α	AI	P Al	P ₅₀	AP ₇₅		γ	α	1	AP	AP ₅₀	AP_{75}		#sc	#ar	A	P A	P ₅₀	AP ₇₅
.10	.10 0.0		0.0	0.0		0	.75	3	1.1	49.4	33.0	_	1	1	30	.3 4	9.0	31.8
.25 10.		8 10	6.0	11.7		0.1	.75	3	1.4	49.9	33.1		2	1	31	.9 5	0.0	34.0
.50 30.		2 40	6.7	32.8		0.2	.75	3	1.9	50.7	33.4		3	1	31	.8 4	9.4	33.7
.75 31.		1 49.4		33.0		0.5	.50	3	2.9	51.7	35.2		1	3	32	.4 5	2.3	33.9
.90	.90 30.8		9.7	32.3		1.0	.25	3	3.7	52.0	36.2		2	3	34	.2 5	3.1	36.5
.99	.99 28.7		7.4	29.9		2.0	.25	3	4.0	52.5	36.5		3	3	34	.0 5	2.5	36.5
.999	.999 25.1		41.7 26.1			5.0	.25	3	2.2	49.6	34.8		4	3	33.	.8 5	2.1	36.2
(a) Vary	ying ($(\gamma = 0)$		(b) Varying γ for FL (w. optimal α)							(c) Varying anchor scales and aspects							
method		batch size	nms thr	AP	AP_{50}	A	P ₇₅		depth	scale	AP	AP_{50}	AP ₇	5 A	AP_S	AP_M	AP_{L}	time
OHEM		128	.7	31.1	47.2	3	3.2	•	50	400	30.5	47.8	32.7		11.2	33.8	46.1	64
OHEM		256	.7	31.8	48.8	33.9			50	500	32.5	50.9	34.8		13.9	35.8	46.7	72
OHEM		512	.7	30.6	47.0	3	2.6		50	600	34.3	53.2	36.9		16.2	37.4	47.4	98
OHEM		128	.5	32.8	50.3	50.3 35.1			50	700	35.1	54.2	37.7		18.0	39.3	46.4	121
OHEM		256	.5	31.0	47.4	47.4 33.0			50	800	35.7	55.0	38.5		18.9	38.9	46.3	153
OHEM		512	.5	27.6	42.0	42.0 29.2			101	400	31.9	49.5	34.1		11.6	35.8	48.5	81
OHEM 1:3		128	.5	31.1	47.2	7.2 33.2			101	500	34.4	53.1	36.8		14.7	38.5	49.1	90
OHEM	1:3	256	.5	28.3	42.4	3	0.3		101	600	36.0	55.2	38.7		17.4	39.6	49.7	122
OHEM	1:3	512	.5	24.0	35.5	2	5.8		101	700	37.1	56.6	39.8		19.1	40.6	49.4	154
FL		n/a	n/a	36.0	54.9	3	8.7	•	101	800	37.8	57.5	40.8		20.2	41.1	49.2	198
(d) FL	vs. O	HEM b	aseline	es (with R	ResNet-1	PN)	(e) Accuracy/speed trade-off RetinaNet (on test-dev)											