

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V400HJ6 SUFFIX: ME2

Revision : C2 Customer:						
APPROVED BY	SIGNATURE					
Name / Title Note						
Please return 1 copy for your confirmation with your signature and						

Approved By	Checked By	Prepared By
Roger Huang	Vita Wu	WJ Chang

Version 2.0 1 Date: Jul. 3 2014

CONTENTS

Version 2.0	2	Date: Jul. 3 2014
8.1 ASSEMBLY AND HANDLIN	NG PRECAUTIONS	27
8. PRECAUTIONS		27
or ment of Len reministra		<u>~1</u>
	S	
7. OPTICAL CHARACTERISTICS		23
6.2 POWER ON/OFF SEQUENC	CE	22
6.1 INPUT SIGNAL TIMING SP	ECIFICATIONS	19
6. INTERFACE TIMING		19
5.4 BACKLIGHT UNIT		18
5.3 COLOR DATA INPUT ASSI	GNMENT	
5.2 LVDS INTERFACE		16
5.1 TFT LCD MODULE INPUT.		
5. INPUT TERMINAL PIN ASSIGNM	MENT	13
4.1 TFT LCD MODULE		12
4. BLOCK DIAGRAM OF INTERFAC	CE	12
3.2.1 LED LIGHT BAR CHA	ARACTERISTICS	11
	CS	
2.3.2 BACKLIGHT UNIT		8
2.3 ELECTRICAL ABSOLUTE R	ATINGS	8
2.2 PACKAGE STORAGE		8
2.1 ABSOLUTE RATINGS OF EI	NVIRONMENT	7
2. ABSOLUTE MAXIMUM RATING	S	7
1.4 MECHANICAL SPECIFICAT	TIONS	6
1.3 GENERAL SPECIFICATION	S	5
1.2 FEATURES		5
1.1 OVERVIEW		5
1. GENERAL DESCRIPTION		5

PRODUCT SPECIFICATION

8.2 SAFETY PRECAUTIONS	
8.3 SAFETY STANDARDS	28
8.4 Condition of Acceptability for installed in End-product	
9. DEFINITION OF LABELS	
9.1 MODULE LABEL	29
9.2 CARTON LABEL	30
10. PACKAGING	31
10.1 PACKAGING SPECIFICATIONS	31
10.2 PACKAGING METHOD	31
10.3 UN-PACKAGING METHOD	33
11 . MECHANICAL CHARACTERISTIC	34

PRODUCT SPECIFICATION

REVISION HISTORY

version	Date	Page(New)	Section	Description
Version Ver. 2.0	Date Jan.6, 2016	Page(New) All	Section All	Description The approval specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V400HJ6-ME2 is a 40" TFT Liquid Crystal Display module with LED Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit).

1.2 FEATURES

- High brightness (300 nits)
- High contrast ratio (5000:1)
- Fast response time (Gray to gray average 9.5 ms)
- High color saturation (NTSC 72%)
- FHDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 50/60 Hz frame rate
- Ultra wide viewing angle : Super MVA technology
- RoHS compliance
- T-con input frame rate: 50Hz/60Hz, output frame rate: 50Hz/60Hz

1.3 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	878.112(H) x 485.352(V) (39.5" diagonal)	mm	(1)
Bezel Opening Area	879.9 (H) x 487.2 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.15245(H) x 0.4494(V)	mm	-
Pixel Arrangement	RGB Vertical Stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 1%), Hardness 3H	-	(2)
Rotation Function	Unachievable		(3)
Display Orientation	Signal input with "INX"		(3)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec. of the surface treatment is temporarily for this phase. INX reserves the rights to change this feature.

Note (3)

1.4 MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	902.5	903.7	904.9	mm	
Module Size	Vertical (V)	512.6	513.8	515.0	mm	(1), (2)
	Depth (D)	15.9	17.4	18.9	mm	
Weight			7.3		Kg	_

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth is between bezel to real.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	
Shock (Non-Operating)	SNOP	-	30	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 70 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 30 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
- (b) The module shall be stroed in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Itom	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	VCC	-0.3	13.5	V	
Logic Input Voltage	VIN	-0.3	3.6	V	

2.3.2 BACKLIGHT UNIT

Item	Symbol	Min.	Max.	Unit	Note
Light Bar Voltage	V_W	-	60	V_{DC}	(1)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

Parameter		Symbol		Val	Unit	Note	
	Parameter	Gymbor	Min.	Тур.	Max.	Onit	Note
Power Supply Voltage		V _{CC}	10.8	12	13.2	V	(1)
Rush Current		I _{RUSH}	_	_	3.5	А	(2)
	White Pattern	P⊤	_	7.6	9.2		
Power consumption	Black Pattern	Рт	_	4.6	5.5	W	- (3)
	Horizontal Stripe	P⊤	_	7.1	8.6		
	White Pattern	_	_	0.63	0.77	A	
Power Supply Current	Black Pattern	_	_	0.38	0.46		
	Horizontal Stripe	_	_	0.59	0.72		
	Differential Input High Threshold Voltage	V_{LVTH}	+100	_	+300	mV	
	Differential Input Low Threshold Voltage	V_{LVTL}	-300	_	-100	mV	
LVDS interface	Common Input Voltage	V_{CM}	1.0	1.2	1.4	V	(4)
	Differential input voltage (single-end)	V _{ID}	200	_	600	mV	
	Terminating Resistor	R_T	_	100	_	ohm	
CMOS	Input High Threshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low Threshold Voltage	V _{IL}	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10% of Vcc (Typ.).

Note (2) Measurement condition:

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The LVDS input characteristics is shown as below:

3.2 BACKLIGHT UNIT

3.2.1 LED LIGHT BAR CHARACTERISTICS

The backlight unit contains 1 pcs LED light bar, and each light bar has 4 string LED. (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
One String Current	Ι _L	216.2	230	243.8	mA	(1)
One String Voltage	V_W	40.04	_	48.41	V_{DC}	I _L =230mA
One String Voltage Variation	△Vw			2	V_{DC}	
Power Consumption	P_{BL}		41		W	(2) I _L =230mA
Life time	_	30,000	_	_	Hrs	(3)

Note (1) Dimming Ratio=100%

Note (3) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value,

Operating condition: Continuous operating at Ta = $25\pm2^{\circ}$ C, IL = 230 mA.

Note (2) The power consumption is only calculate the power of light bar.

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

TFT LCD OPEN CELL

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE INPUT

CNF1 Connector Pin No.: (WF23-402-5133 (FCN) , 187059-51221 (P-TWO))

Matting connector: FI-RE51HL (JAE)

Pin	Name	Description	Note
1	N.C.	No Connection	
2	N.C.	No Connection	
3	N.C.	No Connection	(2)
4	N.C.	No Connection	(2)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	Input signal for LVDS Data Format Selection	(3)(4)
8	N.C.	No Connection	
9	N.C.	No Connection	(2)
10	N.C.	No Connection	
11	GND	Ground	
12	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
13	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
14	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(E)
15	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(5)
16	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
17	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	OCLK-	Odd pixel Negative LVDS differential clock input	(5)
20	OCLK+	Odd pixel Positive LVDS differential clock input	(5)
21	GND	Ground	
22	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	(5)
23	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	(0)
25	N.C.	No Connection	(2)
26	GND	Ground	
27	GND	Ground	
28	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	(5)

29	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
30	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	
31	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	
32	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
33	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
34	GND	Ground	
35	ECLK-	Even pixel Negative LVDS differential clock input.	(5)
36	ECLK+	Even pixel Positive LVDS differential clock input.	(5)
37	GND	Ground	
38	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(5)
39	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
40	N.C.	No Connection	(2)
41	N.C.	No Connection	(2)
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(2)
48	VCC	Power input (+12V)	
49	VCC	Power input (+12V)	
50	VCC	Power input (+12V)	
51	VCC	Power input (+12V)	

Note (1) LVDS connector pin order is defined as below.

