06-20416 and 06-12412 (Intro to) Neural Computation

07 - Optimisation Algorithms

Per Kristian Lehre

Last lecture

- A softmax output layer allows output nodes to be interpreted as probabilities
- The probabilities indicate the likelihood of a class, given the input and the network
- A naive implementation of the softmax function can be numerically unstable

Outline

- Learning rate in stochastic gradient descent
- Alternatives to standard SGD
 - SGD with momentum
 - SGD with Nesterov momentum
 - AdaGrad
 - Adam

Repetition: Gradient Descent

Input: cost fundion $J: \mathbb{R}^m \to \mathbb{R}$ learning vote $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$ $x \leftarrow some initial point in <math>\mathbb{R}^m$ while termination condition not met? $x \leftarrow x - \varepsilon \cdot \nabla J(x)$

Impact of learning rate on SGD

- The learning rate in SGD often strongly impacts the optimisation time
- Often necessary to adjust the learning rate according to the specific setting.

Source: Karpathy, CS231n

Typical Behavior of Standard SGD

Case 1: Too high learning vote &

Case 2: Too low learning vate &

avadient Descent with Momentum

Physical interpretation:

A ball with position & and velocity or influenced by two forces, one which pushes the ball opposite of the current gradient, the ball opposite of the current gradient, and a viscuos drag determined by parametr 2<1

The momentum "smoothes ont" update steps.

The Size of impdates depends on how aligned

the previous gradients are.

Two hyperparameters

- E learning vate
- & factor which determines the influence of past quadients on the current applate of the paramete (often 0.5, 0.9, or 0.99)

choose an initial parameter
$$\Theta$$
 $N = 0$

while termination condition not satisfied $\{x\}$
 $N = \alpha N - E \nabla_0 C (\theta + \alpha V)$
 $N = 0 + N$

Mesterov momentum is a variant of standard momentum where the gradient is computed after the velocity is applied.

Adagrad (Dudi et al, 2011)

choose an initial paramete Θ r = 0while termination condition not satisfied $\{g = \nabla_{\theta} C(\theta)\}$ $g = \nabla_{\theta} C(\theta)$ gradient $r = r + g \circ g$ $Q = -\frac{\varepsilon}{5+\sqrt{r}} \circ g$ (division and square root applied componentwise) Q = Q + V

S is a hyperparameter, typically &= 106.

Adalarad adapts a (possibly different) "learning vate" \(\frac{\xi}{\xi + \text{tr}} \)

for each dimension according to accountable square gradient v

- large r implies small \(\frac{\xi}{\xi + \text{tr}} \)

- Small r implies large \(\frac{\xi}{\xi + \text{tr}} \)

Adalvad works well for problems with sparse qualients.

All gradients (new and old) weighted equally by .

Adam (Kingma and Ba, 2014)

choose an initial parameter O r=0, s=0, t=0

while termination condition not satisfied {

$$g = \nabla_{\theta} C(\theta)$$

$$S = \rho_1 S + (1 - \rho_1) g$$

$$\hat{S} = \frac{S}{1 - \rho_1^t}, \quad \hat{V} = \frac{V}{1 - \rho_2^t}$$

$$\mathcal{N} = -\varepsilon \cdot \frac{\hat{S}}{\sqrt{\hat{r} + \delta}}$$

Hyperparameters typically chosen as

Vavg. squared gradient

Widely used method in deep learning.

Summary

- Learning rate has strong impact on SGD
- Alternatives to SGD
 - SGD with momentum
 - SGD with Nesterov momentum
 - AdaGrad
 - Adam
- Open research problem how to choose appropriate algorithms