AUTÓMATOS E LINGUAGENS FORMAIS

(LCC/LMAT)

1. Linguagens Formais e Expressões Regulares

Departamento de Matemática
Universidade do Minho

2022/2023

- Um alfabeto é um conjunto não vazio.
 Habitualmente, notaremos alfabetos por: A, A', A₀,
- Uma letra de uma alfabeto A é um elemento de A.
 Habitualmente, notaremos letras de alfabetos por: a, b, c, a', a₀,
- Uma palavra sobre um alfabeto A é uma sequência finita de letras de A, possivelmente vazia.
 Consequentemente, duas palavras são iguais quando as respetivas sequências de letras forem iguais.
 - Habitualmente, notaremos palavras por: $u, v, w, x, y, z, u', u_0, ...$
- Chamaremos palavra vazia à sequência vazia de letras, que notaremos por ϵ .
- A notação a₁...a_n, com n ≥ 1, representará uma palavra não vazia, cuja primeira letra é a₁, a segunda a₂, etc.

Por exemplo,

1, 01, 11, 1001, 00001,
$$\epsilon$$

são palavras sobre o alfabeto $\{0,1\}$. Por outro lado,

aba, ab, a, c, bbcac,
$$\epsilon$$

são palavras sobre o alfabeto $\{a, b, c\}$.

Definição

 A⁺ notará o conjunto das palavras não vazias sobre o alfabeto A, i.e.,

$$A^+ = \{a_1 a_2 \cdots a_n \mid n \in \mathbb{N}, a_1, a_2, \dots, a_n \in A\}.$$

• A* notará o conjunto das palavras sobre o alfabeto A, i.e.,

$$\mathbf{A}^* = \{\epsilon\} \cup \mathbf{A}^+.$$

3/43

Por exemplo, sendo $A = \{a, b\}$, tem-se:

 $A^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ...\}$. Exercício: mostre que, para A finito, o conjunto A^* é numerável.

Observação

Para provar propriedades sobre palavras é, por vezes, útil ter-se uma definição indutiva do conjunto A^* . Como se pode verificar, A^* é o conjunto X definido indutivamente pelas regras:

- (i) $\epsilon \in X$;
- (ii) Se $u \in X$ e $a \in A$, então $ua \in X$;

uma vez convencionado que $a_1...a_n$ abrevia $\epsilon a_1...a_n$.

Observação

A anterior caracterização indutiva de A^* não só permite obter um princípio de indução em palavras, como permite também obter um princípio de recursão em palavras.

O comprimento de uma palavra u é o comprimento da respetiva sequência de letras, sendo notado por |u|.

Por exemplo, fixando o alfabeto $\{a, b, c\}$:

$$|\epsilon| = 0$$
, $|a| = 1$, $|abc| = 3$, $|bbab| = 4$.

Observação

O comprimento de uma palavra sobre um alfabeto A corresponde a uma operação de A^* em \mathbb{N}_0 , que pode ser caracterizada por recursão em palavras do seguinte modo:

- $|\epsilon| = 0;$
- |ua| = |u| + 1, para todo $u \in A^*$ e para todo $a \in A$.

Exercício: verifique as exemplificações acima utilizando esta caracterização recursiva de comprimento de uma palavra.

O número de ocorrências de uma letra a numa palavra u é notado por $|u|_a$.

Por exemplo, fixando o alfabeto $\{a, b, c\}$:

$$|baba|_c = 0$$
, $|acaba|_a = 3$, $|acaba|_b = 1$.

Proposição

Sejam A um alfabeto e $u \in A^*$. Então: $|u| = \sum_{a \in A} |u|_a$.

Exercício: mostre a proposição, recorrendo a indução em palavras ou, em alternativa, a indução no comprimento de palavras .

A concatenação de uma palavra u com uma palavra v será notada por $u \cdot v$ ou, simplesmente, por uv, sendo dada pela concatenação das respetivas listas. Dito de outro modo:

- se $u = \epsilon$, então $u \cdot v = v$;
- se $u = a_1...a_n$ e $v = \epsilon$, então $u \cdot v = u$;
- se $u = a_1...a_n$ e $v = b_1...b_m$, então $u \cdot v = a_1...a_nb_1...b_m$.

Por exemplo, para as palavras u = abc e v = aa (sobre $\{a, b, c\}$),

$$u \cdot v = abcaa,$$

 $v \cdot u = aaabc,$
 $u \cdot \epsilon = abc,$
 $(v \cdot u) \cdot v = aaabcaa = v \cdot (u \cdot v)$

Exercício: dê uma definição da operação de concatenação $u \cdot v$ por recursão na palavra v.

Observação

A operação de concatenção de palavras é associativa, com elemento neutro ϵ , pelo que, dado um alfabeto A,

 (A^*, \cdot) é um monóide,

chamado o monóide livre gerado por A.

