

RTOS LEDC 开发指南

版本号: 1.0

发布日期: 2020-10-22

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.7.16	Allwinner	1. 初版

目 录

1	前言	1
	1.1 文档简介	1
	1.2 目标读者	1
	1.3 适用范围	1
2	模块介绍	2
	2.1 模块功能介绍	2
	2.2 相关术语介绍	3
	2.3 模块配置介绍	3
	2.4 模块源码结构	3
3	模块接口说明	5
	3.1 接口列表	5
	3.2 接口使用说明	5
	3.2.1 LEDC 初始化接口	5
	3.2.2 LEDC 数据传输接口	5
	3.2.3 LEDC 清除中断接口	6
	3.2.3 LEDC 清除中断接口	6
	3.2.5 LEDC DMAC 回调接口	6
	3.2.6 LEDC 复位接口	6
	3.2.6 LEDC 复位接口	6
4	模块使用范例	7
5	FAO	g

前言

1.1 文档简介

介绍 RTOS 中 LEDC 驱动的接口及使用方法,为 LEDC 使用者提供参考。

1.2 目标读者

LEDC 驱动层/应用层开发/使用/维护人员。

1.3 适用范围

C 驱动层/应用层开发/使用/维护人员。								
3 适用范围 表 1-1: 适用产品列表								
产品名称	内核版本	驱动文件						
V459 R328	Melis FreeRTOS	hal_ledc.c hal_ledc.c						
		<u>-</u>						

2 模块介绍

2.1 模块功能介绍

图 2-1: LEDC 硬件方框图

LEDC 硬件方框图如上图所示,CPU 通过 APB 总线操作 LEDC 寄存器来控制 LEDC; 当 CPU 配置好 LEDC 的相关寄存器之后,通过 CPU 或 DMA 将 R、G、B 数据从 DRAM 搬到 LEDC FIFO 中,启动 LEDC 之后就可以通过 PIN 脚向外部的 LED 发送数据了。

目前市场上已有成熟的智能外控 LED,每个元件即为一个 LED,每个 LED 的三基色均可实现 256 级亮度显示,因此整个 LED 可完成 256³ (即 16777216) 种颜色的全真色彩显示。

C1为LED 灯的滤波电容,一般取值100NF

图 2-2: LEDC 典型电路

LED 典型电路如上图所示,其中 DI 表示控制数据输入脚,DO 表示控制数据输出脚。DI 端接收从控制器传过来的数据,每个 LED 内部的数据锁存器会存储 24bit 数据,剩余的数据经过内

部整形处理电路整形放大后通过 DO 端口开始转发输出给下一个级联的 LED。因此,每经过一个 LED,数据减少 24bit。

LED 数据传输方式如下图所示:

图 2-3: LEDC 数据传输方式

注意,如果在单次直接设置第 n 个 LED 的亮度和色彩的时候,前面 n-1 个 LED 的亮度数据会在 第 n 个 LED 的数据前发送,不过这些数据将会是原来 n-1 个 LED 的亮度数据。

2.2 相关术语介绍

↑ LED 的数据前发送, 相关术语介约	不过这些数据将会是原来 n-1 个 LED 的亮度数据。
术语	解释说明
Sunxi	指 Allwinner 的一系列 SOC 硬件平台
LED	Light-emitting diode,发光二极管

2.3 模块配置介绍

图 2-4: LEDC menuconfig

2.4 模块源码结构

LEDC 模块源码结构如下所示:

版权所有 © 珠海全志科技股份有限公司。保留一切权利

rtos-hal/

|--hal/source/ledc/hal_ledc.c //hal层接口代码

|--include/hal/sunxi_hal_ledc.h //头文件

模块接口说明

3.1 接口列表

LEDC 提供的接口列表如下:

```
void hal_ledc_init(void);
void hal_ledc_deinit(void);
void hal_ledc_trans_data(struct ledc_config *ledc);
void hal_ledc_clear_all_irq(void);
                              NER
unsigned int hal_ledc_get_irq_status(void);
void hal_ledc_dma_callback(void *para);
void hal_ledc_reset(void);
```

3.2 接口使用说明

3.2.1 LEDC 初始化接口

• 原型: int hal gpadc init(void)

• 功能: LEDC 模块初始化,主要初始化时钟,GPIO 以及 DMAC 通道等

• 参数: 无 • 返回值:无

3.2.2 LEDC 数据传输接口

• 原型: void hal_ledc_trans_data(struct ledc_config *ledc)

• 功能: 发送 RGB 数据

• 参数:

● ledc: 配置参数信息,包括待发送数据、数据长度、发送方式(CPU/DMA)及各时间参数 设置

• 返回值:无

3.2.3 LEDC 清除中断接口

• 原型: void hal_ledc_clear_all_irq(void)

• 功能:清除 LEDC 中断

参数:无返回值:无

3.2.4 LEDC 获取中断状态接口

• 原型: unsigned int hal_ledc_get_irq_status(void)

• 功能: 获取 LEDC 中断状态

• 参数: 无

• 返回值: LEDC 中断状态寄存器值

3.2.5 LEDC DMAC 回调接口

• 原型: void hal ledc dma callback(void *para)

• 功能: 获取 DMAC 状态信息(目前无具体实现)

• 参数: DMAC 状态信息

• 返回值:无

3.2.6 LEDC 复位接口

• 原型: void hal ledc reset(void)

● 功能: 复位 LEDC

参数:无返回值:无

3.2.7 LEDC 去初始化接口

• 原型: void hal ledc deinit(void)

• 功能: LEDC 模块去初始化

参数:无返回值:无

4

模块使用范例

可参考驱动 APIs 测试代码(hal/test/ledc/)。

5 FAQ

著作权声明

版权所有 © 2020 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。