WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB ARMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR--ETC(U) MAY 81 R M HUBBARD AD-A100 759 UNCLASSIFIED APL-UW-8014 NL. 1 OF 2

APPLIED . PHYSICS . LABORATOR

A DIVISION OF THE UNIVERSITY OF WASHINGTON

AEMT Wind Tunnel Test Data from University of Washington Venturi Tunnel

by R. M. Hubbard

APL-UW 8014 May 1981

Applied Physics Laboratory
University of Washington
Contract N00024-78-C-6018

ABSTRACT

A series of wind tunnel tests was conducted from 15 April 1979 to 14 June 1979 at the University of Washington's 3-ft Venturi tunnel to gather data relevant to the solution of a propulsion problem and to support a fin redesign effort for the Advanced Expendable Mobile Target (AEMT). This report outlines the test setups, describes the types of tests performed, and presents selected results. In addition, all of the raw data gathered during the tests are contained in an appendix.

ACKNOWLEDGMENTS

The author gratefully acknowledges the assistance of Preston Carter who helped operate the wind tunnel and gather the data. This work was sponsored by the Targets Technology Block Program, Undersea Warfare Technology Office, Naval Sea Systems Command, Code 63R1 (Dr. E. Liszka) and Code 63R3 (Mr. F. Romano) under Contract N00024-78-C-6018.

TABLE OF CONTENTS

1.	Intr	oduction	ı	• •		•	•	•		•	•	٠	•	•	•	٠	•	•	•	•	•	•	1
2.	Purp	ose and	Scope																				2
3,	Faci	lity Des	criptio	n.																			2
	3.1 3.2		acility ations																				2
4.	Expe	rimental	Setup																				4
	4.1 4.2 4.3 4.4	Fin Mod	odel . lel l Model istallat																				4
5.	Test	Procedu	ires .																				ç
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Facilit Fin Cha Static Propell Powered	Survey by Basel cracteri Stabili er Scre Model Trial Co	ine zati ty T enir Test	Testion Testing T	ts Tes s es 5.	(1 sts (3. ts (X)	. XX (2 XX) (4	() 2 . X) . . XX	(X) (X)	•	•											9 10 10 11 12
6.	Data	Reducti	on																				10
	6.1 6.2 6.3 6.4 6.5 6.6	Tunnel Yaw Hea Wake Ra	Balance Dynamic Id Ike Ier Ier Char	Pre	essu • • •	re	:		• •	•	•	•	•	:		•	· ·	•	:		:	•	13 13 14 14 15 16
		6.6.1 6.6.2 6.6.3	Propell Propell Thrust	er 7	Thru	st																	16 17 17
	6.7	6.7.1	Correct Solid B Buoyanc	loci	cing																		18 18 18
	4 0	Mount T	`0. m o																				15

UNIVERSITY	OF	WASHINGTON	APPLIED	PHYSICS	LABORATOR	Y

7.	Reduced Data	1
	7.1 Flow Visualization	
	7.2 Hull Flow Visualization	
	7.4 Static Stability Characteristics	
	7.5 Hull Boundary Layer Velocity Profiles	
	7.6 Propeller Data	•
	7.7 Wake Survey Data	'
8.	Conclusions)
9.	References	
APPE	ENDIX, Raw Data	(90

LIST OF TABLES

Table 1.	Propellers included in powered model tests	29
Table II.	Reduced data for selected propellers in low turbulence tunnel	30
Table III.	Reduced data; wake velocity profile at q = 9.79 psi .	38

LIST OF FIGURES

Figure 1.	Double row of vortex generators installed near inlet to diffuser section	3
Figure 2.	Aircraft structural honeycomb (0.20 in. mesh) used as turbulence control screen	5
Figure 3.	Three layers of honeycomb wired to the downstream face of the inlet flow-straightening honeycomb	5
Figure 4.	AEMT hull model mounted to two support forks by an offset trunnion	6
Figure 5.	Close-up of the mounting shown in Figure 4	6
Figure 6.	Ellipsoidal support. slotted to accept individual fin semispans, with adjustable crank arms	7
Figure 7.	AEMT hull model with high speed dc motor (Dremel Model No. 280, Series 66-2, rectifier removed) used for powered model testing	8
Figure 8.	Rake measurement on Mod I configuration with propeller fit behind a 30° tail cone	8
Figure 9.	Mesh homoycomb (0.2 in.) fitted to the propeller inflow to reduce scale of turbulence on blades	11
Figure 10.	Flow pattern on two semispans of NACA-0009 fins; run 2.03, 16.05 psf, zero angle of attack, high turbulence tunnel configuration	20
Figure 11.	Side-by-side comparison of NACA-0009 fin (port semispan) with NACA-16-006 fin (starboard semispan); run 2.05, 16.05 psf, zero angle of attack	20
Figure 12.	Comparison of NACA-0009 fin (port semispan) with NACA-16-006 fin (starboard semispan); run 2.07, +2° angle of attack	21
Figure 13.	Same as Figure 12, but with a very heavy coat of kerosene/talc to bring out the leading edge bubble on the 16-006 semispan	22
Figure 14.	Characteristic turbulent wedge generated by a tape spot trip after installation of turbulence-control honeycomb	24

Figure 15.	Flow visualization at trunnion attachment point on the hull; run 1.10	24
Figure 16.	Afterbody flow visualization showing laminar bubble region forward of turbulent reattachment; run 1.17	25
Figure 17.	Comparison of fin characteristics	25
Figure 18.	Static stability characteristics in the low turbulence tunnel at q = 9.77 psf	26
Figure 19.	Boundary layer velocity profile at tail ($X/L = 1.0$); high turbulence tunnel, $q = 8.9$ psf, run 1.09, natural transition	26
Figure 20.	Boundary layer velocity profile at tail ($X/L = 1.0$); high turbulence tunnel, $q = 12.0$ psf, run 1.10, natural transition	27
Figure 21.	Boundary layer velocity profile at tail ($X/L = 1.0$); high turbulence tunnel, $q = 16.0$ psf, run 1.11, natural transition	27
Figure 22.	Boundary layer velocity profile at tail (X/L = 0.99); low turbulence tunnel, q = 9.97 psf, run 1.15, natural transition	27
Figure 23.	Boundary layer velocity profile at leading edge of fin $(X/L = 0.92)$; low turbulence tunnel, $q = 9.97$ psf, run 1.20, natural transition	28
Figure 24.	Boundary layer velocity profile at leading edge of fin $(X/L = 0.92)$; low turbulence tunnel, $q = 9.97$ psf, run 1.21, flow tripped at nose	28
Figure 25.	Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 4.23 with Mod 0 fairwater configuration and nose trip	31
Figure 26.	Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 5.01 with Mod 0 fairwater configuration	31
Figure 27.	Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 5.05 with Mod 0 fairwater configuration and tail honeycomb	3.7

Figure	28.	Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 5.08 with no fairwater	32
Figure	29.	Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch clipped to 3.6 in. diameter; run 5.09,5.10 with no fairwater	3.3
Figure	30.	Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 4 in. pitch; open symbols: run 5.11, no fairwater; closed symbols: run 5.24, Mod I fairwater	33
Figure	31.	Propeller characteristics; run 5.15 with no fairwater and Octura 2.8 propeller with 2.76 in. diameter and 5.03 in. pitch	34
Figure	32.	Propeller characteristics; run 5.17 with Mod 0 fairwater and Octura 2.8 propeller with 2.76 in. diameter and 5.03 in. pitch	34
Figure	33.	Candidate propeller characteristics; run 5.21 with Mod I fairwater and Octura 2.8 propeller with 2.76 in. diameter and 5.03 in. pitch	35
Figure	34.	Candiate propeller characteristics; run 5.25 with Mod I fairwater and Octura 1270 propeller with 2.76 in. diameter and 3.27 in. pitch	35
Figure	35.	Wake velocity profile for AEMT hull with Mod I hub/fairwater configuration and no propeller	36
Figure	36.	Wake velocity profile for AEMT hull with Grish propeller and no hub/fairwater	37
Figure	37.	Wake velocity profile for AEMT hull with Octura 2.8 propeller	37
Figure	38.	Wake velocity profile for AEMT hull with Mod I hub/fairwater and Octura 1270 propeller	37

1, INTRODUCTION

A series of tests was performed on the Advanced Expendable Mobile Target (AEMT) vehicle at the University of Washington's (UW) 3-ft Venturi Wind Tunnel from 15 April 1979 to 14 June 1979. The test program was designed to complement a previous test series performed in the 8-ft wind tunnel at the Guggenheim Aeronautical Laboratory of the California Institute of Technology (GALCIT). The previous tests had been limited to the evaluation of hull and fin hydrodynamics. They resulted in an essentially clean bill of health for the hull, but revealed a problem with flow separation on the fins.

In order of priority, the objectives of the UW tests were:

- (1) Collection of data needed to correct design problems with the vehicle propulsion and fin hydrodynamics.
- (2) Collection of data for predicting the vehicle's performance in future field trials.
- (3) Confirmation of previously postulated causes of design problems.
- (4) Contribution to the data base for hydrodynamic characterization of the AEMT vehicle.

The tests were formulated to achieve specific goals that had been established from the objectives. These goals were:

- (1) Measure thrust and torque characteristics of various candidate propellers when operating in the wake of the hull.
- (2) Measure wake velocity and take static pressure profiles of the self-propelled vehicle.
- (3) Assess propeller inflow effects, including the effect on the propulsive coefficient of fully turbulent flow on the hull.
- (4) Apply flow visualization techniques to detect flow separation on the propeller blades.
- (5) Verify that the chosen fin section gave attached flow over 85% of chord.
- (6) Measure improvements in fin drag, lift, and flap effectiveness.
- (7) Measure static stability of the vehicle both for normal hull flow and for flow tripped at nose.

- (8) Tailor fin size so as to achieve neutral static stability.
- (9) Measure drag of the fully appended hull for natural transition and for tripped flow.

With the exception of goal 4, which was found to be impractical, all of the preceding goals were achieved to a degree sufficient to satisfy the objectives of the test program. It should be noted that, although the wind-tunnel data formed a necessary ingredient, confirming previously postulated causes of design problems required considerable additional theoretical analysis, which is reported in Reference 2.

2. PURPOSE AND SCOPE

The primary purpose of this report is to preserve the raw data that were acquired during the AEMT vehicle tests at the UW facility but that were not utilized in the diagnosis of the vehicle's propulsion problem. The reduction and analysis were limited to data that had a direct bearing on the problem. Therefore, the residual data represent an untapped source which should become part of the data bank on hydrodynamics technology generated by the AEMT program.

5. FACILITY DESCRIPTION

3.1 Basic Facility

The University of Washington's Venturi Wind Tunnel, a facility designed for student use, is located in Gugg mheim Hall adjacent to the F.K. Kirsten Wind Tunnel. The design is a semi-open circuit with the return air path through the room enclosing the tunnel. The tunnel has a 56 in. (minor axis) hexagonal test section 36 in. long, an overall length of 22 ft, and is housed in a room 14 x 27 x 12-1/2 ft. A twobladed, aircraft-type propeller located at the downstream end of the liffuser section exhausts directly into the room. The propeller is driven by a 10 hp dc motor with manual speed control. A large (3 in. mesh) honeycomb is installed across the open end of the inlet cone to straighten the flow. The test section is provided with a three-component, manually read, automatic beam balance having a resolution of 0.5 g. The force balance utilizes mechanical contacts and thyratron motor controllers to achieve self-balancing. The tunnel achieves a maximum dynamic pressure of approximately 18 psf (pounds per square foot) at an air temperature of 75°F.

3.2 Modifications

Initial tests were designed to assess the suitability of the facility for laminar flow testing. The tunnel exhibited severe surging at dynamic pressures (q) between approximately 15 psf and the maximum of 18 psf. A survey using tufts of nylon yarn taped to the diffuser walls revealed serious flow separation and unsteady recirculating flow. An attempt to improve flow attachment by installing a double row of vortex generators near the inlet to the diffuser section (Fig. 1) was only partially effective; however, AEMT program scheduling precluded further improvement, and testing proceeded at a reduced dynamic pressure of 16 psf.

Figure 1. Double row of vortex generators installed near inlet to diffuser section.

Initial plans for the wind tunnel tests³ anticipated that the flow-straightening honeycomb might generate an excessively high turbulence level in the tunnel, thereby precluding testing with laminar flow on the hull. Initial hull flow visualization tests confirmed this. An effort was made to reduce the turbulence level in the tunnel by removing the inlet honeycomb. However, this created an unsteady cross flow in the

test section which caused severe vibration of the model. Further flow visualization tests revealed that the large-scale turbulence generated by the honeycomb did not preclude achieving laminar flow on the fins. Therefore, the decision was made to proceed with fin testing and propeller selection, and to postpone tests dependent on laminar flow on the hull.

The problem of installing turbulence-control screens was addressed on completion of the abbreviated test series. Fortunately, a successful solution was found in the form of three layers of aircraft structural honeycomb (0.20 in. mesh) wired to the downstream face of the flow straightening honeycomb on the inlet (Figs. 2 and 3). The addition of the turbulence-control screens reduced the maximum achievable q from 18 psf to 10 psf. At 10 psf, the tunnel was still subject to surging, thereby limiting the low turbulence testing to a nominal q of 9 psf. All the laminar flow tests were conducted at this latter q.

4. EXPERIMENTAL SETUP

4.1 Hull Model

A full-scale model of the AEMT hull, in both unpowered and powered configurations, was mounted to the two support forks by an offset trunnion as shown in Figures 4 and 5. The mounting was designed to preclude impingement of trunnion flow on the tail fins while eliminating the requirement for one-moment transfer. The longitudinal support point was as far aft as practical to preclude premature tripping of the flow while still not exceeding the maximum pitching moment capability of the beam palance. The pitch arm was pinned to a tab at the tip of the lower vertical fin.

The forebody of the hull was actual field test hardware; the afterbody was a spare, identical to the field test unit.

4.2 Fin Model

An ellipsoidal support body was used for the fin testing (Fig. 6). The body was slotted to accept individual semispans which were restrained by set screws. An adjustable crank arm was installed in each side of the support body to permit fixed deflection of the flaps. The amount of deflection was measured with a machinist's scale based on movement of the trailing edge from a scribed neutral position.

Figure 1. The major when the continuous section is the second and the continuous section is the second and the continuous section is the second section of the continuous section in the continuous section is the continuous section of the continuous section of the continuous section is the continuous section of the continuous section is the continuous section of the continuous sec

Figure 1. And the property of the control of the co

Figure 4. AEMT hull model mounted to two support forks by an offset trunnion.

Figure 5. Close-up of the mounting shown in Figure 4.

Figure 6. Ellipsoidal support, sisted to respectively for scripping, with adjustible armic arms.

4.3 Powered Model

For the powered model testing (Fig. 7), a high speed dc motor (Bremel Model No. 280, Series 66-2, with the rectifier removed) was installed inside the hull. This motor was used to turn various candidate propellers at speeds up to 25,000 rpm. The propeller speed was monitored by an internal electronic tachometer developed for use during later field trials, as well as by a Strobotac. Power for the motor and instrumentation was provided by running wires through the hollow support trunnions and taping them to the trailing edge of the nonmetric portion of the main support forks. Thus, a portion of the wiring contributed to the tare drag of the test setup.

4.4 Rake Installation and Yaw Head

The total pressure and static pressure in the hull boundary layer and in the wake were measured with a 12-tube rake (Fig. 8). Eight of the tubes measured total pressure and four were Pitot-static tubes. The same rake had been used in the previous wind tunnel test series at GALCIT. The rake was attached to a manually read manometer board in which kerosene was the working fluid.

In addition, a six-tube yaw head was used to survey the tunnel for flow uniformity, flow angularity, and both the longitudinal and transverse static pressure gradients.

Figure 7. ASMI hall model with high speed do motor (Dremel Model No. 280, Mories 66-2, rectifier removed) used for powered model testing.

Figure 8. Rake measurement on Mod 1 configuration with propeller fit behind a 30° tail cone.

5. TEST PROCEDURES

The wind tunnel test plan³ called for six classes of tests, each involving a different test procedure. Each test run was identified by a digit designating its class, followed by a period and two more digits indicating the specific run within that particular class. The actual sequence of testing involved intermixing tests from different classes as appropriate to the efficient use of test time. There were 72 runs without turbulence control, and 47 runs using the turbulence control honeycomb.

5.1 Tunnel Survey Tests (0.XX)

The first seven runs were utilized to survey the tunnel with a sixtube yaw head and to evaluate the effectiveness of an array of vortex generators for improving flow attachment in the diffuser section. For the latter work, double tufts of nylon yarn were taped to the diffuser walls. The program schedule did not allow experimentally relocating the vortex generators to improve effectiveness; however, a modest improvement was achieved by bending the generators to reduce their angle of attack.

5.2 Facility Baseline Tests (1.XX)

A total of 14 runs was performed to assess the effect of tunnel turbulence on hull and fin flow conditions. Normal (i.e., low turbulence) flow conditions had been established through flow visualization tests at GALCIT; therefore, the hull and fins were used as "calibrated" indicators of the effective turbulence level in the Venturi tunnel. A wet mixture of kerosene and talc applied with a paint spray gun was used to visualize flow on the hull and fins. A spot trip of plastic tape was located at various longitudinal points along the hull to help determine the transition point; the absence of a turbulent wedge downstream of the trip indicated that transition had already occurred.

Seven runs in this class were used to assess the effectiveness of the turbulence control honeycomb. These runs involved flow visualization on the hull, use of the spot trip, and comparison of the resultant flow patterns with the GALCIT results.

Three runs were used to gather force balance data and additional flow visualization data for evaluating turbulence control. Four runs were used to gather rake data for the same purpose. Data were taken with the rake centered at the aft end of the tail boom in the boundary layer and at several transverse stations vertically off center.

Three runs were utilized to measure the tare drag of the mounts and the electrical wire used in the self-propelled tests. For these runs, the support forks were moved closer together, and the two halves of the support trunnion were pinned together and tied to the pitch arm with a fine wire.

5.3 Fin Characterization Tests (2.XX)

Four runs were utilized to measure the lift, drag, and pitching moment of NACA-0009 fins mounted in the support body. Force balance measurements were taken over an angle of attack range of $\pm 5^{\circ}$ at zero flap deflection. Flow visualization photographs were taken at zero angle of attack.

Seven flow visualization runs were used for a side by side comparison of the NACA-0009 fin versus the NACA-16-006 fin at angles of attack ranging from 0 to $\pm 3^{\circ}$. For these runs, a 16-006 semispan was mounted in the right-hand side of the support body, and a -0009 semispan in the left-hand side. Two runs were made with a single 16-006 semispan. Force balance data were recorded on all nine runs.

Six runs were utilized to measure flap effectiveness of the NACA-0009 fins at zero angle of attack. Fixed flap angles ranged from -4.7 to $+5.7^{\circ}$. Force balance data were recorded, and a single flow visualization test was made at $+5.7^{\circ}$.

Five runs gathered force balance data on two NACA-16-006 semispans over an angle of attack range of $\pm 5^{\circ}$, and for several flap angles at zero angle of attack.

One run was used to measure the lift, drag, and pitching moment of the bare support body at angles of attack ranging from -5° to $+6^{\circ}$.

5.4 Static Stability Tests (3.XX)

Time constraints dictated that the planned static stability tests be modified to focus on appropriate fin sizing and the effect of the transition point on static stability. Three runs were made over hull angles of attack covering a nominal range of $\pm 4^{\circ}$. Force balance data were recorded for the bare hull with no horizontal fins, for the fully appended hull, and for the fully appended hull with a spot trip at the nose.

