> Hazem Shehata

Outline

Search

Introduction Greedy best-first

A*
Heuristic Functions

Requirement & Reading Material

CSE 411: Artificial Intelligence (Elective Course #6)

400 Level, Mechatronics Engineering 2nd Term 2016/2017, Lecture #5

Hazem Shehata

Dept. of Computer & Systems Engineering Zagazig University

March 27th, 2017

Credits to Dr. Mohamed El Abd for the slides

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Adminstrivia

Notes

- Assignment #2:
 - To be released on Thursday (Due 1 week after).
 - Constructing search trees on paper.

Course Info:

- Website: http://hshehata.github.io/courses/zu/cse411/
- Office hours: Sunday 11:30am 12:30pm

> Hazem Shehata

Outlin

Informed Search

Introduction Greedy best-first

A* Heuristic Functions

Requiremer & Reading Material

Adminstrivia

Notes

- Assignment #2:
 - To be released on Thursday (Due 1 week after).
 - Constructing search trees on paper.
- Assignment #3:
 - To be released next week.
 - Implementing search algorithms in Python.

Course Info:

- Website: http://hshehata.github.io/courses/zu/cse411/
- Office hours: Sunday 11:30am 12:30pm

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Search

Types of search algorithms

• Uninformed Search:

Only has the information provided by the problem formulation (initial state, available actions, transition model, goal test, and step/path cost).

> Hazem Shehata

Outlin

Search

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Search

Types of search algorithms

- Uninformed Search:
 - Only has the information provided by the problem formulation (initial state, available actions, transition model, goal test, and step/path cost).
 - Algorithms: BFS, DFS, DLS, IDS, UCS.

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Search

Types of search algorithms

Uninformed Search:

Only has the information provided by the problem formulation (initial state, available actions, transition model, goal test, and step/path cost).

Algorithms: BFS, DFS, DLS, IDS, UCS.

Informed Search:

Has additional information that allows it to judge the promise of an action, *i.e.*, the estimated cost from a state to a goal.

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

A*
Heuristic Functions

Requirements & Reading Material

Search

Types of search algorithms

Uninformed Search:

Only has the information provided by the problem formulation (initial state, available actions, transition model, goal test, and step/path cost).

Algorithms: BFS, DFS, DLS, IDS, UCS.

Informed Search:

Has additional information that allows it to judge the promise of an action, *i.e.*, the estimated cost from a state to a goal.

• Algorithms: GBFS, A*.

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

Greedy best-fi A*

Heuristic Functions

Requirements & Reading Material

Outline

4

Informed Search

2 Requirements & Reading Material

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

Heuristic Functions

Requirements & Reading Material

Outline

Informed Search

Requirements & Reading Material

March 27th, 2017 5

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

Α*

Heuristic Functions

Requirements & Reading Material

Informed Search

Introduction

 Uninformed search algorithms are systematic but inefficient.

> Hazem Shehata

Outline

Search

Greedy best-first

Greedy best-tirs

Heuristic Functions

Requiremen & Reading Material

Informed Search

Introduction

- Uninformed search algorithms are systematic but inefficient.
- They just repeat a cycle of:
 - Choosing the next node to expand.
 - Check whether it is the goal.
 - If it is not, expand the node.

> Hazem Shehata

Outline

Search

Introduction
Greedy best-first

Greedy best-fire

A*
Heuristic Functions

Requirement & Reading

Informed Search

Introduction

- Uninformed search algorithms are systematic but inefficient.
- They just repeat a cycle of:
 - Choosing the next node to expand.
 - Check whether it is the goal.
 - If it is not, expand the node.
- Nodes are chosen in a specific order (imposed by a search strategy), which is not necessarily the "best" order in terms of getting closer/faster to the goal.

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

7

Introduction

 Would like to use additional knowledge so that "better" nodes are expanded/explored first.

> Hazem Shehata

Outline

Search

Introduction
Greedy best-first

A+

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Would like to use additional knowledge so that "better" nodes are expanded/explored first.
- In terms of pseudo-code, we want to order the frontier so that "better" nodes get popped first.

