8

HYPERBOLIC FUNCTIONS

DEFINITION OF HYPERBOLIC FUNCTIONS

8.1 Hyperbolic sine of
$$x = \sinh x = \frac{e^x - e^{-x}}{2}$$

8.2 Hyperbolic cosine of
$$x = \cosh x = \frac{e^x + e^{-x}}{2}$$

8.3 Hyperbolic tangent of
$$x = \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

8.4 Hyperbolic cotangent of
$$x = \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

8.5 Hyperbolic secant of
$$x = \operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

8.6 Hyperbolic cosecant of
$$x = \operatorname{csch} x = \frac{2}{e^x - e^{-x}}$$

RELATIONSHIPS AMONG HYPERBOLIC FUNCTIONS

$$\tanh x = \frac{\sinh x}{\cosh x}$$

8.8
$$\coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

8.10
$$\operatorname{csch} x = \frac{1}{\sinh x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

8.12
$$\operatorname{sech}^2 x + \tanh^2 x = 1$$

$$\coth^2 x - \operatorname{csch}^2 x = 1$$

FUNCTIONS OF NEGATIVE ARGUMENTS

8.14
$$\sinh{(-x)} = -\sinh{x}$$
 8.15 $\cosh{(-x)} = \cosh{x}$ **8.16** $\tanh{(-x)} = -\tanh{x}$

8.17
$$\operatorname{csch}(-x) = -\operatorname{csch} x$$
 8.18 $\operatorname{sech}(-x) = \operatorname{sech} x$ **8.19** $\operatorname{coth}(-x) = -\operatorname{coth} x$

ADDITION FORMULAS

8.20	$\sinh (x \pm y)$	=	$\sinh x \cosh y \pm \cosh x \sinh y$
8.21	$\cosh (x \pm y)$	=	$\cosh x \cosh y \pm \sinh x \sinh y$
8.22	$tanh(x \pm y)$	=	$\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$
8.23	$\coth (x \pm y)$	=	$\frac{\coth x \coth y \pm 1}{\coth y \pm \coth x}$

DOUBLE ANGLE FORMULAS

8.24	$\sinh 2x$	=	$2 \sinh x \cosh x$				
8.25	$\cosh 2x$	==	$\cosh^2 x + \sinh^2 x$	=	$2\cosh^2 x - 1$	=	$1 + 2 \sinh^2 x$
8.26	anh 2x	=	$\frac{2\tanh x}{1+\tanh^2 x}$				

HALF ANGLE FORMULAS

8.27
$$\sinh \frac{x}{2} = \pm \sqrt{\frac{\cosh x - 1}{2}} \quad [+ \text{ if } x > 0, - \text{ if } x < 0]$$
8.28
$$\cosh \frac{x}{2} = \sqrt{\frac{\cosh x + 1}{2}}$$
8.29
$$\tanh \frac{x}{2} = \pm \sqrt{\frac{\cosh x - 1}{\cosh x + 1}} \quad [+ \text{ if } x > 0, - \text{ if } x < 0]$$

$$= \frac{\sinh x}{\cosh x + 1} = \frac{\cosh x - 1}{\sinh x}$$

MULTIPLE ANGLE FORMULAS

6.30	$\sin h 3x$	=	$3 \sinh x + 4 \sinh^3 x$
8.31	$\cosh 3x$	=	$4\cosh^3x - 3\cosh x$
8.32	tanh 3x	=	$\frac{3\tanh x + \tanh^3 x}{1 + 3\tanh^2 x}$
8.33	$\sinh 4x$	=	$8 \sinh^3 x \cosh x + 4 \sinh x \cosh x$
8.34	$\cosh 4x$	=	$8 \cosh^4 x - 8 \cosh^2 x + 1$
8.35	anh 4x	=	$\frac{4\tanh x + 4\tanh^3 x}{1+6\tanh^2 x + \tanh^4 x}$

POWERS OF HYPERBOLIC FUNCTIONS

8.36	$\sinh^2 x$	=	$\frac{1}{2}\cosh 2x \ - \ \frac{1}{2}$
8.37	$\cosh^2 x$	=	$\tfrac{1}{2}\cosh 2x \; + \; \tfrac{1}{2}$
8.38	$\sinh^3 x$	=	$\frac{1}{4}\sinh 3x - \frac{3}{4}\sinh x$
8.39	$\cosh^3 x$	=	$\tfrac{1}{4}\cosh 3x + \tfrac{3}{4}\cosh x$
8.40	$\sinh^4 x$	=	$\frac{3}{8} - \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$
8.41	$\cosh^4 x$	=	$\frac{3}{8} + \frac{1}{2}\cosh 2x + \frac{1}{8}\cosh 4x$

