CV HW3 2D/3D

404410030 資工三 鄭光宇

Program Execution:

Run "hw3.m" Matlab script

Method Description:

Projection matrix:

先將已知的 2D/3D points 表示成 homogeneous coordinates。

根據 CV_04 投影片上 39~46 頁的內容,我們要使用給定的 2D/3D pairs,找到 3D 投影到 2D 的 projection matrix (P),這可以藉由求解投影片第 39 頁的 AP=0 線性系統,找到 projection matrix。

我們已知 2D/3D pairs,可以知道 A 矩陣是什麼(投影片第 39 頁),接下來求解 P 矩陣。

P 矩陣可以藉由求出 A^TA 的 eigenvector、eigenvalue 得到,選擇最小的 eigenvalue 對應的那組 eigenvector,就是我們要找的 P 矩陣。

Calibration matrix · rotation Matrix · translation:

求出 P 矩陣後,定義一個 M 矩陣,是 P 矩陣前三個 Column 的結果, 也就是 M = $P_{1:3,1:3}$ 。

取 M 矩陣的反矩陣,並對它做 QR 分解,可以得到 Q,R 兩個矩陣。
Calibration matrix (K) 就是 R 的反矩陣、rotation matrix 就是 Q 的反矩陣,
translation 就是 K 的反矩陣與 P4(P 矩陣的第 4 個 column)相乘。

Projection Error:

將給定的 3D 座標藉由 projection matrix 投影到 2D 座標。

我們要算出每個投影後得到的點,與其對應的真正 2D 座標點(答案),之間的 Euclidean distance,取平均值,作為 projection error,也就是:

$$Projection \ Error = \frac{1}{N} \sum_{i=1}^{N} \left\| x_{gt_i} - PX_i \right\|_2$$

 x_{gt} : provided 2D ground-truth coordinate

P: projection matrix

X: 3D coordinate

Experimental results:

projection matrix =

0.6265	0.4	2016	0.0750
Calibration matrix =			
0.0000	0.0000	-0.0009	0.0000
-0.0002	-0.6241	-0.2715	-0.0012
0.6265	0.0137	-0.3748	-0.0604

Ca

-0.6265	-0.0016	-0.3750
0	0.6327	-0.2508
0	0	-0.0009

Rotation matrix =

-1.0000	0.0003	0.0001
-0.0003	-0.9995	-0.0329
0.0001	-0.0329	0.9995

Translation =

0.1060

-0.0083

-0.0160

Projection error = 0.4271

Discussion of results:

從 projection error 來看,投影後的 2D 座標總體來說還算接近正確答案,驗證了 projection matrix 的正確性。

Problems of difficulties I have encountered:

一開始算 projection error 時,因為對 Matlab 語法沒有很熟悉,在呼叫 sum() 時,設定了錯誤的 axis,直到後來把每個步驟的輸出都印出來後才發現這個問 題。之後就修正好了。