Ryan M. Richard | Chemistry

Ames National Labratory and Iowa State University - Ames, IA - USA

☐ (440) 665 5091 • ☐ rrichard@ameslab.gov https://rmrresearch.github.io/

Scientist II at Ames National Laboratory and Adjunct Assistant Professor of Chemistry at Iowa State University. Research interests include: ab initio methods development, computational chemistry, high-performance computing, high-accuracy applications, program interoperability.

Education

Ph.D. The Ohio State University

Columbus, OH

2008-2013

Dissertation topic: "Increasing the Computational Efficiency of Ab Initio Methods with Generalized Many-Body Expansions"

Advisor: John M. Herbert

B.S. Cleveland State University

Cleveland, OH

Undergraduate: Chemistry major, Advisor: David W. Ball

2004-2008

Professional Experience

Scientist II, Ames National Laboratory

Ames, IA 2018-Present

Architect and a lead developer of NWCHEMEX.

Additional Responsibilities: Mentor undergraduate researchers.

Cleveland, OH

Research Assistant, NASA Glenn Research Center Research Topics:

2007-2008

Characterization of degradation properties of ionic liquid based lubricants for terrestrial and space applications by Raman and infrared spectroscopies as well as liquid and gas chromatography.

Academic Experience

Adjunct Assistant Professor of Chemistry, Iowa State University

Ames, IA

High-accuracy benchmark development.

2022-Present

Additional Responsibilities: Co-advise graduate students.

Postdoctoral Researcher, Ames National Laboratory

Ames, IA

Algorithm development, development of massively parallel architecture

2017-2018

Additional Responsibilities: Mentor undergraduate researchers Postdoctoral Researcher, Georgia Institute of Technology

Atlanta. GA

Algorithm development, high-accuracy bench marking

2014-2017

Additional Responsibilities: Mentor undergraduate researchers, substitute teach lectures, assist in grant writing

Research Assistant, The Ohio State University

Columbus, OH

Algorithm development, excited state modeling

2008-2014

Teaching Assistant, The Ohio State University

Columbus, OH 2009-2011

General chemistry laboratory and recitation, physical chemistry recitation Additional Responsibilities: Grading, weekly office hours

Cleveland, OH

Research Assistant, Cleveland State University Characterization of new high-energy materials

2006-2008

Software Development Experience

NWChemEx

https://github.com/NWChemEx-Project

Architect and lead developer

2017-present

- Package focused on high-performance, massively parallel electronic structure theory.
- Contributions: design, plugin framework, CI infrastructure, SCF, MP2, MP2-F12, CCSD-F12

GhostFragment

https://github.com/rmrresearch/GhostFragment

Founder, architect, project manager, and lead developer

- Software for massively parallel generalized many-body expansion and basis-set superposition corrections.
- Contributions: concept, design, CI infrastructure, initial implementations.

CMakePP

https://github.com/CMakePP

Founder, architect, project manager, and lead developer

2019-present

2008-2013

- Object-oriented CMake build system.
- Contributions: concept, design, CI infrastructure, CMakePP language

Psi4

https://psicode.org/

Developer

2014-2017

- Electronic structure package focused on providing a user-friendly experience.
- Contributions: SCF, infrastructure, many-body expansion

Q-Chem

https://www.q-chem.com/

Developer

- Commercial electronic structure package focused on good performance on workstations and small clusters.
- Contributions: QM/MM

Expertise

O Computational Chemistry Topics:

Hartree-Fock, MP2, coupled-cluster, explicit correlation, domain-local methods, fragment-based methods

O Productivity Tools:

Git, GitHub, VSCode, Slack

Computer Languages:

C/C++, Python, CMake, LATEX, Bash

Markup Languages:

Doxygen, Sphinx-flavored reStructured Text, Markdown

O Python Packages:

Jupyter Notebooks, Matplotlib, Numpy, SymPy, Sphinx

O C++ Libraries:

Boost, Catch2, Cereal, PyBind11

O High-Performance Computing Libraries:

BLAS, LAPACK, MPI

Honors and Awards

Ames National Laboratory Scientist Leadership Development Program

Ames, IA

Accepted into 2022 - 2023 cohort

2022 - 2023

- Nominees are junior level scientists at the laboratory who show leadership potential.
- Program focuses on mentoring and developing leadership skills with a focus on career advancement at a Department of Energy National Laboratory.

