Name: Ayush Jain

SAP-ID: 60004200132

Branch: Computer Engineering

Machine Learning Minors – Mini Project Task 2

Problem Statement : Air Quality Prediction for Indian Cities

Data Understanding

Firstly, we check the data:

		sampling date		In real con-	-	*****					location monitoring station		-1-4-
	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	spm	location_monitoring_station	pm2_5	date
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	NaN	NaN	NaN	1990- 02-01
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	NaN	NaN	NaN	1990- 02-01
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	NaN	NaN	NaN	1990- 02-01
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	NaN	NaN	NaN	1990- 03-01
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	NaN	NaN	NaN	1990-

Next we check the info of all attributes,

```
df.info()
# Checking the over all information on the dataset.

**Cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 435742 entries, 0 to 435741

Data columns (total 13 columns):
# Column

**On-Null Count Dtype

**Ostantian Dtype

**Ostantian
```

The shape of data is (435742, 13). Now we check for null values,

df.isnull().sum()
There are a lot of missing values present in the dataset

stn_code	144077
sampling_date	3
state	0
location	3
agency	149481
type	5393
502	34646
no2	16233
rspm	40222
spm	237387
location_monitoring_station	27491
pm2_5	426428
date	7
dtype: int64	

Next, Checking the descriptive stats of the numeric values present in the data like mean, stan dard deviation, min values and max value present in the data,

df.describe()
Checking the descriptive stats of the numeric values pre

	so2	no2	rspm	spm	pm2_5
count	401096.000000	419509.000000	395520.000000	198355.000000	9314.000000
mean	10.829414	25.809623	108.832784	220.783480	40.791467
std	11.177187	18.503086	74.872430	151.395457	30.832525
min	0.000000	0.000000	0.000000	0.000000	3.000000
25%	5.000000	14.000000	56.000000	111.000000	24,000000
50%	8.000000	22.000000	90,000000	187,000000	32.000000
75%	13.700000	32.200000	142.000000	296.000000	46.000000
max	909.000000	876.000000	6307.033333	3380.000000	504.000000

Checking unique values,

df.nunique() # These are all the unique values present in the dataframe

```
803
stn_code
sampling_date
                                5485
state
                                  37
                                 304
location
                                  64
agency
type
                                  10
502
                                4197
no2
                                6864
                                6065
rspm
                                6668
location_monitoring_station
                                991
pm2_5
                                 433
date
                                5067
dtype: int64
```

df.columns

These are all the columns present in the dataset.

Data Visualization

Displaying pair-plot between numeric attributes,

Viewing the count of values present in the state column,

Viewing the count of values present in the type column,

Viewing the counts of values present in the agency column,

Visualizing the name of the state having higher so2 levels in the air,

From the above visualization we can see that the state of Uttaranchal has highest so2 level fol lowed by Uttarakhand.

Similarly, for no2 level we get West Bengal has the highest no2 level,

Delhi has higher rspm levels than other states,

Delhi has higher spm level compared to other states,

Delhi has higher pm2_5 level compared to other states,

Checking all null values and treating those null values

As you can see below these are the percentages of null values present in the dataset,

	Total	Percent
pm2_5	426428	97.862497
spm	237387	54.478797
agency	149481	34.304933
stn_code	144077	33.064749
rspm	40222	9.230692
so2	34646	7.951035
location_monitoring_station	27491	6.309009
no2	16233	3.725370
type	5393	1.237659
date	7	0.001606
sampling_date	3	0.000688
location	3	0.000688
state	0	0.000000

Next step,

df['location']=df['location'].fillna(df['location'].mode()[0])
df['type']=df['type'].fillna(df['type'].mode()[0])
Null value Imputation for categorical data
df.fillna(0, inplace=True)
null values are replaced with zeros for the numerical data

