Osnove Navmove mehanike

Det: Afini prostor of ned reletorskim prostorom V je mnozica of z binarno operacijo AxV -> A, (A, a) -> Ata z lashoshi:

ii) Y A,B col. B a e V. B = A+a

Def; Definiramo operacijo AxA -> V. s predpisom B-A=a = B=A+a

i)
$$A-A=\delta$$
ii) $(A-B)+(B-A)=\delta$

v) (A+B) - C = B+(A-C)

Trdita:

i)
$$A-A=\tilde{a} \iff A=A+\tilde{a} \iff A=(A+\tilde{a})+\tilde{c}=A+2\tilde{a}$$

 $\Rightarrow \tilde{a}=2\tilde{a} \text{ (ket je \tilde{a} netento del scien)}$

$$\Rightarrow \hat{a} = \hat{o}$$

 $\Rightarrow \hat{a} = \hat{o}$
 $\Rightarrow \hat{a} = \hat{o}$

$$A-C=\vec{a}$$
 $B+(A-C)=B+\vec{a}=C+(\vec{b}+\vec{a})$
 $B-C=\vec{b}$ \Rightarrow $B=C+\vec{b}$ velocity, zero labeled zomen zom

$$= c+\vec{a}+(c+\vec{b}-c)=\vec{c}+\vec{a}+\vec{b}$$

venter

(A, V) (A',V') $g^{\cdot} \mathcal{A} \longrightarrow \mathcal{A}'$ Det: Preslikere g: of sol' je afina ce dostaja dgef (0,0) take de vela g(A)-g(B)=dg(A-B) ze ∀A,BE A 2(A)=2(B)+lg(A-B) g(A)=g(0)+lg(A-0); Og pol aline prestitance lzb;ra pola je poljubn ~ (A) = g(8) + dg (A-8) = g(0) +dg (8-c) +dg (A-8)

 $\widetilde{g}(A) = g(\widetilde{o}) + d_g(A-\widetilde{o}) = g(o) + d_g(\widetilde{o}-c) + d_g(A-\widetilde{o}) \\
= g(o) + d_g((\widetilde{o}-o) + (A-\widetilde{o})) = g(A)$ A - o

Izbesimo OCOL $\vec{a} = A-O$ $ACOL; A = O+(A-O) = O+\vec{a}$

VACOL Lables identificiramo z vellesión à U

Refinicija: Galilejava struktura G je trojica
(O, T, d), kijer je A Stir; razsežen afini. prostor,

Te L(V, R) in d evklideka razdalje nad

Inearna prastocom istočasnih dogodka.

presliheva

Funkcionalu T pravimo casovnost. Dagalta A,BE of sta istocasna, de A-BekerT

Definicija: Galilejev: stukturi $G(\mathcal{A}, \mathcal{T}, \mathcal{A})$; n $\widetilde{G}(\widetilde{\mathcal{A}}, \widetilde{\mathcal{T}}, \widetilde{\mathcal{A}})$ sta divivalentni, če obotaja afina bijekaja g: $\widehat{\mathcal{A}} \longrightarrow \widehat{\mathcal{A}}$, ki ahranja časovnost in razdeljo istočnanih degedkov

$$\widetilde{T}(g(A) - g(B)) = T(A - B)$$

$$A, B : sto asna \Leftrightarrow g(A), g(B) : sto asna$$

$$L(A, B) = \widetilde{L}(g(A), g(B))$$

Peknicija R×E afini prostar, kjerje E trorazsezni evklidski Na RXE vpeljema nerovno Gelilejevo otrukturo. ACR×E → A=(t,P) +ER,PEE t ima normo porojeno s skalarnim produktan T (A 2-A) = +2-+1 $d(A_1, A_2) = ||P_1 - P_2||$ Taj struktur; pravimo naravna Galilejeva struktura Definicija: Koardinatni sistem na afinem prostocuoti je lojektivna preslikava g: A > R $A \longrightarrow \varphi(A) = (\Pi_{t} \varphi(A), \Pi_{b} \varphi(A))$ za katero-g / alina pres!keva = (1(A), pp(A)) (R×E, t,11 11) T(A-B) = 1(4,(A)-7,(B)) d(A,B) = 114, (A) - 4, (B) 11

