МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа № 1 по курсу «Методы машинного обучения»

Тема: «Разведочный анализ данных. Исследование и визуализация данных»

исполнитель:			Парше	ва А.	M.
группа ИУ5-22М			подпись		
	"_	_"_		_201_	Γ.
ПРЕПОДАВАТЕЛЬ:	_		ФИО		
	_		подпись		
	"_	_"_		_201_	_ Г.

Москва - 2020

Лабораторная работа №1. Разведочный анализ данных. Исследование и визуализация данных.

Задание

- 1. Выбрать набор данных (датасет).
- 2. Создать ноутбук, который содержит следующие разделы:
 - Текстовое описание выбранного набора данных.
 - Основные характеристики датасета.
 - Визуальное исследование датасета. Необходимо использовать не менее 2 различных библиотек и не менее 5 графиков.
 - Информация о корреляции признаков.
- 3. Сформировать отчет и разместить его в своем репозитории на github.

Текстовое описание датасета

```
from sklearn.datasets import load_boston
import numpy as np
import pandas as pd
```

```
In [2]:
data = load_boston()
```

Для выполнения данной лабораторной работы использовался датасет load_boston, который включает в себя, следующие данные:

- **CRIM** уровень приступности на душу населения
- ZN доля жилой земли зонированая под участки более 25 000 кв.
- INDUS доля неторговых площадей на город
- **CHAS** фиктивная переменная (= 1, если тракт ограничивает реку; 0 в противном случае)
- NOX концентрация оксидов азота (частей на 10 миллионов)
- RM среднее количество комнат в доме
- AGE доля домов, построенных до 1940 года
- **DIS** взвешенные расстояния до пяти бостонских центров занятости
- RAD индекс доступности к радиальным магистралям
- ТАХ ставка налога на полную стоимость имущества за 10 000 долл. США
- PTRATIO соотношение учеников и учителей по городам
- В 1000 (Вк 0,63) ^ 2, где Вк доля чернокожих по городам
- LSTAT % низкого статуса среди населения
- MEDV средняя стоимость домов в 1000 долл. США

```
In [3]:
```

```
df = pd.DataFrame(data.data, columns=data.feature_names)
df['MEDV'] = data.target
```

Основные характеристики датасета

```
In [4]:
```

```
rows = df.shape[0]
columns = df.shape[1]
"Данный датасет содержит %d строк и %d столбцов." % (rows, col
umns)
```

Out[4]:

'Данный датасет содержит 506 строк и 14 столбцов.'

In [5]:

df.describe()

Out[5]:

		CRIM	ZN	INDUS	CHAS	NOX	
•	count	506.000000	506.000000	506.000000	506.000000	506.000000	,
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	
	std	8.601545	23.322453	6.860353	0.253994	0.115878	
	min	0.006320	0.000000	0.460000	0.000000	0.385000	
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	
	max	88.976200	100.000000	27.740000	1.000000	0.871000	

In [6]:

'Данный датасет содержит столбцы: ' + ', '.join(df.columns)

Out[6]:

'Данный датасет содержит столбцы: CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LST AT, MEDV'

In [7]: df.dtypes

Out[7]:

float64 CRIM float64 ZNINDUS float64 float64 **CHAS** NOX float64 RMfloat64 AGE float64 float64 DIS float64 RAD TAX float64 float64 PTRATIO float64 В float64 LSTAT float64 **MEDV** dtype: object

Визуализация данных

Для визуализации данных использовались библиотеки:

- 1. seaborn
- 2. plotly
- 3. matplotlib

In []:

```
import seaborn as sns
import plotly as py
import plotly.express as px
import matplotlib.pyplot as plt
```

При выполнениии лабораторной работы были построены следующие виды диаграмм:

- 1. Парные диаграммы
- 2. Диаграммы рассеивания
- 3. Гистограммы
- 4. "Ящик с усами"
- 5. Joinplot

Парные диаграммы

In [39]:

sns.pairplot(df)

Out[39]:

<seaborn.axisgrid.PairGrid at 0x132506908>

Диаграммы рассеивания

```
In [10]:
```

```
py.offline.init_notebook_mode(connected=True)
fig = px.scatter(df, x = 'LSTAT', y='MEDV')
fig.show()
```


In [83]:

Out[83]:

<matplotlib.legend.Legend at 0x13a1a5128>

Гистограмма

In [38]:

```
sns_plot = sns.distplot(df['MEDV'])
fig = sns_plot.get_figure()
```


In [87]:

```
sns_plot = sns.distplot(df['TAX'], hist=False, color="g", kde_
kws={"shade": True})
fig = sns_plot.get_figure()
```


