#### Team Hydr8 Detail Review

Water Desalination December 7, 2016

Subteams:

Pump:

Alex Luck Scott Karn David Black **Survivability:** 

Ryan Seballos Jeffrie Brown Components:

Calvin Boyle Will Koehrsen **Market Research:** 

Jeffrie Brown Ryan Seballos



# Scope and Project Statement

Team Hydr8 shall design a mechanical water desalination device for use in natural disaster relief. Our device will allow users to convert seawater or other wastewater into drinkable water and allow survival for a family of four for an extended period of time.

Our product shall utilize the reverse osmosis (RO) architecture and will require the following components to be purchased or designed:

Pump, membrane, inlet filter, check valves, tubing, and casing.

Components such as feedwater and permeate storage are out of scope, but considered for the design of the components which must interface with them.

The product lifespan is 100 hours of operation. At 3.8 hours of operation per day, the mean lifespan of the product is 26.8 days of regular operation.

Constraints considered include: cost, ease of operations, robustness, and ability to meet all customer requirements.

# Project Requirements

#### **Customer Requirements:**

- Device must be entirely mechanical; no batteries, electric, or other power input.
- Device must remove at least 95% of the salt from standard sea water, resulting in potable water.
- Device must provide enough potable water in a 24 hour period to meet the survival needs of a family of 4.
- Device must be robust enough to drop from a 20 foot height and still be functional.
- Device must be easy to operate, clean and maintain.
- Device must be inexpensive.

#### Design Requirements

- A mechanical hand pump must provide the pressure necessary for the operation of the reverse osmosis membrane (380 psi minimum)
- All contaminants identified by the EPA Primary Drinking Water Regulations must be at or below acceptable levels (EPA-816-F-09-004) (2000 ppm salt, refer to document for other contaminant details)
- Must supply at least 0.8 gallons per person per 24-hour period to satisfy survival needs (3.17 gallons per day total)
- Components and protective casings must survive the forces associated with a 20 foot fall
- Hand pump must be operable within the average human strength capability (25 to 40 pounds of force)
- Total system must be cheaper than traditional methods of shipping water into disaster zones over the life of the product (\$1.2 per gallon plus freight costs)
- Must be light enough to be easily carried by an average human (able to be lifted into the bed of a pickup truck, 45 pounds maximum)

# **Product Specifications**



| Parameter          | Value                             |
|--------------------|-----------------------------------|
| Flow Rate*         | 0.857 gal/h                       |
| Pumping Time*      | 33% LOTR Extended<br>(3.74 hours) |
| Max. Force         | 37.3 lbf                          |
| Handle Length      | 39 in                             |
| Working Pressure   | 450 psi                           |
| Weight with Case   | 23.9 lb                           |
| Envelope with Case | 28" x 8" x 8"                     |

## Concept of Operation

- The Hydr8 Product comes in a polycarbonate case with all components preassembled except for the handle extension
- The user removes the handle from the case, and attaches the handle extension to the handle
- The user then places the desalination device on a sturdy surface with the inlet tube placed into the source water and places her/his feet on the extended sides for support
- The user then raises the pump handle to draw water into the RO membrane and then forcefully
  pushes the handle down in order to drive the source water through the membrane
- Potable water will exit from the RO membrane through the outlet tubing and can be directed into an acceptable storage device
- If any part ceases proper functioning, the manufacturer will be contacted and the source of the failure will be Identified and corrected



# Fluid System Layout





#### Fall Protection



- Impact Resistance
  - Polycarbonate casing
- Energy Absorption
  - Closed-cell polyurethane foam of optimum density
- Environmental Resistance of Polycarbonate
  - Excellent resistance against seawater
  - Resistance satisfactory up to 120°F



