

# **Document Summary**





Search

Preview Claims Preview Full Text Preview Full Image

Email Link:

**Document ID:** J P 2002-015739 A2

Title: POSITIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY CELL

Assignee: MITSUBISHI CHEMICALS CORP

**Inventor:** NISHIMURA TETSUHIKO

**US Class:** 

Int'l Class: H01M 4/58 A; H01M 4/02 B; H01M 10/40 B

**Issue Date:** 01/18/2002 04/25/2001 Filing Date:

## Abstract:

PROBLEM TO BE SOLVED: To provide a lithium secondary cell which has a high maintenance factor of high temperature capacity.

SOLUTION: The positive electrode material for lithium secondary cell is composed of a lithium-transition metal compound oxide having 100 to 1,500 ppm of a group 1 and/or a group 2 of element component to a lithium transition metal compound oxide (excepting lithium), and 150 to 10,000 ppm of sulfate ion component to the lithium transition metal compound oxide.

(C)2002,JPO

Copyright © 1993-2000 Aurigin Systems, Inc. Legal Notices

(19)日本国特許庁 (JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-15739

(P2002-15739A)

(43)公開日 平成14年1月18日(2002.1.18)

| (51) Int.Cl.7 |       | 識別記号 | FΙ   |       | ī | ·-7]-}*( <b>参考</b> ) |
|---------------|-------|------|------|-------|---|----------------------|
| H01M          | 4/58  |      | H01M | 4/58  |   | 5H029                |
|               | 4/02  |      |      | 4/02  | С | 5H050                |
|               | 10/40 |      |      | 10/40 | Z |                      |

## 審査請求 未請求 請求項の数3 OL (全9頁)

| (21)出願番号    | 特顧2001-127303(P2001-127303)  | (71)出願人 | 000005968                      |
|-------------|------------------------------|---------|--------------------------------|
| (22)出顧日     | 平成13年4月25日(2001.4.25)        |         | 三菱化学株式会社<br>東京都千代田区丸の内二丁目 5番2号 |
|             |                              | (72)発明者 | 西村 哲彦                          |
| (31)優先権主張番号 | 特顧2000-125544 (P2000-125544) |         | 神奈川県横浜市青葉区鴨志田町1000番地           |
| (32)優先日     | 平成12年4月26日(2000.4.26)        |         | 三菱化学株式会社横浜総合研究所内               |
| (33)優先権主張国  | 日本(JP)                       | (74)代理人 | 100103997                      |
|             |                              | }       | 弁理士 長谷川 曉可                     |

最終頁に続く

## (54) 【発明の名称】 リチウム二次電池用正極材料

## (57)【要約】

【目的】 高温容量維持率の高いリチウム二次電池 を提供する。

【解決手段】 リチウム遷移金属複合酸化物に対して100~1500ppmの第1族及び/又は第2族元素成分(但しリチウムを除く)と、リチウム遷移金属複合酸化物に対して150~10000ppmの硫酸イオン成分とを有するリチウム遷移金属複合酸化物からなるリチウム二次電池用正極材料。

## 【特許請求の範囲】

【請求項1】 リチウム遷移金属複合酸化物に対して100~1500ppmの第1族及び/又は第2族元素成分(但しリチウムを除く)と、リチウム遷移金属複合酸化物に対して150~10000ppmの硫酸イオン成分とを有するリチウム遷移金属複合酸化物からなるリチウム二次電池用正極材料。

【請求項2】 リチウム遷移金属複合酸化物が、リチウムとコバルト及び/又はニッケルとを含有する請求項1 に記載のリチウム二次電池用正極材料。

【請求項3】 第1族及び/又は第2族元素成分は、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群から選ばれた少なくとも一種の元素であるリチウム二次電池用正極材料。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、リチウム二次電池 用正極材料に関する。

[0002]

【従来の技術】正極活物質としてリチウムコバルト複合酸化物等のリチウム遷移金属複合酸化物を使用したリチウム二次電池は公知である。このようなリチウム二次電池においては、通常、正極と負極との間に設けられる電解質層として、リチウム塩を非水系溶媒に溶解してなる電解液や、これらを非流動化してなるゲル状電解質が用いられる(以下、これら電解質層に使用される材料を単に「電解質」ということがある)。

#### [0003]

【発明が解決しようとする課題】近年、リチウム二次電池の用途として、例えば携帯電話のように、所有者の実生活に併せて持ち運ぶ、すなわちモバイル用途が急速に、かつ爆発的に伸長している。従来の設置型においては、当該二次電池は室内温度環境下(例えば摂氏30度)以下での作動が主体であったのに対し、モバイル用途では、屋外に携帯されることから、上記の温度以上の環境下で使用されるため、従来の室温域主体の機器設計だけでは、十分に特性が満足されない問題があった。具体的には、従来のリチウム二次電池においては、高温に曝された後の電池容量がその前の容量に比べて悪化しやすいという問題があった。このような高温容量維持率の低下の原因の1つには、高温に曝されることによって、用いられている正極材料の放電容量が低下し、その機能を十分に発揮しにくくなるということがあった。

【0004】特に、電池要素を収納するケースとして形状可変性を有する外装材を用いた場合、従来最も一般的に使用されてきた金属缶をケースとして使用した場合に比べて、高温下で電池が膨れやすく、上記高温容量維持率の問題は顕著になる。一方、リチウム二次電池においては、益々の高容量化が求められており、その対応として、より高電圧域まで充電を行うことが考えられる。例

