

수학 계산력 강화

(1)함수의 최대와 최소

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-03-12

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 함수의 최대와 최소

함수 f(x)가 닫힌구간 [a,b]에서 연속일 때, 함수의 최댓값과 최솟값은 다음과 같은 순서로 구한다.

- ① 주어진 구간에서 f(x)의 극댓값과 극솟값을 모두
- ② 주어진 구간의 양 끝에서의 함숫값 f(a), f(b)를 구한다.
- ③ ①, ②에서 구한 극댓값, 극솟값, f(a), f(b) 중에서 가장 큰 값이 최댓값, 가장 작은 값이 최솟값이다.

☑ 다음 함수에 대하여 주어진 구간에서의 최댓값과 최솟값을 구하 여라.

1.
$$f(x) = x^2 - 2x + 3$$
 [0, 3]

2.
$$f(x) = x^2 - 4x + 1$$
 [1, 3]

3.
$$f(x) = x^3 - 3x + 2$$
 [-2, 1]

4.
$$f(x) = -x^3 + 3x + 2$$
 $\left[-\sqrt{3}, \sqrt{3} \right]$

5.
$$f(x) = x^3 - 3x^2 + 1$$
 [-2, 3]

6.
$$f(x) = -x^3 + 3x^2$$
 [-1, 1]

7.
$$y = x^3 + 3x^2 + 10$$
 [-1, 1]

8.
$$y = x^3 - 3x^2 - 9x + 8$$
 [-2, 0]

9.
$$f(x) = x^3 - 6x^2 + 9x$$
 [0, 5]

10.
$$f(x) = x^3 - 6x^2 + 9x - 1$$
 [-1, 3]

11.
$$f(x) = x^3 - 6x^2 + 9x + 2$$
 [0, 2]

12.
$$f(x) = x^3 - 6x^2 + 9x + 6$$
 [0, 3]

13.
$$f(x) = 2x^3 - 3x^2 + 1$$
 [-1, 1]

14.
$$f(x) = 2x^3 - 9x^2 + 12x$$
 [1, 3]

15.
$$f(x) = 2x^3 - 9x^2 + 12x$$
 [0, 2]

16.
$$f(x) = 2x^3 - 9x^2 + 12x - 2$$
 [0, 2]

17.
$$f(x) = 2x^3 - 9x^2 + 12x - 5$$
 [1, 3]

18.
$$f(x) = 2x^3 - 9x^2 + 12x - 6$$
 [1, 3]

19.
$$f(x) = 2x^3 - 12x^2 + 18x + 3$$
 [-2, 2]

20.
$$f(x) = -x^3 + 3x^2 + 9x - 3$$
 [1, 4]

21.
$$f(x) = -x^3 + 3x^2 + 9x + 3$$
 [-2, 4]

22.
$$f(x) = x^4 - 4x^3 - 2x^2 + 12x - 3$$
 [-2, 4]

23.
$$f(x) = 3x^4 - 4x^3 - 1$$
 [0, 2]

24.
$$f(x) = -3x^4 + 4x^3 + 1$$
 [0, 2]

25.
$$f(x) = 3x^4 + 4x^3 - 6x^2 - 12x - 2$$
 [-2, 2]

26.
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 2$$
 [-1, 1]

27.
$$f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{1}{2}x^2 - 2x$$
 [-2, 0]

28.
$$f(x) = -3x^4 + 8x^3 - 6x^2 - 1$$
 [0, 2]

☑ 다음 물음에 답하여라.

- **29.** 구간 [-1, 2]에서 함수 $f(x) = 2x^3 3x^2 + a$ 의 최 댓값이 5일 때, 상수 a의 값을 구하여라.
- **30.** 구간 [-1, 1]에서 함수 $f(x) = ax^3 3ax^2 + b$ 가 최댓값 2, 최솟값 -10을 가질 때 상수 a, b의 값을 구하여라. (단, a > 0)
- **31.** 구간 [-1, 2]에서 함수 $f(x) = ax^3 6ax^2 + b$ 가 최댓값 2, 최솟값 -14를 가질 때 상수 a, b의 값을 구하여라. (단, a>0)
- **32.** 닫힌구간 [-2, 2]에서 함수 $f(x) = ax^3 \frac{9}{2}ax^2 + b$ 가 최댓값 29, 최솟값 3을 가질 때, 상수 a, b의 값 을 각각 구하여라. (단, a < 0)
- **33.** 닫힌구간 [-2, 2]에서 함수 $f(x) = ax^3 + 3ax^2 b$ 가 최댓값 35, 최솟값 -5를 가질 때, 상수 a, b의 값을 각각 구하여라. (단, a > 0)
- **34.** 닫힌구간 [-1, 2]에서 함수 $f(x) = ax^4 + 2ax^2 + b$ 가 최댓값 5, 최솟값 -3을 가질 때, 상수 a, b의 값 을 각각 구하여라. (단, a>0)
- **35.** 구간 [1,4]에서 함수 $f(x) = x^3 3x^2 + a$ 의 최댓 값을 M, 최솟값을 m이라 하자. M+m=20일 때, 상수 a의 값을 구하여라.

