Unweighted Set Cover

Равилов Игорь Б05-325 Май 2025

Содержание

1	Формальная постановка задачи и предварительные сведения	3
2	Доказательство NP-полноты задачи SETCOVER	3
3	Жадный алгоритм с приближением $O(\ln M)$	4
4	LP-алгоритм с k -приближением	6
5	Описание тестов и анализ	8
6	Заключение	12

Аннотация

В данной работе исследуется NP-полная задача покрытия множества. Задача формулируется как поиск минимального подмножества $\{S_i\}$, покрывающего элементы M. Актуальность проблемы обусловлена применением методов покрытия во множестве областей, таких как логистика, оптимизация сетей, распределение портфеля (финансы), планирование ресурсов, машинное обучение и хеширование баз данных. Основное внимание уделено следующим аспектам:

- Доказательству NP-полноты задачи
- Описанию и анализу жадного алгоритма с $O(\ln |M|)$ приближением
- Применению методов линейного программирования для получения k-приближения при ограничении частоты вхождения каждого элемента не более чем в k подмножеств и анализу полученного алгоритма

1 Формальная постановка задачи и предварительные сведения

Определения задач SETCOVER и VERTEXCOVER

Оптимизационная версия SETCOVER. Даны конечное множество M и набор его подмножеств $\mathcal{S} = S_1, S_2, \dots, S_m$, где $S_i \subseteq M$ для каждого i. Требуется найти такое $\mathcal{C} \subseteq \mathcal{S}$ минимальной мощности, что $\bigcup_{S \in \mathcal{C}} S = M$. Оптимальный размер обозначается $\mathrm{OPT}_{\mathsf{SETCOVER}}(M, \mathcal{S})$ (далее просто OPT).

Поисковая версия SETCOVER. Задан параметр $k \in \mathbb{N}$. Нужно определить, существует ли $\mathcal{C} \subseteq \mathcal{S}$ такое, что $|\mathcal{C}| \le k$ и $\bigcup_{S \in \mathcal{C}} S = M$. Язык всех пар $\langle (M, \mathcal{S}), k \rangle$, для которых ответ существует называется SETCOVER.

Поисковая версия VERTEXCOVER. Дан неориентированный граф G = (V, E) и число $k \in \mathbb{N}$. Нужно определить, существует ли множество вершин $C \subseteq V$ такое, что $|C| \le k$ и каждое ребро из E инцидентно хотя бы одной вершине из C. Язык всех пар $\langle G, k \rangle$, для которых ответ существует, называется VERTEXCOVER.

Предварительные сведения

В дальнейшем будем ссылаться на следующие результаты из работы Д.В. Мусатова[4]:

Теорема 1.1 (Теорема 3.11, Кука-Левина). Язык SAT NP-полон.

Теорема 1.2 (Теорема 3.14). Язык INDSET NP-полон.

Утверждение 1.3 (Утв. 3.13). Языки CLIQUE, INDSET u VERTEXCOVER полиномиально сводятся друг κ другу.

И на теорему Кенига из теории графов:

Теорема 1.4 (Теорема Кенига). В произвольном двудольном графе мощность максимального паросочетания равна мощности минимального вершинного покрытия.

2 Доказательство NP-полноты задачи SETCOVER

Лемма 2.1. $3a \partial a \forall a \text{ SETCOVER } принадлежит классу NP.$

Доказательство. Сертификатом является набор индексов множеств из $\mathcal{C} \subseteq \mathcal{S}$. Нужно проверить, что каждый элемент $x \in M$ содержится хотя бы в одном множестве $S_i \in \mathcal{C}$. Это проверяется за $O(|M| + \sum_{S \in \mathcal{C}} |S|)$ времени, то есть полиномиально от размера входа. \square

Теорема 2.2 (NP-полнота SETCOVER). Задача SETCOVER NP-полна.

Доказательство. Докажем, что VERTEXCOVER \leq_P SETCOVER. Построим конструкцию приведенную впервые Р. Карпом [1, Chapter 8, page 94] для задач (в оригинале) NODE COVER и SET COVERING.

Конструкция. Пусть множество M совпадает с множеством ребер: M:=E. Для каждой вершины $v\in V$ задаем подмножество

```
S_v := \{e \in E \mid e \text{ инцидентно вершине } v\}.
```

Определим его подмножества как $S := \{S_v \mid v \in V\}$. Параметр k остается тем же.

