- 1. W populacji B natężenie wymierania $\mu_x^{(B)}$ jest większe od natężenia wymierania $\mu_x^{(A)}$ w populacji A, jednostajnie o $\mu>0$, dla każdego wieku x tzn. $\mu_x^{(B)}-\mu_x^{(A)}=\mu$. Niech ponadto M(s) oznacza funkcję tworzącą momenty zmiennej T(x), dla pewnego wieku x, w populacji A. Wówczas e_x wyraża się wzorem:
- (A) $\frac{1}{\mu}(1-M(-\mu))$,
- (B) $\frac{1}{\mu}(1-M(-\frac{\mu^2}{2}))$,
- (C) $\frac{1}{\mu}(1 M(-\mu + \frac{\mu^2}{2}))$
- (D) $\frac{1}{\mu}(1 M(-e\mu))$
- (E) wśród powyższych nie ma dobrej odpowiedzi.

2 2

2. Dane jest ubezpieczenie bezterminowe na życie, które wypłaca 20 000 zł, jeśli ubezpieczony umrze w ciągu najbliższych 30 lat lub 12 000 zł, jeśli umrze później. Świadczenie wypłacane jest w chwili śmierci . Niech Z oznacza wartość obecną świadczenia obliczoną przy technicznej intensywności oprocentowania $\delta = 0.03$. Oblicz Var(Z), jeśli wiadomo, że $\mu_x = const = 0.01$. Podaj najbliższą odpowiedź.

(A) 27 000 000

(B) 30 000 000

(C) 33 000 000

(D) 36 000 000

(E) 39 000 000.

- 3. Rozważamy następujące dwa ubezpieczenia dyskretnego typu:
 - P1 20-letnie na życie i dożycie dla (40) z sumą ubezpieczenia 1,
 - P2 35-letnie na życie i dożycie dla (40) z sumą ubezpieczenia 1. Wiadomo, że stosunek wariancji straty ubezpieczyciela dla P2 do wariancji straty ubezpieczyciela dla P1 wynosi 2,571429 w przypadku zakupu tych polis za składki jednorazowe netto oraz wynosi 1,746143 w przypadku płacenia regularnych składek netto przez cały okres ubezpieczenia. Składka jednorazowa netto za P1 wynosi 0,334327. Techniczna stopa oprocentowania wynosi i = 6%. Oblicz składkę jednorazową netto za P2 (podaj najbliższą wartość).
- (A) 0,19
- (B) 0,21
- (C) 0,23
- (D) 0,25

- 4. Rozważamy dwa rodzaje ubezpieczeń terminowych dyskretnego typu:
 - T1 20-letnie na życie dla 30-latka z sumą ubezpieczenia 1,
 - T2 20-letnie na dożycie dla 30-latka z sumą ubezpieczenia 1.

Oba opłacane są za pomocą regularnych składek netto. Niech $\pi_{12}^{(r)}(T1)$, $\pi_{12}^{(r)}(T2)$ oznaczają ryzyko-składki zawarte w 13. regularnej składce kontraktu (odpowiednio) T1, T2. Dane są:

$$\frac{\pi_{12}^{(r)}(T1)}{\pi_{12}^{(r)}(T2)} = -1,881996 \quad , \quad \ddot{a}_{30:\overline{20}|} = 12,973599 \qquad \ddot{a}_{43:\overline{7}|} = 6,031501$$

Rezerwy składek netto dla T1 oraz T2, po 13 latach, wynoszą odpowiednio (wskaż najbliższe wartości):

- (A) 0,004 oraz 0,531
- (B) 0,006 oraz 0,529
- (C) 0,008 oraz 0,527

- (D) 0,010 oraz 0,525
- (E) 0,006 oraz 0,523

5. Ubezpieczenie ciągłe ogólnego typu dla (x) jest opłacane za pomocą ciągłej renty życiowej regularnych składek w wysokości $\pi(t)=const\equiv 1$. Wiadomo, że wiek graniczny (nieprzekraczalny) w rozważanej populacji wynosi $\omega=x+1$. Ponadto dla $t\in[0,1)$ zachodzi zależność

$$\pi^{s}(t) = \frac{t}{1-t}\pi^{r}(t)$$

Niech V(t) oznacza rezerwę składek netto po czasie t. Oblicz granicę funkcji V(t), gdy t dąży do 1 (podaj najbliższą wartość). Wiadomo, że $\delta=0.025$.

