

R을 이용한 기초통계학

6강: 두 모집단의 비교와 세 개 이상 모집단의 비교를 위한 분산분석

수원대학교 데이터과학부 김 진 흠 서울대학교보건환경연구소이 보 라

자료 추출 방법

1. 두 치료군의 자료가 독립적으로 추출된 경우

예: 암 환자에 대해 약물 치료와 방사선 치료을 비교할 때, 서로 독립적인 환자를 두 치료군으로 나누어 치료 방법을 적용시키는 경우

2025.7.22

제19회 통계유전학워크숍

자료 추출 방법

2. 두 치료군의 자료가 짝을 지어 추출된 경우

예: 쌍둥이와 같이 서로 비슷한 체질의 환자를 짝을 지어 서로 다른 두 치료 방법을 비교하는 경우

독립표본에서 평균 차이에 대한 구간추<u>정</u>

- Data
 - $\blacksquare X_1, X_2, \dots, X_{n_x} \sim iid N(\mu_x, \sigma_x^2)$
 - $Y_1, Y_2, \dots, Y_{n_y} \sim iid N(\mu_y, \sigma_y^2)$
- 가정: $\sigma_x^2 = \sigma_y^2$
- 관심 모수: $\mu_{\chi} \mu_{\gamma}$
- 점추정량: X̄ Ȳ
- 표준오차: $SE(\bar{X} \bar{Y}) = S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$
- 100(1 α)% 신뢰구간
 - $(\bar{X} \bar{Y}) \pm t_{\frac{\alpha}{2}} (n_{\chi} + n_{y} 2) \times SE(\bar{X} \bar{Y})$

합동(pooled)분산 추정량

$$S_p^2 = \frac{(n_x - 1)S_x^2 + (n_y - 1)S_y^2}{n_x + n_y - 2}$$

$$S_x^2 = \frac{1}{n_x - 1} \sum_{i=1}^{n_x} (X_i - \bar{X})^2 : x$$
 표본의 표본분산

$$S_y^2 = \frac{1}{n_{\nu}-1} \sum_{i=1}^{n_y} (Y_i - \bar{Y})^2$$
: y 표본의 표본분산

Is a weight-loss drug effective? → R code로 이동

```
> x < c(0,0,0,2,4,5,13,14,14,14,15,17,17)
> y <- c(0,6,7,8,11,13,15,16,16,16,17,18)
> t.test(x,y,var.equal = TRUE)
        Two Sample t-test
data: x and y
t = -1.2071, df = 23, p-value = 0.2397
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -8.332489 2.191463
sample estimates:
mean of x mean of y
8.846154 11.916667
> boxplot(list(placebo = x,ephedra = y),col = "grey")
```

Boxplots for checking equal variance

Is a weight-loss drug effective?

```
> var.test(x,y)
        F test to compare two variances
data: x and y
F = 1.5802, num df = 12, denom df = 11 p-value = 0.4568
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.4607529 5.2486187
sample estimates:
ratio of variances
          1.580204
> t.test(x,y)
        Welch Two Sample t-test
data: x and y
t = -1.2185, df = 22.538, p-value = 0.2356
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -8.289271 2.148245
sample estimates:
mean of x mean of y
 8.846154 11.916667
```

짝표본에서 평균 차이에 대한 구간추정

- Data: $(X_1, Y_1), ..., (X_n, Y_n)$
- 관심 모수: $\mu_D = \mu_x \mu_y$
- 변환된 data

$$D_1 = X_1 - Y_1, D_2 = X_2 - Y_2, ..., D_n = X_n - Y_n$$

- 가정: $D_i \sim iid N(\mu_D, \sigma^2)$
- 100(1 α)% 신뢰구간

$$\overline{D} \pm t_{\frac{\alpha}{2}}(n-1) \times \frac{S_D}{\sqrt{n}}$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i, \ S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2$$

