Основные результаты

Токаева Александра Александровна научный руководитель к.ф.-м.н. Житлухин Михаил Валентинович

МГУ им. М.В.Ломоносова механико-математический факультет кафедра теории вероятностей, 609 группа

> Москва 27 мая 2023 г.

1 / 19

Основные результаты

Введение

- Введение
 - Введение
- Описание модели рынка
 - Общая модель
 - Стратегии
 - Активы с аффинными дивидендами
 - Выживающие стратегии
- Основные результаты
 - Теорема 1: "выживающая" стратегия неподвижная точка отображения
 - Теорема 2: "выживающая" стратегия единственна
 - Теорема 3: случай н.о.р. коэффициентов
 - Численный пример
- Литература

Введение

- Цель работы построить стратегию, "выживающую" на рынке вне зависимости от стратегий других инвесторов.
- Стохастическая модель рынка с дискретным временем, эндогенными ценами и аффинными дивидендами.
- Обобщается модель из статьи Amir R., Evstigneev I., and Schenk-Hoppé K. R. Asset market games of survival: a synthesis of evolutionary and dynamic games (2013).
- Необходимость рассмотрения такой модели указана в статье Evstigneev I., Hens T., and Schenk-Hoppé K. R. Evolutionary behaviorial finance (2016).
- Результаты работы изложены в статье Evstigneev I., Tokaeva A., Vanaei M., and Zhitlukhin M. Survival strategies in an evolutionary finance model with endogenous asset payoffs (2023).

Общая модель

- N > 2 агентов.
- ullet $K \geq 2$ активов, активы "короткоживущие".
- Каждый агент n в каждый момент времени t выбирает вектор долей $\lambda_t^n = (\lambda_t^{n,1}, \dots, \lambda_t^{n,K})$, в которых он вкладывает свой капитал W_t^n в каждый из K активов в момент времени t.
- Цены устанавливаются эндогенно из условия равенства спроса и предложения на каждый из активов.
- ullet Активы платят случайные дивиденды A_t^k

Стратегии

• Стратегия n-го агента — это последовательность $\Lambda^n=(\Lambda^n_t)_{t=0}^\infty$ измеримых векторнозначных функций

$$\Lambda_t^n = \Lambda_t^n(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-1})$$

со значениями в стандартном K-симплексе

$$\Delta^K = \{ (a^1, \dots, a^K) \in \mathbb{R}_+^K : a^1 + \dots + a^K = 1 \}.$$

- $oldsymbol{ar{s}}_t := (s_1, ..., s_t)$ история состояний случайного фактора.
- ullet $ar{W}_0 := (W_0^1,...,W_0^N)$ вектор начальных капиталов.
- ullet $ar{\lambda}_{t-1}:=(\lambda_0,...,\lambda_{t-1})$, где $\lambda_s=(\lambda_s^1,\ldots,\lambda_s^N)$ история игры.

Активы с аффинными дивидендами

- ullet $W_t = \sum_{n=1}^N W_t^n$ полный капитал рынка в момент времени t.
- ullet $\mu_t^k = rac{1}{W_t} \sum_{n=1}^N \lambda_t^{n,k} W_t^n$ доля W_t , вложенная в k-й актив.
- ullet $A^k_t=A^k_t(ar{s}_t),\,k=1,\ldots,K$ дивиденды от единицы актива k в момент времени $t\geq 1.$
- Дивиденды аффинные:

$$A_{t+1}^k = \alpha_{t+1}^k + \beta_{t+1}^k \mu_t^k,$$

где $lpha_{t+1}^k$ и eta_{t+1}^k — произвольные случайные величины вида

$$\alpha_{t+1}^k(\bar{s}_{t+1}) = a_{t+1}^k(\bar{s}_{t+1}, \bar{W}_0, \bar{\lambda}_{t-1}(\bar{s}_{t-1})), \tag{1}$$

$$\beta_{t+1}^k(\bar{s}_{t+1}) = b_{t+1}^k(\bar{s}_{t+1}, \bar{W}_0, \bar{\lambda}_{t-1}(\bar{s}_{t-1})) \tag{2}$$

с некоторыми измеримыми неотрицательными коэффициентами a_{t+1}^k , b_{t+1}^k .

Выживающие стратегии

• Мы будем интересоваться поведением *относительных капиталов* агентов, определяемых формулой $r_t^n := \frac{W_t^n}{W_t}$.

