A beginner's guide to variational inference

Haziq Jamil

Social Statistics London School of Economics and Political Science

1 February 2018

Social Statistics Meeting

http://socialstats.haziqj.ml

Outline

1 Introduction

Idea Comparison to EM Mean-field distributions Coordinate ascent algorithm

2 Examples

Univariate Gaussian Gaussian mixture model

3 Discussion

Exponential families
Zero-forcing vs Zero-avoiding
Quality of approximation

Introduction

 Consider a statistical model where we have observations. $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.

¹With some caveats which will be discussed.

- Consider a statistical model where we have observations. $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.
- Want to evaluate the intractable integral

$$\mathcal{I} := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z}$$

- Bayesian posterior analysis
- Random effects models
- Mixture models

- Consider a statistical model where we have observations $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.
- Want to evaluate the intractable integral

$$\mathcal{I} := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z}$$

- Bayesian posterior analysis
- ► Random effects models
- Mixture models
- Variational inference approximates the "posterior" ${\cal I}$ by a tractably close distribution in the Kullback-Leibler sense.

- Consider a statistical model where we have observations. $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.
- Want to evaluate the intractable integral

$$\mathcal{I} := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z}$$

- Bayesian posterior analysis
- Random effects models
- Mixture models
- Variational inference approximates the "posterior" \mathcal{I} by a tractably close distribution in the Kullback-Leibler sense.
- Advantages:
 - Computationally fast
 - Convergence easily assessed
 - Works well in practice¹

¹With some caveats which will be discussed.

In the literature

Introduction

000000000

Google Scholar results for 'variational inference'

Well known in the machine learning community.

In the literature

Introduction

Google Scholar results for 'variational inference'

- Well known in the machine learning community.
- In social statistics:
 - E. A. Erosheva et al. (2007). "Describing disability through individual-level mixture models for multivariate binary data". Ann. Appl. Stat, 1.2, p. 346
 - ▶ J. Grimmer (2010). "An introduction to Bayesian inference via variational approximations". Political Analysis 19.1, pp. 32-47
 - Y. S. Wang et al. (2017). "A Variational EM Method for Mixed Membership Models with Multivariate Rank Data: an Analysis of Public Policy Preferences", arXiv: 1512.08731

Recommended texts

- M. J. Beal and Z. Ghahramani (2003). "The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures". In: Bayesian Statistics 7. Proceedings of the Seventh Valencia International Meeting. Ed. by J. M. Bernardo et al. Oxford: Oxford University Press, pp. 453–464
- C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer
- K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. The MIT Press
- D. M. Blei et al. (2017). "Variational inference: A review for statisticians". J. Am. Stat. Assoc, to appear

$$p(\mathbf{z}|\mathbf{y})$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

• **ISSUE**: KL(q||p) is intractable.

• Let q(z) be some density function to approximate p(z|y).

Introduction

0000000000

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\begin{aligned} \log p(\mathbf{y}) &= \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y}) \\ &= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \mathcal{L}(q) + \mathsf{KL}(q \| p) \\ &\geq \mathcal{L}(q) \end{aligned}$$

- ullet L is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed as follows:

$$\begin{aligned} \log p(\mathbf{y}) &= \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y}) \\ &= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \mathcal{L}(q) + \mathsf{KL}(q \| p) \\ &\geq \mathcal{L}(q) \end{aligned}$$

- \mathcal{L} is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q||p)$.
- ISSUE: L(q) is (generally) not convex.

• Suppose for this part, the marginal density $p(\mathbf{y}|\theta)$ depends on parameters θ .

- Suppose for this part, the marginal density $p(\mathbf{y}|\theta)$ depends on parameters θ .
- In the EM algorithm, the true posterior density is used, i.e. $q(z) \equiv p(z|y, \theta)$.

- Suppose for this part, the marginal density $p(y|\theta)$ depends on parameters θ .
- In the EM algorithm, the true posterior density is used, i.e. $q(z) \equiv p(z|y,\theta).$
- Thus,

$$\log p(\mathbf{y}|\theta) = \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} - \log \frac{p(\mathbf{z}|\mathbf{y}, \theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} \right\} p(\mathbf{z}|\mathbf{y}, \theta^{(t)}) d\mathbf{z}$$

- Suppose for this part, the marginal density $p(y|\theta)$ depends on parameters θ .
- In the EM algorithm, the true posterior density is used, i.e. $q(z) \equiv p(z|y,\theta).$
- Thus,

$$\log p(\mathbf{y}|\theta) = \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} - \log \frac{p(\mathbf{z}|\mathbf{y}, \theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} \right\} p(\mathbf{z}|\mathbf{y}, \theta^{(t)}) d\mathbf{z}$$
$$= \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{y}, \mathbf{z}|\theta)] - \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{z}|\mathbf{y}, \theta)]$$

