Les nombres complexes

Table des matières

1	Intr	oduction 2	
	1.1	Un problème historique	
	1.2		
2	Construction des nombres complexes 3		
	2.1	Définition	
	2.2	Représentation des nombres complexes 4	
	2.3	Opérations avec les complexes	
	2.4	Conjugué	
		2.4.1 Définition	
		2.4.2 Applications	
		2.4.3 Propriétés	
3	Égu	ation du second degré 8	
	3.1	Résolution	
	3.2	Application aux équations de degré supérieur	
4	Forme trigonométrique et exponentielle 9		
	4.1	Forme trigonométrique	
		4.1.1 Définition	
		4.1.2 Propriétés des modules et arguments	
	4.2	Forme exponentielle	
		4.2.1 Définition	
5	Con	nplexes et vecteurs 12	
	5.1	Définition	
	5.2	Affixe d'un vecteur	
	5.3	Ensemble de points	
	5.4	Somme de deux vecteurs	
	5.5	Angle orienté	
	5.6	Colinéarité et orthogonalité	
	5.7	Nature d'un triangle	
	U		

1 Introduction

1.1 Un problème historique

À la fin du XVI^e siècle, on s'est intéressé à la résolution des équations du troisième degré. On montra rapidement qu'à l'aide d'un changement de variable toute équation du troisième degré peut se mettre sous la forme

$$x^3 + px + q = 0$$

Cette équation admet au moins une racine réelle, dont l'expression peut se mettre sous la forme :

$$x_0 = \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

Un mathématicien italien de l'époque, Bombelli, s'intéressa de près à l'équation :

$$x^3 - 15x - 4 = 0$$

Qui donne alors comme solution avec : p = -15 et q = -4

$$x_0 = \sqrt[3]{2 - \sqrt{4 - 125}} + \sqrt[3]{2 + \sqrt{4 - 125}}$$
$$= \sqrt[3]{2 - \sqrt{-121}} + \sqrt[3]{2 + \sqrt{-121}}$$
$$= \sqrt[3]{2 - 11\sqrt{-1}} + \sqrt[3]{2 + 11\sqrt{-1}}$$

La racine $\sqrt{-1}$ posait problème.

Cependant il remarqua que s'il posait $(\sqrt{-1})^2 = -1$, on obtenait en developpant 1

$$(2 - \sqrt{-1})^3 = 2^3 - 3(2)^2 \sqrt{-1} + 3(2)(\sqrt{-1})^2 - (\sqrt{-1})^3$$
$$= 8 - 12\sqrt{-1} + 6(-1) - (-1)\sqrt{-1}$$
$$= 2 - 11\sqrt{-1}$$

$$(2+\sqrt{-1})^3 = 2^3 + 3(2)^2\sqrt{-1} + 3(2)(\sqrt{-1})^2 + (\sqrt{-1})^3$$

$$= 8 + 12\sqrt{-1} + 6(-1) + (-1)\sqrt{-1}$$

$$= 2 + 11\sqrt{-1} \quad donc$$

$$x_0 = 2 - \sqrt{-1} + 2 + \sqrt{-1} = 4$$

On constate effectivement que 4 est solution de l'équation. En effet :

$$4^3 - 15 \times 4 - 4 = 64 - 60 - 4 = 0$$

Conclusion : $\sqrt{-1}$ n'existe pas, mais permet de trouver la solution d'une équation. Il s'agit d'un intermediaire de calcul. Les nombres complexes étaient nés!!

^{1.} On rappelle que : $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ et $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

- Au XVII^e siècle ces nombres deviennent des intermédiaires de calcul courant, mais on ne les considère pas encore comme des nombres.
- Au XVIIIe siècle on montre que tous ces nombres peuvent se mettre sous la forme $a + b\sqrt{-1}$.

Euler propose alors de noter $\sqrt{-1} = i$. *i* comme « imaginaire ».

• Au XIX^e siècle Gauss montre que l'on peut représenter de tels nombres. Ils obtiennent alors le statut de nombres.

