Internet Domain Survey Host Count

What uses DNS?

- Any application that operates over the Internet
- Such as
- email
- Spam filters
- WWW
 - FTP
- IRC, IM
- Windows update
 - telnet, ssh

©2004-2016 Brian D. Davison CSE 265: System and Network Administration

CSE 265:

System & Network Administration

- DNS The Domain Name System
- What does DNS do?
- The DNS namespace
- BIND software
- How DNS works
- DNS database
- Testing and debugging (tools)

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

What does DNS do?

- Provides hostname IP lookup services
- www.lehigh.edu = 128.180.2.57
- DNS defines
- A hierarchical namespace for hosts and IP addresses
- A distributed database of hostname and address info
- A "resolver" library routines that query this database
- Improved routing for email
- A mechanism for finding services on a network
- A protocol for exchanging naming information
- DNS is essential for any org using the Internet

Spring 2016

Common country codes

a	Code Country	Code	Code Country
	Australia	ρq	Hungary
	Brazil	<u>.d</u>	Japan
	Canada	шq	Moldovia
	Cocos Islands	ž	Mexico
	Switzerland	nu	Niue
	Germany	se	Sweden
	Finland	tш	Turkmenistan
	France	ঽ	Tuvalu
	Hong Kong	Sn	United States

See http://www.iana.org/domains/root/db/

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

Domain name management

- Network Solutions (now VeriSign) used to manage .com, .org, .net, and .edu directly VeriSign
- VeriSign now manages infrastructure for .com, .net, .tv, .name and .cc
- Organizations can now register with many different registrars (even when VeriSign manages the underlying database)
- authoritative for the domain

Dozens of others manage country codes and other top-level domains

Domain holders must have two name servers

©2004-2016 Brian D. Davison CSE 265: System and Network Administration

The DNS namespace

- A tree of "domains"
- Root is "." (dot), followed by top-level (root-level) domains
- Two branches of tree

- One maps hostnames to IP addresses
- Other maps IP address back to hostnames
- Two types of top-level domain names used today
- gTLDs: generic top-level domains
- ccTLDs: country code top-level domains

©2004-2016 Brian D. Davison

CSE 265: System and Network Administration

Spring 2016

Generic top-level domains

Domain	Domain Purpose	Domain	Domain Purpose
COM	Companies	aero	Air transport industry
edu	Educational institutions	piz	Businesses
gov	(US) government agencies	dooo	Cooperatives
Ē	(US) military agencies	info	Unrestricted
net	Network providers	jobs	Human resources folks
org	Nonprofit organizations	mnsenm	nuseum Museums
ir	International organizations	name	name Individuals
arpa	arpa IP address lookup	bro	Professionals (attorneys, etc.)

- But today there are an abundance of top-level domains
- .black, .blue, .airforce, .agency, .audio, etc.
- See http://www.iana.org/domains/root/db/

Spring 2016

How DNS works

- A client calls gethostbyname(), which is part of the resolver library
- The resolver library sends a lookup request to the first nameserver that it knows about (from (etc/resolv.conf)
- If the nameserver knows the answer, it sends it back to the client
- If the nameserver doesn't know, it either
- asks the next server, or
- returns a failure, and suggests that the client contact the next server

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

Resolving process

Selecting a domain name

- Most good (short) names in .com and other old gTLDs are already in use
- recommended), and up to 255 chars overal segment (but a 12 character length limit is Domain names are up to 63 characters per
- Identify two authoritative name servers
- Select a registrar, and pay ~\$1-\$35/year for registration

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

BIND software

- Berkeley Internet Name Domain system
- By far, the most popular nameserver [Measurement Factory 2010 study]
- Three components
- a daemon called named that answers queries
- library routines that resolve host queries by contacting DNS servers
- command-line utilities (nslookup, dig, host)

