

Compilation Principle 编译原理

第6讲: 语法分析(3)

张献伟

xianweiz.github.io

DCS290, 03/18/2021

Review: Ambiguous Grammar

- Grammar E→E*E | E+E | (E) | id
 - Ambiguous. Why?
 - Two distinct leftmost derivations for the sentence id + id * id

- Are the two trees have the same meaning?
 - Above: id + (id * id)
 - Below: (id + id) * id
- The deepest sub-tree is traversed first, thus higher precedence

Review: Ambiguity Removal

- How to remove the ambiguity?
- Specify precedence
 - The higher level of the production, the lower priority of operator
 - The lower level of the production, the higher priority of operator
- Specify associativity
 - If the operator is left associative, induce left recursion in its production
 - If the operator is right associative, induce right recursion in its production

$$E \rightarrow E + E \mid T$$

 $E \rightarrow E * E \mid E + E \mid (E) \mid id$
 $T \rightarrow T * T \mid F$
 $F \rightarrow (E) \mid id$

```
still possible to get
id + (id + id)
and
(id + id) + id
what if '-' (minus)?
```


Now, can only have more '+' on left E: sum of one or more terms (T) T: product of one or more factors (F)

Review: Top-down and Bottom-up

Consider a CFG grammar G

$$S \rightarrow AB$$

$$A \rightarrow aC$$

$$B \rightarrow bD$$

$$D \rightarrow d$$

$$C \rightarrow c$$

This language has only one sentence: L(G) = {acbd}

Top-down (Leftmost Derivation)

$$S \Rightarrow AB (1)$$

$$\Rightarrow$$
 aCB (2)

$$\Rightarrow$$
 acB (3)

$$\Rightarrow$$
 acbD (4)

$$\Rightarrow$$
 acbd (5)

Bottom-up (reverse of rightmost derivation)

$$S \Rightarrow AB (5)$$

$$\Rightarrow$$
 AbD (4)

$$\Rightarrow$$
 Abd (3)

$$\Rightarrow$$
 aCbD (2)

$$\Rightarrow$$
 acbd (1)

Preview: Bottom-up Steps

Consider a CFG grammar G

S→AB

 $A \rightarrow aC$

 $B \rightarrow bD$

 $D \rightarrow d$

 $C \rightarrow c$

Stack	Input	Action
\$	acbd\$	Shift
\$a	cbd\$	Shift
\$ac	bd\$	Reduce
\$aC	bd\$	
\$A	bd\$	Reduce
\$Ab	d\$	Shift
\$Abd	\$	Shift
\$AbD	\$	Reduce
\$AB	\$	Reduce
\$S	\$	Reduce

Bottom-up (reverse of rightmost derivation)

 $S \Rightarrow AB (5)$

 \Rightarrow AbD (4)

 \Rightarrow Abd (3)

 \Rightarrow aCbD (2)

 \Rightarrow acbd (1)

Recursive Descent[递归下降]

- Recursive descent is a simple and general parsing strategy
 - Try and backtrack
 - Left-recursion must be eliminated first
 - Can be eliminated automatically using some algorithm
- However it is not popular because of backtracking
 - Backtracking requires re-parsing the same string
 - Which is inefficient (can take exponential time)
 - Also undoing semantic actions may be difficult
 - E.g. removing already added nodes in parse tree

Predictive Parsers[预测分析]

- A parser with no backtracking: predict correct next production given next input terminal(s)
 - If first terminal of every alternative production is unique, then parsing requires no backtracking
 - If not unique, grammar cannot use predictive parsers

```
A \rightarrow aBD \mid bBB

B \rightarrow c \mid bce

D \rightarrow d
```

parsing input "abced" requires no backtracking

Predictive Parsers (cont.)

- A predictive parser chooses the production to apply solely on the basis of
 - Next input symbols
 - Current nonterminal being processed
- Patterns in grammars that prevent predictive parsing
 - Common prefix[共同前缀]:

$$A \rightarrow \alpha\beta \mid \alpha\gamma$$

Given input terminal(s) α , cannot choose between two rules

- Left recursion[左递归]:

$$A \rightarrow A\beta \mid \alpha$$

Given input terminal(s) α , cannot choose between two rules

What is the language of the grammar? $\alpha\beta^*$

Rewrite Grammars for Prediction

- Left factoring[左公因子]: removes common left prefix
 - In previous example: $A \rightarrow \alpha\beta \mid \alpha\gamma$
 - can be changed to

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta \mid \gamma$

- Given input α , A' can can choose between β or γ (Assuming β or γ do not start with α)
- Left-recursion removal: same as for recursive descent
 - In previous example: $A \rightarrow A\beta \mid \alpha$
 - can be changed to

$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta A' \mid \epsilon$

– Given input α , A' can can choose between β or ε (Assuming β doesn't start with α or A' isn't followed by α)

LL(k) Parser / Grammar / Language

LL(k) Parser

- A predictive parser that uses k lookahead tokens
- L: scans the input from left to right
- L: produces a leftmost derivation
- k: using k input symbols of lookahead at each step to decide

LL(k) Grammar

- A grammar that can be parsed using an LL(k) parser
- LL(k) \subset CFG
 - Some CFGs are not LL(k): common prefix or left-recursion

LL(k) Language

- A language that can be expressed as an LL(k) grammar
- Many languages are LL(k) ... in fact many are LL(1)!

LL(k) Parser Implementation

- Implemented in a recursive or non-recursive fashion
 - Recursive: recursive descent (recursive function calls)
 - Non-recursive: explicit stack to keep track of recursion
- Recursive LL(1) parser for: $A \rightarrow B \mid C, B \rightarrow b, C \rightarrow c$
 - Parser consists of small functions, one for each non-terminal

```
int A() {
  int token = peekNext(); // lookahead token
  switch(token) {
    case 'b': // 'B' starts with 'b'
        return B();
    case 'c': // 'C' starts with 'c'
        return C();
    default: // Reject
        return 0;
}
```


LL(k) Parser Implementation (cont.)

• Recursive LL(1) parser for: $A \rightarrow B \mid C, B \rightarrow b, C \rightarrow c$

```
int A() {
  int token = peekNext(); // lookahead token
  switch(token) {
    case 'b': // 'B' starts with 'b'
        return B();
    case 'c': // 'C' starts with 'c'
        return C();
    default: // Reject
        return 0;
}
```

- Is there a way to express above code more concisely?
 - Non-recursive LL(k) parsers use a state transition table (Just like finite automata)
 - Easier to automatically generate a non-recursive parser

Non-recursive LL(1) Parser

- Table-driven parser: amenable to automatic code generation (just like lexers)
 - Input buffer: contains the string to be parsed, followed by \$
 - Stack: holds unmatched portion of derivation string
 - Parse table M(A, b): an entry containing rule " $A \rightarrow ...$ " or error
 - Parser driver (a.k.a., predictive parsing program): next action based on (stack top, current token)

LL(1) Parse Table: Example

Table	int	*	+	()	\$
E	E → TE′			E → TE′		
E'			E' → +E		E′ → ε	E' → ε
Т	$T \rightarrow int T'$			T → (E)		
T'		T′ → *T	T′ → ε		T′ → ε	T′ → ε

- Implementation with 2D parse table
 - First column lists all non-terminals in the grammar
 - First row lists all possible terminals in the grammar and \$
 - A table entry contains one production
 - One action for each (non-terminal, input) combination
 - It "predicts" the correct action based on one lookahead
 - No backtracking required

LL(1) Parsing Algorithm

- Initial state
 - Input tape: input tokens followed by '\$'
 - Stack: start symbol followed by '\$' at bottom
- General idea: repeat one of two actions
 - Expand symbol at top of stack by applying a production
 - Match terminal symbol at top of stack with input token
- Step-by-step parsing based on (X,a)
 - X: symbol at the top of the stack
 - a: current input token
 - \blacksquare If $X \in T$, then
 - If X == a == \$, parser halts with "success"
 - If X == a != \$, successful match, pop X from stack and advance input head
 - If X != a, parser halts and input is rejected
 - \Box if $X \in \mathbb{N}$, then
 - if $M[X,a] == 'X \rightarrow RHS''$, pop X and push RHS to stack
 - if M[X,a] == empty, parser halts and input is rejected

