

6LoWPAN Adaptation Layer: The Compression Operation

Georgios Z. PAPADOPOULOS

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

youtube: www.youtube.com/c/gzpapadopoulos

6TiSCH Protocol Stack

OUTLINE

- 1. IPv6 Overview
 - 1.1 IPv6 Addressing
 - 1.2 IPv6 Header Format
- 2. 6LoWPAN Adaptation Layer
- 3. IPv6 Header Compression
- 4. Examples
 - 4.1 Link-local Multicast
 - 4.2 Global Unicast
- 5. UDP Header Compression

OUTLINE

- 1. IPv6
 - 1.1 IPv6 Addressing
 - 1.2 IPv6 Header Format
- 2. 6LoWPAN Compression Overview
- 3. IPv6 Header Compression
- 4. Examples
 - 4.1 Link-local Multicast
 - 4.2 Global Unicast
- **5. UDP Header Compression**

► 128-bit IPv6 address : 64-bit prefix + 64-bit Interface ID

- ► 128-bit IPv6 address : 64-bit prefix + 64-bit Interface ID
- ► The **64-bit prefix** is hierarchical
 - Identifies the network that the nodes are located
- ► The 64-bit Interface ID identifies the network interface
 - Must be unique for that network
 - There are multiple mechanism to form the Interface ID

- ▶ 128-bit IPv6 address : 64-bit prefix + 64-bit Interface ID
- The 64-bit prefix is hierarchical
 - Identifies the network that the nodes are located
- ► The 64-bit Interface ID identifies the network interface
 - Must be unique for that network
 - There are multiple mechanism to form the Interface ID
- There are different kinds of IPv6 addresses :
 - Loopback (::1), and Unspecified (::)
 - Unicast Link-local (fe80::/10)
 - Unique Local Unicast
 - Global unicast (2000::/3)
 - Multicast (ff00::/8)
 - Anycast

Address Types and Scopes [RFC 4291]

- ► There are different types and scopes of IPv6 address:
 - The type of an IPv6 address indicates if a packet is transmitted in unicast, anycast or multicast mode.
 - The scope of an IPv6 address specifies in which part of the network it is valid.

Address Types and Scopes [RFC 4291]

- ► There are different types and scopes of IPv6 address:
 - The type of an IPv6 address indicates if a packet is transmitted in unicast, anycast or multicast mode.
 - The scope of an IPv6 address specifies in which part of the network it is valid.
- For *unicast* addresses, two defined scopes:
 - Link-local scope: are the *link-local* and the *loopback* addresses that can only be used on a single direct network (link).
 - Global scope: all other addresses, which means they are (or could be) globally routable, anywhere on the Internet.

IPv6 Addressing in 6LoWPAN

128 bits —

2001:660:3003:1:34ca:3b73:6543:210f / 64

Prefix Interface ID

► IPv6 addresses are compressed in 6LoWPAN

- Prefix
 - Addresses within 6LoWPAN typically contain common prefix.
 - Supports up to 16 contexts (states).
 - Nodes typically target one or few central nodes, i.e., root node(s).
- Interface ID
 - Typically derived from L2 MAC addresses → autoconfiguration.
 - Elided when Interface ID can be derived from L2 header.

Check the relevant video "Introduction to IPv6 Header Format" on YouTube!

	<u>Octet</u>	C)	1		2	3	
Octet Bit		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3					24 25 26 27 28 29 30 31	
0	0	Versio n	Traffic Class			Flow Label		
4	32		Payload Length			Next Header	Hop Limit	
8	64							
12	96							
16	128		Source Address					
20	160							
24	192							
28	224		Destination Address					
32	256							
36	288							

► Version (4 bits), the constant 6 (bit sequence 0110).

- ➤ Version (4 bits), the constant 6 (bit sequence 0110).
- ► Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.

- ➤ Version (4 bits), the constant 6 (bit sequence 0110).
- ► Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.
- Flow Label (20 bits):
 - An identifier of a flow of packets between a source and destination.
 - The label 0 means the packet does not belong to any flow.

- ► Version (4 bits), the constant 6 (bit sequence 0110).
- ► Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.
- Flow Label (20 bits):
 - An identifier of a flow of packets between a source and destination.
 - The label 0 means the packet does not belong to any flow.
- ► Payload Length (16 bits):
 - The size of the payload in octets, including any extension headers.

