

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 196+4

CLEAN-BURNING DIESEL ENGINES—Phase III

INTERIM REPORT BFLRF No. 215

Вγ

H.E. Dietzmann
L.R. Smith
Engines, Emissions, and Vehicle Research Division
Southwest Research Institute
San Antonio, Texas

Prepared for

Belvoir Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

Under Contract to

U.S. Army Belvoir Research, Development and Engineering Center Materials, Fuels and Lubricants Laboratory Fort Belvoir, Virginia

Contract No. DAAK70-85-C-0007

Approved for public release; distribution unlimited

March 1986

86 8 8 090

JTIC FILE COPY

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE

ADA 171,099

	REPORT DOCUM	MENTATION F	PAGE		
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MA	ARKINGS		
Unclassified		None			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	AILABILITY OF REP	ORT	
N/A		Approved for	or public re	elease;	
25. DECLASSIFICATION/DOWNGRADING SCHEDULE None		distributio	on unlimited	1	
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORG	SANIZATION REPORT	NUMBER(S)	
Interim Report BFLRF No. 215		<u> </u>			_
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7s. NAME OF MONIT	ORING ORGANIZATI	ON	
Southwest Research Institute	SwRI				
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City,	State, and ZIP Code)		
Department of Emissions Resea	arch/Engines,				
Emissions and Vehicle Research	ch Division.	i			
6220 Culebra Rd. San Antonio	•	ł			
8s. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMENT IF	STRUMENT IDENTI	FICATION NUMBER	
ORGANIZATION U.S. Army Belvoir Research Development & Engineering Cen	(If applicable)	DAAK70-85-6	C-0007:WD23		
8c. ADDRESS (City, State, and ZIP Code)	ter SINDE-AL	10. SOURCE OF FUN	DING NUMBERS	 -	
W. ADDRESS (CRy, State, and Err Code)		PROGRAM	PROJECT	TASK	WORK UNIT
Fort Belvoir, VA 22060-5606		ELEMENT NO.	NO.	NO.	ACCESSION NO.
İ					
11. TITLE (Include Security Classification) CLEAN—BURNING DIESEL ENGINES 12. PERSONAL AUTHORIS)	- PHASE III (U))			· · · · · · · · · · · · · · · · · · ·
Dietzmann, Harry E. and Smith	n, Lawrence R.				
13a. TYPE OF REPORT 13b. TIME COV. Interim Report FROM 6/8	VERED 12/85	14. DATE OF REPORT 1986 March		15. PAGE C	DUNT
16 SUPPLEMENTARY NOTATION This work w Lubricants Research Facility Lab., STRBE-GMW, Fort Belvoir,	was performed un (SwRI). The wo				Fuels and s Support
17. COSATI CODES	18. SUBJECT TERMS (Cor				
FIELD GROUP SUB-GROUP	Forklift	Partic		eledyne TMD	-20
	Diesel Engines	· · · · · · · · · · · · · · · · · · ·			
	Emissions	Smoke Peugeot XD2P			
19. ABSTRACT (Continue on reverse if necessary and iden	tify by block number)				
Gaseous and particulate emissions were measured from diesel forklift engines under a variety of steady-state conditions. An EPA certification fuel was used to determine CO, CO ₂ , NO ₂ , HC, particulate, aldehydes, smoke and SO ₂ emission rates from Isuzu C-240, Peugeot XD3P, and Teledyne TMD-20 diesel engines. Emission rates were reported in g/hp-hr, g/hr, and observed concentration, i.e., ppm, percent, or mg/m ² .					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT D UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS DTIC USERS DTIC USERS DTIC USERS					
Mr. F.W. Schaekel		(703) 664-1	3576	STRBE-VF	
DD FORM 1473, 84 MAR 83	APR edition may be used unti	i exhausted.	SECURI	TY CLASSIFICATION	OF THIS PAGE

Unclassified

FOREWORD

Work Directive 18, "Clean Burning Diesel Engines," was issued on September 13, 1982 under Contract DAAK70-82-C-0001 to the U.S. Army Mobility Equipment Research and Development Command (MERADCOM; currently the Belvoir Research, Development and Engineering Center). Phase III of this work was initiated in March 1985 under Contract DAAK70-85-C-0007, Work Directive 23. The engineering and analytical efforts of this program were conducted by the Department of Emissions Research of Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78284. This program was identified within Southwest Research Institute as Project 02-8341-175.

This project was under the overall supervision of Harry E. Dietzmann, Manager of the Chemical Analysis Section. He was assisted by Dr. Lawrence R. Smith (chemical analysis) and Mr. Ernie Krueger (engine testing). Emission testing was initiated in July 1985 and was completed in December 1985. Mr. Tim Lee of Belvoir Research, Development and Engineering Center, STRBE-GMW, was the technical officer, Mr. James Stephens served as the overall program manager, and Mr. F. W. Schaekel, Belvoir Research, Development and Engineering Center, STRBE-VF, served as Contracting Officers Representative.

TABLE OF CONTENTS

		<u> </u>	Page
ī.	INTE	RODUCTION	7
	A. B.	Objective	7 8
II.	DES	CRIPTION OF FACILITIES, ENGINES AND PROCEDURES	9
	A. B. C. D.	Engine Description	9 13 13
II.	ANA	LYTICAL PROCEDURES FOR UNREGULATED EMISSIONS	21
	A. B.	Description of Analytical Procedures	21 23
I۷.	RES	ULTS	25
	A. B. C. D.	Group I Emissions Group II Emissions Group III Emissions Trend Validation	25 30 34 34
v.	SUM	MARY	40
REF	EREN	CES	42
APP	ENDIC	CES	
	A. B.	13-Mode Gaseous Emissions Results	43
		Engines	52

LIST OF FIGURES

Figure	<u>P</u>	age
1	Views of Isuzu C-240 on the Test Stand	12
2	Views of the Teledyne TMD-20 on the Test Stand	14
3	Views of Peugeot XD3P on the Test Stand	16
4	Several Views of Gaseous and Particulate Emissions Instrumentation	18
5	Gaseous Emissions Cart Flow Schematic	20
6	Several Views of Group II and III Sampling and Analysis Systems	22

LIST OF TABLES

Table		Page
1	Test Matrix for Emission Testing of Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P Diesel Engines Using EPA DF-2 Certification Fuel (Phillips DF-2 Emissions Fuel)	. 8
2	Summary of Engine Performance Tests Before and After 80-Hour Engine Break-In on Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P	. 10
3	Break-In Schedule for Isuzu C-240 and Teledyne TMD-20	. 11
4	Break-In Schedule for Peugeot XD3P	. 15
5	Fuel Inspection Data	. 17
6	List of Group I Emission Measurement Equipment	. 19
7	Sampling and Analysis Methodology for Unregulated Emissions	. 23
8	Unregulated Emission Procedural Sample Rates and Accuracy	. 24
9	Gaseous and Smoke Emissions (Group I) from Isuzu C-240 Diesel Engine	. 26
10	Gaseous and Smoke Emissions (Group I) from Teledyne TMD-20 Diesel Engine	. 27
11	Gaseous and Smoke Emissions (Group I) from Peugeot XD3P Diesel Engine	. 28
12	Summary of Composite 13-Mode Emission Results	. 29
13	Comparison of Isuzu C-240, Teledyne TMD-20 and Peugeot XD3P Smoke Opacities with the MIL-T-52932C Fuel	. 29
14	Summary of Particulate Emissions from Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P Diesel Engines	. 31
15	Summary of Sulfur Dioxide Emissions from Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P Diesel Engines	. 32

LIST OF TABLES (CONT'D)

<u>Table</u>	<u> </u>	age
16	Comparison of Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P Particulate Emission Rates with the MIL-T-52932C Specification	33
17	Summary of Formaldehyde Emissions from Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P Diesel Engines	35
18	Summary of Total Aldehyde Emissions from Isuzu C-240, Teledyne TMD-20, and Peugeot XD3P Diesel Engines	35
19	Trend Validation of Emissions from Isuzu C-240 Diesel Engine	37
20	Trend Validation of Emissions from Teledyne TMD-20 Diesel Engine	38
21	Trend Validation of Emissions from Peugeot XD3P Diesel Engine	39

I. INTRODUCTION

The United States Army is investigating the possibility of replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric-powered forklifts have no noise or air pollution problems, however, the logistic problems associated with field operations have prompted the U.S. Army to investigate other possible alternatives. The diesel engine has many advantages, i.e., mobility, cost, maintenance, however, the use of diesels in areas of limited ventilation is of concern.

This program is the third in a series of programs conducted to characterize gaseous, particulate, and unregulated emissions from diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to characterize exhaust emissions from a Deutz F3L 912W engine and a Perkins 4.2032 engine operating on a MIL-F-46162A(MR) fuel. (1)* The second program involved four diesel forklift engines, a Deutz F3L 912W, a Deutz F4L 912W, a Perkins 4.2032, and a Perkins 4.2482; two test fuels, MIL-F-46162B(ME) (a high sulfur reference fuel) and an EPA certification fuel (DF-2 emissions certification fuel); and included engine operation with selected induced faults. (2) This third study expands the emissions data base for potential diesel engine-powered forklifts to include three additional engines, an Isuzu C-240, a Teledyne TMD-20, and a Peugeot XD3P operating on an EPA certification fuel.

A. Objective

The objective of this program was to expand the exhaust emissions characterization data base of diesel engines considered as potential candidates for forklift vehicles to include the emission characterization of three additional diesel-powered engines. This emission characterization was accomplished on engines provided by Belvoir R,D&E Center and included gaseous and particulate emissions of potential concern when these engines are operated in confined areas. The method used to evaluate these engines was the modal steady-state procedure used in the 13-mode Federal Test Procedure. (3)

^{*}Numbers in parentheses designate references at the end of the report.

B. Scope

Three diesel forklift engines were provided by Belvoir R,D&E Center for this study, an Isuzu C-240, a Teledyne TMD-20, and a Peugeot XD3P. The test fuel was an EPA DF-2 certification fuel and was obtained from Phillips Petroleum Company. Emission characterization was accomplished over the test matrix in Table 1. Emission rates are presented in g (or mg)/hp-hr, g (or mg)/hr, and observed concentrations.

TABLE 1. TEST MATRIX FOR EMISSION TESTING OF ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES USING EPA DF-2 CERTIFICATION FUEL (PHILLIPS DF-2 EMISSIONS FUEL)

Engine Speed	Engine Load	Emission Measurement
Idle	~=	Group I, II, III
Peak Torque	2%	Group I, II, III
Peak Torque	25%	Group I, II
Peak Torque	50%	Group I
Peak Torque	75%	Group I
Peak Torque	100%	Group I
Rated	2%	Group I, II
Rated	25%	Group I
Rated	50%	Group I, II
Rated	75%	Group I
Rated	100%	Group I, II, III

Group I - includes CO, CO2, HC, NO $_{\rm X}$ (NO + NO2), Smoke Group II - includes particulates and SO2

Group III - includes aldehydes

II. DESCRIPTION OF FACILITIES, ENGINES, AND PROCEDURES

A. Engine Description

This program involved emission mapping for gaseous, particulate, smoke, aldehydes, and sulfur dioxide emissions on three diesel forklift engines. The three diesel engines were tested using an EPA DF-2 emissions certification fuel. Engines in this study included an Isuzu C-240, Teledyne TMD-20, and a Peugeot XD3P. New engines were supplied by Belvoir R&D Center.

1. Isuzu C-240

The first engine tested in this program was an Isuzu C-240 engine rated at 43 hp at 2400 rpm. This four-cylinder, water-cooled engine was delivered to Southwest Research Institute (SwRI) in April 1985. A performance map was accomplished on the engine upon receipt at SwRI and after an 80-hour engine break-in. The engine performance data, both before and after engine break-in, are presented in Table 2, and the engine break-in schedule is presented in Table 3. Views of the Isuzu C-240 on the test stand are illustrated in Figure 1.

Hydrocarbon emissions during the initial 13-mode emissions test on the Isuzu C-240 were unstable. Although the 13-mode was a valid test, the unsteady hydrocarbon emissions were of concern. As a result of these concerns, two additional 13-mode emission tests were conducted. The hydrocarbon emissions were stable during these tests, and these results were averaged for comparison purposes.

2. Teledyne TMD-20

The Teledyne TMD-20 was supplied new by Belvoir R,D&E Center. This three-cylinder, water-cooled diesel engine was rated at 37.7 hp at 2230 rpm and underwent the 80-hour break-in schedule presented in Table 3. The engine performance data for the Teledyne TMD-20 before and after the 80-hour break-

TABLE 2. SUMMARY OF ENGINE PERFORMANCE TESTS BEFORE AND AFTER 80-HOUR ENGINE BREAK-IN ON ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P

	Isuzu (C-240a	Teledyne	TMD-20b	Peugeor	XD3PC
Engine	Before	After	Before	After	Before	After
Speed,	80-hr	80-hr	80-hr	80-hr	50-hr	50-hr
<u>rpm</u>	Break-in	Break-in	Break-in	Break-in	Break-ind	Break-ind
800	12.0	13.7				
900	13.9	15.5			14.8	14.3
1000	15.8	17.3	16.0	15.9	17.2	16.7
1100	18.0	19.1	17.8	17.8	19.7	19.2
1200	20.0	21.3	19.6	19.6	22.4	21.5
1300	22.1	23.5	21.5	21.5	24.6	24.1
1400	23.6	26.1	23.5	23.5	27.3	26.6
1500	25.1	27.8	25.3	25.7	30.0	29.0
1600	26.8	29.8	27.2	27.7	32.8	31.6
1700	28.9	31.8	29.0	29.5	35.3	33.7
1800	30.7	34.4	30.6	31.2	37.4	35.9
1900	32.7	36.9	32.3	32.7	39.4	37.9
2000	34.8	38.7	33.9	34.7	41.3	39.8
2100	36.3	40.1	35.5	36.2	43.6	41.8
2200	37.6	41.4	37.0	37.5	45.5	43.7
2300	38.9	43.1	37.1	35.6	47.7	45.5
2400	41.1	44.7			~-	

aRated HP = 43

Rated Speed = 2400 rpm bRated HP = 37.7

Rated Speed = 2300 rpm CRated HP = 47.5

Rated Speed = 2300 dengine had already accumulated 30 hours of operation when received at SwRI.

