Lecture 3 Videos

Video Models

Many video models:

Single-frame CNN (Try this first!)

Late fusion

Early fusion

3D CNN / C3D

Two-stream networks

CNN + RNN

Convolutional RNN

Spatio-temporal self-attention

SlowFast networks

Video

- Sequences of frames
- 30 frames per second

Sequences of Images

11/25/2020

Video = 2D + Time

A video is a **sequence** of images 4D tensor: T x 3 x H x W (or 3 x T x H x W)

Example task: Video Classification

Input video: T x 3 x H x W

Swimming
Running
Jumping
Eating
Standing

Running video is in the public domain

Example task: Video Classification

Images: Recognize objects

Dog

Cat

Fish

Truck

Videos: Recognize actions

Swimming
Running
Jumping
Eating

Standing

Running video is in the public domain

- Given a video
 - Recognize which action is present

- Variations
 - Multiple instances

- Variations
 - Multiple action

- Variations
 - Trimmed/untrimmed
 - Temporal action localization

Action detection

• Spatio-temporal localization

Action recognition – UCF101

Cycling

Diving

Golf Swinging

Riding

Volleyball

Basketball Shooting

Swinging

Tennis Swinging

Action detection - VIRAT

Video segmentation

Problem: Videos are big!

Input video: T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video (3 bytes per pixel):

SD (640 x 480): **~1.5 GB per minute** HD (1920 x 1080): **~10 GB per minute**

Problem: Videos are big!

Input video: T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video (3 bytes per pixel):

SD (640 x 480): **~1.5 GB per minute** HD (1920 x 1080): **~10 GB per minute**

Solution: Train on short **clips**: low fps and low spatial resolution e.g. T = 16, H=W=112 (3.2 seconds at 5 fps, 588 KB)

Training on Clips

Raw video: Long, high FPS

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Training on Clips

Raw video: Long, high FPS

Training: Train model to classify short **clips** with low FPS

Testing: Run model on different clips, average predictions

Video Classification: Single-Frame CNN

Simple idea: train normal 2D CNN to classify video frames independently!

(Average predicted probs at test-time)

Often a **very** strong baseline for video classification

Video Classification: Late Fusion (with FC layers)

Class scores: C **Intuition**: Get high-level appearance Run 2D CNN on each of each frame, and combine them frame, concatenate **MLP** features and feed to MLP Clip features: TDH'W' Flatten Frame features $T \times D \times H' \times W'$ **CNN CNN CNN CNN** CNN **CNN** 2D CNN on each frame Input: Tx3xHxW

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Video Classification: Late Fusion (with pooling)

Intuition: Get high-level appearance Class scores: C Run 2D CNN on each of each frame, and combine them frame, pool features Linear and feed to Linear Clip features: D Average Pool over space and time Frame features TxDxH'xW' CNN **CNN CNN** CNN CNN **CNN** 2D CNN on each frame Input: Tx3xHxW

Video Classification: Late Fusion (with pooling)

Intuition: Get high-level appearance of each frame, and combine them **Problem:** Hard to compare low-level

motion between frames

Class scores: C Linear

Run 2D CNN on each frame, pool features and feed to Linear

Justin Johnson

Lecture 18 - 24

November 18, 2019

Video Classification: Early Fusion

Intuition: Compare frames with very first conv layer, after that normal 2D CNN

First 2D convolution collapses all temporal information:

Input: 3T x H x W

Output: D x H x W

2D CNN

Class scores: C

Rest of the network is standard 2D CNN

Reshape: 3T x H x W

Input: T x 3 x H x W

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Video Classification: Early Fusion

Intuition: Compare frames with very first conv layer, after that normal 2D CNN

Problem: One layer of temporal processing may not be enough!

First 2D convolution collapses all temporal information:

Input: 3T x H x W
Output: D x H x W

Reshape: 3T x H x W

Input: T x 3 x H x W

↑ Rest of the network

Class scores: C

is standard 2D CNN

2D CNN

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

Video Classification: 3D CNN

Intuition: Use 3D versions of convolution and pooling to slowly fuse temporal information over the course of the network

Each layer in the network is a 4D tensor: D x T x H x W Use 3D conv and 3D pooling operations

3D CNN

Class scores: C

Input: 3 x T x H x W

Ji et al, "3D Convolutional Neural Networks for Human Action Recognition", TPAMI 2010; Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

3D convolution

Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

Weight:

C_{out} x C_{in} x T x 3 x 3 Slide over x and y

Output:

C_{out} x H x W 2D grid with C_{out} –dim feat at each point

C_{out} different filters

W = 224

Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in}-dim feat at each point)

