Lecture 11.

Gradient methods for minimizing composite objective function

- Motivation.
- Composite Gradient Mapping.
- Gradient Method.
- Accelerated scheme.
- Computational experiments.

Climbing out from the Black Box

Problem:

$$\min_{x \in Q} f(x),$$

- Q is a closed convex set in \mathbb{R}^n ,
- \bullet f is a continuous convex function.

Black-box complexity for finding ϵ -solution:

- f is Lipschitz-continuous: $O\left(\frac{1}{\epsilon^2}\right)$ calls of oracle.
- ∇f is Lipschitz-continuous: $O\left(\frac{1}{\epsilon^{1/2}}\right)$ calls of oracle.
- f is L.-continuous, $n < \infty$: $O(n \ln \frac{1}{\epsilon})$ calls of oracle.

Structural optimization:

- 1. <u>Self-concordant functions:</u> f is linear, Q is given by a special ν -s.c.barrier; $O\left(\sqrt{\nu}\ln\frac{1}{\epsilon}\right)$ iterations.
- **2.** Smoothing technique: $f(x) = \max_{u \in V} [\langle Ax, u \rangle \phi(u)]$ with simple V and Q; $O\left(\frac{1}{\epsilon}\right)$ iterations.

Working horse: Optimal method for smooth convex functions

Problem: $\min_{x \in Q} f(x)$ with $f \in C^{1,1}(Q)$, L_f is known.

Gradient mapping: (Nemirovsky, Yudin 1976)

$$T(x) \, = \, \arg\min_{y \in Q} \left\{ \langle \nabla f(x), y - x \rangle + \tfrac{L_f}{2} \|y - x\|^2 \right\}.$$

(The norm is Euclidean: $||u||^2 = \langle Bu, u \rangle$ with $B \succ 0$.)

Method: for $k \ge 0$ do (N. 1983, 2004, 2005)

- **1.** Compute $f(x_k)$, $\nabla f(x_k)$.
- **2.** $y_k = T(x_k)$.
- **3.** $v_k = \arg\min_{x \in Q} \left\{ \frac{L_f}{2} ||x x_0||^2 + \sum_{i=0}^k \frac{i+1}{2} \langle \nabla f(x_i), x \rangle \right\}.$
- **4.** $x_{k+1} = \frac{2}{k+3}v_k + \frac{k+1}{k+3}y_k$.

Convergence:

$$f(y_k) - f(x^*) \le \frac{2L_f ||x^* - x_0||^2}{(k+1)^2},$$

where x^* is the optimal solution.

Main drawback: uses the upper bound for L_f .

Smoothing technique: $L_f = \frac{1}{\epsilon} \cdot ||A||^2 \cdot R^2$, where R is the size of V.

Our goals:

- 1. Develop special methods for a new class of structured convex problems.
- 2. Develop adjustable strategies for all class parameters.

Composite objective function

Problem:

$$\min_{x \in Q} \left[\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) \right],$$

where Q is a closed convex set,

- \bullet f is <u>differentiable</u>, convex, and defined by BB-oracle.
- Ψ is a general closed convex function, which is *simple*.

Examples:

- $Q \equiv R^n$, $\Psi(x) = \sigma_V(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0, & \text{if } x \in V, \\ +\infty, & \text{otherwise.} \end{array} \right.$
- Denote $f^* = \min_{x \in Q} f(x)$. Let F be a ν -scb for Q, and

$$\Psi(x) \stackrel{\text{def}}{=} \frac{\epsilon}{\nu} F(x).$$

Then, for $\hat{x} \in \text{int } Q$, we have

$$f(\hat{x}) \le f^* + \|\nabla \phi(\hat{x})\|^* \cdot \|\hat{x} - x^*\| + \epsilon.$$

• Sparse least squares:

$$\phi(x) = \frac{1}{2} ||Ax - b||_2^2 + ||x||_1 \stackrel{\text{def}}{=} f(x) + \Psi(x),$$

where $\|\cdot\|_k$ denotes the standard l_k -norm.

Note: ϕ itself has no good properties.

