Data Encryption Standard (DES)

Feistel

Network

- Several block ciphers are based on the structure proposed by Feistel in 1973
- A Feistel Network is fully specified given
 - the *block size*: n = 2w
 - number of rounds: d
 - d round functions f₁, ..., f_d: {0,1}^w € {0,1}^w
- Used in DES, IDEA, RC5 (Rivest's Cipher n. 5), and many other block ciphers.
- Not used in AFS

Feistel

Encryption:

$$-L_{1} = R_{0}R_{1} = L_{0} \oplus \\ -E_{1}(R_{0})R_{1} R_{1} = L_{1} \oplus f_{2}(R_{1}) \\ \dots \\ -L_{d} = R_{d-1}R_{d} = L_{d-1} \oplus \\ f_{d}(R_{d-1})$$

Decryption:

$$-R_{d-1} = L_d L_{d-1} = R_d \oplus f_d(L_d)$$
...
$$-R_0 = L_1; \quad L_0 = R_1 \oplus f_1(L_1)$$

A Word About NIST and

Standards

- "Founded in 1901 NIST, the *National Institute of Standards and Technology*, (former NBS) is a non- regulatory federal agency within the U.S. Commerce Department's Technology Administration.
- NIST's mission is to develop and promote measurement, standards, and technology to enhance productivity, facilitate trade, and improve the quality of life."
- Cryptographic Standards & Applications.
- Federal Information Processing Standards (FIPS):₄
 define security standards

DES Features

Features:

- Block size = 64 bits
- Key size = 56 bits (in reality, 64 bits, but 8 are used as parity-check bits for error control, see next slide)
- Number of rounds = 16

- 16 intermediary keys, each 48 bits

Key length in

- In the DES specification, the key length is 64 bit:
- 8 bytes; in each byte, the 8th bit is a

Each parity-check bit is the XOR of the previous 7 bits

DES

Detail

S

•
$$IP(x) = L_0 R_0$$

•
$$L_i = R_{i-1}$$

•
$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

•
$$y = IP^{-1}(R_{16}L_{16})$$

Note: IP means
Initial Permutation

Initial Permutation

	_			\Box			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

- This table specifies the input permutation on a 64-bit block.
- The meaning is as follows:
 - the first bit of the <u>output</u> is taken from the 58th bit of the <u>input</u>; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input.
- This information is presented as a table for ease of presentation:
 - it is a vector, not a matrix.

DES

• $IP(x) = L_0 R_0$

Rounds

У

- $L_i = R_{i-1}$
- $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- $y = IP^{-1}(R_{16}L_{16})$
- Note that, as usual:

$$-R_{16} = L_{15} \oplus f(R_{15}, K_{16})$$

$$-L_{16} = R_{15}$$

• ... but they are <u>switched</u> in the pre-output

Final Permutation

		_		D -	<u> </u>		
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

- The final permutation is the *inverse* of the initial permutation; the table is interpreted similarly.
 - That is, the output of the *Final Permutation* has bit 40 of the preoutput block as its first bit, bit 8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.

DES Round

L_i = R_{i-1}
 R_i = L_{i-1} ⊕ f(R_{i-1}, K_i)

DES "f(•)" Function

E is an <u>expansion function</u> which takes a block of 32 bits as input and produces a block of 48 bits as output

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

16 bits appear twice, in the expansion

S-box

S-boxes are the only <u>non-linear</u> elements in DES

design
Each of the unique selection
functions $S_1, S_2, ..., S_8$, takes a 6-bit B (6
block as input and yields a 4-bit bit)
block as output

8 S-Box

- S = matrix 4x16, values from 0 to 15
- B (6 bit long) = $b_1b_2b_3b_4b_5b_6$
 - b_1b_6 € r = row of the matrix (2 bits: 0,1,2,3)
 - b₂b₃b₄b € c = column of the matrix (4
- C (4 bit long) is Binary representation of S(r, c)

Example

Row	S_1	1	2	3		(?	51	7								1 5	Column
# 0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7] "
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	

 $S(i, j) \le 16$, can be represented with 4 bits

$$b_1b_6 = 11 = row 3$$

$$b_2b_3b_4b_5 = 0111 = column 7$$

Another example: B=011011,

DES Key Generation (K₁-

DES Permuted Choice 1 and 2 (PC-1,

Parity-check bits (namely, bits 8,16, 4,32,40,48,56,64) are not chosen, they do not appear in **PC-1**

	Leπ								
57	49	41	33	25	17	9			
1	58	50	42	34	26	18			
10	2	59	51	43	35	27			
19	11	3	60	52	44	36			
			Righ	t					
63	55	47	39	31	23	15			
7	62	54	46	38	30	22			
14	6	61	53	45	37	29			
21	13	5	28	20	12	4			

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

PC-2 selects the 48-bit subkey for each round from the 56-bit key-schedule state

DES Weak

- DES uses 16 48-bits keys generated from a master 56- bit key (64 bits if we consider also parity bits)
- Weak keys: keys make the same sub-key to be generated in more than one round.
- Result: reduce cipher complexity
- Weak keys can be avoided at key generation.
- DES has 4 weak keys
 - -01010101 01010101
 - FEFEFEFE FEFEFEFE
 - E0E0E0E0 F1F1F1F1
 - 1F1F1F1F 0E0E0E0E

DES

 Decryption
 Decryption uses the same algorithm as encryption, except that the subkeys K₁, K₂,

...K₁₆ are applied in reversed order

DES "f(•)"

