MAT B42 Winter 2023

University of Toronto Scarborough Campus Department of Computer and Mathematical Sciences

These solutions are not the only "perfect" or "10/10" solutions to be followed as a model. They are examples of ways to solve these problems. There are many many alternative ways to solve these problems. We hope that these example solutions help you check your work.

Problems

Q1. Let n and k be integers. Prove the following (almost) orthogonality relations:

(a)

$$\int_{-\pi}^{\pi} \sin(kx)\cos(nx)dx = 0$$

Solution: Suppose that n and k are non-zero. Notice that the integrand $\sin(kx)\cos(nx)$ is odd and the interval $[-\pi, \pi]$ is symmetric. We get:

$$\int_{-\pi}^{\pi} \sin(kx)\cos(nx)dx = 0$$

If n = 0 and $k \neq 0$ then

$$\int_{-\pi}^{\pi} \sin(kx)\cos(0)dx = \left[-\frac{1}{k}\cos(kx)\right]_{-\pi}^{\pi} = 0$$

If k = 0 then $\sin(kx) = 0$ and the integrand vanishes.

(b)

$$\int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx = \begin{cases} 0 & k \neq \pm n \\ \pi & k = \pm n \neq 0 \\ 2\pi & k = n = 0 \end{cases}$$

Solution: We consider four cases. If n = k = 0 then:

$$\int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx = \int_{-\pi}^{\pi} 1 \cdot 1 dx = 2\pi$$

If $k \neq \pm n$ then:

$$\int_{-\pi}^{\pi} \cos(kx) \cos(nx) = \frac{1}{2} \int_{-\pi}^{\pi} \cos((k+n)x) + \cos((k-n)x) dx \# \cos(a) \cos(b) = \frac{1}{2} \cos(a+b) + \frac{1}{2} \cos(a-b)$$

$$= \frac{1}{2} \left[\frac{1}{k+n} \sin((k+n)x) + \frac{1}{k-n} \sin((k-n)x) \right]_{-\pi}^{\pi} \# \text{need } k \neq \pm n$$

$$= 0$$

If $k = n \neq 0$ then:

$$\int_{-\pi}^{\pi} \cos(kx) \cos(nx) = \int_{-\pi}^{\pi} \cos^2(kx) dx$$

$$= \int_{-\pi}^{\pi} \frac{1 + \cos(2kx)}{2}$$

$$= \left[\frac{1}{2}x + \frac{1}{4x}\sin(2kx)\right]_{-\pi}^{\pi} \text{ # we need } k \neq 0$$

$$= \frac{1}{2}(2\pi) = \pi$$

If $k = -n \neq 0$ then:

$$\int_{-\pi}^{\pi} \cos(kx) \cos(-kx) = \int_{-\pi}^{\pi} \cos^2(kx) dx \# \cos is \text{ even}$$

This cases reduces to the case when k = n. Thus, we have the desired equalities.

$$\int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx = \begin{cases} 0 & k \neq \pm n \\ \pi & k = \pm n \neq 0 \\ 2\pi & k = n = 0 \end{cases}$$

Q2. Compute the first three Fourier approximations of the following. Use a computer to graph the approximations that you obtain.

(a)

$$f(x) = \begin{cases} -1 & -\pi \le x < 0\\ 1 & 0 \le x < \pi \end{cases}$$

Solution: We calculate:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx = 0 \# f(x)$$
 is odd

The cosine terms are:

$$a_k = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \cos(kx) dx = 0 \# f(x) \cos(kx) \text{ is odd}$$

The sine terms are:

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \sin(kx) dx - \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin(kx) dx$$

$$= \frac{1}{\pi} \left[-\frac{1}{k} \cos(kx) \right]_{0}^{\pi} - \frac{1}{\pi} \left[-\frac{1}{k} \cos(kx) \right]_{-\pi}^{0}$$

$$= \frac{-1}{\pi k} \left[(-1)^k - 1 \right] + \frac{1}{\pi k} \left[1 - (-1)^k \right]$$

$$= \frac{2}{\pi k} \left[1 - (-1)^k \right]$$

We obtain:

$$a_0 + \sum_{k=1}^{\infty} a_k \sin(kx) + b_k \cos(kx) = 0 + \sum_{k=1}^{\infty} \frac{2}{\pi k} \left[1 - (-1)^k \right] \sin(kx)$$

