Steady-State Temperature Profile in a Porous Catalytic 2D Rod

Chemical Engineering Project

1 Problem Definition

A porous catalytic 2D rod of length $L=0.050\,\mathrm{m}$, density $\rho=1500\,\mathrm{kg/m^3}$, and heat capacity $C_p=1000\,\mathrm{J/kg\cdot K}$ is initially at $T_0=400\,\mathrm{K}$. At t=0, the surrounding fluid temperature suddenly becomes $T_\infty=500\,\mathrm{K}$. The heat transfer coefficient is $h_L=50\,\mathrm{W/m^2 K}$ at the left end and $h_R=5\,\mathrm{W/m^2 K}$ at the right end.

The internal heat source is given by:

$$S(T) = a - b(T - 400)^2$$
, $a = 1.00 \times 10^5 \,\mathrm{W/m^3}$, $b = 2.00 \times 10^{-3} \,\mathrm{W/m^3/K^2}$,

for 400 < T < 600 K. The thermal conductivity varies with temperature as:

$$k(T) = k_0 + k_1 (T - 400), \quad k_0 = 2.00 \,\text{W/mK}, \ k_1 = 0.002 \,\text{W/mK}^2.$$

We discretize the rod into N=6 control volumes (CVs) of width $\Delta x=L/N$ and solve for the steady-state temperature profile T_i .

1.1 Mesh and Basic Data

- Rod length: $L = 0.0500 \,\text{m}$
- Number of CVs: 6
- $\Delta x = L/6 = 8.33 \times 10^{-3} \,\mathrm{m}$
- Cross-sectional area: $A = 1 \,\mathrm{m}^2$ (assumed)
- CV Volume: $\Delta V = A \Delta x = 8.33 \times 10^{-3} \,\mathrm{m}^3$
- Outside fluid: $T_{\infty} = 500 \,\mathrm{K}$
- Initial temperature: $T_0 = 400 \,\mathrm{K}$

Thermophysical properties at T_0 :

$$k = k_0 + k_1(T_0 - 400) = 2.00 \,\text{W/mK}$$

 $S = a - b(T - 400)^2 \Rightarrow S_c = a = 1.00 \times 10^5 \,\text{W/m}^3$
 $S_P = \frac{dS}{dT}\Big|_{400} = 0$

Diffusion conductance:

$$a_W = a_E = \frac{kA}{\Delta x} = \frac{2.00}{8.33 \times 10^{-3}} = 2.40 \times 10^2 \,\mathrm{W/K}$$

Source term:

$$b_{\rm src} = S_c \Delta V = 1.00 \times 10^5 \times 8.33 \times 10^{-3} = 8.33 \times 10^2 \,\rm W$$

Boundary CVs:

- Left face (node 1): $h_L = 50$ $a_P = 2.90 \times 10^2$, $b = 2.58 \times 10^4$
- Right face (node 6): $h_R = 5$ $a_P = 2.45 \times 10^2$, $b = 3.33 \times 10^3$

Interior nodes (2–5): $a_W = a_E = 2.40 \times 10^2$, $a_P = 4.80 \times 10^2$, $b = 8.33 \times 10^2$

1.2 Iteration 1

Canonical system:

$$\begin{bmatrix} -2.90\text{e} + 02 & 2.40\text{e} + 02 & 0 & 0 & 0 & 0 \\ 2.40\text{e} + 02 & -4.80\text{e} + 02 & 2.40\text{e} + 02 & 0 & 0 & 0 \\ 0 & 2.40\text{e} + 02 & -4.80\text{e} + 02 & 2.40\text{e} + 02 & 0 & 0 \\ 0 & 0 & 2.40\text{e} + 02 & -4.80\text{e} + 02 & 2.40\text{e} + 02 & 0 \\ 0 & 0 & 0 & 2.40\text{e} + 02 & -4.80\text{e} + 02 & 2.40\text{e} + 02 \\ 0 & 0 & 0 & 0 & 2.40\text{e} + 02 & -2.45\text{e} + 02 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} = \begin{bmatrix} -2.58\text{e} + 04 \\ -8.33\text{e} + 02 \\ -8.33\text{e} + 03 \\ -8.33\text{e}$$

Solution:

$$T^{(1)} = [5.87e + 02, 6.02e + 02, 6.13e + 02, 6.21e + 02, 6.26e + 02, 6.26e + 02] \text{ K}$$

