機器學習 Self-tutorial

Temperature and level control in a water thermal mixing process by using neural network controller

使用神經網路控制器對水和熱的混合過程進行溫度和水高的控制

第四組 游鎮遠、謝崇志、林學謙

Introduction

- 液體的混合操作是許多產品生產過程中的重要一環,例如石油、化學品、食品、藥品、油漆或化妝品,提高混合的效率除了可以節省生產成本,更可以提升產品的生產效率和品質。
- 混合操作的一個經典類型是熱混合,可以將多種具有不同溫度或特性的液體混合。
- 在傳統工廠,通常使用PID作為主要控制器,但在處理非線性或時變系統時,PID控制都將不太理想,所以此篇論文改為研究使用NN來進行混合操作的控制。

Description of the Process

- (a) Water thermal mixing process
 - 進熱水溫度、進冷水溫度、出水溫度 (T_H, T_C, T)
 - 進熱水水流、進冷水水流、出水水流(ω_H 、 ω_C 、 ω)
 - 混合水高(h)

- (b) Block diagram of the MIMO control system
 - 預期水溫、預期水高 (Y_{sp1}, Y_{sp2})
 - 進熱水水流、進冷水水流(U₁、U₂)
 - 混合水溫、混合水高(Y₁、Y₂)
 - 熱水水流為輸入的混合溫度轉移函數 (G_{p11})
 - 冷水水流為輸入的混合溫度轉移函數(G_{p12})
 - 熱水水流為輸入的混合水高轉移函數(G_{p21})
 - 冷水水流為輸入的混合水高轉移函數(G_{p12})
 - 進熱水流控制閥、進冷水流控制閥(G_{c1}、G_{c2})

Control Method Testing

- 1. PID
- 2. 兩種不同輸入的神經網路
 - 1) $SP \cdot PV(n) \cdot PV(n-1)$ and MV(n)
 - 2) SP · error · change of error and MV(n)
- SP: SetPoint (期望的水溫和水高)
- PV: Process Variable (狀態變數,某時刻的混合水溫和混合水高)
- MV: Manipulated Variable (控制變數,某時刻進水流的閥門,其數值為連續)
- error:混合水温和混合水高的誤差

Temperature Control Simulation

- (c) Simulation results of temperature control with several changes in Setpoint.
 - - 淺藍色: NN (SP、error、change of error and MV(n))

Temperature Control Simulation

Temperature (Average)	PID	NN input SP, PV(n), PV(n-1)	NN input SP, Error, D error
Rise time	393.9 s	303.0 s	242.0 s
Settling time	613.7 s	558.1 s	472.7 s
Overshoot	0.7 %	0 %	0 %
Steady state error	0 %	0 %	0 %

⁽d) Performance analysis of each controller used on temperature control in the form of the average.

Level Control Simulation

- (e) Simulation results of level control with several changes in set point.
 - - 淺藍色: NN (SP、error、change of error and MV(n))

Level Control Simulation

Level (Average)	PID	NN input SP, PV(n), PV(n-1)	NN input SP, Error, D error
Rise time	412.8 s	514.5 s	447.6 s
Settling time	3216.8 s	940.7 s	984.4 s
Overshoot	10.5 %	0 %	0 %
Steady state error	0 %	0.2 %	0.04 %

⁽f) Performance analysis of each controller used on level control in the form of the average.

System Testing with a Disturbance Input

- 在系統穩定後的第9000秒透過降低流速給予干擾,以模擬管道洩漏。
- PID:

(h) PID controller simulation results by providing disturbance input for controlling level.

System Testing with a Disturbance Input

• NN (SP • PV(n) • PV(n-1) and MV(n)) :

(j) NN (SP, PV (n), PV (n-1)) controller simulation results by providing disturbance input for controlling level.

System Testing with a Disturbance Input

• NN (SP · error · change of error and MV(n)) :

(1) NN (SP, error, change of error) controller simulation results by providing disturbance for controlling level.