Advanced Optical Communication

Monir Morshed Professor

Dept. of ICT, MBSTU

monirmorshed.ict@mbstu.ac.bd

Introduction

- Source generates information
- User desires information generated by source

➤To do this a medium is required in between source and user

Different Channels

Fiber Optic Communication System

Generalized fiber optic communication system representation

Generalized fiber optic communication system representation with repeater

Elements

- Source & Modulators
 - >LED, LD etc.
- Multiplexers & Demultiplexers
 - >WDM, DWDM etc.
- Amplifiers or Repeaters
- Connectors, Couplers, Isolators, etc.
- Detectors & Demodulators
 - ≻PD, APD, PIN etc.
- End Mile Networks

Types of Optical Communication

- Wired Optical Communication
 - 1) All Optical Communication
 - 2) Electro-Optical Communication
- Wireless Optical Communication

- Space Communication/ Free Space Optics (FSO)
 - 1) Last mile telecommunication
 - 2) Weather, sunlight, distance etc. affects the range

Electro-Optic Communication

Free Space Optics

Optical Fiber Installation

SEA-ME-WE

Lightwave Fundamentals

Loss & Transmission Windows

EM Bands

Band Designator	Band Descriptor	Wavelength Range (nm)
O- Band	Original	1260-1360
E- Band	Extended	1360-1460
S- Band	Short wavelength	1460-1530
C- Band	Conventional	1530-1565
L- Band	Long wavelength	1565-1625
U- Band	Ultra-long wavelength	1625-1675

Conventional Optical Fiber

Optical Fiber Dimension

SEM Image of Human Hair

SEM Image of Optical Fiber

Fiber cross-section

COF vs other Conductors

Optical fiber

Dielectric cylindrical waveguide

Guide signals in the form of light

Disadvantages

Interconnection between fibers

Single Vs Multimode

Fabrication

- Chemical Vapor Deposition
- Modified Chemical Vapor Deposition
- Stack and Draw
- Sol-gel Method etc.

Dept. of ICT, MBSTU

Lightwave Fundamental

Wave Particle

- Light has a dual nature
- Wave Particle duality of light is complementary

Geometrical Optics

 Light is represented by straight lines Particle theory

Photon Energy

$$E = h v = hc/\lambda$$
 where, $c = v\lambda$

Notations: λ = wavelength; c = velocity of light; E = energy of photon, h = Planck's constant

Wave Nature

Light propagates like waves

Velocity of propagation

A simple plane wave is given by

$$E = \hat{x}E_m Cos(\omega t - kz)$$

$$k = \frac{\omega}{c}$$

In a medium other than free space

$$k = \frac{\omega}{v} = \frac{\omega n}{c}$$
 where, $v = \frac{c}{n}$

Wave Equation

Maxwell's equations in a homogeneous and lossless dielectric medium are written in terms of the electric field **E** and magnetic field **H** as

$$\nabla \times E = -\mu \frac{\partial H}{\partial t}$$

$$\nabla \times H = -\varepsilon \frac{\partial E}{\partial t}$$

Where, $\varepsilon = \varepsilon_0 n^2$ and $\mu = \mu_0$ and wave number = $\omega/v = \omega/\sqrt{(\mu \ \varepsilon)} = kn$ where $k = \omega/c$

and

$$\lambda = \frac{c}{f} = \frac{\omega/k}{f} = \frac{2\pi}{k},$$

Wave Equation

When we consider an electromagnetic wave having angular frequency and propagating in the z direction with propagation constant, the electric and magnetic fields of a fiber having axial symmetry can be expressed as

$$\begin{split} \tilde{\mathbf{E}} &= \mathbf{E}(\mathbf{r}, \, \boldsymbol{\theta}) \, \, e^{j(\omega t - \beta z)}, \\ \tilde{\mathbf{H}} &= \mathbf{H}(\mathbf{r}, \, \boldsymbol{\theta}) \, \, e^{j(\omega t - \beta z)} \end{split} \qquad \begin{cases} \frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \boldsymbol{\theta}^2} + [k^2 n(r, \, \boldsymbol{\theta})^2 - \beta^2] E_z = 0 \\ \frac{\partial^2 H_z}{\partial r^2} + \frac{1}{r} \frac{\partial H_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 H_z}{\partial \boldsymbol{\theta}^2} + [k^2 n(r, \, \boldsymbol{\theta})^2 - \beta^2] H_z = 0. \end{cases} \end{split}$$

In axially symmetric optical fibers, the refractive-index distribution is not dependent on θ and is expressed by n_r . The modes in an optical fiber consists of TE modes Ez = 0, TM modes Hz = 0 and hybrid modes $Ez \neq 0$, $Hz \neq 0$, respectively.