Spring 2016

Example resolution

©2004-2016 Brian D. Davison **CSE 265: System and Network Administration**

Spring 2016

Types of name servers

- Recursive vs. nonrecursive servers
- Servers that allow recursive queries will do all the work
- Nonrecursive servers will only return referrals or answers
- Authoritative vs. caching-only servers
- Authoritative servers have the original data
- Caching servers retain data previously seen for

©2004-2016 Brian D. Davison CSE 265: System and Network Administration

Spring 2016

Delegation

- servers to know about all Impractical for high-level hosts (or even subdomains) below
- Servers delegate specific zones to other servers
- Names and addresses of authoritative servers for the relevant zone are returned in referrals

©2004-2016 Brian D. Daviso CSE 265: System and Network Administration

Spring 2016

What servers know

- All servers know about the 13 root servers
- hardcoded (rarely changes!), or in hint file
 - a.root-servers.net ... m.root-servers.net
- every top-level domain (.com, .net, .uk, etc.) Each root server knows about servers for
- Each top-level domain knows the servers for each second-level domain within the toplevel domain
- Authoritative servers know about their hosts

©2004-2016 Brian D. Davison

CSE 265: System and Network Administration

Spring 2016

BIND client configuration

- Each host has /etc/resolv.conf which lists DNS servers
- Can be set manually, or via DHCP
- Example from sunlab:

search cse.lehigh.edu eecs.lehigh.edu

nameserver 128.180.120.6

nameserver 128.180.120.4

nameserver 128.180.2.9

- Servers must be recursive, and should have a cache
 - Servers are contacted in order, only after timing out previous attempt

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

BIND server issues

- · named is typically started at boot time
- Configured using /etc/named.conf
- Can decide between
- caching vs. authoritative
- slave vs. master (per zone)
- answering recursive or only iterative queries
- Lots more options
- Who can access, what port, etc.

©2004-2016 Brian D. Davison CSE 265: System and Network Administration

Caching reduces DNS load

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

IP-to-hostname resolution

- IP resolution works essentially the same as hostname resolution

15.16.192.152 - Query for

query for 152.192.16. 15.in-addr.arpa Rendered as

- Each layer can delegate to the next

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

Resource record: name

[name] [ttl] [class] type data

- name is host or domain for the record
- Absolute names must end with a dot
- Relative names do not the current domain is added (sometimes causing mistakes!)
- www.cse.lehigh.edu.cse.lehigh.edu

CSE 265: System and Network Administration

Spring 2016

©2004-2016 Brian D. Davison

Resource record: ttl

[name] [ttl] [class] type data

- The time to live (ttl) field specifies in seconds the time that the data item may still be cached
- Increasing the ttl (say to a week) decreases traffic and DNS load substantially
- Setting a value too low can hurt web site performance
- Typical values are in days or weeks

©2004-2016 Brian D. Davison CSE 265: System and Network Administration

DNS on Linux

 Linux uses /etc/nsswitch.conf to determine what sources to use for name lookups

/etc/nsswitch.conf

passwd: files nisplus shadow: files nisplus

group: files nisplus hosts: files dns

Configuration is in /etc/named.conf

Other files in /var/named

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

DNS database

- Exactly what data is stored?
- Resource records
- Specify nameservers
- Name to address translation
- Address to name translation
- Host aliases
- Mail routing
- Free text, location, etc.
- Format
- [name] [ttl] [class] type data

Spring 2016

SOA record

cs.colorado.edu 86400 IN SOA ns.cs.colorado.edu. hostmaster.cs.colorado.edu.

