Class 7: Machine Learning

Farnam Tavakoli (PID:A17628539)

#Clustering Methods

The broad goal here is to find groupings (clusters) in your input data.

 $\#\#\mathrm{Kmeans}$

First, let's make up some data to cluster.

```
x <- rnorm(1000)
hist(x)</pre>
```


Make a vector of length 60 with 30 points centered at -3 and 30 points centered at +3

```
tmp <- c(rnorm(30, mean = -3), rnorm(30, mean = 3))
```

I will now make a wee x and y dataset with 2 groups of points.

```
rev( c(1:5) )
```

[1] 5 4 3 2 1

```
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```



```
k <- kmeans(x, centers=2)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
2 3.025082 -3.229090
Clustering vector:
 Within cluster sum of squares by cluster:
[1] 49.04853 49.04853
(between_SS / total_SS = 92.3 %)
Available components:
[1] "cluster"
             "centers"
                                             "tot.withinss"
                        "totss"
                                  "withinss"
[6] "betweenss"
             "size"
                        "iter"
                                  "ifault"
   Q. From your result object k how many points are in each cluster?
 k$size
[1] 30 30
   Q. what "component" of your result ov=bject details the cluster membership?
 k$cluster
Q. Cluster centers?
 k$centers
1 -3.229090 3.025082
2 3.025082 -3.229090
   Q. Plot of our clustering results
```

plot(x, col=k\$cluster)

points(k\$centers, col= "blue", pch=15, cex=2)

We can cluster into 4 groups

```
# kmeans
k4 <- kmeans(x, centers= 4)
# plot results
plot(x, col = k4$cluster)</pre>
```


A big limitation of kmeans is that it does what you ask even if you ask for silly clusters.

Hierarchial Clustering

The main base R function for Hierarchial Clustering is hclust(). unlike kmeans(). you can not just pass it your data as input. you first need to calculate a distance matrix.

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

Use plot() to view results

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

To make the "cut" and get our cluster membership vector we can use cutree() function.

```
grps <- cutree(hc, h=10)
grps</pre>
```

Make a plot of our data colored by hclust results.

```
plot(x, col=grps)
```


Pricipal Componet Analysis (PCA)

Here we will do Principal Component Analysis (PCA) on some food data from UK.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh fruit	1102	1137	957	674

Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

```
#rownames(x) <- x[, 1]
#x <- x[, -1]
#x

pairs(x, col=rainbow(10), pch=16)</pre>
```


PCA to the rescue

The main "base" R function for PCA is called prcomp(). Here we need to take the transpose of our input

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 2.921e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

Q. How much variance is captured in 2PCs?

96.5%

To make our main "PC Score Plot" or "PC1 vs. PC2 plot", (a.k.a "PC plot", or "ordination plot".)

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

We are after the pca\$x result component to make our main PCA plot.

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

```
mycols <- c("orange", "red", "blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col=mycols, pch=16, xlab = "PC1 (67.4%)", ylab = "PC2 (29%)")</pre>
```


Another important result from PCA is how the original variables (in this case the foods) contribute to the PCs.

This is contained i the pca\$rotation object - folks often call this the "loading" or "contributions" to the PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319

```
      Beverages
      -0.026187756
      -0.030560542
      -0.04135860
      -0.018382072

      Soft_drinks
      0.232244140
      0.555124311
      -0.16942648
      0.222319484

      Alcoholic_drinks
      -0.463968168
      0.113536523
      -0.49858320
      -0.273126013

      Confectionery
      -0.029650201
      0.005949921
      -0.05232164
      0.001890737
```

#higher values mean more contributions

We can make a plot along PC1.

```
library(ggplot2)

contrib <- as.data.frame(pca$rotation)

ggplot(contrib) +
  aes(PC1, rownames(contrib))+
  geom_col()</pre>
```

