NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

DTIC QUALITY INSPECTED &

THESIS

ANALYSIS OF STEAM AND HYDRONIC COMPARTMENT HEATING SYSTEMS ABOARD U.S. COAST GUARD 140 FOOT WTGB CLASS CUTTERS

by

James Thomas Hurley

June, 1996

Thesis Advisor:

Ashok Gopinath

Approved for public release; distribution is unlimited.

19961001 037

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT D	OCUMENTATION PA	GE	Form Approved OMB No. 0704-0188
data sources, gathering and maintaining the or any other aspect of this collection of inf	e data needed, and completing and reviewing formation, including suggestions for reducing twis Highway, Suite 1204, Arlington, VA 22	the collection of information. this burden, to Washington F.	ime for reviewing instruction, searching existing Send comments regarding this burden estimate leadquarters Services, Directorate for Information f Management and Budget, Paperwork
1. AGENCY USE ONLY (Lea	ive blank) 2. REPORT DATE	1	RT TYPE AND DATES COVERED
	June 1996		r's Thesis
	ND HYDRONIC COMPARTMEN COAST GUARD 140 FOOT WTGE		5. FUNDING NUMBERS
6. AUTHOR(S) James T. F			
	ATION NAME(S) AND ADDRES	S(ES)	8. PERFORMING
Naval Postgraduate Sch			ORGANIZATION
Monterey CA 93943-5	000		REPORT NUMBER
	NG AGENCY NAME(S) AND A		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTE	S The views expressed in th	is thesis are those of	of the author and do not reflect
the official policy or p	osition of the Department of	Detense or the U.	S. Government.
12a. DISTRIBUTION/AVAILAR			12b. DISTRIBUTION CODE
	ease; distribution is unlimited words) The compartment h		
Icebreaking Tug (WTG characteristics of existing Characteristics of existing Characterizations such coefficients, and Effect conservative definitions provided on average see Improvements to the hipparameters by an average steam is not due to a put the increase in entering described conservative	B) class cutter was studied to ing heat exchangers when use as Reynolds number vs. Colliveness-NTU relations were is of air side convection coef- eventy percent of the heat tra- ydronic system were shown ge of ten percent. It was no	o determine heat trade with circulating hourn j factor plots, generated. Initial afficients determined insfer capabilities at to increase heat extable that the addeds latent phase changing by heat transfer	ansfer performance not water vice steam. convection coefficients, overall nalysis with acknowledged that the hydronic system vailable with the steam system. changer performance heat transfer available from ge effects, but is due solely to capabilities alone, with the
14. SUBJECT TERMS Heat Transfer			15. NUMBE R OF PAGES 156
rieat Transfer			16. PRICE CODE
17. SECURITY	18. SECURITY	19. SECURITY	20. LIMITATION OF
CLASSIFICATION OF	CLASSIFICATION OF	CLASSIFICATI	
REPORT	THIS PAGE	ABSTRACT	UL
Unclassified	Unclassified	Unclassified	

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

ii

Approved for public release; distribution is unlimited

ANALYSIS OF STEAM AND HYDRONIC COMPARTMENT HEATING SYSTEMS ABOARD U.S. COAST GUARD 140 FOOT WTGB CLASS CUTTERS

James T. Hurley Lieutenant, United States Coast Guard B.S., Western New England College, 1984

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June, 1996

Author:	James J. Karlan	
	James T. Hurley	
Approved by:	ANDYA	
	Ashok Gopinath, Thesis Advisor	
	SN M8ULL	
	Terry R. McNelley, Chairman	
	Denartment of Mechanical Engineering	

ABSTRACT

The compartment heating system on the U.S. Coast Guard's Icebreaking Tug (WTGB) class cutter was studied to determine heat transfer performance characteristics of existing heat exchangers when used with circulating hot water vice steam.

Characterizations such as Reynolds number vs. Colburn j factor plots, convection coefficients, overall coefficients, and Effectiveness-NTU relations were generated. Initial analysis with acknowledged conservative definitions of air side convection coefficients determined that the hydronic system provided on average seventy percent of the heat transfer capabilities available with the steam system. Improvements to the hydronic system were shown to increase heat exchanger performance parameters by an average of ten percent. It was notable that the added heat transfer available from steam is not due to a property of steam itself such as latent phase change effects, but is due solely to the increase in entering tube side temperature. Judging by heat transfer capabilities alone, with the described conservative assumptions on which these results are based, use of currently installed heat exchangers in a hydronic system is a viable option.

TABLE OF CONTENTS

I.	INTRO	DDUCTION	1
	A.	CUTTER OPERATIONS	1
	B.	COMPARTMENT HEATING SYSTEM	1
Π.	HEAT	EXCHANGER DESCRIPTIONS	5
	A.	SYSTEM OVERVIEW	5
	B.	HEAT EXCHANGERS	5
	C.	HEAT EXCHANGER DESIGN CONSIDERATIONS	8
Ш.	HEAT	EXCHANGER ANALYSIS	13
	A.	STANDARD PRESENTATION OF PERFORMANCE DATA AND	
		THE REYNOLDS ANALOGY	13
	B.	MANUFACTURER'S DATA	15
	C.	ANALYSIS MODEL	16
	D.	COMPUTATIONS AND RESULTS	16
IV.	HYDR	RONIC SYSTEM ANALYSIS	29
	A.	APPROACH	
	В.	OVERALL HEAT TRANSFER COEFFICIENT	29
	C.	THE EFFECTIVENESS-NTU METHOD	41
V.	SYSTI	EM COMPARISONS AND DISCUSSION	49
	A.	OUTLINE	49
	B.	FURTHER EXAMINATION OF STEAM SYSTEM	
		CAPABILITIES	
	C.	COMPARISONS OF HYDRONIC AND STEAM SYSTEMS	
	D.	IMPROVING PERFORMANCE OF HYDRONIC SYSTEM	
	E.	KEY FACTORS IN HEAT EXCHANGER PERFORMANCE	66
	F.	OPTIMIZATION OF WATER FLOW RATES	
VI.	CONC	CLUSIONS AND RECOMMENDATIONS	75
	A.	SYNOPSIS	
	В.	PROPOSED HYDRONIC SYSTEM	
	C.	FURTHER STUDY	76
		TERENCES	
		A. WTGB CLASS CUTTER ILLUSTRATION	81
APPE	NDIX E	3. HEAT EXCHANGER DIMENSIONS AND MATERIAL	
		S	
		C. FORTRAN COMPUTER CODES AND OUTPUTS	
		D. EFFECTIVENESS-NTU ANALYSIS TABULAR RESULTS	. 129
		E. MANUFACTURER'S DATA FOR LARGER CAPACITY FANS	
		LE WITH B25 UNIT HEATERS	. 137
		F. COMPUTATIONS OF AIR SIDE CONVECTION COEFFICIENT	
		UFACTURER'S DATA	
INITI	AL DIS	TRIBUTION LIST	. 145

LIST OF SYMBOLS

A_c	= Cross sectional area
A_{ff}	= Heat exchanger free flow area
A_{fr}	= Heat exchanger frontal area
A_s	= Surface area*
c_p	= Constant pressure specific heat
$\overset{\mathbf{r}}{C}$	= Heat capacity rate
$C_f^{}$	= Friction coefficient
C_r	= Heat capacity ratio
d_{i}	= Tube inner diameter
d_{o}	= Tube outer diameter
D_h	= Flow passage hydraulic diameter
f	= Friction factor
\boldsymbol{G}	= Mass velocity
h	= Convection heat transfer coefficient
$h_{f\!g}$	= Enthalpy difference due to condensation
$j_H^{}$	= Colburn j factor
\boldsymbol{k}	= Thermal conductivity
L	= Length in direction of flow
L_{fin}	= Fin length
L_{fin_c}	= Fin corrected length
m	= Mass flow rate
NTU	= Number of transfer units
Nu	= Nusselt number
P	= Fin perimeter
Pr	= Prandtl number
$q_{ m max}$	= Fin maximum possible heat transfer rate
q_t	= Fin total heat transfer rate
\dot{Q}	= Heat transfer rate
Re	= Reynolds number

LIST OF SYMBOLS (continued)

 R_f = Fouling factor

 R_{t} = Thermal resistance

 R_{wall} = Tube wall conduction resistance

St = Stanton number

t = Specified component thickness

 T_1 = Air side inlet temperature

 T_2 = Air side outlet temperature

 T_3 = Tube side inlet temperature

 T_A = Tube side outlet temperature

 T_{∞} = Ambient air temperature

 T_{base} = Fin base temperature

 T_{M} = Mean air temperature

 T_s = Heat exchanger surface temperature

 ΔT = Change in temperature

U = Overall heat transfer coefficient

V = Velocity w_{fin} = Fin width

 α = Heat exchanger area density

 ϵ = Effectiveness

 η_f = Single fin efficiency η_o = Overall fin efficiency

μ = Dynamic viscosityν = Kinematic viscosity

 ρ = Density

I. INTRODUCTION

A. CUTTER OPERATIONS

The United States Coast Guard operates nine Icebreaking Tug (WTGB) class cutters. Stationed in the northeast United States and on the Great Lakes, these cutters are primarily used for domestic icebreaking, but also routinely perform other missions such as search and rescue, pollution response, law enforcement, and aids to navigation support. The cutters are 140 feet long, have a beam of 37.5 feet, displace 662 tons, and are typically crewed by 17 personnel (see Appendix A for cutter illustration). The twin diesel-electric propulsion plant has a cruising range of 4,000 miles, maximum speed of 14.7 knots, and provides sufficient power for the hull to break through 18 to 20 inches of ice. A very capable and versatile platform, these cutters and crews make vital contributions to the overall service the Coast Guard provides to the public.

B. COMPARTMENT HEATING SYSTEM

1. Purpose

The primary purpose of the compartment heating system is to uphold the cutter's overall mission readiness, keeping on board personnel physically fit and mentally alert by providing an atmosphere of suitable air for breathing under conditions that will enable the body to maintain a proper heat balance. A secondary purpose of the system is provide suitable temperature and humidity conditions for the preservation of stores and equipment. [Ref. 1]

2. Description of Present Configuration

Compartment heating is accomplished either by duct heaters in the supply air ventilation system or by unit heaters mounted in the compartments themselves. These duct and unit heaters are either steam or electric. The scope of this thesis includes study of the steam duct and unit heaters only.

Heating of ventilation supply air is accomplished in two stages; first by a preheater and then by a reheater. Preheaters are usually located near supply air ventilation inlets, and heat incoming air sufficiently to prevent condensation in ventilation ducts.

Reheaters are located in the compartments being heated, and further heat the air to a set room temperature. Unit heaters are installed in compartments which require a spot source of heat. [Ref. 1]

3. Deficiencies of Present Configuration

The present steam system in recent years has become very maintenance intensive, particularly with the auxiliary boilers. The current boilers are over 15 years old, are "water tube" type, and are difficult and expensive to procure spare parts for. With many cutters operating in demanding harsh winter conditions, reduction of heating equipment down time is a priority. The steam heating system equipment is also non-standard compared to other ship classes in the fleet, leading to support and maintenance difficulties.

4. Considerations for a Replacement System

The search for a suitable replacement for the boilers has led to consideration of a hydronic (circulating water in a closed piping system) compartment heating system to replace the current steam system. Major factors in choosing a replacement system are ease of installation and affordability. A way to ease the installation and decrease the cost of a new system is to leave in place and utilize as much of the equipment from the old system as possible. There is therefore considerable motivation to determine the heat transfer characteristics of the presently installed heat exchangers when used with circulating hot water.

II. HEAT EXCHANGER DESCRIPTIONS

A. SYSTEM OVERVIEW

The compartment heating system consists of a steam generation plant and various heat exchangers. Included in the steam generation plant are two auxiliary boilers, feedwater, chemical, and condensate tanks, and associated pumps, controls, piping, and valves. The boilers are rated at 620 pounds of saturated steam per hour at a working pressure of 35 psi with feedwater entering at 210 degrees F. A functional diagram of the steam heating system is shown in Figure 1.

B. HEAT EXCHANGERS

1. General

The heat exchangers installed on board the WTGB cutter class fall into two categories: unit heaters and duct heaters. Unit heaters consist of a coil, fan, motor, and casing assembly. They are installed in machinery and work spaces throughout the cutter. Duct heaters, as implied, are coils installed within the supply ventilation ducting, with separate ventilation fans installed upstream of coils. Duct heaters provide heat to the cutter's living spaces.

2. Unit Heaters

a. Dimensions

Unit heaters are manufactured by the New York Blower Company of Willowbrook, Illinois. Two models are employed: Model B-25 (quantity two) and Model

Figure 1. Steam Heating System Functional Diagram [Ref. 1]

B-70 (quantity five). Dimensions and material properties of unit heater coils and assemblies are shown in Appendix B. [Refs. 2-3]

b. Heating Capacities

Unit heaters are sized to operate with steam at 240 degrees F and 25 psig. For each unit heater, the location, air flow rate, and heat transfer rate stated on the ship's prints are shown in Table 1. [Refs. 4-7]

Heater	Location	Туре	Air Flow (CFM)	Heat Transfer Stated on Prints (BTU/hr)
2-8-0	Paint Locker	B-70	1,505	5,294
2-40-1	Engine Room	B-70	1,505	64,860
2-40-2	Engine Room	B-70	1,505	64,860
2-60-1	Engine Room	B-70	1,505	64,860
2-60-2	Engine Room	B-70	1,505	64,860
2-73-1	Motor Room	B-25	400	33,120
2-80-1	Steering Gear	B-25	400	7,747

Table 1. Unit Heater Operating Parameters

3. Duct Heaters

a. Dimensions

Duct heaters are manufactured by two manufacturers: Colmac Coil

Manufacturing Incorporated of Colville, Washington (quantity four) and Carrier

Corporation of Farmington, Connecticut (quantity one). Duct heater dimensions and material properties are shown in Appendix B. [Refs. 8-9]

b. Heating Capacities

Duct heaters are also sized to operate with steam at 240 degrees F and 25 psig. For each duct heater, the supply ventilation system, location, air flow rate, heat transfer rate, and air temperature rise stated on the ship's prints are shown in Table 2. [Refs. 4-7]

Heater	System	Location	Air Flow (CFM)	Heat Transfer Stated on Prints (BTU/hr)	Air Temp. Rise Stated on Prints (°F)
01-24-1	S 01-24-1	Fan Room	3,680	51,600	62 to 75
01-50-0	S 01-49-0	Exhst. Uptake	750	60,750	-30 to 45
01-25-1	S 01-27-1	Fan Room	1,400	113,400	-30 to 45
2-25-1	S 01-27-1	Aux. Mach. 1	1,050	45,360	40 to 80
2-16-1	S 01-27-1	Anchor Gear	350	20,034	45 to 98

Table 2. Duct Heater Operating Parameters

C. HEAT EXCHANGER DESIGN CONSIDERATIONS

1. Conventional Heat Exchangers

The design of a heat exchanger involves consideration of both the heat transfer rates between the fluids and the mechanical pumping power expended to overcome fluid friction. First examining heat transfer rates, there is a marked difference in heat exchanger performance depending on whether the fluids involved are gases or liquids.

The convection heat transfer coefficient, h, for gases is generally one or two orders of magnitude less than that for liquids. Correspondingly a gas heat exchanger's convective thermal resistance, R_r , defined as the inverse of the product of h and heat exchanger surface area, A_s , (i.e. $R_t = 1/hA_s$) is one or two orders of magnitude greater than that for a liquid heat exchanger. It is therefore evident that for the heat transfer rate of a gas heat exchanger to be equivalent to that of a liquid heat exchanger, the heat transfer surface area for a gas heat exchanger needs to be much larger than the heat transfer surface area for a liquid heat exchanger. [Refs. 10-11]

Examining the power required to overcome fluid - heat exchanger friction, conventional (e.g. concentric tube or shell and tube) heat exchangers operating with high density fluids have lesser frictional losses compared to heat exchangers operating with low density fluids. The pumping power required to move high density fluid (e.g. liquid) over a given heat exchanger is considerably less than the pumping power required to move low density fluid over the same heat exchanger. There can therefore be an equipment operating cost benefit to using a liquid heat exchanger system rather than a gas heat exchanger system.

Heat exchangers where at least one fluid is required to be a gas therefore need an improved design to make up for inherent drawbacks. The heat transfer obtained per unit of heat exchanger surface area can be increased by increasing the fluid flow velocity. This however is not a desirable method to increase heat transfer since the friction power expended to increase fluid flow velocity increases by as much as the cube of velocity. Minimizing friction power leads to limiting flow velocities, and this combined with the

relatively low thermal conductivity of most gases, results in low heat transfer rate per unit of heat exchanger surface area. There is therefore, in a conventional heat exchanger using gases, poor heat transfer performance at low flow velocities and an uneconomical, less than acceptable trade-off for increasing heat transfer per unit surface area by increasing flow velocities.

2. Compact Heat Exchangers

The development of compact heat exchangers is in response to the need to attain higher heat transfer rates with minimum space and power requirements. Large but compact surface areas are a typical characteristic of gas heat exchangers. Heat exchangers used on the WTGB cutter class heating system are one style of compact heat exchanger that incorporates large gas-side surface areas with dense arrays of continuous fins.

It is first noted that compactness itself leads to high performance. A compact surface has small flow passages and the heat transfer coefficient, h, varies as a negative power of the flow passage size. A customary expression for the size of a non-circular flow passage is the *hydraulic diameter*, D_h , equaling four times the cross-sectional area divided by the wetted perimeter. It is also true that a smaller hydraulic diameter increases friction power, but the benefits that compactness has on the heat transfer coefficient generally outweigh the detrimental influence of small hydraulic diameter on friction power. [Ref. 10]

In addition to the influence of small hydraulic diameter, increases in heat exchanger performance can be obtained by any modification of the surface geometry that

results in a higher heat transfer coefficient at a given flow velocity. One widely accepted modification is use of extended surfaces or fins so that in addition to providing increased heat transfer surface area, the interrupted surface prevents thickening boundary layers from reducing heat transfer. Finned surfaces also increase friction power and thermal resistance due to conduction, but a small improvement in the heat transfer coefficient can more than offset these negative factors. [Ref. 10]

Other methods of obtaining increased performance by change of flow surface geometry include the use of curved, corrugated, or wavy passages, in which boundary layer separation and turbulence (promoters of heat transfer) are induced. Such surfaces are incorporated in the duct heaters, but not in the unit heaters being studied.

A common descriptor of compact heat exchangers is the *area density*, α , which is the ratio of heat transfer surface area to heat exchanger volume. A conventional cutoff for labeling a heat exchanger as compact is an area density value greater than 700 square meters per cubic meter (or 213 square feet per cubic feet). This is not a staunch rule however, as many heat exchangers have been grouped into the compact category with lesser area densities [Ref. 10].

Compact heat exchanger designs provide the benefits of high heat transfer rate with minimum volume and thus are very well suited for duct heater applications. In shipboard systems where volume savings are invariably sought, use of compact heat exchangers is very common.

III. HEAT EXCHANGER ANALYSIS

A. STANDARD PRESENTATION OF PERFORMANCE DATA AND THE REYNOLDS ANALOGY

In engineering practice, it is often desirable to use a common presentation of performance data so as to avoid confusion associated with many arbitrarily defined parameters. In the study of heat transfer and flow-friction, commonality in data presentation is found using the *Reynolds Analogy*. As presented by Incropera and Dewitt [Ref. 11], and also Kays and Crawford [Ref. 12], with certain restrictions (noted shortly), relations that govern velocity boundary layer behavior are the same as those that govern the thermal boundary layer. From this it is known that non-dimensional friction and heat transfer relations for a particular geometry are closely related. Specifically, the *Reynolds number*, Re, the velocity boundary layer's *friction coefficient*, C_f , and the heat transfer boundary layer's *Nusselt number*, Nu, are related as follows:

$$C_f \frac{Re_L}{2} = Nu_L$$
 (1) where: $Re_L = \frac{\rho VL}{\mu}$ (2)

$$Nu_L = \frac{hL}{k} \qquad (3)$$

Replacing Nu by the Stanton number, St and introducing the Prandtl number, Pr:

$$St = \frac{Nu_L}{Re_L Pr}$$
 (4) where: $St = \frac{h}{\rho Vc_p}$ (5)
$$Pr = \frac{c_p \mu}{h}$$
 (6)

The relation, assuming the pressure drop in the flow direction is zero and that Pr = 1 (true for most gases), now takes the form:

$$\frac{C_f}{2} = St \qquad (7)$$

This expression, known as the *Reynolds analogy*, relates key parameters of the velocity and thermal boundary layers. The accuracy of this expression depends on the noted restrictions, that the pressure gradient in the flow direction is zero and the Prandtl number equals one. It has been shown that the analogy may be applied over a wide range of Prandtl numbers if a correction is added. With this correction arises the *modified Reynolds*, or *Chilton-Colburn* analogy, shown as follows:

$$\frac{C_f}{2} = St \, Pr^{2/3} = j_H \qquad \qquad 0.6 < Pr < 60 \qquad (8)$$

where j_H is the *Colburn j factor*. For laminar flow, the modified Reynolds analogy is again only appropriate when the pressure drop in the flow direction is zero. In turbulent flow, conditions are less sensitive to the effect of pressure gradients and the equation remains valid for small pressure drops.

The benefits of this analogy lie in the ability to deduce heat transfer information from skin friction information and vice versa. A wide variety of compact heat exchanger performance data was compiled by Kays and London [Ref. 10] by way of plots of Colburn *j* factor and friction factor versus Reynolds number. The scope of this thesis includes presentation of Colburn *j* factor versus Reynolds number and does not include study of friction factor. In using this standard presentation, future correlation of friction factors in this standardized form is possible.

B. MANUFACTURER'S DATA

Plots of Colburn j factor versus Reynolds number, or any related information; were sought from the each of the heat exchanger manufacturers with no success. It was evident that in order to see desired heat exchanger performance characteristics, more commonly available information such as that shown in Figure 2 would have to be recast to the accepted non-dimensional j_H and Re forms.

Air Temperature Rise at 5 PSIG, 0° EDB (WF or WR Alum. Fins) Face Velocity, SFPM							
Row							
Fin	200	400	600	800	1000	1200	
104	49.7	37.6	31.8	27.8	25.3	23.2	
106	68.1	51.1	42.9	37.7	34.1	31.5	
108	85.2	63.6	52.6	45.8	41.2	38.0	
110	101.1	74.9	61.3	53.4	47.7	43.1	
112	114.9	84.7	69.7	60.0	53.1	48.0	
206	115.8	90.8	77.4	69.0	62.7	58.1	
208	138.5	109.0	93.1	82.9	74.9	69.0	
210	156.9	124.9	106.7	94.3	85.2	78.6	
212	171.5	138.1	118.1	104.2	93.9	86.3	

Figure 2. Typical Manufacturer's Heat Exchanger Performance Data

C. **ANALYSIS MODEL**

The heat exchangers studied are represented in Figure 3:

Figure 3. Heat Exchanger Representative Model

where:

 $T_1 = Air (cold fluid) inlet temperature$

 $T_2 = Air (cold fluid) outlet temperature$

 T_3 = Steam (hot fluid) inlet temperature T_4 = Steam (hot fluid) outlet temperature

COMPUTATIONS AND RESULTS D.

1. **Relation Definitions**

Relations used in the steam system heat exchanger computations are defined as follows:

Mean air temperature:

$$T_M = \frac{(T_1 + T_2)}{2} \tag{9}$$

Air mass flow rate:

$$\dot{m}_{air} = \rho_{air} * A_{fr} * V_{air}$$
 (10)

Air side heat transfer rate:

$$\dot{Q}_{air} = \dot{m}_{air} * c_{p_{air}} * (T_2 - T_1)$$
 (11)

Air side convection coefficient:

$$h_{air} = \frac{\dot{Q}_{air}}{(T_S - T_1) * A_{s_{air}}}$$
 (12)

Mass velocity:

$$G = \frac{\dot{m}_{air}}{A_{ff}} \tag{13}$$

Reynolds number:

$$Re_{air} = \frac{G * D_h}{\mu}$$
 (14)

Prandtl number:

$$Pr = \frac{c_p * \mu}{k} \tag{15}$$

Stanton number:

$$St = \frac{h}{G * c_p} \tag{16}$$

Colburn j factor:

$$j_H = St * Pr^{2/3} \tag{17}$$

2. Sequence of Computations

Computations for the steam system heat exchanger analyses were performed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxair.f", shown as part of Appendix C, is summarized in Figure 4. Manufacturer's data for each heat exchanger similar to that shown in Figure 2 were input to the program. Dimensional characteristics of the heat exchangers input to the program were determined from manufacturer's drawings (see Appendix B for a tabular summary of all pertinent dimensions).

3. Tabular and Graphical Results

Program output, shown in tabular form in Appendix C, included the Colburn j factor and Reynolds numbers needed for further analysis of a hydronic system in a subsequent chapter. Plots of j_H vs. Re for each heat exchanger studied are shown in Figures 5 through 11.

