# Assignment 1

### Smitesh Patil

#### 2023-02-01

1. Basic measures

```
library(igraph)
## Warning: package 'igraph' was built under R version 4.1.3
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.1.3
library(gt)
## Warning: package 'gt' was built under R version 4.1.3
dib_graph<-read.graph("dib2.graphml",format="graphml")</pre>
1.1 Give the number of nodes and edges
cat("num vertices:", vcount(dib_graph), "\n")
## num vertices: 8969
cat("num edges :", ecount(dib_graph), "\n")
## num edges : 46750
1.2 Is the network strongly or weakly connected. If neither, what is the distribution of component sizes.
  1. Strongly connected components
strong_component = as.data.frame(table(factor(components(dib_graph, mode="strong")$csize)))
names(strong_component)[1] = "Component Size"
kbl(strong_component)
```

| Freq |
|------|
| 3024 |
| 180  |
| 25   |
| 5    |
| 1    |
| 1    |
| 1    |
|      |

Answer: The table above shows strongly connected components in the directed network. There is one component with 5479, 6 and 5 nodes and a distribution of component with sizes varying from 1 to 4.

#### 2. Weakly connected components

```
weak_component = as.data.frame(table(factor(components(dib_graph, mode="weak")$csize)))
names(weak_component)[1] = "Component Size"
kable(weak_component)
```

| Component Size | Freq |
|----------------|------|
| 2              | 30   |
| 3              | 11   |
| 4              | 1    |
| 8872           | 1    |

Answer: The table above shows weakly connected components in the directed network. There is one component with 8872 and 4 nodes with 30 weakly connected components of size 2 and 11 components with size 3.

1.3 What is the diameter of the network?

```
cat("The diameter of the network is : ", diameter(dib_graph, directed = T,
    unconnected = TRUE, weights = NA), "\n")
```

## The diameter of the network is: 18

1.4 What is the average path length of the network?

## The average path length of the network : 6.017593

1.5 What is the clustering coefficient of the network?

## The clustering coeff of the graph is : 0.2300017

1.6 What is the in- and out-degree distribution?

```
deg <- degree(dib_graph, mode = "in")
cat("The in-degree distribution of the graph varies from ", min(deg), "to ",
    max(deg))</pre>
```

## The in-degree distribution of the graph varies from 0 to 473

```
hist(deg, breaks = (min(deg) - 1):(max(deg)) + 0.5, xlab = "In-degree",
   ylab = "Proportion", main = "Histogram of In-Degree Distribution",
   border = "black", col = "white", )
```

# **Histogram of In-Degree Distribution**



```
deg <- degree(dib_graph, mode = "out")
cat("The in-degree distribution of the graph varies from ", min(deg), "to ",
    max(deg))</pre>
```

## The in-degree distribution of the graph varies from 0 to 58

```
hist(deg, breaks = (min(deg) - 1):(max(deg)) + 0.5, xlab = "Out-degree",
   ylab = "Proportion", main = "Histogram of Out-Degree Distribution",
   border = "black", col = "white")
```

