SERIES DE FOURIER APLICACIONES A LAS EDO COMO PROBLEMAS DE CONTORNO

irlamn@uni.edu.pe

1. Problemas de Contorno y series de autofunciones.

A) Series de Fourier en senos. El problema:

$$\begin{cases} -x'' = \lambda x & t \in [0, \pi] \\ x(0) = x(\pi) = 0, \end{cases}$$

• $\lambda_n = n^2 \pi^2$, n = 1, 2, ..., $\psi_n = \operatorname{sen} nt$. Proposición 1. Toda $f \in C^2[0, \pi]$ tal que

$$f(0) = f(\pi) = 0$$

se representa en la forma:

$$f(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen} nt,$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(t) \operatorname{sen} nt \ dt,$$

siendo la serie uniformemente convergente en $[0, \pi]$.

El desarrollo converge en media cuadrática si $f(t) \in R[0,\pi]$, sin más restricciones sobre f.

B) Series de Fourier en cosenos. El problema:

$$\begin{cases} -x'' = \lambda x & t \in [0, \pi] \\ x'(0) = x'(\pi) = 0, \end{cases}$$

• $\lambda_n = n^2 \pi^2$, $n = 0, 1, 2, \dots$, $\psi_n = \cos nt$.

Proposición 2. Toda $f \in C^2[0,\pi]$ tal que

$$f'(0) = f'(\pi) = 0$$

se representa en la forma:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt,$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt \ dt,$$

siendo la serie uniformemente convergente en $[0,\pi]$.

El desarrollo converge en media cuadrática si $f(t) \in R[0,\pi]$, sin más restricciones sobre f.

C) Series de Fourier en cosenos & senos. Las funciones 2π -periódicas son el mejor ejemplo de las funciones del siguiente resultado.

Proposición 3. Sea $f \in C^2[-\pi, \pi]$ tal que

$$f(-\pi) = f(\pi), \qquad f'(-\pi) = f'(\pi).$$

Entonces:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \operatorname{sen} nt \ dt,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \ dt$$
 $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \ dt,$

siendo la serie uniformemente convergente en $[-\pi, \pi]$.

El desarrollo converge en media cuadrática si $f(t) \in R[-\pi, \pi]$, sin más restricciones sobre f.

Demostración. Para reducir el caso periódico a los anteriores escribimos:

$$f(t) = g(t) + h(t)$$

donde:

$$g(t) = \frac{f(t) + f(-t)}{2}$$
 $h(t) = \frac{f(t) - f(-t)}{2}$.

Al desarrollarlas en el intervalo $[0, \pi]$:

$$g(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt,$$
 (1)

$$h(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen} nt, \tag{2}$$

donde, al converger uniformemente en $[0, \pi]$ también lo hacen en $[-\pi, \pi]$.

Definición 1. Para $f \in R[0,\pi]$,

$$f(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen} nt, \qquad t \in [0, \pi]$$

se denomina el desarrollo de Fourier de f en senos, en el intervalo $[0, \pi]$,

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt, \qquad t \in [0, \pi]$$

es el desarrollo de Fourier de f en cosenos, en el intervalo $[0, \pi]$.

Para $f \in R[-\pi, \pi]$,

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt,$$

es simplemente el desarrollo en serie de Fourier de f, en el intervalo $[-\pi,\pi]$

Relación entre los tres desarrollos

• Si $f \in R[-\pi, \pi]$ es par en $[-\pi, \pi]$ su desarrollo de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt =$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt.$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt \ dt.$$

que coincide con el desarrollo de Fourier en cosenos de su <u>restricción</u> al intervalo $[0, \pi]$.

• Si $f \in R[-\pi, \pi]$ es impar en $[-\pi, \pi]$ su desarrollo de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt =$$

$$\sum_{n=1}^{\infty} b_n \operatorname{sen} nt$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(t) \operatorname{sen} nt \ dt.$$

que coincide con el desarrollo de Fourier en senos de su <u>restricción</u> al intervalo $[0, \pi]$.

★ Si $f \in R[0,\pi]$ es una función arbitraria y \overline{f} es su <u>extensión par</u> al intervalo $[-\pi,\pi]$, el desarrollo de \overline{f} en el intervalo $[-\pi,\pi]$:

$$\bar{f}(t) = \frac{\bar{a}_0}{2} + \sum_{n=1}^{\infty} \bar{a}_n \cos nt + \bar{b}_n \sin nt$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt$$

pues $\bar{b}_n = 0$ y $\bar{a}_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos nt \ dt$, que es el desarrollo en serie de cosenos de f en $[0, \pi]$.

 \bigstar Análogamente, si $f \in R[0,\pi]$ y \hat{f} es su extensión \underline{impar} al intervalo $[-\pi,\pi]$, el desarrollo
de \hat{f} en el intervalo $[-\pi,\pi]$:

$$\widehat{f}(t) = \sum_{n=1}^{\infty} \widehat{a}_n \cos nt + \widehat{b}_n \sin nt$$

$$=\sum_{n=1}^{\infty}b_n\operatorname{sen}nt$$

pues $\hat{a}_n = 0$ y $\hat{b}_n = \frac{2}{\pi} \int_0^{\pi} f(t) \operatorname{sen} nt \ dt$, que es el desarrollo en serie de senos de f en $[0,\pi]$.

