Ex 48 p 114

$$f(x) = 4x^2 - 2x + 5$$

donc, $f'(x) = 8x - 2$

On résout f'(x) = 0. Cela donne : f'(x) = 8x - 2 = 0 d'où : $8x = 2 \iff x = \frac{1}{4}$.

f'(0) = -2 donc négatif avant $\frac{1}{4}$ et, comme c'est une fonction affine, positif après.

On obtient le tableau de signes et de variations suivant :

x	$-\infty$	$\frac{1}{4}$		$+\infty$
f'(x) = 8x - 2	_		+	
f	$ + f(\frac{1}{2}$	$\frac{1}{7}$ $(\frac{1}{4}) = 4.75$		*

$$f(x) = 4x^2 - 2x + 5 \operatorname{donc} f\left(\frac{1}{4}\right) = 4\left(\frac{1}{4}\right)^2 - 2\frac{1}{4} + 5 = 4,75$$