

THIS PEPCHT HAS BEEK DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Report No. FAA-RD-78-85

AN ANALYSIS OF RADIO NAVIGATION SENSOR ACCURACIES ASSOCIATED WITH AREA NAVIGATION (RNAV)

AD No.

Thomas V. Logue

AUGUST 1978

FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page 3. Recipient's Catalog No 2. Government Accession No. FAA-RD Title and Subtitle Report Date August 1978 AN ANALYSIS OF RADIO NAVIGATION SENSOR ACCURACIES ASSOCIATED WITH AREA NAVIGATION (RNAV). 8. Performing Organization Report No. re(e) Thomas V./Logue FAA-NA-77-45 Performing Organization Name and Address 10. Work Unit No. (TRAIS) Federal Aviation Administration National Aviation Facilities Experimental Center 11. Contract or Grant No. 044-326-500 Atlantic City, New Jersey 08405 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address U.S. Department of Transportation Final rept. Federal Aviation Administration 2 1974-September 1976 Systems Research and Development Services 14. Sponsoring Agency Code Washington, D. C. 20590 15. Supplementary Notes 16. Abstract Flight test data gathered during a series of RNAV flight tests, at the National Aviation Facilities Experimental Center (NAFEC) in Atlantic City, New Jersey, are presented. The report concentrates on the radio navigation sensor errors and the resulting errors in position determination that are inherent in area navigation (RNAV) operation in the terminal area. Statistical data, as well as distributions of the errors, are presented. Also included is a comparison of the Advisory Circular 90-45A tangent point table calculated from regression equations. One standard deviation of 1.4 nautical miles for very high frequency omnidirectional radio range (VOR) and 0.11 nautical mile for distance measuring equipment (DME) were computed from the flight test data. These statistics represent combined ground and airborne sensor errors. 17. Key Words 18. Distribution Statement This document is available to the U.S. RNAV public through the National Technical Area Navigation VOR Error Information Service, Springfield, Virginia DME Error 22151 21. No. of Pages 19. Security Classif. (of this report) 20. Security Classif. (of this page) Unclassified Unclassified 83 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 240 55

METRIC CONVERSION FACTORS

	leday?			= T			square inches in ² square yards yd ² aquare miles mi ² acres		ounces 02 pounds 16 short tons		fluid ounces fl oz pints pt		cubic yards yd ³		Fahrenheit	5	200
	Multiply by To Find			3.3 teet	0.6 miles	AREA	0.16 square 1.2 square 0.4 square 2.5 square	MASS (weight)		VOLUME		9 9		TEMBERATIIRE (evact)		add 32) te	98.6
	When You Know		centimeters	meters	kilometers		square centimeters square meters square ki dometers hectares (10,000 m²)	-	grams kilograms tonnes (1000 kg)		milliliters liters	liters	cubic meters	TERES	Selection of the select	temperature	or 32
	Symbol		5	E E	Ę		~E~E~B		o ¥ -		Ē -		^m e ^m e		٥		.0'
22	z 1 z	OZ	61	1,1,		91							9			11111	E
1.1.	z tz		111	1.1.	1.1.1.1	11,1,1				11111		 - - -				1,1,1,	.1.1.1. *** *** ***
'I'	z tz	oz 	.l.l.	w5		11-1-1	\$~£~£~£ æ		' ' ' ' '	"" "	EE	3 E -		 ' ' ' -~e^	È	, i i i i i	T
		02	.1.1.			1111					millitiers ml	milliliters all E	liters !	 ' ' ' -~e^	cubic meters m	Celsius	temperature 1
	Find Symbol	LENGTH 8	[61	w5	9 meters n kilometers km	1111	\$~£~£~£ \$		grams g kilograms kg tonnes t	VOLUME	5 militiers ml	24	liters :	Cubic meters m ³	cubic meters m	Celsius	
	To Find Symbol	11111	11.1.	ss .2.5 centimeters cm	9 meters n kilometers km	AREA	square centimeters cm² o square maters m² square meters m² square meters m² square kilometers km² ha	111111111111111111111111111111111111111	grams g kilograms kg tonnes t	· P ·		30	0.47 liters :	3.8 liters 1	(exact) cubic meters m²	5/9 (after Celsius	

PREFACE

The author would like to express appreciation to Mr. John Gallager for his programming expertise, which greatly contributed to this report. Also, appreciation is expressed to Mr. Robert Pursel for advice, guidance, and consultation in the writing of this report.

TABLE OF CONTENTS

			Page
INTRO	DUCTION		1
	Purpose Background		1
DISCI	USSION		1
	General Description of Equipment Equipment Calibrations Data Collection Flight Patterns Data Processing Data Analysis Methodology		1 2 2 4 4 4 6
TEST	RESULTS		6
	Air Transport Test I Air Transport Test II Summation of Air Transport Type Sensor General Aviation Sensor Data Combined Air Transport and General Av VOR/DME Navigation Solution Errors an Air Transport Test I, VOR/DME Navigat Air Transport Test II, VOR/DME Navigat Combined Air Transport VOR/DME Navigat General Aviation VOR/DME Navigation S Combined VOR/DME Navigation Solution Air Transport and General Aviation Comparison of Advisory Circular 90-45 and Tangent Point Calculated from R DME/DME Navigation Solution Errors	riation Sensor Errors and Distributions alon Solution Errors ation Solution Errors ation Solution colution Errors Error Data for Both Type Sensors A Tangent Point Table	6 7 11 11 13 13 18 24 28 35 39
SUMMA	ARY OF TEST RESULTS		43
CONCI	USIONS		45

LIST OF ILLUSTRATIONS

Figure		Page
1	Data Processing Procedures	46
2	DME Error Distribution for Air Transport Quality SensorsTest I	47
3	VOR Error Distribution for Air Transport Quality SensorsTest I	47
4	VOR Error Distribution for Air Transport Quality SensorsTest II	48
5	DME Error Distribution for Air Transport Quality SensorsTest II	48
6	DME Error Distribution for Combined Air Transport Quality Sensor Data	49
7	VOR Error Distribution for Combined Air Transport Quality Sensor Data	49
8	VOR Error Distribution for General Aviation Quality Sensors	50
9	DME Error Distribution For General Aviation Quality Sensors	50
10	VOR Error Distribution for Combined Air Transport and General Aviation Quality Sensors	51
11 🚾	DME Error Distribution for Combined Air Transport and General Aviation Quality Sensors	51
12	Navigation Solutions Flow Diagram	52
13	VOR/DME Navigation Solution Crosstrack Error DistributionAir Transport Quality SensorsTest I	52
14	VOR/DME Navigation Solution Along-Track Error DistributionAir Transport Quality SensorsTest I	53
15	Illustration of Tangent Point Distance and Along-Track Distance	53
16	Two-Sigma Crosstrack Error as Function of Along-Track	54

LIST OF ILLUSTRATIONS (Continued)

Figur	e		Page
17		Two-Sigma Along-Track Error as Function of Tangent Point DistanceAir Transport Quality SensorsTest I	55
18		VOR/DME Navigation Solution Crosstrack Error DistributionAir Transport Quality SensorsTest II	56
19		VOR/DME Navigation Solution Along-Track Error DistributionAir Transport Quality SensorsTest II	56
20		Two-Sigma Crosstrack Error as Function of Along-Track DistanceAir Transport Quality SensorsTest II	57
21		Two-Sigma Along-Track Error as Function of Tangent Point DistanceAir Transport Quality SensorsTest II	58
22		VOR/DME Navigation Solution Crosstrack Error Distribution Combined Air Transport Quality Sensors	59
23		VOR/DME Navigation Solution Along-Track Error Distribution Combined Air Transport Quality Sensors	59
24		Two-Sigma Crosstrack Error as Function of Along-Track DistanceCombined Air Transport Quality Sensors	60
25		Two-Sigma Along-Track Error as Function of Tangent Point DistanceCombined Air Transport Quality Sensors	61
26		VOR/DME Navigation Solution Crosstrack Error Distribution General Aviation Quality Sensors	62
27		VOR/DME Navigation Solution Along-Track Error Distribution General Aviation Quality Sensors	62
28		Two-Sigma Crosstrack Error as Function of Along-Track DistanceGeneral Aviation Quality Sensors	63
29		Two-Sigma Along-Track Error as Function of Tangent Point DistanceGeneral Aviation Quality Sensors	64
30		VOR/DME Navigation Solution Crosstrack Error DistributionCombined Air Transport and General Aviation Quality Sensors	65
31		VOR/DME Navigation Solution Along-Track Error DistributionCombined Air Transport and General Aviation Quality Sensors	66

LIST OF LLLUSTRATIONS (Continued)

Figure		Page
32	Two-Sigma Crosstrack Error as Function of Along-Track DistanceCombined Air Transport and General Aviation Quality Sensors	66
33	Two-Sigma Along-Track Error as Function of Tangent Point DistanceCombined Air Transport and General Aviation Quality Sensors	67
34	DME/DME Navigation Solution Crosstrack Error Distribution	68
35	DME/DME Navigation Solution Along-Track Error Distribution	68
36	DME/DME Navigation Solution Geometry	69
37	DME/DME Navigation Solution 2-Sigma Crosstrack Errors as a Function of Included Angle	70
38	DME/DME Navigation Solution 2-Sigma Along-Track Errors as a Function of Included Angle	70

SOLATERNALE TO CARREST WE TO REAL ADDITIONAL PROPERTY OF A PROPERTY CONTRACTOR OF A PROPERTY CON

LIST OF TABLES

Table		Page
1	Air Transport Quality Sensor Calibration Data	3
2	General Aviation Quality Sensor Calibration Data	3
3	VOR/DME Stations Used in Sensor Error Data Base	5
4	DME Error StatisticsTest I	8
5	VOR Error StatisticsTest I	8
6	Pooled Total VOR and DME Error StatisticsTest I	9
7	Type and Number of Patterns Flown in Test II	9
8	DME Error StatisticsTest II	10
9	VOR Error StatisticsTest II	10
10	Pooled Total DME and VOR Error StatisticsTest II	10
11	Summation of Pooled VOR and DME Error Statistics for Air Transport Quality Sensors	11
12	VOR Error StatisticsGeneral Aviation Quality Sensors	12
13	DME Error StatisticsGeneral Aviation Quality Sensors	12
14	Pooled Total VOR and DME Error StatisticsGeneral Aviation Quality Sensors	12
15	Pooled Total VOR and DME Error Statistics for Air Transport and General Aviation Quality Sensors	13
16	VOR/DME Navigation Solution Error StatisticsTest I	13
17	Tangent Point Table of Measured 2-Sigma VOR/DME Navigation Solution ErrorsTest I	15
18	Results of Regression Analysis of VOR/DME Navigation Solution Crosstrack Errors, Along-Track Distance, and Tangent Point DistanceTest I	16
19	Correlation Matrix from VOR/DME Navigation Solution	16

LIST OF TABLE (Continued)

Tab1	e		Page
20		Results of Regression Analysis of VOR/DME Navigation Solution Along-Track Errors, Along-Track Distance, and Tangent Point DistanceTest I	17
21		Correlation Matrix from VOR/DME Navigation Solution Along-Track Error RegressionTest I	17
22		Tangent Point Table of 2-Sigma VOR/DME Navigation Solution Errors Generated from Regression EquationsTest I	19
23		Tangent Point Table of 2-Sigma VOR/DME Navigation Solution Errors Using Advisory Circular 90-45A 2-Sigma Values for VOR and DME Errors	20
24		VOR/DME Navigation Solution Error StatisticsTest II	21
25		Tangent Point Table of Measured 2-Sigma VOR/DME Navigation Solution ErrorsTest II	21
26		Results of Regression Analysis of VOR/DME Navigation Solution Crosstrack Errors, Along-Track Distance, and Tangent Point DistanceTest II	22
27		Correlation Matrix from VOR/DME Navigation Solution Crosstrack Error RegressionTest II	22
28		Results of Regression Analysis of VOR/DME Navigation Solution Along-Track Errors, Along-Track Distance, and Tangent Point DistanceTest II	23
29		Correlation Matrix from VOR/DME Navigation Solution Along-Track Error RegressionTest II	23
30		Tangent Point Table of 2-Sigma VOR/DME Navigation Solution Errors Generated from Regression EquationsTest II	25
31		VOR/DME Navigation Solution Error StatisticsCombined Air Transport Quality Sensor Data	24
32		Tangent Point Table of Measured 2-Sigma VOR/DME Navigation Solution ErrorsCombined Air Transport Quality Sensor Data	26

LIST OF TABLES (Continued)

Table		Page
33	Results of Regression Analysis of VOR/DME Navigation Solution Crosstrack Errors, Along-Track Distance, and Tangent Point DistanceCombined Air Transport Quality Sensor Data	27
34	Correlation Matrix from VOR/DME Navigation Solution Crosstrack Error Regression—Combined Air Transport Quality Sensor Data	27
35	Results of Regression Analysis of VOR/DME Navigation Solution Along-Track Errors, Along-Track Distance, and Tangent Point DistanceCombined Air Transport Quality Sensor Data	29
36	Correlation Matrix from VOR/DME Navigation Solution Along-Track Error RegressionCombined Air Transport Quality Sensor Data	29
37	Tangent Point Table of 2-Sigma VOR/DME Navigation Solution Errors Generated from Regression EquationsCombined Air Transport Quality Sensor Data	30
38	VOR/DME Navigation Solution Error StatisticsGeneral Aviation Quality Sensor Data	31
39	Tangent Point Table of Measured 2-Sigma VOR/DME Navigation Solution ErrorsGeneral Aviation Quality Sensor Data	31
40	Results of Regression Analysis of VOR/DME Naviation Solution Crosstrack Errors, Along-Track Distance, and Tangent Point DistanceGeneral Aviation Quality Sensor Data	32
41	Correlation Matrix from VOR/DME Navigation Solution Crosstrack Error RegressionGeneral Aviation Quality Sensor Data	32
42	Results of Regression Analysis of VOR/DME Navigation Solution Along-Track Errors, Along-Track Distance, and Tangent Point DistanceGeneral Aviation Quality Sensor Data	33

LIST OF TABLES (Continued)

Table	F 2.50		Page
43		Correlation Matrix from VOR/DME Navigation Solution Along-Track Error RegressionGeneral Aviation Quality Sensor Data	33
44		Tangent Point Table of 2-Sigma VOR/DME Navigation Solution Errors Generated from Regression Equations General Aviation Quality Sensor Data	34
45		VOR/DME Navigation Solution Error StatisticsAll Data Combined	35
46		Tangent Point Table of Measured 2-Sigma VOR/DME Navigation Solution ErrorsAll Data Combined	36
47		Results of Regression Analysis of VOR/DME Navigation Solution Crosstrack Errors, Along-Track Distance, and Tangent Point DistanceAll Data Combined	37
48		Correlation Matrix from VOR/DME Navigation Solution Crosstrack Error RegressionAll Data Combined	37
49		Results of Regression Analysis of VOR/DME Navigation Solution Along-Track Error, Along-Track Distance, and Tangent Point DistanceAll Data Combined	38
50		Correlation Matrix from VOR/DME Navigation Solution Along-Track Error RegressionAll Data Combined	38
51		Tangent Point Table of 2-Sigma VOR/DME Navigation Solution Errors Generated from Regression EquationsAll Data Combined	40
52		Tangent Point Table of the Difference Between the 2-Sigma VOR/DME Navigation Solution Errors of the Advisory Circular 90-45A Tangent Point Table (Table 23) and Table 51	41
53		DME/DME Navigation Solution Error Statistics	42

INTRODUCTION

PURPOSE.

The purpose of this project was to investigate area navigation (RNAV) concepts, procedures, and accuracies through a series of flight tests. The data derived may be used to establish minimum operational characteristics (MOC), and to determine the impact of RNAV on the air traffic control (ATC) system. This report concentrates on the raw sensor errors (i.e., very high frequency omnidirecional radio range (VOR) and distance measuring equipment (DME) errors) of air transport and general aviation equipment.

BACKGROUND.

