Size of manissa determines

O. XXX

O. 125 = 1.25 × 10

Good = 6 × 10

Significant

Significant

Size of manissa determines

Size of capturest determines

Range

O. XXX

Flooting

Floot

Fort digit of the symptoad mot be 1.

(normalization)

O-1 xxxxx

4.5 \$\frac{1}{2} = 100.1 \times 2^{\frac{1}{2}} = 100 \text{ or red rate}

= 0.1001 \times 2^{\frac{1}{2}} = 0.1001 \times 2

mid relie :16 (bias)

Excess 16 bit representation

In this model - exponent velies less than 16 are negative, fraction nos.

32 = 10 0×25 = 0-1 ×26

we exist to biasis expirat.

6 well be represted as = 6+16 = 22

900 re have Sign Expirat.

10 10 11 0 1000 0000

biasiston even 16 repres.

+ 22 +6 = 26 0.1 = \$0.1×26

bit Exponent Significand

0	01101	1000 0000

The ferst digit of the significant eholdbe / most be 1.

with no ones to the left of the radix point.

-this rocers of is alled normalization

- process of is alled normalization

- Nantissa

1.5 = 1.001 x 2 = 1.001 x 2 or = [0.1001 x 2]

The layer's no regress by andard 1111111 = 127 Single precision double procision 1 is called IEEE 754. preasion flooling Pearl Sta IEEE 754 Single bit exponent 23 bir for sympresd (32 bit) 1884 754. double preason for standard 11 bir exponent, , 52 bir symford. (4 bus) Bias = 1023. significand has an implied I to the In both of the rading fourt. former is 1. XXXX instead of O. IXXX

1.5= 0.1001×23

1EEE Std formal = 10001, × 22

IMPhelox 0 12+bias 001

Signfue

tre + exp.

Here the $-3.75 = -11.11 = -1.111 \times 2$ (one Shift) $-3.75 = -11.11 = -1.111 \times 2$ (one Shift)

Bias is 127 . No is = 127 + 1 = 128Significant 11000000001110000 = 128 - 127 + 1 = 128(128 - 127) + $= -1.111 \times 2$ Significant $= -1.111 \times 2 = -1.111 \times 2 = -1.111 \times 2 = -3.75$ Value Bias:

Range of Af nuter

For a 32 bit - 8bit exponent

\[
\frac{1}{256} \sigma 1.5 \times 10^{79} \]

\[
\frac{1}{2} \times \frac{1}{

De aind value of an IEE no

(1-25)* (14f)* 2-625

9, f, e = deemel.

(1-25) = 1 on -1 Whether 5= 0 or 1

fractional field; he add the replication of the series of the ser

E	F	mang	Explan
0000 0000	∞00	0	+0.0 as -0.0.
0000 0000	X4XX	Vand no.	(Unnormalyer)
1111 (121	OOO 000	∞	(Unnormalyer)
1111 1111	XXXXX	NaN.	1