- ➤ Version (4 bits), the constant 6 (bit sequence 0110).
- ► Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.
- Flow Label (20 bits):
 - An identifier of a flow of packets between a source and destination.
 - The label 0 means the packet does not belong to any flow.
- ► Payload Length (16 bits):
 - The size of the payload in octets, including any extension headers.
- ▶ Next Header (8 bits), specifies the type of the next header.

- ➤ Version (4 bits), the constant 6 (bit sequence 0110).
- ➤ Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.
- Flow Label (20 bits):
 - An identifier of a flow of packets between a source and destination.
 - The label 0 means the packet does not belong to any flow.
- ► Payload Length (16 bits):
 - The size of the payload in octets, including any extension headers.
- ► Next Header (8 bits), specifies the type of the next header.
- ► Hop Limit (8 bits), replaces the Time To Live (TTL) field in IPv4:
 - This value is decremented by one at each forwarding node, and the packet is discarded if it becomes 0.

- ► Version (4 bits), the constant 6 (bit sequence 0110).
- ➤ Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.
- Flow Label (20 bits):
 - An identifier of a flow of packets between a source and destination.
 - The label 0 means the packet does not belong to any flow.
- ► Payload Length (16 bits):
 - The size of the payload in octets, including any extension headers.
- ▶ Next Header (8 bits), specifies the type of the next header.
- ► Hop Limit (8 bits), replaces the Time To Live (TTL) field in IPv4:
 - This value is decremented by one at each forwarding node, and the packet is discarded if it becomes 0.
- Source Address (128 bits), the unicast IPv6 address of the sender.

- ➤ Version (4 bits), the constant 6 (bit sequence 0110).
- ➤ Traffic Class (6+2 bits), the bits of this field hold two values:
 - The first 6 bits are for the Differentiated Services (DS field), RFC 2474.
 - The last 2 bits are for the Explicit Congestion Notification (ECN), RFC 3168.
- Flow Label (20 bits):
 - An identifier of a flow of packets between a source and destination.
 - The label 0 means the packet does not belong to any flow.
- ► Payload Length (16 bits):
 - The size of the payload in octets, including any extension headers.
- ▶ Next Header (8 bits), specifies the type of the next header.
- ► Hop Limit (8 bits), replaces the Time To Live (TTL) field in IPv4:
 - This value is decremented by one at each forwarding node, and the packet is discarded if it becomes 0.
- Source Address (128 bits), the unicast IPv6 address of the sender.
- ▶ Destination Address (128 bits):

Bretagne-Pays de la Loire

The IPv6 unicast or multicast address of the destination node(s).

OUTLINE

- 1. IPv6
 - 1.1 IPv6 Addressing
 - 1.2 IPv6 Header Format
- 2. 6LoWPAN Adaptation Layer
- 3. IPv6 Header Compression
- 4. Examples
 - 4.1 Link-local Multicast
 - 4.2 Global Unicast
- **5. UDP Header Compression**

Check the relevant video
"Tutorial on 6LoWPAN IPv6 and UDP Header Compression"
on YouTube!

G3-PLC Protocol Stack

6LoWPAN Overview: RFC 4944, 6282, 8930, 8931

- ► The **6LoWPAN** is an adaptation layer allowing to transport IPv6 packets over IEEE Std 802.15.4 links.
 - Compression: reduces the size of 40-byte IPv6 header and higher protocols, i.e., UDP headers, RFC 6282.
 - Fragmentation: split (and reassembles) the IPv6 datagrams into smaller fragments, RFC 4944.
 - Fragment Delivery (Mesh-Under & Route-Over): RFC 4944.
 - 6LoWPAN Fragment Forwarding (6LFF): RFC 8930.
 - 6LoWPAN Selective Fragment Recovery mechanism: RFC 8931.