The Federal Aviation Administration (FAA) interest in RNAV is directed toward the implementation of RNAV routes and operational procedures that will permit navigation in any area within the radiation volume of ground-based VOR navigation facilities rather than only VOR inbound and outbound radial flight procedures as are now used in the present navigation system. In January 1972, the FAA sponsored an RNAV symposium which highlighted the major operational and technical problem areas that were affecting the immediate implementation and acceptance of RNAV. Based on the intense interest evidenced during the symposium, an FAA/Industry Task Force was established to define how to implement RNAV in the National Airspace System (NAS) in an orderly manner, while at the same time, identifying the payoffs to the ATC system and users. A report entitled "Application of Area Navigation in the National Airspace System" was published in February 1973 and defined the way in which RNAV would be implemented in the NAS. It also detailed an action plan which included substantial research and development efforts. This report responds to a portion of this action plan, and deals in detail with airborne VOR and DME radio sensor errors associated with RNAV.

DISCUSSION

GENERAL.

Flight tests were conducted using three commercially available RNAV systems which represent three distinct levels of sophistication. The three RNAV systems were:

- 1. Collins Radio Corporation--ANS-70A,
- 2. EDO Air Corporation--TCE-71A, and
- FOSTER AIR DATA Incorporated--AD 611/D.

To date, reports on the flight tests utilizing the Collins ANS-70A and the FOSTER AIR DATA AD 611/D have been issued. These are, respectively, FAA-RD-76-32, "A Flight Investigation of System Accuracies and Operational

Capabilities of an Air Transport Navigation System," May 1976, by Robert H. Pursel and Jack D. Edmonds, and FAA-RD-77-43, "A Flight Investigation of System Accuracies and Operational Capabilities of a General Aviation Area Navigation System," June 1977, by Jack D. Edmonds, Robert H. Pursel, and John Gallagher.

Both the Collins ANS-70A and the EDO AIR TCE-71A represent RNAV systems which would find application in the air transport/commercial fleet, while the FOSTER AIR DATA AD 611/D could be classified as a general aviation system. Accordingly, air transport category airborne radio navigation sensors (VOR and DME) were used to provide position data to the Collins ANS-70A and the EDO AIR Corporation TCE-71A RNAV systems, while general aviation category airborne radio navigation sensors (VOR and DME) were used to provide position data to the FOSTER AIR DATA AD 611/D RNAV system.

DESCRIPTION OF EQUIPMENT.

The air transport type airborne sensor equipments were:

VOR 1--Collins 51RV-2B

VOR 2-Bendix RNA-26C

DME 1--Collins Radio 860E-3

DME 2--King Radio KDM-7000

Both DME's conform to Aeronautical Radio Incorporated (ARINC) characteristic 568. The analog outputs of the DME's provided range information to the RNAV equipment, while the digital outputs were routed to a digital instrumentation system for recording purposes.

Both VOR's were modified to provide continuous bearing-to-station information. The modification was a standard field modification to provide four-wire sine-cosine bearing outputs. Work was accomplished per Collins Service Bulletin No. 22 for the 51RV-2B and per Bendix Mod. 6 (preliminary) for the RNA-26C. The sine-cosine bearing outputs provided bearing information to both the RNAV equipment and the instrumentation system.

The general aviation type airborne sensor equipments were:

- (1) Collins VIR-30 (VOR)--Dual installation.
- (2) King KN-65 (DME)--modified with range block interface adapter as per AIR DATA Installation Bulletin IB-73006--Dual installation.

EQUIPMENT CALIBRATIONS.

AIR TRANSPORT QUALITY. Prior to the start of flight tests, both VOR's and both DME's were calibrated to establish airborne equipment errors. VOR's were checked at 30° intervals from 0° to 330° with a radiofrequency (RF) input level of 100 microvolts. DME's were checked at 5 nautical mile (nmi) intervals from 0 to 150 nmi. Table 1 summarizes the results. No correction factors were applied to the data because the checks indicated the equipments were within the manufacturers' specifications and therefore represented typical errors in VOR and DME airborne equipment of the air transport type.

TABLE 1. AIR TRANSPORT QUALITY SENSOR CALIBRATION DATA

	No. of Samples	Mean	One Standard Deviation
VOR 1	12	-0.2°	0.4°
VOR 2	12	0.04°	0.3°
DME 1	31	0.01 nmi	0.02 nmi
DME 2	31	-0.06 nmi	0.02 nmi

GENERAL AVIATION QUALITY. VOR's and DME's were checked at the same intervals as the air transport type sensors. Table 2 summarizes the results. As with the air transport type sensors, no correction factors were applied to the general aviation sensor data because the checks indicated the equipments were within the manufacturers' specifications.

TABLE 2. GENERAL AVIATION QUALITY SENSOR CALIBRATION DATA

	No. of Samples	Mean	One Standard Deviation
VOR 1	12	-0.4°	0.2°
VOR 2	12	-0.3°	0.2°
DME 1	31	0.004 nmi	0.004 nmi
DME 2	31	0.006 nmi	0.007 nmi

Once these initial checks were made and all sensors were verified to be within manufacturers' specifications, no further calibrations or checks were performed for the duration of the flight tests.

TEST OBJECTIVES. The objectives of each of the flight tests were defined and identified in each of the reports published to date. One of the objectives in each flight test was to quantify the sensor error associated with RNAV flight. Since this report deals specifically with the sensor error data derived from those tests, the following areas were given careful consideration:

- 1. The mean, standard deviation, and distribution of VOR and DME errors.
- 2. The accuracies of the two categories of navigation receivers; i.e., air transport quality and general aviation quality.
- 3. The generation of tangent point (TP) tables from measured errors and a comparison of these to the Advisory Circular (AC) 90-45A tangent point table.
- 4. The effects of altitude and distance on VOR and DME errors.

DATA COLLECTION

AIRBORNE. A mixture of analog, digital, and discrete signals was recorded on time-referenced, seven-track 200 bit per inch (bpi) digital incremental recorders at a 2-hertz (Hz) rate throughout the flights. A complete list of the parameters recorded is presented in reports FAA-RD-76-32, FAA-RD-76-113, and FAA-RD-77-43. The signals were conditioned and multiplexed by data acquisition systems. All of the systems were designed and fabricated at the National Aviation Facilities Experimental Center (NAFEC).

GROUND. Ground-based data were obtained from NAFEC's Extended Area Instrumentation Radar (EAIR). EAIR is a precision, C-band tracking radar which has a maximum tracking distance of 190 nmi when operated in the beacon tracking mode (all flights were tracked in beacon tracking mode). Digital output data consisting of slant range, azimuth angle, elevation angle, and realtime are recorded on magnetic tape at a 10-Hz rate. Analog track data in z-y, x-y coordinates are recorded in realtime on 30-inch plot paper. Accuracy of the system is 0.2 milliradian in azimuth and elevation and a root-mean-square (rms) range error not exceeding 20 yards at 3,000 yard/second range rate.

OBSERVER. Observer data logs were used by the flight test observer to record information pertinent to the flight. The observer also monitored the data acquisition display during the flights and recorded any abnormalities.

FLIGHT PATTERNS.

All flight tests were conducted in local airspace around NAFEC. The majority of routes were designed by Champlain Technology Industries. The routes consist of a standard instrument departure (SID) and a standard terminal arrival route (STAR) which were connected by a transition segment. Three basic routes were modified slightly for each of the tests, but the routes retained basic commonality for all the flight tests as well as for simulation tests conducted using the NAFEC Digital Simulator Facility (DSF). These patterns are fully documented in reports FAA-RD-76-32 and FAA-RD-77-43.

By utilizing these patterns for the flight tests, a large number of VOR/DME stations were available for providing sensor information to the RNAV systems. Table 3 lists the stations that were used for the sensor data analyzed in this report.

DATA PROCESSING.

Figure 1 is a block diagram of the general aviation processing procedures. The air transport quality sensor errors are processed in a similar manner. The following is a brief description of the flow diagram.

The EAIR data tapes (B) are a seven-track, 556-bpi format tape of actual aircraft position in latitude, longitude, and altitude referenced to time. This tape is then time-merged every 0.5 seconds with the airborne data tape (A), which is also time referenced. The result is a time-correlated, nine-track, 800-bpi, time-merged data tape (C) containing both airborne and EAIR information.

TABLE 3. VOR/DME STATIONS USED IN SENSOR ERROR DATA BASE

Frequency (MHz)	Identifier	Location
108.6	ACY	Atlantic City, N.J.
108.2	ARD	Yardley, Pa.
112.6	ATR	Waterloo, Delaware
115.4	COL	Colts Neck, N.J.
113.4	CYN	Coyle, N.J.
111.2	DPK	Deer Park, N.Y.
117.9	EMI	Westminster, Md.
111.4	ENO	Kenton, Delaware
114.0	EWT	New Castle, Delaware
113.6	НТО	Hampton, N.Y.
115.9	JFK	J. F. Kennedy, N.Y.
115.2	MIV	Millville, N.J.
113.2	MXE	Modena, Pa.
112.8	OOD	Woodstown, N.J.
113.7	OTT	Nottingham, Md.
117.6	PXT	Patuxent, Md.
113.8	RBV	Robbinsville, N.J.
114.1	RIC	Richmond, Va.
112.9	SBJ	Solberg, N.J.
114.5	SBY	Salisbury, Md.
114.8	SIE	Sea Isle, N.J.
112.4	SWL	Snow Hill, Md.

The merged tapes were then examined by the search (D) program which checked pertinent aircraft parameters and flags, defined start and stop times for the segments, and recorded any detected changes on a printout. The information garnered from the search program along with the merged tapes constituted the input to the parameter tape program. The parameter tape program calculates all the error values from the raw data. The parameter tapes contain all data plus all calculated error values in increments of 0.1 nmi along the route. Information may then be recovered from any point on the run.

The outlier program (F) is used to remove any gross errors that may have been precipitated by glitches in the data collection equipment and/or the radar tracking data. Gross errors are defined as any error magnitude greater than 1 nmi for DME and 10° for VOR. The histograms justify using these error magnitudes, as VOR and DME 3-sigma values are $\pm 5^{\circ}$ and ± 0.5 nmi, respectively. The parameter outlier (POL) (G) are the parameter tapes with gross errors removed.

The VOR/DME tapes (H) contain the sensor errors which have been stripped from the POL tapes. DME error is defined as: DME Error = Sensed Range - Actual Range. VOR Error is defined as: VOR Error = Sensed Bearing - Actual Bearing.

Once the VOR/DME errors have been stripped from the outliered parameter tapes, the resulting tapes can be used for all subsequent statistical processing.

DATA ANALYSIS METHODOLOGY.

Since the sensor data were derived from three separate flight tests, it was decided to treat the data from each flight test separately to determine if differences exist. Also, the data from each flight test were further classified according to the phase of flight; i.e., terminal, approach, and enroute. A further separation of the data was dictated by the fact that there were two categories of sensors used for the tests, air transport and general aviation. The data analysis methodology was therefore to compute means, standard deviations, and distributions of the data in these specific categories; examine them; and, if possible, combine these data across categories.

For purposes of identification, the data associated with the Collins ANS-70 flights will be known as air transport test I, while the data associated with the EDO TCE-71A flights will be known as air transport test II. The data associated with the Foster AIR DATA AD 611/D RNAV flights will be known as general aviation data.

TEST RESULTS

AIR TRANSPORT TEST I.

The air transport test I data were collected during flight tests utilizing the Collins ANS-70 RNAV system. Two VOR'S and two DME's were used during this test

since the ANS-70 can utilize dual sensor inputs. The data were classified as terminal area data with approach data included in the 0 to 5,000-foot altitude interval.

Means and standard deviations were calculated for each sensor in each of three altitude bands; 0 to 5,000 feet, 5,000 to 10,000 feet, and above 10,000 feet. The purpose was to examine the data for receiver biases and determine any significant difference in the errors associated with the different altitude bands. DME data are presented in table 4, while VOR data are presented in table 5.

In examining the DME data, it can be seen that for the same altitude interval, the standard deviations are very similar, and the differences approach the range resolution of the airborne DME sensor (0.01 nmi). Within the same altitude interval, the differences in means indicate the small bias error on the number 2 receiver, which was evident in the equipment calibration. Examining the DME data across the three altitude intervals, a slight tendency toward increasing means and standard deviations with altitude can be seen.

The VOR data exhibit similar uniformity across both receivers and altitude intervals. There are some differences in the means which are attributable to the bias errors of the individual stations.

Based on the uniformity of both the DME and VOR data, the data were pooled both across receivers and altitude intervals. Table 6 presents the results of the pooled data. Histograms of the pooled DME and VOR data are presented in figures 2 and 3, respectively. A normal curve is fitted to the data in each case. Each of the discriptions is leptokurtic, since they exhibit a relatively high peak compared to a normal distribution.

AIR TRANSPORT TEST II.

The air transport test II data were collected during flight tests utilizing the EDO TCE-71A RNAV system. Only one VOR and one DME were used on this test because the TCE-71A accepts only single-sensor inputs. Data in this group include approach, terminal, and enroute data. SID/STAR configurations were incorporated into a flight pattern, designated A2. This pattern, along with its variations, is explained in detail in the report "A Flight Investigation of System Accuracies and Operational Capabilities of a General Aviation Area Navigation System," report No. FAA-RD-77-43.

Table 7 shows the type and number of patterns flown, and tables 8 and 9 demonstrate the results with mean and standard deviations of the specific data categories. As with the air transport test I data, both the DME and the VOR data show uniformity across data categories. Comparing the DME and VOR data across test I and test II, it can be seen that the data are nearly identical. Table 10 presents the statistical summary for the combined test II data.

Distributions for the test II data are plotted in figures 4 and 5 for VOR and DME error, respectively. As can be seen, the DME data distribution is

DME ERROR STATISTICS--TEST TABLE 4.

Samples	12,855	24,476	37,117	Samples	4,380	11,488	20,302
DME 2 Sensor One Standard Deviation (nmi)	90.0	0.08	60.0	VOR 2 Sensor One Standard Deviation (deg)	1.6	1.3	1.6
Mean (nmi)	-0.09	-0.09	-0.14	TICSTEST I Mean (deg)	0.3	4.0	0.1
Samples	13,295	25,051	46,006	VOR ERROR STATISTICSTEST Mean Samples (deg)	4,451	11,726	26,937
DME 1 Sensor One Standard Deviation (nmi)	0.07	0.07	0.11	TABLE 5. VOR 1 Sensor One Standard Deviation (deg)	1.4	1.3	1.4
Mean (nmi)	-0.05	-0.05	-0.09	Mean (deg)	-0.3	0.2	-0.3
Altitude (feet)	0-2,000	5,000-10,000	Above 10,000	α Altitude (feet)	0-2,000	5,000-10,000	Above 10,000

TABLE 6. POOLED TOTAL VOR AND DME ERROR STATISTICS-TEST I

	VOR One Standard			DME One Standard	
Mean (deg)	Deviation (deg)	Samples	Mean (nmi)	Deviation (nmi)	Samples
0.01	1.5	79,284	-0.092	0.094	158,800

TABLE 7. TYPE AND NUMBER OF PATTERNS FLOWN IN TEST II

Туре	Number
APPROACHES	
ATROACHES	
Runway 4, NAFEC	31
Runway 13, NAFEC	31
ENROUTE	
350.00	
10,000 feet altitude	6
20,000 feet altitude	9
25,000 feet altitude	9
TERMINAL	
SID-STAR Patterns	31

and the state of

TABLE 8. DME ERROR STATISTICS--TEST II

Data Category	Mean (nmi)	One Standard Deviation (nmi)	No. of Samples
APPROACH	-0.007	0.12	10,552
ENROUTE ALTITUDE			
10,000 feet	-0.09	0.08	3,990
20-25,000 feet	-0.14	0.16	12,849
			0.01
TERMINAL			
SID-STAR	-0.05	0.08	29,983
Data Category	Mean (degrees)	One Standard Deviation (degrees)	No. of Samples
APPROACH	-0.38	1.5	10,649
ENROUTE ALTITUDE			
10,000 feet	-1.07	1.01	4,018
20-25,000 feet	-0.77	1.6	13,026
20 25,000 1000	0.77	nimetric that ord	13,020
TERMINAL			
SID-STAR	-0.89	1.7	29,983

TABLE 10. POOLED TOTAL DME AND VOR ERROR STATISTICS-TEST II

Data Category	Mean	One Standard Deviation	No. of Samples
DME	-0.06 nmi	0.12 nmi	57,374
VOR	-0.78°	1.62°	57,676

leptokurtic and shows a slight negative bias. This is consistent with the test I data. The VOR data are also slightly biased, but only slightly leptokurtic.

