OPERATING SYSTEMS

PROCESS MANAGEMENT - HARD LEVEL

1.	In the Banker's Algorithm, what is the worst-case time complexity for checking system safety with <i>n</i> processes and <i>m</i> resource types? A) O(n) B) O(mn²) C) O(n²m) D) O(nm²) Answer: C
2.	Which scheduling algorithm minimizes average turnaround time optimally (theoretically)? A) Priority Scheduling B) SJF C) Round Robin D) Multilevel Feedback Queue Answer: B
3.	In a system with preemptive priority scheduling, which situation may lead to <i>priority inversion</i> ? A) Low-priority process holding resource needed by high-priority process B) High-priority process preempting medium-priority one C) Round Robin time quantum too large D) Deadlock avoidance Answer: A
4.	Which of the following is used to solve priority inversion? A) Aging B) Priority Inheritance Protocol C) Banker's Algorithm D) Deadlock detection Answer: B
5.	Which scheduling policy can guarantee bounded waiting? A) FCFS B) Round Robin C) Priority Scheduling D) Multilevel Queue Scheduling Answer: B
6.	Which is the correct sequence of scheduling levels in a typical OS? A) Long-term → Medium-term → Short-term B) Short-term → Long-term → Medium-term C) Medium-term → Short-term → Long-term D) Short-term → Medium-term → Long-term

- 7. In Peterson's algorithm, mutual exclusion is guaranteed under which assumption?
 - A) Atomicity of read/write operations
 - B) Preemptive kernel
 - C) Multiprocessor with cache coherence
 - D) Priority inheritance

Answer: A

- 8. Which of the following does NOT prevent deadlock?
 - A) Requiring all processes to request resources in increasing order
 - B) Allowing preemption of resources
 - C) Using hold-and-wait
 - D) Releasing all resources before requesting new ones

Answer: C

- 9. In real-time scheduling, Rate Monotonic Scheduling (RMS) assumes:
 - A) Periodic tasks with deadlines equal to their periods
 - B) Tasks with arbitrary deadlines
 - C) Tasks with dynamic priorities
 - D) Tasks with preemption disabled

Answer: A

- 10. The maximum CPU utilization under RMS for *n* processes is:
 - A) $n \times (2^{(1/n)} 1)$
 - B) $log_2(n)$
 - C) 1 (1/n)
 - D) (n 1)/n

Answer: A

- 11. In Earliest Deadline First (EDF) scheduling, schedulability is guaranteed if:
 - A) CPU utilization ≤ 1
 - B) CPU utilization < 0.693
 - C) Number of tasks ≤ number of CPUs
 - D) Deadlines are uniform

Answer: A

- 12. Which IPC mechanism is most efficient for large data transfer between processes?
 - A) Message queues
 - B) Shared memory
 - C) Pipes
 - D) Semaphores

Answer: B

- 13. Which of the following is NOT true about monitors?
 - A) Only one process can execute in a monitor at a time
 - B) Condition variables are used for synchronization
 - C) They are supported directly by hardware
 - D) They eliminate busy waiting

Answer: C

14. In the Dining Philosophers problem, which technique guarantees no deadlock and no starvation?

- A) Arbitrator solution
- B) Resource hierarchy solution
- C) Chandy/Misra solution
- D) Using semaphores without ordering

Answer: C

- 15. Which statement about two-phase locking protocol is correct?
 - A) Prevents deadlock completely
 - B) Ensures serializability
 - C) Requires preemption
 - D) Allows cascading rollbacks

Answer: B

- 16. In Linux, which scheduling class is used for real-time processes?
 - A) CFS
 - B) FIFO
 - C) Round Robin
 - D) Both B and C

Answer: D

- 17. Which of the following contributes to thrashing?
 - A) High degree of multiprogramming
 - B) Low CPU utilization
 - C) Frequent page faults
 - D) All of the above

Answer: D

- 18. What is the main advantage of spinlocks over semaphores?
 - A) Eliminate busy waiting
 - B) Lower context switch overhead
 - C) Provide fairness automatically
 - D) Allow multiple process access

Answer: B

- 19. Which technique is commonly used for real-time deadlock avoidance?
 - A) Banker's Algorithm
 - B) Priority Inheritance
 - C) Priority Ceiling Protocol
 - D) Peterson's Algorithm

Answer: C

- 20. Which of the following is required for implementing EDF scheduling in multiprocessor systems?
 - A) Global queue and migration
 - B) Strict FCFS discipline
 - C) Processor affinity
 - D) Resource ordering

- 21. What is the primary purpose of *load balancing* in multiprocessor scheduling?
 - A) Increase throughput