No entanto, a concatenção de palavras não é comutativa.

Proposição

Para $u, v, w \in A^*$, tem-se:

- 1 $uv = uw \Rightarrow v = w$ (lei do corte à esquerda);
- 2 $vu = wu \Rightarrow v = w$ (lei do corte à direita);
- |uv| = |u| + |v| e $|uv|_a = |u|_a + |v|_a$ (para todo $a \in A$).

Sejam $u \in A^*$ e $n \in \mathbb{N}_0$. A potência-n de u corresponderá à "concatenação de n cópias de u", sendo notada por u^n e definida recursivamente por:

$$u^n = \left\{ \begin{array}{ll} \epsilon & \text{se } n = 0 \\ u^{n-1}u & \text{se } n \ge 1. \end{array} \right.$$

Proposição

Para toda a palavra u e para todo $n, m \in \mathbb{N}_0$,

$$u^{n+m} = u^n u^m$$
, $(u^n)^m = u^{nm}$, $|u^n| = n|u|$.

Sejam u e v duas palavras de A^* . Diz-se que:

- u é um fator de v quando existem $x, y \in A^*$ tais que xuy = v;
- u é um prefixo de v quando existe $y \in A^*$ tal que uy = v;
- u é um sufixo de v quando existe $x \in A^*$ tal que xu = v.

Por exemplo, sendo v = baba:

- os fatores de v são ε, b, a, ba, ab, bab, aba, v;
- os prefixos de v são ε, b, ba, bab, v;
- os sufixos de v são ε, a, ba, aba, v.

A palavra inversa de uma palavra $u \in A^*$ denota-se por u^I e define-se recursivamente por:

$$u^I = \left\{ egin{array}{ll} \epsilon & ext{se } u = \epsilon \ av^I & ext{se } u = va & ext{com } v \in A^* ext{ e } a \in A. \end{array}
ight.$$

Proposição

Para quaisquer $a_1, a_2, \dots, a_n \in A$ e $u, v \in A^*$,

$$(a_1a_2\cdots a_n)^I=a_n\cdots a_2a_1,$$

 $(uv)^I=v^Iu^I,$
 $(u^I)^I=u.$

Uma linguagem sobre um alfabeto A é um subconjunto de A^* . Habitualmente, notaremos linguagens por: L, K, M, L', L_0 ,

São exemplos linguagens sobre $A = \{a, b\}$:

$$\emptyset, \{\epsilon\}, \{a\}, A, \{aa, aba, bbb, ababa\}, \{a^mb^n : m, n \in \mathbb{N}\}, A^+, A^*$$
.

Observação

- O conjunto de todas as linguagens sobre o alfabeto A é $\mathcal{P}(A^*) = \{L : L \subset A^*\}$.
- Para uma alfabeto finito A, dado que A^* é um conjunto infinito (numerável), $\mathcal{P}(A^*)$ é um conjunto infinito não numerável.

Exercício

Defina indutivamente as seguintes linguagens:

- a) $L_0 = \{u \in \{0,1\}^* : 1 \text{ \'e fator de } u\};$
- b) $L_1 = \{u \in \{a, b\}^* : |u|_a = |u|_b\};$
- c) $L_2 = \{u \in \{0, 1\}^* : |u|_0 \text{ \'e par}\};$
- d) $L_3 = \{ w \in \{a, b, c\}^* : w = w^I \}.$

Mostremos, por exemplo, que L_1 é o conjunto L das palavras sobre o alfabeto $A = \{a, b\}$ definido indutivamente pelas regras seguintes:

- 1 $\epsilon \in L$;
- **2** Se $w \in L$, então $awb \in L$;
- 3 Se $w \in L$, então $bwa \in L$;
- 4 Se $w_1, w_2 \in L$, então $w_1 w_2 \in L$.

Para provar a inclusão $L \subseteq L_1$, precisaremos do Princípio de indução estrutural associado a esta definição indutiva de L.

Princípio de indução estrutural para L

Seja P(x) uma condição sobre $x \in L$. Se:

- 1 $P(\epsilon)$;
- 2 para qualquer $w \in L$, se P(w), então P(awb);
- 3 para qualquer $w \in L$, se P(w), então P(bwa);
- 4 para quaisquer $w_1, w_2 \in L$, se $P(w_1)$ e $P(w_2)$, então $P(w_1w_2)$;
- então P(x), para todo $x \in L$.

Mostremos por indução estrutural sobre L que, para cada $x \in L$, $|x|_a = |x|_b$. Para $x \in L$, seja P(x) a condição: $|x|_a = |x|_b$.