Direct Help

Composite gradient mapping (S.Wright 2007)

For any $y \in Q$ and L > 0 define

Optimality conditions:

 $\langle \nabla f(y) + LB(T-y) + \xi_T, x - T \rangle \ge 0, \quad \forall x \in Q,$ where $\xi_T \in \partial \Psi(T)$. In what follows, we denote

$$\phi'(T) = \underbrace{\nabla f(T) + \xi_T}_{\text{the right element}} \in \partial \phi(T).$$

Problem class: $(\|s\|_* = \langle s, B^{-1}s \rangle^{1/2})$

 $\|\nabla f(x) - \nabla f(y)\|_* \le L_f \|x - y\|, \quad x, y \in Q,$ Hence, for all $x, y \in Q$ we have

$$|f(x) - f(y) - \langle \nabla f(y), x - y \rangle| \le \frac{L_f}{2} ||x - y||^2.$$

Main properties

At any $y \in Q$, we have

$$\phi(y) - \phi(T_L(y)) \ge \frac{2L - L_f}{2L^2} \|g_L(y)\|_*^2,$$
$$\langle \phi'(T_L(y)), y - T_L(y) \rangle \ge \frac{L - L_f}{L^2} \|g_L(y)\|_*^2.$$

Moreover, for $L \geq L_f$,

$$\phi(y) - \frac{1}{2L} ||g_L(y)||_*^2 \ge m_L(y; T_L(y)),$$

and

$$m_L(y; T_L(y)) \geq \phi(T_L(y)).$$

We are ready to analyze the Gradient Method.

Let us fix $\gamma_u > 1$, $\gamma_d \ge 1$. Define

Gradient Iteration G(x, M)

Set: L := M.

Repeat: $T := T_L(x)$,

if $\phi(T) > m_L(x;T)$ then $L := L \cdot \gamma_u$,

UNTIL: $\phi(T) \leq m_L(x;T)$. (Full relaxation)

Output: $\mathcal{G}(x, M).T = T$, $\mathcal{G}(x, M).L = L$.

Choose $L_0 \in (0, L_f]$ and a starting point $y_0 \in Q$.

Gradient Method $\mathcal{GM}(y_0, L_0)$

$$y_{k+1} = \mathcal{G}(y_k, L_k).T, M_k = \mathcal{G}(y_k, L_k).L,$$

 $L_{k+1} = \max\{L_0, M_k/\gamma_d\}.$

Performance guarantees

1. Let N_k be the # of calls of oracle after k iterations. Then

$$N_k \leq \left[1 + \frac{\ln \gamma_d}{\ln \gamma_u}\right] \cdot (k+1) + \frac{1}{\ln \gamma_u} \cdot \left(\ln \frac{\gamma_u L_f}{\gamma_d L_0}\right)_+.$$

For example,

$$\gamma_u = \gamma_d = 2 \Rightarrow \begin{cases} N_k \leq 2(k+1) + \log_2 \frac{L_f}{L_0}, \\ L_k \leq L_f. \end{cases}$$

2. For convex ϕ , we have

$$\phi(y_k) - \phi(x^*) \le \frac{2\gamma_u L_f R^2}{k+2}.$$

3. Let ϕ be strongly convex on Q with parameter μ_{ϕ} . If $\frac{\mu_{\phi}}{L_f} \geq 2\gamma_u$, then

$$\phi(y_k) - \phi(x^*) \leq \left(\frac{\gamma_u L_f}{\mu_\phi}\right)^k (\phi(y_0) - \phi(y^*))$$

$$\leq \frac{1}{2^k} (\phi(y_0) - \phi(y^*)).$$

Otherwise,

$$\phi(y_k) - \phi(x^*) \le \left(1 - \frac{\mu_\phi}{4\gamma_u L_f}\right)^k \cdot (\phi(y_0) - \phi(y^*)).$$

Note: We can have $\mu_{\phi} \geq L_f$.

Estimate sequences

Problem:

$$\frac{\min}{x \in R^n} \left[\phi(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) \right], \text{ where}$$

- function f is convex with $L_f < \infty$,
- function Ψ is closed and strongly convex on E with known parameter $\mu_{\Psi} \geq 0$. (It may be dom $\Psi \neq R^n$.)

We update recursively the following sequences.

