# Making Causal Critiques Day 1 - Deconstructing an Argument

Jonathan Phillips

January 27, 2019

► Political science is about *explaining* outcomes

- ► Political science is about *explaining* outcomes
  - ▶ Do parliamentary systems last longer than presidential ones?

- ► Political science is about *explaining* outcomes
  - Do parliamentary systems last longer than presidential ones?
  - Does development lead to democracy?

- ► Political science is about *explaining* outcomes
  - Do parliamentary systems last longer than presidential ones?
  - Does development lead to democracy?
  - Does democracy prevent war?

- ► Political science is about *explaining* outcomes
  - Do parliamentary systems last longer than presidential ones?
  - Does development lead to democracy?
  - Does democracy prevent war?
  - ► Did voters support President Trump because of jobs lost to immigration?

► What is a causal critique?

Do parliamentary systems last longer than presidential ones?

"No, Parliamentary systems last longer because they are in Europe, not because they are parliamentary"

| Do parliamentary systems last longer than presidential ones? | "No, Parliamentary systems last longer because they are in Europe, not because they are parliamentary" |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Does development lead to democracy?                          | "No, democracy causes development"                                                                     |

| Do parliamentary systems last longer than presidential ones? | "No, Parliamentary systems last longer because they are in Europe, not because they are parliamentary" |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Does development lead to democracy?                          | "No, democracy causes development"                                                                     |
| Does democracy prevent war?                                  | "Of course not, India and<br>Pakistan were democra-<br>cies and had a war in<br>1999"                  |

Introduction

| Do parliamentary systems last longer than presidential ones? | "No, Parliamentary systems last longer because they are in Europe, not because they are parliamentary" |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Does development lead                                        | "No, democracy causes                                                                                  |
| to democracy?                                                | development"                                                                                           |
| Does democracy prevent war?                                  | "Of course not, India and<br>Pakistan were democra-<br>cies and had a war in<br>1999"                  |
| Did voters support                                           | "Obviously not, jobs were                                                                              |
| President Trump because                                      | lost to technological                                                                                  |
| of jobs lost to immigration?                                 | change"                                                                                                |

- ► What is a causal critique?
  - ► A comment at a seminar

- What is a causal critique?
  - ► A comment at a seminar
  - A critique of a policy

- What is a causal critique?
  - ► A comment at a seminar
  - A critique of a policy
  - A response as a journal referee

- What is a causal critique?
  - A comment at a seminar
  - A critique of a policy
  - A response as a journal referee
  - Advice to a friend

- What is a causal critique?
  - A comment at a seminar
  - A critique of a policy
  - A response as a journal referee
  - Advice to a friend
  - ► A worry about your own research paper

- ► Explanation requires:
  - 1. Theory
  - 2. Evidence

► You plug your laptop in but it does not charge

- ► You plug your laptop in but it does not charge
- ► You wiggle all the wires a few times and it starts to charge

- You plug your laptop in but it does not charge
- ► You wiggle all the wires a few times and it starts to charge
- ► So we have a solution, but do we have an *explanation* for why it stopped working?

- ► You plug your laptop in but it does not charge
- ► You wiggle all the wires a few times and it starts to charge
- ► So we have a solution, but do we have an *explanation* for why it stopped working?
- ► No! We do not know if the laptop, the charger, the adapter or the socket is the problem. We do not have a *theory* to support our solution

- You plug your laptop in but it does not charge
- ► You wiggle all the wires a few times and it starts to charge
- So we have a solution, but do we have an explanation for why it stopped working?
- No! We do not know if the laptop, the charger, the adapter or the socket is the problem. We do not have a *theory* to support our solution
- Next time the laptop fails to charge, our wiggling might not be enough and we won't know how to fix it

► How would we make an argument to explain why the laptop did not charge?

- ► How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - ► This hypothesis is backed by **theory** that faulty electricity supply in the socket prevents the laptop from charging

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - ► This hypothesis is backed by **theory** that faulty electricity supply in the socket prevents the laptop from charging
- ▶ What evidence can we gather to test the theory?

