

Building Linked Spatio-Temporal Data from Vectorized Historical Maps

April 21st, 2020

Basel Shbita¹, Craig A. Knoblock¹, Weiwei Duan², Yao-Yi Chiang², Johannes H. Uhl³, and Stefan Leyk³

¹ Information Sciences Institute and Department of Computer Science, USC ² Spatial Sciences Institute and Department of Computer Science, USC ³ Department of Geography, University of Colorado Boulder

Problem

Digitized Historical Maps

Rich sources of information

Natural- & Human-made features

Wetlands

Railroad Networks

Labor-intensive to analyze across time & space

Additional discovery

Idea

Linked

Decompose

to building blocks

then use

Linked Data & the Semantic Web

to build a Knowledge Graph

Why Linked Data?

Break down

Across-domains

Structured

interpreted by humans & machines

data barriers

Semantic

relationships, properties, metadata

Make data widely available

Fuel **Discovery**

Query & visualize

Our Approach

Automatic Feature Segmentation

- Goal: create partitions of geo features (segments)
 - Entity matching/linking & entity "partitioning" task
 - "Building Blocks"

- Use a spatially-enabled database service (PostGIS)
 - PostgreSQL extension
 - Manipulate & transform spatial data

Allow incremental additions over time

Feature Segmentation – cont'd

segments of different

map edition

foreach $i \in \mathcal{M}$ do

current "building blocks"

foreach $k \in \mathcal{L}$ do

$$\mathcal{F}_{lpha} = \mathcal{F}_i \bigcap \mathcal{F}_k; \ \mathcal{F}_{\gamma} = \mathcal{F}_k \setminus \mathcal{F}_{lpha};$$

end

$$\mathcal{F}_{\delta} = \mathcal{F}_i \setminus (\bigcup_{j \in \mathcal{L}} F_j);$$

 \mathbf{end}

Feature Segmentation – cont'd

segments of different map edition

foreach $i \in \mathcal{M}$ do

current "building blocks"

foreach $k \in \mathcal{L}$ do

$$\mathcal{F}_{lpha} = \mathcal{F}_i \bigcap \mathcal{F}_k; \ \mathcal{F}_{\gamma} = \mathcal{F}_k \setminus \mathcal{F}_{lpha};$$

end

$$\mathcal{F}_{\delta} = \mathcal{F}_i \setminus (\bigcup_{j \in \mathcal{L}} F_j);$$

end

Geo-linking

- Goal: map segments to Linked Open Vocabularies
 - Entity matching
 - Enrich data to fuel discovery
- Use a reverse geocoding service (OpenStreetMap)
 - LinkedGeoData instances

Geo-linking – cont'd

Geo-linking – cont'd

Geo-linking – cont'd

Generate RDF

- Goal: construct a KG from the data we collected
 - Useful semantic representation
 - Support downstream spatial reasoners
- Construct a meaningful semantic model
 - OGC GeoSPARQL standard
 - Universal conventions
 - Easily queried

Semantic Model

We constructed a KG

Now what?

Use Case

Use Case

SPARQL endpoint

Railroad segments that are similar in 1962 and 2001

Railroad segments that are present in 1962 but are not present in 2001

Use Case

Long Bell Lumber Company Railroad at LinkedGeoData http://linkedgeodata.org/triplify/way177559134

Property	Value		
lgdo:changeset	12836533 (xsd:int)		
dcterms:contributor	lgdo:user194231		
geom:geometry	lgdg:way177559134		
rdfs:isDefinedBy	lgd:meta/way177559134		
rdfs:label	Long Bell Lumber Company Railroad		
dcterms:modified	2012-08-23T21:09:32 (xsd:dateTime)		
lgdo:tiger%3Acfcc	B11		
Igdo:tiger%3Acounty	Siskiyou, CA		
lgdo:tiger%3Aname_base	Long Bell Lumber Company RR		
lgdo:tiger%3Areviewed	• no		
lgdo:tiger%3Asource	tiger_import_dch_v0.6_20070809		
lgdo:tiger%3Atlid	113280414:113280416:113280418:113280420:113280421		
rdf:type	spatial:Feature lgdm:Way tude:AbandonedRailway		
	Igdo:Railway Thing		
Igdo:version	 1 (xsd:int) Igdo:AbandonedRailway 		

Can you show me a subset of what's abandoned?

