STAT 401A - Statistical Methods for Research Workers Modeling assumptions

Jarad Niemi (Dr. J)

Iowa State University

last updated: September 10, 2014

Normality assumptions

In the paired t-test, we assume

$$D_i \stackrel{iid}{\sim} N(\mu, \sigma^2).$$

In the two-sample t-test, we assume

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2).$$

Paired t-test

0

Two-sample t-test

Difference

Distribution

Normality assumptions

In the paired t-test, we assume

$$D_i \stackrel{iid}{\sim} N(\mu, \sigma^2).$$

In the two-sample t-test, we assume

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2).$$

Key features of the normal distribution assumption:

- ullet Centered at the mean (expectation) μ
- Standard deviation describes the spread
- Symmetric around μ (no skewness)
- Non-heavy tails, i.e. outliers are rare (no kurtosis)

Normality assumptions

Probability density function

t distribution

у

Probability density function

Skewness

Log-normal distribution

у

Samples from skewed distributions

Robustness

Definition

A statistical procedure is robust to departures from a particular assumption if it is valid even when the assumption is not met.

Remark If a 95% confidence interval is robust to departures from a particular assumption, the confidence interval should cover the true value about 95% of the time.

Robustness to skewness and kurtosis

Percentage of 95% confidence intervals that cover the true difference in means in an equal-sample two-sample t-test with non-normal populations (where the distributions are the same other than their means).

sample size	strongly skewed	moderately skewed	mildly skewed	heavy-tailed	short-tailed
5	95.5	95.4	95.2	98.3	94.5
10	95.5	95.4	95.2	98.3	94.6
25	95.3	95.3	95.1	98.2	94.9
50	95.1	95.3	95.1	98.1	95.2
100	94.8	95.3	95.0	98.0	95.6

Differences in variances

Normal distribution

Differences in variances

Robustness to differences in variances

Percentage of 95% confidence intervals that cover the true difference in means in an equal-sample two-sample t-test $(r = \sigma_1/\sigma_2)$.

n1	n2	r=1/4	r=1/2	r=1	r=2	r=4
10	10	95.2	94.2	94.7	95.2	94.5
10	20	83.0	89.3	94.4	98.7	99.1
10	40	71.0	82.6	95.2	99.5	99.9
100	100	94.8	96.2	95.4	95.3	95.1
100	200	86.5	88.3	94.8	98.8	99.4
100	400	71.6	81.5	95.0	99.5	99.9

Outliers

Definition

A statistical procedure is resistant if it does not change very much when a small part of the data changes, perhaps drastically.

Identify outliers:

- If recording errors, fix.
- ② If outlier comes from a different population, remove and report.
- If results are the same with and without outliers, report with outliers.
- If results are different, use resistant analysis or report both analyses.

Common ways for independence to be violated

- Cluster effect
 - e.g. pigs in a pen
- Correlation effect
 - e.g. measurements in time with drifting scale
- Spatial effect
 - e.g. corn yield plots (drainage)