

- Sorting
- Hashing
- Selections
- Joins

Cost of External Merge Sort

- Number of passes: $1 + \log_{B\square^1} \square^{N \ / \ B} \square$ Cost = 2N * (# of passes)
- E.g., with 5 buffer pages, to sort 108 page file:
- Now, do four-way (B-1) merges

 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages

Sorting warnings

- Be able to run the general external merge sort!
 - Careful use of buffers in pass 0 vs. pass i, i>0.
 - Draw pictures of runs like the "tree" in the slides for 2-way external merge sort (will look slightly different!)
- Be able to compute # of passes correctly for file of N blocks, B buffers!
 - Watch the number of buffers available in pass 0
 - tournament sort (heapsort) vs. quicksort
 - Be able to count I/Os carefully!

More tips

- How to sort any file using 3 memory Pages
- How to sort in as few passes given some amount of memory
- I have a file of N blocks and B buffers
 - How big can N be to sort in 2 phases?

B-1 >= N/B

So, $N \le B^2$.. approx of course

Sort GROUP BY: Naïve Solution

- The Sort iterator (could be external sorting, as explained last week) naturally permutes its input so that all tuples are output in sequence
- The Aggregate iterator keeps running info ("transition values") on agg functions in the SELECT list, per group
 - E.g., for COUNT, it keeps count-so-far
 - For SUM, it keeps sum-so-far
 - For AVERAGE it keeps sum-so-far and count-so-far
- As soon as the Aggregate iterator sees a tuple from a new group:
 - It produces an output for the old group based on the agg function
 - E.g. for AVERAGE it returns (sum-so-far/count-so-far)
 - 2. It resets its running info.
 - 3. It updates the running info with the new tuple's info

An Alternative to Sorting: Hashing!

- Idea:
 - Many of the things we use sort for don't exploit the order of the sorted data
 - E.g.: forming groups in GROUP BY
 - E.g.: removing duplicates in DISTINCT
- Often good enough to match all tuples with equal field-values
- Hashing does this!
 - And may be cheaper than sorting! (Hmmm...!)
 - But how to do it for data sets bigger than memory??

General Idea

- · Two phases:
 - Partition: use a hash function h_p to split tuples into partitions on disk.
 - We know that all matches live in the same partition.
 - Partitions are "spilled" to disk via output buffers
 - ReHash: for each partition on disk, read it into memory and build a main-memory hash table based on a hash function h.
 - Then go through each bucket of this hash table to bring together matching tuples

Hash GROUP BY: Naïve Solution, (similar to the Sort GROUPBY)

- The Hash iterator permutes its input so that all tuples are output in sequence
- The Aggregate iterator keeps running info ("transition values") on agg functions in the SELECT list, per group
 - E.g., for COUNT, it keeps count-so-far
 - For SUM, it keeps sum-so-far
 - For AVERAGE it keeps sum-so-far and count-so-far
- When the Aggregate iterator sees a tuple from a new
 - 1. It produces an output for the old group based on the agg
 - E.g. for AVERAGE it returns (sum-so-far/count-so-far)
 - 2. It resets its running info.
 - 3. It updates the running info with the new tuple's info

We Can Do Better!

- Combine the summarization into the hashing process
 - During the ReHash phase, don't store tuples, store pairs of
 - When we want to insert a new tuple into the hash table
 - If we find a matching GroupVals, just update the TransVals appropriately
 - Else insert a new <GroupVals,TransVals> pair
- What's the benefit?
 - Q: How many pairs will we have to handle?
 - A: Number of of GroupVals columns
 - Not the number of tuples!!
 - Also probably "narrower" than the tuples
- · Can we play the same trick during sorting?

Hashing for Grouped Aggregation

- How big can a partition be ?
 - As big as can fit into the hashtable during rehash
 - For grouped aggs, we have one entry per group!
 - So, the key is : the number of unique groups!
 - A partition's size is only limited by the number of unique groups in the partition
- Similar analysis holds for duplicate elimination
 - Note: Can think of dup-elem as a grouped agg
 - All tuples that contribute to the agg are identical
 - So any tuple of a "group" is a "representative"

Analysis

- · How big of a table can we process?
 - B-1 "spill partitions" in Phase 1
 - Each limited by the number of unique tuples per partition and that can be accommodated in the hash table (U_H)
- Have a bigger table? Recursive partitioning!
 - In the ReHash phase, if a partition b has more unique tuples than $U_{H^{\prime}}$ then recurse:
 - pretend that *b* is a table we need to hash, run the Partitioning phase on *b*, and then the ReHash phase on each of its (sub)partitions

Even Better: Hybrid Hashing

- · What if the set of <GroupVals,TransVals> pairs fits in memory
 - It would be a waste to spill it to disk and read it all back!
 - Recall this could be true even if there are tons of tuples!
- Idea: keep a smaller 1st partition in memory during phase 1!