- **36.** 구간 [-2, 2]에서 함수 $f(x) = -2x^3 + 6x + a$ 의 최댓값을 M, 최솟값을 m이라 하자. M+m=20일 때, 상수 a의 값을 구하여라.
- **37.** 구간 [-2, 2] 에서 함수 $f(x) = x^4 2x^2 + a$ 의 최 댓값을 M, 최솟값을 m이라 하자. M+m=5일 때, 상수 a의 값을 구하여라.
- **38.** 닫힌구간 [-2, 0]에서 함수 $f(x) = x^3 3x + a$ 의 최댓값이 2일 때, 이 구간에서 함수 f(x)의 최솟값 을 구하여라. (단, a는 상수)
- **39.** 닫힌구간 [-1, 1]에서 함수 $f(x) = x^3 + 3x^2 + a$ 의 최댓값이 5일 때, 이 구간에서 함수 f(x)의 최솟값 을 구하여라. (단, a는 상수)
- **40.** 닫힌구간 [-2, 2]에서 함수 $f(x) = 2x^3 6x^2 + a$ 의 최댓값이 3일 때, 이 구간에서 함수 f(x)의 최솟 값을 구하여라. (단, a는 상수)
- **41.** 달힌구간 [-1, 4]에서 함수 $f(x) = 2x^3 6x^2 + a$ 의 최솟값이 -7일 때, 이 구간에서 함수 f(x)의 최 댓값을 구하여라. (단, a는 상수)
- **42.** 구간 [-2,1]에서 함수 $f(x) = -x^3 + 12x^2 + a$ 의 최댓값이 50일 때, 이 구간에서 최솟값을 구하여라.
- **43.** 구간 [0, 4]에서 함수 $f(x) = ax^3 3ax^2 + 2$ 의 최 댓값이 14일 때, 이 구간에서 최솟값을 구하여라. (단, a < 0)

- **44.** 닫힌구간 [-2, 2]에서 함수 $f(x) = x^4 2x^2 a$ 의 최댓값이 4일 때, 이 구간에서 함수 f(x)의 최솟값 을 구하여라. (단, a는 상수)
- \blacksquare 다음 그림과 같이 곡선 $y=-x^2+16$ 위의 제1사분면 위의 점 A를 지나고 x축과 평행한 직선이 곡선 $y=-x^2+16$ 과 만나 는 점 중 A가 아닌 점을 B라 하자. 두 점 A, B에서 x축에 내린 수선의 발을 각각 A', B'이라 할 때, 다음 물음에 답하여 라.

- 45. 직사각형 ABB'A'의 넓이의 최댓값을 구하여라.
- **46.** 직사각형 ABB'A'의 넓이가 최대가 될 때의 점 A의 x좌표를 구하여라.
- ightharpoonup 다음 그림과 같이 한 변의 길이가 4cm인 정사각형 모양의 종 이의 네 모퉁이에서 같은 크기의 정사각형을 잘라 내고, 남은 부분을 접어서 뚜껑이 없는 직육면체 모양의 상자를 만들려고 한다. 다음 물음에 답하여라.

47. 잘라 낼 정사각형의 한 변의 길이를 xcm라 할 때, x의 값의 범위를 구하여라.

- **48.** 상자의 부피가 최대일 때, x의 값을 구하여라.
- $oldsymbol{\square}$ 한 변의 길이가 $12\,cm$ 인 정사각형 모양의 종이의 네 모퉁이에 서 같은 크기의 정사각형을 잘라 내고, 남은 부분을 접어서 뚜 껑이 없는 직육면체 모양의 상자를 만들려고 한다. 다음 물음에 단하여라.
- **49.** 잘라 낼 정사각형의 한 변의 길이를 xcm라 할 때, x의 값의 범위를 구하여라.
- **50.** 상자의 부피가 최대일 때, x의 값을 구하여라.
- ☑ 다음 그림과 같이 한 변의 길이가 6인 정사각형 모양의 종이의 네 모퉁이에서 같은 크기의 정사각형을 잘라 내고, 남은 부분을 접어서 뚜껑이 없는 직육면체 모양의 상자를 만들려고 한다. 다 음 물음에 답하여라.

- 51. 잘라 낼 정사각형의 한 변의 길이를 x라 할 때, x의 값의 범위를 구하여라.
- **52.** 상자의 부피가 최대일 때, x의 값을 구하여라.
- 53. 상자의 부피의 최댓값을 구하여라.

ightharpoonup 다음 그림과 같이 한 변의 길이가 $20\,cm$ 인 정사각형 모양의 종 이의 네 모퉁이에서 같은 크기의 정사각형을 잘라 내고, 남은 부분을 접어서 뚜껑이 없는 직육면체 모양의 상자를 만들려고 한다. 다음 물음에 답하여라.

- **54.** 잘라 낼 정사각형의 한 변의 길이를 x라 할 때, x의 값의 범위를 구하여라.
- **55.** 상자의 부피가 최대일 때, x의 값을 구하여라.
- 56. 상자의 부피의 최댓값을 구하여라.
- ightharpoonup 다음 그림과 같이 가로의 길이가 16, 세로의 길이가 10인 직사 각형 모양의 종이의 네 모퉁이에서 크기가 같은 정사각형을 잘 라내고, 남은 부분을 접어서 뚜껑이 없는 직육면체 모양의 상자 를 만들려고 한다. 다음 물음에 답하여라.

- **57.** 잘라 낼 정사각형의 한 변의 길이를 x라 할 때, x의 값의 범위를 구하여라.
- **58.** 상자의 부피가 최대일 때, x의 값을 구하여라.
- 59. 상자의 부피의 최댓값을 구하여라.

☑ 다음 물음에 답하여라.

60. 밑면의 반지름의 길이가 6cm이고 높이가 18cm인 원뿔이 있다. 이 원뿔에 내접하는 원기둥의 부피의 최댓값을 구하여라.

61. 밑면의 반지름의 길이가 3cm이고 높이가 12cm인 원뿔이 있다. 이 원뿔에 내접하는 원기둥 중에서 부 피가 최대인 원기둥의 밑면의 반지름의 길이를 구하 여라.

정답 및 해설

1) 최댓값 6, 최솟값 2

$$\Rightarrow f(x) = x^2 - 2x + 3$$
 $\Rightarrow f'(x) = 2x - 2$

$$f'(x) = 0$$
에서 $x = 1$

x	0	•••	1	•••	3
f'(x)		_	0	+	
f(x)	3	×	2	7	6

따라서 함수 f(x)는 x=3일 때 최댓값 6, x=1일 때 최솟값 2를 갖는다.

