1.4 **Exercises**

 \nearrow Let $A_0, ..., A_n$ be the vertices of a polygon. Determine $\overrightarrow{A_0A_1} + \overrightarrow{A_1A_2} + \cdots + \overrightarrow{A_{n-1}A_n} + \overrightarrow{A_nA_0}$.

2! In each of the following cases, decide if the indicated vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ can be represented with the vertices of a triangle:

a)
$$\mathbf{u}(7,3)$$
, $\mathbf{v}(2,8)$, $\mathbf{w}(-5,5)$.

b)
$$\mathbf{u}(1,2,-1)$$
, $\mathbf{v}(2,-1,0)$, $\mathbf{w}(1,-3,1)$.

 \mathcal{A} . Let ABCD be a quadrilateral. Let M, N, P, Q be the midpoints of [AB], [BC], [CD] and [DA] respectively. Show that

$$\overrightarrow{MN} + \overrightarrow{PQ} = 0.$$

Deduce that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram.

 \not A. Let ABCD be a quadrilateral. Let E be the midpoint of [AC] and let F be the midpoint of [BD].

$$\overrightarrow{EF} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{CD}) = \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{CB}).$$

 \nearrow Let ABCD be a quadrilateral. Let E be the midpoint of [AB] and let F be the midpoint of [CD]. Show that

$$\overrightarrow{EF} = \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{BC}).$$

Let A', B' and C' be midpoints of the sides of a triangle ABC. Show that for any point O we have

$$\overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
.

7. Show that the medians in a triangle intersect in one point and deduce the ratio in which the common intersection point divides the medians.

%. In each of the following cases, decide if the given points are collinear:

$$+1000$$
 $P(3,-5), Q(-1,2), R(-5,9).$

$$\not$$
 $P(1,0,-1), Q(0,-1,2), R(-1,-2,5).$

b)
$$A(11,2)$$
, $B(1,-3)$, $C(31,13)$.

d)
$$A(-1,-1,-4)$$
, $B(1,1,0)$, $C(2,2,2)$.

9. Let *ABCD* be a tetrahedron. Determine the sums

a)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$
,

b)
$$\overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{DB}$$

b)
$$\overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{DB}$$
, c) $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} + \overrightarrow{DA}$

10. Let *ABCD* be a tetrahedron. Show that

$$\overrightarrow{AD} + \overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{AC}$$
.

11. Let SABCD be a pyramid with apex S and base the parallelogram ABCD. Show that

$$\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} = 4\overrightarrow{SO}$$

where *O* is the center of the parallelogram.

- 12. Give the coordinates of the vertices of the parallelepiped whose faces lie in the coordinate planes and in the planes x = 1, y = 3 and z = -2.
- **13.** In \mathbb{E}^3 consider the parallelograms $A_1A_2A_3A_4$ and $B_1B_2B_3B_4$. Show that the midpoints of the segments $[A_1B_1]$, $[A_2B_2]$, $[A_3B_3]$ and $[A_4B_4]$ are the vertices of a parallelogram.
- 14. Which of the following sets of vectors form a basis?
 - a) $\mathbf{v}(1,2)$, $\mathbf{w}(3,4)$;
 - b) $\mathbf{u}(-1,2,1)$, $\mathbf{v}(2,1,1)$, $\mathbf{w}(1,0,-1)$;
 - c) $\mathbf{u}(-1,2,1)$, $\mathbf{v}(2,1,1)$, $\mathbf{w}(0,5,3)$;
 - d) $\mathbf{v}_1(-1,2,1,0)$, $\mathbf{v}_2(2,1,1,0)$, $\mathbf{v}_3(1,0-1,1)$, $\mathbf{v}_4(1,0,0,1)$;
- **15.** With respect to the basis $\mathcal{B} = (\mathbf{i}, \mathbf{j}, \mathbf{k})$ consider the vectors $\mathbf{u} = \mathbf{i} + \mathbf{j}$, $\mathbf{v} = \mathbf{j} + \mathbf{k}$ and $\mathbf{w} = \mathbf{i} + \mathbf{k}$. Check that $\mathcal{B}' = (\mathbf{u}, \mathbf{v}, \mathbf{w})$ is a basis and give the base change matrix $\mathbf{M}_{\mathcal{B}', \mathcal{B}}$.
- **16.** Consider the two coordinate systems $\mathcal{K} = (O, \mathbf{i}, \mathbf{j})$ and $\mathcal{K}' = (O', \mathbf{i}', \mathbf{j}')$ given in Example 1.20. Determine the base change matrix from \mathcal{K} to \mathcal{K}' and the coordinates of the points

$$[A]_{\mathcal{K}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad [B]_{\mathcal{K}} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad [C]_{\mathcal{K}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

in the system \mathcal{K}' . Further, determine the base change matrix from \mathcal{K}' to \mathcal{K} and use it with the previously obtained coordinates to calculate $[A]_{\mathcal{K}}$, $[B]_{\mathcal{K}}$ and $[C]_{\mathcal{K}}$.