## **Histogram of Out-Degree Distribution**



Section 2 - Bowtie Analysis

2.1 What percentage of the network comprises the strongly connected component, the incomponent, the out-component, and tube.

```
### Strongly connected components
clu <- components(dib_graph, mode = "strong")

scc_index <- which.max(clu$csize)
scc <- V(dib_graph) [which(clu$membership == scc_index)]$name

scc_career <- V(dib_graph) [which(clu$membership == scc_index)]$career
scc_century <- V(dib_graph) [which(clu$membership == scc_index)]$century

### IN components
IN_component = c()
IN_component_career = c()
IN_component_century = c()
vertices <- V(dib_graph)

non_SCC <- vertices[!(vertices$name %in% scc)]

for (v in non_SCC) {
    dist <- bfs(dib_graph, root = v, mode = "out", unreachable = F, dist = T)$dist</pre>
```

```
connected_to_SCC <- !is.nan(dist[scc])</pre>
    if (TRUE %in% connected_to_SCC) {
        IN_component <- c(IN_component, V(dib_graph)[v]$name)</pre>
        IN_component_career <- c(IN_component_career, V(dib_graph)[v]$career)</pre>
        IN_component_century <- c(IN_component_century, V(dib_graph)[v]$century)</pre>
    }
}
### OUT components
OUT_component = c()
OUT_component_career = c()
OUT_component_century = c()
non_SCC2 <- vertices[!(vertices$name %in% c(scc, IN_component))]</pre>
for (v in non_SCC2) {
    dist <- bfs(dib_graph, root = v, mode = "in", unreachable = F, dist = T)$dist</pre>
    connected_to_non_SCC <- !is.nan(dist[scc])</pre>
    if (TRUE %in% connected_to_non_SCC) {
        OUT_component <- c(OUT_component, V(dib_graph)[v]$name)
        OUT_component_career <- c(OUT_component_career, V(dib_graph)[v]$career)</pre>
        OUT_component_century <- c(OUT_component_century, V(dib_graph)[v]$century)
    }
}
### Tube components
tube = c()
tube_career = c()
tube_century = c()
nodes_minus_SCC <- vertices[!(vertices$name %in% scc)]</pre>
g_minus_SCC <- induced_subgraph(dib_graph, nodes_minus_SCC)</pre>
out = c()
for (v in V(g_minus_SCC)[IN_component]) {
    paths <- all_simple_paths(g_minus_SCC, from = v, to = V(g_minus_SCC)[OUT_component],</pre>
        mode = "out", cutoff = -1)
    tube <- c(tube, names(unlist(paths)))</pre>
}
tube <- unique(tube)</pre>
tube <- tube[!(tube %in% c(IN_component, OUT_component))]</pre>
tube_data = c()
tube_data <- V(dib_graph)[V(dib_graph)$name %in% tube]</pre>
tube_data_career <- tube_data$career</pre>
tube_data_century <- tube_data$century</pre>
### tendril
```

```
in_tendril = c()
Tendril = vertices[!(vertices$name %in% c(scc, IN_component, OUT_component,
    tube))]$name
nodes_IN_component_Tendrils <- vertices[vertices$name %in% c(Tendril, IN_component)]</pre>
g_IN_component_Tendrils <- induced.subgraph(dib_graph, nodes_IN_component_Tendrils)</pre>
for (v in Tendril) {
    paths <- all_simple_paths(g_IN_component_Tendrils, from = v,</pre>
             to = V(g_IN_component_Tendrils)[IN_component],
             mode = "in", cutoff = -1)
    if (length(paths) > 0) {
        in_tendril <- c(in_tendril, v)</pre>
    }
}
out_tendril <- c()</pre>
nodes_OUT_component_Tendrils <- vertices[vertices$name %in% c(Tendril,</pre>
    OUT_component)]
g_OUT_component_Tendrils <- induced.subgraph(dib_graph, nodes_OUT_component_Tendrils)</pre>
for (v in Tendril) {
    paths <- all_simple_paths(g_OUT_component_Tendrils, from = v,</pre>
             to = V(g_OUT_component_Tendrils)[OUT_component],
             mode = "out", cutoff = -1)
    if (length(paths) > 0) {
        out_tendril <- c(out_tendril, v)</pre>
    }
}
library(dplyr)
```

```
## Warning: package 'dplyr' was built under R version 4.1.3
```

```
components_prop <- c(length(scc)/length(vertices), length(IN_component)/length(vertices),
    length(OUT_component)/length(vertices), length(tube)/(length(vertices)))

names(components_prop) <- c("SCC", "IN Component", "OUT component", "Tube")

kable(components_prop, col.names = "Percentage")</pre>
```

|               | Percentage |
|---------------|------------|
| SCC           | 0.6108819  |
| IN Component  | 0.3075036  |
| OUT component | 0.0248634  |
| Tube          | 0.0013379  |
|               |            |