- Suppose for this part, the marginal density $p(y|\theta)$ depends on parameters θ .
- In the EM algorithm, the true posterior density is used, i.e. $q(z) \equiv p(z|y,\theta).$
- Thus,

$$\log p(\mathbf{y}|\theta) = \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} - \log \frac{p(\mathbf{z}|\mathbf{y}, \theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} \right\} p(\mathbf{z}|\mathbf{y}, \theta^{(t)}) d\mathbf{z}$$

$$= \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{y}, \mathbf{z}|\theta)] - \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{z}|\mathbf{y}, \theta)]$$

$$= Q(\theta|\theta^{(t)}) + \text{entropy}.$$

- Suppose for this part, the marginal density $p(y|\theta)$ depends on parameters θ .
- In the EM algorithm, the true posterior density is used, i.e. $q(z) \equiv p(z|y,\theta).$
- Thus,

Introduction

$$\log p(\mathbf{y}|\theta) = \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} - \log \frac{p(\mathbf{z}|\mathbf{y}, \theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} \right\} p(\mathbf{z}|\mathbf{y}, \theta^{(t)}) d\mathbf{z}$$

$$= \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{y}, \mathbf{z}|\theta)] - \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{z}|\mathbf{y}, \theta)]$$

$$= Q(\theta|\theta^{(t)}) + \text{entropy}.$$

Minimising the KL divergence corresponds to the E-step.

- Suppose for this part, the marginal density $p(\mathbf{y}|\theta)$ depends on parameters θ .
- In the EM algorithm, the true posterior density is used, i.e. $q(\mathbf{z}) \equiv p(\mathbf{z}|\mathbf{y}, \theta)$.
- Thus,

$$\log p(\mathbf{y}|\theta) = \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} - \log \frac{p(\mathbf{z}|\mathbf{y}, \theta)}{p(\mathbf{z}|\mathbf{y}, \theta)} \right\} p(\mathbf{z}|\mathbf{y}, \theta^{(t)}) d\mathbf{z}$$

$$= \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{y}, \mathbf{z}|\theta)] - \mathsf{E}_{\theta^{(t)}}[\log p(\mathbf{z}|\mathbf{y}, \theta)]$$

$$= Q(\theta|\theta^{(t)}) + \text{entropy}.$$

- Minimising the KL divergence corresponds to the E-step.
- For any θ ,

$$\log p(\mathbf{y}|\theta) - \log p(\mathbf{y}|\theta^{(t)}) = Q(\theta|\theta^{(t)}) - Q(\theta^{(t)}|\theta^{(t)}) + \Delta \text{entropy}$$

$$\geq Q(\theta|\theta^{(t)}) - Q(\theta^{(t)}|\theta^{(t)}).$$

EM Algorithm

Variational Inference

EM (E-step)

VI (E-step)

EM Algorithm

Variational Inference

EM (E-step)

VI (E-step)

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z^{(1)}, \dots, z^{(M)})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}^{(j)}).$$

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z^{(1)}, \dots, z^{(M)})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}^{(j)}).$$

• Under this restriction, the solution to arg max_q $\mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $i \in \{1, ..., m\}$.

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z^{(1)}, \dots, z^{(M)})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}^{(j)}).$$

• Under this restriction, the solution to arg max_q $\mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $i \in \{1, ..., m\}$.

 In practice, these unnormalised densities are of recognisable form (especially if conjugacy is considered).

• The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}^{(j)})$ depends on the optimal moments of $\mathbf{z}^{(k)}$, $k \in \{1, ..., M : k \neq j\}$.

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}^{(j)})$ depends on the optimal moments of $\mathbf{z}^{(k)}$, $k \in \{1, \dots, M : k \neq j\}$.
- One way around this to employ an iterative procedure.

