# AE-705: Introduction to Flight Pressure & Airspeed Measurement



Siddharth Joshi Mechanical Engg. Department VIT Vellore

# **Outline**

Pressure Measurement

Airspeed Measurement

Types of Airspeeds



Source: http://www.daviddarling.info/images2/von\_Guericke.jpg

# PRESSURE MEASUREMENT

## PRESSURE MEASUREMENT

Mechanism that can change sense in pressure







Source: https://s-media-cache-ak0.pinimg.com/736x/2f/b2/d0/2fb2d079d23f32df9574b6c02eec46ab.jpg

## STATIC PRESSURE

# STAGNATION PRESSURE

Measurement made such that  $V_{flow}$  isn't disturbed

Measurements made when  $V_{flow} \rightarrow 0$  isentropically



Source: http://nptel.ac.in/courses/101103004/module7/lec6/1.html

Static pressure port

Total pressure connection

Total pressure connection

Source: http://www.flowkinetics.com/images/generic-pitot-static-pitot-configuration.png

**AE-705 Introduction to Flight** 

Lecture-06

#### STATIC PRESSURE MEASUREMENT

#### **PRESSURE TAPPING**



Connection to the pressure measurement instrument small hole drilled normal to the surface

*P*<sub>static</sub> probe inserted without disturbing flow streamlines



Source: http://nptel.ac.in/courses/101103004/module7/lec6/1.html

**AE-705 Introduction to Flight** 

Lecture-06

#### STAGNATION PRESSURE MEASUREMENT

Pitot tube used for measurement of  $P_{stagnation}$ 



Lecture-06





Source: https://azcamsmedia.azureedge.net/media/themes/fab-four/article-content-images/life-insurance/movember-pilot-main.jpg?la=en-GB

Source: https://s-media-cache-ak0.pinimg.com/736x/2f/b2/d0/2fb2d079d23f32df9574b6c02eec46ab.jp

#### **BUT HOW DOES THE PILOT SEE THE PRESSURE??**



**AE-705 Introduction to Flight** 

Lecture-06

## **BOURDON TUBE**



Source: http://www.machineryspaces.com/Bourdon-tube-pressure-gauge.PNG



Source: https://www.aviationengines.com.au/wp-content/uploads/OilPressure-300x300.jpg



Source: http://www.umainstruments.com/images/2\_25\_Electronics/225HydraulicP.jpg

#### hydraulic pressure gauge

engine oil pressure gauge

Bourdon Tube **Applications** 



Source: http://aircraftpartsandsalvage.com/images/50-380105-3\_937.JPG

#### deice boot pressure gauge



Source: http://i.ebayimg.com/images/g/dG0AAOSwZKBZEgCS/s-l300.jpg

oxygen tank pressure gauge

Source: https://www.faa.gov/regulations\_policies/handbooks\_manuals/aircraft/amt\_airframe\_handbook/media/ama\_Ch10.pdf

**AE-705 Introduction to Flight** 

Lecture-06

## **DIAPHRAGM**

Movement of diaphragm linked to the pointer



Diaphragms and Bellows can also be used for pressure measurement

 Hollow thin walled corrugated disk

pressure ↑ ↔ diaphragm expands

introduced through opening

Pressure

 $Source: http://3.bp.blogspot.com/\_SEJ\_mMmfxvU/TKhqC2QPzuI/AAAAAAAAAAAAAAA/8/vvmwO\_zCOq0/s400/elastic+diaphragm+gauges.gifted to the contract of the contract$ 

## **BELLOWS**

a collection of diaphragm chambers connected together



Pointer linked to a scale

movement of the side walls correlates with change in pressure



Pressure entry

Spring in a compressed shape

# **PITOT STATIC SYSTEM**

system of pressure-sensitive instruments used to determine an aircraft's airspeed





- Source: http://www.luizmonteiro.com/images/ImagesArticles/PitotBlockages/Art\_Pitot\_Blockage\_b11.gif
  - measures ram air pressure and compares it to static pressure
  - Measures altitude and tells rate of climbing or descending in feet per minute

# **PITOT STATIC SYSTEM**



#### **COMPONENTS**

- Pitot Tube
- Static Port
- Instruments
- Alternate Static Port

Source: http://www.myairlineflight.com/images/pitot-staticsyslg.jpg

#### PITOT STATIC TUBES

instrument used to measure fluid flow velocity



L-shaped device located on the exterior of the aircraft

ram air pressure enters the tube



prevents ice from blocking the air inlet or drain hole

Source: http://www.myairlineflight.com/images/pitot-staticsyslg.jpg

#### **PITOT STATIC TUBES**

Several small holes drilled around the outside of the tube



ource: http://d2ylcm6117u1fs.cloudfront.net/media%2F49d%2F49d%2F49d20187-5804-4953-h1a3-bcefb775149c%2FnbnI 9ns4R nns



holes connected to one side of the pressure transducer

Source: http://forums.ni.com/legacyfs/online/15039\_Pitot%20Tube.png

The pressure transducer measures dynamic pressure q

Source: http://www.flowkinetics.com/images/generic-pitot-static-pitot-configuration.png