えば、コバルト酸リチウム( $LiCoO_2$ 等)の場合、通常は上限電圧を4.1 Vとして充電を行うが、これを4.2 Vにすることによって、この分だけ容量を向上させることができる。しかしながら、一方で、高電圧まで充電すれば、その分負荷は大きくなるため、サイクル特性等に悪影響を与えるという問題点もあった。特に、高レートでは、この傾向は顕著であり、いっそう問題となる。本発明者らの検討によれば、この現象は、電解質として流動性を有する従来の電解液を用いた場合に比べ、電解液をポリマーによってゲル化してなるゲル状電解質のような非流動性電解質を用いた場合に顕著であり、特に問題となる。

[0005]

[0007]

【課題を解決するための手段】本発明は、上記問題点を解決するためになされたもので、その第1の目的は、高温容量維持率の高いリチウム二次電池を提供することにある。また、本発明の他の目的は、高電圧充電を行なった場合でもサイクル特性等に優れたリチウム二次電池を提供することにある。

【0006】本発明者は、上記目的は、正極活物質として使用されるリチウム遷移金属複合酸化物に対して第1族や第2族の金属成分と硫酸イオン成分とを共存させることによって達成できることを見出し本発明を完成した。即ち、本発明の要旨は、リチウム遷移金属複合酸化物に対して100~1500ppmの第1族及び/又は第2族元素成分(但しリチウムを除く)と、リチウム遷移金属複合酸化物に対して150~1000ppmの硫酸イオン成分とを有するリチウム遷移金属複合酸化物からなるリチウム二次電池用正極材料、に存する。

【発明の実施の態様】本発明のリチウム二次電池用正極材料は、第1族及び/又は第2族元素成分と硫酸イオン成分とを有する。これらは、それぞれ遊離したイオンの形態であってもよく、また、対となるイオンと共に塩を形成していてもよい。第1族及び/又は第2族元素成分は、リチウム遷移金属複合酸化物に対して通常100~1500ppm含有させる。含有量が少なすぎると効果が不十分となる傾向にあるので、好ましくは200ppm以上、さらに好ましくは250ppm以上である。また、含有量が範囲外で多すぎると放電容量が低下するらに好ましくは1200ppm以下である。この中でも、好ましくは1200ppm以下である。この中でも、好ましくは900ppm以下である。この中でも、好ましくは900ppm以下、さらに好ましくは650ppm以下、最も好ましくは550ppm以下である。

は、具体的には、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群から選ばれた少なくとも一種の元素が挙げられる。この中でも好ましくはNa、K、Ca、Mg、Sr及びBaであり、特に好ましくはCa、Mg、最も好ましくはCaである。これらの元素は無論

複数種を併用することができる。

【0009】硫酸イオン(SO4)成分は、リチウム遷移金属複合酸化物に対して、通常150~10000ppm含有させる。含有量が少なすぎると効果が不十分となる傾向にあるので、好ましくは200ppm以上である。この中でも、好ましくは1200ppm以上、さらに好ましくは2000ppm以上、最も好ましくは2500ppm以上である。また、含有量が多すぎると放電容量が低下する傾向なので、好ましくは7500ppm以下、さらに好ましくは6000ppm以下、最も好ましくは4000ppm以下である。

【0010】第1族及び/又は第2族元素成分や硫酸イ オン成分を含有させるには、これらの化合物をリチウム 遷移金属複合酸化物の製造段階やその後に適宜添加すれ ばよい。例えば、リチウム遷移金属複合酸化物としてし iCoO₂を使用した場合、この化合物の出発原料であ るCo3O4やCo2O3、CoO2等の酸化コバルトや水 酸化コバルト等のコバルト化合物とLi<sub>2</sub>CO<sub>3</sub>やLiO H、LiNO₃等のリチウム化合物とを混合する際に、 上記成分を添加することができる。リチウム遷移金属複 合酸化物としてLiCoO。を使用する場合の第1族元 素成分、第2族元素成分、硫酸イオン成分を含有させる 具体的な方法としては、(1)原料となるコバルト化合 物として酸化コバルト及び/又は水酸化コバルトを使用 し、これらの調製段階において上記成分を存在させる方 法、(2)コバルト化合物とリチウム化合物とを混合す る際に上記成分を添加する方法、(3) LiCo〇ゥを の製造後上記成分を添加する方法、を挙げることができ る。なお、リチウム遷移金属複合酸化物の製造段階にお いて上記成分を添加する場合、これらが結晶格子中のし iサイトや遷移金属サイトを置換すると、電池容量が低 下する傾向にある。

【0011】なお、リチウム遷移金属複合酸化物は第1 族元素成分や第2族元素成分、硫酸イオン成分を含む様々な不純物を含有することがあるので、これらも考慮する必要がある。添加する際の第1族及び/又は第2族元素成分(但しリチウムを除く)と硫酸イオン成分との形態は、通常これらを含む塩の形である。無論、第1族及び/又は第2族元素成分と硫酸イオンとの塩の形態であってもよい。

【0012】第1族及び/又は第2族元素成分や硫酸イオン成分の検出は、第1族及び/又は第2族元素成分についてはICP分析法、硫酸イオンについては、クロマト分析法によって行うことができる。本発明の正極材料を使用した二次電池に使用される正極は、リチウムの吸蔵・放出に関与する正極活物質を含有する。本発明のリチウム二次電池に使用できる正極活物質は、リチウムと遷移金属とを含む複合酸化物である。この場合の遷移金属としては、例えば、Fe、Co、Ni、Mn等を挙げ