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}^{(j)})$ depends on the optimal moments of $\mathbf{z}^{(k)}$, $k \in \{1, \dots, M : k \neq j\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathbf{y}, \mathbf{z})] - \mathsf{E}_q[\log q(\mathbf{z})].$$

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_i(\mathbf{z}^{(j)})$ depends on the optimal moments of $\mathbf{z}^{(k)}$, $k \in \{1, \dots, M : k \neq i\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathsf{y},\mathsf{z})] - \mathsf{E}_q[\log q(\mathsf{z})].$$

Algorithm 4 CAVI

- 1: **initialise** Variational factors $q_i(\mathbf{z}^{(j)})$
- 2: while $\mathcal{L}(q)$ not converged do
- for $j = 1, \ldots, M$ do 3:
- $\log q_i(\mathbf{z}^{(j)}) \leftarrow \mathsf{E}_{-i}[\log p(\mathbf{y}, \mathbf{z})] + \mathsf{const.}$ ⊳ from (1) 4.
- end for 5:
- $\mathcal{L}(q) \leftarrow \mathsf{E}_q[\log p(\mathsf{y},\mathsf{z})] \mathsf{E}_q[\log q(\mathsf{z})]$
- 7. end while
- 8: return $\tilde{q}(z) = \prod_{i=1}^{M} \tilde{q}_i(z^{(j)})$

- Introduction
- 2 Examples
- 3 Discussion

GOAL: Bayesian inference of mean μ and variance ψ^{-1} .

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N}\left(\mu_0, (\kappa_0 \psi)^{-1}\right)$ $\psi \sim \Gamma(a_0, b_0)$ Priors $i = 1, \dots, n$

GOAL: Bayesian inference of mean μ and variance ψ^{-1} .

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N} \left(\mu_0, (\kappa_0 \psi)^{-1} \right)$ $\psi \sim \mathsf{\Gamma}(a_0, b_0)$ Priors $i = 1, \dots, n$

• Substitute $p(\mu, \psi | \mathbf{y})$ with the mean-field approximation

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi).$$

GOAL: Bayesian inference of mean μ and variance ψ^{-1} .

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N} \left(\mu_0, (\kappa_0 \psi)^{-1} \right)$ $\psi \sim \mathsf{\Gamma}(a_0, b_0)$ Priors $i = 1, \dots, n$

• Substitute $p(\mu, \psi | \mathbf{y})$ with the mean-field approximation

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi).$$

- **GOAL**: Bavesian inference of mean μ and variance ψ^{-1} .
 - Under the mean-field restriction, the solution to $arg max_q \mathcal{L}(q)$ is

$$\tilde{q}_{j}(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, ..., m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi)$$

- **GOAL**: Bayesian inference of mean μ and variance ψ^{-1} .
 - Under the mean-field restriction, the solution to $arg max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $i \in \{1, ..., m\}$.

$$\begin{split} \log \tilde{q}_{\mu}(\mu) &= \mathsf{E}_{\psi}[\log p(\mathbf{y}|\mu,\psi)] + \mathsf{E}_{\psi}[\log p(\mu|\psi)] + \mathsf{const.} \\ \log \tilde{q}_{\psi}(\psi) &= \mathsf{E}_{\mu}[\log p(\mathbf{y}|\mu,\psi)] + \mathsf{E}_{\mu}[\log p(\mu|\psi)] + \log p(\psi) \\ &+ \mathsf{const.} \end{split}$$

- **GOAL**: Bavesian inference of mean μ and variance ψ^{-1} .
 - Under the mean-field restriction, the solution to $arg max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $i \in \{1, ..., m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi)$$

$$ilde{q}_{\mu}(\mu) \equiv \mathsf{N}\left(rac{\kappa_0\mu_0 + nar{y}}{\kappa_0 + n}, rac{1}{(\kappa_0 + n)\,\mathsf{E}_q[\psi]}
ight)$$

- **GOAL**: Bavesian inference of mean μ and variance ψ^{-1} .
 - Under the mean-field restriction, the solution to $arg max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $i \in \{1, ..., m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi).$$

$$\tilde{q}_{\mu}(\mu) \equiv N\left(\frac{\kappa_0 \mu_0 + n \bar{y}}{\kappa_0 + n}, \frac{1}{(\kappa_0 + n) E_q[\psi]}\right) \text{ and } \tilde{q}_{\psi}(\psi) \equiv \Gamma(\tilde{a}, \tilde{b})$$

$$\tilde{a} = a_0 + \frac{n}{2}$$
 $\tilde{b} = b_0 + \frac{1}{2} E_q \left[\sum_{i=1}^n (y_i - \mu)^2 + \kappa_0 (\mu - \mu_0)^2 \right]$

Variational posterior

$$\mu \sim N\left(\frac{\kappa_0\mu_0 + n\bar{y}}{\kappa_0 + n}, \frac{1}{(\kappa_0 + n)E[\psi]}\right)$$

$$\psi \sim \Gamma\left(a_0 + \frac{n}{2}, b_0 + \frac{1}{2}c\right)$$

$$c = E\left[\sum_{i=1}^n (y_i - \mu)^2 + \kappa_0(\mu - \mu_0)^2\right]$$

True posterior

$$\begin{split} \mu|\psi &\sim \mathsf{N}\left(\frac{\kappa_0\mu_0 + n\bar{y}}{\kappa_0 + n}, \frac{1}{(\kappa_0 + n)\psi}\right)\\ \psi &\sim \Gamma\left(a_0 + \frac{n}{2}, b_0 + \frac{1}{2}c'\right)\\ c' &= \sum_{i=0}^{n}(y_i - \bar{y})^2 + \frac{\kappa_0}{\kappa_0 + n}(\bar{y} - \mu_0)^2 \end{split}$$