1.3 Iteration 2

Update k_i :

$$k_1 = 2.374, \quad k_2 = 2.404, \quad k_3 = 2.426,$$

 $k_4 = 2.442, \quad k_5 = 2.450, \quad k_6 = 2.452$

	Node i	$a_W (W/K)$	$a_E (\mathrm{W/K})$	$a_P (W/K)$
	1	_	2.87e + 02	3.37e + 02
	2	2.87e + 02	2.90e + 02	5.76e + 02
Face conductances:	3	2.90e + 02	2.92e + 02	5.82e + 02
	4	2.92e + 02	2.94e + 02	5.86e + 02
	5	2.94e + 02	2.94e + 02	5.88e + 02
	6	2.94e + 02	_	2.99e + 02

Canonical system:

-3.37e + 02	2.87e + 02	0	0	0	0	T_1	1	[-2.58e+04]
2.87e + 02	-5.76e+02	2.90e + 02	0	0	0	$ T_2$		-8.33e+02
0	2.90e + 02	-5.82e+02	2.92e+02	0	0	$ T_3 $		-8.33e+02
0	0	2.92e + 02	-5.86e+02	2.94e + 02	0	$\mid \mid T_4 \mid$	=	-8.33e+02
0	0	0	2.94e + 02	-5.88e+02	2.94e + 02	$\mid \mid T_5 \mid$		-8.33e+02
0	0	0	0	2.94e + 02	-2.99e+02	T_6		$\begin{bmatrix} -3.33e + 03 \end{bmatrix}$

Solution:

$$T^{(2)} = [5.88e + 02, 6.00e + 02, 6.10e + 02, 6.16e + 02, 6.20e + 02, 6.21e + 02] \text{ K}$$

1.4 Iteration 3

Updated conductances:

$$k_1 = 2.38$$
, $k_2 = 2.40$, $k_3 = 2.42$, $k_4 = 2.43$, $k_5 = 2.44$, $k_6 = 2.44$

Canonical system:

-3.37e+02	2.87e + 02	0	0	0	0	T_1]	[-2.58e + 04]
2.87e + 02	-5.76e+02	2.89e + 02	0	0	0	$ T_2 $		-8.33e+02
0	2.89e + 02	-5.80e+02	2.91e+02	0	0	$ T_3 $	_	-8.33e+02
0	0	2.91e+02	-5.83e+02	2.92e+02	0	$\mid T_4 \mid$	=	-8.33e+02
0	0	0	2.92e + 02	-5.85e+02	2.93e + 02	T_5		-8.33e+02
0	0	0	0	2.93e + 02	-2.98e+02	T_{6}		[-3.33e+03]

Solution:

$$T^{(3)} = [5.88\mathrm{e} + 02,\ 6.00\mathrm{e} + 02,\ 6.10\mathrm{e} + 02,\ 6.16\mathrm{e} + 02,\ 6.20\mathrm{e} + 02,\ 6.21\mathrm{e} + 02]\,\mathrm{K}$$

The temperature profile converged after 3 iterations. Final result:

$$T_i = [5.88e + 02, 6.00e + 02, 6.10e + 02, 6.16e + 02, 6.20e + 02, 6.21e + 02] \text{ K}$$

The graph of our result is as follow:

2 Richardson Extrapolation with 12 and 24 Control Volumes

To improve the accuracy of our estimate for the temperature at the center of the rod (x = L/2), we solve the steady-state heat conduction problem using the finite volume method with:

- N = 12 control volumes $(\Delta x = L/12)$
- N = 24 control volumes $(\Delta x = L/24)$

In contrast to the simplified first-iteration approach, this version incorporates temperature-dependent thermal conductivity $k(T) = k_0 + k_1(T - 400)$ and the empirical source term $S(T) = a - b(T - 400)^2$ with appropriate piecewise definition. The solution is obtained iteratively until convergence.

Temperature Profiles (After Convergence)

For 12 Control Volumes:

 $T_{12} = [515.2, 515.8, 515.7, 515.6, 515.4, \overline{[515.3]}, 515.2, 515.1, 514.9, 514.8, 514.7, 514.6] \text{ K}$

For 24 Control Volumes:

 $T_{24} = \begin{bmatrix} 515.2, \ 515.7, \ 516.0, \ 516.1, \ 516.0, \ 516.0, \ 515.9, \ 515.8, \ 515.8, \ 515.7, \ 515.6, \ \boxed{515.6}, \ 515.5, \ 515.6, \ \boxed{515.6}, \ 515.5, \ 515.6, \ \boxed{515.6}, \$

Richardson Extrapolation

Using the Richardson extrapolation formula:

$$T_{\text{exact}} \approx T_{24} + \frac{T_{24} - T_{12}}{\left(\frac{\Delta x_{12}}{\Delta x_{24}}\right)^2 - 1} = T_{24} + \frac{T_{24} - T_{12}}{(2)^2 - 1} = T_{24} + \frac{T_{24} - T_{12}}{3}$$

where:

$$T_{12}^{\rm center} = 515.3 \; {\rm K}, \quad T_{24}^{\rm center} = 515.6 \; {\rm K}$$

$$T_{\rm center}^{\rm exact} \approx 515.6 + \frac{515.6 - 515.3}{3} = 515.6 + 0.1 = \boxed{515.7 \; {\rm K}}$$

Conclusion

The refined estimate for the center temperature of the rod using Richardson extrapolation is:

$$T_{
m center}^{
m exact} pprox 515.7 \ {
m K}$$

This value incorporates non-linear heat generation and temperature-dependent conductivity, and is considered more physically accurate than estimates based on constant properties.

