M53 - Cours

ESPACE AFFIN

BARYCENTRE REPÈRES

Sous-espace affines

APPLICATION: AFFINES

Convexes

M53 - Cours 1

2 septembre 2015

M53 - Cours

ESPACE AFFINI

DÉFINITION

OPÉRATIONS

REMIÈRES PROPRIÉTÉS

Barycentre et

SOUS-ESPACE

APPLICATION

Convexes

DEFINITION (HEURISTIQUE)

«Un espace affine est un espace vectoriel dont on a oublié l'origine.»

M53 - Cours

Espace affine

DÉFINITION EXEMPLES

>)PÉRATIONS Podanières dooddiété

BARYCENTRE ET

REPÈRES

Sous-espac. Affines

APPLICATION AFFINES

Convexes

DEFINITION

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'un espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

qui satisfait les deux conditions:

AB + BC = AC (relation de Chasles)

 $\blacksquare \ \forall A \in \mathcal{E}, \ \overrightarrow{v} \in \overrightarrow{\mathcal{E}}, \ \exists! B \in \mathcal{E} \text{ t.q. } AB = \overrightarrow{v} \ (B = A + \overrightarrow{v})$

DEFINITION

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'un espace affine de direction \mathcal{E} par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

$$(A,B) \mapsto \overrightarrow{AB}$$

M53 - Cours 1

ESPACE AFFINE

DÉFINITION

EXEMPLES

OPÉRATIONS

PREMIÈRES PROPRIÉTÉS

BARYCENTRE

REPÈRES

Sous-espace affines

APPLICATION AFFINES

Convexes

DEFINITION

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'un espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E}\times\mathcal{E}\longrightarrow \overrightarrow{\mathcal{E}}$$

$$(A,B)\mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

$$\mathbf{Z} \quad \forall A \in \mathcal{E}, \ \overrightarrow{v} \in \overrightarrow{\mathcal{E}}, \ \exists \exists B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \overrightarrow{v} \ (B = A + \overrightarrow{v})$$

M53 - Cours 1

ESPACE AFFINE

DÉFINITION

EXEMPLES

Premières propriété

Barycentre i repères

Sous-espace affines

APPLICATION:

Convexes

DEFINITION

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'un espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

$$2 \ \forall A \in \mathcal{E}, \vec{v} \in \overline{\mathcal{E}}$$

LA DÉFINITION D'UN ESPACE AFFINE

M53 - Cours 1

ESPACE AFFINE DÉFINITION EXEMPLES

operations Premières propriété

Barycentre e repères

Sous-espace

APPLICATIONS

Convexes

DEFINITION

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'un espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

$$\forall A \in \mathcal{E}, \vec{v} \in \vec{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \vec{v} \ (B = A + \vec{v})$$

M53 - Cours 1

ESPACE AFFINE DÉFINITION EXEMPLES OPÉRATIONS

Premières propriété

Barycentre repères

Sous-espace Affines

APPLICATIONS AFFINES

Convexes

DEFINITION

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'un espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

$$\forall A \in \mathcal{E}, \vec{v} \in \vec{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \vec{v} \ (B = A + \vec{v})$$

LA DIMENSION D'UN ESPACE AFFINE

M53 - Cours

ESPACE AFFINE

DÉFINITION

OPÉRATIONS

EMIÈRES PROPRIÉTÉ

BARYCENTRE E

Sous-espace

APPLICATION

Convexes

DEFINITION

L'espace affine \mathcal{E} est de dimension n si sa direction, l'espace vectoriel $\overrightarrow{\mathcal{E}}$, est de dimension n.

LES ESPACES VECTORIELS

M53 - Cours

ESPACE AFFINE
DÉFINITION

Opérations Premières propriét

BARYCENTRE ET

Sous-espace affines

APPLICATION AFFINES

Convexes

Tout espace vectoriel $\vec{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

CONVENTION

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

LES ESPACES VECTORIELS

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS

Premières propriéti

Barycentre et repères

Sous-espace Affines

APPLICATION: AFFINES

Convexes

Tout espace vectoriel $\vec{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

CONVENTION

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

LES DROITES (SOUS-ESPACES) AFFINES

M53 - Cours 1

ESPACE AFFINE

DÉFINITION

OPÉRATIONS

Premières propriéti

BARYCENTRE E

Sous-espac

APPLICATION AFFINES

Convexes

Le sous ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x, y) \mid x + y = 1\}$ est un espace affine de direction $\vec{\mathcal{E}} = \{(x, y) \mid x + y = 0\}$

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

QUESTION

Comment peut-on généraliser cette exemple

LES DROITES (SOUS-ESPACES) AFFINES

M53 - Cours 1

ESPACE AFFINE

Définition

OPÉRATIONS

Premières propriéti

Barycentre et repères

Sous-espace affines

APPLICATION:

Convexes

Le sous ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x, y) \mid x + y = 1\}$ est un espace affine de direction $\overrightarrow{\mathcal{E}} = \{(x, y) \mid x + y = 0\}$

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

QUESTION

Comment peut-on généraliser cette exemple?

LES SOLUTIONS DES ÉQUATIONS DIFFÉRENTIELS LINÉAIRES

M53 - Cours

ESPACE AFFINI Définition

Opérations Premières propriét

Barycentre e

Sous-espac affines

APPLICATION

Convexes

L'ensemble des solutions S de l'équation y' + y = sin(x) est un espace affine avec direction S', l'ensemble des solutions homogènes (de y' + y = 0) via :

$$S \times S \longrightarrow S'$$

 $(f_1, f_2) \mapsto f_2 - f_1$

QUESTION

Comment peut-on généraliser cette exemple

LES SOLUTIONS DES ÉQUATIONS DIFFÉRENTIELS LINÉAIRES

M53 - Cours

ESPACE AFFINI
DÉFINITION
EXEMPLES
OPÉRATIONS

PÉRATIONS REMIÈRES PROPRIÉTÉ

BARYCENTRE REPÈRES

Sous-espace affines

APPLICATIONS AFFINES

Convexes

L'ensemble des solutions S de l'équation y' + y = sin(x) est un espace affine avec direction S', l'ensemble des solutions homogènes (de y' + y = 0) via :

$$S \times S \longrightarrow S'$$

 $(f_1, f_2) \mapsto f_2 - f_1$

QUESTION

Comment peut-on généraliser cette exemple?

Vectorialisé d'un espace affine

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉS

Barycentre e repères

Sous-espace Affines

APPLICATION AFFINES

Convexes

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

Vectorialisé d'un espace affine

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉS

Barycentre e repères

Sous-espace Affines

APPLICATION AFFINES

Convexe

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$

VECTORIALISÉ D'UN ESPACE AFFINE

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉS

Barycentre e repères

Sous-espace Affines

APPLICATION AFFINES

Convexe

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

$$\square (\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$$

Vectorialisé d'un espace affine

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉS

Barycentre e repères

Sous-espace Affines

APPLICATION AFFINES

Convexe

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

$$(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$$

Vectorialisé d'un espace affine

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉ:

Barycentre e repères

Sous-espace Affines

APPLICATION AFFINES

Convexe

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :

$$\square (\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$$

PRODUIT D'ESPACES AFFINES

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉS

BARYCENTRE E

Sous-espace Affines

Applications affines

Convexe

Soit \mathcal{E} et \mathcal{F} deux espaces affines, sur le même corps, de directions respectives $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

On définit la structure d'espace affine sur $\mathcal{E} \times \mathcal{F}$ de direction $\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{F}}$ par :

$$\overrightarrow{(A,B)(C,D)}:=(\overrightarrow{AC},\overrightarrow{BD}).$$

M53 - Cours 1

Eanton theme

Espace affi

EXEMPLES

OPÉRATION

PREMIERES PROPRIETE

BARYCENTRE ET

SOUS-ESPACES

APPLICATION

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$
- $\blacksquare A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} \vec{v} + \vec{w}.$
- $A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overline{\mathcal{E}}$ est bien définie (AB = B A)
 - Si $\sum_{i=1}^{k} \lambda_i = 1$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^{k} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{k} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

Soit \mathcal{E} un \mathbb{K} -espace affine de direction $\overrightarrow{\mathcal{E}}$.

- Espace affine
- DÉFINITION EXEMPLES
- OPÉRATIONS

Premières proprièté

Barycentre et repères

Sous-espace Affines

APPLICATION AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$
- $\blacksquare A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} \vec{v} + \vec{w}.$
- $A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B A)
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^{k} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{k} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

$$\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$$

$$\blacksquare A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$$

$$\blacksquare \ A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$$

$$(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} - \vec{v} + \vec{w}.$$

$$\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$$

■ Si
$$\sum_{i=1}^k \lambda_i = 0$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \overline{\mathcal{E}}$ est bien définie $(AB = B - A)$

■ Si
$$\sum_{i=1}^k \lambda_i = 1$$
 alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie

■ Si
$$\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$$
 alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

Espace affine

DÉFINITION

Exemples Opération

Premières propriét

BARYCENTRE E

REPÈRES

Sous-espace Affines

APPLICATION AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $\blacksquare \ A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} \vec{v} + \vec{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^{\kappa} \lambda_i = 0$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B A).
 - Si $\sum_{i=1}^{n} \lambda_i = 1$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien définie
 - Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

Espace affine

DÉFINITION

OPERATIONS

_

Barycentre e repères

Sous-espace Affines

APPLICATION: AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} \vec{v} + \vec{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^{\kappa} \lambda_i = 0$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B A).
 - Si $\sum_{i=1}^{n} \lambda_i = 1$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

Espace affine

ESPACE AFFINE Définition

OPÉRATIONS

Premières propriété

BARYCENTRE ET

Sous-espaces

AFFINES

APPLICATION: AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} \vec{v} + \vec{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^{\kappa} \lambda_i = 0$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B A).
 - Si $\sum_{i=1}^{n} \lambda_i = 1$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien définie
 - Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

ESPACE AFFINE

Premières propriété

Barycentre et

Sous-espace Affines

APPLICATIONS AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(\overline{A + \overrightarrow{v})(B + \overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^{\kappa} \lambda_i = 0$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B A).
 - Si $\sum_{i=1}^n \lambda_i = 1$ alors $\sum_{i=1}^n \lambda_i A_i \in \mathcal{E}$ est bien définie
 - Si $\sum_{i=1}^{k} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{k} \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

- $A \in \mathcal{E} \Rightarrow \overrightarrow{AA} = 0$
 - $\blacksquare A, B \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AB} = -\overrightarrow{BA}.$
 - $\blacksquare A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
 - $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
 - $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
 - $\overline{(A+\overrightarrow{v})(B+\overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
 - $A_1, \ldots, A_k \in \mathcal{E}$ et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$ alors
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \vec{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

ESPACE AFFINE

Department properties

BARYCENTRE ET

Sous-espace

APPLICATIONS
AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(\overline{A + \overrightarrow{v})(B + \overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

ESPACE AFFINE DÉFINITION EXEMPLES

Premières propriét

BARYCENTRE ET

Sous-espace

APPLICATIONS AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $\blacksquare \ A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \ C \in \mathcal{E}, \ \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(\overline{A + \overrightarrow{v})(B + \overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS

Premières propriét

Barycentre et repères

Sous-espace: Affines

APPLICATIONS
AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}.$
- $A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(\overline{A + \overrightarrow{v})(B + \overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

M53 - Cours 1

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS

Premières propriét

Barycentre et repères

Sous-espace: Affines

APPLICATIONS
AFFINES

Convexes

- $\blacksquare A \in \mathcal{E} \quad \Rightarrow \quad \overrightarrow{AA} = 0.$
- $\blacksquare A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}.$
- $A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(\overline{A + \overrightarrow{v})(B + \overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
- $\blacksquare A_1, \ldots, A_k \in \mathcal{E} \text{ et } \lambda_1, \ldots, \lambda_k \in \mathbb{K} \text{ alors}$
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

DÉFINITION DU BARYCENTRE

M53 - Cours 1

Espace affine

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace Affines

APPLICATIONS

CONVEYES

DÉFINITION-PROPOSITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$(\exists) \ \forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$$

$$\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0$$

L'ensemble des données $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ sont appelées des points pondérées dont les $\{\mu_i\}$ sont les poids, et le point G est le barycentre.

<u>Définition du</u> Barycentre

M53 - Cours 1

Espace affine

BARYCENTRE ET REPÈRES BARYCENTRE

Sous-espace

APPLICATIONS

Convexes

DÉFINITION-PROPOSITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$(\exists) \forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$$

$$\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0$$

L'ensemble des données $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ sont appelées des points pondérées dont les $\{\mu_i\}$ sont les poids, et le point G est le barycentre.

<u>Définition du</u> Barycentre

M53 - Cours 1

Espace affine

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espaces

APPLICATIONS

Convexes

DÉFINITION-PROPOSITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0$$

L'ensemble des données $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ sont appelées des points pondérées dont les $\{\mu_i\}$ sont les poids, et le point G est le barycentre.

<u>Définition du</u> Barycentre

M53 - Cours 1

Espace affine

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espaces

APPLICATIONS

Convexes

DÉFINITION-PROPOSITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$$

$$\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0.$$

L'ensemble des données $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ sont appelées des points pondérées dont les $\{\mu_i\}$ sont les poids, et le point G est le barycentre.

DÉFINITION DU ISOBARYCENTRE

M53 - Cours

ESPACE AFFIN

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS REPÈRE

AFFINES

APPLICATIONS AFFINES

Convexes

DEFINITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{k}$, ou à 1).