TABLE 3. BREAK-IN SCHEDULE FOR ISUZU C-240 AND TELEDYNE TMD-20

		Total	Engine	Speed, rpm	
Step	Time per Step	Time	Isuzu C-240	Teledyne TMD-20	Load,%
la	0:15 min	0:15	1000	1000	0
lb	0:15 min	0:30	1400	1400	20
lc	0:15 min	0:45	1600	1600	30
ld	0:15 min	1:00	2000	2000	30
le	0:15 min	1:15	2200	2100	50
1f	0:15 min	1:30	2400	2230	50
1g	0:15 min	1:45	2400	2230	75
Ih	0:15 min	2:00	2400	2230	100
2	1:00	3:00	2000	2000	30
3	1:00	4:00	2200	2100	50
4	1:00	5:00	2400	2230	50
7	7 hours cycling	0:05	1200	1200	0
•	time (total time	0:25	1600	1600	60
	12:00 hours)	0:05	1200	1200	0
	.2.00,	0:25	1800	1800	60
8	8 hours cycling	0:05	1600	1600	0
	time (total time	0:25	1200	1200	70
	20:00 hours)	0:05	1600	1600	0
	20100 110410,	0:25	2000	2000	70
9	10 hours cycling	0:05	1600	1600	80
,	time (total time	0:25	2000	2000	80
	30:00 hours)	0:05	1800	1800	80
	30100 1100137	0:25	2200	2230	80
10	10 hours cycling	0:15	1800	1800	90
10	time (total time	0:15	2200	2100	90
	40:00 hours)	0:15	2000	2000	90
	70100 110010)	0:15	2400	2230	90

Repeat entire sequence to give a total of 80 hours

FIGURE 1. VIEWS OF ISUZU C-240 ON THE TEST STAND

in are illustrated in Table 2. Figure 2 illustrates the Teledyne TMD-20 on the test stand.

3. Peugeot XD3P

The Peugeot XD3P, a four-cylinder, water-cooled engine had already undergone 30 hours of operation when received at SwRI. This engine was rated at 47.5 hp at 2300 rpm. Since the engine had already accumulated 30 hours of operation, only 50 additional hours of engine break-in were conducted on the engine. This modified break-in schedule is presented in Table 4. The engine performance data for the Peugeot XD3P before and after the abbreviated engine break-in are illustrated in Figure 2. Figure 3 illustrates the Peugeot XD3P on the test stand.

B. Fuel Description

All testing in this program was conducted using EM-627-F, an EPA DF-2 certification fuel. This fuel met EPA certification specifications and was obtained from Phillips Petroleum Company. The fuel inspection data on the test fuel are presented in Table 5.

C. Dynamometer Description

A 250-hp Midwest wet gap eddy current dynamometer determined the load on the three test engines. Fuel was measured using a Flotron. An 8-inch stainless steel dilution tunnel was used to collect particulate samples. All equipment was calibrated prior to testing using accepted applicable procedures, i.e., Federal Register, SAE, EPA Recommended Practice, etc. Several views of the test equipment are illustrated in Figure 4.

D. Gaseous Emissions (Group I)

The measurement of gaseous emissions was accomplished using analytical equipment, procedures, and calculations specified in the <u>Federal Register</u>(3) for 13-mode certification testing. The specific analytical instruments used in this

FIGURE 2. VIEWS OF TELEDYNE TMD-20 ON THE TEST STAND

TABLE 4. BREAK-IN SCHEDULE FOR PEUGEOT XD3P

Step	Time per Step	Total Time	RPM	% Power	Load, ibs
		0:05	1800	90	74.9
1	10 hours cycling	0:25	2200	90	74.5
	time (total time	0:05	2000	90	74.3
	40:00 hours)	0:25	2300	90	74.7
		61.00	1600	30	24.6
2	1:00	41:00	1600	50	41.0
2 3	1:00	42:00	1800	30	24.9
4	1:00	43:00	1800	50	41.6
4 5 6	1:00	44:00	1800	80	66.6
6	1:00	45:00	1800	80	
	m	0:05	1200	0	0.0
7	7 hours cycling	0:25	1600	60	49.2
	time (total time	0:05	1200	0	0.0
	52:00 hours)	0:25	1800	60	49.9
		0.05	1600	0	0.0
8	8 hours cycling	0:05	1200	70	52.3
	time (total time	0:25	1600	Ô	0.0
	60:00 hours)	0:05 0:25	2000	70	57.8
			1400	80	65.6
9	10 hours cycling	0:05	1600	80	66.1
	time (total time	0:25	2000	80	66.6
	70:00 hours)	0:05	1800	80	66.2
		0:25	2200	δU	00,2
		0:05	1800	90	74.9
10	10 hours cycling	0:05	2200	90	74.5
	time (total time	0:25	2000	90	74.3
	80:00 hours)	0:25	2300	90	74.7

FIGURE 3. VIEWS OF PEUGEOT XD3P ON THE TEST STAND

TABLE 5. FUEL INSPECTION DATA

Fuel Property	Test <u>Method</u>	EPA Specifications	EM-627-F
Cetane Number	D 613	42-50	46.2
Gravity, OAPI	D 287	33-37	35.2
Total Sulfur, Wt %	D 3120	0.2-0.5	0.35
Aromatics (FIA), Vol %	D 1319	27 min	32.1
Flash Point, °F (°C)	D 93	130 (54) min	162 (72)
Kinematic Viscosity, cSt	D 445	2.0-3.2	2.52
Particulate Matter	D 2276	NAa	2.1
Cloud Point, OF (OC)	D 2500	NA	+12 (-11)
Pour Point, of (oC)	D 97	NA	0
Distillation Range, °F (°C) IBP 5% Recovered 10% Recovered 20% Recovered 30% Recovered 40% Recovered 60% Recovered 60% Recovered 70% Recovered 80% Recovered 90% Recovered 90% Recovered	D 86	340-400 (149-204) 400-460 (204-238) 470-540 (243-282) 550-610 (288-321)	375 (191) 415 (213) 431 (222) 451 (233) 469 (243) 487 (253) 505 (263) 523 (273) 543 (284) 567 (297) 598 (314) 628 (331)
EBP		580-660 (304-349)	653 (345)

aNot Applicable

Gaseous Emissions Cart

Heated HC and NO_X Interface

Particulate Sampling Controls

Dilution Tunnel

FIGURE 4. SEVERAL VIEWS OF GASEOUS AND PARTICULATE EMISSIONS INSTRUMENTATION

study are listed in Table 6, and several views of this equipment are also illustrated in Figure 4. A flow schematic of the gaseous emissions instrumentation is shown in Figure 5. One set of gaseous, particulate, and unregulated emissions instrumentation was used to obtain emissions data on this program.

TABLE 6. LIST OF GROUP I EMISSION MEASUREMENT EQUIPMENT

Exhaust Species	Chemical Symbol	Detection Technique	Instrument
Carbon Monoxide	co	NDIRa	Beckman 315B
Carbon Dioxide	CO ₂	NDIRa	Beckman 315B
Oxides of Nitrogen	NOx	CLb	SwRI w/EPA Design
Hydrocarbons	HC Î	FIDC	SwRI w/Beckman
			402 Detector
Smoke		Opacity	PHS Smokemeter

aNDIR denotes nondispersive infrared bCL denotes chemiluminescent analyzer CFID denotes flame ionization detector

FIGURE 5. GASEOUS EMISSIONS CART FLOW SCHEMATIC

III. ANALYTICAL PROCEDURES FOR UNREGULATED EMISSIONS

The analytical procedures used to measure the unregulated emissions are summarized in this section. Detailed descriptions of most of the procedures, along with discussions of their development, validation, and qualification, are available in Interim Report II, "Analytical Procedures for Characterizing Unregulated Pollutant Emissions From Motor Vehicles," developed in a related EPA project. (4) Several views of Group II and III sampling systems are shown in Figure 6.

A. Description of Analytical Procedures

The unregulated emissions evaluated in this project, along with the methods for sampling and the procedures used in the analyses, are listed in Table 7. Aldehydes and ketones represent a group of compounds. This procedure separates and identifies a number of individual components. The analytical procedures involved in this project are briefly described in the .pllowing subsections.

1. Aldehydes and Ketones

aldehydes (formaldehyde, acetaldehyde, acrolein, The collection of propionaldehyde, crotonaldehyde, isobutyraldehyde, benzaldehyde, hexanaldehyde) and ketones (acetone and methylethylketone) is accomplished by bubbling exhaust through glass impingers containing an acetonitrile solution of 2,4 dinitrophenylhydrazine (DNPH) and perchloric acid. The aldehydes and ketones (also known as carbonyl compounds) react with the DNPH to form their respective phenylhydrazone derivatives. For analysis, a portion of the acetonitrile solution is injected into a liquid chromatograph equipped with an ultraviolet detector. External standards of the aldehydes and ketone DNPH derivative are used to quantify the results. Detection limits for this procedure are on the order of 0.01 ppm aldehyde or ketone in exhaust.

Aldehyde Analytical System (HPLC)

Particulate Filter Balance

So Analytical Instrumentation (IC)

FIGURE 6. SEVERAL VIEWS OF GROUP II AND III SAMPLING AND ANALYSIS SYSTEMS

TABLE 7. SAMPLING AND ANALYSIS METHODOLOGY FOR UNREGULATED EMISSIONS

Compound	Sampling	Method of Analysis
Aldehydes and Ketones	Impinger	Dinitrophenylhydrazone derivative, Liquid chromatograph with ultraviolet detector (LC-UV).
Sulfur Dioxide	Impinger	Ion chromatograph
Particulates	47-mm filter	Weighed using microbalance

2. Sulfur Dioxide

The concentration of sulfur dioxide in exhaust is determined as sulfate using an ion chromatograph. Sulfur dioxide is collected and converted to sulfate by bubbling dilute exhaust through two glass impingers containing 3-percent hydrogen peroxide absorbing solution. The samples are analyzed on the ion chromatograph and compared to standards of known sulfate concentrations. The detection limit for this procedure is on the order of 0.05 ppm sulfur dioxide in exhaust.

3. Particulate

The "particulate" is collected on 47-mm Pallflex filters. The amount of "particulate" collected is determined by weighing the filter on a microbalance before and after sampling. The detection limit for this procedure is on the order of 50 μ g particulate per cubic meter of exhaust for a 10 minute sampling period.

B. Accuracy of the Analytical Procedures

A difficult, but very important, endeavor was the determination of procedural accuracy for each analytical method. The primary difficulty involved those procedures in which the exhaust compounds are trapped or absorbed, an extraction or subsequent reaction is performed, and then a portion of the

extraction is analyzed. The decision was reached to initially define the accuracy in terms of a "minimum detection value" (MDV). The MDV, as used in this report, is defined as the value above which it can be said that the compound has been detected in the exhaust (i.e., at a measured value equal to the MDV, the accuracy is equal to plus or minus the MDV). While the determination of accuracy over the entire range of each procedure was beyond the scope of this project, the nominal accuracy for each of the procedures has been estiamted to be on the order of \pm 10% (\pm 25 for aldehydes other than formaldehyde) at the levels observed in this program.

For compounds collected by bag samples, the MDV can be determined from the instrument detection limits only, and is independent of the sampling rate and duration. However, for compounds which are concentrated in impingers or traps, the MDV is dependent on the instrument detection limit, chemical workup, sampling rate, and sampling duration. The MDVs listed in Table 8 were derived using the listed sampling rate and a 10-minute sampling period.

TABLE 8. UNREGULATED EMISSION PROCEDURAL SAMPLE RATES AND ACCURACY

	Sample Flow,	Proce Mini Detectio	mum n Values	MDV for 10 min SS Test,
	<u>l/min</u>	ppm	$\mu g/m^3$	mg/hour
Aldehydes and Ketones	4			
Formaldehyde		0.01	15	2
Acetaldehyde		0.01	20	2
Acrolein		0.01	25	3
Propionaldehyde		0.01	25	3
Acetone		0.01	25	3
Crotonaldehyde		0.01	30	3
Isobutyraldehyde		0.01	30	3
Methylethylketone		10.0	30	3
Benzaldehyde		0.01	45	5
Hexanaldehyde		0.01	40	5
Sulfur Dioxide	4	0.05	135	15
Particulate	14		50	5

IV. RESULTS

This section presents the results of emission tests conducted on the three engines evaluated in this study for the Group I (CO, CO₂, NO_x, HC, and smoke), Group II (particulate and sulfur dioxide), and Group III (aldehydes and ketones) emissions.

