```
In [2]: #import libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [3]: df = pd.read\_csv('cancer.csv')
 df.head(7)

### Out[3]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mea |
|---|----------|-----------|-------------|--------------|----------------|-----------|----------------|
| 0 | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.1184         |
| 1 | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.0847         |
| 2 | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.1096         |
| 3 | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.1425         |
| 4 | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.1003         |
| 5 | 843786   | М         | 12.45       | 15.70        | 82.57          | 477.1     | 0.1278         |
| 6 | 844359   | М         | 18.25       | 19.98        | 119.60         | 1040.0    | 0.0946         |

7 rows × 32 columns

In [4]: #Count the number of rows and columns in the data set

Out[4]: (569, 32)

df.shape

```
In [5]: #Count the empty (NaN, NAN, na) values in each column
        df.isna().sum()
Out[5]: id
                                    0
        diagnosis
                                    0
        radius_mean
                                    0
        texture_mean
                                    0
        perimeter mean
        area mean
                                    0
        smoothness_mean
                                    0
        compactness_mean
                                    0
        concavity_mean
                                    0
        concave points_mean
                                    0
        symmetry_mean
        fractal_dimension_mean
                                    0
        radius_se
                                    0
                                    0
        texture se
        perimeter_se
                                    0
                                    0
        area se
        smoothness_se
        compactness_se
                                    0
                                    0
        concavity_se
        concave points se
                                    0
        symmetry_se
                                    0
        fractal_dimension_se
                                    0
        radius worst
        texture worst
                                    0
        perimeter worst
                                    0
                                    0
        area worst
        smoothness worst
                                    0
        compactness_worst
                                    0
        concavity worst
        concave points_worst
                                    0
        symmetry worst
        fractal dimension worst
        dtype: int64
In [6]: #Drop the column with all missing values (na, NAN, NaN)
        #NOTE: This drops the column Unnamed
        df = df.dropna(axis=1)
In [7]:
        #Get the new count of the number of rows and cols
        df.shape
Out[7]: (569, 32)
        #Get a count of the number of Malignant (M) (harmful) or Benign (B) cells (not he
In [8]:
        df['diagnosis'].value_counts()
Out[8]: B
             357
              212
        Name: diagnosis, dtype: int64
```

```
In [10]: #Visualize this count
sns.countplot(df['diagnosis'],label="Count")
```

Out[10]: <matplotlib.axes.\_subplots.AxesSubplot at 0x29b8c08a248>



In [11]: #Look at the data types to see which columns need to be transformed / encoded to df.dtypes

| Out[11]: | id                                 | int64   |
|----------|------------------------------------|---------|
|          | diagnosis                          | object  |
|          | radius_mean                        | float64 |
|          | texture_mean                       | float64 |
|          | perimeter_mean                     | float64 |
|          | area_mean                          | float64 |
|          | smoothness_mean                    | float64 |
|          | compactness_mean                   | float64 |
|          | concavity_mean                     | float64 |
|          | concave points_mean                | float64 |
|          | symmetry_mean                      | float64 |
|          | <pre>fractal_dimension_mean</pre>  | float64 |
|          | radius_se                          | float64 |
|          | texture_se                         | float64 |
|          | perimeter_se                       | float64 |
|          | area_se                            | float64 |
|          | smoothness_se                      | float64 |
|          | compactness_se                     | float64 |
|          | concavity_se                       | float64 |
|          | concave points_se                  | float64 |
|          | symmetry_se                        | float64 |
|          | <pre>fractal_dimension_se</pre>    | float64 |
|          | radius_worst                       | float64 |
|          | texture_worst                      | float64 |
|          | perimeter_worst                    | float64 |
|          | area_worst                         | float64 |
|          | smoothness_worst                   | float64 |
|          | compactness_worst                  | float64 |
|          | concavity_worst                    | float64 |
|          | concave points_worst               | float64 |
|          | symmetry_worst                     | float64 |
|          | <pre>fractal_dimension_worst</pre> | float64 |
|          | dtype: object                      |         |
|          |                                    |         |

