```
EE546 HWI
```

1. Proof: From gradient descent update X211 = X2-117 [12]

We know that  $||X_{2+1} - X^*||_{\ell_2}^2 = ||X_2 - MOJ(X_2) - X^*||_{\ell_1}^2 = ||X_2 - X^*||_{\ell_2}^2 - 244 < 0J(X_2), X_2 - X^* > + 42 ||0J(X_2)||_{\ell_2}^2$ 

: ||Xz - X\*||1 = ||Xz+1 - X\*||4 + 24<0f(xz), xz - X\*> - 42 ||0f(xz)||6

Let 7=0, we have

since we know that (Vf(x), x-x\*> > f||X-X\*||2+ | 110f(x)||2 ... 12)

due to 2>0,0<11(产)方>生>0

(2) becomes <\frac{\psi\_1(x), \cdot x^\* > \frac{1}{2} || \cdot x \cdot ||\_{L\_2} + \frac{4}{2} || \psi\_1(x) ||\_{L\_2}^2 - \cdot (3)}

Substitute [3] into (1), we get  $||X_0 - X^*||_{L_2}^2 > ||X_1 - X^*||_{L_2}^2 + 2M \left[\frac{1}{2}||X_0 - X^*||_{L_2}^2 + \frac{M}{2}||\nabla^2_1 f(x)||_{L_2}^2\right] - M^2 ||\nabla^2_1 f(x)||_{L_2}^2$ 

: || Xo - X\* || 1/2 > || X1 - X\* || 2/2 + 2/4 || X- X\* || 2/2

Then we have  $||X_1 - X^*||_{L^2}^2 < (1 - \frac{2M}{4})||X_0 - X^*||_{L^2}^2 \cdots (4)$ 

$$\|\chi_2 - \chi^{*}\|_{L^2}^2 < (1 - \frac{2u}{3}) \|\chi_1 - \chi^{*}\|_{L^2}^2 \cdots |S|$$

Multiply equations (4), 15) ... (+13):

we can finally get

$$\begin{aligned} & ||Xt-X^{*}||^{2}_{l_{2}} < (1-\frac{2M}{d})^{\frac{1}{2}}||Xv-X^{*}||^{2}_{l_{2}} \\ & \text{When } X_{0}=X^{*}, ||Xt-X^{*}||^{2}_{l_{1}} = (1-\frac{2M}{d})^{\frac{1}{2}}||X_{0}-X^{*}||^{2}_{l_{2}} = 0 \\ & \text{Therefore}, \qquad ||X_{1}-X^{*}||^{2}_{l_{2}} \le (1-\frac{2M}{d})^{\frac{1}{2}}||X_{0}-X^{*}||^{2}_{l_{2}} \end{aligned}$$

| (a) | Since f(x-10f(x)) < f(x) - 11 (1-4) 1/0 f(x) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | lat Y = Xt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | we have f(xe-nofixe)) < f(xe)-n(1-些)  of(xe)  22····11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Due to XtH = Xt - MPf(Kt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | so (1) becomes $f(x_{t+1}) = f(x_t) - u(1 - \frac{uL}{2})   \nabla f(x_t)  ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | fixe)-fixen) > 11 (1-12) 117 fixe) 112/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | since u < t , u (1- 1/2) < (11- 1/2) = 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | Therefore $f(x_{t-1}) = \frac{1}{2}   \nabla f(x_{t-1})  _{L_{2}}^{2} - 12$ $f(x_{t-1}) = f(x_{t-1}) = \frac{1}{2}   \nabla f(x_{t-1})  _{L_{2}}^{2} + $ |
|     | fixi) -fixe) > zt list(xi) lile using the face than llaficilli, keeps decreasing at every invarion we get zff(xi)-fixeti) > 112fixt) lile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (b) | . Not necessarily converge to a fixed point. $\lim_{t\to 0} \frac{1}{t^2} (f(x_t) - f(x_t)) = 0$ $\sup_{t\to 0} f(x_t) = \frac{1}{t^2} \int_{0}^{t} \frac{1}{t^2} (f(x_t) - f(x_t)) \int_{0}^{t} \frac{1}{t^2} (f(x_t) $                                                                                    |
|     | but Xt = Xon- ti. E. m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | to a fixed point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (0) | we have   vf(x1)  2 2 7 1 f(x1) - f(x*))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | From (2): 2L (f(x+)-f(x+1)) > 110f(x+1) 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 50 ZL (fixe)-fixen) > r (fixe)-fixe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | due to $u \le t \to L \le t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | :. = [f(xi) - f(xi)] > r(f(xi) - f(x*))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | f(x+) - f(x++1) > 2/2 f(x+) - 2/2 f(x*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | f(x++1) - f(x*) < f(x+) < 2/f(x+)+ 2/f(x*)-f(x*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Hence $f(x_{t+1}) - f(x^*) \le (1 - \frac{ur}{r})(f(x_t) - f(x^*))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

