OUTLINE

- ullet Antiferromagnetic ordering: order parameters, Néel temperature, susceptibility below and above T_N
- Frustrated antiferromagnets

Antiferromagnetic ordering: neutron diffraction

Figure 17 Neutron diffraction patterns for MnO below and above the spin-ordering temperat of 120 K, after C. G. Shull, W. A. Strauser, and E. O. Wollan. The reflection indices are baser an 8.85 Å cell at 80 K and on a 4.43 Å cell at 293 K. At the higher temperature the Mn²⁺ ions still magnetic, but they are no longer ordered.

Looks like at lower T-s, the unit cell just gets twice bigger.

1 U P 1 OF P 1 E P 1 E P 9 Q C

Antiferromagnetic ordering, MnO example

(Oxygen atoms not shown.)

Symmetry breaking at AFM phase transitions

- Rotational invariance
- Time inversion symmetry
- Translational invariance (period doubling)

Order parameters for AFM state

Two sublattices: even/odd, red/blue, etc Can have two averages: $\langle \mathbf{S}_{\mathrm{even}} \rangle$ and $\langle \mathbf{S}_{\mathrm{odd}} \rangle$, or, equivalently

$$\begin{split} \mathbf{s} &= \langle \mathbf{S}_{\mathrm{even}} \rangle + \langle \mathbf{S}_{\mathrm{odd}} \rangle & \text{(total spin)} \\ \mathbf{p} &= \langle \mathbf{S}_{\mathrm{even}} \rangle - \langle \mathbf{S}_{\mathrm{odd}} \rangle & \text{(sublattice magnetization)} \end{split}$$

Our goal: construct a Ginzburg-Landau type theory for AFM phases and phase transitions.

Interatomic exchange in solids III: Heisenberg model

$$\widehat{H} = -J_{\text{ex}} \sum_{i=1}^{N} \sum_{\alpha=1}^{z} \widehat{\mathbf{S}}_{i} \cdot \widehat{\mathbf{S}}_{i+\alpha}$$

Where

runs over the lattice sites

 \sum_{α} runs over the nearest neighbours of site *i*

At low T-s:

 $J_{\rm ex} > 0$: ferromagnetic order

 $J_{\rm ex} < 0$: antiferromagnetic order

AFM Heisenberg model

$$E = J \sum_{i: \text{even}} \mathbf{S}_{i}^{\text{(even)}} \cdot \sum_{\alpha} \mathbf{S}_{i+\alpha}^{\text{(odd)}} + J \sum_{i: \text{odd}} \mathbf{S}_{i}^{\text{(odd)}} \cdot \sum_{\alpha} \mathbf{S}_{i+\alpha}^{\text{(even)}}$$

Mean-field type approximation:

$$\begin{split} E/N &\approx zJ \langle \mathbf{S}_{\mathrm{even}} \rangle \cdot \langle \mathbf{S}_{\mathrm{odd}} \rangle \\ &= \frac{zJ}{4} \left(\mathbf{s}^2 - \mathbf{p}^2 \right) \qquad \text{since } \mathbf{s}^2 - \mathbf{p}^2 = 4 \langle \mathbf{S}_{\mathrm{even}} \rangle \cdot \langle \mathbf{S}_{\mathrm{odd}} \rangle \end{split}$$

entropy per spin =
$$-2k_B\langle \mathbf{S}\rangle^2 - (4/3)k_B\langle \mathbf{S}\rangle^4$$

entropy per unit cell
$$= -2k_B\langle \mathbf{S}_{\mathrm{even}} \rangle^2 - \frac{4}{3}k_B\langle \mathbf{S}_{\mathrm{even}} \rangle^4 - 2k_B\langle \mathbf{S}_{\mathrm{odd}} \rangle^2 - \frac{4}{3}k_B\langle \mathbf{S}_{\mathrm{odd}} \rangle^4$$