Weight:

 $C_{out} \times C_{in} \times T \times 3 \times 3$ Slide over x and y

Output:

C_{out} x H x W 2D grid with C_{out} –dim

Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in} -dim feat at each point)

Weight:

 $C_{out} \times C_{in} \times 3 \times 3 \times 3$ Slide over x and y

C_{out} different filters

Output:

C_{out} x T x H x W
3D grid with C_{out}—dim
feat at each point

Input: $C_{in} \times T \times H \times W$ (3D grid with C_{in}-dim feat at each point)

Weight:

 $C_{out} \times C_{in} \times 3 \times 3 \times 3$ Slide over x and y

Output:

C_{out} x T x H x W 3D grid with C_{out}-dim feat at each point

C_{out} different filters

Early Fusion vs Late Fusion vs 3D CNN

Single Frame model works well – always try this first!

3D CNNs have improved a lot since 2014!

arpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports-1M: Many people used this as a video feature extractor

Layer	Size	
Input	3 x 16 x 112 x 112	
Conv1 (3x3x3)	64 x 16 x 112 x 112	
Pool1 (1x2x2)	64 x 16 x 56 x 56	
Conv2 (3x3x3)	128 x 16 x 56 x 56	
Pool2 (2x2x2)	128 x 8 x 28 x 28	
Conv3a (3x3x3)	256 x 8 x 28 x 28	
Conv3b (3x3x3)	256 x 8 x 28 x 28	
Pool3 (2x2x2)	256 x 4 x 14 x 14	
Conv4a (3x3x3)	512 x 4 x 14 x 14	
Conv4b (3x3x3)	512 x 4 x 14 x 14	
Pool4 (2x2x2)	512 x 2 x 7 x 7	
Conv5a (3x3x3)	512 x 2 x 7 x 7	
Conv5b (3x3x3)	512 x 2 x 7 x 7	
Pool5	512 x 1 x 3 x 3	
FC6	4096	
FC7	4096	
FC8	С	

Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN

Karpathy et al, "Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014 Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

C3D: The VGG of 3D CNNs

3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)

Released model pretrained on Sports- 1M: Many people used this as a video feature extractor

Problem: 3x3x3 conv is very expensive!

AlexNet: 0.7 GFLOP

VGG-16: 13.6 GFLOP

C3D: 39.5 GFLOP (2.9x VGG!) for a forward pass

Layer	Size	MFLOPs
Input	3 x 16 x 112 x 112	
Conv1 (3x3x3)	64 x 16 x 112 x 112	1.04
Pool1 (1x2x2)	64 x 16 x 56 x 56	
Conv2 (3x3x3)	128 x 16 x 56 x 56	11.10
Pool2 (2x2x2)	128 x 8 x 28 x 28	
Conv3a (3x3x3)	256 x 8 x 28 x 28	5.55
Conv3b (3x3x3)	256 x 8 x 28 x 28	11.10
Pool3 (2x2x2)	256 x 4 x 14 x 14	
Conv4a (3x3x3)	512 x 4 x 14 x 14	2.77
Conv4b (3x3x3)	512 x 4 x 14 x 14	5.55
Pool4 (2x2x2)	512 x 2 x 7 x 7	
Conv5a (3x3x3)	512 x 2 x 7 x 7	0.69
Conv5b (3x3x3)	512 x 2 x 7 x 7	0.69
Pool5	512 x 1 x 3 x 3	
FC6	4096	0.51
FC7	4096	0.45
FC8	С	0.05

Tran et al, "Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2015

Recognizing Actions from Motion

We can easily recognize actions using only motion information

https://www.youtube.com/watch?v=1F5ICP9SYLU&ab_channel=BioMotionLab

Johansson, "Visual perception of biological motion and a model for its analysis." Perception & Psychophysics. 14(2):201-211. 1973.

Measuring Motion: Optical Flow

Image at frame t

Image at frame t+1

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Measuring Motion: Optical Flow

Image at frame t

Optical flow gives a displacement field F between images I_t and I_{t+1}

Image at frame t+1

Tells where each pixel will move in the next frame: F(x, y) = (dx, dy)

$$I_{t+1}(x+dx, y+dy) = I_t(x, y)$$

Measuring Motion: Optical Flow

Image at frame t

Optical flow gives a displacement field F between images I_t and I_{t+1}

Te me

Image at frame t+1

Tells where each pixel will move in the next frame: F(x, y) = (dx, dy) $I_{t+1}(x+dx, y+dy) = I_t(x, y)$

Optical Flow highlights **local motion**

Horizontal flow dx

Vertical Flow dy

Separating Motion and Appearance: Two-Stream Networks

Input: Single Image 3 x H x W

Input: Stack of optical flow: Early fusion [2*(T-1)] x H x W processes

Early fusion: First 2D conv processes all flow images

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, "Two-stream convolutional networks for action recognition in videos", NeurIPS 2014

So far all our temporal CNNs only model local motion between **frames in very short clips of ~2-5 seconds.** What about long-term structure?