A. Group I Emissions

Thirteen-mode emission tests were used as the primary basis of comparison for the Group I emissions, i.e., CO, CO₂, NO_x, HC, and smoke opacity. Results of 13-mode emission tests conducted on the three engines are presented in Tables 9 through 11. Computer printouts of the 13-mode gaseous emission tests are included in Appendix Tables A-1 through A-4. Two 13-mode emission tests were run on the Isuzu C-240 (Tables A-1 and A-2) and the results have been averaged for these two tests in Appendix Tables A-5 (g/hp-hr), A-6 (g/hr), and A-7 (ppm or percent). With the exception of a reversal in trend for the CO emissions at 100 percent load, all three engines produced decreasing brake specific emission rates with increasing engine load.

For comparison purposes, the 13-mode gaseous emissions in g/hp-hr have been summarized in Table 12 along with the MIL-T-52932C gaseous emission specifications. Carbon monoxide and oxides of nitrogen emissions were well within the MIL-T-52932C specifications for all three engines. Hydrocarbon emissions for the Teledyne TMD-20 were within specifications; however, the hydrocarbon emissions for the Isuzu C-240 and Peugeot XD3P were equivalent to the MIL-T-52932C (when rounded to tenth of a gram per hp-hr) specification. The Peugeot XD3P gave the lowest CO and NO_X emissions of the three engines, while the Teledyne TMD-20 gave the lowest HC and BSFC for the three engines.

Table 13 compares the smoke opacity results for the three engines with the MIL-T-52932C specifications. All three engines were within the smoke opacity specification at all specified modes. The highest smoke opacity was observed at 100-percent engine power at both peak torque and rated speeds for all three engines.

TABLE 9. GASEOUS AND SMOKE EMISSIONS (GROUP I) FROM ISUZU C-240 DIESEL ENGINE^a

	•		Fuel			(4		1			(
Mode	Speed Load	Load,%	Consump., Ib/hr	Smoke Opacity	Emissi	E S	HC CO NOx	Emission Rate, g/hp-hr HC CO NOx	Color	NO	Exhaust Concer HC,ppmC CO,ppm	Exhaust Concentration ppmC CO,ppm NOx1	NO _{x1} PPm	CO2.%
-	Idle	1	1.0	8.0	-	∞	•	;	1	ı	45	506	123	2.20
2	Peak Torque	7	3.5	6.0	77	94	24	10.85	46.15	23.54	163	350	102	2.35
•	Peak Torque	23	6.1	1.0	82	35	84	3.07	3.77	5.14	413	259	200	4.11
*	Peak Torque	8	8.9	2.0	=	23	29	0.55	1.22	3.61	153	178	298	6.34
~	Peak Torque	22	12.7	5.6	7	22	8	0.26	0.80	2.48	105	177	318	932
9	Peak Torque	8	19.2	15.5	4	314	53	0.11	8.24	1.40	09	2528	250	13.99
7	ldle	1	1.3	2.0	7	Ξ	12	}	1	ı	73	506	128	2.22
90	Rated	8	21.7	7.5	-	149	23	0.03	3.36	1.69	13	1028	310	13.69
•	Rated	7.5	14.2	2.0	9	*	107	0.19	1.07	3.37	73	225	425	8.54
07	Rated	8	10.4	2.1	*	8	85	89.0	1.41	4.04	175	192	315	6.10
=	Rated	22	7.1	2.1	9	36	09	0.58	3.30	5.58	80	235	220	4.25
12	Rated	7	4.7	2.0	01	20	31	16.33	83.82	51.36	123	319	108	2.67
13	Rated	1	1.3	2.1	•	16	12	ł	1	ŀ	120	294	118	2.22

Average of two 13-mode tests

Composite 13-Mode Summary BSHC = 0.506 gram/bhp-hr BSCO = 3.769 gram/bhp-hr BSNO_X = 3.167 gram/bhp-hr BSFC = 0.544 lb/bhp-hr

TABLE 10. GASEOUS AND SMOKE EMISSIONS (GROUP I) FROM TELEDYNE TMD-20 DIESEL ENGINE

			Fuel											
Mode	Test Condition Speed Load	Load,%	Consump., lb/hr	Smoke Opacity	Emissi	CO Ra	Emission Rate,g/hr HC CO NOx	Emissio	Emission Rate, g/hp-hr HC CO NOx	NO.	Exhaus HC,ppmC	Exhaust Concentration	NOxippm	CO22%
-	Idle	ı	1.0	1.9	4	13	~	I	ı	;	170	255	04	1.78
7	Peak Torque	7	2.9	0.7	7	33	23	8.72	45.39	27.43	96	235	95	1.59
•	Peak Torque	23	4.9	0.8	4	91	36	0.44	1.86	4.25	89	641	225	4.21
•	Peak Torque	8	7.2	1.7	•	13	*	0.19	0.79	3.38	23	120	335	6.05
~	Peak Torque	22	10.2	2.2	6	12	23	0.14	0.47	2.93	62	111	450	8.90
9	Peak Torque	100	14.8	7.0	7	74	9	90.0	2.24	1.81	38	7%8	380	13.69
7	Idle	1	1.2	1.7	*	11	*	i	i	1	145	284	42	1.78
80	Rated	001	17.1	11.5	-	220	19	0.03	6.07	1.85	18	1943	370	13.69
6	Rated	2.5	12.0	2.0	7	51	62	90.0	0.56	2.89	25	130	430	9.32
으	Rated	8	8.9	1.7	7	14	62	0.10	0.78	3.39	30	120	340	6.81
=	Rated	23	6.0	1.7	~	23	33	0.53	2.82	4,33	7.5	506	210	84.4
12	Rated	7	3.7	1.7	56	84	17	25.55	47.94	17.23	405	385	93	2.64
13	Rated	ł	1.3	1.9	9	20	3	i	ı	1	168	304	04	1.73

Composite 13-Mode Summary BSHC = 0.380 gram/bhp-hr BSCO = 2.948 gram/bhp-hr BSNO_X = 2.966 gram/bhp-hr BSFC = 0.494 lb/bhp-hr

TABLE 11. GASEOUS AND SMOKE EMISSIONS (GROUP I) FROM PEUGEOT XD3P DIESEL ENGINE

			Fuel	,										
Mode	Speed Load	Load,%	Consump., Ib/hr	Smoke Opacity	Emissi	2 8 8 8	HC CO NOx	Emissio	Emission Rate,g/hp-hr HC CO NOx	NON N	Exhau HC.ppmC	Exhaust Concentration ppmC CO,ppm NOx1	NO _{xu} ppm	CO21%
	Idle	ı	6.0	0.5	4	20	~	ì	:	:	161	437	63	1.78
	Peak Torque	2	4.4	1.7	78	83	13	30.95	98.23	15.46	305	064	45	2.32
	Peak Torque	22	4.9	1.5	13	33	27	1.18	3.14	2.63	165	225	110	4.01
	Peak Torque	8	9.4	1.5	2	20	5	0.49	0.98	2.16	132	139	180	5.97
	Peak Torque	22	13.5	1.7	=	∞	28	0.34	0.59	1.87	140	130	245	8.79
	Peak Torque	100	19.0	6.3	••	64	55	0.19	1.17	1.32	105	355	240	12.70
	Idle	1	3	0.7	9	20	7	1	ł	1	205	37.5	7.5	1.83
	Rated	100	21.4	5.5	2	87	*	0.05	1.93	1.21	27	577	215	12.94
	Rated	22	14.8	1.2	~	71	23	0.14	0.62	1.67	57	139	220	8.90
	Rated	8	10.3	1.1	~	74	42	0.24	1.06	1.88	19	158	165	6.22
	Rated	23	6.9	1.4	9	32	56	0.50	2.81	2.32	73	506	100	4.08
	Rated	7	4.5	1.5	81	71	12	17.44	68.36	11.79	215	427	43	2.43
	ldle	i	1.3	1.1	~	23	7	1	ŧ	;	145	355	09	1.78

Composite 13-Mode Summary BSHC = 0.527 gram/bhp-hr BSCO = 2.240 gram/bhp-hr BSNO_x = 1.856 gram/bhp-hr BSFC = 0.503 lb/bhp-hr

TABLE 12. SUMMARY OF COMPOSITE 13-MODE EMISSION RESULTS

	13-Mo	de Emissio	n Results,	g/hp-hr
Engine Description	HC	CO	NOx	BSFC ^a
Isuzu C-240	0.506	3.769	3.167	0.544
Teledyne TMD-20	0.380	2.948	2.966	0.494
Peugeot XD3P	0.527	2.240	1.856	0.503
MIL-T-52932C Specification	0.5	5.0	6.0	NAb

^aBSFC expressed in lb fuel/hr bNA - denotes not applicable

TABLE 13. COMPARISON OF ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P SMOKE OPACITIES WITH THE MIL-T-52932C FUEL

			S	moke Op	acity	
	Engine	Engine	MIL-T-52932C	Ísuzu	Teledyne	Peugeot
<u>Mode</u>	Power, %	Speed	Specifications	C-240	TMD-20	XD3P
,		Idle	5.0	0.8	1.9	0.5
1						
2	2	Peak Torque	5.0	0.9	0.7	1.7
3	25	Peak Torque	5.0	1.0	0.8	1.5
4	50	Peak Torque	5.0	2.0	1.7	1.5
5	75	Peak Torque	NR	2.6	2.2	1.7
6	100	Peak Torque	NR	15.5	7.0	6.3
7		Idle	5.0	2.0	1.7	0.7
8	100	Rated	NR	7.5	11.5	5.5
9	75	Rated	NR	2.0	2.0	1.2
01	50	Rated	5.0	2.1	1.7	1.1
11	25	Rated	5.0	2.1	1.7	1.4
12	2	Rated	5.0	2.0	1.7	1.5
13		ldle	5.0	2.1	1.9	1.1

NR - denotes not regulated

B. Group II Emissions

Specific analyses included in the Group II analyses were particulate and sulfur dioxide. The emissions were measured at six engine speed and load conditions (idle, peak torque speed/2-percent load, peak torque speed/25-percent load, rated speed/2-percent load, rated speed/50-percent load, and rated speed/100percent load). Particulate emissions are presented in Table 14 as g/hr, g/hp-hr, and mg/m³. Sulfur dioxide emissions are presented in Table 15 as g/hr, g/hp-hr, and ppm. Due to procedural sampling difficulties, it was necessary to calculate the sulfur dioxide emission rates from the engine fuel flow rates and from the sulfur content in the test fuel for the Isuzu C-240 and Teledyne TMD-20 engines. For the Isuzu engine, two of the test points gave measured sulfur dioxide emission rates within 6 percent of the calculated emission rates, however for continuity, only the calculated values are presented in Table 15. These procedural sampling difficulties were solved after the Isuzu C-240 and Teledyne TMD-20 engines had been tested and removed from the test stand. The Peugeot engine, which was tested after the difficulties were solved, gave similar measured and calculated values. The particulate and sulfur dioxide emissions data were compared for the three engines in the study as well as with data reported in an earlier study, "Clean Burning Diesel Engines - Phase II"(2), for two Deutz and two Perkins forklift engines also operating on the EPA DF-2 certification fuel. The results of these comparisons are presented below:

- At idle conditions, the Isuzu C-240 gave lower particulate emissions (g/hr) than either the Teledyne or Peugeot engines. The particulate rate was also lower than the particulate rates for the four engines tested in the previous study.(2)
- The Peugeot XD3P gave higher particulate rates than the Isuzu or the Teledyne engines at the 2-percent load condition for both rated and peak torque speeds.
- At 100-percent load/rated speed, both the Isuzu C-240 and Teledyne TMD-20 gave particulate rates (g/hp and g/hp-hr) higher than those observed for the Peugeot engine and the four engines previously tested.⁽²⁾

TABLE 14. SUMMARY OF PARTICULATE EMISSIONS FROM ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES

Engine			iculate Emission Rat	
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
Idle		0.29	3.83	3.15
Peak Torque	2	4.84	5.10	11.86
Peak Torque	25	7.69	4.57	9.95
Rated	2	10.34	12.05	37.89
Rated	50	10.01	4.12	9.89
Rated	100	53.1	66.6	23.85
112100		77.1	00.0	25.05
Engine		Partic	ulate Emission Rate,	g/hp-hr
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
Idle		NA	NA	NA
Peak Torque	2	7.96	7.9 0	18.6
Peak Torque	25	0.81	0.51	0.95
Rated	2	11.49	15.1	29.2
Rated	50	0.48	0.23	0.44
Rated	100	1.22	1.86	0.51
Engine		Partic	ulate Concentration,	mg/m ³
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
• 11				4.6
ldle		6	66	61
Peak Torque	2	39	53	90
Peak Torque	25	63	47	75
Rated	2	73	114	264
Rated	50	69	38	68
Rated	100	352	626	165

TABLE 15. SUMMARY OF SULFUR DIOXIDE EMISSIONS FROM ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES

Engine		Sulfur	Dioxide Emission Ra	te, g/hr
Speed	Load, %	Isuzu C-240*	Teledyne TMD-20*	Peugeot XD3P
Idle		2.62	3.62	2.51
	2		8.76	9.44
Peak Torque	-	10.69		
Peak Torque	25	17.74	15.24	16.76
Rated	2	14.27	10.86	12.99
Rated	50	32.01	26.29	35.81
Rated	100	70.67	53.05	<i>6</i> 8.7 <i>5</i>
Engine Speed	Load, %	Sulfur C Isuzu C-240*	Dioxide Emission Rate Teledyne TMD-20*	e, g/hp-hr Peugeot XD3P
Idle		NA	NA	NA
Peak Torque	2	17.29	13.53	10.49
Peak Torque	25	1.87	1.69	1.60
Rated	2	15.86	13.58	9.99
Rated	50	1.52	1.43	1.60
Rated	100	1.62	1.48	1.46
Engine Speed	Load, %		Dioxide Concentration Teledyne TMD-20*	
Idle		21	25	10
		21	25	18

Engine		Sulfur	Dioxide Concentrati	on, ppm
Speed	Load, %	Isuzu C-240*	Teledyne TMD-20*	Peugeot XD3P
Idle		21	25	18
Peak Torque	2	33	34	27
Peak Torque	25	54	59	48
Rated	2	38	39	35
Rated	50	83	93	94
Rated	100	176	187	180

^{*}Calculated from the fuel consumption rate and the percentage of sulfur in the fuel

- Sulfur dioxide emissions (g/hr and g/hp-hr) were similar for the three engines.
- On a g/hp-hr basis, the three engines in this study gave sulfur dioxide emission rates similar to those recorded in earlier work. (2)

The particulate emission rates have also been compared to the MIL-T-52932C particulate specification in Table 16. All three engines gave particulate emission rates within the MIL-T-52932C specifications for the 25-percent load/peak torque speed and 50-percent load/rated speed modes. Comparable data are not available for the remaining modes.

