μ

$$J = \frac{1}{2}$$

μ MASS (atomic mass units u)

The muon's mass is obtained from the muon-electron mass ratio as determined from the measurement of Zeeman transition frequencies in muonium (μ^+e^- atom). Since the electron's mass is most accurately known in u, the muon's mass is also most accurately known in u. The conversion factor to MeV has approximately the same relative uncertainty as the mass of the muon in u. In this datablock we give the result in u, and in the following datablock in MeV.

VALUE (u)	DOCUMENT ID		TECN	COMMENT
$0.1134289257 \pm 0.0000000025$	MOHR	16	RVUE	2014 CODATA value
• • We do not use the following	ng data for avera	ges, fits,	limits, e	etc. • • •
$0.1134289267 \pm 0.0000000029$	MOHR	12	RVUE	2010 CODATA value
$0.1134289256 \pm 0.0000000029$	MOHR	80	RVUE	2006 CODATA value
$0.1134289264 \pm 0.0000000030$	MOHR	05	RVUE	2002 CODATA value
$0.1134289168 \pm 0.0000000034$	¹ MOHR	99	RVUE	1998 CODATA value
$0.113428913 \pm 0.000000017$	² COHEN	87	RVUE	1986 CODATA value

¹ MOHR 99 make use of other 1998 CODATA entries below.

μ MASS

2010 CODATA (MOHR 12) gives the conversion factor from u (atomic mass units, see the above datablock) to MeV as 931.494 061 (21). Earlier values use the then-current conversion factor. The conversion error contributes significantly to the uncertainty of the masses given below.

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
$105.6583745 \pm 0.0000024$	MOHR	16	RVUE		2014 CODATA value
• • • We do not use the following	owing data for ave	erages,	fits, limi	ts, etc	. • • •
$105.6583715 \pm 0.0000035$	MOHR	12	RVUE		2010 CODATA value
$105.6583668 \pm 0.0000038$	MOHR	80	RVUE		2006 CODATA value
$105.6583692 \pm 0.0000094$	MOHR	05	RVUE		2002 CODATA value
$105.6583568 \pm 0.0000052$	MOHR	99	RVUE		1998 CODATA value
105.658353 ± 0.000016	$^{ m 1}$ COHEN	87	RVUE		1986 CODATA value
105.658386 ± 0.000044	² MARIAM	82	CNTR	+	
105.65836 ± 0.00026	³ CROWE	72	CNTR		
105.65865 ± 0.00044	⁴ CRANE	71	CNTR		
1 Converted to MoV usin	or the 1009 CO	$D\Lambda T\Lambda$	value	of the	conversion constant

 $^{^{1}}$ Converted to MeV using the 1998 CODATA value of the conversion constant, 931.494013 \pm 0.000037 MeV/u.

² COHEN 87 make use of other 1986 CODATA entries below.

² MARIAM 82 give $m_{\mu}/m_{\rm e} = 206.768259(62)$.

³ CROWE 72 give $m_{\mu}/m_e = 206.7682(5)$.

⁴ CRANE 71 give $m_{\mu}/m_e = 206.76878(85)$.

μ MEAN LIFE au

Measurements with an error $>~0.001\times10^{-6}\,\text{s}$ have been omitted.

<u>VALUE</u> (10^{-6} s)	DOCUMENT ID		TECN	CHG	COMMENT	
2.1969811±0.0000022 OUR AVERA						
$2.1969803 \pm 0.0000021 \pm 0.0000007$	TISHCHENKO	13	CNTR	+	Surface μ^+ at PSI	
$2.197083 \pm 0.000032 \pm 0.000015$	-			·	Muons from π^+ decay at rest	
$2.197013 \pm 0.000021 \pm 0.000011$	CHITWOOD	07	CNTR	+	Surface μ^+ at PSI	
2.197078 ± 0.000073	BARDIN	84	CNTR	+		
2.197025 ± 0.000155	BARDIN	84	CNTR	_		
2.19695 ± 0.00006	GIOVANETTI	84	CNTR	+		
2.19711 ± 0.00008	BALANDIN	74	CNTR	+		
2.1973 ± 0.0003	DUCLOS	73	CNTR	+		
 • • We do not use the following data for averages, fits, limits, etc. 						
2.1969803 ± 0.0000022					Surface μ^+ at PSI	
1 TISHCHENKO 13 uses $1.6 imes 10^{12}~\mu^+$ events and supersedes WEBBER 11.						

au_{μ^+}/ au_{μ^-} MEAN LIFE RATIO

A test of CPT invariance.

VALUE		DOCUMENT ID		TECN COMMENT
1.00002	4±0.000078	BARDIN	84	CNTR
• • • V	Ve do not use the follow	ving data for averages	s, fits,	limits, etc. • • •
1.0008	± 0.0010	BAILEY	79	CNTR Storage ring
1.000	± 0.001	MEYER	63	CNTR Mean life $\mu^+/~\mu^-$

$$(au_{\mu^+} - au_{\mu^-}) / au_{ ext{average}}$$

A test of CPT invariance. Calculated from the mean-life ratio, above.

<u>VALUE</u> <u>DOCUMENT ID</u>

 $(2\pm8)\times10^{-5}$ OUR EVALUATION

μ/p MAGNETIC MOMENT RATIO

This ratio is used to obtain a precise value of the muon mass and to reduce experimental muon Larmor frequency measurements to the muon magnetic moment anomaly. Measurements with an error > 0.00001 have been omitted. By convention, the minus sign on this ratio is omitted. CODATA values were fitted using their selection of data, plus other data from multiparameter fits.

VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT		
$3.183345142 \pm 0.000000071$	MOHR	16	RVUE		2014 CODATA value		
● ● We do not use the following data for averages, fits, limits, etc. ● ●							
$3.183345107 \pm 0.000000084$	MOHR	12	RVUE		2010 CODATA value		

HTTP://PDG.LBL.GOV Page 2 Created: 10/1/2016 20:06

$3.183345137 \pm 0.0000000$	085 MOHR	80	RVUE	2006 CODATA value
$3.183345118 \pm 0.0000000$	MOHR	05	RVUE	2002 CODATA value
3.18334513 ± 0.0000003	39 LIU	99	CNTR +	HFS in muonium
3.18334539 ± 0.0000000	LO MOHR	99	RVUE	1998 CODATA value
3.18334547 ± 0.0000004	7 COHEN	87	RVUE	1986 CODATA value
3.1833441 ± 0.0000017	7 KLEMPT	82	CNTR +	Precession strob
3.1833461 ± 0.0000013	MARIAM	82	CNTR +	HFS splitting
3.1833448 ± 0.0000029) CAMANI	78	CNTR +	See KLEMPT 82
3.1833403 ± 0.0000044	CASPERSON	77	CNTR +	HFS splitting
3.1833402 ± 0.0000072	COHEN	73	RVUE	1973 CODATA value
3.1833467 ± 0.0000082	2 CROWE	72	CNTR +	Precession phase

A REVIEW GOES HERE - Check our WWW List of Reviews

μ MAGNETIC MOMENT ANOMALY

The parity-violating decay of muons in a storage ring is observed. The difference frequency ω_a between the muon spin precision and the orbital angular frequency $(e/m_\mu c)\langle B\rangle$ is measured, as is the free proton NMR frequency ω_p , thus determining the ratio $R{=}\omega_a/\omega_p$. Given the magnetic moment ratio $\lambda{=}\mu_\mu/\mu_p$ (from hyperfine structure in muonium), $(g{-}2)/2$ = $R/(\lambda{-}R)$.

