Rubyによるデータ解析 Data Analysis in Ruby

2016年2月19日

株式会社ネットワーク応用通信研究所 前田 修吾

自己紹介

- 名前
 - 前田 修吾
- 所属
 - ・株式会社ネットワーク応用通信研究所(1999年~)
 - 一般財団法人Rubyアソシエーション(2007年~)
- オープンソース活動
 - Ruby開発者(1997年~)

本日のテーマ

■ Rubyによるデータ解析

データ解析の例

株式市場のブラウン運動

- M. F. M. Osborne, Brownian Motion in the Stock Market, Operations Research, 1959
- ■『ウォール街の物理学者』という書籍で紹介
- 株価の対数とブラウン運動における微粒子の座標との類似性
- 統計力学的手法を株価に適用

ブラウン運動

■ 液体のような溶媒中に浮遊する微粒子が不規則に運動する現象

https://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif CC-BY-SA 3.0 by Lookang

1. 株価の変化

- 株価の変化は離散的(1/8ドル単位)
- 株価の対数も同じ

2. 取引数

- 単位時間あたりに有限の取引(あるいは決定)が行われる
 - 一つの株に対して0~1000あるいはそれ以上

3. Weber-Fechnerの法則

- 精神物理学の基本法則
- 感覚量Eは刺激量の強度Rの対数に比例する
 - $E = C \log R$
 - ・強度100の刺激が200に増加した場合の感覚量と、 強度200の刺激が400に増加した場合の感覚量は同じ
- 株価という刺激とそれに対するトレーダー・投資家の主観的感覚はこの法則に従うと仮定する

統計学的アプローチ

- 金融の知識のない統計学者がNY市場の取引データを分析したら?
 - 集団が均質かどうか
 - 各属性・変数の関連性

株価の分布

- 株価の終値を主要な変数と推測
- 1000要素のサンプルの分布をプロット

Fig 1 Distribution function of closing prices for July 31, 1956 (all items, NYSE)

- 株価は正規分布に従わない
- 株価の対数は正規分布に従うかもしれない

正規分布

- 以下の確率密度関数を持つ
 - $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
- 確率密度関数
 - ・xの範囲の面積 = 確率
- サンプルサイズを大きくすると標本平均が真の平均に近づく (大数の法則)

平均•分散•標準偏差

■ 平均

•
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

■ 分散

・平均からのばらつきの指標(正の値にするため自乗誤差を使う)

•
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

■ 標準偏差

• 分散の平方根 $(x_i, \psi_\mu$ の値と比較しやすくするため平方根を取る)

•
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

株価の対数の分布

- 正規分布ではない
- log_eP ≈ 45周辺の副極大
 - この集団は均質でない
 - ・少なくとも二つの下位集団
- 生データの確認
 - $\log_e P \approx 45$ 周辺のデータに pfd (preferred) 属性

Fig 2 Distribution function for log_eP on July 31, 1956 (all items NYSE)

対数収益率を使う根拠

- 価格の変化と利益・損失に対する主観的感覚を表す
- \$10から\$11の価格変化と、\$100から\$110の価格変化に対する主 観的感覚は同じ
- $lacksymbol{\blacksquare}$ なぜ収益率 $rac{P(t+ au)-P(t)}{P(t)}$ ではなく対数収益率 $\log_e rac{P(t+ au)}{P(t)}$ を使うか
- 対数収益率を使うことで、上昇率と下降率の対称性が得られる
 - 価格が $\frac{1}{2}$ 下降した後に $\frac{1}{2}$ 上昇しても元の価格に戻らない
 - $\log_e \frac{1}{2} = -\log_e 2$

4. 論理的決定

■ 収益の期待値

- Aという一連の行動が Y_{A1} , Y_{A2} という収益を確率 $\varphi(Y_{A1})$, $\varphi(Y_{A2})$ で生む
- Bという一連の行動についても同様に考える
- ・ 収益の期待値 $\varepsilon(Y_A) = \sum_i Y_{Ai} \varphi(Y_{Ai})$

■ 収益の期待値が高い行動を選択

- $\varepsilon(Y_A)$ と $\varepsilon(Y_B)$ のどちらが大きいか?
- 価格P₀(t)の株を100株買うかどうか?
 - $A = 将来 t + \tau$ に株を売るために買う
 - B = 買わない
 - $Y_A(\tau) = \Delta \log_e[100 P(t)] = \log_e[P(t+\tau)/P_0(t)]$
 - $Y_R = 0$
 - $Y_A(au)$ の期待値の見積が正か負かによって論理決定を行う