AFM HEISENBERG MODEL, CONT'D

Using
$$2\langle \mathbf{S}_{\mathrm{even}} \rangle = \mathbf{s} + \mathbf{p}$$
 and $2\langle \mathbf{S}_{\mathrm{odd}} \rangle = \mathbf{s} - \mathbf{p}$:

$$\langle \mathbf{S}_{\text{even}} \rangle^2 + \langle \mathbf{S}_{\text{odd}} \rangle^2 = \frac{1}{4} \left(2s^2 + 2p^2 \right)$$
$$\langle \mathbf{S}_{\text{even}} \rangle^4 = \left[\langle \mathbf{S}_{\text{even}} \rangle^2 \right]^2 = \frac{1}{16} \left[s^2 + p^2 + 2(\mathbf{s} \cdot \mathbf{p}) \right]^2$$
$$\langle \mathbf{S}_{\text{odd}} \rangle^4 = \left[\langle \mathbf{S}_{\text{odd}} \rangle^2 \right]^2 = \frac{1}{16} \left[s^2 + p^2 - 2(\mathbf{s} \cdot \mathbf{p}) \right]^2$$

$$\langle \mathbf{S}_{\text{even}} \rangle^4 + \langle \mathbf{S}_{\text{odd}} \rangle^4 = \frac{1}{16} \left[2s^4 + 2p^4 + 4s^2p^2 + 8(\mathbf{s} \cdot \mathbf{p})^2 \right]$$

Finally, entropy density

$$S = -k_B(s^2 + p^2) - \frac{1}{6}k_B\left[s^4 + p^4 + 2s^2p^2 + 4(\mathbf{s} \cdot \mathbf{p})^2\right]$$

GINZBURG-LANDAU THEORY

Free energy =

interaction energy — temperature \times entropy

$$F - F_0 = \left(k_B T + \frac{Jz}{4}\right) s^2 + \left(k_B T - \frac{Jz}{4}\right) p^2 + \frac{1}{6} k_B T \left[s^4 + p^4 + 2s^2 p^2 + 4(\mathbf{s} \cdot \mathbf{p})^2\right]$$

$$\mathbf{s} = 0$$
, $\mathbf{p} \neq 0$: AFM $\mathbf{s} \neq 0$, $\mathbf{p} = 0$: FM (need external field) $\mathbf{s} = 0$, $\mathbf{p} = 0$: unordered

NEEL TEMPERATURE

Look for $\mathbf{s} = 0$, $\mathbf{p} \neq 0$

$$F = \left(k_BT - \frac{Jz}{4}\right)p^2 + \frac{1}{6}k_BT\left[p^4\right]$$

In thermodynamic equilibrium $F = \min \Rightarrow$

$$0 = \frac{\partial F}{\partial p} = \left(-\frac{Jz}{4} + k_B T\right) 2p + \frac{1}{6}k_B T 4p^3$$

NÉEL TEMPERATURE: $T_N = zJ/4k_B$

For
$$T > T_N$$
: $\mathbf{p} = 0$
For $T < T_N$: $p = \left(3\frac{T_N - T}{T}\right)^{1/2}$

Susceptibility of AFM for $T > T_N$

For $T > T_N$ take $\mathbf{p} = 0$, $\mathbf{s} \uparrow \uparrow \mathbf{H}$ and s small (neglect the s^4 term):

$$F = -\mu \mathbf{s} \cdot \mathbf{H} + k_B (T + T_N) \mathbf{s}^2 + \frac{1}{6} k_B T \mathbf{s}^4$$
$$\approx -\mu \mathbf{s} H + k_B (T + T_N) \mathbf{s}^2$$

$$0 = \frac{\partial F}{\partial s} = -\mu H + 2s \, k_B (T + T_N) \qquad \Rightarrow \quad \mu s = \frac{\mu^2}{2k_B} \frac{H}{T + T_N} \equiv \chi H$$

 $\chi(T)$:

Paramagnet Ferromagnet Antiferromagnet
$$(T>T_c)$$
 $(T>T_N)$ $\chi \propto \frac{1}{T}$ $\frac{1}{T-T_c}$ $\frac{1}{T+T_N}$

Weak fields: Susceptibility of AFM for $T < T_N$

For $T < T_N$

 $\mathbf{p} \neq 0$ spontaneously, $p = \sqrt{3(T_N - T)/T}$ and is directed along an easy axis.

 $\mathbf{s} \neq \mathbf{0}$ because of the applied field \mathbf{H} and is directed along it.

Need to distinguish two situations:

$$\chi_{\parallel}: \qquad \mathbf{H} \parallel \mathbf{s} \parallel \mathbf{p}$$
 $\chi_{\perp}: \qquad \mathbf{H} \parallel \mathbf{s} \perp \mathbf{p}$

As before, to calculate the susceptibility we need to only consider *weak fields*, hence will be neglecting higher-order terms where possible.

