

Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Conjuntos y Sistemas Difusos (Lógica Difusa y Aplicaciones)

3. Caracterización de Conjuntos Difusos: Entropía, Energía, Especificidad, Marcos de Conocimiento, Codificación/Decodificación y Relaciones Difusas

E.T.S.I. Informática

J. Galindo Gómez

Medidas de Difuminación: ENTROPÍ A

• ENTROPÍA (Entropy) H: Concepto introducido por Shannon y Weaver (1949).

$$H(p_1,...,p_n) = -\sum_{i=1}^n p_i \log p_i$$

donde $p_i \hat{\mathbf{I}}$ [0,1] son las probabilidades de que ocurran los sucesos de $X=\{x_1,x_2,\ldots,x_n\}$, por lo que $p_1+p_2+\ldots+p_n=1$.

- Mide la incertidumbre que hay en un experimento de naturaleza probabilística.
- Situaciones Límite:
 - 1. Si todos los eventos son igual de probables (p=1/n), la Entropía alcanza su máximo valor: $H(p_1, p_2, \ldots, p_n) \le H(1/n, \ldots, 1/n)$.
 - Ejemplo: $n=2 \Rightarrow (p_1=p \text{ y } p_2=1-p)$: $H(p_1,p_2)=-p\log p-(1-p)\log (1-p)$ » Si p=1/2, entonces la Entropía alcanza su máximo valor, ya que
 - los 2 eventos son equiprobables: $H(p_1, p_2) = -1/2 (-1) 1/2 (-1) = 1$
 - 2. Si un evento es el único posible (su probabilidad es 1), entonces la Entropía alcanza su menor valor, 0: H(0, ..., 1, ..., 0) = 0.
- Entropía Ponderada: Se añade un peso $w_i > 0$ a cada sumando:

$$H(p_1,...,p_n) = -\sum_{i=1}^n w_i p_i \log p_i$$

Medidas de Difuminación: ENTROPÍ A

- **Definamos** una función h (Ebanks, 1983): $h: [0,1] \otimes [0,1]$, que se aplicará a los valores de un conj. difuso y que cumple 6 propiedades:
 - 1. <u>Puntiaguda</u>: $h(A(x_i)) = 0 \hat{U} A(x_i)\hat{I} \{0,1\}$ (valores extremos: completa exclusión o completa pertenencia).
 - 2. Valor Máximo de $h(A(x_i))$ \hat{U} $A(x_i)=1/2$, de forma que h(1/2)=1.
 - 3. Monótona: Creciente en el intervalo [0,1/2] y decreciente en [1/2,1].
 - 4. <u>Valoración</u>: $h(\max\{A(x_i),A(x_i)\})+h(\min\{A(x_i),A(x_i)\})=h(A(x_i))+h(A(x_i))$.
 - 5. Resolución: $h(A(x_i)) \, {}^{3} \, h(A^*(x_i))$, siendo A^* una versión afilada de A:
 - $A(x_i) \stackrel{3}{=} 1/2 \quad P \quad A^*(x_i) \stackrel{3}{=} A(x_i)$
 - $A(x_i) < 1/2$ Þ $A*(x_i) < A(x_i)$
 - 6. <u>Simetria</u>: $h(A(x_i)) = h(A(1-x_i))$.
- **Ejemplos:**
 - 1. Función Lineal: $\int 2u$, si $u\hat{1}$ [0,1/2) $h(u) = \{ 2(1-u), \text{ si } u \hat{1} [1/2,1] \}$
 - 2. Función Cuadrática: h(u) = 4u(1-u).
 - 3. Función de Shannon:

$$h(u) = -u \log u - (1-u) \log(1-u).$$

Medidas de Difuminación: ENTROPÍ A

- ENTROPÍA H de un Conjunto Difuso A: $H(A) = \sum_{i=1}^{n} h(A(x_i))$
 - H cumple las 6 propiedades anteriores.
 - En un universo ∞ la Σ es una integral.
 - Si h es la función lineal:
 - Si A es un conjunto difuso triangular, tenemos que: $H(A) = \hat{A}rea(A)$.
 - La entropía es el doble de la distancia de Hamming entre A y su 0.5-corte, $A_{0.5}$. $H(A) = 2\sum_{i=1}^{n} \left| A(x_i) - A_{0.5}(x_i) \right|$

$$H(A) = 2\sum_{i=1}^{n} |A(x_i) - A_{0.5}(x_i)|$$

- El 0.5-corte, $A_{0.5}$, se entiende como el conjunto difuso en el que sólo tienen valores mayores a cero los puntos x tal que A(x) > 0.5, siguiendo: $A_{0.5}(x) = \text{máx} \{ 0, A(x) - (1-A(x)) \}$

$$\begin{cases}
H(A) = 4/2 + 2/2 = \\
= 2 + 1 = 3
\end{cases}$$

h(A) A h(A)

Medidas de Difuminación: ENERGÍ A

• ENERGÍA E de un Conjunto Difuso A: (De Luca, S. Termini, 1974).

$$E(A) = \sum_{i=1}^{n} e(A(x_i))$$

donde $e: [0,1] \otimes [0,1]$, es una función creciente con e(0)=0 y e(1)=1.

- Si e es la identidad, e(u)=u, la **ENERGÍA** es la **Cardinalidad** (área) del conjunto difuso A:

$$E(A) = Card(A) = \sum_{i=1}^{n} A(x_i)$$

- Si $e(u)=u^2(p=2)$, la Energía es:
 - Cardinalidad del conj. difuso
 "concentración" de A (Con_A).
 - El cuadrado de la **distancia Euclídea** entre A y el conjunto vacío (\emptyset):

$$E(A) = d^{2}(A,\emptyset) = \text{Card}(\text{Con}_{A}) = \sum_{i=1}^{n} A^{2}(x_{i})$$

5

Difuminación yESPECI FI CI DAD

- ESPECIFICIDAD de un Conjunto Difuso A (Specificity): (Yager, 1983).
 - Mide la dificultad para escoger un único punto de $\cal A$ como representante de todo el conjunto: A mayor especificidad menor dificultad.
 - Especificidad de A: $Sp(A) ^3 0$
 - $Sp(A)=1 \Leftrightarrow$ Existe un único elemento en Soporte(A) y tiene grado 1.
 - $Sp(A)=0 \Leftrightarrow A(x)=0$, " $x \hat{I}$ [0,1].
 - $A \stackrel{?}{I} B \stackrel{P}{P} Sp(A) \stackrel{3}{P} Sp(B)$.
 - Para un <u>universo finito</u>, tenemos que: $Sp(A) = \sum_{i=1}^{n} \frac{a_i a_{i-1}}{Card(A_{a_i})}$
 - Los a_i son los valores de sus a-cortes.
 - Siempre $a_0 = 0$.
 - Card (A_{ai}) es el número de elementos para los que A(x) ³ a_i .
 - **Ejemplo**: $A = \{0.2/a, 0.4/b, 1/c, 0.8/d, 0.3/e\}$
 - Sp(A) = (0.2-0)/5 + (0.3-0.2)/4 + (0.4-0.3)/3 + (0.8-0.4)/2 + (1-0.8)/1 = 0.498
 - Para un <u>universo infinito</u>, la sumatoria se convierte en integral, teniendo en cuenta $Sp(A) = \int_0^{hgt(A)} \frac{1}{Card(A_a)} da$ que el mayor a es la altura del conjunto A:

MARCOS de CONOCIMIENTO

- En una aplicación con conjuntos difusos se suelen usar diversos conjuntos difusos normalizados, los cuales forman el MARCO de CONOCIMIENTO (Frame of Cognition, Frame of Knowledge):
 - Etiqueta o Marca Lingüística (linguistic label or linguistic landmark):
 Son los distintos conjuntos difusos, con su nombre o término asociado.
- MARCO de CONOCIMIENTO A: Definición formal de Pedrycz (1990, 1992):
 - $A = \{A_1, A_1, \dots, A_n\}$ P Es una colección de conjuntos difusos definidos en el mismo universo X, que cumple 2 condiciones:
 - 1. Cubrimiento (Coverage): " $x \hat{1} X$, $i=1,...,n, A_i(x) > 0$.
 - Cualquier elemento de X pertenece al menos a una etiqueta (que lo representa, en algún sentido).
 - Cubrimiento de nivel e \hat{I} [0,1]: " $x \hat{I}$ X, \hat{I} i=1,...,n,/ $A_i(x) > e$.
 - 2. Solidez Semántica (Semantic Soundness): (de Oliveira, 1993).
 - Los A_i están normalizados y representan una parte de X, identificada por su término lingüístico.
 - Los A_i sonsuficientemente disjuntos: Cada término tiene un significado claramente distinto de los demás.
 - El número de conjuntos de A es pequeño: Algunos estudios psicológicos sugieren un máximo de 7±2.

7

MARCOS de CONOCIMIENTO

- Conceptos de los Marcos de Conocimiento:
 - 1. <u>Especificidad</u>: Un marco de conocimiento A es más específico que otro A' si todos los elementos de A son más específicos que los de A'.
 - En la Figura, la granularidad de A (líneas gruesas)
 es mayor que la de A' (líneas finas):
 A' es más específico o más fino que A.
 - 2. Foco de Atención o Ámbito de Percepción: Es un a-corte sobre un conjunto A_i de A.
 - 3. Ocultamiento de Información:

A veces, los elementos z de una región de X son equivalentes por tener igual valor de $A_i(z)$.

- El sistema de procesamiento oculta información del valor exacto de todos esos elementos de *X*.
- En un trapecio como el de la Figura,
 si tomamos su 1-corte, tenemos que se hacen indistinguibles todos los valores en el intervalo
 [a,b] sobre un conjunto A_i de A.

Ejemplo: Entropía y Energía en A

- Sea un código A, con 3 elementos triangulares (±3): A_1 , A_2 y A_3 .
 - Entropía y Energía del código: $H(A) = \sum_{i=1}^{n} H(A_i)$; $E(A) = \sum_{i=1}^{n} E(A_i)$; Para calcular la Entropía y la Energía, usaremos la función h lineal y la
 - función e identidad respectivamente. Con esto conseguimos que:

$$H(A_i) = E(A_i) = \int_x A_i(x) dx = \text{Area de } A_i$$

- Entropía: \triangleright Del código A: $H(A) = H(A_1) + H(A_2) + H(A_3) = 3 + 3 + 3 = 9$;
 - $> \text{ De la Uni\'on } : H(\bigcup A_i) = \grave{\mathfrak{h}}^6 \, h(\bigcup A_i) + \grave{\mathfrak{h}}_6^{10} \, h(\bigcup A_i) + \grave{\mathfrak{d}}_{10}^{13} \, h(\bigcup A_i)$ = 3 + 2(0.75 + 0.5) + 1.5 = 7;
 - \triangleright Intersección: $H(\cap A_i) = H(E) = 0$;
- **Energía:** \triangleright Del código A: $E(A) = E(A_1) + E(A_2) + E(A_3) = 3 + 3 + 3 = 9$;
 - De la Unión : $E(\bigcup A_i) = 9 0.75 0.33 = 7.92$;
 - ightharpoonup Intersección: $E(\bigcap A_i) = E(E) = 0$;

Ejemplo: Entropía y Energía en A

Si llamamos A+ al resultado de aumentar la especificidad de los elementos de **A** $(x_i \pm 2)$ y **A**⁻ al resultado de **reducirla** $(x_i \pm 4)$:

– Entropía:

Del código A:

H(A)De la Unión : $H(\bigcup A_i)$

 $H(\cap A_i)$ ▶ Intersección :

– Energía:

Del código A: E(A)

De la Unión : $E(\bigcup A_i)$

 $E(\bigcap A_i)$ ▷ Intersección :

2+2+2=6;

6 - 0.25 = 5.75;

6 - 0.25/2 = 5.875;

H(E) = 0;

E(E) = 0;

4+4+4=12;

 $2 + (3 \cdot 0.75)/2 + 2 + 2 = 7.125;$

 $(2 \cdot 0.125)/2 = 0.125;$

2+2+2=6; 4+4+4=12;

 $12 - 5 \cdot 0.625/2 - 1 = 9.44;$

0.125/2 = 0.0625;

Codificar/ Decodificar I nformación

- En ocasiones, el sistema difuso de procesamiento necesita:
 - 1. "Codificar" un dato E según un código A: Esta tarea suele llamarse **DIFUMINAR** (fuzzification).
 - 2. Procesarlo de alguna forma (enviarlo por un canal de procesamiento).
 - 3. "Decodificar" el dato obtenido según el código A: Esta tarea suele llamarse **CONCRETAR** (defuzzification) y obtenemos \hat{E} .
- Esquemas de CODIFICACIÓN DIFUSA: Existen diversos sistemas de difuminación. El más importante es el siguiente:
 - DIFUMINACIÓN usando Medidas de Posibilidad/Necesidad:
 - **POSIBILIDAD** Poss (A_i, E) : Expresa el grado con el que el dato E está superpuesto (intersecciona) con algún componente A_i del código **A.** Se usa la medida l definida como: $l = Poss(A_i, E)$.
 - **NECESIDAD** Nec (A_i, E) : Expresa el grado con el que el dato E está incluido en algún $A_i \in A$. Medida m: $| m = 1 - \text{Nec}(A_i, E) = \text{Poss}(\neg A_i, E)$.
 - **RESULTADO**: Un vector de posibilidades y necesidades con respecto a todos los $A_i \in A$ (Dubois, Prade, 1988):

 $\{ \mathsf{Poss}(A_1, E), \dots, \mathsf{Poss}(A_n, E), \mathsf{Nec}(A_1, E), \dots, \mathsf{Nec}(A_n, E) \}$

Codificar/ Decodificar I nformación

- Usamos las siguientes medidas, donde $A \in A$, y donde E es el dato 1 = Poss(A, E); de entrada que codificamos: $m = 1 - Nec(A, E) = Poss(\neg A, E);$
 - Tres casos posibles:
 - No hay incertidumbre. • 1. l + m = 1
 - **Conflicto:** Es posible que E sea A y $\neg A$. • 2. 1 + m > 1Þ
 - 3. l + m < 1Þ **Ignorancia:** E puede ser o no A (falta información).
 - Cuanto mayor sea la distancia de (1 + m) con 1, mayor incertidumbre (conflicto o ignorancia).
 - Cuanto mayor es el valor (1 + m), menor es la especificidad de E.

12

Mecanismos de Decodificación

- Requisito IDEAL de la Decodificación: Que el resultado de la decodificación sea igual al valor original codificado.
 - Si F es la función de codificación y F⁻¹ la de decodificación, el objetivo es que: F⁻¹ (F(E)) = E.
 - Ese requisito es muy difícil de conseguir.
- Existen multitud de sistemas de decodificación:
 - El sistema a elegir depende del código A empleado.
 - En general se emplean sólo las medidas de posibilidad, pues simplifica los cálculos y los hacen más intuitivos.
- **DECODIFICACIÓN para Datos** *crisp* **o Puntuales** (*Pointwise Data*): Sólo conocemos los valores de posibilidad (o necesidad) de cierto dato y queremos reconstruir dicho dato de forma que sea coherente con ellos.
 - Dos familias básicas de sistemas para Decodificación:
 - Que usan los valores modales de los conjuntos difusos del código: Valores con la altura de cada conjunto difuso (los núcleos).
 - Que usan el área de pertenencia de los elementos del código.