2) 최댓값 -2, 최솟값 -3

$$\Rightarrow f(x) = x^2 - 4x + 1 \text{ odd} \quad f'(x) = 2x - 4$$

f'(x) = 0에서 x = 2

x	1	•••	2	•••	3
f'(x)			0	+	
f(x)	-2	~	-3	1	-2

따라서 함수 f(x)는 x=1, x=3일 때 최댓값 -2, x=2일 때 최솟값 -3를 갖는다.

3) 최댓값 4, 최솟값 0

$$\Rightarrow f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$
에서

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 1$

x	-2	•••	-1		1
f'(x)		+	0	_	0
f(x)	0	1	4	7	0

따라서 함수 f(x)는 x=-1에서 최댓값 4, x=-2, x=1에서 최솟값 0을 갖는다.

4) 최댓값 4, 최솟값 0

$$\Rightarrow f'(x) = -3x^2 + 3 = -3(x+1)(x-1)$$

f'(x) = 0에서 x = -1 또는 x = 1

x	$-\sqrt{3}$		-1		1		$\sqrt{3}$
f'(x)		_	0	+	0	_	
f(x)	2	7	0	7	4	7	2

따라서 함수 f(x)는 x=1에서 최댓값 4, x=-1에 서 최솟값 0을 갖는다.

5) 최댓값 1, 최솟값 -19

$$\Rightarrow f'(x) = 3x^2 - 6x = 3x(x-2) \text{ odd}$$

$$f'(x) = 0$$
에서 $x = 0$ 또는 $x = 2$

x	-2	•••	0	•••	2	•••	3
f'(x)		+	0	_	0	+	
f(x)	-19	7	1	7	-3	7	1

따라서 함수 f(x)는 x=0, x=3에서 최댓값 1, x = -2에서 최솟값 -19를 갖는다.

6) 최댓값 4, 최솟값 0

$$\Rightarrow f(x) = -x^3 + 3x^2$$
에서

$$f'(x) = -3x^2 + 6x = -3x(x-2)$$

$$f'(x) = 0$$
에서 $x = 0$ ($\because -1 \le x \le 1$)

x	-1	•••	0	•••	1
f'(x)		_	0	+	
f(x)	4	7	0	7	2

따라서 함수 f(x)는 x=-1일 때 최댓값 4, x=0일 때 최솟값 0을 갖는다.

7) 최댓값 14 최솟값 10

$$\Rightarrow f'(x) = 3x^2 + 6x = 3x(x+2)$$

$$f'(x) = 0$$
 에서 $x = 0 \ (\because -1 \le x \le 1)$

x	-1	•••	0	•••	1
f'(x)		_	0	+	
f(x)	12	7	10	1	14

따라서 함수 f(x)는 x=1에서 최댓값 14, x = 0에서 최솟값 10을 갖는다.

8) 최댓값 13 최솟값 6

$$\Rightarrow f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

$$f'(x) = 0$$
에서 $x = -1 \ (\because -2 \le x \le 0)$

x	-2		-1	•••	0
f'(x)		+	0	_	
f(x)	6	1	13	7	8

따라서 함수 f(x)는 x=-1에서 최댓값 13, x=-2에서 최솟값 6을 갖는다.

9) 최댓값 20, 최솟값 0

$$\Rightarrow f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$$

f'(x) = 0에서 x = 1 또는 x = 3이므로 닫힌구간 [0, 5]에서 함수 f(x)의 증가와 감소를 표로 나 타내면 다음과 같다.

x	0	•••	1	•••	3	•••	5
f'(x)		+	0	_	0	+	
f(x)	0	7	4	7	0	7	20

따라서 닫힌구간 [0, 5]에서 함수 f(x)는 x=5에서 최댓값 20을, x=0, x=3에서 최솟값 0을 갖는 다.

10) 최댓값 3, 최솟값 -17

$$\Rightarrow f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$$

f'(x) = 0에서 x = 1 또는 x = 3이므로 닫힌구간 [-1, 3]에서 함수 f(x)의 증가와 감소를 표로 나 타내면 다음과 같다.

x	-1	•••	1	•••	3
f'(x)		+	0	_	0
f(x)	-17	7	3	7	-1

따라서 닫힌구간 [-1, 3]에서 함수 f(x)는 x=1에서 최댓값 3을, x = -1에서 최솟값 -17을 갖는다.

11) 최댓값 6, 최솟값 2

- $\Rightarrow f'(x) = 3x^2 12x + 9 = 3(x-1)(x-3)$
- f'(x) = 0에서 x = 1 또는 x = 3이므로 닫힌구간 [0, 2]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	0	•••	1	•••	2
f'(x)		+	0	_	
f(x)	2	1	6	¥	4

따라서 닫힌구간 [0, 2]에서 함수 f(x)는 x=1에서 최댓값 6을, x=0에서 최솟값 2를 갖는다.

12) 최댓값 10, 최솟값 6

- $\Rightarrow f'(x) = 3x^2 12x + 9 = 3(x-1)(x-3)$
- f'(x) = 0에서 x = 1 또는 x = 3이므로 닫힌구간 [0, 3]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	0	•••	1	•••	3
f'(x)		+	0	_	0
f(x)	6	1	10	7	6

따라서 닫힌구간 [0, 3]에서 함수 f(x)는 x=1에서 최댓값 10을, x=0, x=3에서 최솟값 6을 갖는 다.

13) 최댓값 1, 최솟값 -4

- $\Rightarrow f'(x) = 6x^2 6x = 6x(x-1)$
- f'(x) = 0에서 x = 0 또는 x = 1이므로 닫힌구간 [-1, 1]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	-1	•••	0	•••	1
f'(x)		+	0	_	0
f(x)	-4	7	1	7	0

따라서 닫힌구간 [-1, 1]에서 함수 f(x)는 x = 0에서 최댓값 1을, x = -1에서 최솟값 -4를 갖는다.