- 1 A propriedade $P(\epsilon)$ é $|\epsilon|_a = |\epsilon|_b$. Ora, como $|\epsilon|_a = 0 = |\epsilon|_b$, tem-se $P(\epsilon)$.
- 2 Seja $w \in L$ e suponhamos P(w), por hipótese de indução. Ou seja, suponhamos que: $|w|_a = |w|_b$. Então

$$|awb|_a = |w|_a + 1 = |w|_b + 1 = |awb|_b.$$

Provou-se assim P(awb).

- Esta condição prova-se de forma análoga à anterior.
- 4 Sejam $w_1, w_2 \in L$ e suponhamos, por H.I., $P(w_1)$ e $P(w_2)$, isto é: $|w_1|_a = |w_1|_b$ e $|w_2|_a = |w_2|_b$. Logo

$$|w_1 w_2|_a = |w_1|_a + |w_2|_a = |w_1|_b + |w_2|_b = |w_1 w_2|_b.$$

Provou-se assim $P(w_1w_2)$.

Pelo Princípio de indução estrutural para L, de 1 a 4, conclui-se que P(x) é verdadeira para todo o $x \in L$. Provou-se assim que $L \subseteq L_{1}$.

Mostremos agora a inclusão $L_1 \subseteq L$, ou seja, mostremos que, para cada $x \in L_1$, $x \in L$. Para $x \in L_1$, seja Q(x) a condição $x \in L$. A prova será feita por indução no comprimento da palavra x.

- **1** Caso |x| = 0. Neste caso $x = \epsilon$. Como, pela regra 1 da definição de L, se tem $\epsilon \in L$, segue Q(x).
- **2** Caso |x| > 0. Suponhamos, por H.I., que Q(y) é verdadeira para todas as palavras $y \in L_1$ tais que |y| < |x|. Existem 4 possibilidades:
 - x = awb (ou x = bwa) para algum $w \in A^*$. Dado que $x \in L_1$, tem-se $|x|_a = |x|_b$, donde $|w|_a = |w|_b$. Portanto $w \in L_1$ e, pela H.I., $w \in L$. Daqui resulta, pela regra 2 da definição de L, que $x \in L$. Ou seja, tem-se Q(x).
 - x = awa (ou x = bwb) para algum $w \in A^*$. Dado que $x \in L_1$, tem-se $|x|_a = |x|_b$. Logo $x = aw_1w_2a$, com $aw_1, w_2a \in L_1$ (porquê?). Pela H.I., tem-se $aw_1, w_2a \in L$. Assim, pela regra 4 da definição de $L, x \in L$. Ou seja, tem-se Q(x).

De 1 e 2 segue Q(x) para cada $x \in L_1$, i.e., $L_1 \subseteq L$.

Dado que linguagens são conjuntos de palavras, ficam imediatamente definidas para linguagens as diversas operações sobre conjuntos. Em particular, dadas linguagens L e K sobre A:

- **1** $L \cup K = \{u \in A^* : u \in L \text{ ou } u \in K\}$ união de $L \in K$.
- 2 $L \cap K = \{u \in A^* : u \in L \text{ e } u \in K\}$ interseção de L e K.
- **3** $K \setminus L = \{u \in A^* : u \in K \text{ e } u \notin L\}$ complementar de L em K.
- $\overline{L} = A^* \setminus L = \{u \in A^* : u \notin L\}$ complementar de L.

E.g., para
$$A = \{0,1\}$$
, $L = \{u \in A^* : |u|_0 = 0\}$ e $K = \{u \in A^* : |u|_1 = 0\}$: $L \cup K = A^*$; $L \cap K = \emptyset$; $L \setminus K = L$; $\overline{L} = K$.

Observação

As anteriores operações em linguagens herdam, de imediato, as propriedades das respetivas operações em conjuntos. Por exemplo: a união e a interseção de linguagens são operações associativas, comutativas, que possuem elemento neutro e elemento absorvente.

Dadas linguagens L e K sobre A, a concatenação de L e K é a linguagem em A, notada por L.K ou LK, dada por: $\{u.v: u \in L \text{ e } v \in K\}$.

Por exemplo, para
$$L = \{b, ba\}$$
 e $K = \{\epsilon, a\}$:
 $L.K = \{b, ba, baa\}$
 $K.L = \{b, ba, ab, aba\}$

Deste exemplo, pode deduzir-se que a concatenação de linguagens não é comutativa.

Proposição

A concatenação de linguagens é uma operação associativa, com elemento neutro $\{\epsilon\}$ e com a linguagem vazia como elemento absorvente, que distribui pela união, i.e., para $L, K, M \subseteq A^*$:

$$L.(K \cup M) = (L.K) \cup (L.M) \qquad (K \cup M).L = (K.L) \cup (M.L)$$

Observação

Adiante, uma palavra u será utilizada muitas vezes como uma abreviatura para $\{u\}$ (a linguagem cuja única palavra é u).

