Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Высшая школа прикладной математики и вычислительной Физики

Интервальный анализ Отчёт по лабораторным работам \mathbb{N}_1 и \mathbb{N}_2

Выполнил:

Студент: Парусов Владимир

Группа: 5040102/30201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1.	Постановка задачи
2.	Теория
3.	Реализация
4.	Результаты
5.	Обсуждение
Лі	итература
6.	Приложения
\mathbf{C}	писок иллюстраций
 3. 4. 5. 7. 8. 	Структурная схема калибровки DRS4
11	Увеличенное изображение из Рис.8

12.	. Калибровочная прямая полученная вторым методом для датчика (4,
	72), обозначена красным цветом. Твины обозначены серым и синим цве-
	том. Корридоры совместности Tol и Uni обозначены голубым и светло-
	серым цветом
13.	. Увеличенное изображение из Рис.10
14	. Tol, Uni и argmaxTol для датчика (0, 0)
15.	. Tol, Uni и argmaxTol для датчика (3, 73)
16	. Tol, Uni и argmaxTol для датчика (4, 72)

2 *ТЕОРИЯ* 3

1. Постановка задачи

Проводится исследование из области солнечной энергетики. Чип быстрой аналоговой памяти PSI DRS4 имеет 8 каналов, каждый из которых содержит 1024 ячейки. Они включают конденсаторы для хранения значения заряда и электронные ключи для записи сигналов и считывания напряжений через АЦП (аналого-цифровой преобразователь). Ячейки объединяются в кольцевые буферы. При подаче сигнала синхронизации запись напряжений на конденсаторы прекращается, а номер ячейки (в которую была сделана последняя запись) запоминается.

Рис. 1. Структурная схема калибровки DRS4

Ставится задача калибровки данного чипа. Для этого в чип подается заранее известное напряжение X и считывается полученные значения Y. Для каждого отдельного напряжения X, эта операция повторяется 100 раз. Затем, исходя из предположения что

$$Y = \beta_0 \cdot X + \beta_1 \tag{1}$$

выполняется линейная регрессия и находятся коэффициенты $\beta_0\beta_1$,.

2. Теория

2.1. Первый подход: нахождение argmax(Tol)

Поскольку показания датчиков обладают погрешностью, полученные данные на самом деле следует рассматривать как интервалы, центр которых совпадает со считанными показаниями, а радиус равен ε , в данном случае 1/16535

В связи с тем, что показания независимы, мы можем рассмотреть произвольную ячейку из всех 8*1024 ячеек. Тогда, для данной ячейки мы имеем 100 * 11 пар значений, где х координата соответсвует поданному напряжению и лежит в границах [-0.5, 0.5], а у координата представляет собой интервал с wid =

4 2 TЕОРИЯ

2/16535. Для того, чтобы найти точечную оценку коэффициентов калибровки, воспользуемся распознающим функционалом Tol

$$Tol(x) = Tol(x, A, b) = \min_{1 \le i \le m} \{ rad(b_i) - | mid(b_i) - \sum_{j=1}^{n} a_{ij} x_j | \}$$
 (2)

Где А - матрица вида:

$$A = \begin{pmatrix} x_0 & 1 \\ \dots \\ x_m & 1 \end{pmatrix} \tag{3}$$

b - интервальный вектор

$$b = \begin{pmatrix} [y_0 - \epsilon, y_0 + \epsilon] \\ \dots \\ [y_m - \epsilon, y_m + \epsilon] \end{pmatrix}$$
 (4)

Особенностью данного функционала является то, что допусковое множество решений системы Ax=b можно описать как

$$\{x \in \mathbb{R}^n | Tol(x, A, B) \ge 0\}$$
 (5)

Таким образом, если $Tol(argmax(Tol), A, B) \ge 0$, то система совместная и argmax(Tol) можно считать результатом регрессии (а значит это вектор содержащий $\beta_0\beta_1$).

Однако, зачастую, система не является совместной. В таком случае следует рассмотреть множество Tol_i

$$Tol_{i}(x, A, b) = rad(b_{i}) - |mid(b_{i}) - \sum_{j=1}^{n} a_{ij}x_{j}|, 1 \le i \le m$$
 (6)

Можно заметить, что если сущестует i для которого $Tol_i < 0$, то Tol < 0. При этом, для того чтобы $Tol_i \geq 0$ достаточно чтобы $rad(b_i)$ был достаточно большим.

Таким образом, в случае отсутствия совместности, следует пройтись по строчкам матрицы и элементам b. Если для них $Tol_i < 0$, то стоит "расширить" интервал в правой части, чтобы добиться $Tol_i = 0$. Тогда очевидно что Tol(argmax(Tol), A, B) будет равен 0, а argmax(Tol) будет искомыми коэффициентами калибровки.

2.2. Второй метод. Нахождение оценки при помощи твинной арифметики.

У описанного первого метода есть два основных недостатка. Во первых, "расширение" интервалов в правой части приводит к сильной погрешности на

практике, так как интервалы "расширяются" обе стороны: как в сторону регрессионной прямой, так и от неё. Во вторых, результатом данного метода будет лишь точечная оценка. В качестве альтернативы, предлагается другой метод, основанный на использовании твинной арифметики.