Are the wear amounts of two types of shoes different? → R code로이동

```
> library(MASS)
> data("shoes")
> names(shoes)
[1] "A" "B"
> with(shoes,t.test(A-B,conf.level = 0.9))
        One Sample t-test
data: A - B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
 -0.6344264 -0.1855736
sample estimates:
mean of x
    -0.41
```

Are the wear amounts of two types of shoes different?

```
> with(shoes,t.test A,B,paired = TRUE,conf.level = 0.9))

    Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
    -0.6344264 -0.1855736
sample estimates:
mean of the differences
    -0.41
```

검정방법의 선택

INTRODUCTORY BIOSTATISTICS

이표본 t-검정: 평균 차이에 대한 유의성 검정

- Hypothesis: $H_0: \mu_x = \mu_y$ 대 $H_1: \mu_x \neq \mu_y$
- Test statistics: $T = \frac{\bar{X} \bar{Y}}{S_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$
- Null distribution
 - When normal population, $T \sim t(n_x + n_y 2)$
 - When large sample, $T \sim N(0,1)$
- P-값: $P(|T| \ge |t_0||H_0)$

실습: 이표본 t-검정

Data: Levels of p24 in mg for two treatment groups

Amount					p24 level					
300 mg	284	279	289	292	287	295	285	279	306	298
600 mg	298	307	297	279	291	335	299	300	306	291

실습: 이표본 t-검정

→ R code로 이동

```
> x <- c(284,279,289,292,287,295,285,279,306,298)
> y <- c(298,307,297,279,291,335,299,300,306,291)
> var.test(x,y)
```

F test to compare two variances

```
data: x and y
F = 0.34183, num df = 9, denom df = 9, p-value = 0.1256
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.0849059 1.3762082
sample estimates:
ratio of variances
0.3418306
```

실습: 이표본 t-검정

```
> t.test(x,y,var.equal = T)

Two Sample t-test

data: x and y
t = -2.034, df = 18, p-value = 0.05696
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -22.1584072     0.3584072
sample estimates:
mean of x mean of y
    289.4     300.3
```

이표본 비모수 방법: 순위합 검정

- Hypothesis: $H_0: m_x = m_y$ 대 $H_1: m_x \neq m_y$
- Test statistic: $W = \sum_{j=1}^{n_y} R_j$
 - \mathbf{R}_{j} : n_{x} 개의 x 표본과 n_{y} 개의 y 표본을 섞은 표본에서 Y_{i} 의 순위
- Null distribution: Follows a discrete distribution
- P-값: $2 \times P(W \ge \max(w_0, 2M w_0) | H_0)$

$$\blacksquare M = \frac{n_y(n_x + n_y + 1)}{2}$$

실습: 순위합 검정

Data: Ten checkout times for two grocery checkers

Checker	Times									
Checker A	5.8	1.0	1.1	2.1	2.5	1.1	1.0	1.2	3.2	2.7
Checker B	1.5	2.7	6.6	4.6	1.1	1.2	5.7	3.2	1.2	1.3

실습: 순위합 검정

→ R code로이동

```
> A <- c(5.8,1.0,1.1,2.1,2.5,1.1,1.0,1.2,3.2,2.7)
> B <- c(1.5,2.7,6.6,4.6,1.1,1.2,5.7,3.2,1.2,1.3)
> wilcox.test(A,B)

Wilcoxon rank sum test with continuity correction
```

```
data: A and B
W = 34, p-value = 0.2394
```

alternative hypothesis: true location shift is not equal to 0

쌍체 t -검정

- Hypothesis: $H_0: \mu_x = \mu_y (\Leftrightarrow \mu_D = 0)$ 대 $H_1: \mu_x \neq \mu_y (\Leftrightarrow \mu_D \neq 0)$
- Test statistic: $T = \frac{\bar{D}}{\frac{\bar{S}D}{\sqrt{n}}}$
- P-값: $P(|T| \ge |t_0||H_0), T \sim t(n-1)$

실습: 쌍체 t-검정

Data: Pre- and post-test scores

Test	score									
Pre- test	77	56	64	60	57	53	72	62	65	66
Post- test	88	74	83	68	58	50	67	64	74	60

