Linear Regression

Peter von Rohr

2023-02-27

Goal

Assessment of relationship between

- ▶ a given variable (response) and
- other measurements or observations (predictors) on the same animal

Example

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Diagram

Observations

- relationship between breast circumference and body weight: heavier animals tend to have larger values for breast circumference
- ightharpoonup same relationship across whole range ightarrow linear relationship

Regression Model

from Noun Project

- quantify relationship between body weight and breast circumference
- practical application: measure band for animals

Created by Agniraj Chatterji from Noun Project

10

Model Building

ightharpoonup expected body weight (E(y) in kg) based on an observed value of x cm for breast circumference

$$E(y) = b_0 + b_1 * x$$

- $ightharpoonup b_0$ and b_1 are unknown parameters of the model
- lacktriangle model is linear function of parameters ightarrow linear model

Parameter Estimation

- \blacktriangleright How to find values for b_0 and b_1
- several techniques available: start with Least Squares

Least Squares

Estimators

Find values \hat{b}_0 and \hat{b}_1 such that

$$\mathbf{e}^T \mathbf{e} = \sum_{i=1}^N e_i^2 = \sum_{i=1}^N [y_i - E(e_i)]^2 = \sum_{i=1}^N [y_i - b_0 - b_1 * x_i]^2$$

is minimal

Minimization

$$\frac{\partial \mathbf{e}^{T} \mathbf{e}}{\partial b_{0}} = -2 \sum_{i=1}^{N} [y_{i} - b_{0} - b_{1} x_{i}]$$
$$= -2 \left[\sum_{i=1}^{N} y_{i} - N b_{0} - b_{1} \sum_{i=1}^{N} x_{i} \right]$$

$$\frac{\partial \mathbf{e}^{\mathsf{T}} \mathbf{e}}{\partial b_{1}} = -2 \sum_{i=1}^{N} x_{i} [y_{i} - b_{0} - b_{1} x_{i}]$$

$$= -2 \left[\sum_{i=1}^{N} x_{i} y_{i} - b_{0} \sum_{i=1}^{N} x_{i} - b_{1} \sum_{i=1}^{N} x_{i}^{2} \right]$$

Notation

$$x. = \sum_{i=1}^{N} x_i$$

$$y. = \sum_{i=1}^{N} y_i$$

$$(x^2). = \sum_{i=1}^{N} x_i^2$$

$$(xy). = \sum_{i=1}^{N} x_i y_i$$

$$\bar{x}. = \frac{x}{N}$$

$$\bar{y}. = \frac{y}{N}$$

Solutions

$$\hat{b}_0 = \bar{y}. - \hat{b}_1 \bar{x}.$$

and

$$\hat{b}_1 = \frac{(xy). - N\bar{x}.\bar{y}.}{(x^2). - N\bar{x}.^2}$$

The General Case

Height as additional observation

2 177 463 12 3 178 481 19 4 179 470 16 5 179 496 12 6 180 491 12 7 181 518 16 8 182 511 14 9 183 510 14	Animal	Breast Circumference	Body Weight	Height
3 178 481 19 4 179 470 16 5 179 496 13 6 180 491 12 7 181 518 16 8 182 511 14 9 183 510 14	1	176	471	161
4 179 470 16 5 179 496 13 6 180 491 13 7 181 518 16 8 182 511 14 9 183 510 14	2	177	463	121
5 179 496 13 6 180 491 13 7 181 518 16 8 182 511 14 9 183 510 14	3	178	481	157
6 180 491 12 7 181 518 16 8 182 511 14 9 183 510 14	4	179	470	165
7 181 518 16 8 182 511 14 9 183 510 14	5	179	496	136
8 182 511 14 9 183 510 14	6	180	491	123
9 183 510 14	7	181	518	163
	8	182	511	149
10 184 541 13	9	183	510	143
	10	184	541	130

Extended Model

Height is taken as additional predictor variable

$$E(y) = b_0 + b_1 x_1 + b_2 x_2$$

$$y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + e_i$$

ightarrow additional parameter b_2

Matrix-Vector Notation

$$\mathbf{X} = \begin{bmatrix} x_{10} & x_{11} & x_{12} \\ x_{20} & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ x_{N0} & x_{N1} & x_{N2} \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}, \ \mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_N \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$
, with $E(\mathbf{y}) = \mathbf{X}\mathbf{b}$

Parameter Estimate

Minimize

$$\mathbf{e}^{\mathsf{T}}\mathbf{e} = [\mathbf{y} - E(\mathbf{y})]^{\mathsf{T}} [\mathbf{y} - E(\mathbf{y})]$$
$$= [\mathbf{y} - \mathbf{X}\mathbf{b}]^{\mathsf{T}} [\mathbf{y} - \mathbf{X}\mathbf{b}]$$
$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{b}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{b}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{b}$$

Compute the gradient $\frac{\partial \ e^T e}{b},$ set it to 0 to get the normal equations

$$\mathbf{X}^T \mathbf{X} \hat{\mathbf{b}} = \mathbf{X}^T \mathbf{y}$$

Solution

Provided $(\mathbf{X}^T\mathbf{X})$ can be inverted

$$\hat{\boldsymbol{b}} = (\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{X}})^{-1}\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{y}}$$

Obtain Parameter Estimates in R

- Computations are tedious
- Use R builtin functions
- Assuming data is available in dataframe tbl_reg with columns Body Weight and Breast Circumference

Multiple Linear Regression Model

$$y = Xb + e$$
, with $E(y) = Xb$

General case with k x-variables

Random Error Terms

▶ Properties of random error terms in vector **e**

$$E(\mathbf{e}) = \mathbf{0}$$

$$var(\mathbf{e}) = E[\mathbf{e} - E(\mathbf{e})][\mathbf{e} - E(\mathbf{e})]^T = E(\mathbf{e}\mathbf{e}^T) = \sigma^2 \mathbf{I}_N$$

Least Squares Estimates

$$\mathbf{e}^{T}\mathbf{e} = [\mathbf{y} - E(\mathbf{y})]^{T} [\mathbf{y} - E(\mathbf{y})]$$
$$= [\mathbf{y} - \mathbf{X}\mathbf{b}]^{T} [\mathbf{y} - \mathbf{X}\mathbf{b}]$$
$$= \mathbf{y}^{T}\mathbf{y} - 2\mathbf{b}^{T}\mathbf{X}^{T}\mathbf{y} + \mathbf{b}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{b}$$

Setting

$$\frac{\partial \mathbf{e}^T \mathbf{e}}{\partial \mathbf{b}} = \mathbf{0}$$

yields least squares normal equations

$$\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{X}}\hat{\boldsymbol{\mathsf{b}}}=\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{y}}$$

Solution for Least Squares Estimators

$$\hat{\mathbf{b}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$