Ящик с усами

```
In [90]:
plt.boxplot(df['AGE'])
Out[90]:
{'whiskers': [<matplotlib.lines.Line2D at 0x138ef2
470 > ,
  <matplotlib.lines.Line2D at 0x138ef27f0>],
 'caps': [<matplotlib.lines.Line2D at 0x138ef2b70>
  <matplotlib.lines.Line2D at 0x138ef2ef0>],
 'boxes': [<matplotlib.lines.Line2D at 0x138ef2048
>],
 'medians': [<matplotlib.lines.Line2D at 0x138f072</pre>
b0>1,
 'fliers': [<matplotlib.lines.Line2D at 0x138f0763
0>1,
 'means': []}
100
 80
 60
 40
```

Joinplot

20

0

In [91]:

```
sns.jointplot(x='INDUS', y='PTRATIO',data = df, color="#4CB391")
```

Out[91]:

<seaborn.axisgrid.JointGrid at 0x13bd83cc0>

Корреляционный анализ

In [92]:

corr_matrix_p = df.corr(method='pearson').round(2)
corr_matrix_p

Out[92]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RA
CRIM	1.00	-0.20	0.41	-0.06	0.42	-0.22	0.35	-0.38	0.6
ZN	-0.20	1.00	-0.53	-0.04	-0.52	0.31	-0.57	0.66	E.0-
INDUS	0.41	-0.53	1.00	0.06	0.76	-0.39	0.64	-0.71	0.6
CHAS	-0.06	-0.04	0.06	1.00	0.09	0.09	0.09	-0.10	-0.C
NOX	0.42	-0.52	0.76	0.09	1.00	-0.30	0.73	-0.77	0.6
RM	-0.22	0.31	-0.39	0.09	-0.30	1.00	-0.24	0.21	-0.2
AGE	0.35	-0.57	0.64	0.09	0.73	-0.24	1.00	-0.75	0.4
DIS	-0.38	0.66	-0.71	-0.10	-0.77	0.21	-0.75	1.00	-0.4
RAD	0.63	-0.31	0.60	-0.01	0.61	-0.21	0.46	-0.49	1.0
TAX	0.58	-0.31	0.72	-0.04	0.67	-0.29	0.51	-0.53	9.0
PTRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.4
В	-0.39	0.18	-0.36	0.05	-0.38	0.13	-0.27	0.29	-0.4
LSTAT	0.46	-0.41	0.60	-0.05	0.59	-0.61	0.60	-0.50	0.4
MEDV	-0.39	0.36	-0.48	0.18	-0.43	0.70	-0.38	0.25	E.0-

In [93]:

```
corr_matrix_k = df.corr(method='kendall').round(2)
corr_matrix_k
```

Out[93]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RA
CRIM	1.00	-0.46	0.52	0.03	0.60	-0.21	0.50	-0.54	0.5
ZN	-0.46	1.00	-0.54	-0.04	-0.51	0.28	-0.43	0.48	-0.2
INDUS	0.52	-0.54	1.00	0.08	0.61	-0.29	0.49	-0.57	E.0
CHAS	0.03	-0.04	0.08	1.00	0.06	0.05	0.06	-0.07	0.0
NOX	0.60	-0.51	0.61	0.06	1.00	-0.22	0.59	-0.68	0.4
RM	-0.21	0.28	-0.29	0.05	-0.22	1.00	-0.19	0.18	-O.C
AGE	0.50	-0.43	0.49	0.06	0.59	-0.19	1.00	-0.61	E.0
DIS	-0.54	0.48	-0.57	-0.07	-0.68	0.18	-0.61	1.00	E.0-
RAD	0.56	-0.23	0.35	0.02	0.43	-0.08	0.31	-0.36	1.C
TAX	0.54	-0.29	0.48	-0.04	0.45	-0.19	0.36	-0.38	0.5
PTRATIO	0.31	-0.36	0.34	-0.12	0.28	-0.22	0.25	-0.22	0.2
В	-0.26	0.13	-0.19	-0.03	-0.20	0.03	-0.15	0.17	-0.2
LSTAT	0.45	-0.39	0.47	-0.04	0.45	-0.47	0.49	-0.41	0.2
MEDV	-0.40	0.34	-0.42	0.12	-0.39	0.48	-0.39	0.31	-0.2

