

## 2,5-Dichloroanilinium 4-chlorobenzene-sulfonate

K. Shakuntala,<sup>a</sup> Sabine Foro<sup>b</sup> and B. Thimme Gowda<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and <sup>b</sup>Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany  
Correspondence e-mail: gowdabt@yahoo.com

Received 20 March 2011; accepted 21 March 2011

Key indicators: single-crystal X-ray study;  $T = 293\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.005\text{ \AA}$ ;  $R$  factor = 0.037;  $wR$  factor = 0.107; data-to-parameter ratio = 12.9.

In the crystal of the title compound,  $\text{C}_6\text{H}_6\text{Cl}_2\text{N}^+\cdot\text{C}_6\text{H}_4\text{ClO}_3\text{S}^-$ , the 2,5-dichloroanilinium cations and 4-chlorobenzenesulfonate anions are located on a crystallographic mirror plane and are connected by  $\text{N}-\text{H}\cdots\text{O}$  hydrogen bonds. In the crystal, the connectivity of the hydrogen bonds leads to double chains propagating in [010].

### Related literature

For the effect of substituents on the oxidative strengths of *N*-chloro, *N*-arylsulfonamides, see: Gowda *et al.* (2004a). For their effect on the structures of *N*-(aryl)-amides, see: Gowda *et al.* (2004b) and of *N*-(aryl)-methanesulfonamides, see: Gowda *et al.* (2007).



### Experimental

#### Crystal data

$\text{C}_6\text{H}_6\text{Cl}_2\text{N}^+\cdot\text{C}_6\text{H}_4\text{ClO}_3\text{S}^-$   
 $M_r = 354.62$

Monoclinic,  $P2_1/m$   
 $a = 9.792 (1)\text{ \AA}$

$b = 6.802 (1)\text{ \AA}$   
 $c = 10.879 (1)\text{ \AA}$   
 $\beta = 94.26 (1)^\circ$   
 $V = 722.60 (15)\text{ \AA}^3$   
 $Z = 2$

Mo  $K\alpha$  radiation  
 $\mu = 0.78\text{ mm}^{-1}$   
 $T = 293\text{ K}$   
 $0.40 \times 0.34 \times 0.24\text{ mm}$

#### Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector  
Absorption correction: multi-scan (*CrysAlis RED*; Oxford)

Diffraction, 2009)  
 $T_{\min} = 0.745$ ,  $T_{\max} = 0.834$   
2700 measured reflections  
1603 independent reflections  
1439 reflections with  $I > 2\sigma(I)$   
 $R_{\text{int}} = 0.012$

#### Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$   
 $wR(F^2) = 0.107$   
 $S = 1.02$   
1603 reflections  
124 parameters  
2 restraints

H atoms treated by a mixture of independent and constrained refinement  
 $\Delta\rho_{\max} = 0.39\text{ e \AA}^{-3}$   
 $\Delta\rho_{\min} = -0.39\text{ e \AA}^{-3}$

**Table 1**  
Hydrogen-bond geometry ( $\text{\AA}$ ,  $^\circ$ ).

| $D-\text{H}\cdots A$                                      | $D-\text{H}$ | $\text{H}\cdots A$ | $D\cdots A$ | $D-\text{H}\cdots A$ |
|-----------------------------------------------------------|--------------|--------------------|-------------|----------------------|
| $\text{N}1-\text{H}11\text{N}\cdots\text{O}1^{\text{i}}$  | 0.88 (2)     | 1.85 (2)           | 2.730 (2)   | 176 (2)              |
| $\text{N}1-\text{H}12\text{N}\cdots\text{O}2^{\text{ii}}$ | 0.89 (2)     | 1.88 (2)           | 2.753 (3)   | 170 (3)              |

Symmetry codes: (i)  $-x, y + \frac{1}{2}, -z + 1$ ; (ii)  $x, y, z + 1$ .

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

KS thanks the University Grants Commission, Government of India, New Delhi for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5496).

### References

- Gowda, B. T., Foro, S. & Fuess, H. (2007). *Acta Cryst. E63*, o2570.
- Gowda, B. T. & Shetty, M. (2004a). *J. Phys. Org. Chem.* **17**, 848–864.
- Gowda, B. T., Svoboda, I. & Fuess, H. (2004b). *Z. Naturforsch. Teil A*, **55**, 845–852.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). *Acta Cryst. A64*, 112–122.
- Spek, A. L. (2009). *Acta Cryst. D65*, 148–155.

