Section 2.4 – Cross Product

The Cross Product

To find a vector in 3-space that is perpendicular to two vectors; the type of vector multiplication that facilities this construction is the cross product.

Definition

The cross product of $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$ is the vector

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} \hat{i} - \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} \hat{j} + \begin{vmatrix} u_1 & v_2 \\ u_2 & v_1 \end{vmatrix} \hat{k}$$

$$= (u_2 v_3 - u_3 v_2) \hat{i} - (u_1 v_3 - u_3 v_1) \hat{j} + (u_1 v_2 - u_2 v_1) \hat{k}$$

$$= (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

In 1773, *Joseph Louis Lagrange* introduced the component form of both the dot and cross products in order to study the tetrahedron in three dimensions. In 1843 the Irish mathematical physicist Sir *William Rowan Hamilton* introduced the quaternion product, and with it the terms "*vector*" and "*scalar*". Given two quaternions $[0, \vec{u}]$ and $[0, \vec{v}]$, where \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , their quaternion product can be summarized as $[-\vec{u} \cdot \vec{v}, \vec{u} \times \vec{v}]$. *James Clerk Maxwell* used Hamilton's quaternion tools to develop his famous *electromagnetism* equations, and for this and other reasons quaternions for a time were an essential part of physics education.

Example

Find $\vec{u} \times \vec{v}$, where $\vec{u} = (1, 2, -2)$ and $\vec{v} = (3, 0, 1)$

Solution

$$\begin{bmatrix} 1 & 2 & -2 \\ 3 & 0 & 1 \end{bmatrix}$$

$$\vec{u} \times \vec{v} = \begin{pmatrix} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, & -\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, & \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 2, & -7, & -6 \end{pmatrix}$$

Example

Consider the vectors $\hat{i} = (1, 0, 0) \quad \hat{j} = (0, 1, 0) \quad \hat{k} = (0, 0, 1)$

These vectors each have length of 1 and lie along the coordinate axes. They are called the *standard unit vectors* in 3-space.

For example: $(2, 3, -4) = 2\hat{i} + 3\hat{j} - 4\hat{k}$

Note:

$$\checkmark \quad \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$$

$$\checkmark$$
 $\hat{j} \times \hat{i} = -\hat{k}, \quad \hat{k} \times \hat{j} = -\hat{i}, \quad \hat{i} \times \hat{k} = -\hat{j}$

$$\checkmark$$
 $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$

Properties

1. $\vec{u} \times \vec{v}$ reverses rows 2 and 3 in the determinant so it is equals $-(\vec{u} \times \vec{v})$

2. The cross product $\vec{u} \times \vec{v}$ is perpendicular to \vec{u} , then $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0$

3. The cross product $\vec{u} \times \vec{v}$ is perpendicular to \vec{v} , then $(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$

4. The cross product of any vector with itself (two equal rows) is $\vec{u} \times \vec{u} = 0$.

5. Lagrange's identity: $\|\vec{u} \times \vec{v}\|^2 = \|\vec{u}\|^2 \|\vec{v}\|^2 - (\vec{u} \cdot \vec{v})^2$ = $\|\vec{u}\| \|\vec{v}\| |\sin \theta|$

$$|\vec{u} \cdot \vec{v}| = ||\vec{u}|| \ ||\vec{v}|| \ |\cos \theta|$$

Theorem

a) $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$

b) $\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$

c) $(\vec{u} + \vec{v}) \times \vec{w} = (\vec{u} \times \vec{w}) + (\vec{v} \times \vec{w})$

d) $k(\vec{u} \times \vec{v}) = (k\vec{u}) \times \vec{v} = \vec{u} \times (k\vec{v})$

e) $\vec{u} \times \vec{0} = \vec{0} \times \vec{u} = \vec{0}$

f) $\vec{u} \times \vec{u} = 0$

Definition

If \vec{u} , \vec{v} , and \vec{w} are vectors in 3-space, then $\boxed{\vec{u} \cdot (\vec{v} \times \vec{w})}$ is called the *scalar triple product* of \vec{u} , \vec{v} , and \vec{w} .