- $Cov(\mu, \psi) = 0$ by design.
- For this simple example, it is possible to decouple and solve explicitly.
- VI solutions leads to unbiased MLE if $\kappa_0 = \mu_0 = a_0 = b_0 = 0$.

Scatter plot

• Let $x_i \in \mathbb{R}^d$ and assume $x_i \stackrel{\text{iid}}{\sim} \sum_{k=1}^K \pi_k \, \mathsf{N}_d(\mu_k, \Psi_k^{-1})$ for $i = 1, \dots, n$.

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $z = \{z_1, \dots, z_n\}$ are observed along with $x = \{x_1, \dots, x_n\}$,

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $z = \{z_1, \dots, z_n\}$ are observed along with $x = \{x_1, \dots, x_n\}$,

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $z = \{z_1, \dots, z_n\}$ are observed along with $x = \{x_1, \dots, x_n\}$,

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Variational inference for GMM

Assume the mean-field posterior density

$$egin{aligned} q(\mathsf{z},\pi,\mu,\Psi) &= q(\mathsf{z})q(\pi,\mu,\Psi) \ &= q(\mathsf{z})q(\pi)q(\mu|\Psi)q(\Psi) \end{aligned}$$

Algorithm 5 CAVI for GMM

- 1: initialise Variational factors q(z), $q(\pi)$ and $q(\mu, \Psi)$
- 2: while $\mathcal{L}(q)$ not converged do
- $q(z_{ik}) \leftarrow \text{Bern}(\cdot)$ 3.
- 4: $q(\pi) \leftarrow \text{Dir}_{\kappa}(\cdot)$
- 5: $q(\mu|\Psi) \leftarrow N_d(\cdot,\cdot)$
- 6: $q(\Psi) \leftarrow \mathsf{Wis}_d(\cdot, \cdot)$
- $\mathcal{L}(q) \leftarrow \mathsf{E}_q[\log p(\mathsf{x},\mathsf{z},\pi,\mu,\Psi)] \mathsf{E}_q[\log q(\mathsf{z},\pi,\mu,\Psi)]$
- 8: end while
- 9: return $\tilde{q}(\mathsf{z},\pi,\mu,\Psi) = \tilde{q}(\mathsf{z})\tilde{q}(\pi)\tilde{q}(\mu|\Psi)\tilde{q}(\Psi)$

Variational inference for GMM (cont.)

Scatter plots and iteration plots

Final thoughts on variational GMM

- Similar algorithm to the EM, and therefore similar computational time.
- Can extend to mixture of bernoullis a.k.a. latent class analysis.
- PROS:
 - ▶ Automatic selection of number of mixture components.
 - Less pathological special cases compared to EM solutions because regularised by prior information.
 - ▶ Less sensitive to number of parameters/components.
- CONS:
 - Hyperparameter tuning.

- Introduction
- 2 Examples
- 3 Discussion

Exponential families

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

• Then, from (1),

$$\begin{split} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{split}$$

is also in the same exponential family.

- C.f. Gibbs conditional densities.
- **ISSUE**: What if not in exponential family? Try importance sampling or Metropolis sampling.

Non-convexity of ELBO

Means that it converges to a local optima rather than the global optima. Show multiple restarts yield different ELBO.

Zero-forcing vs Zero-avoiding

• Back to the KL divergence:

$$\mathsf{KL}(q\|p) = \int \log rac{q(\mathsf{z})}{p(\mathsf{z}|\mathsf{y})} q(\mathsf{z}) \, \mathsf{dz}$$

- KL(q||p) is large when p(z|y) is close to zero, unless q(z) is also close to zero (*zero-forcing*).
- ISSUE: What about other measures of closeness? For instance,

$$\mathsf{KL}(p\|q) = \int \log rac{
ho(\mathsf{z}|\mathsf{y})}{q(\mathsf{z}|\mathsf{y})}
ho(\mathsf{z}|\mathsf{y}) \, \mathsf{dz}.$$

- This gives the Expectation Propagation (EP) algorithm.
- It is zero-avoiding, because KL(p||q) is small when both p(z|y) and q(z) are non-zero.

