

频谱分析仪技术基础

第一章 基本理论

罗健

R&S 中国培训中心

© 2002

www.rohde-schwarz.com.cn

一、基本理论

- □ 信号分析及频谱分析概述
- □ 频谱仪的工作原理
- □ 频谱仪的特性

二、工程应用

- □ 仪器操作
- □ 常用功能与测试

信号分析及频谱分析概述

1、信号分析及频谱分析概述

周期信号

- 单载波信号
- 扫描信号

非周期信号

- 噪声信号
- 瞬态信号

调制信号

- 模拟调制
- 数字调制

信号分析及频谱分析概述

信号的<mark>波形</mark>信息 幅度 周期 频率 信号的<mark>频率分布</mark>信息 息 频率、功率 谐、杂波 噪声、干扰

信号的<mark>矢量</mark>信息 幅度误差 矢量误差 相位误差

理想单载波信号在时域和频域的测量结果

频域测量对信号分析的作用

周期信号的频谱

模拟调制信号:AM、FM、PM的调制指数和调制频率等

数字调制信号:信道功率、相邻信道功率比、占有带宽等

噪声信号:噪声功率、相位噪声

信号分析及频谱分析概述

失真信号:谐波失真、非谐波失真、杂散

频谱仪的类型

1、傅立叶分析仪

2、外差式扫描分析仪

超外差式扫描调谐分析仪

频谱仪的主要设置参数

- 频率显示范围
- ♥ 中心频率和频率跨度
- ♥ 起始频率和终止频率
- 电平显示范围
- ▶ 参考电平和量程跨度
- 频率分辨率
- 分辨带宽
- 扫描时间

2、频谱分析仪的工作原理

镜像的影响

镜像的抑制

衰减器

频谱分析仪工作原理

混频器

频谱分析仪工作原理

中频滤波器:数字滤波器

- 真正的高斯形状
- 波形因子4.6
- 最小扫描时间 k=1 通过补偿可以达 到

- 小波形因子 => 更高的灵敏度
- 快速扫描
- 更高的带宽精度 测量可以得到更高的电平精度
- 用于噪声或类噪声信号
- 没有温度或老化漂移

中频滤波器: FFT 滤波器

- 最大频率范围受限于AD变换器的带宽
- 快速的信号处理要求合理的更新率
- 窄的分辨带宽减少了扫描时间

不同的检波器在显示屏上不同的数据处理

本地振荡器

3、频谱分析仪的特性

- 滤波器特性
- 相位噪声(频谱纯度)
- 接收机的固有噪声
- 系统非线性
- 1dB压缩点
- 动态范围
- 测量精度

分辨滤波器特性

不同分辨带宽的滤波器对测试结果的影响

频谱分析仪性能指标

分辨相邻的信号

最小扫描时间

$$T_{Sweep} \cong k \bullet \frac{Span}{RBW^2}$$

T_{Sweep} 最小扫描时间 Span 频率扫描跨度

RBW 分辨带宽 (3 dB 带宽)

k k 因子, 2.5 模拟滤波器

扫描时间对频率和电平测量误差的影响

相位噪声

频谱分析仪的固有噪声

$$L_{DANL} = DANL_{10Hz} - 10dB + (10 \bullet \lg \frac{RBW_{Noise}}{Hz})dB + RF_{ATT} - 2.5dB$$

L_{DANL} 平均显示噪声电平

DANL 规定的平均噪声电平 (R&S 数据表: RBW=10 Hz, RF_{ATT}= 0 dB)

RBW_{Noise} RBW滤波器的等效噪声带宽

RF_{Att} RF 衰减器

-2.5 dB 修正因子 (对数定标的平均)

不同的滤波器6 dB带宽和等效噪声带宽与 3 dB带宽的关系

滤波器类型	4-极点滤波器 (模拟)	5-极点滤波器 (模拟)	理想高斯滤波器 (数字)
6 dB 带宽	$1.480 * B_{3dB}$	1.464 * B _{3dB}	$1.415 * B_{3dB}$
等效噪声带宽	1.129 * B _{3dB}	1.114 * B _{3dB}	$1.065 * B_{3dB}$

显示的噪声本底依赖于RF衰减器

显示的噪声本底依赖于与RBW带宽

接收机的非线性特性

三阶互调产物的鉴别

截止点(T.O.I)

1-dB 压缩点

动态范围

最大无互调范围或最大谐波抑制

频率测量精度

- 光标读数:
- ± (频率读数X参考频率误差+0.5%X频率跨度+10%X分辨带 宽+最后显示位X1/2)

₩ 计数器读数:

±(频率读数X参考频率误差+最后显示位X1/2)

