Xi Liu

 $\begin{aligned} &1\\ &\text{(a)}\\ &\text{definition } 3.5.1\\ &\text{for } f(x) \text{ to converge to } L \text{ as } x \to -\infty\\ &\forall \varepsilon > 0, \exists M \in \mathbb{R}, \forall x \leq M, |f(x) - L| < \varepsilon \end{aligned}$

$$\lim_{x \to \infty} \frac{1}{1+x^2} = 0$$

$$\left| \frac{1}{1+x^2} - 0 \right| < \varepsilon$$

$$\frac{1}{1+x^2} < \varepsilon$$

$$1+x^2 > \frac{1}{\varepsilon}$$

$$x^2 > \frac{1}{\varepsilon} - 1$$

$$x > \sqrt{\frac{1}{\varepsilon} - 1}$$

$$|f(x) - L| = \left| \frac{1}{1+x^2} - 0 \right| < \varepsilon$$

$$\lim_{x \to -\infty} \frac{1}{1+x^2} = 0$$

$$\left| \frac{1}{1+x^2} - 0 \right| < \varepsilon$$

$$\frac{1}{1+x^2} < \varepsilon$$

$$1+x^2 > \frac{1}{\varepsilon}$$

$$x^2 > \frac{1}{\varepsilon} - 1$$

$$x < -\sqrt{\frac{1}{\varepsilon} - 1}$$

$$x < -\sqrt{\frac{1}{\varepsilon} - 1}$$

$$|f(x) - L| = \left| \frac{1}{1+x^2} - 0 \right| < \varepsilon$$

$$|f(x) - L| = \left| \frac{1}{1+x^2} - 0 \right| < \varepsilon$$

 $\therefore \lim_{y \to -\infty} g(y) = f(0)$

 $\therefore \lim_{y \to \infty} g(y) = \lim_{y \to -\infty} g(y) = f(0)$

2 (a)

part 1

let $\{x_n\}$ be a sequence satisfying $x_n \in [a, b], \forall n \in \mathbb{N}$

based on bolzano weierstrass theorem, since $\{x_n\}$ is bounded, there exists a convergent subsequence $\{x_{n_i}\}$, $\{x_{n_i}\}$ converge to a number $L \in \mathbb{R}$. since $\{x_{n_i}\}$ is a subsequence of $\{x_n\}$, $\{x_{n_i}\}$ is a sequence satisfying $x_{n_i} \in [a, b], \forall n \in \mathbb{N}$

assume [a,b] is not sequentially compact, then $L \notin [a,b]$, then L < a or L > b if L > b, L - b > 0, since $\{x_{n_i}\}$ converges to $L, \forall \varepsilon > 0, \exists M \in \mathbb{N}, \forall n \geq M, |x_{n_i} - L| < \varepsilon$ take $\varepsilon < L - b$

$$\begin{aligned} |x_{n_i} - L| &< \varepsilon < L - b \\ |x_{n_i} - L| &< L - b \\ b - L &< x_{n_i} - L < L - b \\ b - L &< x_{n_i} - L \end{aligned}$$

 $b < x_{n_i}$

which contradicts with $x_{n_i} \in [a, b]$, so the assumption that [a, b] is not sequentially compact is false, so $\{x_n\}$ is sequentially compact

if L < a, a - L > 0, since $\{x_{n_i}\}$ converges to $L, \forall \varepsilon > 0, \exists M \in \mathbb{N}, \forall n \geq M, |x_{n_i} - L| < \varepsilon$ take $\varepsilon < a - L$ $|x_{n_i} - L| < \varepsilon < a - L$ $|x_{n_i} - L| < a - L$ $|x_{n_i} - L| < a - L$

 $x_{n_i} - L < a - L$

 $x_{n_i} < a$

which contradicts with $x_{n_i} \in [a, b]$, so the assumption that [a, b] is not sequentially compact is false, so [a, b] is sequentially compact

part 2 $\{x_n\} = \{b - \frac{1}{n}\}$ is a sequence satisfying $x_n \in K = (a, b)$ that converge to b (since $\forall \varepsilon > 0, \exists M \in \mathbb{N}, 0 < 1/M < \varepsilon, \forall n \geq M, |x_n - 0| = |1/n| = 1/n \leq 1/M < \varepsilon$, and based on continuity of algebraic operations 2.2.2), since $x_n \in (a, b)$, so $\{x_n\}$ is bounded, based on proposition 2.3.7, since $\{x_n\}$ is bounded sequence that converge to b, so every convergent subsequence $\{x_{n_k}\}$ converges to b, but $b \notin (a, b)$, so there does not exist a subsequence $\{x_{n_k}\}$ and point $x \in K$ such that $x_{n_k} \to x$ as $k \to \infty$, so (a, b) is not sequentially compact