Корректность. Покажем эквивалентность решений.

- (⇒) Если $C \subseteq V$ вершинное покрытие размера $\leq k$, то семейство $\mathcal{C} = \{S_v \mid v \in C\}$ покрывает M: каждое ребро инцидентно вершине из C т.е. принадлежит хотя бы одному множеству из \mathcal{C} , причем $|\mathcal{C}| = |C| \leq k$.
- (\Leftarrow) Обратно, пусть $\mathcal{C} \subseteq \mathcal{S}$ покрывает M и $|\mathcal{C}| \leq k$. Пусть $C := \{v \in V \mid S_v \in \mathcal{C}\}$. Получим $|C| = |\mathcal{C}|$. Т.к. каждое ребро $e = \{u, w\}$ лежит в некотором $S_v \in \mathcal{C}$, а e принадлежит только S_u и S_w , то $v \in \{u, w\}$ и ребро покрыто вершиной из C.

Сложность. Построение M и $\mathcal S$ требует перебрать ребра и для каждой вершины выписать инцидентные ей ребра. Это выполняется за O(|E|+|V|), т.е. полиномиально от размера входа.

Таким образом, VERTEXCOVER \leq_P SETCOVER. Применяя теорему 1.2 и утверждению 1.3 получаем NP-полноту SETCOVER.

3 Жадный алгоритм с приближением $O(\ln |M|)$

В этом разделе описывается жадный алгоритм решения задачи SETCOVER в невзвешенном варианте (т.е. вес каждого множества равен 1). На каждом шаге выбирается подмножество, покрывающее максимальное число еще не покрытых элементов.

Псевдокод

Реализация на Python

```
def choose_best_subset(remaining, uncovered):
    best_index = None
    best_gain = -1
    for i, subset in enumerate(remaining):
```

```
gain = len(subset & uncovered)
        if gain > best_gain:
            best_gain = gain
            best_index = i
    return best_index
def greedy_set_cover(universe, subsets):
    U = set(universe)
    remaining = [set(s) for s in subsets]
    selected = []
    covered = set()
    while U != covered:
        best = choose_best_subset(remaining, U)
        selected.append(best)
        covered |= remaining[best]
        for s in remaining:
            s -= remaining[best]
    return selected
```

Замечание. В взвешенном варианте алгоритм (см. [3, Algorithm 1.2]) минимизирует отношение $w_j/|\widehat{S}_j|$, где w_j — вес множества, а \widehat{S}_j — новые элементы, которые оно покрывает. В невзвешенном случае все веса равны 1, поэтому достаточно каждый раз выбирать множество с максимальной прибавкой.

Корректность. Очевидно по построению.

Анализ приближения

При доказательстве мы ссылаемся на [2, Part I, 2.1], но в невзвешенном варианте задачи и делая дополнительные пояснения.

Пусть n = |M|, а $U_t \subseteq M$ — множество еще n непокрытых элементов перед t-ой итерацией алгоритма ($U_1 = M$, затем переход $U_{t+1} = U_t \setminus S_{\ell_t}$). Обозначим через e_1, \ldots, e_n элементы в том порядке, в каком алгоритм их покрывает (e_k — первый элемент U_t в очередной итерации).

Стоимость элемента. Когда выбирается множество S_{ℓ_t} , его «цена» 1 распределяется поровну между новыми элементами $S_{\ell_t} \cap U_t$:

$$\operatorname{price}(e) = \frac{1}{|S_{\ell_t} \cap U_t|}$$
 для каждого $e \in S_{\ell_t} \cap U_t$.