ISU Research Collaboration Catalysts

Ames, IA

Accepted into 2020 - 2021 cohort

2020 - 2021

- Nominees demonstrate potential to lead future high-impact interdisciplinary research teams.
- Provided educational opportunities to refine leadership skills.

0	Finalist for the Emerging Technology in Computational Chemistry Symposium 252^{nd} American Chemical Society National Meeting and Exposition	Philadelphia,PA 2016
0	The Ohio State University Graduate School Fellowship The Ohio State University	Columbus, OH 2008–2009
0	Best Undergraduate Presentation Notre Dame College	outh Euclid, OH 2007
0	Cleveland State University Honors Program Scholarship Cleveland State University	Cleveland, OH 2004–2008
P	rofessional Service	
0	2022 Iowa State Fair	Des Moines, IA
	Explained research at Ames National Laboratory to general public and answered questions	
0	Volunteer National Science Bowl	Ames, IA 2019–2020
0	Session chair 256^{th} National American Chemical Society Meeting.	Boston, MA 2018
0	PURA (President's Undergraduate Research Award) application reviewer Georgia Institute of Technology	Atlanta, GA 2016
0	Session chair 2^{nd} Annual Postdoctoral Research Symposium	Atlanta, GA 2015
0	Session chair 1^{st} Annual Postdoctoral Research Symposium	Atlanta, GA 2014
0	Organizer for "Postdocs@Tech" Responsibilities: Organize monthly social events and an annual university research symposium.	Atlanta, GA 2014–2017
0	Peer Review Journal of Chemical Physics, Journal of Chemical Theory and Computation	
0	Professional Societies American Chemical Society	
A	ctive Grants	
0	Ames National Laboratory Directed Research and Development FY2022-xxxx-01 Ryan M. Richard (PI) GhostFragment: Making Strong Electron Correlation Less Scary	Ames, IA 2021–2022
	Value of award: \$48,000.00	
C	ompleted Grants	
0	Renewal of XSEDE Research Allocation number CHE150006 Ryan M. Richard (PI), C. D. Sherrill (Co-PI).	Atlanta, GA 2016–2017
	Accurate Crystal Lattice Energies Via Pleasantly Parallel Methods	
0	Value of award: \$115,006.00 XSEDE Research Allocation number CHE150006 Ryan M. Richard (PI), C. D. Sherrill (Co-PI).	Atlanta, GA 2015-2016
	Applying Quantum Chemistry to Condensed Phase Systems Using the Many-Body Expans	1011

XSEDE Startup Allocation number CHE140145

Ryan M. Richard (PI), C. D. Sherrill (Co-PI).

Accurate Crystal Properties Via Massively Parallel Quantum Chemistry

Atlanta, GA 2014–2015

Students Mentored

_	otadonto inicitorea				
Undergraduates					
0	Theodore Davis Research focus: Object-oriented CMake.	Ames, IA 2020–2021			
0	Emin Okic Research focus: Continuous integration for CMake.	Ames, IA 2020–2021			
0	Allison Finger Research focus: Object-oriented CMake.	Ames, IA 2020			
0	Blake Mulnix Research focus: Object-oriented CMake.	Ames, IA 2020			
0	Jacob Brunton Research focus: Improving self-consistent field guesses.	Ames, IA 2020			
0	Branden Butler Research focus: CMake documentation and unit testing	Ames, IA 2019–Present			
0	Andres Garcia-Alejo Research focus: Machine learning molecular structure	Ames, IA 2018–2019			
0	Brodie Schroeder Research focus: Machine learning applications to quantum chemistry	Ames, IA 2017			
0	Michael Zott Research focus: Understanding the many-body expansion	Atlanta, GA 2015–2017			

Invited Presentations

2022.....

13. **Ryan M. Richard**. *Software design for the exascale era: The NWChemEx perspective*. 2022 Midwest Regional Meeting for the American Chemical Society. October 2022.

