Hodge Theory Lecture 1

Mitchell Gaudet

January 14, 2025

Before we begin, a word of warning: A "function" in L^2 (or L^p or $W^{k,p}$) is actually an equivalence class of functions. Since from the point of view of integration theory measure 0 sets don't matter, we identify functions which differ on a set of measure 0.

Functional Analysis

Given a vector space V with norm $\|*\|_V$ we may define an associated topology, as in the problems. Additionally, an inner product defines an norm, and thus a topology.

Definition. A Hilbert space is a possibly infinite-dimensional inner product space, such that the induced topology is complete

Hilbert spaces have many nice properties. One of the most useful is the

Theorem. If H is a Hilbert space, then it is isometrically isomorphic to its dual

Proof. See Folland

This is a very useful fact when working with the calculus of variations, because of its impact on the weak topology.

Definition. If H is a Hilbert space, then a sequence $f_i \rightharpoonup f$ weakly if $\forall e \in H$ it holds that $\langle f_i, e \rangle \to \langle f, e \rangle$

Sobolev Spaces

We will assume for this section that all functions are defined in an open set $U \subseteq \mathbb{R}^n$.

Given some $g \in L^p$ we identify it with the corresponding distribution ϕ_q using the notation $\phi_g(f) = \langle g, f \rangle$ (also identify $D^{\alpha}\phi_g \leftrightarrow D^{\alpha}g$). Now, recall that given $g \in L^2$, if the distributional derivative $D^{\alpha}g$ extends

to a bounded map from $L^2 \to \mathbb{R}$, then $D^{\alpha}g = h$ for some $h \in L^2$. It is a

routine exercise to show the converse. Now, a modification of part 2e) of the last problem set tells us that such an h is unique almost everywhere. In such a case, we write $D^{\alpha}g$ instead of h. This is the so-called "weak derivative" We then have the following:

Definition. The Sobolev space $W^{k,2}$ is the set of $g \in L^2$ such that $D^{\alpha}g$ extends to a bounded map from $L^2 \to \mathbb{R}$ for all $|\alpha| \le k$. The Sobolev norm is

$$||g||_{W^{k,2}} = \sum_{|\alpha| \le k} ||D^{\alpha}g||_{L^2}$$

We identify two functions which have all weak derivatives agreeing except on a set of measure 0.

The Sobolev space $W_m^{k,2}$ is the set of maps $U \to \mathbb{R}^m$ such that each component is in $W^{k,2}$, with the norm

$$\|g\|_{W_m^{k,2}} = \sum_{|\alpha| \le k} \sum_{i=1}^m \|D^{\alpha}g_i\|_{L^2}$$

I will now give some basic properties of $W_m^{k,2}$:

- 1. They are complete in the metric associated to the norm
- 2. The norm is induced by an inner product
- 3. If $\{f_i\} \in W_m^{k,2}, f \in W_m^{0,2}$ and $f_i \to f$ in $W_m^{0,2}$ and weakly in $W_m^{k,2}$ then $f \in W_m^{k,2}$
- 4. (mollifiers) There exists a family F_{ε} of linear operators $W_m^{k,2} \to C^{\infty}(U,\mathbb{R}^m) \cap W_m^{k,2}(U)$ with the following properties
 - (a) F_{ε} is bounded from $W_m^{k,2} \to W_m^{k,2}$
 - (b) For any operator of the form

$$(Pf)(x) = \sum_{\alpha=1}^{m} \sum_{i=1}^{n} a_i^{\alpha}(x) \frac{\partial f_{\alpha}}{\partial x^i}(x) + \sum_{\beta=1}^{m} b^{\beta}(x) f_{\beta}(x)$$

where $a_i^{\alpha}, b^{\beta} \in C^{\infty}(U, \mathbb{R}^m)$ it holds that $F_{\varepsilon}P - PF_{\varepsilon}$ is a bounded operator $W_m^{0,2} \to W_m^{0,2}$. (Here α is a number, not a multi-index)

