Теория категорий Функторы и естественные преобразования

Валерий Исаев

07 сентября 2015 г.

План лекции

Функторы
Определение
(Ко)пределы
Изоморфизм категорий

Подкатегории

Естественные преобразования

Определение функторов

- ▶ Функторы между категориями С и D это морфизмы категорий.
- Функтор F состоит из функции $F: Ob(\mathbf{C}) \to Ob(\mathbf{D})$ и функций $F: Hom_{\mathbf{C}}(X,Y) \to Hom_{\mathbf{D}}(F(X),F(Y))$ для всех $X,Y \in Ob(\mathbf{C})$.
- Эти функции должны сохранять тождественные морфизмы и композиции:

$$F(id_X) = id_{F(X)}$$
$$F(g \circ f) = F(g) \circ F(f)$$

Определение

Забывающие функторы

- Забывающий функтор $\mathbf{Grp} \to \mathbf{Set}$, сопоставляющий каждой группе множество ее элементов.
- ▶ Для других алгебраических структур тоже существуют забывающие функторы ${f Ring} o {f Set}$, ${f Ab} o {f Set}$, и так далее.
- Можно задавать функторы, которые забывают не всю информацию.
- ▶ Например, существует два забывающих функтора $\mathbf{Ring} \to \mathbf{Grp}$ и $\mathbf{Ring} \to \mathbf{Ab}$.

Примеры функторов

- Функторы между категориями предпорядков это в точности монотонные функции.
- ▶ Если M и N пара моноидов, и \mathbf{C}_M и \mathbf{C}_N категории на одном объекте, соотетствующие этим моноидам, то функторы между \mathbf{C}_M и \mathbf{C}_N это в точности гомоморфизмы моноидов M и N.
- ▶ Пусть **C** декартова категория и A объект **C**, тогда $A \times : \mathbf{C} \to \mathbf{C}$ функтор, сопоставляющий каждому объекту B объект $A \times B$ и каждому морфизму $f : B \to B'$ морфизм $id_A \times f : A \times B \to A \times B'$.
- lacktriangle "Существует" очевидный функтор $I: \mathbf{Hask}_{total} o \mathbf{Set}$.
- "Функторам" в хаскелле соответствуют функторы $Hask \rightarrow Hask$.

Функторы и дуальность

- ▶ Каждому функтору $F: \mathbf{C} \to \mathbf{D}$ можно сопоставить функтор $F^{op}: \mathbf{C}^{op} \to \mathbf{D}^{op}$.
- ightharpoonup Другими словами существует биекция между множествами функторов $\mathbf{C} o \mathbf{D}$ и $\mathbf{C}^{op} o \mathbf{D}^{op}$.
- ▶ С другой стороны, функторы вида ${f C}^{op} o {f D}$ никак не связаны с функторами вида ${f C} o {f D}$.
- ▶ Первые называютс контравариантными функторами, а вторые – ковариантными.

(Ко)пределы

Пределы и копределы функторов

- ightharpoonup Для любого функтора $F: \mathbf{J} \to \mathbf{C}$ можно определить понятие предела $\lim F$ и копредела colim F. Определение такое же как и для диаграмм.
- Категории J можно рассматривать как обобщение графов, а функтор $F: \mathbf{J} \to \mathbf{C}$ – как обощение диаграмм в \mathbf{C} .
- Любой диаграмме можно сопоставить функтор, и наоборот. (Эти конструкции не взаимообратные)
- Но пределы и копределы соответствующих диаграмм и функторов будут совпадать.
- ightharpoonup Функторы $F: \mathbf{J} o \mathbf{C}$ тоже называют диаграммами.

(Ко)пределы

Индуктивные типы данных

- Допустим мы хотим описать объект в произвольной категории, являющийся аналогом какой-либо структуры данных (списки, деревья, и так далее).
- ▶ В теории множеств они строятся индуктивно, то есть мы сначала определяем, скажем, множества $L_n(A)$ списков длины не больше n, а потом говорим, что множество всех списков это объединение множеств конечных списков $L(A) = \bigcup_{n \in \mathbb{N}} L_n(A)$.
- В теории категорий можно сделать аналогичную конструкцию.
- ▶ Во-первых, определим объект $L_n(A)$ списков длины не больше n следующим образом:

$$1 + A + A^2 + \ldots + A^n$$

Функторы

Примеры бесконечных (ко)пределов

▶ Теперь мы можем определить объект L как следующий копредел:

$$L_0 \to L_1 \to L_2 \to \dots$$

Рассмотрим вместо копредела следующий предел:

$$\ldots \to L_2 \to L_1 \to L_0$$

где функция $L_{n+1} \to L_n$ сопоставляет каждому списку $[x_1, ..., x_{n+1}]$ список $[x_2, ..., x_{n+1}]$, а остальные списки не меняет.

 Тогда предел этой последовательности – это множество (потенциально) бесконечных списков.

(Ко)пределы

Общее определение индуктивных типов данных

- ▶ Любой (ко)индуктивный тип данных можно задать в виде функтора $F: \mathbf{C} \to \mathbf{C}$.
- Функтор, соответствующий, спискам определяется как $L_A(X) = 1 + A imes X$.
- Функтор, соответствующий, бинарным деревьям определяется как $T_A(X) = 1 + A \times X \times X$.
- ightharpoonup Для любого такого функтора можно определить объекты $D_n = F^n(0)$.
- lacktriangle Тогда существуют очевидные морфизмы $D_n o D_{n+1}$.
- ightharpoonup Теперь мы можем определить объект D, соответствующий функтору F как копредел

$$D_0 \rightarrow D_1 \rightarrow D_2 \rightarrow \dots$$

Общее определение коиндуктивных типов данных

▶ Дуальным образом мы можем определить коиндуктивный тип данных, соответствующий функтору $F: \mathbf{C} \to \mathbf{C}$ как предел

$$\ldots \to F^n(1) \to \ldots \to F^2(1) \to F(1) \to 1$$

- Разница между индуктивными и коиндуктивными типами данных не очень большая: индуктивные структуры всегда конечны, а коиндуктивные могут быть бесконечны.
- ► Так в агде используются индуктивные типы данных, а в хаскелле коиндуктивные.

Изоморфные категории

- ▶ Для любой категории ${\bf C}$ существует тождественный функтор $Id_{\bf C}: {\bf C} \to {\bf C}$, отправляющий каждый объект и морфизм в себя.
- ▶ Если $F: \mathbf{C} \to \mathbf{D}$ и $G: \mathbf{D} \to \mathbf{E}$, то функтор $G \circ F: \mathbf{C} \to \mathbf{E}$ определяется на объектах и на морфизмах как композиция F и G.
- Композиция функторов ассоциативна, тождественный функтор является единицей для композиции.
- ▶ Функтор $F: \mathbf{C} \to \mathbf{D}$ называется *изоморфизмом* категорий, если существует функтор $G: \mathbf{D} \to \mathbf{C}$ такой, что $G \circ F = Id_{\mathbf{C}}$ и $F \circ G = Id_{\mathbf{D}}$.
- ▶ Категории **C** и **D** *изоморфны*, если существует изоморфизм $F: \mathbf{C} \to \mathbf{D}$.

Злые понятия

- Как правило, имея две группы, не имеет смысла спрашивать равны ли они; нужно спрашивать об их изоморфности.
- Это верно для объектов в любой категории.
- Любое понятие, которое говорит о равенстве объектов некоторой категории, называют злым.
- Изоморфизм категорий злое понятие.

План лекции

```
Функторы
Определение
(Ко)пределы
Изоморфизм категорий
```

Подкатегории

Естественные преобразования

Подкатегории

- ▶ Подкатегория \mathbf{C}' категории \mathbf{C} это подкласс объектов \mathbf{C} и для каждой пары объектов X,Y в \mathbf{C}' подкласс множества $Hom_{\mathbf{C}}(X,Y)$ такие, что \mathbf{C}' содержит тождественные морфизмы для любого $X \in \mathbf{C}'$ и замкнут относительно композиции.
- Функтор $F: \mathbf{C} \to \mathbf{D}$ называется *строгим* (faithful), если для любых $X,Y \in Ob(\mathbf{C})$ функция $F: Hom_{\mathbf{C}}(X,Y) \to Hom_{\mathbf{D}}(F(X),F(Y))$ инъективна.
- ▶ Подкатегории категории С классы эквивалентности строгих инъективных на объектах функторов.
- ▶ Проблема этого определения заключается в том, что оно не стабильно относительно изоморфизмов объектов \mathbf{C} (то есть, X может принадлежать \mathbf{C}' , а изоморфный ему объект Y нет).

Полные подкатегории

- ▶ Подкатегория \mathbf{C}' категории \mathbf{C} называется *полной*, если для любых объектов X,Y в \mathbf{C}' множества $Hom_{\mathbf{C}'}(X,Y)$ и $Hom_{\mathbf{C}}(X,Y)$ равны.
- ▶ Функтор $F: \mathbf{C} \to \mathbf{D}$ называется *полным*, если для любых $X,Y \in Ob(\mathbf{C})$ функция $F: Hom_{\mathbf{C}}(X,Y) \to Hom_{\mathbf{D}}(F(X),F(Y))$ сюръективна.
- ▶ Полные подкатегории категории С классы эквивалентности полных строгих функторов.
- ▶ Теперь необязательно требовать инъективность на объектах.
- Полные строгие функторы мы будем называть вложениями категорий.

Примеры

- ▶ Set_{fin} полная подкатегория Set.
- ▶ Ab полная подкатегория Grp.
- ▶ "Существует" не полное вложение Hask_{total} в Set.
- Все забывающий функторы, которые мы рассматривали, являются строгими.
- Обратное тоже верно: любой строгий функтор является в некотором смысле забывающим.

План лекции

```
Функторы
Определение
(Ко)пределы
Изоморфизм категорий
```

Подкатегории

Естественные преобразования

Определение

- Можно определить понятие морфизма между функторами $F,G:{f C} o {f D}.$
- Естественное преобразование $\alpha: F \to G$ это функция, сопоставляющая каждому объекту X из ${\bf C}$ морфизм $\alpha_X: F(X) \to G(X)$, удовлетворяющая условию, что для любого морфизма $f: X \to Y$ в ${\bf C}$ следующий квадрат коммутирует:

$$F(X) \xrightarrow{\alpha_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\alpha_Y} G(Y)$$

Категория функторов

- Естественных преобразование отображает только объекты, но можно показать, что оно задает действие и на морфизмах.
- ▶ Если $\alpha: F \to G$ естественное преобразование, то каждому морфизму $f: X \to Y$ в **C** можно сопоставить морфизм $\alpha_f: F(X) \to G(Y)$ в **D**.
- ▶ Морфизм α_f определяется как композиция $F(f) \circ \alpha_Y$, что равно $\alpha_X \circ G(f)$ по естественности.
- ▶ Этот морфизм это диагональ в коммутативном квадрате, который появляется в определении естественности.

Композиция естественных преобразований

- ▶ Если $\alpha: F \to G$ и $\beta: G \to H$ пара естественных преобразований, то можно определить их композицию $\beta \circ \alpha: F \to H$ как функцию, сопоставляющую каждому X из \mathbf{C} морфизм $\beta_X \circ \alpha_X: F(X) \to H(X)$.
- ▶ Композиция $\beta \circ \alpha$ естественна:

$$F(X) \xrightarrow{\alpha_X} G(X) \xrightarrow{\beta_X} H(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f) \qquad \downarrow H(f)$$

$$F(Y) \xrightarrow{\alpha_Y} G(Y) \xrightarrow{\beta_Y} H(Y)$$

Категория функторов

- Для любого функтора $F: \mathbf{C} \to \mathbf{D}$ существует тождественное естественное преобразование, сопоставляющее каждому X тождественный морфизм $id_{F(X)}: F(X) \to F(X)$.
- Композиция ассоциативна, тождественное преобразование является единицей для композиции.
- ► Таким образом, для любой пары категорий С и D существует категория функторов, которая обозначается D^C.

Эквивалентность категорий

- ▶ Функтор $F: \mathbf{C} \to \mathbf{D}$ называются *эквивалентностью* категорий, если существует функтор $G: \mathbf{D} \to \mathbf{C}$, такой что $G \circ F$ изоморфен $Id_{\mathbf{C}}$ в категории $\mathbf{C}^{\mathbf{C}}$, и $F \circ G$ изоморфен $Id_{\mathbf{D}}$ в категории $\mathbf{D}^{\mathbf{D}}$.
- ▶ Категории **C** и **D** называются *эквивалентными*, если существует эквивалентность $F: \mathbf{C} \to \mathbf{D}$.
- Чтобы убедиться, что функтор является эквивалентностью, нужно проверять много условий.
- Функтор $F: \mathbf{C} \to \mathbf{D}$ является эквивалентностью, если он полный, строгий и *существенно сюръективен на объектах*.
- ▶ Последнее условие означает, что для любого объекта X в \mathbf{D} существует объект Y в \mathbf{C} , такой что F(Y) изоморфен X.

Пример

- lacktriangle Определим функтор $F: \mathbf{Mat} o \mathbf{Vec}$, такой что $F(n) = \mathbb{R}^n$ и $F(A)(v) = A \cdot v$.
- Из линейной алгебры мы знаем, что между линейными операторами и матрицами есть биекция, которая описывается указаным выше способом.
- Таким образом, этот функтор полный и строгий.
- Из линейной алгебры мы знаем, что любое конечномерное векторное пространство V изоморфно пространству $\mathbb{R}^{dim(V)}$.
- ► Таким образом, F существенно сюръективен на объектах, и, следовательно, является эквивалентностью.

Доказательство

Proposition

Функтор является эквивалентностью тогда и только тогда, когда он полный, строгий и существенно сюръективен на объектах.

Доказательство.

Пусть $F: \mathbf{C} o \mathbf{D}$ — эквивалентность категорий. Пусть

 $G: \mathbf{D} \to \mathbf{C}$ – обратный к нему, $\alpha: G \circ F \simeq Id_{\mathbf{C}}$ и $\beta: F \circ G \simeq Id_{\mathbf{D}}$.

Тогда F – существенно сюръективен на объектах.

Действительно, для любого $X \in Ob(\mathbf{D})$ возьмём Y = G(X),

тогда $\beta_X : F(G(X)) \simeq X$.

Покажем, что F – строгий. Пусть F(f) = F(f') для некоторых $f,f':X\to Y$. Тогда по естественности α получается, что $f=\alpha_Y\circ G(F(f))\circ \alpha_X^{-1}=\alpha_Y\circ G(F(f'))\circ \alpha_X^{-1}=f'$. Аналогично доказывается, что G – строгий.

Доказательство (продолжение)

Докажем, что F – полный. Пусть $h: F(X) \to F(Y)$ – некоторая стрелка. Тогда определим стрелку $f: X \to Y$ как следующую композицию:

$$X \xrightarrow{\alpha_X^{-1}} G(F(X)) \xrightarrow{G(h)} G(F(Y)) \xrightarrow{\alpha_Y} Y$$

Тогда $\alpha_Y^{-1} \circ f \circ \alpha_X = G(h)$. С другой стороны, по естественности α у нас есть равенство $\alpha_Y^{-1} \circ f \circ \alpha_X = G(F(f))$. Следовательно G(h) = G(F(f)). По строгости G мы получаем, что h = F(f). Таким образом, f – прообраз h, то есть F – полный.

Доказательство (в обратную сторону)

Пусть F — полный, строгий и существенно сюръективен на объектах. Тогда для любого $X \in Ob(\mathbf{D})$ существует объект $Y \in Ob(\mathbf{C})$ и изоморфизм $\alpha_X : F(Y) \simeq X$. Определим $G: Ob(\mathbf{D}) \to Ob(\mathbf{C})$ как функцию, возвращающую на каждом X такой Y (не важно какой конкретно).

$$F(G(X)) \xrightarrow{\alpha_X} X$$

$$F(f') \mid \qquad \qquad \downarrow f$$

$$F(G(Y)) \xrightarrow{\alpha_Y} Y$$

Так как F полон, то для каждого $f: X \to Y$ существует $f': G(X) \to G(Y)$, такая что $F(f') = \alpha_Y^{-1} \circ f \circ \alpha_X$. Так как F строг, то такая стрелка уникальна. Пусть G(f) = f'. Используя уникальность, легко проверить, что G сохраняет тождественные морфизмы и композиции.

Доказательство (продолжение)

Осталось проверить, что $G\circ F\simeq Id_{\mathbb C}$ и $F\circ G\simeq Id_{\mathbb D}$. Преобразование $\alpha_X: F(G(X))\simeq X$ естественно, так как коммутативный квадрат на предыдущем слайде — в точности квадрат естественности α .

Так как F — полный, то для любой стрелки $lpha_{F(Y)}: F(G(F(Y))) o F(Y)$ существует прообраз $eta_Y: G(F(Y)) o Y$. Все eta_Y — изоморфизмы, так как обратные к ним — это прообразы $lpha_{F(Y)}^{-1}: F(Y) o F(G(F(Y)))$.

Доказательство (окончание)

Осталось проверить, что β естественен.

$$G(F(X)) \xrightarrow{\beta_X} X$$

$$G(F(f)) \downarrow \qquad \qquad \downarrow f$$

$$G(F(Y)) \xrightarrow{\beta_Y} Y$$

Применив F к диаграмме выше, она начинает коммутировать, так как α естественен. Но так как F – строгий, исходная диаграмма также коммутирует.