After imputation the dataset is as follows,

	state	location	type	so2	no2	rspm	spm	pm2_5
0	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	4.8	17.4	0.0	0.0	0.0
1	Andhra Pradesh	Hyderabad	Industrial Area	3.1	7.0	0.0	0.0	0.0
2	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.2	28.5	0.0	0.0	0.0
3	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.3	14.7	0.0	0.0	0.0
4	Andhra Pradesh	Hyderabad	Industrial Area	4.7	7.5	0.0	0.0	0.0
221	1992	2020	100		122	7777	222	
435737	West Bengal	ULUBERIA	RIRUO	22.0	50.0	143.0	0.0	0.0
435738	West Bengal	ULUBERIA	RIRUO	20.0	46.0	171.0	0.0	0.0
435739	andaman-and-nicobar-islands	Guwahati	Residential, Rural and other Areas	0.0	0.0	0.0	0.0	0.0
435740	Lakshadweep	Guwahati	Residential, Rural and other Areas	0.0	0.0	0.0	0.0	0.0
435741	Tripura	Guwahati	Residential, Rural and other Areas	0.0	0.0	0.0	0.0	0.0

CALCULATE AIR QUALITY INDEX FOR SO2 BASED ON FORMULA

The air quality index is a piecewise linear function of the pollutant concentration. At the boun dary between AQI categories, there is a discontinuous jump of one AQI unit. To convert from concentration to AQI this equation is used,

```
def cal S0i(so2):
    si=0
             if (so2<=40):
                     elif (so2>40
si = so2*(50/40)
                    si= 50+(so2-
and so2<=80):
40)*(50/40)
                 elif (so2>80 and
so2<=380):
                 si = 100 + (so2 -
80)*(100/300)
                   elif (so2>380
and so2<=800):
                     si=
200+(so2-380)*(100/420)
                             elif
(so2>800 \text{ and } so2<=1600):
si= 300+(so2-800)*(100/800)
elif (so2>1600):
400+(so2-1600)*(100/800)
return si
df['S0i']=df['so2'].apply(cal S0i)
data= df[['so2','S0i']]
data.head()
# calculating the individual pollutant index for so2(sulphur dioxide)
```

so2	SOi
4.8	6.000
3.1	3.875
6.2	7.750
6.3	7.875
4.7	5.875
	4.8 3.1 6.2 6.3


```
Function to calculate no2 individual pollutant index(ni) def
cal Noi(no2):
    ni=0
             if(no2<=40):
ni= no2*50/40
                  elif(no2>40
and no2<=80):
                   ni= 50+(no2-
40)*(50/40)
                elif(no2>80 and
                ni= 100+(no2-
no2<=180):
                  elif(no2>180
80)*(100/100)
                    ni=
and no2 < =280):
200+(no2-180)*(100/100)
elif(no2>280 and no2<=400):
ni= 300+(no2-280)*(100/120)
else:
           ni= 400+(no2-
400)*(100/120)
                   return ni
df['Noi']=df['no2'].apply(cal_Noi)
data= df[['no2','Noi']]
data.head()
# calculating the individual pollutant index for no2(nitrogen dioxide)
```

	no2	Noi
0	17.4	21.750
1	7.0	8.750
2	28.5	35.625
3	14.7	18.375
4	7.5	9.375

Function to calculate rspm individual pollutant index(rpi) def cal_RSPMI(rspm):

```
rpi=0
                    if(rpi<=30):
rpi=rpi*50/30
                 elif(rpi>30 and
rpi<=60):
                    rpi=50+(rpi-
30)*50/30
                 elif(rpi>60 and
rpi<=90):
                   rpi=100+(rpi-
60)*100/30
                 elif(rpi>90 and
rpi<=120):
                   rpi=200+(rpi-
90)*100/30
                elif(rpi>120 and
                   rpi=300+(rpi-
rpi<=250):
120)*(100/130)
                           else:
```



```
rpi=400+(rpi-250)*(100/130)
return rpi
df['Rpi']=df['rspm'].apply(cal_RSPMI)
data= df[['rspm','Rpi']] data.head()
# calculating the individual pollutant index for rspm(respirable suspended particualte matter concentration)
```

	rspm	Rpi
0	0.0	0.0
1	0.0	0.0
2	0.0	0.0
3	0.0	0.0
4	0.0	0.0

```
Function to calculate spm individual pollutant index(spi) def
cal_SPMi(spm):
    spi=0
              if(spm<=50):
                  elif(spm>50
spi=spm*50/50
and spm<=100):
                    spi=50+(spm-
50)*(50/50)
                elif(spm>100 and
spm<=250):
                spi= 100+(spm-
100)*(100/150)
                   elif(spm>250
and spm<=350):
spi=200+(spm-250)*(100/100)
elif(spm>350 and spm<=430):
spi=300+(spm-350)*(100/80)
else:
           spi=400+(spm-
                   return spi
430)*(100/430)
df['SPMi']=df['spm'].apply(cal_SPMi)
data= df[['spm','SPMi']]
data.head()
# calculating the individual pollutant index for spm(suspended particulate
matter)
```

