

Algorithmen II Übung am 26.11.2013

Matroide

Definition 2.8: Unabhängigkeitssystem

Ein Tupel (M, \mathcal{U}) , wobei $\mathcal{U} \subset 2^M$ ein Mengensystem über einer endlichen Menge M ist, heißt *Unabhängigkeitssystem*, wenn

- $\emptyset \in \mathcal{U}$ und

Definition 2.8: Unabhängigkeitssystem

Ein Tupel (M, \mathcal{U}) , wobei $\mathcal{U} \subset 2^M$ ein Mengensystem über einer endlichen Menge M ist, heißt Unabhängigkeitssystem, wenn

- $\emptyset \in \mathcal{U}$ und
- $I_1 \in \mathcal{U}, I_2 \subseteq I_1 \Rightarrow I_2 \in \mathcal{U}.$

Beispiel 2: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Unabhängigkeitssystem.

Es gilt:

1. \emptyset ist in \mathcal{U} enthalten.

Definition 2.8: Unabhängigkeitssystem

Ein Tupel (M, \mathcal{U}) , wobei $\mathcal{U} \subset 2^M$ ein Mengensystem über einer endlichen Menge M ist, heißt Unabhängigkeitssystem, wenn

- $\emptyset \in \mathcal{U}$ und

Beispiel 2: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Unabhängigkeitssystem.

Es gilt:

- 1. \emptyset ist in \mathcal{U} enthalten.
- 2. $I_1 \in \mathcal{U}, I_2 \subseteq I_1 \Rightarrow I_2 \in \mathcal{U}$
- → I₁ enthält nach Definition keine Kreise.

Definition 2.8: Unabhängigkeitssystem

Ein Tupel (M, \mathcal{U}) , wobei $\mathcal{U} \subset 2^M$ ein Mengensystem über einer endlichen Menge M ist, heißt Unabhängigkeitssystem, wenn

- lacksquare $\emptyset \in \mathcal{U}$ und

Beispiel 2: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Unabhängigkeitssystem.

Es gilt:

- 1. \emptyset ist in \mathcal{U} enthalten.
- 2. $I_1 \in \mathcal{U}, I_2 \subseteq I_1 \Rightarrow I_2 \in \mathcal{U}$
- → *I*₁ enthält nach Definition keine Kreise.
- Sei $I_2 = I_1 \setminus \{e\}$ für beliebige Kante $e \in I_1$.
- \longrightarrow I_2 enthält ebenfalls keine Kreise \longrightarrow I_2 ist Wald.

Basis

Definition: Basis, Basissystem & Rang

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem.

- Für $F \subseteq M$ ist jede unabhängige Menge $U \in \mathcal{U}$, $U \subseteq F$ die bezüglich \subseteq maximal ist eine *Basis* von F.
- Eine Basis von M wird auch *Basis des Unabhängigkeitssystems* genannt. Die Menge aller Basen von (M, \mathcal{U}) heißt *Basissystem von* (M, \mathcal{U}) .
- Für $F \subseteq M$ heißt $r(F) := max\{|B| : B \text{ ist Basis von } F\}$ der Rang von F.
- Der Rang von M wird auch Rang des Unabhängigkeitssystems genannt.

Beispiel: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Unabhängigkeitssystem.

Basis

Definition: Basis, Basissystem & Rang

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem.

- Für $F \subseteq M$ ist jede unabhängige Menge $U \in \mathcal{U}$, $U \subseteq F$ die bezüglich \subseteq maximal ist eine *Basis* von F.
- Eine Basis von M wird auch *Basis des Unabhängigkeitssystems* genannt. Die Menge aller Basen von (M, \mathcal{U}) heißt *Basissystem von* (M, \mathcal{U}) .
- Für $F \subseteq M$ heißt $r(F) := max\{|B| : B \text{ ist Basis von } F\}$ der Rang von F.
- Der Rang von M wird auch Rang des Unabhängigkeitssystems genannt.

Beispiel: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Unabhängigkeitssystem.

B ist Basis von F mit Rang 4

Basis

Definition: Basis, Basissystem & Rang

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem.

- Für $F \subseteq M$ ist jede unabhängige Menge $U \in \mathcal{U}$, $U \subseteq F$ die bezüglich \subseteq maximal ist eine *Basis* von F.
- Eine Basis von M wird auch *Basis des Unabhängigkeitssystems* genannt. Die Menge aller Basen von (M, \mathcal{U}) heißt *Basissystem von* (M, \mathcal{U}) .
- Für $F \subseteq M$ heißt $r(F) := max\{|B| : B \text{ ist Basis von } F\}$ der Rang von F.
- Der Rang von M wird auch Rang des Unabhängigkeitssystems genannt.

Beispiel: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Unabhängigkeitssystem.

B ist Basis von F mit Rang 9

Aufspannende Bäume sind Basen von ${\mathcal U}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\cal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\cal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\cal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\cal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

Sortiere M aufsteigend (absteigend), falls Π Optimierungsproblem über Basissystem (Unabhängigkeitessystem) ist, sei $\ell_1, \ldots, \ell_{|M|}$ die Sortierung.

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Wann liefert das eine optimale Lösung?

Matroid

Definition: Matroid

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Äquivalent kann statt |I| < |J| auch |I| + 1 = |J| gefordert werden

Beispiel: Sei G = (V, E) ein zusammenhängender Graph. Mengensystem (E, U) mit $U = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Matroid. (**Ohne Beweis.**)

Optimale Lösung für Matroide

Satz: Minimierungsprobleme auf Matroiden

Für ein Unabhängigkeitssystem (M, \mathcal{U}) mit Basissystem \mathcal{B} sind äquivalent:

- (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem \mathcal{B} .
- (b) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- (c) (M, \mathcal{U}) ist ein Matroid.