5. 市場の平等性

- Δlog_e P を買い手は正、売り手は負と判断する
 - $E\varepsilon(\Delta \log_e P)_S + E\varepsilon(\Delta \log_e P)_B = 0$
 - ここで P は1株当たりの価格、Eε は期待値の見積である
- 市場全体では以下の式のような状況
 - $E\varepsilon(\Delta \log_e P)_{M=S+B} = 0$
 - 上記の式では見積を表す E はなくてもよいかもしれない

6. 株価の収益率の分布

- 以下の Y(τ) は、平均 0、標準偏差 σ_{Y(τ)}の正規分布に従うと予測 される
 - $Y(\tau) = \log_e[P(t+\tau)/P_0(t)]$
- lacksquare $\sigma_{Y(au)}$ は取引数の平方根に比例する
- 取引数が時間上均一に分布すると考えると
 - $\sigma_{Y(\tau)}$ は時間間隔の平方根に比例する
 - すなわち、 $\sigma_{Y(\tau)}$ は $\sigma\sqrt{\tau}$ という形式となる

7. 数学的表現

- k 個のランダムな独立変数 $y(i) = i, \dots, k$ を仮定する
 - $y(i) = \Delta_{i\delta} \log_e P = \log_e [P(t+i\delta)/P(t+\{i-1\}\delta)]$
 - ここで、P(t) はある銘柄の時間 t における価格、 δ は取引間の小さな時間間隔である
 - y(i) は同じ標準偏差 $\sigma(i) = \sigma'$ を持つと仮定する
- k 回の取引、 $\tau = k\delta$ 時間後の $Y(\tau)$ を以下のように定義する
 - $Y(\tau) = Y(k\delta) = \sum_{i=1}^{i=k} y(i) = \log_e[P(t+\tau)/P(t)] = \Delta_{\tau}\log_e P(t)$
- Yの標準偏差

•
$$\sigma_{Y(\tau)} = \sqrt{\varepsilon(Y^2) - [\varepsilon(Y)]^2} = \sqrt{\sum_{i=1}^{i=k} \sigma^2(i)} = \sqrt{k}\sigma' = \sqrt{\tau/\delta}\sigma'$$

■ 中心極限定理により、y(i) の分布によらず k が大きくなると $Y(\tau)$ は正規分布に近づく

観測データとの比較

- 論文のデータについては省略
- 後でRubyでやってみる

収益率の分布の非正規性

- Benoit Mandelbrot, *The Variation of Certain Speculative Prices*, Jounal of Business, 1963
- Benoit Mandelbrot, *The Variation of Other Speculative Prices*, Jounal of Business, 1967
- 収益率の分布は、安定分布だが正規分布ではない
- 安定分布は α というパラメータで分布の裾の広さが決まる
 - 小さいほど裾が広い(正規分布は $\alpha = 2$)
 - $\alpha \leq 1$ の場合、大数の法則に従わない
 - α < 2 の場合、中心極限定理は成り立たない
- Mandelbrotは収益率は $1 < \alpha < 2$ の安定分布に従うと考えた

安定分布のPDFとCDF

左: 安定分布の確率密度関数

https://commons.wikimedia.org/wiki/File:Levy_distributionPDF.png public domain by PAR

右: 安定分布の累積分布関数

https://commons.wikimedia.org/wiki/File:Levy_distributionCDF.png CC-BY-SA 3.0 by PAR

Rubyによるデータ解析 の現状

Why Ruby?

- Pythonと同じ理由(『Pythonによるデータ分析入門』)
 - •「糊(グルー)」としてのRuby
 - C/C++/FORTRANなどで書かれたコードをつなぎ合わせる
 - 「2つの言語を利用する」ことの問題を解決する
 - アプリケーション開発とデータ解析で同じ言語を使う

ライブラリ・ツール群

分類	Python	Ruby
ベクトル・行列	NumPy	NArray, NMatrix
データフレーム	pandas	daru
可視化	matplotlib	Nyaplot
対話環境	Jupyter/IPython	Jupyter/IRuby
科学計算全般	SciPy	SciRuby

NArray

- 多次元配列ライブラリ
- 連続したメモリ領域に要素を配置し、次元毎の要素数を固定することでインデックスアクセスを行う
 - 4×3の多次元配列aのとき、a[i, j] は i + 4 * j 番目

```
a[0, 0] a[1, 0] a[2, 0] a[3, 0] a[0, 1] a[1, 1] a[2, 1] .....
```

- 次元順序は次期開発版で変更?
- 多次元配列同士の演算、多次元配列とスカラー値の演算が高速
- 最新リリースは2013年2月27日
 - 別リポジトリで次期開発版が開発中

NMatrix

- SciRubyプロジェクトの行列計算ライブラリ
- NArrayより後発の競合ライブラリ
 - 同時に使えないという意味でも競合...
 - ドキュメントには require "nmatrix/nmatrix" で回避せ よとあるが、その後で require "narray" しているライブラリ があるとエラー...