Lahha merimo razdeljo tudi med neistoozanimi dogodhi

 $A \xrightarrow{\phi} R \times E$ $R \times E$

Kdej ste we naravni galilajevi strukturi etnivalantini x: RXE -> RXE $A = \begin{bmatrix} t \\ p \end{bmatrix} \longmapsto g(A) = \begin{bmatrix} t' \\ p' \end{bmatrix} = g(0) + d_{\chi}(A - 0)$ $= \begin{bmatrix} t_{\bullet}^{1} \\ P_{\bullet}^{1} \end{bmatrix} + \begin{bmatrix} \alpha & \dot{\alpha}^{\dagger} \\ \dot{\alpha} & \dot{\alpha}^{\dagger} \end{bmatrix} \begin{bmatrix} t - t_{0} \\ P - P_{0} \end{bmatrix}$ O = Po metila $A_1 = \begin{bmatrix} t_1 \\ P_1 \end{bmatrix} \quad A_2 = \begin{bmatrix} t_2 \\ P_2 \end{bmatrix}$ +(g(Az)-g(An))=+(Az-An) $g(A_2) - g(A_1) = \begin{bmatrix} \alpha & \vec{a}^T \\ \vec{c} & Q \end{bmatrix} \begin{bmatrix} \frac{1}{2} - \frac{1}{4} \\ P_2 - P_4 \end{bmatrix} = \begin{bmatrix} \alpha(L_1 - L_1) + \vec{a}(P_2 - P_1) \\ (\frac{1}{2} - \frac{1}{4}) \cdot \vec{c} + Q(P_2 - P_1) \end{bmatrix}$ => «(+2-+1)+ à(p-P1)=+2-+1 => «=1, à=ò To velje de se obranje casovnost ohranjanje razdelje med istocasnin; dogodki: $d(g(A_1), g(A_2)) = d(A_2, A_1)$ ze $t_1 - t_2$

obranjanje razdalje med istocasnik; le $\mathcal{L}(g(A_1), g(A_2)) = \mathcal{L}(A_2, A_1)$ ze $t_1 - t_2$ $|| \mathcal{L}_2 - t_4 = 0 \qquad || P_2 - P_1 ||$ $|| Q(P_2 - P_1) ||$

 $\Rightarrow Q \in \sigma(3)$

t ortagonalne mediche 3x3

Definicijai Predikova, li ohranja Galilejavo Stukturo pravimo Galilejava preslikeva

Trditer: Galileigue prestheve med maravna

$$\begin{bmatrix} \frac{1}{2} \end{bmatrix} \mapsto \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \frac{1}{2$$

kjer je QEO(3), è poljuben vektor, to poljubno stevila in Po poljubna to cha

The aparovalca:
$$P(t,P)$$
, $P'(t,P)$

gibanje $t \mapsto P(t)$ teraktorije tocke

 $\vec{V} = \frac{dP}{dt}$ velder hitradi $\lim_{h \to 0} \frac{P(t+h) - P(t)}{h}$
 $\vec{P} = \vec{V} = \vec{a} = \frac{d\vec{V}}{dt}$ velder pospeske

 $|\vec{V}| = V \text{ brein a}$ $Q(P(t) - P_0)$ terallorija $V = V \text{ velder}$
 $\vec{V} = \frac{dP}{dt} = \vec{c} + Q \frac{dP}{dt} (t^2 - t_0^2) = \vec{c} + Q P(t)$
 $\vec{P}'(t) = \vec{R}^2 + \vec{C} + \vec{C}$

Sistem materialnih tade
$$(P_1...P_n) = P$$

$$P' = P_n' + \vec{c} + Q (P - P_n)$$

$$\frac{P_{o}^{1}}{\vec{c}} = (P_{o}^{1}, \dots P_{o}^{1})$$

$$Q(P_{o} - P_{o}^{1}) = Q(P_{o} - P_{o}^{1}) = Q(P_{o} - P_{o}^{1}) \dots Q(P_{o} - P_{o}^{1})$$

$$\vec{c} = (\vec{c}, \dots, \vec{c})$$

$$\Rightarrow \underline{\hat{f}}' = \hat{c} + Q\underline{\hat{f}}'$$
$$\underline{\hat{p}}' = Q\underline{\hat{p}}'$$

Princip determiniranosis

V danem KS (koordinatn: sistem) je trekterija sistema materialn:h taak natanko deločena z začetnim položajem in začetno hitrostjo.

