Instructions: Please read carefully

- Please rename this file as only your ID number (e.g. 18-****-1.doc or 18-****-1.pdf).
- Submit the file before 11:59pm on 12/03/2021 in the Portal Midterm Assignment section labeled Lab Assignment.

Do not copy from others!!!

Name:- Amit Podder

<u>ID:-</u> 20-42273-1

Section:- [F]

1. (a) Define STACK and its operation PUSH and POP for the following scenario. STACK maxsize =
6. Illustrate the following steps. (You should use pen and paper for answering this portion. Take a picture of the
page and insert in answer section)
Push(a);
Push(b);
Push(c);
Pop();
Push(d);
Pop();
Push(e);
Push(f);
Pop();
Pop();
Pop();
Answer:-

	Data Structure (Lab)
	Assignment
	Ans to the gues No: 1
	A Stack is an abstract datatype that serves as a collection
	of elements. It has two main operations. One is rush and
	another is Pop. In Stack, the objects are insented and
	nemoved according to LIFO principle.
	Now, we are going to show the scenario of Push and Pop
	Operation:
	Maxite=6
	Push (a);
	Push (b):
	Push (c); a b c
	Pop(); - 7 a b
	Push(d); a b d PopU;
	PopU; a b
	Push(e);
	Push (f); 7 a b e f
	Pop ();
	Pop();
	Pop();
1. (b) You	ur example code here (Comment in the code):-

```
Answer:-
#include <iostream>
#define MaxSize 6
char a[MaxSize];
char top=-1;
void Push(int x)
  if(top==MaxSize-1)
    std::cout<<"Stack Overflowed!!!"<<std::endl;
    return;
  }
  a[++top]=x;
void Pop()
  if(top==-1)
    std::cout<<"Stack is Empty"<<std::endl;
    return;
  }
  top--;
int Top()
  return a[top];
void Print()
  if(top>=0)
    int i;
    std::cout<<"Stack"<<std::endl;
    for(i=top;i>=0;i--)
      std::cout<<" "<<a[i];
      std::cout<<std::endl;
  }
using namespace std;
int main()
  Push('a');
  Print();
```



```
\times
Stack
Stack
a
Stack
a
Stack
a
Stack
d
b
Stack
Stack
a
Stack
Stack
C:\Users\USER\Desktop\1\bin\Debug\1.exe
                                                                                                             ×
Stack
a
Stack
Stack
a
Stack
Stack
Stack
Stack
Process returned 0 (0x0)
                          execution time : 0.068 s
Press any key to continue.
```

2. (a) Define a Circular QUEUE and its operation for maxsize = 4. Illustrate the following steps. (You
should use pen and paper for answering this portion. Take a picture of the page and insert in answer section)
enqueue(a);
enqueue (b);
enqueue (c);
dequeue();
dequeue ();
enqueue (d);
dequeue ();
enqueue (e);

enqueue (f); dequeue (); dequeue ();	
Answer:-	

Ans to the gues No:- 2
Cincular Queue is a linear data structure in which the
operations are performed based on FIFO principle and the
last position is connected back to the first position to
make a circle.
Now we are going to show the scenario of Enqueve and Dequeve
Operation:
enqueue (a);
enqueue (b);
enqueue (c);
dequeue ();
dequeve();
Ve /
3 1 2
enqueve(d);
3
dequeve ();
3

2. (b) Your example code here (Comment in the code):- Answer:-

```
#include <iostream>
using namespace std;
#define MaxSize 4
//Circular Queue
char Queue[MaxSize];
char front=-1;
char rear=-1;
void enQueue(int item)
  if((front==0 && rear==MaxSize-1)||(front==rear+1))
    cout<<"Queue Overflowed!!!"<<endl;</pre>
  if(front==-1 && rear==-1)
    front=0;
    rear=0;
  else if(rear==MaxSize-1)
    rear=0;
  else{
    rear=rear+1;
    Queue[rear]=item;
  }
void deQueue()
  if(front==-1 && rear==-1)
    cout<<"Queue Underflowed!!!"<<endl;
  int item=Queue[front];
  if(front==rear && front==-1 && rear==-1)
    cout<<"Queue Underflowed!!!"<<endl;
  if(front==rear)
    front=-1;
    rear=-1;
  else if(front==MaxSize-1)
    front=0;
```

```
else
  {
    front=front+1;
}
void show()
  if(rear==-1 && front==-1)
    cout<<"Queue Underflowed!!!"<<endl;</pre>
  else
    int item;
    cout<<"Queue"<<endl;
    for(int i=front;i<=rear;i++)</pre>
      cout<<Queue[i]<<endl;
}
int main()
  enQueue('a');
  enQueue('b');
  enQueue('c');
  deQueue();
  deQueue();
  enQueue('d');
  deQueue();
  enQueue('e');
  enQueue('f');
  deQueue();
  deQueue();
  show();
  return 0;
```

##