Calculado intervalo de confiança e comparando resultados com uma pequena amostra

Distribuição t

Fórmula quase a mesma:

$$\overline{x} \pm t_{\left[1-\frac{\alpha}{2};n-1\right]} \left(\frac{s}{\sqrt{n}}\right)$$

- Usável para populações normalmente distribuídas!
- Mas funciona para pequenas amostras
- n-1 indica o grau de liberdade

Exemplo da Distribuição t

- 10 amostras de chegada de transações: 148 166 170 191 187 114 168 180 177 204
- Média da amostra χ = 170.5. Desvio padrão s = 25.1, n = 10
- Calcule o intervalo de confiança de 90%:

$$\overline{x} \pm t_{\left[1-\frac{\alpha}{2};n-1\right]} \left(\frac{s}{\sqrt{n}}\right)$$

• Quanto é
$$t_{1-0.1/2;10-1}$$

. Distribution

α										
Degrees of freedom	.005 (one tail) .01 (two tails)	.01 (one tail) .02 (two tails)	.025 (one tail) .05 (two tails)	.05 (one tail) .10 (two tails)	.10 (one tail) .20 (two tails)	25 (one tail) .50 (two tails) 1.000 .816 .765 .741 .727				
1 2 3 4 5	63.657 9.925 5.841 4.604	31.821 6.965 4.541 3.747 3.365	12.706 * 4.303 * 3.182 * 2.776 * 2.571 * * * * * * * * * * * * * * * * * * *	6.314 2.920 2.353 2.132 2.015	3.078 1.886 1.638 1.533 1.476					
6 7 8 9	4.032 3.707 3.500 3.355 3.250 3.169	3.707 3.143 3.500 2.998 3.355 2.896 3.250 2.821		1.943 1.895 1.860 1.833	1.440 1.415 1.397 1.383 1.372	.718 .711 .706 .703 .700 .697 .696 .694 .692 .691				
11 12 13 14 15	3.106 2.718 3.054 2.681 3.012 2.650 2.977 2.625 2.947 2.602		2.228 2.201 2.179 2.160 2.145 2.132	1,796 - 1,782 1,771 1,761 1,753	1.363 1.356 1.350 1.345 1.341					
16 17 18 19 20	2.921 2.898 2.878 2.861 2.845	2.584 2.567 2.552 2.540 2.528	2.120 2.110 2.101 2.093 2.086	1.746 1.740 1.734 1.729 1.725	1.337 1.333 1.330 1.328 1.325	.690 .689 .688 .688				
21 22 23 24 25	2.831 2.819 2.807 2.797		2.080 2.074 2.069 2.064 2.060	1.721 1.717 1.714 1.711 1.708	1.323 1.321 1.320 1.318 1.316	.686 .685 .685 .685				
26 27 28 29 Large (z)	2.779 2.771 2.763 2.756 2.575	2.485 2.479 2.473 2.467 2.462 2.327	2.056 2.052 2.048 2.045 1.960	1.706 1.703 1.701 1.699 1.645	1.315 1.314 1.313 1.311 1.282	.684 .683 .683 .675				

Exemplo da Distribuição t

- 10 amostras de chegada de transações: 148 166 170 191 187 114 168 180 177 204
- Média da amostraX = 170.5. Desvio padrão s = 25.1, n = 10
- Calcule o intervalo de confiança de 90%:

$$\overline{x} \pm t_{[1-\alpha/2;n-1]} \left(\frac{s}{\sqrt{n}}\right)$$

$$170.5 \pm (1.833) \frac{25.1}{\sqrt{10}} = (156.0, 185.0)$$

Calcule agora o intervalo de 99% de confiança

α										
Degrees of freedom	.005 (one tail) .01 (two tails)	.01 (one tail) .02 (two tails)	.025 (one tail) .05 (two tails)	.05 (one tail) .10 (two tails)	.10 (one tail) .20 (two tails)	25 (one tail) .50 (two tails)				
1	63.657	31.821	12.706	6.314	3.078	1.000				
2	9.925	6.965	4.303	2.920	1.886	.816				
3	5.841	4.541	3.182	2.353	1.638	765				
4	4.604	3.747	2.776	2.132	1.533	741				
5	4.032	3.365	2:5717	2.015	1.476	727				
6	3.707	3.143	2.447	1.943	1.440	.718				
7	3.500	2.998	2.365	1.895	1.415	.711				
8	1.255	2.896	2.306	1.860	1.397	.706				
9	3.250	2.821	2.262	1.833	1.383	.703				
10	3.169	2.764	2.228	1.812	1.372	.700				
11	3.106	2.718	2.201	1.796	1.363	,697				
12	3.054	2.681	2.179	1.782	1.356	.696				
13	3.012	2.650	2.160	1.771	1.350	.694				
14	2.977	2.625	2.145	1.761	1.345	.692				
15	2.947	2.602	2.132	1.753	1.341	.691				
16	2.921	2.584	2.120	1.746	1.337	.690				
17	2.898	2.567	2.110	1.740	1.333	.689				
18	2.878	2.552	2.101	1.734	1.330	.688				
19	2.861	2.540	2.093	1.729	1.328	.688				
20	2.845	2.528	2.036	1.725	1.325	.687				
21	2.831	2.518	2.080	1.721	1.323	.686				
22	2.819	2.508	2.074	1.717	1.321	.686				
23	2.807	2.500	2.069	1.714	1.320	.685				
24	2.797	2.492	2.064	1.711	1.318	.685				
25	2.787	2.485	2.060	1.708	1.316	,684				
26	2.779	2.479	2.056	1.706	1.315	.684				
27	2.771	2.473	2.052	1.703	1.314	.684				
.27 28	2.763	2.467	2.048	1.701	1.313	.683				
29	2.756	2.462	2.045	1.699	1.311	.683				
Large (z)	2.575	2.327	1.960	1.645	1.282	.675				

Exemplo da Distribuição t

- 10 amostras de chegada de transações: 148 166 170 191 187 114 168 180 177 204
- Média da amostraX = 170.5. Desvio padrão s = 25.1, n = 10
- Calcule o intervalo de confiança de 90%:

$$\overline{x} \pm t_{\left[1-\frac{\alpha}{2};n-1\right]} \left(\frac{s}{\sqrt{n}}\right)$$

$$170.5 \pm (3.250) \frac{25.1}{\sqrt{10}} = (144.7, 196.3)$$

Example 13.2

- □ Sample: -0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, and 0.09.
- \square Mean = 0, Sample standard deviation = 0.138.
- □ For 90% interval: $t_{[0.95;7]} = 1.895$
- Confidence interval for the mean

$$0 \mp 1.895 \times 0.138 = 0 \mp 0.262 = (-0.262, 0.262)$$

Tomando decisões sobre os dados experimentais

- Por que usamos intervalos de confiança?
 - Sumarizar o erro na média da amostra
 - Prover elementos para saber se a amostra é significativa
 - Permitir comparações à luz dos erros

Confidence Interval: Meaning

If we take 100 samples and construct confidence interval for each sample, the interval would include the population mean in 90 cases.

Comparando alternativas

- Em um projeto de pesquisa, normalmente, procura-se o melhor sistema, o melhor algoritmo, ...
- Métodos diferentes para observações pareadas (com par) e não pareadas (sem par).
 - Pareadas se o i-ésimo teste em cada sistema foi o mesmo
 - Não pareadas, caso contrário.

Pareadas

- Trata o problema como uma amostra de n pares
- Para cada teste, calcule a diferença dos resultados
- Calcule o intervalo de confiança para a diferença média
- Se o intervalo inclui 0 (zero), os objetos de comparação não são diferentes com a confiança especificada
- Se o intervalo não inclui zero, o sinal da diferença indica qual dos objetos é melhor com a confiança especificada e baseado nos dados experimentais

Pareados

- Considere dois métodos de busca A e B que são avaliados em função do número de documentos relevantes (em um total de 100) que cada um retorna
- Num teste com várias consultas, o algoritmo A retorna mais documentos relevantes que o B?
- Amostra de testes com 14 consultas:

Alg.	Α	4	5	0	11	6	6	3	12	9	5	6	3	1	6
■ Alg.	В	2	7	7	6	0	7	10	6	2	2	4	2	2	0

Pareados

- Diferenças entre A e B: 2 -2 -7 5 6 -1 -7 6 7 3 2 1 -1 6
- Média 1.4, nível de confiança de 90% :
 - -(-0.75, 3.6)
 - Não se pode rejeitar a hipótese de que a diferença é 0 e portanto os dois algoritmos tem desempenho similar.
- Com nível de confiança de 70% é (0.10, 2.76)
 - A tem desempenho melhor que B

Example 13.3

- Difference in processor times: {1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4}.
- Question: Can we say with 99% confidence that one is superior to the other?

