## CG1108 - Lab 5 : Studying AC Signals

|            | Activities<br>Completed | Verified By | Marks<br>From 3 |   |
|------------|-------------------------|-------------|-----------------|---|
| Name:      | а                       |             |                 |   |
|            | b                       |             |                 |   |
| Matric. No | С                       |             |                 |   |
|            |                         |             |                 | J |
| Group:     |                         |             |                 |   |

## 1. Objectives of the Experiment

- a) To study the characteristics of AC signals using the oscilloscope.
- b) To measure the phase difference between two AC signals.

# 2. Equipment to be used

- Lab DC power supply
- · Signal Generator
- Oscilloscope
- · Digital multi-meter
- Breadboard

## 3. Components

• Resistors, Capacitors, Inductors

### In-lab activities

Before you begin, <u>check that both channels of the oscilloscope</u> are functional using the test signal provided by the oscilloscope.

a) Measure the RMS value of the signals below using the oscilloscope.

Set up the measurement feature of the oscilloscope and note down the RMS values of the AC signals below.

Adjust the offset of the signals such that they are at approximately 0V or the x-axis of the oscilloscope screen.

| Keep the <u>Frequency</u> and <u>Peak-to-Peak</u> values of the signals unchanged. |
|------------------------------------------------------------------------------------|
| Frequency:                                                                         |
| Peak-to-Peak :                                                                     |

| Signal Type      | Measured RMS Value |
|------------------|--------------------|
| Sine Wave        |                    |
| Square Wave      |                    |
| Trianglular Wave |                    |
| CMOS / TTL Wave  |                    |

Explain your observations.

#### b) AC Analysis of RC Circuit

Build the circuit according to the schematic. Choose the value of the components and input a sine wave from the signal generator.



Note down the following values:

Frequency of Input Sine Wave =

Calculate the following quantities using above values:

- (1) Impedance of  $C, Z_C$
- (2) Voltage across C,  $v_C$ , in terms of  $v_S$ 
  - a) Expression of  $v_C$  in terms of  $v_S$
  - b) RMS value of  $v_C$

- c) Phase difference of  $v_{\scriptscriptstyle C}$  with respect to  $v_{\scriptscriptstyle S}$  .
- (3) Voltage across R,  $v_{\rm R}$  , in terms of  $v_{\rm S}$ 
  - a) Expression of  $\,v_{\scriptscriptstyle R}\,$  in terms of  $\,v_{\scriptscriptstyle S}\,$
  - b) RMS value of  $v_{\scriptscriptstyle R}$
  - c) Phase difference of  $\,v_{\scriptscriptstyle R}\,$  with respect to  $\,v_{\scriptscriptstyle S}\,.$
- (4) Which signal is leading the other two? Which signal is lagging the other two?

Observe  $\mathcal{V}_S$  and  $\mathcal{V}_C$  on the oscilloscope and plot their waveforms below:



Measure the phase difference between CH1 and CH2. Explain how it compares with the calculated value.

Which channel is leading?

| Measure the RMS values of the voltages shown in the circuit using oscilloscope     |
|------------------------------------------------------------------------------------|
| (Note: You need to swap the positions of R and C to measure v <sub>R</sub> . Why?) |

$$v_S =$$

$$v_R =$$

$$v_C =$$

Explain how they compare with the calculated values.

Does the KVL equation hold good here? Explain your observation.

### c) AC Analysis of RL Circuit

Build the circuit according to the schematic. Choose the value of the components and input a sine wave from the signal generator.



Note down the following values:

Frequency of Input Sine Wave = \_\_\_\_\_

Calculate the following quantities using above values:

- (1) Impedance of L,  $Z_{L}$
- (2) Voltage across L,  $\mathcal{V}_L$  , in terms of  $\mathcal{V}_{\mathcal{S}}$ 
  - a) Expression of  $\mathcal{V}_L$  in terms of  $\mathcal{V}_S$
  - b) RMS value of  $\mathcal{V}_L$

- c) Phase difference of  $\mathcal{V}_L$  with respect to  $\mathcal{V}_{\mathit{S}}$  .
- (3) Voltage across  $\mathsf{R}, \nu_{\mathit{R}}$  , in terms of  $\nu_{\mathit{S}}$ 
  - d) Expression of  $v_{\scriptscriptstyle R}$  in terms of  $v_{\scriptscriptstyle S}$
  - e) RMS value of  $v_{\scriptscriptstyle R}$
  - f) Phase difference of  $v_{\scriptscriptstyle R}$  with respect to  $v_{\scriptscriptstyle S}$  .
- (4) Which signal is leading the other two? Which signal is lagging the other two?

Observe  $\,\mathcal{V}_S\,$  and  $\,\mathcal{V}_L\,$  on the oscilloscope and plot their waveforms below:



Measure the phase difference between CH1 and CH2. Explain how it compares with the calculated value.

Which channel is leading?

| Measu  | re the RMS  | values of th | ne voltages | shown in the | ne circuit u | sing osci              | lloscope. |
|--------|-------------|--------------|-------------|--------------|--------------|------------------------|-----------|
| (Note: | You need to | swap the     | positions o | f R and L to | measure v    | / <sub>L</sub> . Why?) |           |

$$v_S =$$

$$v_R =$$

$$v_L =$$

Explain how they compare with the calculated values.

Does the KVL equation hold good here? Explain your observation.