TABLE 16. COMPARISON OF ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P PARTICULATE EMISSION RATES WITH THE MIL-T-52932C SPECIFICATION

			Particula	ate Emiss	ions Rate, g/	hr
	Engine	Engine	MIL-T-52932C	Isuzua	Teledyne ^a	Peugeota
Mode	Power, %	Speed	Specifications	C-240	TMD-20	XD3P
_						2.15
1		Idle	NR	0.29	3.83	3.15
2	2	Peak Torque	NR	4.84	5.10	11.86
3	25	Peak Torque	15.0	7.69	4.57	9.95
4	50	Peak Torque	15.0	ND	ND	ND
5	75	Peak Torque	NR	ND	ND	ND
6	100	Peak Torque	NR	ND	ND	ND
7		Idle	NR	ND	ND	ND
8	100	Rated	NR	53.1	66.6	23.85
9	75	Rated	NR	ND	ND	ND
10	50	Rated	15.0	10.01	4.12	9.89
11	25	Rated	15.0	ND	ND	ND
12	2	Rated	NR	10.34	12.05	37.89
13		Idle	NR	ND	ND	ND

^aAverage of two tests (Modes 1, 2, 8)

NR - denotes not regulated

ND - denotes no data (not in test plan)

C. Group III Emissions

Aldehyde and ketone emissions were evaluated in the Group III analyses. This section presents the results of these analyses for the three test engines. The Group III analyses were performed at idle, peak torque speed/2-percent load, and rated speed/100-percent load. Formaldehyde (the predominate aldehyde detected) and total aldehydes (summation of the 10 aldehydes and ketones evaluated in this study) are presented in Tables 17 and 18, respectively. Emission rates for each of the nine aldehydes and ketones (isobutyraldehyde and methylethylketone are not separated in the analysis and are reported as one compound) are reported individually in Appendix Table B-1. In general, these results are summarized as follows:

- Formaldehyde was the predominate aldehyde detected, generally accounting for 33 to 47 percent of the total aldehydes and ketones detected.
- For all three engines, the formaldehyde as well as the total aldehyde and ketone emissions were ordered as follows: Idle peak torque speed/2-percent load > rated speed/100-percent load.
- Idle and peak torque speed/2-percent load formaldehyde emissions were generally equivalent or higher in this study than in the earlier study⁽²⁾ and inversely the rated speed/100-percent load emissions were equivalent or lower than emissions recorded in the earlier study.⁽²⁾

D. Trend Validation

Validation of Group I emissions was accomplished for six modes of the EPA 13-mode cycle. These modes included 2-, 50-, and 100-percent load at rated speed, 2- and 25-percent load at peak torque speed, and idle. The modes include the worst case conditions, i.e., 2-percent load at both speeds. In general, as load is applied, emission rates (g/hp-hr) decrease quite rapidly. During the validation of emission trends, triplicate tests were conducted at 2 percent load at peak torque, 100 percent load at rated speed, and idle, while only duplicate tests

TABLE 17. SUMMARY OF FORMALDEHYDE EMISSIONS FROM ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES

Engine		Formal	dehyde Emission Rat	e, mg/hr
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
Idle		168	506	626
Peak Torque	2	377	945	2400
Rated	100	158	72	199
Engine		Formalde	ehyde Emission Rate,	
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
Idle				
	2	753	1350	2667
Peak Torque	_			
Rated	100	3.61	1.99	4.18
Engine		Formal	dehyde Concentration	n, mg/m ³
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
		-		
Idle		3.31	9.25	12.2
Peak Torque	2	3.00	9.64	18.2
Rated	100	1.02	0.68	1.38

TABLE 18. SUMMARY OF TOTAL ALDEHYDE® EMISSIONS FROM ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES

Engine		_ Total A	Idehyde Emission Ra	te, mg/hr
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
			1000	
Idle		441	1098	1432
Peak Torque	2	1144	2090	5533
Rated	100	336	184	427
. .			.	
Engine			<u>lehyde Emission Rate</u>	
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
Idle				
Peak Torque	2	2288	2986	6148
Rated	100	7.68	5.08	8.94
				•
Engine		Total Al	dehyde Concentratio	n, mg/m ³
Speed	Load, %	Isuzu C-240	Teledyne TMD-20	Peugeot XD3P
Idle		8.72	20.1	27 . 9
Peak Torque	2	9.15	21.5	42.1
Rated	100	2.18	1.73	2.95

alncludes formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde, isobutyraldehyde + methylethylketone, benzaldehyde, and hexanaldehyde

were run on the remaining three modes. Results of the trend validation tests are summarized in Tables 19, 20, and 21. The trends of high brake specific emissions at low load (i.e., 2 percent) and drastically reduced emissions once load is applied are confirmed in the tables. The reversal in the trend of decreasing BSCO with increasing load at the 100 percent load point was also confirmed.

TABLE 19. TREND VALIDATION OF EMISSIONS FROM ISUZU C-240 DIESEL ENGINE

fic te	23.54 28.89 31.09 27.84	5.14 3.82 N.R. 4.48	51.36 23.28 NR 37.32	4.04 2.81 NR 3.43	1.69 1.48 0.95 1.37	1 1 111
Brake Specific Emission Rate 8/hp-hr CO	46.15 53.67 79.7. 59.85	3.77 3.71 NR 3.75	83.82 57.57 NR 70.70	1.41 2.24 NR 1.83	3.36 3.45 3.18 3.33	1 1 111
Bra Em	10.85 8.94 17.24 12.34	3.07 1.84 NR 2.46	16.33 12.61 NR 14.47	0.68 1.08 NR 0.88	0.03 0.13 0.06 0.07	1 1 111
sions hr NO _x	22 24 21 24 24 24 24 24 24 24 24 24 24 24 24 24	48 36 42 NR 42	31 21 NR 26	85 59 NR 72	64 54 60 54	12 7 8
Mass Emissions Rate, g/hr IC CO NO	400 400 400 400 400	35 NR 35	25 SS	30 39 39	149 149 139 146	9 01 01 01
Mas HC	11 7 99	23 NR 23	0 - N -	23 NR 19	312 6	2 - 2 2 - 5
ations NOx, ppm	102 90 70 87	200 160 180	108 75 NR 92	315 225 NR 270	310 240 170 240	128 100 113
t Concentra	2.35 2.32 2.27 2.31	4.11 3.95 NR 2.69	2.67 2.54 NR 2.61	6.10 6.13 NR 6.12	13.69 13.40 13.55 13.55	2.22 2.12 2.17 2.17
co, ppm	350 304 319	259 274 NR 267	319 324 NR 322	192 314 NR 253	1028 956 <u>956</u> 980	206 245 294 248
Measured Exhaust Concentrations HC, ppmC CO, ppm CO2, % NOx,	163 100 130 131	413 265 NRC 339	123 140 NR 132	175 290 NR 233	13 65 36 36	73 75 130 93
Runa	1 2 4 Avg	1 2 4 Avg	1 2 4 Avg	$\frac{1}{4 \log A}$	$\frac{1}{4^{\text{Ng}}}$	1 2 2 Avg
ndition Load, %	2	23	8	50	001	:
Engine Condition Speed, rpm Load	2000	2000	2400	2400	2400	725b

aRun 1 - Group I only; Run 2 - Group I, II; Run 3 - Group I, II, III bMode 7 of 13-mode emissions test CNR - denotes not required in test plan

TABLE 20. TREND VALIDATION OF EMISSIONS FROM TELEDYNE TMD-20 DIESEL ENGINE

	NO	27.43 21.27 18.89 22.53	4.25 4.05 NR 4.15	17.23 15.86 NR 16.55	3.39 2.84 NR 3.12	1.85 1.76 1.57 1.73	1 1 111
Brake Specific Emission Rate, g/ho-hr	3	45.39 72.07 70.62 52.69	1.86 2.08 NR 1.97	17.94 78.75 NR 33.35	0.78 0.97 NR 0.88	6.07 7.95 7.23 7.25	1 1 111
Brake Emiss	HC	8.72 4 15.92 7 12.32 7 12.32 7	0.44 0.47 NR 0.46	25.55 4 32.68 7 NR 29.12 6	0.10 0.27 NR 0.19	0.03	1 1 111
ions	N N	13 13 19 19	% N N N N N N N N N N N N N N N N N N N	13 NR 13 15 15 15 15 15 15 15 15 15 15 15 15 15	62 52 NR 57	63	3 m m/m
Mass Emissions Rate, g/hr	31	33 43 43 43	16 19 18 18	48 66 57 87	1 1 N N N N N N N N N N N N N N N N N N	220 284 280 261	25 24 20
Mass	일	7 0 8 8	A A K	26 27 27 27	2 0 N 4	- w w10	9 6 9 12
tions	NOx, ppm	3 6 83	225 185 NR 205	93 60 NR 7	340 265 NR 303	370 340 290 339	330
t Concentra	CO2, %	1.59 2.27 2.22 2.03	4.21 4.15 NR 4.18	2.64 2.48 NR 2.56	6.81 6.72 NR 6.77	13.69 13.69 12.98 13.45	1.73 1.73 1.59 1.68
red Exhaust	CO, ppm	235 406 349	149 177 NR 163	385 544 NR 465	120 158 NR 139	1943 2613 2387 2314	304 385 348
Measured Exhaust Concentrations	HC, ppmC	90 177 140 136	68 77 NRC 73	405 445 NR 425	30 8 2 56 RR 5	18 55 39	168 280 200 216
	Runa	1 2 2 A V g	1 2 4 Avg	1 2 3 Avg	$\frac{1}{4 \sqrt{g}}$	1 2 3 Avg	1 2 Avg
	Load, %	5	25	8	50	100	1
Engine Condition	Speed, rpm	2000	2000	2230	2230	2230	q0†01

aRun I - Group Tonly; Run 2 - Group I, II; Run 3 - Group I, II, III bMode 7 of 13-mode emissions test CNR - denotes not required in test plan

TABLE 21. TREND VALIDATION OF EMISSIONS FROM PEUGEOT XD3P DIESEL ENGINE

fic te,	NO NO	15.46 9.50 9.20 11.39	2.63 2.47 NR 2.55	11.79 7.00 NR 9.40	1.88 1.92 NR 1.90	1.21 1.92 1.32 1.48	1 1 111	
Brake Specific Emission Rate, g/hp-hr	8	98.23 63.65 87.76 83.21	3.14 3.13 NR 3.14	68.36 59.16 NR 63.76	1.06 1.36 NR 1.21	1.93 1.36 1.02 1.44	1 1 111	
Bra Em	의	30.95 16.62 22.50 23.36	1.18 0.64 NR 0.91	17.44 16.39 NR 16.92	0.24 0.27 NR 0.26	0.05 0.08 0.12 0.08	1 1 111	
ions	Š	13 7 8 8	25 26 27	12 9 9 II	43 NR 442	59 29 29	~ ~ ~ ~ ~ ~	
Mass Emissions Rate, g/hr	81	83 70 70	33 NR 33	71 78 NR 75	30 NR 27	87 55 64 64	213 23	
Mass	외	26 20 20	12 / NR 0	18 22 20	2 9 R 9	4040	VIQ & Q	
tions	NO _x , ppm	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 N O	43 NR 42	165 190 NR 178	215 255 242	55 55 50 55 50 55	
Measured Exhaust Concentrations	CO2, %	2.32 2.17 2.02 2.17	4.01 3.89 NR 3.95	2.43 2.32 NR 2.38	6.22 6.13 NR 6.18	12.94 12.43 12.57 12.65	1.83 1.59 1.64 1.69	
red Exhaus	CO, ppm	409 406 511 469	225 206 NR 216	427 511 NR 469	158 206 NR 182	377 375 304 419	375 294 345 338	(
Measu	HC, ppmC	305 210 260 258	165 82 NR ^C 124	215 280 NR 248	67 78 NR 73	45 45 465	205 85 130 140	:
	Runa	1 2 4 Avg	1 2 4 Avg	$\frac{1}{4 \sqrt{g}}$	1 2 AVB	1 2 4 Avg	1 2 4 Avg	
ndition	Load, %	2	25	8	20	100	1	
Engine Condition	Speed, rpm	2100	2100	2300	2300	2300	9008	

aRun I - Group I only; Run 2 - Group I, II; Run 3 - Group I, II, III bMode 7 of 13-mode emissions test CNR - denotes not required in test plan

V. SUMMARY

This section summarizes emission results from the Isuzu C-240, the Teledyne TMD-20, and the Peugeot XD3P engines for Groups I, II, and III emissions. Data for the Group I emissions provided the following observations:

- Carbon monoxide and oxides of nitrogen emissions were well within the MIL-T-52932C specifications for all three engines. Hydrocarbon emissions for the Teledyne TMD-20 were also within specification; however, the hydrocarbon emissions for the Isuzu C-240 and the Peugeot XD3P were equivalent to the MIL-T-52932C specification.
- With the exception of a reversal in trend for the CO emissions at 100percent load, all three engines produced decreasing brake specific emission rates with increasing engine load.
- All three engines were within the MIL-T-52932C smoke specifications at all specified modes.