- (c) $F_{\varepsilon} \to Id$ in the $W_m^{k,2} \to W_m^{k,2}$ operator norm as $\varepsilon \to 0$
- 5. $C^{\infty}(U,\mathbb{R}^m)$ is dense in $W_m^{k,2}$

Differential Operators

Definition. A differential operator of order N is an operator $P: C_c^{\infty}(U, \mathbb{R}^m) \to C_c^{\infty}(U, \mathbb{R}^l)$ of the form

$$(Pf)^{\mu}(x) = \sum_{\alpha=1}^{m} \sum_{|\beta| < N} a_{\beta}^{\alpha\mu}(x) D^{\beta} f_{\alpha}(x), \mu = 1, ..., l$$

Given $\psi:U\to V$, a diffeomorphism of open sets, we define the pushforward operator

$$((\psi_* P)(f))^{\mu}(x) = \sum_{\alpha=1}^m \sum_{|\beta| < N} a_{\beta}^{\alpha \mu}(\psi^{-1}(x)) D^{\beta}(f_{\alpha} \circ \psi)(\psi^{-1}(x)), \mu = 1, ..., l$$

so that $\psi_*P: C_c^\infty(V,\mathbb{R}^m) \to C_c^\infty(V,\mathbb{R}^k)$

Note then that P extends to a bounded linear operator $W_m^{k,2} \to W_m^{k-m,2}$.

Definition. If m = 1, N = 2k then P is (strongly) elliptic if $|\sum_{|\beta|=2k} a_{\beta}(x)\xi^{\beta}| \ge C|\xi|^{2k}$ for C > 0 independent of x and $\xi \in \mathbb{R}^n$. We define the principal symbol $sym_{2k}(P)(x,\xi) = \sum_{|\beta|=2k} a_{\beta}(x)\xi^{\beta}|$

It is not immediately apparent that the highest order terms, or the push-forward, should have any significance. However, in the case $n \geq 2, N=2$ for simplicity, it holds:

Theorem. Let $\psi: U \to \mathbb{R}^n$ be a diffeomorphism onto its image. Then $sym_2(P)(x, (D\psi)^T \xi) = sym_2(\psi_* P)(\psi(x), \xi)$.

Proof. We note that if $\psi(x) = y$

$$D^{i}(f \circ \psi)(x) = \sum_{\gamma=1}^{n} \frac{\partial f(y)}{\partial y^{\gamma}} \frac{\partial (D\psi)^{\gamma}}{\partial x^{i}}$$

$$D^{ij}(f \circ \psi)(x) = \sum_{\gamma=1}^{n} \sum_{\lambda=1}^{n} \frac{\partial f(y)}{\partial y^{\gamma} \partial y^{\lambda}} \frac{\partial (D\psi)^{\lambda}}{\partial x^{j}}(x) \frac{\partial (D\psi)^{\gamma}}{\partial x^{i}}(x) + \text{ lower order terms}$$

but this implies

$$sym_2(\psi_*P)(y,\xi) = \sum_{i,j=1}^n a_{ij}(\psi^{-1}(y)) \sum_{\gamma,\lambda=1}^n \xi^{\gamma} \xi^{\lambda} \frac{\partial (D\psi)^{\lambda}}{\partial x^j}(x) \frac{\partial (D\psi)^{\gamma}}{\partial x^i}(x)$$
$$= \sum_{i,j=1}^n a_{ij}(x) ((D\psi)^T \xi)^i ((D\psi)^T \xi)^j$$

We now look at systems:

Definition. If N=2k then P is (strongly) elliptic if m=l and

$$|\sum_{\mu,\alpha=1}^l \sum_{|\beta|,|\gamma|=k} a_{\gamma\beta}^{\alpha\mu} \xi_\alpha^\beta \xi_\mu^\gamma| \ge C|\xi|^{2k}$$

The principal symbol is defined analogously.