5

ABSTRACT:

In a data carrier (2) for the communication of communication data (KD1, KD2) with a base station, having processing means (4) for the processing of communicated communication data (KD1, KD2), and having voltage supply means (5) which are arranged to receive an external supply voltage (U_{EXT}) applied to the data carrier during a charging time interval (T_L) until a turn-on instant (t_{e1} , t_{e2} , t_{e3}) and which are adapted to supply an internal supply voltage (U_{EXT}), during a consumption time interval (T_{V1} , T_{V2} , T_{V3}) starting at the turn-on instant (t_{e1} , t_{e2} , t_{e3}), the processing means (4) being adapted to interrupt the processing from an interruption instant (t_{u1} , t_{u2} , t_{u3}), when the internal supply voltage (U_{INT}) decreases below a threshold voltage (US), till the turn-on instant (t_{e1} , t_{e2} , t_{e3}), time measurement means (12) are now provided, which time measurement means are adapted to measure a processing time interval (T_{P1} , T_{P2} , T_{P3}) defined as the time interval from the turn-on instant (t_{e1} , t_{e2} , t_{e3}) till the interruption instant (t_{u1} , t_{u2} , t_{u3}), and the voltage supply means (5) are configured to adapt the consumption time interval (T_{V1} , T_{V2} , T_{V3}) to the measured processing time interval (T_{P1} , T_{P2} , T_{P3}).

Fig. 1