LLM Serving

Nitya Agarwal & Benjamin Xia

Table of contents

Background

LLMs + Attention Basics

Paged Attention

Efficient LLM Memory Management

Orca

Iteration-level Scheduling

Background

LLMS + Self Attention + Model Size

The era of LLMS

- Increasing model size
- Increasing popularity

LLM-powered services

LLM Endpoints or Hosted LLM servers

Major Large Language Models (LLMs)

ranked by capabilities, sized by billion parameters used for training

2023

2022

pre-2022

2025

2024

Parameters (Bn)

open access

Major Large Language Models (LLMs)

ranked by capabilities, sized by billion parameters used for training

Parameters (Bn)

open access

Transformer Architecture

Encoder-Decoder Transformer

Original GPT-1 Architecture (Decoder-only)

Every row in the X matrix corresponds to a word in the input sentence.

Learn the W matrices to obtain Query Q, Key K and Value V matrices.

Calculate a score for how much focus to place on other parts of the input sentence as we encode a word at a certain position.

Take dot product of the query vector with the key vector of the respective word we're scoring.

Divide scores by the square root of the dimension of the **key vectors** (more stable gradients).

Taking the dot product of two random vectors of length d with mean 0 and variance 1 will have variance d. Dividing by sqrt(d) normalizes the dot product to have variance 1, which is a desirable property in neural networks.

Pass result through a softmax operation (all positive and add up to 1).

Why is the softmax operation applied after computing attention scores?

Pass result through a softmax operation (all positive and add up to 1).

Intuition: softmax score determines how much each word will be expressed at this position.

Sum up the weighted value vectors. This produces the output of the self-attention layer at this position.

Multi-Headed Attention

LLM Inference Background

Legend

- Yellow: Prompt Token
- Blue: Generated Token
- Red: <EOS> Token

KV Caching

Observation: We don't need to recompute the keys and values of previous tokens!

- Cache the previous Keys and Values, compute current token's attention scores/context with cached Keys and Values.
- KV Cache dynamically grows with newly generated tokens, and shrinks as tokens are deleted upon sequence completion.

LLM Serving

- Handles multiple user requests for LLM inference (e.g., ChatGPT)
- Runs on high-end GPUs (e.g., NVIDIA A100, H100)
- Limited throughput:
 - 1 A100 GPU processes < 1 request/second for LLaMA-13B with moderate inputs
- Production-scale services require thousands of GPUs

GPT-3175B

Cost of serving

\$476,491.44 per year

\$53.934 per hour for 1 instance

\$190.6M per year

for 400 instances

System Challenges That Increase Cost

Size of LLMS

- LLaMA-13B: 13GB to store float16 parameters
- 7xA100-80GB GPUs needed to maximize throughput

Memory I/O

- Single token generation requires loading 13GB to compute cores
- o CPU Memory I/O: 10-40 GB/s
- GPU Memory I/O: 2000 GB/s (A100-80GB)

• High Throughput Requires Many FLOPs

- o CPUs: Can generate a single sequence in real-time
- o GPUs: Can generate many sequences in real-time

Memory Hierarchy with Bandwidth & Memory Size

From the FlashAttention paper https://arxiv.org/pdf/2205.14135.pdf

Batching

- Batching multiple <u>sequences</u> together on a GPU "static batching"
- Problem: GPU utilization drops as some sequences are completed earlier than others.

T,	Tz	T3	Ty	Ts	T6	To	TB
Si	Si	Si	S	S,	end		
Sa	Sa	Sx	Sz	Sa	Sz	Si	END
Si	Si	Si	S	END			
Sy	Sy	Sy	Sy	Sy	Sy	END	

Batching

- Batching multiple <u>sequences</u> together on a GPU "static batching"
- Problem: GPU utilization drops as some sequences are completed earlier than others.

T,	Tz	T3	Ty	Ts	T6	To	TB
Sil	Si	Si	Sill				
Sz	Sz	SX					
Sz	Si	Si	S				
Sy	Sy	Sy	Sy	Sy			

T,	Tz	T3	Ty	Ts	T6	To	TB
Sil	Su	Si	Sill	\$11	END		
Sa	Sz	SHI	Sa	52/1	81/2	SH	END
S3	S	S	S	END			
Sy	Sy	Sy	Sy	Sy	Sy	END	

Batching multiple <u>iterations</u>
together on a GPU
"continuous batching" aka
"iteration-level scheduling"

T,	Tz	T3	Ty	Ts	76	To	Tg
Si	Si	Si	Silv				
Si	Sz	SX					
Si	S	S	S_3	1750			
Sy	Sy	Sy	Sy	Sy			

Orca

A Distributed Serving System for Transformer-Based Generative Models

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun

We focus on how to improve the throughput of serving transformer-based generative models to reduce the cost.