4. Comparison with Established Results

Results obtained from the steam system analysis were compared with the established results of Kays and London [Ref. 10]. For a similarly configured heat exchanger, a Colburn *j* factor versus Reynolds number plot is shown in Figure 12. It is evident that orders of magnitude of Colburn *j* factors at respective Reynolds numbers and overall trends of data for this analysis compare favorably with previously established results.

Figure 4. Steam System Computations Flow Chart

Figure 5. Colburn j Factor vs. Reynolds Number - Unit Heater B25

Figure 6. Colburn j Factor vs. Reynolds Number - Unit Heater B70

Figure 7. Colburn j Factor vs. Reynolds Number - Duct Heater 01-24-1

Figure 8. Colburn j Factor vs. Reynolds Number - Duct Heater 01-25-1

Figure 9. Colburn j Factor vs. Reynolds Number - Duct Heater 01-50-0

Figure 10. Colburn j Factor vs. Reynolds Number - Duct Heater 2-25-1

Figure 11. Colburn j Factor vs. Reynolds Number - Duct Heater 2-16-1

Tube outside diameter = 0.402 in = 10.2×10^{-3} m

Fin pitch = 8.0 per in = 315 per m

Flow passage hydraulic diameter, $4r_h = 0.01192 \text{ ft} = 3.632 \times 10^{-3} \text{ m}$

Fin thickness = 0.013 in = 0.33×10^{-3} m

Free-flow area/frontal area, $\sigma = 0.534$

Heat transfer area/total volume, $\alpha = 179 \text{ ft}^2/\text{ft}^3 = 587 \text{ m}^2/\text{m}^3$

Fin area/total area = 0.913

Note: Minimum free-flow area in spaces transverse to flow.

Figure 12. Established Colburn j Factor vs. Reynolds Number Relation [After Ref. 10]

IV. HYDRONIC SYSTEM ANALYSIS

A. APPROACH

To analyze the compartment heating system as a hydronic (circulating water) system, the Effectiveness - NTU Method is utilized. Required for this method are determinations of heat exchanger overall heat transfer coefficients, which entails computing other parameters such as air and water convection coefficients, fin efficiencies, wall conduction resistances, and fouling resistances. Results from the previous chapter are an integral part of this analysis, and are used specifically to determine air side convection coefficients at specified fan operating conditions.

B. OVERALL HEAT TRANSFER COEFFICIENT

1. Newton's Law of Cooling

A standard measure of a heat exchanger's total thermal resistance to heat transfer between two fluids separated by a heat exchanger structure is the *overall heat transfer* coefficient, U. In an expression analogous to Newton's Law of Cooling, the heat transfer between two fluids separated by one or more thermal resistances, R_v , is:

$$\dot{Q} = \frac{\Delta T}{\sum R_{t}} = U A_{s} \Delta T \tag{18}$$

The result apparent from the above expression, that $1/\sum R_t = UA_s$, is applicable to clean, unfinned surfaces only, but can be used as the basis for determining a heat exchanger's overall heat transfer coefficient with additional factors considered such as the

effects of fins on the air side surfaces, the presence of fouling on both air and water sides, and tube wall conduction.

2. Overall Coefficient Elements

a. Air Side Convection Coefficients

The air side convection coefficients, h_{air} , are determined using the Reynolds number vs. Colburn j Factor plots, generated as part of the steam system analysis in the previous chapter. The utility of presenting data in non-dimensional form is now very apparent, as the performance characteristics of each heat exchanger formulated with steam now is relevant to the hydronic analysis.

An actual operating condition of the fan supplying air to a particular heat exchanger, in the form of a quantity of cubic feet per minute of air at a specified air temperature (taken from manufacture's data) is used to compute the air flow's mass flow rate, \dot{m}_{air} , then mass velocity, G, then Reynolds number, Re. Entering the Re vs. j_H graph with the computed Reynolds number, a value for j_H is obtained, from which h_{air} is computed using the Stanton number and Colburn j factor relations, simplified into the following:

$$h_{air} = \frac{j_H G c_p}{p_r^{2/3}}$$
 (19)

Computations of the air side convection coefficient for each of the system's heat exchangers are shown in Table 3. Note that model B-25 unit heaters (i.e. 2-8-0 and 2-73-1) and model B-70 unit heaters (2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2)

each have one type fan and thus a common volumetric flow rate of air ("CFM of Air @ 70°F"), and were each grouped into one row in the table.

Heater Number	CFM of air @ 70°F	<i>m</i> (lbm/hr)	G (lbm/ft²-sec)	Re	$j_{ m H}$	h _{air} (BTU/hr-ft²-R)
Type B-25*	400	1,798	1.16	2,981	0.0048	6.0
Type B-70**	1,505	6,763	2.25	5,795	0.0037	9.0
01-24-1	3,680	16,538	1.63	2,762	0.0040	7.0
01-25-1	1,400	6,292	1.62	1,691	0.0047	8.2
01-50-0	750	3,371	1.16	1,211	0.0056	7.0
2-25-1	1,050	4,719	1.73	3,654	0.0054	10.1
2-16-1	350	1,573	0.82	851	0.0062	5.4

Type B-25 includes unit heaters 2-8-0 and 2-73-1.

Table 3. Air Side Convection Coefficient Computations

b. Water Side Convection Coefficients

The water side convection coefficients, h_{wtr} , are computed based on internal flow relations presented by Incropera and DeWitt [Ref. 11]. Initial computations of water side convection coefficients are based on a manufacturer's recommended maximum water flow rate of ten gallon per minute. These initial water side convection coefficients will be modified in some cases based on an optimized water mass flow rate, as will be shown in a later section. It is also noted, as it was in the previous chapter, that the water side convection coefficient is generally one or two orders of magnitude higher

^{**} Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

than the gas side convection coefficient. The water side convection thermal resistance (R_t = 1/hA) will therefore be one or two orders of magnitude lower than that of the air side, and a relatively small contributor to the sum of thermal resistances used to compute the overall heat transfer coefficient, U, as will be shown in a following section.

(1) Reynolds Number for Internal Flow. The Reynolds number for internal flows can be computed using the following relation, where the *hydraulic* diameter, $D_h = 4A_c/P$.

$$Re_D = \frac{4\dot{m}_{wtr}}{\pi D_h \mu_{wtr}} \tag{20}$$

(2) Nusselt Number. The Nusselt Number, Nu_D , relations for internal laminar flow ($Re_D \le 2,300$) and internal turbulent flow

 $(Re_D > 2,300 - Gnielinski Correlation)$ are then utilized to solve for h_{wir} :

$$Nu_D = \frac{h_{wtr} D_h}{k}$$
 (21)
$$= 4.36 Re_D \le 2300, \ circular \ duct \ heater \ tubes$$

$$= 6.49 Re_D \le 2300, \ rectangular \ unit \ heater \ tubes$$

$$= \frac{(f/8) (Re_D - 1000) Pr}{1 + 12.7 (f/8)^{1/2} (Pr^{2/3} - 1)} Re_D > 2300, \ duct \ heater \ and \ unit \ heater \ tubes$$

$$where: f = (0.79 \ln Re_D - 1.64)^{-2}$$

(3) Sequence of Computations. Computations of the water side convection coefficients for each of the system's heat exchangers were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxwtr.f", shown as part of Appendix C, is summarized in Figure 13. Dimensional characteristics of the heat exchangers input to the program were determined from manufacturer's drawings (see Appendix B for a tabular summary of all pertinent dimensions).

(4) Tabular Results. Excerpts from program output is shown in Tables 4 through 6. Note that the water tubing dimensions for type B-25 and B-70 unit heaters are identical, and thus these results are grouped into Table 4. Similarly, tubing dimensions for all duct heaters with the exception of heater 01-24-1 are identical and these results are grouped into Table 5. Results for heater 01-24-1, with its own unique tubing dimensions are shown in Table 6. Complete program output is shown in Appendix C.

c. Extended Surfaces (Fins)

As discussed in the previous chapter, extended surfaces or fins are often added to heat exchanger surfaces to decrease thermal resistance to convection heat transfer. A representative fin array for the heat exchangers being analyzed is shown in Figure 14. Expressions for fin efficiencies are as presented by Incropera and DeWitt [Ref. 11].

Figure 13. Water Side Convection Coefficient Computations Flow Chart

1	Rates			
Mass (lbm/hr)	Volume (gal/min)	Re _D	Nu _D	h _{wtr} (BTU/hr-ft²-R)
48.8	0.100	1482.9	6.49	53.4
97.5	0.200	2965.8	15.13	124.4
146.3	0.300	4448.7	23.88	196.4
780.2	1.600	23726.5	107.45	883.6
828.9	1.700	25209.4	113.04	929.6
4876.0	10.00	148290.7	492.92	4053.2

Table 4. Unit Heater Water Side Convection Coefficient Computations

Flow Mass (lbm/hr)	Rates Volume (gal/min)	Re _D	Nu _D	h _{wtr} (BTU/hr-ft²-R)
48.8	0.100	1505.1	4.36	36.4
97.5	0.200	3010.2	15.41	128.6
146.3	0.300	4515.3	24.25	202.4
780.2	1.600	24081.5	108.80	908.0
828.9	1.700	25586.6	114.46	955.3
4876.0	10.00	150509.5	499.06	4165.2

Table 5. Duct Heater Water Side Convection Coefficient Computations (with exception of heater 01-24-1)

Flow Mass (lbm/hr)	Rates Volume (gal/min)	Re _D	Nu _D	h _{wtr} (BTU/hr-ft²-R)
48.8	0.100	807.1	4.36	19.5
97.5	0.200	1614.2	4.36	19.5
146.3	0.300	2421.2	11.55	51.7
780.2	1.600	12913.3	64.15	287.1
828.9	1.700	13720.4	67.58	302.5
4876.0	10.00	80708.0	297.17	1329.9

Table 6. Duct Heater 01-24-1 Water Side Convection Coefficient Computations

(1) Single Fin Efficiency. The single fin efficiency, η_f , is given by the expression:

$$\eta_f = \frac{\tanh mL_{fin_c}}{mL_{fin_c}}$$
 (22)

where:

$$m = \sqrt{\frac{h_{air}P}{k_{fin}A_{c_{fin}}}}$$
 (23)

$$L_{fin_c} = L_{fin} + \frac{t_{fin}}{2} \tag{24}$$

Figure 14. Representative Fin Array

(2) Fin Overall Surface Efficiency. Characterizing the performance of an array of fins is done with the expression *fin overall surface efficiency*, η_o , where:

$$\eta_o = \frac{q_t}{q_{\text{max}}} = \frac{q_t}{hA_{s_{alt}}(T_{base} - T_{\infty})}$$
 (25)

Breaking down the total heat transfer into contributions from the finned and unfinned (base) surfaces and noting that $A_{s_{air}} = A_{s_{fin}} + A_{base}$, this expression can be further simplified yielding:

$$\eta_o = 1 - \frac{A_{s_{fin}}}{A_{s_{gir}}} (1 - \eta_f)$$
(26)

(3) Sequence of Computations. Computations of single and overall fin efficiencies for each of the system's heat exchangers were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code

titled "hxU.f", shown as part of Appendix C, is summarized in Figure 15. Dimensional characteristics of the heat exchangers input to the program were determined from manufacturer's drawings (see Appendix B for a tabular summary of all pertinent dimensions).

(4) Tabular Results. A summary of program output for each of the system's heat exchangers is shown in Table 7. Efficiencies were computed using operating conditions and air side convection coefficients of Table 3. Complete program output is shown in Appendix C.

Heater	η_{f}	η_o
B-25* Unit Heaters	0.87	0.89
B-70** Unit Heaters	0.82	0.84
01-24-1 Duct Heater	0.92	0.93
01-25-1 Duct Heater	0.90	0.90
01-50-0 Duct Heater	0.91	0.92
2-25-1 Duct Heater	0.92	0.92
2-16-1 Duct Heater	0.93	0.93

Table 7. Heater Single Fin and Overall Fin Efficiencies

d. Fouling Resistance

During normal heat exchanger operation, surfaces are often subject to fouling by fluid impurities, rust or scale formation, and other reactions between the fluid

and the wall material. Depositions such as these can greatly increase the resistance to heat transfer between the fluids. This effect can be treated by introducing an additional thermal resistance, termed the *fouling factor*, R_f , the value of which depends on the operating temperature, fluid velocity, and length of service of the heat exchanger. Fouling factors recommended by the Tubular Exchanger Manufacturer's Association are shown below in Table 8. The shaded fouling factors are those used for the heating system analyzed in this thesis.

e. Tube Wall Conduction

Derivations of the tube wall conduction resistance, R_{wall} by Incropera and

Fluid	Fouling Factor	(hr-ft²-°F/BTU)
	Below 125 °F	Above 125 °F
Seawater	0.0005	0.001
Distilled Water	0.0005	0.0005
Treated Boiler Feedwater	0.001	0.001
City or Well Water	0.001	0.002
Hard Water	0.003	0.005
Air	0.002	0.002
Diesel Exhaust	0.01	0.01
Clean Steam	0.0005	0.0005

Table 8. Typical Fouling Factors

DeWitt [Ref. 11] produce the following expressions for duct heater tubes (cylindrical) and unit heater tubes (modeled as plane wall).

$$R_{wall} = \frac{\ln\left(\frac{d_o}{d_i}\right)}{\left(2\pi L k\right)_{tube}} \tag{27}$$

(cylindrical tube wall conduction resistance)

$$R_{wall} = \left(\frac{t}{kA_s}\right)_{tube} \tag{28}$$

(plane wall tube conduction resistance)

3. Summation of Elements

The summation of thermal resistances including effects of air side convection with fins, water side convection without fins, fouling on both air and water sides, and tube wall conduction yields the following:

$$\frac{1}{UA_{s}} = \frac{1}{U_{air}A_{s_{air}}} = \frac{1}{U_{wtr}A_{s_{wtr}}}$$

$$= \frac{1}{(\eta_{o}hA_{s})_{air}} + \frac{R_{f_{air}}}{(\eta_{o}A_{s})_{air}} + R_{wall} + \frac{R_{f_{wtr}}}{A_{s}} + \frac{1}{(hA_{s})_{wtr}}$$
(29)

The calculation of the UA_s product does not require designation of the air side or water side, i.e. $UA_s = U_{air}A_{s_{air}} = U_{wtr}A_{s_{wtr}}$. However, the calculation of an overall coefficient, U, does depend on whether it is based on the air side or the water side surface area since $U_{air} \neq U_{wtr}$ if $A_{s_{air}} \neq A_{s_{wtr}}$. As mentioned previously, the convection

coefficient for the air side is generally much smaller than that for the water side, and thus dominates determination of the overall coefficient.

4. Overall Coefficient Computations and Results

a. Sequence of Computations

Computations of the overall coefficients for each of the system's heat exchangers were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxU.f", shown as part of Appendix C, is summarized in Figure 15. Program inputs are the previously computed values of h_{air} , h_{wtr} , tabulated values of $R_{f_{air}}$ and $R_{f_{wtr}}$, and dimensional and material characteristics (see Appendix

B for a tabular summary of all pertinent dimensions).

b. Tabular Results

A summary of program output for each of the system's heat exchangers is shown in Table 9. Complete program output is shown in Appendix C.

C. THE EFFECTIVENESS - NTU METHOD

1. Applicability

The *Effectiveness - NTU* analysis method is used to take the overall heat transfer coefficient parameter and determine heat exchanger heat transfer performance characteristics. This method is chosen over the *log-mean temperature difference* method based on a detailed comparison between the two methods presented by Kays and London [Ref. 10]. In the comparison, steps for each method are evaluated for a variety of

Input water and air side convection coefficients and heat exchanger dimensional characteristics. Classify computations as either for a unit heater or duct heater. Begin DO loop to compute parameters for each air side convection coefficient input. Using relations defined in Section IV-B-2-c, compute single fin efficiency and overall fin efficiency. Using relations defined in Sections IV-B-3, compute overall heat transfer coefficient. Print results to output file. Continue DO loop to completion.

Figure 15. Fin Efficiency and Overall Coefficient Computations Flow Chart

Heater	U _{air} (BTU/hr-ft²-R)
B-25 Unit Heaters*	4.9
B-70 Unit Heaters**	6.7
01-24-1 Duct Heater	5.7
01-25-1 Duct Heater	6.4
01-50-0 Duct Heater	5.6
2-25-1 Duct Heater	8.3
2-16-1 Duct Heater	4.5

Type B-25 include unit heaters 2-8-0 and 2-73-1.

Table 9. Heat Exchanger Overall Coefficient Results

analysis starting points. For this analysis, where only the inlet hot and cold fluid temperatures are known, the Effectiveness - NTU method is more straightforward, eliminating a tedious, iterative procedure where outlet temperatures would be estimated and then adjusted until the heat transfer rate corresponds to the inlet/outlet temperature difference. In the Effectiveness - NTU (abbreviation for "number of transfer units") approach, from knowledge of the heat exchanger type, size, and fluid flow rate, the NTU, maximum heat transfer rate, $\dot{Q}_{\rm max}$, and effectiveness, ϵ (both defined shortly) are used to determine the actual heat transfer rate.

^{**} Type B-70 include unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

2. Maximum Possible Heat Transfer Rate

The maximum possible heat transfer rate for a given heat exchanger is achieved when, by definition, the entering cold air temperature is raised to equal its highest possible value, i.e., that of the entering hot water temperature. Referring to Figure 3, entering air would rise in temperature by the quantity $(T_3 - T_1)$. Using a relationship for the heat transfer rate similar to that presented earlier:

$$\dot{Q} = \dot{m}c_p(T_3 - T_1)$$
 (30)

where the term $\dot{m}c_p$ is defined as the *heat capacity rate*, C, and will be either based on the mass flow rate, \dot{m} , and specific heat, c_p , for air or for water. As developed by Incropera and DeWitt [Ref. 11], the *maximum heat transfer rate*, $\dot{Q}_{\rm max}$, is then:

$$\dot{Q}_{\text{max}} = C_{\text{min}} (T_3 - T_1)$$
 (31)

where C_{\min} is equal to either C_{air} or C_{wtr} , whichever is smaller.

3. Effectiveness

The *effectiveness*, ϵ , is defined as the ratio of the actual heat transfer rate for a heat exchanger to the maximum possible heat transfer rate.

$$\epsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} \tag{32}$$

The effectiveness, which is dimensionless, must be in the range $0 \le \epsilon \le 1$. It is

useful because, if ϵ , T_3 , and T_1 are known, the actual heat transfer rate may be determined from the expression:

$$\dot{Q} = \epsilon \dot{Q}_{\text{max}} = \epsilon C_{\text{min}} (T_3 - T_1) \tag{33}$$

4. Number of Transfer Units

The *number of transfer units*, *NTU*, is a dimensionless parameter that is widely used for heat exchanger analysis and is defined as:

$$NTU = \frac{UA_s}{C_{\min}}$$
 (34)

5. Effectiveness - NTU Relations

The Effectiveness - NTU relationship for the type heat exchangers being analyzed, i.e. a single pass cross flow heat exchanger with both fluids unmixed is:

$$\epsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(NTU)^{0.22}\left\{\exp\left[-C_r(NTU)^{0.78}\right] - 1\right\}\right]$$
 (35)

where:

$$C_r = \frac{C_{\min}}{C_{\max}} \tag{36}$$

The NTU, ϵ , C, relation may be represented graphically as shown in Figure 16.

6. Computations and Results

a. Sequence of Computations

Computations involving the Effectiveness - NTU analysis of the system's

heat exchangers were completed utilizing a spreadsheet format, shown in Appendix D. Inputs are heat exchanger dimensions, water and air inlet temperatures T_1 and T_3 respectively, air and water volumetric flow rates, and previously determined values of j_H ,

Figure 16. NTU, ϵ , C, Relation of a Single-Pass Cross Flow Heat Exchanger with Both Fluids Unmixed

 h_{air} , h_{wir} and U_{air} . Using relations defined in Sections IV-C-2 through IV-C-5, NTU-effectiveness parameters were computed and finally the heat transfer rate and outlet air and water temperatures T_2 and T_4 were determined.

b. Tabular Results

Effectiveness - NTU analysis results for the hydronic system are shown in Table 10.

			Air Fl	Air Flow Parameters	neters			Water I	Water Flow Parameters	meters								
Heater	CFM	<i>:</i>	Ð	Re	$J_{ m H}$	Ч	၁	. <u>m</u>	h	ပ		$\dot{\mathcal{Q}}_{\scriptscriptstyle \sf max}$	NTH	Ç	(ō	F	E
		(hr)	(ft² sec)			(br ft² R)	(BTU)	(hr)	$\left(rac{BTU}{hr\ ft^2\ R} ight)$	$\left(\frac{BTU}{hr R}\right)$	$egin{pmatrix} \mathbf{C}_{\mathrm{air}} \\ \left(rac{\mathbf{BTU}}{\mathrm{hr} \ \mathrm{ft}^2 \ \mathrm{R}} ight) \end{bmatrix}$	BTU hr		۲	ע	(BTU)	(°F)	14 (°F)
B-25	400	8641	1.16	2981	0.0048	6.0	431	4876	4053	4886	4.9	28095	0.24	0.00	0.21	11713	87	188
B-70	1505	6763	2.25	5795	0.0037	9.0	1623	4876	4053	4886	6.7	211020	0.15	0.33	0.13	28214	77	184
01-24-1	3680	16538	1.63	2762	0.0040	7.0	3969	4876	4053	4886	5.7	508045	0.18	0.81	0.15	74778	81	175
01-25-1	1400	6292	1.62	1691	0.0047	8.2	1510	4876	4053	4886	6.4	332196	0.23	0.31	0.20	66393	14	176
01-50-0	750	3371	1.16	1211	0.0056	7.0	608	4876	4053	4886	5.6	177962	0.29	0.17	0.24	43215	23	181
2-25-1	1050	4719	1.73	3654	0.0054	10.1	1132	4876	4053	4886	8.3	169873	0.15	0.23	0.13	22526	09	185
2-16-1	350	1573	0.82	851	0.0062	5.4	377	4876	4053	4886	4.5	54737	0.33	0.08	0.28	15152	85	187

Table 10: Effectiveness - NTU Analysis Results - Hydronic System

V. SYSTEM COMPARISONS AND DISCUSSION

A. OUTLINE

The hydronic system heat exchanger performance data generated in the previous chapter will be compared with steam system performance parameters. Specifically, the heat rate outputs (\dot{Q}) and the final air temperatures (T_2) of the hydronic system will be compared with those of the steam system. In cases where the hydronic system performance matches or exceeds steam system performance parameters stated on the ship's prints, water flow rates will be optimized. In instances where the hydronic system performance falls short of that of the steam system, further analysis will be conducted to attempt to increase hydronic system heat transfer.

B. FURTHER EXAMINATION OF STEAM SYSTEM CAPABILITIES

1. Modifications to Effectiveness-NTU Method

Steam system heat exchanger heat transfer performance data is essential in order to assess the capabilities of the hydronic system. To compute steam system performance parameters, the Effectiveness-NTU analysis method is again used, modified for steam as follows:

The convection coefficient for steam is taken to be very large (on the order of 10⁴), thereby decreasing the air side thermal resistance, contributing negligibly to the overall heat transfer coefficient.

- 2. The specific heat for a substance undergoing a phase change, such as steam condensing, is infinite. The heat capacity rate for steam, C_{sieam} , is therefore also infinite, yielding a heat capacity ratio, C_r , effectively equal to zero.
- 3. In the case of $C_r = 0$, the effectiveness, $\epsilon = 1 \exp(-NTU)$.
- 4. The inlet air and steam temperatures are as stated previously in Chapter II.
- 5. The steam mass flow rate, $\dot{m}_{steam} = \dot{Q}/(h_{fg})$, where h_{fg} is the enthalpy difference due to condensation from saturated steam to saturated water.

2. Sequence of Computations

Computations involving the Effectiveness-NTU analysis of the system's heat exchangers were completed utilizing a spreadsheet format shown in Appendix D. Inputs are heat exchanger dimensions, steam and air inlet temperatures, T_1 and T_3 respectively, as well as air volumetric flow rates, and previously determined values of j_H , h_{air} , and U_{air} . Using relations defined in Chapter III, Effectiveness-NTU parameters were computed and finally the heat transfer rate and outlet air temperature T_2 for each heat exchanger were determined.

3. Tabular Results

Effectiveness-NTU analysis results for the steam system are shown in Table 11.

