Московский государственный университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Математических Методов Прогнозирования

КУРСОВАЯ РАБОТА СТУДЕНТА 317 ГРУППЫ

«Метод повышения эффективности обучения, основанный на ансамбле промежуточных решений»

Выполнил:

студент 3 курса 317 группы Королев Николай Сергеевич

Научный руководитель: д.ф-м.н., в. науч. сотр. ВЦ РАН Сенько Олег Валентинович

Содержание

1	Введение				
	1.1	Постановка задачи	9		
	1.2	Теоретическая часть	ć		
	1.3	Существующие методы	4		
2	Анс	самбль промежуточных решений	Ę		
	2.1	Поиск промежуточных решений			
	2.2	Поиск функции-ансамбля	6		
3	Вы	числительные эксперименты	6		
	3.1	Результаты эксперимента	7		
	3.2	Анализ полученных результатов	7		
4	4 Заключение				
\mathbf{C}_{1}	писо	к литературы	ç		

Аннотация

В данной работе рассматривается новый метод повышения качества обучения моделей, а также увеличения их обобщающей способности, основанный на ансамбле промежуточных решений. В ходе вычислительного эксперимента, была показана возможная применимость данного метода для улучшения качества нейронных сетей, решающих задачу классификации на реальных данных.

1 Введение

В настоящее время придумано огромное количество алгоритмов машинного обучения. Данные алгоритмы решают различные задачи и применяются во многих сферах человеческой деятельности. Одной из наиболее распространённых способов применения машинного обучения является решение задачи предсказания, в которой необходимо предсказать некоторый параметр (отклик) по ряду других параметров. В таких задачах крайне важна обобщающая способность используемого алгоритма обучения. В случае недостаточной обобщающей способности, итоговая модель не сможет достаточно точно предсказывать необходимый параметр (отклик), поэтому очень остро стоит проблема повышения обобщающей способности модели.

В данной работе рассматривается новый метод повышения качества обучения моделей, а также увеличения их обобщающей способности, основанный на ансамбле промежуточных решений. Кроме того, проводятся вычислительные эксперименты, показывающие эффективность работы данного метода в задаче классификации на данных систолического артериального давления.

1.1 Постановка задачи

 x_1, x_2, \ldots, x_N — точки в некотором векторном пространстве; y_1, y_2, \ldots, y_N — значения, соответствующие этим точкам. При этом $y_i = y(x_i) = f(x_i) + \varepsilon$, где ε — случайная величина с нулевым математическим ожиданием и дисперсией σ^2 . Пусть также задана функция $\hat{f}_1(x)$, которая приближает функцию f(x). Стоит задача нахождения M-1 функции $\hat{f}_2(x), \hat{f}_3(x), \ldots, \hat{f}_M(x)$, а также функции-ансамбля $\hat{f}(x) = a(\hat{f}_1(x), \hat{f}_2(x), \ldots, \hat{f}_M(x))$, приближающей функцию f(x) лучше чем любая из функций $\hat{f}_i(x), i = 1, 2, \ldots, M$.

1.2 Теоретическая часть

Из [3] известно разложение математического ожидания квадратичной ошибки на смещение и дисперсию:

$$\mathbb{E}\left[\left(\hat{f}(x) - y\right)^2\right] = \left(\mathbb{E}\,\hat{f}(x) - f(x)\right)^2 + \left(\mathbb{E}\,\hat{f}^2(x) - \left(\mathbb{E}\,\hat{f}(x)\right)^2\right) + \sigma^2$$

Для уменьшения как смещения, так и дисперсии $\hat{f}(x)$ используются ансамбли:

$$\hat{f}(x) = a(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x))$$

В [1] было доказано, что в случае, когда функция $a(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x))$ является выпуклой комбинацией своих аргументов:

$$a(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x)) = \sum_{i=1}^M c_i \hat{f}_i(x),$$

$$\sum_{i=1}^{M} c_i = 1; \quad c_i \ge 0, \quad i = 1, 2, \dots, M;$$

выполнено

$$\mathbb{E}\left[\left(\hat{f}(x) - y\right)^{2}\right] = \sum_{i=1}^{M} c_{i} \,\mathbb{E}\left[\left(\hat{f}_{i}(x) - y\right)^{2}\right] - \frac{1}{2} \sum_{i=1}^{M} \sum_{j=1}^{M} c_{i} c_{j} \,\mathbb{E}\left[\left(\hat{f}_{i}(x) - \hat{f}_{j}(x)\right)^{2}\right]$$
(1)

Соответственно, для уменьшения среднеквадратичной ошибки необходимо уменьшать среднеквадратичную ошибку каждого предиктора $\hat{f}_i(x)$, а также увеличивать расхождение между прогнозами различных предикторов.

1.3 Существующие методы

В большинстве случаев функция-ансамбль $\hat{f}(x) = a(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x))$ является линейной комбинацией функций предикторов $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x)$. Коэффициенты линейной комбинации ищутся при помощи методов регрессионного анализа:

- гребневая регрессия [4]
- метод Лассо [5]
- эластичная сеть [6]
- регрессионная модель, отбирающая признаки, наиболее коррелирующие с откликом [2]

Функции $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x)$ в таких случаях обычно независимы друг от друга и получены методом оптимизации некоторого функционала.

2 Ансамбль промежуточных решений

Пусть:

X - матрица из N строк, i-ая строка равна x_i ;

Y - вектор из N элементов, i-ый элемент равен y_i .

Пусть $\hat{f}_1(x)$ представима в виде функции с параметрами $\tilde{f}(x,\theta)$ и была получена некоторым методом оптимизации функционала среднеквадратичной ошибки $MSE(\hat{f}_1(x),X,Y)=rac{1}{N}\sum\limits_{i=1}^N(\hat{f}_1(x_i)-y_i)^2$:

$$\hat{f}_1(x) = \tilde{f}(x, \theta_1)$$

В качестве функции $\tilde{f}(x,\theta)$ может выступать нейронная сеть, тогда параметрами θ будут являться веса нейронной сети.

2.1 Поиск промежуточных решений

Будем искать функции $\hat{f}_2(x), \hat{f}_3(x), \dots, \hat{f}_M(x)$ в виде $\tilde{f}(x, \theta)$, минимизируя следующий функционал:

$$\mathcal{L}(\hat{f}_k(x), X, Y) = MSE(\tilde{f}(x, \theta_k), X, Y) - \frac{\alpha}{k - 1} \sum_{i=1}^{k - 1} \|\theta_k - \theta_i\|^2, \quad k = 2, 3, \dots, M, \tag{2}$$

где $\alpha \geq 0$ является гиперпараметром.

Данный функционал поощряет функции $\hat{f}_i(x)$ иметь различные параметры θ_i . Таким образом, мы пытаемся добиться максимального расхождения значений функций. Впоследствии это уменьшит среднеквадратичную ошибку функции-ансамбля $\hat{f}(x)$, что следует из уравнения (1).

Стоит отметить, что при больших k вычисление данного функционала может быть вычислительно затратным, так как $\sum\limits_{i=1}^{k-1}\|\theta_k-\theta_i\|^2$ в общем случае требует O(k) времени. Если все θ_i лежат в некотором евклидовом пространстве, данное выражение переписывается в виде:

$$\sum_{i=1}^{k-1} \|\theta_k - \theta_i\|^2 = (k-1) \|\theta_k\|^2 - 2\langle \theta_k, \sum_{i=1}^{k-1} \theta_i \rangle + \sum_{i=1}^{k-1} \|\theta_i\|^2.$$

Значения выражений $\sum_{i=1}^{k-1} \theta_i$ и $\sum_{i=1}^{k-1} \|\theta_i\|^2$ можно поддерживать в течении всего процесса поиска функции $\hat{f}_k(x)$ и пересчитывать за O(1) времени при переходе к поиску $\hat{f}_{k+1}(x)$.

2.2 Поиск функции-ансамбля

Составим матрицу \widehat{X} размера $N \times M$, где $\widehat{X}_{i,j} = \widehat{f}_j(x_i)$. Для поиска функции-ансамбля $\widehat{f}(x) = a(\widehat{f}_1(x), \widehat{f}_2(x), \dots, \widehat{f}_M(x))$ необходимо найти функцию $a(\widehat{x}_1, \widehat{x}_2, \dots, \widehat{x}_M) = a(\widehat{x})$, которую будем искать из минимизации функционала $MSE(a(\widehat{x}), \widehat{X}, Y)$.

3 Вычислительные эксперименты

Для проверки качества работы представленного метода решим задачу классификации на трёх выборках данных систолического артериального давления. Данные заранее разбиты на обучающую и тестовую выборки. Размеры каждой из выборок представлены в таблице 1. Все параметры являются численными.

Haven nyfanyy	Количество объектов		Vo www.compo. wapawempap
Номер выборки	Обучающая выборка	Тестовая выборка	Количество параметров
1	718	458	114
2	373	221	114
3	832	495	114

Таблица 1: Размеры выборок данных

В качестве функции $\tilde{f}(x,\theta)$ используется двухслойная нейронная сеть с сигмоидальной функцией активации, которая оптимизируется методом Adam. В качестве функции-ансамбля $a(\hat{x})$ используется точно такая же нейронная сеть, с другим количеством входных параметров и другой размерностью скрытого слоя.

В ходе эксперимента изначально обучается одна нейронная сеть $\hat{f}_1(x) = \tilde{f}(x,\theta_1)$ и оценивается качество её работы. После этого обучается M новых нейронных сетей $\hat{f}_i(x) = \tilde{f}_i(x,\theta_i)$, а также ищется оптимальная функция-ансамбль $a(\hat{x})$ в виде двухслойной нейронной сети. Затем оценивается качество работы ансамбля промежуточных решений $\hat{f}(x) = a(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_M(x))$.

3.1 Результаты эксперимента

Наилучших результатов удалось достичь для M=4. Также при построении ансамбля промежуточных решений был замечен эффект улучшения качества предсказания отдельных нейронных сетей, обученных после первой нейронной сети $\hat{f}_1(x)$. Итоговые результаты эксперимента представлены в таблице 2.

Номер выборки	Одна нейронная сеть	Ансамбль промежуточных решений
1	0.78	0.86
2	0.79	0.83
3	0.78	0.81

Таблица 2: Результаты экспериментов (ROC AUC на тестовой выборке)

3.2 Анализ полученных результатов

Полученные результаты показывают, что ансамбль промежуточных решений, построенных с использованием функции потерь (2), способен достаточно серьёзно увеличивать обобщающую способность предсказания в сравнении с отдельными нейронными сетями. Также замечен эффект улучшения качества отдельных нейронных сетей, построенных данным методом. Попробуем объяснить данный эффект. Предполагается, что он вызван тем, что в случае нахождения недостаточно минимизирующего параметра θ_1 для нейронной сети $\hat{f}_1(x,\theta_1)$, последующие нейронные сети находят параметры θ_i на отдалении от θ_1 . Следовательно, θ_i не находится в области θ_1 , в которой функция потерь не достигает своего минимального значения.

4 Заключение

В процессе выполнения работы были получены следующие результаты:

• Был разработан метод повышения эффективности обучения, основанный на ансамбле промежуточных решений.

- Были проведены вычислительные эксперименты, которые показали возможную применимость данного метода для улучшения качества нейронных сетей, решающих задачу классификации на реальных данных.
- В ходе выполнения эксперимента было замечено улучшения качества работы отдельных нейронных сетей.

Список литературы

- [1] Докукин А. А., Сенько О. В. Оптимальные выпуклые корректирующие процедуры в задачах высокой размерности // Ж. вычисл. матем. и матем. физ. $2011.-\mathrm{T.}\ 51.-\mathrm{C.}\ 1751-1760.$
- [2] Докукин А. А., Сенько О. В. Регрессионная модель, основанная на выпуклых комбинациях, максимально коррелирующих с откликом // Ж. вычисл. матем. и матем. ϕ из. 2015. Т. 55. С. 530–544.
- [3] Domingos Pedro. A unified bias-variance decomposition for zero-one and squared loss // Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence. AAAI Press, 2000. Pp. 564–569.
- [4] Ng Andrew Y. Feature selection, l1 vs. l2 regularization, and rotational invariance // Proceedings of the Twenty-first International Conference on Machine Learning.— ICML '04.— New York, NY, USA: ACM, 2004.— Pp. 78—.
- [5] Tibshirani Robert. Regression shrinkage and selection via the lasso // Journal of the Royal Statistical Society. Series B (Methodological). — 1996. — Vol. 58, no. 1. — Pp. 267–288.
- [6] Zou Hui, Hastie Trevor. Regularization and variable selection via the elastic net //
 Journal of the Royal Statistical Society, Series B. 2005. Vol. 67. Pp. 301–320.