

Revisão#	Descrição da revisão	Data	Responsável
1.0	Elaboração do documento		Eric Koji Nakirimoto
1.1	Inclusão de detalhes das prensas	28/11/24	Eric Koji Nakirimoto

Sumário

1.	Introdução ao Documento	2
2.	Descrição do Dashboard	2
3.	Requisitos para instalação do dashboard	3
4.	Fluxo de implementação	4
4.1.	·	
4.2.	Dashboard de disponibilidade	5
4.3.	Dashboard de energia	5
5.	Responsabilidades	6
6.	Instalação	7
7.	Contagem de peças	7
8.	Configuração	11
9.	Manutenção	11
10.	Atualização	11
11.	Monitoramento	11
12.	Observações	12
12.1	I. Prensa rápidas e contagens em frequências elevadas	12
12.1	1.1. Sinais até 250 ciclos por minuto	13
12.1	I.2. Sinais entre 251 e 1500 ciclos por minutos	13
12.1	·	

2/13

1. Introdução ao Documento

Este documento tem como finalidade estabelecer as regras de negócio fundamentais para a implementação de dashboards em posto de trabalho, visando proporcionar uma estrutura coerente e consistente para o desenvolvimento e utilização dessas ferramentas dentro do contexto WEG. Dashboards desempenham um papel importante na visualização e interpretação de dados, fornecendo insights valiosos que orientam a tomada de decisões estratégicas e operacionais. Portanto, é imperativo estabelecer diretrizes claras e precisas para garantir a eficácia, segurança e conformidade das soluções de dashboard implementadas em máquinas, promovendo assim a maximização do valor agregado às operações e processos organizacionais. Neste sentido, este documento aborda aspectos essenciais relacionados à concepção, desenvolvimento, implementação, manutenção e utilização de dashboards em máquinas, com foco na otimização do desempenho e na minimização de potenciais riscos e vulnerabilidades. Ao seguir as orientações aqui estabelecidas, espera-se alcançar uma integração harmoniosa entre as necessidades operacionais da empresa e as capacidades proporcionadas pelas soluções de dashboard, contribuindo para aprimorar a eficiência, a competitividade e o sucesso organizacional.

2. Descrição do Dashboard

Os dashboards são desenvolvidos na ferramenta de programação Node-RED e tem o objetivo de monitorar a performance do processo em um posto de trabalho. A base de dados utilizada é a do WSFM, que é sistema de execução de manufatura (MES, do inglês Manufacturing Execution System) da WEG. O WSFM é responsável por capturar e armazenar uma ampla gama de informações relacionadas à produção, incluindo dados de produção em tempo real, informações sobre ordens de trabalho, tempos de ciclo, qualidade do produto, entre outros.

O dashboard foi projetado para fornecer uma visualização clara e intuitiva das métricaschave do processo em tempo real, permitindo que os operadores e gestores monitorem e avaliem o desempenho do posto de trabalho de forma eficiente. Algumas das informações que podem ser exibidas no dashboard incluem:

- Indicadores de Produção instantâneos: Número de unidades produzidas obtido por meio de sinal de máquina, tempo de produção total, tempo de inatividade, tempo de ciclo médio, eficiência geral do equipamento (OEE), entre outros.
- 2. Qualidade do Produto: Taxa de defeitos, custos, entre outros
- 3. **Alertas e Notificações:** Indicação visual de eventos críticos, como paradas não planejadas, falhas de equipamento, desvios de qualidade, entre outros.

Temos três modelos de dashboards disponíveis para atender diferentes tipos de clientes. O primeiro é o dashboard de manufatura, que tem como foco as aplicações que possuem contagem de peças com o uso de sinal de máquina e peças fabricadas em menos de 8 horas. O segundo é o dashboard de disponibilidade, que apresenta uma opção de monitoramento para processos na qual não é possível inserir a contagem de peças ou as peças são fabricadas em processos demorados. O terceiro é o dashboard de energia, que tem como objetivo monitorar os indicadores de consumo energético.

