Part I: Cleaning Data

Data Cleaning Goals

- Eliminating missing values and errors
- Handling duplicate entries
- Converting data types

Cleaning Methods

- Removing or replacing missing values
- Correcting incorrect or inconsistent data
- Normalizing data

Tools

Pandas library for data manipulation

Demo

Part II: Visualisation

Distribution of Property Types

Distribution of Property Types: counts of different property types (Type_of_property and Subtype_of_property)

24 subtypes: visually confusing

5 groups : visually clear

What criteria should we use ?

Distribution of property types (grouped)

Regional Insights / Price Analysis

• Price vs. Region: property prices across different regions or provinces.

 Features by Region: how features like Number_of_rooms, Net_habitable_surface, or Garden_surface vary by region.

• **Price by Region/Province**: compare prices across different regions or provinces.

Construction and Building State

• **Construction Year**: distribution of Construction_Year to understand the age of properties.

State of Building: distribution of State_of_building (e.g., new, good, to renovate)

Correlation Analysis

• Correlation Heatmap: Analyze correlations between numerical variables

Setting threshold = 0.1 for (1), 0.5 for (2)

Results:

bedroomCount: 0.38 terraceSurface: 0.24 landSurface: 0.23 facedeCount: 0.17 bathroomCount: 0.11

Challenges

Missing Values :

	NaN_ratio_%
nasAirConditioning	98.50%
nasSwimmingPool	97.60%
nasDressingRoom	96.60%
nasFireplace	96.00%
nasThermicPanels	95.90%
nasArmoredDoor	95.20%
gardenOrientation	92.70%
diningRoomSurface	91.00%
nasHeatPump	90.20%
nasPhotovoltaicPanels	89.50%
nasOffice	86.40%
erraceOrientation	85.30%
nasAttic	83.60%
nasDiningRoom	81.50%
streetFacadeWidth	79.70%
gardenSurface	79.10%
nasGarden	79.10%
nasVisiophone	79.10%
parkingCountOutdoor	76.30%
nasLift	75.10%
roomCount	71.30%
citchenSurface	68.20%
parkingCountIndoor	63.60%
erraceSurface	62.60%
livingRoomSurface	62.10%
nasBasement	61.60%
floorCount	50.80%
landSurface	48.20%
citchenType	45.10%
nasLivingRoom	43.90%
FloodZoneType	43.80%
neatingType	38.30%
nasTerrace	37.90%
ouildingConstructionYear	35.70%
acedeCount	30.30%
coiletCount	27.90%
puildingCondition	24.10%
epcScore	15.70%
pathroomCount	12.70%
nabitableSurface	11.30%
pedroomCount	3.70%
price	0.00%

- Category Variables :
- 'type'
- 'subtype'
- 'province'
- 'locality'
- 'postCode'
- 'buildingCondition'
- 'floodZoneType'
- 'heatingType'
- 'kitchenType'
- gardenOrientation'
- 'terraceOrientation'
- 'epcScore'

Correlation Analysis - new attempt

• New attempt:

Missing value:

hasXXX (e.g. 'hasBasement') True/NaN \rightarrow 1/0

One-hot encoding:

'type', 'subtype', 'province', 'heatingType', 'kitchenType', 'gardenOrientation', 'terraceOrientation', 'region'

Target encoding: 'postCode'

Label encoding: 'floodZoneType', 'buildingCondition', 'epcScore'

• Possible solution:

More 'changes' on data: group, imputation, drop outliers... Use other method to select features.

Setting threshold = 0.1 for price-variable, 0.3 for variable-variable

Results:

postCode_target_encoding: 0.5

bedroomCount: 0.38 hasSwimmingPool: 0.26

subtype_Villa: 0.26 terraceSurface: 0.24 landSurface: 0.23

kitchenType_Hyper_equipped: 0.19

facedeCount: 0.17

subtype_Exceptional_property: 0.15

hasOffice: 0.17

bathroomCount: 0.11 buildingCondition: -0.11 hasArmoredDoor: 0.1 hasVisiophone: 0.1 hasFireplace: 0.1

Thank you