To specialno pomeni, de dooleja Punkcija interakcije
$$\vec{f}$$
 take $d = je \ \vec{P} = \vec{f}(t, P, \hat{P})$ $(P(t) = \vec{f}(t, P(t), P(t)))$ nedalge)

$$\vec{f}(t, \vec{P}, \vec{P}) = \vec{f}(t_0) + t_1, \vec{P}, \vec{P}) \approx \forall t_0$$
 $\Rightarrow f_n; eksplicitno advisna ad oase (t)$

(hamagenest ase)

(hamagenest inse)

ii) $\vec{c} = 0$, G = I, $\vec{r} = P + \vec{a}$ $\vec{f}(P, \vec{r}) - \vec{f}(P + \vec{a}, \vec{r})$

 $\vec{P}(P, \vec{P}) = \vec{f}(P, -P, p)$ $i \neq j$ kombine cij tege(homogenost prostora)

(homogenost prostora)

iii)
$$Q = I$$

$$f(P; -P; \stackrel{\circ}{P}) = f(P; -P; \stackrel{\circ}{L} + \stackrel{\circ}{P}) \Rightarrow \vec{f}(P; -P; \stackrel{\circ}{P}; \stackrel{\circ}{P})$$

(homogenest prostor hitrard)

IV) a polyuten

Q \(\vec{f}(\textit{P}; \vec{P}; \vec{p} \cdots - \vec{P}_e) = \vec{f}(\alpha(\vec{p}; -P_j), \alpha(\vec{p} - \vec{P}_e))}{\vec{d} \vec{q}(\vec{q}) - \vec{q}(\vec{q})}, \quad \vec{q}(\vec{p} - \vec{P}_e))

Q\(\vec{q}(\vec{q}) = \vec{q}(\alpha \vec{q}) \vec{q}(\vec{q})

Posebni primer: N=1 (izdirana toda

se ved no velja : zotrapiono of QP= QF= \vec{f} = \vec{f} = \vec{o}

v IKS (inercialn; koordinatn; sistem) se isolirana meterialna tedea giblio premoortno s konstanto bozino. $P=v_0t+P_0(t=0)$

$$N=2$$
 \Rightarrow
 $P_1=P_1\left(P_1-P_2,P_1-P_2\right)$ $\exists c$ se tecké gihrba pr
 $P_2=\hat{f}_1\left(P_2-P_1,P_2-P_1\right)$ $|p_1|$ $|p_2|$ $|p_3|$ $|p_4|$ $|p_4|$

Detrnicije: Interakcija P; = f.(...) je parake
de je odvisna samo od relativnih položajav
in hitrooti glede na P: in je delavanje
tode avtonomno

P; (P: -P: ,P: -Pi)
j+i k+;

 $\vec{\hat{r}}_{i} = \sum_{\substack{j=1\\j\neq i}}^{n} \vec{\hat{r}}_{j}; (\hat{r}_{i} - \hat{r}_{j}, \hat{r}_{j} - \hat{r}_{j})$

Def: Initerakcija $\vec{P}_j = \vec{P}_j (P_j - P_j) \hat{p}_j - \hat{P}_j$ je lokelna ce velja limbiji = \vec{o} $|P_j - P_j| \rightarrow \infty$ Princip sorazmernosti

V IKS za sistem meterialnih tode $P_1...P_N$ obstejajo natanko dolovene konstante dij tako, de

ne glede na interakcije F; vely- $\overline{f} = -\sum_{j=1}^{N} \alpha_{ij}$, \overline{f}_{j} Lema: Za konstante dij velja

i) dij dj; = 1

ii) α_{ij} α_{jk} α_{ii} = 1

Tokaz:

in naj bado P: lakelni

Pre positions posts on reson \vec{f} ; in \vec{f} ; $\vec{f}_{i} = -\sum_{n=1}^{N} \alpha_{n}; \vec{f}_{n} = -\alpha_{ij}; \vec{f}_{i}$ $\vec{f}_{i} = -\sum_{n=1}^{N} \alpha_{n}; \vec{f}_{n} = -\alpha_{ij}; \vec{f}_{i}$