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^{\star} \in \mathcal{U}$ sodass $w(U^{\star})$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem \mathcal{B} Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

GREEDY-METHODE für Optimierungsproblem Π

$$I^* \leftarrow \emptyset$$

for $i = 1$ to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleiche Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleiche Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleiche Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

 $U \subseteq M$ heißt *zulässig*, wenn alle Aufträge in U rechtzeitig von A abgearbeitet werden können.

$$U = \{U \subseteq M \mid U \text{ ist zulässig.}\}$$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleiche Bearbeitungsdauer hat.

 $oldsymbol{-}$ Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

 $U\subseteq M$ heißt *zulässig*, wenn alle Aufträge in U rechtzeitig von $\mathcal A$ abgearbeitet werden können.

$$\mathcal{U} = \{ U \subseteq M \mid U \text{ ist zulässig.} \}$$

Zeige: $\mathcal U$ ist Matroid.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleiche Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

 $U \subseteq M$ heißt *zulässig*, wenn alle Aufträge in U rechtzeitig von A abgearbeitet werden können.

$$U = \{U \subseteq M \mid U \text{ ist zulässig.}\}$$

Zeige: \mathcal{U} ist Matroid.

- 1. $\emptyset \in \mathcal{U}$
- 2. $I_1 \in \mathcal{U}, I_2 \subseteq I_1 \Rightarrow I_2 \in \mathcal{U}$

Wenn alle Aufträge in I_1 rechtzeitig bearbeitet werden können, dann auch die Aufträge in I_2 .

 \longrightarrow \mathcal{U} ist Unabhängigkeitssystem

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

- Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei $\{A_1, ..., A_k\} \subseteq M$ von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$ $\{A_1, ..., A_k\}$ ist zulässig $\Leftrightarrow \forall i \le k : D(A_i) \ge i$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei
$$\{A_1, ..., A_k\} \subseteq M$$
 von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$ $\{A_1, ..., A_k\}$ ist zulässig $\Leftrightarrow \forall i \le k : D(A_i) \ge i$

Beweis:

Annahme: $\{A_1, \ldots, A_k\}$ ist zulässig, aber es gibt ein $i \leq k$ mit $D(A_i) < i$.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

Normiere Aufträge:Bearbeitungsdauer 1

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei $\{A_1, ..., A_k\} \subseteq M$ von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$ $\{A_1, ..., A_k\}$ ist zulässig $\Leftrightarrow \forall i \le k : D(A_i) \ge i$

Beweis:

"⇒"

Annahme: $\{A_1, \ldots, A_k\}$ ist zulässig, aber es gibt ein $i \leq k$ mit $D(A_i) < i$.

Wegen $D(A_1) \leq \cdots \leq D(A_i)$ müssen i Aufträge in i-1 Zeiteinheiten abgearbeitet werden.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei
$$\{A_1, ..., A_k\} \subseteq M$$
 von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$ $\{A_1, ..., A_k\}$ ist zulässig $\Leftrightarrow \forall i \le k : D(A_i) \ge i$

Beweis:

" \Leftarrow " $\forall i \leq k : D(A_i) \geq i$: Arbeite A_1, \ldots, A_k nacheinander ab.

Wenn A_i abgearbeitet wird, wurden bisher maximal i-1 Zeiteinheiten verbraucht.

Wegen $D(A_i) \ge i$ verbleibt genügend Zeit, um A_i abzuarbeiten.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei $\{A_1, ..., A_k\} \subseteq M$ von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$

$$\{A_1,\ldots,A_k\}$$
 ist zulässig $\Leftrightarrow \forall i \leq k : D(A_i) \geq i$

$$I = \{A_1, \dots, A_k\} \in \mathcal{U}$$
 $J = \{A'_1, \dots, A'_{k+1}\} \in U$ mit $|J| = |I| + 1$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei $\{A_1, ..., A_k\} \subseteq M$ von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$

$$\{A_1,\ldots,A_k\}$$
 ist zulässig $\Leftrightarrow \forall i \leq k : D(A_i) \geq i$

$$I = \{A_1, \dots, A_k\} \in \mathcal{U}$$
 $J = \{A'_1, \dots, A'_{k+1}\} \in U$ mit $|J| = |I| + 1$

Annahme: $D(A_1) \leq \cdots \leq D(A_k)$ und $D(A'_1) \leq \cdots \leq D(A'_{k+1})$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei
$$\{A_1, ..., A_k\} \subseteq M$$
 von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$

$$\{A_1,\ldots,A_k\}$$
 ist zulässig $\Leftrightarrow \forall i \leq k \colon D(A_i) \geq i$

$$I = \{A_1, \dots, A_k\} \in \mathcal{U}$$
 $J = \{A'_1, \dots, A'_{k+1}\} \in U$ mit $|J| = |I| + 1$

Annahme: $D(A_1) \leq \cdots \leq D(A_k)$ und $D(A'_1) \leq \cdots \leq D(A'_{k+1})$

Sei *x* maximaler Index mit $A_x \neq A'_{x+1}$:

$$\cdots A'_{x+1}A'_{x+2}\cdots A'_{k}A'_{k+1}$$

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei
$$\{A_1, ..., A_k\} \subseteq M$$
 von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$

$$\{A_1,\ldots,A_k\}$$
 ist zulässig $\Leftrightarrow \forall i \leq k \colon D(A_i) \geq i$

$$I = \{A_1, \dots, A_k\} \in \mathcal{U}$$
 $J = \{A'_1, \dots, A'_{k+1}\} \in U$ mit $|J| = |I| + 1$

Annahme: $D(A_1) \leq \cdots \leq D(A_k)$ und $D(A'_1) \leq \cdots \leq D(A'_{k+1})$

$$\cdots A'_{x+1}A'_{x+2}\cdots A'_{k}A'_{k+1}$$

Sei x maximaler Index mit $A_x \neq A'_{x+1}$: **Zeige:** $\{A_1, \ldots, A_k\} \cup \{A'_{x+1}\}$ ist zulässig.