ることができる。実用上得やすく、また容量等の電池性能に倒れるので、上記の遷移金属の中でも、コバルト、ニッケル及びマンガンが好ましく、さらにはコバルト及びニッケルがさらに好ましく、さらにはコバルトが最も好ましい。無論複数の遷移金属を同時に有するリチウム遷移金属複合酸化物を使用してもよい。具体的なリチウム複合酸化物としては、 $LiCoO_2$ 等のリチウムコバルト複合酸化物、 $LiNiO_2$ 等のリチウムマンガン複合酸化物を挙げることができる。これらの遷移金属サイトの一部を他の元素で一部置換してもよい。

【0013】なお、正極中には、上記以外の他の活物質を含有していてもよい。この場合の他の活物質としては、MnO、 $V_2O_5$ 、 $V_6O_{13}$ 、 $TiO_2$ 等の遷移金属酸化物、 $TiS_2$ 、FeSなどの遷移金属硫化物、ポリアニリン等の導電性ポリマー等の有機化合物を挙げることもできる。活物質が粒状の場合の粒径は、レート特性、サイクル特性等の電池特性が優れる点で通常 $1\sim30\mu$ m、好ましくは $1\sim10\mu$ m程度である。

【0014】リチウム二次電池に使用する負極活物質は、通常コークス、アセチレンブラック、メゾフェーズマイクロビーズ、グラファイト等の炭素材料である。無論これらの炭素材料を複数種用いることもできる。また、上記炭素材料以外に、リチウム金属やリチウム合金等の他の負極活物質を使用することもできる。負極活物質の粒径は、初期効率、レート特性、サイクル特性等の電池特性が優れる点で、通常1~50μm、好ましくは15~30μm程度である。

【0015】正極及び負極は、それぞれ、通常活物質と バインダーとを有する。正極及び負極に使用できるバイ ンダーとしては、耐候性、耐薬品性、耐熱性、難燃性等 の観点から各種の材料が使用される。具体的には、シリ ケート、ガラスのような無機化合物や、ポリエチレン、 ポリプロピレン、ポリー1, 1-ジメチルエチレンなど のアルカン系ポリマー;ポリブタジエン、ポリイソプレ ンなどの不飽和系ポリマー;ポリスチレン、ポリメチル スチレン、ポリビニルピリジン、ポリーN-ビニルピロ リドンなどの環を有するポリマー;ポリメタクリル酸メ チル、ポリメタクリル酸エチル、ポリメタクリル酸ブチ ル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポ リアクリル酸、ポリメタクリル酸、ポリアクリルアミド などのアクリル誘導体系ポリマー;ポリフッ化ビニル、 ポリフッ化ビニリデン、ポリテトラフルオロエチレン等 のフッ素系樹脂;ポリアクリロニトリル、ポリビニリデ ンシアニドなどのCN基含有ポリマー;ポリ酢酸ビニ ル、ポリビニルアルコールなどのポリビニルアルコール 系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデンなど のハロゲン含有ポリマー; ポリアニリンなどの導電性ポ リマーなどが使用できる。また上記のポリマーなどの混 合物、変成体、誘導体、ランダム共重合体、交互共重合 体、グラフト共重合体、ブロック共重合体などであっても使用できる。これらの樹脂の重量平均分子量は、通常10000-300000、好ましくは100000-100000程度である。低すぎると電極の強度が低下する傾向にある。一方高すぎると粘度が高くなり電極の形成が困難になることがある。好ましいバインダー樹脂は、フッ素系樹脂、CN基含有ポリマーである。

【0016】活物質100重量部に対するバインダーの 使用量は通常0.1重量部以上、好ましくは1重量部以 上であり、また通常30重量部以下、好ましくは20重 量部以下である。バインダーの量が少なすぎると電極の 強度が低下する傾向にあり、バインダーの量が多すぎる とイオン伝導度が低下する傾向にある。電極中には、電 極の導電性や機械的強度を向上させるため、導電性材 料、補強材など各種の機能を発現する、粉体、充填材な どを含有させても良い。導電性材料としては、上記活物 質に適量混合して導電性を付与できるものであれば特に 制限は無いが、通常、アセチレンブラック、カーボンブ ラック、黒鉛などの炭素粉末や、各種の金属のファイバ ー、箔などが挙げられる。炭素粉末導電性材料のDBP 吸油量は120cc/100g以上が好ましく、特に1 50cc/100g以上が電解液を保持するという理由 から好ましい。補強材としては各種の無機、有機の球 状、繊維状フィラーなどが使用できる。

【0017】正極及び/又は負極には、上記の構成成分の外に電解質を含有させるのが、イオン伝導性を高める上で好ましい。この場合に使用する電解質としては、電解質層に使用する電解質と同様の非流動性電解質や電解液を使用することができる。電極は、活物質やバインダー等の構成成分と溶剤とを含む塗料を塗布・乾燥することによって形成することができる。

【0018】電極の厚さ(集電体を除く)は、通常10 μm以上、好ましくは20μm以上、さらに好ましくは40μm以上、最も好ましくは100μm以上であり、また通常250μm以下、好ましくは150μm以下である。薄すぎると塗布が困難になり均一性が確保しにくくなるだけでなく、電池の容量が小さくなりすぎることがある。一方、あまりに厚すぎるとレート特性が低下しすぎることがある。