 $f = -\infty; f = \infty \text{ if } x \text{ if } x$

Pi, Pi, Pi outrego, ortele greja protion $\vec{f} = -\alpha_j \cdot \vec{f}_j - \alpha_k \cdot \vec{f}_k = -\alpha_j \cdot (-\alpha_j \cdot \vec{f}_k - \alpha_k) \cdot \vec{f}_k - \vec{f}_j = -\alpha_j \cdot \vec{f}_k - \alpha_k \cdot \vec{f}_k - \alpha_k \cdot \vec{f}_k \cdot \vec{f}_k - \alpha_k \cdot \vec{f$

 $f_{i} = \frac{\alpha_{ij}\alpha_{ij}f_{i} + \alpha_{ji}\alpha_{nj}f_{n} - \alpha_{ni}f_{n}}{1}$

 $\alpha_{k}, f_{k} = \alpha_{j}, \alpha_{kj}, f_{k} / \alpha_{jk}$ $f_{k} = \alpha_{j}, \alpha_{kj}, \alpha_{jk}, f_{jk} \rightarrow \alpha_{jk}, \alpha_{jl} = 1$

Lema: Naj za pozitivna stavila a j velja i) dij. 05; =1 ii) a j d j k d k : = 1. Potem 7 pozitivna stevila m: ,tako la velja da je $\propto_i = \frac{m_i}{m}$ Steila m: so blocene la socazmernostrege futerja natanonost Stevilom m. pravimo inercijske mase Doboz: Xii = 1 دن عن الا = 1 = عن عن = 1 الم Lij=lazaj li,+ljx+lx:=0 l:j=-ls: lioj tljat luio - o lij-lij + lai-lu, =0 lij - lij = - lu: + luio = lin - link by, k => ly-lij=nii, $|l_{i,j}=n_{i,j}+l_{i,j}| \Rightarrow 0=n; i_o+l_{i,i} \Rightarrow l_{i,j}=n_{i,i_o}$ lij lib - Liio

 $li_{i_0} = lag m; & delin : com$ $\Rightarrow li_j = lag m; -log n_j = lag \frac{m}{m_i} \Rightarrow \alpha i_j = \frac{m}{m_j}$

Kez:

$$f_{i} = -\sum_{\substack{j=1\\j\neq i}}^{N} x_{j}; f_{j} = -\sum_{\substack{j=1\\m_{i}\neq j}}^{N} \frac{m_{i}}{m_{i}} f_{j}$$

$$P_{i} = -\sum_{\substack{j=1\\j\neq i}}^{N} \frac{m_{i}}{m_{i}} p_{j}^{2} \qquad m_{i}$$

$$\sum_{\substack{j=1\\j\neq i}}^{N} w_{i} p_{j}^{2} = 0$$

$$P_{*} = \frac{1}{m} \sum_{i=1}^{N} m_{i} P_{i}, \quad , m = \sum_{i=1}^{N} m_{i}$$

masno gredisce

$$\sum_{j=1}^{N} P_{j} = \sum_{j=1}^{N} (m_{1}(P_{j}-0)+m_{1}0) = \sum_{j=1}^{N} m_{1}(P_{j}-0) + \sum_{j=1}^{N} m_{2}0$$

$$P_{x} = O + \frac{1}{m} \sum_{i=1}^{M} m_{i} (P_{i} - O)$$

$$m \hat{P}_{x} = \hat{O}$$

Princip o masi masa meterialnih tad je eraka v vseh koordinetnih sistemih

Trdita: če so vse sile parake in lokalne velja zakon akcije in reskcije (ZNZ)

Dober:
$$A_i = \sum_{j=1}^{N} f_{ij}(P_j - P_{ij} \hat{P}_j - \hat{P}_j)$$

$$\begin{cases} P_j \longrightarrow \infty & j \in \{i, k\} \} \\ m_i f_{ji} + m_j f_{ij} = \hat{C} \end{cases}$$

$$\vec{F}_{ij} = -\vec{F}_{ij}$$

10.10 prvo wo

chod vzdol
$$\bar{z}$$
 tracke ije $f_{A} \in (1, P(t), \dot{P}(t)) = \frac{\delta E}{\delta P} + \left(\frac{\delta E}{\delta P}\right)^{T} \dot{P} + \left(\frac{\delta E}{\delta P}\right)^{T} \dot{P}$

Potencialne o mnozenju; Maj bo sila F prencialne s

potencialnem U(t,3, p). Potenje vsate

livetične: n potecialne enerkij konstanta

azibanja (= nien advod vzdalā trallferija je o)

