ALGEBRA III (Doble grado Informática-Matemáticas) Prueba parcial (31/10/2019)

EJERCICIOS

- (1) [2.5 puntos] Considerar el cuerpo de números $E = \mathbb{Q}(\sqrt[4]{2}, i)$.
 - (a) Determinar el grado de la extensión E/\mathbb{Q} y una base de ella. Discutir también su normalidad.
 - (b) Describe los elementos del grupo $G = G(E/\mathbb{Q})$ y determina sus respectivos órdenes.
 - (c) Prueba que $G \cong D_4 = \langle r, s \mid r^4 = 1 = s^2, sr = r^3 s \rangle$.
 - (d) Determina a que subgrupos de G corresponden, por la Conexión de Galois, los subcuerpos $\mathbb{Q}(\sqrt[4]{2} + i\sqrt[4]{2})$ y $\mathbb{Q}(\sqrt[4]{2} - i\sqrt[4]{2})$.
 - (c) Determina a que subcuerpos de E corresponden, por la conexión de Galois, los subgrupos cíclicos de G.
- (2) [2.5 puntos] Sea $z = z_{10}$.
 - (a) Determina el polinomio Φ_{10} , el grado de la extensión $\mathbb{Q}(z)/\mathbb{Q}$ y muestra una base de la misma.
 - (b) Calcula, expresando el resultado en función la base, la suma $(z+z^9)$ +
 - (z^3+z^7) y el producto $(z+z^9)(z^3+z^7)$. (c) Argumenta que $z+z^9$ y z^3+z^7 son las raíces del polinomio x^2-x-1 y entonces que $\cos \frac{\pi}{5} = \frac{1+\sqrt{5}}{4}$ y que $\cos \frac{3\pi}{5} = \frac{1-\sqrt{5}}{4}$. (d) Describe el grupo $G(\mathbb{Q}(z)/\mathbb{Q})$ y el retículo de sus subgrupos.

 - (e) Describe el retículo de subcuerpos de $\mathbb{Q}(z)$.

Tiempo: 1 hora y 45 minutos.

$$\frac{2.a}{\Phi_{1}\Phi_{2}\Phi_{5}} = \frac{X^{10}-1}{X^{10}(X^{11})} = X^{1}-X^{2}+X^{2}-X+1$$

$$\frac{1}{\Phi_{1}\Phi_{2}\Phi_{5}} = \frac{X^{10}-1}{X^{10}(X^{11})} = X^{1}-X^{2}+X^{2}-X+1$$

$$\frac{1}{\Phi_{1}\Phi_{2}\Phi_{5}} = \frac{1}{\Phi_{0}} = \frac{1}{\Phi_{0$$

(c) En general, el polinomio mónico de grado 2 que tiene como raíces α y β es $(x-\alpha)(x-\beta)=x^2-(\alpha+\beta)x+\alpha\beta.$

(d)
$$G = G(Q(t)/Q) \approx Z_{10} = \frac{1}{3} I_{1}3_{1}7_{1}, 9 \Rightarrow G(Q(t)/Q) = \frac{1}{3} G(Q(t)/Q) \Rightarrow Q(z) \rightarrow Q(z)$$

$$Q = Inmersiones tal que G(z) = Z', i = 1,3,7,9$$

4617

(e)

Ejercicio 7. Sea n > 2 y $z = z_n$ la raíz n-ésima primitiva de la unidad.

- (1) Observando que $(z+\bar{z})=2\cos\frac{2\pi}{n}$, probar que z y \bar{z} son las raíces del polinomio $x^2-2\cos\frac{2\pi}{n}x+1\in\mathbb{R}[x]$.
- (2) Argumentar que $\mathbb{Q}(\cos\frac{2\pi}{n}) \leq \mathbb{Q}(z)$, pero $\mathbb{Q}(\cos\frac{2\pi}{n}) \neq \mathbb{Q}(z)$.
- $(3)\ \operatorname{Probar}\ \operatorname{que}\ \operatorname{Irr}(z,\mathbb{Q}(\cos\tfrac{2\pi}{n})) = x^2 2\cos\tfrac{2\pi}{n}\,x + 1\ y\ \operatorname{que}\ [\mathbb{Q}(z):\mathbb{Q}(\cos\tfrac{2\pi}{n})] = 2.$
- (4) Probar que $[\mathbb{Q}(\cos \frac{2\pi}{n}):\mathbb{Q}] = \varphi(n)/2$ y que el polinomio $Irr(\cos \frac{2\pi}{n},\mathbb{Q})$ es de grado $\varphi(n)/2$.

ÎNDICACIÓN DE SOLUCIÓN: (1) Puesto que $z^{-1}=\overline{z}$, tenemos las igualdades $z\overline{z}=1$ y $z+\overline{z}=2\cos(\frac{2\pi}{n})$, de donde el z y \overline{z} son las raíces raíz del polinomio $x^2-2\cos(\frac{2\pi}{n})x+1$.

- $(2)\cos(\frac{2\pi}{n})=\frac{1}{2}(z+\bar{z})=\frac{1}{2}(z+z^{n-1})\in\mathbb{Q}(z).$ Los cuerpos son distintos pues $\mathbb{Q}(\cos\frac{2\pi}{n})\leq\mathbb{R}$ y $z\notin\mathbb{R}$ al ser $n\geq3.$
- (4) Se deduce de los apartados anteriores, teniendo en cuenta la torre