```
import numpy as np
from scipy import stats
from scipy.stats import skew
from scipy.stats import kurtosis
from scipy.stats import variation
import pandas as pd

from google.colab import files
files.upload()
```

```
Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving house_prices.csv to house_prices.csv
{'house prices.csv': b'LotFrontage,LotArea,OverallOual,OverallCond,YearBuilt,YearRemodAc
```

df=pd.read\_csv('house\_prices.csv')
df.head()

| $\qquad \qquad \Box \Rightarrow \qquad \qquad$ |   | LotFrontage | LotArea | OverallQual | OverallCond | YearBuilt | YearRemodAdd | MasVnrArea  |
|------------------------------------------------|---|-------------|---------|-------------|-------------|-----------|--------------|-------------|
| -                                              | 0 | 65.0        | 8450    | 7           | 5           | 2003      | 2003         | 196.0       |
|                                                | 1 | 80.0        | 9600    | 6           | 8           | 1976      | 1976         | 0.0         |
|                                                | 2 | 68.0        | 11250   | 7           | 5           | 2001      | 2002         | 162.0       |
|                                                | 3 | 60.0        | 9550    | 7           | 5           | 1915      | 1970         | 0.0         |
|                                                | 4 | 84.0        | 14260   | 8           | 5           | 2000      | 2000         | 350.0       |
|                                                |   |             |         |             |             |           |              | <b>&gt;</b> |

#Q. Evaluate the methods : shape, info, describe.
df.shape

(1379, 35)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1379 entries, 0 to 1378
Data columns (total 35 columns):

| # | Column      | Non-Null Count | Dtype   |
|---|-------------|----------------|---------|
|   |             |                |         |
| 0 | LotFrontage | 1379 non-null  | float64 |
| 1 | LotArea     | 1379 non-null  | int64   |
| 2 | OverallQual | 1379 non-null  | int64   |
| 3 | OverallCond | 1379 non-null  | int64   |
| 4 | YearBuilt   | 1379 non-null  | int64   |

|      |                |      |          | ,       |
|------|----------------|------|----------|---------|
| 5    | YearRemodAdd   | 1379 | non-null | int64   |
| 6    | MasVnrArea     | 1379 | non-null | float64 |
| 7    | BsmtFinSF1     | 1379 | non-null | int64   |
| 8    | BsmtFinSF2     | 1379 | non-null | int64   |
| 9    | BsmtUnfSF      | 1379 | non-null | int64   |
| 10   | TotalBsmtSF    | 1379 | non-null | int64   |
| 11   | 1stFlrSF       | 1379 | non-null | int64   |
| 12   | 2ndFlrSF       | 1379 | non-null | int64   |
| 13   | LowQualFinSF   | 1379 | non-null | int64   |
| 14   | GrLivArea      | 1379 | non-null | int64   |
| 15   | BsmtFullBath   | 1379 | non-null | int64   |
| 16   | BsmtHalfBath   | 1379 | non-null | int64   |
| 17   | FullBath       | 1379 | non-null | int64   |
| 18   | HalfBath       | 1379 | non-null | int64   |
| 19   | BedroomAbvGr   | 1379 | non-null | int64   |
| 20   | KitchenAbvGr   | 1379 | non-null | int64   |
| 21   | TotRmsAbvGrd   | 1379 | non-null | int64   |
| 22   | Fireplaces     | 1379 | non-null | int64   |
| 23   | GarageYrBlt    | 1379 | non-null | float64 |
| 24   | GarageCars     | 1379 | non-null | int64   |
| 25   | GarageArea     | 1379 | non-null | int64   |
| 26   | WoodDeckSF     | 1379 | non-null | int64   |
| 27   | OpenPorchSF    | 1379 | non-null | int64   |
| 28   | EnclosedPorch  | 1379 | non-null | int64   |
| 29   | 3SsnPorch      | 1379 | non-null | int64   |
| 30   | ScreenPorch    | 1379 | non-null | int64   |
| 31   | PoolArea       | 1379 | non-null | int64   |
| 32   | MiscVal        | 1379 | non-null | int64   |
| 33   | YrSold         | 1379 | non-null | int64   |
| 34   | SalePrice      | 1379 | non-null | int64   |
| l+vn | os: floa+64(2) | in+6 | 1/22\    |         |

dtypes: float64(3), int64(32)

