Path Integral

Alessandro Lovo, Alberto Facheris, Francesco Gentile, Giorgio Mentasti, Jacopo Tissino, Leonardo Zampieri

Autumn 2019

1 Before the PI

1.1 Schrödinger, Heisenberg & interaction

We denote $U = \exp(Ht/i\hbar)$, and similarly with $H_0 \to U_0$, $V \to U_V$.

Schrödinger

- 1. State kets are $|\psi(t)\rangle = U |\psi(t=0)\rangle$;
- 2. observables are $A(t) \equiv A(t=0)$;
- 3. base kets are defined by $A|a\rangle = a|a\rangle$, therefore $|a(t)\rangle \equiv |a(t=0)\rangle$.

Heisenberg

- 1. State kets are $|\psi(t)\rangle \equiv |\psi(t=0)\rangle$;
- 2. observables are $A(t) = U^{\dagger}A(t=0)U$;
- 3. base kets are $\left|a(t)\right\rangle=U^{\dagger}\left|a(t=0)\right\rangle$.

Interaction We denote by a subscript S or I objects in the Schrödinger or interaction system. In the

- 1. State kets are defined as $|\psi(t)\rangle_I = U_0^\dagger |\psi(t)\rangle_S$;
- 2. observables are defined as $A_I(t) = U_0^{\dagger} A_S U_0$;
- 3. as base kets we use eigenstates of H_0 : $H_0 |n\rangle = E_n |n\rangle$. These evolve like $|n(t)\rangle = U_0 |n(t=0)\rangle$.

Then, we can generically write the evolution of a Schrödinger ket as

$$|\psi(t)\rangle_S = \sum_n c_n(t) \exp(E_n t/i\hbar) |n\rangle$$
, (1)

therefore the evolution of the interaction ket is

$$\left|\psi(t)\right\rangle_{I} = U_{0}^{\dagger} \left|\psi(t)\right\rangle_{S} = \sum_{n} c_{n}(t) \left|n\right\rangle.$$
 (2)

We can write an equation for the evolution of the $c_n(t)$:

$$i\hbar \dot{c}_n(t) = \sum_m V_{nm} \exp(i\omega_{nm}t)c_m(t), \qquad (3)$$

where $\omega_{nm} = (E_n - E_m)/\hbar$ and $V_{nm} = \langle n|V|m\rangle$. This is a matrix equation for the coefficient vector.

Time-dep perturbations If we define the interaction-picture evolution operator as $|\alpha, t\rangle = U_I(t) |\alpha, 0\rangle$ we have its evolution as $i\hbar \partial_t U_I = V_I U_I$.

For small times $U_I \approx 1$, so we can integrate the Schrödinger equation:

$$U_{I} = 1 + \frac{1}{i\hbar} \int_{0}^{t} V_{I}(t') U_{I}(t') dt'$$
 (4a)

$$= 1 + \frac{1}{i\hbar} \int_0^t V_I(t') \left(1 + \frac{1}{i\hbar} \int_0^{t'} V_I(t'') U_I(t'') dt'' \right) dt'$$
 (4b)

$$= 1 + \frac{1}{i\hbar} \int_0^t V_I(t') dt' + \frac{1}{(i\hbar)^2} \int_0^t \int_0^{t'} V_I(t') V_I(t'') dt' dt'' + o(V_I^2)$$
 (4c)

Now, if we start on a base ket $|i\rangle$, the evolution coefficients $c_n(t)$ will be given by the matrix elements $\langle n|U_I(t)|i\rangle$. We can compute these to any order in V_I , by taking the components of the previous equation and applying the following computation any time we have the components of V_I :

$$\langle n|V_I|i\rangle = \langle n|U_0^{\dagger}VU_0|i\rangle = \exp(i\omega_{ni}t)V_{ni},$$
 (5)

since the $|n\rangle$ are eigenstates of the unperturbed Hamiltonian.

1.2 The propagator

If $H |\alpha'\rangle = \alpha' |\alpha'\rangle$, then the evolution operator can be decomposed as

$$U(t) = \sum_{\alpha'} \exp\left(\frac{E_{\alpha'}t}{i\hbar}\right) \left|\alpha'\right\rangle \!\! \left\langle \alpha'\right| . \tag{6}$$