中国农业大学

2014~2015 学年秋季学期 (2015.01)

高等数学 A (上) 课程考试试题

题号	_	 =	四	五	六	七	八	总分
得分								

(注意:本试卷共有八道大题,满分100分,考试时间100分钟)

- 一、填空题(本题共有5道小题,每小题3分,满分15分),请将合适的答案 填在横线上.
 - 1. 设 $f(x) = \ln \sin x$, 则微分 dy =______.
- $2. \lim_{x \to \infty} \left(\frac{1+x}{x}\right)^{2x} = \underline{\qquad}.$
- 3. 设函数 $f(x) = \begin{cases} x \sin \frac{1}{x}, x > 0 \\ x + x^2, x < 0 \end{cases}$ 要使 f(x) 在 $(-\infty, +\infty)$ 内连续,则 a =_____.

 - 5. $\int_{-1}^{1} \left(\frac{x^3}{\sqrt{1+x^2}} + \sqrt{1-x^2} \right) dx = \underline{\hspace{1cm}}.$
- 二、单项选择题(本题共有5道小题,每小题3分,满分15分),请将所选答 案填在括号内.
- 1. 设f(x)的一个原函数为 $\sin x$,则 $\int x f'(x) dx =$ 【
 - (A) $x\cos x \sin x + C$; (B) $x\sin x + \cos x + C$;
 - (C) $x\cos x + \sin x + C$; (D) $x\sin x \cos x + C$.

考生诚信承诺

- 1. 本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行。
- 2. 本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信。

- 2. 设 $\lim_{x \to a} \frac{f(x) f(a)}{(x a)^2} = -1$, 则在点 x = a 处, 【
 - (A) f(x)的导数存在,且 $f'(a) \neq 0$; (B) f(x) 取得极大值;
 - (C) f(x) 取得极小值; (D) f(x) 的导数不存在.
- 3. 设 f(x) 连续, x > 1 时, $\int_0^{x^2} f(t) dt = x^2 (1+x)$, 则 $f(2) = \mathbb{I}$
 - (A) 4; (B) $2\sqrt{2}+12$;
 - (C) $1 + \frac{3\sqrt{2}}{2}$; (D) $12 2\sqrt{2}$.
- 4. 方程 $z = 2(x^2 + y^2)$ 表示【 】
 - (A) xoz 平面上曲线 $z=2x^2$ 绕 y 轴旋转所得曲面;
 - (B) yoz 平面上曲线 $z = 2y^2$ 绕 y 轴旋转所得曲面;
 - (C) yoz 平面上曲线 $z = 2y^2$ 绕 x 轴旋转所得曲面;
 - (D) xoz 平面上曲线 $z=2x^2$ 绕 z 轴旋转所得曲面.
- 5. 设 f(x) 在 [a,b] 上可导, 且 $f'_{+}(a) > 0$, $f'_{-}(b) < 0$, 则下列结论不正确的是【
- (A) 至少存在一点 $x_0 \in (a,b)$,使 $f(x_0) > f(a)$;
- (B) 至少存在一点 $x_0 \in (a,b)$, 使 $f(x_0) > f(b)$;
- (C) **至少存在一点** $x_0 \in (a,b)$,使 $f(x_0) = \frac{1}{2}(f(a) + f(b))$;
- (D) 至少存在一点 $x_0 \in (a,b)$, 使 $f'(x_0) = 0$.

三、求解下列各题(本题共有5道小题,每小题5分,满分25分).

- 1.设函数 y = y(x) 由方程 $x y + \sin y$ 确定,求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.
- 2.计算 $\int \frac{\arctan e^x}{e^{2x}} dx$.
- 3. 计算 $\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x t e^{2t^2} dt}$.
- 4. 已知 $f(0) = m, f(\pi) = n, 且 f''(x)$ 连续,求 $\int_0^{\pi} [f(x) + f''(x)] \sin x dx$.
- 5. 计算反常积分 $\int_1^{+\infty} \frac{1}{x\sqrt{x-1}} dx$.
- 四、(本题满分 10 分)讨论函数 $f(x) = \lim_{n \to \infty} \frac{1 x^{2n}}{1 + x^{2n}} x$ 的连续性,若有间断点,判别其类型.
- 五、(本题满分 10 分)证明: 当x > 0时, $(x-4)e^{\frac{x}{2}} < (x-2)e^{x} 2$ 成立.
- 六、(本题满分 10 分)求过点 $M_1(1,1,1)$, $M_2(0,1,-1)$ 且与平面 x+y+z=0 垂直的平面方程.
- 七、(本题满分 10 分)设 D_1 是抛物线 $y = 2x^2$ 和直线 x = a, x = 2 及 y = 0 所围成的平面区域; D_2 是抛物线 $y = 2x^2$ 和直线 x = a , y = 0 所围成的平面区域,其中 0 < a < 2 .
 - (1)设 D_1 绕x 轴旋转而成的旋转体的体积为 V_1 ; D_2 绕y 轴旋转而成的旋转体的体积为 V_2 ,求 V_1 和 V_2 ;
 - (2) 当 a 为何值时, $V_1 + V_2$ 取得最大值,并求出最大值.

八、(本题满分 5 分)设函数 f(x) 在闭区间[-1, 1]上具有三阶连续导数,且 f(-1)=0, f(1)=1, f'(0)=0 . 证明: 在(-1, 1)内至少存在一点 ξ ,使 $f'''(\xi)=3$.