

SIM800L_硬件设计手册_V1.00

文档名称:	SIM800L 硬件设计手册
版本:	1.00
日期:	2013-05-10
状态:	草稿
文档控制号:	SIM800L_硬件设计手册_V1.00

前言

感谢使用 SIMCom 提供的 SIM800L 系列模块。本产品具有标准 AT 命令接口,可以提供 GSM 语音、短消息等业务。使用前请仔细阅读用户手册,您将领略其完善的功能和简洁的操作方法。

此模块主要用于语音或者数据通讯,本公司不承担由于用户不正常操作造成的财产损失或者人身伤害责任。请用户按照手册中的技术规格和参考设计开发相应的产品。同时注意使用移动产品特别是 GSM 产品应该关注的一般安全事项。

在未声明之前,本公司有权根据技术发展的需要对本手册内容进行修改。

版权声明

本手册版权属于SIMCom,任何人未经我公司书面同意复制、引用或者修改本手册都将承担法律责任 Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2013。

目录

1.	绪论	9
2.	模块综述	9
2.1.	模块主要特性	9
2.2.	工作模式	11
2.3.	模块功能框图	12
3.	模块封装	13
3.1.	引脚分布图	
3.2.	模块引脚描述	14
3.3.	机械尺寸	17
4.	接口应用	19
4.1.	供电	19
4.	1.1. 电源引脚	
4.	1.2. 电源监测	
4.2.	开机关机	21
4.	2.1. 模块开机	21
4.	2.2. 模块关机	22
4.	2.3. 模块复位	24
4.3.	省电模式	25
4.	3.1. 最小功能模式	25
4.	3.2. 休眠模式	26
4.	3.3. 从休眠模式唤醒模块	26
4.4.		26
4.5.	串口	27
4.		
4.	5.2. 串口功能	29
4.	5.3. 软件升级	30
4.6.		31
4.7.	音频接口	32
4.	7.1. 受话器接口电路	33
	7.2. 麦克风接口电路	
	7.3. 相关电气参数	
	SIM卡接口	
	8.1. SIM卡接口	
	8.2. SIM 卡座的选择	
	PCM接口	
	9.1. 复用功能	
	建盘接口	
	10.1. 键盘复用功能	
	. I2C总线	
	11.1. I2C复用功能	
4.12		
	. 模数转换器(ADC)	
	PWM	
4	14.1 PWM复用功能	43

4.15.	网络状态指示灯	43
4.15.	1. 复用功能	44
4.16.	状态指示灯	44
4.16.	1. 状态指示灯复用功能	44
4.17.	LED接口	45
4.18.	RF发射同步信号	45
4.19.	天线接口	46
4.19.	1. GSM 天线接口	46
4.19.	2. FM天线接口	47
5. 电·	气,可靠性和射频特性	49
5.1	绝对最大值	49
5.2	工作温度	49
5.3	数字接口特性	49
5.4	SIM卡接口特性	50
5.5	SIM_VDD特性	50
5.6	VDD_EXT特性	
5.7	VRTC特性	50
5.8	耗流(VBAT=4.0V)	51
5.9	静电防护	51
5.10	射频特性	52
5.10.	1 模块结导射频输出功率	52
5.10.	2. 模块传导接收灵敏度	53
5.10.		53
6. 生	产	54
6.1.	模块的顶视图和底视图	
6.2.	推荐焊接炉温曲线图	
7. 附:	录	55
I.	相关文档	55
II.	术语和解释	
Ш	字个敬生	58