Push RHS in Reverse Order

- For (X, a)
 - X: symbol at the top of the stack
 - a: current input token
- If $M[X,a] = "X \rightarrow BcD"$

- Performs the leftmost derivation: $\alpha \times \beta \Rightarrow \alpha \text{ BcD } \beta$
 - $-\alpha$: string that has already been matched with input
 - β : string yet to be matched, corresponding to the ... above

Applying LL(1) Parsing to Grammar

Consider the grammar

$$E \rightarrow T+E|T$$

 $T \rightarrow int*T | int | (E)$

- No left recursion
- But require left factoring
- After rewriting grammar, we have

$$E \rightarrow TE'$$
 $E' \rightarrow +E \mid \epsilon$
 $T \rightarrow intT' \mid (E)$
 $T' \rightarrow *T \mid \epsilon$

To recognize "int * int" $E \rightarrow TE'$ $E' \rightarrow +E \mid \epsilon$ input \$ $T \rightarrow intT' \mid (E)$ int int * $T' \rightarrow *T \mid \epsilon$ int parser driver E \$ **Table** int stack $E \rightarrow TE'$ $E \rightarrow TE'$ E $E' \rightarrow +E$ **E**' $E' \rightarrow \epsilon$ $E' \rightarrow \epsilon$ $T \rightarrow (E)$ $T \rightarrow int T'$ $T' \rightarrow *T$ $T' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ T'

To recognize "int * int" $E \rightarrow TE'$ $E' \rightarrow +E \mid \epsilon$ input \$ $T \rightarrow intT' \mid (E)$ int int * $T' \rightarrow *T \mid \epsilon$ parser driver E' \$ \$ **Table** int stack $E \rightarrow TE'$ $E \rightarrow TE'$ E **E**' $E' \rightarrow +E$ $E' \rightarrow \epsilon$ $E' \rightarrow \epsilon$ $T \rightarrow (E)$ $T \rightarrow int T'$ $T' \rightarrow *T$ $T' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ T'

To recognize "int * int" $E \rightarrow TE'$ $E' \rightarrow +E \mid \epsilon$ input \$ $T \rightarrow intT' \mid (E)$ int int * $T' \rightarrow *T \mid \epsilon$ parser driver E \$ \$ **Table** int stack $E \rightarrow TE'$ $E \rightarrow TE'$ E **E**' $E' \rightarrow +E$ $E' \rightarrow \epsilon$ $E' \rightarrow \epsilon$ $T \rightarrow int T'$ $T \rightarrow (E)$ $T' \rightarrow *T$ $T' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ T'

Recognizing Sequence

Stack	Input	Action
E\$	int * int \$	E → TE'
T E' \$	int * int \$	$T \rightarrow int T'$
int T' E' \$	int * int \$	match
T' E' \$	* int \$	T′ → *T
* T E' \$	* int \$	match
T E' \$	int \$	T → int T'
int T' E' \$	int \$	match
T' E' \$	\$	T′ → ε
E' \$	\$	E' → ε
\$	\$	Halt and accept

$$E \rightarrow TE'$$

 $E' \rightarrow +E \mid \epsilon$
 $T \rightarrow intT' \mid (E)$
 $T' \rightarrow *T \mid \epsilon$

- Contents of stack correspond to remaining input
- Actions correspond to productions in leftmost derivation

To Construct Parsing Table

- The parsing table stores the actions the parser should take based on the input token and the stack top
- The parsing table can be constructed using two sets
 - FIRST(A): set of terminals that begin strings derived from A
 - □ E.g., c ∈ FIRST(A)
 - □ If A ⇒* ε, then ε is also in FIRST(A)
 - FOLLOW(A): set of terminals that can appear following A
 - □ E.g., a ∈ FOLLOW(A)
 - If A is rightmost, then \$ is also in FOLLOW(A)

Use FIRST and FOLLOW

Why do we need FIRST and FOLLOW in parsing?