1.2 Création d'un nouvel ensemble

Cette découverte est assez fréquente en mathématique. Qu'on se rappelle les solutions des équations suivantes.

• Résolution dans \mathbb{N} de l'équation x + 7 = 6.

Cette équation n'a pas de solution, mais en créant les entiers relatifs, on obtient alors x=-1

- Résolution dans \mathbb{Z} de l'équation 3x = 1. Cette équation n'a pas de solution, mais en créant les nombres rationnels, on obtient $x = \frac{1}{2}$.
- Résolution dans Q de l'équation $x^2 = 2$. Cette équation n'a pas de solution, mais en créant les nombres réels, on obtient $x = \sqrt{2}$ ou $x = -\sqrt{2}$.
- Résolution dans \mathbb{R} de l'équation $x^2 + 1 = 0$. Cette équation n'a pas de solution donc on va construire un ensemble que l'on appelle \mathbb{C} (complexe) dont l'élément principal ajouté est le nombre i tel que $i^2 = -1$. On obtient donc comme solution x = i et x = -i

La démarche naturelle consiste donc à chercher un ensemble plus grand qui contient l'ancien, qui vérifie les mêmes propriétés et qui puisse être représenté.

2 Construction des nombres complexes

2.1 Définition

<u>Définition</u> l: On appelle l'ensemble des nombre complexes, noté \mathbb{C} , l'ensemble des nombres z de la forme :

$$z = a + ib$$
 avec $(a, b) \in \mathbb{R}^2$ et $i^2 = -1$

le nombre réel a s'appelle la **partie réelle** de z notée : $\operatorname{Re}(z)$

Le nombre réel b s'appelle la **partie imaginaire** de z noté : Im(z).

Cette forme z = a + ib est appelée forme algébrique.

Remarque:

- 1) Tout nombre réel appartient à $\mathbb C$ (faire b=0).
- 2) Si a=0 on dit que z est un imaginaire pur

2.2 Représentation des nombres complexes

<u>Théorème</u> 1: A tout nombre complexe z = a + ib, on peut faire correspondre un point M(a;b) dans un plan orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$

On dit que z est **l'affixe** de M. On écrit alors M(z).

Propriété: Cette application est réciproque (bijective). A tout point M(x;y) d'un plan muni d'un repère orthonormal, on peut associer un nombre complexe z = x + iy.

Conclusion: On peut représenter alors le nombre complexe z = a + ib.

On appelle module de z la distance OM, c'est la dire la quantité notée |z| telle que :

$$|z| = \sqrt{a^2 + b^2}$$

Si $z \in \mathbb{R}$, on a z = a et $|z| = \sqrt{a^2} = |a|$ qui n'est autre que la valeur absolue du réel a (même réalité donc même notation.

Et pour $z \neq 0$, on appelle argument de z, noté $\arg(z)$, toute mesure θ de l'angle $(\vec{u}; \overrightarrow{OM})$ telle que :

$$\begin{cases}
\cos \theta = \frac{a}{|z|} \\
\sin \theta = \frac{b}{|z|}
\end{cases} \text{ avec } \theta = \arg(z) \quad [2\pi]$$

Exemples :

1) Déterminer le module et un argument des nombres complexes suivants :

$$z_1 = 1 + i$$
 , $z_2 = 1 - \sqrt{3}i$, $z_3 = -4 + 3i$

$$|z_{1}| = \sqrt{1+1} = \sqrt{2} \qquad |z_{2}| = \sqrt{1+3} = 2 \qquad |z_{3}| = \sqrt{16+9} = 5$$

$$\begin{cases} \cos \theta_{1} = \frac{1}{\sqrt{2}} \\ \sin \theta_{1} = \frac{1}{\sqrt{2}} \end{cases} \qquad \begin{cases} \cos \theta_{2} = \frac{1}{2} \\ \sin \theta_{2} = -\frac{\sqrt{3}}{2} \end{cases} \qquad \begin{cases} \cos \theta_{3} = -\frac{4}{5} \\ \sin \theta_{3} = \frac{3}{5} \end{cases}$$

$$\theta_{1} = \frac{\pi}{4} \qquad \theta_{2} = -\frac{\pi}{3} \qquad \theta_{3} = \arccos{-\frac{4}{5}} \simeq 143^{\circ}$$