- A minimizing sequence $\{x_k\}_{k=0}^{\infty}$.
- A sequence of increasing scaling coefficients $\{A_k\}_{k=0}^{\infty}$:

$$A_0 = 0, \quad A_k \stackrel{\text{def}}{=} A_{k-1} + a_k, \quad k \ge 1.$$

• Sequence of estimate functions $(k \ge 0)$

$$\psi_k(x) = l_k(x) + A_k \Psi(x) + \frac{1}{2} ||x - x_0||^2,$$

where $x_0 \in \text{dom } \Psi$ is a starting point, and $l_k(x)$ are linear functions.

New: we update the estimates for L_f , using

- the initial guess $L_0 \leq L_f$,
- two adjustment parameters $\gamma_u > 1$ and $\gamma_d \ge 1$.

Main relations: (Maintained recursively for $k \geq 0$)

$$\mathcal{R}_k^1: A_k \phi(x_k) \leq \psi_k^* \equiv \min_x \psi_k(x),$$

$$\mathcal{R}_k^2: \quad \psi_k(x) \le A_k \phi(x) + \frac{1}{2} ||x - x_0||^2, \ \forall x \in E.$$

Useful consequences:

• Taking $x = x^*$, we get

$$\phi(x_k) - \phi(x^*) \le \frac{\|x^* - x_0\|^2}{2A_k}, \quad k \ge 1.$$

• Denoting $v_k = \arg\min_{x \in E} \psi_k(x)$, we obtain

$$||x^* - v_k|| \le ||x^* - x_0||, \quad k \ge 1.$$

Dual Gradient Method: Let $\psi_0(x) = \frac{1}{2} ||x - v_0||^2$.

$$y_k = \mathcal{G}(v_k, L_k).T, \quad M_k = \mathcal{G}(v_k, L_k).L,$$
 $L_{k+1} = \max\{L_0, M_k/\gamma_d\}, \quad a_{k+1} = \frac{1}{M_k},$
 $\psi_{k+1}(x) = \psi_k(x) + \frac{1}{M_k}[f(v_k) + \langle \nabla f(v_k), x - v_k \rangle + \Psi(x)].$

Justification:

Define
$$x_0 = y_0$$
, and $\phi_k \stackrel{\text{def}}{=} \min_{0 \le i \le k} \phi(y_i)$, $k \ge 1$. Then
$$\psi_{k+1}^* = \min_x \{ \psi_k(x) + \frac{1}{M_k} [f(v_k) + \langle \nabla f(v_k), x - v_k \rangle \}$$

$$\overset{\mathcal{R}_{k}^{1}}{\geq} A_{k}\phi_{k} + \min_{x} \{\frac{1}{2} \|x - v_{k}\|^{2} + \frac{1}{M_{k}} [f(v_{k}) + \langle \nabla f(v_{k}), x - v_{k} \rangle + \Psi(x)] \}
+ \langle \nabla f(v_{k}), x - v_{k} \rangle + \Psi(x) \}
= A_{k}\phi_{k} + a_{k+1}m_{M_{k}}(v_{k}; y_{k})
\geq A_{k}\phi_{k} + a_{k+1}\phi(y_{k}) \geq A_{k+1}\phi_{k+1}.$$

 $+\Psi(x)$ \(\psi_k(x) \ge \psi_k^* + \frac{1}{2} ||x - v_k||^2\)

Since $M_k \leq \gamma_u L_f$, we get

$$\phi_k - \phi(x^*) \le \frac{\gamma_u L_f}{2k} ||x^* - v_0||^2, \quad k \ge 1.$$

We can do better!

Accelerated method $\mathcal{A}(x_0, L_0, \mu)$ $(\mu \leq \mu_{\Psi})$

DEFINE:
$$\psi_0(x) = \frac{1}{2} ||x - x_0||^2$$
, $A_0 = 0$.

Iteration $k \ge 0$

Set: $L := L_k$.

REPEAT: Find a from $\frac{a^2}{A_k+a} = \frac{1+\mu A_k}{L}$.

Set $y = \frac{A_k x_k + a v_k}{A_k + a}$, and compute $T_L(y)$.

if $\langle \phi'(T_L(y)), y - T_L(y) \rangle < \frac{1}{2L} \| \phi'(T_L(y)) \|_*^2$,

then $L := L \cdot \gamma_u$. (Damped relaxation)

Until: $\langle \phi'(T_L(y)), y - T_L(y) \rangle \ge \frac{1}{2L} \| \phi'(T_L(y)) \|_*^2$.

