Лекции по вариационному исчислению и уравнениям математической физики

Г. М. Жислин

Конспектировал А. Г. Чубаров

Содержание

lact	в А вариационное исчисление.	4
Лекци	rg 1	5
1	Определение функционала. Примеры вариационных задач	5
2	Задачи с неподвижными концами	8
2	Задачи С неподвижными концами	O
Лекци	ıя 2	13
1	Примеры решения уравнения Эйлера-Лагранжа.	13
2	Задачи для функционалов, зависящих от вектор-функций	14
3	Примеры решения системы Эйлера-Лагранжа.	16
4	Принцип Гамильтона	17
5	Задачи для функционалов, зависящих от старших производных	18
Лекци	ra 3	20
1	Задачи для функционалов, зависящих от старших производных (продолжение)	20
$\frac{1}{2}$	Задачи со свободными концами	22
$\frac{2}{3}$		25
3	Задачи с «подвижными концами»	23
Лекци	រេអ 4	28
1	Изопериметрические задачи.	28
2	Квадратичный функционал. Оператор Штурма.	34
Лекци	rg 5	37
1	Теорема сравнения.	37
2	Разложение по собственным функциям оператора Штурма	38
2	т азложение по сооственным функциям оператора штурма	J O
Лекция 6		
1	Теорема сравнения.	45
2	Разложение по собственным функциям оператора Штурма	46
Лекци	rs 7	53
1	Оператор Штурма с другими граничными условиями.	53
_	Choparop Erryphia c Apyrham rpaini indiani yeriodhiani.	00
Лекци	я 8	60
1	Обобщённая задача Штурма	60
2	Функционал Бесселя. Уравнение Бесселя	65
Лекци	ទេ 9	68
1	Функционал Бесселя. Уравнение Бесселя. (Продолжение.)	68
$\frac{1}{2}$	Функционалы, зависящие от функций двух переменных	71
$\frac{2}{3}$	Вариационные задачи со свободной границей.	74
J	рариационные задали со своооднои границеи	14
Част	ь Б Уравнения математической физики.	77
π	Лекция 11	
лекци	TT KI	78

Содержание	2
Содержание	\mathfrak{g}

1	Уравнение малых колебаний струны	78
Лекци	ıя 12	84
1	Уравнение малых колебаний струны (продолжение)	84
2	Свободные колебания однородной струны.	86
3	Понятие о функции Грина	
4	Свободные колебания однородной струны с другими г. у	

Часть A Вариационное исчисление.

Лекция 1

Мы начинаем первую часть нашего курса. Эта часть — «Вариационное исчисление».

1. Определение функционала. Примеры вариационных задач.

До сих пор вам в основном встречалось два типа зависимостей:

- а) Функция: каждому числу или совокупности чисел (в случае функции многих переменных) ставится в соответствие число или совокупность чисел (в случае вектор-функции).
- b) Оператор: каждой функции или набору функций ставится в соответствии функция или набор функций. Например, если рассматривать оператор дифференцирования на функциях имеющих производную, то $f(x) \to f'(x)$, или $f(x_1, \ldots, x_n) \to f(\varphi_1(x_1), \ldots, \varphi_n(x_n))$, где $\varphi_i(x_i)$ некоторые функции.

Вариационное исчисление изучает другие зависимости — когда каждой функции или набору функций из определённого класса ставится в соответствие число. Примеры:

1)
$$S[f] = \int\limits_a^b f(x)\,dx$$
 — площадь заштрихованной фигуры, $f(x)\in\mathcal{C}_{[a,b]}$.

2)
$$l[f] = \int\limits_a^b \sqrt{1+f'^2(x)}\,dx$$
 — длина кривой, $f\in\mathcal{C}^1_{[a,b]}$ — класс непрерывно дифференцируемых на $[a,b]$ функций.

Дадим общее определение для подобного рода зависимостей.

Определение 1.1. Пусть $\mathcal{K} = \{f(x_1, \dots, x_n)\}$ — класс каких-то функций $f(x_1, \dots, x_n)$, определённых в области \mathcal{D} n-мерного пространства. Будем говорить, что задан функционал $\mathcal{J}[f]$, если задан закон, по которому каждой функции $f \in \mathcal{K}$ ставится в соответствие число $\mathcal{J}[f]$. Это число обозначается $\mathcal{J}[f]$ и называется значением функционала на функции f.

В приведённых выше примерах

$$S[f]$$
 задан на $\mathcal{K} = \big\{ f(x) | f \in \mathcal{C}_{[a,b]} \big\},$

$$l[f]$$
 задан на $\mathcal{K} = \{f(x)|f \in \mathcal{C}_{[a,b]}^{1}\}.$

Разумеется, могут быть и другие классы для функционалов S[f] и l[f] в зависимости от рассматриваемых задач.

Исследуя свойства функций в курсе математики, вы решали задачи о нахождении экстремумов функций, однако целый ряд задач требует отыскания экстремумов не функций, а функционалов. Именно этим и занимается «Вариационное исчисление».

Приведём примеры задач, решаемых в вариационном исчислении.

1. Задача о кривой наискорейшего спуска (задача о брахистохроне).

Пусть на вертикальной плоскости x, y заданы две точки $A(a, y_0)$ и $B(b, y_1), y_1 < y_0$.

Задача: найти кривую, соединяющую точки A и B, по которой материальная точка скатится из A в B за минимальное время.

Пусть y(x) — произвольная допустимая кривая. Найдём время скатывания по этой кривой. Разобъём отрезок [a,b] на n частей $\Delta x \stackrel{def}{=} \frac{b-a}{n}$ и определим время скатывания по элементарному отрезку кривой над Δx . Длина этого участка $\sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} \cdot \Delta x$. Пусть $v(x_i,y_i)$ — скорость на участке Δx . Тогда элементарное время скатывания

 $\Delta t = \frac{\sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^2}\cdot\Delta x}{v(x_i,y_i)}$. Суммируя по всем элементарным участкам Δx и переходя к пределу при $n\to\infty$, получим время скатывания по кривой y(x).

$$T[y] = \int_{a}^{b} \frac{\sqrt{1+y'^2}}{v(x,y)} dx.$$

Величину скорости находим из закона сохранения энергии. Пусть m — масса материальной точки, начальная скорость скатывания равна 0, тогда при x=a потенциальная энергия равна $m\cdot g\cdot y_0$, кинетическая равна нулю. В точке x потенциальная энергия равна $m\cdot g\cdot y$, а кинетическая — $\frac{m\cdot v^2}{2}$. Таким образом $m\cdot g\cdot y_0=m\cdot g\cdot y+\frac{m\cdot v^2}{2}$ \Rightarrow $v=\sqrt{2\cdot g\cdot (y_0-y)}$. Таким образом

$$T[y] = \int_{a}^{b} \frac{\sqrt{1 + y'^2}}{\sqrt{2 \cdot g \cdot (y_0 - y)}} \, dx.$$

Класс \mathcal{K} допустимых кривых y=y(x) в этой задаче описывается равенством

$$\mathcal{K} = \{ y(x) | y \in \mathcal{C}^1_{[a,b]}, y(a) = y_0, y(b) = y_1 \}.$$

Таким образом надо найти $\min_{y \in \mathcal{K}} T[y]$. Функция, дающая минимум (или максимум) функционала, называется минимайзером (или максимайзером). Минимайзер рассматриваемой задачи — кривая наискорейшего спуска. Она называется брахистохрона.

2. Задача о геодезических.

Пусть в пространстве \mathbb{R}^3 задана поверхность $\varphi(x,y,z)=0$ и $A(a_0,b_0,c_0),\ B(a_1,b_1,c_1)$ произвольные точки на поверхности.

Задача: проложить по поверхности кратчайший путь, соединяющий точки A и B, то есть найти кривую минимальной длины, лежащую на поверхности и проходящую через A и B. Кривые мы будем задавать параметрически: $\Gamma = \{x(t), y(t), z(t); t_0 \leqslant t \leqslant t_1\}$. Класс допустимых к рассмотрению кривых определяется, во-первых, условием принадлежности к поверхности $\varphi(x(t), y(t), z(t)) \equiv 0$ $t_0 \leqslant t \leqslant t_1$; во-вторых, условием прохождения через точки A, B: $x(t_i) = a_i$, $y(t_i) = b_i$, $z(t_i) = c_i$, i = 0, 1; в-третьих, $\Gamma \in \mathcal{C}^1_{[t_0, t_1]}$. Длина кривой

$$l[\Gamma] = \int_{t_0}^{t_1} \sqrt{x'^2 + y'^2 + z'^2} \, dt.$$

Мы должны минимизировать функционал $l[\Gamma]$ в классе допустимых функций, описанных выше. Кривые, дающие решение задачи на min $l[\Gamma]$, называются геодезическими, и сама задача — задача о геодезических.

3. Изопериметрическая задача.

Словесная формулировка: имеется проволока заданной длины; надо на плоскости огородить наибольшую площадь. Определим класс $\mathcal K$ допустимых кривых.

$$\mathcal{K} = \left\{ \Gamma | \Gamma = (x(t), y(t), z(t)) \in \mathcal{C}^{1}_{[t_0, t_1]}, x(t_0) = x(t_1), y(t_0) = y(t_1)^{\mathbf{i}}, (*) \int_{t_0}^{t_1} \sqrt{x'^2(t) + y'^2(t)} \, dt = l_0^{\mathbf{i}\mathbf{i}} \right\}.$$

$$S[\Gamma] = \frac{1}{2} \left| \int_{t_0}^{t_1} (x' \cdot y - y' \cdot x) \ dt \right|$$
 — площадь, ограниченная кривой Γ .

Задача: найти $\max_{\Gamma \in \mathcal{K}} S[\Gamma]$.

Задачи, подобные этой, получили название изопериметрических («изо» \equiv равный, «периметр» \equiv длина), хотя интегральное условие связи типа (*) может иметь совершенно другой смысл.

Исторически так сложилось, что именно три перечисленные задачи сыграли решающую роль в развитии вариационного исчисления как науки об отыскании максимумов или минимумов, то есть экстремумов функционалов. Хотя первые вариационные задачи решались ещё древними греками, вариационное исчисление стало наукой только после трудов Леонарда Эйлера в XVIII веке. Швейцарец по национальности он долго работал в России, где и опубликовал главные труды по вариационному исчислению (на немецком; Эйлер так и не выучил русский язык).

^іУсловие замкнутости кривой.

^{іі}Задана длина.

2. Вариационные задачи для функционалов, зависящих от одной функции одной переменной, с неподвижными концами.

Пусть y(x) — некоторая функция $x \in [a, b]$, и

$$\mathcal{J}[y] = \int_{a}^{b} F(x, y, y') \, dx.$$

Предполагается, что функция F определена и дважды непрерывно дифференцируема. Итак, $F \in \mathcal{C}^2$. Класс функций \mathcal{K} , в котором ищется экстремум функционала $\mathcal{J}[y]$, определён так:

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^{1}_{[a,b]}, y(a) = y_0, y(b) = y_1, |y| < M \right\}.$$

Геометрический смысл функций из \mathcal{K} — это гладкие кривые, соединяющие точки (a, y_0) и (b, y_1) , где y_0, y_1 — произвольные, но фиксированные для данного класса числа.

Так как методы нахождения максимума и минимума — одинаковы, то далее будем ставить задачу на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$ (тем более, что максимайзер для функционала $\mathcal{J}[y]$ является минимайзером для функционала $-\mathcal{J}[y]$).

Что значит найти минимайзер? Это значит найти такую функцию $y \in \mathcal{K}$, что $\mathcal{J}[y] \leqslant \mathcal{J}[\tilde{y}]$ при $\forall \tilde{y} \in \mathcal{K}$. Мы сейчас не обсуждаем существование минимайзера — он может и не существовать (позже будет дано достаточное условие существование минимайзера). Итак, пусть минимайзер y(x) существует. $Ka\kappa$ его найти?

Определение 2.1. Будем называть функцию $\eta(x)$ допустимым изменением, если $\tilde{y}(x) \stackrel{def}{=} y(x) + t \cdot \eta(x) \in \mathcal{K}$ при $|t| \ll 1$.

Так как $y(x), \tilde{y}(x) \in \mathcal{K}$, то $\eta(x) = \frac{\tilde{y}(x) - y(x)}{t} \in \mathcal{C}^1_{[a,b]}$ и $\eta(a) = \eta(b) = 0$. Кроме того, если $M_1 \stackrel{def}{=} \max_{x \in [a,b]} |\eta(x)|, \ M_2 \stackrel{def}{=} \max_{x \in [a,b]} |y(x)| < M$, то $\max_{x \in [a,b]} |y(x) + t \cdot \eta(x)| \leqslant M_2 + |t| \cdot M_1 \stackrel{?}{<} M$. Последний переход верен, если $|t| < \frac{M - M_2}{M_1}$. Таким образом мы описали все требуемые свойства допустимого изменения $\eta(x)$, при которых $\tilde{y}(x) \in \mathcal{K}$.

Так как y(x) — минимайзер, то

$$\mathcal{J}[y+t\cdot\eta]\geqslant \mathcal{J}[y], \quad |t|\ll 1.$$
 (2.1)

Положим

$$\varphi(t) \stackrel{def}{=} \mathcal{J}[y + t \cdot \eta] = \int_{a}^{b} F(x, y + t \cdot \eta, y' + t \cdot \eta') dx.$$
 (2.2)

^іУсловимся далее писать, что если какая-то функция ψ непрерывна вместе со всеми производными до порядка n включительно, то пишем $\psi \in \mathcal{C}^n$, для непрерывных функций $\psi \in \mathcal{C}$. Часто пишут, например, $y \in \mathcal{C}^1_{[a,b]}$, то есть указывают область (в данном случае — отрезок [a,b]), где функция обладает заданной гладкостью.

В силу (2.1) $\varphi(t) \geqslant \varphi(0), |t| \ll 1$. Следовательно, функция $\varphi(t)$ имеет минимум при t=0. Так как $F \in \mathcal{C}^2$, то $\varphi(t) \in \mathcal{C}^2$, и, следовательно, выполняется необходимое условие экстремума — $\varphi'(0) = 0$, то есть

$$\varphi'(0) = \frac{d}{dt} \int_{a}^{b} F(x, y + t \cdot \eta, y' + t \cdot \eta') dx \bigg|_{t=0} = 0.$$
 (2.3)

Выясним смысл данного условия. По формуле Тейлора разложим $\varphi(t)$ в окрестности t=0

$$\varphi(t) = \varphi(0) + t \cdot \varphi'(0) + o(t). \tag{2.4}$$

Таким образом

$$\varphi(t) - \varphi(0) = t \cdot \varphi'(0) + o(t). \tag{2.5}$$

То есть $t \cdot \varphi'(0)$ — это главная часть приращения функции $\varphi(t)$ в окрестности t = 0. В силу (2.2), (2.5) — это

$$\mathcal{J}[y+t\cdot\eta] - \mathcal{J}[y] = t\cdot\frac{d}{dt}\int_{a}^{b} F(x,y+t\cdot\eta,y'+t\cdot\eta')\,dx\bigg|_{t=0} + o(t). \tag{2.6}$$

Определение 2.2. Величина $t \cdot \frac{d}{dt} \int_{a}^{b} F(x, y + t \cdot \eta, y' + t \cdot \eta') \, dx \bigg|_{t=0}$ называется первой вариацией и обозначается через $\delta \mathcal{J}$.

Таким образом, первая вариация $\delta \mathcal{J}$ — это главная часть приращения функционала в окрестности функции y, а если y — минимайзер, то в силу (2.3) должно выполняться условие

$$\delta \mathcal{J} = 0. \tag{2.7}$$

Именно его мы будем использовать для вывода уравнения для минимайзера.

Имеем, полагая $\widetilde{F} \stackrel{def}{=} F(x, y + t \cdot \eta, y' + t \cdot \eta') = F(x, \widetilde{y}, \widetilde{y}'),$

$$\delta \mathcal{J} = t \cdot \frac{d}{dt} \int_{a}^{b} F(x, \underbrace{y + t \cdot \eta}_{\tilde{y}}, \underbrace{y' + t \cdot \eta'}_{\tilde{y}'}) dx \bigg|_{t=0} = t \cdot \int_{a}^{b} \left(\widetilde{F}_{\tilde{y}} \cdot \eta + \widetilde{F}_{\tilde{y}'} \cdot \eta' \right) dx \bigg|_{t=0} = t \cdot \int_{a}^{b} \left(F_{\tilde{y}} \cdot \eta + F_{\tilde{y}'} \cdot \eta' \right) dx = 0 \quad (2.8)$$

Всегда, когда в выражении первой вариации под знаком интеграла содержится производная от допустимого изменения, надо пытаться избавится от неё путём интегрирования по частям (для функций многих переменных — с помощью формулы Остроградского–Гаусса). Мы будем интегрировать по частям слагаемое $F_{y'}\cdot\eta'$, но для этого нужна гладкость $F_{y'}\in\mathcal{C}^1$ как функции от x, а для этого надо, чтобы аргумент y' в $F_{y'}(x,y(x),y'(x))$ принадлежал \mathcal{C}^1 , в то время как класс допустимых функций не требует $y'\in\mathcal{C}^1$ (то есть $y\in\mathcal{C}^2$). Однако можно доказать, что минимайзер обладает повышенной гладкостью — \mathcal{C}^2 , а значит $y'\in\mathcal{C}^1_{[a,b]}$ и мы можем интегрировать по частям

$$\int_{a}^{b} \underbrace{F_{y'}}_{v} \cdot \underbrace{\eta' \, dx}_{du} = F_{y'} \cdot \eta \bigg|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} F_{y'} \cdot \eta \, dx. \tag{2.9}$$

Подставляя это выражение в (2.8) мы получим выражение первой вариации при $y \in \mathcal{C}^2_{[a,b]}, \eta \in \mathcal{C}^1_{[a,b]},$ независимо от граничных условий,

$$\delta \mathcal{J} = t \left\{ \int_{a}^{b} \left(F_{y} - \frac{d}{dx} F_{y'} \right) \cdot \eta \, dx + F_{y'} \cdot \eta \, \bigg|_{a}^{b} \right\}$$
(A)

Если y — минимайзер и η — допустимое изменение, то $\eta(a)=\eta(b)=0$, и в силу (2.7) для минимайзера y и $\forall \eta$ (допустимого)

$$t\int_{a}^{b} \left(F_y - \frac{d}{dx} F_{y'} \right) \cdot \eta \, dx = 0. \tag{2.10}$$

В силу произвольности допустимого изменения замечаем, что

$$F_y - \frac{d}{dx} F_{y'} \equiv 0. ag{2.11}$$

Этот вывод основан на основной лемме вариационного исчисления — лемме Лагранжа, которую мы сейчас докажем.

Лемма 2.1 (Лагранжа). Пусть для некоторой непрерывной функции $\Phi(x)$ и любой функции η , являющейся допустимым изменением

$$\int_{a}^{b} \Phi(x) \cdot \eta(x) dx = 0, \tag{2.12}$$

тогда $\Phi(x) \equiv 0$.

Применив эту лемму к (2.10) с $\Phi \equiv F_y - \frac{d}{dx} F_{y'}$, получаем (2.11).

Доказательство леммы Лагранжа. Предположим, что (2.12) верно при $\forall \eta$ и при $\Phi(x) \not\equiv 0$. Тогда $\exists x_0$ такое, что $\Phi(x_0) \not\equiv 0$. Не ограничивая общности считаем, что $a < x_0 < b$ и что $\Phi(x_0) > 0$. Так как $\Phi(x) \in \mathcal{C}_{[a,b]}$, то $\exists \delta > 0$ так, что $\Phi(x) > 0$ при $x \in [x_0 - \delta, x_0 + \delta]$.

Положим
$$\eta \stackrel{def}{=} \begin{cases} 0, & x \notin [x_0 - \delta, x_0 + \delta]; \\ (x - (x_0 - \delta))^2 (x - (x_0 + \delta))^2, & x \in [x_0 - \delta, x_0 + \delta]. \end{cases}$$

Тогда
$$\int_{a}^{b} \Phi(x) \cdot \eta(x) dx = \int_{x_0 - \delta}^{x_0 + \delta} \Phi(x) \cdot \eta(x) dx > 0,$$
(2.13)

ибо на интервале $(x_0 - \delta, x_0 + \delta)$ функции $\Phi(x)$ и $\eta(x)$ положительные. В то же время, так как $\eta(x)$ — допустимое изменение, то по условию леммы выполняется (2.12). Значит, (2.13) неверно и причина этого — предположение о том, что $\exists x_0$ такой, что $\Phi(x_0) \neq 0$. Таким образом $\Phi(x) \equiv 0$

Уравнение

$$F_y - \frac{d}{dx}F_{y'} = 0 (2.14)$$

называется уравнением Эйлера—Лагранжа ((2.11) было тождеством, так как туда был подставлен минимайзер). Мы должны искать решение уравнения (2.14) с условиями $y(x) \in \mathcal{C}^2_{[a,b]}$, $y(a) = y_0, y(b) = y_1$. Такие решения называются экстремалями.

Проведя в (2.14) дифференцирование, мы получим обыкновенное дифференциальное уравнение второго порядка

$$F_y - F_{y'x} - F_{y'y} \cdot y' - F_{y'y'} \cdot y'' = 0. \tag{2.15}$$

Решение (2.15) ищется при условиях $y(a) = y_0$, $y(b) = y_1$, то есть это не задача Коши, когда при x = a задаётся y(a), y'(a), а так называемая *краевая задача*, когда заданы условия на искомую функцию на обоих концах отрезка.

Задача Коши.

Задано $y(a)=y_0,\ y'(a)=y_0'.$ Другими словами задано значение y(a) и наклон касательной y'(a)

Краевая задача.

Задано $y(a) = y_0$, $y(b) = y_1$. y'(a) — не задано, но должно быть таким, чтобы решение (2.15) в точке b имело значение y_1 .

Мы уже говорили, что когда минимайзер существует, то, решая (2.15), мы его найдём. Если решений у (2.15) нет, то минимайзер — отсутствует. А теперь главный вопрос: нашли экстремаль (решение (2.15)) с заданными граничными условиями: это минимайзер? А может быть это максимайзер (ведь для максимайзера уравнение такое же)? Начнём с того, что найденная экстремаль не обязана быть ни минимайзером, ни максимайзером. Это связанно с тем, что

- 1) Мы сравнивали значение функционала на минимайзере $\mathcal{J}[y]$ не со значением на любой другой функции из \mathcal{K} , а только со значением $\mathcal{J}[y+t\cdot\eta]$ на функциях $y+t\cdot\eta$. Поэтому даже если y минимайзер среди этих функций, он может не быть минимайзером во всём классе \mathcal{K} .
- 2) Мы используем *необходимое условие экстремума* равенство нулю первой производной, а не достаточное.

Обсудим 2). Достаточное условие минимума (среди функций $y + t \cdot \eta!$) — неравенство

$$\frac{d^2}{dt^2}\mathcal{J}[y+t\cdot\eta]\bigg|_{t=0} > 0, \quad \forall \eta.$$

Если оно выполнено, то экстремаль y(x) не может быть максимайзером в \mathcal{K} , иначе она была бы максимайзером среди функций $y+t\cdot\eta$ и тогда $\frac{d^2}{dt^2}\mathcal{J}[y+t\cdot\eta]\Big|_{t=0}<0$, а у нас противоположное неравенство. Таким образом, неравенство $\frac{d^2}{dt^2}\mathcal{J}[y+t\cdot\eta]\Big|_{t=0}>0, \forall \eta$ говорит, что y не может быть максимайзером (противоположное неравенство запрещает экстремали быть минимайзером).

Из тех же соображений, если знак $\frac{d^2}{dt^2}\mathcal{J}[y+t\cdot\eta]\Big|_{t=0}$ зависит от $\eta,\ y$ не может быть ни минимайзером, ни максимайзером. Это соответствует точке перегиба.

Что касается 1), то достаточное условие для того, чтобы экстремаль y(x) была минимайзером {максимайзером} есть выполнение для всех η неравенства

$$\frac{d^2}{dt^2} \mathcal{J}[y+t\cdot\eta] \bigg|_{t=0} \geqslant c_0 \int_a^b \left(\eta^2 + \eta'^2\right) dx, c_0 > 0,$$

$$\left\{ \frac{d^2}{dt^2} \mathcal{J}[y+t\cdot\eta] \bigg|_{t=0} \leqslant -c_0 \int_a^b \left(\eta^2 + \eta'^2\right) dx, c_0 > 0 \right\}$$

Причём минимайзер или максимайзер среди функций \hat{y} из \mathcal{K} близких к y в метрике

$$\sup_{x\in[a,b]}\{|y(x)-\hat{y}(x)|+|y'(x)-\hat{y}'(x)|\}<\varepsilon,\quad \varepsilon>0 \ \ \, \, \text{малое фиксированное число.}$$

Прежде чем переходить у примерам решения уравнения Эйлера, остановимся на важном случае, когда интегрант F(x,y,y') может иметь особенности. Например, в задаче о брахистохроне в знаменателе интегранта содержится $\sqrt{y_0-y(x)}$, и при x=a мы имеем в знаменателе $\sqrt{y_0-y_0}=0$. Выясним, как быть в подобной ситуации. Пусть $[\alpha,\beta]\subset [a,b]$, и на отрезке $[\alpha,\beta]$ функция F(x,y,y') не имеет особенностей. Возьмём допустимое изменение $\eta(x)\equiv 0$ вне $[\alpha,\beta]$. Тогда

$$\mathcal{J}[y+t\cdot\eta] = \int_a^b F(x,y+t\cdot\eta,y'+t\cdot\eta') dx = \int_a^\alpha F(x,y,y') dx + \int_\beta^b F(x,y,y') dx + \int_\alpha^\beta F(x,y+t\cdot\eta,y'+t\cdot\eta') dx.$$

Два первых слагаемых не зависят от t. Поэтому $\frac{d\mathcal{J}}{dt}[y+t\cdot\eta]=\frac{d}{dt}\int\limits_{\alpha}^{\beta}F(x,y+t\cdot\eta,y'+t\cdot\eta')\,dx,$ и

так как на отрезке $[\alpha,\beta]$ $F\in\mathcal{C}^2$, то мы можем провести все те же рассуждения, что проводили раньше для отрезка [a,b] и получить, что на отрезке $[\alpha,\beta]$ $F_y-\frac{d}{dx}F_{y'}=0$. Отсюда следует, что уравнение Эйлера выполняется в любой точке, где нет особенностей F.

Ещё одно замечание. Мы в классе \mathcal{K} требуем, чтобы $y \in \mathcal{C}^1_{[a,b]}$. Можно заменить его на требование кусочно—непрерывной дифференцируемости, но разрывы производных должны быть типа «конечного скачка».

В заключение пример задачи, где минимайзер не существует.

Пусть
$$\mathcal{J}[y] = \int_{0}^{1} x^2 \cdot y'^2 dx$$
 $\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[0,1]}, y(0) = 1, y(1) = 0 \right\}.$

Ясно, что $\mathcal{J}[y] > 0, y \in \mathcal{K}$. Покажем, что $\inf_{y \in \mathcal{K}} \mathcal{J}[y] = 0$.

Рассмотрим функции $y_{\alpha}(x)=egin{cases} (x-\alpha)^2\cdot\frac{1}{\alpha^2},&0\leqslant x\leqslant \alpha\\ 0,&\alpha\leqslant x\leqslant 1 \end{cases}$, где $\alpha>0$ — малое число.

$$y$$
 α 1 x

$$\mathcal{J}[y_\alpha] = 4\int\limits_0^\alpha x^2 \cdot \frac{(x-\alpha)^2}{\alpha^4}\,dx \leqslant \frac{4}{\alpha^2}\int\limits_0^\alpha (x-\alpha)^2\,dx = \frac{4}{3\cdot\alpha^2}(x-\alpha)^3 \bigg|_0^\alpha \to 0 \text{ при }\alpha \to 0.$$

Значит $\inf_{y \in \mathcal{K}} \mathcal{J}[y] = 0$, и поэтому минимайзер не существует.

Задание. Докажите, что максимайзер тоже не существует.

Лекция 2

На прошлой лекции мы установили, что минимайзер в задаче на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$, где $\mathcal{J}[y] = \int\limits_a^b F(x,y,y')\,dx$ $\mathcal{K} = \left\{y(x)|y \in \mathcal{C}^1_{[a,b]}, y(a) = y_0, y(b) = y_1, |y| < M\right\}$ удовлетворяет уравнению Эйлера–Лагранжа:

$$F_y - \frac{d}{dx}F_{y'} = 0, (0.1)$$

которое надо решать при условиях

$$y(a) = y_0, \ y(b) = y_1.$$
 (0.2)

1. Примеры решения уравнения Эйлера-Лагранжа.

Рассмотрим следующие частные случаи.

- 1) F = F(x,y) нет зависимости от y'. Уравнение (0.1) принимает вид $F_y = 0$, откуда при $F_{yy} \neq 0$ можно по теореме о неявной функции найти y = y(x). Так как функция y(x) не содержит свободных констант, то в общем случае $y(a) \neq y_0, y(b) \neq y_1$, то есть решения нет.
- 2) $F = \alpha(x,y) \cdot y' + \beta(x,y)$ функция линейна по y'. Уравнение Эйлера в этом случае

$$\alpha_y \cdot y' + \beta_y - \frac{d}{dx}\alpha(x,y) = \underline{\alpha_y \cdot y'} + \beta_y - \alpha_x - \underline{\alpha_y \cdot y'} = \beta_y - \alpha_x = 0. \tag{1.1}$$

Далее возможны два варианта. Первый $\beta_y - \alpha_x = 0$ не тождественно, то есть (1.1) можно рассматривать как уравнение относительно y и мы приходим к 1): в общем случае решения нет. Второй вариант: $\beta_y - \alpha_x \equiv 0$, то есть уравнения нет и, значит, любая кривая из \mathcal{K} — экстремаль. Но при $\beta_y = \alpha_x$ можно указать такую функцию $\widetilde{\varphi}(x,y)$ так, что $\alpha(x,y) = \widetilde{\varphi}_y$, $\beta(x,y) = \widetilde{\varphi}_x$ и интегрант $\alpha(x,y) \cdot y' + \beta(x,y) = \frac{d\widetilde{\varphi}}{dx}$. Поэтому

$$\int_{a}^{b} (\alpha \cdot y' + \beta) dx = \int_{a}^{b} \frac{d\widetilde{\varphi}}{dx}(x, y) dx = \widetilde{\varphi}(b, y(b)) - \widetilde{\varphi}(a, y(a)) = \widetilde{\varphi}(b, y_1) - \widetilde{\varphi}(a, y_0).$$

Таким образом значение интеграла не зависит от функций $y(x) \in \mathcal{K}$ и задача на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$ и $\max_{y \in \mathcal{K}} \mathcal{J}[y]$ не имеет смысла.

3) F = F(y'). Уравнение $\frac{d}{dx}F_{y'} = 0 \to F_{y'} = const$ и при $F_{y'y'} \neq 0$ мы получаем, что $y(x) = c_1 \cdot x + c_2$, где константы c_1 и c_2 находятся из граничных условий.

^іЗдесь важно, что именно в *общем случае*. Поскольку задача могла быть придумана хитрыми составителями задачников таким образом, чтобы решение удовлетворяло условиям $y(a) = y_0$, $y(b) = y_1$.

4) F = F(y, y') — нет явной зависимости от аргумента x, только через y(x), y'(x). Это наиболее часто встречающийся частный случай. Покажем, что в этом случае уравнение Эйлера имеет первый интеграл

$$F - y' \cdot F_{y'} = const. \tag{1.2}$$

То есть убедимся, что на любом решении y = y(x) уравнения (0.1) выполняется (1.2). Проверим (1.2), подставив туда произвольную функцию y(x), удовлетворяющую (0.1), и взяв полную производную по x от левой части (1.2). Получим

$$F_y \cdot y' + \underline{F_{y'} \cdot y''} - \underline{y'' \cdot F_{y'}} - y' \cdot \frac{d}{dx} F_{y'} = y' \underbrace{\left(F_y - \frac{d}{dx} F_{y'}\right)}_{\text{левая часть (0.1)}} \equiv 0.$$

Значит левая часть (1.2) — действительно константа при y из (0.1).

Задание. Пусть (1.2) выполняется. Могут ли у уравнения (1.2) быть решения, не удовлетворяющие (0.1)?

2. Вариационные задачи для функционалов, зависящих от n функций одной переменной.

Сейчас мы будем рассматривать функционалы вида

$$\mathcal{J}[y_1,\ldots,y_n] = \int_a^b F(x,y_1,\ldots,y_n,y_1',\ldots,y_n') dx.$$

Приведём пример задачи, в которой возникает необходимость найти минимум функционала подобного рода. Пусть $A(a_0, b_0, c_0)$ и $B(a_1, b_1, c_1)$ — произвольные точки и в точке A помещён источник света.

Надо определить траекторию луча от A к B. Согласно принципу Ферма, свет распространяется по кривой, по которой время его прохождения от A к B меньше (или равно) времени распространения по близким кривым. Пусть $\Gamma = \{x(s), y(s), z(s)\}$ — произвольная кривая, соединяющая точки A (при $s=s_0$) и B (при $s=s_1$). Мы будем параметризовать все подобные кривые так, что $x(s_j)=a_j, \ y(s_j)=b_j, \ z(s_j)=c_j, \ j=0,1$, где s_0 и s_1 — фиксированные числа, одни и те же для всех таких кривых. Тогда время прохождения луча по кривой Γ

$$T[\Gamma] = \int_{s_0}^{s_1} \frac{\sqrt{x'^2(s) + y'^2(s) + z'^2(s)}}{v(x(s), y(s), z(s))} ds,$$

где v(x,y,z) — скорость света в точке x,y,z в изотропной среде; в не изотропной v=v(x,y,z,x',y',z'). Для нахождения траектории света от A к B надо найти $\min_{\Gamma} T[\Gamma]$ по гладким кривым Γ , соединяющим A и B.

Рассмотрим теперь общий случай. Пусть $\boldsymbol{y}(x) = \{y_1, \dots, y_n\}$ — вектор-функция в (n+1) — мерном пространстве, $a \leqslant x \leqslant b$. Или по-другому $\Gamma = \{y_1, \dots, y_n\}$ — кривая в (n+1)-мерном пространстве. Пусть

$$\mathcal{J}[\Gamma] = \mathcal{J}[m{y}] = \int\limits_a^b F(x,y_1,\ldots y_n,y_1',\ldots,y_n')\,dx$$
 — функционал на вектор-функциях $m{y}(x),$

 $F\in\mathcal{C}^2,\ x\in[a,b];\ |y_j|< M,\ j=\overline{1,n},\ y_j'$ — любое. Будем говорить, что $\boldsymbol{y}(x)\in\mathcal{C}_{[a,b]}^k,$ если $y_j(x)\in\mathcal{C}_{[a,b]}^k,\ j=\overline{1,n}.$ Пусть $A=(a,y_1^0,\ldots,y_n^0),\ B=(b,y_1^1,\ldots,y_n^1)$ — произвольные точки в $\mathbb{R}^{n+1}.$ Будем говорить, что кривая $\Gamma=\boldsymbol{y}(x)$ проходит через точку $A\{B\},$ если $y_i(a)=y_i^0,\ i=\overline{1,n}$ $\{y_i(b)=y_i^1,\ i=\overline{1,n}\}.$ Пусть

$$\mathcal{K} = \left\{ \boldsymbol{y}(x) | \boldsymbol{y} = (y_1, \dots, y_n), \boldsymbol{y} \in \mathcal{C}^1_{[a,b]}, \ A = (a, \boldsymbol{y}(a)), \ B = (b, \boldsymbol{y}(b)); \ |y_j(x)| < M, \ j = \overline{1, n}, \ x \in [a, b] \right\}$$

Мы будем рассматривать задачу на $\min_{\boldsymbol{y} \in \mathcal{K}} \mathcal{J}[\boldsymbol{y}]$, вектор $\boldsymbol{\eta} = (\eta_1(x), \dots, \eta_n(x))$ назовём допустимым изменением, если вектор $\tilde{\boldsymbol{y}} \stackrel{def}{=} \boldsymbol{y} + t \cdot \boldsymbol{\eta} \in \mathcal{K}^i$ при $|t| \ll 1$. Как и в случае простейшей задачи, рассмотренной на прошлой лекции. Можно убедиться, что $\boldsymbol{\eta}(x)$ допустимое изменение, если

 $\eta(x) \in \mathcal{C}^1_{[a,b]}$ и $\eta_j(a) = \eta_j(b) = 0, \ j = \overline{1,n}.$

Замечание. Иногда вместо требования $|y_j| < M, \ j = \overline{1,n},$ для $\boldsymbol{y} \in \mathcal{K}$ накладывается требование: кривые Γ из \mathcal{K} должны лежать в некоторой *открытой* области $\Omega \subset \mathbb{R}^{n+1}$. В определении допустимого изменения в этом случае появляется требование: кривая $\widetilde{\Gamma}$, определяемая функциями $y_1 + t \cdot \eta_1, \ldots, y_n + t \cdot \eta_n$, лежит в Ω . Ограничения на $\boldsymbol{\eta}$ — те же, что при условии $|y_j| < M$, но малость |t| зависит от расстояния между кривой Γ и границей области Ω .