SUM, DIFFERENCE AND PRODUCT OF HYPERBOLIC FUNCTIONS

8.42	$\sinh x + \sinh y$		$2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$
8.43	$\sinh x - \sinh y$	=	$2\cosh \frac{1}{2}(x+y)\sinh \frac{1}{2}(x-y)$
8.44	$\cosh x + \cosh y$	==	$2\cosh \frac{1}{2}(x+y)\cosh \frac{1}{2}(x-y)$
8.45	$ \cosh x - \cosh y $	=	$2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$
8.46	$\sinh x \sinh y =$	$\frac{1}{2}$ {	$\{\cosh(x+y) - \cosh(x-y)\}$
8.47	$ \cosh x \cosh y = $	$\frac{1}{2}$ {	$\{\cosh(x+y) + \cosh(x-y)\}$
8.48	$\sinh x \cosh y =$	$\frac{1}{2}$ {	$\{\sinh(x+y) + \sinh(x-y)\}$

EXPRESSION OF HYPERBOLIC FUNCTIONS IN TERMS OF OTHERS

In the following we assume x > 0. If x < 0 use the appropriate sign as indicated by formulas 8.14 to 8.19.

:	$\sinh x = u$	$\cosh x = u$	tanh x = u	$\coth x = u$	$\operatorname{sech} x = u$	$\operatorname{esch} x = u$
$\sinh x$	u	$\sqrt{u^2-1}$	$u/\sqrt{1-u^2}$	$1/\sqrt{u^2-1}$	$\sqrt{1-u^2}/u$	1/u
$\cosh x$	$\sqrt{1+u^2}$	u	$1/\sqrt{1-u^2}$	$u/\sqrt{u^2-1}$	1/u	$\sqrt{1+u^2}/u$
tanh x	$u/\sqrt{1+u^2}$	$\sqrt{u^2-1}/u$	u	1 / <i>u</i>	$\sqrt{1-u^2}$	$1/\sqrt{1+u^2}$
$\coth x$	$\sqrt{u^2+1}/u$	$u/\sqrt{u^2-1}$	1/ <i>u</i>	u	$1/\sqrt{1-u^2}$	$\sqrt{1+u^2}$
$\operatorname{sech} x$	$1/\sqrt{1+u^2}$	1/ <i>u</i>	$\sqrt{1-u^2}$	$\sqrt{u^2-1}/u$	u	$u/\sqrt{1+u^2}$
csch x	1/u	$1/\sqrt{u^2-1}$	$\sqrt{1-u^2}/u$	$\sqrt{u^2-1}$	$u/\sqrt{1-u^2}$	u

GRAPHS OF HYPERBOLIC FUNCTIONS

$$y = \sinh x$$

8.50

$$y = \tanh x$$

Fig. 8-1

Fig. 8-2

Fig. 8-3

$$y = \coth x$$

$$8.53 y = \operatorname{sech} x$$

$$y = \operatorname{csch} x$$

Fig. 8-4

Fig. 8-5

Fig. 8-6

INVERSE HYPERBOLIC FUNCTIONS

If $x = \sinh y$, then $y = \sinh^{-1} x$ is called the *inverse hyperbolic sine* of x. Similarly we define the other inverse hyperbolic functions. The inverse hyperbolic functions are multiple-valued and as in the case of inverse trigonometric functions [see page 17] we restrict ourselves to principal values for which they can be considered as single-valued.

