

VESTEC – Interactive Supercomputing for Urgent Decision Making

FETHPC – Transition to Exascale Computing
Supercomputing for Extreme Data and Emerging HPC Use Modes

Dr.-Ing. Achim Basermann

German Aerospace Center (DLR)
Institute for Software Technology
Department Head High-Performance Computing
Porz-Wahnheide, Linder Hoehe, 51147 Cologne, Germany

VESTEC – Visual Exploration and Sampling Toolkit for Extreme ComputingStrong Consortium

 VESTEC brings together experts in each domain to address the challenges holistically.

- Coordinator:
 - German Aerospace Center
- · Partners:
 - The University of Edinburgh
 - Kunglila Tekniska Hoegskolan
 - Sorbonne Universite
 - Centre National de la Recherche Scientifique
 - Kitware SAS
 - Intel Deutschland GmbH
 - Intel Poland
 - Fondazione Bruno Kessler
 - Universite Paul Sabatier Toulouse III
 - Tecnosylva SL

• High-Performance Computing

Visualization

Applications

VESTEC – Visual Exploration and Sampling Toolkit for Extreme ComputingThe Vision

· Objectives:

- Urgent decisions to avoid / relief disasters
 - Natural risks (e.g. wild fires, earthquakes, ...)
 - Critical clinical diagnostics or spread of diseases
- Based on high velocity real-time data (e.g. from sensor data networks, Internet of Things)

Available:

 Growing opportunities to model and simulate physical, social, or economic phenomena

Goal:

- Correlate / enhance simulations with valid sensor data
- Offer even more precise and reliable predictions
- → VESTEC brings such computational models into complex workflows for Urgent Decision Making as emerging HPC use modes!

Fig: Operation room at the Center for Satellite-based Crisis Information (DLR/ZKI).

VESTEC – Visual Exploration and Sampling Toolkit for Extreme ComputingThree Use Cases

- Demonstration of the immense benefit for urgent decision making:
 - Wildfire monitoring and forecasting
 - Mosquito-Borne Diseases risk analysis
 - Effects of Space Weather on technical supply chains

Fig.: "La Jonquera" (Spain, 2012, July 22 – 30)), 10th most destructive forest fire (purple) in Spain (left); Wild Fire Analyst simulation result with manually modified hot spot data (right).

Fig.: Schematic representation of data layers (epidemiological data, temperature, precipitation, population) defining the Mosquito-borne disease.

Fig.: Magnetic reconnection is an energetic event that leads to the disruption of the flux rope (structure of high-density plasma (blue) surrounded by magnetic field lines (gray)).

VESTEC – Visual Exploration and Sampling Toolkit for Extreme Computing Urgent Decision Making Workflow

- Detect dangerous or critical events from sensor data
- Immediately launch high-precision **forecasts** for monitoring, analyzing, predicting the evolving situation
 - Parametrize simulation models with real-time data
 - Combine simulation models to improve forecasts (e.g. wildfire models with weather simulations)
 - Compute ensembles to cover uncertainties
 - Use new incoming sensor data
 - To re-initialize simulations or
 - To steer computational models
- Exploit optimized data analysis methods and interactive visualization
 - Guide the disaster relief forces
 - Offer trends, probabilities, uncertainties
- Integrate feedback from crises management center and disaster relief forces to adjust forecast / models

Fig: From sensors to disaster relief force management.

VESTEC – Visual Exploration and Sampling Toolkit for Extreme ComputingData Assimilation Process Group

 Goal: Integration and processing of high velocity sensor data using HPC environments

Edinburgh		
COUNTRY	GB	
TEMP	11.37°C	
CLOUDS	40%	
HUMIDITY	71%	
PRESSURE	1028hPa	
WIND DIRECTION	N 260°	
WIND SPEED	2.1m/s	

Challenges:

- Streaming data into HPC systems requires new workflow, security, processing and architectural paradigms
 - Cloud techniques
- Preparation of real-time data for the simulations, e.g.:
 - Classification of land use from satellite imagery (Machine Learning)
 - Impute missing information
 - Quantify uncertainties and noise
 - Adjust temporal and spatial resolution

Fig: ARCHER Cray XC30 cluster at EPCC

VESTEC – Visual Exploration and Sampling Toolkit for Extreme Computing In-Situ Data Processing

In-Situ Data Reduction

- Compute topological relevant features from individual simulation steps
- Sample raw data from topological proxies (e.g. by computation of pathline snippets)
 - Reduces I/O load for check-pointing
 - Reduces processing and visualization load
- Transfer reduced data to data analytics group
 - Isolate most representative members from ensembles
 - Estimate probabilities of appearance of new features

In-Situ Raytracing

- For scalable image generation
- Fast access to full-resolution simulation data

Fig.: Topology-driven data compression of selected ensemble members with topological control (persistence threshold ϵ of the features to preserve) available in Topology Toolkit (TTK).

Fig.: Examples of high-fidelity renderings by OSPRay: Several million non-polygonal particles rendered with reflections and ambient occlusion, greatly enhancing depth perception.