2) Dans chacun des cas suivants, déterminer l'ensemble des points M dont l'affixe *z* vérifie l'égalité proposée.

a)
$$|z| = 3$$

b)
$$Re(z) = -2$$

c)
$$Im(z) = 1$$

- a) |z| = 3: cercle $\mathscr C$ de centre O et de rayon 3
- b) Re(z) = -2: Droite d_1 parallèle à l'axe des ordonnées d'abscisse -2
- c) Im(z) = 1: Droite d_2 parallèle à l'axe des abscisses d'ordonnée 1

2.3 Opérations avec les complexes

Dans l'ensemble des nombres complexes on définit deux opérations :

• L'addition (+):

si
$$z = a + ib$$
 et $z' = a' + ib'$ alors $z + z' = (a + a') + i(b + b')$

• La multiplication (×):

si
$$z = a + ib$$
 et $z' = a' + ib'$ alors $z \times z' = (aa' - bb') + i(ab' + a'b)$

L'ensemble des nombres complexes $\mathbb C$ muni des lois d'addition et de multiplication est un corps commutatif. Il possède donc toutes les propriétés de ces deux lois dans l'ensemble des nombres réel $\mathbb R$. C'est à dire : la commutativité et l'associativité de l'addition et de la multiplication, la distributivité de la multiplication par rapport à l'addition, . . .

Pour qu'un nombre complexe soit nul, il faut et il suffit que sa partie réelle et sa partie imaginaire soient nulles :

$$a + ib = 0 \Leftrightarrow a = 0 \text{ et } b = 0$$

Exemples : Soit les opérations suivantes :

$$z_1 = 4 + 7i - (2 + 4i) = 4 + 7i - 2 - 4i = 2 + 3i$$

$$z_2 = (2 + i)(3 - 2i) = 6 - 4i + 3i + 2 = 8 - i$$

$$z_3 = (4 - 3i)^2 = 16 - 24i - 9 = 7 - 24i$$

Remarque : Comparaison de deux complexes : il est possible de définir une relation d'ordre dans $\mathbb C$ qui est le prolongement de la relation d'ordre dans $\mathbb R$. On compare les parties réelles et en cas d'égalité les parties imaginaires. En notant " \preceq " une telle loi, on aurait :

$$a + ib \leq c + id \Leftrightarrow a < c \text{ ou } a = c \text{ et } b \leq d$$

On a ainsi :
$$2 + 5i \le 3 - 7i$$
 et $-1 - i \le -1 + 2i$

Cependant cette relation n'est pas "performante" car elle n'est pas compatible avec la multiplication. En effet :

d'après cette relation : $0 \le i$ mais en multipliant par i $0 \le -1$

On abandonne donc l'idée d'inéquation dans C!

2.4 Conjugué

2.4.1 Définition

<u>Définition</u> **2** : Soit z un nombre complexe dont la forme algébrique est : z = a + ib. On appelle le nombre conjugué de z, le nombre noté \overline{z} tel que :

$$\overline{z} = a - ib$$

Propriété: On a :
$$z\overline{z} = |z|^2 = a^2 + b^2$$

En effet :
$$(a + ib)(a - ib) = a^2 - iab + iab + b^2$$

Cela permet de rendre réel un dénominateur.

Interprétation géométrique

Le point $M'(\overline{z})$ est le symétrique du point M(z) par rapport à l'axe des abscisses.