The following list shows the principal values [unless otherwise indicated] of the inverse hyperbolic functions expressed in terms of logarithmic functions which are taken as real valued.

$$\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$$

$$-\infty < x <$$

$$\cosh^{-1} x = \ln (x + \sqrt{x^2 - 1})$$

$$x \ge 1$$
 [cosh⁻¹ $x > 0$ is principal value]

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \qquad -1 < x < 1$$

$$-1 < x <$$

$$\coth^{-1} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$$

$$x > 1$$
 or $x < -1$

$$\operatorname{sech}^{-1} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right)$$
 $0 < x \le 1$ [sech⁻¹ $x > 0$ is principal value]

$$0 < x \le 1$$

$$[{\rm sech}^{-1} x > 0 \text{ is principal value}]$$

$$\operatorname{csch}^{-1} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right) \qquad x \neq 0$$

RELATIONS BETWEEN INVERSE HYPERBOLIC FUNCTIONS

8.61	$\operatorname{csch}^{-1} x$:	$= \sinh^{-1}(1/x)$
------	--------------------------------	---------------------

8.62
$$\operatorname{sech}^{-1} x = \cosh^{-1} (1/x)$$

8.63
$$\coth^{-1} x = \tanh^{-1} (1/x)$$

8.64
$$\sinh^{-1}(-x) = -\sinh^{-1}x$$

8.65
$$\tanh^{-1}(-x) = -\tanh^{-1}x$$

8.66
$$\coth^{-1}(-x) = -\coth^{-1}x$$

8.67
$$\operatorname{csch}^{-1}(-x) = -\operatorname{csch}^{-1}x$$

GRAPHS OF INVERSE HYPERBOLIC FUNCTIONS

 $y = \cosh^{-1} x$

Fig. 8-7

8.72

Fig. 8-8

 $y = \operatorname{sech}^{-1} x$

Fig. 8-9

 $y = \operatorname{csch}^{-1} x$

8.73

8.71
$$y = \coth^{-1} x$$

Fig. 8-10

Fig. 8-11

Fig. 8-12

RELATIONSHIP BETWEEN HYPERBOLIC AND TRIGONOMETRIC FUNCTIONS

8.74	$\sin(ix) = i \sinh x$	8.75	$\cos(ix) = \cosh x$	8.76	$\tan(ix) = i \tanh x$
------	------------------------	------	----------------------	------	------------------------

8.77
$$\csc{(ix)} = -i \operatorname{csch} x$$
 8.78 $\sec{(ix)} = \operatorname{sech} x$ **8.79** $\cot{(ix)} = -i \coth{x}$

8.80
$$\sinh{(ix)} = i \sin{x}$$
 8.81 $\cosh{(ix)} = \cos{x}$ **8.82** $\tanh{(ix)} = i \tan{x}$

8.83
$$\operatorname{csch}(ix) = -i \operatorname{csc} x$$
 8.84 $\operatorname{sech}(ix) = \operatorname{sec} x$ **8.85** $\operatorname{coth}(ix) = -i \operatorname{cot} x$

PERIODICITY OF HYPERBOLIC FUNCTIONS

In the following k is any integer.

8.86
$$\sinh{(x+2k\pi i)} = \sinh{x}$$
 8.87 $\cosh{(x+2k\pi i)} = \cosh{x}$ **8.88** $\tanh{(x+k\pi i)} = \tanh{x}$

8.89
$$\operatorname{csch}(x + 2k\pi i) = \operatorname{csch} x$$
 8.90 $\operatorname{sech}(x + 2k\pi i) = \operatorname{sech} x$ **8.91** $\operatorname{coth}(x + k\pi i) = \operatorname{coth} x$

RELATIONSHIP BETWEEN INVERSE HYPERBOLIC AND INVERSE TRIGONOMETRIC FUNCTIONS

8.92 $\sin^{-1}(ix) = i \sinh^{-1} x$ 8.93 $\sin^{-1}(ix) = i \sinh^{-1} x$	$h^{-1}(ix) =$	$i \sin^{-1} x$
---	----------------	-----------------

8.94
$$\cos^{-1} x = \pm i \cosh^{-1} x$$
 8.95 $\cosh^{-1} x = \pm i \cos^{-1} x$

8.96
$$\tan^{-1}(ix) = i \tanh^{-1} x$$
 8.97 $\tanh^{-1}(ix) = i \tan^{-1} x$

8.98
$$\cot^{-1}(ix) = -i \coth^{-1} x$$
 8.99 $\coth^{-1}(ix) = -i \cot^{-1} x$

8.100
$$\sec^{-1} x = \pm i \operatorname{sech}^{-1} x$$
 8.101 $\operatorname{sech}^{-1} x = \pm i \operatorname{sec}^{-1} x$

8.102
$$\csc^{-1}(ix) = -i \operatorname{csch}^{-1} x$$
 8.103 $\operatorname{csch}^{-1}(ix) = -i \operatorname{csc}^{-1} x$