Exercise 1:

- (a) Which of the following statement(s) apply to feature effect methods?
 - (i) The value of the PDP at a point x_j , corresponds to the point-wise average of the values of the ICE curves at this point.
 - (ii) The PDP of a feature provides information about possible interaction effects of the feature.
 - (iii) ICE curves of a feature for multiple data points provide information about possible interaction effects of the feature with others.
 - (iv) If we center the ICE/PDPs for categorical features, the expected changes always refer to a selected reference category.
 - (v) ALE plots are based on conditional distributions, PDPs on marginal distributions.
 - (vi) If features are uncorrelated, ALE plots are equal to PDPs.
 - (vii) ALE plots are faster to compute than PDPs.
- (b) You fitted a model that should predict the value of a property depending on the number of rooms and square meters. You want to compute feature effects using the following methods: PDP, M-plots and ALE plots. Which of the following strategies reflect which method? The feature effect for a 30 m² corresponds to...
 - a) ... what the model predicts on average for flats that also have around 30 m², e.g., 28 m² to 32 m².
 - b) ... how the model predictions changes on average when flats with 28 m² to 32 m² have 32 m² vs. 28 m².
 - c) ... what the model predicts on average if all properties in the dataset have 30 m².

Exercise 2:

In exercise 2 on sheet 1 you received a dataset with 11 observations and two features:

	1	2	3	4	5	6	7	8	9	10	11	$\sum_{i=1}^{n}$
У	-7.90	-6.08	-3.74	-1.18	-1.23	-0.55	0.05	0.88	4.74	2.93	2.55	-9.53
x1	-1.00	-0.80	-0.60	-0.40	-0.20	0.00	0.20	0.40	0.60	0.80	1.00	0
x2	0.95	0.65	0.40	0.07	0.06	0.02	0.02	0.14	0.34	0.60	0.98	4.23

The last column corresponds to the sum of values of each row.

Instead of 11 data points you now received a dataset with 1000 data points from the same data generating process as above. You fitted a linear model to the data $\hat{f}(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_1 + \hat{\beta}_2 \mathbf{x}_2 + \hat{\beta}_3 \mathbf{x}_1 \mathbf{x}_2$ The following plots show the PDP (first row) and ALE (second row) for x_1 and x_2 .

- (a) Interprete the plots with respect to the feature effect of x_1 and x_2 .
- (b) Would you rather trust the PDP or ALE plot? Give reasons for your decision.

PDP

ALE

