LAB 4

Exercice 1: Tower de Hanio

1) Écrire un algorithme récursif qui résout le problème des Tours de Hanoi. On suppose qu'il y a n disques à déplacer (n est un nombre naturel, n>=1).

- 1. Procedure Hanoi (n, A, B, C)
- 2. Begin
- 3. if (n >= 1) then
- 4. Hanoi(n-1, A, C, B);
- 5. Move disk from A to C;
- 6. Hanoi(n-1, B, A, C);
- 7. endif;

Explication:

n: number de disks

A : La tige de départ (source).

B: La tige intermédiaire (qui sera utilisée temporairement pour déplacer les disques).

C: La tige de destination (où tous les disques doivent être déplacés).

2) Calculez la complexité de cet algorithme

On a la relation de récurrence de ce algorithme :

$$\begin{cases}
T(0) = 0 \\
T(n) = 2 * T(n-1) + 1
\end{cases}$$

$$T(0) = 0$$

$$T(n) = 2(T(n-1)) + 1$$

$$= 2(2T(n-2)+1)+1 = 2^2 * T(n-2)+2+1 = 2^2 * T(n-2)+2^1+2^0$$

= $2^2 * (2T(n-3)+1)+2^1+2^0 = 2^3 * T(n-3)+2^2+2^1+2^0$

• • • •

$$= 2^n T(n-n) + 2^{n-1} + \dots + 2^2 + 2^1 + 2^0$$

$$=\sum_{i=0}^{n-1} 2^i = 2^n - 1$$

D'où la complexite de tower of hanio = $O(2^n)$

3) Écrivez le programme correspondant en langage C.

```
void hanoi (int n, char A, char B, char C) {
    if (n == 1) {
       printf("Deplacer le disque l de %c a %c\n", A, C);
        return;
   hanoi (n - 1, A, C, B);
   printf("Deplacer le disque %d de %c a %c\n", n, A, C);
   hanoi (n - 1, B, A, C);
```

4) Mesurer les temps d'exécution T (en secondes) pour un échantillon de données de variable n et représenter les résultats sous forme de tableau :

n	3	4	5	6	7	8	9	10	11
T(n)	0.000	0.000	0.015	0.016	0.016	0.062	0.172	0.328	0.578

12	13	14	15	16	17	18	19	20	21
1.312	2.546	3.015	3.505	4.252	5.520	9.116	14.582	29.135	52.756

22	23	24	25
89.808	189.152	338.056	838.233

5) Représenter par un graphique les variations du temps T en fonction des valeurs :

6) Comparer la complexité théorique et les mesures expérimentales.

n	3	4	5	6	7	8	9	10	11
T(n)	0.000	0.000	0.015	0.016	0.016	0.062	0.172	0.328	0.578
Ttheo	0.0001	0.0003	0.0007	0.001	0.0031	0.006	0.012	0.02	0.05

12	13	14	15	16	17	18	19	20	21
1.312	2.546	3.015	3.505	4.252	5.520	9.116	14.582	29.135	52.756
0.10	0.20	0.41	0.81	1.63	3.27	6.55	13.10	26.21	54.42

22	23	24	25
89.808	189.152	338.056	838.233
104.85	209.71	419.43	838.233

$$T(n) = f(n) * \Delta t$$

$$\Delta t = \frac{T(n)}{2^n - 1} = \frac{838.233}{2^{25} - 1} = 2.5 * 10^{-5}$$

Oui les prédictions théoriques sont compatibles avec les mesures expérimentales, car les deux suivent une tendance exponentielle similaire.

8) Considérons l'algorithme itératif du problème des Tours de Hanoi. Écrivons-le Programme correspondant puis calculons les temps d'exécution (même tableau que la question 4. à compléter) et représentons les variations de temps par un graphique.

```
void moveDisk(int d, int ar) {
    printf("Deplacer le disque de %d a %d\n", d, ar);
void hanoiIterative(int n) {
    int total = pow(2, n) - 1;
    int tours[3];
 for (int i = 0; i < 3; i++) {
         tours[i] = i + 1;
 if (n % 2 == 0) {
         int temp = tours[1];
         tours[1] = tours[2];
         tours[2] = temp;
  for (int i = 1; i <= total; i++) {
         int d = (i % 3);
         int ar = ((i + 1) % 3);
         if (i % 3 == 0) {
             d = (d + 1) % 3;
        moveDisk(tours[d], tours[ar]);
```

n	3	4	5	6	7	8	9
T(n)	0.000	0.001	0.001	0.015	0.029	0.084	0.175

10	11	12	13	14	15	16	17	18	19
0.340	0.645	1.363	2.696	3.178	3.503	4.326	5.908	9.165	20.508

20	21	22	23	24	25
27.689	54.430	133.343	179.799	496.823	826.836

9) Comparez les versions récursive et itérative. Que remarquez-vous ?

