cdata Fluid Data Transforms at Scale in R

John Mount Nina Zumel

These slides:

https://github.com/WinVector/cdata/extras/cdata.pdf

Who Am I?

- John Mount
- Principal Consultant and Win-Vector LLC (data science consulting and training).
- One of the authors of Practical Data Science with R (Manning 2014).
- Co-author of a number of R packages
 - vtreat: statistically sound advanced data preparation
 - wrapr: sweet code tools for R
 - · cdata: fluid data transforms at scale
 - (in development) rquery: reliable big data operators (piped SQL).
 - and many more
- Contributor to the Win-Vector Blog, read by data scientists worldwide
- Frequent speaker on algorithms, statistics, machine learning and data science topics

Our Example Problem

Replace this **Keras** deep learning fit trajectory plot

With this plot

Advantages of The New Presentation

- Up means better in all facets.
- Validation performance is rendered as the *only* horizontal curve.

Training performance

Test performance

The issue

- Plot history data looks like the table to the right.
 - ggplot::geom_ribbon()
 needs training and validation
 results in same row.
 - ggplot::facet_wrap() needs different measures in different rows.

val_loss	val_acc	loss	acc	epoch	
-0.3769818	0.8722	-0.5067290	0.7852000	1	
-0.2996994	0.8895	-0.3002033	0.9040000	2	
-0.2963943	0.8822	-0.2165675	0.9303333	3	
-0.2779052	0.8899	-0.1738829	0.9428000	4	
-0.2842501	0.8861	-0.1410933	0.9545333	5	
-0.3119754	0.8817	-0.1135626	0.9656000	6	

We Need to re-Shape the Data

- Could do this with some combination of gather, cbind, rbind, and/or join.
- We are going to show a crystal clear "all in one step" tool for this: cdata (available on **CRAN**).
- This presentation will emphasize diagrammatic thinking and arguments.

The Concept

- Data has coordinates.
- Information is grouped in records.
- Exact realization in a given table is an inessential implementation detail.

This cell is "the epoch 2 training loss", independent of how the table is formatted.

val_loss	val_acc	loss	acc	epoch	
-0.3769818	0.8722	-0.5067290	0.7852000	1	
-0.2996994	0.8895	-0.3002033	0.9040000	2	
-0.2963943	0.8822	-0.2165675	0.9303333	3	
-0.2779052	0.8899	-0.1738829	0.9428000	4	
-0.2842501	0.8861	-0.1410933	0.9545333	5	
-0.3119754	0.8817	-0.1135626	0.9656000	6	

Let's Look at One Row Record

Want to transform from this:

epoch	val_loss	val_acc	loss	acc
1	-0.3769818	0.8722	-0.506729	0.7852

	Tr	
-	- 1.1	110

epoch	measure	training	validation
1	minus binary cross entropy	-0.506729	-0.3769818
1	accuracy	0.785200	0.8722000

We Draw The Transform

val_loss	val_acc	loss	acc
val_loss	val_acc	loss	acc

epoch	val_loss	val_acc	loss	acc
1	-0.3769818	0.8722	-0.506729	0.7852

epoch	measure	training	validation
1	minus binary cross entropy	-0.506729	-0.3769818
1	accuracy	0.785200	0.8722000

The Transforms

controlTable: cT

measure	training	validation
minus binary cross entropy	loss	val_loss
accuracy	acc	val_acc

```
        epoch
        val_loss
        val_acc
        loss
        acc

        1
        -0.3769818
        0.8722
        -0.506729
        0.7852
```

```
rowrecs_to_blocks(
    .,
    controlTable = cT,
    columnsToCopy = "epoch")

blocks_to_rowrecs(
    .,
    controlTable = cT,
    keyColumns = "epoch")
```

epoch	measure	training	validation
1	minus binary cross entropy	-0.506729	-0.3769818
1	accuracy	0.785200	0.8722000

Control Table is the Transform

controlTable: cT

measure	training	validation
minus binary cross entropy	loss	val_loss
accuracy	acc	val_acc

Control table is a picture of what the control table transforms a single row into our from (depending on direction of operator).

```
val_lossval_acclossaccval_lossval_acclossacc
```

```
rowrecs_to_blocks(
    .,
    controlTable = cT,
    columnsToCopy = NULL)
```

measure	training	validation
minus binary cross entropy	loss	val_loss
accuracy	acc	val_acc

Back to Our Task

val_loss	val_acc	loss	acc	epoch
-0.3769818	0.8722	-0.5067290	0.7852000	1
-0.2996994	0.8895	-0.3002033	0.9040000	2
-0.2963943	0.8822	-0.2165675	0.9303333	3
-0.2779052	0.8899	-0.1738829	0.9428000	4
-0.2842501	0.8861	-0.1410933	0.9545333	5
-0.3119754	0.8817	-0.1135626	0.9656000	6

controlTable: cT

measure	training	validation
minus binary cross entropy	loss	val_loss
accuracy	acc	val_acc

rowrecs_to_blocks(
 .,
 controlTable = cT,
 columnsToCopy = "epoch")

epoch	measure	training	validation
1	minus binary cross entropy	-0.5067290	-0.3769818
1	accuracy	0.7852000	0.8722000
2	minus binary cross entropy	-0.3002033	-0.2996994
2	accuracy	0.9040000	0.8895000
3	minus binary cross entropy	-0.2165675	-0.2963943
3	accuracy	0.9303333	0.8822000

And We are Ready to Plot

Keras example

WVPlots::plot_Keras_fit_trajectory(
 d,
 title = "model performance by epoch, dataset, and measure")

xgboost example

Why Use cdata?

- Clear teachable theory:
 - Abstract data coordinates and abstract records
 - blocks_to_rowrecs() and rowrecs_to_blocks()
 - Diagrammatic theory: draw the transform diagram!
- Powerful transforms:
 - pivot/un-pivot, tidyr::spread()/tidry::gather(), and one-hot-encode are all easy special cases.
 - Seamlessly move multiple values together.
- cdata is based on SQL and DBI
 - It can be directly applied to big data (via Spark or PostgreSQL).
 - · Already have clients using this on Spark in production.

Thank you!

- Links:
 - The R package
 https://github.com/WinVector/cdata
 - Fluid data reshaping with cdata
 http://winvector.github.io/FluidData/FluidDataReshapingWithCdata.html
 - Coordinatized data theory:
 http://winvector.github.io/FluidData/RowsAndColumns.html
 - Ready to go Keras plot: <u>http://winvector.github.io/FluidData/PlotExample/KerasPerfPlot.html</u>
 - These slides: https://github.com/WinVector/cdata/extras/cdata.pdf
 - All the code behind this talk (with more links): http://winvector.github.io/FluidData/PlotExample/PlotExample.html

