3° de Secundaria Unidad 3 2024-2025

Preparación para el Examen de la Unidad 3

Nombre del alumno: Fecha:

Aprendizajes:

- Argumenta acerca de posibles cambios químicos en un sistema con base en evidencias experimentales.
- Reconoce y valora el uso de reacciones químicas para sintetizar nuevas sustancias útiles o eliminar sustancias indeseadas.
- Reconoce la utilidad de las reacciones químicas en el mundo actual.
- Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

Puntuación:

Pregunta	1	2	3	4	5	6	7	Total
Puntos	10	15	10	10	15	20	20	100
Obtenidos								

Ejemplo 1

El peso molecular de la sacarosa, $C_{12}H_{22}O_{11}$, es 342.3 g/mol. ¿Cuál es la masa en gramos de 0.287 moles de sacarosa? Expresa la respuesta con 3 cifras significativas.

Podemos encontrar los gramos de sacarosa multiplicando los moles de sacarosa por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m = 0.287 \text{ mol} \times \frac{342.3 \text{ g}}{1 \text{ mol}} = 98.3 \text{ g}$$

					-
- 1-1	ıer	CI	c_1	\circ	1
,	ν.	٠.	٠.	~	

de 10 puntos

El peso molecular del agua, H_2O , es de 18 g/mol. ¿Cuántos moles de agua hay en 243 g de agua? Expresa la respuesta con 3 cifras significativas.

Ejemplo 2

Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

Hay 2 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 2 al HgO.

$$2 \, \mathrm{HgO} \longrightarrow \mathrm{Hg} + \mathrm{O}_2$$

Ahora, hay 2 $\rm Hg$ en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al $\rm Hg$. Y la ecuación balanceada es:

$$2 \, \mathrm{HgO} \longrightarrow 2 \, \mathrm{Hg} + \mathrm{O}_2$$

Ejercicio 2 ____ de 15 puntos

Balancea la siguiente ecuación química:

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{ZnI}_2 \longrightarrow 2 \text{ NaI} + \text{Zn}$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- $\operatorname{C} \operatorname{Zn}(s) + 2\operatorname{HCl}(\operatorname{ac}) \longrightarrow \operatorname{ZnCl}_2(\operatorname{ac}) + \operatorname{H}_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **d** $2 C(s) + O_2(g) \longrightarrow 2 CO(g)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- e 2 Na + H₂O \longrightarrow 2 NaOH + H₂
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $f 2 Al(s) + 3 S(s) \longrightarrow Al_2 S_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- - A Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- h Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- i $2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- $\mathbf{j} \operatorname{SO}_2(g) + \operatorname{H}_2\operatorname{O}(l) \longrightarrow \operatorname{H}_2\operatorname{SO}_3(ac)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 3

de 10 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(l) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- \sim N₂O + energía $\uparrow \longrightarrow 2 N_2 + O_2$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 4

_ de 10 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- $b \ 2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{C} \operatorname{SO}_2(\mathsf{g}) + \operatorname{H}_2 \operatorname{O}(\mathsf{l}) \longrightarrow \operatorname{H}_2 \operatorname{SO}_3(\mathsf{ac})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $2P_2 + 5O_2 \longrightarrow 2P_2O_5 + luz \uparrow$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

En un recipiente se introducen 15 g de dióxido de carbono, ${\rm CO}_2$.

Calcula:

a Los moles de sustancia introducidos.

Calculamos la masa molecular del dióxido de carbono, CO₂:

$$m_m(CO_2) = m(C) + 2 \times m(O) = 12 + 16 + 16 = 44 \text{ UMA}$$

Entonces, la masa molar es:

$$M(\mathrm{CO}_2) = 44 \mathrm{g mol}^{-1}$$

El número de moles de CO₂ se calcula con la ecuación (??), de la siguiente forma:

$$n(\text{CO}_2) = \frac{m(\text{CO}_2)}{M(\text{CO}_2)} = \frac{15 \text{ g}}{44 \text{ g mol}^{-1}} = 0.34 \text{ mol}$$

b ¿Cuántas moléculas de CO₂ y átomos de carbono y de oxígeno hay en el recipiente?

Del inciso anterior, sabemos que hay 0.34 moles de CO_2 . Entonces, el número de moléculas de CO_2 es:

$$0.34~\mathrm{mol} \times 6.023 \times 10^{23}~\mathrm{mol\acute{e}culas} = 2.05 \times 10^{23}~\mathrm{mol\acute{e}culas}$$

Ejercicio 5 de 15 puntos

Halla la masa de ozono O_3 , que contiene 1×10^{25} átomos de oxígeno.

