Name:	***************************************
"	· · · · · · · · · · · · · · · · · · ·
Signature:	School:

545/2 CHEMISTRY Paper 2 Jul / Aug. 2022 2 hours

UGANDA TEACHERS' EDUCATION CONSULT (UTEC)

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer ALL questions in this section. Answers to the questions must be written in the spaces provided.

Section B consists of A semi – structured questions. Answer only A two questions from this section. Answers to the questions A must be written in the answer booklets provided.

In both sections all working must be shown clearly.

Where necessary

$$[Zn = 65, O = 16, H = 1, Pb = 207]$$

1 mole of a gas occupies 22.4 dm³ at s.t.p

1 mole of a gas occupies 24dm³ at room temperature

For Examiner's use only														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL

© 2022 UTEC Mock Examinations

Turn Over

SECTION A: (50 MARKS)

Answer ALL questions in this section

		kture was shaken then allowed to stand. e what was observed.	(1/
(a)	Dian	e what was observed.	(½ ,marl
••••			•••••
			••••••
(b)	(i)	Name the piece of apparatus that can be used to separate the	mixture.
			(½ mark
••••	(ii)	Give a reason for your answer in (b) (i) above.	
	(11)	Give a reason for your answer in (b) (i) above.	(½ mark
•••••	•••••		
(c)	ın an sodiı	other experiment, ammonium chloride was heated as a mixture im chloride.	with
	State	,	*
	(i)	What was observed during the process of heating?	(01 mark)
	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••••		
	(ii) 🏄	The practical application of heating the mixture.	(½ mark)
• • • • • •			
•••••			
(d)		ion one example of a mixture which can be separated by fraction	
	distil	lation.	(01 mark)
			: : :
Thor		1	
(a)	Write	numbers of elements, X , Y and Z are 6, 12 and 17. Respectively: the electronic configuration for:-	:-
	(i)	X:	(½ mark)
	(ii)	Y:	(½ mark)
	(iii)	Z:	(½ mark)

2.

(b)	(i)	te the formula for the product when: X, burns in the excess oxygen.	(01 mark)
			,,.,.,.,
	(ii)	Atoms of Y are burnt in the molecules of Z.	(01 mark)
·····		24 - 24 A	
(c)		er was added to the compound in (b) (i) and the r(s). State:	product tested with litmus
	(i)	What was observed?	(01 mark)
••••		· · · · · · · · · · · · · · · · · · ·	
••••	(ii)	Any one conclusion that can be drawn following	A &
	follow	tum peroxide reacts with water to produce oxygen a wing equation. $2O_2^{\frac{1}{2}}(s) + 2\dot{H}_2O(l) \longrightarrow 4 NaOH(aq)$ State what is observed during the reaction.	P. C.
			(01 1111111)
•••••	•••••		
			•••••
	(ii)	Calculate the volume of oxygen gas produced a 3.12g of sodium peroxide were completer reacted	with water.
. :	(ii)	Calculate the volume of oxygen gas produced a 3.12g of sodium peroxide were completer reacted ($Na = 23$, $O = 16$, 1 mole of a gas occupies 241 mole of a gas occupies 24dm ³ at room temperat	with water. 4dm ³ at room temperature.
•••••	, ,	3.12g of sodium peroxide were completer reacted $(N\alpha = 23, O = 16, 1 \text{ mole of a gas occupies } 24)$	with water. 4dm³ at room temperature. ure. (02 marks)
• • • • • • • • • • • • • • • • • • • •		3.12g of sodium peroxide were completer reacted ($N\alpha = 23$, $O = 16$, 1 mole of a gas occupies 24 l mole of a gas occupies 24dm ³ at room temperat	with water. 4dm³ at room temperature. ure. (02 marks)
••••••		3.12g of sodium peroxide were completer reacted ($N\alpha = 23$, $O = 16$, 1 mole of a gas occupies 24 1 mole of a gas occupies 24dm ³ at room temperat	with water. 4dm³ at room temperature. ure. (02 marks)
		3.12g of sodium peroxide were completer reacted ($N\alpha = 23$, $O = 16$, 1 mole of a gas occupies 24 l mole of a gas occupies 24dm ³ at room temperat	with water. 4dm³ at room temperature. ure. (02 marks)
		3.12g of sodium peroxide were completer reacted ($N\alpha = 23$, $O = 16$, 1 mole of a gas occupies 24 1 mole of a gas occupies 24dm ³ at room temperat	with water. 4dm³ at room temperature. ure. (02 marks)