表格索引

表 1: 模块主要特性	9
表 2: 编码格式和最大网络数据速度率	
表 3: 工作模式	
表 4: 引脚描述	
表 5: 推荐的齐纳二极管型号	19
表 6: AT+CFUN不同设置下的耗流(BS-PA-MFRMS=5)	
表 7: 串口引脚定义	
表 8: 串口逻辑电平	28
表 9: 串口复用功能	
表 10: RI信号线电平状态	
表 11: 音频功放参数	
表 12: 音频输入参数	
表 13: 音频输出参数	
表 14: SIM卡接口引脚定义	34
表 15: 引脚描述(AMPHENOL SIM卡座)	36
表 16: 引脚描述(AMPHENOL SIM卡座)	37
表 17: PCM接口引脚定义	38
表 18: PCM复用功能:	38
表 19. 键盘接口引脚信号定义	40
表 20: I2C总线接口引脚定义	41
表 21: I2C复用功能	41
表 22: GPIO接口引脚定义	42
表 23: ADC接口引脚定义	
表 24: ADC参数	42
表 25: PWM引脚定义	42
表 26: BUZZER 输出特性	43
表 27: PWM复用功能	43
表 28: NETLIGHT引脚定义	43
表 29: NETLIGHT工作状态	43
表 30: NETLIGHT复用功能	44
表 31: STATUS引脚定义	44
表 32: STATUS复用功能	
表 33: LED引脚定义	45
表 34: LED引脚参数	45
表 35: BPI_BUS1 引脚定义	
表 36: 绝对最大值	49
表 37: 模块工作温度	
表 38: 数字接口特性	
表 39: SIM卡接口特性	
表 40: SIM_VDD 特性	
表 41: VDD_EXT特性	
表 42: VRTC特性	
表 43: 耗流	
表 44: ESD 性能参数(温度: 25℃,湿度: 45%)	
表 45: GSM850、EGSM900 传导输出功率	52

表	46:	DCS1800、PCS1900 传导输出功率	52
表	47:	传导接收灵敏度	53
表	48:	模块工作频段	53
表	49:	相关文档	55
表	50:	术语和解释	56
		安全警告	

图片索引

冬	1:	模块功能框图	12
图	2:	模块引脚图(顶视图)	13
图	3:	三维尺寸(单位:毫米)	17
图	4:	推荐PCB封装尺寸(单位: 毫米)	18
		VBAT 输入参考电路	
图	6:	LDO供电参考电路	20
		DC-DC电源参考电路	
		突发时VBAT的跌落	
		VBAT跌落的最低电压	
图	10:	: 使用PWRKEY驱动电路开机	21
图	11:	使用PWKEY按键开机	22
图	12:	使用PWRKEY开机时序图	22
		使用PWRKEY关机时序图	
		复位电路	
图	15:	. 复位时序图	25
图	16:	外部电容给RTC供电	26
		不可充电电池给RTC供电	
图	18:	可充电电池给RTC供电	27
图	19:	- 串口连接图	28
		· TX连接图	
图	21:	RX连接图	29
图	22:	· 软件升级接口	30
图	23:	模块作为被叫当接收到语音呼叫时RI上的电平变化	31
图	24:	模块作为被叫当接收到数据呼叫(CSD)时RI上的电平变化	31
冬	25:	· 模块接收到短信息(SMS)或者串口主动上报(URC)RI上的电平变化	31
图	26:	· 模块作为主叫时RI上的电平变化	32
图	27:	受话器接口电路	33
图	28:	麦克风接口电路	33
		8 引脚SIM卡座的接口推荐电路	
冬	30:	6 引脚SIM卡座的接口推荐电路	35
图	31:	MOLEX 91228 SIM卡座	36
图	32:	AMPHENOL C707 10M006 5122 SIM卡座尺寸图	37
图	33:	键盘接口参考电路 1	39
图	34:	: 键盘接口参考电路 2	39
图	35:	键盘接口参考电路 3	40
图	36:	键盘接口说明	40
图	37:	PWM参考电路	43
图	38:	NETLIGHT参考设计电路	44
		LED驱动电路连接示意图	
图	40:	. 发射同步信号时序图	46
		GSM天线接口连接电路	
		GSM天线接口简化连接电路	
冬	43:	FM天线接口连接电路	48
		以耳机作为FM天线的接口连接电路	
		模块顶视图和底视图	
		模块推荐焊接炉温曲线图	

