COMS W4701: Artificial Intelligence

Lecture 7: Reinforcement Learning

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Reinforcement learning

Passive RL (prediction) vs active RL (control)

Monte Carlo methods (averaging samples)

Temporal difference methods

Learning from Experience

- Dynamic programming requires knowledge of environment model
- Agent is finding policy in advance (no actions taken)
- But models are often inaccessible or difficult to compute

- Reinforcement learning: Find optimal policies through samples
- Interact with environment, receive rewards, and formulate policies

This generalizes the bandit problem (now with states and actions)

Reinforcement Learning

- We still have an underlying MDP
 - A set of states S
 - A set of actions A
 - A transition model T(s, a, s')
 - A reward function R(s, a, s')

- Still looking for a policy or value function
- We no longer know (or use) T or R!
- Instead, we perform actions and receive feedback from environment

State Values from Sampling

- Idea: A state's value can be estimated from observed utilities after visiting that state
- Monte Carlo: Estimate state values by averaging utilities over multiple episodes

Monte Carlo Prediction

- **Prediction**: Estimate state values for a fixed policy π (policy evaluation)
- First-visit MC: A value is estimated after first visit to state within episode
- We generate many episodes of s, a, r sequences following π :

$$E_i = (s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T)$$

• Utility estimate of first appearance of s_t in episode E_i :

$$G_i(s_t) = \sum_{j=0}^{T-t-1} \gamma^j r_{j+t+1}$$

• V^{π} is estimated by averaging all individual utility samples:

$$V^{\pi}(s) = \frac{1}{N} \sum_{i} G_{i}(s)$$

Example: Mini-Gridworld

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy: $\pi(s) = L$ for all states s
- Each episode ends after 5 actions (finite-horizon)

+3	-2	+1
\overline{A}	В	C

- Episode 1: (A, +3, A, -2, B, +1, C, -2, B, +3)
- Episode 2: (A, -2, B, +3, A, -2, B, +1, C, -2)
- Episode 3: (C, +1, C, -2, B, +3, A, -2, B, +3)

Episode 1:

$$G_1(A) = 3 + \gamma(-2) + \gamma^2(1) + \gamma^3(-2) + \gamma^4(3)$$

$$G_1(B) = 1 + \gamma(-2) + \gamma^2(3)$$

$$G_1(C) = -2 + \gamma(3)$$

•
$$V^{\pi}(s) = \frac{1}{3} (G_1(s) + G_2(s) + G_3(s))$$

Episode 2:

$$G_2(A) = -2 + \gamma(3) + \gamma^2(-2) + \gamma^3(1) + \gamma^4(-2)$$

$$G_2(B) = 3 + \gamma(-2) + \gamma^2(1) + \gamma^3(-2)$$

$$G_2(C) = -2$$

Episode 3:

$$\begin{split} G_3(A) &= -2 + \gamma(3) \\ G_3(B) &= 3 + \gamma(-2) + \gamma^2(3) \\ G_3(C) &= 1 + \gamma(-2) + \gamma^2(3) + \gamma^3(-2) + \gamma^4(3) \end{split}$$

Finer Points

- Some states may be visited more often than others
- Values converge to true V^{π} after many, many visits

- Estimates of different state values are independent (in contrast to DP)
- Result: Computational complexity of estimating specific state values is independent of state space size!

Can choose to focus on certain states and ignore others

Constant- α Monte Carlo

• The online version of MC prediction uses the following update to a state value $V^{\pi}(s_t)$:

$$V^{\pi}(s_t) \leftarrow \frac{NV^{\pi}(s_t) + G_t}{N+1} = V^{\pi}(s_t) + \frac{1}{N+1} \left(G_t - V^{\pi}(s_t) \right)$$

- Update is of the form "old value" + "weighted error"
- If the "error" $G_t V^{\pi}(s_t) = 0$, no update would occur
- The weight 1/(N+1) shrinks as we see more samples over time
- Constant- α MC: We can use an arbitrary learning rate α

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \big(G_t - V^{\pi}(s_t)\big)$$

Temporal-Difference Update

- There is another way that we can estimate G
- Recall from DP: $V^{\pi}(s_t)$ depends on values of successors from s_t
- One-step TD update (TD(0)): $V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) V^{\pi}(s_t))$
- Unlike DP but like MC, TD uses samples to estimate expected values
- Unlike MC but like DP, TD bootstraps by using current estimates $V^{\pi}(s')$ to update $V^{\pi}(s)$

TD(0) for Prediction

• Given: Policy π , step size α between 0 and 1

- Initialize $V^{\pi}(s) \leftarrow 0$
- Loop:
 - Initialize starting state s if needed
 - **Generate** sequence $(s, \pi(s), r, s')$
 - $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r + \gamma V^{\pi}(s') V^{\pi}(s))$
 - $\blacksquare s \leftarrow s'$

Example: Mini-Gridworld

- All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$
- Policy to evaluate: $\pi(s) = L$ for all states

• Observed state and reward sequence: (A, +3, A, -2, B, +1, C, -2, B, +3, A)

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \big(r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \big)$$

Transition	(A, +3)	(A,-2)	(B, +1)	(C,-2)	(B, +3)
$V^{\pi}(A)$	1.5	-0.25	-0.25	-0.25	-0.25
$V^{\pi}(B)$	0	0	0.5	0.5	1.65
$V^{\pi}(C)$	0	0	0	-0.8	-0.8

Optimality

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta_t$$

- TD methods perform updates immediately with no episodic structure (MC)
- Useful if problems have long episodes or are continuing tasks
- For sufficiently small α , average values of V^{π} converge to true values
- If α is constant, V^{π} prone to jumping around even near convergence

• In practice, we try to decrease α to 0 over time

MDP Method Comparison

ε -Greedy Policies

- Control problem: Learn a better or optimal policy instead of evaluating a fixed one
- How to choose which action to take?
- Recall bandits: exploration vs exploitation
- Exploit to maximize expected utility, explore to learn new information
- ε-greedy policy: Policy becomes stochastic; choose best action most of the time, but occasionally execute random action instead

$$\Pr(a|s) = \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|A(s)|} & \text{for } a = \arg\max_{a'} Q(s, a') \\ \frac{\varepsilon}{|A(s)|} & \text{for all other actions } a \end{cases}$$

Q-Values

Another issue: State values alone are insufficient for extracting a new policy without a model!

