This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06245067 A

(43) Date of publication of application: 02 . 09 . 94

(51) Int. CI

H04N 1/40 G06F 15/64

(21) Application number: 05028245

(22) Date of filing: 17 . 02 . 93

(71) Applicant:

TOKYO ELECTRIC CO LTD

(72) Inventor:

ONO SHUNICHI

(54) IMAGE READER

(57) Abstract:

PURPOSE: To highly accurately read high quality images at all times.

CONSTITUTION: This reader is provided with fluctuation rate calculation means 41 and 42 for comparing front read data outputted from front picture elements arrayed in the main scanning direction of an imaging device 23 for forming a read unit 20 with back read data outputted from back picture elements and calculating the actual fluctuation rate of read data, comparing and judging means for comparing a set reference fluctuation rate with the calculated actual fluctuation rate and judging whether or not the actual fluctuation rate is equal to or more than the reference fluctuation rate, average value calculation means 41 and 42 for obtaining the average value by using the read data of the picture element in front excluding the frontest picture element relating to the calculation of the actual fluctuation rate and the read data of the picture elements at the back excluding the backmost picture element relating to the calculation of time actual fluctuation rate under a condition that it is judged that the actual fluctuation rate is equal to or more than the reference fluctuation rate by the comparing and judging means 41 and 42 and picture element read data correction means 41, 42 and 45 for correcting the read data of the picture elements relating to the calculation of the actual fluctuation

rate defined as to be equal to or more than the reference fluctuation rate with the average value calculated by the average value calculation means.

COPYRIGHT: (C)1994, JPO& Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-245067

(43)公開日 平成6年(1994)9月2日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 4 N 1/40 101 A 9068-5C

G06F 15/64

400 D 7631-5L

審査請求 未請求 請求項の数1 OL (全 6 頁)

(21)出願番号

(22)出願日

特願平5-28245

平成5年(1993)2月17日

(71)出願人 000003562

東京電気株式会社

東京都目黒区中目黒2丁目6番13号

(72)発明者 小野 俊一

静岡県田方郡大仁町大仁570番地 東京電

気株式会社大仁工場内

(74)代理人 弁理士 長島 悦夫 (外1名)

(54) 【発明の名称 】 画像読取装置

(57) 【要約】

【目的】常に高精度・高画質で画像を読取れるようにす

【構成】読取ユニット20を形成する撮像素子23の主 走査方向に列ぶ前画素から出力された前読取データと後 画素から出力された後読取データとを比較して読取デー タの実際変化率を算出する変化率算出手段(41,4 2) と、設定された基準変化率と算出された実際変化率 とを比較して実際変化率が基準変化率以上となったか否 かを判別する比較判別手段と、この比較判別手段(4 1,42)によって実際変化率が基準変化率以上となっ たと判別されたことを条件に、実際変化率の算出に係る 最先の画素を除く前方の画素の読取データと実際変化率 の算出に係る最後の画素を除く後方の画素の読取データ とを用いてその平均値を求める平均値算出手段(41, 42)と、基準変化率以上とされた実際変化率の算出に 係る画素の読取データを該平均値算出手段で算出された 平均値で補正する画素読取データ補正手段(41,4 2, 45) と、を設けた構成である。

- CPU(変化率算出手段,此數判顯手段。

平均性常出乎段,資素數取データ補正手段)

- ROM(液化和算出学数,比較利润手段。
 - 平均健紅田手段,蜀黍飲取データ槽正手段)
- 操作/(木ル(高準変化率接定平路)
- 46 影像処理回路(資業放政データ補正手段)

10

30

【特許請求の範囲】

【請求項1】 読取ユニットを用いて基準面から読取った読取データを基にシェーディング補正データを予め生成しておき、読取面にセットされた画像と該読取ユニットとを相対移動して読取った原読取画像データを該シェーディング補正データを用いてシェーディング補正して正規読取画像データを得る画像読取装置において、

基準変化率を設定する基準変化率設定手段と、

前記読取ユニットを形成する撮像素子の主走査方向に並 ぶ前画素から出力された前読取データと後画素から出力 された後読取データとを比較して読取データの実際変化 率を算出する変化率算出手段と、