IEEE Std 802.15.4 vs IPv6 MTU: Problem Statement

- ► IEEE Std 802.15.4 has small MTU (i.e., 127 bytes).
- Header Size Calculation:
 - IPv6 header is 40 octets, UDP header is 8 octets.
 - IEEE Std 802.15.4 MAC header can be up to 25 octets (null security), or 25+21=46 octets (AES-CCM-128).
 - With the IEEE Std 802.15.4 frame size of 127 octets:

127-25-40-8 = **54** octets (null security)

127-46-40-8 = 33 octets (AES-CCM-128)

Encapsulation Header Format

encapsulated IPv6 datagram

IPv6 Dispatch IPv6 Header Payload

encapsulated LOWPAN_IPHC compressed IPv6 datagram

IPHC Dispatch IPHC Header Payload

encapsulated LOWPAN_IPHC compressed IPv6 datagram that requires mesh addressing

Mesh Type Mesh Header IPHC Dispatch IPHC Header Payload

• encapsulated LOWPAN_IPHC compressed IPv6 datagram that requires fragmentation

Frag Type Frag Header IPHC Dispatch IPHC Header Payload

• encapsulated LOWPAN_IPHC compressed IPv6 datagram that requires both mesh addressing and fragmentation

M Type M Hdr Frg Type Frg Hdr IPHC Dsp IPHC Hdr Payload

 encapsulated LOWPAN_IPHC compressed IPv6 datagram that requires both mesh addressing and a broadcast header to support mesh broadcast/multicast

M Type M Hdr B Dsp B Hdr IPHC Dsp IPHC Hdr Payload

6LoWPAN Dispatch Codes

Chart Cada

<u>Bit Pattern</u>	Snort Code	Description
00 xxxxxx	NALP	Not A 6LoWPAN Packet
01 000001	IPv6	Uncompressed IPv6 address
01 000010	LOWPAN_HC1	HC1 Compressed IPv6 header (obsolete)
01 010000	LOWPAN_BC0	BCO Broadcast header
01 1	LOWPAN_IPHC	IPHC Compressed IPv6 header (new version, RFC 6282)
10 xxxxxx	MESH	Mesh routing header
11 000xxx	FRAG1	Fragmentation header (first fragment)
11 100xxx	FRAGN	Fragmentation header (subsequent fragment)

Description

Dit Dottore

Compression and Fragmentation Overview

OUTLINE

- 1. IPv6
 - 1.1 IPv6 Addressing
 - 1.2 IPv6 Header Format
- 2. 6LoWPAN Adaptation Layer
- 3. IPv6 Header Compression
- 4. Examples
 - 4.1 Link-local Multicast
 - 4.2 Global Unicast
- **5. UDP Header Compression**

IPv6 Header Compression (IPHC)

- Objective: transform the IPv6 Header to Compressed Header.

 By adding few extra hits which indicate how the packet is compressed.
 - ▶ By adding few extra bits which indicate how the packet is compressed.

IPHC: Overview

- Stateless compression
 - It does not require the IoT node that process the compression and decompression of an IPv6 packet to store any configuration information locally, which is used to decide how that packet needs to be compressed or decompressed.

IPHC: Overview

Stateless compression

- It does not require the IoT node that process the compression and decompression of an IPv6 packet to store any configuration information locally, which is used to decide how that packet needs to be compressed or decompressed.

► Flow-independent

- Two packets belonging to the same traffic flow might be compressed and decompressed in different ways.
- No need to maintain a state of the flow which the packets belong.

IPHC: Overview

- Stateless compression
 - It does not require the IoT node that process the compression and decompression of an IPv6 packet to store any configuration information locally, which is used to decide how that packet needs to be compressed or decompressed.
- ► Flow-independent
 - Two packets belonging to the same traffic flow might be compressed and decompressed in different ways.
 - No need to maintain a state of the flow which the packets belong.
- ► 6LoWPAN is Layer 2 (L2) independent protocol.

The Default Elided IPv6 Header Fields

Version	Traffic Class	Flow Label				
	Payload Length		Next Header	Hop Limit		
Source Address						
Destination Address						

The Default Elided IPv6 Header Fields

► The version is almost always 6.

_							
	Version	Traffic Class	Flow Label				
	ı	Payload Length		Next Header	Hop Limit		
	Source Address						
	Destination Address						

The Default Elided IPv6 Header Fields

- ► The version is almost always 6.
- ► The Payload length can be derived from L2 header.

The Default Elided IPv6 Header Fields

- ► The version is almost always 6.
- ► The Payload length can be derived from L2 header.
- Source and Destination Addresses can be elided (link-local) and/or compressed depending on the "context" of the transmitted packet.

