8. Vektor

AGUNG MUSTIKA RIZKI, S.KOM., M.KOM.

Outline Matematika Komputasi

- 1. Pengenalan Matematika Komputasi
- 2. Sistem Bilangan
- 3. Fungsi Ilmu Logika
- 4. Kombinatorika
- 5. Probabilitas
- 6. Trigonometri
- 7. Sistem Koordinat
- 8. Vektor
- 9. Matriks
- 10. Transformasi Matriks
- 11. Aritmetika
- 12. Turunan
- 13. Integral 1
- 14. Integral 2 (Kondisional)

PENDAHULUAN

- Satu angka untuk mewakili kuantitas disebut skalar. Contoh : tinggi badan, usia, ukuran sepatu dll.
- Ada hal lain yang membutuhkan lebih dari satu angka untuk mewakili. Contoh: angin, gaya, berat, kecepatan dan suara. Beberapa diantaranya memiliki nilai dan arah. Besaran seperti itu disebut vektor.
- Besaran vektor adalah besaran yang terdiri dari 2 variabel yaitu nilai & arah.

VEKTOR 2D – Notasi Vektor

- Sebuah **besaran vektor** dapat dinyatakan oleh huruf dicetak tebal (misal \mathbf{r}) atau diberi tanda diatas huruf (misal \mathbf{r}) atau diberi anak panah diatasnya (misal \mathbf{r}).
- Vektor memiliki satu atau lebih angka yang diapit tanda kurung.
- $\mathbf{r} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} => 3$ dan 4 adalah komponen \mathbf{r}
- Vektor baris : $\mathbf{r} = \begin{bmatrix} 3 & 4 \end{bmatrix}$
- Keduanya akan berbeda pada pembahasan matriks.
- $\mathbf{r} = \begin{bmatrix} 3 & 4 \end{bmatrix}^T \Rightarrow \mathsf{T}$ adalah transpose

Representasi Grafis Vektor

- Panah digunakan untuk merepresentasikan vektor karena memiliki panjang dan arah.
- Secara umum, jika koordinat kepala (x_h, y_h) dan ekor vektor adalah (x_t, y_t) , komponennya Δx dan Δy sebagai berikut :
- $\Delta x = x_h x_t$
- $\Delta y = y_h y_t$
- Vektor tidak memiliki posisi absolut selama kita mempertahankan panjang dan orientasinya.

•
$$x_r = x_2 - x_1 = 3 - 1 = 2$$

$$y_r = y_2 - y_1 = 4 - 2 = 2$$

•
$$x_s = x_4 - x_3 = 3 - 5 = -2$$

$$y_s = y_4 - y_3 = 1 - 3 = -2$$

Notasi negatif (-) menunjukkan arah vektor

Magnitud / Panjang Vektor

- Nilai magnitud / panjang vektor dinyatakan dengan simbol tegak lurus (misal |r|).
- Nilai dihitung dengan teorema phytagoras :

•
$$|\mathbf{r}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

- Contoh sebuah vekor \mathbf{r} : $(x_h, y_h) = (4, 5)$ $(x_t, y_t) = (1, 1)$
- $|\mathbf{r}| = \sqrt{(4-1)^2 + (5-1)^2}$ = $\sqrt{9 + 16}$

Gambar menunjukkan 8 vektor

Tabel menunjukkan sifat geometris dari 8 vektor diatas

x_h	y_h	X_t	y_t	Δx	∆y	lvector
2	0	0	0	2	0	2
0	2	0	0	0	2	2
-2	0	0	0	-2	0	2
0	-2	0	0	0	-2	2
1	1	0	0	1	1	$\sqrt{2}$
-1	1	0	0	-1	1	$\sqrt{2}$
-1	-1	0	0	-1	-1	$\sqrt{2}$
1	-1	0	0	1	-1	$\sqrt{2}$

VEKTOR 3D

Vektor 3D **r** kepala, ekor, komponen, dan besarnya dijelaskan sebagai berikut.

- $\mathbf{r} = [\Delta x \, \Delta y \, \Delta z]^T$
- $\Delta x = x_h x_t$
- $\Delta y = y_h y_t$
- $\Delta z = z_h z_t$
- $|\mathbf{r}| = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}$

Manipulasi Vektor

- Karena vektor berbeda dengan skalar, ada aturan untuk mengontrol bagaimana dua entitas matematika berinteraksi satu sama lain.
- Interaksi yang dimaksud :
 - Penjumlahan vektor
 - Pengurangan vektor
 - Perkalian vektor
 - Skala vektor

Manipulasi Vektor

- Karena vektor berbeda dengan skalar, ada aturan untuk mengontrol bagaimana dua entitas matematika berinteraksi satu sama lain.
- Interaksi yang dimaksud :
 - Penjumlahan vektor
 - Pengurangan vektor
 - Perkalian vektor
 - Skala vektor

Skala Vektor

• Secara umum berlaku:

•
$$\mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 maka $\lambda \mathbf{n} = \begin{bmatrix} \lambda n_1 \\ \lambda n_2 \\ \lambda n_3 \end{bmatrix}$ dimana $\lambda \in \mathbb{R}$

- Hal ini juga berlaku untuk pembagian, jika n dibagi dengan 2, maka komponennya juga dibagi 2.
- Arah vektor tetap tidak berubah hanya besarannya yang berubah.