Тогда

$$|\mathcal{C}_{\text{greedy}}| = \sum_{S \in \mathcal{C}_{\text{greedy}}} 1 = \sum_{k=1}^{n} \text{price}(e_k).$$
 (*)

Лемма 3.1. Для каждого $k \in \{1, ..., n\}$ выполняется

$$\operatorname{price}(e_k) \leq \frac{\operatorname{OPT}}{n-k+1}.$$

Доказательство. Рассмотрим момент, когда элемент e_k еще не покрыт (значит, $e_k \in U_t$). Оптимальное решение использует не более OPT множеств, чтобы покрыть все элементы U_t ,где $|U_t|=n-k+1$. Следовательно, среди множеств оптимума найдется такое, которое в этот момент закрывает как минимум $\frac{n-k+1}{\text{OPT}}$ еще непокрытых элементов. Наш жадный выбор максимизирует размер $S_j \cap U_t$, поэтому

$$|S_{\ell_t} \cap U_t| \ge \frac{n-k+1}{\text{OPT}},$$

а значит

$$\operatorname{price}(e_k) = \frac{1}{|S_{\ell_t} \cap U_t|} \le \frac{\operatorname{OPT}}{n - k + 1}.$$

Теорема 3.2. Жадный алгоритм дает приближение $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \le \ln(n) + 1$.

Доказательство. Применяя лемму 3.1 по всем k и пользуясь (*), получаем

$$|\mathcal{C}_{\text{greedy}}| = \sum_{k=1}^{n} \text{price}(e_k) \le \text{OPT} \cdot \sum_{k=1}^{n} \frac{1}{n-k+1} = \text{OPT} \cdot H_n.$$

4 LP-алгоритм с *k*-приближением

В этом разделе рассматривается случай, когда каждый элемент множества M присутствует не более чем в k множествах.

Описанный в [2, гл. 14] метод округления (в оригинале: «LP-rounding» или «rounding») сводится к двум шагам:

- 1) Решить линейную программу в виде дроби
- 2) Превратить полученный дробный вектор в целочисленный, стараясь при этом не сильно увеличить стоимость.

Покажем, что эти методом можно получить k-приближение.

Целочисленная и линейная формулировки

При описании ЦЛП и ЛП для SETCOVER мы ссылаемся на [3, Ch 7.1, page 162]. Обозначим через $\hat{x}_j \in \{0,1\}$ флаг выбора множества S_j (0 – не взяли, 1 – взяли). Тогда исходная ЦЛП имеет вид:

min
$$\sum_{j=1}^{m} \hat{x}_{j},$$
s.t.
$$\sum_{j:e \in S_{j}} \hat{x}_{j} \ge 1 \quad (\forall e \in M),$$

$$\hat{x}_{j} \in \{0,1\} \quad (\forall j).$$

Преходим к ЛП: $\hat{x}_j \in \{0,1\} \Rightarrow 0 \leq x_j \leq 1$ (в оригинале такой переход называется «LP-relaxation»), нам это нужно т.к. если бы мы работали с ЦЛП, то задача была бы **NP**-трудной, об этом говорится в [4, ч. 3.4.6, стр. 53]:

min
$$\sum_{j=1}^{m} x_{j},$$
s.t.
$$\sum_{j:e \in S_{j}} x_{j} \ge 1 \quad (\forall e \in M),$$

$$0 \le x_{j} \le 1 \quad (\forall j).$$

$$(Л\Pi)$$

Обозначим оптимальное дробное решение ЛП через x^* , тогда $\mathrm{OPT}_{LP} = \sum_j x_j^*$. Также ясно, что $\mathrm{OPT}_{LP} \leq \mathrm{OPT}_{ILP}$, т.к. при переходе к дробным x_j мы расширяем множество ответов.

Алгоритм округления

- 1. Находим оптимальное решение x^* .
- 2. Формируем покрытие $C = \{S_j \mid x_j^* \geq 1/k\}$, или, что эквивалентно, целочисленное решение

$$\hat{x}_j = \begin{cases} 1, & x_j^* \ge \frac{1}{k}, \\ 0, & \text{иначе} \end{cases}$$

Реализация на Python

Минимальная реализация с использованием OR-Tools (pywraplp):

```
def lp_set_cover(universe, subsets, k):
    m = len(subsets)
    solver = pywraplp.Solver.CreateSolver('GLOP')
    x = [solver.NumVar(0, 1, f'x_{j}') for j in range(m)]
    for e in universe:
        solver.Add(sum(x[j] for j in range(m) if e in subsets[j]) >= 1)
    solver.Minimize(solver.Sum(x))
    solver.Solve()
    selected = [j for j in range(m) if x[j].solution_value() >= 1 / k]
    return selected
```

Интуиция. Так как каждый элемент встречается не более чем в k множествах, дробное ограничение $\sum_{j:e \in S_j} x_j^* \ge 1$ означает, что хотя бы одно из входящих $x_j^* \ge 1/k$. Взяв все множества с $x_j^* \ge 1/k$, мы гарантируем покрытие M, а число выбранных множеств не превосходит $k \cdot \text{OPT}_{LP} \le k \cdot \text{OPT}$. Далее формально.

