Lifting Formal Concept Analysis to System-Z and Beyond

Lucas Carr

August 2024

Contents

1	Implications and Rankings		
	1.1	Implications	2
	1.2	Rankings	2
		1.2.1 Pearl	2

1 Implications and Rankings

1.1 Implications

1.2 Rankings

1.2.1 **Pearl**

The following may, at times, be entirely plagiarised from [1]. It is for my own understanding.

Consider a set of rules $R = \{r : A_r \to B_r\}$ where A_r and B_r are sets of attributes and \to is the normal attribute implication. In a classical sense, this implication is respected by another set of attributes, Y, in case $A \not\subseteq Y$ or $B \subseteq Y$. A stronger notion is that Y verifies $A \to B$ when $A \cup B \subseteq Y$. This is enforcing an intuitive understanding of conditionals, where the antecedent *must* be true - we avoid vacuous truths of implications. [1] Conversely, Y is said to falsify $A \to B$ when $A \subseteq Y$ and $B \not\subseteq Y$.

A new notion of *toleration* is introduced in the form of a *toleration relation*:

Definition 1: A set of rules $R' \subseteq R$ tolerates an individual rule r, denoted $T(r \mid R')$, if

$$\bigcup_{r' \in R'} \left(A'_r \cup B'_r \right) \cup \left\{ A_r \cup B_r \right\}$$

is satisfiable.

What it means for an individual rule, r, to be tolerated by a set of rules R' is that there should be a model of R' which verifies r and does not falsify any $r' \in R'$. Shifting into the world of formal concept analysis: an implication, i, is tolerated by a set of implications I if there is an object g such that g' respects I and g' verifies i.

The next notion to be introduced is *consistency*,

Definition 2: A set R of rules is *consistent* if in every non-empty subset $R' \subseteq R$ there exists an r' such that R' tolerates r'.

$$\forall R' \subseteq R, \exists r' \in R', \text{ such that } T(r' \mid R' - r')$$
 (1)

Consistency is stronger than satisfiability: $\alpha \to \beta$ and $\alpha \to \neg \beta$ is satisfiable by $\neg \alpha$, although it is not consistent. Any ω that verifies $\alpha \to \neg \beta$ necessarily falsifies $\alpha \to \beta$ and vice versa. Implicit in the notion of consistency is that implications which are only ever true through negation of the antecedent do not align with our understanding of conditionals. [1]

Consistency gives rise to a natural ordering of the rules in R. Given a consistent R, identify every rule that is tolerated by R, and assign this rule a rank of 0.

Algorithm 1 Z-ordering

Input: A consistent set of rules R

Input: A tolerance relation T over R

Output: A tolerance partition $R_Z = (R_0, R_1, \dots, R_k)$

- 1: i := 0;
- 2: while $R \neq \emptyset$ do
- 3: $R_i := \{ r \in R \mid (r \mid R) \in T \};$
- 4: $R = R \setminus R_i$;
- 5: i := i + 1;
- 6: **return** (R_0, R_1, \ldots, R_i)

References

[1] Judea Pearl. System z: a natural ordering of defaults with tractable applications to nonmonotonic reasoning. In *Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge*, TARK '90, page 121–135, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.