TTK 4240 - Øving 3

Utlervert dato: 08.09.2015 Veiledningstime: 15.09.2015 Innleveringsfrist: 23.09.2065

Ansvarlig: Atle Rygg (atle.rygg@itk.ntnu.no)

INTRODUKSJON - LAPLACE OG TRANSFERFUNKSJONAR I KRETSANALYSEN

Har du nettopp lært om Laplace i Matte4 og lurer på kva i alle dagar du skal bruke dette til? Fortvil ikkje, i denne øvinga skal vi få skikk på det. Laplace er eit veldig nyttig verktøy til å finne såkalla <u>transientar</u> til elektriske kretsar, dvs. korleis dei oppfører seg dynamisk under f.eks. sprang i spenning. Vi brukar også Laplace til å finne den såkalte <u>frekvensresponsen</u>, dvs. korleis ein krets responderer på sinusspenningar ved ulik frekvens.

I denne samanhengen er vi nødt til å definere eit svært viktig begrep i både kretsanalyse og reguleringsteknikk: **transferfunksjonen**. Ein transferfunksjon H gir oss informasjon om dynamisk oppførsel mellom ein generell inngang *U* og utgang *Y*:

$$H(s) = \frac{Y(s)}{U(s)}$$
 her hektar vi på «(s)» for å indikere at transferfunksjonar ofte blir definert i

Laplace-domenet (s-domenet)

Impedans

Impedans er eit nytt begrep som er viktig i dette faget. Sjå på impedans som ein generell versjon av motstand *R*. Vi brukar symbolet *Z* for impedans, og kan skrive ein ny versjon av Ohms lov:

$$U = ZI$$
 , der Z er impedansen

Impedans er viktig når vi introduserer vekselsspenning og transientar, og heng nøye saman med Laplacedomenet og frekvensdomenet. Det er også nyttig å sjå på impedans som ein transferfunksjon:

$$Z(s) = \frac{U(s)}{I(s)}$$
, dvs. impedans er ein transferfunksjon mellom straum I og spenning U

Det er forholdsvis enkelt å finne ein impedans i s-domenet, det skal vi drille på i øvinga.

Frekvensdomenet og frekvensrespons

Eit viktig spesialtilfelle av s-domenet kallar vi frekvensdomenet. Det er enkelt å gå frå s-domenet til frekvensdomenet gjennom å setje inn $s=j\omega$. NB: $j=\sqrt{-1}$ i dette faget, og ω er frekvensen i rad/s.

Ein transferfunksjon har dermed ein versjon i s-domenet: H(s) og ein i frekvensdomenet $H(j\omega)$.

I øvinga skal vi sjå korleis transferfunksjonar i frekvensdomenet gir oss informasjon om både amplitude og fasevinkel til sinus-spenning og –straum. Dette er også tett relatert med <u>visarrekning</u> som kjem seinare i pensum.

1 INTRODUKSJONSOPPGÅVER – LAPLACE OG KRETSANALYSE

I øving 2 utleia vi følgande uttrykk for den Laplacetransformerte til spole- og kondensatorlikning:

$$V_L = sLI_L - Li_L(0)$$

$$I_C = sCV_C - Cv_C(0)$$

, her betyr STORE bokstavar at variabelen er Laplace-transformert.

- a) Vis at likningane ovanfor kan teiknast som ein krets på måten som vist i figuren til venstre.
- b) Sjå bort frå initalbetingelsane, dvs. $i_L(0) = v_C(0) = 0 \,.$ Basert på definisjonen av ein impedans på side 1, kva blir impedansen i s-domenet til henholdsvis ein spole og ein kondensator?

- c) Finn impedansen sett frå terminalane (i s-domenet) for kretsen til venstre. Dvs, finn $Z(s)=\frac{V(s)}{I(s)}$. Set alle initialbetingelsar lik null.
- d) Set inn talverdiane $L_1=1\,H$, $R=1\,\Omega$, $C_1=C_2=2\,F$, og finn impedansen Z i frekvensdomenet, dvs. finn $Z(j\omega)$. Dette skal vere ein funksjon av ω .

e) Vi kan også finne transferfunksjon frå ei spenning til ei anna. Finn transferfunksjonen $H(s)=\frac{V_2(s)}{V_1(s)}$ for figuren til venstre. Sjå bort ifrå

initialbetingelsen, dvs. $v_2(0) = 0$. Finn også $H(j\omega)$ som funksjon av R, C, ω

2 SPRANGRESPONS TIL RC-KRETS

 $R = 10 \text{ k}\Omega$

Betrakt kretsen til venstre. Bruk følgande talverdiar: $C = 100 \,\mu F$ $v_s = 15 \, V$

Anta først at kondensatoren er energilaus før t=0.

- a) Finn spenninga $v_c(t)$ ved hjelp av Laplacetransformasjon. Kva er tidskonstanten til kretsen? Anta no at kondensatoren er lada opp til $v_c(0) = 5 \, \mathrm{V}$ i det brytaren lukkast.
 - b) Finn spenninga $v_c(t)$ ved hjelp av Laplacetransformasjon gitt denne initialbetingelsen.
 - c) Skisser begge forløpa i same koordinatsystem.

