Introdução aos Sistemas Digitais

Algebra de Boole Postulados Teoremas e expressões Simplificação algébrica

Circuitos combinatórios

Um circuito digital combinatório possui:

- uma ou mais entradas digitais;
- uma ou mais saídas digitais;
- uma especificação funcional que descreve cada saída em função dos valores das entradas;
- uma especificação temporal que inclui, pelo menos, o tempo máximo que o circuito vai demorar para produzir valores de saída a partir de um conjunto arbitrário de valores de entrada (válidos e estáveis) -> tempo de propagação.

Álgebra de Boole

Álgebra de Boole binária - é um instrumento matemático que permite descrever relações funcionais entre as entradas e saídas de um circuito digital.

Álgebra de Boole é uma estrutura matemática baseada num conjunto {B,+,·}, satisfazendo o seguinte conjunto de postulados:

- 1. Fecho (as operações são fechadas em B)
- Comutatividade
- 3. Elementos neutros
- Distributividade mútua
- 5. Complementação
- 6. Cardinalidade

Postulados

P1 - fecho: ambas as operações são fechadas em B:

$$\forall b_1, b_2 \in B \quad \begin{cases} b_1 + b_2 \in B \\ b_1 \cdot b_2 \in B \end{cases}$$

P2 - comutatividade

$$\forall b_1, b_2 \in B \quad \begin{cases} b_1 + b_2 = b_2 + b_1 \\ b_1 \cdot b_2 = b_2 \cdot b_1 \end{cases}$$

P3 – elementos neutros

$$\exists 0 \ \forall b \in B$$
: $b+0=b$

$$\exists 1 \ \forall b \in B$$
: $b \cdot 1 = b$

Postulados (cont.)

P4 – distributividade mútua

$$\forall b_{1}, b_{2}, b_{3} \in B
b_{1} + (b_{2} \cdot b_{3}) = (b_{1} + b_{2}) \cdot (b_{1} + b_{3})
\forall b_{1}, b_{2}, b_{3} \in B
b_{1} \cdot (b_{2} + b_{3}) = (b_{1} \cdot b_{2}) + (b_{1} \cdot b_{3})$$

P5 - complementação

$$\forall b \in B \exists \overline{b} \in B \quad \begin{cases} b + \overline{b} = 1 \\ b \cdot \overline{b} = 0 \end{cases}$$

P6 – cardinalidade

$$\forall \exists_{b_1 \in B} \exists_{b_2 \in B} b_1 \neq b_2 \iff \#B \geq 2$$

Álgebra de Boole binária

Se #B = 2, temos álgebra de Boole a dois valores (B= $\{0,1\}$).

Operadores:

soma lógica	produto	complementação
OR	AND	NOT
0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1	$0 \cdot 0 = 0$ $0 \cdot 1 = 0$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$	$\frac{\overline{0}}{1} = 1$ $\overline{1} = 0$

Expressões - conjunto de variáveis e/ou constantes 0 e 1 associadas por operadores

$$x + y \cdot \overline{z}$$

Teoremas

Idempotência $\forall b \in B$ $b \cdot b = b \cdot b = b$

P3 P5 P4 P5 P3

$$b \cdot b = b \cdot b + 0 = b \cdot b + b \cdot \overline{b} = b \cdot (b + \overline{b}) = b \cdot 1 = b$$

Unicidade do elemento neutro

Sejam 0_a e 0_b tal que b + 0_a = b + 0_b = b

$$0_a + 0_b = 0_a$$
 P3

$$0_b + 0_a = 0_b$$
 => $0_a = 0_b$

$$0_a + 0_b = 0_b$$
 P2

Teoremas (cont.)

Unicidade do complemento

Elemento absorvente
$$\forall b \in B$$
 $b \cdot 0 = 0$
 $b + 1 = 1$

P3 P5 P4 P3 P5

$$b \cdot 0 = b \cdot 0 + 0 = b \cdot 0 + b \cdot \overline{b} = b \cdot (0 + \overline{b}) = b \cdot \overline{b} = 0$$

Absorção
$$\forall x,y \in B$$
 $x + x \cdot y = x$
 $x \cdot (x + y) = x$
P3 P4 P3
 $x + x \cdot y = x \cdot 1 + x \cdot y = x \cdot (1 + y) = x \cdot 1 = x$

Simplificação
$$\forall x,y \in B$$
 $x + \overline{x} \cdot y = x + y$
 $x \cdot (\overline{x} + y) = x \cdot y$

Teoremas (cont.)