Пусть $\boldsymbol{y}=(y_1,\ldots,y_n)$ — минимайзер в задаче на $\min_{\boldsymbol{y}\in\mathcal{K}}\,\mathcal{J}[\boldsymbol{y}].$

Тогда
$$\mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] \geqslant \mathcal{J}[\boldsymbol{y}] \quad \Rightarrow \quad \varphi(t) \stackrel{def}{=} \mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] \geqslant \mathcal{J}[\boldsymbol{y}] = \varphi(0).$$
 (2.1)

Значит функция $\varphi(t)$ в точке t=0 имеет минимальное значение и так как она дифференцируема, то должно выполняться необходимое условие экстремума

$$\frac{d}{dt}\mathcal{J}[\boldsymbol{y}+t\cdot\boldsymbol{\eta}]\bigg|_{t=0} = \frac{d\varphi}{dt}\bigg|_{t=0} = 0.$$
(2.2)

Мы чуть позже используем это равенство для вывода уравнений для компонент минимайзера $y(x) = (y_1, \dots, y_n)$, а пока выясним его смысл. Имеем

$$\varphi(t) - \varphi(0) = t \cdot \varphi'(0) + o(t)$$

или

$$\mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] - \mathcal{J}[\boldsymbol{y}] = t \cdot \frac{d}{dt} \mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] \bigg|_{t=0} + o(t).$$

Таким образом $t \cdot \varphi'(0)$ — главная часть приращения функции в окрестности t = 0, а $t \cdot \frac{d}{dt} \mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] \Big|_{t=0}$ — главная часть приращения значений функционала $\mathcal{J}[\boldsymbol{y}]$ в окрестности \boldsymbol{y} для приращений аргумента $t \cdot \boldsymbol{\eta}$. Отметим, что эти утверждения не зависят от того, какой \boldsymbol{y} взят из \mathcal{K} . Положим

$$\delta \mathcal{J} = t \cdot \frac{d}{dt} \mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] \bigg|_{t=0}$$

Величина $\delta \mathcal{J}$ называется *первой вариацией* функционала $\mathcal{J}[\boldsymbol{y}]$. Если \boldsymbol{y} — минимайзер, то в силу (2.2)

$$\delta \mathcal{J} = 0. \tag{2.3}$$

 $[\]overline{^{\mathrm{i}}}$ То есть кривая $\widetilde{\Gamma}$, определяется вектором $\widetilde{\boldsymbol{y}}(x)=(\widetilde{y}_1(x),\ldots,\widetilde{y}_n(x)).$

Таким образом, необходимое условие экстремума — равенство нулю первой вариации. (2.3) означает, что полагая $\tilde{\boldsymbol{y}} \stackrel{def}{=} \boldsymbol{y} + t \cdot \boldsymbol{\eta} = (\underbrace{y_1 + t \cdot \eta_1}_{\tilde{y}_1} \dots, \underbrace{y_i + t \cdot \eta_i}_{\tilde{y}_i} \dots, \underbrace{y_n + t \cdot \eta_n}_{\tilde{y}_n})$ получим:

$$t \cdot \frac{d}{dt} \mathcal{J}[\boldsymbol{y} + t \cdot \boldsymbol{\eta}] \bigg|_{t=0} = t \cdot \frac{d}{dt} \int_{a}^{b} \underbrace{F(x, y_1 + t \cdot \eta_1, \dots, y_n + t \cdot \eta_n, y_1' + t \cdot \eta_1', \dots, y_n' + t \cdot \eta_n')}_{\widetilde{F}} dx \bigg|_{t=0} = t \int_{a}^{b} \left(\sum_{i=1}^{n} \widetilde{F}_{\widetilde{y}_i} \cdot \eta_i + \sum_{i=1}^{n} \widetilde{F}_{\widetilde{y}_i'} \cdot \eta_i' \right) dx \bigg|_{t=0} = \int_{a}^{b} \left(\sum_{i=1}^{n} F_{y_i} \cdot \eta_i + \sum_{i=1}^{n} F_{y_i'} \cdot \eta_i' \right) dx = 0. \quad (2.4)$$

Как было сказано на первой лекции, если под интегралом стоят производные от допустимого изменения, надо их истребить. Имеем

$$\int_{a}^{b} \underbrace{F_{y'_{i}} \cdot \eta'_{i} dx}_{v} = \underbrace{F_{y'_{i}} \cdot \eta_{i}}_{a} \left| - \int_{a}^{b} \frac{d}{dx} F_{y'_{i}} \cdot \eta_{i} dx = - \int_{a}^{b} \frac{d}{dx} F_{y'_{i}} \cdot \eta_{i} dx, \quad i = \overline{1, n}.$$

$$(2.5)$$

Подставляя (2.5) в (2.4) получим

$$\delta \mathcal{J} = t \int_{i=1}^{b} \sum_{i=1}^{n} \left(F_{y_i} - \frac{d}{dx} F_{y_i'} \right) \cdot \eta_i \, dx = 0.$$
 (2.6)

Пусть теперь $j \in [1, 2, ..., n]$. Выберем допустимое изменение $\eta(x)$ так, что $\eta_i \equiv 0, i = \overline{1, j - 1}, \overline{j + 1, n},$ а η_j — произвольно. Тогда в силу (2.6)

$$\int_{a}^{b} \left(F_{y_j} - \frac{d}{dx} F_{y_j'} \right) \cdot \eta_j \, dx = 0, \quad \forall \eta_j.$$
(2.7)

Отсюда, применяя лемму Лагранжа, получим

$$F_{y_j} - \frac{d}{dx} F_{y'_j} \equiv 0, \quad j = \overline{1, n}. \tag{2.8}$$

То есть для нахождения минимайзера $\mathbf{y} = (y_1, \dots, y_n)$ мы должны решить систему n обыкновенных дифференциальных уравнений второго порядка

$$F_{y_j} - \frac{d}{dx} F_{y'_j} = 0, \quad j = \overline{1, n}.$$
 (2.9)

Решение этой системы — функции $y_i = y_i(x, c_1, \dots, c_{2n})$, где константы c_1, \dots, c_{2n} находятся из 2n граничных условий

$$y_i(a) = y_i^0, \ y_i(b) = y_i^1, \quad i = \overline{1, n}.$$
 (2.10)

Таким образом, если минимайзер существует, то мы его найдём, но в общем случае кривая Γ , определяемая решениями (2.9), (2.10) — лишь подозрительная на экстремум. Система (2.9) называется системой Эйлера—Лагранжа. При её выводе в (2.5) мы использовали повышенную гладкость минимайзера.

3. Примеры решения системы Эйлера-Лагранжа.

1) F = F(x, y(x), z(x)). Уравнения (2.9) примут вид $F_y = 0$, $F_z = 0$. Если $\frac{\partial (F_y, F_z)}{\partial (y, z)} \neq 0$, то отсюда находим y = y(x), z = z(x) и решения, удовлетворяющего граничным условиям в общем случае нет, так как нет зависимости y(x), z(x) от свободных констант.

Задание. Привести примеры, когда $\frac{\partial(F_y,F_z)}{\partial(y,z)}\equiv 0$

2)
$$F = F(y', z')$$
. Система уравнений (2.9): $\frac{d}{dx}F_{y'} = 0$, $\frac{d}{dx}F_{z'} = 0$. Откуда
$$F_{y'} = c_1, \ F_{z'} = c_2. \tag{3.1}$$

Если

$$\frac{\partial(F_{y'}, F_{z'})}{\partial(y', z')} \neq 0, \tag{3.2}$$

то из системы (3.1) мы находим $y' = d_1$, $z' = d_2$. Но если якобиан для y и z в (3.2) равен нулю $x \in [a, b]$, то экстремали не только прямые. Например, пусть $F = (y' + z')^2$. Тогда решаемая система уравнений выглядит так

$$\frac{d}{dx}(y'+z')=0,$$

то есть $y'+z'=c_1 \Rightarrow y+z=c_1\cdot x+c_2$. Следовательно можно взять любую функцию z(x), удовлетворяющую граничным условиям $z(a)=z^0$, $z(b)=z^1$ и далее положить $y=c_1\cdot x+c_2-z$, а константы найдём из условий $y(a)+z(a)=c_1\cdot a+c_2$ и $y(b)+z(b)=c_1\cdot b+c_2$

- 3) F = F(x, y', z') разобрать самостоятельно.
- 4) $F = F(y_1, \ldots, y_n, y'_1, \ldots, y'_n)$ нет зависимости от аргумента x. Докажем, что в этом случае система уравнений Эйлера—Лагранжа (2.9) имеет первый интеграл

$$F - \sum_{i=1}^{n} y_i' \cdot F_{y_i'} = C. \tag{3.3}$$

Проверим это так же, как и в случае n=1. Подставим в (3.3) решения (2.9) и продифференцируем левую часть по x. Получим

$$\sum_{i=1}^{n} F_{y_i} \cdot y_i' + \sum_{\underline{i=1}}^{n} F_{y_i'} \cdot y_i'' - \sum_{\underline{i=1}}^{n} y_i'' \cdot F_{y_i'} - \sum_{i=1}^{n} y_i' \cdot \frac{d}{dx} F_{y_i'} = \sum_{i=1}^{n} y_i' \cdot \underbrace{\left(F_{y_i} - \frac{d}{dx} F_{y_i'}\right)}_{=0 \text{ B CHJY (2.9)}} = 0.$$

Значит (3.3) верно.

4. Принцип Гамильтона.

Рассмотрим механическую систему. Она может состоять из конечного числа материальных точек или быть распределённой (например, струна или мембрана). Предположим, что под действием потенциальных сил система из какого-то состояния в момент t_0 переходит в другое состояние в момент $t=t_1$. Для нас состояние — это совокупность координат точек. Принцип Гамильтона даёт ответ на вопрос: по какой траектории система придёт (переместится) из начального состояния в конечное. Пусть T(t) и V(t) — кинетическая и потенциальная энергия системы в момент t и

$$\mathcal{J} \stackrel{def}{=} \int_{t_0}^{t_1} (T(t) - V(t)) dt.$$

Интергал ${\mathcal J}$ называется интегралом действия. Принцип Гамильтона состоит в следующем:

Переход системы из одного состояния в другое происходит по траектории, которая обращает в ноль вариацию $\delta \mathcal{J}$ от интеграла действия, то есть равенство $\delta \mathcal{J}=0$ должно быть соотношением, определяющим траекторию системы.

Принцип Гамильтона не доказывается — это обобщение опытных фактов.

Применим принцип Гамильтона к системе n материальных точке, находящихся под действием потенциальных сил. Пусть m_i и $\boldsymbol{r_i}=(x_i,y_i,z_i)$ — масса и радиус-вектор i-ой точки. Пусть в начальный момент t_0 координаты i-й частицы были (x_i^0,y_i^0,z_i^0) , а в конечный момент $t_1-(x_i^1,y_i^1,z_i^1)$, $i=\overline{1,n}$ и $\boldsymbol{F_i}=(X_i,Y_i,Z_i)$ — сила, действующая на i-ю точку. Предположим, что силы $\boldsymbol{F_i}$ — потенциальны, то есть $\exists U=U(t,\boldsymbol{r_1},\ldots,\boldsymbol{r_n})$ так, что

$$\mathbf{F_i} = -\nabla_i U \quad \Rightarrow \quad X_i = -\frac{\partial U}{\partial x_i}, \ Y_i = -\frac{\partial U}{\partial y_i}, Z_i = -\frac{\partial U}{\partial z_i}.$$

Мы считаем (и это видно из записи U), что потенциал U не зависит от скоростей частиц.

Кинетическая энергия системы
$$T = \sum_{i=1}^n \frac{m_i \cdot (\dot{x}_i^2 + \dot{y}_i^2 + \dot{z}_i^2)}{2},$$
 потенциальная $V = U$

Заметим, что потенциальная энергия системы совпадает с потенциалом сил, если эти силы действуют на систему и отличается знаком от потенциала, если сама система работает. Таким образом,

$$\mathcal{J} = \int_{t_0}^{t_1} \left(\sum_{i=1}^n \frac{m_i \cdot (\dot{x}_i^2 + \dot{y}_i^2 + \dot{z}_i^2)}{2} - U \right) dt.$$

Из равенства $\delta \mathcal{J} = 0$ следуют уравнения Эйлера–Лагранжа, которые мы уже выводили. Имеем

$$F_{x_i} - \frac{d}{dt}F_{\dot{x}_i} = 0$$
, $F_{y_i} - \frac{d}{dt}F_{\dot{y}_i} = 0$, $F_{z_i} - \frac{d}{dt}F_{\dot{z}_i} = 0$, $i = \overline{1, n}$.

То есть

$$X_i - m_i \cdot \ddot{x}_i = 0, \quad Y_i - m_i \cdot \ddot{y}_i = 0, \quad Z_i - m_i \cdot \ddot{z}_i = 0, \quad i = \overline{1, n}.$$
 (4.1)

Таким образом мы получили уравнения, выражающие второй закон Ньютона.

Докажем теперь закон сохранения энергии в рассматриваемой ситуации при условии, что потенциал U не зависит явно от времени.

Как мы установили сегодня, в рассматриваемом случае, когда F=T-V не зависит явно от переменной t, у системы Эйлера–Лагранжа есть первый интеграл

$$F - \sum_{i=1}^{n} (\dot{x}_i \cdot F_{\dot{x}_i} + \dot{y}_i \cdot F_{\dot{y}_i} + \dot{z}_i \cdot F_{\dot{z}_i}) = const,$$

то есть

$$T - U - \sum_{i=1}^{n} m_i \cdot (\dot{x}_i^2 + \dot{y}_i^2 + \dot{z}_i^2) = T - U - 2 \cdot T = -T - U = const.$$

Но U=V и поэтому T+V=const, то есть суммарная энергия системы не зависит от времени.

5. Вариационные задачи для функционалов, зависящих от старших производных.

Сразу скажем, что в деталях мы будем изучать вариационные задачи для функционалов, зависящих от второй производной, ибо присутствие производных более высокого порядка не приводит ни к каким принципиальным отличиям. Но сначала как всегда пример реальной задачи, в которой необходимо будет минимизировать функционал, зависящий от второй производной.

Задача о равновесии балки с жёстко закреплёнными концами.

Не прогнувшаяся балка занимала бы отрезок [-l,l] оси x. Но балка прогнулась и её возможный профиль y=y(x) дан на картинке.

Балка жёстко закреплена на концах, поэтому кроме условия обычного закрепления y(-l)=y(l)=0 должно выполняться условие y'(-l)=y'(l)=0. В положении равновесия у балки будет минимальное значение потенциальной энергии. Когда происходит прогиб балки, то потенциальная энергия за счёт силы тяжести уменьшается, так как уменьшается ордината центра тяжести и увеличивается за счёт появления изгибающего момента. Запишем полное выражение потенциальной энергии балки без вывода

$$E[y] = g \int_{-l}^{+l} \rho \cdot \sqrt{1 + y'^2} \cdot y \, dx + \frac{1}{2} \int_{-l}^{+l} \frac{\mu \cdot y''}{(1 + y'^2)^{3/2}} \, dx$$
 (5.1)

Здесь g — ускорение силы тяжести, ρ — плотность на единицу длины балки, μ — коэффициент, описывающий упругие свойства балки. Так как её прогиб, очевидно, не большой, то $|y'| \ll 1$. Поэтому в (5.1) можно пренебречь членом y'^2 и таким образом окончательно мы приходим к задаче:

Найти
$$\min_{y \in \mathcal{K}} E[y]$$
, где $E[y] = \int\limits_{-l}^{+l} \left(g \cdot \rho \cdot y + \frac{1}{2}\mu \cdot y''^2\right) dx$,
$$\mathcal{K} = \left\{y(x)|y \in \mathcal{C}^2_{[a,b]}, \ y(l) = y'(l) = y'(-l) = 0\right\}$$

После построения общей теории мы вернёмся к этой задаче и решим её.

Лекция 3

1. Вариационные задачи для функционалов, зависящих от старших производных (продолжение).

Итак, мы рассматривали функционал

$$\mathcal{J}[y] = \int_{a}^{b} F(x, y, y', y'') dx. \tag{1.1}$$

Считаем, что $F \in \mathcal{C}^3$, $x \in [a,b], |y| < M, \forall y', y''$. Будем искать минимум функционала (1.1) в классе функций

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a) = y_0, \ y'(a) = y_0', \ y(b) = y_1, \ y'(b) = y_1', \ |y| < M \right\}$$

Как обычно предполагаем, что минимайзер существует. Обозначим его через y и введём понятие допустимого изменения $\eta(x)$ по аналогии с предыдущими случаями.

Определение 1.1. $\eta(x)$ — допустимое изменение, если $\tilde{y} \stackrel{def}{=} y + t \cdot \eta \in \mathcal{K}$, при $|t| \ll 1$.

Отсюда легко получаем, что $\eta=\frac{\tilde{y}-y}{t}$ и поэтому $\eta\in\mathcal{C}^2_{[a,b]},\ \eta(a)=\eta'(a)=\eta(b)=\eta'(b)=0.$ Далее

$$\mathcal{J}[y+t\cdot\eta]\geqslant \mathcal{J}[y], \quad |t|\ll 1,$$
 (1.2)

и, полагая $\varphi(t)=\mathcal{J}[y+t\cdot\eta]$, видим, что

$$\varphi(t) \geqslant \varphi(0). \tag{1.3}$$

Так как t=0 — точка минимума для функции $\varphi(t)$, то должно выполняться необходимое условие минимума.

$$\varphi'(0) = 0, (1.4)$$

то есть

$$\frac{d}{dt}\mathcal{J}[y+t\cdot\eta]\bigg|_{t=0} = 0. \tag{1.5}$$

Дадим истолкование левым частям (1.4), (1.5), не предполагая, что η — допустимое изменение, а считая только $\eta \in \mathcal{C}^2_{[a,b]}$. Тогда

$$\varphi(t) = \varphi(0) + t \cdot \varphi'(0) + o(t)$$

И

$$\varphi(t) - \varphi(0) = t \cdot \varphi'(0) + o(t).$$

Соответственно

$$\mathcal{J}[y + t \cdot \eta] = \mathcal{J}[y] + t \cdot \frac{d}{dt} \mathcal{J}[y + t \cdot \eta] \bigg|_{t=0} + o(t)$$

И

$$\mathcal{J}[y+t\cdot\eta] - \mathcal{J}[y] = t\cdot \frac{d}{dt}\mathcal{J}[y+t\cdot\eta]\bigg|_{t=0} + o(t).$$

Назовём величину $t\cdot \frac{d}{dt}\mathcal{J}[y+t\cdot\eta]\bigg|_{t=0}$ первой вариацией и обозначим через $\delta\mathcal{J}$. Таким образом первая вариация — это главная часть приращения функционала $\mathcal{J}[y]$ при замене y на $y+t\cdot\eta$. Из (1.5) следует, что если y — минимайзер (или максимайзер — рассуждения не меняются), то

$$\delta \mathcal{J} = 0. \tag{1.6}$$

Найдём выражение для первой вариации. Имеем

$$\delta \mathcal{J} = t \cdot \frac{d}{dt} \mathcal{J}[y + t \cdot \eta] \bigg|_{t=0} = t \cdot \frac{d}{dt} \int_{a}^{b} F(x, y + t \cdot \eta, y' + t \cdot \eta', y'' + t \cdot \eta'') dx \bigg|_{t=0}$$

Вводим обычные обозначения $\tilde{y} \stackrel{def}{=} y + t \cdot \eta$, $\tilde{F} \stackrel{def}{=} F(x, \tilde{y}, \tilde{y}', \tilde{y}'')$. Тогда

$$\delta \mathcal{J} = t \cdot \int_{a}^{b} \left(\widetilde{F}_{\tilde{y}} \cdot \eta + \widetilde{F}_{\tilde{y}'} \cdot \eta' + \widetilde{F}_{\tilde{y}''} \cdot \eta'' \right) dx \bigg|_{t=0} = \int_{a}^{b} \left(F_{y} \cdot \eta + F_{y'} \cdot \eta' + F_{y''} \cdot \eta'' \right) dx.$$

Как уже говорилось раньше, надо избавиться от η' , η'' под знаком интеграла. Сделаем это, проведя интегрирование по частям. При этом мы будем использовать повышенную гладкость минимайзера. Имеем

$$\int_{a}^{b} \underbrace{F_{y'}}_{u} \cdot \underbrace{\eta' \, dx}_{dv} = F_{y'} \cdot \eta \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dx} F_{y'} \cdot \eta \, dx,$$

$$\int_{a}^{b} \underbrace{F_{y''}}_{u} \cdot \underbrace{\eta'' \, dx}_{dv} = F_{y''} \cdot \eta' \Big|_{a}^{b} - \int_{a}^{b} \underbrace{\frac{d}{dx} F_{y''}}_{u} \cdot \underbrace{\eta' \, dx}_{dv} = \left(F_{y''} \cdot \eta' - \frac{d}{dx} F_{y''} \eta \right) \Big|_{a}^{b} + \int_{a}^{b} \frac{d^{2}}{dx^{2}} F_{y''} \cdot \eta \, dx.$$

Подставляя эти результаты в выражение для $\delta \mathcal{J}$, получим

$$\delta \mathcal{J} = t \left[\left(F_{y'} \cdot \eta + F_{y''} \cdot \eta' - \frac{d}{dx} F_{y''} \cdot \eta \right) \right|_a^b + \int_a^b \left(F_y - \frac{d}{dx} F_{y'} + \frac{d^2}{dx^2} F_{y''} \right) \cdot \eta \, dx \right]$$
 (B)

Это главная часть приращения функционала $\mathcal{J}[y]$ при замене y на $y+t\cdot\eta$. Мы её вывели при $y\in\mathcal{C}^4$. Для этой формулы введено обозначение (B), так как формула (A) была на первой лекции, но для F=F(x,y,y').

Пусть η — допустимое изменение. Тогда в силу (1.6) приравнивая $\delta \mathcal{J}=0$, мы получаем уравнение, из которого с помощью леммы Лагранжа выведем уравнение для минимайзера. Так как η — допустимое изменение, то $\eta=\eta'=0$, при x=a,b поэтому внеинтегральных членов в $\delta \mathcal{J}$ не будет и равенство $\delta \mathcal{J}=0$ влечёт соотношение

$$\int_{a}^{b} \left(F_y - \frac{d}{dx} F_{y'} + \frac{d^2}{dx^2} F_{y''} \right) \cdot \eta \, dx = 0, \quad \forall \eta - \text{допустимое.}$$

Откуда с помощью леммы Лагранжа получим для минимайзера уравнение Эйлера-Пуассона:

$$F_y - \frac{d}{dx}F_{y'} + \frac{d^2}{dx^2}F_{y''} = 0. {(1.7)}$$

Это обыкновенное дифференциальное уравнение четвёртого порядка и его решение $y = y(x, c_1, c_2, c_3, c_4)$.

Из граничных условий в общем случае константы c_1, \ldots, c_4 можно найти:

$$y_0 = y(a, c_1, \dots, c_4), \ y_0' = y'(a, c_1, \dots, c_4), \ y_1 = y(b, c_1, \dots, c_4), \ y_1' = y'(b, c_1, \dots, c_4).$$

Для простоты мы ограничились случаем, когда интегрант зависит от производных только первого и второго порядка. Но на этом же пути можно рассмотреть случай, когда интегрант зависит от производных любого порядка. Приведём без доказательства полученные результаты.

$$\mathcal{J}[y] = \int_a^b F(x,y,y',\dots,y^{(n)}) \, dx, \quad F \in \mathcal{C}^{n+1}, \ x \in [a,b], \ |y| < M, \ y',\dots,y^{(n)} - \text{любые},$$

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^n_{[a,b]}, \ y^{(j)}(a) = y_0^{(j)}, \ y^{(j)}(b) = y_1^{(j)}, \ j = \overline{0,n-1} \right\},$$

здесь $y^{(0)}(x) \equiv y(x), y_0^{(j)}$ и $y_1^{(j)}$ — произвольные фиксированные константы. Тогда минимайзер в задаче на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$ удовлетворяет уравнению

$$F_{y} - \frac{d}{dx}F_{y'} + \frac{d^{2}}{dx^{2}}F_{y''} - \dots + (-1)^{n}\frac{d^{n}}{dx^{n}}F_{y^{(n)}} = 0,$$
(1.8)

решение которого ищется в классе $y \in \mathcal{C}^{2n}_{[a,b]}, \, y^{(j)}(a) = y_0^{(j)}, \, y^{(j)}(b) = y_1^{(j)}, \, j = \overline{0,n-1}.$ Разумеется всё, что мы говорили о решениях уравнений Эйлера–Лагранжа, мы повторяем

Разумеется всё, что мы говорили о решениях уравнений Эйлера—Лагранжа, мы повторяем и здесь: если экстремайзер существует, то мы его ищем, решая (1.8). Если о его существовании ничего не известно, то решение (1.8) — кривая, подозрительная на экстремум. Если (1.8) не имеет решений, то экстремайзера нет. Исследование знака второй вариации подсказывает, чем может являться найденная экстремаль (точнее — чем не может...)

Возвратимся к задаче о равновесии балки. Мы получили там функционал

$$E[y] = \int_{-\infty}^{+\infty} \left(g \cdot \rho \cdot y + \frac{1}{2} \cdot \mu \cdot y''^2 \right) dx,$$

где g, ρ, μ — постоянные. Уравнение Эйлера-Пуассона

$$g\cdot \rho + \mu \cdot y^{IV} = 0,$$

откуда

$$y(x) = -\frac{g \cdot \rho}{4! \cdot \mu} \cdot x^4 + c_1 \cdot x^3 + c_2 \cdot x^2 + c_3 \cdot x + c_4.$$

Используя граничные условия y(-l) = y(+l) = y'(-l) = y'(+l) = 0 получим

$$y = -\frac{g \cdot \rho}{24 \cdot \mu} (x - l)^2 \cdot (x + l)^2.$$

2. Вариационные задачи со свободной границей для функционалов от функций одной переменной.

До сих пор мы рассматривали вариационные задачи, в которых допустимые функции принимали заданные значения на границах отрезка. Но это вовсе не обязательно. Вернёмся к задаче о брахистохроне. Мы установили, что время скатывания материальной точке с высоты y_0 по кривой y(x) до правой стенки

$$T[y] = \int_{a}^{b} \frac{\sqrt{1 + y'^2}}{\sqrt{2 \cdot g \cdot (y_0 - y)}} \, dx.$$

Мы искали минимум функционала по траекториям, для которых были заданы начальная и конечная точки. Но можно поставить задачу по-другому: не задавать конечную точку! И тогда класс $\mathcal K$ допустимых кривых будет выглядеть так:

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[a,b]}, \ y(a) = y_0, \ |y| < M \right\}.$$

Найти $\min_{y \in \mathcal{K}} T[y]$.

Переходим к общему случаю. Пусть функционал $\mathcal{J}[y]$ тот же, что в первой лекции

$$\mathcal{J}[y] = \int_{a}^{b} F(x, y, y') dx, \quad F \in \mathcal{C}^{2}, \ x \in [a, b], \ |y| < M, \ \forall y'; \quad \mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^{1}_{[a, b]}, \ |y| < M \right\}.$$

Допустимы любые кривые класса $\mathcal{C}^1_{[a,b]}, \, |y| < M.$

Пусть y — минимайзер в задаче на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$. Функция η — допустимое изменение, если $\tilde{y} \stackrel{def}{=} y + t \cdot \eta \in \mathcal{K}, |t| \ll 1$. Отсюда следует, что единственное ограничение на η — требование гладкости: $\eta(x) \in \mathcal{C}^1_{[a,b]}$. Рассуждая стандартным образом, мы получим, что необходимое условие экстремума — это обращение в ноль первой вариации. Выражение для первой вариации даётся равенством (A) первой лекции. Перепишем его

$$\delta \mathcal{J} = t \left\{ \int_{a}^{b} \left(F_{y} - \frac{d}{dx} F_{y'} \right) \cdot \eta \, dx + F_{y'} \cdot \eta \, \bigg|_{a}^{b} \right\}. \tag{2.1}$$

Так как y — экстремайзер, то $\delta \mathcal{J}=0$, при $\forall \eta$ — допустимом. Возьмём $\eta(a)=\eta(b)=0$. Тогда из равенства $\delta \mathcal{J}=0$ получим

$$\int_{a}^{b} \left(F_y - \frac{d}{dx} F_{y'} \right) \cdot \eta \, dx = 0, \quad \forall \eta \in \mathcal{C}^1_{[a,b]}, \ \eta(a) = \eta(b) = 0.$$

Отсюда в силу леммы Лагранжа получаем уравнение Эйлера

$$F_y - \frac{d}{dx}F_{y'} = 0. ag{2.2}$$

Уравнение (2.2) не зависит от выбора η (η туда не входит). Поэтому в силу (2.1) для любых η

$$\delta \mathcal{J} = t \cdot F_{y'} \cdot \eta \bigg|_a^b = 0.$$

Взяв сначала $\eta(b)=1,\ \eta(a)=0$ получим $F_{y'}\big|_{x=b}=0;$ при $\eta(b)=0,\ \eta(a)=1$ получим $F_{y'}\big|_{x=a}=0.$ Таким образом не смотря на отсутствие граничных условий в классе допустимых функций $\mathcal{K},$ экстремайзер должен удовлетворять так называемым естественным граничным условиям (ЕГУ)

24 Лекция 3.

$$F_{y'}(a, y(a), y'(a)) = 0; \ F_{y'}(b, y(b), y'(b)) = 0.$$
 (2.3)

Разумеется, если на каком-то конце отрезка граничные условия заданы, то на этом конце ЕГУ отсутствует.

Рассмотрим важный частный случай $F = \frac{A(x,y)}{\sqrt{1+u'^2}}, A(x,y) > 0.$ В этом случае ЕГУ

$$-\frac{1}{2} \cdot \frac{A(x,y) \cdot 2 \cdot y'}{(1+y'^2)^{3/2}} = 0 \quad \Rightarrow \quad y' = 0.$$

То есть траектория ортогональна к границе.

Варианты с неполным заданием граничных условий могут быть и в случае функционалов, зависящих от старших производных. Рассмотрим

$$\mathcal{J}[y] = \int_{a}^{b} F(x, y, y', y'') dx.$$

Мы решали задачу на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$, где $\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a), \ y'(a), \ y(b), \ y'(b) -$ заданы $\right\}$

Давайте рассмотрим теперь класс допустимых функций

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^{2}_{[a,b]}, \ y(a) = y_0, \ y'(b) = y_1^{(1)}, \ |y| < M \right\}$$

Таким образом в отличие от рассмотренного ранее случая свободны y'(a) и y(b). Пусть $\eta(x) \in \mathcal{C}^2_{[a,b]}$. Мы находим главную часть приращения

$$\mathcal{J}[y + t \cdot \eta] - \mathcal{J}[y] = \delta \mathcal{J} + o(t),$$

где $\delta \mathcal{J}$ даётся равенством (B) текущей лекции (на стр. 21).

Функция $\eta(x)$ — допустимое изменение для задачи $\min_{y \in \mathcal{K}} \mathcal{J}[y]$, если $\tilde{y} \stackrel{def}{=} y + t \cdot \eta \in \mathcal{K}, \ t \ll 1$. Так как $\eta = \frac{\tilde{y} - y}{t}$, то $\eta(a) = 0$, $\eta'(b) = 0$. Значения $\eta'(a)$ и $\eta(b)$ — свободны. Разумеется, $\eta \in \mathcal{C}^2_{[a,b]}$. Условие экстремума: $\delta \mathcal{J} = 0$ при допустимых η . Так как не запрещено взять $\eta(a) = \eta'(a) = \eta(b) = 0$ $\eta'(b) = 0$, то как и раньше из (B) получим для y — минимайзера

$$F_y - \frac{d}{dx}F_{y'} + \frac{d^2}{dx^2}F_{y''} = 0.$$

Поэтому в формуле первой вариации останутся только внеинтегральные члены, которые должны равняться нулю. Имеем

$$\left(F_{y'} - \frac{d}{dx}F_{y''}\right) \cdot \eta \bigg|_a^b + F_{y''} \cdot \eta' \bigg|_a^b = 0,$$
(2.4)

так как $\eta(a) = 0$ и $\eta'(b) = 0$, то из (2.4) получим

$$\left(F_{y'} - \frac{d}{dx}F_{y''}\right)\Big|_{x=b} \cdot \eta(b) - F_{y''}\Big|_{x=a} \cdot \eta'(a) = 0.$$
(2.5)

Отсюда полагая сначала $\eta'(a) = 0, \, \eta(b) = 1$ получим

$$\left(F_{y'} - \frac{d}{dx}F_{y''}\right)\Big|_{x=b} = 0,$$
(2.6)

 $\delta \mathcal{J} = t \left[\left(F_{y'} \cdot \eta + F_{y''} \cdot \eta' - \frac{d}{dx} F_{y''} \cdot \eta \right) \right] + \int_{-\infty}^{b} \left(F_{y} - \frac{d}{dx} F_{y'} + \frac{d^2}{dx^2} F_{y''} \right) \cdot \eta \, dx \right]$ (B)

а потом при $\eta'(a) = 1, \, \eta(b) = 0$ получим

$$F_{y''}\Big|_{x=a} = 0.$$
 (2.7)

(2.6) и (2.7) — это ЕГУ в данном случае.

Прежде чем переходить к другому типу задач, вернёмся к стандартной задаче со свободной границей, но вместо функционала $\mathcal{J}[y] = \int\limits_a^b F(x,y,y')\,dx$ рассмотрим функционал

$$\widehat{\mathcal{J}}[y] = \int_{a}^{b} F(x, y, y') dx + d_1 \cdot y^2(a) + d_2 \cdot y^2(b), \tag{2.8}$$

где $d_1 \geqslant 0$, $d_2 \geqslant 0$ — фиксированные константы. Раньше мы не могли рассматривать подобные функционалы, поскольку y(a) и y(b) были заданы и добавка $d_1 \cdot y^2(a) + d_2 \cdot y^2(b)$ являлась бы фиксированным числом не зависящим от y(x). Но теперь у нас y(a) и y(b) не заданы и значение $\widehat{\mathcal{J}}[y]$ зависит от них. Пусть

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[a,b]}, \ |y| < M \right\}, \ \eta \in \mathcal{C}^2_{[a,b]}.$$

Тогда как и раньше $\tilde{y}=y+t\cdot\eta\in\mathcal{K},$ при $y\in\mathcal{K},\ t\ll1.$ Если y- минимайзер, то

$$\left. \frac{d}{dt} \widehat{\mathcal{J}}[y + t \cdot \eta] \right|_{t=0} = 0, \text{ то есть в силу (2.1)}$$

$$\int_{a}^{b} \left(F_{y} - \frac{d}{dx} F_{y'} \right) \cdot \eta \, dx + F_{y'} \cdot \eta \Big|_{a}^{b} + 2 \cdot d_{1} \cdot y(a) \cdot \eta(a) + 2 \cdot d_{2} \cdot y(b) \cdot \eta(b) = 0. \tag{2.9}$$

Отсюда при $\eta(a) = \eta(b) = 0$ получаем как и раньше уравнение Эйлера

$$F_y - \frac{d}{dy}F_{y'} = 0.$$

и поэтому (2.9) запишется в виде

$$(F_{y'} + 2 \cdot d_2 \cdot y) \cdot \eta \Big|_{x=b} + (-F_{y'} + 2 \cdot d_1 \cdot y) \cdot \eta \Big|_{x=a} = 0.$$
 (2.10)

Откуда сначала при $\eta(a)=1,\,\eta(b)=0,\,$ а потом при $\eta(a)=0,\,\eta(b)=1$ получим ЕГУ для данного случая

$$F_{y'}(b, y(b), y'(b)) = -2 \cdot y(b) \cdot d_2, \ F_{y'}(a, y(a), y'(a)) = 2 \cdot y(a) \cdot d_1.$$
(2.11)

Пример, когда возникают функционалы вида (2.8), будет приведён позже.

3. Задачи с «подвижными концами».

В рассмотренных нами случаях появления естественных граничных условий интервал, на котором были заданы допустимые функции, это [a,b]. Однако есть целый ряд задач, в которых интервал не задан, ибо он может быть разным для разных допустимых функций. Такая ситуация возникает, когда концы кривых, отвечающих допустимым функциям y(x), лежат на некоторых заданных фиксированных кривых. Рассмотрим пример.

Пусть в плоской среде со скоростью распространения света v(x,y) заданы две кривые $y_1 = f_1(x), y_2 = f_2(x).$

Задача: найти точку на кривой $y_1 = f_1(x)$ так, чтобы свет из неё до кривой $y_2 = f_2(x)$ дошёл за минимальное время.

Пусть y(x) — произвольная кривая из \mathcal{C}^1 и $y(x_1) = f_1(x_1), y(x_2) = f_2(x_2)$. Тогда время прохождения света по кривой y = y(x) есть

$$T[y] = \int_{x_1}^{x_2} \frac{\sqrt{1 + y'^2}}{v(x, y(x))} dx.$$

Надо найти min T[y] по всем гладким функциям y(x), «графики» которых пересекают заданные кривые.

Дадим точную постановку задачи в общем случае. Пусть дано две кривые $y_1 = f_1(x), a_1 \leqslant x \leqslant b_1; y_2 = f_2(x), a_2 \leqslant x \leqslant b_2, a \stackrel{def}{=} \min\{a_1, a_2\}, b \stackrel{def}{=} \max\{b_1, b_2\}.$ Определим класс функций $\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[a,b]}, \ \exists x_1, x_2 \ y(x_1) = f_1(x_1), \ y(x_2) = f_2(x_2), \ x_1 \in [a_1,b_1], \ x_2 \in [a_2,b_2], \ |y| < M \right\},$

точки x_1, x_2 , конечно, зависят от функции y.

Пусть
$$\mathcal{J}[y] = \int_{x_1}^{x_2} F(x, y, y') dx$$
, где $F \in \mathcal{C}^2$, $x \in [a, b]$, $|y| < M$, $\forall y'$.

