

FISM: Factored Item Similarity Models for Top-N Recommender Systems

Santosh Kabbur

Computer Science & Engineering, UMN

Present by

Feng Xie

October 16, 2013

Outline

- Background
- Motivation
- FISM
 - · Basic FISM
 - FISMrmse
 - · FISMauc
- Evaluation
- Conclusion

What is recommender system?

Information Overload

NSLAB@RIIT of TSINGHUA UNIVERSITY

How to solve information overload?

淘宝网

所有类目	虚拟 买车险送暖冬三重豪礼! 话费充值 移动 联通 电信 不停机 网上营业厅 合约机 3G上网 号码	游戏 DNF 九阴 新手卡 DN 天龙 点卡 魔兽 CF 传奇 QQ 网页游戏	彩票 双色球 3D 大乐透 足球单场 机票 酒店 客栈 旅游 门票 国际票
	服装 大码/中老年,全场7折封顶 女装 羽绒 毛衣 羊绒 棉衣 连衣裙 新品 呢大衣 裤子 牛仔 T恤 皮衣	男装 羽绒服 毛衣 棉衣 牛仔 卫衣 外套 衬衫 休闲裤 T恤 夹克 皮衣	内衣 文胸 睡衣 内裤 袜子 保暖 童装 套装 下恤 外套 裤子 童鞋
	鞋包配饰 《2012围巾帽子当道,温暖 女鞋 新品 雪地靴 靴子 短靴 单鞋 女包 新品 真皮 大牌 歐美 钱包	男鞋 休闲 潮流 板鞋 皮鞋 靴子男包 单肩 钱包 手提 休闲 真皮	配饰 围巾 帽子 皮带 手套 毛线 旅行箱包 双肩 旅行箱包 登机
	运动户外 运动户外品牌汇,5折起: 运动鞋 滑板鞋 跑鞋 板鞋 篮球鞋 运动服 卫衣 长裤 套装 羽绒服	装备 羽球 山地车 自行车 跑步机 户外 冲锋衣 鱼竿 雪地靴 登山鞋	耐克 骆驼 安踏 李宁 匡威 阿迪背包 单肩包 军迷 帐篷 品牌直销
	珠宝手表 《买黄金过大年,抵抗通胀珠宝 钻石 黄金 铂金 施华洛 品牌手表 卡西欧 天梭 浪琴 品牌	· · · · · · · · · · · · · · · · · · ·	饰品 项链 手链 发饰 耳饰 手镯 眼镜 太阳镜 眼镜架 zippo 酒具

数码 中国好路由,全场包邮特惠,爽!

 手机 Phone
 安卓 三星 索尼 HTC
 智能机 小米 国产 联想 华为 4核

 笔记本 联想 苹果 戴尔 HP 华硕
 平板 三星 iPadmini 谷歌 iPad4

 配件 手机壳 小米 耳机 手机配件
 苹果配件 苹果壳 防尘塞 创意

相机 卡片机 单反 微单 佳能 尼康 电脑 键鼠 显示器 CPU DIY 路由 办公 高清投影 打印机 一体机

新闻 网页 贴吧 知道 音乐 图片 视频 地图 文库 更多»

安吉丽娜朱莉

百度一下

网页 地图 在线翻译 图片 视频 资讯 词典 更多

安吉丽娜朱莉

Search Engine VS. Recommender System

- · User will try search engine if
 - they have specific needs
 - they can use keywords to describe needs
- User will try recommender system if
 - they do not know what they want now
 - they can not use keywords to describe needs

Mission

- Help user find item of their interest
- Help item provider deliver their item to right user
- Help website improve user's loyalty

Background

- Content filtering
 - Music Genome Project (Pandora.com)
- Collaborative filtering
 - · Neighborhood methods
 - · User based
 - · Item based
 - · Latent factor models

Collaborative Filtering

- User based
 - Users with similar history selections will share same future interest
- Item based
 - Users will like items similar to what they consumed before

The Process

Item based CF

Item based CF

SLIM

$$\tilde{\mathbf{r}}_u = \mathbf{r}_u \mathbf{S}$$

where \mathbf{r}_u is the rating vector of u on all items and \mathbf{S} is a $m \times m$ sparse matrix of aggregation coefficients.

