Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:	Frühjahr 2002	66112
Kennwort:		
Arbeitsplatz-Nr.:		

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Fach:

Informatik (vertieft studiert)

Einzelprüfung:

Automatentheorie, Komplexität, Algorith.

Anzahl der gestellten Themen (Aufgaben):

2

Anzahl der Druckseiten dieser Vorlage:

5

Bitte wenden!

Thema Nr. 1

Sämtliche Teilaufgaben sind zu bearbeiten!

Thema: Automaten, formale Sprachen, rekursive Funktionen

- 1. Sei ∑ = {a, b, c} ein Alphabet. Man gebe an, von welchem Chomsky-Typ i (mit 1≤i≤3) die folgenden Sprachen sind, wobei i jeweils maximal sein soll. Zur Begründung gebe man jeweils eine erzeugende Grammatik oder einen akzeptierenden Automaten für die Sprache an und beweise, dass die Sprache davon erzeugt bzw. akzeptiert wird!
 - (i) $L = \{a^k b^m c^n \mid 0 \le k, m, n \}$ sowie $L' = \sum^* L$
 - (ii) $L = \{a^k b^m c^n \mid 0 \le m \le k, 0 \le n\}$
 - (iii) $L = (\sum^* \{a^m b^m c^n \mid 0 \le m, n \}) \cap a^*b^*c^*$

2. Welche Sprache wird von folgender Chomsky-Grammatik vom Typ 1 erzeugt?

$$S \rightarrow SA \mid 1\$1$$

$$1A \rightarrow A11$$

$$A \to 0$$
 | 1\$1

Hinweis: Offensichtlich werden Wörter der Gestalt u\$v erzeugt. Man gebe an, wie die Teilwörter v aussehen und in welcher Beziehung jeweils das u zum v steht - natürlich jeweils mit Beweis!

- 3. Welche der folgenden Fälle des Postschen Korrespondenzproblems haben eine Lösung, welche nicht? Man gebe entweder eine Lösung oder eine Begründung für die Nichtlösbarkeit an!
 - (i) (aa, aab), (bb, ba), (abb, b)
 - (ii) (aaa, aa), (aaaa, aaa)
 - (iii) (a, aaa), (abaaa, ab), (ab, b)
 - (iv) (ab, aba), (ba, aa), (abab, baa).
- 4. Man gebe explizite Darstellungen der folgenden über den ganzen Zahlen rekursiv definierten Funktionen an:

$$f(x) = if x < 4 then f(f(x + 2)) else x - 1 end$$

$$f(x) = if x \ge 4 then f(f(x-2)) else x - 1 end$$

Hinweis: Man mache eine Fallunterscheidung für verschiedene Wertebereiche für x und beweise die einzelnen Teilaussagen mit vollständiger Induktion!

Thema Nr. 2

Sämtliche Teilaufgaben sind zu bearbeiten!

- 1. Sei L die Sprache aller Wörter über dem Zeichenvorrat {a,b}, die doppelt so viele Vorkommen von 'a' wie von 'b' enthalten. Beweisen Sie oder widerlegen Sie:
 - a) L ist kontextsensitiv.
 - b) L ist kontextfrei.
 - c) L ist regulär.
- 2. Konstruieren Sie einen vollständigen deterministischen erkennenden Automaten, der genau die durch den regulären Ausdruck ab*|(ac)* gegebene Sprache über dem Zeichenvorrat {a,b,c} akzeptiert!
- 3. Zeigen Sie die Äquivalenz der beiden regulären Ausdrücke
 - b| a(ba)*bb
 - (ab)*b
- 4. Beweisen Sie: Ist f: $\mathbb{N}^2 \to \mathbb{N}$ primitiv rekursiv, so ist auch g: $\mathbb{N} \to \mathbb{N}$ mit

$$g(n) = \sum_{i=1}^{n} f(i, n)$$

primitiv rekursiv.

- 5. Zeigen Sie, dass die Präfixrelation (präfix(u,v): <--> $-\exists w \in \{a,b\}^* : u w = v$) auf $\{a,b\}^*$ entscheidbar ist.
- 6. Seien paarcod : $\mathbb{N}^2 \to \mathbb{N}$; q_1, q_2 : $\mathbb{N} \to \mathbb{N}$ gegebene primitiv rekursive Funktionen mit paarcod(x,y) = $\mathbb{N}^2 = \mathbb{N}$ = $\mathbb{N}^2 = \mathbb{N}$
 - a) Zeigen Sie, dass die durch ($x \in N$, $y \in N^*$, ε leere Folge)
 - c : $\mathbb{N}^* \to \mathbb{N}$, $c(\varepsilon) = 0$, $c(\langle x \rangle \circ y) = paarcod(x, c(y)) + 1$

gegebene Funktion c bijektiv ist.

- b) Für Zahlenfolgen $\langle y_1, ..., y_k \rangle$ und Zahlen x seien die Keller-Operationen Push, Top, Rest, Leer charakterisiert durch:
 - Push $(x,\langle y_1,...,y_k\rangle) = \langle x, y_1,...,y_k\rangle$
 - Top $(\langle y_1,...,y_k \rangle) = y_1$
 - Rest $(\langle y_1,..., y_k \rangle) = \langle y_2,..., y_k \rangle$
 - Leer $(\langle y_1,..., y_k \rangle) = if k = 0$ then true else false

Beschreiben Sie primitiv rekursive Funktionen push, top, rest, leer, die entsprechende Operationen auf den Codewerten c(y) von Zahlenfolgen y ausführen.

7. Aussagenlogik

- a) Beweisen Sie: " $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ " ist eine Tautologie.
- b) Folgt aus $\{(A \rightarrow B), \neg A\}$ die Formel $\neg B$?
- c) Formalisieren Sie aussagenlogisch die folgenden beiden Aussagen und zeigen Sie ihre Äquivalenz:
 - "Wenn das Kind durstig oder hungrig ist und wir den Koch erreichen, so rufen wir ihn."
 - "Wenn das Kind durstig ist, so rufen wir den Koch, falls wir ihn erreichen, und, wenn wir den Koch erreichen, so rufen wir ihn, wenn das Kind hungrig ist."