PROBLEM SET 7

DUE FEBRUARY 28

- (1) 3.2.9

- (2) Show rigorously that sup{1 1/n | n ∈ N} = 1.
 (3) Let S = {1 (-1)ⁿ/n | n ∈ N}. Find sup S and inf S.
 (4) Show that every bounded open interval (a, b) ⊆ ℝ can be described as $\{x \in \mathbb{R} \mid |x - x_0| < \epsilon\}$ for some value $x_0 \in \mathbb{R}$ and some $\epsilon > 0$. What are the values of x_0 and ϵ in terms of a and b? And conversely, given x_0 and ϵ , what are the endpoints of the interval $\{x \in \mathbb{R} \mid |x - x_0| < \epsilon\}$?
- (6) Let $I_n = [a_n, b_n]$ for $n \in \mathbb{N}$ be a nested collection of intervals. Suppose that $\inf\{b_n - a_n \mid n \in \mathbb{N}\} = 0$. Show that the number $\xi \in \bigcap_{n=1}^{\infty} I_n$ is unique.
- (7) 3.6.5
- (8) Show that the sequence $a_n = (-1)^n$ is divergent.
- (Bonus) Use the nested interval theorem to obtain a new proof of the fact that $\mathbb R$ is uncountable.