Análisis y Diseño de Algoritmos

Divide y Vencerás

Francisco Javier Mercader Martínez Pedro Alarcón Fuentes

En esta memoria se explicará el código utilizado para resolver el problema de encontrar, en una cadena dada, la subcadena de longitud \mathbf{m} que contiene la mayor cantidad de apariciones consecutivas de un carácter específico \mathbf{C} . Las dos funciones son:

```
    resolver_directo(A, m, C)
    divide_y_venceras(A, m, C, 1, r)
```

Durante el desarrollo del algoritmo nos dimos cuenta de que resultaba más costoso que la función **resolver_directo** de manera que tratamos de optimizar los resultado minimizando las llamadas recursivas. A continuación se incluirán tanto el primer diseño de la función **divide_y_venceras** y la gráfica que compara el rendimiento de ambas funciones.

```
def divide y venceras(A, m, C, l, r):
    if r - 1 + 1 <= m:
        return resolver_directo(A[1:r + 1], m, C)
   mid = (1 + r) // 2
    # Soluciones para las dos mitades
    sol izq = divide y venceras(A, m, C, 1, mid)
    sol_der = divide_y_venceras(A, m, C, mid + 1, r)
    # Solución que cruza el centro
    max central consecutivos = 0
    inicio_central = -1
    # Buscar subcadena que cruce el centro
    for i in range(mid - m + 1, mid + 1):
        if i < l or i + m - 1 > r:
            continue
        subcadena = A[i:i + m]
        contador actual = 0
        max actual = 0
        for char in subcadena:
            if char == C:
                contador_actual += 1
                max actual = max(max actual, contador actual)
            else:
                contador actual = 0
```

```
if max_actual > max_central_consecutivos:
    max_central_consecutivos = max_actual
    inicio_central = i

sol_central = (inicio_central, max_central_consecutivos)

return max(sol_izq, sol_der, sol_central, key=lambda x: x[1])
```

Tiempo Acumulado de los Algoritmos por Iteración

1. Función resolver_directo(A, m, C)

```
def resolver_directo(A, m, C):
    """
    Encuentra la subcadena óptima utilizando un método directo

    :param A: Cadena original (str)
    :param m: Longitud de la cadena (int)
    :param C: Carácter a buscar (str)
    :return: tuple: Índice de inicio de la subcadena óptima y el número máximo de
    apariciones consecutivas.
    """
    n = len(A)
    max_consecutivos = 0
    inicio_optimo = -1

# Recorrer todas las subcadenas de longitud m
    for i in range(n - m + 1):
```

```
subcadena = A[i:i + m]
    # Contar el número máximo de apariciones consecutivas de C en la
    → subcadena
    contador actual = 0
    max actual = 0
    for char in subcadena:
        if char == C:
            contador_actual += 1
            if contador actual > max actual:
                max actual = contador actual
        else:
            contador_actual = 0
    # Actualizar la mejor solución encontrada
    if max_actual > max_consecutivos:
       max_consecutivos = max_actual
        inicio optimo = i
return inicio optimo, max consecutivos
```

Descripción general

Esta función implementa un algoritmo directo que examina todas las posibles de longitud ${\tt m}$ en la cadena ${\tt A}$ y determina cuál de ellas contiene el mayor número de apariciones consecutivas del carácter ${\tt C}$. Es un enfoque de fuerza bruta que garantiza encontrar la solución óptima al evaluar exhaustivamente todas las opciones posibles.

Parámetros de entrada

- A: Cadena original donde se buscarán las subcadenas.
- m: Longitud de las subcadenas a considerar.
- C: Carácter cuyo número de apariciones consecutivas se desea maximizar.

Proceso del algoritmo

1. Preparación:

- Calculamos **n**, que es la longitud de la cadena **A**.
- Inicializamos max_consecutivos en 0 para almacenar el máximo de C consecutivos encontrados hasta ahora.
- Inicializamos **inicio_optimo** en −1 para guardar el índice de inicio de la mejor subcadena encontrada.

2. Recorrido de subcadenas:

- Se utiliza un bucle for que va desde $\mathbf{i} = \mathbf{0}$ hasta $\mathbf{i} = \mathbf{n} \mathbf{m}$, de modo que se puedan extraer todas las subcadenas de longitud \mathbf{m} sin exceder los límites de la cadena.
- En cada iteración, se extrae la subcadena subcadena = A[i:i + m].

3. Cálculo de apariciones consecutivas:

- Para cada subcadena, se inicializan contador_actual y max_actual a 0.
- Recorremos cada carácter de la subcadena:
 - Si el carácter es igual a C, se incrementa contador_actual y se actualiza max_actual si contador_actual es mayor.
 - Si el carácter no es C, se reinicia contador_actual a 0.
- Este proceso permite determinar el número máximo de apariciones consecutivas de C en la subcadena actual.

4. Actualización de la mejor solución:

• Si max_actual es mayor que max_cosecutivos, se actualizan max_consecutivos con max_actual y inicio_optimo con el índice actual i.