Определение 1

Стратегия Λ^n n-го агента называется "выживающей", если для любого вектора начальных капиталов \bar{W}_0 и любого профиля стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ с заданной стратегией Λ^n и произвольными стратегиями Λ^j агентов $j\neq n$ выполняется неравенство $W^n_t>0$ п.н. для всех $t\geq 0$ и

$$\inf_{t\geq 0} r_t^n > 0$$
 п.н.

Основная теорема (теорема 1)

Теорема 1

Пусть $\sum_{k=1}^K (a_t^k(\bar{s}_t,\bar{W}_0,\bar{\lambda}_{t-2}) + b_t^k(\bar{s}_t,\bar{W}_0,\bar{\lambda}_{t-2})) > 0.$ Тогда "выживающая" стратегия Λ_t^* существует.

"Выживающая" стратегия Λ_t^* является неподвижной точкой отображения L_t , явный вид которого представлен в тексте работы:

$$L_t(\Lambda_t^*) = \Lambda_t^*$$
 п.н. (3)

Основная теорема 2

Теорема 2

Если в профиле стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ агент n использует стратегию Λ^* , то при $t\to\infty$ выполнено

$$\|\lambda_t^n - \mu_t\| \to 0.$$

То есть выживающая стратегия в некотором смысле единственна.

Основная теорема 3

Теорема 3

Пусть последовательность состояний случайного фактора $s_t,\,t\geq 1$ состоит из н.о.р. случайных величин, а коэффициенты $\alpha_t^k,\,\beta_t^k$ зависят только от s_t , то есть $\alpha_t^k=a^k(s_t),\,\beta_t^k=b^k(s_t).$ Тогда: а) "Выживающая" стратегия существует и постоянна.

- б) Пусть дополнительно $P(\alpha_t^k>0)>0$ для всех $k=1,\dots,K$. Тогда "выживающая" стратегия единственна в классе постоянных стратегий. При этом "выживающая" стратегия оказывается полностью диверсифицированной.
- в) "Выживающая" стратегия "захватывает" рынок. Другими словами, $r^n_t \to 0$ п.н. при $t \to \infty$ для любого агента n, который использует постоянную полностью диверсифицированную стратегию $\Lambda^n \ne \Lambda^*$.

Численный пример

- Выплата каждого из двух активов равна либо $1 + \mu_t^k$ с вероятностью p, либо нулю с вероятностью 1 p, p = 2/3.
- ullet "Выживающая" стратегия $\Lambda^* = (1/2, 1/2)$.
- На рынке есть 9 инвесторов со стратегиями $\Lambda^n = (n/10, 1 n/10)$, где $n = 1, 2, \dots, 9$.

Результаты

- Исследована модель рынка с дискретным временем, эндогенными ценами и аффинными выплатами.
- Доказаны существование и асимптотическая единственность "выживающей" стратегии.
- Найдены условия, при которых "выживающая" стратегия захватывает рынок.
- Результаты исследования доложены на конференции Ломоносов-2023.
- Материалы работы вошли в совместную научную статью, которая представлена к публикации в журнале Annals of Operations Research.

Литература

- Amir R., Evstigneev I. V., and Schenk-Hoppé, K. R. (2013). Asset market games of survival: a synthesis of evolutionary and dynamic games. *Annals of Finance*, 9(2):121–144.
- Blume L. and Easley D. (1992). Evolution and market behaviour. *Journal of Economic Theory*, 58(1):9–40.
- Evstigneev I., Tokaeva A., Vanaei M., and Zhitlukhin M.(2023). Survival strategies in an evolutionary finance model with endogenous asset payoffs. *Annals of Operations Research*.
- Evstigneev, I., Hens, T., and Schenk-Hoppé, K. R. (2016). Evolutionary behaviorial finance. In Haven, E. et al., editors, *The handbook of Post Crisis Financial Modelling*, 214-234. Palgrave Macmillan UK.

Благодарю за внимание!

Основные результаты

Динамика капитала

- ullet $ar{P}_t = (P_t^1, \dots, P_t^K)$ вектор цен активов в момент времени t.
- ullet $ar{X}^n_t=(X^{n,1}_t,\dots,X^{n,K}_t)$, где $X^{n,k}_t=rac{\lambda^{n,k}_tW^n_t}{P^k_t}$ количество единиц актива k в портфеле.
- Из равенства спроса и предложения находим цены.

$$1 = \sum_{n=1}^{N} X_t^{n,k} = \sum_{n=1}^{N} \frac{\lambda_t^{n,k} W_t^n}{P_t^k} \Rightarrow \boxed{P_t^k = \sum_{n=1}^{N} \lambda_t^{n,k} W_t^n}$$

