Docket No.: V9661.0040

AMENDMENTS TO THE CLAIMS

Please amend the claims as follows (deletions were stricken through; additions were underlined):

1. (Withdrawn) A catalyst of formula:

$$R^{6}$$
 N
 $M^{m}X_{m-2}Y_{n}$
 R^{5}
 R^{4}
 R^{2}
 R^{2}

wherein:

 R^1 – R^7 are each independently -H, -halo, -NO₂, -CN, -(C₁-C₃₀)hydrocarbyl, -O(C₁-C₃₀)hydrocarbyl, -N((C₁-C₃₀)hydrocarbyl)₂, -Si((C₁-C₃₀)hydrocarbyl)₃, -(C₁-C₃₀)heterohydrocarbyl, -aryl, or -heteroaryl, each of which may be unsubstituted or substituted with one or more - R^8 groups; or two R^1 – R^7 may be joined to form cyclic group;

 R^8 is -halo, -(C₁-C₃₀)hydrocarbyl, -O(C₁-C₃₀)hydrocarbyl, -NO₂, -CN, -Si((C₁-C₃₀)hydrocarbyl)₃, -N((C₁-C₃₀)hydrocarbyl)₂, -(C₁-C₃₀)heterohydrocarbyl, -aryl, or -heteroaryl;

T is -CR⁹R¹⁰- wherein R⁹and R¹⁰ are defined as for R¹ above; E is a Group 16 element;

M is a metal selected from the group consisting of metallic Group 3-Group 10 elements and the Lanthanide series elements;

m is the oxidation state of the M;

X is R1 excluding -H, wherein X is bonded to M;

Y is neutral ligand datively bound to M; and

- 2. (Withdrawn) The catalyst of claim 1, wherein M is titanium, zirconlum or hafnium.
 - 3. (Withdrawn) The catalyst of claim 2, wherein X is halide, unsubstituted

Docket No.: V9661,0040

-(C₁-C₃₀)hydrocarbyl or substituted -(C₁-C₃₀)hydrocarbyl.

- 4. (Withdrawn) The catalyst of claim 3, wherein X is benzyl.
- 5. (Withdrawn) The catalyst of claim 2, wherein E is -O-.
- 6. (Currently Amended) An olefin polymerization catalyst system prepared from the <u>a</u> catalyst of claim 1 and an activator.

wherein the catalyst is of formula:

$$R^{6}$$
 N
 $M^{m}X_{m-2}Y_{n}$
 R^{3}
 R^{2}

wherein:

 R^1-R^7 are each independently -H, -halo, -NO₂, -CN, -(C₁-C₃₀)hydrocarbyl, -O(C₁-C₃₀)hydrocarbyl, -N((C₁-C₃₀)hydrocarbyl)₂, -Si((C₁-C₃₀)hydrocarbyl)₃, -(C₁-C₃₀)heterohydrocarbyl, -aryl, or -heteroaryl, each of which is unsubstituted or substituted with one or more -R⁸ groups; or two R¹-R⁷ is joined to form a cyclic group;

 $\frac{R^8 \text{ is -halo, -(C_1-C_{30})hydrocarbyl, -O(C_1-C_{30})hydrocarbyl, -NO_2, -CN,}}{-Si((C_1-C_{30})hydrocarbyl)_3, -N((C_1-C_{30})hydrocarbyl)_2, -(C_1-C_{30})heterohydrocarbyl, -aryl, or -heteroaryl;}$

T is -CR⁹R¹⁰ – wherein R⁹and R¹⁰ are defined as for R¹ above; E is a Group 16 element:

M is a metal selected from the group consisting of metallic Group 3-Group 10 elements and the Lanthanide series elements:

m is the oxidation state of the M:

X is R¹ excluding -H, wherein X is bonded to M;

Y is a neutral ligand datively bound to M; and

Docket No.: V9661,0040

- 7. (Currently Amended) The olefin polymerization catalyst of claim 6, wherein the activator is selected from the group consisting of trimethylaluminum, triethylaluminum, tri-isobutylaluminum, tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminoxanes, tetrakis(pentafluorophenyl)borate, dimethylphenylammonium tetra(pentafluorophenyl)borate, trityl tetra(pentafluorophenyl)borate, tris(pentafluorophenyl)boron, tris(pentabromophenyl)boron, and mixtures thereof.
- 8. (Currently Amended) A method for polymerizing an olefin comprising contacting an olefin with the olefin polymerization catalyst system of claim $\neq 6$.
- 9. (Original) The method of claim 8, wherein the olefin is ethylene, propylene, 1-butene, 2-pentene, 1-hexene, 1-octene, styrene, 1,3-butadiene, norbornene, each of which may be substituted or unsubstituted, or mixtures thereof.
- 10. (Original) The method of claim 9, wherein the olefin is ethylene or 1-hexene.
- 11. (Withdrawn) The method of claim 8, wherein at least one of R^1-R^7 and R^9-R^{10} is selected from the group consisting of -C(halide)₃, CH(halide)₂ and -CH₂(halide).
 - 12. (Withdrawn) A catalyst of formula:

wherein

 R^1-R^{11} each independently -H, -halo, -NO₂, -CN, -(C₁-C₃₀)hydrocarbyl, -O(C₁-C₃₀)hydrocarbyl, -N((C₁-C₃₀)hydrocarbyl)₂, -Si((C₁-C₃₀)hydrocarbyl)₃,

Docket No.: V9661,0040

 $^{-}$ (C₁-C₃₀)heterohydrocarbyl, -aryl, -heteroaryl, each of which may be unsubstituted or substituted with one or more -R¹² groups; or two R¹–R⁷ may be joined to form a cyclic group;

each R^{12} , is independently -halo, -NO₂, -CN, -(C₁-C₃₀)hydrocarbyl, -O(C₁-C₃₀)hydrocarbyl, -N((C₁-C₃₀)hydrocarbyl)₂, -Si((C₁-C₃₀)hydrocarbyl)₃, -(C₁-C₃₀)heterohydrocarbyl, -aryl, or -heteroaryl;

E is a Group 16 element;

M is a metal selected from the group consisting of metallic Group 3 - Group 10 elements and the Lanthanide series elements;

m is the oxidation state of M;

X is R¹ excluding -H, wherein X is bonded to M; Y is neutral ligand datively bound to M; and

- 13. (Withdrawn) The catalyst of claim 12, wherein M is titanium, zirconium or hafnium.
- 14. (Withdrawn) The catalyst of claim 13, wherein M is Ti or Zr; E is -O-; m is 4; n is 0 or 1; and X is halo, $-(C_1-C_{30})$ hydrocarbyl or benzyl.
 - 15. (Withdrawn) The catalyst of claim 13, wherein R11 is -CF3.
- 16. (Withdrawn) The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $C(CH_3)_3$; R^2 and R^4 - R^{11} are -H; X is - $CH_2(C_6H_5)$; and n is 0.
- 17. (Withdrawn) The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $C(CH_3)_3$; R^2 and R^4 - R^{11} are -H; X is -Cl; n is 1; and Y is -tetrahydrofuran.
- 18. (Withdrawn) The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $C(CH_3)_3$; R^9 and R^{11} are - CF_3 ; R^2 , R^4 - R^8 and R^{10} are -H; X is - $CH_2(C_6H_5)$; and n is 0.
- 19. (Withdrawn) The catalyst of claim 14, wherein M is Ti; R^1 and R^3 are C(CH₃)₃; R^9 and R^{11} are -CF₃; R^2 , R^4 -R⁸ and R^{10} are -H; X is -CH₂(C₆H₅); and n is 0.
- 20. (Withdrawn) The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are $C(CH_3)_3$; R^9 is - CF_3 ; R^2 , R^4 - R^8 and R^{10} - R^{11} are -H; X is - $CH_2(C_6H_5)$; and n is 0.

Docket No.: V9661,0040

21. (Withdrawn) The catalyst of claim 14, wherein M is Zr; R^1 and R^3 are - $C(CH_3)_3$; R^9 is - CF_3 ; R^{11} is -F; R^2 , R^4 - R^8 and R^{10} are -H; X is -CI; n is 1; and Y is tetrahydrofuran.

22. (Currently Amended) An olefin polymerization catalyst system prepared from the <u>a</u> catalyst of claim 12 and an activator.

wherein the catalyst is of formula:

wherein:

R1-R11 are each independently -H, -halo, -NO2, -CN, -

 (C_1-C_{30}) hydrocarbyl, $-O(C_1-C_{30})$ hydrocarbyl, $-N((C_1-C_{30})$ hydrocarbyl)₂, -

Si((C1-C30)hydrocarbyl)3,

-(C₁-C₃₀)heterohydrocarbyl, -aryl, -heteroaryl, each of which is unsubstituted or substituted with one or more -R¹² groups; or two R¹-R⁷ is joined to form a cyclic group;

each R12 is independently -halo, -NO2, -CN, -(C1-C30)hydrocarbyl,

 $-O(C_1-C_{30})$ hydrocarbyl, $-N((C_1-C_{30})$ hydrocarbyl)₂, $-Si((C_1-C_{30})$ hydrocarbyl)₃,

-(C1-C30)heterohydrocarbyl, -aryl, or -heteroaryl;

E is a Group 16 element;

