databricksTaxi Price _ Data Preparation - Databricks

```
(https://databricks.com)
                   from pyspark.sql import SparkSession
                   from pyspark.sql.utils import AnalysisException
                   import pyspark.sql.functions as F
                   import pyspark.sql.types as T
                   from pyspark.sql.types import DoubleType
                   from pyspark.sql.functions import col, to_timestamp
                   from\ pyspark.sql.functions\ import\ unix\_timestamp,\ from\_unixtime,\ round
                   spark = SparkSession.builder \
                                           .appName("read_s3_parquet") \
                                           .getOrCreate()
                   storage_account_name = ""
                   storage_account_access_key = ""
                   spark.conf.set(f"fs.azure.account.key.{storage_account_name}.blob.core.windows.net", storage_account_access_key)
                   container_name = "taxidataset"
                   \tt dem = spark.read.csv(f''wasbs://\{container\_name\}@\{storage\_account\_name\}.blob.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/da
                   \label{eq:df} \texttt{df = spark.read.parquet(f''wasbs://\{container\_name\}@\{storage\_account\_name\}.blob.core.windows.net/pavan-bucket/dataset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/taset/ta
                   weather = spark.read.csv(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/
                   holiday=spark.read.csv(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/ho
                   location\_coordinates = spark.read.csv \ (f''wasbs://\{container\_name\}@\{storage\_account\_name\}.blob.core.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-buccore.windows.net/pavan-
        Joining the weather dataset
```

```
weather_df=weather.select(F.col("datetime"),F.col("temp"))
weather_df = weather_df.withColumn("hourly_interval", F.date_trunc("hour", weather_df.datetime))
df = df.withColumn("hourly_interval", F.date_trunc("hour", df.tpep_pickup_datetime))
joined_df = df.join(weather_df, "hourly_interval", "left_outer")
joined_df = joined_df.drop("hourly_interval","datetime")
```

Joining the Holiday Dataset

```
holiday_data=holiday.select("date","holidayName")
data = joined_df.join(holiday_data, joined_df.tpep_pickup_datetime == holiday_data.date, "left_outer")
data=data.drop("date")
```

Joining Coordinates

```
location_coordinates= location_coordinates.select("LocationID","Latitude","Longitude")
data=data.join(location_coordinates,data.PULocationID==location_coordinates.LocationID)
data = data.withColumn("Latitude", F.col("Latitude").cast(DoubleType()))
data = data.withColumn("Longitude", F.col("Longitude").cast(DoubleType()))
```

New feature "isholiday"

```
#holiday = 1 , no holiday = 0
data = data.withColumn("isHoliday", F.when(data.holidayName.isNotNull(), F.lit(1)).otherwise(F.lit(0)))
data=data.drop("holidayName")
```

Modifying "isHoliday" to include weekends as holidays

New Feature trip_duration

New Feature speed_mph

```
data = data.withColumn("trip_duration_hours", (F.col("trip_duration") / 60))
data = data.withColumn("speed_mph", F.round(F.col("trip_distance") / F.col("trip_duration_hours"),2))
data=data.drop('trip_duration_hours')
```

Splitting Date time to different Columns

```
data = data.withColumn("year", F.year("tpep_pickup_datetime")) \
    .withColumn("month", F.month("tpep_pickup_datetime")) \
    .withColumn("day", F.dayofmonth("tpep_pickup_datetime")) \
    .withColumn("hour", F.hour("tpep_pickup_datetime")) \
    .withColumn("minute", F.minute("tpep_pickup_datetime"))
```

Removing Tip Amount

```
data = data.withColumn("total_amount",(F.col("total_amount")-F.col("tip_amount")))
```

Adding Congestion surcharge to the total amount

Adding airport fee to the total amount

```
data = data.withColumn(
    "total_amount",
    F.round(F.col("total_amount") + F.col("airport_fee"), 2)
)
```

Outliers

```
data = data.filter(
    (F.col('total_amount') > 5) &
    (F.col('total_amount') < 500) &
    (F.col('trip_duration') > 2) &
    (F.col('trip_duration') < 300) &
    (F.col('trip_distance') > 0.25) &
    (F.col('trip_distance') < 50) &
    (F.col('year') <= 2023) &
    (F.col('year') > 2018) &
    (F.col('passenger_count') > 0) &
    (F.col('passenger_count') < 7) &
    (F.col('speed_mph') <= 55)
)</pre>
```

Dropping unnecessary columns from the data

```
data=data.drop("tip_amount","fare_amount",'extra','mta_tax','tolls_amount','improvement_surcharge','congestion_s
urcharge',"airport_fee","RatecodeID","store_and_fwd_flag","LocationID")
```

```
data=data.na.drop()
```

```
display(data)
```

Loading final dataset to Azure

```
# data=data.coalesce(1)
# data.write.parquet(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/final_dataset_1/")
```

Creating demand dataset

```
fin_df = df.select(F.col('tpep_pickup_datetime'), F.col('PULocationID'))
fin_df = fin_df.withColumn("pickup_timestamp", unix_timestamp("tpep_pickup_datetime", "yyyyy-MM-dd
HH:mm:ss").cast("timestamp"))
fin_df = fin_df.withColumn("time_bins", from_unixtime(((unix_timestamp("pickup_timestamp") /
3600).cast("integer") * 3600), "yyyyy-MM-dd HH:mm:ss"))
fin_df.drop(F.col('pickup_timestamp'))
demand_df = fin_df.groupBy(F.col('time_bins'),
F.col('PULocationID')).agg(F.count('time_bins').alias('no_of_pickups'))
demand_df = demand_df.orderBy(F.col('time_bins'))
```

