Les outils mathématiques utilisés

P2 - Chapitre 1

Produit scalaire I.

$$|\vec{A} \cdot \vec{B}| = ||\vec{A}|| ||\vec{B}|| \cos(\vec{A}, \vec{B})$$

- On peut permuter les vecteurs, développer le produit scalaire, sortir ou déplacer les réels en facteur.
- $\vec{A} \cdot \vec{B} = 0 \Leftrightarrow \vec{A} \perp \vec{B}$
- $\vec{A} \cdot \vec{B} = x_A x_B + y_A y_B + z_A z_B$
- Interprétation géométrique : $\vec{A} \cdot \overrightarrow{u_x}$ est la composante de \vec{A} sur $\overrightarrow{u_x}$.

II. Produit vectoriel

$$\vec{A} \wedge \vec{B} = \vec{C}$$

• Direction: $\perp \vec{A} \ et \perp \vec{B}$ $\vec{A} \wedge \vec{B} = \begin{vmatrix} y_a z_b - y_b z_a \\ z_a x_b - z_b x_a \\ x_a y_b - x_b y_a \end{vmatrix}$ • Direction Sens: Règle des 3 doigts / du tire-bouchon Norme: $\|\vec{A} \wedge \vec{B}\| = \|\vec{A}\| \|\vec{B}\| \sin(\vec{A}, \vec{B})$

- $\vec{A} \wedge \vec{B} = -\vec{B} \wedge \vec{A}$
- On peut développer le produit vectoriel, sortir ou déplacer les réels en facteur.
- $\bullet \quad |\vec{A} \wedge \vec{B} = 0 \Leftrightarrow \vec{A} \parallel \vec{B}|$
- $\|\vec{A} \wedge \vec{B}\| =$ aire du parallélogramme construit sur \vec{A} et \vec{B}

III. Produit mixte

$$(\vec{A}, \vec{B}, \vec{C}) = \vec{A} \cdot (\vec{B} \wedge \vec{C}) = (\vec{A} \wedge \vec{B}) \cdot \vec{C}$$

- On peut permuter circulairement les vecteurs : $(\vec{A}, \vec{B}, \vec{C}) = (\vec{B}, \vec{C}, \vec{A}) = (\vec{C}, \vec{A}, \vec{B})$
- $(\vec{A}, \vec{B}, \vec{C}) = -(\vec{B}, \vec{A}, \vec{C})$
- $(\vec{A} + \vec{B}, \vec{C}, \vec{D}) = (\vec{A}, \vec{C}, \vec{D}) + (\vec{B}, \vec{C}, \vec{D})$
- On peut sortir les réels en facteur

$$\vec{A} = \vec{0}$$
 ou $\vec{B} = \vec{0}$ ou $\vec{C} = \vec{0}$

- $\vec{A} = \vec{0} \text{ ou } \vec{B} = \vec{0} \text{ ou } \vec{C} = \vec{0}$ $(\vec{A}, \vec{B}, \vec{C}) = 0 \Leftrightarrow \text{ ou } \vec{A} \parallel \vec{B} \text{ ou } \vec{A} \parallel \vec{C} \text{ ou } \vec{B} \parallel \vec{C}$ ou \vec{A} , \vec{B} , \vec{C} coplanaires
- $|(\vec{A}, \vec{B}, \vec{C})|$ = volume du parallélépipède construit sur $\vec{A}, \vec{B}, \vec{C}$

IV. Différentielle d'une fonction à une variable

1. Définition et cas particuliers

$$\boxed{\frac{df}{dx} = f'(x_0)dx} \qquad \boxed{\frac{df}{dx} = f'(x)} \qquad \boxed{df(x,y) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy}$$

$$da = 0 \qquad d(au + bv) = a du + b dv \qquad d(\ln u) = \frac{du}{u}$$

2. Application aux petites variations

Pour les petites variations de x, la variation de f s'identifie à sa différentielle ($\Delta f \approx df$)

v1