03 : Théorème de Pythagore

√ictoire Hérin

2023-2024

1) Racine carrée d'un nombre positif

Problème

Soit un carré d'aire 50 cm². Quelle est la longueur **exacte** de son côté?

Problème

Soit un carré d'aire 50 cm². Quelle est la longueur **exacte** de son côté?

Réponse

Il n'y a pas de nombre décimal x tel que $x^2 = 50$.

Problème

Soit un carré d'aire 50 cm². Quelle est la longueur **exacte** de son côté?

Réponse

Il n'y a pas de nombre décimal x tel que $x^2 = 50$. Tout comme nous avons eu besoin d'une nouvelle manière pour écrire des nombres non entiers (nombres décimaux, fractions), ou des nombres non-positifs (nombres négatifs), nous avons besoin d'une nouvelle manière d'écrire des nombres non décimaux.

Définition : racine carrée d'un nombre positif

Soit v un nombre positif.

Le nombre positif r, qui, élevé au carré donne v est la racine carrée de v ($r^2 = v$).

Exemple

• Quelle est la racine carrée de 9?

Définition : racine carrée d'un nombre positif

Soit v un nombre positif.

Le nombre positif r, qui, élevé au carré donne v est la racine carrée de v ($r^2 = v$).

Exemple

- Quelle est la racine carrée de 9?
 3 car 3² = 9.
- Quelle est la racine carrée de 25?

Définition : racine carrée d'un nombre positif

Soit v un nombre positif.

Le nombre positif r, qui, élevé au carré donne v est la racine carrée de v ($r^2 = v$).

Exemple

- Quelle est la racine carrée de 9?
 3 car 3² = 9.
- Quelle est la racine carrée de 25?
 5 car 5² = 25.
- Quelle est la racine carrée de 81?

Définition : racine carrée d'un nombre positif

Soit v un nombre positif.

Le nombre positif r, qui, élevé au carré donne v est la racine carrée de v ($r^2 = v$).

Exemple

- Quelle est la racine carrée de 9?
 3 car 3² = 9.
- Quelle est la racine carrée de 25?
 5 car 5² = 25.
- Quelle est la racine carrée de 81?
 9 car 9² = 81.

Notation de la racine carrée

Soit x un nombre positif. On note sa racine carrée : \sqrt{x} . Le nombre \sqrt{x} se lit « racine carrée de x ».

Notation de la racine carrée

Soit x un nombre positif. On note sa racine carrée : \sqrt{x} . Le nombre \sqrt{x} se lit « racine carrée de x ».

Propriétés de la racine carrée

Soient a et b deux nombres positifs.

$$(\sqrt{a})^2 = a$$

Notation de la racine carrée

Soit x un nombre positif. On note sa racine carrée : \sqrt{x} . Le nombre \sqrt{x} se lit « racine carrée de x ».

Propriétés de la racine carrée

Soient a et b deux nombres positifs.

$$(\sqrt{a})^2 = a$$
$$\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$$

Notation de la racine carrée

Soit x un nombre positif. On note sa racine carrée : \sqrt{x} . Le nombre \sqrt{x} se lit « racine carrée de x ».

Propriétés de la racine carrée

Soient a et b deux nombres positifs.

$$(\sqrt{a})^2 = a$$
$$\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$$

Exemple

[Trouver un exemple qui montre que $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$.]

2) Théorème de Pythagore

2.a) Vocabulaire

2.a) Vocabulaire

Définition : hypoténuse

Dans un triangle rectangle, le côté le plus long s'appelle l'hypoténuse.

Définition : hypoténuse

L'hypoténuse est le côté opposé à l'angle droit.

Propriété : théorème de Pythagore

Dans un triangle ABC rectangle en A:

$$BC^2 = AB^2 + AC^2.$$

Propriété : théorème de Pythagore

Dans un triangle ABC rectangle en A:

 $BC^2 = AB^2 + AC^2.$

Utilisation du théorème de Pythagore

Énoncé:

Soit un triangle ABC rectangle en A avec AB = 4cm et AC = 5cm. Calculer BC.

Propriété : théorème de Pythagore

Dans un triangle ABC rectangle en A:

 $BC^2 = AB^2 + AC^2.$

Utilisation du théorème de Pythagore

Énoncé:

Soit un triangle ABC rectangle en A avec AB = 4cm et AC = 5cm. Calculer BC.

Faire une figure à main levée!