In [94]:

corr_matrix_s = df.corr(method='spearman').round(2)
corr_matrix_s

Out[94]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RA
CRIM	1.00	-0.57	0.74	0.04	0.82	-0.31	0.70	-0.74	0.7
ZN	-0.57	1.00	-0.64	-0.04	-0.63	0.36	-0.54	0.61	-0.2
INDUS	0.74	-0.64	1.00	0.09	0.79	-0.42	0.68	-0.76	0.4
CHAS	0.04	-0.04	0.09	1.00	0.07	0.06	0.07	-0.08	0.0
NOX	0.82	-0.63	0.79	0.07	1.00	-0.31	0.80	-0.88	0.5
RM	-0.31	0.36	-0.42	0.06	-0.31	1.00	-0.28	0.26	-0.1
AGE	0.70	-0.54	0.68	0.07	0.80	-0.28	1.00	-0.80	0.4
DIS	-0.74	0.61	-0.76	-0.08	-0.88	0.26	-0.80	1.00	-0.5
RAD	0.73	-0.28	0.46	0.02	0.59	-0.11	0.42	-0.50	1.C
TAX	0.73	-0.37	0.66	-0.04	0.65	-0.27	0.53	-0.57	0.7
PTRATIO	0.47	-0.45	0.43	-0.14	0.39	-0.31	0.36	-0.32	6.0
В	-0.36	0.16	-0.29	-0.04	-0.30	0.05	-0.23	0.25	-0.2
LSTAT	0.63	-0.49	0.64	-0.05	0.64	-0.64	0.66	-0.56	6.0
MEDV	-0.56	0.44	-0.58	0.14	-0.56	0.63	-0.55	0.45	-0.3

In [95]:

```
sns.set(font scale=2)
plt.figure(figsize=(18, 12))
ax = sns.heatmap(corr matrix p, annot=True, cmap='YlGnBu')
                                                                                              1.0
               -0.2 0.41 -0.06 0.42 -0.22 0.35 <mark>-0.38</mark> 0.63 0.58 0.29 <mark>-0.39</mark> 0.46 <mark>-0.39</mark>
    CRIM
                     <u>-0.53</u> -0.04 <mark>-0.52</mark> 0.31 <mark>-0.57</mark> 0.66 -0.31 -0.31 -0.39 0.18 -0.41 0.36
                                                                                              0.8
                          0.06 0.76 -0.39 0.64 -0.71 0.6 0.72 0.38 -0.36 0.6 -0.48
   INDUS
                                                                                              -0.6
                               0.09 0.09 0.09 -0.1 -0.01-0.04-0.12 0.05 -0.05 0.18
          -0.06 -0.04 0.06
          0.42 -0.52 0.76 0.09
                                     -0.3 0.73 <mark>-0.77</mark> 0.61 0.67 0.19 <del>-0.38</del> 0.59 <del>-0.43</del>
                                 1
                                                                                             -0.4
          -0.22 0.31 -0.39 0.09 -0.3
                                          -0.24 0.21 -0.21 -0.29 -0.36 0.13 <mark>-0.61</mark> 0.7
                                                                                             -0.2
     AGE 0.35 -0.57 0.64 0.09 0.73 -0.24
                                           1 -0.75 0.46 0.51 0.26 -0.27 0.6 -0.38
     DIS -0.38 0.66 -0.71 -0.1 -0.77 0.21 -0.75 1 -0.49 -0.53 -0.23 0.29 -0.5 0.25
                                                                                             -0.0
     RAD 0.63 -0.31 0.6 -0.01 0.61 -0.21 0.46 -0.49 1 0.91 0.46 -0.44 0.49 -0.38
     TAX 0.58 -0.31 0.72 -0.04 0.67 -0.29 0.51 -0.53 0.91 1 0.46 -0.44 0.54 -0.47
                                                                                             --0.2
PTRATIO 0.29 -0.39 0.38 -0.12 0.19 -0.36 0.26 -0.23 0.46 0.46 1 -0.18 0.37 -0.51
                                                                                              -0.4
        B -0.39 0.18 -0.36 0.05 -0.38 0.13 -0.27 0.29 -0.44 -0.44 -0.18
  LSTAT 0.46 -0.41 0.6 -0.05 0.59 -0.61 0.6 -0.5 0.49 0.54 0.37 -0.37
                                                                                             --0.6
   MEDV -0.39 0.36 -0.48 0.18 -0.43 0.7 -0.38 0.25 -0.38 -0.47 -0.51 0.33 -0.74
```

In [96]:

```
sns.set(font_scale=1)
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsi
ze=(15,4))
sns.heatmap(corr_matrix_p, ax=ax[0])
sns.heatmap(corr_matrix_k, ax=ax[1])
sns.heatmap(corr_matrix_s, ax=ax[2])
fig.suptitle('Корреляционные матрицы, построенные различными м
eтодами')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```

Ι¥

PTRATIO

