최고의 강의를 책으로 만나다

자료구조와 알고리즘 with 파이썬

reatest Of All Time 시리즈 | 최영규 지음

수강생이 궁금해하고, 어려워하는 내용을 가장 쉽게 풀어낸 걸작!

****** ***** ***** ****** ****** 선전이 두렵지 않도록 ****** 산세한 코드 설명 *******

ᄉᄮ생능북스

SW알고리즘개발 7주차

4장. 트리

04-1 트리란?

04-2 이진 트리

04-3 이진 트리의 연산

04-4 모스 코드 결정 트리

04-5 수식 트리

4.4 모스 코드 결정 트리

- 새뮤얼 모스(Samuel Morse)
 - SOS → ••• --- •••

문자	부호	문자	부호	문자	부호
Α	• -	J	•	S	• • •
В	-•••	K	- • -	Т	_
С	-•-•	L	• - • •	U	• • -
D	-••	М		V	• • • -
E	•	N	-•	W	•
F	• • - •	0		Χ	-••-
G	•	Р	• •	Υ	-•
Н	••••	Q	•-	Z	••
I	• •	R	• - •		

ASCII 코드 표 (알파벳 ASCII Code Table)

10진수	부호	10진수	부호
065	Α	097	а
066	В	098	b
067	С	099	С
068	D	100	d
069	Е	101	е
070	F	102	f
071	G	103	g
072	Н	104	h
073	I	105	i
074	J	106	j
075	K	107	k
076	L	108	1
077	М	109	m
078	N	110	n
079	0	111	0
080	Р	112	р

081	Q	113	q
082	R	114	r
083	S	115	S
084	Т	116	t
085	U	117	u
086	V	118	٧
087	W	119	W
088	X	120	X
089	Υ	121	у
090	Z	122	Z

문자를 모스 코드로 변환하는 과정: 인코딩

문자에 대응되는 코드를 표에서 찾아 순서대로 출력
 코드 표:

```
table =[('A', '.-'), ('B', '-...'), ('C', '-.-.'), ('D', '-..'), ('E', '.'), ('F', '..-.'), ('G', '--.'), ('H', '....'), ('I', '...'), ('I', '...'), ('J', '.---'), ('K', '-.-'), ('L', '.-..'), ('M', '--'), ('N', '-.'), ('0', '---'), ('P', '.--.'), ('Q', '--.-'), ('R', '.-.'), ('S', '...'), ('T', '-'), ('U', '..-'), ('V', '..-'), ('W', '.--'), ('X', '-..-'), ('Y', '-.--'), ('Z', '--..')]
```

• 인코딩 함수

```
def encode(ch): idx = ord(ch) - ord('A') # 리스트에서 해당 문자의 인덱스 return table[idx][1] # 해당 문자의 모스 부호 반환
```

모스 코드를 문자로 변환하는 과정: 디코딩

- 모스 코드가 주어졌을 때 해당하는 알파벳을 추출
 표의 모든 항목을 하나씩 검사해야 함 → 비효율적
- 비효율적인 디코딩 함수

```
def decode_simple(morse):
    for tp in table : # 모스 코드 표의 모든 문자에 대해
    if morse == tp[1] : # 찾는 코드와 같으면
    return tp[0] # 그 코드의 문자를 반환
```

• 개선 방안? 결정 트리를 이용한 디코딩

결정 트리를 이용한 모스 코드의 디코딩

- 결정 트리(decision tree)
 - 여러 단계의 복잡한 조건을 갖는 문제에 대해 조건과 그에 따른 해결방법을 트리 형태로 나타낸 것
- 모스 코드를 위한 결정 트리
 - 최대 트리의 높이 만큼만 비교 → 디코딩이 효율적

결정 트리를 이용한 모스 코드의 디코딩

- 모스 코드를 위한 결정 트리 만들기
 - ① 빈 루트 노드를 만들고 모스 코드표의 각 문자를 하나씩 트리에 추가
 - ② 문자를 추가할 때 루트부터 시작하여 트리를 타고 내려감. 만약 타고 내려갈 자식 노드가 None이면 새로운 노드를 추가하는데, 노드만 추가할 뿐이지 그 노드의 문자는 아직 결정할 수 없음 - 각 모스 코드에 대해, ·이면 왼쪽으로, -이면 오른쪽으로 트리의 노드를 따라 감
 - ③ 마지막 코드의 노드에 도달하면 그 노드에 문자를 할당
- 결정 트리를 이용한 디코딩

```
def decode(root, code):
    node = root # 루트 노드에서 시작
    for c in code : # 각 부호에 대해
        if c == ' · ' : node = node.left # 점(·): 왼쪽으로 이동
        elif c=='-' : node = node.right # 선(-): 오른쪽으로 이동
    return node.data # 문자 반환
```