3/13

Título: Regras de negócio

3. Requisitos para instalação do dashboard

Os requisitos para instalação do dashboard são listados abaixo:

Dashboard	Requisitos
Manufatura	WSFM instalado
	Apontamento de ordem de produção
	Contagem de peças
	Monitor instalado
Disponibilidade	WSFM instalado
	Apontamento de ordem de produção
	Monitor instalado
Energia	WSFM instalado
	WES instalado
	Apontamento de ordem de produção
	Monitor instalado

4. Fluxo de implementação

4.1. Dashboard de manufatura

Atividade	Descrição	Responsável	
Instalação do WSFM	Instalação do MES que vai adquirir	Técnico WSFM + Time	
	os dados do processo	WSFM	
Solicitação da	Solicitar avaliação dos sinais de	Técnico WSFM	
avaliação da	máquinas para identificar a		
contagem de peças	viabilidade de implementação da		
	contagem de peças		
Adaptação do sinal	Conectar e passar cabos dos sinais	Técnico WSFM +	
elétrico de contagem	de contagem de peças da máquina	Manutenção	
de peças no CLP	para o CLP do WSFM		
Inserção da lógica de	Preparar o documento e solicitar	Time de software + Técnico	
contagem de peças no	para TI inserir a lógica da contagem	WSFM	
WSFM	de peças no sistema		
Inserir a regra de	Inserir a lógica de contagem de TI		
contagem de peças	peças no sistema		
Instalação do monitor	Instalar o monitor fisicamente no	Manutenção ou terceiro	
	local		
Configuração do	Configurar a aplicação para uso	Time de software	
dashboard			

Figura 1 - Fluxo para o dashboard de manufatura

4.2. Dashboard de disponibilidade

Atividade	Descrição	Responsável	
Instalação do WSFM	Instalação do MES que vai adquirir	Técnico WSFM + Time	
	os dados do processo	WSFM	
Adaptação do sinal	Conectar e passar cabos dos sinais	Técnico WSFM +	
elétrico de operando	de operando da máquina para o CLP	Manutenção	
	do WSFM		
Instalação do monitor	Instalar o monitor fisicamente no	Manutenção ou terceiro	
	local		
Configuração do	Configurar a aplicação para uso	Time de software	
dashboard			

Figura 2 - Fluxo para o dashboard de disponibilidade

4.3. Dashboard de energia

Atividade	Descrição	Responsável	
Instalação do WSFM	Instalação do MES que vai adquirir	Técnico WSFM + Time	
	os dados do processo	WSFM	
Solicitação da	Solicitar avaliação dos sinais de	Técnico WSFM	
avaliação da	máquinas para identificar a		
contagem de peças	viabilidade de implementação da		
	contagem de peças		
Adaptação do sinal	Conectar e passar cabos dos sinais	Técnico WSFM +	
elétrico de contagem	de contagem de peças da máquina Manutenção		
de peças no CLP	para o CLP do WSFM		
Inserção da lógica de	Preparar o documento e solicitar	Time de software + Técnico	
contagem de peças no	para TI inserir a lógica da contagem	WSFM	
WSFM	de peças no sistema		
Inserir a regra de	Inserir a lógica de contagem de	TI	
contagem de peças	peças no sistema		
Instalação do monitor	Instalar o monitor fisicamente no	Manutenção ou terceiro	
	local		
Configuração do	Configurar a aplicação para uso	Técnico WSFM	
dashboard			

Figura 3 - Fluxo para o dashboard de energia

5. Responsabilidades

As responsabilidades de cada parte envolvida no projeto estão detalhadas na matriz RACI (Responsible, Accountable, Consulted, Informed). Esta matriz define claramente quem é responsável por realizar cada atividade, quem é responsável por aprovar as atividades, quem deve ser consultado durante o processo e quem deve ser mantido informado sobre o progresso. A matriz RACI é uma ferramenta essencial para garantir uma distribuição clara de responsabilidades e para promover uma colaboração eficaz entre todos os membros da equipe.

Segue a matriz RACI dos envolvidos nos dashboards conforme a Tabela 1.

Tabela 1 - Matriz RACI

Atividade	Responsável	Autoridade	Comunicado	Informado
Avaliar o local para a instalação de WSFM com dashboard	Técnicos WSFM	Time WSFM (SIM)	Tiago Filipi Longhi	Técnicos WSFM e Time de software
Avaliar local para instalação de dashboards sem WSFM	Técnicos WSFM e Time de software	Técnicos WSFM	Técnicos WSFM e Time de software	Tiago Filipi Longhi
Compra de dashboards	Técnicos WSFM e Time de software	Gestores		Time de software e Técnicos WSFM
Preparar o local para instalação (Tomadas) (Suporte monitor)	Técnicos WSFM			
Definir a posição de instalação	Técnicos WSFM	Gerente ou gestores		
Acompanhar a instalação no local	Técnicos WSFM		Anna	Eric
Definir as regras de sinais de contagem de peças	Time de software	Jonatas (TI)		Técnicos WSFM
Implementar os sinais no PLC300 do WSFM	Manutenção	Técnicos WSFM		Time de software
Implementar a regra de contagem no WSFM	Jonatas (TI)	Time de software	Time de software	Técnicos WSFM

