

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине «Схемотехника»

на тем	ıy:
--------	-----

Схемотехническое проектирование электронного устройства

Руководител	ь курсовой работы		Б.К. Аристов
		(Подпись, дата)	(И.О.Фамилия)
Студент	ИУ6-66Б		Р.М. Аксенов
	(группа)	(Подпись, дата)	(И.О.Фамилия)

Реферат

Записка с., рис., табл., источников, прил.

АЦП, ИНТЕГРАТОР, СИГМА-ДЕЛЬТА, МИКРОСХЕМА, ПРЕОБРАЗОВАНИЕ, СИГНАЛ.

Объект разработки - аналогово-цифровой преобразователь с сигмадельта модуляцией, предназначенный для преобразования аналогового сигнала в цифровой с заданной точностью.

Цели работы - создание преобразователя, разработка функциональной и принципиальной электрической схем устройства, расчет характеристик, получение временных диаграмм.

Основные технические характеристики устройства:

Частота работы 1МГц

Точность преобразования 1%

Амплитуда входного сигнала от -2В до 2В

Метод преобразования сигма-дельта модуляция

Essay

Note p., pic., tables, sources, add.

CAD, INTEGRATOR, SIGMA-DELTA, MICROCIRCUIT, TRANSFORMATION, SIGNAL.

The object of development is an analog-to-digital Converter with Sigma-Delta modulation, designed to convert an analog signal to a digital one with a given accuracy.

The purpose of the work is to create a Converter, develop functional and basic electrical diagrams of the device, calculate characteristics, and obtain time diagrams.

Main technical characteristics of the device:

Frequency 1MGz

Accuracy 1%

Amplitude from -2V to 2V

Method Sigma-Delta modulation

ОГЛАВЛЕНИЕ

Введе	ение	6
Осно	вная часть	7
1.	Анализ предметной области	7
	1.1. Предварительные расчеты	7
	1.2. Выбор схемотехнического решения	9
2.	Проектирование функциональной схемы устройства	10
	2.1. Приём сигнала	10
	2.2 Формирование импульса	11
	2.3 ЦАП	11
	2.4 Цифровой фильтр	12
3.	Разработка принципиальной электрической схемы	13
	3.1. Выбор элементной базы	13
	3.2 Определение входных и выходных разъёмов	15
	3.2 Синхронизация устройства	16
	3.3 Вывод информации	17
3	3.4 Сигма-дельта модуляция	17
4.	Расчет потребляемой мощности	19
Заклн	очение	20
Спис	ок использованных источников	21
ПРИЈ	ЛОЖЕНИЕ А. Техническое задание	22
ПРИЈ	ЛОЖЕНИЕ Б. Функциональная схема	23
ПРИЈ	ЛОЖЕНИЕ В. Принципиальная схема	24
ПРИЈ	ЛОЖЕНИЕ Г. Временные диаграммы	25
ПРИЈ	ЛОЖЕНИЕ Д. Спецификация	26

ВВЕДЕНИЕ

Аналоговый сигнал можно встретить повсеместно, и практически всегда его обработка связана с преобразованием в цифровой, более удобный в обработке и хранении.

Аналого-цифровой преобразователь — это устройство, предназначенное для преобразования непрерывно-изменяющейся во времени физической величины в эквивалентные ей значения цифровых кодов.

аналого-цифровой преобразователь Разрабатываемый должен обладать функциями: несколькими ОСНОВНЫМИ прием аналогового сигнала, преобразование входного сигнала В последовательность импульсов, формирование цифрового кода.

Целью данной курсовой работы является разработка этого преобразователя.

ОСНОВНАЯ ЧАСТЬ

1. Анализ предметной области

1.1. Предварительные расчеты

Аналогово-цифровой преобразователь — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал).

Существуют различные типы аналогово-цифровых преобразователей. К примеру, АЦП прямого преобразования максимально просты в устройстве, и обладают достойной скоростью, но не отличаются точностью. В АЦП последовательного приближения время преобразования количества разрядов выходного цифрового сигнала. При этом точность зависит от точности внутреннего цифра-аналогового преобразователя и может достигать 16-18 бит. Рассматриваемый в данной работе АЦП с сигмадельта модуляцией отличается высочайшей точностью, но сравнительно низкой скоростью работы. Для полноценного раскрытия потенциала данного метода необходимо построить преобразователь более высокого порядка, с несколькими интеграторами и несколькими петлями обратной связи. Но такая конструкция является слишком сложной, а в данной работе будет рассмотрен только АЦП первого порядка, C ОДНИМ интегратором.