Demand will be continued in "demand" notebook

databricksPrice Forecasting (2)

```
(https://databricks.com)
                 from pyspark.sql import SparkSession
                 from pyspark.sql.utils import AnalysisException
                 import pyspark.sql.functions as F
                 import pyspark.sql.types as T
                 from pyspark.sql.types import DoubleType
                 from pyspark.sql.functions import col, to_timestamp
                 from\ pyspark.sql.functions\ import\ unix\_timestamp,\ from\_unixtime,\ round
                 from\ pyspark.sql.types\ import\ StructType,\ StructField,\ IntegerType,\ TimestampType,\ DoubleType,BooleanType
                 from pyspark.sql.types import *
                 spark = SparkSession.builder \
                                     .appName("read_s3_parquet") \
                                     .getOrCreate()
                 storage_account_name = ""
                 storage_account_access_key = ""
                 spark.conf.set(f"fs.azure.account.key.{storage_account_name}.blob.core.windows.net", storage_account_access_key)
                 container_name = "taxidataset"
                 \label{eq:df_storage_account_name} df = spark.read.parquet(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_datalender.pavan-bucket/final_data
                 \tt dem = spark.read.csv(f''wasbs://\{container\_name\}@\{storage\_account\_name\}.blob.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dema.core.windows.net/pavan-bucket/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dataset/dat
```

Joining demand dataset with the original dataset with pickup datetime from original dataset and time bins from demand dataset.

Converting demand column to categorical column using the splitting point of three quartiles.

```
df = df.withColumn(
   "demand_category",
   F.when(col("no_of_pickups") <= 2, 1)
   .when((col("no_of_pickups") > 2) & (col("no_of_pickups") <= 19), 2)
   .otherwise(3)
)
# df=df.drop("no_of_pickups")</pre>
```

Create a new column with the squares of demand category to check if demand category squared can increase the impact of demand at the booking time on price prediction.

```
df=df.withColumn("squared_demand",F.col('demand_category')**2)
```

Keeping only necessary features for price prediction and dropping other columns.

```
data_ml=df.select("year","month","day","hour","minute","total_amount","temp","isHoliday","trip_duration","trip_d
istance","passenger_count","Latitude","Longitude","speed_mph","demand_category","squared_demand")
data_ml=data_ml.dropna()
```

Saving final cleaned dataset to azure data storage containers.

```
data = df.coalesce(1)
data.write.mode('overwrite').parquet(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pav
an-bucket/final_dataset_with_dem/")
```

Model Training

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression, RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
assembler = VectorAssembler(
    inputCols=["year","month","day","hour","minute",'temp','isHoliday',"passenger_count" ,'trip_duration',
'Latitude', "Longitude", "trip_distance", "speed_mph", "demand_category", "squared_demand"],
    outputCol='features'
data_ml = assembler.transform(data_ml)
train_data, test_data = data_ml.randomSplit([0.8, 0.2], seed=42)
lr = LinearRegression(featuresCol='features', labelCol='total_amount')
rf = RandomForestRegressor(featuresCol='features', labelCol='total_amount')
lr_model = lr.fit(train_data)
rf_model = rf.fit(train_data)
lr_predictions = lr_model.transform(test_data)
rf_predictions = rf_model.transform(test_data)
evaluator = Regression Evaluator (label Col='total\_amount', prediction Col='prediction', metric Name='r2')
evaluator_2 = RegressionEvaluator(labelCol='total_amount', predictionCol='prediction', metricName='rmse')
lr_r2 = evaluator.evaluate(lr_predictions)
rf_r2 = evaluator.evaluate(rf_predictions)
print(f"Linear Regression R^2: {lr_r2}")
print(f"Random Forest R^2: {rf_r2}")
lr_r2 = evaluator.evaluate(lr_predictions)
lr_rmse=evaluator_2.evaluate(lr_predictions)
rf_rmse = evaluator_2.evaluate(rf_predictions)
print(f"Random Forest RMSE: {lr_rmse}")
print(f"Random Forest RMSE: {rf_rmse}")
display(rf_predictions)
```

```
Linear Regression R^2: 0.9199944411463506
Random Forest R^2: 0.8915634094384501
Linear Regression R^2: 0.9199944411463506
Random Forest RMSE: 3.8313027973931852
Random Forest RMSE: 4.460405289736524
```

rtarraom	101656 1	 11 100 10	3203	7002									
Table													
	year	month		day	_	hour	minute	total	_amount	temp	_	isHoliday	trip_d

1	2021	3	27	14	33	31.8	65.1	1	20.28
2	2021	3	29	0	45	12.8	53.2	0	8.5
3	2021	3	29	1	47	10.3	52.1	0	3.93
4	2021	3	29	6	29	35.3	46.1	0	25.17
5	2021	3	29	7	30	24.8	46.1	0	17.27
6	2021	3	29	7	33	11.8	46.1	0	9.28
8,978	rows Truncate	d data							

Above are the results of R squared score and RMSE which were chosen as metrics to evaluate the regression model. It can be seen that Linear regression and random forest classifier have almost similar R squared score.

Random Forest Hyperparameter Tuning with parameters numTrees - [10, 20] and maxDepth - [5, 10]

