YOLO: Unified, Real-Time Object Detection & Seq-NMS for Video object Detection

Yunyun SUN Sixiang XU Yutong YAN Heng ZHANG

Sommaire

- Problématique
- Cahier des charges
- La réalisation
 - o YOLO: Unified, Real-Time Object Detection
 - Seq-NMS for Video object Detection
 - o Architecture du système
- Bilan
 - Analyse de résultat
 - Atouts et limites

Problématique

Problématique

Les performances de l'état de l'art en détection d'objets sur une image ont été considérablement améliorées au cours des deux dernières années.

D'une part, **l'évolution des CNN**(AlexNet, InceptionNet, ResNet, etc.) a amélioré la capacité d'extraction des features sur une image.

De l'autre part, le développement sur **l'approche de détection**(Faster R-CNN, R-FCN, SSD, YOLO, etc) permet de mieux utiliser ces features et augmenter la précision et la vitesse.

Problématique

La différence entre la détection d'image et la détection de la vidéo est **les informations temporelles et contextuelles**.

Cahier des charges

Cahier des charges

Notre projet vise à réaliser un système de détection et de tracking d'objet dans la vidéo.

Concrètement, nous avons conservé la framework de détection d'image(YOLO) autant que possible et ajouté un post-traitement(Seq-nms) pour améliorer la robustesse de mouvement d'objet.

Étapes principles

- 1. Extraction d'images à partir d'une vidéo;
- 2. Effectuer la détection sur chaque frame extrait en utilisant l'approche **YOLO**;
- 3. Filtrer les résultats de l'étape précédente avec l'algorithme **seq-nms**.
- 4. Reconstruire la vidéo à partir des résultats de détection filtrées.

La réalisation

La réalisation: YOLO: Unified, Real-Time Object Detection

- YOLO est un réseau de neurones intelligent pour la détection d'objets en temps réel.
- Pour la **vraie vidéo détection**: Seq-nms sur cette base
- L'état de l'art pour être un détecteur d'objet.
- YOLO ne regarde qu'une seule fois l'image (d'où son nom: You Only Look Once) mais d'une manière intelligente

YOLO

- YOLO divise l'image en une grille de 13 par 13 cellules
- Chacune des cellules est responsable de prédire
 5 bounding boxes
- Un bounding box décrit le rectangle qui entoure un objet
- YOLO donne en sortie un score de confiance qui nous indique si les bounding box prédites incluent effectivement un objet

- Le score ne dit rien sur la classe d'objet dans la boîte,
 juste si la forme de la boîte est bonne
- Les bounding box prédites peuvent ressembler à l'image ci-contre
- Pour chaque bounding box, la cellule prédit également les classes
- Base d'image: COCO, 80 classes

YOLO

- Score de confiance + score de la prediction
 => score final -> quel type de l'objet
- La grosse boîte jaune sur la gauche est à 85% sûre qu'elle contient l'objet "chien"
- 845 bounding box au total:
 - o 13 x 13 = 169 cellules
 - o chaque cellule prédit 5 bounding boxes
- La plupart de ces boîtes ont des scores de confiance très bas: seuil de 30%

YOLO

- La prediction finale
- 845 prédictions en meme temps
- Le réseau de neurones ne fonctionne qu'une seule fois (You Only Look Once)

- L'architecture de YOLO est très simple
- 125 canaux pour chaque cellule:
 - Les données pour les bounding box
 - les prédictions de classe
 - 5 bounding boxs * 25 éléments de données
 - x et y, largeur, hauteur du rectangle de la boite
 - le score de confiance
 - la distribution de probabilité sur les classes

Layer	kernel	stride	output shape
Input			(416, 416, 3)
Convolution	3×3	1	(416, 416, 16)
MaxPooling	2×2	2	(208, 208, 16)
Convolution	3×3	1	(208, 208, 32)
MaxPooling	2×2	2	(104, 104, 32)
Convolution	3×3	1	(104, 104, 64)
MaxPooling	2×2	2	(52, 52, 64)
Convolution	3×3	1	(52, 52, 128)
MaxPooling	2×2	2	(26, 26, 128)
Convolution	3×3	1	(26, 26, 256)
MaxPooling	2×2	2	(13, 13, 256)
Convolution	3×3	1	(13, 13, 512)
MaxPooling	2×2	1	(13, 13, 512)
Convolution	3×3	1	(13, 13, 1024)
Convolution	3×3	1	(13, 13, 1024)
Convolution	1×1	1	(13, 13, 125)

une séquence d'une vidéo donné:

- 1. Les propositions des régions
- 2. Les notes correspondantes de la classification

notre méthode:

associer des bounding boxes dans les frames adjacents selon un critère de superposition simple.

Seq-NMS a trois étapes principales :

- (1) Sélection de séquence
- (2) Renouveler des notes de séquence
- (3) Suppression

17

1. Sélection de séquence

la note qui plus élevée

Supprime les boxes qui sont des superpositions grandes

2.Renouveler des notes de séquence

Appliquer une fonction visant à obtenir une nouvelle note

3. Suppression

Supprimer tous les boxes dans la même frame qui ont les superpositions suffisantes.

La réalisation: Architecture du système

Le code source est publié sur github.

Bilan: Atouts et Limites

Atouts

1. Bon implémentation

Atouts

2. Correction des problèmes lors d'un suivi

Les problèmes : occlusion, flou, changement drastique de taille d'objet

Score faible de confiance

Exemple: occlusion

Limites

- 1. Non en temps réel
- 2. Suivi dégradé en certains cas

Démonstration

Une clip vidéo de < Kingsman>

Merci de votre attention