Lecture 10 math 18 9/7/2017

Then U A, B Nxn, A 15 similar to B \Rightarrow det $(A - \lambda In) = det(B - \lambda In)$ Proof: A 15 Similar to B \Rightarrow $\exists P uxn instable st A = PBP^{-1} det Coedet C det D.

det <math>(A - \lambda In) = det(PSP^{-1} - \lambda In) = det(PBP^{-1} - \lambda PP^{-1})$ $= det(P(BP^{-1} - \lambda PP^{-1}))$ $= det(P(BP^{-1} - \lambda PP^{-1}))$

2P-3P=P(2]n-3],

5.3 Diagonal natur

e 19 in 100 1111.

 $A = P \left[\sum_{\lambda} J P^{-1} \right]$ $A'' = P \left[\sum_{\lambda} \lambda J P^{-1} \right]$

Def A non is diagonalizable of Ausmila to h diagonal metrix.

Thins The dragonalizable Thin.

A nxh is dragonalizable \Rightarrow A has n hearly indep. eigenvetois.

In fact, $\Delta = PDP^{-1}$ with D dragonal \Rightarrow the color of P are A linindep.

In this case, if D=[1...], P=[vii...vns, then], is on eigenvalue for vi.

Proof = ">" A is dragonalizable $\Rightarrow \exists D \text{ diagonal}, P \text{ invertible 5.1.}$ $A = PDP^{-1}, P = [v_1, ..., v_n], D = [v_n].$

The goal is to prove that $AV_1 = \lambda_1 V_1$ $AP = PDP^{-1}P = PD$ $ACV_1 \dots V_n = [V_1 \dots V_n] [\lambda_1 \dots \lambda_n]$

LAVI ... Aunj = [], Vi..., Juling = Avi = 2; Vi, + 7; > Vii... Va are eigenvertois for A. P=[Vii... Va] javeithe > Evin. 43. The line indep = qui vai In Tradque eigenvolves. Denote by Surrow Vas n 17 near indep. eigenvetors → 3 A; S.+. AV, = A; Vi. The goal is to show A = IPP $= [\lambda, \nu, \dots, \lambda, \nu] \begin{bmatrix} \lambda, \dots, \nu \end{bmatrix} \begin{bmatrix} \lambda, \dots, \lambda, \lambda \end{bmatrix}.$ AP = AI Vi ... V. J = [AV. ... Av.] AP=PDP-1. ter Diogradie. it possible 1) B=[:] $i) = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \end{bmatrix}$ sol i) Step 1 Find the eigenvalues of A. Find routs of det (H - XI3) =0. Jet (A-173) = -13-12-10 = -(A-11() +2)2 2) and -2 are els modies of A. ii) Step ? Find a buills for each eigenspuie (24 ne find 3 1/1. Indep verus > A is d'agoisi if not, A is not diagonaliable) Eigenspace of 1 NolliA-Ls) $A = Is = \begin{bmatrix} -3 & -\frac{2}{5} & -\frac{3}{5} \\ 3 & 5 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{cases} x_1 + x_2 = 0 \\ x_3 + x_3 = 0 \\ x_3 + x_4 = 0 \end{cases}$ $\Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ =>: { [-!]} is a basis for Mill (A-1]3.

find a beens for Not
$$(A-(-2)I_3)$$

A+2I₃ = $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$
 $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$
 $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
is a boson for Not $(A-2I_3)$, $\frac{1}{2}$ 3 eigenveins which exclassed as

$$D = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow A = PDP^{-1}$$

bef: Sui... up 3 = He is an athogonal set if u. u. = c, to, all its
ex. Sij.[:], (a) 3 is orthogonal set.

Thm 4 S- \{\omega_1,...\omega_1\} \omega_1 \text{ set of nonzero verses} > S is horally 1 idgraded.

It (\omega_1 + \omega_1 + \omega_1 \omega_1 + \omega_1 \omega_1 \omega_1 + \omega_1 \omega_

n we will with the termination of the contract of the contract