```
from pyspark.ml.feature import VectorAssembler, MinMaxScaler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml import Pipeline
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
import matplotlib.pyplot as plt
feature_list = ["year","month","day","hour","minute",'temp','isHoliday',"passenger_count" ,'trip_duration',
'Latitude', "Longitude", "trip_distance", "speed_mph", "squared_demand"]
assembler = VectorAssembler(
        inputCols=feature_list,
        outputCol='features'
rf = RandomForestRegressor(featuresCol='features', labelCol='total_amount')
pipeline = Pipeline(stages = [assembler, rf])
paramGrid = (ParamGridBuilder()
        .addGrid(rf.numTrees, [10, 20])
         .addGrid(rf.maxDepth, [5, 10])
        .build())
evaluator = RegressionEvaluator(labelCol="total_amount", predictionCol="prediction", metricName="r2")
\verb|crossval| = CrossValidator(estimator = pipeline, estimator ParamMaps = paramGrid, evaluator = evaluator, numFolds | ParamGrid, evaluator = evaluator, numFolds | ParamGrid, evaluator | ParamGrid, evaluat
= 3)
(trainingData, testData) = data_ml.randomSplit([0.8, 0.2])
cvModel = crossval.fit(trainingData)
predictions = cvModel.transform(testData)
rf_r2 = evaluator.evaluate(predictions)
print(f"Random Forest R^2: {rf_r2}")
display(rf_r2)
bestPipeline = cvModel.bestModel
bestModel = bestPipeline.stages[1]
importances = bestModel.featureImportances
x_values = list(range(len(importances)))
plt.bar(x_values, importances, orientation = 'vertical')
plt.xticks(x_values, feature_list, rotation=40)
plt.ylabel('Importance')
plt.xlabel('Feature')
plt.title('Feature Importances')
print('numTrees - ', bestModel.getNumTrees)
print('maxDepth - ', bestModel.getOrDefault('maxDepth'))
```

```
Random Forest R^2: 0.9225275006075078
0.9225275006075078
numTrees - 20
maxDepth - 10
```


Saving model to Azure

```
%scala
spark.sparkContext.hadoopConfiguration.set(
    "fs.azure.account.key.bia678.blob.core.windows.net",
    ""
)
```

 $\begin{tabular}{ll} \# rf_model.save(f''wasb://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/rf_hyper/") \\ \end{tabular}$

Scaling

2 Workers with 100% data

```
from\ pyspark.ml.feature\ import\ VectorAssembler
from pyspark.ml.regression import LinearRegression, RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
assembler = VectorAssembler(
   inputCols=["year","month","day","hour","minute",'temp','isHoliday',"passenger_count" ,'trip_duration',
'Latitude', "Longitude", "trip_distance", "speed_mph", "demand_category", "squared_demand"],
   outputCol='features'
data_ml = assembler.transform(data_ml)
train_data, test_data = data_ml.randomSplit([0.8, 0.2], seed=42)
lr = LinearRegression(featuresCol='features', labelCol='total_amount')
lr_model = lr.fit(train_data)
rf_model = rf.fit(train_data)
lr_predictions = lr_model.transform(test_data)
rf_predictions = rf_model.transform(test_data)
evaluator = Regression Evaluator (label Col='total\_amount', prediction Col='prediction', metric Name='r2')
evaluator_2 = RegressionEvaluator(labelCol='total_amount', predictionCol='prediction', metricName='rmse')
lr_r2 = evaluator.evaluate(lr_predictions)
rf_r2 = evaluator.evaluate(rf_predictions)
print(f"Linear Regression R^2: {lr_r2}")
print(f"Random Forest R^2: {rf_r2}")
lr_rmse=evaluator_2.evaluate(lr_predictions)
rf_rmse = evaluator_2.evaluate(rf_predictions)
print(f"Linear Regression RMSE: {lr_rmse}")
print(f"Random Forest RMSE: {rf_rmse}")
```

Linear Regression R^2: 0.9199944411463497 Random Forest R^2: 0.9199471360002306 Linear Regression RMSE: 3.831302797393211 Random Forest RMSE: 3.8324353034248535

3 Workers with 100% data

```
from\ pyspark.ml.feature\ import\ VectorAssembler
from pyspark.ml.regression import LinearRegression, RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
assembler = VectorAssembler(
   inputCols=["year","month","day","hour","minute",'temp','isHoliday',"passenger_count" ,'trip_duration',
'Latitude', "Longitude", "trip_distance", "speed_mph", "demand_category", "squared_demand"],
   outputCol='features'
data_ml = assembler.transform(data_ml)
train_data, test_data = data_ml.randomSplit([0.8, 0.2], seed=42)
lr = LinearRegression(featuresCol='features', labelCol='total_amount')
lr_model = lr.fit(train_data)
rf_model = rf.fit(train_data)
lr_predictions = lr_model.transform(test_data)
rf_predictions = rf_model.transform(test_data)
evaluator = Regression Evaluator (label Col='total\_amount', prediction Col='prediction', metric Name='r2')
evaluator_2 = RegressionEvaluator(labelCol='total_amount', predictionCol='prediction', metricName='rmse')
lr_r2 = evaluator.evaluate(lr_predictions)
rf_r2 = evaluator.evaluate(rf_predictions)
print(f"Linear Regression R^2: {lr_r2}")
print(f"Random Forest R^2: {rf_r2}")
lr_rmse=evaluator_2.evaluate(lr_predictions)
rf_rmse = evaluator_2.evaluate(rf_predictions)
print(f"Linear Regression RMSE: {lr_rmse}")
print(f"Random Forest RMSE: {rf_rmse}")
```

Linear Regression R^2: 0.9199944411463495 Random Forest R^2: 0.9199471411903842 Linear Regression RMSE: 3.8313027973932114 Random Forest RMSE: 3.832435179188646

4 Workers with 100% data

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression, RandomForestRegressor
from\ pyspark.ml.evaluation\ import\ Regression Evaluator
assembler = VectorAssembler(
         inputCols=["year","month","day","hour","minute",'temp','isHoliday',"passenger_count" ,'trip_duration',
'Latitude', "Longitude", "trip_distance", "speed_mph", "demand_category", "squared_demand"],
         outputCol='features'
data_ml = assembler.transform(data_ml)
train_data, test_data = data_ml.randomSplit([0.8, 0.2], seed=42)
lr = LinearRegression(featuresCol='features', labelCol='total_amount')
\verb|rf = RandomForestRegressor(featuresCol='features', labelCol='total\_amount', maxDepth=10, numTrees=20)| | Total\_amount', maxDepth=10, numTrees=20, numTrees=
lr_model = lr.fit(train_data)
rf_model = rf.fit(train_data)
lr_predictions = lr_model.transform(test_data)
rf_predictions = rf_model.transform(test_data)
evaluator = Regression Evaluator (label Col='total\_amount', prediction Col='prediction', metric Name='r2')
evaluator_2 = RegressionEvaluator(labelCol='total_amount', predictionCol='prediction', metricName='rmse')
lr_r2 = evaluator.evaluate(lr_predictions)
rf_r2 = evaluator.evaluate(rf_predictions)
print(f"Linear Regression R^2: {lr_r2}")
print(f"Random Forest R^2: {rf_r2}")
lr_rmse=evaluator_2.evaluate(lr_predictions)
rf_rmse = evaluator_2.evaluate(rf_predictions)
print(f"Linear Regression RMSE: {lr_rmse}")
print(f"Random Forest RMSE: {rf_rmse}")
```