2.4.2 Applications

1) Trouver la forme algébrique du complexe suivant : $z = \frac{2-i}{3+2i}$

On multiplie la fraction en haut et en bas par le complexe conjugué du dénominateur :

$$z = \frac{(2-i)(3-2i)}{(3+2i)(3-2i)} = \frac{6-4i-3i-2}{9+4} = \frac{4-7i}{13} = \frac{4}{13} - \frac{7}{13}i$$

2) Résoudre l'équation suivante : z = (2 - i)z + 3

$$z = (2-i)z + 3$$

$$z - (2-i)z = 3$$

$$z(1-2+i) = 3$$

$$z = \frac{3}{-1+i} = \frac{-3}{1-i}$$

$$z = \frac{-3(1+i)}{(1-i)(1+i)}$$

$$z = -\frac{3}{2} - \frac{3}{2}i$$

2.4.3 Propriétés

Propriété 1 : Soit z un nombre complexe et \overline{z} son conjugué. On a :

 $z + \overline{z} = 2 \operatorname{Re}(z)$ et z est un imaginaire pur équivaut à : $z + \overline{z} = 0$

 $z - \overline{z} = 2i \operatorname{Im}(z)$ et z est réel équivaut à : $z = \overline{z}$

Règle 1 : Pour tous complexes z et z', on a :

$$\overline{z+z'} = \overline{z} + \overline{z'} \quad , \quad \overline{z \times z'} = \overline{z} \times \overline{z'}$$

$$\operatorname{avec} z' \neq 0 \quad \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \quad , \quad \overline{z^n} = (\overline{z})^n \quad n \in \mathbb{N}^*$$

Exemples :

1) Donner la forme algébrique du conjugué \overline{z} du complexe suivant : $z = \frac{3-i}{1+i}$

$$\overline{z} = \overline{\left(\frac{3-i}{1+i}\right)} = \overline{\frac{3-i}{1+i}} = \frac{3+i}{1-i} = \frac{(3+i)(1+i)}{1+1} = \frac{3+3i+i-1}{2} = 1+2i$$

- 2) Dans le plan complexe, M est le point d'affixe z=x+iy, x et y réels. À tout complexe $z,z\neq 1$, on associe : $Z=\frac{5z-2}{z-1}$
 - a) Exprimer $Z + \overline{Z}$ en fonction de z et \overline{z} .
 - b) Démontrer que « Z est un imaginaire pur » équivaut à « M est un point d'un cercle privé d'un point ».

a)
$$Z + \overline{Z} = \frac{5z - 2}{z - 1} + \overline{\left(\frac{5z - 2}{z - 1}\right)}$$

 $= \frac{5z - 2}{z - 1} + \frac{5\overline{z} - 2}{\overline{z} - 1}$
 $= \frac{(5z - 2)(\overline{z} - 1) + (5\overline{z} - 2)(z - 1)}{(z - 1)(\overline{z} - 1)}$
 $= \frac{5z\overline{z} - 5z - 2\overline{z} + 2 + 5z\overline{z} - 5\overline{z} - 2z + 2}{(z - 1)(\overline{z} - 1)}$
 $= \frac{10z\overline{z} - 7(z + \overline{z}) + 4}{(z - 1)(\overline{z} - 1)}$

b) Si Z est un imaginaire pur alors $Z+\overline{Z}=0$. On en déduit donc que :

$$10z\overline{z} - 7(z + \overline{z}) + 4 = 0$$

$$10|z|^2 - 14\operatorname{Re}(z) + 4 = 0$$

$$10(x^2 + y^2) - 14x + 4 = 0$$

$$x^2 + y^2 - \frac{7}{5}x + \frac{2}{5} = 0$$

$$\left(x - \frac{7}{10}\right)^2 - \frac{49}{100} + y^2 + \frac{2}{5} = 0$$

$$\left(x - \frac{7}{10}\right)^2 + y^2 - \frac{9}{100} = 0$$

$$\left(x - \frac{7}{10}\right)^2 + y^2 = \left(\frac{3}{10}\right)^2$$

On en déduit que l'ensemble des points M(z) est le cercle de centre $\Omega\left(\frac{7}{10}\right)$ et de rayon $\frac{3}{10}$ privé du point A(1).

3 Équation du second degré

3.1 Résolution

Les nombres complexes ont été créés pour que l'équation du second degré ait toujours des solutions.

