

Study number: 20(45173 Programme: EPSH/PED/WPS/MCE

Evaluation subject:

Dynamic Models of Electrical Machines and Control Systems 29 January 2018 at 9:30-13:30

Please write your study no. on all pages. Do not write your name as your evaluation is anonymous!

Total number of pages, including this page: 10

Please, only write on one side of the papers that you hand in.

NB! Your paper must be easy to read. If this is not the case, your paper may be evaluated as "not passed".

All usual aids are allowed (notes, books, tables, calculator and PC). You are not allowed to communicate amongst each other or with the outside world which means that the use of mobile phone, Wi-Fi, internet, email is not allowed.

You are allowed to take the examination questions with you. But you are NOT allowed to take them with you if you leave the room before the examination has ended.

からかいかいかいかのはいいいのであっているのかないはいかい

Course:	Stude	000	201	45173	
-					

Date:	Page: 5. 1	ofq
Dato.	1 490.0.	

ERHVERVSRONTART	
Problem 1	
The current space vector rotates at anti-clockwise	
direction because	
the current space beclor with respect to phase -a axi	5
at the t=0,0075 sec. is given by	
ia = Im Sin(wt), sin becaus it starts at zero at	t=0
Im is equal to 2 A and period = 0,02 sec	
271	
0,02 = 319.15 (ad /s	
$\omega = \frac{2\pi}{0.02} = \frac{314.15 \cdot ad}{5}$ $(a = 2A \cdot \sin(314.15 \cdot 0.0075) = 1.414A$	
©	

STUDERENDE-DK

Course: Stray nr. 20145173

Date: Page: s.2 of 9

Problem 1 2) the space vector of the following a, b and a signals is bund. Va = Vpu cos (wet), Vp = Vpu cos (wet + 27/2), Vc = Vpu cos (wet - 27/3) we call the space we ctor for face Fabe = 3 (Va + Vbe 2 3 + Ve e- 327/3) fabc = 3 Vpu (cos(wet) + cos(wet + 2 T/3) e 12 T/3 + cos(wet - 2 T/3) e 12 T/3 Then we find the corresponding & and B component. the X component is given by Re (*) and pois given by In (*) Real part of (*) = (05(wet) + cos(evet +277/3). (05(27/3) + cos(wet-277/3). (05(277/3) = (os(wet) = = (cos (wet + 27/3) + cos(wet-27/3)) = cos (wet) - 2 (cos(wet). cos (217/3) - sin(wet) - sin(27/3) + cos(wet) cos(27) + Sin (wet) Sin (2173) = (0) (wet) - 1/2 (2cos(wet) · cos(211/3)) = (os (wet) - cos (wet) · (os (27/5) = 3 cos (wet) The imaginary part of -2 (x): = cos (wet + 2 1/3). sin(2 17/3) - cos (wet - 27/3) sin(2 17/3) = 13 (cos(wet + 27/3) - cos(wet - 27/3)) = 73 (cos(wet)cos(2) - sin(wet)sin(27/3) ··· - cos(wet) cos(2]) + sin(wet) sin(2]) = 13 0 = 0 Theretore forms is For = Vpu \(\frac{2}{3}\)\(\left(\frac{3}{2}\)\(\left(\ose{\text{wet}}\right) + \(j\ose{\text{o}}\)\) = Vpu \(\left(\cos(\text{wet}) + j\ose{\text{o}}\right)\)

STUDERENDE-DK

Course: Study nr. 20145173

Date: Page: s < 3 of 9

 $Mascs = Laaq \cdot cos(\theta_r + \pi/2) \cdot cos(\theta_r + \pi/2 + 2\pi/3)$ $+ Laad \cdot cos(\theta_r) \cdot cos(\theta + 2\pi/3)$

Mascs = Laag Sin (Gr) . Sin (Gr + 2 TT/3) + Laad Cos (Gr) . Cos (0 + 2 TT/3)

2) The inductance vs. rotor position was form is shetched below where the values of Laaq and Laad

Course:	Study	$\gamma \gamma $	201	431	73

Date: Page: 5. 4 of 9

Problem 2

Then Apm, 6 = Ampm. (OSO+90°)

as there are 90° between

the two phases.