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$$

- Solution: Learn Q (state-action) values instead
 - Similar to action values in bandit problems

$$Q(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$$

$$V^*(s) = \max_a Q(s, a)$$
 $\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$

TD Learning for Control

- We can convert our TD learning rule for state values to one for Q-values
- Once we sufficiently learn the Q-values, we can extract a policy π
- Recall TD learning: Immediate, bootstrapped updates; no episodic structure

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \big(r + \gamma V^{\pi}(s') - V^{\pi}(s)\big)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

- New issue: What is Q(s', a')? Specifically, what is a'? given by pi
- Approach 1: Use action a' that is <u>actually taken from s'</u> (can be exploratory action)
- Approach 2: Use action a' corresponding to <u>exploitative</u> action only (even if not taken)

SARSA

- **Given:** Step size α , exploration rate ϵ
- Initialize $Q(s, a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

Loop:

- Initialize starting state s, action $a = \pi(s)$ if needed
- Generate sequence $(s, a, r, s'), a' \leftarrow \pi(s')$
- $Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') Q(s,a))$
- $s \leftarrow s', a \leftarrow a'$

Q-Learning

- **Given:** Step size α , exploration rate ϵ
- Initialize $Q(s, a) \leftarrow 0$, behavior policy π (e.g., ε -greedy)

- Loop:
 - Initialize starting state s if needed, action $a = \pi(s)$
 - **Generate** sequence (s, a, r, s')

$$\blacksquare s \leftarrow s'$$

Example: Mini-Gridworld

- Suppose currently Q(A, L) = 1.5, Q(A, R) = 0
- Behavior policy is ε-greedy

- Observed (s, a, r, s') sequence: A, L, +3, A
- Suppose behavior policy generates a' = R (explore)

$$\gamma = 0.8$$
 $\alpha = 0.5$

- SARSA: $Q(A, L) \leftarrow Q(A, L) + \alpha (r + \gamma \mathbf{Q}(A, \mathbf{R}) Q(A, L)) = 2.25$
- Q-learning: $Q(A, L) \leftarrow Q(A, L) + \alpha \left(r + \gamma \max_{a} Q(A, a) Q(A, L)\right) = 2.85$

Cliff Walking

- Start and goal terminal states, in addition to "cliff" terminal states
- Living reward of -1 in most states; "cliff" states reward -100
- SARSA learns "safer" path away from cliff, higher rewards on average
- Q-learning learns optimal path along cliff, despite lower rewards due to exploration

Solving Sequential Decision Problems

	Evaluate a fixed policy π : Solve for V^{π}	Learn an optimal policy π^* or optimal value function V^*
Dynamic Programming (known model <i>T</i> , <i>R</i>)	 Solve a linear system Iterative policy evaluation (step 1 of policy iteration) 	Value iterationPolicy iteration
Reinforcement Learning (no model)	 First-visit Monte Carlo Constant-α Monte Carlo TD(0) 	SARSAQ-learningfollowed by max / argmax operations

Function Approximation*

- In real problems, often have too many state-action combinations
- States may share common features—no need to visit all of them!
- Familiar idea: Evaluation functions of states using features

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Now instead of storing |S||A| tabular values, we only have n weight parameters
- As with games, evaluation function must reflect true utility
- Sharing common features among states can be misleading

Function Approximation*

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- We now learn the function weights w_i instead of Q-values
- How to update from observed samples?
- Before: $Q(s,a) \leftarrow Q(s,a) + \alpha(sample Q(s,a))$ $sample = r + \gamma \max_{a'} Q(s',a')$ $Q(s,a) \leftarrow Q(s,a) + \alpha(difference)$
- Similar idea for function weights: $w_i \leftarrow w_i + \alpha(difference)f_i(s, a)$
- Idea: Weights of more active features receive larger updates
- Any Q-value can potentially change whenever a feature weight is updated!

Deep Reinforcement Learning

- We've gone from learning a table of values to a bunch of feature weights
- Eval functions don't have to be linear—they can be any black box that relates stateaction pairs to (Q-)values
- Deep reinforcement learning uses neural networks as function approximators

Policy Search*

- Instead of learning values and then extracting policy, we can also learn policy directly
- Policy search: Directly learn a policy represented by Q-functions $\hat{Q}_{\theta}(s,a)$
- Each combination of *parameters* θ produces a different policy
- Not the same as Q-learning!! We don't care about Q^* , just a good policy
- Same in game trees with evaluation functions—we don't care about true utilities if we have good actions/moves
- Policy search methods iteratively improve θ parameters using policy gradients

Summary

- Reinforcement learning: agents take actions, receive percepts, and tweak actions over time to maximize rewards
- Prediction: Evaluate a given policy
- Control: Learn an optimal policy
- Monte Carlo methods estimate by averaging samples of episodic returns
- Temporal difference methods bootstrap by using estimates to inform other estimates
- RL has many generalizations, subject of much current research