Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 1 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 設 P 是 $3^{2003} \times 5^{2002} \times 7^{2001}$ 的個位數。求 P 的值。 Let P be the units digit of $3^{2003} \times 5^{2002} \times 7^{2001}$. Find the value of P. P =

2. 若方程 $(x^2-x-1)^{x+P-1}=1$ 有 Q 個整數解,求 Q 的值。 If the equation $(x^2-x-1)^{x+P-1}=1$ has Q integral solutions, find the value of Q.

Q =

3. 設 $x \cdot y$ 為實數且 xy = 1。若 $\frac{1}{x^4} + \frac{1}{Qy^4}$ 的最小值是 R,求 R 的值。

Let x y be real numbers and xy = 1. If the minimum value of $\frac{1}{x} + \frac{1}{x^4} = \frac{1}{x^4}$

R =

- Let x, y be real numbers and xy = 1. If the minimum value of $\frac{1}{x^4} + \frac{1}{Qy^4}$ is R, find the value of R.
- 4. 設 $x_R imes x_{R+1} imes ... imes x_K (K>R)$ 為 K-R+1 個不相同的正整數 且 $x_R + x_{R+1} + ... + x_K = 2003$ 。若 $S \in K$ 的最大可能的值,求S的值。 Let $x_R, x_{R+1}, ..., x_K (K>R)$ be K-R+1 distinct positive integers and $x_R + x_{R+1} + ... + x_K = 2003$.

S =

If S is the maximum possible value of K, find the value of S.

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time

Total score

Sec.

Min.

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 2 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1.	若一個兩位數 P 的 50 次方是一個 69 位數,求 P 的值。
	(已知 log 2 = 0.3010 · log 3 = 0.4771 · log 11 = 1.0414)
	If the 50^{th} power of a two-digit number P is a 69-digit number, find the value of P.
	(Given that $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 11 = 1.0414$.)

$$P =$$

- 2. 方程式 $x^2 + ax P + 7 = 0$ 的根是 α 和 β;而方程式 $x^2 + bx r = 0$ 的根是 $-\alpha$ 和 $-\beta$ 。若方程式 $(x^2 + ax P + 7) + (x^2 + bx r) = 0$ 的正根是 Q,求 Q 的值。 The roots of the equation $x^2 + ax P + 7 = 0$ are α and β , whereas the roots of the equation $x^2 + bx r = 0$ are $-\alpha$ and $-\beta$. If the positive root of the equation $(x^2 + ax P + 7) + (x^2 + bx r) = 0$ is Q, find the value of Q.
- 3. 已知 ΔABC 為一等腰三角形, $AB = AC = \sqrt{2}$ 及 BC 上有 Q 個點 $D_1 \cdot D_2 \cdot \ldots \cdot D_Q \circ$ 設 $m_i = AD_i^2 + BD_i \times D_i C \circ 若$ $m_1 + m_2 + m_3 + \ldots + m_Q = R$,求 R 的值。

 Given that ΔABC is an isosceles triangle, $AB = AC = \sqrt{2}$, and D_1, D_2, \ldots, D_Q are Q points on BC. Let $m_i = AD_i^2 + BD_i \times D_i C$.

 If $m_1 + m_2 + m_3 + \ldots + m_Q = R$, find the value of R.
- 4. 有 2003 個袋從左至右排列。已知最左面的袋裝有 R 個球,而且每 T 個相鄰的袋共裝有 19 個球。若最右面的袋有 S 個球,求 S 的值。 There are 2003 bags arranged from left to right. It is given that the leftmost bag contains R balls, and every T consecutive bags contains T balls altogether. If the rightmost bag contains T balls, find the value of T .

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 3 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1.

P =

已知 $\begin{cases} wxyz=4 \\ w-xyz=3 \end{cases}$ 且 w>0。若 w 的解是 P,求 P 的值。 Given that $\begin{cases} wxyz=4 \\ w-xyz=3 \end{cases}$ and w>0. If the solution of w is P, find the value of P.

設 [y] 表示小數 y 的整數部分,如 [3.14] = 3。若 $\left[\left(\sqrt{2} + 1\right)^p\right] = Q$, 2. 求 Q 的值。

Q =

Let [y] represents the integral part of the decimal number y.

For example, [3.14] = 3. If $\left| \left(\sqrt{2} + 1 \right)^p \right| = Q$, find the value of Q.