5.5 Propeller Screening Tests (4.XX)

To assess the thrust and torque characteristics of various candidate propellers, force balance data as well as the propulsion motor voltage and current were recorded at a variety of measured propeller speeds during a series of 24 runs. Propellers tested included three two-bladed model hydroplane propellers, and several two- and three-bladed model airplane propellers, with and without modifications. These tests were hampered by shaft vibration problems that limited the choices of propeller speed. Attempts were made to accomplish flow visualization by depositing phenolphthalein on the propeller blades and by introducing a fine spray of aqueous ammonia at the tunnel inlet. These attempts were abandoned after one-half day of unsuccessful effort.

An alternative approach was taken to gather data on flow separation from the propeller blades. This approach involved the introduction of 0.2 in. mesh honeycomb into the propeller inflow (Fig. 9) in an effort to reduce the scale of the turbulence on the blades. Presumably, a sufficiently small-scale turbulence could produce forced turbulent flow on the blades and improve flow attachment.

Figure 9. Mesh honegroup (0.2 in.) fitted to the propeller inflow to reduce state of turbulence on blades.

In general, the propeller screening tests, for which no data have been reduced, yielded data of doubtful value because the torque measurements were contaminated by a relatively high tare torque. This tare torque resulted partially from the motor design and partially from the sleeve bearing installed to support the propeller shaft. Because of shaft vibration modes this latter torque contribution varied with propeller speed, making it necessary to select test points carefully to avoid a high tare torque. This problem was a direct result of the low thrust levels chosen for the propeller screening tests. The screening tests were terminated with test 4.21, and complete tare torque measurements, with no propeller, were made over a wide range of shaft speeds in test 4.22. Subsequent propeller testing at substantially higher thrust levels was performed in the Powered Model Tests (5.XX).

5.6 Powered Model Tests (5.XX)

Powered model tests, encompassing 22 runs, were actually an extension of the propeller screening tests. Rake measurements in the wake of the powered model were recorded, both on and off axis. Also tested were hub/fairwater options ranging from the original (Mod 0) configuration, through a no-fairwater configuration, to a so-called Mod I configuration that placed the propeller at the downstream end of a 30° tail cone (Fig. 8). All powered model tests were performed in the low turbulence tunnel configuration.

5.7 Field Trial Configuration Checkout (6.XX)

The objectives of this test series were accomplished by the boundary layer rake measurements made in the Facility Baseline Tests (1.XX), which were taken at the Pitot tube location planned for field trials. This series was therefore deleted from the test program.

6. DATA REDUCTION

6.1 Force Balance Data

The data reduction equations for the force balance, as supplied to all users of the tunnel, are:

$$L = 0.9986 L_{r} + 0.00067 D_{r} + 0.00002 M_{r}$$

$$D = 0.00036 L_{r} + 1.00355 D_{r} - 0.00018 M_{r}$$

$$M = 0.0012 L_{r} - 0.0004 D_{r} + 0.9960 M_{r}$$

$$L_{r} = 10 L_{i}$$

$$D_r = D_i$$

$$M_r = 100 M_i,$$

where

L = true lift, in grams

D = true drag, in grams

M = true pitching moment, in gram-centimeters

 L_{r} = apparent lift, in grams

 D_{r} = apparent drag, in grams

 M_r = apparent pitching moment, in gram-centimeters

L; = indicated lift as read from balance, in grams

 D_i = indicated drag as read from balance, in grams

 $\mathbf{M}_{\mathbf{i}}$ = indicated pitching moment as read from balance, in gramcentimeters.

As a rule, reference data at zero tunnel q were recorded at the beginning and at the end of a given run. The readings did not always repeat, and occasionally a run was repeated for this reason. This situation resulted from chronic problems with the automatic beam balance that were caused by the mechanical contacts of the servo system. These contacts were cleaned occasionally with alcohol, but the drag balance in particular frequently displayed significant hysteresis.

6.2 Tunnel Dynamic Pressure

The Venturi tunnel is equipped with a q-piezometer that measures the static pressure at the entrance to the test section but is calibrated to indicate the dynamic pressure at that station. The nominal calibration of the q-piezometer, as supplied to tunnel users, is

$$q = 0.89 q_i + 1.36,$$

where

q = true dynamic pressure, in pounds per square foot

 \mathbf{q}_{i} = indicated dynamic pressure, in pounds per square foot.

It should be noted that, after the initial tunnel survey, the yaw head was used routinely as an auxiliary source of tunnel dynamic pressure data.

After installation of the turbulence control honeycomb, a new survey of the tunnel was made (6/14/79), but the q-piezometer continued to be used for convenience. The survey consisted of a ten point vertical traverse at a station 1 in. downstream of the entrance to the test section to determine the true dynamic pressure at the entrance of the empty test section. The traverse showed an average pressure of 9.58 psf vs an indicated pressure of 13.5 psf on the piezometer. Essentially all of the data with the turbulence-control honeycomb installed were taken at the piezometer reading of 13.5 psf.

6.3 Yaw Head

In the data sheets, the yaw head location is given in (x,y,z) coordinates. The origin of the coordinate system is the tunnel center at the downstream end of the test section; a positive x is upstream, a positive y to the right facing the wind, and a positive z downward. The yaw head dynamic pressure calibration equation is

$$q = 1.023 (P_t - P_s),$$

where

 $P_t = total pressure$

 $P_s = static pressure.$

6.4 Wake Rake

In recording the location of the rake, the longitudinal position of the tips of the nine total-pressure tubes was used as a reference. Therefore, the tips of the four Pitot-static tubes were located 0.25 in. forward of the reference. Transverse location was indicated by noting the distance from the surface of the hull or the distance off the vehicle centerline of either the No. (5,1) or the No. (16,4) Pitot-static tube, as appropriate. Tube numbering is shown graphically on the manometer data sheets in the appendix. Tube Nos. 1 through 4 are static ports.

The center-to-center spacing of the tubes, in inches, as measured upon completion of testing was:

Tube Number	Spacing (in.)
5,1 to 6	0.110
6 to 7	0.113
7 to 8,2	0.124
8,2 to 9	0.117
9 to 10	0.121
10 to 11	0.131
11 to 12,3	0.123
12,3 to 13	0.133
13 to 14	0.117
14 to 15	0.129
15 to 16,4	0.121

Analysis of the (potential flow) static pressure error introduced by the proximity of an adjacent total-pressure tube to a static port indicated a maximum error of -0.00077 in the static pressure coefficient, a negligible quantity. Because the static ports were four diameters downstream of the tip of the Pitot-static tubes, tip and stem errors for those tubes should be negligible. The closest spacing between the centerline of a tube and a solid boundary was 0.09 in. for a tube of 0.0625 in. diam. Reference 4 indicates an error in velocity measurement of less than 0.1% under this worst-case condition.

6.5 Manometer

The specific gravity of the manometer fluid (kerosene) was determined from theory to vary with temperature as follows:

Temperature (°F)	Specific Gravity					
70	0.795					
73	0.794					
75	0.793					
78	0.792					
80	0.791					
82	0.790					

The reference for specific gravity was the specific weight of distilled water at 4° C (39.2°F), or 62.427 lb/cu ft. A typical computation of the dynamic pressure at an air temperature of 75°F would be

$$q_n = \left(\frac{h_n - h_{sn}}{12}\right)$$
 (62.427 S.G.) (cos θ) psf,

where

 h_n = measured height above a zero reference of meniscus of manometer fluid in total-head tube, in inches

h sn = measured height above zero reference of meniscus of manometer fluid in static-head tube (may be obtained by interpolation between static head tubes), in inches

 q_n = dynamic pressure at n^{th} total-head tube

S.G. = specific gravity of manometer fluid at given air temperature

 θ = manometer board inclination angle, from vertical, ordinarily 30°.

In most of the manometer data, the zero reference was atmospheric pressure. However, in some wake runs with the self-propelled vehicle, it became necessary to shift the zero reference by an arbitrary amount to facilitate the measurements. In a few cases, this shift flawed the data by introducing reference errors. These reference shifts did not affect the measurement of dynamic pressure, but did directly influence the measurement of the static pressure coefficient.

6.6 Propeller Characteristics

6.6.1 Propeller Shaft Torque

The torque delivered to the propeller shaft was computed from the armature current and terminal voltage of the propulsion motor by using the results of previous dynamometer tests. Data prior to 14 June 1979 used the relationship

$$Q = 5.50 (I - 0.2115 - 4.764 \times 10^{-4} V)$$

where

I = armature current in amperes

Q = shaft torque in ounce-inches

V = terminal voltage in volts.

For the tests of 14 June 1979 only, which utilized a substitute motor, the following relationship was used:

$$Q = 5.23 (I - 0.2115 - 4.764 \times 10^{-4} V)$$
.

6.6.2 Propeller Thrust

The thrust computation is simply

$$T = D_0 - D,$$

where

į

D = true drag of hull with operating propeller

 D_{o} = true drag of hull with propeller removed but hub in place

T = thrust.

6.6.3 Thrust and Torque Coefficients

The propeller thrust and torque coefficients are defined, respectively, by

$$T_{c} = \frac{T\lambda^{2}}{2\pi q_{c}R^{2}}$$

and

$$Q_{c} = \frac{Q\lambda^{2}}{2\pi q_{\infty}R^{3}} ,$$

where, in consistent units,

Q = torque

 q_{∞} = free-stream dynamic pressure, i.e., tunnel q including solid blockage correction

R = propeller tip radius

T = thrust

and

$$\lambda = \frac{U_{\infty}}{OR}$$

where

 U_m = free-stream velocity

 $\Omega = \frac{2\pi n}{60} \text{ rad/s}$

n = propeller speed, in revolutions per minute.

The parameter λ is the "apparent" advance ratio based on the free-stream velocity rather than on the somewhat more nebulous "true speed of advance."

6.7 Tunnel Corrections

6.7.1 Solid Blocking

An experimental solid blocking correction was obtained by averaging the entrance dynamic pressure at eleven yaw head survey points with an empty tunnel, and then comparing the result with an average of the dynamic pressure at five survey points with the hull model installed. The dynamic pressure ratio was 1.04, implying a velocity ratio of 1.02. This experimental solid blocking correction agrees with the empirical result of Reference 3, which for the present case gives a velocity ratio of 1.017. In the data reduction, the experimental correction of 1.04 was applied to dynamic pressure.

6.7.2 Buoyancy

A longitudinal survey of the static pressure variation along the tunnel centerline (Manometer Data Sheet No. 16-B in the appendix) gave an average gradient of -0.41 psf/ft at a true dynamic pressure of 9.58 psf. Applying this gradient to the hull yielded a drag increment of +0.123 lb, or a drag coefficient increment of +0.0283. Accordingly, a buoyancy correction of +0.0283 was applied to hull drag coefficient measurements with the turbulence control honeycomb installed. The drag coefficient of the basic hull is about 0.02, introducing the possibility of rather large errors in hull drag coefficients obtained from force balance data. In view of this, the hull drag coefficient of 0.01648 computed from the wake velocity defect, must be considered more accurate (see Section 7.7).

6.8 Mount Tare

Mount tare drag consists of the drag of the metric portions of the two main forks, the drag of the pitch arm and the drag of the exposed propulsion wiring, when used. The measured drag of all these elements at q=9.58 in the low turbulence configuration was $90.5~\rm g$. In taking

18

this measurement, an allowance of 3.0 g was made for the fine wire used to tie the trunnion to the pitch arm. Removing the electrical wire reduced the drag by 13 g. Expressed as an equivalent hull drag coefficient, the mount tare is:

 $\Delta C_{dv} = 0.0397$, without electrical wire,

and

 $\Delta C_{dy} = 0.0464$, with electrical wire,

where $C_{\rm dv}$ is the hull drag coefficient referenced to hull volume to the 2/3 power. Because the basic hull drag coefficient is about 0.02, the use of a conventional fork-type mount introduces the possibility of large errors in drag measurements on a low-drag hull. As noted in the preceding section, these large corrections suggest using the alternative technique of wake survey for hull drag measurements.

In the high turbulence configuration, the mount tare drag without electrical wires was measured to be 131.5 g at 16 psf, giving a mount tare of

 $\Delta C_{dy} = 0.0403$, without electrical wire.

The tunnel turbulence level has no measurable effect on mount tare owing to the low Reynolds number on the mount components.

7. REDUCED DATA

7.1 Flow Visualization

Figure 10 presents the flow pattern on two semispans of the NACA-0009 fins taken during run 2.03, at 16.05 psf and zero angle of attack, in the high turbulence tunnel configuration. Laminar flow exists up to the laminar separation point, typically at approximately 75% of chord. This separation is due to the low chord Reynolds number on the fin. The pattern is strikingly similar to the fin separation pattern depicted in Figure 12 of Reference 1 for a q of 7.7 psf in the low turbulence GALCIT tunnel.

Figure 11 presents the results of a side-by-side comparison of the original NACA-0009 fin (port semispan) with the candidate NACA-16-006 fin (starboard semispan) during run 2.05 at 16.05 psf and zero angle of attack. At zero angle of attack, the 16-006 fin is characterized by sharply defined delayed laminar separation which is consistent with what would be expected on the basis of the static pressure characteristics of the section. The separation point is 83% to 85% of chord.

Figure 10. Flow pattern on two semispans of MACA-0000 fins; run 2.03, 10.00 psf, zero angle of attack, high turbulence turnel configuration.

Figure 11. Side-by-side comparison of NACA-0009 fin (port semispan) with NACA-16-006 fin (starboard semispan); run 2.05, 10.05 psf, mero anyle of attack.

Figure 12 presents the preceding comparison at a \pm 2° angle of attack during run 2.07. The separation point on the port (NACA-0009) semispan has moved well forward to approximately 50% of chord. The separation point on the starboard (NACA 16-006) semispan has also moved forward, but is much less defined. This lack of definition suggests a very thin separated region with an almost uniformly distributed incipient separation condition.

Figure 12. Comparison of NACA-0009 fin (port semispan) with NACA-16-006 fin (starboard semispan); run 2.07, +5° angle of attack.

Figure 13 is from run 2.08, which was a repeat of Run 2.07, but with a very heavy coat of kerosene/tale to bring out the leading edge bubble on the 16-006 semispan. The leading edge bubble is sharply defined and constrained to a very small chordwise dimension of approximately 0.1 in. The pattern over the remainder of the semispan supports the interpretation of uniformly incipient separation.

Figure 13. Same as Figure 18, but with a very heavy cost of kerosene/tale to bring out the leading edge bubble on the 10-008 semispan.

7.2 Hull Flow Visualization

Figure 14, from run 1.12, shows the characteristic turbulent wedge generated by a tape spot trip after the installation of the turbulence control honeycomb. Figure 15, from run 1.10, shows the trunnion attachment point to be sufficiently far aft on the hull to minimize premature transition. Figure 16, from run 1.11, shows the well defined turbulent reattachment point on the afterbody. The highly reflective area immediately upstream of reattachment is interpreted as a laminar bubble that extends forward almost to maximum diameter. In this region, the kerosene/talc mixture was observed to migrate slowly downstream without drying, and tended to pile up at the reattachment boundary. Figure 16, taken at 10 psf, bears a striking similarity to Figure 8 of Reference 1 taken at 7.7 psf.

7.3 Fin Lift and Drag Coefficients and Flap Effectiveness

Figure 17 graphically compares the lift and drag coefficients of the two fin sections tested. The open circles apply to the NACA-0009 fins at 16 psf in the high turbulence tunnel. The closed circles apply to the NACA-16-006 fins in the low turbulence tunnel.

Analysis of the data from runs 2.15 through 2.19 and runs 2.20 through 2.24 at zero angle of attack yielded a flap effectiveness factor, $\Delta\alpha/\Delta\delta$, of 0.15 ± 0.02 for flap deflections (δ) less than 9°.

7.4 Static Stability Characteristics

Figure 18 compares the pitching moment for the unappended hull (open squares) and the pitching moment with fins. Included is a run in which the flow was tripped at the nose to assess the effect of fully turbulent hull flow on static stability. Note that a large shift (1.9 x 10^{-3} g-cm) in tare pitching moment has been removed from the data for run 5.20 to facilitate comparison.

7.5 Hull Boundary Layer Velocity Profiles

Figures 19, 20, and 21 present the boundary layer velocity profiles at the end of the tail boom (X/L=1.0) for three q's in the high turbulence tunnel.

Figure 22 presents the boundary layer velocity profile at X/L = 0.99 for a q of 9.97 psf in the low turbulence tunnel.

Figure 23 shows the boundary layer velocity profile at the fin's leading edge (X/L = 0.92) under conditions of natural transition in the low turbulence tunnel. Figure 24 applies to identical conditions except that the flow was tripped to turbulent at the nose.

Thank-teriatic turbulent wedge denorated by a tape spot trip after installation of turbulence-control honogeomic. Flyare 14.

Figure 16. Flow discullination at transfer at advant swint on the heli; ron . 10.

Figure 10. Afterbody flow visualization showing laminar bubble region forward of turbulent reattachment; run 1.17.

Figure 17. Comparison of fin characteristics.

Figure 18. Static stability characteristics in the low turbulence tunnel at q = 9.77 psf.

Figure 19. Boundary layer velocity profile at tail (X/L = 1.0); high turbulence tunnel, q = 8.9 psf, run 1.09, natural transition.

Figure 20.

Boundary layer velocity profile at tail (X/L = 1.0); high turbulence turnel, q = 12.0 psf, run 1.10, natural tracition.

Figure 21.

Boundary layer velocity profile at tail (X/L = 1.0); high turbulence tunnel, q = 16.0 psf, run 1.11, natural transition.

Figure 22.

Boundary layer velocity profile at tail (X/L = 0.99); low turbulence tunnel, q = 9.97 psf, run 1.15, natural translation.

Figure 23.

Boundary layer velocity profile at leading edge of fin (X/L = 0.92); low turbulence tunnel, q = 9.97 psi, run 1.20, natural transition.

Figure 24.

Boundary layer velocity profile at leading edge of fin (X/L = 0.92); low turbulence tunnel, q = 9.97 psf, run 1.21, flow tripped at nose.

7.6 Propeller Data

Table I lists the propellers tested and the key installation details. Table II presents selected reduced data which also appear in graphical form in Figures 25 through 34.

Table I. Propellers included in powered model tests.

	SPECIAL NOTES	Honeycomb in inflow on 5.05 and 5.06				Tandem three-bladed propellers				
RATION	Mod 1	;	}	5,24	5.23	!	5.19, 5.21	5.25	5.22	5.26
HUB/FAIRWATER CONFIGURATION	Mod 0	4.23, 4.24 5.05, 5.06 5.01, 5.02	;	;	;	;	5.17, 5.18	1	;	1
HUB/FAIR	None	5.07, 5.08	5.09, 5.10	5.11, 5.12	5.13	5.14	5.15, 5.16	;	;	1
H.71.1 d	(1m.)	3.1	3.1	4.0	4.0	5.1	5.03	3.27	2.16	2.0
ME 14	(in.)	3.6	3.6ª	5.6	3.6ª	3.6a	2.76	2.76	2.0	15.
NO OF	BLADES	ŧ٩	10	'n	iO	9	~1	~1	C1	r1
	COLOR	Yellow	Yellow	Yellow	Yellow	Yellow	Black	Yellow	Red	Grey
	TYPE	Airplane	Airplane	Airplane	Airplane	Airplane	liydroplane	Hydroplane	Hydroplane	Airplane
MEG	MODEL	Grish Bros. "Tornado"	Grish Bros. "Tornado"	Grish Bros. "Tornado"	Grish Bros. "Tornado"	Grish Bros. "Tornado"	Octura 2.8	Octura 1270	Graupner P-55	!

aClipped from 5.6 in. diam propeller

Table II. Reduced data for selected propellers in low turbulence tunnel.

