Анализ систем источник-приёмник в задачах морской геоэлектрики

Жигалов Петр Сергеевич

Новосибирский государственный технический университет Факультет прикладной математики и информатики Кафедра вычислительных технологий

2016 г.

Цель работы: решение трёхмерной прямой задачи морской геоэлектрики векторным методом конечных элементов

Задачи:

- Исследование влияния слоя воздуха при различной глубине источника электромагнитного возмущения
- Исследование целесообразности применения РМL-слоя для ограничения области моделирования в задачах морской геоэлектрики на низких частотах
- Исследование поведения электромагнитного поля при различном расположении источника поля и искомого объекта друг относительно друга

Уравнение Гельмгольца:

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{E}) + k^2 \mathbf{E} = -i\omega \mathbf{J}, \quad k^2 = i\omega\sigma - \omega^2 \varepsilon$$
 (1)

Е – напряжённость электрического поля (В/м),

 σ – электрическая проводимость (См/м),

 $\varepsilon = \varepsilon_r \varepsilon_0$ – диэлектрическая проницаемость (Ф/м),

 $\mu = \mu_r \mu_0$ – магнитная проницаемость (Гн/м),

 ${f J}$ – плотность стороннего электрического тока $({\sf A}/{\sf M}^2)$.

Краевые условия:

$$\mathsf{E} \times \mathsf{n}|_{S_1} = \mathsf{E}^g, \tag{2}$$

$$\sigma \mathbf{E} \cdot \mathbf{n}|_{S_n} = 0. \tag{3}$$

Пространства:

$$\begin{split} \mathbb{H}(\mathrm{rot}\,,\Omega) &= \{\textbf{v} \in [\mathbb{L}^2(\Omega)]^3: \nabla \times \textbf{v} \in [\mathbb{L}^2(\Omega)]^3\}, \\ \mathbb{H}_0(\mathrm{rot}\,,\Omega) &= \{\textbf{v} \in \mathbb{H}(\mathrm{rot}\,,\Omega): \, \textbf{v} \times \textbf{n}|_{\partial\Omega} = 0\}. \end{split}$$

Вариационная постановка: Найти $\mathbf{E}\in\mathbb{H}_0(\mathrm{rot}\,,\Omega)$, такое что $\forall\mathbf{v}\in\mathbb{H}_0(\mathrm{rot}\,,\Omega)$ будет выполнено:

$$\int\limits_{\Omega} \mu^{-1} \nabla \times \mathbf{E} \cdot \nabla \times \overline{\mathbf{v}} \, d\Omega + \int\limits_{\Omega} k^2 \mathbf{E} \cdot \overline{\mathbf{v}} \, d\Omega = -\int\limits_{\Omega} i\omega \mathbf{J} \cdot \overline{\mathbf{v}} \, d\Omega. \quad (4)$$

РМL-слой Ω^{PML} является подобластью Ω со специальными коэффициентами, построенными таким образом, чтобы обеспечить полное поглощение электрического поля внутри слоя и не допустить его отражения от внутренних границ и прохождения через внешние границы слоя.

Расчётные области без PML-слоя и с PML-слоем:

Комплексное растяжение координат:

$$\tilde{x} = \int_0^x s_x(t) dt, \qquad \tilde{y} = \int_0^y s_y(t) dt, \qquad \tilde{z} = \int_0^z s_z(t) dt,$$

$$egin{cases} s_j(au)=1$$
 — вне РМL-слоя, $s_j(au)=1+\chi\left(rac{d(au)}{\delta}
ight)^m, & m\geq 1$ — внутри РМL-слоя,

где $d(\tau)$ – расстояние в j-м направлении от внутренней границы РМL-слоя, δ – толщина РМL-слоя, χ – некоторое комплексное число, причём $\mathrm{Re}(\chi) \geq 0$, $\mathrm{Im}(\chi) \geq 0$.

Оператор ∇ в новых координатах:

$$\tilde{\nabla} = \left[\frac{1}{s_x} \frac{\partial}{\partial x} \,, \frac{1}{s_y} \frac{\partial}{\partial y} \,, \frac{1}{s_z} \frac{\partial}{\partial z} \right].$$

Вариационная постановка:

Найти $\mathbf{E} \in \mathbb{H}_0(\mathrm{rot}\,,\widehat{\Omega} = \Omega \setminus \Omega^{PML})$ и $\widetilde{\mathbf{E}} \in \mathbb{H}_0(\mathrm{rot}\,,\Omega^{PML})$, такие что $\forall \mathbf{v} \in \mathbb{H}_0(\mathrm{rot}\,,\widehat{\Omega})$ и $\forall \widetilde{\mathbf{v}} \in \mathbb{H}_0(\mathrm{rot}\,,\Omega^{PML})$ будет выполнено:

$$\begin{cases} \int\limits_{\widehat{\Omega}} \mu^{-1} \nabla \times \mathbf{E} \cdot \nabla \times \overline{\mathbf{v}} \, d\widehat{\Omega} + \int\limits_{\widehat{\Omega}} k^2 \mathbf{E} \cdot \overline{\mathbf{v}} \, d\widehat{\Omega} = -\int\limits_{\widehat{\Omega}} i \omega \mathbf{J} \cdot \overline{\mathbf{v}} \, d\widehat{\Omega} \\ \int\limits_{\Omega^{PML}} \mu^{-1} \widetilde{\nabla} \times \widetilde{\mathbf{E}} \cdot \widetilde{\nabla} \times \widetilde{\overline{\mathbf{v}}} \, d\Omega^{PML} + \int\limits_{\Omega^{PML}} k^2 \widetilde{\mathbf{E}} \cdot \widetilde{\overline{\mathbf{v}}} \, d\Omega^{PML} = 0. \end{cases}$$

Описание расчётной области

Исследование влияния слоя воздуха

Относительная разность решений при изменении глубины петли h:

Глубина петли	5	10	50	100	200	300	400
$\frac{\ E^{air} - E^{noair}\ _{\mathbb{L}^2}}{\ E^{air}\ _{\mathbb{L}^2}}$	0.44	0.40	0.24	0.14	0.07	0.04	0.02

Исследование влияния слоя воздуха

$Re(\mathbf{E}_y)$ по линии y = 0, z = -610:

Описание расчётной области

Исследование эффективности PML-слоя

Варьирование коэффициентов растяжения:

$Re(\chi)$	$\operatorname{Im}(\chi)$	$\text{Re}(\chi)$	$\operatorname{Im}(\chi)$	$Re(\chi)$	$\operatorname{Im}(\chi)$	$\ \operatorname{Re}(\mathbf{E}_{v}^{Gak}-\mathbf{E}_{v}^{PML})\ $	Время,	Время,
в Ω ₁	в Ω ₁	в Ω2	в Ω2	в Ω3	в Ωз	$\frac{\ \operatorname{Re}(\mathbf{E}_y^{Gak})\ }{\ \operatorname{Re}(\mathbf{E}_y^{Gak})\ }$	бак	PML
3	0	1	5	3	1	0.106636		592
3	1	0	6	2	1	0.0925	650	599
4	0	1	5	3	1	0.0947	030	731
4	1	0	6	2	1	0.0910		591

Варьирование толщины РМL-слоя:

δ_k	$\ \operatorname{Re}(\mathbf{E}_{\nu}^{6ak} - \mathbf{E}_{\nu}^{PML})\ $	Время,	Время,	
	$\ \operatorname{Re}(\mathbf{E}_{y}^{Gak})\ $	бак	PML	
80	0.1199	673	1289	
100	0.0910	650	591	
120	0.0784	609	1142	

Варьирование размера области, на границе которой вводится РМL-слой:

,	$\ \operatorname{Re}(\mathbf{E}_{y}^{Gak}-\mathbf{E}_{y}^{PML})\ $	Время,	Время,	
I_k	$\ \operatorname{Re}(\mathbf{E}_{y}^{Gak})\ $	бак	PML	
500	0.187456	628	587	
600	0.0909998	650	591	
800	0.0440642	718	658	

Исследование эффективности PML-слоя

Картины электрического поля $\mathrm{Re}(\mathsf{E}_y)$ при параметрах $\chi_{\Omega_1}=(4,0)$, $\chi_{\Omega_2}=(1,6)$, $\chi_{\Omega_2}=(3,2)$ m=3, $l_k=600$ м и $\delta_k=100$ м в сечении плоскостью y=0:

Описание расчётной области

Задача, приближенная к реальной

Картины электрического поля $\text{Re}(\mathsf{E}_z)$ при $l_2=0$ в сечении плоскостью z=-601:

Задача, приближенная к реальной

Картины электрического поля $\mathrm{Re}(\mathsf{E}_z)$ при $\mathit{l}_2 = -100$ м в сечении плоскостью z = -601:

Задача, приближенная к реальной

Картины электрического поля $\text{Re}(\mathsf{E}_z)$ при $I_2 = -200$ м в сечении плоскостью z = -601:

- Расчёты, в которых в область моделирования не включается воздух, допустимы только при расположении источника электромагнитного поля на большой глубине.
- Применение РМL-слоя позволяет получить достаточно точные решения, однако его применение не приводит к резкому уменьшению размерности систем уравнений и, как следствие, к уменьшению времени решения.
- Проводящий объект хорошо «виден» на некотором расстоянии от морского дна, а непроводящий только вблизи дна или при небольшом заглублении приёмника в грунт. Наибольший отклик на источник электромагнитного возмущения для непроводящего объекта наблюдался в том случае, когда источник располагался со смещением от центра симметрии объекта.