7/13

Configurar o dashboard	Anna	Técnicos WSFM		Eric
Criar chamados	Técnicos WSFM	Gestores		
Corrigir problemas simples	Técnicos WSFM		Anna	Eric
Corrigir problemas complexos	Anna	Eric	Ayrton	Técnicos WSFM
Desenvolvimento de software	Time de software	Grupo técnico	Solicitante	Gestores

6. Instalação

A instalação física do dashboard é uma etapa crítica para garantir um funcionamento adequado e eficiente do sistema. É importante observar que a instalação física, caso necessária, está sob a responsabilidade de terceiros ou pode ser incluída no escopo de serviços de manutenção, se acordado previamente. Os suportes, a posição de instalação, identificação com o documento padrão e adaptações necessárias para a instalação do dashboard estão sob a responsabilidade do técnico WSFM da área.

7. Contagem de peças

O dashboard de manufatura utiliza como referência a contagem interna do WSFM para apresentar o número de peças produzidas. Essa contagem é feita utilizando uma lógica interna do PLC300 utilizando sinais digitais de máquina. Os sinais devem ser disponibilizados pela manutenção e devem possibilitar a contagem de peças sem a intervenção do operador. A definição da lógica de contagem está sob responsabilidade do time de software, mas com apoio do técnico WSFM da área impactada. O responsável do time de software fará o preenchimento da lógica no documento padrão do sinal de máquina conforme as instruções para sinais de máquina. Essa lógica poderá ser combinada com o fator de conversão ou ciclo por peça do MAP do ferramental que vão gerar um fator multiplicador para a contagem de peça. O fator de conversão e o cadastro do ferramental está sob responsabilidade do técnico WSFM da área impactada, mas o cadastro das informações do ferramental deve ser avaliado com o técnico de processos da área ou o cronoanalista. As informações do ferramental podem ser avaliadas na transação IE03 do SAP. Segue o exemplo da Figura 4.

8/13

Figura 4 - Quantidade de peças simultâneas no SAP.

As lógicas dos sinais recomentados para os equipamentos são:

- Tornos horizontais: Sinal de peça presa;
- Tornos horizontais com duas máquinas ou duas torres: Sinal de peça presa;
- Centros de usinagem: Avaliação de sinais de início de ciclo e giro de spindle;
- Centro de usinagem com dois pallets: Combinar sinal de giro de pallet com giro de spindle pois há casos de uso de apenas um pallet;
- Máquina de choque térmico: Utilizar o sinal de término de ciclo do CLP da máquina;
- Tornos verticais: Utilizar o sinal da contra ponta presa ou castanha presa;
- Tornos verticais com duas usinagens por peça: Utilizar o sinal de contra ponta presa ou castanha presa e adicionar dois ciclos por peça;
- Centros de inserção: Utilizar sinais de inserção de bobinas que podem ser combinados com ciclos;
- Prensas: Utilizar sinal de ciclo de prensagem combinado com os ciclos;
- Injetoras: Utilizar sinal de injeção combinado com os ciclos;
- Máquinas que possuem mais de duas bases: Utilizar sinal de início ou peça presa combinados com sinais de atuadores ou salto de operação.

Seguem dois exemplos de como a contagem de peças é incluída no arquivo de sinais de máquina:

Entradas PLC300

Entradas cartão de expansão (IOC-01)

Contagem de ciclos:

Transição da DI6 de 0>1

Motivo: A peça é presa no início do processo e durante todo o processo de usinagem e medição a peça fica presa, sendo solta apenas ao término do processo.

10/13

Título: Regras de negócio

Entradas PLC300

Entradas cartão de expansão (IOC-01)

Contagem de ciclos:

Transição da DI2 de 0>1

Motivo: As movimentações da mesa só ocorrem em dois momentos, sendo uma no início do processo e outra no término.

11/13

8. Configuração

A instalação do software do dashboard e sua configuração são responsabilidades exclusivas do time de suporte técnico. Para garantir um processo rápido e eficiente, é fundamental que o time de suporte seja informado com antecedência, permitindo assim o planejamento adequado e a alocação de recursos necessários para a execução da instalação e configuração de forma eficaz. A configuração do dashboard só poderá ocorrer após o setup do WSFM pois os dashboard funciona como uma aplicação secundária ao WSFM.

