NVE:
$$S = K_B l_D \Lambda(E)$$

NVT: $A = -K_B T l_{Og} Z$

Thermodynamics microscopic ligaria

e.g. macro-energys of freedom

 $E = 00M$
 $E = 00M$

Thermodynamic equivolence of ensembles!!!

Gills formula of entropy
$$S = K_{D} \log \Lambda = -K_{D} \log \frac{1}{SL}$$

$$TS = E - A$$

$$TS = \sum_{S} P_{i} E_{i} + \frac{1}{\beta} \log Z$$

$$TS = -\frac{1}{\beta} \sum_{i} P_{i} \log e^{-3E_{i}} + \frac{1}{\beta} \log Z \cdot \sum_{i} P_{i}$$

$$TS = -\frac{1}{\beta} \sum_{S} P_{i} \log \frac{e^{-3E_{i}}}{Z}$$

Shinon neasure of information

SMI

n choice for a letter y(n) increase

1(n) = c log n c = (log 2) -1

7(n) = log2 n

I hit = amount from single yes-no question

7(n)= log = = los. P.

· 2 (n) = - \(\frac{1}{2} P_i \ log P_j;

example horses, commute-iceys, coins, die, etc.

leg. $27 \approx 9.755$ but real is 1.3 bits $\frac{70}{250}$. log. $27 \approx 1.3$ bits

70 given to gare? 250 long paragraph

two scitters: arrival of new info logy 4-logy 3

Monty python example: _1/5 log 1/5 - 4/5 log 4/5

~ l 1 sits

Units $| \text{ Sit/molecule} = | K_B \log 2 = 9.57 \cdot 10^{-24} \text{ S/K.mol}$ $| \text{ Sit/molecule} = | R \log 2 = 5.7628 \text{ J·K-mol-1}$ | J·Ic-mol = | 0.17352 Sit/moleaule

△S = Rlog2 entropy increase? Na 1.15

S=-Z'Piloyfi uncertainty over picking microstate or # Yes/No question to identify state,

Why entropy increase?

$$P(f) = e^{-NL(f)}$$

$$P(f) = e^{-NI(f)} I(f) = -f(g)f - -(1-f)(g(f-f))$$

f=f=1/2

Large der canction is Entropy! or information! System tends to the greatest uncertainty = highest prob

Entropy is a functional of grobob distribution. Systems evolve towards prol dis over microstates that maximize their entropy given unly Constraints

Max Ent

Principle of insufficient reason maximum entropy principle fair allocation principle

rigged coin Lx7= 0.8 and rigged die

<×> ≈ 5.5

