M5 Forecasting: Accuracy and Uncertainty

Shihan BU |sbuaa@connect.ust.hk

Yuxin YANG |yyanget@connect.ust.hk

Yilin Li |ylime@connect.ust.hk

Introduction

- Given: sales data provided by Walmart
- Goal: predictions 28 days into the future

- Accuracy
 - Point forecast (PFs)
- Uncertainty
 - Prediction Intervals (PIs)
 - Median
 - 50%
 - 67%
 - 95%
 - 99%

Data

- sales_train_evaluation.csv Includes sales [d_1 - d_1941] (labels used for the Public leaderboard)
- sales_train_validation.csv
 Contains the historical daily unit sales data per product and store [d_1 d_1913]
- sell_prices.csv
 Contains information about the price of the products sold per store and date.
- calendar.csv
 Contains information about the dates on which the products are sold.

Data

Level	Aggregation Level	Number of Series
1	Unit sale of all products, aggregated for all stores/states	1
2	Unit sale of all products, aggregated for each State	3
3	Unit sale of all products, aggregated for each store	10
4	Unit sale of all products, aggregated for each category	3
5	Unit sale of all products, aggregated for each department	7
6	Unit sale of all products, aggregated for each State and category	9
7	Unit sale of all products, aggregated for each State and department	21
8	Unit sale of all products, aggregated for each store and category	30
9	Unit sale of all products, aggregated for each store and department	70
10	Unit sale of product x, aggregated for all stores/states	3049
11	Unit sale of product x, aggregated for each	9147
12	Unit sale of product x, aggregated for each	30490
	Total	42840

Evaluation Metrics

Accuracy

$$\circ RMSSE = \sqrt{\frac{1}{h} \frac{\sum_{t=n+1}^{n+h} (Y_t - \widehat{Y}_t)^2}{\frac{1}{n-1} \sum_{t=2}^{n} (Y_t - Y_{t-1})^2}}$$

$$\circ WRMSSE = \sum_{i=1}^{42,840} w_i * RMSSE$$

Uncertainty

$$\circ \mathbf{SPL}(\mathbf{u}) = \frac{1}{h} \frac{\sum_{t=n+1}^{n+h} (Y_t - Q_t(u)) u \mathbf{1} \{Q_t(u) \le Y_t\} + (Q_t(u) - Y_t) (1 - u) \mathbf{1} \{Q_t(u) > Y_t\}}{\frac{1}{n-1} \sum_{t=2}^{n} |Y_t - Y_{t-1}|} \\
\circ \mathbf{WSPL} = \sum_{i=1}^{42,840} w_i * \frac{1}{9} \sum_{j=1}^{9} SPL(u_j)$$

- Data structure arrangement
- Missing Value
- Subjective analysis
- From the target sales analysis
- Relation between top 5 and target
 - Numerical
 - Categorical
- Dig from time-series
 - Shift and lag
 - Change of sell-price
 - Different Rolling-Window Size

Missing Value

From the Target – Sales Analysis

Subjective analysis

name	desc	type	segment	expectation
item_id	id for item	categorical	product	high
weekday	day of week	categorical	context	low
year	year	categorical	context	low
dept_id	id for item dept	categorical	product	middle
cat_id	id for item category	categorical	product	middle
sell_price	sell price for item	numerical	product	middle
store_id	id for store	categorical	store	middle
state_id	id for state	categorical	store	middle
wday	day of week in number	categorical	context	middle
month	month	categorical	context	middle

Relation between Top 5 and Target - Numerical

Relation between Top 5 and Target - Categorical

Objective Analysis

Dig from time-series

LSTM (Long Term Short Memory)

$$\bullet \begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ \chi_t \end{pmatrix}$$

•
$$c_t = f \odot c_{t-1} + i \odot g$$

•
$$h_t = o \odot \tanh(c_t)$$

- A type of Encoder-Decoder model using RNN
- Can be used for machine translation, machine interaction or time series
- Input and output vectors need not be fixed

Dilated-Seq2Seq

- Solve Challenges of RNN
 - Complex dependencies
 - Vanishing and exploding gradients
 - Efficient parallization
 - Reduce the number of parameters needed and enhance efficiency

- Attention mechanism
- Benefits:
 - Avoid recursion
 - Allow parallel computation
 - Reduce the drop in performances

Experiments

Parameter Settings

	Model Architecture	Parameter settings
	LSTM	model = Sequential() Three layers, each layer L with setting layer_L_units=40 model.add(LSTM(units = layer_L_units, return_sequences = True, input_shape = (X_train.shape[1], X_train.shape[2]))) model.add(Dropout(0.2))
Accuracy	dilated_seq2seq	<pre>(sliding window size: 28*13) rnn_num_hidden = 128, rnn_num_layers = 2, bidirectional = True, enc_rnn_dropout = 0.2</pre>
	seq2seq_w_attn_ on_hid	num_epochs = 2 batch_size = 160 learning_rate = 0.0003

Experiments

Parameter Settings

	Model Architecture	Parameter settings
	LSTM	Same as accuracy, Epochs= 32 Batch_size=32 optimizer = 'adam'
		(sliding window size: 28*13)
	Transformer	<pre>rnn_num_hidden = 2, rnn_num_layers = 1, bidirectional = False, enc_rnn_dropout = 0.2</pre>
Uncertainty		num_epochs = 1 batch_size = 128 learning_rate = 0.001
		(sliding window size: 28*13)
	seq2seq_w_attn_ on_hid	<pre>rnn_num_hidden = 128, rnn_num_layers = 2, bidirectional = True, enc_rnn_dropout = 0.2</pre>
		num_epochs = 2
		batch_size = 160
		learning_rate = 0.0003

Result and Analysis

	Model Architecture	Private Leaderboard Score	Private Leaderboard Rank
	LSTM	0.77957	1729/5558
Accuracy	seq2seq_w_attn_on_hid	0.69061	482/5558
	dilated_seq2seq	0.67845	467/5558(top 8%)
	LSTM	0.60455	776/976
Uncertainty	Transformer	0.24819	524/976
Officertainty	seq2seq_w_attn_on_hid	0.19283	131/976(top 13%)

Trade-off between performance & training time!!!

Conclusion

√ For Accuracy task

- LSTM, seq2seq with attention, dilated seq2seq
- output "weighted RMSSE" and 28-days predictions
- dilated_seq2seq model has the best performance (0.678, top8%)

✓ For Uncertainty task

- LSTM, transformer, and seq2seq with attention
- output "weighted SPL" and predictions for each product
- seq2seq_with_attention has the best score (0.193, top13%)

Future Work

Recommendation for future studies

- > Running more epochs for further comparison
- ➤ More data on the products and customer behaviors should be collected and analyzed
- Focus more on Feature Engineering part (more features can be added into our model based on more domain knowledge)
- ➤ Hyperparameter tuning can be performed for higher performance of prediction
- ➤ Our models can be further embedded and stacked together

References

Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "M5 accuracy competition: Results, findings, and conclusions." International journal of forecasting (2022).

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock, M., Hasegawa-Johnson, M.A., & Huang, T.S. (2017). Dilated Recurrent Neural Networks. NIPS.

Thank you!

