Math 239 Lecture 32

Graham Cooper

July 24th, 2015

Vertex Covers

If M is a matching and C is a cover then $|M| \leq |C|$.

<u>Corollary:</u> IF M is a matching and C is a cover where |M| = |C|, then M is a maximum matching and C is a minimum cover.

Proof Let M' be any matching. Then by previous result $|M'| \leq |C|$. But |C| = |M| so $|M'| \leq |M|$ So M is a max matching.

Let C' be any cover. Then $|C'| \ge |M|$. But |M| = |C|, so $|C'| \ge |C|$ So C is a min cover.

One way to prove that M is maximum is by providing a cover C where |M| = |C|

Konig's Theorem

Theorem: In a bipartite graph, the size of a maximum matching is equal to the size of a minimum cover.

Proof: Let M be a maximum matching. Let X_0 , X, Y be the sets obtained at the end of the algorithm. There is no edge joining a vertex in X wit ha vertex in B/Y(if such an edge exists, it extends an alternating path starting from X_0 and the vertex in B/Y. Should he been in Y) Therefore, YU(A/X) is a vertex cover

XY-Construction Algorithm

<u>Strategy</u>: Find all possible alternating paths starting from an unsaturated vertex in A. Any augmenting path that starts in A must end in B.