Tutorial 4 - Gaussian Beam transformations by optical systems

EE551 - Spring 2021 - Tutorial4_GaussianBeamTransformations © 2021 by Srikanth Sugavanam is licensed under CC BY-NC 4.0 © (1)

Table of Contents

Sidney Self's formula	
Introduction	
Task 1	
Task 2	
aser Beam Expander	
Introduction	
Task 0.	
Task 1	
Task 2	
Task 3	
Task 4	
Task 5	
Idan J.	

Sidney Self's formula

Introduction

Sidney Self's formula relates the location of the beam waists in the object and image space (z and z' respectively) as obtained with a lens of focal length f using a formula that is similar to the Gaussian len's formula -

$$\frac{z'}{f} - 1 = \frac{\frac{z}{f} - 1}{\left(\frac{z}{f - 1}\right)^2 + \left(\frac{z_0}{f}\right)}.$$

Here all distances are normalized with respect to the focal length of the lens, and z_0 is the Rayleigh distance.

Task 1

Plot the above graph for $\frac{z_0}{f} = 0, 0.5, 1, 10$ and see if you can reproduce the graphs obtained in his paper.

Task 2

Plot m vs. z/f using the expression for magnification provided in Self's paper. See if it matches the results presented there.

Laser Beam Expander

Introduction

You have a 1 mW 632 nm He-Ne laser (Stabilized Red HeNe Laser (thorlabs.com)). Using this laser, you would like to obtain a collimated laser beam of diameter 5 cm. To achieve this, you will have to build a laser beam expander.

The simplest configuration is based on a Keplerian configuration as shown below.

In the lab, you have it in the following configuration -

Lens 1 - Diameter: 12.7 mm, Focal length: 25.4 mm.

Lens 2 - Diameter: 76.2 mm, Focal length: 100 mm.

Separation between Lens 1 and Lens 2 - 125.4 mm.

Task 0

What are the beam parameters of your laser?

```
%Enter the values

w0 = 0

z0 = 0

q1 = 0 + 0*i
```

Task 1

Calculate the magnification you would expect from this configuration using the paraxial ray optics and thin lens approximation.

```
Refer to codes from the tutorial on paraxial ray matrices if necessary
```

Task 2

Using analytical expressions, calculate the radius of curvature of the laser beam just before Lens 2.

%You will need to use multiple expressions. Draw a rough figure of the %laser beam as it propagates through the optical system, it will help you %to visualize the problem.

Task 3

Using analytical expressions and the result from Task 2 above, calculate the beam parameters (radius of curvature of the laser beam, beam waist location, Rayleigh distance and beam divergence) after Lens 2.

Task 4

Using the generalized q-parameter transformation approach, calculate the q-parameter of the laser beam as it exits the Keplerian beam expander. Compare this result with the results you obtained above using analytical expressions.

%Hint - you should be able to define ONE system matrix.

Task 5

Did you meet your target of achieving the desired 5 cm diameter beam?