Por exemplo, considerando o alfabeto $A = \{a, b\}$,

$$ab\{aa,bb\} = \{ab\}\{aa,bb\} = \{abaa,abbb\}$$
.

Proposição

Dada uma palavra u sobre um alfabeto A:

$$uA^* = \{ux : x \in A^*\},\ A^*u = \{xu : x \in A^*\},\ A^*uA^* = \{xuy : x, y \in A^*\}$$

são as linguagens cujas palavras têm, respetivamente, *u* como prefixo, como sufixo e como fator.

Dada uma linguagem L, a sua linguagem inversa será notada por L^{I} , sendo dada por:

$$L' = \{u' : u \in L\} .$$

Por exemplo, considerando o alfabeto {0, 1}:

- 1 para $L = \{\epsilon, 0, 01\}, L' = \{\epsilon, 0, 10\};$
- **2** para $K = \{0^n 1^m : n \in \mathbb{N}_0 \land m \in \mathbb{N}\}, K' = \{1^m 0^n : n \in \mathbb{N}_0 \land m \in \mathbb{N}\}.$

Proposição

Dadas linguagens *L* e *K*:

- $(L.K)^{I} = K^{I}.L^{I};$

Sejam L uma linguagem num alfabeto A e $n \in \mathbb{N}_0$. A potência n de L é a linguagem em A, notada por L^n , dada recursivamente por:

$$L^{0} = \{\epsilon\}$$

$$L^{k+1} = L^{k}.L \quad (k \in \mathbb{N}_{0})$$

Por exemplo, para a linguagem $L = \{a, ab\}$ (sobre o alfabeto $A = \{a, b\}$):

$$L^0 = \{\epsilon\}$$

 $L^1 = L^0.L = \{\epsilon\}.\{a, ab\} = \{a, ab\}$
 $L^2 = L^1.L = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$.

Proposição

Sejam u uma palavra, L uma linguagem num alfabeto A e $n \in \mathbb{N}_0$. Então, $u \in L^n$ se e só se

- 1 (i) n = 0 e $u = \epsilon$; ou
- 2 (ii) $n \ge 1$ e existem palavras $u_1, ..., u_n \in L$ t.q. $u = u_1 ... u_n$.

Definição

Dada uma linguagem L num alfabeto A:

f 1 o fecho positivo de L é a linguagem em A, notada por L^+ , dada por:

$$L^+ = \bigcup_{n>1} L^n$$

o fecho (de Kleene) de *L*, também designada a estrela de *L*, é a linguagem em *A*, notada por *L**, dada por:

$$L^* = \bigcup_{n>0} L^n = L^+ \cup \{\epsilon\}.$$

Por exemplo, para o alfabeto $A = \{0, 1\}$ e para a linguagem $L = \{0, 1\}$ sobre A:

- 1 para todo $n \in \mathbb{N}_0$, $L^n = \{u \in A^* : |u| = n\}$ (exercício);
- **2** $L^+ = A^+$ (porquê?);
- 3 $L^* = A^*$ (porquê?).

De facto, os três itens anteriores são válidos para qualquer alfabeto A.

Proposição

Seja L uma linguagem. Então,

- **1** $\emptyset^* = \{\epsilon\}, \ \emptyset^+ = \emptyset, \ \{\epsilon\}^* = \{\epsilon\} = \{\epsilon\}^+;$
- $2 L = L^1 \subseteq L^+ \subseteq L^+ \cup \{\epsilon\} = L^*;$
- $\epsilon \in L^+$ se e só se $\epsilon \in L$;
- $L^+ = LL^* = L^*L.$

O conjunto das expressões regulares sobre um alfabeto $A \in o$ conjunto ER(A), de palavras sobre o alfabeto $A \cup \{\emptyset, \epsilon, (,), +, \cdot, *\}$, definido indutivamente por:

- 1 $\emptyset \in ER(A)$ e $\epsilon \in ER(A)$;
- 2 $a \in ER(A)$, para cada $a \in A$;
- 3 Se $r, s \in ER(A)$, então $(r + s) \in ER(A)$;
- 4 Se $r, s \in ER(A)$, então $(r \cdot s) \in ER(A)$;
- 5 Se $r \in ER(A)$, então $(r^*) \in ER(A)$.

Habitualmente, notaremos expressões regulares por: $r, s, r', r_0, ...$

Por exemplo, sendo $A = \{a, b\}$, são expressões regulares sobre A:

$$\emptyset$$
, ϵ , a , b , $(a+b)$, $((b \cdot \emptyset) + \epsilon)$, $((a+b)^*)$, $((a^*) + (b^*))$.

