Information Visualization

Spatial Layout (a) Arrange Tables

Slides refer to https://www.cs.ubc.ca/~tmm/

Spatial Layout

• Arrange Tables (ch. 7)

• Arrange Spatial Data (ch. 8)

• Arrange Networks and Trees (ch. 9)

How?

Encode

→ Arrange

→ Express

→ Separate

→ Order

the transfer of the production of the contract of the production of the contract of the contra

....

→ Use

Map

from categorical and ordered attributes

→ Color

Size, Angle, Curvature, ...

→ Motion Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

Filter

Select

Partition

Aggregate

→ Navigate

Superimpose

→ Embed

Encode tables: Arrange space

Encode

- → Express
- → Separate

→ Order

→ Align

→ Use

Arrange tables

Express Values

Separate, Order, Align Regions

Axis Orientation

Layout Density

Keys and Values

key

- -independent attribute
- -used as unique index to look up items
- -simple tables: 1 key
- -multidimensional tables: multiple keys

value

- -dependent attribute, value of cell
- classify arrangements by key count
 - -0, 1, 2, many...

→ Tables

→ Multidimensional Table

Idiom: scatterplot

- express values
 - -quantitative attributes
- no keys, only values
 - -data
 - 2 quant attribs
 - -mark: points
 - -channels
 - horiz + vert position
 - -tasks

- find trends, outliers, distribution, correlation, clusters
- -scalability
 - hundreds of items

Scatterplots: Encoding more channels

- additional channels viable since using point marks
 - color
 - size (bubbleplots)
 - radius is misleading, take square root since area grows quadratically

- shape

https://www.gapminder.org/

Scatterplot tasks

Correlation

https://www.mathsisfun.com/data/scatter-xy-plots.html

• clusters/groups, and clusters vs classes

https://www.cs.ubc.ca/labs/imager/tr/2014/DRVisTasks/

Some keys: Categorical regions

- regions: contiguous bounded areas distinct from each other
 - -using space to separate (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Idiom: bar chart

- one key, one value
 - -data
 - 1 categ attrib, 1 quant attrib
 - -mark: lines
 - -channels
 - length to express quant value
 - spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - » by label (alphabetical), by length attrib (data-driven)
 - -task
 - compare, lookup values
 - -scalability
 - dozens to hundreds of levels for key attrib

Animal Type

Idiom: stacked bar chart

- one more key
 - -data
 - 2 categ attrib, 1 quant attrib
 - -mark: vertical stack of line marks
 - glyph: composite object, internal structure from multiple marks
 - -channels
 - length and color hue
 - spatial regions: one per glyph
 - aligned: full glyph, lowest bar component
 - unaligned: other bar components
 - -task
 - part-to-whole relationship
 - -scalability
 - several to one dozen levels for stacked attrib

[Using Visualization to Understand the Behavior of Computer Systems. Bosch. Ph.D. thesis, Stanford Computer Science, 2001.]

Idiom: streamgraph

- generalized stacked graph
 - -emphasizing horizontal continuity
 - vs vertical items
 - -data
 - 1 categ key attrib (artist)
 - 1 ordered key attrib (time)
 - 1 quant value attrib (counts)
 - -derived data
 - geometry: layers, where height encodes counts
 - 1 quant attrib (layer ordering)
 - -scalability
 - hundreds of time keys
 - dozens to hundreds of artist keys
 - more than stacked bars, since most layers don't extend across whole chart

[Stacked Graphs Geometry & Aesthetics. Byron and Wattenberg. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008) 14(6): 1245–1252, (2008).]

Idiom: line chart

- one key, one value
 - -data
 - 2 quant attribs
 - -mark: points
 - line connection marks between them

-channels

- aligned lengths to express quant value
- separated and ordered by key attrib into horizontal regions

-task

- find trend
 - -connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

Chart axes: avoid cropping y axis

- include 0 at bottom left or slope misleads
 - some exceptions (arbitrary 0, small change matters)

[Truncating the Y-Axis: Threat or Menace? Correll, Bertini, & Franconeri, CHI 2020.]