			Air Fl	Air Flow Parameters	neters			Steam F	Steam Flow Parameters	meters								
	CFM	· m	Ŋ	Re	J_{H}	ч	C	·m	ħ	ပ	<u></u>	Q max	I LL	ر	ų	ō	<u>-</u>	[-
Heater		$\binom{\overline{lbm}}{hr}$	$\left(\frac{\mathrm{lbm}}{\mathrm{ft}^2\mathrm{sec}}\right)$			$\left(rac{ ext{BTU}}{ ext{hr ft}^2 ext{ R}} ight)$	(BTU)	(hr)	$\left(rac{ m BTU}{ m hr} m R ight)$	(BTU)	Oair BTU hr ft² R	BTU (hr)) ·	ı	$\left(rac{ ext{BTU}}{ ext{hr}} ight)$	(°F)	°F)
B-25	400	1798	1.16	2981	0.0048	6.0	431	17.6	0<<	8	5.0	77656	0.24	0.00	0.22	16722	66	240
B-70	1505	6763	2.25	5425	0.0037	0.6	1623	42.5	>>0	8	6.7	292182	0.15	0.00	0.14	40445	85	240
01-24-1	3680	16538	1.63	2762	0.0040	7.0	3966	127.7	0<<	8	6.1	706500	0.19	0.00	0.17	121615	93	240
01-25-1	1400	6292	1.62	1691	0.0047	8.2	1510	6.19	0<<	8	9.9	407696	0.24	0.00	0.21	87498	28	240
01-50-0	750	3371	1.16	1211	0.0056	7.0	608	59.0	>>0	8	5.8	218408	0.30	0.00	0.26	56155	39	240
2-25-1	1050	4719	1.73	3654	0.0054	10.1	1132	33.0	>>0	8	8.5	226498	0.15	0.00	0.14	31449	89	240
2-16-1	350	1573	0.82	851	0.0062	5.4	377	22.5	>>0	8	4.7	73612	0.34	0.00	0.29	21428	102	240

Table 11: Effectiveness-NTU Analysis Results - Steam System

C. COMPARISONS OF HYDRONIC AND STEAM SYSTEMS

1. Tabular Results

Comparisons of the hydronic and steam systems' heat transfer performances are shown in Tables 12 and 13.

Heater	$\dot{\mathcal{Q}}_{\scriptscriptstyle hydronic}$ (BTU/hr)	$\dot{\mathcal{Q}}_{ extit{steam}}$ (BTU/hr)	$rac{\dot{\mathcal{Q}}_{hydronic}}{\dot{\mathcal{Q}}_{steam}}$
B-25	11,713	16,722	0.70
B-70	28,214	40,445	0.70

Table 12: Unit Heater Hydronic vs. Steam Performance Data

Heater	$\dot{\mathcal{Q}}_{hydronic}$ (BTU/hr)	ΔΤ _{air_{hydronic}} (°F)	$\dot{\mathcal{Q}}_{ extit{steam}}$ (BTU/hr)	ΔT _{air_{steam}} (°F)	$rac{\dot{\mathcal{Q}}_{ extit{hydronic}}}{\dot{\mathcal{Q}}_{ extit{steam}}}$	$rac{\Delta T_{air_{hydrontc}}}{\Delta T_{air_{steam}}}$
01-24-1	74,778	19	121,615	31	0.61	0.61
01-25-1	66,393	44	87,498	58	0.76	0.76
01-50-0	43,215	53	56,155	69	0.77	0.77
2-25-1	22,526	20	31,449	28	0.71	0.71
2-16-1	15,152	40	21,428	57	0.70	0.70

Table 13: Duct Heater Hydronic vs. Steam Performance Data

2. Comparison Trends

Comparisons between hydronic and steam system results bear some consistencies.

Notably, the ratio of the hydronic to steam heat performance values average approximately 70 percent. This is a performance difference which warrants examination to determine what the possibilities are for improved performances and what are the causes for the shortfalls.

D. IMPROVING PERFORMANCE OF HYDRONIC SYSTEM

1. Altering Air Mass Flow Rate

a. Analysis Method

The Effectiveness-NTU analysis makes very apparent that the air-water heat exchangers studied are "air side limited". This can be explained qualitatively by examining, for given heat exchanger dimensions and flow conditions, the relative magnitudes of the contributors to the basic relations used in the analysis. The inverse relationships of thermal resistances in the computation of overall coefficient, U, heavily skews the resulting value of U to the lower convection coefficient in the equation , in this case h_{air} . The number of transfer units, NTU, is directly proportional to U, thus a lower value of U results in a lower NTU. Examining the graphical representation of the NTU- ϵ -C, relation (see Figure 16), lower values of NTU yield lower values of effectiveness ϵ . The heat transfer rate, \dot{Q} , is then the product of \dot{Q}_{max} and ϵ .

A means to increase the air side convection coefficient, h_{air} , and thereby increasing the overall coefficient and the heat transfer rate, is to increase the rate of air

flow passing over the heat exchanger. A change in the air side convection coefficient with increasing air flow rate can be predicted by examining the plots of Colburn j factor vs. Reynolds number and the relation from which h_{air} is derived, i.e. $h_{air} = (j_H G c_p)/(Pr^{2/3})$. The negative slope of the plots indicate that j_H decreases with increasing Reynolds number, but it is also true that the mass velocity, G, increases with increasing Reynolds number. The greatest increases in h_{air} will be realized when Re and therefore G increase with minimal decrease in j_H . This leads to the qualitative deduction

that increases in h_{air} are more profound if the plot of Colburn j factor vs. Reynolds

b. Analysis Results

number is nearer to horizontal.

The net effects on h_{air} of the counteracting trends of j_H and G, and the effects of the plot's slope can best be seen with sample computations. Results of Effectiveness-NTU analysis computations at air flow rates of up to twice the original flow rates for duct heater B-25 are shown in Table 14. Computations for the remaining heat exchangers are shown in tables in Appendix D. Plots of heat transfer rate vs. air flow rate for each heat exchanger are shown in Figures 17 through 23.

c. Air Temperature Rise Considerations

The increased heat transfer rate at increased air flow rate produces a decrease in the rise in air temperature. This can be explained by examining the relationship between the heat transfer rate and the change in air temperature presented in a previous chapter, i.e. $T_2 = T_1 + (\dot{Q}/C_{air})$. The heat transfer rate, \dot{Q} , increases but the

		Air F	Air Flow Parameters	neters			Water I	Water Flow Parameters	meters								
CFM	·m	Ö	Re	$J_{ m H}$	h	၁	m.	h	C	,	$\dot{\mathcal{Q}}_{max}$	NTU	ر	ļ	.ō	F	[-
	$\left(\frac{lbm}{hr}\right)$	$\left(\frac{1bm}{(\mathrm{ft}^2\mathrm{sec})}\right)$		Ŋ	(BTU (hr ft² R)	$\left(\frac{BTU}{hr R}\right)$	(hr	$\left(\frac{BTU}{hr~ft^2~R}\right)$	(BTU)	BTU (hr ft² R)	$\left(\frac{\mathrm{BTU}}{\mathrm{hr}} \right)$		5	ע	(hr)	(°F)	(°F)
400	1798		1.16 2981	0.0048	0.9	431	4876	4053	4886	4.9	56085	0.24	0.09	0.21	11713	87	188
200	2247	1.45	3726	0.0045	7.0	539	4876	4053	4886	5.6	70106	0.22	0.11	0.19	13487	85	187
009	2696	1.74	4471	0.0042	6.7	647	4876	4053	4886	6.1	84128	0.20	0.13	0.18	14807	83	187
700	3146	2.03	5217	0.0038	8.3	755	4876	4053	4886	6.4	98149	0.18	0.15	0.16	15663	81	187
800	3595	2:32	5965	0.0035	8.7	863	4876	4053	4886	9.9	112170	0.16	0.18	0.15	16270	79	187

Table 14: Effectiveness-NTU Analysis Results - B-25 Unit Heater with Increasing Air Flow Rate

Figure 17. Heat Transfer Rate vs. Air Flow Rate - Unit Heater B25

Figure 18. Heat Transfer Rate vs. Air Flow Rate - Unit Heater B70

Figure 19. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 01-24-1

Figure 20. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 01-25-1

Figure 21. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 01-50-0

Figure 22. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 2-25-1

Figure 23. Heat Transfer Rate vs. Air Flow Rate - Duct Heater 2-16-1

air's heat capacity, C_{air} , also increases with larger air flow rates, resulting in a net reduction in air temperature rise.

The reason for providing heat to a particular volume of air needs to be considered to determine whether a decrease in ΔT_{air} is acceptable at a higher \dot{Q} . If the purpose of providing heat to a volume of air is solely to increase the air temperature of potentially very cold air, as is the case with duct preheaters, then the decrease in ΔT_{air} at a higher \dot{Q} would not be acceptable. If the purpose of providing heat to a space is to provide incident heat to surfaces in the space, with the air temperature already at reasonably comfortable level, (e.g. 60°F), as could be the case with unit heaters, then the decrease in ΔT_{air} at a higher \dot{Q} would be acceptable. In the latter case, the air provided to the space at an increased \dot{Q} has increased enthalpy, thereby able to increase the enthalpy of a volume of 'unheated' air to a proportionally higher value.

d. Practicality

Increasing the flow rate of air passing over the duct heaters, if involving the replacement of existing fans with larger fans, is not seemingly a practical endeavor.

The expense, effort, and potential ramifications of duct fan replacement make this course of action, at an initial evaluation, not viable.

Increasing the flow rate of air passing over the unit heaters, due to much better accessibility and smaller scale of the project, is seemingly a practical endeavor. An initial review of fans available from the unit heater manufacturer, New York Blower

Company, indicates that fans with larger flow rates having similar dimensions as those presently installed are available. An excerpt from a New York Blower technical publication showing various size/flow rate fans is included in Appendix E.

2. Increasing Entering Water Temperature

a. Analysis Method

The hydronic system analysis performed thus far was done assuming an entering water temperature, T_3 , of 190°F, an industry accepted hydronic system operating temperature. It should be noted that a non-pressurized water system will never match the heat transfer performance of a steam system with all other system parameters equal. This is due to the difference in the water's and steam's entering temperature, which as was shown previously, directly affects the Effectiveness-NTU computation of the maximum heat transfer rate, $\dot{Q}_{\rm max}$ which in turn affects the heat transfer rate, \dot{Q} , (recall that

$$\dot{Q}_{\text{max}} = C_{\text{min}}(T_3 - T_1) \text{ and } \dot{Q} = \in Q_{\text{max}}$$

b. Analysis Results

The effects of increasing the inlet water temperature from 190°F to 205°F are shown in Tables 15 and 16.

c. Practicality

The means to provide an increased water temperature are available from many commercial sources. An engineering judgement needs to be made as to whether the energy put into additionally heating the water is worth the energy received in the form of

Heater	$\dot{Q}_{T_3 = 190^{\circ}F}$ (BTU/hr)	$\dot{\mathcal{Q}}_{T_3 = 205^{\circ}F}$ (BTU/hr)	$\frac{\dot{Q}_{T_3=205^{\circ}F}}{\dot{Q}_{T_3=190^{\circ}F}}$
B-25	11,713	13,064	1.11
B-70	28,214	31,469	1.11

^{*} Type B-25 include unit heaters 2-8-0 and 2-73-1.

Table 15: Unit Heater Hydronic Performance Data with Increased Entering Water Temp.

Heater	$\dot{Q}_{T_3=190^{\circ}F}$ (BTU/hr)	Δ <i>T</i> _{air_{T3=190°F} (°F)}	<i>Q</i> _{T₃=205°F} (BTU/hr)	Δ <i>T</i> _{air_{T3}=205°F} (°F)	$\frac{\dot{Q}_{T_3=205^{\circ}F}}{\dot{Q}_{T_3=190^{\circ}F}}$	$\frac{\Delta T_{air_{T_3=205°F}}}{\Delta T_{air_{T_3=190°F}}}$
01-24-1	74,778	19	83,541	21	1.11	1.11
01-25-1	66,393	44	70,920	47	1.07	1.07
01-50-0	43,215	53	46,162	57	1.07	1.07
2-25-1	22,526	20	24,779	22	1.10	1.10
2-16-1	15,152	40	16,720	44	1.10	1.10

Table 16: Duct Heater Hydronic Performance Data with Increased Entering Water Temp.

heated air. A control system that would allow water temperatures to be easily adjusted to higher temperatures in colder weather is desirable. To minimally impact a hot water heating system on the whole, local electrical booster heaters could be installed

^{**} Type B-70 include unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

near heat exchanger water inlets. This could be a desirable means to provide hotter water to the duct preheaters, which directly heat weather-intake air.

E. KEY FACTORS IN HEAT EXCHANGER PERFORMANCE

1. Dependence on Air Side Convection Coefficient

Results of Effectiveness-NTU analysis for both the hydronic and steam system heat exchangers are dependent on the air side convection coefficient, h_{air} . Retracing the path in obtaining heat transfer rates and air temperature rises from the Effectiveness-NTU analysis, it was discerned that the most influential characteristic of a given heat exchanger was the air side convection coefficient. Due to the its relatively small magnitude, the value of h_{air} dominated computation of the overall coefficient, U_{air} . From U_{air} was determined the number of transfer units, NTU. Larger values of NTU yielded larger efficiencies, ϵ , which when multiplied by the maximum heat transfer rate, \dot{Q}_{max} , yielded increased heat transfer rates, \dot{Q} .

Gas-liquid heat exchanger performance is thus regarded as air side limited, with the air side convection coefficient the key parameter. The manner in which h_{air} is computed is worth revisiting to determine influencing factors. Recalling from Chapter III:

$$h_{air} = \frac{\dot{Q}}{(T_S - T_1) * A_{s_{air}}}$$
 (37)

In this expression, the use of T_I (inlet air temperature, the lowest temperature in the system) results in the largest difference when subtracted from T_S , thus giving the most conservative (lowest) values of h_{air} . Carrying this conservative value of h_{air} through the analysis as described above results in conservative values for heat transfer performance.

2. Manufacturer's Stated Heat Transfer Performance

Using a manufacturer's air temperature rise table, such as the on shown in Figure 2, the steam system heat transfer rate can be solved for directly (i.e. $\dot{Q} = \dot{m} c_p [T_2 - T_1]$). Proceeding to solve for ϵ , NTU, U_{air} , and h_{air} (neglecting all thermal resistances but air side convective resistance for simplification, i.e. $1/UA = 1/(\eta_o hA)_{air}$) will give an indication of what T_1 equivalent a manufacturer's h_{air} and resulting heat transfer rates/air temperature rises are based on.

Looking at manufacturer's information presented in Figure 2, and considering the case of a single row, 12 fin per inch heat exchanger, with an air flow velocity of 500 FPM, the temperature rise from $0^{\circ}F$ is 77.2°F. Solving for h_{air} and then the T_I equivalent as outlined above yields a value of T_I equal to $58^{\circ}F$ (see Appendix F for computation details). This is in contrast to the value of $0^{\circ}F$ used for computations of h_{air} in the analysis done in Chapter III (see output for Fortran computer code "hxair" I Appendix B). This demonstrates that values of h_{air} that manufacturer's heat transfer rates are based on are significantly higher than values that were used in this thesis, leading to differences in heat exchanger performance values.

The difference in the analysis starting point of T_I outlined above indicates that magnitudes of heat exchanger performance data found in this thesis are conservative by approximately 15-20 percent when compared to manufacture's data. The percent difference between the hydronic and steam system heat transfer performance will however still be consistent with the results of this thesis - compared data will have larger magnitudes but with approximately the same percent differences. The only true verification of any prediction of the complex heat transfer involved in a compact gasliquid heat exchanger is through controlled measurements under known conditions. By experimental verification, predictions to cover similar geometries are then able to be made with more certainty.

F. OPTIMIZATION OF WATER FLOW RATES

1. Optimization Candidates

Heat exchangers that meet or exceed the heat transfer rates air temperature rises as stated in the ship's prints (heat exchangers 2-8-0, 2-80-1, and 01-24-1) can be further analyzed to determine an optimal water flow rate. With the air flow rate in this view of system operation fixed at the manufacturer's/print values, the water mass flow rate can be adjusted to lesser values to obtain an optimal value at which the minimum heat delivery rate and air temperature rise can be achieved. The objective in this optimization is to achieve the minimum water pumping power required to meet stated system heat transfer performance parameters.

2. Effectiveness-NTU Analysis Method Readapted

The Effectiveness-NTU analysis method can be used once again with the intention of solving for the heat exchanger surface area for a given heat transfer rate. The heat exchanger surface area can be solved for using a relation presented in Chapter III, i.e.

$$A_{s_{air}} = \frac{(NTU)(C_{\min})}{U_{air}}$$
 (38)

where, for instances of $(\dot{m} c_p)_{wtr} < (\dot{m} c_p)_{air}$:

$$C_{\min} = (\dot{m} c_p)_{wtr} \tag{39}$$

Thus, for a given heat exchanger with known air flow rate, air side convection coefficient, estimated water side coefficient, and stated heat transfer rate, the air side surface area can be computed and compared with the known value. This optimization procedure is continued until the computed surface area is less than or equal to the known surface area.

Once an optimal water mass flow rate is found, the accompanying water side convection coefficient is adjusted to match the value used in the computation of the overall coefficient. This is not too onerous of a task since as was described in the water side convection computation section of Chapter III (results shown in Appendix C), the water side convection coefficients at low water flow rates (i.e. 0.5 gpm) are already an order of magnitude above the air side convection coefficients and thus have little effect on the overall coefficient.

a. Sequence of Computations

Computations involving the optimizations of water flow rates using the Effectiveness-NTU analysis were completed with assistance of Fortran computer codes. The sequence of computations in the Fortran code titled "hxNTUOPT.f", shown as part of Appendix C, is summarized in Figure 24. Program inputs are the previously computed estimated values of U_{air} , water inlet and outlet temperatures T_1 and T_3 respectively, air volumetric flow rates, heat exchanger air side surface areas $A_{s_{air}}$, and the stated design heat rates \dot{Q}_{prints} .

b. Tabular Results

An example of Effectiveness-NTU water mass flow rate optimization program output for heater 2-80-1 is shown in Table 17. Program outputs for other optimized heat exchangers 2-8-0 and 01-24-1 are shown in Appendix C. The shaded last row represents the final optimized parameters.

A summary of optimized water mass flow rates for unit heaters 2-8-0, 2-80-1, and duct heater 01-24-1 are shown in Table 18.

c. Low Optimal Flow Rates

As shown in Table 18, for heat exchangers 2-8-0 and 2-80-1, the minimum water mass flow rate are very low compared to the value of 10 gpm used for other heat exchangers in the system. It is apparent that these two heat exchangers could have much less heat transfer surface area on both the water and tube sides at the expense of an

Input water and air inlet temperatures, overall coefficient, air flow rate, air side surface area, and heat transfer rate.

Compute air mass flow rate and heat capacity rate.

Begin DO loop to compute Effectiveness-NTU parameters at water mass flow rates iterated up to 4,876 lbm/hr (10 gpm).

Compute water heat capacity rate C_{wtr} , and compare with air heat capacity rate C_{air} . If $C_{air} < C_{wtr}$, proceed with $C_{min} = C_{air}$. If $C_{wtr} < C_{air}$, proceed with $C_{min} = C_{wtr}$.

Compute heat exchanger air side surface area and compare with actual air side surface area. If computed value is less than actual value, print results to output file.

If computed air side surface area is greater than actual, continue DO loop until solution is found or end program at water mass flow rate of 4,876 lbm/hr (10 gpm).

Figure 24. Effectiveness-NTU Computations Flow Chart

increased water mass flow rate and still provide heat transfer rates stated on the prints. This can be seen from the results in Table 17, where the increase in water mass flow rate corresponds to a decrease in air side surface area. Water flow rates as low as those obtained for heat exchangers 2-8-0 and 2-80-1 delivering heat transfer rates stated on the ship's prints indicates that the heat exchangers are oversized for the application. This apparent oversizing is also evident when it is noted that the same size unit heater (B-70) is used to deliver heat transfer rates varying from 5,294 to 64,860 BTU/hr. Selections of apparently oversized heat exchangers for a particular heat load was most likely based on other sound reasoning, not solely on heat transfer capacity.

\dot{m}_{wtr} (lbm/hr)	\dot{V}_{wtr} (gpm)	C min (BT	C max U/ hr- R)	<i>C</i> ,	€	NTU	Computed $A_{s_{air}}$ (in^2)
59	0.12	59.6	431.6	0.14	1.00	5.00	10,216
69	0.14	69.6	431.6	0.16	0.86	2.16	5,156
79	0.16	79.6	431.6	0.18	0.75	1.52	4,150
89	0.18	89.7	431.6	0.21	0.66	1.20	3,689
99	0.20	99.7	431.6	0.23	0.60	1.00	3,418
109	0.22	109.7	.431.6	0.25	0.54	0.86	3,235
119	0.24	119.7	431.6	0.28	0.50	0.75	3,079
129	0.27	129.8	431.6	0.30	0.46	0.67	2,981

Table 17. Results of Water Mass Flow Rate Optimization Using Effectiveness-NTU Analysis for Heater 2-80-1. Actual $A_{s_{air}} = 3,013$ in 2 and $\dot{Q}_{prints} = 7,747$ BTU/hr.

Heater Number	\mathcal{Q}_{prints} (BTU/hr)	Actual A _{s_{atr}} (in ²)	Water Flo A _{sair} (computed) (lbm/hr)	w Rates at $\leq A_{s_{air}}(actual)$ (gpm)
2-8-0	7,747	3,013	129	0.27
2-80-1	5,294	5,198	51	0.10
01-24-1	51,600	17,700	812	1.67

Table 18. Summary of Effectiveness-NTU Optimization Analysis Results

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SYNOPSIS

This thesis successfully analyzed heat transfer performance aspects of a set of heat exchangers installed on the U.S. Coast Guard's WTGB Icebreaking Tug class cutters. Initial analysis with acknowledged conservative definitions of air side convection coefficients determined that the hydronic system provided on average seventy percent of the heat transfer capabilities available with the steam system. Practical improvements to the hydronic system were shown to increase heat exchanger performance parameters by an average of ten percent. It was notable that the added heat transfer available from steam is not due to a property of steam itself such as latent phase change effects, but is due solely to the increase in entering tube side temperature. Judging by heat transfer capabilities alone, with the described conservative assumptions on which these results are based, use of currently installed heat exchangers in a hydronic system is a viable option.

B. PROPOSED HYDRONIC SYSTEM

A hydronic system circulating water at 10 gallons per minute and 190 degrees F, will provide at minimum the heat transfer and air temperature rises shown in Table 10. These performance parameters were arrived at considering the entire thermal circuit involved and with conservative assumptions (when compared to manufacturer's methods) for air side convective resistance determinations. Hydronic system performance parameters can be improved through the practical methods outlined. Considering heat

transfer capabilities, use of the currently installed heat exchangers as part of a hydronic system is plausible.

Use of a pressurized water system, where system pressure would allow the circulating water temperature to equal or exceed that of steam (240°F) is another approach to the hydronic system design that could be explored.

C. FURTHER STUDY

There are numerous issues to examine further in order to take into account all aspects of using presently installed heat exchangers as part of a hydronic system. Issues remaining are related to the hardware involved as well as further analysis/design work.

One hardware issue remaining is the internal heat exchanger component's compatibilities with circulating hot water as opposed to steam. In steam heat exchangers, there is typically a strip of shaped metal which distributes the flow, insuring that the fluid passes nearly equally through all tubes. The erosion effects of water on this and other internal elements designed for use with steam should be examined.

A hardware issue on the external side of the heat exchanger is the relative location of water vs. steam inlet and outlet piping. One manufacturer's information indicated that for a steam heat exchanger, inlet piping is above the outlet to allow for condensate drainage. Conversely for circulating water, the inlet is below the outlet to help prevent air in the system from inhibiting water flow. The effort involved in possibly reversing inlet and outlet piping when switching from a steam to hydronic system thus needs to be examined.

Further design and analysis work includes among other matters, the hydronic system design to provide water at either 10 gallons per minute or the optimized values to the respective heat exchangers. Pressure drops across each heat exchanger and across other system components need to be accurately gauged to arrive at a required pumping head. Air side pressure drops also need to be examined if any of the heat transfer enhancements involving increases in air flow rate are adopted, to insure fans remain properly sized.