Observação

A notação das expressões regulares pode ser abreviada da seguinte forma:

- o símbolo · pode ser omitido;
- podem omitir-se parênteses desnecessários usando associatividade para as operações + e ·, e considerando que * tem a maior prioridade e que · tem prioridade em relação a +;
- para $r \in ER(A)$ e $n \in \mathbb{N}_0$, a abreviatura r^n é definida recursivamente, por:
 - $r^0 = \epsilon$, $r^1 = r$ e, para $n \ge 2$, $r^n = (r^{n-1} \cdot r)$;
 - $r^+ = (r \cdot (r^*)).$

Por exemplo,

- a^+b^2 é uma abreviatura de $((a \cdot (a^*)) \cdot (b \cdot b))$;
- $\emptyset^* a + (b + \epsilon)b$ abrevia $(((\emptyset^*) \cdot a) + (((b + \epsilon) \cdot b)))$.

A cada expressão regular r sobre um alfabeto A associa-se uma linguagem $\mathcal{L}(r)$ sobre A, dita a linguagem representada por r ou a linguagem de r. A função

$$\begin{array}{ccc} \mathcal{L}: & \textit{ER}(A) & \rightarrow & \mathcal{P}(A^*) \\ & r & \mapsto & \mathcal{L}(r) \end{array}$$

é definida recursivamente por:

- 1 $\mathcal{L}(\emptyset) = \emptyset$ e $\mathcal{L}(\epsilon) = \{\epsilon\};$
- 2 $\mathcal{L}(a) = \{a\}$, para cada $a \in A$;
- 3 $\mathcal{L}((r+s)) = \mathcal{L}(r) \cup \mathcal{L}(s)$, para quaisquer $r, s \in ER(A)$;
- 4 $\mathcal{L}((r \cdot s)) = \mathcal{L}(r) \cdot \mathcal{L}(s)$, para quaisquer $r, s \in ER(A)$;
- 5 $\mathcal{L}((r)^*) = \mathcal{L}(r)^*$, para cada $r \in ER(A)$.

Por exemplo, sendo $A = \{a, b\}$, tem-se:

- 1 $\mathcal{L}((b+\epsilon)a) = \mathcal{L}(b+\epsilon)\mathcal{L}(a) = (\mathcal{L}(b) \cup \mathcal{L}(\epsilon))\{a\} = (\{b\} \cup \{\epsilon\})\{a\} = \{b,\epsilon\}\{a\} = \{ba,a\};$
- 2 $\mathcal{L}(a^*) = \mathcal{L}(a)^* = \{a\}^* = \{a^n : n \in \mathbb{N}_0\};$
- 3 $\mathcal{L}(a^*(a^3+b)) = \{a\}^*\{a^3,b\} = \{a^m : m \ge 3\} \cup \{a^nb : n \in \mathbb{N}_0\};$
- 4 $\mathcal{L}(a^* + b^*) = \mathcal{L}(a)^* \cup \mathcal{L}(b)^* = \{a\}^* \cup \{b\}^* = \{a^n : n \in \mathbb{N}_0\} \cup \{b^n : n \in \mathbb{N}_0\};$
- 5 $\mathcal{L}((a+b)^*) = \mathcal{L}(a+b)^* = (\{a\} \cup \{b\})^* = \{a,b\}^* = A^*$, ou seja, o conjunto de todas as palavras sobre o alfabeto A;
- 6 $\mathcal{L}((a+b)^*aba(a+b)^*) = A^*abaA^*$ é a linguagem das palavras que têm aba como fator.

1 Uma linguagem *L* sobre um alfabeto *A* diz-se regular quando pode ser representada por alguma expressão regular sobre *A*, ou seja:

$$\exists r \in ER(A). L = \mathcal{L}(r).$$

O conjunto das linguagens regulares sobre um alfabeto A será denotado por Reg(A).

Por exemplo, todas as linguagens do slide anterior são regulares (dado serem iguais a $\mathcal{L}(r)$, para cada uma das expressões regulares consideradas).

São também exemplos de linguagens regulares \emptyset e $\{\epsilon\}$ já que

$$\emptyset = \mathcal{L}(\emptyset)$$
 e $\{\epsilon\} = \mathcal{L}(\epsilon)$.

Observação

Alternativamente, o conjunto Reg(A) das linguagens regulares sobre A pode ser definido indutivamente por:

- \emptyset , $\{\epsilon\} \in Reg(A)$;
- 2 $\{a\} \in Reg(A)$, para todo o $a \in A$;
- Reg(A) é fechado para as operações de união, concatenação e fecho de Kleene, ou seja,

se
$$L, K \in Reg(A)$$
 então $L \cup K, L \cdot K, L^* \in Reg(A)$.

Observação

Note-se que, se L é uma linguagem regular sobre um alfabeto A, então $L^+ = L^*L$ também é uma linguagem regular sobre A.