2019

- 12. **Ryan M. Richard**. *The SDE: A General Computational Chemistry Software Framework*. Blue Waters Webinar. March 2019.
- 11. **Ryan M. Richard** and Theresa L. Windus. *CMake Packaging Project: Reliable, Reproducible, and Reusable Build Systems Made Easy.* Spring NWCHEMEX Team Meeting. Richland, WA. March 2019.
- Ryan M. Richard. The Simulation Development Environment (SDE): A C++ Framework for Reusable Computational Chemistry. Society for Industrial and Applied Mathematics Conference on Computational Science and Engineering. Spokane, WA. February 2019.

2018

9. **Ryan M. Richard**. *Applying Ab Initio Methods to Large Molecules*. Ames Laboratory. Ames, IA. August 2018.

2017.....

8. **Ryan M. Richard**. *Exascale Prototyping Via A Computational Chemistry App Store*. 254th National American Chemical Society Meeting. Washington, D.C. August 2017.

2016

7. **Ryan M. Richard**. *Pulsar: A Computational Chemistry App Store*. PSI4 Developers Meeting. University of Georgia. Athens, GA. November 2016.

- 6. **Ryan M. Richard**. *Forcemanll: Status and Possible Future Directions*. Q-CHEM Developers Meeting. University of Pennsylvania. Philadelphia, PA. August 2016.
- 5. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. University of Tennessee. Knoxville, TN. February 2016.
- 4. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. Youngstown State University. Youngstown, OH. February 2016.
- 3. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. Tennessee Technological University. Cookeville, TN. January 2016.

2015

2. **Ryan M. Richard**. *Understanding Chemistry Via Fragment Based Methods*. University of North Florida. Jacksonville, FL. November 2015.

2008.....

1. **Ryan M. Richard**, David W. Ball. *Thermodynamic Studies on the Potential Use of Boron- and/or Nitrogen-Containing Molecules as New High Energy Materials*. Ohio State University. Columbus, OH. February 2008.

Contributed Presentations

2019

- 21. **Ryan M. Richard** and Theresa L. Windus. *CMake Packaging Project: Reliable, Reproducible, and Reusable Build Systems Made Easy.* 257^{th} National American Chemical Society Meeting. Orlando, FL. April 2019.
- 20. **Ryan M. Richard**, Kristopher Keipert, Thom Dunning Jr., Robert Harrison, and Theresa L. Windus. *The NWChemEx Simulation Development Environment A General Computational Chemistry Framework*. Poster Presentation. Society for Industrial and Applied Mathematics Conference on Computational Science and Engineering. Spokane, WA. February 2019.

2018

- 19. **Ryan M. Richard** and Theresa L. Windus. *Leveraging* NWCHEMEX's computational chemistry app store to design an exascale SCF. Oral Presentation. 256th National American Chemical Society Meeting. Boston, MA. August 2018.
- Ryan M. Richard, Brandon W. Bakr, and C. David Sherrill. Understanding the Many-Body Basis Set Superposition Error: Beyond Boys and Bernardi. Oral Presentation. 50th Midwest Theoretical Chemistry Conference. Chicago, IL. June 2018.

2017.....

 Ryan M. Richard. Leveraging a Computational Chemistry App-Store for Both Teaching and Researching Chemistry. Oral Presentation. 254th National American Chemical Society Meeting. Washington, D.C. August 2017. 2016.....

- Ryan M. Richard, Ben Pritchard, and C. D. Sherrill. Leveraging a Computational Chemistry App Store to Compute High Accuracy Lattice Energies of Molecular Crystals. Oral Presentation. 252nd American Chemical Society National Meeting and Exposition. Philadelphia, PA. August 2016
- Ryan M. Richard, Brandon Bakr, and C. D. Sherrill. Understanding Basis Set Superposition Error in Many-Body Systems: Beyond Boys and Bernardi. Oral Presentation. 47th Southeast Theoretical Chemistry Association Annual Meeting. Tallahassee, FL. May 2016

2015

- Ryan M. Richard, Michael S. Marshall, Jean-Luc Brédas, Noa Marom, and C. D. Sherrill. CCSD(T)/CBS Benchmark Quality Ionization Potentials (IP) and Electron Affinities (EA). Poster Presentation. 2nd Annual Postdoctoral Research Symposium. Atlanta, GA. October 2015.
- Ryan M. Richard, C. D. Sherrill. Massively Parallel Fragment Based Methods as Implemented in PSI4. Oral Presentation. 250th American Chemical Society National Meeting and Exposition. Boston, Massachusetts. August 2015.
- 12. **Ryan M. Richard**, Michael S. Marshall, Jean-Luc Brédas, Noa Marom, and C. D. Sherrill. CCSD(T)/CBS Benchmark Quality Ionization Potentials (IP) and Electron Affinities (EA). Poster Presentation. 46th Southeast Theoretical Chemistry Association Annual Meeting. Orlando, Florida. May 2015.