$\mu_{\mu}/(e\hbar/2m_{\mu}){-}1=(g_{\mu}{-}2)/2$

<i>VALUE</i> (units 10^{-10})	DOCUMENT ID		TECN	CHG	COMMENT
11659208.9±	5.4±3.3	$^{ m 1}$ BENNETT	06	MUG2		Average μ^+ and μ^-
\bullet \bullet We do not	. • • •					
11659208 ± 6	õ	BENNETT	04	MUG2		Average μ^+ and μ^-
11659214 ± 8	3 ± 3	BENNETT	04	MUG2	_	Storage ring
11659203 ± 6	5 ± 5	BENNETT	04	MUG2	+	Storage ring
$11659204 \pm$	7 ± 5	BENNETT	02	MUG2	+	Storage ring
11659202 ± 14	± 6	BROWN	01	MUG2	+	Storage ring
11659191 ± 59	9	BROWN	00	MUG2	+	
11659100 ± 110)	² BAILEY	79	CNTR	+	Storage ring
11659360 ± 120)	² BAILEY	79	CNTR	_	Storage ring
11659230 ± 89	5	² BAILEY	79	CNTR	\pm	Storage ring
11620000 ± 5000)	CHARPAK	62	CNTR	+	

 $^{^1}$ BENNETT 06 reports $(g_{\mu}-2)/2=(11659208.0\pm5.4\pm3.3)\times10^{-10}.$ We rescaled this value using μ/p magnetic moment ratio of 3.183345137(85) from MOHR 08.

$$(g_{\mu^+} - g_{\mu^-}) / g_{\text{average}}$$

A test of CPT invariance.

 VALUE (units 10⁻⁸)
 DOCUMENT ID
 TECN

 −0.11±0.12
 BENNETT
 04
 MUG2

 $^{^2}$ BAILEY 79 values recalculated by HUGHES 99 using the COHEN 87 μ/p magnetic moment. The improved MOHR 99 value does not change the result.

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

 -2.6 ± 1.6

BAILEY

79 CNTR

μ ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.

$VALUE~(10^{-19}~ecm)$	DOCUMENT ID		TECN CHG	COMMENT
-0.1 ± 0.9	$^{ m 1}$ BENNETT	09	MUG2 \pm	Storage ring
• • • We do not use the following	g data for average	es, fits,	limits, etc. $ullet$	• •
$-0.1\!\pm\!1.0$	BENNETT	09	MUG2 +	Storage ring
$-0.1\!\pm\!0.7$	BENNETT	09	MUG2 -	Storage ring
-3.7 ± 3.4	² BAILEY	78	CNTR \pm	Storage ring
8.6 ± 4.5	BAILEY	78	CNTR +	Storage ring
0.8 ± 4.3	BAILEY	78	CNTR -	Storage ring

 $^{^1}$ This is the combination of the two BENNETT 09 results quoted here separately for μ^+ and $\mu^-.$ BENNETT 09 uses the convention d = 1/2 \cdot (d $_{\mu^-}$ – d $_{\mu^+}$).

MUON-ELECTRON CHARGE RATIO ANOMALY $q_{\mu^+}/q_{e^-}+1$

<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	CHG	COMMENT
$(1.1\pm2.1)\times10^{-9}$	¹ MEYER	00	CNTR	+	1s-2s muonium

 $^{^1}$ MEYER 00 measure the 1s–2s muonium interval, and then interpret the result in terms of muon-electron charge ratio $q_{\mu^+}/q_{\rm p}$.

μ^- DECAY MODES

 μ^+ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confidence level				
$\overline{\Gamma_1}$	$e^- \overline{\nu}_e \nu_\mu$	≈ 100%	_				
Γ_2	$e^- \overline{ u}_e^{} u_\mu^{} \gamma$	[a] (1.4 ± 0.4) %					
Γ_3	$e^-\overline{ u}_e u_\mu^\mu e^+e^-$	[b] $(3.4\pm0.4)\times10^{-5}$					
Lepton Family number (LF) violating modes							
Γ_4	$e^- u_e \overline{ u}_\mu$	$\mathit{LF} \qquad [c] < 1.2 \qquad \ \ \%$	90%				

Γ_4	$e^- u_e \overline{ u}_\mu$	LF	[c] < 1.2	%	90%
Γ_5	$e^-\gamma$	LF	< 5.7	$\times10^{-13}$	90%
Γ_6	$e^-e^+e^-$	LF	< 1.0	$\times 10^{-12}$	90%
Γ_7	$e^-2\gamma$	LF	< 7.2	$ imes$ 10 $^{-11}$	90%

[a] This only includes events with the γ energy > 10 MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.

Created: 10/1/2016 20:06

HTTP://PDG.LBL.GOV

Page 4

 $^{^2}$ This is the combination of the two BAILEY 78 results quoted here separately for μ^+ and μ^- . BAILEY 78 uses the convention d = 1/2 \cdot (d $_{\mu^+}$ – d $_{\mu^-}$) and reports 3.7 \pm 3.4. We convert their result to use the same convention as BENNETT 09.

- [b] See the Particle Listings below for the energy limits used in this measurement.
- [c] A test of additive vs. multiplicative lepton family number conservation.

μ^- BRANCHING RATIOS

$\Gamma(e^-\overline{ u}_e u_\mu\gamma)/\Gamma_{to}$	tal			Γ ₂ /Γ
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.014 ± 0.004		CRITTENDEN 61	CNTR	$\gamma~{ m KE} >$ 10 MeV
• • • We do not use	the following	data for averages, fit	s, limits,	etc. • • •
	862	BOGART 67	CNTR	$\gamma~{ m KE} > 14.5~{ m MeV}$
$0.0033 \!\pm\! 0.0013$		CRITTENDEN 61	CNTR	γ KE $>$ 20 MeV
	27	ASHKIN 59	CNTR	
Γ(e ⁻ 7,ν,e ⁺ e ⁻)	/Γ			Га/Г

(// total						J,
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
3.4±0.2±0.3	7443	¹ BERTL	85	SPEC	+	SINDRUM	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$2.2 \!\pm\! 1.5$	7	² CRITTENDEI	V 61	HLBC	+	$E(e^+e^-) > 10 \; MeV$
2	1	³ GUREVICH	60	EMUL	+	
$1.5 \!\pm\! 1.0$	3	⁴ LEE	59	HBC	+	

 $^{^{1}}$ BERTL 85 has transverse momentum cut $p_{T} > 17~{
m MeV}/c$. Systematic error was increased by us.

