

30-764

Redes de Computadores I

MSc. Fernando Schubert

- Surge no final dos anos 90
- Definida pela norma IEEE 802.11
- Utiliza frequências de rádio entre 2.4 e
 6 GHz (2.4 e 5 mais comuns)

Generation IEEE standard		Adopted	Maximum link rate (Mbit/s)	Radio frequency (GHz)	
Wi-Fi 8	802.11bn	2028 ^[1]	100,000 ^[2]	2.4, 5, 6, 7, 42.5, 71 ^[3]	
Wi-Fi 7	802.11be	2024	1376–46,120	2.4, 5, 6 ^[4]	
Wi-Fi 6E	200 11-11	2020	574–9608 ^[5]	6 ^[a]	
Wi-Fi 6	802.11ax	2019	5/4-9006	2.4, 5	
Wi-Fi 5	802.11ac	2014	433–6933	5 ^[b]	
Wi-Fi 4	802.11n	2008	72–600	2.4, 5	
(Wi-Fi 3)*	802.11g	2003	6–54	2.4	
(Wi-Fi 2)*	802.11a	1999	0-54	5	
(Wi-Fi 1)*	802.11b	1999	1–11	2.4	
(Wi-Fi 0)*	802.11	1997	1–2	2.4	

^{*}Wi-Fi 0, 1, 2, and 3 are named by retroactive inference.

They do not exist in the official nomenclature. [6][7][8]

- Utiliza dispositivos chamados access points onde os clientes se conectam
- Pode também ser constituída entre dispositivos com adaptadores wireless, no formado ad-hoc

Figure 1-33. (a) Wireless network with an access point. (b) Ad hoc network.

- Multipath fading (desvanecimento): Em sistemas de comunicação sem fio o sinal transmitido sofre várias perdas devido as características intrínsecas do canal móvel.
- Efeitos de propagação, distorções, ruído e interferência são características do canal, que de forma aleatória trás a ocorrência da variação da potência do sinal transmitido, causando consequentemente atenuações no sinal.
- Essas variações de intensidade do sinal são denominadas de desvanecimento, característica presente nos canais sem fio.
- Para atenuar este problema se utiliza uma diversidade de caminhos ou canais, dividindo a banda em um espectro com múltiplos canais de transmissão.

REDES SEM FIO (WIRELESS) - COLISÕES

- Por ser um meio intrinsecamente de broadcast WiFi utiliza CSMA
 - Inspirado no Ethernet
 - Menos eficiente por causa da natureza do meio

Figure 1-35. The range of a single radio may not cover the entire system.

REDES SEM FIO (WIRELESS) - MUDANÇAS FÍSICAS

- Clientes móveis tendem a se afastar ou aproximar do seu ponto de acesso mais próximo
 - Para resolver isso uma rede wireless deve ter vários access points interconectados por Ethernet ou por um sistema distribuído wireless (WDS)

Figure 4-23. 802.11 architecture. (a) Infrastructure mode. (b) Ad-hoc mode.

- A camada física se assemelha à camada física do modelo OSI
- Já a camada de enlace é dividida em duas camadas:
 - A subcamada MAC define como o meio é alocadoo
 - Já a subcamada LLC abstrai das camadas superiores a complexidade do meio físico.

Figure 4-24. Part of the 802.11 protocol stack.

- Todos os métodos de transmissão utilizam ondas curtas nas bandas de frequência de 2.4 e 5GHz.
 - Estas frequências disponíveis livremente sem licenciamento desde que certos requisitos sejam cumpridos pelos fabricantes, como, por exemplo, limitar a potência da radiação emitida a no máximo 1W.
 - Frequência compartilhada por portões de garagem, micro-ondas, e outros dispositivos.

- Modulação e codificação:
 - DSSS (Direct Sequence Spread Spectrum): Utilizado em 802.11b.
 - OFDM (Orthogonal Frequency-Division Multiplexing): Utilizado em 802.11a/g/n/ac/ax.
 - QAM (Quadrature Amplitude Modulation): Diferentes níveis de QAM (64-QAM, 256-QAM, etc.) são utilizados para aumentar a eficiência espectral.

- Modulação e codificação:
 - DSSS (Direct Sequence Spread Spectrum):
 - Utilizado principalmente no padrão 802.11b, o DSSS espalha o sinal de dados sobre uma ampla faixa de frequências usando uma sequência de código pseudoaleatório.
 - Proporciona resistência a interferências e multipercursos, melhorando a confiabilidade da transmissão em ambientes ruidosos.
 - A taxa de dados no DSSS para 802.11b é de 1, 2, 5.5 e 11 Mbps.

