ISTANBUL ATLAS ÜNİVERSİTESİ
Mühendislik ve Doğa Bilimleri Fakültesi
Bitirme Projesi

23 - 29 Ekim Haftası Kazanımları

İLKCAN ÜSTOĞLU EMRE TEMİR

Projemizin Genel Tanıtımı

- Projemiz, modern teknolojiyi kullanarak bebeklerin konforunu ve güvenliğini artırmayı amaçlayan bir akıllı bebek beşiği projesidir.
- Bu proje, ebeveynlerin bebeklerini daha yakından takip etmelerini ve beşiğin içindeki ortamı kontrol etmelerini sağlar.
- Projemiz, bebek beşiği içinde bulunan çeşitli sensörler ve akıllı bir mobil uygulama ile entegre edilmiştir.
- Bu sayede ebeveynler, bebeğin durumu hakkında gerçek zamanlı bilgilere erişebilir ve beşiği uzaktan kontrol edebilirler.

Proje Özellikleri

- Canlı Video İzleme
- Ses İzleme
- Hareket İzleme
- Sıcaklık ve Nem Bilgisi Görüntüleme
- Otomatik Sallama Kontrolü
- Fan Sistemi ile Ortam Isısı Kontrolü
- Hoparlör ile Bebeğe Ninni Dinletme Özelliği
- Mobilden ve Beşik üzerindeki LCD ekrandan kontrol edilebilme

Bu hafta bizden istenilenler

- 1) Piyasa araştırması yapılması
- Projede kullanılacak mikrodenetleyicinin belirlenmesi
- 3) Bitirme projesinin isminin belirlenmesi
- 4) Tüm sistemin genel blok diyagramının çizilmesi

1) YÖK Tez Merkezi Araştırması

- YÖK Tez Merkezinden yaptığımız araştırma sonucunda «Raspberry pi kullanılarak bebek kuvözü izleme sistemi geliştirilmesi» (Tez No: 528446) adlı bir tez çalışmasına rastladık.
- 2018 yılında yazılan bu tezin bizim projemizle ortak olan yönü iki projenin de temel olarak bebek sağlığı üzerinde çalışması ve bir mikrodenetleyici ve çeşitli sensörler kullanarak çalışma yapılmasıdır.
- Projemizin çeşitli aşamalarında bu tez örneğinden faydalanabileceğimizi düşünüyoruz.

2) Piyasada satılan ürünlerin araştırması

- İnternetten «Akıllı Bebek Beşiği», «Otonom Bebek Beşiği» gibi terimleri arattığımızda Türkiye pazarında bizim projemize benzeyen bir ürünün satışta olmadığını gördük.
- Pazarda bulunan ürünlerin büyük bir kısmının tek özelliği otomatik şekilde sallanma sistemidir.
- Bizim projemize en yakın ürünün «mamaRoo çok hareketli bebek salıncağı» olduğunu gördük ancak bu ürün de sadece mobil desteği olması yönüyle bizim projemize benzemektedir.

3) «Akıllı Bebek Beşiği Projesi» (TÜBİTAK 1512 Bireysel Genç Girişimci Programı)

- İnternette araştırma yaparken 2020 yılında TÜBİTAK'tan destek almaya hak kazanan bir girişime denk geldik.
- Erzurum'da üniversite öğrencilerinin tasarladığı bu <u>«Akıllı Bebek</u>
 <u>Beşiği Projesi»</u> bizim projemize bazı özellikleri bakımından
 benzemektedir. (Otomatik olarak sallanabilme, Mobil cihazlar ile
 kontrol edilebilme, Görüntü işleme teknolojisi ile bebeğin
 hareketlerinin takibi vb.)
- Ancak bu projenin de henüz prototip aşamasında olduğunu ve tam olarak istenilen ürünün ortaya konulamadığını gördük.

4) Youtube üzerinden yabancı kaynak araştırması

- Projemizle ilgili youtube üzerinden araştırma yaparken projemize çok benzeyen bir yabancı bir videoya denk geldik.
- Bu <u>videoda</u> bahsedilen sistem neredeyse projemizin aynısıdır.
- Bu videonun ileride işimize yarayabileceğini düşünüyoruz.

PROJEDE KULLANILACAK MİKRODENETLEYİCİNİN BELİRLENMESİ

- Piyasada bulunan çeşitli mikrodenetleyicileri araştırdık ve projemize en uygun olan mikrodenetleyiciyi bulmak için bir tablo hazırladık.
- Bu tabloyu hazırlarken mikrodenetleyicilerin birçok özelliğini göz önünde bulundurduk.

