C1: Approche systèmes C1-4

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2021 - 2022

C1 : Performances statiques et cinématiques des systèmes composés de chaine de solides

TD 3 - Notions de grandeurs physiques (C1-4)

21 Septembre 2021

Compétences

1 Analyse et spécification globale du vélo autonome

a) Présentation générale

On souhaite donner des spécifications globales permettant de concevoir un vélo autonome. Le diagramme des exigences concernant uniquement l'exigence du déplacement autonome est donné sur la figure 1. On se propose ici de déterminer le profile de vitesse permettant de remplir les exigences listées dans le tableau cidessous.

1.1.2 Se stabiliser en mouvement							
Critère	Niveau	Flexibilité					
Accélération et décélération maxi-	$ a_{max} = 0, 1 \cdot g = 0,981 m \cdot s^{-2}$	Maxi en valeur absolue					
male							
Vitesse maximale en croisière	V_{max}	25 <i>km</i> / <i>h</i>					
Durée pour se déplacer de 10 <i>m</i>	t_f	?					
Stabilisation vertical	inclinaison par rapport à la vertical	<1°					
1.1.1 Se stabiliser à l'arrêt							
Stabilisation vertical	inclinaison par rapport à la vertical	<1°					

b) Vérification de l'exigence 1.1.2 : stabilisation en mouvement

On	donne	les	cara	caractéristiques		
moteur	utilisé	poι	ır	la propulsio		sion.
Grandeur			Valeur			
Vitesse maximal sans chargement			$N_{max} = 320 tr/min$			
Couple maxi			$C_{maxi} = 21, 6 \cdot N \cdot cm$			
Diar	nètre des rou	es utilisé	es		$D_r = 9cm$!

On propose d'utiliser un profil de vitesse en trapèze avec la même durée d'accélération et de décélération.

C1 : APPROCHE SYSTÈMES C1-4

FIGURE 1 - Diagramme des exigences partiel concernant le déplacement autonome du vélo

- Q1: Décrire pourquoi ce profil de vitesse est intéressant.
- Q 2 : Déterminer la durée d'accélération notée t_a en supposant que l'on souhaite atteindre la vitesse maximale imposée par le moteur avec une accélération maximale.
 - Q 3 : Déterminer la durée qu'il faut pour atteindre la distance de 10m avec ce profil de vitesse.
- $Q\ 4$: Tracer sur la figure suivante les profiles d'accélération, vitesse et position obtenues avec les caractéristiques déterminées précédemment.

On souhaite déterminer que le moteur soit correctement dimensionné pour fournir l'accélération maximal. On peut montrer que l'on peut relier l'accélération (notée a(t)) en translation du vélo au couple à fournir par le moteur $(C_m(t))$ avec la relation suivante (en négligeant l'inertie des roues) :

$$\frac{2C_m(t)}{D_r} = m \cdot a(t)$$

Q 5 : Déterminer la masse maximale que peut déplacer le moteur en translation.

On note m la masse du vélo et le D_r le diamètre des roues. Pour un vélo à échelle 1 on donne $D_{r0} = 58cm$ et $m_0 = 10kg$.

Q 6 : Sachant que l'on souhaite réaliser un vélo à échelle réduite avec des roues de diamètre $D_r = 9cm$. Donner le facteur d'échelle $\lambda = \frac{D_r}{D_{r0}}$. Quelle en serait la répercussion sur la masse en utilisant le même matériau? Faire l'application numérique.

c) Vérification de l'exigence 1.1.1 : stabilisation à l'arrêt

L'application du théorème du moment dynamique selon l'axe $(A, \overrightarrow{z}_0)$ donne :

$$(I_1 + m_2 \cdot L_2^2) \cdot \ddot{\theta} + I_2 \ddot{\varphi} = M(A, poids \rightarrow S_1 + S_2)$$

Q 7 : A l'aide de la figure 2, déterminer le bras de levier du moment de l'action du poids sur (S_1+S_2) en fonction de L_1 et θ . En déduire $M(A, poids \rightarrow S_1 + S_2)$.

 S_2 est un cylindre de révolution de diamètre $D_2 = 9,9cm$ et masse $m_2 = 75g$.

C1: Approche systèmes C1-4

Q8: Déterminer I_2 .

Q 9 : Donner une condition sur $\ddot{\theta}$ pour que le vélo se redresse par rapport à la configuration donnée sur la figure ci-dessus avec le vélo supposé posé sur une béquille avec un angle $\theta = \theta_0 = 10^\circ$. En déduire une condition sur $\ddot{\phi}$ en

C1 : APPROCHE SYSTÈMES C1-4

L'objectif est de déterminer les condition pour assurer l'équilibre du vélo (S_1) à l'aide de la roue à réaction (S_2) . On note :

- A est le point de contact entre la roue et le sol et correspond au point de rotation du vélo par rapport au sol.
- B est le centre la roue S_2 .
- m et G respectivement la masse et le centre de masse du vélo avec la roue à réaction (S₁+S₂).
- $L_1 = \|\overrightarrow{AG}\|$ et $L_2 = \|\overrightarrow{AB}\|$.
- I_1 est le moment d'inertie de la roue à réaction autour de l'axe $(A, \overrightarrow{z}_1)$ et m_1 est sa masse.
- I_2 est le moment d'inertie de la roue à réaction autour de l'axe (B, \vec{z}_1) et m_2 est sa masse.
- θ est l'angle de rotation du vélo autour de \vec{z}_0 par rapport à l'axe vertical.
- φ est l'angle de rotation de la roue à réaction S₂ par rapport au vélo S₁.
- \overrightarrow{g} est dirigé selon $-\overrightarrow{y_0}$.
- $M(A, poids \rightarrow S_1 + S_2)$ est le moment de l'action du poids sur $(S_1 + S_2)$.

FIGURE 2 – Paramétrage du problème

fonction des paramètres du problème.

On prendra dans un premier temps comme approximation $L_1 = D_r$ ce qui revient à dire que le centre de gravité G du vélo se situe juste au dessus des roues. On prendra une masse du vélo souhaité de m = 500g.

On	donne	les	caractéristiques			du	mo-	
teur	utilisé	pour	la	ro	ue	à	réa	ection.
Grandeur			Valeur					
Vitesse maximal sans chargement			$N_{max} = 7500 tr/min$					
Couple maxi			$C_{maxi} = 1,47 \cdot N \cdot cm$					

Q 10 : Donner en justifiant une relation entre $\ddot{\varphi}$, I_2 et le couple moteur de la roue à réaction C_{m2} . Avec la valeur de $\ddot{\varphi}$ déterminée précédemment en déduire si le moteur sera capable de redresser le vélo.