Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

24 septembre 2013

Plan

Conseils pour l'industriel

Expérience

L'industriel demande conseil auprès de :

① Un Expérimentateur : naïvement, celui-ci se propose de reproduire l'expérience que se propose de faire l'industriel le **jour J** en la répétant m=10000 fois pour autant de situations souhaitées par l'industriel.

Conseils pour l'industriel

Expérience

L'industriel demande conseil auprès de :

- ① Un Expérimentateur : naïvement, celui-ci se propose de reproduire l'expérience que se propose de faire l'industriel le **jour J** en la répétant m=10000 fois pour autant de situations souhaitées par l'industriel.
- ② Un Mathématicien : de manière un peu arrogante, il prétend connaître tout ce qui peut se passer avant le **jour J** dès lors qu'une population totale lui est proposé.

Conseils pour l'industriel

Expérience

L'industriel demande conseil auprès de :

- ① Un Expérimentateur : naïvement, celui-ci se propose de reproduire l'expérience que se propose de faire l'industriel le **jour J** en la répétant m=10000 fois pour autant de situations souhaitées par l'industriel.
- Un Mathématicien : de manière un peu arrogante, il prétend connaître tout ce qui peut se passer avant le jour J dès lors qu'une population totale lui est proposé.

Puisque μ^{\bullet} (resp. $\underline{\mathcal{Y}}^{\bullet}$) est inconnu, les deux conseillers s'accordent sur le fait de le remplacer par μ^{\star} (resp. $\underline{\mathcal{Y}}^{\star}$) fixé arbitrairement avant le **jour J** parmi l'ensemble des valeurs possibles de μ^{\bullet} .

Travail de l'expérimentateur

Expérience

Il construit des urnes contenant N=2000000 boules avec des répartitions en boules $0,1,2,3,\ldots$ spécifiques. puis effectue **des** tirages (avec remise) de n=1000 boules au hasard au sein de cette urne.

Les urnes expérimentales

situation	urne $U_{0.1}^A$	urne $U_{0.15}^{A}$	urne $U_{0.2}^A$
Caract.	$N_1 = 200000$	$N_1 = 300000$	$N_1 = 400000$
$\mu^{\star} =$	0.1	0.15	0.2

	urne $U_{0.1}^{B}$	urne $U_{0.15}^B$	urne $U_{0.2}^B$
Caract.	$N_1 = 100000$	$N_1 = 200000$	$N_1 = 300000$
	$N_2 = N_3 = 20000$		
$\mu^{\star} =$	0.1	0.15	0.2

Future $\widehat{\mu^{\star}}(\mathbf{Y}^{\star})$

L'Expérimentateur :

• Réaliser m expériences

1ème réalisation Future $\widehat{\mu^{\star}}(\mathbf{Y}^{\star})$ $\widehat{\mu^{\star}}(\mathbf{y}_{11}^{\star})$

L'Expérimentateur :

• Réaliser m expériences

L'Expérimentateur :

Réaliser m expériences

Approche Expérimentale des Probabilités :

l'Expérimentateur versus le Matheux

Future $\widehat{\mu}^* (\mathbf{Y}^*)$ m^{eme} réalisation $\widehat{\mu}^* (\mathbf{y}^*)$

L'Expérimentateur :

Réaliser m expériences

$$\widehat{\mu^{\star}}\left(\mathbf{y_{[1]}^{\star}}\right)$$
14.6%

$$\widehat{\widehat{\mu^{\star}}}\left(\mathbf{y_{[2]}^{\star}}\right) \qquad \cdots$$

- Réaliser *m* expériences
- **2** Répartition des $\widehat{\mu}^{\star}\left(\mathbf{y_{[j]}^{\star}}\right)$

- Réaliser m expériences
- **2** Répartition des $\widehat{\mu}^{\star} \left(\mathbf{y}_{[j]}^{\star} \right)$

- Réaliser *m* expériences
- **2** Répartition des $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}^{\star}}\right)$