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - ➤ This hypothesis is backed by **theory** that faulty electricity supply in the socket prevents the laptop from charging
- What evidence can we gather to test the theory?
  - Try connecting the laptop to a different socket

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - This hypothesis is backed by theory that faulty electricity supply in the socket prevents the laptop from charging
- What evidence can we gather to test the theory?
  - Try connecting the laptop to a different socket
  - If the laptop charges, we have support for our theory (evidence)

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - ► This hypothesis is backed by **theory** that faulty electricity supply in the socket prevents the laptop from charging
- What evidence can we gather to test the theory?
  - Try connecting the laptop to a different socket
  - If the laptop charges, we have support for our theory (evidence)
  - If the laptop does not charge, we have less support for our theory (evidence)

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - This hypothesis is backed by theory that faulty electricity supply in the socket prevents the laptop from charging
- What evidence can we gather to test the theory?
  - Try connecting the laptop to a different socket
  - If the laptop charges, we have support for our theory (evidence)
  - If the laptop does not charge, we have less support for our theory (evidence)
  - Note we cannot reject the theory it may be that both sockets are broken

Introduction

- How would we make an argument to explain why the laptop did not charge?
  - We might focus on checking if the socket is working (a Hypothesis)
  - This hypothesis is backed by theory that faulty electricity supply in the socket prevents the laptop from charging
- What evidence can we gather to test the theory?
  - Try connecting the laptop to a different socket
  - If the laptop charges, we have support for our theory (evidence)
  - If the laptop does not charge, we have less support for our theory (evidence)
  - Note we cannot reject the theory it may be that both sockets are broken
- We can design other tests to check the laptop, charger, adapter etc.

► Some tests are more informative than others

- ► Some tests are more informative than others
  - If your friend plugs their own laptop and charger into the socket and it charges fine, we can rule out the socket being a problem

- ► Some tests are more informative than others
  - If your friend plugs their own laptop and charger into the socket and it charges fine, we can rule out the socket being a problem
  - But we still do not know if your own laptop or charger are the problem

- ► Some tests are more informative than others
  - If your friend plugs their own laptop and charger into the socket and it charges fine, we can rule out the socket being a problem
  - But we still do not know if your own laptop or charger are the problem
- We need to design tests that distinguish between specific theories

- ► Theory on its own is not enough
  - There are always many possible reasons for any single outcome

- Theory on its own is not enough
  - There are always many possible reasons for any single outcome
- Evidence on its own is not enough
  - The same evidence can be consistent with many possible mechanisms

- Theory on its own is not enough
  - There are always many possible reasons for any single outcome
- Evidence on its own is not enough
  - The same evidence can be consistent with many possible mechanisms
- Explanation requires evidence that supports a specific theory
  - And rejects other theories

► Types of Tests (Collier 2011):

- ► Types of Tests (Collier 2011):
  - 1. **Straw-in-the-Wind test**: Can raise or lower support for a hypothesis, but not confirm or reject

- ► Types of Tests (Collier 2011):
  - 1. **Straw-in-the-Wind test**: Can raise or lower support for a hypothesis, but not confirm or reject
  - 2. Hoop Test: Can reject a hypothesis but not confirm

- ► Types of Tests (Collier 2011):
  - 1. **Straw-in-the-Wind test**: Can raise or lower support for a hypothesis, but not confirm or reject
  - 2. Hoop Test: Can reject a hypothesis but not confirm
  - 3. **Smoking Gun Test**: Can confirm a hypothesis but not reject

- ► Types of Tests (Collier 2011):
  - 1. **Straw-in-the-Wind test**: Can raise or lower support for a hypothesis, but not confirm or reject
  - 2. Hoop Test: Can reject a hypothesis but not confirm
  - 3. **Smoking Gun Test**: Can confirm a hypothesis but not reject
  - 4. **Doubly Decisive Test**: Can confirm a hypothesis and reject all other hypotheses

- ► Returning to our laptop charger puzzle...
  - 1. **Straw-in-the-Wind test**: If we turn the lights on to check if there is power to the building in general

- Returning to our laptop charger puzzle...
  - 1. **Straw-in-the-Wind test**: If we turn the lights on to check if there is power to the building in general
  - 2. **Hoop Test**: If we test the laptop in another in another socket to make sure it works

- ► Returning to our laptop charger puzzle...
  - Straw-in-the-Wind test: If we turn the lights on to check if there is power to the building in general
  - Hoop Test: If we test the laptop in another in another socket to make sure it works
  - 3. **Smoking Gun Test**: If we test the charger to see if it fails in another socket