<sup>2.2</sup> What are the top five careers for people in the in-component, out-component, scc and tube components?

```
library(dplyr)
scc_career <- trimws(unlist(strsplit(scc_career, split = ",")))</pre>
scc_career <- as_tibble(table(scc_career)) %>%
    arrange(desc(n)) %>%
    head(5)
IN_component_career <- trimws(unlist(strsplit(IN_component_career, split = ",")))</pre>
IN_component_career <- as_tibble(table(IN_component_career)) %>%
    arrange(desc(n)) %>%
    head(5)
OUT_component_career <- trimws(unlist(strsplit(OUT_component_career, split = ",")))</pre>
OUT_component_career <- as_tibble(table(OUT_component_career)) %>%
    arrange(desc(n)) %>%
    head(5)
tube_component_career <- trimws(unlist(strsplit(tube_data_career, split = ",")))</pre>
tube_component_career <- as_tibble(table(tube_component_career)) %>%
    arrange(desc(n)) %>%
    head(5)
names(scc_career)[1] <- "SCC career"</pre>
names(IN_component_career)[1] <- "In career"</pre>
names(OUT component career)[1] <- "Out career"</pre>
names(tube_component_career)[1] <- "Tube career"</pre>
names(scc_career)[2] <- "SCC Count"</pre>
names(IN_component_career)[2] <- "In Count"</pre>
names(OUT_component_career)[2] <- "Out Count"</pre>
names(tube_component_career)[2] <- "Tube Count"</pre>
first_table <- cbind(scc_career, IN_component_career) %>%
    gt() %>%
    tab_header("Top Five Career in SCC and IN Component") %>%
    tab spanner(label = "SCC", columns = c("SCC career", "SCC Count")) %>%
    tab_spanner(label = "IN Component", columns = c("In career", "In Count"))
second_table <- cbind(OUT_component_career, tube_component_career) %>%
    gt() %>%
    tab header("Top Five Career in OUT Component and Tube") %>%
    tab_spanner(label = "OUT Component", columns = c("Out career", "Out Count")) %>%
    tab_spanner(label = "Tube Component", columns = c("Tube career", "Tube Count"))
first_table
```

Top Five Career in SCC and IN Component

| SCC IN Component |
|------------------|
|------------------|

| SCC career             | SCC Count | In career                   | In Count |
|------------------------|-----------|-----------------------------|----------|
| Politics               | 1909      | Politics                    | 591      |
| Religion               | 1004      | Religion                    | 487      |
| Literature             | 587       | Literature                  | 312      |
| Military               | 502       | Business and Finance        | 240      |
| Gentry and Aristocracy | 486       | Journalism and Broadcasting | 224      |

### second\_table

Top Five Career in OUT Component and Tube

| OUT Component                |           | Tube Component               |            |
|------------------------------|-----------|------------------------------|------------|
| Out career                   | Out Count | Tube career                  | Tube Count |
| Religion                     | 37        | Military                     | 3          |
| Science and Technology       | 26        | Science and Technology       | 2          |
| Politics                     | 25        | The Sea                      | 2          |
| Sport                        | 20        | Travel and Exploration       | 2          |
| Administration and Diplomacy | 18        | Administration and Diplomacy | 1          |

2.3 What are the top five centuries represented in the in-component, out-component, scc and tube components?

```
library(dplyr)
scc_century <- as_tibble(table(scc_century)) %>%
    arrange(desc(n)) %>%
    head()
IN_component_century <- as_tibble(table(IN_component_century)) %>%
    arrange(desc(n)) %>%
    head()
OUT_component_century <- as_tibble(table(OUT_component_century)) %>%
    arrange(desc(n)) %>%
    head()
tube_component_century <- as_tibble(table(tube_data_century)) %>%
    arrange(desc(n)) %>%
    head()
names(scc_century)[1] <- "SCC century"</pre>
names(IN_component_century)[1] <- "In century"</pre>
names(OUT_component_century)[1] <- "Out century"</pre>
names(tube_component_century)[1] <- "Tube century"</pre>
names(scc_century)[2] <- "SCC count"</pre>
names(IN_component_century)[2] <- "In count"</pre>
names(OUT_component_century)[2] <- "Out count"</pre>
names(tube_component_century)[2] <- "Tube count"</pre>
```

```
cbind(scc_century, IN_component_century, OUT_component_century, tube_component_century) %>%
   gt() %>%
   tab_header("Top Five Century in SCC, IN Component, OUT Component, Tube") %>%
   tab_spanner(label = "SCC", columns = c("SCC century", "SCC count")) %>%
   tab_spanner(label = "IN Component", columns = c("In century", "In count")) %>%
   tab_spanner(label = "OUT Component", columns = c("Out century", "Out count")) %>%
   tab_spanner(label = "Tube Component", columns = c("Tube century", "Tube count"))
```

