Project Report

Title: Classification of Digits Data Using Audio Signal Processing

Submitted By:

Afsaruddin Mohammed Net Id: Axm210415

Problem Statement:

Here we are trying to classify audio sample contain of spoken digits (0-2) of 60 different speakers. Hence, we have 3 categories that we are trying to classify using machine learning algorithms. To Compare these results with synthesized music (machine made music) we generated music files from three generator functions from Magenta, TensorFlow library: Attention RNN, Basic RNN, and Lookback RNN. And we tried to classify using same machine learning algorithms and provided analysis of the results.

2 Feature Extraction from Audio Files

2.1 Audio file generation

We have used the pre-trained models available for basic RNN, lookback RNN, and attention RNN and run them 200 times, each by varying the primer-melody sequences to produce distinct MIDI piano-roll files. The MIDI files thus extracted are converted to WAV files for further processing.

2.2 Using Librosa to extract MFCCs.

Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an MFC. The MFCC algorithm processes the entire speech data in a batch. Based on the number of input rows, the window length, and the overlap length, MFCC partitions the speech into frames and computes the cepstral features for each frame. Using librosa package, the synthesized audio file is divided into audio segments of 1 second each and then MFCC are extracted from each segment to minimize the information loss.

3 Data Set Description:

3.1 Synthesized Data

After performing feature extraction on 600 audio files generated from the magenta library. The data set thus obtained had 6000 examples and each example had 13 features. Each example will belong to one of 3 classes (attention, lookback, basic).