2014.....

11. **Ryan M. Richard**, C. D. Sherrill. *Achieving Chemical Understanding Via High Performance Computing*. Oral Presentation. 1^{st} Annual Postdoctoral Research Symposium. Atlanta, Georgia. September 2014.

2013

- Ryan M. Richard, J. M. Herbert. Achieving the Complete-Basis Limit in Large Molecular Clusters: Computationally Efficient Procedures to Eliminate Basis-Set Superposition Error. Oral Presentation. 246th American Chemical Society National Meeting and Exposition. Indianapolis, Indiana. September 2013.
- 9. **Ryan M. Richard**, J. M. Herbert. *Achieving the Complete-Basis Limit in Large Molecular Clusters: Computationally Efficient Procedures to Eliminate Basis-Set Superposition Error*. Oral Presentation. 68th International Symposium on Molecular Spectroscopy. Columbus, Ohio. June 2013.
- 8. **Ryan M. Richard**, J. M. Herbert. Oral Presentation. 45th Midwest Theoretical Chemistry Conference. Champaign, Illinois. May 2013.

2012

7. **Ryan M. Richard**, J. M. Herbert. *A Generalized Many-Body Expansion and a Unified View of Fragment-Based Methods in Electronic Structure Theory*. Poster presentation. 44th Midwest Theoretical Chemistry Conference. Madison, Wisconsin. June 2012.

2011

- 6. **Ryan M. Richard**, J. M. Herbert. *TDDFT Calculations of Transient IR Spectra of DNA*. Oral Presentation. 66th International Symposium on Molecular Spectroscopy. Columbus, Ohio. June 2011.
- 5. **Ryan M. Richard**, J. M. Herbert. *Time-Dependent Density-Functional Description of the* 1L_a *State in Polycyclic Aromatic Hydrocarbons: Charge-Transfer State in Disguise?*. Poster Presentation. 43^{rd} Midwest Theoretical Chemistry Conference. South Bend, Indiana. June 2011.

2010.....

4. **Ryan M. Richard**, J. M. Herbert. *Determination of Exciton Length in Aqueous B-DNA Using Long-Range Time-Dependent Density Functional Theory (LRC-TDDFT)*. Oral Presentation. 65th International Symposium on Molecular Spectroscopy. Columbus, Ohio, June 2010.

2008.....

3. **Ryan M. Richard**, D. W. Ball. *Thermodynamic Studies on Boron and Nitrogen Containing Spiropentanes*. Oral Presentation. American Chemical Society Meeting in Miniature. Oberlin College. Oberlin, OH. March 2008.

2007.....

- 2. **Ryan M. Richard**, D. W. Ball. *G2*, *G3*, and Complete Basis Set Calculations on Small Hydroboranes and Mixed Boron-Nitrogen Containing Rings. American Chemical Society Meeting in Miniature. Notre Dame College. South Euclid, OH. March 2007. Winner of Best Undergraduate Presentation.
- 1. **Ryan M. Richard**, D. W. Ball. *New Potential High Energy Materials*. Cleveland State University Undergraduate Research Symposium. Summer 2007

Position Papers

 Ryan M. Richard, T. L.Windus. Is a Language Barrier Impeding Development of Better Scientific Software?. ASCR (Advanced Scientific Computing Research) Workshop on the Science of Scientific-Software Development and Use. Virtual. December 13-15 2021.

Request for Information

1. **Ryan M. Richard**, Z. Crandall, H. v. Dam, N. Govind, K. Kowalski, T. L. Windus. Stewardship of Software for Scientific and High-Performance Computing. Office of Advanced Scientific Computing Research.

Review Articles

- 2. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Aiming for Benchmark Accuracy with the Many-Body Expansion*. Accounts of Chemical Research. 47 (2014) 2828-2836.
- L. D. Jacobson, Ryan M. Richard, K. U. Lao, J. M. Herbert. Efficient Monomer-Based Quantum Chemistry Methods for Molecular and Ionic Clusters. Annual Reports of Computational Chemistry. 9 (2013) 25-56.