Version 2.0 14 Date: Jul. 3 2014

Note (2) Reserved for internal use. Please leave it open.

Note (3) LVDS format selection.

SELLVDS	Mode				
L	JEIDA				
H(default)	VESA				

L: Connect to GND, H: Connect to Open or +3.3V

Note (4) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including Panel board loading as below.

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Note (6) LVDS connector mating dimension range request is 0.93mm~1.0mm as below.

5.2 LVDS INTERFACE

VESA Format : SELLVDS = H or Open

JEIDA Format : SELLVDS = L

R0~R7	Pixel R Data (7; MSB, 0; LSB)	DE	Data enable signal
G0~G7	Pixel G Data (7; MSB, 0; LSB)	DCLK	Data clock signal
B0~B7	Pixel B Data (7; MSB, 0; LSB)		

Note (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

0.1										Data Signal															
	Color		150		Re							I		ree		101					BI			I	
	Diesk	R7	R6	R5	R4	R3	R2	R1	R0		G6			G3		G1	G0	B7	B6	_		B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	_			0	0	0	0	0	0	0	0	0	0	0	0	0
D	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1		0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IXCu	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0.0011	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	1:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diac	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.4 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

Connector: WM13-406-063N (FCN) or CI1406M1HRK-NH(Cvilux)

pin	symbol	Description
1	N1	Negative of LED string
2	N2	Negative of LED string
3	N3	Negative of LED string
4	N4	Negative of LED string
5	VLED+	Positive of LED string
6	VLED+	Positive of LED string

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

_	1	•					•	
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz		
LVDS	Input cycle to cycle jitter	T _{rcl}	_	_	200	ps	(3)	
Receiver Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)	
	Spread spectrum modulation frequency	F _{SSM}	_	_	200	KHz	(4)	
LVDS Receiver Data	Receiver Skew Margin	T _{RSKM}	-400	I	400	ps	(5)	
	Frame Rate	F _{r5}	47	50	53	Hz	(6)	
Vertical	Trame Nate	F _{r6}	57	60	63	Hz	(0)	
Active Display	Total	Tv	1090	1125	1480	Th	Tv=Tvd+Tvb	
Term	Display	Tvd	1080	1080	1080	Th	_	
	Blank	Tvb	10	45	400	Th	_	
Horizontal	Total	Th	1030	1100	1325	Тс	Th=Thd+Thb	
Active Display	Display	Thd	960	960	960	Тс	_	
Term	Blank	Thb	70	140	365	Tc	_	

Note (1) Please make sure the range of pixel clock has follow the below equation :

 $\text{Fclkin(max)} \geq \text{Fr6} \times \text{Tv} \times \text{Th}$

 $\mathsf{Fr5} \hspace{0.1cm} \diagup\hspace{0.1cm} \mathsf{Tv} \hspace{0.1cm} \diagup\hspace{0.1cm} \mathsf{Th} \hspace{0.1cm} \supseteq \hspace{0.1cm} \mathsf{Fclkin}(\mathsf{min})$

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $|T_1 - T|$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and the receiver skew margin is defined and shown in following figure.

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, {}^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) Vcc must decay smoothly when power-off.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Ta	25 ±2	оС		
Ambient Humidity	На	50 ±10	%RH		
Supply Voltage	V _{cc}	12 ±1.2	V		
Input Signal	According to typical v	alue in "3. ELECTRICAL (CHARACTERISTICS"		
LED Current	IL	230 ± 6.9	mA		
Vertical Frame Rate	Fr	60	Hz		

