

Capstone Module 3

Ega Adiwena - JCDSOL-16

What will we discuss?

01

Background

04

Modeling

02

Data Understanding

05

Conclusion

03

Data Preprocessing

06

Recommendation

Before we begin...

Pasar mobil bekas di Arab Saudi sedang mengalami pertumbuhan yang signifikan. Diperkirakan bernilai **USD 6,41 miliar pada tahun 2024**, pasar ini diproyeksikan mencapai **USD 9,03 miliar pada tahun 2029**, dengan **CAGR lebih dari 7,10%** selama periode perkiraan.

Digitalisasi yang pesat di Arab Saudi, dengan penetrasi internet mencapai **98,6% populasi**, telah mengubah lanskap pasar mobil bekas.. Transaksi peer-to-peer dan lelang online semakin populer, menyederhanakan proses jual beli.

https://www.mordorintelligence.com/industry-reports/saudi-arabia-used-car-market

So here we are now..

Problem Statement

Bagaimana cara melakukan valuasi yang akurat terhadap mobil bekas agar mendapatkan **harga yang wajar** dan tidak merugikan bagi pembeli maupun penjual?

Objective

Diciptakan sebuah perangkat yang dapat **memberikan prediksi harga yang tepat**. Alat ini diharapkan dapat menjadi referensi bagi pembeli maupun penjual dalam proses transaksi.

Meet the stakeholders

Data Engineer Team

Data Analyst and ML Team

Software Engineer Team

Sales and Marketing Team

Evaluation Matrix

MAE

Mean Absolute Error Melihat kesalahan absolut dari model

RMSE

Root Mean Squared Error Melihat kesalahan prediksi model

R-Squared

Melihat generalisasi model

Data Understanding

Data Information

Features	Data Type	Description
Engine_Size	Float	The engine size of used car
Gear_Type	Text	Gear type size of used car (automatic / manual)
Make	Text	The company name
Mileage	Int	Mileage of used car
Negotiable	Bool	True if the price is 0, that means it is negotiable
Option	Text	Options of used car (full options / semi-full / standard)
Origin	Text	Origin of used car (Gulf / Saudi / other)
Price	Int	Used car price (in SAR)
Region	Text	The region in which the used car was offered for sale
Туре	Text	Type of used car
Year	Int	Manufacturing year

The data preprocessing steps involve...

++

Let's see how the data connects..

Let's dive into the modeling process..

Train and Splitting

Split data into train with testing proportion of 70 : 30

Encoding

One Hot (Gear_type, Origin, Options) Binary (Type, Region, Make

Modeling

Linear Regression, SVR, KNN, Decision Tree, Random Forest, Gradient Boost, XG Boost, LGBM Regressor

Our Modeling Result

No	Model	Mean_MSE	Mean_RMSE	Mean_MAE	Mean_R-Squared
1	Linear Regression	2,787,581,957	52,473	32,161	0.462
2	SVR Regressor	5,440,077,304	73,481	45,168	-0.058
3	KNR Regressor	1,762,044,610	41,562	22,701	0.661
4	Decision Tree Regressor	2,150,918,105	46,331	17,643	0.566
5	Random Forest Regressor	1,132,243,451	33,425	13,980	0.778

Our Other Modeling Result

Using model boosting

No	Туре	RMSE	MAE	R-Squared
1	Gradient	35,786	19,022	0.709
2	XGB	30,001	14,004	0.795
3	LGBM	29,339	13,771	0.804

Let's tune it up!

Using hyperparameter tuning

Model LGBM	RMSE	MAE	R-Squared
GridSearchCV	30,644	14,640	0.786
RandomizedCV	31,155	15,209	0.779

Setelah dibandingkan dengan "based" model LGBM, ternyata hasil dari **"based" model LGBM lebih bagus dibandingkan dengan hasil setelah Hyperparameter Tuning**

To conclude..

Performa terbaik pada test set dicapai oleh **Base Model LightGBM**, dengan nilai RMSE sebesar 29,339, MAE sebesar 13,771, dan R² sebesar 0.804.

Meskipun performa test set Base Model lebih baik dibandingkan GridSearchCV dan RandomizedSearchCV, terdapat perbedaan cukup besar antara performa training (R²: 0.925) dan test set (R²: 0.804).

Model yang kami kembangkan memiliki tingkat akurasi yang cukup baik, dengan rata-rata kesalahan prediksi sekitar 29,339 satuan (RSME). Model ini mampu menjelaskan 80,4% variasi data (R-Squared).

Hal ini mengindikasikan model mungkin sedikit **overfitting** terhadap data training.

What we can improve..

Penambahan Fitur Relevan

Analisis Residual Error

Cross-Validation yang Lebih Mendalam

Eksplorasi Model Lain

Optimisasi Hyperparameter

Thanks!

Do you have any questions?

egadiwena@gmail.com

+62 8111 0811 40

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