## **supplementary materials**

*Acta Cryst.* (2011). E67, o967 [doi:10.1107/S1600536811010518]

## 2,5-Dichloroanilinium 4-chlorobenzenesulfonate

K. Shakuntala, S. Foro and B. T. Gowda

### Comment

The amine and sulfonate moieties are important constituents of many important compounds. As a part of studying the substituent effects on the structures of this class of compounds (Gowda *et al.*, 2004a, 2004b, 2007), in the present work, the crystal structure of 2,5-dichloroanilinium, 4-chlorobenzenesulfonate (**I**) has been determined (Fig. 1). The title compound showed interesting H-bonding in its crystal structure (Fig. 2). It forms the structure through N—H···O(S) hydrogen bonding. Three H-atoms of the positively charged NH<sub>3</sub> group have three O atoms of the negatively charged sulfonate anion as acceptors, with each oxygen forming H-bonding with three H-atoms, one each from three positively charged NH<sub>3</sub> groups.

The crystal packing of (**I**) through N1—H11N···O1, N1—H11aN···O1a and N1—H12N···O2 hydrogen bonding (Table 1) is shown in Fig.2.

### Experimental

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 °C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 2,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant title compound (**I**) was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

### Refinement

The N bounded H atoms were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the  $U_{\text{eq}}$  of the parent atom.

### Figures



Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

# supplementary materials

---



Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

## 2,5-Dichloroanilinium 4-chlorobenzenesulfonate

### Crystal data



$$F(000) = 360$$

$$M_r = 354.62$$

$$D_x = 1.630 \text{ Mg m}^{-3}$$

Monoclinic,  $P2_1/m$

Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ \AA}$

Hall symbol: -P 2yb

Cell parameters from 1811 reflections

$$a = 9.792 (1) \text{ \AA}$$

$$\theta = 2.7\text{--}27.8^\circ$$

$$b = 6.802 (1) \text{ \AA}$$

$$\mu = 0.78 \text{ mm}^{-1}$$

$$c = 10.879 (1) \text{ \AA}$$

$$T = 293 \text{ K}$$

$$\beta = 94.26 (1)^\circ$$

Prism, colourless

$$V = 722.60 (15) \text{ \AA}^3$$

$$0.40 \times 0.34 \times 0.24 \text{ mm}$$

$$Z = 2$$

### Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

1603 independent reflections

Radiation source: fine-focus sealed tube  
graphite

1439 reflections with  $I > 2\sigma(I)$

Rotation method data acquisition using  $\omega$  scans

$$R_{\text{int}} = 0.012$$

Absorption correction: multi-scan  
(*CrysAlis RED*; Oxford Diffraction, 2009)

$$\theta_{\max} = 26.4^\circ, \theta_{\min} = 2.7^\circ$$

$$T_{\min} = 0.745, T_{\max} = 0.834$$

$$h = -12 \rightarrow 12$$

$$2700 \text{ measured reflections}$$

$$k = -8 \rightarrow 6$$

$$l = -13 \rightarrow 10$$

### Refinement

Refinement on  $F^2$

Secondary atom site location: difference Fourier map

Least-squares matrix: full

Hydrogen site location: inferred from neighbouring sites

$$R[F^2 > 2\sigma(F^2)] = 0.037$$

H atoms treated by a mixture of independent and constrained refinement

$$wR(F^2) = 0.107$$

$$w = 1/[\sigma^2(F_o^2) + (0.0626P)^2 + 0.4408P]$$

$$\text{where } P = (F_o^2 + 2F_c^2)/3$$

$$S = 1.02$$

$$(\Delta/\sigma)_{\max} = 0.023$$

|                                                                |                                                                                                                                   |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1603 reflections                                               | $\Delta\rho_{\max} = 0.39 \text{ e } \text{\AA}^{-3}$                                                                             |
| 124 parameters                                                 | $\Delta\rho_{\min} = -0.39 \text{ e } \text{\AA}^{-3}$                                                                            |
| 2 restraints                                                   | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>$F_c^* = k F_c [1 + 0.001 x F_c^2 \lambda^3 / \sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.036 (4)                                                                                                 |

