### 3.2 Boolean Algebra 🔊 💍 🐧

- ☐ Boolean algebra is a <u>mathematical system</u> for manipulating variables that <u>can have one of two</u> values.
  - In <u>formal logic</u>, these values are "true" and "false"
  - In digital systems, these values are "on"/"off," "high"/"low," or "1"/"0".
  - So, it is perfect for binary number systems
- ☐ Boolean expressions are created to operate Boolean variables.
  - Common Boolean operators include AND, OR, and NOT.

### Boolean Algebra

- ☐ The function of Boolean operator can be completely described using a *Truth Table*.
- ☐ The truth tables of the Boolean operators AND and OR are shown on the right.
- ☐ The <u>AND</u> operator is also known as the <u>Boolean product</u> ".". The <u>OR</u> operator is the <u>Boolean sum</u> "+".

| X | Y | XY |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

| X OR Y |                  |  |
|--------|------------------|--|
| Y      | X+Y              |  |
| 0      | 0                |  |
| 1      | 1                |  |
| 0      | 1                |  |
| 1      | 1                |  |
|        | Y<br>0<br>1<br>0 |  |

hab: 1. W.A. P. to implement AND, OR, - Operator for 10 to 1/P (1) three ip(
2. W.A.P. to implement the : (0 f(n/2) = n/2+×(1) f(n/2) = (n+2)(n+2)(n/2)
3. U.A.P. (1,3,5)
(1) f(n/2) = TM(1,3,4,6), TM(2,5,6,7)

#### Boolean NOT

- ☐ The truth table of the Boolean NOT operator is shown on the right.
- ☐ The NOT operation is most often designated by an overbar "—".
  - Some books use the prime mark ( `) or the "elbow" (¬), for instead.

| - | NO | ТХ             |
|---|----|----------------|
|   | x  | $\overline{x}$ |
|   | 0  | 1              |
|   | 1  | 0              |

### **Boolean Function**

- ☐ A Boolean function has:
  - · At least one Boolean variable,
  - · At least one Boolean operator, and
  - At least one input from the set of {0,1}.
- ☐ It produces an output that is a member of the set {0,1} Either 0 or 1.

Now you know why the binary numbering system is so handy for digital systems.

# Boolean Algebra

☐ Let's look at a truth table for the following Boolean function shown on the right.:

 $F(x,y,z) = x\bar{z} + y$ 

☐ To valuate the Boolean function easier, the truth table contains a extra columns (shaded) to hold the evaluations of partial function.

| ~ | F (: | к, у | ,z) | = x \(\bar{z}\) | +y   |
|---|------|------|-----|-----------------|------|
| x | У    | z    | Ē   | xz              | xz+y |
| 0 | 0    | 0    | 1   | 0               | 0    |
| 0 | 0    | 1    | 0   | 0               | 0    |
| 0 | 1    | 0    | 1   | 0               | 1    |
| 0 | 1    | 1    | 0   | 0               | 1    |
| 1 | 0    | 0    | 1   | 1               | 1    |
| 1 | 0    | 1    | 0   | 0               | 0    |
| 1 | 1 .  | 0    | 1   | 1               | 1    |
| 1 | 1    | 1    | 0   | 0               | 1    |

#### Rules Of Precedence

- ☐ Arithmetic has its rules of precedence
  - Like arithmetic, Boolean operations follow the rules of precedence (priority):
  - NOT operator > AND operator > OR operator
- ☐ This explains why we chose the shaded partial function in that order in the table.



Rules Of Precedence

### Use Boolean Algebra in Circuit Design

- ☐ Digital circuit designer always like achieve the following goals:
  - Cheaper to produce
  - Consume less power
  - run faster
- ☐ How to do it? -- We know that:
  - Computers contain circuits that implement Boolean functions ⇒ Boolean functions can express circuits
  - If we can simplify a Boolean function, that express a circuit, we can archive the above goals
- ☐ We always can reduce a Boolean function to its <u>simplest</u> form by using a number of Boolean laws can help us do so.

### Boolean Algebra Laws

- ☐ Most Boolean algebra laws have either an AND (product) form or an OR (sum) form. We give the laws with both forms.
  - Since the laws are always true, so X (and Y) could be either 0 or 1

| Identity                                         | AND                                            | OR                                                         |
|--------------------------------------------------|------------------------------------------------|------------------------------------------------------------|
| Name                                             | Form                                           | Form                                                       |
| Identity Law Null Law Idempotent Law Inverse Law | $1x = x$ $0x = 0$ $xx = x$ $x\overline{x} = 0$ | $0 + x = x$ $1 + x = 1$ $x + x = x$ $x + \overline{x} = 1$ |

## Boolean Algebra Laws ('Cont)

☐ The second group of Boolean laws should be familiar to you from your study of algebra:

| Identity                                               | AND                                            | OR                                |
|--------------------------------------------------------|------------------------------------------------|-----------------------------------|
| Name                                                   | Form                                           | Form                              |
| Commutative Law<br>Associative Law<br>Distributive Law | xy = yx $(xy) z = x (yz)$ $x+yz = (x+y) (x+z)$ | x+y = x+xz<br>(x+y)+z = x + (y+z) |

# Boolean Algebra Laws ('Cont)

- ☐ The last group of Boolean laws are perhaps the most useful.
  - If you have studied set theory or formal logic, these laws should be familiar to you.

| Identity<br>Name                 | AND<br>Form                                                   | OR                                          |
|----------------------------------|---------------------------------------------------------------|---------------------------------------------|
| Absorption Law<br>DeMorgan's Law | x(x+y) = x<br>$\overline{(xy)} = \overline{x} + \overline{y}$ | $\frac{x + xy = x}{(x+y) = \bar{x}\bar{y}}$ |
| Double<br>Complement Law         | $(\overline{x}) = x$                                          |                                             |

### DeMorgan's law

- ☐ DeMorgan's law provides an easy way of finding the negation (complement) of a Boolean function.
- ☐ DeMorgan's law states:

$$(xy) = x + y$$
 and





☐ Example

More Examples?

- I will come to school tomorrow if
  - ☐ (A) my car is working, and
  - ☐ (B) it won't be snowing
- I won't come to school tomorrow if
  - ☐ (A) my car is not working, or
  - ☐ (B) it will snowing



### DeMorgan's Law

- □ DeMorgan's law can be extended to any number of variables.
  - Replace each variable by its negation (complement)
  - Change all ANDs to ORs and all ORs to ANDs.
- $\square$  Let's say F (X, Y, Z) is the following, what is  $\overline{F}$ ?

 $F(X,Y,Z) = (XY) + (\overline{XY}) + (\overline{XZ})$ 

# Simplify Boolean function

☐ Let's use Boolean laws to simplify:

as follows:  $F(X, Y, Z) = (X+Y)(X+\overline{Y})(\overline{XZ})$ 



18