FIRST

- FIRST(α): set of terminals that start strings derived from α
- Consider A $\rightarrow \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint sets
- We can then choose by looking at the next input symbol a
 - \square since α can be in at most FIRST(α) or FIRST(β), not both

FOLLOW

- FOLLOW(A): set of terminals that can appear right after A
- If there's a derivation of A that results in ε
 - □ In this case, A could be replace by nothing and the next token would be the first token of the symbol following A in the sentence being parsed
 - □ Thus, parser needs to consider to choose the path A ⇒* ε

FIRST

- Compute FIRST(X) for all grammar symbols X, apply the following rules until no terminal or ε can be added to any FIRST set
 - If X ∈ T, then First(X)={X}.
 - If X ∈ N and X \rightarrow ϵ exists, then add ϵ to First(X).
 - If X ∈ N and X \rightarrow Y₁Y₂Y₃...Y_k, then
 - □ Add α to FIRST(X), if for some i, α is in FIRST(Y_i), and ϵ is in all of FIRST(Y₁), ..., FIRST(Y_{i-1}), i.e., Y₁...Y_{i-1} ⇒* ϵ . E.g.,
 - Everything in FIRST(Y₁) is surely in FIRST(X)
 - If Y_1 doesn't derive ε , then we add nothing more
 - But if Y1 \Rightarrow * ϵ , then we add FIRST(Y2), and so on
 - □ Add ε to FIRST(X), if ε is in FIRST(Y_j) for all j=1,2,...k

FIRST(cont.)

Compute FIRST(X) for all grammar symbols X

- Now, we can compute FIRST for any string $\alpha = X_1X_2...X_n$
 - Add FIRST(X_1) all non- ε symbols to FIRST(α)
 - Add FIRST(X_i) ε), 2≤i≤k, to FIRST(α), if FIRST(X₁), ..., FIRST(X_{k-1}) all contain ε
 - \square Add non-ε symbols of FIRST(X₂), if ε is in FIRST(X₁)
 - \square Add non-ε symbols of FIRST(X₃), if ε is in FIRST(X₁) and FIRST(X₂)
 - □ ...
 - Add ε to FIRST(α), if FIRST(X_1), ..., FIRST(X_k) all contain ε

FOLLOW

- To compute FOLLOW(A) to all non-terminals A, apply following rules until no terminal or ε can be added to any FOLLOW set
 - Place \$ in FOLLOW(S), where S is the start symbol
 - If there is a production A $\rightarrow \alpha B\beta$, then everything in FIRST(β) except ε is in FOLLOW(B)
 - If there is a production A $\rightarrow \alpha B$, or a production A $\rightarrow \alpha B\beta$, where FIRST(β) contains ε , then everything in FOLLOW(A) is in FOLLOW(B)

Example: FIRST and FOLLOW

- FIRST(T) = FIRST(E) = {int, (}
 - E has only one production, and its body starts with T
 - T doesn't derive ε, E is same with T
- FIRST(E') = $\{+, \epsilon\}$
- FIRST(T') = $\{*, \varepsilon\}$

- $E \rightarrow TE'$
- $E' \rightarrow +E \mid \varepsilon$
- $T \rightarrow intT' \mid (E)$
- $T' \rightarrow *T \mid \epsilon$

- FOLLOW(E) = FOLLOW(E') = {), \$}
 - E is start symbol, thus \$ must be contained; production body (E)
 - E' appears at the ends of E-productions, same as FOLLOW(E)
- FOLLOW(T) = FOLLOW(T') = {+,), \$}
 - +: T appears in bodies only followed by E', thus FIRST(E')- ε
 -), \$: FIRST(E') contains ε, and E' is the entire str following T, so
 FOLLOW(E') is in FOLLOW(T)
 - T' is only at ends of T-productions, FOLLOW(T')=FOLLOW(T)

Example: FIRST and FOLLOW (cont)

Symbol	FIRST	FOLLOW
E	int, (),\$
E'	+, ε), \$
Т	int, (+,), \$
Τ'	*, E	+,), \$

$E \rightarrow TE'$	
$E' \rightarrow + E \mid \epsilon$	
$T \rightarrow intT'$	(E)
$T'\rightarrow *T \epsilon$	

α (RHS)	FIRST
TE'	int, (
+E	+
intT'	int
(+E)	(
*T	*

Construct LL(1) Parse Table

- To construct, rule $A \rightarrow \alpha$ is added to M[A, a] if either:
 - For each terminal a in FIRST(α)
 - If ε is in FIRST(α), or $\alpha = \varepsilon$, a is in FOLLOW(A) (Epsilon production)

• If ϵ is in FIRST(α) and φ is in FOLLOW(A), add A $\xrightarrow{}$ α to M[A, φ] as well

- If after performing the above, there is no production at all in M[A, a], then set M[A, a] to error
 - Which is normally represented by an empty entry in the table

Construct LL(1) Parse Table (cont.)

