CHAPTER 1

INTRODUCTION

1.1 Charged Higgs studies

1.1.1 production

- produced mainly through top quark decays (top-¿bottom, Higgs-plus)
 - production cross section heavily influenced by top quark production cross section
- top quarks obtained through SM ttbar production at LHC
 - also through single top production (give diagrams for both processes)
- production classified between high-mass and low-mass
 - low mass is from ttbar, one top quark decaying to a bottom quark and forming a charged higgs. Another quark may decay similarly emitting a W instead
 - high mass has two contributing diagrams
 - * bbar quark absorbs a gluon and decays to a tbar in association with a higgs (5 flavor scheme)
 - * bbbar and ttbar production from two gluons (dont understand this diagram yet)
 - * Why are these considered high mass??

1.1.2 decay channel

- have to define a tanBeta variable
- In all regions of tanBeta the higgs to taunu is very significant

- for low tanBeta it is dominant
- this is the choice for the decay channel
 - limits at 7 TeV BR(Higgs to taunu) was assummed at 100%. Was this accross all tanBeta?
- Signal is then characterised by the following:
 - low mass:
 - * two b-jets
 - * hadronic tau
 - * missing et
 - * hadronic W (decay branching fraction higher than leptonic)
 - high mass is similar, but b-jet multiplicity is forgiven to allow for 5 flavor scheme diagram