• Динамика капитала имеет вид

$$W_{t+1}^n = \sum_{k=1}^K X_{t-1}^{n,k} A_{t+1}^k = \sum_{k=1}^K \frac{\lambda_t^{n,k} W_t^n}{P_t^k} A_{t+1}^k = \boxed{\sum_{k=1}^K \frac{\lambda_t^{n,k} W_t^n}{\sum_{n=1}^N \lambda_t^{n,k} W_t^n} A_{t+1}^k}$$

Введение

Выживающая и лог-оптимальная стратегия

• Чтобы найти выживающую стратегию, мы будем искать лог-оптимальную стратегию.

Определение 2

Стратегия Λ^n называется **лог-оптимальной**, если для любого вектора начальных капиталов \bar{W}_0 и профиля стратегий $\Lambda = (\Lambda^1, \dots, \Lambda^N)$, где Λ^n - данная стратегия, выполнено $W^n_t > 0$ п.н. для всех t > 0 и $\ln r_t^n$ является субмартингалом.

Основные результаты

Утверждение

Любая лог-оптимальная стратегия является "выживающей".

Утверждение 2

- $g_t^k(\lambda^*, \bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-2}) = a_t^k(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-2}) + \lambda^* b_t^k(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-2}).$
- ullet Обозначим $ar{\chi}_t = (ar{W}_0, ar{\lambda}_{t-1}).$
- Введем отображение

$$L_t^k(\lambda^*, \bar{s}_t, \bar{\chi}_t) = E_t \left(\frac{g_{t+1}^k(\lambda^*, \bar{s}_{t+1}, \bar{\chi}_t)}{\sum_{k=1}^K g_{t+1}^k(\lambda^*, \bar{s}_{t+1}, \bar{\chi}_t)} \right).$$

Утверждение 2 (продолжение)

Для любого $t\geq 0$ существует измеримая функция $\Lambda_t^*(\bar{s}_t,\bar{\chi}_t)$ со значениями в Δ^K со следующими свойствами:

ullet для любого $ar{\chi}_t$ выполнено:

$$P_t \left(\sum_{k=1}^K g_{t+1}^k (\Lambda_t^*(\bar{s}_t, \bar{\chi}_t), \bar{s}_{t+1}, \bar{\chi}_t) = 0 \right) = 0 \text{ n.H.}, \tag{4}$$

$$E_{t}\left(\frac{b_{t+1}^{k}(\bar{s}_{t+1}, \bar{\chi}_{t})}{\sum_{k=1}^{K} g_{t+1}^{k}(\Lambda_{t}^{*}(\bar{s}_{t}, \bar{\chi}_{t}), \bar{s}_{t+1}, \bar{\chi}_{t})}\right) \leq 1 \text{ n.H.}, \quad k = 1, \dots, K.$$
(5)

• Λ_t^* — неподвижная точка отображения L_t , то есть для любого $\bar{\chi}_t$ выполнено

$$L_t(\Lambda_t^*(\bar{s}_t, \bar{\chi}_t), \bar{s}_t, \bar{\chi}_t) = \Lambda_t^*(\bar{s}_t, \bar{\chi}_t) \text{ п.н.}, \tag{6}$$

где для t=0 полагаем $\Lambda_0^*=\Lambda_0^*(\bar{\chi}_0)$ зависит только от $\bar{\chi}_0=\bar{W}_0.$

Основная теорема 2

Теорема 2

Пусть стратегия Λ^* удовлетворяет условиям теоремы 1 и некоторому более сильному условию на функции g^k_{t+1} : существует $\varepsilon>0$ такой что для всех $t\geq 0$ и $\bar\chi_t$ выполнено

$$E_{t}\left(\frac{b_{t+1}^{k}(\bar{s}_{t+1}, \bar{\chi}_{t})}{\sum_{k=1}^{K} g_{t+1}^{k}(\Lambda_{t}^{*}(\bar{s}_{t}, \bar{\chi}_{t}), \bar{s}_{t+1}, \bar{\chi}_{t})}\right) \leq 1 - \varepsilon \text{ n.H.}, \quad k = 1, \dots, K.$$
(7

Тогда, если в профиле стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ агент n использует стратегию Λ^* , то выполнено

$$\sum_{t=1}^{\infty} \|\lambda_t^n - \mu_t\|^2 < \infty \text{ a.s.},$$

В частности, $\|\lambda_t^n - \mu_t\| \to 0$ при $t \to \infty$.

