Definability and Randomness

Jan Reimann

January 27, 2010

Question

Given an infinite binary sequence, does there exist a (continuous) probability measure for which this sequence is random?

Algorithmic Randomness

Algorithmic randomness investigates individual random objects.

Objects are usually infinite binary sequences (reals).

Randomness: Obey statistical laws.

Example: Law of large numbers

In general: Measure 1 properties.

• Algorithmic: Only effective laws.

There are only countably many.

Hence their intersection describes an almost sure event.

Randomness

Cantor space

- $2^{\mathbb{N}}$ with standard product topology.
- Clopen basis: cylinder sets

$$[\sigma] := \{X \in 2^{\mathbb{N}} : \ \sigma \subset X\}.$$

where σ is a finite binary string.

• Given a set of strings W, we write [W] for the open set induced by W, i.e. $[W] = \bigcup_{\sigma \in W} [\sigma]$.

Measures on $2^{\mathbb{N}}$

- Determined by values on cylinders.
- $\mu[\sigma] = \mu[\sigma \cap 0] + \mu[\sigma \cap 1]$.
- Example: Lebesgue measure $\lambda[\sigma] = 2^{-|\sigma|}$.

Recursion Theory Basics

We identify binary sequences with subsets of \mathbb{N} .

- A set $X \subseteq \mathbb{N}$ is recursive (computable) iff there is an algorithm to determine membership in A.
- Write Y ≤_T X when Y is recursive relative to X, i.e. if we can
 effectively decide membership in Y given X as an oracle.
- X is recursively enumerable (r.e.) iff it has a definition of the form ∃yP(x,y), where P is a recursive predicate of natural numbers.

```
Example: Diophantine sets \{\alpha\in\mathbb{N}\colon\exists\vec{x}\,p(\alpha,x)=0\}, p(\alpha,\vec{x}) a polynomial with integer coefficients. (In fact, every r.e. set can be represented this way (MDPR).)
```

 X is arithmetically definable iff there is a definition of X expressed solely in terms of addition, multiplication, and quantification (∃, ∀) within the natural numbers.

Recursion Theory Basics

- There is a \leqslant_T -greatest r.e. subset of $\mathbb N$ denoted by $\mathbf 0'$ (the Halting Problem, the Turing jump). Similarly, for any X, X' is the \leqslant_T -greatest set which is recursively enumerable relative to X.
- The arithmetically definable sets are obtained by starting with the empty set, iterating relative existential definability (i.e. the map X → X'), and closing under relative computability.

Martin-Löf Randomness

Every nullset is subset of a G_{δ} nullset.

A test for randomness is an effectively presented G_{δ} nullset.

Definition

• A Martin-Löf test is a recursively enumerable set $W \subseteq \mathbb{N} \times 2^{<\mathbb{N}}$ such that

$$\sum_{\sigma \in W_{\mathfrak{n}}} 2^{-|\sigma|} \leqslant 2^{-\mathfrak{n}}$$
 ,

where $W_n = \{ \sigma : (n, \sigma) \in W \}$

• A sequence $X = X_0 X_1 X_2 ...$ is Martin-Löf random if $X \notin \bigcap_n [W_n]$ for every Martin-Löf test W.

Martin-Löf Randomness

We can make tests more powerful by giving them access to an oracle Z.

Martin-Löf Z-test: W recursively enumerable relative to Z.

n-randomness: random relative to $0^{(n-1)}$. Hence Martin-Löf random is the same as 1-random.

Summary

The set of n-random sequences

- has λ-measure 1
 (there are only countably many r.e. sets in a given oracle, hence at most countably many tests)
- is decreasing in n
 (more computational power for tests, more non-randomness detected)

Martin-Löf Randomness

Examples

- A recursive sequence is not Martin-Löf random. For example, π is not random. (It fails the test of "being π ").
- Likewise, anything recursive in $0^{(n-1)}$ is not n-random.
- However, there is a recursively approximated ($\leq_T 0'$), but not recursive, sequence X such that X is Martin-Löf random.
- All commonly used statistical laws are effective in Martin-Löf's sense, so a Martin-Löf random sequence satisfies the law of large numbers, etc.

