MATH 414 Analysis I, Homework 13

Mobina Amrollahi

Due: December 6^{th} , 11:59pm

4.1: Problem 3

Find $\lim_{n\to\infty} s_n$. Justify your answers from Definition 4.1.1.

(c)
$$s_n = \frac{1}{n} \sin\left(\frac{n\pi}{4}\right)$$

Answer

 $\{s_n\}$ converges to a limit s=0. To show such, we will show for every $\epsilon>0$ there is an integer N such that

$$|s_n - 0| < \epsilon$$
 if $n \ge N$.

Hence, we have to show exists N such that:

$$|s_n| < \epsilon$$
 if $n \ge N$.

$$|s_n| < \epsilon \Leftrightarrow \left| \frac{1}{n} \sin\left(\frac{n\pi}{4}\right) \right| < \epsilon$$

$$\Leftrightarrow \left| \frac{1}{n} \right| \left| \sin\left(\frac{n\pi}{4}\right) \right| < \epsilon$$

$$\Leftrightarrow \left| \frac{1}{n} \right| \left| \sin\left(\frac{n\pi}{4}\right) \right| < \epsilon$$

$$\Leftrightarrow \left| \frac{1}{n} \right| \left| \sin\left(\frac{n\pi}{4}\right) \right| < \epsilon$$

$$\Leftrightarrow \left| \frac{1}{n} \right| < \epsilon \quad \text{since } n > 0$$

$$\Leftrightarrow \frac{1}{n} < \epsilon$$

$$\Leftrightarrow \frac{1}{\epsilon} < n$$

Therefore, if we consider $\frac{1}{\epsilon} \leq N$, $\{s_n\}$ is **convergent** and

$$\lim_{n \to \infty} s_n = 0.$$

4.1: Problem 4

Find $\lim_{n\to\infty} s_n$. Justify your answers from Definition 4.1.1.

(d)
$$s_n = \sqrt{n^2 + n} - n$$

Answer

We will show $\{s_n\}$ converges to a limit $s=\frac{1}{2}$. To show such, we will be using theorem 4.1.7 [1]. Hence, we have to show $\lim_{x\to\infty} \sqrt{x^2+x}-x=\frac{1}{2}$.

$$\lim_{x \to \infty} \sqrt{x^2 + x} - x = \lim_{x \to \infty} x \sqrt{1 + \frac{1}{x}} - x = \lim_{x \to \infty} x (\sqrt{1 + \frac{1}{x}} - 1) = \lim_{x \to \infty} x \times \lim_{x \to \infty} (\sqrt{1 + \frac{1}{x}} - 1)$$

$$= \frac{\lim_{x \to \infty} (\sqrt{1 + \frac{1}{x}} - 1)}{\lim_{x \to \infty} \frac{1}{x}}$$

By L'Hospital's rule,

$$\frac{\lim_{x \to \infty} \sqrt{1 + \frac{1}{x}} - 1}{\lim_{x \to \infty} \frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{2} \times \frac{1}{\sqrt{1 + \frac{1}{x}}} \times \frac{-1}{x^2}}{-1 \times \frac{1}{x^2}}$$
$$= \lim_{x \to \infty} \frac{1}{2} \times \frac{1}{\sqrt{1 + \frac{1}{x}}}$$
$$= \frac{1}{2}$$

Hence, $\lim_{n\to\infty} \sqrt{n^2 + n} - n = \frac{1}{2}$.

4.1: Problem 9

Use Theorem 4.1.6 to show that $\{s_n\}$ converges.

(b)
$$s_n = \frac{n!}{n^n}$$

Answer

We will show $\{s_n\}$ is nonincreasing, and by theorem 4.1.6 [1] $\lim_{n\to\infty} s_n = \inf\{s_n\}$. Consider s_n and s_{n-1} . To show $\{s_n\}$ is nonincreasing, we have to show:

$$s_{n+1} \le s_n \quad \forall n$$

Proof

$$s_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}} = \frac{(n)! \times (n+1)}{(n+1)^n \times (n+1)} = \frac{(n)!}{(n+1)^n}$$

$$s_n = \frac{n!}{n^n}$$

$$\Rightarrow \frac{s_{n+1}}{s_n} = (\frac{n}{n+1})^n < 1$$

$$\Rightarrow s_{n+1} \le s_n$$

Hence $\lim_{n\to\infty} s_n = \inf\{s_n\}$ and $\{s_n\}$ converges.