Top Five Century in SCC, IN Component, OUT Component, Tube

| SC          | С         | IN Com     | IN Component OUT Component Tube Component |             | OUT Component |              | nponent    |
|-------------|-----------|------------|-------------------------------------------|-------------|---------------|--------------|------------|
| SCC century | SCC count | In century | In count                                  | Out century | Out count     | Tube century | Tube count |
| 19          | 1871      | 19         | 1090                                      | 19          | 112           | 20           | 8          |
| 18          | 1133      | 20         | 789                                       | 20          | 52            | 19           | 3          |
| 20          | 597       | 18         | 419                                       | 18          | 39            | 18           | 1          |
| 17          | 595       | 17         | 170                                       | 17          | 10            | 20           | 8          |
| 16          | 474       | 16         | 120                                       | 16          | 4             | 19           | 3          |
| 15          | 118       | 13         | 36                                        | 13          | 3             | 18           | 1          |

### Section 3 - Centrality / Authority

3.1 Produce a table that shows the most influential people in each century using 3 different measures of centrality/authority

```
library(sjmisc)
```

## Warning: package 'sjmisc' was built under R version 4.1.3

```
century_data <- list(</pre>
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 9]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 10]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 11]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 12]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 13]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 14]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 15]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 16]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 17]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 18]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 19]),
  induced.subgraph(dib_graph, V(dib_graph)[V(dib_graph)$century == 20]))
page_rank <- vector(mode = "list", length = 12)</pre>
authority <- vector(mode = "list", length = 12)</pre>
eigen_centrality <- vector(mode = "list", length = 12)</pre>
between <- vector(mode = "list", length = 12)</pre>
close <- vector(mode = "list", length = 12)</pre>
century_list <- c("9th century", "10th century", "11th century", "12th century",</pre>
```

```
"18th century", "19th century", "20th century")
names(century_data) <- century_list</pre>
for (i in 1:length(century_data)) {
    page_rank[[i]] <- page_rank(century_data[[i]], directed = TRUE, damping = 0.85)$vector</pre>
    page_rank[[i]] <- page_rank[[i]] %>%
        sort(decreasing = TRUE) %>%
        head(1)
    page_rank[[i]] <- paste(names(page_rank[[i]]), "\n", round(page_rank[[i]],</pre>
        2))
    eigen_centrality[[i]] <- eigen_centrality(century_data[[i]], weights = NA)$vector</pre>
    eigen_centrality[[i]] <- eigen_centrality[[i]] %>%
        sort(decreasing = TRUE) %>%
        head(1)
    eigen_centrality[[i]] <- paste(names(eigen_centrality[[i]]), "\n",</pre>
        round(eigen_centrality[[i]], 2))
    between[[i]] <- betweenness(century_data[[i]], weights = NA)</pre>
    between[[i]] <- between[[i]] %>%
        sort(decreasing = TRUE) %>%
        head(1)
    between[[i]] <- paste(names(between[[i]]), "\n", round(between[[i]],</pre>
        2))
    authority[[i]] <- authority_score(century_data[[i]], scale = TRUE)$vector</pre>
    authority[[i]] <- authority[[i]] %>%
        sort(decreasing = TRUE) %>%
        head(1)
    authority[[i]] <- paste(names(authority[[i]]), "\n", round(authority[[i]],</pre>
        2))
}
out <- tibble("Page Rank" = unlist(page_rank),</pre>
              "Eigen Centrality" = unlist(eigen centrality),
               "Between Centrality" = unlist(authority))
out <- rotate df(out)</pre>
colnames(out) <- century_list</pre>
out <- as.data.frame(out)</pre>
first <- out[c("9th century", "10th century", "11th century", "12th century")] %>%
    gt(rownames_to_stub = TRUE) %>%
    tab_header(title = "1. Centrality for centuries from 9th to 12th")
second <- out[c("10th century", "11th century", "12th century", "13th century")] %>%
    gt(rownames to stub = TRUE) %>%
```

"13th century", "14th century", "15th century", "16th century", "17th century",

```
tab_header(title = "2. Centrality for centuries from 10th to 13th")

third <- out[c("14th century", "15th century", "16th century", "17th century")] %>%
    gt(rownames_to_stub = TRUE) %>%
    tab_header(title = "3. Centrality for centuries from 14th to 17th")

fourth <- out[c("18th century", "19th century", "20th century")] %>%
    gt(rownames_to_stub = TRUE) %>%
    tab_header(title = "4. Centrality for centuries from 18th to 20th")

first
```