	(b)	A small sample of burning sulphur was plunged into a gas jar contain	ing
	(0)	oxygen gas. State:	(01 mark)
	(i)	What was observed?	
	•••••		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(01 mark)
	(ii)	The effect of the product(s) in (c) (i) on litmus paper(s).	(02 33333)
		e hydrochloric acid was added until in excess to zinc granules and the	gas evolved
4.	Dilut	passed over heated lead (II) oxide as shown in the figure 1. Below.	
	was p	bassed over heated load (11) critical at the same and the same at	
		25	
		Dilute hydrochloric acid	
		e Pe	
		Combustion tube	
		ombustion tu	
Cork		J C c c c c c c c c c	
			T
		Heat U – tube	
		Zinc granular Fused calcium	
	(0)	State;	
	(a)	(i) What was observed in the combustion tube?	(01 mark)
		(ii) The role of fused calcium chloride in the U-tube.	(½ mark)
	•••••		
		••	

	(i)	between zinc and dilute hydrochloric acid.	(1 ½ mark
	(ii)	that takes place in the combustion tube.	(1 ½ marks
•••••			
(c)	comb	one other oxide besides Lead (II) oxide that could ustion tube.	(½ mark
A so	lid com	apound, Q, reacts with dilute sulphuric acid to production wing properties.	
nas u		s acidified potassium dichromate solution from orange	to green.
(ii)		ches moist blue flowers to white.	. •
(a)	Name		
Region	(i)	Compound Q.	
		The colourless gas.	(½ mark)
(b)	(ii)	The colourless gas.	
(b)	(ii) Writ		ohuric acid. (1 ½ marks)
(b)	(ii) Writ	e an equation for the reaction between Q and dilute sulp	ohuric acid. (1 ½ marks)
(b) (c)	(ii) Writ	e an equation for the reaction between Q and dilute sulp	ohuric acid. (1 ½ marks)
	(ii) Write	e an equation for the reaction between Q and dilute sulp	ohuric acid. (1 ½ marks)
	(ii) Write	e; the practical application of the reaction when the ga acidified potassium dichromate solution.	ohuric acid. (1 ½ marks) s was bubbled through (½ mark)
(c)	(ii) Write	e an equation for the reaction between Q and dilute sulp e; the practical application of the reaction when the ga acidified potassium dichromate solution.	ohuric acid. (1 ½ marks) s was bubbled through (½ mark)

	(d)	The b	leaching action of the colourless gas is by reduction. Write equon to show how the gas reduces moist blue flowers.	uation for the (01 mark)
				, , , , , , , , , , , ,
				•
5 .	When	magne	esium powder was added into 25cm ³ of 0.2M solution of copper eaker, some heat was evolved.	(II) chloride
	(a)	(i)	What else was observed apart from the evolution of heat?	(01 mark)
		(ii)	Why the reaction liberates heat.	(01 mark)
	(b)	Write	an ionic equation for the reaction that took place.	(01 mark)
(#		Calci (i)	ilate the; Number of moles of copper (II) ions contained in the 25, solution.	
	124		Solution.	(01 1110111)
f.				
: 1				
		(ii)	The mass of copper that was displaced by one mole of magnes of Magnesium were used in the reaction. $(Cu=64, Mg=24)$.	ium if 1.92g (02 marks)
			•••••••••••••••••••••••••••••••••••••••	

The diagram in the Figure 2 below shows the set up of apparatus that was used to carry out electrolysis of different electrolytes in the laboratory. Carbon electrodes were used in the experiment.