(b) contrapositive: if set K is not bounded, then the set K is not sequentially compact for every sequence $x_n \in K$, since K is unbounded, based on definition 1.3.6 $x_n \geq n, x_{n_k} > n_k > k$ /* show for any subsequence $\{x_n\}_{i=1}^{\infty}, \forall i \in \mathbb{N}, n_i \geq i$ base step: $i = 1, 1 \leq n_1, \dots n_1 \in \mathbb{N}$

inductive step: assume $i \leq n_i$ is true, show $i + 1 \leq n_{i+1}$ is true

$$i \le n_i$$

$$i + 1 \le n_i + 1$$

$$\le n_{i+1}$$

 $\therefore n_i, n_{i+1} \in \mathbb{N}, n_i < n_{i+1} \text{ implies } n_i \neq n_{i+1}$ least possible n_{i+1} is $n_i + 1 \therefore n_i + 1 \leq n_{i+1} */$

 $x : x_{n_k} > k$, every subsequence $\{x_{n_k}\}$ diverges, so there is no subsequence $\{x_{n_k}\}$ and point $x \in K$ such that $x_{n_k} \to x$ as $k \to \infty$, so $K \subset \mathbb{R}$ is not sequentially compact

(c) let $s := \sup(K)$ since \mathbb{Q} is dense in \mathbb{R} $\exists x_n \in (s - 1/n, s)$ $s - 1/n < x_n < s$ $\because \lim_{n \to \infty} s - 1/n = s$ $\lim_{n \to \infty} s = s$ based on squeeze lemma 2.2.1 $\lim_{n \to \infty} \{x_n\} = s$

based on proposition 2.3.7, since $\{x_n\}$ is a bounded sequence that converge to s, every convergent subsequence $\{x_{n_k}\}$ converges to s, since K is sequentially compact, so every sequence in K has a convergent subsequence converging to a point in K, so s is a point in K, $s = \sup K \in K$

let $i := \inf(K)$ since \mathbb{Q} is dense in \mathbb{R} $\exists x_n \in (i, i + 1/n)$ $i < x_n < i + 1/n$ $\because \lim_{n \to \infty} i = i$ $\lim_{n \to \infty} i + 1/n = i$ based on squeeze lemma 2.2.1 $\lim_{n \to \infty} \{x_n\} = i$

based on proposition 2.3.7, since $\{x_n\}$ is a bounded sequence that converge to i, every convergent subsequence $\{x_{n_k}\}$ converges to i, since K is sequentially compact, so every sequence in K has a convergent subsequence converging to a point in K, so i is a point in K, $i = \inf K \in K$

(d) definition 3.2.1, $S \subset \mathbb{R}, c \in S, f : S \to \mathbb{R}$ is continuous at c if $\forall \varepsilon > 0, \exists \delta > 0, (x \in S \land |x - c| < \delta \to |f(x) - f(c)| < \varepsilon)$ definition 0.3.13, direct image $f : K \to \mathbb{R}$, direct image is $f(K) = \{f(x) \in \mathbb{R} : x \in K\}$

part 1

show every sequence in f(K) has a convergent subsequence converging to a point in f(K) pick a sequence $\{y_n\} \subset f(K)$, $y_n \in f(K)$, so $y_n = f(x_n)$ for some $x_n \in K$

since K is sequentially compact, $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ and a point $x \in K$ such that $x_{n_k} \to x \in K$ as $k \to \infty$, bolzano weierstrass theorem 2.3.3

since f is continuous

$$y = \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} f(x_{n_k}) = f(x)$$