設定された基準変化率と算出された実際変化率とを比較 して実際変化率が基準変化率以上となったか否かを判別 する比較判別手段と、

この比較判別手段によって実際変化率が基準変化率以上となったと判別されたことを条件に、実際変化率の算出に係る最先の画素を除く前方の画素の読取データと実際変化率の算出に係る最後の画素を除く後方の画素の読取データとを用いてその平均値を求める平均値算出手段と、基準変化率以上とされた実際変化率の算出に係る画素の読取データを該平均値算出手段で算出された平均値で補正する画素読取データ補正手段と、

を設けたことを特徴とする画像読取装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シェーディング補正機 能を有する画像読取装置に関する。

[0002]

【従来の技術】画像読取装置の一般構成を図3に示す。図において、本体11の上部開口部には読取面Frを形成するガラス板12が設けられ、このガラス板12とガイドレール14とは平行とされている。15はモータで、蛍光灯21,集光レンズ22,読取素子(撮像素子23)を含む読取ユニット20をガイドレール14に沿ったX方向(副走査方向)に往復移動できる。また、16は、原稿Pの位置決め片で、読取有効範囲Arの図中左端を規制する。なお、Psは画像読取開始位置で、13は原稿押えである。したがって、原稿Pの画像を読取面Frにセットし、読取ユニット20をX方向に移動させれば、当該ユニット20で画像を読取ることができる。すなわち、蛍光灯21から光照射し、原稿Pからの反射光を集光レンズ22を通して撮像素子23に入射させれば画像を電気信号として読取れる。

【0003】ところで、撮像素子23は、図3の紙面垂直方向(主走査方向)に配列された多数の画素から形成されているところ、蛍光灯21の長手方向(主走査方向)の発光特性は均一ではない。すなわち、両側端の発光量は中央の発行量より少ない。また、各画素も感度バラツキを有することがある。

【0004】そこで、画像読取装置には蛍光灯21の発光特性の影響や各画素の感度バラツキを除去できるシェーディング補正機能が設けられている。この機能は次のような構成によって実行されるのが一般的である。図3において、読取有効範囲Arに隣接するシェーディン補正範囲Asに例えば白色のシェーディング補正板30を配設し基準面Fsを形成する。また、図5において、27はシェーディング補正データ生成回路で、26はシェーディング補正データDsの記憶メモリである。また、24は乗算型D/Aコンバータ、25はA/Dコンバータである。

【0005】まず、任意のシェーディング補正データ (Ds)を初期値としてセットし、読取ユニット20 (23)で白色の基準面Fsを読取る。この読取データ Drは、D/Aコンバータ24においてシェーディング 補正データ (初期値) Dsの乗算によって補正され、アナログの読取データ (シェーディングは波形) Drcとなる。シェーディング波形 (Drc)は、図4 (横軸は 画素配列方向である。)に示す如くなる。この読取データ DrcはA/Dコンバータ25でデジタル (Drc d) 化され、シェーディング補正データ生成回路27に入力される。

【0006】シェーディング補正データ生成回路27 は、入力された全ての画素の読取データDrcのうちか ら最大のピーク値を持つ図4の白レベルを検出し、かつ 各画素の読取データDrcの値を、当該白レベルに直す ことのできる補正係数つまりシェーディング補正データ Dsを求める。このようにして、求めたシェーディング 補正データDsは、記憶メモリ26に書込記憶される。 したがって、読取ユニット20で基準面Fsを再び読取 ったとすれば、読取データでDrは先に生成したシェー ディング補正データDsで補正されるから、D/Aコン バータ24から出力されるアナログの読取データ(シェ ーディング波形)Drcは、いずれの画素についても図 4の白レベルとなる。つまり、蛍光灯21の発光特性の 影響等を除去できる。よって、以後に撮像素子23で読 取った原画像読取データ(Dr)を生成させたシェーデ ィング補正データDs で補正すれば正規画像読取データ Drc,Drcdを当該画像に応じたものとすることが できるから、高精度・高画質に画像を読取れる。

[0007]

【発明が解決しようとする課題】しかし、このようなシェーディング補正機能を備えても、時として部分的に読取画像の画質が低下してしまう場合がある。例えば、正規画像読取データDrcdに基づき用紙上へその画像を印刷した場合に、印刷画像上の一部分に白ヌケが発生することがある。かかる不都合は、高分解能乃至高精度の装置ほど発生しやすい。この不都合発生原因の一つにシェーディング補正データDsの乱れがあるものと推定される。なぜなら、各回路の総点検を行っても解消されな