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET REPÈRES Barycentre Propriétés Rupère

Sous-espace Affines

APPLICATION

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k) \text{ est } G = (G_A, G_B),$ où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS REPÈRE

Sous-espace Affines

APPLICATION AFFINES

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS REPÈRE

Sous-espace Affines

APPLICATION AFFINES

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

M53 - Cours 1

Espace affin

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS REPÈRE

Sous-espace Affines

APPLICATION AFFINES

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

M53 - Cours 1

ESPACE AFFINE

BARYCENTR REPÈRES BARYCENTRE

Propriétés Repère

Sous-espace affines

APPLICATION

CONVEXES

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition disjointe $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

M53 - Cours 1

ESPACE AFFIN

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace Affines

APPLICATION:

۹.....

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition disjointe $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

M53 - Cours 1

ESPACE AFFIN

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

SOUS-ESPACE

APPLICATION

AFFINES

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition disjointe $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

M53 - Cours 1

ESPACE AFFIN

BARYCENTRE E REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace

Application

AFFINES

Convexi

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition disjointe $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, \dots, r\}}$.

DÉFINITION D'UN REPÈRE

Soient (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

DÉFINITION D'UN REPÈRE

M53 - Cours 1

Soient (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

DÉFINITION-PROPOSITION

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

DÉFINITION D'UN REPÈRE

M53 - Cours 1

ESPACE AFFIN

BARYCENTI REPÈRES BARYCENTRE PROPRIÉTÉS

Repère

Sous-espace Affines

APPLICATION:

Convexes

Soient (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

DÉFINITION-PROPOSITION

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

- $(\overrightarrow{A_0A_1},\ldots,\overrightarrow{A_0A_n})$ est une base de $\overrightarrow{\mathcal{E}}$.
- Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \ldots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

Définition d'un repère

M53 - Cours 1

Espace affin

BARYCENTRE REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace

APPLICATION

AFFINES

Soient (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

DÉFINITION-PROPOSITION

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

- $(\overrightarrow{A_0A_1},\ldots,\overrightarrow{A_0A_n})$ est une base de $\overrightarrow{\mathcal{E}}$.
- Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \ldots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE E REPÈRES BARYCENTRE

Barycenti Propriété Repère

Sous-espac

APPLICATION

Convexes

Soient $\mathcal{A} = (A_0, \dots, A_n)$ un un repère affine de \mathcal{E} .

DEFINITION

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\underline{A}}$ sont les coordonnées cartésiennes de B dans le repère A, si $\overline{A_0B} = \sum_{i=1}^n x_i \overline{A_0A_i}$.

Definition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentrique de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

La relation entres ces deux systèmes de coordonnées est $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n \mu_i$.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET
REPÈRES
BARYCENTRE

Repère Sous-Espaci

APPLICATION

AFFINES

Soient $\mathcal{A} = (A_0, \dots, A_n)$ un un repère affine de \mathcal{E} .

DEFINITION

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\underline{A}}$ sont les coordonnées cartésiennes de B dans le repère A, si $\overline{A_0B} = \sum_{i=1}^n x_i \overline{A_0A_i}$.

Definition

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

La relation entres ces deux systèmes de coordonnées est $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n \mu_i$.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace affines

APPLICATION AFFINES

CONVEY

Soient $\mathcal{A} = (A_0, \dots, A_n)$ un un repère affine de \mathcal{E} .

DEFINITION

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\underline{A}}$ sont les coordonnées cartésiennes de B dans le repère A, si $A_0B = \sum_{i=1}^n x_i A_0 A_i$.

DEFINITION

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

La relation entres ces deux systèmes de coordonnées est $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n \mu_i$.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace Affines

APPLICATION:

CONVEYE

Soient $\mathcal{A} = (A_0, \dots, A_n)$ un un repère affine de \mathcal{E} .

DEFINITION

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\underline{A}}$ sont les coordonnées cartésiennes de B dans le repère A, si $\overline{A_0B} = \sum_{i=1}^n x_i \overline{A_0A_i}$.

DEFINITION

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

La relation entres ces deux systèmes de coordonnées est : $\mu_i = x_i, \forall i = 1, \dots, n$ et $\mu_0 = 1 - \sum_{i=1}^n \mu_i$.

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET

Sous-espaces

AFFINES

EXEMPLES

Application

AFFINES

Convexes

Soit \mathcal{E} un espace affine.

DÉFINITION-PROPOSITION

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- I Il existe un sous-espace vectoriel $\vec{\mathcal{F}}$ de $\vec{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = a + \vec{\mathcal{F}}$
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- \Im \mathcal{F} est stable par barycentre.

M53 - Cours 1

ESPACE AFFINI

BARYCENTRE ET

SOUS-ESPACES

AFFINES Définition

Exemples Propriétés

APPLICATION:

Convexes

Soit \mathcal{E} un espace affine.

DÉFINITION-PROPOSITION

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- If f existe un sous-espace vectoriel $\vec{\mathcal{F}}$ de $\vec{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = a + \vec{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- \Im \mathcal{F} est stable par barycentre

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET

SOUS-ESPACES

DÉFINITION

Exemples Propriétés

APPLICATION:

CONVEXES

Soit \mathcal{E} un espace affine.

DÉFINITION-PROPOSITION

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- If f existe un sous-espace vectoriel $\vec{\mathcal{F}}$ de $\vec{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = a + \vec{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- 3 F est stable par barycentre.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

SOUS-ESPACES

Définition Exemples

PROPRIETES

APPLICATION

AFFINES

ONVEYES

Soit \mathcal{E} un espace affine.

DÉFINITION-PROPOSITION

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- Il existe un sous-espace vectoriel $\vec{\mathcal{F}}$ de $\vec{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = a + \vec{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- \mathcal{F} est stable par barycentre.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET

SOUS-ESPACES

AFFINES DÉFINITION

DEFINITIO EXEMPLES

APPLICATION

Convexes

Soit \mathcal{E} un espace affine.

DÉFINITION-PROPOSITION

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- If f existe un sous-espace vectoriel $\vec{\mathcal{F}}$ de $\vec{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = a + \vec{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- \mathcal{F} est stable par barycentre.

M53 - Cours

ESPACE AFFINI

Barycentre et repères

SOUS-ESPACES
AFFINES
DÉFINITION

DÉFINITION

EXEMPLES

PROPRIÉTÉS

APPLICATION:

Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

M53 - Cours

ESPACE AFFINI

Barycentre et

SOUS-ESPACE AFFINES DÉFINITION

EXEMPLES
PROPRIÉTÉS

AFFINES

Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET

SOUS-ESPAC AFFINES DÉFINITION EXEMPLES PROPRIÉTÉS

APPLICATION:

Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

M53 - Cours

ESPACE AFFINE

Barycentre et redères

SOUS-ESPACE AFFINES DÉFINITION EXEMPLES

APPLICATION:

Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

M53 - Cours

ESPACE AFFINE

Barycentre et repères

SOUS-ESPAC AFFINES DÉFINITION EXEMPLES PROPRIÉTÉS

APPLICATION:

CONVEXES

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

SOUS-ESPA
AFFINES
DÉFINITION
EXEMPLES
PROPRIÉTÉS

APPLICATIONS

CONVEXES

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

M53 - Cours 1

ESPACE AFFIN

BARYCENTRE E

Sous-espaces

Définition Exemples

A DDI ICATIO

AFFINES

Convexes

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$.