LIST OF REFERENCES

- 1. "Heating Systems," U.S. Coast Guard Technical Publication for WTGB Class Cutters, Chapter 4
- 2. "Steelfin Coils," New York Blower Company, Bulletin 841, February, 1984
- 3. "Unit Heaters," New York Blower Company, Bulletin 824, November, 1986
- 4. "Steam Heating System Diagram," U.S. Coast Guard Drawing 101 WYTM 535-001, Revision M
- 5. "Steam Heating System Arrangements and Details," U.S. Coast Guard Drawing 101 WYTM 535-002, Revision M
- 6. "Heating, Ventilation and Air Conditioning System Diagram," U.S. Coast Guard Drawing 101 WYTM 514-001, Revision N
- 7. "Heating, Ventilation and Air Conditioning System Arrangements and Details," U.S. Coast Guard Drawing 101 WYTM 514-002, Revision V
- 8. "Steam Heating Coils 5/8" OD Tube," Colmac Coil Manufacturing, Inc., Bulletin 5070A, November 1, 1995 Revised
- 9. "Central Station Air-Handling Units," Carrier Corporation Publication 39B, 1975
- 10. Kays, W. M. and London, A. L., Compact Heat Exchangers, McGraw-Hill, Inc., 1984
- 11. Incroperra, F. P. and DeWitt, D. P., *Introduction to Heat Transfer*, John Wiley and Sons, Inc., 1990
- 12. Kays, W.M. and Crawford, M. E., Convective Heat and Mass Transfer, McGraw-Hill, Inc., 1993
- 13. Irvine, T. F., Steam and Gas Tables with Computer Equations, Academic Press, Inc., 1984
- 14. White, F. M., Fluid Mechanics, McGraw-Hill, Inc., 1994

APPENDIX A. WTGB CLASS CUTTER ILLUSTRATION

United States Coast Guard Cutter Bristol Bay (WTGB-102)

APPENDIX B. HEAT EXCHANGER DIMENSIONS AND MATERIAL PROPERTIES

	1		,	 	1	T	
Area Density α (ft²/ft³)	06	83	163	256	256	134	256
Hydraulic Diameter D_h (in)	0.38	0.38	0.25	0.154	0.154	0.312	0.154
Fin Area to Air Side Surface Area Ratio $A_f/A_{s_{alr}}$	0.85	0.85	0.91	96.0	96:0	0.92	96.0
Air Side Surface Area $A_{s_{atr}}$ (in ²)	3,013	5,198	17,700	7,959	5,969	2,868	3,979
Free Flow Area A_{ff} (in ²)	62	120	405	155	116	109	77
Frontal Area A_{fr} (in ²)	100	185	663	288	216	198	144
Fins per Inch	5	5	8	12	12	9	12
Coil Dimensions (in)	10 x 10 x 4.25	13.5 x 13.875 x 4.125	20.5 x 34 x 1.88	12 x 24 x 1.299	12 x 18 x 1.299	12 x 16.5 x 1.299	12 x 12 x 1.299
Heater	B-25*	B-70*	01-24-1	01-25-1	01-50-0	2-25-1	2-16-1

* Type B-25 includes unit heaters 2-8-0 and 2-73-1.
** Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

Table B-1. Heat Exchanger Dimensions and Material Properties

Heater	Tube Material	Number of Tubes	Tube Dimensions (in)	Tube Wall Thickness t_{tube} (in)	Tube Thermal Conductivity $k_{tube} = \frac{BTU}{hr \cdot fr \cdot R}$	Tube Side Surface Area $A_{s_{mr}}$ (in ²)
B-25*	Steel	7	A = 0.31 B = 3.08	090:0	26	465
B-70*	Steel	6	A = 0.31 B = 3.08	0.060	. 56	807
01-24-1	Copper	12	A = 1.035 B = 1.035	0.045	221	1326
01-25-1	Copper	8	A = 0.555 B = 0.555	0.035	221	335
01-50-0	Copper	8	A = 0.555 B = 0.555	0.035	221	251
2-25-1	Copper	8	A = 0.555 B = 0.555	0.035	221	230
2-16-1	Copper	8	A = 0.555 B = 0.555	0.035	221	167

* Type B-25 includes unit heaters 2-8-0 and 2-73-1.

** Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

Table B-2. Heat Exchanger Dimensions and Material Properties

Heater	Fin Material	Fin Length L_{fin} (in)	Fin Width w_{fin} (in)	Fin Thickness t_{fin} (in)	Fin Thermal Conductivity $k_{fm} = \frac{\mathrm{BTU}}{\mathrm{hr}\text{-}\mathrm{R}}$
B-25*	Steel	0.460	3.51	0.018	26
B-70*	Steel	0.460	3.51	0.018	26
01-24-1	Aluminum	0.450	1.88	0.0083	118
01-25-1	Aluminum	0.438	1.299	0.0065	118
01-50-0	Aluminum	0.438	1.299	0.0065	118
2-25-1	Aluminum	0.438	1.299	0.010	118
2-16-1	Aluminum	0.438	1.299	0.0065	118

* Type B-25 includes unit heaters 2-8-0 and 2-73-1.

** Type B-70 includes unit heaters 2-80-1, 2-40-1, 2-40-2, 2-60-1, 2-60-2.

Table B-3. Heat Exchanger Dimensions and Material Properties

New York Blower

7660 QUINCY STREET-WILLOWBROOK, ILLINOIS 60521

DIMENSIONS (INCHES)

Size	Coil Face Area	Α	В	D _.
2 ,	.70	13	10	10
46	.96	13%	111/2	113/4
812 **	1.29	15%	131/2	13%
1420	1.88	191/4	161/2	161/4
1824	2.78	221/8	20	20
4256	4.92	31	27	261/4

* B.25 * * B.70

DIMENSIONS [INCHES]

Size A or B	A	В	C max.	D ·	(FPT)	Wheel dia.	Approx.* weight [lbs.]
25	12	13¼	201/8	143/4	11/2	8	65
45	13¾	13%	201/8	15½	1 1/2	10	75
70	15¾	161/8	201/2	17%	11/2	12	115
105	181/4	19⅓	201/2	21	2	14	145
120 135 155	22	231/8	241/4	24%	2	18	180 180 200
200 240 270 300	281/4	31¼	243/8	32¾	21/2	24	305 305 305 310

*Weights will vary with motor specifications. Tolerance: ±1/8"

STEAM HEATING COILS **5/8" OD TUBE**

Dimensions For Steam Coils

5/8" Basic, Heavy Duty Steam Heating Coil

,

- NDTE: 1. 5/16' DIA HOLES DN 3' CTRS FROM CENTERLINE OF CASING.
 - 2. CDIL PITCHED IN CASING TOWARD RETURN END 1/4' PER FOOT OF FINNED LENGTH.
 B DIM PLUS C DIM PLUS FIN HEIGHT EQUALS H.

Carrier

UNIT SIZE 39B		1	040	-	1		050					
AIR QUANTITY (Cfm)			ECW								060	
Face Velocity (fpm)	400) [861	•	į		tbw		1		2000	
	500) [1076		i		255				2142	
	600)	1291				568		1		2677	
	700) * [1507				882		1		3213	
Face Velocity (fpm)	800	.]	1720				196		-		3749	
(H & V units only)	900	.	1935		ĺ		512		1		4288	
	1000	, [2150				826		1	4	4824	
	1100	1	2365				140			9	5360	
***************************************	1200	}	2580				454		1	-	5896	
HEATING COILS		1					768		-	6	5432	
Face Area (sq ft)		1			1				1			
U-Bend		1	2.15		ł				!			
Steam Distributing Tu	be		1.73		1		.14		į	4	5.36	
HUMIDIFIER CONN.		+			i	2	.72				1.81	
(nosize)					1				T			
Atomizing Spray		1	1%									
Steam Grid		1	1 72		İ	1	1/2			1.	1/2	
Supply (in. OD)		1	111/4		1				1			
Drain (in. OD)	}	1%		ļ		.iY		1	1.	1%		
OPERATING WT (1b)+		450		'		4		1	1.	ሂ		
FACE AND BYPASS					1	5	.00				750	
DAMPED ADEAS		1	6.0		i							
DAMPER AREAS (sq ft) MIXING BOX			j	7	.1		İ	3	1.0			
NAMBED ADELS							11.0					
DAMPER AREAS (sq ft)	_	5.9			6.9				10.4			
ANS (no. wheelsno. ou	tiets		11		!				10.4			
Wheel Length (in	.)	1	9%		11				11			
1 9 - 1 (112)	1	7%		10%				12%			
No. of Blad	e s	1	43		8 .				94			
Shaft Critical Speed (rpm	1)	1	2700		48				43			
Max Operating Speed (rps	m)		2700 2160			2550			1700			
Fan Sheave Bore (in.)		1	2160 1%			2040			1360			
Max Brake Hp		!	2			1%. 3			1360			
		BAS	E UNIT AN	D ACCE	CODV 1	30000000	S		<u> </u>		5	
ASE UNIT		Type A Typ	e B ITve	DIH . V	1T A	JIWE W21C	JNS (in.)				
FAN & COIL SECTION L		17ype A Typ	1 102	(401:	I ype A	Jiype B	Type D	H & V	Type A	Type B	Type D	IH & V
W		38% 38	19/2			1 0 / 14	22%	1 33%	67%	1 49%	28%	
	н	34% 34		42%	381/	38½	38%	421/	46%	46%	46%	42
ITYING DOV CEASE				1 20%	36%	36%	57%	231/4	43	43	70	29%
MIXING BOX SECTION L 214 214 214 214					24%	241/4	24%	1 24%	1 30%	1 30%	1 30%	
TO TOX SECTION	W 36% 36% 36% 36% 36%				36%	36%	36%	36%	444	44%		30%
	н	25% 25	36% 36% 36% 36%									
OW/HIGH VELOCITY	Н			25%	29%	29%	29%				377	44%
OW/HIGH VELOCITY	H	44, 4	44	1 44	41/4	29%		29%	37%	37%	37%	37%
	Н		% 4% % 36%				29% 4% 36%					

		Type A	IType B	ITvos F	ILL . V	TT .	-		<i>'</i>				
FAN & COIL SECTION	Ł	464	1 344	1.706	in a v	1 ype A	Type B	Type [H & V	Type A	iType B	Type D	IH & V
	w	38%	38%			30.8	39%	1 22%	1 33%	67%	1 49%		
	H	34%	34%	38%	42%	381/3	384	38%	42%	46%	46%	28%	42
MIXING BOX SECTION	- ; ·	21%	1	51%	20%	36%	36%	57%	231/4	43	43	461/4	49%
	ŭ.	36%	21%	21%	21%	24%	1 24%	1 24%	1 24%	1 30%		70	29%
	н		36%	36%	36%	36%	36%	36%	36%		30%	30%	30%
LOW/HIGH VELOCITY	- '	25%	25%	25%	25%	29%	29%	29%	29%	444	44%	441/4	444
FILTER SECTION	1	4%	47,	4%	1 4%	1 4%	1 4%	<u> </u>		37%	37%	37%	37%
	W	36%	36%	36%	36%	36%	36%	44	44	44	44	4 1/2	1 4%
PREHEAT SECTION	H	20%	20%	201/2	20%	231/4	23%	36%	36%	44%	44%	441/4	44%
KENEAL SECTION	47	6	6	6	1 -	7	23/4	23%	231/4	2974	29%	29%	29%
	W	36%	36%	36%		2/1	1 / 1	.7.	-	9	1 9	9	
	H	201/4	20%	20%		36%	36%	36%		44%	44%	441/4	-
BYPASS PLENUM	L	6	6			23¾	231/2	23%	-	291/2	29%	29 %	
FACE AND BYPASS	w	36%	36%	36%	-	7	7	7	-	9	9	0	
DAMPER SECTION	н !	28%	28%		-	36%	36%	36%	_	44%	44%	44%	-
SERVICE AREA	A	46%		28%	<u> - </u>	32%	32%	32%		41%	41%	41%	-
REQUIREMENTS	â		34%	19%	401/4	53%	39%	221/4	33%				
	- 0	48%	481/4	48%	481/4	48%	48%	48%	48%	67%	49.	28 %	42
L - Length	ш				<u> </u>		- /2	-0.7	40%	56%	56%	56%	561/2

W - Width

H — Height H & V — Heating and Ventilating

APPENDIX C. FORTRAN COMPUTER CODES AND OUTPUTS

```
KAIR =
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RETURN
                                                                                                                                                                                                                                                                         7
                                   n v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      U
                                                                                                                                                                                                                                                                                                                           000000
              Jim Hurley
Naval Postgraduate School
Spring 1996
                                                                                                                                                                                                      characteristics, air flow inlet
array of corresponding outlet
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            compute parameters
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Begin DO loop to compute flow parameters at each flow velocity.
                                                                                                                                                                                                                                                                                                                                       *)"Heat exchanger surface temperature (degrees F):
                                                                                                                                                                                                                                                                                                                                                                                                            *)"Heat exchanger free flow area (square inches):"
                                                                                                                                                                                                                                                                                                                                                                         *)"Heat exchanger frontal area (square inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                           *) "Total air side surface area (square inches):"
                                                                                                                REAL CPAIR, TSTD, T1, TS, AFR, AFF, ASAIR, DH, VAIRL, VAIRU, VAIR, +T2 (200:1200), TM, MDOTAIR, QDOTAIR, HAIR, G, RE, PR, ST, JH, DAIR, HMARIR, KAIR, PATM, R, MUO, TO, S, C (0:6), N, VAIRINC
DATA CPAIR, TSTD/0.24, 70.0/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORMAT(//,"***HEAT EXCHANGER MODEL - AIR SIDE****",//,
                                                                                                                                                                                                                                                                                                      *)"Air flow entering temperature (degrees F):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Compute mean air temperature to determine transport properties with FUNCTION subroutines.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              *) "Flow passage hydraulic diameter (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WRITE (55, 7) VAIR, T2 (VAIR), MDOTAIR, QDOTAIR, HAIR, RE, JH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *) "Coil face velocity lower value (FPM):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              VAIRL
',*)"Coil face velocity upper value (FPM):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE(*,*)"Coil face velocity increment (FPM):"
READ *, VAIRINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Using relations defined in Section III-D-1, comDOTAIR, QDOTAIR, HAIR, G, RE, PR, ST, and JH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    MDOTAIR = DAIR (TSTD) * (AFR/144.0) * (VAIR*60.0)
QDOTAIR = MDOTAIR*CPAIR* (T2 (VAIR) -T1)
HAIR = QDOTAIR* (T2-T1) * (ASAIR/144.0) )
G = (MDOTAIR*144.0) / (3600.0*AFF)
RE = G* (DH/12.0) / MUAIR(TM)
PR = CPAIR*WAIR(TM)
ST = HAIR( 3600.0*G*CPAIR)
JH = ST*PR** (2.0/3.0)
                                                                                 PROGRAM HEAT EXCHANGER MODEL AIR SIDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 21 VAIR = VAIRL, VAIRU, VAIRINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20 VAIR = VAIRL, VAIRU, VAIRINC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE(55, 6) T1, TS, AFR, AFF, ASAIR, DH
                                                                                                                                                                                                     Input heat exchanger dimensional temperature, air velocities, and air temperatures.
                                                                                                                                                                                                                                                                       OPEN(55, FILE = 'RESULTS.HXAIR')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Print results to output file.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Continue DO loop to completion.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TM = (T2(VAIR) + T1)/2.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE(*,5)T1,VAIR
READ *,T2(VAIR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               *.VAIRU
                                                                                                                                                                                                                                                                                                                                                                                                                         *, AFF
WRITE(*, *) ""
                                                                                                                                                                                                                                                                                                                                                                                                                                                             *, ASAIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 READ *, U. WRITE(*,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                       WRITE (*
                                                                                                                                                                                                                                                                                                                                                                                                            WRITE(*,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (*,
                                                                                                                                                                                                                                                                                                                                           WRITE (*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE (*
                                                                                                                                                                                                                                                                                                                           READ
                                                                                                                                                                                                                                                                                                                                                                                             READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ
                                                                                                                                                                                                                                                                                                                                                              READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   U
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        טטט
0 0 0 0 0
                                                                                        υ
                                                                                                                                                                                    0 0 0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0000 0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OOO
```

Page 1

hxair.f

Jun 6.1996.12:15:03

· · Page 2 JH",/, FUNCTION subroutines to compute temperature dependent transport FUNCTION MUAIR(TM) REAL MUAIR, TM MUO.TO, S DATA MUO.TO, S/1.1491E-5, 491.67, 198.72/ MUDAIR = MUO.*((((TM+459.67)/T0)**1.5)*((T0+5)/((TM+459.67)+S))) RETURN +"indicated:",/) FORMAT(//,"T2 at T1 = ".F5.1," F and VAIR = ".F5.0," FPM:") FORMAT(///, +T25,"HEAT EXCHANGER MODEL - AIR SIDE",/, FORMAT(T1,F5.0,T8,F5.1,T15,F6.0,T24,F7.0,T36,F6.1,T46,F6. +T55,F6.5) REAL KAIR, TW.C(0:6), N DATA C(0), C(1), C(2), C(3), C(4), C(5), C(6), +-2.275601E-3, 1.2598485E-4,-1.4815235E-7,1.73550646E-10, +-1.066657E-13,2.47663035E-17,0.0/ KAIR = 0.0 DO 24 N = 0.0, 6.0, 1.0 CAIR = C(N)*(((TM+459.67)*0.5556)**N) + KAIR CONTINUE QDOTAIR H-AIR RE (BIU/hr) (BIU/hr sqft R)",/, +"Enter the following parameters in the units",/, hxair.f +T5, Heat exchanger number: ", ///, +T8, T1 = ", F5.1" degrees F", /, +T8, TR = ", F5.1, degrees F", /, +T8, AFR = ", F5.1, square inches", /, +T8, ASFR = ", F5.1, square inches", /, +T8, DAIR = ", F7.1, square inches", /, +T8, DAIR = ", F4.2, inches", ////, /, +T8, DAIR T2 MDOTAIR (DOTAIR +T1, 'VAIR T2 MDOTAIR (BTU/hr) (BTU/hr) (BTU/hr) (BTU/hr) FUNCTION DAIR (TSTD) REAL DAIR, TSTD, PARM, R DATR PRIN, R/14, 7, 53.34, DAIR = (PAIM*144.0)/(R*(TSTD+459.67)) (KAIR*0.57782)/3600.0 properties of air. Jun 6 1996 12;15:03 FUNCTION KAIR (TM)

93	Heat exchanger number: B-25 (2-73-1 and 2-80-1) T.	
----	--	--

Δ κ κ (HEAT EXCHANGER MODEL - AIR SIDE	rt exchanger number: B-70 (2-8-0, 2-40-1, 2-40-2, 2-60-1, 2-60-2) T1 = 0.0 degrees F TS = 227.0 degrees F AFR = 185.0 square inches AFF = 120.0 square inches ASAIR = 5198.0 square inches DH = 0.38 inches	MDOTAIR QDOTAIR H-AIR RE JH (lbm/hr) (BTU/hr) (BTU/hr) sqft R) 2888 45365 5744 6.4 3185 .00514 46430 58819 7.7 4269 .00431 5198 66117 8.1 4287 .00431 5198 66117 8.1 4817 .00431 5158 775 68889 8.4 5367 .00431 6555 71356 8776 .00349	
₹		nanger 1 = 227.(= 120.(= 120.(= 5198 = 0.38		

Page 1		
RESULTS HXAIR01241 STOTE CHANGER MODEL - AIR SIDE		00502 00002 00002 000002 000002 000002 000002 000002 000002 000002 000002 000002 000002
HXAIR - AIR S		RE 1552 1 1552 1 1552 1 1552 1 1552 1 1552 1 1552 1 1 1 1
RESULTS!	1-1 es es ches	(BTU/hr sqft 4.6 6.2 8.8 6.2 7.1 7.1 7.8 8.1 8.1
HEAT E	number: 01-24-1 0 degrees F 0 degrees F 0 square inches 0 Square inches inches	QDOTAIR (BTU/hr) 129391- 145902- 145902- 1160440- 113732- 113732- 119769- 207170- 227170- 225551-
1996 09:33:56	exchanger num = 0.0 6 = 227.0 6 R = 693.0 8 F = 405.0 8 AIR = 17700.0	MDOTAIR (1bm/hr) 8654 129817 112981 17144 17144 17144 17144 1714 231634 25961
2,1996	Heat exch T1 TS AFR AFR ASAIR DH	27 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
May 22	H O	VALR 400. 400. 500. 1100. 1200.

Jun 6 1996 09:26:23 HESULIS.HXAIHU1251 HEAT EXCHANGER WODEL - AIR SIDE		0. 00329
SULISIHXAL	J 93	H-AIR RE 1020 1020 1020 1020 1020 1020 1020 102
HEAT EXCHANGER	number: 01-25-1 0 degrees F 0 degrees F 0 square inches 0 square inches inches	QDOTAIR (BTU/hr) 4957. 73107. 90240. 103575. 114580. 124290.
09:26:23	langer n = 227.0 = 288.0 = 288.0 = 7959 = 0.15	MDOTAIR (1bm/hr) 1798 3596: 5395: 7193 10789.
91776	Heat exch T1 TS AFR AFR ASAIR DH	(F) 111 (F) 448 (F) 6.00 (F) 6
Con	H	VAIR (FPW) 200 200 8000 1200 1200

Page 1		
Jun. 6:1996.09:2721 RESULTS.HXAIR01500 Page 1 HEAT EXCHANGER MODEL - AIR SIDE HEAT EXCHANGER MODEL - AIR SIDE Heat exchanger number: 01-50-0	RE JH	49900784 102200784 155100477 2620400410 262000329 315700329
RESULTS.HX.	H-AIR.	
#EAT EXCHAN ====================================	es F es F e incl are incl are incl	31190 31190 531190 67880 67881 87581 93218
996.09:27:21 HE ===		1077040
Jun. 6:19	DD TT.	
		97

Jun 6 1996 09:28:04 RESULTS.HXAIR2251 Page 1	exchanger number: 2-25-1 = 0.0 degrees F = 227.0 degrees F = 198.0 square inches F = 109.0 square inches ATR = 2868.0 square inches and = 0.31 inches	MDOTAIR QDOTAIR H-AIR RE JH (1.bm/hr) (BTU/hr) (BTU/hr sqft R) 1236 20205 4.5 1023 00911 2472 38185 8.4 20054 3709 8185 8.4 200505 6.184. 4474. 9.9 00505 6.184. 11.2 4195 00452 7417. 56076. 12.4 6325. 00422	
99:28:04	ng	(1bm/hr) 1236. 2472. 3709. 4945. 6181. 7417.	
un <u>6 1996 (</u>	Heat exch T1 TS AFR AFR ASAIR DH	VAIR T2 (FPM) (F) 200. 68.1 400. 51.1 600. 37.7 1200. 31.5	; ; !

```
Page 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Begin DO loop to compute flow parameters at mass flow rates ranging from 0 to 4,876 lbm/hr (10 gpm) in increments of 48.76 lbm/hr.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Using relations defined in Section IV-B-2-b, compute parameters RE, F, NU, and HWTR.
                                                                     Jim Hurley
Naval Postgraduate School
Spring 1996
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 HWTR",/,
(BTU/hr sqft R)",/,
                                                                                                                                                                                                                                                                                                                                                                                             WRITE(*,*)"'B' dimension of tubing (inches):"
WRITE(*,*)"Note that for a circular tube, 'B' = tube diameter."
READ *,B
                                                                                                                                                                                                                                                                                                                                          WRITE(*,4)
WRITE(*,*)",A' dimension of tubing (inches):"
WRITE(*,*)"Note that for a circular tube, 'A' = tube diameter."
READ *,A
WRITE(*,*)"'B' dimension of tubing (inches):"
                                                                                                                                                                                                                                                                                  Input tube dimensions considering tube may not be circular.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FORMAT(//,"****HEAT EXCHANGER MODEL - WATER SIDE****",//,
**Enter the following parameters in the units",/,
*"indicated:",/)
FORMAT(////,
                                                                                                                                                                                      REAL PI, D, CP, MU, K, A, B, DH, PR, MDOTWTR, VDOTWTR, RE, F, NU, HWTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            VDOTWTR = MDOTWTR*7,481/(D*60.0)

RE = (4.0*MDOTWTR*12.0)/(3600.0*PI*DH*MU*32.174)

IF (RE .LE. 2300.0 .AND. A .EQ. B)NU = 4.36

IF (RE .LE. 2300.0 .AND. A .NE. B)NU = 6.49

IF (RE .GT. 2300.0) THEN

F = (0.79*LOG(RE) - 1.64)**-2.0

NU = (1.94*LOG(RE) - 1.64)***-2.0

NU = (1.0 + 12.7*SQRT(F/8.0)*(PR**(2.0/3.0) - 1.0))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FORMAT (T4, F6.1, T15, F6.3, T24, F8.1, T36, F6.2, T49, F6.1)
hxwtr.f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       +T25."HEAT EXCHANGER MODEL - WATER SIDE",/,
+T25."Heat exchanger number:",//,
+T8."Heat exchanger number:",//,
+T8."B = ".F5.3." inches",/,
+T8."DH = ".F5.3." inches",/,
+T8."PR = ".F5.3." inches",/,
+T8."PR = ".F5.3." inches",/,
+T4." Flow Rates",/,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF (A .EQ. B)DH = A
IF (A .NE. B)DH = (4.0*A*B)/((2.0*A)+(2.0*B))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Nusselt
Number
                                                                                                                                                 PROGRAM HEAT EXCHANGER MODEL WATER SIDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE (55, 6) MDOTWTR, VDOTWTR, RE, NU, HWTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Reynolds
Number
                                                                                                                                                                                                                         DATA PI, D, CP, MU, K
+/3.14159, 60.79, 1.002, 77.0E-7, 0.386/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Compute hydraulic diameter of tube.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PR = (CP*MU*32.174*3600.0)/K
WRITE(55,5)A,B,DH,PR
DO 21 MDOTWTR = 0.0, 4876.0, 48.76
                                                                                                                                                                                                                                                                                                                       OPEN(55, FILE = 'RESULTS.HXWTR')
  Jun 6 1996 15:18:04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Print results to output file.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Continue DO loop to completion.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Volume
(gal/min)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      HWTR = (NU*K*12.0)/DH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 "(lbm/hr)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 +T4," Mass
+T4,"(lbm/hr
+T4,"-----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               υ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        000
                                                       00000
                                                                                                                                                         ບ
                                                                                                                                                                                                      Ü
                                                                                                                                                                                                                                                                0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       σσσσ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        υυυυ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           υυυ
```

Jun 6 1996 15 18:04 hxwtr.f

Page 2

																							•																							
7	9	m	ο,	4. 1-	. 0	н с	v	o.	۲,	nα	. 03	9		. 0	0 (v L-	υ·		. 63	ωá	J (14	ı,	ת סו) 4	m	~10	0 4	0	n c	4	- 0	> ~	4	א ט		ı Cı	4, (7							
39.	77.	15.	22	5.5	55.	200	. 92	12.	9 6		. 60	95.		. 4	615	17.	47.	Ω α	. 4	686	4 0	95.	30.	. 6	32.	70.	. 2	7.5	.60	200	12.	46	12.	6	33.	51.	3985	9.6								
72.3	76.9	81.5	86.1	95.7	99.7	04.2	13.2	17.7	22.2	31.0	35.5	39.9	44.3	53.1	57.5	66.2 66.2	70.6	4.4.	83.5	87.8	96.1	00.7	05.0	99.2	17.7	22.0	26.2	34.4	38.9	43.1	51.4	55.6	9 6	68.1	72.2	80.5	84.68	88.0	7.7							
																																					0									
2662.	4145.	5628.	7111.	8594.	1560.	3042.	6008	7491.	8974.	1940	3423.	4906.	6389.	9354.	0837.	3803.	5286.	8252	9735.	1218.	4184	5666.	7149.	8632.	1598.	3081.	4564.	7530.	9013.	0495.	3461.	4944.	7910	9393.	0876.	3842	45325.	6807.	9880.							
															rH (-1 (-1	н,	-1	1 ~1	Н,	⊣ ←	4 44	н.		4 ~	-	Н.		ı			 1 *	t-	-		٠,	I ~ I		4							
ο.	٥.	-	4	i, d	. 2	9.	` "	6	٥.	٦.	i m	4.	ι.	? -:	ω,	, 0	٦.	<u>م</u> د	. 4 .	ďί	٦٠	٠.	ο.	۰. ۲	10	3	4.1	י ע	. 7	0	; 0.	٦.	Ä۳	4	ນ໌ ແ	٠.	9.801	ي د	?							
7	0	00	ហ	m c	· œ	9 0	o ←	00	9•	7* ~	10	9	4.0	10	۲.	4 0	01	- u	200	0 (na co	'n		œν	ρm	· ~	œι	o 4		ט ע	4	77	יז ע	4	N C	2 6	· N	0.0	>							
2389.	2438.	2486.	2535.	584	681	730	828	876	925	4,00	071	120	169	266	315	354 413	462	510	608	657	754	803	852	9000	4 0 4 0 5 0	047	095	193	242	290	388	437	534	583	632	729	4778.	827	48/0.							

