目录

1	计算题]
2	判断题	1
3	证明题	_

MEX 模版

Wilson79

2019年11月16日

1 计算题

多项式求极限模型

看次数最高的项

$$\lim_{n \to \infty} \frac{a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0} = \begin{cases} \frac{a_m}{b_m}, & k = m \\ 0, & k > m \end{cases}$$

和差化积-积化和差公式

$$\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2} \tag{1}$$

$$\sin a - \sin b = 2\sin\frac{a-b}{2}\cos\frac{a+b}{2} \tag{2}$$

$$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2} \tag{3}$$

$$\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2} \tag{4}$$

注意: 这几个公式熟练记忆, 以后经常要用

2 判断题

1. 设
$$\lim_{x\to a}f(x)=A, \lim_{u\to A}g(u)=B\Rightarrow \lim_{x\to a}g(f(x))=B$$
 () 反例:

$$u = f(x) = x \sin \frac{1}{x}, \quad y = g(u) = \begin{cases} 0 & u = 0\\ 1 & u \neq 0 \end{cases}$$

2. 设 $\lim_{x\to a} f(x) = A$, $\lim_{u\to A} g(u) = B$, 且存在 $U^o(a)$, 使得在 $U^o(a)$ 内 $f(x) \neq A$, 则能推出 $\lim_{x\to a} g(f(x)) = B$ ()

证明. 由 $\lim_{u \to A} g(u) = B$ 知, 对任何的 $\varepsilon > 0$, 存在 $\eta > 0$, 使得当 $0 < |u - A| < \eta$ 时, $|g(u) - B| < \varepsilon$, 又由 $\lim_{x \to a} f(x) = A$, 对上面的 η , 存在 $\delta > 0$, 使得当 $0 < |x - a| < \delta$ 时, 有 $|f(x) - A| < \eta$. 由于 $f(x) \neq A$, 所以当 $0 < |x - a| < \delta$ 时, $0 < |f(x) - A| < \eta$, 从而 $|g(f(x)) - B| < \varepsilon$, 即 $\lim_{x \to a} g(f(x)) = B$.

3 证明题

归纳法证明极限题

1. 设 $0 < c < 1, a_1 = \frac{c}{2}, a_{n+1} = \frac{c}{2} + \frac{a_n^2}{2}$, 证明: $\{a_n\}$ 收敛,并求其极限

证明. 这类题一般可以这样做: 首先解方程得到一个上界或下界,然后归纳法证明 $\{a_n\}$ 确实满足这个范围然后根据 $\{a_n\}$ 的范围再去用归纳法求 $\{a_n\}$ 的单调性最后单调有界必有极限

答案: 极限 $\lim_{n\to\infty} a_n = 1 - \sqrt{1-c}$

说明:有同学问为什么极限不取 $\lim_{n\to\infty} 1+\sqrt{1+c}$,因为这里用归纳假设很容易看出, $a_n<1$,所以其实一开始你去假设 $0< a_n<1$ 也是可以做的