

Vrije Universiteit Brussel

Faculteit Ingenieurswetenschappen

Design van een hoogfrequente versterker en antenne

Hoogfrequente elektronica en antennes

Bert Follon, Egon Geerardyn

15 maart 2010

Inhoudsopgave

Ι	Versterker	2
1	Stabiliteit	2
2	Gebruik van de unilaterale benadering	2
3	Versterking	2
4	Matchingnetwerken	3
5	DC biasnetwerk	3
6	Simulaties 6.1 Ideale transmissielijnen	3 3
7	Lay-out	3
8	Metingen 8.1 Vergelijking metingen en simulaties	3
Π	Antenne	4
9	Dipool	4
10	Balun	4
11	Lay-out	4
12	Metingen	4

Lijst van figuren

Lijst van tabellen

Deel I

Versterker

1 Stabiliteit

Controle van NVV voor stabiliteit We controlere de mogelijke stabiliteit van de versterker door middel van formules 11.71 en 11.72 van [2].

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2|S_{12}S_{21}|} > 1$$
$$|\Delta| < 1$$
$$\Delta = \det S = S_{11}S_{22} - S_{12}S_{21}$$

Aan deze voorwaarden is voldaan, zodat we kunnen besluiten dat de te realiseren versterker onconditioneel stabiel is.

Stabiliteitscirkels Vermits de versterker onconditioneel stabiel is, zullen de stabiliteitscirkels ofwel de volledige Smith Chart omvatten ofwel buiten de Smith Chart vallen. Met formules 11.68 en 11.69 uit [2], worden middelpunt C en straal R van de stabiliteitscirkels bepaald.

$$C_{L} = \frac{\left(S_{22} - \Delta S_{11}^{\star}\right)^{\star}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{L} = \left|\frac{S_{12}S_{21}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|$$

$$C_{S} = \frac{\left(S_{11} - \Delta S_{22}^{\star}\right)^{\star}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{S} = \left|\frac{S_{12}S_{21}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}}\right|$$

Figuren

2 Gebruik van de unilaterale benadering

3 Versterking

Maximale versterking

Gaincirkels

- 4 Matchingnetwerken
- 5 DC biasnetwerk
- 6 Simulaties
- 6.1 Ideale transmissielijnen
- 6.2 Microstrip
- 7 Lay-out
- 8 Metingen
- 8.1 Vergelijking metingen en simulaties

Voor het verslag:

- Alle berekeningen + verwijzing formule
- \bullet Plots van ideale simulaties + simulatie in microstripversie
- Gebruikte Smith Charts voor matching van in- en uitgang

Deel II

Antenne

- 9 Dipool
- 10 Balun
- 11 Lay-out
- 12 Metingen

Voor het verslag:

ullet Alle berekeningen + verwijzing formule

Referenties

- [1] Datasheets BFR91A.
- [2] Pozar D.M. *Microwave Engineering*, chapter 5-11. Addison-Wesley, Reading, 1990. Chapter 5-11.