保持细节特征的带纹理模型的高质量简化算法*

李世俊^{1a},姜晓彤^{1a,2†},唐 慧^{1b}

(1. 东南大学 a. 仪器科学与工程学院; b. 计算机科学与技术学院, 南京 210096; 2. 常州赞云软件科技有限公司, 江苏 常州 213022)

摘 要: 针对大多算法在简化率较大的情况下易丢失模型细节特征的问题,引入顶点尖锐度的概念,并基于QEM 折叠代价给出一种改进的折叠代价,能更多地保留模型的细节特征;同时针对大多简化算法不包含纹理处理的问题,引入纹理变化因子,更多地保留纹理细节部分。在简化的基础上,还提出一种网格局部优化算法,解决了简化后网格质量不高的问题。实验结果表明,该算法不仅可以保持模型的细节特征和纹理的完整性,同时还能得到高质量的模型网格。

关键词:三维模型;网格简化;顶点尖锐度;二次误差;局部优化

中图分类号: TP391.41 文献标志码: A 文章编号: 1001-3695(2020)01-064-0300-04

doi:10.19734/j.issn.1001-3695.2018.04.0481

High-quality simplified algorithm of texture model for detailed features preserving

Li Shijun^{1a}, Jiang Xiaotong^{1a,2†}, Tang Hui^{1b}

(1. a. School of Instrument Science & Engineering, b. School of Computer Science & Technology, Southeast University, Nanjing 210096, China; 2. Changzhou Zanyun Software Technology Co. Ltd., Changzhou Jiangsu 213022, China)

Abstract: In order to solve the problem that most algorithms are prone to lose the detailed features of the models in the case of large simplification rate, this paper introduced the concept of vertex sharpness and developed an improved folding cost based on QEM cost, which could preserve more detailed features of the model. At the same time, aiming at the problem that most of the simplified algorithms did not contain texture processing, this paper introduced the texture variation factor to preserve the details of the texture. On the basis of simplification, this paper proposed a mesh local optimization algorithm to solve the problem of low quality of mesh after simplification. The experimental results show that the proposed algorithm can not only preserve the details of the model and the integrity of texture, but also obtain the model with high-quality mesh.

Key words: 3D model; mesh simplification; vertex sharpness; QEM(quadric error metric); local optimization

0 引言

目前,互联网家居日益兴起,三维场景的应用越来越多。在室内设计行业,通常可以通过扫描真实物体后进行三维重建,进而输出其三维模型。但是该方法得到的模型通常十分精细,所含三角面片数量过多,不利于在移动端的实时渲染,于是模型简化显得尤为必要。网格是三维模型的基本组成单元,简化模型即是对网格的简化,其中三角网格是表达三维模型最常用的形式。网格简化算法研究大致可以分为顶点重采样型和元素删除型两种类型。顶点重采样是将模型划分成很多区域,对每块区域内部顶点进行剔除,然后布入新的顶点,再进行三角剖分,通过控制重采样点的数量可以控制模型的简化率。而元素删除型是通过逐步删除三角网格的元素来达到简化的目的,根据删除对象的不同,可以将其分为顶点元素删除法[1]、三角形收缩法[2,3] 和边折叠法[4,5]。其中,边折叠由于简化速度快、简化效率高,同时可以保持原模型的拓扑结构,已经成为目前应用最广泛的简化算法。

Hoppe^[6] 最先提出可以使用能量函数来指导模型的简化,并给出对三维扫描仪测量的数据模型进行简化的实例,效果很好,但效率较低。Garland 等人^[7] 提出可以使用二次误差来度量边折叠的代价,该算法简化速度快,但是简化太过均匀,容易丢失细节特征。Ozaki 等人^[8] 基于 QEM 算法,使用基于机器学习方法的线性分类器对网格进行划分,实现了对特大模型的

