

The SHA-1 Hash Function

SHA-1 is a Shambles

First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust

Gaëtan Leurent (INRIA - France) **Thomas Peyrin** (NTU - Singapore)

USENIX 2020

Boston (USA) - August 14, 2020

https://sha-mbles.github.io/

What is a Hash Function?

H maps an arbitrary length input (the message M) to a fixed length n-bit output.

Typically:

The SHA-1 Hash Function

•00000

- ▶ n = 128 bits (MD5)
- ightharpoonup n = 160 bits (SHA-1)
- n = 256 bits (SHA 256)

pre-image resistance

The SHA-1 Hash Function

000000

2nd pre-image resistance

collision resistance :

The attacker can not find two messages (x, x') such that H(x) = H(x'), in less than $\theta(2^{n/2})$ operations (generic birthday paradox attack).

General hash construction

Most hash functions are composed of two elements :

- ▶ a compression function h: a function for which the input and output size is fixed.
- ▶ a domain extension algorithm: an iterative process that uses the compression function h so that the hash function H can handle inputs of arbitrary length.

The most famous domain extension algorithm used is called the **Merkle-Damgård** [MD-CRYPTO89] iterative algorithm.

$$pad(M) = M_1 \parallel M_2 \parallel M_3 \parallel ... \parallel M_n$$

The compression function h now takes two fixed-size inputs, the incoming chaining variable CV_i and the message block M_i , and outputs a new chaining variable CV_{i+1} .

The SHA-1 Hash Function

000000

Current security of SHA-1

```
The (bad looking) current situation of SHA-1:
         1995 SHA-1 published (SHA-0 (1993) with a slight twist)
               [NIST-FIPS-180-1]
         2005 theoretical collision attack on the full hash - 2<sup>69</sup>
               [WYY-CRYPTO05]
   2006-2011 lots of works computing collisions for reduced-round versions
        2015 collision computed on the full compression function - 2^{57}
               [SKP-EUROCR.16]
              computations of a collision on the full hash (identical-prefix collision) - 2<sup>64.7</sup>
               [SBK+-CRYPTO17]
              practical chosen-prefix collision attack on the full hash - 2<sup>67.2</sup>
               [LP-EUROCR.19]
        New computation of a chosen-prefix collision on the full hash - 2<sup>63.7</sup>
               PGP/GnuPG key-certification forgery
```

Motivations to study SHA-1

SHA-1 is not used anymore, right? right!?

► SHA-1 **certificates** (X.509) still exists

The SHA-1 Hash Function

000000

- ► CAs sell legacy SHA-1 certificates for legacy clients
- Accepted by many non-web modern clients
- ► ICSI Certificate Notary : 1.3% SHA-1 certificates
- ▶ PGP signatures with SHA-1 are still trusted
 - ▶ Default hash for key certification in GnuPGv1 (legacy branch)
 - ▶ 1% of public certifications (Web-of-Trust) in 2019 use SHA-1
- ► SHA-1 still allowed for in-protocol signatures in TLS, SSH (used by more than 3% of Alexa top 1M servers)
- ► HMAC-SHA-1 ciphersuites (TLS) still used by more than 8% of Alexa top 1M servers
- Probably a lot of more obscure protocols ...
 (EMV credit cards use weird SHA-1 signatures)

Another push is needed to accelerate the retirement of SHA-1

Identical-prefix collision attack

The SHA-1 Hash Function

The attacker is first challenged with **one prefix** P and its goal is to compute two messages Mand M' to create the **collision** H(P||M) = H(P||M'), where || denotes concatenation

What are identical-prefix collisions?

Identical-prefix collision attack

The attacker is first challenged with **one prefix** P and its goal is to compute two messages M and M' to create the **collision** H(P||M) = H(P||M'), where || denotes concatenation

What are identical-prefix collisions?

Identical-prefix collision attack

The attacker is first challenged with **one prefix** P and its goal is to compute two messages M and M' to create the **collision** H(P||M) = H(P||M'), where || denotes concatenation

The colliding blocks will be almost random looking, but any prefix or suffix can be used (as long as no difference inserted)

- breaks integrity
- ▶ colliding PDFs (see SHAttered for SHA-1 [SBK+-CRYPTO17])

Chosen-prefix collision attack

The SHA-1 Hash Function

The attacker is first challenged with **two message prefixes** P and P', and its goal is to compute two messages M and M' to create the **collision** H(P||M) = H(P'||M'), where || denotes concatenation

Chosen-prefix collision attack

The SHA-1 Hash Function

The attacker is first challenged with **two message prefixes** P and P', and its goal is to compute two messages M and M' to create the **collision** H(P||M) = H(P'||M'), where || denotes concatenation

What are chosen-prefix collisions?