 $\Gamma(e^u_e\overline{
u}_\mu)/\Gamma_{
m total}$

CL%

Forbidden by the additive conservation law for lepton family number. A multiplicative law predicts this branching ratio to be 1/2. For a review see NEMETHY 81.

DOCUMENT ID TECN CHG COMMENT

< 0.012	90	$^{ m 1}$ FREEDMAN	93	CNTR +	u oscillation search
• • • We do not	use the follow	ing data for averag	ges, fi	ts, limits, etc.	• • •
< 0.018	90	KRAKAUER	91 B	CALO +	
< 0.05	90	² BERGSMA	83	CALO	$\overline{ u}_{\mu}e ightarrow \mu^{-}\overline{ u}_{e}$
< 0.09	90	JONKER	80	CALO	See BERGSMA 83
-0.001 ± 0.061		WILLIS	80	CNTR +	
0.13 ± 0.15		BLIETSCHAU	78	HLBC \pm	Avg. of 4 values
< 0.25	90	EICHTEN	73	HLBC +	

 $^{^1}$ FREEDMAN 93 limit on $\overline{\nu}_e$ observation is here interpreted as a limit on lepton family number violation.

² CRITTENDEN 61 count only those decays where total energy of either (e^+, e^-) combination is >10 MeV.

³ GUREVICH 60 interpret their event as either virtual or real photon conversion. e^+ and e^- energies not measured.

 $^{^4}$ In the three LEE 59 events, the sum of energies E(e^+) + E(e^-) + E(e^+) was 51 MeV, 55 MeV, and 33 MeV.

² BERGSMA 83 gives a limit on the inverse muon decay cross-section ratio $\sigma(\overline{\nu}_{\mu}e^{-} \rightarrow \mu^{-}\overline{\nu}_{e})/\sigma(\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e})$, which is essentially equivalent to $\Gamma(e^{-}\nu_{e}\overline{\nu}_{\mu})/\Gamma_{\text{total}}$ for small values like that quoted.

 $\Gamma(e^-\gamma)/\Gamma_{\rm total}$

	Forbidden by lepton family number conservation.									
VAL	<i>UE</i> (units 10^{-11})	CL%	DOCUMENT ID		TECN	CHG	COMMENT			
<	0.057	90	ADAM	13 B	SPEC	+	MEG at PSI			
• •	ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
<	0.24	90	ADAM	11	SPEC	+	MEG at PSI			
<	2.8	90	ADAM	10	SPEC	+	MEG at PSI			
<	1.2	90	AHMED	02	SPEC	+	MEGA			
<	1.2	90	BROOKS	99	SPEC	+	LAMPF			
<	4.9	90	BOLTON	88	CBOX	+	LAMPF			
<1	00	90	AZUELOS	83	CNTR	+	TRIUMF			

SPEC +

ELEC +

80

 $\Gamma(e^-e^+e^-)/\Gamma_{\rm total}$

< 17

<100

 Γ_6/Γ

LAMPF

SIN

Created: 10/1/2016 20:06

 Γ_5/Γ

Forbidden by lepton family number conservation.

90

90

$VALUE$ (units 10^{-12})	CL%	DOCUMENT ID		TECN	CHG	COMMENT
< 1.0	90	¹ BELLGARDT	88	SPEC	+	SINDRUM
\bullet \bullet We do not use th	e following	g data for averages	s, fits,	, limits, e	etc. •	• •
< 36	90	BARANOV	91	SPEC	+	ARES
< 35	90	BOLTON	88	CBOX	+	LAMPF
< 2.4	90	¹ BERTL	85	SPEC	+	SINDRUM
<160	90	¹ BERTL	84	SPEC	+	SINDRUM
<130	90	$^{ m 1}$ BOLTON	84	CNTR		LAMPF

KINNISON

SCHAAF

 Γ_7/Γ

 $\Gamma(e^-2\gamma)/\Gamma_{ ext{total}}$ Forbidden by lepton family number conservation.

<i>VALUE</i> (units 10^{-1}	¹) <u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
< 7.2	90	BOLTON	88	CBOX	+	LAMPF
• • • We do no	t use the foll	owing data for av	erages	, fits, lim	nits, et	c. • • •
< 840	90	¹ AZUELOS	83	CNTR	+	TRIUMF
< 5000	90	² BOWMAN	78	CNTR		DEPOMMIER 77 data

 $^{^{1}\,\}mathrm{AZUELOS}$ 83 uses the phase space distribution of BOWMAN 78.

LIMIT ON $\mu^- \rightarrow e^-$ CONVERSION

Forbidden by lepton family number conservation.

$\sigma(\mu^{-32}S \rightarrow e^{-32}S) / \sigma(\mu^{-32}S \rightarrow \nu_{\mu}^{32}P^{*})$

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 7 \times 10^{-11}$	90	BADERT	80	STRC	SIN
• • • We do not use the	following o	data for averages	s, fits,	limits, e	etc. • • •
$< 4 \times 10^{-10}$	90	BADERT	77	STRC	SIN

¹ These experiments assume a constant matrix element.

 $^{^2}$ BOWMAN 78 assumes an interaction Lagrangian local on the scale of the inverse μ

$\sigma(\mu^- Cu \rightarrow e^- Cu) / \sigma(\mu^- Cu \rightarrow capture)$

<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • $<1.6 \times 10^{-8}$ 90 BRYMAN 72 SPEC

$\sigma(\mu^- \text{Ti} \rightarrow e^- \text{Ti}) / \sigma(\mu^- \text{Ti} \rightarrow \text{capture})$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<4.3 \times 10^{-12}$	90	$^{ m 1}$ DOHMEN	93	SPEC	SINDRUM II	
• • • We do not use t	he followin	g data for average	es, fits	, limits,	etc. • • •	
$<$ 4.6 \times 10 ⁻¹²	90	AHMAD	88	TPC	TRIUMF	
$< 1.6 \times 10^{-11}$	90	BRYMAN	85	TPC	TRIUMF	

¹DOHMEN 93 assumes $\mu^- \rightarrow e^-$ conversion leaves the nucleus in its ground state, a process enhanced by coherence and expected to dominate.

$\sigma(\mu^- Pb \rightarrow e^- Pb) / \sigma(\mu^- Pb \rightarrow capture)$

VALUECL%DOCUMENT IDTECNCOMMENT $<4.6 \times 10^{-11}$ 90HONECKER 96SPECSINDRUM II• • • We do not use the following data for averages, fits, limits, etc. • • • $<4.9 \times 10^{-10}$ 90AHMAD88TPCTRIUMF

$\sigma(\mu^- Au \rightarrow e^- Au) / \sigma(\mu^- Au \rightarrow capture)$

 VALUE
 CL%
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 <7 × 10^{−13}
 90
 BERTL
 06
 SPEC
 −
 SINDRUM II

LIMIT ON $\mu^- \rightarrow e^+$ CONVERSION

Forbidden by total lepton number conservation.