Linear Regression R^2: 0.9199944411463482 Random Forest R^2: 0.9199471390585762 Linear Regression RMSE: 3.831302797393243 Random Forest RMSE: 3.8324352302175306

```
schema = StructType([
    StructField("Workers", IntegerType(), True),
    StructField("Time_Minutes", DoubleType(), True),
    StructField("Linear_Regression_R2", DoubleType(), True),
    StructField("Random_Forest_R2", DoubleType(), True)
])

data = [
    (2, 1.48 * 60, 0.9199944411463497, 0.9199471360002306),
    (3, 1.07 * 60, 0.9199944411463495, 0.9199471411903842),
    (4, 0.874 * 60, 0.9199944411463482, 0.9199471390585762)
]

df = spark.createDataFrame(data, schema=schema)
df.createOrReplaceTempView("workers_data")
```

```
%sql
SELECT Workers, Time_Minutes FROM workers_data
```

Table	Visualizatio	n 1
,	Workers 🔺	Time_Minutes 🔺
1 2	2	88.8
2 3	3	64.2
3 4	4	52.44

3 rows

%sql SELECT Workers, Linear_Regression_R2, Random_Forest_R2 FROM workers_data

Table	Visualizatio	on 1	
	Workers	Linear_Regression_R2	Random_Forest_R2
1	2	0.9199944411463497	0.9199471360002306
2	3	0.9199944411463495	0.9199471411903842
3	4	0.9199944411463482	0.9199471390585762
3 rows			

Scaling up

25% of data with 4 workers and 1 driver

```
totaldata = data_ml.count()
twenty_five = int(totaldata * 0.25)
print(twenty_five)
```

Cancelled

```
percent = 0.25
data_ml_sample = data_ml.sample(False,percent)
```

```
data_ml_sample.show()
```

++	++	+		+	+	+	+	
+-	+		+-	+				
			_	amount temp isHol	iday trip	_duration trip	_distance passer	nger_count Latitude Lon
gitude s	speed_mph demand	_catego	ry s	quared_demand				
++	++	+			+			++
2021	 7 15 9	25	+-	74.3 78.3	0	46.58	16.9	1.0 40.6895314 -74.1
744624	21.77		1	1.0				
2021	11 28 16	34		90.05 41.0	1	78.97	13.77	1.0 40.6895314 -74.1
744624	10.46		1	1.0				
2022	4 14 14	21		69.05 81.6	0	26.95	13.74	2.0 40.6895314 -74.1
744624	30.59		1	1.0				
2022	2 17 7	15		21.0 52.1	0	15.27	2.5	1.0 40.8631189 -73.8
616476	9.82		1	1.0				
2021	4 17 18	25		18.3 55.1	1	19.13	3.54	1.0 40.7258428 -73.9
774916	11.1		2	4.0				
2021	4 19 11	35		20.8 62.9	0	20.35	3.2	1.0 40.7258428 -73.9
774916	9.43		2	4.0				
2021	4 22 15	56		13.8 49.8	0	14.68	1.61	5.0 40.7258428 -73.9
774916	6.58		2	4.0				
2021	4 22 15	54		12.8 49.8	0	12.92	2.03	1.0 40.7258428 -73.9/

```
percent = 0.25
total_records = data_ml.count()
data_ml_sample_25 = data_ml.limit(int(total_records * percent))
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression, RandomForestRegressor
from\ pyspark.ml.evaluation\ import\ Regression Evaluator
assembler = VectorAssembler(
         inputCols=["year","month","day","hour","minute",'temp','isHoliday',"passenger_count" ,'trip_duration',
 'Latitude', "Longitude", "trip_distance", "speed_mph", "demand_category", "squared_demand"],
         outputCol='features'
data_ml_sample_25 = assembler.transform(data_ml_sample_25)
train_data, test_data = data_ml_sample_25.randomSplit([0.8, 0.2], seed=42)
lr = LinearRegression(featuresCol='features', labelCol='total_amount')
\verb|rf = RandomForestRegressor(featuresCol='features', labelCol='total\_amount', maxDepth=10, numTrees=20)| | Total\_amount', maxDepth=10, numTrees=20, numTrees=
lr_model = lr.fit(train_data)
rf_model = rf.fit(train_data)
lr_predictions = lr_model.transform(test_data)
rf_predictions = rf_model.transform(test_data)
evaluator = Regression Evaluator (label Col='total\_amount', prediction Col='prediction', metric Name='r2')
evaluator_2 = RegressionEvaluator(labelCol='total_amount', predictionCol='prediction', metricName='rmse')
lr_r2 = evaluator.evaluate(lr_predictions)
rf_r2 = evaluator.evaluate(rf_predictions)
print(f"Linear Regression R^2: {lr_r2}")
print(f"Random Forest R^2: {rf_r2}")
lr_rmse=evaluator_2.evaluate(lr_predictions)
rf_rmse = evaluator_2.evaluate(rf_predictions)
print(f"Linear Regression RMSE: {lr_rmse}")
print(f"Random Forest RMSE: {rf_rmse}")
```

