Indeterminaciones Comunes

$$\frac{\infty}{\infty}$$
 $\frac{0}{0}$ $0 \cdot \infty$ 0^0 ∞^0 1^{∞} $\infty - \infty$

Propiedades de los limites

$$\begin{array}{lll} \lim f(x) \, \pm \, g(x) \, = \, \lim f(x) \, \pm \, \lim g(x) \\ \\ \lim (f(x) \, \cdot \, g(x)) \, = \, \lim f(x) \, \cdot \, \lim g(x) \end{array} \qquad \qquad \\ \lim \frac{f(x)}{g(x)} \, = \, \frac{\lim f(x)}{\lim g(x)} \, \text{si} \, x \neq 0 \end{array}$$

Derivación Numérica Hacia Adelante

$$\begin{split} f'(x) &= \frac{f(x+h) - f(x-h)}{2h} \\ f''(x) &= \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \\ f^{iii}(x) &= \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^3} \\ f^{iv}(x) &= \frac{f(x+2h) - 4*f(x+h) + 6f(x) - 4f(x-2h)}{h^4} \end{split}$$

Valor recomendado para Aproximación $h = 2^{-8}$

Definición la Derivada o Pendiente

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Autor: Luis E. Galindo Amaya egalindo54@uabc.edu.mx

Taller de Impresión: @libros.y.zines.corrientes

Fecha: 24 de julio de 2022

Regla de l'Hôpital

Repetir hasta encontrar limites que se puedan resolver

$$\lim_{x \to a} \frac{f(x)}{g(x)} \to \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Funciona para limites:

$$\frac{f(x)}{g(x)} \rightarrow \frac{0}{0}$$
 $\frac{f(x)}{g(x)} \rightarrow \frac{\infty}{\infty}$

Notación Calculo Diferencial

Funciones de 'x' puede ser ' $u(x)$ ', ' $y(x)$ ' u ' $w(x)$ '	u, v, w
Valor constante	k

Funciones Simples

Función	Derivada
k	0
X	1
u v	$\frac{\mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'}{\mathbf{v}^2}$
e ^u	u'·e"

Función	Derivada
u · v	u'·v+u·v'
u±y±w	u'±y'±w'
$ln_k(u)$	$\frac{u'}{\ln(k)x}$
k ^u	$ln(k) \cdot k^{u} \cdot u'$

Funciones Trigonométricas

Función	Derivada
sen(u)	u'·cos(u)
cos(u)	−u'·sen(u)
tan (u)	u'·sec²(u)

Función	Derivada
cot(u)	-u'·csc²(u)
sec(u)	u'·sec (u) ·tan (u)
csc(u)	$-u' \cdot csc(u) \cdot cot(u)$

Funciones Trigonométricas Inversas

Función	Derivada
arcsen(u)	$\frac{u'}{\sqrt{1-u^2}}$
arccos(u)	$\frac{-\mathbf{u'}}{\sqrt{1-\mathbf{u}^2}}$
arctan(u)	$\frac{-u'}{1+u^2}$

Función	Derivada
arcsec(u)	$\frac{u'}{u \cdot \sqrt{u^2 - 1}}$
arccos(u)	$\frac{-u'}{u \cdot \sqrt{u^2 - 1}}$
arccot(u)	$\frac{\mathrm{u'}}{1+\mathrm{u}^2}$

Funciones Hiperbólicas

Función	Derivada
senh(u)	u'·cosh(u)
cosh(u)	u'·senh(u)
tanh (u)	u'·sech²(u)

Función	Derivada
coth(u)	$-\operatorname{csch}^2(\operatorname{\mathfrak{u}})$
sech(u)	$-u'\cdot\operatorname{sech}(u)\cdot\operatorname{tanh}(u)$
csch(u)	$-u \cdot coth(u) \cdot csch(u)$

