Terceira Avaliação de Circuitos Elétricos II – $1^{0/2}$ 017

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:_	Turma: _	

Matrícula: ____/___

Data: ____/___/

Questão 1 – Calcule a série trigonométrica de Fourier para a forma de onda mostrada a seguir, ou seja, determine a_0 , a_n e b_n . A = 8 V e T_0 = 2s.

Questão 2 – Determine analiticamente a forma de onda temporal $v_o(t)$ na saída do circuito.

Questão 3 – Calcule a matriz impedância de circuito aberto para o circuito mostrado a seguir.

Questão 4 – Determine os parâmetros da matriz admitância de curto circuito representativa do quadripolo.

Terceira Avaliação de Circuitos Elétricos II $-1^{0}/2017$ — Folha de respostas

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:		Turma:
Matrícula:/_		
Data:/	_/	
Questão 1	$x(t) = a_0 + \sum_{n=1}^{\infty} \{a_n \cos(n\omega_0 t)\}$	$(t) + b_n sen(n\omega_0 t)$
$a_0 =$	n-1	
$a_n =$		
$b_n =$		
Questão 2	$v_0(t) = \sum_{n=1}^{\infty} c_n \operatorname{sen}(n)$	$\omega_0 t + \theta_n$)
$c_n =$	n-1	
$\theta_n =$		
Questão 3	Г	1
	$\underline{H} = $	
Questão 4		
	$\underline{Y} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	