Observação

- 1 Para um alfabeto finito $A = \{a_1, ..., a_n\}$:
 - a linguagem A é regular: $A = \{a_1\} \cup ... \cup \{a_n\} = \mathcal{L}(a_1 + ... + a_n)$;
 - **a** linguagem A^* é regular: $A^* = \{a_1, ..., a_n\}^* = \mathcal{L}((a_1 + ... + a_n)^*)$
- Para qualquer palavra u sobre um alfabeto, {u} é uma linguagem regular sobre A. De facto:
 - caso $u = \epsilon$: $\{u\} = \{\epsilon\} = \mathcal{L}(\epsilon)$;
 - caso $u = a_1 a_2 \cdots a_n$, com $a_1, a_2, \dots, a_n \in A$:

$$\{u\} = \{a_1\}\{a_2\} \cdots \{a_n\} = \mathcal{L}(a_1 a_2 \dots a_n) = \mathcal{L}(u).$$

- 3 Toda a linguagem finita L, sobre um alfabeto A, é regular. De facto:
 - caso $L = \emptyset$: $L = \emptyset = \mathcal{L}(\emptyset)$;
 - caso $L = \{u_1, ..., u_k\}$, com $k \ge 1$, $u_i \in A^*$:

$$L = \{u_1\} \cup \cdots \cup \{u_k\} = \mathcal{L}(u_1 + \ldots + u_k).$$

Proposição

Existem linguagens que não são regulares.

A proposição segue por razões de cardinalidade. De facto:

- por um lado, o conjunto P(A*) das linguagens sobre um alfabeto A finito, com duas ou mais letras, é infinito não numerável;
- por outro, o conjunto ER(A) das expressões regulares sobre um alfabeto A finito é numerável.

Assim, há linguagens que não poderão corresponder à representação de qualquer expressão regular.

Observação

Prova-se que $n\tilde{a}o$ são regulares as linguagens (sobre $A = \{0, 1\}$):

- 1 $\{0^p : p > 0 \text{ primo}\}$
- 2 $\{0^n1^n : n \in \mathbb{N}_0\}$
- 3 $\{u \in A^* : u^I = u\}$

Note-se que expressões regulares distintas podem representar a mesma linguagem.

Por exemplo, as expressões regulares

$$(a+b)^*$$
 e $(a+b)(a+b)^* + \epsilon$

representam a mesma linguagem, nomeadamente $\{a, b\}^*$.

Definição

- Diremos que r é menor ou igual que s, escrevendo, $r \le s$, quando $\mathcal{L}(r) \subseteq \mathcal{L}(s)$.
- Diremos que r é equivalente a s ou, simplesmente, que r é igual a s, escrevendo, respetivamente, $r \equiv s$ e r = s, quando $r \leq s$ e $s \leq r$, ou seja, quando $\mathcal{L}(r) = \mathcal{L}(s)$.

Observação

Dado um alfabeto A, $(ER(A), \leq)$ constitui um conjunto parcialmente ordenado. (Porquê?)

Por exemplo, considerando o alfabeto $A = \{a, b\}$, pode escrever-se:

- 1 $a \le a + b$, mas $a + b \not\le a$, pelo que $a \ne a + b$;
- 2 $a+b \le (a+b)^+ \le (a+b)^*$ e consequentemente $a+b \le (a+b)^*$ (porquê?);
- 3 $(a+b)^*aa(a+b)^* \le (a+b)^*a(a+b)^*$ (porquê?);
- 4 $(a+b)^* \le (a+b)(a+b)^* + \epsilon$;
- 5 $(a+b)(a+b)^* + \epsilon \leq (a+b)^*$;
- 6 $(a+b)^* = (a+b)(a+b)^* + \epsilon;$

Observação

Adiante, por norma, dadas expressões regulares $r, s \in ER(A)$, a notação r = s significará que r é equivalente a s, ou seja, $\mathcal{L}(r) = \mathcal{L}(s)$ (e não que as palavras r e s, sobre o alfabeto $A \cup \{\emptyset, \epsilon, (,), +, \cdot, *\}$, são sequências de letras de iguais).

