In [1]: import pandas as pd

Out[2]:

	OBJECTID_12	GEOID10	NAME10	INTPTLAT10	INTPTLON10	FIPS	NAME	STANDARD	FILEID	
0	1277	49025	Kane	37.275118	-111.815413	49025	Kane County	Kane County, UT	SF1US	490
1	18	48271	Kinney	29.347086	-100.417700	48271	Kinney County	Kinney County, TX	SF1US	482
2	1938	8053	Hinsdale	37.811625	-107.383405	8053	Hinsdale County	Hinsdale County, CO	SF1US	8(
3	2853	48301	Loving	31.844936	-103.561229	48301	Loving County	Loving County, TX	SF1US	480
4	1878	16059	Lemhi	44.928789	-113.887841	16059	Lemhi County	Lemhi County, ID	SF1US	160
3091	409	35033	Mora	35.982841	-104.921898	35033	Mora County	Mora County, NM	SF1US	35(
3092	1474	8039	Elbert	39.310817	-104.117927	8039	Elbert County	Elbert County, CO	SF1US	8(
3093	2819	51007	Amelia	37.336131	-77.973218	51007	Amelia County	Amelia County, VA	SF1US	51(
3094	1399	51101	King William	37.708260	-77.091054	51101	King William County	King William County, VA	SF1US	51 ⁻
3095	2250	51045	Craig	37.473129	-80.231734	51045	Craig County	Craig County, VA	SF1US	51(

3096 rows × 242 columns

In [4]: data.shape

Out[4]: (3096, 242)

```
In [6]: | data.columns
 Out[6]: Index(['OBJECTID_12', 'GEOID10', 'NAME10', 'INTPTLAT10', 'INTPTLON10', 'FIPS',
                 'NAME', 'STANDARD', 'FILEID', 'UI',
                 'notproficientinEnglishApril2022', 'FemalesApril2022', 'RuralApril2022',
                 'PovertyratApril2022', 'DisabilityApril2022', 'Republicannumber',
                 'Republicanpercent', 'Democraticnumber', 'DemocraticPercent',
                 'Name_12'],
               dtype='object', length=242)
 In [9]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3096 entries, 0 to 3095
         Columns: 242 entries, OBJECTID 12 to Name 12
         dtypes: float64(127), int64(97), object(18)
         memory usage: 5.7+ MB
In [10]: data.dtypes
Out[10]: OBJECTID_12
                                 int64
         GEOID10
                                 int64
         NAME10
                               object
         INTPTLAT10
                               float64
         INTPTLON10
                               float64
         Republicannumber
                                int64
         Republicanpercent
                               float64
         Democraticnumber
                                 int64
         DemocraticPercent
                               float64
         Name 12
                               object
         Length: 242, dtype: object
In [11]: target variable = 'Series Complete Pop Pct x'
In [12]: # Step 1: Demographics Model
         demographics = [
             'Census2019_5PlusPop_x', 'Census2019_5to17Pop_x', 'Census2019_12PlusPop_x',
             'Census2019_18PlusPop_x', 'Census2019_65PlusPop_x', 'below18yearsofage2019_x',
              'older65over2019_x', 'below18yearsofage2020', 'older65over2020',
             'below18yearsofageApril2022', 'older65overApril2022', 'Asian2019_x',
              'Asian2020', 'AsianApril2022', 'AmericanIndian_AlaskaNative2019',
              'AmericanIndian AlaskaNative2020', 'AmericanIndian AlaskaNativeApri',
              'Females2019 x', 'Females2020', 'FemalesApril2022'
In [13]: import statsmodels.api as sm
In [14]: x demographics = sm.add constant(data[demographics])
In [15]: model_1 = sm.OLS(data[target_variable], x_demographics).fit()
```

```
In [16]: print("Demographics_Rsquared:", model_1.rsquared)
          Demographics Rsquared: 0.26123261930550956
In [17]: # Step 2: Demographics + Social Determinants Model
          social determinants = [
              'Highschoolcompletion2019 x', 'Highschoolcompletion2020',
              'HighschoolcompletionApril2022', 'notproficientinEnglish2019_x',
              'notproficientinEnglish2020', 'notproficientinEnglishApril2022',
              'Unemployment2019_x', 'Unemployment2020', 'UnemploymentApril2022',
              'Trafficvolume2019_x', 'Trafficvolume2020', 'TrafficvolumeApril2022',
              'Childreninpoverty2019_x', 'Childreninpoverty2020', 'ChildreninpovertyApril2022',
              'Childreninsingleparenthousehold', 'Childreninsingleparenthouseho_1', 'Childreninsingleparenthouseho_2', 'Medianhouseholdincome2019_x',
              'Medianhouseholdincome2020', 'MedianhouseholdincomeApril2022'
          ]
In [18]: | x sdoh = sm.add constant(data[demographics+social determinants])
In [19]: model_2 = sm.OLS(data[target_variable], x_sdoh).fit()
In [20]: print("SDOH_Rsquared:", model_2.rsquared)
          SDOH Rsquared: 0.4620042672867739
         # Step 3: Demographics + Social Determinants + Health Factors Model
In [21]:
          health_factors = [
              'Disability2019_x', 'Disability2022', 'DisabilityApril2022',
              'Lifeexpectancy2019 x', 'Lifeexpectancy2020', 'LifeexpectancyApril2022',
              'Prematureageadjustedmortality20', 'Prematureageadjustedmortality_1',
              'PrematureageadjustedmortalityAp'
          ]
In [22]: |x_health = sm.add_constant(data[demographics+social_determinants+health_factors])
In [24]: model_3 = sm.OLS(data[target_variable], x_health).fit()
In [25]: print("Health_Rsquared:", model_3.rsquared)
          Health Rsquared: 0.47193581944373986
In [26]:
         political leaning = [
              'Republicanpercent', 'DemocraticPercent'
          ]
In [28]: x_political = sm.add_constant(data[demographics+social_determinants+health_factors+polit
In [29]: |model 4 = sm.OLS(data[target variable], x political).fit()
In [30]: print("Political_Rsquared:", model_4.rsquared)
          Political_Rsquared: 0.5056303078712133
```

In [32]: # Print the statistical significance of political leaning factors
print("\nStatistical significance of Political Leaning factors:")
print(model_4.summary().tables[1])

+05 1.3e+05						4
AmericanIndian_AlaskaNative2020	3.846e+04	1.22e+05	0.315	0.753	-2.01e	
+05 2.78e+05						
AmericanIndian_AlaskaNativeApri	-1.362e+04	4.31e+04	-0.316	0.752	-9.81e	
+04 7.08e+04						
Females2019_x	1.398e+05	6.42e+05	0.218	0.828	-1.12e	
+06 1.4e+06						
Females2020	-2.161e+05	9.93e+05	-0.218	0.828	-2.16e	
+06 1.73e+06	7 405 04	2 - 2-	0.040			
FemalesApril2022	7.625e+04	3.5e+05	0.218	0.828	-6.11e	
+05 7.63e+05	1 24005	4 1105	0.202	0.762	C 02-	
Highschoolcompletion2019_x +05 9.31e+05	1.248e+05	4.11e+05	0.303	0.762	-6.82e	
Highschoolcompletion2020	-1.928e+05	6.36e+05	-0.303	0.762	-1.44e	
+06 1.05e+06	-1.9200+03	0.300+03	-0.303	0.702	-1.446	
HighschoolcompletionApril2022	6.805e+04	2.24e+05	0.303	0.762	-3.72e	
+05 5.08e+05	0.0050104	2.240103	0.303	0.702	3.720	
notproficientinEnglish2019 x	3.359e+07	1.4e+08	0.240	0.811	-2.41e	
+08 3.08e+08	2.0020.07		3.2.3	0.022	c	
notnnoficientinEnglich2020	_5 101д±07	2 17 _{0±0} 0	- a 210	A Q11	_1 760	

EDA

In [33]: data.head()

Out[33]:

	OBJECTID_12	GEOID10	NAME10	INTPTLAT10	INTPTLON10	FIPS	NAME	STANDARD	FILEID	UI
0	1277	49025	Kane	37.275118	-111.815413	49025	Kane County	Kane County, UT	SF1US	49025
1	18	48271	Kinney	29.347086	-100.417700	48271	Kinney County	Kinney County, TX	SF1US	48271
2	1938	8053	Hinsdale	37.811625	-107.383405	8053	Hinsdale County	Hinsdale County, CO	SF1US	8053
3	2853	48301	Loving	31.844936	-103.561229	48301	Loving County	Loving County, TX	SF1US	48301
4	1878	16059	Lemhi	44.928789	-113.887841	16059	Lemhi County	Lemhi County, ID	SF1US	16059

5 rows × 242 columns

```
In [34]: data.describe()
```

Out[34]:

	OBJECTID_12	GEOID10	INTPTLAT10	INTPTLON10	FIPS	UI	FIPS_1	Cc
count	3096.000000	3096.000000	3096.000000	3096.000000	3096.000000	3096.000000	3096.000000	
mean	1553.906008	30749.049096	38.278969	-91.601765	30749.049096	30749.049096	30744.074289	
std	897.614956	14962.975037	4.844293	11.394920	14962.975037	14962.975037	14959.939717	
min	1.000000	1001.000000	25.601043	-124.211406	1001.000000	1001.000000	1001.000000	
25%	775.750000	19054.500000	34.675292	-97.956729	19054.500000	19054.500000	19054.500000	
50%	1552.500000	29224.000000	38.319946	-90.132265	29224.000000	29224.000000	29222.000000	
75%	2331.250000	46015.500000	41.709094	-83.372924	46015.500000	46015.500000	46013.500000	
max	3108.000000	56045.000000	48.842653	-67.609354	56045.000000	56045.000000	56045.000000	

8 rows × 224 columns

In [35]: #check for missing values
data.isnull().sum()

Republicannumber 0
Republicanpercent 0
Democraticnumber 0
DemocraticPercent 0
Name_12 0
Length: 242, dtype: int64

In [36]: import matplotlib.pyplot as plt
import seaborn as sns

```
In [40]: # Select only numeric columns for the correlation matrix
    numeric_data = data.select_dtypes(include=['float64', 'int64'])
    plt.figure(figsize=(12,8))
    corr_matrix = numeric_data.corr()
    sns.heatmap(corr_matrix, cmap = "coolwarm", annot=False , linewidths=0.5)
    plt.title("Correlation Matrix")
    plt.show()
```



```
In [41]: # Boxplots for demographic variables
demographic_columns = [
    'below18yearsofage2019_x', 'older65over2019_x', 'Females2019_x',
    'NonHispanicBlack2019_x', 'AmericanIndian_AlaskaNative2019',
    'Asian2019_x', 'Hispanic2019_x', 'NonHispanicWhite2019_x'
]
plt.figure(figsize=(15, 10))
data[demographic_columns].boxplot()
plt.title("Boxplots of Demographic Variables")
plt.xticks(rotation=45)
plt.show()
```


C:\ProgramData\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The fi gure layout has changed to tight

ML

```
In [43]: from sklearn.model_selection import train_test_split
         from sklearn.linear model import LinearRegression
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.metrics import mean squared error, r2 score
In [44]: # Define the target and features
         target = 'Series_Complete_Pop_Pct_x'
         features = [
             'Highschoolcompletion2019 x', 'Medianhouseholdincome2019 x',
              'Unemployment2019_x', 'Disability2019_x', 'Lifeexpectancy2019_x',
             'Republicanpercent', 'DemocraticPercent'
         ]
In [45]: X = data[features]
         y = data[target]
In [47]: # Train-Test Split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42
In [48]: #Linear regression
         lin_reg = LinearRegression()
         lin reg.fit(X train, y train)
         y pred lin = lin reg.predict(X test)
In [49]: # Evaluation for Linear Regression
         print("\nLinear Regression Results:")
         print("Mean Squared Error:", mean_squared_error(y_test, y_pred_lin))
         print("R-squared:", r2 score(y test, y pred lin))
         Linear Regression Results:
         Mean Squared Error: 89.69905960509034
         R-squared: 0.37013731385508464
In [50]: # 2. Random Forest Regressor
         rf reg = RandomForestRegressor(n estimators=100, random state=42)
         rf_reg.fit(X_train, y_train)
         y pred rf = rf reg.predict(X test)
         # Evaluation for Random Forest
         print("\nRandom Forest Results:")
         print("Mean Squared Error:", mean_squared_error(y_test, y_pred_rf))
         print("R-squared:", r2_score(y_test, y_pred_rf))
         Random Forest Results:
         Mean Squared Error: 81.13850747039827
```

localhost:8888/notebooks/Untitled56.ipynb?kernel name=python3#

R-squared: 0.4302491186630668

```
In [51]: # Feature Importance from Random Forest
    plt.figure(figsize=(10, 5))
    importances = rf_reg.feature_importances_
    indices = sorted(range(len(importances)), key=lambda i: importances[i], reverse=True)
    plt.bar([features[i] for i in indices], [importances[i] for i in indices])
    plt.title("Feature Importances from Random Forest")
    plt.xlabel("Feature")
    plt.ylabel("Importance Score")
    plt.xticks(rotation=45)
    plt.show()
```


In []: