Esercizi di Teoria di Galois 2.

Roma Tre, 17 Marzo 2003

1. Dimostrare che se $q \in \mathbf{Q}$, allora $\cos(q\pi)$ è un numero algebrico. Calcolare anche la dimensione

$$[\mathbf{Q}(\cos(q\pi)):\mathbf{Q}].$$

Si può dire la stessa cosa di $\sin(q\pi)$?

Suggerimento: Utilizzare (senza mostrarlo) il fatto che $[\mathbf{Q}(\zeta_m):\mathbf{Q}]=\varphi(m)$.

2. In ciascuno dei seguenti casi, determinare la dimensione del campo di spezzamento del polinomio sul campo assegnato F:

a.
$$f(x) = x^3$$
 $F = \mathbf{Q}$;
b. $f(x) = (x^2 - 3)(x^2 - 27)(x^2 - 12)$ $F = \mathbf{Q}(3^{1/3})$;
c. $f(x) = x^8 - 4$ $F = \mathbf{Q}$;
d. $f(x) = x^h - 3$ $F = \mathbf{Q}(e^{2\pi i/h})$;
f. $f(x) = x^3 + 30x + 1$ $F = \mathbf{Q}$;
g. $f(x) = x^{15} + 3x^5 + 1$ $F = \mathbf{F}_5$;
h. $f(x) = x^4 - x^3 - 4x^2 + 1$ $F = \mathbf{Q}$.
i. $f(x) = x^{10} + x + 1$ $F = \mathbf{F}_2$.

3. Descrivere gli F-omomorfismi di E in \mathbb{C} in ciascuno dei seguenti casi:

a.
$$E = \mathbf{Q}(e^{\pi i/8})$$
 $F = \mathbf{Q}(e^{\pi i/2});$
b. $E = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ $F = \mathbf{Q}(\sqrt{6});$
c. $E = \mathbf{Q}(\zeta_7)$ $F = \mathbf{Q}(\cos 2\pi/7)$
d. $E = \mathbf{Q}(\sqrt{\sqrt{3}+1})$ $F = \mathbf{Q}(\sqrt{3});$

Nel prossimo sostituire **C** con $\mathbf{F}_7(\beta)$, $\beta^4 + \beta + 1 = 0$.

e.
$$E = \mathbf{F}_7(\alpha), \alpha^4 + 5\alpha^2 + 3\alpha + 1 = 0$$
 $F = \mathbf{F}_7(\sqrt{-2}).$

- 4. In ciascuno dei seguenti numeri algebrici, si calcoli il polinomio minimo?
 - a. $e^{2\pi i/33}$;
- b. $\cos 2\pi/9$;
- c. $\cos 2\pi/11$;
- d. $\cos 2\pi/13$; e. $\cos \pi/5$;
- f. $\sin \pi/7$.
- 6. Mostrare che se $f \in F[x]$ è un polinomio irriducibile e charF = p, allora il campo di spezzamento di f ha grado ∂f .
- 7. Si mostri che $\mathbf{Q}(\sqrt{-7}) \subseteq \mathbf{Q}(\zeta_7)$.

Suggerimento: Considerare il numero $\zeta_7 + \zeta_7^2 - \zeta_7^3 + \zeta_7^4 - \zeta_7^5 + \zeta_7^6$.

- 8. Mostrare che se $n \mid m$, allora $\mathbf{Q}(\zeta_n) \subset \mathbf{Q}(\zeta_m)$.
- 9. Risolvere i problemi sulle note di Milne a pagina 29 e 30.