Многочлены и конечные поля.

Задача 1.

Найдите обратный к f(x) в кольце вычетов $\mathbb{k}[x]/(g(x))$, если такой существует.

- a) $\mathbb{k} = \mathbb{Q}$, $f(x) = x^6 + x + 1$, $g(x) = x^2 + 1$;
- **6)** $\mathbb{k} = \mathbb{F}_2, f(x) = x^7 + 1, g(x) = x^2 + x + 1.$

Задача 2. а) Пусть $\mathbb{F}_4 \simeq \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1)$ — поле из четырёх элементов, которые мы обозначим $\{0,1,[\alpha],[\alpha+1]\}$. Найдите все делители нуля и все обратимые элементы (и обратные к ним) в кольце $\mathbb{F}_4[x]/(x^2 + [\alpha+1]x + [\alpha])$.

б) Постройте явно изоморфизм полей $\mathbb{F}_3[x]/(x^2+x+2)$ и $\mathbb{F}_3[x]/(x^2+2x+2)$.

Задача 3. Классифицируйте кольца вида $\mathbb{R}[x]/(ax^2+bx+c)$, $a,b,c\in\mathbb{R}$ с точностью до изоморфизма.

Задача 5. а) Найдите все решения в $\mathbb C$ уравнения $z^n=1,\ a\in\mathbb C$. Докажите, что они образуют группу μ_n .

- **б**) Докажите, что группа μ_n циклическая (порождена одним элементом). Образующая этой группы называется первообразным корнем. Найдите количество первообразных корней.
- в) Пусть $\Phi_n(x) = \prod (x-z_i)$, где z_i пробегает все первообразные корни степени n. Докажите, что

$$x^n - 1 = \prod_{d \mid n} \Phi_d(x)$$

- г) Докажите, что $\Phi_n(x) = \prod_{d|n} (x^{n/d} 1)^{\mu(d)}$, где μ функция Мёбиуса. Сделайте вывод, что $\Phi_n(x) \in \mathbb{Z}[x]$.
- \mathbf{A}^*) Докажите, что $\Phi_n(x)$ неприводим в $\mathbb{Q}[x]$.
- **е***) Докажите, что существует бесконечно много простых чисел вида kn+1, где $k,n\in\mathbb{Z}_{>0}.$

Задача 6. а) Пусть \mathbb{k} – поле. Докажите, что группа $\mu_n(\mathbb{k}) := \{x \in \mathbb{k} \, | \, x^n = 1\}$ – циклическая. Приведите пример, когда $|\mu_n(\mathbb{k})| < n$.

б*) Может ли группа обратимых элементов бесконечного поля быть циклической?

Задача 7. Пусть \mathbb{F} — конечное поле. **a)** Докажите, что любая функция $f \colon \mathbb{F} \to \mathbb{F}$ является многочленом. Приведите пример двух различных ненулевых многочленов, задающих одинаковую функцию. **6*)** Докажите, что любая функция $f \colon \mathbb{F}^n \to \mathbb{F}$ является многочленом.