1. Fall: x = k

denn: $\forall i \leq k$: $D(A_i) \geq i$ weil / zulässig.

 $D(A'_{k+1}) \ge k+1$ weil *J* zulässig.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei
$$\{A_1, ..., A_k\} \subseteq M$$
 von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$
 $\{A_1, ..., A_k\}$ ist zulässig $\Leftrightarrow \forall i \le k : D(A_i) \ge i$

$$J = \{A_1, \dots, A_k\} \in \mathcal{U}$$
 $J = \{A'_1, \dots, A'_{k+1}\} \in U$ mit $|J| = |I| + 1$

Annahme: $D(A_1) \leq \cdots \leq D(A_k)$ und $D(A'_1) \leq \cdots \leq D(A'_{k+1})$

Sei x maximaler Index mit $A_x \neq A'_{x+1}$: **Zeige:** $\{A_1, \ldots, A_k\} \cup \{A'_{x+1}\}$ ist zulässig.

2. Fall:
$$x = j$$
 für $j < k$

denn:
$$1 \le i \le j$$
: $D(A_i) \ge i$ weil I zulässig. $D(A'_{j+1}) \ge j+1$ $j+1 < i \le k$: $D(A_i) \ge i$ weil J zulässig.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

Zeige: Für alle $I, J \in \mathcal{U}$ mit |I| < |J|, existiert ein $e \in J \setminus I$, sodass $I \cup \{e\} \in \mathcal{U}$

Bearbeitungszeit für *j* Aufträge beträgt *j*.

Sei
$$\{A_1, ..., A_k\} \subseteq M$$
 von k paarweise verschiedene Aufträge mit $D(A_1) \le \cdots \le D(A_k)$

$$\{A_1,\ldots,A_k\}$$
 ist zulässig $\Leftrightarrow \forall i \leq k \colon D(A_i) \geq i$

$$I = \{A_1, \dots, A_k\} \in \mathcal{U}$$
 $J = \{A'_1, \dots, A'_{k+1}\} \in U$ mit $|J| = |I| + 1$

Annahme: $D(A_1) \leq \cdots \leq D(A_k)$ und $D(A'_1) \leq \cdots \leq D(A'_{k+1})$

Sei x maximaler Index mit $A_x \neq A'_{x+1}$:

$$\cdots A'_{x+1}A'_{x+2}\cdots A'_{k}A'_{k+1}$$

Damit ist \mathcal{U} ein Matroid.

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

 $oldsymbol{-}$ Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

- Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

Problemstellung:

Zahle Strafe P(A), wenn Auftrag nicht abgearbeitet wurde.

Wie Aufträge abarbeiten, damit gesamte Strafe minimiert wird?

— Menge *M* an Aufträgen, wobei jeder Auftrag gleich Bearbeitungsdauer hat.

— Jeder Auftrag A hat eine Deadline $D(A) \in \mathbb{R}^+$ bis zu der er fertig sein muss.

— Maschine A.

Kann immer nur einen Auftrag gleichzeitig abarbeiten.

Problemstellung:

Zahle Strafe P(A), wenn Auftrag nicht abgearbeitet wurde.

Wie Aufträge abarbeiten, damit gesamte Strafe minimiert wird?

Sortiere M nicht-aufsteigend nach Strafe: $M = \{A_1, \ldots, A_k\}$ mit $P(A_i) \geq P(A_{i+1})$

$$S \leftarrow \emptyset$$

for i = 1 to k do

if $S \cup \{A_i\}$ ist zulässig then

$$S \leftarrow S \cup \{A_i\}$$

Sortiere S nicht-absteigend nach Deadlines und führe entsprechend Aufträge aus.

Kreisbasen

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

Ein Graph kann sehr viele Kreise haben.

Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

Kreise in Graphen

Definition: Kreis

(Definition 5.1)

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) (d.h. $V_c \subseteq V, E_c \subseteq E$) heißt *Kreis* in G, falls alle Knoten aus V_C in C geraden Grad haben. Falls C zusammenhängend ist und alle Knoten aus V_C Grad zwei haben, so heißt C einfacher Kreis.

Kreise in Graphen

Definition: Kreis

(Definition 5.1)

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) (d.h. $V_c \subseteq V, E_c \subseteq E$) heißt Kreis in G, falls alle Knoten aus V_C in C geraden Grad haben. Falls C zusammenhängend ist und alle Knoten aus V_C Grad zwei haben, so heißt C einfacher Kreis.

kein Kreis

 e_1

e10

Fasse Kreis als Kantenmenge $E' \subseteq E = \{e_1, \ldots, e_m\}$ auf und kodiere E' als Vektor $X^{E'}$ mit

$$X_i^{E'} := \begin{cases} 1, & \text{falls } e_i \in E' \\ 0, & \text{sonst} \end{cases}$$

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

 $G_i = i$ Kopien eines einfachen Kreises Q mit 4 Knoten. (Anzahl Kanten steigt linear)

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

 $G_i = i$ Kopien eines einfachen Kreises Q mit 4 Knoten. (Anzahl Kanten steigt linear)

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

 $G_i = i$ Kopien eines einfachen Kreises Q mit 4 Knoten. (Anzahl Kanten steigt linear)

Begründung:

Ein Kreis C in G_i setzt sich aus einer beliebigen Kombination von Q_1, \ldots, Q_i zusammen:

Für alle $j = 1 \dots, i$ gilt: Entweder ganz Q_i ist in C enthalten oder gar nicht.