Evaluation

Railroad data from a collection of historical maps:

- Bray, California (7)
- Louisville, Colorado (4)

Segmentation

- Runtime
- Number of nodes

Geo-linking

- Runtime
- Correctness (Precision, Recall & F1)

RDF

- Query time
- Query complexity
- Query robustness

Results

Segmentation

Table 1. Segmentation Statistics for Bray

Year	# vecs	Runtime (s)	# nodes
1954	2382	<1	1
1962	2322	36	5
1988	11134	1047	11
1984	11868	581	24
1950	11076	1332	43
2001	497	145	57
1958	1860	222	85

Table 2. Segmentation Statistics for Louisville

Year	# vecs	Runtime (s)	# nodes
11	838	<1	1
1950	418	8	5
1942	513	5	8
1957	353	4	10

Results – cont'd

Geo-linking

Table 3. "Geo-linking" Results

	Precision	Recall	F1
BRA-baseline	0.193	1.000	0.323
BRA	0.800	0.750	0.774
LOU-baseline	0.455	1.000	0.625
LOU	0.833	1.000	0.909

Results – cont'd

RDF

```
SELECT ?f ?wkt WHERE {
   ?f a geo:Feature ;
     geo:hasGeometry [ geo:asWKT ?wkt ] ;
     dcterms:date "1962-01-01T00:00:00"^^xsd:dateTime ;
     dcterms:date "2001-01-01T00:00:00"^^xsd:dateTime .
FILTER NOT EXISTS { ?f geo:sfContains _:_ } }
```

Table 4. Query Time Statistics (in milliseconds)

	avg	$\left \min\right $	$ \max $
SIM-BRA	12	10	18
SIM-LOU	11	9	20
DIFF-BRA	10	8	20
DIFF-LOU	10	9	14
UNIQ-BRA	14	8	28
UNIQ-LOU	15	9	17

Discussion

- Complexity of changes in original topographic maps
- Quality & level of detail
- Crowdsourcing
 - LinkedGeoData
- How can we do better?
 - Segmentation:
 - Optimize buffer size hyperparameter (heuristics/learning)
 - Normalize & denoise the original data
 - Parallel processing
 - Geo-linking:
 - Expand to additional KBs (Wikidata)

Related Work

- Transforming geospatial vector data into RDF
 - Kyzirakos et al. [1], Usery et al. [2]
 - Do not address:
 - Geospatial entity intra-linking or distant linking
 - Semantics
- Geographical data conflation
 - Li et al. [3], Ruiz et al. [4]
 - Do not address:
 - Linked Data or Semantics
- Geospatial data integration in the web
 - Prudhomme et al. [5]
 - Do not address:
 - Geospatial entity intra-linking or distant linking

Future (present) Work

- Extend
 - Wetlands
 - Forests
 - Highways

Conclusions

- Unsupervised approach to integrate, relate, & interlink geospatial data from digitized resources
- Publishable structured semantic-rich linked spatiotemporal data
- Enables users to easily understand & analyze geographic information across time & space
- Fuel discovery

Source code available at:

https://github.com/usc-isi-i2/linked-maps

References

- [1] Kyzirakos, K., Vlachopoulos, I., Savva, D., Manegold, S., Koubarakis, M.: Geotriples: a tool for publishing geospatial data as rdf graphs using r2rml map-pings (2014)
- [2] Usery, E.L., Varanka, D.: Design and development of linked data from the national map (2012)
- [3] Li, L., Goodchild, M.F.: An optimisation model for linear feature matching in geographical data conflation (2011)
- [4] Ruiz, J.J., Ariza, F.J., Urena, M.A., Bla zquez, E.B.: Digital map conflation: a review of the process and a proposal for classification (2011)
- [5] Prudhomme, C., Homburg, T., Ponciano, J.J., Boochs, F., Cruz, C., Roxin, A.M.: Interpretation and automatic integration of geospatial data into the semantic web (2019)

