[Total No. of Printed Pages—4

Seat	_	Q
No.	9	0,

[5459]-152

S.E. (Electrical) (I Semester) EXAMINATION, 2018

MATERIAL SCIENCE

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

Physical Constants:

- 1. Angstrom Unit(AU) = 1×10^{-10} metres
- 2. Boltzmann's Constant (k) = 1.380×10^{-23} joule.degree-1
- 3. Charge on Electron (e) = 1.601×10^{-19} coulomb
- 4. Mass of Electron (m) = $9.107 \times 10^{-31} \text{ kg}$
- 5. Electron volt (eV) = 1.602×10^{-19} joules
- 6. Mass of Proton (m_D) = $1.627 \times 10^{-27} \text{ kg}$
- 7. Velocity of light (c) = 2.998×10^8 m/sec
- 8. Dielectric Constant of free space $(\epsilon_0) = 8.854 \times 10^{-12}$ F/m
- 9. Permeability of free space $(\mu_0) = 4\pi \times 10^{-7} \text{ H/m}$
- 10. Debye Unit = 3.33×10^{-30} coulomb.metre
- 1. (a) Write short note on fibre optics along with materials used and its applications. [6]

P.T.O.

(b) What is the difference between dielectric material and insulating material? Hence write the properties and applications of – Air and Pressboard. [6]

- **2.** (a) Derive Clausius Mossotti relation as applied to dielectric materials in static field. State clearly the assumptions made. [6]
 - (b) Classify the solid insulating materials as per their ability to withstand temperatures. Explain properties and applications of any *two* solid insulating materials. [6]
- 3. (a) Differentiate between: [6]
 - (i) Ferromagnetism and Antiferromagnetism
 - (ii) Soft Magnetic Materials and Hard Magnetic Materials.
 - (b) Describe properties and applications of any two materials of the following: [6]
 - (i) Copper
 - (ii) Constantan
 - (iii) Brass

Or

- 4. (a) Write short note on laser and magnetic strip technology. [6]
 - (b) The resistivity of copper at 300°K is $1.56 \times 10^{-8} \Omega m$. With 2 atomic percent nickel, the resistivity of alloy of copper nickel becomes $4.06 \times 10^{-8} \Omega m$. With 3 atomic percent

[5459]-152

silver, the resistivity of alloy of copper-silver be	comes
$1.98 \times 10^{-8} \ \Omega m$. What will be the resistivity of alloy of	copper
for 4 atomic percent of nickel and 3 atomic percent of	silver
at 300°K ?	[6]

- **5.** (a) Explain State Of Charge (SOC), Depth Of Discharge (DOD), energy density, power density in case of batteries. [8]
 - (b) Explain with neat diagram Single Electron Transistor. [5]

Or

- **6.** (a) Explain with neat diagram, chemical reaction and applications of:
 - (i) ZEBRA Battery
 - (ii) Nickel Cadmium Battery.
 - (b) Describe with neat diagrams:

[7]

- (i) Molecular Machines
- (ii) Nano wires
- 7. (a) With neat sketch, explain how flux density is measured with the help of Gauss meter. [6]
 - (b) Enlist the apparatus along with the specifications to find the dielectric strength of transformer oil with a neat diagram. As per IS, what should be the gap spacing between the two electrodes?

[5459]-152 3 P.T.O.

- 8. (a) With neat circuit diagram and phasor diagram, explain measurement of dielectric loss angle (tan δ) by Schering Bridge as per IS 13585-1994.
 - (b) Enlist the apparatus along with the specifications to find the dielectric strength of solid insulating material with a neat diagram. Which materials have you tested in your High Voltage laboratory?

 What was the material used for the electrodes? [7]

[5459]-152

4 Alexandra and a serious of the ser