Для начала, рассмотрим имеющиеся у нас данные. В первом методе мы брали все пары $(x_i, [y_i - \epsilon, y_i + \epsilon])$ и работали со всеми интервалами, однако сейчас, мы разделим значения y_i в группы по 100 значений в зависимости от соответствующего им x_i . Тогда мы получим для каждого различного x_i набор из значений, по которым мы можем построить боксплот Тьюки. По боксплоту определим внешнюю и внутреннюю оценку, и построим для каждого x_j твин $[[y_j^{in}, \overline{y_j^{in}}], [y_j^{out}, \overline{y_j^{out}}]]$.

Затем, снова построим распознающий функционал Tol, но теперь

$$A = \begin{pmatrix} x_0 & 1 \\ x_0 & 1 \\ x_0 & 1 \\ x_1 & 1 \\ \dots \end{pmatrix} b = \begin{pmatrix} [\underline{y_0^{in}}, \overline{y_0^{in}}] \\ [\underline{y_0^{ex}}, \overline{y_0^{in}}] \\ [\underline{y_0^{ex}}, \overline{y_0^{ex}}] \\ [\underline{y_0^{ex}}, \overline{y_0^{in}}] \\ [\underline{y_0^{ex}}, \overline{y_0^{in}}] \\ \dots \end{pmatrix}$$

$$(7)$$

В случае если Tol(argmax(Tol)) = 0 мы так же возвращаем argmax(Tol)

В случае если Tol(argmax(Tol))>0 мы можем найти множество значений (β_0,β_1) при которых Tol>0 и вернуть его

В случае если Tol(argmax(Tol)) < 0 нам снова требуется бороться с отсутствием совместности.

Для этого снова рассмотрим Tol_i , однако, вместо изменения правой части, будем просто убирать соответствующую строку из A и b. В силу того что у нас на каждую пару (x_j, y_j) создается 4 уравнения, при удалении описанным способом несовместных уравнений, уравнений останется больше, чем при первом способе. А значит решение будет точнее. При этом, в результате данной операции, возможна ситуация, когда Tol(argmax(Tol)) > 0.

3. Реализация

Данная работа реализована на языке программирования Python 3.10 с использованием пакетов matplotlib и intvalpy. Код данного отчёта подготовлен с использованием редактора TeXstudio и компилятора pdflatex.

4. Результаты

Для рассмотрения значений, каждому датчику в чипе были даны координаты в зависимости от номера канала и ячейки. Таким образом, датчик полу-

чивший данные из канала $j(1 \le j \le 8)$ и находящийся в ячейке $i(1 \le j \le 1024)$ будет иметь координаты i,j. Рассматриваются данные для датчиков

- С координатами (0, 0)
- С координатами (3, 73)
- С координатами (4, 72)

Рис. 2. Калибровочная прямая полученная первым методом для датчика (0,0)

Рис. 3. Калибровочная прямая полученная первым методом для датчика (3, 73)

Рис. 4. Калибровочная прямая полученная первым методом для датчика (4, 72)

Рис. 5. Разность между данными и калибровочной прямой для первого метода и датчика (0,0). Черным цветом обозначен новый интервал, синим исходный

Рис. 6. Разность между данными и калибровочной прямой для первого метода и датчика (3, 73). Черным цветом обозначен новый интервал, синим исходный

Рис. 7. Разность между данными и калибровочной прямой для первого метода и датчика (4, 72). Черным цветом обозначен новый интервал, синим исходный

Рис. 8. Калибровочная прямая полученная вторым методом для датчика (0,0), обозначена красным цветом. Твины обозначены серым и синим цветом. Корридоры совместности Tol и Uni обозначены голубым и светло-серым цветом.

Рис. 9. Увеличенное изображение из Рис.6

Рис. 10. Калибровочная прямая полученная вторым методом для датчика (3, 73), обозначена красным цветом. Твины обозначены серым и синим цветом. Корридоры совместности Tol и Uni обозначены голубым и светло-серым цветом.

Рис. 11. Увеличенное изображение из Рис.8

Рис. 12. Калибровочная прямая полученная вторым методом для датчика (4, 72), обозначена красным цветом. Твины обозначены серым и синим цветом. Корридоры совместности Tol и Uni обозначены голубым и светло-серым цветом.

Рис. 13. Увеличенное изображение из Рис.10

Рис. 14. Tol, Uni и argmax Tol для датчика (0,0)

Рис. 15. Tol, Uni и argmaxTol для датчика (3, 73)

Рис. 16. Tol, Uni и argmaxTol для датчика (4, 72)

Координаты датчика	Метод	β_0	β_1	Количество модифицированных
(0, 0)	1	0.800	0.007	1085
(0, 0)	2	0.802	0.006	12
(3, 73)	1	0.797	0.012	1089
(3, 73)	2	0.801	0.007	32
(4, 72)	1	0.816	0.012	1094
(4, 72)	2	0.808	0.009	0

Таблица 1. Численные результаты

5. Обсуждение

Исходя из представленных графиков, можно судить о том, что все описанные в теории этапы выполнены правильно. Также можно заметить что результаты полученные методами 1 и 2 являются близкими, но не совпадают. По количеству модифицированных значений в 4 можно заметить что датчик с координатами (4,72) имеет наименьшее число выбросов из рассматриваемых, а датчик с координатами (3,73) имеет наибольшее число выбросов из рассматриваемых.

6. Приложения

1. Репозиторий с кодом программы отчётом:

https://github.com/sairsey/interval2