Feuille de TD 4 : suites récurrentes

Exercice 1. Soient $a, b \in \mathbb{R}$, avec $a \neq 1$. On considère une suite (u_n) telle que $u_{n+1} = au_n + b$ pour tout $n \in \mathbb{N}$.

- (a) Quelle est la seule limite réelle possible pour la suite (u_n) ? On la note ℓ dans la suite.
- (b) On pose $v_n = u_n \ell$ pour tout $n \in \mathbb{N}$. Vérifier que (v_n) est une suite géométrique.
- (c) Pour quelles valeurs du paramètre a la suite (u_n) converge-t-elle?
- (d) Application. On part d'un carré blanc de côté 1. On le partage en 9 carrés de même taille et on colorie le carré central. Pour chacun des petits carrés non coloriés, on réitère le procédé. On note u_n l'aire coloriée après n étapes. Prouver que la suite (u_n) converge et calculer sa limite.

Exercice 2. On s'intéresse à une suite complexe (u_n) telle que $u_{n+1} = \frac{3u_n - 2\overline{u_n}}{5}$ pour tout $n \in \mathbb{N}$. Prouver que (u_n) converge et calculer sa limite.

Exercice 3. On s'intéresse à la suite (u_n) telle que $u_0 = 2$ et $u_{n+1} = u_n^2 + 2$ pour tout $n \in \mathbb{N}$.

- (a) Vérifier que la suite est bien définie.
- (b) Représenter graphiquement cette suite récurrente.
- (c) Prouver que (u_n) est strictement croissante.
- (d) Démontrer que (u_n) tend vers $+\infty$.

Exercice 4. On s'intéresse à la suite (u_n) telle que $u_0 = 1$ et $u_{n+1} = \sin(u_n)$ pour tout $n \in \mathbb{N}$.

- (a) Vérifier que la suite est bien définie.
- (b) Représenter graphiquement cette suite récurrente.
- (c) Montrer que l'intervalle [0, 1] est stabilisé par la fonction sinus.
- (d) Prouver que (u_n) est décroissante.
- (e) Montrer que (u_n) converge et calculer sa limite.

Exercice 5. Soit $a \in \mathbb{R}$. On s'intéresse à la suite (u_n) telle que $u_0 = a$ et $u_{n+1} = \sqrt{u_n + 1}$ pour tout $n \in \mathbb{N}$.

- (a) Pour quels réels a cette suite est-elle bien définie?
- (b) Si (u_n) converge, quels sont les limites possibles?
- (c) Etudier la convergence en fonction du paramètre a.

Exercice 6. Soit $f(x) = \frac{2}{1+x}$, pour $x \neq -1$. On s'intéresse à la suite (u_n) telle que $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- (a) Représenter graphiquement cette suite récurrente.
- (b) Montrer que l'intervalle [1/2, 2] est stabilisé par la fonction f.
- (c) Quelles sont les limites possibles pour la suite (u_n) ?
- (d) Démontrer que (u_n) converge et estimer la vitesse de convergence.
- (e) Que dire des sens de variation de (u_{2n}) et (u_{2n+1}) ?

Exercice 7. Soit a > 0. On considère une suite (u_n) telle que $u_0 > 0$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n}{2} + \frac{a}{2u_n}.$$

(C'est la méthode de Newton pour approcher les solutions de $x^2 = a$.)

- (a) Prouver que pour $n \ge 1$, $u_n \ge \sqrt{a}$.
- (b) Montrer que $(u_n)_{n\geq 1}$ est décroissante.
- (c) Prouver que (u_n) converge vers \sqrt{a} .
- (d) Démontrer l'estimation d'erreur : $u_n \sqrt{a} = O(10^{-2^n})$ quand $n \to +\infty$. Indication : poser $\epsilon_n = \frac{u_n - \sqrt{a}}{2\sqrt{a}}$ et trouver une inégalité simple entre ϵ_{n+1} et ϵ_n .