(a)

Name the substance that was formed at electrode, A, if the following electrolytes

	. ,	sed. Aqueous silver nitrate solution.	(½ mark)
	(ii)	Copper (II) chloride solution in dilute form.	(½ mark)
		an equation for the electrode reaction in (a) (i).	 (01 mark)
(b)			· · · · · · · · · · · · · · · · · · ·
	If the		,,,,,,

(e)	If the electrodes were replaced with Copper electrodes and the electrodes (ii) done for some time, state what was observed at A.	(½ mar)
(a)	State what would be observed if each of the following reagents was a solution of aluminium chloride.	
(i)	Lead (II) nitrate solution.	(½ marl
		············ , .
(ii)	Ammonia solution dropwise until in excess.	(01 mark
(b)	Write an equation for the reaction that took place in (a) (i) above.	(01 mark
(c)	To the resulting mixture in (a) (ii) was added sodium hydroxide solu	tion dropwis
(i)	until in excess. State what was observed.	(01 mark)
(ii)	Give a reason to support your answer in (c) (i).	(01 mark)
(a)	In the presence of a catalyst, glucose can be converted to ethanol. (i) Name the catalyst used.	(½ mark)
	(ii) Write equation for the reaction in which glucose is converte	ed to ethanol

4.	m.	the state of an hamparted to serban disvide assessed	nding to the
(b)		thanol obtained can be converted to carbon dioxide gas accoving equation:	roing to the
		$OH(l) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(l) +$	Heat
		late the mass of ethanol that was burnt in oxygen to produce	
	(C = 1)	2, $O = 16$, $H = 1$; 1 mole of ethanol burns to produce 1360	KJ of heat)
		그 그 그 그는 그는 그리는 그리는 일반에 의 회의 회의 기계를 받는다고 다니?	(02 mark
•••••	•••		
			,
(c)	State		
` '	(i)	is formed when ethanol is heated with concentrated sulphu	ric acid.
			(½ mai
	7115	is observed when the product in (c) (i) is treated with brom	ine.
	(ii)	is observed when the product in (-) (-)	(01 mar
•••••••			
		(77 I) 13	and the mixts
Whe	n conce	ntrated hydrochloric acid was added to manganese (IV) oxid	e and the mixit
heat	ed, a gas	s was evolved.	(½ ma
(a)	(i)	Name the gas that was evolved.	(/ 2 1111
			(1 ½ mark
	(ii)	, Write equation for the reaction that took place.	,
			•••••
	State	what is observed when the gas is bubbled through:	
(b)	(i)	Cold dilute potassium hydroxide solution.	(01 ma

	(ii)	A beaker containing moist red flowers.	(½ mark)
	•••••		
(c)	The g	as in (a) (i) was bubbled through a solution of sodium iodid	e until no further
	chang (i)	e. Write equation for the reaction.	(1½ marks)
	(ii)	Suggest any conclusion that can be drawn from the eq written in (c) (i).	uation you have (1 mark)
			* * .
		SECTION B (30 MARKS) Answer any TWO questions from this section	• ¹ .
Calc	ium oxid	le is regarded as a hygroscopic substance.	
(a)	(i)	Define the term a hygroscopic substance.	(01 mark)
	f	Give one other example of a hygroscopic substance.	(½ mark)
	(iii)	State one laboratory use of hygroscopic substance.	(01 mark)
(b)		A, is mainly dried in the laboratory using calcium oxide.	(1/
	(i)	Identify gas A.	(½ mark)
	(ii)	Write an equation for the reaction that leads to the formation in the laboratory.	
(c)	Evces	s water was added on to calcium oxide until there was no fu	(1 ½ marks)
(0)	(i)	Write equation for the reaction that took place.	(1 ½ marks)
	(ii)	Using equations, explain the changes that would result	
	(11)	gas was bubbled through the product(s) in (c) (i) until in ex	
		garante and and and and product(s) in (e) (i) and in e.	(4 ½ marks)
. 1			(* * 2 ********************************
(d)	State;		
	(i)	The conditions for the reaction of calcium oxide with nitric	c acid.
		Write equation for the reaction that takes place.	(2 ½ marks)
	(ii)	Why the reaction in (d) (i) is not possible with sulphuric as	cid. (Equation not
		require).	(02 marks)

11.