## 1. Centrality for centuries from 9th to 12th

|                            | 9th century                       | 10th century | 11th century                                            | 12th century                                                         |
|----------------------------|-----------------------------------|--------------|---------------------------------------------------------|----------------------------------------------------------------------|
| Page Rank Eigen Centrality | Flann Sinna 0.15<br>Flann Sinna 1 | Brian Boru 1 | Muirchertach Ua Briain 0.09<br>Muirchertach Ua Briain 1 | John (King of England) 0.06<br>Ruaidrà Ua Conchobair 1<br>Henry II 1 |
| 0                          |                                   |              |                                                         |                                                                      |

#### second

### 2. Centrality for centuries from 10th to 13th

|                    | 10th century   | 11th century                | 12th century                | 13th century       |
|--------------------|----------------|-----------------------------|-----------------------------|--------------------|
| Page Rank          | Brian Boru 0.1 | Muirchertach Ua Briain 0.09 | John (King of England) 0.06 | Richard Burgh 0.05 |
| Eigen Centrality   | Brian Boru 1   | Muirchertach Ua Briain 1    | Ruaidrà Ua Conchobair 1     | Richard Burgh 1    |
| Between Centrality | Brian Boru 1   | Muirchertach Ua Briain 1    | Henry II 1                  | Richard Burgh 1    |

#### third

## 3. Centrality for centuries from 14th to 17th

|                    | 14th century    | 15th century           | 16th century      | 17th century         |
|--------------------|-----------------|------------------------|-------------------|----------------------|
| Page Rank          | Richard II 0.08 | Gerald FitzGerald 0.07 | Hugh O'Neill 0.03 | James Butler 0.06    |
| Eigen Centrality   | James Butler 1  | Gerald FitzGerald 1    | Hugh O'Neill 1    | James II and VII $1$ |
| Between Centrality | Richard II 1    | Gerald FitzGerald 1    | Hugh O'Neill 1    | James II and VII 1   |

#### fourth

### 4. Centrality for centuries from 18th to 20th

|                    | 18th century          | 19th century                                                                                   | 20th century        |
|--------------------|-----------------------|------------------------------------------------------------------------------------------------|---------------------|
| Page Rank          | Daniel O'Connell 0.03 | Charles Stewart Parnell $0.02$ $\tilde{A}$ ‰amon De Valera $1$ $\tilde{A}$ ‰amon De Valera $1$ | Jack Lynch 0.02     |
| Eigen Centrality   | Wolfe Tone 1          |                                                                                                | Garret FitzGerald 1 |
| Between Centrality | Daniel O'Connell 1    |                                                                                                | Jack Lynch 1        |

```
dib_graph <- dib_graph + vertices("Smitesh Patil")</pre>
dib_graph <- dib_graph + edges("Margaret Alice Joyce", "Smitesh Patil")</pre>
vertices <- V(dib_graph)</pre>
in_tendril = c()
Tendril = vertices[!(vertices$name %in% c(scc, IN_component, OUT_component,
    tube))]$name
nodes_IN_component_Tendrils <- vertices[vertices$name %in% c(Tendril, IN_component)]</pre>
g_IN_component_Tendrils <- induced.subgraph(dib_graph, nodes_IN_component_Tendrils)</pre>
for (v in Tendril) {
    paths <- all_simple_paths(g_IN_component_Tendrils, from = v,</pre>
              to = V(g_IN_component_Tendrils)[IN_component],
              mode = "in", cutoff = -1)
    if (length(paths) > 0) {
        in_tendril <- c(in_tendril, v)</pre>
    }
}
for (v in in_tendril) {
    paths <- all_simple_paths(g_IN_component_Tendrils, from = v,</pre>
              to = V(g_IN_component_Tendrils)[IN_component],
              mode = "out", cutoff = -1)
    if (length(paths) > 0) {
        in_tendril <- in_tendril[!v]</pre>
    }
}
for (v in out_tendril) {
    paths <- all_simple_paths(g_OUT_component_Tendrils, from = v,</pre>
              to = V(g_OUT_component_Tendrils)[OUT_component],
              mode = "in", cutoff = -1)
    if (length(paths) > 0) {
        out_tendril <- out_tendril[!v]</pre>
    }
}
```