<u>Théorème</u> 2 : Toute équation du second degré dans C admet toujours 2 solutions distinctes ou confondues. Si cette équation est à coefficients réels, c'est à dire,

$$az^2 + bz + c = 0$$
 avec $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et $c \in \mathbb{R}$

Elle admet comme solutions dans C.

1) Si
$$\Delta>0$$
 , deux solutions réelles : $z_1=\frac{-b+\sqrt{\Delta}}{2a}$ et $z_2=\frac{-b-\sqrt{\Delta}}{2a}$

2) Si
$$\Delta = 0$$
, une solution réelle double : $z_0 = -\frac{b}{2a}$

3) Si Δ < 0, deux solutions complexes conjuguées avec $\Delta = i^2 |\Delta|$

$$z_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{|\Delta|}}{2a}$

Exemple: Résoudre $z^2 - 2z + 2 = 0$

On calcule $\Delta = 4 - 8 = -4 = (2i)^2$. $\Delta < 0$ On obtient 2 solutions complexes conjuguées :

$$z_1 = \frac{2+2i}{2} = 1+i$$
$$z_2 = \frac{2-2i}{2} = 1-i$$

On peut proposer un algorithme (cicontre) permettant de calculer les racines de : $Ax^2 + Bx + C$

Variables :
$$A, B, C, D, X, Y$$
 réels
Entrées et initialisation
| Lire A, B, C
| $B^2 - 4AC \rightarrow D$
Traitement
| $\mathbf{si} \ D \geqslant 0 \ \mathbf{alors}$
| $(-B + \sqrt{D})/(2A) \rightarrow X$
| $(-B - \sqrt{D})/(2A) \rightarrow Y$
sinon
| $(-B + i\sqrt{|D|})/(2A) \rightarrow X$
| $(-B - i\sqrt{|D|})/(2A) \rightarrow Y$
fin
Sorties : Afficher X, Y

3.2 Application aux équations de degré supérieur

Théorème 3 : Tout polynôme de degré n dans \mathbb{C} admet n racines distinctes ou confondues. Si a est une racine alors le polynôme peut se factoriser par (z-a)

Exemple: Soit l'équation dans $\mathbb C$ suivante : $z^3-(4+i)z^2+(13+4i)z-13i=0$

- 1) Montrer que *i* est solution de l'équation
- 2) Déterminer les réels a, b et c tels que : $z^3 (4+i)z^2 + (13+4i)z 13i = (z-i)(az^2 + bz + c)$.
- 3) Résoudre alors cette équation.
- 1) On vérifie que i est solution de l'équation : $i^3 (4+i)i^2 + (13+4i)i 13i = -i+4+i+13i-4-13i = 0$ donc i est bien solution de l'équation. On peut donc factoriser par (z-i).
- 2) On développe et on identifie à la première forme :

$$(z-i)(az^2 + bz + c) = az^3 + bz^2 + cz - iaz^2 - ibz - ic$$

= $az^3 + (b-ia)z^2 + (c-ib)z - ic$

On identifie, et l'on obtient le système suivant :

$$\begin{cases} a = 1 \\ b - ia = -4 - i \\ c - ib = 13 + 4i \\ - ic = -13i \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = -4 \\ c = 13 \end{cases}$$

3) L'équation devient donc : $(z - i)(z^2 - 4z + 13) = 0$ On a donc z = i ou $z^2 - 4z + 13 = 0$.

On calcule
$$\Delta = 16 - 52 = -36 = (6i)^2$$

On obtient donc 2 solutions complexes conjuguées :

$$z_1 = \frac{4+6i}{2} = 2+3i$$
 ou $z_2 = \frac{4-6i}{2} = 2-3i$

Conclusion: $S = \{i ; 2 - 3i ; 2 + 3i\}$

4 Forme trigonométrique et exponentielle

4.1 Forme trigonométrique

4.1.1 Définition

<u>Définition</u> **3** : On appelle forme trigonométrique d'un nombre complexe z ($z \neq 0$) dont l'écriture algébrique est a + ib, l'écriture suivante :

$$z = r(\cos\theta + i\sin\theta)$$

avec

$$r = |z|$$
 et $\theta = \arg(z)$ $[2\pi]$

Remarque: La forme trigonométrique est à relier aux coordonnées polaires d'un point.