版本历史

日期	版本	变更描述	作者
2013-05-10	1.00	初版	宋家林,李亚

1. 绪论

本文档描述了模块的硬件应用接口,包括相关应用场合的电路连接以及射频接口等。可以帮助用户快速的了解模块的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的应用文档,用户可以快速的使用模块来设计移动通讯应用方案。

2. 模块综述

SIM800L模块可支持4频GSM/GPRS,工作的频段为: GSM850、EGSM900、DCS1800和PCS1900 MHz。

模块的尺寸只有15.8*17.8*2.4 mm, 几乎可以满足所有用户应用中的对空间尺寸的要求。

模块和用户的物理接口为88个的LGA焊盘,提供了模块的所有硬件接口。

- 最多可支持50个按键。
- 一路全功能串口,可根据需要配置成两个独立的串口。
- 一路USB接口,可模拟出一路串口,便于客户调试、下载软件
- 两路音频接口,包含麦克风输入和受话器输出。
- 可编程的通用输入输出接口(GPIO)。
- 一路SIM卡接口
- 支持FM功能
- PWM功能引脚

SIM800L采用省电技术设计,在休眠模式下耗电流低至0.7毫安。

2.1. 模块主要特性

表 1: 模块主要特性

特性	说明				
供电	电压范围: 3.4V~4.4V				
省电	SLEEP模式下的耗流为0.7毫安(BS-PA-MFRMS=9)				
频段	 ■ 四频: GSM850、EGSM900、DCS1800、PCS1900,可以自动地搜寻四个频段。 也可以通过AT命令来设置频段。 ● 符合GSM Phase 2/2+ 				
GSM 类型	小型移动台				
发射功率	 Class 4 (2W): GSM850、EGSM900 Class 1 (1W): DCS1800、PCS1900 				
GPRS 连接特性	 GPRS 时隙缺省为等级12 GPRS 时隙 class1~12 可选 GPRS 移动台等级B 				
温度范围	 工作温度: -40℃ ~+85℃ 存储温度: -45℃ ~+90℃ 				

GPRS数据特性	 GPRS 数据下行传输: 最大 85.6 kbps GPRS 数据上行传输: 最大 85.6 kbps 编码格式: CS-1, CS-2, CS-3 和 CS-4 支持通常用于PPP连接的PAP(密码验证协议)协议 内嵌TCP/IP 协议 支持分组广播控制信道(PBCCH) CSD 传输速率: 2.4, 4.8, 9.6, 14.4 kbps 支持非结构化补充数据业务(USSD)
电路交换(CSD)	CSD 传输速率: 2.4, 4.8, 9.6, 14.4 kbps支持非结构化补充数据业务(USSD)
非结构化补充数据 业务(USSD)	● 支持非结构化补充数据业务(USSD)
短消息 (SMS)	MT, MO, CB, Text 和 PDU 模式短消息 (SMS) 存储设备: 内置SIM 卡
SIM卡接口	支持的SIM卡: 1.8V, 3V
天线接口	天线焊盘
音频特性	语音编码模式: 半速率 (ETS 06.20) 全速率 (ETS 06.10) 增强型全速率 (ETS 06.50 / 06.60 / 06.80) 自适应多速率 (AMR) 回音消除 噪声抑制
串口和调试口	申口: 支持标准的全功能串口 传输速率支持从1200bps到115200bps 可以通过串口发送AT命令和数据 支持RTS/CTS硬件流控,并且可以通过软件打开或者关闭流控功能 支持符合GSM 07.10协议的串口复用功能 支持从1200bps到115200bps 的自动波特率检测功能 软件升级 调试口: 用于调试
通讯录管理	支持类型: SM, FD, LD, RC, ON, MC.
SIM应用工具包	支持 SAT class 3, GSM 11.14 Release 99
实时时钟 (RTC)	支持
定时功能	通过AT命令设置
物理尺寸	尺寸: 15.8*17.8*2.4mm 重量: 1.35g
软件升级	通过串口或USB口升级软件