简化,然而细节特征依旧容易丢失。针对细节特征丢失问题, Ho 等人^[9]提出一种可控的网格简化算法,用户可以选择需要 的区域保留细节特征,但此方法较为繁琐,对操作者要求较高。 黄佳等人[10]提出一种渐进网格简化算法,通过一环和二环三 角面的法矢变化作为折叠代价,对细节特性保持较好。但由于 仅考虑对细节的保留,该算法对平坦区域的简化顺序没有很好 的约束。王竣等人[11]提出一种基于边曲率的简化算法,通过 将边曲率加入到二次误差来增加尖锐部分的折叠代价,但对 边曲率的估计太过简单。钱勋波等人[12]从局部三角形的不 平度入手,通过三角形的折叠来完成模型的简化,然而由于 三角形折叠易丢失特征的先天缺陷,对模型细节特性的保留 没有边折叠效果好。刘峻等人[13]通过顶点曲率的引入来增 强算法对特征区域的保持,效果较好,但是由于仅考虑顶点 与一环邻域点的最大法矢夹角与总面积,没有考虑引起该最 大夹角的三角面的面积大小,容易引起判断失误。此外,以 上算法均没有考虑纹理的变化,然而在实际应用中,纹理的 保持是必不可少的。

为了解决上述问题,本文引人顶点尖锐度的概念,并以此改进 QEM 算法中顶点的 Q值,可以准确地判断出模型的尖锐顶点,增大其折叠代价,同时对模型的平坦部分也有很好的约束。同时,本文针对纹理的变化引入纹理因子,能在不改变算法复杂度的情况下最大限度地保持纹理的完整性。此外,本文还提出一种网格局部优化算法,解决由于不均匀简化导致的网

格质量偏低的问题。

1 基于边折叠的网格简化算法

1.1 边折叠

图 1 给出了边折叠的示意图。边折叠算法是将三角网格所有的边根据删除代价升序排序,每次操作取出队列最顶端的一条边(即折叠代价最小的),如图 1 所示的边 v_1v_2 ,将该边的两个端点 v_1 、 v_2 合并到某一个误差最小的新顶点 v_0 ,删除顶点 v_1 、 v_2 ,添加新点 v_0 ,删除同时拥有这两个顶点的两个三角形 $v_1v_2v_3$ 和 $v_1v_2v_4$,删除相应的边 v_1v_2 、 v_1v_3 、 v_2v_3 、 v_1v_4 、 v_2v_4 ,添加新生成的边 v_0v_3 、 v_0v_4 ,并同时更新顶点周围顶点信息、边信息等拓扑结构。重复以上步骤直至剩余三角形数目达到要求,这就是边折叠的基本过程。

1.2 边折叠代价的计算

QEM 算法是 Garland 等人在 1997 年提出的一种基于二次 误差度量的边折叠三角网格模型简化算法,该算法简化速度 快,简化率高。QEM 算法边折叠的代价通过二次误差来衡量。误差 $\Delta(v_i \rightarrow v_0)$ 表示选取的新顶点 v_0 到 v_i 周围所有三角形距 离的平方和:

$$\Delta(v_i \rightarrow v_0) = \Delta([x_0, y_0, z_0, 1]^T) = \sum_{\substack{p \in \text{planes}(v_i)}} (p^T v_0)^2 = \sum_{\substack{p \in \text{planes}(v_i)}} (v_0^T p) (p^T v_0) = v_0^T (\sum_{\substack{p \in \text{planes}(v_i)}} \mathbf{K}_p) v_0$$

$$(1)$$

其中: planes(v_i)表示 v_i 周围的所有相邻三角形; $p = (a,b,c,d)^{\mathsf{T}}$ 表示由式子 ax + by + cz + d = 0 定义的平面,且该方程为归一化的平面方程,即 $a^2 + b^2 + c^2 = 1$ 。故

$$\boldsymbol{K}_{p} = pp^{\mathrm{T}} = \begin{bmatrix} a^{2} & ab & ac & ad \\ ab & b^{2} & bc & bd \\ ac & bc & c^{2} & cd \\ ad & bd & cd & d^{2} \end{bmatrix}$$

记 $Q(v_i) = \sum_{p \in \text{planes}(v_i)} \mathbf{K}_p$,则 $\Delta(v_i \rightarrow v_0) = v_0^{\mathsf{T}} \mathbf{Q} v_0$ 为其中一个 顶点的二次误差。为了简单起见,边折叠过程的二次误差可以 定义为两个顶点的二次误差之和,即

$$\begin{split} \varepsilon_{12} &= \Delta(v_1 \rightarrow v_0) + \Delta(v_2 \rightarrow v_0) = \\ v_0^T \mathbf{Q}(v_1) v_0 + v_0^T \mathbf{Q}(v_2) v_0 &= v_0^T (\mathbf{Q}(v_1) + \mathbf{Q}(v_2)) v_0 \\ \text{记 } \mathbf{Q} &= \mathbf{Q}(v_1) + \mathbf{Q}(v_2) \text{ 为误差矩阵 , 则每条边的折叠代价为} \\ \Delta M &= v_0^T \mathbf{Q} v_0 \end{split} \tag{4}$$