Version	Traffic Class		Flow Labe	el
ı	Payload Length		Next Header	Hop Limit
	,	Source A	Address	
	De	estinatior	n Address	

IPHC base Encoding

- TF: Traffic Class and Flow Label
 - 0: Carried Inline (ECN+DSCP+Flow), 1: ECN+Flow, 2: ECN+DSCP, 3: All zero
- ► NH (Next Header compression)
 - 0: Carried Inline, 1: Next Header is compressed (allows L4 compression)
- ► HLIM (Hop Limit = Inline, 1, 64, 255): well known values
 - 0: Carried Inline, 1: 1, 2: 64, 3: 255
- CID (Context Identifier Extension)
 - 0: No 1-byte CID identifier, 1: 1-byte identifier follows
 - An additional 8-bit CID field immediately follows the (DAM) field.
 - Add a context to allow 16 source and destination prefixes
- SAC/DAC (Source/Destination Address Compression)
 - 0: Stateless, 1: Stateful, i.e., Context-based
- SAM/DAM (Source/Destination Address Mode)
 - 0: 16 bytes inline, 1: 8 bytes inline, 2: 2 bytes inline, 3: elided
- M (Multicast Destination)
 - 0: Destination is not multicast, 1: Destination is multicast

0 1 2	3 4	5	6 7	8	9	0 1	2	3	4 5	
0 1 1	TF	N H	HLIM	0 - 0	S A C	SAM	М	D A C	DAM	In-line IPv6 Header fields

Traffic Class and Flow Label Compression

TF = 01 ECN rsv Flow Label [DSCP = 0]

LCIN 15V | IOW Label | [DOCI = 0

TF = 10 ECN DSCP [Flow Label = 0]

TF = 11 [ECN = 0, DSCP = 0, Flow Label = 0]

0

Next Header Compression

NH = 0	in-line IPv6 Bits	Next Header	in-line IPv6 Bits	Uncompressed Next Header
--------	-------------------	-------------	-------------------	--------------------------

NH = 1	in-line IPv6 Bits	in-line IPv6 Bits	NHC	Uncompressed Next Header	
--------	-------------------	-------------------	-----	--------------------------	--

Hop Limit Compression

HLIM = 00	in-line IPv6 Bits	Hop Limit	in-line IPv6 Bits
-----------	-------------------	-----------	-------------------

Source Address Compression (SAC) and SAM

SAM SAC	00	01	10	11
IID		64 first prefix bits are elided. IID is fully sent.	112 first prefix bits are elided. Last 16 IID bits are sent.	All 128 bits are elided.
0 : Stateless / Link Local	The full address (128 bits) is carried in-line.	The prefix is link-local i.e., fe80::/64	The prefix is link- local i.e., fe80::0:ff:fe00:/112	The prefix is link- local i.e., fe80::/64. IID is taken from L2 source address.
1 : Stateful / Global	The full address (128 bits) is carried in-line.	The prefix is given by the context, and 64 bits are carried in-line.	The prefix is given by the context. IID starts with 0000:00ff:fe00: and 16 bits are carried in-line.	The prefix is given by the context. IID is taken from L2 source address.

Destin. Address Compression (DAC) and DAM

M, DAC	00	01	10	11
00 : Stateless / Link Local	The full address (128 bits) is carried in-line.	The first 64 bits (prefix is fe80::/64) are elided. IID (64 bits) is sent.	The first 112 bits (prefix is fe80::0:ff:fe00:/112) are elided. IID (16 bits) is sent.	The address is fully elided. Prefix is fe80::/64. IID is taken from L2 source address.
01 : Stateful / Global	Reserved	The prefix (64 bits) is given by the context. IID (64 bits) is sent.	The prefix (112 bits) is given by the context. IID starts with 0000:00ff:fe00: and 16 bits sent.	The address is fully elided. The prefix is given by the context. IID is taken from L2 source address
10 : Stateless / Link Local Multicast	The full address is carried in-line.	48 bits are sent. The multicast address takes the form: ffXX::00XX:XXXX: XXXX	32 bits are carried in- line. The multicast address takes the form: ffXX::00XX:XXXX	8 bits are carried in-line. The multicast address takes the form: ff02::00XX
11 : Stateful / Global Multicast	48 bits are sent. The format follows Unicast-Prefix-based IPv6 Multicast Addresses [RFC 3956]. Context value contains the Rendezvous Point address.	Reserved	Reserved	Reserved

OUTLINE

- 1. IPv6
 - 1.1 IPv6 Addressing
 - 1.2 IPv6 Header Format
- 2. 6LoWPAN Adaptation Layer
- 3. IPv6 Header Compression
- 4. Examples
 - 4.1 Link-local Multicast
 - 4.2 Global Unicast
- **5. UDP Header Compression**

Example 1: Link-local Multicast

Check the relevant video
"6LoWPAN Examples of the IPv6 Header Compression"
on YouTube!