Run No .	(g) L	n (rpm)	λ	T _c x 10 ³	Q _c x 10 ³	$^{\eta}p$	Run No.	T (g)	n (rpm)	,	$\frac{T_c}{x-1}$ σ^3	$\frac{Q_c}{x-10}$ 5	. 11
4.23	-54.4	1,500	2.573	-224.1	-26.99		5.09 ^a , 5.10	-67.0	12,080	0.318	-10.1	-	
	-107.4	9,350	0.413	-11.37	-0.491		3.10	-5.0	16,140	0.238	-0.425	0, "-14	
	-84.4	12,300	0.306	-4.91	-0,130			41.0	19,500	0.197	2.38	1.10	0.425
	-47.4	14,290	0.270	-2.14	0.137			97.5	22,450	0.171	4.29	159	0.566
	-24.4	15,230	0.252	0.975	0.335		5.09, 5.10	144.00	24,440	0.157	5.35	1.50	0.562
	4.6	16,200	0.239	0.161	0.489	0.078	3.10						
	34.6	17,110	0.225	1.09	0.607	0.405	5.11	2.5	10,300	0.374		- *	
	60.6	17,880	0.216	1.76	0.718	0.528		-17.5	13,200	0.292	-0.925	0.460	
	80.6	18,610	0.207	2.14	0.810	0.548		28.5	14,540	0.265	1.25	0.854	0.386
4.25	115.6	19,380	0.199	2.83	1.01	0.556		72.5	15,660	0.246	2,72	1.16	0.373
								110.5	16,620	0.232	3,68	1.37	0,616
5.01	-106,4	5,100	0.752	-37.4	-2.99		5.11	167.5	17,600	0.219	5.00	1.56	0.704
	-133.4	9,300	0.412	-14.1	-0.776								
	-88.4	13,990	0,274	-4.14	-0.112		5.15	-28.0	9,660	0.811	-0.047		
	-57.4	14,860	0.258	-2.38	-0,123			16.0	16,130	0.486	9,67	10.2	0.455
	-35.4	15,800	0.243	-1.29	0.307			57.0	21,080	0.371	20.1	13.5	0.550
	-11.4	16,630	0.231	-0.375	0.455		5.15	102.0	24,444	0.320	26.8	15.6	0.550
	18.6	17,570	0.218	0.551	0.568	0.212							
	45.6	18,050	0.212	1.22	0.691	0.373	5.17	-40.4	9,250	0,848	-0.075	-6.95	
	65.6	18,630	0.206	1,74	0.797	0.449		8.60	17,200	0.456	4.38	8,92	0.229
	87.6	19,260	0.199	2.16	0.878	0.489		38.6	21,689	0.362	15.8	15.6	0.381
5.01	99.6	19,630	0.196	2.38	0.978	0,476	5.17	48.6	23,442	0.335	17.3	21.4	0.283
5.05	-94.0	9,000	0.428	-10.7	-0.838		5.21	0.200	11,000	0.710	0.239	9,552	0.344
	-44,0	13,200	0.292	-2.32	0.022			30.2	15,380	0.508	20.0	1.22	1.10
	-5.0	14,790	9.261	-0.213	0.360			73.2	20,400	0.383	27.4	15.8	0.750
	12.0	15,580	0.251	0.458	0.530	0.214	5.21	105.	22,580	0.346	32.2	15.4	0.719
	16.0	16,400	0.236	1.58	0.669	0.556			,				
	59.0	17,040	0.226	1.88	0.792	0.539	5.24	-64.3	11,000	0.351	-4.93		
	81.0	17,810	0.216	2.34	0.883	0.573		59.7	15,000	0.257	2,44	1.1-	0.536
5.05	120	18,900	0.204	3.10	1.08	0.588	۲.24	226	18,400	0.210	6.19	1.83	0.711
5.08	-86.0	14,100	0.271	-3.92	-0.116		5.25	-34.8	11,000	0.713	-45,6		
	-31.0	16,140	0.238	-1,09	0.294		3.23	-9.80	15,000	0.523	-1,14	0,154	
	18.0	17,100	0.223	0.557	0.593	0.209		9,20	18,400	0.426	4.24	5,68	0.318
	69.0	19,100	0.200	1.74	0.750	0.465		31,2	22,000		10.2		
5.08	120.0	20,350	0.188	2.61	0.893	0.548	5 15			0.35		5.83	0.627
							5.25	55.2	25,000	0.314	13.9	7.72	0.366

 $a_{R} = 0.2333$ ft was used to compute coefficients for Run 5.09, 5.10

Figure 25. Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 4.23 with Mod 0 fairwater configuration and nose trip.

Figure 26. Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 5.01 with Mod 0 fairwater configuration.

Figure 27. Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 5.05 with Mod 0 fairwater configuration and tail honeycomb.

Figure 28. Propeller characteristics of Grish "Tormado" propeller with 5.6 in. diameter and 3.1 in. pitch; run 5.08 with no fairwater.

Figure 29. Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 3.1 in. pitch clipped t 3.6 in. diameter; run 5.09,5.10 with no fairwater.

Figure 30. Propeller characteristics of Grish "Tornado" propeller with 5.6 in. diameter and 4 in. pitch; open symbols: run 5.11, no fairwater; closed symbols: run 5.24, Mod I fairwater.

Figure 31. Propeller characteristics; run 5.15 with no fairwater and Octura 2.8 propeller with 2.76 in. diameter and 5.03 in. pitch.

Figure 32. Propeller characteristics; run 5.17 with Mod 0 fairwater and Octura 2.8 propeller with 2.76 in. diameter and 5.03 in. pitch.

Figure 33. Candidate propeller characteristics; run 5.21 with Mod I fairwater and Octura 2.8 propeller with 2.76 in. diameter and 5.03 in. pitch.

Figure 34. Candiate propeller characteristics; run 5.25 with Mod I fairwater and Octura 1270 propeller with 2.76 in. diameter and 3.27 in. pitch.

7.7 Wake Survey Data

Selected wake survey data in the low turbulence tunnel are listed in Table III and are shown in graphical form in Figures 35 through 38. Figure 35 presents the wake velocity profile for the basic hull with no propeller, but with the Mod I hub/fairwater configuration. Figure 35 also presents the hull velocity profile with a honeycomb ring around the tail boom aft of the fins (Fig. 9). Figure 36 presents the velocity profile in the wake of the hull with the Grish 5.6 in. x 3.1 in. propeller in the Mod 0 configuration, turning at 19,500 rpm. Also shown is the velocity profile for the same propeller, turning at the same speed, but with the honeycomb ring positioned in the inflow.

Figure 37 presents the velocity profile in the hull wake with the Octura 2.8 propeller, with no hub/fairwater, turning at 24,400 rpm. These data are almost indistinguishable from those for the Mod 0 hub/fairwater configuration. Also in Figure 37 are wake data for the Octura 2.8 propeller in the Mod I hub/fairwater configuration.

Figure 38 presents the velocity profile behind the hull with the Octura 1270 propeller, in the Mod I configuration, turning at 22,000 rpm. The only significant difference in geometry between this propeller and the Octura 2.8 is the pitch.

Graphical integration of the wake velocity deficit for the clean hull in Figure 35 yielded a hull drag coefficient of 0.01648 for an equivalent speed of 4.6 km in fresh water.

Figure 35.

Wake velocity profile for AEMT hull with Mod I hub/fairwater configuration and no propeller.

Figure 36.

Wake velocity profile for AEMT hull with Grish propeller and no hub/fairwater. n = 19,500 rpm; $\lambda = 0.195$.

Figure 37.

Wake velocity profile for AEMT hull with Octura 2.8 propeller. Run 5.16: n=24,400 rpm; $\lambda=0.364$. Run 5.21: n=22,580 rpm; $\lambda=0.342$.

Figure 38.

Wake velocity profile for AEMT hull with Mod I hub/fairwater and Octura 1270 propeller. $n = 22,000 \text{ rpm}; \lambda = 0.351.$

Table III. Reduced data; wake velocity profile at q = 9.79 psi.

Run No .	y (in.)		Notes	Run No.	y (in.)	U	Notes
1.16	υ	0,389	Mod I hub/fairwater	5,04	1,10	0.842	Mod I hub/fairwater
	0.121	0.544	No propeller		1.221	0.839	 Honeycomb ring aft of fins No propeller
	0.250	0.667			1.35	0.875	
	0.567	0.739			1.467	0.894	
	0.500	0.781			1.60	0.891	
	0.623	0.824			1.725	0.922	
	0.754	0.862			1.854	0.891	
	0.375	0.889			1,975	0.905	
	0.992	0.911			2.092	0.879	
	1.116	0.933			2.216	0.884	
	1.229	0.952			2.329	0.912	
1.16	1.339	0.955		5.94	2, 439	0,907	
1.17	1.10	0.937	Mod I hub/fairwater	5.02	0.0	0,622	Grish 5.6" x 3.1"
	1.221	0.952	No propeller		0.121	0.635	Mod 0 n = 19,500 rpm
	1.350	0.964			0.25	0.624	$\lambda = 0.195$
	1.467	0.964			0.367	0.746	
	1.600	0.367			0.500	0.819	
	1.723	0.972			0.623	0,956	
	1.854	0.979			0.754	0.978	
	1.975	0.980			0.875	1.00	
	2.092	0.980			0.992	1.03	
	2.216	0.979			1.116	1.0~	
	2.329	0.979			1.229	1.08	
1.17	2.439	0.975		5.02	1.339	1.07	
5.05	0	0,361	Mod I hub/fairwater	5.01	1.10	1.08	Grish 5.6" x 5.1"
	0.121	0.436	Honeycomb ring aft of fins No propeller		1.221	1.10	Mod 0 n = 19,500 rpm
	0.25	0.477	No properter		1.35	1.10	n = 19,500 rpm A = 0.195
	0.367	0.583			1.467	1.10	
	0.50	0.679			1.60	1.09	
	0.623	0.725			1.723	1.07	
	0.754	0.756			1.854	0.914	
	0.875	0.792			1.975	0.971	
	0.992	0.810			2.092	0.957	
	1.116	0.826			2,216	0.954	
	1.229	0.863			2.329	0.977	
5.03	1.339	0.882		5.01	2,439	9,971	

Table III, continued.

Run No .	у (111.)	$-\frac{U}{U_{\infty}}$	Notes	Run No.	ў (in.)	- U	Note :
5.06	0	0.507	Grish 5.6" x 3.1"	5,21	()	0,651	Octora 2.8
	0.121	0.525	Mod () with honeycomb ring in inflow		0.121	0.769	Mod 1 hub/fairwater n = 22,580 rpm
	0 23	0.584	n = 19,500 rpm		0.25	0,792	$\lambda = 0.342$
	0.367	0.691	$\lambda = 0.195$		0.367	0,905	
	0.500	0.775			0.500	1.06	
	0.623	0.869			0.623	1.10	
	0.754	0.952			0.754	1.11	
	0.875	0.970			0.875	1.17	
	0.992	0.995			0.992	1.20	
	1.116	1.000			1.116	1.18	
	1.229	1.05			1.229	1.00	
5.06	1.339	1.05		5,21	1,339	0.910	
5.05	1.10	1.02	Grish 5.6" x 3.1"	5.25	()	0	Octura 1270
	1.221	1.05	Mod 0 with honeycomb		0.121	0.591	Mod I hub/fairwater
	1.35	1.06	ring in inflow $n = 19,500 \text{ rpm}$		0.250	0.761	n = 22,000 rpm $\lambda = 0.551$
	1.467	1.078	r = 0.195		0.367	0.763	
	1.60	1.07			0.300	0.864	
	1.723	0.975			0.623	0.924	
	1.854	0.962			0.754	0.954	
	1.975	0.951			0.87	170	
	2.092	0.999			0.992	0.972	
	2,216	0.922			1.12	0,960	
	2.329	0.924			1.23	0.906	
فانبو	2,439	0.955		5.25	1.34	0.889	
16	10	0.585	Octura 2.8				
	0.1.1	0.66*	No hub/fairwater				
	0.25	0.757	n × 24,400 rpm * × 0,564				
	0.367	0.802					
	ປຸລິບຕ	0.862					
	0.623	0.890					
	0,754	0.918					
	0.875	0.967					
	0.992	0,977					
	1.116	0.069					
	1.223						
3.16	1.539						
5.21	0	0.651					

8. CONCLUSIONS

As noted in the Introduction, the test goals, involving the acquisition of specific test data, were judged to be accomplished to a degree sufficient to satisfy the overall objectives of the test program. This judgement, of course, is necessarily somewhat subjective in that the adequacy of the data can only be assessed after subsequent analysis and interpretation within the context of the problem to be solved. Nevertheless, it is possible to draw tentative conclusions on the strength of the reduced data with regard to three of the four objectives listed in the Introduction. Specifically, it is concluded that:

- (1) Powered model data indicate that the Octura 2.8 propeller in the Mod I configuration has the potential for correcting the problem of low propulsive coefficient. The NACA 16-006 fin choice achieves attached flow over about 85% of chord as desired.
- (2) The excellent correlation between the vehicle hull drag measurements in the University of Washington facility and those in the GALCIT facility, in combination with the powered model data gathered in the former facility, provides an excellent basis for predicting vehicle performance in future field trials.
- (3) Although the specific cause of low propulsive coefficent was localized to the use of the Web 2.75 propeller, it is impossible to conclude the nature of the deficiency in that propeller from the Venturi wind tunnel tests, since it was not possible to test the propeller at the high rpm's required by a wind tunnel test.
- (4) The acquisition of the additional wind tunnel data does contribute to the technology data base for hydrodynamic characterization of the AEMT vehicle.

9. REFERENCES

- 1. D.J. Warner and W.W. Haigh, AEMT Vehicle Wind Tunnel Test Results, Dynamics Technology Report DT-7912-1, December 1978.
- 2. APL-UW 8009, An Experimental and Analytical Investigation of the Propulsion Characteristics of the AEMT Low-Drag Underwater Vehicle, R.M. Hubbard, Applied Physics Laboratory, University of Washington, September 1980.
- 3. Selected Reference Material for APL-UW 8013, Applied Physics Laboratory, University of Washington, October 1980, item 22.
- 4. A. Pope and J.J. Harper, Low-Speed Wind Tunnel Testing, John Wiley and Sons, New York, 1966.
- 5. Selected Reference Material for APL-UW 8013, Applied Physics Laboratory, University of Washington, October 1980, item 21.

APPENDIX

CE MISCELLANEOUS		COMMENTS		,	V = 66 1 = 64 800	V = 46 I = 65. PPH = 840	V = GC Т = GG ВРН = ВВО	Try Max 9 I = 76 RDM 1920 V = 66		& Calibration Tomes! survey Flow Viscal Pract:	
MOTOR PERFORMANCE		RPM CUSTER !							305		
ALIZATION		507744	7	7.	7	7	(\	4174	1	
A FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION	Oiffuser Tutt Patlery	u	11	11	1	1	A PERMAGNI INSTALLAT		
PERFORMANCE DATA	0,	Taging Transport		(2	3	\	A PERMINA	<i>h</i> h	
TION		[329] 9	11.11	14.5 +0 15.1	/6.2 40 7.9/	16.3 +0 16.5	16.3	(7,8)	SALPAGE	Z # 20	
CONFIGURATION		MODEL CONFIGURATION	Baretunnel	l)	n	Yortex Geus. at x= 73"	V.G.(s at x=73"	V.G.'s at K=73"	MAKE VORTEX GE	0.07 Wingel Cylinder	
ST CONDITIONS	•	(4) & (A) &	0.01	20,0	800	6.04	905	0.0%	. MAKE	0.07	
ST CO		DATE (\$8)	5 43	5 73	4-15 73	5 23	22.5	×	1	6 73	
L		D.	4-15	4-15	4-1	445	4-15	=	t	4-16	}

MOTOR ON PERFORMANCE MISCELLANEOUS		S. A. A. COMMENTS	Reduced of on Vortex Genevaters						Chedi Zemes		
IZATI		çodoliq	\	(>	7	>	7	7	(
A FLOW VISUALIZATION	رھ	AREA OF FLOW VISUALIZATION		1	Total Vehiclo	"	Aft Body	Total Vohicle	1		
PERFORMANCE DATA	Ex.	Tools of delication of the state of the stat		9	9	ٯ	9	9	1	7	
RMANC		JOY SUION	93.2453.0-5281	9375-08E1-018E	(1	١	1	-31.5	-36	-33
PERFC		19 18 18 15 TO	453.0	13%	(1	1	١	147.5	/53	19/
}		isedi p	93.2	3870	((١	66	152.5	154
	i		0	16.5	16.5	165	16.5	9'91	0	//و ،5	
z		,)	ı	۱	1	1	١	0		
RATIO		,	0	0	0	0	0	0		0	0,1+
CONFIGURATION	·	MODEL	Original Hull & Fins	=	II + Spot Trip Fwd	Ŧ	E.	Hull + Fins Spot Tripat Max Dia.	Support Body Ooog Fins	<i>)</i>	ij
SNC		130 MIN	8	101	1.02	1.03	104	50/	1,	102	->
"FST CONDITIONS									0		
ST -20		(4) 84	13	=	th.	2	=	2	75		->
. ـ انغ		DATE	4-22	4-51	4-25	4-22	22-h	12-h	4-13	4-23	11-33

MISCELLANEOUS	COMMENTS										Zero orphat
ON PERFORMANCE	APM CUSTERIET)										יאי
FLOW VISUALIZATION	AREA OF CO FLOW VISUALIZATION										
PERFORMANCE DATA	Topuest () Spinest () Spines	15-27	- hz- hL1 851	1.18 -20.5	5.91- 8.181 16.5	lh- 5h1 5351	8 138.5 -45	84- 821 291	- 25- 5121 5:91	4 K5- 821 2	104.3 146.6 -29.6
CONFIGURATION	2897 9	+2 0 16,5 19	43	191 6+	S+	5/	951	-3	91 /-	211 1 5-	0
CONFIG	MODEL	Support Roby coop Firs									D
TEST CONDITIONS	[3] est es	201								->	08
<u>نا</u> نسب	DATE	4-23								>	→ A3

79 203 " O 16.5 79 204 Support Body 77 204 Support Body 79 204 Support Body 79 205 " O 16.5	PERFORMANCE DATA FLOW VISUALIZATION PERFORMANCE MISCELLANEOUS	A COMMENTS A COMMENTS A COMMENTS A COMMENTS A COMMENTS A COMMENTS	1,6-29.2	152 -36.5 7	103.6 146.5-29.1 - Repeat 3000	Kerusene-tak Fluc Visualization	99.0 151.0-27.4 Tape Removed From built	16,5 145 1592 -33 7	146 159,5 -33	14.5 194.5 - 22.5	26- 1991 JHI
79 203 "" 79 204 Support 17 204 Support	NO	3000		16.5 15		S 2)		16,5/14	<i>F.</i>	36.1) h
78 202 1 204	CONFIGURATI	\			a		Support Body No Firs	O	1+	2	£4
TES.	TEST CONDITIONS	 [3] 84 [4] 84 [4] 84		78 2,02	- 62	79 203					

		NOT INION THOS	-	1	FERFORMANCE DATA	FLOW VISUALIZATION	PERFORMANCE	MISCELLANEOUS
DATE / LE /	MODEL SE CONFIGURATION	0000	[389] P	13 F. Sex 0	oment	AREA OF CONTROL OF CON	MAR	COMMENTS
1 1	Support Buly No Privs	n+	141	. 5	1/2			
		\$	147	1595-325	-335			
		7	Zh/	147.5 159.5 -33	-33			
		7-	8-1	159,5	\mathcal{u}.			
		7	8h1	159.5 -33.5	-33.5			
		h -	148	159	-34			
7		5	147	159	L K-			
			0 98	151 086	-27.4		4	Serves at