memory usage: 377.2 KB

## df.describe()

|       | LotFrontage | LotArea       | OverallQual | OverallCond | YearBuilt   | YearRemod |
|-------|-------------|---------------|-------------|-------------|-------------|-----------|
| count | 1379.000000 | 1379.000000   | 1379.000000 | 1379.000000 | 1379.000000 | 1379.000  |
| mean  | 57.766497   | 10695.812183  | 6.187092    | 5.577955    | 1972.958666 | 1985.43   |
| std   | 35.038221   | 10214.702133  | 1.345780    | 1.081031    | 29.379883   | 20.444    |
| min   | 0.000000    | 1300.000000   | 2.000000    | 2.000000    | 1880.000000 | 1950.000  |
| 25%   | 41.500000   | 7741.000000   | 5.000000    | 5.000000    | 1955.000000 | 1968.000  |
| 50%   | 64.000000   | 9591.000000   | 6.000000    | 5.000000    | 1976.000000 | 1994.000  |
| 75%   | 79.000000   | 11708.500000  | 7.000000    | 6.000000    | 2001.000000 | 2004.000  |
| max   | 313.000000  | 215245.000000 | 10.000000   | 9.000000    | 2010.000000 | 2010.000  |
| 4     |             |               |             |             |             | <b>•</b>  |

```
"""O. For the Saleprice attribute. Evaluate Mean, Median, Mode
Visualize histogram for saleprice."""
x=df['SalePrice']
x.head()
     0
          208500
     1
          181500
     2
          223500
     3
          140000
     4
          250000
     Name: SalePrice, dtype: int64
mean=np.mean(x)
w=np.sort(x)
median=np.median(w)
print("Mean is ",mean)
print("Median is ",median)
mode=x.mode()
print("Mode is ",mode[0])
     Mean is 185479.511240029
     Median is 167500.0
     Mode is 140000
#Visualize histogram for saleprice. USE THE PLOT OF MEAN, MEDIAN, MODE.
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
x=df['SalePrice']
plt.hist(x)
plt.axvline(mean, label="Mean", color="r")
plt.axvline(median, label="Median", color="b")
plt.axvline(mode[0],label="Mode",color="g")
plt.legend()
plt.show()
```



/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)



#Q. Evaluate measures of spread :range, variance, standard deviation, skewness and kurtosis

#Skewness skew(x)

#range

## 1.9332562820097063

```
#kurtosis
kurtosis(x)
```

## 6.706904068638849

```
#Q. Evaluate Visualize the histogram of the normal distribution.
h = np.asarray(df['SalePrice'])
h = sorted(h)
fit = stats.norm.pdf(h, np.mean(h), np.std(h))
plt.plot(h,fit,'-',linewidth = 2,label="Normal distribution with same mean and var")
plt.hist(h,density=True,bins = 100,label="Actual distribution")
plt.legend()
plt.show()
```



```
#Q. Evaluate the Quartiles q1, q3 and iqr USE IQR rule to detect outliers
q1=np.percentile(x,25)
q2=np.percentile(x,50)
q3=np.percentile(x,75)
print(q1)
print(q2)
print(q3)
iqr=q3-q1
print("iqr is ",iqr)
     134000.0
     167500.0
     217750.0
     igr is 83750.0
#IOR rule to detect outliers
```

lowerBound=(q1-1.5\*iqr)

```
print("LowerBound is ",lowerBound)

upperBound=(q3+1.5*iqr)
print("UpperBound is ", upperBound)

outlier=(q1-1.5*iqr)
print("outlier is", outlier )

LowerBound is 8375.0
    UpperBound is 343375.0
    outlier is 8375.0

#Q. Evaluate visualize boxplot
plt.boxplot(x)
plt.show()
```



"""Q. Evaluate the Correlation and covariance for the attributes in the dataset lotarea, grlivarea, garagearea, saleprice""" import seaborn as sns corelation=df[['LotArea','GrLivArea','GarageArea','SalePrice']].corr() print (corelation) sns.heatmap(corelation)

|                                                                                                                | LotArea  | GrLivArea | GarageArea | SalePrice |  |
|----------------------------------------------------------------------------------------------------------------|----------|-----------|------------|-----------|--|
| LotArea                                                                                                        | 1.000000 | 0.257243  | 0.167622   | 0.252921  |  |
| GrLivArea                                                                                                      | 0.257243 | 1.000000  | 0.478811   | 0.708172  |  |
| GarageArea                                                                                                     | 0.167622 | 0.478811  | 1.000000   | 0.608405  |  |
| SalePrice                                                                                                      | 0.252921 | 0.708172  | 0.608405   | 1.000000  |  |
| <pre><matplotlib.axessubplots.axessubplot 0x7f869722dc50="" at=""></matplotlib.axessubplots.axessubplot></pre> |          |           |            |           |  |

-1.0

## #covariance

df[['LotArea','GrLivArea','GarageArea','SalePrice']].cov()

|            | LotArea      | GrLivArea    | GarageArea   | SalePrice    |
|------------|--------------|--------------|--------------|--------------|
| LotArea    | 1.043401e+08 | 1.364127e+06 | 3.179236e+05 | 2.041596e+08 |
| GrLivArea  | 1.364127e+06 | 2.695069e+05 | 4.615466e+04 | 2.905241e+07 |
| GarageArea | 3.179236e+05 | 4.615466e+04 | 3.447726e+04 | 8.927251e+06 |
| SalePrice  | 2.041596e+08 | 2.905241e+07 | 8.927251e+06 | 6.244775e+09 |