Compressed Header

6 e	00	00	00	0 0	40	3 a	ff
fе	80	00	00	0 0	00	00	00
02	01	64	ff	fе	2 f	fc	0 a
ff	02	00	00	0 0	00	00	00
00	00	00	00	0 0	00	00	01
86	00	8 b	a 3	40	00	07	8 0
00	00	00	00	0 0	00	00	00
01	01	00	01	64	2f	fc	0 a
05	01	00	00	0 0	00	05	dс
03	04	40	c 0	0 0	27	8 d	00
00	09	3 a	80	0 0	00	00	00
20	01	06	60	73	01	37	28
00	00	00	00	00	00	00	00

0	1	2	3	4	5	6	7
011				F	NH	HL	.IM
CID SAC SAM			М	DAC	DA	AM.	
	IPv6 H	eader fi					

Version (4 bits)

Compressed Header

0	1	2	3	4	5	6	7
011			Т	F	NH	HL	.IM
CID SAC SA		М	МММ		DA	AM .	

IPv6 Header fields ...

Compressed Header

0	1	2	3	4	5	6	7
011			Т	F	NH	HL	.IM
CID SAC SA		ММ		DAC	DA	AM.	
	<u> </u>	, ,					

IPv6 Header fields ...

Compressed Header

0	1	2	3	4	5	6	7
011			Т	F	NH	HL	.IM
CID	CID SAC SA		ММ		DAC	DA	AM

IPv6 Header fields ...

Compressed Header

0	1	2	3	4	5	6	7
011			Т	F	NH	HLIM	
CID	SAC	SAM		М	DAC	DA	AM.
	IPv6 H	eader fi					

Compressed Header

0	1	2	3	4	5	6	7
011			Т	F	NH	HLIM	
CID	CID SAC SAM			М	DAC	DA	AМ
	IPv6 He	eader fi					

What is the value of the NH field here?

Compressed Header

0	1	2	3	4	5	6	7	
011			Т	F	NH	HLIM		
CID	SAC	SA	AМ	М	DAC	DAM		
	IPv6 H	eader fi						

Google or IANA:

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

0	1	2	3	4	5	6	7
011			Т	F	NH	HLIM	
CID	SAC	SA	М	М	DAC	DA	М
	IPv6 He	eader fi					

3a hexadecimal is 58 in decimal → ICMPv6

0	0 1 2		3	4	5	6	7				
011			TF		NH	HLIM					
CID	SAC	SA	AМ	М	DAC	DA	AM.				
	IPv6 H	eader fi									

6LoWPAN: Compression Example

00 00

00

	I			I		I	
0	0 1 2		3	4	5	6	7
011			TF		NH	HLIM	
CID	CID SAC SA			М	DAC	DA	ХМ
	IPv6 H	eader fi					

0 0

00 00

00

6

HLIM

DAM

5

NH

DAC

М

0	1	2	3	4	5	6	7
011			TF		NH	HLIM	
CID	CID SAC SAM			М	DAC	DA	AM.
	IPv6 H	eader fi					

0	0 1 2		3	4	5	6	7
011			# 0		NH	HLIM	
CID	CID SAC SAN			М	DAC	DA	AM
	E ₀ H	eader fi					

6LoWPAN: Compression Example

_							
0	0 1 2			4	5	6	7
	01	1	#0		M	HLIM	
CID	CID SAC SA			М	DAC	DA	AМ
	E ₀ H	e 3/A fi					

3a (58 in decimal) in NH is ICMPv6 → there is not a compression mechanism (yet) for ICMPv6 protocol.

6LoWPAN: Compression Example

0	0 1 2		3	4	5	6	7
	01	1	#0		M	HILIM	
CID SAC SA			AМ	М	DAC	DA	AM.
	E /6	e 3/A fi					

HLIM value is ff in hexadecimal is 255 in decimal.

