Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 02.03.2012

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note:
							_
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	10	9	11	10	40	
	erreichte Punkte						
							•
$\mathbf{Bitte}\;$							
tragon Sic	e Name, Vorname und	Motril	zolnum r	nor out	dom I)oolshlas	tt oin
tragen sie	e Name, vorname und	Matri	emum	ner aur	dem 1	рескыа	tt em,
rechnen S	ie die Aufgaben auf se	eparate	n Blätte	ern, ni o	c ht auf	dem A	ingabeblatt,
haginnan	Cia für aina naua Aufa	aha im	mon ou	ah aina	20110	loito	
beginnen	Sie für eine neue Aufg	abe iii	mer au	спеше	neue s	erte,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	an,
begründer	n Sie Ihre Antworten a	ausführ	lich und	d			
krouzon S	io hior an an wolchor	n dor f	algondo	n Torr	sino Sid	night	zur mündlichen
	ie hier an, an welcher .ntreten können:	n aer 16	orgende	ai telli	ше ж	HICHU	zui munanchen
_	Fr., 09.03.2012	□ Mo.	, 12.03.	2012		Di., 13	3.03.2012

1. Lösen Sie folgende Teilaufgaben

a) In Abbildung 1 ist die Prinzipskizze eines Segelbootes dargestellt. Im Weiteren werden Bewegungen des Bootes in Querrichtung (Geschwindigkeit $v_y = \dot{s}_y$) und Drehungen um den Drehpunkt 0 (Winkel φ) betrachtet. Bewegungen des Bootes in vertikaler Richtung werden vernachlässigt.

Das Boot besitzt die Masse m, die Schwerpunktshöhe h und das Trägheitsmoment J bezüglich der x-Achse um den Drehpunkt 0. Die Position der Crew, welche sich als konzentrierte Masse m_C an Deck bewegt, wird durch h_C und s_C beschrieben.

Auf das Boot wirken, neben der Erdbeschleunigung g, folgende Kräfte und Momente:

- Die Auftriebskraft $F_A(\varphi) = \rho g V(\varphi)$ ist vom verdrängten Wasservolumen $V(\varphi)$ abhängig und greift um die Exzentrizität $e_A(\varphi)$ versetzt an. Die Dichte des Wassers wird mit ρ bezeichnet.
- Das Wasser dämpft die Querbewegung mit der Kraft $F_d = d_y v_y$, welche um den konstanten Versatz e_d unter der Wasseroberfläche angreift.
- Das Wasser dämpft die Wankbewegung (Drehung um den Winkel φ bezüglich der x-Achse) mit dem Moment, $M_d = d_{\varphi}\omega$, $\omega = \dot{\varphi}$.
- Der Wind wirkt mit einer Kraftdichte q auf die effektive Querschnittsfläche des Bootes $A_L(\varphi)$, deren Flächenschwerpunkt sich auf der Höhe $h_L(\varphi)$ befindet.
- Die Gewichtskraft der Crew m_C bewirkt ein Moment M_C um den Drehpunkt 0. Der Einfluss der Trägheit der Masse m_C auf die Bewegung des Bootes (d.h. auf die Quer- und Wankbewegung) wird in den Bewegungsgleichungen vernachlässigt.

Abbildung 1: Prinzipskizze Segelboot.

Bearbeiten Sie die nachfolgenden Aufgaben:

- i. Geben Sie die Kraft F_L als Funktion des Wankwinkels φ sowie der Windstärke q an und ermitteln Sie das resultierende Moment M_L um den Drehpunkt 0. Berechnen Sie weiters das Moment M_C um den Drehpunkt 0, welches die Masse der Crew m_C aufbringt, als Funktion des Wankwinkels φ und der Position s_C .
- ii. Das Boot wird im Weiteren durch ein System der Form 4 P.

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u, d) \tag{1a}$$

$$\mathbf{y} = \mathbf{h} \left(\mathbf{x}, u, d \right), \tag{1b}$$

beschrieben. Als Eingang für das System wird die Position der Crew gewählt, $u = s_C$. Als Störung wirkt die Kraftdichte, d.h. d = q. Als Ausgang \mathbf{y} werden der Winkel φ und die Quergeschwindigkeit v_y verwendet. Wählen Sie dazu einen geeigneten Zustand \mathbf{x} , wobei zu beachten ist, dass die Geschwindigkeit v_y , aber nicht die Position s_y , notwendig ist. Berechnen Sie nun das System (1).

