2023 SUMMER SCHOOL: COMPUTATIONAL BIOLOGY

Project: Data-driven Prediction of Alzheimer's disease.

Supervised by: Anuschka Silva-Spínola → LARN, CISUC – Prof. Joel P. Arrais

To answer two questions \rightarrow 1) Who will progress to Alzheimer's disease (AD)?

2) When will these mild cognitive impairment (MCI) patients progress?

OBJECTIVES = To implement **machine learning algorithms** with the intent of <u>characterizing MCI</u> <u>patients</u> and to develop **time-to-event models** of progression to AD.

Course timeline →

WORK PLAN leading up to the project results presentation \rightarrow

Wednesday 06

14h – 15h: Presentation of the Project Guidelines and Q&A + Clarifications.

15h – 16h: Discussion on the methodology and Initial planning + Brainstorming.

16h – 18h: Literature revision.

Thursday 07

17h – 18h: Data creation and Data preprocessing.

Friday 08

17h – 18h: Start building the <u>Classification</u> models.

Monday 11

17h – 18h: Start building the Longitudinal models.

Tuesday 12

09h – 11h: Model Refinement.

11h – 13h: Results analysis and Interpretation.

FINALIZE PROJECT REPORT

Wednesday 13

09h – 13h: Q&A + Clarifications and Create presentation slides.

14h – 18h: Finalize presentation slides.

Thursday 14

09h – 13h: Rehearse and prepare for the final presentation.

14h - 15h: Final Q&A + Clarifications.

METHODOLOGY →

1) Literature revision – References:

- Diagnostic criteria:

Jack CR Jr et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018 Apr;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018.

Albert MS et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):270-9. doi: 10.1016/j.jalz.2011.03.008.

- Neurophysiological changes:

Jack CR Jr et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013 Feb;12(2):207-16. doi: 10.1016/S1474-4422(12)70291-0.

Mattsson-Carlgren N et al The implications of different approaches to define AT(N) in Alzheimer disease. Neurology. 2020 May 26;94(21):e2233-e2244. doi: 10.1212/WNL.00000000000009485.

- Computational models:

Ezzati A et al. Optimizing Machine Learning Methods to Improve Predictive Models of Alzheimer's Disease. J Alzheimers Dis. 2019;71(3):1027-1036. doi: 10.3233/JAD-190262.

Sanz-Blasco R et al. Transition from mild cognitive impairment to normal cognition: Determining the predictors of reversion with multi-state Markov models. Alzheimers Dement. 2022 Jun;18(6):1177-1185. doi: 10.1002/alz.12448.

Tahami Monfared AA et al. Estimating Transition Probabilities Across the Alzheimer's Disease Continuum Using a Nationally Representative Real-World Database in the United States. Neurol Ther. 2023 May 31. doi: 10.1007/s40120-023-00498-1.

2) Dataset creation:

a) R programming. Based on the repository: https://github.com/aridhia/alzheimers-synthetic-data

<u>Instructions for download</u>:

From the repository download the zip file from the "code" button.

Save and extract the folder's files.

In R Studio open project in new session and upload the alzheimers-synthetic-data-master.Rproj

Navigate the **Build** tab and click **Install and Restart**.

Execute the create data. R file from the Files.

The create_data.R file is going to create and store the dataframes in a folder called mockep_data at the **Files**. Those .csv files need to be imported as dataframe/tab, therefore left click on them and **Import Dataset...**

If any other function needs to be called, always attach the package prior to the insertion of the name.

Datasets created:

```
vital_signs
socio_demographics
cdr
apoe
csf
gds
mmse
family_history
volumetric
life style
```

The conformation and labels of each dataset are based on the documentation from the European Prevention of Alzheimer's Dementia Consortium.

b) Use the provided file. \rightarrow Prior to it, answer the following questions: 1) What would be the appropriate sample size? 2) What variables should be transformed and why? 3) What variables would provide the most valuable information?

3) Dataset transformation:

From all those datasets available we chose the following variables/features:

Demographic information = ID, sex, age, years of education.

Clinical information = Family history of dementia.

Genetic information = ApoE genotyping.

Fluid biomarkers = Cerebrospinal fluid (CSF) concentration of Aβ42, p-Tau181, and t-Tau.

Neuropsychological tests = Mini-Mental State Examination (MMSE), Geriatric depression scale (GDS), and Clinical dementia score (CDR) [total and sum-of-boxes score].

Neuroimaging = Hippocampal and white matter lesions volume.

- → Transformation: Add the columns for the ATN scheme, presence of ApoE ε4, and the modifiable lifestyle factors: cerebrovascular disease based on white matter lesions & depression from GDS total score > 11 points.
- → Diagnosis should be built upon CDR total score: controls = 0; MCI = 0.5; dementia > 0.5.

4) Descriptive statistics:

- Full analysis of the groups according to their diagnosis: summarize the central tendency, dispersion, and shape of the dataset.
- Test of normality: Shapiro-Wilk.

- Group comparison by table or figure (could be boxplot with group comparison test – p value).

Normal distribution/non-normal distribution.

Code example:

https://www.geeksforgeeks.org/data-analysis-with-python/

5) Classification modeling:

- Choose 3 machine learning algorithms that would be appropriate for the dataset.
- Split data into training and testing sets.
- Present the results as performance metrics (table) and confusion matrix.

Code example:

https://www.geeksforgeeks.org/learning-model-building-scikit-learn-python-machine-learning-library/

https://scikit-learn.org/stable/modules/model_evaluation.html

6) Longitudinal modeling:

- Add "Time" column to the dataset (use years or months).
- Survival analysis with likelihood estimates.

Code example:

https://scikit-survival.readthedocs.io/en/stable/user_guide/00-introduction.html