電動機械實驗 Lab7 報告

(Electrical Machinery Laboratory Lab7 Report)

實驗題目 (Experiment title): <u>直流馬達驅動系統之電力電子速度控制實驗</u>相位控制法(應用 SCR)

日期(Date): 2022/5/4

時 間 (Time): <u>15:30 ~ 21:50</u>

地 點 (Place): 台達館 218

組 別 (Group number): 第 1 組

組員 (Group member) (簽名): <u>王致中、黄威誌</u>

撰寫人 (Writer): ___108061106 王致中

1. 實驗背景與工作原理:

1.1. 直流馬達(電動機)種類與基本特性

任何電機均需磁場及電樞(承載作用載體),直流電動機或稱直流馬達(DC motor),依激磁方式可分為:永磁式、他激式、自激式等,其中自激式又分並激 (或分激)、串激及複激等。 L_s 為串聯磁場繞組(Series field winding)、 L_f 為並聯磁場 繞組(Shunt field winding)、A 為電樞(Armature)。各類直流電動機之特性為:

- (1) 永磁式(Permanent magnet):以永久磁鐵產生磁場,轉速可由控制電樞之直流端電壓予以控制。
- (2) 他激式(Separately excited):電動機之磁場線圈由獨立之直流電壓源激勵調整,可利用磁場控制法控制其速度。如外加之磁場電壓固定,轉速可由供給電樞之直流端電壓控制。

(3) 自激式(Self-excited):

- (a) **串激式(Series excited)**: L_s 與 A 串聯,具有大啟動轉矩之特點;但不具定速特性、且不可空轉。
- (b) 並激式(Shunt excited): L_f 與 A 並聯,主要優點是轉速隨負載之變化較小,適用於定速負載。
- (c) 複激式(Compound excited):綜合串激式與並激式之優點,不但啟動轉矩大,而且調速特性良好,又可分為長並聯(Long shunt)及短並聯(Short shunt)兩種連接方式。如依串激磁場之激磁是否與並激場之激磁相助或相消,又可分為助複激(Cumulative compound)及差複激(Differential compound)兩種方式。

1.2. 直流馬達(電動機)轉速控制基本原理(DC motor speed control principle)

Fig. 1.1 所示為他激式直流電動機之等效電路,其中: R_a = 電樞電阻,電樞電感忽略, E_a =電樞電動勢,由磁場繞組 L_f 經磁場電流 I_f 激勵所產生之磁通,N = 轉速 $(\text{rpm})(\omega_r(rad/sec))$ 。因直流電動機之速度電勢為 E_a = $K\phi N$ (K 為比例常數),故由圖中可知轉速為: $N = \frac{E_a}{K\phi} = \frac{V_t - I_a R_a}{K\phi}$,由此式可知,控制電動機之電壓 V_t , ϕ (via I_f)或 R_a 之大小,可以改變轉速N的大小,改變供給電動機之電壓 V_t 係最常見最有效之控制方法,但需要可控直流電壓之電力電子轉換器。

Fig. 1.1. 他激式直流電動機等效電路

$$V_t = R_a i_a + L_a \frac{d}{dt} i_a + e_a$$

$$e_a = K_a \phi \omega_r = K_f i_f \omega_r$$

$$T_e = K_a \phi i_a = K_f i_f i_a$$

$$= T_L + B \omega_r + J \frac{d}{dt} \omega_r$$

永磁式直流馬達: $\phi = constant$, $K_a \phi \equiv K_t$,如 Fig. 1.2 所示:

Fig. 1.2. 永磁式直流馬達等效電路

Permanent-magnet field:

$$K_{a}\phi \equiv K_{t}$$

$$V_{t} = R_{a}i_{a} + L_{a}\frac{d}{dt}i_{a} + e_{a}$$

$$e_{a} = K_{a}\phi\omega_{r} \equiv K_{t}\omega_{r}$$

$$T_{e} = K_{a}\phi i_{a} \equiv K_{t}i_{a}$$

$$= T_{L} + B\omega_{r} + J\frac{d}{dt}\omega_{r}$$

Fig. 1.3 顯示永磁式直流馬達驅動系統之等效電路圖,我們將對此系統之動 態模式特性做分析,可以得到下列特性方程式:

Electrical equation:

$$V_{tm}(D) = i_{am}R_{am} + L_{am}\frac{di_{am}}{dt} + e_{gm}, \qquad e_{gm} = K\phi\omega_r \triangleq K_{tm}\omega_r$$