【0019】一般に、電池の大きさを一定とすれば、電極の厚さが厚いほど活物質の割合が増大するので、電池容量を上げることができる。しかしながら、一方で、電極が厚いほど、電極内でリチウムイオンが移動しにくいため過電圧がたちやすく、その結果、充放電に伴って電池が劣化しやすい傾向にある。リチウム遷移金属複合酸化物に第1族元素成分、第2族元素成分、硫酸イオン成分を含有させることによって、このような電池劣化をより有効に抑制することができる。換言すれば、本発明においては、正極が厚い場合に、サイクル特性の向上効果がより顕著であるので、例えば正極の厚さを100μm

以上とするのが好ましい。

【0020】電極には、通常集電体が設けられる。集電体としては、各種のものを使用することができが、通常は金属や合金が用いられる。具体的には、正極の集電体としては、アルミニウムやニッケル、SUS等が挙げられ、負極の集電体としては、正極の集電体としてアルミニウムを使用し、負極の集電体として銅を使用する。

【0021】正負極層との結着効果が向上されるため、これら集電体の表面を予め粗面化処理しておくのが好ましい。表面の粗面化方法としては、ブラスト処理や粗面ロールにより圧延するなどの方法、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシなどで集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法などが挙げられる。

【0022】また、電池の重量を低減させる、すなわち 重量エネルギー密度を向上させるために、エキスパンド メタルやパンチングメタルのような穴あきタイプの集電 体を使用することもできる。この場合、その開口率を変 更することで重量も自在に変更可能となる。また、この ような穴あけタイプの集電体の両面に活物質を存在させ た場合、この穴を通しての塗膜のリベット効果により塗 膜の剥離がさらに起こりにくくなる傾向にあるが、開口 率があまりに高くなった場合には、塗膜と集電体との接 触面積が小さくなるため、かえって接着強度は低くなる ことがある。

【0023】集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50以下である。あまりに厚すぎると、電池全体の容量が低下しすぎることになり、逆に薄すぎると取り扱いが困難になることがある。正極と負極との間には電解質層が形成される。電解質層の電解質の材料としては、通常、流動性を有する電解液や、ゲル状電解質や完全固体型電解質等の非流動性電解質等の各種の電解質を含む。電池の特性上は電解液またはゲル状電解質が好ましく、安全上は非流動性電解質が好ましい。非流動性電解質を開いた場合は、流動性のある電解液に比べ、高温での容量維持率、レート特性、サイクル特性(特に高電圧充電時のレート特性)に劣る傾向にあるので、本発明の効果が時に顕著である。

【0024】電解質層に使用される電解液は、通常リチウム塩を非水系溶媒に溶解してなる。リチウム塩としては、正極および負極に対して安定であり、かつリチウムイオンが正極活物質あるいは負極活物質と電気化学反応をするための移動をおこない得る非水物質であればいずれのものでも使用することができる。具体的にはLiP $F_6$ 、LiAs $F_6$ 、LiSb $F_6$ 、LiBF $_4$ 、LiClO $_4$ 、LiI、LiBr、LiCl、LiAlCl、LiHF $_2$ 、LiSCN、LiSO $_3$ CF $_2$ 等のリチウム塩が挙げられる。これらのうちでは特にLiPF $_6$ 、Li

C104が好適である。

【0025】これら支持電解質を非水系溶媒に溶解した状態で用いる場合の濃度は、一般的に0.5~2.5 m o 1/Lである。これら支持電解質を溶解する非水系溶媒は特に限定されないが、比較的高誘電率の溶媒が好適に用いられる。具体的にはエチレンカーボネート、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの非環状カーボネート類、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のグライム類、ケーブチロラクトン等のラクトン類、スルフォラン等の硫黄化合物、アセトニトリル等のニトリル類等が挙げられる。またこれらの1種または2種以上の混合物を使用することができる。

【0026】これらのうちでは、特にエチレンカーボネート、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの非環状カーボネート類から選ばれた1種または2種以上の溶媒が好適である。また、アーブチロラクトン等のラクトン類も好適である。最も好ましくは、エチレンカーボネート、プロピレンカーボネート、アーブチロラクトンからなる群から選ばれる1種以上の溶媒である。なお、これらの分子中の水素原子の一部をハロゲンなどに置換したものも使用できる。

【0027】電解質層に使用できるゲル状電解質は、通 常、上記電解液を高分子によって保持してなる。即ち、 ゲル状電解質は、通常電解液が高分子のネットワーク中 に保持されて全体としての流動性が著しく低下したもの である。このようなゲル状電解質は、イオン伝導性など の特性は通常の電解液に近い特性を示すが、流動性、揮 発性などは著しく抑制され、安全性が高められている。 ゲル状電解質中の高分子の比率は好ましくは1~50重 量%である。低すぎると電解液を保持することができな くなり、液漏れが発生することがある。高すぎるとイオ ン伝導度が低下して電池特性が悪くなる傾向にある。 【0028】ゲル状電解質に使用する高分子としては、 電解液と共にゲルを構成しうる高分子であれば特に制限 はなく、ポリエステル、ポリアミド、ポリカーボネー ト、ポリイミドなどの重縮合によって生成されるもの、 ポリウレタン、ポリウレアなどのように重付加によって 生成されるもの、ポリメタクリル酸メチルなどのアクリ ル誘導体系ポリマーやポリ酢酸ビニル、ポリ塩化ビニ ル、ポリフッ化ビニリデンなどのポリビニル系などの付

