EP 307 Assignment 4

Manish Goregaokar 120260006

February 12, 2014

Problem 1

$$\prod_{i \neq s} \frac{\hat{A} - a_i}{a_s - a_i}$$

If $|a\rangle = \sum c_i |a_i\rangle$, applying this operator we have

$$\prod_{i \neq s} \frac{\hat{A} - a_i}{a_s - a_i} \left(\sum_{i \neq s} c_i |a_i\rangle \right) = \sum_{j} \left(\prod_{i \neq s} \frac{\hat{A} - a_i}{a_s - a_i} \right) c_j |a_j\rangle
= \left(\prod_{i \neq s} \frac{\hat{A} - a_i}{a_s - a_i} \right) c_s |a_s\rangle$$

Since the other terms have numerator cancelling out for i = j

$$= \left(\prod_{i \neq s} \frac{a_s - a_i}{a_s - a_i}\right) c_s |a_s\rangle$$
$$= c_s |a_s\rangle$$

Thus the operator is $\frac{|a_s\rangle\langle a_s|}{\langle a_s\,|\,a_s\rangle}=p_s$ (projection operator)

Problem 2

To prove:

$$Tr(XY) = Tr(YX)$$

The trace of an operator can be denoted by $\sum_{i} \langle i | A | i \rangle$, where $\langle i |, | i \rangle$ are basis vectors corresponding to the *i*th element being 1 and the rest 0. We can also write $A_{ij} = \sum_{ij} A |j\rangle \langle i|$

Thus,

$$\operatorname{Tr}(AB) = \sum_{i} \langle i | AB | i \rangle$$

$$= \sum_{i} \sum_{j} \sum_{k} \sum_{l} \langle i | A_{jk} | j \rangle \langle k | B_{kl} | k \rangle \langle l | | i \rangle$$

$$= \sum_{i} \sum_{j} \sum_{k} \sum_{l} \delta_{ij} A_{jk} B_{kl} \delta_{il}$$

$$= \sum_{i} \sum_{k} A_{ik} B_{ki}$$

$$= \sum_{k} \sum_{i} B_{ki} A_{ik} \qquad \text{(Interchanging the sums)}$$

$$= \operatorname{Tr}(BA) \qquad \text{(Following the reverse steps)}$$

Problem 7

Applying $\hat{A} = \hat{Q}\hat{C} + \hat{C}\hat{Q}$ to an eigenstate $|\psi_q\rangle$, we get:

$$\begin{split} \hat{A} \left| \psi_{q} \right\rangle &= (\hat{Q}\hat{C} + \hat{C}\hat{Q}) \left| \psi_{q} \right\rangle \\ &= \hat{Q}\hat{C} \left| \psi_{q} \right\rangle + \hat{C}\hat{Q} \left| \psi_{q} \right\rangle \\ &= \hat{Q} \left| \psi_{-q} \right\rangle + q\hat{C} \left| \psi_{q} \right\rangle \\ &= -q \left| \psi_{-q} \right\rangle + q \left| \psi_{-q} \right\rangle \\ &= 0 \end{split}$$

If $\hat{A} |\psi_q\rangle = 0$, then $\hat{A} (\sum a_q |\psi_q\rangle) = 0$. We can say that the eigenvalue of \hat{A} is 0.

For a state $|\psi_q\rangle$ to be an eigenstate of \hat{C} , $c|\psi_q\rangle = \hat{C}|\psi_q\rangle = |\psi_{-q}\rangle$

Since $|\psi_{-q}\rangle$, $|\psi_{q}\rangle$ have different eigenvalues (except when q=0), they are linearly independent, and thus the only possible value of c is 0, which isn't an eigenstate.

So the only common eigenstate is $|\psi_0\rangle$, provided that it is not a null vector.

Problem 9

$$\begin{split} \left[\hat{x}, \exp\left(\frac{i\hat{p}a}{\hbar}\right)\right] |\psi\rangle &= \left[\hat{x}, \exp\left(\frac{i(-i)\hbar\partial_x a}{\hbar}\right)\right] |\psi\rangle \\ &= \left[\hat{x}, \exp(a\partial_x)\right] |\psi\rangle \\ &= x \sum_i \frac{1}{i!} a^i \partial_x^i |\psi\rangle - \sum_i \frac{1}{i!} a^i \partial_x^i (x |\psi\rangle) \end{split}$$