'Cause I'm Strong Enough: Reasoning about Consistency Choices in Distributed Systems

Presented By: Aldrin Montana

Example - Causal

Figure 1A Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

Example - Causal

Figure 1A Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

Figure 1A
Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

Figure 1A Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

Figure 1A Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

Figure 1A Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

$$F \in Op \rightarrow (State \rightarrow (Val \times (State \rightarrow State)))$$

$$F \in \text{Op} \to (\text{State} \to (\text{Val} \times (\text{State} \to \text{State})))$$

$$F_o(\sigma) = (\text{Val}, (\text{State} \to \text{State})))$$

$$F_o(\sigma) = (F_o^{\text{val}}(\sigma), (F_o^{\text{eff}}(\sigma))))$$

 $F_{\mathbf{o}}^{\text{tol}}$

Example - Sequential

Figure 1C Illustration of Withdraw and Query

Figure 2C Example of Definition 1 for Withdraw and Query

Example - Sequential

Figure 1C
Illustration of Withdraw and Query

Figure 2C
Example of Definition 1
for Withdraw and Query

Example - Sequential

Figure 1C Illustration of Withdraw and Query

Figure 2C Example of Definition 1 for Withdraw and Query

Definitions and Notations - Extensions

Figure 1A
Illustration of Add and Query

Figure 2A
Example of Definition 1
for Add and Query

$$F \in \text{Op} \to (\text{State} \to (\text{Val} \times (\text{State} \to \text{State})))$$

$$F_o(\sigma) = (\text{Val}, (\text{State} \to \text{State})))$$

$$F_o(\sigma) = (F_o^{\text{val}}(\sigma), (F_o^{\text{eff}}(\sigma))))$$

 $F_{\mathbf{0}}^{\text{to}}$

Intuition

If operations are convergent, then tokens are not necessary

If operations are not convergent, then tokens are necessary