加重合で生成されるものなどがある。好ましい高分子と

しては、ポリアクリロニトリル、ポリフッ化ビニリデン

を挙げることができる。ここで、ポリフッ化ビニリデン

とは、フッ化ビニリデンの単独重合体のみならず、ヘキ

サフルオロプロピレン等他のモノマー成分との共重合体

をも包含する。また、アクリル酸、アクリル酸メチル、

アクリル酸エチル、エトキシエチルアクリレート、メト キシエチルアクリレート、エトキシエトキシエチルアク リレート、ポリエチレングリコールモノアクリレート、 エトキシエチルメタクリレート、メトキシエチルメタク リレート、エトキシエトキシエチルメタクリレート、ポ リエチレングリコールモノメタクリレート、N, N-ジ エチルアミノエチルアクリレート、N, N-ジメチルア ミノエチルアクリレート、グリシジルアクリレート、ア リルアクリレート、アクリロニトリル、Nービニルピロ リドン、ジエチレングリコールジアクリレート、トリエ チレングリコールジアクリレート、テトラエチレングリ コールジアクリレート、ポリエチレングリコールジアク リレート、ジエチレングリコールジメタクリレート、ト リエチレングリコールジメタクリレート、テトラエチレ ングリコールジメタクリレート、ポリエチレングリコー ルジメタクリレートなどのアクリル誘導体系ポリマーも 好ましく用いることができる。

【0029】上記高分子の重量平均分子量は、通常10000~5000000の範囲である。分子量が低いとゲルを形成しにくくなる。分子量が高いと粘度が高くなりすぎて取り扱いが難しくなる。高分子の電解液に対する濃度は、分子量に応じて適宜選べばよいが、好ましくは0.1重量%から30重量%である。濃度が低すぎるとゲルを形成しにくくなり、電解液の保持性が低下して流動、液漏れの問題が生じることがある。濃度が高すぎると粘度が高くなりすぎて工程上困難を生じるとともに、電解液の割合が低下してイオン伝導度が低下しレート特性などの電池特性が低下することがある。

【0030】電解質層として完全固体状の電解質層を用いることもできる。このような固体電解質としては、これまで知られている種々の固体電解質を用いることができる。例えば、上述のゲル状電解質で用いられる高分子と支持電解質塩を適度な比で混合して形成することができる。この場合、伝導度を高めるため、高分子は極性が高いものを使用し、側鎖を多数有するような骨格にすることが好ましい。

【0031】電解質層として、上記電解質を多孔性膜等のスペーサに含浸したものを用いてもよい。電解質層の厚みは、通常1~200μm、好ましくは5~100μmである。スペーサとしては、具体的には厚さ通常1μm以上、好ましくは5μm以上、また通常200μm以下、好ましくは100μm以下のものが使用される。空隙率は、通常10~95%、好ましくは30~85%程度である。スペーサの材料としては、ポリオレフィンを使である。スペーサの材料としては、ポリオレフィンまたは水素原子の一部もしくは全部がフッ素置換されたポリオレフィン等の合成樹脂を用いて形成した微多孔性膜、不織布、織布等を用いることができる。

【0032】リチウム二次電池における負極活物質の表面には、添加剤の作用によって被膜が形成されていても

よい。通常、添加剤は電解質に添加され、初期の充電時の反応によって負極活物質表面に被膜を形成する。形成された被膜は、通常添加剤そのものからなるものではなく、それらと電解液中の各成分との反応によって生成する。添加剤は、上記被膜を形成する限り、必ずしも電解質層中に添加される必要はなく、正極や負極に含有させておくこともできる。

【0033】本発明において使用できる添加剤は、通常、電解質層中の電解質に対して、0.01重量%以上、好ましくは0.05重量%以上、さらに好ましくは0.07重量%以下であり、また通常10重量%以下、好ましくは8重量%以下、さらに好ましくは6重量%以下である。使用量が多すぎると、添加剤が電解質中でリチウムイオン移動の阻害因子となり、イオン伝導度が低下し、その結果、高レートでの容量の低下を招くことがある。逆に、使用量が少なすぎると、十分な効果を発現せず、特に初期の充電時に電解質溶媒の分解によるガスが発生し、その結果、充電時の抵抗の増加と充放電容量の低下を招くことがある。

【0034】使用することができる添加剤としては、負極活物質表面に被膜を形成しうる従来公知の各種のものを使用できる。例えば、ビニレンカーボネート、トリフルオロプロピレンカーボネート、カテコールカーボネート等のカーボネート類、1,6-Dioxaspiro[4,4]nonane-2,7-dione等の環状又は鎖状エステル類、12-クラウン-4-エーテル等の環状エーテル、無水グルタル酸、無水コハク酸等の酸無水物、シクロペンタノン、シクロペキサノン等の環状ケトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン等のスルトン類やチオカーボネート類を含む含硫黄化合物、イミド類を含む含窒素化合物を挙げることができる。中でも、酸無水物やラクトン類が好ましい。

