Профилирование и бенчмаркинг

Никита Манович Itseez, 2016

Основные определения

Профилирование - сбор характеристик работы программы, таких как время выполнения отдельных фрагментов (обычно подпрограмм), число верно предсказанных условных переходов, число кэш-промахов и т. д.

Профилировщик - это программа, которая собирает характеристики работы приложения для дальнейшего анализа.

Бенчмаркинг - это процесс измерения производительности разных частей программы и сравнение результатов с эталоном.

Зачем профилировать код?

- Лучше понимать приложение и его архитектуру
- Находить "узкие" места в программе и понимать из-за чего они "тормозят"
- Рассчитать потенциал "разгона" приложения
- Не тратить время на оптимизацию кода, который и так работает достаточно быстро
- Не усложнять код там, где это не нужно
- Экономить на "железе"

Правило 80/20 - обычно 20% кода потребляют 80% ресурсов системы

Типичные "узкие" места

- Процессор
- Подсистема ввода-вывода
- Оперативная память
- Сетевые задержки
- Разделяемые ресурсы
- Частые системные вызовы
- Внешние ресурсы
 - о Базы данных
 - o Web-сервисы

Типы профилировщиков

- Инструментация исходного кода
- Статистический сэмплинг
- Статистический граф-вызовов
- Статическая бинарная инструментация
- Подмена функций с помощью LD_PRELOAD
- Динамическая бинарная инструментация

Инструментация исходного кода

Преимущества

- Переносим и работает на всех платформах
- Легко интерпретируемые результаты
- Отображение только нужных данных

Недостатки

- Замедляет код
- Плохо расширяется
- Требует пересборки

Пример getTickCount из OpenCV

```
int64 t = getTickCount();
270
       if( alg == STEREO BM )
271
            bm->compute(img1, img2, disp);
272
       else if( alg == STEREO VAR ) {
273
           var(img1, img2, disp);
274
275
276
       else if( alg == STEREO SGBM || alg == STEREO HH )
            sqbm->compute(imq1, imq2, disp);
277
        t = getTickCount() - t:
278
        printf("Time elapsed: %fms\n", t*1000/getTickFrequency());
279
280
```

Профилировка с помощью GNU gprof

Необходимо выполнить несколько шагов:

- Скомпилировать и слинковать программу с -рд ключом
- Запустить свою программу как обычно. Файл gmon.out будет записан по завершению программы автоматически
- Запустить утилиту gprof для анализа профилировочных данных
 - \$ gprof <binary> gmon.out (плоский профиль и граф-вызовов)
 - \$ gprof <binary> gmon.out -A (аннотация исходного кода)

Пример вывода gprof для minigzip

%	cumulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
47.03	46.03	46.03	488169	0.00	0.00	deflate_slow
28.39	73.82	27.78	2514884599	0.00	0.00	<pre>0 longest_match</pre>
6.54	4 80.22	6.40	224116	0.00	0.00	_tr_stored_block
6.48	86.56	6.34	488687	0.00	0.00	fill_window
5.35	91.80	5.24	163388023	0.00	0.00	pqdownheap
3.00	94.79	2.99	244216	0.00	0.00	сгс32
1.45	96.21	1.42	731871	0.00	0.00	build_tree
0.90	97.09	0.88	19841	0.00	0.00	compress_block
0.45	97.53	0.44				crc32_combine64
0.13	97.66	0.13	487914	0.00	0.00	scan_tree
0.00	97.72	0.06	976585	0.00	0.00	deflate
0.0	97.77	0.05				deflateCopy
0.04	97.81	0.04	243957	0.00	0.00	_tr_flush_block
0.04	97.85	0.04	39682	0.00	0.00	send_tree
0.02	97.87	0.02	244213	0.00	0.00	gz_comp
0.02	2 97.89	0.02	732373	0.00	0.00	flush_pending
0.00	97.89	0.00	732373	0.00	0.00	_tr_flush_bits
0.00	97.89	0.00	732373	0.00	0.00	bi_flush
0.00	97.89	0.00	244213	0.00	0.00	gzwrite