```
In [12]:
      #Transform/ Encode the column diagnosis
       #dictionary = {'M':1, 'B':0}#Create a dictionary file
       #df.diagnosis = [dictionary[item] for item in df.diagnosis] #Change all 'M' to 1
       #Encoding categorical data values (Transforming categorical data/ Strings to inte
       from sklearn.preprocessing import LabelEncoder
       labelencoder Y = LabelEncoder()
       df.iloc[:,1]= labelencoder Y.fit transform(df.iloc[:,1].values)
       print(labelencoder_Y.fit_transform(df.iloc[:,1].values))
       0\;1\;1\;1\;1\;1\;1\;1\;1\;0\;1\;0\;0\;0\;0\;1\;1\;0\;1\;1\;0\;0\;0\;0\;1\;0\;1\;1\;0\;0\;0\;0\;1\;0\;1\;1\;1
       0\;1\;0\;1\;1\;0\;0\;0\;1\;1\;0\;1\;1\;1\;0\;0\;0\;1\;0\;0\;0\;1\;1\;0\;0\;0\;1\;1\;0\;0\;0\;1\;0\;0\;1\;0\;0
       0\;1\;0\;0\;0\;0\;0\;1\;1\;0\;0\;1\;0\;0\;1\;0\;0\;0\;0\;1\;0\;0\;0\;0\;1\;0\;1\;1\;1\;1\;1\;1\;1\;1
       1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0
       0\;1\;0\;0\;1\;0\;1\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;1\;0\;1\;0\;1\;0\;0\;0\;0\;1\;1\;1\;0\;0
       0 0 0 0 0 0 0 1 1 1 1 1 1 0
In [13]:
       #A "pairs plot" is also known as a scatterplot, in which one variable in the same
       sns.pairplot(df, hue="diagnosis")
       #sns.pairplot(df.iloc[:,1:6], hue="diagnosis") #plot a sample of the columns
      C:\Users\DELL\Anaconda4\lib\site-packages\statsmodels\nonparametric\kde.py:48
      7: RuntimeWarning: invalid value encountered in true divide
        binned = fast linbin(X, a, b, gridsize) / (delta * nobs)
      C:\Users\DELL\Anaconda4\lib\site-packages\statsmodels\nonparametric\kdetools.
      py:34: RuntimeWarning: invalid value encountered in double scalars
        FAC1 = 2*(np.pi*bw/RANGE)**2
Out[13]: <seaborn.axisgrid.PairGrid at 0x29b8c883f08>
```

Out[14]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mea |
|---|----------|-----------|-------------|--------------|----------------|-----------|----------------|
| 0 | 842302   | 1         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.1184         |
| 1 | 842517   | 1         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.0847         |
| 2 | 84300903 | 1         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.1096         |
| 3 | 84348301 | 1         | 11.42       | 20.38        | 77.58          | 386.1     | 0.1425         |
| 4 | 84358402 | 1         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.1003         |

5 rows × 32 columns



In [15]:

#Get the correlation of the columns
df.corr()

#df.iloc[:,1:12].corr() #Get a sample of correlated column info

## Out[15]:

|                        | id                | diagnosis | radius_mean | texture_mean | perimeter_mean | area_ı |
|------------------------|-------------------|-----------|-------------|--------------|----------------|--------|
| id                     | 1.000000          | 0.039769  | 0.074626    | 0.099770     | 0.073159       | 90.0   |
| diagnosis              | 0.039769          | 1.000000  | 0.730029    | 0.415185     | 0.742636       | 0.70   |
| radius_mean            | 0.074626          | 0.730029  | 1.000000    | 0.323782     | 0.997855       | 98.0   |
| texture_mean           | 0.099770          | 0.415185  | 0.323782    | 1.000000     | 0.329533       | 0.32   |
| perimeter_mean         | 0.073159          | 0.742636  | 0.997855    | 0.329533     | 1.000000       | 0.98   |
| area_mean              | 0.096893          | 0.708984  | 0.987357    | 0.321086     | 0.986507       | 1.00   |