Observations for results of Group II emissions for particulate and sulfur dioxide are summarized below:

- Sulfur dioxide emissions (g/hr, and g/hp-hr) were similar for the three test engines in this study, and on a g/hp-hr basis, were similar to emissions recorded in previous forklift engine emission characterization studies.
- Brake specific particulate and sulfur dioxide emission rates are highest under low load conditions.
- Sulfur dioxide emissions (g/hr) are related to fuel consumption rates and increase with increasing engine fuel consumption.

Observations for the Group III aldehydes and ketones includes:

•Formaldehyde was the predominate aldehyde detected and accounted for

- 33 to 47 percent of the total aldehydes and ketones detected.
- For all three engines, the formaldehyde as well as the total aldehyde and ketone emissions were ordered as follows: idle peak torque/2-percent load > rated speed/100-percent load.

Results of this study have increased the data base of emissions data to allow assessment of the potential problems when operating diesel engines in areas with limited ventilation.

VI. REFERENCES

- Dietzmann, Harry E., "Clean Burning Diesel Engines." Interim Report AFLRL No. 169, AD A145515, U.S. Army Belvoir R&D Center, Contract No. DAAK70-82-C-0001, August 1983.
- 2. Dietzmann, Harry E., "Clean-Burning Diesel Engines Phase II." Interim Report AFLRL No. 178, AD A152606, U.S. Army Belvoir R&D Center, Contract No. DAAK70-85-C-0007, December 1984.
- Code of Federal Regulations, Title 40, Part 86, Subpart D, "Emission Regulations for New Gasoline-Fueled and Diesel Heavy-Duty Engines; Gaseous Exhaust Test Procedures," pp 428-460, 1 July 1982.
- 4. Smith, L.R., Parness, M.A., Fanick, E.R., Dietzmann, H.E., "Analytical Procedures for Characterizing Unregulated Emissions From Vehicles Using Middle-Distillate Fuels," EPA 600/2-80-068, April 1980.
- Code of Federal Regulations, Title 40, Part 86, Subpart B, "Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks; Test Procedures," (particulate tunnel and sampling system) pp 402-465, 1 July 1983.

APPENDIX A

13-MODE GAESOUS EMISSIONS RESULTS

- TABLE A-1. 13-MODE GASEOUS EMISSION RESULTS FROM ISUZU C-240 (8-19-85)
- TABLE A-2. 13-MODE GASEOUS EMISSION RESULTS FROM ISUZU C-240 (8-22-85)
- TABLE A-3. 13-MODE GASEOUS EMISSION RESULTS FROM TELEDYNE TMD 20
- TABLE A-4. 13-MODE GASEOUS EMISSION RESULTS FROM PEUGEOT XD3P
- TABLE A-5. AVERAGE OF TWO 13-MODE EMISSION RESULTS ON ISUZU C-240 (g/hp-hr)
- TABLE A-6. AVERAGE OF TWO 13-MODE EMISSION RESULTS ON ISUZU C-240 (g/hr)
- TABLE A-7. AVERAGE OF TWO 13-MODE EMISSION RESULTS ON ISUZU C-240 (ppm or percent)

TABLE A-1. 13-MODE GASEOUS EMISSIONS RESULTS FROM ISUZU C-240 (8-19-85)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

SPEED 725. 725. 725. 725. 725. 7260. 7	TEST-4	FUEL:	SUZU C-240 636922 FUEL: EM-627-F	.F	ROJECT:	02-8341	-175	DATE	8/61/8	/85			
2 INTER / 2000. 25 INTER / 2000. 50 INTER / 2000. 75 INTER / 2000. 100 INTER / 2000. 50 RATED / 2400. 50 RAT	10RQUE PC 0BS C LB-FT E	OWER OBS BHP L	FUEL FLOW B/MIN L	AIR FLOW B/MIN	INTAKE HUMID GR/LB	NOX CORR FACT	P F	MEASURE CO PPM	URED CO2 PCT	NOX PPM	CALCU GRAMS / HC CO	UL ATED	HODE
100 INTER / 2000. 100 RATED / 2400. 15 RATED / 2400. 25 RATED / 2400. 27 RATED / 2400. 28 RATED / 2400. 29 RATED / 2400. 20 RATED / 2400. 24 00 24 00 12 66 6.91 8. 24 00 24 39 8.77 8. 25 1.72 5.31 2. 26 1.72 5.31 2.24 8.37 8.37		0 0 0 5	017 058 102	5.33	11.	1111	į		2.22 2.38 2.38	100.	25.27		-254
75 RATED / 2400. 25 RATED / 2400. 2 RATED / 2400. 2 RATED / 2400. 2 RATED / 2400. 2 RATED / 2400. 400. 400. 400. 400. 124. 843.837.		000	213 322 025	5.23	128. 121.	074			2,22	300. 220.			15000
GRAMS/LB-FUEL GRAMS/LB-FUEL HC CO NOX 93 8-43 8-17 4-09 4-39 1-38 2-17 1-09 2-68 7-43 1-24 8-43 8-37	24. 24. 0.	21.0 21.0 10.8 0.6	240 175 120 075 025	6.20 6.20 6.16 6.18	84. 100. 113. 107.	0.055 0.055 0.055 0.123 0.102	190. 190. 125.	225. 196. 235. 314.	6.22 6.22 7.70 2.22	246. 246. 235. 115.		2.06.00 2.06.00 2.00.00	22-20
8.43 8.17 8.43 7.38 7.38 7.38 7.38 7.43 7.43 7.43 7.43 7.43 7.43 7.43 7.43	ED GRAMS/BHP- HC CO	HR MOX	F/A DRY MEAS	F/A STOICH	"IHd"	WET HC CORR FACT	F/A CALC	F/A PCT MEAS	002	OWER CORR FACT	BSFC CORR LB/HP-HR	MODAL WEIGHT FACTOR	T MODE
1 6.89 3.46 2 2.37 7.76 5 2.88 8.60	240 44.29 25. 1.29 24. 1.29 24. 1.29 24. 1.29 24. 1.29 25. 1.29 27. 1.20 27. 1.20	# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.0088 .0111 .0194 .0283 .0415 .0156 .0397		28 - 28 - 28 - 28 - 28 - 28 - 28 - 28 -	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0115 0200 0200 0297 0432 0647 0620 0400	20.0 0.0 0.0 20.2 20.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		000 000 000 000 000 000 000 000 000 00	* U *	79000000000000000000000000000000000000	
3 10.52 7.06 1: 7 12.34 8.39 ***	<u>_</u>	52.95	0123	0691	195	976	0129	-20.5		000	7.4	080	22

CYCLE COMPOSITE USING 13-MODE WEIGHT FACTORS
BSHC ----- 3,858 GRAM/BHP-HR
BSNOX ----- 3,208 GRAM/BHP-HR
BSNOX ----- 3,208 GRAM/BHP-HR
BSHC + BSNOX = 3,687 GRAM/BHP-HR
CORR, BSFC - = ,547 LBS/BHP-HR

TABLE A-2. 13-MODE GASEOUS EMISSIONS RESULTS FROM ISUZU C-240 (8-22-85)

13-MODE FEDERAL DIESEL EMISSION CYCLE 1979

MODE POWER ENGINE TORQUE POWER FUEL AIR		1			TEST-5	FUEL:	: EM-627-	.F	OJECT:0	2-8341-1	75	DAT	DATE:8/22/85	/85				
2 INTER / 2000. 3. 1.0 .057 5. 5. 1.0 .057 5. 5. 1.0 .057 5. 5. 1.0 .057 5. 5. 1.0 .057 5. 5. 1.0 .057 5. 5. 1.0 .057 5. 5. 1.0 .057 5. 1.0 .057 5. 1.0 .057 5. 1.0 .057 5. 1.0 .050 5. 1.0 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	MODE	POWER	E SE COND	IGINE PED / RPM	TORQUE OBS LB-FT	POWER OBS BHP	FUEL FLOW LB/MIN	AIR FLOW LB/MIN	INTAKE HUM ID GR/LB	NOX CORR FACT	구 <u>무</u>	MEASUR CO PPIN	E0 C02 PCT	X 20 X 21 X 21	CALCUL GRAMS / HC CO	ALCUL:	ATED HOUR NOX	MODE
2 INTER / 2000. 3. 1.0 .015 1.1 2 INTER / 2000. 24 9. 10. 100 55 50 INTER / 2000. 24 9. 10. 100 55 100 INTER / 2000. 100 38.0 .212 5 100 INTER / 2000. 100 38.0 .318 5. 14		1				1111111						•		1				
2 INTER / 2000. 24. 9.0 .057 5. 5. 5. 1 1.0 .057 5. 5. 1 1.0 .057 5. 1 1	-		IDLE	/ 725.		•	.015	1.96	82.	1.028		206.	2.17	135.		8	6	-
25 INTER / 2000. 24. 9.0 100 5.7 5.1 10.0 INTER / 2000. 74. 28. 0.2 12. 5.1 10.0 INTER / 2000. 74. 28. 0.2 12. 5.1 10.0 INTER / 2000. 100. 38.0 318 5.1 12. 5.1 10.0 INTER / 2000. 100. 38.0 31.8 5.3 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	7	7	MTER	/ 2000		0.	.057	5.37	82.	1.035		365	2.32	103		48.	23.	7
50 INTER / 2000. 49. 18.5 .148 5.175 INTER / 2000. 74. 28.0 .212 5.100 INTER / 2000. 74. 28.0 .212 5.100 INTER / 2000. 74. 28.0 .318 5.22 10.0 INTER / 2000. 70. 34.4 .360 6.210 8.75 EATED / 2400. 97. 44.4 .360 6.210 8.23 6.210 8.23 6.210 8.23 6.210 8.24 10.8 .115 6.22 EATED / 2400. 24. 10.8 .115 6.22 EATED / 2400. 24. 10.8 .115 6.20 8.010 8.24 6.21 8.24 6.24 8.24 6.24 8.24 6.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8	~	25	INTER	/ 2000.		0.6	001	5,33	98.	1.076		314.	4.01	210.		42	50,	•
100 INTER / 2000, 174, 28.0, 212 5.10 100 INTER / 2000, 100, 38.0, 318 5.0, 100 RATED / 2400, 70, 31.8, 23.2 6.2 5.2 RATED / 2400, 70, 31.8, 23.2 6.2 5.2 RATED / 2400, 24, 10.8, 110 6.2 2.2 RATED / 2400, 24, 10.8, 110 6.2 2.2 RATED / 2400, 1, 0, 0, 0.018 1.0 E.	4	20	INTER	/ 2000		18.5	148	5.25	.68	1.028		168	6.30	315.		22.	68.	•
100 INTER 2000. 100. 38.0 318 5. 101 ATED 2400. 70. 31.8 232 6. 2	2	75	INTER	/ 2000		28,0	212	5.25	.68	1.026		177.	9.21	335.		22.	7	
100 RATED / 2400. 97. 44.4 550 6.70 70. 31.8 220 6.70 8.71 9. 240. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	9	001	INTER	/ 2000	_	38.0	.318	5,23	.68	1.025	60.	2322	13,84	280	4	290.	58	•
100 RATED / 2400, 97, 44,4 , 360 6, 50 8 ATED / 2400, 70, 31,8 , 232 6, 50 8 ATED / 2400, 24, 10.8 , 115 6, 22 RATED / 2400, 24, 10.8 , 115 6, 22 RATED / 2400, 24, 10.8 , 115 6, 24 RATED / 2400, 10, 00, 00, 00, 00, 00, 00, 00, 00,	_		IDLE	/ 725.		•	.017	1,88	89	1.027		206	2.22	145.			0	7
75 RATED / 2400. 70. 31.8 .232 6. 25 0 RATED / 2400. 24. 10. 170 6. 22 RATED / 2400. 14. 10. 170 6. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	œ	8	RATED	/ 2400.		44.4	.360	6.34	85.	1.012	_	1021	13,69	310.		147	74.	80
29 RATED / 2400. 46. 21.0 .170 6. 25 RATED / 2400. 14.0.8 .115 6. 080 6. 108 1.15 6. 080 6. 0.0 0.018 1.15 6. 080 6. 0.0 0.018 1.15 6. 0.0 0.018 1.15 6. 0.0 0.018 1.15 6. 0.0 0.018 1.15 6. 0.0 0.018 1.15 6. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0	75	RATED	/ 2400.		31.8	.232	6.20	85.	1.018		225.	8.39	405		34.	102	0
25 RATED / 2400. 10.8 .115 6. 2 RATED / 2400. 16 .080 6. 10.	2	2	RATED	/ 2400.		21.0	.170	6,30	104	1.070		187.	5.97	290		29.	79.	2
CALCULATED GRAMS/LB-FUEL GRAMS/LB-FUEL GRAMS/LB-FUEL GRAMS/LB-FUEL GRAMS/BHP-HR HC CO NOX HC N	=	25	RATED	/ 2400.		10.8	.115	6,26	109	= :		235.	4.15	205		36.	56.	=
GRAMS/LB-FUEL GRAMS/BHP-HR PRY PRY PRY PRY PRY PRY PRY PRY PRY PR	13	7	RATED	/ 2400.		9.	080	6.26	105	1.113		324	2.64	100		53	30.	12
GRAMS/LB-FUEL GRAMS/BHP-HR DRAS HC CO NOX HC CO NOX MEAS S 391 865 9.48 ************************************	~		IDLE	/ 725.		•	.018	1.96	99.	1.095		284.	2.23	120.		13.	0.	2
GRAMS/LB-FUEL GRAMS/BHP-HR DRY HC CO NOX HC CO CO NOX HC CO																		
GRAMS/LB-FUEL GRAMS/BHP-HR DRY HC CO NOX HC CO NOX MEAS 5 95 8.63 9.48 ************************************				CALCUL	.ATED		F/A	F/A		WET HC	F/A	F/A	P	OWER	BSFC	_	HODAL	
6.65 9.48 ************************************	#00E	٥ ا	RAMS/LE	I-FUEL	GRAMS/	BHP-HR	DRY		"PH"	CORR		PCT	J	ORR	CORR	-	IE I GHT	MODE
8.63 9.48 ************************************	1	£	ဗ	XON	ٽ ۲	XON 0	MEAS	STOICH	_	FACT	CALC	MEAS	•	NCT .	L8/HP-HR	~	FACTOR	
14.12 6.73 15.50 48.00 22.88 .0107 2.44 7.67 .58 1.17 5.53 .0190 2.44 7.67 .58 1.17 5.53 .0190 2.88 .0107 2.44 7.67 .58 1.17 5.53 .0190 2.88 2.99 6.81 2.7 80 2.53 .0409 6.80 3.41 .03 3.31 1.66 .0575 2.46 7.75 .81 1.05 3.31 1.66 .0578 2.86 7.75 .62 1.59 3.77 .0774 5.17 8.17 .58 3.50 5.22 .0187 1.109 6.82 1.59 3.77 .0130 1.166 8.72 8.88 8.88 8.88 8.88 8.89 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70	_	.95	8.63	9.48		7	•	_	112	976	0104	33.7	•	992	***	;	.067	-
7.06 8.29 3.54 4.71 5.53 .0190 7.46 7.67 .58 1.71 3.69 .0286 1.76 5.58 .27 .80 2.55 .0409 15.16 3.06 .11 7.62 1.54 .0616 8.42 9.93 **********************************	7	3.91	14.12	6.73	-	•	Ĭ	_	. 155	.975	.0112	5.1	•	.993	3,423	•	080	7
2.44 7.67 .58 1.17 3.69 .0286 1.76 5.86 2.53 .0409 15.16 3.06 .11 7.62 1.54 .0616 8.42 9.93 **********************************	~	5.31	7.06	8.29			Ī	_	.275	196.	.0192	∞.	•	966	699*	•	080	•
1, 6 5, 5 8 . 27 . 80 2, 5 3 . 9409 5, 16 3, 06 . 11 . 7, 62 1, 54 . 9616 8, 42 9, 93 *********************************	♥ (1.22	2.44	7.67			٠	_	414	. 943	.0294	7.6	<u>-</u> .	005	.480	•	080	4
1, 16	Λ,	60.	1.76	5.58			Ĭ	_	. 591	.920	.0423	3.6	-	005	.453	•	080	S
8.42 9.93 *********** ***** **** 0.090 6.80 3.41 .03 3.31 1.66 .0575 2.46 7.35 .18 1.07 3.21 .0778 2.86 7.75 .62 1.39 3.77 .0274 5.17 8.17 .58 3.30 5.22 .0187 11.69 6.22 16.69 88.75 49.77 .0130	۰ ه	77.	_				·	ĺ	.892	.885	.0633	2.7	- :	003	. 501	•	080	9
6.80 3.41 .03 3.51 1.66 .0575 2.46 7.35 .18 1.07 3.21 .0378 2.86 7.75 .62 1.39 3.77 .0274 5.17 8.17 .58 3.30 5.22 .0187 11.09 6.22 16.65 88.75 49.77 .0130	_	9.7				Ĭ.	Ī	_	. 130	916.	0100	18.4	<u>-</u>	000	****	•	.067	^
2.46 7.35 .18 1.07 3.21 .0378 2.46 7.75 .62 1.39 5.27 .0274 5.17 8.17 .58 3.30 5.22 .0187 1.109 6.22 16.69 88.75 49.77 .0130 11.56 8.72 ************************************	œ ·	90.	6.80				•	Ĺ	.833	.887	.0620	7.8	•	966	.487	•	080	80
2.86 7.75 .62 1.39 3.77 .0274 5.17 8.17 .0274 11.09 6.22 16.69 88.75 49.77 .0130 11.56 8.72 ************************************	σ,	= :	2.46				٠	_	. 548	.926	.0387	2,3	<u>-</u>	90	.435	•	080	٥
5.17 8.17 .58 3.30 5.22 .0187 11.09 6.22 16.69 88.75 49.77 .0130 11.56 8.72 ####################################	2	1.28	2,86	7.75			٠	Ī	. 397	. 945	.0279	- 8	-	90	.484	•	080	2
11.09 6.22 16.69 88.75 49.77 .0150	= :	3	2.17	8.17			Ī		.270	.959	.0196	6.4	<u>-</u>	000	.639	•	080	=
1 20 C 12 serementales enteres COOC	12	2.09	500	6.22	Ξ,	4		_	. 188	.972	.0127	-2.4	•	966	8.020	,	080	12
C600*	-	2.16	11.56	8.72		****	Ī	_	. 137	.975	.010	12.6	•	686	* * * *	•	.067	<u>-</u>

