Homework 6 ECE2504 CRN:82729

Jacob Abel

October 6, 2017

Question 1: (5 pts) Design a 5x32 decoder using 2x4 decoders with enable and one 3x8 decoder.

Question 2: (6 pts) Design a 3-input priority encoder with inputs and outputs as in the table below.

	Inputs	3	Outputs			
D_2	D_1	D_0	A_1	A_0	V	
0	0	0	X	X	0	
0	0	1	0	0	1	
X	1	X	0	1	1	
1	0	X	1	0	1	

$$A_1 = D_2 \overline{D_1}$$

$$A_0 = D_1$$

$$V = D_2 + D_1 + D_0$$

Question 3: (8 pts) For the electronic game control circuit designed in HW5:Q3, implement a, b, c, and d using a 3x8 decoder and external OR gates. (Assume a maximum of 4 inputs for each gate.)

Question 4: (6 pts) Implement the Boolean function $F(A, B, C, D) = \Sigma(0, 7, 8, 9, 10, 13, 14, 15)$

a) with an 8x1 multiplexer and a single inverter with variable D as its input.

A	В	С	D	F	
0	0	0	0	1	
0	0	0	1	0	$F = \overline{D}$
0	0	1	0	0	
0	0	1	1	0	F = 0
0	1	0	0	0	
0	1	0	1	0	F = 0
0	1	1	0	0	
0	1	1	1	1	F = D
1	0	0	0	1	
1	0	0	1	1	F = 1
1	0	1	0	1	
1	0	1	1	0	$F = \overline{D}$
1	1	0	0	0	
1	1	0	1	1	F = D
1	1	1	0	1	
1	1	1	1	1	F = 1

b) with a 4x1 multiplexer and 2-input logic gates with variables C and D as input.

A	В	С	D	F	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	$F = \overline{C + D}$
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	1	F = CD
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	0	$F = \overline{CD}$
1	1	0	0	0	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	F = C + D

Question 5: (4 pts) define the following in your own words

- a) Decoder: Outputs a 1-value to the pin specified by the input. i.e. $I = 011 \implies O = 00010000$
- b) Encoder: Outputs the number of the pin supplying a 1-value. i.e. $I=00010000 \implies O=011$
- c) Multiplexer Outputs the state of the pin specified by the selection pins. i.e. $I=0101, S=01 \implies O=1$
- d) Demultiplexer Outputs the input state to the pin specified by the selection pins. i.e. $I=1, S=10 \implies O=0010$

GRADING SCALE

Total: 29 pts

Pts	0	3	7	11	15	18	22	25
Letter Grade	D-	D	C-	С	В-	В	A-	A