- ► Returning to our laptop charger puzzle...
  - Straw-in-the-Wind test: If we turn the lights on to check if there is power to the building in general
  - 2. **Hoop Test**: If we test the laptop in another in another socket to make sure it works
  - Smoking Gun Test: If we test the charger to see if it fails in another socket
  - 4. **Doubly Decisive Test**: If we test the charger with an entirely new socket and laptop that we have checked work

- ► What caused the reduction in price variation in Kerala's fishing industry?
- ► **Hypothesis:** The introduction of mobile phone service
- ► Theory: Mobile phones allowed people to quickly share the price of fish in different villages, so fishermen got the best prices more consistently
  - ▶ Jensen et al (2007)
  - A 'smoking gun' test



Spread of Mobile Phone Coverage in Kasaragod, Kannur, and Kozhikode Districts



Prices and Mobile Phone Service in Kerala

► Gathering evidence in political science is particularly hard:

- ► Gathering evidence in political science is particularly hard:
  - 1. Humans are complex and unpredictable, unlike the natural sciences

- ► Gathering evidence in political science is particularly hard:
  - Humans are complex and unpredictable, unlike the natural sciences
  - Societies are even more complex interactions of millions of humans

- ► Gathering evidence in political science is particularly hard:
  - Humans are complex and unpredictable, unlike the natural sciences
  - Societies are even more complex interactions of millions of humans
  - 3. Everyone has an opinion, including researchers

- ► Gathering evidence in political science is particularly hard:
  - Humans are complex and unpredictable, unlike the natural sciences
  - Societies are even more complex interactions of millions of humans
  - 3. Everyone has an opinion, including researchers
  - 4. Ethical constraints on the data we can gather

- ► Gathering evidence in political science is particularly hard:
  - Humans are complex and unpredictable, unlike the natural sciences
  - Societies are even more complex interactions of millions of humans
  - 3. Everyone has an opinion, including researchers
  - 4. Ethical constraints on the data we can gather
  - 5. Political explanations in one place may not work in another

► Given the complexity of the real world, there are few causes which are **deterministic** 

- ► Given the complexity of the real world, there are few causes which are **deterministic**
- ► Most causes operate only if certain other hard-to-measure conditions are in place

- ► Given the complexity of the real world, there are few causes which are **deterministic**
- ► Most causes operate only if certain other hard-to-measure conditions are in place
- ► That means we need to treat causation as **probabilistic**

- ► Given the complexity of the real world, there are few causes which are **deterministic**
- ► Most causes operate only if certain other hard-to-measure conditions are in place
- ► That means we need to treat causation as **probabilistic** 
  - The presence of a cause does not guarantee an outcome
  - ▶ But raises the probability of an outcome

- Given the complexity of the real world, there are few causes which are deterministic
- ► Most causes operate only if certain other hard-to-measure conditions are in place
- ► That means we need to treat causation as **probabilistic** 
  - ► The presence of a cause does not guarantee an outcome
  - ▶ But raises the probability of an outcome
- ► For example, a left-wing party in government may not guarantee the passage of social welfare legislation
- ▶ But it can make it more likely

➤ To be good causal explanations, theories need to be logically consistent

- ➤ To be good causal explanations, theories need to be logically consistent
- Once we establish some premises, the conclusion should follow automatically
  - ► All policemen wear hats. This person is a policeman. Therefore this person is wearing a hat.

- ➤ To be good causal explanations, theories need to be logically consistent
- Once we establish some premises, the conclusion should follow automatically
  - All policemen wear hats. This person is a policeman. Therefore this person is wearing a hat.
  - If it's true that all policemen wear hats and this person is a policeman, then it must be true - by logic - that this person is wearing a hat

- ➤ To be good causal explanations, theories need to be logically consistent
- Once we establish some premises, the conclusion should follow automatically
  - All policemen wear hats. This person is a policeman. Therefore this person is wearing a hat.
  - If it's true that all policemen wear hats and this person is a policeman, then it must be true - by logic - that this person is wearing a hat
  - ► Formally:  $\forall p : h, p \Rightarrow h$

► Many explanations are **not** logically consistent:

- Many explanations are **not** logically consistent:
  - All policemen wear hats. This person is wearing a hat. Therefore this person is a policeman.

- ► Many explanations are **not** logically consistent:
  - All policemen wear hats. This person is wearing a hat. Therefore this person is a policeman.
  - ►  $\forall p: h, \Rightarrow p$
  - ► This is logically inconsistent

► Logical Fallacies

- ► Logical Fallacies
  - 1. False syllogism: Conclusions do not follow from premises
    - ► Eg. Some cats are black. Some black things are televisions. Therefore some cats are televisions.

