Optimización Combinatoria

Ángel Ríos San Nicolás

Hoja 1-Desigualdades lineales, poliedros 27 de octubre de 2020

Ejercicio 1. Demostrar el teorema de la alternativa suponiendo cierto el lema de Farkas.

Teorema de la alternativa. Sea $A \in \mathbb{R}^{n \times m}$ y $b \in \mathbb{R}^m$. Uno y solo uno de los siguientes sistemas tiene solución.

(i)
$$Ax < b$$
, (ii) $yA = 0, y > 0, yb < 0$

Lema de Farkas. Sea $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Uno y solo uno de los siguientes sistemas tiene solución.

(i)
$$Ax = b, x \ge 0$$
 (ii) $yA \ge 0, yb < 0$

Solución. Es claro que ambos sistemas no pueden tener solución porque en ese caso se tendría

$$\left\{\begin{array}{ccc} Ax & \leq & b \\ yA & = & 0 \end{array}\right\} \longrightarrow 0 = 0x = yAx \leq yb,$$

que contradice la desigualdad yb < 0. Observamos que hemos necesitado que $y \ge 0$ para que no cambie de sentido la desigualdad.

Supongamos que $Ax \leq b$ tiene solución y queremos probar que $yA = 0, y \geq 0, yb < 0$ no tiene solución. Razonaremos de manera análoga a la demostración del recíproco. Podemos introducir variables de holgura de la forma x = u - v donde u, v son, respectivamente, las partes positiva y negativa de x y tomamos s = b - Ax. Claramente tenemos que $u, v, s \geq 0$. Sumando Au, -Av y s, tenemos

$$Au - Av + s = A(u - v) + s = A(u - v) + b - A(u - v) = b.$$

Por tanto, el sistema

$$\left\{ \begin{array}{cccc} Au-Av+s & = & b \\ u,v,s & \geq & 0 \end{array} \right. \longleftrightarrow \left\{ \begin{array}{cccc} \left(A & -A & I\right) \begin{pmatrix} u \\ v \\ s \end{pmatrix} & = & b \\ u,v,s & \geq & 0 \end{array} \right.$$

tiene solución. Además si el sistema anterior tiene solución, tomando x=u-v y s=b-A(u-v) y sumando y restando s, se llega a que $Ax=A(u-v)+s-s=b-s\leq b$ porque $s\geq 0$ con lo que $Ax\leq b$ tiene solución. Es decir, se tiene la equivalencia de compatibilidades entre los dos sistemas.

Aplicando el lema de Farkas, lo anterior es también equivalente a que el sistema

$$\left\{ \begin{array}{cccc} y\left(A & -A & I\right) & \geq & 0 \\ yb & < & 0 \end{array} \right. \longleftrightarrow \left\{ \begin{array}{cccc} yA & \geq & 0 \\ yA & \leq & 0 \\ y & \geq & 0 \\ yb & < & 0 \end{array} \right. \longleftrightarrow yA = 0, y \geq 0, yb < 0$$

no tenga solución, que es precismante lo que queríamos probar.

Ejercicio 2. Sea Q el poliedro definido por el sistema $Ax \leq b$ y sean $a_1, \ldots, a_m \in \mathbb{R}^n$ las filas de A. Demostrar que la desigualdad $cx \leq d$ es válida en todo Q si y solo si es combinación cónica de las que definen Q y la desigualdad $0x \leq 1$. Es decir, si y solo si

$$(c;d) \in \operatorname{cone}((a_1;b_1,\ldots,a_m;b_m),(0,1)) \subset \mathbb{R}^n \times \mathbb{R}.$$

Solución.