SUMMATION OF AIR TRANSPORT TYPE SENSOR DATA.

The histograms of the VOR and DME error distributions associated with the two separate flight tests where air transport quality sensors were used show that the data exhibit similar uniformity and all distributions tend toward being leptokurtic. Likewise, statistical similarity exists between the two sets of data. Therefore, the data from these two tests were pooled. Figure 6 shows the combined DME error distribution, and figure 7 shows the combined VOR error distribution. Table 11 provides the statistical summary for the combined VOR and DME data.

TABLE 11. SUMMATION OF POOLED VOR AND DME ERROR STATISTICS FOR AIR TRANSPORT QUALITY SENSORS

	Mean	One Standard Deviation	No. of Samples
VOR	-0.3°	1.5°	136,960
DME	-0.08 nmi	0.1 nmi	216,174

GENERAL AVIATION SENSOR DATA.

All data flights were in the 0 to 5,000 feet altitude interval and, therefore, would be considered terminal area data with approaches included in the data. Again, VOR and DME errors were used to calculate mean and standard deviations. Tables 12 and 13 show the statistical results of the individual VOR and DME sensor errors. Based on the uniformity of both the VOR and DME data, the data were pooled across the receivers. Table 14 enumerates the statistics for the pooled data. Figure 8 shows the pooled VOR histogram. As can be seen, the distribution tends toward being leptokurtic.

Figure 9 is the pooled DME histogram. As can be seen, the distribution is almost Gaussian. This contrasts markedly to the distributions of the air transport quality DME sensors which were leptokurtic.

COMBINED AIR TRANSPORT AND GENERAL AVIATION SENSOR ERRORS .

A comparison of tables 11 and 14 for the statistical results of the air transport type and general aviation type data, respectively, indicates almost identical results. The one marked difference between these data is the shape of the distribution of the two types of DME data. The air transport type data exhibits a leptokurtic distribution, while the distribution for the general aviation DME sensor error data is nearly Gaussian.

oth are a few at the

TABLE 12. VOR ERROR STATISTICS-GENERAL AVIATION QUALITY SENSORS

	Mean	Standard Deviation	No. of Samples
VOR No. 1	0.004°	1.0°	38,003
VOR No. 2	0.12°	1.15°	38,339

TABLE 13. DME ERROR STATISTICS--GENERAL AVIATION QUALITY SENSORS

	Mean	Standard Deviation	No. of Samples
DME No. 1	-0.017 nmi	0.121 nmi	38,452
DME No. 2	-0.043 nmi	0.151 nmi	39,305

TABLE 14. POOLED TOTAL VOR AND DME ERROR STATISTICS--GENERAL AVIATION QUALITY SENSORS

	Mean	Standard Deviation	No. of Samples
VOR	0.06°	1.1°	76,342
DME	-0.03 nmi	0.14 nmi	76,757

Nevertheless, in the real world, both types of equipment will be present in an intermix, and therefore the data will be combined in this analysis. Table 15 presents the statistical data for the combined air transport and general aviation data, and figures 10 and 11 present the distribution for the combined VOR and DME data, respectively.

TABLE 15. POOLED TOTAL VOR AND DME ERROR STATISTICS FOR AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

	Mean	One Standard Deviation	No. of Samples
VOR	-0.17°	1.4°	213,302
DME	-0.07 nmi	0.11 nmi	292,951

VOR/DME NAVIGATION SOLUTION ERRORS AND DISTRIBUTIONS.

A latitude/longitude positional solution, as derived solely from the measured VOR/DME information (i.e., not processed by the RNAV computer), was compared with the latitude/longitude information supplied by EAIR. The resulting error was then resolved into crosstrack and along-track components. Statistical computations were done on these components to determine sensor error distributions. Figure 12 shows the navigation solutions flow diagram. These data were processed in a manner similar to the sensor error data, with the navigation solutions associated with each individual flight test examined, first on an individual basis, and then combined.

AIR TRANSPORT TEST I, VOR/DME NAVIGATION SOLUTION ERRORS.

VOR/DME navigation solution errors were computed from the data collected during the first flight tests using air transport quality sensors. Table 16 enumerates the statistical results for both crosstrack and along-track navigation solution errors.

TABLE 16. VOR/DME NAVIGATION SOLUTION ERROR STATISTICS--TEST I

	Mean (nmi)	One Standard Deviation (nmi)	Number of Samples
VOR/DME Cross- track Error	0.030	0.940	84,672
VOR/DME Along- track Error	- 0.078	0.788	84,672

Figures 13 and 14 present the distributions for VOR/DME navigation solution errors for crosstrack and along-track conditions, respectively. Distributions in both cases are leptokurtic.

Since VOR error is angular in nature. Crosstrack and along-track errors in any navigation solution where VOR is used are dependent upon distance from the station. A convenient method to show this relationship is the FAA Advisory Circular 90-45A "tangent point table," in which VOR/DME navigation system errors are broken out as a function of perpendicular tangent point distance (TPD) and along-track distance (ATD) (figure 15).

The VOR/DME navigational error data obtained from these RNAV flight tests were organized into intervals defined by the tangent point distance and the along-track distance. This table includes both terminal and enroute data collected on these flights. Two-sigma (2 standard deviation) values for cross-track and along-track errors were then calculated from the data entered into an error table of measured 2-sigma accuracies (table 17).

Table 17 is similar in structure to the error tables used in Advisory Circular 90-45A. The values, however, are based on the measured VOR/DME positional errors and do not include flight technical error (FTE) or RNAV computer error.

There are considerable data missing (indicated by dashes) at the longer tangent point and along-track distances. In an attempt to extrapolate and refine this table, a stepwise multiple regression was run on the data contained in table 17.

Stepwise multiple regression is a statistical technique for analyzing a relationship between a dependent variable and a set of independent variables, and for selecting the independent variables in the order of their importance.

The dependent variable was the 2-sigma value for crosstrack or along-track sensor error, while the independent variables were the tangent point distance and the along-track distance. Tangent point distance is defined as a perpendicular line from the route to the subject VOR/DME ground station (VORTAC) (figure 15). The point where the line intercepts the route is the tangent point.

The results of the regression for the 2-sigma crosstrack values are presented in table 18, while the resulting correlation matrix is presented in table 19. As can be seen, along-track distance contributes the largest proportion to the 2-sigma crosstrack error. The contribution of the tangent point distance is very negligible. The resulting equation: 2-sigma crosstrack error = -0.187 nmi + 0.044 (ATD) nmi + 0.002 (TPD) nmi, describes the 2-sigma crosstrack error with a standard error of estimate of 0.832 nmi.

The results for the 2-sigma along-track regression are similarly presented in table 20, while the resulting correlation matrix is presented in table 21. In this regression, the tangent point distance contributes the largest source of error, while the along-track distance contribution is nearly negligible. The resulting equation: 2-sigma along-track error = 0.551 nmi + 0.066 (TPD) nmi - 0.004 (ATD) nmi, describes the 2-sigma along-track error with a standard error of estimate of 0.997 nmi.

TANGENT POINT TABLE OF MEASURED 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS--TEST I TABLE 17.

Distance in Nautical Miles Along Track from Tangent Point

0-10(x trk) (alg trk)	0.3	-		20-30 30-40 40-50 1.0 1.5 2.3 0.3 0.3 0.5	40-50	1.5	0	0 60-70 2.1 0.4	0 60-70 70-80 2.1 3.2 0.4 0.4	0 60-70 70-80 80-90 2.1 3.2 3.7 0.4 0.4 0.4	0 60-70 70-80 80-90 90-100 2.1 3.2 3.7 4.6 0.4 0.4 0.4 0.3	0 60-70 70-80 80-90 90-100 100-110 2.1 3.2 3.7 4.6 4.3 0.4 0.4 0.4 0.3 0.4	0 60-70 70-80 80-90 90-100 100-110 110-120 2.1 3.2 3.7 4.6 4.3 5.2 0.4 0.4 0.4 0.3 0.4 0.1	0 60-70 70-80 80-90 90-100 100-110 110-120 120-130 2.1 3.2 3.7 4.6 4.3 5.2 3.9 0.4 0.4 0.4 0.3 0.4 0.1 0.2	2.1 3.2 3.7 4.6 4.3 5.2 0.4 0.4 0.4 0.3 0.4 0.1
10-20(x trk) (alg trk)	0.9	0.6	0.6	2.2	3.1	0.0	40		2.6	2.6 2.7	2.6 2.7 3.4 0.6 0.5 0.6	2.6 2.7 3.4 3.3 0.6 0.5 0.6 0.6	2.6 2.7 3.4 3.3 4.4 0.6 0.5 0.6 0.6 0.6	2.6 2.7 3.4 3.3 4.4 9.1 0.6 0.5 0.6 0.6 0.6 1.2	2.6 2.7 3.4 3.3 4.4 9.1 0.6 0.5 0.6 0.6 0.6 1.2
20-30(x trk)	0.3	1.0	1.2	2.2	2.5	2.7		3.4		4.0	4.0	4.0	4.0 6.5	4.0 6.5 7.0	4.0 6.5 7.0
(alg trk)	1.2	1.5	1.4	1.6	1.4	1.1	-	5		1.6	1.6	1.6	1.6 1.3	1.6 1.3 1.3	1.6 1.3 1.3
30-40(x trk)	0.3	0.7	1.5	1.8	1.7	2.0	3.	•		5.9	2.9 3.3	2.9 3.3 5.1	2.9 3.3 5.1	2.9 3.3 5.1	2.9 3.3 5.1
(alg trk)	1.7	1.6	2.0	1.7	1.3	1.2	-	2		1.6	1.6 1.3	1.6 1.3 1.9	1.6 1.3 1.9	1.6 1.3 1.9	1.6 1.3 1.9
40-50(x trk)	0.3	6.0	2.0	2.5	3.1	2.0	2,3	-	2.2		2.2	2.2 2.7	2.2 2.7 5.4 3.3	2.2 2.7 5.4 3.3	2.2 2.7 5.4 3.3
(alg trk)	2.2	5.5	3.4	2.8	5.4	1.8	1.6			1.4	1.4 1.5	1.4 1.5 3.3	1.4 1.5 3.3	1.4 1.5 3.3 1.6	1.4 1.5 3.3 1.6
50-60(x trk)	0.5	0.7	1.2	9.0	1.4	1.7	1		4.3		5.6	5.6	5.6	5.6	5.6
(alg trk)	3,3	2.1	2.7	1.0	1.8	1.7	1		3.2		3.5	3.5	3.5	3.5	3.5
60-70(x trk)	:	-	:	:	1	;	2,3		1.9	1.9 2.5		2.5	2.5 4.5	2.5 4.5 5.0	2.5 4.5 5.0
(alg trk)	:	:	:	:	-	:	2.3		1.7		2.1	2.1 3.5	2.1 3.5 3.4	2.1 3.5 3.4	2.1 3.5 3.4
70-80(x trk)	0.3	1.1	1.6	1.6	1.7	1.6	1		i		:		:	: ::	: : : : : : : : : : : : : : : : : : : :
(alg trk)	4.4	4.6	4.5	3, 3	5.9	2.7	:		:	:		:	:		
80-90(x trk)	:	1	:	:	1	1	1		1			:		: :	: : : : : : : : : : : : : : : : : : : :
(alg trk)	:	:	:	:	:	:	:		:	:	:	:			
90-100(x trk)	9.0	1.1	1.9	5.9	5.6	5.6	-		:		:	:	:	1	1
(alg trk)	6.5	5.7	6.4	8.9	9.9	4.7	1		:	:		:			
100-110(x trk)	0.2	;	:	2.4	:	1	;		;		:		:	:	
(alg trk)	6.1	1	1	7.9	:	;	1		:	:		:	:		:
x trk)	0.7	0.7	1.5	2.1	:	;	;		1	1	:	:			
	11.2	7.6	10.1	8.7	1	1	:		;			1	1		
120-130(x trk)	:	6.0	1	1	1	1	:		:	:		:	:	: :	: : : : : : : : : : : : : : : : : : : :
(alg trk)	:	6.9	1	1	:	1	1		:		:	:		1	1
130-140(x trk)	1	:	!	1	:	1	;		-		:	:	:	: : :	
(alg trk)	:	-	!	:	1	1	;		1	:		:		: : : :	
140-150(x trk)	:	:	!	;	;	+	;		;	1		:			
(alg trk)	:	:	:	:	:	;	:				:				

TABLE 18. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION CROSSTRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--TEST I

Step 1 Variable Entered 1 (ATD)			
Sum of Squares Reduced in this Step	185.171		
Proportion Reduced in this Step	0.760		
Cumulative Sum of Squares Reduced	185.171		
Cumulative Proportion Reduced For 1 Variable Entered	0.760	of	243.652
	0.872		
	0.872		
	2.309		
	0.825		
	0.825		
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
1 0.04361 0.00264	16.502		
Intercept -0.04575	10.502		
-0.043/3			
Step 2			
Variable Entered 2 (TPD)			
Sum of Squares Reduced in this Step	0.343		
Proportion Reduced in this Step	0.001		
Cumulative Sum of Squares Reduced	185.514		
Cumulative Proportion Reduced	0.761	of	243.652
For 2 Variables Entered			
Multiple Correlation Coefficient	0.873		
	0.871		
	5.617		
	0.827		
	0.832		
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
1 (ATD) 0.04432 0.00283	15.640		
2 (TPD) 0.00205 0.00290	0.708		
Intercept -0.18716			

TABLE 19. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR REGRESSION--TEST I

	Along-Track Distance	Tangent Point Distance	2-Sigma Crosstrack
Along-Track Distance	1.00000	-0.35389	0.87177
Tangent Point Distance	-0.35389	1.00000	-0.27341
2-Sigma Crosstrack	0.87177	-0.27341	1.00000

TABLE 20. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE-TEST I

Step 1			
Variable Entered 2 (TPD)			
Sum of Squares Reduced in this Step .	420.908		
Proportion Reduced in this Step	0.832		
Cumulative Sum of Squares Reduced	420.908		
Cumulative Proportion Reduced	0.832	of	505.926
For 1 Variable Entered			
Multiple Correlation Coefficient	0.912		
(Adjusted for D. F.)			
	425.770		
Standard Error of Estimate	0.994		
(Adjusted for D. F.)	0.994		
Variable Regression Std. Er			
Number Coefficient Reg. C	coeff. T-Value		
2(TPD) 0.06728 0.003			
Intercept -0.86342			
The state of the s			
Step 2			
Variable Entered 1 (ATD)			
Sum of Squares Reduced in this Step .	1.524		
Proportion Reduced in this Step			
Cumulative Sum of Squares Reduced	422.432		
Cumulative Proportion Reduced		of	505.926
For 2 Variables Entered			
Multiple Correlation Coefficient	0.914		
(Adjusted for D. F.)			
	215.027		
Standard Error of Estimate	0.991		
(Adjusted for D. F.)			
Variable Regression Std. Er	2 (1)		
Number Coefficient Reg. C			
2 (TPD) 0.06575 0.003			
1 (ATD) -0.00423 0.003			
Intercept -0.55146			

TABLE 21. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR REGRESSION-TEST I

	Along-Track Distance	Tangent Point Distance	2-Sigma Along-Track
Along-Track Distance	1.00000	-0.35389	-0.37412
Tangent Point Distance	-0.35389	1.00000	0.91212
2-Sigma Along-Track	-0.37412	0.91212	1.00000

These two equations were then used to generate a tangent point error table (table 22), for tangent point distance and along-track distance out to 150 nmi. Some negative values resulted in the first row of the table for along-track values. This was due to the negative intercept in the along-track regression equation. Obviously, 2-sigma error values cannot be negative. These negative values are underlined in table 22. The table also shows a slightly decreasing 2-sigma along-track error as a function of along-track distance. For comparison purposes, a theoretical error table was computed using the error values for VOR and DME that were used in Advisory Circular 90-45A. These are: VOR ground station, 1.9°; VOR airborne sensor, 3.0°; DME ground station, 0.1 nmi; and DME airborne sensor, 3 percent or 0.5 nmi. These error elements are 2-sigma values. The results are presented in table 23. Note again that this table does not include FTE or RNAV computer errors. Also, the error elements are combined using the Advisory Circular 90-45A root-sum-square method.

