Soit la quantité $\delta_t(j)$, pour j=1...N Rabiner(1989), Miller(2011a)

Soit
$$\delta_t(j) = \max_{X_{1 \to t-1}} \mathbf{P}(X_{1 \to t-1}, X_t = \omega_j, Y_{1 \to t}/\lambda)$$
, pour $t = 1 \dots T$

 $\delta_t(j)$ est la probabilité maximale, étant donné le MMC de paramètre λ de parcourir la séquence d'états $X_{1 \to t}$ qui s'achève en ω_j au temps t et d'observer la séquence $Y_{1 \to t}$.

Supposons qu'on soit dans les états ω_j pour t et ω_i pour t-1 et pour t=2...T

$$\delta_t(j) = \max_{X_{1 \to t-1}} \mathbf{P}(X_{1 \to t-1}, X_t = \omega_j, Y_{1 \to t}/\lambda)$$

Ainsi en prenant l'argument du maximum des $\delta_t(j)$ pour tous les t=1,2...T et j=1...N on obtient la séquence optimale d'états

$$\begin{split} \psi_t \left(\omega_j \right) &= \operatorname{argmax} \left(\, \delta_t (j) \right), \operatorname{pour} \, t = 1 \, ... \, T \, \operatorname{et} \, j = 1 \, ... \, N \\ \text{L'algorithme X.X} &: \, \text{Algorithme de} \quad \text{Viterbi} \\ \text{1. Pour i=1} &: \, \text{N, Faire} \\ \delta_1 (i) &= \Pi_i \, b_{\omega_i} (Y_1) \, \operatorname{et} \, \psi_1 (i) = 0 \\ \text{2. Pour t=2} &: \, \text{T, Faire} \\ \operatorname{Pour j=1} &: \, \text{N, Faire} \\ \delta_t (j) &= \max_{\omega_j} \left[a_{ij} \, \delta_{t-1} (i) \right] b_{\omega_j} (Y_t) \, ; \\ \psi_t \left(\omega_j \right) &= \operatorname{argmax}_{\omega_i} \left[a_{ij} \, \delta_{t-1} (i) \right] \, ; \\ \operatorname{Fin Pour} \\ \text{3. } \mathbf{P}^* &= \max_{\omega_i} \delta_T (i) \, ; \\ \mathbf{S}^*_{i,T} &= \mathbf{argmax}_{\omega_i} \delta_T (i) \, ; \\ \operatorname{Fin Pour} \\ \text{4. Construction de la séquence d'états.} \end{split}$$

Fin Pour La probabilité $P^*=\max_{\omega_i}\delta_T(i)=\max_{x_{1\to T}}\mathbf{P}(x_{1\to T}$, $y_{1\to T}/\lambda)$

Pour t = T - 1: (-1): 1, faire

 $\boldsymbol{S}_{i,t}^* = \psi_{t+1}(\boldsymbol{S}_{i,t+1}^*)$

Cette étape permet d'obtenir à la fois la probabilité maximale et la séquence d'états associées.