LERNZIELE KINEMATIK

Begriff	Lernziele
Physikalische Grössen und Einheiten	erklären, was es bedeutet, eine Grösse zu messen
	Formelzeichen, Zahlenwert und Einheit streng unterscheiden
	Grundgrössen und ihre Einheiten kennen (SI-System)
Bewegung	eine Bewegung mit Wertetabelle und Weg-Zeit-Diagramm beschreiben, zwischen den Darstellungen wechseln
	Unterschied zwischen Ort und Strecke bzw. Zeitpunkt und Zeitintervall erklären können
Geschwindigkeit	Begriffe "Durchschnittsgeschwindigkeit" und "Momentangeschwindigkeit" sowie deren Unterschied erklären
	Geschwindigkeit von m/s in km/h umrechnen und umgekehrt
gleichförmige Bewegung	verschiedene Charakterisierungen kennen
	gleichförmige Bewegung im $s(t)$ - und $v(t)$ -Diagramm erkennen und darstellen
	Geschwindigkeit aus $s(t)$ -Diagramm bzw. Strecke aus $v(t)$ -Diagramm bestimmen
	einfache Aufgaben graphisch und/oder algebraisch lösen
gleichmässige Beschleunigung	Begriff "Beschleunigung" erklären
	verstehen, was eine negative Beschleunigung bedeutet
	gleichmässig beschleunigte Bewegung im $v(t)$ -Diagramm erkennen (auch mit negativer Beschleunigung)
	Geschwindigkeitsänderung aus $v(t)$ -Diagramm bestimmen und Beschleunigung berechnen
	mittlere Geschwindigkeit einer gleichmässig beschleunigten Bewegung berechnen
	zurückgelegte Strecke aus mittlerer Geschwindigkeit berechnen
	anhand einer Messreihe beurteilen, ob es sich um eine gleichmässig beschleunigte Bewegung handelt (z.B. mit Streckenzuwachs)
Anhalteweg	Zusammensetzung des Anhaltewegs (Reaktions- und Bremsweg) in Worten und/oder anhand einer Skizze beschreiben
	typische Werte für Reaktionszeit und Bremsbeschleunigung für tro- ckene und nasse Strasse auswendig kennen
	Reaktions- und Bremsweg berechnen (Faustregeln auswendig)
freier Fall	Experiment zur Messung der Fallbeschleunigung beschreiben
	Wert für die Fallbeschleunigung in Zürich auswendig kennen
	Faktoren kennen, welche die Fallbeschleunigung bestimmen
	qualitativen Verlauf der Geschwindigkeit eines fallenden Körpers mit Luftwiderstand skizzieren
	Fallhöhe aus der Fallzeit berechnen (und umgekehrt)
	Änderung der Fallzeit aus Änderung der Fallhöhe berechnen (und umgekehrt), z.B. wie ändert sich die Fallzeit bei einer Verdopplung der Fallhöhe?

vertikaler Wurf	allgemeine Funktion für die Höhe beim vertikalen Wurf kennen (quadratische Funktion, Bedeutung der Parameter)
	höchsten Punkt (Scheitelpunkt) und Zeitpunkt der Landung (Nullstelle) berechnen
	v(t)- und $h(t)$ -Diagramme für vertikalen Wurf zeichnen und interpretieren
Geschwindigkeitsvektoren	Unterschied zwischen Geschwindigkeitsvektor und Geschwindigkeitsbetrag erklären
	Komponenten eines Geschwindigkeitsvektors in einem Koordinatensystem bestimmen
	Betrag eines Geschwindigkeitsvektors aus dessen Komponenten berechnen
	Geschwindigkeiten vektoriell addieren (graphisch und in Komponentenform)
Überlagerung von Bewegungen	horizontalen und schiefen Wurf als Überlagerung eines vertikalen Wurfs und einer gleichförmigen Bewegung verstehen
	Ort und Geschwindigkeit für einen beliebigen Zeitpunkt beim horizontalen Wurf berechnen
Kreisbewegung	Umlaufzeit und Frequenz ineinander umrechnen
	zwei Möglichkeiten zur Frequenzmessung beschreiben
	Winkel vom Grad- ins Bogenmass umrechnen und umgekehrt
	Unterschied zwischen Bahn- und Winkelgeschwindigkeit erklären
	Bahngeschwindigkeit als Vektor einzeichnen; Betrag aus Radius und Umlaufzeit oder Frequenz berechnen
	Winkelgeschwindigkeit aus Umlaufzeit, Frequenz oder Bahngeschwindigkeit und Radius berechnen
	erklären, warum eine gleichförmige Kreisbewegung eine beschleunigte Bewegung ist
	Radialbeschleunigung als Vektor einzeichnen; Betrag der Beschleunigung aus Radius und Bahn- oder Winkelgeschwindigkeit berechnen
	g-Beschleunigung berechnen

Grösse	Wert
Geschwindigkeitseinheiten	1 m/s = 3.6 km/h
Bremsbeschleunigung	$a = -8 \text{ m/s}^2$ auf trockener Strasse
	$a = -4 \text{ m/s}^2$ auf nasser Strasse
Fallbeschleunigung in Zürich	$g_Z = 9.81 \text{ m/s}^2$ (für Kopfrechnungen genügt $g = 10 \text{ m/s}^2$)
Winkelmasse	$360^{\circ} = 2\pi \text{ (rad)}$
Rotationszeit der Erde	T = 24 h = 86'400 s