DEFINE: $y_k := y, M_k := L, a_{k+1} := a,$

 $L_{k+1} := M_k/\gamma_d, \ x_{k+1} := T_L(y_k),$

 $\psi_{k+1}(x) := \psi_k(x) + a_{k+1}[f(x_{k+1})]$

 $+\langle \nabla f(x_{k+1}), x - x_{k+1} \rangle + \Psi(x)].$

Performance guarantees

1. Let N_k be the # of calls of oracle after k iterations. Then

$$N_k \leq 2 \cdot \left[1 + \frac{\ln \gamma_d}{\ln \gamma_u}\right] \cdot (k+1) + \frac{1}{\ln \gamma_u} \cdot \ln \frac{2\gamma_u L_f}{\gamma_d L_0}.$$

For example,

$$\gamma_u = \gamma_d = 2 \Rightarrow \begin{cases} N_k \leq 4(k+1) + \log_2 \frac{L_f}{L_0} + 1, \\ L_k \leq L_f. \end{cases}$$

2. For convex ϕ , we have

$$\phi(x_k) - \phi(x^*) \le \frac{4\gamma_u L_f ||x^* - x_0||^2}{k^2}.$$

3. If Ψ is strongly convex with parameter μ_{Ψ} , then

$$\phi(x_k) - \phi(x^*) \le \gamma_u L_f \|x^* - x_0\|^2 \left[1 + \sqrt{\frac{\mu_\Psi}{8\gamma_u L_f}}\right]^{-2(k-1)}.$$

Note:

• We can have $\mu_{\Psi} \geq L_f$.

Computational experiments

Sparse least squares: for $\tau > 0$ compute

$$\phi_{\tau}^* \stackrel{\text{def}}{=} \min_{x \in R^n} \left[\phi_{\tau}(x) \stackrel{\text{def}}{=} \frac{1}{2} ||Ax - b||_2^2 + \tau ||x||_1 \right],$$

where $A \equiv (a_1, \ldots, a_n) \in \mathbb{R}^{m \times n}$ with m < n. Note that

$$\min_{x \in \mathbb{R}^n} \left[\frac{1}{2} ||Ax - b||_2^2 + \tau ||x||_1 \right]$$

$$= \min_{x \in R^n} \max_{u \in R^m} \left[\langle u, b - Ax \rangle - \frac{1}{2} \|u\|_2^2 + \tau \|x\|_1 \right]$$

$$= \max_{u \in R^m} \ \min_{x \in R^n} \left[\ \langle b, u \rangle - \frac{1}{2} \|u\|_2^2 - \langle A^T u, x \rangle + \tau \|x\|_1 \ \right]$$

$$= \max_{u \in R^m} \left[\langle b, u \rangle - \frac{1}{2} ||u||_2^2 : ||A^T u||_{\infty} \le \tau \right]$$

$$= \max_{u \in R^m} \left[\ \tau \langle b, v \rangle - \frac{1}{2} \tau^2 \|v\|_2^2 : \ \|A^T v\|_{\infty} \le 1 \ \right]$$

Dual problem: project vector $\frac{b}{\tau}$ onto the dual polytop

$$\mathcal{D} = \{ y \in R^m : \|A^T y\|_{\infty} \le 1 \}.$$

We take $\tau = 1$ and terminate by ϕ^* . Other parameters:

$$\gamma_u = \gamma_d = 2, \ x_0 = 0, \ L_0 = \max_{1 \le i \le n} ||a_i||_2^2 \le L_f, \ \mu = 0.$$

Denote by m_* the number of nonzero components in x^* .

GAP =
$$(\phi(x_k) - \phi(x^*))/(\phi(x_0) - \phi(x^*))$$
,
SPEEDUP = Actual residual /Theoretical guarantee.

