Algorithmic Foundations 2 - Tutorial Sheet 6

Induction and Recursive Definitions

- 1. Use the principle of mathematical induction to show $\sum_{i=1}^{n} i \cdot (i!) = (n+1)! 1$ for all $n \in \mathbb{N}$.
- 2. Use the principle of mathematical induction to show $3^n < n!$ for all n > 6.
- 3. Use the principle of mathematical induction to show $n^3 > n^2 + 3$ for all $n \ge 2$.
- 4. Suppose that
 - $a_1 = 2;$
 - $a_2 = 9$;
 - $a_n = 2 \cdot a_{n-1} + 3 \cdot a_{n-2}$ for $n \ge 3$.

Use (the second principle of) mathematical induction to show $a_n \leq 3^n$ for all $n \in \mathbb{Z}^+$.

- 5. Use the principle of mathematical induction to show a function f defined by specifying f(0) and a rule for obtaining f(n+1) from f(n) (for each $n \ge 0$) is well-defined.
- 6. Find f(i) for i = 1, 2, 3, 4 given f(n) is defined recursively by f(0) = 3 and for each $n \ge 0$:
 - (a) $f(n+1) = -2 \cdot f(n)$;
 - (b) $f(n+1) = 3 \cdot f(n) + 7$;
 - (c) $f(n+1) = f(n)^2 2 \cdot f(n) 2$;
 - (d) $f(n+1) = 3 \cdot f(n)/3$.
- 7. Give a recursive definition for each of the following non-recursive definitions:
 - (a) $g_1(n) = 4.7^n$ for all $n \ge 0$;
 - (b) $g_2(n) = 3 \cdot n + 5 \text{ for all } n \ge 0;$
 - (c) $g_3(n) = n!$ for all $n \ge 1$;
 - (d) $g_4(n) = n^2$ for all $n \ge 0$.
- 8. Give recursive definitions of the functions max and min, so that $\max(a_1, a_2, \ldots, a_n)$ and $\min(a_1, a_2, \ldots, a_n)$ are the maximum and minimum of the n real numbers a_1, a_2, \ldots, a_n respectively.
- 9. Give a recursive definition of the following sets:
 - (a) the odd positive integers;
 - (b) the positive integer powers of 3;
 - (c) the polynomials with integer coefficients.
- 10. Give recursive definitions with initial condition(s) for each of the following sets:
 - (a) $\{0.1, 0.01, 0.001, \dots\}$
 - (b) the set of positive integers congruent to 4 (mod 7)
 - (c) the set of integers not divisible by 3
- 11. Assume that we have a list l, and are given the functions:
 - head(l) which returns the first element of a non-empty list;

- tail(l) which returns the tail of a non-empty list;
- isEmpty(l) returns true if the list is empty and false otherwise.

For example if l equals (5,3,4,2,7,8,3,4), then $\mathtt{head}(l)$ would deliver 5, $\mathtt{tail}(l)$ would deliver (3,4,2,7,8,3,4), and $\mathtt{isEmpty}(l)$ would deliver false.

Using the above functions, in a pseudo code of your choice:

(a) write a recursive function length(l) that returns the length of the list l as an integer.

For example, $length(\langle 1, 5, 2, 9, 8, 3, 2 \rangle)$ would return 7.

(b) write a recursive function sum(l), that returns the summation of the elements in a list.

For example, sum((1, 5, 2, 3)) returns 1 + 5 + 2 + 3 = 11.

(c) write a recursive function present(e, l), that delivers true if e appears in the list l and false otherwise.

For example, $present(6, \langle 1, 5, 2, 3 \rangle)$ returns false and $present(4, \langle 1, 2, 3, 1, 2, 4, 2 \rangle)$ returns true.

(d) write a recursive function remove(e, l) that removes all occurrences of e from the list l.

For example, remove(5, $\langle 1, 5, 2, 3, 5 \rangle$) returns $\langle 1, 2, 3 \rangle$.

Difficult/challenging questions.

- 12. Show that the set S defined by:
 - $5 \in S$;
 - if $s \in S$ and $t \in S$, then $s + t \in S$

is the set of positive integers divisible by 5.

13. Prove that

$$\sum_{i=0}^{n} \left(-\frac{1}{2} \right)^{j} = \frac{2^{n+1} + (-1)^{n}}{3 \cdot 2^{n}}$$

for all $n \in \mathbb{N}$.