Résolution

Dans le triangle ABC rectangle en A,

Résolution

Dans le triangle ABC rectangle en A, (Décrire le triangle)

Résolution

Dans le triangle ABC rectangle en A, (Décrire le triangle) d'après le théorème de Pythagore on a :

```
Dans le triangle ABC rectangle en A, (Décrire le triangle) d'après le théorème de Pythagore on a : (Quel théorème on utilise)
```

```
Dans le triangle ABC rectangle en A, (Décrire le triangle) d'après le théorème de Pythagore on a : (Quel théorème on utilise) BC^2 = AB^2 + AC^2
```

```
Dans le triangle ABC rectangle en A, (Décrire le triangle) d'après le théorème de Pythagore on a : (Quel théorème on utilise) BC^2 = AB^2 + AC^2 (Le résultat du théorème)
```

```
Dans le triangle ABC rectangle en A, (Décrire\ le\ triangle) d'après le théorème de Pythagore on a : (Quel\ théorème\ on\ utilise) BC^2=AB^2+AC^2 (Le\ résultat\ du\ théorème) BC^2=4^2+5^2
```

```
Dans le triangle ABC rectangle en A, (Décrire le triangle) d'après le théorème de Pythagore on a : (Quel théorème on utilise) BC^2 = AB^2 + AC^2 (Le résultat du théorème) BC^2 = 4^2 + 5^2 (Les valeurs de l'énoncé)
```

```
Dans le triangle ABC rectangle en A,
(Décrire le triangle)
d'après le théorème de Pythagore on a :
(Quel théorème on utilise)
BC^2 = AB^2 + AC^2
(Le résultat du théorème)
BC^2 = 4^2 + 5^2
(Les valeurs de l'énoncé)
BC^2 = 16 + 25
```

```
Dans le triangle ABC rectangle en A,
(Décrire le triangle)
d'après le théorème de Pythagore on a :
(Quel théorème on utilise)
BC^2 = AB^2 + AC^2
(Le résultat du théorème)
BC^2 = 4^2 + 5^2
(Les valeurs de l'énoncé)
BC^2 = 16 + 25
RC^2 = 41
```

```
Dans le triangle ABC rectangle en A,
(Décrire le triangle)
d'après le théorème de Pythagore on a :
(Quel théorème on utilise)
BC^2 = AB^2 + AC^2
(Le résultat du théorème)
BC^2 = 4^2 + 5^2
(Les valeurs de l'énoncé)
BC^2 = 16 + 25
BC^2 = 41
(On calcule tout ce qu'on peut)
```

```
Dans le triangle ABC rectangle en A,
(Décrire le triangle)
d'après le théorème de Pythagore on a :
(Quel théorème on utilise)
BC^2 = AB^2 + AC^2
(Le résultat du théorème)
BC^2 = 4^2 + 5^2
(Les valeurs de l'énoncé)
BC^2 = 16 + 25
BC^2 = 41
(On calcule tout ce qu'on peut)
```

$$BC^2 = 41$$

 $BC^2 = 41$ (Calcul du nombre qui, élevé au carré donne 41)

$$BC^2 = 41$$
 (Calcul du nombre qui, élevé au carré donne 41) $BC = \sqrt{41}$ cm

```
BC^2 = 41
(Calcul du nombre qui, élevé au carré donne 41)
BC = \sqrt{41} cm
(Passage à la racine carrée, ATTENTION À
REMPLACER BC^2 PAR BC!)
```

```
BC^2 = 41 (Calcul du nombre qui, élevé au carré donne 41) BC = \sqrt{41} cm (Passage à la racine carrée, ATTENTION À REMPLACER BC^2 PAR BC!) BC \approx 6,40 cm
```

```
BC^2 = 41 (Calcul du nombre qui, élevé au carré donne 41) BC = \sqrt{41} cm (Passage à la racine carrée, ATTENTION À REMPLACER BC^2 PAR BC!) BC \approx 6,40 cm (Utiliser la calculatrice pour calculer une valeur approchée)
```

2.c) Calcul de la longueur d'un côté adjacent à l'angle droit

Problème

Soit un triangle ABC rectangle en A avec AB = 3cm et BC = 4cm. Calculer AC.

Problème

Soit un triangle ABC rectangle en A avec AB = 3cm et BC = 4cm. Calculer AC.

Résolution

Dans le triangle ABC rectangle en A,

Problème

Soit un triangle ABC rectangle en A avec AB = 3cm et BC = 4cm. Calculer AC.