Корректность алгоритма

Лемма 4.1. Пусть $a_1 + \cdots + a_k \ge 1$ и $a_i \ge 0$ для всех i. Тогда $\exists i$ такое, что $a_i \ge 1/k$.

Доказательство. Предположим противное: $a_i < 1/k$ для всех i. Тогда $a_1 + \cdots + a_k < k \cdot (1/k) = 1$, противоречие.

Лемма 4.2. *Каждый элемент* $e \in M$ *покрыт.*

Доказательство. Возьмем любой элемент $e \in S_i$. В ЛП решении:

$$\sum_{j:e \in S_j} x_j^* \ge 1$$

В этой сумме участвует не более k слагаемых (по условию). Значит, по лемме 4.1 существует j такой, что $e \in S_j$ и $x_i^* \ge 1/k$, значит $\hat{x}_j = 1$, и элемент e покрыт.

Анализ приближения

Теорема 4.3. Округление по порогу 1/k дает k-приближение для невзвешенной задачи SETCOVER.

Доказательство. Лемма 4.2 гарантирует, что \mathcal{C} — целочисленное покрытие.

Рассмотрим любое множество $S_j \in \mathcal{C}$. По построению $x_j^* \geq 1/k$, откуда $1 \leq k x_j^*$. Суммируя по всем $S_j \in \mathcal{C}$, получаем

$$|\mathcal{C}| = \sum_{S_i \in \mathcal{C}} 1 \le k \sum_{S_i \in \mathcal{C}} x_j^* \le k \sum_{j=1}^m x_j^* = k \cdot \text{OPT}_{LP} \le k \cdot \text{OPT},$$

Доказательство по сути совпадает с рассуждением в [2, Theorem 14.2] (но чуть формальнее и в невзвешенном случае): каждый элемент встречается в пределе k множеств, поэтому порог 1/k обеспечивает и корректность, и k-приближение.

5 Описание тестов и анализ

Датасеты

Для эмпирического сравнения жадного алгоритма и ЛП сформировано 4 датасета:

- 1. Случайные покрытия, разреженные & плотные. Для заданных n = |M| и m = 2n каждое множество S_j формируется включением элемента $e \in M$, после чего генерируются две выборки с плотностями $p_1 = 0.05$ и $p_2 = 0.3$, позволяя оценить влияние плотности на размер покрытия (для ЛП k случайные, высчитываются после генерации).
- 2. Случайные покрытия, разреженные с большим k. Берется модель (п. 1), но m=n и p=0.05 после чего все множества дополнительно содержат один общий элемент, тем самым k=2m.
- 3. Двудольные графы. Случайные графы $G_{l,r}(p)$ переводятся в задачу SETCOVER через сведение VERTEXCOVER \to SETCOVER (см. 2.2).
 - $\deg \approx 4$ фиксированная средняя степень (p = 4/N).
 - разреженные & плотные две выборки со степенями ≈ 2 и ≈ 10 .

Для двудольных графов минимальное вершинное покрытие равно размеру максимального паросочетания (Теорема Кенига 1.2), поэтому можно вычислить ОРТ за линейное время. Также, в силу того, что это $\operatorname{spa}\phi$: k=2.

Метрики

Для датасетов фиксируются

- ullet | $\mathcal{C}_{\mathrm{greedy}}$ | и | \mathcal{C}_{LP} | размеры полученных покрытий.
- Время работы алгоритмов.
- \bullet |C|/OPT, при наличии OPT, т.е. только для двудольных графов.

Алгоритмы

- 1. Greedy жадный алгоритм из §3.
- 2. **LP** ЛП, описанная в $\S 4$.

Анализ

По времени выполнения.