Mechanical equation:

$$T_e = K_t i_{am} = T_L + B\omega_r + J \frac{d\omega_r}{dt}, \qquad T_L \approx K_{tg} i_{ag}$$

Steady state equations:

$$V_{tm}(D) = I_{am}R_{am} + E_{gm}, \qquad E_{gm} = K_{tm}\omega_r$$

 $T_e = K_tI_{am} = T_L + B\omega_r, \qquad T_L \approx K_{tg}I_{ag}$

Fig. 1.3. 永磁式直流馬達驅動系統等效電路圖

1.3. 相位控制法(Phase control method)

於電力公司交流供電之應用場合,此方法使用得相當普遍,以 SCR 控制輸出電壓之觸發角及導通角度,而改變輸出至直流馬達之電壓Vt之平均值大小以控制轉速,其操作原理與相位調光相同,如 Fig. 1.4 所示。而對於單相交流馬達,利用相位控制法亦可改變供給馬達電壓基本波之有效值,進而控制其速度,但調速範圍較窄。

Fig. 1.4 相位控制法

1.4. SCR 矽控整流器

- 又稱為閘流體(Thyristor): Controlled turn-on, uncontrolled turn-off.
- Construction, symbol, equivalent circuit, triggering control:

● 觸發控制:

 $\underline{Turn\ on}$: 當 $v_{AK} > 0$ 時,加以適當之 $i_{GS} > 0$

<u>Turn off</u>: $i_{AK} < I_H(Holding current)$

- 在使用時,須注意外加之電壓正負峰值不可大於順向崩潰電壓V_{FB}及逆向崩潰電壓V_{RB}。
- V-I characteristics:

● 沒有 Gate 之 SCR⇒ 蕭克萊二極體(Shockley diode), 其 on 與 off:

 $ON: V_{AK} \ge V_{FB}$ $OFF: i_{AK} < I_H$

Symbol:

2. 系統組態圖與操作原理

2.1. 實驗電路接線圖

Fig. 2.1. 相位控制法直流馬達速度控制電路接線圖

2.2. 操作原理

- (1) 我們使用永磁式 DC 電動機(馬達)轉速控制電路,D1~D4 為橋頭式全波整流電路,輸出正向全波脈動直流電壓(不可加電容濾波,以便具有零交越點提供 SCR 之線換相)。每一半周期開始,電源電壓經由A \rightarrow $D_6 \rightarrow R_4 \rightarrow VR1 \rightarrow C_1 \rightarrow N$ 向電容 C1 充電;C2 由 C1 上之電壓經由 R3 充電,當 C2 充電電壓達到一定電壓時,D8、D9(可用蕭克萊二極體)導通而觸發 SCR 為 ON,馬達開始運轉。改變 VR1 之大小,可以 改變 C2 充電速度,進而改變 SCR 導通角度,控制轉速。如轉速偏高難以調低時,可將 C1、R3 或 C2 之值調高,以增加 RC 電路之充電時間常數,使 SCR 之觸發時刻延後。
- (2) 為減少因 C1 之電荷未放掉之記憶特性,影響馬達之調速範圍,加了 D5、R1 及 Rp。SCR 在每半波導通終了時,C1 經 D5、R1、Rp 放電,

使 C1 放電至零電位,以達到較寬範圍的速度控制。否則 C1 有殘留電荷存在,充電時間將縮短,無法達成慢速控制。R1 為限流電阻,藉以保護 D5。

- (3) 為使轉速較不隨負載而改變(較佳調節特性),可將 D6 陽極接 E 點而不接 D 點,如此 C1 的充電電壓是由 SCR 之陽極端電壓供給,而 SCR 陽極端點電壓為橋式整流器之輸出電壓減去電樞之反電動勢,故 C1 充電速率會依反電動勢之大小而改變,因反電動勢會隨電動機的轉速而變,即轉速低時,反電動勢小,SCR 陽極端點電壓增加,供給 C1 之充電電壓增加,SCR 會提早觸發,SCR 導通角增大,供給電樞較大的功率,使馬達之速度回升,具有回授之效應,故馬達負載變化可以得到補償,使轉速較不隨負載而變,即具有較佳之負載調節性能。
- (4) 一般在輕載時,電樞電流較小,電樞電流之波形成為不連續模式 (DCM),即在一周期內電樞電流有零之時刻。D7 為飛輪二極體,與電樞反並聯,一般係用以提供電樞電流延續流通路徑,使電樞電流較為連續,D7 另外亦可減少因電樞電流之變化所生電感性負感應反電動勢($L_a di_a/dt$)對 SCR 耐壓之危害。此外,為防止此電感性負感應電動勢經 R4、VR1 向 C1 作逆向充電,而超過蕭克萊二極體(此處以 D8+D9 取代)之激發電壓破壞 SCR 的 G-K 介面,加上二極體 D6 以防止之。Rs、Cs 是為防止使 SCR 較不受dv/d之影響,一般稱為減振電路(Snubber circuit),具有保護 SCR 及維持正常操作之功能,典型值為: $C_s = 0.1 \mu F, R_s = 10 \Omega$ 。

