Laboratório 09: MMI

Professor: Adolfo Fernandes Herbster Aluno: Edilberto Elias Xavier Junior

Matrícula: 120210134

1. Objetivo

- gerar os componentes e objetos de simulação por meio da API Python;
- realizar análises do dispositivo por meio do API Python;
- utilizar o Lumerical EME para determinar o comprimento ótimo da caixa central de um MMI;
- comparar o desempenho do MMI simulado no EME com os resultados obtidos por meio do varFDTD e FDTD;
- utilizar o Lumerical INTERCONNECT para simular o dispositivo utilizando os parâmetros S gerados no EME e FDTD.

2. Atividades

2.1 Simulação - solver EME

• Simulação do dispositivo

Perfil de Campo Elétrico – EME - 57.42µm – Escala Linear

Perfil de Campo Elétrico – EME - 57.42µm – Escala Logarítmica

Através da formula descrita no Guia de Simulação – MMI, $L=3*\frac{L_\pi}{N}$, e das imgens acima para duas imagens é necessário um comprimento de 57,42 μ m para duas imagens e 38,28 μ m para 3 imagens, notase que são valores relativamente proximos , mas que geram quantidades de imagens distintas.

• Desempenho em função do comprimento de onda

Imbalance e Perda de Inserção nas portas - EME

• Otimização do comprimento da caixa central

Transmitancia em função do comprimento da caixa do MMI

Perfil de Campo Elétrico – EME - 58.75µm – Escala Linear

Perfil de Campo Elétrico – EME - 58.75µm – Escala Logarítmica

Transmissão nas portas do MMI – EME – Otmizado

Imbalance e Perda de Inserção nas portas - EME - Otmizado

2.2 Simulação - solver varFDTD

Simulação do dispositivo

Perfil de Campo Elétrico – varFDTD - 58.75µm – Escala Linear – TE MODE

Perfil de Campo Elétrico – varFDTD - 58.75µm – Escala Logarítmica – TE MODE

Transmissão nas portas do MMI - varFDTD - Otmizado - TE MODE

Imbalance e Perda de Inserção nas portas - varFDTD - Otmizado - TE MODE

A transmissão para 1550nm foi de aproximadamente 0,5 ou -3dB, isto é, as portas seguem um tipo 50/50, a perda de inserção para o mesmo comprimento de onda é de aproximadamente 0.15dB. O uso do varFDTD é mais confiavel, seu tipo de simulação ele faz uma aproximação no plano 2D do dispositivo 3D que não é o caso do EME solver, mostrado na extração dos resultados da perda de inserção e nas transmissão.

Perfil de Campo Elétrico – varFDTD - 58.75µm – Escala Linear – TM MODE

Perfil de Campo Elétrico – varFDTD - 58.75µm – Escala Logarítmica – TM MODE

Transmissão nas portas do MMI – varFDTD – Otmizado – TM MODE

Imbalance e Perda de Inserção nas portas - varFDTD - Otmizado - TM MODE

Como pode ser observado, para o TM MODE o dispositivo não apresenta um comportamento satistfatório com muito mais perda de inserção nas portas e dissipação de potência.

2.3 Simulação - solver FDTD

• Simulação do dispositivo

Perfil de Campo Elétrico – FDTD - 58.75µm – Escala Linear – TE MODE

Perfil de Campo Elétrico – FDTD - 58.75µm – Escala Logarítmica – TE MODE

Transmissão nas portas do MMI - FDTD - Otmizado - TE MODE

Imbalance e Perda de Inserção nas portas - FDTD - Otmizado - TE MODE

A transmissão para 1550nm analizando os graficos foi de aproximadamente 0,45 ou -3.6dB, isto é, as portas seguem um tipo 50/50, cuja perda de inserção para o mesmo comprimento de onda é de aproximadamente 0.4dB. O uso do FDTD é mais confiavel devido ao seu tipo de simulação o qual faz uma 3D do dispositivo, mostrado na extração dos resultados da perda de inserção e nas transmissão.

Perfil de Campo Elétrico – FDTD - 58.75µm – Escala Linear – TM MODE

Perfil de Campo Elétrico – FDTD - 58.75µm – Escala Logarítmica – TM MODE

Transmissão nas portas do MMI – FDTD – Otmizado – TM MODE

Imbalance e Perda de Inserção nas portas - FDTD - Otmizado - TM MODE

Como pode ser observado, para o TM MODE o dispositivo não apresenta um comportamento satistfatório com muito mais perda de inserção nas portas e dissipação de potência.

2.4 Simulação - solver INTERCONECT

Simulação do dispositivo

Transmissão nas portas do MMI - INTERCONECT - Otmizado - TE MODE

Transmissão nas portas do MMI - INTERCONECT - Otmizado - TM MODE

Comparado com os demais solvers utilizados, o resultado do INTERCONECT se assemelha com o FDTD e difere um pouco com o EME e varFDTD em alguns pontos como é o caso das tranmissões e perda de inserção.

Referências

- [1] https://optics.ansys.com/hc/en-us/categories/360001998954-Scripting-Language
- [2] https://developer.ansys.com/docs/lumerical/python-lumapi
- [3] https://optics.ansys.com/hc/en-us/articles/360042305194-Multi-Mode-Interference-MMI-Coupler
- [4] https://optics.ansys.com/hc/en-us/articles/4412892724243-EME-Convergence-Testing-An-Intuitive-Approach