Alors pour tout $\vec{v} \in \text{Im } \vec{\phi} \subset \mathcal{F}$, l'image réciproque $\vec{\phi}^{-1}(\vec{v})$ est un sous-espace affine de $\vec{\mathcal{E}}$ de direction Ker $\vec{\phi}$.

- En particulier, en prenant $\phi(x, y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overline{v} = 1$, or retrouve le sous-espace affine $\mathcal{E} = \{(x, y) \mid x + y = 1\}$ de direction $\overline{\mathcal{E}} = \{(x, y) \mid x + y = 0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S' des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE E

SOUS-ESPACE AFFINES Définition EXEMPLES

APPLICATION

Convexes

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$.

Alors pour tout $\vec{v} \in \text{Im } \vec{\phi} \subset \vec{\mathcal{F}}$, l'image réciproque $\vec{\phi}^{-1}(\vec{v})$ est un sous-espace affine de $\vec{\mathcal{E}}$ de direction Ker $\vec{\phi}$.

- En particulier, en prenant $\vec{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\vec{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\vec{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S' des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

SOUS-ESPACES
AFFINES
DÉFINITION
EXEMPLES

Propriétés

.

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$.

Alors pour tout $\vec{v} \in \text{Im } \vec{\phi} \subset \vec{\mathcal{F}}$, l'image réciproque $\vec{\phi}^{-1}(\vec{v})$ est un sous-espace affine de $\vec{\mathcal{E}}$ de direction Ker $\vec{\phi}$.

- En particulier, en prenant $\vec{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\vec{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\vec{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S' des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

M53 - Cours 1

ESPACE AFFINE

Barycentre e repères

SOUS-ESPAC AFFINES Définition EXEMPLES

APPLICATION:

Convexes

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et une application linéaire $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$.

Alors pour tout $\overrightarrow{v} \in \text{Im } \overrightarrow{\phi} \subset \overrightarrow{\mathcal{F}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction Ker $\overrightarrow{\phi}$.

- En particulier, en prenant $\vec{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\vec{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\vec{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S' des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

M53 - Cours

ESPACE AFFINI

BARYCENTRE ET

SOUS-ESPACE AFFINES

DÉFINITION

EXEMPLES

PROPRIÉTÉS

APPLICATION

Convexes

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- $\blacksquare \mathcal{F}$ est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\phi \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \phi^{-1}(a)$.
- \blacksquare Tous les sous-espace affines de \mathbb{R}^n sont des solutions de systèmes linéaires.

M53 - Cours

ESPACE AFFINE

Barycentre et

SOUS-ESPACE AFFINES DÉFINITION

DÉFINITION

EXEMPLES

PROPRIÉTÉS

APPLICATION

CONVEXES

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- \blacksquare \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\phi \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \phi^{-1}(a)$.
- \blacksquare Tous les sous-espace affines de \mathbb{R}^n sont des solutions de systèmes linéaires.

M53 - Cours

ESPACE AFFINI

Barycentre et repères

SOUS-ESPACES
AFFINES
DÉFINITION

DÉFINITION **EXEMPLES**PROPRIÉTÉS

APPLICATION

Convexes

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- $\blacksquare \mathcal{F}$ est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\phi \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \phi^{-1}(a)$.
- \blacksquare Tous les sous-espace affines de \mathbb{R}^n sont des solutions de systèmes linéaires.

LES SOUS-ESPACES AFFINES D'UN ESPACE VECTORIEL

M53 - Cours

ESPACE AFFINE

Barycentre et repères

SOUS-ESPACE AFFINES Définition EXEMPLES

APPLICATION

Convexes

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- \blacksquare \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\phi \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \phi^{-1}(a)$.
- Tous les sous-espace affines de \mathbb{R}^n sont des solutions de systèmes linéaires.

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET

Sous-espace

DÉFINITION

PROPRIÉT

APPLICATION

Convexes

DEFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'il ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» $\not\Rightarrow$ «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondussion
- Par tout point d'un espace affine, il passe une unique droite

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET

Sous-espace Affines

DÉFINITION EXEMPLES

Propriét

APPLICATION

Convexes

DEFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'il ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» $\not\Rightarrow$ «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondussi
- Par tout point d'un espace affine, il passe une unique droite

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET

Sous-espaces Affines Définition

Propriété

APPLICATION AFFINES

Convexes

DEFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'il ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» \Rightarrow «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondus
- Par tout point d'un espace affine, il passe une unique droite
 - (sous-espace) parallèle à une droite (sous-espace) donnée.

PARALLÉLISME

M53 - Cours

Espace affin

Barycentre et repères

SOUS-ESPACES AFFINES DÉFINITION EXEMPLES

Application

Convexes

DEFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'il ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» \Rightarrow «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

M53 - Cours

ESPACE AFFIN

Barycentre et repères

SOUS-ESPACES AFFINES DÉFINITION EXEMPLES

Application

CONVEYES

DEFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'il ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» \Rightarrow «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

SOUS-ESPACES
AFFINES
Définition
EXEMPLES

APPLICATION

Convexes

DEFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'il ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» \Rightarrow «parallèles».

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

M53 - Cours

ESPACE AFFINE

Barycentre et repères

Sous-espaces

AFFINES

DÉFINITION

EXEMPLES

APPLICATION AFFINES

CONTRACTO

PROPOSITION

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- vide, ou
- \blacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

PROPOSITION

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G},$

 $\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$

M53 - Cours

ESPACE AFFINE

Barycentre et repères

Sous-espaces

AFFINES

Définition

. .