3 SINUSSRESPONS TIL RL-KRETS

NB: Denne oppgåva er litt reknetung, og dei fleste svar er difor oppgitt i teksten gjennom «vis at». Målet er å illustrere viktige samanhengar mellom s-domenet og frekvensdomenet. Kompliserte delbrøksoppspaltningar kjem ikkje til å bli gitt på eksamen, det er forbeholdt Matte4.

Vi skal no analysere ein RL-krets som blir påtrykt vekselsspenning (cosinus eller sinusfunksjon) ved t=0. Vi skal først finne responsen ved hjelp av Laplace-analyse, deretter skal vi finne den stasjonære responsen ved hjelp av transferfunksjonen i frekvensdomenet.

$$i(t) \longrightarrow X$$
Betrakt kretsen til venstre med talverdiar:
$$V = 10 V$$

$$R = 1 \Omega$$

$$L = 5 mH$$

$$R \quad \omega = 2\pi \cdot 50 \ rad \ / s$$

$$i_L(0) = 0$$

a) Laplacetransformasjon: Vis at den Laplacetransformerte av straumen i(t) blir lik

$$I(s) = \frac{V \cdot s}{s^2 + \omega^2} \cdot \frac{1}{R + sL}$$

b) (Frivilleg) Vis at dette uttrykket kan delbrøksoppspaltast til følgande:

$$I(s) = \frac{As + B}{s^2 + \omega^2} + \frac{C}{R + sL}, \text{ der } A = \frac{V \cdot R}{R^2 + (\omega L)^2}, B = \frac{V \cdot L \cdot \omega^2}{R^2 + (\omega L)^2}, C = -\frac{V \cdot R \cdot L}{R^2 + (\omega L)^2}$$

- c) Invers Laplacetransformasjon: finn i(t). Set inn talverdiar til slutt.
- d) **Stasjonær del:** Frå løysinga til oppgåve c), identifiser den stasjonære delen av uttrykket, dvs. den som ikkje døyr ut når $t \to \infty$. Vis at denne kan skrivast som $i_{stasj}(t) = 5.3703\cos\left(\omega t 57.51^{\circ}\right)$.
- e) **Transferfunksjon:** Finn transferfunksjonen mellom straum og spenning i kretsen, dvs. $H(s) = \frac{V(s)}{I(s)} . \text{ Finn så } H(j\omega) \text{ med talverdiar. Kva blir } \left| H\left(j\omega\right) \right| \text{ og } \angle H\left(j\omega\right) \text{ med talverdiar?}$
- f) **Samanlikning:** Kva blir forholdet i amplitude mellom $v_s(t)$ og $i_{stasj}(t)$? Kva blir differansen i fasevinkel? Samanlikn dette med $|H(j\omega)|$ og $\angle H(j\omega)$ frå oppgåve e).

Viss du har rekna rett skal samanlikninga i f) gi like svar, dvs. $H(j\omega)$ gir oss all informasjon om $i_{stasj}(t)$. Det er også langt enklare å rekne med komplekse tall enn å drive med delbrøksoppspalting og inverstransformasjon. Denne fordelen skal vi utnytte mykje i dette faget, og det er den viktigaste reknemetoden på vekselsstraumkretsar (visarrekning).

Oppgitt (vil også bli oppgitt på eksamen):
$$\mathcal{L}\left\{\cos\left(\omega t\right)\right\} = \frac{s}{s^2 + \omega^2}$$
, $\mathcal{L}\left\{e^{-at}\right\} = \frac{1}{s+a}$

4 KONTROLL AV DC-MOTOR (DIGITAL MOTORLAB)

I denne oppgåva skal vi rekne på oppsettet frå digital motorlab ved hjelp av s-domenet. Målet er å gi ei betre forståing over det som skal undersøkast på labben. Vi brukar same symbol/notasjon som i labteksten.

Figuren nedanfor viser ein DC-motor der ei spenningskjelde $v_m(t)$ er kobla til den såkalla feltviklinga til motoren. Vi skal lære meir om DC-motoren seinare, i første omgong er det nok å vite at vi kan regulere både hastighet og posisjon til motoren gjennom å regulere v_m . Vi kan modellere transferfunksjonen mellom spenning v_m og rotasjonshastighet (turtal) Ω_m som:

$$H_1(s) = \frac{\Omega_m(s)}{V_m(s)} = \frac{K}{\tau s + 1}$$
, (likning 2.1. i laboppgåva). K er ein forsterkning, og τ kallar vi *tidskonstanten* til

eit første ordens system, denne er hovudsakleg bestemt av massen til motoren. Dvs. det tar lenger tid å aksellerere ein tung motor.