 \implies (Para este ejercicio suponemos que c es un vector fila. El resto de vectores serán vectores columna salvo transposición). Suponemos que $cx \le d$ no es combinación cónica de las filas de $Ax \le b$ y $0x \le 1$ y queremos

probar que existe un $x \in Q$ tal que no se cumple $cx \le d$. Como $cx \le d$ no es tal combinación cónica, tenemos que el sistema

$$\begin{cases} 0x_0 + A^T x &= c \\ x_0 + b^T x &= d \\ x_0 &\geq 0 \\ x &\geq 0 \end{cases}$$

no tiene solución. Observamos que las dos primeras ecuaciones las podemos escribir en forma matricial

$$\begin{pmatrix} 0 & A^T \\ 1 & b^T \end{pmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix}.$$

Por el lema de Farkas, el sistema

$$\begin{cases}
 (y^T \quad v) \begin{pmatrix} 0 \quad A^T \\ 1 \quad b^T \end{pmatrix} & \geq \quad 0 \\
 (y^T \quad v) \begin{pmatrix} c \\ d \end{pmatrix} & < \quad 0
\end{cases}
\longleftrightarrow
\begin{cases}
 v \geq \quad 0 \\
 Ay + vb \geq \quad 0 \\
 cy + vd < \quad 0
\end{cases}$$

sí tiene solución, donde $y \in \mathbb{R}^n, v \in \mathbb{R}$.

Como tenemos $v \ge 0$, distinguimos dos casos:

- Si v > 0, podemos dividir la segunda desigualdad por -v cambiando su sentido y obtenemos $A\left(\frac{-1}{v}y\right) \leq b$, con lo que tenemos que $\frac{-1}{v}y \in Q$ por definición de Q. Si aplicamos lo mismo en la tercera desigualdad, llegamos a que $c\left(\frac{-1}{v}\right)y > d$, lo que contradice el hecho de que $cx \leq d$ es válida en Q.
- Si v=0, entonces el sistema queda

$$\left\{ \begin{array}{ccc} Ay & \geq & 0 \\ cy & < & 0 \end{array} \right..$$

Si tomamos $t \in \mathbb{R}$ suficientemente grande, tendremos que $A(-ty) \leq b$ con lo que $-ty \in Q$ y c(-ty) > d, lo que contradice el hecho de que $cx \leq d$ es válida en Q.

 \leftarrow Consideramos $a_i = (a_{1i}, \dots, a_{mi})$ para cada $i \in \{1, \dots, n\}$. Q se escribe, entonces, de la forma

$$Q: \left\{ \begin{array}{cccccccc} a_{11}x_1 & + & \cdots & + & a_{1n}x_n & \leq & b_1 \\ \vdots & & \vdots & & \vdots & & \vdots & \vdots \\ a_{m1}x_1 & + & \cdots & + & a_{mn}x_n & \leq & b_m \end{array} \right.$$

Suponemos que $(c;d) \in \text{cone}(a_1;b_1,\ldots,a_m;b_m,(0;1)) \subset \mathbb{R}^n \times \mathbb{R}$, es decir, que existen $\lambda_0,\lambda_1,\ldots,\lambda_m \geq 0$ tales que $c = 0\lambda_0 + \lambda_1 a_1 + \cdots + \lambda_m a_m$ y $d = 1\lambda_0 + \lambda_1 b_1 + \cdots + \lambda_m b_m$. Por tanto, tenemos que si $c = (c_1,\ldots,c_m)$, entonces

$$\begin{cases} c_1 &= 0\lambda_0 + \lambda_1 a_{11} + \cdots + \lambda_m a_{m1} \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ c_n &= 0\lambda_0 + \lambda_1 a_{1n} + \cdots + \lambda_m a_{mn} \end{cases}$$
 y $d = 1\lambda_0 + \lambda_1 b_1 + \cdots + \lambda_m b_m$.

Tomamos ahora $x = (x_1, \dots, x_n) \in Q$ y tenemos que probar que $cx \leq d$, es decir

$$cx \leq d \iff (c_1 \cdots c_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \leq d \\ \iff (\lambda_1 a_{11} + \cdots + \lambda_m a_{m1}) x_1 + \cdots + (\lambda_1 a_{1n} + \cdots + \lambda_m a_{mn}) x_n \leq 1\lambda_0 + \lambda_1 b_1 + \cdots + \lambda_m b_m$$

Pero claramente se cumple porque podemos reordenar los términos y, aplicando la definición del poliedro Q, tenemos que

$$\lambda_1(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n) + \dots + \lambda_m(a_{m1}x_1 + \dots + a_{mn}x_n) \le \lambda_0 + \lambda_1b_1 + \dots + \lambda_mb_m \longleftrightarrow cx \le d.$$

Por tanto, $cx \leq d$ es cierta para todo $x \in Q$ como queríamos probar.