PROJEDE KULLANILACAK MİKRODENETLEYİCİNİN BELİRLENMESİ

Mikrodenetleyiciler Karşılaştırma Tablosu

Özellik	Raspberry Pi Pico	Arduino Uno	ESP8266	ESP32	STM32	PIC
				1.57 5.	23 24	10
Mikrodenetleyici	RP2040	ATMega328P	ESP8266	ESP32	STM32F401	PIC16F1827
Çekirdek Sayısı	2	1	2	2	4	1
Mimarisi	32 bit ARM Cortex-M0+	8 bit RISC	32 bit LX6	32 bit LX6	32 bit ARM Cort	8 bit RISC
Saat Hızı	133 MHz'ye kadar	16 MHz	240 MHz'ye kadar	240 MHz'ye kadar	168 MHz	40 MHz
Çalışma Voltajı	3.3 V	5 V	3.3 V	3.3 V	3.3 V	5 V
GPIO Voltaji	3.3 V	5 V	3.3 V	3.3 V	3.3 V	5 V
Dijital Pin Sayısı	26	14	36	36	144	20
PWM Pin Sayısı	16	6	32	32	16	14
Analog Pin Sayısı	3	6	15	15	12	8
SPI/I2C/UART/I2S	2/2/2002	1/1/2001	4/2/2/2	4/2/2/2	2/2/2/2	2/2/2/2
Wi-Fi	Yok	Yok	Var	Var	Var	Yok
Bluetooth	Yok	Yok	Var	Var	Var	Yok
Dahili Sensör	Sıcaklık	Yok	Yok	Yok	Sıcaklık, Işık, Pr	Yok
Programlama Dili	MicroPython, C, C++	C, C++	C, C++, MicroPython, JavaScript	C, C++, MicroPython	C, C++, Python	С
Kart Üstünde Programlama LED'i	GP25 pini	D13 pini	D2 pini	D2 pini	D13 pini	Yok
Flash	2 MB	32 KB	4 MB	4 MB	128 MB	128 KB
RAM	264 KB	2 KB	520 KB	520 KB	320 KB	32 KB
EEPROM	Yok	1 KB	Yok	Yok	1 KB	128 KB
Avantajları	Makine öğrenimi için en iyisi	Yeni başlayanlar için en iyisi	IoT için en iyisi	IoT için en iyisi	Çok yönlülük	Düşük maliyet

PROJEDE KULLANILACAK MİKRODENETLEYİCİNİN BELİRLENMESİ

- Hazırladığımız tabloda yaptığımız incelemeler sonucunda bizim projemiz için en uygun olan mikrodenetleyicinin ESP32 olduğuna karar verdik.
- Yaptığımız araştırmalar neticesinde ESP32'nin birçok loT projesinde kullanıldığını gördük.
- ESP32'yi tercih ederken çift çekirdekli işlemciye sahip olduğu için görüntü işlemede daha çok işimize yarayacağını düşündük.
- Ayrıca içerisinde Wi-Fi ve Bluetooth modüllerinin hazır olarak bulunması da bize avantaj sağlayan noktalardan bir tanesidir.

ESP32(Mikrodenetleyici)

- ESP32; Bluetooth ve Wİ-Fİ özelliği olan, düşük maliyetli ve düşük güçlü bir mikrodenetleyici sistemdir.
- Hem çift çekirdekli hem de tek çekirdekli tensilica Xtensa LX6 mikroişlemci veya tek çekirdekli RISC-V mikroişlemci kullanır ve RF balun, güç amplifikatörü, düşük gürültülü alıcı amplifikatör, filtreler ve güç yönetimi modülleri içermektedir.
- Şangay'da bir Çinli şirket olan Espressif Systems tarafından oluşturulup geliştirilmiştir.

ESP32(Mikrodenetleyici)

ESP32 Örnek Görünümü

BITIRME PROJESININ ISMININ BELIRLENMESI

- Bitirme projemizin ismini belirlemek için YÖK Tez Merkezindeki tezler üzerinde inceleme yaptık.
- Yaptığımız incelemeler sonucu tezimizin adı olabilecek birkaç öneri:

«ESP32 Kullanılarak Mobil Entegrasyonlu Otonom Bebek Beşiği Tasarımı»

«Yenidoğan Bebeklerin Güvenliği ve Konforunu Artırmak için loT Tabanlı Bebek Beşiği Tasarımı»

«IoT tabanlı Bebek İzleme Sistemi bulunan Akıllı Beşik Tasarımı»

SISTEMIN GENEL BLOK DIYAGRAMI

X LAS

9 (a) (a) (b) (b) (c) (