

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 2.1 $Warm\ Up$

- Wie sieht eine allgemeine Bilanzierungsgleichung aus?
- Was versteht man unter Erhaltungsgrößen und was gilt für diese beim Bilanzieren? Welche Erhaltungsgrößen gibt es?

Aufgabe 2.2

Es geht um einen Mischprozess von 2 Flüssigkeiten. Das erste Fluid besitzt eine Dichte von $\rho_1=2~\frac{\rm g}{\ell}$, das zweite Fluid besitzt einen Dichte von $\rho_2=500~\frac{\rm mg}{\ell}$. Es wird so vermischt, dass der Endvolumenstrom \dot{V}_3 eine Dichte von $\rho_3=1945~\frac{\rm g}{\rm m^3}$ besitzt.

Zur besseren Prozesssteuerung wird nach dem Abzug aus dem Tank der Produktstrom noch einmal geteilt und ein Teil in den Mischreaktor zurückgeführt ($\dot{V}_4=2,36~\frac{\ell}{\rm h}$). Die Volumenströme (1) und (2) werden geregelt mit $\dot{V}_1=4000~\frac{\ell}{\rm h}$ und $\dot{V}_2=150~\frac{\ell}{\rm h}$ zugeführt.

- a) Berechnen Sie den Volumenstrom \dot{V}_3 .
- b) Bestimmen Sie den Volumenstrom $\dot{V}_{austritt}$ anhand der eingezeichneten Bilanzgrenze.

Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Hinweis: Es handelt sich um einen stationären Prozess.

Aufgabe 2.2 - Hinweise

- a) 1. Geschickte Wahl der Bilanzgrenze.
 - 2. $\dot{m} = \rho \cdot \dot{V}$
- b) 1. $\dot{m} = \rho \cdot \dot{V}$

Aufgabe 2.3 $Zusatzaufgabe:\ Unsinnige\ Di\"{a}ten$

Ein:
e Ingenieurstudent: in kommt auf die Idee, Eiswasser zu trinken, um abzunehmen. Der Körper erwärmt das Wasser von 0 °C auf 37 °C Körpertemperatur. Dieser verbraucht dazu das körpereigene Fett, das einen Energiegehalt von

 $32 \frac{\text{kJ}}{\text{g}}$ besitzt. Wieviel Wasser muss die Person trinken, um so ein halbes Kilo abzunehmen?

<u>Hinweis:</u> Die spezifische Wärmekapazität des Wassers beträgt $c_W = 4,185 \frac{\text{kJ}}{\text{kg K}}$.

Aufgabe 2.3 - Hinweise

1. Energiebedarf zur Erwärmung von Wasser: $Q_W = m_W \cdot c_W \cdot \Delta T$