FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Tomáš Plšek **Naměřeno:** 4. května 2018

Obor: Astrofyzika Ročník: II Semestr: IV Testováno:

Úloha č. 6: Franck-Hertzův experiment

Úkolv:

1. Sledujte vliv nastavení experimentu na chování proudu procházejícího trubicí.

- 2. Změřte závislost anodového proudu na urychlujícím napětí a určete energii nejnižší excitační hladiny atomů vzácného plynu v trubici.
- 3. Naměřte spektrum vyzařované z trubice Franck-Hertzova experimentu a určete, jaký plyn v trubici září.

1. Úvod

Na počátku 20. století fyzikové Franck a Hertz experimentálně prokázali bez pomoci emisní spektroskopie existenci kvantových energiových hladin elektronů v atomu. Původní Franck-Hertzův experiment byl založen na srážkách elektronů s atomy rtuti, při nichž došlo k vybuzení valenčního elektronu do vyššího stavu a ztrátě energie elektronu volného. Aby mohlo k excitaci dojít, musí být kinetická energie narážejícího elektronu větší než nejnižší excitační energie atomu.

Na obrázku 1 můžeme vidět schéma uspořádání Franck-Hertzova experimentu. Na žhavené katodě C jsou emitovány elektrony, které jsou napětím U_1 nasměrovány na mřížku G_1 . Mezi mřížkami G_1 a G_2 jsou urychlovány napětím U_2 na potřebnou rychlost (kinetickou energii) a následně se zde sráží s atomy vzácného plynu. Zpomalovací napětí následně způsobí, že některé elektrony nedorazí až k anodě ale dopadají na mřížku G_2 .

Obrázek 1: Schéma uspořádání Franck-Hertzova experimentu.

2. Měření

Nejprve budeme generovat napětí U_2 ve tvaru pily a sledovat vliv napětí U_1 a U_3 na výslednou závislost $I = f(U_2)$. Z počátku při konstantním U_1 měníme U_3 a sledujeme průběh proudu. Totéž zopakujeme při konstantním U_3 a proměnném U_1 . Na základě těchto závislostí nalezneme optimální kombinaci U_1 a U_3 pro měření závislosti kolektorového proudu I na urychlujícím napětí U_2 .

Zvyšováním stabilizačního napětí U_1 se zvyšuje naměřená hodnota proudu, neboť je díky vyššímu potenciálovému spádu fokusováno "správným" směrem více elektronů opouštějících katodu. Zvyšováním zpomalujícího napětí U_3 se zvyšuje hodnota urychlujícího napětí, při níž ještě měříme změnu proudu, což je způsobeno tím, že i elektrony o vyšších energiích jsou dostatečně zbrzděny a my je můžeme měřit na kolektoru. Pro měření závislosti kolektorového proudu na urychlujícím napětí jsem zvolil konfiguraci $U_1 = 2.56 \text{ V}$ a $U_3 = 9.43 \text{ V}$.

OD 1 11 1	77 . 1 .	kolektorového	1	11 1/	~ , ,
Tahiilka L	Zavidlogt	koloktorovoho	nroudu na	uruchluucim	nanoti
rabuma r.	2av151050	MOTOR GOLOV CHO	product na	ui voimuntiin	mapeu.
			1	J	1

U_2 [V]	I [nA]	U_2 [V]	I [nA]
9.6	3.63	33.0	11.10
10.4	4.85	34.6	12.48
12.4	6.25	36.9	13.40
13.9	7.15	38.2	13.05
14.6	7.52	40.9	9.16
16.8	8.70	45.3	5.45
18.4	9.30	49.3	7.95
19.6	7.95	49.8	8.92
22.8	4.00	51.3	10.44
24.0	3.23	53.9	13.23
25.4	2.83	58.1	13.37
28.8	5.45	59.7	12.61
29.9	6.85	60.1	12.09

Graf 1: Určení nejnižší excitační energie vzácného plynu v trubici.

Nejnižší excitační energie zkoumaného vzácného plynu: $E=(18.2\pm1.3)~{\rm eV}.$ Nejbližší nejnižší excitační energie vzácných plynů^[1]: He I: $E=19.82~{\rm eV},$ Ne I: $E=16.62~{\rm eV}.$

Z měření tedy nelze přesně určit, o jaký vzácný plyn se jedná. Naměřená nejnižší excitační energie leží na desetiny elektronvoltů přesně mezi hodnotami pro Helium a Neon.

Pro zjištění, o jaký vzácný plyn se jedná, naměříme pomocí spektroskopu spektrum záření vycházejícího z trubice a pomocí dat z $NIST\,LIBS\,Database^{[2]}$ jej ztotožníme se spektry Helia a Neonu. V případě spekter nám jde pouze o ztotožnění jednotlivých čar a určení o jaký prvek se jedná. Data z $NIST\,LIBS\,Database$ jsem tedy pro lepší názornost přeškáloval, y-ová osa sedí pouze pro naměřené hodnoty.

Graf 2: Ztotožnění jednotlivých čar naměřeného spektra se spektry vzácných plynů.

Ze srovnání spekter v grafu 2 vidíme, že naměřené čáry se shodují s čarami neutrálního Neonu.

3. Závěr

Nejprve jsem měněním stabilizačního a zpomalovacího napětí určil jejich nejlepší konfiguraci pro měření závislosti kolektorového proudu na urychlovacím napětí. Získal jsem hodnoty $U_1=2.56~{\rm V}$ a $U_3=9.43~{\rm V}$.

Pro danou konfiguraci stabilizačního a zpomalovacího napětí jsem proměřil závislost kolektorového proudu na urychlovacím napětí a získal jsem hodnotu nejnižší excitační energie daného vzácného plynu v trubici $E=(18.2\pm1.3)~{\rm eV}$. Tato hodnota se nachází téměř uprostřed mezi hodnotami nejnižší excitační energie pro Helium a Neon, nelze tedy určit, o který z těchto dvou vzácných plynů se jedná.

Získané spektrum vyzařované vzácným plynem jsem porovnal se spektry pro Helium a Neon a určil jsem, že naměřené spektrální čáry se shodují (nikoliv co do intenzity) s čarami Neonu. V trubici se tedy nachází neutrální atomy Neon.

4. Zdroje

- [1] Levels; Atomic Spectra Database. | NIST. National Institute of Standards and Technology. Dostupný z https://physics.nist.gov/ PhysRefData/ASD/levels_form.html.
- ^[2] LIBS; Atomic Spectra Database. | NIST. National Institute of Standards and Technology. Dostupný z https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html.