This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Problem Image Mailbox.

XP-002139395

AN - 1984-034839 [06]

AP - SU19691308563 19690217

CPY - ERMA-I

DC - S03

FS - EPI

IC - G01T1/20

IN - BOBRYSHEV N I; RADYVANYUK A M

MC - S03-G02A S03-G02B1

PA - (ERMA-I) ERMAKOV G K

PN - SU306770 A 19831030 DW198406 003pp

PR - SU19691308563 19690217

XIC - G01T-001/20

XP - N1984-026222

AB - SU-306770 Counter is designed for use in dosimeters, radiometers and spectrometers operating under severe conditions of vibration or shock. The counter is based on a photomultiplier, scintillation detector, electronics circuits and shock absorber.

- Reliability is improved when subjected to a wide range of mechanical leads by the shock absorber taking the form of a hollow inflatable shell of elastic material placed between the body of the device and the individual parts making up the counter and filled with a liq. under excess pressure. Manufacture is simplified by the shock absorber being made up of individual bags (14-17), Interconnected by tubes (18-20). Bul.40/10.83.
- (3pp Dwg.No.0/2)
- IW SHOCK SCINTILLATION COUNTER SHOCK ABSORB COMPRISE FLUID FILLED BAG INTERCONNECT TUBE
- IKW SHOCK SCINTILLATION COUNTER SHOCK ABSORB COMPRISE FLUID FILLED BAG INTERCONNECT TUBE

INW - BOBRYSHEV N I; RADYVANYUK A M

NC - 001

OPD - 1969-02-17

ORD - 1983-10-30

PAW - (ERMA-I) ERMAKOV G K

TI - Shockproof scintillation counter - with shock absorbers comprising fluid-filled bags interconnected by tubes

(19) SU (11) 306770 A

3(51) G 01 T 1/20

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 1308563/26-25

17.02.69

.6) 30.10.83. Бюл. 9 40

(72) Г.К.Ермаков, А.М.Радыванюк, Н.К.Бобрышев и Ю.Д.Бубнов

(53) 539.1.074.3(086.8)

(54)(57) 1. СЦИНТИЛЛЯЦИОННЫЯ СЧЕТЧИК, содержащий размешенные в кожухе фотоумножитель, сцинтилляционный детектор излучения, элементы электрической схемы, средства соединения фотоумножителя с указанными элементами, амортизирующий элемент, о т л и ч а ю щ и й с я тем, что, с целью порышения надежности устройства в широком диапазоне механических нагрузок, амортизирующий элемент выполнен в

виде полой надувной оболочки из эластичного материала, расположенной между кожухом и отдельными элементами счетчика, заполняемой текучей средой под повышенным давлением.

2. Счетчик по п. 1, о т л и ч а тю щ и й с я тем, что, с целью упрощения технологии изготовления, амортизирующий элемент выполнен в виде отдельных секций, соединенных между собой трубками.

3. Счетчик по п. 1, о т л и ч а - ю щ и й с я тем, что, с целью упрощения регулировки давления текучей среды в амортизирующей оболочке, оболочка снабжена обратным клапаном, соеди. В ненным с источником текучей среды.

cF015484-US

15

изобретение относится к технике для регистрации радиоактивного излучения. Устройство может быть использованс в дозиметрической, радиометрической и спектрометрической аппаратуре. Оно может быть применено в радиационных датчиках и приборах, эксплуатируемых в условиях больших вибраций, ударов, толчков.

Известны сцинтилляционные счетчики, состоящие из сцинтиллятора, фотоэлектронного умножителя (ФЭУ), элементов электрической схемы и средств для соединения всех компонентов между собой и с измерительной аппаратурой.

При повышенных механических нагрузках нарушается целостность баллона ФЭУ или сцинтиллятора, оптического или электрического контакта между сцинтиллятором и ФЭУ или ФЭУ и элементами электрической схемы соответственно и т.д.

В результате этого приборы часто выходят из строя или значительно ухудшаются их физические параметры.

Для защиты от ударных и вибрационных нагрузок приборы обычно устанавливают на упругие подвески (амортизато[ы) различных конструкций. Надо учитывать технические возможности применяемого для амортизатора
материала. Резина одной и той же марки может хорошо работать в одной
конструкции и совершенно не работать
в другой, поэтому весьма важно знать
сьойства резины как виброизолятора,
ее зависимость от температуры, времени и деформации.