- Authors of Orca

* maximum batch size = 3

* maximum batch size = 3

* maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

^{*} maximum batch size = 3

Solution 1: Iteration-Level Scheduling

^{*} maximum batch size = 3

Solution 1: Iteration-Level Scheduling

^{*} maximum batch size = 3

Solution 1: Iteration-Level Scheduling

^{*} maximum batch size = 3

Orca Scheduling Summary

- 1. Requests are added to the request pool.
- 2. Scheduler fetches requests from pool in FIFO order.
- 3. Scheduled requests are run for a single iteration.
- 4. New token appended to sequence.
- 5. If sequence complete, return result to endpoint.
- 6. Otherwise, add sequence back to request pool.

Source: Orca A Distributed Serving System for Transformer-Based Generative Models

Results

Figure 10: Median end-to-end latency normalized by the number of generated tokens and throughput. Label "orca(max_bs)" represents results from ORCA with a max batch size of max_bs. Label "ft(max_bs, mbs)" represents results from FasterTransformer with a max batch size of max_bs and a microbatch size of mbs.

Recall: Batching

What are the trade-offs of iteration-level scheduling? Could there be scenarios where it performs worse than static batching?

- Batching multiple <u>sequences</u> together on a GPU "static batching"
- Problem: GPU utilization drops as some sequences are completed earlier than others.

	1,						
	Si	Si	Si	Sil			1
	Sa	Sz	SX				1
١	S_3	Si	Si	S			1
1	Sy	Sy	Sy	Sy	Sy		

Si	Si	S.	Si	8,	END		
Sa	Sz	SX	Si	Sal	Si	Sil	END
Sz	Si	Si	S	END			
Sy	Sy	Sy	Sy	Sy	Sy	END	

 Batching multiple <u>iterations</u> together on a GPU "continuous batching" aka "iteration-level scheduling"

T,	Tz	T3	Ty	Ts	T6	To	Tg
Si	Si	Si	Silv				
Sa	Sz	SX					
Si	Si	Si	S_3	l Table			
Sy	Sy	Sy	Sy	Sy			

03

Paged Attention

Efficient Memory Management for Large Language Model Serving with PagedAttention

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, Ion Stoica

KV Caching

Observation: We don't need to recompute the keys and values of previous tokens!

- Cache the previous Keys and Values, compute current token's attention scores/context with cached Keys and Values.
- KV Cache dynamically grows with newly generated tokens, and shrinks as tokens are deleted upon sequence completion.
- Add each newly generated token to sequence's KV cache.

KV Cache Memory Waste

- Only about **20-40%** of KV Cache memory is utilized to store token states
- **Reservation**: Memory allocated for cache, but currently unused.
- Internal Fragmentation: Over-allocated memory due to unknown sequence lengths.
- **External Fragmentation**: Due to different sequence lengths.

Paged Attention: Motivation

- KV Caching has a lot of memory waste, can we do better?
- Operating systems use virtual addressing and paging to efficiently manage memory to eliminate external fragmentation, while limiting internal fragmentation.
 - Non-contiguous memory allocation
- Page sharing: Multiple processes' page tables point to the same underlying physical frame.
 - Multiple sequences could share the same prefix/prompt. (ex. Beam Search decoding)

Token Blocks

Store tokens in small, contiguous chunks/blocks of memory.

Allocate new blocks as existing blocks get filled.

Paged Attention

- Each request's KV cache is now a series of Logical KV Blocks (analogous to virtual memory addresses).
- When computing attention scores, the KV Block Manager maps Logical KV Blocks to Physical KV Blocks.
- While decoding add tokens from left to right to the last token block. Allocate a new token block if all previous blocks are full.

Physical token blocks (KV Cache) Request block 0 block 1 computer scientist Prompt: "Alan Turing is a computer scientist" block 2 block 3 Logical token blocks Block table Physical Alan Turing # Filled block 4 4 computer scientist block 5 1 2 block 2 block 6 block 3 block 7 Turina

Below: Block size = 4

Figure 6. Block table translation in vLLM.

Prompt: "According to all known laws of"

2

3

Prompt: "According to all known laws of"

Completion: "aviation"

Logical

Block

2

3

Prompt: "According to all known laws of"

Completion: "aviation there"

Block

2

3

Prompt: "According to all known laws of"

Completion: "aviation there is"

Logical Block

3

Physical Token Blocks

is			
According	to	all	known
laws	of	aviation	there

Can we save even more memory?

Can you think of some more optimizations?

Block Sharing

- Enables blocks to be shared across multiple requests/decoding streams.
 - Shared prompts or Beam Search

Figure 8. Parallel sampling example.

Block Sharing

• **Reference count** in block table to support copy-on-write.

Figure 8. Parallel sampling example.

Block Sharing Results

Figure 15. Average amount of memory saving from sharing KV blocks, when serving OPT-13B for the Alpaca trace.

Block Swapping

When GPU memory is exhausted, vLLM evicts blocks from GPU memory.

Evicted blocks are copied to CPU memory.

Why do some block sizes perform better than others?

vLLM System Architecture

Figure 4. vLLM system overview.

vLLM Memory Usage

It's 1.5-4x better than Orca and other state of the art approaches:)

vLLM Performance

Figure 12. Single sequence generation with OPT models on the ShareGPT and Alpaca dataset

It's 1.5-4x better than Orca and other state of the art approaches:)