실습: 쌍체 t - 검정

→ R code로 이동

```
> x <- c(77,56,64,60,57,53,72,62,65,66)
> y <- c(88.74.83.68.58.50,67,64,74,60)
> t.test(x,y,paired = T)
```

Paired t-test

```
data: x and y
t = -1.8904, df = 9, p-value = 0.09128

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.862013   1.062013

sample estimates:
mean of the differences
-5.4
```

실습: 부호순위검정 → R code로 이동

Leukemia 예제

- 자료: 3가지 종류의 leukemia환자 72명을 대상으로 수집한 Affymetrix microarray 자료
 - Acute myeloid leukemia(AML): 25명
 - B-cell acute lymphoblastic leukemia(B-cell ALL): 38명
 - T-cell acute lymphoblastic leukemia(T-cell ALL): 9명
- 목적: 특정 유전자의 발현 정도가 leukemia의 종류에 따라 차이가 있는가?

자료의 형태

 y_{ij} : i번째 그룹의 j번째 환자에게서 얻은 특정 유전자 발현 수준의 관측값

	발현 수준	그룹평균	전체평균
AML	$y_{11}, y_{12}, \dots, y_{1n_1}$	$ar{y}_{1.}$	
B-cell ALL	$y_{21}, y_{22}, \dots, y_{2n_2}$	$\overline{y}_{2.}$	$\overline{\mathcal{Y}}_{}$
T-cell ALL	$y_{31}, y_{32}, \dots, y_{3n_3}$	$\bar{y}_{3.}$	

Leukemia 예제: 자료의 요약

분산분석(ANOVA)

- 자료: $y_{ij} = i$ 번째 그룹에서 얻은 j번째 관측값
- 모형: $y_{ij} = \mu_i + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$
- 가정: $\varepsilon_{ij} \sim iid N(0, \sigma^2)$
- 귀무가설: H_0 : $\mu_1 = \mu_2 = \mu_3 \Leftrightarrow H_0$: $\tau_1 = \tau_2 = \tau_3 = 0$

분산분석표와 F-검정

■ 분산분석표(ANOVA table)

요인 (source)	자유도 (df)	제곱합 (SS)	평균제곱 (MS)	F-값
처리 (treatment)	I-1	$SS_t = \sum_i n_i (\overline{y}_{i.} - \overline{y}_{})^2$	$MS_t = SS_t/(I-1)$	$F = \frac{MS_t}{MSE}$
잔차 (error)	N-I	$SSE = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i.})^{2}$	MSE = SSE/(N-I)	
Total	<i>N</i> – 1	$SST = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{})^2$		

■ P-값: $P(F \ge f_0|H_0), F \sim F(I-1, N-I)$

Leukemia 예제: 분산분석표와 F-검정

요인 (source)	자유도 (df)	제곱합 (SS)	평균제곱 (MS)	F-값
처리 (treatment)	2	55.684	27.842	125.43
잔차 (error)	69	15.316	0.222	
Total	71	71.000		

P-값 = 1.04514E-23 << 0.05 $\rightarrow H_0$ 기각

→ '유전자 X03934의 발현 정도가 leukemia의 종류에 따라 차이가 있다'고 결론

2025.7.22

제19회 통계유전학워크숍

→ R code로 이동

Data: Number of calories consumed by month

```
> may <- c(2166,1568,2233,1882,2019)
> sep <- c(2279,2075,2131,2009,1793)
> dec <- c(2226,2154,2583,2010,2190)
> ex5 <- stack(list(may=may,sep=sep,dec=dec))</pre>
```

```
> ex5
   values ind
     2166 may
     1568 may
3
     2233 may
4
     1882 may
5
     2019 may
6
     2279 sep
     2075 sep
8
     2131 sep
9
     2009 sep
10
     1793 sep
11
     2226 dec
12 2154 dec
13 2583 dec
14 2010 dec
15
     2190 dec
```

2025.7.22

> oneway.test(values ~ ind,data = ex5,var.equal = T)

