Συναρτήσεις Θεώρημα Μέσης Τιμής

Κωνσταντίνος Λόλας

Ήρθε η ώρα για τα ΠΙΟ δύσκολα

Θυμάστε Bolzano \sim ΘΕΤ Τώρα Rolle \sim ΘΜΤ

- 🛈 Φτιάξτε άξονες
- \bigcirc Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

- 🛈 Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- 3 θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

Συμπέρασμο

- 📵 Φτιάξτε άξονες
- $oldsymbol{Q}$ Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

- Φτιάξτε άξονες
- $oldsymbol{2}$ Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- 3 θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

- ① Φτιάξτε άξονες
- $oldsymbol{Q}$ Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις lpha και eta
- 3 θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

- 🛈 Φτιάξτε άξονες
- $oldsymbol{Q}$ Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- 3 θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

Συμπέρασμο

- 🛈 Φτιάξτε άξονες
- $oldsymbol{Q}$ Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- 3 θεωρήστε δύο σημεία μιας συνάρτησης με ${\rm A}(\alpha,f(\alpha))$ και ${\rm B}(\beta,f(\beta))$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με το ευθύγραμμο τμήμα AB
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει "τέτοια" εφαπτόμενη

Θεώρημα Μέσης Τιμής

Θεώρημα Μέσης Τιμής

Έστω μία συνάρτηση f:

- ullet συνεχής στο $[\alpha, \beta]$
- παραγωγίσιμη στο (α, β)

τότε υπάρχει
$$\xi \in (\alpha, \beta)$$
 με $f'(\xi) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha}$

Παρατήρηση

- ① O Rolle είναι το ΘΜΤ για $f(\alpha) = f(\beta)$
- ② Το ΘΜΤ προκύπτει από το Rolle (μπορείτε να βρείτε ποιά συνάρτηση θα θέσουμε?)

Άρα παίρνουμε ότι από τα δύο θέλουμε!

5/1

Παρατήρηση

- ① O Rolle είναι το ΘΜΤ για $f(\alpha) = f(\beta)$
- ② Το ΘΜΤ προκύπτει από το Rolle (μπορείτε να βρείτε ποιά συνάρτηση θα θέσουμε?)

Άρα παίρνουμε ότι από τα δύο θέλουμε!

Παρατήρηση

- ① O Rolle είναι το ΘΜΤ για $f(\alpha) = f(\beta)$
- ② Το ΘΜΤ προκύπτει από το Rolle (μπορείτε να βρείτε ποιά συνάρτηση θα θέσουμε?)

Άρα παίρνουμε ότι από τα δύο θέλουμε!

Δίνεται η συνάρτηση $f(x)=\sqrt{x-1}$. Να δείξετε ότι για την f ισχύουν οι υποθέσεις του ΘΜΤ στο διάστημα [1,5] και να βρείτε τα $\xi\in[1,5]$ για τα οποία ισχύει $f'(\xi)=\frac{1}{2}$

Λόλας Συναρτήσεις 6/1

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύει

$$f(3) - f(1) = 4$$

- f Q Να δείξετε ότι υπάρχει $\xi\in(1,3)$ τέτοιο ώστε $f'(\xi)=2$
- ② Να δείξετε ότι υπάρχει ένα τουλάχιστον σημείο Μ της C_f στο οποίο η εφαπτόμενη είναι παράλληλη στην ευθεία $\varepsilon: y = 2x + 3$

Λόλας Συναρτήσεις 7/1

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύει

$$f(3) - f(1) = 4$$

- Να δείξετε ότι υπάρχει $\xi \in (1,3)$ τέτοιο ώστε $f'(\xi) = 2$
- Να δείξετε ότι υπάρχει ένα τουλάχιστον σημείο \mathbf{M} της C_f στο οποίο η εφαπτόμενη είναι παράλληλη στην ευθεία $\varepsilon: y = 2x + 3$

Λόλας

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη με συνεχή παράγωγο και ισχύει f(1) - f(0) > 0

- ② Αν επιπλέον ισχύει $f'(x) \neq 0$ για κάθε $x \in \mathbb{R}$, να δείξετε ότι f'(x) > 0 για κάθε $x \in \mathbb{R}$

Λόλας Συναρτήσε

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη με συνεχή παράγωγο και ισχύει f(1) - f(0) > 0

- Nα δείξετε ότι υπάρχει $\xi \in (0,1)$ τέτοιο ώστε $f'(\xi) > 0$
- **2** Αν επιπλέον ισχύει $f'(x) \neq 0$ για κάθε $x \in \mathbb{R}$, να δείξετε ότι f'(x) > 0 για κάθε $x \in \mathbb{R}$

8/1

Συναρτήσεις

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=0, η οποία είναι παραγωγίσιμη. Να δείξετε ότι υπάρχει $\xi\in(0,x)$, x>0 τέτοιο ώστε $f'(\xi)=\frac{f(x)}{x}$

Λόλας

Για κάθε
$$\alpha$$
, $\beta \in (0,+\infty)$ με $\alpha < \beta$, να δείξετε ότι $1-\frac{\alpha}{\beta} < \ln \frac{\beta}{\alpha} < \frac{\beta}{\alpha} - 1$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και $f'\uparrow\mathbb{R}$

- 4 Αν f(1)=0 να δείξετε ότι $f'(x)>rac{f(x)}{x-1}$ για x>1
- ② Να δείξετε ότι f(2x) > f(x) + xf'(x) για κάθε x > 0
- 3 Να δείξετε ότι f(x) + f(5x) > 2f(3x) για κάθε x > 0

