Алгоритм элиминации лямбда-абстрактора и его разъяснение. Пример.

Билет: 6, 18, 24

λ-терм – классический объект λ-исчисления.

 $I = \lambda x \cdot x$ – тождественный комбинатор

 $S = \lambda xyz.xz(yz)$ - коннектор

Теорема: Любой λ-терм можно преобразовать в эквивалентный ему λ-терму, состоящиму только из переменных и комбинаторов S и K, не используя абстракторов.

Следовательно, согласно тезису Черча, любая вычислимая функция может быть представлена комбинатором без абстракторов. Доказательство можно провести используя приведенное ниже преобразование Т[Е], которое преобразует заданный λ-терм в эквивалентный ему комбинатор.

Правила алгоритма элиминации λ -абстрактора T-преобразования:

abilia ali opitika simkimadini k astipaktopa i inpesspasiani.		
	Процессы элиминации λ – абстрактора	Условие применения
1	$T[x] \rightarrow x$	х - переменная
2	$T[E_1E_2] \to T[E_1]T[E_2]$	E_1 и E_2 - термы
3	$T[\lambda x. E] \to KT[E]$	x - свободная переменная терма E,
		К - канцелятор
4	$T[\lambda x. x] \to I = SKK$	S - коннектор
5	$T[\lambda xy. E] \equiv T\lambda x. (\lambda y. E) \rightarrow T\lambda x. T[\lambda y. E]$	х - свободная переменная терма Е
6	$T[\lambda x. (E_1 E_2)] \rightarrow (ST[\lambda x. E_1]T[\lambda x. E_2])$	E_1 и E_2 - термы
7	$T[\lambda x. (Ex)] \to T[E]$	х - свободная переменная терма Е

Пример:

Преобразуем λ-терм λ ху.ух в соответствующий комбинатор:

$$T[\lambda x. \lambda y(yx)] \xrightarrow{\text{правило (5)}} T[\lambda x T[\lambda y. (yx)] \xrightarrow{(6)} T[\lambda x. (ST[\lambda y. y]T[\lambda y. x] \xrightarrow{(4)} T[\lambda x. (ST[\lambda y. y]T[\lambda y. x])] \xrightarrow{(3)} T[\lambda x. \left(SI(KT[x])\right)] \xrightarrow{(1)} T[\lambda x. \left(SI(Kx)\right)] \xrightarrow{(6)} ST[\lambda x. SI]T[\lambda x. (Kx)] \rightarrow E$$
Сли x – переменная или один из комбинаторов SKI

$$\xrightarrow{(3),(6)} (KT[SI])(ST[\lambda x. K]T[\lambda x. x]]) \xrightarrow{(1)+(2),(2)+(3),(4)} S(K(SI))(S(KK)I) = X$$

Проверку полученного комбинатора можно произвести, применив его к термам а и b:

$$Xab \rightarrow_{\beta} S(K(SI))(S(KK)I)ab \rightarrow_{\beta} K(ST)a(S(KK)Ia)b \rightarrow_{\beta} Ib(S(KK)Iab) \rightarrow_{\beta} b(S(KK)Iab) \rightarrow_{\beta} b(KKa(Ia)b) \rightarrow_{\beta} b(K(Ia)b) \rightarrow_{\beta} b(Ia) \rightarrow_{\beta} ba$$