daru

- Data Analysis in RUby
- Daru::Vector
 - 一次元ベクトルを表すデータ構造
- Daru::DataFrame
 - スプレッドシートライクな二次元の表を表すデータ構造

Daru::Vector

■ 1次元ベクトル

```
v1 = Daru::Vector.new([40, 20, 30])
v2 = Daru::Vector.new([10, 60, 30])
v1 + v2 #=> Vector[50, 80, 60]
v1 * 10 #=> Vector[400, 200, 300]
v1.mean #=> 30.0
```


Daru::DataFrame

■ 2次元のスプレッドシート風データ構造

```
df = Daru::DataFrame.new(x: [1,2,3], y: [4,5,6])
```

- 各列がDaru::Vectorによって表現される
- 列単位の処理は速いが、行単位の処理は遅い
 - とくに遅い例

```
df.filter_rows {|row| row[:x] > 1}
```

• 高速化例

```
df.where(df[:x].gt(1))
```


Nyaplot

- プロットライブラリ
- Jupyter notebook上で動作
- WebGLを利用した3Dプロットも可能
- 散布図のプロット例

```
plot = Nyaplot::Plot.new
sc = plot.add(:scatter, [0,1,2,3,4], [-1,2,-3,4,-5])
plot.show
```


Jupyter/IRuby

Jupyter

- Webアプリケーションによる対話環境
- Mathematica風のノートブック
 - プログラムの対話的実行
 - グラフの描画
- ・プログラミング言語非依存
 - 各言語の実行環境をカーネルとして提供
 - プロセス間通信

IRuby

Jupyter用のRubyカーネル

SciRuby

- Ruby用の科学計算ライブラリの開発プロジェクト
- NMatrix, daru, IRuby, NyaplotもSciRubyの一部
- Statsample
 - 統計用ライブラリ
- Distribution
 - 確率分布用ライブラリ

デモ

- 株価データの解析
 - https://github.com/shugo/DCW2016/blob/master/Stock.ipynb
- PSDSから取得したデータの解析
 - https://github.com/shugo/DCW2016/blob/master/PSDS.ipynb

今後の課題

利用促進

■ 現状は利用者が少ない

- RubyKaigiでデータ解析分野の発表は0
- nmatrixとstatsampleを同時にrequireすると最新のRubyではエラーになる

■ 今後の方策

- ドキュメントの充実
- ・ 利用事例の発信

機能追加•機能改善

- Python/R等に比べ機能的に見劣りする
 - ・ 欠損値の扱い
 - チェックや穴埋め
 - 時系列データの扱い
 - 再サンプリング
 - 金融関係の機能
 - 経験累積分布
 - ・Q-Qプロット
 - ...

性能改善

- NMatrixは遅い
- ベンチマークプログラム

```
m = NMatrix.dindgen([100000])
a = 0.0.step(99999.0, 1.0).to_a

Benchmark.bmbm do |x|
   x.report("NMatrix") do
        m.mean
   end

x.report("Array") do
   a.sum.quo(a.size)
   end
end
```


ベンチマーク結果

多言語との差別化

- DSLの活用
 - ・ブロックの効果的利用
- Rubyの動的性質の活用
 - スキーマレスなデータとの親和性

DSLの活用提案

- Daru::DataFrame#where
 - ・ 現在の記法

```
df.where(df[:x].gt(1))
df.where(df[:x].gt(1) & df[:y].lteg(10))
```

• 拡張案

```
df.where { :x > 1 }
df.where { (:x > 1) & (:y <= 10) }</pre>
```


Rubyの言語拡張案

- ブロック内でのみRefinementsを有効にする
 - https://github.com/shugo/ruby/tree/eval_using

```
module FixnumDivExt
  refine Fixnum do
    def /(other)
      quo(other)
    end
  end
end

p 1 / 2
instance_eval(using: FixnumDivExt) do
    p 1 / 2
end
p 1 / 2
```


デモ

- Daru::DataFrame#whereの拡張
 - https://github.com/shugo/DCW2016/blob/master/DaruRefinements.ipynb

References

- ジェイムズ・オーウェン・ウェザーオール, ウォール街の物理学者, 早川書房, 2015
- M. F. M. Osborne, Brownian Motion in the Stock Market, Operations Research, 1959
- Benoit Mandelbrot, The Variation of Certain Speculative Prices, Jounal of Business, 1963
- Benoit Mandelbrot, The Variation of Other Speculative Prices, Jounal of Business, 1967
- 平岡和幸・堀玄, プログラミングのための確率統計, オーム社, 2009
- Wes McKinnery, *Pythonによるデータ分析入門,* オライリー・ジャ パン, 2013