Logistic Regression

What is logistic regression?

- A model for classification
- Based on a linear model of the features (or covariates)
- Features are used to predict the probability of belonging to (baseline) class 1
 - via log odds

Classification

- A fake dataset:
 - Given the age, predict if someone will like movie X

• A linear regression won't do

 We look for something like a threshold

We can combine linear regression and a nonlinear activation function

 $p(C_1|x)$

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_0)p(C_0)} \qquad \text{Bayes}$$

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_0)p(C_0)}$$

$$o(x) = \log \frac{p(x|C_1)p(C_1)}{p(x|C_0)p(C_0)}$$

Definition log odds

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_0)p(C_0)}$$
$$o(x) = \log \frac{p(x|C_1)p(C_1)}{p(x|C_0)p(C_0)}$$

$$= \log \frac{p(x|C_1)p(C_1)}{1 - p(x|C_1)p(C_1)}$$

Probabilities sum to 1

$$p(C_1|x) = \frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1) + p(x|C_0)p(C_0)}$$

$$o(x) = \log \frac{p(x|C_1)p(C_1)}{p(x|C_0)p(C_0)}$$

$$= \log \frac{p(x|C_1)p(C_1)}{1 - p(x|C_1)p(C_1)}$$

$$p(C_1|x) = \frac{1}{1 + exp(-o)}$$

Substitute o into p(C1|x)

$$o(x) = \log \frac{p(x|C_1)p(C_1)}{p(x|C_0)p(C_0)}$$

$$= \log \frac{p(x|C_1)p(C_1)}{1 - p(x|C_1)p(C_1)}$$

We will estimate the log odds with a linear model

$$p(C_1|x) = \frac{1}{1 + exp(-o)}$$

And use the sigmoid function to compute the probability for C1

$$= \log \frac{p(x|C_1)p(C_1)}{1 - p(x|C_1)p(C_1)} \qquad p(C_1|x) = \frac{1}{1 + exp(-o)}$$

Data --- linear model of log odds o

Class probability = sigmoid of odds

$$\mathbf{X} \qquad \mathbf{O} = \mathbf{W}_1 \, \mathbf{X} + \mathbf{W}_0$$

 $P(C_1|x)=Sigmoid(o)$

Assumptions

- Linear dependence of features to log odds
- Measurements are independent
- Features are not (too) correlated (no or few multi-collinearity)
- Typically a large sample size
 - at minimum of 10 cases with the least frequent outcome for each independent variable
 - 5 independent variables and the expected probability of your least frequent outcome is .10, then you would need a minimum sample size of 500 (10*5 / .10)
 - from http://www.statisticssolutions.com/assumptions-of-logistic-regression/

Model fitting

- In principle:
 - Due to the sigmoid, the model is not linear,
 i.e. no closed form solution anymore
 - But the objective function is convex
 - i.e. easy to optimise numerically

https://medium.com/level-up-web/best-python-books-in-2017-b064dfac287

Don't worry, we will use Python (scikit-learn)

Model fitting

But we still need to select 'good' features

- Training and test set
- Cross validation
- Accuracy
- Precision, recall, f-score
- ROC
- Confusion matrix

https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6

- Training and test set
- Cross validation
- Accuracy
- Precision, recall, f-score
- ROC
- Confusion matrix

TP + TN / (TP + FP + TN + FN)

- Training and test set
- Cross validation
- Accuracy
- Precision, recall, f-score
- ROC
- Confusion matrix

```
Precision (PPV) = TP/(TP + FP)
Recall (TPR) = TP/(TP + FN)
```

- Training and test set
- Cross validation
- Accuracy
- Precision, recall, f-score
- ROC
- Confusion matrix

- Training and test set
- Cross validation
- Accuracy
- Precision, recall, f-score
- ROC
- Confusion matrix

		Actual class	
		Cat	Non-cat
Predicted	Cat	5 True Positives	2 False Positives
	Non-cat	3 False Negatives	17 True Negatives

Model interpretation

- You can read how a unit change in your feature changes the log odds.
 - (keeping the other features fixed)
- This can be transformed back into probabilities

Summary

- Easy to model and compute
- Interpretable model

- Requires feature selection
- Linear decision boundary between the classes

Let's have a look...