ICE MISCELLANEOUS		COMMENTS	Zeroes		Leading edge separation bubble on 16-006	No.L.E. Bubble Separation well fluit on court cook with wet onough	16-00 Incho Separation 12 C X 12 C +	16-666 Larger C.E. Bubble boog severe Separation near rout, cell fulls	No L.E. Bubble Both firs hour comparable Separation		
MOTOR PERFORMANCE		May									
ALIZATION		çojona	1	7	>	,		7	7	ı	
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION		Both Firs	=	u	wether coating	2	ء ا		
PERFORMANCE DATA		Moment 1		OZ.			3			-n.0 8	
PERFO	·	I sera Sera	98.5 146.2 -27.5							0.16.5 150.0 156.0 -21.0	
	;	9 8	Ó	16.5	16.5	16.5	16.5	1625	16.5	16.5	
RATION			0	0	•M	+2°	+2°	+3.	•	0	
CONFIGURATION		MODEL CONFIGURATION	Survet Bolly + 3.8"-16-000 Rt. 3.6"- 0009 Lft.	. =	Ξ	li I	a	a	٤	u	
TEST CONDITIONS		(38d) %	1	2,05	2.06	2.67	2.08	209	2.10	2.11	
ST. CON		E TO IE	72							20	
۲		DATE	4.20							->	

MISCELLANEOUS		COMMENTS							چ وره د د	20005	
MOTOR PERFORMANCE		SUSTERET !							Ň	5	
FLOW VISUALIZATION		AREA OF CONTROL OF CON									
		A SORIGINAL FOR SORIAL FOR THE SORIA		0	0	\	ک	•	· Si	O_	00
PERFORMANCE DATA		3377	0;	159.0 120 49.0	169.0 186.0 -30	1525 1475 -375	5'hh- 0'hs/ 0'85/	169.0 125.5 -52.0	99 KT.0-29.5	100.0 149,0-27,0	145,0 158,0 -31
z		13891 9	ייל גיני			-	1	,	0	0	ופיצ
CONFIGURATION	. [MODEL CONFIGURATION	5.6pml fluidy + 5.8"6-16-000 LET. +1 36"6-0009 LET.	+3	5+		-3	5-		Support Bots to 3.8"b. 16-06 Rt. Single Denison	0 "
DITIONS		I AUNA IS SECTION OF	= .						->	3 30 57	2.12
TEST CONDITIONS		DATE (E.8)	4.34			78	80	8	9.5		>

٢	TEST CONDITIONS	ITIONS	CONFIGURATION	RATION			PERFOF	PERFORMANCE DATA	DATA	FLOW VISUALIZATION		MOTOR PERFORMANCE		MISCELLANEOUS
						-								
DATE	(4) 83	(354) 6	MODEL S CONFIGURATION	0	9	(Bed) P	135 kJ	Momen	Shees we	AREA OF FLOW VISUALIZATION	ç.odona	RAN		COMMENTS
4.79		2,12	2.12 Single Senizer	7	16.5	1 - 1	1	*	de					
	%	\	"	43	<u>''</u>	Z51 5:3/	SHZ- 5191		75					
		J.	Orgine Hull + Firs (Inactive Prop)	0	ò	77	-213	3 5.4.5	\$					
	2/	1.06	1.06 With Spattrip	0	5'9/				۴	Total Budy	7		A Tury	Appenently Fully Turky
ļ		1.07	=	0	16.5	10			₩ 8	Extra wet	7		-	<i>11</i>
 >	15	1,08	1,08 Fine Prop Taped Up	0	14.5	10			8	1	7			
4-30		ı	Original Hull t Fins No Prop	O	0	43.0	(-) (-) 43.0 204,5565	(-)			7		Zerves	Sec
	17	1.09	И		8,5	8.5 291.	-1975 568.5		6					
>	11	1.10	11		12.	0363	12.0363 -194 -570		6					

MISCELLANEOUS	COMMENTS				Very Heavy Cating Knosune/Tala		the put	Dog Balance Walker	all ove th	Zarve dant
MOTOR PERFORMANCE	May Nath									
FLOW VISUALIZATION	colona		7	7	7					
FLOW VISU	AREA OF FLOW VISUALIZATION									
VCE DATA	Surgaria de la constante de la					ą	o,	O	0	
PERFORMANCE DATA	13/17	1 5				1030 150 -260	16.5 158.0 159.5 - 36.0	1610 1630 -34.0	15601705 -25,0	82.0149 -17
	Issal 9	16.5	% %	12.0	16.5	0	16.5 15		1/3	0
RATION	8		·			0	0	-	+3	0
CONFIGURATION	MODEL	OrigHull+Fins No Prop	~	z	Ξ	o,#≎ →	Single Servispa + Single Servispa + 16-006 Fin (Pr. side)	n	11	//
TIONS	I NOW	1111	1.12	(, 13	7.75	ſ	2.13		→	1
TEST CONDITIONS	(4) 87	78					72			
"	DATE	4-30								

MISCELLANEOUS		COMMENTS	S= Axsn3	400		Report of 2,14	Notice be Dis measurement retions to proce growth			Aspend مَ يُعون ن	
MOTOR PERFORMANCE		MAN SANGARI J									
FLOW VISUALIZATION		colona	1	1							
FLOW VISU		AREA OF FLOW VISUALIZATION	1								
PERFORMANCE DATA		Sheer I	0	38.5	7.5.5 -	37.5	45.5	46,2	8.5	25	
PERFORM		73777	1 2	A=0 S=0 16.5 62.0 1505 3	100 HH/5 45.5	640 150.5 3	144.5	h h'hhl 5:01	8-23 16.5 66.0 153.0 38.5	11.0 174.2 455	
}		(38d) p	7.7	950	10.0	0%9	19.5	10.5	0'99	11.0	
İ			0	16.5	0	16.5	0	0	16.5	0	
z		\$	0= A	0 = V	0=Q 8=0	0:3	0 - S S - O	8-425	SZ1= S	5%+=3	
RATIO		,	0	0	0	0	0	0	0	0	
CONFIGURATION		MODEL	Support bod of	"	ZERO (1	12-0009 Fins	REPERT ST	840 5 2-0009 Fins	Ξ	1	
TONS		138d1 6	1	म. स्	(21.5		2,16	2.14		
TEST CC DITIONS	-	[4] & 4 34] & 4	<u> </u>	- (ļ 				
3.5		1,4	12	72	*	Ξ		75			
F.L		DATE	5-6972								

CE MISCELLANEOUS	COMMENTS	Zero1		repint of	Promounced Separation Line and = 5.7 ° @ Approx 75%C	56108		PEPENT OF EFOS		
MOTOR PERFORMANCE	 APA CULTONEL									
	ç03044	1			>		١			
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION				Both Fins					
PERFORMANCE DATA	Moment		39.0	000	1	_ 0'9	38.6 -	0,		
PERFORM	13 FT	6.5	630 185 3	0.24 T.HI T.01	67.5 153.5 42.0	10.0 14.2 46.0	8 7 8 14.5 66,0 1475 3	11.0 144.3 46.0		
	 [38d] p	10.5		7.01			99	.; 0		
		0	16.5	0	16.5	0	8 16.5	0		
z	8	Ω=40 δ=57	8:57 16.5	=	=	DE-30 Sr-4.30	£'h-×3 9E-±∇			
RATIC		0	0	0	0	0	0	0		
CONFIGURATION	MODEL CONFIGURATION	Support 5000 + 2-0009 Firs	и	=						
TEST CONSITIONS	SSOJ &	2.17	=	=	872	2.19	2.19	2,19		
r CON	(4) 80	750			-	~	, %			
TES.	 DATE	2.9.5				*****			. `	

MISCELLANEOUS		COMMENTS							FRPAT.	
MOTOR PERFORMANCE	1 Jaure	CUKK	0	1.0	17400 . 2	٥. ت.	4.0	ري		
FLOW VISUALIZATION	co,	John	\ \ \	16330	1740	18300	19150	19450		
FLOW VIS	\rightarrow	FLOW								
PERFORMANCE DATA		Moment A	1 SQ1	28/-	-482	-483	164-	463	n 3	
PERFORM		3377	88002-08	86/-	661-	8/-	tól-	-197	-7.5 -216	
-	1350			473	ash	423	39/	374	2.7	
		0		16.0 473	16.0	16.0 4	0.0	16.0	0	
ATION		0	0 1	16.0	16.0	16.0 4		/6.0		
CONFIGURATION	MODEL	CONFIGURATION CONFIGURATION	\$ 3.81.00 E	16.0	0.91	16.0 4				
	MODEL.	CONFIGURATION CO	300	16.0	0.91	16.0				
TEST CONDITIONS CONFIGURATION	MODEL.	48 AS CONFIGURATION OF TOTAL HUIL	Pose-Vallow 5 3. 81 clof	16.0	0.91	16.0				

MOTOR PERFORMANCE MISCELLANEOUS	COMMENTS	ZERO					A SO Zero for test 4.03	correct SA		
MC FLOW VISUALIZATION PERFC	AREA OF CONTROL OF CON	0	3000 . 2	5550.3	8300.4	٠S.	0	5. 02:61	9.	2.0800
PERFORMANCE DATA	 Past Same of Last Sheet of Last Sheet of Last of	-7.5 -216 -4785	1-16.0 -216 - 478	-36.0-216 -478	-78.0-216 -478	107 -216 -478	-75 -216 -473	D 3055 -199 -484 -	855 - 199 - 183	16.0 344 - 199 - 481
CONFIGURATION	MODEL CONFIGURATION	Powese, 1. c. is 1	0	0	0	0	0	4.03 Prop- Ve su SSB Backs 16.0	/6.0	16.6
TEST CONDITIONS	A NON	20;						4.03 Pro-		

MISCELLANEOUS		COMMENTS				REPERM ZIEROS	ZE103			Cibration	
MOTOR PERFORMANCE		Surrent!	•	6.005	218501.0	0	0	2.	50.3	٠. ٥	. s
FLOW VISUALIZATION		TION PAROLE	- 21300	10,	- 218	0	0	04 27		065/	C43/
	·	A SA									
PERFORMANCE DATA		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18/1-661-	-181- 661-	- 197 - 199	84- 917-	-9.0 -216-479 -	-12.0 -216 -47.4	-35.,1-216 -479	-46.5 -216 -474	44.0 -216 -4"
		[1884] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.0 322	16.0 307	16.0 292	0 6.5	0 -3.0	0 -12,0	0 -35	0 -485	0.pp- 0
CONFIGURATION		MODEL CONFIGURATION	POWEred Mails!				Power Ed Mode Prop - Gray 4% 28 node (4,5 2'0.2)				
TEST CONDITIONS		(4) % A (4) &	403				4.04				
TEST.		DATE	5/24 810			~	فرز ۱۰۰ که				

E MISCELLANEOUS		COMMENTS	V15545-154	REPENT ALSO BERO BELO CONTROL	Blade stalls below 0.10mps	ZERO					
MOTOR PERFORMANCE		CUFFERE			la						
PERF		Way		0	20.	0			<i>y.</i>	į,	9
NOI		Photos	02/1	0	1200	0	08%	6.70.	Ca.Sr.	25	1550.6
LIZAT		44	1	-	1	\					
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA		Monnen E		i	1	1					
MANC		SUON	٠٧.٧٠	64-	64.h~	9.h-	01:/2-	2kh:	%/.	-40;	·ch-
ERFO		1377	917.	-216	183	215	-215	-215		312	
4		[38d] b	-5,5-46	-7.0 -216	es:	12.0	5.0-215	-250-215	-546-215	36.5	112-0101-
			0	0	881-013 0.31	0	0	0	0	0	0
RATION		0 0									
CONFIGURATION	·	MODEL CONFIGURATION	4, 04 Rop- Gray 4.5 2'Rich 2 Blacks			Pourseel Nodel Prop - Black s" 3-81016					
TEST CONDITIONS		[389] & d		4.04	4.05	7,06					
8		1,0	780		.81	so.					. ,_
TE		DATE	ching		. 0	4/1/5					

E MISCELLANEOUS	COMMENTS	Constitution of						FRO PERSON	·	
MOTOR PERFORMANCE	 SULTERIE!	•	9	۲.	جي.	۲.	c./	0	6,	~.
	codord	00001	10800 -	- 12150	- 15to	- 1420	1 1875	0	coid./	0.58
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA	Moment / / Agente	-436	- 312 -196 -	- 215 -403	-25 -43	- 964- 512-	- 314 715-	- 34- 513-	- 5a	etn. ta
Ā	[38d] p	-112 -215	-/35	475	16-	-750	-283	cz/	46.50 -200	465.0 177
RATION	0/0/0	0	0	0	O	0	0	0	04/	16.3
CONFIGURATION	MODEL	POWENE ! Node! Prop. Obe. A S" 3-Ring						Purevel Model Rup-Black s" 3-610 :		
TEST CONDITIONS	I SED OF A SECONDARY AND A SEC	106					~	20%		
EST CO	1	/3						73		
F.	 DATE	200)							

Sī										
MISCELLANEOUS	COMMENTS									
MOTOR PERFORMANCE	CURTORETY			٠٠	_	- 2		3		
	Photo;	15x2 .2	1950 .3	. 20150	20000-5		- 27805	8/5	V 1001.9	
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION	J)	•						
PERFORMANCE DATA	Momont 1	Ĝ,	- 66	0.45-	- 14	- (zh-	- 61.25	- 00	1	
PERFORM	13/2	-	664- 1:61-52h	-199	bbh- tel- L	-200	-230	4 -201 -500	hozz	
	13891 9	16.0 44	14.0 42	70h 0'91	160 387	16.0 37.2	16.0 359	16.0 344	16.0 329	
CONFIGURATION	EL &	براد ا								
Ö	MODEL SE CONFIGURATION	Powarful Mos Prop - Block S 3-Blocks								
TEST CONDITIONS	13 8 Q J 8 4									
E	DATE	78								

NOE MISCELLANEOUS		\setminus	Questionable Zero Haybe-270mg								
MOTOR PERFORMANCE		PPM CUSTEN J	0	0.2	0,3	6.4	9 ک	910	7.0	8′0	
1		çojoha	0	1620	7020 0.3	9130 6.4	7360 6,5	910 07%	4870 0.7	810 00001	
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION	(•				
DATA		9.7399/i									
PERFORMANCE DATA		ANSWO		67 <i>h</i>	(-) 4(8	(-) H68	(-)	(-)	[E	(-)	
PERFOF		Topad (1)	36.5 217 468	876 410 578	46,0 2.17 468	50,0 -217 168	(-) (-)	(-) (-) g	(-) (-) (-) 53.5 217 468	(-) (-) (-) 550 217 468	
		(3sd) p	٥	36.5	اً عُ	ે જે	(-) 51.5	62,5	53.	(-)	
_		9									
RATION		*	0.							->	
CONFIGURATION		MODEL CONFIGURATION	PWD MODEL OCTURA 2.8 (BP 2 BLADE		•					7	
FIONS		I NON S	4.08	`						->	
TEST CONDITIONS		141 82							<u> </u>		
TEST		DATE	5/1/29							->	

10 10 10 10 10 10 10 10	TEST CONDITIONS	CONFIGURATION	PATION		PE	PERFORMANCE DATA	CE DATA	FLOW VISUALIZATION	IZATION	1	MOTOR PERFORMANCE	MISCELLANEOUS
A Pub. Madel A A A A A A A A A			I									
4.09 Octube Acobet 4.09 Octube 2.8	(35d) a			\ \	δρ.	337	8, th 20011	AREA OF FLOW ISUALIZATION	codolla	WOR	LISTONE	COMMENTS
16.0 375 -2045 -470	4.09	PWD. MODEL OCTURA 2.8 2 Block 2	+		+	•			+	+		ZFK:S
16.0 372 -255 -472 7720 -1 772				16.0		04.5-170						
H.O 343 725-471 R.O 370-472 PWD. NOTEL 4,10 CCTURA 2.8				16.0								
4.10 C C TURA 2.8 C -27 -217 -468			_						- 34		01	
4.10 C C TURA 2.8 4.10 C C TURA 2.8 2. RIADE -47 -217 -468 6.50 -7 6.5									9.	5.00%		
4.10 CCTURA 2.8 2. 91ADE 2. 91ADE -47 -217 -468 5850 .7 -48 -217 -468 0 -23 -246 -468 0 -23 -246 -468				<i>K</i> .0		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			<u>\$`</u>			
7-17-468 SPS.0 · 4	↓	PWD. MONEY CCTURA 2.8 2 BLADE]			00		K)	1 1	~	REPRATOR VIV. 4.08
0 -23 -216 -468											<i>></i>	
0 -23 -216 -468					20/+	117-466						
	5/1/14 75°			}	-22	39/- 912	8			1		REPENT ERVO

!

i

, }

]

•

OR MANCE MISCELLANEOUS		COMMENTS	ZERO Repeat of rus				KEPEAT ZBO for our 4.11	repent of ru 4.01			
MOTOR PERFORMANCE		MAM	0	2.	. 1/2	<i>*</i> :	0	0	2.	۲.	9,
		ço30NA	0	0004	8300	8/00	0	13100	17000	00981	19900
ALIZAT											
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA		Shees #	93	99/.	168	-467	79/-	-463	-1/225	<i>#</i> 2	lgh -
ERFORM		3377		-217	1,- 17-	- 117-	in-	4- 502	-205	-205421	-165
ď		[JSeta] b	**	7.1	-/05	101	-38	///	*	373	314
NO		0	0	0	0	0	0	0.1/	16.0	K,0	0.9/
CONFIGURATION	-	MODEL	Powered Model Prop-Yallon 5" 3-01-ADE					Powers I Nobel Prop- Yelow S" 3-8400E			
TEŞT CONDITIONS		[3] 81 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	1					, 71'h			
rest co		DATE						4 69			
- [1 å	4h/s					2/1/10			

E MISCELLANEOUS		COMMENTS	REPENT CERO, CEEDS for 4. 12 and 4. 1.	STALLED							
MOTOR FLOW VISUALIZATION PERFORMANCE		[Janeary	0	0	. /.	0.05	.075	60.	0.1	0.1	0.1
		NAS	+	0	7500	900	07/1	32.	0 0051	0 0481	2240 C
		colofa	1		25	76	61	~~	5/	8/	22
		AREA OF FLOW VISUALIZATION			-						
PERFORMANCE DATA		Monent	99h-		574-	5%-	5%-	-485	5//-	594.	594-1
		5	812-		-210	117-	-211	-20	-1/0	-210	1,2-
		(1329) P	-8		181	183	99/	183	18/	192	661
TEST CONDITIONS CONFIGURATION		0	00		ov.	00	ÇB .	В	8	8	æ
		*									
	•	MODEL CONFIGURATION	Powered Wilst Pap- Yalows" 3-84005								
	;	1 130	4.13								
r CON		(4) 67	20								
Sar		DATE	st/ra								
		H	%	7				}			

MISCELLANEOUS		COMMENTS			REPENT EERO				
MOTOR PERFORMANCE		Currentl	860	60.	0				
- 1		HON	. 520	. Or 28	0	 			
ZATIO		ç030A4	1	- ~	,				
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION							
PERFORMANCE DATA		94 799V		1					
MANCE		A SUICE	7	-415	99,-				
ERFOR		13377	2	-2/2	112-				
4		I Sead of	263	210	-34				
			a	8	0				
PATIO		8							
CONFIGURATION		MODEL	Powered Model Prop - Yallow 5' 3-81.40E						
NS INS		(3)	1,13		613	<u> </u>			
TEST CONDITIONS		[35d] & d			,				
S.	Ì	[4] 81	-52 25						
TES		DATE	44/5						