Con base en la información de la tabla 1, ¿cuál de los siguientes compuestos contiene el menor porcentaje de potasio por masa?

- \bigcirc KNO₃
- B KF
- C KClO
- (D) KBr

Tabla 1: Compuestos que contienen potasio

Compuesto	$egin{array}{ll} \mathbf{Masa} & \mathbf{molar} \ \mathbf{(g/mol)} \end{array}$	Porcentaje de potasio $(\%)$
KNO_3	101.1	38.67%
KF	58.1	67.3%
KClO	90.6	43.1 %
KBr	119.0	33.1 %

Ya que el peso atómico del potasio es 39.1, el porcentaje de potasio en cada compuesto se puede calcular

$$100\,\% \times \frac{\mathrm{K}}{\mathrm{KNO_3}} = 100\,\% \times \frac{39.1}{101.1} = 38.67\,\%$$

$$100\% \times \frac{K}{KF} = 100\% \times \frac{39.1}{58.1} = 67.3\%$$

$$100\,\% \times \frac{\mathrm{K}}{\mathrm{KClO}} = 100\,\% \times \frac{39.1}{90.6} = 43.1\,\%$$

$$100\,\% \times \frac{\mathrm{K}}{\mathrm{KBr}} = 100\,\% \times \frac{39.1}{119.0} = 33.1\,\%$$

Ejercicio 6 de 20 puntos

Con base en la información de la tabla 2, ¿cuál de los siguientes compuestos contiene el menor porcentaje de carbono por masa?

Tabla 2: Compuestos que contienen carbono

Compuesto	$egin{array}{ll} \mathbf{Masa} & \mathbf{molar} \ (\mathbf{g/mol}) \end{array}$	Porcentaje de carbono (%)
CH_4	16	
$\mathrm{CH_{2}O}$	30	
CO	28	
CO_2	44	

Una tableta de vitamina C de 2.70 g contiene 0.0109 mol de ácido ascórbico ($C_6H_8O_6$). La masa molar de $C_6H_8O_6$ es 176.12 g/mol. ¿Cuál es el porcentaje de masa de $C_6H_8O_6$ en la tableta?

El porcentaje de masa de una sustancia en una mezcla se puede determinar por la comparación de la masa de la sustancia en la mezcla contra la masa total de la mezcla. Primero, calculemos la masa de $C_6H_8O_6$ en la tableta. Utilizando la masa molar del $C_6H_8O_6$, podemos convertir moles de $C_6H_8O_6$ a gramos de $C_6H_8O_6$:

$$0.0109 mol~ C_6 H_8 O_6 \times \frac{176.12 g~ C_6 H_8 O_6}{1 mol~ C_6 H_8 O_6} = 1.92 g~ C_6 H_8 O_6$$

Posteriormente, utilizando la masa calculada de $C_6H_8O_6$ y la masa total de la tableta, podemos calcular el porcentaje de masa de $C_6H_8O_6$ en la tableta:

$$1.92g~C_6H_8O_6 \times \frac{100\,\%}{2.70g~tableta} = 71\,\%$$

El porcentaje de masa de $C_6H_8O_6$ en la tableta es 71 %.

Ejercicio 7	de 20 pu	ıntos

Se encuentra que una tableta de vitamina B3 de 1.90 g contiene 0.0122 mol de nicotinamida ($C_6H_6N_2O$). (La masa molar de $C_6H_6N_2O$ es 122.13 g/mol.)

¿Cuál es el porcentaje de masa de C₆H₆N₂O en la tableta?