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

 $G_i = i$ Kopien eines einfachen Kreises Q mit 4 Knoten. (Anzahl Kanten steigt linear)

Begründung:

Ein Kreis C in G_i setzt sich aus einer beliebigen Kombination von Q_1, \ldots, Q_i zusammen:

Für alle $j = 1 \dots, i$ gilt: Entweder ganz Q_i ist in C enthalten oder gar nicht.

Beschreibe *C* als binären Vektor $v = (b_1, \ldots, b_i)$:

$$b_j := \begin{cases} 1 & Q_j \text{ ist in } C \text{ enthalten} \\ 0 & sonst \end{cases}$$

(a) Gesucht: Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ exponentiell in $|E_i|$.

 $G_i = i$ Kopien eines einfachen Kreises Q mit 4 Knoten. (Anzahl Kanten steigt linear)

Begründung:

Ein Kreis C in G_i setzt sich aus einer beliebigen Kombination von Q_1, \ldots, Q_i zusammen:

Für alle $j = 1 \dots, i$ gilt: Entweder ganz Q_i ist in C enthalten oder gar nicht.

Beschreibe *C* als binären Vektor $v = (b_1, \ldots, b_i)$:

$$b_j := \begin{cases} 1 & Q_j \text{ ist in } C \text{ enthalten} \\ 0 & sonst \end{cases}$$

Es gibt $2^{i} - 1$ gültige Kombinationen. Nullvektor gehört nicht dazu.

b) Gesucht ist Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ linear in $|E_i|$:

b) Gesucht ist Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ linear in $|E_i|$:

Familie G_i der 4er-Kreis-Kopien mit Unterteilungen.

b) Gesucht ist Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ linear in $|E_i|$:

$$G_1$$
 $|C_1| = 1$
 $|E_1| = 4$

$$G_2$$

$$|C_2| = 3$$

$$|E_2| = 4 + 8$$

$$G_3$$
 $|C_3| = 7$
 $|E_3| = 4 + 8 + 16$

Familie *G_i* der 4er-Kreis-Kopien mit Unterteilungen.

$$|E_i| = \sum_{j=0}^{i-1} 4 \cdot 2^j = 4 \sum_{j=0}^{i-1} 2^j = 4(2^i - 1) = 4 \cdot 2^i - 4$$
 (Verwende geometrische Reihe.)

b) Gesucht ist Familie $(G_i)_{i \in \mathbb{N}}$ mit $|C_i|$ linear in $|E_i|$:

$$|\mathcal{C}_1| = 1$$

$$|E_1| = 4$$

$$|\mathcal{C}_2| = 3$$

$$|E_2| = 4 + 8$$

$$|\mathcal{C}_3| = 7$$

$$|E_3| = 4 + 8 + 16$$

Familie *G_i* der 4er-Kreis-Kopien mit Unterteilungen.

$$|E_i| = \sum_{j=0}^{i-1} 4 \cdot 2^j = 4 \sum_{j=0}^{i-1} 2^j = 4(2^i - 1) = 4 \cdot 2^i - 4$$
 (Verwende geometrische Reihe.)

Ein Kreis C in G_i setzt sich aus einer beliebigen Kombination von Q_1, \ldots, Q_i zusammen:

Entweder ganz Q_i ist in C enthalten oder gar nicht.

Deshalb: $|C_i| = 2^i - 1$

Kreisraum

Definition: Kreisraum

Sei C die Menge aller Kreise in G = (V, E). Dann induziert C den Vektorraum der Vektoren X^c , $c \in C$ über dem Körper GF(2), genannt *Kreisraum* von G.

$$a_1 + \ldots + a_k = 1 \Leftrightarrow$$
 ungerade Anzahl a_i auf 1 gesetzt.

$$a_1 + \ldots + a_k = 0 \Leftrightarrow$$
 gerade Anzahl a_i auf 1 gesetzt.

Kreisraum

Definition: Kreisraum

Sei \mathcal{C} die Menge aller Kreise in G = (V, E). Dann induziert \mathcal{C} den Vektorraum der Vektoren X^c , $c \in \mathcal{C}$ über dem Körper GF(2), genannt *Kreisraum* von G.

 $a_1 + \ldots + a_k = 1 \Leftrightarrow$ **ungerade** Anzahl a_i auf 1 gesetzt.

 $a_1 + \ldots + a_k = 0 \Leftrightarrow$ **gerade** Anzahl a_i auf 1 gesetzt.

Definition: Summe von Kreisen – symmetrische Differenz

Die Addition im Kreisraum von G induziert eine Operation \oplus auf C durch $c_1 \oplus c_2 = (E_{c_1} \cup E_{c_2}) \setminus (E_{c_1} \cap E_{c_2})$. Dies ist die *symmetrische Differenz* beider Kantenmengen.

Spannbaum *T*:

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$C_1 = e_1 - e_7 - e_9 - e_{10} - e_2$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$C_1 = e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$C_2 = e_1 - e_7 - e_8 - e_4$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$C_1 = e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$C_2 = e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$C_3 = e_1 - e_5 - e_4$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$C_1 = e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$C_2 = e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$C_3 = e_1 - e_5 - e_4$$

Kante *e*₆ induziert Kreis:

$$C_4 = e_2 - e_4 - e_6$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$C_1 = e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$C_2 = e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$C_3 = e_1 - e_5 - e_4$$

Kante *e*₆ induziert Kreis:

$$C_4 = e_2 - e_4 - e_6$$

Kante *e*₃ induziert Kreis:

$$C_5 = e_1 - e_3 - e_2$$

 C_1 , C_2 , C_3 , C_4 und C_5 bilden Fundamentalbasis.

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$C_1 = e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$C_2 = e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$C_3 = e_1 - e_5 - e_4$$

Kante *e*₆ induziert Kreis:

$$C_4 = e_2 - e_4 - e_6$$

Kante *e*₃ induziert Kreis:

$$C_5 = e_1 - e_3 - e_2$$

 C_1 , C_2 , C_3 , C_4 und C_5 bilden Fundamentalbasis.

