MITx: Statistics, Computation & Applications

Statistics Refresher

Lecture 3: Multiple Hypothesis Testing

Some quotes and research findings

Giovannucci et al., Journal of the National Cancer Institute 87 (1995):

Intake of tomato sauce (p-value of 0.001), tomatoes (p-value of 0.03), and pizza (p-value of 0.05) reduce the risk of prostate cancer;

But for example tomato juice (p-value of 0.67), or cooked spinach (p-value of 0.51), and many other vegetables are not significant.

Some quotes and research findings

Giovannucci et al., Journal of the National Cancer Institute 87 (1995):

Intake of tomato sauce (p-value of 0.001), tomatoes (p-value of 0.03), and pizza (p-value of 0.05) reduce the risk of prostate cancer;

But for example tomato juice (p-value of 0.67), or cooked spinach (p-value of 0.51), and many other vegetables are not significant.

"Orange cars are less likely to have serious damages that are discovered only after the purchase."

Jelly Beans and Acne

Problematic of selective inference

http://imgs.xkcd.com/comics/significant.png

Wonder-syrup

- randomized group of 1000 people
- measure 100 variables before and after taking the syrup: weight, blood pressure, etc.
- perform a paired t-test with a significance level of 5%

Wonder-syrup

- randomized group of 1000 people
- measure 100 variables before and after taking the syrup: weight, blood pressure, etc.
- perform a paired t-test with a significance level of 5%
- V := # false significant tests: $V \sim \text{Binomial}(100, 0.05)$
 - \Rightarrow in average 5 out of 100 variables show a significant effect!

Wonder-syrup

- randomized group of 1000 people
- measure 100 variables before and after taking the syrup: weight, blood pressure, etc.
- perform a paired t-test with a significance level of 5%
- V := # false significant tests: $V \sim \text{Binomial}(100, 0.05)$
 - \Rightarrow in average 5 out of 100 variables show a significant effect!

Different protection levels

Compute *p*-values using methods that control:

• family-wise error rate (FWER) $\leq \alpha$, where

FWER =
$$\mathbb{P}(\text{at least one false significant result}) = \frac{1}{100}$$

= $100 \cdot 100$ =

• false discovery rate (FDR) $\leq \alpha$, where

FDR = expected fraction of false significant results

among all significant results

a b mo

c d m

c d m

Corrections for multiple testing

Bonferroni correction:

- Reject H_0 when: $m \cdot p$ -value $\leq \alpha$ where m is the total number of hypothesis tests performed
- Bonferroni correction implies $FWER \leq \alpha$

$$P(V \ge \Lambda) = R(V = \Lambda) + P(V = 2) + ... + P(V = m_0)$$

$$\leq 0.R(U = 0) + \Lambda R(V = \Lambda) + 2P(V = 2) + ... + m_0 P(V = m_0)$$

$$= E(V) \qquad \qquad V \sim Binomial(m_0, \frac{d}{m})$$

$$= m_0. \frac{d}{m}$$

$$\leq d$$

$$P(V \ge \Lambda) = \Lambda - P(V = 0) = \Lambda - (\Lambda - d_{ind})^{n_0} \leq \Lambda - (\Lambda - d_{ind})^{n_0} \leq d$$

$$P(V \ge \Lambda) = \Lambda - P(V = 0) = \Lambda - (\Lambda - d : N) \le \Lambda - ($$

$$= \lambda - (\Lambda - d)^{1/m}$$

Corrections for multiple testing

Bonferroni correction:

- Reject H_0 when: $m \cdot p$ -value $\leq \alpha$ where m is the total number of hypothesis tests performed
- Bonferroni correction implies $FWER \le \alpha$

Holm-Bonferroni correction:

- Sort *p*-values in increasing order: $p_{(1)} \leq \cdots \leq p_{(m)}$
- Reject H_0 when: $(m-i+1)p_{(i)} \le \alpha$ (more power than Bonferroni)
- ullet Holm-Bonferroni correction implies $FWER \leq \alpha$

Corrections for multiple testing

Bonferroni correction:

- Reject H_0 when: $m \cdot p$ -value $\leq \alpha$ where m is the total number of hypothesis tests performed
- Bonferroni correction implies $FWER \le \alpha$

Holm-Bonferroni correction:

- Sort *p*-values in increasing order: $p_{(1)} \leq \cdots \leq p_{(m)}$
- Reject H_0 when: $(m-i+1)p_{(i)} \le \alpha$ (more power than Bonferroni)
- Holm-Bonferroni correction implies $FWER \le \alpha$

Benjamini-Hochberg correction:

- Sort *p*-values in increasing order: $p_{(1)} \leq \cdots \leq p_{(m)}$
- Reject H_0 when: $mp_{(i)}/i \leq \alpha$
- Benjamini-Hochberg correction implies $FDR \leq \alpha$

Commonly accepted practice

- No correction for multiple testing when generating hypotheses (but report number of tests performed)
- $FDR \le 10\%$ in exploratory analysis or screening
 - \bullet balance between high power and low # of false significant results
- $FWER \le 5\%$ in confirmatory analysis
 - food and drug administration (FDA)

References

• Lecture by Yoav Benjamini, THE expert for multiple testing issues:

http://simons.berkeley.edu/talks/yoav-benjamini-2013-12-11a