- 1. U pojačavaču sa slike 1, parametri tranzistora su: $\beta_F = \beta_0 = 100$, $V_{BE} = 0.6$ V, $V_{CES} = 0.2$ V i $V_A \rightarrow \infty$. Pojačavač se napaja sa dve baterije za napajanje $V_{CC} = -V_{EE} = 1.5$ V, a poznate su i otpornosti $R_1 = R_2 = 1.8$ k Ω i $R_3 = 3$ k Ω .
- a) [3] Odrediti kolektorske struje oba tranzistora i izlazni napon u mirnoj radnoj tački.
- b) [4] Odrediti naponsko pojačanje pojačavača $a = v_i / v_g$, njegovu ulaznu i njegovu izlaznu otpornost.
- c) [3] Odrediti maksimalnu amplitudu simetričnog neizobličenog napona na izlazu pojačavača.
- 2. a) [5] Nacrtati kaskodni pojačavač sa bipolarnim tranzistorima i aktivnim opterećenjem.
 - b) [2] Izračunati ulaznu otpornost pojačavača iz tačke a).
 - c) [3] Izračunati izlaznu otpornost pojačavača iz tačke a).
- **3.** a) [3] Nacrtati pojačavač snage u klasi AB sa Darlingtonovim komplementarnim parom bipolarnih tranzistora napajan iz dve baterije za napajanje $V_{CC} = -V_{EE}$.
 - b) [2] Nacrtati funkciju prenosa pojačavača iz tačke a).
 - c) [3] Modifikovati pojačavač iz tačke a), tako da se omogući najjednostavnija zaštita izlaznih tranzistora od prevelike kolektorske struje.
 - d) [2] Na dijagramu napona i struja potrošača (V_p, I_p) ucrtati oblast dozvoljenih napona i struja potrošača za modifikovani pojačavač iz tačke c).

4. [10] U kolu sa slike 4, NMOS tranzistori su identični sa parametrima $B = 1\text{mA/V}^2$, $V_T = 2\text{V}$ i $\lambda \to 0$. Operacioni pojačavač je idealan i napaja se sa dve baterije za napajanje $V_{DD} = 12\text{V}$ i $V_{SS} = -12\text{V}$. Odrediti zavisnost $v_I = v_I(I_0)$, za vrednosti struje $0 < I_0 \le 100\text{mA}$.