Note: No guarantee level of water flow

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		3500	5000		-	(2)	
Response	Time (VA)	Gray to gray			9.5	19	ms	(3)	
Center Lumii	nance of White	L_{C}		240	300		cd/m ²	(4)	
White V	Variation	δW				1.3	-	(6)	
Cros	s Talk	СТ				4	%	(5)	
	D 1	Rx			0.642		-		
	Red	Ry		Тур.	0.336	Тур.	-		
		Gx			0.307		-		
	Green	Gy			0.617		-		
Color	D.	Bx		-0.03	0.150	+0.03	-	-	
Chromaticity	Blue	Ву			0.057		-		
	TATE	Wx			0.280		-		
	White	Wy			0.290		-		
	Correlated temperate			-	10000	-	K	-	
	Color Gamut	C.G.		-	72	-	%	NTSC	
	Horizontal	θ_x +		80	89	-			
Viewing Angle	11011201141	θ_{x} -	CR≥10	80	89	-	Deg.	(1)	
	Vertical	θ_{Y} +		80	89		0	(+)	
	v er tietar	θ_{Y} -		80	89	-			

Note (1) Definition of Viewing Angle (θx , θy) :

Viewing angles are measured by Conoscope Cono-80 (or Eldim EZ-Contrast 160R)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Surface Luminance of L255

Contrast Ratio (CR) =

Surface Luminance of L0

L255: Luminance of gray level 255

L0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time (VA Model):

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other.

Note (4) Definition of Luminance of White (L_C, L_{AVE}) :

Measure the luminance of gray level 255 at center point of 5 points

L_C = L (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT): (VA Model)

$$CT = | YB - YA | / YA \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 255 pattern (cd/m2)

YB = Luminance of measured location with gray level 255 pattern (cd/m2)

Note (6) Definition of White Variation (δW) :

Measure the luminance of gray level 255 at 5 points

$$\delta W = \frac{\text{Maximum} [L (1), L (2), L (3), L (4), L (5)]}{\text{Minimum} [L (1), L (2), L (3), L (4), L (5)]}$$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMIS LSI chips.
- [5] Bezel of Set can not press or touch the panel surface. It will make light leakage or scrape.
- [6] Do not plug in or pull out the I/F connector while the module is in operation.
- [7] Do not disassemble the module.
- [8] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched. Water, IPA (Isoproyl Alcohol) or Hexane are desirable cleaners. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- [9] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [10] When storing modules as spares for a long time, the following precaution is necessary.
 - [10.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [10.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [11] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

8.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
Information Technology equipment	UL	UL60950-1:2006 or Ed.2:2007
	cUL	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07
	СВ	IEC60950-1:2005 / EN60950-1:2006+ A11:2009
	UL	UL60065 Ed.7:2007
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03:2006 + A1:2006
	СВ	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006+ A11:2008

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

8.4 Condition of Acceptability for installed in End-product

Consideration is to be given to the following conditions of acceptability when this product is employed in the end-use equipment:

- 1. The product shall be installed in a suitable enclosure in accordance with the end-product requirements.
- 2. The product shall be used within the electrical ratings and be evaluated in the end-product.
- 3. The product is intended for factory wiring connections only.

Additional conditions of acceptability may be included in the UL report of each product, Please contact Innolux Corp. for further information.

9. DEFINITION OF LABELS

9.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V400HJ6-ME2

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

Month: 1~9, A~C, for Jan. ~ Dec.

Day : $1\sim9$, $A\sim Y$, for 1st to 31st, exclude I ,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product

Product Line: 1→Line1, 2→Line 2, ...etc.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

Model Name: V400HJ6- ME2

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

(1) 7 LCD TV modules / 1 Box

(2) Box dimensions: 954(L) X 378 (W) X 625 (H)

(3) Weight: approximately 56.7 Kg

10.2 PACKAGING METHOD

Figures 10-1 and 10-2 are the packing method

Figure 10-1 packing method

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (20ft / 40ft Container)

Air Transportation

Figure 10-2 packing method

10.3 UN-PACKAGING METHOD

Figures 10-3 is the un-packing method

Figure 10-3 un-packing method

11 . MECHANICAL CHARACTERISTIC