### Special details

**Experimental.** CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

**Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

### Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )

|      | <i>x</i>     | <i>y</i>   | <i>z</i>      | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|------|--------------|------------|---------------|----------------------------------|
| Cl1  | 0.87369 (7)  | 0.7500     | 0.13209 (9)   | 0.0577 (3)                       |
| S1   | 0.23468 (6)  | 0.7500     | 0.11153 (5)   | 0.0274 (2)                       |
| O1   | 0.19906 (14) | 0.5759 (2) | 0.17720 (16)  | 0.0519 (4)                       |
| O2   | 0.1854 (2)   | 0.7500     | -0.01564 (19) | 0.0575 (7)                       |
| C1   | 0.4152 (2)   | 0.7500     | 0.1146 (2)    | 0.0277 (5)                       |
| C2   | 0.4901 (3)   | 0.7500     | 0.2257 (3)    | 0.0740 (15)                      |
| H2   | 0.4454       | 0.7500     | 0.2982        | 0.089*                           |
| C3   | 0.6311 (3)   | 0.7500     | 0.2313 (3)    | 0.0833 (17)                      |
| H3   | 0.6818       | 0.7500     | 0.3071        | 0.100*                           |
| C4   | 0.6952 (3)   | 0.7500     | 0.1251 (3)    | 0.0398 (7)                       |
| C5   | 0.6231 (3)   | 0.7500     | 0.0130 (3)    | 0.0406 (7)                       |
| H5   | 0.6684       | 0.7500     | -0.0592       | 0.049*                           |
| C6   | 0.4811 (3)   | 0.7500     | 0.0082 (3)    | 0.0372 (6)                       |
| H6   | 0.4307       | 0.7500     | -0.0677       | 0.045*                           |
| Cl2  | -0.23538 (8) | 0.7500     | 0.58953 (8)   | 0.0540 (3)                       |
| Cl3  | 0.39589 (11) | 0.7500     | 0.57932 (12)  | 0.0947 (5)                       |
| N1   | -0.0373 (2)  | 0.7500     | 0.8143 (2)    | 0.0293 (5)                       |
| H11N | -0.0933 (19) | 0.852 (3)  | 0.8172 (19)   | 0.035*                           |
| H12N | 0.027 (3)    | 0.7500     | 0.876 (2)     | 0.035*                           |
| C7   | 0.0232 (3)   | 0.7500     | 0.6963 (2)    | 0.0298 (5)                       |
| C8   | -0.0594 (3)  | 0.7500     | 0.5875 (3)    | 0.0365 (6)                       |
| C9   | 0.0000 (4)   | 0.7500     | 0.4767 (3)    | 0.0487 (8)                       |
| H9   | -0.0552      | 0.7500     | 0.4033        | 0.058*                           |
| C10  | 0.1392 (4)   | 0.7500     | 0.4734 (3)    | 0.0530 (9)                       |

## supplementary materials

---

|     |            |        |            |            |
|-----|------------|--------|------------|------------|
| H10 | 0.1790     | 0.7500 | 0.3984     | 0.064*     |
| C11 | 0.2195 (4) | 0.7500 | 0.5822 (3) | 0.0504 (8) |
| C12 | 0.1633 (3) | 0.7500 | 0.6941 (3) | 0.0425 (7) |
| H12 | 0.2190     | 0.7500 | 0.7672     | 0.051*     |

