

CHEMISTRY

9th class Date: 24-09-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in

Phone: +91-9840154665

Last class...

- ☐ CFT Octahedral complexes
- □ Spectrochemical series
- Charge on the central metal ion

In this class...

☐ Crystal Field Theory – continuation

[Co(NH₃)₆]Cl₃ CFSE and magnetic moment SRM

- □ Cobalt must be Co³⁺ because the charges (X+6(0)+3(-1)) must add up to the overall 0
- ☐ d electron count : Co : electronic configuration is 3d⁷4s²
- ☐ d electron count Co³⁺ : 3d⁶

Element	Symbol	Z	Electronic configuration
Scandium	Sc	21	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²
Titanium	Ti	22	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²
Vanadium	V	23	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²
Chromium	Cr	24	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹
Manganese	Mn	25	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²
Iron	Fe	26	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ²
Cobalt	Co	27	$1s^22s^22p^63s^23p^63d^74s^2$
Nickel	Ni	28	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²
Copper	Cu	29	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹
Zinc	Zn	30	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²

$[Co(NH_3)_6]^{3+}$ magnetic moment?

- \Box 6 electrons are present in t_{2g} level and 0 electrons are present in e_a level.
- □ The crystal field stabilization energy of $[Co(NH_3)_6]Cl_3$ is CFSE = $6 \times (-0.4\Delta_0) + 0 \times (0.6\Delta_0) = -2.4\Delta_0$

Summary, Octahedral, 3d elements, CFT

CFT as applied to tetrahedral complexes

I CuCl₄ J²-

Tetrahedral complex in a cube. Ligands are on alternate corners of the cube.

CFT as applied to tetrahedral complexes Crystal field splitting of d-orbitals in tetrahedral complexes

- ☐ In case of free metal ion, all the five d-orbitals are degenerate, i.e., these have the same energy.
- □ In [ML₄]ⁿ⁺, the central metal cation is surrounded tetrahedrally by four ligands. A tetrahedron may be supposed to have been formed from a cube.

☐ The <u>center of the cube</u> is the central of tetrahedron at which is <u>placed the central metal ion</u>. <u>Four alternate corners of the cube</u> are <u>the four corners of the tetrahedron</u> at which the <u>four ligands are placed</u>.

The dyz orbital in tetrahedral coordination. Electrons in this orbital can approach within a distance of a/2 to ligand electrons.

The d_{z2} orbital in tetrahedral coordination: electrons in d_{z2} are further from the ligands than electrons in d_{yz}.

where a is the cube edge length

- ☐ Four ligands are lying between the three axes viz., x, y and z axes which pass through the center of the six faces of the cube and thus go through the center of the cube.
- Since the lobes of the $\underline{t_2}$ orbitals $(\underline{d_{xy}}, \underline{d_{yz}}, \underline{and} \underline{d_{xz}})$ are lying between the axes, ie., are lying closely in the path of the <u>ligands</u>, these orbitals experience greater force of repulsion than those in <u>e orbitals</u> $(\underline{d_z}^2 \ and \ \underline{d_x}^2 \ \underline{d_z}^2)$ whose <u>lobes are lying along the axes</u>, <u>ie., are lying between the ligands</u>.

- □ Thus the t₂ orbitals are nearer to the direction of approach of the ligands than the e orbitals. Hence, t₂ orbitals have higher energy compared to e-orbitals. So the energy of t₂ orbitals is increased while that of e is decreased.
- ☐ The d-orbitals are now split into two levels viz., <u>higher energy</u>

 <u>t₂ level and lower energy e level</u> which is the reverse that seen for t₂g and eg sets in octahedral complexes.

The energy gap between t_2 and e sets is denoted by Δ_t . It has been shown that $\Delta_t < \Delta_o$, t_2 orbitals are now closest to the ligands and not point directly at the ligands. In octahedral complex, there is a ligand along the axis and in tetrahedral complex no ligand lies directly along any axis.

There are only <u>4 ligands</u> in the tetrahedral complex while in an octahedral complex there are <u>6 ligands</u>, So $\Delta_t < \Delta_o$. <u>Hence the ligand field is roughly 2/3 of the octahedral field</u>

- The <u>direction of ligand approach in tetrahedral complex</u> does not coincide with the d-orbitals. This reduces the <u>field by a factor of 2/3</u>. Therefore $\triangle t$ is roughly 2/3 x 2/3 = 4/9 of $\triangle o$.

- \Box The energy of t_2 orbitals is raised 0.4 Δ_t while the energy of e orbitals is lowered 0.6 Δ_t
- □ In case of tetrahedral complex, since △_t < P, the electrons tend to remain unpaired and hence only high spin tetrahedral complexes are known.

Filling up t₂ and e orbitals with electrons in high spin tetrahedral complexes

- □ The filling of t₂ and e orbitals <u>takes place according to</u> <u>Hund's rule</u>, i.e., electrons pair up only when each of the five d-orbitals is at least singly filled.
- ☐ The pairing of electrons will start from e orbitals, since these orbitals have less energy than t₂ orbitals.

- Let's calculate the crystal field stabilization energy for a tetrahedral cobalt(II) complex. Cobalt(II) is a d⁷ ion.
- The electronic configurations of the free ion and the tetrahedral complex are shown below.

$$\frac{1}{1} \quad \frac{1}{1} \quad \frac{1}$$

CFSE =
$$(4 \text{ electrons})(-3/5 \text{ A}_t) + (3 \text{ electrons})(2/5 \text{ A}_t)$$

= -1.2 A_t

[Ni(Br)₄]²⁻, CFSE, spin & magnetism?

- e⁴t₂⁴
- -4/5 ∆t
- Unpaired electrons : 2

$$\mu_{so}=\sqrt{n(n+2)}$$

$$\mu_{so}=\sqrt{4S(S+1)}$$

- Paramagnetic
- Magnetic moment : 2.83 BM

Crystal Field Theory: Summary, Tetrahedral Complexes

- Imagine a tetrahedral molecule inside a cube with **metal ions in the center** of the cube. The **ligands occupy the four alternate corners of the cube** leaving the rest four corners empty.
- The two 'e' $(d_{x2-y2}$ and d_z^2) orbitals point to the center of the face of the cube while the three 't₂' (d_{xy}, d_{yz}) and d_{zx} orbitals point to the center of the edges of the cube.
- ☐ Thus, the t₂ orbitals are nearer to the direction of approach of the ligands than the e orbitals. (The ligands do not directly approach any of the metal d

orbitals)

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.