March 27th, 2017 7

> Hazem Shehata

Introduction Greedy best-first

Heuristic Functions

& Reading

Informed Search

Introduction

- Would like to use additional knowledge so that "better" nodes are expanded/explored first.
- In terms of pseudo-code, we want to order the frontier so that "better" nodes get popped first.
- We will introduce an **evaluation function** f(n) that indicates the desirability of considering node n next for exploration and expansion.

March 27th, 2017 7

> Hazem Shehata

Introduction Greedy best-first

Heuristic Functions

& Reading

Informed Search

Introduction

- Would like to use additional knowledge so that "better" nodes are expanded/explored first.
- In terms of pseudo-code, we want to order the frontier so that "better" nodes get popped first.
- We will introduce an **evaluation function** f(n) that indicates the desirability of considering node n next for exploration and expansion.
- Nodes with a better f(n) are always considered first. This approach is called **best-first search**.

March 27th, 2017 7

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

A*
Heuristic Functions

Requirement & Reading

Informed Search

Introduction

- Would like to use additional knowledge so that "better" nodes are expanded/explored first.
- In terms of pseudo-code, we want to order the frontier so that "better" nodes get popped first.
- We will introduce an **evaluation function** f(n) that indicates the desirability of considering node n next for exploration and expansion.
- Nodes with a better f(n) are always considered first. This approach is called **best-first search**.
- How should we compute f(n) ?

> Hazem Shehata

Outlin

Search

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Uniform-cost search orders the frontier according to the path cost g(n):
 - Path cost is distance from root to state *n*.

> Hazem Shehata

Outlin

Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirement
& Reading
Material

Informed Search

Introduction

- Uniform-cost search orders the frontier according to the path cost g(n):
 - Path cost is distance from root to state *n*.
- So, uniform-cost search uses an evaluation function f(n) = g(n).

March 27th, 2017

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

A*
Heuristic Functions

Requirement & Reading

Informed Search

Introduction

- Uniform-cost search orders the frontier according to the path cost g(n):
 - Path cost is distance from root to state *n*.
- So, uniform-cost search uses an evaluation function f(n) = g(n).
- The path cost g(n) only accounts for cost to reach n. Hence, uniform-cost search is not goal directed/oriented.

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

A+

Heuristic Functions

Requirements & Reading Material

Informed Search

Introduction

Would also like to consider cost from node n to the goal.

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Would also like to consider cost from node n to the goal.
- More generally:

We want the search algorithm to be able to *estimate* the path cost from the current node to the goal.

> Hazem Shehata

Outline

Search

Greedy best-first

Greedy best-fil

A*
Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Would also like to consider cost from node n to the goal.
- More generally:
 We want the search algorithm to be able to estimate the path cost from the current node to the goal.
- This estimate is called a heuristic function.

> Hazem Shehata

Outline

Search

Introduction Greedy best-first

Greedy best-fir

A*

Requirement & Reading Material

Informed Search

Introduction

- Would also like to consider cost from node n to the goal.
- More generally:
 We want the search algorithm to be able to estimate the path cost from the current node to the goal.
- This estimate is called a **heuristic function**.
- Cannot be done based on problem formulation:
 Need to add additional information.

> Hazem Shehata

Outlin

Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

Introduction

• Path cost g(n) is an exact value.

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Path cost g(n) is an exact value.
- Heuristic function h(n):
 - *h*(*n*): estimated cost from node *n* to goal.
 - h(n1) < h(n2) means it is probably cheaper to get to the goal from n1.
 - h(goal) = 0.

> Hazem Shehata

Outlin

Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Path cost g(n) is an exact value.
- Heuristic function h(n):
 - h(n): estimated cost from node n to goal.
 - h(n1) < h(n2) means it is probably cheaper to get to the goal from n1.
 - h(goal) = 0.
- Evaluation function f(n):
 - f(n) = g(n): Uniform-cost search.
 - f(n) = h(n): Greedy best-first search.
 - f(n) = g(n) + h(n): A* search.

> Hazem Shehata

Outline

Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Greedy best-first search

 GBFS algorithm always explores and expands the node judged to be closest to goal.

> Hazem Shehata

Outline

Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Greedy best-first search

- GBFS algorithm always explores and expands the node judged to be closest to goal.
- It uses f(n) = h(n) and ignores the path cost g(n) entirely.