Vi veit også at vinkelposisjonen til motoren $\Theta_m(t)$ er gitt som den integrerte av turtalet:

$$\Theta_m(t) - \Theta_m(0) = \int_0^t \Omega_m(t) dt$$
, dette er den roterande ekvivalenten til $v = \frac{ds}{dt}$ (v=fart, s=strekning)

a) Anta intialbetingelse lik $\Theta_m(0)=0$, $\Omega_m(0)=0$. Vis at transferfunksjonen frå spenning til posisjon kan skrivast som $H_2(s)=\frac{\Theta_m(s)}{V_m(s)}=\frac{K}{s\left(s\tau+1\right)}$

- b) Anta at vi endrar spenninga $v_m(t)$ som eit enhetssprang, dvs. $v_m(t)=u(t)$, der u(t) er unit-step funksjonen. Bruk Laplaceanalyse til å finne rotasjonsfarten $\Omega_m(t)$ og posisjonen $\Theta_m(t)$. Bruk K=23, $\tau=0.13$
 - c) Skisser forløpa og samanlikn med figur 2-2 i laboppgåva.

Oppgitt: $\mathcal{L}\left\{\int_0^t f(t)\right\} = \frac{1}{s}F(s)$

HINT OG TALSVAR

1. Introduksjonsoppgåver

- **a.** For spolen: set opp KVL og vis at dette blir lik Laplace-uttrykket, for kondensatoren, bruk KCL. Ohms lov er gyldig for ledda sL og $\frac{1}{sC}$
- **b.** Ingen rekning er påkrevd her, berre kombiner definisjonen på ein impedans med figuren i 1a, eventuelt ta utgangspunk i dei Laplace-transformerte uttrykka.

c. $Z = sL_1 + \frac{1 + sR_1C_2}{s^2R_1C_1C_2 + sC_1 + sC_2}$. Det anbefalast å først teikne kretsen i s-domenet ved

hjelp av det du har lært i 1a/1b. Bruk serie og parallel-kobling på tilsvarande måte som for reine motstandsnettverk.

- **d.** $Z(j\omega) = j\omega + \frac{1+j2\omega}{-4\omega^2 + j4\omega}$, lite rekning her, hovudsakleg å substituere $s = j\omega$
- **e.** $H(j\omega) = \frac{1}{1+j\omega RC}$. Teikn kretsen først i s-domenet. Deretter kan du bruke Ohms lov,

KVL, eller spenningsdeling. Spenningsdeling er det enklaste viss du hugsar dette.

2. Sprangrespons til RC-krets

- a. $v_c(t) = 15 15e^{-t}$ Ein kondensator modellerast i s-domenet som ein impedans med verdi $\frac{1}{sC}$. Bruk at den Laplacetransformerte til ein sprangspenning er lik $\mathcal{L}\{u(t)\} = \frac{1}{s}$. Det er enklast å rekne på kretsen direkte i s-domenet, men det er også mulig å sette opp diff.likningane for så å transformere dei.
- b. $v_c(t) = 15 10e^{-t}$ Veldig lik fremgangsmåte som i a), einaste forskjellen er korleis handtere initialbetingelsen. Sjå for eksempel Nilson&Riedel kap 13.1.
- c. Tips: Det er fornuftig å teikne grafen heilt fram til transienten er døydd ut, dvs. typisk til $t \approx 6\tau = 6RC$

3. Sinusrespons til RL-krets

- a. Sett opp kretsen i Laplace-domenet, og løs for strømmen. Bruk den Laplacetransformerte av en cosinusfunksjon: $\mathcal{L}\left\{\cos\left(\omega t\right)\right\} = \frac{s}{s^2 + \omega^2}$.
- b. Her er det ingen andre tips enn å sette opp delbrøksoppspaltingen og holde tunga beint i munnen.
- c. $i(t) = 5.3703\cos(\omega t 57.51^{\circ}) 2.884e^{-200t}$. Svaret kan også skrives som sum av en sinusog en cosinusfunksjon, men her har vi slått dem sammen. Denne oppgaven skal kun benytte invers laplace-transformasjon fra tabeller, men du må først trekke ut eventuelle konstanter for å få leddene på «tabellform».
- d. Den stasjonære delen hentes enkelt frå svaret i c), sjå hintet over
- e. $H(j\omega) = R + j\omega L$. Sett deretter inn talverdiar og hent ut amplitude og fasevinkel til det komplekse talet.
- f. Forholdet i amplitude er 1.862, differansen i vinkel er 57.51 grader. Dette skal vere identisk med svaret i e).

4. Kontroll av DC-motor (Digital motorlab)

- a. Finn $\frac{\Theta_m(s)}{\Omega_m(s)}$ og kombiner denne med $\frac{\Omega_m(s)}{V_m(s)}$
- b. $\Omega_m(t) = K\left(u(t) e^{-\frac{t}{\tau}}\right)$, $\Theta_m(t) = Ku(t) \cdot t \tau \left(1 Ke^{-\frac{t}{\tau}}\right)$ Bruk invers Laplace-transformasjon,

muligens må du hente eit par Laplace-formlar frå Kreyzig/Rottmann.

c. Bruk linjal og teikn ein fin graf ☺