Perp susceptibility of AFM for $T < T_N$

$$\mathbf{H} \parallel \mathbf{s} \perp \mathbf{p} \quad \Rightarrow (\mathbf{s} \cdot \mathbf{p}) = 0$$

$$F = -\mu sH + k_B(T + T_N)s^2 + k_B(T - T_N)p^2 + \frac{1}{6}k_BT\left[2s^2p^2 + s^4 + p^4\right]$$

Using $p^2 = 3(T_N - T)/T$ and neglecting quartic terms

$$F = -\mu sH + k_B(T + T_N)s^2 + k_B(T_N - T)s^2 = -\mu sH + 2k_BT_Ns^2$$

$$0 = \frac{\partial F}{\partial s} = -\mu H + 4k_B T_N s$$

$$\chi_{\perp} \propto \frac{1}{T_N}$$

 $\chi_{\perp} \propto \frac{1}{T_{N}}$ T-independent

Parallel susceptibility of AFM for $T < T_N$

$$\mathbf{H} \parallel \mathbf{s} \parallel \mathbf{p} \quad \Rightarrow (\mathbf{s} \cdot \mathbf{p})^2 = s^2 p^2$$

$$F = -\mu sH + k_B(T + T_N)s^2 + k_B(T - T_N)p^2 + \frac{1}{6}k_BT \left[6s^2p^2 + s^4 + p^4\right]$$

Using
$$p^2 = 3(T_N - T)/T$$
 and neglecting quartic terms

$$F = -\mu sH + k_B(T + T_N)s^2 + 3k_B(T_N - T)s^2$$

= $-\mu sH + 2k_B(T_N + |T - T_N|)s^2$

$$0 = \frac{\partial F}{\partial s} = -\mu H + 4k_B (T_N + |T - T_N|)s$$

$$\chi_{\parallel} \propto rac{1}{T_{N} + |T - T_{N}|}$$

HOW THIS LOOKS IN REAL LIFE: MnF₂

both plots taken from Kittel's ISSP.

AFM IN STRONG MAGNETIC FIELDS AND $T < T_N$

Consider the parallel fields, $\mathbf{H} \parallel \mathbf{s} \parallel \mathbf{p}$, and define dimensionless variables

$$f = F/k_BT_N$$
 $h = \mu H/k_BT_N$ $\tau = T/T_N$ $(\tau < 1)$

$$f = (1+\tau)s^2 - (1-\tau)p^2 + \frac{\tau}{6}(s^4 + p^4 + 6s^2p^2) - hs$$

Thermal equilibrium:

$$0 = \partial f/\partial p = 2p \left[s^2 - (1 - \tau) + \frac{\tau}{3} p^2 \right]$$
 (1)

$$0 = \partial f/\partial s = 2s \left[\rho^2 + (1+\tau) + \frac{\tau}{3} s^2 \right] - h \tag{2}$$

AFM IN STRONG MAGNETIC FIELDS AND $T < T_N$, II

Eq. (2): I.h.s. is monotonic, thus there is exactly one solution with $s \neq 0$.

Solutions of Eq. (1)

 $s^2 > (1-\tau)$: p=0 only (strong fields) $s^2 < (1-\tau)$: p=0 and $p \neq 0$ possible (weak fields) At h=0: s=0, $p \neq 0$ is stable. At h>0 the two states compete.

At a critical value of the field, the AFM arrangement of spins $(p \neq 0)$, changes into the FM one $(s \neq 0, p = 0)$ in a first order transition.

AFM IN STRONG MAGNETIC FIELDS AND $T < T_N$, III

Solutions of Eqs. (1)–(2):

GEOMETRIC FRUSTRATION

Ferromagnetic ordering is largely insensitive to the local structure of the lattice. On the contrary, *anti*ferromagnetic ordering is:

square lattice is bipartite

triangular lattice is not

EXAMPLE: COLUMBITE CoNb₂O₆

S. Lee, R.K. Kaul & L. Balents, "Interplay of quantum criticality and geometric frustration in columbite", *Nature Physics* **6**, 702 (2010).

Example: Pyrochlore lattices

A lattice of corner-sharing tetrahedra. Tetrahedra themselves live on an fcc lattice.

image (c) LPT Toulouse

image (c) UCSB

Exotic superconductivity, spin liquids, spin ice, etc etc etc

Magnetic monopoles in spin ice: Dysprosim titanate Dy₂Ti₂O₇ and its relatives

Water ice: L. Pauling, 1935: ice rules Residual entropy $S/N=k_B \ln 3/2$ as $T \to 0$

image (c) Wikipedia

Spin ice: C. Castelnovo, R. Moessner & S.L. Sondhi, "Magnetic monopoles in spin ice", *Nature* **451**, 42 (2008)

