Collaborators:

ML Theory textbook

Assignment 3

Your name: Bojun Yang Your GTID: byang301

Visualization

Saliency Map (1 point)

Saliency Map Captum (1 point)

Original Image

Saliency

Guided Backprop (1 point)

GradCam (1 point)

Guided GradCam (1 point)

Guided Backprop + GradCam (Captum) (1 point)

Original Image

Guided Backprop

Original Image

Guided GradCam

Layers and neurons using Captum (1 point)

Original Image

Layer GradCam

Original Image

Layer Conductance

What do saliency map and Gradcam tell you? (1 point)

- Saliency map tells use the degree to which each pixel in the image affects the classification score of that image. Brighter pixels correspond to higher effect on the classification.
- Gradcam tells use where the network is looking when it is classifying an input image. It highlights the important regions within the input image for classification.

Fooling Image (1 point)

Fooling Image Insights (1 point)

What insights do you get from fooling images:

 Even though the fooling image would fool the network into classifying it as a stingray, it still looks the same as hay to the human. This tells us that networks can be easily tricked since it only takes very small differences in the pixels to confuse a nn.

Class Visualization (3 points)

gorilla, Gorilla gorilla Iteration 100 / 100

hourglass Iteration 100 / 100

oboe, hautboy, hautbois Iteration 100 / 100

tarantula Iteration 100 / 100

tick Iteration 100 / 100

Yorkshire terrier Iteration 100 / 100

Style Transfer

Composition VII + Tubingen (1 point)

Content Source Img.

Style Source Img.

Scream + Tubingen (1 point)

Content Source Img.

Style Source Img.

Starry Night + Tubingen (1 point)

Content Source Img.

Style Source Img.

• Be sure to append the jupyter notebook i.e. \$root/test_style_transfer.ipynb for testing sections of the style transfer implementation to this report.