Известен такой вариант выполнения сборки, когда эластичную прокладку, например резину, приклеивают к внут- 40 ренней стороне кожуха, а затем внутрь кожуха помещают составные части счетчика. Однако эначительный разброс допуска по диаметру баллона ФЭУ приводит к необходимости в индивидуаль- 45 ном подборе прокладки. Но даже при правильно подобранной прокладке, когда она плотно охватывает баллон ФЭУ, сцинтиллятор или другие элементы счетчика имеет заходные фаски, оста- 50 ются трудности сборки, вызванные необходимостью в преодолении большой силы трения материалов и создании не обходимого натяга прокладки, которая задирается и открывается от кожуха или смещается с нужного места, если она не приклеена.

Известен также ударопрочный сцинтилляционный блок, содержащий сцинтиллятор, ФЗУ, средства электричест 60 кой связи ФЗУ и амортизирующий элемент в виде слоя эластомера, залитото в пространство между ФЗУ и кожутом; Однако такие счетчики нельзя разбирать вследствие большой алгезии 65

эластомера к кожуху и баллону ФЭУ, а амортизационные характеристики эластичного элемента приходится подбирать в зависимости от предлагаетмых условий работы.

5 цель изобретения состоит в повышении надежности сцинтилляционного счетчика в широком днапазоне механических нагрузок. Достигается она тем, что амортизирующий элемент выполнен 10 в виде расположенной между кожухом и отдельными элементами счетчика полой надувной ободочки из эластичного материала, заполняемой текучей средой под повышенным давлением.

С целью упрощения технологии изготовления амортизирующий элемент выполнен в виде отдельных секций, соединенных между собой трубками.

С целью упрощения регулировки давления текучей среды в амортизирующей оболочке последняя снабжена обратным клапаном, соединенным с источником текучей среды.

На фиг. 1 изображен предлагаемый счетчик; на фиг. 2 - разрез A-A на фиг. 1.

Функциональные элементы сцинтилляционного счетчика размещены в герметичной полости, образованной кожухом 1, колпачком 2 и основанием 3. Герметичность обеспечивается с помощью гаек 4 и 5, поджимающих к кожуху эластичное кольцо б и профильную манжету 7. Сцинтилляционный детектор В, например NaI(T1), помещенный в специальный контейнер, механически и оптически соединен с баллоном ФЭУ 9 с помощью профильной манжеты 7, которая входит в канавку контейнера детектора 8 и надета на баллон ФЭУ 9 с натягом. Воздушное пространство между детектором и ФЭУ заполнено маслом, например вазелиновым. Панель 10 с делителем напряжения соединена с ФЭУ 9 и с согласующим каскадом 11, в котором на плате 12, укрепленной на рамке 13, размещены элементы электрической схемы счетчика. Соединение панели ФЭУ 10 с уэлом согласующего каскада 11 посредством упругого элемента (на чертеже не показано) поэволяет компенсировать разброс допусков баллона ФЭУ по длине.

Между кожухом 1 и элементами счетчика помешены полые цилиндрические
(могут быть и конические) оболочки
14 и 15 из эластичного материала, а
также оболочки 16 и 17, размешенные
между оболочкоя 15 и уэлом согласуюшего каскада 11. Внутренние объемы
оболочек соединены между собой трубками 18, 19 и 20 при сохранении их
герметичности по отношению к внешнему пространству. Одна из оболочек
(на чертеже оболочка 16) через трубку 21, герметично заделанную в ос-

нование 3, соединена с обратным клапаном, ниппель 22 которого из эластичного материала также герметично закреплен в основании с помощью гаяки 23 и шаябы 24. Электрические соединения счетчика выведены на разъем 25.

При монтаже счетчика вначале соединяют детектор 8 и ФЭУ 9, панель 10 и узел согласующего каскада 11, рамку 13 которого жестко прикрепляют к основанию 3. Затем спущенные пустотелые оболочки 14-17 соединяют трубками 18-20 и размещают в нужных местах по отношению к элементам счетчика, а оболочку 16 соединяют через трубку 21 с обратным клапаном, расположенным в основании, после чего надевают кожух 1 и герметизируют его.

Текучую среду вводят в оболочки через специальную жесткую трубку, вставляемую в ниппель (на чертеже трубка не показана). Когда давление в оболочках достигает определенного уровня, трубку вынимают из ниппеля, а ниппель под действием сил внутреннего давления самоуплотняется.

Амортизирующий элемент предохраняет внутренние части прибора от
температурного воздействия окружающей среды, служит термокомпенсатором, воспринимающим температурные
изменения размеров элементов сцинтилляционного счетчика, а также препятствует случайному контактированию
проводников электрической схемы с
кожухом.

Редактор П.Горькова Техред В.Далскорея Корректор М.Демчик

Заказ 8155/4 Тираж 710 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и Открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП ''Патент'', г.Ужгород, ул.Проектная, 4