Date/Time: 11/21/2013 10:29:39

Test Laboratory: Neutron Engineering Inc.

WF2190 802.11AC mode HT80 ant A+B 5775MHz 5mm

DUT: WF2190-5mm; Type: Sample; Serial: 1307C140A

Communication System: UID 0, IEEE 802.11AC HT80 WiFi 5G(OFDM, 6 Mbps,); Frequency: 5775 MHz

Medium parameters used (interpolated): f = 5775 MHz; $\sigma = 6.185$ S/m; $\epsilon_r = 48.35$; $\rho = 996$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3932; ConvF(4.19, 4.19, 4.19); Calibrated: 09/16/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1390; Calibrated: 09/10/2013
- · Phantom: SAM 1; Type: SAM; Serial: 1784
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

802.11AC HT80 5mm/WF2190 802.11AC HT80 antA+B 5775MHz 5mm/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Reference Value = 0.106 V/m; Power Drift = 0.014 dBFast SAR: SAR(1 g) = 0.00288 W/kg; SAR(10 g) = 0.000472 W/kgMaximum value of SAR (interpolated) = 0.0182 W/kg

802.11AC HT80 5mm/WF2190 802.11AC HT80 antA+B 5775MHz 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0106 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.0390 W/kg

SAR(1 g) = 0.00594 W/kg; SAR(10 g) = 0.00164 W/kg

Maximum value of SAR (measured) = 0.0171 W/kg

0 dB = 0.0171 W/kg = -17.67 dBW/kg

Report No.: NEI-FCC-SAR-1307C140A Page 65 of 101

Date/Time: 11/21/2013 11:26:39

Test Laboratory: Neutron Engineering Inc.

WF2190 802.11AC mode HT80 ant A+B 5775MHz 10mm

DUT: WF2190-10mm; Type: Sample; Serial: 1307C140A

Communication System: UID 0, IEEE 802.11AC HT80 WiFi 5G(OFDM, 6 Mbps,); Frequency: 5775 MHz

Medium parameters used (interpolated): f = 5775 MHz; $\sigma = 6.185$ S/m; $\epsilon_r = 48.35$; $\rho = 996$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3932; ConvF(4.19, 4.19, 4.19); Calibrated: 09/16/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1390; Calibrated: 09/10/2013
- · Phantom: SAM 1; Type: SAM; Serial: 1784
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

802.11AC HT80 10mm/WF2190 802.11AC HT80 antA+B 5775MHz 10mm/Area Scan (91x131x1): Interpolated grid: dx=1.500 mm,

Reference Value = 0.351 V/m; Power Drift = 0.08 dB

Fast SAR: SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (interpolated) = 0.113 W/kg

802.11AC HT80 10mm/WF2190 802.11AC HT80 antA+B 5775MHz 10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 0.351 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.235 W/kg SAR(1 g) = 0.037 W/kg; SAR(10 g) = 0.013 W/kg

Maximum value of SAR (measured) = 0.114 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

Report No.: NEI-FCC-SAR-1307C140A

4. Probe Calibration Certificate

EX3DV4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Neutron Engineering (Auden)

Certificate No: EX3-3932_Sep13

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3932

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

September 16, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	4-Sep-13 (No. DAE4-660_Sep13)	Apr-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Eif Ila-
Approved by:	Katja Pokovic	Technical Manager	REKL
			Issued: September 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3932_Sep13

Page 1 of 11

Report No.: NEI-FCC-SAR-1307C140A Page 67 of 101 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on
 the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3932_Sep13 Page 2 of 11

Report No.: NEI-FCC-SAR-1307C140A Page 68 of 101

September 16, 2013 EX3DV4 - SN:3932

Probe EX3DV4

SN:3932

Manufactured:

July 24, 2013

Calibrated:

September 16, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3932_Sep13

Page 3 of 11

Report No.: NEI-FCC-SAR-1307C140A Page 69 of 101

September 16, 2013 EX3DV4-SN:3932

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3932

Basic Calibration Parameters

Dasic Cambration Fara	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm (µV/(V/m) ²) ^A	0.52	0.55	0.46	± 10.1 %	
DCP (mV) ^B	102.3	102.8	101.8		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	WR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	167.8	±3.0 %
0	CW	Y	0.0	0.0	1.0		179.9	
		Z	0.0	0.0	1.0		157.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3932_Sep13

Page 4 of 11

^h The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

⁸ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-SN:3932

September 16, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3932

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	10.36	10.36	10.36	0.20	1.35	± 12.0 %
835	41.5	0.90	9.89	9.89	9.89	0.29	1.02	± 12.0 %
900	41.5	0.97	9.67	9.67	9.67	0.21	1.33	± 12.0 %
1750	40.1	1.37	8.47	8.47	8.47	0.33	0.89	± 12.0 %
1900	40.0	1.40	8.21	8.21	8.21	0.12	1.47	± 12.0 %
2100	39.8	1.49	8.31	8.31	8.31	0.80	0.50	± 12.0 %
2300	39.5	1.67	7.75	7.75	7.75	0.43	0.70	± 12.0 %
2450	39.2	1.80	7.40	7.40	7.40	0.36	0.81	± 12.0 %
2600	39.0	1.96	7.16	7.16	7.16	0.44	0.78	± 12.0 %

Certificate No: EX3-3932_Sep13

Page 5 of 11

 $^{^{\}circ}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. $^{\circ}$ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target bissue parameters.

September 16, 2013 EX3DV4-SN:3932

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3932

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.92	9.92	9.92	0.21	1.47	± 12.0 %
835	55.2	0.97	9.92	9.92	9.92	0.30	1.12	± 12.0 %
900	55.0	1.05	9.67	9.67	9.67	0.51	0.79	± 12.0 %
1750	53.4	1.49	8.14	8.14	8.14	0.56	0.73	± 12.0 %
1900	53.3	1.52	7.80	7.80	7.80	0.42	0.80	± 12.0 %
2100	53.2	1.62	8.12	8.12	8.12	0.29	1.01	± 12.0 %
2300	52.9	1.81	7.57	7.57	7.57	0.59	0.68	± 12.0 %
2450	52.7	1.95	7.34	7.34	7.34	0.80	0.50	± 12.0 %
2600	52.5	2.16	7.08	7.08	7.08	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.69	4.69	4.69	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.48	4.48	4.48	0.45	1.90	± 13.1 %
5500	48.6	5.65	4.15	4.15	4.15	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.07	4.07	4.07	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.19	4.19	4.19	0.55	1.90	± 13.1 %

Certificate No: EX3-3932_Sep13

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^C At frequencies below 3 GHz, the validity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3932_Sep13

Page 7 of 11

Report No.: NEI-FCC-SAR-1307C140A Page 74 of 101