13

Decodificación con valores modales

• CENTRO de GRAVEDAD puntual: \longrightarrow donde a_i es un valor modal del conjunto $A_i \in A$ y x es el valor que queremos aproximar.

$$\mathsf{F}^{-1}(\mathsf{F}(x)) = \hat{x} = \frac{\sum_{i=1}^{n} A_i(x) a_i}{\sum_{i=1}^{n} A_i(x)}$$

- Este método obtiene, en general, un valor aproximado de x.
 - Por ejemplo, si las etiquetas de A intersectan en valores menores a 1/2, se produce un efecto escalera al decodificar: Ver Figura a la derecha, donde la recta diagonal es la reconstrucción ideal: F-1 (F(x)) = x.
- Sin embargo, se consigue un <u>valor exacto</u> cuando el código está formado por conjuntos difusos triangulares que se cortan en 1/2 de altura cada dos conjuntos consecutivos.
 # ## #8 #12

• Ejemplo: $F^{-1}(x) = 4*0.75 + 8*0.25$ = 3 + 2 = 5.

Decodificación con valores modales

EXPANSIÓN POLINOMIAL:

$$\hat{x} = \frac{\sum_{i=1}^{n} [p_{i0} + p_{i1}A_i(x) + p_{i2}A_i^2(x) + \cdots] a_i}{\sum_{i=1}^{n} [p_{i0} + p_{i1}A_i(x) + p_{i2}A_i^2(x) + \cdots]}$$

- $-a_i$ es un valor modal del conjunto A_i del código **A.**
- Los valores modales no son sólo ponderados por los valores de posibilidad $A_i(x)$, sino por un **polinomio** con sus potencias.
- **EXPANSIÓN LINGÜÍSTICA:**

$$\hat{x} = \frac{\sum_{i=1}^{n} [p_{i1}A_i(x) + p_{i2}A_i^2(x) + p_{i3}A_i^{1/2}(x)] a_i}{\sum_{i=1}^{n} [p_{i1}A_i(x) + p_{i2}A_i^2(x) + p_{i3}A_i^{1/2}(x)]}$$

- Los valores modales son ponderados con los valores de posibilidad $A_i(x)$, y con sus modificadores lingüísticos:
 - Concentración, "Mucho": $A_i^2(x)$.
 - Dilatación, "Más o menos": $A_i^{1/2}(x)$.
- Estos dos últimos sistemas no están libres de error, incluso con etiquetas triangulares de cualquier tipo.

15

Decodificación con Funciones de A

Se forma un nuevo conjunto difuso A usando las funciones de pertenencia del código A y los valores de posibilidad de la codificación:

 $B_i = A_i \cap L_i \longrightarrow A = \bigcup_{i=1}^n B_i$

donde Λ_i (lambda) es el conjunto difuso que toma el valor $A_i(x)$ en todo el universo del código **A.**

- A partir de ese nuevo conjunto, pueden aplicarse distintos métodos, entre los que se encuentran los siguientes principalmente:
 - 1. Media de Máximos (MoM): Se calcula la media de los valores que maximizan el conjunto A.
 - Se calcula el centro de gravedad de A: $\hat{x} = \frac{\int_{x} A(x)x \, dx}{\int_{x} A(x) \, dx}$ - 2. <u>Centro de Gravedad</u> (CoG):
 - 3. Centro de Área (CoA): Se calcula el valor que iguala el área de A que queda a la izquierda y a la derecha: $\int_{-\infty}^{\hat{x}} A(x) \, dx = \int_{\hat{x}}^{\infty} A(x) \, dx$

Decodificación con Funciones de A

- Hay multitud de otros métodos basados en los anteriores:
 - Primer Máximo: Se calcula el menor valor de los que maximizanA.
 - Ultimo Máximo: Se calcula el mayor valor de los que maximizan A.
 - CoG de valores importantes: Se calcula el CoG pero evitando aquellas partes de *A* que tengan una altura menor a cierto nivel b.
 - CoA de valores importantes: Se calcula el CoA pero ignorando aquellas partes de *A* que tengan una altura menor a cierto nivel b.

