2.6 Conditioning

Conditioning on events

The **conditional pmf of**
$$X$$
 given an event A with $P(A)>0$, is defined as $p_{X|A}(x)=P(X=x\mid A)=rac{P(\{X=x\}\cap A)}{P(A)},$

and satisfies

$$\sum_{x\in R_X} p_{X|A}(x) = 1.$$

Conditioning on events (cont)

The fact that

$$\sum_{x \in R_X} p_{X|A}(x) = 1$$

since

$$P(A) = \sum_{x \in R_X} P(\{X = x\} \cap A)$$

by the Total Probability Law.

Visualizing the conditional pmf

Visualization and calculation of the conditional pmf.

Conditioning and the Total Probability Law

If A_1,\dots,A_n are disjoint events that partition the sample space, with $P(A_i)>0$ for $i=1,2,\dots,n$, then

$$p_X(x)=\sum_{i=1}^n P(A_i)p_{X|A_i}(x).$$

Conditioning and the Total Probability Law (cont)

Additionally, for any event B, if $P(A_i\cap B)>0$ for all i, we have

$$p_{X\mid B}(x) = \sum_{i=1}^n P(A_i\mid B) p_{X\mid A_i\cap B}(x).$$

Example 2.12

Let X be the roll of a fair-sided die and let A be the event that the roll is an even number. Determine the conditional pmf of X when $A = \{ \text{the roll is an even number} \}.$

Example 2.13

A student can pass a test with probability p. The student will keep taking the test repeatedly, up to a maximum of n times, until they pass the test. Each test outcome is independent.

Let X be the number of attempts needed to pass the test if an unlimited number of events were allowed. Determine the pmf of X given the student passed.

Example 2.13 (cont)

Conditioning one Random Variable on Another

Conditional pmf definition

Let X and Y be discrete random variables. The $\operatorname{conditional}\operatorname{pmf}\operatorname{of} X$ given Y is defined as:

$$p_{X|Y}(x|y)=rac{P(X=x,Y=y)}{P(Y=y)}=rac{p_{X,Y}(x,y)}{p_{Y}(y)},$$
 when $p_{Y}(y)>0.$

Conditional pmf normalization

$$\sum_{x \in R_X} p_{X|Y}(x|y) = 1,$$
 for each fixed y with $p_Y(y) > 0.$

Visualizing the conditional pmf

Visualization of the conditional pmf.

Joint and conditional pmfs

The joint PMF can be expressed in terms of the conditional and marginal PMFs:

$$p_{X,Y}(x,y)=p_{X|Y}(x|y)p_Y(y)$$
 and $p_{X,Y}(x,y)=p_{Y|X}(y|x)p_X(x).$

Example 2.14

Professor May B. Right often has his facts wrong, and answers each of his students' questions incorrectly with probability 1/4, independent of other questions. In each lecture, May is asked 0, 1, or 2 questions with equal probability 1/3. Let X and Y be the number of questions May is asked and the number of questions she answers wrong in a given lecture, respectively. Construct the joint pmf of X.

Example 2.14 (cont)

Example 2.14 (cont)

Example 2.14 joint pmf calculation.

Marginal and conditional pmfs

The conditional pmf of X given Y can be used to calculate the marginal pmf of X through the formula

$$p_X(x) = \sum_{y \in R_Y} p_Y(y) p_{X\mid Y}(x \mid y).$$

Example 2.15

Consider a transmitter that is sending messages over a computer network. Let us define the following two random variables:

X: the travel time of a given message,

Y: the length of the given message.

We know the pmf of the travel time of a message of a given length, and we know the mpf of the message length. Determine the pmf of the travel time of a message.

Example 2.15 (cont)

The length of a message is either 10^2 bytes with probability 5/6 or 10^4 bytes with probability 1/6.

The conditional distribution of the travel time when the message length $y=10^2\,$ bytes is

$$p_{X|Y}(x\mid 10^2) = \left\{ egin{array}{ll} rac{1}{2} & ext{if } x=10^{-2}, \ rac{1}{3} & ext{if } x=10^{-1}, \ rac{1}{6} & ext{if } x=1. \end{array}
ight.$$

Example 2.15 (cont)

The conditional distribution of the travel time when the message length $y=10^4\,{
m bytes}$ is

$$p_{X|Y}(x\mid 10^4) = \left\{ egin{array}{ll} rac{1}{2} & ext{if } x=1, \ rac{1}{3} & ext{if } x=10, \ rac{1}{6} & ext{if } x=100. \end{array}
ight.$$

Example 2.15 (cont)