Explain why you would or wouldn't agree with each of the following statements:

- (a) Cov(Y, X) and Cor(Y, X) can take values between $-\infty$ and $+\infty$.
- (b) If Cov(Y, X) = 0 or Cor(Y, X) = 0, one can conclude that there is no relationship between Y and X.
- (c) The least squares line fitted to the points in the scatter plot of Y versus \hat{Y} has a zero intercept and a unit slope.

When fitting a simple linear regression model $Y = \beta_0 + \beta_1 X + \varepsilon$ to a set of data using the least squares method, suppose that $H_0: \beta_1 = 0$ was not

rejected. This implies that the model can be written simply as: $Y = \beta_0 + \varepsilon$. The least squares estimate of β_0 is $\hat{\beta}_0 = \bar{y}$. (Can you prove that?)

- (a) What are the ordinary least squares residuals in this case?
- (b) Show that the ordinary least squares residuals sum up to zero.

(a) residual (
$$e_{\hat{z}}$$
) = Actual - Predicted = $y_{\hat{z}} - \hat{y}_{\hat{z}}$
= $y_{\hat{z}} - \bar{y}$

(b)
$$\sum_{i=1}^{n} (y_{2} - \overline{y}) = \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \overline{y} = n \overline{y} - n \overline{y}$$
 (: $\overline{y} = \frac{\overline{x}}{n} \overline{y}$)

Table 2.9 Regression Output for Computer Repair Data

Variable	Coefficient	s.e.	t-Test	p-value
Constant	4.162	3.355	1.24	0.2385
Units	15.509	0.505	30.71	< 0.0001

 $\hat{\beta}_{0} = 4.162$

ŷ = β̂ + β̂, α

A = 15.509

Using the regression output in Table 2.9, test the following hypotheses using

(a) $H_0: \beta_1 = 15 \text{ versus } H_1: \beta_1 \neq 15$

(b) $H_0: \beta_1 = 15 \text{ versus } H_1: \beta_1 > 15$

(c) $H_0: \beta_0 = 0 \text{ versus } H_1: \beta_0 \neq 0$

(d) $H_0: \beta_0 = 5 \text{ versus } H_1: \beta_0 \neq 5$

2)

1)

Using the regression output in Table 2.9, construct the 99% confidence interval for β_0 .

€n=14 P=1

:. If = n-p-1 = 14-1-1 = (7

to.1/2 = 1.28 to.1,12 = 1.36

(a) Test statistics: $\frac{\hat{\beta_i} - \beta_i}{\text{Se.(Bi)}} = \frac{15.509 - 15}{0.505} = 1.0079 \text{ P-value: } P(t_1 > 1.0079) *2 = 0.333$ 0.333 > 0.1 not reject

े न्युष्ट्रिश्वाप्ट्र स्ट

null hypothesis

(b) Test statistics: (a) et 7=8 p-value: p(£12>1.0079) = 0.1667>0.1

not reject null hypothesis

(c) Test statistics: $\frac{\hat{\beta}.-\beta.}{5.e.(\beta.)} = \frac{4.162-0}{3.355} = 1.2402$ p-value: $p(t_1 > 1.2402) \cdot 2 = 0.2385 > 0.1$

not reject null hypothesis

(d) Test statistics: $\frac{4.162-5}{3.355} = -0.2498$ P-value: P($\frac{1}{4.2} > 1-0.24981$) $\cdot 2 = 0.807 > 0.1$

not reject null hypothesis

2) (β. - t=(n-2) s.e.(β), β. + t=(n-2) s.e.(β))

(4.162-3.0545·3.355, 4.162+3.0545+3.355)

Critical value + 3.0545