已知 $x_0y_0 \neq 0$ 及 $Qx_0^2 - 22\sqrt{3}x_0y_0 + 11y_0^2 = 0$ 。若 $\frac{6x_0^2 + y_0^2}{6x_0^2 - y_0^2} = R$, 求 R 的值。 3. Given that $x_0y_0 \neq 0$ and $Qx_0^2 - 22\sqrt{3}x_0y_0 + 11y_0^2 = 0$. If $\frac{6x_0^2 + y_0^2}{6x_0^2 - y_0^2} = R$, find the value of R.

R =

4. 四邊形 ABCD 雨對角綫 AC 和 BD 互相垂直。AB=5,BC=4,CD=R。 若 DA = S, 求 S 的值。

The diagonals AC and BD of a quadrilateral ABCD are perpendicular to each other. Given $S = \frac{1}{2} \frac{1$ that AB = 5, BC = 4, CD = R. If DA = S, find the value of S.

FOR	OFFICIAL	USE

Score for accuracy

Mult. factor for speed

_

Team No.

Time

Total score

Bonus

score

Min.

Sec.

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 4 (Individual)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 如果 9 位數 $\overline{32x35717y}$ 是 72 的倍數,P = xy,求 P 的值。 Suppose the 9-digit number $\overline{32x35717y}$ is a multiple of 72, and P = xy, find the value of P.

P =

2. 已知三條直綫 $4x+y=\frac{P}{3}$,mx+y=0 和 2x-3my=4 不能構成一個三角形。 若 m>0 及 Q 是 m 的最小可能的值,求 Q 的值。

Q=

Given that the lines $4x + y = \frac{P}{3}$, mx + y = 0 and 2x - 3my = 4 cannot form a triangle. Suppose that m > 0 and Q is the minimum possible value of m, find Q.

3. 已知 R, x, y 及 z 是整數且 R > x > y > z。若 R, x, y 及 z 滿足方程 $2^R + 2^x + 2^y + 2^z = \frac{495Q}{16}$,求 R 的值。

Given that R, x, y, z are integers and R > x > y > z.

If R, x, y, z satisfy the equation $2^R + 2^x + 2^y + 2^z = \frac{495Q}{16}$, find the value of R.

4.

圖一 Figure 1

如圖一, ΔABC 內任選一點 Q,通過 Q 作三條分別平行於各邊的直綫,其中 FE//AB, GK//AC 及 HJ//BC。 ΔKQE , ΔJFQ 及 ΔQGH 的面積分別是 R,9 及 49。 若 ΔABC 的面積是 S,求 S 的值。

In Figure 1, Q is the interior point of $\triangle ABC$. Three straight lines passing through Q are parallel to the sides of the triangle such that $FE /\!\!/ AB$, $GK /\!\!/ AC$ and $HJ /\!\!/ BC$. Given that the areas of $\triangle KQE$, $\triangle JFQ$ and $\triangle QGH$ are R, 9 and 49 respectively. If the area of $\triangle ABC$ is S, find the value of S.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 1 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 已知 $n \cdot k$ 皆為自然數,且1 < k < n。

若
$$\frac{(1+2+3+\cdots+n)-k}{n-1}=10$$
 及 $n+k=a$, 求 a 的值。

a =

Given that n and k are natural numbers and 1 < k < n.

If $\frac{(1+2+3+\cdots+n)-k}{n-1} = 10$ and n+k=a, find the value of a.

2. 已知 $(x-1)^2 + y^2 = 4$,其中x和y是實數。若 $2x + y^2$ 的極大值是b,求b的值。 Given that $(x-1)^2 + y^2 = 4$, where x and y are real numbers. If the maximum value of $2x + y^2$ is b, find the value of b.

3.

c =

Figure 1

如圖一, $\triangle ABC$ 是一個等腰三角形,其中 AB = AC。

若 $\angle B$ 的角平分綫交 AC 於 D 且 BC = BD + AD。設 $\angle A = c^{\circ}$,求 c 的值。

In Figure 1, $\triangle ABC$ is an isosceles triangle and AB = AC. Suppose the angle bisector of $\angle B$ meets AC at D and BC = BD + AD. Let $\angle A = c^{\circ}$, find the value of c.

4. 兩質數之和為 105。若這兩質數之積為 d, 求 d 的值。 Given that the sum of two prime numbers is 105.

If the product of these prime numbers is d, find the value of d.

