1. easy-med

 $\begin{array}{c} p \lor q \\ \sim (\sim r \land q) \\ \sim p \lor r \end{array}$ P1 P2

P3

Prove: r

Solution A:

Line	Statement	Rule	Lines Used
1	$r \lor \sim q$	DeMorgan's law	P2
2	$q \rightarrow r$	Definition of implication	1
3	$p \rightarrow r$	Definition of implication	P3
4	r	Dilemma	P1, 2, 3

Solution B:

Line	Statement	Rule	Lines Used
1	$ \sim r$	Assume	_
2	$\sim p$	Disjunctive syllogism	P3, 1
3	q	Disjunctive syllogism	P1, 2
4	$r \vee \sim q$	DeMorgan's law	P2
5	r	Disjunctive syllogism	3, 4
6	$r \wedge \sim r$	Conjunctive addition	4, 5
7	r	Closing cond world with contra	1–6

2. medium

P1 $\sim b \rightarrow \sim d$

P2 $\sim b \rightarrow e$

 $P3 \qquad (\sim b \to (\sim d \land e)) \to d$

Prove: \vec{b}

Solution:

Line	Statement	Rule	Lines Used
1	$\sim b$	Assume	
2	$\sim d$	Modus ponens	P1, 1
3	e	Modus ponens	P2, 1
4	$\sim (\sim b \rightarrow (\sim d \land e))$	Modus tollens	P3, 2
5	$\sim (b \vee (\sim d \wedge e))$	Definition of implication	4
6	$\sim b \land \sim (\sim d \land e))$	DeMorgan's law	5
7	$\sim (\sim d \wedge e))$	Conjunctive simplification	6
8	$d \lor \sim e$	DeMorgan's law	7
9	$\sim e$	Disjunctive syllogism	2, 8
10	$e \wedge \sim e$	Conjunctive addition	3, 9
11	b	Closing cond world with contra	1-10

3. medium

$$\begin{array}{ll} \text{P1} & (p \rightarrow q) \land (r \rightarrow s) \\ \text{P2} & v \\ \text{P3} & (s \land q) \rightarrow \sim v \\ \\ \text{Prove:} & \sim p \lor \sim r \end{array}$$

P3
$$(s \wedge q) \rightarrow \sim v$$

Solution A:

Line	Statement	Rule	Lines Used
1	$p \rightarrow q$	Conjunctive simplification	P1
2	$r \rightarrow s$	Conjunctive simplification	P2
3	$\sim (s \land q)$	Modus tollens	P2, P3
4	$\sim s \lor \sim q$	DeMorgan's law	3
5	$q \rightarrow \sim s$	Definition of implication	4
6	$p \to \sim s$	Hypothetical syllogism	1, 5
7	$\sim s \rightarrow \sim r$	Contrapositive	2
8	$p \rightarrow \sim r$	Hypothetical syllogism	6, 7
9	$\sim p \vee \sim r$	Definition of implication	8

Solution B:

Line	Statement	Rule	Lines Used
1	$p \rightarrow q$	Conjunctive simplification	P1
2	$r \rightarrow s$	Conjunctive simplification	P2
3	$\sim (s \land q)$	Modus tollens	P2, P3
4	$p \wedge r$	Assume	_
5	p	Conjunctive simplification	4
6	r	Conjunctive simplification	4
7	q	Modus ponens	1, 5
8	s	Modus ponens	2, 6
9	$s \wedge q$	Conjunctive addition	7, 8
10	$(s \land q) \land \sim (s \land q)$	Conjunctive addition	9, 3
11	$\sim (p \wedge r)$	Closing cond world with contra	4–10
12	$\sim p \vee \sim r$	DeMorgan's law	11

Solution C:

Line	Statement	Rule	Lines Used
1	$p \rightarrow q$	Conjunctive simplification	P1
2	$r \rightarrow s$	Conjunctive simplification	P2
3	$\sim (s \land q)$	Modus tollens	P2, P3
4	p	Assume	
5	q	Modus ponens	1, 4
6	$\sim s \vee \sim q$	DeMorgan's law	3
7	$\sim s$	Disjunctive syllogism	5, 6
8	$\sim r$	Modus tollens	2, 7
9	$p \rightarrow \sim r$	Closing cond world without contra	4-9
10	$\sim p \vee \sim r$	Definition of implication	9

3

4. medium+

 $\begin{array}{ll} \text{P1} & p \rightarrow q \\ \text{P2} & \sim q \lor r \\ \text{P3} & s \lor (v \land \sim r) \\ \hline \text{Prove:} & \sim s \rightarrow \sim (p \lor \sim v) \end{array}$

Solution:

Line	Statement	Rule	Lines Used
1	$\sim s$	Assume	_
2	$v \wedge \sim r$	Disjunctive syllogism	P3, 1
3	v	Conjunctive simplification	2
4	$\sim r$	Conjunctive simplification	2
5	$\sim q$	Disjunctive syllogism	P2, 4
6	$\sim p$	Modus tollens	P1, 5
7	$\sim p \wedge v$	Conjunctive addition	6, 3
8	$\sim (p \lor \sim v)$	DeMorgan's law	7
9	$\sim s \to \sim (p \lor \sim v)$	Closing cond world without contra	1-8

5. medium

P1
$$a \land \sim d$$

P2 $b \to (e \to d)$
Prove: $(a \to b) \to \sim e$

Solution A:

Line	Statement	Rule	Lines Used
1	$a \rightarrow b$	Assume	_
2	a	Conjunctive simplification	P1
3	$\sim d$	Conjunctive simplification	P1
4	b	Modus ponens	1, 2
5	$e \rightarrow d$	Modus ponens	P2, 4
6	$\sim e$	Modus tollens	3, 5
7	$(a \to b) \to \sim e$	Closing cond world without contra	1-5

Solution B:

Line	Statement	Rule	Lines Used
2	a	Conjunctive simplification	P1
3	$\sim d$	Conjunctive simplification	P1
4	$\sim b \lor (e \to d)$	DeMorgan's law	P2
5	$\sim b \vee (\sim e \vee d)$	DeMorgan's law	4
6	$(\sim b \lor \sim e) \lor d$	Associative law	5
7	$\sim b \vee \sim e$	Disjunctive syllogism	3, 6
8	$a \lor \sim e$	Disjunctive addition	2
9	$(a \lor \sim e) \land (\sim b \lor \sim e)$	Conjunctive addition	7, 8
10	$(a \land \sim b) \lor \sim e$	Distributive law	9
11	$\sim (a \land \sim b) \to \sim e$	Definition of implication	10
12	$(\sim a \lor b) \to \sim e$	DeMorgan's law	11
13	$(a \to b) \to \sim e$	Definition of implication	12