MATH 2800-01 - Fall 2025 - Assignment 02 - Due 09/24/2025 at 11:59PM

Instructions: Please follow the rules stated in the syllabus. Submit only one pdf file to WyoCourses.

- 1. Which of the following sets are equal: $A = \{n \in \mathbb{Z} : |n| < 2\}$, $B = \{n \in \mathbb{Z} : n^3 = n\}$, $C = \{n \in \mathbb{Z} : n^2 \le n\}$, $D = \{n \in \mathbb{Z} : n^2 \le 1\}$, $E = \{-1, 0, 1\}$.
- 2. Determine whether the following statements are true or false.
 - (a) If $\{1\} \in \mathcal{P}(A)$, then $1 \in A$ but $\{1\} \notin A$.
 - (b) If A, B and C are sets such that $A \subset \mathcal{P}(B) \subset C$ and |A| = 2, then |C| can be 5 but |C| cannot be 4.
 - (c) If a set B has one more element than a set A, then $\mathcal{P}(B)$ has at least two more elements than $\mathcal{P}(A)$.
 - d If four sets A,B,C and D are subsets of $\{1,2,3\}$ such that |A|=|B|=|C|=|D|=2, then at least two of these sets are equal.
- 3. Three subsets A, B and C of $\{1, 2, 3, 4, 5\}$ have the same cardinality. Furthermore,
 - (a) $1 \in A \cap B$ and $1 \notin C$.
 - (b) $2 \in A \cap C$ and $2 \notin B$.
 - (c) Either $3 \in A \cap B$ or $3 \in A \cap C$.
 - (d) Either 4 belongs to none of the sets A, B and C or 4 belongs to two of the sets A, B and C.
 - (e) Either 5 belongs to only one of the sets A, B and C or 5 belongs to all of the sets A, B and C.
 - (f) The sums of the elements in two of the sets A, B and C differ by 1.

Determine A, B and C. Attempt to write your argument leading to your answer in clear sentences.

- 4. Which of the following are partitions of $A = \{a, b, c, d, e, f, g\}$? Explain your answer.
 - (a) $S_1 = \{ \{a, c, e, q\}, \{b, f\}, \{d\} \}.$
 - (b) $S_2 = \{ \{a, b, c, d\}, \{e, f\} \}.$
 - (c) $S_3 = \{A\}.$
 - (d) $S4 = \{ \{a\}, \emptyset, \{b, c, d\}, \{e, f, g\} \}.$
 - (e) $S5 = \{ \{a, c, d\}, \{b, g\}, \{e\}, \{b, f\} \}.$
- 5. Let $A=\{1,2,\cdots,12\}$. Give an example of a partition S of A satisfying the following requirements: (i) |S|=5, (ii) there is a subset T of S such that |T|=4 and $\Big|\bigcup_{X\in T}X\Big|=10$ and (iii) all the subsets

in the partition S cannot have cardinality equals 3. For the proposed example, demonstrate that all the requirements are satisfied.

- 6. For a real number r, let $A_r = \{r, r+1\}$. Let $S = \{x \in \mathbb{R} : x^2 + 2x 1 = 0\}$.
 - (a) Determine $B = A_s \times A_t$ for the distinct elements $s, t \in S$, where s < t.
 - (b) Let $C = \{ab : (a, b) \in B\}$. Determine the sum of the elements of C.
- 7. Let $A = \{x \in \mathbb{R} : |x 1| \le 2\}$, $B = \{x \in \mathbb{R} : |x| \ge 1\}$ and $C = \{x \in \mathbb{R} : |x + 2| \le 3\}$.
 - (a) Express A, B and C using interval notation.
 - (b) Determine each of the following sets using interval notation: $A \cup B$, $A \cap B$, $B \cap C$, B C.