将每条边的三个候选点(左端点、右端点和中点)的 ΔM 求出,选择 ΔM 最小的点为待折叠的选取点,并记录此时的边折叠代价 ΔM 。

2 改进的简化代价

2.1 基本概念

顶点 v 的一环邻域指的是所有包含该顶点的三角形集合,如图 2 所示所有三角形为顶点 v_0 的一环邻域。

图 1 边折叠算法示意图 Fig. 1 Schematic diagram of edge folding

图 2 v_0 的一环邻域 Fig. 2 one-ring neighborhood of v_0

边界顶点和复杂顶点定义如下:统计该顶点所有相邻三角 形所包含的各顶点的出现次数,如果所有相邻顶点在该顶点的 相邻三角形中均只出现2次,则该顶点为普通顶点(图3中顶 点4);如果某相邻顶点在该顶点的所有相邻三角形中只出现 了 1 次,则对应的相邻顶点和该顶点均为边界点(图 3 中的顶点 B 和 C);如相邻顶点在该顶点的相邻三角形中出现了大于 2 次(3 次),则对应的相邻顶点和该顶点均为复杂顶点(图 3 中的顶点 D 和 E);如果该顶点没有相邻三角形,则该顶点为孤立顶点(图 3 中的顶点 F)。

本文常用符号解释如下:

 v_t 表示模型网格的第 t 个顶点; $S_{v_t,i}$ 表示顶点 v_t 一环邻域第 i 个三角面的面积; $N_{v_t,i}$ 表示顶点 v_t 一环邻域第 i 个三角面的法向量; $S_{\text{text},i}$ 表示顶点 v_t 一环邻域第 i 个三角面对应的纹理面积; S_{v_t} 表示顶点 v_t 一环邻域所有三角面的面积和; $\langle \boldsymbol{a}, \boldsymbol{b} \rangle$ 表示向量 \boldsymbol{a} 与 \boldsymbol{b} 的夹角。

2.2 顶点尖锐度的计算

在细节特征较多的模型中,如果仅采用二次误差度量,尖锐部分极易丢失,因此本文引入顶点尖锐度这一概念,并将其融入顶点矩阵中,在简化率较大的情况下,很好地保持了这些细节特征。如图 4 所示,通常在顶点较尖锐的部分,三角面之间的法矢夹角偏大,而在较平坦区域三角面之间的法矢夹角相对较小,当两个面绝对平坦时,其法矢夹角显然为零。

图 4 三角面之间的法矢夹角示意 Fig. 4 Normal vector angle between triangular faces

所以,顶点尖锐度 σ 可由其一环邻域所有三角面法矢间的夹角来反映,其计算公式如下:

$$\sigma(v_{t}) = \frac{\sum_{i=0}^{n-1} \left(S_{v_{t},i} + S_{v_{t},i+1}\right)}{2S_{v_{t}}} \cdot \left\langle N_{v_{t},i}, N_{v_{t},i+1}\right\rangle + \frac{\left(S_{v_{t},0} + S_{v_{t},n}\right)}{2S_{v_{t}}} \cdot \left\langle N_{v_{t},0}, N_{v_{t},n}\right\rangle}{n}$$
(5)

其中:n 为顶点 v, 一环邻域内三角面的个数。对顶点 v, 一环邻域的三角面依次求其法矢夹角, 并取其关于面积的加权平均值, 可以有效地反映该区域的尖锐度。其中面积的加入是因为有时候虽然三角面之间的法矢夹角很大, 但由于其三角面本身面积很小, 简化时损失很小, 需要适当减轻该夹角的比重, 以便更准确地反映该区域的尖锐度。

2.3 纹理因子

目前,大多数网格简化算法中均没有考虑纹理的变化,然而在实际应用中,模型的纹理必不可少,是视觉体验的重要组成部分。本文在研究纹理的重要性后给出以下纹理因子公式:

$$R(v_t) = \frac{\sum_{i=0}^{n} \frac{S_{\text{tex}v_t, i}}{S_{v_t, i}}}{n}$$
 (6)