Definability and randomness

Understand the relation between two properties of sequences:

information theoretic randomness properties

computability theoretic degrees of unsolvability

Kolmogorov Complexity

Let M be a Turing-machine. Define

$$C_{\mathbf{M}}(\sigma) = \min\{|\mathfrak{p}| : \mathfrak{p} \in 2^{<\mathbb{N}}, \, M(\mathfrak{p}) = \sigma\},$$

i.e. $C_M(\sigma)$ is the length of the shortest program (for M) that outputs $\sigma.$

Kolmogorov's invariance theorem: There exists a machine U such that C_U is optimal (up to an additive constant), i.e. for all other machines M,

$$C_{U}(\sigma) \leqslant C_{M}(\sigma) + O(1)$$

Fix such a U and set $C(\sigma)=C_U(\sigma)$, the plain Kolmogorov complexity of σ .

A prefix-free Turing machine is a machine with prefix-free domain. The prefix-free version of C (use universal prefix free TM) is denoted by K.

Randomness and Incompressibility

Schnorr's Theorem

A sequence X is Martin-Löf random iff there exists a constant c such that

$$(\forall n) K(X \upharpoonright_n) \geqslant n - c$$

Proof: Short descriptions ↔ open cover

Generalized Martin-Löf Tests

Other measures

To extend the notion of randomness to other distributions, we give the tests access to the measure we want to test for.

- A representation m of a probability measure μ on $2^\mathbb{N}$ provides rational approximations to each $\mu[\sigma]$ meeting any required accuracy.
- A μ -test is a set W that is recursively enumerable relative to $\mathfrak m$ such that

$$\sum_{\sigma \in W_n} \mu[\sigma] \leqslant 2^{-n}$$
 ,

• Accordingly, X is μ -random if for any μ -test W, $X \notin \bigcap_n [W_n]$.

Similarly, we can define μ -n-randomness, by giving tests access to $\mathfrak{m}^{(n-1)}$, the n-th jump relative to \mathfrak{m} .

The Precise Question

Given a sequence $X \in 2^{\mathbb{N}}$ and $\mathfrak{n} \geqslant 1$, does there exist a probability measure μ on $2^{\mathbb{N}}$ such that X is μ - \mathfrak{n} -random?

Randomness and Computability

Trivial Randomness

Obviously, every sequence X is trivially random with respect to μ if $\mu\{X\}>0$, i.e. if X is an atom of μ .

If we rule out trivial randomness, then being random means being non-computable.

Theorem [R. and Slaman]

For any sequence X, the following are equivalent.

- There exists a measure μ such that $\mu\{X\} = 0$ and X is μ -random.
- X is not recursive.

Non-trivial Randomness

Features of the proof

- Conservation of randomness. If Y is random for Lebesgue measure λ , and $f: 2^\mathbb{N} \to 2^\mathbb{N}$ is computable, then f(Y) is random for λ_f , the image measure.
- A cone of λ-random reals.
 By the Kucera-Gacs Theorem, every sequence ≥_T 0' is Turing equivalent to a λ-random real.
- Relativization using the Posner-Robinson Theorem. If X is not recursive, then $X \oplus G \geqslant_T G'$. (X looks like a jump relative to G)
- A compactness argument for measures.

$2^{\mathbb{N}}$ ordered by \geqslant_T

Randomness for Continuous Measures

In the proof we have little control over the measure that makes *X* random.

• In particular, atoms cannot be avoided (due to the use of Turing reducibilities).

Question

What if one admits only continuous (i.e. non-atomic) probability measures?.

Randomness for Continuous Measures

A thorough analysis of the previous theorem yields a criterion for continuous n-randomness via conservation of randomness:

Turing-equivalent (relative to some parameter) to an (n+1)-random sequence.

Can we obtain a cone of continuously random sequences?

(Looking for an analogue of Kucera-Gacs for continuous randomness.)

Use Borel Turing Determinacy:

If E is a Borel subset of $2^{\mathbb{N}}$ that is closed under \equiv_T , then either E or $2^{\mathbb{N}} \setminus E$ contains a \geqslant_T -cone.