Proposição

Sejam r, s e t expressões regulares sobre um alfabeto A. Então,

(i)
$$(r+s)+t=r+(s+t)$$
:

(ii)
$$r + \emptyset = \emptyset + r = r$$
;

(iii)
$$r + s = s + r$$
;

(iv)
$$r + r = r$$
;

(v)
$$r\emptyset = \emptyset r = \emptyset$$
;
(vii) $(rs)t = r(st)$;

(vi)
$$r\epsilon = \epsilon r = r$$
;
(viii) $r(s + t) = rs + rt$:

$$(ix) (r+s)t = rt + st;$$

$$(x) \emptyset^* = \epsilon^* = \epsilon$$
:

(xi)
$$r^* = r^*r^* = (r^*)^* = (\epsilon + r)^* = r^+ + \epsilon$$
;

(xii)
$$r^+ = rr^* = r^*r$$
:

(xiii)
$$(r+s)^* = (r^*+s^*)^* = (r^*s^*)^* = (r^*s)^*r^*$$
:

$$(xiv) r(sr)^* = (rs)^*r;$$

$$(xv) (r^*s)^* = (r+s)^*s + \emptyset;$$

$$(xvi) (rs^*)^* = r(r+s)^* + \epsilon.$$

Uma equação linear à direita sobre expressões regulares é uma equação do tipo

$$X = rX + s$$

na qual $r, s \in ER(A)$ são expressões regulares e X é dita a (expressão regular) indeterminada ou incógnita.

Habitualmente, usaremos $X, Y, X_1, ...$ para representar expressões regulares indeterminadas

Exemplos, de tais equações lineares são:

$$X = aX + a$$

$$Y = (a + b^*)Y + (a + \epsilon)$$

Diz-se que uma expressão regular $t \in ER(A)$ é uma solução da equação X = rX + s quando t = rt + s.

Por exemplo, uma solução da equação

$$X = aX + a$$

é a^+ , dado que se tem $a^+ = aa^+ + a$, uma vez que:

$$\mathcal{L}(a^+) = \{a^n : n \in \mathbb{N}\} = \{a^n : n \geq 2\} \cup \{a\} = \mathcal{L}(aa^+) \cup \mathcal{L}(a) = \mathcal{L}(aa^+ + a) \ .$$

 $(a+b)^*$ é uma solução da equação $Y=(a+b^*)Y+(a+\epsilon)$. (Porquê?)

É possível que uma equação linear à direita tenha várias soluções. Por exemplo, a equação

$$X = \epsilon X + \mathbf{a} + \mathbf{b}$$

tem como solução a+b (pois: $\mathcal{L}(a+b)=\{a,b\}=\mathcal{L}(\epsilon(a+b)+a+b)$), bem como $a+b+\epsilon$ (pois: $\mathcal{L}(a+b+\epsilon)=\{a,b,\epsilon\}=\mathcal{L}(\epsilon(a+b+\epsilon)+a+b)$). De facto, toda a expressão regular r tal que $\mathcal{L}(r)\supseteq\{a,b\}$ é solução desta equação (porquê?). Na verdade, esta condição é necessária para r ser solução desta equação (porquê?) e, por esta razão, a+b dir-se-á solução mínima desta equação:

Definição

Diz-se que uma expressão regular $t \in ER(A)$ é uma solução mínima da equação X = rX + s quando:

- 1 t é uma solução da equação ; e,
- **2** para toda a solução t' desta equação, $t \le t'$.

Proposição

Sejam $r, s \in ER(A)$.

- (a) Se $t, t' \in ER(A)$ são soluções mínimas da equação X = rX + s, então t = t'.
- (b) r^*s é a solução mínima da equação X = rX + s.
- (c) Se $\epsilon \notin \mathcal{L}(r)$, então r^*s é a única solução de X = rX + s.

Por exemplo, a solução mínima da equação

$$X = (a+b)X + \epsilon$$

é $(a+b)^*$, por (b). Dado que $\epsilon \notin \mathcal{L}(a+b)$, então, por (c), $(a+b)^*$ é a única solução desta equação.

Demonstração da Proposição: Provaremos apenas (a) e (b).

(a) Suponhamos que $t, t' \in ER(A)$ são soluções mínimas da equação X = rX + s. Então, $t \le t'$, pois t é solução mínima, e $t' \le t$, pois t' é solução mínima. Logo, t = t'.

- (b) (i) Tem-se: $r(r^*s) + s = (rr^*)s + s = (rr^* + \epsilon)s = r^*s$. Portanto, r^*s é solução de X = rX + s.
- (ii) Seja $t \in ER(A)$ outra solução de X = rX + s. Então, t = rt + s, o que significa que

$$\mathcal{L}(t) = \mathcal{L}(r)\mathcal{L}(t) \cup \mathcal{L}(s). \tag{1}$$

Logo, $\mathcal{L}(r)\mathcal{L}(t) \subseteq \mathcal{L}(t)$. Daqui decorre que

$$\mathcal{L}(r)^2 \mathcal{L}(t) \subseteq \mathcal{L}(r) \mathcal{L}(t) \subseteq \mathcal{L}(t)$$

e, indutivamente, tem-se $\mathcal{L}(r)^n \mathcal{L}(t) \subseteq \mathcal{L}(t)$, para todo o $n \in \mathbb{N}_0$. Portanto, $\mathcal{L}(r)^* \mathcal{L}(t) = \mathcal{L}(t)$. Usando a igualdade (1), deduz-se:

$$\mathcal{L}(t) = \mathcal{L}(r)^*(\mathcal{L}(r)\mathcal{L}(t) \cup \mathcal{L}(s)) = \mathcal{L}(r)^*\mathcal{L}(r)\mathcal{L}(t) \cup \mathcal{L}(r)^*\mathcal{L}(s).$$

Conclui-se, então, que $\mathcal{L}(r)^*\mathcal{L}(s)\subseteq\mathcal{L}(t)$, donde $r^*s\leq t$. Portanto, r^*s é solução mínima da equação X=rX+s, que, por (a), é única.

