国际人工智能会议 AAAI 2021 论文北京预讲会

Informer: Beyond Efficient Transformer for Long Sequence **Time-Series Forecasting**

Haoyi Zhou¹, Shanghang Zhang², Jieqi Peng¹, Shuai Zhang¹, Jianxin Li¹, Xiong Hui³, Wancai Zhang⁴

¹ Beihang University, ² UC Berkeley, ³ Rutgers University, ⁴ Beijing Guowang Fuda Science & Technology Development Company

Highlights

Propose Informer to successfully enhance the prediction capacity in the Long Sequence Time-series Forecasting (LSTF) problem.

- Propose ProbSparse Self-Attention mechanism that achieves $\mathcal{O}(L\log L)$ in time complexity and memory usage.
- Propose Self-attention Distilling to sharply reduce space complexity to $\mathcal{O}((2-\epsilon)L\log L)$.
- Propose Generative Style Decoder to acquire long sequence output with only one forward step needed.

Introduction

Long Sequence Time-series Forecasting (LSTF)

- Near future predictions
- Limited adjustment
- Coarse predictions
- **Inefficient** adjustment
- Long sequence predictions
- **Proper** adjustment

The major challenge for LSTF in **enhancing the prediction** capacity to meet the increasingly long sequences demand

- Extraordinarily *long-range alignment ability*
- *Efficient operations* on long sequence inputs and outputs
- **❖** Applying Transformer models in LSTF problem

Limitations of LSTM in LSTF

- The inference speed of LSTM decrease rapidly.
- Continuous accumulation of errors causes the MSE score increase rapidly.

Advances of Transformer

• The self-attention mechanism reduce max path of network signals to O(1) and avoids recurrent structure.

Limitations of Transformer

- The quadratic computation of self-attention. The atom operation of self-attention mechanism, namely canonical dotproduct, causes the time complexity and memory usage per layer to be $\mathcal{O}(L^2)$.
- The memory bottleneck in stacking layers for long inputs. The stack of *I* encoder/decoder layer makes total memory usage to be $\mathcal{O}(J \cdot L^2)$ which limits the model scalability on receiving long sequence inputs.
- The speed plunge in predicting long outputs. The dynamic decoding of vanilla Transformer makes the step-by-step inference as slow as RNN-based model.

Methodology

ProbSparse Self-attention

Rewrite the self-attention into the probability formulation

$$\mathcal{A}(\mathbf{q}_i, \mathbf{K}, \mathbf{V}) = \sum_{i} \frac{k(\mathbf{q}_i, \mathbf{k}_j)}{\sum_{l} k(\mathbf{q}_i, \mathbf{k}_l)} \mathbf{v}_j = \mathbb{E}_{p(\mathbf{k}_j | \mathbf{q}_i)}[\mathbf{v}_j]$$

Establish the measurement

Attention probability $p(\mathbf{k}_j|\mathbf{q}_i)$ Uniform probability $q(\mathbf{k}_j|\mathbf{q}_i) = \frac{1}{L_K}$

$$KL(q||p) = \sum_{j=1}^{L_K} \frac{1}{L_K} \ln \frac{1/L_K}{k(\mathbf{q}_i, \mathbf{k}_j)/\sum_l k(\mathbf{q}_i, \mathbf{k}_l)}$$
$$= \ln \sum_{l=1}^{L_K} e^{\frac{\mathbf{q}_i \mathbf{k}_l^{\mathsf{T}}}{\sqrt{d}}} - \frac{1}{L_K} \sum_{j=1}^{L_K} \frac{\mathbf{q}_i \mathbf{k}_j^{\mathsf{T}}}{\sqrt{d}} - \ln L_K$$

Dropping the constant, and use an approximation to the measurement for computation simplicity:

Define *ProbSparse* self-attention

$$\mathcal{A}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{Softmax}(\frac{\overline{\mathbf{Q}}\mathbf{K}^{\top}}{\sqrt{d}})\mathbf{V}$$

Where \overline{Q} is a sparse matrix of the same size of q and it only contains the Top-u queries under the sparsity measurement M(q, K).

Algorithm 1 ProbSparse self-attention

Input: Tensor $Q \in \mathbb{R}^{m \times d}$, $K \in \mathbb{R}^{n \times d}$, $V \in \mathbb{R}^{n \times d}$

- 1: **initialize:** set hyperparameter c, $u = c \ln m$ and $U = m \ln n$
- 2: randomly select U dot-product pairs from K as \bar{K}
- 3: set the sample score $\bar{S} = Q\bar{K}^{\top}$
- 4: compute the measurement $M = \max(\bar{S}) \max(\bar{S})$ by row 5: set Top-u queries under M as $\bar{\mathbf{Q}}$
- 6: set $S_1 = \operatorname{softmax}(\bar{\mathbf{Q}}\mathbf{K}^\top/\sqrt{d}) \cdot \mathbf{V}$
- 7: set $S_0 = mean(V)$
- 8: set $S = \{S_1, S_0\}$ by their original rows accordingly

Output: self-attention feature map S.

Sample $L\log L$ dot-product pairs $\rightarrow \mathcal{O}(L\log L)$

Self-attention Distilling

Generative-style Decoder

$$\mathbf{X}_{\text{feed_de}}^t = \text{Concat}(\mathbf{X}_{\text{token}}^t, \mathbf{X}_{\mathbf{0}}^t) \in \mathbb{R}^{(L_{\text{token}} + L_y) \times d_{\text{model}}}$$

Predicts all the outputs by one forward procedure.

