11. Типы данных. Базовые типы данных. Числовые, строковые, логические. Преобразование типов. Контроль типизации.

Основная цель любой программы состоит в обработке данных. Данные различного типа хранятся и обрабатываются по-разному. В любом алгоритмическом языке каждая константа, переменная, результат вычисления выражения или функции должны иметь определенный тип.

Тип данных определяет:

- внутреннее представление данных в памяти компьютера;
- множество значений, которые могут принимать величины этого типа;
- операции и функции, которые можно применять к величинам этого типа.

Исходя из этих характеристик, программист выбирает тип каждой величины, используемой в программе для представления реальных объектов. Обязательное описание типа позволяет компилятору производить проверку допустимости различных конструкций программы. От выбора типа величины зависит последовательность машинных команд, построенная компилятором.

Базовые типы данных

Числовые целые

Служат для представления целых чисел. Множество допустимых значений представляет собой подмножество бесконечного множества целых чисел, ограниченное максимальным и минимальным значениями. Бывают знаковые и беззнаковые. Беззнаковые представляются двоичным числом, знаковые – двоичным числом, старший бит которого отвечает за знак.

Числовые вещественные (с плавающей запятой)

Служит для представления действительных чисел. Структура числа:

- Знак мантиссы (указывающего на отрицательность или положительность числа)
- Мантисса (выражает значение числа без учёта порядка)
- Порядок (выражающее степень основания числа, на которое умножается мантисса)

Пример число с одинарной точностью (float):

В числах одинарной точности (float/single) порядок состоит из 8 бит, а мантисса – из 23. Эффективный порядок определяется как E-127. Например, число 0,15625 будет записано в памяти как

Рисунок взят из Википедии

В этом примере:

- Знак s=0 (положительное число)
- Порядок $E=011111100_2-127_{10}=-3$
- Мантисса М = 1.01₂ (первая единица не явная)
- В результате наше число $F = 1.01_2$ e-3 = $2^{-3} + 2^{-5} = 0.125 + 0.03125 = 0.15625$

Строковые

Тип данных, значениями которого является произвольная последовательность (строка) символов алфавита. Один символ строкового типа данных может быть представлен разным количеством байт, в зависимости от кодировки. Один из способов представления строк в памяти – нуль-терминированная строка. В этом случае программист хранит адрес начала строки, а конец строки помечен специальным символом (так сделано, например, в языке Си)

Логические

Тип данных в информатике, которые могут принимать два возможных значения, иногда называемых истиной (true) и ложью (false). Присутствует в подавляющем большинстве языков программирования как самостоятельная сущность или реализуется через численный тип. В подавляющем большинстве языков за истину полагается единица, за ложь — ноль.

К этому типу данных применимы следующие операции:

- И (логическое умножение) (AND, &, *),
- ИЛИ (логическое сложение) (OR, |, +),
- исключающее ИЛИ (умножение с переносом) (хог, NEQV, ^),
- эквивалентность (равенство) (EQV, =, ==)
- инверсия (NOT, ~,!)
- сравнение (>, <, <=, >=)

Так же могут использоваться и другие операции булевой алгебры.

Преобразование типов

Преобразование значения переменной одного типа в значение другого типа. Выделяют явное и неявное приведения типов.

- При явном приведении программист указывает тип переменной, к которому необходимо преобразовать исходную переменную.
- При неявном приведении преобразование происходит автоматически, по правилам, заложенным в данном языке программирования.

Контроль типизации

Предупреждение ошибок, связанных с использованием переменной не того типа данных, который ожидается. В этом случае компилятор может дать предупреждение или не скомпилировать программу. Например, результат сложения двух переменных типа long, помещенный в переменную типа int может повлечь за собой потерю данных. Компилятор СИ в этом случае кинет предупреждение.

Ссылки:

http://habrahabr.ru/post/112953/ - подробнее про числа с плавающей запятой http://ru.wikipedia.org/wiki/%D0%A2%D0%B8%D0%BF %D0%B4%D0%B0%D0%BD%D 0%BD%D1%8B%D1%85 – В примерах перечислены основные типы данных, если захотите рассказать про что-то еще, то сюда, ну и там же есть ссылки на статьи