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

Greedy best-first search

- GBFS algorithm always explores and expands the node judged to be closest to goal.
- It uses f(n) = h(n) and ignores the path cost g(n) entirely.
- Consider it to be the complement of uniform-cost search.

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

Greedy best-first search

- GBFS algorithm always explores and expands the node judged to be closest to goal.
- It uses f(n) = h(n) and ignores the path cost g(n) entirely.
- Consider it to be the complement of uniform-cost search.
- GBFS algorithm is identical to UNIFORM-COST-SEARCH except that h is used instead of g.

> Hazem Shehata

Outline

Informed Search

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Search Algorithms

Greedy best-first search algorithm (tree version)

function GREEDY-BEST-FIRST-SEARCH(problem) returns a solution, or failure

node ← node with STATE=problem.INITIAL-STATE, PATH-COST=0

frontier ← priority queue ordered by heuristic h, with node as only element
loop do

if frontier.EMPTY?() then return failure

node ← frontier.POP() /* choose lowest-cost node in frontier */

if problem.GOAL-TEST(node.STATE) then return node.SOLUTION()

for each action in problem.ACTIONS(node.STATE) do

child ← node.CHILD-NODE(problem, action)

frontier.INSERT(child, h(child))

> Hazem Shehata

Outline

Search

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Search Algorithms

Greedy best-first search algorithm (graph version)

function GREEDY-BEST-FIRST-SEARCH(problem) returns a solution, or failure node ← node with STATE=problem.INITIAL-STATE, PATH-COST=0 frontier \leftarrow priority queue ordered by heuristic h, with node as only element explored ← an empty set loop do if frontier. EMPTY?() then return failure $node \leftarrow frontier.Pop()$ /* choose lowest-cost node in frontier */ if problem.GOAL-TEST(node.STATE) then return node.SOLUTION() add node.STATE to explored for each action in problem. ACTIONS (node. STATE) do $child \leftarrow node.Child-Node(problem, action)$ if child. STATE is not in explored and not in frontier then frontier.INSERT(child, h(child) **else if** *child*.STATE is in *frontier* with higher | *h*-value | **then**

March 27th, 2017

replace that frontier node with child

> Hazem Shehata

Outline

Informe

Introduction
Greedy best-first

A* Heuristic Functions

Requirements & Reading Material

Informed Search

GBFS example - Romania map

Find a route from Arad to Bucharest.

straight-line distances	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80 199
Vaslui	
Zerind	374

> Hazem Shehata

Outline

Informe Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

GBFS example - Romania map

Find a route from Arad to Bucharest.

March 27th, 2017

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

Δ*

Heuristic Functions

Requirements & Reading Material

Informed Search

Greedy best-first search

Not optimal.

> Hazem Shehata

Outline

Search

Greedy best-first

Α*

Heuristic Functions

Requirement & Reading Material

Informed Search

Greedy best-first search

- Not complete (unless *m* is finite; uncommon in trees).
 - May get stuck in an infinite loop (e.g., reaching a deadend through a reversible action).
- Not optimal.

> Hazem Shehata

Outline

Search

Greedy best-first

Α*

Heuristic Functions

Requirement & Reading Material

Informed Search

Greedy best-first search

- Not complete (unless *m* is finite; uncommon in trees).
 - May get stuck in an infinite loop (e.g., reaching a deadend through a reversible action).
- Not optimal.
- Time complexity = $O(b^m)$.

> Hazem Shehata

Outline

Search

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

Greedy best-first search

- Not complete (unless *m* is finite; uncommon in trees).
 - May get stuck in an infinite loop (e.g., reaching a deadend through a reversible action).
- Not optimal.
- Time complexity = $O(b^m)$.
- Space complexity = $O(b^m)$.

> Hazem Shehata

Outlin

Informed Search

Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Greedy best-first search

GBFS properties:

- Upper-bound case: goal is last node of the tree:
 - Number of nodes generated: b nodes for each node of m levels (entire tree).
 - Time and space complexity: all generated nodes $O(b^m)$.