Problem 1: $n = 4000, m = 1000, m_* = 100.$

	PG			DG					
GAP	K	#Ax	SpeedUp	K	#Ax	SpeedUp	K	#Ax	SpeedUp
1	1	4	0.21%	1	4	0.85%	1	4	0.04%
2^{-1}	3	8	0.20%	3	12	0.81%	5	36	0.49%
2^{-2}	10	29	0.24%	8	38	0.89%	10	76	1.01%
2^{-3}	28	83	0.32%	25	123	1.17%	19	148	1.90%
2^{-4}	159	476	0.88%	156	777	3.45%	55	436	8.24%
2^{-5}	557	1670	1.53%	565	2824	6.21%	103	820	14.28%
2^{-6}	954	2862	1.31%	941	4702	5.17%	138	1100	12.80%
2^{-7}	1255	3765	0.86%	1257	6282	3.45%	169	1348	9.58%
2^{-8}	1430	4291	0.49%	1466	7328	2.01%	199	1588	6.63%
2^{-9}	1547	4641	0.26%	1613	8080	2.13%	227	1812	4.35%
2^{-10}	1640	4920	0.14%	1743	8713	0.61%	253	2020	2.71%
2^{-11}	1722	5167	0.07%	1849	9243	0.33%	277	2212	1.61%
2^{-12}	1788	5364	0.04%	1935	9672	0.17%	301	2404	0.96%
2^{-13}	1847	5539	0.02%	2003	10013	0.09%	324	2588	0.55%
2^{-14}	1898	5693	0.01%	2061	10303	0.05%	348	2780	0.31%
2^{-15}	1944	5831	0.01%	2113	10563	0.05%	374	2988	0.19%
2^{-16}	1987	5961	0.00%	2164	10817	0.03%	404	3228	0.11%
2^{-17}	2029	6085	0.00%	2217	11083	0.02%	433	3460	0.06%
2^{-18}	2072	6215	0.00%	2272	11357	0.01%	484	3868	0.04%
2^{-19}	2120	6359	0.00%	2331	11652	0.00%	514	4108	0.02%
2^{-20}	2165	6495	0.00%	2448	12238	0.00%	521	4152	0.01%

Note: $2^{-20} \approx 10^{-6}$.

Problem 2: $n = 5000, m = 500, m_* = 100.$

		110	Diem 2.	n - o	000, 110	$-$ 500, m_*	<u> </u>		
		PG			DG			AC	
GAP	K	#Ax	SpeedUp	K	#Ax	SpeedUp	K	#Ax	SpeedUp
1	1	4	0.24%	1	4	0.96%	1	4	0.04%
2^{-1}	2	6	0.20%	2	8	0.81%	3	20	0.23%
2^{-2}	5	17	0.21%	5	24	0.81%	7	56	0.66%
2^{-3}	11	33	0.19%	11	45	0.77%	11	88	0.85%
2^{-4}	38	113	0.30%	38	190	1.21%	26	208	2.54%
2^{-5}	234	703	0.91%	238	1189	3.69%	68	544	8.84%
2^{-6}	1027	3081	1.98%	1026	5128	7.89%	143	1144	19.51%
2^{-7}	2402	7206	2.31%	2387	11933	9.17%	215	1716	22.14%
2^{-8}	3681	11043	1.77%	3664	18318	7.05%	276	2208	18.23%
2^{-9}	4677	14030	1.12%	4664	23318	4.49%	333	2664	13.29%
2^{-10}	5410	16230	0.65%	5392	26958	2.61%	392	3132	9.15%
2^{-11}	5938	17815	0.36%	5879	29393	1.41%	447	3572	5.94%
2^{-12}	6335	19006	0.19%	6218	31088	0.77%	495	3956	3.67%
2^{-13}	6637	19911	0.10%	6471	32353	0.41%	538	4300	2.14%
2^{-14}	6859	20577	0.05%	6670	33348	0.21%	573	4580	1.23%
2^{-15}	7021	21062	0.03%	6835	34173	0.13%	606	4844	0.68%
2^{-16}	7161	21483	0.01%	6978	34888	0.05%	630	5036	0.37%
2^{-17}	7281	21842	0.01%	7108	35539	0.05%	655	5236	0.20%
2^{-18}	7372	22115	0.00%	7225	36123	0.03%	682	5452	0.11%
2^{-19}	7438	22313	0.00%	7335	36673	0.02%	701	5596	0.06%
2^{-20}	7492	22474	0.00%	7433	37163	0.01%	710	5668	0.05%

Primal-dual methods

Denote

$$\phi_*(u) = \frac{1}{2} ||u||_2^2 - \langle b, u \rangle.$$

Then,

$$\phi(x) + \phi_*(u) \ge 0 \quad \forall x \in \mathbb{R}^n, \ u \in \mathcal{D}, \tag{1}$$

and equality is achieved for the primal-dual solution.