Мы решаем задачу на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$. Пусть y(x) — минимайзер в этой задаче,

$$y(\alpha_0) = f_1(\alpha_0), \quad y(\beta_0) = f_2(\beta_0), \quad a_1 < \alpha_0 < b_1, \quad a_2 < \beta_0 < b_2,$$

то есть пересечение кривой y = y(x) граничных кривых происходит не в крайних точках. Кроме того, мы предполагаем, что в точках α_0 , β_0 нет касания граничных кривых, то есть

$$y'(\alpha_0) \neq f_1'(\alpha_0), \quad y'(\beta_0) \neq f_2'(\beta_0).$$

Допустимое изменение $\eta(x)$ определяем как обычно $\tilde{y}\stackrel{def}{=}y+t\cdot\eta\in\mathcal{K},$ при $|t|\ll1.$ Ясно, что единственное ограничение на η — требование $\eta(x)\in\mathcal{C}^1_{[a,b]}.$ Точки пересечения кривой $\tilde{y}=y+t\cdot\eta$ с граничными кривыми обозначим через $\alpha(t)$ и $\beta(t)$

Таким образом
$$\mathcal{J}[y+t\cdot\eta]=\int\limits_{\alpha(t)}^{\beta(t)}\!\!F(x,y+t\cdot\eta,y'+t\cdot\eta')\,dx\geqslant \mathcal{J}[y]=\int\limits_{\alpha_0}^{\beta_0}\!\!F(x,y,y')\,dx.$$

Абсолютно так же, как раньше, получим, что главная часть $\delta \mathcal{J}$ приращения

$$\mathcal{J}[y+t\cdot\eta]-\mathcal{J}[y]=\delta\mathcal{J}+\ldots,$$

есть
$$\delta \mathcal{J} = t \cdot \frac{d}{dx} \mathcal{J}[y+t\cdot \eta] \bigg|_{t=0}$$
 — первая вариация, и что на минимайзере $\delta \mathcal{J} = 0.$

Положим как обычно $\tilde{y} = y + t \cdot \eta$, $\tilde{F} = F(x, \tilde{y}, \tilde{y}')$ и находим выражение для $\delta \mathcal{J}$. Имеем

$$\delta \mathcal{J} = t \cdot \frac{d}{dt} \int_{\alpha(t)}^{\beta(t)} F(x, \tilde{y}, \tilde{y}') dx \bigg|_{t=0} = t \left\{ \int_{\alpha(t)}^{\beta(t)} \left(\tilde{F}_{\tilde{y}} \cdot \eta + \tilde{F}_{\tilde{y}'} \cdot \eta' \right) dx \bigg|_{t=0} + \left[F(\beta(t), y(\beta(t)) + t \cdot \eta(\beta(t)), y'(\beta(t)) + t \cdot \eta'(\beta(t)) \right) \cdot \beta'(t) - \right. \\ \left. - F(\alpha(t), y(\alpha(t)) + t \cdot \eta(\alpha(t)), y'(\alpha(t)) + t \cdot \eta'(\alpha(t)) \right) \cdot \alpha'(t) \bigg|_{t=0} \right\} = \\ = t \left\{ \int_{\alpha_0}^{\beta_0} \left(F_y \cdot \eta + F_{y'} \cdot \eta' \right) dx + F(\beta_0, y(\beta_0), y'(\beta_0)) \cdot \beta'(0) - F(\alpha_0, y(\alpha_0), y'(\alpha_0)) \cdot \alpha'(0) \right\}. \quad (3.1)$$

Производные $\beta'(0)$ и $\alpha'(0)$ находим из равенств

$$\tilde{y}(\alpha(t)) = y(\alpha(t)) + t \cdot \eta(\alpha(t)) = f_1(\alpha(t)); \ \tilde{y}(\beta(t)) = y(\beta(t)) + t \cdot \eta(\beta(t)) = f_2(\beta(t)).$$

Продифференцируем по t и положим t = 0. Получим

$$y'(\alpha_0) \cdot \alpha'(0) + \eta(\alpha_0) = f_1'(\alpha_0) \cdot \alpha'(0), \ y'(\beta_0) \cdot \beta'(0) + \eta(\beta_0) = f_2'(\beta_0) \cdot \beta'(0)$$

Отсюда

$$\alpha'(0) = \frac{\eta(\alpha_0)}{f_1'(\alpha_0) - y'(\alpha_0)}, \ \beta'(0) = \frac{\eta(\beta_0)}{f_2'(\beta_0) - y'(\beta_0)}.$$
 (3.2)

Именно здесь мы использовали тот факт, что график минимайзера не касается граничных кривых, а их пересекает (то есть производные $f_1'(\alpha_0) \neq y'(\alpha_0), f_2'(\beta_0) \neq y'(\beta_0)$). Далее интегрируем по частям

$$\int_{\alpha_0}^{\beta_0} \underbrace{F_{y'}}_{u} \cdot \underbrace{\eta' \, dx}_{dv} = F_{y'} \cdot \eta \Big|_{\alpha_0}^{\beta_0} - \int_{\alpha_0}^{\beta_0} \frac{d}{dx} F_{y'} \cdot \eta \, dx. \tag{3.3}$$

Подставим формулы (3.2), (3.3) в выражение (3.1) для $\delta \mathcal{J}$ и запишем, что $\delta \mathcal{J} = 0$

$$t \cdot \left\{ \int_{\alpha_0}^{\beta_0} \left(F_y - \frac{d}{dx} F_{y'} \right) \cdot \eta \, dx + \left(F \cdot \frac{\eta}{f_2' - y'} + F_{y'} \cdot \eta \right) \Big|_{x = \beta_0} - \left(F \cdot \frac{\eta}{f_1' - y'} + F_{y'} \cdot \eta \right) \Big|_{x = \alpha_0} \right\} = 0. \quad (3.4)$$

Взяв здесь $\eta(\alpha_0) = \eta(\beta_0) = 0$ и применяя лемму Лагранжа получим, что минимайзер удовлетворяет уравнению Эйлера

$$F_y - \frac{d}{dx}F_{y'} = 0. ag{3.5}$$

Учитывая это получаем согласно (3.4)

$$\left. \left(\frac{F}{f_2' - y'} + F_{y'} \right) \cdot \eta \right|_{x = \beta_0} - \left. \left(\frac{F}{f_1' - y'} + F_{y'} \right) \cdot \eta \right|_{x = \alpha_0} = 0.$$

Полагая здесь $\eta(\beta_0) = 1$, $\eta(\alpha_0) = 0$, а потом $\eta(\beta_0) = 0$, $\eta(\alpha_0) = 1$ получим условия

$$\left(F + (f_2' - y') \cdot F_{y'}\right)\Big|_{x=\beta_0} = 0, \quad \left(F + (f_1' - y') \cdot F_{y'}\right)\Big|_{x=\alpha_0} = 0.$$
 (3.6)

Условия (3.6) называются условиями трансверсальности. Они играют ту же роль, что $E\Gamma Y$.

При решении уравнения (3.5) мы получили $y=y(x,c_1,c_2)$. Для нахождения неизвестных $c_1,\ c_2,\ \alpha_0,\ \beta_0$ у нас есть четыре условия: два в (3.6) и два условия

$$y(\alpha_0) = f_1(\alpha_0), \ y(\beta_0) = f_2(\beta_0).$$

Задание. Пусть $F(x, y, y') = A(x, y) \cdot \sqrt{1 + y'^2}$ и A(x, y) > 0. Докажите, что в этом случае условия трансверсальности переходят в условия ортогональности.

Лекция 4

1. Изопериметрические задачи.

Переходим к изучению нового типа задач, в которых на допустимые функции накладывается требование типа $\int\limits_a^b G(x,y,y')\,dx=l$, где l — заданное число, а G(x,y,y') — некоторая известная функция. Рассмотрим пример.

Задача о равновесии тяжёлой не растяжимой нити. Пусть тяжёлая нить подвешена в точках $(a, y_0), (b, y_1)$.

Ясно, что её положение будет отвечать минимальному значению потенциальной энергии^і

$$E[y] = \int_a^b g \cdot \rho \cdot \sqrt{1 + y'^2} \cdot y \, dx, \quad y(a) = y_0, \ y(b) = y_1, \quad$$
при условии не растяжимости

$$\int\limits_a^b \sqrt{1+y'^2}\,dx=l, \ \text{где }l-\text{длина нити}.$$

Надо найти $\min E[y]$ при описанных здесь условиях.

Сформулируем теперь общую постановку задачи

Пусть
$$\mathcal{J}[y] = \int_a^b F(x,y,y') \, dx, \; F \in \mathcal{C}^2, \; x \in [a,b], \; |y| < M, \; y' -$$
 любое,
$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[a,b]}, \; y(a) = y_0, \; y(b) = y_1, \; |y| < M, \; \int_a^b G(x,y,y') \, dx = l \right\}$$

Надо найти $\min_{y \in \mathcal{K}} \mathcal{J}[y]$. Пусть

$$\mathcal{J}_1[y] \stackrel{def}{=} \int_a^b G(x, y, y') dx.$$

Будем предполагать, что ни одна из функций $y(x) \in \mathcal{K}$ не является экстремалью функционала

ⁱВ этом смысле задача похожа на задачу о равновесии балки, только здесь нет изгибающего момента, но есть условие нерастяжимости.

 $\mathcal{J}_1[y]$, то есть не удовлетворяет уравнению

$$G_y - \frac{d}{dx}G_{y'} \equiv 0. (1.1)$$

Если это не так, то есть $\exists y \in \mathcal{K}$, для которого (1.1) выполняется, то тогда, считая, что функционал $\mathcal{J}_1[y]$ принимает на экстремалях экстремальные значения, получаем, что $\mathcal{J}_1[y] = l$ — экстремальное значение. Но это равенство должно выполняться на любой функции из \mathcal{K} . Значит, весь класс \mathcal{K} в этом случае состоит из экстремалей функционала $\mathcal{J}_1[y]$. Но экстремаль — в общем случае — одна. Поэтому при выполнении (1.1) мы получаем, что как правило, весь класс \mathcal{K} вырождается в одну функцию и задача на $\min_{y \in \mathcal{K}} \mathcal{J}[y]$ теряет смысл.

Введём понятие допустимого изменения для рассматриваемой задачи. Оно в данном случае определяется не стандартно, что вызвано особенностями задачи.

Определение 1.1. Пусть y(x) — минимайзер рассматриваемой задачи. Функцию

$$\eta(x) \stackrel{\text{def}}{=} t \cdot \eta_1(x) + \alpha(t) \cdot \eta_2(x)$$

назовём **допустимым изменением**, если удаётся найти такую функцию $\alpha(t)$, $\alpha(0)=0$ и такую функцию $\eta_2(x)$, что $\tilde{y}\stackrel{def}{=}y+\eta(x)\in\mathcal{K}$, при $|t|\ll 1$ и любых $\eta_1(x)$.

Построим $\eta(x)$. Функции $\eta_1(x)$ и $\eta_2(x)$ берём из $\mathcal{C}^1_{[a,b]}, \, \eta_i(a) = \eta_i(b) = 0, \, i = 1, 2.$ Попробуем обеспечить выполнение условия $\mathcal{J}[\tilde{y}] = l$. Положим

$$\Psi(t,\alpha) \stackrel{def}{=} \int_{a}^{b} \overbrace{G(x,\underbrace{y+t\cdot\eta_{1}+\alpha(t)\cdot\eta_{2}},\underbrace{y'+t\cdot\eta_{1}'+\alpha(t)\cdot\eta_{2}'})}^{\widetilde{G}} dx.$$

Нам надо найти η_2 и функцию $\alpha(t)$ так, чтобы при $\forall \eta_1$ и $|t| \ll 1$

$$\Psi(t, \alpha(t)) \equiv l, \quad |t| \ll 1. \tag{1.2}$$

Попробуем из (1.2) найти $\alpha(t)$ в окрестности $t=0,\ \alpha=0,\$ зная, что, очевидно, при $t=0,\ \alpha(0)=0$ (1.2) выполняется. По теореме о неявных функциях для этого надо, чтобы $\Psi_{\alpha}(0,0)\neq 0$. Имеем

$$\frac{\partial \Psi(t,\alpha)}{\partial \alpha} \bigg|_{\substack{t=0\\\alpha=0}} = \int_{a}^{b} \left(\widetilde{G}_{\widetilde{y}} \cdot \eta_{2} + \widetilde{G}_{\widetilde{y}'} \cdot \eta_{2}' \right) dx \bigg|_{\substack{t=0\\\alpha=0}} = \int_{a}^{b} \left(G_{y} \cdot \eta_{2} + G_{y'} \cdot \eta_{2}' \right) dx =$$

$$= \int_{a}^{b} \left(G_{y} - \frac{d}{dx} G_{y'} \right) \cdot \eta_{2} dx + G_{y'} \cdot \eta_{2} \bigg|_{a}^{b} = \int_{a}^{b} \left(G_{y} - \frac{d}{dx} G_{y'} \right) \cdot \eta_{2} dx. \quad (1.3)$$

Если бы правая часть (1.3) равнялась нулю при $\forall \eta_2, \eta_2 \in \mathcal{C}^1_{[a,b]}, \eta_2(a) = \eta_2(b) = 0$, то в силу леммы Лагранжа выполнялось бы (1.1). Но (1.1) — не верно по предположению. Значит мы можем найти η_2 так, что

$$\left. \frac{\partial \Psi(t, \alpha)}{\partial \alpha} \right|_{\substack{t=0\\ \alpha=0}} \neq 0. \tag{1.4}$$

Выберем такую функцию $\eta_2(x)$ и зафиксируем её. После этого в силу (1.4) по теореме о неявных функциях из равенства (1.2), верного $npu\ t=0,\ \alpha=0,\$ мы находим $\alpha(t),\ |t|\ll 1,\$ обеспечивая тем самым выполнение изопериметрического условия. Таким образом, при выбранных $\alpha=\alpha(t)$ и η_2 функция $\eta=t\cdot\eta_1(x)+\alpha(t)\cdot\eta_2(x)$ — допустимое изменение.

Для дальнейшего нам понадобится $\frac{\partial \Psi(t,\alpha)}{\partial t}\Big|_{\substack{t=0\\ \alpha=0}}$. Чтобы найти эту величину достаточно в (1.3)

$$\frac{\partial \Psi(t,\alpha)}{\partial t} \bigg|_{\substack{t=0\\\alpha=0}} = \int_{a}^{b} \left(G_y - \frac{d}{dx} G_{y'} \right) \cdot \eta_1 \, dx. \tag{1.5}$$

30 Лекция 4.

Возвратимся теперь к нашему доказательству. Так как $\tilde{y}=y+\eta\in\mathcal{K},$ то поскольку y-минимайзер, то

$$\mathcal{J}[y+\eta] \geqslant \mathcal{J}[y]. \tag{1.6}$$

Если положить $\varphi(t) \stackrel{def}{=} \mathcal{J}[y+t\cdot\eta_1+\alpha(t)\cdot\eta_2]$, то $\varphi(0)=\mathcal{J}[y]$ и (1.6) означает, что $\varphi(t)\geqslant \varphi(0). \tag{1.7}$

Значит, функция $\varphi(t)$ принимает минимальное значение при t=0, и поэтому

$$\left. \frac{d\varphi}{dt} \right|_{t=0} = 0. \tag{1.8}$$

Вычислим

$$\frac{d\varphi}{dt}\Big|_{t=0} = \frac{d\mathcal{J}[y+t\cdot\eta_1+\alpha(t)\cdot\eta_2]}{dt}\Big|_{t=0} = \frac{d}{dt}\int_{a}^{b} \widetilde{F(x,y+t\cdot\eta_1+\alpha(t)\cdot\eta_2,y'+t\cdot\eta'_1+\alpha(t)\cdot\eta'_2)} dx\Big|_{t=0} = \int_{a}^{b} \left[\widetilde{F}_{\tilde{y}}\cdot\left(\eta_1+\alpha'(t)\cdot\eta_2\right)+\widetilde{F}_{\tilde{y}'}\cdot\left(\eta'_1+\alpha'(t)\cdot\eta'_2\right)\right] dx\Big|_{t=0} = \int_{a}^{b} \left[F_{y}\cdot\left(\eta_1+\alpha'(0)\cdot\eta_2\right)+F_{y'}\cdot\left(\eta'_1+\alpha'(0)\cdot\eta'_2\right)\right] dx = 0. \quad (1.9)$$

Обычное интегрирование по частям показывает, что

$$\int_{a}^{b} F_{y'} \cdot (\eta'_1 + \alpha'(0) \cdot \eta'_2) dx = -\int_{a}^{b} \frac{d}{dx} F_{y'} \cdot (\eta_1 + \alpha'(0) \cdot \eta_2) dx.$$
 (1.10)

Далее находим $\alpha'(0)$. Так как

$$\Psi(t, \alpha(t)) \equiv l, \quad |t| \ll 1,$$

то дифференцируя это тождество по t получим

$$\left. \frac{d\Psi}{dt} \right|_{t=0} = \Psi_t + \Psi_\alpha \cdot \alpha'(0) = 0.$$

Откуда

$$\alpha'(0) = -\frac{\Psi_t(0,0)}{\Psi_\alpha(0,0)} = -\frac{\int_a^b \left(G_y - \frac{d}{dx}G_{y'}\right) \cdot \eta_1 \, dx}{\int_a^b \left(G_y - \frac{d}{dx}G_{y'}\right) \cdot \eta_2 \, dx},\tag{1.11}$$

где в силу (1.4) знаменатель не равен нулю.

Подставим выражения (1.10) и (1.11) в равенство (1.9) и затем там сгруппируем слагаемые,

содержащие η_1 и η_2 . Получим

$$\frac{d}{dt}\mathcal{J}[y+t\cdot\eta_{1}+\alpha(t)\cdot\eta_{2}]\Big|_{t=0} = \int_{a}^{b} \left[F_{y}\cdot\left(\eta_{1}+\alpha'(0)\cdot\eta_{2}\right)+F_{y'}\cdot\left(\eta'_{1}+\alpha'(0)\cdot\eta'_{2}\right)\right] dx =
= \int_{a}^{b} \left(F_{y}-\frac{d}{dx}F_{y'}\right)\cdot\eta_{1} dx - \frac{\int_{a}^{b} \left(G_{y}-\frac{d}{dx}G_{y'}\right)\cdot\eta_{1} dx}{\int_{a}^{b} \left(G_{y}-\frac{d}{dx}G_{y'}\right)\cdot\eta_{2} dx} \cdot \int_{a}^{b} \left(F_{y}-\frac{d}{dx}F_{y'}\right)\cdot\eta_{2} dx = 0. \quad (1.12)$$

Отношение $\frac{\int\limits_a^b \left(F_y-\frac{d}{dx}F_{y'}\right)\cdot\eta_2\,dx}{\int\limits_a^b \left(G_y-\frac{d}{dx}G_{y'}\right)\cdot\eta_2\,dx}$ обозначим через λ .

Подставляя в (1.12), получим

$$\int_{a}^{b} \left(F_y - \frac{d}{dx} F_{y'} \right) \cdot \eta_1 \, dx - \lambda \cdot \int_{a}^{b} \left(G_y - \frac{d}{dx} G_{y'} \right) \cdot \eta_1 \, dx = 0,$$

откуда полагая

$$F^* = F - \lambda \cdot G,$$

окончательно получим

$$\int_{a}^{b} \left(F_y^* - \frac{d}{dx} F_{y'}^* \right) \cdot \eta_1 \, dx = 0, \quad \forall \eta_1.$$

$$\tag{1.13}$$

По лемме Лагранжа отсюда получаем (так как η_1 — произвольное)

$$F_y^* - \frac{d}{dx} F_{y'}^* = 0. (1.14)$$

Отсюда находим $y = y(x, c_1, c_2, \lambda)$.

Для нахождения неизвестных c_1, c_2, λ у нас есть граничные условия

$$y(a, c_1, c_2, \lambda) = y_0, \quad y(b, c_1, c_2, \lambda) = y_1$$

и изопериметрическое условие

$$\int_{a}^{b} G(x, y, y') dx = l.$$

Рассмотрим (без доказательства) некоторые обобщения.

1. Рассмотрим ситуацию, когда изопериметрических условий — несколько.

$$\mathcal{J}[y] = \int_{a}^{b} F(x, y, y') dx, \ \mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^{1}_{[a,b]}, \ y(a) = y_{0}, \ y(b) = y_{1}, \ \int_{a}^{b} G_{i}(x, y, y') dx = l_{i}, \ i = \overline{1, m} \right\}$$

В этом случае для нахождения минимайзера составляют

$$F^* = F - \sum_{i=1}^{m} \lambda_i \cdot G_i.$$

Далее для F^* пишем уравнение Эйлера и оттуда находим $y=y(x,c_1,c_2,\lambda_1,\ldots,\lambda_m)$. Неизвестные $c_1,c_2,\lambda_1,\ldots,\lambda_m$ находятся из двух граничных и m изопериметрических условий

$$\int_{a}^{b} G_i(x, y, y') dx = l_i, \ i = \overline{1, m}.$$

Заметим, что совершенно аналогичная ситуация имеет место, если $\boldsymbol{y}=(y_1,\ldots,y_n)$ — вектор. Тогда мы получим не одно уравнение, а систему уравнений Эйлера—Лагранжа

$$F_{y_j}^* - \frac{d}{dx} F_{y_j'}^* = 0, \quad j = \overline{1, n}$$

и $y_i = y_i(x, c_1, \dots, c_{2n}, \lambda_1, \dots, \lambda_m).$

Неизвестные константы c_1,\dots,c_{2n} и числа $\lambda_1,\dots,\lambda_m$ определяются из 2n граничных условий

$$y_j\Big|_{x=a} = y_j^0, \quad y_j\Big|_{x=b} = y_j^1, \quad j = \overline{1,n}$$

и т изопериметрических условий

$$\int_{a}^{b} G_i(x, y_1, \dots, y_n, y_1', \dots, y_n') dx = l_i, \quad i = \overline{1, m}.$$

2. Рассматриваем функционал

$$\mathcal{J}[y_1,\ldots,y_n] = \int_a^b F(x,y_1,\ldots,y_n,y_1',\ldots,y_n') dx$$

в классе

$$\mathcal{K} = \left\{ y_1, \dots, y_n | y_i(a) = y_i^0, \ y_i(b) = y_i^1, \ y_i(x) \in \mathcal{C}^1_{[a,b]}, \ |y_i| < M, \ i = \overline{1, n}, \right.$$

$$G_j(x, y_1, \dots, y_n) = 0, \ j = \overline{1, m} \right\}$$

или в классе

$$\mathcal{K}' = \left\{ y_1, \dots, y_n | y_i(a) = y_i^0, \ y_i(b) = y_i^1, \ y_i(x) \in \mathcal{C}^1_{[a,b]}, \ |y_i| < M, \ i = \overline{1, n}, \right.$$
$$G_j(x, y_1, \dots, y_n, y_1', \dots, y_n') = 0, \ j = \overline{1, m} \right\}$$

При решении задачи на $\min_{y \in \mathcal{K}} \mathcal{J}[y_1, \dots, y_n]$ или $\min_{y \in \mathcal{K}'} \mathcal{J}[y_1, \dots, y_n]$ условия связи выражаются некоторыми (не интегральными) соотношениями. В случае класса \mathcal{K} связи называются голономными, в случае класса \mathcal{K}' — когда связи содержат производные — не голономными.

Рассмотрим сначала голономные связи

$$G_j(x, y_1, \dots, y_n) = 0, \quad j = \overline{1, m}. \tag{1.15}$$

Если m=n, то в общем случае (когда соответствующий якобиан не равен нулю) из (1.15) функции y_1,\ldots,y_n как функции от x находятся однозначно и ни о какой экстремальной задачи речи нет. При m>n (1.15) — переопределённая система — как правило — и опять вариационная задача не имеет смысла. Поэтому далее считаем m< n. Решение задачи на $\mathcal{J}[y_1,\ldots,y_n]$ в классе \mathcal{K} возможно двумя способами.

а. Из m условий связи (1.15) выражаем m функций y_j через x и остальные. Например y_1,\ldots,y_m через x,y_{m+1},\ldots,y_n . После этого мы забываем об условиях (1.15) и подставляем $y_j=f_j(x,y_{m+1},\ldots,y_n),\ j=\overline{1,m}$ в функционал $\mathcal{J}[y_1,\ldots,y_n]$. Получим

$$\mathcal{J}[f_1, f_2, \dots, f_m, y_{m+1}, \dots, y_n] = \widehat{\mathcal{J}}[y_{m+1}, \dots, y_n] = \int_a^b \widehat{F}(x, y_{m+1}, \dots, y_n, y'_{m+1}, \dots, y'_n) dx,$$

который минимизируется в классе \mathcal{K} , но без учёта голономных связей. Мы получили обычную задачу, рассмотренную на $2^{\text{ой}}$ лекции и для экстремалей будем иметь уравнения

$$\widehat{F}_{y_j} - \frac{d}{dx}\widehat{F}_{y'_j} = 0, \quad j = \overline{m+1, n}.$$

Чем плох этот способ? Он неоправданно выделяет из n функций какие-то m, что приводит к минимизации по остальным (n-m)... А может с физической точки зрения надо было не первые m выражать, а какие-то другие.

b. Рекомендуемый в литературе метод. Составляют функцию

$$F^* = F - \sum_{i=1}^{m} \lambda_i(x) \cdot G_i. \tag{*}$$

Далее пишут систему уравнений

$$F_{y_j}^* - \frac{d}{dx} F_{y_j'}^* = 0, \quad j = \overline{1, n},$$
 (1.16)

то есть

$$F_{y_j} - \sum_{i=1}^{n} \lambda_i(x) \cdot \frac{\partial G_i}{\partial y_j} - \frac{d}{dx} F_{y_j} = 0, \quad j = \overline{1, n}$$

и плюс m уравнений (1.15). В случае не голономных связей рецептура та же, то есть аналогично (*) составляется F^* и затем рассматриваем (1.15) вместе с (1.16).

Приведём пример изопериметрической задачи. Среди кривых, соединяющих точки A и B и ограничивающих вместе с отрезками aA и bB заданную площадь S, найти кривую наименьшей длины.

Итак минимизируемый функционал

$$\mathcal{J}[y] = \int_{a}^{b} \sqrt{1 + y'^{2}} \, dx, \quad \mathcal{K} \left\{ y(x) | y \in \mathcal{C}^{1}_{[a,b]} \ y(a) = y_{0}, \ y(b) = y_{1}, \ \int_{a}^{b} y \, dx = S \right\}$$

Ищем $\min_{y \in \mathcal{K}} \mathcal{J}[y]$. Для функционала $\mathcal{J}_1[y] = \int\limits_a^b y \, dx$ значение S — не экстремальное, поэтому применима общая теория

$$F^* \stackrel{def}{=} \sqrt{1 + y'^2} - \lambda \cdot y \quad \Rightarrow \quad F_y^* - \frac{d}{dx} F_{y'}^* = 0.$$

^і**Не педагогическое замечание**: мне этот метод нравится.

Так как F^* не содержит x, то уравнение Эйлера имеет первый интеграл $F^* - y' \cdot F_{y'}^* = c_1$, то есть

$$\sqrt{1 + y'^2} - \lambda \cdot y - \frac{y'^2}{\sqrt{1 + y'^2}} = c_1 \quad \Rightarrow \quad \frac{1}{\sqrt{1 + y'^2}} = c_1 + \lambda \cdot y \quad \Rightarrow \quad \frac{1}{(c_1 + \lambda \cdot y)^2} = 1 + y'^2 \quad \Rightarrow \\
\Rightarrow \quad y' = \pm \sqrt{\frac{1}{(c_1 + \lambda \cdot y)^2} - 1} = \pm \frac{\sqrt{1 - (c_1 + \lambda \cdot y)^2}}{c_1 + \lambda \cdot y} \quad \Rightarrow \quad \frac{dx}{dy} = \pm \frac{c_1 + \lambda \cdot y}{\sqrt{1 - (c_1 + \lambda \cdot y)^2}} \quad \Rightarrow \\
\Rightarrow \quad x + c_2 = \pm \sqrt{1 - (c_1 + \lambda \cdot y)^2} / \lambda \quad \Rightarrow \quad (x + c_2)^2 + (y + c_3)^2 = 1 / \lambda^2$$

остальное — дело техники.

2. Квадратичный функционал. Оператор Штурма-Лиувилля.

Рассмотрим функционал

$$\mathcal{J}[y] = \int_{a}^{b} \left(Q \cdot y'^2 + P \cdot y^2 \right) dx,$$

где $Q(x) \in \mathcal{C}^1_{[a,b]}, \ Q(x) > 0, \ x \neq a, \ P(x) \in \mathcal{C}_{[a,b]},$ или $P(x) \geqslant 0, \ P(x) \in \mathcal{C}_{(a,b]}.$

Класс функций
$$\mathcal{K}=\left\{y(x)|y\in\mathcal{C}^1_{[a,b]},\ y(a)=y(b)=0,\ \int\limits_a^by^2\,dx=1\right\}$$

Покажем, что $\min_{y \in \mathcal{K}} \mathcal{J}[y] > -\infty$, то есть задача отыскания $\min_{y \in \mathcal{K}} \mathcal{J}[y]$ имеет смысл. Очевидно

$$\mathcal{J}[y]\geqslant\int\limits_a^bP\cdot y^2\,dx\geqslant P_0>-\infty,$$
 где $P_0=\inf_{x\in[a,b]}\,P(x).$

Далее, значение $\mathcal{J}_1[y] = \int\limits_a^b y^2 \, dx = 1$ — не является экстремальным для функционала $\mathcal{J}_1[y]$, поэтому применима общая теория решения изопериметрических задач.

Положим
$$F^* \stackrel{def}{=} F - \lambda \cdot G = Q \cdot y'^2 + P \cdot y^2 - \lambda \cdot y^2$$

и напишем для F^* уравнение Эйлера

$$2 \cdot P \cdot y - 2 \cdot \lambda \cdot y - 2 \cdot \frac{d}{dx} (Q \cdot y') = 0$$

или

$$-\frac{d}{dx}(Q \cdot y') + P \cdot y = \lambda \cdot y. \tag{2.1}$$

Решение (2.1) ищем в классе $y(x) \in \mathcal{C}^2_{[a,b]}, \ y(a) = y(b) = 0.$ Выражение в левой части (2.1) называется оператором Штурма–Лиувилля Ly, то есть (2.1) запишется в виде

$$Ly = \lambda \cdot y. \tag{2.2}$$

Оператор L рассматривается в области

$$\mathcal{D}_L = \left\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a) = y(b) = 0 \right\}$$

Очевидно, что оператор L — линейный, и решения (2.2) — это собственные функции, отвечающие собственному значению λ .

Далее мы займёмся изучением свойств собственных функций и собственных значений в (2.2). Для того, чтобы понять, что можно ожидать в общем случае, мы рассмотрим сначала случай постоянных коэффициентов: $Q = c_1$, $P = c_2$, причём Q > 0, а в качестве отрезка [a, b] возьмём отрезок [0, l]. Таким образом мы приходим к задаче

$$-c_1 \cdot y'' + c_2 \cdot y = \lambda \cdot y \quad \Rightarrow \quad y'' + \frac{\lambda - c_2}{c_1} \cdot y = 0, \tag{2.3}$$

при y(0) = y(l) = 0.

Обозначим $\omega^2 \stackrel{def}{=} (\lambda - c_2) / c_1$ и покажем, что $\omega^2 > 0^{\rm i}$.

Умножим (2.3) на \overline{y} и проинтегрируем по [0, l].

Тогда так как $\int\limits_0^l\underbrace{\overline{y}}_u\cdot \underbrace{y''\,dx}_{dv}=y'\cdot \overline{y}\bigg|_0^l-\int\limits_0^l|y'|^2\,dx=-\int\limits_0^l|y'|^2\,dx$ то получим

$$-\int\limits_{0}^{l}|y'|^{2}\,dx+\omega^{2}\cdot\int\limits_{0}^{l}|y|^{2}\,dx=0, \text{ то есть }\omega^{2}\geqslant0.$$

При $\omega = 0$ получаем $y' \equiv 0$, то есть y = const, но y(0) = 0. Значит $y \equiv 0$, что нас не устраивает, поэтому $\omega^2 > 0$.

Таким образом (2.3) приобретает вид

$$y'' + \omega^2 \cdot y = 0$$

и решение

$$y(x) = d_1 \cdot \sin(\omega \cdot x) + d_2 \cdot \cos(\omega \cdot x).$$

Так как y(0) = 0, то $d_2 = 0$. Так как y(l) = 0, то $d_1 \cdot \sin(\omega \cdot l) = 0$. Поскольку $d_1 \neq 0$ (иначе $y(x) \equiv 0$), то $\sin(\omega \cdot l) = 0$ и значит $\omega \cdot l = \pi \cdot k$, k = 1, ...

Откуда
$$\omega_k = \frac{\pi \cdot k}{l}, \quad \frac{\lambda_k - c_2}{c_1} = \left(\frac{\pi \cdot k}{l}\right)^2, \quad \lambda_k = c_1 \cdot \left(\frac{\pi \cdot k}{l}\right)^2 + c_2,$$

а собственные функции $y_k = d_{1k} \cdot \sin\left(\frac{\pi \cdot k}{l} \cdot x\right)$. Для выполнения изопериметрического условия считаем

$$\int_{0}^{l} y_{k}^{2} dx = d_{1k}^{2} \cdot \int_{0}^{l} \left(\sin \left(\frac{\pi \cdot k}{l} \cdot x \right) \right)^{2} dx = d_{1k}^{2} \cdot \int_{0}^{l} \frac{1 - \cos \left(\frac{2 \cdot \pi \cdot k}{l} \cdot x \right)}{2} dx = d_{1k}^{2} \cdot \frac{l}{2} = 1,$$

откуда $d_{1k}=\pm\sqrt{\frac{2}{l}}.$ Окончательно получаем, что

$$y_k = \pm \sqrt{\frac{2}{l}} \cdot \sin\left(\frac{\pi \cdot k}{l} \cdot x\right), \quad \lambda_k = c_1 \cdot \left(\frac{\pi \cdot k}{l}\right)^2 + c_2.$$

Что мы узнали в нашем частном случае:

- 1. Собственные значения вещественны.
- 2. Собственные значения λ_k стремятся к ∞ со скоростью k^2 .
- 3. Собственные пространства \mathcal{U}_{λ_k} , отвечающие собственным значениям λ_k одномерны (или по-другому: каждому собственному значению отвечает единственная с точностью до знака— собственная функция, для которой выполнено изопериметрическое условие).

 $^{^{\}mathrm{i}}$ Мы пока не знаем, может быть ω^2 — не вещественно.

4. Собственные функции y_k и y_m , отвечающие различным собственным значениям $\lambda_k \neq \lambda_m$ удовлетворяют соотношению

$$\int_{0}^{l} y_k \cdot y_m \, dx = 0, \quad k \neq m.$$

5. Из теории рядов Фурье следует, что если $y(x) \in \mathcal{C}^2_{[0,l]}$ и y(0) = y(l) = 0, то

$$y(x) = \sum_{k=1}^{\infty} A_k \cdot \sin\left(\frac{\pi \cdot k}{l} \cdot x\right),$$

где A_k — коэффициенты Фурье и ряд по собственным функциям сходится равномерно.

Мы выяснили, что можно ожидать от свойств собственных значений и собственных функций оператора Штурма. Далее мы установим, что и в случае переменных (а не постоянных!) коэффициентов Q(x) и P(x) выполняются утверждения 1.—5.

Лекция 5

На прошлой лекции мы доказали принцип минимакса. Он редко используется на практике, но с его помощью мы сейчас получим результат, имеющий как теоретическое, так и практическое значение.

1. Теорема сравнения.

