

What is claimed is:

1 1. A random access memory, comprising:
2 a first memory bank;
3 a second memory bank;
4 an error checking circuit operatively connected to receive data read from the first
5 memory bank; and
6 a multiplexer operatively connected to input data read from both the first memory
7 bank and the second memory bank, wherein input selection of the multiplexer is
8 controlled by an output of the error checking circuit.

1 2. The random access memory of claim 1, wherein the first memory bank and
2 second memory bank comprise static random access memory.

1 3. The random access memory of claim 1, wherein the error checking circuit
2 comprises a parity checking circuit.

1 4. The random access memory of claim 1, wherein when the parity checking circuit
2 determines parity of the data read from the first memory bank is correct, the multiplexer
3 selects the input from the first memory bank, and when the parity checking circuit
4 determines parity of the data read from the first memory bank is incorrect, the
5 multiplexer selects the input from the second memory bank.

1 5. The random access memory of claim 1, wherein the first memory bank, the
2 second memory bank, the error checking circuit, and the multiplexer are implemented on
3 a single chip.

1 6. The random access memory of claim 1, further comprising means for writing data
2 simultaneously to the first memory bank and the second memory bank.

1 7. A partitioned memory system, comprising:
2 a first memory device;
3 a second memory device;
4 means for writing data to the first and second memory devices in parallel;
5 means for error checking data read from the first memory device and outputting a
6 result indicative thereof; and
7 selection means for selecting data read from the first memory device for output to
8 a bus if the result from the error checking means indicates no error and for selecting data
9 read from the second memory device for output to the bus if the result from the error
10 checking means indicates an error.

1 8. The memory system of claim 7, wherein the first memory device and the second
2 memory device comprise static random access memory.

1 9. The memory system of claim 7, wherein the error checking means comprises
2 means for checking parity.

1 10. The memory system of claim 7, wherein the selection means comprises a
2 multiplexer.

1 11. The memory system of claim 7, wherein the first memory device, the second
2 memory device, the error checking means, and the selection means are implemented on a
3 single chip.

1 12. A method for reducing errors in a memory system, comprising:
2 writing data into first and second memory banks of the memory system in
3 parallel;
4 reading data from a desired location of the first memory bank;
5 checking the data read from the first memory bank for errors;
6 if no errors are present, outputting the data read from the first memory bank to a
7 bus; and

8 if the data read from the first memory bank contains errors, outputting data read
9 from a parallel location in the second memory bank to the bus.

1

1 13. The method to claim 12, wherein checking the data read from the first memory
2 bank for errors comprises checking the data for parity

1

1 14. The method of claim 12, wherein the data read from the first memory bank is
2 cleared for parity on a byte-by-byte basis.

1

1 15. The method of claim 12, wherein data from one of the first memory bank and
2 second memory bank are selected using a multiplexer.

1

1 16. A partitioned static random access memory comprising:

2 a first static random access memory bank;

3 a second static random access memory bank, the first and second static random
4 access memory banks being configured such that data may be written to parallel locations
5 therein;

6 a parity checking circuit configured to check parity of data read from the first

7 static random access memory bank and to output a result indicative thereof; and

8 a multiplexer configured to receive data read from the parallel locations in the first and
9 second static random access memory banks and to select one of said data depending upon
10 the result output by the parity checking circuit.