东南大学考试卷(A卷)

课程名和	尔 相	既率论与数	理统计	考试	学期 14			
适用专业		全校		试形式	闭卷	考	试时间长度	120 分钟
题号	_	=	Ξ	四	五.	六	七	八
得分								
T (-1) =	r 1	e ^{-t²/2} dt 表示	示标准正态	分布的分	布函数,			
		5;Φ(-1.96					72	
$T_n \sim t(n)$	$P(T_{24})$	≥ 2.064) =	=0.025; P	$P(T_{24} \ge 1.7$	(11) = 0.05	5;	•	
	$P(T_{25})$	≥ 2.060) :	= 0.025; F	$P(T_{25} \ge 1.7)$	(08) = 0.03	5;		
$K_n \sim \chi^2$	(n) $P($	$K_{24} \ge 39.3$	36) = 0.02	$25; P(K_{24})$	≥12.40) =	= 0.975;		
	P($K_{25} \ge 40.6$	(5) = 0.02	$5; P(K_{25})$	≥13.12) =	0.975;		
一、填充	题(每至	·格 2',共	36')					
				± 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1	X市会 同日	D(D A)=	;P(A B)=
1)								
2)	一盒中有	了3个红球	, 4 个白,	5 个黑对	战,每次抽	取一个球	,取后不放	回,连续打
	取3次,	则第二次	取得红球」	且第三次取	双得白球概	率为	,三次	取球中只不
		导白球的概						
3)	设随机变	定量 X 服从	、正态分布	N(-5,4),	则 P(X<	-3)=	°	
4)	随机变量	a X, Y相	互独立,X~	N(0,2), Y	~N(-1,3),	则 2X-Y f	的概率密度是	为
5)	随机变	量 X, Y	的联合	分布律为	: P(X=	-2,Y=1)=	0.2; P(X=	-2,Y=2)=0.
	P(X=2,Y	y=1)=0.4; P	(X=2,Y=2)=0.1. 则 2	2X+Y 分布	i律为		;
	的边缘外	分布律为 _						
6)	随机变量	量 X, Y 的	目关系数为	0.5, DX=	=DY=2,则	cov(X-Y	, X+2Y)=	

 $\frac{1}{n}(X_1^2 + X_2^2 + ... + X_n^2) \xrightarrow{p} \underline{\hspace{1cm}}$

7) 设随机变量序列 {Xn,n=1,2,...} 独立同分于据匀分布 U(0,6),则

- 8) 设总体 X 服从正态分布 N(-2,4), $X_1, X_2, ..., X_{10}$ 是来此该总体的样本, \overline{X}, S^2 分别表示样本均值和样本方差,则 $E(2\overline{X}+1)=$ ______, $D(S^2)=$ ______。
- 9) 随机变量 X 的分布律为 P(X=2)=0.3, P(X=3)=0.4, P(X=5)=0.3;则其分布函数 为____。
- 10) 随机变量 X 服从均值为 3 的指数分布,则 Y=1-X, 的密度函数为____。
- 11) 设 X_1, X_2, X_3, X_4 是 来 自 正 态 总 体 N(1,4) 的 简 单 随 机 样 本 , 则 $\frac{1}{4}((X_1-1)^2+(X_2-1)^2)$ 服 从 ______分 布 , 则 若 $b\frac{(X_1-1)}{\sqrt{(X_2-1)^2+(X_3-1)^2}} \sim t(2)$,则常数 b=_____。
- 12) 设某总体服从 N(m,1), 有来自该总体的容量为 16 的简单随机样本, 其样本均值为 3.5,则在水平 α =0.1 下, m 的置信区间为______。
- 13) 设总体服从泊松分布 P(a), a 为未知参数,若 1,2,2,0,3,4 是来自该总体的简单随机 样本的观测值,则 a 的矩估计值为_____。
- 二、(10') 设有甲乙丙三个箱子,甲中有红球 4 只,白球 2 只,黑球 2 只;乙中有红球 2 只,白球 1 只,黑球 3 只;丙中有红球 3 只,白球 3 只,黑球 2 只。现抛一枚均匀的硬币两次,用 X 表示出现正面的次数,若 X=0,则选取甲箱,若 X=1,则选取乙箱,若 X=2,则选取丙箱;然后再从选出的箱中任选一球。(1) 求取出的球为红球的概率;(2) 如果取出的球为红球,则该球取自甲箱的概率是多少?

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} ax & 0 < y < x < 1 \\ 0 & 其他 \end{cases}$$

求(1)常数a;(2)Y的边缘密度函数;(3)条件概率P(X<0.8|Y=0.5)。

鉄

李号

四、(9')设随机变量 X 和 Y 相互独立,且都服从 U[0,1]。令 Z=X-Y,求随机变量 Z 的概率 密度函数 $f_Z(z)$ 。

五、(10') 假设一本书有 500 页,每页上的错误数服从参数为 5 的泊松分布 P(5),各页上有无错误相互独立。试用中心极限定理近似计算这本书的总错误数不超过 2450 的概率。

六、(10')设总体 X 的概率密度为

$$f(x,a) = \frac{1}{\sqrt{\pi}}e^{-(x-a)^2}, x \in R, a \in R$$

其中a为未知参数。 $X_1,...X_n$ 为来自该总体的样本。 (1)求参数a的最大似然估计量 \hat{a} , (2) \hat{a} 是否是a的无偏估计量,说明理由。.

七、 (10')设总体 X 服从正态分布 N (u, σ^2) ,u, σ^2 未知。 现有来自该总体样本容量为 25 的样本,其样本均值为 5,样本标准差为 2. (1)试检验 H_0 : u=6, v.s. H_1 : u \neq 6.(检验水平 α = 0.05), (2)求 σ^2 的置信度为 95%的置信区间。