Publications

2021

- 32. Evgeny Epifanovsky, ..., **Ryan M. Richard**, ..., Anna I. Krylov. *Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package*. The Journal of Chemical Physics. 155 (2021) 084801. (139th of 220 authors).
- 31. Karol Kowalski, ..., **Ryan M. Richard**, ..., Theresa L. Windus. *From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape*. Chemical Reviews. 121 (2021) 4962-4998. (19th of 29 authors).

2020.....

30. Edoardo Apra, ..., Ryan Richard, ..., and Robert Harrison . *NWChem: Past, Present, and Future*. Journal of Chemical Physics. 152 (2020) 184102. (82^{nd} of 114 authors).

2019

29. **Ryan M. Richard**, Colleen Bertoni, Jeffery S. Boschen, Kristopher Keipert, Benjamin Pritchard, Edward F. Valeev, Robert J. Harrison, Wibe A. de Jong, and Theresa L. Windus. *Developing a Computational Chemistry App Store for the Exascale Era*. Computing in Science & Engineering. 21 (2019) 48.

2018		

28. **Ryan M. Richard**, Brandon Bakr, and C. David Sherrill. *Understanding the Many-Body Basis Superposition Error: Beyond Boys and Bernardi*. Journal of Chemical Theory and Computation. 14 (2018) 2386.

2017.....

27. Robert M. Parrish, ..., Ryan M. Richard, ... Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. Journal of Chemical Theory and Computation. 13 (2017) 3185. (10th of 26 authors)

2016

- 26. Ka Un Lao , Kuan-Yu Liu , **Ryan M. Richard** , and John M. Herbert. *Understanding the many-body expansion for large systems. II. Accuracy considerations.* Journal of Chemical Physics. 144 (2016) 164105.
- 25. O. Dolgounitcheva, Manuel Díaz-Tinoco, V. G. Zakrzewski, **Ryan M. Richard**, Noa Marom, C. David Sherrill and J. V. Ortiz. *Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules IV: Electron-Propagator Methods*. Journal of Chemical Theory and Computation. 12 (2016) 627-637.
- 24. **Ryan M. Richard**, Michael S. Marshall, Olga Dolgounitcheva, J. V. Ortiz, Jean-Luc Brédas, Noa Marom, and C. David Sherrill. *Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules. I. Reference Data at the CCSD(T) Complete Basis Set Limit.* Journal of Chemical Theory and Computation. 12 (2016) 595-604.

2015....

23. Y. Shao, ..., **Ryan M. Richard**,... Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. Molecular Physics. 113 (2015) 184-215. (22nd author out of 150).

2014

22. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Understanding the Many-Body Expansion for Large Systems. I. Precision Considerations.* The Journal of Chemical Physics. 141 (2014) 014108:1-14.

2013.....

- 21. Z. C. Holden, **Ryan M. Richard**, J. M. Herbert. *Periodic Boundary Conditions for QM/MM Calculations: Ewald Summation for Extended Gaussian Basis Sets.* The Journal of Chemical Physics. 139 (2013) 244108:1-13.
- 20. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Approaching the Complete-Basis Limit with a Truncated Many-Body Expansion*. The Journal of Chemical Physics. 139 (2013) 224102:1-11.
- 19. **Ryan M. Richard**, K. U. Lao, J. M. Herbert. *Achieving the CCSD(T) Basis-Set Limit in Sizable Molecular Clusters: Counterpoise Corrections for the Many-Body Expansion*. The Journal of Physical Chemistry Letters. 4 (2013) 2674-2680.
- 18. **Ryan M. Richard**, J. M. Herbert. *Many-Body Expansion with Overlapping Fragments: Analysis of Two Approaches*. Journal of Chemical Theory and Computation. 9 (2013) 1408-1416.

2012

- 17. **Ryan M. Richard**, J. M. Herbert. *A Generalized Many-Body Expansion and a Unified View of Fragment-Based Methods in Electronic Structure Theory*. The Journal of Chemical Physics. 137 (2012) 064113.
- 16. W. Morales, K. W. Street Jr., **Ryan M. Richard**, D. J. Valco. *Tribological Testing and Thermal Analysis of an Alkyl Sulfate Series of Ionic Liquids for Use as Aerospace Lubricants*. Tribology Transactions. 55 (2012) 815-821.