| smoothness_mean        | <b>-</b> 0.012968 | 0.358560  | 0.170581    | -0.023389    | 0.207278       | 0.17   |
| compactness_mean       | 0.000096          | 0.596534  | 0.506124    | 0.236702     | 0.556936       | 0.49   |
| concavity_mean         | 0.050080          | 0.696360  | 0.676764    | 0.302418     | 0.716136       | 0.68   |
| concave points_mean    | 0.044158          | 0.776614  | 0.822529    | 0.293464     | 0.850977       | 0.82   |
| symmetry_mean          | -0.022114         | 0.330499  | 0.147741    | 0.071401     | 0.183027       | 0.15   |
| fractal_dimension_mean | -0.052511         | -0.012838 | -0.311631   | -0.076437    | -0.261477      | -0.28  |
| radius_se              | 0.143048          | 0.567134  | 0.679090    | 0.275869     | 0.691765       | 0.73   |
| texture_se             | -0.007526         | -0.008303 | -0.097317   | 0.386358     | -0.086761      | -0.0€  |
| perimeter_se           | 0.137331          | 0.556141  | 0.674172    | 0.281673     | 0.693135       | 0.72   |
| area_se                | 0.177742          | 0.548236  | 0.735864    | 0.259845     | 0.744983       | 0.80   |
| smoothness_se          | 0.096781          | -0.067016 | -0.222600   | 0.006614     | -0.202694      | -0.1€  |
| compactness_se         | 0.033961          | 0.292999  | 0.206000    | 0.191975     | 0.250744       | 0.21   |
| concavity_se           | 0.055239          | 0.253730  | 0.194204    | 0.143293     | 0.228082       | 0.20   |
| concave points_se      | 0.078768          | 0.408042  | 0.376169    | 0.163851     | 0.407217       | 0.37   |
| symmetry_se            | -0.017306         | -0.006522 | -0.104321   | 0.009127     | -0.081629      | -0.07  |
| fractal_dimension_se   | 0.025725          | 0.077972  | -0.042641   | 0.054458     | -0.005523      | -0.01  |
| radius_worst           | 0.082405          | 0.776454  | 0.969539    | 0.352573     | 0.969476       | 0.9€   |
| texture_worst          | 0.064720          | 0.456903  | 0.297008    | 0.912045     | 0.303038       | 0.28   |
| perimeter_worst        | 0.079986          | 0.782914  | 0.965137    | 0.358040     | 0.970387       | 0.95   |
| area_worst             | 0.107187          | 0.733825  | 0.941082    | 0.343546     | 0.941550       | 0.95   |
| smoothness_worst       | 0.010338          | 0.421465  | 0.119616    | 0.077503     | 0.150549       | 0.12   |
| compactness_worst      | -0.002968         | 0.590998  | 0.413463    | 0.277830     | 0.455774       | 0.39   |
| concavity_worst        | 0.023203          | 0.659610  | 0.526911    | 0.301025     | 0.563879       | 0.51   |
| concave points_worst   | 0.035174          | 0.793566  | 0.744214    | 0.295316     | 0.771241       | 0.72   |
| symmetry_worst         | -0.044224         | 0.416294  | 0.163953    | 0.105008     | 0.189115       | 0.14   |

|                         | id        | diagnosis | radius_mean | texture_mean | perimeter_mean | area_ı |    |
|-------------------------|-----------|-----------|-------------|--------------|----------------|--------|----|
| fractal_dimension_worst | -0.029866 | 0.323872  | 0.007066    | 0.119205     | 0.051019       | 0.00   |    |
| 32 rows × 32 columns    |           |           |             |              |                |        | g) |
| <                       |           |           |             |              |                | >      |    |

# 

Out[16]: <matplotlib.axes.\_subplots.AxesSubplot at 0x29bb67504c8>