### Atomic displacement parameters ( $\text{\AA}^2$ )

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$   |
|-----|-------------|-------------|-------------|-------------|--------------|------------|
| Cl1 | 0.0194 (3)  | 0.0852 (7)  | 0.0683 (6)  | 0.000       | 0.0028 (3)   | 0.000      |
| S1  | 0.0183 (3)  | 0.0362 (4)  | 0.0279 (3)  | 0.000       | 0.0028 (2)   | 0.000      |
| O1  | 0.0376 (8)  | 0.0493 (9)  | 0.0692 (10) | -0.0112 (7) | 0.0078 (7)   | 0.0157 (8) |
| O2  | 0.0271 (10) | 0.114 (2)   | 0.0306 (10) | 0.000       | -0.0029 (8)  | 0.000      |
| C1  | 0.0217 (11) | 0.0327 (13) | 0.0290 (12) | 0.000       | 0.0029 (9)   | 0.000      |
| C2  | 0.0256 (15) | 0.167 (5)   | 0.0293 (14) | 0.000       | 0.0043 (12)  | 0.000      |
| C3  | 0.0268 (15) | 0.187 (5)   | 0.0349 (16) | 0.000       | -0.0058 (13) | 0.000      |
| C4  | 0.0198 (12) | 0.0510 (17) | 0.0487 (16) | 0.000       | 0.0037 (11)  | 0.000      |
| C5  | 0.0269 (13) | 0.0555 (18) | 0.0406 (15) | 0.000       | 0.0113 (11)  | 0.000      |
| C6  | 0.0257 (13) | 0.0556 (17) | 0.0304 (12) | 0.000       | 0.0033 (10)  | 0.000      |
| Cl2 | 0.0422 (4)  | 0.0676 (6)  | 0.0495 (5)  | 0.000       | -0.0150 (3)  | 0.000      |
| Cl3 | 0.0499 (6)  | 0.1572 (13) | 0.0820 (7)  | 0.000       | 0.0370 (5)   | 0.000      |
| N1  | 0.0267 (10) | 0.0344 (12) | 0.0268 (10) | 0.000       | 0.0009 (8)   | 0.000      |
| C7  | 0.0338 (13) | 0.0290 (13) | 0.0267 (12) | 0.000       | 0.0040 (10)  | 0.000      |
| C8  | 0.0450 (16) | 0.0314 (14) | 0.0323 (13) | 0.000       | -0.0029 (11) | 0.000      |
| C9  | 0.072 (2)   | 0.0452 (17) | 0.0279 (14) | 0.000       | -0.0037 (14) | 0.000      |
| C10 | 0.078 (2)   | 0.0502 (19) | 0.0336 (15) | 0.000       | 0.0208 (15)  | 0.000      |
| C11 | 0.0479 (18) | 0.057 (2)   | 0.0484 (17) | 0.000       | 0.0202 (14)  | 0.000      |
| C12 | 0.0368 (15) | 0.0563 (19) | 0.0348 (14) | 0.000       | 0.0054 (11)  | 0.000      |

### Geometric parameters ( $\text{\AA}$ , $^\circ$ )

|                        |             |            |            |
|------------------------|-------------|------------|------------|
| Cl1—C4                 | 1.744 (3)   | Cl2—C8     | 1.725 (3)  |
| S1—O2                  | 1.431 (2)   | Cl3—C11    | 1.730 (4)  |
| S1—O1 <sup>i</sup>     | 1.4390 (16) | N1—C7      | 1.453 (3)  |
| S1—O1                  | 1.4390 (16) | N1—H11N    | 0.884 (15) |
| S1—C1                  | 1.766 (2)   | N1—H12N    | 0.886 (18) |
| C1—C6                  | 1.367 (4)   | C7—C12     | 1.373 (4)  |
| C1—C2                  | 1.366 (4)   | C7—C8      | 1.383 (4)  |
| C2—C3                  | 1.378 (4)   | C8—C9      | 1.377 (4)  |
| C2—H2                  | 0.9300      | C9—C10     | 1.367 (5)  |
| C3—C4                  | 1.355 (5)   | C9—H9      | 0.9300     |
| C3—H3                  | 0.9300      | C10—C11    | 1.371 (5)  |
| C4—C5                  | 1.363 (4)   | C10—H10    | 0.9300     |
| C5—C6                  | 1.387 (4)   | C11—C12    | 1.374 (4)  |
| C5—H5                  | 0.9300      | C12—H12    | 0.9300     |
| C6—H6                  | 0.9300      |            |            |
| O2—S1—O1 <sup>i</sup>  | 113.77 (8)  | C5—C6—H6   | 119.9      |
| O2—S1—O1               | 113.77 (8)  | C7—N1—H11N | 109.0 (14) |
| O1 <sup>i</sup> —S1—O1 | 110.72 (14) | C7—N1—H12N | 111 (2)    |