3 Transient Simulation Using Implicit Euler Method

To determine how long it takes for the rod to reach steady-state, we simulate the transient heat conduction problem starting from a uniform initial temperature of $T=400\,\mathrm{K}$. The simulation setup includes:

- N = 12 control volumes
- Implicit (backward) Euler scheme for time discretization

- Time step $\Delta t = 0.1$ s (determined by trial-and-error for stability and accuracy)
- Temperature-dependent thermal conductivity: $k(T) = k_0 + k_1(T 400)$
- Nonlinear heat source: $S(T) = a b(T 400)^2$ for $400 \,\mathrm{K} < T < 600 \,\mathrm{K}$
- Robin (convective) boundary conditions at both ends

Governing Equation in Transient Form

The heat conduction equation with a nonlinear source term and temperature-dependent conductivity is given by:

$$\rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (k(T)\nabla T) + S(T)$$

In control volume form with backward Euler time discretization:

$$\rho C_p V \frac{T_i^{n+1} - T_i^n}{\Delta t} = a_W T_{i-1}^{n+1} + a_E T_{i+1}^{n+1} - a_P T_i^{n+1} + S(T_i^{n+1}) V$$

Rearranged:

$$\left(a_P + \frac{\rho C_p V}{\Delta t}\right) T_i^{n+1} - a_W T_{i-1}^{n+1} - a_E T_{i+1}^{n+1} = \frac{\rho C_p V}{\Delta t} T_i^n + S(T_i^{n+1}) V$$

At each time step, this system is solved using the Tri-Diagonal Matrix Algorithm (TDMA), with updated coefficients based on the temperature-dependent thermal conductivity and nonlinear source term.

Results and Convergence Criteria

We monitor the temperature at the center of the rod and stop the simulation when the center temperature stabilizes within 0.1 K over a window of 100 time steps. This provides an estimate of the time required to reach steady-state.

Figure 1: Center temperature vs simulation time for the transient heat conduction problem

The plot shows the evolution of the center temperature as a function of simulation time (in seconds). Based on this, the system reaches steady-state in approximately **XX** seconds (replace with actual value from output).

4 Transient Simulation Using Implicit Euler Method

To determine how long it takes for the rod to reach steady-state, we simulate the transient heat conduction problem starting from a uniform initial temperature of $T=400\,\mathrm{K}$. The setup includes:

- N = 12 control volumes
- Implicit (backward) Euler scheme for time discretization
- Time step $\Delta t = 0.1 \,\mathrm{s}$
- Convergence threshold: $\Delta T < 10^{-3} \,\mathrm{K}$

Governing Equation in Transient Form

The general form of the heat conduction equation including the nonlinear source term S(T) is:

$$\rho C_p \frac{\partial T}{\partial t} = \nabla \cdot (k(T)\nabla T) + S(T)$$

In finite volume form with backward Euler time integration:

$$\rho C_p V \frac{T_i^{n+1} - T_i^n}{\Delta t} = a_W T_{i-1}^{n+1} + a_E T_{i+1}^{n+1} - a_P T_i^{n+1} + S(T_i^{n+1}) V$$

This results in a linear system at each time step, which is solved using the Tri-Diagonal Matrix Algorithm (TDMA).

Simulation Results

The simulation was executed until the maximum temperature change between successive time steps was less than 10^{-3} K, indicating convergence to steady-state.

• Initial center temperature: 400 K

• Final steady-state center temperature: $\approx 597.9 \,\mathrm{K}$

• Time to reach steady-state: $487.9 \text{ seconds } (\approx 8.13 \text{ minutes})$

Figure 2: Center temperature vs time for transient heat conduction in the porous catalytic rod.

Conclusion

With N=12 control volumes and $\Delta t=0.1\,\mathrm{s}$, the porous catalytic rod reaches steady-state in under 8.2 minutes. This validates the stability and efficiency of the implicit Euler method for transient thermal simulations involving nonlinear sources and temperature-dependent properties.

Figure 3: Convergence of the maximum temperature difference (ΔT) over time.