14) 최댓값 9, 최솟값 4

- $\Rightarrow f'(x) = 6x^2 18x + 12 = 6(x-1)(x-2)$
- f'(x) = 0에서 x = 1 또는 x = 2이므로 닫힌구간 [1, 3]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	1	•••	2	•••	3
f'(x)	0	-	0	+	
f(x)	5	7	4	1	9

따라서 닫힌구간 [1, 3]에서 함수 f(x)는 x=3에서 최댓값 9를, x=2에서 최솟값 4를 갖는다.

15) 최댓값 5, 최솟값 0

- $\Rightarrow f'(x) = 6x^2 18x + 12 = 6(x-1)(x-2)$
- f'(x) = 0에서 x = 1 또는 x = 2이므로 닫힌구간 [0, 2]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	0	•••	1	•••	2
f'(x)		+	0	_	0
f(x)	0	7	5	7	4

따라서 닫힌구간 [0, 2]에서 함수 f(x)는 x=1에서 최댓값 5를, x=0에서 최솟값 0을 갖는다.

16) 최댓값 3, 최솟값 -2

- $\Rightarrow f'(x) = 6x^2 18x + 12 = 6(x-1)(x-2)$
- f'(x) = 0에서 x = 1 또는 x = 2이므로 닫힌구간 [0, 2]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	0	•••	1	•••	2
f'(x)		+	0	_	0
f(x)	-2	1	3	7	2

따라서 닫힌구간 [0, 2]에서 함수 f(x)는 x=1에서 최댓값 3을, x=0에서 최솟값 -2를 갖는다.

17) 최댓값 4, 최솟값 -1

- $\Rightarrow f(x) = 2x^3 9x^2 + 12x 5$ 에서
- $f'(x) = 6x^2 18x + 12 = 6(x-1)(x-2)$
- f'(x) = 0에서 x = 1 또는 x = 2

x	1	•••	2	•••	3
f'(x)	0	_	0	+	
f(x)	0	7	-1	1	4

따라서 함수 f(x)는 x=3일 때 최댓값 4, x=2일 때, 최솟값 -1을 갖는다.

18) 최댓값 3, 최솟값 -2

- $\Rightarrow f(x) = 2x^3 9x^2 + 12x 6$
- $f'(x) = 6x^2 18x + 12 = 6(x-1)(x-2)$
- f'(x) = 0에서 x = 1 또는 x = 2

x	1	•••	2	•••	3
f'(x)	0	_	0	+	
f(x)	-1	7	-2	1	3

따라서 함수 f(x)는 x=3일 때 최댓값 3, x=2일 때 최솟값 -2를 갖는다.

19) 최댓값 11, 최솟값 -97

- $\Rightarrow f(x) = 2x^3 12x^2 + 18x + 3$
- $f'(x) = 6x^2 24x + 18 = 6(x-1)(x-3)$
- f'(x) = 0에서 x = 1 또는 x = 3

x	-2	• • •	1	•••	2
f'(x)		+	0	_	
f(x)	-97	7	11	7	7

따라서 함수 f(x)는 x=1일 때 최댓값 11, x=-2일 때 최솟값 -97을 갖는다.

20) 최댓값 24, 최솟값 8

- $\Rightarrow f'(x) = -3x^2 + 6x + 9 = -3(x+1)(x-3)$
- f'(x) = 0에서 x = -1 또는 x = 3이므로 닫힌구간 [1, 4]에서 함수 f(x)의 증가와 감소를 표로 나

타내면 다음과 같다.

x	1	•••	3	•••	4
f'(x)		+	0	_	
f(x)	8	7	24	7	17

따라서 닫힌구간 [1, 4]에서 함수 f(x)는 x=3에서 최댓값 24를, x=1에서 최솟값 8을 갖는다.

21) 최댓값 30, 최솟값 -2

 $\Rightarrow f'(x) = -3x^2 + 6x + 9 = -3(x+1)(x-3)$

f'(x) = 0에서 x = -1 또는 x = 3이므로 닫힌구간 [-2, 4]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	-2	•••	-1	•••	3	•••	4
f'(x)		_	0	+	0	_	
f(x)	5	7	-2	7	30	/	23

따라서 닫힌구간 [-2, 4]에서 함수 f(x)는 x = 3에서 최댓값 30을, x = -1에서 최솟값 -2를 갖는다.

22) 최댓값 13, 최솟값 -12

$$\Rightarrow f(x) = x^4 - 4x^3 - 2x^2 + 12x - 30$$

$$f'(x) = 4x^3 - 12x^2 - 4x + 12 = 4(x+1)(x-1)(x-3)$$

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 1$ 또는 $x = 3$

x	-2		-1	• • • •	1		3		4
f'(x)		_	0	+	0	-	0	+	
f(x)	13	/	-12	7	4	1	-12	7	13

따라서 함수 f(x)는 x=-2 또는 x=4일 때 최댓값 13, x=-1 또는 x=3일 때 최솟값 -12를 갖는 다.

23) 최댓값 15, 최솟값 -2

$$\Rightarrow f'(x) = 12x^3 - 12x^2 = 12x^2(x-1)$$

f'(x) = 0에서 x = 0 또는 x = 1이므로 닫힌구간 [0, 2]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다

x	0	•••	1	• • •	2
f'(x)	0	_	0	+	
f(x)	-1	7	-2	1	15

따라서 닫힌구간 [0, 2]에서 함수 f(x)는 x=2에서 최댓값 15를, x=1에서 최솟값 -2를 갖는다.

24) 최댓값 2, 최솟값 -15

$$\Rightarrow f'(x) = -12x^3 + 12x^2 = -12x^2(x-1)$$

$$f'(x) = 0$$
에서 $x = 0$ 또는 $x = 1$

x	0	•••	1		2
f'(x)	0	+	0	_	
f(x)	1	7	2	×	-15

따라서 함수 f(x)는 x=1에서 최댓값 2, x=2에서 최솟값 -15를 갖는다.