VESTEC – Visual Exploration and Sampling Toolkit for Extreme Computing DLR - High-Performance Computing

- Performance Analysis and Tuning
 - Investigation of Use case performance and scaling
 behavior with state-of-the art measuring tools
 - Identification of bottlenecks and possibilities for performance improvement
 - Providing direct feedback to the use case developers
- Quality assurance
 - integration tests for all components of the VESTEC system
 - Automatic monitoring of workflows: Runtimes of file transfers, local computations and HPC jobs are automatically stored in the VESTEC data base for future analysis

Fig: Single-node scaling of Wildfire simulation

Fig: Output of Likwid performance measurement tool

```
"FLOPS_DP": {
    "Metric": {
        "AVX DP [MFLOP/s]": { "Values": [ 0.0, 0.0 ] },
        "AVX512 DP [MFLOP/s]": { "Values": [ 0.0, 0.0 ] },
        "CPI": { "Values": [ 0.9284, 0.9187 ] },
        "COPI": { "Values": [ 3291.7157, 3291.6516 ] },
        "DP [MFLOP/s]": { "Values": [ 706.2434, 706.2857 ] },
        "Packed [MUOPS/s]": { "Values": [ 5.5448, 5.5452 ] },
        "Runtime (RDTSC) [s]": { "Values": [ 1972.3994, 1972.2807 ] },
        "Runtime unhalted [s]": { "Values": [ 2460.3229, 2463.3515 ] },
        "Scalar [MUOPS/s]": { "Values": [ 695.1537, 695.1953 ] },
        "Vectorization ratio": { "Values": [ 0.7913, 0.7913 ] }
    }
}
```

Symbol		Binary	cycles:ppp (in *
+	void std:: adjust heap< gnu cxx:: normal iterator <mttcte::mtt reg*<="" th=""><th>launcher.exe</th><th>20.7%</th></mttcte::mtt>	launcher.exe	20.7%
	ieee754 pow_sse2	libm-2.22.so	18.9%
+	_expl	libm-2.22.so	15%
	MTT::MTTClass::ComputeCost(Weather::NetCDFFastValues&, int, int, double)	launcher.exe	12.9%
	_cos_avx	libm-2.22.so	4.67%
	MTT::MTTClass::MTT_spaceCte(double, int, int, std::vector <weather::netc< td=""><td>launcher.exe</td><td>4.57%</td></weather::netc<>	launcher.exe	4.57%
	void std::_push_heap<_gnu_cxx::_normal_iterator <mttcte::mtt_reg*,< td=""><td>launcher.exe</td><td>3.73%</td></mttcte::mtt_reg*,<>	launcher.exe	3.73%
	ieee754 atan2 avx	libm-2.22.so	2.81%
	do_cos.isra.2	libm-2.22.so	1.9%
	RotherAddWindSlope(ReturnRothBase&, double, int, int, int)	launcher.exe	1.87%
	sin_avx	libm-2.22.so	1.56%
	_tan_avx	libm-2.22.so	1.56%

Fig: Performance of Wildfire simulation by function call

VESTEC – Visual Exploration and Sampling Toolkit for Extreme Computing Crisis Management Center

- Goal: Real-time explorative and interactive visualization applications
 - ParaView
 - Wildfire Analyst
 - CosmoScout VR
- Extension: Exploit topological proxies and sampled data
 - · Level-of-detail rendering and streaming
- Challenges:
 - Support the analysis of simulation ensembles
 - Consider uncertainties in the process
 - Human computer interaction:
 - Integrate and evaluate efficient user interfaces
 - Consider Virtual Reality (VR) for exploration

VESTEC Use Case I – Forest Fire

Goal

Predict a forest fire to support decision making

VESTEC workflow

- Select the area of interest
- Automated analysis of sensor data to get accurate ignition points
 - VIIRS and MODIS satellite information
 - Users can verify and manipulate ignition points
- Execute a WildFire Analyst based ensemble simulation on the HPC machines
 - Incorporate weather information from MESO-NH
 - Simulate fire propagation, presence probability and fire front probability
 - Augment results by topological information
- Analyse the results using a graphical user interface
 - Adapt and re-trigger simulation

Video: Analysis of a WildFire Analyst ensemble simulation augmented with topological information. Vertical bars encode the fire intensity at the given locations

VESTEC Use Case II – Space weather

Goal

 Analyse space weather impacts on earth in order to save e.g. power-grids or space infrastructure

VESTEC workflow

- User defines the initial settings for the simulation
 - Incorporate data from the NASA Magnetospheric Multiscale (MMS) mission
- The system perturbates the data to create a potentially large number of simulations
- Execute this ensemble of simulations using iPIC3D
 - In-Situ computation of topological proxies
- Post-Processing
 - Dimension reduction exploiting the topological proxies
- Visualize and compare simulation runs using ParaView

Fig.: Analysis of an iPIC3D ensemble simulation. The lines (middle) enable comparing different simulation runs by using dimension reduction of topological input data.

Many thanks for your attention!

Questions?

Dr.-Ing. Achim Basermann

German Aerospace Center (DLR)

Institute for Software Technology

Department Head High-Performance Computing

Achim.Basermann@dlr.de

http://www.DLR.de/sc

We are hiring: http://www.dlr.de/jobs/