Exemples :

1) Trouver la forme trigonométrique de z=1-iOn détermine le module : $|z|=\sqrt{1^2+(-1)^2}=\sqrt{2}$

On détermine un argument : $\cos \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ et $\sin \theta = -\frac{\sqrt{2}}{2}$

On en déduit que $\theta = -\frac{\pi}{4}$ [2 π], d'où :

$$z = \sqrt{2} \left[\cos \left(\frac{-\pi}{4} \right) + i \sin \left(\frac{-\pi}{4} \right) \right]$$

2) Trouver la forme algébrique de $z=\sqrt{3}\left[\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right]$ On a $z=\sqrt{3}\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{2}+\frac{3}{2}i$

4.1.2 Propriétés des modules et arguments

Propriété 2 : Pour tout complexe z non nul, on a les relations suivantes :

$$|-z|=|z|$$
 et $\arg(-z)=\arg(z)+\pi$ $[2\pi]$ $|\overline{z}|=|z|$ et $\arg(\overline{z})=-\arg(z)$ $[2\pi]$

Théorème 4 : Pour tous complexes z et z' non nuls, on a les relations suivantes :

$$|z z'| = |z| |z'| \quad \text{et} \quad \arg(z z') = \arg(z) + \arg(z') \quad [2\pi]$$

$$|z^n| = |z|^n \quad \text{et} \quad \arg(z^n) = n \arg(z) \quad [2\pi]$$

$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \quad \text{et} \quad \arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z') \quad [2\pi]$$

Démonstration: Soient $z = r(\cos \theta + i \sin \theta)$ et $z' = r'(\cos \theta' + i \sin \theta')$. On a alors:

$$zz' = rr'(\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= rr'(\cos\theta\cos\theta' + i\cos\theta\sin\theta' + i\sin\theta\cos\theta' - \sin\theta\sin\theta')$$

$$= rr'(\cos\theta\cos\theta' - \sin\theta\sin\theta' + i(\cos\theta\sin\theta' + \sin\theta\cos\theta')$$

$$= rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$$

Par identification, on en déduit alors :

$$|zz'| = rr' = |z||z'|$$
 et $\arg(zz') = \arg(z) + \arg(z')$ [2 π]

On démontre $|z^n|=|z|^n$ et $\arg(z^n)=n\arg(z)$ par récurrence à partir de la propriété du produit.

Pour le quotient, on pose $Z=\frac{z}{z'}$, on a donc $z=Z\times z'$. Par la propriété du produit, on a :

$$|z| = |Z| \times |z'| \Leftrightarrow |Z| = \frac{|z|}{|z'|}$$

 $\arg(z) = \arg(Z) + \arg(z') \quad [2\pi] \Leftrightarrow \arg(Z) = \arg(z) - \arg(z') \quad [2\pi]$

4.2 Forme exponentielle

4.2.1 Définition

Soit la fonction f définie de \mathbb{R} dans \mathbb{C} par : $f(\theta) = \cos \theta + i \sin \theta$.

Calculons $f(\theta)f(\theta')$

$$f(\theta)f(\theta') = (\cos\theta + i\sin\theta)(\cos\theta' + i\sin\theta')$$

$$= (\cos\theta\cos\theta' + i\cos\theta\sin\theta' + i\sin\theta\cos\theta' - \sin\theta\sin\theta')$$

$$= (\cos\theta\cos\theta' - \sin\theta\sin\theta' + i(\cos\theta\sin\theta' + \sin\theta\cos\theta')$$

$$= (\cos(\theta + \theta') + i\sin(\theta + \theta'))$$

$$= f(\theta + \theta')$$

On trouve donc $f(\theta + \theta') = f(\theta)f(\theta')$. C'est la propriété caractéristique d'une fonction exponentielle. En effet, les seules fonctions dérivable sur \mathbb{R} qui transforment une somme en produit sont du type $f(x) = e^{kx}$ ou la fonction nulle. Ici $f(0) = \cos 0 = 1$ alors f ne peut être nulle, elle est alors du type $f(x) = e^{kx}$

