Lab4 1

Design Specification

✓ For a 4-bits binary up counter:

Input: rst_n, f
Output: b[3:0]

✓ Draw the block diagram of the design.

Design Implementation

✓ Input f 為 Lab3 的 26 frequency divider 除頻後的 1 Hz。

✓ Logic function

當 rst_n 為下緣或 f 為上緣時,判斷若 $rst_n = 0$,則 b 歸零;否則 b 加 1 直到 b = 16

✓ I/O pin

7 C P III								
I/O		F	rst_n	clk_out				
VOC		W5	V17	U16				

Lab4 2

Design Specification

✓ For a BCD up counter:

Input: rst_n, clk

Output: D_ssd[7:0], b[3:0], B[3:0]

✓ Draw the block diagram of the design.

Design Implementation

- ✓ 當rst n為下緣或clk 為上緣時,判斷若rst n=0,則b歸零;否則b加1
- ✓ 由於此為 BCD counter, 且為 4-bit, 因此最大值為 9。因此當 b = 9 時, BCD counter 歸零重

新 count。

✓ 因為需要用 7-segment display 顯示,因此需要用到 Lab2 的 3 to 8 decoder 將其轉為 7-segment。

✓ I/O pin

I/O	rst_n	D_ssd7	D_ssd6	D_ssd5	D_ssd4	D_ssd3	D_ssd2	D_ssd1	D_ssd0
Site	V17	W7	W6	U8	V8	U5	V5	U7	V7
I/O	clk	b3	b2	b1	b0	В3	B2	B1	B0
Site	W5	V19	U19	E19	U16	W4	V4	U4	U2

Lab4 3

Design Specification

✓ For a BCD down counter:

Input: rst n, clk

Output: D_ssd[7:0], b[3:0], B[3:0]

✓ Block diagram

Design Implementation

- ✓ 當 rst_n 為下緣或 clk 為上緣時,判斷若 $rst_n = 0$,則 b 歸零;否則減 1
- ✓ 由於此為 BCD counter,且為 4-bit,因此最小值為 0。因此當 b=0 時,b 回到 9 重新 count。
- ✓ 因為需要用 7-segment display 顯示,因此需要用到 Lab2 的 3 to 8 decoder 將其轉為 7-segment。

✓ I/O pin

I/O	rst_n	D_ssd7	D_ssd6	D_ssd5	D_ssd4	D_ssd3	D_ssd2	D_ssd1	D_ssd0
Site	V17	W7	W6	U8	V8	U5	V5	U7	V7
I/O	clk	b3	b2	b1	b0	В3	B2	B1	В0

Lab4 4

Design Specification

✓ For a 30 second down counter:

Input: rst n, clk

Output: D_ssd[7:0], b[3:0], B[3:0]

✓ Block diagram

Design Implementation

- ✓ 將個位數與十位數分別用 down counter 計算,當 rst_n 為下緣或 clk 為上緣時,判斷若 rst_n = 0,則 a 歸零,b 減 1;否則 a 減 1,b 不變。
- ✓ 因為需要用 7-segment display 顯示,因此需要用到 Lab2 的 3 to 8 decoder 將其轉為 7-segment。
- ✓ 由於要在 7-segment 上顯示不同數字,因此須利用 $1/2^{27}$ frequency divider 中擷取中間頻率 $(16^{th}\sim17^{th})$,造成視覺暫留。設定 c,若 rst_n = 0,c = 0;否則 c = cnt_ctl(cnt_ctl = c+1'b1)。藉由 c 的 值來決定顯示個位數還是十位數的數值。

·/	1/(oin (
•	1/()	, ,,,,,,
		P

1 0 pm									
I/O	rst_n	D_ssd7	D_ssd6	D_ssd5	D_ssd4	D_ssd3	D_ssd2	D_ssd1	D_ssd0
Site	V17	W7	W6	U8	V8	U5	V5	U7	V7
I/O	clk	b3	b2	b1	b0	В3	B2	B1	B0
Site	W5	V19	U19	E19	U16	W4	V4	U4	U2

Discussion

前三題皆利用了上一個 lab 的 frequency divider 的頻率作為 clk,並結合加法器讓他變成 counter,其中第一題與二、三題的差別在於其為 binary,因此二、三題需要用一個 mux 判斷要不要重新計算。

第四題則是結合了兩個 down counter,這裡我利用了 counter 判斷其值是否為 0 來決定個位數與十位數的 next state。另外,為了讓 7-segment 顯示不同數字,須利用 divider 擷取不同頻率讓她快速顯示個位數與十位數造成視覺暫留,讓我們看到不一樣的數字。

Conclusion

這次實驗用到了很多 lab3 的 devider,尤其是第四題,其實可以直接用 top module 去做,但我還是花了一些時間做成一個 module。之後可以練習用 top module 做做看。