4.3: Problem 8

Determine convergence or divergence.

(a)
$$\sum \frac{\sqrt{n^2-1}}{\sqrt{n^5+1}}$$

(b)
$$\sum \frac{1}{n^2 \left[1 + \frac{1}{2} \sin\left(\frac{n\pi}{4}\right)\right]}$$

(c)
$$\sum \frac{1 - e^{-n} \log n}{n}$$

(d)
$$\sum \cos \frac{\pi}{n^2}$$

(f)
$$\sum \frac{1}{n} \tan \left(\frac{\pi}{n} \right)$$

(g)
$$\sum \frac{1}{n} \cot \left(\frac{\pi}{n}\right)$$

(h)
$$\sum \frac{\log n}{n^2}$$

Answer

To answer this question, we will be using the comparison test as described in [1].

(a) Consider $a_n = \frac{\sqrt{n^2-1}}{\sqrt{n^5+1}}$ and $b_n = \frac{\sqrt{n^2}}{\sqrt{n^5}}$:

$$\sum b_n = \sum \sqrt{\frac{n^2}{n^5}} = \sum \frac{1}{\sqrt{n^3}} = \sum \frac{1}{n^{\frac{3}{2}}}$$

Since $p = \frac{3}{2} > 1$, the *p*-series of $\sum \frac{1}{n^{\frac{3}{2}}}$ converges. In addition, Since $0 \le a_n \le b_n$, for large enough *n*, therefore, $\sum \frac{\sqrt{n^2-1}}{\sqrt{n^5+1}}$ converges.

(b) Consider $a_n = \frac{1}{n^2\left[1 + \frac{1}{2}\sin\left(\frac{n\pi}{4}\right)\right]}$ and $b_n = \frac{1}{n^2 \times \frac{1}{2}}$:

$$\sum b_n = \sum \frac{2}{n^2}$$

 b_n converges. In addition for large enough n:

$$-1 \le \sin\left(\frac{n\pi}{4}\right) \Rightarrow -1 \times \frac{1}{2} \le \sin\left(\frac{n\pi}{4}\right) \times \frac{1}{2}$$

$$\Rightarrow 1 - \frac{1}{2} \le 1 + \sin\left(\frac{n\pi}{4}\right) \times \frac{1}{2}$$

$$\Rightarrow n^2 \times \frac{1}{2} \le n^2 \times \left[1 + \sin\left(\frac{n\pi}{4}\right) \times \frac{1}{2}\right]$$

$$\Rightarrow \frac{1}{n^2 \left[1 + \frac{1}{2}\sin\left(\frac{n\pi}{4}\right)\right]} \le \frac{1}{n^2 \times \frac{1}{2}}$$

$$\Rightarrow 0 < a_n < b_n$$

Therefore, since $\sum b_n$ converges, $\sum \frac{1}{n^2[1+\frac{1}{2}\sin(\frac{n\pi}{4})]}$ also converges.

- (c) In this particular question, we will be using Theorem 4.3.11 [1]. Hence, let's recall this theorem: **Theorem 4.3.11** Suppose that $a_n \ge 0$ and $b_n > 0$ for $n \ge k$. Then:

 - (a) $\sum a_n < \infty$ if $\sum b_n < \infty$ and $\overline{\lim}_{n \to \infty} \frac{a_n}{b_n} < \infty$. (b) $\sum a_n = \infty$ if $\sum b_n = \infty$ and $\underline{\lim}_{n \to \infty} \frac{a_n}{b_n} > 0$.