- (A) 0,45
- (B) 0,50
- (C) 0,55
- (D) 0,60

- **6**. Rozważamy dożywotnie ubezpieczenie rentowe dla (40). Przez następne 25 lat (lub krócej w przypadku wcześniejszej śmierci) będzie on płacić roczną regularną składkę brutto P^{br} . Po dożyciu wieku 65 lat zacznie otrzymywać coroczną rentę w wysokości 1 zł netto (na początku roku). A oto identyfikacja wszystkich kosztów:
 - jednorazowe koszty akwizycji wynoszą $\alpha = 0.5$ zł.
 - koszt poboru składki lub wypłaty emerytury wynosi $\beta = 1\%$ przekazywanej kwoty.
 - roczne koszty obsługi ubezpieczenia, ponoszone każdorazowo na początku roku, przez cały okres ubezpieczenia wynoszą $\gamma=0.02$ zł.

Oblicz P^{br} , jeśli dane są:

$$\ddot{a}_{40:\overline{25}|} = 14,336139$$
 , $_{25|}\ddot{a}_{40} = 2,862772$

Podaj najbliższa wartość.

- (A) 0,25
- (B) 0,30
- (C) 0,35
- (D) 0,40

7. Rozważmy ubezpieczenie na wypadek śmierci dla (35). Jeśli ubezpieczony zginie w wypadku (*J*=2), to zostanie wypłacona suma ubezpieczenia 300 000 zł; jeśli umrze z innych przyczyn (*J*=1), zostanie wypłacone 120 000 zł (w obydwu przypadkach na koniec roku śmierci). Dane są:

$$q_{1.55} = 0.01$$
 $q_{2.55} = 0.001$.

Wiadomo ponadto, że cała ryzyko-składka zawarta w 21. składce wynosi $\pi^{r}_{20} = 590,476190~$ oraz, że

$$Var(\Lambda_{20}|K \ge 20) = 58064000$$
.

Oblicz ryzyko-składkę (w 21. składce) pokrywającą ryzyko śmierci w wypadku $\pi_{2\,20}^r$. Podaj najbliższą wartość.

- (A) 170
- (B) 180
- (C) 190
- (D) 200

(E) 210

- 8. Ubezpieczenie wdowie dla małżeństwa działa w następujący sposób:
 - jeśli on (y) umrze wcześniej niż ona (x), to ona zaczyna otrzymywać rentę dożywotnią wdowią (ciągłą) z intensywnością 1 na rok,
 - jeśli ona umrze wcześniej niż on, on otrzymuje jednorazowo, w chwili jej śmierci, zwrot wniesionych składek bez odsetek.

Składka za to ubezpieczenie płacona jest w postaci renty ciągłej, z intensywnością

 \overline{P} na rok, aż do pierwszej śmierci. Oblicz \overline{P} . Dane są:

$$\mu_{x+t} \equiv 0.01$$
 , $\mu_{y+t} \equiv 0.02$, $\delta = 0.03$.

Podaj najbliższą wartość.

- (A) 0,4
- (B) 0.5
- (C) 0,6
- (D) 0.7

9. Rozważmy polisę dla pary (x) i (y), która zacznie wypłacać rentę dożywotnią ciągłą dla (x) po 20 latach, z intensywnością 1 na rok. Przez pierwsze 20 lat (y) będzie płacić składkę w postaci renty życiowej ciągłej. Dane są:

$$\mu_{\scriptscriptstyle x+t} \equiv 0.025 \quad , \quad \mu_{\scriptscriptstyle y+t} \equiv 0.015 \quad , \quad \delta = 0.03. \label{eq:mu_x+t}$$

Oblicz wariancję straty ubezpieczyciela na moment wystawienia polisy. Uwzględnij w płaconej składce narzut na ryzyko ubezpieczyciela w wysokości 10% składki netto. Zakładamy, że zmienne losowe T(x) oraz T(y) są niezależne. Podaj najbliższą wartość.

- (A) 36
- (B) 39
- (C) 42
- (D) 45

(E) 50

10. W pewnym planie emerytalnym wszyscy uczestnicy przystępują do planu w wieku 25 lat oraz przechodzą na emeryturę w wieku 65 lat. Nowi uczestnicy dopływają do planu w sposób ciągły z roczną intensywnością rosnącą w tempie 2% na rok.

Utrzymywanie aktywnego statusu w planie opisuje funkcja $s(x) = \frac{125 - x}{100}$, gdzie x jest wiekiem uczestnika, $25 \le x < 65$.

Podaj, na początek 2000 roku, procentowy udział osób w wieku między 30 a 40 lat w całej zbiorowości aktywnych uczestników tego planu. Przyjmij, że plan istnieje co najmniej od początku 1960 roku.

Podaj najbliższą wartość.

- (A) 26,5%
- (B) 28%
- (C) 29,5%
- (D) 31%

(E) 32,5%

XXVII Egzamin dla Aktuariuszy z 12 października 2002 r.

Matematyka ubezpieczeń życiowych

Arkusz odpowiedzi*

Imię i nazwisko :	 	 	
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	С	
3	A	
4	С	
5	В	
6	A	
7	E	
8	С	
9	D	
10	Е	

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.