12.		ogen chloride gas can be prepared in the laboratory by reacting sall and an acid.	sodium chloride
		(i) Name the acid commonly used for this preparation.	(½ mark)
	(a)	(ii) State the conditions for the reaction.	(1 mark)
		(iii) Write equations for the reaction.	(1 ½ marks)
	(h)	Iron fillings when heated in dry hydrogen chloride react according	to the following
	(b)	equation:	
		$Fe(s) + 2HCl(g) \longrightarrow FeCl_2(s) + H_2(g)$	4
		(i) Calculate the volume of hydrogen chloride gas that would	d be required to
٠		react with iron at s.t.p to produce 5.0g of Iron (II) chloride.	
		(Fe = 56, Cl = 35.5; 1 mole of a gas occupies 22.4 dm ³ at s.	.t.p).
			(2 ½ marks)
			•
		(ii) The anhydrous Iron (II) chloride formed in (b) was diss	solved in water.
		State what was observed and write an ionic equation for the	reaction.
			(2 ½ marks)
	(c)	Dilute sodium hydroxide solution was added to the solution (pro	oduct) in (b) (ii)
	(0)	drop wise until in excess.	
		(i) State what was observed.	(01 mark)
		(ii) Write an ionic equation for the reaction.	(1 ½ marks)
	(d)	Explain;	
	(-)	(i) The effect of bubbling hydrogen chloride gas through a s	olution of silver
	ī.	nitrate.	(2 ½ marks)
		(ii) Why aqueous hydrogen chloride liberates hydrogen v	vith zinc metal
		whereas hydrogen chloride in methyl benzene does not.	(2 ½ marks)
		11.10.10.10.10.10.10.10.10.10.10.10.10.1	•
13.	Nitro	gen can react with hydrogen in the Haber process to produce ammon	ia gas.
13.	(a)	State the;	
	(4)	(i) Source of nitrogen and hydrogen	(01 mark)
		(ii) Factors that can affect the yield of ammonia in the Haber pr	ocess.
			(1 ½ marks)
	(b)	Write an equation for the reaction leading to the formation of	ammonia in the
	(0)	Haber process.	(01 mark)
	(c)	Write an equation for the reaction to show oxidation of ammonia	
	(0)	(i) by Copper (II) oxide	(1 ½ marks)
		(ii) in the presence of hot platinum.	(1 ½ marks)
		() we known or man known.	•
	(d)	Using equations, outline how the product(s) in (c) (ii) can be co	enverted to nitric
	(-)	acid.	(3 ½ marks)

Ammonia gas can react with concentrated sulphuric acid to produce ammonium (e) sulphate according to the following equation: $2NH_3(g) + H_2SO_4(l) \longrightarrow (NH_4)_2SO_4(S)$ Calculate the mass of ammonium sulphate that would be produced by 0.96 dm3 of ammonia gas at room temperature. (N = 14, S = 32, O = 16, one mole of a gas occupies 24dm³ at room(02 marks) temperature. Explain why an aqueous solution of ammonium sulphate turns blue litmus (ii) (02 marks) paper red. When aqueous ammonia solution was added to a solution containing zinc ions, a (f) white precipitate Y which dissolved in excess ammonia to give a colourless solution was formed. (½ mark) Identify Y. (i) Write the formula for the cation in the colourless solution. (½ mark). (ii) (02 marks) State the difference between an acid and a salt. (a) Describe; (b) how a pure dry sample of lead (II) carbonate can be prepared in the (i) (04 marks) laboratory. (no diagram is required) (02 marks) the effect of heat on lead carbonate. Lead (II) carbonate reacts with dilute nitric acid according to the following (c) equation. $PbCO_3(s) + 2HNO_3(aq) \longrightarrow Pb(NO_3)_2(aq) + CO_2(g) + H_2O(l)$ Calculate the mass of lead (II) carbonate that is required to react completed with $200 \text{cm}^3 \text{ of } 0.2 \text{M} \text{ dilute nitric acid. (Pb = 207, C = 12, O = 16)}.$ (2 1/2 marks) State what would be observed if into a solution of lead (II) ions was added; (e) (½ mark) Drops of potassium iodide. (i) Ammonia solution drop wise until in excess. (01 mark) (ii) Dilute hydrochloric acid and the mixture heated then allowed to cool. (iii) (1 ½ marks) Write an equation to illustrate your answer in (d) (ii) above. (1 ½ marks) (t)

14.

(C