 - <u>CoG potenciado</u> por un factor d: d = 1 : CoG normal. d ® 0: Tiende a MoM. $\hat{x} = \frac{\int_{x} A^{d}(x)x \ dx}{\int_{x} A^{d}(x) dx}$
- Otros métodos utilizan directamente los **conjuntos** B_i y sus características (y no la unión de los B_i):
 - caracteristicas (y no la unión de los B_i): $-G_i : MoM de B_i (Punto de Máximo Criterio): G_i = \frac{\sum_{i=1}^r M_i : M_i = \max_{x \in X} B_i(x)}{\sum_{i=1}^r M_i : M_i = \max_{x \in X} B_i(x)}$
 - $-S_i$: Área o Superficie del conjunto B_i .
 - W_i : Centro de Gravedad del conjunto B_i : $W_i = \frac{\int_x B_i(x)x \ dx}{\int_x B_i(x) \ dx}$ H_i : Altura del conjunto B_i :
 - $-H_i$: Altura del conjunto B_i .
- NOTA: El Punto de Máximo Criterio es un valor modal y el Centro de Gravedad no.

Decodificación con Funciones de A

n es el número de conjuntos A_i Î A.

- Métodos basados en el Centro de Gravedad (CoG):
 - CoG ponderado por el área: $\hat{x} = \sum_{i=1}^{n} S_i \cdot W_i / \sum_{i=1}^{n} S_i$
 - CoG ponderado por la altura: $\hat{x} = \sum_{i=1}^{n} H_i \cdot W_i / \sum_{i=1}^{n} H_i$
- Métodos basados en el Punto de Máximo Criterio (PMC):
 - PMC ponderado por el área: $\hat{x} = \sum_{i=1}^{n} S_i \cdot G_i / \sum_{i=1}^{n} S_i$
 - PMC ponderado por la altura: $\hat{x} = \sum_{i=1}^{n} H_i \cdot G_i / \sum_{i=1}^{n} H_i$
 - Media de PMC: $\hat{x} = \sum_{i=1}^{n} G_i / m$, donde m es el número de B_i con $G_i > 0$
 - Media del mínimo y máximo PMC:

$$G_{\min} = \min_{i} \{G_i\}; \quad G_{\max} = \max_{i} \{G_i\}; \quad \hat{x} = \frac{G_{\min} + G_{\max}}{2}$$

- Métodos basados en el Conjunto Más Importante:
 - CoG del B_i de mayor área: $\hat{x} = W_j : A_j = \max_{i=1,...,n} \{S_i\}$
 - CoG del B_i de mayor altura: $\hat{x} = W_j : A_j = \max_{i=1,...,n} \{H_i\}$
 - PMC del B_i de mayor área: $\hat{x} = G_j : A_j = \max_{i=1,...,n} \{S_i\}$
 - PMC del B_i de mayor altura: $\hat{x} = G_j : A_j = \max_{i=1,...,n} \{H_i\}$

CoG W_i de un Trapecio Extendido

$$W_{i} = \frac{AreaX_{i}}{Area_{i}} = \frac{\int_{x} B_{i}(x)x \ dx}{\int_{x} B_{i}(x) \ dx}$$