Linear Regression R^2: 0.9213905664256661 Random Forest R^2: 0.9301000969807838 Linear Regression RMSE: 3.8628256203575178 Random Forest RMSE: 3.6541200236163736

50 percent of the data with 4 workers and 1 driver

Linear Regression R^2: 0.9199021723800136 Random Forest R^2: 0.9296063695070713 Linear Regression RMSE: 3.845726491427964 Random Forest RMSE: 3.640762243298417

databricksDemand Prediction

```
(https://databricks.com)
   from pyspark.sql import SparkSession
   from pyspark.sql.utils import AnalysisException
   import pyspark.sql.functions as F
   import pyspark.sql.types as T
   from sklearn.metrics import r2_score
   # from prophet import Prophet
   from pyspark.sql.functions import unix_timestamp, from_unixtime
   import pandas as pd
   import numpy as np
   from\ pyspark.ml. feature\ import\ Vector Assembler,\ String Indexer,\ Min Max Scaler
   from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier, RandomForestClassifier, GBTClassifie
   from\ pyspark.ml. evaluation\ import\ Multiclass Classification Evaluator
   from pvspark.ml import Pipeline
   from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
   from pyspark.ml.classification import MultilayerPerceptronClassifier
   from\ pyspark.ml. evaluation\ import\ Multiclass Classification Evaluator
   from pyspark.ml.classification import GBTClassifier
   import sklearn
   from sklearn.metrics import classification_report, confusion_matrix
```

Building spark session and importing all datasets from azure storage containers.

```
spark = SparkSession.builder \
    .appName("read_s3_parquet") \
    .getOrCreate()

storage_account_name = "bia678"
storage_account_access_key = "0kp/ALAV3dep7SNjenw9n8nx50ojv2DFt00Z3FRYzzpjI0viTSS3JmpjJAsMskG1/bqZFn6Id2H0+AStB0MDTQ==
spark.conf.set(f"fs.azure.account.key.{storage_account_name}.blob.core.windows.net", storage_account_access_key)
container_name = "taxidataset"

df = spark.read.parquet(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/t
weather = spark.read.csv(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/h
holiday=spark.read.csv(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/h
location_coordinates=spark.read.csv(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/ho
location_coordinates=spark.read.csv(f"wasbs://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-bucket/dataset/dema
```

```
%scala
spark.sparkContext.hadoopConfiguration.set(
    "fs.azure.account.key.bia678.blob.core.windows.net",
    "0kp/ALAV3dep7SNjenw9n8nx50ojv2DFt00Z3FRYzzpjI0viTSS3JmpjJAsMskG1/bqZFn6Id2H0+AStB0MDTQ=="
)
```

Creating "is_weekend" column from the date information present in "time_bins" column. This column contains 0 for weekends and 1 for weekdays.

```
dem = dem.withColumn(
    "is_weekend",
    F.when(F.dayofweek(F.col("time_bins")).isin([1, 5]), 1).otherwise(0)
)

dem = dem.withColumn("is_weekend", F.col("is_weekend").cast("boolean"))
```

Joining with weather dataset with "time_bins" in demand dataset on "datetime" in weather dataset to add temperature feature to the demand dataset.

```
weather=weather.select("datetime","temp")
```

```
dem = dem.withColumn("time_bins", F.to_timestamp(F.col("time_bins"), "yyyy-MM-dd HH:mm:ss"))
weather = weather.withColumn("datetime", F.to_timestamp(F.col("datetime"), "yyyy-MM-dd'T'HH:mm:ss'Z'"))
dem = dem.join(weather, dem.time_bins == weather.datetime, "inner")
dem=dem.drop('datetime')
```

Filtering demand dataset to contain records only from Jan, 2021 to Dec, 2022.

```
dem = dem.where((F.col('time_bins') >= '2021-01-01 00:00:00') & (F.col('time_bins') < '2022-12-31
11:59:59')).orderBy(F.col('time_bins'))</pre>
```

Splitting time bins column to year, month, day, hour, minute columns for training the machine learning algorithm.

```
dem = dem.withColumn("year", F.year("time_bins")) \
    .withColumn("month", F.month("time_bins")) \
    .withColumn("day", F.dayofmonth("time_bins")) \
    .withColumn("hour", F.hour("time_bins")) \
    .withColumn("minute", F.minute("time_bins"))
```

Joining with location dataset on pickup location ID to get latitude and longitude data for each pickup location.

```
location_coordinates= location_coordinates.select("LocationID","Latitude","Longitude")
dem=dem.join(location_coordinates,dem.PULocationID==location_coordinates.LocationID)
```

Casting columns to appropriate datatypes.

```
dem = dem.withColumn("no_of_pickups", F.col("no_of_pickups").cast("int"))
dem = dem.withColumn("PULocationID", F.col("PULocationID").cast("int"))
dem = dem.withColumn("Latitude", F.col("Latitude").cast("double"))
dem = dem.withColumn("Longitude", F.col("Longitude").cast("double"))
dem=dem.drop('LocationID',"PULocationID")
```

Removing outliers in no_of_pickups column - Here, we are considering only records where number of pickups is lower than 200 since the frequency of records over 200 is very low and have been considered as outliers by box plot.

```
dem = dem.filter(F.col("no_of_pickups") <= 200)</pre>
```

Converting no_of_pickups to demand_category. The splitting point for each category has been obtained by breaking the dataset into 3 equal quartiles. 1/3rd of the data had less than or equal to 2 pickups and the next 1/3rd had pickups between 2 and 19 pickups.