Dérivons la fonction f pour déterminer k:

$$f'(\theta) = -\sin\theta + i\cos\theta$$
$$= i^2\sin\theta + i\cos\theta$$
$$= i(\cos\theta + i\sin\theta)$$
$$= if(\theta)$$

On trouve alors k = i car $(e^{kx})' = ke^{kx}$

Pour ces deux raisons, on décide de poser $e^{i\theta} = \cos \theta + i \sin \theta$.

Définition 4 : On appelle forme exponentielle d'un nombre complexe $z \neq 0$, la forme :

$$z = re^{i\theta}$$
 avec $r = |z|$ et $\theta = \arg(z) [2\pi]$

Remarque: On peut maintenant admirer l'expression: $e^{i\pi} + 1 = 0$.

Cette expression contient les nombres qui ont marqué les mathématiques au cours de l'histoire : 0 et 1 pour l'arithmétique, π pour la géométrie, i pour les nombres complexes et e pour l'analyse.

PAUL MILAN 11 TERMINALE S

Complexes et vecteurs 5

Définition 5.1

Définition S: Soit le plan complexe muni du repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on a alors si le point M(z) $z_{\overrightarrow{OM}} = z \quad \text{et} \quad OM = |z| \quad \text{et} \quad (\overrightarrow{u}, \overrightarrow{OM}) = \arg(z)$

$$z_{\overrightarrow{OM}} = z$$
 et $OM = |z|$ et $(u, OM) = arg(z)$

5.2 Affixe d'un vecteur

Soit A(
$$z_A$$
) et B(z_B), on a : $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ \Leftrightarrow $z_{\overrightarrow{AB}} = z_B - z_A$

Règle 2: Pour tous points A et B du plan complexe, on a :
$$z_{\overrightarrow{AB}} = z_{B} - z_{A} \qquad AB = |z_{B} - z_{A}| \qquad (\overrightarrow{u}, \overrightarrow{AB}) = \arg(z_{B} - z_{A})$$

Exemple: On donne : A(2+i) et B(-1-2i). Déterminer les coordonnées du vecteur \overrightarrow{AB} , la distance AB et l'angle $(\overrightarrow{u}, \overrightarrow{AB})$.

• On a:
$$z_{\overrightarrow{AB}} = z_B - z_A = -1 - 2i - 2 - i = -3 - 3i$$
 donc $\overrightarrow{AB} = (-3; -3)$

• On a:
$$AB = |z_B - z_A| = \sqrt{9+9} = 3\sqrt{2}$$
 donc $AB = 3\sqrt{2}$

• On a:
$$\cos\theta = -\frac{3}{3\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

$$\sin\theta = -\frac{3}{3\sqrt{2}} = -\frac{\sqrt{2}}{2}$$

$$\theta = -\frac{3\pi}{4} [2\pi] \quad \text{donc} \quad (\vec{u}, \overrightarrow{AB}) = -\frac{3\pi}{4} [2\pi]$$

Ensemble de points

Il s'agit de déterminer un ensemble & de points M qui vérifient une propriété avec l'affixe z de M.