CYCLE COMPOSITE USING 13-MODE WEIGHT FACTORS
BSHC ----- \$,52 GRAM/BHP-HR
BSCO ----- \$,680 GRAM/BHP-HR
BSNOX ----- \$,126 GRAM/BHP-HR
BSHC + BSNOX = 3,657 GRAM/BHP-HR
CORR, BSFC -= ,541 LBS/BHP-HR

TABLE A-3. 13-MODE GASEOUS EMISSIONS RESULTS FROM TELEDYNE TMD 20

13-MODE FEDERAL DIESEL ENISSION CYCLE 1979

				ENGINE: TEST-1		LEDYNE	TELEDYNE TWO 20-107PT FUEL: EN-627-F PI	107PT	SERIAL N	PT SERIAL NO. 300382 PROJECT: 02-8341-175	CU LO	DATE	DATE: 11/7/86	9				(
9	POMER	ENGINE SPEED COMD / RPM	ENGINE SPEED O / RPM	TOROU OBS T-F-81	[OWER OBS BYP	FUEL FLOW B/NIN	AIR FLOW LB/NIN	INTAKE HUNID GR/LB	X SO T	₹ 9	MEASURED CO PP K PC	38 _B	XX X	2 3	CALCULATED GRANG / HOUR NC ED NO	ATED HOUR NOX	MODE
								1	9	1 8	1	390	9.	} \$:		-
-		IDLE	1040	_		9	.0.		į	5		000	0/1	į	•	2	í	- 6
a	a	INTER ,	2000			æ	949	4.54	4 8.	916	8	200	1,59	8		9	S.	N
o o	8	INTER	2000		_	8	8	2.50	48.	. 926	68.	148.	<u>ئ</u>	582	÷	18,	ģ	es .
•	2	TNTER	000			16.5	2	4.18	48	835	22	2 2	9,05	336,	ë	<u>.</u>	2	4
1) K	TATER	0000			25.0	170	70.4	48.	.861	82.	111.	8,80	9	ë	Ğ.	ž,	a
æ	Ę	THTER	2000		_	33.0	.247	4.04	47.	.873	38.	748.	13,68	380	ລໍ	74.	ģ	6
, ~	!	101E	1040			ò	020	2,25	4	998	1	2 8	1.78	\$	÷	17.	4	7
. Œ	100	PA TED	/ 2230			38.2	286	4.43	47.	98.	.	₹ •	13.68	370.	-	8	6	23 /
æ	25	RATED	2230		_	27.3	S	4.61	.	.863	8	130.	9.32	2 8	ณ้	15	79	a
÷	2	TA TED	2230		_	18.4	#	4.54	48.	,837	8	₹ 8	æ.	340.	ດຳ	7	ď ď	2
	š	E E	2230			6	100	18	48.	828	75.	8	4.48	210.	ت	8	38	=
Ç	2	EATED.	/ 2230	ď		0	89	7.6	48,	.812	406.	386.	2.84	ģ	æ	48	2	<u>ئ</u>
5		IDLE	/ 1040.			0	225	5.28	48.	,907	168.	304.	1.73	ş	ا نو	ន់	•	2
													1		}	1		
			CALCULATE	ATED			F/A	F/A			F/A	F/A	2	OWER	3.458	_	MODAL	
300	æ	GRANG/LB-FUEL	1919	GRA	GRAMS/BIP-HR	Ŧ	ORY		.bHI	_		Ş	0	뜐	8	_	F16元	
į	3	8	ğ	皇	8	XQX	NEAS	STOICH	_	FACT	CALC	MEAB	1	ACT	LB/FF	- (=	ACTOR	1
-	12.	40 CF	8	100000	:	:	200	Ι'	100		9800	18.7	+	015	****		790	-
۰ م	S.	90	8	8.72	45.39	27.43	110	•	166	_	.007	G. 85-	÷	8	3.2M		99	a
	2	8	7.37	4	8	4.25	60	•	200		98 98	£,	÷	8	,55°		8	es.
4	4	8	7.74	6	78	3,38	.028		54	-	.0282	اء م	÷	88	64		98	∢ :
10	34	1.1	7.19	7	4	88	9	٠	<u>8</u>	_	9408	4	.	2	38		8	۵ ر
•	*	4.99	69.	8	2.24	1.8	196.	٠	986		.0619	₩.	-	88	432			.
~	3,67	14,31	3.10	******		*****	900.	٠	126		9600	e.	-	919			9	٠,
Œ	6	12.85	3.82	සු	6.07	68.	99	Ť	ğ	_	.0825	ب س	-	8	3		3	D (
a	E.	1,28	8.58	8	56	2.89	.0447	٠	.84	_	828	4	÷,	8	9.4		300	» (
۲	ત	÷.	7.00	÷.	.78	3,38	289.	Ī	4	_	918	60 C		900			3 8	⊋;
F	.78	4.20	4.4	S,	9 8	4.33	Š	•	.33	-	8	9	- •	3 5	200		9	2 9
12	8	13.00	4.87	25.55	40.04	17.23	935	9890	86.	4,6	92128		-	200			8	<u> </u>
1 3	4.38	15,71	3,08	*****	*		200.	-	5 .	_ :		-	=	•			ì	2

TABLE A-4. 13-MODE GASEOUS EMISSIONS RESULTS FROM PEUGEOT XD3P

19-MODE FEDERAL DIESEL ENISSION CYCLE 1978

	MODE		-	QJ.	m	4	ю	•	^	œ	a	2	F	악	13	
	LATED	ğ	5.	13.	8	1,	28	2		ž	6	4	æ	<u>ā</u>	7.	
	CALCULA BRANG / 1	8	8	8	88	g	18.	\$	8	8	<u>د</u>	8	8	Ę.	8	
	- 5	皇	*	8	ġ.	÷	÷.	.	6	ai	ů	ů		₽.	2.	
12/9/86	ğ	₹	65.	\$	19.	\$	246	<u>\$</u>	75.	<u>2</u>	8	185.	\$	4	8	
DATE: 12/1	8	됴	1.78	ය ය	2 .	2.87	8.79	16.7 2	8.	15.84	8.8	8. 8.	4.08	9. 2.	1.78	
DA	MEABURED CO	Ē	437.	8	8	138 .	5	366	376	277	139.	₽ 2	800	4 67	356.	
175	£	£	197.	8	185.	<u>왕</u>	\$	1 9	8	8	2	67.	72.	25	146.	
02-8341-175	¥8	FACT	1,060	 56.	1.047	950	1,037	1.028	1.063	1.027	88.	2.5	3	<u> </u>	1,061	
PROJECT:	INTAKE	es/LB	96.	8	g	3	8	8	8	8	8	8	8	a.	8	
_	AIR	LB/NIN	2,28	6,73	5,65	89.0	5.6	5.53	2.24	2.88	8.08	6.10	6.18	8 8	6,30	
Ø3P EH-527-F	FUEL FLORE	LB/MIN	•015	.073	701	157	8	.817	.018	367	547	.178	.	.075	220,	
PEUBEOT FUELS	POMER		ď	•	10.4	20.2	9.7	9.14	9	5	34.0	25.5	11.3	0.	ą	
ENGINE: TEST-1	TOROLE	19-61	ď	å	8	5	78.	10t	•	103	78.	51.	8	ณ้	ď	
	3 4 6	Ž.	906	28	28.	200.	<u>2</u>	200.	800	2300	2300	2300	2300	5300	900	
	ENGINE) (0000	IDLE /	INTER /	INTER /	IMTER /	IMER /	IMTER /	IDLE /	RATED /	PATED /	PATED /	RATED /	RATED /	IDLE /	
	POMER	FCE		CM	g	8	2	2		5	22	8	£	Q		
			-	a	~	4	•	•	^	•	æ	2	F	4	Ç	