25) 최댓값 30, 최솟값 -13

$$\Rightarrow f'(x) = 12x^3 + 12x^2 - 12x - 12 = 12(x+1)^2(x-1)$$

f'(x) = 0에서 x = -1 또는 x = 1

x	-2	•••	-1	•••	1	•••	2
f'(x)		_	0	_	0	+	
f(x)	14	7	3	7	-13	1	30

따라서 함수 f(x)는 x = 2에서 최댓값 30, x = 1에서 최솟값 -13을 갖는다.

26) 최댓값 2, 최솟값 -11

$$\Rightarrow f'(x) = 12x^3 + 12x^2 - 24x = 12x(x+1)(x-2)$$

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 0$ 또는 $x = 2$

x	-1	•••	0	•••	1
f'(x)	0	+	0	_	
f(x)	-3	1	2	7	-11

따라서 함수 f(x)는 x=0에서 최댓값 2, x=1에서 최솟값 -11을 갖는다.

27) 최댓값 $\frac{13}{12}$, 최솟값 0

$$\Rightarrow f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{1}{2}x^2 - 2x \text{ on } \forall$$

$$f'(x) = x^3 + 2x^2 - x - 2 = (x+2)(x+1)(x-1)$$

$$f'(x) = 0$$
에서

$$x = -2 \, \text{ } \pm \frac{1}{1} \, x = -1 \, (\because -2 \le x \le 0)$$

따라서 함수 f(x)는 x=-1일 때 최댓값 $\frac{13}{12}$, x=0일 때, 최솟값 0을 갖는다.

28) 최댓값 -1, 최솟값 -9

$$\Rightarrow f(x) = -3x^4 + 8x^3 - 6x^2 - 1$$
 에서

$$f'(x) = -12x^3 + 24x^2 - 12x = -12x(x-1)^2$$

$$f'(x) = 0$$
에서 $x = 0$ 또는 $x = 1$

따라서 함수 f(x)는 x=0일 때 최댓값 -1, x=2일 때, 최솟값 -9를 갖는다.

29) 1

$$\Rightarrow f'(x) = 3x^2 - 6x = 3x(x-2)$$

$$f'(x) = 0$$
에서 $x = 0$ 또는 $x = 2$

구간 [-1,2]에서 f(x)의 증감표는 다음과 같다.

x	-1	•••	0	•••	2
f'(x)		+	0	_	0
f(x)	a-5	1	a	7	a+4

이때 함수 f(x)의 최댓값은 a+4이므로 a+4=5 $\therefore a=1$

30) a=3, b=2

$$\Rightarrow f'(x) = 3ax^2 - 6ax = 3ax(x-2)$$

$$f'(x) = 0$$
에서 $x = 0$ ($: -1 \le x \le 1$)

구간 [-1,1]에서 f(x)의 증감표는 다음과 같다.

x	-1	•••	0	•••	1
f'(x)		+	0	_	
f(x)	-4a+b	7	b	7	-2a + b

이때, a > 0이므로 -4a+b < -2a+b < b따라서 함수 f(x)는 x=0일 때 최댓값 b, x = -1일 때 최솟값 -4a + b를 가지므로 b=2, -4a+b=-10 $\therefore a = 3, b = 2$

31) a=1, b=2

$$\Rightarrow f'(x) = 3ax^2 - 12ax = 3ax(x-4)$$

$$f'(x) = 0$$
 에서 $x = 0$ (: $-1 \le x \le 2$)

구간 [-1,2]에서 f(x)의 증감표는 다음과 같다.

x	-1	•••	0	•••	2
f'(x)		+	0	_	
f(x)	-7a + b	7	b	7	-16a + b

이때 a > 0이므로 -16a + b < -7a + b < b

따라서 함수 f(x)는

x=0일 때 최댓값 b,

x=2일 때 최솟값 -16a+b

를 가지므로 b=2, -16a+b=-14

 $\therefore a = 1, b = 2$

32) a = -1, b = 3

$$\Rightarrow f'(x) = 3ax^2 - 9ax = 3ax(x-3)$$

f'(x) = 0에서 x = 0 또는 x = 3이므로 닫힌구간 [-2, 2]에서 함수 f(x)의 증가와 감소를 표로 나 타내면 다음과 같다.

x	-2	•••	0	•••	2
f'(x)		_	0	+	
f(x)	b-26a	7	b	1	b - 10a

이때, a < 0이므로 닫힌구간 [-2, 2]에서 함수 f(x)는 x=-2에서 최댓값 b-26a를, x=0에서 최솟 값 *b*를 갖는다.

즉, b-26a=29, b=3이므로

a = -1, b = 3

33) a = 2, b = 5

$$\Rightarrow f'(x) = 3ax^2 + 6ax = 3ax(x+2)$$

f'(x) = 0에서 x = -2 또는 x = 0이므로 닫힌구간 [-2, 2]에서 함수 f(x)의 증가와 감소를 표로 나 타내면 다음과 같다.

x	-2	•••	0	•••	2
f'(x)	0	_	0	+	
f(x)	4a-b	×	-b	1	20a - b

이때, a>0이므로 닫힌구간 [-2, 2]에서 함수 f(x)는 x=2에서 최댓값 20a-b를, x=0에서 최솟 값 -b를 갖는다. 즉, 20a-b=35, -b=-5이므 로

a = 2, b = 5

34)
$$a = \frac{1}{3}$$
, $b = -3$

$$\Rightarrow f'(x) = 4ax^3 + 4ax = 4ax(x^2 + 1)$$

f'(x) = 0에서 x = 0이므로 닫힌구간 [-1, 2]에서 함 수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	-1	•••	0	•••	2
f'(x)	0	_	0	+	
f(x)	3a+b	7	b	7	24a+b

이때, a>0이므로 닫힌구간 [-2, 2]에서 함수 f(x)는 x=2에서 최댓값 24a+b를, x=0에서 최솟 값 b를 갖는다.

