B.E.(Computer Engineering) Sixth Semester (C.B.S.)

Design & Analysis of Algorithms

P. Pages: 3
Time: Three Hours

NRT/KS/19/3501

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Assume suitable data whenever necessary.
- 9. Illustrate your answers whenever necessary with the help of neat sketches.
- 1. a) What is algorithm? Explain different algorithm design Strategies in detail.

6

7

7

b) Find close form for $\sum_{i=1}^{n} i \ a^{i}$

http://www.rtmnuonline.com

OR

2. a) Solve the recurrence relation by using substitution method

T(n) = 2T(n/2) + n/gn n > 1=1 n = 1

6

b) Explain Master's method with example.

9

3. a) Give stepwise operation of Heap sort on following input array.

A = (4, 8, 20, 17, 7, 25, 2, 13, 5)

Write algorithm and also explain the complexity of heap sort algorithm

b) Explain Bitonic sorting network.

5

7

7

OR

4. a) Write an algorithm to search an element using binary search method. Find the location of 36 of the given array using binary search method.

 $A = \langle 9, 12, 15, 24, 30, 36, 45, 70 \rangle$

b) Illustrate the stepwise operation of merge sort for the input array.

 $A = \langle 5, 13, 2, 25, 7, 17, 20, 8, 3 \rangle$

5. a) Explain greedy algorithm for job sequencing with deadline problem. Find best possible sequence for following deadline.

Job	J ₁	J_2	J ₃	J_4	J_5	J_6	J_7
gain	35	20	18	16	12	10	8
deadline	3	1	3	4	2	2	1

b) Find minimum cost spanning tree & its cost using Kruskal's method. Also discuss its complexity.

OR

6. a) What are optimal Huffman codes for following set of frequencies and discuss its complexity:

7

6

6

a: 14 b: 10 c: 8 d: 12 e: 6

b) What is significance of Knapsack problem? Implement three approaches on the following objects & Find out the profit value capacity = 30 No. of objects = 07.

see I ma out the profit value capacity 50 110. Of object							oject
Object:	1	2	3	4	5	6	7
Weight:	4	6	10	14	2	8	2
Profit :	20	15	20	28	8	18	6

7. a) Explain basic principle of Dynamic programming & principle of optimality. Also explain the difference between Dynamic programming & Greedy algorithm.

7

b) For the following multistage graph, obtain a recurrence relation for finding the shortest path from source vertex to destination vertex. Also explain the calculation for shortest path.

Fig. 7 (b)

OR

8. a) Find all Pair shortest path using Floyd's Warshall algorithm for given directed graph.

7

b) Write a recurrence equation for LCS, & find the LCS of following sequence.

X = SOLUTION

Y = RECURSION

9. a) Calculate the shortest path from source to destination in following Travelling salesman problem. The distance matrix is as follows.

7

7

0	10	15	20
5	0	9	10
6	13	0	12
8	8	9	10

b) Implement graph coloring on following graph & generate space tree if number of permitted colours = 3

6

OR

10. a) Write BFS & DFS and show its sequence with example.

7

b) Explain how backtracking technique can be applied to solve 4 – queens problem.

6

11. a) Write an algorithm for non-deterministic sorting & non-deterministic searching.

7

b) Explain P, NP, NP-hard & NP-complete.

6

OR

12. a) State & explain Cook's theorem. Also explain its importance.

7

b) Write a note on decision and optimization problem.

6