We graph our solutions for k = 1, 2, 3. For k = 1 we get:

For k=2 we get: (notice there is no change since even terms of the Fourier series vanish)

(b)

$$g(x) = \begin{cases} -x & -\pi \le x < 0 \\ x & 0 \le x < \pi \end{cases}$$

Solution: We calculate:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) dx = \frac{1}{2\pi} \left[2 \cdot \frac{1}{2} \pi^2 \right] = \frac{\pi}{2} \text{ # geometry}$$

The cos terms are:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos(kx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos(kx) dx \text{ # even symmetry}$$

$$= \frac{2}{\pi} \left[\frac{kx \sin(kx) + \cos(kx)}{k^2} \right]_{0}^{\pi} \text{ # integration by parts}$$

$$= \frac{2}{\pi} \left[\frac{(-1)^k - 1}{k^2} \right]$$

The sine terms are:

$$b_k = \frac{1}{\pi} \int_{\pi}^{\pi} g(x) \sin(kx) dx = 0 \# g(x) \sin(kx)$$
 is odd

We obtain:

$$a_0 + \sum_{k=1}^{\infty} a_k \sin(kx) + b_k \cos(kx) = \frac{\pi}{2} + \sum_{k=1}^{\infty} \frac{2[(-1)^k - 1]}{\pi k^2} \cos(kx)$$

We graph our solutions for k = 1, 2, 3. For k = 1 we get:

Q3. Find two fourier expansions for the function $h(x) = \sin(x)$. In one expansion, all the sine terms should have zero as their coefficient. In the other expansion, all the cosine terms should have zero as their coefficient.

Solution: We have that $h(x) = \sin(x)$ is a perfectly reasonable Fourier series without any costerms. Thus, $h(x) = 1\sin(x)$ is our Fourier series without costerms.

Any Fourier approximation without sin terms will only contain $\cos(kx)$ terms. Thus, it will be an even function. In order to get an approximation of $\sin(x)$ without sin terms we must alter $\sin(x)$ so that it becomes even.

We define:

$$h_e(x) = \begin{cases} \sin(x) & 0 \le x \le \pi \\ -\sin(x) & -\pi \le x \le 0 \end{cases}$$

This function agrees with h(x) on the interval $[0, \pi]$ and so it approximates $\sin(x)$ very well. You might recall from highschool that knowing $\sin(x)$ on the interval $[0, \pi/2]$ is sufficient to calculate any value of $\sin(x)$.

We calculate:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} h_e(x) dx = \frac{2}{2\pi} \int_{0}^{\pi} \sin(x) dx = \frac{1}{\pi} \left[-\cos(x) \right]_{0}^{\pi} = \frac{2}{\pi}$$

We compute the cos terms (for $k \neq 1$):

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} h_e(x) \cos(kx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(x) \cos(kx) dx \text{ # integrand is even}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin((k+1)x) + \sin((1-k)x)}{2} dx$$

$$= \frac{1}{\pi} \left[-\frac{1}{k+1} \cos((k+1)x) - \frac{1}{1-k} \cos((1-k)x) \right]_{0}^{\pi}$$

$$= \frac{1}{\pi} \left[-\frac{1}{k+1} \cos((k+1)\pi) - \frac{1}{1-k} \cos((1-k)\pi) + \frac{1}{k+1} + \frac{1}{1-k} \right]$$

$$= \frac{1}{\pi} \left[-\frac{1}{k+1} (-1)^{k+1} - \frac{1}{1-k} (-1)^{1-k} + \frac{1}{k+1} + \frac{1}{1-k} \right]$$

$$= \frac{2(1-(-1)^{k+1})}{\pi(k+1)(1-k)} \text{ # } (-1)^{k+1} = (-1)^{1-k}$$

We compute the cos term for k=1:

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} h_e(x) \cos(x) dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(x) \cos(x) dx \text{ # integrand is even}$$
$$= \frac{2}{\pi} \left[\frac{1}{2} \sin^2(x) \right]_{0}^{\pi} = 0$$