- ► Logical Fallacies
  - 1. **False syllogism**: Conclusions do not follow from premises
    - Eg. Some cats are black. Some black things are televisions.
       Therefore some cats are televisions.
  - False dichotomy: Restricting the possible options to only two
    - ► Eq. "Either we attack them first or they attack us first"

- Logical Fallacies
  - 1. **False syllogism**: Conclusions do not follow from premises
    - Eg. Some cats are black. Some black things are televisions.
       Therefore some cats are televisions.
  - False dichotomy: Restricting the possible options to only two
    - Eg. "Either we attack them first or they attack us first"
  - 3. **Circular reasoning**: The conclusions just restate the premises
    - Eg. "Abortion should be legal because women have the right to an abortion."

► Logical Fallacies

- Logical Fallacies
  - 4. **Over-generalization**: Extending the conclusions beyond the scope of the evidence
    - ► Eg. "All of my friends support party X so of course they will win the election"

- Logical Fallacies
  - 4. **Over-generalization**: Extending the conclusions beyond the scope of the evidence
    - Eg. "All of my friends support party X so of course they will win the election"
  - Post hoc Fallacy: Just because something happened earlier does not mean it was the cause
    - Eg. "You moved into this apartment yesterday and now the cooker is broken. It must be your fault."

- Logical Fallacies
  - 4. **Over-generalization**: Extending the conclusions beyond the scope of the evidence
    - Eg. "All of my friends support party X so of course they will win the election"
  - Post hoc Fallacy: Just because something happened earlier does not mean it was the cause
    - Eg. "You moved into this apartment yesterday and now the cooker is broken. It must be your fault."
  - Appeal to Authority: Assuming the author is right because they are senior
    - Eg. Assuming that political science professors know what they are doing!

- ► Logical Fallacies
  - 7. **Fallacy of Composition**: Extending what is true of part to being true of the whole

- ► Logical Fallacies
  - 7. **Fallacy of Composition**: Extending what is true of part to being true of the whole
    - Eg. "If someone stands up at a football match, they can see better. Therefore, if everyone stands up, they can all see better."

- ► Some political science arguments are logically inconsistent:
  - Voters are rational they choose the politician that is best for them. Therefore we always elect the best politicians.

► How to read a political science paper:

- ► How to read a political science paper:
  - Actively, intentionally

- ► How to read a political science paper:
  - Actively, intentionally
  - Not like a Harry Potter book!

- How to read a political science paper:
  - Actively, intentionally
  - Not like a Harry Potter book!
  - ► Read the abstract, conclusion, charts many times

- ► How to read a political science paper:
  - Actively, intentionally
  - Not like a Harry Potter book!
  - Read the abstract, conclusion, charts many times
  - Look for keywords: "We can conclude that...", "Our argument is that..."

- ► How to read a political science paper:
  - Actively, intentionally
  - Not like a Harry Potter book!
  - Read the abstract, conclusion, charts many times
  - ► Look for keywords: "We can conclude that...", "Our argument is that..."
  - ► Make notes *only* of what you have learnt

- ► How to read a political science paper:
  - Actively, intentionally
  - Not like a Harry Potter book!
  - Read the abstract, conclusion, charts many times
  - Look for keywords: "We can conclude that...", "Our argument is that..."
  - Make notes only of what you have learnt
  - Summarize the paper in your own words

► Before we can critique an argument we have to understand its content

- ► Before we can critique an argument we have to understand its content
  - What concepts it uses

- ► Before we can critique an argument we have to understand its content
  - What concepts it uses
  - How those concepts are measured

- Before we can critique an argument we have to understand its content
  - What concepts it uses
  - How those concepts are measured
  - What theory connects the concepts

- Before we can critique an argument we have to understand its content
  - What concepts it uses
  - How those concepts are measured
  - What theory connects the concepts
  - Where did the evidence (data) come from?

- Before we can critique an argument we have to understand its content
  - What concepts it uses
  - How those concepts are measured
  - What theory connects the concepts
  - Where did the evidence (data) come from?
  - What methodology produced the evidence?

- Before we can critique an argument we have to understand its content
  - What concepts it uses
  - How those concepts are measured
  - What theory connects the concepts
  - Where did the evidence (data) come from?
  - What methodology produced the evidence?
  - What is the scope of the argument's application?

