Toronto's

Identifying the most touristic clusters

Data

- City's borders:
- https://en.wikipedia.org/wiki /List_of_postal_codes_of_Cana da:_M
- Foursquare API's
- Venue data

Data

• City's borders:

https://en.wikipedia.org/wiki/List_of_post al_codes_of_Canada:_M

	Postal Code	Borough	Neighborhood
0	M1A	Not assigned	Not assigned
1	M2A	Not assigned	Not assigned
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Regent Park, Harbourfront

Foursquare API'sVenue data

Application of Coffee Shop density as a mean of Touristic places identification

```
In [22]: toronto_coffee = toronto_venues.loc[(toronto_venues['Venue Category'] == 'Coffee Shop') | (toronto_venues['Venue Category'] == 'Café')]

Out[22]: (273, 7)

In [29]: # set number of clusters
kclusters = 15
toronto_coffee_cluster = toronto_coffee[['Venue Latitude','Venue Longitude']]
# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=2).fit(toronto_coffee_cluster)|
# check cluster labels generated for each row in the dataframe
#kmeans.labels_[0:10]
kmeans.labels_[0:10]
```

Tourisitc clusters (k_means)

