

A design of block cipher

周之恒、郭超年、周雷

zzhitter@gmail.com

Introduction

This cipher is also a special type of iterated cipher called a Feistel cipher.

This is a 8-round Feistel cipher having a block length of 32 bits and a key length of 32 bits.

Permutation

Prior to the 8 rounds of encryption, there is a fixed initial permutation IP that is applied to the plaintext. We denote

$$IP(x) = L^0 R^0$$

After the 8 rounds of encryption, the inverse permutation IP^{-1} is applied to the bitstring R^8L^8

, yielding the ciphertext y. That is,

$$y = IP^{-1}(R^8L^8)$$

The structure of Feistel cipher#

We use this strcuture to do both encryption and decryption.

The structure of Feistel cipher

Each L^i and R^i is 16 bits in length. The function

$$f: \{0,1\}^{16} \times \{0,1\}^{16} \rightarrow \{0,1\}^{16}$$

Takes as input a 16-bit string and a round key.

The key schedule, $(K^1, K^2, ..., K^8)$, consists of 16-bit round keys that are derived from the 32-bit key.

The structure of f function

The S function

Since a number mod $2^n + 1$ is invertiable if n=1,2,4,8,16. (Fermat primes)

We can define the S function as follow:

$$c_i = az_i^{-1} + b \pmod{2^8 + 1}$$

in which z_i denotes the value of 8-bit string B_i

We define 0=256 to make sure "0" also have an inverse.

The S function

We can use the Low-high algorithm of IDEA to comupte this S function.

$$az_i^{-1} + b \pmod{2^8 + 1} = (az_i^{-1} + b \pmod{2^8}) - (az_i^{-1} + b \pmod{2^8})$$

 $if (az_i^{-1} + b \pmod{2^8}) \ge (az_i^{-1} + b \pmod{2^8})$

$$az_i^{-1} + b \pmod{2^8 + 1} = (az_i^{-1} + b \pmod{2^8})$$

 $-(az_i^{-1} + b \ div2^8) + 2^8 + 1$
 $if \ (az_i^{-1} + b \mod 2^8) < (az_i^{-1} + b \ div2^8)$

Permutation

We define IP and IP^{-1} as follow:

IP					IP^{-1}			
16	7	20	21		9	17	23	31
29	12	28	17	1	13	28	2	18
1	15	23	26		24	16	30	6
5	18	31	10		26	20	10	1
2	8	24	14	8	8	14	25	3
32	27	3	9	4	4	29	11	19
19	13	30	6		32	12	22	7
22	11	4	25		5	27	15	21

Permutation

And the permutation in f function is as follows:

```
9 5 3 2
13 7 4 14
11 6 15 8
16 12 10 1
```

key schedule

Just simply derive 8 round keys by shifting the 32-bit key.

 K_1 : 1~16 bits K_2 : 5~20 bits

 K_3 : 9~24 bits K_4 : 13~28 bits

 K_5 : 17~32 bits K_6 : 21~32 and 1~4 bits

 K_7 : 25~32 and 1~8 bits

 $K_{\rm s}$: 29~32 and 1~12 bits

More thinking

1. Is 8 rounds of iteration enough?

2. How to choose "a" and "b" for S function? Use different "b" in different round?

3. Divide $R_{i-1} \oplus K_i$ to 2 groups of 8 bits, or just use 1 group of 16 bits, as we know that $2^{16} + 1$ is also a prime.