• X_{token}^t : Generative start token, instead of choosing a specific flag as the token, we sample a "shorter" long sequence in input sequence, which is an earlier slice before output sequence.

Experiment

Table 1: Univariate long sequence time-series forecasting results on four datasets (five cases)

Univariate Time-series Forecasting

									- 1							0					(,					
Methods	Matric			ETTh ₁					ETTh ₂					ETTm ₁	ı				Weathe	r				ECL			coun
Methods	Wietric	24	48	168	336	720	24	48	168	336	720	24	48	96	288	672	24	48	168	336	720	48	168	336	720	960	coun
Informer	MSE MAE										0.184 0.339																28
Informer [†]	MSE MAE																									$0.538 \\ 0.560$	14
LogTrans																										0.546 0.563	0
Reformer											1.862 1.543																0
LSTMa																										1.493 0.9260	1
DeepAR											$0.367 \\ 0.488$															$0.583 \\ 0.583$	6
ARIMA											2.822 0.952															1.322 0.908	1
Prophet											3.287 4.592															6.827 4.184	0

Multivariate Time-series Forecasting

Table 2: Multivariate long sequence time-series forecasting results on four datasets (five cases)

Parameter Sensitivity

(a) Input length. (b) Sampling.

❖ Ablation study

Table 3: Ablation of *ProbSparse* mechanism

Prediction le	ngth		336		720				
Encoder's in	put	336	720	1440	720	1440	2880		
Informer	MSE	0.243	0.225	0.212	0.258	0.238	0.224		
mormer	MAE	0.487	0.404	0.381	0.503	0.399	0.387		
T., 6., †	MSE	0.214	0.205	-	0.235	-	-		
Informer ^T	MAE	0.369	0.364	-	0.401	-	-		
LogTrons	MSE	0.256	0.233	-	0.264	-	-		
LogTrans	MAE	0.496	0.412	-	0.523	-	-		
Reformer	MSE	1.848	1.832	1.817	2.094	2.055	2.032		
Reformer	MAE	1.054	1.027	1.010	1.363	1.306	1.334		

Informer uses the canonical self-attention mechanism. ² The '-' indicates failure for out-of-memory.

Table 4: Ablation of Self-attention Distilling

Prediction length			336					480		
nput	336	480	720	960	1200	336	480	720	960	1200
MSE	0.201	0.175	0.215	0.185	0.172	0.136	0.213	0.178	0.146	0.12
MAE	0.360	0.335	0.366	0.355	0.321	0.282	0.382	0.345	0.296	0.272
						0.208	0.182	0.168	-	-
MAE	0.330	0.341	0.329	-	-	0.384	0.337	0.304	-	0.146 0.12
	mput MSE MAE MSE	MSE 0.201 MAE 0.360 MSE 0.187	nput 336 480 MSE 0.201 0.175 MAE 0.360 0.335 MSE 0.187 0.182	nput 336 480 720 MSE 0.201 0.175 0.215 MAE 0.360 0.335 0.366 MSE 0.187 0.182 0.177	nput 336 480 720 960 MSE 0.201 0.175 0.215 0.185 MAE 0.360 0.335 0.366 0.355 MSE 0.187 0.182 0.177 -	nput 336 480 720 960 1200 MSE 0.201 0.175 0.215 0.185 0.172 MAE 0.360 0.335 0.366 0.355 0.321 MSE 0.187 0.182 0.177 - -	nput 336 480 720 960 1200 336 MSE 0.201 0.175 0.215 0.185 0.172 0.136 MAE 0.360 0.335 0.366 0.355 0.321 0.282 MSE 0.187 0.182 0.177 - - 0.208	nput 336 480 720 960 1200 336 480 MSE 0.201 0.175 0.215 0.185 0.172 0.136 0.213 MAE 0.360 0.335 0.366 0.355 0.321 0.282 0.382 MSE 0.187 0.182 0.177 - - 0.208 0.182	nput 336 480 720 960 1200 336 480 720 MSE 0.201 0.175 0.215 0.185 0.172 0.136 0.213 0.178 MAE 0.360 0.335 0.366 0.355 0.321 0.282 0.382 0.345 MSE 0.187 0.182 0.177 - - 0.208 0.182 0.168	nput 336 480 720 960 1200 336 480 720 960 MSE 0.201 0.175 0.215 0.185 0.172 0.136 0.213 0.178 0.146 MAE 0.360 0.335 0.366 0.355 0.321 0.282 0.382 0.345 0.296 MSE 0.187 0.182 0.177 - - 0.208 0.182 0.168 -

Informer⁺ removes the self-attention distilling from Informer ² The '-' indicates failure for out-of-memory.

Table 5: Ablation of Generative Style Decoder

Prediction le	ength		33	36		480					
Prediction o	ffset	+0	+12	+24	+48	+0	+48	+96	+168		
T . C	MSE	0.101	0.102	0.103	0.103	0.155	0.158	0.160	0.165		
Informer [‡]	MAE	0.215	0.218	0.223	0.227	0.317	0.397	0.399	0.406		
Informer [§]	MSE	0.152	-	-	-	0.462	-	-	-		
Informers	MAE	0.294	-	-	-	0.595	-	-	-		
1 1 8		,	1 1.1	, .	1 1:		c t				

Informer[§] replaces our decoder with dynamic decoding one in Informer[‡]

Computation Efficiency

论文预印版本&补充材料: https://arxiv.org/abs/2012.07436

论文项目地址 开源数据集地址

北航ACTBD公众号

主办方: 中国中文信息学会青年工作委员会

承办方:智源社区