Adjacência
$$\forall x,y \in B$$
 $x \cdot y + x \cdot y = x$

$$(x + y) \cdot (x + y) = x$$

$$P4 \qquad P5 \qquad P3$$

$$x \cdot y + x \cdot y = x \cdot (y + y) = x \cdot 1 = x$$

Involução $\forall x \in B \quad \overline{x} = x$

indução perfeita:

Χ	\overline{X}	\overline{X}
0	1	0
1	0	1

Consenso
$$\forall x,y,z \in B$$
 $x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$ $(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$

Associatividade
$$\forall x,y,z \in B$$
 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $(x + y) + z = x + (y + z)$

Leis de DeMorgan

$$\forall x,y \in B \quad \overline{x+y} = \overline{x} \cdot \overline{y} \quad e \quad \overline{x \cdot y} = \overline{x} + \overline{y}$$

P5, elemento absorvente,
P4 idempotência

$$(x + y) \cdot (\overline{x} \cdot \overline{y}) = x \cdot \overline{x} \cdot \overline{y} + \overline{x} \cdot y \cdot \overline{y} = 0$$

Generalização para *n* variáveis:

$$\sum_{i=1}^{n} x_i = \prod_{i=1}^{n} \overline{x_i} \qquad \qquad \prod_{i=1}^{n} x_i = \sum_{i=1}^{n} \overline{x_i}$$

$$F(x_1, x_2, ..., x_n, +, \bullet) = F(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n, \bullet, +)$$

Princípio da dualidade

Todo o teorema ou identidade algébrica dedutível a partir dos postulados da álgebra de Boole conserva a validade se as operações (+) e (.) e os elementos neutros forem trocados.

$$F^{D}(x_{1}, x_{2},..., x_{n}, +,\cdot,0,1) = F(x_{1}, x_{2},..., x_{n},\cdot,+,1,0)$$

$$\overline{F(x_{1}, x_{2},..., x_{n})} = F^{D}(\overline{x}_{1}, \overline{x}_{2},..., \overline{x}_{n})$$

Exemplos:

$$[(x + \overline{y}) \cdot (z + 1)]^{D} = (x \cdot \overline{y}) + (z \cdot 0)$$

$$\overline{(x_1 + x_2) \cdot \overline{x}_3} = \overline{x}_1 \cdot \overline{x}_2 + x_3$$

Conjunto completo de operadores

- conjunto de operadores a partir dos quais se pode representar qualquer função booleana.

Х	У	x NAND y
0	0	1
0	1	1
1	0	1
1	1	0

 $\frac{}{x+y}$

Х	У	x NOR y	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Operadores NAND e NOR

Para escrever uma expressão booleana apenas com operadores NAND devese primeiro colocá-la na forma da soma de produtos e a seguir aplicar o teorema de involução e as leis de DeMorgan

Para escrever uma expressão booleana apenas com operadores NOR devese primeiro colocá-la na forma do produto de somas e a seguir aplicar o teorema de involução e as leis de DeMorgan

Exemplos:

$$x + (y \cdot \overline{z}) = \overline{\overline{x + (y \cdot \overline{z})}} = \overline{\overline{x} \cdot \overline{y \cdot \overline{z}}}$$

$$x + (y \cdot \overline{z}) = (x + y) \cdot (x + \overline{z}) = \overline{(x + y) \cdot (x + \overline{z})} = \overline{x + y + x + \overline{z}}$$

Funções booleanas

Uma função booleana é uma correspondência que associa um elemento do conjunto B={0,1} a cada uma das 2ⁿ combinações possíveis que as variáveis podem assumir.

Existem $2^{m \times 2^n}$ funções booleanas diferentes que podem ser implementadas num sistema digital com n entradas e m saídas.

Exemplos:

Para
$$n=1$$
, $m=1$: $2^{1\times 2^1}=4$

X	constante '0'	Х	X	constante '1'
0	0	0	1	1
1	0	1	0	1

Para
$$n=4$$
, $m=3$: $2^{3\times2^4} = 2^{48} = 281 474 976 710 656$

Funções duais

Para obter a função dual de f, deve-se aplicar o princípio de dualidade a f.

$$f^{D}(x_{1}, x_{2},..., x_{n}, +, \cdot, 0, 1) = f(x_{1}, x_{2},..., x_{n}, \cdot, +, 1, 0)$$

Uma função f é auto-dual se $f = f^{\mathbb{D}} \implies f(x_1, x_2, ..., x_n) = f(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)$

