

3.4 二进制译码器的应用

典型的应用有以下几种:

- ① 实现存储系统的地址译码;
- ② 实现逻辑函数;
- ③ 带使能端的译码器可用作数据分配器或脉冲分配器。

3.4.1 典型应用之一:

实现存储系统的地址译码

典型应用之一:

面安電子科技大學 XIDIAN UNIVERSITY

实现存储系统的地址译码

例1:分析下图所示Y0-Y7的译码地址。

$$F1 = 1 \longrightarrow A_5 A_7 = 1 \longrightarrow A_5 = 1 \qquad A_7 = 1$$

$$F2 = 0 \longrightarrow A_4 + A_6 = 0 \longrightarrow A_4 = 0 \qquad A_6 = 0$$

$$A_3 = 0$$

思考题:请用74138设计一地址译码电路,实现2E0-2E7的地址译码。

提示:

2E0H-2E7H, 对应的地址线为:

A ₉	A ₈	A ₇	A_6	A ₅	A ₄	A_3	A ₂	A_1	A_0
1	0	1	1	1	0	0	0	0	0
1	0	1	1	1	0	0	0	0	1
1	0	1	1	1	0	0	0	1	0
1	0	1	1	1	0	0	0	1	1
1	0	1	1	1	0	0	1	0	0
1	0	1	1	1	0	0	1	0	1
1	0	1	1	1	0	0	1	1	0
1	0	1	1	1	0	0	1	1	1

3.4.2典型应用之二:实现组合逻辑函数

【例 2】 试用3-8译码器实现函数: $F_1 = \sum m(0,4,7)$ $F_2 = \sum m(1,2,3,5,6,7)$

分析: 因为当译码器的使能端有效时, 每个输出 $Y_i = m_i = M_i$, 因此只要将函数的输入变量加至译码器的地址输入端, 并在输出端辅以少量的门电路, 便可以实现逻辑函数。

$$F_1 = \sum_{m} m(0, 4, 7)$$

$$F_2 = \sum m(1, 2, 3, 5, 6, 7)$$

$$F_1 = m_0 + m_4 + m_7 = \overline{\overline{m}_0 \cdot \overline{m}_4 \cdot \overline{m}_7} = \overline{Y_0 \cdot Y_4 \cdot Y_7}$$

$$F_2 = m_1 + m_2 + m_3 + m_5 + m_6 + m_7$$

= $M_0 \cdot M_4 = Y_0 \cdot Y_4$

	00	01	11	10	
0	0	1	1	0	
1	1	1	1	1	

 \boldsymbol{F}_2

思考题1: 用74138和门电路实现下面的逻辑函数。

$$f_1(a,b,c) = \sum m(1,2,4,5)$$

 $f_2(a,b,c) = \prod M(2,3,6,7)$

思考题2: 用74138和门电路设计一个一位二进制全加器。

3.4.3 二进制译码器的扩展

通常用译码器的使能端来实现二进制译码器的扩展例1. 用3-8译码器实现4-16译码器。

分析:

3-8译码器: 3个输入端 8个输出端

4-16译码器: 4个输入端 16个输出端

充分 利用使能端

