KHAI PHÁ DỮ LIỆU

VO DUC QUANG - VINH UNIVERSITY

QUANGVD@VINHUNI.EDU.VN

Nội dung

- Chương 1: Tổng quan về Data Mining
- Chương 2: Dữ liệu và tiền xử lý dữ liệu
- Chương 3: Bài toán phân lớp dữ liệu
- Chương 4: Bài toán phản cụm dữ liệu
- Chương 5: Khai phá luật kết hợp

Chương 5 – Khai phá luật kết hợp

- Giới thiệu bài toán
- Giải thuật Apriori
- Một số ứng dụng

Phân tích hành vi mua hàng trong siêu thị

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between

Tìm kiếm cách xây dựng luật kết hợp

Association Rule Mining

Ví dụ

Rule	Support	Confidence	Lift
A=>D	2/5	2/3	10/9
C=>A	2/5	2/4	5/6
A => C	2/5	2/3	5/6
B, C=>A	1/5	1/3	5/9

- Ví dụ minh họa
- min_support =2

 TID
 Items

 T1
 134

 T2
 235

 T3
 1235

 T4
 25

 T5
 135

C1

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1 5
{5}	4

- Ví dụ minh họa
- min_support =2

C1

F1

Itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

Itemset	Support
{1}	3
{2}	3
{3}	4
{5}	4

Item sets with support value less than min. support value (i.e. 2) are eliminated

Items

135

- Ví dụ minh họa
- min_support =2

TID

T5

Only Items present in F1

C2

Itemset	Support
{1,2}	1
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

F2

- Ví dụ minh họa
- min_support =2

C3 ?

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	Support
{1,2,3}	
{1,2,5}	
{1,3,5}	
{2,3,5}	

- Ví dụ minh họa
- min_support =2

C3

TID	Items
T1	134
T2	235
T3	1235
T4	25
T5	135

Itemset	In F2?
{1,2,3}, { <mark>1,2}</mark> , {1,3}, {2,3}	NO
{1,2,5}, <mark>{1,2}</mark> , {1,5}, {2,5}	NO
{1,3,5},{1,5}, {1,3}, {3,5}	YES
{2,3,5}, {2,3}, {2,5}, {3,5}	YES

Ví dụ minh họa

6 5		

ı			
ı	5	כ	
L	a	-	

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

If any of the subsets of these item sets are not there in F2 then we remove that itemset

Ví dụ minh họa

TID	Items
T1	134
T2	235
Т3	1235
T4	25
T5	135

F3

Support

Ví dụ minh họa

TID	Items
T1	134
T2	235
T3	1235
T4	25
T5	135

F3

Itemset	Support
{1,2,3,5}	1

Ví dụ minh họa

F3

Itemset	Support
{1,3,5}	2
{2,3,5}	2

For I = $\{1,3,5\}$, subsets are $\{1,3\}$, $\{1,5\}$, $\{3,5\}$, $\{1\}$, $\{3\}$, $\{5\}$

For I = $\{2,3,5\}$, subsets are $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2\}$, $\{3\}$, $\{5\}$

For every subsets S of I, output the rule:

 $S \rightarrow (I-S)$ (S recommends I-S)

if support(I)/support(S) >= min_conf value

Ví dụ minh họa

Applying Rules to Item set F3

1. {1,3,5}

Rule 1 is selected

- ✓ Rule 1: $\{1,3\}$ → $\{\{1,3,5\}$ $\{1,3\}$) means 1 & 3 → 5 Confidence = support $\{1,3,5\}$ /support $\{1,3\}$ = 2/3 = 66.66% > 60%
- ✓ Rule 2: $\{1,5\}$ → $\{\{1,3,5\}$ $\{1,5\}$) means 1 & 5 → 3 Confidence = support $\{1,3,5\}$ /support $\{1,5\}$ = 2/2 = 100% > 60% Rule 2 is selected
- ✓ Rule 3: **{3,5}** \rightarrow **({1,3,5} {3,5})** means 3 & 5 \rightarrow 1 Confidence = support(1,3,5)/support(3,5) = 2/3 = 66.66% > 60% Rule 3 is selected

D

Ví dụ minh họa

Applying Rules to Item set F3

- 1. {1,3,5}
 - ✓ Rule 4: {1} \rightarrow ({1,3,5} {1}) means 1 \rightarrow 3 & 5 Confidence = support(1,3,5)/support(1) = 2/3 = 66.66% > 60% Rule 4 is selected
 - ✓ Rule 5: **{3}** \rightarrow **({1,3,5} {3})** means 3 \rightarrow 1 & 5 Confidence = support(1,3,5)/support(3) = 2/4 = 50% <60% Rule 5 is rejected
 - ✓ Rule 6: {5} → ({1,3,5} {5}) means 5 → 1 & 3
 Confidence = support(1,3,5)/support(3) = 2/4 = 50% < 60%</p>
 Rule 6 is rejected

Why ML & DM?

Data

Why ML & DM?

Data

Why ML & DM?

Data