Figures 16 and 17 illustrate the crosstrack and along-track 2-sigma error, respectively, as generated from the regression equation. Also included are the limits set by the standard error of estimate. Looking at figure 16, the crosstrack errors are plotted with respect to along-track distance. The tangent point distance is disregarded because of its small value. In figure 17, the low-value along-track distance is disregarded, and along-track error is plotted with respect to tangent point distance. These two graphs depict the results portrayed in the tangent point table of table 22.

AIR TRANSPORT TEST II, VOR/DME NAVIGATION SOLUTION ERRORS.

The summary statistics for VOR/DME navigation position errors are presented in table 24. Figures 18 and 19 are the distributions for crosstrack and along-track errors, respectively. Distributions in both cases are leptokurtic.

Table 25 is the tangent point table of 2-sigma crosstrack and along-track error values calculated from measured error values from the air transport test II data. As before, missing data are indicated by dashes.

A stepwise multiple regression was run on the air transport test II data. The results of the regression for 2-sigma crosstrack error as a function of tangent point distance and along-track distance are contained in table 26, while the resulting correlation matrix is presented in table 27.

The equation for predicting the 2-sigma crosstrack error can be obtained from the results of the regression:

2-sigma crosstrack error = 0.271 + 0.038 (ATD) nmi - 0.007 (TPD) nmi

A similar regression was run on the 2-sigma along-track errors values with along-track distance and tangent point distance as the independent variables. Table 28 presents the results of the regression, while table 29 presents the correlation matrix from the regression.

TABLE 22.

TANGENT POINT TABLE OF 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS GENERATED FROM REGRESSION EQUATIONS--TEST I

Pofn
Tangent
from
Track
Along
Miles
Nautical
5
Distance

	0-10	10-20	20-30	30-40	40-50	09-09	02-09	70-80	80-90	-	90-100 100-110 110-120	110-120	120-130 130-140 140-15	130-140	140-15
0-10(x trk)	0.3	0.7	1.2	1.6	2.0	2.5	5.9	3.4	3.8	4.3	4.7	5.2	9.6	0.9	6.9
(alg trk)	0.1	0.0	-0.0	-0.1	-0.1	9	-0.2	-0.2	-0.3	-0.3	-0.4	-0.4	-0.4	-0.5	-0.5
10-20(x trk)	0.3	0.7	1.2	1.6	2.1	5.5	3.0	3.4	3.8	4.3	4.7	5.2	9.6	6.1	6.5
(alg trk)	1.0	0.7	9.0	9.0	9.0	0.5	0.5	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.1
20-30(x trk)	0.3	8.0	1.2	1.6	2.1	2.5	3.0	3.4	3.9	4.3	4.7	5.2	- 9.6	6.1	6.9
(alg trk)	1.4	1.3	1.3	1.3	1.2	1.2	1.1	:	1.0	1.0	1.0	6.0	6.0	8.0	8.0
30-40(x trk)	0.3	8.0	1.2	1.7	2.1	5.6	3.0	3.4	3.9	4.3	4.8	5.2	5.7	6.1	6.5
(alg trk)	5.0	2.0	2.0	1.9	1.9	1.8	1.8	1.7	1.7	1.7	1.6	1.6	1.5	1.5	1.4
40-50(x trk)	4.0	8.0	1.2	1.7	2.1	5.6	3.0	3,5	3.9	4.3	4.8	5.2	5.7	6.1	9.9
(alg trk)	2.7	2.7	5.6	5.6	5.5	5.5	5.4	2.4	2.4	2.3	2.3	2.2	2,3	2.1	2.1
50-60(x trk)	4.0	8.0	1.3	1.7	2.2	5.6	3.0	3.5	3.9	4.4	4.8	5,3	5.7	6.1	9.9
(alg trk)	3.4	3,3	3,3	3.2	3.2	3.1	3,1	3.1	3.0	3.0	5.9	5.9	2.8	2.8	5.8
60-70(x trk)	0.4	8.0	1,3	1.7	2.2	5.6	3, 1	3.5	3.9	4.4	4.8	5,3	5.7	6.2	9.9
(alg trk)	4.0	4.0	3.9	3.9	3.8	3.8	3.8	3.7	3.7	3.6	3.6	3,5	3.5	3.5	3.4
70-80(x trk)	4.0	6.0	1,3	1.7	2.2	5.6	3.1	3.5	4.0	4.4	4.9	5,3	5.7	6.2	9.9
(alg trk)	4.7	4.6	3.6	4.5	4.5	4.5	4.4	4.4	4.3	4.3	4.2	4.2	4.2	4.1	4.1
80-90(x trk)	4.0	6.0	1.3	1.8	2.2	2.7	3.1	3.5	4.0	4.4	4.9	5,3	8.8	6.2	9.9
(alg trk)	5.3	5,3	2.5	2.5	2.5	5.1	5,1	2.0	2.0	4.9	4.9	4.9	4. 8	4.8	4.7
90-100(x trk)	0.5	6.0	1,3	1.8	2.2	2.7	3.1	3.6	4.0	4.4	4.9	5,3	5.8	2.9	4.9
(alg trk)		6.9	6.9	6.9	5.8	5.8	2.1	2.1	9.6	9.6	9.6	5.5	5.5	5.4	5.4
100-110(x trk)		6.0	1.4	1.8	2.3	2.7	3.1	3.6	4.0	4.5	4.9	5.4	5.8	6.2	6.7
(alg trk)		9.9	9.9	6.5	6.5	6.4	4.9	6.3	6.3	6.3	6.2	6.2	6.1	6.1	0.9
110-120(x trk)		6.0	1.4	1.8	2.3	2.7	3.2	3.6	4.0	4.5	4.9	5.4	8.8	2.9	6.7
(alg trk)		7.3	7.2	7.2	7.1	7.1	7.0	7.0	7.0	6.9	6.9	8.9	8.9	2.9	6.7
120-130(x trk)		1.0	1.4	1.9	2.3	2.7	3.2	3.6	4.1	4.5	5.0	5.4	5.8	6.3	4.9
(alg trk)		4.7	4.7	7.8	7.8	7.7	7.7	7.7	9.2	4.6	7.5	7.5	7.4	7.4	7.4
130-140(x trk)	0.5	1.0	1.4	1.9	2.3	2.8	3.2	3.6	4.1	4.5	5.0	5.4	5.9	6.3	6.7
(alg trk)	8.6	9.8	8.5	8.5	8.4	8.4	8.4	8.3	8.3	8.2	8.2	8.1	8.1	8.1	8.0
140-150(x trk)	9.0	1.0	1.5	1.9	2.3	2.8	3.2	3.7	4.1	4.6	5.0	5.4	6.6	6.3	8.9
(alg trk)	9.3	2.6	9.2	9.1	9.1	9.1	0.6	0.6	8.9	8.9	8.8	8.8	8.8	8.7	8.7

Perpendicular Distance in Nautical Miles from Tangent Point to VOR

TANGENT POINT TABLE OF 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS USING ADVISORY CIRCULAR 90-45A 2-SIGMA VALUES FOR VOR AND DME ERRORS TABLE 23

9.4 9.5 9.8 8.6 9.3 9.5 9.6 9.9 10.0 10.1 10.2 9.7 4.4 4.6 8.8 4.9 8.8 5.5 8.9 9.6 0.9 9.0 9.1 8.9 8.2 6,3 8.5 6.8 7.9 3.7 7.5 7.6 7.7 8.5 4.1 4.4 7.7 7.8 6.6 8.0 7.7 8,3 120 DISTANCE IN NAUTICAL MILES ALONG TRACK FROM TANGENT POINT 6.9 7.0 6.9 7.1 4.1 7.1 5.0 7.2 6.5 6.9 100 6.5 5.8 6.3 7.2 6.2 5.6 3.0 5.7 5.8 6.9 0.9 6.5 4.4 8.5 06 3,3 4.1 4.6 6.1 5.6 6.2 6.8 7.3 9.9 6.1 2.7 3.0 5.3 4.4 5.5 6.0 6.3 8.4 5.1 3.5 5.2 3.9 5.0 5.5 6.1 5.8 80 4.6 4.7 4.3 4.8 4.8 5.0 5.1 6.5 3.3 3.7 20 4.3 4.4 5,3 5.9 4.8 3.6 4.1 4.7 09 1.9 3,3 3.9 5.8 4.8 2.0 8.2 20 3.4 4.0 4.6 6.4 7.0 7.6 4.4 6.9 4.6 8.8 3.9 6.3 2.8 5.8 3.7 4.1 1.7 5.6 2.2 3,3 3,1 3.9 4.5 3.5 40 2.1 2.2 3.2 3.8 8.7 5.0 3.3 3,5 3.8 4.4 3.0 30 4.4 1.7 1.9 2.7 3.0 5.6 3.2 3.5 2.0 3.2 2.2 4.4 5.0 3.8 3.8 2.4 20 5.5 2.8 6.0 1.4 1.6 3.1 1.9 2.2 4.4 2.0 3.1 3.4 7.4 10 140(x trk)
(alg trk) 30(x trk) 100(x trk) 110(x trk) 30(x trk) (alg trk) 40(x trk) (alg trk) 70(x trk) (alg trk) 90(x trk) (alg trk) 20(x trk) 20(x trk) 80(x trk) (alg trk) (alg trk) (alg trk) (alg trk) 50(x trk) 60(x trk) (alg trk) (alg trk) (alg trk) (alg trk)

Perpendicular Distance in Nautical Miles from Tangent Point to VOR

A Company of the Comp

VOR/DME NAVIGATION SOLUTION ERROR STATISTICS -- TEST II TABLE 24.

Number of Samples	57,106	57,106
One Standard Deviation (nmi)	0.90	0.61
Mean (nm1)	0.05	97.0
	VOR/DME Crosstrack Error	VOR/DME Along-Track Error

TANGENT POINT TABLE OF MEASURED 2-SIGMA VOR/DME MAVICATION SOLUTION ERRORS--TEST !! TABLE 25.

Distance in Nautical Miles Along Track from Tangent Point

	0-10	10-20	20-30	30-40	40-50	9-09	02-09	10-80	80-90	90-100	100-120
0-10(x trk)	0.3	0.7	1.6	2.0	2.1	2.4	2.8	3.6	-	-	-
(alg trk)	0.2	0,3	4.0	0.4	0.2	0.2	0.2	0.4			:
10-20(x trk)	4.0	6.0	8.0	1.7	1.1	5.6	1.9	1.0	-	4.2	-
(alg trk)	0.7	0.7	0.7	0.5	0.3	0.5	0.7	.1	-	1.2	:
20-30(x trk)	0.3	4.0	1.2	1.2		::	4.9	5.0	-	3.2	-
(alg trk)	1.3	6.0	1.2	1.0			2.0	1.7		9.0	-
30-40(x trk)	0.4	0.5	1.0	1.5	9.2	3.8	3.6	2.4	3.2	-	-
(alg trk)	1.0	7.0	1.4	1.5	2.1	5.6	1.9	1.2	1,3	-	:
40-50(x trk)		0.7	8.0	1.0	1.8	2.6	3.6	2.2	4.0	-	-
(alg trk)	-	1.4	1.6	1.3	1.9	2.3	2.8	1.7	2.4	-	-
50-60(x trk)	0.3	0.2	8.0	1.5	1.2	1.6	:	2.5	1.7	-	-
(alg trk)	1.9	6.0	1.6	1.8	1.4	1.5	:	1.4	1.1	-	-
60-70(x trk)	0.3	9.0	9.0		-	2.3	1.4	-		-	-
(alg trk)	3.2	3.8	1.9			2.4	1.4	1		!	-
70-80(x trk)	0.3	9.0	1.2	1:1	1.4	1.8		:	-	!	!
(alg trk)	8.2	5.6	3.6	2.1	2.1	2.3	-	-	-	-	-
80-90(x trk)			1.2	1.1	-			-	-	-	-
(alg trk)		*****	3.6	3.0		-					

TABLE 26. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION CROSSTRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE-TEST II

Step 1			
Variable Entered 1 (ATD)			
Sum of Squares Reduced in this Step	62.820		
Proportion Reduced in this Step	0.620		
Cumulative Sum of Squares Reduced	62.820		
Cumulative Proportion Reduced	0.620	of	101.381
For 1 Variable Entered			
Multiple Correlation Coefficient	0.787		
(Adjusted for D. F.)	0.787		
	97.747		
Standard Error of Estimate	0.802		
(Adjusted for D. F.)	0.802		
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
1 0.03938 0.00398	9.887		
Intercept -0.11450			
Step 2			
Variable Entered 2 (TPD)			
Sum of Squares Reduced in this Step	1.974		
Proportion Reduced in this Step	0.019		
Cumulative Sum of Squares Reduced	64.794		
Cumulative Proportion Reduced	0.639	of	101.381
For 2 Variables Entered			
Multiple Correlation Coefficient	0.799		
(Adjusted for D. F.)	0.796		
	52.244		
Standard Error of Estimate	0.787		
(Adjusted for D. F.)	0.794		
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
1 (ATD) 0.03839 0.00395	9.717		
2 (TPD) -0.00773 0.00433	-1.784		
Intercept 0.27101			

TABLE 27. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR REGRESSION--TEST II

	Along-Track Distance	Tangent Point Distance	2-Sigma Crosstrack
Along-Track Distance	1.0000	-0.1398	0.7872
Tangent Point Distance	-0.1398	1.0000	-0.2482
2-Sigma Crosstrack	0.7872	-0.2482	1.0000

TABLE 28. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE-TEST II

Step 1	
Variable Entered 2 (TPD)	
Sum of Squares Reduced in this Step	39.125
Proportion Reduced in this Step	0.670
Cumulative Sum of Squares Reduced	39.125
Cumulative Proportion Reduced	0.670 of 58.352
For 1 Variable Entered	
Multiple Correlation Coefficient	0.819
(Adjusted for D. F.)	0.819
	122.094
Standard Error of Estimate	0.566
(Adjusted for D. F.)	0.566
Variable Regression Std. Error of	
Number Coefficient Reg. Coeff.	T-Value
2 (TPD) 0.00409 0.00308	11.050
Intercept -0.00569	
-0.00307	
Step 2	

Variable Entered 1 (ATD)	
Sum of Squares Reduced in this Step	0.010
Proportion Reduced in this Step	0.000
Cumulative Sum of Squares Reduced	39.134
Cumulative Proportion Reduced	0.671 of 58.352
For 2 Variables Entered	
Multiple Correlation Coefficient	0.819
(Adjusted for D. F.)	0.816
F-Value for Analysis of Variance	60.074
Standard Error of Estimate	0.571
(Adjusted for D. F.)	0.575
Variable Regression Std. Error of	
regression seet miles of	
	T-Value
2 (TPD) 0.03401 0.00314	10.828
1 (ATD) -0.00049 0.00286 Intercept 0.02080	- 0.172
Intercept 0.02080	

TABLE 29. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR REGRESSION-TEST II

	Along-Track Distance	Tangent Point Distance	2-Sigma Along-Track
Along-Track Distance	1.0000	-0.1398	-0.1272
Tangent Point Distance	-0.1398	1.0000	0.8188
2-Sigma Along-Track	-0.1272	0.8188	1.0000

The equation for predicting the 2-sigma along-track error is again derived from the results of the regression on along-track data:

2-sigma along-track error = 0.021 nmi + 0.034 (TPD) nmi - 0.0005 (ATD) nmi

These equations were then used to generate the tangent point table shown in table 30. This table again shows conservative results when compared to the Advisory Circular 90-45A theoretical tangent point table in table 23.

The two regression equations were used to generate figures 20 and 21. These figures portray the 2-sigma error as a function of the predominate variable. For 2-sigma crosstrack error, along-track distance contributes most of the error, and tangent point distance is disregarded. For 2-sigma along-track error, the tangent point distance contributes most of the error, and along-track distance is disregarded. The 2-sigma values for crosstrack and along-track distances are bounded by the standard error of estimate from the regression.

COMBINED AIR TRANSPORT VOR/DME NAVIGATION SOLUTION.

As with the raw sensor data from tests I and II flight tests, the VOR/DME navigation solutions were also combined into one set of data. Figures 22 and 23 illustrate the distributions for crosstrack and along-track errors, respectively, for the combined air transport data. Table 31 enumerates the statistics for the combined data.

