Examen

Durée : 3 heures. Les notes de cours sont autorisées. Le matériel électronique est interdit.

Exercice 1 Soit C une catégorie de modèles. Considérons un cube commutatif comme à droite.

Supposons que la face (A,B,C,D) du fond et la face (A',B',C',D') de l'avant sont des pushouts $(D=B\cup_A C$ et $D'=B'\cup_{A'} C')$. Soit $h:C\cup_A A'\to C'$ le morphisme induit par la face de gauche. Montrer que si f et h sont des cofibrations, alors g aussi.

Exercice 2 Soit $F: C \to D$ et $G: D \to E$ deux adjoints de Quillen à gauche. Montrer que $G \circ F: C \to E$ est un adjoint de Quillen à gauche. Construire une transformation naturelle entre les foncteurs dérivés totaux $\mathbb{L}G \circ \mathbb{L}F \Rightarrow \mathbb{L}(G \circ F)$ et montrer que c'est un isomorphisme. (On utilisera des remplacements cofibrants fonctoriels.)

Exercice 3 Soit C une catégorie de modèles et $W \in C$ un objet fixé. On note $C_{/W}$ la catégorie dont les objets sont les paires (Y,f) où $Y \in C$ et $f: Y \to W$, et $\operatorname{Hom}_{C_{/W}}((Y,f),(Z,g)) := \{h: Y \to Z \mid g \circ h = f\}$.

- 1. Montrer que $C_{/W}$ est une catégorie de modèles, où $h:(Y,f)\to (Z,g)$ est une équivalence faible/fibration/cofibration si c'en est une dans C. Décrire ses objets fibrants et cofibrants.
- 2. Soit $\alpha: W \to W'$ un morphisme. Il induit un foncteur $\alpha_*: C_{/W} \to C_{/W'}$ défini sur les objets par $\alpha_*(Y, f) = (Y, \alpha \circ f)$ et sur les morphismes par $\alpha_*(h) = h$. Décrire son adjoint à droite $\alpha^*: C_{/W'} \to C_{/W}$.
- 3. Montrer que l'adjonction $\alpha_* \dashv \alpha^*$ est une adjonction de Quillen.
- 4. Supposons que C est propre à droite, c.-à-d. le pullback d'une équivalence faible le long d'une fibration est encore une équivalence faible. Montrer que si $\alpha:W\to W'$ est une équivalence faible, alors l'adjonction $\alpha_*\dashv\alpha^*$ est une équivalence de Quillen.

Exercice 4 Soit R et S deux anneaux et M un (R,S)-bimodule, c.-à-d. M est un R-module à gauche et un S-module à droite qui vérifie $r \cdot (m \cdot s) = (r \cdot m) \cdot s$. On définit le foncteur $T_M : \mathsf{Ch}_{\geq 0}(S) \to \mathsf{Ch}_{\geq 0}(R)$ par $(C_i, d_i)_{i \geq 0} \mapsto (M \otimes_S C_i, \mathsf{id}_M \otimes d_i)_{i \geq 0}$ avec $r \cdot (m \otimes x) = (r \cdot m) \otimes x$.

- 1. Montrer que T_M est un adjoint à gauche et décrire son adjoint à droite. (Indice : penser à un Hom.)
- 2. Montrer que l'adjonction est de Quillen si l'on utilise la structure projective de $Ch_{\geq 0}(\cdot)$ et que M est projectif comme R-module. Est-ce vrai si M n'est pas projectif?
- 3. Décrire un remplacement cofibrant du complexe de chaînes $\mathbb{Z}/n\mathbb{Z} \in \mathsf{Ch}_{>0}(\mathbb{Z})$ (en degré 0).
- 4. On admet que T_M admet un foncteur dérivé total à gauche même si M n'est pas projectif. On note $\operatorname{Tor}_i^{\mathcal{S}}(M,N) \coloneqq H_i(\mathbb{L}T_M(N))$. Calculer $\operatorname{Tor}_i^{\mathbb{Z}}(M,\mathbb{Z}/n\mathbb{Z})$ pour $i \in \mathbb{N}$.

Exercice 5 On note Cat la catégorie des catégories et on admettra qu'elle est complète et cocomplète. On dit qu'un foncteur $F: C \to D$ est une :

- équivalence faible si c'est une équivalence de catégories;
- cofibration si *F* est injectif sur les objets : $\forall c, c' \in C$, $F(c) = F(c') \implies c = c'$;
- fibration si c'est une isofibration : pour tout objet $c \in C$ et pour tout isomorphisme $g: F(c) \to d$, il existe un isomorphisme $f: c \to c'$ tel que F(c') = d et F(f) = g.

- 1. Soit $[0] = \{0\}$ la catégorie ayant un unique objet 0 et un unique morphisme (id_0) . Soit $I = \{0 \le 1\}$ la catégorie ayant deux objets 0 et 1 et quatre morphismes, id_0 , id_1 , $f: 0 \to 1$, $g: 1 \to 0$, avec $f \circ g = \mathrm{id}_1$ et $g \circ f = \mathrm{id}_0$. Montrer qu'un foncteur est une fibration si et seulement si il a la propriété de relèvement à droite par rapport à $[0] \hookrightarrow I$ (c.-à-d. c'est une cofibration acyclique génératrice).
- 2. Démontrer les axiomes (MC2) et (MC3) pour Cat avec cette structure de modèles.
- On considère un carré commutatif comme à droite, où I est une cofibration et P une fibration. On suppose d'abord que P est une fibration acyclique. Montrer que P est 3. On considère un carré commutatif comme à droite, où I est une cofibration et P une surjectif sur les objets puis construire un relèvement L.