Ejemplo. El desarrollo de f(t) = t en serie de cosenos en $[0, \pi]$:

$$t = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)t.$$

El desarrollo de Fourier de $\overline{f}(t) = |t|$ en $[-\pi, \pi]$:

$$|t| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)t.$$

Ejemplo. El desarrollo de f(t) = 1 en serie de senos en $[0, \pi]$:

$$f(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \operatorname{sen}(2n-1)t.$$

2. Identidad de Parseval.

Teorema 1 (Identidades de Parseval). Sean f, g funciones en $R[-\pi,\pi]$ se tiene que:

a)
$$\int_{-\pi}^{\pi} f(t)g(t) dt = \pi \left\{ \frac{a_0 \hat{a}_0}{2} + \sum_{n=1}^{\infty} a_n \hat{a}_n + b_n \hat{b}_n \right\},$$

b)
$$\int_{-\pi}^{\pi} f(t)^2 dt = \pi \left\{ \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \right\}.$$

Si f, g en en $R[0, \pi]$ se tiene que:

c)
$$\int_0^{\pi} f(t)g(t) dt = \frac{\pi}{2} \left\{ \frac{a_0 \hat{a}_0}{2} + \sum_{n=1}^{\infty} a_n \hat{a}_n \right\},$$

d)
$$\int_0^{\pi} f(t)^2 dt = \frac{\pi}{2} \left\{ \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 \right\},$$

mientras:

e)
$$\int_0^{\pi} f(t)g(t) dt = \frac{\pi}{2} \{ \sum_{n=1}^{\infty} b_n \hat{b}_n \},$$

f)
$$\int_0^{\pi} f(t)^2 dt = \frac{\pi}{2} \left\{ \sum_{n=1}^{\infty} b_n^2 \right\}.$$

Teorema 2 (Principio de identidad). Sean f y g funciones <u>continuas</u> en $[-\pi, \pi]$ con desarrollos en serie de Fourier :

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt,$$

$$g(t) = \frac{\bar{a}_0}{2} + \sum_{n=1}^{\infty} \bar{a}_n \cos nt + \bar{b}_n \sin nt.$$

Entonces f(t) = g(t) si y sólo si

$$a_n = \overline{a}_n$$
 & $b_n = \overline{b}_n$ para todo n .

Teorema 3 (Integración término a término).

Sea $f \in R[-\pi, \pi]$ entonces para t_0 fijo y cada $t \in [-\pi, \pi]$ se tiene que:

$$\int_{t_0}^t f(s) \ ds = \frac{a_0}{2} (t - t_0) +$$

$$\sum_{n=1}^{\infty} a_n \int_{t_0}^t \cos ns \ ds + b_n \int_{t_0}^t \sin ns \ ds,$$

siendo la convergencia uniforme en $[-\pi,\pi]$.

Análogamente, para $f \in R[0, \pi]$:

$$\int_{t_0}^{t} f(s) \ ds = \sum_{n=1}^{\infty} b_n \int_{t_0}^{t} \sin ns \ ds,$$

$$\int_{t_0}^t f(s) \ ds = \frac{a_0}{2} (t - t_0) + \sum_{n=1}^{\infty} a_n \int_{t_0}^t \cos ns \ ds,$$

en donde $t_0, t \in [0, \pi]$ y la convergencia es uniforme en $[0, \pi]$.

Ejemplo:

La función f(t) = 1 se representa en serie de senos en el intervalo $[0, \pi]$:

$$1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \operatorname{sen}(2n-1)t.$$

Por tanto:

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

De aquí sale que:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Ejemplo:

La función f(t) = 1 se re-

presenta en serie de senos en el intervalo $[0, \pi]$:

$$1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \operatorname{sen}(2n-1)t.$$

Al integrar la serie término a término obtenemos:

$$t = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos(2n-1)t,$$

es decir:

$$t = \frac{\pi}{2} - \frac{4}{\pi} \left\{ \cos t + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} + \cdots \right\}.$$

Por el momento sólo sabemos que la primera serie converge en media cuadrática, mientras la segunda converge uniformemente en $[0, \pi]$.

Nota. Obsérvese que f(t) = t no cumple las condiciones f' = 0 en $t = 0, \pi$. Sin embargo la serie converge uniformemente.

3. Convergencia puntual.

Para estudiar la convergencia puntual, la serie de referencia es:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + b_n \sin nt$$

donde suponemos que:

$$f(t) \in R[-\pi, \pi]$$

es 2π -periódica:

$$f(t+2\pi) = f(t).$$

- \bigstar Funciones como $f(t)=t, f(t)=e^t$, etc, se extienden periódicamente fuera de $[-\pi,\pi]$.
- \bigstar Para estudiar la serie de Fourier en senos de $f \in R[0,\pi]$, primero se la extiende <u>impar</u> a $[-\pi,\pi]$ y después 2π -periódicamente a \mathbb{R} .
- \bigstar Para estudiar la serie de Fourier en cosenos de $f \in R[0, \pi]$, primero se la extiende par a $[-\pi, \pi]$ y después 2π -periódicamente a \mathbb{R} .

Extensiones periódicas: funciones definidas $[-\pi, \pi]$

Fig. Extensión 2π periódica de f(t) = t

Fig. Extensión 2π periódica de $f(t) = e^t$