The group G is isomorphic to the projective special linear group PSL(2,17). Ordinary character table of $G \cong PSL(2,17)$:

$\begin{vmatrix} 1a & 2a & 3a & 4a \end{vmatrix}$	8a	8b	9a	9b	9c	17a	17b					
χ_1 1 1 1 1	1	1	1	1	1	1	1					
$\chi_2 = 9 - 1 = 0 - 1$	-1	-1	0	0	0	$-E(17) - E(17)^2 - E(17)^4 - E(17)^8 - E(17)^9 - E(17)^{13} - E(17)^{15} - E(17)^{16}$	$-E(17)^3 - E(17)^5 - E(17)^6 - E(17)^7 - E(17)^{10} - E(17)^{11} - E(17)^{12} - E(17)^{14}$					
χ_3 9 1 0 1	-1	-1	0	0	0	$-E(17)^3 - E(17)^5 - E(17)^6 - E(17)^7 - E(17)^{10} - E(17)^{11} - E(17)^{12} - E(17)^{14}$	$-\dot{E}(17) - \dot{E}(17)^2 - \dot{E}(17)^4 - \dot{E}(17)^8 - \dot{E}(17)^9 - \dot{E}(17)^{13} - \dot{E}(17)^{15} - \dot{E}(17)^{16}$					
$\chi_4 = 16 0 -2 0$	0	0	1	1	1	-1	-1					
χ_5 16 0 1 0	0	0	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	-1	-1					
$\chi_6 = 16 0 1 0$	0	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	-1	-1					
χ_7 16 0 1 0	0	0	$-E(9)^2 - E(9)^7$		$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	-1	-1					
$\chi_8 17 1 -1 1$	1	1	-1	-1	-1	0	0					
χ_9 18 2 0 -2	0	0	0	0	0	1	1					
$\chi_{10} \mid 18 -2 0 0$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	1	1					
$\chi_{11} 18 -2 0 0$			0	0	0	1	1					

Trivial source character table of $G \cong PSL(2,17)$ at p = 17:

Trivial source character table of $G = 1 \text{ SL}(2,17)$ at $p = 17$.																	
Normalisers N_i	N_1					N_2											
p-subgroups of G up to conjugacy in G				P_1					P_2								
Representatives $n_j \in N_i$	1a $2a$	3a 4a	8a	8b	9a	9b	9c	1 <i>a</i>	8a	4a	2a	8b	8c	4b	8d		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	1 17 1	-1 1	1	1	-1	-1	-1	0	0	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1}$ 17 1	2 1	1	1	$-E(9)^2 - E(9)^3 - E(9)^6 - E(9)^7$	$-E(9)^3 - E(9)^4 - E(9)^5 - E(9)^6$	$E(9)^2 - E(9)^3 + E(9)^4 + E(9)^5 - E(9)^6 + E(9)^7$	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 - 2$	1 0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $				$E(8) - E(8)^3$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $				$-E(8) + E(8)^3$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	$_{1}$ 34 2	1 -2	0	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	$_1 \mid 34 2$	-2 -2	0	0	1	1	1	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	$_{1}$ 34 2	1 2	-2	-2	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	0	0	0	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 - 2$	-2 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	1	1	1	0	0	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1 1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 18 -2$	0 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	1	$E(8)^{3}$	-E(4)	-1	E(8)	$-E(8)^{3}$	E(4)	-E(8)		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$			-2	-2	0	0	0	1	-1	1	1	-1	-1	1	-1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 18 - 2$	0 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	1	-E(8)	E(4)	-1 -	$-E(8)^3$	E(8)	-E(4)	$E(8)^3$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$				0	0	0	0	1	E(4)	-1	1 -	-E(4)	E(4)	-1	-E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$				$-E(8) + E(8)^3$	0	0	0	1	E(8)	E(4)	-1	$E(8)^{3}$	-E(8)	-E(4)	$-E(8)^3$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	$_{1}$ 18 2	0 -2	0	0	0	0	0	1	-E(4)	-1	1	E(4)	-E(4)	-1	E(4)		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$				$-E(8) + E(8)^3$	0	0	0	1	$-E(8)^3$	-E(4)	-1	-E(8)	$E(8)^{3}$	E(4)	E(8)		

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1, 4, 11, 12, 9, 10, 17, 3, 16, 15, 13, 7, 18, 14, 8, 6, 5)]) \cong C17$

 $N_1 = Group([(1,16)(2,8)(3,11)(5,10)(6,14)(7,12)(9,15)(17,18),(1,8,15)(2,11,7)(3,4,10)(5,14,9)(6,12,13)(16,18,17)]) \cong PSL(2,17)$ $N_2 = Group([(1,4,11,12,9,10,17,3,16,15,13,7,18,14,8,6,5),(3,13)(4,5)(6,11)(7,17)(8,12)(9,14)(10,18)(15,16),(3,8,7,10,13,12,17,18)(4,11,9,16,5,6,14,15)]) \cong C17: C8$