MOTOR PERFORMANCE MISCELLANEOUS		COMMENTS COMMENTS	BEAVING MAY VERUING 1 CONVENT WOODLE 15	OSS 38, 1 discourse to 8.	4.34	50	This is the last point	2 54	19	70	72.5
- 1		4194		9.20 0.0	7.	9800 .2	10080 .27	100, 00911	12900 .15	13500 .2	14430 .3
ATION		çozona		20	920	92	00	116	129	/38	7-
JALIZ			>								
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA		Sinest F. Sinest	6 8								
RMANC		1 Joho	D. 5								
PERFO		7.35.7		-220	-220	on2_	-220	077-	-220	011-	017-
		[38d] P	SUS	358	365	77 14	368	333	337	325	309 ±2
		0	٥	20	æ	80	B	80	8	$\dot{\mathcal{B}}$	00
z		,									
RATIO											
CONFIGURATION		MODEL	26cl MoJS revessed mas / - Yellow 5' 3-84006								
}		# NOTA	Buniber								
LIONS		130	F. 7	1							
SNOITIONC	}	्या है। विश्वास	↓								
FEST		``	47								
<i>⊁1</i>		DATE	7/2		1			1			

MISCELLANEOUS		COMMENTS				26105					
MOTOR PERFORMANCE		13 Rent IV	19	85	4//	ପ	22	80.5	98	63	18
MO		Hay] ']	٦,	1.0	o	0	`.	2.	.3	۶.
- 1		cosoda	1530	16050	a961	0	/6300	17100	18230-2	05/6/	19700
IZAT		Pho									
FLOW VISUALIZATION	·	AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA		Sheer # 1990A									
ERFOR		1377	-220	011-	022-	223	-215-	-212	-45	-215	-115
		[JSd] b	278	260	157	ς,	609	588	563	53/	513
			a	Ø		0	16.5	16,5	16.5	16,5	16.5
z		0									
RATIO		8	0			0					
CONFIGURATION		MODEL	Course Male seconsed in towns of 100 - 16 //00 5 3- Bads			Coursy No Set revensed in toward In toward for 5" 3-8406				·	
NS T		# NON	6 H1.			4.15 6					
DITIO		13501 8				3.					
TEST CONDITIONS		[4] 8.3	1/2			11,					
žät.		DATE	5/13								

MOTOR PERFORMANCE MISCELLANEOUS	COMMENTS COMMENTS	NOWENT SCALE 103 DISCOMMETTED	107.5	2 5805	42.5	15.9	l	Sharply voverses Sharply cannot be male + without reduce	64	73
MO	 Hala	, ,	9.	0	0	~	2,	21'	0	-
	çozola	2000	2012	0	out 6	9720	coll	0000/	14/200	1560 . 1
IZAT	ONA		. <u> </u>	}						
FLOW VISUALIZATION	 AREA OF FLOW VISUALIZATION							مساباسي		
PERFORMANCE DATA	Sheer #			- 105-	105	-50/	501	.3	-50/	-503
ERFOR	1 3377	-215-	-215	-217	861-	86/-	-48		861-	84/-
	[3sd] b	494	183 £1	35	hss	755	hss		547	530
	0	14,5	16.5	0	571	16,5	/6.5	6.5	/6.5	16,5
ATION	8	0	0	0						
CONFIGURATION	MODEL CONFIGURATION	Power Madel reus rec		Prop - Yellaw 5" 3-84AE						
TEST CONDITIONS	(32d) &	51.		4.16						
ST CON	141 6.3	26	27.0	260						
HE.	 DATE	5//3	2//3	5/13						

MISCELLANEOUS		COMMENTS									Consect
MOTOR PERFORMANCE		Lineary Color	28	0	13.1	19.6	7:03	48	\$/	25	55
MO		Hay	\	0	-,	~	501"	2.	727	.3	۴,
			ו א	0	23.00	38%	0519	0076	0696	9750	97.0
IZATI		çożoń	7 1	>							
FLOW VISUALIZATION		AREA OF FLOW	VISUALIZATION								
_		, io	>								
PERFORMANCE DATA		93/1886 # 396	1000								
MANCE		Ne _D	27	105-	/05-	205-	105	105-	705-	105	-50r
ERFOR		1 33		<i>ba-</i>	-209	-101	-209	-1001	602	602-	1607-
P.		[38d]	502 -148	18.5	328	338	330	345	343	339	345
		· \	16,5	0	8	∞	8	80	8	8	00
		o o									
ATION		*	0	0							
CONFIGURATION	-	MODEL	Powered Medial	Powerel Hodel Ago 7 3-818 BE							
SS.		* NITH	. \	71.7							
OITIO		13291	*	ゔ							
TEST CONDITIONS		(8)	180	%							
TEST		DATE,	5/13			_					
		_	1 12				ļ				

MISCELLANEOUS	COMMENTS	Idrop can be delayed to go of the sold of	Botton hysterisis						Correct diopat	After correct diss
MOTOR	Ustenst 1		64	1/	78	1	46.3	\$. 5.3	25	5,5
MO	Mak		w.	۴,	٧.	0	``	· 3	22.	0
i	1	1/88:	12450	13510	1477	9220	9750	0766	10 120	12450
IZATI	ç030 ¹⁰									
FLOW VISUALIZATION	AREA OF FLOW									
PERFORMANCE DATA	Susses 1 1 12 12 12 12 12 12 12 12 12 12 12 12	9-505	9-505	9 -505	503-602	9-5.0	115- 6	0.5-	605-0	2/2-
PER	5,		602-	2 209		4-198	661-	- <u>;</u>	, -200	7
-	13501 6	\	303	282	258	16.5 644	650	9,49 5.71	16,5 646	16.5 642 -199
	0	100	œ	90	ao	e,	76.5	*	16,5	16.5
NO.	8	-			! 			···	ļ	
URAT		0				0				
CONFIGURATION	MODEL	Powserful Modes with Tay 1 Hours y comb				Power Mools with Tail Power could install!				
SN	NOW	11.4				7.18				
DITIC	Issay.					1				
FEST CONDITIONS	141 0	0.7/		<u> </u>		780		 -		
TES	DATE	5//3				5/13 7				

MISCELLANEOUS	COMMENTS							4,01 AND 4,03		
MOTOR PERFORMANCE	[] Jausano	2,9	75	83	68	46	/23	0	67/	8:5/2
MC	 1108		ý	ů.	۲,	لم	7.0	0	0	0.1
	1	14330.	5620	16740	17500	18230	2/000	0	<i>ф</i>	4750 0.1
IZATI	çodoña	1								
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA	Stores use	}	2	60	80			13	.9	1
ORMA	137	 +	-5/2	-509	-508	3	. Sα4	504-	961-	1-497
PER	50.		661-	661- 2	*	PH-	661-	-216	361-	hb/-
}	 [32d] 8	 _	53	223	<u> </u>	525	432	33	562	7.94
	8	16.5	16.5	16.5	16.5	16.5	16,5	0	16,5	11.5
Z	0						:			
MTIO		0								
CONFIGURATION	MODEL CONFIGURATION	Powered Mode I with Tail Foury comb installed Pup- Salabo						Power Norle/ Prop - Yellow 5" 3-81018	·	
Šļ	# NOTA	4.18								
TEST CONDITIONS	[35d] &	+ +						4.19		
QNCS	[4] 81]								
TEST	DATE	88						80.		
- L	 ă	5//3						73		1

MOTOR TION PERFORMANCE MISCELLANEOUS	Proto Curical No Comments	51.00	13180 0 65 . 18 to notative	1580 0.1 73	17/20 0.2 82	Poso 0.3 88	18600 0.4 93	66 50 0261	121 0.1 0712	O O O VEPENT 3 610
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA	Lift 1 danon L	964-5	535-195-495	533 -195 - 4%	164-501-65	164- 561- 884	25 -195 -417	867-561- 88	325 -195-497	4 -217 -48
CONFIGURATION	SSAL S S	211 0	16.5	(6,5 5.	14.5 15	16.5 14	16.5 465	8sh 5.1/	16,5 32	V 0 34
CONFIG	DATE (\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5/13 79 4,19 Prop- Yellow 5"								5/3 820

MOTOR ION PERFORMANCE MISCELLANEOUS	STOPOTO STATE OF THE STATE OF T	O O C	1920 .125 11.5	4530.15 24	800 51. 808	130 .2 97	1910 .3 52	9970 . 35 54	15.26.25 55 · 8	13270 .3 67
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION &									
PERFORMANCE DATA	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	964-1	237 -205-498	2 205-498	257 -205 - 488	8bh - 502- 5	253 -705 -498	1205- 1.	21-205-1	8 -20% - 199
CONFIGURATION	0 0	0	80	8 72	80	8 255	8 23	8 25/	242 8	8/7 8
TEST CONDITIONS CON	DATE (2) (2) (2) (2) (2) MODEL (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	1/4 72° 4:20 Pepi - Yelling "Trime"								

FLOW VISUALIZATION PERFORMANCE MISCELLANEOUS		AREA OF COMMENTS LIZATION AS COMMENTS	1520 4 79	06) 5 06011	19500 . 7 107	0	82 50. 0251	3750.1 19	8420 -09 40	9610,2 4.9.2	11730 - 11 55 Concert Ary 12
PERFORMANCE DATA		S S S S S S S S S S S S S S S S S S S	05 -498	84-502-591 8	8 128 -205 -473	2) 37 -216 -796	16,5 422 -199	16.5 438 -194 -501	16.5 468 -195 -500	crs26/- 92h 5'9/	16.5 472 -195-498
TONS CONFIGURATION	-	A S CONFIGURATION	4,70 5,00, - 16/64 5 3.81ADS.			4.21 Prop Tribel Sersen O Trimbal To 3.6					
TEST CONDITIONS		DATE (A)				st 140					

FLOW VISUALIZATION PERFORMANCE MISCELLANEOUS	OF COMMENTS	15230.2 74	17120,3 85	301 5.05.61	V 0 C	4.9 1. C9b	320 15 18	5760 . 14 29.5 1.7	8880 . 2 44,7	9,00 .3 52
PERFORMANCE DATA FLOW V	ST S	66/	11.5 417 -194 -493	16.5 372 -195 -498	0 37 -216 -496 —	8 185 -229 520	8 190 -208 -500	8 200 -209 -500	8 195-208-500	8 165 -209.5 - 30
TEST CONDITIONS CONFIGURATION	DATE (\$\frac{\partial}{\partial} \frac{\partial}{\partial} \part	Pans, Hodil 121 Prop - Yillow 5" 3-02008			1,00 TRINDIA TO SECOND TO					

TA FLOW VISUALIZATION PERFORMANCE MISCELLANEOUS	FLOW STORY OF STORY O	9900	10920-28 57 4	14.48 J 75	1640 5 86	401 L. 10481	ToTa C hull V	FEKO		
PERFORMANCE DATA	Series Control of Cont	35-500	175-2005-500	138 -208.5 500	110 -208.5 -500	63 -208,5-50		37 -216 -497	161 -207 -502	201 - 1981 - MVS
CONFIGURATION	0 0	8	8	8	80	8	8 0	0	80	14.1
TEST CONDITIONS CON	AS AS CONFIGURATION						housey comb in 1,97 Towns inter	1,08 TOTAL hull		
TEST	DATE	44 24					hit. hijs	esi hys		·

MISCELLANEOUS	COMMENTS							
MOTOR PERFORMANCE P	Currently							
FLOW VISUALIZATION PE	iotolia, inda	>	>	/ / / / / / / / / / / / / / / / / / /	>			
FLOW VISU	AREA OF FLOW VISUALIZATION	Total hull	<u> </u>	TOTAL Hull WET COATING INDUSTS TO SHOW SECRETABLE	Spot TRIP At			
PERFORMANCE DATA	A Soort			3 4	q s			
PERF	Issal P	14.1	/4.)	1.6.1	14.1			
CONFIGURATION	8	0	0	0	0			
CONFIG	MODEL	TOTAL HULL	ToTAL HULL	TOTAL HULL	TOTAL HULL			
TEST CONDITIONS	13241 ° C	1.07	01.7	1111	1,12	 		
TEST C	DATE (\$8)	57 75°	34 75°	57 750	15° 15°			

MISCEL	COMMENTS				Beginning Shaft	shaft wheeling smooth out			Beginning of Shared	
MOTOR	CURTERET	.17 6.5	.2 10,83	.25 23,2	,265 28.6	245 30,5	318 318	01/5 52.	53.9	25.7
1	Photos Piga	• 009	1380	3870 .2	5.120	5.940	6, 6793	2. 0966	10380 3	38.00201
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA	T T T T T T T T T T T T T T T T T T T									
CONFIGURATION	ATTON & C & ST	0								
TEST CONDITIONS	A A A S CONFIGURATION	1.22 No Prop - No								
55	DATE	2/50								

MISCELLANEOUS		COMMENTS	Vibration smoothing out					ı	Honoycanb at Inlet 3sheets)		Viping of Eirs
MOTOR PERFORMANCE		Kips Current!	.30 63.1	.245 69.1	.25 83.5	. 255 93.5	4.401 22.	911 592	(37		7
FLOW VISUALIZATION P		çozona	- 1.1370	13 980	03021	04161	21550	23950.265	\		
FLOW VISU		AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA		Sheet #							Q! hbh-	16h-	1 kbh-
PERFOF	;	(3sd) S	a						32 -219	2/9 -208	0 32 -219
RATION		0 0							0	13,5	0
CONFIGURATION		MODEL	Powso Model						Hull with ooof Fig.		
TEST CONDITIONS		18 18 18 18 18 18 18 18 18 18 18 18 18 1	4.22						517		•
Test C		DATE	02/					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5/20 670		72°

MISCELLANEOUS		COMMENTS				e7 2 f. KO	Pake 3,5"Aft				
		285				12 X F F F E T T T T T T T T T T T T T T T T	Rake 3				
MOTOR PERFORMANCE		XOX						24.3	43.6	66.8	73.8
MO		Hay						.07		.2	ŭ.
		\$10000						2/100	9300	13990	M960 .3
LIZAT		AAA	>		>		7				
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION	,								
PERFORMANCE DATA		Pressure Sheer k	7	%	0) 94	hbh-	h6	11 664-	-500,5	66	66
RFORM		3377	0	764- 607-	764- 602-	h- 617-	-220-494	-210 -7	-210 -5	-210 -499	-210 -499
PE		I Sead P	\$	224	8/2	37	33	334	361	3/6	- 502
		9 8	0	13.5	7:21	0	0	13.5			-
ATION		8									
CONFIGURATION		MODEL	TOTAL Hull with OOO9 Firs, No prof.		TOTAL Hull with oood Firs, Aborg.		5"3Blath Yellow Pry				
CONS		Issal of	29		1.17		5.01				→
125T CONDITIONS											
SST C	İ	'	720				73.0				
		DATE	5/20		 	-					->

MISCELLANEOUS	COMMENTS										EFROS Por rin 5.03
MOTOR PERFORMANCE	Current!	80.1	86.7	93.5	95:0	97.6	00/	109			
MC	 1198	1 .]	<u>ب</u>	9.	, ,	9	9,	0.1			
NOI	çodoha	15800	16630	17570	18050	18630	09261	05.761	<u> </u>		
LIZAT									>	7	
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION										
PERFORMANCE DATA	9.7000 U	=						······································	7/	12A	
WANCE	Yoment I	664-	205-	\$	499	200	-500	105.		81h-	-443
ERFOR	13377		-210	-210-500	-210	-210	-210	270		-215	122-
	 [3sd] S	263	239	500	181	162	94	821		310	33
	000	13,5							13.5	13,5	0
ATION	8										
CONFIGURATION	MODEL	Power of Mockel Prop - 5"3-BLADE							POWErEd Madel	FULL BODY RING ONTAIL ON PROP	
SNS	NOW NOW	5.01						 -	5.05	5.03	
PEST CONDITIONS	[3] Sd Sd Sd Sd Sd Sd Sd Sd								- 5	5	
ST CO		160									
#	 DATE	240									

MOTOR PERFORMANCE MISCELLANEOUS		COMMENTS COMMENTS		Rake 3"AFT 127/11" Officity	65.0	071	82.0	868	88.0	100	92.0	ZERUS FON 5.05
MC		HAR		7,	1200,25	4.00	15580,5	9.	7.	8.	07	-
ATION		çodon4		9000	021	1470	153	16400	OhQL)	17840	18900	$\frac{1}{2}$
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION										
DATA		es de la la la la la la la la la la la la la	421	ब रा								-
PERFORMANCE DATA		OMen]	1 264-	-497	16h-	16 h-	164-	16h-	261-	L6h-	100
ERFORM		1 3377		-210	- 117-	-1012-	0/2-	-210	- 310	210	-210	con- cic
Ã.		[J. Seza		407	357	318	30/	267	254	232	193	36
TON		9		13.5								
CONFIGURATION	•	MODEL	Same 45.03 Rake moved 1.1" off cuto	5"381abel Fore Roof with Hove ye on Lording of the	ſ					,		_
IONS		I NOW	¥,	5.05							->	
TEST CONDITIONS		[4] % 1 9 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	0,_								4
TEST		DATE	\$20	77°								4

CE MISCELLANEOUS	COMMENTS		2							Priprimerson
MOTOR	CURTENEL	71.5	78.3	95.0	920	7 96	à	103		
PERF	Hida	1 1	, ,	γ'	9, 0	`	eo	1.0		
TON	ç030NA	1 4290	oszs/	002 9/	011171	77880	1860	19890		
IZAT	oda.									7
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION									Afterbudy & Tail Fins
DATA	9370 BU									AC
PERFORMANCE DATA	Nowe,	02	gh-	664-	64-	864-	86h-	84h-	Suh-	
RFORM	3377		202-	-Lar-	- 202-	- 202-	- 207	-207	-220-	
PE	1 Sexq	3.0	287 -:	258	822	202 -	181	147	35 -	
	13sdl P	11.5	13.5 2	13,5 %	13,5	13.5	13.5	13.5/	0	8.8
	0		- '							0
TION	8									0
CONFIGURATION	MODEL	Powsred Mools! NUTH NESS Trip Prop-Yolow 5" 3-84008								Shellen Bry 115
ITIONS	Isal &	1,23							->	4.24
TEST CONDITIONS	131 67							*		
TES	DATE	5/11								->

TEST @	TEST CONDITIONS	CONFIGURATION	ATION		}	PERFO	PERFORMANCE DATA	FLOW VISUALIZATION	MOTOR PERFORMANCE	MISCELLANEOUS
		-								
DATE	18 18 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MODEL	8	8	(38d) P	3377	Sessure A Sessure A Sessure	AREA OF CONTROL OF CON	rida 130973U	COMMENTS
37'	- X.	Hall without-		0	53	0.7	1.64-			
			0	3,5	250	18	254-			
			00	13.5	254	503	hbt-			
			3.6	7,5/	254	-2003	- 463			
			400	135	-255	-210	-504			
				13.5	256	h12-	-5//			
	>			0	34	-220	964-		8/	VEC SAT Z. ERO
	3.02	Hull without prop	• 0	13.5	872	-207	->ao			
->	->	11	007	13.5	22.8	-203	- 495			

MISCELLANEOUS		SINIS									
MISCEL		COMMENTS									ZERO for Min 4.26
MOTOR PERFORMANCE		RAN									
1		ç030/lq				7					
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION									
PERFORMANCE DATA		Sheer #	2	\$as-	-510	-500	oh-	-48/	- 509	-5/8	-443
PERFOR		13. 13. 17. 13. 17. 13. 17. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13		230 -210	-214	-200	215 -199	661- 212	210 - 201	202-012	22 -2145-493
		13291 p	13.5 2	13,5 2,	18.5 231	13.5 211	13,5 2	13,5 2	13.5	18.5%	0 2
RATION		0	3.3°	-2-	, <u>,</u> ,	0	000	3.9°	-2	7,	
CONFIGURATION	•	MODEL	Holl without Prop No TRID			BASIC HULL NO HORIZE FINS					
TEST CONDITIONS		I NOW ISSAI OF	3.02		>	203 14:31 N					
TEST 6		DATE	12			5/21					

[3] (a) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	MODEL SONFIGURATION	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AREA OF COMMENTS FLOW VISUALIZATION AP AP AP AP AP AP AP AP AP A
72° 5.67	Full Volviele 5"DXS"P Viller 38LD NO Hub	7	
7	п	13.5	
80'5	11	9317-5117-518	
		13.2 10 -215 -488	14160 0.2 68.0
		J 255 -215 -4188	16,140,014
		206 -214 -458	0'ht. 2.0 00/11
		155 - HE	1901 300 WY
	>-	1.21- 117- 591	28354 11.1
>	•	947-518-146	6

CONTARES	COMMENTS						2510			
MOTOR	Surrent 1	13,000.2 58.1	5.148 1.1.6 OH(31	h,500 116c 101	22,450 3.6 125	1.0 139	- 50.4	11,27 50,000	13,200 (1,4	511 010016
FLOW VISUALIZATION	AREA OF CON ELOW AS	30/21	111/21	h ₅ %	α, α, α, α, α, α, α, α, α, α, α, α, α, α	17.7	0,7260	(0/3	13,20	1434
PERFORM E DATA FI	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0bh-5	128 -215 HBH 17	182 -215 -488	126 -215 -488	80 -215 -488	27,5 -218 -496	210 -215 -489	240 -215-481	481-215-481
CONFIGURATION	MODEL CONFIGURATION CONFIGURATION	Vok.clr P-Clyytts619 HUG	2,	J		3	2 4 9 1 10 3 8 1 0 D	13,4	71	9
TEST CONDITY S	DATE (18 PS E) AND CO	5.01	01'5				5,11 5'D x4"P			. 7.