いからである。

【0008】ここに本発明の目的は、常に髙精度・高画 質で画像を読取ることができる画像読取装置を提供する ことにある。

[0009]

【課題を解決するための手段】シェーディング補正デー タDsの乱れに着目し分析したところによると、シェー ディング補正データD s の生成時に基準面(例えば白色 の基準面) Fs上に組立調整作業等による汚れ・傷や塵 ・埃が付着していると、シェーディング波形(Drc) に図4のA部に示す如く他の部分に比べて鋭く落込む等 の乱れが生じる。したがって、これを基礎としてシェー ディング補正データDsを自動生成すると、上記不具合 が生じることになる。しかも、基準面Fsに塵等が付着 しているか否かは目視判断が難しいところから、各種回 路の総点検を行うなどしても発見できなかった厄介な問 題となっていたわけである。だからといって、慎重に行 った組立・調整後に基準面Fsに塵等が付着しているか 否かを外部から判断できるような構造とすることも煩わ しいし塵等を完全に除去することも困難である。

【0010】ところで、上記シェーディング波形(Dr c)のA部の如く、塵・埃等のためにその前後で読取デ ータが急激に変化する場合には、A部に対応する読取デ ータを当該A部を除いた近傍の読取データの平均値を用 いて補正してシェーディング補正データを生成すれば塵 ・傷等の影響を除去することができる。本発明は、以上 の技術的根拠に基づき創成されたものである。

【0011】すなわち、本発明に係る画像形成装置は、 読取ユニットを用いて基準面から読取った読取データを 基にシェーディング補正データを予め生成しておき、読 30 取面にセットされた画像と該読取ユニットとを相対移動 して読取った原読取画像データを該シェーディング補正 データを用いてシェーディング補正して正規読取画像デ ータを得る画像読取装置において、基準変化率を設定す る基準変化率設定手段と、前記読取ユニットを形成する 撮像素子の主走査方向に並ぶ前画素から出力された前読 取データと後画素から出力された後読取データとを比較 して読取データの実際変化率を算出する変化率算出手段 と、設定された基準変化率と算出された実際変化率とを 比較して実際変化率が基準変化率以上となったか否かを 40 判別する比較判別手段と、この比較判別手段によって実 際変化率が基準変化率以上となったと判別されたことを 条件に、実際変化率の算出に係る最先の画素を除く前方 の画素の読取データと実際変化率の算出に係る最後の画 素を除く後方の画素の読取データとを用いてその平均値 を求める平均値算出手段と、基準変化率以上とされた実 際変化率の算出に係る画素の読取データを該平均値算出 手段で算出された平均値で補正する画素読取データ補正 手段と、を設けたことを特徴とする。

[0012]

算出された実際変化率は、比較判別手段により予め基準 変化率設定手段によって設定された基準変化率以上とな っているか否かが判別される。

【0013】基準変化率以上となっていると判別された 実際変化率の算出に係る最先の画素を除く前方の画素の 読取データと実際変化率の算出に係る最後の画素を除く 後方の画素の読取データとを用いてその平均値が平均値 算出手段によって算出される。画像読取データ補正手段 は、基準変化率以上とされた実際変化率の算出に係る画 素の読取データを平均値算出手段で算出された平均値で 補正する。

【0014】このように、塵や傷等の影響を受けて読取 データが急激に変化する画素部分(すなわち、基準変化 率以上とされた実際変化率の算出に係る画素部分)の読 取データを当該画素部分を除いた前後の画素の読取デー タの平均値で補正することにより塵等の影響を受けずに 正確なシェーディング補正データを生成することができ る。

[0015]

20

50

【実施例】以下、本発明の実施例を図面を参照して説明 する。本画像読取装置は、従来例(図3,5)と同様な 基本的構成〔本体11,ガラス板12,読取ユニット2 0 (蛍光灯21, 集光レンズ22, 撮像素子23)〕 と、制御装置40とから構成され、かつ基準変化率設定 手段と変化率算出手段と比較判別手段と平均値算出手段 と画像読取データ補正手段とを設けて基準面Fsに付着 した塵や傷等により読取データが急激に変化する画素部 分の読取データを当該画素部分を除いた前後の画素の読 取データの平均値で補正することにより正確なシェーデ ィング補正データを生成可能に形成されている。

