## GRADO EN FÍSICA, CURSO 2023-2024

## MECÁNICA ESTADÍSTICA

## **Examen Final**

## 18 de Enero 2024

& Armond

1. (3 puntos) Supongamos un gas ideal clásico de N moléculas de masa m en equilibrio térmico a temperatura T, en un volumen V que cumple la distribución de velocidades de Maxwell. Calcula:

(a) El número medio de moléculas por unidad de volumen con velocidad entre v y v+dv, F(v)dv. ¿Se cumple que v = 0 ¿Y  $v^2 = v^2$ ? Obtén  $\Delta v^2$ .

(b) Utilizando el cálculo del apartado anterior, obtén el número medio de moléculas por unidad de volumen con energía entre  $\epsilon$  y  $\epsilon+d\epsilon$ ,  $F(\epsilon)d\epsilon$ . Si  $\tilde{\epsilon}$  es el valor más probable de la energía ¿Se cumple que  $\tilde{\epsilon}=\frac{1}{2}m\tilde{v}^2$ , donde  $\tilde{v}$  es el valor más probable de la velocidad?

La distribución de Maxwell para el vector velocidad es:

$$f(\vec{v})d\vec{v} = \frac{N}{V} \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^2}{2kT}\right) d\vec{v}$$

- 2. (2 puntos) Se ha observado que los neutrinos son fermiones que tienen el spin antiparalelo al momento, p. Es decir, para cada valor del momento p hay un único posible valor del spin. Además, supondremos que los neutrinos no tienen masa y por tanto su energía relativista es  $\epsilon = |\mathbf{p}|c = pc$ . Si el número medio de neutrinos no está fijado,  $\mu = 0$ , calcula:
  - (a) La densidad de estados  $g(\epsilon)$ .
  - (b) El número medio de neutrinos por unidad de volumen en función de T.
  - (c) La densidad de energía media en función de T.

Utiliza que:

- $\bullet \int_0^\infty \frac{x^2}{e^x + 1} dx \approx \frac{9}{5},$



3. (3 puntos)

Considera un gas clásico con N partículas de la misma masa m, cuya interacción entre es débil y energía de interacción u(r) depende únicamente de las distancias r entre cada dos pares de átomos.

(a) Demuestra razonadamente que la función de partición se puede aproximar por:

donde

 $Z = \frac{1}{N!} \left( \frac{2\pi m}{h_0^2 \beta} \right)^{3N/2} V^N \left( 1 + \frac{N^2}{2} \frac{I(\beta)}{V} \right)$  $I(\beta) = 4\pi \int_0^\infty dr \, r^2 (e^{-\beta u(r)} - 1)^{\frac{1}{2}} \int_0^\infty dr \, r^$ 

(b) Calcula la energía media del sistema y la presión media para el siguiente potencial de interacción (Sutherland):

207=- 12 80 (T(E)) (62= 12 gn

$$u(r) = \begin{cases} \infty & \text{si } r < r_0 \\ -u_0 \left(\frac{r_0}{r}\right)^s & \text{si } r \ge r_0 \end{cases}$$
 (1)

Interpreta el significado físico de los parámetros  $r_0$  y  $u_0$  en la expresión del potencial de Sutherland, e interpreta tu resultado para la

'r' (d) Discute que sucede en el caso en el que el potencial a grandes distancias sea Coulombiano (s=1).

4. (2 puntos) Considera un gas ideal clásico de Helio (A = 4) a temperatura y presión ambientales (300 K y 1 atm). Si el tamaño típico del átomo (diámetro) es del orden de 0.3 nm y consideramos un modelo de esferas rígidas para el cálculo de la sección eficaz de colisión:

(a) Estima el recorrido libre medio.
(b) Estima la probabilidad de que no se produzca ninguna colisión tras recorrer una distancia de 1 µm. - Sacando T?

(c) Estima el número medio de colisiones por segundo.

Datos: Constante de Boltzmann,  $k = 1.38 \times 10^{-23} J/K$ , 1 atm  $\approx 10^5 \text{ Pa}$ ,  $m_n = 1.66 \times 10^{-24} \text{ kg}.$ 

la partíale recorre una cierta distancia, uando recorre 1 jun avil es la probe de un colisioner

$$l = \langle v \rangle T$$
  $l = \frac{\Lambda}{\sqrt{2}n_z\sigma_0}$   $\frac{N_A}{N} = M$ 

2 

Con gase, ideales

ハ=答===

NA - minero de moles/atomo y = u moles N - minero de atomos N. NA =