minimize
$$\frac{1}{2} \|\mathbf{R} - \mathbf{R}\mathbf{S}\|_F^2 + \frac{\beta}{2} \|\mathbf{S}\|_F^2 + \lambda \|\mathbf{S}\|_1$$

subject to $\mathbf{S} \ge 0$, $\operatorname{diag}(\mathbf{S}) = 0$,

NSVD

In this method, an item-item similarity was learned as a product of two low-rank matrices, \mathbf{P} and \mathbf{Q} , where $\mathbf{P} \in \mathbb{R}^{m \times k}$, $\mathbf{Q} \in \mathbb{R}^{m \times k}$, and $k \ll m$.

$$\tilde{r}_{ui} = b_u + b_i + \sum_{j \in \mathcal{R}_u^+} \mathbf{p}_j \mathbf{q}_i^\mathsf{T}$$

where b_u and b_i are the user and item biases and \mathcal{R}_u^+ is the set of items rated by u. The parameters of this model are estimated as the minimizer to the following optimization problem:

$$\underset{\mathbf{P},\mathbf{Q}}{\text{minimize}} \quad \frac{1}{2} \sum_{u \in \mathcal{C}} \sum_{i \in \mathcal{R}_u^+} \|r_{ui} - \hat{r}_{ui}\|_F^2 + \frac{\beta}{2} (\|\mathbf{P}\|_F^2 + \|\mathbf{Q}\|_F^2)$$

Motivation

- Sparse user-item rating matrix results in Item based and SLIM, which rely on learning similarities between items, fail to capture the dependencies between items that have not been co-rated by at least one user.
- Methods based on matrix factorization, alleviate this problem by projecting the data onto a low dimensional space, thereby implicitly learning better relationships between the users and items (including items which are not co-rated). However, such methods are consistently out-performed by SLIM
- NSVD does not exclude the diagonal entries while estimating the ratings during learning and prediction phases. In this case it can lead to rather trivial estimates, in which an item ends up recommending itself.

Basic FISM

Estimated value

$$\tilde{r}_{ui} = b_u + b_i + (n_u^+)^{-\alpha} \sum_{j \in \mathcal{R}_u^+} \mathbf{p}_j \mathbf{q}_i^\mathsf{T}$$

where \mathcal{R}_u^+ is the set of items rated by user u, \mathbf{p}_j and \mathbf{q}_i are the learned item latent factors, n_u^+ is the number of items rated by u, and α is a user specified parameter between 0 and 1.

FISMrmse

Loss function: RMSE

$$\mathcal{L}(\cdot) = \sum_{i \in \mathcal{D}} \sum_{u \in \mathcal{C}} (r_{ui} - \hat{r}_{ui})^2$$

Estimated value

$$\hat{r}_{ui} = b_u + b_i + (n_u^+ - 1)^{-\alpha} \sum_{j \in \mathcal{R}_u^+ \setminus \{i\}} \mathbf{p}_j \mathbf{q}_i^\mathsf{T}$$

Regularized optimization problem

minimize
$$\frac{1}{2} \sum_{u,i \in R} \|r_{ui} - \hat{r}_{ui}\|_F^2 + \frac{\beta}{2} (\|\mathbf{P}\|_F^2 + \|\mathbf{Q}\|_F^2) + \frac{\lambda}{2} \|\mathbf{b_u}\|_2^2 + \frac{\gamma}{2} \|\mathbf{b_i}\|_2^2$$

```
Algorithm 1 FISMrmse:Learn.
 1: procedure FISMrmse_LEARN
  2:
             \eta \leftarrow \text{learning rate}
  3:
            \beta \leftarrow \ell_F regularization weight
 4:
            \rho \leftarrow sample factor
 5:
             iter \leftarrow 0
             Init P and Q with random values in (-0.001, 0.001)
 6:
 7:
 8:
             while iter < maxIter or error on validation set de-
       creases do
 9:
                   \mathcal{R}' \leftarrow \mathbf{R} \cup SampleZeros(\mathbf{R}, \rho)
                   \mathcal{R}' \leftarrow RandomShuffle(\mathcal{R}')
10:
11:
                   for all r_{ui} \in \mathcal{R}' do
12:
                         \mathbf{x} \leftarrow (n_u^+ - 1)^{-\alpha} \sum \mathbf{p}_j
13:
                                                      j \in \mathcal{R}_{i}^{+} \setminus \{i\}
14:
                         \tilde{r}_{ui} \leftarrow b_u + b_i + \mathbf{q}_i^\mathsf{T} \mathbf{x}
15:
16:
                         e_{ui} \leftarrow r_{ui} - \tilde{r}_{ui}
                         b_u \leftarrow b_u + \eta \cdot (e_{ui} - \lambda \cdot b_u)
17:
                         b_i \leftarrow b_i + \eta \cdot (e_{ui} - \gamma \cdot b_i)
18:
                         \mathbf{q}_i \leftarrow \mathbf{q}_i + \eta \cdot (e_{ni} \cdot \mathbf{x} - \beta \cdot \mathbf{q}_i)
19:
20:
                         for all j \in \mathcal{R}_{n}^{+} \setminus \{i\} do
21:
                               \mathbf{p}_j \leftarrow \mathbf{p}_j + \eta \cdot (e_{ui} \cdot (n_u^+ - 1)^{-\alpha} \cdot \mathbf{q}_i - \beta \cdot \mathbf{p}_i)
22:
23:
                         end for
24:
                   end for
25:
                   iter \leftarrow iter + 1
26:
             end while
27:
28:
             return P, Q
29: end procedure
```

FISMauc

Loss function: AUC

Given user's rated items in \mathcal{R}_u^+ and unrated items in \mathcal{R}_u^-

$$\mathcal{L}(\cdot) = \sum_{u \in \mathcal{C}} \sum_{i \in \mathcal{R}_u^+, j \in \mathcal{R}_u^-} ((r_{ui} - r_{uj}) - (\hat{r}_{ui} - \hat{r}_{uj}))^2$$

Estimated value

$$\hat{r}_{ui} = b_u + b_i + (n_u^+ - 1)^{-\alpha} \sum_{j \in \mathcal{R}_u^+ \setminus \{i\}} \mathbf{p}_j \mathbf{q}_i^\mathsf{T}$$

Regularized optimization problem

$$\underset{\mathbf{P}, \mathbf{Q}}{\text{minimize}} \quad \frac{1}{2} \sum_{u \in \mathcal{C}} \sum_{i \in \mathcal{R}_{u,j}^+ \in \mathcal{R}_{u}^-} \| (r_{ui} - r_{uj}) - (\hat{r}_{ui} - \hat{r}_{uj}) \|_F^2 \\ \quad + \frac{\beta}{2} (\| \mathbf{P} \|_F^2 + \| \mathbf{Q} \|_F^2) + \frac{\gamma}{2} (\| \mathbf{b_i} \|_2^2)$$

```
Algorithm 2 FISMauc:Learn.
  1: procedure FISMauc_LEARN
              \eta \leftarrow learning rate
              \beta \leftarrow \ell_F regularization weight
  3:
             \rho \leftarrow number of sampled zeros
  4:
  5:
             iter \leftarrow 0
              Init P and Q with random values in (-0.001, 0.001)
  6:
 7:
 8:
              while iter < maxIter or error on validation set de-
       creases do
 9:
                    for all u \in \mathcal{C} do
                           for all i \in \mathcal{R}_u^+ do
10:
11:
                                 \mathbf{t} \leftarrow \left(n_u^+ - 1\right)^{-\alpha} \quad \sum \quad \mathbf{p}_j
12:
                                                               j \in \mathcal{R}_u^+ \setminus \{i\}
                                  Z \leftarrow SampleZeros(\rho)
13:
14:
                                  for all j \in \mathcal{Z} do
15:
                                        \tilde{r}_{ui} \leftarrow b_i + \mathbf{t} \cdot \mathbf{q}_i^\mathsf{T}

\tilde{r}_{uj} \leftarrow b_j + \mathbf{t} \cdot \mathbf{q}_j^\mathsf{T}
16:
17:
                                        r_{uj} \leftarrow 0
18:
                                        e \leftarrow (r_{ui} - r_{uj}) - (\tilde{r}_{ui} - \tilde{r}_{uj})
19:
20:
                                        b_i \leftarrow b_i + \eta \cdot (e - \gamma \cdot b_i)
                                        b_i \leftarrow b_j - \eta \cdot (e - \gamma \cdot b_j)
21:
                                        \mathbf{q}_i \leftarrow \mathbf{q}_i + \eta \cdot (e \cdot \mathbf{t} - \beta \cdot \mathbf{q}_i)
22:
                                        \mathbf{q}_i \leftarrow \mathbf{q}_i - \eta \cdot (e \cdot \mathbf{t} - \beta \cdot \mathbf{q}_i)
23:
                                        \mathbf{x} \leftarrow \mathbf{x} + e \cdot (\mathbf{q}_i - \mathbf{q}_i)
24:
25:
                                  end for
                           end for
26:
27:
                           for all j \in \mathcal{R}_u^+ \setminus \{i\} do
28:
                                  \mathbf{p}_{j} \leftarrow \mathbf{p}_{j} + \eta \cdot \left(\frac{1}{\rho} \cdot (n_{u}^{+} - 1)^{-\alpha} \cdot \mathbf{x} - \beta \cdot \mathbf{p}_{j}\right)
29:
30:
                           end for
                     end for
31:
32:
33:
                     iter \leftarrow iter + 1
34:
              end while
35:
36:
              return P, Q
37: end procedure
```

Evaluation

Data set

ML100K: ML100K-1, ML100K-2, ML100K-3

Netflix: Netflix-1, Netflix-2, Netflix-3

Yahoo Music: Yahoo-1, Yahoo-2, Yahoo-3

• Only ML100K-3, Netflix-3, Yahoo-2 are used

Table 1: Datasets.