May 23 1996 11:09:21 RESULTS.HXWTRUNIT Page 1	HEAT EXCHANGER MODEL - WATER SIDE	er number: B-25 (2-73-1 and 2-80-1) B-70 (2-8-0, 2-40-1, 2-40-2, 2-60-1, 2-60-2)	0 inches 0 inches 3 inches	ttes Volume Reynolds Nusselt HWTR (gal/min) Number Number (BTU/hr sqft R)	.000 0.0 6.49 53.	.200 2965.8 15.13 124.	.300 4448.7 23.88 196. 400 5931.6 31.80 261.	.500 7414.5 39.21 322.	.600 8897.5 46.25 380. .700 10380.4 53.04 436.	.800 11863.3 59.61 490.	.000 14829.1 72.24 594.	.100 16312.0 78.35 644. .200 17794.9 84.35 693.	.300 19277.8 90.25 742.	.500 22243.6 101.80 837.	.700 25209.4 113.04 929.	.800 26692.4 118.57 975. .900 28175.3 124.05 1020.	.000 29658.2 129.47 1064.	.200 32624.0 140.16 1152.	.300 34105.9 145.43 1195. .400 35589.8 150.67 1239.	.500 37072.7 155.87 1281. .600 38555.6 161.03 1324.	.700 40038.5 166.15 1366. 800 41521.4 171.25 1408.	.900 43004.4 176.31 1449.	.100 45970.2 186.33 1532.	.200 47453.1 191.30 1573. .300 48936.0 196.25 1613.	200 50418.9 201.17 1654.	.600 53384.7 210.93 1734.	.700 54867.6 215.78 1774. .800 56350.5 220.60 1814.	.900 57833.4 225.40 1853. .000 59316.3 230.18 1892.	.100 60799.3 234.95 1931.	.200 62262.2 239.09 1970.3 .300 63765.1 244.41 2009.8	.500 66730.9 253.80 2087.	.600 68213.8 258.47 2125. .700 69696.7 263.12 2163.	.800 71179.6 267.75 2201.
1996 11:09		exchanger	= 0.310 = 3.080 = 0.563 = 2.315	2	0.0	0.5	0.3		0.0	8.0	1.0	다 다	1.3	1.5	1.7	1.8 6.1	2.0	10.0	2.2	2.5	2.7	90.0	2 K	а в . в	3.4	n (9)	w w	w 4.	4.1	7 4.30	4.4	4.6	4.8
May 23 1		Heat	A B B B B B B B B B B B B B B B B B B B	Flow Mass (lbm/hr)		97.	5.5		 	000	37.	36.	833		 28 c	77.	5.5	72.	70.	13.	. 92		17.	99.	7.7		2.2	500	9.0	2096.7	94.	43.	40.

m	_	1 1	· 01	9	σ,	۰ -	4 ~4	D	7	mo	יי ת	9	6	0	۲,	- 1 0	σ	ם נכ	۱۰۰۰ (7	~ 1	ه م	n -	٦ ،	٠ 4	r 4	1 M		10	00	r,	т	y,	⊢ 1 ι	n 0	7	4	9	7	- 1	- 1	- 1	φ,	4 6	4							
34	7	2 4	45	49	23	7	9 4	89	72	9 2	ν c	87	9	94	8	2 5	ດອ	" (19	20	24	7.	7 2	າແ	2 4	1 2	49	3,1	26	9	63	67	2	7.5	: 6	85	88	8	95	9 6	2 0	S	9	4130.	2							
	•	• • •		•	.,,	•	• • •				•••		•••	.,	• •	.,,	.,	, .	,	,	. ,	.,,	, .	, .							• •	•			• • •		• •				•	•	•		•							
=	9	0 0	0	0	<u>o</u> :	9 5	2 5	11	ლ :	4.	3.5	9	99	ㅁ	io d	20 0	2 =		10	88	52	٦,	2 -	17	. 9		. 6	. 6		99	34	2	9.9	1,	20	22	54	9.	9 9	و و	0 5	4.0	25	5 G	2							
30	ñ	9 6	34	98	2	2 2	22	21	56	200	ממ	44	28	53	27	3	0 0	5 12	29	83	88	7 5	2 5	4 5	3 5	7 7	18	2	2.1	31	35	40	77	80 (3 5	63	65	69	73	20 0	2 0	9 6	8 8	404	`							
																																												4⊪ rc								
254	759	265.	770.	275.	780.	280	295.	800.	305.	810.	821.	326.	831.	336.	841.	446	356.		366.	872.	377.	882		307	900	407	912.	417	923.	428.	933.	438.	943.	448	45.0	963.	468.	973.	478.	984	4 0 0 0 0 0	426	499	509	,							
S	v	000	S	Н	2	d n	3 C	œ	0	٦,	J 4	v	7	99	88	200	35	200	80	9	d	7 5	7 1	17	ׅׅׅׅ֡֝֟֝֟֝֟֝֟֝֟֝ ֚	20	21	23	24	26	27	23	ခ္က	2 5	י ער	36	38	39	41	2.	# 4	4 U t	47	150	3							
000	100	200	300	400	201	100	801	901	001	101	307	401	501	601	701	TOR	100	101	201	301	401	100	701	801	106	001	101	201	301	401	501	601	701	108	001	101	201	301	401	201	100 201	107	801	100	4							
										•							•				•				•									•				•					•	, C	•							
0	ď	, LO	m	0	oo u	۰ م	າ ⊷	80	φ,	* -	40	ی د	4	01	ט ו	٠.	# C	10	7	Ŋ	01.0	٥ د	יים	, ~) C	000	φ	. ~	٠ ١ ١	00	9	4	- 10	י ה נ) to	7	6	7	4.0		10	۰.	n c	70	,							
438.	486	535.	584.	633.	681.	.007	828.	876.	925.	974	023	120.	169.	218.	266.	37.	413	462	510.	559.	608.	. 200	754	803	852	900	949	968	047.	095.	144.	193.	242.	290	388	437.	485.	534.	583.	632	720	, 62	7.78	876.								
۰۷.	0	. 0	7	~	~ ~	<i>4</i> c	10	7	(7)	71 0	o m	m	ന	e.	mí	יי ני	. u	. (*)	m	m	m	ን ቦ	. w	1 m) M	m	m	m	4	4	4	4	4.	4	4	4	4	4	4	4.	3' <	4.	4.4	4 4	r							

Page 1																															
TS:HXWTRDUCT MODEL - WATER SIDE	2-25-2, 2-16-1		HWTR (BTU/hr sgft R)	10.10	· · ·					~ ~	~ .		955.	002.	139.	1184.3	273.	360.	446.	532.	574. 616.	658.	741.	823.	863.	944.	025.	065. 104.	144.	223.	301.
ESULTS/H)	1, 01-50-0,		Nusselt Number (B	m m	4.0	45	1 00 1	. m. c	٣щ	€ 4	w.c	03.00	0.44.0	25.5	31.0	141.90	52.5	63.0	73.3	83.5	88.6 93.6	98.6	90.6	13.3	23.3 28.2	33.0	42.6	47.4 52.2	56.9	66.3	75.7
RESUI	: 01-25-	og og og	Reynolds Number	0.	010.	020	9030.	2040.	3545. 5051.	6556. 8061.	9566.	2576.	5586.	7091. 8596.	0101.	33112.1	6122.	9132.	2142.	5152.	6658. 8163.	9668.	2678.	5688.	7193. 8698.	0203.	3214.	4719. 6224.	7729.	0739.	3749.
11:10:59	= exchanger number	0.555 inches 0.555 inches 0.555 inches 2.315	Rates Volume (gal/min)	.00	202.6	40	. 60	283	3.8	25.	80	200	25.5	8.6	8.5	2.200	50	9.6	. 8.	38	52.	8.4	500	3.5	8.6	9.5	181	8.4	55.5	323	86.
May 23 1996 11	Heat exc	4. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	Flow Mass (1bm/hr)	· ·	: -:		·	:::		10.10	· · ·	: .: .		· 10	975.	1072.7	170.	267.	365.	462.	511. 560.	509.	706.	804.	852. 901.	950.	047	096. 145.	194.	293.	389.

48.	960	. ic	92.	10.	222	846.5	58.	70.	82	4,0	0 a			54	65.	77.	989.	001.	12.	970	0.00	059.	070	082		105	116.	128.	139.	150.	162.	173.	184.	196.	207.	218.	223	741.	. 600	202		296	, ,	3 2 2	329.									
67	5.5	7.5	. 6	81.	83	189.15	91.	94.	97.	9,5	, Z	9.5		2 2	15.	18.	21.	23.	26.	, r	. 4	36.	39.	4	77	46.	6 7	52	5.4	57.	59.	62.	64.	67.	69	. 2	4.		, ,	, 0 2		. 6	, ,	4 4	97.									
0354.	1161.	1968.	3582.	4389.	5196.	46810.7	7617.	8424.	9231.	0039.	1653	2460	3267	4074	4881.	5688.	6495.	7302.	8109.	SYLO.	0531	1338.	2145.	2952	3750	4566	5373	6180	6987	7794.	8601.	9408.	0216.	1023.	1830.	2637.	3444.	4251.	0000	5865.	7479	8286		9900	0708.									
86	10	3.6	40	. 50	9.	5.801	96.	00.	.10	200	2 5		36	7.0	80	96.	00.	.10	200	2 6	1. r.	9	.70	8	9	200	200	20	30	40	. 50	.60	.70	.80	96	00:	95	2 6	9 5	4. r.	3 6	202		9	000									
438.	486.	584 584	633.	681.	730.	2828.1	876.	925.	974.	023	120	160		992	315.	364.	413.	462.	510.	, 00	670	705.	754	803	. כינמ	000	946	866	047	095.	144.	193.	242.	290.	339.	388.	437.	485.	754.	000	, 120	729	. 67.7		876.									

