Доп. задачи из книг "Сборник задач по математическому анализу". Том 1. Кудрявцев Л. Д., Кутасов А. Д., Чехлов В. И., Шабунин М. И. ФИЗМАТЛИТ, 2003 год ([1]); "Математический анализ в задачах и упраженениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

Выделение главной части

Пусть при $x \to \omega$ (в качестве ω может рассматриваться как точка вещественной оси, так $+\infty$, $-\infty$ и ∞ , а также предел может быть и односторонним) справедливо равенство f = g + o(g). Вспоминая определение эквивалентных величин, можем записать $f \sim q, \ x \to \omega$. Существует бесконечно много функций g, эквивалентных f при $x \to \omega$, причём все они эквивалентны друг другу. Любую из таких функций g называют ϵ лавной частью функции f при $x \to \omega$. Так как таких функций бесконечно много, то в задачах на поиск главной части необходимо указывать, какой вид имеет эта главная часть. Часто при $x \to a$ главная часть имеет вид $g(x) = C \cdot (x-a)^{\alpha}$ или $g(x) = C \cdot |x-a|^{\alpha}$. В этом случае число α называют порядком малости функции f при $x \to a$. При $x \to +\infty$, $x \to -\infty$ или $x \to \infty$ главную часть часто ищут в виде $q(x) = Cx^{\alpha}$ или $q(x) = C|x|^{\alpha}$. Число α и в этом случае будем называть порядком малости функции f при x, стремящемся к соответствующей бесконечности.

1. Выделить главную часть вида Cx^{α} и определить порядок малости:

a)
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}, x \to +\infty; \mathbf{6}) f(x) = (x^2 - 4x + 10)e^{1/x}, x \to +\infty;$$

B)
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}, x \to 0+; \mathbf{r}) f(x) = \ln(x^2 + 4^x), x \to 0.$$

 $C_{M.}$ [1], c. 191, N_2 52, N_2 57; [2], N_2 4.27 - N_2 4.33.

 2^* . Пусть $a_1=1,\ a_{n+1}=\sin a_n$. Найти главную часть a_n вида Cn^{α} при $n\to +\infty$. См. [2], №4.173 – 4.177.

Непрерывность и точки разрыва

- 3. Исследовать на непрерывность функцию f(x), найти точки разрыва и определить их род (где есть параметр a, исследовать в зависимости от него и во всех точках, где формулой не определяется, значение равно 2025):
- a) $f(x) = \frac{|x-1|}{x^3 x^2}$;

6)
$$f(x) = \frac{x^3 - x^2}{\sin x};$$

B) $f(x) := \begin{cases} e^{-\frac{1}{x^2}}, x \neq 0, \\ a, x = 0; \end{cases}$
r) $f(x) = \operatorname{sgn}(\sin \frac{\pi}{x});$

д)
$$f(x) := \begin{cases} x(x-1)(x-2), x \in \mathbb{Q}, \\ 0, x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

См. [1], с. 203, №18, с. 204 №25, с 207 №56 – №60, с. 209 №55 – №56 и далее на этих страницах много полезных задач на понимание; [2], $\mathbb{N}4.130 - \mathbb{N}4.133$, $\mathbb{N}4.135$.

4. а) Доказать, что уравнение $x^5 - 3x = 1$ имеет не менее трёх действительных корней. **б)** Пусть $f \in C[0,2]$. Доказать, что существуют такие точки $x,y \in [0,2]$, что x-y=1 и $f(x) - f(y) = \frac{f(2) - f(0)}{2}$

- **в)** Существует ли непрерывная на всей прямой функция, отображающая рациональные числа в иррациональные, а иррациональные в рациональные?
- ${\bf r}$)* Привести пример функции, непрерывной во всех иррациональных точках и разрывной во всех рациональных.

См. [1], с. 206, с. 209 – 217, все задачи на этих страницах; [2], №Т4.22 – №Т4.45.