Darstellung anderer Kreise bezüglich der gewählten Basis:

$$e_3 - e_7 - e_8 - e_6 = e_1 - e_7 - e_8 - e_4 \oplus e_2 - e_4 - e_6 \oplus e_1 - e_3 - e_2$$

Gegeben:

- ungerichteter, zusammenhängender Graph G = (V, E)
- aufspannender Baum $T = (V, E_T)$ in G

$$B_T := \{C_e \mid e \in E \setminus E_T, C_e \in C, mit \ E_{C_e} = \{e = \{u, v\}\} \cup \{Pfadkanten von u nach v in T\}\}$$

Gegeben:

- ungerichteter, zusammenhängender Graph G = (V, E)
- aufspannender Baum $T = (V, E_T)$ in G

Fundamentalbasis B_t des Kreisraumes C von G definiert als

$$B_T := \{C_e \mid e \in E \setminus E_T, C_e \in C, mit$$

 $E_{C_e} = \{e = \{u, v\}\} \cup \{\text{Pfadkanten von } u \text{ nach } v \text{ in } T\}\}$

1. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ linear unabhängig ist.

Wiederholung: Eine Teilmenge $B = \{b_1, \ldots, b_n\} \subseteq V$ eines K-Vektorraums V heißt *linear unabhängig*, wenn gilt:

$$\sum_{i=1}^{i=n} a_i b_i = 0, \ a_i \in K \iff a_i = 0 \quad \forall i,$$

d.h., der Nullvektor lässt sich nur als triviale Linearkombination der Vektoren in B schreiben.

Gegeben:

- ungerichteter, zusammenhängender Graph G = (V, E)
- aufspannender Baum $T = (V, E_T)$ in G

$$B_T := \{C_e \mid e \in E \setminus E_T, C_e \in C, mit$$

 $E_{C_e} = \{e = \{u, v\}\} \cup \{\text{Pfadkanten von } u \text{ nach } v \text{ in } T\}\}$

- 1. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ linear unabhängig ist.
 - Nach Definition von B_T : Jede Nichtbaumkante nur in einem Kreis in B_T enthalten.

Gegeben:

- ungerichteter, zusammenhängender Graph G = (V, E)
- aufspannender Baum $T = (V, E_T)$ in G

$$B_T := \{C_e \mid e \in E \setminus E_T, C_e \in C, mit$$

 $E_{C_e} = \{e = \{u, v\}\} \cup \{\text{Pfadkanten von } u \text{ nach } v \text{ in } T\}\}$

- 1. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ linear unabhängig ist.
 - Nach Definition von B_T : Jede Nichtbaumkante nur in einem Kreis in B_T enthalten.
 - **Annahme:** Sei $\sum_{e \in E \setminus E_T} a_e C_e = 0$, mit $a_{e'} \neq 0$, für mindestens ein e'.

Gegeben:

- ungerichteter, zusammenhängender Graph G = (V, E)
- aufspannender Baum $T = (V, E_T)$ in G

$$B_T := \{C_e \mid e \in E \setminus E_T, C_e \in C, mit$$

 $E_{C_e} = \{e = \{u, v\}\} \cup \{Pfadkanten von u nach v in T\}\}$

- 1. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ linear unabhängig ist.
 - Nach Definition von B_T : Jede Nichtbaumkante nur in einem Kreis in B_T enthalten.
 - **Annahme:** Sei $\sum_{e \in E \setminus E_T} a_e C_e = 0$, mit $a_{e'} \neq 0$, für mindestens ein e'.
 - lacktriangle $C_{e'}$ enthält die Nichtbaumkante e', die in keinem anderen Kreis aus B_T enthalten ist .
 - Kann nicht zu Null summiert werden (sym. Differenz)

Gegeben:

- ungerichteter, zusammenhängender Graph G = (V, E)
- aufspannender Baum $T = (V, E_T)$ in G

Fundamentalbasis B_t des Kreisraumes C von G definiert als

$$B_T := \{C_e \mid e \in E \setminus E_T, C_e \in C, mit$$

 $E_{C_e} = \{e = \{u, v\}\} \cup \{\text{Pfadkanten von } u \text{ nach } v \text{ in } T\}\}$

- 1. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ linear unabhängig ist.
 - Nach Definition von B_T : Jede Nichtbaumkante nur in einem Kreis in B_T enthalten.
 - **Annahme:** Sei $\sum_{e \in E \setminus E_T} a_e C_e = 0$, mit $a_{e'} \neq 0$, für mindestens ein e'.
 - lacktriangle $C_{e'}$ enthält die Nichtbaumkante e', die in keinem anderen Kreis aus B_T enthalten ist .
 - Kann nicht zu Null summiert werden (sym. Differenz)

Annahme ist widerlegt.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

2. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ ein Erzeugendensystem von \mathcal{C} ist.

Hinweis:

Gehen Sie dabei konstruktiv vor und beschreiben Sie, wie ein beliebiger Kreis durch eine Linearkombination von Elementen aus B_T gebildet werden kann.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

2. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ ein Erzeugendensystem von \mathcal{C} ist.

Hinweis:

Gehen Sie dabei konstruktiv vor und beschreiben Sie, wie ein beliebiger Kreis durch eine Linearkombination von Elementen aus B_T gebildet werden kann.

Behauptung: Für jeden Kreis
$$C$$
 in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

Wdh.: C_e ist eindeutiger Kreis in gegebener Fundamentalbasis B_T über Nichtbaumkante e.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

2. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ ein Erzeugendensystem von \mathcal{C} ist.

Hinweis:

Gehen Sie dabei konstruktiv vor und beschreiben Sie, wie ein beliebiger Kreis durch eine Linearkombination von Elementen aus B_T gebildet werden kann.

