ЛИНЕЙНАЯ АЛГЕБРА — II ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Определение 1. Пусть L_1 , L_2 — линейные пространства над полем \mathbb{F} . Отображение $A: L_1 \to L_2$ называется линейным отображением (гомоморфизмом), если выполняются следующие условия:

(L1)
$$A(x+y) = A(x) + A(y), \ \forall \ x, y \in L_1;$$
 (L2) $A(\lambda x) = \lambda A(x), \ \forall \ x \in L_1, \ \forall \ \lambda \in \mathbb{F}.$

Множество линейных отображений из L_1 в L_2 обозначается $\text{Hom}(L_1, L_2)$. Если $L_1 = L_2$, то такое отображение называется линейным оператором на L_1 или эндоморфизмом L_1 . Множество эндоморфизмов L_1 обозначается $\text{End}(L_1)$.

Замечание 1. Образ элемента $x \in L_1$ при линейном отображении $A \colon L_1 \to L_2$ часто мы будем обозначать просто Ax.

Задача 1. Докажите, что множество $\text{Hom}(L_1, L_2)$ является линейным пространством относительно следующих операций: (A+B)x = Ax + Bx, $(\lambda A)x = \lambda (Ax)$.

Задача 2. Являются ли линейными следующие отображения $A\colon L_1\to L_2$:

- a) Ax = 0;
- **б)** $L_1 = L_2$, Ax = x (такое отображение называется тождественным; обозначение: id или E);
- **B)** $L_1 = \mathbb{R}^4$, $L_2 = \mathbb{R}^3$, A(x, y, z, t) = (x + y, y + z, z + t);
- r) $L_1 = L_2 = \mathbb{R}^3$, A(x, y, z) = (x + 1, y + 1, z + 1);
- д) $L_1 = L_2 = \mathbb{F}[x]$, $(Ap)(x) = p(\lambda x^2 + \nu)$, где λ, ν фиксированные элементы \mathbb{F} ;
- е) $L_1 = L_2 = \mathbb{F}[x]$, $(Ap)(x) = q(x) \cdot p(x)$, где q(x) фиксированный элемент $\mathbb{F}[x]$;
- ж) L_1 пространство сходящихся последовательностей действительных чисел, $L_2 = \mathbb{R}, \ A(x_i) = \lim_{i \to \infty} x_i$.

Задача 3. Докажите, что произведение (композиция) линейных отображений есть линейное отображение. Проверьте, что произведение обладает свойствами ассоциативности и дистрибутивности.

Определение 2. Ядром линейного отображения $A \colon L_1 \to L_2$ называется множество, состоящее из всех таких $x \in L_1$, что Ax = 0. Обозначение: Ker A. Образ линейного отображения A обозначается Im A.

Задача 4. Докажите, что $\operatorname{Ker} A$ и $\operatorname{Im} A$ являются линейными пространствами.

Задача 5. Найти ядра и образы линейных отображений из задачи ??.

Определение 3. Отображение $A \in \text{Hom}(L_1, L_2)$ называется *изоморфизмом*, если выполняются условия Ker A = 0 и $\text{Im } A = L_2$. Множество изоморфизмов обозначается $\text{Iso}(L_1, L_2)$. В случае, если $L_1 = L_2$, изоморфизмы называются *автоморфизмами*. Обозначение: $\text{Aut}(L_1)$. Если $\text{Iso}(L_1, L_2)$ непусто, то линейные пространства L_1 и L_2 называются *изоморфными*. Обозначение: $L_1 \cong L_2$.

Задача 6. Пусть $A \in \text{Hom}(L_1, L_2)$. Докажите, что следующие утверждения эквивалентны:

- 1) A изоморфизм;
- 2) A взаимно-однозначно;
- 3) A обратимо, то есть существует такое отображение $A^{-1} \in \text{Hom}(L_2, L_1)$, что $AA^{-1} = \text{id}$ и $A^{-1}A = \text{id}$.

Задача 7. Пусть $A: L_1 \to L_2$ — изоморфизм. Докажите, что векторы множества $U \subset L_1$ линейно независимы тогда и только тогда, когда векторы множества A(U) линейно независимы.

Задача 8. Пусть (e_1, \ldots, e_n) — базис пространства L_1 . Докажите, что для всякого набора векторов (g_1, \ldots, g_n) пространства L_2 найдётся ровно одно линейное отображение из L_1 в L_2 , переводящее e_i в g_i при всех i.

Задача 9. Докажите, что два конечномерных пространства изоморфны тогда и только тогда, когда их размерности равны.

Факторпространства

Определение 4. Будем говорить, что на множестве X задано *отношение* R, если в декартовом произведении $X \times X$ выделено некоторое подмножество $R \subset X \times X$. При этом, если $(x,y) \in R$, то будем писать $x \stackrel{R}{\sim} y$ (или просто $x \sim y$). Отношение R называется

- а) рефлексивным, если для любого $x \in X$ имеет место $x \sim x$;
- б) симметричным, если из $x \sim y$ всегда следует $y \sim x$;
- в) транзитивным, если из $x \sim y$ и $y \sim z$ всегда следует $x \sim z$;
- г) *отношением эквивалентности*, если оно рефлексивно, симметрично и транзитивно. В этом случае, если $x \sim y$, то мы будем говорить, что x и y эквивалентны.

Задача 10. Какие из следующих отношений являются отношениями эквивалентности?

- а) Для любых двух $m, n \in \mathbb{Z}$ полагаем $n \sim m$, если n и m взаимно просты.
- **б)** Пусть X множество треугольников на плоскости; полагаем $T_1 \sim T_2$, если $T_1 = T_2$.
- в) Пусть $f: X \to Y$ отображение. Для любых $x_1, x_2 \in X$ полагаем $x_1 \sim x_2$, если $f(x_1) = f(x_2)$.
- г) Дано $n \in \mathbb{N}$. Для любых двух $a, b \in \mathbb{Z}$ полагаем $a \sim b$, если $a \equiv b \pmod{n}$.
- д) Для любых двух $x, y \in \mathbb{R}$ полагаем $x \sim y$, если $(x y) \in \mathbb{Z}$.
- e) Для любых двух $x, y \in \mathbb{R}$ полагаем $x \sim y$, если $x \leqslant y$.
- ж) Для любых двух $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ полагаем $(x_1, y_1) \sim (x_2, y_2),$ если $(x_1 x_2) \in \mathbb{Z}$ и $(y_1 y_2) \in \mathbb{Z}$.

Задача 11. Докажите, что следующие отношения являются отношениями эквивалентности.

- а) Пусть X множество линейных пространств. Полагаем $L_1 \sim L_2$, если $L_1 \cong L_2$.
- **б)** Пусть L_0 линейное подпространство линейного пространства L. Для любых двух $x, y \in L$ полагаем $x \sim y$, если $(x y) \in L_0$.

Определение 5. Пусть X — множество, на котором задано отношение эквивалентности. Для каждого элемента $a \in X$ подмножество $X_a \subset X$, состоящее из всех элементов x, эквивалентных элементу a, называется классом эквивалентности элемента a.

Задача 12. Докажите, что для данного отношения эквивалентности на множестве X

- а) подмножества X_a при различных a либо не пересекаются, либо совпадают;
- **б**) объединение подмножеств X_a по всем $a \in X$ совпадает с множеством X.

Задача 13. Пусть множество X представлено в виде объединения (конечного или бесконечного) попарно непересекающихся подмножеств. Докажите, что это разбиение множества X порождает на X отношение эквивалентности такое, что множества разбиения являются классами эквивалентности.

Определение 6. Множество классов эквивалентности по отношению эквивалентности R на множестве X называется ϕ актормножеством и обозначается X/R. Фактормножество из задачи ?? б) называется факторпространством и обозначается L/L_0 .

Задача 14. Докажите, что L/L_0 есть линейное пространство относительно следующих операций:

- 1) сложение: $\forall x, y \in L/L_0$, x + y есть класс эквивалентности элемента a + b, где $a \in x$, $b \in y$;
- 2) умножение на число: $\forall x \in L/L_0, \lambda \in \mathbb{F}$, λx есть класс эквивалентности элемента λa , где $a \in x$.

Задача 15. Докажите, что **a)** $L/0 \cong L$; **б)** $L/L \cong 0$;

- в) если $L_0 \subset \mathbb{R}[x]$ пространство многочленов, равных нулю в точке 1, то $\mathbb{R}[x]/L_0 \cong \mathbb{R}$;
- r) факторпространство всех сходящихся последовательностей по бесконечно малым изоморфно R.

Задача 16. Докажите, что для всякого $A \in \text{Hom}(L_1, L_2)$ корректно определено и является изоморфизмом отображение $L_1/\text{Ker } A \to \text{Im } A$, переводящее класс вектора $x \in L_1$ в Ax.

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	2 Г	2 д	2 e	2 ж	3	4	5	6	7	8	9	10 a	10 б	10 B	10 Г	10 Д	10 e	10 ж	11 a	11 б	12 a	12 б	13	14	15 a	15 ნ	15 B	15 Г	16