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6000 entries, 0 to 5999
Data columns (total 16 columns):
```

				,	
	#	Column	Non-Null	Count	Dtype
-					
	0	Unnamed: 0	6000 non-	null	int64
	1	className	6000 non-	null	object
	2	labelNumber	6000 non-	null	int64
	3	team1	6000 non-	null	${\tt float64}$
	4	team2	6000 non-	null	${\tt float64}$
	5	team3	6000 non-	null	${\tt float64}$
	6	team4	6000 non-	null	${\tt float64}$
	7	team5	6000 non-	null	${\tt float64}$
	8	team6	6000 non-	null	${\tt float64}$
	9	team7	6000 non-	null	${\tt float64}$
	10	team8	6000 non-	null	${\tt float64}$
	11	team9	6000 non-	null	${\tt float64}$
	12	team10	6000 non-	null	${\tt float64}$
	13	team11	6000 non-	null	${\tt float64}$
	14	team12	6000 non-	null	float64
	15	team13	6000 non-	null	float64

dtypes: float64(13), int64(2), object(1)

memory usage: 750.1+ KB

3.2 Real World Digit Data:

A subset of Audio MNIST data is taken which has samples of spoken digits (1-3) of different speakers. The dataset contains 1500 audio files (500 in each class/digit). This data is collected to compare the results of classification algorithms used on Synthesized data.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1500 non-null	int64
1	className	1500 non-null	int64
2	labelNumber	1500 non-null	int64
3	team1	1500 non-null	float64
4	team2	1500 non-null	float64
5	team3	1500 non-null	float64
6	team4	1500 non-null	float64
7	team5	1500 non-null	float64
8	team6	1500 non-null	float64
9	team7	1500 non-null	float64
10	team8	1500 non-null	float64
11	team9	1500 non-null	float64
12	team10	1500 non-null	float64
13	team11	1500 non-null	float64
14	team12	1500 non-null	float64
15	team13	1500 non-null	float64
1.		2) 1.164(2)	

dtypes: float64(13), int64(3)

memory usage: 187.6 KB

Classification Algorithms:

We have run logistic regression as our baseline learning algorithm to see if the data is linearly separ- able. The algorithm did not converge as the values are not scaled. Hence we used MinMaxScaler() to bring all the values to the same scale.

Logistic Regression:

Logistic regression is used as our baseline learner algorithm. On running algorithm on normalized data it converged.

	LOG REG					
0.39	accuracy	for logistic	regress	ion		
		precision	recall	f1-score	support	
	0	0.39	0.33	0.35	396	
	1	0.40	0.41	0.41	415	
	2	0.38	0.43	0.40	389	
á	accuracy			0.39	1200	
ma	acro avg	0.39	0.39	0.39	1200	
weigh	nted avg	0.39	0.39	0.39	1200	

LOG REG					
0.78 acci	ıracy	for logistic	regress	ion	
		precision	recall	f1-score	support
	0	0.90	0.74	0.81	104
	1	0.71	0.91	0.79	98
	2	0.78	0.70	0.74	98
accui	racy			0.78	300
macro	avg	0.80	0.78	0.78	300
weighted	avg	0.80	0.78	0.78	300

Decision Trees:

I have tried to tune the decision tree by varying depth from 1 to 25 using the criterion - 'gini'. Using 10-fold cross-validation, validation scores are plotted against depth values. From the figure, we can infer as the depth increases the validation set accuracy remained the same and training accuracy increased drastically. Since we wanted the decision tree not to overfit, we pruned at depth =7.

K-Nearest Neighbors:

I have tuned K nearest neighbors by varying k from 1 to 25. Using 10-fold cross-validation, validation scores are plotted against depth values. From figure 2, we can infer that the validation set accuracy remained the same for most k values. Therefore, k = 8 is chosen to avoid overfitting.

Random Forest:

I tried to exploit the bagging property of reducing the variance. Therefore, we chose max depth = 27 and tried to create an ensemble of random trees (number of estimators = 100).

The validation score obtained was better than the rest algorithms (validation set accuracy = 41%).

Bag of K-Nearest Neighbors:

Similarly, I tried to bag an overfitted K-nearest neighbor (k=3) to improve the validation, set accuracy.

Results:

Test set performance of Logistic Regression.

		,					
L	LOG REG						
0.39 accuracy	for logistic	regress	ion				
	precision	recall	f1-score	support			
0	0.39	0.33	0.35	396			
1	0.40	0.41	0.41	415			
2	0.38	0.43	0.40	389			
accuracy			0.39	1200			
macro avg	0.39	0.39	0.39	1200			
weighted avg	0.39	0.39	0.39	1200			

Test set performance of decision tree with d = 7.

Dtree with depth=7 Performance						-
0.36 accu	ıracy	for dTree	with depth	= 7		
		precision	recall	f1-score	support	
	0	0.36	0.54	0.43	396	
	1	0.36	0.29	0.32	415	
	2	0.37	0.25	0.30	389	
accur	cacy			0.36	1200	
macro	avg	0.36	0.36	0.35	1200	
weighted	avg	0.36	0.36	0.35	1200	

Test set performance of k-Nearest Neighbors with k = 8

-----KNN with k=8 Performance----0.39 accuracy KNN with k=8

over accuracy	precision	recall	f1-score	support
0	0.38	0.45	0.41	396
1	0.43	0.40	0.41	415
2	0.37	0.33	0.35	389
accuracy			0.39	1200
macro avg	0.39	0.39	0.39	1200
weighted avg	0.39	0.39	0.39	1200

Test set performance of Random Forest with max depth = 27

----- Random Forest with depth=27 Performance----0.38 accuracy for RF with depth = 27

precision recall fl-score support

	precision	recall	II-score	support
0	0.37	0.38	0.37	396
1 2	0.39 0.37	0.33 0.42	0.36 0.39	415 389
2	0.37	V. 12	0.33	303
accuracy			0.38	1200
macro avg	0.38	0.38	0.38	1200
weighted avg	0.38	0.38	0.38	1200

Test set performance of Bag of KNN with k = 3.

----- Bag of KNN Forest with k=3 Performance-----0.39 accuracy for knn bag k=3

	precision	recall	f1-score	support
	_			
0	0.40	0.39	0.39	396
1	0.38	0.39	0.39	415
2	0.38	0.38	0.38	389
accuracy			0.39	1200
macro avg	0.39	0.39	0.39	1200
weighted avg	0.39	0.39	0.39	1200

Comparison and Analysis with Real Life Digit Dataset:

Synthesized data

Rea Life Data

In the synthesized data set, the classification algorithms assign classes to the examples differently i.e for the random forest it is closer but for the decision tree it favors class 0.

In both the data sets, Random Forest gave better results when compared to other algorithms implemented. This indicated that an ensemble of decision trees worked better than a single decision tree.

For data set 2, we have run the Decision tree and Random Forest and tuned their depths. From the above figures (15,16,17,18), we can see that the number of wrongly classified are very low in real-life data then compared to synthesized data. Hence for the same learner, we get better accuracy.

Classifiers	Random Forest	Decision Tree
Dataset1	0.39	0.36
Dataset2	0.96	0.76

Conclusion:

The drastic change in accuracy from real-life data set to synthesized data set indicates that there is high inter-class similarity. This is true as the audio files generated from the magenta library have only piano notes. Hence the learner algorithms used for classification could not discriminate between classes from the extracted features.