- 802.11b
 - Primeiro padrão wireless amplamente utilizado
 - Velocidades (taxas de transferência) de 1, 2, 5.5 e 11 Mbps..
 - Semelhante ao CDMA

- 802.11a
 - o 5GHz
 - Até 54Mbps de banda

- 802.11n
 - Até 100Mbps

Padrão 802.11	Ano de Lançamento	Frequência	Velocidade Máxima de Transmissão
802.11	1997	2.4 GHz	2 Mbps
802.11a	1999	5 GHz	54 Mbps
802.11b	1999	2.4 GHz	11 Mbps
802.11g	2003	2.4 GHz	54 Mbps
802.11n	2009	2.4 GHz / 5 GHz	600 Mbps
802.11ac	2013	5 GHz	1.3 Gbps (1300 Mbps)
802.11ad	2012	60 GHz	7 Gbps
802.11ax	2019	2.4 GHz / 5 GHz	9.6 Gbps
802.11ay	2021	60 GHz	20-40 Gbps

- Transmissão via rádio é geralmente half-duplex
- Utiliza:
 - CSMA/CA
 - CSMA/CD

- CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
 - Escuta do Canal: Antes de transmitir, o dispositivo verifica se o canal está livre. Se o canal estiver ocupado, o dispositivo espera por um tempo aleatório antes de verificar novamente, ajudando a evitar colisões.
 - Backoff Aleatório: Se o canal estiver livre, o dispositivo espera um período de tempo aleatório (backoff) antes de transmitir. Isso reduz a probabilidade de que dois dispositivos transmitam ao mesmo tempo.
 - Confirmação de Recebimento: Após a transmissão, o dispositivo espera por um ACK (acknowledgment) do receptor para confirmar que a mensagem foi recebida. Se o ACK não for recebido, o dispositivo assume que ocorreu uma colisão e tenta retransmitir.

- CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - Escuta do Canal: O dispositivo monitora o canal antes de transmitir. Se detectar que o canal está ocupado, espera até que esteja livre para iniciar a transmissão.
 - Transmissão e Detecção de Colisão: Durante a transmissão, o dispositivo continua a monitorar o canal para detectar colisões. Se uma colisão for detectada, a transmissão é interrompida imediatamente.
 - Retransmissão após Backoff: Após detectar uma colisão, o dispositivo espera um período de tempo aleatório antes de tentar retransmitir. Este tempo aumenta exponencialmente com cada colisão subsequente, reduzindo a probabilidade de colisões futuras.

Figure 4-25. Sending a frame with CSMA/CA.

- Função de Coordenação Distribuída (DCF):
 - DCF utiliza CSMA/CA como método de acesso, pois a LAN sem fio não pode implementar CSMA/CD.
 - Oferece apenas serviço assíncrono.
- Função de Coordenação por Ponto (PCF)
 - PCF é implementada sobre DCF e é principalmente usada para transmissão de serviços de tempo.
 - Utiliza um método de acesso centralizado, sem contenção, baseado em sondagem.
 - Oferece tanto serviços assíncronos quanto serviços com restrições de tempo.

Figure 4-26. (a) The hidden terminal problem. (b) The exposed terminal problem.

- Três tipos de quadros são definidos:
 - Dados
 - Controle
 - Gerenciamento
- Cada tipo de quadro possui cabeçalhos utilizados pela camada física

- Três tipos de quadros são definidos:
 - Dados
 - Controle
 - Gerenciamento
- Cada tipo de quadro possui cabeçalhos utilizados pela camada física

Controle

FIGURE 5.1 Control frame: Frame Control fields

ВО										B15
Protocol version	Type	Subtype	To DS	From DS	More frag	Retry	Pwr mgt	More data	Protected frame	Order
Protocol version	Control	Subtype	0	0	0	0	Pwr mgt	0	0	0
Bits: 2	2	4	1	1	1	1	1	1	1	1

Gerenciamento

Dados

- WEP (Wired Equivalent Privacy): Um protocolo mais antigo com vulnerabilidades conhecidas.
- WPA (Wi-Fi Protected Access): Melhora a segurança em relação ao WEP com TKIP (Temporal Key Integrity Protocol).
- WPA2: Utiliza AES (Advanced Encryption Standard) para melhor segurança que o WPA.
- WPA3: O protocolo mais recente que oferece recursos de segurança aprimorados, incluindo melhor criptografia.

- Uma LAN sem fio 802.11 consiste nos seguintes componentes e comportamentos básicos:
 - Beacons—Usados para indicar a presença de uma rede LAN sem fio.
 - Probe—Usado por clientes de LAN sem fio para encontrar suas redes.
 - Autenticação—Um recurso definido nos padrões originais 802.11.
 - Associação—O processo de estabelecer um link entre um ponto de acesso e um cliente de LAN sem fio.

- Uma LAN sem fio 802.11 consiste nos seguintes componentes e comportamentos básicos:
 - Beacons—Usados para indicar a presença de uma rede LAN sem fio.
 - Probe—Usado por clientes de LAN sem fio para encontrar suas redes.
 - Autenticação—Um recurso definido nos padrões originais 802.11.
 - Associação—O processo de estabelecer um link entre um ponto de acesso e um cliente de LAN sem fio.

- Processo de Associação
 - Sonda e Descoberta de Rede: Inicia enviando solicitações de sonda em múltiplos canais, especificando SSID, requisitos de taxa de bits e configuração de segurança necessária.
 - Autenticação 802.11: Utiliza autenticação aberta, onde o cliente solicita autenticação e o ponto de acesso responde, garantindo o estabelecimento básico da conexão.
 - Associação 802.11: Finaliza as configurações de segurança e estabelece o link de dados entre o cliente e o ponto de acesso, crucial para a transmissão segura de dados em implantações corporativas.