Behauptung: Für jeden Kreis
$$C$$
 in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

Wdh.: C_e ist eindeutiger Kreis in gegebener Fundamentalbasis B_T über Nichtbaumkante e.

Betrachte Linearkombination $\sum_{e \in E_C \setminus E_T} C_e$ und zeige für beliebige Kante $e \in E$:

- Falls $e \in E_C$: e bleibt in Linearkombination erhalten.
- Falls $e \notin E_C$: e bleibt nicht in Linearkombination erhalten.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

2. Zeigen Sie, dass $B_T \subseteq GF(2)^m$ ein Erzeugendensystem von \mathcal{C} ist. Hinweis:

Gehen Sie dabei konstruktiv vor und beschreiben Sie, wie ein beliebiger Kreis durch eine Linearkombination von Elementen aus B_T gebildet werden kann.

Behauptung: Für jeden Kreis
$$C$$
 in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

Wdh.: C_e ist eindeutiger Kreis in gegebener Fundamentalbasis B_T über Nichtbaumkante e.

Betrachte Linearkombination $\sum_{e \in E_C \setminus E_T} C_e$ und zeige für beliebige Kante $e \in E$:

- Falls $e \in E_C$: e bleibt in Linearkombination erhalten.
- Falls $e \not\in E_C$: e bleibt nicht in Linearkombination erhalten.

Betrachte die Fälle:

- 1. e ist Nichtbaumkante in C: $e \in E_C \setminus E_T$
- 2. e ist Baumkante in C: $e \in E_C \cap E_T$
- 3. e ist Nichtbaumkante außerhalb von C: $e \in E \setminus (E_C \cup E_T)$
- 4. e ist Baumkante außerhalb von C: $e \in E_T \setminus E_C$

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

1. Fall: e ist Nichtbaumkante in C

C_e kommt als Summand vor.

e kommt nur einmal in Summe vor, da e Nichtbaumkante ist.

 \Rightarrow Summe erhält *e*.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

2. Fall: e ist Baumkante in C

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

2. Fall: e ist Baumkante in C

e induziert Schnitt, da e Baum T in zwei Teile zertrennt.

• Anzahl der Kanten aus E_C , die den Schnitt

kreuzen, ist gerade:

Gilt für jeden Schnitt und Kreis.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

2. Fall: e ist Baumkante in C

e induziert Schnitt, da e Baum T in zwei Teile zertrennt.

• Anzahl der Kanten aus E_C , die den Schnitt kreuzen, ist **gerade**:

Gilt für jeden Schnitt und Kreis.

Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

2. Fall: e ist Baumkante in C

e induziert Schnitt, da e Baum T in zwei Teile zertrennt.

• Anzahl der Kanten aus E_C , die den Schnitt kreuzen, ist **gerade**:

Gilt für jeden Schnitt und Kreis.

Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.

 \Rightarrow E_C hat **ungerade** Anzahl an Nichtbaumkanten E', die Schnitt kreuzen.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

2. Fall: e ist Baumkante in C

e induziert Schnitt, da e Baum T in zwei Teile zertrennt.

Anzahl der Kanten aus E_C , die den Schnitt kreuzen, ist **gerade**:

Gilt für jeden Schnitt und Kreis.

- Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.
- \Rightarrow E_C hat **ungerade** Anzahl an Nichtbaumkanten E', die Schnitt kreuzen.
- \Rightarrow E' bilden gerade die Kreise in B_T , die e enthalten.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

2. Fall: e ist Baumkante in C

e induziert Schnitt, da e Baum T in zwei Teile zertrennt.

• Anzahl der Kanten aus E_C , die den Schnitt kreuzen, ist **gerade**:

Gilt für jeden Schnitt und Kreis.

- Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.
- \Rightarrow E_C hat **ungerade** Anzahl an Nichtbaumkanten E', die Schnitt kreuzen.
- \Rightarrow E' bilden gerade die Kreise in B_T , die e enthalten.
- ⇒ e wird nicht zu 0 summiert.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum C_e$ **3. Fall:** e ist Nichtbaumkante außerhalb von C

Da e Nichtbaumkante, gibt es genau einen Kreis C_e in B_T .

Da $e \not\in E_C$ kommt C_e nicht in Summe vor.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

4. Fall: e ist Baumkante außerhalb von C

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in F_e \setminus F_e} C_e$

4. Fall: e ist Baumkante außerhalb von C

 e induziert einen Schnitt, da e den Baum T in zwei Teile zertrennt.

 Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in F_0 \setminus F_T} C_e$

4. Fall: e ist Baumkante außerhalb von C

 e induziert einen Schnitt, da e den Baum T in zwei Teile zertrennt.

 Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.

Anzahl der Kanten aus E_C, die den Schnitt kreuzen, ist gerade: Gilt für jeden Kreis und Schnitt.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

Behauptung: Für jeden Kreis C in G gilt: $C = \sum_{e \in E_C \setminus E_T} C_e$

4. Fall: e ist Baumkante außerhalb von C

e induziert einen Schnitt, da e den Baum T in zwei Teile zertrennt.

Alle Kanten außer e, die den Schnitt kreuzen, sind Nichtbaumkanten.

Anzahl der Kanten aus E_C, die den Schnitt kreuzen, ist gerade: Gilt für jeden Kreis und Schnitt.

 \Rightarrow Wegen $e \notin E_C$ ist Anzahl der Nichtbaumkanten E' in E_C die Schnittakreuzen **gerade**.

 \Rightarrow Die Nichtbaumkanten E' entsprechen gerade der Kreise in Linearkombination, die e enthalten.

Folglich: e wird zu 0 aufsummiert.