Now, consider $a_n = \frac{1-e^{-n}\log n}{n}$ and $b_n = \frac{1}{n}$. It is known that $\sum b_n = \infty$. In addition:

$$\underline{\lim}_{n \to \infty} \frac{a_n}{b_n} = \underline{\lim}_{n \to \infty} \frac{\frac{1 - e^{-n} \log n}{n}}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} 1 - e^{-n} \log n$$

We will show for large n $s_n = 1 - e^{-n} \log n$ is bounded below by $\frac{1}{2}$. Then $\underline{\lim}_{n \to \infty} 1 - e^{-n} \log n$ exists and it has to be at least $\frac{1}{2}$. In that case $\underline{\lim}_{n \to \infty} 1 - e^{-n} \log n = \underline{\lim}_{n \to \infty} \frac{a_n}{b_n} > 0$, and based on Theorem 4.3.11 $\sum \frac{1-e^{-n} \log n}{n}$ diverges.

$$1 - e^{-n} \log n > \frac{1}{2} \Leftrightarrow \frac{1}{2} > e^{-n} \log n$$
$$\Leftrightarrow \frac{1}{2} > \frac{\log n}{e^n}$$
$$\Leftrightarrow e^n > 2 \log n$$

We know $\log n < n$ and $e^n > n$. Hence, $e^n > 2 \log n$.

(d) Consider $a_n = \cos \frac{\pi}{n^2}$ and $b_n = \frac{\pi}{n^2}$. For large enough n:

$$0 = \cos\frac{\pi}{2} < \cos\frac{\pi}{n^2} < \frac{\pi}{n^2}.$$

Therefore, since $\sum b_n$ converges, $\sum \cos \frac{\pi}{n^2}$ also converges.

(f) The equation tan(x) = x holds approximately for the small values of x. In addition, by looking at the Taylor series expansion for tan(x) = x around $x = 0^+$:

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7), \quad O(x^7) > 0$$

We can say that $\tan(x) < \sqrt{x}$ for small values of x. Hence, for large enough values of n, $\frac{\pi}{n}$ will be small, and:

$$\tan\left(\frac{\pi}{n}\right) < \sqrt{\frac{\pi}{n}}$$

Therefore, considering $a_n = \frac{1}{n} \tan \left(\frac{\pi}{n} \right)$ and $b_n = \frac{\sqrt{\pi}}{n\sqrt{n}}$. For large enough n:

$$0 < a_n = \frac{1}{n} \tan\left(\frac{\pi}{n}\right) < \frac{1}{n} \cdot \sqrt{\frac{\pi}{n}} = b_n = \frac{\sqrt{\pi}}{n^{\frac{3}{2}}}$$

Since $p = \frac{3}{2} > 1$, the *p*-series of $\sum \frac{\sqrt{\pi}}{n^{\frac{3}{2}}}$ converges. Therefore, since $\sum b_n$ converges, $\sum \frac{1}{n} \tan \left(\frac{\pi}{n} \right)$ also converges.

(g) Taylor series expansion for $\cot(x)$ around $x = 0^+$ is:

$$\cot(x) = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} + O(x^7).$$

Now, by replacing $x = \frac{\pi}{n}$:

$$\cot\left(\frac{\pi}{n}\right) = \frac{1}{\frac{\pi}{n}} - \frac{\frac{\pi}{n}}{3} - \frac{\left(\frac{\pi}{n}\right)^3}{45} - \frac{2\left(\frac{\pi}{n}\right)^5}{945} + O\left(\left(\frac{\pi}{n}\right)^7\right).$$

We will show $\cot\left(\frac{\pi}{n}\right) > \frac{n}{2\pi}$ as $n \to \infty$

$$\cot\left(\frac{\pi}{n}\right) - \frac{n}{2\pi} = \left(\frac{n}{\pi} - \frac{n}{2\pi} - \frac{\pi}{3n} - \frac{\pi^3}{45n^3} - \frac{2\pi^5}{945n^5} + O\left(\frac{1}{n^7}\right)\right)$$
$$= \left(\frac{n}{2\pi} - \frac{\pi}{3n} - \frac{\pi^3}{45n^3} - \frac{2\pi^5}{945n^5} + O\left(\frac{1}{n^7}\right)\right)$$

