Memória Principal

Eduardo Furlan Miranda

Baseado em: Tangon, LG; Santos RC. Arquitetura e Organização de Computadores. EDE, 2016. ISBN 978-85-8482-382-6...

Memória principal

Arquitetura Von Neumann

- As memórias têm velocidades diferentes
- Cada uma para um propósito
- Memória onde o programa é executado pela CPU
- Memória de armazenamento
- · Volátil ou não
- Varia tecnologia, capacidade, velocidade, custo
- Interligações e acessos

Figura 2.4 | Quadro das características básicas dos tipos de memória

Características básicas dos tipos de memória					
MEMÓRIA	Localização/ É volátil?		VELOCIDADE	CAPACIDADE DE ARMAZENAMENTO	CUSTO
Registrador	Processador	Sim	Muito alta (opera na velocidade do operador)	Muito baixa (bytes)	Muito alto
Cache	Processador	Sim	Alta (opera na velocidade do operador)	Baixa (KB)	Alto
Principal	Placa-mãe	RAM - sim ROM - não	Depende do tipo de memória instalada	Média (GB)	Médio (tem caído muito)
Secundária	HD, CDs, etc.	Não	Baixa (lenta)	Alta (GB)	Baixo (tem caído muito)

Registrador

Figura 2.5 | Registradores em destaque dentro da estrutura de um processador

Registrador

- Um tipo de memória interna do processador
- Rápida, pequena, volátil
- Armazena dados a serem processados
- Uso geral, específico
- Escrita-leitura, somente leitura
- Topo da hierarquia
- Diretamente codificado como parte da instrução

Memória cache

- Faz parte do processador
- Programador deve observar para obter desempenho

Cache

- Reduz o custo médio (tempo ou energia) para a CPU acessar dados da memória principal
- Funciona de forma automática
- Armazena cópias de dados frequentemente usados
- Existem outros tipos de cache, como o TLB (translation lookaside buffer) que faz parte da MMU (memory management unit)
 - Armazena as traduções recentes da memória virtual para a memória física
 - É usado para reduzir o tempo necessário para acessar um local de memória do usuário

Memória principal

Freescale MMM7200 Baseband Processor

Micron Technology MT28F1284W18BQ-705BET Flash - NOR, 8M x 16 RF Micro Devices RF9287 PAM - WCDMA

MMC Card Socket Freescale ASIC – Applications Processor Micron Technology MT48H8M16LFB4-10 SDRAM - 128Mb x 16

RAM - Random Access Memory

- Armazena programas e dados
- Acesso randômico
- Velocidade de leitura/gravação independe da posição
- SRAM (6 transístores = 1 bit), DRAM (capacitor + transístor)
- Volátil (temporário), depende de energia
- Os programas para serem executados, são transferidos do HD, SDD, Pendrive, etc., para a RAM
- Quando a RAM "enche" uma parte é transferida para o HD/SSD (memória secundária), e depois retorna

DDR SDRAM

- Memória de acesso aleatório dinâmica síncrona de taxa de dados dupla
- Transfere dados nas bordas ascendente e descendente do sinal de clock
- 64 bits por vez (entre memória e processador)

Gerações

- Pré-busca: dados de "x" bits são transferidos da matriz de memória para o buffer interno de entrada/saída
- DDR (1998): pré-busca 2-bits, 266-400 Mb/s
- DDR2 (2003): 4-bit, 533-800 Mb/s
- DDR3 (2007): 8-bit, 1066-1600 Mb/s
- DDR4 (2014): grupos de 8-bit, 2133-5100 Mb/s
- DDR5 (2020): 16-bit, 3200-6400 Mb/s

ROM - Ready Only Memory

- Não volátil
- Usado em BIOS, firmware, cartuchos de videogame
- PROM, EPROM, EEPROM, EAROM, Flash-ROM
- Geralmente se grava uma vez
- O processo de gravação geralmente é lento
- Limite de vezes que pode ser regravado

- PROM (Programmable Read-Only Memory)
 - A gravação de dados neste tipo é feita uma única vez e os dados gravados na memória PROM não podem ser apagados ou alterados
- EPROM (Erasable Programmable Read-Only Memory)
 - Permitem a regravação de dados
 - Isso é feito através de emissão de luz ultravioleta que apaga por completo os dados que já estão gravados e após isso permite uma nova gravação.

EEPROM

- Electrically-Erasable Programmable Read-Only Memory
- Permite a regravação de dados, feitos eletricamente, não sendo necessário mover o dispositivo para que a regravação ocorra

EAROM

- Electrically-Alterable Programmable Read-Only Memory
- Os dados gravados podem ser alterados aos poucos, razão pela qual esse tipo é geralmente utilizado em aplicações que exigem apenas reescrita parcial de informações

Flash-ROM

- Um tipo de EEPROM mais rápida
- Não permite a gravação parcial de dados.