TD1:

Système de dépose de poudre - Corrigé

Mise en situation

Objectif

L'objectif de cette partie est de proposer un modèle du mécanisme constituant le déplacement de l'axe \overrightarrow{x} et de justifier certains choix technologiques.

Concours Centrale Supélec - TSI 2016.

B2-16

Travail demandé

Question 1 Déterminer le degré d'hyperstatisme de la liaison entre les solides 0 et 1.

Correction

Méthode cinématique :

- ▶ mobilité utile : $m_u = 1$;
- ▶ mobilité interne : $m_i = 0$;
- ▶ nombre de cycles : $\gamma = 1$;
- ▶ nombre d'équations cinématiques : $E_c = 6\gamma = 6$;
- ▶ nombres d'inconnues cinématiques : $I_c = 2 \cdot 1 = 2$.

Au final : $h = m - I_c + E_c = 1 - 2 + 6 = 5$.

Méthode statique

- ▶ mobilité utile : $m_u = 1$;
- ► mobilité interne : $m_i = 0$;
- ► nombre d'équations cinématiques : $E_s = 6(p-1) = 6(2-1) = 6$;
- ▶ nombres d'inconnues cinématiques : $I_s = 2 \cdot 5 = 10$.

Au final : $h = m - E_s + I_s = 1 - 6 + 10 = 5$.

Question 2 Tracer le nouveau graphe de liaisons en tenant compte de l'introduction des deux soufflets métalliques.

Correction $\begin{array}{c|c} & & & & & \\ & & & & \\ \hline \\ 0 & & \\ 0 & & \\ \hline 0 & & \\ \hline \\ 0 & & \\ 0 & & \\ \hline \\ 0 & &$

Question 3 Déterminer en le justifiant le degré de mobilité du mécanisme ainsi modélisé en question précédente.

Correction

En réalisant une fermeture cinématique, on a $\{\mathcal{V}(1_a/0)\} + \{\mathcal{V}(1_b/1_a)\} + \{\mathcal{V}(1_c/1_b)\} = \{\mathcal{V}(1_c/0)\}$. Les torseurs étant considérés écrits au même point P, on a :

$$\left\{ \begin{array}{l} p_{ba} + p_{cb} = 0 \\ q_{ba} + q_{cb} = 0 \\ r_{a0} = r_{c0} \end{array} \right. \left\{ \begin{array}{l} v_{xba} + v_{xcb} = 0 \\ v_{yba} + v_{ycb} = 0 \\ v_{zba} + v_{zcb} = 0 \end{array} \right. .$$

Il s'agit d'un système de rang 6 avec 12 inconnues. On a donc $m = I_c - r_c = 12 - 6 = 6$.

Question 4 En déduire le degré d'hyperstatisme du système avec ses deux soufflets métalliques.

Correction

On a
$$h = m - I_c + E_c = 6 - 12 + 6 = 0$$
.

Retour sur le cahier des charges

Question 5 Conclure en justifiant l'utilisation des soufflets.

Correction

Le soufflet permet donc de rendre le système isostatique. Il est ainsi possible de monter le système sans avoir à imposer des contraintes géométriques sur le mécanisme.

