

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 3

Название: Исследование дешифраторов

Дисциплина: <u>Архитектура ЭВМ</u>

Студент	ИУ7-46Б		А.Д. Ковель
	(Группа)	(Подпись, дата	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Подпись, дата) (И.О. Фамилия)

0. Цель Работы

Изучение принципов построения методов синтеза дешифраторов; макетирование и экспериментальное исследования дешифраторов

1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Т- триггерах. Проверить работу счётчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Задержка: 28.7 нс. Время, через которое закончатся все переходные процессы в триггере, и он будет готов к очередному импульсу, составляет удвоенное время

0047

0040

710.526 ns

739.234 ns

28.708 ns

Stop

Reset

Reverse

T2 ← →

T2-T1

Clock

Clocks/Div

Set...

10

External (C) Qualifier (Q)

Trigger

Set...

Qualifier (T)

задержки, т.е. \sim 57 ns. Максимальная частота счета, таким образом, составляет $1/(20 \text{ ns}) = 17 \text{ M}\Gamma$ ц.

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Вариант: 8: 0,1,2,3,4,8,9,10,11,12

No	Q_3	Q_2	Q_1	Q_0	Q3	Q2	Q1	Q0	J3	K ₃	J2	K_2	J_1	K_1	J_0	K_0
					*	*	*	*								
0	0	0	0	0	0	0	0	1	0	*	0	*	0	*	1	*
1	0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
2	0	0	1	0	0	0	1	1	0	*	0	*	*	0	1	*
3	0	0	1	1	0	1	0	0	0	*	1	*	*	1	*	1
4	0	1	0	0	1	0	0	0	1	*	*	1	0	*	0	*
8	1	0	0	0	1	0	0	1	*	0	0	*	0	*	1	*
9	1	0	0	1	1	0	1	0	*	0	0	*	1	*	*	1
10	1	0	1	0	1	0	1	1	*	0	0	*	*	0	1	*
11	1	0	1	1	1	1	0	0	*	0	1	*	*	1	*	1
12	1	1	0	0	0	0	0	0	*	1	*	1	0	*	0	*

J3 = Q2, K3 = Q2

$$J1 = Q0, K1 = Q0$$

$$J0 = -Q2$$
 $K0 = 1$

J2 = Q1*Q0, K2 = 1

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

- **4.** Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика:
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Полученная задержка равна 59.8 ns. Время, через которое закончатся все переходные процессы в триггере, и он будет готов к очередному импульсу, составляет удвоенное время задержки, т.е. ~ 100 ns. Максимальная частота счета, таким образом, составляет $1/(100 \text{ ns}) = 0.5 \text{ M}\Gamma$ ц.

5. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160. Проверить работу счётчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Задержка: 9.8 нс.

Частота: 5 МГц

- 6. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета.
- 1. Схема наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями

2. Схема наращивания разрядности счетчиков ИЕ9 до четырех секций по структуре «быстрого» счета

Вывод по схеме наращивания: Для ускорения счета нужно подавать напряжение не из источника, а из выхода первого счетчика.

Вывод: в результате выполнения работы были изучены принципы построения счетчиков, получены навыки синтеза синхронных счетчиков, были экспериментально оценены динамические параметры счетчиков, изучены способы наращивания разрядности синхронных счетчиков.

Контрольные вопросы

- 1. Что называется счётчиком? Счетчик операционный узел ЭВМ, предназначенный для выполнения счета, кодирования в определенной системе счисления и хранения числа сигналов импульсного типа, поступающих на его счетный вход.
- 2. Что называется коэффициентом пересчёта? Модуль счета или коэффициент пересчета пересчетной схемы это число входных сигналов, которое возвращает пересчетную схему в начальное состояние, в качестве которого может быть принято любое ее состояние.
- 3. Перечислить основные классификационные признаки счётчиков.
 - По значению модуля счёта (двоичные, двоично-кодированные, с одинарным кодированием)
 - По направлению счёта (суммирующие, вычитающие, рекурсивные)
 - По способу организации переноса (последовательные, сквозные, параллельные, групповые)
 - По порядку изменения состояний (естественные, произвольные)
 - По способу управления переключением триггеров (синхронные, асинхронные)
- 4. Указать основные параметры счётчиков.
 - Модуль счета
 - Емкость счётчика
 - Максимальная частота счёта
 - времена задержек распространения трактов: счетный вход выход Qi, счетный вход выход переноса (заема), вход параллельной записи выход Qi, вход R выход Qi.
 - минимальные длительности импульсов счета, установки в 0, параллельной записи.
- 5. Что такое время установки кода счётчика? Время задержки распространения сигнала от счетного входа счетчика до выходов его триггеров, на которых формируется новое состояние

- счетчика, равно времени задержки распространения сигнала любого триггера счетчика от С- входа до его выхода
- 6. Объяснить работу синхронного счётчика с параллельным переносом, оценить его быстродействие. В синхронном двоичном суммирующем счетчике с параллельным переносом, построенном на ЈК-триггерах, функции возбуждения (они же функции переносов) формируются независимо друг от друга одновременно, т.е. параллельно
- 7. Объяснить методику синтеза синхронных счётчиков на двухступенчатых JK- и D-триггерах
- Определяем количество триггеров n1.
- Составляем обобщенную таблицу функционирования счетчика (табл. 1), пользуясь матрицами переходов (они называются также характеристическими таблицами) для ЈК- и D-триггеров
- Минимизация функций возбуждения выполняется с помощью известных методов, например, по методу Квайна с применением карт Карно. При минимизации следует учитывать неиспользуемые состояния счетчика.
- Реализуем комбинационную часть счетчика в базисе И, ИЛИ, НЕ.