【0016】なお、従来例(図3,5)と共通する部分 については同一の符号を付しその説明を簡略または省略 する。

【0017】まず、制御装置40は、本装置全体を駆動 制御するもので、CPU41, ROM42, RAM4 3,入出力ポート44等からなる。入出力ポート44に は、操作パネル45、読取ユニット20の蛍光灯21 (光源ドライバ55) および撮像素子23 (撮像素子ド ライバ56)が接続されている。なお、図1において、 46は画像処理回路、47はイメージメモリ、48はD /A変換器、49はA/D変換器、51はアナログブロ ック、52はインターフェース回路である。

【0018】次に、基準変化率設定手段は、撮像素子2 3の主走査方向に並ぶ各画素の読取データの基準変化率 (△ix) を設定する手段である。本実施例において

は、基準変化率設定手段は、制御装置40の操作パネル

20

6

45より形成されている。設定した基準変化率は変更可 能である。

【0019】また、変化率算出手段は、撮像素子23の主走査方向に並ぶ前画素から出力された前読取データと後画素から出力された後読取データとを比較して読取データの実際変化率を算出する手段で、CPU41、ROM42から形成されている。本実施例では、撮像素子23の主走査方向の画素(図2(A)、(B)に示す、…,in-2,in-1,in,…in+6,…)から実際変化率(本実施例では、各画素in-2等は主走査方向に等間隔で並んでいるので前読取データと後読取データとの差分、すなわち図2(A)に示す、…, \triangle i0, \triangle i1, \triangle i2,… \triangle i5,…)は次のように算出される。 \triangle i0=|in-1-in|, \triangle i1=|in-in+1|, \triangle i2=|in+1-in+2|,…, \triangle i6=|in+5-in+6|,…なお、図2(A)、(B)の読取データは量子化されたものである。

【0020】また、比較判別手段は、設定された基準変 化率△ix と算出された実際変化率とを比較して実際変 化率が基準変化率以上となっているか否かを判別する手 段で、CPU41とROM42とから形成されている。 この実施例では、比較判別手段は、実際変化率△i1, △i2, △i3, △i5, △i6 が基準変化率△ix以 上となっていると判別する。なお、△i4 は△ix 未満 であるが、 $\triangle ix$ 以上の $\triangle i3$ と $\triangle i5$ とに挟まれてい るのでソフトウエア上△ix 以上として処理される。ま た、平均値算出手段は、比較判別手段によって実際変化 率が基準変化率以上となっていると判別されたことを条 件に、実際変化率の算出に係る最先の画素(本実施例で は i n+1) を除く前方の画素の読取データ (本実施例で は画素 in-3, in-2, in-1, in の出力読取デー タ)と実際変化率の算出に係る最後の画素 (in+5)を 除く後方の画素(i n+6 , i n+7 , i n+8 , i n+9) の 読取データとを用いてその平均値を求めるもので、CP U41、ROM42から形成されている。

【0021】また、画素読取データ補正手段は、基準変化率以上とされた実際変化率の算出に係る画素の読取データを平均値算出手段で算出された平均値で補正する手段で、CPU41、ROM42、画像処理回路46より形成されている。

【0022】次に、作用について説明する。変化率算出手段によって撮像素子23の主走査方向に並ぶ前画素から出力された前読取データと後画素から出力された後読取データとが比較され読取データの実際変化率 $(\cdots, \triangle i0, \triangle i1, \triangle i2, \cdots \triangle i5, \cdots)$ が算出される。算出された実際変化率は、比較判別手段により予め基準変化率設定手段によって設定された基準変化率 $\triangle ix$ 以上となっているか否かが判別される。

【0023】基準変化率 $\triangle ix$ 以上となっていると判別された実際変化率($\triangle i1$, $\triangle i2$, $\triangle i3$, $\triangle i4$,

 \triangle i 5 , \triangle i 6) の算出に係る最先の画素 (in+1) を除く前方の画素 (in-3, in-2, in-1, in) の読取データと実際変化率の算出に係る最後の画素 (in+5) を除く後方の画素 (in+6, in+7, in+8, in+9の読取データとを用いてその平均値が平均値算出手段によって算出される。画像読取データ補正手段は、基準変化率 \triangle ix 以上とされた実際変化率 (\triangle i 1, \triangle i 2, \triangle i 3, \triangle i 4, \triangle i 5, \triangle i 6) の算出に係る画素の読取データ(in+1 \sim in+5)を平均値算出手段で算出された平均値で補正する。

