

CLAIMS

What is claimed is:

- 1 1. A method, comprising:
 - 2 enabling a processor to access first and second memory stores;
 - 3 employing a first portion of the first memory store as a general-purpose
 - 4 memory store;
 - 5 employing a second portion of the first memory store as a memory cache for
 - 6 the second memory store.
- 1 2. The method of claim 1, wherein the first memory store comprises an off-chip
- 2 static random access memory (SRAM) memory store.
- 1 3. The method of claim 1, wherein the second memory store comprises an off-
- 2 chip dynamic random access memory (DRAM) memory store.
- 1 4. The method of claim 1, wherein the second memory store comprises an off-
- 2 chip memory store comprising one of Rambus dynamic random access memory
- 3 (RDRAM), RLDRAM (reduced latency DRAM), DDR (double data rate), DDR-2, or
- 4 DDR-3 DRAM, and FCDRAM (fast cycle DRAM).
- 1 5. The method of claim 1, further comprising:
 - 2 employing a hardware-based cache management component to manage
 - 3 access to the memory cache.
- 1 6. The method of claim 5, further comprising:

2 maintaining a cache tag array implemented in the hardware-based cache
3 management component.

1 7. The method of claim 5, wherein the hardware-based cache management
2 component includes a content addressable memory (CAM) component, the method
3 further comprising:

4 managing access to the memory cache via the CAM component.

1 8. The method of claim 1, further comprising:
2 partitioning the memory cache into at least one data cache and at least one
3 address tag array.

1 9. The method of claim 8, wherein the processor supports concurrent execution
2 of a plurality of threads, the method further comprising:
3 maintaining an address tag array for each of said plurality of threads; and
4 maintaining a data cache for each of said plurality of threads.

1 10. The method of claim 1, wherein the processor comprises a network
2 processor.

1 11. The method of claim 10, further comprising:
2 integrating a front-side bus controller on the network processor; and
3 coupling a memory store to the network processor via a front-side bus.

1 12. The method of claim 10, further comprising:
2 employing the second memory store as a memory store for a general-
3 purpose processor integrated into the network processor.

1 13. A method, comprising:
2 enabling a plurality of network processors to access first and second shared
3 memory stores;
4 employing a first portion of the first shared memory store as a memory store;
5 employing a second portion of the first shared memory store as a memory
6 cache for the second shared memory store.

1 14. The method of claim 13, wherein the first shared memory store comprises
2 static random access memory (SRAM).

1 15. The method of claim 13, wherein the second shared memory store comprises
2 dynamic random access memory (DRAM).

1 16. The method of claim 13, further comprising:
2 configuring the memory cache as a cache array including a plurality of cache
3 lines; and
4 maintaining a local address-to-cache line map on each of the plurality of
5 network processors in which cache lines associated with that network processor are
6 mapped to corresponding memory addresses in an address space for the second
7 shared memory store.

1 17. The method of claim 16, further comprising:
2 broadcasting a cache line access request to the plurality of network
3 processors in response to a memory access request from a requesting network
4 processors; and

5 performing a cache line lookup in the local address-to-cache line map of each
6 network processor to determine which, if any, network processors owns a cache line
7 corresponding to the memory access request.

1 18. The method of claim 17, further comprising:
2 accessing the cache line to service the memory access request if it is
3 determined that one of the network processors owns the cache line; and
4 modifying entries in the local address-to-cache line maps for each of the
5 network processor that owned the cache line and the requesting network processor
6 to reassign ownership of the cache line to the requesting network processor.

1 19. The method of claim 17, further comprising:
2 accessing memory from the second shared memory store if it is determined
3 that none of the network processors owns the cache line;
4 selecting a cache line in the memory cache to replace;
5 copying data corresponding to data contained in the memory in the second
6 shared memory store that is accessed to the cache line selected to be replaced; and
7 modifying the local address-to-cache line map of the requesting network
8 processor to assign ownership of the cache line that is replaced to the requesting
9 network processor.

1 20. A network processor, comprising:
2 an internal interconnect;
3 a plurality of packet processing micro-engines, each coupled to the internal
4 interconnect;
5 a static random access memory (SRAM) controller, coupled to the internal
6 interconnect, to control access to an off-chip SRAM memory store;

7 a general-purpose processor, coupled to the internal interconnect; and
8 a cache management component, coupled to the internal interconnect, to
9 effectuate a memory cache in a first portion of the off-chip SRAM memory store,
10 wherein a second portion of the off-chip SRAM memory store may be
11 accessed as a non-cached memory store.

1 21. The network processor of claim 20, further comprising:
2 a front-side bus (FSB) interface; and
3 an FSB controller, coupled between the FSB interface and the internal
4 interconnect,
5 wherein the cache management component is programmed to manage a
6 memory cache in the SRAM memory store corresponding to a memory address
7 space for a dynamic random access memory (DRAM) memory store to be accessed
8 via the FSB interface.

1 22. The network processor of claim 20, further comprising:
2 a private communication channel linking the SRAM controller to the cache
3 management component.

1 23. The network processor of claim 20, further comprising:
2 a Rambus dynamic random access memory (RDRAM) interface; and
3 an RDRAM controller, coupled between the RDRAM interface and the internal
4 interconnect,
5 wherein the cache management component is programmed to manage a
6 memory cache in the SRAM memory store corresponding to a memory address
7 space for a RDRAM memory store to be accessed via the RDRAM interface.

1 24. The network processor of claim 20, wherein the cache management
2 component includes facilities for maintaining a hardware-based cache tag array.

1 25. The network processor of claim 20, wherein the cache management
2 component includes facilities to manage a cache tag array in a portion of the SRAM
3 memory store.

1 26. The network processor of claim 20, wherein the cache management
2 component includes facilities to effectuate a content addressable memory (CAM)
3 cache management scheme.

1 27. A system, comprising:
2 a static random access memory (SRAM) memory store, coupled to an SRAM
3 interface;
4 a dynamic random access memory (DRAM) memory store, coupled to a front-
5 side bus (FSB); and
6 a network processor, including:
7 an internal interconnect;
8 a plurality of packet processing micro-engines, each coupled to the
9 internal interconnect;
10 a static random access memory (SRAM) controller, coupled between
11 the internal interconnect and the SRAM interface;
12 a general-purpose processor, coupled to the internal interconnect;
13 an FSB interface, coupled to the front-side bus;
14 an FSB controller, coupled between the internal interconnect and the
15 FSB interface; and

16 a cache management component, coupled to the internal interconnect,
17 to effectuate a memory cache in a first portion of SRAM memory store,
18 wherein a second portion of the SRAM memory store may be accessed as a
19 non-cached memory store.

1 28. The system of claim 27, further comprising:
2 a Rambus dynamic random access memory (RDRAM) memory store,
3 coupled to an RDRAM interface; and
4 an (RDRAM) controller, integrated on the network processor and coupled
5 between the RDRAM interface and the internal interconnect.

1 29. The system of claim 27, wherein the FSB controller and the cache
2 management component are integrated.

1 30. The system of claim 27, wherein the cache management component includes
2 facilities for maintaining a hardware-based cache tag array.