Propriété

APPLICATION

CONVEYES

PROPOSITION

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- vide. ou
- \blacksquare un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G},$

 $\overrightarrow{AB} \notin \overline{\mathcal{F}} + \overline{\mathcal{G}}$

M53 - Cours

ESPACE AFFINI

BARYCENTRE ET

Sous-espaces

AFFINES

EVENITIO EVENIDI ES

Propriéti

APPLICATION

CONTRACTO

PROPOSITION

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- vide, ou
- un sous-espace affine de direction $\vec{\mathcal{F}} \cap \vec{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G},$

 $\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET

SOUS-ESPACES

AFFINES

EXEMPLES

Propriété

APPLICATION

CONVEYE

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- vide, ou
- un sous-espace affine de direction $\vec{\mathcal{F}} \cap \vec{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G},$

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espace

AFFINES

DEFINITION

Propriéti

Application

APPLICATION: AFFINES

Convexes

DÉFINITION-PROPOSITION

- $|A| \langle A \rangle$ est le plus petit sous-espace affine contenant A.
- $2 \langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3 $\langle A \rangle$ est l'ensemble de barycentres de points de A
- Pour $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace

AFFINES

EVENITION

Propriéti

APPLICATION

Convexes

DÉFINITION-PROPOSITION

- 1 $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- $2 \langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3 $\langle A \rangle$ est l'ensemble de barycentres de points de A
- If $Pour \ \forall (\exists) \Omega \in \mathcal{A}, \ \langle \mathcal{A} \rangle$ le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace

AFFINES

EXEMPLES

FROPRIETES

APPLICATION:

Convexes

DÉFINITION-PROPOSITION

- 1 $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- 2 $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- \blacksquare $\langle A \rangle$ est l'ensemble de barycentres de points de A
- Pour $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace Affines

Définition

EXEMPLES

.

APPLICATION: AFFINES

Convexes

DÉFINITION-PROPOSITION

- 1 $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- $2 \langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3 $\langle A \rangle$ est l'ensemble de barycentres de points de A.
- If $Pour \ \forall (\exists) \Omega \in \mathcal{A}, \ \langle \mathcal{A} \rangle$ le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

M53 - Cours 1

Espace affini

Barycentre et repères

Sous-espace Affines

DÉFINITION

Propriété

Application

APPLICATION: AFFINES

Convexes

DÉFINITION-PROPOSITION

- 1 $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- 2 $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3 $\langle A \rangle$ est l'ensemble de barycentres de points de A.
- Pour $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

SOMME DE SOUS-ESPACES AFFINES

M53 - Cours

ESPACE AFFINI

BARYCENTRE ET

Sous-espaces

AFFINES

EVENDIES

Propriét

Applicatio

CONVEYES

PROPOSITION

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

 \blacksquare Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$

 $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$

■ $Si \mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \underline{\mathcal{F}}, \mathcal{G} \rangle$ est de direction $\mathcal{F} + \mathcal{G} + D$, où D est une droite engendrée par AB avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

 $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim (\mathcal{F} + \mathcal{G}) + 1$

PROPOSITION

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

■ $Si \mathcal{F} \cap \mathcal{G} \neq \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right).$$

■ $Si \mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \underline{\mathcal{F}}, \mathcal{G} \rangle$ est de direction $\mathcal{F} + \mathcal{G} + D$, où D est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\dot{\mathcal{F}} + \dot{\mathcal{G}} \right) + 1.$$

Conveyee

PROPOSITION

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine enqendré par $\mathcal{F} \cup \mathcal{G}$.

■ $Si \mathcal{F} \cap \mathcal{G} \neq \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et

$$\dim \left\langle \mathcal{F}, \mathcal{G} \right. \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right).$$

■ $Si \mathcal{F} \cap \mathcal{G} = \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$$

Convexes

PROPOSITION

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine enqendré par $\mathcal{F} \cup \mathcal{G}$.

■ $Si \mathcal{F} \cap \mathcal{G} \neq \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et

$$\dim \left\langle \mathcal{F}, \mathcal{G} \right. \right\rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right).$$

■ $Si \mathcal{F} \cap \mathcal{G} = \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$$

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine engendré par $\mathcal{F} \cup \mathcal{G}$.

■ $Si \mathcal{F} \cap \mathcal{G} \neq \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et

$$\dim \left\langle \mathcal{F}, \mathcal{G} \right. \right\rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right).$$

■ $Si \mathcal{F} \cap \mathcal{G} = \emptyset$, $alors \langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$$

FAMILLE AFFINEMENT LIBRE ET GÉNÉRATRICE

M53 - Cours

ESPACE AFFINE

BARYCENTRE ET

Sous-espace

AFFINES

DÉFINITION

Ррорриет

APPLICATION

AFFINES

CONVEXES

Soient \mathcal{F} un sous-espace affine d'un espace affine \mathcal{E} .

DEFINITION

Soit $\{A_0, \ldots, A_k\}$ de points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

DEFINITION

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement indépendante (libre) si dim $\langle A_0, \ldots, A_k \rangle = k$.

Famille affinement libre et génératrice

M53 - Cours

ESPACE AFFINI

Barycentre et repères

Sous-espace

AFFINES

EXEMPLES

PROPRIÉT

APPLICATION

Convexi

Soient $\mathcal F$ un sous-espace affine d'un espace affine $\mathcal E.$

DEFINITION

Soit $\{A_0, \ldots, A_k\}$ de points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Definition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement indépendante (libre) si dim $\langle A_0, \ldots, A_k \rangle = k$.

FAMILLE AFFINEMENT LIBRE ET GÉNÉRATRICE

M53 - Cours

ESPACE AFFIN

BARYCENTRE ET

Sous-espace

AFFINES

EXEMPLES

Propriété

APPLICATION AFFINES

ONVEXES

Soient \mathcal{F} un sous-espace affine d'un espace affine \mathcal{E} .

DEFINITION

Soit $\{A_0, \ldots, A_k\}$ de points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

DEFINITION

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement indépendante (libre) si dim $\langle A_0, \ldots, A_k \rangle = k$.

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espace

AFFINES

DEFINITION

Propriété

APPLICATIONS

Convexes

Soient \mathcal{F} un sous-espace affine d'un espace affine \mathcal{E} .

PROPOSITION

Le (k+1)-uplet (A_0, \ldots, A_k) est un repère affine pour \mathcal{F} si il satisfait une des trois conditions équivalentes :

- \blacksquare $\{A_0,\ldots,A_k\}$ est affinement libre et génératrice pour $\mathcal F$
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F}

M53 - Cours 1

Soient \mathcal{F} un sous-espace affine d'un espace affine \mathcal{E} .

PROPOSITION

Le (k+1)-uplet (A_0,\ldots,A_k) est un repère affine pour \mathcal{F} si il satisfait une des trois conditions équivalentes :

- 1 $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .

M53 - Cours 1

ESPACE AFFIN

Soient \mathcal{F} un sous-espace affine d'un espace affine \mathcal{E} .

Proposition

Le (k+1)-uplet (A_0, \ldots, A_k) est un repère affine pour \mathcal{F} si il satisfait une des trois conditions équivalentes :

- \blacksquare $\{A_0,\ldots,A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F} .

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace

AFFINES

EXEMPLES

FROPRIETES

APPLICATION:

Convexes

Soient $\mathcal F$ un sous-espace affine d'un espace affine $\mathcal E.$

PROPOSITION

Le (k+1)-uplet (A_0, \ldots, A_k) est un repère affine pour \mathcal{F} si il satisfait une des trois conditions équivalentes :

- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F} .

M53 - Cours

B....