Résolution

Dans le triangle ABC rectangle en A, d'après le théorème de Pythagore on a :

Problème

Soit un triangle ABC rectangle en A avec AB = 3cm et BC = 4cm. Calculer AC.

Résolution

Dans le triangle ABC rectangle en A, d'après le théorème de Pythagore on a : $BC^2 = AB^2 + AC^2$

Problème

Soit un triangle ABC rectangle en A avec AB = 3cm et BC = 4cm. Calculer AC.

Résolution

Dans le triangle ABC rectangle en A, d'après le théorème de Pythagore on a : $BC^2 = AB^2 + AC^2$ $4^2 = 3^2 + AC^2$

Problème

Soit un triangle ABC rectangle en A avec AB = 3cm et BC = 4cm. Calculer AC.

Résolution

Dans le triangle ABC rectangle en A, d'après le théorème de Pythagore on a : $BC^2 = AB^2 + AC^2$

$$4^2 = 3^2 + AC^2$$

$$16 = 9 + AC^2$$

$$16 = 9 + AC^2$$

$$16 = 9 + AC^2$$

$$16-9 = 9-9 + AC^2$$

Résolution

$$16 = 9 + AC^2$$

$$16-9 = 9-9 + AC^2$$

(On peut ajouter/soustraire un même nombre aux 2 côtés de l'égalité.)

Résolution

$$16 = 9 + AC^2$$

$$16-9 = 9-9 + AC^2$$

(On peut ajouter/soustraire un même nombre aux 2 côtés de l'égalité.)

[Gardez ça dans un coin de votre tête.]

$$16 = 9 + AC^2$$

 $16 - 9 = 9 - 9 + AC^2$
(On peut ajouter/soustraire un même nombre aux 2 côtés de l'égalité.)
[Gardez ça dans un coin de votre tête.]
 $7 = AC^2$

$$16 = 9 + AC^2$$

 $16 - 9 = 9 - 9 + AC^2$
(On peut ajouter/soustraire un même nombre aux 2 côtés de l'égalité.)
[Gardez ça dans un coin de votre tête.]
 $7 = AC^2$
 $AC^2 = 7$

$$16 = 9 + AC^2$$

 $16 - 9 = 9 - 9 + AC^2$
(On peut ajouter/soustraire un même nombre aux 2 côtés de l'égalité.)
[Gardez ça dans un coin de votre tête.]
 $7 = AC^2$
 $AC^2 = 7$
 $AC = \sqrt{7}$ cm
(Passage à la racine carrée)
 $AC \approx 2,65$ cm.
(Valeur approchée)

Propriété : réciproque du théorème de Pythagore

Dans un triangle ABC, si $AB^2 = AC^2 + BC^2$, alors le triangle est rectangle en

Propriété : réciproque du théorème de Pythagore Dans un triangle ABC, si $AB^2 = AC^2 + BC^2$, alors le

triangle est rectangle en *C*.

Propriété : réciproque du théorème de Pythagore

Dans un triangle ABC, si $AB^2 = AC^2 + BC^2$, alors le triangle est rectangle en C.

Problème

Soit un triangle ABC avec AB = 3 cm, BC = 4 cm et AC = 5 cm. Le triangle ABC est-il rectangle?

Résolution

Dans le triangle ABC, de plus long côté AC, on a :

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : AB^2 + BC^2
```

Résolution

Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : $AB^2 + BC^2 = 3^2 + 4^2$

Résolution

Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part :

$$AB^2 + BC^2$$

$$= 3^2 + 4^2$$

$$= 9 + 16$$

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : AB^2 + BC^2 = 3^2 + 4^2 = 9 + 16 = 25
```

Résolution

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)
```

```
d'une part :
```

$$AB^2 + BC^2$$

$$=3^2+4^2$$

$$= 9 + 16$$

$$= 25$$

d'autre part :

 AC^2

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

d'une part :

$$AB^2 + BC^2$$

$$= 3^2 + 4^2$$

$$= 9 + 16$$

$$= 25$$

d'autre part :

$$AC^2$$

$$= 5^2$$

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

d'une part :

$$AB^2 + BC^2$$

$$=3^2+4^2$$

$$= 9 + 16$$

$$= 25$$

d'autre part :

 AC^2

 $= 5^{2}$

= 25

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

d'une part :

$$AB^2 + BC^2$$

 $= 3^2 + 4^2$
 $= 9 + 16$
 $= 25$

Donc $AB^2 + BC^2 = AC^2$

$$AC^2$$

d'autre part :

$$= 5^{2}$$

$$= 25$$

Résolution

$$AB^{2} + BC^{2}$$

= $3^{2} + 4^{2}$
= $9 + 16$
= 25

$$= 5^{2}$$

= 25

Donc $AB^2 + BC^2 = AC^2$. (Conclusion du calcul)

Résolution

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part :
```

d'autre part :
$$AB^{2} + BC^{2}$$

$$= 3^{2} + 4^{2}$$
d'autre part :
$$AC^{2}$$

$$= 5^{2} + 4^{2} = 9 + 16$$

$$= 25$$
 $= 25$

Donc
$$AB^2 + BC^2 = AC^2$$
.