При проектировании аналогово-цифрового преобразователя необходимо учитывать его разрядность, амплитуду входного сигнала, и частоту работы.

Разрядность проектируемого АЦП связана с точностью измерения. Размах входного напряжения = от -2V до +2V. Примем его за 200% (по 100 % от нижнего или верхнего значения до нуля). Тогда для покрытия этого значения, нам нужно N=8 разрядов, т.к. 2\dagger = 256. Разрядность такого АПЦ будет равна 4B/2\dagger = 15,625 мВ. Для достижения точности в 1%, достаточно

и семи разрядов, так как 4B/100 = 40мB, а при N=7 разрядность равна 4B/2^7 = 31мB, но аппаратно это нелогично, так как в корпусе триггеры размещаются попарно, следовательно, что для 7, что для 8 разрядов потребуется 4 корпуса, но с 8 разрядами точность будет выше.

1.2. Выбор схемотехнического решения

Принцип работы сигма-дельта АЦП заключается в вычитании из входного сигнала U_{вх} величины сигнала на выходе ЦАП, полученной на предыдущем такте работы схемы. Полученная разность интегрируется, а затем преобразуется в поток сигналов. Последовательность сигналов преобразуется в код цифровым фильтром. Цифровой фильтр будет реализован с помощью двух счетчиков: один счетчик будет считать количество тактов, а второй – количество единиц. Таким образом, зная количество тактов и единиц, мы сможем узнать отношение единиц к общему количеству тактов и, умножив на размах входного напряжения, узнаем его величину.

Всю систему можно разделить на два основных блока:

- Модулятор, который преобразует входное напряжение в последовательность сигналов;
- Цифровой фильтр, преобразующий последовательность бит в цифровой код;

Для реализации модулятора будут использованы:

- Аналоговая память для обеспечения постоянного уровня сигнала на входе в течение такта преобразования.
- Дифференциальный усилитель, который будет играть роль вычитателя;
 - Интегратор, накапливающий напряжение;

- Компаратор, формирующий последовательность бит;
- ЦАП, формирующий цифровой сигнал в аналоговый для последующего вычитания из входного;

Для реализации фильтра понадобятся два счётчика и регистр, который будет хранить полученный цифровой код.

2. Проектирование функциональной схемы устройства

2.1. Приём сигнала

На положительный вход Вычитателя (элемент 1) поступает входной аналоговый сигнал. В то же время на отрицательный вход подаётся сигнал, сформированный ЦАП (элемент 5) в предыдущем такте. Таким образом, из входного сигнала вычитается напряжение, сформированное ЦАП. Полученный сигнал подаётся на Интегратор (элемент 2), в котором накапливается заряд.

Рисунок 1 - Приём сигнала

Емкость конденсатора С2 выбрана исходя из уравнения напряжения,

 $U_{\rm estr} = U_{\rm estr}(0) - \frac{1}{RC} \int_0^t U dt$ получаемого на выходе интегратора - . Сопротивление R здесь равно 10КОм. Время, в течение которого происходит итерация, крайне мало (порядка 10^{-6} с), ввиду высокой частоты преобразования. Поэтому емкость конденсатора C2 выбрана 1n.

2.2 Формирование импульса

С выхода Интегратора сигнал поступает на вход компаратора (элемент 3). Его отрицательная клемма подключена к земле. В зависимости от того, был ли превышен порог компаратора, на выходе формируется сигнал «1» или «0» и подаётся на информационный вход D-триггера (элемент 4). Разрешающий вход D-триггера подключен к генератору с частотой 8МГц (элемент 6). С выходов D-триггера поступает последовательность единиц с прямого выхода и нулей – с инверсного.

Рисунок 2 - Формирование импульса

2.3 ЦАП

Оба выхода D-триггера подключены к ЦАП (элемент 5), представляющего собой ключ, который, в зависимости от полученного сигнала, коммутирует положительную или отрицательную клемму. Соответственно, положительное или отрицательное Uпор подаётся на отрицательный вход вычитателя.

Рисунок 3 - Цифро-аналоговый преобразователь

2.4 Цифровой фильтр

Представляет собой два 8-разрядных счетчика и регистр, подключенных к генератору с частотой 8МГц. Первый счетчик отсчитывает 256 тактов, в течение этого времени второй счетчик, к входу которого через логический элемент «И» подключен выход первого счетчика и прямой выход D-триггера, считает количество единиц. Количество также записывается в регистр. Когда первый счетчик отсчитает 256 тактов, он посылает сигнал второму счетчику на обнуление, а регистру — вывод кода на шину данных. После этого счетчики и регистр обнуляются.

