Devoir Maison 8

Pour Vendredi 11 Décembre 2020

Forces d'intéraction et formule de Derjaguin

L'objectif de cet exercice est de décrire les interactions entre la pointe AFM (Microscope à Force Atomique) et un échantillon.

Données:

- Rayon de Bohr : $a_0 = 5, 3.10^{-11}$ m
- Permittivité diélectrique du vide : $\epsilon_0 = 8,9.10^{-12} \text{ F.m}^{-1} \text{ (ou kg}^{-1}.\text{m}^{-3}.\text{A}^2.\text{s}^4)$
- Masse de l'électron $m_e = 9, 1.10^{-31} \text{ kg}$
- Constante de Planck réduite $\hbar = \frac{h}{2\pi} = 1, 1.10^{-34} \text{ J.s}$
- Charge élémentaire : $e = 1,610^{-19}$ C
- Electronvolt : $1 \text{ eV} = 1,610^{-19} \text{ J}$
- Nombre volumique d'atomes de silicium dans la pointe de l'AFM : $\rho = 5, 0.10^{22} \text{ cm}^{-3}$
- Module d'Young du silicium : $E = 1,010^{11}$ U.S.I.
- Constante d'intéraction dipôle-dipôle : $C = 5,67.10^{-67}$ USI

On donne par ailleurs en coordonnées polaires $\overrightarrow{grad}(V) = \frac{\partial V}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \vec{e}_{\theta}$

Approche qualitative

Interaction entre deux dipôles

On souhaite modéliser les interactions entre deux dipôles par le modèle suivant. On place un dipôle permanent de moment dipolaire \vec{P} au centre O d'un repère.

- 1. Établir l'expression du potentiel électrique V créé par un dipôle.
- 2. Comment se simplifie l'expression obtenue précédemment dans l'approximation dipolaire?
- 3. En déduire l'expression du champ électrique \vec{E} créé en un point $M(r,\theta)$.

Lorsqu'un morceau de matière infinitésimal est soumis à un champ électrique \vec{E} , il se polarise et acquiert un moment dipolaire $\vec{p}=\alpha\vec{E}$, où α est la polarisabilité. Ce morceau de matière est soumis au champ \vec{E} du dipôle permanent décrit précédemment.

4. Justifier que l'énergie d'interaction entre ces deux dipôles (l'un placé en O, l'autre en M) puisse se mettre sous la forme :

$$U_{d-d} = -\frac{C}{r^6}$$

5. Cette expression dépend-elle de la direction des deux dipôles considérés?

Intéraction dipôle-plan

Considérons maintenant un dipôle \vec{p} , placé en O à une distance $d = ||\overrightarrow{OH}||$ d'un demi-espace infini de dipôles induits sans interaction entre eux. Le nombre de dipôles par unité de volume est noté ρ_0 . Le système est étudié en coordonnées sphériques (r, θ, ϕ) , l'axe (Oz) étant normal au plan et dirigé vers celui-ci (figure ci-dessous).

6. Justifier, à l'aide d'un schéma clair, qu'un volume infinitésimal du demi-espace infini s'exprime $dV = dr.r.d\theta.r.\sin(\theta).d\phi = r^2\sin(\theta).dr.d\theta.d\phi$

Figure . Dipôle unique p à une distance d d'un demi-espace infini de dipôles induits.

L'énergie d'interaction U_{d-e} entre le dipôle placé en O et ce demi-espace s'obtient en sommant l'énergie U_{d-d} de la question précédente sur tout le demi-espace. Cette somme s'écrit donc :

$$U_{d-e} = \iiint U_{d-d} \rho_0 dV = -\rho_0 \int_d^{+\infty} \frac{C}{r^6} r^2 \left(\int_0^{\theta_{max}} \sin(\theta) d\theta \left(\int_0^{2\pi} d\phi \right) \right) dr$$

- 7. Justifier que la limite d'intégration sur θ vaille $\theta_{max} = \arccos\left(\frac{d}{r}\right)$.
- 8. Montrer alors que :

$$U_{d-e} = -\frac{\rho_0 \pi C}{6d^3}$$