Below, the final dataset is shown which is being used by the demand model to classify demand into low, medium or high.

display(dem)

	time_bins	no_of_pickups 🔺	is_weekend 📤	temp 📤	year 🔺	month 🔺	day	hou
1	2021-01-01T00:00:00Z	1	false	37.1	2021	1	1	0
2	2021-01-01T00:00:00Z	1	false	37.1	2021	1	1	0
3	2021-01-01T00:00:00Z	10	false	37.1	2021	1	1	0
4	2021-01-01T00:00:00Z	3	false	37.1	2021	1	1	0
5	2021-01-01T00:00:00Z	2	false	37.1	2021	1	1	0
6	2021-01-01T00:00:00Z	9	false	37.1	2021	1	1	0

```
dem_df = dem
```

Model Training

```
assembler = VectorAssembler(
          inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude"],
          outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
train_data, test_data = dem_df.randomSplit([0.8, 0.2], seed=42)
classifiers = {
          "Logistic Regression": LogisticRegression(labelCol="demand_category", featuresCol="scaledFeatures"), \\
          "Decision Tree": Decision Tree Classifier (label Col="demand_category", features Col="scaled Features"), the contraction of t
          "Random\ Forest":\ RandomForestClassifier(labelCol="demand_category",\ featuresCol="scaledFeatures"),
for name, classifier in classifiers.items():
          pipeline = Pipeline(stages=[assembler, featureScaler, classifier])
          model = pipeline.fit(train_data)
          predictions = model.transform(test_data)
          y_true = predictions.select(['demand_category']).collect()
          y_pred = predictions.select(['prediction']).collect()
          print(classification_report(y_true, y_pred))
          evaluator = MulticlassClassificationEvaluator(
                     labelCol="demand_category", predictionCol="prediction", metricName="accuracy")
          accuracy = evaluator.evaluate(predictions)
          print(f"{name} classifier accuracy: {accuracy:.3f}")
```

Logistic regression, decision tree classifier and random forest classifier are the three models which have been tested on this dataset. We have chosen accuracy as the metric to compare the classification models. From the outputs above, it can be seen that decision tree classifier and random forest classifier make predictions with similar accuracy.

Hyperparameter tuning - Tuning decision tree model with parameters - maxDepth 5 and 10, maxBins 32 and 64 and minInstancesPerNode 1, 3 and 5.

```
labelIndexer = StringIndexer(inputCol="demand_category", outputCol="indexedLabel").fit(dem_df)
# Define a VectorAssembler to assemble the features into a "features" column
assembler = VectorAssembler(
    inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude", "is_weekend"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
# Split the data into training and test sets
train_data, test_data = dem_df.randomSplit([0.8, 0.2], seed=42)
# Define the classifier algorithms
\verb|dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="scaledFeatures", maxDepth=2)| \\
pipeline = Pipeline(stages=[labelIndexer, assembler, featureScaler, dt])
dtparamGrid = (ParamGridBuilder()
             .addGrid(dt.maxDepth, [5, 10])
             .addGrid(dt.maxBins, [32, 64])
             .addGrid(dt.minInstancesPerNode, [1, 3, 5])
             .build())
evaluator = MulticlassClassificationEvaluator(
        labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
dtcv = CrossValidator(estimator = pipeline,
                      estimatorParamMaps = dtparamGrid,
                      evaluator = evaluator,
                      numFolds = 5)
dtcvModel = dtcv.fit(train_data)
predictions = dtcvModel.transform(test_data)
accuracy = evaluator.evaluate(predictions)
best_model = dtcvModel.bestModel
dtModel = best_model.stages[-1]
print(f"Accuracy: {accuracy:.3f}")
print('maxBins - ', dtModel.getMaxBins())
print('maxDepth - ', dtModel.getMaxDepth())
print('minInstancesPerNode - ', dtModel.getMinInstancesPerNode())
```

```
Accuracy: 0.820
maxBins - 64
maxDepth - 10
minInstancesPerNode - 5
```

Above are the best parameters predicted by CrossValidator and the accuracy has increased by 10%.

Rerunning decision tree classifier with tuned hyperparameters

```
assembler = VectorAssembler(
    inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
train_data, test_data = dem_df.randomSplit([0.8, 0.2], seed=42)
classifier = DecisionTreeClassifier(labelCol="demand_category",
                                    featuresCol="scaledFeatures",
                                    maxBins = 64,
                                    maxDepth = 10,
                                    minInstancesPerNode = 5)
pipeline = Pipeline(stages=[assembler, featureScaler, classifier])
model = pipeline.fit(train_data)
predictions = model.transform(test_data)
y_true = predictions.select(['demand_category']).collect()
y_pred = predictions.select(['prediction']).collect()
print(classification_report(y_true, y_pred))
evaluator = MulticlassClassificationEvaluator(
    label Col="demand\_category", \ prediction Col="prediction", \ metric Name="accuracy")
accuracy = evaluator.evaluate(predictions)
print(f"Decision tree classifier accuracy: {accuracy:.3f}")
```

	precision	recall	f1-score	support
1	0.87	0.84	0.85	114530
2	0.67	0.69	0.68	85348
3	0.87	0.88	0.88	95046
accuracy			0.81	294924
macro avg	0.80	0.80	0.80	294924
weighted avg	0.81	0.81	0.81	294924