Escribe tu respuesta usando tres cifras significativas.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\overset{18}{A}\overset{39.948}{ ext{r}}$	$\overset{36}{K}\overset{83.8}{r}$ Kriptón	$\sum_{Xenón}^{54}$	$\mathop{Rad \delta n}\limits^{86}$	118 294 Oganesón	$\frac{71}{\text{Luterio}}$	$\frac{103}{L}$ 262 Lawrencio	
	17 VIIA	9 18.998 Fluor	$\bigcup_{Cloro}^{17\ 35.453}$	$\overset{35}{B}\overset{79.904}{\Gamma}$ Bromo	53 126.9 T	$\mathop{At}\limits_{_{\text{Astato}}}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70 173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}$	$\overset{34}{S}\overset{78.96}{e}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po} \overset{209}{O}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	69 168.93 Tulio	$\underset{\text{Mendelevio}}{\text{101}}$	
	15 VA	7 14.007 Nitrógeno	$\overset{\text{1.5}}{P}\overset{30.974}{\text{Posforo}}$	${\overset{33}{ ext{A}}}_{ ext{T4.922}}^{ ext{74.922}}$ Arsénico	$\overset{51}{S}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\overset{208.98}{\mathbf{bis}}}$	${\stackrel{115}{ M }}^{288}_{C}$	$\frac{68}{\text{Erbio}}$	100 257 Fermio	
	14 IVA	$\bigcup_{\text{Carbono}}^{6}$	$\overset{14}{S}\overset{28.086}{\text{Silicio}}$	$\mathop{Gen}^{32}_{cermanio}$	$\mathop{Sn}_{\text{Estaño}}^{\text{118.71}}$	$\overset{82}{Pb}^{207.2}_{\text{Pbmo}}$	114 289 Flerovio	$\underset{\text{Holmio}}{\overset{67}{\text{Holmio}}}$	99 252 Einsteinio	
	13 IIIA	5 Boro	$\prod_{\text{Aluminio}}^{13 26.982}$	$\overset{31}{\mathbf{Galo}}$	$\prod_{\text{Indo}}^{49 114.82}$	81 204.38 Talio	${\displaystyle \frac{113}{N}}_{N \text{honio}}^{284}$	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\underset{\text{Californio}}{\overset{98}{\text{C}}}$	
			12 IIB	$\overset{30}{ ext{Zn}}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{H}\overset{200.59}{g}$	$\overset{112}{C}\overset{285}{n}$ Copernicio	$\prod_{Terbio}^{65} \mathbf{\overline{158.93}}$	$\frac{97}{B} \frac{247}{K}$	
			11 IB	$\overset{29}{\overset{63.546}{C}}$	47 $^{107.87}$ $^{\text{Plata}}$	${\overset{79}{\mathrm{Au}}}^{196.97}_{\mathrm{Oro}}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{\text{64}}{\text{Gadolinio}}$	96 247 Curio	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \overset{58.693}{\text{1}}$	$\underset{\text{Paladio}}{\overset{46}{\text{Pol}}}$	$\Pr^{78 195.08}_{\text{Platino}}$	Darmstadtio	$\overset{63}{\text{Europio}}$	$\frac{95}{Am}$	
			9 VIIIB	$\overset{27}{\overset{58.933}{\bigcirc}}$	$\mathop{Rh}\limits^{45 102.91}_{\text{Rodio}}$	$\frac{77}{\text{L}}$	$\frac{109}{\text{NM}} \frac{268}{\text{Meitnerio}}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{\text{Plutonio}}$	
		ro.	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}_{\text{Puthenio}}^{44 \ 101.07}$	$\overset{76}{\text{Osmio}}$	108 277 Hassio	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\sum_{\text{Manganeso}}^{25} 54.938$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}\limits^{75}_{\text{Renio}}$	$\underset{\text{Bohrio}}{\overset{107}{B}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbolog	Negro: I Gris: S	6 VIB	$\overset{24}{\overset{51.996}{\text{Cromo}}}$	${\displaystyle \frac{42}{\displaystyle M0}} {\displaystyle \frac{95.94}{\displaystyle 0}}$	$\bigvee_{\text{Tungstenio}}^{74}$	106 266 S8 Seaborgio	$\sum_{\text{Praseodymio}}^{59-140.91}$	$\overset{91}{P}\overset{231.04}{a}$	
	Sim	\mathbf{S} Símbolo	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	41 92.906 Niobio	$\overset{73}{\text{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{58}{\overset{140.12}{\text{Cerio}}}$	90 232.04 Th	
			4 IVB	22 47.867 Titanio	$\sum_{{ m Circonio}}^{40~91.224}$	72 178.49 Hafnio	$\Pr^{104}_{\text{Rutherfordio}}$	$\overset{57}{La}_{\text{Lantánido}}^{138.91}$	$\overset{89}{Ac}_{\text{Actinio}}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71	.: 89-103 .: ** Actinido	s -terreos	are a care a	nidos
	2 IIA	$\mathop{Berilio}^{4}$	$\overline{\mathrm{Mg}}_{\mathrm{Magnesio}}^{24.305}$	$\overset{20}{\text{Calcio}}^{40.078}$	$\overset{38}{\mathrm{Sr}}$	$\overset{56}{\mathrm{Bario}}$	\mathop{Radio}^{88}	Alcalino Alcalino	le J J	obles los/Actín
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{3} \frac{6.941}{1}$	$\overset{_{11}}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ 39.098}$	$\mathop{Rb}^{37}_{\text{Rubidio}}$	\sum_{Cesio}^{55}	$\overset{87}{Fr}^{223}$	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/Actínidos
	Н	2	က	4	Ŋ	9	7			