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

Heuristic Functions

leuristic runction

Requirement & Reading Material

Informed Search

A* search

- Uniform cost search orders the queue according to the path cost g(n):
 - Optimal, complete, but inefficient in time and space.

> Hazem Shehata

Outline

Informed Search

Introduction Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

- Uniform cost search orders the queue according to the path cost g(n):
 - Optimal, complete, but inefficient in time and space.
- Greedy best first search orders the queue using the heuristic cost h(n):
 - Not optimal, not complete but efficient and directed (with good heuristic).

> Hazem Shehata

Outline

Informed

Introduction

Greedy best-first

Heu

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

• Idea behind A* is to combine the two strategies:

> Hazem Shehata

Introduction

Greedy best-first

Heuristic Functions

& Reading Material

Informed Search

A* search

- Idea behind A* is to combine the two strategies:
 - Use an evaluation function f(n) = g(n) + h(n) to order the nodes to be explored.

March 27th, 2017 19

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

Greedy best-fi

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

- Idea behind A* is to combine the two strategies:
 - Use an evaluation function f(n) = g(n) + h(n) to order the nodes to be explored.
 - f(n) measures the cheapest total estimated cost from the initial state to the goal state passing through the current state n.

> Hazem Shehata

Outline

Search

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

A* search

- Idea behind A* is to combine the two strategies:
 - Use an evaluation function f(n) = g(n) + h(n) to order the nodes to be explored.
 - f(n) measures the cheapest total estimated cost from the initial state to the goal state passing through the current state n.
- The resulting search is both optimal and complete assuming certain conditions on the heuristic cost h(n).

> Hazem Shehata

Outline

Search Introduction

Greedy best-first

A*
Heuristic Functions

Requirement & Reading Material

Informed Search

A* search

- Idea behind A* is to combine the two strategies:
 - Use an evaluation function f(n) = g(n) + h(n) to order the nodes to be explored.
 - f(n) measures the cheapest total estimated cost from the initial state to the goal state passing through the current state n.
- The resulting search is both optimal and complete assuming certain conditions on the heuristic cost h(n).
- A* algorithm is identical to UNIFORM-COST-SEARCH except that g + h is used instead of g.

> Hazem Shehata

Outlin

Search

Introduction Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Search Algorithms

A* search algorithm (tree version)

```
function A-STAR-SEARCH(problem) returns a solution, or failure

node ← node with STATE=problem.INITIAL-STATE, PATH-COST=0

frontier ← priority queue ordered by evaluation f, with node as only element
loop do

if frontier.EMPTY?() then return failure

node ← frontier.POP() /* choose lowest-cost node in frontier */

if problem.GOAL-TEST(node.STATE) then return node.SOLUTION()

for each action in problem.ACTIONS(node.STATE) do

child ← node.CHILD-NODE(problem, action)

frontier.INSERT(child, f(child))
```

> Hazem Shehata

Outlin

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Search Algorithms

A* search algorithm (graph version)

replace that frontier node with child

```
function A-STAR-SEARCH(problem) returns a solution, or failure
  node ← node with STATE=problem.INITIAL-STATE, PATH-COST=0
   frontier \leftarrow priority queue ordered by evaluation f, with node as only element
  explored ← an empty set
  loop do
    if frontier. EMPTY?() then return failure
    node \leftarrow frontier.Pop()
                                    /* choose lowest-cost node in frontier */
    if problem.GOAL-TEST(node.STATE) then return node.SOLUTION()
    add node.STATE to explored
    for each action in problem. ACTIONS (node. STATE) do
      child ← node.CHILD-NODE(problem, action)
      if child. STATE is not in explored and not in frontier then
        frontier.INSERT(child, f(child))
      else if child. STATE is in frontier with higher | f-value | then
```

> Hazem Shehata

Outline

Informe

Introduction Greedy best-first

A*
Heuristic Functions

Requirements & Reading Material

Informed Search

A* example - Romania map

Find a route from Arad to Bucharest.

straight-line distances to Bucharest	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*
Heuristic Functions

Requirement & Reading

Informed Search

A* example - Romania map

Find a route from Arad to Bucharest.

> Hazem Shehata

Outlin

Informed Search

Introduction Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

A* example - Romania map

Find a route from Arad to Bucharest.