	spm	SPMi
0	0.0	0.0
1	0.0	0.0
2	0.0	0.0
3	0.0	0.0
4	0.0	0.0


```
function to calculate the air quality index (AQI) of every data value def
cal_aqi(si,ni,rspmi,spmi):
              if(si>ni and si>rspmi and
    aqi=0
si>spmi):
     aqi=si
                if(ni>si and ni>rspmi
and ni>spmi):
                if(rspmi>si and rspmi>ni and
     aqi=ni
rspmi>spmi):
                   if(spmi>si and spmi>ni
     aqi=rspmi
and spmi>rspmi):
     aqi=spmi
return aqi
df['AQI']=df.apply(lambda x:cal_aqi(x['SOi'],x['Noi'],x['Rpi'],x['SPMi']),
axis=1)
data= df[['state','SOi','Noi','Rpi','SPMi','AQI']] data.head()
# Caluclating the Air Quality Index.
```

	state	SOi	Noi	Rpi	SPMi	AQI
0	Andhra Pradesh	6.000	21.750	0.0	0.0	21.750
1	Andhra Pradesh	3.875	8.750	0.0	0.0	8.750
2	Andhra Pradesh	7.750	35.625	0.0	0.0	35.625
3	Andhra Pradesh	7.875	18.375	0.0	0.0	18.375
4	Andhra Pradesh	5.875	9.375	0.0	0.0	9.375

Now Using threshold values to classify a particular values as good, moderate, poor, unhealthy, very unhealthy and Hazardous.

```
def AQI_Range(x):
                       if
x<=50:
                return
"Good"
           elif x>50 and
x<=100:
                 return
"Moderate"
                elif x>100
and x < = 200:
        return "Poor"
elif x>200 and x<=300:
return "Unhealthy"
elif x>300 and x<=400:
        return "Very unhealthy"
elif x>400:
```

return "Hazardous"

	state	location	type	so2	no2	rspm	spm	pm2_5	SOi	Noi	Rpi	SPMi	AQI	AQI_Range
0	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	4.8	17.4	0.0	0.0	0.0	6.000	21.750	0.0	0.0	21.750	Good
1	Andhra Pradesh	Hyderabad	Industrial Area	3.1	7.0	0.0	0.0	0.0	3.875	8.750	0.0	0.0	8.750	Good
2	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.2	28.5	0.0	0.0	0.0	7.750	35.625	0.0	0.0	35.625	Good
3	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.3	14.7	0.0	0.0	0.0	7.875	18.375	0.0	0.0	18.375	Good
4	Andhra Pradesh	Hyderabad	Industrial Area	4.7	7.5	0.0	0.0	0.0	5.875	9.375	0.0	0.0	9.375	Good

Split data into independent and dependent values

Where X is independent value and Y is dependent value.

Finding Optimum Algorithm

We try algorithms such as,

- Decision Tree Classifier
- Random Forest Classifier
- Random Forest Regressor
- Decision Tree Regressor

From above algorithms we get Random Forest Regressor as the one with highest accuracy

- RSquared value on train: 0.9999860110739481
- RSquared value on test: 0.9998918038557246

Code:

X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_st
ate=70)
print(X_train.shape,X_test.shape,Y_train.shape,Y_test.shape) #
splitting the data into training and testing data

RF=RandomForestRegressor().fit(X_train,Y_train)
#predicting train
train_preds1=RF.predict(X_train)
#predicting on test
test preds1=RF.predict(X test)


```
RMSE_train=(np.sqrt(metrics.mean_squared_error(Y_train,train_preds1))
) RMSE_test=(np.sqrt(metrics.mean_squared_error(Y_test,test_preds1)))
print("RMSE TrainingData = ",str(RMSE_train)) print("RMSE TestData =
",str(RMSE_test)) print('-'*50)
print('RSquared value on train:',RF.score(X_train, Y_train))
print('RSquared value on test:',RF.score(X_test, Y_test))
```