Рисунок 4 - Цифровой фильтр

3. Разработка принципиальной электрической схемы

3.1. Выбор элементной базы

Выбирая элементную базу, следует учитывать основные критерии оценки элементов - быстродействие и суммарную выделяемую мощность. Согласно техническому заданию к объекту разработки не предъявляется требований специфических ПО допустимым никаких климатическим воздействиям. Поэтому теплофизические паразитные И влияния, температурные воздействия и другие учитываться не будут, так как большинство современных микросхем удовлетворяют этим условиям[1].

В наши дни большинство микросхем изготавливаются по технологиям КМОП и ТТЛ. Ранее ТТЛ-микросхемы не имели аналогов по величине быстродействия, поэтому использовались повсеместно, несмотря на высокое, в сравнении с КМОП, энергопотребление[3]. Параметры современных семейств КМОП-микросхем сочетают в себе достоинства КМОП и быстродействие ТТЛ. К положительным чертам этих микросхем относятся:

- 1) КМОП-микросхемы рассеивают очень малую мощность в статическом режиме (порядка десятков-сотен нВт);
 - 2) малое время задержки распространения сигнала (десятки нс);
- 3) на ненагруженном выходе напряжение логической единицы практически равно напряжению питания, а напряжение логического нуля практически равно потенциалу «земли»;
- 4) исключительная помехоустойчивость, достигающая половины напряжения питания.[2]

Совокупность этих характеристик делает КМОП-микросхемы практически идеальными для использования в цифровых устройствах. Источники питания в системах, построенных на КМОП-микросхемах, могут быть маломощными, и, как следствие, недорогими. Благодаря малой потребляемой мощности, подсистема питания может быть проще, а значит

дешевле. Непрерывное совершенствование технологических процессов, а также увеличение объемов производства и расширение ассортимента выпускаемых КМОП-микросхем приводит к снижению их стоимости. Приняв во внимание перечисленные достоинства, останавливаем свой выбор на микросхемах КМОП.

Так как в устройстве обрабатывается как аналоговый сигнал, так и цифровой, элементная база выбрана разных серий:

Таблица 1 - Выбор элементной базы

Элемент	Описание	Задержка
AD783	Аналоговая	150n
	память	
AD711	Операционный	Максимальная
	усилитель	скорость
		нарастания
		выходного
		сигнала = 20
		В/мкс
LM111	Компаратор	115 нс
DG419	Аналоговый	100 нс
	ключ	
74VHC08M	Элемент «2И»	14 нс
74VHC112	ЈК-Триггер	10.3 нс
74VHC74	D- Триггер	9.3 нс
74VHC595	8-разрядный	10 нс
	счетчик	

3.2 Определение входных и выходных разъёмов

Входной разъем XP1 будет содержать 1 вход , на который будет поступать аналоговый сигнал в диапазоне -2V..+2V.

Разъём питания XP2 содержит 6 входов: два входа для питания дифференциальных усилителей (VC15 и –VC15) с напряжениями +15V и -15V, корпус (GRND), генератор, задающий частоту в 8МГц (Gn), питание +5V для JK-триггеров (VC5), питание +2V и -2V для аналогового ключа, реализующего ЦАП (VC2 и –VC2).

XP2			
Nº	Назначение	Оδозначение	
0	Питание +15В	VC15	_
1	Корпус	GRND	_
2	Питание -15В	- VC15	_
3	Генератор 8 МГц	Gn	_
4	Питание +5В	VC5	_
5	Питание +2В	VC2	_
6	Питание -2В	-VC2	_

Разъём питания

Рисунок 5 - Обозначение входов для разъёма питания

На выходной разъём ХРЗ параллельно подаются 8 разрядов цифрового кода

Nº	Назначение	Обозначение
0	1-й разряд выходного сигнала	Q0
1	2-й разряд выходного сигнала	Q1
2	3-й разряд выходного сигнала	Q2
3	4-й разряд выходного сигнала	Q3
4	5-й разряд выходного сигнала	Q4
5	6-й разряд выходного сигнала	Q5
6	7-й разряд выходного сигнала	Q6
7	8-й разряд выходного сигнала	Q7
8	Сигнал готовности	CL
9	Ground	GND