2. Proof:

## Problem3: Logistic regression with momentum

(a) First read in the data from the file "wdbc.data", remove the patient i.d. and separate the features from the outputs. I use Python to implement this step as shown below:

```
def input_data(datafile_w, data_m, data_n):
    """
    Inputs:
        the location of the data file
        the number of row
        the number of column
    Outputs:
        feature matrix X
        Label vector y

"""

InputData = np.zeros((data_m, data_n), dtype='float')
    with open(datafile_w, 'r') as f:
        reader = csv.reader(f)
        for i, row in enumerate(reader):
            data = [float(datum) for datum in row]
            InputData[i] = data
        print("InputData.shape", InputData.shape)

Data_X = InputData[0:data_m, 2:32] # Feature matrix X
    Data_y = Data_y.astype(np.int)
    Data_y = Data_y.astype(np.int)
    Data_y = np.expand_dims(Data_y, axis=1)
    print("Data_X.shape", Data_X.shape)
    print("Data_Y.shape", Data_Y.shape)
    return Data_X, Data_y

from hw1_utils import input_data
Data_X, Data_y = input_data(datafile_w='wdbc.data', data_m=569, data_n=32)
```

After running the code, I can know that the shape of the feature matrix "Data\_X" is (569, 30) and the shape of the label vector "Data y" is (569, 1).

(b) In this part, I will normalize the data. First of all, calculate the mean vector of patient features across all of the data set, which is

$$\bar{x} = \frac{1}{569} \sum_{i=1}^{569} x_i$$
.

Next, subtract the mean from each of the features, which is  $x_i \leftarrow x_i - \bar{x}$ . Finally, normalize the data via  $x_i \leftarrow \frac{x_i}{\|x_i\|_{L^2}}$ . The Python code is

```
X_mean = np.mean(Data_X, axis=0)
X_mean = np.expand_dims(X_mean, axis=0)
Data_mean = np.repeat(a=X_mean, repeats=sample_num, axis=0)

Data_X = Data_X - Data_mean
Data_L2 = np.expand_dims(np.sqrt(np.sum(np.square(Data_X), axis=1)), axis=1)
Data_X = np.true_divide(Data_X, Data_L2)

return Data_X

from hw1_utils import_normalize_data
Data_X = normalize_data(Data_X, Data_L2)
```

Data\_x = normalize\_data(Data\_X, sample\_num=569 After running the code, I will normalize the data set.

(c) In this part, I am about to partition the normalized data into train/test sets at random 100 times. In each trial by setting  $\lambda = 0.01$ , I will run gradient descent for T = 500 iterations and then use the trained model to make predictions on the test data and calculate the average error (average number of missclassified patients on the test data) for each trial. Report the average over the 100 trials.

Since I have

$$f(w,b) := \sum_{i=1}^{N} (-y_i(w^T x_i + b) + \ln(1 + \exp(w^T x_i + b))) + \frac{\lambda}{2} ||w||_{l_2}^2,$$

Then I can get

$$\begin{split} \nabla f(\mathbf{w}) &= \sum_{i=1}^{N} \left( -y_i x_i + \frac{x_i \exp\left(\mathbf{w}^T x_i + b\right)}{1 + \exp\left(\mathbf{w}^T x_i + b\right)} \right) + \lambda \mathbf{w} \text{ and } \\ \nabla f(\mathbf{b}) &= \sum_{i=1}^{N} \left( -y_i + \frac{\exp\left(\mathbf{w}^T x_i + b\right)}{1 + \exp\left(\mathbf{w}^T x_i + b\right)} \right). \end{split}$$