【0024】このように、塵や傷等の影響を受けて読取データが急激に変化する画素部分(in+1~in+5)の読取データを当該画素部分を除いた前後の画素の読取データ(in-3, in-2, in-1, in, in+6, in+7, in+8, in+9)の平均値で補正することにより塵等の影響を受けずに正確なシェーディング補正データを生成することができる。なお、生成されたシェーディング補正データは、イメージメモリ47の一部47aに記憶される。

【0025】なお、撮像素子23の各画素から出力された原読取画像データは、アナログブロック51およびA/D変換器49等を介して上記生成されたシェーディング補正データにより補正されて正規読取画像データとなり、画像処理回路46で処理された後インターフェース52を介して外部出力される。

【0026】しかして、この実施例によれば、基準変化 率 (△ i x) を設定する基準変化率設定手段 (4 5) と、読取ユニット20を形成する撮像素子23の主走査 方向に並ぶ前画素から出力された前読取データと後画素 から出力された後読取データとを比較して読取データの 実際変化率 (△ i 1 等) を算出する変化率算出手段 (4 1, 42) と、設定された基準変化率と算出された実際 変化率とを比較して実際変化率が基準変化率以上となっ たか否かを判別する比較判別手段(41,42)と、こ の比較判別手段によって実際変化率が基準変化率以上と なったと判別されたことを条件に、実際変化率の算出に 係る最先の画素を除く前方の画素の読取データと実際変 化率の算出に係る最後の画素を除く後方の画素の読取デ ータとを用いてその平均値を求める平均値算出手段(4 1,42)と、基準変化率以上とされた実際変化率の算 出に係る画素の読取データを該平均値算出手段で算出さ れた平均値で補正する画素読取データ補正手段(41, 42,46)と、を設けた構成としたので、塵等の影響 を受けずに正確なシェーディング補正データを生成する ことができ、常に高精度・高画質で画像を読取ることが できる。

[0027]

【発明の効果】本発明によれば、基準変化率を設定する 基準変化率設定手段と、読取ユニットを形成する撮像素 子の主走査方向に列ぶ前画素から出力された前読取デー

(5)

タと後画素から出力された後読取データとを比較して読 取データの実際変化率を算出する変化率算出手段と、設 定された基準変化率と算出された実際変化率とを比較し て実際変化率が基準変化率以上となったか否かを判別す る比較判別手段と、この比較判別手段によって実際変化 率が基準変化率以上となったと判別されたことを条件 に、実際変化率の算出に係る最先の画素を除く前方の画 素の読取データと実際変化率の算出に係る最後の画素を 除く後方の画素の読取データとを用いてその平均値を求 める平均値算出手段と、基準変化率以上とされた実際変 化率の算出に係る画素の読取データを該平均値算出手段 で算出された平均値として当該画素の読取データを補正 する画素読取データ補正手段と、を設けた構成としたの で、塵等の影響を受けずに正確なシェーディング補正デ ータを生成することができ、常に髙精度・髙画質で画像 を読取ることができる。

【図面の簡単な説明】

【図1】本発明の全体構成を示す図である。

【図2】同じく、撮像素子の主走査方向の各画素の読取*

* データと塵等による異常読取データの補正方法を説明するための図である。

【図3】本発明および従来の画像読取装置の機械的構成 を説明するための図である。

【図4】従来例による問題点を説明するための図であ ス

【図5】従来例のシェーディング補正データ生成方法を 説明するための図である。

【符号の説明】

- 10 20 読取ユニット
 - 21 蛍光灯
 - 23 撮像素子
 - 41 CPU(変化率算出手段,比較判別手段,平均値 算出手段,画素読取データ補正手段)
 - 42 ROM (変化率算出手段, 比較判別手段, 平均値 算出手段, 画素読取データ補正手段)
 - 45 操作パネル (基準変化率設定手段)
 - 46 画像処理回路(画素読取データ補正手段)

【図2】

【図1】

- 21 蛍光灯
- 23 摄像素子
- 41 CPU (変化率算出手段, 比較判別手段,

平均恒算出手段、耐素競取データ補正手段)

4.2 ROM(变化率算出手段, 比較判別手段,

平均値算出手段、衝象説取データ補正手段)

- 45 操作パネル (基準変化率設定手段)
- 46 関係処理回路(画景説取データ補正手段)

in-4 in-3 ing in-4 in in-8 in-8 in-6 in-6 in-6 in-6 in-8 in-9

20

(A)

(B)

【図5】

【図4】