Λόλας Συναρτήσεις 11/1

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και $f'\uparrow\mathbb{R}$

- $\mathbf{1}$ Αν f(1)=0 να δείξετε ότι $f'(x)>rac{f(x)}{x-1}$ για x>1
- \mathbf{Q} Να δείξετε ότι f(2x)>f(x)+xf'(x) για κάθε x>0
- 3 Να δείξετε ότι f(x) + f(5x) > 2f(3x) για κάθε x > 0

Λόλας Συναρτήσεις 11/1

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και $f'\uparrow\mathbb{R}$

- $\mathbf{1}$ Αν f(1)=0 να δείξετε ότι $f'(x)>rac{f(x)}{x-1}$ για x>1
- \mathbf{Q} Να δείξετε ότι f(2x)>f(x)+xf'(x) για κάθε x>0
- 3 Να δείξετε ότι f(x) + f(5x) > 2f(3x) για κάθε x > 0

Λόλας Συναρτήσεις 11/1

- $e^x > x, x \in \mathbb{R}$

- $e^x > x, x \in \mathbb{R}$

- $e^x > x, x \in \mathbb{R}$
- **2** $\ln x < x, x > 0$
- $e^{x-1} > x, x \in \mathbb{R}$

- $e^x > x, x \in \mathbb{R}$
- **2** $\ln x < x, x > 0$
- $e^{x-1} > x, x \in \mathbb{R}$

- $e^x > x, x \in \mathbb{R}$
- **2** $\ln x < x, x > 0$
- $e^{x-1} > x, x \in \mathbb{R}$
- $e^x > \ln x, x > 0$

- $e^x > x, x \in \mathbb{R}$
- **2** $\ln x < x, x > 0$
- $e^{x-1} > x, x \in \mathbb{R}$
- $e^x > \ln x, x > 0$
- **6** $e^x \ln x > 2, x > 0$

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με $f(e)=e\ln 2$ και $f'(x)<\ln 2$, για κάθε $x\in\mathbb{R}$. Να δείξετε ότι $f(1)>\ln 2$

Λόλας Συναρτήσεις 13/1

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι δύο φορές παραγωγίσιμη με συνεχή δεύτερη και ισχύουν $f''(x)\neq 0$ για κάθε $x\in\mathbb{R}$ και f(1)-f(0)>f'(0). Να αποδείξετε ότι f''(x)>0 για κάθε $x\in\mathbb{R}$

Λόλας Συναρτήσεις 14/1

Έστω f μία συνάρτηση, η οποία είναι παραγωγίσιμη στο $\mathbb R$ με $|f'(x)| \leq 1$ για κάθε $x \in \mathbb R$

① Να αποδείξετε ότι για όλα τα α , $\beta \in \mathbb{R}$ ισχύει

$$|f(\beta) - f(\alpha)| \leq |\beta - \alpha|$$

② Να βρείτε το $\lim_{x\to +\infty}\left[f\left(\sqrt{x^2+1}\right)-f(x)\right]$

Λόλας Συναρτήσεις 15/1

Έστω f μία συνάρτηση, η οποία είναι παραγωγίσιμη στο $\mathbb R$ με $|f'(x)| \leq 1$ για κάθε $x \in \mathbb R$

① Να αποδείξετε ότι για όλα τα α , $\beta \in \mathbb{R}$ ισχύει

$$|f(\beta) - f(\alpha)| \leq |\beta - \alpha|$$

② Να βρείτε το $\lim_{x \to +\infty} \left[f\left(\sqrt{x^2+1}\right) - f(x) \right]$

Λόλας Συναρτήσεις 15/1

- ① Έστω $f:[\alpha,\beta]\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη και η f' είναι γνησίως αύξουσα στο $[\alpha,\beta]$. Να δείξετε ότι $f\left(\frac{\alpha+\beta}{2}\right)<\frac{f(\alpha)+f(\beta)}{2}$
- 2 Να δείξετε ότι $2e^5 < e^3 + e^7$

- ① Έστω $f:[\alpha,\beta]\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη και η f' είναι γνησίως αύξουσα στο $[\alpha,\beta]$. Να δείξετε ότι $f\left(\frac{\alpha+\beta}{2}\right)<\frac{f(\alpha)+f(\beta)}{2}$
- ② Να δείξετε ότι $2e^5 < e^3 + e^7$

Λόλας Συναρτήσεις 16/1

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι δύο φορές παραγωγίσιμη και ισχύει $f(\alpha)+f(3\alpha)=2f(2\alpha)$, $\alpha>0$. Να δείξετε ότι υπάρχει $\xi\in(\alpha,3\alpha)$ ώστε $f''(\xi)=0$

Λόλας Συναρτήσεις 17/1

Έστω $f: [\alpha, \beta] \to \mathbb{R}$ μία συνάρτηση με $f(\alpha) = \beta$ και $f(\beta) = \alpha$ η οποία είναι συνεχής στο $[\alpha, \beta]$ και παραγωγίσιμη στο (α, β) . Να αποδείξετε ότι:

- **1** η εξίσωση f(x) = x έχει μία τουλάχιστον ρίζα $x_0 \in (\alpha, \beta)$

Λόλας Συναρτήσεις 18/1

Έστω $f: [\alpha, \beta] \to \mathbb{R}$ μία συνάρτηση με $f(\alpha) = \beta$ και $f(\beta) = \alpha$ η οποία είναι συνεχής στο $[\alpha, \beta]$ και παραγωγίσιμη στο (α, β) . Να αποδείξετε ότι:

- **1** η εξίσωση f(x) = x έχει μία τουλάχιστον ρίζα $x_0 \in (\alpha, \beta)$
- υπάρχουν $x_1, x_2 \in (\alpha, \beta)$ τέτοια ώστε $f'(x_1)f(x_2) = 1$

Λόλας Συναρτήσεις 18/1