```
In [17]: #Split the data into independent 'X' and dependent 'Y' variables
X = df.iloc[:, 2:31].values #Notice I started from index 2 to 31, essentially re
Y = df.iloc[:, 1].values #Get the target variable 'diagnosis' located at index=1
```

- In [18]: # Split the dataset into 75% Training set and 25% Testing set
  from sklearn.model\_selection import train\_test\_split
  X\_train, X\_test, Y\_train, Y\_test = train\_test\_split(X, Y, test\_size = 0.25, random
- In [19]: # Scale the data to bring all features to the same level of magnitude
   # This means the data will be within a specific range for example 0 -100 or 0 
  #Feature Scaling
   from sklearn.preprocessing import StandardScaler
   sc = StandardScaler()
   X\_train = sc.fit\_transform(X\_train)
   X\_test = sc.transform(X\_test)

```
In [20]:
                  #Create a function within many Machine Learning Models
                  def models(X_train,Y_train):
                      #Using Logistic Regression Algorithm to the Training Set
                      from sklearn.linear model import LogisticRegression
                      log = LogisticRegression(random_state = 0)
                      log.fit(X train, Y train)
                      #Using KNeighborsClassifier Method of neighbors class to use Nearest Neighbor
                      from sklearn.neighbors import KNeighborsClassifier
                      knn = KNeighborsClassifier(n neighbors = 5, metric = 'minkowski', p = 2)
                      knn.fit(X_train, Y_train)
                      #Using SVC method of svm class to use Support Vector Machine Algorithm
                      from sklearn.svm import SVC
                      svc_lin = SVC(kernel = 'linear', random_state = 0)
                      svc_lin.fit(X_train, Y_train)
                      #Using SVC method of svm class to use Kernel SVM Algorithm
                      from sklearn.svm import SVC
                      svc_rbf = SVC(kernel = 'rbf', random_state = 0)
                      svc_rbf.fit(X_train, Y_train)
                      #Using GaussianNB method of naïve bayes class to use Naïve Bayes Algorithm
                      from sklearn.naive bayes import GaussianNB
                      gauss = GaussianNB()
                      gauss.fit(X train, Y train)
                      #Using DecisionTreeClassifier of tree class to use Decision Tree Algorithm
                      from sklearn.tree import DecisionTreeClassifier
                      tree = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
                      tree.fit(X train, Y train)
                      #Using RandomForestClassifier method of ensemble class to use Random Forest Cl
                      from sklearn.ensemble import RandomForestClassifier
                      forest = RandomForestClassifier(n estimators = 10, criterion = 'entropy', randomForestClassifier(n estimator) = 'entropy', randomForestClassifier(n estimators = 10, criterion = 'entropy', randomForestClassifier(n estimators = 10, criterion = 10, criterion = 'entropy', randomForestClassifier(n estimators = 10, criterion = 10, crite
                      forest.fit(X_train, Y_train)
                      #print model accuracy on the training data.
                      print('[0]Logistic Regression Training Accuracy:', log.score(X_train, Y_train)
                      print('[1]K Nearest Neighbor Training Accuracy:', knn.score(X_train, Y_train))
                      print('[2]Support Vector Machine (Linear Classifier) Training Accuracy:', svc
                      print('[3]Support Vector Machine (RBF Classifier) Training Accuracy:', svc_rbf
                      print('[4]Gaussian Naive Bayes Training Accuracy:', gauss.score(X_train, Y_tra
                      print('[5]Decision Tree Classifier Training Accuracy:', tree.score(X_train, Y_
                      print('[6]Random Forest Classifier Training Accuracy:', forest.score(X train,
                      return log, knn, svc lin, svc rbf, gauss, tree, forest
```

```
In [24]: model = models(X_train,Y_train)
```

- [0]Logistic Regression Training Accuracy: 0.9906103286384976 [1]K Nearest Neighbor Training Accuracy: 0.9765258215962441
- [2]Support Vector Machine (Linear Classifier) Training Accuracy: 0.988262910798
- 1221
  [3]Support Vector Machine (RBF Classifier) Training Accuracy: 0.983568075117370
- [4]Gaussian Naive Bayes Training Accuracy: 0.9507042253521126
- [5]Decision Tree Classifier Training Accuracy: 1.0
- [6] Random Forest Classifier Training Accuracy: 0.9953051643192489

C:\Users\DELL\Anaconda4\lib\site-packages\sklearn\linear\_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

```
In [26]:
         #Show the confusion matrix and accuracy for all of the models on the test data
         #Classification accuracy is the ratio of correct predictions to total predictions
         from sklearn.metrics import confusion_matrix
         for i in range(len(model)):
           cm = confusion_matrix(Y_test, model[i].predict(X_test))
           TN = cm[1][1]
           TP = cm[0][0]
           FN = cm[1][0]
           FP = cm[0][1]
           print(cm)
           print('Model[{}] Testing Accuracy = "{}!"'.format(i, (TP + TN) / (TP + TN + FI
           print()# Print a new line
         [[86 4]
          [ 4 49]]
         Model[0] Testing Accuracy = "0.9440559440559441!"
         [[89 1]
          [ 5 48]]
         Model[1] Testing Accuracy = "0.958041958041958!"
         [[87 3]
          [ 2 51]]
         Model[2] Testing Accuracy = "0.965034965034965!"
         [[88 2]
          [ 3 50]]
         Model[3] Testing Accuracy = "0.965034965034965!"
         [[85 5]
          [ 6 47]]
         Model[4] Testing Accuracy = "0.9230769230769231!"
         [[84 6]
          [ 1 52]]
         Model[5] Testing Accuracy = "0.951048951048951!"
         [[87 3]
          [ 2 51]]
         Model[6] Testing Accuracy = "0.965034965034965!"
```