Exemplo:

$$f(x, y, z) = x \cdot y + x \cdot \overline{z} + y \cdot \overline{z}$$

$$f^{D}(x, y, z) = (x + y) \cdot (x + \overline{z}) \cdot (y + \overline{z}) =$$

$$= (x + y \cdot \overline{z}) \cdot (y + \overline{z}) =$$

$$= x \cdot y + x \cdot \overline{z} + y \cdot \overline{z} = f(x, y, z)$$

Х	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Representação de funções

- tabular (tabela de verdade)
- algébrica
- esquemática (circuitos lógicos)

Representação algébrica inclui frequentemente termos redundantes:

$$f(x, y, z) = \overline{x} \cdot \overline{y} \cdot z + x \cdot \overline{y} \cdot \overline{z} + x \cdot \overline{y} \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot z$$

Representação tabular é única:

Х	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Representação esquemática:

Exercícios

Prove o teorema de simplificação: $\forall x,y \in B$ $x + \overline{x} \cdot y = x + y$

Prove o teorema de consenso: $\forall x,y,z \in B$ $x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$

Prove que o operador NAND é funcionalmente completo

Quantas funções booleanas diferentes se pode implementar num sistema digital com 2 entradas e 1 saída

As expressões seguintes estão corretas?

$$[x+y\cdot z]^D = x\cdot y + z \qquad [x+y\cdot z]^D = \overline{x}\cdot (\overline{y}+\overline{z})$$

Verifique se as funções seguintes são auto-duais:

$$f_1(x, y, z) = \overline{x} \cdot y + \overline{x} \cdot z + y \cdot z$$

$$f_2(x, y) = \overline{x} \cdot y + x \cdot \overline{y}$$

Exercícios (cont.)

Exprima a função y na forma mais simples recorrendo a operadores NAND.

$$y = x_{1} \cdot (x_{2} + \overline{x}_{3} \cdot x_{4}) + x_{2}$$

$$y = x_{1} \cdot x_{2} + x_{1} \cdot \overline{x}_{3} \cdot x_{4} + x_{2} = x_{2} + x_{1} \cdot \overline{x}_{3} \cdot x_{4}$$

$$y = \overline{x_{2} + x_{1} \cdot \overline{x}_{3} \cdot x_{4}} = \overline{\overline{x}_{2} \cdot \overline{x}_{1} \cdot \overline{x}_{3} \cdot x_{4}}$$

Exprima a função y na forma mais simples recorrendo a operadores NOR.

$$y = x_1 \cdot (x_2 + \overline{x}_3 \cdot x_4) + x_2$$

$$y = (x_1 + x_2) \cdot (x_2 + \overline{x}_3 \cdot x_4 + x_2) = (x_1 + x_2) \cdot (x_2 + \overline{x}_3 \cdot x_4)$$

$$y = (x_1 + x_2) \cdot (x_2 + \overline{x}_3) \cdot (x_2 + x_4)$$

$$y = \overline{(x_1 + x_2) \cdot (x_2 + \overline{x}_3) \cdot (x_2 + x_4)} = \overline{(x_1 + x_2) + \overline{(x_2 + \overline{x}_3)} + \overline{(x_2 + x_4)}}$$

Introdução aos Sistemas Digitais

Teorema de Shannon
Formas canónicas
Irrelevancias

Minimização algébrica de funções Booleanas

Termos mínimo e máximo

Termo mínimo de ordem *i* (m_i) - produto lógico de *n* variáveis booleanas independentes, em que cada uma delas aparece uma e uma só vez, não complementada ou complementada consoante toma valores 1 ou 0, respetivamente, na i-ésima combinação das variáveis independentes.

Termo máximo de ordem i (M_i) - soma lógica de n variáveis booleanas independentes, em que cada uma delas aparece uma e uma só vez, não complementada ou complementada consoante toma valores 0 ou 1, respetivamente, na i-ésima combinação das variáveis independentes.

	Х	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$m_0 = \overline{x} \cdot \overline{y} \cdot \overline{z}$$
 $M_0 = x + y + z$
 $m_5 = x \cdot \overline{y} \cdot z$ $M_5 = \overline{x} + y + \overline{z}$

$$m_5 = x \cdot \overline{y} \cdot z$$
 $M_5 = \overline{x} + y + \overline{z}$

$$m_i = \overline{M_i} \qquad i = 0, 1, \dots, 2^n - 1$$

Expansão de Shannon

Qualquer função $f(x_0, x_1,...,x_{n-1})$ pode ser representada na forma seguinte:

$$f(x_0, x_1, ..., x_{n-1}) = \overline{x}_0 \cdot f(0, x_1, ..., x_{n-1}) + x_0 \cdot f(1, x_1, ..., x_{n-1})$$

Indução perfeita:

Se
$$x_0 = 0$$
 temos: $f(0, x_1, ..., x_{n-1}) = 1 \cdot f(0, x_1, ..., x_{n-1}) + 0 \cdot f(1, x_1, ..., x_{n-1})$

Se
$$x_0 = 1$$
 temos: $f(1, x_1, ..., x_{n-1}) = 0 \cdot f(0, x_1, ..., x_{n-1}) + 1 \cdot f(1, x_1, ..., x_{n-1})$

1^a forma canónica

Estendendo para 2 variáveis:

$$f(x_0, x_1, ..., x_{n-1}) = \overline{x}_0 \cdot f(0, x_1, ..., x_{n-1}) + x_0 \cdot f(1, x_1, ..., x_{n-1}) =$$

$$= \overline{x}_0 \cdot \overline{x}_1 \cdot f(0, 0, x_2, ..., x_{n-1}) + \overline{x}_0 \cdot x_1 \cdot f(0, 1, x_2, ..., x_{n-1}) +$$

$$+ x_0 \cdot \overline{x}_1 \cdot f(1, 0, x_2, ..., x_{n-1}) + x_0 \cdot x_1 \cdot f(1, 1, x_2, ..., x_{n-1})$$

Continuando a expansão até x_{n-1} pode-se obter a 1ª forma canónica:

$$f(x_0, x_1, ..., x_{n-1}) = \sum_{i=0}^{2^n - 1} m_i \cdot f_i \qquad f_i = f((x_0, x_1, ..., x_{n-1}) = i)$$

Forma normal disjuntiva

DNF - disjunctive normal form

Formas canónicas

2ª forma canónica:

$$f(x_0, x_1, ..., x_{n-1}) = \overline{\overline{f(x_0, x_1, ..., x_{n-1})}} = \sum_{i=0}^{2^n - 1} \overline{f_i} \cdot m_i = \prod_{i=0}^{2^n - 1} (f_i + M_i)$$

Forma normal conjuntiva

CNF – conjunctive normal form

3ª forma canónica:

$$f(x_0, x_1, ..., x_{n-1}) = \overline{\overline{f(x_0, x_1, ..., x_{n-1})}} = \overline{\sum_{i=0}^{2^n - 1} f_i \cdot m_i} = \overline{\prod_{i=0}^{2^n - 1} \overline{f_i \cdot m_i}}$$

4ª forma canónica:

$$f(x_0, x_1, ..., x_{n-1}) = \overline{\overline{f(x_0, x_1, ..., x_{n-1})}} = \overline{\prod_{i=0}^{2^n - 1} f_i + M_i} = \overline{\sum_{i=0}^{2^n - 1} \overline{f_i + M_i}}$$

Implementação de funções

1ª forma canónica:
$$f(x_0, x_1, ..., x_{n-1}) = \sum_{i=0}^{2^{n-1}} m_i \cdot f_i$$

AND-OR

2ª forma canónica:
$$f(x_0, x_1, ..., x_{n-1}) = \prod_{i=0}^{2^{n-1}} (f_i + M_i)$$

OR-AND

3ª forma canónica:
$$f(x_0, x_1, ..., x_{n-1}) = \prod_{i=0}^{2^n-1} \overline{f_i \cdot m_i}$$

NAND-NAND

4ª forma canónica:
$$f(x_0, x_1, ..., x_{n-1}) = \sum_{i=0}^{2^n-1} \overline{f_i + M_i}$$

NOR-NOR

Formas canónicas (cont.)

Exemplo: Determinar as formas canónicas da função f(x,y,z)

$$f(x, y, z) = x \cdot y + \overline{z}$$

1°:
$$f(x, y, z) = x \cdot y \cdot (z + \overline{z}) + \overline{z} \cdot (x + \overline{x}) \cdot (y + \overline{y}) =$$

$$= x \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z} =$$

$$= x \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}$$

2°:
$$f(x,y,z) = (x+\overline{z}) \cdot (y+\overline{z}) =$$

$$= (x+y+\overline{z}) \cdot (x+\overline{y}+\overline{z}) \cdot (x+y+\overline{z}) \cdot (\overline{x}+y+\overline{z}) =$$

$$= (x+y+\overline{z}) \cdot (x+\overline{y}+\overline{z}) \cdot (\overline{x}+y+\overline{z})$$

$$f(x,y,z) = \overline{x \cdot y \cdot z + x \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}} = \overline{(x \cdot y \cdot z) \cdot \overline{(x \cdot y \cdot \overline{z})} \cdot \overline{(x \cdot \overline{y} \cdot \overline{z})} \cdot \overline{(\overline{x} \cdot y \cdot \overline{z})} \cdot \overline{(\overline{x} \cdot y \cdot \overline{z})}} = \overline{(x \cdot y \cdot z) \cdot \overline{(x \cdot y \cdot \overline{z})} \cdot \overline{(x \cdot y \cdot \overline{z})}}$$

4°:
$$f(x,y,z) = (x+y+\overline{z})\cdot(x+\overline{y}+\overline{z})\cdot(\overline{x}+y+\overline{z}) = \overline{(x+y+\overline{z})} + \overline{(x+\overline{y}+\overline{z})} + \overline{(x+y+\overline{z})}$$

Formas canónicas (cont.)