즉 24a+b=5, b=-3이므로

$$a = \frac{1}{3}, b = -3$$

35) 4

$$\Rightarrow f'(x) = 3x^2 - 6x = 3x(x-2)$$

$$f'(x) = 0$$
에서 $x = 2 \ (\because 1 \le x \le 4)$

x	1		2	•••	4
f'(x)		_	0	+	
f(x)	a-2	7	a-4	7	a+16

따라서 함수 f(x)는 x=4에서 최댓값 a+16,

x=2에서 최솟값 a-4를 가지므로

M = a + 16, m = a - 4

M+m=20이므로 (a+16)+(a-4)=20

2a = 8 $\therefore a = 4$

36) 10

$$\Rightarrow f'(x) = -6x^2 + 6 = -6(x+1)(x-1)$$

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 1$

x	-2		-1	•••	1	•••	2
f'(x)		_	0	+	0	_	
f(x)	a+4	×	a-4	1	a+4	7	a-4

따라서 함수 f(x)는 x=-2, x=1에서 최댓값 a+4, x=-1, x=2에서 최솟값 a-4를 가지므로

M = a + 4, m = a - 4

M+m=20이므로 (a+4)+(a-4)=20

2a = 20 $\therefore a = 10$

37) -1

$$\Rightarrow f'(x) = 4x^3 - 4x = 4x(x+1)(x-1)$$

$$f'(x) = 0$$
에서 $x = -1$ 또는 $x = 0$ 또는 $x = 1$

$$f(-2) = 16 - 8 + a = a + 8$$
, $f(-1) = 1 - 2 + a = a - 1$,

f(0) = a, f(1) = 1 - 2 + a = a - 1,

f(2) = 16 - 8 + a = a + 8

따라서 함수 f(x)는 x=-2, x=2에서 최댓값 a+8, x = -1, x = 1에서 최솟값 a - 1을 가지므로

M = a + 8, m = a - 1

M+m=5이므로 (a+8)+(a-1)=5

2a = -2 $\therefore a = -1$

38) -2

$$\Rightarrow f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

f'(x) = 0에서 x = -1 또는 x = 1이므로 닫힌구간

[-2, 0]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

	x	-2	•••	-1	•••	0
	f'(x)		+	0	_	
Γ	f(x)	a-2	7	a+2	7	a

즉, 닫힌구간 [-2, 0]에서 함수 f(x)는 x=-1에서 최댓값 a+2를, x=-2에서 최솟값 a-2을 갖는 다.

즉 a+2=2이므로 a=0따라서 함수 f(x)의 최솟값은 -2이다.

39) 1

$$\Rightarrow f'(x) = 3x^2 + 6x = 3x(x+2)$$

f'(x) = 0에서 x = -2 또는 x = 0이므로 닫힌구간 [-1, 1]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	-1	•••	0	•••	1
f'(x)		-	0	+	
f(x)	a+2	×	a	7	a+4

즉, 닫힌구간 [-1, 1]에서 함수 f(x)는 x=1에서 최 댓값 a+4를, x=0에서 최솟값 a을 갖는다.

즉 a+4=5이므로 a=1

따라서 함수 f(x)의 최솟값은 1이다.

40) -37

$$\Rightarrow f'(x) = 6x^2 - 12x = 6x(x-2)$$

f'(x) = 0에서 x = 0 또는 x = 2이므로 닫힌구간 [-2, 2]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	-2	•••	0	•••	2
f'(x)		+	0	_	
f(x)	a - 40	7	a	7	a-8

즉, 닫힌구간 [-2, 2]에서 함수 f(x)는 x=0에서 최 댓값 a=0, x=0에서 최솟값 x=00을 갖는다.

따라서 a=3이므로 최솟값은 a-40=3-40=-37이 다.

41) 33

$$\Rightarrow f'(x) = 6x^2 - 12x = 6x(x-2)$$

f'(x) = 0에서 x = 0 또는 x = 2이므로 닫힌구간 [-1, 4]에서

$$f(-1) = -2 - 6 + a = a - 8$$
, $f(0) = a$,

f(2) = 16 - 24 + a = a - 8, f(4) = 128 - 96 + a = a + 32

함수 f(x)는 x=4에서 최댓값 a+32, x=-1, x=2에서 최솟값 a-8을 가지므로

$$a-8=-7$$
 $\therefore a=1$

따라서 함수 f(x)의 최댓값은

1 + 32 = 33

42) -6

$$\Rightarrow f'(x) = -3x^2 + 24x = -3x(x-8)$$

$$f'(x) = 0$$
 에서 $x = 0 \ (\because -2 \le x \le 1)$

x	-2	•••	0	•••	1
f'(x)		_	0	+	
f(x)	56+a	V	a	1	11 + a

따라서 함수 f(x)는 x=-2에서 최댓값 56+a,

x = 0에서 최솟값 a를 가지므로

 $56 + a = 50 \qquad \therefore a = -6$

따라서 구하는 최솟값은 x=0일 때 -6이다.

43) -46

$$\Rightarrow f'(x) = 3ax^2 - 6ax = 3ax(x-2)$$

$$f'(x) = 0$$
에서 $x = 0$ 또는 $x = 2$

x	0	•••	2	•••	4
f'(x)	0	+	0	_	
f(x)	2	7	-4a+2	A	16a + 2

따라서 함수 f(x)는 x=2에서 최댓값 -4a+2,

x = 4에서 최솟값 16a + 2를 가지므로

-4a+2=14 : a=-3

따라서 구하는 최솟값은 x=4일 때, -46이다.