Em oc ail je nasprotne enaka advodu

potencialne energije vzdalā trakteije

$$Ddcz: \Rightarrow E_0 = T + U = \frac{1}{2} m \dot{P}_1^2 + U$$

$$0 = \frac{5}{57} = m \ddot{P}_1^2 + \frac{3U}{34} \Rightarrow \frac{3U}{34} = -F \ddot{P}_1^2$$

$$A = \int_{1}^{7} \vec{r} \cdot \vec{r} dt = \int_{1}^{7} \frac{du}{dt} dt = U(f_A) - U(f_Z)$$

Slile je konzervativna, õe je potencialna in odvisne samo od položaja

Posledica: cejo sila konzervativna velja izrek o enerajiji

Dokez:
$$\frac{d}{dt} U(P(t)) = (\frac{3U}{3P})^T \dot{P} = -F \dot{P}$$

 $\dot{F} \dot{P} = -\frac{dU}{dt}$

$$F'P' = QF(\vec{c} + Q\vec{p}) = QF\cdot\vec{c} + Q\vec{F}\cdot Q\vec{p} = -\frac{dU}{dU} + m\vec{p}\cdot\vec{c} = F\cdot\vec{p} = -\frac{dU}{dU}$$

tzich: tziek o energiji je inverianten za Gal:lejeve transformacije

$$t' = T' + \tilde{U}' = \frac{1}{2} m |\vec{c}|^2 + m c Q \dot{p} + T + \tilde{U} - m \dot{p}' \dot{c} = E_0 + \frac{1}{2} m |\vec{c}|^2 + m \dot{c} (Q \dot{p} - \dot{p}') = E_0 \frac{1}{2} m |\vec{c}|^2 + m \dot{c} (Q \dot{p} - \dot{p}') = E_0 \frac{1}{2} m |\vec{c}|^2 + m \dot{c} Q \dot{p} + \frac{1}{2} m |\vec{c}|^2 + m \dot{c} Q \dot{p} + \frac{1}{2} m |\vec{p}|^2$$

Premoortno gibanje = pospesek me konstanto smer &= a(t) € $\vec{\nabla} = \int_{0}^{t} \vec{a} (t) dt + \vec{v}(t_{o}) = \left(\int_{0}^{t} a(t) dt \vec{e} + \vec{c}(t_{o})\right)$ Obstaja KS v haterem tir les na premici $p = \times \stackrel{\bullet}{P} = \stackrel{\bullet}{x} \stackrel{\bullet}{p} = \stackrel{\bullet}{x}$ v= x je lehke zdoj tud: mx = f(+,x,x) omejmo se ko bo f kenzervstivne

rdoj je sile v odu kneshi položeja polencialne? $f=-\frac{dU}{dx} \Rightarrow U=\int_{0}^{\infty}f(x)dx+U_{0}$ sile for je podencialne če je f zverana

ce je fcx) were > velje revele oenergiji

mx = fcx) 1 mx 2+U(x) = E. x 2 = 2 (E = - U(x) $\frac{dx}{dx} = x^{2} = \frac{1}{\sqrt{\frac{2}{2m}}} \left(E_{0} - U(4) \right)$ $ggn \times \int_{-\infty}^{\infty} \frac{dx}{\int_{-\infty}^{\infty} (Eo - U(x))} = \int_{-\infty}^{\infty} dt = t - t_0 \Rightarrow t = t(x) \Rightarrow x = x(t)$ Lable breno ko xto +=+, + x dx (= 150-UK) (sgn x je Kan sterken) Kval; tetivne obrevneva gibenja v gilanje je maisto htroot u levo in tain kjärjä one of potenciden to rad grafem tu je ziloznje per: od; ono Presedice je todu trenumege miravanje 0=x= f(x) = dll (tode dorate gibenje nestabilize roun-vegna rage če se zmanja ali zvečeje neglobilno ×=0 ×=0 tadre stalnage miravanja Lakely minmun je strbilne rouneveana leer (àt se aneraja malo premotre pride de majhresa periodionege osiberge (majhenodnik od rounavane Pravoj je tudi nestabiha lega