This is a consequence of Borel Determinacy (Martin): Two-player game with a Borel winning sets are determined.

To obtain a cone, consider the set of all X that are Turing equivalent to some $Z \oplus R$, where R is (n+1)-random relative to a given Z.

$2^{\mathbb{N}}$ ordered by \geqslant_T

Locating the Base of the Cone

The base of the randomness cone is given by the Turing degree of a winning strategy in a game given by Martin's Theorem.

Martin's proof of Borel Determinacy is constructive.

Gödel's hierarchy of constructible sets L:

- $L_0 = \emptyset$
- $L_{\alpha+1}= \mathsf{Def}(L_{\alpha})$, the set of subsets of L_{α} which are first order definable in parameters over L_{α} .
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$, λ limit ordinal.
- $L = \bigcup_{\alpha} L_{\alpha}$.

Locating the Base of the Cone

The winning strategy of a Borel game can be located in L.

- The more complicated the game is in the Borel hierarchy, the more iterates of the power set of the continuum are used in producing the winning strategy – trees, trees of trees, etc.
- The winning strategy (for Borel complexity n) is contained in $L_{\beta(n)}$, where β_n is the least ordinal such that

$$L_{\beta(n)} \vDash \mathsf{ZFC}_n^-$$
,

where ZFC_n^- is $\mathsf{Zermelo}\text{-}\mathsf{Frae}\mathsf{n}\mathsf{kel}$ set theory without the Power Set Axiom + "exist $\mathfrak n$ many iterates of the power set of $\mathbb R$ ".

• Note that $L_{\beta(n)}$ is countable.

Relativization via Forcing

Now get from a cone of sequences to co-countably many sequences.

Posner-Robinson-style relativization

• Given $X \not\in L_{\beta(n)}$, using forcing we construct a set G such that $L_{\beta(n)}[G] \models \mathsf{ZFC}_n^-$ and

$$Y \in L_{\beta(n)}[G] \cap 2^{\mathbb{N}}$$
 implies $Y \leqslant_T X \oplus G$

• If X is not in $L_{\beta(n)}$, it will belong to every cone with base in the accordant $L_{\beta(n)}[G]$, in particular, it will belong to the cone in which every sequence is continuously random. (Use absoluteness)

Corollary (Co-Countability Theorem, R. and Slaman)

For any n, all but countably many sequences are n-random with respect to a continuous measure.

$2^{\mathbb{N}}$ ordered by \geqslant_T

Metamathematics necessary?

Question

Do we really need the existence of iterates of the power set of the reals to prove the Co-Countability Theorem, a statement about sequences?

We make fundamental use of Borel determinacy; this suggests to analyze the metamathematics in this context.

- H. Friedman showed that infinitely many iterates of the power set of $\mathbb R$ are necessary to prove Borel Determinacy.
- We can prove a similar fact concerning the Co-Countability Theorem.

Necessity of power sets

How do you prove such a thing?

- To show that the axioms of group theory do not prove that the group operation commutes, exhibit a nonabelian group.
- To show that the axioms of set theory with n-many iterates of the power set of ℝ do not prove the Co-countability Theorem, exhibit a structure satisfying these axioms in which the Co-countability Theorem fails.

Iterates of the Power Set

A cofinal sequence of non-randoms

- Show that there is an n such that the set of non-n-randoms is cofinal in the Turing degrees of $L_{\beta(0)}$. (The approach does not change essentially for higher k.)
- The non-random witnesses will be codes of the full inductive constructions of the initial segments of $L_{\beta(0)}$.

The following is a key lemma.

Higher randomness has little computational power

Suppose that $n\geqslant 2,\,Y\in 2^{\mathbb{N}},$ and X is $\mathfrak{n}\text{-random}$ for $\mu.$ Then, for $\mathfrak{i}<\mathfrak{n},$

$$Y\leqslant_T X\oplus \mu \text{ and } Y\leqslant_T \mu^{(\mathfrak{i})} \quad \text{implies} \quad Y\leqslant_T \mu.$$

Relative to μ , X and instances of the jump form a minimal pair.