Wave Equation

Out of infinite possible solutions we consider those satisfying boundary conditions

$$E_t^{(1)} = E_t^{(2)}$$

 $H_t^{(1)} = H_t^{(2)}$

$$H_t^{(1)} = H_t^{(2)}$$

There are also natural boundary conditions that require the electromagnetic fields to be zero at infinity

Group & Phase Velocity

A plane wave is given by

$$E_x = E_m \cos \omega (t - z/v)$$

$$= E_m \cos(\omega t - \omega z/v) = E_m \cos(\omega t - kz)$$

Velocity for which phase is constant is called phase velocity-

$$\omega t - kz = C$$

Phase velocity
$$v_p = dz / dt = \frac{\omega}{k} = f\lambda$$

Group velocity
$$v_g = d\omega/dk$$

Refraction

The light slows down inside the material, therefore its wavelength becomes shorter and its phase gets shifted

$$E_{y} = E_{m} \cos(\omega t - nz/\lambda)$$

Transmission & Reflection

Reflectance & Transmittance

R = Reflectance; T = Transmittance

Absorption

$$E_{y} = E_{m}e^{-kz}\cos(\omega t - z/\lambda)$$

Here *k* is the extinction coefficient

$$\mathbf{n} = n + ik$$

Here, n is the refractive index indicating the phase speed, while *k* is the extinction coefficient which indicates the amount of absorption loss when the electromagnetic wave propagates through the material

$$k = \sqrt{(\varepsilon_1^2 + \varepsilon_2^2 - \varepsilon_1)/2}$$
 if $\mathbf{\varepsilon} = \varepsilon_1 + i\varepsilon_2$

Polarization

- Linear polarization
- Plane polarization
- Circular polarization
- Elliptical polarization
- Random polarization

Dept. of ICT, MBSTU

Polarization

Vertical

$$E_{x} = E_{m} \cos(\omega t - kz)$$

Horizontal

$$E_{v} = E_{m} \cos(\omega t - kz)$$

Circular Polarization

Right circular

$$E_x = E_m \cos(\omega t - kz + 90^\circ)$$

$$E_{v} = E_{m} \cos(\omega t - kz)$$

Left circular

$$E_x = E_m \cos(\omega t - kz - 90^\circ)$$

$$E_{v} = E_{m} \cos(\omega t - kz)$$

PMD

Microstructure Crystal Fiber

- Conventional optical fiber (COF)
- Microstructure optical fiber (MOF)

MOF vs PCF

MOF Structure

MOF/ PCF

- · Core material: silica or air
- Cladding: Silica-air microstructure

Light guiding mechanisms

- TIR: high index core (silica core)
- PBG: low index core (air core)

Major MOF Types

Index-Guiding PCF

- Guide light by TIR
- $n_{\rm core} > n_{\rm cladding}$

BPG-Guiding PCF

- Guide light by PBG
- $n_{\rm core} < n_{\rm cladding}$

MOF Classification

Figure 1-4. Diagram showing the most commonly used terms and typical structures for the major classes and sub-classes of photonic crystal fibres. The included photos are kindly provided by Crystal fibre A/S.

Why PCF?

COF demerits

- Low index contrast
- Narrow design space

PCF merits

- Controlling optical properties
- •Single material fiber
- High index contrast
- •Wider design space

<u>Major demerits</u>

- Confinement losses exist
- Fabrication challenge
- •Connectivity problem with other waveguides and devices
- •Short manufacture length and high price of using PCF as transmission media.