Heat exchanger number: 01-24-1 Reg = 1.095 inches					MODEL - WATER SIDE	
Rates 1.035 inches 1.035 inches 2.315 Rates (gal/min) Number Number (BTU/hr sqft 0.000 0.000 44.36 19.5 0.200 2421.2 11.55 51.7 0.400 3228.3 16.76 34.47 115.8 0.500 4842.5 2.605 116.6 0.700 6456.6 34.47 115.8 1.100 8077.8 46.17 206.6 1.200 4842.5 2.605 116.6 0.700 6456.6 34.47 115.8 1.100 8077.8 42.37 189.6 1.100 8077.8 42.37 189.6 1.200 12010.2 49.89 223.3 1.200 12010.2 49.89 223.3 1.200 12010.2 49.89 223.3 1.200 12010.2 49.89 223.3 1.200 12010.2 49.89 223.3 1.200 12010.2 49.89 223.3 2.200 12010.2 49.89 223.3 2.200 12010.2 49.89 223.3 2.200 12010.2 49.89 223.3 2.200 12010.2 49.89 223.3 2.200 12010.3 44.38 317.7 2.200 12010.3 44.38 317.7 2.200 22598.3 100.2 44.78 2.200 2240.6 99.3 44.3 84.12 2.200 2240.6 115.35 516.3 3.200 2240.8 115.35 516.3 3.200 2240.8 112.33 44.7 3.200 2240.9 124.31 556.3 3.200 2240.8 112.33 44.7 4.100 33283.2 141.82 660.3 4.400 32283.2 141.82 660.3 4.400 32281.5 156.05 69.8 4.200 3722.7 156.05 69.8 4.200 3722.7 156.05 69.8 4.200 3722.7 156.05 69.8 4.200 3722.7 156.05 69.8 4.200 3722.7 156.05 69.8 4.200 3722.7 156.05 69.8			: 01-2	4		
Volume Reynolds Nusselt HWTR og 1/min) Number Number (BTU/hr sgft 0.000 8071 4.36 19.5 0.100 8071 4.36 19.5 0.200 2421.2 11.55 19.5 0.400 3228.3 16.76 34.47 11.55 11.00 8070.8 42.37 11.55 11.00 8070.8 42.37 11.00 8070.8 42.37 11.00 8070.8 42.37 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.400 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.200 11.291.3 3 64.15 11.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		.035 inche .035 inche .035 inche	w w w			
95. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	Flow Mass (lbm/hr)	% ·	Reynolds Number	Nusselt Number	HWTR BTU/hr sgft	
46.3 10.200 1614.2 4.36 15. 46.3 0.300 2421.2 11.55 11.55 46.3 0.400 2421.2 11.55 11.55 40.3 0.600 4642.5 20.50 11.55 40.1 0.600 4642.5 20.50 11.55 40.1 0.600 4642.5 20.50 11.60 40.2 0.700 6456.6 34.47 11.60 10.000 0.800 7.63.7 34.47 11.60 10.000 0.8877.9 46.17 96.93 10.2 0.000 12913.7 46.17 96.93 10.2 0.000 12913.7 47.13 189. 10.2 0.000 12918.7 40.09 189. 10.2 0.000 12141.6 77.65 33.7 10.2 0.000 12141.6 77.65 33.7 10.2 0.000 12141.6 77.65 33.7 10.2 0.000 <td></td> <td>۰.</td> <td>0.5</td> <td>m. r</td> <td></td> <td></td>		۰.	0.5	m. r		
46.3 0.300 2421.2 11.55 49.8 0.500 4035.4 21.55 40.1.1 0.600 4442.5 21.55 40.1.1 0.600 4442.5 21.55 40.1.2 0.600 4442.5 21.55 40.1.3 0.600 4442.5 21.55 40.1.3 0.600 4442.5 21.55 40.1.100 6456.6 34.47 40.17 0.600 12213.7 46.17 40.17 0.600 12213.7 47 40.17 0.600 12213.7 47 40.17 0.600 12213.7 47 40.100 12213.7 64.12 40.100 12213.7 64.12 40.100 12213.7 64.12 40.100 12213.7 64.12 40.100 12213.7 64.13 40.100 12213.7 64.13 40.100 12213.7 64.13 40.100 12213.7 64.13 40.100 12213.7 64.13 40.100 12213.7 66.13 40.100 12213.7 66.13 40.	97.		. 4	ຸຕຸ		
43.8 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	46	<u>ښ ح</u>	21.	ūν		
92.6 0.600 4842.5 26.05 116. 41.3 0.600 4842.5 26.05 116. 41.3 0.800 6456.6 34.47 153. 42.4 0.800 1263.7 38.47 153. 42.5 1.100 8877.9 46.17 183. 42.1 1.200 1295.1 57.13 172. 42.1 1.200 1295.1 57.13 172. 42.2 1.100 1295.1 60.66 227. 42.4 0.1291.3 64.15 225. 42.5 1.100 12948.7 67.58 347. 42.5 1.100 12948.7 67.58 347. 42.5 1.100 12948.7 80.94 33.27. 42.5 1.2 2.000 12175.8 84.19 33.7. 42.5 2.200 12175.8 84.19 33.7. 42.5 2.200 12175.9 90.61 40.5. 42.6 2.200 22179.2 100.05 447. 43.1 3.200 22598.3 106.23 447. 44.0 2266.4 91.21.34 556. 44.1 3.7 0 2264.9 115.35 528. 44.1 3.7 0 2264.9 115.35 528. 44.1 0 33.990 31476.1 133.13 556. 44.2 4.3 0 34704.5 144.6 668. 44.4 0 37125.7 144.6 668. 44.4 0 37125.7 156.05 669.		i ri	ŭ.	ຸທຸ	96.	
14.1. 0. 8.00	92.	φį	22	0,0	16.	
38.8 0.900 7263.7 38.47 172 38.7 6 1.000 8877.8 46.11 172 38.7 1.100 8877.8 46.13 189 38.6 1.400 11299.0 53.54 223 38.9 1.400 11299.0 53.54 223 28.0 1.200 11291.3 60.66 271 28.0 1.201.3 67.58 223 28.0 1.272.4 70.98 317 28.1 1.800 16141.6 77.65 302 28.2 1.00 16141.6 77.65 317 28.2 1.00 16141.6 77.65 317 28.2 1.00 16141.6 77.65 347 28.2 1.00 16141.6 77.65 347 29.2 1.00 16148.7 80.94 347 29.2 1.00 16148.7 80.94 347 29.2 1.00 112.3 <	90.	`. &	9.6	ં 4.	54.	
87.6 1.000 88770.8 42.37 189. 85.1 1.000 88770.8 42.37 189. 85.1 1.200 11292.0 53.54 223. 31.4 1.500 11292.0 53.54 223. 31.4 1.500 11291.3 60.66 271. 80.2 1.700 12913.3 64.15 223. 22.1 1.700 12913.3 64.15 223. 22.1 1.700 12913.4 67.88 337. 22.2 1.700 12948.7 67.88 337. 22.2 1.700 12948.7 77.69 337. 22.2 1.700 12948.7 77.69 337. 22.2 1.700 12948.7 77.69 337. 22.2 1.700 12948.7 77.69 347. 22.2 1.700 12948.7 100.05 477. 22.2 1.700 22194.1 100.05 477. 22.2	38.	φ.	6	4.	72.	
1.200 9687.7 49.81 33.9 1.200 9687.7 49.81 31.4 1.300 11299.0 49.81 31.4 1.500 12106.2 49.81 21.6 1.200 12106.2 49.81 21.7 1.600 122913.3 64.15 223 22.7 1.7 1.800 12129.0 60.63 271 22.7 1.7 1.800 12141.6 77.68 271 22.7 2.100 12481.7 77.68 337.2 22.7 2.200 1375.8 84.19 376.2 22.7 2.200 1375.8 84.19 376.2 22.7 2.200 1376.9 90.61 405.3 22.6 2.2 100.2 124.19 376.2 22.7 2.2 100.2 224.12 405.1 22.7 2.2 100.2 224.12 405.1 22.8 3.2 2.2 2.2 3.2	. 7	۰.	9,5	œ٠	989	
33.9 11.300 10.492.0 53.54 239. 38.2 6 1.500 121092.1 67.13 227. 38.2 1.500 121092.2 60.66 64.15 287. 28.9 1.500 13720.4 70.58 227. 28.4 1.900 13720.4 70.58 227. 28.5 2.100 1334.5 74.33 33.2 28.6 2.100 1354.7 74.33 33.2 28.7 2.200 1375.8 84.19 33.2 28.6 2.200 1375.8 84.19 376. 38.7 2.200 1375.8 84.19 376. 38.5 2.200 1375.8 87.419 376. 38.5 2.200 1376.9 90.61 433. 48.5 3.00 22402.1 100.05 447. 48.5 3.00 22402.1 100.05 447. 48.5 3.20 22402.1 100.05 447.	8 G	7.0	35.	ન જ	239	
88.2 6 1.400 11299.1 57.13 225. 88.2 6 1.400 12299.1 57.13 225. 28.9 1.700 12720.4 70.98 337. 26.4 1.900 14527.4 70.98 337. 26.4 1.900 16441.6 77.65 332. 27.0 2.000 16441.6 77.65 337. 27.7 2.200 17755.8 84.19 376. 27.0 2.200 13769.9 90.61 449. 27.1 2.200 13769.9 90.61 449. 27.2 2.200 21777.0 93.79 449. 27.0 2.200 22465.3 103.15 447. 27.0 2.2598.2 103.15 447. 27.0 2.2598.2 103.15 447. 27.0 2.2598.3 103.15 447. 27.0 2.2598.3 103.15 447. 27.0 2.2598.3 103.15 447. 27.0 2.2598.3 103.15 447. 27.0 2.2598.3 103.15 447. 27.0 2.2598.3 103.15 556. 27.0 2.2598.3 103.15 556. 27.0 2.2598.3 103.15 556. 27.0 2.2598.3 103.15 556. 27.0 2.2598.3 103.15 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.	33.	. m	5	'n.	39	
28.9 1 1.600 12913.3 64.15 287.4 1.700 13720.4 70.58 3.72 288.9 1.700 13720.4 70.58 3.32 287.4 1.900 16521.5 7.65 3.32 287.4 1.900 16521.5 7.65 3.32 287.4 1.900 16521.5 7.65 3.32 287.4 1.900 16521.5 2.200 16562.8 84.14 2 3.32 287.4 1.900 17755.8 84.14 2 3.47 2.200 18362.9 90.61 442 3.32 287.8 1.00 22984.1 10.623 443.1 10.623 1.00 22405.3 10.623 443.1 10.623 1.00 22405.3 10.623 447.5 287.8 1.00 22405.3 10.623 447.5 287.8 1.00 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.33 2.200 22625.6 112.34 2.200 22625.6 112.34 2.200 22625.6 112.34 2.200 22625.6 130.21 24.31 2.200 22625.6 130.21 24.31 2.200 22625.6 130.21 24.31 2.200 22625.6 130.21 24.31 2.200 22625.6 130.21 24.31 2.200 22625.6 120.21 24.31 2.200 22625.6 130.21 24.31 2.200 22625.6 120.21 24.31 2.200 22625.6 120.21 24.31 2.200 22625.6 120.21 24.31 2.200 22625.6 120.21 24.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22620.2 120.200 22625.6 120.200 22625.6 120.200 22625.6 120.200 22620.2 120.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.200 220.	82.	4. r	9,4	ب د	55.	
28.9 1.700 13720.4 67.58 302. 27.4 1.900 1641.6 77.65 302. 22.00 16441.6 77.65 347. 22.10 1594. 80.94 332. 22.10 17755.8 84.194 347. 22.200 13369. 90.61 442. 22.200 20177.0 93.79 376. 22.200 20177.0 93.79 443. 22.200 22598.1 100.15 447. 22.200 22405.3 103.15 447. 23.200 22598.2 103.15 447. 23.300 22405.3 106.23 4489. 24.10 25019.2 112.33 522. 250.3 3.00 22462.0 112.33 522. 250.3 3.00 22634.8 115.35 529. 26.4 3.600 22640.9 127.27 569. 26.5 3.500 28647.8 127.27 569. 26.6 4 3.600 28647.8 127.27 569. 26.7 4 4.000 33283.2 138.94 6621. 26.7 4 4.00 33283.2 138.94 6621. 26.7 4 4.00 33283.2 141.82 660. 26.7 4 4.00 37125.7 150.05 660.	80.	9	13.	!	87.	
26.4 1.900 15334.5 74.33 332.75.2 2.000 16441.6 77.65 332.72.7 2.200 16441.6 77.65 332.72.7 2.200 16441.6 87.65 334.7 32.7 2.200 17755.8 84.19 376.2 2.200 17755.8 84.19 376.2 2.200 17755.8 87.42 337.6 2.200 20177.0 93.79 443.7 2.200 20177.0 93.79 443.7 2.200 20177.0 93.79 443.7 2.200 22598.1 103.15 447.7 2.200 22598.2 103.15 447.7 2.200 22598.2 103.15 35 22.2 2.200 22405.3 106.23 447.7 2.200 22598.6 115.35 2.200 225826.6 115.35 2.200 225826.6 115.35 2.200 22683.7 118.35 2.200 22683.7 118.35 2.200 22683.7 118.35 2.200 22683.7 118.35 2.200 22683.7 118.36 2.200 22683.7 133.13 2.200 22683.7 118.36 2.200 2269.2 130.21 2.200 2269.2 130.21 2.200 2269.2 130.21 2.200 2269.2 130.21 2.200 2269.2 130.21 2.200 2269.2 141.82 660.2 141.82	28	Γ. α	20.	ກຸ ອ	027	
75. 2 2.000 16141.6 77.65 347. 24. 0 2.200 17558.8 84.42 362. 21. 5 2.300 18562.8 84.42 376. 27. 100 18562.8 87.42 376. 37. 2 2.00 20176.9 90.61 409. 40. 2 2.600 20179.2 90.61 409. 57. 8 2.600 201791.2 100.05 4419. 57. 8 2.700 22412.4 100.05 4419. 57. 8 3.00 22412.4 109.29 4419. 50. 3 2.00 22412.4 109.29 441. 50. 3 2.00 22446.3 106.23 475. 50. 3 2.00 22446.3 106.23 475. 50. 3 2.00 22446.3 106.23 475. 50. 3 2.00 22446.3 106.23 475. 50. 3 2.00 22446.3 106.23 475. 50. 3	26.	. 0.	34.	, w.	32.	
24.0 2.200 19562.8 84.034 376.2200 19562.8 84.024 376.2200 19562.8 87.42 376.2200 19562.8 87.42 376.2200 19562.8 87.42 376.2200 19562.8 87.42 376.2200 19562.8 87.42 376.2200 19562.8 87.42 376.2200 19562.8 87.42 376.2200 19562.8 100.05 447.200 170.05 170.00 170.	75.	۰,	급.	φç	47.	
21.5	42.0	٦,	2 kg	<u>.</u> ز	76.	
70. 2 2.400 19369.9 90.61 405. 11. 0 2.600 20177.0 93.79 43. 16. 5 2.600 202598.3 100.05 447. 16. 0 2.900 22598.3 100.05 447. 16. 0 2.900 22405.3 106.23 443. 17. 0 2.900 22405.3 106.23 4475. 18. 3.000 22405.4 109.29 4475. 19. 3 3.00 26826.6 115.35 516. 25. 4 3.00 22862.0 118.36 529. 25. 9 3.500 22862.0 118.36 529. 25. 9 3.600 22962.0 130.21 556. 26. 9 3.600 22962.0 130.21 556. 26. 9 3.600 23692.3 141.82 569. 27. 0 4.100 33897.4 144.66 667. 28. 4 4.00 34704.5 144.66 667. 29. 4 4.00 34704.5 147.56 660. 29. 5 4.600 3125.7 156.05 669.	21.	٠.	22.	4	91.	
19. 0 2.500 2017/1 0 96.93 4 4218. 16. 5 2. 700 21791.2 100.05 447. 16. 5 2. 800 22469.3 106.23 4475. 18. 8 3.000 224212.4 109.29 475. 11. 6 3. 200 224212.4 109.29 475. 11. 6 3. 200 224212.4 109.29 475. 11. 6 3. 200 22626.5 115.33 672. 10. 1 3. 300 22626.7 118.36 528. 10. 6 3. 500 22862.6 115.33 512. 10. 6 3. 500 22862.0 124.31 55. 10. 6 3. 500 22862.0 124.31 55. 10. 6 3. 500 22862.0 133.13 55. 10. 6 3. 500 22862.0 133.13 65. 10. 6 3. 300 3476.1 133.13 55. 10. 6 4. 300 34704.5 141.82 667. 10. 6 4. 400 37128.7 156.05 660. 10. 6 4. 600 37128.7 156.05 660.	6.	4.	6	φı		
16.5 2.700 21791.1 100.05 447. 16.8 3.000 22405.3 103.15 4467. 17.8 3.000 24212.4 109.23 4685. 18.9 3.000 24212.4 109.23 4487. 18.3 3.000 26826.6 112.33 502. 18.3 3.000 26826.6 112.35 502. 18.3 3.000 26826.7 112.35 502. 18.4 3.6 00 22647.8 121.34 558. 18.5 4 4.0 00 32284.8 127.27 558. 18.5 4 4.0 0 32283.2 138.94 6521. 18.4 4.0 3.3 33.9 3 141.82 660. 18.4 4.0 3.3 33.8 4 144.82 660. 18.5 4 4.0 3.3 33.8 660. 18.5 4 4.0 3.3 33.8 660. 18.5 4 4.0 3.3 33.8 660. 18.5 4 4.0 3.3 33.8 660. 18.5 4 4.0 3.3 33.8 660. 18.5 4 4.0 3.3 33.8 660.	5.5	ກຸ	: 5	٠. ٥		
14.0 22598.3 103.15 461. 14.0 2.900 22405.3 106.23 475. 11.6 3.000 22415.4 109.23 475. 11.6 3.100 22812.6 112.33 4875. 50.3 3.500 22822.6 118.35 516. 57.8 3.400 27440.7 121.34 529. 57.8 3.500 22847.8 121.34 543. 50.6 3.500 22054.9 127.27 564. 52.9 3.800 30669.1 137.13 582. 50.4 4.000 32283.2 138.94 621. 50.4 4.000 32283.2 141.82 6621. 50.7 4.000 32283.2 141.82 6671. 50.7 4.000 3290.3 141.82 6671. 50.7 4.000 32387.4 144.69 671. 50.7 4.000 33187.4 144.69 677. 50.7	9	? [00.00	47.	
14.0 2.900 22405.3 106.23 475. 52.8 3.000 224212.4 109.29 489. 60.3 3.200 256125.4 112.35 502. 50.1 3.200 25632.7 118.36 5216. 50.1 3.400 27447.8 121.34 5216. 56.6 3.500 28647.8 124.31 543. 55.1 3.700 28062.0 130.27 568. 50.2 3.800 30669.1 130.27 569. 50.2 3.800 31476.1 136.04 621. 50.2 4.100 33283.2 138.9 621. 50.2 4.100 33799.3 141.82 651. 50.4 4.00 34704.5 144.69 647. 50.4 4.60 35318.6 150.40 669. 50.7 4.60 37125.7 156.05 698.	55.	. ۵۰	8	03.1	61.	
52.8 3.000 24212.4 109.29 489. 60.3 3.200 25019.5 112.33 489. 70.1 3.300 25626.6 115.33 516. 70.1 3.400 27440.7 121.34 529. 70.6 3.500 28247.8 124.31 549. 70.0 22864.9 127.27 559. 70.0 22862.9 130. 556. 72.2 3.800 31476.1 133.13 589. 70.1 4.000 32283.2 138.94 621. 89.2 4.100 33897.4 144.69 647. 89.2 4.400 34704.5 144.69 647. 89.2 4.400 35318.6 150.40 673. 89.2 4.400 37128.7 156.05 660. 89.2 4.400 37128.7 156.05 660. 89.2 4.400 37128.7 156.05 660. 89.2 4.400 3	14.	σ.	5.	06.2	75.	
11.6 3.100 2.5019.5 112.33 502. 50.1 3.200 2.5826.6 112.35 502. 50.6 3.400 2.6633.7 118.35 529. 50.6 3.400 2.2647.8 124.31 5.56. 50.4 3.600 2.2054.9 127.27 5.69. 50.4 4.000 3.2682.0 130.21 5.82. 50.4 4.000 3.2882.2 138.94 6.21. 50.4 4.000 3.2883.2 138.94 6.21. 50.4 4.000 3.3897.4 144.69 6.67. 45.4 4.00 3.318.5 141.82 6.60. 45.4 4.00 3.318.5 150.40 6.87. 45.4 4.500 3.318.5 150.40 6.87. 46.5 4.400 3.318.5 150.40 6.87. 47.6 4.500 3.7125.7 156.05 6.98.	52.	0	2	09.2	689	
50.3 3.200 2.525.6 115.35 5.20 57.8 3.400 2.7440.7 121.34 5.20 56.6 3.600 2.2247.8 124.31 5.56 56.1 3.600 2.2247.8 124.31 5.56 52.9 3.800 3.669.1 133.13 5.56 52.9 3.800 3.669.1 133.13 5.59 50.4 4.000 3.2283.2 138.94 6.21 50.4 4.000 3.2283.2 138.94 6.21 50.4 4.000 3.2283.2 141.82 6.67 50.4 4.600 3.4704.5 144.69 6.47 50.4 4.600 3.7125.7 156.05 6.69 50.7 4.600 3.7125.7 156.05 6.98 50.7 4.600 3.7125.7 156.05 6.98	Ξ;	٦.	6	12.3	20.5	
5.7.1 3.400 2.645.5.7 110.36 5.45 5.6.6 3.500 2.8247.8 124.31 5.45 5.5.4 3.700 2.8247.8 124.31 5.56 5.5.4 3.700 2.8662.0 130.27 5.56 5.2.9 3.800 30669.1 133.13 5.82 5.6 4.00 32283.2 138.9 6.04 6.0 4.00 3283.2 138.9 6.01 8.7 4.10 33897.4 144.6 6.14 8.7 4.40 35511.5 150.40 667. 8.5 4.60 37128.7 150.40 667. 8.7 4.60 37128.7 156.05 669. 8.7 4.60 37128.7 156.05 669. 8.7 4.60 37128.7 156.05 669.	900	. i.	9 0	 	96	
56. 4 3.500 28247.8 124.31 556. 56. 4 3.600 28054.9 127.27 569. 56. 4 3.600 28054.9 130.21 559. 56. 3.900 31476.1 136.04 608. 56. 4 4.000 32283.2 138.94 6608. 56. 4 4.000 33283.2 141.82 657. 47. 9 4.200 33897.4 144.69 647. 56. 7 4.400 35111.5 150.40 6673. 56. 7 4.400 35111.5 150.40 6673. 56. 7 4.600 37125.7 156.05 689. 57. 7 4.600 37125.7 156.05 689. 58. 7 4.600 37125.7 156.05 689.	, ,		, ç	35.		
55.4 3.600 29054.9 127.27 569. 34.1 3.700 29862.0 130.21 582. 52.9 3.900 31476.1 136.04 608. 50.4 4.000 32283.2 138.94 621. 99.2 4.100 33090.3 141.82 6634. 96.7 4.300 34704.5 147.55 660. 45.4 4.500 35116 150.40 6673. 43.0 4.600 37125.7 156.05 688. 43.0 4.600 37125.7 156.05 688.	. 9	ייי		24.3	. 92	
3.700 29862.0 130.21 582.9 52.9 3.800 30669.1 133.13 582.9 50.4 4.000 32283.2 138.94 621. 59.2 4.000 32283.2 138.94 621. 99.2 4.100 33897.4 144.82 621. 96.7 4.200 33897.4 144.82 647. 96.7 4.300 34704.5 147.55 660. 45.4 4.600 3511.6 150.40 673. 43.0 4.600 37125.7 156.05 698. 44.60 37125.7 156.05 698. 45.0 37125.7 156.05 698. 45.0 37323.8 655. 698. 45.0 37323.8 158.87 771. 46.0 37334.9 161.67 773.	ຸດ	Ψ.	4.	27.2	69	
22.9 3.800 30669.1 133.13 595. 3.90 31476.1 136.04 608. 99.2 4.100 32283.2 138.94 621. 47.9 4.100 33897.4 144.69 647. 45.4 4.300 34704.5 147.55 660. 45.4 4.600 3511.5 150.40 6673. 45.0 37125.7 156.05 698. 47.7 4.600 37125.7 156.05 698. 48.7 37323.8 158.87 771. 48.7 3733.9 161.57 773.	24.	۲.	52.	30.2	82.	
11.6 3.900 3.283.2 138.94 620. 99.2 4 4.000 33283.2 138.94 621. 47.9 4.100 33090.3 141.82 634. 47.9 4.300 334704.5 147.55 660. 45.4 4.400 35511.5 150.40 673. 94.2 4.600 37125.7 156.05 698. 91.7 4.700 3723.8 698.	22.	œ, c	6	33.1	ທີ່ ເ	
99.2 4.100 33990.3 141.82 634. 47.9 4.200 33997.4 144.69 647. 96.7 4.300 34704.5 147.55 660. 45.4 4.400 35511.5 150.40 673. 94.2 4.500 36118.6 153.23 685. 43.0 4.600 37125.7 156.05 658. 91.7 4.700 3733.8 158.87 7711.		٠, د	٠ د د	000	9 5	
47.9 4.200 33897.4 144.69 647. 96.7 4.300 34704.5 147.55 660. 45.4 4.400 35511.5 150.40 667. 43.0 4.600 37125.7 156.05 698. 91.7 4.700 3732.8 158.87 7711.	2 g	ے :	200	2.4	4.4	
96.7 4.300 34704.5 147.55 660. 45.4 4.400 35511.5 150.40 673. 43.0 4.600 37125.7 156.05 688. 91.7 4.700 37323.8 158.87 7711. 8 8 8 8 8 7 771.	7.	. 2	7.	44.6	47.	
45.4 4.400 35511.5 150.40 673. 44.2 4.500 35118.6 153.23 698. 91.7 4.700 37125.7 156.05 698. 91.7 4.700 3732.8 158.87 7711. A ROD 3773.9 161.67 7731.	96	۳,	4.	47.5	60.	
94.2 4.500 36318.6 153.23 685. 43.0 4.600 37125.7 156.05 698. 91.7 4.700 37932.8 158.87 7111. 711.	45.	4.	Ξ.	50.4	73.	
43.0 4.600 3/125./ 128.03 939. 91.7 4.700 37932.8 158.87 711. 860 3 38739 9 161.67 723.	94.	ďί	<u>.</u>	53.2		
A 800 38739 9 161.67 723.	£ 6	٦٠		000		
		•		×	_	

Page 2

0 0 0 0 0

ບ

0 0 0 0 0

```
Using relations defined in Section IV-B-2-c, compute single fin efficiency and overall efficiency.
                                                                                                                                                                                                                                                                                                                                                                                   Using relations defined in Section IV-B-3, compute overall heat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         U-AIR",/,
(BTU/hr sqft R)",/,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT(//,"**HEAT EXCHANGER MODEL - OVERALL COEFFICIENT**",//,
+"Enter the following parameters in the units",/,
-"indicated:",/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (FLAG .EQ. 2) THEN
UAIR = 1.0/
((1.0 / ETAO*HAIR(L)*(ASAIR/144.0)))+
(REALO*(ETAO*(ASAIR/144.0)))+
(L.0 / (HWIR*(ASWIR/144.0)))+
(LOG(ODTUBE/IDTUBE)/(2.0*PI*(LTUBE/12.0)*KTUBE)))
ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     UAIR = 1.0/
((1.0/(ETAO*HAIR(L)*(ASAIR/144.0)))+
(RFAIR/(ETAO*(ASAIR/144.0)))+
(1.0/(HWTR*(ASWTR/144.0))+(RFWTR/(ASWTR/144.0))+
((TTUBE/12.0)/(KTUBE*(ATUBE/144.0)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    " Convection coefficient - air side"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            hxUwater.f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        +T25,"HEAT EXCHANGER OVERALL COEFFICIENT",/,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    +T25,"HEAT EXCHANGER OVERALL COEFFICIENT",/,
+T25,"Heat exchanger number:",///,
+T8,"H-WTR = ",F6.1," BTU/hr sqft R",/,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = ",F6.1," BTU/hr sqft R",/,
= ",F5.1," BTU/hr ft R",/,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = ",F5.3," inches",/,
= ",F5.3," inches",/,
= ",F6.4," inches",/,
= ",F7.1," square inches",/,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             WRITE(55,8) HAIR(L), ETAF, ETAO, UAIR
                                                                                                                                                                    P = ((2.0*WFIN)+(2.0*TFIN))/12.0

AX = (WFIN*TFIN)/144.0

M = SQRT (HARIK(L)*P) (KFIN*AX))

LC = (LFIN+(TFIN)/2.0)/12.0

ETAF = (TANH (M*LC))/(M*LC)

ETAG = 1.0-ASFASAIR*(1.0-ETAF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       +T5, "Heat exchanger number:",///,
+T8, "H-WTR = ", F6.1," BTU/hr s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Print results to output file.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Continue DO loop to completion.
                                                                                                                                                                                                                                                                                                                                                                                                                     transfer coefficient.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF (FLAG . EQ. 1) THEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5 FORMAT(" #", 12," Con
+" (BTU/hr sqft R):")
6 FORMAT(///,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      +T5," H-A1A
+T5,"(BTU/hr sqft R)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ASF/ASAIR = KTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TRAIR = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TTUBE = TT
         Jun. 6 1996 16:04:33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FORMAT (////
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            +18, YEIN
+18, TEIN
+18, MEIN
+18, TEIN
+18, ASAIR
+18, ASWIR
+18, ASWIR
+18, TUUBE
+18, TUUBE
+18, ATUBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          +T8, "LFIN
+T8, "WFIN
+T8, "TFIN
+T8, "ASAIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22
                                                                                                                                                                                                                                                                                                                                                         0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   000
                                                                                     0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0 0 0
         Page 1
                                                                                                               Jim Hurley
Naval Postgraduate School
Spring 1996
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Input water and air side convection coefficients and heat exchanger dimensional characteristics. Classify computations as either for a unit heater or a duct heater.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Begin DO loop to compute parameters for each air side convection
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE(*,4)
WRITE(*,*)"Convection coefficient - water side (BTU/hr sqft R):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ *, HWTR
WRITE(*,*)*Quantity of convection coefficients - air side that"
WRITE(*,*)*will be entered."
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            *)"Water side surface area of one tube (sq. in.):"
                                                                                                                                                                                                                                                                                          REAL HAIR (20), HWTR, KFIN, LFIN, WFIN, TFIN, ASAIR, ASWTR, ASFASAIR, +KTUBE, TUBE, ATUBE, LTUBE, ODTUBE, IDTUBE, P. AX, M, LC, ETAF, ETAO, +UAIR, REAIR, RFWTR, P. INTEGER FLAO, N, J. L.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WRITE(* *)"Enter '1' if unit heater or '2' if duct heater:"
READ *, FLAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  WRITE (55, 6) HWTR, KFIN, LFIN, WFIN, TFIN, ASAIR, ASWIR, ASFASAIR, KTUBE, TTUBE, ATUBE, RFAIR, RFWTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            READ.*,ODTUBE
WRITE(*,*) "Tube inner diameter (inches):"
READ.*,DTUBE
WRITE(55,7) "WHER,KFIN,LFIN,WFIN,TFIN,ASAIR,ASWIR,ASFASAIR,KTUBE,LTUBE,ODTUBE,IDTUBE,RFAIR,RFWIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    R):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      "Conduction coefficient - tube (BTU/hr ft R):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              READ *,ASWTR
WRITE(*,*)*Fin surface area/total air side surface area:"
READ *,ASFASAIR.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        *)"Conduction coefficient - fin (BTU/hr ft R);"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF(FLAG .EQ. 2)THEN
WRITE(*,*)"Conduction coefficient - tube (BTU/hr ft
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     "Total water side surface area (sq. in.):"
... hxUwater.f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         *) "Total air side surface area (sg.
                                                                                                                                                                                                                                 PROGRAM HEAT EXCHANGER OA COEFFICIENT WATER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         *) "Tube outer diameter (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                *)"Length of one tube (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                            DATA RFAIR, RFWTR, PI/0.002, 0.0005, 3.14159/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      READ *,KTUBE
wmTTE(*,*)"Tube thickness (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ *, WFIN
WRITE(*,*)"Fin thickness (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              *, KFIN
E(*,*)*Fin length (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       *) "Fin width (inches):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              OPEN(55, FILE = 'RESULTS.HXU')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (FLAG . EQ. 1) THEN WRITE(*,*) "Conduct
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          coefficient input.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  21 J = 1, N, 1
WRITE(*,5)J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 22 L = 1, N, 1
      Jun. 6 1996 16:04:33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              *, HAIR(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ *,KTUBE
WRITE(*,*)"Len
READ *,LTUBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        *, ASAIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               READ *, TFIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  READ *, N
DO 21 J =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WRITE (*,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE (*
```

21

σσσσ

υ

HEAT EXCHANGER OVERALL COEPFICIENT	2-80-1)		U-AIR (BTU/hr sq	4 N O O O
HEAT EXCHANGER OVERALL	5 (2-73-1 and	r sqft R ft R re inches e inches ft R inches ft R/BTU	ETA OVERALL	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0
HEAT EX	number: B-2	4053.0 BTU/hr sqft R 26.0 BTU/hr ft R 0.460 inches 3.510 inches 0.018 inches 3013.0 square inches 465.0 square inches 0.85 26.0 BTU/hr ft R 0.060 inches 67.0 square inches 67.0 square inches	ETA 1 FIN	00.83
	Heat exchanger	H-WTR KFIN LIFIN WFIN TFIN ASAIR ASAIR ASF/ASAIR ATUBE TTUBE TTUBE ATUBE TTUBE T	H-AIR (BTU/hr sqft R)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

HEAT EXCHANGER OVERALL COEFFICIENT

Heat exchanger number: B-70 (2-8-0, 2-40-1, 2-40-2, 2-60-1, 2-60-2)

H-WTR = 4053.0 BTU/hr sqft R
LFIN = 2.6 0 BTU/hr ft R
LFIN = 0.460 inches
WFIN = 3.10 inches
Trin = 0.0180 inches
ASAIR = 5198.0 square inches
ASWIR = 807.0 square inches
ASWIR = 807.0 square inches
ASWIR = 0.060 inches
TTUBE = 0.060 inches
ATUBE = 90.0820 hr sqft R/BTU
RFAIR = 0.0020 hr sqft R/BTU

H-AIR ETA 1 FIN ETA OVERALL U-AIR (BTU/hr sqft R)

9.0 0.82 0.84 6.7

9.6 0.81 0.84 7.0

9.8 0.80 0.83 7.1

10.4 0.79 0.83 7.4

10.6 0.79 0.83 7.4

L COEFFICIENT			U-AIR (BTU/hr sqft R)	
EXCHANGER OVERALL	01-24-1	r sqft R ft R re inches e inches ft R ft R/BTU	ETA OVERALL	
HEAT EX	exchanger number: 01-	= 1330.0 BTU/hr sqft R = 118.0 BTU/hr ft R = 0.450 inches = 1.880 inches = 17700.0 square inches = 17700.0 square inches = 0.91 = 21.0 BTU/hr ft R = 34.0 inches = 1.125 inches = 1.125 inches = 1.135 inches = 0.0020 hr sqft R/BTU	ETA 1 FIN R)	000000 000000 000000000000000000000000
	Heat exchange	H-WTR KFIN LFIN WEIN TFIN ASAIR ASWIR ASWIR ASWIR ROTUBE ODTUBE IDTUBE IDTUBE REAIR	H-AIR (BTU/hr sqft F	C C R O R O

Page	·	
RESULTS, HXU01251 HANGER OVERALL COEFFICIENT	T. A. T. U. T. T. U. T.	(BTU/hr sqft R) 6.4 6.8 6.9 7.4 7.8 8.0
RESULTS: HXU01251	U/hr sqft R /hr ft R hes hes ches quare inches uare inches sqft R/BrU sqft R/BrU	0.90 0.90 0.88 0.88 0.87
	# 4165.0 BT # 118.0 BTU # 1.2438 inc # 1.2439 inc # 335.0 sq # 335.0 sq # 24.0 inc # 24.0 inc # 24.0 inc # 24.0 inc # 255 inc # 0.0020 br	ETA 1 FIN 0.09 0.89 0.88 0.88 0.87 0.87
	n Di	(BTU/hr sqft h-All sqf
Š		

XCHANGER OVERALL COEFFICIENT			U-AIR (BTU/hr sqft R)	। जिस्काळ्ल
HEAT EXCHANGER OVERALL	01-50-0	r sqft R ft R s inches e inches ft R ft R ft R/BTU	ETA OVERALL (0.91 0.91 0.90 0.90 0.89 0.89
HEAT EX	number:	= 4165.0 BTU/hr sq = 118.0 BTU/hr ft = 0.438 inches = 1.299 inches = 0.0065 inches = 251.0 square in = 251.0 square in = 221.0 BTU/hr ft = 18.0 inches = 0.555 inches = 0.655 inches	ETA 1 FIN R)	00.00 00
HEAT EX	Heat exchanger	H-WTR KFIN LFIN WEIN TFIN ASAIR ASWTR ASF/ASAIR KTUBE LTUBE ODTUBE IDTUBE RFAIR	H-AIR (BTU/hr sqft	i

HEAT EXCHANGER OVERALL COEFFICIENT

Heat exchanger number: 2-25-1

4165.0 BTU/hr sqft R 118.0 BTU/hr ft R	0.438 inches		0.0100 inches	2868.0 square inches		0.92	221.0 BTU/hr ft R		0.625 inches	0.555 inches	0.0020 hr sgft R/BTU	0.0005 hr sqft R/BTU
# #	II	11	II	Ħ	II	II	Ħ	II	II	Ħ	lŧ	li
H-WTR KFIN	LFIN	WFIN	TFIN	ASAIR	ASWIR	ASF/ASAIR	KTUBE	LTUBE	ODTUBE	IDTUBE	RFAIR	REWTR

U-AIR (BTU/hr sqft R)	8.3 9.0 9.7 10.2 11.1
ETA OVERALL	0.92 0.92 0.991 0.90 0.90
ETA 1 FIN	0.92 0.90 0.90 0.89
H-AIR (BTU/hr sqft R)	10.1 12.1 12.9 13.8 14.5

HEAT EXCHANGE OVERALL CORFICIENT HEAT EXCHANGE OVERALL CORFICIENT HEAT EXCHANGE OVERALL CORFICIENT HEAT EXCHANGE NEWLY FOR R HEY 1150 VERVIN FOR R LETH 1150 VERVIN FOR R
--

υ

in.):" WRITE(*,*)"Enter '1' if unit heater or '2' if duct heater:" ' (FLAG .EQ. 1)THEN WRITE(*,*)"Conduction coefficient - tube (BTU/hr ft R):" .EQ. 2)THEN (STU/hr ft R):" "Conduction coefficient - tube (BTU/hr ft R):" 3(*,*) "Water side surface area of one tube (sq. *,ATUBE WRITE (55, 6) KFIN, LFIN, WFIN, TFIN, ASAIR, ASWTR, ASFASAIR, KTUBE, TTUBE, ATUBE, RFAIR, RFWTR *,irubs 3(*,*)"Tube outer diameter (inchès):" WRITE(*,*)"Tube inner diameter (inches):" READ *,IDTUBE ,*) "Length of one tube (inches):" *) "Tube thickness (inches):" WRITE(*,*)"Tu READ *,TTUBE READ *, KTUBE *, KTUBE READ *,I WRITE (*

Begin DO loop to compute parameters for each air side convection READ *, IDTUBE WRITE(55,7)KFIN, LFIN, WFIN, TFIN, ASAIR, ASWTR, ASFASAIR, KTUBE, LTUBE, ODTUBE, IDTUBE, RFAIR, RFWTR coefficient input. Using relations defined in Section IV-B-2-c, compute single fin efficiency and overall efficiency.

