

Multimedia Networking

Transport Protocols Real-time Support RTP/RTCP

Main Sources:

- Computer Networking: A Top Down Approach
 Zth edition. Jim Kurose, Keith Ross, Addison-Wesley, 2017.
- RFC3550, RFC5506

RTP motivation

- TCP not suited to real-time and interactive apps
 - point-to-point so not suitable for multicast
 - no way to associate timing with segments
 - causes arbitrary delays
- SCTP is multistream but has some of TCP drawbacks
- UDP does not include timing information nor any support for real-time apps. DCCP provides some support for buffer control but no media timing.
- Real-Time Protocol (RTP) aims to support the transport of *real-time* data, audio and video

RTP

Goal: provides mechanisms for end-to-end delivery of realtime data (audio, video)

- Typical apps: videoconferencing, IP telephony, etc.
- Supports unicast or multicast sessions
- Uses a data channel (RTP) and a control channel (RTCP)
- RTCP (Real Time Control Protocol) reports the status of the data channel
- RTP (RFC 3350)

RTP

Support for application real-time data delivery

 Support to control application real-time data

RTP in the protocol stack

Universidade do Minho Escola de Engenharia Departamento de Informática

- RTP Session = data channel + control channel
- Session address = network address (unicast, multicast), pair of ports
- RTCP channel = RTP port +1
- In presence of multiple media streams, each one is transmitted in a separate session or mixed in a single session in each direction, depending on the codecs (e.g. MPEG-x mix audio and vídeo / session).

- RTP issues
 - * No reservation, No Quality of Service (QoS) guarantees
 - * No guarantee of packet delivery
 - * Note that RTP does not provide any mechanism to ensure timely data delivery or other QoS guarantees.
 - * routers may provide differentiated service delivery, but there is no guarantees that RTP packets arrive at destination in a timely manner.
 - * RTP encapsulation is only seen at end-systems, not by intermediate routers.

Universidade do Minho Escola de Engenharia Departamento de Informática

- RTP issues
 - * Allows timing reconstruction, loss detection and content identification

- RTP specifies a packet structure for packets carrying audio, video data
- RTP packet provides
 - time stamping
 - packet sequence numbering
 - payload type identification

- RTP packets usually encapsulated in UDP segments (also in DCCP)
- Interoperability: if two Internet phone applications run RTP, then they may be able to work together (session control at RTP level)

Universidade do Minho Escola de Engenharia Departamento de Informática

RTP example

- Consider sending 64 kbps PCM-encoded (8 bits) voice over RTP.
- application collects encoded data in chunks, e.g., every 20 msec = 160 samples in a chunk (160 bytes).
- an audio chunk + RTP header form an RTP packet, which is encapsulated in e.g. an UDP segment

- RTP header indicates type of audio encoding in each packet
 - sender can change encoding during conference.
- As mentioned, RTP header also contains sequence number and timestamp.

- RTP Timestamp
 - * primary goal: represent the inherent notion of real-time associated with media (sampling units)
 - * used to place packets in correct timing order
 - * may be used to evaluate jitter
- Sequence Number
 - * used to detect RTP packet loss
- If a video frame spans multiple RTP packets, then timestamp is unchanged and sequence number is incremented

RTP header

V = Version

P = Padding

X = Extension

CC = CSRC count

M = Marker

[W.Stallings, Computer Networks w/ Internet Prot. & Tech., 2004]

RTP header

<u>Payload Type (7 bits):</u> Indicates the type of encoding currently being used. If sender changes encoding in middle of a conference, sender informs receiver via payload type field.

- Payload type 0: PCM mu-law, 64 kbps
- Payload type 3, GSM, 13 kbps
- Payload type 7, LPC, 2.4 kbps
- Payload type 26, Motion JPEG
- Payload type 31. H.261
- Payload type 33, MPEG2 video
- see RFC 3551...

<u>Seq. Number (16 bits):</u> Increments by one for each RTP packet sent; may be used to detect packet loss and to restore packet sequence at receiver.

<u>SSRC field (32 bits):</u> Identifies the source of the RTP stream (allows independence of the network address), provides an ID for playout. Each stream in RTP session should have distinct SSRC (random init).