44) -5

$$\Rightarrow f'(x) = 4x^3 - 4x = 4x(x+1)(x-1)$$

f'(x) = 0에서 x = -1 또는 x = 0 또는 x = 1이므로 닫힌구간 [-2, 2]에서

$$f(-2) = 8 - a$$
, $f(-1) = -1 - a$, $f(0) = -a$,

$$f(1) = -1 - a, f(2) = 8 - a$$

함수 f(x)는 x=-2, x=2에서 최댓값 8-a, x=-1, x=1에서 최솟값 -1-a를 가지므로

8-a=4 : a=4

따라서 함수 f(x)의 최솟값은

-1-4=-5

45) $\frac{256\sqrt{3}}{9}$

□ 점 A의 *x*좌표를 *a*(0 < *a* < 4)라 하면 점 A의 좌 표는 (*a*, -*a*²+16)이다.

한편, 점 A를 지나고 x축과 평행한 직선이 곡선

 $y=-x^2+16$ 과 만나는 점 중 A가 아닌 점 B의 좌표 는 $(-a, -a^2+16)$ 이고 두 점 A, B에서 x축에 내린 수선의 발 A', B'의 좌표는 각각 (a, 0), (-a, 0)이다.

즉, 직사각형 ABB'A'의 가로의 길이는

 $\overline{AB} = a - (-a) = 2a$ 이고 세로의 길이는

 $\overline{AA'} = (-a^2 + 16) - 0 = -a^2 + 16$ 이므로 직사각형

ABB'A'의 넓이를 S(a)라 하면

 $S(a) = \overline{AB} \times \overline{AA'} = 2a \times (-a^2 + 16) = -2a^3 + 32a$

 $S'(a) = -6a^2 + 32$

$$S'(a) = 0$$
 에서 $-6a^2 + 32 = 0$, $a^2 = \frac{16}{3}$

$$\therefore a = -\frac{4\sqrt{3}}{3} \quad \text{EL} \quad a = \frac{4\sqrt{3}}{3}$$

따라서 구간 (0, 4)에서 S(a)의 증가와 감소를 표로

나타내면 다음과 같다.

x	(0)	•••	$\frac{4\sqrt{3}}{3}$		(4)
f'(x)		+	0	_	
f(x)		1	$\frac{256\sqrt{3}}{9}$	7	

즉, S(a)는 $a=\frac{4\sqrt{3}}{3}$ 일 때 극대이면서 최대이므로 직사각형 ABB'A'의 넓이의 최댓값은

$$S\!\!\left(\!\frac{4\sqrt{3}}{3}\right)\!\!=\!\!-2\!\times\!\frac{64\sqrt{3}}{9}\!+\!32\!\times\!\frac{4\sqrt{3}}{3}\!=\!\frac{256\sqrt{3}}{9}$$

46)
$$\frac{4\sqrt{3}}{3}$$

 \Rightarrow 점 A의 x좌표를 a(0 < a < 4)라 하고, 직사각형 ABB'A'의 넓이를 S(a)라 하면

$$S(a) = \overline{AB} \times \overline{AA'} = 2a \times (-a^2 + 16) = -2a^3 + 32a$$

$$S'(a) = -6a^2 + 32$$

$$S'(a) = 0$$
 $\Rightarrow -6a^2 + 32 = 0, \ a^2 = \frac{16}{3}$

$$\therefore \ a = -\frac{4\sqrt{3}}{3} \ \ \text{E-} \ \ a = \frac{4\sqrt{3}}{3}$$

따라서 구간 (0, 4)에서 S(a)의 증가와 감소를 표로 나타내면 다음과 같다.

x	(0)		$\frac{4\sqrt{3}}{3}$		(4)
f'(x)		+	0	_	
f(x)		7	극대	×	

즉, S(a)는 $a=\frac{4\sqrt{3}}{3}$ 일 때 극대이면서 최대이므로 직사각형 ABB'A'의 넓이가 최대일 때의 점 A의 x좌표는 $\frac{4\sqrt{3}}{3}$ 이다.

47) 0 < x < 2

상자의 가로와 세로의 길이는 (4-2x)이므로 x의 값의 범위는 0 < x < 2이다.

48) $\frac{2}{3}$ cm

 \Rightarrow 상자의 부피를 $V(x)cm^3$ 라 하면

$$V(x) = x(4-2x)^2 = 4x^3 - 16x^2 + 16x$$

$$V'(x) = 12x^2 - 32x + 16 = 4(x-2)(3x-2)$$

$$V'(x) = 0$$
 에서 $x = \frac{2}{3} \ (\because 0 < x < 2)$

a	(0)	•••	$\frac{2}{3}$	•••	(2)
V'(x)		+	0	_	
V(x)		7	극대	V	

따라서 V(x)는 $x=\frac{2}{3}$ 일 때 극대이면서 최대이므로

잘라낼 정사각형의 한 변의 길이는 $\frac{2}{3}cm$ 이다.

49) 0 < x < 6

상자의 가로와 세로의 길이는 (12-2x)이므로 x의 값의 범위는 0 < x < 6이다.

50) 2cm

 \Rightarrow 상자의 부피를 $V(x)cm^3$ 라고 하면

$$V(x) = x(12-2x)^2 = 4x^3 - 48x^2 + 144x$$

$$V'(x) = 12x^2 - 96x + 144 = 12(x-6)(x-2)$$

$$V'(x) = 0$$
에서 $x = 2 \ (\because 0 < x < 6)$

x	(0)	•••	2	•••	(6)
V'(x)		+	0	_	
V(x)		7	극대	7	

따라서 V(x)는 x=2일 때 극대이면서 최대이므로 잘라낼 정사각형의 한 변의 길이는 2cm이다.

51) 0 < x < 3

 \Rightarrow 잘라 낸 정사각형의 한 변의 길이를 x라 하면 6-2x>0 $\therefore x<3$

이때 x > 0이므로 0 < x < 3

52) 1

 \Rightarrow 상자의 부피를 V(x)라 하면

$$V(x) = x(6-2x)^2 = 4x^3 - 24x^2 + 36x$$

$$V'(x) = 12x^2 - 48x + 36 = 12(x-1)(x-3)$$

V'(x) = 0에서 x = 1 또는 x = 3이므로 구간 (0, 3)에서 V(x)의 증가와 감소를 표로 나타내면 다음 과 같다

x	(0)	•••	1	•••	(3)
f'(x)		+	0	_	
f(x)		1	극대	7	

따라서 V(x)는 x=1일 때 극대이면서 최대이므로 상자의 부피가 최대일 때, x의 값은 1이다.