| Must use mechanical means to produce at least 380 psi for RO membrane (osmotic pressure of dissolved sodium)          | Hand operated pump produces 450 psi                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Must be portable and easy to transport by the average human (maximum 45 pounds)                                       | The weight of the total system (the desalinator and the external case) is 23.9 pounds and the dimensions are 28"x8"x8"                                                   |
| Must produce at least 3.17 gallons of water per day                                                                   | Produces 3.2 gallons over the recommended daily operating timeframe                                                                                                      |
| Must produce the required amount of water in a 24 hour window                                                         | It takes the user approximately 32.76% the run time of the Lord of the Rings series extended edition to pump 3.2 gallons. (Roughly 3 hours 44 minutes in layman's terms) |
| Must be operable within the average human strength capability (25-40 pounds)                                          | Maximum force required on the handle is 37.3 pounds (at 45 degrees handle extension), and 27.8 pounds (at 0 degrees handle extension)                                    |
| Must survive the forces associated with a 20-foot fall                                                                | External case is able to withstand 483.4 ft-lb (.648 kJ) of energy at impact                                                                                             |
| Total system must be cheaper than the cost of shipping water to a disaster area (\$1.2 per gallon plus freight costs) | Final cost of the product is \$450, which displaces water shipping costs at approximately 18 days of operation (lifespan of the product is roughly 27 days)              |

Requirement Justification

Derived Requirement

#### Bill of Materials

| Part Number | Part                      | Material                   | Vendor Part<br>Number | Vendor        | Manufacturing Method | Quantity | Cost per Unit |
|-------------|---------------------------|----------------------------|-----------------------|---------------|----------------------|----------|---------------|
| HYD-100-001 | Housing                   | K-Alloy/A304               | N/A                   | Manufactured  | Die Cast, Machine    | 1        | \$9.03        |
| HYD-100-002 | Seal Nut                  | 316 SS                     | N/A                   | Manufactured  | Machine              | 1        | \$6.06        |
| HYD-100-003 | Seal Nut O-Ring           | Silicon                    | 9396K66               | McMaster-Carr | -                    | 1        | \$0.18        |
| HYD-100-004 | Piston O-Ring             | Silicon                    | 9396K32               | McMaster-Carr | -                    | 1        | \$0.21        |
| HYD-100-005 | Membrane                  | Fiberglass                 | SWC-2514              | WaterSurplus  | -                    | 1        | \$137.20      |
| HYD-100-006 | Barbed to Male<br>Fitting | Nylon                      | 5463K445              | McMaster-Carr | -                    | 1        | \$0.50        |
| HYD-100-007 | Membrane<br>Housing       | 6061-T6 Aluminum           | N/A                   | Manufactured  | Extrude, Machine     | 1        | \$16.04       |
| HYD-100-008 | Inlet Tubing              | Flexible PVC               | 5233K56               | McMaster-Carr | -                    | 1        | \$0.96        |
| HYD-100-009 | Check Valve               | Brass                      | 7775K22               | McMaster-Carr | -                    | 2        | \$12.98       |
| HYD-100-011 | Outlet Tubing             | Food Grade Flexible<br>PVC | 5231K331              | McMaster-Carr | -                    | 1        | \$0.34        |
| HYD-100-012 | Silicon O-Ring            | Silicon                    | 9396K163              | McMaster-Carr | -                    | 1        | \$0.68        |

## Make/Buy Justification

#### Purchased Parts:

- Any components that could be purchased was purchased
  - This includes all fasteners, nuts, washers, hinges, latches, check valves, the RO membrane, and the handle rubber grip

#### Manufactured Parts:

- All other parts are required to be manufactured in order to fit the custom needs of the project
  - Most major components of the product must be manufactured, such as the pump housing, pump piston, external casing, and membrane casing.