【0035】これら添加剤の分子量は、通常1000以下、好ましくは500以下、さらに好ましくは300以下である。分子量が大きすぎると、充放電へ阻害要因の影響が高まり、イオン伝導を阻害し逆効果となることがある。リチウム二次電池は、通常、正極と負極とを有する電池要素を外装材からなるケースに収納してなる。電池要素を収納する外装材は、形状可変性を有するものが好ましい。その結果、種々の形状の電池を作成しやすいばかりでなく、真空状態下で外装材を封止した場合に、電池要素の電極間の貼り合わせを強化する機能を付与することができ、その結果、サイクル特性などの電池特性を向上させることができる。また、形状可変性を有するケースは、高温容量維持率の低下が著しいので、本発明の効果が特に顕著である。

【0036】外装材は、加工が容易である点でフィルム 状のものを使用するのが好ましい。外装材の厚さは、薄 ければ薄いほど電池の体積エネルギー密度や重量エネル ギー密度が大きくなるので好ましいばかりでなく、強度 そのものが相対的に低いので本発明の効果が特に顕著となる。外装材の厚みは通常0.2 mm以下、好ましくは0.15 mm以下である。ただし、あまりに薄いのは強度不足が顕著になり、水分等も透過しやすくなるので、通常0.01 mm以上、好ましくは0.02 mm以上である。

【0037】外装材の材料としては、アルミニウム、ニッケルメッキした鉄、銅等の金属、合成樹脂等を用いることができる。好ましくは、ガスバリア層と樹脂層とが設けられたラミネートフィルム、特に、ガスバリア層の両面に樹脂層が設けられたラミネートフィルムである。このようなラミネートフィルムは、高いガスバリア性を有すると共に、高い形状可変性と、薄さを有する。その結果、外装材の薄膜化・軽量化が可能となり、電池全体としての容量を向上させることができる。

【0038】ラミネートフィルムに使用するガスバリア層の材料としては、アルミニウム、鉄、銅、ニッケル、チタン、モリブデン、金等の金属やステンレスやハステロイ等の合金、酸化ケイ素や酸化アルミニウム等の金属酸化物を使用することができる。好ましくは、軽量で加工性に優れるアルミニウムである。樹脂層に使用する樹脂としては、熱可塑性プラスチック、熱可塑性エラストマー類、熱硬化性樹脂、プラスチックアロイ等各種の合成樹脂を使うことができる。これらの樹脂にはフィラー等の充填材が混合されているものも含んでいる。

【0039】具体的な好ましいラミネートフィルムの構成としては、ガスバリア層の外側面に外側保護層として機能するための合成樹脂層を設けると共に、内側面に電解質による腐蝕やガスバリア層と電池要素との接触を防止したりガスバリア層を保護するための内側保護層として機能する合成樹脂層を設けた三層構造体としたものである。

【0040】この場合、外側保護層に使用する樹脂は、好ましくはポリエチレン、ポリプロピレン、変性ポリオレフィン、アイオノマー、非晶性ポリオレフィン、ポリエチレンテレフタレート、ポリアミド等耐薬品性や機械的強度に優れた樹脂が望ましい。内側保護層としては、耐薬品性の合成樹脂が用いられ、例えばポリエチレン、ポリプロピレン、変性ポリオレフィン、アイオノマー、エチレンー酢酸ビニル共重合体等を用いることができる。

【0041】なお、ラミネートフィルムは、ガスバリア層と樹脂層との間に接着材層を設けることもできる。また、外装材同士を接着するために、ラミネートフィルムの最内面に溶着可能なポリエチレン、ポリプロピレン等の樹脂からなる接着層を設けることもできる。ケースの成形はフィルム状の外装材の周囲を融着して形成してもよく、フィルム上の外装材を真空成形、圧空成形、プレス成形等によって絞り成形してもよい。また、合成樹脂を射出成形することによって成形することもできる。射

出成形によるときは、ガスバリア層はスパッタリング等によって形成されるのが通常である。

【0042】本発明においては、リチウム二次電池の充放電において、より高電圧まで充電することが可能である。即ち、リチウム二次電池の充放電操作において、より高電圧までの充電するのが、本発明の効果が特に大きいので好ましい。例えば、正極活物質として、LiCoO₂等のコバルト酸リチウムを使用した場合、満充電時の電圧を、4.2 Vよりも大きく、特に4.21 V以上、さらには4.25 V以上とするのが好ましい。ただし、この場合、あまりに上限電圧を大きくすると、サイクル特性がかえって悪化する傾向にあるので、通常は4.4 V以下とする。

## [0043]

【実施例】 [正極の製造] 厚さ  $20\mu$ mのアルミニウムからなる集電体に、表-1に記載の含有量の第1族又は第2族元素成分及び硫酸イオン成分を含有するコバルト酸リチウム( $LiCoO_2$ )90重量%とポリフッ化ビニリデン(PVdF)5重量%とアセチレンブラック5重量%とを含有する塗料を塗布・乾燥して厚さ62 $\mu$ mの正極を得た。 [負極の製造] 厚さ  $20\mu$ mの銅からなる集電体に、メソカーボン粒子(平均粒径6 $\mu$ m)88重量%とPVdF10重量%とアセチレンブラック2重量%とを含有する塗料を塗布・乾燥して厚さ56 $\mu$ mの負極を得た。

[リチウム二次電池の製造]  $LiPF_6$ を1mol/L の割合で含有するプロピレンカーボネートをエチレンカーボネートとの混合溶媒(混合体積比1:1)からなる電解液 91 重量%に、アクリレート系のモノマー 9 重量%とを加え、全量で100 重量%となるように調整した。これに、さらに重合開始剤を0.1 重量%加えて、ゲル状電解質前駆体とした。

