Intelligence Artificielle I - Raisonnement Durée: 1h 30

Exercice 1

1 – a

Pour chaque nœud u, l'algorithme A* exploite les deux informations suivantes :

- g(u) sur le passé : Coût du chemin parcouru (la somme des coûts sur les arcs du u0 à u)
- h(u) sur le futur : estimation du coût minimale de u vers l'objectif

1-b

Itérations de l'algorithme A* (voir le support de cours)

2 –

Etat U développé	g(U), f(U) père(U)	Ensemble ordonné P : $U_i(g(U_i),f(U_i))$
U_0	0; 16	$U_1(4, 18), U_2(5, 19), U_3(6, 21)$
\mathbf{U}_1	4, 18, U ₀	$U_2(5, 19), U_4(9, 21), U_3(6, 21)$
U_2	5, 19, U ₀	$U_7(7, 19), U_4(8, 20), U_3(6, 21),$
		U ₅ (10, 24)
\mathbf{U}_7	7, 19, U ₂	$U_6(10, 20), U_4(8, 20), U_9(21, 21),$
		$U_3(6, 21), U_5(10, 24)$
U_6	10, 20, U ₇	$U_8(11, 16), U_9(17, 17), U_4(8, 20),$
		$U_3(6, 21), U_5(10, 24)$
U_8	11, 16, U ₆	$U_9(15, 15), U_4(8, 20), U_3(6, 21),$
		$U_5(10, 24)$

La solution est (U0, U2, U7, U6, U8, U9) du coût = 15

Exercice 2

1. Dessinez le graphe d'états.

CAOB

G(1,2)

B(AD and BACD and ABCD and ADCB and ACDB

$$\int_{(1,2)}^{(2,3)} ACD and ABCD and ADCB and ACDB$$

$$\int_{(1,2)}^{(2,3)} \int_{(2,3)}^{(2,3)} ACDB and ACBD and AC$$

2. L'heuristique h admissible peut être : le nombre de pions mal placés par rapport à l'état final (CBAD).

Exercice 3

Voir TD 3 et Exercice 4 (même logique de résolution)

Exercice 4

On considère les prédicats suivants :

D(X): X est un dauphin

L(X): X sait lire N(X): X est instruit I(X): X est intelligent

On a alors:

- $\bullet \neg \psi \cong (\forall \ X)(\neg I(X) \lor L(X)) \qquad \cong \qquad \{\neg I(X) \lor L(X)\}$

La résolution

$$\{ \varphi 1, \, \varphi 2 \,, \, \varphi 3, \, \neg \psi \} = \qquad \{ \neg L(X) \lor N(X), \, \neg D(X) \lor \neg N(X) \,, \, D(a), \, I(a), \, \neg I(X) \lor L(X) \}$$

$$\{ \neg L(X) \lor \neg D(X), \, D(a), \, I(a), \, \neg I(X) \lor L(X) \}$$

$$\{ \neg L(a), \, \underline{I(a)}, \, \neg \underline{I(X) \lor L(X)} \}$$

$$\{ \neg L(a), \, \underline{L(a)} \}$$