			金沢大学大学院自然科学研究科 博士前期課程入学試験 問題用紙
	対は	1	電子情報工学専攻、機能機械科学専攻、人間・機械科学専攻、社会基盤工学専攻
一	験科目		数 学 P.1 / 1

2006年8月29日(火) 10:45-11:45

[注意] 1. 問題 1 2 3 4 のうち、2 程を選択して解答すること。

2. 解答は各題ごとに分けて、1題を1枚の答案用紙の表に書くこと。

① 次の数分方程式を解け、多元表式

$$\triangle$$
 (1) $\frac{dy}{dx} = (2-y)y$ ヘッルマーイ (2) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 5x$ (2) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 10\sin x$ (3) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 10(x + \sin x)$

- ② ベクトル場 a = (1,2,3), r = (x,y,z) に対して、次の聞いに答えよ。
- (1) rot(a×r)を求めよ.
- (2) 曲線 $C: r(t) = (\sqrt{2-c}\cos t, \sqrt{2-c}\sin t, c)$. $(0 \le t \le 2\pi)$ に対して、線積分

$$\int_{\Gamma} (a \times r) \cdot dr$$

を求めよ. ただし c < 2 とする、

 χ (3) 曲面 $S: z = 2 - x^2 - y^2$, $z \ge 0$ に対して、面積分

$$\iint_S \operatorname{rot}(a \times r) \cdot ndS$$

を求めよ。ただしSの単位法様ベクトル nのz 成分は正とする。

- ③ 複素関数 $g(z)=\sin(\pi z)$ について $f(z)=\frac{g'(z)}{g(z)}$ とおく、次の問いに答えよ。
 - (1) 原点の濁りで $f(z) = \frac{a_{-1}}{z} + a_0 + a_1 z + \cdots$ と展開できる。このとき、定数 a_{-1} 、 a_0 、 a_1 を求
 - (2) 智数 Res $\left[\frac{f(z)}{z^2}, 0\right]$ を求めよ.
 - (3) 円 $C = \left\{ z : |z| = \frac{1}{2} \right\}$ に対して、積分

$$\int_C \left(\pi^2 + \frac{2\pi i}{z} + \frac{3}{z^2}\right) f(z) dz$$

$$f(t) * g(t) = \int_0^t f(\tau)g(t-\tau)d\tau$$
 を関数 $f(t) \ge g(t)$ のたたみ込みとする.

- $\underbrace{\frac{d}{dt}(f(t)*g(t))}_{dt}=g'(t)*f(t)+g(0)f(t)$ を両辺のラブラス変換を計算することによって示せ、 ただし $g'(t) = \frac{d}{dt}g(t)$ とする.
- (2) (1) を利用して $\frac{d^2}{dt^2}(f(t)*g(t)) = g''(t)*f(t)+g'(0)f(t)+g(0)f'(t)$ を示せ、ただし $g''(t) = \frac{d^2}{dt^2}g(t)$ とする。

$$f_i(t) = \frac{d^2}{2ig}g(t) \ge \frac{1}{2}\delta.$$

(3) ププラス変換を用いて、 $\frac{d^2}{dt^2}(f(t)*t)+f''(t)+2f'(t)=0$ を f(0)=0、f'(0)=1 の条件のもとで解け、