|                           |             |                |            |
|---------------------------|-------------|----------------|------------|
| O2—S1—C1                  | 106.49 (12) | H11N—N1—H12N   | 112.4 (18) |
| O1 <sup>i</sup> —S1—C1    | 105.65 (8)  | C12—C7—C8      | 120.5 (3)  |
| O1—S1—C1                  | 105.65 (8)  | C12—C7—N1      | 119.2 (2)  |
| C6—C1—C2                  | 119.6 (2)   | C8—C7—N1       | 120.3 (2)  |
| C6—C1—S1                  | 121.2 (2)   | C9—C8—C7       | 119.4 (3)  |
| C2—C1—S1                  | 119.2 (2)   | C9—C8—Cl2      | 119.9 (2)  |
| C1—C2—C3                  | 120.6 (3)   | C7—C8—Cl2      | 120.7 (2)  |
| C1—C2—H2                  | 119.7       | C10—C9—C8      | 120.6 (3)  |
| C3—C2—H2                  | 119.7       | C10—C9—H9      | 119.7      |
| C4—C3—C2                  | 119.2 (3)   | C8—C9—H9       | 119.7      |
| C4—C3—H3                  | 120.4       | C11—C10—C9     | 119.1 (3)  |
| C2—C3—H3                  | 120.4       | C11—C10—H10    | 120.4      |
| C3—C4—C5                  | 121.4 (3)   | C9—C10—H10     | 120.4      |
| C3—C4—Cl1                 | 119.3 (2)   | C10—C11—C12    | 121.6 (3)  |
| C5—C4—Cl1                 | 119.3 (2)   | C10—C11—Cl3    | 119.6 (3)  |
| C4—C5—C6                  | 119.0 (3)   | C12—C11—Cl3    | 118.9 (3)  |
| C4—C5—H5                  | 120.5       | C11—C12—C7     | 118.8 (3)  |
| C6—C5—H5                  | 120.5       | C11—C12—H12    | 120.6      |
| C1—C6—C5                  | 120.2 (3)   | C7—C12—H12     | 120.6      |
| C1—C6—H6                  | 119.9       |                |            |
| O2—S1—C1—C6               | 0.0         | C4—C5—C6—C1    | 0.0        |
| O1 <sup>i</sup> —S1—C1—C6 | -121.30 (8) | C12—C7—C8—C9   | 0.000 (1)  |
| O1—S1—C1—C6               | 121.30 (8)  | N1—C7—C8—C9    | 180.0      |
| O2—S1—C1—C2               | 180.0       | C12—C7—C8—Cl2  | 180.0      |
| O1 <sup>i</sup> —S1—C1—C2 | 58.70 (8)   | N1—C7—C8—Cl2   | 0.0        |
| O1—S1—C1—C2               | -58.70 (8)  | C7—C8—C9—C10   | 0.000 (1)  |
| C6—C1—C2—C3               | 0.0         | Cl2—C8—C9—C10  | 180.0      |
| S1—C1—C2—C3               | 180.0       | C8—C9—C10—C11  | 0.0        |
| C1—C2—C3—C4               | 0.0         | C9—C10—C11—C12 | 0.000 (1)  |
| C2—C3—C4—C5               | 0.0         | C9—C10—C11—Cl3 | 180.0      |
| C2—C3—C4—Cl1              | 180.0       | C10—C11—C12—C7 | 0.000 (1)  |
| C3—C4—C5—C6               | 0.0         | Cl3—C11—C12—C7 | 180.0      |
| Cl1—C4—C5—C6              | 180.0       | C8—C7—C12—C11  | 0.0        |
| C2—C1—C6—C5               | 0.0         | N1—C7—C12—C11  | 180.0      |
| S1—C1—C6—C5               | 180.0       |                |            |

Symmetry codes: (i)  $x, -y+3/2, z$ .

#### *Hydrogen-bond geometry ( $\text{\AA}$ , $^\circ$ )*

| $D\cdots H$                        | $D—H$    | $H\cdots A$ | $D\cdots A$ | $D—H\cdots A$ |
|------------------------------------|----------|-------------|-------------|---------------|
| N1—H11N $\cdots$ O1 <sup>ii</sup>  | 0.88 (2) | 1.85 (2)    | 2.730 (2)   | 176 (2)       |
| N1—H12N $\cdots$ O2 <sup>iii</sup> | 0.89 (2) | 1.88 (2)    | 2.753 (3)   | 170 (3)       |

Symmetry codes: (ii)  $-x, y+1/2, -z+1$ ; (iii)  $x, y, z+1$ .

## supplementary materials

---

Fig. 1



Fig. 2