Assembly Drawing



# Component Detail Drawing



### **FMEA**

| Part Number | Part/Assy<br>Description                                              | Function                                                                                                       | Failure Mode                                      | Effects of<br>Failure                                                               | Causes of<br>Failure                                                            | Detection                                                                               | S | 0 | D | RPN | Corrective<br>Action                                                                                       | S | 0 | D | RPN |
|-------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---|---|---|-----|------------------------------------------------------------------------------------------------------------|---|---|---|-----|
| HYD-100-015 | Membrane<br>Outlet End<br>Cap, Filter,<br>Fluid<br>Assembly,<br>Hydr8 | Seals<br>membrane<br>inside<br>housing,<br>directs<br>permeate into<br>outlet tubing                           | Manufacturing<br>defects                          | membrane no<br>longer able to                                                       | Improper<br>manufacuturin<br>g, materials<br>defects from<br>casting<br>process | User inspects<br>end cap                                                                | 8 | 4 | 4 | 128 | Entire system<br>should be<br>pressurized<br>above<br>operating<br>pressure                                | 8 | 2 | 4 | 64  |
| HYD-100-009 | Check Valve,<br>Pump, Fluid<br>Assembly,<br>Hydr8                     | Allows flow of<br>water to pass<br>in one<br>direction only                                                    | High Cycle<br>Fatigue                             | No way to<br>pass water in<br>required<br>direction,<br>failure of<br>entire system |                                                                                 | User inspects<br>part and<br>ensures that<br>check valves<br>functioning as<br>intended | 7 | 4 | 4 | 112 | Test check<br>valves over<br>high number<br>of cycles<br>before<br>releasing to<br>market                  | 7 | 2 | 4 | 56  |
| HYD-100-008 | Inlet Tubing,<br>Fluid<br>Assembly,<br>Hydr8                          | Provides<br>pathway of<br>water from<br>source to<br>pump piston                                               | Blockage                                          | Inability to<br>draw water<br>into pump                                             | filtering of<br>source water<br>by inlet filter                                 | User observes<br>operation of<br>pump for<br>consistent<br>output                       | 9 | 4 | 3 | 108 | Increase<br>tubing ID and<br>improve inlet<br>filtering                                                    | 9 | 1 | 3 | 27  |
| HYD-100-007 | Membrane<br>Housing,<br>Filter, Fluid<br>Assembly,<br>Hydr8           | Holds the<br>membrane to<br>allow for<br>pressurization                                                        | Stress<br>Rupture                                 | Bursting of<br>membrane<br>housing,<br>complete<br>failure of<br>system             | wall thickness,                                                                 | User checks<br>for visible<br>damage                                                    | 9 | 3 | 4 | 108 | Increase wall<br>thickness,<br>factor of<br>safety of 4<br>regarding yield<br>stress                       | 9 | 1 | 4 | 36  |
| HYD-100-004 | O-Ring,<br>Piston, Fluid<br>Assembly,<br>Hydr8                        | Creates a seal<br>between the<br>piston cylinder<br>and the pump<br>bore so there<br>is no loss of<br>pressure | Seal breaks,<br>allowing<br>pressure to<br>escape | Pump loses<br>efficiency and<br>may cease to<br>be usable<br>entirely               |                                                                                 | Inspection<br>post-producti<br>on                                                       | 7 | 3 | 5 | 105 | Use a factor of<br>safety of at<br>least 3 in<br>terms of<br>O-ring<br>thickness,<br>material<br>selection | 7 | 2 | 5 | 70  |

#### Cost Estimate

#### Our cost

- Original goal: \$400 to make, retail at \$500/unit (25% markup)
- Current: \$324.38 to make, retail at \$450/unit (39% markup)
- Methodology for our Cost
  - Manufactured Parts: Solidworks costing
  - Purchased Parts: Provided by vendor
- Against our competitors
  - Katadyn Survivor 35: \$2,395.00 per unit
  - Shipping water: Save \$304,680 vs. shipping 30 days
     of water for 1000 families, breaks even at 18 days



# Materials and Manufacturing

- Materials used in non purchased parts: 6061 and K-Alloy/A304
   Aluminum, 316 Stainless Steel, Polycarbonate, and Acetal(POM)
  - Primary considerations were strength, corrosion resistance, and weight reduction
- Manufacturing processes used: Die Casting, Sand Casting,
   Injection Molding, Extrusion, and Machining
  - Methods to reduce cost for large productions runs used when possible