3. 實驗步驟

3.1. 測試 A

- (1) 依 Fig. 2.1 接線。
- (2) 首先將 R_L 斷接 $(R_L = \infty)$,調整 VR1 使馬達運轉於一穩定狀態下,繪 出 $v_{AN}, v_{BN}, v_{CN}, v_{EN}, v_{DE}, i_a$ 之相對波形,並記錄觸發角 α 、轉子轉速 n_r 。
- (3) VR1 不變,接上 $R_L = 20\Omega(100\Omega$ 並接五個),於一穩定狀態下,繪出 $v_{AN}, v_{BN}, v_{CN}, v_{EN}, v_{DE}, i_a$ 之相對波形。
- (4) 比較(2)與(3)之結果,比較有無負載下,何者波形較為連續,觀察 v_{EN} 及 v_{DE} :在 SCR 導通期間(t_{ON}),電樞電流流通, $v_{CE}=SCR$ 之導通電 $\mathbb{E}V_{ON}$;而在電樞電流不連續期間(t_{OFF}), V_{DE} 為馬達之速度電壓,近 乎定值。判斷是否 t_{ON} 越長(t_{OFF} 越短)越連續。
- (5) 觀察 v_{EN} 之波形(將示波器之 DC level 調好),讀出並記錄 SCR 之導通 電壓 V_{ON} 。

3.2. 測試 B

- (1) 首先不接發電機負載 $R_L(R_L=\infty)$,調整 VR1 使馬達運轉於一穩定狀態下,記錄觸發角 α 、轉子轉速 n_r 。
- (2) VR1 不變,改變發電機負載 $R_L = 100\Omega, 50\Omega, 33.3\Omega, 25\Omega, 20\Omega$,分別記錄在各 R_L 下:轉子轉速 n_r 、發電機之端電壓 V_L 。計算發電機之輸出功率 $P_L = V_L^2/R_L$,及電流 $I_L = V_L/R_L$ 。
- (3) 繪製轉速-負載曲線 $(n_r I_L curve)$ 。
- (4) 調整 VR1 使馬達運轉於另一穩定速度下並重複步驟(1)~(3)。
- (5) 將 D6 陽極改接至 E 點, 重複步驟(1)~(4)。
- (6) 比較討論 D6 之陽極接至 D 點及接至 E 點所得之結果。

3.3. 測試 C

- (1) 將 R_L 斷接($R_L = \infty$),調整 VR1 使馬達運轉於不同速度,紀錄其觸發角 α 、以及轉子轉速 n_r 。
- (2) 繪製轉速-觸發角曲線 $(n_r \alpha \ curve)$ 。 (注意: α ↑ ⇒ conductionangle ↓ ⇒ speed ↓)。

4. 實驗量測結果

4.1. 測試 A

(1) $R_L = \infty$: $\alpha = 44.3^{\circ}$, $n_r = 1317 (rpm)$, $V_{ON} = 0.83 \text{V}$

Fig. 4.1. $(v_{AN}, v_{BN}, v_{CN}, v_{EN})$ 波形, $R_L = \infty$

Fig. 4.2. (v_{DE}, v_{EN}, i_a) 波形, $R_L = \infty$

(2) $R_L = 20\Omega$: $\alpha = 39.82^{\circ}$, $n_r = 560 \ (rpm)$, $V_{ON} = 0.83 \text{V}$

Fig. 4.3. $(v_{AN}, v_{BN}, v_{CN}, v_{EN})$ 波形, $R_L = 20\Omega$

Fig. 4.4. (v_{DE}, v_{EN}, i_a) 波形, $R_L = 20\Omega$

觀察 Fig. 4.2 和 Fig. 4.4 中之 i_a 波形可以發現,在(2)有負載的情況下($R_L=20\Omega$)電流較為連續(進入零電流的時間較短),且 t_{ON} 較長、 t_{OFF} 較短,因此可知當 t_{ON} 越長則越連續。(1),(2)所測之 $V_{ON}=0.83$ V。

