

Name:

KIT-Fakultät für Informatik

Prof. Dr. Mehdi Tahoori, Prof. Dr. Wolfgang Karl

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 15. August 2022, 08:00 - 10:00 Uhr

Matrikelnummer:

Vorname:

Digitaltechnik und Ent	wurfsverfahren (TI-1)
Aufgabe 1	von 10 Punkten
Aufgabe 2	von 9 Punkten
Aufgabe 3	von 7 Punkten
Aufgabe 4	von 9 Punkten
Aufgabe 5	von 10 Punkten
Rechnerorganisation (T	,
Aufgabe 6	von 12 Punkten
Aufgabe 7	von 12 Punkten
Aufgabe 8	von 12 Punkten
Aufgabe 9	von 5 Punkten
Aufgabe 10	von 4 Punkten
Gesamtpunktzahl:	
	Notes

${\bf Aufgabe\ 1} \quad \textit{Schaltfunktionen}$

1. DMF von f(c, b, a):

2. • KV-Diagramm von f(c, b, a):

$$f(c,b,a)$$
 a

• DNF von f(c, b, a):

lam	e:	Vorname:	MatrNr.:	3
3.	Kern-Primimplikante:			
	Reduzierte Tabelle:			
	D			
4.	Dominierte Minterme Reduzierte Tabelle:			
	Reduzierte Tabelle:			
5	Dominierende Primim	nlikante:		
٠.	Reduzierte Tabelle:	pinano		

6. Minimalform der Funktion z:

Name:

Aufgabe 2 Schaltnetze und CMOS-Technologie

1. Eigenschaften *Transmission*-Gate:

2. CMOS-Schaltbild des *Transmission*-Gates:

3. g(d, c, b, a):

4. Zweistufige disjunktive Form von g(d, c, b, a):

Aufgabe 3 Laufzeiteffekte

1. Verlauf von y:

2. Funktionshazard und Fehler:

3. Schaltnetz ohne Fehler:

Aufgabe 4 Schaltwerke

1. Unterschied Schaltnetz und Schaltwerk:

2.

Schaltwerk	1	2	3	4
zählt vorwärts				
zählt rückwärts				
ist synchron				
kann bei $jedem$ Zählerstand mit Hilfe von x angehalten werden.				

Aufgabe 5 Rechnerarithmetik & Verschiedenes

1.	Unterteilung	von	Bfloat16:

15

2. $2, 125_{10}$ in *Bfloat16*:

3. Größte positive Zahl in *Bfloat16*:

4. Anzahl Möglichkeiten der Null:

5. Gründe für die Verwendung:

6. Anzahl Prüfbits:

7. Unterschied Carry-Ripple-Addierer und Carry-Lookahead-Addierer:

${\bf Aufgabe~6} \quad \textit{RISC-V Assembler}$

Vorname:

1. Anzahl Befehlsformat

2. Kodierung von R-Typ und I-Typ: R-Typ:

I-Typ:

3. Unterschied Ausnahme und Unterbrechung:

- 4. Ausführungsmodell:
- 5. Konvention der Register:

6. RISC-V Assembler:

Aufgabe 7 Pipelining

1.

• Echte Datenabhängigkeiten:

• Gegenabhängigkeiten:

• Ausgabeabhängigkeiten:

2. Zustand der Pipeline und Register:

Takt	IF/ID	OF	$\mathbf{E}\mathbf{X}$	WB	R1	R2	R3	R4
1	S1							

Name:		Vorname:	MatrNr.:	12
A	Anzahl der Takte:			
3. H	Behebung der Pipelinek	onflikte durch Einfügen vo	on NOP-Befehlen:	
A	Anzahl der Takte:			

4. Forwarding-Techniken:

${\bf Aufgabe~8} \quad {\it Cache-Speicher}$

 $1.\ \,$ Direkt-abgebildeter Cache mit 16 Speicherblöcken:

Adresse	Hilfsspalte	Tag	Index	Offset	Hit/Miss
0x03					
0xb4					
0x2b					
0x02					
0xbf					
0x58					
0xbe					
0x0e					
0xb5					
0x2c					
0xba					
0xfd					

2. Direkt abgebildeter Cache mit 8 Speicherblöcken:

Adresse	Hilfsspalte	Tag	Index	Offset	Hit/Miss
0x03					
0xb4					
0x2b					
0x02					
0xbf					
0x58					
0xbe					
0x0e					
0xb5					
0x2c					
0xba					
0xfd					

${\bf Aufgabe~9} \quad \textit{Virtuelle Speicherverwaltung}$

1. Physikalische Adresse:

• 3088:

• 1420:

• 2555:

• 1023:

• 1024:

Aufgabe 10 Verschiedenes

1. Entscheidende Nachteil:

2. Vorteile eines DMA-Controllers:

3. Beschleunigung durch TLB:

4. Befehlssatzarchitektur: