CSE 102

Homework Assignment 2

- 1. Let f(n) be a positive, increasing function that satisfies $f(n/2) = \Theta(f(n))$. Prove that $\sum_{i=1}^{n} f(i) = \Theta(nf(n))$. Hint: emulate the example on page 4 of the handout on asymptotic growth rates in which it is shown that $\sum_{i=1}^{n} i^{k} = \Theta(n^{k+1})$.
- 2. Use the result of the preceding problem to prove that $\log(n!) = \Theta(n \log(n))$, without using Stirling's formula.
- 3. Use Stirling's formula to determine a constant a > 0 such that $\binom{3n}{n} = \Theta\left(\frac{a^n}{\sqrt{n}}\right)$.
- 4. Define S(n) for $n \in \mathbb{Z}^+$ by the recurrence

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}$$

Prove that $S(n) \ge \lg(n)$ for all $n \ge 1$, and hence $S(n) = \Omega(\lg(n))$.

5. Let T(n) be defined by the recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + n^2 & \text{if } n \ge 2 \end{cases}$$

Show that $\forall n \geq 1$: $T(n) \leq (4/3)n^2$, and hence $T(n) = O(n^2)$.

6. Prove that the First Principle of Mathematical Induction implies the Second Principle of Mathematical Induction. (This is Exercise 4 at the end of the handout on Induction Proofs.)

1