## **Gantt Chart**

|                                          | Week 1<br>(8/28) | Week 2<br>(9/4) | Week 3<br>(9/11) | Week 4<br>(9/18) | Week 5<br>(9/25) | Week 6<br>(10/2) | Week 7<br>(10/9) | Week 8<br>(10/16) | Week 9<br>(10/23) | Week<br>10<br>(10/30) | Week<br>11<br>(11/6) | Week 12<br>(11/13) | Week 13<br>(11/20) | Week<br>14<br>(11/27) | Week<br>15<br>(12/4) |
|------------------------------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-----------------------|----------------------|--------------------|--------------------|-----------------------|----------------------|
| Research and Trade Study                 |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| <b>Decide on Design Concept</b>          |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Create first design of pump              |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Create first design of filtration system |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Design survivable exterior               |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Integrate components into product        |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Analyze first design of product          |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Redesign initial design                  |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Analyze second design of product         |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |
| Redesign into final product              |                  |                 |                  |                  |                  |                  |                  |                   |                   |                       |                      |                    |                    |                       |                      |

### Hydr8 Backup



#### Sources

- WHO Technical Notes on Drinking-Water, Sanitation, and Hygiene in Emergencies
  - Water intake needs of a single person per day (3L, 3.17 gallons for four people)
- EPA Drinking Water Advisory (EPA 822-R-03-006)
  - Salinity of acceptable drinking water (Seawater is 30,000 ppm, drinking water is 2,000 ppm)
- EPA National Primary Drinking Water Regulations Contaminant Table (EPA-816-F-09-004)
  - Acceptable levels of non-sodium contaminants (heavy metals, bacteria, etc)
- Contaminants Removed by Reverse Osmosis
   (https://www.h2odistributors.com/pages/contaminants/contaminants-reverse-osmosis.asp)
- Human Strength Capability and Low Back Pain by Dr. Don Chaffin and Maximum isoinertial lifting capabilities for different lifting ranges and container dimensions by Tzu-Hsien Lee
  - Maximum average human lifting capabilities
- **Human Performance Capabilities** (https://msis.jsc.nasa.gov/sections/section04.htm#\_4.9\_STRENGTH)
  - Human performance capabilities (force output of average human)
- McMaster-Carr
  - Purchased parts cost estimates
- Valmatic Design and Selection Criteria of Check Valves (http://www.valmatic.com/pdfs/DesignSelectCriteriaCV.pdf)
  - Check valve selection requirements

#### Sources (continued)

- NADCA Product Specification Standards for Die Casting
  - Die Casting specifications and requirements
- Parker O-Ring Friction Estimation Guide

(https://www.parker.com/literature/O-Ring%20Division%20Literature/Static%20Files/frictionestimation.pdf)

- Estimation of friction forces acting on the piston
- Cost of Bottled Water (http://www.bottledwater.org/economics/real-cost-of-bottled-water)
  - Shipping freight costs of bottled water
- "Mechanical Properties and Energy Absorption Characteristics of a Polyurethane Foam"
  - PU energy absorbed, http://www.osti.gov/scitech/servlets/purl/485941/, pg. 24
- Cole-Palmer
  - Chemical compatibility of polycarbonate with seawater
- Impact Properties and Uses of PC
  - https://www.ecnmag.com/article/2013/11/polycarbonate-vs-fiberglass-and-stainless-steel
  - http://aviation.stackexchange.com/questions/21802/what-kind-of-materials-is-being-used-f or-fighter-jets-glass-shields