TABLE 31. VOR/DME NAVIGATION SOLUTION ERROR STATISTICS--COMBINED AIR TRANSPORT QUALITY SENSOR DATA

	Mean (nmi)	One Standard Deviation (nmi)	Number of Samples
VOR/DME Crosstrack Error	0.038	0.923	141,514
VOR/DME Along-Track Error	-0.109	0.721	141,514

Table 32 is the tangent point table of the measured 2-sigma values for cross-track and along-track error from the combined data. A regression analysis was run on these data for both the crosstrack and the along-track errors.

Table 33 contains the results of the regression analysis with crosstrack error as the dependent variable and tangent point distance and along-track distance as the independent variables.

Table 34 contains the resulting correlation matrix. The equation for predicting the 2-sigma crosstrack error can be obtained from the results of the regression:

TANGENT POINT TABLE OF 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS GENERATED FROM REGRESSION EQUATIONS--TEST II TABLE 30.

Distance in Nautical Miles Along-Track from Tangent Point

	0-10	10-20	20-30	30-40	40-50	9-09	02-09	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150
0-10(x trk) (alg trk)	0.6	0.4	1.3	1.7	2.1	2.5	2.9	3.3	3.6	4.0	4.4	4.8	5.2	5.6	6.0
10-20(x trk) (alg trk)	0.5	0.9	1.3	1.7	2.0	2.4	2.8	3.2	3.6	4.0	4.3	4.7	5.1	5.5	5.9
20-30(x trk) (alg trk)	1.0	0.8	1.2	1.6	2.0	2.3	2.7	3.1	3.5	3.9	1.0	1.0	5.0	5.4	5.8
30-40(x trk) (alg trk)	4.1	0.7	1.1	1.5	6.1	2.3	2.7	3.0	3.4	3.8	4.2	4.6	5.0	5,3	5.8
40-50(x trk) (alg trk)	1.7	1.1	1.0	1.4	1.8	2.2	2.6	3.0	3.3	3.7	4.1	4.6	4.9	5.9	5.6
50-60(x trk) (alg trk)	2.0	0.6	2.1	1.3	1.7	2.1	2.5	2.9	3.3	3.7	2.0	4.4	4.8	5.2	5.6
60-70(x trk) (alg trk)	0.1	2.4	6.0	1.3	1.7	2.0	2.4	2.8	3.2	3.6	4.7	4.3	7.7	5.0	5.5
70-80(x trk) (alg trk)	0.0	0.4	0.8	1.1	1.6	2.0	2.3	2.7	3.1	3.5	3.9	4.3	4.6	5.0	5.4
8090(x trk) (alg trk)	3.1	0.3	3.1	3.1	3.1	3.0	2,3	3.0	3.0	3.0	3.8	3.0	3.0	3.0	5,3
90-100(x trk) (alg trk)	3.4	3.4	3.4	3.4	3.4	3.4	2.2	3.4	3.0	3.3	3.4	3.4	3.4	4.9	5,3
100-110(x trk) (alg trk)	3.8	3.8	3.8	1.0	3.7	3.7	2.1	3.7	3.7	3.3	3.6	4.0	4.4	4.8	5.2
110-120(x trk) (alg trk)	6.3	4.1	4.1	4.1	1.3	7:14	2.0	4.1	4.1	3.2	3.6	4.4	4.4 0.4	4.0	5.1
120-130(x trk) (alg trk)	4.4	0.0	4.4	8.4	1.2	1.6	2.0	2.3	4.4	3.1	3.5	3.9	21	3;	5.0
130-140(xtrk) (alg trk)	4.8	0.0	6.8	4.8	1.1	4.8	1.9	2.3	2.6	3.0	3.4	3.8	2.4	114	5.0
140-150(x trk) (alg trk)	5.1	5.1	6.3	5.1	1.0	1.4	1.8	5.2	5.6	3.0	3.3	3.7	5.1	5.1	5.1

Perpendicular Distance in Mautical Miles from Tangent Point to VOR

TANGENT POINT TABLE OF MEASURED 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS--COMBINED AIR TRANSPORT QUALITY SENSOR DATA TABLE 32.

Distance in Nautical Miles Along Track from Tangent Point

0-10 ktk) 0.3 0.7 1.4 1.8 2.2 2.3 34 0.4 0.5 0.6 0.7 0.70.8 0.9 0.100 110-120 120-130 130-140 140-150 0.100 110 110-120 120-130 130-140 140-150 0.100 110 110-120 120-130 130-140 140-150 0.3 0.7 1.4 1.8 2.2 2.2 3.2 3.2 3.2 3.4 4.6 4.3 5.3 3.9																
0.3 0.7 1.1 1.8 2.2 2.0 2.5 3.2 3.7 4.6 4.3 5.3 3.9 0.6 0.6 0.8 0.9 0.7 0.1 0.1 0.2 0.2 0.2 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4		0-10	10-20	20-30	30-40	40-50	9-09	02-09	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-150
0.3 0.7 1.1 2.2 3.0 2.8 3.1 2.8 3.4 7.6 4.4 9.1 0.6 0.6 0.8 0.0 0.6 0.8 0.0 0.6 0.8 0.9 0.7 0.6 0.5 0.6 1.6 0.6 1.2 0.3 1.0 1.2 1.2 2.2 2.5 2.7 6.0 5.4 3.2 6.5 7.0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	0-10(x trk) (alg trk)	0.3	0.7	4.0	1.8	2.2	3.0	2.5	3.2	3.7		4.3	5.3	3.9		
0.6 0.8 0.6 0.8 0.6 0.8 0.9 0.7 0.6 0.5 0.6 1.6 0.6 1.2 1.3 1.3 1.3 1.3 1.5 1.2 2.2 2.5 2.7 6.0 5.4 3.2 6.5 7.0 1.3 1.3 1.3 1.5 1.4 1.8 1.6 1.8 2.1 2.3 2.4 2.3 2.0 1.3 1.3 1.3 1.5 1.4 1.8 1.6 1.8 2.1 2.3 2.4 2.3 2.0 2.3 2.4 3.3 2.0 2.4 2.2 2.3 3.3 1.6 2.3 2.1 1.6 1.8 1.8 1.9 2.4 2.0 2.3 1.9 1.6 1.7 2.1 3.2 2.2 3.3 1.6 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	10-20(x trk)	0.3	0.7	1.1	2.2	3.0	2.8	3.1	2.8	3.4		4.4	6.1			
0.3 1.0 1.2 2.2 2.5 2.7 6.0 5.4 3.2 6.5 7.0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.6 1.4 1.6 1.4 1.1 2.0 1.7 0.5 1.3 1.3 1.3 1.3 1.3 1.5 1.4 1.8 1.6 1.4 1.1 2.0 1.7 0.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	(alg trk)	9.0	8.0	9.0	8.0	6.0	2.0	9.0	0.5	9.0		9.0	1.2	!		
1.3 1.5 1.4 1.6 1.4 1.1 2.0 1.7 0.5 1.3 1.3 1.3 1.5 1.4 1.1 2.4 2.3 5.0 5.5 6.3 5.1 1.3 1.3 1.5 1.4 1.8 1.6 1.4 1.1 2.0 1.7 2.4 2.3 5.1 1.3 1.3 1.5 1.4 1.8 1.6 1.4 1.8 1.6 2.2 3.5 5.4 3.3 2.0 0.3 0.9 0.9 0.7 1.1 1.5 1.3 1.7 2.4 2.0 2.3 1.6 2.2 3.3 1.6 2.1 3.5 3.4 1.6 2.1 3.2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	20-30(x trk)	0.3	1.0	1.2	2.2	2.5	2.7	0.9	5.4			6.5	7.0		-	:
0.3 0.6 1.3 1.7 2.4 3.5 5.0 5.5 6.3 5.1 1.5 1.4 1.8 1.6 1.8 2.1 2.3 2.0 1.0 1.3 2.0 1.0 1.3 2.0 1.0 1.3 2.0 1.0 1.3 2.0 1.0 1.3 2.0 2.1 2.3 2.0 1.0 1.3 2.0 2.1 2.2 2.4 2.9 2.4 2.0 2.2 3.3 1.6 2.2 3.3 1.6 2.0 2.2 3.3 1.6 2.0 2.3 1.0 1.1 1.5 1.3 1.7 2.1 3.0 3.2 2.0 2.5 2.0 1.6 1.7 2.1 3.5 3.4 2.0 2.0 1.6 1.7 2.1 3.5 3.4 2.0 2.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	(alg trk)	1.3	1.5	1.4	1.6	1.4	1.1	2.0	1.7			1.3	1.3		-	;
1.5 1.4 1.8 1.6 1.8 2.1 2.3 2.4 2.3 2.0 2.2 2.4 3.2 2.7 2.4 2.0 2.3 1.6 2.2 3.3 1.6 2.3 2.4 3.2 2.7 2.4 2.0 2.3 1.6 2.2 3.3 1.6 3.3 2.0 2.5 1.1 1.5 1.3 1.7 1.9 2.5 4.4 5.0 3.2 3.7 1.9 2.6 1.8 1.7 2.1 3.5 3.4 3.2 3.3 4.0 2.9 2.6 2.3 1.9 1.9 2.5 4.4 5.0 1.0 0.4 0.8 1.3 1.2 1.8 1.8 1.8 1.0 0.6 1.1 1.9 2.9 2.6 2.6 1.0 0.1 1.9 2.9 2.6 2.6 1.0 0.1 1.0 2.9 2.6 2.6 1.0 0.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	30-40(x trk)	0.3	9.0	1.3	1.7	2.4	3.5	5.0	5.5	6.3				-		-
0.3 0.9 1.9 2.4 2.9 2.4 3.2 2.2 3.3 1.6 2.2 3.3 1.6 2.2 2.4 3.3 2.2 2.4 3.3 2.2 2.4 3.3 2.2 2.4 3.3 2.2 2.4 3.3 2.2 2.4 3.3 2.2 2.4 2.0 2.3 1.6 2.2 3.3 1.6 2.2 3.3 1.6 2.2 3.3 1.6 2.2 3.3 1.6 2.2 3.3 1.6 2.2 3.3 1.7 2.1 3.2 2.2 2.4 5.0 2.2 2.3 2.4 4.4 5.0 2.4 2.4 2.6 2.3 1.9 2.5 4.4 5.0 2.0 2.4 0.8 1.3 1.2 1.8 1.8 2.9 2.6 2.3 2.3 2.4 2.4 2.0 2.9 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	(alg trk)	1.5	1.4	1.8	1.6	1.8	2.1	2.3	5.4	2.3		:	:		-	
(a) 2.2 (2.4 (2.7) (2.4 (2.0) (2.3 (1.0) (2.2 (3.3 (1.0) (2.2 (2.3 (1.0) (2.3 (1.0) (2.2 (2.3 (1.0) (2.3 (1.0) (2.2 (2.3 (1.0) (2.3	40-50(x trk)	0.3	6.0	1.9	2.4	2.9	4.5	3,2	2.2	3.5		3.3	1	-	-	
0.5 0.7 1.1 1.5 1.3 1.7	(alg trk)	7.7	4.7	3.5	7.7	4.7	7.0	2,3	1.6	7.7		l.6		:		-
(a) 0.4 0.8 1.3 1.9 1.9 2.5 4.4 5.0 (b) 4 0.8 1.3 1.2 1.8 1.8 1.8 (c) 6 1.1 1.9 2.9 2.6 2.6 (c) 6.5 5.7 6.4 8.9 6.6 4.7 (c) 6.1 0.2 2.2 (c) 6.1 1.2 2.3 (c) 6.1 1.4 8.9 6.6 4.7 (c) 6.1 1.2 2.8 (d) 6.1 1.4 8.9 6.6 4.7 (e) 6.1 1.4 8.9 6.6 4.7 (f) 6.1 1.5 2.1 (g) 6.1 1.5 2.1 (h) 6.2 1.1 (h) 6.1 1.1	50-60(x trk)	0.5	0.7	1.1	1.5	1.3	1.7	-	1.4	5.2			-	-	-	-
(a) 3 0,7 0,6 2,3 1,9 1,9 2,5 4,4 5.0	(418 CIA)		0.,	000	2.	0.1			2.	3.6			-			
3.2 3.7 1.9 2.6 1.8 1.7 2.1 3.5 3.4 0.4 0.8 1.3 1.2 1.8 1.8 3.2 3.3 4.0 2.9 2.5 2.3 0.6 1.1 1.9 2.6 2.6 0.6 5.7 6.4 8.9 6.6 4.7 0.7 1.6 2.1 11.2 7.6 10.2 8.7 10.0.9 11.2 0.9 11.2 0.9 11.3 1.4 2.1 3.5 3.4 11.4 1.5 2.1 3.5 3.4 11.5 1.6 2.1 3.5 3.4 11.5 1.6 2.1 3.5 3.4 11.5 1.6 2.1 3.5 3.4 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7 11.5 1.6 10.2 8.7	60-70(x trk)	0.3	0.7	9.0	2.3	1.9	1.9	5,5	4.4	2.0						
0.4 0.8 1.3 1.2 1.8 1.8 3.2 3.3 4.0 2.9 2.5 2.3 3.6 2.9 2.6 2.6 6.5 5.7 6.4 8.9 6.6 4.7 11.2 7.6 10.2 8.7 11.2 7.6 10.2 8.7 11.2 7.6 10.2 8.7 11.3 7.6 10.2 8.7 11.4 10.9 8.7 11.5 7.6 10.2 8.7 11.6 2.1 11.7 7.6 10.2 8.7 11.8 7.6 10.2 8.7 11.9 0.9 11.1 1.9 2.9 11.1 1.9 2.9 11.1 1.0 0.9 11.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	(alg trk)	3.2	3.7	1.9	5.6	1.8	1.7	2,1	3.5	3.4			-			
3.2 3.3 4.0 2.9 2.5 2.3 1.2 1.1	70-80(x trk)	4.0	8.0	1.3	1.2	1.8	1.8							-		-
0.6 1.1 1.9 2.9 2.6 2.6 0.6 1.1 1.9 2.9 2.6 2.6 0.2 2.2 0.1 2.2 2.2 1.2 2.2 1.3 7.6 10.2 8.7 1.4 0.9 1.5 0.9 1.6 0.9 1.7 0.9 1.8 0.9 1.9 0.9 1.9 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9	(alg trk)	3.2	3,3	4.0	5.9	5.2	2.3					:	:	-		-
0.6 1.1 1.9 2.9 2.6 2.6 6.5 5.7 6.4 8.9 6.6 4.7 6.1 2.2 6.1 7.9 11.2 7.6 10.2 8.7 6.0 6.0 6.1 6.0 6.1 6.0 6.2 6.0 6.3 6.0 6.0 6.4 6.0 6.0 6.0 6.5 6.0	80-90(x trk)	-		1.2	1.1										-	:
0.6 1.1 1.9 2.9 2.6 2.6 6.5 5.7 6.4 8.9 6.6 4.7 6.1 2.2 6.1 7.9 11.2 7.6 10.2 8.7 6.0 6.0 11.3 0.9 6.1 6.0 11.4 0.9 11.5 0	(alg trk)	1		3.6	5.9	-	-									:
6,5 5,7 6,4 8,9 6,6 4,7	90-100(x trk)	9.0	1.1	1.9	5.9	5.6	5.6									-
0.2 7.9 7.9	(alg trk)	6.5	2.1	6.4	8.9	9.9	4.7		:	-			:		-	:
0.7 0.7 1.6 2.1 1.1.2 7.6 10.2 8.7	100-110(x trk)	0.2	-		2.2		-	-							-	-
0,7 0,7 1,6 2,1 1,1,2 7,6 10,2 8,7	(alg trk)	6.1			7.9				-		:			:		:
11.2 7.6 10.2 8.7	110-120(x trk)	0.7	7.0	9.1	2.1	-			:		-		:	:	-	-
	(alg trk)	11.2	1.6	10.2	8.7				-		-	-			:	-
	120-130(x trk)		6.0					-	-		:	-	:	:	:	:
	(alg trk)		0.9						:		-		-		-	-
	130-140(x trk)	-						-		-	-	-			-	:
	(alg trk)				-				1		!	:	:	:		:
	140-150(x trk)	-			-			-	-				:	:	-	-
	(alg trk)	:	:	:							:	:	:	:	:	:

TABLE 33. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION CROSSTRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--COMBINED AIR TRANSPORT QUALITY SENSOR DATA