Ejercicio 3. (Dualidad de politopos). Sea $P = \text{conv}\{p_1, \dots, p_N\} \subset \mathbb{R}^n$ un politopo. Consideramos el poliedro Q en \mathbb{R}^n definido tomando como ecuaciones los puntos que definen P. Es decir:

$$Q = \{x \in \mathbb{R}^n : p_i x \le 1, \forall i \in \{1, \dots, N\}\}.$$

(a) Q contiene al origen en su interior. Es decir: $\forall v \in \mathbb{R}^n$ existe un $\epsilon > 0$ tal que $\epsilon v \in Q$. Solución.

Sea $v \in \mathbb{R}^n$, queremos encontrar un $\epsilon > 0$ tal que $\epsilon v \in Q$. Suponemos que $p_i = (p_1^i, \dots, p_n^i)$ para cada $i \in \{1, \dots, N\}$ con lo que Q se escribe de la forma

Si $v = (v_1, \dots, v_n)$, calculando los productos $p_i v$ para cada $i \in \{1, \dots, N\}$, obtenemos

$$\begin{cases} p_1^1 v_1 + \cdots + p_n^1 v_n = \alpha_1 \\ \vdots & \vdots & \vdots \\ p_1^N v_1 + \cdots + p_n^N v_n = \alpha_N \end{cases}$$

Consideramos $A=\{i\in\{1,\ldots,N\}: \alpha_i>1\}$. Si A es vacío, entonces claramente $v\in Q$ y podemos tomar simplemente $\epsilon=1>0$. Si A es no vacío, tomamos $\epsilon=\frac{1}{\prod\limits_{i\in A}\alpha_i}>0$. Multiplicando por ϵ , tenemos las siguientes igualdades

$$\begin{cases} p_1^1 \epsilon v_1 + \cdots + p_n^1 \epsilon v_n &= \frac{\alpha_1}{\prod\limits_{i \in A} \alpha_i} \\ \vdots &\vdots &\vdots &\vdots \\ p_1^N \epsilon v_1 + \cdots + p_n^N \epsilon v_n &= \frac{\alpha_N}{\prod\limits_{i \in A} \alpha_i} \end{cases}$$

Observamos que $\prod_{i\in A}\alpha_i>1$ y distinguimos dos casos:

- Si $j \in A$, entonces $\frac{\alpha_j}{\prod\limits_{i \in A} \alpha_i} = \frac{1}{\prod\limits_{\substack{i \in A \\ i \neq j}} \alpha_i} \leq 1$.
- Si $j \notin A$, entonces $\alpha_j \leq 1$ y también $\frac{\alpha_j}{\prod_{i \in A} \alpha_i} \leq 1$.

Por tanto, $\epsilon v \in Q$ y Q contiene al origen en su interior.

(b) Q es acotado si y solo si P contiene al origen en su interior.

Solución.

Equivalentemente, tenemos que ver que para todo $c \in \mathbb{R}^n$, el programa

$$(P) \begin{cases} \text{Maximizar} & cx \\ \text{sujeto a} & x \in Q \end{cases}$$

es acotado si y solo si para todo $v \in \mathbb{R}^n$, existe $\epsilon > 0$ tal que $\epsilon v \in P$.

