Introduction au traitement du signal Signaux discrets

MINES ParisTech, Tronc commun 1A

16 février 2022

Imagerie par resonnance medicale

Signaux discrets

▶ Un signal discret est défini comme une séquence de valeurs dans $\mathbb R$ ou dans $\mathbb C$.

► Il existe plusieurs outils pour étudier le contenu fréquentiel d'un signal discret

Signaux discrets

▶ Un signal discret est défini comme une séquence de valeurs dans $\mathbb R$ ou dans $\mathbb C$.

Figure: Obtention d'un signal discret à partir d'un signal continu par échantillonnage

► Il existe plusieurs outils pour étudier le contenu fréquentiel d'un signal discret

Sommaire

Signaux périodiques discrets

Transformée de Fourier en temps discre

Transformée de Fourier discrète

Signaux périodiques discrets

Définition (Signal périodique discret)

Un signal $x : \mathbb{Z} \to \mathbb{C}$ est N-périodique si

$$x[n + N] = x[n]$$

Exemple: le signal $x[n] = e^{\frac{2in\pi}{N}}$ est N-périodique.

- Fréquence 1/N en 1/ech, pulsation $\Omega = \frac{2\pi}{N}$ en rad/ech
- **E**space vectoriel isomorphe à \mathbb{R}^N , de base, pour k = 0, ..., N-1

$$\forall n \in \mathbb{N}, \quad e_k[n] = e^{\frac{2ikn\pi}{N}}$$

Série de Fourier discrète

Coefficients de Fourier discrets

$$\forall k = 0, ..., N-1 \qquad \hat{x}[k] = \langle x, e_k \rangle = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-\frac{2ink\pi}{N}}$$

Série de Fourier discrète

$$\forall n \in \mathbb{N} \qquad Sx[n] = \sum_{k=0}^{N-1} \langle x, e_k \rangle e_k[n] = \sum_{k=0}^{N-1} \hat{x}[k] e^{\frac{2ink\pi}{N}}$$

Série de Fourier discrète (ii)

Proposition

Pour tout $n = 0, \dots, N-1$, on a x[n] = Sx[n].

Preuve.

Série de Fourier discrète (ii)

Proposition

Pour tout n = 0, ..., N - 1, on a x[n] = Sx[n].

Preuve.

$$Sx[n] = \sum_{k=0}^{N-1} \hat{x}[k] e^{\frac{2ikn\pi}{N}}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{m=0}^{M-1} x[m] e^{\frac{2ik(n-m)\pi}{N}}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} x[m] N \delta_n[m]$$

$$= x[n].$$

Formule de Parseval

La puissance P_x d'un signal N—périodique est donné par la formule de Parseval:

Théorème (Formule de Parseval)

$$P_{x} := \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^{2} = \sum_{k=0}^{N-1} |\hat{x}[k]|^{2}.$$

Un exemple : $x[n] = \cos \frac{2\pi n}{N}$

Sommaire

Signaux périodiques discrets

Transformée de Fourier en temps discret

Transformée de Fourier discrète

Les espaces $I^1(\mathbb{C})$ et $I^2(\mathbb{C})$

▶ $l^1(\mathbb{C})$ - abrégé l^1 - est l'espace des suites $\{x_n, n \in \mathbb{Z}\}$ à valeurs dans \mathbb{C} telles que:

$$||x||_1 := \sum_{n \in \mathbb{Z}} |x_n| < \infty.$$

▶ $l^2(\mathbb{C})$ - abrégé l^2 - est l'espace des suites $\{x_n, n \in \mathbb{Z}\}$ à valeurs dans \mathbb{C} telles que:

$$||x||_2 := \sqrt{\sum_{n \in \mathbb{Z}} |x_n|^2} < \infty.$$

Muni du produit scalaire hermitien défini par

$$\forall (x,y) \in I^2 \times I^2, \langle x,y \rangle = \sum_{n \in \mathbb{Z}} x[n] \overline{y[n]},$$

 I^2 est un espace de Hilbert.

Transformée de Fourier en Temps discret (TFTD)

Dans tout ce qui suit, on supposera que les signaux considérés appartiennent à $I^1 \cap I^2$.

Definition (Transformée de Fourier en temps discret)

Soit $x \in I^1 \cap I^2$. On définit sa TFTD par

$$\forall \Omega \in \mathbb{R}, \widehat{x_d}(\Omega) = \sum_{n \in \mathbb{Z}} x[n] e^{-i\Omega n}$$

On note immédiatement que la TFTD est une fonction 2π -périodique de la pulsation Ω .

Propriétés

Proposition (Transformée de Fourier en temps discret inverse) Soit $x \in I^1 \cap I^2$. Alors, on a:

$$\forall n \in \mathbb{Z}, x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widehat{x}(\Omega) e^{i\Omega n} d\Omega.$$

La TFTD vérifie enfin la formule de Plancherel:

Théorème (Plancherel)

Si on définit l'énergie d'un signal par

$$E_{x} = \sum_{n=-\infty}^{+\infty} |x[n]|^{2}, \tag{1}$$

alors, on a l'égalité

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{x_d}(\Omega)|^2 d\Omega$$

TFTD - un exemple

▶ La TFTD est 2π - périodique. Par convention, on choisit généralement de la représenter sur l'intervalle de pulsations $[-\pi,\pi]$.