Lemma. Let

$$A_k \phi(x_k) \leq \min_{x \in B^n} \{\sum_{i=1}^k a_i [f(z_i) + \langle \nabla f(z_i), x - z_i \rangle] \}$$

$$+A_k\Psi(x) + \frac{1}{2}||x - z_0||^2$$
. (*)

Denote $u_i = b - Az_i$, $\bar{u}_k = \frac{1}{A_k} \sum_{i=1}^k a_i u_i$. Then

$$\phi(x_k) + \phi_*(\bar{u}_k) \le 0.$$

Moreover, if B is diagonal, from (*) we derive

$$\rho(\bar{u}_k) \stackrel{\text{def}}{=} \left[\sum_{i=1}^n \left(|\langle a_i, \bar{u}_k \rangle| - 1 \right)_+^2 \right]^{1/2} \le \frac{2}{A_k} ||x^*||.$$

Thus, $\rho(\cdot)$ is the Dual Infeasibility Measure.

GAP =
$$\rho(u_k)/\rho(u_0)$$
, $\Delta\Phi = \phi(x_k) - \phi(x^*)$.

Problem 3: $n = 500, m = 50, m_* = 25.$

		DG				AC		
GAP	K	#Ax	$\Delta \phi$	SpeedUp	K	#Ax	$\Delta \phi$	SpeedUp
1	2	8	$2.5 \cdot 10^0$	8.26%	2	12	$3.1 \cdot 10^{0}$	0.56%
2^{-1}	5	25	$1.4 \cdot 10^{0}$	9.35%	10	80	$7.5\cdot 10^{-1}$	6.51%
2^{-2}	13	64	$6.0\cdot10^{-1}$	13.17%	16	124	$4.7 \cdot 10^{-1}$	8.3%
2^{-3}	26	130	$3.9\cdot10^{-1}$	12.69%	21	164	$3.7\cdot10^{-1}$	7.41%
2^{-4}	48	239	$2.7\cdot10^{-1}$	12.32%	31	244	$2.6 \cdot 10^{-1}$	8.28%
2^{-5}	103	514	$1.6\cdot 10^{-1}$	13.28%	49	388	$1.4\cdot 10^{-1}$	10.2%
2^{-6}	243	1212	$8.3\cdot 10^{-2}$	15.64%	73	580	$7.6\cdot10^{-2}$	11.51%
2^{-7}	804	4019	$3.0\cdot10^{-2}$	25.93%	110	876	$3.1\cdot10^{-2}$	13.21%
2^{-8}	1637	8183	$6.3\cdot10^{-3}$	26.41%	157	1252	$1.0\cdot10^{-2}$	13.3%
2^{-9}	3298	16488	$4.6\cdot10^{-4}$	26.6%	214	1704	$2.3\cdot 10^{-3}$	12.47%
2^{-10}	4837	24176	$1.8\cdot 10^{-7}$	19.33%	277	2208	$1.6 \cdot 10^{-4}$	10.36%
2^{-11}	4942	24702	$1.2 \cdot 10^{-14}$	9.97%	338	2688	$7.5\cdot10^{-5}$	7.7%
2^{-12}	5149	25734	$-1.3 \cdot 10^{-15}$	5.16%	445	3548	$1.9\cdot 10^{-6}$	6.73%
2^{-13}	5790	28944	$-1.3 \cdot 10^{-15}$	2.92%	522	4160	$4.6\cdot10^{-8}$	4.64%
2^{-14}	6474	32364	0.0	2.67%	538	4280	$1.4 \cdot 10^{-6}$	4.04%

Note: $2^{-14} \approx 10^{-4}$.