Since $\frac{n}{2\pi} \gg \frac{\pi}{n}$ as $n \to \infty$, this term is positive, and thus:

$$\cot\left(\frac{\pi}{n}\right) > \frac{n}{2\pi}.$$

Therefore, considering $a_n = \frac{1}{2\pi}$ and $b_n = \frac{1}{n}\cot\left(\frac{\pi}{n}\right)$. For large enough n:

$$0 < \frac{1}{2\pi} = \frac{1}{n} \times \frac{n}{2\pi} < \frac{1}{n} \cot\left(\frac{\pi}{n}\right) = b_n.$$

Therefore, since $\sum \frac{1}{2\pi}$ diverges, $\sum \frac{1}{n} \cot \left(\frac{\pi}{n}\right)$ also diverges.

(h) We will show $\log n < \sqrt{n}$ as $n \to \infty$, and to show such, we will calculate $\lim_{n \to \infty} \frac{\sqrt{n}}{\log n}$, applying l'Hôpital's rule:

$$\lim_{n\to\infty}\frac{\sqrt{n}}{\log n}=\lim_{n\to\infty}\frac{\frac{1}{2\sqrt{n}}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{\sqrt{n}}{2}=\lim_{n\to\infty}\frac{n^{1/2}}{2}=\infty.$$

Now, consider $a_n = \frac{\log n}{n^2}$, and $b_n = \frac{1}{n^{\frac{3}{2}}}$. Then, For large enough n:

$$0 < \frac{\log n}{n^2} < \frac{\sqrt{n}}{n^2} = \frac{1}{n^{\frac{3}{2}}} = b_n$$

Since $p = \frac{3}{2} > 1$, the *p*-series of $\sum \frac{1}{n^{\frac{3}{2}}}$ converges. Therefore, since $\sum b_n$ converges, $\sum \frac{\log n}{n^2}$ also converges.

4.3: Problem 10

Use the integral test to find all values of p for which the series converges.

(a)
$$\sum \frac{n}{(n^2-1)^p}$$

Answer

Let

$$c_n = f(n), \quad n \ge k, \tag{4.3.7}$$

Where

$$f(x) = \frac{x}{(x^2 - 1)^p}$$

if $p > \frac{1}{2}$, then, for k > 1, f is positive and locally integrable on $[k, \infty)$. We will show f is nonincreasing, which is equivalent to showing that the first derivative is non-positive:

$$f(x) = \frac{x}{(x^2 - 1)^p}$$

$$\Rightarrow f'(x) = \frac{1 \times (x^2 - 1)^p - x \times (p)(x^2 - 1)^{p-1} \times 2x}{(x^2 - 1)^2 p}$$

$$= \frac{(x^2 - 1)^{p-1}(x^2 - 1 - x \times p \times 2x)}{(x^2 - 1)^2 p}$$

$$= \frac{x^2 - 2px^2 - 1}{(x^2 - 1)^{p+1}}$$

$$= \frac{x^2(1 - 2p) - 1}{(x^2 - 1)^{p+1}}$$

Since $p > \frac{1}{2}$, hence 2p > 1 and 1 - 2p < 0. Additionally, $x \ge 1$, hence $x^2 \ge 1$, and $x^2(1 - 2p) < 0$. Therefore, in $\frac{x^2(1-2p)-1}{(x^2-1)^{p+1}}$, the upper part is negative, meanwhile the lower part is positive. Hence, the whole fraction is negative, and f is non-increasing.

Now that f is positive, locally integrable on $[1, \infty)$, and nonincreasing, we can apply the integral test [1] for $p > \frac{1}{2}$ which implies

$$\sum c_n < \infty$$

if

$$\int_{L}^{\infty} f(x) \, dx < \infty.$$

To calculate $\int_{k}^{\infty} f(x) dx$, we have:

$$\int_{k}^{\infty} f(x) dx = \lim_{a \to \infty} \int_{k}^{a} \frac{x}{(x^{2} - 1)^{p}} dx$$

Now, to calculate the integral:

$$I = \int_{k}^{a} \frac{x}{(x^2 - 1)^p} dx,$$

Let:

$$u = x^2 - 1 \implies du = 2x dx$$
.