$$f(x_{n_k}) \to f(x) \in f(K), y \in f(K)$$
, so $f(K)$ is closed

for contradiction, assume f(K) is not bounded suppose there is a sequence $\{b_n\} \subset f(K)$ with $\forall n \in \mathbb{N}, n \leq b_n$ suppose there is a sequence $\{a_n\} \subset K$ with $f(a_n) = b_n, \{a_n\}$ is contained in K so have a subsequence a_{n_k} converging to some $a \in K$, but since $f(a) \in \mathbb{R}$

$$\lim_{k \to \infty} n_k \le \lim_{k \to \infty} f(a_{n_k}) = f(a)$$

which is a contradiction, so f(K) is bounded $f(x_{n_k})$ is a subsequence of $\{y_n\}$ so f(K) is sequentially compact

part 2

based on what is shown in problem 2.(a), [a, b] is sequentially compact, so K is a closed and bounded interval

since f is a continuous function on a closed and bounded interval K, based on extreme value (min max) theorem 3.3.2, f achieves both an absolute minimum and an absolute maximum on K

3 (a) let
$$x_0, c, x \in [a, b], x_0 < c < x$$
 use taylor's theorem at x , with $n = 0$
$$f(x) = P_0^{x_0}(x) + f'(c)(x - x_0) = f(x_0) + f'(c)(x - x_0)$$
 replace x with $x + h$, replace x_0 with x
$$f(x + h) = f(x) + f'(c)(x + h - x) = f(x) + f'(c)h$$

$$\frac{f(x + h) - f(x)}{h} = f'(c)$$
 let $c \in [x, x + h]$ based on mean value theorem 4.2.3
$$|f'(c) - f'(x)| = |f''(d)(c - x)| \le |f''(d)|h$$
 take $M := \max\{|f''(d)|\}, d \in [x, x + h]$
$$M_1 = -M, \quad M_2 = M$$

$$M_1 \le |f'(c) - f'(x)| \le M_2$$

(b) let $x_0, c, x \in [a, b], x_0 < c < x$ use taylor's theorem at x, with n = 2

(c) part 1 let $x_0, c, x \in [a, b], x_0 < c < x$ use taylor's theorem at x, with n = 1

①,
$$f(x) = P_1^{x_0}(x) + f''(c)(x - x_0)$$

= $f(x_0) + f'(x_0)(x - x_0) + \frac{f''(c)}{2!}(x - x_0)^2$

from \bigcirc , replace x with x + h, replace x_0 with x, replace c with c_1 $c_1 \in [x, x + h]$

$$f(x+h) = f(x) + f'(x)(x+h-x) + \frac{f''(c_1)}{2!}(x+h-x)^2$$

$$f(x+h) = f(x) + f'(x)h + \frac{f''(c_1)}{2!}h^2$$

$$-\frac{f''(c_1)}{2!}h^2 = f'(x)h - (f(x+h) - f(x))$$

$$\left| -\frac{f''(c_1)}{2!}h \right| = \left| f'(x) - \frac{f(x+h) - f(x)}{h} \right|$$

$$\left| \frac{f''(c_1)}{2}h \right| = \left| f'(x) - \frac{f(x+h) - f(x)}{h} \right|$$

$$\frac{h}{2}|f''(c_1)| = \left| f'(x) - \frac{f(x+h) - f(x)}{h} \right|$$

$$\left| f'(x) - \frac{f(x+h) - f(x)}{h} \right| = \frac{h}{2} |f''(c_1)|$$

$$= \frac{h}{2} |-k^2 \sin(kc_1)|$$

$$\leq \frac{h}{2} k^2$$

$$= \frac{k^2 h}{2}$$

part 2 from problem 3.(b)

$$f'(x) - \frac{f(x+h) - f(x-h)}{2h} = \frac{f^{(3)}(c_1) - f^{(3)}(c_2)}{12} h^2$$

$$\left| f'(x) - \frac{f(x+h) - f(x-h)}{2h} \right| = \left| \frac{f^{(3)}(c_1) - f^{(3)}(c_2)}{12} h^2 \right|$$

$$= \left| \frac{(-k^3 \cos(kc_1)) - (-k^3 \cos(kc_2))}{12} h^2 \right|$$

$$= \left| \frac{-k^3 \cos(kc_1) + k^3 \cos(kc_2)}{12} h^2 \right|$$

$$= \left| \frac{k^3 (\cos(kc_2) - \cos(kc_1))}{12} h^2 \right|$$

$$= \left| \cos(kc_2) - \cos(kc_1) \right| \left| \frac{k^3 h^2}{12} \right|$$

$$\leq \left| |\cos(kc_2)| + |\cos(kc_1)| \right| \left| \frac{k^3 h^2}{12} \right|$$

