Convergence Rates

Thursday, August 27, 2020

10:57 PM

(see section 2.4 Burden and Faires)

See Ch1_RatesOfConvergence.ipynb

Deflet (x_n) be a sequence converging to x_n $\lim_{n\to\infty} x_n = x$

If
$$\exists$$
 C>0 and d>0 s.t. $\lim_{N\to\infty} \left| \frac{x_{n+1}-x}{|x_n-x|^n} \right| = C$

then we say (x,) converges to x of order of

and in particular,

$$d < 1$$
 ($c < 1$) "Sublinear convergence"
 $d = 1$ ($c < 1$) "linear convergence"
 $d = 2$ "quadratic convergence"

Note: this is sometimes called Q-convergence (ex: d=1, c<1 is Q-linear convergence), as it involves a Quotient

Sometimes we use a weaker notion, R-convergence (R for rout), meaning

$$x_n \rightarrow x$$
 R-linearly if $\exists (y_n)$ with $|x_n - x| \leq y_n$ and

yn -o a-linearly

1.1. for R-convergence, error might actually go up but trend is still correct.

Examples

•
$$x_n = \frac{1}{7n}$$
 so $x_n = 70$ slowly. This is $Q = \frac{50 \text{blinear}}{100 \text{ ceach}}$
• $x_n < \epsilon$ takes $O(\frac{1}{\epsilon^2})$ iterations. (
• $x_n = \frac{1}{2}$ also $Q = \frac{1}{2}$ sublinear $O(\frac{1}{\epsilon})$

·
$$Y_n = Y_n$$
 also Q-Sublinear $O(\frac{1}{2})$

•
$$Y_n = .9^n$$
 is $Q - linear$ $O(-log(\epsilon))$

Xn sublinear then asymptotically,

yn linear

yn > 0 faster than Xn

(lin yn = 0)

but for small in, maybe xn< yn

$$ex : x_n = 10^{-5} \cdot x_n^2$$

$$y_n = (1 - 10^{-10})^n$$

Final accuracy doesn't really matter it's so fast

linear convergence with $C = 1 - 10^{-10}$ is terrible but with c= 1/2 it's very good.