表 2: 编码格式和最大网络数据速度率

编码格式	1个时隙	2个时隙	4个时隙
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

2.2. 工作模式

下表简要介绍了后续章节将要提到的多种工作模式。

表 3: 工作模式

模式	功能	
正常工作	GSM/GPRS 休眠	在这种状态下,模块的电流消耗会降到最低,模块仍能接收寻呼信息和 SMS。
	GSM 空闲	软件正常运行,模块已经注册到GSM 网络上,并可以随时发送和接收数据。
	GSM 通话	两个用户处于连接中,在这种情况下模块的功耗和网络及模块的配置有关。
	GPRS 待机	模块随时准备着GPRS 数据传输, 但是当前没有发送或接收数据。这种情况下,功耗取决于网络状况和GPRS 配置。
	GPRS 数据 传输	GPRS数据正在传输中(PPP 或者 TCP 或者 UDP)。在这种情况下,功耗取决于网络状况(例如:功率控制等级),上下行数据链路的数据速率,以及GPRS 配置 (例如:使用多时隙配置)。
关机模式		OWD=1"命令或使用PWRKEY引脚关机。此时,模块内部的各部分电源 保留RTC供电。 软件也停止运行。串口不可用。VBAT上的电源要继续
最小功能模式	情况下,模块的	况下,可以使用"AT+CFUN"命令把模块配置成最小功能模式。在这种的RF部分或者SIM卡部分不工作,或者RF部分和SIM卡部分都不工作,但用,此时功耗非常低。

2.3. 模块功能框图

下图列出了模块的主要功能部分:

- GSM基带
- GSM射频
- 天线接口
- 其他接口

图 1: 模块功能框图

3. 模块封装

3.1. 引脚分布图

SIM800L_硬件设计手册_V1.00

3.2. 模块引脚描述

表 4: 引脚描述

引脚名称	引脚序号	I/O	描述	备注		
供电						
VBAT	1、42	I	模块提供 2 个 VBAT 电源 pin 脚。SIM800L 采用单电源供电,电压范围,VBAT 从 3.4V 到 4.4V。电源要能够提供足够的峰值电流以保证在突发模式时高达 2A 的峰值耗流。			
VRTC	56	I/O	当系统电源 VBAT 没电时给实时时钟提供电流输入。当 VBAT 有电而且后备电池电压过低时可以给后备电池进行充电。	VRTC 引脚上接电池 或者电容。		
VEXT	18	O	2.8V 电源输出	如果不用,保持悬空。		
GND	2、6、8、35、37、38、39、41、43、44、45、58、67、71、72、73、76、77、78、79、80、81、82、83、84、85、86、87、88		接地			
开机 关机	开机 关机					
PWRKEY	48	I	通过拉低 PWRKEY 并保持至少 1 秒然后释放,可以开启模块。同样用户可以通过拉低 PWERKEY 保持至少一秒然后释放,就可以 关闭模块。			
音频接口						
MIC1P	52	т	支超 . 收於 》 了些和各些			
MIC1N	12	Ι	音频一路输入正端和负端	如果不用,保持悬空		
SPK1P	53	O	音频一路输出正端和负端	如 术 个用, 体材态至		
SPK1N	13	O	自然一路制山上地和贝地			
MIC2P	9	I	音频二路输入正端和负端			
MIC2N	10	1	日の大一町相の下上四十四大利			
SPK2P	51	O	音频二路输入正端和负端			
SPK2N	11		日の大一時間が入口に利用すり入利			
PCM 接口						
PCMCLK	29	O	PCM 音频接口	如果不用,保持悬空		
PCMOUT	30	O				
PCMSYNC 65	65	O				

