CORNER CLIPPING EVENTS IN ICECUBE

Michael Bogert

Advisor: Dr. Kurahashi

BRIEF OVERVIEW

- Background info
 - IceCube, neutrino events
- Purpose of my research
 - The problem, what I'm trying to accomplish, why it's important
- Steps I took
- Results, discussion

ICECUBE

- Neutrino detection experiment
- 1 km³ detector with 5,000 light sensors (DOMs)

MHAT IS AN EVENTS

- Neutrino interaction recorded by detector
- Events are viewed in steamshovel, a visualization software

Picture from https://icecube.wisc.edu/science/icecube/

EVENT CATEGORIES

- Two categories: Normal events and corner clipping events
- Reconstruction of a corner clipper can't be trusted
 Normal event

Corner clipper

MULTIPLE TYPES OF CLIPPERS

- Corner clippers don't just have to be on 1 or 2 strings
 - Can clip the top/bottom of detector
 - Can cut through a side
 Clip through top of detector

Clip through multiple strings

THE PROBLEM

- Detector constantly recording events (1011 events per year)
- No method to filter out corner clippers
 - Easily identifiable by eye, but difficult to define algorithmically
- Alerts are sent out for interesting events (> ~330 TeV)
 - Sent out automatically before visual confirmation, may be retracted

GOAL/WHY IT MATTERS

- Goals
 - Come up with a reliable way to classify events (normal or corner clipper)
 - Use machine learning to further improve classification
- Why it matters
 - Significant number of corner clippers (too many to go through by eye)
 - Reconstructing corner clippers wastes time/resources

INITIAL STEPS

- Get familiar with corner clippers
 - Come up with common features all corner clippers should share

COMMON FEATURES

 Decided all corner clipping events should have a "radial center of gravity" far from the center^[1]

$$COG(\rho) = \frac{\sum_{i=0}^{\#DOMs} q_i \, \rho_i}{\sum_{i=0}^{\#DOMs} q_i}$$

where q_i = # of photoelectrons (PEs) at the ith DOM, ρ_i is the radial distance

• Should also have high ratio of $\frac{\# Outer PEs}{\# Total PEs}$

STARTING POINT

- Hypothesized cluster of events in top-right corner of 2D histogram were corner clippers they were
- Could now use $\mathcal{COG}(\rho)$ and PE ratio as features in machine learning algorithms
- Secondary features added
 - COG(z) vertical center of gravity
 - Total PEs Corner clippers should have low # of total PEs

MACHINE LEARNING ALGORITHMS

 Machine learning algorithms are methods that will predict results based on input data^[2]

• 4 categories: unsupervised learning, supervised learning, semi-supervised

learning, and reinforcement

Picture from https://data-flair.training/blogs/r-decision-trees/

SUPERVISED LEARNING

- Learn by example (data is labeled)
 - Split data into training & test set: practice on training then predict on test
- Binary classification is a type of supervised learning that will label data as positive (1) or negative (0)
- Corner clipper = 1, normal event = 0

CLASSIFICATION METHODS

Tried multiple classification algorithms after labeling data (3,517 events, 737 clippers → 21% corner clippers)

- K-Nearest Neighbors
- Decision Trees
- Random Forests
- Made scatter plot to see locations
 - Green = corner clipper
 - Purple = normal

WHAT MAKES AN ALGORITHM GOOD?

	Corner clipper (true label)	Normal event (true label)	
Corner clipper (prediction)	True Positive	False positive	
Normal event (prediction)	False Negative	True Negative	

• Look at Completeness (recall) and Precision

$$Completeness = \frac{\#True\ positives}{\#True\ positives + \#False\ Negatives}$$

$$Precision = \frac{\#True\ positives}{\#True\ positives + \#False\ Positives}$$

Prioritize completeness > precision (want low #FN)

ALGORITHM COMPARISONS

- Tried multiple algorithms
- Found the best by comparing precision & completeness values

	Hard-Cut	K-Nearest Neighbors	Gaussian Naïve Bayes	Decision Tree	Decision Tree w/ Bagging	Random Forest	MPLRegress ion	Support Vector Machine
Precision	0.99	0.8	0.72	0.97	0.94	0.99	0.94	0.9
Completen ess	0.67	0.47	.06	0.93	0.87	0.96	0.86	0.8

Random Forest performed best

RANDOM FOREST

- Based off Decision Trees
- Creates multiple trees (makes a forest) w/ varying attributes and depth
- Final tree is made by combining results of all trees

CONCLUSIONS

Algorithm works very well (1,759 test events, only 14 mislabeled → 99.2% correct)

CONCLUSIONS 2

- AUROC Curve
 - Closer the value is to 1, the better
- Measures degree of separability^[3]
- Very close to 1, another good sign

$$TPR = \frac{\#TP}{\#TP + \#FN}$$

$$FPR = \frac{\#FP}{\#TN + FP}$$

How incorrect are they?

What type of event is hard to classify?

INCORRECT EVENTS

	Corner clipper (true label)	Normal event (true label)	
Corner clipper (prediction)	True Positive	False positive	
Normal event (prediction)	False Negative	True Negative	

EXAMPLE OF A FALSE NEGATIVE

• Event is a corner clipper, but not labeled as one

• 2 different CoGr's could be the issue

FUTURE IMPROVEMENTS

- Overall, the method to identify corner clippers works very well
 - Can still be improved (fix CoGr issue)
- Replace Random Forest w/ faster algorithm
- Test on more/different event topologies

ACKNOWLEDGEMENTS

A HUGE Thank You to Dr. Kurahashi and her grad students Mike C, Mike K, Luna, and Steve!

You guys are the best!!

SOURCES

[1] CARVER, Tessa. Time Integrated searches for Astrophysical Neutrino Sources using the IceCube Detector and Gender in Physics studies for the Genera Project. Université de Genève. Thèse, 2019. doi: 10.13097/archive-ouverte/unige:120924 https://archive-ouverte.unige.ch/unige:120924

[2] Wakefield, K. (n.d.). A guide to the types of machine learning algorithms. Retrieved March 09, 2021, from https://www.sas.com/en_gb/insights/articles/analytics/machine-learning-algorithms.html#:~:text=At%20its%20most%20basic%2C%20machine,values%20within%20an%20a cceptable%20range.&text=There%20are%20four%20types%20of,%2Dsupervised%2C%20unsuper vised%20and%20reinforcement.

[3] Narkhede, S. (2021, January 14). *Understanding AUC - ROC Curve*. Medium. https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

Questions?