Fareyevo zaporedje in Riemannova hipoteza

Tjaša Vrhovnik

Mentor: izr. prof. dr. Aleš Vavpetič Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za matematiko

13. september 2019

Struktura diplomskega dela

- Fareyevo zaporedje: motivacija, definicija, lastnosti, dolžina zaporedja
- Fordovi krogi: lastnosti, posplošitev, Fordove krogle, Möbiusove transformacije na množici Fordovih krogov
- Riemannova hipoteza: ekvivalentni trditvi, povezava hipoteze s Fareyevim zaporedjem

Definicija

Fareyevo zaporedje reda n oz. n-to Fareyevo zaporedje je množica racionalnih števil $\frac{p}{q}$ urejenih po velikosti, kjer sta p in q tuji si števili, ter velja $0 \le p \le q \le n$. Označimo ga z F_n . Ekvivalentno, F_n vsebuje vse okrajšane ulomke med 0 in 1 z imenovalci, kvečjemu enakimi n.

Primer

$$\begin{split} F_1 &= \left\{ \frac{0}{1}, \frac{1}{1} \right\}, \\ F_2 &= \left\{ \frac{0}{1}, \frac{1}{2}, \frac{1}{1} \right\}, \\ F_3 &= \left\{ \frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1} \right\}, \\ F_4 &= \left\{ \frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1} \right\}. \end{split}$$

Definicija

Sosednja člena v Fareyevem zaporedju imenujemo Fareyeva soseda.

Definicija

Naj bosta $\frac{a}{b}$ in $\frac{c}{d}$ sosednja člena nekega Fareyevega zaporedja. Ulomek

$$\frac{a+c}{b+d}$$

imenujemo medianta.

Definicija

Sosednja člena v Fareyevem zaporedju imenujemo Fareyeva soseda.

Definicija

Naj bosta $\frac{a}{b}$ in $\frac{c}{d}$ sosednja člena nekega Fareyevega zaporedja. Ulomek

$$\frac{a+c}{b+d}$$

imenujemo medianta.

Lema

Dano naj bo Fareyevo zaporedje. Elemente zaporedja višjega reda dobimo z računanjem mediant elementov danega zaporedja.

Trditev (Lastnost Fareyevih sosedov)

Naj velja $0 \le \frac{a}{b} < \frac{c}{d} \le 1$. Ulomka $\frac{a}{b}$ in $\frac{c}{d}$ sta Fareyeva soseda v nekem Fareyevem zaporedju natanko tedaj, ko velja bc - ad = 1.

Trditev (Lastnost Fareyevih sosedov)

Naj velja $0 \le \frac{a}{b} < \frac{c}{d} \le 1$. Ulomka $\frac{a}{b}$ in $\frac{c}{d}$ sta Fareyeva soseda v nekem Fareyevem zaporedju natanko tedaj, ko velja bc - ad = 1.

Lastnost mediante

Medianta $\frac{a+c}{b+d}$ je enolično določena z ulomkoma $\frac{a}{b}$ in $\frac{c}{d}$.

Trditev

Naj bo φ Eulerjeva funkcija. Dolžina Fareyevega zaporedja reda n je enaka

$$|F_n| = |F_{n-1}| + \varphi(n). \tag{1}$$

Trditev

Asimptotično se dolžina Fareyevega zaporedja obnaša kot

$$|F_n| \sim \frac{3n^2}{\pi^2}.\tag{2}$$

Definicija

Naj bosta p in q tuji si števili v množici celih števil. Fordov krog $C(\frac{p}{q})$ je krog v zgornji polravnini, ki se abscisne osi dotika v točki $\frac{p}{q}$, njegov polmer pa meri $\frac{1}{2q^2}$.

Slika: Fordovi krogi na intervalu [0,1] s polmeri $\frac{1}{2}$, $\frac{1}{8}$, $\frac{1}{18}$ in $\frac{1}{32}$.

Trditev

Fordova kroga, ki pripadata različnima okrajšanima ulomkoma, sta bodisi tangentna bodisi disjunktna.

Definicija

Tangentna Fordova kroga imenujemo Fordova soseda.

Trditev (Lastnost Fordovih sosedov)

Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ sta tangentna natanko tedaj, ko velja |bc - ad| = 1.

Trditev (Lastnost mediante za Fordove kroge)

Naj bosta $C(\frac{a}{b})$ in $C(\frac{c}{d})$ Fordova soseda. Tedaj obstaja enolično določen Fordov krog $C(\frac{a+c}{b+d})$ in je tangenten na izbrana kroga. Imenujemo ga medianta Fordovih krogov.