PCMIN	66	I			
键盘接口					
COL4	24	I/O			
COL3	21	I/O		如果不用,保持悬空(20pin 不可外接下拉)	
COL2	22	I/O			
COL1	25	I/O			
COL0	20	I/O	What had been been a facility and a second day		
ROW4	63	I/O	默认键盘功能。最多支持 5*5*2=50 个按键		
ROW3	23	I/O			
ROW2	61	I/O			
ROW1	60	I/O			
ROW0	62	I/O			
GPIO □					
GPIO1	3	I/O			
GPIO2	27	I/O	通用输入输出口		
GPIO3	28	I/O			
NETLIGHT	64	O	网络状态指示灯		
STATUS	4	O	运行状态指示灯		
串口					
UART1_DTR	69	I	数据终端准备	不用的引脚,保持	
UART1_RI	68	O	振铃指示		
UART1_DCD	70	I	数据载波检测		
UART1_CTS	34	O	请求发送		
UART1_RTS	33	I	清除发送		
UART1_TXD	32	O	数据发送		
UART1_RXD	31	I	数据接收		
调试接口					
VBUS	7	О			
USB_DP	59	I/O	用于调试,下载	如果不用,保持悬空	
USB_DM	19	I/O			
模数转换(AD	C)				
ADC	50	I	10bit 通用模拟数字转换器	如果不用,保持悬空	
脉宽调制					
PWM	26	О	脉宽调制输出	如果不用,保持悬空	
12C					
SDA	75	I/O		请外部连接上拉	
SCL	74	I/O			
外部 SIM 卡接					
VSIM	16	0			
SIM_DATA	14	I/O			
SIM_CLK	55	0			
SIM_RST	15	O			

SIMPRE	54	I	外部 Sim 卡在位检测脚	保留功能
天线接口				
ANT	40	I/O	连接 GSM 天线	
FM_ANT_P	17	I/O	FM 差分式天线	
FM_ANT_N	57	I/O	FM 左介式入线	
射频同步信号				
BPI_BUS1	5	O	射频发射同步信号	
其他功能脚				
RESET	49	I	拉低复位模块	
ISINK1	46	I	可驱动按键背光灯	
ISINK0	47	I	可驱动 LCD 背光灯	
NC				
NC	36			

3.3. 机械尺寸

图 3: 三维尺寸(单位:毫米)

图 4: 推荐 PCB 封装尺寸(单位:毫米)

4. 接口应用

4.1. 供电

模块VBAT的电压输入范围是3.4V到4.4V,推荐电压为4.0V。模块以最大功率发射时,电流峰值瞬间最高可达到2A,从而导致在VBAT上有较大的电压跌落。

建议靠近VBAT使用一个大电容稳压,推荐使用 100μ F钽电容(C_A 低 ESR)和一个 1μ F~ 10μ F的陶瓷电容(C_B)并联。增加并联的33PF和10PF电容可以有效去除高频干扰。同时为防止浪涌对芯片的损坏,建议在模块VBAT引脚使用一个5.1V/500mW的齐纳二极管。 PCB布局时,电容和二极管应尽可能靠近模块的VBAT引脚。

图 5: VBAT 输入参考电路

表 5: 推荐的齐纳二极管型号

	厂家	料号	功率	封装
1	On semi	MMSZ5231BT1G	500mW	SOD123
2	长电科技	MMSZ5231B	500mW	SOD123
3	Prisemi	PZ3D4V2H	500mW	SOD323
4	Prisemi	PZ5D4V2H	500mW	SOD523
5	Vishay	MMSZ4689-V	500mW	SOD123
6	Crownpo	CDZ55C5V1SM	500mW	0805

DC输入电压为+5V,使用LDO供电的推荐电路如下图所示:

图 6: LDO 供电参考电路

如果输入(DC)和输出(VBAT)的压差很大,建议采用开关稳压器。尤其是在当模块突发时电流达到2A的情况下,开关稳压器效率优势明显。下图是DC-DC供电参考设计电路。

图 7: DC-DC 电源参考电路

可以直接用3.7V的锂离子电池给模块供电,也可以使用镍镉或者镍锰电池直接给模块供电,但请注意其最大电压不能超过模块的最大允许电压,否则会损坏模块。当使用电池时,VBAT引脚和电池之间的阻抗应当小于 $150m\Omega$ 。