13.4 15.0 - 21.5 - 46.6 17.5 17	MOTOR FLOW VISUALIZATION PERFORMANCE . SCELLARGE	ON SPORTS STATE OF ST	9 03951	101 01 6.9(2)	17,400 1,2 111		2	1.630 10.0 163.1	16,500 1.1 56.6	17,316	19/200 1/2/ 1/01
13.7 = 1.0N		TO SOLO SOLO SOLO SOLO SOLO SOLO SOLO SO	99.4-510-	1891 312- 7	8611-512-5	81 81	116 :176	-315	15 -115 - 1181	18h-516- L	chi- 712- 571
TEST CONDIT. S TEST CONDIT. S TEST S	S	NODEL CONFIGURATION & CO	13,4 S" DON, EL . 11 VON, EL . 25 13,4 13,4 13,4 13,4 13,4 13,5 13,4 13,5	2			FAM VONIED OF THE OF NO HOBS	13.7	7.	L	17.

•

AD-A100 759 WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

UNCLASSIFIED APL-UN-8014

END AMIL TO APPLIED PHYSICS LAB AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

END AMIL TO APPLIED PHYSICS LAB AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

END AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

END AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON UNIVERSITY OF WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 759 WASHINGTON VENTUR-ETC(1) NOOD24-78-C-6018

AD-A100 7

CELLANEGUS	JU COMMENTS		This is a							
MOTOR	Current	hll o'	0	12 49.5	14 C.3	18 9	9 95	111 0.1 6281	.2 176	
1	\$1000 Ping	21,700 1.0		19,08: 0.2	10 00 01H	51000/51	16,750 0.9	18,2%	19630 1.2	
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION									
PERFORNIE DATA	12 12 12 12 12 12 12 12 12 12 12 12 12 1	06/1-5	-219 -494 19	215 -215-486 -488	184-216-481	-215 -488	0.31-, 512-	364 - 485	-216 - 11 ⁶⁵	
Id	[3sd] b	13.7 80	0 37	13,3 215	765	208	02/	1/20	15	
ATION	9									
CONFIGURATION	* MODEL CONFIGURATION	try	Full Vol. 121.					>		
OIF. S	13291 ° a	77	hJʻş							
TEST CONDIT	TE 6.9	<i>°</i> ⊗								

MOTOR PERFORMANCE SCELLANDES	Taust Sieg	Con Z	0,2 47,6	o.t/ 85.5	96 [184]	9.6			0,2 45.7	17.20 0.4 85.2
FLOW VISUALIZATION P	cotor		9660 6.2	16130 0.11	345016	34440.6			9250	097.11
PERFORME DATA	\$ 20.25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20 20 20 20 -210 -210 -210 -210 -210 -21	13.5 258 -213 -492	01.7 - 11.7 1.10	173 -215 40	01.5	13.5	29 -220 -492	13,5 244-213 -1994	215-213 -489
TT S CONFIGURATION	A S CONFIGURATION	17.02.1 17.02.1				- 6	91.5	5,17 Octuve 2.8		
TEST CONDIT		8.3								

E L. CELLAGEO	COMMENT							
MOTOR	Curren	0.6 110.2	1.8 123		 	-		
	503019	20630 0.6	72200 6.8					
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION							
PERFORM E DATA	7 12 1.21 1.22 1.22 1.22 1.22 1.22 1.22);c);-	76				
PERF	(3sd) 8	13,5 185 -213 -455	13,5 175 -213					
TION	0	5'81	(3,5	13,5				
CONFIGURATION	MODEL	Octus 2.8 With Hub		→				
S TION	2. (2.2.2. 4. 2.2.2.2. 4. 2.2.2.2.2.2.2.2.2.	215	>	81.5				
TEST CÔNDITS	DATE ROL	02 1/3						

SCELLARETTE		COMMENTS				6 42 4 0 69 31 degras					
MOTOR		Light Janes	25			3					
FLOW VISUALIZATION		503046	7								
FLOW VIS		AREA OF FLOW									
E DATA		Ment I	0,	34.0		<u> </u>	4	त त			
PERFORM		33	14.0	16 62 34	76 FS OF	12 58 39	77 62 42	5 83 88	92 72 49	72 46 31	2 86 LL
		[3sd] b	0	0 (3,5)	1 04	off	\$	A.	Er	40	\$
RATION		*	0	0	7	4	+3	7	42	74	cut.
CONFIGURATION	-	MODEL CONFIGUIATION	Support Bully 2-16-006 Fins	-						·	
31T4 S		1350J	2.20								->
TFST COMDITY		DATE &	166 700								

SCELLANGES	COMMENTS					Zenes		Capeat of 2,21	Zerves	
MOTOR PERFORMANCE	I Jaugash,									
FLOW VISUALIZATION	ç030ñª			·						
FLOW VISU	AREA OF FLOW VISUALIZATION			·						
PERFORM SE DATA	1 1 10000 1 10000 1 10000	8 . 8	3	7		7	34.5	4	,	
PERFORM	137	35	87 31 23	43 29 22	72 51 35	39 44 37	12 55 30	71 54 39	48 ph 578	
	132d) P	30195	8		→ 	0	w.	13.5	0 36	M
NTION	8	3 3	-4 7	5 3	9	0	0 +4.20	R +9.20°	u Q	0 2
CONFIGURATION	MODEL	Support Budy 2-16-005 Fins			->	17	13	11	٠ ١١	=
ir. 6.3	Isself &	2,20			->	2.20	271	2712	27.7	623
uisa ceapiri	SATE: CENTER OF STREET	02 7/2			740					

SCELLAND		CONSTITUTES	Left crank conf. nut be haid by set screw		Report 2,20)		4-16-06 Fins Instilled T			
MOTOR PERFORMANCE		SUST SOUTH IN STANK							11,0m 0,25 54.8	JS, 00 6.38 75. W	
FLOW VISUALIZATION I		AREA OF O'S FLOW A'S A						7	no'48	18,00	
PERFORM, E DATA		Soloson Paris	137.5	72 47 34	38 hn 1	76 17 01.		3.0 -226 -450	208 -210 -466	25 -210 HEO 22	
ION		Isself 9	R -127°	1 (35)	0 0 31	0 (3.5 °	4	0 3	13.5	13,5 18	
CONFIGURATION	-	MODEL	Suppleady 1	0 u	n C	3	=	Powerd Hudel Octom 2.8	يَ ـ	1	
The Compite 3		135c) 60 d ld) 0.3	2.3	->	2,24	=	3.25	5.19	7	=	
11.01		פאינו:	484 15			-	->	484			

SCELEAREGUE		COMBERTE	Wanterland					Md gooden			
PERFORUME		Right Janes 1	1 1								
FLOW VISUALIZATION		503044									
FLOW VIS		AREA OF FLOW VISUALIZATION									
PERFORM E LATA		Angula Salas Sing Sing Salas Salas Salas Salas Salas Salas Sing Sing Sing Sing Sing Sing Sing Sing		-48g	482	-443	-44 <i>1</i>	-492		•	
PERFOR	·	I set o	25.55 -217 -49b	215 -208	402-1512	215 -212	217 -215	220 -219 -			
		9	0	6 13,5		0	8	~			
ATTON	-	8	·	0	+2	7	H	6 7-			
CONFIGURATION	-	HODEL	Fully Appealed NO PROP	٠	1.						
DIT. S		13291 00	6,20	٤.	= -						
TEST CONDITY	•	ATI: AS	1500	-				->	-		

	ZONSHOWICZ ZO	5 04 8 2	9.7	. 7	1.1	2	\$143.5	561	7.5	106.1
	Surran									,29
								1,000		000/47
	2030AA		=======================================	3/	2	2				2
	AREA OF FLOW VISUALIZATION	-								
	Solve Solve		23	43	24	# # # # # # # # # # # # # # # # # # #		7.7	27	72
	JOSUO,	2.5					1.8/1-	<u>`</u> _		88/-
	3377	_ ~			-2125-	-285			212	- 212-
	[350.			181		211	56		238	217
		0	13.5	13.5	13.5	18,5	0	13.5	13.5	13,5
	100	·								
_	MODEL	Full Plueval Vehicle Octuna 2.8 Prop New tail cone					Powerd Volicio MK 38 Prop Newtril Cone			
	Is a list	5.21				->	5.12			->
- 1	/d/ e/	i	t l			İ	1 1		1	
		CONFIGURATION A C C C C C C C C C C C C C C C C C C	S.21 Wew Tail cone	\$\frac{\partial \text{Link}}{\partial \text{Link}} \\ \frac{\partial \text{Link}}{\pa	S.21 Perint Park Perint 5.21 Detail Tone 5.21 Detail Photosis Details 5.21 Detail Theory Details 5.21 Detail Theory Details 5.21 Detail Tail Cone 13.5 217 -212 -4815 A6 13.5 1144 -2125 -483 A6 23 23 23 23 23 23 23 23 23 2	5.21 Vew Tayl Came 5.21 Vew Tayl Came 6. 27 -221 -48.5 Ab 18.5 112 -28.5 -48.3 Ab 18.5 112 -	Size Model Size 5.21 Mean of San San San San San San San San San San	\$5.21 Proud (16,15) 13.5 236 - 231 - 187 13.5 238 - 231 - 187 13.5		

11SCLLLAW CO.		COMMENTS	26005				z fros				
ANCE		132		50.8	74.0	4.7	, 2	50.7	62,6	127	
PERFORMANCE		Current		185 581.	4:	80		345	3 62.		
ł		rida		00011	15,000	29,000		11,000	15,00	18,400 1.53	
IZATIC		ço _d oñ ^a				2					
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION									
PERFOI NCE DATA		93799115 1 3 3 3 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1		弘	2 th	455		2c 19	77	27 st	
NCE		NOMen L	lo.	99.	1.84 -	181	985-	-488	L8h-	-1/88	
ERFO		1 3 7.7	, ,	-213	-213	-213	23,5-212	-2/3	-11)	12/3	
		[389] P	27	242	261	118	23.5	812	ysı	-12	
	-	9	0	13.5	13.5	13.5	۵	13.5	13,5	13,5	
Š		8				<u></u>					
URATI							9.				
CONFIGURATION	•	MODEL	Powered Vehicle Yellow 3-Brade 4" PAA clipped to 36 inchs	1)	•	b	Your volvis o Yourseld Congres				
SNS		Issis of	5,23	z	= ,	~	5,24				
	ļ										
TPS CONDE		[A] 0.23									
F[טאבו:	يرازنا		-						

SCELLAND		COMBRETS				I dogs with				t 	
NOTOR PERFORMANCE		(Janozzi.	\ \b	1.4 46.7	0,245 66.6	18 400 .365 85.0 I	M 415 101.2	111 25.0			
FLOW VISUALIZATION		503040		000/11	000 51	18,40	22,000	3500			-
FLOW VIS		AREA OF FLOW	TUTTOTA								
M. E DATA		\$ 100 W		62 HB/-	-483 27	-48Y 27	27 h8h-	-484 22			
PERFORM		135d 6	\	247 -214	222 -214	203 -214	181 -214	HZ- 151			-
ATION		/9/8/	0	/3.5	18,5	13.5	5.81	13.5			
CONFIGURATION	-	MOBEL CONFIGUIATION	Pud Hustel Octura 1270 wew. Hub								
TEST CHOITS S		Brad Badi	17.					->			*

FLOW VISUALIZATION PERFORMANCE AISCELLABLE	OF CONSESTED OF AN AS AS AS AS AS AS AS AS AS AS AS AS AS	00	15,000 16 (6.8	18,400 .2.1 83.1	8/1 52. 05145	already Hill is	87.		1	
	AREA OF		47.8	28	8 28 24	POOR PERFORMAGE	c			
PERFORMINCE DATA	13 50 J B		13.5 297 - 214 -488	13,5 275 -213 -488	13.5 177 - 488	NOT RUN	0 24 - 22 -48n	164- 212- 118 5:81	0 34 112.3 36.5	13,5 127 78 30
CONFIGURATION	MODEL CONFIGURATION	FLO HOVEL GREY 2 BLD DRUHULD			- →	2-GREY 2BLD , LEW HUB	Full Hudel NO PROP New Hub		Speni 14 S	//
FT CONDINGOUNS	141 of 1014 141 of 1	e.				5:24 - PWD	FULL HON PRO PRO NEW HU	"	Medel 132 my	1,
TEST	מינהם	7.1/s								

HSCELLAN:	CCHRIDE									
MOTOR PERFORMANCE	rigis (Iquestiso									
	ço30ñá									
FLOW VISUALIZATION	AREA OF FLOW VISUALIZATION		ļ							
PERFOL NCE DATA	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 29		53 20.5	53 31	53 365	52.7 305	52.7 305	52.7 31	52,7 30.5
Z	13247 8	HI 5'81	0	99 5.81	65,5	1.5.5	65.5	59	99	99
UPATION				0	1+	+2	+3	44	45	16
CONFIGUPAT	MODEL	131 Electichies	Support Body NO FIMS	11						
DI JHS	نہ 🔪	1	27.5	=						->
TENES CONDI	 A STAG	11. 9hy	->							

TEALCHEAN TO STATE		CCMBERTS							Tare Due		
MOTOR PERFORMANCE		i.e.a Narenet									
		c030ha									
FLOW VISUALIZATION		AREA OF FLOW VISUALIZATION									
PERFOL NCE DATA		Sheet I	7 30.5	52.7 30,0	52.7 80.0	52,3 10.0	0.08 8.53	57.5	118.5 38	130 30.5	
PE	 _	[3sd] S	13,5 66.2 5	66.5	67.0 5	2029	25 /29	6 7.0	75 0	16.5 167 17	
TION		0	13) /-	-2	-3	h-	-5	3	7/	
COMFIGURATION	-	MODEL	Support Buly NO FIWS		•				Model Hounts NO ELECT. WIPE NO INICHIENDE		->
The COMPLETE		141 67 63 A 141 63	2.25					<u> </u>	7.30		
		DATE	5hill								

			WAKE	RAKE				s	heet No	o	<u> </u>			
	Rake Lo	ocation	:		- **		-	c 	omment:	s: <u> </u>	rosine	S. G	, g o	
1' 1 TO MANOMETERS		Brachet	9 0		her val	775	PITOT T							-
	MANOMET		KE RANK		r] 		MANG	METER I	NCLINE:					
	Muha #						To a	ation	CTATA		hiegat (0 · 17	~-
Γ	Tube #		<u> </u>		· ·		1	ation (4,0,0)		TOTAL	UPPER	LOWER	8:0 AT 3.85	
							1	ation 14,0,0)		TOTAL	UPPER	LOWER	[
	1 2 3						1			TOTAL	UPPER	LOWER	[
	1 2 3						1			TOTAL	UPPER	LOWER	[
	1 2 3 4						1			TOTAL	UPPER	LOWER	[
	1 2 3 4 5 6						1			TOTAL	UPPER	LOWER	[
	1 2 3 4 5 6 7 8						1			TOTAL	UPPER	LOWER	[
	1 2 3 4 5 6 7 8 9 10						1			TOTAL	UPPER	LOWER	[
	1 2 3 4 5 6 7 8 9 10 11 12						1			TOTAL	UPPER	LOWER	[
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15						1			TOTAL	UPPER	LOWER	[

		Sheet No. 2												
Rake L	ocation	·				-		Comme	nts	s: <u>Ke</u>	rosur.	S.G. = ,	.80	
TO MANONETERS	[WAKE RANK LAYOUT]										PRESSUE			
MANOME	TER INC	LINE: _		·			MANOMETER	R INCLINE: 90° hispht (in.)						
Tube #							Location	STAT		•		Lower	Right	Lē ∜ T
1 2							(14,0,0)	Ī			3.70			3.89
3														
4								1						
5														
7 8								1						
9														
10														
12								+						-
14		 		<u> </u>										
15 16			,					<u> </u>						
	1													

		WAKE	RAKE		s	heet No	·3	5					
Rake I	Location	:				-	С	omments	s:	Erzeine	5.6 -	.80	
TO MANOMETERS	Bracket [WA	e e	LAYOUT	1:22 × 11:27 = 1	roi jubes _	ISCELLA							
MANOME						PER INCLINE: 90°							
Tube #	·	T	·	I		1	Location	STATIC				R13/4-	LECT
1 2		,					(35,0,75)	4.03	,21	3,58	3.78	3.76	3.81
3													
								!					
5 6													
7 8													
9													
11													
12													
14 15													
16			,										
						-							
}					<u> </u> -		ļ						

		WAKE	RAKE			Sheet No	»	4				
Rake L	ocation	·	None			Comments	s:	Kerosine	5,6.	. 80		
TO MANOMETERS	Bracket [WA]	e e		per net i	حرا محسور		MISCELLA	ANEOUS	PRESSUE	RE REAL	DING	
MANOME	TER INC	LINE: _	······································		···-	MANOMETER	INCLINE:		0°			
Tube #						Location	STATIC			LOWER	RIGHT	LEFT
1 2						(35,0,0) gi=14	6,60		6.00	6.03	6.21	6.18
3 4						(35,0,0) Ri = 15	7.13	0.18	6.37	6.53	6.60	6,65
						(35,0,0) gi = 16	7. 55	0, 20				
5				<u> </u>		(35,0,0) Ri = 17	8.02	0.21				
7						(35,0,0)	8.29	0.21				
9												
11 12												
13 14												
15 16			,									
	÷											