其中:n 为顶点 v_i 一环邻域内三角面的个数。考虑到如果某个三角面纹理面积占几何面积的比重大,则该区域的简化将带来较多的纹理损失,因此该公式可表达该区域纹理的重要程度。同时,在简化过程中,纹理坐标将保持与顶点坐标相同的更新操作。

2.4 改进的边折叠代价

在 QEM 边折叠代价的基础上,本文给出了改进的边折叠代价函数,将顶点的尖锐度和纹理变化因子综合嵌入顶点的 Q 矩阵中,避免了简化时再进行计算,减少了算法的复杂度。改进的边折叠代价如下:

$$\varepsilon_{12} = v_0^{\mathrm{T}} (A^{\sigma(v_1) + R(v_1)} \mathbf{Q}(v_1) + A^{\sigma(v_2) + R(v_2)} \mathbf{Q}(v_2)) v_0$$
(7)
其中: A 为调节因子,可取大于零的实数,避免 $\sigma + R$ 值过小引起代价的区分度降低,本文取值为 2 。

3 网格局部优化

由于边折叠算法自身的局限性,尽管在改进的简化算法中已经很好地保持了模型的细节特征,但是网格质量普遍不高,容易出现狭长三角形,而过多的狭长三角形容易造成视觉差异,也给后续的模型处理带来麻烦。因此,本文在研究文献[14,15]的基础上提出一种局部网格优化算法,可以减少低质量网格的数量,达到优化的目的。

3.1 网格质量判定标准

网格质量通常由三角形的正则度^[16]来判定,即该三角形接近 正三角形的程度。某三角形的正则度可以用以下公式来估计:

$$r = \frac{4\sqrt{3}A}{l_1^2 + l_2^2 + l_3^2} \tag{8}$$

其中: l_1 、 l_2 、 l_3 分别为三角形的三条边的边长;A 为三角形的面积;r 表示三角形的正则度,当r=1 时,三角形为正三角形,而当三角形十分狭长时, $r\approx0$ 。随后进行网格优化时,本文均以此式作为判定依据,并规定r<0.5 的三角形为狭长三角形。

3.2 优化算法

全局优化会丢失一些模型的细节特征,因此本文仅对模型 进行局部优化,达到基本消除狭长三角形的目的。

3.2.1 平面网格优化

文献[14]研究了 Voronoi 多边形的一些应用,其可以应用于对平面网格的优化。如图 5 所示,优化步骤为:

a) 首选找出顶点v 一环邻域所有的三角形;b) 得到关于顶点v 的 Voronoi 多边形;c) 将顶点 V 移至 Voronoi 多边形的质心,完成局部优化。

由于 Voronoi 多边形构造复杂,在要求不是非常高的情况下,可以简单地取顶点 v 一环邻域多边形的形心作为优化点。

3.2.2 三维网格的展平

由于 3.2.1 节的算法仅可用于对平面网格的优化,而本文处理的是三维网格,所以需要对三维网格进行平面化。文献 [15]提出一种最小二乘法逼近准保角映射的曲面参数化算法 (以下简称 LSCM 算法),可以很好地将复杂网格展平,该算法稳定有唯一解,因此本文选取该算法对网格需要优化的局部进行平面化。如图 6 所示,保角映射 X 将参数域(u,v) 映射到一个曲面域 X(u,v) ,其中对于每个参数(u,v) ,其映射 X(u,v) 的两条曲线 iso-u 和 iso-v 的切向量相互垂直且长度相等。可以简单理解成:保角映射就是将参数域(u,v) 的单位圆映射到曲面域 X(u,v) 对应点的切平面的单位圆。

图 5 平面网格优化 示意图 Fig. 5 Optimization of

图 6 保角映射示意 Fig. 6 Conformal mapping

三维网格展平需要原曲面尽量在同一平面,这样后续恢复时才不会造成较大误差,因此在对顶点的一环邻域展平时,需要考虑该区域的尖锐度,在较为平坦时才能够进行优化操作,本文通过顶点尖锐度作为依据,仅对尖锐度小于0.3 的区域进行优化操作。

3.2.3 三维网格的恢复

文献[17]中提出一种网格重构算法,其中对平面网格顶点恢复的算法可用于本文对三维网格的恢复。其描述如下:

对于原始边界顶点,可以采用其原来的三维坐标。而网格内部新的顶点 u 的三维坐标求解方法如下:

先找出三个原始边界顶点的三维坐标 v_1 、 v_2 、 v_3 ,其对应的平面坐标为 u_1 、 u_2 、 u_3 ,并且点 u 在这三个顶点组成的三角形内部。可令

$$k_1 = \frac{A(u\,,u_2\,,u_3)}{A(u_1\,,u_2\,,u_3)}, k_2 = \frac{A(u\,,u_1\,,u_3)}{A(u_1\,,u_2\,,u_3)}, k_3 = \frac{A(u\,,u_1\,,u_2)}{A(u_1\,,u_2\,,u_3)}$$

其中: $A(u_1, u_2, u_3)$ 表示以 u_1, u_2, u_3 为顶点的三角形面积。 u 对应三维坐标为

$$v = k_1 v_1 + k_2 v_2 + k_3 v_3 \tag{9}$$

为了保证恢复三维坐标的精确性,本文取该顶点一环邻域 所有多边形满足点 u 在其内部的三角形,分别根据式(9)求其 三维坐标,最后求平均值,更精确地还原原网格。

3.3 本文算法流程

综上所述,本文算法具体描述如下:

- a) 初始化。首先标记模型的拓扑关系,标记每个顶点是否为边界顶点或复杂顶点。如果一条边中有一个顶点为边界顶点或者复杂顶点,则将其收缩代价函数设为最大值;对所有可收缩边,分别求其收缩至两端点和中点的收缩代价并取最小值 ε_{12} ,记录收缩点,并把该代价函数值插入一个优先队列中。所有代价函数计算完毕后,将得到一个按照边收缩的代价函数从小到大排列的队列 Q。
- b)简化过程。执行处于 Q 队列最顶端的操作,更新该操作所影响到的所有边的收缩代价函数,重新计算更新点的坐标和纹理坐标,更新模型的拓扑关系,同时把修改过的边根据其代价函数重新插入优先队列。
- c) 重复步骤 b) 直到用于表达模型的三角形数目达到预定要求。
- d) 遍历简化后网格的顶点,如果顶点尖锐度小于 0.3 则判断其一环邻域内有无狭长三角形,如果有,则利用 LSCM 算法将该区域展平,再利用 3.2.1 节的算法优化。
 - e)利用 3.2.3 节的算法得出新顶点的三维坐标。
 - f)直至所有顶点优化完毕,结束算法。

4 实验结果与分析

为了验证本文算法的有效性,采用 Microsoft Visual Studio 2013 和 OpenGL 编程,在 2.5 GHz Intel Core i5-3230M CPU, 5 GB内存的计算机上进行实验分析。

图7展示了顶点尖锐度和纹理因子加入对游戏人物模型简化的影响。图7(a)为人物原始模型,该模型拥有4019个三角面;(b)为未加入顶点尖锐度的简化60%结果,可以看见圈中的刀模型丢失严重;(c)为未加入纹理因子约束的简化60%结果,圈中的眼部纹理发生明显变形;(d)为使用本文折叠代价函数简化60%结果,细节特征和纹理保持较好,视觉观感与原模型最为接近。

(a)原始模型 (b)未加入顶点尖锐度 (c)未加入纹理因子 (d)本文算法

图 7 人物模型简化 60% 示意图 Fig. 7 60% simplification of character model

图 8 展示的是顶点尖锐度和纹理因子对僵尸模型简化的 影响。图 8(a)是僵尸原始模型,该模型拥有 12 686 个三角面; (b)和(c)分别为模型未加入顶点尖锐度和纹理因子的简化结 果,可见圈中的领带纹理出现不同程度的错乱。使用本文算法 的结果如图 8(d)所示,领带纹理保持与原模型的高度一致性。 以上两组实验验证了本文折叠代价在保持细节特征和重要纹 理方面的有效性。

(a)原始模型

(b)未加入顶点尖锐度

(c)未加入纹理因子

(d)本文算法

图 8 僵尸模型简化 65% 示意图 Fig. 8 65% simplification of corpse model

为了更加直观地展示本文简化算法的优缺点,本文将从简化模型的几何误差、网格平均质量以及算法耗时三个方面,选取三个网格数量较多的模型与 QEM 和文献[13]算法进行对比实验,其中几何误差使用 Metro^[18]中的均方根误差(RMS)来衡量,网格质量使用式(8)估计。