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

3. Zeigen Sie, dass $|B_T| = m - n + 1$ gilt.

Beob.: Jede Nichtbaumkante $e = \{u, v\}$ induziert einen eindeutigen Kreis C_e : $\{u, v\} + \text{einfacher Weg von } u \text{ nach } v \text{ auf } t$

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

3. Zeigen Sie, dass $|B_T| = m - n + 1$ gilt.

Beob.: Jede Nichtbaumkante $e = \{u, v\}$ induziert einen eindeutigen Kreis C_e :

 $\{u, v\}$ + einfacher Weg von u nach v auf t

- Wir zeigen zuerst: $|B_T| = |E \setminus E_T|$
 - Nach Konstruktion enthält jeder Kreis $C_e \in B_T$ genau eine Nichtbaumkante.
 - Wegen obiger Beobachtung induziert jede Nichtbaumkante e genau einen Kreis C_e .

 \Rightarrow wegen bijektiver Mengenentsprechung folgt $|B_T| = |E \setminus E_T|$

 E_C = Kanten im Kreis C.

 E_T = Kanten im aufspannenden Baum T.

3. Zeigen Sie, dass $|B_T| = m - n + 1$ gilt.

Beob.: Jede Nichtbaumkante $e = \{u, v\}$ induziert einen eindeutigen Kreis C_e :

 $\{u, v\}$ + einfacher Weg von u nach v auf t

- Wir zeigen zuerst: $|B_T| = |E \setminus E_T|$
 - Nach Konstruktion enthält jeder Kreis $C_e \in B_T$ genau eine Nichtbaumkante.
 - Wegen obiger Beobachtung induziert jede Nichtbaumkante e genau einen Kreis C_e.
 - \Rightarrow wegen bijektiver Mengenentsprechung folgt $|B_T| = |E \setminus E_T|$
- Aufspannender Baum in Graph hat n-3 Kanten. Damit gilt

$$|B_T| = |E \setminus E_T| = m - n + 1$$

Algorithmus von De Pina

Betrachte Kreise als Inzidenzvektoren über E mit Einschränkung auf die Nichtbaumkanten $\{e_1, \ldots, e_N\}$.

Beispiel: Kreise werden mithilfe der Nichtbaumkanten e_1 , e_2 , e_3 , e_4 und e_5 beschrieben.

$$C = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \quad \begin{array}{c} e_1 \\ \vdots \\ e_5 \end{array}$$

Kreis C kann mithilfe der Fundamentalkreise C_i (C_i =Fundamentalkreis der Nichtbaumkante e_i) rekonstruiert werden.

$$C = C_1 \oplus C_2 \oplus C_4 \oplus C_5$$

Algorithmus von de Pina


```
Eingabe: Graph G = (V, E), aufspannenden Baum T = \{e_1, \ldots, e_N\}
```

Ausgabe: MCB von G

for
$$i = 1$$
 bis N do

$$S_i \leftarrow \{e_i\}$$

for k = 1 bis N do

Finde einen kürzesten Kreis C_k mit $\langle C_k, S_k \rangle = 1$

for
$$i = k + 1$$
 bis N do
if $\langle C_k, S_i \rangle = 1$ then
 $S_i \leftarrow S_i \oplus S_k$

Ausgabe ist: $\{C_1, \ldots, C_N\}$

Definiere Bilinearform zweier Vektoren C und S: $\langle C, S \rangle := \sum_{i=1}^{N} (c_i \cdot s_i)$

Produkt und Summe sind über GF(2) definiert.

C und S sind *orthogonal* zueinander genau dann, wenn $\langle C, S \rangle = 0$.

 $\langle C, S \rangle$ = 1 genau dann, wenn C eine ungerade Anzahl Einträge (Kreise) mit S gemeinsam hat.

Peterson-Graph

1. Schritt: Initialisierung mit Nichtbaumkanten

$$S_1 = \{e_4\}$$

 $S_2 = \{e_6\}$
 $S_3 = \{e_{11}\}$
 $S_4 = \{e_{13}\}$
 $S_5 = \{e_{14}\}$
 $S_6 = \{e_{15}\}$

Peterson-Graph

1. Schritt: Initialisierung mit Nichtbaumkanten $S_1 = \{e_4\}, S_2 =$ $\{e_6\}, S_3 = \{e_{11}\}, S_4 = \{e_{13}\}, S_5 = \{e_{14}\}, S_6 = \{e_{15}\}$ e_6 $\mathbf{k} = 1$: Wähle $C_1 = \{e_1, e_2, e_3, e_4, e_5\}, w(C_1)=15$

Für i=2...6 gibt es kein S_i mit $\langle C_1, S_i \rangle = 1$

Peterson-Graph

1. Schritt: Initialisierung mit Nichtbaumkanten $S_1 = \{e_4\}$, $S_2 = \{e_6\}$, $S_3 = \{e_{11}\}$, $S_4 = \{e_{13}\}$, $S_5 = \{e_{14}\}$, $S_6 = \{e_{15}\}$

k = 1: Wähle $C_1 = \{e_1, e_2, e_3, e_4, e_5\}, w(C_1)=15$ Für i=2...6 gibt es kein S_i mit $\langle C_1, S_i \rangle = 1$

k = 2: Wähle $C_2 = \{e_6, e_2, e_3, e_8, e_{12}\}, w(C_2)=15$ Für i=3...6 gibt es kein S_i mit $\langle C_2, S_i \rangle = 1$

Peterson-Graph

1. Schritt: Initialisierung mit Nichtbaumkanten $S_1 = \{e_4\}$, $S_2 = \{e_6\}$, $S_3 = \{e_{11}\}$, $S_4 = \{e_{13}\}$, $S_5 = \{e_{14}\}$, $S_6 = \{e_{15}\}$ | **k** = 1: Wähle $C_1 = \{e_1, e_2, e_3, e_4, e_5\}$, $w(C_1) = 15$ | Für i=2...6 gibt es kein S_i mit $\langle C_1, S_i \rangle = 1$

k = 2: Wähle $C_2 = \{e_6, e_2, e_3, e_8, e_{12}\}, w(C_2)=15$ Für i=3...6 gibt es kein S_i mit $\langle C_2, S_i \rangle = 1$

k = 3: Wähle $C_3 = \{e_{11}, e_6, e_1, e_5, e_9\}, w(C_3)=15$ Für i=4...6 gibt es kein S_i mit $\langle C_3, S_i \rangle = 1$