Пусть
$$Ly = -\frac{d}{dx}(Q \cdot y') + P \cdot y$$
 и $\widetilde{L}y = -\frac{d}{dx}(\widetilde{Q} \cdot y') + \widetilde{P} \cdot y$

— операторы Штурма с областью определения

$$\mathcal{D}_L = \mathcal{D}_{\widetilde{L}} = \left\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a) = y(b) = 0 \right\}.$$

Обозначим через λ_k и $\widetilde{\lambda}_k$ их собственные значения, $k=1,2,\ldots$

Теорема 1.1 (теорема сравнения). Если $Q\geqslant \widetilde{Q}$ и $P\geqslant \widetilde{P}$, то $\lambda_k\geqslant \widetilde{\lambda}_k$, то есть бо́льшим коэффициентам отвечают бо́льшие собственные значения

Доказательство. Пусть $\varphi_1, \ldots, \varphi_k$ — произвольный набор функций из $\mathcal{L}_{2}^{[a,b]}, y \in \mathcal{K}, y \perp \varphi_1, \ldots, \varphi_k$. В силу неравенств для коэффициентов

$$\mathcal{J}[y] = \int_{\substack{y \in \mathcal{K}, \\ y \perp \varphi_1, \dots, \varphi_k}}^{b} \left(Q \cdot y'^2 + P \cdot y^2 \right) dx \geqslant \int_{a}^{b} \left(\widetilde{Q} \cdot y'^2 + \widetilde{P} \cdot y^2 \right) dx = \widetilde{\mathcal{J}}[y]. \tag{1.1}$$

Фиксируем слева y, а справа возьмём минимум по всем $\tilde{y}, \, \tilde{y} \in \mathcal{K}, \, \tilde{y} \perp \varphi_1, \dots, \varphi_k$

$$\mathcal{J}[y] \underset{\substack{y \in \mathcal{K}, \\ y \perp \varphi_1, \dots, \varphi_k}}{\min} \geqslant \min_{\tilde{y} \in \mathcal{K}, \tilde{\mathcal{J}}[\tilde{y}]} \widetilde{\mathcal{J}}[\tilde{y}].$$
(1.2)

Так как правая часть не зависит от y, то неравенство сохранится при взятии слева минимума по y:

$$\min_{\substack{y \in \mathcal{K}, \\ y \perp \varphi_1, \dots, \varphi_k}} \mathcal{J}[y] \geqslant \min_{\substack{\tilde{y} \in \mathcal{K}, \\ \tilde{y} \perp \varphi_1, \dots, \varphi_k}} \widetilde{\mathcal{J}}[\tilde{y}]. \tag{1.3}$$

Фиксируем набор $\varphi_1, \ldots, \varphi_k$ справа в (1.3), а слева возьмём максимум по всем наборам

$$\max_{\widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}} \min_{\substack{y \in \mathcal{K}, \\ y \perp \widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}}} \widetilde{\mathcal{J}}[y] \geqslant \min_{\widetilde{y} \in \mathcal{K}, \\ \widetilde{y} \perp \varphi_{1},\dots,\varphi_{k}} \widetilde{\mathcal{J}}[\widetilde{y}]. \tag{1.4}$$

Так как левая часть не зависит от $\varphi_1, \ldots, \varphi_k$ (то есть (1.4) верно при $\forall \varphi_1, \ldots, \varphi_k$) возьмём в (1.4) справа максимум по $\varphi_1, \ldots, \varphi_k$

$$\max_{\widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}} \min_{\substack{y \in \mathcal{K}, \\ y \perp \widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}}} \mathcal{J}[y] \geqslant \max_{\varphi_{1},\dots,\varphi_{k}} \min_{\substack{\widetilde{y} \in \mathcal{K}, \\ \widetilde{y} \perp \varphi_{1},\dots,\varphi_{k}}} \widetilde{\mathcal{J}}[\widetilde{y}]. \tag{1.5}$$

В силу принципа минимакса слева в (1.5) λ_{k+1} , справа $\widetilde{\lambda}_{k+1}$, то есть (1.5) это

$$\lambda_{k+1} \geqslant \widetilde{\lambda}_{k+1}.\tag{1.6}$$

Теорема доказана. □

Данная теорема позволяет получить двусторонние оценки для собственных значений оператора Штурма с переменными коэффициентами. Пусть $\widetilde{C}_1 \stackrel{def}{=} \min_{x \in [a,b]} Q(x), \ \widetilde{C}_2 \stackrel{def}{=} \min_{x \in [a,b]} P(x)$. Собственные значения оператора Штурма $\widetilde{L}y = -\frac{d}{dx} \left(\widetilde{Q} \cdot y' \right) + \widetilde{P} \cdot y$ с $\widetilde{Q} = \widetilde{C}_1, \ \widetilde{P} = \widetilde{C}_2$ известны $\widetilde{\lambda}_k = \widetilde{C}_1 \cdot \frac{(\pi \cdot k)^2}{(b-a)^2} + \widetilde{C}_2$.

В силу теоремы сравнения

$$\lambda_k \geqslant \widetilde{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right) + \widetilde{C}_2.$$
 (1.7)

С другой стороны, если положить $\widehat{C}_1 \stackrel{def}{=} \max_{x \in [a,b]} Q(x)$, $\widehat{C}_2 \stackrel{def}{=} \max_{x \in [a,b]} P(x)$ и рассмотреть оператор Штурма $\widehat{L}y = -\frac{d}{dx} \Big(\widehat{Q} \cdot y' \Big) + \widehat{P} \cdot y$ с $\widehat{Q} = \widehat{C}_1$, $\widehat{P} = \widehat{C}_2$, то поскольку $\widehat{Q} \geqslant Q$, $\widehat{P} \geqslant P$, то для собственных значений $\widehat{\lambda}_k$ оператора \widehat{L} будет верно неравенство

$$\widehat{\lambda}_k \geqslant \lambda_k,$$
 (1.8)

но

$$\widehat{\lambda}_k = \widehat{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right)^2 + \widehat{C}_2,$$

поэтому в силу (1.7), (1.8) мы получаем

$$\widehat{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right)^2 + \widehat{C}_2 \geqslant \lambda_k \geqslant \widetilde{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right)^2 + \widetilde{C}_2. \tag{1.9}$$

Разумеется, здесь мы рассматриваем случай, когда $\widetilde{C}_1>0,\,\widetilde{C}_2$ и \widehat{C}_2 — конечны.

Из (1.9) следует, что для $k\gg 1$ и некоторой константы d>0

$$\lambda_k \geqslant d \cdot k^2. \tag{1.10}$$

2. Разложение по собственным функциям оператора Штурма. Неравенство Бесселя, равенство Парсеваля. Теорема Стеклова.

Пусть $y_1, y_2, \ldots, y_n, \ldots$ — бесконечная ортонормированная система $(y_i, y_j) = \delta_{ij}$ и $y \in \mathcal{L}_{2}[a,b]$. Составим так называемые обобщённые коэффициенты Фурье

$$C_k = (y, y_k) = \int_a^b y \cdot \overline{y}_k \, dx \tag{2.1}$$

и обобщённый ряд Фурье, отвечающий функции y(x):

$$y(x) \sim \sum_{k=1}^{\infty} C_k \cdot y_k. \tag{2.2}$$

- 1) сходится ли?
- 2) если да в каком смысле?
- 3) к какой функции сходится?

Как и при исследовании обычных рядов для ответа на эти вопросы надо исследовать поведение частичной суммы ряда

$$S_n(x) = \sum_{k=1}^n C_k \cdot y_k$$
, при $n \to \infty$.

Возможны следующие варианты

- 1) $\exists \tilde{y}(x)$ такая, что $|\tilde{y}(x) S_n(x)| \to 0$ при $n \to \infty$, $\forall x \in [a, b]$. Этот случай означает поточечную сходимость обобщённого ряда Фурье к $\tilde{y}(x)$.
- 2) $\exists \tilde{\tilde{y}}$ такая, что $\sup_{x \in [a,b]} |\tilde{\tilde{y}} S_n(x)| \to 0$ при $n \to \infty$. Этот случай означает равномерную сходимость обобщённого ряда Фурье к функции $\tilde{\tilde{y}}$.
- 3) $\exists \hat{y}(x)$ такая, что $\|\hat{y} S_n(x)\| \to 0$ при $n \to \infty$. В этом случае говорят, что обобщённый ряд Фурье сходится к функции \hat{y} в среднем.

А к какой функции ряд $\sum_{k=1}^{\infty} C_k \cdot y_k$ может сходиться? Хотя коэффициенты C_k мы считали для функции y(x), сам ряд не обязан к ней сходиться. Пример такой ситуации легко привести. Допустим $\|y-S_n\|\to 0$ при $n\to\infty$ и $C_1\neq 0$. Положим

$$\tilde{y}_1 = y_2, \ \tilde{y}_2 = y_3, \dots, \tilde{y}_k = y_{k+1}, \ \hat{C}_k = (y, \tilde{y}_k) = C_{k+1}.$$

Тогда
$$\widetilde{S}_n = \sum_{k=1}^n \widetilde{C}_k \cdot \widetilde{y}_k = \sum_{k=2}^{n+1} C_k \cdot y_k = S_{n+1} - C_1 \cdot y_1$$
 и $\|y - S_{n+1}\| = \|(y - C_1 \cdot y_1) - \widetilde{S}_n\| \to 0$,

то есть нет сходимости к y(x) для системы $\tilde{y}_1,\ldots,\tilde{y}_k\ldots$

Определение 2.1. Пусть задан некоторый класс функций $\mathcal{K} \subseteq \mathcal{L}_{2}[a,b]$. Будем говорить, что ортонормированная система y_1, \ldots, y_n, \ldots **полна** в \mathcal{K} в среднем {в смысле равномерной сходимости}, если для $\forall y \in \mathcal{K}$ её обобщённый ряд Фурье $\sum_{k=1}^{\infty} C_k \cdot y_k$ сходится к ней в среднем {равномерно}. Полная система играет роль базиса в \mathcal{K} .

К вопросу о полноте мы вернёмся, а пока исследуем некоторые свойства $S_n(x) = \sum_{k=1}^n C_k \cdot y_k$. Пусть $R_n \stackrel{def}{=} y - S_n$. Свойства R_n :

(1) $(R_n, y_j) = 0, j = \overline{1, n}$. Действительно,

$$(R_n, y_j) = (y - \sum_{k=1}^n C_k \cdot y_k, y_j) = (y, y_j) - \sum_{k=1}^n C_k \cdot (y_k, y_j) = C_j - \sum_{k=1}^n C_k \cdot \delta_{kj} = C_j - C_j = 0.$$

$$(2)$$
 $(R_n, S_n) = 0$. Это следует из (1) , ибо $(R_n, S_n) = \sum_{j=1}^n (R_n, C_j \cdot y_j) = 0$.

 $(4) ||S_n||^2 = \sum_{k=1}^n |C_k|^2$, так как

$$(S_n, S_n) = (\sum_{i=1}^n C_i \cdot y_i, \sum_{k=1}^n C_k \cdot y_k) = \sum_{k,i=1}^n C_i \cdot \overline{C}_k \cdot \underbrace{(y_i, y_k)}_{=\delta_{i,k}} = \sum_{k=1}^n |C_k|^2.$$

Из свойств (3) и (4) следует неравенство Бесселя

$$\sum_{k=1}^{\infty} |C_k|^2 \leqslant ||y||^2. \tag{2.3}$$

Действительно, в силу (3), (4) $||y||^2 \geqslant \sum_{k=1}^n |C_k|^2$. В пределе при $n \to \infty$ получаем (2.3). Если в (2.3) имеет место равенство

$$\sum_{k=1}^{\infty} |C_k|^2 = ||y||^2, \tag{2.4}$$

то (2.4) называется равенством Парсеваля. Оно является необходимым и достаточным условием сходимости в среднем обобщённого ряда Фурье к раскладываемой функции.

Доказательство. Достаточность. Пусть (2.4) выполняется. Докажем, что $||R_n|| \to 0$. В силу свойства (3)

$$||R_n||^2 = ||y||^2 - ||S_n||^2 = ||y||^2 - \sum_{k=1}^n |C_k|^2 \to 0, \quad \text{при} \quad n \to \infty$$
 (2.5)

если равенство Парсеваля верно. Достаточность доказана.

Необходимость. Если $||R_n|| \to 0$ то в силу (2.5)

$$\lim_{n \to \infty} \sum_{k=1}^{n} |C_k|^2 - ||y||^2 = 0,$$

то есть (2.4) верно.

Таким образом, если для рассматриваемой ортонормированной системы $y_1, y_2, \ldots, y_n, \ldots$ и $\forall y \in \mathcal{L}_{2}[a,b]$ выполняется (2.4), то система y_1, \ldots, y_n, \ldots полна в \mathcal{K} в среднем.

В заключение отметим, что обобщённый ряд Фурье всегда сходится в среднем. Действительно, мы без доказательства говорили, что пространство $\mathcal{L}_{2}[a,b]$ — полное, то есть любая фундаментальная последовательность из \mathcal{L}_{2} сходится в среднем к какой-то функции из $\mathcal{L}_{2}[a,b]$. Покажем, что последовательность $S_{n}(x)$ — фундаментальна. Имеем (пусть n>m)

$$||S_n - S_m||^2 = \left\|\sum_{k=m+1}^n C_k \cdot y_k\right\|^2 = \sum_{k=m+1}^n |C_k|^2 \to 0, \quad \text{при} \quad m, \, n \to \infty,$$

так как ряд $\sum_{k=1}^{\infty} |C_k|^2$ сходится в силу неравенства Бесселя (2.3). Значит $\exists \hat{y} \in \mathscr{L}_{2}[a,b]$ так, что $\|\hat{y} - S_n\| \to 0$ при $n \to \infty^{\mathbf{i}}$.

Теорема 2.1 (Стеклова). Ортонормированная система собственных функций y_1, \ldots, y_n, \ldots отвечающая всем собственным значениям $\lambda_1 < \lambda_2 < \ldots < \lambda_n < \ldots$ оператора Штурма является полной

- 1) в \mathcal{D}_L в смысле равномерной сходимости.
- 2) в $\mathscr{L}_{2}[a,b]$ в смысле сходимости в среднем.

^іРазумеется в общем случае \hat{y} может не совпадать с y.

Доказательство. Оно сложное, поэтому проведём его поэтапно.

Рассмотрим сначала $y \in \mathcal{D}_L$. Пусть $C_k \stackrel{def}{=} (y, y_k)$, $S_n(x) \stackrel{def}{=} \sum_{k=1}^n C_k \cdot y_k$. Идея доказательства состоит в следующем. Сначала докажем, что

$$||y - S_n(x)|| \to 0 \quad \text{при} \quad n \to \infty. \tag{2.6}$$

Потом покажем, что ряд $\sum_{k=1}^{\infty} C_k \cdot y_k$ равномерно сходится к некоторой (пока неизвестно какой!) непрерывной функции \hat{y} , то есть

$$\lim_{n \to \infty} \max_{x \in [a,b]} \left| \hat{y} - S_n(x) \right| = 0. \tag{2.7}$$

Но из равномерной сходимости следует сходимость в среднем, так как

$$\|\hat{y} - S_n\|^2 = \int_a^b |\hat{y} - S_n(x)|^2 dx \leqslant \max_{x \in [a,b]} |\hat{y} - S_n(x)|^2 \cdot (b-a) \to 0 \quad \text{в силу (2.7)}.$$

Таким образом, мы получаем, что последовательность $S_n(x)$ сходится в среднем к y(x) — в силу (2.6) и к \hat{y} — только что показано. Поэтому

$$||y - \hat{y}|| = ||y - S_n + S_n - \hat{y}|| \le ||y - S_n|| + ||S_n - \hat{y}|| \to 0$$
, при $n \to \infty$.

Значит $\hat{y} = y$ и (2.7) даёт первое утверждение теоремы Стеклова.

Переходим к выполнению программы. Пусть $y \in \mathcal{D}_L$, $R_n = y - S_n$. Доказываем, что

$$||R_n|| = ||y - S_n|| \to 0 \quad \text{при} \quad n \to \infty.$$
 (2.8)

Рассмотрим функцию $\widetilde{R}_n \stackrel{def}{=} R_n / \|R_n\|, \|\widetilde{R}_n\| = 1^{\mathrm{i}}$

Кроме того в силу свойств R_n выполняются равенства $(\widetilde{R}_n, y_j) = 0, j = \overline{1, n}$. Наконец $\widetilde{R}_n(a) = \widetilde{R}_n(b) = 0$, так как $y_j(a) = y_j(b) = 0$. Из этих рассуждений следует, что $\widetilde{R}_n(x) \in \mathcal{K}_{n+1}$ и значит

$$\mathcal{J}[\widetilde{R}_n] \equiv \frac{\mathcal{J}[R_n]}{\|R_n\|^2} \geqslant \lambda_{n+1},$$

то есть

$$\frac{\mathcal{J}[R_n]}{\lambda_{n+1}} \ge \|R_n\|^2 \quad n \gg 1 \tag{2.9}$$

Здесь мы берём столь большое n, что $\lambda_{n+1}>0$ (при $\lambda_{n+1}<0$ надо было бы изменить знак неравенства на противоположный). Покажем, что

$$\sup_{n} \mathcal{J}[R_n] < +\infty. \tag{2.10}$$

Тогда поскольку $\lambda_{n+1} \to +\infty$ при $n \to \infty$ мы получим из (2.9), что

$$\lim_{n \to \infty} ||R_n||^2 = 0, \tag{2.11}$$

то есть доказано равенство (2.8). Оценим $\mathcal{J}[R_n]$. Имеем

$$\mathcal{J}[R_n] = \mathcal{J}[y - S_n] = (L(y - S_n), y - S_n) = (Ly, y) - (LS_n, y) - (Ly, S_n) + (LS_n, S_n). \tag{2.12}$$

 $[\]ddot{}$ Если $\|R_n\|=0$, то (2.8) — очевидно и тогда вводить \widetilde{R}_n не надо, поэтому мы считаем $\|R_n\| \neq 0$.

Очевидно

$$(LS_n, y) = \sum_{k=1}^n C_k \cdot (Ly_k, y) = \sum_{k=1}^n C_k \cdot \lambda_k \cdot (y_k, y) = \sum_{k=1}^n |C_k|^2 \cdot \lambda_k,$$

$$(Ly, S_n) = (y, LS_n) = \sum_{k=1}^n |C_k|^2 \cdot \lambda_k,$$

$$(LS_n, S_n) = \left(\sum_{k=1}^n C_k \cdot \lambda_k \cdot y_k, \sum_{j=1}^n C_j \cdot y_j\right) = \sum_{k,j=1}^n C_k \cdot \overline{C}_j \cdot \lambda_k \cdot \underbrace{(y_k, y_j)}_{\delta_{kj}} = \underbrace{\sum_{k=1}^n |C_k|^2 \cdot \lambda_k}_{= \underline{k}}.$$

Подставляя в (2.12) получим

$$\mathcal{J}[R_n] = \mathcal{J}[y] - \sum_{k=1}^n |C_k|^2 \cdot \lambda_k.$$

Пусть N таково, что $\lambda_n > 0$ при n > N. Тогда при n > N видим, что

$$\mathcal{J}[R_n] = \mathcal{J}[y] - \sum_{k=1}^N |C_k|^2 \cdot \lambda_k - \sum_{k=N+1}^n |C_k|^2 \cdot \lambda_k \leqslant \mathcal{J}[y] - \sum_{k=1}^N |C_k|^2 \cdot \lambda_k \equiv \mathcal{J}[R_N]$$

Значит при n > N $\mathcal{J}[R_n] \leqslant \mathcal{J}[R_N]$, то есть (2.10) доказано.

Нам осталось провести самую сложную часть доказательства. Заметим, что мы нигде не будем использовать тот факт, что функции из \mathcal{D}_L равны нулю на концах отрезка. Это делается специально для того, чтобы приведённое ниже доказательство можно было использовать для оператора Штурма с другими граничными условиями.

Итак, $y \in \mathcal{D}_L$, $C_k = (y, y_k)$. Мы хотим доказать равномерную сходимость ряда $\sum_{k=1}^{\infty} C_k \cdot y_k$. Для этого построим сходящийся числовой ряд с членами, мажорирующими по модулю члены $C_k \cdot y_k$ рассматриваемого функционального ряда. Имеем

$$\left| C_k \cdot y_k \right| \leqslant \left| \left(y, y_k \right) \right| \cdot \left| y_k \right| \leqslant \left| \left(y, \frac{Ly}{\lambda_k} \right) \right| \cdot \left| y_k \right| = \frac{\left| \left(Ly, y_k \right) \right|}{\left| \lambda_k \right|} \cdot \left| y_k \right| = \frac{\left| d_k \right|}{\left| \lambda_k \right|} \cdot \left| y_k \right|, \tag{2.13}$$

где $d_k = (Ly, y_k)$ — обобщённые коэффициенты Фурье функции Ly и поэтому в силу неравенства Бесселя $\left(\sum\limits_{k=1}^{\infty}|d_k|^2\leqslant\|Ly\|^2\right)\,d_k\to 0$ при $k\to\infty$. Переходим к оценке $|y_k(x)|$. Пусть $x,\,x'\in[a,b]$. Имеем

$$\left| \left(y_k^2(x) - y_k^2(x') \right) \right| = \left| \int_{x'}^x \frac{d}{ds} y_k^2(s) \, ds \right| \leqslant 2 \cdot \int_a^b |y_k(s)| \cdot |y_k'(s)| \, ds \leqslant 2 \cdot \sqrt{\int_a^b y_k^2(s) \, ds} \cdot \sqrt{\int_a^b |y_k'(s)|^2 \, ds}, \quad (2.14)$$

где $\int\limits_a^b y_k^2\,ds=1$. Оценим $\int\limits_a^b y_k'^2(s)\,ds$. Имеем

$$(Ly_k, y_k) = \lambda_k = \mathcal{J}[y_k] = \int_a^b (P \cdot y_k^2 + Q \cdot y_k'^2) ds \geqslant P_0 + Q_0 \cdot \int_a^b y_k'^2(s) ds,$$
 (2.15)

где $P_0=\min_{s\in[a,b]}P(s),\ Q_0=\min_{s\in[a,b]}Q(s)>0.$ Отметим, что при $Q_0=0$ наше доказательство не проходит. Из (2.15) следует, что

$$\int_{a}^{b} y_k'^2 ds \geqslant (\lambda_k - P_0) / Q_0 \leqslant \beta_1 \cdot \lambda_k, \quad k \gg 1$$
(2.16)

для некоторой константы $\beta_1 > 0$. Подставляя (2.16) в (2.14) мы получим

$$y_k^2(x) \leqslant \beta_2 \cdot \sqrt{\lambda_k} + y_k^2(x'). \tag{2.16a}$$

Интегрируя здесь по x' от a до b получим

$$(b-a) \cdot y_k^2(x) \leqslant \beta_2 \cdot \sqrt{\lambda_k} \cdot (b-a) + 1.$$

Откуда

$$y_k^2(x) \leqslant \beta_3 \cdot \sqrt{\lambda_k},$$

где $\beta_3 > 0$ — некоторое число. Следовательно

$$|y_k(x)| \leqslant \beta_4 \cdot \lambda_k^{1/4}, \quad k \gg 1, \tag{2.17}$$

где $\beta_4 > 0$ — фиксированное число.

Подставим в (2.15) оценку (2.17). Имеем

$$\left| C_k \cdot y_k \right| \leqslant \frac{|d_k|}{|\lambda_k|} \cdot |y_k| \leqslant \frac{\beta_5}{|\lambda_k|^{3/4}}, \quad \beta_5 > 0.$$
 (2.18)

С помощью теоремы сравнения мы ранее установили, что скорость роста собственных значений λ_k есть k^2 , или точнее, $\lambda_k \geqslant \beta_6 \cdot k^2$ для некоторого $\beta_6 > 0$. Подставляя в (2.18) окончательно получаем

$$|C_k \cdot y_k| \le \frac{\beta_5}{\beta_6 \cdot k^{3/2}} \le \beta_7 \cdot \frac{1}{k^{3/2}}.$$
 (2.19)

Числовой ряд $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$ сходится, значит ряд $\sum_{k=1}^{\infty} C_k \cdot y_k$ сходится равномерно к некоторой непрерывной функции $\hat{y}(x)$. А как мы доказали ранее, $\hat{y}(x) \equiv y(x)$ и тем самым мы доказали первое утверждение теоремы Стеклова — о равномерной сходимости обобщённого ряда Фурье для функции из \mathcal{D}_L .

Пусть теперь $y(x) \in \mathcal{L}_{2}[a,b], C_{k} = (y,y_{k})$. Составляем обобщённый ряд Фурье $\sum_{k=1}^{\infty} C_{k} \cdot y_{k}$. Мы уже говорили, что поскольку последовательность частных сумм фундаментальна, то есть

$$||S_n - S_m||^2 = \sum_{k=m+1}^n |C_k|^2 \to 0, \quad m, n \to \infty, n > m,$$

и поэтому ряд $\sum\limits_{k=1}^{\infty} C_k \cdot y_k$ сходится в среднем к некоторой функции $\tilde{y} \in \mathscr{L}_{2}(a,b),$ то есть

$$\tilde{y}(x) = \sum_{k=1}^{\infty} C_k \cdot y_k, \tag{2.20}$$

где
$$C_j = (\tilde{y}, y_j)$$
, ибо $(\tilde{y}, y_j) = \sum_{k=1}^{\infty} C_k \cdot \underbrace{(y_k, y_j)}_{\delta_{k,j}} = C_j$.

Следовательно, обобщённые коэффициенты Фурье одинаковы у функций \tilde{y} и y

$$(\tilde{y}, y_j) = (y, y_j) \quad \Rightarrow \quad (\tilde{y} - y, y_j) = 0.$$
 (2.21)

Таким образом функция $z\stackrel{def}{=} \tilde{y}-y$ ортогональна к любой собственной функции оператора Штурма и значит $z\perp S_n$. Отсюда следует, что z(x) ортогональна к $\forall f(x)\in\mathcal{D}_L$. Докажем это. Пусть $\varepsilon>0$, так как обобщённый ряд Фурье для функции f(x) сходится к ней равномерно — согласно первой части теоремы Стеклова — то

по
$$\varepsilon > 0$$
 $\exists n$, что $\left| f(x) - \sum_{k=1}^n \alpha_k \cdot y_k(x) \right| < \varepsilon$, где $\alpha_k = (f, y_k)$.

Имеем, полагая $S_n = \sum_{k=1}^n \alpha_k \cdot y_k$

$$\left| \left(z, f \right) \right| = \left| \left(z, f - S_n \right) \right| \leqslant \|z\| \cdot \|f - S_n\| \leqslant \varepsilon \cdot \sqrt{b - a} \cdot \|z\|. \tag{2.22}$$

Так как $\|f-S_n\| = \sqrt{\int\limits_a^b |f-S_n|^2 \, dx} \leqslant \varepsilon \cdot \sqrt{b-a}$. Так как $\varepsilon > 0$ — любое число, то из (2.22) следует, что

$$(z, f) = 0, \quad \forall f \in \mathcal{D}_L.$$
 (2.23)

Можно доказать, что любую функцию из $\mathscr{L}_{2}[a,b]$ можно аппроксимировать с заданной точностью $\varepsilon>0$ по норме \mathscr{L}_{2} функцией из \mathcal{D}_{L}^{i} . Пусть $f_{\varepsilon}(x)\in\mathcal{D}_{L}$ и

$$||z - f_{\varepsilon}||^{2} < \varepsilon \quad \Rightarrow \quad (z - f_{\varepsilon}, z - f_{\varepsilon}) = ||z||^{2} - (f_{\varepsilon}, z) - (z, f_{\varepsilon}) + ||f_{\varepsilon}||^{2} < \varepsilon. \tag{2.24}$$

Но в силу (2.23) $(f_{\varepsilon}, z) = (z, f_{\varepsilon}) = 0$. Так как $f_{\varepsilon} \in \mathcal{D}_L$. Поэтому из (2.24) следует, что $||z||^2 < \varepsilon$, то есть

$$||z|| = 0 \quad \Rightarrow \quad ||y - \tilde{y}|| = 0.$$

Значит, сумма \tilde{y} обобщённого ряда Фурье, написанного для функции y(x), есть y(x). Таким образом второе утверждение теоремы Стеклова доказано.

^іЭтот факт — без доказательства.

Лекция 6

На прошлой лекции мы доказали принцип минимакса. Он редко используется на практике, но с его помощью мы сейчас получим результат, имеющий как теоретическое, так и практическое значение.

1. Теорема сравнения.

Пусть
$$Ly = -\frac{d}{dx}(Q \cdot y') + P \cdot y$$
 и $\widetilde{L}y = -\frac{d}{dx}(\widetilde{Q} \cdot y') + \widetilde{P} \cdot y$

— операторы Штурма с областью определения

$$\mathcal{D}_L = \mathcal{D}_{\widetilde{L}} = \left\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a) = y(b) = 0 \right\}$$

Обозначим через λ_k и $\widetilde{\lambda}_k$ их собственные значения, $k=1,2,\ldots$

Теорема 1.1 (теорема сравнения). Если $Q\geqslant\widetilde{Q}$ и $P\geqslant\widetilde{P}$, то $\lambda_k\geqslant\widetilde{\lambda}_k$, то есть бо́льшим коэффициентам отвечают бо́льшие собственные значения

Доказательство. Пусть $\varphi_1, \ldots, \varphi_k$ — произвольный набор функций из $\mathcal{L}_{2}^{[a,b]}, y \in \mathcal{K}, y \perp \varphi_1, \ldots, \varphi_k$. В силу неравенств для коэффициентов

$$\mathcal{J}[y] = \int_{\substack{y \in \mathcal{K}, \\ y \perp \varphi_1, \dots, \varphi_k}}^{b} \left(Q \cdot y'^2 + P \cdot y^2 \right) dx \geqslant \int_{a}^{b} \left(\widetilde{Q} \cdot y'^2 + \widetilde{P} \cdot y^2 \right) dx = \widetilde{\mathcal{J}}[y]. \tag{1.1}$$

Фиксируем слева y, а справа возьмём минимум по всем $\tilde{y}, \, \tilde{y} \in \mathcal{K}, \, \tilde{y} \perp \varphi_1, \dots, \varphi_k$

$$\mathcal{J}[y] \underset{\substack{y \in \mathcal{K}, \\ y \perp \varphi_1, \dots, \varphi_k}}{\min} \geqslant \min_{\tilde{y} \in \mathcal{K}, \tilde{\mathcal{J}}[\tilde{y}]} \widetilde{\mathcal{J}}[\tilde{y}].$$
(1.2)

Так как правая часть не зависит от y, то неравенство сохранится при взятии слева минимума по y:

$$\min_{\substack{y \in \mathcal{K}, \\ y \perp \varphi_1, \dots, \varphi_k}} \mathcal{J}[y] \geqslant \min_{\substack{\tilde{y} \in \mathcal{K}, \\ \tilde{y} \perp \varphi_1, \dots, \varphi_k}} \widetilde{\mathcal{J}}[\tilde{y}]. \tag{1.3}$$

Фиксируем набор $\varphi_1, \ldots, \varphi_k$ справа в (1.3), а слева возьмём максимум по всем наборам

$$\max_{\widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}} \min_{\substack{y \in \mathcal{K}, \\ y \perp \widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}}} \widetilde{\mathcal{J}}[y] \geqslant \min_{\widetilde{y} \in \mathcal{K}, \\ \widetilde{y} \perp \varphi_{1},\dots,\varphi_{k}} \widetilde{\mathcal{J}}[\widetilde{y}]. \tag{1.4}$$

Так как левая часть не зависит от $\varphi_1, \ldots, \varphi_k$ (то есть (1.4) верно при $\forall \varphi_1, \ldots, \varphi_k$) возьмём в (1.4) справа максимум по $\varphi_1, \ldots, \varphi_k$

$$\max_{\widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}} \min_{\substack{y \in \mathcal{K}, \\ y \perp \widetilde{\varphi}_{1},\dots,\widetilde{\varphi}_{k}}} \mathcal{J}[y] \geqslant \max_{\varphi_{1},\dots,\varphi_{k}} \min_{\substack{\widetilde{y} \in \mathcal{K}, \\ \widetilde{y} \perp \varphi_{1},\dots,\varphi_{k}}} \widetilde{\mathcal{J}}[\widetilde{y}]. \tag{1.5}$$

В силу принципа минимакса слева в (1.5) λ_{k+1} , справа $\widetilde{\lambda}_{k+1}$, то есть (1.5) это

$$\lambda_{k+1} \geqslant \widetilde{\lambda}_{k+1}.\tag{1.6}$$

Теорема доказана. □

Данная теорема позволяет получить двусторонние оценки для собственных значений оператора Штурма с переменными коэффициентами. Пусть $\widetilde{C}_1 \stackrel{def}{=} \min_{x \in [a,b]} Q(x), \ \widetilde{C}_2 \stackrel{def}{=} \min_{x \in [a,b]} P(x)$. Собственные значения оператора Штурма $\widetilde{L}y = -\frac{d}{dx} \left(\widetilde{Q} \cdot y' \right) + \widetilde{P} \cdot y$ с $\widetilde{Q} = \widetilde{C}_1, \ \widetilde{P} = \widetilde{C}_2$ известны $\widetilde{\lambda}_k = \widetilde{C}_1 \cdot \frac{(\pi \cdot k)^2}{(b-a)^2} + \widetilde{C}_2$.

В силу теоремы сравнения

$$\lambda_k \geqslant \widetilde{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right) + \widetilde{C}_2. \tag{1.7}$$

С другой стороны, если положить $\widehat{C}_1 \stackrel{def}{=} \max_{x \in [a,b]} Q(x)$, $\widehat{C}_2 \stackrel{def}{=} \max_{x \in [a,b]} P(x)$ и рассмотреть оператор Штурма $\widehat{L}y = -\frac{d}{dx} \Big(\widehat{Q} \cdot y' \Big) + \widehat{P} \cdot y$ с $\widehat{Q} = \widehat{C}_1$, $\widehat{P} = \widehat{C}_2$, то поскольку $\widehat{Q} \geqslant Q$, $\widehat{P} \geqslant P$, то для собственных значений $\widehat{\lambda}_k$ оператора \widehat{L} будет верно неравенство

$$\hat{\lambda}_k \geqslant \lambda_k,$$
 (1.8)

но

$$\widehat{\lambda}_k = \widehat{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right)^2 + \widehat{C}_2,$$

поэтому в силу (1.7), (1.8) мы получаем

$$\widehat{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right)^2 + \widehat{C}_2 \geqslant \lambda_k \geqslant \widetilde{C}_1 \cdot \left(\frac{\pi \cdot k}{b-a}\right)^2 + \widetilde{C}_2. \tag{1.9}$$

Разумеется, здесь мы рассматриваем случай, когда $\widetilde{C}_1>0,\,\widetilde{C}_2$ и \widehat{C}_2 — конечны.

Из (1.9) следует, что для $k\gg 1$ и некоторой константы d>0

$$\lambda_k \geqslant d \cdot k^2. \tag{1.10}$$

2. Разложение по собственным функциям оператора Штурма. Неравенство Бесселя, равенство Парсеваля. Теорема Стеклова.

Пусть $y_1, y_2, \ldots, y_n, \ldots$ — бесконечная ортонормированная система $(y_i, y_j) = \delta_{ij}$ и $y \in \mathcal{L}_{2}[a,b]$. Составим так называемые обобщённые коэффициенты Фурье

$$C_k = (y, y_k) = \int_a^b y \cdot \overline{y}_k \, dx \tag{2.1}$$

и обобщённый ряд Фурье, отвечающий функции y(x):

$$y(x) \sim \sum_{k=1}^{\infty} C_k \cdot y_k. \tag{2.2}$$

- 1) сходится ли?
- 2) если да в каком смысле?
- 3) к какой функции сходится?

Как и при исследовании обычных рядов для ответа на эти вопросы надо исследовать поведение частичной суммы ряда

$$S_n(x) = \sum_{k=1}^n C_k \cdot y_k$$
, при $n \to \infty$.

Возможны следующие варианты

- 1) $\exists \tilde{y}(x)$ такая, что $|\tilde{y}(x) S_n(x)| \to 0$ при $n \to \infty$, $\forall x \in [a, b]$. Этот случай означает поточечную сходимость обобщённого ряда Фурье к $\tilde{y}(x)$.
- 2) $\exists \tilde{\tilde{y}}$ такая, что $\sup_{x \in [a,b]} |\tilde{\tilde{y}} S_n(x)| \to 0$ при $n \to \infty$. Этот случай означает равномерную сходимость обобщённого ряда Фурье к функции $\tilde{\tilde{y}}$.
- 3) $\exists \hat{y}(x)$ такая, что $\|\hat{y} S_n(x)\| \to 0$ при $n \to \infty$. В этом случае говорят, что обобщённый ряд Фурье сходится к функции \hat{y} в среднем.

А к какой функции ряд $\sum_{k=1}^{\infty} C_k \cdot y_k$ может сходиться? Хотя коэффициенты C_k мы считали для функции y(x), сам ряд не обязан к ней сходиться. Пример такой ситуации легко привести. Допустим $\|y-S_n\|\to 0$ при $n\to\infty$ и $C_1\neq 0$. Положим

$$\tilde{y}_1 = y_2, \ \tilde{y}_2 = y_3, \dots, \tilde{y}_k = y_{k+1}, \ \hat{C}_k = (y, \tilde{y}_k) = C_{k+1}.$$

Тогда
$$\widetilde{S}_n = \sum_{k=1}^n \widetilde{C}_k \cdot \widetilde{y}_k = \sum_{k=2}^{n+1} C_k \cdot y_k = S_{n+1} - C_1 \cdot y_1$$
 и $\|y - S_{n+1}\| = \|(y - C_1 \cdot y_1) - \widetilde{S}_n\| \to 0$,

то есть нет сходимости к y(x) для системы $\tilde{y}_1,\ldots,\tilde{y}_k\ldots$

Определение 2.1. Пусть задан некоторый класс функций $\mathcal{K} \subseteq \mathcal{L}_{2}[a,b]$. Будем говорить, что ортонормированная система y_1, \ldots, y_n, \ldots **полна** в \mathcal{K} в среднем {в смысле равномерной сходимости}, если для $\forall y \in \mathcal{K}$ её обобщённый ряд Фурье $\sum_{k=1}^{\infty} C_k \cdot y_k$ сходится к ней в среднем {равномерно}. Полная система играет роль базиса в \mathcal{K} .