Idiom: line chart

• Banking to 45 degrees

[Heer and Agrawala 06]

Choosing bar vs line charts

- depends on type of key attrib
 - -bar charts if categorical
 - -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073–1079.]

Idiom: heatmap

- two keys, one value
 - -data
 - 2 categ attribs (gene, experimental condition)
 - 1 quant attrib (expression levels)
 - -marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - -channels
 - color by quant attrib
 - (ordered diverging colormap)
 - -task
 - find clusters, outliers
 - -scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

Heatmap reordering

Idiom: cluster heatmap

- in addition
 - -derived data
 - 2 cluster hierarchies
 - -dendrogram
 - Parent-child relationships in tree with connection line marks
 - Leaves aligned so interior branch heights easy to compare
 - -heapmap
 - Marks (re-)ordered by cluster hierarchy traversed

Axis Orientation

- → Rectilinear

→ Parallel

→ Radial

Idioms: scatterplot matrix, parallel coordinates

scatterplot matrix (SPLOM)

- -rectilinear axes, point mark
- -all possible pairs of axes
- -scalability
 - one dozen attribs
 - dozens to hundreds of items

parallel coordinates

- -parallel axes, jagged line representing item
- -rectilinear axes, item as point
 - axis ordering is major challenge
- -scalability
 - dozens of attribs
 - hundreds of items

Math	Physics	Dance	Drama
100- 90- 80- 70- 60- 50- 40- 30-	Physics	Dance	Drama
20- 10-			
0-	'	1	'

Table

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Task: Correlation

- scatterplot matrix
 - -positive correlation
 - diagonal low-to-high
 - -negative correlation
 - diagonal high-to-low
 - -uncorrelated
- parallel coordinates
 - -positive correlation
 - parallel line segments
 - -negative correlation
 - all segments cross at halfway point
 - -uncorrelated
 - scattered crossings

[A layered grammar of graphics. Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $\rho = 1, .8, .2, 0, -.2, -.8,$ and -1.

Idioms: radial bar chart, star plot

- radial bar chart
 - -radial axes meet at central ring, line mark
- star plot
 - -radial axes, meet at central point, line mark
- bar chart
 - -rectilinear axes, aligned vertically

- accuracy
 - -length unaligned with radial
 - less accurate than aligned with rectilinear

Idioms: pie chart, polar area chart

- pie chart
 - -area marks with angle channel
 - -accuracy: angle/area less accurate than line length
 - arclength also less accurate than line length
- polar area chart
 - -area marks with length channel
 - -more direct analog to bar charts
- data
 - -1 categ key attrib, 1 quant value attrib
- task
 - -part-to-whole judgements

Coxcomb / nightingale rose / polar area chart

invented by Florence Nightingale

Blue: epidemic

Red: wounds

Black: other

http://www.florence-nightingale-avenging-angel.co.uk/Nightingale Hockey Stick.pdf

Idioms: normalized stacked bar chart

- task
 - -part-to-whole judgements
- normalized stacked bar chart
 - -stacked bar chart, normalized to full vert height
 - -single stacked bar equivalent to full pie
 - high information density: requires narrow rectangle
- pie chart
 - -information density: requires large circle

Idiom: glyphmaps

 rectilinear good for linear vs nonlinear trends

 radial good for cyclic patterns

[Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models. Wickham, Hofmann, Wickham, and Cook. Environmetrics 23:5 (2012), 382–393.]

Orientation limitations

- rectilinear: scalability wrt #axes
 - 2 axes best
 - 3 problematic
 - more in afternoon
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - -angles lower precision than lengths
 - -asymmetry between angle and length
 - can be exploited!

[Uncovering Strengths and Weaknesses of Radial Visualizations - an Empirical Approach. Diehl, Beck and Burch. IEEE TVCG (Proc. InfoVis) 16(6):935--942, 2010.]

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

dense software overviews

- Layout Density
 - → Dense

Layout density

- Space-Filling
 - It fills all available space in the view
- Marks
 - Area
 - Containment

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
 - -Chap 7: Arrange Tables
- Visualizing Data. Cleveland. Hobart Press, 1993.
- A Brief History of Data Visualization. Friendly. 2008. http://www.datavis.ca/milestones