Program EDDYBL

March 9, 2017

Contents

1	Pro	cedure for Running EDDYBL Source Code	2
	1.1	eddybl_start	2
	1.2	eddybl	
	1.3	Restart	
	1.4	Format of the file	3
2	ED	DYBL Results	5
3	Equ	nation and Transformation Details	8
	3.1	Coordinates Transformation	8
			8
4	Pro	gram EDDYBL Overview	9
5	Set	up for Case M6 LargeSpan	9
	5.1	Opening Menu	9
	5.2	Freestream Conditions	10
	5.3	Geometry Grid	11
	5.4	Edge/Wall Conditions	12
	5.5		
	5.6	Gas Properties	14

1 Procedure for Running EDDYBL Source Code

$1.1 \quad eddybl_start$

The Program eddybl_start will prepare the profiles for the main Program eddybl.

- Input Files. Program eddybl_start read the input file (eddybl_start.inp) from the terminal which has the details for all the parameters. When running Program eddybl_start, it reads the following files "Edge_WallProperty.dat" and "InitialFinalSlop.dat" if the option ireadWallProp = 1.
- Output Files. Program eddybl_start can generate the following files. 1. eddybl.dat: the input file for Program EDDYBL. 2. Profile_inflow.dat: the initial profile for starting the computation. 3. table.dat: the nondimensional Edge/Wall properties for starting the computation. 4. Check_eddybl_start.prt: information for checking the input value. 5. Check_Profile_inflow.dat: the plotting data for checking the initial profile.

1.2 eddybl

The main Program **EDDYBL** will read the files generated by the Program **eddybl_start**.

• Output Files. Program **EDDYBL** generates the following files. 1. **Stat_eddybl.dat**: the profiles for starting the DNS computation, which has the variables z, $\frac{z}{\delta}$, z^+ , \overline{u} , \overline{v} , \overline{w} , \overline{p} , \overline{T} , eddy viscosity μ_T and turbulence kinetic energy k. 2. **profil2c.dat**: used to initial Program **EDDY2C**. 3. **Check_eddybl.prt**: a comprehensive print file for the results of the computation. It has all the integral parameters at each step and dimensionless boundary-layer profiles at the final step. 4. **Int_eddybl.dat**: plotting data at each streamwise locations with Δx defined in the file **eddybl_start.inp**. Including variables are x, Re_{θ} , Cf_{e} , δ , δ^* , θ , τ_w , u_{τ} , z_{τ} , Re_{τ} . 5. **Profile_output.dat**: for restarting a run if desired.

1.3 Restart

• 1. Set **irestart=1** and give the inflow profile file name for the restart problem in the input file **eddybl_start.inp**. 2. Change the parameter **xend** in the input file **eddybl_start.inp** and run Program **eddybl_start**.

1.4 Format of the file

The content of the Edge_WallProperty.dat is list below.

Warning: If xbeg is less than $xloc_min$, the Edge/Wall properties in the region $(xbeg \le x \le xloc_min)$ keep the same with the properties at the location $xloc_min$. In the same way, if xend is great than $xloc_max$, the Edge/Wall properties in the region $(xloc_max \le x \le xend)$ keep the same with the properties at the location $xloc_max$.

```
xloc(m) pe(pa) tw(k) qw rvwald rmi(m) z(m) zcurv(1/m)

0. 673.6 300 0. 0. 0.3048 0. 0.

6.096 673.6 300 0. 0. 0.3048 6.096 0.
```

xoc(m)	pe(pa)	tw(k)	qw	rvwald	rmı(m)	z(m)	zcurv	r
0.	673.6	300	0.	0.	0.3048	0.	0.	
6.096	673.6	300	0.	0.	0.3048	6.096	0.	

xloc: arclength along the body

xloc = 0 m for the minimum streamwise location for the computation xloc = 6.096 m for the maximum streamwise location for the computation

pe: pressure at the boundary-layer edge

Tw: surface temperature

qw(watts/(m^3sec)): surface heat flux

rvwald(kg/(m^2sec)): surface mass transfer rate

rmi: boundary radius

z: axial distance along the body

zcurv: curvature of the body. This is the reciprocal of the radius of curvature.

The content of the **InitialFinalSlop.dat** is list below.

```
dpds
       dTwds dqwds
                     dmds drds dzds dKds
0.
        0.
               0.
                      0.
                             0.
                                  1.
                                        0.
        0.
                      0.
0.
               0.
                             0.
                                  1.
                                        0.
```

The first line is the initial slop. The second line is the final slop.

2 EDDYBL Results

Figure 1 shows the comparison results from three turbulence models. The reference length δ_{ref} is chosen at the station where $Re_{\tau} = 2000$.

