

Advanced Computer Networks

Network Virtualization, NFV, SDN

- Introduction and Historical Perspective
- Reference Model, Architectural Principles and Objectives
- Network Virtualization Projects
- Challenges and Future Directions

Virtualization As Resource Abstraction

- Virtualization: transparent abstraction of the physical computing platform and resources that supports multiple logical views of their properties
- Virtual anything
 - virtual memory/queue
 - OS platform → virtual machines
 - storage → virtual SAN
 - computing → virtual data centers

Network Virtualization

Single physical network appears as multiple logical networks

Network Virtualization Environment

- Allows the creation of multiple virtual networks on same substrate
- Each virtual network:
 - is a collection of virtual nodes and virtual links
 - is a subset of underlying physical network resources
 - co-exists with, but is isolated from, other virtual networks

Historical Perspective

- Virtual LAN (VLAN)
- Virtual service network (VSN)
- Virtual private network (VPN)
- Active and programmable networks
- Overlay networks

Virtual LANs

- L2 constructs, share same physical LAN infrastructure
- Groups of hosts with common interests, regardless of connectivity
- Segmented within boundary of broadcast domains → frame coloring
- High levels of trust, security, isolation, easy to configure

- Generalization of VLAN concept to broader network
- Define multiple network instances that
 - share the physical resources
 - are properly segmented (functionality, access permissions, etc.)

Virtual Private Networks

- Connect multiple sites using tunnels over public network
- L3/L2/L1 technologies
- Intranet vs. extranet
- Limited customization

Active and Programmable Networks

- Support co-existing networks through programmability
- Customized network functionality through
 - programmable interfaces to enable access to switches/routers
 - active code
 - call functions already installed
 - allow user to execute own code at switches/routers
- Operators must open networks to third parties ->
 not used

Overlay Networks (1)

- A network built on top of one or more existing networks
 - without deploying entirely new networking equipments
- Adds an additional layer
- Changes properties in one or more layers of underlying network
- Many networks after PSTN have begun as overlay networks
 - the Internet also starts as an overlay network

Overlay Networks (2)

- Application layer virtual networks
- Built upon existing network using tunneling/encapsulation
- Implement new services without changes in infrastructure
- Application-specific, not flexible enough

VN

VN Motivation (1)

- The Internet is ossified:
 - significant innovation at application and link layers
 - only incremental changes to core protocols
 - half-layer solutions (MPLS, IPSec)
 - adapt to new contexts (TCP over wireless)
 - application overlays (CDN, ALM, OverQoS, SOS, P2P, . . .)

- Clean-slate architecture impossible to deploy
 - multiple stakeholders
 - conflicting goals/policies!difficult to reach agreement
 - almost no economic incentives to introduce changes
 - defining one-size-fits-all architecture a challenge
 - depends on focus and context!4 distinct FIA projects
 - future needs unknown, difficult to predict
 - must accommodate installed base

- Network virtualization offers all-sizes-fit-into-one solution
- Open and expandable model
 - multiple heterogeneous architectures on shared physical substrate
 - promotes innovation and customized services/applications
- Testbed for deployment/evaluation of new network architectures and protocols

1

Drivers Behind Virtualization

Hardware Resources Underutilized

- CPU utilizations ~ 10% 25%
- One server One Application
- Multi-core even more under-utilized

Data Centers are running out of space

- Last 10+ years of major server sprawl
- Exponential data growth
- Server consolidation projects just a start

Rising Energy Costs

- As much as 50% of the IT budget
- In the realm of the CFO and Facilities Mgr. now!

Administration Costs are Increasing

- Number of operators going up
- Number of Management Applications going up

Operational Flexibility

Other Significant Virtualization Benefits

- Some key benefits:
 - Ability to quickly spawn test and development environments
 - Provides failover capabilities to applications that can't do it natively
 - Maximizes utilization of resources (compute & I/O capacity)
 - Server portability (migrate a server from one host to the other)
- Virtualization is not limited to servers and OS
 - Network virtualization
 - Storage virtualization
 - Application virtualization
 - Desktop virtualization

Reference Model

- Infrastructure providers: manage physical networks
- Service providers:
 - create and manage virtual networks
 - design and deploy end-to-end services
- Users: select from competing services offered by providers
- Brokers: aggregate offers, match requirements to services/resources

Architectural Principles (1)

Architectural Principles (2)

- Concurrency:
 - multiple service providers compete
 - multiple virtual networks coexist → diversity
- Nesting: virtual network hierarchy
 - child VNs derived from parent VNs
- Inheritance: child VN inherits architectural attributes
 - creation of value-added services
 - VN economics
- Revisitation: single physical node hosts multiple virtual nodes
 - deploy diverse functionalities
 - simplify operation and management

Design Objectives (1)

Isolation

- in terms of logical view, resources, operation
- attacks, failures, bugs, misconfigurations do not affect other VNs.

