Mostafa Sabri

Lecture 7

- 2.2 The inverse of a matrix
- 2.3 Characterizations of Invertible Matrices

Definition of the Inverse of a Matrix

An $n \times n$ matrix A is invertible (or nonsingular) if there exists an $n \times n$ matrix B such that

$$AB = BA = I_n$$

where I_n is the identity matrix of order n. The matrix B is the (multiplicative) inverse of A. A matrix that does not have an inverse is *noninvertible* (or *singular*).

If A is an invertible matrix, then its inverse is unique. The inverse of A is denoted by A^{-1} .

<u>Proof of uniqueness.</u> If B and C are two inverses of A, then $AB = I \implies (CA)B = C \implies B = C$.

Thm: If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then A is invertible iff $ad - bc \neq 0$. Moreover, if A is invertible, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

<u>Proof.</u> If $ad - bc \neq 0$ and B is the matrix on RHS, then $AB = BA = I_2$. The proof that A is not invertible if ad - bc = 0 appears later in the lecture.

2. Find the inverse of
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
.

Finding the inverse of a larger Matrix

For larger matrices we use Gauss-Jordan elimination.

Let A be a square matrix of order n. To find A^{-1} ,

- 1. Write the $n \times 2n$ matrix $\begin{bmatrix} A & I_n \end{bmatrix}$, where I_n is the identity matrix. This process is called adjoining matrix I_n to matrix A.
- 2. If possible, row reduce A to I_n using elementary row operations on the entire matrix $\begin{bmatrix} A & I_n \end{bmatrix}$. The result will be the matrix $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$. If this is not possible, then A is not invertible.

The proof of this scheme appears later in the lecture.

1. Find the inverse of
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{bmatrix}$$
, if it exists.

2. Find the inverse of
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ -2 & 3 & -2 \end{bmatrix}$$
, if it exists.

3. Find the inverse of
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
, if it exists.

Properties of inverses

Thm: If A is an invertible matrix, k is a positive integer, and $c \neq 0$ is a scalar, then A^{-1} , A^k , cA, and A^T are invertible. Moreover,

- 1. $(A^{-1})^{-1} = A$.
- 2. $(A^k)^{-1} = (A^{-1})^k$
- 3. $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- 4. $(A^T)^{-1} = (A^{-1})^T$.

<u>Proof.</u> 1. The inverse C of A^{-1} should satisfy $CA^{-1} = I = A^{-1}C$. Since C = A satisfies these properties, then C = A by uniqueness.

The inverse of a product

2.
$$(A^{-1})^k A^k = A^{-1} \cdots A^{-1} A \cdots A = I = A^k (A^{-1})^k$$
.

3.
$$\frac{1}{c}A^{-1}(cA) = I = (cA)\frac{1}{c}A^{-1}$$
 as required.

4.
$$(A^{-1})^T A^T = (AA^{-1})^T = I$$
, $A^T (A^{-1})^T = (A^{-1}A)^T = I$.

Thm: If A and B are invertible matrices of order n, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Proof.
$$B^{-1}A^{-1}AB = B^{-1}B = I$$
 and $AB(B^{-1}A^{-1}) = AA^{-1} = I$ as required.

The inverse of a product

Thm: Let *C* be an invertible matrix.

- 1. If AC = BC, then A = B. Right cancellation
- 2. If CA = CB, then A = B. Left cancellation

<u>Proof.</u> Multiply by C^{-1} to the right in 1, to the left in 2. \Box

Thm: If A is invertible, then each column \mathbf{b}_j of A^{-1} is the solution of $A\mathbf{x} = \mathbf{e}_j$.

<u>Proof.</u> Indeed, such \mathbf{x} satisfies

$$\mathbf{x} = A^{-1}\mathbf{e}_j = 0\mathbf{b}_1 + 0\mathbf{b}_2 + \dots + 1\mathbf{b}_j + 0\mathbf{b}_{j+1} + \dots + 0\mathbf{b}_n = \mathbf{b}_j.$$

Systems of equations

Thm: If A is an invertible matrix, then for each \mathbf{b} , the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

<u>Proof.</u> $A^{-1}\mathbf{b}$ is a solution since $A(A^{-1}\mathbf{b}) = \mathbf{b}$. If \mathbf{y} is another solution, then $A\mathbf{y} = \mathbf{b}$ implies, by taking A^{-1} on the left to both sides, that $\mathbf{y} = A^{-1}\mathbf{b}$, same sol.

Solve the following systems:

$$\begin{cases} x - y = 1 \\ x - z = 0 \\ -6x + 2y + 3z = -1 \end{cases} \begin{cases} x - y = -1 \\ x - z = 1 \\ -6x + 2y + 3z = 2 \end{cases}$$

Elementary matrices

An $n \times n$ matrix is an elementary matrix if it can be obtained from the identity matrix I_n by a single elementary row operation.

Recall that row operations are interchanging rows, multiplying a row by a nonzero scalar, and adding a multiple of one row to another.

Which of the following matrices are elementary? Explain why.

$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operation on I_m .

e.g.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix}$$
 $(R_1 \leftrightarrow R_2)$

$$\begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1/2 & 1 & 3/2 \\ 4 & 5 & 6 \end{bmatrix}$$
 (R₁/2)

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} \qquad (R_2 + 2R_1 \to R_2)$$

If E is an elementary matrix, then E^{-1} exists and is an elementary matrix.