Peterson-Graph

1. Schritt: Initialisierung mit Nichtbaumkanten $S_1 = \{e_4\}$, $S_2 = \{e_6\}$, $S_3 = \{e_{11}\}$, $S_4 = \{e_{13}\}$, $S_5 = \{e_{14}\}$, $S_6 = \{e_{15}\}$

k = 1: Wähle $C_1 = \{e_1, e_2, e_3, e_4, e_5\}, w(C_1)=15$ Für i=2...6 gibt es kein S_i mit $\langle C_1, S_i \rangle = 1$

k = 2: Wähle $C_2 = \{e_6, e_2, e_3, e_8, e_{12}\}, w(C_2)=15$ Für i=3...6 gibt es kein S_i mit $\langle C_2, S_i \rangle = 1$

k = 3: Wähle $C_3 = \{e_{11}, e_6, e_1, e_5, e_9\}, w(C_3)=15$ Für i=4...6 gibt es kein S_i mit $\langle C_3, S_i \rangle = 1$

k = 4: Wähle $C_4 = \{e_{13}, e_{14}, e_{9}, e_{5}, e_{10}\}, w(C_4)=15$ $\langle C_4, S_5 \rangle = 1, S_5 := S_5 \oplus S_4 = \{e_{13}, e_{14}\}$

Peterson-Graph

1. Schritt: Initialisierung mit Nichtbaumkanten $S_1 = \{e_4\}$, $S_2 = \{e_6\}$, $S_3 = \{e_{11}\}$, $S_4 = \{e_{13}\}$, $S_5 = \{e_{14}\}$, $S_6 = \{e_{15}\}$

k = 1: Wähle $C_1 = \{e_1, e_2, e_3, e_4, e_5\}, w(C_1)=15$ Für i=2...6 gibt es kein S_i mit $\langle C_1, S_i \rangle = 1$

k = 2: Wähle $C_2 = \{e_6, e_2, e_3, e_8, e_{12}\}, w(C_2)=15$ Für i=3...6 gibt es kein S_i mit $\langle C_2, S_i \rangle = 1$

k = 3: Wähle $C_3 = \{e_{11}, e_6, e_1, e_5, e_9\}, w(C_3)=15$ Für i=4...6 gibt es kein S_i mit $\langle C_3, S_i \rangle = 1$

k = 4: Wähle $C_4 = \{e_{13}, e_{14}, e_9, e_5, e_{10}\}, w(C_4)=15$ $\langle C_4, S_5 \rangle = 1, S_5 := S_5 \oplus S_4 = \{e_{13}, e_{14}\}$

k = 5: Wähle $C_5 = \{e_{14}, e_9, e_4, e_3, e_7\}, w(C_5)=15$ $\langle C_5, S_6 \rangle = 0$

Peterson-Graph

 e_6 *e*₁₂ e_{11} *e*₁₀ e_{13} e_7 *e*₁₄ *e*₅ *e*₁₅ e_4

1. Schritt: Initialisierung mit Nichtbaumkanten $S_1 = \{e_4\}$, $S_2 = \{e_6\}$, $S_3 = \{e_{11}\}$, $S_4 = \{e_{13}\}$, $S_5 = \{e_{14}\}$, $S_6 = \{e_{15}\}$

k = 1: Wähle $C_1 = \{e_1, e_2, e_3, e_4, e_5\}, w(C_1)=15$ Für i=2...6 gibt es kein S_i mit $\langle C_1, S_i \rangle = 1$

k = 2: Wähle $C_2 = \{e_6, e_2, e_3, e_8, e_{12}\}, w(C_2)=15$ Für i=3...6 gibt es kein S_i mit $\langle C_2, S_i \rangle = 1$

k = 3: Wähle $C_3 = \{e_{11}, e_6, e_1, e_5, e_9\}, w(C_3)=15$ Für i=4...6 gibt es kein S_i mit $\langle C_3, S_i \rangle = 1$

k = 4: Wähle $C_4 = \{e_{13}, e_{14}, e_{9}, e_{5}, e_{10}\}, w(C_4)=15$ $\langle C_4, S_5 \rangle = 1, S_5 := S_5 \oplus S_4 = \{e_{13}, e_{14}\}$

k = 5: Wähle $C_5 = \{e_{14}, e_9, e_4, e_3, e_7\}, w(C_5)=15$ $\langle C_5, S_6 \rangle = 0$

 $\mathbf{k} = 6$: Wähle $C_6 = \{e_{15}, e_{10}, e_5, e_4, e_8\}, w(C_5)=15$

Peterson-Graph

$$\begin{split} \textit{MCB} &= \left\{ \textit{C}_{1}, \textit{C}_{2}, \textit{C}_{3} \right\} \, \text{mit} \\ \textit{C}_{1} &= \left\{ \textit{e}_{1}, \textit{e}_{2}, \textit{e}_{3}, \textit{e}_{4}, \textit{e}_{5} \right\} \\ \textit{C}_{2} &= \left\{ \textit{e}_{1}, \textit{e}_{2}, \textit{e}_{7}, \textit{e}_{13}, \textit{e}_{10} \right\} \\ \textit{C}_{3} &= \left\{ \textit{e}_{1}, \textit{e}_{2}, \textit{e}_{7}, \textit{e}_{14}, \textit{e}_{11}, \textit{e}_{12}, \textit{e}_{15}, \textit{e}_{10} \right\} \end{split}$$