### **BOM Continued**

| Part Number | Part                        | Material                         | Vendor Part Number | Vendor        | Manufacturing<br>Method | Quantity | Cost per Unit |
|-------------|-----------------------------|----------------------------------|--------------------|---------------|-------------------------|----------|---------------|
| HYD-100-013 | Handle                      | 6061-T6 Aluminum                 | N/A                | Manufactured  | Extrude, Weld           | 1        | \$7.60        |
| HYD-100-014 | Inlet Filter                | PVC                              | 98755K11           | McMaster-Carr | -                       | 1        | \$2.57        |
| HYD-100-015 | Membrane Outlet<br>End Cap  | 6061-T6 Aluminum                 | N/A                | Manufactured  | Machine                 | 1        | \$22.34       |
| HYD-100-016 | Piston Fulcrum Pin          | 316 Stainless Steel              | N/A                | Manufactured  | Machine                 | 1        | \$5.07        |
| HYD-100-017 | Handle Extension            | 6061-T6 Aluminum                 | N/A                | Manufactured  | Extrude, Machine        | 1        | \$8.26        |
| HYD-100-018 | Bushing                     | Brass                            | 1677K3             | McMaster-Carr | -                       | 2        | \$1.11        |
| HYD-100-019 | Handle Grip                 | Rubber                           | 97045K36           | McMaster-Carr | -                       | 1        | \$2.14        |
| HYD-100-021 | Piston                      | 316 Stainless Steel              | N/A                | Manufactured  | -                       | 1        | \$3.52        |
| HYD-100-022 | Lock Nut                    | Stainless Steel, Nylon<br>Insert | 90715A125          | McMaster-Carr | -                       | 4        | \$0.15        |
| HYD-100-023 | Handle Fulcrum Pin          | 316 Stainless Steel              | N/A                | Manufactured  | Machine                 | 1        | \$5.08        |
| HYD-100-024 | Polymer Insert              | POM (Acetal)                     | N/A                | Manufactured  | Injection Mold          | 1        | \$5.42        |
| HYD-100-026 | Barbed to Female<br>Fitting | Nylon                            | 5372K212           | McMaster-Carr | Market Research         | 1        | \$0.98        |

### **BOM Continued**

| Part Number | Part                        | Material                       | Vendor Part<br>Number | Vendor        | Manufacturing<br>Method | Quantity | Cost per Unit |
|-------------|-----------------------------|--------------------------------|-----------------------|---------------|-------------------------|----------|---------------|
| HYD-200-001 | Upper Shell                 | Polycarbonate                  | N/A                   | Manufactured  | Injection Mold          | 1        | \$9.84        |
| HYD-200-002 | Lower Shell                 | Polycarbonate                  | N/A                   | Manufactured  | Injection Mold          | 1        | \$10.51       |
| HYD-200-003 | Upper Foam                  | Polyurethane (closed cell)     | N/A                   | Manufactured  | Hand Cut                | 1        | \$2.98        |
| HYD-200-004 | Lower Foam                  | Polyurethane (closed cell)     | N/A                   | Manufactured  | Hand Cut                | 1        | \$0.81        |
| HYD-200-005 | Hinge                       | Aluminum (Clear Anodized)      | 1575A74               | McMaster-Carr | -                       | 2        | \$4.46        |
| HYD-200-006 | Latch                       | 304 Stainless Steel            | 6082A12               | McMaster-Carr | -                       | 2        | \$6.77        |
|             | Hinge Mounting              |                                |                       |               |                         |          | \$0.11        |
| HYD-200-007 | Hardware                    | Zinc-Plated Steel              | 91263A507             | McMaster-Carr | -                       | 24       |               |
| HYD-200-008 | Hinge Sealing Washer        | EPDM                           | 90130A007             | McMaster-Carr | -                       | 24       | \$0.06        |
| HYD-200-009 | Hinge Hex Nut               | Zinc-Plated Steel              | 90480A007             | McMaster-Carr | -                       | 24       | \$0.01        |
| HYD-200-010 | Latch Mounting<br>Hardware  | Passivated 316 stainless steel | 98164A438             | McMaster-Carr | -                       | 8        | \$0.14        |
| HYD-200-011 | Latch Sealing Washer        | Neoprene Rubber                | 90133A005             | McMaster-Carr | -                       | 8        | \$0.07        |
| HYD-200-012 | Latch Hex Nut               | 8-18 Stainless Steel           | 91841A006             | McMaster-Carr | -                       | 8        | \$0.06        |
| HYD-200-013 | Gasket                      | Buna N (Nitrile)               | 8635K364              | McMaster-Carr | -                       | 1        | \$0.48        |
| HYD-200-014 | Handle                      | Zinc-Plated Steel              | 1647A31               | McMaster-Carr | -                       | 2        | \$3.77        |
| HYD-200-015 | Handle Mounting<br>Hardware | 410 Stainless Steel            | 94629A670             | McMaster-Carr | -                       | 6        | \$0.05        |

