IN THE CLAIMS

This listing of claims replaces all prior listings:

1. (Currently Amended) A method of manufacturing an organic electroluminescence devi-
comprising the steps of:
forming at least one transparent pixel electrode on a transparent substrate;
forming a transport layer on the at least one transparent pixel electrode:
providing at least one organic layer between a first electrode and a second electrode;
forming said at least one organic layer by supplying a coating liquid onto a silicone
blanket from the bottom side thereof by means of a gravure roll whose edges are tapered in the
axial direction at both ends thereof such that a coating film comprised of the coating liquid is
provided on a surface of the silicone blanket with substantially the same thickness throughout a
pixel-forming-area;
pressing a relief printing plate against said coating film on said silicone blanket;
transferring excess coating film from the pixel area into a non pixel area of the silicone
blanket:
transferring and removing said coating film at the pressed areas from said silicon blank
onto a relief printing plate; and
transferring a pattern composed of said coating film remaining on said surface of said
silicone blanket onto the transparent layer a surface of a substrate,
wherein,
the length of the gravure roll is substantially the same as the length of the silicon
blanket, and

the tapered portion of the gravure roll is located over a-the non-pixel forming area. (Cancelled) 2. (Currently Amended) A method of manufacturing an organic electroluminescence device 3. comprising the steps of: providing at least one organic layer between a first electrode and a second electrode; forming at least one of said organic layers by forming at least one transparent pixel electrode on a transparent substrate; forming a transport layer on the at least one transparent pixel electrode; supplying a coating liquid onto a silicone blanket from the bottom side thereof via a slit provided in parallel to the rotational axis of said silicone blanket; pressing a relief printing plate against said coating film located over a pixel forming area; transferring excess coating film from the pixel area to a non pixel area: transferring and removing said coating film at the pressed portions from said silicone blanket onto a relief printing plate; and transferring a pattern composed of said a coating film remaining on said surface of said silicone blanket onto a surface to be provided thereon with said layer the transport layer, wherein, said slit is formed by opposing two flat plates against each other with a spacing therebetween, and said top faces of said two flat plates are slant surfaces with a downward gradient from the central portion side toward the end portion sides of the rotational axis of said

silicone blanket, and

wherein.

the slant surfaces are located over the non-pixel forming areas of the silicone blanket and are configured to allow the transfer of the excess coating film to the non-pixel area.

4. (Previously Presented) The method of manufacturing an organic electroluminescence device as set forth in claim 3, wherein:

the gaps between the left and right end portions of said flat plates are closed, and the spacing between said surface of said silicone blanket and the top faces of said two flat plates is uniform at a slit portion corresponding to an effective pixel forming area of said silicone blanket.

5. (Previously Presented) The method of manufacturing an organic electroluminescence device as set forth in claim 3, wherein:

the upper half portions of gaps between the left and right end portions of said flat plates are open, and

the lower half portions of said gaps are closed.