DO 22 L = 1, N, 1

0000 0000

Using relations defined in Section IV-B-3, compute overall heat U-AIR",/, (BTU/hr sqft R)",/, FORMAT(//, "**HEAT EXCHANGER MODEL - OVERALL COEFFICIENT**",//, +"Enter the following parameters in the units",/, +"indicated:",/) IF (FLAG .EQ. 2)THEN

UAIR = 1.0/
(((1.0/(ETAO*HAIR(L)*(ASAIR/144.0)))+
(RFAIR/(ETAO*(ASAIR/144.0)))+
(RFWIR/(ASWIR/144.0))+
(LOG(ODTUBE/IDTUBE)/(2.0*FI*(LTUBE/12.0)*KTUBE))) FORMAR(" #",12," Convection coefficient - air side", +" (BPU/hr sqft R):") FORMAR(//// +T25,"HEAT EXCHANGER OVERALL COEFFICIENT",/, FORMAT(///, +T25,"HEAT EXCHANGER OVERALL COEFFICIENT",/, +T25,"======================",///, +T5,"Heat exchanger number:",////, +T8" H-STM = "ERY LARGE",/, +T8,"KFIN = ",F5.1," BTU/hr ft R",/, +125, "Heat exchanger number:"///,
+T8, "H-STM = 'VEY LARGE',/,
+T8, "KFIN = "F5.1, BTU/hr ft R",/,
+T8, "KFIN = "F5.3, inches",/,
+T8, "WFIN = "F6.4, inches",/,
+T8, "ASAIR = "F6.4, inches",/,
+T8, "ASAIR = "F6.1, square inches",/,
+T8, "ASIR = "F6.1, square inches",/,
+T8, "ASIR = "F6.1, square inches",/,
+T8, "ATUBE = "F5.1, square inches",/,
+T8, "ATUBE = "F5.1, square inches",/,
+T8, "ATUBE = "F5.1, square inches",/,
+T8, "RTUBE = "F6.1, ETA OVERALL = VERY LARGE",/, = ",F5.1," BTU/hr ft R",/, = ",F5.3," inches",/, = ",F5.3," inches",/, = ",F6.4," inches",/, = ",F6.1," square inches",/, = ",F6.1," square inches",/, UAIR = 1.0/ (((1.0/(ETAO*HAIR(L)*(ASAIR/144.0)))+ (RFAIR/(ETAO*(ASAIR/144.0)))+ (RFWIR/(ASWIR/144.0))+ ((TYUBE/12.0)/(KTUBE*(ATUBE/144.0)))) *(ASAIR/144.0)) WRITE(55,8) HAIR(L), ETAF, ETAO, UAIR P = ((2.0*WFIN)+(2.0*TFIN))/12.0 AX = (WFIN*TFIN)/144.0 M = SQRT (HARK(L)*P)/(KFIN*AX)) LC = (LFIN+(TFIN)2.0)/12.0 ETAF = (TANH (M*LC))/(M*LC) ETAO = 1.0-ASFASAIR*(1.0-ETAF) Print results to output file. Continue DO loop to completion. transfer coefficient IF (FLAG . EQ. 1) THEN +T5, "(BTU/hr sqft R) +T8, "ASAIR = +T8, "ASWTR = +T8, "ASF/ASAIR = +T8, "LFIN +T8, "WFIN CONTINUE ENDIF Ŋ 9 22 7 0 0 0 00 0 0000

*)"Fin surface area/total air side surface area:"

READ *, ASFASAIR

υ

WRITE(*,*)"".

WRITE(*, READ *, READ *

, ASAIR

"Total water side surface area (sq. in.):"

#18, "KTUBE = ", FS. 1." BTU/DR ft R. // #18, "KTUBE = ", FS. 1." BTU/DR ft R. // #18, "FUTUBE = ", FS. 1." BTU/DR
--

HEAT EXCHANGER OVERALL COEFFICIENT

Heat exchanger number: B-25 (2-73-1 and 2-80-1)

= VERY LARGE = 26.0 BTU/hr ft R = 0.460 inches = 3.510 inches = 0.0180 inches = 0.0180 inches = 465.0 square inches = 26.0 BTU/hr ft R = 0.060 inches inches = 67.0 square inches = 67.0 square inches = 0.0020 hr sqft R/BTU = 0.0020 hr sqft R/BTU H-STM
LFIN
LFIN
WFIN
TFIN
ASNTR
ASWTR
TYUBE
TTUBE
RFURR

(BTU/hr sqft R) 5.6 6.2 6.7 ETA 1 FIN ETA OVERALL 0.89 0.87 0.86 0.85 0.87 0.83 0.83 0.83 H-AIR L. (BTU/hr sqft R) 6.0 7.0 7.9 8.3 8.7

May,24 1996 16:20:11 RESULTS.HXUB70STEAM Page 1	H-STM = VERY LARGE KFIN = 26.0 BTU/hr ft R KFIN = 0.466 inches WFIN = 3.510 inches ASAIR = 5198 C square inches ASWTR = 80.0 0 BTU/hr ft R TTUBE = 0.060 inches ASWTR = 80.0 square inches ASWTR = 80.0 square inches ASWTR = 26.0 BTU/hr ft R TTUBE = 0.060 inches ASWTR = 26.0 BTU/hr ft R TTUBE = 0.060 inches ATUBE = 0.061 inches ATUBE = 0.060 inches ATUBE = 0.0050 hr sqft R/BTU	H-AIR (BTU/hr sqft R) 9.0 0.82 0.84 6.7 9.8 0.80 0.83 7.2 10.4 0.79 0.82 7.6 10.6 0.79 0.82 7.6
May,24 1996	Heat exch H-STM KFIN LFIN WFIN TFIN ASAIR ASWIR ASWIR ASF/AK ASF/AK ASF/AK ASF/AK ASF/AK ASF/AK ASF/AK ASF/AK	H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-

10.7 0.89 0.89 7.7 10.7 0.87 0.88 7.7 11.2 0.87 0.87 8.4
--

May 25 1996 09:49:30 RESULTS!HXU2251STEAM. Page 1. HEAT EXCHANGER OVERALL COEFFICIENT Heat exchanger number: 2-25-1			
(U2251STEAM		U-AIR (BTU/hr sqft R)	្នុំ ស់ឃុខស់ មាល់ រុះ រុះ
RESULTS.HXU HEAT EXCHANGER OVERALL T: 2-25-1	ff R s ss are inches e inches ff R s if R/BTU	ETA OVERALL	
9:30 // RI HEAT ES ====== :r number: 2-2	= VERY LARGE = 118.0 BTU/hr ft = 0.438 inches = 1.299 inches = 0.0100 inches = 230.0 square in = 230.0 square in = 230.0 BTU/hr ft = 16.5 inches = 0.555 inches = 0.555 inches = 0.625 inches = 0.625 inches = 0.625 inches = 0.625 inches	ETA 1 FIN R)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W25 1996 09;49	H-STM KFIN LFIN WPIN TFIN ASAIR ASWTR ASF/ASAIR KTUBE LIUBE ODTUBE IDTUBE RFAIR	AIR sqft	
Mag			

```
FORMAT(/,T2,F6.0,T10,F5.2,T16,F6.1,T24,F7.1,T33,F4.2,T39,F4.2,+7.1,+745,F4.2,T52,F6.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          +T1,"(lbm/hr) (gpm)
+T1,"-----
                                                                                                                                                                                                                                                                                                                                                                                    GO TO 22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          +"indicated:",/)
                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                     ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      υ
                                                                                                                                                                                                                                                                                                                                                                                                                                                         00000
                                                                                                                                                                                                                                                                                                                 υυυυ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0 0 0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Compute water heat capacity rate, CWTR, and compare with air heat capacity rate, CAIR. If CAIR is less than CWTR, proceed with CMIN equal to CAIR.
              Jim Hurley
Naval Postgraduate School
Spring 1996
                                                                                                                                                                                                                           Input water and air inlet temperatures, overall coefficient, air flow rate, air side surface area, and heat transfer rate.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Begin DO loop to compute Effectiveness-NTU parameters at water mass flow rates iterated up to 4876~\mathrm{lbm/hr} (10 gpm).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                After computations of heat capacity ratio, CR, effectiveness, EFF NTU, T2, and T4, proceed to line 22.
                                                                                                                                                                                                                                                                                                                                                                                                                   WRITE(*,*)*Overall heat exchanger coefficient (BTU/hr sqft R):"
                                                                                                                   REAL T3,T1,VDOTAIR,UAIR,ASAIR,QDOT,MDOTAIR,DAIR,T,PATM,R,
+CAIR,CPAIR,MDOTWTRI,MDOTWTR,CWTR,QDOTMAX,CMIN,CMAX,CR,
+EFF,NTUI,EFFI,NTU,ASAIRI,VDOTWTR,T2,T4,QDOTFINAL
                                                                                                                                                                                                                                                                                                                                                *)"Air stream entering temperature (degrees F):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CAIR = MDOTAIR*CPAIR
WRITE(55,5)T3,T1,VDOTAIR,UAIR,ASAIR,QDOT,MDOTAIR,CAIR
                                                                                                                                                                                                                                                                                            WRITE(*, 4) "Water entering temperature (degrees F):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                     WRITE(*, *) "Total air side surface area (sq. in.):"
                                                                                                                                                                                                                                                                                                                                                                                *) "Air stream volumetric flow rate (CFM):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ) "Heat transfer rate required (BTU/hr):"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Compute air mass flow rate and heat capacity rate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ODOTWAX = CMIN*(T3-T1)
ER = CMIN/CMAX
EFF = QDOT/CMAX
DO 20 NTUI = 0.0, 5.5, 0.01
EFFI = 1.0 - ERF(1.0/ER)*(NTUI**0.22)*
(EXF C-R*(NTUI**0.78))
IF (ABS (EFFI-EFF) .LT. 0.01)THEN
                                                                                     PROGRAM HEAT EXCHANGER MODEL NTU ANALYSIS
                                                                                                                                                                                        DATA CPAIR, CPWTR, TSTD/0.24, 1.0025, 70.0/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DO 23 MDOTWTR - MDOTWTRI, 4876.0, 10.0
IF (MDOTWTR .GT. 4866.0) THEN
WRITE(55,8)
GO TO 99
ENDIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        MDOTAIR = DAIR(TSTD)*VDOTAIR*60.0
CAIR = MDOTAIR*CPAIR
                                                                                                                                                                                                                                                                             OPEN(55, FILE = 'RESULTS.HXNTU')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             MDOTWTRI = QDOT/(CPWTR*(T3-T1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NTU = NTUI
T2 = T1 + (QDOT/CAIR)
T4 = T3 - (QDOT/CWTR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CWTR = MDOTWTR*CPWTR
IF(CAIR .LT. CWTR)THEN
CMIN = CAIR
CMAX = CWTR
FLAG = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 22
ENDIF
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                     READ *, VDOTAIR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      READ *, ASAIR
WRITE(*, *) "H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           READ *, QDOT
                                                                                                                                                                                                                                                                                                                              READ *, T3 WRITE(*, *)
                                                                                                                                                                                                                                                                                                                                                                   READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0000
00000
                                                                                                                                                                                                          0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ບບບ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0000
```

*hxNTUOPT.f Jun 7 1996,14:20:08

Rage 1

hxNIIIUOPT.f.:

Jun. 7 1996 14:20:08

Page 2

After computations of heat capacity ratio, CR, effectiveness, EFF, NTU, T2, and T4, proceed to line 22. If CWTR is less than CAIR, proceed with CMIN equal to CWTR CENTRAL CANIN*(T3-T1)
CR = CMIN(CMAX
EFF = QDOT/QDOTMAX
DO 21 NTU1 = 0.0, 5.5, 0.01
EFFT = 1.0 - EXP((1.0/CR)*(NTU1**0.22)*
IF(ABS(EFF1-EFF) .I.T.0)
IF(ABS(EFF1-EFF) .I.T.0)
TO = T1 + (QDOT/CATR)
T4 = T3 - (QDOT/CWTR) IF (CWTR .LT. CAIR) THEN
CMIN = CWTR
CMAX = CAIR
FLAG = 2 o o o

Compute heat exchanger air side surface area and compare with actual air side surface area. If computed value is less than actual value, print results to output file.

IF (NTU .LT. 1.0E-20)NTU=5.0

ASAIRI = ((NTU*CNIN)/UAIR)*144.0

VDOTWIR = (NDOTWIR*7.481)/(60.8*60.0)

QDOTFINAL = EFF*CMIN*7.481)/(60.8*60.0)

WRITE(55,6)MDOTWIR, VDOTWIR, CMIN, CMAX, CR, EFF, NTU, ASAIRI

IF (ASAIRI .LT. ASAIR)THEN

WRITE(55,7)MDOTWIR, VDOTWIR, CMIN, CMAX, CR, EFF, NTU, ASAIRI,

T2, T4, QDOTFINAL

IF (FASIR) = CAIR/CFWIR + 1.0

GO TO 19 IF(FLAG .EQ. 1)GO TO 99 If computed air side surface area is greater than actual, continue DO loop until solution is found or end program at water mass flow rate of 4,876 lbm/hr (10 gpm).

FORMAT(//,"***HEAT EXCHANGER MODEL - NTU ANALYSIS***",//,
+ Enter the following parameters in the units",/,

Hx Surface", /, Area",/, (sq. in.)",/,

NTO

(BTU/hr R)

Jun 7 1996 13:50:41 RESULTS.HXNTUOP01241	602. 1.23 603.6 3970.4 0.15 0.67 1.17 21187.	612. 1.26 613.7 3970.4 0.15 0.66 1.14 20987.	622. 1.28 623.7 3970.4 0.16 0.65 1.10 20581.	632. 1.30 633.7 3970.4 0.16 0.64 1.07 20342.	642. 1.32 643.7 3970.4 0.16 0.63 1.05 20277.	652. 1.34 653.7 3970.4 0.16 0.62 1.02 20005.	662. 1.36 663.8 3970.4 0.17 0.61 0.99 19714.	672. 1.38 673.8 3970.4 0.17 0.60 0.97 19608.	682. 1.40 683.8 3970.4 0.17 0.59 0.94 19284.	692. 1.42 693.9 3970.4 0.17 0.58 0.92 19150.	702. 1.44 703.9 3970.4 0.18 0.57 0.90 19005.	712. 1.46 713.9 3970.4 0.18 0.56 0.88 18847.	722. 1.48 723.9 3970.4 0.18 0.56 0.86 18677.	732. 1.50 734.0 3970.4 0.18 0.55 0.84 18496.	742. 1.52 744.0 3970.4 0.19 0.54 0.83 18525.	752. 1.54 754.0 3970.4 0.19 0.53 0.81 18322.	762. 1.56 764.0 3970.4 0.19 0.53 0.79 18107.	772. 1.58 774.1 3970.4 0.19 0.52 0.78 18113.	782. 1.60 784.1 3970.4 0.20 0.51 0.76 17877.	792. 1.62 794.1 3970.4 0.20 0.51 0.75 17867.	. 1.64 804.1 3970.4	812. 1.67 814.2 3970.4 0.21 0.50 0.72 17586.	SOLUTION SOLUTION SOLUTION SOLUTION	Mass Volume C C CR Eff NTU Hx Surface	Flow min max (gpm) (BTU/hr R)	812. 1.67 814.2 3970.4 0.21 0.50 0.72 17586.	T2 = 75.0 degrees F T4 = 126.6 degrees F	QDOTFINAL = 51600.0 BTU/hr					3901. 8:12 39/0:4 39/1:4 1:00 0:10 0:11 13102.	SOLUTION SOLUTION SOLUTION SOLUTION	CR Eff NTU	1
Adm 7.1996 13:50,41 F RESULTS.HXNTUOP01241 Page 1				HEAT EXCHANGER MODEL - NTU OPTIMIZATION ANALYSIS			Heat exchanger number: 01-24-1		T3 = 190.0 degrees F T1 = 62.0 degrees F		ASAIR = 17700.0 square_inches QDOT = 51600.0 BTU/hr				Mass Volume C C CR Eff NTU Hx Surface Flow Flow min max	(BTU/hr R)	402. 0.82 403.1 3970.4 0.10 1.00 5.00 60469.	. 0.85 413.2 3970.4 0.10 0.98 3.91	0.95 3.26	433.2 3970.4 0.11 0.93 2.86	2.58	452. 0.93 453.2 3970.4 0.11 0.89 2.37 32226.	462. 0.95 463.3 3970.4 0.12 0.87 2.19 30437.	472. 0.97 473.3 3970.4 0.12 0.85 2.05 29108.	482. 0.99 483.3 3970.4 0.12 0.83 1.92 27839.	. 1.01 493.4 3970.4 0.12 0.82	1.03 503.4 3970.4 0.13 0.80 1.73	. 1.05 513.4 39/0.4 0.13 0.79 1.64	522. 1.07 523.4 3970.4 0.13 0.77 1.57 24653.	532. 1.09 533.5 3970.4 0.13 0.76 1.50 24005.	542. 1.11 543.5 3970.4 0.14 0.74 1.44 23478.	552. 1.13 553.5 3970.4 0.14 0.73 1.39 23081.	562. 1.15 563.5 3970.4 0.14 0.72 1.34 22654.	572. 1.17 573.6 3970.4 0.14 0.70 1.29 22196.	582. 1.19 583.6 3970.4 0.15 0.69 1.25 21884.	592. 1.21 593.6 3970.4 0.15 0.68 1.21 21548.

3961. 8.12 3970.4 3971.4 1.00 0.10 0.11 13102.

T2 = 75.0 degrees F T4 = 177.0 degrees F QDOTFINAL = 51600.0 BTU/hr

!!!!SOLUTION!!!!SOLUTION!!!!!SOLUTION!!!!SOLUTION!!!

Page 2

13:51:26. RESULTS:HXNTUOP280

Jun. 7. 1996							
Jun, 7 1996 13:51:26 RESULTS.HXNTUOP280 Page 1 Page	T3 = 190.0 degrees F T1 = 60.0 degrees F VDOTAIR = 1555.0 CFM UALR = 3.7 BTU/hr sqft R ASAIR = 5198.0 square inches QDOT = 5294.0 BTU/hr MDOTAIR = 6765.6 lbm/hr CAIR = 1623.8 BTU/hr R	Mass Volume C C CR Eff NTU Hx Surface Flow Flow min max Area (lbm/hr) (gpm) (BTU/hr R) (sq. in.)	41. 0.08 40.7 1623.8 0.03 1.00 4.81 7623. 51. 0.10 50.7 1623.8 0.03 0.80 1.61 3180.		T2 = 63.3 degrees F T4 = 85.7 degrees F QDOTFINAL = 5294.0 BTU/hx !!!!SOLUTION!!!!SOLUTION!!!!SOLUTION!!!!	1621. 3.32 1623.8 1624.8 1.00 0.03 0.02 1264.	Mass Volume C C CR Eff NTU Hx Surface Flow Flow min max (lbm/hr) (gpm) (BTU/hr R) (sq. in.) 1621. 3.32 1623.8 1624.8 1.00 0.03 0.02 1264. T2 = 63.3 degrees F T4 = 186.7 degrees F QDOTFINAL = 5294.0 BTU/hr !!!!SOLUTION!!!!SOLUTION!!!!