$\sigma(\mu^{-32}S \rightarrow e^{+32}Si^*) / \sigma(\mu^{-32}S \rightarrow \nu_{\mu}^{32}P^*)$

<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **<9** \times **10**⁻¹⁰ 90 BADERT... 80 STRC SIN

• • • We do not use the following data for averages, fits, limits, etc. • • •

<1.5 \times 10⁻⁹ 90 BADERT... 78 STRC SIN

$\sigma(\mu^{-127}I \rightarrow e^{+127}Sb^*) / \sigma(\mu^{-127}I \rightarrow anything)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<3 \times 10^{-10}$	90	¹ ABELA	80	CNTR	Radiochemical tech.

¹ ABELA 80 is upper limit for μ^-e^+ conversion leading to particle-stable states of ¹²⁷Sb. Limit for total conversion rate is higher by a factor less than 4 (G. Backenstoss, private communication).

$\sigma(\mu^- Cu \rightarrow e^+ Co) / \sigma(\mu^- Cu \rightarrow \nu_\mu Ni)$

VALUE	CL%	DOCUMENT ID		TECN		
• • • We do not	use the following	data for averages	s, fits,	limits, etc.	•	•
$< 2.6 \times 10^{-8}$	90	BRYMAN	72	SPEC		
$< 2.2 \times 10^{-7}$	00	CONFORTO	62	OSPK		

$\sigma(\mu^- \text{Ti} \rightarrow e^+ \text{Ca}) / \sigma(\mu^- \text{Ti} \rightarrow \text{capture})$

VALUE	CL%	EVTS	DOCUMENT ID		TECN CHG	COMMENT
$< 3.6 \times 10^{-11}$	90		^{1,2} KAULARD		SPEC -	SINDRUM II
● ● We do not	use the	e followi	ng data for average	s, fits,	limits, etc. ●	• •
$< 1.7 \times 10^{-12}$	90	1	^{2,3} KAULARD	98	SPEC -	SINDRUM II
$<$ 4.3 \times 10 ⁻¹²	90		³ DOHMEN	93	SPEC	SINDRUM II
$< 8.9 \times 10^{-11}$	90		$^{ m 1}$ DOHMEN	93	SPEC	SINDRUM II
$< 1.7 \times 10^{-10}$	90		⁴ AHMAD	88	TPC	TRIUMF

 $^{^{}m I}$ This limit assumes a giant resonance excitation of the daughter Ca nucleus (mean energy and width both 20 MeV).

LIMIT ON MUONIUM → ANTIMUONIUM CONVERSION

Forbidden by lepton family number conservation.

$$R_{\mathbf{g}} = G_{\mathbf{C}} / G_{\mathbf{F}}$$

The effective Lagrangian for the $\mu^+e^- \rightarrow \mu^-e^+$ conversion is assumed to be

$$\mathcal{L} = 2^{-1/2}~\textit{G}_{\textit{C}}~[\overline{\psi}_{\mu}\gamma_{\lambda}~(1-\gamma_{5})~\psi_{e}]~[\overline{\psi}_{\mu}\gamma_{\lambda}~(1-\gamma_{5})~\psi_{e}] + \text{h.c.}$$

The experimental result is then an upper limit on G_C/G_F , where G_F is the Fermi coupling constant.

VALUE	CL%	EVTS	DOCUMENT ID		TECN CHG	COMMENT
< 0.0030	90	1	$^{ m 1}$ WILLMANN	99	SPEC +	μ^+ at 26 GeV/ c
 ● ● We do no 	t use th	e followin	g data for average	s, fits,	limits, etc. ●	• •
< 0.14	90	1	² GORDEEV	97	SPEC +	JINR phasotron
< 0.018	90	0	³ ABELA	96	SPEC +	μ^+ at 24 MeV
< 6.9	90		NI	93	CBOX	LAMPF
< 0.16	90		MATTHIAS	91	SPEC	LAMPF
< 0.29	90		HUBER	90 B	CNTR	TRIUMF
<20	95		BEER	86	CNTR	TRIUMF
<42	95		MARSHALL	82	CNTR	

 $^{^{1}}$ WILLMANN 99 quote both probability $P_{M\,\overline{M}} < 8.3 imes 10^{-11}$ at 90%CL in a 0.1 T field

A REVIEW GOES HERE – Check our WWW List of Reviews

²KAULARD 98 obtained these same limits using the unified classical analysis of FELD-

 $^{^3\,\}mathrm{MAN}$ 98. $^3\,\mathrm{This}$ limit assumes the daughter Ca nucleus is left in the ground state. However, the probability of this is unknown.

⁴ Assuming a giant-resonance-excitation model.

and $R_g = G_C/G_F$. ²GORDEEV 97 quote limits on both $f=G_{MM}/GF$ and the probability $W_{MM} <$ 4.7 \times

 $^{^{10^{-7}}}$ (90% CL). 3 ABELA 96 quote both probability $P_{M\overline{M}}$ $<8\times10^{-9}$ at 90% CL and R_g = G_C/G_F .

μ DECAY PARAMETERS

ρ PARAMETER

(V-A) theory predicts $\rho = 0.75$.

VALUE			EVTS	DOCUMENT ID	TECN	CHG	COMMENT
0.74979	0 ± 0.0002	6 OUR AVE	RAGE				
0.74977	7 ± 0.00012	2 ± 0.00023		¹ BAYES	11 TWST	+	Surface μ^+
0.7518	± 0.0026			DERENZO	69 RVUE		
• • • \	Ne do not	use the foll	owing data	a for averages, fits	, limits, etc.	• •	•
0.75014	1±0.0001	7 ± 0.00045		² MACDONALD			
0.75080	0.0003	2 ± 0.00100	6G	³ MUSSER	05 TWST	+	Surface μ^+
0.72	±0.06	± 0.08		AMORUSO	04 ICAR		Liquid Ar TPC
0.762	± 0.008		170k	⁴ FRYBERGER	68 ASPK	+	25–53 MeV e^+
0.760	± 0.009		280k	⁴ SHERWOOD	67 ASPK	+	25–53 MeV e^+
0.7503	± 0.0026		800k	⁴ PEOPLES	66 ASPK	+	20–53 MeV e^+

¹The quoted systematic error includes a contribution of 0.00013 (added in quadrature) from uncertainties on radiative corrections and on the Michel parameter η .

η PARAMETER

(V-A) theory predicts $\eta = 0$.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID	TECN	CHG (COMMENT
0.057 ±0.034 OUR AVE	RAGE	·			
$0.071\ \pm0.037\ \pm0.005$	30M	DANNEBERG	05 CNTR	+ 7	7–53 MeV <i>e</i> +
$0.011\ \pm0.081\ \pm0.026$	5.3M	¹ BURKARD	85BCNTR	+ 9	9–53 MeV <i>e</i> +
-0.12 ± 0.21	6346	DERENZO	69 HBC	+ 1	1.6–6.8 MeV <i>e</i> +
ullet $ullet$ We do not use the fo	llowing o	data for averages, fits	, limits, etc.	• • •	•
$-0.0021 \pm 0.0070 \pm 0.0010$	30M	² DANNEBERG	05 CNTR	+ 7	7–53 MeV <i>e</i> +
$-0.012\ \pm0.015\ \pm0.003$	5.3M	² BURKARD	85BCNTR	+ 9	9–53 MeV <i>e</i> +
$-0.007\ \pm0.013$	5.3M	³ BURKARD	85BFIT	+ 9	9–53 MeV <i>e</i> +
$-0.7~\pm 0.5$	170k	⁴ FRYBERGER	68 ASPK	+ 2	25–53 MeV <i>e</i> +
$-0.7~\pm 0.6$	280k	⁴ SHERWOOD	67 ASPK	+ 2	25–53 MeV <i>e</i> +
0.05 ± 0.5	800k	⁴ PEOPLES	66 ASPK	+ 2	20–53 MeV <i>e</i> +
-2.0 ± 0.9	9213	⁵ PLANO	60 HBC	+ \	Whole spectrum

¹ Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. $^2\alpha=\alpha'=0$ assumed.