Iterates of the Power Set

Example

For all k, $0^{(k)}$ is not 3-random for any μ .

Proof.

- Suppose $0^{(k)}$ is 3-random relative to μ .
- 0' is recursively enumerable relative to μ and recursive in the supposedly 3-random $0^{(k)}$. Hence, 0' is recursive in μ and so 0" is enumerable relative to μ .
- Use induction to conclude $0^{(k)}$ is recursive in μ , a contradiction.

Master Codes

A set-theoretic analogue of the jump

- L_{α} , $\alpha < \beta_0$, is a countable structure obtained by iterating first order definability over smaller L_{ν} 's and taking unions.
- Jensen's master codes are a sequence $M_{\alpha} \in 2^{\mathbb{N}} \cap L_{\beta_0}$, for $\alpha < \beta_0$, of representations of these countable structures.

Master codes as witnesses for NCR

- An inductive argument similar to the non-randomness of 0^(k)
 can be applied transfinitely to these master-codes.
- There is an n such that for all limit λ , if $\lambda < \beta_0$ then M_β is not n-random for a continuous measure.

$2^{\mathbb{N}}$ ordered by \geqslant_T

A Different Application

Basic principle of the previous result

 $random\ sequences + Turing\ reductions = existence\ of\ measures$

Application: Frostman's Lemma

Sets of positive Hausdorff dimension support a "nice" probability measure.

Hausdorff Dimension

Hausdorff measures and dimension

Given a real $s \geqslant 0$, let \mathcal{H}^s denote the outer measure induced by the function

$$\mathcal{H}^{s}[\sigma] = 2^{-|\sigma|s}$$
.

The Hausdorff dimension of a set $E \subseteq 2^{\mathbb{N}}$ is given by

$$dim_H E = inf\{s : E \text{ is } \mathcal{H}^s\text{-null}\}.$$

- Hausdorff dimension is invariant under bi-Lipschitz transformations.
- It captures the "right exponent" relation diameter to volume, possibly non-integer.
- Example: dim_H Middle-third Cantor Set = log 2/log 3.

Effective Dimension

Martin-Löf's approach to randomness works for outer measures, too.

Hence we can define the effective dimension dim¹_H of a sequence as

$$\mathsf{dim}^1_\mathsf{H} X = \mathsf{inf}\{s \in \mathbb{Q}^+ : X \text{ is not } \mathcal{H}^s\text{-random}\}$$

Dimension and Kolmogorov complexity

$$\dim_{\mathsf{H}}^1 X = \liminf_{\mathfrak{n}} \frac{\mathsf{K}(X\!\upharpoonright_{\mathfrak{n}})}{\mathfrak{n}}$$

(Ryabko, Mayordomo)

Example: If X is Martin-Löf random, then

$$\dim_{H}^{1}(X_{0} 0 X_{1} 0 X_{2} 0 \dots) = 1/2.$$

Pointwise Frostman Lemma

Theorem

If for $X\in 2^{\mathbb{N}}$ $dim_H^1\,X>s,$ then X is random with respect to a probability measure μ such that

$$(\forall \sigma) \ \mu[\sigma] \leqslant c 2^{-|\sigma|s}. \tag{*}$$

In particular, sequences of positive dimension are random with respect to a continuous measure.

This implies the classical Frostman Lemma:

If dim_H E>s, $E\subseteq 2^\mathbb{N}$ Borel, then there exists a probability measure μ satisfying (*) such that

$$supp(\mu) \subseteq E$$
.

Pointwise Frostman Lemma

However, the proof is of an effective nature.

- By the Kucera-Gacs Theorem, there exists a λ-random real R such that R ≥_{wtt} X via some reduction Φ.
- The effective process transforming R into X induces a "defective" probability measure on 2^N, a semimeasure.
- Using a recursion theoretic lowness argument,
 Every effectively closed set contains an element that has low computational power ("almost recursive").
 - one can show that among the possible completions of this semimeasure into a probability measure, there must exist one that makes X random and satisfies (*).