모스 코드 결정 트리


```
def make_morse_tree():
   root = TNode( None, None, None )
   for tp in table:
      code = tp[1]
                              # 모스 코드
      node = root
      for c in code:
                          # 맨 마지막 문자 이전까지 --> 이동
        if c == '.':
                        # 왼쪽으로 이동
            if node.left == None : #비었으면 빈 노드 만들기
               node.left = TNode (None, None, None)
            node = node.left # 그쪽으로 이동
         elif c == '-' : # 오른쪽으로 이동
            if node.right == None : # 비었으면 빈 노드 만들기
               node.right = TNode (None, None, None)
            node = node.right # 그쪽으로 이동
                    # 코드의 알파벳
      node.data = tp[0]
   return root
```

테스트 프로그램


```
str = input("입력 문장 : ")
mlist = []
for ch in str:
                            입력 문자열의 각 문자를 순서 대로
                          ____ 모스코드로 변환하여 리스트에 추가
    code = encode(ch) (
    mlist.append(code)
print("Morse Code: ", mlist)
print("Decoding:", end='')
for code in mlist:
                                           리스트의 모스 코드를 순서 대로 디코딩한
    ch = decode(morseCodeTree, code)
                                         ---- 문자를 화면에 출력
    print(ch, end='')
print()
    🕮 실행 결과
   입력 문장 : GAMEOVER _{A} _{M} _{E} _{O} _{V} _{E} _{R} Morse Code: G ['--.', '--', '--', '--', '---', '---', '---']
    Decoding : GAMEOVER
```

4.5 수식 트리

- 수식 트리(Expression Tree)
 - 산술식을 트리 형태로 표현한 이진 트리

- 수식 트리 만들기
- 수식 트리의 계산

수식 트리의 계산

(1 + 3) * (4 / 2)

• 후위 순회 사용

수식의 표현 방법

전위(prefix)	중위(infix)	후위(postfix)		
연산자 피연산자1 피연산자2	피연산자1 연산자 피연산자2	피연산자1 피연산자2 연산자		
+ A B	A + B	A B +		
+ 5 * A B	5 + A * B	5 A B * +		

• 후위 표기의 장점

- 괄호를 사용하지 않아도 계산 순서를 알 수 있다.
- 수식을 읽으면서 바로 계산 중위표기는 괄호와 연산자의 우선 순위때문에 식을 끝까지 읽은 다음에야 계산할 수 있음
- 연산자의 우선순위를 생각할 필요가 없음. 식 자체에 우선 순 위가 이미 포함

후위 표기 식으로 수식 트리 만들기

- 맨 뒤에서 앞으로 읽으면서 노드을 생성하고, 재귀적으로 자식 노드를 채워 감
- 오른쪽 자식이 먼저 왼쪽이 그 다음에 처리

return BTNode(float(token))

- 입력 수식 : 후위 표기 수식 (예:13 + 42 / *)
- 루트 노드 반환

```
token = expr.pop()

if token in "+-*/" :

node = BTNode(token)
node.right= buildETree(expr)
node.left = buildETree(expr)
return node

else :

pop()으로맨뒤의 요소를 꺼냄.

전산자이면 노드를 만들고, 오른쪽과
은 왼쪽순으로 서브트리를 순환호출을 이용해만듦.
마지막으로 노드 반환.

피연산자이면 단말노드이므로 노드를
```

만들어 바로 반화

예: 후위 표기 식으로 수식 트리 만들기 🔭

- 후위표기 수식: 13 + 42/*
- 첫 번째 연산: *. *는 두 개의 피연산자를 필요. 이 연산자는 트리의 루트 노드가 되며, 오른쪽과 왼쪽 자식을 차례로 채워가게 됨
- 2. 두 번째 연산 : /. *의 오른쪽 자식 노드를 찾기 위해 왼쪽으로 이동하여 / 처리. / 는 두 개의 피연산자가 필요
- 3. 세 번째 연산: 2 . /의 오른쪽 피연산자는 2. 이 값은 리프노드로 삽입
- 4. 네 번째 연산: 4 . /의 왼쪽 피연산자는 4. 이 값은 리프노드로 삽입. 즉 /의 왼쪽 자식 트리 완성
- 5. 다섯 번째 연산: + . * 연산자의 왼쪽 피연산자를 찾기 위해 + 연산 를 처리. + 연산자는 두 개의 피연산자을 필요로하며, 트리의 왼쪽 서브트리의 루트가 됨
- 6. 여섯 번째 연산: 3. + 연산자의 오른쪽 피연산자는 3. 리프노드로 삽입
- 7. 일곱 번째 연산: 1. + 연산자의 왼쪽 피연산자는 1. 리프노드로 삽입

수식 트리 순회:

- 전위 순회 (Preorder): * + 1 3 / 4 2
- 중위 순회 (Inorder): 1 + 3 * 4 / 2
- 후위 순회 (Postorder): 1 3 + 4 2 / *

중위표기 수식을 후위표기 수직으로 변환

1. 연산자 우선순위 정의

- +, -: 우선 순위 1
- *, / : 우선 순위 2
- 괄호(와): 우선 순위 3

2. 알고리즘

- **출력 리스트** (후위표기식을 저장)
- 스택 (연산자와 괄호를 임시로 저장)
- 단계 1: 수식을 왼쪽에서 오른쪽으로 차례대로 한 토큰씩 읽기
- 단계 2: 각 토큰에 대해 처리
 - 숫자는 후위표기식에서 바로 사용되므로 출력 리스트에 추가
 - 연산자가 스택에 있는 연산자보다 우선순위가 낮거나 같으면, 스택에 있는 연산자를 출력 리스트로 옮김. 그러고 나서 현재 연산자를 스택에 추가
 - 여는 괄호 (인 경우 스택에 추가
 - · 닫는 괄호)인 경우 스택에서 여는 괄호가 나올 때까지 연산자를 출력 리스트로 옮김
- 단계 3: 수식이 끝나면, 스택에 남아있는 모든 연산자를 출력 리스트로 옮김

예시: 3 + 5 * (2 - 8)

예시

테스트 프로그램


```
str = input("입력(후위표기): ") # 후위표기식 입력

expr = str.split() # 토큰 리스트로 변환

print("토큰분리(expr): ", expr)

root = buildETree(expr) ( 후위표기식을 수식트리로 만들고 루트를 반환

print('\n 전위순회: ', end=''); preorder(root)

print('\n 중위순회: ', end=''); inorder(root)

print('\n후위순회: ', end=''); postorder(root)

print('\n계산 결과 : ', evaluate(root)) # 수식 트리 계산
```

일 실행 결과 입력(후위표기): 1 3 + 4 2 / * 토큰분리(expr): ['1', '3', '+', '4', '2', '/', '*'] 전위 순회: (* (+ (1.0) (3.0)) (/ (4.0) (2.0))) + 중위 순회: 1.0 + 3.0 * 4.0 / 2.0 후위 순회: 1.0 3.0 + 4.0 2.0 / * 계산 결과 : 8.0 계산 결과 : 8.0

CHAPTER 5

알고리즘 개요

5장. 알고리즘 개요

05-1 알고리즘이란?

05-2 알고리즘의 성능 분석

5.1 알고리즘이란?

- 알고리즘 (algorithm)
 - 주어진 문제를 해결하기 위한 단계적인 절차

알고리즘의 기술 방법

(1) 자연어 표현

$find_max(a, b, c)$

a를 최댓값을 저장하는 변수 max에 복사합니다. 만약 b가 max보다 크면 b를 max에 복사합니다. 만약 c가 max보다 크면 c를 max에 복사합니다. max를 반환합니다.

(2) 흐름도 표현

알고리즘의 기술 방법

(3) 유사 코드 표현

(4) 파이썬 표현

바로 실행할 수 있음!

5.2 알고리즘의 성능 분석

- 성능의 기준
 - 연산량 : 알고리즘이 얼마나 적은 연산을 수행하는가?
 - 메모리 사용량 : 얼마나 적은 메모리 공간을 사용하는가?
- 시간 효율성 분석 방법
 - 실행 시간 측정 방법
 - 복잡도 분석

실행 시간 측정 방법

• time 모듈을 이용한 실행시간 측정 예

```
      01: import time
      # time 모듈 불러오기

      02: start = time.time()
      # 현재 시각을 start에 저장(시작 시각)

      03: testAlgorithm(input)
      # 실행시간을 측정하려는 알고리즘 호출

      ...
      ...

      05: end = time.time()
      # 현재 시각을 end에 저장(종료 시각)

      06: print("실행시간 = ", end-start)
      # 실제 실행시간(종료-시작)을 출력
```

- 문제점
 - 구현해야 함
 - 같은 조건의 HW, SW 환경과 언어로 비교해야 함
 - 실험된 입력에 대해서만 실행 시간을 주장 가능

복잡도 분석(Complexity Analysis) 방법

- 알고리즘의 성능 평가 > 알고리즘의 복잡도 분석
 - 알고리즘을 구현하지 않고
 - 알고리즘의 시간복잡도(Time Complexity)
 - 알고리즘의 <mark>공간 복잡도</mark>(Space Complexity)
- 알고리즘의 복잡도 표기 : 복잡도 함수 T(n)
 - 말고리즘에서 얼마나 많은 연산이 실행되는지를 계산
 - T(n): 연산의 실행 횟수를 입력크기 n에 대한 함수로 π 기

예: 알고리즘의 복잡도 함수 계산

- 1부터 n까지 합을 구하는 두 가지 알고리즘
 - 알고리즘 1: 반복문 이용


```
01: calc_sum1( n )
02: sum ← 0 # 1회 수행
03: for i ← 1 to n then# n회 수행(반복 제어부)
04: sum ← sum + i # n회 수행(반복문 내부)
05: return sum # 1회 수행
```

- 알고리즘 2: 합 공식 이용

알고리즘의 복잡도의 점근적 표기

• 어느 알고리즘이 효율적일까?

알고리즘A

알고리즘 B

문제: n7H의 숫자를 오름차순으로 정렬하라.

$$T(n) = 65536n + 200000$$

65536n + 2000000

$$n^2 + 2n$$
 $T(n) = n^2 + 2n$

n(입력의 크기)	알고리즘 A 65536n + 2000000			비교	알고리즘 B n^2+2n		
1		2,065,536		>			3
10		2,655,360		>			120
100		8,553,600		>			10,200
1,000		67,536,000		>			1,002,000
10,000		657,360,000		> (r		수록 엄청난 U 필요함	100,020,000
100,000		6,555,600,000		<			,000,200,000
1,000,000		65,538,000,000		<		1,000	,002,000,000
10,000,000		655,362,000,000		<		100,000	,020,000,000
100,000,000		6,553,602,000,000		<		10,000,000	,200,000,000
1,000,000,000		65,536,002,000,000	J	<		1,000,000,002	000,000,000

알고리즘 복잡도의 표현 방법 : 점근적 표기

- 점근적 표기(asymptotic notation):
 - 여러 항을 갖는 복잡도 함수를 최고차항만을 계수 없이 취해 단 순하게 표현하는 방법
 - U력의 크기 n의 증가에 따라 연산량이 얼마나 빨리 증가하는가?
 - 증가속도를 표현
 - 상한/하한/ 동일 등급의 개념 적용
 - 빅오(0) 예: 0(n)
 - 빅오메가(Ω)
 - 예: Ω(n)
 - 빅세타(Θ)
 - 예시: Θ(n)

n(입력의 크기)	알고리즘 A 65536n + 2000000	비교	알고리즘 B n^2+2n
1T(n) = 6	55536n + 200000	2T(n	$n) = n^2 + 2n$
1T(n) = 2 1T(n) = 6	T(n) n 5536n 2T(n) = n	2	T(n)

빅오(big-O) 표기법

$$3n^{2} + 4n \in O(n^{2})$$

$$2n - 3 \in O(n^{2})$$

$$2n(n + 1) \in O(n^{2})$$

$$3n^{2} + 4n \notin O(n)$$

$$0.000001n^{3} \notin O(n^{2})$$

$$1000^{n} \in O(n!)$$

- O(g(n))
 - 증가속도가 g(n)과 **같거나 낮은** 모든 복잡도 함수(T(n))를 포함하는 집합 $T(n) = O(g(n)) \rightarrow \{T(n) <= G(n)\}$ G(n) = upper bound
 - 처리 시간의 상한(upper bound)
 - 이 알고리즘은 어떤 경우에도 g(n)에 비례하는 시간 안에는 반 드시 완료된다는 의미
 - g(n)보다 더 빨리 처리될 수는 있지만 절대로 g(n)보다 더 걸릴 수는 없음
- 시간복잡도를 정확히 분석하기 어려운 경우는 상한을 구해 빅오 표 기법 사용
 - 최악의 상황을 고려한 해결책을 찾기 때문에 빅오 표기법을 주로 사용
- 예시: $T(n) = 2n + 1 \Rightarrow T(n) \in O(n^2) => T(n) 은 O(n^2)$ 에 속한다.

