L1 – 1.5 Average Rates of Change

MHF4U

Part 1: Terminology

: a measure of the change in one quantity (the dependent variable) with respect to a change in another quantity (the independent variable).

______: a line that passes through two points on the graph of a relation

______: a line that touches the graph of a relation at only one point within a small interval

An ______is a change that takes place over an _____, while an _____. We will

focus an average rates of change in this section.

An average rate of change corresponds to the slope of a ______ between two points on a curve.

Average rate of change = slope of secant = $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$

Part 2: Average Rates of Change from a Table or Graph

Note: All ______ relationships have a constant rate of change. Average rate of change calculations over different intervals of the independent variable give the _____ result.

We will be focusing on ______relationships. Non-linear relationships do not have a constant rate of change. Average rate of change calculations over different intervals of the independent interval give ______ results.

Example 1: Andrew drains water from a hot tub. The tub holds 1600 L of water. It takes 2 hours for the water to drain completely. The volume V, in Liters, of water remaining in the tub at various times t, in minutes, is shown in the table and graph.

a) Calculate the average rate of change in volume during each of the following time intervals.

i)
$$30 \le t \le 90$$

Time (min)	Volume (L)		
0	1600		
10	1344		
20	1111		
30	900		
40	711		
50	544		
60	400		
70	278		
80	178		
90	100		
100	44		
110	10		
120	0		

iii) 90 ≤ 110		
iv) $110 \le 120$		
b) Does the tub drain at a constant rate?		

A _____ rate of change indicates the quantity of the dependent variable is decreasing over the interval. The secant line has a negative slope.

A _____ rate of change indicates the quantity of the dependent variable is increasing over the

interval. The secant line has a positive slope.

Part 2: Average Rate of Change from an Equation

Example 2: A rock is tossed upward from a cliff that is 120 meters above the water. The height of the rock above the water is modelled by $h(t) = -5t^2 + 10t + 120$, where h is the height in meters and t is the time in seconds. Calculate the average rate of change in height during each time intervals.

a)
$$0 \le t \le 1$$

b)
$$1 \le t \le 2$$

c)
$$2 \le t \le 3$$