5. Resultado:

• Al finalizar el bucle, se retorna una tupla (inicio_optimo, max_consecutivos), que indica el índice de inicio de la subcadena óptima y el número máximo de apariciones consecutivas de C en dicha subcadena.

Ejemplo de uso

```
##
## -- Prueba 1 --
## Índice de inicio: 0
## Máximo de apariciones consecutivas: 2
##
   -- Prueba 2 --
##
## Índice de inicio: 2122
## Máximo de apariciones consecutivas: 3
##
## -- Prueba 3 --
## Índice de inicio: 367
## Máximo de apariciones consecutivas: 2
##
##
   -- Prueba 4 --
## Índice de inicio: 4004
```

```
## Máximo de apariciones consecutivas: 3
##
    -- Prueba 5 --
##
   Índice de inicio: 239
   Máximo de apariciones consecutivas: 2
##
   -- Prueba 6 --
   Índice de inicio: 2556
  Máximo de apariciones consecutivas: 3
##
##
   -- Prueba 7 --
   Índice de inicio: 8681
   Máximo de apariciones consecutivas: 3
##
##
   -- Prueba 8 --
## Índice de inicio: 7545
  Máximo de apariciones consecutivas: 3
##
##
   -- Prueba 9 --
## Índice de inicio: 1096
   Máximo de apariciones consecutivas: 3
##
   -- Prueba 10 --
##
## Índice de inicio: 70
## Máximo de apariciones consecutivas: 2
```

Análisis de la complejidad

El algoritmo tiene una complejidad temporal lineal respecto al tamaño de la cadena A y la longitud

de las subcadenas m, ya que recorren n-m+1 subcadenas y, para cada una, se realiza un recorrido de longitud m. Por lo tanto tiene una complejidad teórica de $O(n \cdot m)$.

2. Función divide_y_venceras(A, m, C, 1, r)

```
def divide_y_venceras(A, m, C, 1, r):
    Esquema recursivo del algoritmo divide y vencerás.
    :param A: Cadena original (str)
    :param m: Longitud de la subcadena (int)
    :param C: Carácter a buscar (str)
    :param l: Índice izquierdo del rango actual (int)
    :param r: Índice derecho del rango actual (int)
    :return: tuple: Índice de inicio de la subcadena óptima y el número máximo de
   apariciones consecutivas.
    if r - 1 + 1 \le m:
        return resolver_directo(A[1:r + 1], m, C)
   mid = (1 + r) // 2
    # Soluciones para las dos mitades
    sol_izq = divide_y_venceras(A, m, C, 1, mid)
    sol_der = divide_y_venceras(A, m, C, mid + 1, r)
    # Solución que cruza el centro
    max central consecutivos = 0
    inicio_central = -1
    # Optimización de la solución central
    max_izq = 0
    contador = 0
    for i in range(mid, 1 - 1, -1):
        if A[i] == C:
            contador += 1
            max_izq = max(max_izq, contador)
        else:
            break
   max_der = 0
    contador = 0
    for i in range(mid + 1, r + 1):
        if A[i] == C:
            contador += 1
            max_der = max(max_der, contador)
        else:
            break
    sol_central = (mid - max_izq + 1, max_izq + max_der)
```

```
return max(sol_izq, sol_der, sol_central, key=lambda x: x[1])
```

Descripción general

Esta función aplica el método "divide y vencerás" para encontrar la mejor subcadena de manera más eficiente, es decir, divide recursivamente la cadena en mitades y resuelve el problema de cada mitad, combinando las soluciones para encontrar la óptima.

Parámetros de entrada

- A: Cadena original.
- m: Longitud de las subcadenas a considerar.
- C: Carácter cuyo número de apariciones consecutivas se desea maximizar.
- 1: Índice izquierdo del rango actual de la cadena A.
- r: Índice derecho del rango actual de la cadena A.

Proceso del algoritmo

1. Casos base:

• Si el tamaño del segmento actual (r - 1 + 1) es menor o igual a m, se resuelve el problema llamando a resolver_directo con la subcadena A[1:r + 1].

2. División de la cadena:

- Se calcula el punto medio mid = (1 + r) // 2.
- Se realizan dos llamadas recursivas:
 - sol_izq: Resultado de aplicar el algoritmo a la mitad izquierda (1 a mid).
 - sol_der: Resultado de aplicar el algoritmo a la mitad derecha (mid + 1 a r).

3. Solución general:

- Se busca una solución que cruce el punto medio, ya que la subcadena óptima podría abarcar ambas mitades.
- Se inicializan max_central_consecutivos a 0 y inicio_central a -1.
- Se recorre desde i = mid m + 1 hasta i = mid para considerar todas subcadenas de longitud m que cruzan el punto medio.
 - Se verifica que **i** esté dentro de los límites (**1** y **r**).
 - Para cada subcadena, se calcula el número máximo de apariciones consecutivas de C de manera similar al método directo.
 - Si se encuentra un max_actual mayor que max_central_consecutivos, se actualizan max_central_consecutivos e inicio_central.