4.2. 測試 B

(1) D6 陽極接至 D 點:

Triggering angle $\alpha 1 = 56.18^{\circ}$				
$R_L(ohms)$	$V_L(V)$	$P_L(W)$	$I_L(A)$	$n_r(rpm)$
20	1.63	0.1328	0.0815	560
25	1.92	0.1475	0.0768	605
33.3	2.36	0.1673	0.0709	647
50	3.08	0.1897	0.0616	716
100	4.3	0.1849	0.043	845

Triggering angle $\alpha 2 = 49.7^{\circ}$				
$R_L(ohms)$	$V_L(V)$	$P_L(W)$	$I_L(A)$	$n_r(rpm)$
20	1.75	0.1531	0.0875	606
25	2.06	0.1697	0.0824	644
33.3	2.53	0.1922	0.0758	693
50	3.28	0.2152	0.0656	778
100	4.71	0.2218	0.0471	919

Fig. 4.5. $n_r - I_L$ curve for (1)

由 Fig. 4.5 可知, α 越大,轉速越小,這是因為導通角下降所致;另一方面, R_L 越大(負載越輕),轉速也越快。

(2) D6 陽極接至 E 點:

Triggering angle $\alpha 1 = 75.63^{\circ}$				
$R_L(ohms)$	$V_L(V)$	$P_L(W)$	$I_L(A)$	$n_r(rpm)$
20	1.2	0.0720	0.0600	438
25	1.4	0.0784	0.0560	458
33.3	1.73	0.0899	0.0520	483
50	2.16	0.0933	0.0432	519
100	2.95	0.0870	0.0295	578

Triggering angle $\alpha 2 = 86.43^{\circ}$				
$R_L(ohms)$	$V_L(V)$	$P_L(W)$	$I_L(A)$	$n_r(rpm)$
20	0.91	0.0414	0.0455	332
25	1.07	0.0458	0.0428	342
33.3	1.28	0.0492	0.0384	365
50	1.64	0.0538	0.0328	386
100	2.2	0.0484	0.022	428

Fig. 4.6. $n_r - I_L$ curve for (2)

Fig. 4.6 與 Fig. 4.5 結果大致相同, α 越大,轉速越小,這是因為導通角下降所致;另一方面, R_L 越大(負載越輕),轉速也越快。

(3) 比較 D6 陽極接 D 與 E 點的差異:

Fig. 4.7. D6 接不同點的波形比較

由 Fig. 4.7 可以發現,D6 接在 D 點時轉速隨負載的變動很大(最大與最小相差 140 rpm),相對地,D6 接在 E 點時變動則沒那麼大。這是因為當 D6 陽極接 E 點時,C1 的充電電壓是由 SCR 之陽極端電壓供給,因此 C1 充電速率會依反電動勢之大小而改變。又因反電動勢會隨電動機的轉速而變,當轉速低時,反電動勢小,SCR 陽極端點電壓增加,供給 C1 之充電電壓增加,SCR 會提早觸發,SCR 導通角增大,供給電樞較大的功率,使馬達之速度回升,具有回授之效應,故馬達負載變化可以得到補償,使得轉速較不隨負載而變,具有較佳之負載調節性能。

4.3. 測試 C

(1) $R_L = \infty$ 。D6 陽極接至 D 點。

$R_L = \infty (ohms)$		
觸發角(度)	$n_r (rpm)$	
32.41	674	
43.22	628	
54.02	574	
64.83	514	
75.63	468	

(2) $R_L = \infty$ 。D6 陽極接至 E 點。

$R_L = \infty (ohms)$		
觸發角(度)	n_r (rpm)	
54.02	572	
59.42	526	
64.83	496	
70.23	456	
75.63	426	

Fig. 4.8. $n_r - \alpha curve$

由Fig. 4.8可以發現,當 α 增加時, n_r 會下降,這是因為導通角下降所致。

Fig. 4.9. Preliminary tests

5. 心得

這次實驗是直流馬達的速度控制(相位控制法),也是我第一次使用 SCR 來當作電路開關,學習到了何謂可控導通、不可控截止元件。運用不同元件的特性來架構出特殊電路總是讓我覺得驚艷,好比這次實驗的電路圖一樣,每一個元件都有其負責的功能,缺一不可。最後也感謝教授的指導以及助教的幫忙。