So far all our temporal CNNs only model local motion between frames in **very short clips of ~2-5 seconds.** What about long-term structure?

We know how to handle sequences!
How about recurrent networks?

Process local features using recurrent network (e.g. LSTM)

Process local features using recurrent network (e.g. LSTM) Many to one: **One output at end of video**

Process local features using recurrent network (e.g. LSTM)

Many to many: one output per video frame

Process local features using recurrent network (e.g. LSTM) Many to many: one output per video frame

Used 3D CNNs and LSTMs in 2011! Way ahead of its time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", **2011**

Time

Process local features using recurrent network (e.g. LSTM) Many to many: one output per video frame

Used 3D CNNs and LSTMs in 2011! Way ahead of its time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", **2011**

Time

Process local features using recurrent network (e.g. LSTM) Many to many: one output per video frame

Time

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Sometimes don't backprop to CNN to save memory; pretrain and use it as a feature extractor

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Inside CNN: Each value a function of a fixed temporal window (local temporal structure)
Inside RNN: Each vector is a function of all previous vectors (global temporal structure)
Can we merge both approaches?

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Recall: Multi-layer RNN

We can use a similar structure to process videos!

depth

Entire network uses 2D feature maps: C x H x W

Each depends on two inputs:

- 1. Same layer, previous timestep
- 2. Prev layer, same timestep

Use different weights at each layer, share weights across time

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Normal 2D CNN:

Recall: Recurrent Network

some function with parameters W

Features for layer L, timestep t

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

timestep t

Recall: Vanilla RNN

 $h_{"\#\$} = \tanh(W_{,}h_{"} + W_{,}x)$ Replace all matrix multiply with 2D convolution!

Features for layer L, timestep t

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

timestep t

Recall: GRU

$$r_{t} = \sigma(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r})$$

$$z_{t} = \sigma(W_{xz}x_{t} + W_{hz}h_{t-1} + b_{z})$$

$$\tilde{h}_{t} = \tanh(W_{xh}x_{t} + W_{hh}(r_{t} \odot h_{t-1}) + b_{h})$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z_{t}) \odot \tilde{h}_{t}$$

Can do similar transform for other RNN variants (GRU, LSTM)

Features for layer L, timestep t

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

timestep t

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011

Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Problem: RNNs are slow for long sequences (can't be parallelized)

RNN: Infinite temporal extent (fully-connected)

CNN: finite temporal extent (convolutional)

Recurrent CNN: Infinite temporal extent (convolutional)

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011
Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Ballas et al, "Delving Deeper into Convolutional Networks for Learning Video Representations", ICLR 2016

Recall: Different ways of processing sequences

Recurrent Neural Network

Works on **Ordered Sequences**

(+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence

(-) Not parallelizable: need to compute hidden states sequentially In video: CNN+RNN, or recurrent CNN

1D Convolution

Works on Multidimensional Grids

(-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence

(+) Highly parallel: Each output can be computed in parallel

In video: 3D convolution

Recall: Different ways of processing sequences

Recurrent Neural Network

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially In video: CNN+RNN, or recurrent CNN

1D Convolution

Works on Multidimensional Grids

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

In video: 3D convolution

Self-Attention

Works on **Sets of Vectors**

- (-) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

In video: ????

Recall: Self-Attention

Input: Set of vectors $x_1, ..., x_N$

Keys, Queries, Values: Project each x to a key, query, and value using linear layer

Affinity matrix: Compare each pair of x, (using scaled dot-product between keys and values) and normalize using softmax

Output: Weighted sum of values, with weights given by affinity matrix

Features in 3D CNN: C x T x H x W Interpret as a set of THW vectors of dim C

Wang et al, "Non-local neural networks", CVPR 2018

Nonlocal Block Trick: Initialize last conv to 0, then entire block computes identity. Can insert into existing 3D CNNs

In practice, actually insert BatchNorm layer after final conv, and initialize scale parameter of BN layer to 0 rather than setting conv weight to 0

Spatio-Temporal Self-Attention (Nonlocal Block)

Input clip

We can add nonlocal blocks into existing 3D CNN architectures. But what is the best 3D CNN architecture?

Wang et al, "Non-local neural networks", CVPR 2018

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture (InceptionNet).