We compute the sin terms:

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} h_e(x) \sin(kx) dx$$
$$= 0 \# \text{ integrand is odd}$$

This gives the following Fourier series for $h_e(x)$:

$$\frac{2}{\pi} + \sum_{k=2}^{\infty} \frac{2(1 - (-1)^{k+1})}{\pi(k+1)(1-k)} \cos(kx)$$

Q4. Show that for any positive integer k, the function $f(x) = a_k \cos(kx) + b_k \sin(kx)$ has energy $a_k^2 + b_k^2$.

Solution: We compute the energy of $f(x) = a_k \cos(kx) + b_k \sin(kx)$.

$$E = \frac{1}{\pi} \langle f, f \rangle$$

$$= \frac{1}{\pi} \langle a_k \cos(kx) + b_k \sin(kx), a_k \cos(kx) + b_k \sin(kx) \rangle$$

$$= \frac{a_k^2}{\pi} \langle \cos(kx), \cos(kx) \rangle \text{ # bilinearity of } \langle \cdot, \cdot \rangle$$

$$+ \frac{2a_k b_k}{\pi} \langle \cos(kx), \sin(kx) \rangle$$

$$+ \frac{b_k^2}{\pi} \langle \sin(kx), \sin(kx) \rangle$$

$$= \frac{1}{\pi} \left[a_k^2 \pi + 0 + b_k^2 \pi \right] \text{ # by the results of Q1}$$

$$= a_k^2 + b_k^2$$

Thus, the energy of f(x) is $a_k^2 + b_k^2$

Q5. Find the n'th Fourier approximation for f(x) = x on the interval $[-\pi, \pi]$. Assume that your approximation converges to f(x) = x when $x \in (-\pi, \pi)$. Use this series to argue that:

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{2k-1} = \frac{\pi}{4}$$

Solution: We calculate the Fourier series of f(x) = x on the interval $[-\pi, \pi]$.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx = 0 \text{ # integrand is odd}$$

We calculate the cos terms:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(kx) dx = 0 \text{ # integrant is odd}$$

We calculate the sin terms:

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(kx) dx$$

$$= \frac{1}{\pi} \left[\frac{\sin(kx) - kx \cos(kx)}{k^2} \right]_{-\pi}^{\pi} # \text{ integration by parts}$$

$$= \frac{1}{\pi} \left[\frac{-k\pi \cos(k\pi) - (-k(-\pi))\cos(-k\pi)}{k^2} \right] # \cos(k\pi) = (-1)^k$$

$$= \frac{1}{\pi} \left[\frac{k\pi(-1)^{k+1} + k\pi(-1)^{k+1}}{k^2} \right] = \frac{2(-1)^{k+1}}{k}$$

This gives:

$$x \approx \sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k} \sin(kx) \Longleftrightarrow \frac{x}{2} \approx \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin(kx) \quad (\star)$$

It turns out that equation (\star) is more helpful for evaluating the sum.

To evaluate the sum first note, that at $x = \frac{\pi}{2}$ we have:

$$\sin\left(k\frac{\pi}{2}\right) = \begin{cases} 0 & k \text{ even} \\ (-1)^{n+1} & k = 2n+1 \text{ odd} \end{cases}$$

Evaluating equation (\star) at $x=\frac{\pi}{2}$ we obtain using our hypothesis about convergence:

$$\frac{\left(\frac{\pi}{2}\right)}{2} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin\left(k\frac{\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1} \Longleftrightarrow \frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$$

Notice that we re-indexed from k to n because the sum only contains odd terms.

Comments: One might wonder how fast this sum converges to $\pi/4 \approx 0.785398163...$

$$\begin{array}{c|c} N & \sum_{n=1}^{N} \frac{(-1)^{n+1}}{2n-1} \\ \hline 10 & 0.7604599047 \\ 100 & 0.7828982258 \\ 1000 & 0.7851481634 \\ 10000 & 0.7853731633 \\ \hline \end{array}$$

To put it politely, the convergence is not rapid. There are faster methods for computing π .