- **Petites valeurs de n** : Les deux méthodes sont similaires, mais la récursive est plus élégante.
- **Valeurs moyennes de n** : La méthode itérative commence à montrer un léger avantage.
- > Grandes valeurs de n : La méthode itérative est meilleure car elle évite les limitations liées à la profondeur de récursion et à la surcharge mémoire.

La méthode itérative est globalement plus optimale pour des cas d'usage à grande échelle.

Exercice 2: Fibonacci Sequence

1) Écrivez une fonction Fibo_Rec qui calcule de manière récursive le n-ième terme de la suite de Fibonacci. Donnez sa complexité.

```
long Fibo Rec(int n)
   if(n == 1 || n == 0)
       return n;
   return Fibo Rec(n-1) + Fibo_Rec(n-2);
```

La relation de récurrence :

```
T(0) = 0
T(1) = 1
```

$$T(n) = T(n-1) + T(n-2)$$

$$T(n) = \sum_{i=0}^{n-2} 2^{i} + 2 = 2^{n-1} - 1 + 2 = 2^{n-1} + 1$$

Ce qui donne une complexité exponentielle $O(2^n)$

2) Écrivez une fonction Fibo_iter qui calcule de manière itérative le n-ième terme de la suite de Fibonacci de complexité linéaire.

```
int Fibo iter(int n)
    if (n==0) {
        return 0;
    if (n==1) {
        return 1;
    int x=0;
    for (int i = 2; i <= n; i++) {
    return z;
```

La complexité est linéaire O(n)

3) Mesurer les temps d'exécution T pour l'échantillon de nombres n ci-dessous et compléter le tableau :

n	5	10	20	30	40	45	50	55
Fibo_Rec	0.000	0.000	0.000	0.016	0.587	6.694	87.347	881.386
Fibo_iter	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Les temps d'exécution pour Fibo_Rec augmentent exponentiellement, tandis que ceux pour Fibo iter restent négligeables.

4) Comparer les mesures théoriques et expérimentales des deux fonctions. Les prédictions théoriques sont-elles compatibles avec les mesures expérimentales ?

Fonction Fibo Rec

Les mesures expérimentales confirment cette prédiction théorique. Les temps d'exécution augmentent rapidement de manière exponentielle

Fonction Fibo_iter

La version itérative du calcul de Fibonacci a une complexité temporelle linéaire,les mesures expérimentales confirment également cette prédiction théorique.

5) Represent with a graph the variations of the running time T(n) of Fibo_Rec and Fibo_iter. What do you notice?

Le graphique montre clairement que la version itérative est nettement supérieure à la version récursive pour calculer les nombres de Fibonacci.

La version récursive, avec une complexité exponentielle, devient rapidement inefficace à mesure que la taille de n augmente, rendant son utilisation impraticable pour de grandes valeurs. En revanche, la version itérative, grâce à sa complexité linéaire O(n), reste adaptée même pour des entrées de grande taille.

6) Faites une copie de la fonction Fibo iter et modifiez-la pour tester cette propriété (utilisez le type double).

```
void FiboGoldenRatio(int n) {
    double a = 0, b = 1, fib, ratio;
    for (int i = 1; i <= n; i++) {
        fib = a + b;
        if (i == 1) {
            printf("%d: Un = %.15f, Ratio = Division by zero\n", i, b);
        } else {
            ratio = b / a;
            printf("%d: Un = %.15f, Ratio = %.15f\n", i, b, ratio);
        a = b;
       b = fib;
```

```
Enter the number of terms (n): 10
1: Un = 1.00000000000000000, Ratio = Division by zero
2: Un = 1.0000000000000000, Ratio = 1.0000000000000000
3: Un = 2.0000000000000000, Ratio = 2.0000000000000000
4: Un = 3.0000000000000000, Ratio = 1.5000000000000000
5: Un = 5.0000000000000000, Ratio = 1.666666666666667
6: Un = 8.0000000000000000, Ratio = 1.6000000000000000
7: Un = 13.0000000000000000, Ratio = 1.625000000000000
8: Un = 21.0000000000000000, Ratio = 1.615384615384615
9: Un = 34.0000000000000000, Ratio = 1.619047619047619
10: Un = 55.0000000000000000, Ratio = 1.617647058823529
```

Nous remarquons que lorsque $n \to \infty$

```
\frac{U_n}{U_{n-1}} \rightarrow \phi \approx 1.618033988749894. Cela signifie que la propriété est vérifiée.
```