.

# The gradient

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$
 (16)



TODO

The gradient

#### Rosenbrock gradient

Recall the Rosenbrock function:

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$
 (17)

$$\nabla f(x,y) = \begin{pmatrix} -2a + 2x - 4byx + 4bx^{3} \\ 2by - 2bx^{2} \end{pmatrix}$$
 (18)

Recall the Rosenbrock function:

Rosenbrock gradient

 $f(x,y) = (a-x)^2 + b(y-x^2)^2$   $\nabla f(x,y) = \begin{pmatrix} -2a + 2x - 4byx + 4bx^2 \\ 2by - 2bx^2 \end{pmatrix}$ 

Rosenbrock gradient

On the board derive:

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$

$$= a^2 - 2ax + x^2 + b(y^2 - 2yx^2 + x^4)$$
(20)

$$= a^2 - 2ax + x^2 + by^2 - 2byx^2 + bx^4$$
 (21)

$$\Rightarrow \frac{\partial f(x,y)}{\partial x} = -2a + 2x - 4byx + 4bx^3 \tag{22}$$

$$\Rightarrow \frac{\partial f(x,y)}{\partial y} = 2by - 2bx^2 \tag{23}$$

#### **Gradient descent**

Initial position:  $x_0 = [0.1, 3.]$ , Gradient step size:  $\alpha = 0.01$ 

$$x_n = x_{n-1} - \alpha \cdot \nabla f(\mathbf{x}) \tag{24}$$

*n* denotes the step number,  $\nabla$  the gradient operator, and  $f(\mathbf{x})$  a vector valued function.

#### Gradient descent on the Rosenbrock function

Rosenbrock Optimization

#### **Gradient descent with momentum**

Rosenbrock Optimization

**Optimization** 

# Second order optimization

TODO