24-Jun-22 35

MOF Applications

Applications of PCFs

Index guided PCFs:

- •High power handling
- •Fiber laser multi-wavelength generation
- •Supercontinuum generation applied to optical coherence tomography and to spectroscopy
- •Fiber sensor

Hollow Core PCFs:

- •high power transmission
- •gas-based nonlinear optics
- •particle guidance in liquids
- •fiber sensing

24-Jun-22 40

Propagation Characteristics & Constraints

- Chromatic/Group velocity Dispersion
 - Material dispersion & waveguide dispersion
 - Normal & anomalous dispersion
 - Polarization mode dispersion
- Mode area/Effective mode area
- Fiber loss: Confinement, scattering, absorption, etc.
- Single/ Multimode
- Bending & Splice losses
- Nonlinearity and Nonlinear effects
 - Self phase modulation
 - Cross phase modulation
 - > Four wave mixing etc.

Chromatic Dispersion

Dispersion Material Waveguide

- Chromatic is used to emphasize color dependence to phase velocity
- GVD is used to emphasize wavelength dependence to group velocity

Chromatic Dispersion (Contd.)

Chromatic dispersion of second and higher order is defined via the Taylor expansion of the wave number k as a function of the angular frequency ω

$$k(\boldsymbol{\omega}) = k_0 + \frac{\partial k}{\partial \boldsymbol{\omega}} (\boldsymbol{\omega} - \boldsymbol{\omega}_0) + \frac{1}{2} \frac{\partial^2 k}{\partial \boldsymbol{\omega}^2} (\boldsymbol{\omega} - \boldsymbol{\omega}_0)^2 + \frac{1}{6} \frac{\partial^3 k}{\partial \boldsymbol{\omega}^3} (\boldsymbol{\omega} - \boldsymbol{\omega}_0)^3 + \dots$$

- The zero-order term describes a common phase shift.
- The first-order term contains the inverse group velocity (i.e., the group delay per unit length) and describes an overall time delay without an effect on the pulse shape:

$$K' \equiv \frac{\partial k}{\partial \omega} = \frac{1}{\upsilon_g} \qquad k'' \equiv \frac{\partial^2 k}{\partial \omega^2} \qquad k''' \equiv \frac{\partial^3 k}{\partial \omega^3}$$

$$K'' \equiv \frac{\partial^2 k}{\partial \omega^2}$$

$$K''' \equiv \frac{\partial^3 k}{\partial \omega^3}$$

- The second-order (quadratic) term contains the second-order dispersion or group delay dispersion (GDD) per unit length
- The third-order (cubic) term contains the third-order dispersion (TOD) per unit length

Chromatic Dispersion (Contd.)

(44)

Second-order dispersion is the derivative of the inverse group velocity with respect to angular frequency:

$$k' \equiv \frac{\partial k}{\partial w} = \frac{1}{\upsilon_g} \quad \Rightarrow \quad k'' \equiv \frac{\partial}{\partial w} \left(\frac{1}{\upsilon_g} \right)$$

The dispersion of various orders for a medium can most conveniently be calculated if the refractive index is specified with a kind of Sellmeier formula.

In Fiber Optics, Dispersion is

$$D_{\mathbf{a}} = -\frac{2\pi c}{\lambda^2} \cdot \frac{\partial^2 k}{\partial \omega^2}$$

in units of picoseconds per nanometer and kilometer (ps/(nm.km)).

Normal & Anomalous Dispersion

- Normal dispersion
- (for k''>0) and anomalous dispersion (for k''<0).
- Normal dispersion, where the group velocity decreases with increasing optical frequency, occurs for most transparent media in the visible spectral region.
- Anomalous dispersion sometimes occurs at longer wavelengths, e.g. in silica (the basis of most optical fibers) for wavelengths longer than the zero-dispersion wavelength of $\approx 1.3 \mu m$.

PMD

- 1. It arises due to interaction between two polarization modes in birefringent fibers
- 2. Becomes significant for fiber communication at very high bit rates

Dispersion Control

Spectral broadening due to transmission

Phase velocity → Refractive index

Refractive index ── Wavelength

Waveguide dispersion

Material dispersion

Dispersion,
$$D(\lambda) \approx D_g(\lambda) + \Gamma * D_m(\lambda)$$

$$D(\lambda) = -(\lambda/c)(d^2 \operatorname{Re}[n_{eff}]/d\lambda^2) \operatorname{ps/nm/km}$$

Why Dispersion Control Necessary?