$A \rightarrow \alpha$ (RHS)	FIRST
E → TE'	int, (
E' → +E	+
T → intT'	int
T → (E)	(
T' → *T	*
E' → ε	FOLLOW
T' → ε	FOLLOW

Symbol	FIRST	FOLLOW
Е	int, (), \$
E'	+, ε), \$
Т	int, (+,), \$
T'	*, ε	+,), \$

$E \rightarrow TE'$	
$E' \rightarrow + E \mid \epsilon$	
$T \rightarrow intT'$	(E)
T′→*T ε	

Table	int	*	+	()	\$
E	E → TE′			E → TE′		
E'			E' → +E		E' → ε	E' → ε
Т	$T \rightarrow int T'$			T → (E)		
T'		T′ → *T	T′ → ε		T′ → ε	T′ → ε

Determine if Grammar is LL(1)

- Observation
 - If a grammar is LL(1), then each of its LL(1) table entry contains at most one rule
 - Otherwise, it is not LL(1).

- Two methods to determine if a grammar is LL(1) or not
 - Construct LL(1) table, and check if there is a multi-rule entry
 - Checking each rule as if the table is getting constructed.
 - G is LL(1) iff for a rule A $\rightarrow \alpha \mid \beta$
 - □ FIRST(α) \cap FIRST(β) = Φ
 - $\mbox{ }_{\square}$ At most one of α and β can derive ϵ
 - \Box If β derives ε, then FIRST(α) ∩ FOLLOW(A) = φ

Non-LL(1) Grammars

- Suppose a grammar is not LL(1). What then?
- Case-1: the language may still be LL(1).
 - Try to rewrite grammar to LL(1) grammar:
 - Apply left-factoring
 - Apply left-recursion removal
 - Try to remove ambiguity in grammar:
 - Encode precedence into rules
 - Encode associativity into rules
- Case-2: If Case-1 fails, language may not be LL(1)
 - Impossible to resolve conflict at the grammar level
 - Programmer chooses which rule to use for conflicting entry (if choosing that rule is always semantically correct)
 - Otherwise, use a more powerful parser (e.g. LL(k), LR(1))

LL(1) Time and Space Complexity

- Linear time and space relative to length of input
- Time: each input symbol is consumed within a constant number of steps
 - If symbol at top of stack is a terminal:
 - Matched immediately in one step
 - If symbol at top of stack is a non-terminal:
 - \blacksquare Matched in at most N steps, where N = number of rules
 - Since no left-recursion, cannot apply same rule twice without consuming input
- Space: smaller than input (after removing $X \rightarrow \varepsilon$)
 - RHS is always longer or equal to LHS
 - Derivation string expands monotonically
 - Derivation string is always shorter than final input string
 - Stack is a subset of derivation string (unmatched portion)

Some Thoughts ...

- We have studied LL(1), what about LL(0), LL(2) or LL(k)?
- Is **LL(0)** useful at all?
 - Grammar where rules can be predicted with no lookahead
 - \Rightarrow That means, there can only be one rule per non-terminal
 - → That means, this language can have only one string

- What would prevent LL(2) ... LL(k) from wide usage?
 - Size of parse table = $O(|N|*|T|^k)$
 - \blacksquare where N = set of non-terminals, T = set of terminals

Summary: Predictive Parser

 FIRST and FOLLOW sets are used to construct predictive parsing tables

- Intuitively, FIRST and FOLLOW sets guide the choice of rules
 - For non-terminal A and lookahead t, use the production rule A
 → α where t ∈ FIRST(α)
 OR
 - For non-terminal A and lookahead t, use the production rule A $\rightarrow \alpha$ where $\epsilon \in FIRST(\alpha)$ and $t \in FOLLOW(A)$
 - There can only be ONE such rule
 - Otherwise, the grammar is not LL(1)