			WAKE	RAKE		s	heet No	··	5				
	Rake L	ocation	: <i>N</i>	rne			c	omments	: <u>ke</u>	rosine S	6. = 0	. 80	
TO MANOMETERS		Bracket	9 9		WARE HAT EL	- عرا کسی	OT-STATIC TUBES -						
	MANOME			LAYOUT			<u>M</u> MANOMETER I			PRESSUF		ING	
		IDR INC							Hieght				
	Tube #						Location	STATIC	•	UPPER	Lower	RIGHT	LEFT
	1 2						(35,0,0)	7.58	0.18	6.87	7.05	7.02	7.07
	3						(35,0,2.5)	7.63	0.35	6.62	7.32	7.09	7.21
	1-						(35,0,5)	7.60	0.12	6.80	7.10	7.18	7,09
	5 6						(35,0,7.5)	7. 7/	0.42	6.78	7.16	7.15	7.23
	7 8						(35,0,100)	7.75	0.18	6.90	7.21	7.09	7.31
	9 10						(35,0,12.5)	7.75	0.40	6 94	7.18	7.10	7.50
	11 12						(35,0,-2.5)	7.80	0.35	6.77	7.3/	7.18	7.21
	13 14						(35,0,-5.0)	7.70	0.28	6.82	7.20	7.15	7.25
	15 16						(35,0,-25)	7.48	0.35	6,78	7, 30	7.21	7.32
Ī							(35,0,-100)	7.57	0.31	6,63	7.29	7.09	7.12
							(35, 0,-12.5)	7. 57	0.46	6.66	7.01	6.90	7.36

WAKE RAKE		Sheet No. 6						
Rake Location:	_	Comments	i: <u>. </u>					
Bett Malety ()	TOT-STATIC TUBES							
[WAKE RANK LAYOUT] MANOMETER INCLINE:		MISCELLA			RE READ	ING		
Tube #	VAW HEAD	Static	Total	UP	им	R+	Lefi	
3	(x,y, =) Run1.01 28.50,-10 Pun1.02	215	7 2 5	747	760	23 729	7 00	
4	Pun 1.02	8.15	0.38	7,13	-	- 1	7.00	
5	28.50, -10 PUN 1.03	1	 -	_	_		_	
7	29.5 0 -10 Run 1.04	8.19	0.41		_	_	_	
9	28.5, 0, -10 RUN 1.05	1	0.39				-	
10	28.5,0,-10	0.78	0,31				-	
12			-,-		<u> </u>			
14								
16							-	

WAKE RAKE	Sheet No
Rake Location: None	comments: Total prossure (#20) and static prossure (#19) only measured on sories 2 runs, Yaw head located at x = +28.5" y =0", 7 = -10"
9 9 DIEL 1107 LIST	14
MANOMETER INCLINE:	MISCELLANEOUS PRESSURE READING MANOMETER INCLINE: 30° Yaw Head @ 28.5,0,-10
3	Run \$19 \$20
4	2,0154m+ 7.83 .34
5	201 End 7.85 .33 202 7.83 .34
6 7 8	2.04 sta.t 7.85 .33
9 10	2.04 0.0 7.85 .35
11 12	
13 14	
15 16	

			WAKE I	RAKE			Sheet No	o	8	-			
	Rake L	ocation	· Pita	ts o.s tail	tend	Comments	s: <u> </u>						
	TO COMPANY THE STATE OF THE STA	Bracket	9 9		ĮĆ ė v	ws. 2 me	\$,6,	=0.90					
	MANOME	TER INC	KE RANK LINE:	30°		3,12 -13 -15 4,16			:3	'd °	RE REAL	DING	
	1 2	6,098	4.75				Run	Static 19	71ta 1 20				
	3 4		7.10 7.50				2,11 , Stay	8.41	.98				
							2.11, Finis)	9.45	1.01				
.586	5	,090	5.27 5.00	1.93 2.30	0.133	365 0.390	2.12, START		1.01				
. 617	7		4.76	2.44	. 168	.410		8.41	1.04				<u> </u>
.725	<u>8</u> 9		3.73	3,47	.169	.489	2.12 , Fmish	0.11	7.09		 	 	
. 314	10		2.96	4.24	. 292	.54)		<u> </u>			<u> </u>		
, 851 , 712	11		2.35	4.85	. 334	.578				ļ	Ì		
2',	12	 	1.85	5.90	. 369	,607 ,638		 -			-	 	
, 95:	13 14		1.00	6.20	, 407 , 42 8	.654				}			
. 797	15		0.82	6.3	. 440	.663					1		
1.00	16		0.78	3.42	.443	. 665	ļ				ļ	<u> </u>	<u> </u>
	!												

		WAKE	RAKE			Sheet No. 9							
Rake Loc	ation:	Pito end	ts ali	gned with l		Comments:							
To MANOMETERS	vachet	8 8											
Pitots	at e	nd of	14 ; 1	boom		MANOMETER	MISCELLI INCLINE		PRESSU	RE REAL	DING		
Tube #	<u> य</u>	1.09	1.10	7#	 	Location.		·•	·		·		
1 2 3	0.110*	4.68	5.97 6.29 6.18	8,25							-	-	
4		4.61	6.29	8.28									
6 0), 110 0.22	2179	4.16 3.76	4.94									
8 0	7.34	2.11	3.29 2.72						ļ 	ļ	ļ		
10 0). 59).72	1.40		2,65					 				
11 C	0.84	0.88	1.19	0.95		····							
	.10		0.88	0.89									
15 /	. 35 •47	0.79	0.82	0.87									

Rake L	ocation	WAKE /./5 /./6 :_//7	RAKE - Pitot - Pitots - Pitots	5 0.5"F 3.5"A4 3.5"A4	ind of to	ail 11	Loom and Lean and and and -1.1" off entr	Sheet N #4,16 Ce Comment	o/ ntered s: _	<u> </u>	-		
TO MANONETERS	Bracket	Θ Θ		bots ust be	کرا کی	PI	T-STATIC TUBES						
MANOME	[WA		30°				MANOMETER I	NCLINE		PRESSU	RE REAL	DING	
Tube #	4	1.15	1.16	1,17			Location						
1			6,67	6.80		1						T	
2	 		6.70			1		 	 		 		
3 4		6.80							1	1	l	1	
5	0.10*		2.26										
6	ļ		2.30			1		 	 	 	 	 	
7 8			2.69				}			1	1	}	
9		3.07	2.87	2.20	· · · · · · · · · · · · · · · · · · ·	ţ		1					
10			3.08		ļ	{		ļ		<u> </u>	ļ		<u></u>
11 12		2.46	3.38	2.26			{		1	1	İ		
13		2.31	4.03	2.40		1			 				
14		2.27	4.54	2.45				<u> </u>				ļ	
15 16		2.22	5.27					}	}	}	1		}
			3170			}							

		WAKE 1	RAKE					Sheet No	. <u></u>	·			
Rake L	ocation	· Pitot	s 3.5°,	4F+, 1	#4,16 1.	<u>'</u> "	off center	Comments	: <u>R</u>	un#	5.01		
,	Bracket												
**************************************		Θ Θ	厂量	5062 HAT E)	- STATIC TUBES						
MANOMETERS		-			2,8 -10 -11 -13 -13 -13 -15 -15 -15 -16		TOT TUBES						
	[WA	KE RANK	LAYOUT)		,,,,,			MISCELLA	NEOUS	PRESSU	RE REAL	DING	
MANOME	TER INC	LINE: _	30°		 -		MANOMETER	INCLINE:				_	
/ _Tube #	4	5,000	PPH //.om	15,000	19 500		Location						·
1 2		7.81 7.92	7,85	7.95	7.88								
3 4			8.00										
	ļ			 									
5			3.20										
7 8		3.65	3.60	3.87	3,42								
9		3.80	4,23	4.11	3.28	 			-				
10		3,85	4.89	4.17	2,35					 	 		
12	<u> </u>	4.48	5.15	4.18	2.15					 		 	
14		4.79	5.41	4.50	2.09					 		 	
16		5,40	5.63	4,41	2.42				<u> </u>	<u> </u>			
	ļ	ļ					· 		· · · · · · · · · · · · · · · · · · ·	ļ	ļ		
1	1	1		ł			1	1		1	1	1	!

		WAKE I	RAKE				Sheet No	o. <u>12</u>	2			
Rake L	ocation	: 3.5"	Af+,	#4,16	cento, e	S	Comments	s: <u>R</u>	u 5	,02		
TO MANOMETERS	Bracket [WA]	e e	LAYOUT		= 5	PITOT TUBES	MISCELLA	ANEOUS	PRESSU	RE REAL	DING	
	TER INC		30°	(200)		MANOMETER	INCLINE:					
Tube #	785	5 m	7.96	15 m	7.72	Location	<u> </u>		T	 	,	Τ
1 2	,,,,,	8.10			7.85							
3 4		8.86	8.21	7.95	8.05							
			6 440								<u></u>	
5			1	4.30	2.19							
7				4,41					 	-	 	
8				4.60								<u> </u>
9		1	_	4,70	3.10							
10	 -	6,22		4.70					ļ	 	1	
11 12		6,63	5.77	5,14	3.82 4.86				}	1		
13		7.60	6.24	5.89			_		 	 		_
13		7.7/	6,64	5.37							L	
15		7,80	7,15	6,90	6.40							
16		8.17	7.50	7.10	6.52							
	1	1	l .	i	ı	1			1	i .	1	1

Rake Locat	wake RAKE sion: 3.5" Aft, centered in #. 3.5" Aft, 1.1" Off Cutr	4,16 -5,03 — 5.04	Sheet No. 12 A Comments: 7
TO MANOMETERS	PITOT 1,5	-STATIC TUBES	
	[WAKE RANK LAYOUT]		MISCELLANEOUS PRESSURE READING
MANOMETER	INCLINE:	MANOMETER	INCLINE:

MANOMET	TER INC	LINE: _					MANOMETER I	NCLINE:	 		
Tube #(2003	RUN 5,04	/1, av	2UN 5.0 RP1 15,011	5 1 19,500		Location				
1 2	7.68 7.71	7.70	7,78	7.70	7.71						
3 4	7, 73	7,74	7.81	7.75							
5 6	3,92 4,09	3.72 3.69	3,75	1	3,50 3,63						
7 8	4,40	3,95 4,02	4,36	1 ''	3,70 3.04						
9	4.68	3.79	4.60	 	3,47 3,35	•					
11 12	5,19	3.64	4,94		3,21 2.28						
13 14	6.13	3,90	5.37	3.98	2.21						
15 16	6,89		5.58	4.25	2,60					 	
	-			1, 2							

	WAKE RAKE				Sheet No	»	3			
Rake Location	: 3.5" AF+	, Pith	4,16 &	ntered	Comments	3: <u> </u>	Run_	5,06		
Bracket To Manageres WA	9 6	010: #81 ►1"	MISCELL	NEOUS	PRESSIII	DE DEAN	DING			
MANOMETER INC	ص م	INCLINE								
1 2 3	17.79	7.79	7,76 7,80 2 .01	Location						
4		4,01	2.40							
5 6 7 8	5,46	4,07 4.25 4.58	2.39							
9 10	5.61 5.80 5.87	4.65 4.90 5.11	3.70 3.70 4.30							
12 13 14		5.95 6.41	5.73 6.44							
15 16	7.05	6.88 7.32	6.94							
					+					

		KE RAKE					Sheet N	o. <u>14</u>	<u> </u>			
Rake Lo	ocation: 3. 2. 3.3	5"Ast of 2" off cn	tailbe tr to a	Wm 44,16	-Ru -Ru	~ 1.18 ~ 1.19	Comment	s: <u></u>	= 13.	.5		
	Brachet		here mar to	P17	PITO	TATIC TUBES / T TUBES						
		ANK LAYOUT					MISCELL				DING	
Tube #	En 10	: <u>50</u> in Run 18 1,19				ANOMETER	INCLINE	·				
1 2	7.	78 7.74										
3 4	7.5	80 7.80 20 8.01										
5		68 3.36										
7 8	3,0	60 3.46										
9	3,	38 3,58										
11 12	3, 2	20 3.65										
13 14	3, <i>t</i> 3. ,	8 3.60										
15 16	3, 1, 3, 1	5 3,52										
		=										
							1	 			 	

		WAKE	DAVE					Cheat	No	- ئ			
Rake I	ocation	. Pítot	s align	ed with	leading	<u>;</u>	face	Commer	nts:	9 =	13.5		
		edge	of t	1 ins	,		^						
		#4,	- 0,110)., + .v~	boom	Sur	tace					· · · · · · · · · · · · · · · · · · ·	
_ (Bracket											· · · · · · · · · · · · · · · · · · ·	
					, PI	TOT-	- STATIC TUBE,	s		·			
70		ө ө	丁畫	hor's elot es	ر کر کے اور کر کر کے ا	رك				·			
			#		2,8	PIT	OT TUBES						
MANOMETERS			#		=// =/\/ =/\/								
ž =	一				3,12								
	[WA	KE RANK	LAYOUT					MISCEL	LANEOUS	PRESSU	RE REAL	DING	
W1. NO.									_				
MANOME	TER INC						MANOMETER	INCLIN	E:		·		
	. H	Run	Run 1.21 7.09 7.01										
Tube #		7.10	7.09		T	ŀ	Location		1	 	1	T	Τ
2	 	7,03	7.01		ļ					<u> </u>	ļ		<u> </u>
3 4		6.82	6.93	<u> </u>				.			}	ł	
5		3.19	3.16				·· ·············		 	 	 	 	-
6	 		3.15							 		 	
7		3.23	3.26										
9 10		3.30	3,31										
11		3.48	3.30					-			 	<u> </u>	
12	 	3.31	4.35			-		-	 				
13 14		4.07	3.29										
15 16	0.26	4.40	5.81								 		
	1							1-	 				
<u> </u>	 		ļ		ļ						<u> </u>	<u> </u>	

MANOMETER DAC

									16			
		WAKE F	AKE				Sheet	No.	10	_		
		Pitot	s 3.5 "	aft of	Tailb	00 m						
Rake L	ocation:	#4,16	on &	,			Comme	ents: 7	ropulsi	in Tost	5 6-1	- 79 —
						•	Run	5.07	\$ 5.08			
							11,	no on	lled are	to 12.	400	_
							di	ing m	meli	reade	ás	
. (Bracket							•			•	
						TOT-STATIC TUB	Wa	Ko Palco	5/14 R	1562	+64	
		e e		deet, mot til	.PI 5را کسی	PITOT TUBE	ES V) v	op spin	n iin of	f - See	new	
₂ ⊨			, 丰		= 4)/	space	ing be	اس سا	-lec "	Y 4	
§ - E			Ŧ		2,0	PITOT TUBE	5 15	erosene	S.G. =	0,8		
MANONETER	三手				3,12			distance				
	===		丰		4,16			ت او ۱۹ مرر ته الملك رستها	_	hal To	venic	ما∕
	•						•		, •			
	(WA)	CE RANK	LAYOUT]		_	•		ELLANEOUS				
Note	2: Man	omet ·	r zero	refere	ce is	atmosphe	nic pr	essure.	for the e	ts 10+1	13 راع	
			30	•				•	- · a			
MANOME	TER INCI					MANOMETE	ER INCL	INE:	30			
	l	5.07	RPH	5.08	1							
Tube #	Y	PROP	11.000	15,000	19,500	Location	1					
1		.3.84	3.74	3.68	3,16						Ţ .	
2	ļ	3.74	3,77		3.73							
3 4		3.92	3.97		3,82							
			<u> </u>									
<u></u>	<u> </u>				4.30	 				 		
5	1.325	1.43	2.14		0.38							}
7	1.100	1,30	2,22	1.67	0.38					1	 	
8	0.990	1.39	2.27	1.72	0.53							
9	6870	1.47	2.26	1.79	0.72							
10	0.745	1.59	2,49		0.88	 				+	ļ	
11	0.622	1.77 2.02	2.61	1.98	1.10			İ				
12	0.360	2.32	2.75	2,22	1.44					 	 	
13 14	0.255	2.60	2.87	2.33	1.80					1		
15	0.115	2.77	2.80	2.48	2,22						}	
16	0	2.83	3,02	2,68	2,48	ļ 				 	 	
				1								
<u> </u>	 		 	 	 				 	 		
- 1	}	1	1	[1	1 1	- 1	ļ	1		l	}

	ocation Bracket	WAKE ! PI to	ts 3,5	"Afot of		-	STATIC TUBES	Sheet No	: [2	un 5.1	o Clipp	-1-7°	9 (3'P — — —
TO MANONETERS	[WA	KE RANK			= 5		OT TUBES	MISCELLA	NEOUS	PRESSU	RE REAL	DING W	
MANOME*	TER INC	LINE:	30 15,00		 24,400		MANOMETER Location	INCLINE:					
1		.3.75	3,70	3,78	3,87	٦	DOCUCION					T	<u> </u>
2		3.78 3.82	3.71		3,87	╽┝		-{	<u> </u>	 	 	 -	
3		4,14	3.85	•	4,25							 	
5			1.66	0.69						 		 	
6		7.20	1.65	0.57		-				 		ļ	
7 8		ì	1.69	0.59									
9			1.85	0.84									
10		2,56	1.96	1.22	0.12	-				<u> </u>	 		
11 12		2.60	2,20	1.42	0.54								
13		2.75	7.57	1.46	1.28								
14		2.99	2 2	2,26	2,32								
16		3.33	2,70	2.53	2,47	-				 	· ·		<u> </u>
										}			

Rake I	ocation	wake:	rake in Shee	# H		-			Sheet Commen Run	ts:				-1-79 Yelland	
To manonettes	Bracket [WA	e e	LAYOUT	Sees vot 1			r-STATIC:	IBES .	MISCEL						
,	+ Run	2,15	31	· Rui	 5,13 /8,500		MANOME	> •	INCLIN	E:					
1 2	3.74	3.77	3,18	3,70	3.75		3.74 3.75	3,72							T
3 4	3.81	3.78 3.85	3,80	3,75	3.84		3.79 4.01	3,76							
5	1.80		1	0.28	0.04		1.63	0.8						1	
6	1.83	0.79	0.04	0.28	0.06		1.70	1.00		-	\dashv			 	+
7	2.05	109	0.36	0.55	0.32		1.95	1.16	ı			1			
9	2.12	1,25	0.63	0.73	0,50		2.04	1.28	1		\top				1
10	2,24	1.48	0.88	0.88	0.65		2.18	1.4		_	_ _				
11	2,36	1.72	1.19	1.18	0.96		2.33	1.65				į			
12	2,51	2.04	1.45	1.46	1,23		2.46	1.88		+	+			 	+-
13 14	2,73	2,22	1.86	1.85	1.82		2.68	7.15				}			
15	2.87	2.42	2.25	2.20	2,20		2.82	2.36		1					1
16	3,22	2,63	2,50	2.24	2.44		3.17	2.54						1	