【0044】前記正極、前記負極、及び膜厚16μm、空孔率45%、平均孔径0.05μmのポリエチレン製2軸延伸多孔膜フィルムに、それぞれ前記ゲル状電解質

前駆体を塗布・含浸させた後、これらを積層し、90℃で5分間加熱することによってモノマーを重合させ、非流動性電解質を有する電池要素を得た。得られた電池要素を、アルミニウム層の両面を樹脂層で被覆した形状可変性を有する厚さ約100μmのラミネートフィルムに正極負極の端子を突設させつつ、真空封止して評価用のリチウム二次電池とした。得られた電池に4.1~2.7 Vの範囲で充放電を行い、表-1に記載の放電容量のリチウム二次電池とし、得られた放電容量値を1 C 放電容量とした。

[電池特性評価] 得られたリチウム二次電池に対して、室温にて、4.1 Vまで0.5 Cの電流密度で充電させた後、1 Cの電流密度で放電させ、熱処理前の放電容量 A 1 を測定した。その後、0.5 Cの電流密度でさらに充電させ、その後90℃で5時間熱処理を行った。その後、1 Cの電流容量で2.7 Vまで放電させ、熱処理後の放電容量 Bを測定した。その後4.1 Vまで同様に0.5 Cで再充電した後1.0 Cで放電させ、再充電後の放電容量 Cを測定した。

【0045】熱処理前の放電容量A1に対する、熱処理後の放電容量Bの比、即ち、熱処理後の放電容量B/熱処理前の放電容量A1より、高温容量維持率1を求めた。また、熱処理前の放電容量A1に対する、熱処理後の再充放電時の放電容量容量Cの比、すなわち、熱処理後の再充放電時の放電容量C/熱処理前の放電容量A1から高温容量維持率2を求めた。

【0046】一方、充電時には、4.1 Vまで1 Cで定電流充電し続いて(1/25)Cの電流まで定電圧充電を行い、放電時には、2.7 Vまで1 Cで定電流放電を行うサイクルを100回繰り返し、1回目の放電容量に対する100回目の放電容量の割合(%)としてサイクル容量維持率(X1)を求めた。以上の結果を表-1に示す。

【0047】 【表1】

|            | 第1/2族<br>元素成<br>分型<br>(ppa) | 硫酸(t)<br>成分量<br>(ppm) | 放電容量<br>A1 (mAb) | 放现存品<br>B (mAh) | 放電容量<br>C (mAh) | 施持索 1<br>(水) | 高級容量<br>維持率2<br>(%) | サイクル容<br>量 雄 持<br>率 (%)<br>(X1) |
|------------|-----------------------------|-----------------------|------------------|-----------------|-----------------|--------------|---------------------|---------------------------------|
| 実 施<br>例 1 | C a<br>870                  | 2090                  | 520              | 447             | 468             | 86. 0        | 90. 0               | 93. 9                           |
| 奥 施<br>例 2 | Ca<br>610                   | 2760                  | 523              | 442             | 462             | 84. 5        | 88. 4               | 93. 8                           |
| 実 施<br>例 3 | Ca<br>1178                  | 2824                  | 524              | 443             | 465             | 84. 5        | 88. 7               | 94. 1                           |
| 突 施<br>例 4 | Mg<br>650                   | 3211                  | 523              | 449             | 467             | 85. 8        | 89. 3               | 93. 8                           |
| 奥 施<br>例 5 | Mg<br>950                   | 2930                  | 523              | 450             | 466             | 86. 0        | 89. I               | 93. 9                           |
| 比 較<br>例 1 | Ca<br>40                    | 150                   | 523              | 357             | 408             | 68. Z        | 78. 0               | 89. 5                           |
| 比較<br>例2   | Ca<br>58                    | 142                   | 515              | 351             | 398             | 68. 2        | 77. 3               | 89. 8                           |
| 比 蛟<br>例 3 | M g<br>6 0                  | 120                   | 513              | 351             | 396             | 68. 2        | 77. 2               | 89. 1                           |
| 参 考<br>例 1 | Ca<br>610<br>→41            | 2760<br>→35           | 511              | 345             | 892             | 67. 5        | 76. 7               | 88, 8                           |

【0048】\*表-1において、ナトリウム、カルシウム及びマグネシウム成分量は I C P 分析法、硫酸イオン成分量はクロマト分析法によって測定されたものであり、何れもLi C o O2 正極材中の重量割合で示されている。上記において、実施例3及び比較例2については、それぞれCaSO4の形で4000ppm、200ppm、Li CoO2正極材中に加えたものである。また、実施例4については、MgSO4の形で3860ppmをLi CoO2正極材中に加えたものである。

【0049】さらにまた、上記において、「参考例」は、実施例2で使用したのと同じ正極材料を10重量倍の水で水洗後乾燥し、600℃でさらに水分を飛ばした後のものを使用した場合の例である。水洗によってカルシウム成分や硫酸イオン成分が減少していることから、これらの成分はコバルト酸リチウムの結晶格子外に存在していたことが分かる。

【0050】表-1から明らかなように、第1及び/又は第2族元素成分と硫酸イオン成分が共存することにより、優れたサイクル特性と高温容量維持率が得られることが分かる。