 $^{^2}$ The quoted systematic error includes a contribution of 0.00011 (added in quadrature) from the dependence on the Michel parameter $\eta.$

 $^{^3}$ The quoted systematic error includes a contribution of 0.00023 (added in quadrature) from the dependence on the Michel parameter $\eta.$

 $^{^4\}eta$ constrained = 0. These values incorporated into a two parameter fit to ρ and η by

³Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B. $^{4}\rho$ constrained = 0.75.

⁵Two parameter fit to ρ and η ; PLANO 60 discounts value for η .

δ PARAMETER

(V-A) theory predicts $\delta = 0.75$.

VALUE		EVTS	DOCUMENT ID	TECN	CHO	COMMENT		
0.75047	7±0.00034 OUR AVE	RAGE						
0.75049	$9 \pm 0.00021 \pm 0.00027$		¹ BAYES	11 TWST	+	Surface μ^+		
0.7486	$\pm 0.0026\ \pm 0.0028$		² BALKE	88 SPEC	+	Surface μ^+		
• • • \	ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
0.75067	$7 \pm 0.00030 \pm 0.00067$		MACDONALD	08 TWST	+	Surface μ^+		
0.74964	$4\pm0.00066\pm0.00112$	6G	GAPONENKO	05 TWST	+	Surface μ^+		
			³ VOSSLER	69				
0.752	± 0.009	490k	FRYBERGER	68 ASPK	+	25–53 MeV e^+		
0.782	± 0.031		KRUGER	61				
0.78	± 0.05	8354	PLANO	60 HBC	+	Whole spectrum		

 $^{^1}$ The quoted systematic error includes a contribution of 0.00006 (added in quadrature) from uncertainties on radiative corrections and on the Michel parameter $\eta.$

$|(\xi \text{ PARAMETER}) \times (\mu \text{ LONGITUDINAL POLARIZATION})|$

(V-A) theory predicts $\xi=1$, longitudinal polarization = 1.

<u>VALUE</u>			DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
1.0009	$^{+0.0016}_{-0.0007}$	OUR AVER	AGE				
1.00084	4±0.00029	$9^{+0.00165}_{-0.00063}$	BUENO	11	TWST		Surface μ^+ beam
1.0027	±0.0079	± 0.0030	BELTRAMI	87	CNTR		SIN, π decay in flight
• • • \	We do not	use the follow	wing data for aver	ages,	fits, limi	ts, etc	. • • •
1.0003	±0.0006	± 0.0038	JAMIESON	06	TWST	+	surface μ^+ beam
1.0013	±0.0030	± 0.0053	1 IMAZATO	92	SPEC	+	$K^+ o \mu^+ u_{\mu}$
0.975	±0.015		AKHMANOV	68	EMUL		140 kG
0.975	± 0.030		GUREVICH	64	EMUL		See AKHMANOV 68
0.903	±0.027		² ALI-ZADE	61	EMUL	+	27 kG
0.93	± 0.06		PLANO	60	HBC	+	8.8 kG

¹ The corresponding 90% confidence limit from IMAZATO 92 is $|\xi P_{\mu}| >$ 0.990. This measurement is of K^+ decay, not π^+ decay, so we do not include it in an average, nor do we yet set up a separate data block for K results.

59 CNTR

Bromoform target

Created: 10/1/2016 20:06

BARDON

$\xi \times (\mu \text{ LONGITUDINAL POLARIZATION}) \times \delta / \rho$

•	G. 0/		,			
<u>VALUE</u>	<u>CL%</u>	<u>DOCUMENT ID</u>)	TECN	<u>CHG</u>	COMMENT
$1.00179 {+0.00156\atop -0.00071}$		¹ BAYES	11	TWST	+	Surface μ^+ beam
ullet $ullet$ $ullet$ We do not use	the followir	ng data for averag	es, fits,	, limits, e	etc. •	• •
>0.99682	90	² JODIDIO	86	SPEC	+	TRIUMF
>0.9966	90	³ STOKER	85	SPEC	+	μ -spin rotation
>0.9959	90	CARR	83	SPEC	+	11 kG

¹ BAYES 11 obtains the limit > 0.99909 (90% CL) with the constraint that $\xi \times (\mu \text{ LON-GITUDINAL POLARIZATION}) \times \delta/\rho \leq 1.0$.

0.97

 ± 0.05

 $^{^2}$ BALKE 88 uses $ho = 0.752 \pm 0.003$.

³ VOSSLER 69 has measured the asymmetry below 10 MeV. See comments about radiative corrections in VOSSLER 69.

 $^{^2\,\}mathrm{Depolarization}$ by medium not known sufficiently well.

$\xi' = \text{LONGITUDINAL POLARIZATION OF } e^+$

(V-A) theory predicts the longitudinal polarization $=\pm 1$ for e^{\pm} , respectively. We have flipped the sign for e^- so our programs can average.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
1.00 ±0.04 OUR	AVERAGE					
$0.998 \!\pm\! 0.045$	1M	BURKARD	85	CNTR	+	Bhabha + annihil
0.89 ± 0.28	29k	SCHWARTZ	67	OSPK	_	Moller scattering
0.94 ± 0.38		BLOOM	64	CNTR	+	Brems. transmiss.
1.04 ± 0.18		DUCLOS	64	CNTR	+	Bhabha scattering
1.05 ± 0.30		BUHLER	63	CNTR	+	Annihilation

ξ" PARAMETER

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.98 ± 0.04 OUR AV	ERAGE					
$0.981 \pm 0.045 \pm 0.003$	3.87M	PRIEELS	14	CNTR	+	Bhabha + annihil
0.65 ± 0.36	326k	¹ BURKARD	85	CNTR	+	Bhabha + annihil

¹BURKARD 85 measure $(\xi'' - \xi \xi')/\xi$ and ξ' and set $\xi = 1$.