Um sistema de equações lineares à direita sobre expressões regulares é um sistema da forma

$$\begin{cases} X_1 = r_{11}X_1 + r_{12}X_2 + \dots + r_{1n}X_n + s_1 \\ X_2 = r_{21}X_1 + r_{22}X_2 + \dots + r_{2n}X_n + s_2 \\ \vdots \\ X_n = r_{n1}X_1 + r_{n2}X_2 + \dots + r_{nn}X_n + s_n \end{cases}$$

onde r_{ij} , $s_i \in ER(A)$ para todos os $i, j \in \{1, ..., n\}$ e $X_1, X_2, ..., X_n$ são chamadas as indeterminadas ou incógnitas.

Diz-se que:

- $(t_1, t_2, ..., t_n) \in ER(A)^n$ é uma solução do sistema quando, para cada $i \in \{1, ..., n\}$, $t_i = r_{i1}t_1 + r_{i2}t_2 + \cdots + r_{in}t_n + s_i$;
- uma solução $(t_1, t_2, ..., t_n) \in ER(A)^n$ do sistema é uma solução mínima quando, para toda a solução $(t'_1, t'_2, ..., t'_n)$ do sistema, $t_i \le t'_i$ para todo o $i \in \{1, ..., n\}$.

Proposição

- (a) Um sistema de equações lineares à direita sobre expressões regulares, num dado alfabeto, tem uma única solução mínima.
- (b) Se $\epsilon \notin \mathcal{L}(r_{ij})$, para cada coeficiente r_{ij} do sistema, então o sistema tem uma única solução.

Observação

Para determinar a solução mínima de um sistema pode usar-se:

- o "método de substituição" e
- a solução mínima das equações da forma X = rX + s.

Consideremos, por exemplo, o sistema

$$\begin{cases} X_1 = bX_1 + aX_2 + \emptyset \\ X_2 = aX_1 + bX_2 + \epsilon \end{cases}$$

e determinemos a sua solução mínima. Pode deduzir-se, sucessivamente:

$$\begin{cases} X_1 = bX_1 + aX_2 + \emptyset \\ X_2 = aX_1 + bX_2 + \epsilon \end{cases} \Leftrightarrow \begin{cases} X_1 = b^*aX_2 \\ X_2 = aX_1 + bX_2 + \epsilon \end{cases}$$
$$\Leftrightarrow \begin{cases} X_1 = b^*aX_2 \\ X_2 = ab^*aX_2 + bX_2 + \epsilon \end{cases}$$
$$\Leftrightarrow \begin{cases} X_1 = b^*aX_2 \\ X_2 = (ab^*a + b)X_2 + \epsilon \end{cases}$$
$$\Leftrightarrow \begin{cases} X_1 = b^*a(ab^*a + b)^* \\ X_2 = (ab^*a + b)^* \end{cases}$$

A solução mínima do sistema é, portanto:

$$(b^*a(ab^*a+b)^*,(ab^*a+b)^*).$$

Observação

Os sistemas de equações lineares podem ser usados para determinar uma expressão regular que represente uma dada linguagem (regular).

Por exemplo, para $A = \{a, b\}$, sendo

$$L_1=\{u\in A^*: |u|_a \text{ \'e impar}\}$$
 e $L_2=\{u\in A^*: |u|_a \text{ \'e par}\}$ são válidas as igualdades $L_1=bL_1\cup aL_2$ e $L_2=aL_1\cup bL_2\cup \{\epsilon\}$. Ou seja, (L_1,L_2) é a única solução do sistema

$$\begin{cases} X_1 = bX_1 \cup aX_2 \cup \emptyset \\ X_2 = aX_1 \cup bX_2 \cup \{\epsilon\} \end{cases}$$

que convertido em sistema de equações lineares é precisamente o sistema do exemplo anterior. Portanto, considerando a solução mínima desse sistema, deduz-se que

$$r_1 = b^* a(ab^* a + b)^*$$
 e $r_2 = (ab^* a + b)^*$

são expressões regulares que representam L_1 e L_2 , respetivamente.