6LoWPAN: Compression Example

_	_`	,						
	0 1 2		3	4	5	6	7	
		01	1	1	‡0	M	H <mark>1</mark> IM	
	cl sl sa			ХМ	М	DAC	DA	ΑM
		E ₀ H	e 3dA fi					

The prefix starts with FE80, thus we have link-local IPv6 addresses → CID = 0, SAC = 0.

- The prefix starts with FE80 &&
- There is "FF FE" in the Interface ID part → IID is taken from L2 source address
- As a result, SAM = 11.

6LoWPAN: Compression Example

·								
0	1	2	3	4	5	6	7	
	01	1	1 0		ıÛı	H¶I¶		
С	s	s	Ń	Ń	DAC	DAM		
	E ₀ H	e 3 /Afi						

ff02: a typical Multicast Address that has Link-local Scope → DAC = 0.

6

HIII

DAN

5

M

6LoWPAN: Compression Example

00

00

00

6

HIII

DAN

6LoWPAN: Compression Example

00

00

00

from 40 Bytes to 5 Bytes

6LoWPAN: Compression Example

	, , , , , , , , , , , , , , , , , , , ,								
0)	1	2	3	4	5	6	7	
		011	1	f	†0	M	н	.1111	
С	3	s	s	Ń	Ń	DAC	D	1	
		E /6 <i>H</i>	e 3d∧ fi						

- Compressed Header = 2 bytes
- *IPv6 Header fields = 3 bytes*

Compression Result: from 40 Bytes to 5 Bytes

Example 2 Global Unicast

Compressed Header

60	0 0	0 0	0 0	03	a 9	06	40
20	01	06	60	73	01	37	28
02	23	df	ff	fе	a 9	f 7	аc
2 a	00	14	50	40	07	8 0	03
00	00	00	0 0	00	00	10	04
еb	8 0	00	50	10	еa	59	f 5
3ъ	1 a	5е	5 a	80	18	80	55
f6	a 0	00	00	01	01	8 0	0 a
03	е7	60	72	78	аa	80	5 d
47	45	54	20	2 f	5 f	5 f	75
74	6 d	2 e	67	69	66	3f	75
74	6 d	77	76	3d	35	2 e	34
2 e	34	26	75	74	6 d	73	3d
33	30	37	26	75	74	6 d	6 e
3 d	32						

0	1	2	3	4	5	6	7
	011	011 TF			NH	HLIM	
CID	SAC	SA	AM M		DAC	DA	AM.
	IPv6 H	eader fi					

HLIM

DAM

6LoWPAN: Compression Example

3d 32

6LoWPAN: Compression Example

0	1	2	3	4	5	6	7	
	01	1	Т	F	NH	HL	.IM	
CID	SAC	SA	AM.	М	DAC	DAM		
	IPv6 H	eader fi						

06 hexadecimal is 06 in decimal → TCP

6

HLIM

DAM

6LoWPAN: Compression Example

3d 32

| Compressed Header |

6LoWPAN: Compression Example

0	1	2	3	4	5	6	7
011				F1	Ď	HL	.IM
CID	SAC	SA	AM.	М	DAC	DAM	
	106 H	eader fi					

06 in NH is TCP → there is not a compression mechanism (yet) for TCP protocol.

6LoWPAN: Compression Example

0	1	2	3	4	5	6	7
	01	1	1	†1	r <mark>()</mark>	Ŧ	.I <mark>V</mark>
CID	SAC	SA	AM	М	DAC	D/	AM
	106 H	eader fi					

HLIM value is 40 in hexadecimal is 64 in decimal.

6LoWPAN: Compression Example

				•			
0	1	2	3	4	5	6	7
	01	1	f	F1	M	н	ıØ
c	SAC	SA	AM	М	DAC	DA	AM.
	06 H	eader fi					

There is not direct indication regrading the Prefix (if it is given or not by the Context) → CID = 0

6LoWPAN: Compression Example

/							
0	1	2	3	4	5	6	7
	01	1	f	 1	I ÛI	H	.I <mark>V</mark>
c	sác	s	Q	М	DAC	DA	AM.
	06 H	eader fi					

- The Prefix does not start with FE80, thus no indication for Link Local address
 - → Global Address (SAC = 1)
- Then, since CID = $0 \rightarrow SAM = 00$.

6LoWPAN: Compression Example

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ΙΠΡΙ		11100	luci
0	1	2	3	4	5	6	7
	01	1	f	!1	M	H	.I Q
c	SÁC	s	lQ	Q	DAC	D	NO

• The destination address **does not** start either with FFXX or FF02 → M = 0.