Рисунок 6 - Выходной разъём

3.2 Синхронизация устройства

Для реализации цифрового фильтра, описанного в пункте 2.4, необходим 8-разрядный счётчик. Данный счётчик реализован на синхронных Т-триггерах, которые реализованы посредством ЈК-триггеров СD4027В, подключив входы Ј и К триггера к входу VC5, чтобы триггеры функционировали в режиме Т-триггера. Модуль счёта М=256 достигается путём подключения последовательно 8 Т-триггеров, каждый из которых делит частоту приходящего к нему на вход сигнала на 2. Таким образом: М = 2\8 = 256

Рисунок 7 - Реализация 8-разрядного счетчика

Для счётчика единиц, так как было решено, что разрядность АЦП = 8, тоже нужна разрядность, равная 8. Данный счётчик реализован на синхронных Ттриггерах, которые реализованы посредством JK-триггеров CD4027B, подключив входы J и K триггера к входам регистра.

Рисунок 8 - Реализация счетчика единиц

3.3 Вывод информации

Для выдачи информационного слова использован 8-разрядный регистрзащёлка, который принимает информацию от триггеров DD14-DD17 и
передаёт её на шине по приходу 8-го разряда слова. При этом двоичное число
на выходе будет показывать относительно положение значения напряжения
входного сигнала в пределах допустимой амплитуды работы устройства

(от -2 В до +2 В). Для вычисления числового значения входного напряжения,
измеренного устройством, рекомендуется применить следующую формулу:

1/64*X-2, где X — значение на выходе устройства (от 0 до 255).

Рисунок 9 - Выводной регистр

3.4 Сигма-дельта модуляция

Для реализации вычитателя и интегратора использовались схемы AD711, в роли компаратора использовалась LM711, поток сигналов формируется D-триггером CD4013BM, в роли ЦАП используется аналоговый ключ DG419. Его функционал следующий: внутри DG419 есть два ключа, которые коммутируются в зависимости от подаваемого сигнала, получаемого от D-

триггера. Если поступает единица, то коммутируется клемма с напряжением в +2В и подаётся на минусовой вход вычитателя, если D-триггер посылает ноль, то коммутируется клемма с -2В. Напряжение в +2В и -2В поступает с разъёма питания.

Рисунок 10 - Схема модулятора

4. Расчет потребляемой мощности

Таблица 2 - Статические потребляемые мощности

Элемент	Потребляемая	Кол-во	Суммарная
	мощность,мВт		мощность,мВт
AD783	10	1	10
AD711	37,5	2	75
LM111	90	1	90
DG419	0,015	1	0,015
74VHC08M	0,001	4	0,004
74VHC112	0,005	9	0,045
74VHC74	0,005	1	0,005
74VHC595	0,025	1	0,025

Из таблицы следует, что $\sum P_{cmam} = 175,094 \text{ мВт}$

Рассчитаем динамическую мощность

Элемент	Потребляемая	Кол-во	Суммарная
	мощность,мВт		мощность,мВт
AD783	3	1	3
AD711	3	2	6
LM111	5	1	5
DG419	1,625	1	1,625
74VHC08M	1	4	4
74VHC112	1	9	9
74VHC74	1	1	1
74VHC595	0,000001	1	0,000001

Из таблицы следует, что $\sum P_{cmam}$ = 29,625001 мВт

Следовательно, общая мощность = 175,094 + 29,625001 = 204,719001 мВт

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы был разработан аналоговоцифровой преобразователь с сигма-дельта модуляцией, полностью соответствующий требованиям, предъявляемым в техническом задании. Данное устройство может получать данные с аналогового и преобразовывать их в код для дальнейшей передачи.

Спроектированное устройство имеет следующие основные технические характеристики:

 Частота работы
 1МГц

 Точность преобразования
 1%

 Амплитуда входного сигнала
 от -2В до 2В

 Разрядность
 8

 Метод преобразования
 сигма-дельта модуляция

 Потребляемая мощность
 121,713001 мВт

Список использованных источников

- 1. Жирков В.Ф. Схемотехника ЭВМ: Методические указания по курсовому проектированию. М.: изд-во МГТУ, 1986. 32 с.
- 2. Бирюков С.А. Применение цифровых микросхем серий ТТЛ и КМОП. М.: ДМК Пресс, 2003. 240 с.
- 3. В.Л. Шило Популярные микросхемы КМОП. Справочник. Выпуск 1246, 2001.

приложение А

Техническое задание

приложение б

Электрическая схема функциональная

приложение в

Электрическая схема принципиальная

приложение г

Временные диаграммы

приложение д

Спецификация