Decision tree classifier accuracy: 0.810

Hyperparameter tuning - Random Forest - parameters used are maxDepth - 5, 10 and numTrees - 10, 20.

```
labelIndexer = StringIndexer(inputCol="demand_category", outputCol="indexedLabel").fit(dem_df)
# Define a VectorAssembler to assemble the features into a "features" column
assembler = VectorAssembler(
    inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude", "is_weekend"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
# Split the data into training and test sets
train_data, test_data = dem_df.randomSplit([0.8, 0.2], seed=42)
# Define the classifier algorithms
dt = RandomForestClassifier(labelCol="indexedLabel", featuresCol="scaledFeatures")
pipeline = Pipeline(stages=[labelIndexer, assembler, featureScaler, dt])
dtparamGrid = (ParamGridBuilder()
             .addGrid(dt.maxDepth, [5, 10])
             .addGrid(dt.numTrees, [10, 20])
             .build())
evaluator = MulticlassClassificationEvaluator(
        labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
dtcv = CrossValidator(estimator = pipeline,
                      estimatorParamMaps = dtparamGrid,
                      evaluator = evaluator,
                      numFolds = 5)
dtcvModel = dtcv.fit(train_data)
predictions = dtcvModel.transform(test_data)
accuracy = evaluator.evaluate(predictions)
best_model = dtcvModel.bestModel
dtModel = best_model.stages[-1]
print(f"Accuracy: {accuracy:.3f}")
print('numTrees - ', dtModel.getNumTrees)
print('maxDepth - ', dtModel.getOrDefault('maxDepth'))
```

Accuracy: 0.794 numTrees - 20 maxDepth - 10

Saving the model to azure storage container using model.save

```
model.save(f"wasb://{container_name}@{storage_account_name}.blob.core.windows.net/pavan-
bucket/decision_tree_for_demand/")
```

Scaling with 2 workers and 1 driver for 100% of the data.

```
assembler = VectorAssembler(
   inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
train_data, test_data = dem_df.randomSplit([0.8, 0.2], seed=42)
classifiers = {
    "Logistic Regression": LogisticRegression(labelCol="demand_category", featuresCol="scaledFeatures"),
    "Decision Tree": DecisionTreeClassifier(labelCol="demand_category", featuresCol="scaledFeatures", maxBins =
64, maxDepth = 10, minInstancesPerNode = 5),
    "Random Forest": RandomForestClassifier(labelCol="demand_category", featuresCol="scaledFeatures", numTrees =
20, maxDepth = 10),
for name, classifier in classifiers.items():
    pipeline = Pipeline(stages=[assembler, featureScaler, classifier])
    model = pipeline.fit(train_data)
    predictions = model.transform(test_data)
    y_true = predictions.select(['demand_category']).collect()
    y_pred = predictions.select(['prediction']).collect()
    print(classification_report(y_true, y_pred))
    evaluator = MulticlassClassificationEvaluator(
       labelCol="demand_category", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print(f"{name} classifier accuracy: {accuracy:.3f}")
```

	precision	recall	f1-score	support
1	0.45	0.70	0.55	114876
2	0.51	0.04	0.08	85001
3	0.46	0.51	0.49	95338
accuracy			0.45	295215
macro avg	0.47	0.42	0.37	295215
weighted avg	0.47	0.45	0.39	295215
Logistic Reg	ression class	sifier acc	curacy: 0.4	53
	precision	recall	f1-score	support
1	0.88	0.83	0.85	114876
2	0.66	0.70	0.68	85001
3	0.87	0.88	0.88	95338
accuracy			0.81	295215
			0.80	295215
macro avg	0.80	0.80	0.00	233213

Scaling for 3 workers and 1 driver with 100% of the data.

```
assembler = VectorAssembler(
   inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
train_data, test_data = dem_df.randomSplit([0.8, 0.2], seed=42)
classifiers = {
    "Logistic Regression": LogisticRegression(labelCol="demand_category", featuresCol="scaledFeatures"),
    "Decision Tree": DecisionTreeClassifier(labelCol="demand_category", featuresCol="scaledFeatures", maxBins =
64, maxDepth = 10, minInstancesPerNode = 5),
    "Random Forest": RandomForestClassifier(labelCol="demand_category", featuresCol="scaledFeatures", numTrees =
20, maxDepth = 10),
for name, classifier in classifiers.items():
    pipeline = Pipeline(stages=[assembler, featureScaler, classifier])
    model = pipeline.fit(train_data)
    predictions = model.transform(test_data)
    y_true = predictions.select(['demand_category']).collect()
    y_pred = predictions.select(['prediction']).collect()
    print(classification_report(y_true, y_pred))
    evaluator = MulticlassClassificationEvaluator(
       labelCol="demand_category", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print(f"{name} classifier accuracy: {accuracy:.3f}")
```

	precision	recall	f1-score	support
1	0.45	0.70	0.55	115153
2	0.49	0.05	0.08	84623
3	0.46	0.52	0.49	95697
accuracy			0.46	295473
macro avg	0.47	0.42	0.37	295473
weighted avg	0.47	0.46	0.40	295473
Logistic Regr	ession class	ifier acc	uracy: 0.4	55
	precision	recall	f1-score	support
1	0.88	0.83	0.85	115153
2	0.66	0.71	0.69	84623
3	0.87	0.88	0.88	95697
accuracy			0.81	295473
macro avg	0.80	0.81	0.80	295473
weighted avg	0.82	0.81	0.81	295473