Therefore

$$\begin{split} w_{t+1} &= w_t \cdot \mu(\sum_{i=1}^N \left( -y_i x_i + \frac{x_i \exp(w_t^T x_i + b)}{1 + \exp(w_t^T x_i + b)} \right) + \lambda w_t) \text{ and} \\ b_{t+1} &= b_t \cdot \mu \sum_{i=1}^N \left( -y_i + \frac{\exp(w_t^T x_i + b_t)}{1 + \exp(w_t^T x_i + b_t)} \right). \end{split}$$

The Python code of partitioning the data set is

```
train y[sample i] = label set[train index[sample i]]
    test num = sample num - train num
        test x[sample i] = dataset[test index[sample i]]
        test y[sample i] = label set[test index[sample i]]
    return train x, train y, test x, test y
from hw1 utils import split tr te
test_x = np.zeros((100, 69, Data_x.shape[1]), dtype='float')
test y = np.zeros((100, 69, Data y.shape[1]), dtype='int')
for index i in range(100):
    train x[index i], train y[index i], test x[index i], test y[index i] = \
        split_tr_te(dataset=Data_x, label_set=Data_y, train_num=500,
  ed value=index i)
print("test y.shape", test y.shape)
   After running the code, I can get the training set x, y as (100, 500, 30), (100, 500, 1) and test set as
(100, 69, 30), (100, 69, 1). The Python code to run gradient descent is
def fit transform(self, w, b, iter num, test x, test y):
    :param w: The w coefficient
    :param test x: The feature matrix of the test set
    accuracy = np.zeros((self.train x.shape[0], 1)) # 100 trials
    for trial i in range(self.train x.shape[0]):
            total_w = np.zeros((30, 1))
            total b = 0
                inner part = dot(w.T, self.train x[trial i, train i].T) + b
                exp_part = exp(inner_part)
                total w = total w - \
                           self.train y[trial i, train i] * \
                           expand_dims(self.train_x[trial_i, train_i].T, axis=1) +
                           expand dims(self.train x[trial i, train i].T, axis=1)
```

exp part / (1 + exp part)

```
total b = total b - self.train y[trial i, train i] + exp part /
(1 + exp part)
            total w = total w + self.lamb da * w
            w = w - self.lr * total w
            b = b - self.lr * total b
        accuracy i = np.zeros(test y.shape[:], dtype='int')
        for test i in range(test x.shape[1]):
            test_p = 1 / (1 + exp(- np.dot(w.T, test_x[trial_i, test_i].T) - b))
            if test p >= 0.5:
                predict label = 1
                predict label = 0
            if predict label == test y[trial i, test i]:
                accuracy_i[0, test_i] = 1
        accuracy[trial_i] = accuracy_i[0].mean()
    print("The accuracy of testing patients is %f" % (accuracy.mean()))
b0 = 0.05
np.random.seed(1)
w0 = np.random.normal(0, 0.5, size=(30, 1))
from hw1 utils import logi regre
Hmwk1 = logi_regre(train_x=train_x, train_y=train_y, lr=0.01, lamb_da=0.01)
Hmwk1.fit transform(w=w0, b=b0, item
   After running the code, I can know over the 100 trials the average error number is 4.
```

(d) In this part, I am about to perform the experiment with the same step size as before but now report the number of iterations it takes to get to an accuracy of 10<sup>-6</sup> calculated via the first iteration t when the following inequality holds

$$\|\nabla f(w_t, b_t)\|_{l_2}^2 \le 10^{-6} (1 + |f(w_t, b_t)|),$$

where

$$\begin{split} \|\nabla f(w_t,b_t)\|_{l_2}^2 &= \|\nabla f(w_t)\|_{l_2}^2 + \|\nabla f(b_t)\|_{l_2}^2 \text{ and} \\ |f(w_t,b_t)| &= \sum_{i=1}^N |(-y_i(w_t^Tx_i+\ b_t) + \ln(1+\exp(w_t^Tx_i+\ b_t)))| + \frac{\lambda}{2}\|w_t\|_{l_2}^2. \end{split}$$

