Informatics

Random Numbers Generation

Claudio Sartori
Department of Computer Science and Engineering claudiosartori@uniboit
https://www.uniboit/sitoweb/claudiosartori/

Learning Objectives

- Randomness: what's for?
- Randomness and computers?
- The principles
- Random generation in R
- Examples

Random numbers

- used in
 - statistics
 - programming
 - simulation
 - games
 - program testing
- tools
 - tables of random numbers
 - hardware generation
 - software generation

Random numbers in statistics

sampling

- select a sample of items from a larger population
- either for impossibility to access the entire population or for faster computation
- the sample must be representative of the population

simulation

of complex systems or processes when formal modelling is not viable

Monte Carlo methods

 random sampling to solve complex problems in mathematics, physics, chemistry, engineering, finance

Problem description

- a software using random numbers requires a software generator
- a computer running any softwares is a deterministic machine
 - the output is functionally determined by the input and the status
- an algorithm can generate numbers that are seemingly random
- pseudo-random number generators
- we deal <u>only</u> with pseudo-random generation, therefore the word "pseudo" will be omitted

Requirements for a pseudo-random generator

- the perfect generator should be able to generate an infinite sequence of numbers, drawn from a given interval, that are statistically independent
- a generator should be
 - efficient
 - eg a simulation could require the generation of millions of numbers
 - repeatable
 - we want to be always able to repeat a scientific experiment

Lehmer generator (i)

- an example of algorithm for generating pseudo-random numbers
 - It is absolutely <u>not the best one</u>, simply it is one of the simplest, and a good example of implementation of random number generation
- proposed in 1951
- parametric algorithm
- generates a permutation of the natural numbers up to a given m
 - scanning the sequence of numbers of the permutation we obtain the effect of the single number generation
 - **m** is one of the parameters

Lehmer generator (ii)

- there are several choices of the parameters that guarantee a seemingly random sequence
- statistical tests give results compatible with the hypothesis of randomness of the generation
- each number of the sequence seems to be independent from the preceding portion of the sequence, i.e. observing a sequence of generated numbers it is hard to guess next number

Lehmer generator - description

Given

```
1. modulus: m integer, prime, big
```

2. multiplier:
$$a$$
 integer, $1 < a < m$

3. generator
$$f(z)$$
: $z_{n+1} = a * z_n \mod m$

4. seed: z_1 integer, $1 \le z_1 \le m-1$

Lehmer generator - discussion

- since m is prime, the generator does never generate 0, for any $1 \le z \le m-1$, therefore the sequence does never collapse to 0
 - otherwise there would exist a1 * m1 * z1 * m2 \mod m1 * m2 = 0
- linear transformations of the sequence do not influence the apparent randomness
- the sequence is fully deterministic, but there are many choices for a and m giving sequences that seem
 perfectly random
- the values of a and m, determine the length of the period p (p <= m), such that $z_p = z_1$
- a complete period sequence is a permutation of the numbers 1,...,m-1
- there are several pairs a and m giving complete period sequences
- each number has probability 1/m
- the seed determines the starting point of the sequence
 - Changing the seed we simulate the effect of a different sequence, due to the apparent independence of the numbers in the sequence

Example: a=6, m=13 $f(z) = 6z \mod 13 1,6,10,8,9,2,12,7,3,5,4,11,1...$ period

Parameter choice

- a long period is obviously preferred
- with $m = 2^{31}-1$ there exist 534 of good values for a
- an efficient implementation of f(z) is needed
- a = 16807 and $m = 2^{31}-1$ is a good choice
 - it requires to manage integers with 46 bit, to contain the maximum value of a * z
- the seed can be chosen freely for each experiment

Some of the methods available

- Lehmer
- Middle Square
- Linear Congruential (LCG)
- Quadratic Congruential
- Inverse Congruential (ICG)
- Inverse Congruential Explicit (EICG)
- ICG and EICG composed
- Fibonacci delayed
- Shift register with linear feedback
- Mersenne Twister (default generator in R) https://en.wikipedia.org/wiki/Mersenne_Twister
- ...

Verification of randomness

- uniformity of the distribution in the interval
 - easy to obtain and verify
- independence
 - · difficult to obtain and verify
- verification criteria
 - statistical tests
 - theoretical analysis of the algorithm

Verification of randomness (ii)

- uniformity
 - Chi-Square uniformity test
 - Kolmogoroff-Smirnoff
- independence
 - Chi-Square independence test
 - "gap" test
 - ...

Random numbers in R

- integer numbers
- real numbers
- uniform
- standard probability distributions
- sampling among given values

• ...

The seed

- setting the seed allow to reproduce exactly the random sequence
- it is a good habit to set the seed, and to keep track of the seed used, at the beginning of an experiment
- in this way the experiment can be repeated with constant results

set.seed(integer)

Workflow for using random values

Repeatability:

- every time you reexecute the entire script you will see the same random values
- if you execute single statements without reexecuting the seed setting the repeatability is not guaranteed

```
rnd_seed <- 745
set.seed(rnd.seed)
# generate random values
# . . .
# use random values
# . . .</pre>
```

Uniform: continuous

```
runif(n number of generated double values
, min = 0
, max = 1 interval of generated values
)
```

Discrete: integers

```
sample.int(n generates values from 1 to n
   , size = n #number of generated values
   , replace = FALSE when generating
        more than one value controls
        repetition of values
   , prob = NULL if not set the
        generation is uniform, otherwise
        values probabilities are given as
        a vector of n weights
)
```

Discrete: general

```
sample (x vector of generated values
   , size #number of generated values
   , replace = FALSE when generating
        more than one value controls
        repetition of values
   , prob = NULL if not set the
        generation is uniform, otherwise
        values probabilities are given as
        a vector of n weights
)
```

Some random distributions in R

beta: dbeta

binomial (including Bernoulli): rbinom

Cauchy: dcauchy

chi-squared: dchisq

exponential: rexp

F: df

gamma: dgamma

geometric: dgeom

This is also a special case of the negative binomial

hypergeometric: dhyper

log-normal: dlnorm

multinomial: dmultinom

negative binomial: dnbinom

normal: dnorm

Poisson: dpois

Student's t: dt

uniform: dunif

Weibull: dweibull

Quiz

- random integers in two separate intervals
- the hidden mines of a Minesweeper schema
- random points in a given rectangle
- random points inside a circle, given center and radius
- random elements of a data frame
- random letters with uniform distribution and replacement
- a Ruzzle schema

Montecarlo methods (a few basics)

(Source: wikipedia)

- Computational algorithms that rely on repeated random sampling to obtain numerical results
- Useful for physical and mathematical problems for which an analytic solution is difficult for any reason
- Non-deterministic approach
 - approximation with error
 - several trials
- Examples:
 - optimization
 - numerical integration
 - generating draws from probability distribution

General method (naive explanation)

- Find a method for simulating some situation
- Simulate with a high number of repetitions
 - more repetitions → better precision
- Count the fraction of success
- Derive from that fraction the result

A toy example: computation of PI

- Generate random points in a square bounding a circle
- Compute the frequency of points that are inside the circle
- PI is four times the ratio between the total number of points and the number of points inside the circle

A toy example: computation of PI

- repeat several times with different number of points
 - repeat several times without setting the seed and with the same parameters
 - compute the average of the results and store it
 - this repetition tries to compensate the (pseudo) nondeterminism

See the example "montecarlo_pi"