> Hazem Shehata

Outline

Search

Introduction
Greedy best-first

Α*

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

• Optimal, given an admissible heuristic.

> Hazem Shehata

Outline

Search

Introduction Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

A* search

- Complete (if b and ε are finite).
 - Reason: number of nodes with cost $\leq C^*$ is finite.
- Optimal, given an admissible heuristic.

> Hazem Shehata

Outlin

Informed Search

Greedy best-first

A*
Heuristic Functions

Heuristic Functi

Requirements & Reading Material

Informed Search

A* search

- Complete (if b and ε are finite).
 - Reason: number of nodes with cost $\leq C^*$ is finite.
- Optimal, given an admissible heuristic.
- Time and space complexity: not straightforward!
 - Number of nodes explored depends on the difference between h and h* (true cost).
 - If $h = h^*$, A* expands only the nodes on the optimal solution path(s).
 - If h = 0, A* consumes as much (time/space) resources as UCS.

> Hazem Shehata

Outline

Informed Search

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

A* search

• A heuristic h(n) is admissible if for every node n:

$$h(n) \leq h^*(n)$$
,

where $h^*(n)$ is the true cost to reach goal state from n.

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

• A heuristic h(n) is admissible if for every node n:

$$h(n) \leq h^*(n)$$
,

where $h^*(n)$ is the true cost to reach goal state from n.

 An admissible heuristic function h(n) never overestimates the true cost from n to goal.

> Hazem Shehata

Outline

Informed Search

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

• A heuristic h(n) is admissible if for every node n:

$$h(n) \leq h^*(n)$$
,

where $h^*(n)$ is the true cost to reach goal state from n.

- An admissible heuristic function h(n) never overestimates the true cost from n to goal.
- If h(n) never overestimates, then f(n) never overestimates the true cost to the goal through node n.

> Hazem Shehata

Outline

Informed

Introduction

Greedy best-first

A*
Heuristic Functions

ricurione i unicho

Requirements & Reading Material

Informed Search

A* search

Proving that "admissibility guarantees optimality":

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

- Proving that "admissibility guarantees optimality":
 - Suppose an A* search (that uses an admissible heuristic h) finds a goal G whose path cost of is C.

•
$$h(G) = 0$$
, and hence: $f(G) = g(G) = C$

- Let G' be another goal node whose path cost is C'.
- Frontier contains a node n on the optimal path to G'.
 - h is admissible, and hence: $f(n) = g(n) + h(n) \le C'$
- Node G has been popped from frontier before node n.
 - $f(G) \leq f(n)$, and hence: $C \leq C'$.
- Using an admissible heuristic, A* would always discover the lowest-cost (i.e., optimal) solution.

> Hazem Shehata

Outline

Informed Search

Introduction

Greedy best-first

Heuristic Functions

neuristic runctio

& Reading
Material

Informed Search

A* search

 In graph-search algorithms, a new node is discarded if it's already in the explored set.

> Hazem Shehata

Outlin

Search Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

A* search

- In graph-search algorithms, a new node is discarded if it's already in the explored set.
- If the new node has a better path cost (g) than the old node, a shorter path has been ignored.

> Hazem Shehata

Outlin

Informed Search Introduction

Greedy best-first

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

- In graph-search algorithms, a new node is discarded if it's already in the explored set.
- If the new node has a better path cost (g) than the old node, a shorter path has been ignored.
- This means that the graph version of A* search is not optimal any more!

> Hazem Shehata

Greedy best-first

Heuristic Functions

& Reading

Informed Search

A* search

- In graph-search algorithms, a new node is discarded if it's already in the explored set.
- If the new node has a better path cost (g) than the old node, a shorter path has been ignored.
- This means that the graph version of A* search is not optimal any more!
- To ensure optimality, A* must use a consistent heuristic function h.
 - Consistency is a stronger condition than admissibility.