```
In [27]:
         #Show other ways to get the classification accuracy & other metrics
          from sklearn.metrics import classification_report
          from sklearn.metrics import accuracy score
          for i in range(len(model)):
            print('Model ',i)
            #Check precision, recall, f1-score
           print( classification_report(Y_test, model[i].predict(X_test)) )
            #Another way to get the models accuracy on the test data
            print( accuracy_score(Y_test, model[i].predict(X_test)))
            print()#Print a new line
         Model 0
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.96
                                       0.96
                                                  0.96
                                                              90
                     1
                             0.92
                                       0.92
                                                  0.92
                                                              53
                                                  0.94
              accuracy
                                                             143
                                                  0.94
             macro avg
                             0.94
                                       0.94
                                                             143
                             0.94
                                       0.94
                                                  0.94
                                                             143
         weighted avg
         0.9440559440559441
         Model 1
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.95
                                       0.99
                                                  0.97
                                                              90
                             0.98
                     1
                                       0.91
                                                  0.94
                                                              53
                                                  0.96
              accuracy
                                                             143
                             0.96
                                       0.95
                                                  0.95
                                                             143
             macro avg
         weighted avg
                             0.96
                                       0.96
                                                  0.96
                                                             143
         0.958041958041958
         Model 2
                                     recall f1-score
                        precision
                                                         support
                             0.98
                                       0.97
                                                  0.97
                                                              90
                     0
                             0.94
                                       0.96
                     1
                                                  0.95
                                                              53
              accuracy
                                                  0.97
                                                             143
             macro avg
                             0.96
                                       0.96
                                                  0.96
                                                             143
                                       0.97
                                                  0.97
         weighted avg
                             0.97
                                                             143
         0.965034965034965
         Model 3
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.97
                                       0.98
                                                  0.97
                                                              90
                     1
                             0.96
                                       0.94
                                                  0.95
                                                              53
                                                  0.97
                                                             143
              accuracy
```

|           |       | Brea        | ast_Cancer_with | h_Classification - | - Jupyter Noteb |
|-----------|-------|-------------|-----------------|--------------------|-----------------|
| macro     | avg   | 0.96        | 0.96            | 0.96               | 143             |
| weighted  | avg   | 0.96        | 0.97            | 0.96               | 143             |
|           |       |             |                 |                    |                 |
| 0.9650349 | 6503  | 4965        |                 |                    |                 |
| Model 4   |       |             |                 |                    |                 |
| Model 4   |       | precision   | recall          | f1-score           | support         |
|           |       | precision   | recarr          | 11-30016           | зиррог с        |
|           | 0     | 0.93        | 0.94            | 0.94               | 90              |
|           | 1     | 0.90        | 0.89            | 0.90               | 53              |
|           |       |             |                 |                    |                 |
| accur     | acy   |             |                 | 0.92               | 143             |
| macro     | _     | 0.92        | 0.92            | 0.92               | 143             |
| weighted  | avg   | 0.92        | 0.92            | 0.92               | 143             |
| 0 0220760 |       | C0221       |                 |                    |                 |
| 0.9230769 | 1230/ | 69231       |                 |                    |                 |
| Model 5   |       |             |                 |                    |                 |
| nouci 5   |       | precision   | recall          | f1-score           | support         |
|           |       |             |                 |                    |                 |
|           | 0     | 0.99        | 0.93            | 0.96               | 90              |
|           | 1     | 0.90        | 0.98            | 0.94               | 53              |
|           |       |             |                 |                    |                 |
| accur     | acy   |             |                 | 0.95               | 143             |
| macro     | avg   | 0.94        | 0.96            | 0.95               | 143             |
| weighted  | avg   | 0.95        | 0.95            | 0.95               | 143             |
| 0.9510489 | 5104  | 8951        |                 |                    |                 |
| M-J-7 C   |       |             |                 |                    |                 |
| Model 6   |       | precision   | recall          | f1-score           | support         |
|           |       | bi ectatoli | I CCUIT         | 11-30016           | Support         |
|           | 0     | 0.00        | 0.07            | 0.07               | 00              |

| Model  | Ь      | precision | recall | f1-score | support |
|--------|--------|-----------|--------|----------|---------|
|        | 0      | 0.98      | 0.97   | 0.97     | 90      |
|        | 1      | 0.94      | 0.96   | 0.95     | 53      |
| ac     | curacy |           |        | 0.97     | 143     |
|        | ro avg | 0.96      | 0.96   | 0.96     | 143     |
| weight | ed avg | 0.97      | 0.97   | 0.97     | 143     |

## 0.965034965034965

```
In [28]:
      #Print Prediction of Random Forest Classifier model
      pred = model[6].predict(X_test)
      print(pred)
      #Print a space
      print()
      #Print the actual values
      print(Y_test)
      [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1
       1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1
      [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1
       1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1
In [ ]:
```