Trditev (Lastnost Fordovih sosedov)

Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ sta tangentna natanko tedaj, ko velja |bc - ad| = 1.

Trditev (Lastnost mediante za Fordove kroge)

Naj bosta $C(\frac{a}{b})$ in $C(\frac{c}{d})$ Fordova soseda. Tedaj obstaja enolično določen Fordov krog $C(\frac{a+c}{b+d})$ in je tangenten na izbrana kroga. Imenujemo ga medianta Fordovih krogov.

Izrek

Naj bosta kroga $C(\frac{P}{q})$ in $C(\frac{P}{Q})$ Fordova soseda. Vse Fordove sosede Fordovega kroga $C(\frac{P}{q})$ lahko zapišemo v obliki $C(\frac{P_n}{Q_n})$, kjer je $\frac{P_n}{Q_n} = \frac{P + np}{Q + nq}$ in n preteče vsa cela števila.

Definicija

Fordov krog $C(\frac{1}{0})$, katerega polmer je neskončen, je premica $\mathbb{R}+i$.

Izrek

Möbiusova transformacija $A \in SL_2(\mathbb{Z})$ slika Fordove kroge v Fordove kroge.

Definicija

Fordov krog $C(\frac{1}{0})$, katerega polmer je neskončen, je premica $\mathbb{R}+i$.

Izrek

Möbiusova transformacija $A \in SL_2(\mathbb{Z})$ slika Fordove kroge v Fordove kroge.

Dokaz lastnosti mediante za Fordove kroge z Möbiusovimi transformacijami

Definicija

Riemannova zeta funkcija je za $s \in \mathbb{C} \setminus \{1\}$ definirana s predpisom

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (3)

Definicija

Riemannova zeta funkcija je za $s \in \mathbb{C} \backslash \{1\}$ definirana s predpisom

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (3)

Izrek (Eulerjeva produktna formula)

Naj bo $n \in \mathbb{N}$ in $p \in \mathbb{P}$. Tedaj velja

$$\sum_{n} \frac{1}{n^{s}} = \prod_{p} \frac{1}{1 - p^{-s}}.$$
 (4)

Dokaz I. 1737, Variae observationes circa series infinitas

Ničle Riemannove zeta funkcije:

- $\{s; Re(s) > 1\}$: ničel ni
- $\{s; \text{Re}(s) < 0\}$: trivialne ničle -2, -4, -6, ...

Ničle Riemannove zeta funkcije:

- $\{s; Re(s) > 1\}$: ničel ni
- $\{s; \text{Re}(s) < 0\}$: trivialne ničle $-2, -4, -6, \dots$

Izrek (Riemannova hipoteza)

Vse netrivialne ničle Riemannove zeta funkcije ležijo na premici $s = \{\frac{1}{2} + it; t \in \mathbb{R}\}.$

Definicija

Preslikava $\mu \colon \mathbb{N} \to \mathbb{N}$, definirana s predpisom

$$\mu(n) = \begin{cases} 0 & , & \check{c}e \ je \ n \ deljiv \ s \ kvadratom \ praštevila \\ (-1)^p & , & \check{c}e \ je \ n \ produkt \ p \ različnih \ praštevil \end{cases}, \quad (5)$$

se imenuje Möbiusova funkcija.

Definicija

Preslikava $M: \mathbb{N} \to \mathbb{N}$, definirana s predpisom

$$M(n) = \sum_{k \le n} \mu(k), \tag{6}$$

se imenuje Mertensova funkcija.

Trditev (Littlewood, 1912)

Za vsak $\varepsilon > 0$ velja $M(n) = o(n^{1/2+\varepsilon})$ natanko tedaj, ko velja Riemannova hipoteza.

Trditev (Littlewood, 1912)

Za vsak $\varepsilon > 0$ velja $M(n) = o(n^{1/2+\varepsilon})$ natanko tedaj, ko velja Riemannova hipoteza.

Definicija

Naj bosta L(n) dolžina Fareyevega zaporedja reda n in r_v njegov v-ti element. Definiramo razliko

$$\delta_{v} = r_{v} - v/L(n). \tag{7}$$

Trditev (Franel-Landau, 1924)

Za vsak $\varepsilon > 0$ velja $\sum_{v=1}^{L(n)} |\delta_v| = o(n^{1/2+\varepsilon})$ natanko tedaj, ko velja Riemannova hipoteza.

Izre<u>k</u>

Naj bo $\varepsilon > 0$. $\sum_{v=1}^{L(n)} |\delta_v| = o(n^{1/2+\varepsilon})$ velja tedaj in le tedaj, ko velja $M(n) = o(n^{1/2+\varepsilon})$.