2011

 K. W. Street Jr., W. Morales, V. R. Koch, D. J. Valco, Ryan M. Richard, N. Hanks. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids. Tribology Transactions. 54 (2011) 911-919.

14. **Ryan M. Richard**, J. M. Herbert. *Time-Dependent Density-Functional Description of the* $^{1}L_{a}$ *State in Polycyclic Aromatic Hydrocarbons: Charge-Transfer Character in Disguise?* Journal of Chemical Theory and Computation. 7 (2011) 1296-1306.

2009

13. **Ryan M. Richard**, D. W. Ball. *B3LYP Calculations on the Thermodynamic Properties of a Series of Nitroxycubanes Having the Formula C_8H_{8-x}(NO_3)_x (x=1–8). Journal of Hazardous Materials. 164 (2009) 1593-1600.*

12. **Ryan M. Richard**, D. W. Ball. *Density Functional Calculations on the Thermodynamic Properties of a Series of Nitrosocubanes Having the Formula C_8H_{8-x}(NO)_x (x=1-8).* Journal of Hazardous Materials. 164 (2009) 1552-1555.

2008

- 11. **Ryan M. Richard**, D. W. Ball. *Ab Initio Calculations on the Thermodynamic Properties of Azaspiropentanes.* The Journal of Physical Chemistry A. 112 (2008) 2618-2627.
- 10. **Ryan M. Richard**, D. W. Ball. *Enthalpies of Formation of Nitrobuckminsterfullerenes: Extrapolation to* $C_{60}(NO_2)_{60}$. Journal of Molecular Structure: THEOCHEM. 858 (2008) 85-87.
- 9. **Ryan M. Richard**, D. W. Ball. *Ab Initio Calculations on the Thermodynamic Properties of Spiropentane and its Boron-Containing Derivatives*. Journal of Molecular Structure: THEOCHEM. 851 (2008) 284-293.
- 8. **Ryan M. Richard**, D. W. Ball. *Ab Initio Calculations on the Thermodynamic Properties of Azaborospiropentanes*. Journal of Molecular Modeling. 14 (2008) 871-878.
- 7. **Ryan M. Richard**, D. W. Ball. *G2, G3, and Complete Basis Set Calculations on the Thermodynamic Properties of Triazane*. Journal of Molecular Modeling. 14 (2008) 29-37.
- 6. **Ryan M. Richard**, D. W. Ball. *G2, G3, and Complete Basis Set Calculations of the Thermodynamic Properties of Cis- and Trans-Triazene*. Journal of Molecular Modeling. 14 (2008) 21-27.

2007

- 5. **Ryan M. Richard**, D. W. Ball. *G2, G3, and Complete Basis Set Calculations of the Thermodynamic Properties of Aminoborane, Diaminoborane, and Triaminoborane.* Journal of Molecular Structure: THEOCHEM. 823 (2007) 6-15.
- 4. **Ryan M. Richard**, D. W. Ball. *B3LYP*, *G2*, *G3* and Complete Basis Set Calculations of the Thermodynamic Properties of Small Cyclic and Chain Hydroboranes. Journal of Molecular Structure: THEOCHEM. 814 (2007) 91-98.
- 3. **Ryan M. Richard**, D. W. Ball. *G2*, *G3*, and Complete Basis Set Calculations of Optimized Geometries, Vibrational Frequencies, and Thermodynamic Properties of Azatriboretidine and Triazaboretidine. Journal of Molecular Structure: THEOCHEM. 806 (2007) 165-170.
- 2. **Ryan M. Richard**, D. W. Ball. *Optimized Geometries, Vibrational Frequencies, and Thermochemical Properties of Mixed Boron- and Nitrogen-Containing Three-Membered Rings*. Journal of Molecular Structure: THEOCHEM. 806 (2007) 113-120.

2006.....

1. **Ryan M. Richard**, D. W. Ball. *G2, G3, and Complete Basis Set Calculations of the Thermodynamic Properties of Boron-Containing Rings: cyclo-CH₂BHNH, 1,2-, and 1,3-cyclo-C₂H₄BHNH. Journal of Molecular Structure: THEOCHEM. 776 (2006) 89-96.*