Exemplo: Determinar as formas canónicas da função f(x,y,z)

$$f(x, y, z) = x \cdot y + \overline{z}$$

	X	У	Z	f(x,y,z)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

1^a:
$$f(x, y, z) = \sum m(0, 2, 4, 6, 7)$$

2°:
$$f(x, y, z) = \prod M(1,3,5)$$

3°:
$$f(x, y, z) = \overline{\prod \overline{m(0, 2, 4, 6, 7)}}$$

4°:
$$f(x, y, z) = \overline{\sum \overline{M(1,3,5)}}$$

Irrelevâncias

Condições irrelevantes – combinações das variáveis de entrada para as quais a saída não se conhece ou é irrelevante.

G	R	S
(verde)	(vermelho)	(som)
0	0	0
0	1	0
1	0	1
1	1	X

x – don't care

O circuito real para todas as condições irrelevantes vai produzir nas saídas quaisquer valores válidos (0 ou 1).

O projetista tem a liberdade de atribuir valores 0 ou 1 às saídas respetivas.

Condições irrelevantes e formas canónicas

G	R	S
(verde)	(vermelho)	(som)
0	0	0
0	1	0
1	0	1
1	1	Х

$$\mathbf{1}^{\mathbf{a}} \colon \quad S(G,R) = \sum m(2) + \sum d(3) = G \cdot \overline{R} + G \cdot R$$

$$\mathbf{2^{a}} \colon \quad S(G,R) = \prod M(0,1) \cdot \prod D(3) = (G+R) \cdot (G+\overline{R}) \cdot (\overline{G}+\overline{R})$$

$$\mathbf{3^a} \colon \ S(G,R) = \overline{\prod \overline{m(2)} \cdot \overline{d(3)}} = \overline{\overline{G \cdot \overline{R}} \cdot \overline{G \cdot R}}$$

$$\mathbf{4^a} \colon \quad S(G,R) = \overline{\sum \overline{M(0,1)} + \overline{D(3)}} = \overline{(G+R)} + \overline{(G+\overline{R})} + \overline{(\overline{G}+\overline{R})}$$

Análise de circuitos

Quê função é realizada no circuito seguinte?

É possível reduzir o número de componentes?

Quantos níveis de atraso tem o circuito?

É possível reduzir o número de níveis de atraso?

É possível implementar o circuito só com portas NAND?

Análise de circuitos

Compare os circuitos seguintes em termos de custos de implementação.

Será que os circuitos realizam a mesma função lógica?

Exercícios

Represente nas formas canónicas a função f: $f(x, y, z) = x \cdot y + \overline{x} \cdot \overline{z} + y \cdot z$

$$f(x, y, z) = \sum m(0, 2, 3, 6, 7) = \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + x \cdot y \cdot \overline{z} + x \cdot y \cdot \overline{z} + x \cdot y \cdot \overline{z}$$

$$f(x, y, z) = \prod M(1,4,5) = (x + y + \overline{z}) \cdot (\overline{x} + y + z) \cdot (\overline{x} + y + \overline{z})$$

$$f(x,y,z) = \overline{\prod \overline{m(0,2,3,6,7)}} = \overline{(\overline{x} \cdot \overline{y} \cdot \overline{z}) \cdot (\overline{x} \cdot y \cdot \overline{z}) \cdot (\overline{x} \cdot y \cdot z) \cdot (\overline{x} \cdot y \cdot \overline{z}) \cdot (\overline{x} \cdot y \cdot \overline{z})} \cdot \overline{(x \cdot$$

$$f(x,y,z) = \overline{\sum \overline{M(1,4,5)}} = \overline{(x+y+\overline{z})} + \overline{(\overline{x}+y+z)} + \overline{(\overline{x}+y+\overline{z})}$$

Minimize esta função aplicando métodos de minimização algébrica que conhece.

Exercícios (cont.)