**AE-705 Introduction to Flight** 

Lecture-06

# STATIC PORT

small air inlet located on the side of the aircraft



Source: http://www.myairlineflight.com/images/pitot-staticsyslg.jpg



Source: https://qph.ec.quoracdn.net/main-qimg-c884d8a697540d1b661f37581582c2f3-c

measures static air pressure

# **ALTERNATE STATIC PORT**

Used when the main static port experiences a blockage

causes slightly inaccurate readings on the instruments



Source: http://www.myairlineflight.com/images/pitot-staticsyslg.jpg





Source: http://www.airteamimages.com/pics/168/168077\_800.jpg

Static Ports are
Static Ports are
located on of
located sides of
opposite sides
opposite fuselage
the fuselage



Source: https://s-media-cache-ak0.pinimg.com/736x/2f/b2/d0/2fb2d079d23f32df9574b6c02eec46ab.jpg



**AE-705 Introduction to Flight** 



Source: http://www.boldmethod.com/images/blog/quizzes/2014/11/can-you-answer-these-7-systems-questions/stem-3.jpg

Lecture-06

# **INSTRUMENTS**



Source: http://www.5c1.net/Systems\_files/pitot.gif

Pitot-static system involves three instruments

Airspeed indicator

Altimeter

Variometer

## **AIRSPEED INDICATOR**



a differential pressure system that measures both dynamic air pressure and static pressure

 $Source: https://upload.wikimedia.org/wikipedia/commons/thumb/1/15/Airspeed\_Indicator.svg/2000px-Airspeed\_Indicator.svg.png$ 



P<sub>dynamic</sub> → Pitot tube



Source: http://www.allstar.fiu.edu/aero/images/2-7.gif

## **AIRSPEED INDICATOR**



**AE-705 Introduction to Flight** 

Lecture-06

# **AIRSPEED CORRECTIONS**



Source: https://i.stack.imgur.com/matiD.png

**Indicated Airspeed** 

**Calibrated Airspeed** 

**Equivalent Airspeed** 

**True Airspeed** 

Groundspeed



**AE-705 Introduction to Flight** 

Lecture-06

# **INDICATED AIRSPEED (IAS)**



Source: https://upload.wikimedia.org/wikipedia/commons/8/8e/FAA-8083-3A\_Fig\_12-1.PNG

airspeed read directly from the indicator

ASI errors can creep in due to a variety of reasons

- obstructions or leaks in the pitot static plumbing
- improper placement of the pitot tube or static source
- sloppy ASI gauge

**AE-705 Introduction to Flight** 

Lecture-06

# **CALIBRATED AIRSPEED (CAS)**



Source: http://clayviation.com/wp-content/uploads/2016/08/image-2.jpeg

E6B, Whiz Wheel used for CAS calibration

indicated airspeed corrected for instrument errors and position error

describes the P<sub>dyamic</sub> acting on aircraft surfaces regardless of existing of temperature, pressure, altitude or wind

The calibrated airspeed can be found in the aircraft's operating handbook

# **CALIBRATED AIRSPEED (CAS)**



ASI calibration is done using a handheld GPS

The GPS calibration involves flying at a constant indicated airspeed at three different headings

Source: http://www.sonex604.com/images/asi/CAS.jpg

Data is plugged into a spreadsheet, and graph of indicated airspeed vs. calibrated airspeed is plotted

# **EQUIVALENT AIRSPEED (EAS)**



Source: http://code7700.com/images/compressibility\_correction.png

compressibility correction chart used for EAS

calibrated airspeed adjusted for compressibility errors

useful for predicting aircraft handling, aerodynamic loads and stalling

EAS is a function of dynamic pressure (q)

$$EAS = \sqrt{\frac{2q}{\rho_0}}$$
 standard sea level density

# TRUE AIRSPEED (TAS)



Source: http://www.prestoimages.net/imagecapture/images/rd10335/10335\_1984681.pjpeg

**Dalton Computer** 

CAS adjusted for nonstandard pressure and temperature

TAS cannot be measured directly

For slow speeds it is calculated using a Dalton Computer

At high speeds the compressibility error rises significantly

TAS is calculated using the Mach speed

# TRUE AIRSPEED (TAS)

#### Low-speed flight

At low speeds and altitudes, IAS and CAS are close to EAS



## **High-speed flight**

TAS can be calculated as a function of Mach number and static air temperature:



**AE-705 Introduction to Flight** 

Lecture-06

# TRUE AIRSPEED (TAS)

TAS as a function of impact pressure  $(q_c)$ , static pressure (P) and static air temperature  $(T_0)$  (valid for subsonic flow):

$$TAS = a_0 \sqrt{\frac{5T}{T_0} \left[ \left( \frac{q_c}{P} + 1 \right)^{\frac{2}{7}} - 1 \right]}$$

where  $T = \frac{T_t}{1+0.2 M^2}$  Mach Number

**AE-705 Introduction to Flight** 

Lecture-06

# **AIRSPEED INDICATOR MARKINGS**

color-coded airspeed markings on ASI for the pilot's safety

