INMORTALIZANDO MÁQUINAS MIGUEL ANGEL HORNA

ASOCIACIÓN DE ARCADES Y PINBALLS DE ARAGÓN (ARPA)

¿QUÉ HAY DENTRO DE UNA MÁQUINA?

- Estructura
- Monitor
- Fuente alimentación
- Botones y cableado
- Placa(s) de juego

PLACAS DE JUEGO

- El "cerebro" de la máquina
- CPU(s)
- ROMs
- Hardware gráfico
- Hardware de sonido
- Interface con botones (JAMMA, JVS)

PLACAS DE JUEGO

- Sistemas
 - Capcom CPS1, CPS2, CPS3
 - SNK NeoGeo
 - IGS PolyGameMaster
 - Sega System16, System18, System32, Model 2, Naomi
- Hardware específico por juego
 - Konami
 - Data East

PLACAS DE JUEGO

LA SOLUCIÓN: EMULADORES

- Hacer funcionar el programa original en otro hardware
- Generalmente completamente diferente
- Ejecutar las instrucciones del programa original
- Generar los gráficos del hardware original
- Generar el sonido del hardware original
- Incluso mejorando el original

LA SOLUCIÓN: EMULADORES

- Nebula: CPS1, CPS2, NeoGeo, PGM, Konami
- Model 2: Sega Model 2, 2A, 2B y 2C
- CPS3
- Crystal System
- MAME. CPS2, CPS3, Neogeo, Model2, Crystal System
- Chankast: Audio, gráficos, Naomi.

ROMS

- El programa y los datos
- Generalmente no muy grandes
- Se fabricaban con el programa
- Leerlas requiere hardware
- A veces desoldar
- CDROM

- Identificar el procesador (o procesadores) de la placa.
- Conocimiento del lenguaje máquina del procesador.
- Desensamblado de ROMs de programa (DataRescue IDA)
- Sistemas de juegos años 90, lo normal: 68000+Z80
- Decenas de emuladores de 68k y Z80.

- Ejecutar el programa original (Z80, 68k) sobre un procesador diferente (x86, PowerPC).
- Emulación interpretada. aproximadamente un 10% de la velocidad original: Emular 10Mhz requiere 100Mhz.
 - Dreamcast: 200MHz-> 2GHz. Recompilación
- El núcleo del emulador (core). Debe funcionar 100% igual que el original (incluyendo errores)

- A veces no existe un core ya hecho para el procesador.
- Escribirlo usando los manuales de programación y hardware.
 Problemas:
 - Puede que ya no estén disponibles para descarga. Internet Archive (Manuales de HW Video Model 3)
 - Prototipos o procesadores "clasificados". Ingeniería Inversa (TGP de model 2/2A)
 - En japonés (TGPx4 de model 2C)
- Debe funcionar exactamente igual que el original. Pequeños errores causan fallos difíciles de encontrar.

 Verificación en el Hardware = Correr código en la placa y comparar:

MEMORIA

- ¿Qué hay en cada rango de memoria? ¿Qué tamaño?
 - RAM, ROM
 - Registros de vídeo, RAM de vídeo, tilemaps, sprites, display lists
 - Registros de sonido
 - Puertos de E/S (Controles)
 - Protección
- Test de memoria del menú de servicio.

PROTECCIÓN

- Dongles (Mochila)
 - SEGA (System32, Model2, Model3). Infrautilizada, fácil de emular.
- Encriptación
 - Capcom (CPS2,CPS3), IGS (PGM), SNK (Neogeo), Gaelco
 - Buscar puntos débiles para extraer los datos desencriptados (BIOS).
- Coprocesadores
 - IGS (PGM), Konami, Gaelco
 - "Adivinar" el funcionamiento a partir de los parámetros.
 - Si es programable, obtener el programa (tablas sin bounds check, decapping).

PROTECCIÓN

- Cada fabricante diferente
 - Usando chips "Custom" (ASIC)
- 80s y 90s: Tilemaps + sprites
 - Diferentes funcionalidades: linescroll, ROZ
 - Resolución baja. Render por software.
- Mediados 90s: 3D (+ tilemaps a veces)
 - Hardware propietario
 - 3D no estandarizado. A veces se puede mapear a 3D actual
 - "Alta" resolución

- Tilemaps
- Dividir la pantalla en casillas
- TILES MAP
- Mas grande que la pantalla y wraparound: scroll gratis
- Paletas: mas variedad con mismos datos
- Efectos de distorsión: Linescroll, ROZ
- Múltiples capas con orden programable

- Emulado por software, resolviendo tiles a un buffer
 - Alto uso de CPU y ancho de banda de memoria
- Usando GPU
 - Tilemap como textura
 - Malla con coordenadas ajustadas
 - Shader para resolver la paleta

- Sprites
 - Personaje
 - Enemigos
 - Elementos móviles
- El programa genera una lista
 - Posición (x,y)
 - Sprite (dirección en rom)
 - Paleta
 - Flip XY, Zoom, Prioridad

- Emulado por software
 - Render a buffer. Caro en CPU
 - Aun mas caro con zooms/shrink
 - Rasters complicados
- GPU render
 - Un polígono por sprite
 - Prioridad "gratis"

- 3D
- Render por software (MAME)
 - Pixel accurate
 - Alto uso de CPU
- Render en GPU (Model2, Chankast)
 - Compromiso precisión / velocidad
 - Algunos efectos no convertibles o complicados

SONIDO

- Sonido "electrónico" con circuitos
 - Circuitos dedicados a cada sonido
 - Osciladores
 - Contadores
- Chips FM
 - Modulación de ondas
 - Todavía suena electrónico
 - Pero ocupa muy poco

SONIDO

- Sample players
 - OKI (CPS1)
- Wavetable synthesizers
 - Qsound (CPS2)
- Normalmente combinados
 - YM2610 (Neogeo)
- Audio CD

CUANDO TODO FUNCIONA

- Emular características poco usadas del hardware o que tengan pequeños fallos.
- Optimización
 - Profiling: encontrar las funciones críticas
 - Optimización a ensamblador (MMX). No portable.
 - Multiprocesador.
- Otras características del emulador
 - Filtros gráficos
 - Savestates (a veces es bueno tenerlos antes)
 - Netplay
 - Trucos (Cheats)