		WAKE	RAKE				s	heet No	o. <u>X</u>	19			
Rake L	ocation	:_A	in S	Let i	7 	-	c -	comments	5"0xc	im ς,	14	2	
							_	G - B	lade	l Pn	• • • ·		
	Bracket												
		9 9	T 🖠	केवर ग्रन्थ हा	ارد اکستان	را	-STATIC TUBES - -						
MANOMETERS	를				2,6 -9 -11 3,12	PIT	OT TUBES -						
1 =	丰		_		1/5 4,16								
	(WA	ke rank	LAYOUT	i			<u>M</u>	ISCELL	NEOUS	PRESSU	RE READ	ING	
MANOME	TER INC	LINE: _	37)			MANOMETER I	NCLINE:					
Tube #		5.14 15.00	17 300	9			Location						
1 2	3,72	3.75 3.74	3.89				100001011						
3 4	3.83	3,76 3,84	3.9Z 3.94										
7	7.02	2184	7,74					 	<u> </u>				
5	1.94	0.78	0.0					 					
7	1.14	092	0.12										
9	2,27	1.35	0.43				·····	 					
10	2,53	1.80	1,27							 			
12 13	2.87 3.08	2.07	1.77			-							
14	3,25	2.48	2,44			-							
16	3,78	2.98	2.67			-							
}	j	1		ĺ	l l							[

									20			
		WAKE	RAKE	_	,		Sheet 1	10	9			
Rake I	Location	:As	, unsh	it ret H		-	Comment	:s: <u>(</u>	'un 5,	16		
								for rel				
> (Bracket											
					, PI	TOT STATIC TUE	ies					
, È	%	9	丁量	h:6: 121-1	۶را کست ۱٫۶ کستا	TOT-STATIC TUE	·		·			
TO NAVONETES			Ī		= 7 = 7,6 = 7,0	PITOT TUBE	ss					
"" <u> </u>			=								·	
3 =	一		=		=13 4,16							
	[WA	KE RANK	LAYOUT]	1			MISCELI	ANEOUS	PRESSU	RE READ	ING	
	•			•								
			5 .5	5								
MANOME	ETER INC	LINE: _	50			MANOMET	ER INCLINE	:	 			
Tube #	11,50	15,000	19,500	24,400		Location	1		1		1	
i 2	5.72	5,72	5,75 5,70	5,79			ł					
3	5,78	5,77	5.84	6,12					1			
4_	5,84	6.08	6,25	6,89	<u></u>			+	 	 -		
<u> </u>									 	<u> </u>	ļ	
5			3.28				1					<u> </u>
7	3,57	3.12	2,40	1.35								
9		3,14	2,34	1.35				+	 		 	 -
10	3.91	3,39	2,76	1.88								
11 12	4.11	3,58	3.00	2.20						İ		
13	4,35	4.10	3,62	3,21				 	 			ļ
14	4.47	4,32	3.97	3.75 4.55				 	ļ			
15 16	4.62	4.65	4.85									
	 	<u></u>				· 		 	 	 -		
1	1	l			l ·			1	†	į ·	l	l

Rake Location: Sa	re or Sheet It	ITOT-STATIC TUBE	Sheet No	21 15 Run 5	. 31.		
TO MANOMETER	2,5 2,5 2,0 2,0 3,1	PITOT TUBES	•				<u>—</u>
[WAKE RANK	LAYOUT]	4	MISCELLANEO	US PRESSUI	RE READ	ING	
MANOMETER INCLINE:	<u> </u>	MANOMETER	INCLINE:				
Tube # 11,00 15,00	(9,500	Location					
1 5.70 5.71	5.78						
3 5.71 5.72	5.80	1					
4 5,79 5.98	6.56	1					
730 771	221	┧					
5 3,38 3,31 6 3,49 3, 2 7	3,31						
7 3.62 3.30	2,55						
8 3,71 3,25 9 3,82 3,36	2,55	+	- 		 		
10 3.96 3,58	3.05]					
11 4.14 3.72	3.24 3,44				j		
12 4,39 3.91 13 4,59 4.16	3.75	1	+		 		
14 4.84 4.46	4.19						
15 5.09 4.88 16 5.30 5.50	5.20 6.35			ļ	! 		
1 3,75 3,75		1			 		
1 1 1	[[l i			<u> </u>	- 1	

			WAKE 1		.	. • .			Sheet No). <u>1</u>			20.4	/- 0
	Rake L	ocation		4,16 0			•		Comments	: <u>K</u>	un 3.1	9 \$ 5	20 a ro	
				From ta:										
			total	pressu-	e tube	•			Pitot Kt	tic #	<u>1,5 57</u>	mighte	ned	
		Bracket							Since !	shoot	18 m	ومعاملا ب	- *	
	< (DYACHET							16 to 5	= 11	32"	← Dev	sle Che	ck This
						DI.	TAT-	STATIC TUBES	Others	pacino	s san	eass	heet, 0	·
			ө ө	1	Dats Hel Fi)	/ / / / / / / / / / / / / / / / / / /						
	; =			' 王		= \$ \ \	//		Asti	+	CYBUTE	2,00"	12/1	
;	MANONETTEN	=		=		= %	PITO	T TUBES	Atmos	· henic	refer	ence 2	2-00"	
				=		3,12			abore	scale	read .	in 30	~•	
	3 =	===		=		3,12 = 13 = 15 4,16			i.e. Atn	us elera	rièθ=		7	
										-24	•			
		[WA]	KE RANK	LAYOUT]					MISCELLA	NEOUS	PRESSU	RE READ	ING	
				3a°										
		TER INC					1	MANOMETER	INCLINE:					
		+Run	5.19 ->	1 Run 5.20	1									
			15,000		••			•						
-		5,55	5,50	5,55			Γ	Location			1	Τ	1	
Į	1 2	5.59	5,53	5.60							i	l		
		5.64	2,55	5.67			Γ				}			
	4	5.64	5.69	5.75			. -					ļ	ļ	
									}		1	ļ		1
	5	3,28	3,25	3,23				<u></u>			t		 	
	6	3,42	3.18	3.28			L				<u> </u>	<u></u>	<u> </u>	<u> </u>
	7	3,52		3,34							İ			
	8	3,60		3.42			. -					ļ	 	
Ì	9 10	3.69 3.81	3,75 3,34	3.49										
		3,94	3,51	3.71			. -		1		 	 	 	
	11 12	4,10	3.74	3.83			}		_					ł
	13	4.25		3.98			Γ							
	14	4157	4.40	4.14	L		L		<u> </u>		<u> </u>	ļ		
	15	4.77		4,56								1		
١	16	3.46	5.69	4.99			·				 	 		

E

											23			
	•	•	WAKE	RAKE					Sheet N	··		•		•
							-		Comment	s: 🖳	<u> </u>		·	
	•					. •			24,400	PPH R	ef is l	,27%A	tmosph	n'c
		Bracket												
,	\searrow													
			9 9	T-2-	Dec: HOLE	<u> </u>	τοτ 	STATIC TUBES						
;	7 E			」		=	ر • • • •							
	TO MANONETENS					3,12		T TUBES						
		事		事		= 1/2 4,16								
		(r.rs.			-									
		AWJ	KE RANK	LAYOUT	1				MISCELL	ANEOUS	PRESSU	RE REAL	DING	
				"										
	MANOME	TER INC	LINE: _	<u>\$</u>		~	N	ANOMETER	INCLINE	:	 	 -		
STU	MES	11,100	15,390	Reset 28 um	Ret Res	es es								
-	Tube #	1500	1 5 44	1 2 2 4		,		ocation		,	,	,	· · · · · · · · · · · · · · · · · · ·	,
	1 2	5.09	5.00	5.98	7,39								1	
	3	5,20	5.14	6.29	7,70 7,75									
1	4	3.50	3.70	6,40	7, 73		┞		 	 	 	 	 	
		1.17	1.45	2.09	3,40		-		+	-				
İ	5 6	1,40	1.10	1.65	2.46									
	7 8	1.58	0.80	0.24	0.25						1			
- 1	9	1.90	0.99	0.32	€.056				1		†		 	<u> </u>
	10	2.10	1.28	1.21	1.60		-		+	ļ		ļ		<u> </u>
	11 12	2,54	1.98	1.79	2,25			·			<u> </u>			
Į	13 14	2,80 3.28	2.56 3.09	2.94 3.68	3,78									
	15	3,89	3.60	3.90	4,88		-							
٠.	16	4.10	4.22	4,56	\$.70		-		 	ļ	}	ļ —	 	
		ĺ				[]					1			

									2	4.			
		WAKE	RAKE					Sheet N	0.				
		WAKE		2					·				
	ocation	۸.		_					_				
Rake I	o cation	::						Comment	s: (.		·		
								Thrus	t satu	vates a	1 + n+	×24,	m
								1		· ·		/	
									- ' '	<u> </u>			
	Bracket								· · · · · ·				
< (
	_												
						TOT-:	STATIC TUBES						
JE	\Longrightarrow	θ θ	J	hee: 2/9/ E1		ノノ							
70,	==		#		2,8	<i></i>	T TUBES						 .
Manonerens			王		=;; ->	PIFO	I TUBES						
					3,12								
	二		₹		= 13 4,16								
	L_				-,								
	[WA]	KE RANK	LAYOUT	ı				MISCELL	ANEOUS	PRESSU	RE REAL	DING	
			*										
MANOME	TER INC	T.TNE -	ુર્			N	ANOMETER	TNCLTNE	•				
		_				•	2.MOIIII ILIK	TWCDING	•				
Mm.	~ // 744	15200	723,4	100									
)1/2013E	→ // ₃ 301	(3)320	24,000)									
Tube #	1	1				ı r	ocation						
	4.31							-	1	1	1	İ	1
2	4.91	4.80	4,39	<u> </u>		-				 	<u> </u>	ļ	<u> </u>
3		4.62							1	[1	1	1
4	5.49	5.00	4,60			-			ļ	├	ļ	 	
	Į.	ł	ĺ						1	i	1		
 	1000-	1 30	1 22		 				 	 	ļ	 	
5		0.29				}			1	1	1	1	1
6		0.35		 		├			 	}		 	<u> </u>
7		0.54			ļ					l	1	[1
8		1.63			ļ	_			 		1	ļ	
9		2,42									1	Ì	l
10	2,70	2,50			 	_			 			<u> </u>	
11	2.84	2.66	1,52		i			1			į		
12	3.09	2,82	1.55			_				1			<u> </u>
13	3.37	3.01	1.84	1				1					
14	3.95	3.38	2,38						<u> </u>				
15	4.91	3,88	2,99								1		
16	5,42	4.41	3.70	L					L	<u> </u>			
							-						l
1	1	1]	1			_	_}]	}		1	
	T							T		1			
	1	1		1					1]	}	ĺ	

Rake L	ocation	<u>wake</u> !	RAKE S On t	21 5		_					5.2		4179	
	Bracket (WA)	e e	LAYOUT		= 5 1,5) .PIT	STATIC TUBE;		CELLA	NEOUS	PRESSUI	RE READ	DING	
		2.3 10	30° FR 12.400 20,000 4.39	strin.	vo 'e	1	MANOMETER Location	INC	LINE:					•
1 2 3 4	4.39	4,87	6,50 6,50 6,57					-						
5 6 7 8	1.02	4.19 4.24 4.42 4.70	0.22 0.30 0.51 0.90	:										
9 10 11 12	1.65	0.99	1,38 1,90 2.60 3,34 3,91											
13 14 15 16	3,25 3,72 4,20	3.38 3.80 4,20	4,95 5.18 8,51											
								+					-	

										,	26			
			WAKE I	RAKE				Sh	neet No	»	7			
	Rake L	ocation	A	2: 5 on t	3 6			Cc	omments	: <u>f</u>	un 5	,24		
,	TO MANONETERS	Bracket (WAI	e e			P13 1,5 6 1 7 2,8 9 2,8 13 3,12	PITOT TUE	BES	SCELL	ANEOUS	PRESSUI	re read	DING	
j •1	Tube #	11,000	LINE:	: 12,400 18,400			MANOME Locati		ICLINE:	·				
	1	4.91	2,32	6.80										
1	3		5,50 3,55									<u> </u>	<u> </u>	
	4	5.49	5.69	7.18	7,18									
	5	1,50	0.54	0.30		<u> </u>	<u></u>						 	
	6	1.62	0.61	0.46										<u> </u>
	7 8	2.01	1.21	0.74	ļ									
	9		1,40		 	 							 	
	10	2.61	2.04	2,59										
	11	2.98 3.22	2,50 2.99	3.3/								İ		
l	12 13	3.57	3.45	4,00					 -					
	13	3.95	3.96	5.22										
	15 16	4.41	4,42	5.76								\ \		
:	_ 	,,,,,,	7.01	2107						,	 			
					1]	1				j			

		WAKE I	RAKE				Sheet N		7				
Rake I	ocation	<u>A</u>	5041	23		-		Comment:			25		
70	Bracket	Θ Θ		her: not ki	P1 1,5	тот)	- STATIC TUBES	Manus arbi	nater traily	refer m 20	erco sh	if to d	
MANOMETERS	[WAI	KE RANK	LAYOUT		3,12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	PIT	OT TUBES	MISCELL	ANEOUS	PRESSUI	RE REAL	DING	
	TER INC						MANOMETER	INCLINE	:				
Set by Tube #	1/M	15,000	18,400	22,000 4,70	25 NO)]	Location		<u> </u>				Γ
2	4,72	4.60	4.50	4,77	5.78		·	ļ	ļ	<u> </u>		 	
3 4	5.25	4.78	5.19	6,47	8,17			ļ	ļ				
5	0.76	0.57	0.59	0.88	1.90								
7	2.22	1,39	0.65	0.30	0.50			 					
8	2.22	1.49	1.70	0.20	0.24		<u> </u>	 -	<u> </u>			<u> </u>	
9 10		1.77		0.25	0.42	j							
11	2.69		1.18	0.68	0.80								
12	3.11	2,40	1.90	1.89	2,50		<u></u>	 				<u> </u>	
14	3.47	3,00	2.40		2,96			 -				 	
15 16	3,80 4,20	3,59	3.29 5.00	3.91 6.60	8,55						<u> </u>		
1													
								 					

		WAKE F		3				Sheet No	s. <u>2</u>				
Rake Loc	cation:	As	on M	6		-		Comment	3: <u>lu</u>	~ 5+2	<u>. ब</u> ८	,27	
-								Grey					
₩.	i het							Manone	Her Ro	of rese	+		
	>	e e		Dees 1101 611		707 	- STATIC TUBES						_
70 %				MEX WALES		درو	OT TUBES						_
MANOMETER							or rubes						<u></u>
i 🚞	丰				-13 -13 -13 -13 -13 -13 -13 -13 -13 -13								
	[WAK	E RANK	LAYOUT]					MISCELL	ANEOUS	PRESSUI	RE READ	ING	
MANOMETE	er incl	INE:	30°				MANOMETER	INCLINE	:	30			
- bystab	oe	Ru	n 5.20	٠,	Runs	72'	MANOMETER 7 Accation		Rus	5.27	N	J. T.	J
J Tube #	//, 000	15,00	18,400	24,150	L O PE	P	focation	11,000	15,M	18,400	24,150	.ku.	
1 4	5,08	4.98	4.72	5.19	5.25	Ð		1					
1 2 1	C, 3C	5.17	4.91	5.28 3.35 3.55	3.41	ļ.							
	,,,,,	<u> </u>	9.33	772	0.55								
5	2,00	1.84	5.26	0.30	1.29	>		1		-			
	2.76	2.06	1.45	0.32	1.43	ľ				 			-
8 2	2,91 3.07	2.27 2.58	1.60	0.80	1.57					 			
10	3,34	2.83	2.03	1.39	1.90	ļ							
11 4	3.41 3.30	3,00 3.10	2,31	1,70	2.10								
13	3.33	3.19 3.17	2.80	2.72 3,44	2.60	*							
15	3.29	3.38 3.89	3.41	4.15	3.54								
10	7.00	J. 07	J, 5 T	7/5/	7.//			 		 			
		<u>. </u>											

	WA	E RAKE			s	heet No	». <u>+</u>	29 6 A	- (- 14- 78	79 1°F
, Rake Lo	ocation:				c -	omments	: I	unn	il o		
	Bracket				ot-static tubes		4 en	Marce	e Corre		
TO MANONETERS		0	hier wat i		l /	3=					
ettes.	(WAKE RA	ANK LAYOUT		-/3 -/5 4,16	<u>M</u>	ISCELLA	NEOUS	PRESSUI	re read	ING	
MANOME	TER INCLINE:				MANOMETER I			30°			
Tube #					Location			==			
1 2					39,0,0		I				
3					35,0,2,5"	8.05	3, 22				
					35,0,5"	8.08	3.29				
5 6					35,0,7.5"	8.10	3.59				
7 8					35,0,10"	8.10	3,82				
9 10					35,0,-2.5"	8.09	3.55				
11 12					35,0,-5.0"	8.10	3.80				
13 14					35,0,-7,5"	8.09	4.07				
15 16					35,0,-10"	8.06	3.05				
					35,0,-10" 35,0,-12,5"	8.63	3,82				

			WAKE 1	RAKE				Sheet No		30 6 B	-	6-14	-79
												7	2 ° C
	Rake L	ocation	:					Comment	3:	San	· As	16	A= 29
								Except	it Lo	marty	Bina	,1 Sur	1/04
	_	Bracket											
•	\searrow												
							DT-STATIC TUBES						
7	, E		θ θ	」	Decs. HAT EI	-6 14							
	TO MANOMETERS	==		重		= ?, = ?,8 = ?,8	PITOT TUBES						·
						3,12							
	3 ==	丰		=		3,12 13 14 4,16							
		(san	VE DANV	T N VOLUM				MICORII	MEOUC	DDECCII	DE DESE	THE	
		[MAI	KE RANK	LAIOUI			() /	MISCELLI W +	INECUS	ressu.	KE KEAL	JING	
							•						
	MANOME	TER INC	LINE: _			_	MANOMETER	INCLINE		30			
								Ps	P _				
ı	Tube #	<u> </u>	T	Γ			Location "	Τ	- ' ' -		 	T	Γ
	2						28,0,0	7,94	3.47		<u> </u>	<u> </u>	
İ	3 4						23.5,0,0	8,00	3,43				
							17.0", 0,0	8.20	3,45	}			
	5 6						11.5",0,0	8.10	3.40				
	7						77.5			 			
	8		<u> </u>	<u> </u>				-		<u> </u>	<u> </u>		
	9 10]	
	11												
	12											ļ	
	13 14		<u> </u>	<u> </u>		[]							
	15 16			,									
	<u></u>												
		:						<u> </u>					

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
AD-A20	0789
AEMT WIND TUNNEL TEST DATA FROM UNIVERSITY OF WASHINGTON VENTURI	9 Data Report .
I E I I I I I I I I I I I I I I I I I I	6 PERFORMING ORG. REPORT NUMBER APL-UW - 8014
7 AUTHORES	8 CONTRACT OF GRAWT NUMBER(s)
NO R. M. Hubbard	NØ0024-78-C-6018
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Applied Physics Laboratory University of Washington	1. 1242
1013 NE 40th. Seattle, WA 98105	1. 1277
11 CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Sea Systems Command Department of the Navy	May 1981
Washington, D.C. 20362	138
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)	<u> </u>
Distribution unlimited	
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
18 SUPPLEMENTARY NOTES	
16 SUPPLEMENTARY NOTES	
19 KEY WORDS (Continue on reverse aide if necessary and identify by block number,)
hydrodynamics wind tunnel tests	static stability
laminar flow tests hull & fin lift drag characte	ristics tests houndary layer
powered model tests flow separation propeller tests flow visualization	measurements
I	
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)	
A series of wind tunnel tests was conducted 14 June 1979 at the University of Washington's	3-ft Venturi tunnel to
gather data relevant to the solution of a propu	ulsion problem and to
support a fin redesign effort for the Advanced	Expendable Mobile Target
(AEMT). This report outlines the test setups,	describes the types of
tests performed, and presents selected results.	In addition, all of the
raw data gathered during the tests are contained	cu in an appendix.
	A A

END

DTIC