► Elements of a political science paper:

- ► Elements of a political science paper:
  - Research question the authors are engaging with a specific literature/puzzle

- ► Elements of a political science paper:
  - Research question the authors are engaging with a specific literature/puzzle
  - Answer/Causal argument "We argue that D increases Y"

- Elements of a political science paper:
  - specific literature/puzzle
  - Answer/Causal argument "We argue that D increases Y"
  - Scope of argument Does the argument apply only to democracies, Asian countries, since World War II, only to women?

Research question - the authors are engaging with a

► Elements of a political science paper:

- ► Elements of a political science paper:
  - Concepts/Variables What political factors do the authors think matter?

- ► Elements of a political science paper:
  - Concepts/Variables What political factors do the authors think matter?
  - ▶ **Measures** What factors do the authors actually measure?

- ► Elements of a political science paper:
  - Concepts/Variables What political factors do the authors think matter?
  - Measures What factors do the authors actually measure?
  - ► **Units of Analysis** At what level are these measures taken; individuals, countries, city-years?

- ► Elements of a political science paper:
  - Concepts/Variables What political factors do the authors think matter?
  - Measures What factors do the authors actually measure?
  - Units of Analysis At what level are these measures taken; individuals, countries, city-years?
  - ► **Role of Variables** Which is the outcome variable and which the explanatory? What controls are used?

► Elements of a political science paper:

- Elements of a political science paper:
  - ► **Theory** What social, economic or psychological process links the explanatory and outcome variables?

- Elements of a political science paper:
  - ► **Theory** What social, economic or psychological process links the explanatory and outcome variables?
  - Methodology What strategy do the authors use to gather evidence to evaluate the theory?

Introduction Effective argument Consistent Theories Deconstructing Papers Fundamental Critiques

#### Deconstructing a Political Science Paper

- Elements of a political science paper:
  - links the explanatory and outcome variables?

    Methodology What strategy do the authors use to gather

Theory - What social, economic or psychological process

- Methodology What strategy do the authors use to gather evidence to evaluate the theory?
- ► **Evidence** What evidence does the methodology produce?

| Title:            |                         |          |                                              |                             |                        |  |
|-------------------|-------------------------|----------|----------------------------------------------|-----------------------------|------------------------|--|
| Authors:          |                         |          |                                              |                             | Year:                  |  |
| Research Question | 1:                      |          |                                              |                             |                        |  |
| Answer/Causal Ar  | gument:                 |          |                                              |                             |                        |  |
| Scope of Argumen  | t (in Time, Space, Demo | graphics | etc.)                                        | ):                          |                        |  |
| Concept/Variable  | Measure                 | Unit     | Unit of Analysis                             |                             | Role (DV, XV, Control) |  |
|                   |                         |          |                                              |                             |                        |  |
|                   |                         |          |                                              |                             |                        |  |
|                   |                         |          |                                              |                             |                        |  |
| -1                |                         |          |                                              | -414-1                      | _                      |  |
| Theory:           |                         |          | Methodology:  Case Study, Process Tracing    |                             |                        |  |
|                   |                         |          | Comparative Cases                            |                             |                        |  |
|                   |                         |          | Regression with Controls                     |                             |                        |  |
|                   |                         |          | ☐ Matching                                   |                             |                        |  |
| Evidence:         |                         |          |                                              | Field Experiment            |                        |  |
| Evidence:         |                         |          | □ Lab/Survey Experiment                      |                             |                        |  |
|                   |                         |          | ■ Natural Experiment ■ Instrumental Variable |                             |                        |  |
|                   |                         |          | Regression Discontinuity                     |                             |                        |  |
|                   |                         |          |                                              | ☐ Difference-in-Differences |                        |  |

# Concepts and Measures

► Conceptual Validity - Competitive authoritarianism vs. Illiberal Democracy

Introduction Effective argument Consistent Theories Deconstructing Papers Fundamental Critiques

- Conceptual Validity Competitive authoritarianism vs. Illiberal Democracy
  - Concepts must differentiate
  - But avoid conceptual stetching!