幅度测量精度

- 误差来源:
 - 频率响应
 - 衰减器误差
 - 中频增益误差
 - 线性误差
 - 带宽切换误差
 - 失配误差

具体指标

● 各项误差

▶ 128 MHz绝对误差 <0.2 dB

▶ 频率响应 (f<3 GHz) <0.5 dB</p>

▶ 衰减器误差 <0.2 dB

➤ 对数显示非线性(0 to -70 dB) <0.2 dB

➤ RBW 切换误差 (RBW < 100 kHz) <0.1 dB

➤ 驻波比 <0.55dB</p>

◇ 总的电平不确定度: 0.5 dB(f<3GHz) (95 % 置信度 @ 2 σ)

第二章、实际应用

1、仪器操作

FSP频谱分析仪前面板

FSP频谱分析仪前面板说明

- 1、显示屏
- 3、数据输入键
- 5、仪器状态和功能控制键
- 7、3 1/2"磁盘驱动器(1.44M)
- 9、仪器状态和功能控制键
- 11、热键
- 13、硬拷贝配置和打印功能键
- 15、校准键

- 2、软按键
- 4、仪器状态和功能控制键
- 6、数据和光标改动控制键
- 8、硬件输入输出区
- 10、菜单变换键
- 12、开机/预热键
- 14、一般配置键
- 16、预置键

FSP频谱分析仪后面板

FSP频谱分析仪后面板说明

- 17、选件预留口
- 19、IEC/IEEE接口
- 21、串行接口
- 23、外部噪声源输出口
- 25、PS/2鼠标接口
- 27、选件预留口
- 29、20.4MHz中频输出口
- 31、选件预留口

- 18、电源与开关
- 20、并行接口(打印机连接口)
- 22、外部显示器接口
- 24、外部触发或外部门信号输入口
- 26、选件预留口
- 28、内部参考输出口和外部参考书

入口

30、选件预留口

FSP频谱分析仪显示屏

频率按键

FREQUENCY Key

频率跨度按键

SPAN Key

扫描按键

SWEEP Key

光标按键

光标到按键

光标功能按键

MKR FCTN Key

分辨带宽按键 BW Key

MEAS Key

触发按键

TRIG Key

极限线按键

LINES Key

硬拷贝按键

HCOPY Key

校准按键

CAL Key

设置按键

网络分析仪模式下的操作菜单

网络分析仪模式下的操作菜单

2、常用功能与测试

- 频率和幅度的测试
- ७ 测量绝对频率和绝对幅度
- ▶ 频谱仪频率轴、幅度轴、分辨带宽的设置,光标的使用,
- ▶ 频率计数器的使用
- ▶ 测量相对频率和相对幅度
- (谐波失真的测量)
- 频谱仪频率轴、幅度轴、分辨带宽的设置,光标的使用
- (互调的测量)
- 频谱仪频率轴、幅度轴、分辨带宽的设置,光标的使用

- □ 信道功率和相邻信道功率的测量
 - ◆ 测量标准的选择

```
ACP STANDARD
✓NONE
 NADC IS136
 TETRA
 PDC
 PHS
 CDPD
 CDMA IS95A FWD
 CDMA IS95A REV
 CDMA IS95C Class 0 FWD
 CDMA IS95C Class 0 REV
 CDMA J-STD008
 CDMA J-STD008 REV
 CDMA IS95C Class
                     FWD
 CDMA IS95C Class
 W-CDMA 4.096
 W-CDMA 4.096 REV
 W-CDMA 3GPP
 W-CDMA 3GPP REV
 CDMA 2000 DS
 CDMA 2000 MC1
 CDMA 2000 MC3
```


信道滤波器的选择

检波器的选择

ACP的测量方法(积分带宽法)

信道功率的测量结果

ACP的测量原理(时域法)

时域法测量CP的结果

□ 测量 GSM的突发信号

● 待测的功率作为时间的函数

:

- 高动态/低失真
- 快速A/D变换器满足精确 的测量突发时间
- "窗口" 功能可以对上升/ 下降的侧面达到很高的 分辨率
- 1 MHz 分辨率 (300 kHz 带宽使信号失真)

FSP的门扫描

- TDMA信号的分析受到覆盖脉冲频谱包络的干扰
- 门触发功能允许估计在突发信号激活阶段的调制频谱纯度
- 最大峰值检波器捕获随机调值峰值

频谱仪应用

频谱有无GATING 的结果比较

没有 GATING 的GSM信号的测量结果

使用 GATING 的GSM信号的测量结果

FSP的GAP扫描

频谱仪应用

GAP扫描的结果 (GSM-burst)

GSM-Burst 85 dB的动态范围

使用GAP的Burst => 更好的分辨率

频谱仪应用

□ 幅度统计特性的测量

- 幅度概率分布 (APD)
- 互补累积分布函数 (CCDF)
- 频谱仪的设置
- 分辨带宽的选择
- 采样点数的选择

幅度统计特性的测量原理

CCDF和APD的测量结果(白噪声)