- Réaliser *m* expériences
- **2** Répartition des $\widehat{\mu}^{\star}\left(\mathbf{y}_{[j]}^{\star}\right)$

L'Expérimentateur :

- Réaliser m expériences
- 2 Répartition des $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}^{\star}}\right)$

Le Matheux :

3 Je le savais à **l'avance** pour $m \to +\infty$

Approche Expérimentale des Probabilités :

l'Expérimentateur versus le Matheux

L'Expérimentateur :

- 1 Réaliser m expériences
- **2** Répartition des $\widehat{\mu^{\star}} \left(\mathbf{y_{[j]}^{\star}} \right)$

Le Matheux:

- 3 Je le savais à l'avance pour $m \to +\infty$
- $\Phi \widehat{\mu^{\star}} (\mathbf{Y}^{\star}) \stackrel{approx.}{\leadsto} \mathcal{N}(\mu^{\star}, \frac{\sigma_{\star}}{\sqrt{n}})$

Répartition de m réalisations de $\widehat{\mu^{\star}}(\mathbf{Y})$

• Chaque réalisation $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$ est représentée par une brique de surface 1/m et de largeur 1/n.

∢ Retour

▶ Suite

Répartition de m réalisations de $\widehat{\mu^{\star}}(\mathbf{Y})$

- Chaque réalisation $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$ est représentée par une brique de surface 1/m et de largeur 1/n.
- Toutes les briques sont empilées l'une après l'autre en les centrant en abscisse en leur valeur associée.

Retour

▶ Suite

Répartition de m réalisations de $\widehat{\mu^{\star}}(\mathbf{Y})$

- Chaque réalisation $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$ est représentée par une brique de surface 1/m et de largeur 1/n.
- Toutes les briques sont empilées l'une après l'autre en les centrant en abscisse en leur valeur associée.
- L'évolution de cet empilement laisse apparaître un "mur" de briques de surface totale toujours égale à 1.

▶ Suite

Répartition de m réalisations de $\widehat{\mu}^*(\mathbf{Y})$

- Chaque réalisation $\widehat{\mu^{\star}}$ ($\mathbf{y_{iil}}$) de $\widehat{\mu^{\star}}$ (\mathbf{Y}) est représentée par une brique de surface 1/m et de largeur 1/n.
- Toutes les briques sont empilées l'une après l'autre en les centrant en abscisse en leur valeur associée.
- L'évolution de cet empilement laisse apparaître un "mur" de briques de surface totale toujours égale à 1.
- Cette représentation est appelée histogramme (discret) et permet de visualiser en seul coup d'oeil la répartition des $(\widehat{\mu^*}(\mathbf{y_{[i]}}))_{i=1,\cdots,m}$

↓ AVANT le jour .	ļ		
Phase expérimentale			
Le parai	nètre à estimer est μ^* fixé ar	bitrairement (par exemple, à 0.1	15)
Avant simulation $\boldsymbol{\mathcal{E}}^{\star} = (\mathcal{E}_{1}^{\star}, \mathcal{E}_{2}^{\star}, \dots, \mathcal{E}_{n}^{\star}) \mathbf{Y}^{\star} = (Y_{1}^{\star}, Y_{2}^{\star}, \dots, Y_{n}^{\star}) \widehat{\mu^{\star}} (\mathbf{Y}^{\star})$			
Après simulation	1 ^{ère} expérience e [*] _[1]	y _[1] *	$\widehat{\mu^{\star}}\left(\mathbf{y_{[1]}^{\star}}\right)$
	2 ^{ème} expérience e _[2] *	y _[2] *	$\widehat{\mu^{\star}}\left(\mathbf{y_{[2]}^{\star}}\right)$
	:	:	:
	m ^{ème} expérience e *	У _[m]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[m]}^{\star}}\right)$
		:	

