Презентация по ходу работы над моделью эпидемии SIR

Евдокимов Максим михайлович¹

6 марта, 2023, Москва, Россия

¹Российский Университет Дружбы Народов

Цель лабораторной работы —

Цель лабораторной работы

Изучить простейшую модель эпидемии SIR. Используя условия из варианты, задать в уравнение начальные условия и коэффициенты. После построить графики изменения численностей трех групп в двух случаях.

Теория

Задачи лабораторной работы

- 1. Изучить модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае: $I(0) \leq I^*$, $I(0) > I^*$

Теоретический материал 1

Предположим, что некая популяция, состоящая из N особей, подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи - S(t). Вторая группа - это число инфицированных особей, которые также являются распространителями инфекции - I(t). А третья группа R(t) - это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Дальше чуть сложнее, чтобы понимать сколько людей заразиться на каждом шаге, надо понимать наличие двух вероятностей: вероятность контакта между двумя индивидами и вероятность заразить при контакте инфицированного с восприимчивым (β). Часто в модели для воплощения первой вероятности используют просто 1/N (N – объём популяции), подразумевая, что в каждый момент времени каждый индивид контактирует с одним случайным индивидом в популяции. А вторая вероятность (β), обеспечивает собственно биологический показатель заразности конкретного патогена (со всеми влияющим факторами: температура, наличие маски и т.п.).

Теоритический материал 3

Скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,если } I(t) > I^* \ 0 & ext{,если } I(t) \leq I^* \end{cases}$$

Теоретический материал 4

Скорость изменения числа инфекционных особей:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,ecnu } I(t) > I^* \ -eta I & ext{,ecnu } I(t) \leq I^* \end{cases}$$

Теоретический материал 5

Скорость изменения выздоравливающих особей:

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности lpha, eta - это коэффициенты заболеваемости и выздоровления соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=11700) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=270, А число здоровых людей с иммунитетом к болезни R(0)=49. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

- 1. $I(0) \leq I^*$
- 2. $I(0) > I^*$

Графики изменения численности в первом случае на Julia

Рис. 1: Графики численности разных групп При $I(0) \leq I^*$

Графики изменения численности в первом случае на OpenModelica

Рис. 2: Модель численности разных групп При $I(0) \leq I^*$

Графики изменения численности во втором случае на Julia

Рис. 3: Графики численности разных групп При $I(0)>I^st$

Графики изменения численности во втором случае на OpenModelica

Рис. 4: Модель численности разных групп При $I(0)>I^*$

Выводы по проделанной работе

Вывод

В ходе выполнения лабораторной работы была изучена простейшая модель эпидемии и построены графики на основе условий задачи и начальных данных, которые были описаны в варианте лабораторной работы.