Genetic Mutation Classification Using Natural Language Processing

Jessica Huang & Brett Gao

Cancer is driven by mutations on the genome

Source: Pearson Education

Classifying mutations can help cancer treatment

Gain-of-functions mutation

Loss-of-functions mutation

Source: Pearson Education

Classifying mutations is labor intensive

We can automate mutation classification using machine learning

Data and preprocessing steps

ID	Gene	Variation	Class	Text
0	FAM58A	Truncating Mutations	1	Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2

9 possible class labels: Gain-of-function, Likely Gain-of-function, Likely Loss-of-function, Loss-of-function, Likely Neutral, Neutral, Likely Switch-of-function, Switch-of-function, and Inconclusive

Training set size: 3321

Test set size: 986

Vectorization of Word Counts Removal of stopwords

Source: Kaggle - Personalized Medicine: Redefining Cancer Treatment

Feature extraction using Latent Dirichlet Allocation

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

Source: Blei, ICML 2012 tutorial

LDA-NB: More topics → Higher accuracy

LDA-NB: More topics → **Longer to train**

LDA-extracted topics reflect nature of the classes

Salient topic for Loss-of-Function mutation

LDA-extracted topics reflect nature of the classes

Salient topic for Loss-of-Function mutation

LDA extracted topics reflect nature of the classes

Euclidean distance matrix calculated from class topic frequency

	Gain-of-function	Loss-of-function
Likely Loss-of-function	9.692762	6.012803
Likely Gain-of-function	5.003767	8.686116
Neutral	13.525443	11.601596
Loss-of-function	9.770549	0.000000
Likely Neutral	11.105728	8.943511
Inconclusive	11.232654	8.921309
Gain-of-function	0.000000	9.770549
Likely Switch-of-function	16.396966	14.706482
Switch-of-function	15.383589	13.710884

LDA-NB outperforms on test set mutation classification

$$-\sum_{c=1}^{M} y_{o,c} \log p_{o,c}$$

Model	Multi Class Log Loss Score	
Naive Bayes	13.15962	
tf-idf Naive Bayes	2.50483	
LDA Naive Bayes	1.63213	
LSA Naive Bayes	9.13054	

Questions?

Questions?

Naive Bayes classifier (NB)

Baye's Theorem

$$P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^n P(x_i \mid y)$$

$$\downarrow \downarrow$$

$$\hat{y} = \arg \max_{y} P(y) \prod_{i=1}^n P(x_i \mid y),$$

Multinomial NB

Feature extraction using Latent Semantic Analysis

LSA is essentially low-rank approximation of document term-matrix

Word assignment to topics

Naive Bayes classifier (NB)

$$p(\mathbf{w}) = \sum_{z} p(z) \prod_{n=1}^{N} p(w_n | z)$$