TFTD - un exemple

La TFTD est 2π - périodique. Par convention, on choisit généralement de la représenter sur l'intervalle de pulsations $[-\pi,\pi]$.

Sommaire

Signaux périodiques discrets

Transformée de Fourier en temps discre

Transformée de Fourier discrète

Transformée de Fourier Discrète

Definition

Soit $\{x[0],...,x[N-1]\}$ une *séquence finie* de taille N. On définit sa TFD par

$$\forall k = 0, ..., N - 1 \quad \widehat{x}[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{2ink\pi}{N}}$$

On peut retrouver le signal d'origine par la la TFD inverse

$$\forall n = 0, ..., N - 1 \quad x[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widehat{x}[k] e^{\frac{2ink\pi}{N}}$$

Si les échantillons correspondent à une période d'un signal N− périodique : TFD ⇔ SFD

- Si les échantillons correspondent à une période d'un signal N− périodique : TFD ⇔ SFD
- ▶ Si x est nul en dehors de $\{0, ..., N-1\}$ alors

$$\widehat{x}[k] = \widehat{x_d}[k] \left(\Omega_k = \frac{2k\pi}{N} rad/ech\right) \quad \forall k = 0, ..., N-1$$

- Si les échantillons correspondent à une période d'un signal N− périodique : TFD ⇔ SFD
- ▶ Si x est nul en dehors de $\{0, ..., N-1\}$ alors

$$\widehat{x}[k] = \widehat{x_d}[k] \left(\Omega_k = \frac{2k\pi}{N} rad/ech\right) \quad \forall k = 0, ..., N-1$$

- Si les échantillons correspondent à une période d'un signal N− périodique : TFD ⇔ SFD
- ▶ Si x est nul en dehors de $\{0, ..., N-1\}$ alors

$$\widehat{x}[k] = \widehat{x_d}[k] \left(\Omega_k = \frac{2k\pi}{N} rad/ech\right) \quad \forall k = 0, ..., N-1$$

- Si les échantillons correspondent à une période d'un signal N− périodique : TFD ⇔ SFD
- ▶ Si x est nul en dehors de $\{0, ..., N-1\}$ alors

$$\widehat{x}[k] = \widehat{x_d}[k] \left(\Omega_k = \frac{2k\pi}{N} rad/ech\right) \quad \forall k = 0, ..., N-1$$

Représentation de la TFD: exemple

Signal continu $s(t) = \cos(2\pi ft)$

Signal périodique de fréquence f = 2 Hz (de période T = 0.5 s).

Figure: Signal échantillonné

Signal discret

$$s[n] = \{\cos(2\pi f n \Delta t)\}_{n=0,\dots,N-1}$$

- Echantillonnage du signal avec une fréquence $f_e = 20$ Hz sur l'intervalle de temps 0 - 2 s.
- Nombre d'échantillons: $N = t_{max}/\Delta t = 40$.
- Remarque: on a fait en sorte ici que:

$$rac{t_{ extit{max}}}{\Delta t} \in \mathbb{N}, \qquad rac{f_e}{f} \in \mathbb{N}.$$

Représentation de la TFD: exemple (ii)

► La TFD du signal discret va faire apparaître deux pics pour $k = ft_{max} = 4$ et $k = N - ft_{max} = 36$.

Figure: Spectre du signal en fonction des pulsations $\{\frac{2\pi k}{N}\}_{k=0,...,N-1}$ [rad/ech] et des fréquences $\{\frac{k}{N}\}_{k=0,...,N-1}$ [1/ech]

Représentation de la TFD: exemple (iii)

► Comme la TFD est *N*-périodique, on a:

$$\hat{s}[N-k] = \hat{s}[-k]$$

Figure: Spectre du signal en fonction des pulsations $\{\frac{2\pi k}{N}\}_{k=-N/2,...,N/2-1}$ [rad/ech] et des fréquences $\{\frac{k}{N}\}_{k=-N/2,...,N/2-1}$ [1/ech]

Représentation de la TFD: exemple (iv)

Pour repasser aux fréquences/pulsations physiques (en Hz), on doit diviser les fréquences/pulsations par échantillon **centrées** en 0 par le pas de temps.

Figure: Spectre du signal en fonction des pulsations $\{\frac{2\pi k}{N\Delta t}\}_{k=-N/2,...,N/2-1}$ et des fréquences $\{\frac{k}{N\Delta t}\}_{k=-N/2,...,N/2-1}$

Représentation de la TFD: exemple (v)

Figure: Spectre du signal échantillonné sur 1.8 période.

L'échantillonnage "tronqué" crée une discontinuité dans le signal, qui se traduit par l'apparition de fréquences "parasites" dans le spectre