All distributions of the variables have almost the same slop in the downstream of the domain. The reason for the jump using the Stress-omega model is not clear now

Figure 2 shows the restart case. The computation from Box1 to Box2 is continuous.

Figure 1: Streamwise distribution of (a) Re_{τ} , (b) Cf, (c) δ , (d) θ , (e) δ^* and (f) z_{τ} .

Figure 2: Streamwise distribution of (a) Cf, (b) δ , (c) δ^* and (d) z_{τ} for restart problem.

$\delta_{ref} \; (\mathrm{mm})$	Re_{τ}	$z_{\tau} \; (\mu m)$	$u_{\tau} \; (\mathrm{m/s})$	$\theta \text{ (mm)}$	$\delta^* \text{ (mm)}$
123	2000	61.7	38.2	4.3	58.3

Table 1: Parameters at the reference location.

$N_x \times N_y \times N_z$	L_x/δ_{ref}	L_y/δ_{ref}	L_z/δ_{ref}	Δx^+	Δy^+	Δz_{min}^+	Δz_{max}^+
$4140 \times 1400 \times 2400$	20.0	3.63	20.0	9.63	5.14	0.51	5.33

Table 2

δ (mm)	Re_{τ}	$z_{\tau}(\mu \mathrm{m})$	$u_{\tau}(\mathrm{m/s})$	$\theta(\mathrm{mm})$	$\delta^* \text{ (mm)}$
23.77	453.1	52.6	45.07	0.948	12.9

Table 3: Parameters for Case M6Tw076 at the station $x_a = 54.1\delta_i$.

Case	$N_x \times N_y \times N_z$	L_x/δ	L_y/δ	L_z/δ	Δx^+	Δy^+	Δz_{min}^+	Δz_{max}^+
M6Tw076	$1600 \times 800 \times 500$	34.08	9.09	23.06	9.63	5.14	0.51	5.33
M6AI	$1920 \times 320 \times 500$	40.90	3.63	23.06	9.63	5.14	0.51	5.33

Table 4: Grid resolution and domain size for the direct numerical simulations. L_x , L_y , and L_z are the domain size in the streamwise, spanwise, and wall-normal directions, respectively. Δx^+ and Δy^+ are the uniform grid spacing in the streamwise and spanwise directions, respectively, with the viscous length scale $z_{\tau} = 52.6 \mu \text{m}$ being that at $x/\delta_i = 54.1$. Δz_{min}^+ and Δz_{max}^+ are the minimum and maximum wall-normal grid spacing for $0 \le z/\delta_i \le 5$. $\delta_i = 13.8 \text{mm}$

3 **Equation and Transformation Details**

Coordinates Transformation 3.1

Physical coordinates (s, n). Transformed coordinates (ξ, η)

$$\xi(s) = \int_0^s \overline{\rho}_e \tilde{u}_e \mu_e ds$$

$$\eta(s, n) = \frac{\overline{\rho}_e \tilde{u}_e}{\sqrt{2\xi}} \int_0^n \left(\frac{\overline{\rho}}{\overline{\rho}_e}\right) dn$$
(1)

The dependent variables are transformed according to:

$$F(\xi,\eta) = \frac{\tilde{u}}{\tilde{u}_e}, \Theta(\xi,\eta) = \frac{\tilde{T} - \tilde{T}_e}{\tilde{T}_e}$$

$$V(\xi,\eta) = \frac{2\xi}{\bar{\rho}_e \tilde{u}_e \mu_e} \left[F\left(\frac{\partial \eta}{\partial s}\right) + \frac{\bar{\rho}\tilde{v}}{\sqrt{2\xi}} \right]$$

$$K(\xi,\eta) = \frac{k}{\tilde{u}_e^2}, \hat{W}(\xi,\eta) = \frac{2\xi\omega}{\tilde{u}_e^2}, \hat{\varepsilon}(\xi,\eta) = \frac{2\xi\tilde{\epsilon}}{\tilde{u}_e^4}$$
(2)

where $\frac{\partial \eta}{\partial s} = \frac{1}{2\xi} \overline{\rho}_e \tilde{u}_e \mu_e \eta(s, n)$ The transformed continuity equation is:

$$2\overline{\xi}\frac{\partial F}{\partial \overline{\xi}} + \frac{\partial V}{\partial \eta} + F = 0 \tag{3}$$

where $\overline{\xi} = \frac{\xi}{\rho_{\infty} U_{\infty} \mu_r}$. μ_r is the value of μ for $T = T_r = U_{\infty}^2/c_p$.

