UNIT- IV RANDOM PROCESSES-SPECTRAL CHARACTERISTICS

MULTIPLE CHOICE QUESTIONS:

c.) 16-k²

1.	The PSD of the random process X(t) with mean=1 and $R_{XX}(\tau)=1+e^{-\alpha \tau }$ is
	a.) $2\alpha/(\alpha^2 + \omega^2)$
	b.) $1+2\alpha/(\alpha^2+\omega^2)$
	c.) $\delta(\omega) + 2\alpha/(\alpha^2 + \omega^2)$
	d.) $\delta(\omega-\omega_0)+2\alpha/(\alpha^2+\omega^2)$
2.	the PSD of a random process whose auto correlation function is a. $e^{-b \tau }$ is
	a.) $a/(a^2+\omega^2)$
	b.) $2ab/(a^2+\omega^2)$
	c.) $2a/b(a^2+\omega^2)$
	d.) $2a/(a^2+\omega^2)$
3.	The auto correlation function of a process with PSD of $4/(1+0.25\omega^2)$
	a.) 4.exp(- τ)
	b.) exp(- \tau)
	c.) 4.exp(-2 \tau)
	d.) 1
4.	PSD of a WSS is always
	a.) Negative
	b.) Non-negative
	c.) Positive
	d.) Can be negative or positive
5.	The mean square value of a random process whose auto correlation function is $\eta/4RC$
	a.) η/4
	b.) η/4RC
	c.) ητ/4RC
	d.) η τ /4RC
6.	The random process $X(t)$ and $Y(t)$ are having their auto correlation functions as $e^{-2 \tau }$ and $e^{-\tau}$
	$^{3 \tau }$ respectively. If they are orthogonal processes, then mean square value of X(t) +Y(t) is
	a.) 2
	b.) 3
	c.) 5
	d.) 6
7.	X (t) is a random process with mean 'k' and auto correlation function R_{XX} (τ) =12+4. $e^{-0.2 \tau }$.
	The variance of the random variable X(5) is
	a.) $(4+k)^2$
	b.) (4-k) ²

	d.) $(4+k)/(4-k)$
8.	The cross spectral density of two random processes $X(t)$ and $Y(t)$ is $S_{XY}(\omega)=a+Jb\omega/k$. the
	area enclosed by their auto correlation function is
	a.) a/k
	b.) a
	c.) ka
	d.) a+1/k
9.	The auto correlation function of a WSS random process X (t) is $R_{XX}(\tau) = 4+2$. $e^{-2 \tau }$. The area
	enclosed by the PSD curve of X(t) is
	a.) 6
	b.) 2
	c.) 8
	d.) 4
10.	The mean of two independent, WSS processes X(t) and Y(t) are 2 and 3 respectively. Their
	cross spectral density is
	a.) $6.\delta(\omega)$
	b.) 12π.δ(ω)
	c.) 5π.δ(ω)
	d.) $\delta(\omega)$
11.	For a periodic signalis used for the study of its spectral behavior.
	a.) Fourier series
	b.) Fourier transform
	c.) Z-transform
	d.) None
12.	For a non-periodic signalis used for the study of its spectral behavior.
	a.) Fourier series
	b.) Fourier transform
	c.) Z-transform
10	d.) None
13.	Parseval's theorem for energy signals is given by $E=$ a.) $-\infty$ $\int_{-\infty}^{\infty} x(t)dt$
	b.) $-\infty \int_{-\infty}^{\infty} x^3(t) dt$
	c.) -∞[[∞] x²(t)dt
	d.) None
14	The average of auto correlation function and the power spectral density form a
17.	a.) Fourier series pair
	b.) Fourier transform pair
	c.) Both
	d.) None
15	Sxx(ω)=
	a.) $-\infty \int_{-\infty}^{\infty} Rxx(\tau) \cdot e^{j\omega\tau} d\tau$
	b.) $-\infty$ $\int_{-\infty}^{\infty} R_{xx}(\tau) e^{-j\omega\tau} d\omega$

	$-\infty$ $\int_{-\infty}^{\infty}$ Rxx (τ) . $e^{-j\omega\tau}$ d τ	
	None	
16. l	(τ)=	
	$-\infty$ $\int_{-\infty}$ $\int_{-\infty}$ $S_{XX}(\omega).e^{j\omega\tau}d\omega$	
	$-\infty$ \int^{∞} Sxx (ω) . $e^{-j\omega\tau}$ d ω	
	1/2π. _{-∞} ∫ [∞] Sxx(ω).e ^{-jωτ} dω	
	1/2π. _{-∞} ʃ [∞] Sxx(ω).e ^{jωτ} dω	
17. ⁻	e curve Sxx(ω)/A always encloses area	
	Double	
	Unit	
	Triple	
	None	
18. \$	(ω)=0 if X(t) and Y(t) are	
	Orthogonal	
	Parallel	
	Vertical	
	None	
19. /	andom process n(t) is called white noise if its power spectral density is over the	!
(ire frequency range	
	Non-uniform	
	Uniform	
	Both	
	None	
20. l	$R_{XX}(\tau)$] = $S_{XX}(\omega)$ this is called relation	
	Density Parseval;s	
	function	
	Wiener-khintchine	
	None	

ANSWERS:

1. c	2. b	3. c	4. b	5. b
6. a	7. c	8. a	9. a	10. b
11. a	12. b	13. c	14. b	15. c
16. d	17. b	18. a	19. b	20. c