ارشیا عطایی نایینی ۸۱۰۱۰۰۲۵۲

گزارش تمرین کامپیوتری چهارم

بخش اول

۱-۱) تصویر mapset ساخته شده به صورت زیر است:

a	b	С	d	e	f	g	h	i	j	k	L	m
00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100

۱-۲) این تابع ابتدا رشته را به کدینگ باینری مورد نظر تبدیل می کند و سپس با توجه به بیتریت آنها را جدا

جدا کرده و با توجه به عدد دسیمال این رشته باینری، ضریبی از sin(2*pi*t) را ارسال می کند.

۱-۳) تصاویر مربوط به سیگنالهای کد شده رشته signal یه ترتیب با بیتریت ۱ و ۲ و ۳:

۱-۴) خروجی بخش قبلی را به تابع decoding_amp داده و خروجیهای زیر دریافت شد:

deres1 =

'signal'

deres2 =

'signal'

deres3 =

'signal'

۱-۵) ابتدا میانگین و واریانس دادههای این تابع را به ازای (randn(1, 1000000 بدست آورده و سپس PDE

آن را با استفاده از دستور histogram رسم می کنیم:

0.000022 0.998372

که مشخص است PDE یک توزیع گاوسی با میانگین ۰ و واریانس ۱ است.

۱-۶) سیگنالهای مورد نظر تولید شده و میبینیم که همچنان به درستی جواب داده میشوند:

s =

0.0100

ans =

'signal'

ans =

'signal'

ans =

'signal'

۱–۷) بله با توجه به آزمایش انجام شده نویز بسیار بیشتر بر روی بیتریت Υ و سپس بیتریت دو و پس از آن بیتریت Υ تاثیر گذاشته است.

۱-۸) همانطور که در عکسهای زیر مشخص است برای بیتریت ۱، به ازای ضریب ۱.۵ یا واریانس ۲.۲۵ و برای بیتریت ۲، به ازای ۸.۵ یا واریانس ۲.۲۵ شروع به خدا بیتریت ۲، به ازای ۸.۵ یا واریانس ۲.۲۵ شروع به خدا میکند.

s =

1.5100

ans =

'sional'

ans =

'sionii'

ans =

'n,hqad'

s =

0.8100

ans =

'signal'

ans =

'iona.'

ans =

'pkhjad'

۱-۹) اگ بتوانیم توان سیگنال و دامنه آنرا افزایش دهیم باعث میشود خطای کمتری شامل نویزها شود.

۱-۰۱) تا جایی که دقت نمایش ما نشون میدهد و اجازه میدهد که چیزی حدود ۸ بیت است.

۱-۱) خیر. اگر ضریبی در آن ضرب کنیم انگار نویز هم همان تعداد برابر شده است و عملا هیچ تاثیری ندارد.

۱-۱۲) به طور کلی سرعت کلی ADSL بین ۱ تا ۱۶ مگابیت بر ثانیه است.

بخش دوم

۱-۲) سیگنال ارسالی به شکل زیر است:

سیگنال ارسالی به شکل زیر است:

Y-Y) تفاوت این بخش با پروژه یک این است که شیفت دادن و سپس کورلیشن گرفتن را با همان کانولوشن انجام میدهیم منتها اگر نقطه X برابر X باشد، در حالت اصلی برابر X – X است که X طول سیگنال کورلیشن گیری است.

۲-۳) ضریب نویز را از ۰.۴ تا ۴ به گام های ۰.۴ اضافه شده و نتایج زیر بدست آمده است که نشان می دهد تا تقریبا ضریب ۳ تخمین خوبی از R بدست می آید:

بخش سوم

به طور کلی ابتدا mapset را برای چیزهای گفته شده ساخته و سپس با توجه به ورودی از کانکت کردن سیگنالهای صدا، سیگنال صدای مورد نظر را میسازد.

بخش چهارم

۱-۴) دقت بدست آمده شده برابر ۷۷.۳ درصد است:

۴-۲) به طور کلی دقت هرکدام از فیچرها از سومین ترین تا آخر مطابق شکل زیر است:

که به ترتیب:

گلوکز: ۷۴.۳٪

فشار خون: ۶۵.۳٪

کلفتی پوست: ۶۵.۳٪ انسولین: ۶۵.۳٪ BMI: ۶۵.۵٪

سن: ۶۵.۳ ٪

که میبینیم گلوکز بهترین فیچر برای تخمین بوده است.

۳-۴) دقت تخمین با TrainedModel برابر زیر شد:

ans = 77.5000

۴-۴) دقت تخمین دیتا داده شده با TrainedModel برابر است با:

ans = 78