

Perception

ME 2984

"There are things known and there are things unknown, and in between are the doors of perception."

— Aldous Huxley

PERCEPTION VS. SENSING

- Sensing: collecting data about the robot/environment
 - Focuses on physical phenomena measured
 - Sensing modality
 - Accurate/precise/reliable measurement
- Perception: extracting higher level models of environment to accomplish some task
 - Connected to both sensing and desired task
 - Models are crucial
 - Assumptions about environment, task, and sensors

VirginiaTech Invent the Future PERCEPTION APPROACHES

- Entire fields exist to investigate
 - Particular sensing modalities
 - Specific approaches
 - Solving particular problems
- · For sensing modalities, we will focus on
 - Point Cloud Processing
 - Computer Vision

COMPUTER VISION

- Extracting useful information from images
 - Often visible light, but can use other parts of the electromagnetic spectrum
- Attractive properties
 - Dense data
 - Has infinite range
 - Intuitive to humans
 - Cheap sensors
- Harder than it seems

FACE RECOGNITION

- Given examples of faces with a name as a label
- Given a novel image, recognize faces, provide names
- Huge success in computer vision

Image Credit: Science

VISION IS HARD

 Which square is brighter? A or B?

Image Credit: Wikipedia

VISION IS HARD

- Challenges extend beyond simple illusions
- Who is taller in this scene?

VISION IS POWERFUL

- Hard doesn't mean impossible
- Incredible things are possible with computer vision

Video Credit: Engel et. al.

VISION IS POWERFUL

Jakob Engel, Thomas Schöps, Daniel Cremers **ECCV 2014, Zurich**

Computer Vision Group Department of Computer Science Technical University of Munich

Video Credit: Engel et. al.

- Processing geometric data
- Different advantages
 - Precise
 - Consistent
 - Fast

TERRAIN MODELING

- Estimating shape of environment from sampled points
- Many self-driving cars are based on this approach

LIDAR IS HARD

What does this data represent?

LIDAR IS HARD

- What does this data represent?
- Geometry can be deceiving

AND AWESOME

Similar problem to computer vision example

Real-time Mapping with a Velodyne HDL-32E

Real Earth, Inc realearth.us

Video Credit: Ji Zhang

OBJECT DETECTION

- Identifying if an object is present in sensor data
 - "Object" defined based on task
- Trivial model
- Examples
 - Face identification
 - Detecting gas leaks

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Image Credit: XKCD

OBJECT LOCALIZATION

- Determining location of object of interest
- Includes solving detection

Video Credit: Jacob Brunson

OBSTACLE DETECTION

- Process of estimating cost of traversing different parts of the environment
- Start with binary obstacles, where locations cost
 - 0 freely traversable
 - 255 shall not pass
- Assume
 - K.H.A.N. is the robot we are discussing
 - Good enough localization

WHAT ARE OBSTACLES?

- What should K.H.A.N. avoid traversing?
 - Inversely, what should K.H.A.N. traverse?
- What can we measure about these objects?
 - What assumptions can we make to simplify the task?

WHAT ARE OBSTACLES?

- Environment is
 - Indoors (dorms, classrooms, labs, etc.)
 - Somewhat dynamic
- Obstacles are
 - Anything solid
 - Roughly as tall as K.H.A.N.

- Mount range sensor as shown
- Any measurement is an obstacle?
- Problems
 - Obstacle size
 - Accumulating data

GRID MAPS

- Accumulate data based on location
- Data in a local region is likely somewhat related
- Break up world into small squares

- Take sensor measurements
- Mark every cell a range reading falls in as an obstacle
- Never erase the map
- · Problems?

- Require some

 number of hits before
 marking obstacles
- Anything less than that number of hits is clear?
- Still never forget a mistake

- Count hits and pass-throughs
- Obstacles are above some count
- Free space below another count

- Score for a hit and a miss need not be equal
- Hit counts for 1,
 miss for -2
- Cap scores to some range

- Consider this approach in terms of probability
- Sensor is providing evidence, not truth
- Scores are weighing the evidence

OBSTACLE MAPS

- Map fills in over time
- Implicitly includes connectivity
 - Adjacent cells are adjacent in real world
- Don't forget assumptions

Image Credit: Jay Chakravarty

OCCUPANCY MAPS

- Same technique in use today
- Can easily extend technique to 3D environments

TERRAIN MODELING

- Estimating properties of the local terrain
 - Typically shape, but not exclusively
- Useful to relax assumptions about the ground to be traversed
- What assumptions can be made about terrain?

TERRAIN ASSUMPTIONS

- The ground is down
 - In fact, it's the lowest thing around
 - And there's nothing below it
- Terrain is continuous
 - Shape doesn't change rapidly
- Terrain is a surface
 - No holes

TERRAIN MODELING

- Tilt our range sensor down
- Measuring distance to ground now
- How do we represent shape?
- How do we estimate it?

TERRAIN MODELING

- Maps are convenient
- Use the surface assumption
 - Store height of ground surface in each cell
- How to estimate height?

TERRAIN MODELING V1

- Counting doesn't work
 - But hits are geometric
- Record lowest
 height in each cell
- Problems?

TERRAIN MODELING V2

- Make measurements more robust
- If measurements in a cell are similar, take average
- If difference is large enough, only take the lowest measurement

TERRAIN MODELING V3

- Exploit passthroughs again
- Add flag indicating if height is equal to or less than number
- Use number to record lowest height

TERRAIN MODELING

- Look familiar?
- Fundamental approach is the same
- Includes fusing data from multiple sensors

BIG PICTURE

- Perception problems are based in sensing, driven by higher level tasks
- Assumptions/generalizations can simplify work, but also limit applicability
- Don't forget this all is driven by actual math and computer science