Chapter 5 Electronic mail security

Outline

- Pretty good privacy
- · S/MIME
- · Recommended web sites

Pretty Good Privacy

- Philip R. Zimmerman is the creator of PGP.
- PGP provides a confidentiality and authentication service that can be used for electronic mail and file storage applications.

Why Is PGP Popular?

- It is available free on a variety of platforms.
- Based on well known algorithms.
- Wide range of applicability
- Not developed or controlled by governmental or standards organizations

Operational Description

- Consist of five services:
 - Authentication
 - Confidentiality
 - Compression
 - E-mail compatibility
 - Segmentation

Figure 5.1 PGP Cryptographic Functions

Compression

- PGP compresses the message after applying the signature but before encryption
- The placement of the compression algorithm is critical.
- The compression algorithm used is ZIP (described in appendix 5A)

E-mail Compatibility

- The scheme used is radix-64 conversion (see appendix 5B).
- The use of radix-64 expands the message by 33%

Segmentation and Reassembly

- Often restricted to a maximum message length of 50,000 octets.
- Longer messages must be broken up into segments.
- PGP automatically subdivides a message that is to large.
- The receiver strip of all e-mail headers and reassemble the block.

Sumary of PGP Services

Function	Algorithm Used
Digital Signature	DSS/SHA or
	RSA/SHA
Message	CAST or IDEA or
Encryption	three-key triple DES
	with Diffie-Hellman
	or RSA
Compression	ZIP
E-mail	Radix-64 conversion
Compatibility	
Segmentation	

Figure 5.2 Transmission and Reception of PGP Messages

Format of PGP Message

Private Key Ring

Timestamp	Key ID*	Public Key	Encrypted Private Kcy	User ID*
	•	•		
		•		
	•	•	•	•
Ti	KU _i mod 264	KU_1	$E_{H(Pi)}[KR_i]$	User i
	•	•	•	
		•		
	•	•	•	•

Public Key Ring

Timestamp	Key ID*	Public Key	Owner Trust	User ID*	Key Legitimacy	Signature(s)	Signature Trust(s)
•		•	•		•	•	
		•	•	•	•	•	
		•	•	•	•		
Ti	KUi mod 264	KUi	trust_flagi	Uscr i	trust_flagi		
•		•	•	•	•	•	
		•					
•		•	•	•	•	•	•

^{* =} field used to index table

Figure 5.4 General Structure of Private and Public Key Rings

Figure 5.5 PGP Message Generation (from User A to User B; no compression or radix 64 conversion)

Figure 5.6 PGP Message Reception (from User A to User B; no compression or radix 64 conversion)

Email Security

- Email security can be defined as the use of various techniques to secure sensitive information in email communication and accounts against unauthorized access, loss, or compromise.
- In simpler terms, email security allows an individual or organization to protect the overall access to one or more email addresses or accounts.

Stopping attacks at the entry point

- 1. Strong passwords
- 2. Password rotations
- 3. Spam filters
- 4. Desktop-based anti-virus or antispam application

Email Encryption automate

Securing Email Gateway

Henric Johnson

Benefits of Email Security

BENEFITS OF EMAIL SECURITY FOR ENTERPRISES

Best Practices

BEST PRACTICES FOR EMAIL SECURITY

S/MIME

- Secure/Multipurpose Internet Mail Extension
- S/MIME will probably emerge as the industry standard.
- · PGP for personal e-mail security

Simple Mail Transfer Protocol (SMTP, RFC 822)

- SMTP Limitations Can not transmit, or has a problem with:
 - executable files, or other binary files (jpeg image)
 - "national language" characters (non-ASCII)
 - messages over a certain size
 - ASCII to EBCDIC translation problems
 - lines longer than a certain length (72 to 254 characters)

Header fields in MIME

- MIME-Version: Must be "1.0" -> RFC 2045, RFC 2046
- Content-Type: More types being added by developers (application/word)
- Content-Transfer-Encoding: How message has been encoded (radix-64)
- · Content-ID: Unique identifying character string.
- Content Description: Needed when content is not readable text (e.g., mpeg)

S/MIME Functions

- Enveloped Data: Encrypted content and encrypted session keys for recipients.
- Signed Data: Message Digest encrypted with private key of "signer."
- Clear-Signed Data: Signed but not encrypted.
- Signed and Enveloped Data: Various orderings for encrypting and signing.

Algorithms Used

- · Message Digesting: SHA-1 and MDS
- Digital Signatures: DSS
- Secret-Key Encryption: Triple-DES, RC2/40 (exportable)
- Public-Private Key Encryption: RSA with key sizes of 512 and 1024 bits, and Diffie-Hellman (for session keys).

User Agent Role

- S/MIME uses Public-Key Certificates X.509
 version 3 signed by Certification Authority
- Functions:
 - Key Generation Diffie-Hellman, DSS, and RSA keypairs.
 - Registration Public keys must be registered with X.509 CA.
 - Certificate Storage Local (as in browser application)
 for different services.
 - Signed and Enveloped Data Various orderings for encrypting and signing.

User Agent Role

- Example: Verisign (www.verisign.com)
 - Class-1: Buyer's email address confirmed by emailing vital info.
 - Class-2: Postal address is confirmed as well, and data checked against directories.
 - Class-3: Buyer must appear in person, or send notarized documents.

Recommended Web Sites

- PGP home page: www.pgp.com
- · MIT distribution site for PGP
- S/MIME Charter
- · S/MIME Central: RSA Inc.'s Web Site