Dataset	#Users	#Items	#Ratings	Rsize	Csize	Density
ML100K-1	943	1,178	59,763	63.99	50.73	5.43%
ML100K-2	943	1,178	39,763	42.57	33.75	3.61%
ML100K-3	943	1,178	19,763	21.16	16.78	1.80%
Netflix-1	6,079	5,641	429,339	70.63	76.11	1.25%
Netflix-2	6,079	5,641	221,304	36.40	39.23	0.65%
Netflix-3	6,079	5,641	110,000	18.10	19.50	0.32%
Yahoo-1	7,558	3,951	282,075	37.32	71.39	0.94%
Yahoo-2	7,558	3,951	149,050	19.72	37.72	0.50%
Yahoo-3	7,558	3,951	75,000	9.92	18.98	0.25%

Evaluation

- Methodology
 - 5-fold Leave-One-Out-Cross-Validation (LOOCV)
- Metrics
 - HR (Hit Rate)

$$HR = \frac{\#hits}{\#users}$$

ARHR

$$ARHR = \frac{1}{\#users} \sum_{i=1}^{\#hits} \frac{1}{pos_i}$$

Evaluation

- Comparison Algorithms
 - ItemKNN(cos)
 - ItemKNN(cprob)
 - ItemKNN(log)
 - · PursSVD
 - BPRkNN
 - · BPRMF
 - · SLIM
 - Basic FISM
 - FISMrmse
 - FISMauc

$$\hat{r}_{ui} = b_u + b_i + (n_u^+ - 1)^{-\alpha} \sum_{j \in \mathcal{R}_u^+ \setminus \{i\}} \mathbf{p}_j \mathbf{q}_i^\mathsf{T}$$

Table 2: Performance of different bias schemes.

Scheme		\mathbf{M}	L100K	Yahoo						
Benefite	Beta	Lambda	Gamma	HR	Beta	Lambda	Gamma	HR		
NoBias	8e-4	1920	2	0.1281	2e-5	2	(4)	0.0974		
UserBias	6e-4	0.1	-	0.1336	4e-5	0.1	-	0.1012		
ItemBias	2e-4	1325	0.01	0.1401	4e-5	2	1e-4	0.1007		
User&ItemBias	6e-4	0.1	1e-4	0.1090	4e-5	0.1	1e-4	0.0977		

$$\hat{r}_{ui} = b_u + b_i + (n_u^+ - 1)^{-\alpha} \sum_{j \in \mathcal{R}_u^+ \setminus \{i\}} \mathbf{p}_j \mathbf{q}_i^\mathsf{T}$$

Figure 1: Effect of neighborhood agreement on performance.

$$S = PQ^T$$

Figure 2: Performance of induced Sparsity on S.

(a) ML100K dataset.

(b) Netflix dataset.

(c) Yahoo dataset.

Figure 3: Effect of estimation approach on performance.

Figure 4: Non-negative and negative entries in S.

(a) ML100K dataset.

(b) Yahoo dataset.

Figure 5: Performance for different values of N.

Table 3: Comparison of performance of top-N recommendation algorithms with FISM.