March 27th, 2017

> Hazem Shehata

Outline

Informed Search

Introduction

Greedy best-first

A*
Heuristic Functions

Requirement & Reading

Informed Search

A* search

• **Consistency** (monotonicity) means that for every node n and child node n' reachable from n by action a, the estimated cost h(n) is never greater than the estimated cost h(n') plus the step cost of getting to n':

$$h(n) \le h(n') + c(n, a, n')$$

> Hazem Shehata

Outline

Search

Introduction Greedy best-first

Greedy best-fii

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

 A consistent heuristic function h(n) never overestimates the true cost of action a taken from n to n':

$$h(n) - h(n') \le c(n, a, n')$$

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

Heuristic Functions

Requirements & Reading Material

Informed Search

31

A* search

 A consistent heuristic function h(n) never overestimates the true cost of action a taken from n to n':

$$h(n) - h(n') \le c(n, a, n')$$

With some mathematical arrangements:

$$f(n) = h(n) + g(n) \leq h(n') + c(n, a, n') + g(n) \leq h(n') + g(n') \leq f(n')$$

So, f(n) never decreases as we approach the goal.

> Hazem Shehata

Outlin

Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Informed Search

A* search

 A consistent heuristic function h(n) never overestimates the true cost of action a taken from n to n':

$$h(n) - h(n') \le c(n, a, n')$$

With some mathematical arrangements:

$$f(n) = h(n) + g(n) \leq h(n') + c(n, a, n') + g(n) \leq h(n') + g(n') \leq f(n')$$

So, f(n) never decreases as we approach the goal.

 Consistency guarantees that states are always visited by the cheapest path first; no need to check if subsequent paths are better than the first.

> Hazem Shehata

Outline

Informed

Introduction

Greedy best-first

Heuristic Functions

Requirements & Reading Material

Informed Search

A* example - consistency

Check whether h is consistent, and perform A^* search.

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

 Informed search algorithms use additional knowledge about the problem to direct search toward goal(s).

> Hazem Shehata

Outline

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirements & Reading Material

Informed Search

Introduction

- Informed search algorithms use additional knowledge about the problem to direct search toward goal(s).
- Such additional knowledge takes the form of a heuristic function h.
 - *h*(*n*): *estimated* path cost from node *n* to closest goal.

> Hazem Shehata

Outline

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Informed search algorithms use additional knowledge about the problem to direct search toward goal(s).
- Such additional knowledge takes the form of a heuristic function h.
 - h(n): estimated path cost from node n to closest goal.
- Frontier nodes are ordered using an evaluation function f defined in terms of h.
 - GBFS: f(n) = h(n).
 - A^* : f(n) = h(n) + g(n).

> Hazem Shehata

Outline

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Introduction

- Informed search algorithms use additional knowledge about the problem to direct search toward goal(s).
- Such additional knowledge takes the form of a heuristic function h.
 - h(n): estimated path cost from node n to closest goal.
- Frontier nodes are ordered using an evaluation function f defined in terms of h.
 - GBFS: f(n) = h(n).
 - A^* : f(n) = h(n) + g(n).
- A* has the advantage of being optimal given that:
 - h is admissible (tree version).
 - h is consistent (graph version).

Hazem Shehata

Outline

Informed Search

Search

Greedy best-first

A*
Heuristic Functions

Requirement & Reading Material

Informed Search

Effect of heuristic functions

• Uniform-cost search expands in circular cost contours (h(n) = 0).

Hazem Shehata

Outline

Informed Search Introduction

Greedy best-first A*

A*
Heuristic Functions

Requirement & Reading Material

Informed Search

Effect of heuristic functions

- Uniform-cost search expands in circular cost contours (h(n) = 0).
- A* search elongates & rotates contours towards goal:
 - More narrow/elongated, the better h(n) is. More directed.

> Hazem Shehata

Outline

Informe Search

Introduction Greedy best-first

A*

Requirements & Reading Material

Informed Search

Quality of heuristic function

 One heuristic function might be better than another for a given problem.

> Hazem Shehata

Outlin

Informed Search

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

Quality of heuristic function

- One heuristic function might be better than another for a given problem.
- Informedness:

For two admissible heuristic functions, h1 and h2:

if
$$h2(n) \ge h1(n)$$

h2(n) is more informed than h1(n)

Alternatively we say that h2(n) dominates h1(n).

