

Módulo 3 – Codificação Sistemas Multimédia Ana Tomé José Vieira

Departamento de Electrónica, Telecomunicações e Informática

Universidade de Aveiro

Sumário

- Códigos binários
 - Representação de informação com códigos
 - Representação de texto
 - ASCII
 - Unicode
 - Representação numérica
- Codificadores Probabilísticos e Entropia
- Codificador de Huffman

Códigos Binários

Codificação

- Os computadores armazenam toda a informação na forma mais elementar designada por bits.
- Cada bit pode tomar dois valores distintos "1" ou "0". Um conjunto de 8 bits designa-se por Byte.

Decimal – Métrico				Binário – IEC	
1000	kB	kilobyte	1024	Kib	kibibyte
1000²	MB	megabyte	1024 ²	Mib	mebibyte
1000 ³	GB	gigabyte	1024 ³	Gib	gibibyte

- Para armazenar informação proveniente das mais diversas fontes é necessário codificá-la.
- O conhecimento do código permite interpretar a informação armazenada na forma binária.

Capacidade de representação

- 1 Bit = 2 estados
- 2 Bits = 4 estados
- 3 Bits = 8 estados
- •
- N Bits = 2^N estados

Capacidade de representação

• Exemplo do número de combinações que é possível gerar com 3 bits

$\mathbf{b_2}$	b ₁	$\mathbf{b_0}$
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Códigos de representação

k Mensagens para transmitir/armazenar

k palavras binárias

Codificação/Representação

Os vários tipos de informação são codificados de forma diferente. Para interpretar cada um dos formatos é necessário um descodificador.

Código ASCII (texto)

• A primeira versão do código ASCII (American Standard Code for Information Interchange) foi criada em 1963 para normalizar a transmissão e armazenamento de texto. Em 1967 foram incluídas as letras minúsculas no código que no essencial permaneceu inalterado até aos nossos dias.

Código ASCII

Exemplo de codificação para a letra "A"

$$4x16+1=64+1=65=100\ 0001$$

Letra "W": 5x16+7=87=101 0111

Código ASCII

32		48	0	64	<u>a</u>	80	P	96	•	112	p
33	!	49	1	65	A	81	Q	97	a	113	q
34	۷۵	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	C	83	S	99	c	115	S
36	\$	52	4	68	D	84	T	100	d	116	t
37	%	53	5	69	Е	85	U	101	e	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	۷	55	7	71	G	87	W	103	g	119	W
40	(56	8	72	Н	88	X	104	h	120	X
41)	57	9	73	I	89	Y	105	i	121	y
42	*	58	•	74	J	90	Z	106	j	122	Z
43	+	59	•	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	1	124	
45	-	61	=	77	M	93]	109	m	125	}
46	•	62	>	78	N	94	٨	110	n	126	~
47	/	63	?	79	O iviód	95	_	111	0	127	DEL

Exemplo código ASCII

M

A

A

B

• 7 Bits = 128 Caracteres

ivicilioria									
	•								
			(ſ	
0	1	0	0	1	1	0	1		77
0	1	0	0	0	0	0	1		65
0	1	0	1	0	1	0	0		84
0	1	0	1	1	1	0	0		76
0	1	0	0	0	0	0	1		65
0	1	0	0	0	0	1	0		66
				•					

Memória

UNICODE

- O código ASCII possui a grande desvantagem de apenas permitir a representação de 2⁸=256 símbolos diferentes.
- O código UNICODE pretende normalizar a codificação dos carateres utilizados por todas as escritas existentes no mundo. Utiliza 16 bits para codificar cada caráter e encontra-se disponível nos sistemas informáticos mais recentes.
- Mais informações em http://www.unicode.org

Códigos binários

- Para representar números com bits é possível encontrar uma forma mais compacta do que a codificação ASCII.
- No sistema decimal utilizado para realizar cálculo, os números são representados fazendo uso da sua posição relativa:

$$1995_{10} = 1 \times 10^{3} + 9 \times 10^{2} + 9 \times 10^{1} + 5 \times 10^{0}$$

Base 10

Códigos binários

• Se modificarmos a base de decimal para binária podemos utilizar o mesmo tipo de representação:

$$1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

• Note-se que o número anterior tem o valor em decimal de 8+0+0+1=9, sendo por isso uma das possíveis representações de números decimais em binário

Formato exponencial decimal

• Em formato decimal é útil representar os números utilizando a notação exponencial:

Formato exponencial binário

• No formato exponencial binário a mantissa e a base são representados em formato binário na base 2.

Formato numérico no Matlab

- O Matlab utiliza 64 bits segundo a norma IEEE 754 para representar os números: 52bits para a mantissa e 12 para o expoente. A representação dos números é feita utilizando um formato exponencial que permite uma gama dinâmica muito grande.
- Para as imagens o Matlab tem um formato com 8 bits para representar inteiros sem sinal.

Codificadores Probabilísticos Entropia

Árvores binárias

Uma árvore binária tem um elemento denominado raiz que aponta para duas sub-árvores binárias, esquerda e direita.