下图是在VBAT等于4V、最大发射功率时,VBAT的跌落情况。

测试条件: VBAT的最大输出电流等于2A, 100μF的钽电容, ESR等于0.7欧姆。

图 8: 突发时 VBAT 的跌落

4.1.1. 电源引脚

两个VBAT引脚用于电源输入,2、43、43、45脚的GND可用来连接电源的地,VRTC引脚用于模块内部RTC电源输入,VDD EXT输出2.8V电源供客户使用。

在用户的设计中,请特别注意电源部分的设计,确保即使在模块耗电流达到2A时,VBAT的跌落也不要低于3.0V。如果电压跌落低于3.0V,模块可能会关机。从VBAT引脚到电源的PCB布线要足够宽以降低在

传输突发模式下的电压跌落。

图 9: VBAT 跌落的最低电压

4.1.2. 电源监测

使用"AT+CBC"命令来监测电源电压。

在正常操作模式下,电压值以一定的间隔连续测量。AT+CBC 命令所得到的值是该命令执行前的一段测试时间内所测的电压平均值。

关于AT+CBC的详细信息请参考文档 [1]。

4.2. 开机关机

当超过模块的温度和电压限制时不要开启模块。模块一旦检测到这些不适合的条件就会立即关机。在极端的情况下这样的操作会导致模块永久性的损坏。

4.2.1. 模块开机

用户通过拉低 PWRKEY 引脚至少 1 秒然后释放,使模块开机。此引脚已在模块内部上拉到 VBAT。推荐电路如下图:

图 10: 使用 PWRKEY 驱动电路开机

图 11: 使用 PWKEY 按键开机

下图是开机时序说明:

图 12: 使用 PWRKEY 开机时序图

当开机进程完成, 主机将会在模块串口监测到以下字符:

RDY

当模块运行在自动波特率的时候, URC 不上报字符。

注意:使用AT 命令 "AT+IPR=x"可以设置固定波特率,设置固定波特率保存后以后开机的时候URC 就会上报 "RDY"字符。关于AT 命令 "AT+IPR"的详细信息请参考文档[1]

4.2.2. 模块关机

下面是模块的几种关机方法:

- 使用 PWRKEY 引脚关机
- 使用 AT 命令关机

● 非正常关机:高电压或者低电压自动关机

● 非正常关机: 高温或者低温自动关机

4.2.2.1. 模块使用PWRKEY关机

用户可以通过把PWRKEY 信号拉低1.5秒到3秒之间用来关机,拉低时间超过3秒模块会重新开机。关机电路可以参考开机电路的设计。关机时序图如下图所示:

图 13: 使用 PWRKEY 关机时序图

关机过程中,模块首先从网络上注销,让内部软件进入安全状态并且保存相关数据,最后关闭内部电源。在最后断电前模块的串口将发送以下字符:

NORMAL POWER DOWN

这之后模块将不会执行AT命令。模块进入关机模式,仅RTC处于激活状态。关机模式可以通过 VDD EXT引脚来检测,在关机模式下此引脚输出为低电平。

4.2.2.2. 使用AT命令关机

用户可以使用AT命令"AT+CPOWD=1"关闭模块。该命令使模块从网络上注销,让软件进入安全状态,保存有用数据,关闭内部电源。在关机前,模块串口将自动发送下列字符串:

NORMAL POWER DOWN

模块关机后进入关机模式,此时将不再响应AT命令,仅RTC处于激活状态。关机模式可以通过 VDD EXT引脚来检测,在关机模式下此引脚输出为低电平。

关于AT命令 "AT+CPOWD" 的详细信息请参考文档[1]。

4.2.2.3. 高电压或者低电压自动关机

模块会持续的监测 VBAT 上的电压:

如果VBAT上的电压 ≤3.5V,模块主串口会自动发送以下字符串:

UNDER-VOLTAGE WARNNING

如果VBAT上的电压 ≥4.3V, 模块主串口会自动发送以下字符串:

OVER-VOLTAGE WARNNING

如果 VBAT 上的电压 <3.4V,模块主串口会自动发送以下字符串,并且模块将会立即自动关机:

UNDER-VOLTAGE POWER DOWN

如果VBAT上的电压 >4.4V, 模块主串口会自动发送以下字符串,并且模块将会立即自动关机:

OVER-VOLTAGE POWER DOWN

此后将不再响应AT命令。模块进入关机模式,仅RTC处于激活状态。关机模式可以通过VDD_EXT引脚来检测,在关机模式下此引脚输出为低电平。

4.2.2.4. 高电压或者低电压自动关机

模块会持续的监测环境温度:

如果环境温度 ≥+80℃,模块串口会自动发送以下字符串:

+*CMTE:1*

如果环境温度 <-30℃,模块串口会自动发送以下字符串:

+*CMTE:-1*

如果环境温度 >+85℃,模块串口会自动发送以下字符串,然后模块将会立即自动关机:

$+CMTE \cdot 2$

如果环境温度 <-40℃, 模块串口会自动发送以下字符串, 然后模块将会立即自动关机:

+*CMTE:-2*

此后将不再响应AT命令。模块进入关机模式,仅RTC处于激活状态。关机模式可以通过VDD_EXT引脚来检测,在关机模式下此引脚输出为低电平。

注意:

默认情况下温度检测功能没有打开,用户需要使用 AT 命令 "AT+CMTE=1" 打开此功能,关于 AT 命令 "AT+CMTE" 的详细信息请参考文档[1]。

4.2.3. 模块复位

用户可以通过RESET pin复位模块。模块内部用三极管隔离,框图如下:

图 14: 复位电路

RESET拉低时间需要大于200us,复位时序如下图:

图 15: 复位时序图

4.3. 省电模式

省电模式包含两种:休眠模式和最小功能模式。用户可以通过命令"AT+CSCLK=1"使模块进入休眠模式,在休眠模式下,模块的耗流值非常小。也可以通过命令"AT+CFUN=<fun>"设置模块使之进入最小功能模式。当模块被设置为最小功能模式并且进入休眠模式后,模块的耗流值最小。

4.3.1. 最小功能模式

最小功能模式就是将模块功能减小到最少,所以也使模块的电流消耗减小到最少。可以通过命令"AT+CFUN=<fun>"把模块设置到该模式下,这条命令提供三种选择,用于以设置不同功能。

- AT+CFUN=0: 最小功能模式;
- AT+CFUN=1: 全功能模式(默认):
- AT+CFUN=4: 飞行模式。

表 6: AT+CFUN 不同设置下的耗流(BS-PA-MFRMS=5)

<fun></fun>	耗流(uA) (休眠模式)
0	TBD
1	TBD
4	TBD

设置"AT+CFUN=0"后,模块进入最小功能模式,关闭射频功能和SIM卡的功能。在这种情况下,串口仍然可以继续使用,但是与射频和SIM卡相关的功能以及部分AT 命令不能使用。

设置"AT+CFUN=4"后,模块进入飞行模式,关闭射频功能。 在这种情况下,模块的串口仍然可以使用,但是与射频相关的功能以及部分AT命令不可使用。

当模块进入最小功能模式或者进入飞行模式后,都可以通过命令"AT+CFUN=1"使之返回全功能模式。 *有关"AT+CFUN"命令详细信息,请参考文档* [1]

4.3.2. 休眠模式

设置"AT+CSCLK=1"后,如果模块处于待机状态并且DTR是高电平,没有其他中断产生(GPIO,来电,来短信等),模块将自动进入休眠模式。在这种模式下,模块仍能接收来自网络的呼叫和短消息。在休眠模式下,串口是不可用的。

4.3.3. 从休眠模式唤醒模块

当模块处于休眠模式,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号;
- 接收到语音或数据呼叫:
- 接收到短消息(SMS);
- 拉低DTR引脚。 DTR引脚被拉到低电平大概50mS后,串口会变有效。

4.4. RTC电源

VRTC引脚不能悬空,应该外接大电容或者电池,当外接大电容时,推荐值为100uF,能保持实时时钟1分钟。RTC电源使用外部大电容或电池(不可充电的或可充电的)给模块内部的RTC供电时参考设计电路如下:

● 外部电容供电

图 16: 外部电容给 RTC 供电

● 不可充电电池供电

图 17: 不可充电电池给 RTC 供电

● 可充电电池供电

图 18: 可充电电池给 RTC 供电

4.5. 串口

表 7: 串口引脚定义

	名称	引脚	功能
串口	UART1_DTR	69	数据终端准备
	UART1_RI	68	振铃指示
	UART1_DCD	70	数据载波检测
	UART1_CTS	34	请求发送
	UART1_RTS	33	清除发送
	UART1_TXD	32	数据发送
	UART1_RXD	31	数据接收
调试口	VBUS	7	USB电路电源
	USB_DP	59	
	USB_DM	19	

SIM800L提供一个用于通讯的全功能串口。模块是DCE (Data Communication Equipment)设备,根据传统的DCE-DTE (Data Terminal Equipment) 连接方式,模块和用户机(DTE)之间的连接是通过下列信号线的连接来完成的(如下图所示)。

串口

- UART1_TXD: 发送数据到 DTE 设备的 RXD 信号线上
- UART1 RXD:从 DTE 设备的 TXD 信号线上接收数据

图 19: 串口连接图

串口逻辑电平如下表描述。

表 8: 串口逻辑电平

参数	最小值	最大值	单位
V_{IL}	0	0.3	V
V_{IH}	2.5	2.8	V
V_{OL}	0	0.1	V
V_{OH}	2.7	2.8	V

注意:

为避免客户使用串口通信时由于电平不匹配而导致漏电、灌电情况发生,建议使用下图电路做电平隔离:

图 20: TX 连接图

图 21: RX 连接图

4.5.1. 调试接口

SIM800L 可以通过 USB 接口实现软件调试功能。模块开机后,通过连接 VBUS、USB_DP、USB_DM、GND 至电脑端,按提示正确安装驱动后,电脑会识别出一个 UART 口,通过该 UART 可以实现软件 Debug。

4.5.2. 串口功能

串口

- 支持 Modem 设备
- 包含数据信号线 TXD 和 RXD, 状态信号线 RTS 和 CTS, 控制信号线 DTR, DCD, 和 RI。
- 串口可用于 CSD 传真, GPRS 服务, 发送 AT 命令控制模块。同样也可以用于串口复用功能。SIM800L 只支持基本的复用模式。
- 串口支持的通讯波特率如下: 1200,2400,4800,9600,19200,38400,57600,115200bps。
- 自动波特率模式支持的通讯速率如下: 1200,2400,4800,9600,19200,38400 和 57600,115200bps,默认为自动波特率模式。

模块在自动波特率模式下可以自动的检测适应主机应用的波特率。模块在出厂设置为自动波特率检测。这个功能可以使用户灵活的操作模块而不用考虑主机的波特率设置。为了能够正常的使用自动波特率功能,应该特别注意以下的要求:

DTE 和 DCE 的同步

当模块开机后建议延迟 2 至 3 秒后再发送同步字符,用户可发送 "AT"(大写、小写均可)来和模块同步波特率,当主机收到模块返回"OK",则 DTE 和 DCE 正确同步。更多的信息请参考 AT 指令"AT+IPR"。

自动波特率操作配置

- 串口配置为: 8 位数据位, 无奇偶校验, 1 位停止位, 无数据流控。
- 当自动波特率使能的情况下开启 ME 设备,将检测不到模块自动上报的"RDY", "+CFUN:1"和 "+CPIN:READY"等字符。这是因为模块和主机没有完成波特率同步。

注意:

当主机和模块波特率同步后,用户可以使用命令AT+IPR=x 设置一个固定波特率并通过AT&W 把设置保存。固定波特率设置后,开机的时候主机总是可以检测到模块自动上报的字符。

复用功能

我们是SITCOT代理,有技术支持,有什么问题联系我,QQ:28564822,ABC_6868€126.COT