- 4. On suppose maintenant que *I* est une cofibration acyclique.
 - (a) Montrer qu'il existe un foncteur $R: D \to C$ tel que $R \circ I = \mathrm{id}_D$ et un isomorphisme naturel $\alpha: I \circ R \Rightarrow \mathrm{id}_{\mathbb{C}}$ tel que pour tout $c \in \mathbb{C}$, $\alpha_{I(c)} = \mathrm{id}_{I(c)}$.
 - (b) Pour $d \in D$, trouver un objet $L(d) \in E$ et un isomorphisme $\beta_d : F(R(d)) \to L(d)$ tels que $LI(c) = F(c), PL(d) = G(d), P(\beta_d) = G(\alpha_d) \text{ et } \beta_{I(c)} = \text{id}_{F(c)}.$
 - (c) Terminer de construire le foncteur *L*.
- 5. Soit $F: C \to D$ un foncteur. On note \mathbb{P}_F la catégorie dont les objets sont les triplets (c, α, d) où $c \in C$, $d \in D$ et $\alpha : F(c) \to d$ est un isomorphisme; $\operatorname{Hom}_{\mathbb{P}_F}((c, \alpha, d), (c', \alpha', d')) = \operatorname{Hom}_{\mathbb{C}}(c, c')$. Construire un foncteur $I: C \to \mathbb{P}_F$ et montrer que c'est une cofibration acyclique. Construire également un foncteur $P: \mathbb{P}_F \to D$ tel que $F = P \circ I$ et montrer que P est une fibration.
- 6. Soit $F: C \to D$ un foncteur. En s'inspirant de la question précédente, construire un «objet cylindre» pour factoriser *F* sous la forme $C \hookrightarrow \cdot \xrightarrow{\sim} D$.
- 7. Quelles catégories sont (co)fibrantes? Quand deux foncteurs sont-ils homotopes à gauche/droite?
- 8. Trouver un ensemble de cofibrations génératrices, c.-à-d. un ensemble \mathcal{I} tel que $\mathcal{I}^{\perp} = \mathcal{W} \cap \mathcal{F}$ (s'inspirer de la question 1). Montrer que [0] et que les sources des foncteurs de \mathcal{I} sont petits.

Exercice 6 Pour A_{\bullet} , $B_{\bullet} \in s$ Ab, le produit tensoriel est $(A \otimes B)_k = A_k \otimes B_k$ avec $d_i = d_i \otimes d_i$ et $s_i = s_i \otimes s_i$. Le complexe normalisé N_*A est par $N_kA = A_k/(\bigcup_{j=0}^{k-1} s_j(A_{k-1}))$ et $d = \sum_{i=0}^k (-1)^i d_i : N_kA \to N_{k-1}A$. Pour $C, D \in \mathsf{Ch}_{\geq 0}(\mathbb{Z})$, on a $(C \otimes D)_n = \bigoplus_{p+q=n} C_p \otimes D_q$ et $d(x \otimes y) = dx \otimes y + (-1)^{\deg x} x \otimes dy$.

1. Soit A_{\bullet} , $B_{\bullet} \in sAb$. Pour $a \in A_n$ et $b \in B_n$, on pose

$$a\bigtriangleup b:=\sum_{p+q=n}(d_{n-p+1}d_{n-p+2}\dots d_n(a))\otimes (\underbrace{d_0\dots d_0}_{n-q\text{ fois}}(b))\in\bigoplus_{p+q=n}A_p\otimes B_q.$$

Vérifier que $\Delta:N_*(A\otimes B)\to N_*A\otimes N_*B$ est compatible avec la différentielle et le quotient.

2. Soit $\mathrm{Sh}_{p,q} = \{\sigma \in \mathfrak{S}_{p+q} \mid \sigma(1) < \cdots < \sigma(p) \text{ et } \sigma(p+1) < \cdots < \sigma(p+q) \}.$ Par exemple $\mathrm{Sh}_{2,1} = \mathrm{Sh}_{2,1} = \mathrm{Sh}_{2,1} = \mathrm{Sh}_{2,1} = \mathrm{Sh}_{2,2}$ $\{(1,2,3),(1,3,2),(3,1,2)\}$. On définit : $N_*A \otimes N_*B \to N_*(A \otimes B)$ en posant, pour $a \in A_p$ et $b \in B_q$:

$$a \, \nabla \, b \coloneqq \sum_{\sigma \in \operatorname{Sh}_{p,q}} \varepsilon(\sigma) \cdot s_{\sigma(p)} s_{\sigma(p-1)} \dots s_{\sigma(1)}(a) \, \otimes \, s_{\sigma(p+q)} s_{\sigma(p+q-1)} \dots s_{\sigma(p+1)}(b) \in A_n \otimes B_n.$$

Vérifier que ∇ est compatible avec la différentielle et le quotient, associatif $(a \nabla (b \nabla c) = (a \nabla b) \nabla c)$, et gradué commutatif $(b \nabla a = (-1)^{\deg b \cdot \deg a} a \nabla b)$.

- 3. Montrer que $\triangle \circ \nabla$ est l'identité.
- 4. Décrire les simplexes non-dégénérés de $(\Delta^p \times \Delta^q)_{p+q}$ en termes de $Sh_{p,q}$.