B18	Naxwell: 7.	Ď = 0	(=) \(\frac{1}{5} \).	dà = 0		
\$ 2x	: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+ \(\bar{B} \cdot \rightarrow	2 = 0	# obs:	âNo	- 51
# Flujo en Sn?	\(\bar{B} \cdot \data = \bar{S} \)	Bda cost	π - β) =			
	$ \bar{\Phi}_{m_1} = -B \pi R^2 \cos$				20	

2) Def:
$$I = \int \vec{J} \cdot d\vec{a}$$
 , $\vec{J} \cdot d\vec{I}$, $d\vec{A} = SdSd\phi(\vec{I} \cdot \vec{K})$

(i) $I_0 = \int \vec{J}_0 \cdot d\vec{a} = \int_0^{2\pi} \int_0^{\pi} \alpha S \cdot \vec{K} \cdot SdSd\phi(\vec{K}) = 2\pi\alpha S^3 \Big|_0^{\pi} = 2\pi\alpha \alpha S^3 = 3 \propto = 3I_0$

Aqui, usamos $d\vec{a} / / \vec{J}$ por convención

(ii) $I_0 = \int \vec{J}_1 \cdot d\vec{a} = \int_0^{2\pi} \int_0^{C} -\beta \vec{K} \cdot SdSd\phi(-\vec{K}) = \beta 2\pi S^2 \Big|_0^{C} = \pi\beta(C^2 - C^2) = 3 \approx I_0$

(iii) Ley de Ampere: $\int_0^{\pi} \vec{B} \cdot d\vec{J} = M_0 I_{enc}$

a) $S < \alpha : I_{enc} = \int_0^{2\pi} \int_0^{S} \alpha S \cdot \vec{K} \cdot S \cdot \vec{J} \cdot \vec{S} \cdot \vec{J} \cdot \vec{J} = \alpha Z\pi S^3 = 3 \Rightarrow \beta R_0 = M_0 \propto 2\pi S^3 = M_0 \propto 2^2$

b) $\alpha < S < b : I_{enc} = I_0 = 3B_1 = I_0 M_0 \Rightarrow R_0 = B_1 = B_1 \phi$

b) $\alpha < S < b : I_{enc} = I_0 = 3B_2 : I_0 M_0 \Rightarrow R_0 = B_1 \phi$

c) 5 < S < C : Ienc = :	Io - Jeth S	Ř. ds's dø Ř =	In - 27 B (52-62)
pero 3: Io => Tr(c2+62)	Ienc = Io	$\left(1-\frac{5^2-b^2}{c^2-b^2}\right)=$	$I_{\circ}\left(\frac{c^2-5^2}{c^2-5^2}\right)$
1. B3 = M. I. (c2-52 2TTS (c2-62	> 0	# [Mo] =	Tm/A
d) 5>c: Ienc = 0	=> B ₄ =	0	

7	3.1)	Co	ando	eS	, Lam,	os el	pl	ano	de	6	0	r1-1 e	nk,	osa	mos	В	rot	esc	alor			dit.com	wonle
	->*	- R		A t				7 =	2 K	,	P'	* ×	(- î);	[7	->"	= ,	JE	+ x²	7.	TÌ	= dx(-1)	1
	I	dx	P'	0	7	×		dB	= 10.	I	d×	17	F1	SIL	(0)		#	+	0	1-4-4	3	# Sin (0) = = Sin(tr-	(a)
				ds	= 10	, I	dx	7				IV -	r -									J'AMI	0)
												Mo.	I z	Job	1,2	dx	3/2	-	A. I			# No necession	100
	Pos	ha										-11			(8.	+x)			211 +			Iyt	

Ahom	Con	ley	de	атрене	#	La	TA	Cump	le ce) h	B	= 0	,	,	B/	// 8.	à	V	市工的
	0	- L		TA					0				11-	î			117		
(2)	00	00	0	0	GB TA	· si	=	J. + S.	+ }	1 94	.0.	1	B (-	r) dx	+	5	B3.	î di	
	-	>	(3)								11	2	3	dx	2	28	L		
				ST4	\$ - d\$	2B	L =	No Ien			# -	Ien	c =	J K	12	10	KL		
			1.	8 =	A.K.		# 4	Ampere s	olo u	20				9					

# $T_{\lambda} = \int_{-\alpha/2}^{\alpha/2} dx$ $-\alpha/2 \left(\frac{1}{2} + \alpha^2 + x^2\right)^{3/2}$	$b^2 = z^2 + \frac{\alpha^2}{4}$			
J dx bt x (62 + x2)3/2 x	tan(t) = x	$dx = 626$ $x^2 + 6^2 = 6$	$\frac{2}{2}(t) dt$ $\frac{2}{2}(1+\tan^2(t))$) = b2 Sec ?(t)
$= \int_{0}^{2} \frac{b^{2}}{5^{3}} dt = \frac{1}{5^{2}} dt$	$sin(t) = \frac{1}{b^2} \times \frac{x}{\sqrt{x^2 + b^2}}$			
		+ 62		
1. 0(2) Mot can.	71 7			