; refresh (2 hours)

; expire (1 week) ; minimum (2 hours) ; retry (30 minutes) 2001111300; serial number 7200 ; refresh (2 hours) 1800 ; retry (30 minute 604800 ; expire (1 week) 7200) ; minimum (2 hou refresh = how often slave servers must check master

- retry = when the slave will try again after failure

expire = how long data can be considered valid without master

minimum = TTL for cached negative answers

CSE 265: System and Network Administration

Spring 2016

©2004-2016 Brian D. Davison

NS record

cerberus.CC.lehigh.edu. spot.CC.lehigh.edu. rover.CC.lehigh.edu.	kato.eecs.lehigh.edu. rosie.eecs.lehigh.edu. cerberus.cc.lehigh.edu. spot.cc.lehigh.edu. rover.cc.lehigh.edu.
NS NS NS	N N N N N N N N N N N N N N N N N N N
<u> </u>	Z Z Z Z Z
86400 86400 86400	86400 86400 86400 86400 86400
lehigh.edu. Iehigh.edu. Iehigh.edu.	cse.lehigh.edu. cse.lehigh.edu. cse.lehigh.edu. cse.lehigh.edu. cse.lehigh.edu.

- Can't tell whether the nameserver is master or slave (but it is definitely authoritative, not caching) ©2004-2016 Brian D. Davison CSE 265: System and Network Administration

Spring 2016

Resource record: class

[name] [ttl] [class] type data

- Three values of class are supported

IN: Internet

- default (and only one modern systems care about)
- CH: ChaosNet
- obsolete protocol used by obsolete machines
- HS: Hesiod
- database service built on top of BIND (from MIT)

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison

Resource record: type

[name] [ttl] [class] type data

- Many DNS record types

- Zone
- SOA: Start of authority (define a zone)
 - NS: Name server
- Basic
- A: IPv4 address (name to address translation)
- AAAA: IPv6 address (name to address translation)
- PTR: address-to-name translation
- MX: Mail exchanger
- CNAME: Canonical name (implements aliases)

Spring 2016

Dynamic updates to DNS

A and PTR records

- environment in which hostnames (and other DNS was originally designed for an DNS info) changed slowly, if at all
- DHCP breaks this assumption
- Recent versions of BIND allow DHCP to notify BIND of address assignments

CSE 265: System and Network Administration Spring 2016

©2004-2016 Brian D. Davison

CSE 265: System and Network Administration Spring 2016

Some apps require that A and PTR records match

(for authentication)

· each has own SOA and resource records

lehigh.edu and 180.128.in-addr.arpa are different

rosie.eecs.lehigh.edu.

kato.eecs.lehigh.edu.

6.120.180.128.in-addr.arpa. 7200 IN PTR 4.120.180.128.in-addr.arpa. 7200 IN PTR

128.180.120.6 128.180.120.4

69.7.224.17 128.180.2.9 128.180.1.3

> cerberus.cc.lehigh.edu. 45355 IN kato.eecs.lehigh.edu. 86400 IN rosie.eecs.lehigh.edu. 86400 IN

rover.cc.lehigh.edu. 45355 IN spot.cc.lehigh.edu. 45355 IN

©2004-2016 Brian D. Davison

Testing and debugging (tools)

- · named supports lots of logging options
- typical BIND tools
- nslookup (old, possibly deprecated)
- host
- bib -
- whois find domain and network registration

MX and CNAME records

50 boulder.colorado.edu. 10 mailhub 10 piper 20 mailhub IN CNAME anchor IN CNAME anchor ×× ΣΣ xterm1 piper £

WWW

www.cse.lehigh.edu. 6754 IN CNAME telstar.eecs.lehigh.edu.

- Every host should have MX records
- Machines that accept mail for others need to be configured to do so (e.g., mailhub)
- CNAMEs can nest eight deep in BIND

©2004-2016 Brian D. Davison CSE 265: System and Network Administration

Other Issues

- Many aspects of DNS haven't been covered in lecture
 - Lots of details!
- Security issuesIPv6
- Internationalization now supported!
- DNS is generally case-insensitive
- VeriSign Site Finder product
- See http://cyber.law.harvard.edu/tlds/sitefinder/

Spring 2016

CSE 265: System and Network Administration

©2004-2016 Brian D. Davison