Problem E Maximum Rectangle Problem

Input File: testdata.in
Time Limit: 10 seconds

Problem Description

Maximum Rectangle Problem (MER) is a computational geometry problem, defined by N.L.H. (A. Naamad, D.T. Lee, and W.-L. Hsu), in their paper "on the maimum emprty rectangel problem", Discrete applied mathematics 8(1984), pp. 267-277, North-Holland. The MER problem is to find a maximum empty rectangle from a set of points confined in a given boundary, in which an empty rectangle is a rectangle placed inside the given boundary and containing no points inside the rectangle.

A formal definition of MER problem is as follows. Given a rectangle A, and set of n points $S = \{P_1, P_2, ..., P_n\}$, the objective of the MER problem is to find a empty rectangle(ER) with maximum area inside A. The rectangle $A = (A_t, A_b, A_l, A_r)$ is specified by A_t (top-boundary), A_b (bottom-boundary), A_l (left-boundary), and A_r (right boundary). Each point P_i in S is specified by its X- and Y-coordinates (X_i, Y_i) . An empty rectangle(ER) is a rectangle inside A and containing no points in S lying in its interior. In other words, if $B = (B_t, B_b, B_l, B_r)$ is an empty rectangle regarding A and S, then

- 1. B is inside A. That is, $B_t \leq A_t$, $B_b \geq A_b$, $B_l \geq A_l$, and $B_r \leq A_r$;
- 2. no points in S lies in its interior. That is, no such a point $P_i = (x_i, y_i) \in S$, $B_l < x_i < B_r$ and $B_b < y_i < B_t$.

 $\{(1,1),(2,1),(2,3),(1,4),(4,5),(4,2)\}$, a possible maximum empty rectangle (MER) $B = (B_t, B_b, B_l, B_r) = (5,0,2,4)$. The area of the MER is $(B_t - B_b) * (B_r - B_l) = (5-0) * (4-2) = 5 * 2 = 10$. Note that there could exist multiple MERs with same area.

Given $A = (A_t, A_b, A_l, A_r)$, the boundary rectangle, and n points $S = \{P_1, P_2, ..., P_n\}$, can you rapidly determine a possible MER regarding A and S?

Technical Specifications

- 1. All the parameters to specify the rectangle boundary $A = (A_t, A_b, A_l, A_r)$ and the points $\{(x_i, y_i) | (x_i, y_i) \in S\}$, are all non-negative integer.
- 2. the rectangle boundary is bounded by (0,0) at bottom-left corner, and (1000, 1000) at top-right corner. That is, $0 \le A_l \le A_r \le 1000$, and $0 \le A_b \le A_t \le 1000$.
- 3. The number of points n in S would satisfy $1 \le n \le 1000$.

Input Format

- 1. The first line of the input file contains an integer indicating the number of test cases.
- 2. The first line of each test case contains four integers separated by spaces, indicating the rectangle boundary $A = (A_t, A_b, A_l, A_r)$, in the order of top, bottom, left and right boundary respectively.
- 3. The second line of each test case contains an integer indicating number of points in S to follow. Each point contains two integers x_i and y_i for the point P_i , separated by spaces.

Output Format

- 1. The first line of each test case contains an integer indicating the area of the MER you found.
- 2. The second line of each test case contains four integers separated by spaces, indicating the MER, $B = (B_t, B_b, B_l, B_r)$, you found.

Sample Input

Sample Output

10 5 0 2 4