•
$$|z - z_A| = r$$
 avec $r > 0$ \Leftrightarrow $AM = r$

 \mathscr{E} est le cercle de centre A et de rayon r

•
$$|z - z_A| = |z - z_B| \Leftrightarrow AM = BM$$

& est la médiatrice du segment [AB]

Somme de deux vecteurs 5.4

Angle orienté 5.5

Théorème 6: Pour tous points A, B, C et D tels que $(A \neq B)$ et $(C \neq D)$, on a :

$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_{D} - z_{C}}{z_{B} - z_{A}}\right)$$

Démonstration : D'après les règles sur les angles orientés :

$$(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v})$$
 et $(\vec{u}, \vec{w}) = (\vec{u}, \vec{v}) + (\vec{v}, \vec{w})$

on a les égalités suivantes :

$$(\overrightarrow{AB}, \overrightarrow{CD}) = (\overrightarrow{AB}, \overrightarrow{u}) + (\overrightarrow{u}, \overrightarrow{CD})$$

$$= (\overrightarrow{u}, \overrightarrow{CD}) - (\overrightarrow{u}, \overrightarrow{AB})$$

$$= \arg(z_{\overrightarrow{CD}}) - \arg(z_{\overrightarrow{AB}})$$

$$= \arg(z_D - z_C) - \arg(z_B - z_A)$$

$$= \arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$$

5.6 Colinéarité et orthogonalité

Propriété 3: Alignement de 3 points distincts ou parallélisme de deux droites

A, B, C distincts et alignés \Leftrightarrow \overrightarrow{AB} et \overrightarrow{AC} colinéaires non nuls \Leftrightarrow $\frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}$

Pour $A \neq B$ et $C \neq D$

(AB) et (CD) parallèles \Leftrightarrow \overrightarrow{AB} et \overrightarrow{CD} colinéaires non nuls \Leftrightarrow $\frac{z_D - z_C}{z_B - z_A} \in \mathbb{R}$

 $\overrightarrow{AB} \ et \ \overrightarrow{AC} \ sont \ colinéaires \ alors : \ (\overrightarrow{AB} \ , \overrightarrow{AC} \) = 0 \quad ou \ \ (\overrightarrow{AB} \ , \overrightarrow{AC} \) = \pi$

On en déduit que $\arg\left(\frac{z_{\rm C}-z_{\rm A}}{z_{\rm B}-z_{\rm A}}\right)=0$ ou $\arg\left(\frac{z_{\rm C}-z_{\rm A}}{z_{\rm B}-z_{\rm A}}\right)=\pi$ même chose avec les vecteurs $\overrightarrow{\rm AB}$ et $\overrightarrow{\rm CD}$ pour deux droite parallèles

<u>Propriété</u> 4 : Pour montrer l'orthogonalité de deux droites. Pour $A \neq B$ et $C \neq D$

(AB)
$$\perp$$
 (CD) \Leftrightarrow $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0 \Leftrightarrow \frac{z_D - z_C}{z_B - z_A}$ imaginaire pur

$$\text{Si }\overrightarrow{AB} \text{ et }\overrightarrow{CD} \text{ sont orthogonaux alors}: \ (\overrightarrow{AB},\overrightarrow{CD}) = \frac{\pi}{2} \ \text{ ou } \ (\overrightarrow{AB},\overrightarrow{CD}) = -\frac{\pi}{2}$$

On en déduit que :
$$\arg\left(\frac{z_{\rm D}-z_{\rm C}}{z_{\rm B}-z_{\rm A}}\right)=\frac{\pi}{2}$$
 ou $\arg\left(\frac{z_{\rm D}-z_{\rm C}}{z_{\rm B}-z_{\rm A}}\right)=-\frac{\pi}{2}$

5.7 Nature d'un triangle

Pour montrer qu'un triangle ABC est :

- isocèle en A : $AB = AC \Leftrightarrow |z_B z_A| = |z_C z_A|$
- équilatéral : AB = AC = BC ou AB = AC et $(\overrightarrow{AB}, \overrightarrow{AC}) = \pm \frac{\pi}{3}$ $\Leftrightarrow |z_B - z_A| = |z_C - z_A| = |z_C - z_B|$ $\Leftrightarrow |z_B - z_A| = |z_C - z_A|$ et $arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \pm \frac{\pi}{3}$
- rectangle en A : $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow \frac{z_C z_A}{z_B z_A}$ imaginaire pur
- rectangle isocèle en A : AB = AC et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$ $\Leftrightarrow \frac{z_C z_A}{z_B z_A} = \pm i$