↓ AVANT le jour J			
	Phase expérimentale		
Le parar	nètre à estimer est μ^\star fixé ar	bitrairement (par exemple, à 0.1	.5 <i>)</i>
Avant simulation	$\boldsymbol{\mathcal{E}}^{\star} = (\mathcal{E}_1^{\star}, \mathcal{E}_2^{\star},, \mathcal{E}_n^{\star})$	$\mathbf{Y}^{\star} = (Y_1^{\star}, Y_2^{\star}, \dots, Y_n^{\star})$	$\widehat{\mu^{\star}}$ (Y*)
Après simulation	$1^{\grave{e}re}$ expérience $\mathbf{e}_{[1]}^{\star}$	y _[1]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[1]}^{\star}}\right)$
	2 ^{ème} expérience e _[2] *	y _[2]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[2]}^{\star}}\right)$
	:	:	:
	m ^{ème} expérience e *	У _[m]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[m]}^{\star}}\right)$
	:		:
Phase pratique Le paramètre à estimer est μ^ullet qui est inconnu			
Avant pratique	$\boldsymbol{\mathcal{E}}^{\bullet} = (\mathcal{E}_{1}^{\bullet}, \mathcal{E}_{2}^{\bullet},, \mathcal{E}_{n}^{\bullet})$	$\mathbf{Y}^{\bullet} = (Y_1^{\bullet}, Y_2^{\bullet}, \dots, Y_n^{\bullet})$	$\widehat{\mu^{ullet}}$ (Y ullet)

↓ AVANT le jour J			
	Phase expérimentale		
Le parar	mètre à estimer est μ^\star fixé ar	bitrairement (par exemple, à 0.1	.5)
Avant simulation	$\boldsymbol{\mathcal{E}^{\star}} = (\mathcal{E}_1^{\star}, \mathcal{E}_2^{\star},, \mathcal{E}_n^{\star})$	$\mathbf{Y}^{\star} = (Y_1^{\star}, Y_2^{\star}, \dots, Y_n^{\star})$	$\widehat{\mu^{\star}}$ (Y*)
Après simulation	$1^{\grave{ ilde{e}}re}$ expérience $\mathbf{e}_{[1]}^{\star}$	y _[1]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[1]}^{\star}}\right)$
	2 ^{ème} expérience e _[2] *	y _[2]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[2]}^{\star}}\right)$
	:	:	:
	$m^{\grave{e}me}$ expérience $\mathbf{e}_{[m]}^{\star}$	у _[m]	$\widehat{\mu^{\star}}\left(\mathbf{y_{[m]}^{\star}}\right)$
	:	:	:
	Phase pra	atique	
	Le paramètre à estimer es	st μ [•] qui est inconnu	
Avant pratique	$\boldsymbol{\mathcal{E}}^{\bullet} = (\mathcal{E}_1^{\bullet}, \mathcal{E}_2^{\bullet},, \mathcal{E}_n^{\bullet})$	$\mathbf{Y}^{\bullet} = (Y_1^{\bullet}, Y_2^{\bullet}, \dots, Y_n^{\bullet})$	$\widehat{\mu^{\bullet}}$ (Y $^{\bullet}$)
↓ APRES le jour J			
Après pratique	l'expérience réelle e	y•	$\widehat{\mu^{ullet}}\left(\mathbf{y}^{ullet} ight)$

Réalisation d'une future estimation par l'**Expérimentateur**

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	:
4150	14.4%
4151	17.2%
4152	15%
4153	14.9%
4154	13.7%
4155	15.8%
4156	14.6%
:	:

Réalisation d'une future estimation par l'**Expérimentateur**

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{[\mathbf{j}]}^{ullet} ight)$
:	:
2105	15.3%
2106	14.1%
2107	13.2%
2108	15.5%
2109	16.7%
2110	15.5%
2111	14.5%
:	:

Réalisation d'une future estimation par l'**Expérimentateur**

j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}^{ullet}} ight)$
:	:
3728	14.9%
3729	14.4%
3730	14.8%
3731	13.4%
3732	14.9%
3733	14.4%
3734	16.4%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{[\mathbf{j}]}^{ullet} ight)$
:	:
4150	14.4%
4151	17.2%
4152	15%
4153	14.9%
4154	13.7%
4155	15.8%
4156	14.6%
:	:

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{f{[j]}}^{ullet} ight)$
:	:
2105	15.3%
2106	14.1%
2107	13.2%
2108	15.5%
2109	16.7%
2110	15.5%
2111	14.5%
:	÷

Réalisation d'une future estimation par le Matheux

j	$\widehat{\mu^{ullet}}\left(\mathbf{y}_{[\mathbf{j}]}^{ullet} ight)$
	:
3728	14.9%
3729	14.4%
3730	14.8%
3731	13.4%
3732	14.9%
3733	14.4%
3734	16.4%
	:

Réalisation d'une future estimation

 \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet}=\mu^{\star}=0.15$ (juste pas le marché)

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet} = \mu^{\star} = 0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet} = \mu^{\star} = 0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un des $m \widehat{\mu}^{\star} (\mathbf{y_{[j]}})$)

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet} = \mu^{\star} = 0.15$ (juste pas le marché)
- → Il prend alors conscience que ce qui peut lui arriver le jour J, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un des $m \widehat{\mu}^{\star}(\mathbf{y}_{[j]})$)
 - ② Choisir au hasard un point sous la "courbe $\mathcal{N}(\mu^\star, \frac{\sigma_\star}{\sqrt{n}})$ " associé à son abscisse représentant une réalisation au hasard de $\widehat{\mu^\star}(\mathbf{Y})$ choisie parmi une infinité.

- \rightarrow L'industriel s'imagine être le **jour J** dans la situation où $\mu^{\bullet} = \mu^{\star} = 0.15$ (juste pas le marché)
- \rightarrow II prend alors conscience que ce qui peut lui arriver **le jour J**, c'est équivalent (ou presque) à :
 - **1** Choisir au hasard une brique (i.e un des $m \widehat{\mu}_{i}^{\star}(\mathbf{y}_{[j]})$)
 - ② Choisir au hasard un point sous la "courbe $\mathcal{N}(\mu^\star, \frac{\sigma_\star}{\sqrt{n}})$ " associé à son abscisse représentant une réalisation au hasard de $\widehat{\mu^\star}(\mathbf{Y})$ choisie parmi une infinité.
- \Rightarrow II voit clairement la "courbe $\mathcal{N}(\mu^{\star}, \frac{\sigma_{\star}}{\sqrt{n}})$ " comme un empilement d'une infinité de briques ("devenues des points") associées à une infinité de réalisations possibles de $\widehat{\mu^{\star}}(\mathbf{Y})$.

Approche Expérimentale versus Approche Classique

Moyenne des
$$m=10000$$
 réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$

Moyenne des m=10000 réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$

 \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$

```
Moyenne des m=10000 réalisations \widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right) de \widehat{\mu^{\star}}\left(\mathbf{Y}\right)
```

- \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[i]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Espérance $\mathbb{E}\left(\widehat{\mu^{\star}}\left(\mathbf{Y}\right)\right)$

```
Moyenne des m=10000 réalisations \widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right) de \widehat{\mu^{\star}}\left(\mathbf{Y}\right)
```

- \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Espérance $\mathbb{E}\left(\widehat{\mu^{\star}}\left(\mathbf{Y}\right)\right)$
- = Le paramètre μ^{\star}

```
Moyenne des m=10000 réalisations \widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right) de \widehat{\mu^{\star}}\left(\mathbf{Y}\right)
```

- \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Espérance $\mathbb{E}\left(\widehat{\mu^{\star}}\left(\mathbf{Y}\right)\right)$
- = Le paramètre μ^{\star}

```
Variance des m=10000 réalisations \widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right) de \widehat{\mu^{\star}}\left(\mathbf{Y}\right)
```

```
Moyenne des m=10000 réalisations \widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right) de \widehat{\mu^{\star}}\left(\mathbf{Y}\right)
```

- \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}
 ight)$
- = Espérance $\mathbb{E}\left(\widehat{\mu^{\star}}\left(\mathbf{Y}
 ight)\right)$
- = Le paramètre μ^{\star}

