Problem 3(a)

Proof. To prove A is bounded and has supremum and infimum, show that:

• Bounded from above :

Noticed that
$$A := \left\{2 + \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$$
, for $x \in A$, we have $x = 2 + \frac{(-1)^n}{n}$.

Since we know that
$$\frac{(-1)^n}{n} < \frac{1}{n}$$
, so it is clear that $2 + \frac{(-1)^n}{n} < 2 + \frac{1}{n} \le 2 + 1 = 3$.

Then we can say that A is bounded from above because $\forall x \in A, x \leq 3$.

• Bounded from below:

Similarly, we know that
$$\frac{(-1)^n}{n} \ge -\frac{1}{n}$$
, so it is clear that $2 + \frac{(-1)^n}{n} \ge 2 - \frac{1}{n} \ge 2 - 1 = 1$.

Then we say that A is bounded from below because $\forall x \in A, x \geq 1$.

Since $1 \in A$, and $\forall x \in A, x \ge 1$, We may conclude that $\inf(A) = 1$.

• Supremum:

Assume that $\sup(A) = \mu$, this means that $\forall x \in A, \ \mu \geq x$.

By the justifications before, we know that
$$2 + \frac{(-1)^n}{n} < 2 + \frac{1}{n}$$
, when n is even, $(-1)^n \ge 0$

Since 2 is the minimum even number in \mathbb{N} , it applies that $2 + \frac{(-1)^n}{n} = 2 + \frac{1}{n}$, for even numbers n.

Similarly,
$$2 + \frac{(-1)^n}{n} = 2 - \frac{1}{n}$$
, for odd numbers n .

In this case, we may conclude that $\sup(A) \geq 2$ because for each n to be even the statement is always true, and if n is odd, the result is always less than 2.

Also, we know that $f(n) = \frac{1}{n}$ is strictly decreasing, so for even numbers $n, \frac{1}{2} \ge \frac{1}{n}$.

So,
$$2 + \frac{(-1)^n}{n} \le 2 + \frac{1}{2} = \frac{5}{2}$$
. By definition, we then conclude that $\sup(A) = \frac{5}{2}$

• Infimum:

As shown in the bounded from below part, we already know that $\inf(A) = 1$.

Finally, we have proved that A is bounded and we know that $\sup(A) = \frac{5}{2}$ and $\inf(A) = 1$.

Problem 3(b)

Proof. To prove B is bounded and has supremum and infimum, show that:

• Bounded from above:

To show that $B := \left\{ (-1)^n + \frac{1}{n} : n \in \mathbb{N} \right\}$, for $x \in B$, we have $x = (-1)^n + \frac{1}{n}$.

Since we know that $\frac{1}{n} + (-1)^n < \frac{1}{n} + 1 \le 2$, so we can say that B is bounded from above, because $\forall x \in B, x \le 2$. And obviously 2 is an upper bound.

• Bounded from below:

Since we know that $(-1)^n \ge -1$, and $\frac{1}{n} > 0$, so $\frac{1}{n} + (-1)^n \ge -1$, then we say that B has a lower bound, because $\forall x \in B, x \ge -1$, thus B is bounded from below.

• Supremum:

Since when n is even, $2 > (-1)^n + \frac{1}{n} > 1$, when n is odd, $-1 < (-1)^n + \frac{1}{n} < 0$. It implies that $2 > \sup(B) > 1$. Again the function $f(x) = \frac{1}{x}$ is strictly decreasing, so $\frac{1}{2} \ge \frac{1}{n}$ for all even n.

In this case,
$$\frac{1}{n} + (-1)^n \le \frac{1}{2} + 1 = \frac{3}{2}$$
. So $\sup(B) = \frac{3}{2}$.

• Infimum

Similarly, we know that $\frac{1}{n} + (-1)^n > -1$, when n is odd, since $\frac{1}{n} \le 1$, so $\frac{1}{n} + (-1)^n \le 0$

Then, we may say that $\sup(B) \leq 0$. Since $f(x) = \frac{1}{x}$ is strictly decreasing, when x gets larger, f(x) will approaching 0.

So in this case, $\frac{1}{n} + (-1)^n \ge -1$, for all $n \in \mathbb{N}$. Then we conclude that $\inf(B) = -1$.

Finally, we have proved that B is bounded and we know that $\sup(A) = \frac{3}{2}$ and $\inf(A) = -1$.

Problem 6

Proof. We know that S is bounded from above, meaning that $\exists \lambda \in \mathbb{R} : \forall s \in S, s \leq \lambda I$ in this case, λ is an upper bound of S. If $k \geq 0$, then it is still true that $ks \leq k\lambda$.

By definition, we know that $ks \in kS$, so $\forall t \in kS : t \leq k\lambda$. Then we say kS is bounded from above. As $k\lambda$ is an upper bound of kS.

Then we assume that $\sup(S) = \mu$, meaning that μ is the smallest upper bound of S, i.e, for all upperbounds $\lambda, \lambda \geq \mu$. So $\forall s \in S : s \leq \mu \leq \lambda$.

Similarly, if $k \ge 0$, then $ks \le k\mu \le k\lambda$. By definition, $ks \in kS$, so $k\mu$ is the supremum of kS.

Then, $\sup(S) = \mu$ and $\sup(kS) = k\mu$. So we conclude that $\sup(kS) = k\sup(S)$.

3