Sample size =
$$n = 7$$

Mean =
$$7.20/7 = 1.03$$

Sample variance =
$$(22.84 - 7.20*7.20/7)/6 = 2.57$$

Sample standard deviation
$$= \sqrt{2.57} = 1.60$$

Confidence interval =
$$1.03 \mp t * 1.60/\sqrt{7} = 1.03 \mp 0.6t$$

$$100(1-\alpha) = 99, \ \alpha = 0.01, \ 1-\alpha/2 = 0.995$$

$$t_{[0.995; 6]} = 3.707$$

99% confidence interval = (-1.21, 3.27)

Example 13.5

- Performance: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)}. Is one system better?
- □ Differences: {-13.7, 13.1, -2.8, -1.1, -3.0, 5.6}.

```
Sample mean = -0.32
```

Sample variance = 81.62

Sample standard deviation = 9.03

Confidence interval for the mean
$$= -0.32 \mp t \sqrt{(81.62/6)}$$

$$=-0.32 \mp t(3.69)$$

$$t_{[0.95,5]} = 2.015$$

90% confidence interval =
$$-0.32 \mp (2.015)(3.69)$$

$$=(-7.75, 7.11)$$

Answer: No. They are not different.

Não pareadas

 O número de experimentos comuns não precisa ser o mesmo

Approximate Visual Test (a) ("Is overlap and mean of one is in the C1 of the other Cls do not everlap alternatives are not different a A is higher than B Mean Cls overlap but mean of any one is not in the CI of the other a need to do t**h**e ←te:

- 1 Compute as médias das amostras \bar{x}_a e \bar{x}_b
- Compute os desvio-padrões s_a e s_b
- 3. Compute a diferença das médias = $x_a x_b$
- Compute o desvio padrão das diferenças:

$$s = \sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$$

5. Compute os graus efetivos de liberdade:

$$\nu = \frac{\left(s_a^2 / n_a + s_b^2 / n_b\right)^2}{\frac{1}{n_a + 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b + 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$$

Compute o intervalo de confiança:

$$(\overline{x}_a - \overline{x}_b) \mp t_{[1-\alpha/2;\nu]} s$$

Se o intervalo inclui zero, não há diferença

O tempo de processamento necessario para executar uma tarefa foi medido em dois sistemas.

Os tempos no sistema A foram:

{5.36, 16.57, 0.62, 1.41, 0.64, 7.26}.

Os tempos no sistema B foram:

{19.12, 3.52, 3.38, 2.50, 3.60, 1.74}.

Os dois sistemas sao significativamente diferentes?

Diferenca das medias $\overline{x_A} - \overline{x_B} = -0.33$

Desvio Padrao da diferenca media s = 3.698

Graus de liberdade $\nu = 11.921$

0.95 - quantil da va t com 12 graus de liberdade $t_{[0.95,12]} = 1.71$

IC de 90% para a diferenca das medias = (-6.92, 6.26)

IC inclui 0, logo os dois sistemas NAO sao diferentes neste nivel de confiança

Nível de confiança

- Os níveis de confiança entre 90% e 95% são os mais comuns em artigos científicos em computação
- Em geral, use o maior valor que lhe permita estabelecer conclusões sólidas num processo experimental.

Referências

- Raj Jain. The Art of Computer System
 Performance Analysis: Techniques for
 Experimental Design, Measurement, Simulation and Modeling, John Wiley & Sons, Inc., 1991.
- Jay L. Devore, PROBABILIDADE E ESTATÍSTICA PARA ENGENHARIA E CIÊNCIAS. Cengage Learning, 2006.
- Material didático da profa. Jussara Almeida DCC/UFMG.