Gradient Descent (Algorithom)

is a first order iterative optimization algorithm for finding the minimum of a function. Gradient devent can be performed on any defferntiable loss function. The main goal of gradient descent is to minimize a cost or loss function, optimizing model parameters for better performance.

l'objective Function: The function you want to minime (cost ex loss function).

8-broadient function kaleculation. Compute the gradient of the function, indicating the direction of the slopest ascent.

3. Learning rate: A hyperparameter that determines the size of the exteps taken towards the minimum.

4. Update Rule: A formula to iteratively adjust the parameters in the opposite discetion of the gradient to minimize the function

The main equation for updating parameters in GD.
$x_{mext} = x - \alpha. \nabla f(x)$ $= w - \pi \frac{\partial L}{\partial w}$
where, knext = update parameter valve.
a = current parameter value.
Afm) = is the gradient of the function of at x-
Bome loss functions are widely used in ML and DL
1. (MSE/MAE) used for regression tens. and multi-class D. (Cross-Entropy loss (or log loss)); used for binary nelassificate tank, output is probability valve between o and I.
tack, output is probability value between 0 and I.
3. Hinge Lous:) Binary classification tork, especially with support vector machines (SVMs).
4. Huber Loss: Regression tenks MSE, ALAE
5. Softmax-exoss Entropy loss. multielass- elassification fink
Importance of Learning rate:
b. too small (x)
The typical range for the learning rate (x or n) is from 0.00001 to 0.1
J. S. C.

Gradient	descent:	Batch, mini-baten & Stocharsti	2
----------	----------	--------------------------------	---

	Gradient descent: Boten, min - out
	Batch gradient descent: uses the Entire dataset
	more stable but ean be now for large datasets.
A	Mini-Baten Gradient descent: uses somall doctors botters
	balancing the speed, stability of the updates-
3	D Stochartie Gradient Descent: Updates parameters
	for each data point, can be farter but nomier.
	BGD: Griver a cost function J(9)
	J(0) = \frac{1}{m} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	mis the number of transing examples.
	Lis the loss function, he is the hypothexin function seci) is the input features, and yei) is the target output
	Jep) = In Em (ho (xi) - y4)) ~> MSE.
	[=1
	The update rule, 0=0-d Vo J(0)
	d= learning rate:

will and the second sec

100 1100 1000 011100

Mini-Batch Gradient Descent: Doaten (0) = In En L (ho(20), y(i)) = 0 = d Va Jonton (0) Example: Fixest mini-Baten: (1,2), (2,2,5) 0=00-01/2[ho(1)-2)+(ho(2)-(2.5))] 01=01-21-1-2).1+(ho(2-2.5).2] Second mini-Batchi (3, 3,5) 00 = 00 - de / [ho(3+3.5)] 01=01- a.1[hp(3-3.5).3] Total rample à 1000 Number of mini-Batches: 16 To find the number of iterations per epoch, mini-Batch size = Total samples
Number of mini-Batcher 16 = 62.5 Total iteration = Number of Epochs × N-of mini-Bately

arme

```
Esternoutie Grantient illing en
                           9 = 9 - 2 To 1 (ho (x) 9 4 0)
                             9== = = = = ( = ( = ( = 2 )
                              9=9-2(ho(0)-2)-1-
                  # cerdate process for a single data point (3:5) for EGD
                               多のメニろっところ
                                                                                                                                                                                                                                        00=000 00=1000 00 = 000)
                                                                                                                                                                                                                                # hypothering for eston
                                                                                                                                                                                                                                                              ho(21) = 00 + 012
                                                                                      20 + 1- 73
                     Edulate the espos:
                                                                                                                                                                                                                                                                Exposz he (x-y)
                                                    Excor = hold) - 5
                                                                                                              23-5 =- 2
                             update, 6= 90 - 2 (Exxox)
                                                                                                                      = 0 - 0.1 × (-2)
                                                                                = 6.2
                                update, of = 9-4 (Essos).x
                                                                                                                                    =1-0.1x(-2).3
 Constitution of the Section of the Constitution of the Constitutio
manufactures and the second se
```

and the second section of the s

There are two main steps involved in applying words to the gradient descent optimization process:

1. Velocity update. 3. Parameter update.

momentum = Negative of Espadient + momentum

The main point of in how momentum helps to avoid getting stuck in local minima and can push the optimization process pass there points.

1- velocity update: vex = 4v(k-1) - n VL(wex)

vu) - represent the velocity at iterational

es -) is the momentum coefficient.

n -) is the learning rate.

VL(WK) -) is the gradient of the low function with respect

4v(K-1) -> 4=0.940.0.99

-n-7L(w(K)) => current gradient seated by the learning rate m.

Parameter update:

W(K+1) = W(K) + V(K)

-> W (k+1) -> the new parameters for the next iteration-> w x -> The enorent parameter.
-> w x -> The updated velocity