## Pump Backup

| Diameter (in) | Stroke<br>(in) | Pressure F<br>(psia) | Req Target<br>Gallons | Strokes/Min | Memb<br>Efficiency | •    | Length A (in) | Handle<br>Length (in) |
|---------------|----------------|----------------------|-----------------------|-------------|--------------------|------|---------------|-----------------------|
|               | 1              | 2                    | 450                   | 3.2         | 30                 | 0.07 | 36            | 3 39                  |

| Seal | Friction |
|------|----------|
| (lb) |          |

| Pistor<br>(in^2) |       | Volume (in^3) | Vol Per Stroke<br>(gal) |       |          | Feed Rate (gpm) | Theta<br>(max) | Relative B | Relative A |
|------------------|-------|---------------|-------------------------|-------|----------|-----------------|----------------|------------|------------|
|                  | 0.785 | 1.571         | 0.007                   | 0.000 | 6722.705 | 0.204           | 41.810         | 26.833     | 2.236      |

|         | Minutes |
|---------|---------|
| Fp (lb) | Req     |
| 361.429 | 224.090 |

| Hours<br>Required | Fmin (lb) |        | Fmax (lb)          | gal/h |       |
|-------------------|-----------|--------|--------------------|-------|-------|
| 3.735             | 2         | 27.802 | 37.30 <sup>-</sup> | 1     | 0.857 |



9

#### Survivability Backup



#### **Material Properties**

• Tensile Strength: 900psi (6.205MPa)

#### Other Uses of Polycarbonate

- Used in making bulletproof windows
- F22 Canopy to protect it from bird strikes

## Survivability Backup



#### Survivability Backup

#### Polyurethane Foam Energy Absorption

- Energy Absorption is about 1.5J/cm<sup>3</sup> at a density of 0.36g/cm<sup>3</sup>
- Upper case foam: 3,376cm<sup>3</sup>
- Lower case foam: 12,405cm<sup>3</sup>
- 1.5J/cm<sup>3</sup>(3,376cm<sup>3</sup>+12,405cm<sup>3</sup>) =
   23,671.5J absorbed

#### Energy to be absorbed:

- Basic Concept: KE = PE
- Basic Equation: ½mv² = mgh
- Calculation Spreadsheet



Figure 15. Energy absorption of CRETE vs. density for impact testing. Unlike quasi-static testing, energy absorption peaks at an intermediate value of density.

#### Flotation Calculation

 $F_h = \rho_w Vg$  (Bouyant force)

 $\bullet$   $\rho_w$  is the density of water, V is volume of object submerged

$$F_g = mg = W$$
 (Force of gravity)

Setting 
$$F_b = F_g$$
 we get:  $\rho_w Vg = W$ 

Rearranging, the minimum required submerged volume to float is:  $V_{min} = W/(\rho_w g)$ 

$$V_{min} = 23.9 lb / (1.940 slugs/ft^3 * 32.2 ft/s^2) = 0.383 ft^3$$

Our volume:  $28"x 8"x 8" = 1792 in^3 = 1.037 ft^3$ 

\*Note: the  $\rho_{w}$  used is for fresh water, which is less dense than seawater

#### Pressure Drop Calculations

| Check Valves               |                          |                                |
|----------------------------|--------------------------|--------------------------------|
| GPM (based on pump)        | Specific Gravity (water) | Acceptable Pressure Drop (psi) |
| 0.204                      | 1                        |                                |
| Cv = GPM * (SG/dp)^1/2     |                          |                                |
| Minimum Cv                 | 0.102                    |                                |
| Actual Cv                  | 11                       |                                |
| Actual Pressure Loss (psl) | 0.034                    |                                |