• Si el **conjunto** B_i es un **Trapecio** con altura H_i :

$$Area_{i} = \int_{x} B_{i}(x) dx = H_{i} \left(\frac{x_{1} - x_{0}}{2} + x_{2} - x_{1} + \frac{x_{3} - x_{2}}{2} \right) = H_{i} \left(\frac{x_{3} + x_{2} - x_{1} - x_{0}}{2} \right);$$

$$AreaX_{i} = \int_{x} B_{i}(x) x dx = H_{i} \left(\frac{2x_{1}^{2} - x_{1}x_{0} - x_{0}^{2}}{6} + \frac{x_{2}^{2} - x_{1}^{2}}{2} + \frac{x_{3}^{2} - x_{3}x_{2} - 2x_{2}^{2}}{6} \right) =$$

$$= H_{i} \left(\frac{x_{3}^{2} + x_{2}^{2} - x_{1}^{2} - x_{0}^{2} + x_{3}x_{2} - x_{1}x_{0}}{6} \right);$$

• Si B_i es un <u>Trapecio Extendido</u>, con m+1 puntos: $\{x_0, x_1, \ldots, x_m\}$, donde en los extremos el grado es cero: $B_i(x_0) = B_i(x_m) = 0$.

$$Area_{i} = \int_{x} B_{i}(x) dx = \sum_{j=1}^{m-1} B_{i}(x_{j}) \left[\frac{x_{j+1} - x_{j-1}}{2} \right];$$

$$AreaX_{i} = \int_{x_{0}}^{x_{m}} B_{i}(x) x dx = \sum_{j=1}^{m-1} B_{i}(x_{j}) \left[\frac{x_{j+1}^{2} - x_{j-1}^{2} + x_{j}x_{j+1} - x_{j}x_{j-1}}{6} \right];$$

19

Ejemplos de Decodificaciones

- Sea un <u>código A</u>, con dos conjuntos A₁ y A₂:
 - Codificamos **2.5**: $A_1(2.5)=0.5$, $A_2(2.5)=0.25$;
 - Ptos. Máx. Criterio: PMC(A_1)=1.5, PMC(A_2)=4;

- **Decodificamos**, usando distintas técnicas:
 - CoG puntual, usando los PMC como valores modales:

$$(0.5 \cdot 1.5 + 0.25 \cdot 4)/0.75 = 2.3;$$

- Usando la función $A = B_1 \cup B_2$:
 - MoM: Los máximos están en [0.5, 2.5]. Su media es: 1.5;
 - Primer Máximo: 0.5; Último Máximo: 2.5;
 - **CoG**: AreaX(A)/Area(A) = $6.279/3.125 = \overline{2.01}$;
 - CoG de valores importantes con b=0.25: 1.5;
- Usando B_1 y B_2 : $G_1 = W_1 = 1.5$; $G_2 = 4$; $W_2 = 4.44$; $H_1 = 0.5$; $H_2 = 0.25$; $S_1 = 1.25$; $S_2 = 1.09$;
 - CoG ponderado por el área: $(1.25 \cdot 1.5 + 1.09 \cdot 4.44)/(1.25 + 1.09) = 2.87$;
 - CoG ponderado por la altura: $(0.5 \cdot 1.5 + 0.25 \cdot 4.44)/(0.5 + 0.25) = 2.48$;
 - PMC ponderado por el área: $(1.25 \cdot 1.5 + 1.09 \cdot 4)/(1.25 + 1.09) = 2.66$;
 - PMC ponderado por la altura: $(0.5 \cdot 1.5 + 0.25 \cdot 4)/(0.5 + 0.25) = 2.33$;
 - Media de PMC (o del mínimo y máximo PMC): $(1.5+4)/2 = \overline{2.75}$;
 - CoG (o PMC) del B_i de mayor área (o de mayor altura): $\underline{1.5}$;