BARVCENTRE ET

Sous-espaces

AFFINES

APPLICATION
AFFINES

EXEMPLES PROPRIÉTÉS

Convexes

Soient \mathcal{E} et \mathcal{F} deux espaces affines dirigés respectivement par $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

DÉFINITION-PROPOSITION

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine s'il satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in E, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}}) \text{ telle que } \forall A, B \in E,$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}$$

3 φ préserve les barycentres, c.-a.-d.

$$\phi(\sum_{i=1}^{n} \mu_i A_i) = \sum_{i=1}^{n} \mu_i \phi(A_i).$$

M53 - Cours

and the state of t

Soient \mathcal{E} et \mathcal{F} deux espaces affines dirigés respectivement par $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

DÉFINITION-PROPOSITION

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine s'il satisfait une des trois conditions équivalentes :

- $\exists (\forall) \Omega \in E, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}}) \text{ telle que } \forall A, B \in E,$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}$$

3 φ préserve les barycentres, c.-a.-d.

$$\phi(\sum_{i=1}^{n} \mu_i A_i) = \sum_{i=1}^{n} \mu_i \phi(A_i).$$

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

Application

DÉFINITION EXEMPLES PROPRIÉTÉS

Convexes

M53 - Cours

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

Application

APPLICATION AFFINES

DÉFINITION EXEMPLES PROPRIÉTÉS

Convexes

Soient \mathcal{E} et \mathcal{F} deux espaces affines dirigés respectivement par $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

DÉFINITION-PROPOSITION

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine s'il satisfait une des trois conditions équivalentes :

- $\exists \vec{\phi} \in \mathcal{L}(\vec{\mathcal{E}}, \vec{\mathcal{F}}) \ telle \ que \ \forall A, B \in E,$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

3 φ préserve les barycentres, c.-a.-d.

$$\phi(\sum_{i=1}^{n} \mu_i A_i) = \sum_{i=1}^{n} \mu_i \phi(A_i).$$

M53 - Cours

LISTAGE AFFINE

Barycentre et repères

Sous-espaces Affines

Application

APPLICATION AFFINES

DÉFINITION EXEMPLES PROPRIÉTÉS

CONVEXES

Soient \mathcal{E} et \mathcal{F} deux espaces affines dirigés respectivement par $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

DÉFINITION-PROPOSITION

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine s'il satisfait une des trois conditions équivalentes :

- $\exists \vec{\phi} \in \mathcal{L}(\vec{\mathcal{E}}, \vec{\mathcal{F}}) \ telle \ que \ \forall A, B \in E,$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

3 φ préserve les barycentres, c.-a.-d.

$$\phi(\sum_{i=1}^{n} \mu_i A_i) = \sum_{i=1}^{n} \mu_i \phi(A_i).$$

M53 - Cours

ESPACE AFFINE

Barycentre et repères

Sous-espac

APPLICATION

APPLICATIO AFFINES Définition

EXEMPLES
PROPRIÉTÉS
GA

Convexes

- 1 Les applications constantes sont affines, de partie vectorielle 0
- 2 Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$
- 3 Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$ où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- Soit $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = T_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire

- 1 Les applications constantes sont affines, de partie vectorielle 0.

- Soit $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont

M53 - Cours

ESPACE AFFINI

Barycentre et repères

Sous-espace

APPLICATION

AFFINES
DÉFINITION
EXEMPLES
PROPRIÉTÉS

CONVEXES

- 1 Les applications constantes sont affines, de partie vectorielle 0.
- 2 Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- 3 Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$ où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 5 Soit $\vec{\mathcal{E}}$ et $\vec{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\vec{x} \mapsto \vec{\phi}(\vec{x}) + \vec{v} = T_{\vec{v}} \circ \vec{\phi}(\vec{x})$, où $\vec{\phi}$ est linéaire

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espace Affines

AFFINES .

APPLICATION AFFINES

DÉFINITION
EXEMPLES
PROPRIÉTÉS

Convexe

- 1 Les applications constantes sont affines, de partie vectorielle 0.
- 2 Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- Soit $\vec{\mathcal{E}}$ et $\vec{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\vec{x} \mapsto \vec{\phi}(\vec{x}) + \vec{v} = T_{\vec{v}} \circ \vec{\phi}(\vec{x})$, où $\vec{\phi}$ est linéaire

EXEMPLES D'APPLICATIONS AFFINES

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espace affines

APPLICATION

AFFINES
Définition

Exemples
Propriétés
GA

Convexe

- 1 Les applications constantes sont affines, de partie vectorielle 0.
- 2 Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- Soit $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = T_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}$ est linéaire

EXEMPLES D'APPLICATIONS AFFINES

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espace affines

APPLICATION

APPLICATION AFFINES

EXEMPLES
PROPRIÉTÉS

CONVEXE:

- 1 Les applications constantes sont affines, de partie vectorielle 0.
- **2** Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Is Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 5 Soit $\vec{\mathcal{E}}$ et $\vec{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\vec{x} \mapsto \vec{\phi}(\vec{x}) + \vec{v} = T_{\vec{v}} \circ \vec{\phi}(\vec{x})$, où $\vec{\phi}$ est linéaire.

M53 - Cours

ESPACE AFFINE

Barycentre et repères

SOUS-ESPACE

Application

APPLICATIO

Définition

Propriéti

CONVEYES

PROPOSITION

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ de partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner:

- la partie linéaire et l'image d'un point
- ou l'image d'un repère.

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espace

APPLICATION:

APPLICATIO

Députtion

EXEMPLES

PROPRIÉT

CONVEXES

PROPOSITION

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ de partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

PROPOSITION

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner

la partie linéaire et l'image d'un point,

🔃 ou l'image d'un repère.

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espaces affines

APPLICATIONS

AFFINES

DÉFINITIO

PROPRIÉT

 $_{\mathrm{GA}}$

CONVEYES

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ de partie linéaire $\psi \circ \phi$.

PROPOSITION

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner.

la partie linéaire et l'image d'un point

ou l'image d'un repère.

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espace Affines

Applications

AFFINES

DÉFINITIO

PROPRIÉTÉ

CONVEXE:

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ de partie linéaire $\psi \circ \phi$.

PROPOSITION

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point
- 2 ou l'image d'un repère

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

Applications

AFFINES

DÉFINITIO

PROPRIÉTÉ

CONVEXE:

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ de partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espace affines

APPLICATION

APPLICATIO AFFINES

DÉFINITIO EXEMPLES

Propriété: GA

CONVEXES

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ de partie linéaire $\psi \circ \phi$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines. Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère.

M53 - Cours

ESPACE AFFINI

BARYCENTRE ET

SOUS-ESPAC

APPLICATION

APPLICATIO AFFINES

DÉFINITION EXEMPLES

Propriétés GA

Convexes

- 1 Une translation qui fixe un point est l'identité.
- Une application $\phi \in \text{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $0 \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\overrightarrow{u}} \circ T_{\overrightarrow{v}} = T_{\overrightarrow{u}+\overrightarrow{v}}$: les translations forme un groupe abélien isomorphe à $\overrightarrow{\mathcal{E}}$.
- 4 Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overline{\mathcal{E}}$, alor $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

- Une translation qui fixe un point est l'identité.

