Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 12 16 stycznia 2020 r.

M12.1. 2 punkty Obliczyć całkę podwójną

$$I = \int \int_D \sin^2 y \sin^2 x (1 + x^2 + y^2)^{-1/2} dx dy \approx 0.13202,$$

gdzie

$$D = \{(x, y) : x^2 + y^2 \le 1\} \cup \{(x, y) : 0 \le x \le 3, |y| \le 0.5\}.$$

Rysunek 1. Zbiór D.

Wskazówka. Zapisać całkę I w sposób iterowany, tj.

$$I = \int_{-1}^{3} \sin^2(x)\varphi(x) dx,$$

gdzie $\varphi(x)=\int_{-c(x)}^{c(x)}\psi(x,y)\mathrm{d}y$. Obie całki można obliczać np. za pomocą metoy Romebrga.

- M12.2. 1 punkt Wyprowadzić wzór na jednopunktową kwadraturę liniową, która jest dokładna dla wszystkich funkcji stałych i liniowych.
- **M12.3.** T punkt Znaleźć, o ile to możliwe, takie węzły x_0, x_1 i współczynniki A_0, A_1 , żeby dla każdego wielomianu f stopnia ≤ 3 zachodziła równość $\int_0^1 (1+x^2)f(x)\,dx = A_0f(x_0) + A_1f(x_1)$.

$$w_n(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0,$$

najmniejszą wartość całki

$$\int_{a}^{b} p(x)w_{n}^{2}(x) dx$$

daje n-ty standardowy wielomian ortogonalny w sensie normy średniokwadratowej z funkcją wagową p(x).

M12.5. 3 punkty Rozważyć lot kuli wystrzelonej z armaty. Niech (x(t), y(t)) oznacza położenie kuli w chwili t (ograniczamy się do płaszczyzny). Z kolei, niech (u(t), v(t)) oznacza wektor prędkości kuli w chwili t. Oczywiście mamy x'(t) = u(t) oraz y'(t) = v(t).

Rozważyć wystrzał z kątem $\phi=60^\circ$ oraz przyjąć następujące warunki początkowe:

$$x_0 = 0$$
, $y_0 = 0$, $u_0 = 100\cos\phi$, $v_0 = 100\sin\phi$.

Z zasad dynamiki Newtona (przyjmujemy spore uproszenia dotyczące środowiska układu, w którym wykonywane jest doświadczenie) otrzymujemy równania

$$u'(t) = -z(t)u(t), v'(t) = -g - z(t)v(t),$$

gdzie $z(t) = \kappa \sqrt{u^2(t) + v^2(t)}$ jest wielkością oporu powietrza, a stała $g \approx 9.81$ ozancza wielkość grawitacji.

Rysunek 2. Przykładowe trajektorie lotu kuli armatniej.

Rozważyć aproksymację rozwiązania powyżyszego zagadnienia początkowego w punktach $t_n = nh$, gdzie h jest wielkością kroku (np. 0.01).

- | 1 pkt | Wyprowadzić wzory dla $x_{n+1}, y_{n+1}, u_{n+1}, v_{n+1}$, jakie daje jawna metoda Eulera.
- 2 pkt Zaprogramować metodę Eulera i narysować kilka przykładowych trajektorii lotu kuli przy różnych wartościach parametru κ charaketryzującego wielkość oporu powietrza.
- M12.6. 1 pkt, Włącz komputer Zaprogramować w języku Julia metodę RK2 lub RK4 w sposób wektorowy. Rozwiązać zagadnienie początkowe z poprzedniego zadania za pomocą tej metody.
- M12.7. 1 punkt Rozważyć problem

$$y'(t) = \lambda y(t)$$
 $(t > 0),$ $y(0) = 1,$

gdzie $\lambda < 0$. Wyprowadzić wzór na kolejne przybliżenia $y_n \approx y(t_n) \ (t_n = hn)$ uzyskiwane w jawnej i niejawnej metodzie Eulera. Sprawdzić czy $y_n \to 0$.

M12.8. I punkt Rozważyć problem z zadania M12.7. Wyprowadzić wzór na kolejne przybliżenia y_n uzyskiwane w metodzie Cranka-Nicolsona, tj. metodzie trapezów:

$$u_{n+1} = u_n + \frac{h}{2}(f_n + f_{n+1}).$$

M12.9. $\boxed{1 \text{ punkt}}$ Rozważyć problem z zadania M12.7. Wyprowadzić wzór na kolejne przybliżenia y_n uzyskiwane w metodzie Heuna, określonej następującym wzorem:

$$u_{n+1} = u_n + \frac{h}{2} [f_n + f(t_{n+1}, u_n + hf_n)].$$

11 stycznia 2020 Rafał Nowak