

Computational Graphs

CS115 - Math for Computer Science

TS. Lương Ngọc Hoàng TS. Dương Việt Hằng

September 9, 2023

Roadmap

- Differentiation of Univariate Functions
- Partial Differentiation and Gradients
- Gradients of Vector-Valued Functions
- Gradients of Matrices
- Useful Identities for Computing Gradients
- Backpropagation and Automatic Differentiation
- Higher-Order Derivatives
- Linearization and Multivariate Taylor Series

Variables are Nodes in Graph

- ☐ So far neural networks described with informal graph language
- ☐ To describe back-propagation it is helpful to use more precise computational graph language
- Many possible ways of formalizing computations as graph
- ☐ Here we use each node as a variable

The variable may be a

Scalar, vector, matrix, tensor, or other type

Ex: Computational Graph of xy

(a) Compute z = xy

Operations in Graphs

- ☐ To formalize our graphs we also need the idea of an operation
- An operation is a simple function of one or more variables
- Our graph language is accompanied by a set of allowable operations
- Functions more complex than operations are obtained by composing operations
- If variable y is computed by applying operation to variable x then draw directed edge from x to y

Edges denote input-output

☐ To formalize our graphs we also need the idea of an operation

- If variable y is computed from variable x we
- draw an edge from x to y
- We may annotate the output node with the
- name of the operation

Ex: Graph of Logistic Regression

(b) Logistic Regression Prediction $\hat{y} = \sigma(\mathbf{x}^T \mathbf{w} + b)$

- Variables in graph $u^{(1)}$ and $u^{(2)}$ are not in original expression, but are needed in graph

Ex: Graph of ReLU

- (c) Compute expression $H=\max\{0,XW+b\}$
 - Computes a design matrix of Rectified linear unit activations *H* given design matrix consisting of a minibatch of inputs *X*

Ex: Two operations on input

(d) Perform more than one operation to a variable

Weights *w* are used in two operations:

- 1. To make prediction \hat{y} and
- 2. The weight decay penalty

$$\lambda \sum_i w_i^2$$

Ex: Graph of Linear Regression

$$p(C_1|\mathbf{\phi}) = y(\mathbf{\phi}) = \sigma (\mathbf{w}^T\mathbf{\phi} + b) + \frac{1}{2}||\mathbf{w}||^2$$

$$z = wx + b$$
 $y = \sigma(z)$
 $\mathcal{L} = \frac{1}{2}(y - t)^2$
 $\mathcal{R} = \frac{1}{2}w^2$
 $\mathcal{L}_{\text{reg}} = \mathcal{L} + \lambda \mathcal{R}.$

Ex: Computational Graph of MLP

- (a) Full computation graph for the loss computation in a multi-layer neural net
- (b) Vectorized form of the computation graph

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

$$h_i = \sigma(z_i)$$

$$y_k = \sum_i w_{ki}^{(2)} h_i + b_k^{(2)}$$

$$\mathcal{L} = \frac{1}{2} \sum_k (y_k - t_k)^2$$

Graph of a math expression

□ Consider the expressione=(a+b)*(b+1)

- It has two adds, one multiply
- Introduce a variable for result of each operation c=a+b, d=b+1 and e=c *d

- □ To make a computational
 - Operations and inputs are nodes
 - Values used in operations are directed edges

Computational Graph Language

- ☐ To describe backpropagation more precisely computational graph language is helpful
- □ Each node is either
 - a variable (Scalar, vector, matrix, tensor, or other type
 - an Operation (Simple function of one or more variables. Or functions more complex than operations are obtained by composing operations)
 - If variable y is computed by applying operation to variable x then draw directed edge from x to y

Composite Function

 \square Consider a composite function f(g(h(x)))

We have an outer function f, an inner function g and a final inner function h(x) $f(x)=e^x$

$$f(x) = e^{\sin(x**2)} \begin{cases} g(x) = \sin x \text{ and} \\ h(x) = x^2 \text{ or} \end{cases}$$
$$f(g(h(x))) = e^{g(h(x))}$$

Every connection is an input, every node is a function or operation

Chain Rule for Composites

☐ Chain rule is the process we can use to analytically compute derivatives of composite functions

For example, f(g(h(x))) is a composite function

$$f(x)=e^{x}$$

$$g(x)=\sin x \text{ and }$$

$$f(x)=e^{\sin(x^{**}2)}$$

$$h(x)=x^{2} \text{ or }$$

$$f(g(h(x)))=e^{g(h(x))}$$

Derivatives of Composite function

 \Box To get derivatives of $f(g(h(x))) = e^{g(h(x))}$ wrt x

$$\frac{df}{dg} = e^{g(h(x))}$$

$$\frac{dg}{dh} = \cos(h(x))$$

$$\frac{dh}{dx} = 2x$$

$$\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dh} \cdot \frac{dh}{dx}$$

To get derivatives of
$$f(g(h(x))) = e^{g(h(x))}$$
 wrt x

Use the chain rule
$$\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dh} \cdot \frac{dh}{dx}$$

$$f(x) = e^{\sin(x^**2)}$$

$$f(x) = e^x$$

$$g(x) = \sin x \text{ and }$$

$$h(x) = x^2 \text{ or }$$

$$f(g(h(x))) = e^{g(h(x))}$$

$$\frac{dh}{dx} = 2x$$

$$\frac{df}{dx} = e^{g(h(x))} \cdot \cos h(x) \cdot 2x = e^{\sin x^{**}2} \cdot \cos x^{2} \cdot 2x$$

Derivatives of Composite function

 \Box To get derivatives of $f(g(h(x))) = e^{g(h(x))}$ wrt x

Another way???

Derivatives for e=(a+b)* (b+1)

Computational graph

Need derivatives on the edges (If a <u>directly</u> affects c=a+b, then we want to know how it affects c. This is called partial derivative of c wrt a)

Derivatives for e=(a+b)* (b+1)

☐ For partial derivatives of e we need sum & product rules of calculus

Derivative wrt variables indirectly connected

 \Box How is **e** affected by **a**? $|_{c=a+b}$

The general rule (with multiple paths) is:

Sum over all possible paths from one node to the other while multiplying derivatives on each path

$$\frac{\partial e}{\partial b} = 1 * 2 + 1 * 3 = 5$$

Ex. of Backprop Computation

$$f(x,y,z)=(x+y)z$$
 $q=x+y$ e.g. $x=-2$, $y=5$, $z=-4$ $f=qz$

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Steps in Backprop

$$f(x,y,z)=(x+y)z$$
 $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial z}$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

Backprop for a neuron

Factoring Paths

• Summing over paths leads to combinatorial explosion $x \xrightarrow{\beta} y \xrightarrow{\delta} z$

- If we want to get derivative $\frac{\partial Z}{\partial X}$ we need to sum over 3*3=9 paths: $\frac{\partial Z}{\partial X} = \alpha\delta + \alpha\varepsilon + \alpha\zeta + \beta\delta + \beta\varepsilon + \beta\zeta + \gamma\delta + \gamma\varepsilon + \gamma\zeta$
 - It will grow exponentially
 - Instead we could factor the paths as:

$$\frac{\partial Z}{\partial X} = (\alpha + \beta + \gamma)(\delta + \varepsilon + \zeta)$$

 This is where forward-mode and reverse-mode differentiation come in

Forward- and Reverse-Mode Differentiation

- Forward mode differentiation tracks how one input affects every node
 - Applies $\frac{\partial}{\partial X}$ to every node

- Reverse mode differentiation tracks how every node affects one output
 - Applies $\frac{\partial Z}{\partial}$ to every node

Reverse Mode Differentiation

b=1

Reverse-mode differentiation from e down

> • Apply $\left| \frac{\partial e}{\partial} \right|$ to every node

 $\frac{\partial e}{\partial c} = \frac{\partial (c * d)}{\partial c} = d = b + 1 = 1 + 1 = 2$ $\frac{\partial e}{\partial a} = \frac{\partial (c*d)}{\partial a} = \frac{\partial ((a+b)*(b+1))}{\partial a} = b+1 = 2$

 Gives derivative of e wrt every node

 $\frac{\partial e}{\partial a}$

· We get both and $|\partial e|$

Combining the two modes

Why reverse mode?

Consider Original example

$$e=(a+b)*(b+1)$$

 $c=a+b, d=b+1$
 $e=c*d$

Forward differentiation from b up

- Gives derivative of every node wrt b
- i.e., wrt a single input
- We get $\frac{\partial e}{\partial b}$

Reverse-mode diff from e down

- Gives derivative of e wrt every node
- We get both $\frac{\partial e}{\partial a}$

and $\frac{\partial e}{\partial b}$