- Une translation qui fixe un point est l'identité.
- 2 Une application $\phi \in Aff(\mathcal{E})$ est une translation ssi sa partie linéaire est $0 \in \mathcal{L}(\mathcal{E})$.

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace

A PRI ICATIO

APPLICATIO

DÉFINITION EXEMPLES

Propriétés GA

Convexes

- 1 Une translation qui fixe un point est l'identité.
- Une application $\phi \in \mathrm{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $0 \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\overrightarrow{u}} \circ T_{\overrightarrow{v}} = T_{\overrightarrow{u}+\overrightarrow{v}}$: les translations forme un groupe abélien isomorphe à $\overrightarrow{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espace

.

APPLICATIO

DÉFINITION
EXEMPLES

Propriétés GA

Convexes

- 1 Une translation qui fixe un point est l'identité.
- Une application $\phi \in \text{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $0 \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forme un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

M53 - Cours 1

DEFINITION

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET

Sous-espaces

A DDI ICATION

APPLICATIO!
AFFINES
DÉFINITION

Propriété:

Convexes

DEFINITION

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine non identité ssi sa partie vectorielle est une homothétie vectorielle non identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, ssi $\lambda \mu = 1$
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie, alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

Applications

AFFINES
Définition

Exemples Propriété

GA

Convexes

DEFINITION

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine non identité ssi sa partie vectorielle est une homothétie vectorielle non identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$
 - 2 Une translation, ssi $\lambda \mu = 1$
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

APPLICATION

AFFINES
DÉFINITION
EXEMPLES

Propriété

CONVEXE

DEFINITION

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine non identité ssi sa partie vectorielle est une homothétie vectorielle non identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - I Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$
 - 2 Une translation, ssi $\lambda \mu = 1$
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

APPLICATION

AFFINES
DÉFINITION
EXEMPLES

Propriété GA

Convexes

DEFINITION

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine non identité ssi sa partie vectorielle est une homothétie vectorielle non identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - 1 Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, ssi $\lambda \mu = 1$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

APPLICATION

AFFINES
DÉFINITION
EXEMPLES

Propriété GA

CONVEXES

DEFINITION

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine non identité ssi sa partie vectorielle est une homothétie vectorielle non identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - 1 Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, ssi $\lambda \mu = 1$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

APPLICATION

AFFINES
DÉFINITION
EXEMPLES
PROPRIÉTÉS

Propriétés GA

CONVEXE:

DEFINITION

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine non identité ssi sa partie vectorielle est une homothétie vectorielle non identité.
- 3 La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - 1 Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, ssi $\lambda \mu = 1$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie, alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espace Affines

A DDI ICATION

Applicatio

AFFINES

DÉFINITIO

EXEMPLE

PROPRIÉT

Convexes

PROPOSITION

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcement $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

PROPOSITION

Soit $\overrightarrow{\mathcal{E}}_1
eq 0$ l'ensemble de points fixes de $\overrightarrow{\phi}$, alors

= $si \phi possède un point fixe <math>\Omega$, l'ensemble de points fixes de ϕ est $\Omega + \hat{\mathcal{E}}_1$

2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe unique $\overline{v} \in \mathcal{E}_1$ tel que $T_v \circ \phi$ possède un point fixe Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET

Sous-espace affines

Application

APPLICATIO

Définitio

EXEMPLES

PROPRIÉT

CONVEXES

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcement $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

PROPOSITION

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

= $si \phi possède un point fixe <math>\Omega$, l'ensemble de points fixes de ϕ est $\Omega + \hat{\mathcal{E}}_1$

2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe unique $\overline{v} \in \mathcal{E}_1$ tel que $T_v \circ \phi$ possède un point fixe Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces Affines

APPLICATIONS

APPLICATION

DÉFINITION

EXEMPLES

Propriété GA

Convexes

PROPOSITION

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcement $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1 $si \phi possède un point fixe \Omega$, l'ensemble de points fixes de ϕ est $\Omega + \overline{\mathcal{E}}$
 - si o n'a mae da mainte firae et

 $\operatorname{Ker}(\phi - \operatorname{Id}) \oplus \operatorname{Im}(\phi - \operatorname{Id}) = \mathcal{E}$

alors il existe unique $\vec{v} \in \mathcal{E}_1$ tel que $T_v \circ \phi$ possède un point fixe Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces Affines

Applications

AFFINES

DÉFINITION EXEMPLES

Propriétés GA

Convexes

PROPOSITION

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi ϕ possède un unique point fixe (forcement $0 \in \mathcal{E}$), autrement dit, ssi $1 \notin Sp(\overline{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 $si \phi$ n'a pas de points fixes

 $\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$

alors il existe unique $\overline{v} \in \mathcal{E}_1$ tel que $T_v \circ \phi$ possède un point fixes Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et

Sous-espace Affines

A

Applicatio:

DÉFINITION

Propriété

CONVEYE

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcement $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_v \circ \phi$ possède un point fixe Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

APPLICATION:

APPLICATIO AFFINES

DÉFINITION EXEMPLES

Propriété GA

Convexes

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcement $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe unique $\vec{v} \in \mathcal{E}_1$ tel que $T_v \circ \phi$ possède un point fixe Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces Affines

Application

AFFINES
Définition

Exemples Propriétés

CONVEYE

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcement $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_v \circ \phi$ possède un point fixe. Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espace Affines

Applications

AFFINES
DÉFINITION
EXEMPLES

Propriétés GA

CONVEXES

PROPOSITION

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi ϕ possède un unique point fixe (forcement $0 \in \mathcal{E}$), autrement dit, ssi $1 \notin Sp(\overline{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- **1** si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_v \circ \phi$ possède un point fixe. Par ailleurs $T_v \circ \phi = \phi \circ T_v$.

M53 - Cours

ESPACE AFFINE

Barycentre et repères

SOUS-ESPAC

APPLICATIONS

AFFEICATIO

DÉFINITION

EXEMPLES

Propriét

CONVEXI

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupe $GA(\mathcal{E}) \twoheadrightarrow GL(\overrightarrow{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espaci

APPLICATIONS

AFFEICATIO

Définition

EXEMPLES 1

Propriét GA

Convexes

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overline{\phi}$ est un morphisme surjectif de groupe $GA(\mathcal{E}) \rightarrow GL(\overline{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace

Applications

APPLICATION

DÉFINITION EXEMPLES

Propriété GA

Convexes

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de $\mathcal E$ dans lui-même forment un groupe, le groupe affine $GA(\mathcal E)$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupe $GA(\mathcal E) \twoheadrightarrow GL(\overrightarrow{\mathcal E})$, de noyau le sous-groupe abélien des translations de $\mathcal E$.