(Conclusion du calcul)

D'après la **réciproque du théorème de Pythagore**, le triangle *ABC* est rectangle en

Résolution

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part :
```

d une part:

$$AB^2 + BC^2$$
 d'autre part :
 $= 3^2 + 4^2$ AC^2

$$= 9 + 16$$
 $= 5^2$

$$= 25$$

Donc
$$AB^2 + BC^2 = AC^2$$
.

(Conclusion du calcul)

D'après la **réciproque du théorème de Pythagore**, le triangle *ABC* est rectangle en *B*.

Propriété : **contraposée** du théorème de **Pythagore**

Dans un triangle ABC, si $AB^2 \neq AC^2 + BC^2$, alors le triangle n'est pas rectangle.

Propriété : **contraposée** du théorème de Pythagore

Dans un triangle ABC, si $AB^2 \neq AC^2 + BC^2$, alors le triangle n'est pas rectangle.

Problème

Soit un triangle ABC avec AB = 4 cm, BC = 6 cm et AC = 8 cm. Le triangle ABC est-il rectangle?

Résolution

Dans le triangle ABC, de plus long côté AC, on a :

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : AB^2 + BC^2
```

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : AB^2 + BC^2 = 4^2 + 6^2
```

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : AB^2 + BC^2
```

$$=4^2+6^2$$

$$= 16 + 36$$

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.) d'une part : AB^2 + BC^2 = 4^2 + 6^2 = 16 + 36 = 52
```

Résolution

```
Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)
```

$$AB^2 + BC^2$$

$$=4^2+6^2$$

$$= 16 + 36$$

$$= 52$$

d'autre part :

 AC^2

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

d'une part :

$$AB^2 + BC^2$$

$$=4^2+6^2$$

$$= 16 + 36$$

$$= 52$$

d'autre part :

$$AC^2$$

$$= 8^2$$

Résolution

Dans le triangle ABC, de plus long côté AC, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

d'une part :

$$AB^2 + BC^2$$

$$=4^2+6^2$$

$$= 16 + 36$$

$$= 52$$

d'autre part :

 AC^2

 $= 8^{2}$

Résolution

Dans le triangle *ABC*, de plus long côté *AC*, on a : (Si le triangle est rectangle, le côté le plus long est forcément l'hypoténuse.)

d'une part :
$$AB^2 + BC^2$$

$$AB^2 + BC^2$$

= $4^2 + 6^2$

$$= 16 + 36$$

$$= 52$$

Donc
$$AB^2 + BC^2 \neq AC^2$$
.

d'autre part :

$$AC^2$$

$$= 8^2$$

$$= 64$$

Résolution

```
Dans le triangle ABC, de plus long côté AC, on a :
(Si le triangle est rectangle, le côté le plus long est
forcément l'hypoténuse.)
d'une part :
                               d'autre part :
AB^2 + BC^2
```

$$AB^{2} + BC^{2}$$

= $4^{2} + 6^{2}$
= $16 + 36$
= 52
Ponc $AB^{2} + BC^{2} \neq AC^{2}$

$$= 52$$
Donc $AB^2 + BC^2 \neq AC^2$.

(Conclusion du calcul)

 AC^2

 $= 8^{2}$

= 64

Résolution

```
Dans le triangle ABC, de plus long côté AC, on a :
(Si le triangle est rectangle, le côté le plus long est
forcément l'hypoténuse.)
```

d'une part :

$$AB^2 + BC^2$$

 $= 4^2 + 6^2$
d'autre part :
 AC^2

$$= 16 + 36$$
 $= 8^2$

$$= 10 + 30$$
 $= 64$

$$= 52$$

$$= 52$$

Donc
$$AB^2 + BC^2 \neq AC^2$$
.

(Conclusion du calcul)

D'après la contraposée du théorème de **Pythagore**, le triangle ABC n'est pas rectangle.

Licence

Ce document est sous licence CC BY-SA.