$X(4050)^{\pm}$

$$I(J^P) = ?(??)$$

OMITTED FROM SUMMARY TABLE

Observed by MIZUK 08 in the $\pi^+\chi_{c1}(1P)$ invariant mass distribution in $\overline B{}^0 \to K^-\pi^+\chi_{c1}(1P)$ decays. Not seen by LEES 12B in this same mode after accounting for $K\pi$ resonant mass and angular structure.

$X(4050)^{\pm}$ MASS

DOCUMENT ID

 $4051\pm14^{+20}_{-41}$ BELL $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}(1P)$ ¹ MIZUK

¹ From a Dalitz plot analysis with two Breit-Wigner amplitudes.

$X(4050)^{\pm}$ WIDTH

TECN COMMENT VALUE (MeV)

BELL $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}(1P)$ ¹ MIZUK 80

$X(4050)^{\pm}$ DECAY MODES

Mode Fraction (Γ_i/Γ) $\pi^{+} \chi_{c1}(1P)$ Γ_1

X(4050) BRANCHING RATIOS

 $\Gamma(\pi^+\chi_{c1}(1P))/\Gamma_{total}$ Γ_1/Γ

TECN COMMENT 08 BELL $\overline{B}^0 \rightarrow K^- \pi^+ \chi_{c1}(1P)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

² LEES 12B BABR $B \to K\pi\chi_{c1}(1P)$ not seen

 1 With a product branching fraction measurement of B($\overline{B}^0 \to K^- X(4050)^+) imes$ B($X(4050)^+ \rightarrow \pi^+ \chi_{c1}(1P)$) = $(3.0^{+1.5}_{-0.8} + 3.7_{-1.6}) \times 10^{-5}$. With a product branching fraction limit of B($\overline{B}^0 \rightarrow X(4050)^+ K^-$) \times B($X(4050)^+ \rightarrow X(4050)^+ K^-$)

 $\chi_{\rm C1}\,\pi^+)<~1.8\times 10^{-5}$ at 90% CL.

$X(4050)^{\pm}$ REFERENCES

LEES 12B PR D85 052003 J.P. Lees et al. (BABAR Collab.) MIZUK PR D78 072004 (BELLE Collab.) R. Mizuk et al.

Created: 5/30/2017 17:21

¹ From a Dalitz plot analysis with two Breit-Wigner amplitudes.