Method of moments estimators

Course so far

- Maximum likelihood estimation
- Logistic regression
- Asymptotics
- Asymptotic properties of MLEs
- Hypothesis testing
- Confidence intervals

Common theme: Likelihoods and MLEs

Question: Why maximum likelihood estimation?

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim}Uniform[0,\theta].$ How could I estimate θ ?

Suppose $X_1,\ldots,X_n\stackrel{iid}{\sim} Uniform[a,b].$ How could I estimate a and b?

Method of moments

Let X_1, \ldots, X_n be a sample from a distribution with probability function $f(x|\theta_1, \ldots, \theta_k)$, with k parameters $\theta_1, \ldots, \theta_k$.

Suppose
$$X_1,\ldots,X_n\stackrel{iid}{\sim}N(\mu,\sigma^2)$$
.

Find the method of moments estimates $\widehat{\mu}$ and $\widehat{\sigma}^2$.

Suppose
$$X_1,\dots,X_n\stackrel{iid}{\sim} Gamma(lpha,eta)$$
, i.e. $f(x|lpha,eta)=rac{eta^lpha}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}.$ Then

$$\mu_1 = \mathbb{E}[X] = rac{lpha}{eta} \quad \mu_2 = \mathbb{E}[X^2] = \left(rac{lpha}{eta}
ight)^2 + rac{lpha}{eta^2}$$

Use the method of moments to estimate α and β .