C C CR Eff NTU Hx Surface min max Area (STU/hr R) (sq. in.)	432.6 1.00 0.14 0.16 grees F BTU/hr	SOLUTION SOLUTION SOLUTION SOLUTION			
	10	TION			
C min (BTU/)	431.6 78.0 deg 172.1 deg	i i i solu			
Volume Flow (gpm)	0.88	UTION			
Mass Volume Flow Flow (lbm/hr) (gpm)	431. T2 T4 ODOTFI	IOSIIII			

Jun. 7.1996-13:52:02 RESULTS.HXNTUOP2801 Feges	HEAT EXCHANGER MODEL - NTU OPTIMIZATION ANALYSIS	exchanger number: 2-80-1	= 190.0 degrees F = 60.0 degrees F RIR = 400.0 CFM R = 4.2 BTU/hr sqft R R = 31.0 square inches F = 7747.0 BTU/hr RAIR = 1798.2 lbm/hr R = 431.6 BTU/hr R	olume C C CR Eff NTU Hx Surface Flow min max Area (gpm) (BTU/hr R) (sq. in.)	0.12 59.6 431.6 0.14 1.00 5.00 10216.	0.14 69.6 431.6 0.16 0.86 2.16 5156.	0.16 79.6 431.6 0.18 0.75 1.52 4150.	0.18 89.7 431.6 0.21 0.66 1.20 3689.	0.20 99.7 431.6 0.23 0.60 1.00 3418.	.22 109.7 431.6 0.25 0.54 0.86	.24 119.7 431.6 0.28 0.50).27 129.8 431.6 0.30 0.46 0.67 2981.	SOLUTION	ume C C CR Eff NTU Hx Surface ow min max Area npm) (BTU/hr R) (sq. in.)	27 129.8 431.6 0.30 0.46 0.67 2981.	= 78.0 degrees F = 130.3 degrees F . = 7747.0 BTU/hr	!!!!SOLUTION!!!!SOLUTION!!!!SOLUTION!!!!SOLUTION!!!!	0.88 431.6 432.6 1.00 0.14 0.16 2367.	
13:52:0	HEAT ====	hanger			59								Siiiii		•	= 78.0 = 130.3 = 774	SIIIIN		N!!!!S
7 1996		Heat exc	T3 T1 VDOTAIR UAIR ASAIR QDOT MDOTAIR CAIR	Mass Volume Flow Flow (lbm/hr) (gpm)	0 .65	69. 0.:	79. 0.	.0 .68	.0 .66	109. 0.	119. 0.:	129. 0.:	SOLUTIO	Mass Volume Flow Flow (lbm/hr) (gpm)	129. 0.27	OTFINAL	SOLUTIOS	431. 0.8	SOLUTIO
5				Me FJ (1bn						-		-	=======================================	Me F1 (1bm	-	712 00	===	7	=======================================

APPENDIX D. EFFECTIVENESS - NTU ANALYSIS TABULAR RESULTS

UNIT HE	ATER B-25 (UNIT HEATER B-25 (2-73-1, 2-80-1)													-		
HYDRON	2																
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER F	WATER PROPERTIES	S						
AFF	ASAIR	刮	RHO	ᆼ	MU	×	ж ж	ī	5	73							
62	3013	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	09	1.002	190							
					+												
SF	MDOTAIR	ଠା	핆	픠	~	H-WTR	UAIR	CAIR	MDOTWT	CWTR	OMAX	틸	ଞ	EPS	a	T2	T4
400	1798	1.16	2981	0.0048		4053	4.9	431	4876	4886	56085	0.24	0.09	0.21	11713	87	188
200	2247	1.45	3726	0.0045	0.7	4053	9.6	539	4876	4886	70106	0.22	0.11	0.19	13487	85	187
900	2696	1.74	4471	0.0042	6.7	4053	6.1	647	4876	4886	84128	0.20	0.13	0.18	14807	83	187
200	3146	2.03	5217	0.0038	8.3	4053	6.4	755	4876	4886	98149	0.18	0.15	0.16	15663	128	187
800	3595	2.32	5962	0.0035	8.7	4053	9.9	863	4876	4886	112170	0.16	0.18	0.15	16270	79	187
HYDRON	IC WITH VA	HYDRONIC WITH VARIATION OF T3															
띰																	
205																	
					+					\perp							
SE	MDOTAIR	ပျ	묎	핅	~:	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	NTC	CR	EPS	a	T2	4
400	1798	1.16	2981	0.0048	0.0	4053	4.9	431	4876		62556	0.24	0.09	0.21	13064	6	202
STEAM																	
Ö	COIL DIMENSIONS	NS			AIR PROPE	ERTIES			STEAM P	STEAM PROPERTIES	S						
AFF	ASAIR	핆	윒	윙	₽	ᅪ	띪	티	S	73							
62	3013	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	90	- NF	240	952						
SE	MDOTAIR	ଠା	핆	핅	H-AIR	H-STM	UAIR	CAIR	MDOTST	CSTM	OMAX	킲	띩	EPS	σı	172	
8	1798	1.16	2981	0.0048	0.9	<u>۷</u>	5.0	431	17.6		77656	0.24	0.00	0.22	16722	66	

SNT HE	ATER B-70 (UNIT HEATER B-70 (2-8-0, 2-40-1, 2-40-2, 2-60-1, 2-60-2)	7-2, 2-60-1, 2-	60-Z)													
HYDRONIC	<u></u>																
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	SE						
AFF	ASAIR	Н	RHO	පු	M	¥	R	۲	9	13							
120	5198	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	09	1.002	190							
CF.	MDOTAIR	ေ	R	H	H-AIR	H-WTR	UAIR	CAIR	TWTOODM	CWTR	OMAX	DLN	2	EPS	0	12	<u>7</u>
1505	6763	2.25	5795	0.0037	+	4053	6.7	1623	4876	4886	211020	0.15	0.33	0.13	28214	11:	18
1800	8089	2.70	6931	0.0033	T	4053	7.0	1941	4876	4886	252383	0.13	0.40	0.12	29661	75	184
2100	9437	3.15	8086	0.0029		4053	7.1	2265	4876	4886	294447	0.11	0.46	0.10	30273	73	184
2400	10786	3.60	9241	0.0026		4053	7.2	2589	4876	4886	336511	0.10	0.53	0.09	30834	72	184
2700	12134	40.4	10396	0.0024		4053	7.4	2912	4876	4886	378575	0.09	09.0	0.08	31757	71	184
3000	13482	4.49	11551	0.0022	10.6	4053	7.5	3236	4876	4886	420638	80.0	99:0	0.08	32260	70	183
HYDRON	IC WITH VA	HYDRONIC WITH VARIATION OF T3															
£±																	
202																	
CFIM	MDOTAIR	ଠା	묎	티	~	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	NTC	CR	EPS	al	12	14
1505	6763	2.25	5795	0.0037	0.6	4053	6.7	1623	4876	4886	235369	0.15	0.33	0.13	31469	79	199
STEAM																	
Ö	COIL DIMENSIONS	NS			AIR PROPE	RTIES			STEAM P	STEAM PROPERTIES	S						
AFF	ASAIR	퓜	RHO	히			H.	디	임	T3	HFG						
120	5198	0.38	0.0749	0.24	1.23E-05	0.0148	0.72	09	N.	240	952						
CFM	MDOTAIR	တ	RE	동	H-AIR	H-STM	UAIR	CAIR	MDOTST		QMAX	UTN	S	EPS	G	12	
1505	6763	2.25	5795	0.0037	Н	× 0×	6.7	1623	42.5	N.	292182	0.15	0.00	0.14	40445	85	

State Stat	DUCT HE	DUCT HEATER 01-24-1	-															
MINOTAR G																		
MANTER PROPERTIES PROPETTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPETTIES PROPERTIES PROPERTIES PROPERTIES PROPETTIES PROPERTIES PROPETTIES PROPETTIES PROPETTIES PROPETTIES PROPERTIES PROPETTIES PROPETTIE																		
MICHAEL MICH																		
MATER PROPERTIES MATERIAL M	INCOUNT	ر																
MATCH Color Colo	NO I I	2																
MODITAIR DH	COIL DIM	ENSIONS			AIR PROP	ERTIES				WATER	PROPERTI	ES						
177700 0.25 0.0749 0.24 1.20E-05 0.0146 0.72 6.2 1.002 1.90	AFF	ASAIR	日	RHO	CP	M	×	PR	11	S	T3							
MINOTAIR G RE JH HAIR HAVIR UAIR CAIR MINOTWT CAIR MINOTAIR GAIR MINOTAIR GAIR MINOTAIR GAIR MINOTAIR GAIR 405	17700	0.25	0.0749		1.23E-05	0.0148	0.72	62	1.002	190								
MODTARR G																		
1553 155 155 20004 7.0 4053 5.7 3969 4876 4876 6186 508046 0.15 0.15 24258 2.40 4059 0.0036 7.7 4053 6.7 5624 4876 4886 625376 0.17 0.84 0.14 28372 2.50 4759 0.0028 9.5 4063 7.0 6765 4876 4876 625376 0.17 0.84 0.14 28375 2.50 4759 0.0028 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.15 33076 3.27 6524 0.0027 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.16 33076 3.27 6524 0.0027 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.16 33076 3.27 6524 0.0027 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.16 33076 3.27 6524 0.0027 9.7 4053 7.4 7938 4876 4886 625376 0.19 0.62 0.16 33076 3.27 6524 0.0027 9.7 4053 5.7 3969 4876 4886 625376 0.19 0.62 0.16 33076 3.27 6.2 0.004 7.0 4053 5.7 3969 4876 4886 625376 0.19 0.18 0.18 33078 3.28	CFIN	MDOTAIR	ଠା	쀪	핅	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	ļ	OMAX	NTO	S.	EPS	Ø	12	T4
2023 2 00 3378 0 0039	3680	16538	1.63	2762	0.004	2.0	4053	5.7	3969	4876	4886	508045	0.18	0.81	0.15	74778	2	175
CASTAGE C.140 C.	4500	20223	2.00	3378	0.0036	7.7	4053	6.2	4854	4876	4886	621251	0.16	0.99	0.13	81146	79	173
2.80	2400	24268	2.40	4053	0.0033	8.5	4053	6.7	5824	4876	4886	625376	0.17	0.84	0.14	88237	77	172
32056 3.27 5524 0.0028 9.6 4053 7.4 7766 4876 4866 626376 0.19 0.63 0.16	6300	28312	2.80	4729	0.003	0.6	4053	7.0	6795	4876	4886	625376	0.18	0.72	0.15	92857	9/	171
MEDIARIN MEDIARI MED	7200	32357	3.20	5404	0.0028	9.6	4053	7.4	7766	4876	4886	625376	0.19	0.63	0.16	98424	75	170
MEDIATION OF T3	7360	33076	3.27	5524	0.00275	9.7	4053	7.4	7938	4876	4886	625376	0.19	0.62	0.16	98586	74	170
MDOTAIR C																		
MDOTAIR G RE																		
MDOTAIR G	HYDRON	C WITH VA	RIATION OF T3															
MDOTAIR G	13																	
MDOTAIR G RE JH H-AIR H-WTR UAIR CAIR MDOTWT CWTR QMAX NTU CR EPS	202																	
MDOTAIR G RE																		
MDOTAIR G	i					!		!										
16536 7,63 2,762 0,004 7,0 4053 5,7 3969 4876 4886 567581 0,18 0,15	S S	MDOTAIR	တ	捌	딍	H-AIR	H-WTR	AR :	CAIR	MDOTWI	-	OMAX		ଧ	EPS	al	21	<u></u>
ASAIR DH	3680	16538	1.63	2/62	0.004	0.7	4053	5.7	3968	4876	4886	567581	0.18	0.81	0.15	83541	88	188
DIMENSIONS																		
STEAM PROPERTIES STEAM PROPE	STEAM																	
ASAIR DH RHO CP MU K PR T1 CP T3 HFG	100	DIMENSIO	NS				RTIES			STEAM P	ROPERTIE	S						
17700 0.25 0.0749 0.24 1.23E-05 0.0148 0.72 62 INF. 240 952	AFF	ASAIR	H	RHO	Г		¥	PR	F	S.	T3							
MDOTAIR G RE	405	17700	0.25	0.0749		1.23E-05	0.0148	0.72	62	N.	240	952						
MDOTAIR G RE JH H-AIR H-STM UAIR CAIR MDOTST CSTM QMAX NTU CR EPS 163 2762 0.0048 7.0 >>0 6.1 3969 127.7 NF 706500 0.19 0.00 0.17																		
16538 1.63 2762 0.0048 7.0 >>0 6.1 3969 127.7 INF 706500 0.19 0.00 0.17	CFM	MDOTAIR	ଠା	묎	핅	H-AIR	H-STM	UAIR	CAIR	MDOTST	CSTM	QMAX	UTN	S	EPS	a	T2	
	3680	16538	1.63	2762	0.0048	7.0	× 0×	6.1	3969	127.7	¥	706500	0.19	0.00	0.17	121615	83	

DUCT HE	DUCT HEATER 01-25-1	7															
HYDRONIC	ᄓ																
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	35						
AFF	ASAIR	H	RHO	S S	₽	¥	R.	11	<u>გ</u>	ដ							
155	7959	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	-30	1.002	190							
DEM	MDOTAIR	G	RE	当	H-AIR	H-WTR	UAIR	CAIR	TWTOQM	CWTR	OMAX	UTN	SS	EPS	o	72	4
1400	6292	1.62	1691	0.0047	8.2	4053	6.4	1510	4876	4886	332196	0.23	0.31	0.20	66393	4	176
1700	7640	1.97	2054	0.0042	8.9	4053	6.8	1834	4876	4886	403381	0.20	0.38	0.18	71200	o	175
2000	8868	2.32	2416	0.0037	9.5	4053	6.9	2157	4876	4886	474566	0.18	0.44	0.15	73016	4	175
2300	10336	2.67	2779	0.0035	10.0	4053	7.4	2481	4876	4886	545751	0.16	0.51	0.14	78375	2	174
2600	11684	3.02	3141	0.0033	10.7	4053	7.8	2804	4876	4886	616936	0.15	0.57	0.13	82704	Ψ.	173
2800	12583	3.25	3383	0.0032	11.2	4053	8.0	3020	4876	4886	664393	0.15	0.62	0.13	84919	-5	173
MOGUAN	TAN TIN OF	NOT PIER WITH WE TE															
티																	
205												,					
CFM	MDOTAIR	ଠା	RE	핅	~	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX) NTO	띩	EPS	ଠା	12	71
1400	6292	1.62	1691	0.0047	8.2	4053	6.4	1510	4876	4886	354846	0.23	0.31	0.20	70920	12	190
STEAM																	
COIL	COIL DIMENSIONS	NS			AIR PROPE	RTIES			STEAM P	STEAM PROPERTIES	တ						
AFF	ASAIR	田	SE SE	ଧ	-	⊼12	# E	디	원 <u></u>	213	FEG						
155	7959	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	-30	Ž.	240	726						
CFM	MDOTAIR	ଠା	낊	핅	H-AIR	H-STM	UAIR	CAIR	MDOTST	CSTM	QMAX	킭	띪	EPS	σı	12	
1400	6292	1.62	1691	0.0047	8.2	^^0	9.9	1510	91.9	INF.	407696	0.24	0.00	0.21	87498	28	

HYDRONIC COIL DIMENSIONS																	
HYDRONIC COIL DIMENSI			_	_	_							_	_	_			
HYDRONIC COIL DIMENSI																,	
HYDRONIC COIL DIMENSI AFF AS																	
COIL DIMENSI																	
COIL DIMENSI																	
\vdash	SNO			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	S						
ł	ASAIR	핆	RHO		₽	¥I	PR	F	S S	T3					-		
		0.154	0.0749		1.23E-05	0.0148	0.72	-30	1.002	190							
T	MDOTAIR	g	묎	Ŧ	H-AIR	H-WTR	UAIR	CAIR	MDOTWT	CWTR	QMAX	UTN	S	EPS	a	12	T4
750 33	3371	1.16	1211	0.0056	7.0	4053	5.6	808	4876	4886	177962	0.29	0.17	0.24	43215	ន	181
	4045	1.39	1453	0.0051	7.7	4053	6.1	971	4876	4886	213555	0.26	0.20	0.22	47509	19	180
	4719	1.63	1695	0.0047	8.2	4053	6.4	1132	4876	4886	249147	0.23	0.23	0.20	50341	14	180
	5393	1.86	1937	0.0043	9.8	4053	6.6	1294	4876	4886	284740	0.21	0.26	0.18	52374	9	179
1350 6(2909	2.09	2179	0.004	9.0	4053	8.9	1456	4876	4886	320332	0.19	0.30	0.17	54312	7	179
	6741	2.32	2421	0.0038	9.5	4053	7.1	1618	4876	4886	355925	0.18	0.33	0.16	56893	သ	178
HYDRONIC W	ITH VAR	HYDRONIC WITH VARIATION OF T3															
202																	
	MDOTAIR	တ	RE	녹	H-AIR	H-WTR	UAIR	CAIR	MDOTWT		QMAX	DTN	8	EPS	a	T2	T4
750 3:	3371	1.16	1211	0.0056	7.0	4053	5.6	808	4876	4886	190096	0.29	0.17	0.24	46162	27	196
STEAM																	
등	MENSION	SP			AIR PROPERTIES	RTIES			STEAM P	STEAM PROPERTIES	1 1						
	ASAIR	핌	띪	밁	≩	쏘	똢	<u>-</u>	밁	ឧ	HFG				<u></u>		
116	5969	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	-30	N.	240	952						
1 !	OTAIR	g	R		H-AIR	H-STM	UAIR	CAIR	TSTOOM	-	OMAX	E	g	FPS	d	1	
750 3	3371	1.16	1211	0.0056	7.0	× 0×	5.8	808	59.0	NF.	218408	0.30	0.00	0.26	56155	39	

DUCT HEATER 2-25-1	ATEK 2-25-								+								
HYDRONIC	ଦ୍ରା																
COILDIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES				WATER	WATER PROPERTIES	ES						
AFF	ASAIR	H	RHO	SP	æ	¥	PR	ī	S	드							
109	2868	0.312	0.0749	0.24	1.23E-05	0.0148	0.72	40	1.002	190							
CFM	MDOTAIR	9	Æ	HC	H-AIR	H-WTR	UAIR	CAIR	MDOTW	1	QMAX	NTU	8	EPS	a	12	
1050	4719	1.73	3654	0.0054	10.1	4053	8.3	1132	4876	4886	169873	0.15	0.23	0.13	22526	09	185
1250	5618	2.06	4351	0.005	11.1	4053	9.0	1348	4876		202230	0.13	0.28	0.12	24515	28	185
1450	6516	2.39	5047	0.0047	12.1	4053	9.7	1564	4876		234587	0.12	0.32	0.11	26473	22	185
1650	7415	2.72	5743	0.0044	12.9	4053	10.2	1780	4876	4886	266944	0.11	0.36	0.10	27905	26	184
1850	8314	3.05	6439	0.0042	13.8	4053	10.7	1995	4876	4886	299300	0.11	0.41	0.10	29316	55	184
2100	9437	3.46	7309	0.0039	14.5	4053	11.1	2265	4876	4886	339746	0.10	0.46	0.09	30485	53	184
HYDRON	C WITH VA	HYDRONIC WITH VARIATION OF T3															
1									4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
205																	
CFM	MDOTAIR	Ø	RE	핅	H-AIR	H-WTR	UAIR	CAIR	TWTOOM	CWTR	QMAX	UTN	S	EPS	al	12	T4
1050	4719	1.73	3654	0.0054	10.1	4053	8.3	1132	4876		186861	0.15	0.23	0.13	24779	62	200
STEAM																	
lloo	COIL DIMENSIONS	NS			AIR PROPERTIES	RTIES			STEAM F	STEAM PROPERTIES	<u>S</u>						
AFF .	ASAIR	H	絽	П	⊋	×Ι	띪	F	밁	T3	HFG						
109	2868	0.312	0.0749	0.24	1.23E-05	0.0148	0.72	40	Ā.	240	952						
	MDOTAIR		RE	H	H-AIR	H-STM	UAIR	CAIR	MDOTST	CSTM	QMAX	NTU	S	EPS	a	12	
1050	4719	1.73	3654	0.0054	10.1	>>0	8.5	1132	33.0	INF.	226498	0.15	0.00	0.14	31449	98	

DUCT HE	DUCT HEATER 2-16-1																
Oldon																	
I DRON	2																į
COIL DIM	COIL DIMENSIONS			AIR PROPERTIES	ERTIES			-	WATER	WATER PROPERTIES	S						
AFF	ASAIR	핌	RHO	g S	MU	×	PR	17	පි	13							
11	3979	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	45	1.002	190							
S.	MDOTAIR	တျ	뾦	되	HAR H	H-WTR	MAI	CAIR	MDOTWT	SWIR	OMAX	ZI	띩	EPS	σI	12	71
320	1573	0.82	851	0.0062	5.4	4053	4.5	377	4876	4886	54737	0.33	0.08	0.28	15152	82	187
425	1910	0.99	1034	0.0058	6.2	4053	5.1	458	4876	4886	66466	0.31	0.09	0.26	17313	83	186
200	2247	1.17	1216	0.0056	7.0	4053	5.6	539	4876	4886	78196	0.29	0.11	0.25	19158	2	186
575	2584	1.34	1398	0.0051	7.4	4053	5.9	620	4876	4886	89925	0.26	0.13	0.23	20385	78	186
920	2921	1.52	1581	0.0048	7.8	4053	6.1	701	4876	4886	101654	0.24	0.14	0.21	21277	75	186
200	3146	1.63	1702	0.0046	8.1	4053	6.3	755	4876	4886	109474	0.23	0.15	0.20	22057	74	185
HYDRON	IIC WITH VAF	HYDRONIC WITH VARIATION OF T3											T				
13																	
205																	
												1					
CFM	MDOTAIR	୬ା	RE	티	H-AIR	H-WTR	UAIR	CAIR	TWTOOM	CWTR	QMAX	NTO	CR	EPS	a	T2	4
350	1573	0.82	851	0.0062	5.4	4053	4.5	377	4876	4886	60399	0.33	0.08	0.28	16720	68	202
STEAM																	
		9															
3 !	COIL DIMENSIONS	NS.			뭐	ERTIES			STEAM P	STEAM PROPERTIES							
¥	ASAIR	티	뎄	ව ්	2	¥1	<u>۳</u> ا	<u>ا</u> ا=	ပြ	티	뙤						
*	3979	0.154	0.0749	0.24	1.23E-05	0.0148	0.72	45	Ä.	240	952						
PEM	MOOTAIR		ш	Ξ	0	MEGI	GIVI	OI V	MOOTET	ATOO	2000	F	0	Ç		C F	
350	1573	0.82	851	0.0062	5.4	0^	47	377	22.5	N N	73612	2 0 34	518	200	21428	102	
															2		

APPENDIX E. MANUFACTURER'S DATA FOR LARGER CAPACITY FANS COMPATIBLE WITH B25 UNIT HEATERS

New York Blower

7660 QUINCY STREET-WILLOWBROOK, ILLINOIS 60521

Mo	DE	LSN			SUPP	YGU			
Model no.	HP	RPM		Υ	С	FM			Max*
110.			Free air	1/10" SP	1/8" SP	1/4" SP	3/8" SP	1/2* SP	BHP
SN82-H SN82-H-3	1/20 †1/20	1550 1550/1300/1100	442 442/371/314	316 316/265/224	270 270/226/192	_	_	_	=
SN102-H SN102-H-3	1/20 †1/20	1550 1550/1300/1100	870 870/730/617	755 755/633/536	720 720/604/511	_	_	_	_
SN122-M SN122-H SN122-MH	1/12 1/4 1/4	1075 1725 1725/1140	1150 1815 1815/1200	920 1675 1675/1106	850 1650 1650/1090	 1475 1475/975			
SN142-M SN142-H SN142-MH	1/12 1/4 1/4	1050 1725 1725/1140	1350 2100 2100/1390	1160 1990 1990/1315	1100 1960 1960/1295	— 1840 1840/1216			_ _
SN162-M SN162-H SN162-MH	1/4 1/2 1/3	1140 1750 1725/1140	2000 2950 2900/1915	1800 2830 2790/1840	1750 2800 2760/1756	1450 2650 2600/1718	 2500 2440/1610		.45 .45
SN182-M SN182-H SN182-MH	1/4 1/2 1/2	1140 1725 1725/1140	2610 3920 3920/2590	2400 3750 3750/2480	2340 3700 3700/2440	1960 3490 3490/2305	 3280 3280/2165	3000 3000/1980	 .57 .57
SN202-M SN202-H	1/4 3/4	1140 1725	3570 5300	3260 5100	3200 - 5000	2810 4820	 4600	 4350	. -
SN242-L SN242-M SN242-H	1/4 1/2 *3/4	1140 1140 1140	4400 5380 6400	4150 5100 6100	4080 5030 6020	3700 4650 5600	 4200 5120	 4480	 .52 .79

NOTE Static pressure rating on multispeed fans is at the higher speed. Low speed capacities are shown for the indentical system.

^{*} Maximum BHP over cataloged range. Motors are rated on internal temperature rise rather than nameplate HP.

[†] Shaded-pole motor. Three-speed capacities shown are obtainable with 3-speed switch furnished with unit.

[★] Available in 3-phase only.

MODEL N

DIRECT-DRIVE PROPELLER FANS EXHAUST OR SUPPLY

- Eight wheel diameters—8" through 24".
- 243 to 6420 CFM— up to ½" static pressure.
- Panels—square steel construction with streamlined venturi inlet...venturi is reversed in supply-fan panels...baked-green alkyd finish.
- Wheels—aluminum blades with steel hubs.
- Motor mounts—wire-guard-type motor mount [see photo at left] is standard on all direct-drive units...guard is zinc-plated steel.
- Motors—standard motors are totally enclosed air over with prelubricated ball bearings except ¹/₁₂ and ¹/₂₀ HP motors, which are shaded-pole totally enclosed permanently lubricated sleevebearing type.

Motors 1/4 HP and larger are suitable for either horizontal or vertical service...specify "for vertical mounting" to have wheel locked to motor shaft...1/20 and 1/12 HP motors are not suitable for vertical service.

† E and G based on longest motor used for each size fan. * Shipping weights shown are maximum and include totally enclosed motors and weight of packaging.

NOTE: Exhaust units are available with either automatic or motorized shutters. Supply units require motorized supply shutter.

When ordering, specify complete model number as shown on page 3. Dimensions not to be used for construction unless certified. Tolerance: ± ½6*

APPENDIX F. COMPUTATION OF AIR SIDE CONVECTION COEFFICIENT USING MANUFACTURER'S DATA

$$\Rightarrow \sqrt{q_{ir}} = \frac{750 \, FT^2/min}{Afr} = \frac{750 \, FT^2/min}{(1 \times 1.5) \, FT^2} = 500 \, FT/min}$$

$$\hat{Q} = C_{AIR} \Delta T = \hat{m} c_{Poir} \Delta T = (P_{AFr} V C_{Poir} \Delta T)
= (0.0749^{15n/H^3}) (1.5 Ft^2) (500 Ft/mir) (0.24 \frac{87u}{15mF}) (77.2 F) (60mir/hr)
= 62449 BTu/hr$$

=>
$$\xi = \frac{Q}{Q_{max}} = \frac{Q}{C_{min}(T_S - T_1)} = \frac{Q}{C_{min}(T_S - T_1)}$$

= $\frac{62449}{809} \frac{BTU}{hr} = 0.34$

=> NTU =
$$-\ln(1-\epsilon)$$

= $-\ln(1-0.34)$
= 0.42

= 58°F

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center
2.	Dudley Knox Library
3.	Mechanical Engineering Curricular Office, Code 34
4.	Assistant Professor Ashok Gopinath
5.	Commanding Officer
6.	LT James T. Hurley