17. Consider the tetrahedron *ABCD* and the coordinate systems

$$\mathcal{K}_{A} = (A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}), \quad \mathcal{K}'_{A} = (A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AC}), \quad \mathcal{K}_{B} = (B, \overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD}).$$

Determine

- a) the coordinates of the vertices of the tetrahedron in the three coordinate systems,
- b) the base change matrix from \mathcal{K}_A to \mathcal{K}'_A ,
- c) the base change matrix from K_B to K_A .
- **18.** Consider the two coordinate systems $\mathcal{K} = (O, \mathbf{i}, \mathbf{j}, \mathbf{k})$ and $\mathcal{K}' = (O', \mathbf{i}', \mathbf{j}', \mathbf{k}')$ given in Example 1.21. Determine the base change matrix from \mathcal{K} to \mathcal{K}' and the coordinates of the points

$$[A]_{\mathcal{K}} = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}, \quad [B]_{\mathcal{K}} = \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}, \quad [C]_{\mathcal{K}} = \begin{bmatrix} -3 \\ 7 \\ 1 \end{bmatrix}, \quad [D]_{\mathcal{K}} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$$

in the coordinate system \mathcal{K}' . Further, determine the base change matrix from \mathcal{K}' to \mathcal{K} and use it with the previously determined coordinates to calculate $[A]_{\mathcal{K}}$, $[B]_{\mathcal{K}}$, $[C]_{\mathcal{K}}$ and $[D]_{\mathcal{K}}$.

2. In each of the following cases, decide if the indicated vectors **u**, **v**, **w** can be represented with the vertices of a triangle:

(1), (2) \Rightarrow) $\overrightarrow{A_1 A_2} = \overrightarrow{A_1 A_3} \Rightarrow \overrightarrow{C_1 C_2} = \overrightarrow{C_1 C_3} \Rightarrow \overrightarrow{C_1 C_2} = \overrightarrow{C_1 C_2} C_3 C_n$ is a parallegram

- a) $\mathbf{u}(7,3)$, $\mathbf{v}(2,8)$, $\mathbf{w}(-5,5)$.
- b) $\mathbf{u}(1,2,-1)$, $\mathbf{v}(2,-1,0)$, $\mathbf{w}(1,-3,1)$.

 $\frac{1}{2}\left(\overrightarrow{A_1}\overrightarrow{A_2} + \overrightarrow{B_1}\overrightarrow{B_2}\right) = \overrightarrow{C_1}\overrightarrow{C_2} \quad (4)$

A,A3 + A3C3 + C3Cn + C4An =0

3. Let ABCD be a quadrilateral. Let M, N, P, Q be the midpoints of [AB], [BC], [CD] and [DA] respectively. Show that

$$\overrightarrow{MN} + \overrightarrow{PQ} = 0.$$

4. Let ABCD be a quadrilateral. Let E be the midpoint of [AC] and let F be the midpoint of [BD]. Show that

$$\overrightarrow{EF} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{CD}) = \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{CB}).$$

$$\frac{-7}{EF} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{OB})$$

$$\frac{\partial}{\partial F} = \frac{1}{2} + \frac{$$

5. Let ABCD be a quadrilateral. Let E be the midpoint of [AB] and let F be the midpoint of [CD]. Show that

$$\overrightarrow{EF} = \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{BC} \right).$$

$$\overrightarrow{EP} = \frac{1}{2}\overrightarrow{AB} + 3C + \frac{1}{2}\overrightarrow{CB} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{BD} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2$$

$$= \frac{1}{2} \overrightarrow{A} \overrightarrow{D} + \frac{1}{2} \overrightarrow{D} \overrightarrow{C} + \frac{1}{2} \overrightarrow{B} \overrightarrow{C} + \frac{1}{2} \overrightarrow{A} \overrightarrow{D} + \frac{1}{2} \overrightarrow{B} \overrightarrow{C}$$

6. Let A', B' and C' be midpoints of the sides of a triangle ABC. Show that for any point O we have

$$\overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
.

$$\overrightarrow{OA} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{BC}$$

$$\overrightarrow{OB} = \overrightarrow{OC} + \frac{1}{2}\overrightarrow{CA}$$

$$\overrightarrow{OC} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB}$$

7. Show that the medians in a triangle intersect in one point and deduce the ratio in which the common intersection point divides the medians.

$$\overrightarrow{AG} = \overrightarrow{AC} + \overrightarrow{CA} + \overrightarrow{AG} = \overrightarrow{AC} + \frac{1}{2} \overrightarrow{CB} + \overrightarrow{AG} = \frac{1}{2} (\overrightarrow{AC} + \overrightarrow{AB}) + \overrightarrow{AG}$$

$$BB' = \frac{1}{2} \left(BC + BA \right)$$

$$CC' = \frac{1}{2} \left(CA + CB \right)$$