One-way analysis of means

data: values and ind

F = 1.7862 num df = 2, denom df = 12, p-value = 0.2094

실습: ANOVA table

요인	자유도	제곱합	평균제곱	F-값
(source)	(df)	(SS)	(MS)	Г НД
처리 (treatment)	2	174664	87332	1.7862
잔차 (error)	12	586720	48893	
Total	14	761384		

```
> res <- aov(values ~ ind,data = ex5)</pre>
> res
call:
   aov(formula = values \sim ind, data = ex5)
Terms:
                     ind Residuals
Sum of Squares 174664.1 586719.6
Deg. of Freedom
                                 12
Residual standard error: 221.1183
Estimated effects may be unbalanced
> summary(res)
            Df Sum Sq Mean Sq F value Pr(>F)
ind
             2 174664 87332 1.786 0.209
Residuals 12 586720 48893
```

F-검정 후 분석

- 일단 '그룹 간의 차이'가 있다는 결론을 내리게 되면 추가적으로 '어떤 처리가 가장 효과가 있는가?' 등과 같은 추가적인 의문 발생
- 예를 들면 '3가지 종류의 leukemia 간에 차이가 있다'는 결론을 내렸을 때,
 - → 세 종류 leukemia가 모두 다른지 또는 AML과 T-cell ALL이, 또는 AML과 B-cell ALL이, 또는 T-cell ALL과 B-cell ALL이 서로 다른가?

다중비교

- 모든 처리쌍에 대해 이표본 검정을 시행할 수 있으나, 유의수준 α의 관리가 어려움
- 예를 들어 3개의 처리군을 비교할 때, 제1종 오류를 범할 확률(family-wise error rate, FWER) 즉, 3개 가설을 동시에 검정할 때 하나라도 제1종 오류가 발생할 확률은,

P(at least one Type I error)

=1-P(no Type I error)
=
$$1 - (1 - \alpha)^3$$

$$\geq 1 - (1 - \alpha) = \alpha$$

다중비교

다중비교는 전체 제1종 오류 확률 α를유지하면서 여러 처리군을 비교하는 방법

다중비교 방법들

- 쌍별 비교(pairwise comparison)
 - 한 번에 한 쌍의 모평균들이 같은지 다른지 검정
 - $\mu_1 = \mu_2, \mu_1 = \mu_3, \mu_2 = \mu_3$
 - Bonferroni, Scheffe, Tukey's HSD 방법
- 대조군(control)과 비교
 - 대조군의 모평균과 나머지 처리군의 모평균들 간의 비교
 - $\mu_1 = \mu_2, \mu_1 = \mu_3$
 - Dunnett 방법

다중비교 방법들

- 다단계 검정(stepdown procedure)
 - <mark>쌍별</mark> 비교에서 5평균 차이, 4평균 차이 등과 같이 단계별로 검정
 - $\bar{X}_1 < \bar{X}_3 < \bar{X}_2$ 일 때 $\mu_1 = \mu_2$ 를 먼저 검정 한 후 차이가 있으면 다음 단계로 $\mu_1 = \mu_3, \mu_2 = \mu_3$ 를 검정
 - Duncan, SNK(Student-Newman-Keuls) 방법

Tukey의 다중비교: 모의실험 자료:

```
>
> # 🗸 1) seed 고정 (재현성)
> set.seed(123)
> # 🗸 2) 각 그룹 데이터 생성
> A <- rnorm(15, mean = 50, sd = 5)
> B < - rnorm(15, mean = 60, sd = 5)
> C <- rnorm(15, mean = 65, sd = 5)
> # 🗸 3) stack() 사용하여 long-format 데이터프레임으로 변환
> exABC <- stack(list(A = A, B = B, C = C))
> exABC
    values ind
1 47.19762
2 48.84911 A
3 57.79354 A
4 50.35254 A
```