Case I: Optical Soliton

- ☐ Soliton pulse maintains its characteristics thought-out the length of transmission
- ☐ High/non-zero dispersion slope causes-
- Instability to soliton systems
- Destroy soliton pulse features

Why Dispersion Control Necessary?

Case II: Supercontinuum Source

- ☐ Creation of broad visible spectrum by transmission of a short light pulse through a HNL fiber
- ☐ High/non-zero dispersion slope eventually destroy-
- Supercontinuum stability
- Limits the bandwidth etc.

Why Dispersion Control Necessary?

Case III: WDM optical communication systems

Dispersion is undesirable for communication media

Output pulses

Pulse spreading

Inter Symbol Interference (ISI)

Input-output Waveforms

ISI causes channel noise and bit errors

Dept. of ICT, MBSTU 24-Jun-22

transmission

MOF's Dispersion Control Strategy

Wavelength (µm)

MOF:

Dispersion (ps/nm/km)

D_w strongly depends on waveguide parameters

Flat-dispersion is not possible

Dept. of ICT, MBSTU

24-Jun-22

Confinement Loss

Confinement loss

- due to finite no of air-holes
- results in signal degradation along the channel

Confinement loss,

$$Lc = 8.686 \times k_0 \operatorname{Im}[n_{eff}]$$

[dB/m]

- $Im[n_{eff}] = Imaginary part of the effective refractive index,$
- k_0 = Free space wave number = $2\pi/\lambda$, and
- λ = Wavelength

Mode Area

Area of the effective core of PCFs where the intensity drops to 13.6% of the peak.

Effective area,

$$A_{eff} = \frac{\left[\iint \left| E^2 \right| dx dy \right]^2}{\iint \left| E \right|^4 dx dy} \quad [\mu m^2]$$

Where, E is the calculated electric field by solving an eigenvalue problem derived from Maxwell's equations

Nonlinear coefficient,

$$\gamma = 2\pi (n_2/Aeff) W^{-1}km^{-1}$$

Where, n_2 = nonlinear refractive index = $2.3 \times 10^{-20} \,\mathrm{m}^2/\mathrm{W}$ for silica PCF

Single & Multimode Operation

The V parameter for PCF:

If V_{eff} <2.40, the PCF is single mode otherwise multi-mode

Birefringence

- Maintains polarization state
- Weakens random polarization
- Stabilizes certain operations

Where, n is the refractive index, λ is the wavelength, and x, y denote polarization axis.

Bending Loss and Splice Loss

(55)

- Macrobend loss
- Microbend loss

CLADDING
CORE

IMPERFECTION
CLADDING

Microbend loss

Macrobend loss.

Splice Loss

• Splice Loss between two fibers-

$$L_s = -20\log_{10}[(2w_{SMF}w_{PCF})/(w_{SMF}^2 + w_{PCF}^2)]$$

Where

 w_{SMF} and w_{SMF} are the MFDs of the SMFs and the PCFs, respectively.

Stack and Draw Method

Fiber spool

Transmission Constraints

- Attenuation
 - Absorption (wavelength selective)
 - UV absorption
 - IR absorption
 - Scattering
 - Rayleigh scattering (elastic, negligible energy x-fer)
 - Brillouin scattering (inelastic)
 - Raman Scattering (inelastic)
- Bandwidth
- Cost
- Interference & Noise

Attenuation: Absorption and Scattering

- Rayleigh scattering small particle compared to wavelength of light
- Brillouin scattering when light in a medium interacts with timedependent optical density variations and changes its energy (frequency) and path.
- Raman scattering photon scattered from an atom, some scattered with different frequency and energy from that of the incident photon.

Light Source

• LED, LD, etc.

Light Detectors

• PD, APD, PIN

Light Amplifiers

• EDFA

Regerative Repeater

63

Optical Isolator

Faraday rotation

Optical Modulators

Analog & Digital

Splice & Connectors

Nonlinear Effects

- SPM, XPM, FWM,
- Linear effect- Pockel's effect
- Nonlinear effect- Kerr effect

Multiplexing Techniques

• WDM, DWDM

Optical Networks

• LAN, SONET, PON, AON