Apm, b = Ampm. Sin (D)

1 If phase - a supplied with curent of ia = - Im sin &

then the Current phase - b should be

ib = - Insin(6+900) = - In cos(0)

5) The instantaneous torques produced by phase-a and phase-b, respectively is shown in the following

The fundamental equation for the torque is

So pole pair

Phase-a: Ta=1.(-Im·sin@). Ampm.(-sin@)

Ta = Ampm. Im. Sin 82

phase -b: Tb = 1. (-Im cosa). Ampm. Cosa

Tb = - Ampm. Imcose 2

STUDERENDE: DK

Course: Study nr. 20145173

Date: Page: 5. 5 of 9

Problem 2

6) The total torque produced by phase a and phase-b will be given by

 $T_e = \lambda_{mpm} Im(sin6^2 - cos6^2)$

Course:	Stude	0-	201	451	72
00013E	Study	1)(.	201	701	13

Date:	Page: 3	5. 6	of	9
		1 -		

Problem 3
1 We give the vector form of the stator side eq.
we have de
ugs = Rs iqs + P. Aqs + Wo has , Aqs = (Lts + Lm) iqs + Lmiqr
Uds=Rs·Cas+Plas-Wolgs, las+Lmiar
$u_{qs} = Rs i_{qs} + p \lambda_{qs} + w_{\theta} \lambda_{ds}$ $f_{qs} = i_{qs} - j i_{ds}$
-juds=-jRsids-jp/ds+jwo/qs
$\overline{U_{qds}} = Rs(i_{qs}-ji_{ds}) + p(\lambda_{qs}-j\lambda_{ds}) + w_{\theta}(\lambda_{ds}+j\lambda_{qs})$
Ugds = Rs igds + p Tgds + j wo (2 qs - j / ds)
and $ \frac{1}{2} = (L_{1s} + L_{m}) i_{qds} + L_{m} i_{qdr} $
2) Now we express the Statur voltage equation in vector form in the XB-refunce frame
when we go from gd to aB we do following
$f_{qd} = f_{q} - jf_{d} - f_{d} = -f_{d} - f_{d} = f_{x} + jf_{p}$ $f_{q} = f_{x} \qquad f_{x} = i_{x} + ji_{p}$
$U_{\alpha\beta\delta} = R_{s}(i_{\alpha\delta} - j(-i_{\beta\delta})) + p(\lambda_{\alpha\delta} - j(-\lambda_{\beta\delta})) + j\omega_{\delta}(\lambda_{\alpha\delta} - j(-\lambda_{\beta\delta}))$
Cars = Rs iars + P Dars + jwa Dars
we calculate the magnitude of the stator flux linkage (Tops) at rated steady state operation condition

STUDERENDE · DK

Course: 5tudy nr. 20145173

Date:	Page: 5. 7 of 9
CONTRACT CONTRACTOR (MICHAEL)	

ERHVERVSKONTAKT	Date	rage. <u>5. 1 51 1</u>
Problem 3 contion	(Word,	
2 contra		
The state of the s	equation in Strady Star	te becomes.
Kas = jwo Zan	S	
$ \lambda_{\alpha, ms} = \frac{ \nabla_{\alpha, ms} }{ \omega_{\alpha, rate} }$	rated 380 · 737 · 121 V = 60 · 277 rad/s =	0,823 V/rads-1
	of Stator flux linkage in re	
3) Now the mag resistin voltage this is do	nitude of the phase drop composation. y the following equation	voltage after phase
	· Is · co= 9 + Vsx - (rs Issin	
	A, Rs = 0,2852, Q=30°	
Ush = Nags .	Wsnew = 0,823 V/rads-1 . 2TT.	0.1 rad/s = 0.5171 V
Us = 0,282-1,	A. cos(30°) + (6,5171V)2-(6	0,28s.1A sin(30°)2
Us=0,7462V		
(9) the slip freq Speed to be	guncy is found. want	the mechanical rotor
fs = 0,5.60 Hz	$= 30 \text{ Hz} \rightarrow \text{ ws} = 2 \text{ T} \cdot 3$	0 = 60TT
Thow = to Trat	, (110-	- Wm
We use		
Trow - fse Tratal Srate	d · foratea wo stator f	
orate	distracta ws stato	

STUDERENDE · DK

Course:	Study	00	20	145	173

Date:	Page:	5.	8	of	9

STUDERENDE: DK

Course:	Study	00.	20	1451	73	

Date:	Page: 5 9 of 9
Dato	. 0.0,0

STUDERENDE: DK