Algoritmi Numerici (Parte II) [Lezione 4] Complementi: Passo-passo e Punto fisso

Alessandro Antonucci alessandro.antonucci@supsi.ch

https://colab.research.google.com/drive/1noTW7iMitznYtHWrOgBTVkvEZzev5oEi

Metodo passo-passo (passopasso.m/.java)

- A bisez e RF serve intervallo [a,b] t.c. $f(a) \cdot f(b) < 0$
- Per trovarlo, divido in k intervalli di uguale ampiezza la regione $[x_{\min}, x_{\max}]$ su cui è definita f
- Ampiezza intervalli è $\Delta = \frac{x_{\text{max}} x_{\text{min}}}{k}$
- Scansiono intervalli da sx a dx, stop quando cambia segno

Metodo passo-passo (continua)

- $\Delta = \frac{x_{\text{max}} x_{\text{min}}}{k}$
- Scelta Δ critica
 - Δ piccolo produce k troppo grande (lento),
 - Δ grande potrebbe saltare delle regioni di cambio di segno
- In pratica si parte da Δ grandi e poi, se non si trova un cambio di segno, si riduce (es. $\Delta = \Delta/10$)

Metodo babilonese per calcolo \sqrt{k}

Ricorsione di ordine uno:

$$x_{j+1} = \frac{1}{2} \left(x_j + \frac{k}{x_j} \right)$$

- Dato un valore iniziale $x_0>0$ converge a \sqrt{k}
- Es. k=2, $x_0=2$, $x_1=1.5$, $x_2=1.41\overline{6}$, $x_3=1.4142356\ldots \simeq \sqrt{2}$
- Analogie con metodo della tangente
- Può essere interpretato come un algoritmo per trovare gli zeri di una funzione?

Perché funziona?

• Riscrivo la ricorsione senza gli indici

$$x = \frac{1}{2} \left(x + \frac{k}{x} \right) \Rightarrow x^2 - k = 0$$
$$-x + \frac{1}{2} \left(x + \frac{k}{x} \right) = \frac{x^2 - 2x^2 + k}{2x} = \frac{-x^2 + k}{2x}$$

- $f(x) := x^2 k$ ha come zero $x^* = \sqrt{k}$
- Il metodo babilonese scrive f(x) = 0 come x = g(x)
- L'equazione letta come una ricorsione $x_{j+1} = g(x_j)$
- A convergenza $x^* = g(x^*)$

Iterazione di punto fisso

- Rovesciando considerazioni su metodo babilonese, abbiamo metodo generale per trovare zeri f
 - Data un'equazione f(x) = 0 riscriviamola come x = g(x)
 - Ricorsione di ordine uno $x_{i+1} = g(x_i)$
 - Convergenza implica $x^* = g(x^*)$ e quindi $f(x^*) = 0$
- L'iterazione di punto fisso non sempre converge
- g(x) := x + f(x) è il modo più immediato di ottenere g, ma non l'unico né il migliore

Interpretazione geometrica iterazione punto fisso

Il grafico di g(x) incontra la bisettrice in x^* infatti $x^* = g(x^*)$ se e solo se $f(x^*) = 0$

Esercizi

1.
$$f(x) = \frac{2+x}{2}\sqrt{2x} - 12$$
, $x_0 = 5$, $g(x) = \frac{24}{\sqrt{2x}} - 2$

2.
$$f \in \mathbf{x_0}$$
 come sopra ma $g(x) = \frac{1}{2} \left(\frac{24}{2+x}\right)^2$

3. Risolvere l'equazione $x + \ln x = 0$