ST308 Bayesian Inference

Kostas Kalogeropoulos (Office B610)

Week 2: Exercises

- 1. Consider the vaccination example in the lecture slides.
 - (a) Assume that a person is tested positive for immunity. Which of the decision rules have the lower posterior risk?
 - (b) Repeat the above for the case that the person was tested negative.
 - (c) Combine the two above cases and choose the optimal decision rule. Compare with the Bayes risk outcome.
- 2. Consider the quadratic error, absolute error and 0-1 loss functions. Find the Bayes estimator for θ in the case of
 - (a) A random sample $x = (x_1, ..., x_n)$ from a Normal $(\theta, 1)$. Assign a N (μ, τ^2) prior to θ .
 - (b) A single observation x from a Binomial (n, θ) . Assign a Beta (α, β) prior to θ .
- 3. Show that the bayes risk $r(\delta(x), \pi(\theta))$ can be written as averaging the posterior risk over x. In other words show that

$$\int R(\delta(x), \theta) \pi(\theta) d\theta = \int \rho(\delta(x), \pi(\theta)) m(x) dx,$$

assuming certain regularity conditions under which

$$\int_{\Theta} \int_{\mathcal{X}} L(\delta(x), \theta) h(x, \theta) dx d\theta = \int_{\mathcal{X}} \int_{\Theta} L(\delta(x), \theta) \pi(\theta|x) m(x) d\theta dx.$$

4. **Optional Exercise:** Let $x = (x_1, ..., x_n)$ be a random sample from a Poisson(λ) distribution. Assign a Gamma(α, β) prior to λ . Consider the LINEX (LINear-EXponential) loss function.

$$L(a,\lambda) = \exp(k(a-\lambda)) - k(a-\lambda) - 1$$

where k is a known positive constant. Find the Bayes estimator λ .