$$\leq \frac{2k^3 h^2}{12}$$

$$= \frac{k^3 h^2}{6}$$

4 (a)

$$m_{i} = \inf\{f(x) : x_{i-1} \leq x \leq x_{i}\}$$

$$M_{i} = \sup\{f(x) : x_{i-1} \leq x \leq x_{i}\}$$

$$L(\mathcal{P}, f) = \sum_{i=1}^{n} m_{i} \Delta x_{i}$$

$$V(\mathcal{P}, f) = \sum_{i=1}^{n} M_{i} \Delta x_{i}$$

$$\forall c_{i} \in [x_{i-1}, x_{i}]$$

$$\inf\{f(x) : x_{i-1} \leq x \leq x_{i}\} \leq f(c_{i}) \leq \sup\{f(x) : x_{i-1} \leq x \leq x_{i}\}$$

$$\forall i \in \{1, 2, ..., n\}, m_{i} \leq f(c_{i}) \leq M_{i}$$

$$\sum_{i=1}^{n} m_{i} \leq \sum_{i=1}^{n} f(c_{i}) \leq \sum_{i=1}^{n} M_{i}$$

$$\sum_{i=1}^{n} m_{i} \Delta x_{i} \leq \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} \leq \sum_{i=1}^{n} M_{i} \Delta x_{i}$$

$$L(\mathcal{P}, f) \leq \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} \leq U(\mathcal{P}, f)$$

(b)

definition 5.1.9, riemann integrable

$$\int_{a}^{b} f(x)dx = \int_{\underline{a}}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx$$

$$\underline{\int_{\underline{a}}^{b} f(x)dx} = \sup\{L(P, f) : P \text{ a partition of } [a, b]\}$$

$$\overline{\int_{\underline{a}}^{b} f(x)dx} = \inf\{U(P, f) : P \text{ a partition of } [a, b]\}$$

$$\int_{a}^{b} f = \underbrace{\int_{a}^{b}}_{f} f = \sup\{L(P, f)\}$$

let P_1 be a partition of $[a, b], \int_a^b f - \varepsilon < L(P_1, f) < \int_a^b f$

$$\int_a^b f = \overline{\int_a^b} f = \inf\{U(P, f)\}$$
 let P_2 be a partition of $[a, b]$, $\overline{\int_a^b} f < U(P_2, f) < \int_a^b f + \varepsilon$

let P_3 be a partition of $[a, b], P_3 := P_1 \cup P_2$

 $\therefore P_1 \subset P_3, P_3$ is a refinement of $P_1, \therefore L(P_1, f) \leq L(P_3, f)$

 $\therefore P_2 \subset P_3, P_3$ is a refinement of $P_2, \therefore U(P_3, f) \leq U(P_1, f)$

$$\int_{a}^{b} f - \varepsilon < L(P_{1}, f) \le L(P_{3}, f) \le \sum_{i=1}^{n} f(x_{i}) \Delta x_{i} \le U(P_{3}, f) \le U(P_{2}, f) < \int_{a}^{b} f + \varepsilon$$

$$\int_{a}^{b} f - \varepsilon < \sum_{i=1}^{n} f(x_{i}) \Delta x_{i} < \int_{a}^{b} f + \varepsilon$$

$$-\varepsilon < \sum_{i=1}^{n} f(x_{i}) \Delta x_{i} - \int_{a}^{b} f < \varepsilon$$

$$\left| \sum_{i=1}^{n} f(x_{i}) \Delta x_{i} - \int_{a}^{b} f \right| < \varepsilon$$

$$\left| \int_{a}^{b} f - \sum_{i=1}^{n} f(x_{i}) \Delta x_{i} \right| < \varepsilon$$

