Date. NO. 第六章
6.1

由题知. 利用 Monte Carlo 法求出选择概率

: \fi = 2.5+1.0+3.0+1.2+2.1+0.8+2.3+1.5+0.9+1.8=17.1

同样,通过界函数变换后

 $f' = f^{k}$: k = 2 : $f' = f^{k}$

即 f2=6·25 f2=1 f3=9

= 525+1+9+144+4.41+0.64+5.29.+2.25+0.81+3.24=34.33

故西通过公式得看个体适应度及选择概率。

个体编号	原适应度	洞壁后适应度	原选择概率	河雅尼这种版单
1 1 1 1 1 1 1 1 1	2.5	6.25	0.146	0.182
2	1.0	1.0	0.058	0.029
3	3.0	9.0	0.175	0.262
4	1.2	1,44	0.070	0.042
5	2.1	4.41	0.123	0.128
6	0.8	0.64	0.047	0.037
7	2.3	5.29	0.135	0.154
8	1.5	2.25	0.088	0.066
9	0.9	0.81	0.053	0.024
10	1.8	3.24	0.105	0.094

6.1 改210个个体的适应复如表点6所示。用幂函数变换法批调整后的适应的 (K=2),然后采用走应度以份法求出调整前后各个个体的选择概率

作物	原适应度	调整后的适应度	原选择根处理	调整后的选择概率
1	215	6.35	25/171 (0/5)	675/2833 (0.18)
2	1.0	1.0	10/171 (0.058)	100/2833 (0.029)
3	3.0	9.0	10/57 (0.18)	900/2833 (Q16)
4	102	1.44	457 (0.07)	144/2833 (0.042)
5	21	441	7/57 (0-12)	441/2833 (0.13)
6	0.8	0.64	8/171 (0.047)	64/2833 (0.019)
7	23	5.19	23/171 (0.13)	529/2833 (0.15)
8	1.5	275	5/57 10.0888	275/2833 (0.066)
9	0.9	0.81	1/19 (0.953)	81/2833 (0.0)4)
10	1.8	3.74	2/19/16:11)	324/2833 (0.094)

解: 異函數变换法变换公式 于'=+K

$$f_1'=f_1^2=6.25$$
 $f_2'=f_2^2=1.0$ $f_3'=f_3^2=9.0$ $f_4'=f_4^2=1.44$
 $f_5'=f_5^2=4.41$ $f_6'=f_6^2=0.64$ $f_7'=f_1^2=5.29$ $f_8'=f_8^2=2.25$
 $f_9'=f_9^2=0.81$ $f_{10}'=f_{10}=3.24$

适应度以例方法:个体被选择根处率为 Psi = 五台

陳岩北=25+1.0+3.0+1.2+21+08+213+1.5+09+1.8=171

$$P_{S1} = \frac{25}{171} = \frac{25}{171}$$

$$P_{S2} = \frac{10}{171}$$

$$P_{S3} = \frac{27}{171} = \frac{1}{17}$$

$$P_{S4} = \frac{17}{171} = \frac{1}{17}$$

调整后 三十二 = 675+10+9,0+1,44+441+0.64+5.71+275+0.81+3.74=28-33

Westnar	Pager	Date: Page:	Weather:
PSI = 6.25 = 625 28.33 = 2833	$P_{52} = \frac{100}{2833}$	Ps' = 900 2833	$P_{54} = \frac{144}{2833}$
Pss = 2833	$P_{4b} = \frac{64}{2833}$	$P_{57} = \frac{529}{2835}$	PS8 = 2833
Ps9 = 81 2833	PS10 = 324 2833	EN WEN	T IS X SVA DED

$$X = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \quad X \leq = 0.1,$$

$$W_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 3 & -3 \end{bmatrix} \quad W_2 = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$U_2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & 3$$

Date.

NO.

$$U' = \begin{bmatrix} 0 & 3.4 & 2.8 & -3.1 \\ 3.4 & 0 & 4.7 & -1.2 \\ 2.8 & 4.7 & 0 & -5.9 \\ -3.1 & -1.2 & -5.9 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2.5 \\ -9.6 \end{bmatrix} \begin{bmatrix} -3.5 \\ 12.4 \\ 5.3 \\ 0.6 \end{bmatrix}$$

由题状态 所推出系统演化律为二值硬限器。即

 $Vi = (k+1) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 3.4 & 2.8 & -3.1 \\ 2.8 & 4.7 & 0 & -5.9 \\ -3.1 & -1.2 & -5.9 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 & -1.5 \\ -9.6 \end{bmatrix}$
 $U'' = \begin{bmatrix} 0 & 3.4 & 2.8 & -3.1 \\ 3.4 & 0 & -5.9 \\ -3.1 & -1.2 & -5.9 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 & -2.5 \\ -9.6 \end{bmatrix}$
 $= \begin{bmatrix} 3.1 \\ 3.5 \\ -1.2 \\ -7.1 \end{bmatrix} \begin{bmatrix} 6.3 \\ -9.6 \end{bmatrix} \begin{bmatrix} -3.2 \\ 7.8 \\ -2.5 \\ -9.6 \end{bmatrix} \begin{bmatrix} 2.5 \\ 2.5 \end{bmatrix}$
 $\therefore (V(2) = [0.1, 1, 1]$

```
神经六個整次序: 1->2->3-14.
 K=0 EH V(0) = {1.0.1.0}
 K=1 时 V1(1)=f(点Wij V10)-ロ1)=f(Wis V310)-ロ1)=f(-35)=ロ.
V2(1) = V2(0)=0. V3(1) = V3(0)=1 V4(1) = V4(0)=0
   - V(1) = { 0, 0, 1, 04
K=217 ( = f(= W2) V(1) - 02) = f(9) = 1.
 V= 12) = V1(1) = 0 V5(2) = V3(1)=1 V4(1) = V4(1)=0
      in VEI = {0,1,1,04
K=3时. V313)= S(美W3jVj(z)-03)= f(7.2)=1.
 V+(3) = V1(2)=0 V2(3)= V1(2)=1 V4(3) = V4(2) = 0
    V(3) = {0.1.1.04
K=4 17 V4(4) = f(=, W4j. Vj(3) - 84) = f(25) =1.
      # V(4) = {0.1.1.15
KS時 / VIS)= f(素VVij VJ(4)-B.) = f(-3.1)=0
         V(S) - {0,1,1,14
      放稳定状态为 {0.1.1.15.
```