Step 1			
Variable Entered 1 (ATD)	044 010		
Sum of Squares Reduced in this Step	264.013		
Proportion Reduced in this Step	0.721		
Cumulative Sum of Squares Reduced	264.013	11	
Cumulative Proportion Reduced	0.721	of	366.305
For 1 Variable Entered			
Multiple Correlation Coefficient 0.84			
(Adjusted for D. F.) 0.84			
F-Value for Analysis of Variance 245.19	5		
Standard Error of Estimate 1.03	3		
(Adjusted for D. F.) 1.03	3 and the survivor		
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
1 (ATD) 0.04958 0.00317	15.659		
Intercept -0.14714			
Step 2			
Variable Entered 2 (TPD)			
Sum of Squares Reduced in this Step	0.301		
Proportion Reduced in this Step	0.001		
Cumulative Sum of Squares Reduced	264.314		
Cumulative Proportion Reduced	0.722	of	366.305
For 2 Variables Entered			
Multiple Correlation Coefficient 0.84	9		
(Adjusted for D. F.) 0.84	3		
F-Value for Analysis of Variance 121.80	3		
Standard Error of Estimate 1.04			
(Adjusted for D. F.) 1.04			
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
1 (ATD) 0.04894 0.00340	14.373		
2 (TPD) -0.00186 0.00353	- 0.526		
20 H.	- 0.320		
Intercept -0.01631			

TABLE 34. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR REGRESSION--COMBINED AIR TRANSPORT QUALITY SENSOR DATA

	Along-Track Distance	Tangent Point Distance	2-Sigma Along-Track
Along-Track Distance	1.0000	-0.3586	0.8490
Tangent Point Distance	-0.3586	1.0000	-0.3311
2-Sigma Crosstrack	0.8490	-0.3311	1.0000

2-sigma crosstrack error = -0.016 nmi + 0.049 (ATD) nmi - 0.002 (TPD) nmi

A similar regression was run on the along-track error data in table 32. Table 35 contains the results of the along-track regression, while table 36 contains the resulting correlation matrix. The equation for predicting the 2-sigma along-track error can be obtained from the results of the regression:

2-sigma along-track error = -0.553 nmi + 0.061 (TPD) nmi - 0.001 (ATD) nmi

The equations were then used to generate another tangent point table shown in table 37. Figures 24 and 25 were generated from the regression equation, but as before, the least significant term in each regression equation is deleted. For the crosstrack equation, the tangent point distance term is deleted, while for the along-track equation, the along-track distance term is deleted. The boundaries, based on the standard error of estimate, are also depicted in the figures.

GENERAL AVIATION VOR/DME NAVIGATION SOLUTION ERRORS.

Positional errors were calculated from the general aviation flight test sensor data and resolved into crosstrack and along-track components. Table 38 enumerates the statistics for the general aviation flights.

The distributions for these errors are presented in figures 26 and 27. Figure 26 is the distribution for the crosstrack error, while figure 27 is the distribution for the along-track error. Both distributions are leptokutic.

Table 39 is the tangent point table of the measured 2-sigma values for cross-track and along-track error obtained from the general aviation RNAV flight tests. All of the data collected in these flight tests were collected in the terminal area, and the maximum altitude of the test patterns used for these flights was 5,000 feet. For this reason, the tangent point table of measured data was limited to short range data.

A regression analysis was run on these data. Table 40 contains the results of the regression, with crosstrack error as the dependent variable and tangent point distance and along-track distance as the independent variables. Table 41 contains the resulting correlation matrix.

The equation for predicting the 2-sigma crosstrack error can be obtained from the regression:

2-sigma crosstrack error = -0.059 nmi + 0.033 (ATD) nmi + 0.0003 (TPD) nmi

A similar regression was run on the along-track error data. Table 42 contains the results of the regression, while table 43 contains the resulting correlation matrix. The equation for predicting the 2-sigma along-track error can be obtained from the regression:

2-sigma along-track error = -0.234 nmi + 0.049 (TPD) nmi - 0.004 (ATD) nmi

TABLE 35. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--COMBINED AIR TRANSPORT QUALITY SENSOR DATA

Step 1			
Variable Entered 2 (TPD)			
Sum of Squares Reduced in this Step	384.102		
Proportion Reduced in this Step	0.777		
Cumulative Sum of Squares Reduced	384.102		
Cumulative Proportion Reduced	0.777	of	494.193
For 1 Variable Entered			
Multiple Correlation Coefficient 0.882			
(Adjusted for D. F.) 0.882			
F-Value for Analysis of Variance 331.450			
Standard Error of Estimate 1.077			
(Adjusted for D. F.) 1.077			
Variable Regression Std. Error of	Computed		
	T-Value		
2 (TPD) 0.06196 0.00340	18.206		
Intercept -0.64358			
Step 2			
Variable Entered 1 (ATD)			
Sum of Squares Reduced in this Step	0.139		
Proportion Reduced in this Step	0.000		
Cumulative Sum of Squares Reduced	384.241		
Cumulative Proportion Reduced	0.778	of	494.193
For 2 Variables Entered			
Multiple Correlation Coefficient 0.882			
(Adjusted for D. F.) 0.880			
F-Value for Analysis of Variance 164.247 Standard Error of Estimate 1.082			
	C		
	Computed		
Number Coefficient Reg. Coeff. 2 (TPD) 0.06151 0.00366	<u>16.793</u>		
	- 0.345		
1 (ATD) -0.0122 0.00354 Intercept -0.55266	- 0.343		
-0.33200			

TABLE 36. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR REGRESSION--COMBINED AIR TRANSPORT QUALITY SENSOR DATA

	Along-Track Distance	Tangent Point Distance	2-Sigma Along-Track
Along-Track Distance	1.0000	-0.3586	-0.3318
Tangent Point Distance	-0.3586	1.0000	0.8816
2-Sigma Along-Track	-0.3318	0.8816	1.0000

TANGENT POINT TABLE OF 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS GENERATED FROM REGRESSION EQUATIONS -- COMBINED AIR TRANSPORT QUALITY SENSOR DATA TABLE 37.

Distance in Nautical Miles Along Track from Tangent Point

	0-10	10-20	20-30	30-40	40-50	9-09	02-09	70-80	06-08	90-100	100-110	110-120	120-130	130-140	140-150
0-10(x trk)	0.5	6.0	4.4	1.9	2.4	5.9	3.4	3.9	4.4	4.9	5.3	5.8	6.3	8.9	7.3
(alg trk)	0,1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	- 0.1	-0.1	-0.1	-0.1	-0.1	-0.1
10-20(x trk)	4.0	6.0	1.4	1.9	4.2	5.9	3.4	3.9	4.4	8.4	5.3	5.8	6,3	8.9	7.3
(alg trk)	0.7	1.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.5	0.5	0.5	0.5	0.5
20-30(x trk)	4.0	6.0	1.4	1.9	2.4	5.9	3.4	3.8	4.3	4.8	5.3	5.8	6.3	6.8	7.3
(alg trk)	1,3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.1
30-40(x trk)	4.0	6.0	1.4	1.9	2.4	2.8	3,3	3.8	4.3	8.4	5.3	5.8	6,3	8.9	7.3
(alg trk)	1.9	1.9	1.9	1.9	1.9	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.7	1.7
40-50'x trk)	0.4	6.0	1.4	1.8	2.3	8.2	3,3	3.8	4.3	8.4	5.3	5.8	6,3	6.7	7.2
(aig trk)	2,5	5.5	5.5	5.5	5.5	5.5	2.4	2.4	5.4	2.4	2.4	2.4	2.4	2.4	2.3
50-60(x trk)	4.0	6.0	1.3	1.8	2.3	2.8	3.3	3.8	4.3	8.4	5.3	5.7	6.2	6.7	7.2
(alg trk)	3,1	3.1	3.1	3.1	3.1	3.1	3.1	3.0	3.0	3.0	3.0	3.0	3,0	3.0	3.0
60-70(x trk)	0.3	8.0	1.3	1.8	2.3	8.2	3,3	3.8	4.3	4.7	5.5	5.7	6.2	6.7	7.2
(alg trk)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.6	3.6	3.6	3.6	3.6	3.6	3.6
70-80(x trk)	0.3	8.0	1.3	1.8	2.3	2.8	3.3	3.8	4.2	4.7	5.5	5.7	6.2	6.7	7.2
(alg trk)	4.4	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.2	4.2	4.2	4.2	4.2
80-90(x trk)	0.3	8.0	1.3	1.8	2.3	8.2	3.2	3.7	4.2	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	2.0	2.0	2.0	4.9	6.4	4.9	4.9	4.9	4.9	4.9	4.9	8.4	8.4	4.8	8.4
90-100(x trk)	0.3	8.0	1.3	1.8	2.2	2.7	3.2	3.7	4.2	4.7	5.5	5.7	6.2	9.9	7.1
(alg trk)	9.6	9.6	9.6	9.6	5.5	5.5	5.5	5,5	5.5	5.5	5.5	5.5	5.4	5.4	5.4
100-110(x trk)	0.3	8.0	1.2	1.7	2.2	2.7	3.2	3.7	4.2	4.7	5.2	5.7	6,1	9.9	7.1
(alg trk)	6.2	6.2	6.2	6.2	6.2	6.1	6.1	6.1	6.1	6,1	6.1	6.1	6.1	0.9	0.9
110-120(x trk)	0.3	7.0	1.2	1.7	2.2	2.7	3.2	3.7	4.2	4.7	5.1	9.6	6.1	9.9	7.1
(alg trk)	8.9	8.9	8.9	8.9	8.9	8.9	6.7	4.9	6.7	6.7	6.7	6.7	6.7	6.7	6.7
120-130(x trk)	0.2	0.7	1.2	1.7	2.2	2.7	3.2	3.7	4.1	4.6	5.1	5.6	6.1	9.9	7.1
(alg trk)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.3	7.3	7.3	7.3	7.3	7,3	7.3
130-140(x trk)	0.2	0.7	1.2	1.7	2.2	2.7	3,1	3.6	4.1	4.6	5.1	9.6	6.1	9.9	7.1
(alg trk)	8.1	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	4.7	4.7	7.9	6.2	4.6	7.9
140-150(x trk)	0.2	1.0	1.2	1.7	2.2	9.2	3.1	3.6	4.1	4.6	5,1	9.6	6.1	9.9	7.0
(alg trk)	8.7	8.7	8.6	8.6	8.6	9.8	9.8	8.6	9.8	8.6	8.5	8.5	8.5	8.5	8.5

A STATE OF THE STA

Perpendicular Distance in Nautical Miles from Tangent Point to VOR

TABLE 38. VOR/DME NAVIGATION SOLUTION ERROR STATISTICS -- GENERAL AVIATION QUALITY SENSOR DATA

Number of Samples	76,224	76,224
One Standard Deviation (nmi)	0.336	0.371
Mean (nm1)	-0.002	-0.043
	VOR/DME Crosstrack Error	70R/DME Along-Track Error
	VOR/DME	VOR/DME

108.0

TABLE 39. TANGENT POINT TABLE OF MEASURED 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS---GENERAL AVIATION QUALITY SENSOR DATA.

Distance in Nautical Miles Along Track from Tangent Point

	0-10	10-20	20-30	30-40	40-50	09-05	2-09
0-10(x trk)	0.2	4.0	1,1	1.7	1	:	:
(alg trk)	0.2	0.3	0,3	4.0	1	:	:
10-20(x trk)	0.3	4.0	0.7	6.0	;	;	:
(alg trk)	9.0	0.5	0.5	4.0	1	:	
20-30(st trk)	0.3	0.7	1.0	1.2	1	i	!
(alg trk)	0.7	1.0	1.0	1.0	:	1	1
30-40(x trk)	0.4	1	1	1	-	;	:
(alg trk)	2.4		1	:	:	1	1
40-50(x trk)	i	•	1	:	:	:	:
(alg trk)	:	1	:	:	:	1	1
50-60(x trk)	:	:	:	;	!	:	•
(alg trk)	-	i	!	:		:	1
60-70(x trk)	:	-	1	:	:	:	1
(alg trk)	:	:	-	:	:	:	:

from Tangent Point to VFR

TABLE 40. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION CROSSTRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--GENERAL AVIATION QUALITY SENSOR DATA

Step 1	
Variable Entered 1 (ATD)	
Sum of Squares Reduced in this Step	1.830
Proportion Reduced in this Step	0.801
Cumulative Sum of Squares Reduced	1.830
Cumulative Proportion Reduced	0.801 of 2.285
For 1 Variable Entered	
Multiple Correlation Coefficient	0.895
(Adjusted for D. F.)	0.895
F-Value for Analysis of Variance	44.144
Standard Error of Estimate	0.204
(Adjusted for D. F.)	0.204
Variable Regression Std. Error of	Computed
Number Coefficient Reg. Coeff.	T-Value
1 (ATD) 0.03273 0.00493	6.644
Intercept -0.05060	
Step 2	
Variable Entered 2 (TPD)	
Sum of Squares Reduced in this Step	0.000
Proportion Reduced in this Step	0.000
Cumulative Sum of Squares Reduced	1.830
Cumulative Proportion Reduced	0.801 of 2.285
For 2 Variables Entered	0.001 01 2.203
Multiple Correlation Coefficient	0.895
(Adjusted for D. F.)	0.885
F-Value for Analysis of Variance	20.073
Standard Error of Estimate	0.213
(Adjusted for D. F.)	0.223
Variable Regression Std. Error of	
and a second of	Computed
Number Coefficient Reg. Coeff. 0.03279 0.00527	T-Value 6.224
2 (TPD) 0.00035 0.00637	0.054
Intercept -0.05941	0.034
-0.03941	

TABLE 41. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR REGRESSION--GENERAL AVIATION QUALITY SENSOR DATA

	Along-Track Distance	Tangent Point Distance	2-Sigma Crosstrack
Along-Track Distance	1.0000	-0.1960	0.8947
Tangent Point Distance	-0.1960	1.0000	-0.1678
2-Sigma Crosstrack	0.8947	-0.1678	1.0000

TABLE 42. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--GENERAL AVIATION QUALITY SENSOR DATA

Step 1			
Variable Entered 2 (TPD)			
Sum of Squares Reduced in this Step	2.905		
Proportion Reduced in this Step	0.718		
Cumulative Sum of Squares Reduced	2.905		
Cumulative Proportion Reduced	0.718	of	4.046
For 1 Variable Entered			
Multiple Correlation Coefficient 0.847			
(Adjusted for D. F.) 0.847			
F-Value for Analysis of Variance 27.988			
Standard Error of Estimate 0.322			
(Adjusted for D. F.) 0.322			
Variable Regression Std. Error of	Computed		
Number Coefficient Reg. Coeff.	T-Value		
2 (TPD) 0.04984 0.00942	5.290		
Intercept -0.36397			
Step 2			
Variable Entered 1 (ATD)			
Sum of Squares Reduced in this Step	0.033		
Proportion Reduced in this Step	0.008		
Cumulative Sum of Squares Reduced	2.938		
Cumulative Proportion Reduced	0.726	of	4.046
For 2 Variables Entered			
Multiple Correlation Coefficient 0.852			
(Adjusted for D. F.) 0.837			
F-Value for Analysis of Variance 13.250			
Standard Error of Estimate 0.333			
(Adjusted for D. F.) 0.348			
나는 그들은 사람들은 사람들이 가는 이번 이번에 가는 사람들이 되었다. 이번 사람들이 되었다면 하나 그 사람들이 되었다면 하는데 되었다면 하나 없는데 되었다면 하나 없다. 이렇게 되었다는데 하나 되었다.	Computed		
	T-Value		
2 (TPD) 0.04878 0.00993	4.913		
	-0.546		
Intercept -0.23417	-0.540		
Intercept -0.2341/			

TABLE 43. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR REGRESSION-GENERAL AVIATION QUALITY SENSOR DATA

	Along-Track Distance	Tangent Point Distance	2-Sigma Along-Track
Along-Track Distance	1.00000	-0.1960	-0.2546
Tangent Point Distance	-0.1960	1.0000	0.8473
2-Sigma Along-Track	-0.2546	0.8473	1.0000

TANGENT POINT TABLE OF 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS GENERATED FROM RECRESSION EQUATIONS--GENERAL AVIATION QUALITY SENSOR DATA TABLE 44.