Рис. 1: Время работы на случайных покрытиях

Рис. 2: Время работы на двудольных графах

- Случайные покрытия. На рис. 1 видно, что жадный алгоритм существенно быстрее ЛП. Эта разница сохраняется даже при k=m. Кроме того, график (рис. 1,(в)) показывает, что жадный алгоритм тратит почти одинаковое время как на разреженных, так и на плотных случайных покрытиях, тогда как время ЛП возрастает при увеличении плотности, но на больших множествах имеет примерно одинаковое отношение.
- Двудольные графы. Для графов со степенью ≈ 4 (рис. 2, (a)) жадный алгоритм быстрее лишь при |M| < 250. На больших графах оба работают почти одинаково. На рис. 2, (б) показано, что на плотных графах оба алгоритма работают медленнее, чем на разряженных, что закономерно, но отношение Greedy \approx LP сохраняется.

По покрытию.

Рис. 3: Размер покрытия на случайных покрытиях

Рис. 4: Размер покрытия на двудольных графах

Обратите внимание на то, как мы генерируем данные: 2n множеств, каждый элемент $e \in M$ попадает в S_j с вероятностью p, т.е. для каждого $e \in M$ выполняется $freq(e) \sim Binom(m, p)$, а $k = \max_{e \in M} freq(e)$.

• Случайные покрытия.

- На рис. 3(a) жадный метод растет медленно, его кривая почти логарифмическая, поскольку каждый выбранный набор покрывает $\Theta(pn)$ новых элементов. С другой стороны, ЛП дает почти линейный рост, так как порог 1/k слишком мал, (при n=400 $1/k\approx 0.012$ для разреженных и $1/k\approx 0.003$ для плотных), в то время как оптимальное дробное решение $x_j^*\approx 1/\mathbb{E}[freq(e)]$, поэтому в решение попадает большая часть множеств.
- На рис. 3(6) параметр k=m делает порог 1/k еще меньше и, закономерно, ЛП выбирает еще больше множеств.

Двудольные графы.

- При степени ≈ 4 (рис. 4(a)) оба алгоритма показывают очень близкий результат, ЛП даже немного лучше в силу того, что параметр k достаточно мал и фиксирован.
- На рис. 4(б) видно, что размеры покрытий на разреженных графах существенно ниже, чем на плотных, что естественно и очевидно.

По качеству.

Рис. 5: Отношение ALG/OPT ($|\mathcal{C}|$ /OPT) на двудольных графах

Двудольные графы. На двудольных графах (рис. 5) ЛП стабильно ближе к ОРТ, что ожидаемо, и мы это уже наблюдали в анализе по покрытию, при k=2. В разреженном случае оба алгоритма почти совпадают с ОРТ. Нетривиальным наблюдением является то, что при увеличением плотности разрыв между качеством алгоритмов увеличивается: жадного алгоритм заметно ухудшается, а ЛП незначительно.

6 Заключение

Сравнение алгоритмов

- Время работы. Жадный алгоритм растет линейно по времени и очень быстрый на случайных покрытиях. ЛП существенно медленнее, но при фиксированном k=2 на двудольных графах его время быстро приближается к жадному алгоритму.
- Размер покрытия. Для случайных покрытий, где количество множеств, содержащих элемент, распределено биноминально, жадный алгоритм дает почти логарифмическую зависимость от |M|. ЛП алгоритм, напротив, выбирает почти все множества из-за малого 1/k. Для иных распределений порог 1/k, и, соответственно, результаты ЛП могут отличаться. Если же k фиксирован и мал (двудольные графы), покрытия обоих методов почти не отличаются.
- **Качество.** На двудольных графах и жадный, и ЛП решения укладываются в [1.00, 1.4], что существенно лучше теоретических приближений (H_n для жадного и k для ЛП). Разрыв в пользу ЛП растет вместе с плотностью графа.

Таким образом, в практических задачах с умеренными k и разреженными множествами ЛП обеспечивает наилучшее качество при приемлемом времени, а жадный остается качественным вариантом в общем случае, особенно когда k велик или решение ЛП слишком дорогое.

Список литературы

- [1] R. M. Karp, *Reducibility Among Combinatorial Problems* in R. E. Miller and J. W. Thatcher (eds.), 1972, pp. 85–103.
- [2] V. V. Vazirani, Approximation Algorithms, Springer, 2013.
- [3] D. P. Williamson, D. B. Shmoys, *The Design of Approximation Algorithms*, Cambridge University Press, 2011.
- [4] Д. В. Мусатов, Сложность вычислений: классика и современность, МФТИ, 2024.