Summer 2017 UAkron Dept. of Stats [3470: 461/561] Applied Statistics

Ch 5: Probability To Statistics

Contents

L	Ra	ndom Sampling	2
	1.1	Probability and Statistics	;
	1.2	Guessing the population distribution (Distribution Fitting)	8
	1.3	Parameter Estimation	1:
	1.4	Example: Speed of Light Experiment	16
2	Linear Combination of Normal RVs		18
	2.1	Sampling Distribution of the Sample Mean	19

Random Sampling

[ToC]

1.1 Probability and Statistics

[ToC]

Random variables X_1, X_2, \ldots, X_n are said to be a **random sample** of size n from distribution F if

- 1. The X_i 's are independent
- 2. Each X_i has distribution F.

1st run of the Experiment -> realization of X_1 2nd run of the Experiment -> realization of X_2 3rd run of the Experiment -> realization of X_3 \vdots

- 3. $\{X_1 X_2, \dots, X_3\}$ is the dataset.
- 4. F is called the population distribution.

Example: Population Distribution to Data

```
par(mfrow=c(1,2))
x=seq(0,10,.01)
plot(x, dnorm(x, 5,1), type='l', xlab='N(5,1)', ylab='', cex.lab=2, main='Population Distribution')
X <- rnorm(100, 5, 1)
hist(X, 15, xlab='Generated Random Sample', cex.lab=2, xlim=c(0,10))</pre>
```

Example: Population Distribution to Data

Example: Data to Population Distribution

```
D2 = read.csv("http://gozips.uakron.edu/~nmimoto/pages/datasets/Lottery.txt")
D3 = read.csv("http://gozips.uakron.edu/~nmimoto/pages/datasets/Light.csv")
D4 = read.csv("http://gozips.uakron.edu/~nmimoto/pages/datasets/PitCorrosion.txt")
Lot3=D2$Lot_3  #-$---
Light=D3$Light
Depth=D4$depth

par(mfrow=c(1,3))
hist(Lot3, freq=F, main='Lott 3', cex.main=2)
hist(Light, freq=F, main='Speed of Light', cex.main=2)
hist(Depth, freq=F, main='Pit Depth', cex.main=2)
```

Example: Data to Population Distribution

Can you guess the shape of f?

1.2 Guessing the population distribution (Distribution Fitting)

[ToC]

- 1. Histogram(data) vs pdf(Theoretical)
- 2. EDF(data) vs CDF(Theoretical)
- 3. Probability Plot

Sample Percentiles vs Theoretical Percentiles

Probability Plot (q-q plot)

(From Chapter 4)

If you guessed the population distribution is A, then you can check your guess by plotting q-q plot. q-q plot is a plot of

$$\left[i \text{th ordered obs.}\right] \text{ vs } \left[100 \times \frac{(i-.5)}{n} \text{th (theoretical) percentile from your guees of A}\right].$$

If the data are indeed sample from A, then the q-q plot should look like a line.

Example: q-q Nomal Plot for Light Data

```
par(mfrow=c(1,2))
hist(Light, freq=F, main='Speed of Light', cex.main=2)
qqnorm(Light)
```


Example: q-q nomal plot

```
n=100
par(mfrow=c(1,3))
x=seq(0,10,.01)
plot(x, dnorm(x, 5,1), type='l', xlab='N(5,1)', ylab='', cex.lab=2, main='Population Distribution')
X <- rnorm(n, 5, 1)
hist(X, 15, xlab='Generated Random Sample', cex.lab=2, xlim=c(0,10))
qqnorm(X)</pre>
```


1.3 Parameter Estimation

[ToC]

After you Guessed the population distritution, we need to estimate the parameter(s).

$$N(\mu, \sigma^2)$$
?

 $\operatorname{Exp}(\lambda)$?

Two Major Methods

for coming up with an estimator in general.

- 1. Method of Moments
- 2. Maximum Likelihood Estimation

Method of Moments

- For $X \sim N(\mu, \sigma^2)$, $E(X) = \mu$. Use \bar{X} to estimate μ .
- For $X \sim \text{Exp}(\lambda)$, $E(X) = 1/\lambda$. Use $1/\bar{X}$ to estimate λ .

Two Important Cases

1. $\{X_1,\ldots,X_n\}$ are R.S. from a population with mean μ and standard deviation σ .

$$\overline{X}$$
 estimates μ

$$S^2$$
 estimates σ^2

2. $\{X_1, \ldots, X_n\}$ are R.S. from a population, which has only 0 or 1 as possible outcomes. Probability for getting 1 for each X_i is p.

$$\overline{X}$$
 estimates p

1.4 Example: Speed of Light Experiment

[ToC]

- Assume that each measurement X_i is a random sample from $N(c, \sigma^2)$
- That is same thing as to say

$$X_i \sim c + \varepsilon$$
 $\epsilon \sim N(0, \sigma^2)$

 \bar{X} estimates c = [Speed of Light]

• How good is the estimation?

Linear Combination of Normal RVs

[ToC]

2.1 Sampling Distribution of the Sample Mean

[ToC]

• What is the distribution of \bar{X} when each X_i is a random sample from Normal distribution?

$$X_i \sim N(\mu, \sigma^2)$$

• applet

http://onlinestatbook.com/stat_sim/sampling_dist/index.html

Theoretical Consideration

- Suppose $X \sim N(2,3)$ and $Y \sim N(4,2)$. X and Y are independent.
- What is P(X + Y < 5) = ?