К вопросу о полноте мы вернёмся, а пока исследуем некоторые свойства $S_n(x) = \sum_{k=1}^n C_k \cdot y_k$. Пусть $R_n \stackrel{def}{=} y - S_n$. Свойства R_n :

(1) $(R_n, y_j) = 0, j = \overline{1, n}$. Действительно,

$$(R_n, y_j) = (y - \sum_{k=1}^n C_k \cdot y_k, y_j) = (y, y_j) - \sum_{k=1}^n C_k \cdot (y_k, y_j) = C_j - \sum_{k=1}^n C_k \cdot \delta_{kj} = C_j - C_j = 0.$$

$$(2)$$
 $(R_n, S_n) = 0$. Это следует из (1) , ибо $(R_n, S_n) = \sum_{j=1}^n (R_n, C_j \cdot y_j) = 0$.

$$(4) ||S_n||^2 = \sum_{k=1}^n |C_k|^2$$
, так как

$$(S_n, S_n) = (\sum_{i=1}^n C_i \cdot y_i, \sum_{k=1}^n C_k \cdot y_k) = \sum_{k,i=1}^n C_i \cdot \overline{C}_k \cdot \underbrace{(y_i, y_k)}_{=\delta_{i,k}} = \sum_{k=1}^n |C_k|^2.$$

Из свойств (3) и (4) следует неравенство Бесселя

$$\sum_{k=1}^{\infty} |C_k|^2 \leqslant ||y||^2. \tag{2.3}$$

Действительно, в силу (3), (4) $||y||^2 \geqslant \sum_{k=1}^n |C_k|^2$. В пределе при $n \to \infty$ получаем (2.3). Если в (2.3) имеет место равенство

$$\sum_{k=1}^{\infty} |C_k|^2 = ||y||^2, \tag{2.4}$$

то (2.4) называется равенством Парсеваля. Оно является необходимым и достаточным условием сходимости в среднем обобщённого ряда Фурье к раскладываемой функции.

Доказательство. Достаточность. Пусть (2.4) выполняется. Докажем, что $||R_n|| \to 0$. В силу свойства (3)

$$||R_n||^2 = ||y||^2 - ||S_n||^2 = ||y||^2 - \sum_{k=1}^n |C_k|^2 \to 0, \quad \text{при} \quad n \to \infty$$
 (2.5)

если равенство Парсеваля верно. Достаточность доказана.

Необходимость. Если $||R_n|| \to 0$ то в силу (2.5)

$$\lim_{n \to \infty} \sum_{k=1}^{n} |C_k|^2 - ||y||^2 = 0,$$

то есть (2.4) верно.

Таким образом, если для рассматриваемой ортонормированной системы $y_1, y_2, \ldots, y_n, \ldots$ и $\forall y \in \mathcal{X} \subseteq \mathcal{L}_{2[a,b]}$ выполняется (2.4), то система y_1, \ldots, y_n, \ldots полна в \mathcal{K} в среднем.

В заключение отметим, что обобщённый ряд Фурье всегда сходится в среднем. Действительно, мы без доказательства говорили, что пространство $\mathcal{L}_{2}[a,b]$ — полное, то есть любая фундаментальная последовательность из \mathcal{L}_{2} сходится в среднем к какой-то функции из $\mathcal{L}_{2}[a,b]$. Покажем, что последовательность $S_{n}(x)$ — фундаментальна. Имеем (пусть n>m)

$$||S_n - S_m||^2 = \left\|\sum_{k=m+1}^n C_k \cdot y_k\right\|^2 = \sum_{k=m+1}^n |C_k|^2 \to 0, \quad \text{при} \quad m, n \to \infty,$$

так как ряд $\sum_{k=1}^{\infty} |C_k|^2$ сходится в силу неравенства Бесселя (2.3). Значит $\exists \hat{y} \in \mathscr{L}_{2}[a,b]$ так, что $\|\hat{y} - S_n\| \to 0$ при $n \to \infty^{\mathbf{i}}$.

ⁱРазумеется в общем случае \hat{y} может не совпадать с y.

Теорема 2.1 (Стеклова). Ортонормированная система собственных функций y_1, \ldots, y_n, \ldots отвечающая всем собственным значениям $\lambda_1 < \lambda_2 < \ldots < \lambda_n < \ldots$ оператора Штурма является *полной*

- 1) в \mathcal{D}_L в смысле равномерной сходимости.
- 2) в $\mathscr{L}_{2}[a,b]$ в смысле сходимости в среднем.

Доказательство. Оно сложное, поэтому проведём его поэтапно.

Рассмотрим сначала $y \in \mathcal{D}_L$. Пусть $C_k \stackrel{def}{=} (y, y_k)$, $S_n(x) \stackrel{def}{=} \sum_{k=1}^n C_k \cdot y_k$. Идея доказательства состоит в следующем. Сначала докажем, что

$$||y - S_n(x)|| \to 0 \quad \text{при} \quad n \to \infty. \tag{2.6}$$

Потом покажем, что ряд $\sum\limits_{k=1}^{\infty} C_k \cdot y_k$ равномерно сходится к некоторой (пока неизвестно какой!) непрерывной функции \hat{y} , то есть

$$\lim_{n \to \infty} \max_{x \in [a,b]} \left| \hat{y} - S_n(x) \right| = 0. \tag{2.7}$$

Но из равномерной сходимости следует сходимость в среднем, так как

$$\|\hat{y} - S_n\|^2 = \int_a^b |\hat{y} - S_n(x)|^2 dx \leqslant \max_{x \in [a,b]} |\hat{y} - S_n(x)|^2 \cdot (b-a) \to 0 \quad \text{в силу (2.7)}.$$

Таким образом, мы получаем, что последовательность $S_n(x)$ сходится в среднем к y(x) — в силу (2.6) и к \hat{y} — только что показано. Поэтому

$$||y - \hat{y}|| = ||y - S_n + S_n - \hat{y}|| \le ||y - S_n|| + ||S_n - \hat{y}|| \to 0$$
, при $n \to \infty$.

Значит $\hat{y} = y$ и (2.7) даёт первое утверждение теоремы Стеклова.

Переходим к выполнению программы. Пусть $y \in \mathcal{D}_L, R_n = y - S_n$. Доказываем, что

$$||R_n|| = ||y - S_n|| \to 0 \quad \text{при} \quad n \to \infty.$$
 (2.8)

Рассмотрим функцию $\widetilde{R}_n \stackrel{def}{=} R_n / \|R_n\|, \|\widetilde{R}_n\| = 1^{\mathrm{i}}$

Кроме того в силу свойств R_n выполняются равенства $(\widetilde{R}_n, y_j) = 0, j = \overline{1, n}$. Наконец $\widetilde{R}_n(a) = \widetilde{R}_n(b) = 0$, так как $y_j(a) = y_j(b) = 0$. Из этих рассуждений следует, что $\widetilde{R}_n(x) \in \mathcal{K}_{n+1}$ и значит

$$\mathcal{J}[\widetilde{R}_n] \equiv \frac{\mathcal{J}[R_n]}{\|R_n\|^2} \geqslant \lambda_{n+1},$$

то есть

$$\frac{\mathcal{J}[R_n]}{\lambda_{n+1}} \ge \|R_n\|^2 \quad n \gg 1 \tag{2.9}$$

Здесь мы берём столь большое n, что $\lambda_{n+1}>0$ (при $\lambda_{n+1}<0$ надо было бы изменить знак неравенства на противоположный). Покажем, что

$$\sup_{n} \mathcal{J}[R_n] < +\infty. \tag{2.10}$$

Тогда поскольку $\lambda_{n+1} \to +\infty$ при $n \to \infty$ мы получим из (2.9), что

$$\lim_{n \to \infty} \|R_n\|^2 = 0, \tag{2.11}$$

то есть доказано равенство (2.8). Оценим $\mathcal{J}[R_n]$. Имеем

$$\mathcal{J}[R_n] = \mathcal{J}[y - S_n] = (L(y - S_n), y - S_n) = (Ly, y) - (LS_n, y) - (Ly, S_n) + (LS_n, S_n). \tag{2.12}$$

 $^{^{\}mathrm{i}}$ Если $\|R_n\|=0$, то (2.8) — очевидно и тогда вводить \widetilde{R}_n не надо, поэтому мы считаем $\|R_n\| \neq 0$.

Очевидно

$$(LS_n, y) = \sum_{k=1}^n C_k \cdot (Ly_k, y) = \sum_{k=1}^n C_k \cdot \lambda_k \cdot (y_k, y) = \sum_{k=1}^n |C_k|^2 \cdot \lambda_k,$$

$$(Ly, S_n) = (y, LS_n) = \sum_{k=1}^n |C_k|^2 \cdot \lambda_k,$$

$$(LS_n, S_n) = \left(\sum_{k=1}^n C_k \cdot \lambda_k \cdot y_k, \sum_{j=1}^n C_j \cdot y_j\right) = \sum_{k,j=1}^n C_k \cdot \overline{C}_j \cdot \lambda_k \cdot \underbrace{(y_k, y_j)}_{\delta_{kj}} = \underbrace{\sum_{k=1}^n |C_k|^2 \cdot \lambda_k}_{= \underline{k}}.$$

Подставляя в (2.12) получим

$$\mathcal{J}[R_n] = \mathcal{J}[y] - \sum_{k=1}^n |C_k|^2 \cdot \lambda_k.$$

Пусть N таково, что $\lambda_n > 0$ при n > N. Тогда при n > N видим, что

$$\mathcal{J}[R_n] = \mathcal{J}[y] - \sum_{k=1}^N |C_k|^2 \cdot \lambda_k - \sum_{k=N+1}^n |C_k|^2 \cdot \lambda_k \leqslant \mathcal{J}[y] - \sum_{k=1}^N |C_k|^2 \cdot \lambda_k \equiv \mathcal{J}[R_N]$$

Значит при n > N $\mathcal{J}[R_n] \leqslant \mathcal{J}[R_N]$, то есть (2.10) доказано.

Нам осталось провести самую сложную часть доказательства. Заметим, что мы нигде не будем использовать тот факт, что функции из \mathcal{D}_L равны нулю на концах отрезка. Это делается специально для того, чтобы приведённое ниже доказательство можно было использовать для оператора Штурма с другими граничными условиями.

Итак, $y \in \mathcal{D}_L$, $C_k = (y, y_k)$. Мы хотим доказать равномерную сходимость ряда $\sum_{k=1}^{\infty} C_k \cdot y_k$. Для этого построим сходящийся числовой ряд с членами, мажорирующими по модулю члены $C_k \cdot y_k$ рассматриваемого функционального ряда. Имеем

$$\left| C_k \cdot y_k \right| \leqslant \left| \left(y, y_k \right) \right| \cdot \left| y_k \right| \leqslant \left| \left(y, \frac{Ly}{\lambda_k} \right) \right| \cdot \left| y_k \right| = \frac{\left| \left(Ly, y_k \right) \right|}{\left| \lambda_k \right|} \cdot \left| y_k \right| = \frac{\left| d_k \right|}{\left| \lambda_k \right|} \cdot \left| y_k \right|, \tag{2.13}$$

где $d_k = (Ly, y_k)$ — обобщённые коэффициенты Фурье функции Ly и поэтому в силу неравенства Бесселя $\left(\sum\limits_{k=1}^{\infty}|d_k|^2\leqslant\|Ly\|^2\right)\,d_k\to 0$ при $k\to\infty$. Переходим к оценке $|y_k(x)|$. Пусть $x,\,x'\in[a,b]$. Имеем

$$\left| \left(y_k^2(x) - y_k^2(x') \right) \right| = \left| \int_{x'}^{x} \frac{d}{ds} y_k^2(s) \, ds \right| \leqslant 2 \cdot \int_{a}^{b} |y_k(s)| \cdot |y_k'(s)| \, ds \leqslant 2 \cdot \sqrt{\int_{a}^{b} y_k^2(s) \, ds} \cdot \sqrt{\int_{a}^{b} |y_k'(s)|^2 \, ds}, \quad (2.14)$$

где $\int\limits_a^b y_k^2\,ds=1$. Оценим $\int\limits_a^b y_k'^2(s)\,ds$. Имеем

$$(Ly_k, y_k) = \lambda_k = \mathcal{J}[y_k] = \int_a^b (P \cdot y_k^2 + Q \cdot y_k'^2) ds \geqslant P_0 + Q_0 \cdot \int_a^b y_k'^2(s) ds,$$
 (2.15)

где $P_0=\min_{s\in[a,b]}P(s),\ Q_0=\min_{s\in[a,b]}Q(s)>0.$ Отметим, что при $Q_0=0$ наше доказательство не проходит. Из (2.15) следует, что

$$\int_{a}^{b} y_k'^2 ds \geqslant (\lambda_k - P_0) / Q_0 \leqslant \beta_1 \cdot \lambda_k, \quad k \gg 1$$
(2.16)

для некоторой константы $\beta_1 > 0$. Подставляя (2.16) в (2.14) мы получим

$$y_k^2(x) \leqslant \beta_2 \cdot \sqrt{\lambda_k} + y_k^2(x'). \tag{2.16a}$$

Интегрируя здесь по x' от a до b получим

$$(b-a) \cdot y_k^2(x) \leqslant \beta_2 \cdot \sqrt{\lambda_k} \cdot (b-a) + 1.$$

Откуда

$$y_k^2(x) \leqslant \beta_3 \cdot \sqrt{\lambda_k},$$

где $\beta_3 > 0$ — некоторое число. Следовательно

$$|y_k(x)| \leqslant \beta_4 \cdot \lambda_k^{1/4}, \quad k \gg 1, \tag{2.17}$$

где $\beta_4 > 0$ — фиксированное число.

Подставим в (2.15) оценку (2.17). Имеем

$$\left| C_k \cdot y_k \right| \leqslant \frac{|d_k|}{|\lambda_k|} \cdot |y_k| \leqslant \frac{\beta_5}{|\lambda_k|^{3/4}}, \quad \beta_5 > 0.$$
 (2.18)

С помощью теоремы сравнения мы ранее установили, что скорость роста собственных значений λ_k есть k^2 , или точнее, $\lambda_k \geqslant \beta_6 \cdot k^2$ для некоторого $\beta_6 > 0$. Подставляя в (2.18) окончательно получаем

$$|C_k \cdot y_k| \le \frac{\beta_5}{\beta_6 \cdot k^{3/2}} \le \beta_7 \cdot \frac{1}{k^{3/2}}.$$
 (2.19)

Числовой ряд $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$ сходится, значит ряд $\sum_{k=1}^{\infty} C_k \cdot y_k$ сходится равномерно к некоторой непрерывной функции $\hat{y}(x)$. А как мы доказали ранее, $\hat{y}(x) \equiv y(x)$ и тем самым мы доказали первое утверждение теоремы Стеклова — о равномерной сходимости обобщённого ряда Фурье для функции из \mathcal{D}_L .

Пусть теперь $y(x) \in \mathcal{L}_{2}[a,b], C_{k} = (y,y_{k})$. Составляем обобщённый ряд Фурье $\sum_{k=1}^{\infty} C_{k} \cdot y_{k}$. Мы уже говорили, что поскольку последовательность частных сумм фундаментальна, то есть

$$||S_n - S_m||^2 = \sum_{k=m+1}^n |C_k|^2 \to 0, \quad m, n \to \infty, n > m,$$

и поэтому ряд $\sum\limits_{k=1}^{\infty} C_k \cdot y_k$ сходится в среднем к некоторой функции $\tilde{y} \in \mathscr{L}_{2}(a,b),$ то есть

$$\tilde{y}(x) = \sum_{k=1}^{\infty} C_k \cdot y_k, \tag{2.20}$$

где
$$C_j = (\tilde{y}, y_j)$$
, ибо $(\tilde{y}, y_j) = \sum_{k=1}^{\infty} C_k \cdot \underbrace{(y_k, y_j)}_{\delta_{k,j}} = C_j$.

Следовательно, обобщённые коэффициенты Фурье одинаковы у функций \tilde{y} и y

$$(\tilde{y}, y_j) = (y, y_j) \quad \Rightarrow \quad (\tilde{y} - y, y_j) = 0.$$
 (2.21)

Таким образом функция $z \stackrel{def}{=} \tilde{y} - y$ ортогональна к любой собственной функции оператора Штурма и значит $z \perp S_n$. Отсюда следует, что z(x) ортогональна к $\forall f(x) \in \mathcal{D}_L$. Докажем это. Пусть $\varepsilon > 0$, так как обобщённый ряд Фурье для функции f(x) сходится к ней равномерно — согласно первой части теоремы Стеклова — то

по
$$\varepsilon > 0$$
 $\exists n$, что $\left| f(x) - \sum_{k=1}^n \alpha_k \cdot y_k(x) \right| < \varepsilon$, где $\alpha_k = (f, y_k)$.

52 Лекция 6.

Имеем, полагая $S_n = \sum_{k=1}^n \alpha_k \cdot y_k$

$$\left| \left(z, f \right) \right| = \left| \left(z, f - S_n \right) \right| \leqslant \|z\| \cdot \|f - S_n\| \leqslant \varepsilon \cdot \sqrt{b - a} \cdot \|z\|. \tag{2.22}$$

Так как $\|f - S_n\| = \sqrt{\int\limits_a^b |f - S_n|^2 \, dx} \leqslant \varepsilon \cdot \sqrt{b-a}$. Так как $\varepsilon > 0$ — любое число, то из (2.22) следует, что

$$(z, f) = 0, \quad \forall f \in \mathcal{D}_L.$$
 (2.23)

Можно доказать, что любую функцию из $\mathscr{L}_{2}[a,b]$ можно аппроксимировать с заданной точностью $\varepsilon>0$ по норме \mathscr{L}_{2} функцией из \mathcal{D}_{L}^{i} . Пусть $f_{\varepsilon}(x)\in\mathcal{D}_{L}$ и

$$||z - f_{\varepsilon}||^{2} < \varepsilon \quad \Rightarrow \quad (z - f_{\varepsilon}, z - f_{\varepsilon}) = ||z||^{2} - (f_{\varepsilon}, z) - (z, f_{\varepsilon}) + ||f_{\varepsilon}||^{2} < \varepsilon. \tag{2.24}$$

Но в силу (2.23) $(f_{\varepsilon}, z) = (z, f_{\varepsilon}) = 0$. Так как $f_{\varepsilon} \in \mathcal{D}_L$. Поэтому из (2.24) следует, что $||z||^2 < \varepsilon$, то есть

$$||z|| = 0 \quad \Rightarrow \quad ||y - \tilde{y}|| = 0.$$

Значит, сумма \tilde{y} обобщённого ряда Фурье, написанного для функции y(x), есть y(x). Таким образом второе утверждение теоремы Стеклова доказано.

^іЭтот факт — без доказательства.

Лекция 7

1. Оператор Штурма с другими граничными условиями.

В физических задачах, которые приводят к нахождению собственных значений оператора Штурма кроме граничных условий y(a) = y(b) = 0 встречаются и другие типы граничных условий. Поэтому возникает необходимость в изучении подобных задач.

Общий вид граничных условий:

$$\begin{cases} \alpha_1 \cdot y'(a) + \alpha_2 \cdot y(a) = 0, \\ \beta_1 \cdot y'(b) + \beta_2 \cdot y(b) = 0, \end{cases}$$

где $\alpha_j,\,\beta_j$ — фиксированные числа. Если $\alpha_1=0$ (или $\beta_1=0$), то тогда граничные условия переходят соответственно в

$$\alpha_2 \cdot y(a) = 0 \quad \Rightarrow \quad y(a) = 0 \quad \text{ (или в } \beta_2 \cdot y(b) = 0 \quad \Rightarrow \quad y(b) = 0).$$

Поэтому мы будем считать $\alpha_1 \neq 0, \ \beta_1 \neq 0.$ Тогда поделив на α_1 и β_1 мы получим

$$y'(a) = -\frac{\alpha_2}{\alpha_1} \cdot y(a), \quad y'(b) = -\frac{\beta_2}{\beta_1} \cdot y(b).$$

Положим $\gamma_1 \stackrel{def}{=} -\alpha_2/\alpha_1, \ \gamma_2 \stackrel{def}{=} \beta_2/\beta_1.$ В физических задачах $\gamma_1 \gamma_2 \geqslant 0$. Таким образом мы будем рассматривать граничные условия

$$y'(a) = \gamma_1 \cdot y(a), \ y'(b) = -\gamma_2 \cdot y(b), \quad \gamma_1, \gamma_2 \geqslant 0.$$
 (1.1)

Таким образом в качестве области определения оператора Штурма

$$Ly = -\frac{d}{dx}(Q \cdot y') + P \cdot y$$

мы возьмём область

$$\mathcal{D}_{L}^{0} \stackrel{\text{def}}{=} \left\{ y(x) | y \in \mathcal{C}_{[a,b]}^{2}, \ y'(a) = \gamma_{1} \cdot y(a), \ y'(b) = -\gamma_{2} \cdot y(b), \ \gamma_{1}, \ \gamma_{2} \geqslant 0 \right\}$$

Как и при изучении оператора L в $\mathcal{D}_L^{\text{ii}}$, мы в первую очередь рассмотрим оператор L в \mathcal{D}_L^0 с постоянными коэффициентами $Q(x) = C_1$, $P(x) = C_2$, [a,b] = [0,l]. Как и раньше считаем $C_1 > 0$, что касается отрезка [0,l], то мы можем перейти к нему от произвольного отрезка [a,b] заменой переменной: x' = x - a. Тогда $x' \in [0,l]$, где l = b - a. Чтобы не загромождать изложение мы штрих писать не будем.

Итак, рассматриваем задачу на нахождение собственных значений и собственных функций оператора

$$Ly = -C_1 \cdot y'' + C_2 \cdot y = \lambda \cdot y, \quad y \in \mathcal{D}_L^0.$$
(1.2)

$$\mathcal{D}_L = \left\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a) = y(b) = 0 \right\}$$

ⁱМы увидим это в части «Уравнения математической физики».

54 Лекция 7.

Переносим $\lambda \cdot y$ в левую часть (1.2) и делим на $-C_1$. Получаем

$$y'' + \frac{\lambda - C_2}{C_1} \cdot y = 0. \tag{1.3}$$

Положим $\omega^2 \stackrel{def}{=} \frac{\lambda - C_2}{C_1}$ и попытаемся доказать, что ω^2 — вещественно и определить знак ω^2 (мы пока не знаем, что ω^2 — вещественно). Умножим обе части (1.3) на y скалярно. Получим

$$\int_{0}^{l} y'' \cdot \overline{y} \, dx + \omega^{2} \cdot \int_{0}^{l} |y|^{2} \, dx = 0.$$
 (1.4)

Далее

$$\int\limits_0^l \underbrace{\overline{y}}_v \cdot \underbrace{y'' \, dx}_{du} = y' \cdot \overline{y} \bigg|_0^l - \int\limits_0^l |y'|^2 \, dx = y'(l) \cdot \overline{y}(l) - y'(0) \cdot \overline{y}(0) - \int\limits_0^l |y'|^2 \, dx = \bigg| \begin{array}{c} \text{в силу} \\ \text{граничных} \\ \text{условий} \end{array} \bigg| = \\ = -\gamma_2 \cdot |y(l)|^2 - \gamma_1 \cdot |y(0)|^2 - \int\limits_0^l |y'(x)|^2 \, dx.$$

Подставляя в (1.4), имеем

$$-\gamma_2 \cdot |y(l)|^2 - \gamma_1 \cdot |y(0)|^2 - \int_0^l |y'(x)|^2 dx + \omega^2 \cdot \int_0^l |y|^2 dx = 0.$$
 (1.5)

Отсюда следует, что ω^2 — вещественно и $\omega^2 \geqslant 0$. Посмотрим, возможно ли равенство $\omega^2 = 0$. При $\omega^2 = 0$ из (1.5) следует, что

$$\int_{0}^{t} |y'(x)|^{2} dx = 0 \quad \Rightarrow \quad y(x) = const.$$

В этом случае $y(0) \neq 0$, $y(l) \neq 0$ (иначе $y(x) \equiv 0$). Поэтому из (1.5) видим, что $\omega^2 = 0$ может быть при $\gamma_1 = 0$, $\gamma_2 = 0$. Функция y(x) = const в этом случае удовлетворяет уравнению (1.3) с $\omega^2 = 0$ и граничным условиям y'(0) = y'(l) = 0. Если мы нормируем y(x), то получим $y = 1/\sqrt{l}$. Далее будем считать $\omega^2 > 0$. Итак, решаем уравнение (1.3)

$$y'' + \omega^2 \cdot y = 0. \tag{1.6}$$

Общее решение

$$y = d_1 \cdot \sin(\omega \cdot x) + d_2 \cdot \cos(\omega \cdot x).$$

Находим y'(0), y'(l) и записываем граничные условия

$$y'(0) = \gamma_1 \cdot y(0), \quad y'(l) = -\gamma_2 \cdot y(l).$$

 $y'(x) = \omega \cdot d_1 \cdot \cos(\omega \cdot x) - \omega \cdot d_2 \cdot \sin(\omega \cdot x)$, поэтому

$$\begin{cases}
\omega \cdot d_1 = \gamma_1 \cdot d_2, \\
d_1 \cdot \omega \cdot \cos(\omega \cdot l) - d_2 \cdot \omega \cdot \sin(\omega \cdot l) = -d_1 \cdot \gamma_2 \cdot \sin(\omega \cdot l) - d_2 \cdot \gamma_2 \cdot \cos(\omega \cdot l).
\end{cases}$$
(1.7)

Получили систему двух однородных линейных уравнений с двумя неизвестными: d_1 , d_2 . Для существования не нулевого решения определитель системы должен равняться нулю. Выпишем определитель системы (1.7)

$$\begin{vmatrix} \omega & -\gamma_1 \\ \omega \cdot \cos(\omega \cdot l) + \gamma_2 \cdot \sin(\omega \cdot l) & \gamma_2 \cdot \cos(\omega \cdot l) - \omega \cdot \sin(\omega \cdot l) \end{vmatrix} = 0,$$

 $^{^{}i}$ Конечно, можно из первого уравнения выразить d_1 через d_2 , или d_2 через d_1 и подставить во второе уравнение. Ошибки не будет. Однако стандартный способ решения (приравнивание определителя к нулю) лучше и надо приучаться к нему.

то есть

$$\omega \cdot \gamma_2 \cdot \cos(\omega \cdot l) - \omega^2 \cdot \sin(\omega \cdot l) + \gamma_1 \cdot \omega \cdot \cos(\omega \cdot l) + \gamma_1 \cdot \gamma_2 \cdot \sin(\omega \cdot l) = 0. \tag{1.8}$$

Если $\cos(\omega \cdot l) = 0$, то $\sin(\omega \cdot l) \neq 0$ и сокращая в (1.8) на $\sin(\omega \cdot l)$ (после зануления $\cos(\omega \cdot l)$) мы получим

$$-\omega^2 + \gamma_1 \cdot \gamma_2, \quad \omega = \sqrt{\gamma_1 \cdot \gamma_2},$$

но так как $\cos(\omega \cdot l) = 0$, то $l \cdot \omega_k = \frac{\pi}{2} + \pi \cdot k$. Таким образом этот случай имеет место, если для какого-то k ($k = 0, 1, 2, \ldots$)

$$\frac{\pi}{2} + \pi \cdot k = \sqrt{\gamma_1 \cdot \gamma_2} \cdot l,\tag{1.9}$$

то есть число $(l\cdot\sqrt{\gamma_1\cdot\gamma_2}-\pi/2)\ /\ \pi$ — целое, то мы получаем из равенства $\omega=\sqrt{\gamma_1\cdot\gamma_2}$ собственное значение

$$\frac{\lambda - C_2}{C_1} = \gamma_1 \cdot \gamma_2 \quad \Rightarrow \quad \lambda_0 = C_1 \cdot \gamma_1 \cdot \gamma_2 + C_2$$

и затем из первого уравнения системы (1.7) найдём $d_2 = d_1 \cdot \sqrt{\gamma_2 / \gamma_1}$, подставляем в решение уравнения (1.6) и получаем

$$y_0 = d_1 \cdot \left(\sin(\omega \cdot x) + \sqrt{\frac{\gamma_2}{\gamma_1}} \cdot \cos(\omega \cdot x) \right)$$

Это и есть собственная функция, отвечающая собственному значению λ_0 при выполнении (1.9) для какого-то целого k.

Далее считаем $\cos(\omega \cdot l) \neq 0$. Перенесём в выражении определителя (1.8) члены с $\sin(\omega \cdot l)$ в правую часть равенства, получим

$$\omega \cdot \cos(\omega \cdot l) \cdot (\gamma_1 + \gamma_2) = \omega^2 \cdot \sin(\omega \cdot l) - \gamma_1 \cdot \gamma_2 \cdot \sin(\omega \cdot l) = (\omega^2 - \gamma_1 \cdot \gamma_2) \cdot \sin(\omega \cdot l), \tag{1.10c}$$

где $\cos(\omega \cdot l) \neq 0$ и $\omega^2 - \gamma_1 \cdot \gamma_2 \neq 0^{\rm i}$. После деления (1.10c) на $\cos(\omega \cdot l)$ имеем

$$\omega \cdot (\gamma_1 + \gamma_2) = (\omega^2 - \gamma_1 \cdot \gamma_2) \operatorname{tg}(\omega \cdot l), \tag{1.10a}$$

откуда

$$\operatorname{tg}(\omega \cdot l) = \frac{\omega \cdot (\gamma_1 + \gamma_2)}{\omega^2 - \gamma_1 \cdot \gamma_2}$$
 или $\operatorname{tg}(\omega \cdot l) = \frac{\gamma_1 + \gamma_2}{\omega - \frac{\gamma_1 \cdot \gamma_2}{\omega}}$. (1.10b)

Удобно положить $z = l \cdot \omega$, тогда уравнение (1.10b) запишется в виде

$$tg(z) = \frac{(\gamma_1 + \gamma_2) \cdot l}{z - \frac{\gamma_1 \cdot \gamma_2 \cdot l^2}{z}}.$$
(1.11)

Это и есть уравнение для нахождения z, а значит ω и λ .

Рассмотрим в уравнении (1.11) сначала частный случай, когда (1.11) можно решить в явном виде. Пусть $\gamma_1 = \gamma_2 = 0$, то есть граничные условия y'(0) = 0, y'(l) = 0. В этом случае решения уравнения (1.11) получаем из условия

$$tg(z) = 0 \implies sin(z) = 0 \implies z = \omega \cdot l = \pi \cdot k, \ k = 1, 2, \dots$$

Откуда

$$\omega_k = \frac{\pi \cdot k}{l} \quad \Rightarrow \quad \frac{\lambda_k - C_2}{C_1} = \left(\frac{\pi \cdot k}{l}\right)^2 \quad \Rightarrow \quad \lambda_k = C_1 \cdot \left(\frac{\pi \cdot k}{l}\right)^2 + C_2.$$

ⁱЕсли бы $\omega^2 - \gamma_1 \cdot \gamma_2 = 0$, то в силу (1.10c) $\cos(\omega \cdot l) \cdot (\gamma_1 + \gamma_2) = 0$, но $\cos(\omega \cdot l) \neq 0$, значит $\gamma_1 = \gamma_2 = 0$. Но тогда $\omega = 0$, а этот случай нами уже рассмотрен. Следовательно мы можем считать $\omega \neq 0$ и значит $\omega^2 - \gamma_1 \cdot \gamma_2 \neq 0$. iik = 0 — рассматриввали раньше.

Собственная функция y_k есть

$$y_k = d_{1k} \cdot \sin(\omega_k \cdot x) + d_{2k} \cdot \cos(\omega_k \cdot x),$$

где связь между d_{1k} и d_{2k} даётся первым уравнением системы (1.6)

$$\omega_k \cdot d_{1k} = \gamma_1 \cdot d_{2k} \quad \Rightarrow \quad d_{1k} = 0, \text{а } d_{2k} - \text{произвольное число.}$$

Таким образом

$$y_k = d_{2k} \cdot \cos\left(\frac{\pi \cdot k}{l}\right),$$

где d_{2k} выбирается из условия $||y_k|| = 1$.

Возвращаемся к решаемому уравнению (1.11) и обозначим его правую часть через $\Psi(z)$:

$$tg(z) = \Psi(z), \tag{1.11a}$$

где
$$\Psi(z) = \frac{(\gamma_1 + \gamma_2) \cdot l}{z - \frac{\gamma_1 \cdot \gamma_2 \cdot l^2}{z}}.$$

При $\gamma_1 + \gamma_2 > 0$ (а мы рассматриваем именно этот случай) мы не можем найти аналитически решения уравнения (1.11a) и вынуждены искать их графически. Для этого на плоскости y, z построим графики функций $y_1 = \operatorname{tg}(z), y_2 = \Psi(z)$ и «абсциссы» (то есть точки z_k) отвечающие точкам пересечения графиков и дадут решения (1.11a). Рассмотрим сначала случай, когда одно (только одно!) из чисел γ_1, γ_2 равно нулю. Пусть для определённости $\gamma_2 = 0$. Уравнение (1.11a) примет вид

$$\mathrm{tg}(z) = \frac{\gamma_1 \cdot l}{z}.$$

Рисуем графики мы видим, что точки пересечения графиков отвечают всё меньшим значениям tg(z), то есть стремятся к $\pi \cdot k$, то есть очевидно, что $|z_k - \pi \cdot k| \to 0$, при $k \to \infty$. Откуда

$$z_k^2 = l^2 \cdot \omega_k^2 = \frac{l^2 \cdot (\lambda_k - C_2)}{C_1} \geqslant C_0 \cdot k^2,$$

где $C_0 > 0$ некоторая константа. Отсюда

$$\lambda_k \geqslant \frac{C_0 \cdot C_1}{l^2} \cdot k^2 + C_2.$$

Значит, собственные значения растут со скоростью k^2 .

Рассмотрим наконец общий случай $\gamma_1 \cdot \gamma_2 > 0$. В этом случае функция $\Psi(z)$ имеет разрыв при $z = z_0 = l \cdot \sqrt{\gamma_1 \cdot \gamma_2}$, и $\Psi(z_0 + 0) = +\infty$, $\Psi(z_0 - 0) = -\infty$.

На чертеже $\pi < z_0 < \frac{3}{2} \cdot \pi$. Мы видим, что появилась новая точка пересечения на графике $\Psi(z)$ и $\operatorname{tg}(z)$. В зависимости от положения z_0 таких точек или нет — если $z_0 \leqslant \pi/2$ — или несколько при $z > \pi/2$. Пусть слева от z_0 имеется m_0 решений уравнения (1.11a), $m_0 \geqslant 0$ и число m_1 таково, что $\pi \cdot m_1 \leqslant z_0 \leqslant \pi \cdot (m_1 + 1), \ m_1 \geqslant 0$ (связь m_0 и m_1 нам не интересна). Тогда из графиков $\operatorname{tg}(z)$ и $\Psi(z)$ видно, что решения z_{m_0+k} будут асимптотически стремиться к $(m_1+k) \cdot \pi$, то есть

$$z_{m_0+k} - \pi \cdot (m_1+k) \to 0,$$

откуда полагая $s = m_0 + k$ получаем

$$z_s - \pi \cdot (m_1 - m_0 + s) \to 0$$
 при $s \to \infty$

и, значит,

$$z_s^2 = \omega_s^2 \cdot l^2 = \frac{\lambda_s - C_2}{C_1} \geqslant \beta_0 \cdot s^2, \quad s \gg 1,$$

для некоторых $\beta_0 > 0$, β_0 не зависит от s. Отсюда как и раньше получим

$$\lambda_s \geqslant \beta_1 \cdot s^2, \quad s \gg 1,$$

 β_1 — некоторая константа. Это означает, что при произвольных $\gamma_1, \, \gamma_2$ собственные значения λ_s оператора Штурма с новыми граничными условиями растут при $s \to \infty$ не медленнее (по порядку) чем s^2 .

Рассмотрим теперь общий случай: оператор Штурма с переменными коэффициентами.

$$Ly = -\frac{d}{dx}(Q \cdot y') + P \cdot y, \quad \mathcal{D}_L^0 = \left\{ y(x) | y \in \mathcal{C}_{[a,b]}^2, \ y'(a) = \gamma_1 \cdot y(a), \ y'(b) = -\gamma_2 \cdot y(b), \ \gamma_1 \cdot \gamma_2 \geqslant 0 \right\}.$$

Покажем, что оператор Штурма эрмитов в \mathcal{D}_L^0 . Пусть $y(x), z(x) \in \mathcal{D}_L^0$. Имеем

$$(Ly,z) = \int_{a}^{b} \underbrace{\overline{z}}_{v} \underbrace{\left(-\frac{d}{dx}(Q \cdot y')\right) dx}_{du} + \int_{a}^{b} P \cdot y \cdot \overline{z} dx = -Q \cdot y' \cdot z \Big|_{a}^{b} + \int_{a}^{b} (Q \cdot y' \cdot \overline{z}' + P \cdot y \cdot \overline{z}) dx =$$

$$= Q(b) \cdot y(b) \cdot \overline{z}(b) \cdot \gamma_{2} + Q(a) \cdot y(a) \cdot \overline{z}(a) \cdot \gamma_{1} + \int_{a}^{b} (Q \cdot y' \cdot \overline{z}' + P \cdot y \cdot \overline{z}) dx. \quad (1.12)$$

 $(y, Lz) = \overline{(Lz, y)}$; используем (1.12), меняя там местами y и z и взяв комплексное сопряжение. Тогда получим, что (Ly, z) = (y, Lz). Значит, оператор L в \mathcal{D}_L^0 эрмитов

Задание. Доказать, что если $\mathcal{I}m$ $\gamma_1 \neq 0$ или $\mathcal{I}m$ $\gamma_2 \neq 0$, то оператор L — не эрмитов.

 $^{^{\}mathrm{i}}$ Заметим, кстати, что положительность $\gamma_1,\,\gamma_2$ не используется, а вот вещественность — нужна.

Из эрмитовости оператора L следует, что собственные значения его — вещественные и что собственные функции, отвечающие различным собственным значениям взаимно ортогональны.

Докажем теперь, что собственные подпространства оператора L — одномерны. Пусть

$$\mathcal{U}_{\lambda} = \{ y(x) | y \in \mathcal{D}_{L}^{0}, Ly = \lambda \cdot y \}.$$

Если $y_1, y_2 \in \mathcal{U}_{\lambda}$, то функция $y = C_1 \cdot y_1 + C_2 \cdot y_2 \in \mathcal{U}_{\lambda}$, $\forall C_1, C_2 \in \mathbb{R}$. Положим

$$y(x) = y_1(x) \cdot y_2(a) - y_2(x) \cdot y_1(a).$$

Очевидно,

$$y(a) = 0$$
, $y'(a) = y'_1(a) \cdot y_2(a) - y'_2(a) \cdot y_1(a) = \gamma_1 \cdot (y_1(a) \cdot y_2(a) - y_2(a) \cdot y_1(a)) = 0$.

Так как $Ly=\lambda\cdot y$, то при $Q(a)\neq 0$ в силу теоремы единственности получаем $y\equiv 0$, поскольку $y_2(a)\neq 0$ (иначе $y_2'(a)=0$ и тогда $y_2(x)\equiv 0$), то функции y_1,y_2 линейно зависимы. Значит $\dim\mathcal{U}_\lambda=1$.

Теперь поговорим об экстремальных свойствах собственных значений и собственных функций оператора L в \mathcal{D}_L^0 . Вспомним, что при y(a) = y(b) = 0, то есть в \mathcal{D}_L

$$\mathcal{J}[y] = \int_{a}^{b} \left(Q \cdot y'^2 + P \cdot y^2 \right) dx = \left(Ly, y \right)$$

и в этом случае экстремальные свойства были связаны с функционалом $\mathcal{J}[y]$. Найдём (Ly,y) при $y \in \mathcal{D}^0_L$.

Имеем в силу (1.12) при z = y

$$\mathcal{J}_0[y] \stackrel{def}{=} (Ly, y) = \int_a^b (Q \cdot y'^2 + P \cdot y^2) dx + \gamma_2 \cdot y^2(b) \cdot Q(b) + \gamma_1 \cdot y^2(a) \cdot Q(a). \tag{1.13}$$

Пусть

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^{1}_{[a,b]}, \ y'(a) = \gamma_1 \cdot y(a), \ y'(b) = -\gamma_2 \cdot y(b) \right\}.$$

Рассмотрим задачу на $\min_{y \in \mathcal{K}} \mathcal{J}_0[y]$.

Функцию $\eta(x)$ назовём допустимым изменением, если $y+t\cdot\eta\in\mathcal{K}$ при $|t|\ll 1$, откуда $\eta'(a)=\gamma_1\cdot\eta(a),\ \eta'(b)=-\gamma_2\cdot\eta(b).$ Можно взять $\eta'(a)=\eta'(b)=\eta(a)=\eta(b)=0.$ Пусть y-минимайзер для \mathcal{J}_0 в \mathcal{K} . Тогда как и раньше убеждаемся, что $\frac{d}{dt}\mathcal{J}[y+t\cdot\eta]\Big|_{t=0}=0.$ Проведём необходимые вычисления, считая что минимайзер обладает повышенной гладкостью, то есть $y\in\mathcal{C}^2_{[a,b]},\ \eta(x)\in\mathcal{C}^1_{[a,b]}$ и η — не обязательно допустимое изменение. Имеем:

$$\begin{split} \frac{d}{dt}\mathcal{J}[y+t\cdot\eta]\bigg|_{t=0} &= \frac{d}{dt}\left\{\int\limits_a^b \left(Q\cdot(y'+t\cdot\eta')^2+P\cdot(y+t\cdot\eta)^2\right)dx + \gamma_2\cdot Q(b)\cdot \left(y(b)+t\cdot\eta(b)\right)^2 + \right. \\ &+ \left. \gamma_1\cdot Q(a)\cdot \left(y(a)+t\cdot\eta(a)\right)^2\right\}\bigg|_{t=0} &= 2\cdot\int\limits_a^b \left(Q\cdot y'\cdot\eta'+P\cdot y\cdot\eta\right)dx + 2\cdot\gamma_2\cdot Q(b)\cdot y(b)\cdot\eta(b) + \\ &+ 2\cdot\gamma_1\cdot Q(a)\cdot y(a)\cdot\eta(a) = 2\cdot\int\limits_a^b \left(-\frac{d}{dx}\Big(Q\cdot y\Big)+P\cdot y\Big)\cdot\eta\,dx + 2\cdot Q\cdot y'\cdot\eta\bigg|_a^b + \\ &+ 2\cdot\Big[\Big(\gamma_2\cdot Q\cdot y\cdot\eta\Big)\bigg|_{x=b} + \Big(\gamma_1\cdot Q\cdot y\cdot\eta\Big)\bigg|_{x=a}\Big]. \end{split}$$

В силу граничных условий вне интегральные члены равны нулю так, что никаких дополнительных граничных условий не возникает, поэтому при допустимых $\eta(x)$

$$\left. \frac{d}{dt} \mathcal{J}_0[y + t \cdot \eta] \right|_{t=0} = \int_a^b \left(-\frac{d}{dx} \left(Q \cdot y \right) + P \cdot y \right) \cdot \eta \, dx = 0.$$

Отсюда в силу леммы Лагранжа мы получаем обычное уравнение Эйлера Ly=0. Для нахождения экстремальных свойств собственных функций и собственных значений оператора Штурма в \mathcal{D}_L^0 мы будем рассматривать задачу на минимум $\mathcal{J}_0[y]$ в классе

$$\mathcal{K}^{0} \stackrel{def}{=} \left\{ y(x) | y \in \mathcal{C}^{1}_{[a,b]}, \ y'(a) = \gamma_{1} \cdot y(a), \ y'(b) = -\gamma_{2} \cdot y(b), \ \int_{a}^{b} y^{2} dx = 1 \right\}$$

Так как задача на $\min_{y \in \mathcal{K}^0} \mathcal{J}_0[y]$ — изопериметрическая, то надо повторить вывод, который мы делали раньше. Если y — минимайзер, то мы получаем $\tilde{y} = y + \alpha \cdot \eta_1 + \beta(\alpha) \cdot \eta_2$, где $\eta_i(a) = \eta_i'(a) = 0$, $\eta_i'(b) = \eta_i(b) = 0$. Тогда действуя так же, как в случае простейших граничных условий мы получим, что минимайзер в задаче на $\min_{y \in \mathcal{K}^0} \mathcal{J}_0[y]$ удовлетворяет уравнению. Эйлера для интегранта $Q \cdot y'^2 + P \cdot y^2 - \lambda \cdot y^2$ ($F^* = F - \lambda \cdot G$) то есть уравнению $Ly = \lambda \cdot y$. После этого доказываем экстремальные свойства собственных значений и собственных функций оператора L, а также принцип минимакса, беря всюду $\mathcal{J}_0[y]$ вместо $\mathcal{J}[y]$. После этого доказываем теорему сравнения и с её помощью устанавливаем рост собственных значений $\lambda_k \geqslant C \cdot k^2$ для оператора с переменными Q(x), P(x), после чего доказываем теорему Стеклова, следуя использованной ранее схеме. Советую вам попытаться это сделать. Теперь о практике. Необходимо уметь находить собственные значения и собственные функции с любыми граничными условиями как на левом, так и на правом конце. Приведём эти условия в таблице.

x = a	x = b
y(a) = 0	y(b) = 0
y'(a) = 0	y'(b) = 0
$y'(a) = \gamma_1 \cdot y(a), \ \gamma_1 > 0$	$y'(a) = -\gamma_2 \cdot y(a), \gamma_2 > 0$

Лекция 8

1. Обобщённая задача Штурма.

Мы возвращаемся к простейшим граничным условиям для допустимых функций, но изопериметрическое условие $\int\limits_{a}^{b}y^{2}\,dx=1$ мы заменим более общим. Итак

$$\mathcal{J}[y] = \int_{a}^{b} \left(Q \cdot y'^2 + P \cdot y^2 \right) dx, \quad \mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[a,b]}, \ y(a) = y(b) = 0, \ \int_{a}^{b} \rho \cdot y^2 dx = 1 \right\},$$

где $\rho(x)>0$ при $x\in(a,b]$ — некоторая непрерывная функция. Ищем $\min_{y\in\mathcal{K}}\mathcal{J}[y]$. Составляем $F^*=F-\lambda\cdot G=Q\cdot y'^2+P\cdot y^2-\lambda\cdot \rho\cdot y^2$ и пишем для F^* уравнение Эйлера. Получим

$$P \cdot y - \frac{d}{dx} (Q \cdot y') - \lambda \cdot \rho \cdot y = 0$$
 или $Ly = \lambda \cdot \rho \cdot y$ (1.1)

Оператор L рассматривается в $\mathcal{D}_L \stackrel{def}{=} \Big\{ y(x) | y \in \mathcal{C}^2_{[a,b]}, \ y(a) = y(b) = 0 \Big\}$. Функция удовлетворяющая (1.1), называется собственной функцией обобщённой задачи Штурма, а λ — собственным значением этой задачи. Так как оператор L — эрмитов, то

$$(Ly, y) = (y, Ly) = \overline{(Ly, y)}.$$

Значит, число (Ly,y) — вещественно и поэтому из (1.1) следует вещественность собственного значения λ обобщённой задачи Штурма:

$$(Ly, y) = \lambda \cdot (\rho \cdot y, y) \quad \Rightarrow \quad \lambda = (Ly, y) / (\rho \cdot y, y) - \text{вещественно.}$$
 (1.2)

Далее, собственные функции обобщённой задачи Штурма, отвечающие различным собственным значениям, ортогональны с весом ρ .

Доказательство. Действительно, если $Ly_1 = \lambda_1 \cdot \rho \cdot y_1$, $Ly_2 = \lambda_2 \cdot \rho \cdot y_2$ и $\lambda_2 \neq \lambda_1$, то умножая первое соотношение на y_2 скалярно получим $(Ly_1, y_2) = \lambda_1 \cdot (y_1, \rho \cdot y_2)$ и одновременно

$$(Ly_1, y_2) = (y_1, Ly_2) = (y_1, \lambda_2 \cdot \rho \cdot y_2) = \lambda_2 \cdot (y_1, \rho \cdot y_2).$$
 (1.3)

Откуда

$$(\lambda_2 - \lambda_1) \cdot (y_1, \rho \cdot y_2) = 0 \quad \Rightarrow \quad (y_1, \rho \cdot y_2) = 0. \tag{1.4}$$

Пусть $\mathcal{U}_{\lambda}=\{y(x)|y\in\mathcal{D}_{L},\ Ly=\lambda\cdot\rho\cdot y\}$ — собственное подпространство для обобщённой задачи Штурма. Точно так же как и в обычной задаче Штурма, доказывается, что $\dim\mathcal{U}_{\lambda}=1$, то есть собственные значения обобщённой задачи Штурма— не вырождены и каждому λ отвечает одна (с точностью до знака) нормированная $\begin{pmatrix} b \\ a \end{pmatrix} \rho \cdot y^2 \, dx = 1 \end{pmatrix}$ собственная функция обобщённой задачи Штурма.

Далее введём пространство функций $\mathscr{L}_2([a,b];\rho)$ интегрируемых с весом $\rho, \, \rho(x)>0 \, x\in (a,b],$ $\rho(x)\in \mathcal{C}_{[a,b]}$:

$$\mathscr{L}_{2}([a,b];\rho) \stackrel{def}{=} \left\{ y(x) \left| \int_{a}^{b} \rho |y|^{2} dx < +\infty \right. \right\}$$

Если $\rho(a)=0$, то $\mathscr{L}_2([a,b];\rho)\supset \mathscr{L}_2[a,b]$ (приведите обоснование!), если $\inf_{x\in[a,b]}\rho(x)>0$, то $\mathscr{L}_2([a,b];\rho)=\mathscr{L}_2[a,b]$. В пространстве $\mathscr{L}_2([a,b];\rho)$ введём скалярное произведение и норму

$$(u(x), v(x))_1 \stackrel{\text{def}}{=} \int_a^b \rho \cdot u \cdot \overline{v} \, dx = (u, \rho \cdot v), \quad \|u\|_1^2 \stackrel{\text{def}}{=} (u, u)_1.$$

Таким образом класс \mathcal{K} запишется так:

$$\mathcal{K} = \left\{ y(x) | y \in \mathcal{C}^1_{[a,b]}, \ y(a) = y(b) = 0, \ \|y\|_1 = 1 \right\},$$

а условие ортогональности с весом $\{(u, \rho \cdot v) = 0\} \sim \{(u, v)_1 = 0\}$. Таким образом, если $Ly_1 = \lambda_1 \cdot \rho \cdot y_1$, $Ly_2 = \lambda_2 \cdot \rho \cdot y_2$, $y_i \in \mathcal{D}_L$ и $\lambda_1 \neq \lambda_2$, то $(y_1, y_2)_1 = 0$.

Далее устанавливаем экстремальные свойства собственных значений и собственных функций обобщённой задачи Штурма. При этом используем соотношения $(Ly,y) = \mathcal{J}[y]$ и $(Ly,y) = \lambda$, если $Ly = \lambda \cdot \rho \cdot y$ и $\|y\|_1 = 1$. Тогда $\inf_{y \in \mathcal{K}} \mathcal{J}[y]$ — наименьшее собственное значение обобщённой задачи Штурма, а минимайзер y_1 этой задачи — соответствующая собственная функция. Далее $\inf_{y \in \mathcal{K}, \{y,y\} = 0} \mathcal{J}[y]$ — второе по величине собственное значение обобщённой задачи Штурма и так далее.

Доказательство практически полностью повторяет приведённое для стандартной задачи Штурма.

Далее для обобщённой задачи Штурма устанавливается принцип минимакса. Это делается так же, как раньше, только вместо $\| \ \|$ надо брать $\| \ \|_1$; вместо условия ортогональности $(\cdot\,,\cdot)=0$ надо брать $(\cdot\,,\cdot)_1=0$, и вместо $\varphi_j\in \mathscr{L}_{2}[a,b]$ надо брать $\varphi_j\in \mathscr{L}_{2}[a,b]$. После этого устанавливаем теорему сравнения. Она устанавливается так же, как и раньше: если

$$L_i y = -\frac{d}{dx} (Q_i \cdot y') + P_i \cdot y, \ i = 1, 2 \text{ if } L_1 y_k^{(1)} = \lambda_k^{(1)} \cdot \rho \cdot y_k^{(1)}, \ L_2 y_k^{(2)} = \lambda_k^{(2)} \cdot \rho \cdot y_k^{(2)},$$

то при $Q_1\geqslant Q_2,\, P_1\geqslant P_2$ выполняется $\lambda_k^{(1)}\geqslant \lambda_k^{(2)}.$ Обратите внимание, что для обоих операторов сравнения $\rho-o\partial ho\ u\ mo\ neces$.

В случае обычной задачи Штурма мы брали $Q_2 = \min_{x \in [a,b]} Q_1(x)$, $P_2 = \min_{x \in [a,b]} P_1(x)$ и получали оператор L_2 с постоянными коэффициентами, для которого было известно, что собственные значения $\lambda_k^{(2)}$ растут со скоростью k^2 ($\rho = 1$!).

В случае обобщённой задачи Штурма мы не можем найти собственные значения $\lambda_k^{(2)}$ даже при постоянных P_2 и Q_2 , так как функция $\rho(x)$ — не даёт возможности найти $\lambda_k^{(2)}$. Поэтому нам понадобится ещё одна теорема сравнения, которую я привожу без доказательства. Смысл её: увеличение $\rho(x)$ уменьшает собственные значения обобщённой задачи Штурма. Теперь точная формулировка.

Теорема 1.1 (вторая теорема сравнения). Пусть

$$Q_{3} \leqslant Q_{1}, \quad P_{3} \leqslant P_{1}, \quad \rho_{3} \geqslant \rho_{1} \geqslant 0 \quad \text{if} \quad L_{3}y_{k}^{(3)} = -\frac{d}{dx} \left(Q_{3} \cdot y_{k}^{(3)'} \right) + P_{3} \cdot y_{k}^{(3)} = \lambda_{k}^{(3)} \cdot \rho_{3} \cdot y_{k}^{(3)}, \quad (1.5)$$

тогда

$$\lambda_k^{(3)} \leqslant \lambda_k^{(1)}.\tag{1.6}$$

Взяв $Q_3 = \min_{x \in [a,b]} Q_1(x), \ P_3 = \min_{x \in [a,b]} P_1(x), \ \rho_3 = \max_{x \in [a,b]} \rho(x)$ и поделив (1.5) на ρ_3 мы получим, что числа $\lambda_k^{(3)}$ — собственные значения оператора Штурма с постоянными коэффициентами — Q_3/ρ_3 ,

 $^{P_3}/_{\rho_3}$. Значит для некоторой константы C>0 $\lambda_k^{(3)}\geqslant C\cdot k^2$ и в силу (1.6) $\lambda_k^{(1)}\geqslant C\cdot k^2 \end{tabular}$

Таким образом, собственные значения обобщённой задачи Штурма растут со скоростью k^2 при росте k.

Замечание к теореме сравнения собственных значений обобщённой задачи Штурма при росте веса ρ . Пусть $\rho \geqslant 0, \ d>0$ — любое число.

$$Ly_k = \lambda_k \cdot \rho \cdot y_k,$$

где λ_k и y_k соответственно k-ое собственное значение и отвечающая ему собственная функция обобщённой задачи Штурма.

Пусть $\rho_d \stackrel{def}{=} d \cdot \rho$, $\lambda_k(d) \stackrel{def}{=} \lambda_k/d$. Тогда

$$Ly_k = \rho_d \cdot \lambda_k(d) \cdot y_k,$$

то есть для нового веса $\rho_d = d \cdot \rho$ оператор L будет иметь те же собственные функции, что и раньше, но они будут отвечать другим собственным значениям $\lambda_k(d) = \lambda_k/d$. Мы видим, что при d > 1, $\rho_d > \rho$, а $\lambda_k(d) < \lambda_k$. И вообще, если $d_2 > d_1$, то $\rho_{d_2} > \rho_{d_1}$, а $\lambda_k(d_2) < \lambda_k(d_1)$.

Разумеется, этот пример ничего не doкaзываеm, но он показывает, почему при росте веса ρ собственные значения уменьшаются.

Если $\rho(x) > 0$, $x \in [a,b]$ и $\rho(x) \in \mathcal{C}^2_{[a,b]}$, то можно обойтись без теоремы сравнения следующим образом. Пусть

$$L_1 y_k = \stackrel{def}{=} -\frac{d}{dx} \left(Q_1 \cdot y_k' \right) + P_1 \cdot y_k = \lambda_k^{(1)} \cdot \rho_1 \cdot y_k. \tag{1.8}$$

Вводим ф
кнкцию $z_k \stackrel{def}{=} \sqrt{\rho_1} \cdot y_k$ и поделим обе части (1.8) на $\sqrt{\rho_1}$. Тогда полученное уравнение можно записать в виде

$$L_0 z_k \stackrel{def}{=} -\frac{d}{dx} \left(Q_0 \cdot z_k' \right) + P_0 \cdot z_k = \lambda_k^{(1)} \cdot z_k, \tag{1.9}$$

где
$$Q_0 = \frac{Q_1}{\rho_1}$$
, $P_0 = \frac{P_1}{\rho_1} + \frac{1}{\sqrt{\rho_1}} \cdot \frac{d}{dx} \left(\frac{1}{2} \cdot \frac{Q_1 \cdot \rho_1'}{\rho_1^{3/2}} \right)$.

Таким образом, собственные значения $\lambda_k^{(1)}$ оператора L_1 обобщённой задачи Штурма совпадают с собственными значениями оператора L_0 стандартной задачи Штурма. Отсюда следует рост собственных значений $\lambda_k^{(1)}$ со скоростью k^2 при $k \to \infty$. Далее можно сформулировать и доказать неравенство Бесселя и равенство Парсеваля, а также определить понятие полной системы. Разумеется при этом надо обобщённые коэффициенты Фурье считать с помощью скалярного произведения $(\cdot,\cdot)_1$ и вместо $\|\cdot\|$ брать $\|\cdot\|_1$.

Далее можно передоказать теорему Стеклова, но в предположении, что $\rho(x)>0, x\in[a,b]$. Наметим основные формулировки. Пусть $y\in\mathcal{L}_2([a,b];\rho), y_k$ — собственные функции обобщённой задачи Штурма, $\|y_k\|_1=1, k=1,2,\ldots$,

$$C_k = (y, y_k)_1, \quad S_n = \sum_{k=1}^n C_k \cdot y_k, \quad R_n = y - S_n.$$

Теорема 1.2 (Стеклова).

п. 1. Для $\forall y \in \mathscr{L}_2([a,b];\rho)$ выполняется $\|y-S_n\|_1 \to 0$ при $n \to \infty$, то есть

$$\int_{a}^{b} \left| y - \sum_{k=1}^{n} C_k \cdot y_k \right|^2 \cdot \rho(x) \, dx \to 0, \quad \text{при} \quad n \to \infty.$$

(Это сходимость в среднем с весом ρ .)

п. 2. Для $y \in \mathcal{D}_L$

$$\sup_{x \in [a,b]} \left| y(x) - \sum_{k=1}^{n} C_k \cdot y_k \right| \to 0, \quad \text{при} \quad n \to \infty.$$

(Это равномерная сходимость.)

Доказательство π . 2. я приведу прямо сейчас, π . 1. — без доказательства.

В заключение отметим, что если $0<\underline{\rho}\leqslant \rho(x)\leqslant \overline{\rho}$ для $\forall x\in [a,b],$ где $\underline{\rho},\,\overline{\rho}$ — константы, то

$$\rho \cdot \|y - S_n\|^2 \le \|y - S_n\|_1^2 \le \overline{\rho} \cdot \|y - S_n\|^2$$

то есть из сходимости обобщённого ряда Фурье в метрике $\|\cdot\|_1$ следует сходимость в метрике $\|\cdot\|_1$ и наоборот. Разумеется здесь в сумме S_n имеем $C_k = (y, y_k)_1$ не зависимо от того, берётся ли норма $\|\cdot\|_1$ или $\|\cdot\|_1$.

Теорема Стеклова для собственных функций обобщённой задачи Штурма.

Мы будем следовать схеме доказательства теоремы Стеклова, которую мы рассматривали раньше. Пусть

$$y_k \in \mathcal{D}_L, \quad y_k : Ly_k = \lambda_k \cdot \rho \cdot y_k, \quad (Ly, y) = \lambda \cdot ||y||_1^2 = \mathcal{J}[y].$$

$$S_n = \sum_{k=1}^n C_k \cdot y_k, \quad C_k = (y, y_k)_1, \quad R_n = y - S_n, \quad \widetilde{R}_n = \frac{R_n}{||R_n||_1}.$$

Так как

$$(\widetilde{R}_n, y_j)_1 = 0, \ j = \overline{1, n} \quad \Rightarrow \quad \widetilde{R}_n \in \mathcal{K}_{n+1} \quad \Rightarrow \quad \mathcal{J}[\widetilde{R}_n] \geqslant \lambda_{n+1} \quad \Rightarrow \quad \mathcal{J}[R_n] \geqslant \lambda_{n+1} \cdot \|R_n\|_1^2.$$

Если $\sup_{n} \mathcal{J}[R_n] < +\infty$, то из неравенства (верного при $n \gg 1 \ \Rightarrow \ \lambda_{n+1} > 0$)

$$\frac{\mathcal{J}[R_n]}{\lambda_{n+1}} \geqslant \|R_n\|_1 \quad \Rightarrow \quad \|R_n\|_1 \to 0, \text{ при } n \to \infty.$$

Оценим

$$\mathcal{J}[R_n] = (LR_n, R_n) = (Ly - LS_n, y - S_n) = (Ly, y) + (LS_n, S_n) - (Ly, S_n) - (LS_n, y).$$

$$\underline{(LS_n, S_n)} = \left(\sum_{k=1}^n C_k \cdot Ly_k, \sum_{m=1}^n C_m \cdot y_m\right) = \sum_{k,m=1}^n C_k \cdot \overline{C}_m \cdot \left(\rho \cdot \lambda_k \cdot y_k, y_m\right) = \\
= \sum_{k,m=1}^n C_k \cdot \overline{C}_m \cdot \lambda_k \cdot \underbrace{\left(\rho \cdot y_k, y_m\right)}_{=(y_k, y_m)_1} = \sum_{k,m=1}^n C_k \cdot \overline{C}_m \cdot \lambda_k \cdot \delta_{km} = \sum_{k=1}^n \lambda_k \cdot |C_k|^2 \\
= (y_k, y_m)_1$$

Далее

$$\underline{(LS_n, y)} = \left(\sum_{k=1}^n C_k \cdot Ly_k, y\right) = \sum_{k=1}^n C_k \cdot \left(\lambda_k \cdot \rho \cdot y_k, y\right) = \sum_{k=1}^n C_k \cdot \lambda_k \underbrace{\left(\rho \cdot y_k, y\right)}_{=\overline{C}_k} = \sum_{k=1}^n \lambda_k \cdot |C_k|^2$$

$$\underline{(Ly, S_n)} = (y, LS_n) = \overline{(LS_n, y)} = \sum_{k=1}^n \lambda_k \cdot |C_k|^2$$

В силу этих равенств

$$\mathcal{J}[R_n] = (Ly, y) - \sum_{k=1}^n \lambda_k \cdot |C_k|^2.$$

Так как $\lambda_k \to \infty$, то $\exists n_0, \, \lambda_k > 0$ при $k > n_0$. Тогда, взяв $n > n_0$, получим

$$\mathcal{J}[R_n] = (Ly, y) - \sum_{k=1}^{n_0} \lambda_k \cdot |C_k|^2 - \sum_{k=n_0+1}^n \lambda_k \cdot |C_k|^2 \leqslant (Ly, y) - \sum_{k=1}^{n_0} \lambda_k \cdot |C_k|^2 = \mathcal{J}[R_{n_0}],$$

и, значит,

$$\sup_{n} \mathcal{J}[R_n] < +\infty,$$

и поэтому в силу вышесказанного

$$||R_n||_1 \to 0.$$

Докажем теперь равномерную сходимость обобщённого ряда Фурье $\sum_{k=1}^{\infty} C_k \cdot y_k$. Оценим C_k .

$$|C_k| = \left| \left(y, \rho \cdot y_k \right) \right| = \left| \left(y, \frac{Ly_k}{\lambda_k} \right) \right| = \frac{1}{|\lambda_k|} \cdot \left| \left(Ly, y_k \right) \right| \leqslant \frac{1}{|\lambda_k|} \cdot \left| \left(\frac{Ly}{\rho}, \rho \cdot y \right) \right| = \frac{1}{|\lambda_k|} \cdot d_k,$$

где $d_k \to 0$ при $k \to \infty$ в силу неравенства Бесселя для обобщённых коэффициентов Фурье функции Ly/ρ по собственным функциям y_k обобщённой задачи Штурма.

Далее оцениваем $|y_k|$. Действуем так же, как в теореме Стеклова для обычной задачи Штурма, но учитываем, что

$$||y_k||^2 = \int_a^b \frac{y_k^2 \cdot \rho}{\rho} ds \le ||y_k||_1^2 \cdot \frac{1}{\rho_0} \quad (\rho_0 \stackrel{def}{=} \min \rho(x)).$$

$$y_k^2(x) - y_k^2(x') = \int_{x'}^x \frac{d}{ds} y_k^s(s) \, ds \leqslant 2 \cdot \int_a^b |y_k(s)| \cdot |y_k'(s)| \, ds \leqslant 2 \cdot \sqrt{\int_a^b y_k'^2 \, ds} \cdot \frac{\|y_k\|_1}{\sqrt{\rho_0}} = 2 \cdot \frac{\sqrt{\int_a^b y_k'^2}}{\sqrt{\rho_0}} \quad (1.10)$$

$$\mathcal{J}[y_k] = \lambda_k = \int_a^b \left(Q \cdot y_k'^2 + P \cdot y_k^2 \right) dx \geqslant Q_0 \cdot \int_a^b y_k'^2 dx + P_0 \cdot \int_a^b \frac{y_k^2 \cdot \rho}{\rho} ds \geqslant Q_0 \cdot \int_a^b y_k'^2 dx - \frac{|P_0|}{\rho_0},$$

где $P_0 = \min_{x \in [a,b]} P(x)$ и поэтому

$$\int_{a}^{b} y_k'^2 dx \leqslant \frac{\lambda_k}{Q_0} + \frac{|P_0|}{Q_0 \cdot \rho_0} \leqslant \beta_1 \cdot \lambda_k.$$

Подставляя эту оценку в (1.10) получим

$$y_k^2(x) - y_k^2(x') \leqslant \beta_2 \cdot \sqrt{\lambda_k}$$
.

Интегрируем по x' и получаем

$$(b-a)\cdot y_k^2(x) \leqslant \beta_2 \cdot \sqrt{\lambda_k} \cdot (b-a) + \int_a^b \frac{y_k^2(x') \cdot \rho(x')}{\rho(x')} dx \leqslant \beta_2 \cdot \sqrt{\lambda_k} \cdot (b-a) + \frac{1}{\rho_0} \leqslant \beta_3 \cdot \sqrt{\lambda_k}.$$

Откуда

$$|y_k(x)| \leqslant \beta_4 \cdot |\lambda_k|^{1/4}.$$

Подставим эту оценку и оценку $|C_k| \leqslant d_k/|\lambda_k|$ в оценку общего члена обобщённого ряда Фурье

$$|C_k \cdot y_k| \leqslant \frac{d_k}{|\lambda_k|} \cdot \beta_4 \cdot |\lambda_k|^{1/4} \leqslant \beta_5 \cdot \frac{1}{|\lambda_k|^{3/4}} \leqslant \beta_6 \cdot \frac{1}{k^{3/2}}$$

Эта оценка позволяет утверждать, что ряд $\sum_{k=1}^{\infty} C_k \cdot y_k$ сходится равномерно к какой-то функции $\tilde{y}(x)$ на отрезке [a,b]. Но так как

$$\left\| y - \sum_{k=1}^{\infty} C_k \cdot y_k \right\|_1 \to 0 \quad \text{при} \quad n \to \infty,$$

TO $\tilde{y}(x) = y(x)$.

2. Квадратичный функционал специального вида. Уравнение Бесселя.

Рассмотрим важный особый случай задачи на отыскание минимума квадратичного функционала. Пусть

$$\mathcal{J}[y] = \int_{0}^{R} \left(x \cdot y'^2 + \frac{\nu^2}{x} \cdot y^2 \right) dx,$$

где $\nu^2 \ge 0$, Q(x) = x, $P(x) = \nu^2 / x$.

Будем искать минимум $\mathcal{J}[y]$ при условии $\int\limits_0^R x\cdot y^2\,dx=1$, то есть $\rho(x)=x$. В связи с тем, что $Q(0)=0,\, \rho(0)=0,\, P(0)=+\infty$ при $\nu>0$ класс допустимых функций определяется не стандартно

$$\mathcal{K} = \left\{ y(x) | y(x) \in \mathcal{C}_{[0,R]}, \ y(R) = 0, \quad \begin{array}{c} \nu > 0 \ : \ y(0) = 0, \ y \in \mathcal{C}^1_{(0,R]}, \\ \nu = 0 \ : \ y \in \mathcal{C}^1_{[0,R]}, \end{array} \right. \int\limits_0^R x \cdot y^2 \, dx = 1 \right\}$$

Так как в точке x=0 интегрант не может иметь особенность, то при выводе мы возьмём функции $\eta_i(x)\equiv 0,\ x\in [0,\delta]$ для какого-то малого $\delta>0.$ Тогда действуя обычным образом мы получим уравнение для минимайзера в задаче на $\min_{y\in\mathcal{K}}\mathcal{J}[y]$

$$Ly = -\frac{d}{dx}(x \cdot y') + \frac{\nu^2}{x} \cdot y = \lambda \cdot x \cdot y,$$

при $x \in [\delta, R] \Rightarrow$ при $x \in (0, R]$, так как $\delta > 0$ — любое. В случае $\nu = 0$ мы можем сразу сделать вывод для отрезка [0, R] и так как в данном случае у нас нет граничного условия при x = 0, то мы получаем ЕГУ: $F_{y'}\Big|_{x=0} = 0$, то есть $x \cdot y'\Big|_{x=0} = 0$, но это условие выполняется автоматически, ибо $y \in \mathcal{C}^1_{[0,R]}$. Таким образом условие гладкости на левом конце является ЕГУ.

Введём теперь область определения для оператора L учитывая, что решение уравнения $Ly = \lambda \cdot y \cdot x$ — это минимайзер из \mathcal{K} .

$$\mathcal{D}_L = \left\{ y(x) | y \in \mathcal{C}_{[0,R]}, \ y(R) = 0, \quad \text{при } \nu = 0 \ : \ y \in \mathcal{C}_{[0,R]}^2, \\ \text{при } \nu > 0 \ : \ y(0) = 0, \ y \in \mathcal{C}_{(0,R]}^2, \quad \|Ly\|_1 < +\infty, \ \mathcal{J}[y] < +\infty \right\}$$

Требование $||Ly||_1 < +\infty$ означает, что действие оператора L на функции из \mathcal{D}_L не выводит нас из пространства $\mathscr{L}_2([0,R];x)$, а условие $\mathcal{J}[y] < +\infty$ — наследие класса \mathcal{K} , которому принадлежал минимайзер.

Докажем, что оператор L в области \mathcal{D}_L — эрмитов, и что $(Ly,y)=\mathcal{J}[y]$. В случае $\nu=0$ это показывается так же, как для обычного квадратичного функционала

Доказательство при $\nu > 0$. Оно не простое и требует внимания.

Пусть $f, g \in \mathcal{D}_L, \varepsilon > 0$. Имеем, применяя неравенство Буняковского

$$\left| \int_{\varepsilon}^{R} Lf \cdot \overline{g} \, dx \right| \leqslant \int_{\varepsilon}^{R} \left| Lf \cdot \overline{g} \right| dx \leqslant \int_{0}^{R} \left| \sqrt{x} \cdot Lf \right| \cdot \left| \frac{\overline{g}}{\sqrt{x}} \right| dx \leqslant \sqrt{\int_{0}^{R} x \cdot \left| Lf \right|^{2} dx} \cdot \sqrt{\int_{0}^{R} \frac{|g|^{2}}{x}} \, dx < +\infty \quad (2.1)$$

ибо:

- і) первый множитель справа в (2.1) это $\|Lf\|_1$, а эта норма конечна;
- іі) второй множитель не превосходит $\sqrt{\frac{1}{\nu^2}\cdot\mathcal{J}[f]}<+\infty.$

Далее

$$\int_{\varepsilon}^{R} Lf \cdot \overline{g} \, dx = -\int_{\varepsilon}^{R} \frac{d}{dx} (x \cdot f') \cdot \overline{g} \, dx + \int_{\varepsilon}^{R} \frac{\nu^{2} \cdot f \cdot \overline{g}}{|x|} \, dx. \tag{2.2}$$

Второй интеграл конечен при $\varepsilon \to 0$, ибо по неравенству Буняковского

$$\left| \int_{\varepsilon}^{R} \frac{\nu^{2} \cdot f \cdot \overline{g}}{x} \, dx \right| \leqslant \int_{\varepsilon}^{R} \frac{\nu \cdot |f|}{\sqrt{x}} \cdot \frac{\nu \cdot |g|}{\sqrt{x}} \, dx \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |f|^{2}}{x} \, dx \right)^{\frac{1}{2}} \cdot \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2} \cdot |g|^{2}}{x} \, dx \right)^{\frac{1}{2}} \leqslant \left(\int_{0}^{R} \frac{\nu^{2}$$

Поэтому нам надо оценить (вычислить) только первое слагаемое справа в (2.2). Интегрируя по частям, получаем

$$-\int_{\varepsilon}^{R} \underbrace{\overline{g}}_{v} \cdot \underbrace{\frac{d}{dx} \Big(x \cdot f' \Big) dx}_{dv} = -x \cdot f' \cdot \overline{g} \Big|_{\varepsilon}^{R} + \int_{\varepsilon}^{R} x \cdot f' \cdot \overline{g}' dx = \varepsilon \cdot f'(\varepsilon) \cdot \overline{g}(\varepsilon) + \int_{\varepsilon}^{R} x \cdot f' \cdot \overline{g}' dx. \tag{2.4}$$

В силу (2.1) и (2.2) предел левой части (2.4) при $\varepsilon \to 0$ существует; $\lim_{\varepsilon \to 0} \int_{\varepsilon}^{R} x \cdot f' \cdot \overline{g}' dx$ тоже существует, так как

$$\int_{\varepsilon}^{R} |f'| \cdot |g'| \cdot x \, dx \leqslant \sqrt{\int_{0}^{R} x \cdot |f'|^2 \, dx} \cdot \sqrt{\int_{0}^{R} x \cdot |g'|^2 \, dx} \leqslant \sqrt{\mathcal{J}[f] \cdot \mathcal{J}[g]} < +\infty.$$

Следовательно в (2.4) должен существовать $\lim_{\varepsilon\to 0}\varepsilon\cdot f'(\varepsilon)\cdot \overline{g}(\varepsilon)$. Обозначим этот предел через α и покажем, что $\alpha=0$.

Действительно, так как $\lim_{\varepsilon\to 0}\varepsilon\cdot f'(\varepsilon)\cdot \overline{g}(\varepsilon)=\alpha$, то $\lim_{\varepsilon\to 0}\varepsilon\cdot |f'(\varepsilon)\cdot \overline{g}(\varepsilon)|=|\alpha|$, и поэтому при $|\alpha|>0$ для малых ε выполняется: $\varepsilon\cdot |f'(\varepsilon)|\cdot |\overline{g}(\varepsilon)|\geqslant |\alpha|/2$, откуда

$$\sqrt{\varepsilon} \cdot |f'(\varepsilon)| \cdot \frac{|\overline{g}'(\varepsilon)|}{\sqrt{\varepsilon}} \geqslant \frac{|\alpha|}{2 \cdot \varepsilon} \quad \Rightarrow \quad \varepsilon \cdot |f'(\varepsilon)|^2 + \frac{|\overline{g}'(\varepsilon)|^2}{\varepsilon} \geqslant \frac{|\alpha|}{2 \cdot \varepsilon}.$$

Интегрируя по ε от нуля до $\varepsilon_0 > 0$ получим справа $+\infty$, а слева — конечное число, так как $\mathcal{J}[f] < +\infty$, $\mathcal{J}[g] < +\infty$. Значит $\alpha = 0$ и в силу (2.4)

$$\lim_{\varepsilon \to 0} \left(-\int_{-\infty}^{R} \frac{d}{dx} (x \cdot f') \cdot \overline{g} \, dx \right) = \int_{0}^{R} x \cdot f' \cdot \overline{g}' \, dx. \tag{2.5}$$

Поэтому переходя к пределу при $\varepsilon \to 0$ в (2.2) в силу (2.3), (2.5) получим

$$(Lf,g) = \int_{0}^{R} x \cdot f' \cdot \overline{g}' \, dx + \int_{0}^{R} \frac{\nu^{2}}{x} \cdot f \cdot \overline{g} \, dx.$$
 (2.6)

Чтобы доказать эрмитовость оператора L вычислим (f, Lg). Имеем

$$(f, Lg) = \overline{(Lg, f)} = \int_{0}^{R} x \cdot \overline{g}' \cdot \overline{\overline{f}}' dx + \int_{0}^{R} \frac{\nu^{2}}{x} \cdot \overline{g} \cdot \overline{\overline{f}} dx = (Lf, g)$$

(«двойная черта» обозначает «двойное сопряжение») и, значит, оператор L — эрмитов. Отметим в заключение, что в силу (2.6)

$$(Lf, f) = \mathcal{J}[f], \quad f \in \mathcal{D}_L.$$

Как обычно из эрмитовости оператора L в \mathcal{D}_L вытекают два следствия для обобщённой задачи Штурма (вес -x)

- 1. Собственные значения оператора L вещественны.
- 2. Собственные функции, отвечающие различным собственным значениям обобщённой задачи Штурма ортогональны с весом x, то есть если $Ly = \lambda_1 \cdot x \cdot y$, $Lz = \lambda_2 \cdot x \cdot z$ и $\lambda_1 \neq \lambda_2$, то

$$(y,z)_1 = \int_0^R x \cdot y \cdot \overline{z} \, dx = 0.$$

Лекция 9

1. Квадратичный функционал специального вида. Уравнение Бесселя. (Продолжение.)

Итак рассматривая задачу на

$$\min_{y \in \mathcal{K}} \mathcal{J}[y], \quad \text{для} \quad \mathcal{J}[y] = \int_0^R \left(x \cdot y'^2 + \frac{\nu^2}{x} \cdot y^2 \right) \, dx,$$

$$\mathcal{K} = \left\{ y(x) | y(x) \in \mathcal{C}_{[0,R]}, \ y(R) = 0, \quad \begin{array}{l} \nu > 0 \ : \ y(0) = 0, \ y \in \mathcal{C}_{[0,R]}^1, \\ \nu = 0 \ : \ y \in \mathcal{C}_{[0,R]}^1, \end{array} \right. \int_0^R x \cdot y^2 \, dx = 1 \right\}$$

Мы установили, что минимайзер должен удовлетворять уравнению

$$Ly \stackrel{def}{=} -\frac{d}{dx} \left(x \cdot y' \right) + \frac{\nu^2}{x} \cdot y = \lambda \cdot x \cdot y, \tag{1.1}$$

то есть быть собственной функцией обобщённой задачи Штурма. Оператор L рассматривается в области

$$\mathcal{D}_L = \left\{ y(x) | y \in \mathcal{C}_{[0,R]}, \ y(R) = 0, \quad \text{при } \nu = 0 \ : \ y \in \mathcal{C}_{[0,R]}^2, \\ \text{при } \nu > 0 \ : \ y(0) = 0, \ y \in \mathcal{C}_{[0,R]}^1, \quad \|Ly\|_1 < +\infty, \ \mathcal{J}[y] < +\infty \right\}$$

Было установлено, что в этой области оператор L — симметричен и

$$(Ly, y) = \mathcal{J}[y]. \tag{1.2}$$

Из (1.1) следует, что в скалярном произведении $(u,v)_1 = \int\limits_0^R x \cdot u(x) \cdot \overline{v}(x) \, dx$ собственные функции обобщённой задачи Штурма, отвечающие различным собственным значениям ортогональны, а собственные значения — в силу (1.2) — неотрицательны, а при $\nu > 0$ — строго положительны, ибо в силу (1.1), (1.2)

$$(Ly, y) = \mathcal{J}[y] = \int_{0}^{R} \left(x \cdot y'^2 + \frac{\nu^2}{x} \cdot y^2 \right) dx = \lambda \cdot ||y||_{1}^{2}.$$
 (1.3)

Отметим, что при $\nu=0$ равенство $\lambda=0$ возможно лишь при y'=0, то есть при y=const, а так как y(R)=0, то $y\equiv 0$. Значит всегда $\lambda>0$. Однако, если бы было другое граничное условие при x=R: y'(R)=0, то функция $y\equiv const$ и $\lambda=0$ были бы собственной функцией и собственным значением обобщённой задачи Штурма. Мы позже вернёмся к этому случаю, а пока считаем y(R)=0 и значит $\lambda>0$. Так как оператор L зависит от параметра ν , то в (1.1) мы будем писать $L=L(\nu)$, а решения (1.1) и числа λ занумеруем как $y_{\nu k}$ и $\lambda_{\nu k}$, $k=1,2,\ldots$, где ν — фиксировано, а k нумерует собственные значения и собственные функции обобщённой задачи Штурма. Таким образом (1.1) запишется в виде

$$L(\nu)y_{\nu k} = \lambda_{\nu k} \cdot x \cdot y_{\nu k}. \tag{1.4}$$

Введём в (1.4) новую независимую переменную $\rho \stackrel{def}{=} \sqrt{\lambda_{\nu k}} \cdot x$ и положим $z(\rho) \equiv y_{\nu k}(x)$. Считаем ν и k фиксированными и у функции $z_{\nu k}(\rho) = z(\rho)$ эти индексы писать не будем. Легко видеть, что для функции $z(\rho)$ мы получим следующее уравнение:

$$\rho^2 \cdot z'' + \rho \cdot z' + (\rho^2 - \nu^2) \cdot z = 0, \tag{1.5}$$

где в силу граничных условий и условий гладкости для функций $y_{\nu k}(x)$ мы должны потребовать

$$z(\sqrt{\lambda} \cdot R) = 0$$
, при $\nu = 0$ $z(\rho) \in \mathcal{C}^2_{[0,R]}$, при $\nu > 0$ $z(0) = 0$, $z \in \mathcal{C}^2_{[0,R]}$.

Уравнение (1.5) хорошо известно. Это уравнение Бесселя, его решения — функции Бесселя ν -ого порядка. Так как уравнение (1.5) — уравнение второго порядка — то оно имеет два линейно независимых решения, называемые функциями Бесселя первого и второго рода. Но функция Бесселя второго рода ν -ого порядка, или просто функция Бесселя ν -ого порядка $J_{\nu}(\rho)$. Решение уравнения (1.5) можно искать в виде ряда

$$\rho^{\nu} \cdot \sum_{k=0}^{\infty} C_k^{(\nu)} \cdot \rho^k.$$

После подстановки в (1.5) получим, что

$$J_{\nu}(\rho) = \rho^{\nu} \cdot \sum_{k=0}^{\infty} C_{2 \cdot k}^{(\nu)} \cdot \rho^{2 \cdot k}, \tag{1.6}$$

где
$$C_{2 \cdot k}^{(\nu)} = -C_{2 \cdot k-2}^{(\nu)} \cdot \frac{1}{4 \cdot k \cdot (k+1)}, \quad k = 1, 2, \dots$$

Таким образом все коэффициенты выражаются через $C_0^{(\nu)}$, который свободен $^{\rm i}$.

Итак, решение (1.5) — это $z(\rho) = J_{\nu}(\rho)$. Так как $y_{\nu k}(R) = 0$, то $z(\sqrt{\lambda} \cdot R) = 0 = J_{\nu}\left(\sqrt{\lambda} \cdot R\right)$. Обозначим через $\mu_k^{(\nu)}$, $k = 1, 2, \ldots$ нули функции $J_{\nu}(\rho) : J_{\nu}\left(\mu_k^{(\nu)}\right) = 0$. Тогда $\sqrt{\lambda_{\nu k}} \cdot R = \mu_k^{(\nu)}$ и

$$\lambda_{\nu k} = \left(\frac{\mu_k^{(\nu)}}{R}\right)^2. \tag{1.7}$$

Таким образом (так как $\rho = \sqrt{\lambda} \cdot x$)

$$y_{\nu k}(x) = z(\rho) = J_{\nu} \left(\frac{\mu_k^{(\nu)}}{R} \cdot x\right)^{ii}.$$
 (1.8)

Мы получили явный вид собственных функций $y_{\nu k}$ и собственных значений $\lambda_{\nu k}$ обобщённой задачи Штурма. Так как в выражения (1.7), (1.8) входят нули функции Бесселя $J_{\nu}(\rho)$, то проведём небольшое исследование тех точек $\mu_k^{(\nu)}$, в которых $J_{\nu}\left(\mu_k^{(\nu)}\right)=0$, то есть изучим — хотя бы поверхностно, свойствва нулей функции Бесселя. Для этого воспользуемся известной асимптотикой функции Бесселя при больших ρ

$$\sqrt{\rho} \cdot J_{\nu}(\rho) = a_{\nu} \cdot \cos(\rho - b \cdot \nu) + O\left(\frac{1}{\rho}\right),$$

где $a_{\nu}>0$ — некоторое число, $b_{\nu}=\frac{\pi}{4}+\frac{\pi\cdot\nu}{2}$. Отсюда видно, что при $\rho=\rho_k=\pi\cdot k+b_{\nu}$ выполняется

$$\sqrt{\rho_k} \cdot J_{\nu}(\rho_k) = (-1)^k \cdot a_{\nu} + O\left(\frac{1}{\rho_k}\right). \tag{1.9}$$

^іРешение определено с точностью до множителя

^{ії}Теперь, когда $y_{\nu k}(x)=z$ найдены, надо проверить неравенства $\mathcal{J}[y_{\nu k}]<+\infty$, $\|Ly_{\nu k}\|_1<+\infty$, которые должны выполняться в \mathcal{D}_L . Мы это сделаем позже.

Величина $J_{\nu}(\rho_k)$ и $J_{\nu}(\rho_{k+1})$ при больших ρ имеют в силу (1.9) разные знаки. И так как функция $J_{\nu}(\rho)$ непрерывна на отрезке $[\rho_k, \rho_{k+1}]$, на этом отрезке обязательно найдётся (и возможно не одна) точка, в которой $J_{\nu}(\rho)$ обращается в ноль. В тоже время, так как функция $J_{\nu}(\rho)$ — аналитична на отрезке $[\rho_k, \rho_{k+1}]$ при $\rho_k > 0$, то на этом отрезке не может быть бесконечного числа нулей. Это относится вообще к любому отрезку $[\alpha, \beta]$ при $\alpha > 0$. Что касается отрезка $[0, \alpha]$, то в силу (1.6) при $0 < \alpha < 1$

$$J_{\nu}(\rho) = \rho^{\nu} \cdot \left(C_0^{(\nu)} + O(\rho)\right),$$
 при $\rho \neq 0.$

Следовательно, нули $\mu_k^{(\nu)}$ функции $J_{\nu}(\rho)$ могут накапливаться только на бесконечности. Поэтому собственные значения $\lambda_{\nu k} = \left(\mu_k^{(\nu)}/R\right)^2 \to \infty$. Таким образом мы получили бесконечную последовательность при $k \to \infty$ собственных функций обобщённой задачи Штурма

$$y_{\nu k}(x) = J_{\nu} \left(\frac{\mu_k^{(\nu)}}{R} \cdot x \right),$$

отвечающих собственным значениям

$$\lambda_{\nu k} = \left(\frac{\mu_k^{(\nu)}}{R}\right)^2 \to \infty, \quad \text{при} \quad k \to \infty.$$

В силу свойств решений обобщённой задачи Штурма

$$(y_{\nu k}, y_{\nu m})_1 = \left(J_{\nu}\left(\frac{\mu_k^{(\nu)}}{R} \cdot x\right), J_{\nu}\left(\frac{\mu_m^{(\nu)}}{R} \cdot x\right)\right), \quad k \neq m.$$

Теорема 1.1 (Стеклова). Пусть

$$d_k^{(\nu)} \stackrel{def}{=} \left(y, J_{\nu} \left(\frac{\mu_k^{(\nu)}}{R} \cdot x \right) \right)_1 / \left\| J_{\nu} \left(\frac{\mu_k^{(\nu)}}{R} \cdot x \right) \right\|_1^2.$$

Тогда

п. 1. при
$$y \in \mathscr{L}_2([0,R];x)$$
 $\left\| y - \sum_{k=1}^{\infty} d_k^{(\nu)} \cdot J_{\nu} \left(\frac{\mu_k^{(\nu)}}{R} \cdot x \right) \right\|_1 \to 0$, при $n \to \infty$,

п. 2. при
$$y \in \mathcal{D}_L$$
 $\sup_{x \in [a,b]} \left| y - \sum_{k=1}^{\infty} d_k^{(\nu)} \cdot J_{\nu} \left(\frac{\mu_k^{(\nu)}}{R} \cdot x \right) \right| \to 0$, при $n \to \infty$.

п. 1. — без доказательства, п. 2. — доказать при $y \in \mathcal{D}_L$.

Рассмотрим теперь случай граничного условия y'(R)=0 вместо y(R)=0. Обозначим соответствующие собственные функции и собственные значения обобщённой задачи Штурма через $\tilde{y}_{\nu k}(x)$ и через $\tilde{\lambda}_{\nu k}$. Вводим функцию $\tilde{z}(\rho)=\tilde{y}_{\nu k}(x)$, где $\rho=\sqrt{\tilde{\lambda}_{\nu k}}\cdot x$. Для функции $\tilde{z}(\rho)$ мы как и раньше получим уравнение Бесселя, выберем нужное нам решение $J_{\nu}(\rho)$, но теперь граничное условие при x=R, то есть при $\rho=\sqrt{\tilde{\lambda}}\cdot R$ будет $J'_{\nu}\left(\sqrt{\tilde{\lambda}}\cdot R\right)=0$. Обозначим нули функции $J'_{\nu}(\rho)$ через $\tilde{\mu}_{k}^{(\nu)}$ и тогда

$$\tilde{\lambda}_{\nu k} = \left(\frac{\tilde{\mu}_k^{(\nu)}}{R}\right)^2, \quad \tilde{y}_{\nu k}(x) = J_{\nu} \left(\frac{\tilde{\mu}_k^{(\nu)}}{R} \cdot x\right).$$

Чтобы убедится в существовании бесконечного числа нулей $\tilde{\mu}_k^{(\nu)}$ функции $J_{\nu}'(\rho)$ рассмотрим её асимптотику при $\rho\gg 1$

$$\sqrt{\rho} \cdot J_{\nu}'(\rho) = a_{\nu-1} \cdot \sin(\rho - b_{\nu}) + O\left(\frac{1}{\rho}\right)$$

и действуем аналогично предыдущему. Дальнейшее рассмотрение обобщённой задачи Штурма с изменённым граничным условием не отличается от рассмотрения задачи с граничным условием y(R) = 0.

Теперь проверим, что функции $y_{\nu k} \in \mathcal{D}_L$. Нам осталось два утверждения $\mathcal{J}[y_{\nu k}] < +\infty$ и $\|Ly_{\nu k}\|_1 < +\infty$ ($\nu > 0$). В силу (1.6) и (1.8) можно записать

$$y_{\nu k}(x) = x^{\nu} \cdot \Phi(x),$$

где, конечно, $\Phi(x) = \Phi_{\nu k}(x)$, но у нас ν и k — фиксированы и мы опускаем эти индексы. $\Phi(x)$ — бесконечно дифференцируема на $[0, +\infty)$. Найдём $y'_{\nu k}$ и $y''_{\nu k}$

$$y'_{\nu k} = \nu \cdot x^{\nu - 1} \cdot \Phi(x) + x^{\nu} \cdot \Phi'(x), \quad y''_{\nu k} = \nu \cdot (\nu - 1) \cdot \Phi(x) + 2 \cdot \nu \cdot x^{\nu - 1} \cdot \Phi'(x) + x^{\nu} \cdot \Phi''(x).$$

Очевидно,

$$x \cdot y_{\nu k}^{\prime 2} \leqslant const \cdot \left(x^{2 \cdot \nu} \cdot \Psi^{\prime 2}(x) \cdot x + x^{2 \cdot \nu} \cdot |\Psi(x)| \cdot |\Psi^{\prime}(x)| + x^{2 \cdot \nu - 1} \cdot \Psi^{2}(x) \right).$$

Так как $\nu > 0$, то

$$\int_{0}^{R} \left(x \cdot y_{\nu k}^{\prime 2} + \frac{\nu^{2}}{x} \cdot y_{\nu k} \right) dx < +\infty$$

И

$$||Ly_k||_1^2 = \int_0^R x \cdot \left[\frac{d}{dx} (x \cdot y'_{\nu k}) + \frac{\nu}{x} \cdot y_{\nu k} \right]^2 dx < +\infty.$$

то есть $y_{\nu k} \in \mathcal{D}_L$.

Но можно было проще: $Ly_{\nu k} = x \cdot \lambda_{\nu k} \cdot y_{\nu k}$ и значит

$$||Ly_{\nu k}||_1^2 = \lambda_{\nu k}^2 \cdot ||x \cdot y_{\nu k}||_1^2 = \lambda_{\nu k}^2 \cdot \int_0^R x^3 y_{\nu k}^2 < +\infty.$$

2. Вариационные задачи для функционалов, зависящих от функций двух переменных.

Рассмотрим следующую задачу. Пусть дана цилиндрическая ёмкость с образующими параллельными оси z. В плоскости $x,\ y$ «дно» этой ёмкости образует какую-то область G. Сверху ёмкость не закрыта, граница цилиндрической поверхности сверху — функция $f(x,y),\ x,y\in\partial G$ (∂G — граница G).

Задача: закрыть цилиндр крышкой наименьшей площади. Если обозначить закрывающую поверхность через z(x,y), то площадь крышки

$$S[z] = \iint_{\mathcal{C}} \sqrt{1 + z_x^2 + z_y^2} \, dx dy,$$

и мы должны минимизировать функционал S[z] в классе функций $z(x,y), z\Big|_{\partial G} = f(x,y), z \in \mathcal{C}^1(G).$

Перейдём теперь к общему случаю. Вводим обозначения $p\stackrel{def}{=}\frac{\partial z}{\partial x},\ q\stackrel{def}{=}\frac{\partial z}{\partial y}.$ Рассмотрим функционал

$$\mathcal{J}[z] = \iint_C F(x, y, z, p, q) \, dx dy,$$

где G — некоторая область в плоскости $x,\ y,\ F\in\mathcal{C}^2$ при $(x,y)\in G,\ |z|< M,\ \forall p,\ q;$ здесь M — какая-то большая константа. Пусть $P\stackrel{def}{=}(x,y)$. И пусть

$$\mathcal{K} \stackrel{def}{=} \left\{ z(x,y) | z \in \mathcal{C}^1(\overline{G}), \ z \Big|_{\partial G} = f(P), \ |z| < M \right\}.$$

Мы будем рассматривать задачу на $\min_{z \in \mathcal{K}} \mathcal{J}[z]$. Как обычно предполагаем, что минимайзер существует и обладает повышенной гладкостью. Пусть z = z(x,y) — минимайзер в рассматриваемой задаче.

Определение 2.1. Функцию $\eta(x,y)$ назовём допустимым изменением, если $\tilde{z} \stackrel{def}{=} z + t \cdot \eta \in \mathcal{K}$ при $|t| \ll 1$.

Легко видеть, что отсюда вытекают такие ограничения на η : $\eta\Big|_{\partial G}=0,\;\eta\in\mathcal{C}^1(\overline{G}).$ Далее проводим стандартные рассуждения. Полагаем $\varphi(t)=\mathcal{J}[z+t\cdot\eta].$

$$\mathcal{J}[z+t\cdot\eta]\geqslant \mathcal{J}[z] \quad \Rightarrow \quad \varphi(t)\geqslant \varphi(0);$$

$$\mathcal{J}[z+t\cdot\eta]-\mathcal{J}[z]=\delta\mathcal{J}+\ldots, \qquad \varphi(t)-\varphi(0)=\varphi'(0)\cdot t+\ldots;$$

$$\delta \mathcal{J} = t \cdot \varphi'(0) = t \cdot \left. \frac{d}{dt} \mathcal{J}[z + t \cdot \eta] \right|_{t=0}$$
 — первая вариация.

Так как $\varphi(0)$ — минимальное значение $\varphi(t)$ при $|t| \ll 1$, то $\varphi'(0) = 0$ (функция $\varphi(t) \in \mathcal{C}^1$!), то есть $\delta \mathcal{J} = 0$ — необходимое условие минимума (для максимума — тоже). Вычислим первую вариацию функционала

$$\mathcal{J}[z+t\cdot\eta] = \iint\limits_{G} \widetilde{F(x,y,\underbrace{z+t\cdot\eta}_{\tilde{z}},\underbrace{p+t\cdot\eta_{x}}_{\tilde{z}_{x}},\underbrace{q+t\cdot\eta_{y}}_{\tilde{z}_{y}})} \ dxdy.$$

Имеем (предполагая только $z \in \mathcal{C}^2$, $\eta \in \mathcal{C}^1$.)

$$\delta \mathcal{J} = t \cdot \frac{d}{dt} \iint_{G} \widetilde{F} \, dx dy \bigg|_{t=0} = t \cdot \iint_{G} \left(\widetilde{F}_{\tilde{z}} \cdot \eta + \widetilde{F}_{\tilde{z}_{x}} \cdot \eta_{x} + \widetilde{F}_{\tilde{z}_{y}} \cdot \eta_{y} \right) \, dx dy \bigg|_{t=0} = t \cdot \iint_{G} \left(F_{z} \cdot \eta + F_{z_{x}} \cdot \eta_{x} + F_{z_{y}} \cdot \eta_{y} \right) \, dx dy.$$

Преобразуем полученное выражение так, чтобы оно не содержало производных η_x , η_y . Имеем выделяя дивергентную форму

$$\iint\limits_{G} \left(F_{p} \cdot \eta_{x} + F_{q} \cdot \eta_{y} \right) \, dx dy = \iint\limits_{G} \left(\frac{d}{dx} (F_{p} \cdot \eta) + \frac{d}{dy} (F_{q} \cdot \eta) \right) \, dx dy - \iint\limits_{G} \left(\frac{d}{dx} F_{p} + \frac{d}{dy} F_{q} \right) \cdot \eta \, dx dy.$$

Таким образом, первая вариация

$$\delta \mathcal{J} = t \left[\iint_{G} \left(F_z - \frac{d}{dx} F_p - \frac{d}{dy} F_q \right) \cdot \eta \, dx dy + \iint_{G} \left(\frac{d}{dx} (F_p \cdot \eta) + \frac{d}{dy} (F_q \cdot \eta) \right) \, dx dy \right]$$

Введём в рассмотрение вектор $\Phi = (F_p \cdot \eta, F_q \cdot \eta)$. Его компоненты обладают гладкостью $\mathcal{C}^1(G)$ и $\mathcal{C}(\overline{G})$. Поэтому можно применить формулу Остроградского–Гаусса, согласно которой

$$\iint_{G} \operatorname{div} \mathbf{\Phi} \, dx dy = \int_{\partial G} (\mathbf{\Phi}, \mathbf{n})_{\mathbb{R}^{2}} \, dl,$$

где $\mathbf{n} = (\cos \alpha, \cos \beta)$ — единичная внешняя нормаль к границе ∂G .

Используя эту формулу получаем окончательное выражение для первой вариации

$$\delta \mathcal{J} = t \cdot \iint_{G} \left(F_z - \frac{d}{dx} F_p - \frac{d}{dy} F_q \right) \cdot \eta \, dx dy + t \cdot \int_{\partial G} (F_p \cdot \cos \alpha + F_q \cdot \cos \beta) \cdot \eta \, dl. \tag{2.1}$$

Заметим, что это выражение даёт главную часто приращения $\mathcal{J}[z+t\cdot\eta]=\mathcal{J}[z]$ не зависимо ни от каких свойств z и η кроме гладкости. Мы этим будем пользоваться.

Теперь возвращаемся к нашей вариационной задаче. Если z — минимайзер и η — допустимое изменение, то $\eta\Big|_{\partial G}\equiv 0$ и $\delta \mathcal{J}=0$, то есть

$$\iint_{C} \left(F_z - \frac{d}{dx} F_p - \frac{d}{dy} F_q \right) \cdot \eta \, dx dy = 0, \quad \forall \eta - \text{допустимого}.$$
 (2.2)

Пусть $\Psi \equiv F_z - \frac{d}{dx} F_p - \frac{d}{dy} F_q$. Тогда (2.2) означает, что

$$\iint\limits_{C} \Psi(x,y) \cdot \eta \, dx dy = 0 \quad \forall \eta - \text{допустимого}. \tag{2.3}$$

Из равенства (2.3) вытекает, что $\Psi(x,y)\equiv 0,\ x,y\in G$ (Обобщение леммы Лагранжа на плоскость). Действительно, пусть в некоторой точке $x_0,\ y_0\ \Psi(x_0,y_0)>0$. Так как функция $\Psi(x,y)$ — непрерывная, то можно указать такой квадрат A со стороной $2\cdot\delta\colon |x-x_0|\leqslant \delta,\ |y-y_0|\leqslant \delta,$ что $\Psi(x,y)>0,\ x,\ y\in A.$

Определим функцию $\eta(x,y)$ равенствами

$$\eta(x,y) = \begin{cases} [(x-x_0+\delta)^2 \cdot (x-x_0-\delta)^2 \cdot (y-y_0+\delta)^2 \cdot (y-y_0-\delta)^2] & x,y \in A, \\ 0 & x,y \notin A. \end{cases}$$

Ясно, что по определению $\eta\Big|_{\partial G}=0$ и $\frac{\partial \eta}{\partial x}=\frac{\partial \eta}{\partial y}=0, x,y\in\partial G.$ Поэтому $\eta\in\mathcal{C}^1(\overline{G}).$ Подставляя в (2.2) получим

$$\iint\limits_A \Psi(x,y) \cdot \eta(x,y) \, dx dy = 0,$$

что невозможно, ибо в области A функции $\Psi(x,y)$ и $\eta(x,y)$ — положительны (кроме границы). Значит, не может существовать такая точка x_0 , y_0 в которой $\Psi(x_0,y_0) > 0$. Аналогично убеждаемся, что не может быть точки x_0 , y_0 , в которой $\Psi(x_0,y_0) < 0$. Значит $\Psi(x,y) \equiv 0$, то есть

$$F_z - \frac{d}{dx}F_p - \frac{d}{dy}F_q \equiv 0$$

если в функцию F(x,y,z,p,q) подставили минимайзер, то есть для нахождения минимайзера надо решить уравнение

$$F_z - \frac{d}{dx}F_p - \frac{d}{dy}F_q = 0. (2.4)$$

Это — уравнение Остроградского. Мы должны решать его в классе функций $z(x,y) \in \mathcal{C}^2(G),$ $z\Big|_{\partial G} = f(x,y).$

Уравнение (2.4) — это уравнение в частных производных второго порядка. Проведём дифференцирование

$$F_z - F_{px} - F_{pz} \cdot \frac{\partial z}{\partial x} - F_{pp} \cdot \frac{\partial^2 z}{\partial x^2} - F_{pq} \cdot \frac{\partial^2 z}{\partial x \partial y} - F_{qy} - F_{qz} \cdot \frac{\partial z}{\partial y} - F_{qp} \cdot \frac{\partial^2 z}{\partial x \partial y} - F_{qq} \cdot \frac{\partial^2 z}{\partial y^2} = 0,$$

то есть

$$-F_{pp} \cdot \frac{\partial^2 z}{\partial x^2} - 2 \cdot F_{pq} \cdot \frac{\partial^2 z}{\partial x \partial y} - F_{qq} \cdot \frac{\partial^2 z}{\partial y^2} = W(x, y, z, p, q). \tag{2.5}$$

Рассмотрим пример. Интеграл

$$\mathcal{J}[z] = \iint\limits_{G} \left[\left(\frac{\partial z}{\partial x} \right)^{2} + \left(\frac{\partial z}{\partial y} \right)^{2} \right] dx dy = \iint\limits_{G} \left(p^{2} + q^{2} \right) dx dy$$

называется интегралом Дирихле. Уравнение Остроградского для него

$$-\frac{d}{dx}(2 \cdot z_x) - \frac{d}{dy}(2 \cdot z_y) = 0,$$

то есть

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 — уравнение Лапласа,

Оператор $\Delta \stackrel{def}{=} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ — оператор Лапласа.

<u>Обобщение</u>. Рассмотрим функционал $\mathcal{J}[z]$ для функции $z = z(x_1, ..., x_n)$ зависящей от n переменных. Пусть $p_i \stackrel{def}{=} \frac{\partial z}{\partial x_i}, i = \overline{1, n}, \, \Omega = \{x_1, ..., x_n\}$ — некоторая область.

$$\mathcal{J}[z] = \int \cdots \int F(x_1, \dots, x_n, z, p_1, \dots, p_n) d\Omega.$$

 $z\Big|_{\partial\Omega}=f(x_1,\dots,x_n)$. Уравнение Остроградского для этого функционала выводится совершенно аналогично. В результате мы получим

$$F_z - \frac{d}{dx_1} F_{p_1} - \frac{d}{dx_2} F_{p_2} - \dots - \frac{d}{dx_n} F_{p_n} = 0.$$

3. Вариационные задачи со свободной границей.

Возвращаемся к исходному функционалу

$$\mathcal{J}[z] = \iint_G F(x, y, z, p, q) \, dx dy,$$

но класс допустимых функций в задаче на min $\mathcal{J}[z]$ определим по-другому. Пусть кривая $\Gamma \stackrel{def}{=} \partial G$. Разобьём Γ произвольным образом на две части $\Gamma = \Gamma_1 \cup \Gamma_2$, причём

а) одна из частей может отсутствовать,

b) кривые Γ_1 и Γ_2 могут состоять каждая из отдельных кусков (см. картинку, например; Γ_1 выделена жирным).

Причина подобного разбиения — необходимость описать ситуацию, когда часть границы — скажем Γ_2 — свободна, а на Γ_1 задано граничное условие (до сих пор $\Gamma_2 = \varnothing$).

Итак, определим класс допустимых функций

$$\mathcal{K} = \left\{ z(x,y) | z \in \mathcal{C}^1(\overline{G}), \ z \Big|_{\Gamma_1} = f(x,y), \ \Gamma_2 \neq \emptyset, \ |z| < M \right\}.$$

Тогда, чтобы $z+t\cdot\eta\in\mathcal{K}$ нам необходимо требовать, чтобы $\eta(x,y)\equiv 0$ не на всей кривой $\Gamma=\partial G$, а только на Γ_1 . Достаточно условия: $\eta\Big|_{\Gamma_1}\equiv 0$, а $\eta\Big|_{\Gamma_2}$ — произвольна. Разумеется, требование $\eta(x,y)\in\mathcal{C}^1(\overline{G})$ — сохраняется. Если z — минимайзер, то $\delta\mathcal{J}=0$, а формула для $\delta\mathcal{J}$ — это (2.1). Значит

$$\delta \mathcal{J} = t \left[\iint_{G} \left(F_{z} - \frac{d}{dx} F_{p} - \frac{d}{dy} F_{q} \right) \cdot \eta \, dx dy + \int_{\Gamma} \left(F_{p} \cdot \cos \alpha + F_{q} \cdot \cos \beta \right) \cdot \eta \, dl \right] = 0.$$

Взяв $\eta \Big|_{\Gamma} \equiv 0$ (это не запрещено) мы получаем, что

$$\iint\limits_{C} \left(F_z - \frac{d}{dx} F_p - \frac{d}{dy} F_q \right) \cdot \eta \, dx dy = 0,$$

откуда как и раньше выводим уравнение Остроградского

$$F_z - \frac{d}{dx}F_p - \frac{d}{dy}F_q = 0.$$

Значит равенство $\delta \mathcal{J} = 0$ сводится к равенству

$$\int_{\Gamma} (F_p \cdot \cos \alpha + F_q \cdot \cos \beta) \cdot \eta \, dl = 0, \quad \forall \eta - \text{допустимое.}$$

Но так как на Γ_1 $\eta\Big|_{\Gamma_1}\equiv 0,$ а $\Gamma=\Gamma_1\cup\Gamma_2,$ то мы получаем, что

$$\int_{\Gamma_2} (F_p \cdot \cos \alpha + F_q \cdot \cos \beta) \cdot \eta \, dl = 0. \tag{3.1}$$

В силу произвольности функции η на Γ_2 мы, обобщая лемму Лагранжа на случай кривой, получим, что

$$F_p \cdot \cos \alpha + F_q \cdot \cos \beta = 0, \quad (x, y) \in \Gamma_2.$$
 (3.2)

Это — естественное граничное условие для свободной части границы. Если $\Gamma_1=\varnothing$, то условие (3.2) должно выполняться на всей границе $\Gamma=\partial G$. Таким образом уравнение Остроградского надо решать с граничными условиями: на Γ_2 — (3.2), на Γ_1 $z\Big|_{\Gamma_1}=f(x,y)$.

Приведём пример. Пусть $F=z_x^2+z_y^2$, то есть мы рассматриваем интеграл Дирихле. Тогда

$$F_p \cdot \cos \alpha + F_q \cdot \cos \beta = 2 \cdot (z_x \cdot \cos \alpha + z_y \cdot \cos \beta) = 2 \cdot (\nabla z, \mathbf{n}) = 2 \cdot \frac{\partial z}{\partial n}$$

и естественное граничное условие на свободной части границы $\left.\frac{\partial z}{\partial n}\right|_{\Gamma_2}=0$

Часть Б

Уравнения математической физики.

Лекция 11

Мы начинаем основную часть курса — раздел «уравнения математической физики». В этой части мы изучим, во-первых, уравнения, описывающие колебания распределённых систем, вовторых, уравнения, описывающие распространение тепла в распределённых системах, а также основные методы решения этих — и не только этих — уравнений.

1. Уравнение малых колебаний струны.

Определение 1.1. Струна — это гибкая тонкая нить, не сопротивляющаяся изгибу. Внутренние силы возникают в ней только за счёт растяжения.

Пусть струна в положении равновесия занимает отрезок [a,b] оси x, а отклонение точки x в момент t есть $\boldsymbol{u}(x,t)$. Для простоты будем считать, что отклонения всех точек x перпендикулярны к отрезку [a,b] и лежат в одной плоскости — плоскости чертежа и поэтому далее $\boldsymbol{u}(x,t) \to u(x,t)$.

Чтобы описать колебания струны, то есть движение её точек под действием внутренних и внешних потенциальных сил воспользуемся принципом Гамильтона. Составим интеграл энергии

$$\mathcal{J}[u] = \int_{t_0}^{t_1} \left[T(t) - V(t) \right] dt,$$

где T и V — кинетическая и потенциальная энергии струны. Найдём первую вариацию $\delta \mathcal{J}$ и затем из равенства $\delta \mathcal{J} = 0$ получим уравнение колебаний струны и — в соответствующих случаях — граничные условия как $\mathrm{E}\Gamma\mathrm{Y}$ (естественные граничные условия).

Пусть струна оттянута от положения равновесия и отпущена. Мы рассматриваем только малые колебания: $|u_x(x,t)| \ll 1$.