Example

Calculate the scalar triple product $\vec{u} \cdot (\vec{u} \times \vec{v})$ of the vectors:

$$\vec{u} = -2\hat{i} + 6\hat{k}$$
 $\vec{v} = \hat{i} - 3\hat{j} + \hat{k}$ $\vec{w} = -5\hat{i} - \hat{j} + \hat{k}$

Solution

$$\vec{u} \cdot (\vec{u} \times \vec{v}) = \begin{vmatrix} -2 & 0 & 6 \\ 1 & -3 & 1 \\ -5 & -1 & 1 \end{vmatrix}$$
$$= -92 \mid$$

Area of a Parallelogram

Theorem

If \vec{u} and \vec{v} are vectors in 3-space, then $\|\vec{u} \times \vec{v}\|$ is equal to the area of the parallelogram determined by \vec{u} and \vec{v} .

Example

Find the area of the triangle determined by the points $P_1(2, 2, 0)$, $P_2(-1, 0, 2)$, and $P_3(0, 4, 3)$.

Solution

The area of the triangle is $\frac{1}{2}$ the area of the parallelogram determined by the vectors $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$

$$\overrightarrow{P_1P_2} = (-1, 0, 2) - (2, 2, 0)$$

$$= (-3, -2, 2)$$

$$\overrightarrow{P_1P_3} = (0, 4, 3) - (2, 2, 0)$$

$$= (-2, 2, 3)$$

$$\overline{P_1 P_2} \times \overline{P_1 P_3} = \begin{pmatrix} \begin{vmatrix} -2 & 2 \\ 2 & 3 \end{vmatrix}, & -\begin{vmatrix} -3 & 2 \\ -2 & 3 \end{vmatrix}, & \begin{vmatrix} -3 & -2 \\ -2 & 2 \end{vmatrix} \\
= (-10, 5, -10) \\$$

Area =
$$\frac{1}{2} \| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \|$$

= $\frac{1}{2} \sqrt{(-10)^2 + 5^2 + (-10)^2}$
= $\frac{15}{2}$

Volume

The Volume of the Parallelepiped is

$$V = (area\ of\ base).(height) = \|\vec{v} \times \vec{w}\| \frac{|\vec{u} \cdot (\vec{v} \times \vec{w})|}{\|\vec{v} \times \vec{w}\|} = |\vec{u} \cdot (\vec{u} \times \vec{v})|$$

$$V = \left| \det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \right|$$

Theorem

If the vectors $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$, and $\vec{w} = (w_1, w_2, w_3)$ have the initial point, then they lie in the same plane if and only if

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0$$

Example

Find the volume of the parallelepiped with sides $\vec{u} = (2, -6, 2)$, $\vec{v} = (0, 4, -2)$, and $\vec{w} = (2, 2, -4)$

Solution

$$V = \begin{vmatrix} \det \begin{bmatrix} 2 & -6 & 2 \\ 0 & 4 & -2 \\ 2 & 2 & -4 \end{vmatrix} \end{vmatrix}$$
= 16

Exercises Section 2.4 - Cross Product

- 1. Prove when the cross product $\vec{u} \times \vec{v}$ is perpendicular to \vec{u} , then $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0$
- 2. Find $\vec{u} \times \vec{v}$, where $\vec{u} = (1, 2, -2)$ and $\vec{v} = (3, 0, 1)$ and show that $\vec{u} \times \vec{v}$ is perpendicular to \vec{u} and to \vec{v} .
- 3. Given $\vec{u} = (3, 2, -1)$, $\vec{v} = (0, 2, -3)$, and $\vec{w} = (2, 6, 7)$ Compute the vectors
 - a) $\vec{u} \times \vec{v}$

c) $\vec{u} \times (\vec{v} \times \vec{w})$

e) $\vec{u} \times (\vec{v} - 2\vec{w})$

b) $\vec{v} \times \vec{w}$

- d) $(\vec{u} \times \vec{v}) \times \vec{w}$
- 4. Use the cross product to find a vector that is orthogonal to both
 - a) $\vec{u} = (-6, 4, 2), \vec{v} = (3, 1, 5)$
 - b) $\vec{u} = (1, 1, -2), \quad \vec{v} = (2, -1, 2)$
 - c) $\vec{u} = (-2, 1, 5), \vec{v} = (3, 0, -3)$
- 5. Find the area of the parallelogram determined by the given vectors
 - a) $\vec{u} = (1, -1, 2)$ and $\vec{v} = (0, 3, 1)$
 - b) $\vec{u} = (3, -1, 4)$ and $\vec{v} = (6, -2, 8)$
 - c) $\vec{u} = (2, 3, 0)$ and $\vec{v} = (-1, 2, -2)$
- **6.** Find the area of the parallelogram with the given vertices

