The MOSFET Amplifier (2)

Lecture 8 October 16th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Outline

Textbook: 7.5, 7.6, 7.7

- The MOSFET Amplifier
- Large-Signal Analysis of the MOSFET Amplifier
- Operating Point Selection

The MOSFET Amplifier

Back to amplifier

To ensure the MOSFET operates as a VCCS, we must operate it in its saturation region only. To do so, we promise to adhere to the

"saturation discipline"

The MOSFET Amplifier

Back to amplifier

To ensure the MOSFET operates as a VCCS, we must operate it in its saturation region only. To do so, we promise to adhere to the

"saturation discipline"

In other words, we will operate the amp circuit such that

$$v_{GS} \geq V_T$$
 and

$$v_{DS} \ge v_{GS} - V_T$$

$$v_O \ge v_I - v_T$$

at all times.

The MOSFET Amplifier

Let's analyze the circuit

First, replace the MOSFET with its SCS model.

The MOSFET Amplifier

Let's analyze the circuit

 $(v_O = v_{DS} \text{ in our example})$

1) Analytical method:
$$v_o$$
 v_s v_I

alytical method:
$$v_O$$
 v_S v_I

$$v_O = V_S - i_{DS} R_L \qquad -$$

or
$$v_O = V_S - \frac{K}{2} (v_I - V_T)^2 R_L$$
 for $v_I \ge V_T$
 $v_O \ge v_I - V_T$

$$v_O = V_S$$
 for $v_I < V_T$

(MOSFET turns off)

The MOSFET Amplifier

- Let's analyze the circuit
 - (2) Graphical method v_O v_S v_I

From (A):
$$i_{DS} = \frac{K}{2}(v_I - V_T)^2$$
,

for $v_O \ge v_I - V_T$
 $\downarrow \downarrow$

$$v_O \ge \sqrt{\frac{2i_{DS}}{K}}$$

$$\downarrow \downarrow$$

$$i_{DS} \le \frac{K}{2} v_O^2$$

The MOSFET Amplifier

- Let's analyze the circuit
 - 2 Graphical method

 v_O v_S v_I

(A):
$$i_{DS} = \frac{K}{2} (v_I - V_T)^2$$
, for $i_{DS} \le \frac{K}{2} v_O^2$

Constraints

and

B

must be met

The MOSFET Amplifier

- Let's analyze the circuit
- 2 Graphical method

Constraints (A) and (B) must be met. Then, given V_I , we can find V_O , I_{DS} .

The MOSFET Amplifier

Example 7.7: A MOSFET Amplifier

$$V_T = 0.8 V, K = 0.5 mA/V^2$$

The MOSFET Amplifier

■ Example 7.8: A MOSFET Source-Follower Circuit

$$V_T = 1 V, K = 2 mA/V^2$$

 $v_{in} = 2V, v_o = ?, i_D = ?$

The MOSFET Amplifier

Biasing the Circuit

Outline

Textbook: 7.5, 7.6, 7.7

- The MOSFET Amplifier
- Large-Signal Analysis of the MOSFET Amplifier
- Operating Point Selection

Large-Signal Analysis

- Large signal analysis of amplifier (under Saturation Discipline)
 - (1) v_0 versus v_1
 - 2 Valid input operating range and valid output operating range

Large-Signal Analysis

Large-Signal Analysis

Our
$$v_I \ge V_T$$
 $v_O \ge v_I - V_T$ $i_{DS} \le \frac{K}{2} v_O^2$

What are valid operating ranges under the saturation discipline?

Large-Signal Analysis

What are valid operating ranges under the saturation discipline?

Large-Signal Analysis

Large-Signal Analysis: Summary

1 v_o versus v_I $v_O = V_S - \frac{K}{2}(v_I - V_T)^2 R_L$

Valid operating ranges under the saturation discipline?

Valid input range:

$$v_I$$
: V_T to $V_T + \frac{-1 + \sqrt{1 + 2KR_LV_S}}{KR_L}$

corresponding output range:

$$v_o$$
: V_S to $\frac{-1+\sqrt{1+2KR_LV_S}}{KR_L}$