Minimize funções seguintes aplicando métodos de minimização algébrica:

$$f(a,b,c) = \overline{a} \cdot b + \overline{a} \cdot \overline{c} + a \cdot c + a \cdot \overline{b} + b + c$$

$$f(a,b,c) = \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot c + a \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c$$

Introdução aos Sistemas Digitais

Minimização de funções Booleanas Método de Karnaugh

Minimização de funções

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$

Aplicando o teorema de adjacência a dois primeiros termos:

$$f(x, y, z) = \overline{x} \cdot y + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$
 4 termos, 8 literais

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + y \cdot \overline{z} + z \cdot (\overline{x} \cdot y + x + \overline{y}) =$$

$$= y \cdot \overline{z} + z \cdot (y + x + \overline{y}) = \text{(absorção, simplificação)}$$

$$= y \cdot \overline{z} + z = \text{(complementação, elemento absorvente)}$$

$$= y + z \quad \text{2 literais} \quad \text{(simplificação)}$$

- Expressões irredutíveis podem não ser mínimas
- Pode existir mais que uma expressão mínima
- O processo de simplificações está sujeito a erros

Critérios de minimização

Para circuitos a dois níveis pode-se estabelecer seguintes critérios de minimização:

- Minimizar o número de termos (número de portas do 1º nível do circuito e número de entradas no 2º nível do circuito).
- Minimizar o número de literais (número de entradas nas portas do 1º nível do circuito).
- Os métodos de minimização não consideram o custo de inversão das variáveis de entrada.

Exemplos:

```
f(a,b,c,d) = \overline{a} \cdot \overline{c} \cdot \overline{d} + b \cdot d + a \cdot c \qquad \textbf{3 termos, 7 literais}
f(a,b,c,d) = (\overline{a} + c + d) \cdot (b + c + \overline{d}) \cdot (a + b + \overline{c}) \cdot (a + \overline{c} + d) \qquad \textbf{4 termos, 12 literais}
```

$$g(a,b,c) = \overline{a} \cdot b + \overline{a} \cdot \overline{c}$$
 2 termos, 4 literais $g(a,b,c) = \overline{a} \cdot (b+\overline{c})$ 2 termos, 3 literais

Minimização de circuitos AND-OR

A soma de produtos mínima da função *f* é a soma de produtos que tem o número mínimo de produtos e o número mínimo de literais (comparando com todas as outras somas de produtos que possam existir com o mesmo número de produtos).

Exemplo:

$$f(a,b,c,d) = \overline{a} \cdot b \cdot \overline{c} + \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{c} \cdot \overline{d}$$
 4 termos, 12 literais
$$f(a,b,c,d) = \overline{a} \cdot b \cdot \overline{c} + \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{c} \cdot d$$
 3 termos, 9 literais
$$f(a,b,c,d) = \overline{a} \cdot \overline{c} \cdot \overline{d} + b \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c}$$
 3 termos, 9 literais

Todos os métodos de minimização são baseados na aplicação do teorema de adjacência:

$$\forall x,y \in B$$
 $x \cdot y + x \cdot y = x$
 $(x + y) \cdot (x + y) = x$

Mapas de Karnaugh

Um mapa de Karnaugh é a representação gráfica da tabela de verdade de uma função lógica.

			(
z X)	00	01	11	10
0	0	2	6	4
z 1	1	3	7	5
•			/	

	zw ^{Xy}	00	01	11	10	1
	00	0	4	12	8	
	01	1	5	13	9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_	11	3	7	15	11	W
Z	10	2	6	14	10	'

Método de Karnaugh (3 variáveis)

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$

	X	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
2 3 4 5 6	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

$$f(x, y, z) = y + z$$

- 2 implicantes primos
- 4 células distintas
- 2 implicantes primos essenciais

Método de Karnaugh (4 variáveis)

	Х	У	Z	W	f(X,Y,Z,W)
0	0	0	0	0	$\begin{array}{c} f(x,y,z,w) \\ 0 \end{array}$
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	۲	0	0	0
5	0	τ-	0	1	0
6	0	۲	1	0	0
7	0	τ-	1	~	0
8	1	0	0	0	0
9	1	0	0	~	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	~	1
14	1	1	1	0	1
15	1	1	1	1	0

- 4 implicantes primos
- 4 células distintas
- 2 implicantes primos essenciais

$$f(x, y, z, w) = \overline{y} \cdot w + x \cdot y \cdot \overline{w} + x \cdot y \cdot \overline{z}$$

Método de Karnaugh (5 variáveis)

$$f(a,b,c,d,e) = \overline{a} \cdot \overline{b} \cdot d \cdot e + \overline{a} \cdot c \cdot d + \overline{a} \cdot b \cdot d \cdot e + a \cdot d \cdot e + a \cdot d \cdot c \cdot \overline{e}$$

- 2 implicantes primos
- 8 células distintas
- 2 implicantes primos essenciais

$$f(a,b,c,d,e) = d \cdot e + c \cdot d$$

Método de Karnaugh

- 1. Preencher o mapa de Karnaugh.
- 2. Encontrar todos os implicantes primos.