#### 実施例6~8及び比較例4~5

第1族元素成分又は第2族元素成分及び硫酸イオン成分の含有量が表-2に記載のコバルト酸リチウムを使用したこと、正極の厚みを60μmとし負極の厚みを49μmとしたこと、並びにメソカーボン粒子88重量%及びアセチレンブラック2重量%の代わりにメソカーボン粒子15重量%及び表面アモルファス処理された天然グラファイト75重量%を用いたこと以外、実施例1と同様

にして、リチウム二次電池を作成した。 【0051】電池は、下記2点で評価した。 サイクル容量維持率(X2)

サイクル容量維持率(X3)

室温にて、4.1 Vまで0.5 Cの電流密度で定電流充電させ、次いで電流値が(1/100) Cとなるまで4.1 V定電圧充電を行う充電操作を行い、その後、1 Cで2.7 Vまで放電を行う放電操作を行なった。4.1 Vまで1 Cの定電流充電を行い、次いで(1/25) Cとなるまで4.1 V定電圧充電を行う充電操作と、1 Cで2.7 Vまで放電を行う放電操作を400回行い、1回目の放電容量に対する400サイクル後の放電容量の割合としてサイクル容量維持率(X2)を求めた。1回目の放電容量(A2)とサイクル容量維持率(X2)とをまとめて結果を表-2に示す。

室温にて、4.2 Vまで0.5 Cの電流密度で定電流充電させ、次いで電流値が(1/100) Cとなるまで4.2 V定電圧充電を行う充電操作を行い、その後、1 Cで2.7 Vまで放電を行う放電操作を行なった。4.1 Vまで1 Cの定電流充電を行い、次いで(1/25) Cとなるまで4.1 V定電圧充電を行う充電操作と、1 Cで2.7 Vまで放電を行う放電操作を400回行い、1回目の放電容量に対する400サイクル後の放電容量の割合としてサイクル容量維持率(X3)を求めた。1 回目の放電容量(A3)とサイクル容量維持率(X3)とをまとめて結果を表-2に示す。

[0052]

【表2】

表-2

| •     | 第1/2族元衆<br>成分量<br>(ppm) | 硫酸(扩)<br>成分量<br>(ppm) | 放電容量<br>A2<br>(mAh) | サイクル容量維<br>持率 (X2)<br>(%) | 放電容量<br>A3<br>(mAh) | サイクル容量権<br>持事(X3)<br>(%) |
|-------|-------------------------|-----------------------|---------------------|---------------------------|---------------------|--------------------------|
| 実施例 6 | Са.<br>870              | 2090                  | 570                 | 89.8                      | 686                 | 81,4                     |
| 実施例 7 | Ca.<br>610              | 2760                  | 571                 | 90.4                      | 688                 | 83.5                     |
| 実施例8  | Ca.<br>450              | 3500                  | 578                 | 91.1                      | 641                 | 85.8                     |
| 比較例4  | Ca<br>40                | 150                   | 571                 | 78.3                      | 837                 | 70.1                     |
| 比較例 5 | M g<br>60               | 120                   | 570                 | 78.1                      | 637                 | 69.6                     |

## 【0053】実施例9及び比較例6

実施例8で使用したコバルト酸リチウム(実施例9)及び比較例4で使用したコバルト酸リチウム(比較例6)を使用したこと、並びに、充電時の上限電圧を4.2 V、4.3 V及び4.4 Vとして150回サイクル後の サイクル容量維持率 (X4~X6)を求めたこと以外、 実施例6と同様にしてリチウム二次電池を製造、評価した。結果を表-3に示す。

【0054】

【表3】

表-3

|          |                             |                     | 4.2 V充電             |                             | 4.3V充電              |                                   | 4.4V充電              |                             |
|----------|-----------------------------|---------------------|---------------------|-----------------------------|---------------------|-----------------------------------|---------------------|-----------------------------|
|          | 第1/2族<br>元紫成<br>分量<br>(ppm) | 硫酸化<br>成分量<br>(ppm) | 放電容<br>量<br>(mAh/g) | f/%容量<br>維持率<br>(X4)<br>(%) | 放電容<br>量<br>(mAh/g) | <b>亨伊容量</b><br>維持率<br>(X5)<br>(%) | 放電容<br>量<br>(rAh/g) | 外別容量<br>維持率<br>(X 6)<br>(%) |
| 実施例      | Ca.<br>450                  | 3500                | 140                 | 94.1                        | 151.8               | 90.1                              | 165.1               | 80.2                        |
| 比較例<br>8 | C a.<br>40                  | 150                 | 140                 | 88.1                        | 151.8               | 72.6                              | 165.1               | 44.3                        |

なお、放電容量はコバルト酸リチウム重量当たりの値で 示した。

[0055]

【発明の効果】本発明によれば、高い容量、優れたレー

ト特性の二次電池が得られ、また、生産性、安全性に優れた二次電池を得ることができる。特に、本発明によれば、サイクル特性に優れ、高温に曝されても容量低下の少ないリチウム二次電池を得ることができる。

## フロントページの続き

Fターム(参考) 5H029 AJ12 AK02 AK03 AK05 AK11

AK16 AK18 AL07 AL08 AL12

AMO2 AMO3 AMO4 AMO5 AMO7

AM16 EJ01 EJ04 EJ12 HJ01

5H050 AA07 AA08 AA10 AA15 BA17

BA18 CA02 CA08 CA09 CA11

CA22 CA29 CB08 CB09 CB12

EA10 EA24 HA01