Scaling 25% data with 4 workers and 1 driver.

```
percent = 0.25
total_records = dem_df.count()
dem_df_sample_25 = dem_df.limit(int(total_records * percent))
assembler = VectorAssembler(
    inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
train_data, test_data = dem_df_sample_25.randomSplit([0.8, 0.2], seed=42)
classifiers = {
    "Logistic Regression": LogisticRegression(labelCol="demand_category", featuresCol="scaledFeatures"), \\
    "Decision Tree": DecisionTreeClassifier(labelCol="demand_category", featuresCol="scaledFeatures", maxBins =
64, maxDepth = 10, minInstancesPerNode = 5),
    "Random Forest": RandomForestClassifier(labelCol="demand_category", featuresCol="scaledFeatures", numTrees =
20, maxDepth = 10),
for name, classifier in classifiers.items():
    pipeline = Pipeline(stages=[assembler, featureScaler, classifier])
    model = pipeline.fit(train_data)
    predictions = model.transform(test_data)
    y_true = predictions.select(['demand_category']).collect()
    y_pred = predictions.select(['prediction']).collect()
    print(classification_report(y_true, y_pred))
    evaluator = MulticlassClassificationEvaluator(
       labelCol="demand_category", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print(f"{name} classifier accuracy: {accuracy:.3f}")
```

	precision	recall	f1-score	support
1	0.38	0.87	0.53	27858
2	0.28	0.02	0.04	21048
3	0.33	0.11	0.17	24919
accuracy			0.37	73825
macro avg	0.33	0.33	0.24	73825
weighted avg	0.33	0.37	0.26	73825
Logistic Regr	ession class	sifier acc	uracy: 0.4	61
	precision		f1-score	support
1	0.81	0.91	0.85	29348
2	0.66	0.59	0.63	20719
3	0.89	0.84	0.87	23758
accuracy			0.80	73825
macro avg	0.79	0.78	0.78	73825
weighted avg	0.79	0.80	0.79	73825

Scaling 50% data with 4 workers and 1 driver.

```
percent = 0.50
total_records = dem_df.count()
dem_df_sample_50 = dem_df.limit(int(total_records * percent))
assembler = VectorAssembler(
    inputCols=["temp", "year", "month", "day", "hour", "Latitude", "Longitude"],
    outputCol="features"
featureScaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures")
train_data, test_data = dem_df_sample_50.randomSplit([0.8, 0.2], seed=42)
classifiers = {
    "Logistic Regression": LogisticRegression(labelCol="demand_category", featuresCol="scaledFeatures"), \\
    "Decision Tree": DecisionTreeClassifier(labelCol="demand_category", featuresCol="scaledFeatures", maxBins =
64, maxDepth = 10, minInstancesPerNode = 5),
    "Random Forest": RandomForestClassifier(labelCol="demand_category", featuresCol="scaledFeatures", numTrees =
20, maxDepth = 10),
for name, classifier in classifiers.items():
    pipeline = Pipeline(stages=[assembler, featureScaler, classifier])
    model = pipeline.fit(train_data)
    predictions = model.transform(test_data)
    y_true = predictions.select(['demand_category']).collect()
    y_pred = predictions.select(['prediction']).collect()
    print(classification_report(y_true, y_pred))
    evaluator = MulticlassClassificationEvaluator(
        labelCol="demand_category", predictionCol="prediction", metricName="accuracy")
    accuracy = evaluator.evaluate(predictions)
    print(f"{name} classifier accuracy: {accuracy:.3f}")
```

	p	recision	recall	f1-score	support
	1	0.43	0.57	0.49	61793
	2	0.29	0.02	0.04	42206
	3	0.30	0.44	0.36	43274
accurac	у			0.37	147273
macro av	g	0.34	0.34	0.30	147273
weighted av	g	0.35	0.37	0.32	147273
Logistic Re	ares	sion class	ifier acc	uracv: 0.4	62
	-	recision		f1-score	support
	1	0.50	0.48	0.49	59220
	2	0.36	0.35	0.36	41674
	3	0.42	0.45	0.43	46379
	у			0.43	147273
accurac				0 40	1 47272
accurac macro av	g	0.43	0.43	0.43	147273

Scaling 100% data with 4 workers and 1 driver.

```
precision
                    recall f1-score
                                        support
       1
                        0.70
                                 0.55
               0.44
                                         114530
       2
               0.51
                        0.04
                                 0.08
                                         85348
       3
               0.46
                        0.51
                                 0.49
                                         95046
 accuracy
                                 0.45
                                         294924
               0.47
                        0.42
                                 0.37
                                         294924
macro avq
```

weighted	avg	0.47	0.45	0.39	294924
Logistic	Regr	ession class:	ifier acc	uracy: 0.45	52
		precision	recall	f1-score	support
	1	0.87	0.84	0.85	114530
	2	0.67	0.69	0.68	85348
	3	0.87	0.88	0.88	95046
accur	асу			0.81	294924
macro	avg	0.80	0.80	0.80	294924
weighted	avg	0.81	0.81	0.81	294924
	Logistic accur macro	1 2	Logistic Regression class: precision 1 0.87 2 0.67 3 0.87 accuracy macro avg 0.80	Logistic Regression classifier acceprecision recall 1 0.87 0.84 2 0.67 0.69 3 0.87 0.88 accuracy macro avg 0.80 0.80	Logistic Regression classifier accuracy: 0.49