Lesson 8 (on Calculus)

Unit 8 - Curves Sketching

Algorithm for Curve Sketching

1. Domain

- a. denominator ≠ 0 (rational functions)
- b. radicand ≥ 0 (even roots)
- c. logarithmic argument > 0 (logarithmic functions)

2. Intercepts

- a. f(x) = 0 (x-int or zeroes)
- b. numerator = 0 (for rational functions) Ö
- c. y int = f(0) (if exists)

3. Symmetry

- a.f (-x) = f(x) (even functions are symmetric about the y-axis)
- b. f(-x) = -f(x) (odd functions are symmetric about the origin)
- c. f(x + T) = f(x) (periodic functions have cycles)

4. Asymptotes

- a. compute $\lim_{x \to \pm \infty} f(x)$ (horizontal asymptote)
- b. compute $\lim_{x\to a^-} f(x)$, $\lim_{x\to a^+} f(x)$ (vertical asymptote where a is a zero of the denominator but not of the numerator)
- c. compute long division (to find the oblique asymptotes for rational functions)

5. First Derivative

- a. compute f '(x)
- b. find critical points (f'(x) = 0 or f'(x) DNE)
- c. create the sign chart for f '(x)

Calculus Class 15 Notes

- d. find intervals of increase/decrease
- e. find the local extrema (using first derivative test) and global extrema (if function is defined on a closed interval)

6. Second Derivative

- a. compute f''(x) Ö find points where f''(x) = 0 or f''(x) DNE
- b. create the sign chart for f "(x)
- c. find points of inflection
- d. find intervals of concavity upward/downward
- e. check the local extrema using the second derivative test (if necessary)

7. Curve Sketching

- a. use broken lines to draw the asymptotes
- b. plot x- and y- intercepts, extrema, and inflection points
- c. draw the curve near the asymptotes
- d. sketch the curve
- **Ex.** Sketch the graph for $y = \frac{x^2}{x-1}$.

Domain: $x \in R \setminus \{1\}$.

Intercepts: $f(x) = 0 \Rightarrow x=0$, f(0) = 0.

Symmetry: $f(-x) = \frac{x^2}{-x-1}$ \Rightarrow The function y = f(x) is neither odd nor even.

Asymptotes: $f(x) = x + 1 + \frac{1}{x-1} \implies y = x + 1$ is the equation of the oblique asymptote.

First Derivative:
$$f'(x) = \frac{x(x-2)}{(x-1)^2}$$
, $f'(x) = 0 \implies x = 0 \text{ or } x = 2$

f'(x) DNE at x=1

$$f(0) = 0$$
, $f(2) = 4$, $f(1)$ DNE

x		0		1		2	
f(x)	,	0	,	DNE	,	4	,
f'(x)	+	0	1	DNE	1	0	+

- (0,0) is a local maximum point.
- (1,4) is a local minimum point.

Second Derivative:
$$f''(x) = \frac{2}{(x-1)^3}$$

f "(1) DNE

x		1	
f(x)	C	DNE	C
f''(x)	-	DNE	+

There are no inflection points.

Curve Sketching:

Calculus Class 15 Notes

Ex. In the next figure is given the graph of the derivative f'(x) of a function f(x).

a) Find intervals where the function f (x) is increasing or decreasing.

The function f(x) is increasing where f'(x) > 0: $(3, \infty)$.

The function f (x) is decreasing where f '(x) < 0: $(-\infty, 0)$ or (0, 3).

b) Find intervals where the graph of f(x) is concave upward or downward.

The graph of f (x) is concave upward where f '(x) is increasing: $(-\infty,0)$ or $(2,\infty)$.

The graph of f(x) is concave downward where f'(x) is decreasing: (0, 2).