FFT and iFFT under GPU

Implementations and Optimizations on FFT

2021.12.27 Yang Yang

Overview of Polynomial Multiplication

Given two polynomials:

$$A(x) = \sum_{j=0}^{n-1} a_j x^j \qquad B(x) = \sum_{j=0}^{n-1} b_j x^j$$

The multiplication will be like:

$$C(x) = \sum_{j=0}^{2n-2} c_j x^j$$
 $c_j = \sum_{k=0}^{j} a_k b_{j-k}$

Ordinary coefficients multiplication will be in : $O(n^2)$

FFT along with iFFT(FFT-inverse) will reduce this process by value-based representation to: $O(n \log n)$

$$P(\omega^j) = P_e(\omega^{2j}) + \omega^j P_o(\omega^{2j})$$

$$P(\omega^{j+\frac{n}{2}}) = P_e(\omega^{2j}) - \omega^j P_o(\omega^{2j})$$

Overview of Polynomial Multiplication

Benchmark Environment

Local:

CPU: Intel i7-8550U 8 Core

GPU: NVIDIA MX-250

Language: C++

Compiler: NVIDIA 11.3 g++ 8.3.0 OS: Debian GNU/Linux 10 (buster)

Benchmark: Google Benchmark

Server:

CPU: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 12cores 24threads

GPU: Tesla V100-SXM2

Language: C++

Compiler: NVIDIA 10.1 (with O3 optimization)

OS: Ubuntu1 16.04.9

Benchmark: C++ chrono

Ordinary Multiplication Method Benchmark

Ordinary method:

9501 iterations on average for each multiplication

order	avg_time(μs)
10	4.96532
20	26.6619
30	59.0193
40	139.44
50	283.4867
60	560.6607
70	960.5893
80	1448.13
90	2354.206
100	3257.07

FFT Based Method Benchmark

$$y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \omega_n^{kj}$$

 $O(n \log n)$

```
void rFFT(complex < double > a[], unsigned N, int flg){
    if (N == 1){
        return;
    }
    int half = N >> 1;
    .....
    rFFT(a0,half,flg);
    rFFT(a1,half,flg);
    complex < double > wn = complex < double > (cos(2 * pi / N), flg*sin(2*pi/N));
    complex < double > w = complex < double > (1,0);
    for(int k=0;k<=half-1;k++){
        complex < double > u = w*a1[k];
        a[k]=a0[k]+u;
        a[k+half]=a0[k]-u;
        w *= wn;
    }
}
```

$$T(N) = 2 * T(\frac{N}{2}) + \Theta(N) = \Theta(N \log N)$$

rFFT method:

12254 iterations on average for each multiplication

order	time(µs)
10	20.142
20	45.104
30	92.304
40	130.133
50	157.751
60	200.697
80	231.768

method	order	time(µs)
OM	80	3584
rFFT	80	231

Be faster?

Butterfly Operation and Parallelization

The process of rFFT when N=8

Change recursion to iteration by sort the array. Put all these iterations on GPU

```
for(half =1;half<N;half<<1){
    w_m;
    for(j=0;j<N;j+=2*half){
        for(k=0;k<half;k++){
            t
                  a[j+k]
                  a[j+k+half]
            }
        }
}</pre>
```

```
device void iteration FFT core loop(Complex* restrict reordered, int j, int k, int m, int N, int flag) {
         Complex t,u;
         t.x = _{cosf((2.0*PI*k) / (1.0*m));}
         t.y = - \frac{\sin(f \log^*(2.0^*PI^*k) / (1.0^*m))}{1.0^*m}
         reordered /k + j/ = u*t;
         reordered [k + j + m / 2] = u-t;
  int j = (blockldx.x *threadN + threadIdx.x)*m;
     for (int k = 0; k < m / 2; k++) {
         iteration FFT core loop(reordered, j, k, m, N,flag);
void FFT(Complex * restrict data, size t N, size t threads,int flag) {
    int s = log_2(N);
    bits_rev << < ceil(N / threads), threads >> > (reoredred, device,s,threads);
    for (int i = 1; i <= s; i++) {
         int m = 1 << i:
         iteration FFT core loop paralel <<< ceil((float)N / m / threads), threads >> > (reoredred, m, N, threads,flag);
```


FFT-GPU Based Method Benchmark

times(µs)
154181
156935
157233
153390
156434
160146
160861
157947
160130
157857

Comparison

Reference

- [0] https://docs.nvidia.com/cuda/cufft/index.html
- [2] https://developer.nvidia.com/cuda-example
- [3] https://docs.nvidia.com/cuda/archive/11.3.0/pdf/CUDA_Math_API.pdf
- [4] https://zhuanlan.zhihu.com/p/110897470
- [5] Kenneth Moreland and Edward Angel. "The FFT on a GPU" SIGGRAPH/EUROGRAPHICS Conference On Graphics Hardware (2003).
- [6] Yu-hsuan Shih, Garrett Wright, Joakim Andén, Johannes Blaschke and Alex H. Barnett. "cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs" International Parallel and Distributed Processing Symposium (2021).
- [7] Fan Zhang, Chen Hu, Qiang Yin and Wei Hu.

 "A GPU Based Memory Optimized Parallel Method For FFT Implementation" arXiv: Distributed, Parallel, and Cluster Computing (2017): n. pag.
- [8] Amir Gholami, Judith Hill, Dhairya Malhotra and George Biros.
 - "AccFFT: A library for distributed-memory FFT on CPU and GPU architectures" arXiv: Distributed, Parallel, and Cluster Computing (2015): n. pag.
- [9] C.L.R.S. "Introduction to Algorithms"