> Hazem Shehata

Outlin

Informed Search

Greedy best-first

A*
Heuristic Functions

Requirement & Reading

Informed Search

Quality of heuristic function

 One heuristic function might be better than another for a given problem.

Informedness:

For two admissible heuristic functions, h1 and h2:

if
$$h2(n) \ge h1(n)$$

h2(n) is more informed than h1(n)

Alternatively we say that h2(n) dominates h1(n).

More informedness implies fewer expanded states.

> Hazem Shehata

Outline

Informed Search

Introduction Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Creating a heuristic function

 How to choose the heuristic function for a given problem?

March 27th, 2017 36

> Hazem Shehata

Outlin

Search Introduction

Greedy best-first
A*
Heuristic Functions

Requirement
& Reading
Material

Informed Search

Creating a heuristic function

- How to choose the heuristic function for a given problem?
- The heuristic function is usually chosen by means of problem relaxation.

> Hazem Shehata

Outlin

Search
Introduction
Greedy best-first

A*
Heuristic Functions

Requirements & Reading

Informed Search

Creating a heuristic function

- How to choose the heuristic function for a given problem?
- The heuristic function is usually chosen by means of problem relaxation.
- Problem relaxation means making the problem easier by dropping some constraints.

> Hazem Shehata

Outlin

Search
Introduction
Greedy best-first

A*
Heuristic Functions

Requirement & Reading

Informed Search

Creating a heuristic function

- How to choose the heuristic function for a given problem?
- The heuristic function is usually chosen by means of problem relaxation.
- Problem relaxation means making the problem easier by dropping some constraints.
- Can also have different heuristics and always choose the best one:

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$

> Hazem Shehata

Outline

Informed Search

Introduction Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Creating a heuristic function

 For the Romania map problem, the heuristic function was selected as the straight line distance between the current city and the goal.

> Hazem Shehata

Outline

Informed Search

Introduction Greedy best-first

A*
Heuristic Functions

Requiremen

Requirements & Reading Material

Informed Search

Creating a heuristic function

- For the Romania map problem, the heuristic function was selected as the straight line distance between the current city and the goal.
- How is this a relaxed problem?

> Hazem Shehata

Outline

Informed Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Creating a heuristic function

- For the Romania map problem, the heuristic function was selected as the straight line distance between the current city and the goal.
- How is this a relaxed problem?
 - By dropping the traveling on roads constraint.

> Hazem Shehata

Introduction

Greedy best-first

Heuristic Functions

& Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

• Consider the 8-puzzle problem.

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

Start State

Goal State March 27th, 2017 38

> Hazem Shehata

Outline

Informed Search

Introduction Greedy best-first

A*
Heuristic Functions

Requirement
& Reading
Material

Informed Search

Example: creating heuristic for 8-puzzle

- Consider the 8-puzzle problem.
 - It would take at least 26 moves to solve the problem instance shown below.

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

Start State

Goal State

March 27th, 2017

> Hazem Shehata

Outline

Informed Search

Greedy best-first A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Consider the 8-puzzle problem.
 - It would take at least 26 moves to solve the problem instance shown below.
 - An admissible heuristic shouldn't overestimate that cost of 26 moves.
 - $h(Start) \leq 26$

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

Start State

Goal State

March 27th, 2017

> Hazem Shehata

Outline

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirements & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Consider the 8-puzzle problem.
 - It would take at least 26 moves to solve the problem instance shown below.
 - An admissible heuristic shouldn't overestimate that cost of 26 moves.
 - $h(Start) \leq 26$
 - Generally speaking, an admissible heuristic shouldn't overestimate the cost of solving the puzzle starting from any node.
 - $h(n) \leq \text{minimum number of moves to get from } n \text{ to } Goal.$

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

38

Start State Goal State

> Hazem Shehata

Outline

Informed

Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.

> Hazem Shehata

Outlin

Informed Search Introduction

Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:

> Hazem Shehata

Outlin

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirements & Reading

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:

> Hazem Shehata

Outline

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requiremen & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:
 - $h_1(n)$ = number of tiles out of place.

> Hazem Shehata

Outlin

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:
 - $h_1(n)$ = number of tiles out of place.
 - $h_1(Start) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 \le 26$.