M is a metal selected from the group consisting of metallic Group 3 - Group 10 elements and the Lanthanide series elements:

m is the oxidation state of M;

X is R1 excluding -H, wherein X is bonded to M;

Y is a neutral ligand datively bound to M; and

Docket No.: V9661.0040

- 23. (Currently Amended) The olefin polymerization catalyst system of claim 22, wherein the activator is selected from the group consisting of trimethylaluminum, triethylaluminum, tri-isobutylaluminum, tri-n-octylaluminum, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum chloride, diethylaluminum chloride, aluminoxanes, tetrakis(pentafluorophenyl)borate, dimethylphenylammonium tetra(pentafluorophenyl)borate, trityl tetra(pentafluorophenyl)borate, tris(pentafluorophenyl)boron, tris(pentabromophenyl)boron, and mixtures thereof.
- 24. (Currently Amended) A method for polymerizing an olefin comprising contacting an olefin with the olefin polymerization catalyst system of claim 23 22.
- 25. (Original) The method of claim 24, wherein the olefin is ethylene, propylene, 1-butene, 2-pentene, 1-hexene, 1-octene, styrene, 1,3-butadiene, norbornene, each of which may be substituted or unsubstituted, or mixtures thereof.
- 26. (Original) The method of claim 25, wherein the olefin is ethylene or 1-hexene.
- 27. (Withdrawn) The method of claim 24, wherein at least one of R^1 - R^{11} is selected from the group consisting of -C(halide)₃, CH(halide)₂ and -CH₂(halide).
- 28. (New) The olefin polymerization catalyst system of claim 6, wherein M Is titanium, zirconium or hafnium.
- 29. (New) The olefin polymerization catalyst system of claim 6, wherein X is halide, unsubstituted - (C_1-C_{30}) hydrocarbyl or substituted - (C_1-C_{30}) hydrocarbyl.
- 30. (New) The olefin polymerization catalyst system of claim 6, wherein X is benzyl.
- 31. (New) The olefin polymerization catalyst system of claim 6, wherein E is -O-.
- 32. (New) The olefin polymerization catalyst system of claim 22, wherein M is titanium, zirconium or hafnium.

Docket No.: V9661,0040

- 33. (New) The olefin polymerization catalyst system of claim 22, wherein M is Ti or Zr; E is -O-; m is 4; n is 0 or 1; and X is halo, -(C_1 - C_{30})hydrocarbyl or benzyl.
- 34. (New) The olefin polymerization catalyst system of claim 22, wherein R^{11} is -CF₃.
- 35. (New) The olefin polymerization catalyst system of claim 22, wherein M is Zr; R^1 and R^3 are -C(CH₃)₃; R^2 and R^4 - R^{11} are -H; X is -CH₂(C₆H₅); and n is 0.
- 36. (New) The olefin polymerization catalyst system of claim 22, wherein M is Zr; R^1 and R^3 are -C(CH₃)₃; R^2 and R^4 - R^{11} are -H; X is -Cl; n is 1; and Y is -tetrahydrofuran.
- 37. (New) The olefin polymerization catalyst system of claim 22, wherein M is Zr; R^1 and R^3 are -C(CH₃)₃; R^9 and R^{11} are -CF₃; R^2 , R^4 - R^8 and R^{10} are -H; X is -CH₂(C₆H₅); and n is 0.
- 38. (New) The olefin polymerization catalyst system of claim 22, wherein M is Ti; R^1 and R^3 are $-C(CH_3)_3$; R^9 and R^{11} are $-CF_3$; R^2 , R^4 - R^8 and R^{10} are -H; X is $-CH_2(C_6H_5)$; and n is 0.
- 39. (New) The olefin polymerization catalyst system of claim 22, wherein M is Zr; R^1 and R^3 are -C(CH₃)₃; R^9 is -CF₃; R^2 , R^4 -R⁸ and R^{10} -R¹¹ are -H; X is -CH₂(C₆H₅); and n is 0.
- 40. (New) The olefin polymerization catalyst system of claim 22, wherein M is Zr; R^1 and R^3 are -C(CH₃)₃; R^9 is -CF₃; R^{11} is -F; R^2 , R^4 -R⁸ and R^{10} are -H; X is -Cl; n is 1; and Y is tetrahydrofuran.
- 41. (New) The olefin polymerization catalyst system of claim 6, wherein at least one of R^1 R^7 and R^9 R^{10} is selected from the group consisting of -C(halide)₃, CH(halide)₂ and -CH₂(halide).
- 42. (New) The olefin polymerization catalyst system of claim 22, wherein at least one of R¹-R¹¹ is selected from the group consisting of -C(halide)₃, CH(halide)₂ and -CH₂(halide).