53) 16

 $\Rightarrow V(x) = x(6-2x)^2 = 4x^3 - 24x^2 + 36x$

$$V'(x) = 12x^2 - 48x + 36 = 12(x-1)(x-3)$$

V'(x) = 0에서 x = 1 또는 x = 3이므로 구간 (1, 3)에서 V(x)의 증가와 감소를 표로 나타내면 다음 과 같다

x	(0)	•••	1	•••	(3)
f'(x)		+	0	_	
f(x)		1	16	×	

따라서 V(x)는 x=1일 때 극대이면서 최대이므로 구하는 상자의 부피의 최댓값은 V(1) = 16이다.

54) 0 < x < 10

 \Rightarrow 잘라 낸 정사각형의 한 변의 길이를 x라 하면 20 - 2x > 0 : x < 10

이때 x > 0이므로 0 < x < 10

55) $\frac{10}{3}$

 \Rightarrow 상자의 부피를 V(x)라 하면

$$V(x) = x(20-2x)^2 = 4x^3 - 80x^2 + 400x$$

$$V'(x) = 12x^2 - 160x + 400 = 4(3x - 10)(x - 10)$$

$$V'(x) = 0$$
에서 $x = \frac{10}{3}$ 또는 $x = 10$ 이므로 구간

(0, 10)에서 V(x)의 증가와 감소를 표로 나타내면 다음과 같다

x	(0)	•••	$\frac{10}{3}$	•••	(10)
f'(x)		+	0	_	
f(x)		7	극대	7	

따라서 V(x)는 $x=\frac{10}{3}$ 일 때 극대이면서 최대이므로 상자의 부피가 최대일 때, x의 값은 $\frac{10}{3}$ 이다.

56)
$$\frac{16000}{27}$$

$$\Rightarrow V(x) = x(20-2x)^2 = 4x^3 - 80x^2 + 400x$$

$$V'(x) = 12x^2 - 160x + 400 = 4(3x - 10)(x - 10)$$

$$V'(x) = 0$$
에서 $x = \frac{10}{3}$ 또는 $x = 10$ 이므로 구간

(0, 10)에서 V(x)의 증가와 감소를 표로 나타내면 다음과 같다

x	(0)	•••	$\frac{10}{3}$		(10)
f'(x)		+	0	_	
f(x)		7	극대	7	

따라서 V(x)는 $x=\frac{10}{3}$ 일 때 극대이면서 최대이므로

구하는 상자의 부피의 최댓값은

$$V\left(\frac{10}{3}\right) = \frac{10}{3} \times \left(\frac{40}{3}\right)^2 = \frac{16000}{27}$$
 of C.

57) 0 < x < 5

ightharpoonup
ig

$$16-2x > 0, \ 10-2x > 0$$

 $\therefore x < 5$

그런데 x > 0이므로 0 < x < 5

58) 2

 \Rightarrow 상자의 부피를 V(x)라 하면

$$V(x) = x(16-2x)(10-2x)$$

$$=4x^3-52x^2+160x$$

$$V(x) = 12x^2 - 104x + 160 = 4(x-2)(3x-20)$$

$$V'(x) = 0$$
에서 $x = 2$ ($:$ $0 < x < 5$)

따라서 V(x)는 x=2일 때 극대이자, 최대이므로 상

자의 부피가 최대일 때, x의 값은 2이다.

59) 144

$$\Rightarrow V(x) = 4x^3 - 52x^2 + 160x$$
 MeV

$$V'(x) = 12x^2 - 104x + 160 = 4(x-2)(3x-20)$$

$$V'(x) = 0$$
에서 $x = 2 \ (\because 0 < x < 5)$

x	0	•••	2	•••	5
V(x)		+	0	_	
V(x)		7	144	7	

따라서 V(x)는 x=2일 때 극대이자, 최대이므로 그 값은

$$V(2) = 2 \cdot 12 \cdot 6 = 144$$

60) $96\pi cm^3$

 \Rightarrow 원기둥의 밑면의 반지름의 길이를 xcm(0 < x < 6)라고 하면 원기둥의 높이는 (18-3x)cm이다.

원기둥의 부피를 $V(x)cm^3$ 라고 하면

$$V(x) = \pi x^2 (18 - 3x) = -3\pi x^3 + 18\pi x^2$$

$$V'(x) = -9\pi x^2 + 36\pi x = -9\pi x(x-4)$$

$$V'(x) = 0$$
에서 $x = 4 \ (\because 0 < x < 6)$

x	(0)	•••	4	•••	(6)
V'(x)		+	0	_	
V(x)		1	극대	7	

따라서 V(x)는 x=4일 때 극대이면서 최대이므로 원기둥의 부피의 최댓값은 $V(4)=96\pi(cm^3)$ 이다.

61) 2cm

 \Rightarrow 원기둥의 밑면의 반지름의 길이를 xcm(0 < x < 3)라고 하면 원기둥의 높이는 (12-4x)cm이다.

원기둥의 부피를 $V(x)cm^3$ 라고 하면

$$V(x) = \pi x^2 (12 - 4x) = -4\pi x^3 + 12\pi x^2$$

$$V'(x) = -12\pi x^2 + 24\pi x = -12\pi x(x-2)$$

$$V'(x) = 0$$
 에서 $x = 2 \ (\because 0 < x < 3)$

x	(0)	•••	2	•••	(3)
V'(x)		+	0	_	
V(x)		7	극대	7	

따라서 V(x)는 x=2일 때 극대이면서 최대이므로 이때 원기둥의 밑면의 반지름의 길이는 2cm이다.