CARLINGFORD HIGH SCHOOL

YEAR 12 2016

HSC Assessment Term 2

MATHEMATICS (2 unit)

Time allowed: 55 minutes

Instructions

- 1. Start each question on a NEW sheet of paper.
- 2. Write name, class and teacher on each page.
- 3. Board-approved calculators may be used in all parts of the test.
- 4. All necessary working should be shown in every question.
- 5. Marks may be deducted for careless or badly arranged work.

	Q1	Q2	Q3	Q4	Total
Н6					
Total	/17	/18	/11	/11	/57

Question 1 (17 marks) [START A NEW PAGE]

- (a) If $\log_x a = 3.6$ and $\log_x b = 2$ find:
 - (i) $\log_x ab$
 - (ii) $2\log_x a + \log_x b^3$
- (b) Solve the following equations for x:
 - (i) $\log_x 64 = 3$
 - (ii) $\log_{27} x = -\frac{1}{3}$
- (c) Express in simplest form $e^{2\ln x}$
- (d) Show that $5\log_{32} x = \log_2 x$ 2
- (e) Find k if $3^{2k+1} \times 9^{k-1} = 1$
- (f) Solve $2^x = 5$ correct to 1 decimal point 2
- (g) Solve $log_2(x+1) log_2(x-1) = 3$

Question 2 (18 marks) [START A NEW PAGE]

(a) Differentiate with respect to x:

(i)
$$y = lnxe^x$$

(ii)
$$y = \ln\left(\frac{2x+1}{2x-1}\right)$$
 2

(b) (i)
$$\int e^{4x+1} dx$$

(ii)
$$\int_{1}^{e} \frac{x+1}{x} dx$$

$$(iii) \qquad \int \frac{x^2}{x^3 - 1} dx$$

(c) Given that $y = e^{3x^2}$ find:

(i)
$$\frac{dy}{dx}$$

(ii) Hence, find
$$\int_0^1 x e^{3x^2} dx$$
 2

- (d) Find the equation of the curve that has $f''(x) = 12e^{2x}$ and a stationary point at (0, -4).
- (e) Find the equation of the tangent to the curve $y = e^{\log_e x^2}$ at the point on the curve where x = e.

- (a) Consider the curve $y = xe^x$
 - (i) Show that $\frac{dy}{dx} = e^x(x+1)$
 - (ii) Show that the curve has one stationary point.
 - (iii) Given that $\frac{d^2y}{d^2x} = e^x(2 + x)$, determine the nature of the stationary point.
 - (iv) Find any inflexion points. 2
 - (v) Sketch the curve showing all the main features, noting that $\lim_{x\to\infty} xe^x = \infty$ and $\lim_{x\to\infty} xe^x = 0$ 2
- (b) (i) Find the exact area bounded by the curve $y = e^x$, the x-axis and the lines x = 1 and x = 3
 - (ii) Hence, or otherwise, find the shaded area. 2

1

Question 4 (11 marks) [START A NEW PAGE]

- (a) Find the volume of the solid generated when the area bounded by the curve $y = e^{2x}$, the y-axis, the x-axis and the ordinate at $x = \log_e 2$ is rotated about the x-axis.
- 3

1

- (b) (i) Write down the domain of $y = \frac{\ln x}{x}$
 - (ii) Find where the graph of this function cuts the x-axis.
 - (iii) It is known that

(iv)

$$\frac{dy}{dx} = \frac{1 - \ell nx}{x^2}$$
 (DO NOT PROVE THIS)

Hence, show that
$$\frac{d^2y}{dx^2} = \frac{2 \ln x - 3}{x^3}$$

Find the only stationary point and determine its nature.

2

2

(v) Find the exact coordinates of the only point of inflection.

2

END OF TEST

Factorisation

$$a^{2}-b^{2} = (a+b)(a-b)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Trigonometric ratios and identities
$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\sin \theta}{\sin \theta}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

Exact ratios

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area of a triangle

$$Area = \frac{1}{2}ab\sin C$$

Distance between two points

$$d = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line

$$y - y_1 = m(x - x_1)$$

nth term of an arithmetic series

$$T_n = a + (n-1)d$$

Sum to n terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

nth term of a geometric series

$$T_n = ar^{n-1}$$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad \text{or} \quad S_n = \frac{a(1 - r^n)}{1 - r}$$

Limiting sum of a geometric series

$$S = \frac{a}{1 - r}$$

Compound interest

$$A_n = P\bigg(1 + \frac{r}{100}\bigg)^n$$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

Integrals

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$

$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

$$180^{\circ} = \pi \text{ radians}$$

Length of an arc

$$l=r\epsilon$$

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

QUESTION !

Q1. Kon

(a)
$$\log_{x} a = 3.6$$
 $\log_{x} b = 2$

$$(ii)$$
 $2\log_{x} a + \log_{x} b^{3} = 2\log_{x} a + 3\log_{x} b$

$$= 2 \times 3.6 + 3 \times 2 = 7.2 + 6 = 13.2$$

(b) (i)
$$\log_{10} 64 = 3$$

$$\chi^3 = 64$$
 => $\chi = 4$.