Chosen-prefix collision attack

The SHA-1 Hash Function

The attacker is first challenged with **two message prefixes** P and P', and its goal is to compute two messages M and M' to create the **collision** H(P||M) = H(P'||M'), where || denotes concatenation

Much more powerful and much harder than an identical-prefix collision

- ▶ breaks certificates (Rogue CA [SSA+-CRYPTO09]
- breaks TLS, SSH (SLOTH attack [BL-NDSS16])

Our results

1 - Complexity improvements (factor 8 \sim 10)

- ▶ identical-prefix collision from 2^{64.7} to 2^{61.2} (11 kUS\$ in GPU rental)
- chosen-prefix collision from 2^{67.1} to 2^{63.4}
 (45 kUS\$ in GPU rental)

2 - Record computation

The SHA-1 Hash Function

- implementation of the full (very technical) attack
- ▶ 2 months of computation using 900 GPU (GTX 1060)

3 - PGP Web-of-Trust impersonation

- ▶ 2 keys with different IDs and colliding certificates
- certification signature can be copied to the second key

The **Web of Trust** is a trust model used for PGP that relies on users signing each other's identity certificate, instead of using a central PKI. For compatibility reasons the legacy branch of GnuPG (version 1.4) still uses SHA-1 by default for identity certification.

Our Results

Idea:

- create a pair of keys with two different UserIDs: victim name (A) and attacker name (B)

Idea:

- create a pair of keys with two different UserIDs : victim name (A) and attacker name (B)
- using a chosen-prefix collision, we craft the keys such that the SHA-1 hash that is signed for the key certification is the same for both keys.

Our Results

Idea:

- create a pair of keys with two different UserIDs: victim name (A) and attacker name (B)
- collide key certifications
- the attacker asks for key certifications of key B : since he knows the corresponding secret key, and the UserID matches his official ID, he will collect trust-worthy signatures and integrate the web-of-trust.

Our Results

Idea:

- create a pair of keys with two different UserIDs: victim name (A) and attacker name (B)
- collide key certifications
- the attacker asks for key certifications of key B : since he knows the corresponding secret key, and the UserID matches his official ID, he will collect trust-worthy signatures and integrate the web-of-trust.

Our Results

Idea:

- create a pair of keys with two different UserIDs: victim name (A) and attacker name (B)
- collide key certifications
- integrate web of trust with UserID B
- since the hash of both keys collide, he can transplant the signatures to key A, creating a key with the UserID of the victim, trusted by the web-of-trust, and for which he controls the secret key. He can then sign messages pretending to be the victim.

Impact of our attack

GnuPG

CVE-2019-14855 : a countermeasure has been implemented since GnuPG version 2.2.18 (November 2019). SHA-1-based identity signatures created after 2019-01-19 are now considered invalid.

OpenSSL

Recent OpenSSL versions no longer allow X.509 certificates signed using SHA-1 at security level 1 (default configuration for TLS/SSL) and above

OpenSSH

Latest versions of OpenSSH (since 8.2) include a "future deprecation notice" explaining that SHA-1 signatures will be disabled in the near-future

... and more. Please check https://sha-mbles.github.io/

Conclusion

If you didn't know it already

DON'T USE SHA-1! Use SHA-2 or SHA-3 instead.

What about HMAC-SHA-1?

Our attack doesn't apply to HMAC-SHA-1, but we still advise to move to another hash function. SHA-1 has been dead for 15 years now, time to move on!

On security margin

Deprecating a cryptographic primitive is incredibly complex, long and painful : don't underestimate the importance of security margin in crypto designs.

64-bit security = no security

2⁶⁴ is now a feasible computation, even if you are not the NSA or Google

Thanks for watching this presentation!

Contact:

```
gaetan.leurent@inria.fr
thomas.peyrin@ntu.edu.sg
```

Why chosen-prefix collisions are interesting? Colliding SSL certificates [SLW-EUROCR.07] :

REAL CERTIFICATE ROGUE CERTIFICATE serial number serial number identical validity period validity period real cert roque cert different domain name domain name different real cert real cert RSA kev RSA kev identical extensions extensions signature signature

Result 1 - Complexity improvements

- 1. **Prefix**: Compute $CV_1 = h(IV, P)$ and $CV_1' = h(IV, P')$
- 2. Birthday phase : Find M, M' such that $H(P \parallel M) H(P' \parallel M') \in S$
- 3. Near-collision phase: Erase the state difference, using near-collision blocks

Complexity improved from $\approx 2^{67}$ [LP-EUROC.19] to $2^{63} \sim 2^{64}$

Result 2 - Record computation

- Running the attack on Amazon/Google cloud GPU is estimated to cost 160 kUS\$ (spot/preemptible instances)
- ► After cryptocurrency crash in 2018, cheap GPU farms to rent!
 - 3-4 times cheaper 45 kUS\$ with current public prices on gpuserversrental.com
 - Gaming or mining-grade GTX cards (rather than Tesla)
 - Low-end CPUs

The SHA-1 Hash Function

- Slow internet link
- 👎 No cluster management
- Pay by month, not on-demand

Pricing fluctuates with cryptocurrencies markets, we didn't get optimal prices (the actual computation costed us 75 kUS\$)

Result 2 - Record computation

Pricing fluctuates with cryptocurrencies markets, we didn't get optimal prices (the actual computation costed us 75 kUS\$)