FSP-B10 为FSU & FSP设计的 外部信号发生器控制

传输测量

- 通过校准和归一化消除测试设置的频率响应

执行传输测试的校准,整个测试设置是"直通"连接

传输测试的操作菜单

FSP-B10 为FSU & FSP设计的 外部信号发生器控制

反射测量

标量反射测量需要附加一个方向性好的SWR电桥或是定向耦合器

内置校准和归一化功能
 [CAL REFL OPEN, CAL REFL SHORT]

反射测量的操作菜单

• 噪声系数的测量

<u>一般定义:</u>

一个系统或网络的噪声系数F定义为:系统或网络的输入端口的信噪比 和输出端口的信噪比之比。

$$F = \frac{S_i / N_i}{S_o / N_o}$$

利用FS-K3测量噪声和增益

频谱仪应用

$$F = \frac{S_{i} / N_{i}}{S_{o} / N_{o}} = \frac{S_{i} / N_{i}}{GS_{i} / (N_{a} + GN_{i})} = \frac{N_{a} + GN_{i}}{GN_{i}} = \frac{N_{a} + kT_{o}BG}{kT_{o}BG}$$

 kT_0 4.00 x 10⁻²¹ W/Hz = -174dBm/Hz

系统的内部噪声 N_a

系统的噪声带宽 В

系统的增益

噪声参考温度(定义为290K)

IEEE 标准的定义:

噪声系数F是全部的输出噪声功率 (Na + kToBG)和输出噪声的一部分功率 (kT₀BG)之比,这部分功率kT₀BG是由于输入噪声(kT₀B)引起的。 这是在输入源的温度为290K的条件下得到的。

$$F = 1 + \frac{T_e}{T_0}$$

由于有效噪声温度T_e是源电阻产生的附加温度,因此即使是无噪声的DUT也 会产生同样的噪声功率谱密度。

两级系统的噪声

第二级的校准是测量系统内部的噪声系数,用来作为计算DUT的噪声系数的修正因子。

利用频谱分析仪和噪声系数仪测量噪声系数的基本等式。

Y系数法测量噪声系数

使用的噪声源对其输出噪声电平进行校准,用超噪比(ENR)表示。 ENR 校准信息由噪声源提供,在 $T_0 = 290$ K条件下有效。

 T_S^{OFF} = 噪声源的物理温度 (通常定义为 290 K) T_S^{ON} = 噪声源在"ON"状态时的噪声温度。 $ENR_{dB} = 10\log_{10}[(T_S^{ON} - T_S^{OFF})/T_0]$

• Y系数法测量噪声系数通常分为两步: 校准 和 测量

Y系数法测量噪声系数

校准步骤:

$$Y_{2} = \frac{N_{2}^{ON}}{N_{2}^{OFF}} = \frac{T_{2}^{ON}}{T_{2}^{OFF}} = \frac{T_{S}^{ON} + T_{2}}{T_{S}^{OFF} + T_{2}} \quad \text{ if } ENR = 10\log_{10}(\frac{T_{S}^{ON} - T_{S}^{OFF}}{T_{0}})$$

噪声二极管在工作 ON

噪声二极管不工作 OFF

 N_2^{ON} 测量的噪声功率 (噪声二极管处于 " ON " 的状态) 测量的噪声功率 (噪声二极管处于 "OFF "的状态)

校准期间的Y系数

噪声测试系统的噪声温度

 T_2 T_S^{OFF} 噪声源的物理温度

通过噪声源的ENR值计算得到

$$T_{2} = \frac{(T_{S}^{ON} - Y_{2}T_{S}^{OFF})}{(Y_{2} - 1)}$$

校准周期结束后,仪器存储N,ON,N,OFF和 T,的计算值

与DUT一起测试:

$$Y_{12} = \frac{N_{12}^{ON}}{N_{12}^{OFF}} = \frac{T_{12}^{ON}}{T_{12}^{OFF}} = \frac{T_{S}^{ON} + T_{12}}{T_{S}^{OFF} + T_{12}} \longrightarrow T_{12} = \frac{(T_{S}^{ON} - Y_{12}T_{S}^{OFF})}{(Y_{12} - 1)}$$

$$G_{1} = \frac{(N_{12}^{ON} - N_{12}^{OFF})}{(N_{2}^{ON} - N_{2}^{OFF})}$$

$$T_{1} = T_{12} - T_{2} / G_{1}$$

$$T_{1} = T_{12} - T_{2} / G_{1}$$

第二级的校准有必要作为单独的校准步骤,在校准过程中测定仪器自身的噪声温度。 这个校准值需要用来在测试步骤中去修正测定的噪声温度。

进行非常精确的测量。

结束语

成谢您的参与