Distance in Nautical Miles Along Track from Tangent Point

	9	000	30 30	30 70	9 07		
	0-10	10-20	20-30	30-40	40-50	2	09-09
0-10(x trk)	0.3	9.0	6.0	1.3	1.6	1	6.
(alg trk)	0.2	0.2	0.1	0,1	0.0		0
10-20(x trk)	0,3	9.0	6.0	1.3	1.6	-:	6
(alg trk)	0.7	7.0	9.0	9.0	0.5	.0	2
20-30(x trk)	0,3	9.0	6.0	1.3	1.6		6
(alg trk)	1.2	1:1	1.1	:	1.0	-	0
30-40(x trk)	0.3	9.0	6.0	1.3	1.6	1.0	•
(alg trk)	1.7	1.6	1.6	1.5	1.5	1.	_
40-50(x trk)	0.3	9.0	6.0	1.3	1.6	1.	6
(alg trk)	2.2	2.1	2.1	2.0	2.0	1.9	
50-60(x trk)	0.3	9.0	6.0	1.3	1.6	1.9	
(alg trk)	5.6	5.6	5.6	2.5	2.5	2.4	
60-70(x trk)	0.3	9.0	6.0	1.3	1.6	1.9	
(alg trk)	3.1	3.1	3.0	3.0	3.0	2.9	

Perpendicular Distance in Mautical Miles from Tangent Point to VOR

These equations were then used to generate the tangent point table in table 44. The generated table was only carried out to 70 nmi because of the lack of measured data at the longer ranges.

Figures 28 and 29 were then generated to depict crosstrack error and along-track error, respectively, as a function of the predominant variable in the regression equation.

COMBINED VOR/DME NAVIGATION SOLUTION ERROR DATA FOR BOTH AIR TRANSPORT AND GENERAL AVIATION TYPE SENSORS.

The navigation solution data from the three sets of flight tests were combined. Table 45 presents the statistics from the combined data, while figures 30 and 31 present the distributions for crosstrack and along-track errors. As can be seen, both of these distributions are leptokurtic.

TABLE 45. VOR/DME NAVIGATION SOLUTION ERROR STATISTICS--ALL DATA COMBINED

	Mean (nmi)	One Standard Deviation (nmi)	Number of Samples
VOR/DME Crosstrack Error	0.024	0.771	217,601
VOR/DME Along-Track Error	-0.086	0.623	217,601

The combined measured data were entered into the tangent point table shown in table 46. A regression analysis was run on this combined data. The results of the regression on crosstrack error data are presented in table 47, while the resulting correlation matrix is presented in table 48.

The equation for predicting the 2-sigma crosstrack error can be obtained from the results of the regression:

-0.176 + 0.049 (ATD) + 0.003 (TPD).

A similar regression was run on the along-track data. Table 49 presents the results of the regression, while the resulting correlation matrix is presented in table 50.

The equation for predicting the 2-sigma along-track error can be obtained from the results of the regression:

-0.744 nmi + 0.065 (TPD) nmi + 0.001 (ATD) nmi

TANGENT POINT TABLE OF MEASURED 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS--ALL DATA COMBINED TABLE 46.

Distance in Nautical Miles Along Track from Tangent Point

	01-0	10-20	20-30	30-40	40-50	9-05	02-09	10-80	06-08	90-100	100-110	110-120	120-130	130-140	130-140 140-150
0-10(x trk)	0.3	9.0	1.3	1.7	2.1	2.0	2.5	3.2	3.7	4.6	4.3	5.3	3.9	-	:
(alg trk)	0.3	0.3	4.0	0.4	0.4	0.3	0.3	4.0	4.0	0.3	4.0	0.1	0.2	•	:
10-20(x trk)	0.3	9.0	1.0	1.8	2.8	2.8	3.0	2.8	3.4	8.4	4.4	9.1	:	:	
(alg trk)	9.0	9.0	. 9.0	9.0	8.0	0.7	9.0	0.5	9.0	1.6	9.0	1.2	:		:
20-30(x trk)	0.3	1.0	1.1	1.5	2.0	2.4	0.9	5.4		3.2	6.5	7.0	:	:	:
(alg trk)	1.3	1.4	1:1	1.2	1.1	1.0	2.0	1.7	:	9.0	1.3	1,3	:	:	:
30-40(x trk)	0.4	0.7	1,3	1.7	2.3	3.4	5.0	5.5	6.3	5.0		:	:	:	:
(alg trk)	2.1	1.6	1.7	1.6	1.8	2.1	2.3	7.4	2.3	1.9	:	:	:	-	:
40-50(x trk)	0.4	6.0	1.8	7.7	5.9	2.4	3.2	2.2	3.5	5.4	3.3	;	:	:	:
(alg trk)	2.2	2.3	5.9	2.7	2.4	5.0	2.3	1.6	2.2	3,3	1.6	:	:	:	:
50-60(x trk)	0.2	0.7	1.2	1.3	1.3	1.6	:	4.1	5.1	:		:	:	-	:
(alg trk)	3.3	2.0	5.0	1.7	1.6	1.7	:	3.0	3.2	:	:	:	:		:
60-70(x trk)	0.5	4.0	9.0	0.0	0.0	2.3	1.9	1.9	2.5	4.5	5.0	:	:		:
(alg trk)	0.7	4.6	1.9	0.0	0.0	5.6	1.8	1.7	2.1	3,4	3.4	:	:	:	:
70-80(x trk)	4.0	8.0	1.3	1.2	1.8	1.8	:	:	:		:	:	:	1	;
(alg trk)	3.2	3.2	4.0	2.8	2.5	2.3	:		:			:	:	:	:
80-90(x trk)	-	:	1.2	1.0	:	:	:	:	:	4.4	:	::	:	1	:
(alg trk)	:	:	3.6	3.0	:	:	:	:	!	4.0	:	:	:	:	:
90-100(x trk)	9.0	1.1	1.9	5.9	5.6	5.6	:	:	:	:		:	:	:	:
(alg trk)	9.0	3.8	6.4	8.8	9.9	4.6	:	:	:	:	:	:	:	:	:
100-110(x trk)	0.2	:	:	4.2	1	:	1	:	-	:	:	;	:	-	:
(alg trk)	0.9		:	8.0	:	:	:	:	:	:	:	:	:	:	:
110-120(x trk)	0.7	0.7	1.5	2.1	:	:	:	:	-	:	:	:	:	:	:
(alg trk)	11.2	1.6	10.1	8.6	:	-	-	-	:	:		:	:	-	!
120-130(x trk)	6.0	1	1	-	:	:	-	!	!	-	1	:	:	-	:
(alg trk)	0.9	:	:		:	:	:	:	-	:	1	:	:	:	:
130-140(x trk)	-	-	-	-	:	1	;	1	-	:	:	:	:	:	-
(alg trk)		:	:		:	-	-	:	-	:		:	1	-	!
140-150(x trk)		:	:	-	:	:	:	!	-	:	:	:	:	:	:
(alg trk)	-	:	:			:	:	:	:	:	-	:	:	:	:

Perpendicular Distance in Maurical Miles from Tangent Point to VOR

TABLE 47. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION CROSSTRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--ALL DATA COMBINED

Step 1		
Variable Entered 1 (ATD)		
Sum of Squares Reduced in this Step	249.513	
Proportion Reduced in this Step	0.738	
Cumulative Sum of Squares Reduced	249.513	
Cumulative Proportion Reduced	0.738	of 338.086
For 1 Variable Entered		
	859	
(Adjusted for D. F.) 0.	859	
F-Value for Analysis of Variance 264.	801	
	971	
(Adjusted for D. F.) 0.	971	
Variable Regression Std. Error of	Computed	
Number Coefficient Reg. Coeff.	T-Value	
1 (ATD) 0.04889 0.00300	16.273	
Intercept -0.15712	- 1911 18.0-	
Step 2		
Variable Entered 2 (TPD)		
Sum of Squares Reduced in this Step	0.006	
Proportion Reduced in this Step	0.000	
Cumulative Sum of Squares Reduced	249.519	
Cumulative Proportion Reduced		of 338.086
For 2 Variables Entered	0.750	330.000
	859	
	857	
F-Value for Analysis of Variance 131.		
	976	
	981	
mogration of all of	Computed	
Number Coefficient Reg. Coeff.	T-Value	
1 (ATD) 0.04898 0.00526	15.030	
2 (TPD) 0.00026 0.00336	0.079	
Intercept -0.17594		

TABLE 48. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR REGRESSION--ALL DATA COMBINED

	Along-Track Distance	Tangent Point Distance	2-Sigma Crosstrack
Along-Track Distance	1.00000	-0.37573	0.85908
Tangent Point Distance	-0.37573	1.00000	-0.31891
2-Sigma Crosstrack	0.85908	-0.31891	1.00000

TABLE 49. RESULTS OF REGRESSION ANALYSIS OF VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERRORS, ALONG-TRACK DISTANCE, AND TANGENT POINT DISTANCE--ALL DATA COMBINED

Step 1						
Variable Entere	ed 2 (TF	(D)				
Sum of Squares		The state of the s		412.470		
	duced in this S	the same of the sa		0.577		
Cumulative Sum				412.470		
	portion Reduce			0.577	of	714.729
For 1 Variable						
	elation Coeffic	ient	0.760			
	for D. F.)		0.760			
F-Value for Ana			128.274			
	of Estimate		1.793			
	for D. F.)		1.793			
Variable	Regression	Std. Error of	Co	mputed		
Number	Coefficient	Reg. Coeff.		Value		
2 (TPD)	0.06482	0.00572	1	1.326		
Intercept	-0.65789					
Step 2						
Variable Entere	ed 1 (ATI	0)				
Sum of squares	Reduced in thi	is Step		0.120		
	duced in this			0.000		
Cumulative Sum	of Squares Rec	duced		412.590		
	portion Reduce			0.577	of	714.729
For 2 Variables						
Multiple Corre	elation Coeffic	ient	0.760			
(Adjusted	for D. F.)		0.757			
F-Value for A	nalysis of Vari	lance	63.498			
Standard Error	of Estimate		1.802			
(Adjusted	for D. F.)		1.812			
Variable	Regression	Std. Error of	Co	mputed		
Number	Coefficient	Reg. Coeff.	T-	Value		
2 (TPD)	0.06527	0.00621	1	0.514		
1 (ATD)	0.00116	0.00602		0.192		
Intercept	-0.74434					

TABLE 50. CORRELATION MATRIX FROM VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR REGRESSION--ALL DATA COMBINED

	Along-Track Distance	Tangent Point Distance	2-Sigma Crosstrack
Along-Track Distance	1.0000	-0.3747	-0.2734
Tangent Point Distance	-0.3757	1.0000	-0.7597
2-Sigma Crosstrack	-0.2734	-0.7597	1.0000

These two equations were then used to generate the tangent point table in table 51. All the flight test data from the three different flight tests went into generating this table.

Figures 32 and 33 were also generated from the regression equations, but in each case, the factor which was the least significant term in the equation was eliminated. For figure 32, the least significant term was tangent point distance. For figure 33, along-track error, the least significant term was along-track distance.

COMPARISON OF ADVISORY CIRCULAR 90-45A TANGENT POINT TABLE AND TANGENT POINT CALCULATED FROM REGRESSION EQUATION.

In order to compare the Advisory Circular 90-45A tangent point table to the tangent point table generated from a regression analysis of all data collected in the RNAV flight tests, a differential tangent point table was constructed. The table was constructed by taking a value in a discrete interval from the regression tangent point table and subtracting this value from the value in the corresponding interval in the Advisory Circular 90-45A tangent point table (Advisory Circular 90-45A TPT Value minus Regression TPT Value). The resulting table allows an immediate comparison of the differences between the Advisory Circular 90-45A and the regression tangent point tables.

The results are contained in table 52. As can be seen from the table, there are no negative values in this table. This means that in all cases, the Advisory Circular 90-45A tangent point table offers a more conservative figure than the table generated from the regression analysis.

DME/DME NAVIGATION SOLUTION ERRORS.

A total of 28 RNAV flights were conducted with dual air transport quality DME used as the radio sensor inputs to the RNAV system. As part of the data analysis, a position was computed from the two DME ranges and was compared to the actual position derived from radar tracking. This provided quantitative data with respect to the DME/DME navigational solution errors.

Statistical data for crosstrack and along-track errors associated with a DME/DME position solution in the terminal area are shown in table 53. Figure 34 is a histogram of the DME/DME crosstrack errors, while figure 35 is a histogram of the DME/DME along-track errors. A normal curve is fitted to each of the histograms.

TANGENT POINT TABLE OF 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS GENERATED FROM REGRESSION EQUATIONS--ALL DATA COMBINED TABLE 51.

Distance in Nautical Miles Along Track from Tangent Point

	0-10	10-20	20-30	30-40	40-50	09-09	02-09	70-80	80-90	90-100	100-110	110-120	120-130	120-130 130-140	140-150
0-10(x trk)	0.3	8.0	1.3	1.8	2.3	2.8	3.3	3.7	2.4	4.	5.2	5.7	6.2	6.7	7.2
10-20(x trk)	0.3	8							. 4	. 4	2.5	2 4	6.7	1.0	1.0
(alg trk)	9.0	9.0	9.0	9.0	9.0	9.0	9.0		0.7	0.7	0.7	0.7	0.7	0.7	0.7
20-30(x trk)	0.3	8.0	1.3	1.8		8.2	3,3		4.2	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	1.2	1.2	1.2	1.3	1.3	1.3	1.3		1.3	1.3	1.3	1.4	1.4	1.4	1.4
30-40(x trk)	0.3	8.0	1.3	1.8	2,3	2.8	3,3	3.8	4.2	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	1.9	1.9	1.9	1.9	1.9	1.9	1.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
40-50(x trk)	0.3	8.0	1.3	1.8	2,3	8.2	3.3	3.8	4.2	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	5.5	5.5	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	2.7	2.7	2.7	2.7
50-60(x trk)	0.3	8.0	1.3	1.8	2.3	8.2	3.3	3.8	4.2	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	3.2	3.2	3.2		3.2	3.2	3,3	3,3	3,3	3,3	3,3	3.3	3,3	3,3	3,3
60-70(x trk)	0.3	8.0	1.3	1.8	2,3	2.8	3,3		4.3	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	3.8	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	4.0	4.0	4.0	4.0	4.0
70-80(x trk)	0.3	8.0	1.3	1.8	2.3	2.8	3,3		4.3	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	4.5	4.5	4.5	4.5	4.5	4.5	4.6		4.6	4.6	4.6	4.6	4.6	4.6	4.7
80-90(x trk)	0.3	8.0	1.3	1.8	2.3	2.8	3.3	3.8	4.3	4.7	5.2	5.7	6.2	6.7	7.2
(alg trk)	5.1	5.2	5.5	2.5	5.2	5.5	5.5		5.2	5.5	5.2	5.3	5,3	5,3	5.3
90-100(x trk)	0.3	8.0	1.3	1.8	2,3	2.8	3,3		4.3	4.7	5.2	5.7	6.2	. 2.9	7.2
(alg trk)	2.8	2.8	2.8	5.8	5.8	6.5	6.5		6.6	6.9	5.9	6.9	6.6	5.9	0.9
100-110(x trk)	0.3	8.0	1.3	1.8	2,3	2.8	3,3		4.2	4.8	5.2	5.7	6.2	6.7	7.2
(alg trk)	4.9	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	9.9	9.9	9.9	9.9	9.9
110-120(x trk)	4.0	8.0	1.3	1.8	2,3	8.2	3,3	3.8	4.3	4.8	5.2	2.5	6.2	6.7	7.2
(alg trk)	7.1	7.1	7.1	7.1	7.1	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.3	7.3
120-130(x trk)	4.0	8.0	1.3	1.8	2.3	8.2	3,3	3.8	4.3	8.	5.2	5.7	6.2	6.7	7.2
(alg trk)	7.8	7.8	7.8	7.8	7.8	7.8	7.8		7.8	4.7	4.7	6.2	6.7	4.9	4.9
130-140(x trk)	4.0	8.0	1.3	1.8	2.3	2.8	3,3	3.8	4.3	4.8	5.2	5.7	6.2	6.7	7.2
(alg trk)	8.4	8.4	8.4	8.4	8.5	8.5	8.5		8.5	8.5	8.5	8.5	8.5	8.6	8.6
140-150(x trk)	4.0	8.0	1.3	1.8	2.3	8.2	3,3	3.8	4.3	4.8	5,3	2.5	6.2	6.7	7.2
(alg trk)	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	2.6		2.6	2.6	9.5	9.5	9.5

Perpendicular Distance in Nautical Miles from Tangent Point to VOR

TANGENT POINT TABLE OF THE DIFFERENCE BETWEEN THE 2-SIGMA VOR/DME NAVIGATION SOLUTION ERRORS OF THE ADVISORY CIRCULAR 90-45A TANGENT POINT TABLE (TABLE 23) AND TABLE 51 TABLE 52.

