A note on Free groups (borrowed from Hungerford Ch1)

Definition 0.1 (Concrete category). A category \mathcal{A} , along with a faithful functor to Set

Definition 0.2 (Free object on a set). Let A be an object of concrete category A, $X \neq \phi$ a set, and a map $i: X \to A$. Then, A is said to be free on the set X iff

$$B \in \mathcal{B} \text{ and } f: X \to B \implies X \xrightarrow{i} A \\ \downarrow g \text{ commutes i.e. } \exists ! g \in \mathcal{A}(A,B) \text{ such that } g \circ i = f$$

Theorem 0.1 (Free objects depend only on the cardinality of the set they're free on). If F and F' are objects of a concrete category \mathcal{A} such that they're free on X and X' respectively. Then

$$|X| = |X'| \implies F \cong F'$$

Proof. Let A, B be free on X, Y; $i: X \to A$ and $j: Y \to B$. With |X| = |Y|, so, there's a bijection, $p: X \leftrightarrow Y$

As
$$A$$
 is free on X , $X \xrightarrow{i} A$ $X \xrightarrow{i} A$ \downarrow_f i.e. $\downarrow_p \qquad \downarrow_f$ must commute for some unique f. (1)
$$X \xrightarrow{p \circ j} A \qquad X \xrightarrow{i} A \qquad X \xrightarrow{i} A \qquad (1)$$

Similarly, as
$$B$$
 is free on Y , $Y \xrightarrow{j} B$ i.e. $\bigvee_{p^{-1} \circ i} \bigvee_{g} \text{ i.e. } \bigvee_{p^{-1}} \bigvee_{g} \text{ must commute for some unique g.}$ (2)

But again, as A is free on X, there exists a unique ψ satisfying $\psi \circ i = i$. Thus, $\psi = f \circ g$, and as $1_A \circ i = i$, uniqueness of ψ gives $f \circ g = 1_A$. Now, via symmetry, $g \circ f = 1_B$. Hence, $A \cong B$

Corollary 0.1.1. Two objects of a category are free on the same set only if they're isomorphic.