Aalto University Department of Computer Science

Christopher Purcell

CS-E4530 Computational Complexity Theory (5 cr) Second Midterm Exam, Tue 4 Apr 2017, 1–4 p.m.

Write down on each answer sheet:

- Your name, degree programme, and student number
- The text: "CS-E4530 Computational Complexity Theory 4.4.2017"
- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

1. Order the complexity classes L, NP, NL, PSPACE, PH, P, RP, Σ_2^p , and NC, by set inclusion (that is, write enough set inclusion statements of the form

$$X \subset Y$$

where *X* and *Y* are complexity classes given above such that all known set inclusions follow from the statements).

- 2. (a) Define the complexity classes Σ_i^p $(i \ge 0)$ and **PH**.
 - (b) Give an example of some "nontrivial" language L in the class Σ_2^p (i.e. one which is not obviously in Σ_1^p or Π_1^p). Show that L is in Σ_2^p , and explain why it does not seem to be in $\Sigma_1^p \cup \Pi_1^p$.
- 3. (a) For a complexity class C give the definition of a C-complete language.
 - (b) Define what it means for C to be closed under reductions.
 - (c) Let L be an NP-complete language. Show that $L \in \mathbf{P}$ if and only if $\mathbf{P} = \mathbf{NP}$.
- 4. Show that the following problem is **NP**-complete:

LONGEST PATH

INSTANCE: An undirected graph G = (V, E) and an integer K.

QUESTION: Does G contain a simple path (that is, a path encountering no vertex more than once) with K or more edges?

You may use the **NP**-complete problems given in the lectures.

Grading: Each problem 6p, total 24p.