Analysis: Hybrid Hashing, GroupAgg

- **H** buffers in all:
 - In Phase 1: P "spill partitions", H-P buffers for hash table
 - Subsequent phases: H-1 buffers for hash table
- How big of a table can we process?
 - Each of the **P** partitions is limited by the number of unique tuples per partition and that can be accommodated in the hash table $(\mathbf{U_{H}})$
 - Note that that U_H depends on the phase !
 - In Phase 1 $\mathbf{U}_{\mathbf{H}}$ is based on $\mathbf{H-P}$ buffers
 - In subsequent phases U_H is based on H-1 buffers

Simple Selections (cont)

- · With no index, unsorted:
 - Must essentially scan the whole relation
 - cost is M (#pages in R). For "reserves" = 1000 I/Os.
- · With no index, sorted:
 - cost of binary search + number of pages containing results.
 - For reserves = 10 I/Os + □selectivity*#pages□
- · With an index on selection attribute:
 - Use index to find qualifying data entries,
 - then retrieve corresponding data records.
 - Cost?

Using an Index for Selections

- Cost depends on #qualifying tuples, and clustering.
 - - finding qualifying data entries (typically small)
 - plus cost of retrieving records (could be large w/o clustering).
 - In example "reserves" relation, if 10% of tuples qualify (100 pages, 10000 tuples).
 - With a *clustered* index, cost is little more than 100 I/Os;
 - If unclustered, could be up to 10000 I/Os!
 - Unless you get fancy...

Projection (DupElim)

- Issue is removing duplicates.
- · Basic approach is to use sorting
 - 1. Scan R, extract only the needed attrs (why do this 1st?)
 - 2. Sort the resulting set
 - 3. Remove adjacent duplicates
 - Cost: Reserves with size ratio 0.25 = 250 pages. With 20 buffer pages can sort in 2 passes, so 1000 +250 + 2 * 2 * 250 + 250 = 2500 I/Os

SELECT DISTINCT

FROM

R.sid, R.bid

Reserves R

- · Can improve by modifying external sort algorithm (see chapter 12):
 - Modify Pass 0 of external sort to eliminate unwanted fields.
 - Modify merging passes to eliminate duplicates.
 - Cost: for above case: read 1000 pages, write out 250 in runs of 40 $\,$ pages, merge runs = 1000 + 250 + 250 = 1500.

Simple Nested Loops Join

foreach tuple r in R do foreach tuple s in S do if $r_i == s_j$ then add $\langle r, s \rangle$ to result

- · For each tuple in the outer relation R, we scan the entire inner relation S.
- How much does this Cost?
- $(p_R * M) * N + M = 100*1000*500 + 1000 I/Os.$
 - At 10ms/IO, Total: ???
- · What if smaller relation (S) was outer?
- · What assumptions are being made here?

Q: What is cost if one relation can fit entirely in memory?

Page-Oriented Nested Loops Join

foreach page b_R in R do foreach page b_s in S do for each tuple \mathbf{r} in $\mathbf{b}_{\mathbf{R}}$ do foreach tuple s in b_sdo if $r_i == s_i$ then add $\langle r, s \rangle$ to result

- · For each page of R, get each page of S, and write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page.
- · What is the cost of this approach?
- M*N + M= 1000*500 + 1000
 - If smaller relation (S) is outer, cost = 500*1000 + 500

Ouestion from midterm fall 1998

- Sorting: Trying to sort a file of 250,000 blocks with only 250 buffers available.
 - How many initial runs will be generated with quicksort? N/B = 250,000/250 = 1000quicksort?
 - How many total I/O will the sort perform, including the cost of writing out the output? $2N(\log_{B-1}[N/B] + 1)$
 - How many runs (on average) with heapsort?

Avg size = 2(B-2) = 2(248) = 496Num runs = N/2(B-2) = 250 = 504

Question from midterm fall 1998

- **Sorting:** Trying to sort a file of 250,000 blocks with only 250 buffers available.
 - How many initial runs will be generated with quicksort?
 - How many total I/O will the sort perform, including the cost of writing out the output?
 - How many runs (on average) with heapsort ?