9. Manutenção

A manutenção e atualização do sistema são aspectos críticos para garantir o funcionamento eficiente e seguro do software. Neste contexto, a responsabilidade pela manutenção e a garantia do bom funcionamento do dashboard é atribuída ao técnico WSFM designado, que desempenha um papel fundamental no enfrentamento inicial de problemas que possam surgir durante a operação do sistema. É crucial que o técnico esteja familiarizado com o arquivo de perguntas e respostas (FAQ), onde estão documentados os problemas conhecidos e suas soluções. Caso um problema não esteja listado no arquivo, o time de suporte técnico deve ser acionado para fornecer assistência adicional.

10. Atualização

A atualização do sistema é uma responsabilidade do time de desenvolvimento de software, que é encarregado de disponibilizar e aplicar regularmente as atualizações de software, incluindo correções de bugs e implementação de novas funcionalidades. Esse processo é feito remotamente para otimizar os processos

11. Monitoramento

O monitoramento dos dashboards são responsabilidades compartilhadas por todos os envolvidos, incluindo operadores, técnicos e desenvolvedores sendo que o técnico WSFM da área é o principal responsável pelo dashboard. É essencial entender que cada parte desempenha um papel crucial nesse processo para garantir o bom funcionamento do sistema. O monitoramento regular permite identificar e corrigir problemas de forma proativa, garantindo a estabilidade e a eficiência do software. Portanto, a colaboração entre operadores, técnicos e desenvolvedores é fundamental para garantir que o sistema opere de maneira confiável e atenda às necessidades dos usuários finais.

Em caso do não funcionamento do dashboard, deverá ser solicitado pelo técnico WSFM o atendimento via grupo de suporte para que ocorra a abertura de um chamado de suporte interno. O técnico WSFM fica responsável pela identificação do dashboard com o documento padrão.

O acompanhamento visual dos dashboards deve ser feito pelo técnico WSFM da área. O time de suporte técnico fará rondas para averiguar e garantir o bom funcionamento e uso dos sistemas.

12/13

12. Observações

Algumas máquinas possuem requisitos específicos em seu monitoramento. Caso não sejam atendidos a contagem de peças não será executada com precisão.

12.1. Prensa rápidas e contagens em frequências elevadas

As contagens de sinais de alta frequência exigem alterações de hardware e software. Isso ocorre pois o painel elétrico do WSFM possui componentes que não suportam essa taxa e o software padrão do PLC possui diversas configurações que o tornam lento.

O painel elétrico do WSFM utiliza o borne relé modelo BTWR que possui a especificação descrita na Figura 5.

Figura 5 - Especificação do relé mecânico

Conforme a especificação, o tempo máximo de operação dele é 10 ms, limitando-se a 100 ciclos por minuto. Além disso, por ser um relé mecânico, sua vida é limitada e nesse modelo em uma prensa de 350 gpm sua validade não passaria de 500 horas.

Para PLC300 com o software atual, o Jonatas Tramontina(TI) executou alguns ensaios que chegaram nas seguintes conclusões:

Versão original de software do PLC300(limite de 269 ciclos por minuto) Figura 6:

+	Variável	Tipo	User	Monitoring
_	⊟ 🛅 Global Variables			
	◆ SCAN_CYCLE	UINT	0	223
Θ	◆ SCAN_CYCLE_MAX	UINT	0	360
	SCAN_CYCLE_MIN	UINT	0	150

Figura 6 - Testes executados com o software padrão

Versão enxuta do software do PLC300(limite de 1578 ciclos por minuto) Figura 7: Variável User Monitoring Tipo Global Variables SCAN CYCLE UINT 0 38 SCAN_CYCLE_MAX UINT 0 150

0

38

UINT

Figura 7 - Testes executados com o software simplificado

Para resolver esses problemas são necessárias as seguintes ações conforme a velocidade da geração do sinal.

12.1.1. Sinais até 250 ciclos por minuto

SCAN_CYCLE_MIN

Para essa taxa de aquisição o recomenda-se trocar o relé mecânico por um relé opto acoplado e utilizar a entrada digital 9 ou 10 do modelo PLC300(entradas rápidas).

12.1.2. Sinais entre 251 e 1500 ciclos por minutos

Para essa taxa de aquisição recomenda-se utilizar as recomendações do item 12.1.1 e criar um chamado de suporte para o time de TI com a descrição "O equipamento do CT XXXXXXX do departamento YYYYYYY de código ZZZZ não está conseguindo contabilizar os ciclos. Solicito que seja implementado a versão do software mais simples, semelhante ao que foi implementado nas prensas rápidas da estamparia.".

12.1.3. Sinais acima de 1500 ciclos por minuto

Para esses casos deve-se utilizar algum fator de conversão que reduza a conversão de ciclos por minuto ou desenvolver um módulo específico para a contagem desse sinal.