- Conceptual Validity Competitive authoritarianism vs. Illiberal Democracy
  - Concepts must differentiate
  - But avoid conceptual stetching!
  - We can move "up and down the ladder of generality" (Sartori)
  - ► Eq. "competitive regimes" may not be democracies

duction Effective argument Consistent Theories Deconstructing Papers **Fundamental Critiques** 

- Conceptual Validity Competitive authoritarianism vs. Illiberal Democracy
  - Concepts must differentiate
  - But avoid conceptual stetching!
  - ► We can move "up and down the ladder of generality" (Sartori)
  - ► Eg. "competitive regimes" may not be democracies
- ► Measurement Validity when scores "meaningfully capture the ideas contained in the corresponding concept"

ntroduction Effective argument Consistent Theories Deconstructing Papers **Fundamental Critiques** 

- Conceptual Validity Competitive authoritarianism vs. Illiberal Democracy
  - ► Concepts must differentiate
  - But avoid conceptual stetching!
  - We can move "up and down the ladder of generality" (Sartori)
  - ► Eg. "competitive regimes" may not be democracies
- Measurement Validity when scores "meaningfully capture the ideas contained in the corresponding concept"
  - Does the scale make sense? Is democracy binary or continuous?

luction Effective argument Consistent Theories Deconstructing Papers **Fundamental Critiques** 

- Conceptual Validity Competitive authoritarianism vs. Illiberal Democracy
  - Concepts must differentiate
  - But avoid conceptual stetching!
  - ► We can move "up and down the ladder of generality" (Sartori)
  - ► Eg. "competitive regimes" may not be democracies
- Measurement Validity when scores "meaningfully capture the ideas contained in the corresponding concept"
  - Does the scale make sense? Is democracy binary or continuous?
  - Are the cases (units) scored correctly? How reliable is the scoring?



▶ Where did the dataset come from?

- ▶ Where did the dataset come from?
  - Sampling strategy

- Where did the dataset come from?
  - Sampling strategy
  - Questionnaire and survey protocol

- Where did the dataset come from?
  - Sampling strategy
  - Questionnaire and survey protocol
  - ► Measurement error

- ▶ Where did the dataset come from?
  - Sampling strategy
  - Questionnaire and survey protocol
  - Measurement error
  - Data entry, cleaning

Introduction Effective argument Consistent Theories Deconstructing Papers Fundamental Critiques

- Where did the dataset come from?
  - Sampling strategy
  - Questionnaire and survey protocol
  - Measurement error
  - Data entry, cleaning
  - Statistics/statistical model chosen

ntroduction Effective argument Consistent Theories Deconstructing Papers Fundamental Critiques

- ▶ Where did the dataset come from?
  - Sampling strategy
  - Questionnaire and survey protocol
  - Measurement error
  - Data entry, cleaning
  - Statistics/statistical model chosen
- ▶ What was the "Data Generating Process"?
- ► How does this data help us answer the question?

► Methodologies for gathering evidence:

- Methodologies for gathering evidence:
- ► Observational Studies:
  - Case Study, Process Tracing

- ► Methodologies for gathering evidence:
- ► Observational Studies:
  - Case Study, Process Tracing
  - Comparative Cases

- ► Methodologies for gathering evidence:
- Observational Studies:
  - Case Study, Process Tracing
  - Comparative Cases
  - Regression with controls

Introduction Effective argument Consistent Theories Deconstructing Papers Fundamental Critiques

- Methodologies for gathering evidence:
- ► Observational Studies:
  - Case Study, Process Tracing
  - Comparative Cases
  - Regression with controls
  - Matching

► Methodologies for gathering evidence:

- ► Methodologies for gathering evidence:
- ► Experimental Studies:

- ► Methodologies for gathering evidence:
- Experimental Studies:
  - ► Field Experiment

- Methodologies for gathering evidence:
- Experimental Studies:
  - Field Experiment
  - ► Lab/Survey Experiment

Methodologies for gathering evidence:

- ► Methodologies for gathering evidence:
- ► Quasi-Experimental Studies:

- ► Methodologies for gathering evidence:
- ► Quasi-Experimental Studies:
  - ► Natural Experiment

- ► Methodologies for gathering evidence:
- ► Quasi-Experimental Studies:
  - Natural Experiment
  - ► Instrumental Variable

- ► Methodologies for gathering evidence:
- Quasi-Experimental Studies:
  - Natural Experiment
  - ► Instrumental Variable
  - Regression Discontinuity