Энергия струны

кинетическая
$$\to T = T_{\rm p} + T_{\rm c}, \ V = V_{\rm p} + V_{\rm c} \leftarrow$$
 потенциальная,

где «р» и «с» означают соответственно энергию распределённой системы и энергию, связанную с сосредоточенным источником. Найдём выражения для $T_{\rm p},\ T_{\rm c},\ V_{\rm p},\ V_{\rm c}$ начиная с $T_{\rm p}$. Кинетическая энергия ΔT элементарного участка Δx есть

$$\Delta T_{\rm p} = \Delta m \cdot \frac{u_t^2(x,t)}{2} = \rho \cdot \Delta x \cdot \frac{u_t^2(x,t)}{2}, \ {\rm где} \ \Delta m - {\rm масса \ участк} \ \Delta x, \ \rho - {\rm плотность \ струны}.$$

Очевидно, что

$$T_{\rm p} = \int_{a}^{b} \frac{\rho \cdot u_t^2}{2} \, dx.$$

Энергия $T_{\rm c}$ присутствует, если струна была нагружена одной или несколькими точечными массами. Предположим, что в точке \overline{x} струна нагружена массой \overline{m} . Тогда

$$T_{\rm c} = \frac{\overline{m} \cdot u_t^2(\overline{x}, t)}{2}.$$

Переходим к нахождению потенциальной энергии. В общем случае $V_{\rm p}=V_{\rm p_1}+V_{\rm p_2}$, где $V_{\rm p_1}$ — потенциальная энергия струны за счёт её растяжения, а $V_{\rm p_2}$ — за счёт работы внешних распределённых сил. Начнём сначала с $V_{\rm p_1}$. Можно доказать (см. например, А. Тихонов, А. Самарский «Уравнения математической физики»), что при малых колебаниях натяжение струны μ не зависит от удлинения. Поэтому запасённая потенциальная энергия $\Delta V_{\rm p_1}$ элементарного участка Δx пропорциональна его удлинению

$$\Delta V_{\rm p_1} = \mu \cdot \Delta l = \mu \cdot \left(\sqrt{1 + u_x^2} \cdot \Delta x - \Delta x\right) \approx \frac{\mu \cdot u_x^2}{2} \cdot \Delta x.^{\rm i}$$

Следовательно

$$V_{\mathbf{p}_1} = \int\limits_a^b \frac{\mu \cdot u_x^2}{2} \, dx.$$

Найдём $V_{\rm p_2}$. Пусть на струну действует распределённая сила $\mathcal F$ направленная перпендикулярно к [a,b] в плоскости чертежа и пусть f(x,t) — линейная плотность этой силы, то есть f(x,t) есть сила, действующая на единицу длины. Сила, действующая на элементарный участок Δx — $\Delta \mathcal F = f \cdot \Delta x$ и поэтому её потенциал $\Delta U = -f(x,t) \cdot \Delta x \cdot u(x,t)$. Следовательно, потенциальная энергия участка Δx за счёт силы $\mathcal F$ есть $\Delta V_{\rm p_2} = \Delta U = -f \cdot u \cdot \Delta x$, а полная потенциальная энергия за счёт действия силы $\mathcal F$ очевидно

$$V_{\mathbf{p}_2} = -\int_a^b f \cdot u \, dx.^{\mathbf{i}\mathbf{i}}$$

Обсудим теперь величину $V_{\rm c}$. Предположим, что в точке \widehat{x} на струну действует сосредоточенная сила, перпендикулярная отрезку [a,b] или же (или одновременно) в этой точке к струне прикреплена пружина, которую струна сжимает или растягивает при колебаниях.

Обозначим изменение энергии струны в точке \hat{x} через g. Выражение для g будет дано позже, а пока только для упрощения дальнейших выкладок предположим, что $\hat{x} = \overline{x}$. Таким образом

$$V_{\rm c} = q(t, u(\overline{x}, t)).$$

Собирая вместе все составляющие кинетической и потенциальной энергии струны, мы получим

 $^{^{} ext{i}}$ здесь мы воспользовались приближённой формулой $\sqrt{1+lpha} pprox 1+rac{lpha}{2},$ при $|lpha| \ll 1.$

^{іі}Здесь мы воспользовались известным из курсов физики фактом, что когда внешняя сила действует на объект, то изменение потенциальной энергии объекта равно потенциалу силы.

интеграл действия в виде

$$\mathcal{J}[u] = \int_{t_0}^{t_1} \int_a^b \underbrace{\left(\frac{\rho \cdot u_t^2}{2} - \frac{\mu \cdot u_x^2}{2} + f \cdot u\right)}_{F} dx dt + \int_{t_0}^{t_1} \underbrace{\left(\frac{\overline{m} \cdot u_t^2(\overline{x}, t)}{2} - g(t, u(\overline{x}, t))\right)}_{\Phi} dt$$

Обозначим подынтегральное выражение двукратного интеграла через $F = F(x, t, u, u_x, u_t)$, а однократного через $\Phi = \Phi(t, u(\overline{x}, t), u_t(\overline{x}, t))$ и введём на плоскости x, t область

$$\Omega = \{x, t | x \in [a, b], t \in [t_0, t_1]\}$$

Тогда
$$\mathcal{J}[u] = \iint_{\Omega} F \, dx dt + \int_{M}^{N} \Phi \, dt$$
, где $M = (\overline{x}, t_0), \ N = (\overline{x}, t_1).$

Чтобы найти вариацию от интеграла действия, то есть величину $\gamma \cdot \frac{d}{d\gamma} \mathcal{J}[u+\gamma\cdot\eta]\Big|_{\gamma=0}$ надо в первую очередь ввести допустимое изменение $\eta(x,t)$ и описать его свойства исходя из того, что функция $u(x,t)+\gamma\cdot\eta(x,t)$ (γ — малый параметр) должна описывать траекторию движения струны из того же начального состояния в то же конечное, что и u(x,t). Так как состояние струны определяется положением каждой точки, то мы потребуем, чтобы

$$\eta(x, t_0) = \eta(x, t_1) \equiv 0, \quad \forall x \in [a, b].$$

Далее при нахождении первой вариации двукратных интегралов в лекции по «вариационному исчислению» мы применяли формулу Остроградского–Гаусса к вектору вида $\boldsymbol{W}=(F_{u_x}\cdot\eta,F_{u_t}\cdot\eta)^{\mathrm{i}}$. Но применение данной формулы возможно лишь при определённой гладкости компонент этого вектора, а в рассматриваемой ситуации функция $u_x(x,t)$, а следовательно и компоненты вектора \boldsymbol{W} могут иметь разрыв при $x=\overline{x}$. Поэтому при нахождении первой вариации интеграла действия мы разобьём область Ω на две области

$$\Omega_1 = \{x, t | x \in [a, \overline{x}], t \in [t_0, t_1]\}, \quad \Omega_2 = \{x, t | x \in (\overline{x}, b], t \in [t_0, t_1]\}$$

и будем брать вариацию по каждой из областей. Имеем

$$\mathcal{J}[u] = \iint_{\Omega_1} F \, dx dt + \iint_{\Omega_2} F \, dx dt + \int_{M}^{N} \Phi \, dt.$$

Предположим, что $a < \overline{x} < b$ и что концы струны или закреплены u(a,t) = u(b,t) = 0, или движутся по заданным законам $u(a,t) = \nu_1(t), \ u(b,t) = \nu_2(t)$. В обоих случаях мы должны потребовать, чтобы

$$\eta(a,t) = \eta(b,t) \equiv 0, \quad \forall t.$$

Если же $\overline{x}=a\{b\}$, то области $\Omega_1\{\Omega_2\}$ не будет, и тогда требование $\eta(a,t)\equiv 0\{\eta(b,t)\equiv 0\}$ отпадает

Положим
$$\mathcal{J}_j[u] = \iint\limits_{\Omega_j} F(x,t,u,u_x,u_t)\,dxdt, \ j=1,2; \quad \mathcal{J}_3[u] = \int\limits_{t_0}^{t_1} \Phi(t,u(\overline{x},t),u_t(\overline{x},t))\,dt$$

ⁱТам производная была не по t, а по y, но это не существенно.

Тогда $\mathcal{J}[u] = \mathcal{J}_1[u] + \mathcal{J}_2[u] + \mathcal{J}_3[u]$

И

$$\delta \mathcal{J} = \gamma \cdot \frac{d}{d\gamma} \left\{ \sum_{j=1}^{2} \mathcal{J}_{j}[u + \gamma \cdot \eta] + \mathcal{J}_{3}[u + \gamma \cdot \eta(\overline{x}, t)] \right\} \bigg|_{\gamma=0}.$$

Используя известные нам формулы первой вариации для двукратных и однократных интегралов получим

$$\delta \mathcal{J} = \gamma \cdot \left[\sum_{j=1}^{2} \left\{ \iint_{\Omega_{j}} \left(F_{u} - \frac{d}{dx} F_{u_{x}} - \frac{d}{dt} F_{u_{t}} \right) \cdot \eta \, dx dt + \int_{\partial \Omega_{j}} \left(F_{u_{x}} \cdot \cos \alpha + F_{u_{t}} \cdot \cos \beta \right) \cdot \eta \, dt \right\} + \int_{t_{0}}^{t_{1}} \left(\Phi_{u} - \frac{d}{dt} \Phi_{u_{t}} \right) \cdot \eta(\overline{x}, t) \, dt + \Phi_{u_{t}} \cdot \eta(\overline{x}, t) \int_{t_{0}}^{t_{1}} \left(1.1 \right) dt + \left[\int_{t_{0}}^{t_{1}} \left(\Phi_{u} - \frac{d}{dt} \Phi_{u_{t}} \right) \cdot \eta(\overline{x}, t) \, dt + \Phi_{u_{t}} \cdot \eta(\overline{x}, t) \right] \right]$$

Здесь $\cos \alpha$, $\cos \beta$ — компоненты единичной внешней нормали к границе области Ω_j на плоскости x,t.

Так как $\eta(x,t_0)=\eta(x,t_1)=0\ \forall x$, то интегралы по границам областей Ω_j сведутся к интегралам по MN и DA для Ω_1 и по BC и NM для $\Omega_2^{\mathbf{i}}$. Очевидно, что на отрезках BC, MN, NM, DA выполняется $\cos\beta=0$, так как нормали к ним перпендикулярны к оси t. Далее $\cos\alpha=1$ на BC и MN и $\cos\alpha=-1$ на DA и NM.

Учитывая вышесказанное и полагая для краткости $P \stackrel{def}{=} (F_{u_x} \cdot \cos \alpha + F_{u_t} \cdot \cos \beta) \cdot \eta$, имеем

$$\int_{\partial\Omega_{1}} P \, dl = \int_{t_{0}}^{t_{1}} P \left| dt + \int_{t_{1}}^{t_{0}} P \left| dl \right|_{x=a+0} = \int_{t_{0}}^{t_{1}} P \left| dt + \int_{t_{0}}^{t_{1}} P \left| dt \right|_{x=a+0} = \int_{t_{0}}^{t_{1}} \left[\mu \cdot u_{x} \middle|_{x=a+0} \cdot \eta(a,t) - \mu \cdot u_{x} \middle|_{x=\overline{x}-0} \cdot \eta(\overline{x},t) \right] dt. \quad (1.2)$$

$$\int_{\partial\Omega_2} P \, dl = \int_{t_0}^{t_1} P \left| dt \right|_{x=b-0} + \int_{t_1}^{t_0} P \left| dl \right|_{x=\overline{x}+0} = \int_{t_0}^{t_1} \left[-\mu \cdot u_x \middle|_{x=b-0} + \eta(b,t) + \mu \cdot u_x \middle|_{x=\overline{x}+0} + \eta(\overline{x},t) \right] dt. \tag{1.3}$$

Здесь учтено, что dl=dt при интегрировании по BC, MN и dl=-dt при интегрировании по NM и DA.

Перепишем теперь выражение (1.1), подставляя туда F и Φ . Тогда с учётом равенств (1.2) и

^іНапомним, что положительное направление обхода границы — обход против часовой стрелки.

(1.3) получим

$$\delta \mathcal{J} = \gamma \cdot \left\{ \sum_{j=1}^{2} \iint_{\Omega_{j}} \left[f + \frac{\partial}{\partial x} (\mu \cdot u_{x}) - \frac{\partial}{\partial t} (\rho \cdot u_{t}) \right] \cdot \eta \, dx dt + \right.$$

$$\left. + \int_{t_{0}}^{t_{1}} \left[\mu \cdot u_{x} \cdot \eta \Big|_{x=a+0} - \mu \cdot u_{x} \cdot \eta \Big|_{x=\overline{x}-0} - \mu \cdot u_{x} \cdot \eta \Big|_{x=b-0} + \mu \cdot u_{x} \cdot \eta \Big|_{x=\overline{x}+0} - \left(\overline{m} \cdot u_{tt} + g_{u} \right) \cdot \eta \Big|_{x=\overline{x}} \right] dt \right\}. \tag{1.4}$$

Взяв $\eta(a,t)=\eta(b,t)=\eta(\overline{x},t)=0$ и затем $\eta(x,t)\equiv 0$, при $(x,t)\in\Omega_2$ получим условие $\delta\mathcal{J}=0$ в виде

$$\iint_{\Omega_1} \left[f + \frac{\partial}{\partial x} (\mu \cdot u_x) - \frac{\partial}{\partial t} (\rho \cdot u_t) \right] \cdot \eta \, dx dt = 0.$$

Отсюда по лемме Лагранжа для функций двух переменных получаем

$$f + \frac{\partial}{\partial x} (\mu \cdot u_x) - \frac{\partial}{\partial t} (\rho \cdot u_t) = 0$$
 при $(x, t) \in \Omega_1$. (1.5)

Аналогично полагая $\eta(x,t) \equiv 0$ в области Ω_1 , убеждаемся в справедливости уравнения (1.5) для $(x,t) \in \Omega_2$, исключая, быть может, отрезок $x = \overline{x}, t \in [t_0,t_1]$. Уравнение (1.5) — это и есть уравнение колебаний струны.

Если $\overline{x} \neq a, b$, то взяв $\eta(a,t) = \eta(b,t) = 0$ мы в силу (1.4) с учётом (1.5) получим

$$\int_{t_0}^{t_1} \left[\mu \cdot u_x \bigg|_{x=\overline{x}+0} - \mu \cdot u_x \bigg|_{x=\overline{x}-0} - \overline{m} \cdot u_{tt}(\overline{x},t) - g_u \bigg|_{x=\overline{x}} \right] \cdot \eta(\overline{x},t) = 0 \quad \forall \eta(\overline{x},t).$$

Отсюда в силу леммы Лагранжа для однократных интегралов получаем условие при $x = \overline{x}$

$$\mu \cdot u_x \bigg|_{x=\overline{x}+0} - \mu \cdot u_x \bigg|_{x=\overline{x}-0} - \left(\overline{m} \cdot u_{tt} + g_u\right) \bigg|_{x=\overline{x}} = 0 \tag{1.6}$$

Вид функции g мы обсудим позже, а пока рассмотрим случаи $\overline{x} = a$ и $\overline{x} = b$. Пусть $\overline{x} = a$, тогда области Ω_1 не будет, и (1.6) запишется в виде

$$\mu \cdot u_x \bigg|_{x=a} = \left(\overline{m} \cdot u_{tt} + g_u \right) \bigg|_{x=a} \tag{1.7}$$

при $\overline{x} = b$ нет области Ω_2 и условие (1.6) можно переписать в виде

$$-\mu \cdot u_x \bigg|_{x=b} = \left(\overline{m} \cdot u_{tt} + g_u \right) \bigg|_{x=b}$$
 (1.8)

Найдём теперь вид функции $g(t, u(\overline{x}, t))$ для двух наиболее интересных случаев.

А) Пусть в точке \overline{m} действует сосредоточенная сила $f_0(t)$. Потенциал $v_0(t)$ этой силы, очевидно, равен — $f_0(t) \cdot u(\overline{x}, t)$ и, следовательно, $g = v_0 = -f_0(t) \cdot u(\overline{x}, t)$. В этом случае $g_u = -f_0(t)$ и тогда при $\overline{m} = 0$ условие (1.6) перепишется в виде

$$\mu \cdot u_x \Big|_{\overline{x}+0} - \mu \cdot u_x \Big|_{\overline{x}-0} = -f_0(t), \tag{1.6A}$$

а условия (1.7) и (1.8) в виде

$$\mu \cdot u_x \bigg|_{t=a} = -f_1(t), \tag{1.7A}$$

$$\mu \cdot u_x \Big|_{x=b} = f_2(t), \tag{1.8A}$$

где $f_1(t)$ и $f_2(t)$ — сосредоточенные силы, действующие на концах струны.

Если $f_1(t)=f_2(t)\equiv 0,$ то мы получим условия на свободных концах

$$\mu \cdot u_x \bigg|_{x=a} = 0, \quad \mu \cdot u_x \bigg|_{x=b} = 0. \tag{1.9}$$

Отметим, что условие (1.6A) описывает скачок производной u_x в точке $x = \overline{x}$.

В) Упругое закрепление. Пусто в точке $x = \overline{x}$ к струне прикреплена пружинка, натянутая на вертикальный стержень (без трения) и закреплённая в точке C.

При колебаниях струна работает, растягивая или сжимая пружинку. Сила, необходимая для смещения конца пружинки на величину $u(\overline{x},t)$ по закону Гука есть

 $f_0(\overline{x},t)=k\cdot u(\overline{x},t)$, где k — характеризует жёсткость пружины.

Потенциал этой силы, очевидно, равен $v_0 = -\frac{k \cdot u^2(\overline{x}, t)}{2}$.

В отличие от рассмотренных ранее случаев, когда внешние силы (распределённые или сосредоточенные) действовали на струну, в рассматриваемой ситуации работает сама струна. Поэтому здесь потенциальная энергия струны $g = -v_0^{\ i}$, то есть $g(t,u(\overline{x},t)) = k \cdot u^2(\overline{x},t) / 2$ и $g_u(t,u(\overline{x},t)) = k \cdot u(\overline{x},t)$. Поэтому условие (1.6) при $\overline{m} = 0$ запишется в виде

$$\mu \cdot u_x \Big|_{\overline{x}+0} - \mu \cdot u_x \Big|_{\overline{x}-0} = k \cdot u. \tag{1.6B}$$

Если упруго закреплены концы струны и k_1 , k_2 — коэффициенты жёсткости соответствующих пружин, то из (1.7) и (1.8) при $\overline{m}=0$ мы получим условия упругого закрепления концов струны:

$$\mu \cdot u_x \bigg|_{x=a} = k_1 \cdot u \bigg|_{x=a}, \tag{1.7B}$$

$$\mu \cdot u_x \Big|_{x=b} = -k_2 \cdot u \Big|_{x=b}, \tag{1.8B}$$

Граничные условия для разных ситуаций на концах струны надо знать! Заметим в заключение, что наряду с этими условиями возможен случай, когда заданы законы движения концов струны

$$u(a,t) = h_1(t) \text{ if } u(b,t) = h_2(t),$$

где $h_i(t)$ — известные функции.

^іНапомним, что в случае A) выполнялось $g = v_0$.

Лекция 12

1. Уравнение малых колебаний струны (продолжение).

Возвращаемся к выведенному нами уравнению колебаний струны

$$\frac{\partial}{\partial x}(\mu \cdot u_x) - \frac{\partial}{\partial t}(\rho \cdot u_t) + f(x,t) = 0. \tag{1.1}$$

Пусть начальное положение и начальная скорость струны задаются равенствами

$$u(x,0) = \varphi(x), \quad u_t(x,0) = \psi(x),$$
 (1.2)

где $\varphi(x)$ и $\psi(x)$ — известные функции. Граничные условия возьмём простейшие — предположим, что концы струны закреплены.

$$u(a,t) = 0, \quad u(b,t) = 0.$$
 (1.3)

При постановке задач, приводящих к уравнениям в частных производных (так же как в задачах, связанных с обыкновенными дифференциальными уравнениями) огромное значение имеет корректность постановки задачи.

Определение 1.1. Мы говорим, что **задача поставлена корректно**, если для рассматриваемого уравнения решение:

- 1. существует;
- 2. единственно;
- 3. непрерывно зависит от входных данных.

Поясним сказанное в основном применительно к задаче (1.1)–(1.3).

- На практике существование решения большей частью доказывается прямым его построением. Но решение может не существовать, если наложить избыточные требования. Приведём два примера.
 - а. Пусть решение уравнения (1.1) ищется в классе $\mathcal{C}^2(\overline{\Omega})$, но мы кроме начальных условий (1.2) задаём дополнительно начальное ускорение $u_{tt}(x,0) = h(x)$. Но из уравнения (1.1)

$$u_{tt} = \left(\frac{\partial}{\partial x}(\mu \cdot u_x) - \rho_t \cdot u_t + f\right) / \rho, \quad t \geqslant 0.$$

Откуда при t = 0 в силу условий (1.2)

$$u_{tt}(x,0) = \left(\mu \cdot \varphi_x + \mu \cdot \varphi_{xx} - \rho_t \cdot \psi + f\right) / \rho, \tag{1.4}$$

где правая часть полностью определяется условиями (1.2). Поэтому если функция h(x) не равна правой части (1.4), то решение задачи (1.1)–(1.3) с условием $u_{tt}(x,0) = h(x)$ не существует.

- b. Пусть решение ищется в классе $C^2(\Omega)$, $\rho(x,t) \in C^1(\Omega)$, $\mu(x,t) \in C^1(\Omega)$, а функция f(x,t) разрывна на некоторой кривой $\Gamma \subset \Omega$. Ясно, что равенство (1.1) на Γ не выполняется.
- 2. О единственности. Решение может быть не единственно, если заданных условий не достаточно для выделения одного решения из класса всех решений задачи (1.1)–(1.3). Например, мы увидим, что если задать только u(x,0) или только $u_t(x,0)$, то решение задачи (1.1)–(1.3) не единственно. Ситуация аналогична положению в обыкновенных дифференциальных уравнениях. Например, для уравнения

$$\frac{d^2y}{dt^2} = R(t, y, y')$$

решение не единственно на отрезке $[t_0, t_1]$, если мы задали только $y(t_0)$ или только $y'(t_0)$. Что касается единственности решения задачи (1.1)–(1.3), то она будет доказана ниже для различных типов граничных условий.

3. Непрерывная зависимость от входных данных. В рассматриваемой ситуации — это непрерывная зависимость от начальных условий $\varphi(x)$ и $\psi(x)$. Непрерывная зависимость означает, что малым изменениям $\varphi(x)$ и $\psi(x)$ должно отвечать малое изменение решения. Дадим точное определение.

Определение 1.2. Пусть φ , ψ и $\widehat{\varphi}$, $\widehat{\psi}$ некоторые начальные условия для уравнения (1.1) и u и \widehat{u} — отвечающие им решения. Будем говорить, что для решения задачи (1.1)–(1.3) имеет место непрерывная зависимость от начальных данных, если по $\forall \varepsilon > 0$, T > 0 можно найти $\delta > 0$ так, что при

$$\left|\varphi(x,t)-\widehat{\varphi}(x,t)\right|<\delta,\ \left|\psi(x,t)-\widehat{\psi}(x,t)\right|<\delta\quad\forall x\in[a,b],\ t\in[0,T]$$

выполняется

$$\left|u(x,t)-\widehat{u}(x,t)\right|<\varepsilon,\quad\forall x\in[a,b],\ t\in[0,T].$$

Мы докажем непрерывную зависимость решений задачи (1.1)–(1.3) от начальных условий при постоянных ρ и μ позднее.

А сейчас докажем единственность решения задачи (1.1)–(1.3) при $\rho = \rho(x)$ (нет зависимости от времени) в случае граничных условий (1.3a) или (1.3b)

$$u(a,t) = h_1(t), \quad u(b,t) = h_2(t)$$
 (1.3a)

$$u_x(a,t) = g_1(t), \quad u_x(b,t) = g_2(t),$$
 (1.3b)

где $h_i(t), g_i(t), i = 1, 2$ — заданные функции.

Пусть u_1 и u_2 — два решения задачи (1.1), (1.2), (1.3a) или (1.1), (1.2), (1.3b). Положим $u \stackrel{def}{=} u_1 - u_2$. Тогда функция u(x,t) удовлетворяет уравнению

$$\frac{\partial}{\partial x} (\mu \cdot u_x) - \rho(x) \cdot \frac{\partial^2 u}{\partial t^2} = 0 \tag{1.5}$$

с нулевыми начальными и граничными условиями

$$u(x,0) = u_t(x,0) = 0, (1.6)$$

и

$$u(a,t) = u(b,t) = 0$$
 (1.7a)

или

$$u_x(a,t) = u_x(b,t) = 0$$
 (1.7b)

Составим интеграл энергии E(t) в момент t. Согласно предыдущему

$$E(t) = \int_{a}^{b} \left(\frac{\rho \cdot u_t^2}{2} + \frac{\mu \cdot u_x^2}{2} \right) dx.$$

Покажем, что E(t) не зависит от t. Тогда

$$E(t) = E(0), \quad t \geqslant 0, \tag{1.8}$$

но в силу (1.6) E(0) = 0 и значит $E(t) \equiv 0$ при $\forall t$. Но это возможно лишь при $u_x \equiv 0$, $u_t \equiv 0$, то есть при u = const. Отсюда очевидно, в силу (1.6) $u \equiv 0$, то есть единственность доказана. Остаётся установить (1.8). Для этого найдём $\frac{dE}{dt}$. Имеем

$$\frac{dE}{dt} = \int_{a}^{b} \left(\rho \cdot u_{t} \cdot u_{tt} + \mu \cdot u_{x} \cdot u_{xt}\right) dx = \int_{a}^{b} \left[\rho \cdot u_{t} \cdot u_{tt} - \frac{\partial}{\partial x} (\mu \cdot u_{x}) \cdot u_{t}\right] dx + \mu \cdot u_{x} \cdot u_{t} \Big|_{a}^{b}.$$

При условии (1.7a) $u_t(a,t)=u_t(b,t)=0$. При условии (1.7b) $u_x(a,t)=u_x(b,t)=0$. Поэтому внеинтегральный член в формуле для $\frac{dE}{dt}$ равен нулю, а интеграл равен нулю вследствие (1.5). Следовательно $\frac{dE}{dt}\equiv 0$ и (1.8) — доказано. Таким образом единственность решения задач (1.1), (1.2), (1.3a) и (1.1), (1.2), (1.3b) доказана.

Задание. Рассмотреть случай упругого закрепления (в интеграле энергии появятся дополнительные члены).

2. Свободные колебания однородной струны.

Пусть струна однородна, то есть ρ и μ — константы. Поделим обе части уравнения (1.1) на ρ и положим, $a^2 \stackrel{def}{=} \mu / \rho$. Тогда уравнение (1.1) можно записать в виде

$$u_{tt} = a^2 \cdot u_{xx} + f(x,t) / \rho \tag{2.1}$$

Мы рассматриваем свободные колебания струны и значит f(x,t)=0. Однако уместно заметить, что если бы на струну действовала распределённая сила с плотностью f(x,t) на единицу длины, то в уравнение колебаний вошла бы — как видно из (2.1) — плотность силы на единицу массы, то есть f / ρ .

Будем считать, что струна в невозмущённом состоянии занимает отрезок [0, l] оси x. Этого можно добиться, если положить x' = x - a и тогда $x' \in [0, l]$, где l = b - a. Разумеется «штрих» у x' далее опускаем.

Итак, будем решать уравнение

$$u_{tt} = a^2 \cdot u_{xx} \tag{2.2}$$

с начальными условиями

$$u(x,0) = \varphi(x), \ u_t(x,0) = \psi(x) \quad x \in [0,l]$$
 (2.3)

и простейшими граничными условиями

$$u(0,t) = 0, \ u(l,t) = 0 \tag{2.4}$$

Решение задачи (2.2)–(2.4) будем искать методом Фурье (он же — метод разделения переменных, он же — метод суперпозиции стоячих волн).

ⁱМы интегрировали по частям слагаемое $(\mu \cdot u_x) \cdot u_{xt}$.

Сначала попытаемся найти частное решение $u_{\rm q}(x,t)$ задачи (2.2), (2.4) (то есть без учёта начальных условий). Это решение будем искать в виде

$$u_{\mathbf{q}}(x,t) = X(x) \cdot T(t),$$

где X(x), T(t) — неизвестные функции, зависящие каждая соответственно только от x и t. Подставим $u_{\mathbf{q}}(x,t)$ в (2.2). Получим

$$T'' \cdot X = a^2 \cdot X'' \cdot T,$$

где штрихи означают производные по аргументам. Поделив обе части этого равенства на произведение $a^2 \cdot X \cdot T$ получим

$$\frac{T''}{a^2 \cdot T} = \frac{X''}{X}.\tag{2.5}$$

Так как левая часть (2.5) не зависит от x, то и правая тоже. Так как правая часть (2.5) не зависит от t, то и левая тоже. Поэтому отношение в (2.5) равно константе, которую мы обозначим через $(-\lambda)$, то есть

$$\frac{T''}{a^2\cdot T}=-\lambda,\;\frac{X''}{X}=-\lambda,$$

откуда

$$T'' + a^2 \cdot \lambda \cdot T = 0 \tag{2.6}$$

$$-X'' = \lambda \cdot X. \tag{2.7}$$

Из (2.4) следует, что

$$T(t) \cdot X(0) = 0, \ T(t) \cdot X(l) = 0, \quad \forall t$$

и поэтому

$$X(0) = 0, \ X(l) = 0 \tag{2.8}$$

Таким образом число λ и функция X(x) есть собственное значение и отвечающая ему собственная функция оператора Штурма $\left(-\frac{d^2}{dx^2}\right)$ с граничными условиями (2.8). Мы знаем, что

$$\lambda_k = \left(\frac{\pi \cdot k}{l}\right)^2, \ X_k = \sqrt{\frac{2}{l}} \cdot \sin\left(\frac{\pi \cdot k}{l} \cdot x\right), \quad k = 1, 2, \dots$$

Далее подставим в (2.6) $\lambda=\lambda_k$ и положим $\omega_k^2\stackrel{def}{=}a^2\cdot\lambda_k$. Тогда из (2.6) получим, что

$$T(t) = T_k(t) = A_k \cdot \cos(\omega_k \cdot t) + B_k \cdot \sin(\omega_k \cdot t),$$

где A_k и B_k — произвольные константы.

Таким образом искомое решение $u_{\mathbf{q}}(x,t)$ есть $u_k(x,t) = X_k(x) \cdot T_k(t)$. $u_k(x,t)$ есть решение задачи (2.2), (2.4). Конечная сумма

$$S_n(x,t) = \sum_{k=1}^n u_k(x,t)$$

тоже есть решение задачи (2.2), (2.4). А теперь рассмотрим бесконечную сумму

$$u \stackrel{def}{=} \sum_{k=1}^{\infty} u_k(x,t)$$

и будем считать, что коэффициенты A_k , B_k в формуле $T_k(t)$ выбраны так, что ряд $\sum_{k=1}^{\infty} u_k(x,t)$ сходится равномерно и допускает почленное дифференцирование два раза по x и по t. Тогда

подставляя этот ряд в уравнение (2.2) и в граничные условия (2.4) убеждаемся, что функция $u=\sum_{k=1}^{\infty}u_k(x,t)$ удовлетворяет и (2.2), и (2.4). Попробуем теперь найти пока «свободные» константы A_k и B_k так, чтобы функция u удовлетворяла начальным условиям (2.3)

$$u(x,0) = \sum_{k=1}^{\infty} u_k(x,0) = \sum_{k=1}^{\infty} A_k \cdot X_k(x) = \varphi(x)$$
 (2.9)

$$u_t(x,0) = \sum_{k=1}^{\infty} \frac{\partial u_k}{\partial t}(x,0) = \sum_{k=1}^{\infty} B_k \cdot \omega_k \cdot X_k(x) = \psi(x)$$
 (2.10)

Равенства (2.9) и (2.10) — это разложение функций $\varphi(x)$ и $\psi(x)$ по собственным функциям оператора Штурма. По теореме Стеклова такое разложение возможно, а характер сходимости зависит от свойств функций $\varphi(x)$ и $\psi(x)$. Из (2.9) и (2.10) имеем

$$A_k = (\varphi, X_k) = \int_0^l \varphi(\xi) \cdot X_k(\xi) d\xi,$$

$$B_k = \frac{(\varphi, X_k)}{\omega_k} = \frac{1}{\omega_k} \cdot \int_0^l \psi(\xi) \cdot X_k(\xi) \, d\xi,$$

где
$$\omega_k = a \cdot \sqrt{\lambda_k} = a \cdot \frac{\pi \cdot k}{l}, X_k(\xi) = \sqrt{\frac{2}{l}} \cdot \sin\left(\frac{\pi \cdot k}{l} \cdot \xi\right).$$

Таким образом, если найденные коэффициенты A_k , B_k обеспечивают равномерную сходимость ряда $\sum\limits_{k=1}^{\infty}u_k$ и возможность его двукратного почленного дифференцирования по x и по t, то функция $u=\sum\limits_{k=1}^{\infty}u_k(x,t)$ есть решение задачи (2.2)–(2.4).

Достаточным условием этого являются следующие требования к функциям $\varphi(x)$ и $\psi(x)$:

$$\begin{cases} \varphi \in \mathcal{C}^2_{[0,l]}, \ \psi \in \mathcal{C}^1_{[0,l]}, \ \varphi''' \ \text{и} \ \psi'' - \text{кусочно непрерывны} \\ \varphi(0) = \varphi(l) = 0, \ \varphi''(0) = \varphi''(l) = 0, \ \psi(0) = \psi(l) = 0 \end{cases} \tag{*}$$

Задание. Докажите, что условия (*) действительно обеспечивают требуемые свойства ряда $\sum_{k=1}^{\infty} u_k(x,t)$ (используйте интегрирование по частям для оценок A_k и B_k).

Замечание. Условия (*) являются достаточными для применимости метода разделения переменных. Однако метод характеристик, с которым вы познакомитесь несколько позже, позволяет построить решение задачи (2.2)–(2.4) при более слабых, чем (*), ограничениях на функции $\varphi(x)$ и $\psi(x)$.

Вернёмся к построенному нами решению $u=\sum_{k=1}^{\infty}u_k$ и запишем функцию u_k в изменённом виде:

$$u_k(x,t) = X_k(x) \cdot (A_k \cdot \cos(\omega_k \cdot t) + B_k \cdot \sin(\omega_k \cdot t)) = C_k \cdot \sin(\omega_k \cdot t + \beta_k) \cdot X_k(x),$$

где

$$C_k = \sqrt{A_k^2 + B_k^2}$$
, а угол β_k определяется из соотношений $\sin \beta_k = A_k / C_k$, $\cos \beta_k = B_k / C_k$.

Функция u_k называется $cmosue\ddot{u}$ волно \ddot{u} (отсюда одно из названий метода — метод суперпозиции стоячих волн). Каждая точка x_0 стоячей волны u_k колеблется с частотой ω_k и амплитудой $C_k \cdot X_k(x_0)$. Те точки волны $u_k(x,t)$, для которых амплитуда равна нулю для всех t называются её

узлами. Профиль стоячей волны определяется функцией $X_k(x)$; в данном случае это синусоида. Частота $\omega_k = \lambda_k \cdot \sqrt{\mu / \rho}$ стоячей волны обратно пропорциональна корню из плотности струны и прямо пропорциональна корню из жёсткости струны, что качественно естественно из физических соображений.

3. Понятие о функции Грина.

Если в выражение $u_k(x,t)$ подставить найденные значения коэффициентов A_k и B_k , то мы получим

$$u(x,t) = \sum_{k=1}^{\infty} \int_{0}^{l} \frac{1}{\omega_k} \cdot \sin(\omega_k \cdot t) \cdot X_k(x) \cdot X_k(\xi) \cdot \psi(\xi) d\xi + \sum_{k=1}^{\infty} \int_{0}^{l} \cos(\omega_k \cdot t) \cdot X_k(x) \cdot X_k(\xi) \cdot \varphi(\xi) d\xi.$$
 (3.1)

Введём в рассмотрение функцию

$$G(x,\xi,t) = \sum_{k=1}^{\infty} \frac{1}{\omega_k} \cdot \sin(\omega_k \cdot t) \cdot X_k(x) \cdot X_k(\xi), \tag{3.2}$$

которая называется функцией Грина для задачи (2.2)–(2.4). Так как частоты ω_k растут со скоростью k, то ряд для функции $G(x,\xi,t)$ сходится в среднем по ξ при любых фиксированных x и t (доказать самостоятельно). Поэтому первую сумму в (3.1) можно записать в виде

$$\int_{0}^{t} G(x,\xi,t) \cdot \psi(\xi) d\xi.$$

Что касается второй суммы в (3.1) то формально её можно записать в виде

$$\int_{0}^{l} G_{t}(x,\xi,t) \cdot \varphi(\xi) d\xi,$$

хотя, конечно, ни о каком почленном дифференцировании ряда для $G(x,\xi,t)$ речи быть не может: полученный ряд расходится. Поэтому выражение $\int\limits_0^l G_t(x,\xi,t)\cdot \varphi(\xi)\,d\xi$ надо понимать как предел

$$\lim_{n \to \infty} \int_{0}^{l} \frac{\partial R_n}{\partial t}(x, \xi, t) \cdot \varphi(\xi) d\xi,$$

где $R_n(x,\xi,t) = \sum_{k=1}^n \sin\left(\omega_k \cdot t\right) \cdot X_k(x) \cdot X_k(\xi) / \omega_k$ — частная сумма ряда (3.2). С учётом сказанного мы можем записать равенство (3.1) в виде

$$u(x,t) = \int_{0}^{l} G(x,\xi,t) \cdot \psi(\xi) d\xi + \int_{0}^{l} G_{t}(x,\xi,t) \cdot \varphi(\xi) d\xi.$$

$$(3.3)$$

Отсюда видно, что для решения задачи (2.2)–(2.4) с любыми начальными условиями достаточно найти функцию Грина, то есть собственные значения и собственные функции оператора $-\frac{d^2}{dx^2}$ с граничными условиями (2.4).

90 Лекция 12.

4. Свободные колебания однородной струны с другими граничными условиями.

Мы рассмотрели подробно решение задачи (2.2), (2.3) с граничными условиями (2.4), то есть колебания струны с закреплёнными концами. Совершенно аналогично решается задача (2.2), (2.3) при других однородных граничных условиях на одном или обоих концах. Укажем все возможные варианты.

Левый конец:

u(0,t)=0 (закрепление), $u_x(0,t)=0$ (свободный конец), $u_x(0,t)=\sigma\cdot u(0,t),\ \sigma>0$ (упругое закрепление).

Правый конец:

u(l,t)=0 (закрепление), $u_x(l,t)=0$ (свободный конец), $u_x(l,t)=-\sigma\cdot u(l,t),\ \sigma>0$ (упругое закрепление).

Таким образом, имеется всего девять ситуаций, одна из которых разобрана. Для каждой из не рассмотренных ситуаций надо пройти тот же путь, который мы прошли для задачи (2.2)–(2.4). Разница будет лишь в том, что найдутся (может приближённо) другие собственные значения λ_k (то есть будет другая величина ω_k) и другие собственные функции.

Задание. Проделайте задачи о свободных колебаниях однородной струны с любыми граничными условиями из названных выше.