Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

REAL ANALYSIS & CALCULUS (MA 111)

Week 2 / September 2023

Problem Set 4

GR

Real Analysis

Limits (of real-valued functions)

■ Tutorial and Assignment Problems

- 1. Show that (using ϵ - δ definition or sequential definition)
 - i. $\lim_{x\to c} \sin x = \sin c$
 - ii. $\lim_{x\to c} \sqrt{x} = \sqrt{c}$, where c > 0
 - iii. $\lim_{x \to 2} f(x) = 12$ where $f(x) = \begin{cases} \frac{x^3 8}{x 2} & \text{if } x \neq 2\\ 10 & \text{if } x = 2. \end{cases}$
- 2. Show that
 - i) $\lim_{x\to 0} \sin\frac{1}{x}$
 - ii) $\lim_{x\to 0} e^{\frac{1}{x}}$
 - iii) $\lim_{x\to\infty} x \sin x$
 - iv) $\lim_{x\to\infty} x^{1+\sin x}$

does not exist.

3. Let $f:(0,1)\to\mathbb{R}$ is defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in (0,1) \cap \mathbb{Q} \\ 0 & \text{if } x \in (0,1) \cap \mathbb{Q}^c. \end{cases}$$

Show that $\lim_{x\to a} f(x)$ does not exist, where $a \in [0,1]$.

4. Let
$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 2 - x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$
 Show that

$$i) \lim_{x \to 1} f(x) = 1$$

- ii) $\lim_{x\to c} f(x)$ does not exist, if $c \neq 1$.
- 5. By finding $\lim_{x\to 0+} \left[\frac{\sin x}{x}\right]$ and $\lim_{x\to 0-} \left[\frac{\sin x}{x}\right]$, check whether $\lim_{x\to 0} \left[\frac{\sin x}{x}\right]$ exists. [Note that [x] is greatest integer less than or equal to x.]
- 6. Find

i.
$$\lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x+3}}$$

[Hint: To compute $\lim_{x \to \infty} f(x)$, consider $y = \frac{1}{x}$. Then $\lim_{x \to \infty} f(x) = \lim_{y \to 0+} f\left(\frac{1}{y}\right)$]

For example, $\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{y \to 0+} \frac{\sin \frac{1}{y}}{\frac{1}{y}} = \lim_{y \to 0+} y \sin \frac{1}{y} = 0.$

ii.
$$\lim_{x \to \infty} \left(x - \sqrt{x^2 - 1} \right)$$

iii.
$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$$
 [Hint: $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$]