TRANSVERSE e^+ POLARIZATION IN PLANE OF μ SPIN, e^+ MOMEN-TUM

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
7 ± 8 OUR AV	ERAGE					
$6.3 \pm \ 7.7 \pm \ 3.4$	30M	DANNEBERG	05	CNTR	+	7–53 MeV e^+
16 ± 21 ± 10	5.3M	BURKARD	85 B	CNTR	+	Annihil 9-53 MeV

TRANSVERSE e^+ POLARIZATION NORMAL TO PLANE OF μ SPIN, e^+ **MOMENTUM**

Zero if T invariance holds.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
−2 ± 8 OUR AVE	RAGE					
$-3.7\pm\ 7.7\pm3.4$	30M	DANNEBERG	05	CNTR	+	7–53 MeV e^+
$7 \pm 22 \pm 7$	5.3M	BURKARD	85 B	CNTR	+	Annihil 9–53 MeV

α/A

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
0.4+ 4.3		¹ BURKARD	85B	FIT			

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

 $^{^2}$ JODIDIO 86 includes data from CARR 83 and STOKER 85. The value here is from the

 $^{^3}$ STOKER 85 find $(\xi {\rm P}_{\mu} \delta/\rho)$ >0.9955 and >0.9966, where the first limit is from new μ spin-rotation data and the second is from combination with CARR 83 data. In V-Atheory, $(\delta/\rho)=1.0$.

^{9–53} MeV e^{+} 15 ± 50 ± 14 5.3M BURKARD 85B CNTR +

¹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

α'/A

Zero if T invariance holds.

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	_
-10 ±20 OUR AVI	ERAGE						_
$-3.4\pm21.3\pm4.9$	30M	DANNEBERG	05	CNTR	+	7–53 MeV e^+	
-47 ± 50 ± 14	5.3M	$^{ m 1}$ BURKARD	85 B	CNTR	+	9–53 MeV e^+	
• • • We do not use t	he followin	g data for averages	, fits,	limits, e	etc. •	• •	
-02+43		² BURKARD	85B	FIT			

 $^{^1}$ Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. BURKARD 85B measure e^+ polarizations ${\rm P}_{T_1}$ and ${\rm P}_{T_2}$ versus e^+ energy.

β/A

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCHGCOMMENT3.9 \pm 6.21 BURKARD85BFIT• • • We do not use the following data for averages, fits, limits, etc. • • •2 ± 17 ± 6 5.3MBURKARD85BCNTR + 9-53 MeV e^+

β'/A

Zero if T invariance holds

ZCIO II I IIIVali	arree moras.					
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2 ± 7 OUR A	/ERAGE					
$-\ 0.5 \pm\ 7.8 \pm 1.8$	30M	DANNEBERG				
$17 \pm 17 \pm 6$	5.3M	¹ BURKARD	85 B	CNTR	+	9–53 MeV e^+
ullet $ullet$ We do not use	the following	g data for averages	, fits,	limits, e	tc. •	• •
$\begin{array}{ccc} - & 1.3 \pm & 3.5 \pm 0.6 \\ & 1.5 \pm & 6.3 \end{array}$	30M	² DANNEBERG ³ BURKARD			+	7–53 MeV <i>e</i> ⁺
$^{ m 1}$ Previously we used	d the global f	it result from BUR	KARI	D 85 B in	OUR	AVERAGE, we now

 $^{^1}$ Previously we used the global fit result from BURKARD 85B in OUR AVERAGE, we now only include their actual measurement. BURKARD 85B measure e^+ polarizations ${\rm P}_{T_1}$ and ${\rm P}_{T_2}$ versus e^+ energy.

a/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

<u>VALUE (units 10^{-3})</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u>

• • • We do not use the following data for averages, fits, limits, etc. • • • < 15.9 90 1 BURKARD 85B FIT

Created: 10/1/2016 20:06

HTTP://PDG.LBL.GOV

Page 12

² Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.

¹ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.

 $[\]frac{2}{\alpha}\alpha = \alpha' = 0$ assumed.

³ Global fit to all measured parameters. The fit correlation coefficients are given in BURKARD 85B.

 $^{^{1}}$ Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

a'/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

 5.3 ± 4.1 BURKARD 85B FIT

 1 Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

(b'+b)/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10⁻³) CL% DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • •

<1.04 90 ¹ BURKARD 85B FIT

 $^{
m 1}$ Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

c/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10^{-3}) CL% DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • •

<6.4 90 ¹ BURKARD 85B FIT

 1 Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

c'/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

VALUE (units 10⁻³) DOCUMENT ID TECN

• • We do not use the following data for averages, fits, limits, etc. • •

 3.5 ± 2.0 BURKARD 85B FIT

 1 Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

$\overline{\eta}$ PARAMETER

(V-A) theory predicts $\overline{\eta}=0$. $\overline{\eta}$ affects spectrum of radiative muon decay.

VALUE	DOCUMENT ID	<u>TECN CHG</u>	COMMENT
0.02 ± 0.08 OUR AVERAGE			
-0.014 ± 0.090	EICHENBER 84	ELEC +	ho free
$+0.09 \pm 0.14$	BOGART 67	CNTR +	
• • • We do not use the following of	data for averages, fits	s, limits, etc. •	• •
-0.035 ± 0.098	EICHENBER 84	ELEC +	ρ =0.75 assumed

