eLTER Science Conference - 2025 - Tampere,FI

Analyzing Remote Sensing Data with R

Getting Started

This Github repository lists the preparatory steps in advance of the workshop, and contains the practice exercises that will be covered.

Required Software

Each workshop participant should do the following on her laptop:

- Install a recent version of R, for your operating system from CRAN
- Windows users should add the Rtools toolchain;
 - from: RTools
 - matching the version of R that was installed
- Install RStudio TM from Posit
- Once R is installed, the following packages should also be added:
 - terra(Hijmans (2025)), sf, remotes, CDSE(Karaman (2025)), rOPTRAM(Silver, Beiden, and Karnieli (2023)), leaflet, ggplot2;
 - At the R command line or in RStudio™ run:
 - install.packages(c("terra", "sf", "remotes", "ggplot2", "leaflet"), dependencies
 = TRUE)
 - remotes::install_github("zivankaraman/CDSE")
 - remotes::install_github("ropensci/rOPTRAM")

Authentication on Copernicus DataSpace (CDSE)

- Browse to CDSE portal
- Follow steps below to register on CDSE and prepare clientid and secret.
- Save both the clientid and secret to a csv text file.

CDSE Authentication

Browse to portal

Go to Sentinel Hub

Create a new OAuth client

Copy both the clientid and the secret...

Steps

Register for an account (or Login if you already have an account)

Open User settings

Set expiration date and click Create

... and save to credentials.csv file

Workshop Exercise

Code and data

The exercise focuses on Doñana Park in Spain. (Green et al. (2024)).

Each participant can download the exercises and data in advance in one of three ways:

• Participants who are familiar with git can clone the repository:

git clone https://github.com/micha-silver/elter-2025-R-workshop.git

- The same result can be achieved within RStudioTM by starting a new Version Control based project, pointing to the same repository;
- Otherwise, the workshop material can be downloaded as a zip archive from here;

Put your credentials.csv file into the same directory as the exercise.

Start RStudio™ and load the project "elter-2025-R-workshop".

Exercises

- Load packages, set parameters;
- Query CDSE catalog for available images;
- Filter for low cloud cover, and only a single Copernicus tileId;
- Loop over list of available images;
 - Derive MNDWI index for each image date;
 - Threshold MNDWI to obtain open water surfaces (Xu (2006));
- Plot time series of MNDWI values;
- Prepare OPTRAM model from list of available dates;
 - Derive soil moisture for one date using OPTRAM model coefficients.

License

eLTER Workshop-Analyzing Remote Sensing Data in R

© 2025 by Micha Silver

is licensed under Creative Commons Attribution-ShareAlike 4.0 International.

To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

References

Green, Andy J., Carolina Guardiola-Albert, Miguel Ángel Bravo-Utrera, Javier Bustamante, Antonio Camacho, Carlos Camacho, Eva Contreras-Arribas, et al. 2024. "Groundwater Abstraction Has Caused Extensive Ecological Damage to the Doñana World Heritage Site, Spain." Wetlands 44 (2): 20. https://doi.org/10.1007/s13157-023-01769-1.

Hijmans, Robert J. 2025. Terra: Spatial Data Analysis. https://CRAN.R-project.org/package=terra.

Karaman, Zivan. 2025. CDSE: Copernicus Data Space Ecosystem API Wrapper (version 0.2.1). https://doi.org/10.32614/CRAN.package.CDSE.

Silver, Micha, Ron Beiden, and Arnon Karnieli. 2023. "rOPTRAM: An r Package for Preparing Soil Moisture Grids Based on the OPTRAM Model." Ben Gurion University. https://doi.org/https://doi.org/10.5281/zenodo.13257767.

Xu, Hanqiu. 2006. "Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery." *International Journal of Remote Sensing* 27 (14): 3025–33. https://doi.org/10.1080/01431160600589179.