Recherche Opérationnelle 1A Théorie des graphes TD : Degrée + Coloration

Zoltán Szigeti

Ensimag, G-SCOP

EXO 1.1(a)

Théorème

La somme des degrés des sommets d'un graphe G = (V, E) est égale à deux fois le nombre d'arêtes, c'est-à-dire

$$\sum_{v \in V} d(v) = 2 \times |E|.$$

- Calculer la somme des degrés des sommets de *G* revient à compter les arêtes incidentes à chaque sommet et puis à ajouter ces nombres.
- 2 Chaque arête uv est comptée exactement deux fois dans la somme : une fois dans d(u) et une autre fois dans d(v).

EXO 1.1(b)

Corollaires

Le nombre de sommets de degré impair est pair.

EXO 1.1(b)

Corollaires

Le nombre de sommets de degré impair est pair.

Démonstration |

Par EXO 1.1(a),

$$\overbrace{2|E|}^{\equiv 0} \stackrel{[2]}{=} \sum_{v \in V} d(v) = \overbrace{\sum_{d(v) \ pair}^{} d(v)}^{\equiv 0} + \sum_{d(v) \ impair}^{} d(v).$$

- 2 Donc $\sum_{d(v) \text{ impair }} d(v)$ est pair.
- Or une somme de nombres impairs n'est paire que si le nombre de termes de cette somme est pair.

Corollaires

Le nombre d'arêtes d'un graphe complet K_n est égal à

Corollaires

Le nombre d'arêtes d'un graphe complet K_n est égal à $\frac{n\times(n-1)}{2}$.

Corollaires

Le nombre d'arêtes d'un graphe complet K_n est égal à $\frac{n\times(n-1)}{2}$.

- Puisque chacun des n sommets de K_n est de degré n-1,
- ② la somme des degrés des sommets est égale à $n \times (n-1)$
- \odot et aussi, par EXO 1.1(a), à deux fois le nombre d'arêtes de K_n .

Corollaires

Le nombre d'arêtes d'un graphe complet K_n est égal à $\frac{n\times(n-1)}{2}$.

Démonstration

- Puisque chacun des n sommets de K_n est de degré n-1,
- 2 la somme des degrés des sommets est égale à $n \times (n-1)$
- \odot et aussi, par EXO 1.1(a), à deux fois le nombre d'arêtes de K_n .

- Le nombre d'arêtes de K_n est égal au nombre de sous-ensembles à 2 éléments d'un ensemble à n éléments,
- 2 qui est par définition, $C_n^2 = \frac{n \times (n-1)}{2}$.

EXO 1.2(a)

Modélisations

Combien y a-t-il de matches aller dans une division composée de 15 équipes ?

EXO 1.2(a)

Modélisations

Combien y a-t-il de matches aller dans une division composée de 15 équipes ?

Démonstration

- Soit G = (V, E) où
 - V= l'ensemble de 15 équipes,
 - E= l'ensemble de matches aller dans la division.
- 2 Puisque chaque équipe joue exactement une fois avec chaque équipe,

$$G = K_{15}$$
.

 $|E(K_{15})| = \frac{15 \times 14}{2} = 105$, par EXO 1.1(c).

EXO 1.2(b)

Modélisations

Les chercheurs d'un comité d'experts ont formé 8 commissions pour rendre des rapports sur 8 projets :

- Chaque chercheur fait partie de deux commissions exactement et
- deux commissions quelconques ont exactement un chercheur en commun.

Combien y a-t-il de chercheurs dans ce comité ?

EXO 1.2(b)

Modélisations

Les chercheurs d'un comité d'experts ont formé 8 commissions pour rendre des rapports sur 8 projets :

- Chaque chercheur fait partie de deux commissions exactement et
- deux commissions quelconques ont exactement un chercheur en commun.

Combien y a-t-il de chercheurs dans ce comité ?

- Soit G = (V, E) où
 - V= l'ensembles de 8 commissions,
 - E= l'ensembles de chercheurs, par 1.
- ② $G = K_8$, par 2.
- $|E(K_8)| = \frac{8 \times 7}{2} = 28$, par EXO 1.1(c).

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- ② Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- ② Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

Démonstration

1 Il y a n valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- 2 Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

- **1** If y a *n* valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.
- ② Supposons que tous les *n* sommets sont de degrés différents.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- 2 Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

- **1** If y a *n* valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.
- ② Supposons que tous les *n* sommets sont de degrés différents.
- **③** Alors pour chaque $0 \le i \le n-1$ on a un sommet v_i de degré i.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- ② Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

Démonstration Dé

- **1** Il y a n valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.
- ② Supposons que tous les *n* sommets sont de degrés différents.
- **③** Alors pour chaque $0 \le i \le n-1$ on a un sommet v_i de degré i.
- **3** Considérons les sommets v_0 et v_{n-1} . Puisque $0 \neq n-1$, $v_0 \neq v_{n-1}$.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- 2 Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

- **1** If y a *n* valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.
- ② Supposons que tous les *n* sommets sont de degrés différents.
- **③** Alors pour chaque $0 \le i \le n-1$ on a un sommet v_i de degré i.
- **3** Considérons les sommets v_0 et v_{n-1} . Puisque $0 \neq n-1$, $v_0 \neq v_{n-1}$.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- ② Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

- ① Il y a n valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.
- ② Supposons que tous les *n* sommets sont de degrés différents.
- 3 Alors pour chaque $0 \le i \le n-1$ on a un sommet v_i de degré i.
- **3** Considérons les sommets v_0 et v_{n-1} . Puisque $0 \neq n-1$, $v_0 \neq v_{n-1}$.
- v_0v_{n-1} doit être une arête car v_{n-1} est relié à tous les sommets.

Théorème

- Dans un groupe d'au moins deux personnes il y a toujours au moins deux qui ont le même nombre de connaissances dans le groupe.
- 2 Autrement dit : Chaque graphe simple à $n \ge 2$ sommets contient au moins deux sommets de même degré.

- **1** If y a *n* valeurs possibles pour le degré d'un sommet : $0, 1, \ldots, n-1$.
- ② Supposons que tous les *n* sommets sont de degrés différents.
- 3 Alors pour chaque $0 \le i \le n-1$ on a un sommet v_i de degré i.
- **3** Considérons les sommets v_0 et v_{n-1} . Puisque $0 \neq n-1$, $v_0 \neq v_{n-1}$.

- Contradiction.

Modélisations

- On dispose de 15 PC et de seulement 9 imprimantes.
- ② On doit connecter directement les PC aux imprimantes de sorte que
 - les utilisateurs de 9 PC quelconques (parmi les 15) puissent utiliser les 9 imprimantes simultanément.
- \odot On peut évidemment réaliser une connexion avec cette propriété avec $15 \times 9 = 135$ liaisons,
- mais quel est le nombre minimum de liaisons nécessaires ?
- Justifier ce minimum et donner une réalisation.

Démonstration

1 Le nombre de connexions est au moins $9 \times 7 = 63$.

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - toutes les connexions entre Y = les autres 6 PC et les imprimantes.

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - ullet toutes les connexions entre Y = les autres 6 PC et les imprimantes.
 - Puisque chaque imprimante est relié à 1+6=7 PC, le nombre de connexions est $9\times 7=63$.

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - ullet toutes les connexions entre Y = les autres 6 PC et les imprimantes.
 - Puisque chaque imprimante est relié à 1+6=7 PC, le nombre de connexions est $9\times7=63$.
- Cette réalisation vérifie la condition :

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - ullet toutes les connexions entre Y = les autres 6 PC et les imprimantes.
 - Puisque chaque imprimante est relié à 1+6=7 PC, le nombre de connexions est $9\times 7=63$.
- Cette réalisation vérifie la condition :
 - Considérons 9 PC, i dans X et j dans Y, (i + j = 9).

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - toutes les connexions entre Y = les autres 6 PC et les imprimantes.
 - Puisque chaque imprimante est relié à 1+6=7 PC, le nombre de connexions est $9\times 7=63$.
- 3 Cette réalisation vérifie la condition :
 - Considérons 9 PC, i dans X et j dans Y, (i + j = 9).
 - Les i PC sont reliés à i imprimantes,

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - toutes les connexions entre Y = les autres 6 PC et les imprimantes.
 - Puisque chaque imprimante est relié à 1+6=7 PC, le nombre de connexions est $9\times 7=63$.
- 3 Cette réalisation vérifie la condition :
 - Considérons 9 PC, i dans X et j dans Y, (i + j = 9).
 - Les i PC sont reliés à i imprimantes,
 - les j PC sont reliés à toutes les 9 i = j imprimantes,

- **1** Le nombre de connexions est au moins $9 \times 7 = 63$.
 - Chaque imprimante doit être connecté à au moins 7 PC
 - sinon il y aurait 15 6 = 9 PC qui peuvent utiliser seulement 8 imprimantes.
- Une réalisation avec 63 connexions :
 - Une bijection entre X = 9 PC et les imprimantes,
 - toutes les connexions entre Y = les autres 6 PC et les imprimantes.
 - Puisque chaque imprimante est relié à 1+6=7 PC, le nombre de connexions est $9\times 7=63$.
- 3 Cette réalisation vérifie la condition :
 - Considérons 9 PC, i dans X et j dans Y, (i + j = 9).
 - Les i PC sont reliés à i imprimantes,
 - les j PC sont reliés à toutes les 9 i = j imprimantes,
 - Les 9 PC peuvent donc utiliser les 9 imprimantes simultanément.

Construction des graphes

```
On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i.

Parmi les suites suivantes, lesquelles sont graphiques ?
```

(7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

Construction des graphes

On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i .

Parmi les suites suivantes, lesquelles sont graphiques ? (7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

Solution

Construction des graphes

On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i .

Parmi les suites suivantes, lesquelles sont graphiques ? (7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

Solution

NON : par EXO 1.3.

Construction des graphes

On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i .

Parmi les suites suivantes, lesquelles sont graphiques ? (7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

- NON : par EXO 1.3.
- 2 NON : les deux sommets de degré 3 doivent être connectés aux deux autres sommets, il n'y a donc pas de sommet de degré 1.

Construction des graphes

On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i .

Parmi les suites suivantes, lesquelles sont graphiques ? (7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

- NON : par EXO 1.3.
- NON : les deux sommets de degré 3 doivent être connectés aux deux autres sommets, il n'y a donc pas de sommet de degré 1.
- \odot OUI : K_4 une arête.

Construction des graphes

On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i .

Parmi les suites suivantes, lesquelles sont graphiques ? (7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

- NON : par EXO 1.3.
- NON : les deux sommets de degré 3 doivent être connectés aux deux autres sommets, il n'y a donc pas de sommet de degré 1.
- \odot OUI : K_4 une arête.
- NON : par EXO 1.1(b).

Construction des graphes

On dit que la suite d'entiers (d_1, \ldots, d_n) est graphique, s'il existe un graphe simple de sommets v_1, \ldots, v_n tels que, pour tout i, v_i soit de degré d_i .

Parmi les suites suivantes, lesquelles sont graphiques ? (7,6,5,4,3,2,1), (3,3,1,1), (3,3,2,2), (1,2,2,3,4,4,5,6,6), (1,1,1,2,2,2,3,3,3).

- NON : par EXO 1.3.
- NON : les deux sommets de degré 3 doivent être connectés aux deux autres sommets, il n'y a donc pas de sommet de degré 1.
- \odot OUI : K_4 une arête.
- NON : par EXO 1.1(b).
- $\bullet \quad \mathsf{OUI} : E = \{ v_1 v_4, v_2 v_5, v_3 v_6, v_4 v_7, v_5 v_8, v_6 v_9, v_7 v_8, v_7 v_9, v_8 v_9 \}.$

Coloration

Définitions

On colore les sommets d'un graphe par des couleurs.

- Une coloration est bonne si
 - deux sommets adjacents ne sont pas de la même couleur,
 - les sommets de même couleur forment un stable : pas d'arêtes dedans.
- $2 \chi(G) =$ nombre min. de couleurs dans une bonne coloration de G.
 - $\chi(G)$ existe et $\leq n = |V(G)|$ car chaque sommet peut être colorié par une couleur différente.

Remarque

Calculer $\chi(G)$ est un problème difficile.

$\omega(G)$

Définitions

- Clique : sous-graphe qui est complet.
- $\omega(G)$ = le nombre maximum de sommets dans une clique de G.
 - $\omega(G)$ existe et ≥ 1 , car un sommet est une clique,
 - $\omega(G) \ge 2$; s'il existe une arête car elle est une clique.

Remarque

Dans une bonne coloration chaque sommet d'une clique doit être colorié par une couleur différente,

$$\chi(G) \geq \omega(G)$$
.

Exemple

$$\chi(C_5) = 3 > 2 = \omega(C_5).$$

Modélisation et Résolution

Une entreprise de déménagement doit réaliser 8 demandes.

A chaque opération correspond un intervalle de temps (début-fin) :

```
A(5h-13h), B(6h-9h), C(7h-11h), D(8h-15h), E(10h-19h), F(12h-20h), G(14h-17h), H(18h-21h).
```

- Modéliser le problème de la minimisation du nombre d'équipes nécessaires.
- 2 Traiter l'exemple.

Solution

• Soit $G = (\{A, \dots, H\}, \{XY : \text{si leur intervalles intersectent}\})$. Dans une bonne coloration de G, une couleur correspond à une équipe qui peut exécuter l'ensemble de déménagements de cette couleur. Il s'agit donc de trouver $\chi(G)$.

- Soit $G = (\{A, \dots, H\}, \{XY : \text{si leur intervalles intersectent}\})$. Dans une bonne coloration de G, une couleur correspond à une équipe qui peut exécuter l'ensemble de déménagements de cette couleur. Il s'agit donc de trouver $\chi(G)$.
- 2 Le nombre minimum d'équipes nécessaires est $\chi(G) = 4$.

- Soit $G = (\{A, \dots, H\}, \{XY : \text{si leur intervalles intersectent}\})$. Dans une bonne coloration de G, une couleur correspond à une équipe qui peut exécuter l'ensemble de déménagements de cette couleur. Il s'agit donc de trouver $\chi(G)$.
- 2 Le nombre minimum d'équipes nécessaires est $\chi(G) = 4$. $\chi(G) \ge \omega(G) \ge 4$ car $\{A, B, C, D\}$ forme une clique.

- Soit $G = (\{A, \dots, H\}, \{XY : \text{si leur intervalles intersectent}\})$. Dans une bonne coloration de G, une couleur correspond à une équipe qui peut exécuter l'ensemble de déménagements de cette couleur. Il s'agit donc de trouver $\chi(G)$.
- ② Le nombre minimum d'équipes nécessaires est $\chi(G) = 4$. $\chi(G) \ge \omega(G) \ge 4$ car $\{A, B, C, D\}$ forme une clique. $\chi(G) \le 4$ car il existe une bonne coloration avec 4 couleurs.

Complexité

Facile

- Trouver une bonne coloration qui utilise 2 couleurs, s'il en existe une.
- $\chi(G) \leq k$: le certificat est une bonne coloration à k couleurs.

Difficile

- Trouver une bonne coloration qui utilise $k (\geq 3)$ couleurs, s'il en existe une.
- $\chi(G) \geq k$: on n'a pas de certificat, on n'a que : $\chi(G) \geq \omega(G)$.