(ii)
$$\log_2 \chi = -\frac{1}{3} = -3^{-1}$$

$$2. \quad \chi = \frac{1}{27^{\nu_3}} = \frac{1}{3}$$

$$(d) \cdot \int \log_{32} x = \log_2 x.$$

Show that
$$\log_{32} x^5 = \log_2 x$$

$$\frac{LUS = \log_2 x^5}{\log_2 32} = \frac{\log_2 x^5}{\log_2 2^5}$$

Lus = $\log_2 x^5$ | = $\log_2 x^5$ = $\log_2 x^5$ = $\log_2 x$ = Rus assignized.

(e)
$$3^{2k+1} \times 9^{k-1} = 1$$
 $3^{2k} \times 3 \times 3^{2\ell(k-1)} = (1) 3^{n}$

=) $3^{2k+1+2k-2} = 1$

=) $3^{4k-1} = 1$

• $4k-1=0 \quad k = \frac{1}{4}$

(f) $2^{x} = 5$

[a) $\log_{2} 6 = x$

• $2^{x} = 5$

[b) $2^{x} = 5$

[c) $2^{x} = 5$

[d) $2^{x} = 5$

[d) $2^{x} = 5$

[e) $2^{x} = 5$

[f) $2^{x} = 5$

[g) $2^{x} = 5$

[g) $2^{x} = 5$

[g) $2^{x} = 3$

[g) $2^{x} = 1$

[g

Q.2(h) (1)
$$\int e^{kx+1} dx$$

= $\int e^{kx+1} + C$.

(ii) $\int \frac{e^{x+1}}{x} dx = \int (1+\frac{1}{x}) dx$

= $\left[x + \ln x\right]^{e}$

= $e^{x} + \ln e - 1 - \ln e$

= $e^{x} + \ln e - 1 - \ln e$

(ii) $\int \frac{x^{2}}{x^{3}-1} dx = \int \ln (x^{3}-1) + C$.

(c) $\int \frac{dy}{dx} = \log x^{3} dx$

(ii) $\int \frac{dy}{dx} = \log x^{3} dx = \int e^{3x^{2}} dx$

= $\int (2x + \ln x)^{e} dx = \int e^{3x^{2}} dx$

= $\int (x + \ln x)^{e} dx = \int e^{3x^{2}} dx =$

$(a) \ell^{11}(a) = 12e^{2\pi i}$
$f(x) = 6e^{2x} + c.$
At $(0,-4)$ dy =0 0° 0 = 6e° + c => c=-6.
$e^{\circ} f(x) = 6e^{2x} - 6$
$f(x) = 3e^{2x} - 6x + k.$
$(0,-4) \Rightarrow -4 = 3 - 0 + k \Rightarrow k = -7$
$- \frac{1}{6} = 3e^{2x} - 6x = -7$
$(e) y = e^{\log_e x} = x^2$
$\frac{dy}{dx} = 2x \qquad 4tx = e \qquad y = 2e$
$\frac{dx=e}{y=e^2}.$
$y - e^2 = 2e(x - e) = 2ex - 2e^2$
$= y = 2ex - e^2.$

.

Question 3
(a) $y = xe^x$
(i) $dy = e^{x} + xe^{x}$
(i) dy = en + xen
A
(i) =0 When en (1+x)=0 ie x=-1
(ii) $d^2y = e^x + e^x + xe^x = 2e^x + xe^x = e^x(x+2)$.
$\frac{1}{h^2}$
At x=-1, dry 70 00 min'm stat. pt.
dx2
(iv) $d^2y = 0$ for unlarge $d^2y = 0$ at $x = -2$,
(iv) $\frac{d^2y}{dx^2} = 0$ for inflaxion $\frac{d^2y}{dx^2} = 0$ at $x = -2$
16 x = -2 d24 x 0 1f x 2-2 d24 x 0.
If $x < -2$, $\frac{d^2y}{dx^2} < 0$, If $x > -2$, $\frac{d^2y}{dx^2} > 0$.
or. Inflorior at $(-2, -2e^{-2})$.
o vyeria in (2, de).

$$= \frac{1}{4} \left[e^{4x} \right]_{0}^{\log_{e} 2}$$

$$= \frac{\pi}{4} \left[2^4 - 1 \right] = \frac{\pi}{4} \times 15 \quad \text{cubic mub}.$$

(b) (i)
$$y = \ln x$$

(ii) cut x-axis at y=0. ie x=1

$$\frac{d^2y}{dx^2} = -\frac{1}{x}x^{2^2} - 2x(1-\ln x)$$

$$= -x - 2x + 2x \ln x$$

$$= \frac{2 \ln x - 3}{\gamma^3}$$

 $\frac{dy}{dx} = 0 \quad \text{when} \quad \frac{|-\ln x|}{x^{2}} = 0 \quad \text{we have} = 1, x = e.$ $\frac{dx}{dx} = \frac{d^{2}y}{dx^{2}} = \frac{2-3}{e^{3}} = -\frac{1}{e^{3}}. < 0$ $\frac{dx}{dx^{2}} = \frac{2-3}{e^{3}} = \frac{-1}{e^{3}}. < 0$ $\frac{d^{2}y}{dx^{2}} = 0 \quad \text{for unflexion} \quad \text{when have} = \frac{3}{2}.$ $\frac{d^{2}y}{dx^{2}} = 0 \quad \text{for unflexion} \quad \text{when have} = \frac{3}{2}.$ $\frac{d^{2}y}{dx^{2}} = 0 \quad \text{for unflexion} \quad \text{when have} = \frac{3}{2}.$ $\frac{d^{2}y}{dx^{2}} = \frac{3}{2}.$