Gate 2023-IN-21

EE22BTECH11008 - Annapureddy Siva Meenakshi*

Q:A system has transfer function

$$\frac{Y(s)}{X(s)} = \frac{s - \pi}{s + \pi}$$

let u(t) be the unit step function. The input x(t) that results in a steady-state output $y(t) = sin(\pi t)$ is ___.

Gate 2023 -IN-21

Solution:

Variable	Description	Value
x(t)	input function	none
<i>y</i> (<i>t</i>)	output function	$\sin(\pi t)$
H(s)	Transfer-function	$\frac{s-\pi}{s+\pi}$

TABLE 0: input parameters

$$H(s) = \frac{s - \pi}{s + \pi} \tag{1}$$

let

$$H_i(s) = \frac{s+\pi}{s-\pi} \tag{2}$$

This is the Transfer function of inverse system having y(t) as input and x(t) as output.

Converting transfer function to frequency response, we get

$$H_i(j\omega) = \frac{j\omega + \pi}{i\omega - \pi} \tag{3}$$

Here, $\omega = \pi$

$$H_i(j\pi) = \frac{j+1}{j-1} = -j \tag{4}$$

$$|H(j\pi)| = 1\tag{5}$$

$$\angle H(j\pi) = -90^{\circ} \tag{6}$$

$$y(t) = \sin(\pi t) \tag{7}$$

$$|X|\sin(\omega t + \phi) \stackrel{H(j\omega)}{\to} |X||H(j\omega)|\sin(\omega t + \phi + \angle H(j\omega))$$
(8)

$$\sin(\pi t) \stackrel{H(j\omega)}{\to} |H(j\omega)| \sin(\pi t + \angle H(j\omega))$$
 (9)

Therefore by (7) and (9), we get

$$x(t) = \sin\left(\pi t - \frac{\pi}{2}\right) \tag{10}$$

Fig. 0: Block diagram of the System

Fig. 0: Plot of x(t) and y(t) taken from Python