FOR OFFICIAL USE

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 2 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 設方程 ax(x+1) + bx(x+2) + c(x+1)(x+2) = 0 有根 1 和 2。若 a+b+c=2,求 a 的值。

a =

Given that the equation ax(x+1) + bx(x+2) + c(x+1)(x+2) = 0 has roots 1 and 2. If a+b+c=2, find the value of a.

b =

3.

c =

Figure 1

如圖一,正方形 PQRS 內接於 $\Delta ABC \circ \Delta APQ \circ \Delta PBS$ 和 ΔQRC 的面積分別為 $4 \circ 4$ 和 $12 \circ 若正方形 PQRS$ 的面積為 c ,求 c 的值。

In Figure 1, the square PQRS is inscribed in $\triangle ABC$. The areas of $\triangle APQ$, $\triangle PBS$ and $\triangle QRC$ are 4, 4 and 12 respectively. If the area of the square is c, find the value of c.

4. ΔABC 中, $\cos A = \frac{4}{5}$ 和 $\cos B = \frac{7}{25}$ 。若 $\cos C = d$,求 d 的值。

d=

In $\triangle ABC$, $\cos A = \frac{4}{5}$ and $\cos B = \frac{7}{25}$. If $\cos C = d$, find the value of d.

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 3 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

1. 設 f 為一函數,f(1) = 1,並對任意整數 m 及 n,f(m+n) = f(m) + f(n) + mn。 若 $a = \frac{f(2003)}{6}$,求 a 的值。

a =

Let f be a function such that f(1) = 1 and for any integers m and n,

f(m+n) = f(m) + f(n) + mn. If $a = \frac{f(2003)}{6}$, find the value of a.

3. 已知 $f(n) = \sin \frac{n\pi}{4}$,其中 n 是整數。若 $c = f(1) + f(2) + \cdots + f(2003)$,求 c 的值。

c =

Given that $f(n) = \sin \frac{n\pi}{4}$, where *n* is an integer.

If $c = f(1) + f(2) + \cdots + f(2003)$, find the value of c.

4. 已知函數 $f(x) = \begin{cases} -2x+1, & \text{when } x < 1 \\ x^2 - 2x, & \text{when } x \ge 1 \end{cases}$ 。若 d 是 f(x) = 3 的最大整數解,求 d 的值。 d =Given that $f(x) = \begin{cases} -2x+1, & \text{when } x < 1 \\ x^2 - 2x, & \text{when } x \ge 1 \end{cases}$.

If d is the maximum integral solution of f(x) = 3, find the value of d.

FOR OFFICIAL USE

Score for accuracy × Mult. factor for speed = Team No.

+ Bonus score Time Min. Sec.

Hong Kong Mathematics Olympiad (2002 – 2003) Final Event 4 (Group)

Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 除非特別聲明,答案須用數字表達,並化至最簡。

如圖一,AE、AD 是直綫且 1. AB = BC = CD = DE = EF = FG = GA

In Figure 1, AE and AD are two straight lines and AB = BC = CD = DE = EF = FG = GA.

If $\angle DAE = \alpha^{\circ}$, find the value of α .

 $\alpha =$

Figure 1

設 $P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_8 x^8$ 為八次多項式,其中 $a_0 \cdot a_1 \cdot ... \cdot a_8$ 為實數。 2.. 若 $P(k) = \frac{1}{k}$ 當 k = 1, 2, ..., 9,及 b = P(10),求 b 的值。

b =

Suppose $P(x) = a_0 + a_1x + a_2x^2 + ... + a_8x^8$ is a polynomial of degree 8 with real coefficients a_0, a_1, \ldots, a_8 . If $P(k) = \frac{1}{k}$ when $k = 1, 2, \ldots, 9$, and b = P(10), find the value of b.

3. 已知 x, y 為雨正整數使 xy - (x+y) = HCF(x, y) + LCM(x, y), 其中 HCF(x, y) 和 LCM(x, y) 分別是 x 和 y 的最大公因數和最小公倍數。 若 c 是 x+y 的最大可能的值,求 c。 Given two positive integers x and y, xy - (x + y) = HCF(x, y) + LCM(x, y), where

c =

HCF(x, y) and LCM(x, y) are respectively the greatest common divisor and the least common multiple of x and y. If c is the maximum possible value of x + y, find c.

如圖二, $\triangle ABC$ 是等邊三角形, M 及 N4. 分別是 AB 及 AC 的中點,F 是直綫 MN與圓 ABC 的交點。若 $d = \frac{MF}{MN}$, 求 d 的 值。

> In Figure 2, $\triangle ABC$ is an equilateral triangle, points M and N are the midpoints of sides ABand AC respectively, and F is the intersection of the line MN with the circle ABC.

If $d = \frac{MF}{MN}$, find the value of d.

d =

FOR OFFICIAL USE

Score for Mult. factor for Team No. _ accuracy speed Bonus Time score Min. Total score Sec.