Tukey의 다중비교: 모의실험 자료:

```
> aggregate(values ~ ind, data = exABC, mean)
 ind values
   A 50.76192
 в 58.76704
  c 66.47645
> oneway.test(values ~ ind, data = exABC, var.equal = TRUE)
       One-way analysis of means
data: values and ind
F = 41.783, num df = 2, denom df = 42, p-value = 1.028e-10
>
> res <- aov(values ~ ind, data = exABC)
> summary(res)
           Df Sum Sq Mean Sq F value Pr(>F)
                1852 926.2 41.78 1.03e-10 ***
            2
ind
Residuals 42 931
                        22.2
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Signif. codes:
 2025.7.22
                          제19회 통계유전학워크숍
```

Tukey의 다중비교: 모의실험 자료:

95% family-wise confidence level

Differences in mean levels of ind

2025.7.22

제19회 통계유전학워크숍

Leukemia 예제: 다중비교 결과

AML -0.423 B-cell ALL -0.271

T-cell ALL 2.319

INTRODUCTORY BIOSTATISTICS

43

실습: ANOVA

→ R code로 이동

> TukeyHSD(res)

Tukey multiple comparisons of means 95% family-wise confidence level

```
Fit: aov(formula = values ~ ind, data = ex5)
$`ind`
```

```
diff lwr upr p adj
sep-may 83.8 -289.294 456.894 0.8231586
dec-may 259.0 -114.094 632.094 0.1949625
dec-sep 175.2 -197.894 548.294 0.4467189
```

> plot(TukeyHSD(res))

Tukey의 다중비교

95% family-wise confidence level

제19회 통계유전학워크숍

비모수 방법: 크루스칼-왈리스 검정

- 정규성 가정이 **만족되지 않는** 경우
- 방법: y_{ij} 대신에 전체 관측값들 중에서 계산한 y_{ij} 의 순위 R_{ij} 를 사용하여 검정

	발현 수준	그룹별 평균순위	평균순위
AML	$R_{11}, R_{12}, \dots, R_{1n_1}$	$\bar{R}_1 = \sum_j R_{1j} / n_1$	
B-cell ALL	$R_{21}, R_{22}, \dots, R_{2n_2}$	$\bar{R}_2 = \sum_j R_{2j} / n_2$	$\bar{R}_{}=\frac{N+1}{2}$
T-cell ALL	$R_{31}, R_{32}, \dots, R_{3n_3}$	$\bar{R}_3. = \sum_j R_{3j} / n_3$	

크루스칼-왈리스 검정

- 귀무가설: H_0 : $\mu_1 = \mu_2 = \mu_3 \Leftrightarrow H_0$: $\tau_1 = \tau_2 = \tau_3 = 0$
- 검정통계량: $H = \frac{12}{N(N+1)} \sum_{i=1}^{3} n_i \left(\bar{R}_{i.} \frac{N+1}{2}\right)^2$
- P-값: $P(H \ge h_0|H_0), H \sim \chi^2(2)$

Leukemia 예제: 크루스칼-왈리스 검정

Kruskal-Wallis chi-squared = 23.0721 df = 2

p-value = **9.771e-06** << 0.05

→ '유전자 X03934의 발현 정도가 leukemia의 종류에 따라 차이가 있다'고 결론

실습: 크루스칼-왈리스 검정 → R code로 이동

Data: Test scores for three separate exams

```
> x <- c(63,64,95,64,60,85)
> y <- c(58,56,51,84,77)
> z <- c(85,79,59,89,80,71,43)
> ex6 <- stack(list(test1 = x,test2 = y,test3 = z))
> kruskal.test(values ~ ind,data = ex6)
```

Kruskal-Wallis rank sum test

```
data: values by ind 
Kruskal-Wallis chi-squared = 1.7753, df = 2, p-value = 0.4116
```

요약

- 두 처리의 비교
 - 독립적으로 추출된 경우: 이표본 t-검정, 순위합 검정
 - 짝을 지어 추출된 경우: 쌍체 t-검정, 부호순위 검정
- 세 개 이상 처리의 비교
 - F-검정
 - 크루스칼-왈리스 검정