Sal

- 12-bit Salt is chosen randomly, stored with the password
- Salt creates 4096 different DES functionings: if the ith bit of the salt is set (non-zero), then the bits i and i+24 of the output of the expansion function are swapped.
- Result: same password will have different encryptions in the password file

DES Encryption Modes:

 Cipher Block Chaining (CBC): next input depends upon previous output

• Encryption: $C_i = E_k(M_i \oplus C_{i-1})$, with $C_0 = IV$

• **Decryption**: $M_i = C_{i-1} \oplus D_k(C_i)$, with $C_n = IV$

EFFSyptio

Properties of

- Randomized encryption: repeated text gets mapped to different encrypted data.
 - can be proven to be "secure" assuming that the block cipher has desirable properties and that <u>random IV's</u> are used

 A ciphertext block depends on all preceding plaintext blocks; reorder affects decryption

- Errors in one block propagate to two blocks
 - one bit error in C_j affects all bits in M_j and one bit in M_{j+1}

Sequential encryption, cannot use parallel hardware

<u>Usage:</u> chooses random IV and protects the integrity of IV

Observation:

$$\begin{split} &\text{if } \mathbf{C_i} = \mathbf{C_j} \text{ then } \mathbf{E_k} (\mathbf{M_i} \oplus \mathbf{C_{i-1}}) = \mathbf{E_k} (\mathbf{M_j} \oplus \mathbf{C_{j-1}}); \text{ thus } \mathbf{M_i} \oplus \mathbf{C_{i-1}} = \mathbf{M_j} \oplus \mathbf{C_{j-1}} \\ &\text{thus } \mathbf{M_i} \oplus \mathbf{M_i} = \mathbf{C_{i-1}} \oplus \mathbf{C_{i-1}} \end{split}$$

Use DES to construct Stream

Ciphers

- Cipher Feedback (CFB)
- Output Feedback (OFB)
- Counter Mode (CTR)
- Common properties:
 - uses only the encryption function E_k of the cipher both for encryption and for decryption
 - malleable: possible to make predictable bit changes

Encryption Modes:

 Cipher Feedback (CFB): the message is XORed with the feedback of encrypting the previous block

Encryption Modes:

- <u>Decryption</u>: $M_i = C_i \oplus E_k(C_{i-1})$, with $C_0 = IV$
- The same encryption function E_k is used here also for decryption

Properties of

Pandamized on

Randomized encryption

 A ciphertext block depends on all preceding plaintext blocks; reorder affects decryption

 Errors propagate for several blocks after the error, but the mode is self-synchronizing (like CBC).

- Decreased throughput.
 - Can vary the number of bits feed back, trading off throughput for ease of use
- Sequential encryption

Encryption Modes:

- Output Feedback (OFB):
 - constructs a Pseudo Random Number Generator using DES $\mathbf{E}_{\mathbf{k}}$ function

Properties of

• Rar

Randomized encryption

 Sequential encryption, but pre-processing possible

Error propagation limited

Subject to limitations of stream ciphers

Encryption Modes:

- Counter Mode (CTR): Another waystauct PRNG using DES
 - Encryption: $C_i = M_i \oplus E_k[nonce + i]$
 - nonce= number used only once (equivalent to an IV=Initialization Vector)
 - **Decryption**: $M_i = C_i \oplus E_k[nonce + i]$
 - Sender and receiver share: nonce (does not need to be secret) and the secret key k.

counte

Properties of

CTF

• Software and hardware efficiency: different blocks can be encrypted in parallel.

• *Preprocessing*: the encryption part can be done offline and when the message is known, just do the XOR.

- Random access: decryption of a block can be done in random order, very useful for hard-disk encryption.
- *Messages of arbitrary length*: ciphertext is ³¹ the same length with the plaintext (i.e.,

Cryptanalysis of

Dictionary attack:

- Each plaintext may result in 2⁶⁴ different ciphertexts, but there are only 2⁵⁶ possible different key values.
- Encrypt the known plaintext with all possible keys.
- Keep a look up table of size 2⁵⁶
- Given a Plaintext/Ciphertext pair (P,C), look up C in the table

Meet-in-the-Middle

Attack

- To improve the security of a block cipher, one might get the (naive) idea to simply use two independent keys to encrypt the data twice.
- $C = E_{\kappa_2} [E_{\kappa_1} [P]]$
- Naively, one might think that this would square the security of the double-encryption scheme.
- In fact, an exhaustive search of all possible combinations of keys would take 2²ⁿ attempts₃ (if each key K1, K2 is n bits long), compared

DES Strength Against Various

Attacks

Attack Method	Known	Chosen	Storage Complexi ty	Processi ng Complexi ty
Exhaustive Exhausti precomputati ve on	ī	1 -	Neg ⁵⁶ ligib le	1 2 ⁵⁵
on Emegh cryptanaly	2 ⁴³	- -	For texts	2 ⁴³
Differential cryptanaly	2 ³⁸	? -4	For texts	2 ⁵⁰ 2 ⁴⁷
SIS	5			2 ⁵⁵

The weakest point of DES remains the size of the key (56 bits)!

How to Improve Block

- Ciphers
 Variable key length
- Mixed operators: use more than one arithmetic and/or Boolean; this can provide non-linearity
- Data dependent rotation
- Key-dependent S-boxes
- Lengthy key schedule algorithm
- Variable plaintext/ciphertext block length
- Variable number of rounds
- Operation on both data halves each round
- Variable f() function (varies from round to round)
- Key-dependent rotation