Ограничения gprof

- Требует пересобрать приложение с -рд ключом
- Накладные расходы могут быть большими (от 30% до 260%)
- Как любой статистический подход дает приближенные результаты
- Не считает время, которое было проведено вне приложения (системные вызовы, I/O, переключение контекста)
- Не работает с разделяемыми библиотеками

Профилировка с помощью valgrind

- Не требуется никаких специальных опций компиляции
- Программа запускается под valgrind в режиме callgrind
 - \$ valgrind --tool=callgrind <binary> <options>
- Для визуализации данных можно использовать kcachegrind
- Позволяет оценить работу приложения с памятью (упрощенная модель)

Пример преобразования цветов

```
3 void bgr2gray(unsigned char const* bgr, unsigned char* gray,
      int width, int height)
 5 {
      enum { R, G, B };
      static const float cr = 0.114f;
8
      static const float cg = 0.587f;
      static const float cb = 0.299f;
10
      int n = width * height;
11
      for (int i = 0; i < n; i++, bgr += 3)
12
13
          int v = bgr[R] * cr + bgr[G] * cg + bgr[B] * cb;
14
15
          gray[i] = v > 255? 255 : v;
16
17 }
```

Пример вывода KCachegrind

Ту	pes	Callers	All C	allers	Callee Map	Source Code	
#		ization/bgr2gray/main.cpp')					
	24 25	0.0	{		= 0; i < MAX_		
	26	57.0	3 🔳	100 call	(s) to 'bgr2g		har const*, unsigned char*, int, int)' (bg
	27	0.0	00 📕	100 call 100 call 3 call(s)	(s) to 'cv::_Ir (s) to 'cv::_O to ' <cycle 1<="" td=""><td>outputArray::_O > via _dl_runtin</td><td>RAY); utArray(cv::Mat const&)' (libopencv_conutputArray(cv::Mat&)' (libopencv_core.ne_resolve' (ld-2.19.so) utArray const&, cv:: OutputArray const</td></cycle>	outputArray::_O > via _dl_runtin	RAY); utArray(cv::Mat const&)' (libopencv_conutputArray(cv::Mat&)' (libopencv_core.ne_resolve' (ld-2.19.so) utArray const&, cv:: OutputArray const
Ir		Ir per d	all	Count	Callee		
	57.03	18 19	1 370	100	D ■ bgr2gra	y(unsigned cha	r const*, unsigned char*, int, int) (bgr2g
	36.14 5.45	11 52	9 861				array const&, cv::_OutputArray const&, onst&, int) (libopencv_highgui.so.2.4.8)

Ограничения valgrind

- Замедляет исследуемое приложение в 10х раз (в данном примере в 0.535s против 8.194s, в 15.32x)
- Можно анализировать только небольшие программы
- Позволяет проанализировать работу с памятью, но для других целей его использование сомнительно

Профилировка с помощью Google perf tools

- В коде можно использовать специальный API, который позволяет указать что профилировать: ProfilerStart() и ProfilerStop()
- Собрать программу с -lprofiler или использовать LD_PRELOAD
- Определить переменную окружения CPUPROFILE и установить её значение в файл, куда будут сохраняться результаты
- Запустить программу как обычно
- С помощью скрипта pprof проанализировать результаты

```
    $ pprof --text <binary> $CPUPROFILE (вывести плоский профиль на консоль)
    $ pprof --gv <binary> $CPUPROFILE (сгенерировать граф вызовов)
    $ pprof --callgrind <binary> $CPUPROFILE (сгенерировать данные в формате callgrind)
```

Возможная гранулярность: адрес / линия / функция / файл.

Пример вывода Google perf tools

Ограничения Google perf tools

- Можно собрать только информацию о CPU-bound приложениях
- Нет возможности собрать CPU события
- Нет удобного GUI для визуализации результатов
- Как любой статистический подход дает приближенные результаты
- Не работает в случае, если программа завершается по сигналу

Профилировка с Intel VTune Amplifier

Коммерческий профилировщик, который поддерживает Linux, Windows, Android и некоторые другие ОС. Работает преимущественно на x86 архитектуре.