| Pressure Drop                | 0.00467     | psi       | Pressure Drop                 | 0.00117 p   | si |
|------------------------------|-------------|-----------|-------------------------------|-------------|----|
| Pressure Drop                | 0.673       | (lb/ft^2) | Pressure Drop                 | 0.168       |    |
| Length (in)                  | 48          |           | Length (in)                   | 12          |    |
| Friction Factor              | 0.289       | f = 64/Re | Friction Factor               | 0.289       |    |
| Reynolds number              | 222         |           | Reynolds number               | 222         |    |
| Kinematic Viscosity (ft^2/s) | 0.0000105   |           | Kine matic Viscosity (ft^2/s) | 0.0000105   |    |
| Velocity (ft/s)              | 0.111888374 |           | Velocity (ft/s)               | 0.111888374 |    |
| Area (ft^2)                  | 0.004090615 |           | Area (ft^2)                   | 0.004090615 |    |
| Flow rate (lb/s)             | 0.02856     |           | Flow rate (lb/s)              | 0.02856     |    |
| Flow rate (GPM)              | 0.204       |           | Flow rate (GPM)               | 0.204       |    |
| Density (slugs/ft^3)         | 1.937888199 |           | Density (slugs/ft^3)          | 1.937888199 |    |
| Relative roughness           | 0.00000767  |           | Relative roughness            | 0.00000767  |    |
| Diameter (in)                | 0.25        |           | Diameter (in)                 | 0.25        |    |
| Absolute rougheness (in)     | 0.00000192  |           | Absolute rougheness (in)      | 0.00000192  |    |
| Inlet Tubing                 |             |           | Outlet Tubing                 |             |    |

#### Membrane Housing Calculation

| circumferential stress = Pressure * radius / thickness |       |                  |
|--------------------------------------------------------|-------|------------------|
| Radius (in)                                            | 1.2   |                  |
| Pressure (psi)                                         | 1000  |                  |
| Yield Strength (psi)                                   | 40000 | 6061 T6 aluminum |
| Thickness required (in)                                | 0.03  |                  |









# Housing Drawing



## **Housing Drawing**



## **Housing Drawing**



### **Upper Casing Drawing**



#### **Lower Casing Drawing**



#### Membrane Specifications





|                   | Membrane Element                                                                                                                                                                                                                                                                                                         | SWC - 2514                                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Performance       | Permeate Flow:<br>Salt Rejection:                                                                                                                                                                                                                                                                                        | 110 gpd (0.4 m³/d)<br>99.4 % (99.0 % minimum)                                                                           |
| Туре              | Configuration:<br>Membrane Polymer:<br>Membrane Active Area:                                                                                                                                                                                                                                                             | Spiral Wound<br>Composite Polyamide<br>5.0 ft <sup>2</sup>                                                              |
| Application Data* | Maximum Applied Pressure:  Maximum Chlorine Concentration:  Maximum Operating Temperature: pH Range: Continuous (Cleaning):  Maximum Feedwater Turbidity:  Maximum Feedwater SDI (15 mins):  Maximum Feed Flow:  Minimum Ratio of Concentrate to Permeate Flow for any element:  Maximum Pressure Droo for Each Element: | 1,000 psig (6.9 MPa)<br>< 0.1 PPM<br>113° F (45°C)<br>2-11 (1-13)*<br>1.0 NTU<br>4.0<br>6 GPM (23 l/m)<br>5:1<br>10 psi |

\* The limitations shown here are for general use. For specific projects, operating at more conservative values may ensure the best performance and longest life of the membrane. See Hydranautics Technical Bulletins for more detail on operation limits, cleaning pH, and cleaning temperatures.

#### **Test Conditions**

Elements are wet tested for quality assurance using the following conditions:

32000 PPM NaCl solution 800 psi (5.5 MPa) Applied Pressure 77 °F (25 °C) Operating Temperature 10% Permeate Recovery 6.5 - 7.0 pH Range (Data taken after 30 minutes of operation)



A, inches (mm) B, inches (mm) C, inches (mm) Weight, lbs. (kg) 14.0 (355.6) 2.4 (61) 0.75 (19.1) 1 (0.45)

Core tube extension = 1.10" (27.9 mm)

Notice: Minimum permeate flow for individual elements is 15 percent below listed flow. All membrane elements are supplied with a brine seal and o-rings. Most elements are packaged dry, sealed in polyethylene bags containing less than 1.0% sodium mets-bisulfile

Hydranautics believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions ryutransucs believes me mormation and data contained neter to be accurate and useful. The information and data are direct in good tain, but without guarantee, as conditions and methods of use of our products are beyond our control. Hydranautics assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of Hydranautics products for the user's specific end uses.