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Inception Block: Original

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Inception Block: Inflated

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t
This gives the same result as 2D conv given "constant" video input

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D $K_h \times K_w$ conv/pool layer with a 3D $K_t \times K_h \times K_w$ version

Can use weights of 2D conv to initialize 3D conv: copy K_t times in space and divide by K_t

This gives the same result as 2D conv given "constant" video input

Top-1 Accuracy on Kinetics-400

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

Treating time and space differently: SlowFast Networks

Justin Johnson Lecture 18 - 79 November 18, 2019

Treating time and space differently: SlowFast Networks

- Dimensions are $\{T \times S^2, C\}$
- Strides are {temporal, spatial²}
- The backbone is ResNet-50
- Residual blocks are shown by brackets
- Non-degenerate temporal filters are underlined
- Here the speed ratio is $\alpha = 8$ and the channel ratio is $\theta = 1/8$
- Orange numbers mark fewer channels, for the Fast pathway
- Green numbers mark higher temporal resolution of the Fast pathway
- No temporal pooling is performed throughout the hierarchy

stage	Slow pathway	Fast pathway	output sizes $T \times S^2$
raw clip	2	-	64×224 ²
data layer	stride 16, 1 ²	stride 2, 1 ²	Slow: 4×224 ² Fast: 32×224 ²
conv ₁	1×7^2 , 64 stride 1, 2^2	$\frac{5\times7^2, 8}{\text{stride 1, 2}^2}$	$Slow: 4 \times 112^2$ $Fast: 32 \times 112^2$
$pool_1$	1×3^2 max stride 1, 2^2	1×3^2 max stride 1, 2^2	Slow: 4×56 ² Fast: 32×56 ²
res ₂	$\begin{bmatrix} 1 \times 1^2, 64 \\ 1 \times 3^2, 64 \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 8}{1 \times 3^2, 8} \\ 1 \times 1^2, \frac{32}{32} \end{bmatrix} \times 3$	Slow: 4×56 ² Fast: 32×56 ²
res ₃	$\begin{bmatrix} 1 \times 1^2, 128 \\ 1 \times 3^2, 128 \\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} \frac{3 \times 1^2}{1 \times 3^2}, \frac{16}{16} \\ 1 \times 1^2, \frac{64}{1} \end{bmatrix} \times 4$	Slow: 4×28 ² Fast: 32×28 ²
res ₄	$ \begin{bmatrix} \frac{3 \times 1^2, 256}{1 \times 3^2, 256} \\ 1 \times 1^2, 1024 \end{bmatrix} \times 6 $	$ \left[\begin{array}{c} \frac{3\times1^2, 32}{1\times3^2, 32} \\ 1\times1^2, 128 \end{array}\right] \times 6 $	$Slow: 4 \times 14^2$ $Fast: 32 \times 14^2$
res ₅	$\begin{bmatrix} \frac{3\times1^2, 512}{1\times3^2, 512} \\ 1\times1^2, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} \frac{3 \times 1^2, 64}{1 \times 3^2, 64} \\ 1 \times 1^2, 256 \end{bmatrix} \times 3$	Slow: 4×7^2 Fast: 32×7^2
global average pool, concate, fc			# classes

Feichtenhofer et al, "SlowFast Networks for Video Recognition", ICCV 2019 Slide credit: Christoph Feichtenhofer

So far: Classify short clips

Videos: Recognize actions

Swimming
Running
Jumping
Eating
Standing

Temporal Action Localization

Given a long untrimmed video sequence, identify frames corresponding to different actions

Can use architecture similar to Faster R-CNN: first generate temporal proposals then classify

Chao et al, "Rethinking the Faster R-CNN Architecture for Temporal Action Localization", CVPR 2018

Spatio-Temporal Detection

Given a long untrimmed video, detect all the people in space and time and classify the activities they are performing Some examples from AVA Dataset:

Gu et al, "AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions", CVPR 2018

Recap: Video Models

Many video models:

Single-frame CNN (Try this first!)

Late fusion

Early fusion

3D CNN / C3D

Two-stream networks

CNN + RNN

Convolutional RNN

Spatio-temporal self-attention

SlowFast networks (current SoTA)

Next time: Generative Models, part 1 Generative Adversarial Networks

R(2+1)D

Practical aspects

- Pretrain on large datasets
 - ImageNet, Kinetics, Sports1M, Youtube8M
- Finetune of the target dataset
- Loading image weights for video
 - ImageNet

Video classification variants

Carreira, Joao, and Andrew Zisserman. "Quo vadis, action recognition? a new model and the kinetics dataset." proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.