CS 131 - Week 6

TA: Tanmay Sardesai

How to find these slides

Piazza -> CS 131 -> Resources -> Discussion 1B

Announcements

- Email <u>tanmays@cs.ucla.edu</u>
- Office Hours Thursday 1:30 pm 3:30 pm. Bolter Hall 3256S-A
- HW4 will be due Feb 22nd (next Friday) at 11:55 pm

Topics covered today

- Homework 4 Motivation
- Prolog Introduction
- Homework 4 Details
- Hands on

Homework 4 Motivation

- https://web.cs.ucla.edu/classes/winter19/cs131/hw/hw4.html
- https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/tower
 s.html#5:2/3/2/1/4/3/1/3/3/2/4/1/2/5/2/2/4/2/1/2

Prolog Introduction

Running Prolog Code

- We will be using gprolog to check your homework code
 - http://www.gprolog.org/
 - http://www.gprolog.org/#download
 - http://www.gprolog.org/manual/gprolog.html
- There are many implementation of prolog but we won't support them for this assignment
 - http://www.swi-prolog.org/
 - http://www.dcc.fc.up.pt/~vsc/yap/

Prolog Introduction

Load a file - `consult('file.pl'). ` or `['file.pl'].`

How to exit interpreter: Control + D

What is a Prolog Program?

- Technically you don't create a prolog program.
- You create a prolog database.
- In a database you have 2 types of clauses.
 - Facts
 - Rules

Sooooo what really is prolog???

- Prolog is a logic programming language
- Basic idea
 - Declare a set of facts
 - Single piece of information
 - Sky is blue
 - Declare a set of rules
 - Ways to generate new information based facts, other rules or even themselves
 - A is grandparent of Z if A if parent of B and B is parent of Z
 - Run a query to ask if things are true and get solutions based on rules

Prolog Facts

- Prolog constants
 - Uninterpreted constants
 - o alice is a constant
 - Always use lowercase
- Predicate
 - A function that returns boolean.
 - person is predicate
- Variable
 - Always UPPERCASE

person(alice).

person(bob).

blue(sky).

mammal(rabbit).

Prolog Rules

- Rules describe a general relationship between facts
- Syntax
 - head :- body
 - head and body are both clauses that usually use variables.

grandparent(X,Z) := parent(X,Y), parent(Y,Z).

ancestor(X,Z) := parent(Z,Y), ancestor(X,Y).

Prolog Rules

- Rules describe a general relationship between facts
- Syntax
 - head :- body
 - head and body are both clauses that usually use variables

```
grandparent(X,Z) :- parent(X,Y), parent(Y,Z).
```

ancestor(X,Z) := parent(Z,Y), ancestor(X,Y).

 We don't explain how to use the rule, we just give prolog a database and it determines how and when to use the rules

Prolog Query

- Used to ask a question
- Query is like a rule without the body
- Prolog takes the head and tries to determine if true or false
- If we pass variables then prolog tries to determine all the variables

parent(alice,bob).

ancestor(bob,doug).

parent(bob, X).

What happens after running a Query?

- Three options
 - ; This will compute next solution
 - a This will compute all the remaining solutions
 - <return> This will stop the execution of the query

Minimum "function" in prolog

minimum(X,Y,X) := X < Y.minimum(X,Y,Y) := X > = Y.

Examples - family.pl

Prolog Visualizer

http://www.cdglabs.org/prolog/#/

https://www.slideshare.net/ZhixuanLai/prolog-visualizer

Tracing the logic (debugging)

- Sometimes your programs may return wrong answer because of wrong, incorrect or incomplete rules
- Use trace to figure out why

Arithmetic in Prolog

x < y	X < Y.
x ≤ y	X =< Y.
x > y	X > Y.
x ≥ y	X >= Y.
x == y	X =:= Y
x ≠ y	X =\= Y

'is'

- ?- 8 is 6 + 2.
- ?- 2 is 4 3.
- ?- 1 is sin(pi/2). no
- ?- 1.0 is sin(pi/2). yes

- ?- X is 6 + 2.
- X = 8 yes
- ?- X is sin(pi/4)
- X = 0.70710678118654746
- yes

Defining Predicate with is

subtract_4_and_double(X,Y) :- Y is (X-4) * 2.

Example:

- subtract_4_and_double(5,1).
- subtract_4_and_double(5,Y).-> Y=2 yes
- subtract_4_and_double(X,1).-> Error... why?