Method	ML100K-1					ML100K-2					ML100K-3				
Wethod	Params			HR	ARHR	80	Params		HR	ARHR		Params		HR	ARHR
ItemKNN (cos)	100	80	328	0.1604	0.0578	100	8	应	0.1214	0.0393	100	25	8	0.0602	0.0193
ItemKNN (log)	100		-20	0.1047	0.0336	100	<u> </u>	82	0.0809	0.0250	100			0.0424	0.0116
ItemKNN (cprob)	500	0.6	-	0.1711	0.0581	500	0.3	44	0.1308	0.0440	400	0.1	T.	0.0938	0.0293
PureSVD	10	-	-	0.1700	0.0594	10	-	S 2	0.1362	0.0438	5			0.0438	0.0316
BPRkNN	1e-4	0.01	-	0.1621	0.0564	1e-5	0.01	- C-	0.1272	0.0447	1e-5	14		0.1006	0.0319
BPRMF	400	0.1	-	0.1610	0.0512	700	0.1	5-	0.1224	0.0407	700	0.25	-	0.0943	0.0305
SLIM	0.1	20	-	0.1782	0.0620	0.01	18		0.1283	0.0448	1e-4	14	_	0.0919	0.0303
FISMrmse	96	2e-5	0.001	0.1908	0.0641	64	8e-4	0.01	0.1482	0.0462	96	8e-4	0.001	0.1260	0.0384
FISMauc	64	0.001	1e-4	0.1518	0.0504	144	2e-5	5e-5	0.1304	0.0424	144	8e-5	1e-5	0.1140	0.0340
Method	Netflix-1			Netflix-2					Netflix-3						
	Params		HR	ARHR	Params		ms	HR	ARHR		Params		HR	ARHR	
ItemKNN (cos)	100	=	-	0.1516	0.0689	100	~	8	0.0849	0.0316	100	=		0.0374	0.0123
ItemKNN (log)	100	-	-	0.0630	0.0240	100		S#	0.0838	0.0303	100	-	8	0.0188	0.0062
ItemKNN (cprob)	20	0.5	-	0.1555	0.0678	500	0.5	17	0.0879	0.0326	200	0.1	-	0.0461	0.0162
PureSVD	600	-	57.5	0.1783	0.0865	400	=	87	0.0807	0.0297	400	73		0.0382	0.0131
BPRkNN	1e-3	1e-4	17.0	0.1678	0.0781	1e-4	1	93	0.0889	0.0329	0.01	1e-3		0.0439	0.0148
BPRMF	800	0.1	1.70	0.1638	0.0719	700	0.1	17	0.0862	0.0318	5	0.01		0.0454	0.0153
SLIM	1e-3	8	2.5	0.2025	0.1008	0.1	8	32	0.0947	0.0374	1e-4	12		0.0422	0.0149
FISMrmse	192	2e-5	0.001	0.2118	0.1107	192	6e-5	0.001	0.1041	0.0386	128	6e-5	0.001	0.0578	0.0185
FISMauc	192	1e-5	1e-4	0.2095	0.1016	240	2e-5	1e-4	0.0979	0.0341	160	4e-4	5e-4	0.0548	0.0177
Method	Yahoo-1					Yahoo-2					Yahoo-3				
	Params HR			ARHR	Params			HR	ARHR	Params		HR	ARHR		
ItemKNN (cos)	100	15.	378	0.1344	0.0502	100	-	85	0.0890	0.0295	100	- 5	=	0.0366	0.0116
ItemKNN (log)	100		1.70	0.1046	0.0358	100	-	17	0.0820	0.0261	100	70	-	0.0489	0.0153
ItemKNN (cprob)	500	0.6	120	0.1387	0.0510	200	0.4	딒	0.0908	0.0313	20	0.1	_	0.0571	0.0187
PureSVD	50	2	328	0.1229	0.0459	20		12	0.0769	0.0257	20	10.00	2	0.0494	0.0154
BPRkNN	1e-3	1e-4	2	0.1432	0.0528	1e-3	1e-4	82	0.0894	0.0304	0.1	0.01	200	0.0549	0.0183
BPRMF	700	0.1	_	0.1337	0.0473	700	0.1	<u> 64</u>	0.0869	0.0288	10	0.01	- 2	0.0530	0.0169
SLIM	0.1	12	-	0.1454	0.0542	1e-3	12	-	0.0904	0.0304	0.1	2	-	0.0491	0.0159
FISMrmse	192	1e-4	0.001	0.1522	0.0542	192	2e-5	5e-4	0.0971	0.0371	160	0.002	0.001	0.0740	0.0230
FISMauc	144	8e-5	1e-4	0.1426	0.0488	160	2e-5	5e-4	0.0974	0.0315	176	2e-4	0.001	0.0722	0.0228

Figure 6: Effect of sparsity on performance for various datasets.

Conclusion

- This paper proposed a factored item similarity based method (FISM), which learns the item similarities as the product of two matrices.
- FISM can well cope with data sparsity problem, and better estimators are achieved as the number of factors increases.
- FISM outperforms other state-of-the-art top-N recommendation algorithms

Discussion

- Why not use RMSE as the metric?
- NSVD doesn't use unrated entries for learning, while FISM does. The comparison seems bias?
- Is there a symmetric method to factor user similarity with two low dimensional matrices?

Questions? Thank you!