

Università degli Studi di Padova

Kernel Methods

Machine Learning 2023-24
UML book chapter 16

Slides P. Zanuttigh (some material from F. Vandin slides)

Linear SVM: Key Limitation

- SVM is a powerful algorithm, but still limited to linear models...
- ... and linear models cannot always be used (directly!)

Example (recal that VC-dim of threshold is 1!)

- Apply a nonlinear transformation to each point in the training set
- Learn a linear predictor in the transformed space
- Make a prediction for a new instance $z = x^2$ Example (continued)

Example

2 features (x,y): find separating hyperplane?

new feature z $z = x^2 + y^2$ Now data is linearly separable! The separating hyperplane corresponds to a circle in the original space!

Embeddings into Feature Spaces

Define a non-linear mapping ψ from the input space to a new (typically larger) space

- 1. Given a domain set \mathcal{X} and a learning task, find a mapping to a new feature space \mathcal{F} $\psi: \mathcal{X} \to \mathcal{F}$
 - \mathcal{F} is usually \mathbb{R}^n for some n but can be an arbitrary Hilbert space (even of infinite size)
- 2. Given a sequence of labeled examples $S = ((x_1, y_1), ..., (x_m, y_m))$ map them to $\hat{S} = ((\psi(x_1), y_1), ..., (\psi(x_m), y_m))$
- 3. Train a linear predictor h over \hat{S}
- 4. Predict the label of x as $h(\psi(x))$

The Kernel Trick (1)

A good idea but.... there's a problem

- ☑ The learning over the new highly dimensional space makes halfspaces more expressive
- ☑ On the other side the computational complexity can become huge
 - > Typically, the new space has a much larger dimensionality

The solution: Kernel-based learning

- Kernel: inner product in the feature space
- Kernel function $K(x, x') = \langle \psi(x), \psi(x') \rangle$
- K() represent similarity of the samples in a space where the similarities are realized as inner products
- Key Result: machine learning algorithms for halfspaces can be carried out just on the basis of the values of the kernel function without explicitly representing the points in the feature space
- Sometimes we can compute (in a faster way) K(x, x') without explicitly computing $\psi(x)$ and $\psi(x')$

The Kernel Trick: Example (1)

Consider $\mathbf{x} \in \mathbb{R}^d$

$$\psi(\mathbf{x}) = (1, x_1, x_2, \dots, x_d, x_1x_1, x_1x_2, x_1x_3, \dots, x_dx_d)^T$$

Example with 2nd degree polynomial

The dimension of $\psi(\mathbf{x})$ is $1+d+d^2$.

$$\langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle = 1 + \sum_{i=1}^d x_i x_i' + \sum_{i=1}^d \sum_{j=1}^d x_i x_j x_i' x_j'$$

$$\Theta(d^2)$$

Note that

$$\sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j x_i' x_j' = \left(\sum_{i=1}^{d} x_i x_i'\right) \left(\sum_{j=1}^{d} x_j x_j'\right) = \left(\langle \mathbf{x}, \mathbf{x}' \rangle\right)^2$$

therefore

$$K_{\psi}(\mathbf{x}, \mathbf{x}') = \langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle = 1 + \langle \mathbf{x}, \mathbf{x}' \rangle + (\langle \mathbf{x}, \mathbf{x}' \rangle)^2$$

The Kernel Trick: Example (2)

We have:

$$\psi(\mathbf{x}) = (1, x_1, x_2, \dots, x_d, x_1x_1, x_1x_2, x_1x_3, \dots, x_dx_d)^T$$

$$\mathcal{K}_{\psi}(\mathbf{x}, \mathbf{x}') = \langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle = 1 + \langle \mathbf{x}, \mathbf{x}' \rangle + (\langle \mathbf{x}, \mathbf{x}' \rangle)^2$$

Observation

Computing $\psi(\mathbf{x})$ requires $\Theta\left(d^2\right)$ time; computing $\mathcal{K}_{\psi}(\mathbf{x}, \mathbf{x}')$ from the last formula requires $\Theta\left(d\right)$ time

When $K_{\psi}(\mathbf{x}, \mathbf{x}')$ is efficiently computable, we don't need to explicitly compute $\psi(\mathbf{x})$

⇒ kernel trick

Kernel Trick: Apply to SVM

SVM: the minimization in feature space can be rewritten as

$$\min_{\mathbf{w}}(f(\langle \mathbf{w}, \psi(\mathbf{x}_1) \rangle, ..., \langle \mathbf{w}, \psi(\mathbf{x}_m) \rangle) + R(\|\mathbf{w}\|))$$