Uma função p implica a função lógica f se em todos os casos quando p = '1', f também é igual a '1'.

O implicante primo da função *f* é um produto *p* que implica *f*, tal que se removêssemos um literal do *p* o produto resultante já não vai implicar *f*.

Num mapa de Karnaugh, o implicante primo é um conjunto de 2ⁿ células adjacentes que contêm valores '1' e tais que se tentássemos expandir o conjunto até 2ⁿ⁺¹ células este passará a incluir células com '0'.

- 3. Marcar no mapa todas as células distintas células que só são cobertas por um único implicante primo.
- 4. Encontrar todos os implicantes primos essenciais implicantes primos que cobrem uma ou mais células distintas.
- 5. Incluir na soma mínima todos os implicantes primos essenciais e dos restantes implicantes primos escolher o menor número daqueles que contêm menos literais.

Minimização de circuitos OR-AND

O produto de somas mínimo da função *f* é o produto de somas que tem o número mínimo de somas e o número mínimo de literais (comparando com todos os outros produtos de somas que possam existir com o mesmo número de somas).

A minimização pode ser feita aplicando o princípio da dualidade e analisando células com '0' no mapa de Karnaugh.

$$f(x, y, z) = \overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot y \cdot z + x \cdot z + \overline{y} \cdot z + y \cdot \overline{z}$$

	Х	У	Z	f(x,y,z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	1
2 3 4 5 6	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

zXV	00	01	11	10	
0	0	1 2	1 6	0 4	
z 1	1 1	1 3	1 7	1 5	

$$f(x, y, z) = y + z$$

Circuitos OR-AND (4 variáveis)

	X	У	Z	W	f(x,y,z,w)
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	~	~	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12 13	1	1	0	0	1
13	1	1	0	1	1
14 15	1	1	1	0	1
15	1	1	1	1	0

- 3 implicados primos
- 8 células distintas
- 3 implicados primos essenciais

$$f(x, y, z, w) = (y + w) \cdot (x + \overline{y}) \cdot (\overline{y} + \overline{z} + \overline{w})$$

Condições irrelevantes

No mapa de Karnaugh as combinações irrelevantes deverão assumir valores que permitem reduzir o número de literais em cada um dos implicantes (implicados) primos (i.e. permitem aumentar as dimensões de cada conjunto de 2ⁿ células).

		X	У	Z	f(x,y,z)
(0	0	0	0	0
•	1	0	0	1	0
4	2	0	1	0	1
4	3	0	1	1	1
4	4	1	0	0	X
ļ	5 6	1	0	1	X
(6	1	1	0	X
•	7	1	1	1	X

$$f(x, y, z) = y$$

Exercícios

Obtenha a forma mínima da função *f* na soma de produtos e produto de somas com o método de Karnaugh.

$$f(x, y, z) = x \cdot y + \overline{x} \cdot \overline{z} + y \cdot z$$
$$f(x, y, z) = y + \overline{x} \cdot \overline{z} = (\overline{x} + y) \cdot (y + \overline{z})$$

Determine a forma mínima das funções representadas nos seguintes mapas de Karnaugh (na soma de produtos e produto de somas):

				8	<u>a</u>	
(at cd \	00	01	11	10	
	00	1 ₀	0 4	0 ₁₂	0 8	
	01	0 1	1 5	1	0 9	d
С	11	03	1 7	1	0_11	ď
C	10	1 2	1 6	1	1	
		,	t	<u> </u>		

Exercícios (cont.)

Encontre exemplos de funções de 4 variáveis que obedeçam aos seguintes critérios:

- têm duas formas mínimas;
- a soma de produtos mínima e o produto de somas mínimo têm o mesmo número de termos e literais;
- a soma de produtos mínima tem <u>menos termos e literais</u> que o produto de somas mínimo;
- a soma de produtos mínima tem <u>mais termos e literais</u> que o produto de somas mínimo.

Exercícios (cont.)

Preencha diretamente o mapa de Karnaugh da seguinte função e obtenha a soma de produtos mínima:

$$f(x, y, z) = (x \oplus y) \cdot z + \overline{x} \cdot (y \oplus z)$$

Encontre um exemplo de função de 3 variáveis para a qual a soma de produtos mínima tem menos termos e literais que o produto de somas mínimo.

