Politechnika Świętokrzyska Wydział Elektrotechniki, Automatyki i Informatyki

Technologie loT rozproszone sieci sensoryczne

Laboratorium 1 Adrian Dorota 3ID15B

1. GitHub

Zastosowanie i opis systemu kontroli wersji.

GitHub – hostingowy serwis internetowy przeznaczony dla projektów programistycznych wykorzystujących system kontroli wersji Git. Stworzony został przy wykorzystaniu frameworka Ruby on Rails i języka Erlang. Serwis działa od kwietnia 2008 roku. W kwietniu 2011 ogłoszono, iż GitHub obsługuje 2 miliony repozytoriów. GitHub udostępnia darmowy hosting programów open source oraz płatne prywatne repozytoria. W czerwcu 2018 ogłoszono, iż serwis zostanie przejęty przez przedsiębiorstwo Microsoft za kwotę 7,5 miliarda dolarów.

Kilka z funkcji, które występują w systemie GitHub:

- ·bugtracker,
- •forki repozytoriów, czyli kopia w osobnym repozytorium należąca do innego użytkownika,
- •pull requesty osoba mająca forka może zgłosić swój kod do złączenia z głównym repozytorium,
- statystyki,
- •organizacje zrzeszające programistów pracujących nad repozytoriami,

- •web hooks wywołanie operacji na repozytorium wysyła informację do innego serwisu lub skryptu,
- •wiki dla celów dokumentacji.

Ponadto GitHub udostępnia usługę zwaną GitHub Pages, służącą do szybkiego tworzenia stron internetowych, których kod jest opublikowany w ramach repozytoriów Gita umieszczonych w serwisie.

Możliwości usługi:

- darmowe stworzenie strony personalnej, dla organizacji lub projektu,
- możliwość utworzenia własnej strony w oparciu o statyczne pliki strony internetowej lub stworzenie bloga przy zastosowaniu silnika blogowego Jekyll,
- możliwość podłączenia własnej domeny do danej strony internetowej(lub skorzystania z darmowej subdomeny w ramach adresu github.io),
- darmowy certyfikat SSL dla wszystkich stron w domenie github.io, z możliwością wygenerowania certyfikatu od Let's Encrypt dla stron obsługujących własne domeny.

Podstawowe komendy

- git init Inicjalizuje repozytorium GIT w danym katalogu
- *git add [nazwa_pliku]* Dodaje zmiany we wskazanym pliku do commita
- git add Dodaje wszystkie zmienione pliki do commita
- *git add -p [nazwa_pliku]* Udostępnia możliwość dodania wybranych linii w zmodyfikowanym pliku do commita
- git commit -m "[treść_commita]" Dodaje opis do commita. Dobrym zwyczajem jest opisanie co ta zmiana wprowadza do kodu w zakresie funkcjonalnym
- git add origin [adres_repozytorium, np. https://github.com/username/moje-repozytorium.git] Ustawia konkretny adres zdalnego repozytorium jako główne repozytorium
- git push origin master Wysłanie zmian do branacha zdalnego
- git push -f Wysłanie zmian do zdalnego repozytorium ignorując konflikty, to znaczy, że jeśli wystapią konflikty to pliki zostaną nadpisane właśnie wysłaną wersją. Trzeba stosować to bardzo ostrożnie.

git checkout [nazwa_brancha] – Zmienia aktywny branch na wybrany przez użytkownika

git checkout [nazwa_pliku] – Usuwa zmiany w wybranym pliku

git checkout – Usuwa zmiany we wszystkich zmienionych plikach

git checkout -b [nazwa_brancha] – Tworzenie nowego brancha z aktywnego brancha i przełączenie się na niego

git rebase master – Zaciągnięcie zmian z brancha głównego do brancha aktywnego

git push origin :[nazwa_brancha] – Usunięcie zdalnego brancha

git branch -d [nazwa_brancha] – Usuwanie brancha lokalnie. Nie można usunąć w ten sposób aktywnego brancha

git stash – Dodanie zmienonych plików do pamięci/stosu i usunięcie ich z aktywnego brancha

git pull –rebase – Pobranie najnowszych zmian z aktywnego brancha zdalnego

git stash pop – Przywrócenie zmodyfikowanych plików z pamięci/stosu

git stash clear – Czyszczenie pamięci/stosu

git remote prune origin – Pobranie aktualizacji o usuniętych branchach zdalnych

git fetch –all – Pobranie listy zdalnych branchy

git branch – Wyświetlenie listy lokalnych branchy

git branch -r – Wyświetlenie listy zdalnych branchy

git status – Wyświetlenie listy zmienionych plików

git diff [nazwa_pliku] – Szczegółowe wyświetlenie zmian w wybranym pliku

2. Część obserwacyjna z laboratorium

- A) Ogniwo fotowoltaiczne przetwarza światło zdefiniowane w opcjach środowiskowych na prąd elektryczny. Wartość mocy wytwożojnego prądu jest przedstawiona na "wyświetlaczu" ogniwa.
 - Dalej jest przekazywany do miernika, który, co ciekawe pokazuje wartośc mniejszą niż na wyświetlaczu ogniwa i przekazywany do baterii ładując ją.

Wartośći te można podejrzeć także logując się na serwer w podpunkcie B.

- C) Po odłączeniu fotowoltaiki LEDy pobierają energię z baterii do momentu całkowitego jej rozładowania. Czas działania jest uzależniony od pierwotnego poziomu naładowania baterii oraz ilości LEDów naraz podłączonych do baterii.
- D) Działanie urządzeń:
 - A) ogniwo fotowoltaiczne Ogniwo fotowoltaiczne przetwarza światło zdefiniowane w opcjach środowiskowych na prąd elektryczny. Wyjście wykorzystuje skalę logarytmiczną w celu dostosowania wartości mocy do 100 MW(+/-20%)
 - A) Wyjście D0 przekazuje prąd na linię.
 - B) miernik mocy Odczytuje prąd który płynie w obwodzie.
 - Wejście i wyjście wykorzystuje skalę logarytmiczną w celu dostosowania wartości mocy do 100 MW(+/-20%).
 - A) Wejście D0 czyta prąd od innego urządzenia
 - B) Wyjście D1 przekazuje prąd dalej.
 - C) Standardowy LED zielony świeci na zielono gdzy ma dostęp do prądu.

 Poziom świecenia jest uzależniony od wartości na wejściu, najjaśniejszy przy 2023, wyłączony przy 0. Przyjmuje wartości 0-1023.

Możliwośći rozbudowy:

- Zdalne sterowanie LEDami by świeciły na żądanie przez aplikację mobilną, zastosowanie włącznika naściennego, bądź czujnik ruchu (ośwetlenie klatki schodowej)
- 2. Zastosowanie zegara czasu rzeczywistego by układ świecił tylko w określonych godzinach przez określony czas (oswietlenie podjazdu w nocy)