The Python code to check iterations of gradient descent and two other algorithms is def check iterations(self, w, b, epsilon, eta, method, verbose=False):

```
iter num = np.zeros((self.train x.shape[0], 1)) # (100, 0)
for trial i in range(self.train x.shape[0]):
```

```
total w = np.zeros((30, 1))
           total b = 0
           total wb = 0
                inner_part = dot(w.T, self.train_x[trial_i, train_i].T) + b
                exp part = exp(inner part)
                total_w = total_w - \
                          self.train_y[trial_i, train_i] * \
                          expand_dims(self.train_x[trial_i, train_i].T, axis=1) +
                          expand dims(self.train x[trial i, train i].T, axis=1) *
                         exp part / (1 + exp part)
                total_b = total_b - self.train_y[trial_i, train_i] + exp_part /
(1 + exp part)
                total wb = total wb + absolute(- self.train y[trial i, train i] *
inner part +
                                               log(1 + exp_part))
           total_w = total_w + self.lamb_da * w
           total wb = total wb + 0.5 * self.lamb da * sum(square(w))
               w = w - self.lr * total w
               b = b - self.lr * total b
           elif method == 'heavy ball':
                if iter i == 0:
                   W1 = W
                   w = w - self.lr * total w
                   b = b - self.lr * total b
                    W1 = W
                   w = w - self.lr * total w + eta * temp w
                   temp b = b - b 1
                   b = b - self.lr * total_b + eta * temp_b
           elif method == 'Nesterov':
```

temp\_b\_y = - self.lr \* total\_b
temp\_b = b + temp\_b\_y
b = temp b + eta \* temp b y

```
temp_w_y = - self.lr * total_w + eta * temp_w_y
temp_w = w + temp_w_y
w = temp_w + eta * temp_w_y
temp_b = b + temp_b_y
b = temp_b + eta * temp_b_y
b = temp_b + eta * temp_b_y

else:
    print("Please input the correct method!")
    return False

iter_i += 1

upper_part = sum(square(total_w)) + sum(square(total_b))
lower_part = 1 + total_wb
if upper_part / lower_part <= epsilon:
    iter_num[trial_i] = iter_i
    if verbose:
        print("The %d/%d is finished!" % (trial_i+1,
self.train_x.shape[0]))
        break

print("The average number of converging iterations is %f for the %s method."
    % (iter_num.mean(), method))

Hmwkl.check_iterations(w=w0, b=b0, epsilon=le-6, eta=0.8, method='gradient descent')</pre>
```

After running the code, I can know over the 100 trials the average iteration number is 10039. I just run the gradient descent of w and b simultaneously for every iteration to get this iteration number which is much fewer than the standard number of the professor's.

(e) In this part, I am about to perform the same experiment but now add a momentum term (1) using the heavy ball method and (2) using Nesterov's accelerated scheme. In both cases keep the same step size as before but fine tune the momentum parameter to get the smallest number of iterations for convergence based on the stopping criteria above. The sample Python code is

```
Hmwk1.check_iterations(w=w0, b=b0, epsilon=1e-6, eta=0.6, method='heavy ball')
Hmwk1.check_iterations(w=w0, b=b0, epsilon=1e-6, eta=0.5, method='Nesterov')
```

Table 1: the number of iterations for heavy ball and Nesterov for different momentum values

| eta           | 0.8  | 0.85 | 0.89 | 0.9 | 0.91 | 0.92 | 0.93 | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | 0.99 |
|---------------|------|------|------|-----|------|------|------|------|------|------|------|------|------|
| heavy<br>ball | 2006 | 1502 | 1099 | 998 | 896  | 795  | 693  | 591  | 489  | 391  | 336  | 388  | 736  |
| Nesterov      | 1113 | 811  | 579  | 522 | 466  | 410  | 355  | 302  | 257  | 241  | 269  | 377  | 743  |

After running the code, form the Table 1, I can know over the 100 trials the smallest average iteration number is 336 for heavy ball and 241 for Nesterov. The convergence curves of three algorithms is shown in the Figure 1. The convergence curves for gradient descent, heavy ball and Nesterov are shown in the Figure 2, 3, and 4 individually. From the Table 1 we know that Nesterov method does converge faster. Moreover, from the Figure 1 we can see that Nesterov has more capability of jumping out of the local optimum when dealing with non-convex problems. Therefore, I prefer the Nesterov method.



Figure 1: The converge curves of three methods



Figure 2: The converge curve of gradient descent



Figure 3: The converge curve of heavy ball



Figure 4: The converge curve of heavy ball