- iii. Berechnen Sie für $\varphi = \varphi_s$ und $q = q_s$ alle Ruhelagen des Systems (1).
- b) Betrachten Sie nun das nichtlineare Eingrößensystem

$$\dot{x} = -\sqrt{x} u. \tag{2}$$

und bearbeiten Sie folgende Punkte:

- i. Bestimmen Sie die Lösung x(t) für x(0) = 1, u(t) = 4t. 2 P.
- ii. Linearisieren Sie das System entlang dieser Trajektorie. 1 P.|

2. a) Gegeben ist folgendes autonomes LTI-System:

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \mathbf{x}.\tag{3}$$

Bearbeiten Sie die nachfolgenden Aufgaben:

- i. Geben Sie die Eigenwerte mit den zugehörigen Eigen- bzw. Hauptvektoren 2 P.| an.
- ii. Berechnen Sie die Transitionsmatrix $\tilde{\Phi}(t)$ des transformierten Systems. 1 P. Hinweis: Beachten Sie die algebraische und geometrische Vielfachheit der Eigenwerte.
- iii. Gegeben ist der Startwert $\mathbf{x}_0 = \begin{bmatrix} 1, \ 0, \ -1 \end{bmatrix}^T$. Schreiben Sie die Lösung $\mathbf{x}(t)$ 1 P.| an. Hinweis: Verwenden Sie dabei die Eigenschaft der Eigenvektoren.
- b) Gegeben ist folgendes zeitdiskretes LTI-System:

$$\mathbf{x}_{k+1} = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 0.5 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u_k \tag{4a}$$

$$y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}_k. \tag{4b}$$

Bearbeiten Sie die nachfolgenden Aufgaben:

- i. Berechnen Sie die Führungsübertragungsfunktion und geben Sie deren Pole $\left.1.5\,\mathrm{P.}\right|$ an.
- ii. Schreiben Sie das nicht erreichbare Teilsystem mit dem Zustand $x_i, i \in 1$ P. $\{1, 2, 3\}$ an. Hinweis: Überlegen Sie dazu, welche Zustände der Eingang u_k direkt beeinflusst und wie die Zustände (über die Systemdynamik) gekoppelt sind.

Bestimmen Sie weiters das asymptotische Verhalten des nicht erreichbaren Zustands x_i , d.h. $\lim_{k\to\infty} x_{i,k}$.

iii. Der nicht erreichbare Zustand x_i wirkt (über die Dynamikmatrix) auf das 1 P.| erreichbare Teilsystem mit dem Zustand

$$\mathbf{x_R} = [x_r, x_s]^{\mathrm{T}}, r, s \in \{1, 2, 3\} \setminus i, r \neq s.$$
 (5)

Schreiben Sie das erreichbare Teilsystem mit Zustandsvektor $\mathbf{x}_{\mathbf{R}}$ und dem erweiterten Eingang $\bar{\mathbf{u}} = [u, x_i]^{\mathrm{T}}$ neu an.

- iv. Die Pole der Übertragungsfunktion sind auch Eigenwerte des Zustandsraummodells. Die Umkehrung gilt im Allgemeinen, wie dieses Beispiel demonstriert, nicht. Erklären Sie warum dies der Fall ist, obwohl das System (4) vollständig beobachtbar ist.
- v. Wählen Sie einen neuen Ausgang y_k für das System (4), sodass die Füh- 1 P.| rungsübertragungsfunktion nur noch erster Ordnung ist.

3. Gegeben ist das lineare, zeitkontinuierliche System

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -9 & -5 \end{bmatrix}}_{\mathbf{A}} \mathbf{x} + \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}_{\mathbf{b}} u \tag{6a}$$

$$y = \underbrace{\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}}_{\mathbf{c}^T} \mathbf{x}. \tag{6b}$$

- a) Berechnen Sie die Markov-Parameter und die Hankelmatrix der Systems (6). 4 P.
- b) Zeigen Sie, dass das System (6) vollständig beobachtbar ist. Entwerfen Sie 4P. einen Dead-Beat-Beobachter für das System (6).
- c) Bei der Abtastung bleibt die Beobachtbarkeit nicht zwangsläufig erhalten. Welche Bedingung muss die Abtastzeit im Fall von System (6) erfüllen, damit auch das zeitdiskrete System beobachtbar ist? Nehmen Sie als bekannt an, dass ein Eigenwert der Matrix **A** bei -1 liegt.
- d) Zeigen Sie, dass es sich bei dem System (6) um eine Minimalrealisierung han- 1 P. delt.

4. a) Beurteilen Sie für die folgenden Übertragungsfunktionen des offenen Kreises 3 P.

$$L_1^{\#}(q) = \frac{q+2}{q^3 - 3q^2 + 4}$$

$$L_2^{\#}(q) = \frac{1 + 3q - 2q^2 - q^3}{q^3 + 2q^2 - 3q + 1}$$

nach Abbildung 2, ob der geschlossene Kreis BIBO-stabil ist.

Abbildung 2: Blockschaltbild.

b) Bestimmen Sie für die Strecke mit der q-Übertragungsfunktion

$$G^{\#}(q) = \frac{32}{(2\sqrt{3}+q)^2(2+(2-\sqrt{3})q)}, \qquad T_a = 0.1$$

einen Regler mit dem Frequenkennlinienverfahren so, dass die Sprungantwort des geschlossenen Kreises folgende Anforderungen erfüllt:

- Anstiegszeit $t_r = 0.6 \,\mathrm{s}$
- prozentuelles Überschwingen $\ddot{u} = 10\%$
- \bullet bleibende Regelabweichung $e_{\infty}|_{r_k=(1)^k}=0$
- c) Stellen Sie den Regler mit der q-Übertragungsfunktion

$$R^{\#}(q) = \frac{V_I \left(1 + qT_I\right)}{q}$$

für die Abtastzeit T_a als Differenzengleichung dar.