Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star). Les exercices peuvent exploiter les notions du chapitre 7 ou du chapitre 8. Les limites de suites n'ont pas encore été introduites en toute rigueur, mais on peut exploiter les théorèmes de lycée sur la convergence (notamment la convergence monotone).

Chapitre 8 : Suites numériques.

Exemples de suites numériques

 \mathbb{K} désigne le corps \mathbb{R} ou le corps \mathbb{C} .

- Suites numériques, majorées, minorées, bornées, monotones. (\star) Opérations sur les suites monotones. Propriété vérifiée à partir d'un certain rang. Pour $a \in \mathbb{R}^+$, suite $n \mapsto a^n/n!$. Suite stationnaire.
- Suite définie par récurrence $u_{n+1} = f(u_n)$, ensemble stable par une application f de \mathbb{K} dans \mathbb{K} . Représentation graphique. (*) Si f est croissante, alors u est monotone selon le signe de $u_0 u_1$. (*) Si f est décroissante, (u_{2n}) et (u_{2n+1}) sont monotones de monotonies contraires, selon le signe de $u_0 u_2$. Si $x \mapsto f(x) x$ est de signe contant, u est monotone selon ce signe. Si f est continue et u convergente, alors sa limite est un point fixe de f. Notion de point fixe attractif ou répulsif sous l'hypothèse f de classe C^1 . Exemple $f: x \mapsto \mu x(1-x)$ pour $\mu \in]0,3]$. La théorie complète est reportée au chapitre sur les fonctions dérivables.
- Suites implicites. Traitement d'exemples $u_n = f_n^{-1}(0)$ avec f_n strictement croissante pour tout entier n. Cas où on peut se ramener à $u_n = g^{-1}(v_n)$ avec g fixé.
- Suites arithmético-géométriques $u_{n+1} = au_n + b$. Réduction au cas géométrique. (*) Expression du terme général dans les cas a = 1 et $a \ne 1$.
- Suites définies par récurrence linéaire homogène d'ordre 2 à coefficients constants. Méthode algébrique : $E = \{u \in \mathbb{K}^{\mathbb{N}} | \forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0\}$. L'application $\varphi : E \to \mathbb{K}^2, u \mapsto (u_0, u_1)$ est linéaire et bijective. Polynôme caractéristique. (*) Forme générale des solutions complexes. Forme générale des solutions réelles.

* * * * *