

## **Quadratic Equations**solutions

Graham Middle School Math Olympiad Team









**E1.** Use factoring to find the roots of  $x^2-22x-48=0$ .

Let  $x^2 - 22x - 48 = (x - a)(x - b)$ , so a + b = 22 and ab = -48. Looking into divisors of -48 we may find that 24 and -2 has a sum of 22, so the root of the equation are -2 and 24.

**E2.** Complete the square to find the possible values of x for which  $x^2 + 4x + 3 = 0$ ?

To complete square for  $x^2 + 4x$  we need to add 4, since  $(x+2)^2 = x^2 + 4x + 4$ . So, in our equation we have  $x^2 + 4x + 3 + 1 = 1$  or  $(x+2)^2 = 1$ . This gives us  $x+2=\pm 1$  and x=-3 or x=-1.

**E3.** What is the value of  $i^3$ ?

$$i^3 = (i)^2 \times i = -1 \times i = -i$$
.

**E4.** For what value(s) of x does the fraction of 3 raised to the power  $x^2$  over 3 raised to the power 3x equal one-ninth?

(*Hint*: If all exponents have the same base, then we can solve the problem by equating the exponents.

We need to solve this equation:

$$\frac{3^{x^2}}{3^{3x}} = \frac{1}{9} = \frac{1}{3^2}.$$

Which can be rewritten as  $3^{x^2} \times 3^{-3x} = 3^{-2}$ , or, using our hint,  $x^2 - 3x = -2$ ,

$$x^2 - 3x + 2 = (x - 1)(x - 2) = 0$$
 and our equation has two roots  $x = 1$  and  $2$ . Plugging them back into our original equation we can check that they are works.

**E5.** Find the roots of 
$$x = \frac{28}{x-3}$$
.

$$x(x-3)=28$$
 or  $x^2-3x-28=(x-7)(x+4)=0$  and two roots  $x=\boxed{-4}$  and  $\boxed{7}$ . Plugging them back into our original equation we can check that they are works.

**E6.** If b and c are both rational numbers and one of the roots of  $x^2 + bx + c = 0$  is  $3 + \sqrt{2}$ , find b and c.

The roots are  $\frac{-b}{2} \pm \sqrt{\frac{b^2-4c}{4}}$ , so we may see that rational and irrational parts of both roots should be the same and the second root is  $3-\sqrt{2}$ .  $x^2+bx+c=(x-(3+\sqrt{2}))(x-(3-\sqrt{2}))=x^2-6x+7=0$ . So b=-6 and c=7.

**E7.** For how many different integer values of b are both roots of  $x^2 + bx - 16 = 0$  integers?

Let 
$$x^2 + bx - 16 = (x + p)(x + q) = 0$$
, so  $pq = -16$  and  $b = p + q$ . Since  $-16 = 1 \cdot -16 = 2 \cdot -8 = 4 \cdot -4 = 8 \cdot -2 = 16 \cdot -1 = -1 \cdot 16 = -2 \cdot 8 = -4 \cdot 4 = -8 \cdot 2 = -16 \cdot 1$ . We got  $5$  different values for  $b$ :  $-15$ ,  $-6$ ,  $0$ ,  $6$ , and  $15$ .

**E8.** Let m and n be roots of:  $x^2 - 60x + 864 = 0$ . Find a polynomial with roots m + 1 and n + 1.

$$(x-(m+1))(x-(n+1)) =$$
  
 $x^2-(m+n+2)x+(mn+m+n+1) = 0$  has  
roots  $m+1$  and  $n+1$ , since  $m+n=60$  and  
 $mn=864$ , we got  $x^2-62x+925=0$ .

## **CHALLENGE PROBLEMS 1 - 2**

**CP1.** Find the minimum possible value of the absolute value of (m-n), where m and n are integers satisfying m+n=mn-2021.

(*Hint*: could completing the square be useful here if the variables were all grouped on one side of the equation?)

$$mn-m-n-2021=(m-1)(n-1)-2022$$
 or  $(m-1)(n-1)=2022$ , for  $|m-n|$  to be as minimal as possible we need  $m$  and  $n$  as close as possible. The closest factors of 2022 are 6 and 337, so answer is  $337-6=\boxed{331}$ .

**CP2.** (For fun) In the novel, "The Curious Incident of the Dog in the Nighttime," a student in England taking his A-level college entrance exam in maths was given the following question:

Prove that a triangle with sides that can written in the form  $n^2+1$ ,  $n^2-1$  and 2n (where n>1) is right-angled.

Since  $(n^2+1)^2=n^4+2n^2+1=n^4-2n^2+1+4n^2=(n^2-1)^2+(2n)^2$ , and using *Converse of Pythagoras Theorem* we got that triangle with sides  $n^2+1$ ,  $n^2-1$  and 2n (where n>1) is right-angled.

## **CHALLENGE PROBLEMS 3 - 4**

**CP3.** Let m and n be roots of the polynomial  $x^2 - 60x + 899 = 0$ . What is  $m^2 + n^2$ ? (*Hint*: think about how  $m^2 + n^2$  can be rewritten in terms of the sum and product of the roots m and n).

$$m^2 + n^2 = m^2 + 2mn + n^2 - 2mn = (m+n)^2 - 2mn = (60)^2 - 2 \cdot 899 = 3600 - 1798 = \boxed{1802}.$$

**CP4.** Find all real values of n such that  $2^{2n} + 2^n + 1 = 73$ . (*Hint*: What substitution would turn this into a quadratic?)

Let  $y = 2^n$ , then our equation turns into  $y^2 + y + 1 = 73$  or  $y^2 + y - 72 = (y - 8)(y + 9) = 0$ . So y = 8 or -9. If  $2^n = 8$ ,  $n = \boxed{3}$ , if  $2^n = -9$  we don't have solutions since  $2^n > 0$  for any real n.