Where $f: \mathbb{R}^m \to \mathbb{R}$ is a generic function and $R: \mathbb{R}_+ \to \mathbb{R}$ is a monotonic not decreasing function

HARD-SVM (non-homogeneous): use

Hard-SVM: $(\mathbf{w}_0, b_0) = argmin_{(\mathbf{w}, b)} ||\mathbf{w}||^2$ subject to $\forall i$: $y_i (< \mathbf{w}, x_i > +b) \ge 1$

$$R(a) = a^{2}$$

$$f(a_{1}, ..., a_{m}) = \begin{cases} 0 & if \ \exists b : y_{i}(a_{i} + b) \geq 1 \ \forall i \\ \infty & otherwise \end{cases}$$

SOFT-SVM (homogeneous): use

$$R(a) = \lambda a^{2}$$
 Soft-SVM: $\min_{\mathbf{w}} \left(\lambda \|\mathbf{w}\|^{2} + L_{S}^{hinge}(\mathbf{w}) \right)$

$$f(a_1, ..., a_m) = \frac{1}{m} \sum_{i} \max\{0, 1 - y_i a_i\}$$

Representer Theorem

SVM: the minimization in feature space can be rewritten as

$$\min_{\mathbf{w}} (f(\langle \mathbf{w}, \psi(\mathbf{x}_1) \rangle, ..., \langle \mathbf{w}, \psi(\mathbf{x}_m) \rangle) + R(\|\mathbf{w}\|))$$

Representer Theorem:

Assume that ψ is a mapping from \mathcal{X} to an Hilbert space. Then, there exist a vector $\boldsymbol{\alpha} \in \mathbb{R}^m$ such that $\boldsymbol{w} = \sum_{i=1}^m \alpha_i \psi(\boldsymbol{x}_i)$ is an optimal solution of $\min_{\boldsymbol{w}} \left(f(<\boldsymbol{w},\psi(\boldsymbol{x}_1)>,...,<\boldsymbol{w},\psi(\boldsymbol{x}_m)>) + R(\|\boldsymbol{w}\|) \right)$

Consequence:

We can optimize the problem w.r.t. the coefficients α_i getting a problem that depends only on $K(x,x')=<\psi(x),\psi(x')>$ without explicitly computing $\psi(x)$ or $\psi(x')$

(recall "dual" SVM problem)

Representer Theorem: Demonstration

Representer Theorem:

- ullet Hypothesis: ψ is a mapping from ${\mathcal X}$ to a Hilbert space.
- Thesis: there exist a vector $\alpha \in \mathbb{R}^m$ such that $\mathbf{w} = \sum_{i=1}^m \alpha_i \psi(\mathbf{x}_i)$ is an optimal solution of $\min_{\mathbf{w}} \left(f(<\mathbf{w}, \psi(\mathbf{x}_1) >, \dots, <\mathbf{w}, \psi(\mathbf{x}_m) >) + R(\|\mathbf{w}\|) \right)$ (*)
- Let \mathbf{w}^* be an optimal solution of (*): recall that \mathbf{w}^* belongs to an Hilbert space
- We can decompose \mathbf{w}^* in the part into the linear span of $\psi(\mathbf{x}_i)$ and what is outside, i.e.: $\mathbf{w}^* = \sum_{i=1}^m \alpha_i \psi(\mathbf{x}_i) + \mathbf{u}$ with $\langle \mathbf{u}, \psi(\mathbf{x}_i) \rangle = 0$ (**)
- 3. Set $w = w^* u$ (i.e. w is the part inside the linear span), then $||w^*||^2 = ||w||^2 + ||u||^2 \rightarrow ||w|| \le ||w^*||$
- 4. Since R is not decreasing from 3. : $R(||w||) \le R(||w^*||)$
- 5. $\forall i: \langle w, \psi(x_i) \rangle = \langle w^* u, \psi(x_i) \rangle = \langle w^*, \psi(x_i) \rangle$ (using **)
- 6. $f(\langle \mathbf{w}, \psi(\mathbf{x_1}) \rangle, \dots, \langle \mathbf{w}, \psi(\mathbf{x_m}) \rangle) = f(\langle \mathbf{w}^*, \psi(\mathbf{x_1}) \rangle, \dots, \langle \mathbf{w}^*, \psi(\mathbf{x_m}) \rangle)$
- 7. From 4. + 6. : the objective of (*) at w is \leq than the objective at w*: w is also an optimal solution and since $\mathbf{w} = \sum_{i=1}^{m} \alpha_i \psi(\mathbf{x}_i)$ we conclude the proof

Rewrite SVM model with Kernel Functions

Note that: (recall from Representer Theorem $w = \sum_{i=1}^{m} \alpha_i \psi(x_i)$) $\langle w, \psi(x_i) \rangle = \langle \sum_j \alpha_j \psi(x_j), \psi(x_i) \rangle = \sum_j \alpha_j \langle \psi(x_j), \psi(x_i) \rangle = \sum_j \alpha_j K(x_j, x_i)$ $||w||^2 = \langle \sum_j \alpha_j \psi(x_j), \sum_j \alpha_j \psi(x_j) \rangle = \sum_{i,j=1}^{m} \alpha_i \alpha_j \langle \psi(x_i), \psi(x_j) \rangle = \sum_{i,j=1}^{m} \alpha_i \alpha_j K(x_i, x_j)$

Rewrite objective function $\min_{w} \left(f(< w, \psi(x_1) >, \dots, < w, \psi(x_m) >) + R(\|w\|) \right)$ as

$$\min_{\alpha} \left(f\left(\sum_{j} \alpha_{j} K(\boldsymbol{x_{j}}, \boldsymbol{x_{1}}), \dots, \sum_{j} \alpha_{j} K(\boldsymbol{x_{j}}, \boldsymbol{x_{m}}) \right) + R\left(\sqrt{\sum_{i,j} \alpha_{i} \alpha_{j} K(\boldsymbol{x_{i}}, \boldsymbol{x_{j}})}\right) \right)$$

Notice: only kernel functions K() are used without explicit constructing feature space

For the SOFT-SVM: using Gram matrix
$$G: G_{i,j} = K(x_i, x_j)$$

$$\min_{\alpha} \left(\lambda \alpha^{T} G \alpha + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_{i}(G \alpha)_{i}\} \right)$$

Polynomial Kernels (1)

$$K(\mathbf{x}, \mathbf{x}') = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle)^K$$

n: dimensionality of input space

K: degree of polynomial

 \square It is a Kernel function, i.e., $K(x, x') = \langle \psi(x), \psi(x') \rangle$

Demonstration (define $x_0 = x'_0 = 1$):

K-times

Details of demonstration not part of the course

$$K(\mathbf{x}, \mathbf{x}') = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle)^k = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle) \dots (1 + \langle \mathbf{x}, \mathbf{x}' \rangle) = \left(\sum_{j=0}^n x_j x_j'\right) \dots \left(\sum_{j=0}^n x_j x_j'\right) = \sum_{j \in \{0,1,\dots,n\}^k}^n \prod_{i=1}^k x_j x_{i}' = \sum_{j \in \{0,1,\dots,n\}^k}^n \prod_{i=1}^k x_{j} \prod_{i=1}^k x_{j}' x_{j}' = \sum_{j=1}^n \prod_{i=1}^k x_{i} \prod_{i=1}^k x_{i}' x_{i}' = \sum_{j=1}^n \prod_{i=1}^k x_{i} \prod_{i=1}^k x_{i}' x_{i}' = \sum_{j=1}^n \prod_{i=1}^k x_{i} \prod_{i=1}^k x_{i}' x_{i}' = \sum_{j=1}^n \prod_{i=1}^k x_{i} \prod_{i=1}^k x_{i}' = \sum_{j=1}^n \prod_{i=1}^k x_{i} \prod_{i=1}^k x_{i}' = \sum_{i=1}^n \prod_{i=1}^k x_{i}' = \sum_{i=1}^k x_{i}' = \sum_{i=1}^n \prod_{i=1}^k x_{i}' = \sum_{i=1}^k x_{i}' = \sum_{i=1}^n \prod_{i=1}^k x_{i}' = \sum_{i=1}^k x_{i}$$

By defining $\psi(x): \mathbb{R}^n \to \mathbb{R}^{(n+1)k}$ such that for each $J \in \{0,1,...,n\}^k$ there is an element of ψ that equals $\prod_{i=1}^k x_{j_i}$, we obtain $K(x,x') = \langle \psi(x), \psi(x') \rangle$

 $J \in \{0,1,...,n\}^k$: select k elements from the 0,..,n set

Polynomial Kernels (2)

$$K(\mathbf{x}, \mathbf{x}') = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle)^K$$

- \square It is a Kernel function, i.e., $K(x, x') = \langle \psi(x), \psi(x') \rangle$
- $\mathbf{u} \cdot \mathbf{v} : \mathbb{R}^n \to \mathbb{R}^{(n+1)k}$ contains all the monomials up to degree k
- f l Halfspace over ψ corresponds to a polynomial predictor of order k in the original space
- Complexity of computation is O(n) while the dimension of feature space is $O(n^k)$

Gaussian Kernel

(Radial Basis Function, RBF) (1)

$$K(\mathbf{x},\mathbf{x}') = e^{\frac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}}$$

It is a Kernel function, i.e., $K(x, x') = \langle \psi(x), \psi(x') \rangle$

Demonstration (on 1D case, $x \in \mathbb{R}$):

Consider the mapping $\psi(x)_n = \frac{1}{\sqrt{n!}} e^{-\frac{x^2}{2}} x^n$ ($n \in \mathbb{N}$: has infinite size output!)

$$\langle \psi(\mathbf{x}), \psi(\mathbf{x}') \rangle = \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{n!}} e^{-\frac{x^2}{2}} x^n \right) \left(\frac{1}{\sqrt{n!}} e^{-\frac{x'^2}{2}} x'^n \right) =$$

$$= e^{-\frac{x^2 + x'^2}{2}} \sum_{n=0}^{\infty} \left(\frac{(xx')^n}{n!} \right) = e^{-\frac{x^2 + x'^2}{2}} e^{xx'} = e^{-\frac{x^2 + x'^2 - 2xx'}{2}} = e^{-\frac{\|x - x'\|^2}{2}}$$

$$\text{Recall: } \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$

Gaussian Kernel

(Radial Basis Function, RBF) (2)

$$K(\mathbf{x},\mathbf{x}') = e^{-\frac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}}$$

- \square It is a Kernel function, i.e., $K(x, x') = \langle \psi(x), \psi(x') \rangle$
- ☐ The feature space is of infinite dimension
 - but computing the Kernel is simple and fast!
- ☐ The product is close to 0 if instances are far and close to 1 if they are close
- Parameter σ controls what we mean by "close"
- We can learn any polynomial predictor in the original space by using a Gaussian kernel
- ☐ VC-dimension is infinite (sample complexity depends on the margin in the feature space)

Practical SVM:

Recall: λ Parameter in Soft-SVM

Training Set

$$\min_{\mathbf{w}} \ \left(\lambda \|\mathbf{w}\|^2 + L_S^{\text{hinge}}(\mathbf{w}) \right)$$

Examples on 2 different test sets

The parameter λ controls the trade-off between a solution with a large margin that makes some errors or one with a lower margin but with less errors

(the parameter C in *sklearn*, *libsym* and other ML tools has the same role but weights the loss term, i.e., works in the opposite direction)

Practical SVM: Different Kernels

Practical SVM: Linear vs RBF Kernel

Practical SVM:

Standard Deviation of RBF Kernel

gamma = 100 (
$$\sigma^2 = 0.005$$
)

- \Box The standard deviation σ of the Gaussian/RBF kernel controls the concept or "close" and "far" in the kernel function
- ☐ It corresponds to the trade-off between precisely fit the training set (with risk of overfitting) or finding a less accurate but more general solution
- \square The γ (gamma) parameter of *sklearn* is inversely proportional to σ^2

$$K(x, x') = e^{-\frac{\|x - x'\|^2}{2\sigma^2}} = e^{-\gamma \|x - x'\|^2}$$

Practical SVM: Grid Search Example

Exercise

Assume we have the dataset in the table ($x_i \in \mathbb{R}^2$) and by solving the SVM for classification we get the corresponding α coefficients (recall that $\mathbf{w} = \sum_i \alpha_i \mathbf{x_i}$ while in the dual optimization $\mathbf{w} = \sum_i \alpha_i^* y_i \mathbf{x_i}$):

i	x_i	y_i	α_i	$lpha_i^*$ (dual)
1	[0.2 -1.4]	-1	0	0
2	[-2.1 1.7]	1	0	0
3	[0.9 1]	1	0.5	0.5
4	[-1 -3.1]	-1	0	0
5	[-0.2 -1]	-1	-0.25	0.25
6	[-0.2 1.3]	1	0	0
7	[2.0 -1]	-1	-0.25	0.25
8	[0.5 2.1]	1	0	0

Answer to the following:

- (A) Which are the support vectors?
- (B) Draw a schematic picture reporting the data points (approximately) and the optimal separating hyperplane and mark the support vectors.
- (C) Would it be possible, by moving only two data points, to obtain the SAME separating hyperplane with only 2 support vectors? Draw the modified configuration (approximately)

Multi-class Classification

- Classify each class vs the union of all the others
- For each sample select the class with highest classification score, i.e. $argmax < w_i, x >$
- Requires $n_{classes}$ comparisons

- Classify each class vs each other class
- For each sample select the class that has "won" the largest number of classifications
- Requires $\frac{n_{classes}(n_{classes}-1)}{2}$ comparisons
- Used by sklearn

LAB2: Classification with SVM

- Estimate weather conditions from Temperature, pressure and humidity data
- Use Support Vector Machines (SVM)

Notebook released on 17/11 Lab 2 on 24/11 Delivery on 30/11