Variance des
$$m=10000$$
 réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$

 \simeq Variance d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$

- Moyenne des m=10000 réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Espérance $\mathbb{E}\left(\widehat{\mu^{\star}}\left(\mathbf{Y}
 ight)\right)$
- = Le paramètre μ^{\star}
 - Variance des m=10000 réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- \simeq Variance d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Variance $\mathbb{V}ar\left(\widehat{\mu^{\star}}\left(\mathbf{Y}\right)\right)$

```
Moyenne des m=10000 réalisations \widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right) de \widehat{\mu^{\star}}\left(\mathbf{Y}\right)
```

- \simeq Moyenne d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Espérance $\mathbb{E}\left(\widehat{\mu^{\star}}\left(\mathbf{Y}
 ight)\right)$
- = Le paramètre μ^{\star}

Variance des
$$m=10000$$
 réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$

- \simeq Variance d'une infinité de réalisations $\widehat{\mu^{\star}}\left(\mathbf{y_{[j]}}\right)$ de $\widehat{\mu^{\star}}\left(\mathbf{Y}\right)$
- = Variance \mathbb{V} ar $\left(\widehat{\mu^{\star}}\left(\mathbf{Y}
 ight)\right)$
- $=\frac{\sigma_{\star}^2}{n}$

Proportion parmi les m=10000 estimations $p^{\widehat{A}}\left(\mathbf{y_{[j]}}\right)$ de $p^{A}=15\%$ qui sont supérieures à $p_{lim.5\%}^{+}=16.86\%$ (= 517/10000)

Proportion parmi les m=10000 estimations $p^{\hat{A}}\left(\mathbf{y_{[j]}}\right)$ de $p^{A}=15\%$ qui sont supérieures à $p_{lim.5\%}^{+}=16.86\%$ (= 517/10000)

= Proportion parmi les m=10000 estimations $\delta_{p^A,15\%}(\mathbf{y_{[j]}})$ de $\delta_{p^A,15\%}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=517/10000)$

Proportion parmi les m=10000 estimations $p^{\hat{A}}\left(\mathbf{y_{[j]}}\right)$ de $p^{A}=15\%$ qui sont supérieures à $p_{lim.5\%}^{+}=16.86\%$ (= 517/10000)

- = Proportion parmi les m=10000 estimations $\widehat{\delta_{p^A,15\%}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{p^A,15\%}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=517/10000)$
- \simeq Proportion parmi une infinité d'estimations $\widehat{p^A}\left(\mathbf{y_{[j]}}\right)$ de $p^A=15\%$ qui sont supérieures à 16.86%

Proportion parmi les m=10000 estimations $p^{\widehat{A}}\left(\mathbf{y_{[j]}}\right)$ de $p^{A}=15\%$ qui sont supérieures à $p_{lim.5\%}^{+}=16.86\%$ (= 517/10000)

- = Proportion parmi les m=10000 estimations $\widehat{\delta_{p^A,15\%}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{p^A,15\%}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=517/10000)$
- \simeq Proportion parmi une infinité d'estimations $\widehat{p^A}\left(\mathbf{y_{[j]}}\right)$ de $p^A=15\%$ qui sont supérieures à 16.86%
- $=\mathbb{P}_{p^A=15\%}\left(\widehat{p^A}\left(\mathbf{Y}\right)>16.86\%\right)$

Proportion parmi les m=10000 estimations $p^{\hat{A}}\left(\mathbf{y_{[j]}}\right)$ de $p^{A}=15\%$ qui sont supérieures à $p_{lim.5\%}^{+}=16.86\%$ (= 517/10000)

- = Proportion parmi les m=10000 estimations $\delta_{p^A,15\%}(\mathbf{y_{[j]}})$ de $\delta_{p^A,15\%}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=517/10000)$
- \simeq Proportion parmi une infinité d'estimations $\widehat{p^A}\left(\mathbf{y_{[j]}}\right)$ de $p^A=15\%$ qui sont supérieures à 16.86%
- $=\mathbb{P}_{
 ho^A=15\%}\left(\widehat{
 ho^A}\left(\mathbf{Y}
 ight)>16.86\%
 ight)$
- $= \mathbb{P}_{\delta_{p^{A},15\%}=0} \left(\widehat{\delta_{p^{A},15\%}} (\mathbf{Y}) > 1.6449 \right)$