### PACT CORN CORN WEIGHT HODE FACT CALC NEAS FACT LB/HP-HR FACTOR TOWN CORN CORN CORN CORN CORN CORN CORN COR								1			5	5	5	8	0000	T T T	
	GRANG/LB-FULL GRANG/BHP-HR	B-FUEL GRANS/BHP-HR	WAS/BIP-III	WAS/BIP-III					4/L	*PHI	8	. .	£ 5 8		800	WEIGHT	
. 198 . 978 . 10067 . 31,4 1,008	3	3 3	1	1	- 1 - 1	- 1 - 1	1	۱ ع	1010				}				
. 188 . 675 . 0113 - 12.6 1 .030 5.067 . 080 1.277 . 881 . 0130 - 7 1 .028 . 586080 1.40484502781 1 .028447080 1.589 . 823 . 0.405 - 4 1 .028447080 1.208720887 1 .028444080 1.875882088 - 2 8 1 .033488080 1.875882086 - 7 8 1 .035481080 1.874882088 - 1 8 1 .035441080 1.8748900183 . 1 8 1 .035441080 1.77894018 - 3 8 1 .035888080 1.77890018 - 3 8 1 .035888080 1.77890018 - 3 8 1 .034 4 .207080 1.388900067 - 9.1 1 .007	21.77 5.80 ********* ******	2.80 ****** ********	****** **********	********	*******		ĕ	8	0690	980	.878	-0087	9. 4.	1.008	•••	.087	-
277	18.75 2.96 30.85 98.23 15.48	2.95 30.95 98.23 15.46	30,85 88,23 15,48	98.23 15.46	15.46	_	£	8	0880	188	.976	613	72.6	080	5.087	90.	a
. 404 . 845 . 02781 1.028 . 447080	5,10 4,26 1,18 3,14 2,83	4.26 1.18 3.14 2.63	1,18 3,14 2,63	3,14 2,63	2.83	_	Ē	2	0690	<i>12</i>	8	9610		1.029	.588	8	ø
. 568 . 823 . 04054 1.028421080 1. 840 . 863 . 06787 1.028444080 875 . 862 . 02682 1.008	2,13 4,70 ,49 ,98 2,18	4.70 .49 .98 2.18	.49 .98 2.18	.98 2.18	2.18	_	ğ	8	0690	\$	₹	.0279	7	1.028	.447	080.	•
. 840 . 883 . 0578, 7 1.028444080	1.36 4.32 .34 .58 1.87	4,32 ,34 ,58 1,87	.34 .59 1.87	28 1.87	1.87	_	3	2	0690	88.	8	0405	7.	1.029	ā.	8	ø
1275 .882 .0268 -2.8 1.008 .468 .090 .807 .882 .0268 -2.8 1.033 .458 .090 .413 .843 .0290 1.8 1.035 .441 .080 .413 .843 .0290 1.8 1.035 .441 .080 1.274 .890 .0183 1.8 1.035 .588 .080 .177 .874 .0118 -3.8 1.034 4.207 .090 .138 .890 .0067 -9.1 1.007	2.58 2.80 .19 1.17	2.90 .19 1.17 1.32	.19 1.17 1.32	1.17 1.32	1.32	٠.	99	0	0690	9.	88	9678	7. -	1.028	į	8 0.	•
875 882 0586 -2,8 1,033 ,488 ,080	18.24 6.27 eccececes secon	8.27 ******	***************************************	******	******	_	8	Ω	0690	120	878	9900	7.8	1.008	****	.067	7
. 601 . 822 . Ja4081.3 1.035 . 421 . 080 441	4.08 2.55 .06 1.93 1.21	2,55 ,06 1,93 1,21	. 06 1.93 1.21	1.83	1.2	_	8	3	0690	.875	8	9890	8 9	1.033	.458	90.	.
. 413 . 843 . 0290 1.8 1.035 . 441 . 080 1 . 274 . 880 . 0198 1.8 1.034 4.207 . 080 1 . 177 . 874 . 0118 - 3.8 1.034 4.207 . 080 1 . 138 . 880 . 0067 - 9.1 1.007	1,43 3,83 ,14 ,62 1,67	3,83 ,14 ,82 1,67	.14 .82 1.67	.62 1.67	1.67	_	ă	2	0880	<u>§</u>	8	9. 804 804	<u>د</u>	1.035	<u>\$</u>	89.	æ
. 274 .860 .0163 1.6 1.035 .568 .080 .177 .177 .974 .0118 -3.6 1.034 4.207 .060 .138 .860 .0067 -9.1 1.007 ******	P. 32 4,12 .24 1,08 1,88 .	4,12 .24 1.08 1.88	. 24 1.06 1.88	1.06 1.88	1.88	_	ă.	炽	0690	£.	3	0830	.	1.035	¥.	9	2
1 ,177 ,874 ,0118 -3,6 1,034 4,207 ,080 ,138 ,880 ,0087 -9,1 1,007 ***********************************	4.61 3.80 .50 2.81 2.32	3,80 ,50 2,81 2,32	.50 2.81 2.32	2.81 2.32	28.35	٠	96	9	0690	274	980	98	1.0	1.035	288	9	F
790, **** 700,1 1,9~ 780, 088, 881, (68.36 11,79	2,71 17,44 68.36 11,79	17,44 68.36 11,79	68.36 11,79	11.78	_	Ë	앴	0690	11.	.974	8 1 8	8.6	1.034	4.807	9	란
	17.82 5.16 ***********	5.16 ************************************	****** **********	*****	*****	•	8	8	0890	.138	8	.0067	-	1,007	•	.067	5

TABLE A-5. AVERAGE OF TWO 13-MODE EMISSION RESULTS (G/HP-HR) ON ISUZU C-240 DIESEL ENGINE

TABLE A-6. AVERAGE OF TWO 13-MODE EMISSION RESULTS (G/HR) ON ISUZU C-240 DIESEL ENGINE

						Emissic	Emission Rate, g/hp-hr	p-hr			
	Engine Condition	ndition	Î	Hydrocarbons		Carl	Carbon Monoxide	يه	Oxid	Oxides of Nitrogen	en
Mode	Speed, rpm	Load, %	8-19-85	8-22-85	Avg.	8-19-85	8-22-85	Avg.	8-19-85	8-22-85	Avg.
-	725	ı	-	-	-	∞	∞	∞	∞	6	6
7	2000	2	∞	13	==	77	8#	94	54	23	24
٣	2000	25	25	32	53	27	42	35	45	20	84
\$	2000	S.	10	11	11	74	22	23	9	89	<i>L</i> 9
5	2000	7.5	7	7	7	22	22	22	89	7.1	20
9	2000	100	#	4	4	337	290	314	47	28	53
7	725	ŀ	2	7	7	13	••	=	13	10	13
∞	2400	100	-	-	-	150	147	149	75	74	75
•	2400	7.5	9	9	9	34	34	34	112	102	107
01	2400	8	15	13	14	30	53	30	96	62	85
Ξ	2400	25	9	9	9	35	36	36	†9	56	09
13	2400	2	10	10	01	47	53	20	32	30	31
13	725	:	4	7	~	19	13	16	13	01	12

TABLE A-7. AVERAGE OF TWO 13-MODE EMISSION RESULTS (PPM or PERCENT) ON ISUZU C-240 DIESEL ENGINE

Engine Condition Speed, rpm Load, %	ondition Load,		8-19-85	Hydrocarbons 85 8-22-85	Avg	Carb 8-19-85	Carbon Monoxide	Avg.	Emission Rate, g/hp-hr noxide Oxides -85 Avg. 8-19-85	R/hp-hr Oxides of Nitrogen 19-85 8-22-85 A	Ave	Carb 8-19-85	Carbon Dioxide,	A A
- 45 45 45	- 45 45 45	45 45	3			506	506	506	011	135	123	2.22	2.17	2.20
2000 2 125 200 163	125 200	200		163		334	365	350	001	103	102	2.38	2.32	2.35
2000 25 365 460 413	365 460	094		413		707	314	259	190	210	200	4.21	4.01	4.11
2000 50 145 160 153	1 091 5#1	1 091	_	153		187	168	178	280	315	298	6.38	6.30	6.34
2000 75 100 110 105	100	011		105		177	111	177	300	335	318	9.45	9.21	9.32
2000 100 60 60 60	09 09	09		9		2733	2322	2528	220	280	250	14.13	13.84	13.99
725 60 85 73	60 85	85		73		506	206	506	011	145	128	2.22	2.22	2.22
2400 100 10 15 13	10 15	15		13		1034	1021	1028	310	310	310	13.69	13.69	13.69
2400 75 75 70 73	75 70	70		73		225	225	225	544	405	425	8.69	8.39	8.54
2400 50 190 160 175	091 061	091		175		961	187	192	340	290	315	6.22	5.97	6.10
2400 25 80 80 80	80 80	08		80		235	235	235	235	205	220	4.35	4.15	4.25
2400 2 125 120 123	125 120	120		123		314	324	319	115	110	108	2.70	2.64	2.67
725 135 105 120	135 105	105		120		304	284	294	115	120	118	2.22	2.22	2.22

APPENDIX B

SUMMARY OF ALDEHYDE AND KETONES EMISSION RATES FROM ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES

TABLE B-1. SUMMARY OF ALDEHYDE AND KETONES EMISSION RATES FROM ISUZU C-240, TELEDYNE TMD-20, AND PEUGEOT XD3P DIESEL ENGINES

Engine	Engine		Isuzu C-24			edyne TMD			eugeot XD3	
Speed	Load,%	mg/hr	mg/hp-hr	mg/m ³	mg/hr	mg/hp-hr	mg/m ³	mg/hr	mg/hp-hr	mg/m ³
					F	ormaldehyd	ie			
Idle		168		3.31	506		9.25	626	-	12.2
Peak Torque	2	377	753	3.00	945	1350	9.72	2400	2667	18.2
Rated	100	158	3.61	1.02	72	1.99	0.68	199	4.18	1.38
					A	cetaldehyd	le			
Idle		91		1.80	218		3.98	269		5.25
Peak Torque	2	219	437	1.75	379	541	3.90	900	1000	6.84
Rated	100	28	0.64	0.18	48	1.32	0.45	18	0.38	0.13
						Acrolein				
Idle		79	-	1.57	191		3.49	233		4.55
Peak Torque	2	251	502	2.01	364	520	3.74	839	932	6.38
Rated	100	14	0.32	0.09	18	0.51	0.17	95	1.98	0.65
						Acetone				
Idl e		20		0.38	12		0.23	65		1.27
Peak Torque	2	10	20	0.08	43	61	0.44	29	32	0.22
Rated	100	25	0.57	0.16	42	1.16	0.40	33	0.70	0.23
					Pro	opionaldehy	/de			
Idle		28		0.54	49		0.90	57		1.11
Peak Torque	2	64	128	0.51	92	132	0.95	258	287	1.96
Rated	100	ND	ND	ND	ND	ND	ND	ND	ND	ND
					Cr	otonaldehy	de			
Idl e		18		0.36	37		0.68	40		0.79
Peak Torque	2	50	99	0.40	89	127	0.91	254	282	1.93
Rated	100	11	0.26	0.07	ND	ND	ND	18	0.38	0.13
					Isobuty	raldehyde	+ MEK			
Idl e		20		0.39	45		0.83	91		1.77
Peak Torque	2	64	127	0.51	62	89	0.64	460	511	3.49
Rated	100	84	1.92	0.54	ND	ND	ND	44	0.91	0.30
					В	enzaldehyd	e			
idle		9.5		0.19	23		0.43	40		0.77
Peak Torque	2	69	138	0.55	99	141	1.02	218	242	1.66
Rated	100	16	0.36	0.10	3.8	0.10	0.04	19	0.41	0.13
					He	exanaldehy	de			
Idle		8.9		0.18	16		0.29	11		0.22
Peak Torque	2	42	83	0.33	17	25	0.18	175	195	1.33
Rated	100	ND	ND	ND	ND	ND	ND	ND	ND	ND

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE		CDR
DEFENSE TECHNICAL INFORMATION CTR CAMERON STATION	12	U.S. ARMY BELVOIR RESEARCH, DEVELOPMENT & ENGINEERING CTR ATTN: STRBE-VF 10 STRBE-BT 2
ALEXANDRIA VA 22314	12	STRBE-FMW 10 FORT BELVOIR VA 22060-5606
DEPT. OF DEFENSE ATTN: OASD (A&L) (MR DYCKMAN) WASHINGTON DC 20301-8000	1	HG, DEPT OF ARMY ATTN: DALO-TSE (COL BLISS) DALO-TSZ-B (MR KOWALCZYK) I
CDR DEFENSE FUEL SUPPLY CTR ATTN: DFSC-Q (MR MARTIN) DFSC-DF (MR FRENCH) CAMERON STATION	1 1	DALO-AV 1 DAMO-FDR (MAJ KNOX) 1 DAMA-ARZ (DR CHURCH) 1 DAMA-ART (MR APPEL) 1 WASHINGTON DC 20310
CDR DEFENSE GENERAL SUPPLY CTR ATTN: DGSC-SSM (MR REYNOLDS) ATTN: DGSC-STC (MR DOYLE) RICHMOND VA 23297-5000	1	CDR US ARMY MATERIEL DEVEL & READINESS COMMAND ATTN: AMCDE-SS AMCSM-WST (LTC DACEY) 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001
DOD ATTN: DUSDRE (RAT) (Dr. Dix) ATTN: ROOM 3-D-1089, PENTAGON WASHINGTON DC 20301	1	CDR US ARMY TANK-AUTOMOTIVE CMD ATTN: AMSTA-RG (MR WHEELOCK) 1 AMSTA-TSL (MR BURG) 1
DEFENSE ADVANCED RES PROJ AGENCY DEFENSE SCIENCES OFC 1400 WILSON BLVD ARLINGTON VA 22209	1	AMSTA-MTC (MR GAGLIO), AMSTA-MC, AMSTA-MV I AMSTA-UB (MR MCCARTNEY) I AMSTA-MLF (MR KELLER) I WARREN MI 48397-5000
DEFENSE STANDARDIZATION OFFICE ATTN: DR S MILLER 5203 LEESBURG PIKE, SUITE 1403 FALLS CHURCH, VA 22041	I	DIRECTOR US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY ATTN: AMXSY-CM (MR NIEMEYER) AMXSY-CR (MR O'BRYON)
USA PLOF-AMEBASSY ATTN: MR J D PINZOLA	1	ABERDEEN PROVING GROUND MD 21005-5006
DEPARTMENT OF THE ARMY DIRECTOR		CDR US ARMY SECURITY ASSISTANCE CTR ATTN: AMSAC-MP/S (MR HARVEY) 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001
APPLIED TECHNOLOGY LAB U.S. ARMY R&T LAB (AVSCOM) ATTN: SAVDL-ATL-ATP (MR MORROW SAVDL-ATL-ASV FORT EUSTIS VA 23604-5577	/) <u>1</u>	CDR US READINESS COMMAND ATTN: J4-E MACDILL AIR FORCE BASE FL 33608
		BFLRF No. 215 Page 1 of 6