- Methodologies for gathering evidence:
- Quasi-Experimental Studies:
  - Natural Experiment
  - Instrumental Variable
  - Regression Discontinuity
  - ► Difference-in-Differences

| Authors: Robert Putnam                                 |                                                                               |                  |                            | Year: 1993                  |                        |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------|------------------|----------------------------|-----------------------------|------------------------|--|
| -                                                      | 1: Why are some par                                                           | ts of I          | taly                       | governed                    | better than oth-       |  |
| ers?                                                   |                                                                               |                  |                            |                             |                        |  |
| Answer/Causal Ar                                       | gument: Places with                                                           | more             | e civ                      | ric social in               | teractions have        |  |
| better government                                      | t                                                                             |                  |                            |                             |                        |  |
| Scope of Argumen                                       | t (in Time, Space, Demogr                                                     | aphics           | etc.)                      | : Advanced                  | Democracies            |  |
| Concept/Variable                                       | Measure                                                                       | Unit of Analysis |                            |                             | Role (DV, XV, Control) |  |
| Civil Society                                          | Density of sports clubs,<br>newspapers, electoral<br>turnout                  | Region           |                            |                             | Explanatory Variable   |  |
| Government Perfor-<br>mance                            | 12 Indicators, eg. Budget<br>on time, number of day<br>care centres per child | Region           |                            |                             | Dependent Variable     |  |
| Wealth                                                 | GDP per capita                                                                | Region           |                            |                             | Control Variable       |  |
| Theory: Civic interactions between people Methodology: |                                                                               |                  |                            |                             |                        |  |
| and groups create trust and more                       |                                                                               |                  | 0                          | Case Study, Process Tracing |                        |  |
|                                                        |                                                                               |                  | ×                          | Comparative Cases           |                        |  |
|                                                        |                                                                               |                  | ☐ Regression with Controls |                             |                        |  |
|                                                        |                                                                               |                  | ☐ Matching                 |                             |                        |  |
|                                                        |                                                                               |                  | 0                          | ☐ Field Experiment          |                        |  |
| tutional rules and similar wealth but with             |                                                                               |                  | ☐ Lab/Survey Experiment    |                             |                        |  |
|                                                        |                                                                               |                  | <b>a</b>                   | ■ Natural Experiment        |                        |  |
| more civil society have, on average, better            |                                                                               |                  | _                          |                             |                        |  |
| nerforming government                                  |                                                                               |                  |                            | strac.ta. variable          |                        |  |

Regression Discontinuity
Difference-in-Differences

performing government

► Using Causal Diagrams to clarify arguments

- ► Using Causal Diagrams to clarify arguments
- ► Technically, "Directed Acyclical Graphs" (DAGs)

- ► Using Causal Diagrams to clarify arguments
- ► Technically, "Directed Acyclical Graphs" (DAGs)
  - Write all the variables on the paper

Introduction Effective argument Consistent Theories Deconstructing Papers **Fundamental Critiques** 

- ► Using Causal Diagrams to clarify arguments
- ► Technically, "Directed Acyclical Graphs" (DAGs)
  - Write all the variables on the paper
  - Connecting them with arrows to represent the author's causal argument

ntroduction Effective argument Consistent Theories Deconstructing Papers **Fundamental Critiques** 

- ► Using Causal Diagrams to clarify arguments
- ► Technically, "Directed Acyclical Graphs" (DAGs)
  - Write all the variables on the paper
  - Connecting them with arrows to represent the author's causal argument
  - And also the threats to the author's argument
    - Even if they can't be measured





# **Causal Theory**



1. Deterministic Causation - If D then Y

- 1. **Deterministic Causation** If D then Y
- Probabilistic Causation If D then the probability of Y increases

- 1. **Deterministic Causation** If D then Y
- 2. **Probabilistic Causation** If *D* then the probability of *Y* increases
- 3. Conjuctural Causation If D1 and D2 then Y

- 1. **Deterministic Causation** If *D* then *Y*
- Probabilistic Causation If D then the probability of Y increases
- 3. Conjuctural Causation If D1 and D2 then Y
- 4. Equifinality Causation If D1 or D2 then Y

- 1. **Deterministic Causation** If D then Y
- Probabilistic Causation If D then the probability of Y increases
- 3. Conjuctural Causation If D1 and D2 then Y
- 4. Equifinality Causation If D1 or D2 then Y
- 5. Non-Linear Causation If D > 1000 then Y