Имеет графический интерфейс, но большинство возможностей можно запустить из командной строки.

Пример вывода Intel VTune Amplifier

▼libldw-1.4.so	76.875s
▶itseez::ldw::RidgeDetector::process	29.752s
▶itseez::ldw::find	9.419s
▶itseez::arguscv::(anonymous namespace)::remapNearest <unsigned char=""></unsigned>	8.894s
▶itseez::ldw::MotionHistoryFilter::process	5.014s
▶itseez::ldw::ComponentTracker::track	3.219s

	*	Instructions Retired	CPI Rate	Wasted We Wasted		rk Back-end Issues			>>
Module / Function / Call Stack	Clockticks			Retiring uOps	Branch Mispredict	Divider	Memory Latency		Front-end Issues
* **							LLC Miss	LLC Hit	
▼libldw-1.4.so	177,032,265,548	142,840,214,260	1.239	0.441	0.109	0.082	0.031	0.020	0.041
▶itseez::ldw::RidgeDetector::process	68,460,102,690	35,986,053,979	1.902	0.442	0.076	0.189	0.000	0.002	0.017
▶itseez::arguscv::(anonymous namespace)::remapNearest	20,844,031,266	21,990,032,985	0.948	0.412	0.031	0.000	0.109	0.039	0.004
▶itseez::ldw::find	20,258,030,387	20,736,031,104	0.977	0.466	0.078	0.017	0.000	0.007	0.039
▶itseez::ldw::MotionHistoryFilter::process	12,342,018,513	13,758,020,637	0.897	0.532	0.171	0.032	0.000	0.017	0.060
▶itseez::ldw::ComponentTracker::track	7,306,010,959	7,064,010,596	1.034	0.440	0.322	0.003	0.069	0.018	0.142

Ограничения Intel VTune Amplifier

- Высокая стоимость
- Содержит несколько технологий профилирования, каждая из которых имеет свои недостатки, которые не всегда очевидны
- Работает преимущественно на Intel архитектурах
- Для продвинутого анализа приложений требуется установка драйверов, что может приводить к краху всей системы

Тестирование производительности

- Для крупных проектов так же необходимо, как и тестирование качества
- Цель это объективная оценка производительности приложения на разных платформах
- Создание плацдарма для дальнейшей оптимизации

```
Note: Google Test filter = Size_MatType_countNonZero.*

[=======] Running 28 tests from 1 test case.

[------] Global test environment set-up.

[------] 28 tests from Size_MatType_countNonZero

[RUN ] Size_MatType_countNonZero.countNonZero/0

[VALUE] (640x480, 8UC1)

[OK ] Size_MatType_countNonZero.countNonZero/0 (14 ms)

[RUN ] Size_MatType_countNonZero.countNonZero/1

[VALUE] (640x480, 8SC1)

[OK ] Size_MatType_countNonZero.countNonZero/1 (14 ms)

[RUN ] Size_MatType_countNonZero.countNonZero/2

[VALUE] (640x480, 16UC1)

[OK ] Size_MatType_countNonZero.countNonZero/2 (80 ms)
```

Как тестировать производительность?

- **Gtest фреймворк с расширением** + скрипты для удобного запуска, сбора и сравнения результатов (подход, который использует OpenCV)
- С помощью профилировщиков сравнивать основные "горячие" точки по разным характеристикам (например, Intel VTune Amplifier может выдавать разницу по двум результатам)
- В сложных алгоритмах компьютерного зрения можно коррелировать время обработки одного фрейма в зависимости от номера кадра на видео последовательностях
- Сравнивать с эталоном или решением от конкурентов (OpenCV, FastCV, OpenCV for Tegra, AcceleratedCV)

Сравнение производительности в Itseez/ADAS

Основные выводы

- Существует большое количество инструментов, которые помогают собирать необходимые метрики работы приложения
- Нужно понимать как достоинства так и недостатки инструментов, а также умело пользоваться ими
- Простой анализ можно сделать "руками" (замеряем / печатаем)
- Сложный анализ приложения возможен только с помощью специальных инструментов
- Тестирование производительности необходимо, как основа для развития и роста кодовой базы

Вопросы

