Soluciones del primer parcial de Matemática Discreta 2 - Curso 2006 - IMERL

Lunes 15 de Mayo de 2006

Ejercicio 1.

1. Teorema: El sistema de ecuaciones $\begin{cases} x \equiv a_1 \mod m_1 \\ x \equiv a_2 \mod m_2 \\ \vdots \vdots \vdots \vdots \vdots \\ x \equiv a_k \mod m_k \end{cases} \quad \text{con } mcd(m_i, m_j) = 1 \text{ si } i \neq j$

con $i, j \in \{1, ..., k\}$ tiene una única solución x módulo $M = m_1 \times m_2 \times \cdots \times m_k$.

Demostración: \blacklozenge Existencia. Sean $M_1 = m_2 \cdots m_k$, $M_2 = m_1 m_3 \cdots m_k$, ..., $M_k = m_1 m_2 \cdots m_{k-1}$. Entonces M_j es múltiplo de m_i para todo $i \neq j$ y $MCD(M_j, m_j) = 1$. Entonce por el algoritmo de Euclides existen números b_j, n_j tales que $b_j M_j + n_j m_j = 1$. Definimos el número $x = \sum_{k=1}^k a_j b_j M_j$ Entonces x es la solución buscada.

En efecto, dada una ecuación cualquiera $x = a_i \mod m_i$, sustituyendo x por $\sum_{j=1}^k a_j b_j M_j$ tenemos que todos los sumandos excepto el *i*-ésimo son múltiplos de m_i por lo que esos sumandos son 0 módulo m_i .

Queda solo $a_ib_iM_i$. Pero $b_iM_i \equiv 1 \mod m_i$ por lo que queda $a_ib_iM_i \equiv a_i \mod m_i$.

- ♦ Unicidad. Si $x \equiv a_j \pmod{m_j}$ e $y \equiv a_j \pmod{m_j}$ $\forall j = 1,...,k$, entonces $x y \equiv 0 \pmod{m_j}$ $\forall j = 1,...,k$. Como $mcd(m_i, m_j) = 1$ si $i \neq j$, se tiene $x y \equiv 0 \pmod{m_1 m_2 ... m_k}$ o sea $x \equiv y \pmod{M}$.
- 2. $\begin{cases} x \equiv 2 \pmod{4} \\ x \equiv 3 \pmod{5} \end{cases}$ Al ser 4, 5 y 3 coprimos, sabemos por el teorema chino del resto que este sistema tiene solución $x \equiv 2 \pmod{3}$

única módulo $4 \times 5 \times 3 = 60$.

Tenemos $M = 4 \times 5 \times 3 = 60$, $M_1 = 15$, $M_2 = 12$, $M_3 = 20$.

 b_i es el inverso de M_i en \mathbb{Z}_{m_i} . Obtenemos $b_1 = -1, b_2 = 3$ y $b_3 = 2$.

Entonces $x = 2 \times 15 \times (-1) + 3 \times 12 \times 3 + 2 \times 20 \times 2 = 158 \equiv 38 \pmod{60}$.

Ejercicio 2.

- 1. Si $[a] \in \mathbb{Z}_n$ es tal que existe su inverso $[b] \in \mathbb{Z}_n$ entonces [a][b] = 1 en \mathbb{Z}_n o sea $ab \equiv 1 \pmod{n}$ lo cual es equivalente en decir que existe $k \in \mathbb{Z}$ tal que ab 1 = kn, o lo que es lo mismo ab kn = 1 de donde MCD(a, n) = 1.
- Si MCD(a,n) = 1 podemos hallar usando el algoritmo de Euclides números $b,c \in \mathbb{Z}$ tales que ab+nc=1. Entonces $ab \equiv 1 \mod n$ lo cuál es lo mismo escribir [ab] = 1 en \mathbb{Z}_n , y por definición del producto [a][b] = 1, es decir [a] es invertible.
- 2. $30523 = 131 \times 233$ y 131 y 233 son primos.
- [524] no es invertible en \mathbb{Z}_{30523} pues 131 | 524, o sea $mcd(30523,524) \neq 1$.
- mcd(30523,63) = 1 entonces usando el algoritmo de Euclides se prueba que $1 = 969 \times 63 2 \times 30523$, es decir $[63]^{-1} = [969]$.
- 3. La cantidad de elementos invertibles en \mathbb{Z}_{30523} está dado por $\varphi(30523)$ siendo φ la función phi de Euler. $\varphi(30523) = \varphi(131 \times 233) = 130 \times 232 = 30160$.
- 4. $10000^{3016000} = (10000^{30160})^{100} = (10000^{\phi(30523)})^{100} \equiv 1^{100} = 1 \pmod{30523}$ usando el teorema de Euler.