- 5. Привести пример функции:
- а) неограниченной и равномерно непрерывной на $[0, +\infty)$;
- б) ограниченной и непрерывной на интервале, но не равномерно непрерывной на нём.
 - 6. Исследовать функции на равномерную непрерывность на области определения:
- а) $f(x) = \sin(x^2)$; б) $f(x) = \sqrt{x}$. K задачам 7 и 8 см. [1], с. 246 с. 255, все задачи на этих страницах; [2], № T4.50 № T4.68.

Домашнее задание 8

- 1. Выделить главную часть вида Cx^{α} и определить порядок малости:
- a) $f(x) = x^2 \operatorname{arcctg} x, \ x \to +\infty; \ \mathbf{6}) \ f(x) = \ln \cos \pi x, \ x \to 0.$
- **2***. При x > 1 задана последовательность вещественнозначных функций $\{f_n(x)\}_{n=1}^{+\infty}$. Доказать, что найдётся функция f(x), растущая быстрее любой из них при $x \to +\infty$.
- **3.** Исследовать на непрерывность функцию f(x), найти точки разрыва и определить их род (где есть параметр a, исследовать в зависимости от него):

a)
$$f(x) = \frac{3^{1/x} + 2^{1/x}}{3^{1/x} - 2^{1/x}}$$
; 6) $f(x) = \frac{x+1}{\arctan(x)}$; B) $f(x) := \begin{cases} x \ln(x^2), & x \neq 0, \\ a, & x = 0. \end{cases}$

- 4. Исследовать функции на равномерную непрерывность на области определения:
- a) $f(x) = \arctan x$; 6) $f(x) = x^2$.
- **5.** Пусть функция f равномерно непрерывна на $(0, +\infty)$. Обязательно ли существует предел: **a)** $\lim_{x\to 0+} f(x)$; **6)** $\lim_{x\to +\infty} f(x)$?

Дополнительные вопросы к коллоквиуму

(непрерывность и равномерная непрерывность)

- **1.** (0.5 балла за a u 1 балл за b) Что можно сказать о непрерывности в точке a функций $f \pm g$, $f \cdot g$, если обе эти функции разрывны в точке a?
- **б)** Привести пример таких функций f и g, что композиция $f \circ g$ непрерывна в точке a, а композиция $g \circ f$ разрывна в точке a.

См. [1], c. 201 - c. 203, Nº3, Nº4, Nº12 - Nº15; [2], NºT4.2, NºT4.8, NºT4.11.

- **2.** (0.5 балла за а u в, 1 балл за b) Привести пример функции, определённой на \mathbb{R} и непрерывной только: **a)** в n точках $(n \in \mathbb{N})$; **б)** в счётном множестве точек.
 - **3.** *(по 1 баллу за а и за б, 0,5 балла за в)* Доказать, что:
- а) любой многочлен нечётной степени имеет хотя бы один действительный корень;
- **б)** для любой непрерывной на отрезке [0,1] функции $f:[0,1] \to [0,1]$ существует такая точка $c \in [0,1]$, что f(c) = c (то есть всякое непрерывное отображение отрезка в себя имеет неподвижную точку).
- в) Привести пример непрерывной функции $f:(0,1)\to(0,1)$ у которой не существует такой точки $a\in(0,1)$, что f(a)=a.
- **4.** (0.5 балла за a, 2 балла за b) **a)** Привести пример функции, принимающей на отрезке [0,1] все свои промежуточные значения, но не являющейся непрерывной.

- **б)** Существует ли функция, которая принимает все промежуточные значения на отрезке [0,1], но разрывна в каждой точке этого отрезка?
 - **5.** (1 балл за каждый) Доказать, что:
- **а)** сумма и произведение конечного числа равномерно непрерывных на интервале функций тоже равномерно непрерывны на нем;
- **б**) если f непрерывна и периодична на \mathbb{R} , то она равномерно непрерывна на \mathbb{R} .
- **6.** (1 балла) Может ли равномерно непрерывная на ограниченном множестве функция быть неограниченной на этом множестве?
- **7.** (1,5 балла) Доказать, что если f равномерно непрерывна на \mathbb{R} , то найдётся такая константа C, что при всех вещественных x справедливо неравенство $|f(x)| \leq C + C|x|$.