September 27: The First SHA-1 Chosen-prefix Collision

The SHA-1 Hash Function

96 birthday bits

Message A

9 near-coll. blocks

99040d047fe81780012000ff4b65792069732070617274206f66206120636f6c 6c6973696f6e2120497427732061207472617021 <mark>79c61af0afcc054515d9274e</mark>	990304047fe81780011800ff50726163746963616c205348412d312063686f73 656e2470726566697820636f6c6c6973696f6e21 <mark>1d276c6ba661e1040e1f7d7</mark> 6
7307624b1dc7fb23988bb8de8b575dba7b9eab31c1674b6d974378a827732ff5	7f076249ddc7fb332c8bb8c2b7575dbec79eab2be1674b7db34378b4cb732fe1
851c76a2e60772b5a47ce1eac40bb993c12d8c70e24a4f8d5fcdedc1b32c9cf1	891c76a0260772a5107ce1f6e80bb9977d2d8c68524a4f9d5fcdedcd0b2c9ce1
9e31af2429759d42e4dfdb31719f587623ee552939b6dcdc459fca53553b70f8	9231af26e9759d5250dfdb2d4d9f58729fee553319b6dccc619fca4fb93b70ec
7ede30a247ea3af6c759a2f20b320d760db64ff479084fd3ccb3cdd48362d96a	72de30a087ea3ae67359a2ee27320d72b1b64fecc9084fc3ccb3cdd83b62d97a
9c430617caff6c36c637e53fde28417f626fec54ed7943a46e5f5730f2bb38fb	904306150aff6c267237e523e228417bde6fec4ecd7943b44a5f572c1ebb38ef
1df6e0090010d00e24ad78bf92641993608e8d158a789f34c46fe1e6027f35a4	11f6e00bc010d01e90ad78a3be641997dc8e8d0d3a789f24c46fe1eaba7f35b4
cbfb827076c50eca0e8b7cca69bb2c2b790259f9bf9570dd8d4437a3115faff7	c7fb8272b6c50edaba8b7cd655bb2c2fc50259e39f9570cda94437bffd5fafe3
c3cac09ad25266055c27104755178eaeff825a2caa2acfb5de64ce7641dc59a5	cfcac09812526615e827105b79178eaa43825a341a2acfa5de64ce7af9dc59b5
41a9fc9c756756e2e23dc713c8c24c9790aa6b0e38a7f55f14452a1ca2850ddd	4da9fc9eb56756f2563dc70ff4c24c932caa6b1418a7f54f30452a004e850dc9
9562fd9a18ad42496aa97008f74672f68ef461eb88b09933d626b4f918749cc0	9962fd98d8ad4259dea97014db4672f232f461f338b09923d626b4f5a0749cd0
27fddd6c425fc4216835d0134d15285bab2cb784a4f7cbb4fb514d4bf0f6237c	2bfddd6e825fc431dc35d00f7115285f172cb79e84f7cba4df514d571cf62368
f00a9e9f132b9a066e6fd17f6c42987478586ff651af96747fb426b9872b9a88	fc0a9e9dd32b9a16da6fd16340429870c4586feee1af96647fb426b53f2b9a98
e4063f59bb334cc00650f83a80c42751b71974d300fc2819a2e8f1e32c1b51cb	e8063f5b7b334cd0b250f826bcc427550b1974c920fc280986e8f1ffc01b51df
18e6bfc4db9baef675d4aaf5b1574a047f8f6dd2ec153a93412293974d928f88	14e6bfc61b9baee6c1d4aae99d574a00c38f6dca5c153a834122939bf5928f98
ced9363cfef97ce2e742bf34c96b8ef3875676fea5cca8e5f7dea0bab2413d4d	c2d9363e3ef97cf25342bf28f56b8ef73b5676e485cca8f5d3dea0a65e413d59
e00ee71ee01f162bdb6d1eafd925e6aebaae6a354ef17cf205a404fbdb12fc45	ec0ee71c201f163b6f6d1eb3f525e6aa06ae6a2dfef17ce205a404f76312fc55
4d41fdd95cf2459664a2ad032d1da60a73264075d7f1e0d6c1403ae7a0d861df	4141fddb9cf24586d0a2ad1f111da60ecf26406ff7f1e0c6e5403afb4cd861cb
3fe5707188dd5e07d1589b9f8b6630553f8fc352b3e0c27da80bddba4c64020d	33e5707348dd5e1765589b83a7663051838fc34a03e0c26da80bddb6f464021d

Message B

18 / 19

Impact of our attack (2)

DNSSEC

SHA-1 remains used in DNSSEC, with 18% of top-level domains using SHA-1 signatures : anyone using a SHA-1 DNSKEY algorithm should upgrade - see related page from Tony Finch or IETF related discussions for more details

X.509 certificates

X.509 certificates could be broken (Rogue CA [SSA+-CRYPTO09]) **if some CAs issue** SHA-1 **certificates with predictable serial numbers**

TLS and SSH

TLS and SSH connections using SHA-1 signatures to authenticate the handshake could be attacked with the SLOTH attack [BL-NDSS16] if the chosen-prefix collision can be generated extremely quickly (within seconds or minutes)