Thus, the term x dx becomes:

$$x \, dx = \frac{1}{2} \, du.$$

Hence, the integral becomes:

$$I = \int_{k^2 - 1}^{a^2 - 1} \frac{1}{u^p} \cdot \frac{1}{2} du = \frac{1}{2} \int_{k^2 - 1}^{a^2 - 1} u^{-p} du = \frac{1}{2} \cdot \frac{u^{1 - p}}{1 - p} \Big|_{u = k^2 - 1}^{u = a^2 - 1}, \quad \text{for } p \neq 1.$$

Hence, by substituting the limits $u = a^2 - 1$ and $u = k^2 - 1$:

$$I = \frac{1}{2(1-p)} \left[(a^2 - 1)^{1-p} - (k^2 - 1)^{1-p} \right].$$

Therefore:

$$\int_{k}^{a} \frac{x}{(x^{2}-1)^{p}} dx = \frac{1}{2(1-p)} \left[(a^{2}-1)^{1-p} - (k^{2}-1)^{1-p} \right], \quad \text{for } p \neq 1.$$

And:

$$\lim_{a \to \infty} \int_{k}^{a} \frac{x}{(x^{2} - 1)^{p}} dx = \lim_{a \to \infty} \frac{1}{2(1 - p)} \left[(a^{2} - 1)^{1 - p} - (k^{2} - 1)^{1 - p} \right], \quad \text{for } p \neq 1$$

• When $\frac{1}{2} \le p < 1$: 1 - p > 0. Therefore, as $a \to \infty$, $(a^2 - 1)^{1-p} \to \infty$. In this case:

$$\lim_{a \to \infty} \frac{1}{2(1-p)} \left[(a^2 - 1)^{1-p} - (k^2 - 1)^{1-p} \right] \to \infty,$$

because $(a^2-1)^{1-p} \to \infty$, and the subtraction term $(k^2-1)^{1-p}$ is finite. The integral diverges.

• When p > 1: 1 - p < 0. Therefore, as $a \to \infty$, $(a^2 - 1)^{1-p} \to 0$. In this case:

$$\lim_{a \to \infty} \frac{1}{2(1-p)} \left[(a^2 - 1)^{1-p} - (k^2 - 1)^{1-p} \right] = \frac{1}{2(1-p)} \left[0 - (k^2 - 1)^{1-p} \right] = \frac{(k^2 - 1)^{1-p}}{2(p-1)}.$$

Therefore, $\sum \frac{n}{(n^2-1)^p}$ coverages for p>1 and diverges for $\frac{1}{2} \leq p < 1$.

• When $p < \frac{1}{2}$: suppose $a_n = \frac{n}{(n^2 - 1)^p}$ and $b_n = 1$. We will show $a_n > b_n$:

$$(p < \frac{1}{2}) \Rightarrow (n^2 - 1)^p < (n^2 - 1)^{\frac{1}{2}} < (n^2)^{\frac{1}{2}} = n$$
$$\Rightarrow (n^2 - 1)^p < n$$
$$\Rightarrow 1 < \frac{n}{(n^2 - 1)^p}$$

Therefore, since $\sum 1$ diverges, $\sum \frac{n}{(n^2-1)^p}$ also diverges. Hence

$$\lim_{a \to \infty} \int_{k}^{a} \frac{x}{(x^{2} - 1)^{p}} dx = \begin{cases} \infty, & \text{if } \frac{1}{2} \le p, \\ \infty, & \text{if } \frac{1}{2} \le p \le 1, \\ \frac{(k^{2} - 1)^{1 - p}}{2(p - 1)}, & \text{if } p > 1. \end{cases}$$

References

 $[1] \ \ William \ F \ Trench. \ \textit{Introduction to real analysis.} \ \ 2013.$