Finite Mathematics Problem Set 3 with solutions

Igor Rivin

December 2, 2015

1 EXERCISE 1

Compute the following cyclotomic polynomials

- $\Phi_1(x)$.
- $\Phi_{17}(x)$
- $\Phi_{1024}(x)$.

Solution:

$$\Phi_1(x) = x - 1,\tag{1.1}$$

$$\Phi_{17}(x) = \sum_{i=0}^{1} 6x^{i} \tag{1.2}$$

$$\Phi_{1024}(x) = 1 + x^{512} \tag{1.3}$$

2 EXERCISE 2

Show that for all x > 1, $(x-1)^{\phi(k)} \le \Phi_k(x) \le (x+1)^{\phi(k)}$ Solution: The degree of $Phi_k(x)$ is $\phi(k)$, so it is enough to show that $x-1 \le |x-\omega| \le (x+1)$. That follows from the triangle inequality, since $|\omega| = 1$.

3 EXERCISE 3

We have shown that GL(2,p) has order $(p^2-1)(p^2-p)=p(p-1)(p+1)$. Can you find elements of order p-1,p,p+1 in GL(2,p)? Solution: The matrix $M(a)=\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$, for some $a \in F_p^\times$ has order p-1 (by Fermat's little theorem). The matrix $B=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has the property that $B^k=\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, so that has order p. The case p+1 is the hardest. Every element of $GF(p^2)$ is the root of a characteristic polynomial of a 2×2 matrix with elements in GF(p). In particular, the multiplicative generator a is such a root, and the matrix M(a) (as above) has order p^2-1 . Which means that $M(a)^{p-1}$ has order p+1.

4 EXERCISE 4

Draw a picture of the projective plane over a field with 2 elements (meaning, draw its points and lines). Solution: See the picture of the Fano Plane in the Wikipedia article on projective planes: https://www.wikiwand.com/en/Projective_plane