RELACIONES DIFUSAS

- Relación clásica (crisp) entre dos universos de discurso X e Y:
 - Es un subconjunto del producto cartesiano: $R: X \cap Y \otimes \{0,1\}$.
 - $R(x,y)=1 \triangleright (x,y) \hat{I}$ R: Los dos elementos están relacionados (related).
 - $R(x,y)=0 P(x,y)\ddot{I} R$: Los elementos no están relacionados (unrelated).
 - **Ejemplos:** Igual(x,y)={(x,y) | x=y}; Menor(x,y)={(x,y) | x<y};
 - Relaciones n-arias: Relacionan elementos de n universos.
- Relación difusa entre dos universos de discurso X e Y:
 - Subconjunto difuso del producto cartesiano: $R: X \cap Y \otimes [0,1]$.
 - **Ejemplo:** x es similar a y (con $\beta > 0$): $R(x,y) = \begin{cases} \exp(-|x-y|^2/b) & \text{si } |x-y| \le 5 \\ 0 & \text{si } |x-y| > 5 \end{cases}$
 - Dos elementos pueden pertenecer a la relación parcialmente.

RELACIONES DIFUSAS

- Operaciones sobre Relaciones Difusas:
 - Unión: $(R \cup W)(x,y) = R(x,y)$ s W(x,y) (usando una s-norma).
 - Intersección: $(R \cap W)(x,y) = R(x,y)$ t W(x,y) (usando una t-norma).
 - Complemento: $(\neg R)(x,y) = 1 R(x,y)$.
 - Trasposición: $R^T(x,y) = R(y,x)$ (si $X \in Y$ tienen el mismo universo).
 - Se cumple que:
 - * $(\mathbf{R}^T)^T = \mathbf{R}$
 - * $(\neg \mathbf{R})^T = \neg (\mathbf{R}^T)$
 - Composición de dos Relaciones Difusas G y W: Una relación G definida en X ´ Z, y otra relación W definida en Z ´ Y, pueden componerse para conseguir una relación R definida en X ´ Y:
 - Composición sup-t: $R(x, y) = \sup_{z \in \mathcal{I}} \{G(x, z) \mathsf{t} W(z, y)\};$
 - Composición inf-s: $R(x,y) = \inf_{z \in \mathbb{Z}} \{G(x,z) \le W(z,y)\};$
- Propiedades sobre Relaciones Difusas: " $x\hat{1} X$, " $y\hat{1} Y$
 - Igualdad : $R = W \hat{U} R(x,y) = W(x,y)$.
 - Inclusión: $R \stackrel{.}{I} W \stackrel{.}{U} R(x,y) \stackrel{.}{L} W(x,y)$.

Bibliografía

- A, De Luca, S. Termini, "Entropy of L-Fuzzy Sets". Inf. and Control, 24, pp. 55-73, 1974.
- J.V. De Oliveira, "On Optimal Fuzzy Systems with I/O interfaces". Proc. 2nd International Conference on Fuzzy Systems, San Francisco, 1993.
- D. Dubois, H. Prade, "PossibilityTheory: An Approach to Computerized Processing of Uncertainty". Plenum Press, New York, 1988.
- B.R. Ebanks, "On Measures of Fuzziness and their Representations". J. Math. Analysis and Applications, 94, pp. 24-37, 1983.
- W. Pedrycz, "Numerical and Applicational Aspects of Fuzzy Relational Equations". Fuzzy Sets and Systems, 11, pp. 1-18, 1983.
- W. Pedrycz, "Fuzzy Sets Framework for Development of Perceptio Perspective". Fuzzy Sets and Systems, 37, pp. 123-137, 1990.
- W. Pedrycz, "Selected Issues of Frame of Knowledge Representation Realized by Means of Linguistic Labels". Int. Journal of Intelligent Systems, 7, pp.155-170, 1992.
- C.E. Shannon, W.W. Weaver, "The Mathematical Theory of Communication". Urbana, University of Illinois Press, 1949.
- R. Yager, "Entropy and Specificity in a Mathematical Theory of Evidence". Int. Journal General Systems, 9, pp. 249-260, 1983.
- L.A. Zadeh, "Fuzzy Sets and Information Granularity". In Advances in Fuzzy Set Theory and Applications, eds. M. Gupta, R. Ragade, R.R. Yager, pp. 3-18. Amsterdam, 1979.