> Hazem Shehata

Outlin

Informed Search Introduction Greedy best-first

A*
Heuristic Functions

Requiremen & Reading

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:
 - $h_1(n)$ = number of tiles out of place.
 - $h_1(Start) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 \le 26$.
 - A tile can move from loc. A to loc. B if A,B are adjacent:

> Hazem Shehata

Outlin

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirement & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:
 - $h_1(n)$ = number of tiles out of place.
 - $h_1(Start) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 \le 26$.
 - A tile can move from loc. A to loc. B if A,B are adjacent:
 - $h_2(n) = \text{sum of distances of tiles from goal locations.}$

Goal State

March 27th, 2017 Start State

State

39

> Hazem Shehata

Outlin

Informed Search Introduction Greedy best-first

A* Heuristic Functions

Requirement & Reading Material

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:
 - $h_1(n)$ = number of tiles out of place.
 - $h_1(Start) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 \le 26$.
 - A tile can move from loc. A to loc. B if A,B are adjacent:
 - $h_2(n) = \text{sum of distances of tiles from goal locations.}$
 - $h_2(Start) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 \le 26$.

March 27th, 2017 Start State

Goal State

> Hazem Shehata

Outlin

Informed Search Introduction

Greedy best-first A*

Heuristic Functions

Requirement
& Reading
Material

Informed Search

Example: creating heuristic for 8-puzzle

- Description of legal moves in 8-puzzle:
 A tile can move from location A to location B if A,B are adjacent and B is blank.
- Problem relaxation:
 - A tile can move from location A to location B:
 - $h_1(n)$ = number of tiles out of place.
 - $h_1(Start) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 \le 26$.
 - A tile can move from loc. A to loc. B if A,B are adjacent:
 - $h_2(n) = \text{sum of distances of tiles from goal locations.}$
 - $h_2(Start) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 \le 26$.
- Notice that h_1 and h_2 are admissible, and $h_1(n) \leq h_2(n)$.

March 27th, 2017 Start State

Goal State

> Hazem Shehata

Outline

Informed Search

Introduction Greedy best-first

Heuristic Functions

Requirement & Reading Material

Informed Search

A* search - 8-puzzle search costs

Data are averaged over 100 instances for the 8-puzzle problem across various solution lengths.

Optimal Solution	Search Cost (nodes generated)		
Length (d)	IDS	A^* using h_1	A^* using h_2
4 steps	112	13	12
8 steps	6384	39	25
12 steps	3644035	227	73
16 steps	-	1301	211
20 steps	-	7276	676
24 steps	-	39135	1641

> Hazem Shehata

Outlin

Informed Search

Introduction Greedy best-first

Greedy best-fi

Heuristic Functions

Requirements & Reading Material

Outline

1 Informed Search

Requirements & Reading Material

> Hazem Shehata

Outline

Informed

Introduction
Greedy best-first

Α*

Heuristic Functions

Requirements & Reading Material

Requirements

What do I need from you

• When given a certain problem you should be able to:

> Hazem Shehata

Outline

Informed

Introduction

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Build the search tree up to a given depth.

> Hazem Shehata

Outline

Informed Search

Introduction

Greedy best-first

A* Heuristic Functions

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Build the search tree up to a given depth.
 - Traverse the search tree according to a given strategy.

> Hazem Shehata

Outlin

Search

Introduction

Greedy best-first

Heuristic Functions

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Build the search tree up to a given depth.
 - Traverse the search tree according to a given strategy.
 - Propose a good heuristic function for the problem.

Answer descriptive questions.

> Hazem Shehata

Outline

Search

Introduction
Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Build the search tree up to a given depth.
 - Traverse the search tree according to a given strategy.
 - Propose a good heuristic function for the problem.
 - Indicate whether a given heuristic is admissible/consistent or not.
- Answer descriptive questions.

> Hazem Shehata

Outlin

Informed Search

Introduction

Greedy best-first

A*

Heuristic Functions

Requirements & Reading Material

Reading Material

Which parts of the textbook are covered

- Russell-Norvig, Chapters 3:
 - Pages 92 98.
 - Pages 102 106.

March 27th, 2017 43