Short Syllabus

BCSE424L Machine Learning for Robotics (2-0-0-2)

Introduction to Machine Learning - Supervised Learning - I - Linear and Non-Linear - Multi-Class & Multi-Label classification - Naïve Bayes Classifier - Decision Trees - CART - Fine tuning of algorithms for robotic environment; Supervised Learning - II - K-NN classifier - Logistic regression - SVM; Unsupervised Learning - Reinforcement Learning - RL Framework - Markov Decision Process; Real time Datasets - Pre-processing - Robotics & Machine Learning Alliance - Design constraints and considerations - setting up the environment - Applications and case studies in Robotics;

Course Code	Course Title					С	
BCSE424L	Machine Learning for Robotics	Machine Learning for Robotics				2	
Pre-requisite	NIL	Syllabus version					
Course Objectives:			1.0				

- 1. To teach the theoretical foundations of various learning algorithms.
- 2. To understand the context of supervised and unsupervised learning through real-life examples.
- 3. Apply all learning algorithms over appropriate real-time dataset.
- 4. Evaluate the algorithms based on corresponding metrics identified.
- 5. Analyze the requirements of Machine Learning applications in context-aware robotic environment.

Course Outcomes:

Student will be able to

- 1. Understand, visualize, analyze and preprocess the data from a real-time source.
- 2. Apply appropriate algorithm to the data.
- 3. Analyze the results of algorithm and convert to appropriate information required for the real time application.
- 4. Evaluate the performance of various algorithms that could be applied to the data and to suggest most relevant algorithm according to the robotic environment.

Module:1 Introduction to Machine Learning

3 hours

Introduction – Exploration – Learning Paradigms – Role of Machine Learning in Robotic applications

Module:2 | Supervised Learning – I

6 hours

Linear and Non-Linear – Multi–Class & Multi-Label classification – Linear Regression – Multilinear Regression – Naïve Bayes Classifier – Decision Trees – ID3 – CART – Fine tuning of algorithms for robotic environment.

Module:3 | Supervised Learning – II

6 hours

K-NN classifier – Logistic regression – Perceptrons – Single layer & Multi-layer – Support Vector Machines – Linear & Non-linear – Error Bounds Fine tuning of algorithms for robotic environment.

Module:4 Unsupervised Learning

5 hours

Clustering basics (Partitioned, Hierarchical and Density based) - K-Means clustering - K-Mode clustering - Principal Component Analysis - Kernel PCA - Error Bounds - Ensemble Learning (Random Forest, XGBoost) - Fine tuning of algorithms for robotic environment.

Module:5 Reinforcement Learning

3 hours

Basics of RL – RL Framework – Markov Decision Process – Exploration Vs Exploitation

Module:6 | Real time Datasets – Pre-processing

3 hours

Class Imbalance - SMOTE - One Class SVM - Optimization of hyperparameters.

Module: Robotics & Machine Learning Alliance

3 hours

Design constraints and considerations – setting up the environment – Applications and case studies in Robotics

Module:8 | Contemporary Issues

1 Hour

					Total Lecture:	30 Hours			
Text Books:									
1		Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014.							
2	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar "Foundations of Machine Learning", MIT Press, 2012.								
3	Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series) 2nd edition, Richard S. Sutton and Andrew G. Barto, A Bradford Book; 2018, ISBN 978-0262039246								
References Books:									
1	Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.								
2	Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.								
Tes	Mode of Evaluation: Continuous Assessment Test –I (CAT-I), Continuous Assessment Test –II (CAT-II), Digital Assignments/ Quiz / Completion of MOOC, Final Assessment Test (FAT).								
Re	commer	ided by Board of Studies	13-05-2022						
Ap	proved b	y Academic Council	No. 66	Date	16-06-2022				