-> no

'is' Usage

- Arithmetic statements must be on the right with variables that have an assigned value.
 - X is 6 + 2 allowed
 - 6 + 2 is X not allowed
 - X is Y + 2 will only work is Y has some value assigned to it
- http://www.gprolog.org/manual/gprolog.html#sec98
 - Documentation describe how to use "is"

Equality operator (==) vs Equality Unification (=)

- The goal term1==term2 succeeds only if term1 is identical to term2.
 - likes(X,prolog)==likes(john,Y).-> no
 - likes(X,prolog)==likes(X,prolog). -> yes
- The goal term1=term2 succeeds only if term1 and term2 unify,
 i.e. there is some way of binding variables to values which
 would make the terms identical.
 - likes(X,prolog)=likes(john,Y). ->X=john Y=prolog yes

More example on == and =

- likes(X,prolog)==likes(Y,prolog).
- likes(X,prolog)=likes(Y,prolog).
- likes(X,prolog)==likes(Y,Z).
- likes(X,prolog)=likes(Y,Z).yes
- likes(X,prolog)==likes(Y,java).
- likes(X,prolog)=likes(Y,java).

- -> no
- -> Y=X yes

- -> no
 - -> Y=X Z=prolog

- -> no
- -> no

List in Prolog

- Pattern Matching
 - \circ ?- [a, b] = [a, X].
 - \circ ?- [a,b] = X.
 - \circ ?- [a,b] = [X].
- Head and Tail
 - ?- [a,b,c,d] = [H|T].[b,c,d] yes
 - \circ ?- [a] = [H|T].

- -> X = b yes
- -> X = [a,b] yes
- -> no

-> H = a T =

-> H = a T = []

List processing

- append(List1, List2, List12)
- member(Term, List1)
- reverse(List1, List2)
- prefix(Prefix, List)
- suffix(Prefix, List)
- last(Term,List)
- length(List,Integer)
- More here
 http://www.gprolog.org/manual/html node/gprolog044.html

Functions using List

first(List,Term)

last_in_array(List,Term)

compress(List1,List2)

Functions using List

• first([H|T],H).

- last_in_array([A],A).last_in_array([A|L],E) :- last_in_array(L,E).
- compress([],[])
 compress([X],[X])
 compress([X,X|Xs],Zs):- compress([X|Xs],Zs).
 compress([X,Y|Ys],[X|Zs]):- compress([Y|Ys], Zs), X =\= Y.

Generating a list with constraints

Generate a list of length N where each element is a unique integer between 1..N

```
all unique([]).
all_unique([H|T]) :- member(H, T), !, fail.
all unique([H|T]) :- all unique(T).
elements between([], , ).
elements between([H|T], Min, Max):-
                                         between(Min,Max,H),
                                         elements between(T, Min, Max).
unique_list(List, N) :- length(List, N),
                      elements between(List, 1, N),
                       all unique(List).
```

Generating a List with constraints

This is inefficient as we have N^N lists to iterate.

Same problem using Finite Domain solver

- Finds assignments to variables that fulfill constraints
- Variable values are limited to a finite domain (e.g. integers between 0 and 10)
- Less code, optimized solution

Sudoku using FD

Solve a 4 x 4 sudoku using FD.

Predicate definition -> sudoku(L) :-

Use:

fd_domain(List,Min,Max)

fd_all_different(List)

4	2	1	3
1	3	4	2
2	4	3	1
3	1	2	4

The above code defines the List L of all the elements in the sudoku. We restrict the values in L between 1 and 4. For all possible row, column and box we make sure everything is unique.

If we run the sudoku function like above then the program returns>	
X21 = 3, X22 = 4, X23 = 1, X24 = 2, X31 = 2, X32 = 1, X33 = 4, X34 = 3, X41 = 4,	X42 = 3, X43 = 2, X44 =
I The state of the	

?- sudoku4_fd([1,2,3,4,X21,X22,X23,X24,X31,X32,X33,X34,X41,X42,X43,X44]).

Puzzle - wolf, goat, cabbage

http://jeux.lulu.pagesperso-orange.fr/html/anglais/loupChe/loupChe1.htm

Constraints:
boat fits you plus one
can't leave the wolf with the goat
can't leave the goat with the cabbage

What's a state of the world:
a list of four elements
start: [west,west,west]
in general: [Person, Wolf, Goat,
Cabbage]

What are the actions in the world? wolf, goat, cabbage, nothing

Link to sample code (test code, some mistakes)

https://drive.google.com/drive/folders/14UA7vdrwJE1YENPuUPCSqV40i8S9BrK0?usp=sharing

Open using UCLA email

Prolog References

- https://www.cslab.pepperdine.edu/warford/cosc450/cosc-450-Setup-for-Prologon
 g.pdf
- http://www.cs.utexas.edu/~cannata/cs345/Class%20Notes/12%20prolog_intr o.pdf
- http://mgencer.com/files/PrologTutorial.html
- http://www.gprolog.org/manual/gprolog.html
- http://www.cs.toronto.edu/~sheila/384/w11/Prolog/prolog-tutorial-part1.pdf
- http://www.cs.toronto.edu/~sheila/384/w11/Prolog/prolog-tutorial-part2.pdf
- http://www.cs.toronto.edu/~sheila/384/w11/simple-prolog-examples.html