Lógica – Grado en Ingeniería Informática, Grado en Matemáticas e Informática 20 de enero de 2016

Repesca de LP (Lógica Proposicional)

Ejercicio 1.1. Formalizar en el lenguaje de la lógica proposicional

(1,25 puntos)

(a) el siguiente enunciado:

Compraré leche entera o leche semidesnatada si voy al súper y no vas tú

(b) la siguiente argumentación:

El Liverpool gana la Premier si y sólo si gana (su partido) y el Chelsea pierde o empata (*). Chelsea y United no pueden ganar los dos al mismo tiempo (**). El United gana a no ser que el árbitro de su partido sea Martin Atkinson. Por tanto, el Liverpool no gana la Premier sólo si el árbitro del United es Martin Atkinson

- (*) se considera que perder o empatar es equivalente a no ganar
- (**) por ejemplo porque juegan el uno contra el otro (esto no hay que formalizarlo)

Solución

Syo Stu Le Lsd	significa significa significa significa	"yo voy al súper" "tú vas al súper" "compro leche entera" "compro leche semidesnatada" ¬Stu ⇒ Le ∨ Lsd
Syon Stu — Le v Esu		
(b)		
Lp	significa	"el Liverpool gana la Premier"
Lg Cg Ug Ua	significa significa significa significa	"el Liverpool gana su partido" "el Chelsea gana su partido" "el United gana su partido" "el árbitro del United es Martin Atkinson"
$Lp \iff Lg \land \neg Cg$		
$\neg Cg \lor \neg Ug$		
$\neg Ua \Longrightarrow Ug$		

 $\neg Lp \Longrightarrow Ua$

Ejercicio 2. Demostrar que no existe relación de **consecuencia lógica** en la siguiente argumentación, justificando adecuadamente todos los pasos. (Nota: No pueden utilizarse tablas de verdad para llevar a cabo la demostración).

$$\{p \rightarrow q \land \neg r, \neg r \rightarrow s \lor \neg p\} \models \neg p \lor r$$
 (2,5 puntos)

SOLUCION:

Utilizamos interpretaciones para llevar a cabo la demostración.

Buscamos un contra-modelo de la formula, es decir una interpretación que haga verdaderas las premisas y falsa la conclusión:

i(p → q ∧ ¬r) = V sii i(p) = F i(p) = V i(q ∧ ¬r) = V sii y i(q) = V y i(¬r) = V sii i(r) = F

i(¬r → s v ¬p) = V sii

$$i(¬r) = F \text{ sii } i(r) = V$$

$$i(¬r) = V \text{ sii } i(r) = F$$
o bien
$$y \text{ i(s v ¬p)} = V \text{ sii}$$

$$i(s) = V$$
o bien
$$i(¬p) = V \text{ sii } i(p) = F$$

$$i(\neg p \lor r) = F \quad \text{sii}$$

$$i(\neg p) = F \quad \text{sii} \quad i(p) = V$$

$$i(r) = F$$

Para que la conclusion sea falsa (3), obligaroriamente se tiene que cumplir que i(p)=V y i(r)=F.

Para que la primera premisa sea verdadera (1), y sea compatible con las condiciones establecidas para la conclusion, se tiene que cumplir que i(p)=V, i(q)=V y i(r)=F.

Para que la segunda premisa sea verdadera (2), y sea compatible con las condiciones establecidas para la conclusion y para la primera premisa, debe cumplirse que i(s)=V y i(r)=F.

Podemos apreciar que es posible encontrar contra-modelo que hace verdaderas las premisas y falsa la conclusión, que corresponde a la siguiente interpretación: i(p) = V, i(q) = V, i(r) = F, i(s) = V. Dado que hemos encontrado un contra-modelo, queda demostrado que no existe relación de consecuencia lógica en la argumentación.

Ejercicio 3. Demostrar la corrección de la siguiente estructura deductiva mediante el cálculo de **deducción natural** (justificando cada paso):

$$T \left[\neg p \leftrightarrow \neg q, \neg r \leftrightarrow \neg q, s \vee r \right] | -p \vee s \qquad (2.5 \text{ puntos})$$

Solución:

1. ¬p → ¬q	Premisa
2. ¬q ↔ ¬r	Premisa
3. s v r	Premisa
4. $\neg (p \lor s)$	Supuesto
5. $\neg q \rightarrow \neg r$	E ↔ (2)
6. $\neg p \rightarrow \neg r$	Transitividad (1,5)
7. ¬p∧¬s	Teorema Intercambio (4) (de Morgan)
8. ¬p	E∧ (7)
9. ¬r	E→ (6)
10. ¬s	E∧ (7)
11. r	Corte (3,10)
12. r∧¬r	I _^ (11,9)
13. ¬¬ (p ∨ s)	I¬ (4)
14. p v s	E- (13)

Ejercicio 4. Demostrar por resolución que la siguiente estructura deductiva es correcta:

$$T[p \leftrightarrow (\neg q \land r), r \rightarrow q, \neg (s \land \neg p)] \mid \neg s$$
 (2,5 puntos)

Solución:

C1: ¬p v ¬q C2: ¬p v r C3: q v ¬r v p C4: ¬r v q C5: ¬s v p

C6: s

R1: p C5, C6 R2: ¬q R1, C1 R3: ¬r R2, C4 R4: ¬p R3, C2 R5: □ R1, R4