To find E^{-1} , simply reverse the operation that E does.

If E interchanges $R_i \leftrightarrow R_j$ then $E^{-1} = E$.

If E operates by multiplying k to R_j , then E^{-1} operates by multiplying $\frac{1}{k}$ to R_j .

If E operates by $R_i + kR_j$, then E^{-1} operates by $R_i - kR_j$.

e.g.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{7} \end{bmatrix}, \\ \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}.$$

Proof of the criterion $\begin{bmatrix} A & I \end{bmatrix} \sim \begin{bmatrix} I & A^{-1} \end{bmatrix}$

Thm: An $n \times n$ matrix A is invertible iff A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

<u>Proof.</u> (\Longrightarrow) If A is invertible, then each equation $A\mathbf{x} = \mathbf{b}$ has a unique solution, so A has a pivot in every row (lec. 2). As A is $n \times n$, the pivots must be on the diagonal, hence the reduced row echelon form is I_n .

(\iff) If $A \sim I_n$, then $I_n = E_k E_{k-1} \cdots E_1 A$, where E_j are the elementary matrices performing the row operations.

Proof of the criterion $\begin{bmatrix} A & I \end{bmatrix} \sim \begin{bmatrix} I & A^{-1} \end{bmatrix}$

But each E_j is invertible, hence so is the product, and $A = (E_k \cdots E_1)^{-1}$. It follows that A is invertible with $A^{-1} = E_k \cdots E_1$.

Finally, $A^{-1} = E_k \cdots E_1 I_n$ says that the same sequence of row operations E_1, \dots, E_k used to reduce A to I_n also transforms I_n to A^{-1} .

Characterizations of Invertible Matrices

Thm: Let A be $n \times n$. The following statements are equivalent.

- 1. A is invertible.
- 2. A is row equivalent to I_n .
- 3. A has n pivot positions.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. The columns of *A* are linearly independent.
- 6. The map $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- 7. $A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^n$.
- 8. The columns of A span \mathbb{R}^n .
- 9. The map $\mathbf{x} \mapsto A\mathbf{x}$ is onto \mathbb{R}^n .

Characterizations of Invertible Matrices

- 10. There is an $n \times n$ matrix C such that $CA = I_n$.
- 11. There is an $n \times n$ matrix D such that $AD = I_n$.
- 12. A^T is invertible.
- 13. The columns of *A* form a basis of \mathbb{R}^n .
- 14. $Col(A) = \mathbb{R}^n$.
- 15. rank(A) = n.
- 16. $\dim \text{Nul}(A) = 0$.
- 17. $Nul(A) = \{ \mathbf{0} \}.$

<u>Proof.</u> This is a summary of the results we proved in several lectures, except for $10, 11 \implies 1$.

Characterizations of Invertible Matrices

More precisely, 1,2,3 are equivalent by the previous theorem. $1 \iff 12$, $1 \implies 4 \iff 5 \iff 6$ and $7 \iff 8 \iff 9$ were proved before. Also, $13 \implies 14 \implies 15 \iff 16 \iff 17$ by the rank theorem and $5 \iff 13$ and $8 \iff 13$ by the basis theorem. Since $15 \iff 3 \iff 1 \implies 5 \implies 13$, we conclude that 13 to 17 are all equivalent, and equivalent to 1,2,3,4,5,6,7,8,9,12.

Clearly $1 \implies 10$, 11. So it remains to prove the converse. If 10 holds then $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = CA\mathbf{x} = C\mathbf{0} = \mathbf{0}$, hence 4 holds. Similarly, if 11 holds then $AD\mathbf{b} = \mathbf{b}$, so $A\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} = D\mathbf{b}$, so 7 holds. Hence, all statements are equivalent.

Invertible Linear Transformations

Is the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 invertible?

Proof of the 2×2 case (continued). If ad - bc = 0, then $A\begin{bmatrix} d \\ -c \end{bmatrix} = \mathbf{0}$ is a nontrivial solution if d and c are not both zero, so A is not invertible by 4. If d = c = 0 then A has at most one pivot position, so not invertible by 3.

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is *invertible* if there exists a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ such that $S(T(\mathbf{x})) = T(S(\mathbf{x})) = \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$.

Invertible Linear Transformations

Thm: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be linear with standard matrix A. Then T is invertible iff A is invertible, and in this case, the inverse map S is given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$.

<u>Proof.</u> (\Longrightarrow) If T is invertible, then T is onto \mathbb{R}^n , since any $\mathbf{b} \in \mathbb{R}^n$ is the image of $\mathbf{x} = S(\mathbf{b})$ under T, i.e. $T(\mathbf{x}) = \mathbf{b}$. This implies $\mathbf{x} \mapsto A\mathbf{x} = T(\mathbf{x})$ is onto, hence A is invertible (thm).

(\Leftarrow) If A is invertible, define $S(\mathbf{x}) = A^{-1}\mathbf{x}$. Then, S is a linear transformation satisfying $T(S(\mathbf{x})) = S(T(\mathbf{x})) = \mathbf{x}$. e.g., $T(S(\mathbf{x})) = T(A^{-1}\mathbf{x}) = AA^{-1}\mathbf{x} = \mathbf{x}$. So T is invertible.

Show that a linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one iff it is invertible.