Nó inicial: raiz

Nó terminal: folha

Codificação binária e árvores

Exemplo

Colocar

Raiz 1

0- nos ramos da esquerda

1-ramos da direita

Código binário, percurso da raiz para a folha

5 ==> 101

Códigos e propriedades

Símbolo a: 0

Símbolo b: 00

Símbolo c: 1

001: "bc" ou "aac"

Código ambíguo

Símbolo a: 0

Símbolo b: **01**

Código não instantâneo

Símbolo a: 00

Símbolo b: 01

Símbolo c: 1

Símbolos em nós terminais

Instantâneo e não ambíguo

Mensagem e Alfabeto

- Para representar texto em formato ascii atribuímos 1byte para cada símbolo (caráter) para realizar a codificação.
- No entanto, nem todos os símbolos têm a mesma probabilidade de ocorrência num texto. Por exemplo o símbolo "@" aparece muito raramente mas atribuímos o mesmo número de bits que os necessários para representar o "a".
- Na língua Portuguesa por exemplo os diferentes caracteres têm diferentes probabilidades de ocorrer.
- Um código que usasse menos do que 8 bits nos caracteres mais frequentes e mais bits nos menos frequentes seria mais eficiente.

Código de Morse

• No código de Morse os símbolos mais curtos são usados para as letras mais frequentes.

Α	•-	J	•	S	•••	1	•
В		K		Т	-	2	••
С		L	•-••	U	••-	3	
D		М		V		4	•••
E		N	-•	W	•	5	••••
F	••	0		X		6	
G		Р		Υ		7	
Н	••••	Q		Z		8	
	••	R	•-•	0		9	

Frequência Relativa das Letras no Português

Letra	Freq.%	Letra	Freq.%
Α	14.63	N	5.05
В	1.04	0	10.73
С	3.88	Р	2.52
D	4.99	Q	1.20
E	12.57	R	6.53
F	1.02	S	7.81
G	1.30	T	4.34
Н	1.28	U	4.63
	6.18	V	1.67
J	0.40	W	0.01
K	0.02	Χ	0.21
L	2.78	Υ	0.01
M	4.74	Z	0.47

Mensagem e Alfabeto

Considere a mensagem (sequência de símbolos)

AABCAABDBCABADAA

- Mensagem com 16 símbolos
- Alfabeto {A,B,C,D} com 4 símbolos
- Quantos bits para representar o alfabeto?
- Quantos bits para representar a mensagem?
- Na mensagem os símbolos têm igual probabilidade?

Quantidade de Informação de um Símbolo

- Considere-se uma dado acontecimento s_i com uma probabilidade de ocorrência p_i .
- Qual a quantidade de informação contida neste evento?
- Vamos supor que p_i = 1/256. Neste caso podemos ter outros 255 acontecimentos de igual probabilidade e para os distinguir é necessário usar 1 byte.
- Sendo assim, a quantidade de informação contida neste acontecimento seria de 1 byte.

Entropia

• Medida da quantidade informação de um símbolo s_i

$$I(s_i) = \log_2(\frac{1}{p_i}) = -\log_2(p_i)$$

com probabilidade p_i

• A informação média (ENTROPIA) de uma mensagem com um alfabeto de *N* símbolos será então dada por

$$H(M) = \sum_{i=1}^{N} p_i \log_2(\frac{1}{p_i}) = -\sum_{i=1}^{N} p_i \log_2(p_i)$$
 bps

bps –bits por símbolo

Mensagem e entropia

A mensagem: AABCAABDBCABADAA

Símbolos	Número de ocorrências
A	8
В	4
С	2
D	2

$$H(M) = -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{4}\log_2\frac{1}{4} + 2\frac{1}{8}\log_2\frac{1}{8}\right) =$$
$$= -\left(\frac{1}{2}(-1) + \frac{1}{4}(-2) + \frac{1}{4}(-3)\right) = 1.75$$

A mensagem precisa de 1.75 bits por símbolo (bps)

Exercício: Calcule a entropia da escrita Portuguesa com base na frequência relativa das letras usando o Matlab e textos de www.gutenberg.org.

Código de Huffman

Código de Huffman

Um conjunto de símbolos e número de ocorrências numa mensagem

Nota:

4 símbolos : 2 bps

Tamanho da mensagem: 52 bits

Como é que se constrói um código eficiente?

Qual é a entropia? Sol: 1.755 bps

Código Huffman e árvore binária

Código Huffman e árvore binária

símbolo	No. ocorrências	código
a	11	0
g	9	11
h	4	101
b	2	100

Tamanho da mensagem

Mensagem com 2 bits/símbolo: $26 \times 2=52$ bits

Mensagem codificada com: $11 \times 1+9 \times 2+4 \times 3+2 \times 3=47$ bit Número médio de bits por símbolo: 47/26=1.807 bps Valor próximo da entropia da mensagem

> Símbolos mais frequentes, têm um código com menor número de bits.

Rácio de compressão = (original / codificada)

Descodificar

Do nó raiz para os nós terminais

Código Huffman: propriedades

- •Símbolos mais frequentes, código com menor número de bits.
- Código não ambíguo
- Código de descodificação instantânea

Exercício

Mensagem e probabilidade de ocorrência de cada símbolo

Símbolos	Probabilidades
A	0.05
В	0.2
С	0.1
D	0.05
Е	0.3
K	0.2
Z	0.1

Entropia?

sol: 2.54 bps

Código de Huffman?

sol: 3 símbolos com 2 bits, 1 símbolo 3 bits, 1 símbolo 4 bits, 2 símbolos com 5 bits

Utilizando o código Huffman, calcule o valor médio de bits por símbolo

sol: 2.6 bps