Problem 4: $n = 1000, m = 100, m_* = 50.$

		DG		,		AC		
GAP	K	#Ax	$\Delta \phi$	SpeedUp	K	#Ax	$\Delta \phi$	SpeedUp
1	2	8	$3.7 \cdot 10^{0}$	6.41%	2	12	$4.7 \cdot 10^{0}$	0.5%
2^{-1}	5	24	$2.0 \cdot 10^{0}$	7.75%	8	60	$1.4 \cdot 10^0$	3.88%
2^{-2}	15	74	$1.0 \cdot 10^{0}$	11.56%	16	128	$8.8 \cdot 10^{-1}$	7.35%
2^{-3}	37	183	$6.9\cdot10^{-1}$	14.73%	23	184	$6.8 \cdot 10^{-1}$	7.94%
2^{-4}	83	414	$4.5\cdot 10^{-1}$	16.49%	35	276	$4.6\cdot 10^{-1}$	9.41%
2^{-5}	198	989	$2.4\cdot10^{-1}$	19.79%	54	428	$2.4\cdot10^{-1}$	11.11%
2^{-6}	445	2224	$7.8\cdot10^{-2}$	22.28%	81	644	$9.1\cdot10^{-2}$	12.59%
2^{-7}	1328	6639	$2.2\cdot10^{-2}$	33.25%	112	892	$3.5\cdot10^{-2}$	12.18%
2^{-8}	2675	13373	$4.1\cdot10^{-3}$	33.48%	157	1252	$1.0\cdot 10^{-2}$	11.78%
2^{-9}	4508	22535	$5.6\cdot10^{-5}$	28.22%	217	1732	$2.6\cdot10^{-3}$	11.42%
2^{-10}	4702	23503	$2.7 \cdot 10^{-10}$	14.7%	295	2356	$3.1\cdot 10^{-4}$	10.5%
2^{-11}	4869	24334	$-2.2 \cdot 10^{-15}$	7.61%	369	2944	$7.9 \cdot 10^{-5}$	8.25%
2^{-12}	6236	31175	$-2.2 \cdot 10^{-15}$	4.88%	469	3740	$7.8 \cdot 10^{-6}$	6.64%
2^{-13}	12828	64136	$-2.2 \cdot 10^{-15}$	5.02%	557	4440	$6.1\cdot10^{-7}$	4.69%
2^{-14}	16354	81766	$-4.4 \cdot 10^{-15}$	5.24%	580	4620	$2.2 \cdot 10^{-7}$	4.17%

Problem 1a: $n = 4000, m = 1000, m_* = 100.$

		DG				AC		
GAP	K	#Ax	$\Delta \phi$	SpeedUp	K	#Ax	$\Delta \phi$	SpeedUp
1	2	8	$2.3 \cdot 10^{1}$	2.88%	2	8	$2.3 \cdot 10^{1}$	0.25%
2^{-1}	5	24	$1.2 \cdot 10^1$	3.44%	9	68	$9.5 \cdot 10^{0}$	2.45%
2^{-2}	17	83	$5.8 \cdot 10^0$	6.00%	18	140	$4.6 \cdot 10^0$	4.80%
2^{-3}	44	219	$3.5\cdot 10^0$	7.67%	27	212	$3.5 \cdot 10^0$	5.57%
2^{-4}	100	497	$2.7 \cdot 10^0$	8.94%	39	308	$2.9 \cdot 10^0$	5.79%
2^{-5}	234	1168	$1.9 \cdot 10^{0}$	10.51%	61	484	$2.1\cdot 10^0$	7.15%
2^{-6}	631	3153	$1.0 \cdot 10^{0}$	14.18%	110	876	$9.9\cdot10^{-1}$	11.63%
2^{-7}	1914	9568	$1.0\cdot10^{-2}$	21.50%	170	1356	$2.7\cdot10^{-1}$	13.94%
2^{-8}	3704	18514	$4.6\cdot10^{-7}$	20.77%	235	1876	$5.7\cdot10^{-2}$	13.27%
2^{-9}	3731	18678	$1.4\cdot10^{-14}$	15.77%	325	2596	$4.2\cdot10^{-3}$	12.78%
2^{-10}	Line	search	failure		458	3660	$1.7\cdot 10^{-4}$	12.68%
2^{-11}					592	4724	$1.7\cdot 10^{-5}$	10.58%
2^{-12}					708	5652	$2.2\cdot 10^{-6}$	7.58%
2^{-13}					813	6484	$1.8\cdot10^{-7}$	5.00%
2^{-14}					850	6784	$1.5\cdot 10^{-7}$	4.47%

Reason for failure:

DG comes too close to the solution.