ÓPTIMO LOCAL

Una función de dos variables f(x,y), tiene un máximo local en $(a,b) \in D$ si $f(x,y) \le f(a,b)$ en todos los puntos (x,y) en algún entorno con centro (a,b).

En ese caso, a f(a,b) se le llama máximo local o relativo.

Si $f(x,y) \ge f(a,b)$ para todo punto (x,y) en dicho entorno, entonces f(a,b) es un mínimo local o relativo.

Si las desigualdades de la definición anterior se cumplen para todos los puntos (x, y) en el dominio de f, entonces f tiene un máximo absoluto o mínimo absoluto en (a,b).

CONDICIÓN NECESARIA

Sea $f:D\subset R^2\to R$ una función derivable tal que en $P=(a,b)\in D$, f tiene un extremo local (máximo o mínimo), entonces

$$\frac{\partial f(P)}{\partial x} = 0 \text{ y } \frac{\partial f(P)}{\partial y} = 0$$

Los puntos P en donde $\nabla f(P) = 0$ se conocen como puntos críticos.

Definición: Si $f:D\subset R^2\to R$ y $P=(a,b)\in D$, entonces si $\nabla f(P)=0$ o $\nabla f(P)$ no existe, decimos que P es un punto crítico o punto estacionario.

CONDICIÓN SUFICIENTE

Cálculo práctico de los extremos relativos

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función derivable tal que $P = (a,b) \in D$ es un punto crítico. Se forma la matriz hessiana:

$$H = \begin{pmatrix} \frac{\partial^2 f(x,y)}{\partial x^2} & \frac{\partial^2 f(x,y)}{\partial x \partial y} \\ \frac{\partial^2 f(x,y)}{\partial x \partial y} & \frac{\partial^2 f(x,y)}{\partial y^2} \end{pmatrix} = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$$
(matriz simétrica)

y se calcula el valor del determinante: $\det[Hf(x,y)] = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^2$

el cual se evalúa en cada uno de los puntos críticos (candidatos)

- a) Sidet $\lceil Hf(P) \rceil > 0$, P es un
 - máximo cuando $\frac{\partial^2 f(P)}{\partial x^2} < 0$
 - mínimo cuando $\frac{\partial^2 f(P)}{\partial x^2} > 0$
- b) Si $\det[Hf(P)] < 0$, no hay extremo en P (punto de ensilladura).
- c) Si $\det \left[Hf(P) \right] = 0$, caso dudoso (P puede ser extremo o no).