Reglas de Derivación

Suma o resta de dos funciones	$[f(x)\pm g(x)]' = f'(x)\pm g(x)$
Multiplicación escalar	$[\mathbf{k} \cdot \mathbf{f}(\mathbf{x})]' = \mathbf{k} \cdot \mathbf{f}'(\mathbf{x})$
Producto de dos funciones	$[f(x)\cdot g(x)]' = f'(x)\cdot g(x) + g'(x)\cdot f(x)$
Cociente de dos funciones	$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)\cdot g(x)+g'(x)\cdot f(x)}{g(x)^2}$
Regla de la cadena	$[f(g(x))]' = f'(g(x)) \cdot g'(x)$
Derivada logarítmica	$(f(x)^{u(x)})' = f(x)^{g(x)} \cdot [\ln(f(x)) \cdot g(x)]'$

Traslaciones

Mover hacia arriba	y=f(x)+c
Mover hacia abajo	y = f(x) - c
Rotar eje x	y = -f(x)
Rota eje y	$\mathbf{y} = \mathbf{f}(-\mathbf{x})$
Mover a la derecha	y = f(x - c)
Mover a la izquierda	y = f(x+c)
Estirar verticalmente (compresión horizontal)	$y=c \cdot f(x) \text{ si } c > 1$
Estirar horizontalmente (compresión vertical)	$y=c \cdot f(x)$ si $c < 1$

Puntos Máximos y Mínimos

$f(x) = x^3 - 3x + 2$		
Derivar la función	$f(x)=x^3-3x+2 \Rightarrow f'(x)=3x^2-3$	
Encontrar las raíces	$f'(x) = 3x^2 - 3 \implies x = \pm \sqrt{1}$	
Calcular la segunda derivada	$f'(x)=3x^2-3 \rightarrow f''(x)=6x$	
Evaluar las raíces en la segunda derivada	$f''(x)=6x \rightarrow 6(1) y 6(-1)$	
Si el valor es mayor o igual a '0' entonces es un mínimo, si el valor es menor a '0' es un máximo por ultimo si el valor es igual a '0' entonces es un mínimo absoluto.	6(1) : Este es un mínimo $6(-1)$: Este es un máximo	

Puntos de Inflexión

$f(x) = x^3 - 18$	
Calcular la segunda derivada	$f(x) = 9x^2 - 18 \Rightarrow f''(x) = 18x$
Encontrar las raíces, este sera nuestro punto de interés	$18 x = 0 \rightarrow x = 0$
Evaluar los valores adyacentes para identificar si son crecientes o decrecientes	f''(x)=18x 18(-0.1)=1.8 18(0.1)=-1.8
Si nuestro valor se encuentra entre un valor creciente y otro decreciente entonces es un punto de inflexión	-1.8 Punto de interés 0 1.8

Concavidad

$f(x) = x^3 - 5x^2 + 2x - 3$		
Obtener la segunda derivada	f"(x)=6x-10	
Hacer las diferenciaciones	6x-10 > 0 6x-10 < 0 $x > \frac{5}{3} x < \frac{5}{3}$	
Si el resultado es mayor a cero la función es cóncava hacia arriba, si es menor a cero es cóncava hacia abajo	Cóncava hacia arriba en: $x > \frac{5}{3}$ Cóncava hacia abajo en: $x < \frac{5}{3}$	

Derivadas Parciales

Si la función no es dependiente de la variable de derivación se trata como una constate, una única función puede tener múltiples derivadas dependiendo la variable de derivación:

$$\frac{\partial}{\partial x} x^2 + 2y + y \rightarrow 2x + 2xy + 0 \qquad \frac{\partial}{\partial y} x^2 + 2xy + y \rightarrow 2x + 1$$

Circulo Unitario

El círculo unitario es un círculo de radio 1 con centro en el origen, esto es, el punto (0,0) y su ecuación es $x^2+y^2=1$, podemos convertirlo en una función simplemente despejando la variable de nuestro interés $y=\sqrt{1-x^2}$.