SDM4 in R: The Standard Deviation as a Ruler and the Normal Model (Chapter 5)

Nicholas Horton (nhorton@amherst.edu) and Sarah McDonald June 13, 2018

Introduction and background

This document is intended to help describe how to undertake analyses introduced as examples in the Fourth Edition of *Stats: Data and Models* (2014) by De Veaux, Velleman, and Bock. More information about the book can be found at http://wps.aw.com/aw_deveaux_stats_series. This file as well as the associated R Markdown reproducible analysis source file used to create it can be found at http://nhorton.people.amherst.edu/sdm4.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignettes (http://cran.r-project.org/web/packages/mosaic). A paper describing the mosaic approach was published in the R Journal: https://journal.r-project.org/archive/2017/RJ-2017-024.

Chapter 5: The standard deviation as a ruler and the normal model

Section 5.1: Standardizing with z-scores

1

1013

23.7

```
library(mosaic)
library(readr)
options(na.rm = TRUE)
options(digits = 3)
(6.54 - 5.91)/0.56 # should be 1.1 sd better, see page 112
## [1] 1.12
Heptathlon <-
read_delim("http://nhorton.people.amherst.edu/sdm4/data/Womens_Heptathlon_2012.txt",
 delim = "\t")
nrow(Heptathlon)
## [1] 38
filter(Heptathlon, LJ >= max(LJ, na.rm = TRUE)) %>%
  data.frame()
##
                                          Athlete Total Points
## 1
       3 Chernova, TatyanaTatyana Chernova (RUS)
    X100_m_hurdle_points X100_m_hurdles HJ_Points HJ. SP_Points
## 1
                     1053
                                    13.5
                                               978 1.8
                                                              805 14.2
    X200.m_Points X200_m LJ_Points
                                      LJ JT Points
                                                     JT X800 m Points X800 m
```

788 46.5

971

130

1020 6.54

favstats(~ LJ, data = Heptathlon)

```
## min Q1 median Q3 max mean sd n missing ## 3.7 5.83 6.01 6.19 6.54 5.91 0.564 35 3
```

[1] 1.11

Section 5.2: Shifting and scaling

Section 5.3: Normal models

The 68-95-99.7 rule

$$xpnorm(c(-3, -1.96, -1, 1, 1.96, 3), mean = 0, sd = 1, verbose = FALSE)$$

[1] 0.00135 0.02500 0.15866 0.84134 0.97500 0.99865

$$xpnorm(c(-3, -1.96, 1.96, 3), mean = 0, sd = 1, verbose = FALSE)$$

[1] 0.00135 0.02500 0.97500 0.99865

xpnorm(c(-3, 3), mean = 0, sd = 1, verbose = FALSE)

[1] 0.00135 0.99865

Step-by-step (page 122)

$$xpnorm(600, mean = 500, sd = 100)$$

##

If
$$X \sim N(500, 100)$$
, then

$$P(X \le 600) = P(Z \le 1) = 0.8413$$

$$P(X > 600) = P(Z > 1) = 0.1587$$

##

[1] 0.841

Section 5.4: Finding normal percentiles

as on page 123

xpnorm(680, mean = 500, sd = 100)

##

If X \sim N(500, 100), then

$P(X \le 680) = P(Z \le 1.8) = 0.9641$

P(X > 680) = P(Z > 1.8) = 0.03593

##

[1] 0.964

```
qnorm(0.964, mean = 500, sd = 100) # inverse of pnorm()
```

[1] 680

```
qnorm(0.964, mean = 0, sd = 1)  # what is the z-score?
```

[1] 1.8

or on page 124

```
xpnorm(450, mean = 500, sd = 100)
```

##

If X \sim N(500, 100), then

$P(X \le 450) = P(Z \le -0.5) = 0.3085$

P(X > 450) = P(Z > -0.5) = 0.6915

##

[1] 0.309

and page 125

```
qnorm(.9, mean = 500, sd = 100)
```

[1] 628

```
qnorm(.9, mean = 0, sd = 1) # or as a Z-score
```

[1] 1.28

Section 5.5: Normal probability plots

See (sideways) Figure 5.8 on page 129

```
Nissan <-
read_delim("http://nhorton.people.amherst.edu/sdm4/data/Nissan.txt",
   delim = "\t")
gf_histogram(~ mpg, binwidth = 1, center = 0.5, data = Nissan)</pre>
```


gf_qq(~ mpg, data = Nissan)