DIRECTOR US ARMY MATERIEL CMD MATERIEL SUPPORT ACTIVITY ATTN: AMXTB-T (MR STOLARICK) FORT LEWIS WA 98433	1	CDR US ARMY ABERDEEN PROVING GROUND ATTN: STEAP-MT-U (MR DEAVER) ABERDEEN PROVING GROUND MD 21005	1
CDR US ARMY GENERAL MATERIAL & PETROLEUM ACTIVITY ATTN: STRGP-F (MR ASHBROOK) STRGP-FE, BLDG 85-3 STRGP-FT NEW CUMBERLAND PA 17070-5008 HO, DEPT. OF ARMY	1 1 1	YUMA AZ 85364-9130 PROJ MGR, BRADLEY FIGHTING VEHICLE SYS	1
ATTN: DAEN-DRM WASHINGTON DC 20310	1	ATTN: AMCPM-FVS-M WARREN MI 48397	1
CDR US ARMY LABORATORY COMMAND ATTN: AMSLC-AS-SE (DR ODOM) AMSLC-TP (DR GONANO) ADELPHIA MD 20783-1145	l Í	CDR US ARMY DEVELOPMENT AND EMPLOYMENT AGENCY ATTN: MODE-FDD-CSSB (MAJ GROSSMAN) FT LEWIS VA 98433-5000	1
CDR US ARMY RES & STDZN GROUP (EUROPE) ATTN: AMXSN-UK-RA (DR OERTEL) AMXSN-UK-SE (LTC NICHOLS)	1 1	CDR 105TH S & T BATTALION 5TH INFANTRY DIV (MECH) FORT POLK LA 71459	1
BOX 65 FPO NEW YORK 09510 PROG MGR, M113 FAMILY OF VEHICLE ATTN: AMCPM-M113-T WARREN MI 48397	ES I	CDR CHEMICAL R&D CENTER ATTN: SMCCR-MMS ABERDEEN PROVING GRD MD 21010-5423	1
CDR US ARMY FORCES COMMAND ATTN: AFLG-REG AFLG-POP	1 1	PROJ MGR, MOBILE ELECTRIC POWER ATTN: AMCPM-MEP-TM 7500 BACKLICK ROAD SPRINGFIELD VA 22150	1
CDR US ARMY BALLISTIC RESEARCH LAB ATTN: SLCBR-VL-S SLCBR-TB-E ABERDEEN PROVING GROUND MD 21005-5006	1 1	PROJ OFF, AMPHIBIOUS AND WATER CRAFT ATTN: AMCPM-AWC-R 4300 GOODFELLOW BLVD ST LOUIS MO 63120 CDR US ARMY EUROPE & SEVENTH ARMY	1
CDR US CENTRAL COMMAND ATTN: CINCCEN/CC J4-L MACDILL AIR FORCE BASE FL 33608	1	ATTN: AEAGG-FMD AEAGD-TE APO NY 09403	

BFLRF No. 215 Page 2 of 6

CDR US ARMY RESEARCH OFC ATTN: SLCRO-EG (DR MANN) SLCRO-CB (DR GHIRARDELLI) P O BOX 12211 RSCH TRIANGLE PARK NC 27709-2211	1	CDR AMC MATERIEL READINESS SUPPORT ACTIVITY (MRSA) ATTN: AMXMD-MO (MR BROWN) LEXINGTON KY 40511-5101	1
PROG MGR, TACTICAL VEHICLE ATTN: AMCPM-TV WARREN MI 48397 CDR	i	AMSTE-CM-R-O	1 1 1
TRADOC COMBINED ARMS TEST ACTIVITY ATTN: ATCT-CA FORT HOOD TX 76544 CDR	1	CDR, US ARMY ARMAMENT MUNITIONS & CHEMICAL COMMAND ARMAMENT RESEARCH & DEVELOPMENT CTR ATTN: AMSMC-LC AMSMC-SC	
US ARMY LEA ATTN: DALO-LEP NEW CUMBERLAND ARMY DEPOT NEW CUMBERLAND PA 17070	ı	DOVER NJ 07801-5001 CDR, US ARMY TROOP SUPPORT COMMAND ATTN: AMSTR-ME	1
CDR US ARMY GENERAL MATERIAL & PETROLEUM ACTIVITY ATTN: STRGP-FW (MR PRICE) BLDG 247, DEFENSE DEPOT TRACY TRACY CA 95376-5051	1	AMSTR-S AMSTR-E	1 1
PROJ MGR, LIGHT ARMORED VEHICLES ATTN: AMCPM-LA-E WARREN MI 48397	S 1	CERL-ES (MR CASE) CERL-EH	1 1 1
CDR US ARMY ORDNANCE CENTER & SCHOOL		P O BOX 4005 CHAMPAIGN IL 61820	
ATTN: ATSL-CD-CS ABERDEEN PROVING GROUND MD 21005	1	TRADOC LIAISON OFFICE ATTN: ATFE-LO-AV 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	1
CDR US ARMY FOREIGN SCIENCE & TECH CENTER ATTN: AMXST-MT-1 AMXST-BA FEDERAL BLDG CHARLOTTESVILLE VA 22901	1 1	ATSM-TD	1 1 1
PROJECT MANAGER, LIGHT COMBAT VEHICLES ATTN: AMCPM-LCV-TC WARREN, MI 48397	ı	HQ US ARMY TRAINING & DOCTRINE CMD ATTN: ATCD-SL-5 (MAJ JONES) FORT MONROE VA 23651-5000	1

BFLRF No. 215 Page 3 of 6

CDR US ARMY NATICK RES & DEV LAB ATTN: STRNA-YE (DR KAPLAN) STRNA-U NATICK MA 01760-5000 DIRECTOR	1	DIR US ARMY MATERIALS TECHNOLOGY LABORATORY ATTN: SLCMT-M SLCMT-EM (DR FOPIANO) WATERTOWN MA 02172-2796	1 1
US ARMY RSCH & TECH LAB (AVSCOM) PROPULSION LABORATORY ATTN: SAVDL-PL-D (MR ACURIO) 21000 BROOKPARK ROAD CLEVELAND OH 44135-3127	1	PROG MGR, TANK SYSTEMS ATTN: AMCPM-GCM-SM AMCPM-M60 WARREN MI 48397	1
CDR US ARMY TRANSPORTATION SCHOOL ATTN: ATSP-CD-MS (MR HARNET) FORT EUSTIS VA 23604-5000	1	CHIEF, U.S. ARMY LOGISTICS ASSISTANCE OFFICE, FORSCOM ATTN: AMXLA-FO (MR PITTMAN) FT MCPHERSON GA 30330	1
PROJ MGR, PATRIOT PROJ OFFICE		DEPARTMENT OF THE NAVY	
ATTN: AMCPM-MD-T-C U.S. ARMY MISSILE COMMAND REDSTONE ARSENAL AL 35898	1	CDR NAVAL AIR PROPULSION CENTER ATTN: PE-33 (MR D'ORAZIO)	1
HQ, US ARMY ARMOR CENTER AND FORT KNOX ATTN: ATSB-CD FORT KNOX KY 40121	1	PE-32 (MR MANGIONE) POBOX 7176 TRENTON NJ 06828 CDR	1
CDR COMBINED ARMS COMBAT DEVELOPMENT ACTIVITY		NAVAL SEA SYSTEMS CMD ATTN: CODE 05M4 (MR R LAYNE) WASHINGTON DC 20362-5101	i
ATTN: ATZL-CAT-E ATZL-CAT-A FORT LEAVENWORTH KA 66027-5300 CDR	1	CDR DAVID TAYLOR NAVAL SHIP R&D CTR ATTN: CODE 2830 (MR BOSMAJIAN) CODE 2759 (MR STRUCKO)	1
US ARMY LOGISTICS CTR ATTN: ATCL-MS (MR A MARSHALL) ATCL-C	1 1	CODE 2831 ANNAPOLIS MD 21402 CG	i
PROJECT MANAGER PETROLEUM & WATER LOGISTICS		FLEET MARINE FORCE ATLANTIC ATTN: G4 (COL ROMMANTZ) NORFOLK VA 23511	1
ATTN: AMCDM DWG	1	CDR NAVAL SHIP ENGINEERING CENTER ATTN: CODE 6764 (MR. BOYLE) PHILADELPHIA PA 19112	ı
US ARMY ARMOR & ENGINEER BOARD ATTN: ATZK-AE-AR	1 [CDR NAVAL AIR SYSTEMS CMD ATTN: CODE 53',45 (MR MEARNS) WASHINGTON DC 20361	l

BFLRF No. 215 Page 4 of 6

PROJ MGR, M60 TANK DEVELOPMENT ATTN: USMC-LNO US ARMY TANK-AUTOMOTIVE COMMAND (TACOM) WARREN MI 48397	ı	CHIEF OF NAVAL OPERATIONS ATTN: OP 413 WASHINGTON DC 20350	1
DEPARTMENT OF THE NAVY HQ, US MARINE CORPS ATTN: LPP (MAJ LANG) LMM/2 (MAJ PATTERSON) WASHINGTON DC 20380	I 1	DEPARTMENT OF THE AIR FORCE HQ, USAF ATTN: LEYSF (COL LEE) WASHINGTON DC 20330	1
CDR NAVAL AIR DEVELOPMENT CTR ATTN: CODE 60612 WARMINSTER PA 18974	ı	HQ AIR FORCE SYSTEMS CMD ATTN: AFSC/DLF (MAJ VONEDA) ANDREWS AFB MD 20334 CDR US AIR FORCE WRIGHT AERONAUTICA	1
CDR NAVAL RESEARCH LABORATORY ATTN: CODE 6170 CODE 6180 CODE 6110 (DR HARVEY) WASHINGTON DC 20375	1 1 1	LAB ATTN: AFWAL/POSF (MR CHURCHILL) AFWAL/POSL (MR JONES) AFWAL/MLSE (MR MORRIS) AFWAL/MLBT (MR SNYDER) WRIGHT-PATTERSON AFB OH 45433	
CDR NAVAL FACILITIES ENGR CTR ATTN: CODE 1202B (MR R BURRIS) 200 STOVAL ST ALEXANDRIA VA 22322	1	CDR SAN ANTONIO AIR LOGISTICS CTR ATTN: SAALC/SFT (MR MAKRIS) SAALC/MMPRR KELLY AIR FORCE BASE TX 78241	1
COMMANDING GENERAL US MARINE CORPS DEVELOPMENT & EDUCATION COMMAND ATTN: DO74 (LTC WOODHEAD) QUANTICO VA 22134	1	CDR HQ 3RD USAF ATTN: LGSF (CPT HEWITT) APO NEW YORK 09127	ı
CDR NAVAL AIR ENGR CENTER ATTN: CODE 92727 LAKEHURST NJ 08733	1	CDR WARNER ROBINS AIR LOGISTIC CTR ATTN: WRALC/MMTV (MR GRAHAM) ROBINS AFB GA 31098	ì
OFFICE OF THE CHIEF OF NAVAL RESEARCH ATTN: OCNR-126 (MR ZIEM) CODE 432 (DR MILLER) ARLINGTON, VA 22217-5000	1	CDR USAF 3902 TRANSPORTATION SQUADRON ATTN: LGTVP (MR VAUGHN) OFFUTT AIR FORCE BASE NE 68113	1
CDR NAVY PETROLEUM OFC ATTN: CODE 43 (MR LONG) CAMERON STATION ALEXANDRIA VA 22304-6180	1	CDR DET 29 ATTN: SA-ALC/SFM CAMERON STATION ALFXANDRIA VA 22314	1

BFLRF No. 215 Page 5 of 6

OTHER GOVERNMENT AGENCIES

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION VEHICLE SYSTEMS AND ALTERNATE FUELS PROJECT OFFICE ATTN: MR CLARK LEWIS RESEARCH CENTER CLEVELAND OH 44135

1

1

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION ATTN: AWS-110 800 INDEPENDENCE AVE, SW WASHINGTON DC 20590

US DEPARTMENT OF ENERGY CE-151 ATTN: MR ECKLUND FORRESTAL BLDG. 1000 INDEPENDENCE AVE, SW WASHINGTON DC 20585

ENVIRONMENTAL PROTECTION
AGENCY
AIR POLLUTION CONTROL
2565 PLYMOTH ROAD
ANN ARBOR MI 48105

END

DATE FILMED -8