图 9 是鸽子模型简化 80% 的结果,图 10 是小狗模型简化 85% 的结果,图 11 是鱼模型简化 85% 的结果。通过以上三组对比实验,从视觉上可以看出本文算法和文献[13]算法能得到比 QEM 算法质量更高的网格简化结果。从量化结果上分析三种方法的优缺点,如表 1 所示。

(a)鸽子原模型 (16 960 个三角形)

(b)QEM 简化 80%结果

(c)文献[13]算法 简化 80%结果

(d)本文算法 简化 80%结果

图 9 鸽子模型简化 80% 结果 ig. 9 80% simplification of pigeon model

图 10 小狗模型简化 85% 结果 Fig. 10 85% simplification of dog model

图 11 鱼模型简化 85% 结果 Fig. 11 85% simplification of fish model

表 1 各简化方法的误差、网格质量以及简化时间对比 Tab. 1 Comparison of error, mesh quality and simplified time between this method and other approaches

模型	算法	网格质量(式(8))	几何误差(RMS)/10 ⁻²	耗时/ms
	QEM 算法	0.5918	0.0347	187
鸽子文	文献[13]算法	0.612 3	0.081 2	368
	本文算法	0.653 1	0.084 8	391
	QEM 算法	0.593 2	0.0893	281
小狗戈	文献[13]算法	0.603 8	0.206 8	326
	本文算法	0.6234	0.192 6	313
	QEM 算法	0.469 5	0.028 1	375
鱼ゞ	な献[13]算法	0.4867	0.069 3	406
	本文算法	0.5092	0.062 7	438

通过表 1 的数据可知,在网格质量方面,本文算法得到的 网格质量最好,文献[13]算法次之,而 QEM 算法得到的网格质量最低,这说明 QEM 方法会产生较多的狭长三角形,同时本文对优化点的选取方法要优于文献[13]算法。通过比较几何误差,可以发现三种算法的误差都很小,均接近于原始模型。其中,QEM 算法误差最小,本文算法和文献[13]算法基本相当,略大于 QEM 算法。这是因为,在局部优化环节,本文算法和文献[13]算法均对局部顶点进行了移动,产生了相对较大的误差。但是在牺牲很小一部分误差的前提下得到更高质量的网格是值得的。

另一方面,本文算法和文献[13]算法均增加了对网格进行局部优化的步骤,因此算法总耗时略大于 QEM 算法,但是三种算法耗时均在毫秒级别,差别可以忽略不计。

另外,由图 11(b)(c)的对比可以发现一个细节。由于本文算法的不均匀简化,将不经过局部优化的简化结果与 QEM 算法对比,出现了更多的狭长三角形,因此网格局部优化对本文算法有着重要的意义。

5 结束语

本文在 QEM 简化算法的基础上研究了一种新的网格简化算法,将顶点尖锐度和纹理因子综合融入边折叠代价函数,实验证明该折叠代价不仅可以保留模型细节特征,也可以保留一些重要的纹理部分。此外,在简化后,本文结合曲面参数化和 Voronoi 多边形的应用提出了一种网格局部优化算法,实验证明该算法可有效提高模型的网格质量,提升视觉感受。但是该算法在执行时,需要在顶点尖锐度较低的局部区域进行优化,下一步的工作是研究如何对这些特征较明显的区域进行优化。

参考文献:

- [1] 罗鹍,黄魁东,连明明. 基于顶点删除的三角网格模型简化新方法 [J]. 徽电子学与计算机,2009,26(5):142-144,148. (Luo Kun, Huang Kuidong, Lian Mingming. New method of triangular mesh simplification based on vertex culling[J]. Microelectronics and Computer,2009,26(5):142-144,148.)
- [2] 段黎明,邵辉,李中明,等. 高效率的三角网格模型保特征简化方法[J]. 光学精密工程,2017,25(2):460-468. (Duan Liming, Shao Hui, Li Zhongming, et al. Simplification method for feature preserving of efficient triangular mesh model[J]. Optics and Precision Engineering,2017,25(2):460-468.)
- [3] 闫涛. 基于高斯曲率的三角网格模型简化的研究[J]. 计算机工程与科学,2012,34(12):126-129. (Yan Tao. Triangular mesh simplification based on Gauss curvature[J]. Computer Engineering and Science,2012,34(12):126-129.)
- [4] 王晓哲,刘永继,赵龙波,等. 基于特征保持的半自动化动态网格简化方法[J]. 计算机应用研究,2015,32(9):2839-2843. (Wang Xiaozhe, Liu Yongji, Zhao Longbo, et al. Semi-automated and dynamic mesh simplification algorithm based on feature preserving[J]. Application Research of Computers,201532(9):2839-2843.)
- [5] Tang H, Shu H Z, Dillenseger J L, et al. Moment-based metrics for mesh simplification [J]. Computers and Graphics, 2007, 31(5):710-718.
- [6] Hoppe H. Progressive meshes [C]//Proc of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1996:99-108.
- [7] Garland M, Heckbert P S. Surface simplification using quadric error metrics [C]//Proc of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997: 209-216. (下转第 312 页)