(c) part 1

$$R_n(f, [0, 1]) = \sum_{i=1}^n f(x_i) \Delta x$$

$$\Delta x = \frac{b-a}{n} = \frac{1}{n}$$

$$x_i = a + (b-a)(i/n) = 0 + (1-0)(i/n) = \frac{i}{n}$$

$$\therefore i/n \in \mathbb{Q}, f(i/n) = 1$$

$$R_n(f, [0, 1]) = \sum_{i=1}^n (1)(1/n)$$

$$= \sum_{i=1}^n \frac{1}{n}$$

$$= 1$$

$$\therefore \{R_n(f, [0, 1])\}_{n=1}^\infty = \{1\}_{n=1}^\infty \text{ converges to } 1$$

part 2

$$R_{n}(f, [1, 1 + \sqrt{2}]) = \sum_{i=1}^{n} f(x_{i}) \Delta x$$

$$\Delta x = \frac{b-a}{n} = \frac{1+\sqrt{2}-1}{n} = \frac{\sqrt{2}}{n}$$

$$x_{i} = a + (b-a)(i/n) = 1 + (1+\sqrt{2}-1)(i/n) = 1 + (\sqrt{2}i/n)$$

$$\because \sqrt{2}i/n \notin \mathbb{Q}, 1 + (\sqrt{2}i/n) \notin \mathbb{Q}, f(1+(\sqrt{2}i/n)) = 0$$

$$R_{n}(f, [1, 1 + \sqrt{2}]) = \sum_{i=1}^{n} 0(\sqrt{2}/n)$$

$$= 0$$

$$\therefore \{R_{n}(f, [0, 1])\}_{n=1}^{\infty} = \{0\}_{n=1}^{\infty} \text{ converges to } 0$$

part 3

$$R_{n}(f, [0, 1 + \sqrt{2}]) = \sum_{i=1}^{n} f(x_{i}) \Delta x$$

$$\Delta x = \frac{b-a}{n} = \frac{1+\sqrt{2}-0}{n} = \frac{1+\sqrt{2}}{n}$$

$$x_{i} = a + (b-a)(i/n) = 0 + (1+\sqrt{2}-0)(i/n) = (1+\sqrt{2})(i/n)$$

$$= i/n + (\sqrt{2}i/n)$$

$$\therefore \sqrt{2}i/n \notin \mathbb{Q}, i/n + (\sqrt{2}i/n) \notin \mathbb{Q}, f(i/n + (\sqrt{2}i/n)) = 0$$

$$R_{n}(f, [0, 1+\sqrt{2}]) = \sum_{i=1}^{n} (0) \frac{1+\sqrt{2}}{n}$$

$$= 0$$

$$\{R_n(f,[0,1+\sqrt{2}])\}_{n=1}^{\infty} = \{0\}_{n=1}^{\infty} \text{ converges to } 0$$

part 4

$$R_n(f, [0, 1]) + R_n(f, [1, 1 + \sqrt{2}]) = 1 + 0 = 1 \neq R_n(f, [0, 1 + \sqrt{2}]) = 0$$
$$\lim_{n \to \infty} R_n(f, [0, 1]) + R_n(f, [1, 1 + \sqrt{2}]) = 1 + 0 = 1 \neq \lim_{n \to \infty} R_n(f, [0, 1 + \sqrt{2}]) = 0$$

(d) disprove

 $\{R_n(f,[0,1])\}$ converges to 1 as $n \to \infty$ as shown in 4.(c) part 1 but the dirichlet function defined in 4.(c) is not riemann integrable since

$$m_{i} = \inf\{f(x) : x_{i-1} \le x \le x_{i}\} = 0$$

$$M_{i} = \sup\{f(x) : x_{i-1} \le x \le x_{i}\} = 1$$

$$L(P, f) = \sum_{i=1}^{n} m_{i} \Delta x_{i} = \sum_{i=1}^{n} (0) \Delta x_{i} = 0$$

$$U(P, f) = \sum_{i=1}^{n} M_{i} \Delta x_{i} = \sum_{i=1}^{n} (1) \Delta x_{i} = \sum_{i=1}^{n} \Delta x_{i} = 1 - 0 = 1$$

$$\int_{a}^{b} f(x) dx = \sup\{L(P, f) : P \text{ a partition of } [a, b]\} = 0$$

$$\int_{a}^{b} f(x) dx = \inf\{U(P, f) : P \text{ a partition of } [a, b]\} = 1$$

$$\int_{a}^{b} f(x) dx = 0 \ne \int_{a}^{b} f(x) dx = 1$$

so f is not riemann integrable