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espac

Applications

APPLICATION

DÉFINITION EXEMPLES

Propriétés GA

Convexes

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de $\mathcal E$ dans lui-même forment un groupe, le groupe affine $GA(\mathcal E)$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupe $GA(\mathcal E) \twoheadrightarrow GL(\overrightarrow{\mathcal E})$, de noyau le sous-groupe abélien des translations de $\mathcal E$.

DÉFINITION D'UN CONVEXE

M53 - Cours 1

DEFINITION

Soit A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1 - \lambda)B \mid \lambda \in [0, 1]\}$ l'ensemble des barycentres à poids positifs, appeler $le\ segment\ [AB]$.

DÉFINITION D'UN CONVEXE

M53 - Cours 1

ESPACE AFFINE

Barycentre e repères

Sous-espaces affines

APPLICATION

Convexe

DÉFINITION

Propriétés

DEFINITION

Soit A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appeler le segment [AB].

DEFINITION

On dit que C est un ensemble *convexe*, si pour tout deux points $A, B \in C$ le segment [AB] est entièrement contenu dans C.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

DÉFINITION D'UN CONVEXE

M53 - Cours 1

ESPACE AFFINE

Barycentre e repères

Sous-espaces affines

APPLICATION

COMMENT

Définition

ENVELOPPE CONVEXE

DEFINITION

Soit A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appeler le segment [AB].

DEFINITION

On dit que \mathcal{C} est un ensemble *convexe*, si pour tout deux points $A, B \in \mathcal{C}$ le segment [AB] est entièrement contenu dans \mathcal{C} .

PROPOSITION

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

M53 - Cours

ESPACE AFFIN

Barycentre et repères

Sous-espaci affines

APPLICATION

CONVEYE

DÉFINITION

ENVELOPPE CONV

- 1 L'intersection d'ensembles convexes est convexes
- 2 L'ensemble vide et les ensembles à un points sont convexes.
- 3 Les demi-espaces (ouverts, fermés) sont convexes
- 4 L'image d'un convexe par une application affine est convexe.
- 5 L'image réciproque d'un convexe par une application affine est convexe.

M53 - Cours

ESPACE AFFINE

Barycentre et repères

Sous-espac affines

APPLICATION

CONVEYE

DÉFINITION

Propriétés

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un points sont convexes.
- 3 Les demi-espaces (ouverts, fermés) sont convexes.
- 4 L'image d'un convexe par une application affine est convexe.
- 5 L'image réciproque d'un convexe par une application affine es convexe.

M53 - Cours

Espace affin

Barycentre et repères

Sous-espaci affines

AFFINES

APPLICATION AFFINES

Convexe

Propriétés

ENVELOPPE CONVE

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un points sont convexes.
- 3 Les demi-espaces (ouverts, fermés) sont convexes
- 4 L'image d'un convexe par une application affine est convexe
- 5 L'image réciproque d'un convexe par une application affine est convexe.

M53 - Cours

Espace affin

Barycentre et repères

Sous-espace

Application

AFFINES

Convexes

Propriétés

ENVELOPPE CONVEX

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un points sont convexes.
- 3 Les demi-espaces (ouverts, fermés) sont convexes.
- 4 L'image d'un convexe par une application affine est convexe.
- 5 L'image réciproque d'un convexe par une application affine est convexe.

M53 - Cours

Espace affini

Barycentre et repères

Sous-espace affines

Application

AFFINES

Convexe

Propriétés

Enveloppe convexi

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un points sont convexes.
- 3 Les demi-espaces (ouverts, fermés) sont convexes.
- 4 L'image d'un convexe par une application affine est convexe.
- 5 L'image réciproque d'un convexe par une application affine est convexe.

M53 - Cours

Espace affini

BARYCENTRE E REPÈRES

Sous-espace Affines

APPLICATION

AFFINES

Convexes

PROPRIÉTÉS

Enveloppe convexi

- 1 L'intersection d'ensembles convexes est convexe.
- 2 L'ensemble vide et les ensembles à un points sont convexes.
- 3 Les demi-espaces (ouverts, fermés) sont convexes.
- 4 L'image d'un convexe par une application affine est convexe.
- 5 L'image réciproque d'un convexe par une application affine est convexe.

ENVELOPPE CONVEXE

M53 - Cours

ESPACE AFFIN

Barycentre et redères

Sous-espace affines

Application

CONVEYE

Définition Propriétés

ENVELOPPE CONVEX

DÉFINITION-PROPOSITION

Soit \mathcal{A} une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal{A}]$, est :

- \blacksquare Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A
- 3 L'intersection de tous les demi-espaces contenant A
- 4 L'ensemble de barycentres de points de A de poids positifs

ENVELOPPE CONVEXE

M53 - Cours

Espace affin

Barycentre et repères

Sous-espace affines

Applications

Convexe

DÉFINITION PROPRIÉTÉS

ENVELOPPE CONVEX

<u>Défin</u>ition-Proposition

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A]$, est :

- 1 Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A
- 3 L'intersection de tous les demi-espaces contenant A
- \blacksquare L'ensemble de barycentres de points de A de poids positifs

Enveloppe convexe

M53 - Cours

Espace affin

Barycentre et repères

Sous-espace affines

Applications

Commun

Définition Propriétés

ENVELOPPE CONVEX

DÉFINITION-PROPOSITION

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A],$ est :

- 1 Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A.
- 3 L'intersection de tous les demi-espaces contenant A
- 4 L'ensemble de barycentres de points de A de poids positifs.

ENVELOPPE CONVEXE

M53 - Cours

Espace affin

Barycentre et repères

Sous-espace affines

Applications

Convexe

Définition Propriétés

ENVELOPPE CONVEX

DÉFINITION-PROPOSITION

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A]$, est :

- 1 Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A.
- 3 L'intersection de tous les demi-espaces contenant A.
- \blacksquare L'ensemble de barycentres de points de A de poids positifs.

Enveloppe convexe

M53 - Cours

Espace affin

Barycentre et repères

Sous-espace affines

Application affines

Convexes

Définition Propriétés

ENVELOPPE CONVEX

DÉFINITION-PROPOSITION

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A]$, est :

- 1 Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A.
- 3 L'intersection de tous les demi-espaces contenant A.
- \blacksquare L'ensemble de barycentres de points de A de poids positifs.

Enveloppe convexe

M53 - Cours

Espace affin

Barycentre et repères

Sous-espace affines

APPLICATIONS

Convexe

Définition Propriétés

ENVELOPPE CONVEX

DÉFINITION-PROPOSITION

Soit $\mathcal A$ une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal A],$ est :

- 1 Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A.
- 3 L'intersection de tous les demi-espaces contenant A.
- 4 L'ensemble de barycentres de points de A de poids positifs.