差,当 spike 信号存在一定量噪声时往往对重建结果产生影响;其次,随机森林算法在处理大数据时会导致时间复杂度明显升高,从而使运行效率降低。

在未来的研究工作中,一方面考虑使用 spike 信号与 LFP (local field potential)信号的联合特征来提高图像的重建正确率^[18],另一方面将在此研究的基础上继续对自然图像、视频等更为复杂的视觉刺激进行重建研究,这不仅能进一步为探究生物视觉系统的图像信息表征机制提供依据,同时也有助于推进图像理解技术的发展^[19]。

参考文献:

- [1] Stanley G B, Li Feifei, Dan Yang. Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus [J]. Journal of Neuroscience, 1999, 19(18):8036-8042.
- [2] 柳培忠,王守觉. 基于视觉仿生的图像目标分类算法 [J]. 计算机工程与设计,2014,35(5):1722-1726. (Liu Peizhong, Wang Shoujue. Algorithm of image classification recognition based on vision bionic[J]. Computer Engineering and Design,2014,35(5):1722-1726.)
- [3] Quiroga R Q, Reddy L, Koch C, et al. Decoding visual inputs from multiple neurons in the human temporal lobe[J]. Journal of Neurophysiology, 2007, 98(4):1997-2007.
- [4] Sang B R, Ye J H, Yong S G, et al. Optimal linear filter based light intensity decoding from rabbit retinal ganglion cell spike trains [C]// Proc of the 3rd International IEEE EMBS Conference on Neural Engineering. Piscataway, NJ; IEEE Press, 2007; 608-610.
- [5] Busse L, Wade A R, Carandini M. Representation of concurrent stimuli by population activity in visual cortex [J]. Neuron, 2009, 64 (6): 931-942
- [6] Aubie B, Sayegh R, Fremouw T, et al. Decoding stimulus duration from neural responses in the auditory midbrain [J]. Journal of Neurophysiology, 2014, 112(10):2432-2445.
- [7] Kuriki I, Xie Hongfei, Tokunaga R, et al. Interaction of color-defined and luminance-defined motion signals in human visual cortex [J]. Journal of Vision, 2014, 14(10):291-291.
- [8] Babolhavaeji A, Karimi S, Ghaffari A, et al. Optimal temporal resolution for decoding of visual stimuli in inferior temporal cortex [C]// Proc of the 21st Iranian Conference on Biomedical Engineering. Piscataway, NJ; IEEE Press, 2015; 109-112.

(上接第303页)

- [8] Ozaki H, Kyota F, Kanai T. Out-of-core framework for QEM-based mesh simplification [C]//Proc of the 15th Eurographics Symposium on Parallel Graphics and Visualization. Aire-la-Ville, Switzerland: Eurographics Association, 2015;87-96.
- [9] Ho T C, Chuang J H. A Simple Yet effective user controllable mesh simplification [J]. Journal of Information Science and Engineering, 2013, 29(3):509-525.
- [10] 黄佳,温佩芝,季丽芳,等. 保持细节特性的局部误差渐进网格简化算法[J]. 计算机应用,2016,36(6):1704-1708. (Huang Jia, Wen Peizhi, Li Lifang, et al. Local error progressive mesh simplification algorithm for keeping detailed features[J]. Journal of Computer Applications,2016,36(6):1704-1708.)
- [11] 王竣,王修晖.基于边曲率的网格模型简化算法[J]. 中国计量学院学报,2016,27(1):73-79,85. (Wang Jun, Wang Xiuhui. Mesh simplification algorithms based on edge curvature metrics[J]. Journal of China Jiliang University,2016,27(1):73-79,85.)
- [12] 钱勋波,罗立宏. 一种保持特征的网格简化算法 [J]. 机电工程, 2017,34(10):1224-1228. (Qian Xunbo, Luo Lihong. Method of mesh simplification based on feature preserving [J]. Mechanical & Electrical Engineering Magazine,2017,34(10):1224-1228.)