Quantos implicantes primos e implicantes primos essenciais tem a função seguinte?

$$f(a,b,c,d) = \sum m(2,6,7,8,9,10,13,15)$$

Introdução aos Sistemas Digitais

Sintese de circuitos combinatórios Manipulação de circuitos

Síntese de circuitos

Partir de uma descrição da função pretendida e sintetizar o circuito que implementa esta função.

- Identificar entradas e saídas.
- 2. Construir a tabela de verdade.
- 3. Obter expressão mínima para a(s) saída(s).
- 4. Desenhar o circuito.

Exemplo:

Construa um controlador de display de 7 segmentos (para representar dígitos decimais).

Controlador de display de 7 segmentos

BCD	número		segmentos individuais						
ВСО	numero	а	b	С	d	е	f	g	
0000	0	1	1	1	1	1	1		
0001	1		1	1					
0010	2	1	1		1	1		1	
0011	3	1	1	1	1			1	
0100	4		1	1			1	1	
0101	5	1		1	1		1	1	
0110	6	1		1	1	1	1	1	
0111	7	1	1	1					
1000	8	1	1	1	1	1	1	1	
1001	9	1	1	1	1		1	1	
101x	Х	Х	Х	Х	Х	Х	Х	Х	
11xx	X	Χ	Х	Х	Х	Х	Х	Х	

Controlador de display de 7 segmentos

Obter expressões mínimas para as saídas a..g (por exemplo com o método de Karnaugh).

Realizar as funções obtidas

..

g(BCD(3), BCD(2), BCD(1), BCD(0))

com portas lógicas elementares (ou outros blocos mais complexos – matéria das próximas aulas).

Nomes de sinais

Um sinal está ativo a *High* se este força uma ação ou denota uma condição quando está a 1.

Um sinal está ativo a *Low* se este força uma ação ou denota uma condição quando está a *O*.

Para clarificar a interpretação de circuitos deve-se indicar explicitamente que sinais são ativos Low (nome_de_sinal_L) e que sinais são ativos High (nome_de_sinal).

Exemplo:

Realizar ação Go se os sinais Ready (ativo a Low) e Request (ativo a High) forem ativados.

Projeto bubble-to-bubble

Convém, sempre que possível, praticar *bubble-to-bubble design* que permite simplificar o entendimento da função dum circuito desenhando-o de modo que as inversões existentes cancelam umas outras.

De acordo com a lei de DeMorgan:

Projeto bubble-to-bubble (cont.)

Conversão de formas (AND-OR -> NAND-NAND)

Um circuito AND-OR a 2 níveis pode ser convertido num circuito NAND-NAND a 2 níveis invertendo as saídas das portas do 1º nível e as entradas das portas do 2º nível.

De acordo com a lei de DeMorgan:

Conversão de formas (OR-AND -> NOR-NOR)

Um circuito OR-AND a 2 níveis pode ser convertido num circuito NOR-NOR a 2 níveis invertendo as saídas das portas do 1º nível e as entradas das portas do 2º nível.

De acordo com a lei de DeMorgan:

Conversão de formas (AND-OR -> NOR-NOR)

Um circuito AND-OR a 2 níveis pode ser convertido num circuito NOR-NOR a 2 níveis invertendo duas vezes as entradas das portas do 1º nível e as saídas das portas do 2º nível.

Conversão de formas (OR-AND -> NAND-NAND)

Um circuito OR-AND a 2 níveis pode ser convertido num circuito NAND-NAND a 2 níveis invertendo duas vezes as entradas das portas do 1º nível e as saídas das portas do 2º nível.

De acordo com a lei de DeMorgan:

Conversão de circuitos multi-nível

Um circuito AND-OR multi-nível pode ser convertido num circuito NAND-NAND multi-nível invertendo as saídas das portas dos níveis ímpares e as entradas das portas dos níveis pares.

Um circuito OR-AND multi-nível pode ser convertido num circuito NOR-NOR multi-nível invertendo as saídas das portas dos níveis ímpares e as entradas das portas dos níveis pares.

Um circuito AND-OR multi-nível pode ser convertido num circuito NOR-NOR multi-nível invertendo duas vezes as entradas das portas dos níveis ímpares e as saídas das portas dos níveis pares.

Um circuito OR-AND multi-nível pode ser convertido num circuito NAND-NAND multi-nível invertendo duas vezes as entradas das portas dos níveis ímpares e as saídas das portas dos níveis pares.

Conversão de circuitos multi-nível (cont.)

Exemplo:

Converta o circuito seguinte em circuitos NAND-NAND e NOR-NOR.

Exercícios

Represente o circuito nas formas NOR-NOR e NAND-NAND.