p(z)

Zero-forcing vs Zero-avoiding (cont.)

p(z)
q(z)

Distortion of higher order moments

• Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- ullet Approximating $p(\mathbf{z})$ by $q(\mathbf{z})=q(z_1)q(z_2)$ yields

$$ilde{q}(z_1) = \mathsf{N}(z_1|\mu_1, \Psi_{11}^{-1}) \ \ ext{and} \ \ ilde{q}(z_2) = \mathsf{N}(z_2|\mu_2, \Psi_{22}^{-1})$$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- ullet Approximating $p(\mathbf{z})$ by $q(\mathbf{z})=q(z_1)q(z_2)$ yields

$$ilde{q}(z_1) = \mathsf{N}(z_1|\mu_1, \Psi_{11}^{-1}) \ \ \mathsf{and} \ \ ilde{q}(z_2) = \mathsf{N}(z_2|\mu_2, \Psi_{22}^{-1})$$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

• This leads to underestimation of variances (widely reported in the literature—Zhao and Marriott 2013).

Quality of approximation

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?
- Speed trumps accuracy?

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - Used for Bayesian logistic regression as follows:

$$\mathcal{I} = \int \operatorname{expit}(x^{\top}\beta) p(\beta) \, \mathrm{d}\beta \geq \int f(x^{\top}\beta, \xi) p(\beta) \, \mathrm{d}\beta.$$

- Stochastic variational inference
 - ▶ VI on its own doesn't offer much computational advantages.
 - ▶ Use ideas from stochastic optimisation—gradient based improvement of ELBO from subsamples of the data.
 - Scales to massive data.
- Black box variational inference
 - Beyond exponential families and model-specific derivations.

References I

- Beal, M. J. and Z. Ghahramani (2003). "The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures". In: *Bayesian Statistics 7*. Proceedings of the Seventh Valencia International Meeting. Ed. by J. M. Bernardo, A. P. Dawid, J. O. Berger, M. West, D. Heckerman, M. Bayarri, and A. F. Smith. Oxford: Oxford University Press, pp. 453–464.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Blei, D. M. (2017). "Variational Inference: Foundations and Innovations". URL:
 - https://simons.berkeley.edu/talks/david-blei-2017-5-1.
- Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). "Variational inference: A review for statisticians". *Journal of the American Statistical Association*, to appear.

References II

- Erosheva, E. A., S. E. Fienberg, and C. Joutard (2007). "Describing disability through individual-level mixture models for multivariate binary data". *Annals of Applied Statistics*, 1.2, p. 346.
- Grimmer, J. (2010). "An introduction to Bayesian inference via variational approximations". *Political Analysis* 19.1, pp. 32–47.
- Gunawardana, A. and W. Byrne (2005). "Convergence theorems for generalized alternating minimization procedures". *Journal of machine learning research* 6.Dec, pp. 2049–2073.
- Kass, R. and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795.
- Murphy, K. P. (2012). *Machine Learning: A Probabilistic Perspective*. The MIT Press.

References III

- Wang, Y. S., R. Matsueda, and E. A. Erosheva (2017). "A Variational EM Method for Mixed Membership Models with Multivariate Rank Data: an Analysis of Public Policy Preferences". arXiv: 1512.08731.
- Zhao, H. and P. Marriott (2013). "Diagnostics for Variational Bayes approximations". arXiv: 1309.5117.

4 Additional material The variational principle Laplace's method

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

```
Functions p: \theta \mapsto \mathbb{R} (standard calculus)
Functionals \mathcal{H}: p \mapsto \mathbb{R} (variational calculus)
```

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\arg\max_{\theta} p(\theta) =: \hat{\theta}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\underset{\theta}{\operatorname{arg\,max}} p(\theta) =: \hat{\theta}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

• Using variational calculus, we can solve

$$\operatorname{arg\,max}_{p} \mathcal{H}(p) =: \tilde{p}$$

e.g. \mathcal{H} is the entropy $\mathcal{H} = -\int p(x) \log p(x) dx$, and \tilde{p} is the entropy maximising distribution.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2{\it Q}({\bf f})$ being the negative Hessian of ${\it Q}$ evaluated at $\tilde{\bf f}$.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{{\bf f}}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\mathbf{\tilde{f}}) p(\mathbf{\tilde{f}})$$

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{{\bf f}}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\mathbf{\tilde{f}}) p(\mathbf{\tilde{f}})$$

• Won't scale with large *n*; difficult to find modes in high dimensions.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Comparison of approximations (density)

Comparison of approximations (density)

Comparison of approximations (density)

Comparison of approximations (deviance)

