

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «I	Ірограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №4 по курсу «Моделирование»

на тему: «Моделирование работы системы массового обслуживания» Вариант № 7

Студент <u>ИУ7-72Б</u>		Е. О. Карпова
(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподаватель		И. В. Рудаков
	(Подпись, дата)	(И. О. Фамилия)

1 Теоретический раздел

1.1 Алгоритмы протяжки времени

1.1.1 Пошаговый

Пошаговый принцип или принцип Δt заключается в последовательном анализе состояний всех блоков в момент времени $t+\Delta t$ по заданному состоянию блоков в момент времени t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов. В результате этого анализа принимается решение о том, какие общесистемные события должны имитироваться программой на данный момент времени.

Основной недостаток принципа Δt заключается в значительных затратах вычислительных ресурсов, а при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, исключающая возможность получения правильных результатов при моделировании.

1.1.2 Событийный

Состояния отдельных устройств изменяется в дискретные моменты времени, совпадающие с моментами поступления сообщений в систему, окончания реализации задания, поэтому моделирование и продвижение текущего времени в системе удобно проводить, используя событийных принцип.

При использовании данного принципа состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент наступления следующего события определяется минимальными значениями из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.

1.2 Используемые распределения

В качестве распределения генератора используется равномерное распределение. В качестве распределения обслуживающего аппарата используется распределение Эрланга.

1.2.1 Равномерное распределение

Говорят, что случайная величина X имеет равномерное распределение на отрезке [a,b], если её функция плотности имеет вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}$$

Значения случайной величины с двух сторон ограничены и в границах интервала имеют одинаковую вероятность. В данном интервале плотность вероятности постоянна.

Функция распределения:

$$F_X(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, x \ge b \end{cases}$$

Рисунок 1.1 – Функция плотности равномерного распределения

Рисунок 1.2 – Функция распределения равномерного распределения

1.2.2 Распределение Эрланга

Распределение Эрланга является непрерывным распределением, ограниченным снизу. Оно представляет собой особый случай Гамма распределения, где параметр k может принимать только положительные целые значения.

Функция распределения:

$$F_X(x) = 1 - \sum_{i=0}^{k-1} \frac{1}{i!} e^{-\lambda x} (\lambda x)^n$$

Плотность распределения:

$$f_X(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}$$

Рисунок 1.3 – Функция плотности распределения Эрланга

Рисунок 1.4 – Функция распределения распределения Эрланга

2 Практический раздел

На рисунках 2.1–2.6 представлена работа разработанной программы.

Рисунок 2.1 — Окно работы программы для процента возврата 0%

Рисунок 2.2 – Окно работы программы для процента возврата 0%

Рисунок 2.3 – Окно работы программы для процента возврата 50%

Рисунок 2.4 — Окно работы программы для процента возврата 50%

Рисунок 2.5 – Окно работы программы для процента возврата 90%

Рисунок 2.6 – Окно работы программы для процента возврата 90%