RTP header – SSRCs vs. CSRCs

RTP mixer - an intermediate system that receives and combines RTP PDUs of one or more RTP sessions into a new RTP PDU

Synchronization Sources(SSRC) become Contributing Sources (CSRC)

RTP header - timestamp

- ☐ <u>Timestamp field (32 bits):</u> reflects the sampling instant of first octet in the RTP data packet
 - initial value random for each RTP stream
 - o for audio, timestamp clock typically increments by one for each sampling period (e.g., each 125 usecs for 8 kHz sampling clock)
 - if application generates chunks of 160 encoded samples each
 20ms, then timestamp increases by 160 units for each RTP packet when source is active.
 - timestamp clock continues to increase at constant rate when source is inactive; it increments monotonically and linearly
 - if the sampling rate is variable (e.g. software codecs), the system clock may be used (e.g. gettimeofday())

Universidade do Minho Escola de Engenharia Departamento de Informática

RTCP - Real-Time Control Protocol

- RTCP works in conjunction with RTP.
- each participant in RTP session periodically transmits RTCP control packets to all other participants.
- each RTCP packet contains sender and/or receiver reports
- minimal overhead (e.g. 1RTCP pkt each 5 sec)

- feedback can be used to control application performance
 - sender may modify its transmissions based on feedback
 - report statistics useful to application: #packets sent, #packets lost, interarrival jitter, etc.
- allows to identify and keep track of participants

RTCP

- each RTP session: typically uses a single multicast address; all RTP/RTCP packets belonging to that session use multicast address (IP class D).
- RTP, RTCP packets distinguished from each other via distinct port numbers.
- to limit traffic, each participant reduces RTCP traffic as the number of conference participants increases

RTCP packets

Sender Report (SR) packets:

 SSRC of RTP stream, current time, number of packets sent, number of octets sent

- allows receiver to:
 - estimate mean data rate;
 - estimate mean packet size;
 - distinguish reception breaks
 (pauses in transmission vs. network problems)

Receiver Report (RR) packets:

 fraction of packets lost, last sequence number, average interarrival jitter

Source Description packets:

- e-mail address of sender, sender's name, SSRC of associated RTP stream
- provide mapping between the SSRC and the user/host name

Universidade do Minho Escola de Engenharia Departamento de Informática

RTCP packet formats

(a) RTCP Sender Report

(b) RTCP Receiver Report

(c) RTCP Application-defined packet

(d) RTCP Source Description

(e) RTCP BYE

[W.Stallings, Computer Networks w/ Internet Prot. & Tech., 2004]

Universidade do Minho Escola de Engenharia Departamento de Informática

RTCP Reports

- RRs and SRs indicate reception statistics from each receiver and for every sender. These statistics include:
 - packet loss ratio since the last SR or RR was sent;
 - total # packets lost since the beginning of the session
 - highest sequence number received so far, which allows to estimate how much data is in flight (when used together with the SR and RR timestamps);
 - moving average of the interarrival jitter of media packets; which gives the sender an indirect view of the size of any adaptive playout buffer used at the receiver ([RFC3611]), e.g. useful for VoIP sessions.

Universidade do Minho Escola de Engenharia Departamento de Informática

RTCP synchronization of streams

- RTCP can synchronize different media streams within a RTP session
- consider videoconferencing app for which each sender generates one RTP stream for video, one for audio.
- timestamps in RTP packets are tied to the video, audio sampling clocks
 - not tied to wall-clock time (NTP gives an absolute time)

- each RTCP sender-report packet contains (for most recently generated packet in associated RTP stream):
 - timestamp of RTP packet
 - wall-clock time for when packet was created.
- receivers uses association to synchronize playout of audio, video

RTCP bandwidth scaling

- RTCP has a potential bandwidth scaling problem as the number of receivers R increases
- RTCP aggregated bandwidth consumption increases linearly with R
- To minimize that, RTCP receivers adjusts the sending rate to the multicast tree according to R

RTCP bandwidth scaling

RTCP attempts to limit its traffic to 5% of session bandwidth.

Example

- Suppose one sender, sending video at 2 Mbps. Then RTCP attempts to limit its traffic to 100 kbps.
- RTCP gives 75% of rate to receivers; remaining 25% to sender

- 75 kbps is equally shared among receivers:
 - with R receivers, each receiver gets to send RTCP traffic at 75/R kbps.
- sender gets to send RTCP traffic at 25 kbps.
- participant determines RTCP packet transmission period by calculating avg RTCP packet size (across entire session) and dividing by its allocated rate

RTP/RTCP references

- Lots of good material at Henning Schulzrinne's RTP page http://www.cs.columbia.edu/~hqs/rtp/
- RFCs on RTP/RTCP
 - G.Ott, C.Perkins, Guidelines for Extending the RTP Control Protocol (RTCP), RFC 5968, Sep. 2010.
 - C.Perkins, T. Schierl, Rapid Synchronisation of RTP Flows, RFC 6051, Nov. 2010
 - A.Begen, RTP Control Protocol (RTCP) Port for Source-Specific Multicast (SSM) Sessions, RFC 6128, Feb. 2011.
 - A. Began, C. Perkins, D.Wing, *Guidelines for Choosing RTP Control Protocol (RTCP) Canonical Names (CNAMEs)*, RFC 6222, Apr. 2011.
 - •