Flexibility

- service providers may assemble VNs with customized
 - network topology
- control and data plane functionality without the need to coordinate with each other

Scalability

- support multiple VNs
- utilize resources efficiently

Design Objectives (2)

Programmability

- deploy customized protocols/services in network elements
- at packet level or below (e.g., optical devices?)
- how to expose to service providers/users
- opens up vulnerabilities (active networks redux?)

Heterogeneity

- support a diverse set of
 - physical network technologies (wireless, sensor, optical, · · ·)
 - virtual network capabilities

Manageability

- Mechanism ←→ policy
- "know what happened → SPs and InPs held accountable

Design Objectives (3)

Dual use

- experimental and deployment facility
- design, evaluate, and deploy new services
- plausible pathway for adopting radically new network architectures
- PlanetLab, GENI, VINI

Legacy support

- existing Internet: another instance of a VN
- deploy IPv6 as VN → compete with IPv4

Network Virtualization Projects: Classification

- Targeted technology
 - wired, wireless, IP, heterogeneous
- Layer (in network stack) where virtualization is introduced
 - Physical → application
- Application domain
 - specific problem domain addressed!wide range
- Virtualization granularity
 - node, link, full

The Holy Grail of Network Virtualization

- A network environment in which multiple SPs:
 - lease underlying physical resources from multiple InPs
 - dynamically compose heterogeneous VNs
 - co-exist in isolation within same physical infrastructure
 - compete with each other by
 - deploying customized E2E services on-the-fly
 - managing the services on the VNs for the end users
 - effectively sharing and utilizing the physical resources

- A web caching application needs...
 - Coverage for certain network area
 - Connectivity among caching service components
 - Resources to move cached contents
- Solution: requests a VN that provides
 - Coverage: spans a ring between AS1, AS2, AS4, and AS5
 - Resources: provides at least 1mbps for all connections
 - Reliability: prohibits more than 2 virtual links from traversing the same physical link

Specification Mapping

Heuristic mapping algorithm

- Sort VNs and PNs by degree; map VN to PN by degree-order
- Mark all PL without enough bandwidth for the VLs as infeasible
- Each PL has a "mapped-onto" counter, initially 0
- pick a VL and map it to a physical path with lowest maximum counter among all PLs traversed
- After each VL is mapped, increment counter and subtract available bandwidth for each PL; mark a PL infeasible as appropriate
- Repeat until all VLs are mapped

Failure Recovery

When a physical link fails, the VLs it carries must be restored

- First try Local repair
 - Find an alternative path with adequate resources between the two disconnected AS'es
 - Fast, and preserve original topology
 - But
 - May violate reliability constraint
 - Alternative path may not exist
- Example
 - Physical link between 2 and 3 goes down
 - Alternative path goes through 2, 1, 4, and 3

Virtual Network Embedding

Network Flow Construction

Virtual

Network

Substrate Network

The NFV Concept

A means to make the network more flexible and simple by minimising dependence on HW constraints

Service Chaining for NW Function Selection in Carrier Networks

vDPI: CSR 1000v (Cisco Systems)

vCPE: VSR1000 (Hewlett-Packard)

vFW: FireFly (Juniper Networks)

VIM (NW Controller): Service

Source: ETSI Ongoing

Rethinking the "Division of Labor"

Traditional Computer Networks

Control plane:

Track topology changes, compute routes, install forwarding rules

Traditional Computer Networks

Collect measurements and configure the equipment

Death to the Control Plane!

- Simpler management
 - No need to "invert" control-plane operations
- Faster pace of innovation
 - Less dependence on vendors and standards
- Easier interoperability
 - Compatibility only in "wire" protocols
- Simpler, cheaper equipment
 - Minimal software

Software Defined Networking (SDN)

Logically-centralized control

Controller: Programmability

E.g.: Network Virtualization

Controller #1

Controller #2

Controller #3

Partition the space of packet headers

A Helpful Analogy

From Nick McKeown's talk "Making SDN Work" at the Open Networking Summit, April 2012

Vertically integrated Closed, proprietary Slow innovation **Small industry**

Open interfaces Rapid innovation **Huge industry**

Mac

OS

or

Vertically integrated Closed, proprietary Slow innovation

Horizontal
Open interfaces
Rapid innovation

Challenges: Controller Delay and Overhead

- Controller is much slower the the switch
- Processing packets leads to delay and overhead
- Need to keep most packets in the "fast path"

Challenges: Distributed Controller

Controller Application

Network OS

For scalability and reliability

Partition and replicate state

Controller Application

Network OS