Kakana je periode periodioneza gibana t2 = - J XX tz = 5 1× 2 (Eo-U(x)) = Jam Jux $T = t_1 + t_2 + t_3 = Z \int_{-\infty}^{\infty} \frac{dx}{\sqrt{\frac{2}{m}(E_0 - U(x))}}$ Ali ge res periodido in se ne ustavi prej? U(x)= U(a)((x) (2) (x-a) JEO-UCK W (a) co a je presedicie 35>0.9 e (a, 245) => 2 du (3) < 1 du (2) E0-U(x) = 1 (3)(x-a) < -2 (4)(x-a) \Rightarrow integral je konvergenten $\ker \int \frac{dx}{\sqrt{E-U(x)}} \le \frac{1}{\sqrt{2}U(x)} \int_{\sqrt{K-a}}^{A+b} dx$

ce se energijske nivojnica dotika lokalnega maksimuma, potem ne pridemo do dotikalista V kon ozem času

lema
$$\int_{a} \frac{dx}{\sqrt{(6-x)(x-a)}} = T$$

mx=-kx

x + wx = 0

Primer "

$$Dokez: x=\frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos \theta$$

 $b-x=\frac{1}{2}(b-a)(1-\cos \theta)$

$$b-x=\frac{1}{2}(b-a)(1-\cos x)$$

$$b-x = \frac{1}{2}(b-a)(1-\cos x)$$

$$b-x = \frac{1}{2}(b-a)(1-cosy)$$

 $x-a=\frac{1}{2}(b-a)(1+cosy)$

$$b-x = \frac{1}{2}(b-a)(1-cosy)$$

 $x-a=\frac{1}{2}(b-a)(1+cosy)$

dx = - 1/6-a) sino do

 $I = -\int_{\pi}^{2} \frac{\frac{1}{2}(6-a) \sin \theta}{\frac{1}{2}(6-a) \sin \theta} = -\int_{\pi}^{0} d\theta = \pi$

Harmoniani oscilator U= 1kx2

X=A cos(wt- J)

x+4x=0 k=02

$$b-x = \frac{1}{2}(b-a)(1-\cos \theta)$$

 $x-a=\frac{1}{2}(b-a)(1+\cos \theta)$

$$b-x = \frac{1}{2}(b-a)(1-\cos a)$$

$$b-x = \frac{1}{2}(b-a)(1-\cos x)$$

$$Volez: x=\frac{1}{2}(c+6) + \frac{1}{2}(6-6)$$

$$b-x=\frac{1}{2}(b-a)(1-c6)$$

(b-x) (x-a) = (1/2 (6-a)) 2 (1-cos 2) = (1/26-a)2

f=-kx

T = \(\frac{1}{2m}\) dix

 $= \sqrt{2m} \int_{\frac{\pi}{2}}^{\infty} \frac{dx}{\sqrt{2E_0 - x^2}} = 2\sqrt{\frac{m}{k}} \pi = \frac{2i\pi}{\omega}$

T periode je readvisne od energije (izekson: one a ibanje)

1)= ax2+bx-2 [U] dinanzija emota [U] = [ax2] = [a][x2] = [a] L2 [b] = [6×-t] =[6] c-2 = [b] = L= [b] x= L \{ \(\) \(\ t brezdinenzije z U= a (15) 22+ b (16) 2-1 = (16) (x22+052) = Ũ, a= \frac{a}{1a1} \alpha \quad b= \frac{b}{1b1} \quad \qq \quad \qu = U, (~ {22+ /3 = 2-2 vae gibarje So periodion _ %=<u>~</u> periodione gibenja z namn ejano brzino Lu neem freutku) 020 OCD res;odiale a gibanje nom jena

$$\begin{aligned}
& (1 - \sqrt{|a|}|b|) \left(\frac{2}{2}^{2} + \frac{2}{2}^{-2}\right) \\
& (1 - \sqrt{|a|}|b|) \left(\frac{2}{2}^{2} + \frac{2}{2}^{-2}\right) \\
& (1 - \sqrt{|a|}|b|) \left(\frac{2}{2}^{2} + \frac{2}{2}^{-2}\right) \\
& (2 - \sqrt{|a|}|b|) \\
& (3 - \sqrt{|a|}|b|) \\
& (4 - \sqrt$$

T= \(\frac{m}{21a}\) \(\tau\) \(\text{pet is 170kron; Oro (neodvisno odenoz) je)}\)

Harmonione optimizacija perode