$$P_1(3, 2), P_2(5, 4), P_3(9, 4), P_4(7, 2)$$

- 7. Find the area of the triangle with the given vertices:
 - a) A(2, 0) B(3, 4) C(-1, 2)
 - b) A(1, 1) B(2, 2) C(3, -3)
 - c) P(2, 6, -1) Q(1, 1, 1) R = (4, 6, 2)
- **8.** a) Find the area of the parallelogram with edges $\vec{v} = (3, 2)$ and $\vec{w} = (1, 4)$
 - b) Find the area of the triangle with sides \vec{v} , \vec{w} , and $\vec{v} + \vec{w}$. Draw it.
 - c) Find the area of the triangle with sides \vec{v} , \vec{w} , and $\vec{v} \vec{w}$. Draw it.
- **9.** Find the volume of the parallelepiped with sides \vec{u} , \vec{v} , and \vec{w} .
 - a) $\vec{u} = (2, -6, 2), \quad \vec{v} = (0, 4, -2), \quad \vec{w} = (2, 2, -4)$
 - b) $\vec{u} = (3, 1, 2), \quad \vec{v} = (4, 5, 1), \quad \vec{w} = (1, 2, 4)$

- 10. Compute the scalar triple product $\vec{u} \cdot (\vec{v} \times \vec{w})$
 - a) $\vec{u} = (-2, 0, 6), \vec{v} = (1, -3, 1), \vec{w} = (-5, -1, 1)$
 - b) $\vec{u} = (-1, 2, 4), \quad \vec{v} = (3, 4, -2), \quad \vec{w} = (-1, 2, 5)$
 - c) $\vec{u} = (a, 0, 0), \vec{v} = (0, b, 0), \vec{w} = (0, 0, c)$
 - d) $\vec{u} = 3\hat{i} 2\hat{j} 5\hat{k}$, $\vec{v} = \hat{i} + 4\hat{j} 4\hat{k}$, $\vec{w} = 3\hat{j} + 2\hat{k}$
 - e) $\vec{u} = (3, -1, 6)$ $\vec{v} = (2, 4, 3)$ $\vec{w} = (5, -1, 2)$
- 11. Use the cross product to find the sine of the angle between the vectors $\vec{u} = (2, 3, -6), \vec{v} = (2, 3, 6)$
- 12. Simplify $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v})$
- 13. Prove Lagrange's identity: $\|\vec{u} \times \vec{v}\|^2 = \|\vec{u}\|^2 \|\vec{v}\|^2 (\vec{u} \cdot \vec{v})^2$
- **14.** Polar coordinates satisfy $x = r \cos \theta$ and $y = \sin \theta$. Polar area $J dr d\theta$ includes J:

$$J = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

The two columns are orthogonal. Their lengths are _____. Thus J = _____.

- **15.** Prove that $\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$ if and only if \vec{u} and \vec{v} are parallel vectors.
- 16. State the following statements as True or False
 - a) The cross product of two nonzero vectors \vec{u} and \vec{v} is a nonzero vector if and only if \vec{u} and \vec{v} are not parallel.
 - b) A normal vector to a plane can be obtained by taking the cross product of two nonzero and noncollinear vectors lying in the plane.
 - c) The scalar triple product of \vec{u} , \vec{v} , and \vec{w} determines a vector whose length is equal to the volume of the parallelepiped determined by \vec{u} , \vec{v} , and \vec{w} .
 - d) If \vec{u} and \vec{v} are vectors in 3-space, then $\|\vec{u} \times \vec{v}\|$ is equal to the area of the parallelogram determine by \vec{u} and \vec{v} .
 - e) For all vectors \vec{u} , \vec{v} , and \vec{w} in R^3 , the vectors $(\vec{u} \times \vec{v}) \times \vec{w}$ and $\vec{u} \times (\vec{v} \times \vec{w})$ are the same.
 - f) If \vec{u} , \vec{v} , and \vec{w} are vectors in R^3 , where \vec{u} is nonzero and $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, then $\vec{v} = \vec{w}$