- [9] 师黎,马山峰,王治忠. 视顶盖神经元在不同颜色背景下的亮度解码[J]. 科学技术与工程,2017,17(29):27-32. (Shi Li, Ma Shanfeng, Wang Zhizhong. Decoding visual luminance from different color backgrounds in the optic tectum neurons[J]. Science Technology and Engineering,2017,17(29):27-32.)
- [10] Lazar A A, Ukani N H, Zhou Yiyin, *et al.* Sparse functional identification of complex cells from spike times and the decoding of visual stimuli [J]. Journal of Mathematical Neuroscience, 2018, 8(1):1-2.
- [11] Wylie D R, Gutierrezibanez C, Pakan J M, et al. The optic tectum of birds; mapping our way to understanding visual processing[J]. Canadian Journal of Experimental Psychology, 2009, 63 (4): 328-338.
- [12] Goddard C A, Sridharan D, Huguenard J R, et al. Gamma oscillations are generated locally in an attention-related midbrain network [J]. Neuron, 2012, 73(3):567-580.
- [13] Major D E, Luksch H, Karten H J. Bottlebrush dendritic endings and large dendritic fields; motion-detecting neurons in the mammalian tectum [J]. Journal of Comparative Neurology, 2015, 423 (2):243-260.
- [14] Mysore S P, Knudsen E I. The role of a midbrain network in competitive stimulus selection [J]. Current Opinion in Neurobiology, 2011,21(4):653-660.
- [15] Letelier J C, Marin G, Sentis E, et al. The mapping of the visual field onto the dorso-lateral tectum of the pigeon (Columba livia) and its relations with retinal specializations [J]. Journal of Neuroscience Methods, 2004, 132(2):161-168.
- [16] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
- [17] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述 [J]. 统计与信息论坛,2011,26(3):32-38. (Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A review of technologies on random forests [J]. Statistics and Information Forum,2011,26(3):32-38.)
- [18] Wang Songwei, Liu LIjun, Wang Zhizhong, et al. Luminance information decoding on the basis of local field potential signals of pigeon optic tectum neurons [J]. Neuroreport, 2017, 28(16):1036-1042.
- [19] 胡德昆. 基于生物视觉感知机制的图像理解技术研究 [D]. 成都:电子科技大学,2012. (Hu Dekun. The research on technology of image understanding based on biological visual perception [D]. Chengdu: University of Electronic Science and Technology,2012.)
- [13] 刘峻,范豪,孙宇,等. 结合边折叠和局部优化的网格简化算法 [J]. 计算机应用,2016,36(2):535-540. (Liu Jun, Fan Hao, Sun Yu, et al. Mesh simplification algorithm combined with edge collapse and local optimization [J]. Journal of Computer Applications, 2016,36(2):535-540.)
- [14] Du Q, Faber V, Gunzburger M. Centroidal Voronoi tessellations; applications and algorithms [J]. SIAM Review, 1999, 41(4):637-676.
- [15] Lévy B E, Petitjean S, Ray N, et al. Least squares conformal maps for automatic texture atlas generation [J]. ACM Trans on Graphics, 2002,21(3):362-371.
- [16] 刘泗岩,廖文和,刘浩. 基于内角余弦和的三角形正则度评定与网格优化[J]. 机械科学与技术,2007,26(4):420-423. (Liu Siyan,Liao Wenhe,Liu Hao. Triangle regularity measurement based on cosine sum of inner angles and mesh optimization[J]. Mechanical Science and Technology,2007,26(4):420-423.)
- [17] Surazhsky V, Gotsman C. Explicit surface remeshing [C]//Proc of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Aire-la-Ville, Switzerland; Eurographics Association, 2003; 20-30.
- [18] Cignoni P, Rocchini C, Scopigno R. Metro; measuring error on simplified surfaces [J]. Computer Graphics Forum, 1998, 17(2):167-174.