4. Combinación de soluciones:

- Se comparan las soluciones sol_izq, sol_der y sol_central utilizando una función clave que evalúa el segundo elemento de las tuplas (el número máximo de apariciones consecutivas).
- Devuelve la solución que tenga el mayor número de apariciones consecutivas de C.

Ejemplo de uso

```
if __name__ == '__main__':
    # Generar una cadena de ejemplo con el alfabeto
    alfabeto = "abcdefghijklmnopqrstuvwxyz"
    C = 'c' # Carácter a buscar
    m = 100 # Tamaño de la subcadena fijo
   num_pruebas = 10 # Número de pruebas a realizar para comprobar que el código
   funciona
    for i in range(num pruebas):
        print(f''\setminus n -- Prueba \{i + 1\} --")
        A = ''.join(random.choices(alfabeto, k=10000)) # Cadena aleatoria de
    longitud 10000
        resultado = divide_y_venceras(A, m, C, 0, len(A) - 1)
        print(f"Índice de inicio: {resultado[0]} \nMáximo de apariciones
           consecutivas: {resultado[1]}")
##
## -- Prueba 1 --
## Índice de inicio: 2188
## Máximo de apariciones consecutivas: 2
##
## -- Prueba 2 --
## Índice de inicio: 8359
## Máximo de apariciones consecutivas: 2
##
## -- Prueba 3 --
## Índice de inicio: 1874
## Máximo de apariciones consecutivas: 1
##
## -- Prueba 4 --
## Índice de inicio: 8671
## Máximo de apariciones consecutivas: 2
##
## -- Prueba 5 --
## Índice de inicio: 2657
## Máximo de apariciones consecutivas: 1
##
##
  -- Prueba 6 --
## Índice de inicio: 8360
## Máximo de apariciones consecutivas: 2
##
## -- Prueba 7 --
## Índice de inicio: 2032
## Máximo de apariciones consecutivas: 1
##
   -- Prueba 8 --
##
## Índice de inicio: 1484
## Máximo de apariciones consecutivas: 2
##
   -- Prueba 9 --
##
```

```
## Índice de inicio: 235
## Máximo de apariciones consecutivas: 1
##
## -- Prueba 10 --
## Índice de inicio: 79
## Máximo de apariciones consecutivas: 1
```

Estudio teórico del tiempo de ejecución

Orden de complejidad temporal:

1. Entrada y preparación:

• La preparación de los datos, como la generación de la cadena y los parámetros iniciales, tiene una complejidad O(n), donde n es la longitud de la cadena A.

2. Procesamiento de datos mediante divide y vencerás:

- La función divide_y_venceras divide el problema en dos subproblemas del mismo tamaño, resolviendo cada uno de ellos recursivamente.
- Además, combina las soluciones de ambas mitades evaluando un caso central.
- El tiempo de ejecución en cada nivel de la recursión puede descomponerse en:
 - Dos llamadas recursivas de tamaño $\frac{n}{2}$.
 - Una operación lineal O(n) para evaluar el caso central.

Esto lleva a una recurrencia del tipo:

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

Resolviendo la recurrencia (usando el método maestro), obtenemos:

$$T(n) = O(n \log n)$$

3. Salida y validación:

• La escritura y validación de los resultados es proporcional al número de caracteres procesados, con una complejidad O(1) si solo se imprime el resultado.

Complejidad total:

La complejidad del algoritmo de divide y vencerás es:

$$T(n) = O(n \log n),$$

donde n es la longitud de la cadena de entrada.

Detalles adicionales:

- Resolver subproblemas pequeños: Cuando la longitud de la cadena en un subproblema es menor o igual a m, se utiliza la función resolver_directo. Esta tiene una complejidad $O(m^2)$ en el peor de los casos (cuando todas las subcadenas posibles de longitud m deben evaluarse).
- Espacio auxiliar: Dado que el algoritmo es recursivo, el espacio auxiliar está determinado por la profundidad de la pila de recursión, que es $O(\log n)$.

El algoritmo divide la cadena en mitades logarítmicamente y en cada nivel realiza un trabajo lineal, lo que resultado en una complejidad teórica de $O(n \log n)$.

Conclusión

El código proporciona dos enfoques para resolver el problema de encontrar la subcadena de longitud ${\tt m}$ con el mayor número de apariciones consecutivas de un carácter ${\tt C}$ en una cadena ${\tt A}$:

- Método Directo: Es sencillo de entender e implementar, pero puede ser ineficiente para cadenas muy largas debido a su complejidad $O(n \cdot m)$.
- Método Divide y Vencerás: Es más eficiente con una complejidad $O(n \log n)$, pero es más complejo y requiere un manejo cuidadoso de los casos base y la combinación de soluciones.

En la siguiente gráfica se mostrará la diferencia de tiempo que necesitan ambos algoritmos para resolver el mismo número de casos:

