Билет 1

Первообразная и неопределенный интеграл. Основные свойства интеграла. Таблица основных неопределенных интегралов. Формула замены переменной(с доказательством). Формула интегрирования по частям.

Определение 1. Первообразная . Функция F называется первообразной функции f на промежутке Δ , если F дифференцируема на Δ и в каждой точке $x \in \Delta$

$$F'(x) = f(x)$$
.

Определение 2. Неопределенный интеграл. Пусть функция f(x) задана на промежутке Δ . Совокупность всех ее первообразных на этом промежутке называется неопределенным интегралом от функции f и обозначается:

$$\int f(x)dx.$$

Основные свойства интеграла:

1.Если функция F(x) дифференцируема на Δ , то

$$\int dF(x) = F(x) + C \quad \text{или} \quad \int F'(x)dx = F(x) + C.$$

2.Пусть функция f(x) имеет первообразную на Δ . Тогда для любого $x \in \Delta$ имеет место равенство:

$$d \int f(x)dx = f(x)dx.$$

3. Если функции f1 , f2 имеют первообразные на Δ , то функция f1 + f2 имеет первообразную на Δ , причем:

$$\int (f_1(x) + f_2(x))dx = \int f_1(x)dx + \int f_2(x)dx.$$

4. Если функция f(x) имеет первообразную на Δ , $k \in R$, то функция kf(x) также имеет на Δ первообразную, и при k не равной 0:

$$\int kf(x)dx = \{kF(x) + C\}, \quad k \int f(x)dx = k\{F(x) + C\}.$$

Таблица основных неопределенных интегралов.

1.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \quad \alpha \neq -1;$$

$$2. \int \frac{dx}{x} = \ln|x| + C;$$

3.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
, $a \neq 1$, $a > 0$, $\int e^x dx = e^x + C$;

4.
$$\int \sin x dx = -\cos x + C;$$

5.
$$\int \cos x dx = \sin x + C;$$

6.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C;$$

7.
$$\int \frac{dx}{\sin^2 x} = -\text{ctg}x + C;$$

8.
$$\int \text{sh} x dx = \text{ch} x + C$$
;

9.
$$\int \text{ch} x dx = \text{sh} x + C;$$

10.
$$\int \frac{dx}{\cosh^2 x} = \operatorname{tgh} x + C;$$

11.
$$\int \frac{dx}{ch^2x} = \operatorname{ctgh} x + C$$
;

12.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C;$$

13.
$$\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C;$$

14.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C, |x| < a;$$

15.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C$$
, $(|x| > |a|$ для $\sqrt{x^2 - a^2}$).

Формула замены переменной(с доказательством).

Пусть функции f(x) и $\phi(t)$ заданы соответственно на промежутках Δx и Δt , причем $\phi(\Delta t) = \Delta x$, т.е. имеет смысл сложная функция $f(\phi(t))$, $t \in \Delta t$. Пусть, кроме того, функция $\phi(t)$ дифференцируема и строго монотонна на Δt . Тогда у функции $\phi(t)$ существует обратная однозначная функция $\phi - 1$ (x), определенная на промежутке Δx .

Теорема 1. Существование на промежутке Δx интеграла:

$$\int f(x)dx$$
 и существование на промежутке Δ t интеграла $\int f\left(arphi(t)
ight) arphi'(t)dt$

$$\int f(x)dx = \left. \int f(\varphi(t)) \varphi'(t)dt \right|_{t=\varphi^{-1}(x)}.$$

равносильны, и имеет место формула:

Доказательство: Пусть функция F(x) называется первообразной функции f(x) на Δ x, т.е. F'(x) = f(x), x \in Δ . Тогда функция $F(\varphi(t))$ первообразная функции $f(\varphi(t)) \varphi'(t)$, т.к.

$$\left(F'(\varphi(t))\right)'=F_x\Big|_{x=\varphi(t)}\varphi'(t)=f(\varphi(t))\cdot \varphi'(t)$$

Формула интегрирования по частям.

Теорема 2. Если функции u(x), v(x) дифференцируемы на некотором промежутке Δ и на этом промежутке существует $\int v du$, то на нем существует интеграл $\int u dv$, причем

$$\int u(x)d\upsilon(x)=u(x)\upsilon(x)-\int \upsilon(x)du(x).$$