μ REFERENCES

MOHR	16	arXiv:1507.07956	P.J. Mohr, D.B. Newell, B	N Taylor (NIST)
-		lication in RMP	F.J. Molli, D.B. Newell, B	.N. Taylor (NIST)
PRIEELS	14	PR D90 112003	R. Prieels et al.	(LOUV, ETH, PSI+)
ADAM	13B	PRL 110 201801	J. Adam <i>et al.</i>	` (MEG Collab.)
TISHCHENKO		PR D87 052003	V. Tishchenko <i>et al.</i>	(MuLan Collab.)
MOHR	12	RMP 84 1527	P.J. Mohr, B.N. Taylor, D.	
ADAM	11	PRL 107 171801	J. Adam <i>et al.</i>	(MEG Collab.)
BAYES Also	11	PRL 106 041804 PR D85 092013	R. Bayes <i>et al.</i> A. Hillairet <i>et al.</i>	(TWIST Collab.)
BUENO	11	PR D84 032005	J.F. Bueno <i>et al.</i>	(TWIST Collab.) (TWIST Collab.)
Also		PR D85 039908 (errat.)		(TWIST Collab.)
WEBBER	11	PRL 106 041803	D.M. Webber <i>et al.</i>	(MuLan Collab.)
Also		PRL 106 079901 (errat.)		(MuLan Collab.)
ADAM	10	NP B834 1	J. Adam <i>et al.</i>	` (MEG Collab.)
BENNETT	09	PR D80 052008	G.W. Bennett et al.	(MUG-2 Collab.)
BARCZYK	08	PL B663 172	A. Barczyk et al.	(FAST Collab.)
MACDONALD	80	PR D78 032010	R.P. MacDonald et al.	(TWIST Collab.)
MOHR	08	RMP 80 633	P.J. Mohr, B.N. Taylor, D.	
CHITWOOD BENNETT	07 06	PRL 99 032001 PR D73 072003	D.B. Chitwood <i>et al.</i> G.W. Bennett <i>et al.</i>	(MULAN Collab.) (MUG-2 Collab.)
BERTL	06	EPJ C47 337	W. Bertl <i>et al.</i>	(SINDRUM II Collab.)
JAMIESON	06	PR D74 072007	B. Jamieson <i>et al.</i>	(TWIST Collab.)
DANNEBERG	05	PRL 94 021802	N. Danneberg <i>et al.</i>	(ETH, JAGL, PSI+)
GAPONENKO	05	PR D71 071101	A. Gaponenko et al.	(TWIST Collab.)
MOHR	05	RMP 77 1	P.J. Mohr, B.N. Taylor	` (NIST)
MUSSER	05	PRL 94 101805	J.R. Musser et al.	(TWIST Collab.)
AMORUSO	04	EPJ C33 233	S. Amoruso et al.	(ICARUS Collab.)
BENNETT	04	PRL 92 161802	G.W. Bennett <i>et al.</i>	(Muon(g-2) Collab.)
AHMED	02 02	PR D65 112002	M. Ahmed et al.	(MEGA Collab.)
BENNETT BROWN	02	PRL 89 101804 PRL 86 2227	G.W. Bennett <i>et al.</i> H.N. Brown <i>et al.</i>	(Muon(g-2) Collab.) (Muon(g-2) Collab.)
BROWN	00	PR D62 091101	H.N. Brown et al.	(BNL/G-2 Collab.)
MEYER	00	PRL 84 1136	V. Meyer et al.	(BNE/ G Z Collab.)
BROOKS	99	PRL 83 1521	M.L. Brooks <i>et al.</i>	(MEGA/LAMPF Collab.)
HUGHES	99	RMP 71 S133	V.W. Hughes, T. Kinoshita	,
LIU	99	PRL 82 711	W. Liu et al.	(LAMPF Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor	(NIST)
Also	00	RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
WILLMANN	99	PRL 82 49	L. Willmann et al.	_
FELDMAN KAULARD	98 98	PR D57 3873 PL B422 334	G.J. Feldman, R.D. Cousin J. Kaulard <i>et al.</i>	(SINDRUM-II Collab.)
GORDEEV	97	PAN 60 1164	V.A. Gordeev <i>et al.</i>	(SINDICOM-II COIIAB.) (PNPI)
CONDELL	31	Translated from YAF 60		()
ABELA	96	PRL 77 1950	R. Abela <i>et al.</i>	(PSI, ZURI, HEIDH, TBIL+)
HONECKER	96	PRL 76 200	W. Honecker et al.	(SINDRUM II Collab.)
DOHMEN	93	PL B317 631	C. Dohmen et al.	(PSI SINDRUM-II Collab.)
FREEDMAN	93	PR D47 811	S.J. Freedman et al.	(LAMPF E645 Collab.)
NI	93 92	PR D48 1976	B. Ni et al.	(LAMPF Crystal-Box Collab.) (KEK, INUS, TOKY+)
IMAZATO BARANOV	92 91	PRL 69 877 SJNP 53 802	J. Imazato <i>et al.</i> V.A. Baranov <i>et al.</i>	(NEK, INOS, TOKY+) $(JINR)$
DANANOV	91	Translated from YAF 53		(311111)
KRAKAUER	91B	PL B263 534	D.A. Krakauer et al.	(UMD, UCI, LANL)
MATTHIAS	91	PRL 66 2716	B.E. Matthias et al.	(YALE, HEIDP, WILL+)
Also		PRL 67 932 (erratum)	B.E. Matthias et al.	(YALE, HEIDP, WILL+)
HUBER	90B	PR D41 2709	T.M. Huber et al.	(WYOM, VICT, ARIZ+)
AHMAD	88	PR D38 2102	S. Ahmad <i>et al.</i>	(TRIU, VICT, VPI, BRCO+)
Also BALKE	00	PRL 59 970 PR D37 587	S. Ahmad <i>et al.</i> B. Balke <i>et al.</i>	(TRIU, VPI, VICT, BRCO+)
BELLGARDT	88 88	NP B299 1	U. Bellgardt <i>et al.</i>	(LBL, UCB, COLO, NWES+) (SINDRUM Collab.)
BOLTON	88	PR D38 2077	R.D. Bolton et al.	(LANL, STAN, CHIC+)
Also		PRL 56 2461	R.D. Bolton et al.	(LANL, STAN, CHIC+)
Also		PRL 57 3241	D. Grosnick et al.	(CHIC, LANL, STAN+)
BELTRAMI	87	PL B194 326	I. Beltrami et al.	` (ETH, SIN, MANZ)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
		BB1 4-1		
BEER	86	PRL 57 671	G.A. Beer et al.	(VICT, TRIU, WYOM)
BEER JODIDIO		PR D34 1967	A. Jodidio et al.	(VICT, TRIU, WYOM) (LBL, NWES, TRIU)
BEER JODIDIO Also	86 86	PR D34 1967 PR D37 237 (erratum)	A. Jodidio et al.A. Jodidio et al.	(VICT, TRIU, WYOM) (LBL, NWES, TRIU) (LBL, NWES, TRIU)
BEER JODIDIO	86	PR D34 1967	A. Jodidio et al.	(VICT, TRIU, WYOM) (LBL, NWES, TRIU)