3.2 Wall-normal velocity

If (Re >> 1), then $\frac{\partial F}{\partial \overline{\xi}} \approx 0$. We get the following equation.

$$\frac{\partial V}{\partial \eta} = -F \tag{4}$$

thus $dV = -F \times d\eta$. Program EDDYBL uses this relation to calculate the wallnormal velocity.

From the equation 2 and $\frac{\partial \eta}{\partial s} = \frac{1}{2\xi} \overline{\rho}_e \tilde{u}_e \mu_e \eta(s, n)$, we can get

$$\tilde{v} = \frac{\overline{\rho_e}\tilde{u}_e\mu_e}{\sqrt{2\xi}}(V - F)\frac{1}{\overline{\rho}} \tag{5}$$

4 Program EDDYBL Overview

Program **EDDYBL** is a two-dimensional and axisymmetric, compressible boundary-layer program for laminar, transitional and turbulent boundary layers.

In order to run Program **EDDYBL**, the following files are needed.

File Name	Function
eddybl.exe	Executable Program EDDYBL
$eddybl_data.exe$	Input-data preparation Program EDDYBL_DATA
$eddybl_plot.exe$	Plotting Program EDDYBL_PLOT
$eddybl_start.exe$	Initial-profile Program EDDYBL_START

Table 5: Files for Program **EDDYBL**.

- 1. The first step is to run Program **EDDYBL_DATA**. After successfully completing the input data, click on the button with the label "Write Input-Data Files". This runs Program **EDDYBL_START**, which generates initial profiles that will be used by Program **EDDYBL**.
- 2. Now click on the button with the label "Run Program EDDYBL". This runs Program EDDYBL.
- 3. Click on "View Program Output" to view, print and edit output file **ed-dybl.prt**.
- 4. Click on the "Plot Computed Profiles" button to create a plot.

5 Setup for Case M6 LargeSpan

5.1 Opening Menu

Figure 3 shows the main menu after running Program **EDDYBL_DATA**. For the current case, you must make the following four changes.

- 1. Select the k-epsilon model (Jones-Launder)
- 2. Select Sarkar compressibility term
- 3. Select SI units

4. Select a Long printout

Figure 3: Opening menu of Program EDDYBL_DATA after modification.

5.2 Freestream Conditions

Click on the "Freestream Conditions" button will bring you to the menu that accepts input for freestream conditions. Change the total pressure to $P_{t\infty} = 9.17683 \times 10^5$ pa. Then change the total temperature and Mach number to $T_{t\infty} = 432.1$ K and $M_{\infty} = 5.86$, respectively.

Figure 4: Freestream-Conditions menu of Program EDDYBL_DATA after modification.

5.3 Geometry Grid

Click on the "Geometry and Grid" button. You will set geometric-progression ratio, k_g , initial stepsize, Δs , initial arclength, s_i , and maximum length, s_{stop} .

Keeping the default value $k_g = 1.07$ and number of grid points normal to surface 101 can satisfy the constraint $y^+ < 1$. The initial stepsize can be as large as triple the boundary-layer thickness.

Figure 5: Geometry and Grid menu of Program EDDYBL_DATA after modification.

5.4 Edge/Wall Conditions

Click on the "Edge/Wall Conditions" button. For any boundary-layer computation, at a minimum, you must specify freestream pressure and either surface temperature or surface heat-transfer rate.

Click on the "Temperature" button. In the bottom section of the menu labeled "Edge/Wall Property Arrays", change the values of boundary-layer edge pressure and surface temperature temperature to $p_{\infty}=673.6$ pa and $T_w=300$ K, respectively, on "Line No." 1 and 2.

The values of s on "Line No." 1 and 2 are the minimum s_{min} and maximum s_{max} value of the streamwise locations. Make sure $s_{min} < s_i$ and $s_{max} > s_{stop}$.

Figure 6: Edge/Wall-Conditions menu of Program **EDDYBL_DATA** after modification.

5.5 Initial Profiles

Click on the "Initial Profiles" button. Change the values of skin friction, Reynolds number based on momentum thickness, shape factor and initial boundary-layer thickness to $C_f = 0.00117076$, $Re_\theta = 8737$, H = 13.2 and $\delta = 0.020689$ m, respectively.

Figure 7: Initial-Profiles menu of Program EDDYBL_DATA after modification.

5.6 Gas Properties

The "Gas Properties" menu includes several thermodynamic properties. Sutherland law can be written as:

$$\mu = \mu_r \frac{T^{1+\omega}}{S+T} \tag{6}$$

The input parameters $SU=110.4,\, VISCON=1.458\times 10^{-6}$ and VISPOW=1.5.

Figure 8: Gas-Properties menu of Program EDDYBL_DATA after modification.