28. Which mechanism avoids *busy waiting* in the Producer-Consumer problem?

A) Semaphores with blocking

- B) Spinlocks
- C) Test-and-set
- D) Peterson's Algorithm

Answer: A

- 29. In multiprocessor scheduling, gang scheduling refers to:
 - A) Running related threads simultaneously on multiple CPUs
 - B) Assigning one process to one CPU permanently
 - C) Time slicing among unrelated processes
 - D) Using a single ready queue for all CPUs

Answer: A

- 30. Which situation can cause livelock instead of deadlock?
 - A) Processes keep changing states but make no progress
 - B) Processes hold resources indefinitely
 - C) Circular waiting with no release
 - D) Context switching stops

Answer: A

- 31. Which of the following is a solution to the Readers-Writers problem ensuring fairness?
 - A) Readers preference algorithm
 - B) Writers preference algorithm
 - C) Queue-based synchronization
 - D) Peterson's algorithm

Answer: C

- 32. In Linux, the nice value affects:
 - A) Memory allocation
 - B) CPU scheduling priority
 - C) I/O scheduling
 - D) Deadlock detection

Answer: B

- 33. The worst-case response time analysis in real-time scheduling is used for:
 - A) Hard real-time tasks
 - B) Soft real-time tasks
 - C) Background jobs
 - D) Batch jobs

Answer: A

- 34. Which of the following ensures *bounded waiting* in critical section problems?
 - A) Bakery algorithm
 - B) Spinlocks
 - C) Test-and-set
 - D) Mutex

- 35. Which of the following is NOT true about preemptive scheduling?
 - A) Increases responsiveness
 - B) May cause starvation
 - C) Requires timer interrupts

D) Eliminates context switching overhead

Answer: D

- 36. Which mechanism is best for synchronizing threads in multicore systems with shared cache?
 - A) Spinlocks
 - B) Mutexes with backoff
 - C) Monitors
 - D) Test-and-set

Answer: B

- 37. Which real-time scheduling policy is optimal for uniprocessor systems?
 - A) EDF
 - B) RMS
 - C) FCFS
 - D) Priority Scheduling

Answer: A

- 38. In UNIX, a process in the zombie state is one that:
 - A) Has terminated but not reaped by parent
 - B) Is waiting indefinitely for I/O
 - C) Is stuck in deadlock
 - D) Is swapped out of memory

Answer: A

- 39. Which of the following is a hardware feature to support synchronization?
 - A) Test-and-set instruction
 - B) Swap instruction
 - C) Compare-and-swap instruction
 - D) All of the above

Answer: D

- 40. Which of the following is an advantage of microkernel design for process management?
 - A) Faster context switches
 - B) Fault isolation
 - C) Larger kernel size
 - D) Direct hardware access by all processes

Answer: B

- 41. Which of the following is a drawback of using priority-based preemptive scheduling in multiprocessors?
 - A) Priority inversion
 - B) Cache affinity loss
 - C) Load imbalance
 - D) All of the above

Answer: D

- 42. The *M/M/c* queuing model with c servers has lower waiting time compared to M/M/1 because:
 - A) Arrival rate decreases
 - B) Service capacity increases
 - C) CPU scheduling improves

D) Context switching reduces

Answer: B

- 43. Which of the following is true about the sleeping barber problem?
 - A) It demonstrates deadlock
 - B) It demonstrates synchronization and resource utilization
 - C) It has no relation to process scheduling
 - D) It eliminates starvation completely

Answer: B

- 44. In multiprocessor systems, which strategy prevents cache thrashing?
 - A) Processor affinity
 - B) Priority scheduling
 - C) Round Robin
 - D) Resource ordering

Answer: A

- 45. Which scheduling algorithm is most suitable for multimedia streaming applications?
 - A) EDF
 - B) FCFS
 - C) Priority Scheduling
 - D) Lottery Scheduling

Answer: D

- 46. Which of the following can detect AND recover from deadlock?
 - A) Wait-die scheme
 - B) Wound-wait scheme
 - C) Periodic resource allocation graph check
 - D) Peterson's Algorithm

Answer: C

- 47. Which is the key disadvantage of EDF scheduling?
 - A) Not optimal
 - B) High runtime overhead for dynamic priority adjustment
 - C) Cannot handle preemption
 - D) Works only for periodic tasks

Answer: B

- 48. What is the main advantage of lottery scheduling?
 - A) Proportional resource allocation
 - B) Guaranteed fairness
 - C) Zero overhead
 - D) Deadlock prevention

Answer: A

- 49. In real-time systems, a *missed deadline* in a **hard real-time** task results in:
 - A) Reduced performance
 - B) Task termination or system failure
 - C) Starvation
 - D) Increased turnaround time

Answer: B

- 50. Which technique allows CPUs in a multiprocessor to run threads of the same process simultaneously while sharing cache?
 - A) Simultaneous multithreading (SMT)
 - B) Gang scheduling
 - C) Processor affinity
 - D) EDF scheduling