Deterministic and Generalised Büchi Automata

Lecture #10 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 19, 2008

Overview Lecture #10

- ⇒ Checking Non-Emptiness
 - Deterministic Büchi Automata (DBA)
 - Generalized Nondeterministic Büchi Automata (GNBA)

Büchi automata

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $F \subseteq Q$ is a set of accept (or: final) states

The size of A, denoted |A|, is the number of states and transitions in A:

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{\mathcal{A} \in \Sigma} |\delta(q, \mathcal{A})|$$

Language of an NBA

- NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{A} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leqslant i$
- Run $q_0 q_1 q_2 \dots$ is *accepting* if $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is accepted by A if there exists an accepting run for σ
- The accepted language of A:

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}$

• NBA \mathcal{A} and \mathcal{A}' are equivalent if $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}')$

Equivalent NBA

infinitely often a and infinitely often b

NBA and ω -regular languages

The class of languages accepted by NBA agrees with the class of ω -regular languages

- (1) any ω -regular language is recognized by an NBA
- (2) for any NBA A, the language $\mathcal{L}_{\omega}(A)$ is ω -regular

Extended transition function

Extend the transition function δ to $\delta^*: Q \times \Sigma^* \to 2^Q$ by:

$$\delta^*(q,\varepsilon) = \{\, q \,\} \quad \text{and} \quad \delta^*(q,\mathbf{A}) = \delta(q,\mathbf{A})$$

$$\delta^*(q, \mathbf{A}_1 \mathbf{A}_2 \dots \mathbf{A}_n) = \bigcup_{p \in \delta(q, \mathbf{A}_1)} \delta^*(p, \mathbf{A}_2 \dots \mathbf{A}_n)$$

 $\delta^*(q, w)$ = set of states reachable from q for the word w

Checking non-emptiness

$$\mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$$
 if and only if

$$\exists q_0 \in Q_0. \ \exists q \in F. \ \exists w \in \Sigma^*. \ \exists v \in \Sigma^+. \ q \in \delta^*(q_0, w) \land q \in \delta^*(q, v)$$

there is a reachable accept state on a cycle

The emptiness problem for NBA A can be solved in time O(|A|)

Non-blocking NBA

- NBA \mathcal{A} is *non-blocking* if $\delta(q, A) \neq \emptyset$ for all q and $A \in \Sigma$
 - for each input word there exists an infinite run
- For each NBA \mathcal{A} there exists a non-blocking NBA $trap(\mathcal{A})$ with:
 - $|trap(A)| = \mathcal{O}(|A|)$ and $A \equiv trap(A)$
- For $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$ let $trap(\mathcal{A})=(Q',\Sigma,\delta',Q_0,F)$ with:
 - $Q' = Q \cup \set{q_{\textit{trap}}}$ where $\set{q_{\textit{trap}}} \not \in Q$

$$\delta'(q, \mathsf{A}) = \left\{ egin{array}{ll} \delta(q, \mathsf{A}) & : & \text{if } q \in Q \text{ and } \delta(q, \mathsf{A})
eq \varnothing \\ \{q_{trap}\} & : & \text{otherwise} \end{array} \right.$$

Overview Lecture #10

- Checking Non-Emptiness
- ⇒ Deterministic Büchi Automata (DBA)
 - Generalized Nondeterministic Büchi Automata (GNBA)

Deterministic BA

Büchi automaton \mathcal{A} is called *deterministic* if

$$|Q_0| \leqslant 1$$
 and $|\delta(q, A)| \leqslant 1$ for all $q \in Q$ and $A \in \Sigma$

DBA \mathcal{A} is called *total* if

$$|Q_0|=1$$
 and $|\delta(q,A)|=1$ for all $q\in Q$ and $A\in \Sigma$

total DBA provide unique runs for each input word

Example DBA for LT property

11

These NBA both represent the LT property "always b and infinitely often a"

NBA are more expressive than **DBA**

NFA and DFA are equally expressive but NBA and DBA are not!

There is no DBA that accepts $\mathcal{L}_{\omega}((A+B)^*B^{\omega})$

Proof

13

The need for nondeterminism

let
$$\{a\}=AP$$
, i.e., $2^{AP}=\{A,B\}$ where $A=\{\}$ and $B=\{a\}$ "eventually for ever a " equals $(A+B)^*B^\omega=(\{\}+\{a\})^*\{a\}^\omega$

Overview Lecture #10

- Checking Non-Emptiness
- Deterministic Büchi Automata (DBA)
- ⇒ Generalized Nondeterministic Büchi Automata (GNBA)

Generalized Büchi automata

- NBA are as expressive as ω -regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, and Streett automata
 - generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct acceptance criterion
 - a GNBA requires to visit several sets F_1, \ldots, F_k ($k \ge 0$) infinitely often
 - for k=0, all runs are accepting
 - for k=1 this boils down to an NBA
- GNBA are useful to relate temporal logic and automata
 - but they are equally expressive as NBA

Generalized Büchi automata

A generalized NBA (GNBA) \mathcal{G} is a tuple $(Q, \Sigma, \delta, Q_0, \mathcal{F})$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function
- $\mathcal{F} = \{F_1, \dots, F_k\}$ is a (possibly empty) subset of 2^Q

The size of \mathcal{G} , denoted $|\mathcal{G}|$, is the number of states and transitions in \mathcal{G} :

$$|\mathcal{G}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leqslant i$
- Run $q_0 q_1 \dots$ is accepting if for all $F \in \mathcal{F}$: $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^{\omega}$ is *accepted* by \mathcal{G} if there exists an accepting run for σ
- The accepted language of G:
 - $\ \mathcal{L}_{\omega}(\mathcal{G}) = \Big\{ \sigma \in \Sigma^{\omega} \mid \text{ there exists an accepting run for } \sigma \text{ in } \mathcal{G} \ \Big\}$
- GNBA \mathcal{G} and \mathcal{G}' are *equivalent* if $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}')$

Example

A GNBA for the property "both processes are infinitely often in their critical section"

$$\mathcal{F} = \{ \{ q_1 \}, \{ q_2 \} \}$$

From GNBA to NBA

For any GNBA \mathcal{G} there exists an NBA \mathcal{A} with:

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}) \text{ and } |\mathcal{A}| = \mathcal{O}(|\mathcal{G}| \cdot |\mathcal{F}|)$$

where ${\mathcal F}$ denotes the set of acceptance sets in ${\mathcal G}$

Proof

Example

Product of Büchi automata

The product construction for finite automata does *not* work:

$$\mathcal{L}_{\omega}(\mathcal{A}_1) = \mathcal{L}_{\omega}(\mathcal{A}_2) = \{A^{\omega}\}, \text{ but } \mathcal{L}_{\omega}(\mathcal{A}_1 \otimes \mathcal{A}_2) = \emptyset$$

Intersection

For GNBA \mathcal{G}_1 and \mathcal{G}_2 there exists a GNBA \mathcal{G} with

$$\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{G}_1) \cap \mathcal{L}_{\omega}(\mathcal{G}_2) \quad ext{and} \quad |\mathcal{G}| = \mathcal{O}(|\mathcal{G}_1| + |\mathcal{G}_2|)$$

Proof

Facts about Büchi automata

- They are as expressive as ω -regular languages
- They are closed under various operations and also under ∩
 - deterministic automaton $-\mathcal{A}$ accepts $-\mathcal{L}_{\omega}(\mathcal{A})$
- Nondeterministic BA are more expressive than deterministic BA
- Emptiness check = check for reachable recurrent accept state
 - this can be done in $\mathcal{O}(|\mathcal{A}|)$