빅오메가(big-omega) 표기법

- $\Omega(g(n))$
 - 증가속도가 g(n)과 **같거나 높은** 모든 복잡도 함수를 포함하는 집합
 - 처리 시간의 하한(Lower Bound)
 - $-\Omega(g(n))$ 은 아무리 빨리 처리하더라도 g(n)에 비례하는 시간 이 상은 반드시 걸린다
- 예시: $T(n) = 2n^3 + 3n \Rightarrow T(n) \in \Omega(n^2) \Rightarrow T(n) \stackrel{\sim}{=} \Omega(n^2)$ 에 속한다.

$$2n^{3} + 3n \in \Omega(n^{2})$$
$$2n(n+1) \in \Omega(n^{2})$$
$$100000n + 8 \notin \Omega(n^{2})$$

빅세타(big-theta) 표기법

- $\Theta(g(n))$
 - 증가속도가 g(n)과 **같은** 모든 복잡도 함수를 포함하는 집합
 - 처리 시간이 상한인 동시에 하한
- 시간 복잡을 정확히 계산할 수 있으면 빅세타 표기법을 사용

$$3n^{2} + 4n \in \Theta(n^{2})$$
$$2n - 3 \notin \Theta(n^{2})$$
$$0.000001n^{3} \notin \Theta(n^{2})$$

X

박오 표기: n이 증가함에 따라 시간복잡도 함수의 증가속도

$$O(1) \le O(\log n) \le O(n) \le O(n\log n) \le O(n^2) \le O(n^3) \le O(2^n) \le O(3^n) \le O(n!)$$

최선, 최악, 평균적인 효율성

- 최선의 경우(best case)
 - 실행 시간이 가장 적은 경우. 알고리즘 분석에는 큰 의미가 없음
- 평균적인 경우(average case)
 - '평균' : 모든 데이터가 균일하게 탐색 되는 상황을 이미
 - 만일 숫자가 key로 사용될 가능성이 1/n로 동일
 - 알고리즘의 모든 입력을 고려하고 각 입력이 발생할 확률을 고려한 평균 실행 시간. 정확히 계산이 어려움
- 최악의 경우(worst case)
 - 입력의 구성이 알고리즘의 실행시간을 많이 요구하는 경우. 알고리즘 분석하는데 가장 중요

예: 리스트에서 최댓값을 찾는 알고리즘

```
01:
    def find_max( A ):
                              # 입력의 크기
02:
        n = len(A)
                             # max 초기화
03:
       max = A[0]
                           # 반복 제어부
04: for i in range(n):
           <u>if A[i] > max :</u> # 반복문 내부 -> n번 반복(가장 많이 처리)
05:
06:
               max = A[i]
07:
                              # 결과 반화
        return max
```

- 입력의 크기 n : 리스트의 크기
- T(n): n이 증가함에 따라 비례하는 수의 연산은?
 - 가장 많이 처리되는 부분: 5행

```
-T(n) = n 		 ( )
```

- 입력의 구성에 따라 알고리즘의 실행 시간에 따른 효율성 차이
 - 순차탐색(linear search)
 - 리스트의 크기가 같다면 내용에 상관없이 효율성에 차이가 없음
 - 최선의 경우, 평균적인 경우, 최악의 경우 동일
 - O(n), $\Omega(n)$, O(n)

예: 리스트에서 어떤 값을 찾는 알고리즘

```
01: def find_key( A, key ):
02: n = len(A) # 입력의 크기
03: for i in range(n): # 반복 제어부
04:  if A[i] == key: # 탐색 성공 --> 인덱스 반환
05:  return i
06: return -1 # 탐색 실패 --> -1 반환
```

- 입력의 크기 n : 리스트의 크기
- 순차탐색(linear search)
 - 가장 많이 처리되는 부분: 4행
 - U력의 구성에 따라 탐색 횟수가 달라짐
 - 복잡도 함수의 효율성 차이 → 있음
 - 최선의 경우: $T(n) = 1 \Rightarrow O(1)$ 32
 - $\text{ key } \leftarrow A[0]$
 - 최악의 경우: $T(n) = n \Rightarrow O(n)$ 29
 - Key >= A[n-1] 또는 리스트에 존재하지 않는 경우

32

14

23

• 평균의 경우:
$$T(n) = \frac{1+2+...+n}{n} = \frac{\frac{n(n+1)}{2}}{n} = \frac{\frac{(10+1)/2}{2} = 5.57 + O(n)}{2}$$

26