Header fields ...

- The Prefix does not start with FE80, thus no indication for Link Local address ->
 - → Global Address (DAC = 1)
- Then, since CID = $0 \rightarrow DAM = 00$.

6

H110

6LoWPAN: Compression Example

3d 32

6LoWPAN: Compression Example

0	1	2	3	4	5	6	7
	011		ť	!1	ıÛı	н	.10
с <mark>0</mark>	sác	s		Q	DAC	D	Q
	A6 H	eader fi					

```
20 01 06 60 73 01 37 28 02 23 df ff fe a9 f7 ac 2a 00 14 50 40 07 08 03 00 00 00 00 00 10 04
```

- Compressed Header = 2 bytes
- IPv6 Header fields = 33 bytes →
 (NH = 1 byte, IPv6 addresses 32 bytes, 16 for source and 16 for dest.)

Compression Result:

from 40 Bytes to 35 Bytes

OUTLINE

- 1. IPv6
 - 1.1 IPv6 Addressing
 - 1.2 IPv6 Header Format
- 2. 6LoWPAN Adaptation Layer
- 3. IPv6 Header Compression
- 4. Examples
 - 4.1 Link-local Multicast
 - 4.2 Global Unicast

5. UDP Header Compression

Check the relevant video "Tutorial on 6LoWPAN IPv6 and UDP Header Compression" on YouTube!

YouTube

UDP Header Format

	U	1	2	3	4	5	6	1	8	9	U	1	2	3	4	5	ь	1	8	9	U	1	2	3	4	5	ь	1	8	9	U	1
0							S	ourc	e Po	ort													Des	stina	tion	Port						
4								Ler	ngth														(Chec	ksur	n						

- Source port (16 bits):
 - This field identifies the port of the transmitter, when used, it should be assumed to be the port to reply to. If not used, it should be zero.
- ► Destination port (16 bits):
 - This field identifies the port of the receiver.
- Length (16 bits):
 - This field specifies the length in bytes of the UDP header and UDP data.
- ► Checksum (16 bits):
 - It is used for error-checking of the header and data.
 - This field is optional in IPv4, and mandatory (obligatoire) in IPv6.
 - The field carries all-zeros if unused.

UDP Header Compression

	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
0							S	ourc	e Po	ort													Des	tina	tion I	Port						
4								Ler	ngth														C	hec	ksur	n						

- ► Assume common values for header fields and define compact forms.
 - Ports within 61616 to 61632 (4 bits).

UDP Header Compression

	U	1	2	3	4	5	6	1	8	9	U	1	2	3	4	5	6	1	8	9	U	1	2	3	4	5	6	1	8	9	U	1
0							S	ourc	e Po	ort													Des	tina	tion	Port						
4								Ler	ngth														C	Chec	ksur	n						

- Assume common values for header fields and define compact forms.
 - Ports within 61616 to 61632 (4 bits).
 - Length can be derived from IPv6 header Length information.
 - Checksum always carried in-line (RFC 4944) or elided (RFC 6282).

UDP LOWPAN_NHC Format

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 Source Port Destination Port

Length Checksum

- Assume common values for header fields and define compact forms.
 - Ports within 61616 to 61632 (4 bits).
 - Length can be derived from IPv6 header Length information.
 - Checksum always carried in-line (RFC 4944) or elided (RFC 6282).
- C (1 bit), the field represents the Checksum:
 - 0: the Checksum is not compressed, and all its 16 bits are carried in-line.
 - 1: the Checksum is elided.
- P (2 bits), the two bits field represents the Ports:
 - 0 → in-line

Bretagne-Pays de la Loire

- 1 → elide first 8 bits of Destination Port
- 2 → elide first 8 bits of Source Port
- 3 → elide 12 bits of Source and Destination Ports

0	1	2	3	4	5	6	7
1	1	1	1	0	С	Р	

UDP Header Encoding

Compression and Fragmentation Overview

6LoWPAN Adaptation Layer: The Compression Operation

Georgios Z. PAPADOPOULOS

e-mail: georgios.papadopoulos@imt-atlantique.fr

web: www.georgiospapadopoulos.com

twitter: @gzpapadopoulos

youtube: www.youtube.com/c/gzpapadopoulos