Distance in Nautical Miles Along-Track from Tangent Point

	0-10	10-20	20-30	30-40	40-50	9-09	02-09	70-80	80-90	90-100	100-110	110-120	120-130	130-140	140-15
0-10(x trk)	0.4	0.5	9.0	1.0	8.0	6.0	1.1	1.3	1.4	1.5	1.6	1.7	1.9	2.0	2.1
(alg trk)	8.0	1.0	1.2	1.4	1.6	1.9	2.2	2.5	2.8	3.1	3.4	3.7	3.9	4.1	4.4
10-20(x trk)	9.0	9.0	0.7	8.0	6.0	1.0	1.1	1.3	1.4	1.5	1.6	1.8	1.9	2.0	2.1
(alg trk)	0.7	8.0	6.0	1:1	1.3	1.6	1.8	2.0	2.3	5.5	2.8	3.1	3.4	3.7	4.0
20-30(x trk)	8.0	0.7	8.0	8.0	6.0	1.0	1:1	1.2	1.5	1.6	1.7	1.8	1.9	2.0	2.1
(alg trk)	0.7	8.0	6.0	6.0	1.1	1.3	1.5	1.7	2.0	2.2	2.5	2.7	5.9	3.2	3.5
30-40(x trk)	1.1	-	6.0	1.0	1.0	1.1	1.2	1.3	1.5	1.6	1.7	1.8	2.0	2.1	2.2
(alg trk)	9.0	0.7	0.7	6.0	1.0	1.2	1.4	1.5	1.7	1.9	2.1	2.4	5.6	5.9	3,1
40-50(x trk)	1.3	6.0	6.0	1.1	1.1	1.2	1.3	1.4	1.6	1.7	1.8	1.9	2.0	2.1	2.2
(alg trk)	9.0	0.7	9.0	0.7	8.0	1.0	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.8
50-60(x trk)	1.6	1.4	1.3	1.3	1.3	1.3	1.4	1.5	1.7	1.8	1.9	2.0	2.1	2.2	2.3
(alg trk)	0.5	9.0	9.0	0.7	8.0	6.0	1.0	1.1	1.3	1.5	1.7	1.9	2.1	2,3	2.5
60-70(x trk)	1.8	1.6	1.5	1.5	1.4	1.5	1.5	9.1	1.7	1.8	1.9	2.0	2,1	2.2	2.3
(alg trk)	9.0	9.0	0.5	9.0	0.7	8.0	6.0	1.1	1.2	1.4	1.5	1.6	1.8	2.0	2,3
70-80(x trk)	2.2	1.9	1.7	1.7	1.6	1.6	1.7	1.7	1.8	2.0	5.0	2.1	2.2	2,3	2.4
(alg trk)	0.5	0.5	0.5	9.0	0.7	8.0	8.0	6.0	1.0	1.2	1.4	1.5	1.7	1.9	2.0
80-90(x trk)	2.5	2.2	2.0	1.9	1.8	1.8	1.8	1.8	1.9	2.1	2.1	2.2	2.3	5.4	5.6
(alg trk)	0.5	-	0.5	0.5	9.0	1.0	8.0	6.0	1.0	1.1	1.3	1.3	1.5	1.7	1.9
90-100(x trk)	2.8		2.2	2.1	2.0	2.0	2.0	2.0	2.0	2.2	2.3	2.3	2.4	5.5	5.6
(alg trk)	4.0	0.4	0.5	0.5	9.0	9.0	9.0	8.0	6.0	1.0	1.1	1.3	1.4	1.6	1.8
100-110(x trk)	3,1	-	2.5	2.3	2.2	2.2	2.2	2.2	2,3	2.2	2.4	2.4	5.5	5.6	2.7
(alg trk)	0.4	0.3	0.4	4.0	0.5	9.0	9.0	0.7	0.8	1.0	1.0	1.1	1.3	1.4	1.6
110-120(x trk)	3,3	-	8.2	5.6	5.5	2.4	2.3	2.3	2,3	2.4	5.5	5.6	9.2	2.7	2.8
(alg trk)	0.3	0.4	0.4	0.4	0.5	0.5	0.5	9.0	0.7	8.0	6.0	1:1	1.2	1.2	1.4
120-130(x trk)	3.6		3.0	2.8	2.7	2.5	2.5	5.5	2.5	5.5	2.7	2.7	2.8	2.8	5.9
(alg trk)	0.3	0.3	0.3	4.0	4.0	0.5	0.5	9.0	0.7	0.7	0.8	6.0	1:1	1.2	1.2
130-140(x trk)	3.8	3.6	3,3	3.1	5.9	2.8	2.7	2.7	2.7	2.7	2.8	2.8	5.9	5.9	3.0
(alg trk)	0.3	0.3	0.3	4.0	0.3	4.0	4.0	0,5	9.0	0.7	0.8	6.0	1.0	1.0	1.2
140-150(x trk)	4.1	3.9	3.6	3,3	3.3	3.0	3.0	5.9	5.9	5.9	5.9	3.0	3.0	3.1	3.1
(alg trk)	0.2		0.2	0.3	0.3	0.4	4.0	9.0	0.5	9.0	0.7	0.8	6.0	1.0	::

Perpendicular Distance in Mautical Miles from Tangent Point to VOR

TABLE 53. DME/DME NAVIGATION SOLUTION ERROR STATISTICS

	Mean (nmi)	One Standard Deviation (nmi)	Number of Samples
Crosstrack	0.023	0.126	38,693
Along-Track	0.005	0.155	38,693

Figure 36 is used to illustrate the geometry of the DME/DME solution and the effect of the included angle between the two DME stations and the aircraft. In these illustrations, the angle θ is formed by the intersection of the lines drawn from the DME stations to the aircraft position. In figure 36A, the angle θ is approximately 90°, and the positions defined by the intersection of the circles of DME range are sharply defined. The ambiguous solution is sufficiently distant from the primary solution so that the ambiguous solution can be discarded by utilizing a VOR bearing or by comparing the two solutions to the approximate position of the aircraft as derived through dead reckoning. Also, small errors in DME range have the least effect in terms of causing errors in the DME/DME solution.

In figure 36B, where the angle θ approaches 180°, and in figure 36C, where the angle θ approaches 0°, the situation is quite different. Neither of the two solutions are sharply defined, and they are close enough to each other so that it may be difficult to discriminate against the ambiguous solution. Also, DME errors will have the largest effect in terms of causing errors in the DME/DME solution.

The effects of the included angle on the solution error is illustrated by figures 37 and 38. These figures illustrate the error for crosstrack and along-track solutions, respectively, as a function of the included angle.

SUMMARY OF TEST RESULTS

- 1. Combined ground and airborne sensor errors for air transport quality DME resulted in a mean of -0.08 nmi, with a one standard deviation of 0.1 nmi.
- 2. Combined ground and airborne sensor errors for air transport quality VOR resulted in a mean of -0.3° with a one standard deviation of 1.5° .
- 3. The error distributions from the air transport quality VOR and DME equipments are leptokurtic.
- 4. Combined ground and airborne sensor errors for general aviation quality DME resulted in a mean of -0.03 nmi with a one standard deviation of 0.14 nmi.
- 5. Combined ground and airborne sensor errors for general aviation quality VOR resulted in a mean of 0.06° with a one standard deviation of 1.1°.
- 6. The general aviation quality VOR error distribution is leptokurtic; the DME error distribution is normal.
- 7. The combined ground and airborne sensor errors for all combined DME data resulted in a mean of -0.07 nmi with a one standard deviation of 0.11 nmi.
- 8. The combined ground and airborne sensor errors for all combined VOR data resulted in a mean of -0.2° with a one standard deviation of 1.4° .
- 9. Navigation solutions in the terminal area using air transport quality sensors for VOR/DME radio information resulted in positional errors as follows:

	Mean (nmi)	One Standard Deviation (nmi)	Samples
Crosstrack	0.038	0.923	141,514
Along-Track	-0.109	0.721	141,514

Distributions of both crosstrack and along-track VOR/DME navigation solution errors were leptokurtic.

10. Navigation solutions in the terminal area using general aviation quality sensors for VOR/DME radio information resulted in positional error as follows:

	Mean (nmi)	One Standard Deviation (nmi)	Samples
Crosstrack	-0.002	0.336	76,224
Along-Track	-0.043	0.371	76,224

Distributions of crosstrack and along-track VOR/DME navigation errors were leptokurtic.

11. Combined navigation solutions in the terminal area for all data resulted in positional errors as follows:

	Mean (nmi)	One Standard Deviation (nmi)	Samples
Crosstrack	0.024	0.771	217,601
Along-Track	-0.086	0.623	217,601

12. Navigation solutions in the terminal area using DME/DME radio information resulted in positional errors as follows:

	Mean (nmi)	One Standard Deviation (nmi)	Samples
Crosstrack	0.023	0.126	38,693
Along-Track	0.005	0.155	38,693

CONCLUSIONS

From the results, it is concluded that:

- 1. The combined ground station and airbone sensor errors for air transport type VOR sensors resulted in a 2-sigma value of 3.1°. This compares favorably with the 2-sigma value of 3.55° (+1.9° ground and +3.0° airborne combined using root-sum-square) used in Advisory Circular 90-45A.
- 2. The combined ground station and airborne sensor errors for air transport type DME sensors resulted in a 2-sigma value of 0.2 nmi. This measured error is less than the Advisory Circular 90-45A budget of 0.51 nmi (+0.1 nmi ground and +0.5 nmi maximum airborne).
- 3. The combined ground station and airborne sensor errors for general aviation type VOR sensors resulted in a 2-sigma value of 2.2° over the measured distance. This measured error is less than the Advisory Circular 90-45A budget of 3.55° (+1.9 ground and +3.0° maximum airborne).
- 4. The combined ground station and airborne sensor errors for general aviation type DME sensors resulted in a 2-sigma value of 0.28 nmi over the measured distance. This measured error is less than Advisory Circular 90-45A budget of 0.41 nmi (±0.1 nmi ground and ±0.5 nmi maximum airborne).
- 5. The results of the comparison between the tangent point table generated from Advisory Circular 90-45A VOR and DME 2-sigma errors and the tangent point table generated from a regression of measured errors indicates in table 56 the measured crosstrack and along-track errors to be less than those in the tangent point table generated from the Advisory Circular 90-45A sensor error budget.
- 6. The VOR data as presented in tables 4 and 8 indicate that there is no significant degradation of shallow-angle signals in the terminal and approach areas. This conclusion is limited to approaches where the VOR is collocated at the field to which the approach is being made.
- 7. Comparisons between DME/DME and VOR/DME crosstrack and along-track navigation error solutions indicate the DME/VOR errors to be four times as great.

FIGURE 1. DATA PROCESSING PROCEDURES

FIGURE 2. DME ERROR DISTRIBUTION FOR AIR TRANSPORT QUALITY SENSORS--TEST I

FIGURE 3. VOR ERROR DISTRIBUTION FOR AIR TRANSPORT QUALITY SENSORS--TEST I

FIGURE 4. DME ERROR DISTRIBUTION FOR AIR TRANSPORT QUALITY SENSORS--TEST II

FIGURE 5. VOR ERROR DISTRIBUTION FOR AIR TRANSPORT QUALITY SENSORS--TEST II

FIGURE 6. VOR ERROR DISTRIBUTION FOR COMBINED AIR TRANSPORT QUALITY SENSOR DATA

FIGURE 7. DME ERROR DISTRIBUTION FOR COMBINED AIR TRANSPORT QUALITY SENSOR DATA

FIGURE 8. VOR ERROR DISTRIBUTION FOR GENERAL AVIATION QUALITY SENSORS

FIGURE 9. DME ERROR DISTRIBUTION FOR GENERAL AVIATION QUALITY SENSORS

FIGURE 10. VOR ERROR DISTRIBUTION FOR COMBINED AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

FIGURE 11. DME ERROR DISTRIBUTION FOR COMBINED AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

FIGURE 13. VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR DISTRIBUTION--AIR TRANSPORT QUALITY SENSORS--TEST I

FIGURE 14. VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR DISTRIBUTION--AIR TRANSPORT QUALITY SENSORS--TEST I

FIGURE 15. ILLUSTRATION OF TANGENT POINT DISTANCE AND ALONG-TRACK DISTANCE

FIGURE 16. TWO-SIGMA CROSSTRACK ERROR AS FUNCTION OF ALONG-TRACK DISTANCE--AIR TRANSPORT QUALITY SENSORS--TEST I

FIGURE 17. TWO-SIGMA ALONG-TRACK ERROR AS FUNCTION OF TANGENT POINT DISTANCE--AIR TRANSPORT QUALITY SENSORS--TEST I

FIGURE 18. VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR DISTRIBUTION--AIR TRANSPORT QUALITY SENSORS--TEST II

FIGURE 19. VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR DISTRIBUTION--AIR TRANSPORT QUALITY SENSORS--TEST II

FIGURE 20. TWO-SIGMA CROSSTRACK ERROR AS FUNCTION OF ALONG-TRACK DISTANCE--AIR TRANSPORT QUALITY SENSORS--TEST II

FIGURE 21. TWO-SIGMA ALONG-TRACK ERROR AS FUNCTION OF TANGENT POINT DISTANCE--AIR TRANSPORT QUALITY SENSOR--TEST II

FIGURE 22. VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR DISTRIBUTION COMBINED AIR TRANSPORT QUALITY SENSORS

FIGURE 23. VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR DISTRIBUTION COMBINED AIR TRANSPORT QUALITY SENSORS

FIGURE 24. TWO-SIGMA CROSSTRACK ERROR AS FUNCTION OF ALONG-TRACK DISTANCE--COMBINED AIR TRANSPORT QUALITY SENSORS

FIGURE 25. TWO-SIGMA ALONG-TRACK ERROR AS FUNCTION OF TANGENT POINT DISTANCE--COMBINED AIR TRANSPORT QUALITY SENSORS

and the second

FIGURE 26. VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR DISTRIBUTION GENERAL AVIATION QUALITY SENSORS

FIGURE 27. VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR DISTRIBUTION GENERAL AVIATION QUALITY SENSORS

FIGURE 28. TWO-SIGMA CROSSTRACK ERROR AS FUNCTION OF ALONG-TRACK DISTANCE--GENERAL AVIATION QUALITY SENSORS

FIGURE 29. TWO-SIGMA ALONG-TRACK ERROR AS FUNCTION OF TANGENT POINT DISTANCE--GENERAL AVIATION QUALITY SENSORS

FIGURE 30. VOR/DME NAVIGATION SOLUTION CROSSTRACK ERROR DISTRIBUTION-COMBINED AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

FIGURE 31. VOR/DME NAVIGATION SOLUTION ALONG-TRACK ERROR DISTRIBUTION-COMBINED AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

FIGURE 32. TWO-SIGMA CROSSTRACK ERROR AS FUNCTION OF ALONG-TRACK DISTANCE--COMBINED AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

FIGURE 33. TWO-SIGMA ALONG-TRACK ERROR AS FUNCTION OF TANGENT POINT DISTANCE--COMBINED AIR TRANSPORT AND GENERAL AVIATION QUALITY SENSORS

FIGURE 34. DME/DME NAVIGATION SOLUTION CROSSTRACK ERROR DISTRIBUTION

FIGURE 35. DME/DME NAVIGATION SOLUTION ALONG-TRACK ERROR DISTRIBUTION

FIGURE 36. DME/DME NAVIGATION SOLUTION GEOMETRY

FIGURE 37. DME/DME NAVIGATION SOLUTION 2-SIGMA CROSSTRACK ERRORS AS A FUNCTION OF INCLUDED ANGLE

FIGURE 38. DME/DME NAVIGATION SOLUTION 2-SIGMA ALONG-TRACK ERRORS AS A FUNCTION OF INCLUDED ANGLE