Penjumlahan dan Pengurangan Vektor

• Jika diketahui vektor
$$\mathbf{r} = \begin{bmatrix} x_r \\ y_r \\ z_r \end{bmatrix}$$
 dan $\mathbf{s} = \begin{bmatrix} x_s \\ y_s \\ z_s \end{bmatrix}$

• maka
$$\mathbf{r} \pm \mathbf{s} = \begin{bmatrix} x_r \pm x_r \\ y_r \pm y_s \\ z_r \pm z_s \end{bmatrix}$$

- Penjumlahan vektor bersifat komutatif
- a + b = b + a
- Contoh:

•
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Penjumlahan dan Pengurangan Vektor

- a b ≠ b a
- Contoh:

•
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \neq \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Vektor Posisi

- Vektor yang titik awalnya di titik asal.
- Jika ada sebuah titik P (x, y, z), maka vektor posisi p dibuat dengan mengasumsikan bahwa P adalah kepala vektor dan titik asal adalah ekornya.
- Karena koordinat ekornya adalah (0, 0, 0) komponen vektornya adalah x, y, z.
- Akibatnya, besaran vektor $|p| = \sqrt{x^2 + y^2 + z^2}$

Perkalian Vektor

- Karena besaran vektor mempunyai arah, maka perkalian vektor tidak dapat dilakukan dengan menggunakan aturan-aturan aljabar biasa.
- Terdapat 3 macam perkalian:
 - Perkalian vektor dengan skalar
 - Perkalian skalar dari dua vektor
 - Perkalian vektor dari dua vektor

- Perkalian skalar dari dua vektor juga disebut sebagai perkalian titik dari dua vektor.
- Perkalian skalar dari dua vektor \bar{a} dan vektor \bar{b} ditulis menjadi \bar{a} . \bar{b} , hasilnya adalah skalar didefinisikan seperti berikut ini:
- $a \cdot b = ab \cdot \cos \theta$
- Dengan θ adalah sudut antar vektor \overline{a} dan vektor \overline{b} .

Perkalian Skalar dari 2 Vektor (Perkalian Titik)

- Perkalian skalar dari dua vektor juga disebut sebagai perkalian titik dari dua vektor.
- Perkalian skalar dari dua vektor \bar{a} dan vektor \bar{b} ditulis menjadi \bar{a} . \bar{b} , hasilnya adalah skalar didefinisikan seperti berikut ini:
- \overline{a} . $\overline{b} = |a||b|$.cos θ
- Dengan θ adalah sudut antar vektor \bar{a} dan vektor \bar{b} .

Perkalian Skalar dari 2 Vektor (Perkalian Titik)

- Jika kedua vektor \bar{a} dan \bar{b} saling tegak lurus ($\alpha = 90^{\circ}$), maka $\bar{a} \cdot \bar{b} = 0 \rightarrow$ karena $\cos 90^{\circ} = 0$
- Jika kedua vektor \bar{a} dan \bar{b} searah ($\alpha=0^{\circ}$), maka $\bar{a} \cdot \bar{b} = \bar{a}\bar{b} \rightarrow$ karena $\cos 0^{\circ} = 1$
- Jika kedua vektor \bar{a} dan \bar{b} berlawanan arah ($\alpha=180^\circ$), maka \bar{a} . $\bar{b}=-\bar{a}\bar{b}$ karena $\cos 180^\circ$ = -1
- Perkalian titik memiliki sifat distributif A.(B + C) = A.B + A.C
- Perkalian titik memiliki sifat komutatif

$$A.B = B.A$$

Perkalian Vektor dari Dua Vektor (Perkalian Silang)

- P1 = (0, 0, 1)
- P2 = (1, 0, 0)
- P3 = (0, 1, 0)

- Jika $\mathbf{r} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ dan $\mathbf{s} = d\mathbf{i} + e\mathbf{j} + f\mathbf{k}$, maka berlaku rumus :
- $\mathbf{r} \times \mathbf{s} = (bf ce) \mathbf{i} + (cd af) \mathbf{j} + (ae bd) \mathbf{k}$
- Contoh:

•
$$r = [(x3 - x2) (y3 - y2) (z3 - z2)]^T$$

•
$$s = [(x1 - x2) (y1 - y2) (z1 - z2)]^T$$

•
$$r = -1i + 1j + 0k$$

•
$$s = -1i + 0j + 1k$$

•
$$r \times s = [1 \times 1 - 0 \times 0]i + [0 \times (-1) - (-1) \times 1]j$$

+ $[(-1) \times 0 - 1 \times (-1)]k$

•
$$t = i + j + k$$

Menghitung Area 2D

- Diketahui segitiga dengan $P_0(x_0, y_0)$, $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.
- $\mathbf{r} = (x_1 x_0)\mathbf{i} + (y_1 y_0)\mathbf{j}$
- $\mathbf{s} = (x_2 x_0)\mathbf{i} + (y_2 y_0)\mathbf{j}$

•
$$|\mathbf{r} \times \mathbf{s}| = (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)$$

 $= x_1(y_2 - y_0) - x_0(y_2 - y_0) - x_2(y_1 - y_0) + x_0(y_1 - y_0)$
 $= x_1 y_2 - x_1 y_0 - x_0 y_2 + x_0 y_0 - x_2 y_1 + x_2 y_0 + x_0 y_1 - x_0 y_0$
 $= x_1 y_2 - x_1 y_0 - x_0 y_2 - x_2 y_1 + x_2 y_0 + x_0 y_1$
 $= (x_0 y_1 - x_1 y_0) + (x_1 y_2 - x_2 y_1) + (x_2 y_0 - x_0 y_2).$

- area = $\frac{1}{2}$ |r × s|
- area = $\frac{1}{2}$ [($x_0 \ y_1 x_1 \ y_0$) + ($x_1 \ y_2 x_2 \ y_1$) + ($x_2 \ y_0 x_0 \ y_2$)]

Vektor pada Komputer

- Vektor untuk citra digital
- Ruang vektor untuk pembelajaran mesin