BURKARD	85	PL 150B 242	H. Burkhardt et al. (ETH,	SIN, MANZ)
			,	
BURKARD	85B	PL 160B 343		SIN, MANZ)
Also		PR D24 2004	F. Corriveau <i>et al.</i> (ETH,	SIN, MANZ)
Also		PL 129B 260	F. Corriveau <i>et al.</i> (ETH,	SIN, MANZ)
STOKER	85	PRL 54 1887		IWES, TRIU)
BARDIN	84	PL 137B 135	G. Bardin et al. (SACL, CERN, I	BGNA, FIRZ)
BERTL	84	PL 140B 299	W. Bertl et al. (SINDI	RUM Collab.)
BOLTON	84	PRL 53 1415	,	HIC, STAN+)
			, , ,	,
EICHENBER	84	NP A412 523	W. Eichenberger, R. Engfer, A. van der Sch	iatr
GIOVANETTI	84	PR D29 343	K.L. Giovanetti <i>et al.</i>	(WILL)
AZUELOS	83	PRL 51 164	G. Azuelos <i>et al.</i> (MONT, 7	rriu, Brco)
Also	00	PRL 39 1113		
				RCO, TRIU+)
BERGSMA	83	PL 122B 465	F. Bergsma <i>et al.</i> (CH)	ARM Collab.)
CARR	83	PRL 51 627	J. Carr et al. (LBL. N	IWES, TRIU)
KINNISON	82	PR D25 2846	``,	STAN, LANL)
	02			
Also		PRL 42 556		, EFI, STAN)
KLEMPT	82	PR D25 652	E. Klempt <i>et al.</i> (1	MANZ, ETH)
MARIAM	82	PRL 49 993	F.G. Mariam et al. (YALE, HE	EIDH, BERN)
MARSHALL	82	PR D25 1174	G.M. Marshall <i>et al.</i>	
	-			(BRCO)
NEMETHY	81	CNPP 10 147	P. Nemethy, V.W. Hughes	(LBL, YALE)
ABELA	80	PL 95B 318	R. Abela <i>et al.</i> (BASL, KAF	RLK, KARLE)
BADERT	80	LNC 28 401	A. Badertscher et al.	(BERN)
	00			` ′
Also		NP A377 406	A. Badertscher et al.	(BERN)
JONKER	80	PL 93B 203		ARM Collab.)
SCHAAF	80	NP A340 249	A. van der Schaaf et al. (2	ZURI, ETH+)
Also		PL 72B 183		I, ETH, SIN)
WILLIS	80	PRL 44 522	S.E. Willis <i>et al.</i> (YALE, I	LBL, LASL+)
Also		PRL 45 1370	S.E. Willis et al. (YALE, I	LBL, LASL+)
BAILEY	79	NP B150 1	J.M. Bailey (CERN, D.	ARE, MANZ)
BADERT	78	PL 79B 371	A. Badertscher <i>et al.</i>	· · · · ·
				(BERN)
BAILEY	78	JP G4 345	J.M. Bailey (DARE, BERN, SHEF, MAI	
Also		NP B150 1	J.M. Bailey (CERN, D.	ARE, MANZ)
BLIETSCHAU	78	NP B133 205	J. Blietschau et al. (Gargai	melle Collab.)
BOWMAN	78			
		PRL 41 442		IAS, CMU+)
CAMANI	78	PL 77B 326	M. Camani <i>et al.</i> (I	ETH, MANZ)
BADERT	77	PRL 39 1385	A. Badertscher et al.	(BERN)
CASPERSON	77	PRL 38 956	D.E. Casperson et al. (BERN, HE	IDH, LASL+)
DEPOMMIER	77	PRL 39 1113		RCO, TRIU+)
BALANDIN	74	JETP 40 811	M.P. Balandin <i>et al.</i>	(JINR)
		Translated from ZETF 67	1631.	
COHEN	73	JPCRD 2 664	E.R. Cohen, B.N. Taylor	(RISC, NBS)
DUCLOS	73	PL 47B 491	J. Duclos, A. Magnon, J. Picard	(SACL)
				2 (
EICHTEN	73	PL 46B 281	` -	melle Collab.)
BRYMAN	72	PRL 28 1469	D.A. Bryman <i>et al.</i>	(VPI)
CROWE	72	PR D5 2145	K.M. Crowe et al. (LBL, WASH)
CRANE	71	PRL 27 474	T. Crane et al.	(YALE)
DERENZO	69	PR 181 1854	S.E. Derenzo	(EFI)
VOSSLER	69	NC 63A 423	C. Vossler	(EFI)
AKHMANOV	68	SJNP 6 230	V.V. Akhmanov et al.	(KIAE)
		Translated from YAF 6 33	16.	(/
FRYBERGER	68	PR 166 1379	D. Fryberger	(EFI)
BOGART	67	PR 156 1405	E. Bogart et al.	(COLU)
SCHWARTZ	67	PR 162 1306	D.M. Schwartz	(EFI)
SHERWOOD	67	PR 156 1475	B.A. Sherwood	(EFI)
PEOPLES	66	Nevis 147 unpub.	J. Peoples	(COLU)
				` '
BLOOM	64	PL 8 87	S. Bloom et al.	(CERN)
DUCLOS			J. Duclos <i>et al.</i>	(CERN)
CLIDEN/ICLI	64	PL 9 62	5. B 46.65 Ct 4	
GUREVICH				(KIAE)
GUREVICH BUHLER	64	PL 11 185	I.I. Gurevich et al.	(KIAE)
BUHLER	64 63	PL 11 185 PL 7 368	I.I. Gurevich <i>et al.</i> A. Buhler-Broglin <i>et al.</i>	(ČERN)
BUHLER MEYER	64 63 63	PL 11 185 PL 7 368 PR 132 2693	I.I. Gurevich <i>et al.</i> A. Buhler-Broglin <i>et al.</i> S.L. Meyer <i>et al.</i>	(ČERN) (COLU)
BUHLER	64 63	PL 11 185 PL 7 368	I.I. Gurevich <i>et al.</i> A. Buhler-Broglin <i>et al.</i>	(ČERN)
BUHLER MEYER CHARPAK	64 63 63 62	PL 11 185 PL 7 368 PR 132 2693 PL 1 16	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al.	(ČERN) (COLU) (CERN)
BUHLER MEYER CHARPAK CONFORTO	64 63 63 62 62	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. (INFN, RO	(ČERN) (COLU)
BUHLER MEYER CHARPAK	64 63 63 62	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. (INFN, RG S.A. Ali-Zade, I.I. Gurevich, B.A. Nikolsky	(ČERN) (COLU) (CERN)
BUHLER MEYER CHARPAK CONFORTO ALI-ZADE	64 63 63 62 62 61	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313 Translated from ZETF 40	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. S.A. Ali-Zade, I.I. Gurevich, B.A. Nikolsky 452.	(ČERN) (COLU) (CERN) OMA, CERN)
BUHLER MEYER CHARPAK CONFORTO ALI-ZADE CRITTENDEN	64 63 63 62 62 61	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313 Translated from ZETF 40 PR 121 1823	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. S.A. Ali-Zade, I.I. Gurevich, B.A. Nikolsky 452. R.R. Crittenden, W.D. Walker, J. Ballam	(ČERN) (COLU) (CERN) OMA, CERN) (WISC+)
BUHLER MEYER CHARPAK CONFORTO ALI-ZADE	64 63 63 62 62 61	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313 Translated from ZETF 40	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. S.A. Ali-Zade, I.I. Gurevich, B.A. Nikolsky 452.	(ČERN) (COLU) (CERN) OMA, CERN)
BUHLER MEYER CHARPAK CONFORTO ALI-ZADE CRITTENDEN KRUGER	64 63 63 62 62 61	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313 Translated from ZETF 40 PR 121 1823 UCRL 9322 unpub.	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. S.A. Ali-Zade, I.I. Gurevich, B.A. Nikolsky 452. R.R. Crittenden, W.D. Walker, J. Ballam H. Kruger	(ČERN) (COLU) (CERN) OMA, CERN) (WISC+) (LRL)
BUHLER MEYER CHARPAK CONFORTO ALI-ZADE CRITTENDEN	64 63 63 62 62 61 61	PL 11 185 PL 7 368 PR 132 2693 PL 1 16 NC 26 261 JETP 13 313 Translated from ZETF 40 PR 121 1823	I.I. Gurevich et al. A. Buhler-Broglin et al. S.L. Meyer et al. G. Charpak et al. G. Conforto et al. (INFN, RC S.A. Ali-Zade, I.I. Gurevich, B.A. Nikolsky 452. R.R. Crittenden, W.D. Walker, J. Ballam H. Kruger I.I. Gurevich, B.A. Nikolsky, L.V. Surkova	(ČERN) (COLU) (CERN) OMA, CERN) (WISC+)

PLANO	60	PR 119 1400	R.J. Plano	(COLU)
ASHKIN	59	NC 14 1266	J. Ashkin <i>et al.</i>	(CERN)
BARDON	59	PRL 2 56	M. Bardon, D. Berley, L.M. Lederman	(COLU)
LEE	59	PRL 3 55	J. Lee, N.P. Samios	(COLU)
-	33	=	, , , , , , , , , , , , , , , , , , , ,	,