Ejercicio 3.

- 1. H_n es el conjunto de las potencias n-ésimas de G, o sea $H_n = \{g \in G / \exists h \in G \text{ tal que } g = h^n\}$. H_n es un subgrupo de G pues:
- es no vacío: $e_G \in H_n$ pues $e_G = e_G^n$.
- es cerrado con el producto: $g_1, g_2 \in H_n$ entonces $g_1 = h_1^n$ y $g_2 = h_2^n$. $g_1g_2 = h_1^n h_2^n = (h_1h_2)^n \in H_n$.
- El inverso de cada elemento de H_n pertenece a H_n y si $g \in H_n$ entonces $(g^{-1})^n = (g^n)^{-1}$.

Entonces $H_n < G$. Por el teorema de Lagrange el orden de H_n divide al orden de G o sea $\kappa = |G|/|H_n| \in \mathbb{N}$.

- 2. Sea $\{y_1, y_2, \dots, y_p\}$ el conjunto de soluciones de la ecuación $y^n = e$.
- Si $g \in H_n$ entonces existe $h \in G$ tal que $h^n = g$. Luego la ecuación $x^n = g$ se transforma en $x^n = h^n$, es decir $(xh^{-1})^n = e$, o sea $xh^{-1} \in \{y_1, y_2, \dots, y_p\}$. Entonces $x \in \{y_1h, y_2h, \dots, y_ph\}$ y la ecuación $x^n = g$ tiene entonces p soluciones.
- Si $H_n = \{g_1, g_2, \dots, g_s\}$, entonces H_n tiene s elementos y la unión de las soluciones de las ecuaciones $x^n = g_1, x^n = g_2, \dots, x_n = g_s$ es todo el grupo G. Entonces $|G| = p + p + \dots + p = sp$. Como $s = |H_n|$ se deduce que $p = \kappa$.
- 3. Al ser H_n un subgrupo de G tenemos que $H_n \subset G$. Probemos ahora que todo elemento de G es un elemento de H_n . Sea $g \in G$. Como mcd(|G|, n) = 1 existen $s, t \in \mathbb{Z}$ tales que t|G| + sn = 1.
- Entonces $g = g^1 = g^{t|G|+sn} = (g^{|G|})^t (g^s)^n = (g^s)^n$ (aqui usamos que si $x \in G$ entonces $x^{|G|} = e$). Luego si $h = g^s$ entonces $g = h^n$ para algún $h \in G$, es decir $g \in H_n$. Concluimos entonces que $G \subset H_n$ y finalmente que $G = H_n$.

Ejercicio 4.

1. $13^{663} \equiv (-1)^{663} \equiv -1 \equiv 6 \pmod{7}$

2. $276 = 2 \times 2 \times 3 \times 23$. Como 10 < d < 30 y d es divisor de 276 entonces las únicas posiblidades son 12 o 23.

Si d = 12 entonces m + 36 = 276 o sea m = 240. Sean a = 12a' y b = 12b' con mcd(a', b') = 1.

Entonces m = 12a'b' = 240, es decir a'b' = 20. Las posiblidades para a' y b' son:

a' = 1 y b' = 20;

a' = 2 y b' = 10 no puede ser pues no serían primos entre sí;

a' = 4 y b' = 5.

Tenemos entonces las soluciones: a = 12, b = 240 y a = 48, b = 60.

Si d = 23 entonces m + 69 = 276 o sea m = 207. Sean a = 23a' y b = 23b' con mcd(a', b') = 1.

Entonces m = 23a'b' = 207, es decir a'b' = 9. Las posiblidades para a' y b' son:

a' = 1 y b' = 9;

a' = 3 y b' = 3 no puede ser pues no serían primos entre sí;

Tenemos entonces la solución : a = 23, b = 207.