- 1. **Deterministic Causation** If D then Y
- Probabilistic Causation If D then the probability of Y increases
- 3. **Conjuctural Causation** If *D*1 and *D*2 then *Y*
- 4. Equifinality Causation If D1 or D2 then Y
- 5. Non-Linear Causation If D > 1000 then Y
- 6. Path-Dependent Causation If D and t = 10 then Y

- 1. **Deterministic Causation** If D then Y
- Probabilistic Causation If D then the probability of Y increases
- 3. **Conjuctural Causation** If *D*1 and *D*2 then *Y*
- 4. Equifinality Causation If D1 or D2 then Y
- 5. **Non-Linear Causation** If D > 1000 then Y
- 6. Path-Dependent Causation If D and t = 10 then Y
- 7. **Granger Causation** If *D* causes *Y*, *D* must be before *Y*

1. **Specificity** - Is the argument clear and internally consistent?

- 1. Specificity Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?

- 1. Specificity Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?

- 1. **Specificity** Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much Y changes?

- 1. Specificity Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much *Y* changes?
- 5. **Scope** What is the breadth of conditions under which the effect occurs

- 1. **Specificity** Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much Y changes?
- 5. **Scope** What is the breadth of conditions under which the effect occurs
- 6. **Differentiation** Is the *D* sufficiently different from the *Y*

- 1. Specificity Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much *Y* changes?
- 5. **Scope** What is the breadth of conditions under which the effect occurs
- 6. **Differentiation** Is the *D* sufficiently different from the *Y*
- 7. **Normality** Is *D* a common event?

- 1. Specificity Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much Y changes?
- 5. **Scope** What is the breadth of conditions under which the effect occurs
- 6. **Differentiation** Is the *D* sufficiently different from the *Y*
- 7. Normality Is D a common event?
- 8. **Mechanism** Do we understand what connects *D* to *Y*?

- 1. Specificity Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much Y changes?
- 5. **Scope** What is the breadth of conditions under which the effect occurs
- 6. **Differentiation** Is the *D* sufficiently different from the *Y*
- 7. Normality Is D a common event?
- 8. **Mechanism** Do we understand what connects *D* to *Y*?
- 9. **Consistency** Is the argument consistent with our other knowledge about the rest of the world?

- 1. **Specificity** Is the argument clear and internally consistent?
- 2. **Parsimony** Is the argument simple?
- 3. **Power** How much does *Y* change?
- 4. **Precision** How much uncertainty is there about how much Y changes?
- 5. **Scope** What is the breadth of conditions under which the effect occurs
- 6. **Differentiation** Is the *D* sufficiently different from the *Y*
- 7. **Normality** Is *D* a common event?
- 8. **Mechanism** Do we understand what connects *D* to *Y*?
- 9. **Consistency** Is the argument consistent with our other knowledge about the rest of the world?
- 10. Policy-relevance Can the argument help us design better policy?

1. **Sample Size** - How many cases are we learning from?

- 1. **Sample Size** How many cases are we learning from?
- 2. **Variation** Do the causes and outcomes really vary in the sample?

- Sample Size How many cases are we learning from?
- 2. **Variation** Do the causes and outcomes really vary in the sample?
- 3. **Representative** Does the sample reflect the population?

- Sample Size How many cases are we learning from?
- 2. Variation Do the causes and outcomes really vary in the sample?
- 3. **Representative** Does the sample reflect the population?
- 4. **Independence** Are the observations clustered (and therefore less useful)?

- 1. **Sample Size** How many cases are we learning from?
- 2. Variation Do the causes and outcomes really vary in the sample?
- 3. **Representative** Does the sample reflect the population?
- 4. **Independence** Are the observations clustered (and therefore less useful)?
- 5. **Comparability** Are the units of the same type?

- Sample Size How many cases are we learning from?
- 2. Variation Do the causes and outcomes really vary in the sample?
- 3. **Representative** Does the sample reflect the population?
- 4. **Independence** Are the observations clustered (and therefore less useful)?
- 5. Comparability Are the units of the same type?
- 6. **Transparency** Do the data tell us about the mechanism connecting *D* and *Y*?

- 1. **Sample Size** How many cases are we learning from?
- 2. Variation Do the causes and outcomes really vary in the sample?
- 3. **Representative** Does the sample reflect the population?
- 4. **Independence** Are the observations clustered (and therefore less useful)?
- 5. **Comparability** Are the units of the same type?
- 6. **Transparency** Do the data tell us about the mechanism connecting *D* and *Y*?
- 7. **Replicability** Can we take the same (or similar) data and reach the same conclusion?