

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: М32021	К работе допущен:
Студент: Корнилов Н. В.	Работа выполнена:
Преподаватель: Тимофеева Э. О.	Отчёт принят:

Рабочий протокол и отчет по лабораторной работе №3.08

1. Цель работы:

Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла.

2. Задачи, решаемые при выполнении работы:

- 1. Изучение эффекта Холла в примесных полупроводниках.
- 2. Измерение продольного напряжения при различных температурах и вычисление электропроводности и её логарифма.
- 3. Исследование зависимости ЭДС Холла от величины магнитного поля при постоянной силе тока и температуре.
- 4. Исследование зависимости ЭДС Холла от величины тока при постоянной величине магнитного поля и температуре.
- 5. Исследование зависимости ЭДС Холла от температуры при постоянных величине магнитного поля и токе.
- 6. Оценка постоянной Холла, концентрации свободных электронов и подвижности носителей тока для различных температур.
- 7. Определение типа полупроводника по знаку ЭДС Холла.

3. Рабочие формулы и исходные данные:

$$U_x = \frac{U'_{34} - U''_{34}}{2}$$
$$\sigma = \frac{IL_{12}}{U_{12}bd}$$

$$U_x = \frac{R_x(IB)}{b} - (1)$$

$$\sigma = q_e n\mu - (2)$$

$$R_{x} = a \left(\frac{1}{q_{e}n}\right) - (3)$$

4. Схема установки:

Генератор тока

5. Ход работы

1. I=1,5 мА

<i>T, K</i>	U_{12}, B	1/T, $1/K$	σ, sim	$ln(\sigma)$
303	0,062	0,0033003	0,0604839	-2,8053785
310	0,069	0,0032258	0,0543478	-2,9123507
320	0,069	0,003125	0,0543478	-2,9123507
330	0,073	0,0030303	0,0513699	-2,9687036
340	0,077	0,0029412	0,0487013	-3,0220496
350	0,081	0,0028571	0,0462963	-3,0726933
360	0,085	0,0027778	0,0441176	-3,1208954

3. T=320K, I=1,5 мА

В , мТл	U ' ₃₄ , B	U ₃₄ , B	$\boldsymbol{U}_{\boldsymbol{x}}$, B
2	0,022	0,033	-0,0055
4	0,017	0,038	-0,0105
6	0,012	0,043	-0,0155
8	0,007	0,048	-0,0205
10	0,003	0,053	-0,025

4. Т=314 К, В=10мТл

<i>I</i> , мкА	U ′ ₃₄ , B	U ′′ ₃₄ , B	\boldsymbol{U}_{x} , B
400	0,041	0,611	-0,285
600	0,036	0,941	-0,4525
800	0,03	0,935	-0,4525
1000	0,026	0,928	-0,451

5. I=1,5 мкA, B=10 мTл

T , K	U ′ ₃₄ , B	U ′′ ₃₄ , B	\boldsymbol{U}_{x} , B
310	0,006	0,062	-0,028
320	0	0,053	-0,0265
330	-0,006	0,048	-0,027
340	-0,004	0,05	-0,027
350	-0,003	0,05	-0,0265
360	-0,001	0,051	-0,026

6.

T, K	Ux	Rx	n	mu
310	-0,028	-9,333E-10	-1,291E+28	-0,0290518

320	-0,0265	-8,833E-10	-1,364E+28	-0,0274955
330	-0,027	-9E-10	-1,339E+28	-0,0280142
340	-0,027	-9E-10	-1,339E+28	-0,0280142
350	-0,0265	-8,833E-10	-1,364E+28	-0,0274955
360	-0,026	-8,667E-10	-1,39E+28	-0,0269767

7.

Знак напряжения Холла Ux помогает определить тип преобладающих носителей заряда в полупроводнике. Положительное напряжение Холла указывает на то, что основными носителями являются дырки, что соответствует р-типу полупроводника. Отрицательное напряжение Холла говорит о том, что основными носителями являются электроны, что соответствует n-типу полупроводника.

В нашем случае все значения Ux отрицательны, что указывает на то, что исследуемый образец является полупроводником n-типа, в котором электроны являются основными носителями заряда.

6. Выводы

В ходе лабораторной работы был исследован эффект Холла в примесных полупроводниках. Данный для экспериментов полупроводник оказался n-типа.