Proportion parmi les m=10000 estimations $p^A\left(\mathbf{y_{[j]}}\right)$ de $p^A=15\%$ qui sont supérieures à $p_{lim.5\%}^+=16.86\%$ (= 517/10000)

- = Proportion parmi les m=10000 estimations $\delta_{p^A,15\%}(\mathbf{y_{[j]}})$ de $\delta_{p^A,15\%}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=517/10000)$
- \simeq Proportion parmi une infinité d'estimations $\widehat{p^A}\left(\mathbf{y_{[j]}}\right)$ de $p^A=15\%$ qui sont supérieures à 16.86%
- $=\mathbb{P}_{
 ho^A=15\%}\left(\widehat{
 ho^A}\left(\mathbf{Y}
 ight)>16.86\%
 ight)$
- $= \mathbb{P}_{\delta_{p^A,15\%}=0}\left(\widehat{\delta_{p^A,15\%}}(\mathbf{Y}) > 1.6449\right)$
- $= \mathbb{P}_{H_0} (\text{Accepter } H_1)$

Proportion parmi les m=10000 estimations $p^{\hat{A}}\left(\mathbf{y_{[j]}}\right)$ de $p^{A}=15\%$ qui sont supérieures à $p_{lim.5\%}^{+}=16.86\%$ (= 517/10000)

- = Proportion parmi les m=10000 estimations $\widehat{\delta_{p^A,15\%}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{p^A,15\%}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=517/10000)$
- \simeq Proportion parmi une infinité d'estimations $\widehat{p^A}\left(\mathbf{y_{[j]}}\right)$ de $p^A=15\%$ qui sont supérieures à 16.86%

$$=\mathbb{P}_{
ho^{A}=15\%}\left(\widehat{
ho^{A}}\left(\mathbf{Y}
ight)>16.86\%
ight)$$

$$= \, \mathbb{P}_{\delta_{p^A,15\%}=0} \left(\widehat{\delta_{p^A,15\%}} \left(\mathbf{Y} \right) > 1.6449 \right)$$

$$= \mathbb{P}_{H_0} (\text{Accepter } H_1)$$

$$\simeq \alpha = 5\%$$
.

Proportion parmi les m=10000 estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à $\delta^+_{lim}\,_{5\%}\simeq 1.6449~(=497/10000)$.

Proportion parmi les m=10000 estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=497/10000)$.

 \simeq Proportion parmi une infinité d'estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à 1.6449.

Proportion parmi les m=10000 estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=497/10000)$.

- \simeq Proportion parmi une infinité d'estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à 1.6449.
- $= \mathbb{P}_{\delta_{\mu^B,0.15}=0}\left(\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}\right) > 1.6449\right)$

Proportion parmi les
$$m=10000$$
 estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449$ (= 497/10000).

- \simeq Proportion parmi une infinité d'estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à 1.6449.
- $=\mathbb{P}_{\delta_{\mu^B,0.15}=0}\left(\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}
 ight)>1.6449
 ight)$
- $= \mathbb{P}_{H_0} (\text{Accepter } H_1)$

Proportion parmi les
$$m=10000$$
 estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à $\delta_{lim,5\%}^+\simeq 1.6449~(=497/10000)$.

- \simeq Proportion parmi une infinité d'estimations $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y_{[j]}}\right)$ de $\delta_{\mu^B,0.15}=0$ qui sont supérieures à 1.6449.
- $= \mathbb{P}_{\delta_{\mu^B,0.15}=0}\left(\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{Y}\right) > 1.6449\right)$
- $= \mathbb{P}_{H_0} (Accepter H_1)$
- $\simeq \alpha = 5\%$.