 \Longrightarrow Si $Q=\emptyset$, es porque $P=\emptyset$, por tanto, P no contiene al origen en su interior. Suponemos ahora que $Q\neq\emptyset$ es acotado. Para todos $c\in\mathbb{R}^n$ y $\epsilon>0$, el programa

$$(P) \begin{cases} \text{Maximizar} & \epsilon cx \\ \text{sujeto a} & x \in Q \end{cases}$$

es factible y acotado. Por el teorema de dualidad fuerte, el programa dual

$$(D) \begin{cases} \text{Minimizar} & y_1 + \dots + y_n \\ y_1 p_1^1 & + & \dots + & y_n p_1^N & = & \epsilon c_1 \\ \text{sujeto a} & \vdots & \vdots & \vdots & \vdots \\ y_1 p_n^1 & + & \dots + & y_n P_n^N & = & \epsilon c_n \\ & & y_1, \dots, y_n \ge 0 \end{cases}$$

es factible. Esto implica que $\epsilon c \in \text{cone}(p_1, \dots, p_n)$. Pero, podemos tomar ϵ suficientemente pequeño de manera que $\epsilon c \in P$ con lo que P contiene al origen en su interior.

 \Leftarrow Suponemos que existe un $c \in \mathbb{R}^n$ de manera que el programa (P) no es acotado. Esto implica que para todo $\epsilon > 0$, el programa

$$(P') \begin{cases} \text{Maximizar} & \epsilon cx \\ \text{sujeto a} & x \in Q \end{cases}$$

tampoco es acotado porque solo hemos multiplicado la función objetivo por un escalar positivo. Por el teorema de dualidad débil, el programa dual

$$(D) \begin{cases} \text{Minimizar} & y_1 + \dots + y_n \\ y_1 p_1^1 + \dots + y_n p_1^N = \epsilon c_1 \\ \text{sujeto a} & \vdots & \vdots & \vdots \\ y_1 p_n^1 + \dots + y_n P_n^N = \epsilon c_n \\ & y_1, \dots, y_n \ge 0 \end{cases}$$

es no factible. Pero esto implica que para todo $\epsilon > 0$, $\epsilon c \notin \text{cone}(p_1, \ldots, p_N) \supseteq P$ con lo que para todo $\epsilon > 0$, $\epsilon c \notin P \vee P$ no contiene al origen en su interior.

- (c) Sea $a \in \mathbb{R}^n$. La ecuación lineal $ax \leq 1$ es válida en P si y solo si $a \in Q$.
- \implies Si $ax \le 1$ es válida en todo P, en particular es válida con $x = P_i$ para cada $i \in \{1, ..., N\}$ y entonces claramente $a \in Q$ por construcción de Q.
 - \iff Sea $a \in Q$. Si $a = (a_1, \ldots, a_n)$, entonces a cumple

$$\begin{cases} a_1 p_1^1 + \cdots + a_n p_n^1 \leq 1 \\ \vdots & \vdots & \vdots \\ a_1 p_1^N + \cdots + a_n p_n^N \leq 1 \end{cases}$$

Sea $x = (x_1, \dots, x_n) \in P$, por definición, existen $\lambda_1, \dots, \lambda_N \ge 0$ tales que $\sum_{i=0}^N \lambda_i = 1$ y

$$\begin{cases} x_1 = \lambda_1 p_1^1 + \cdots + \lambda_N p_1^N \\ \vdots & \vdots & \vdots \\ x_n = \lambda_1 p_n^1 + \cdots + \lambda_N p_n^N \end{cases}$$

Tenemos que probar que $ax \leq 1$, es decir

$$ax \le 1 \quad \longleftrightarrow \quad (a_1 \cdots a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \le 1$$

$$\longleftrightarrow \quad a_1(\lambda_1 p_1^1 + \cdots + \lambda_N p_1^N) + \cdots + a_n(\lambda_1 p_n^1 + \cdots + \lambda_N p_n^N) \le 1$$

Pero claramente se cumple porque podemos reordenar los términos y, aplicando la definición del poliedro Q, tenemos que

$$\lambda_1(a_1p_1^1 + a_2p_2^1 + \dots + a_np_n^1) + \dots + \lambda_N(a_1p_1^N + \dots + p_n^Na_n) \le \sum_{i=1}^N \alpha_i = 1$$

(d) Suponer que $0 \in \operatorname{interior}(P)$ (o sea, Q acotado) y sea $a \in \mathbb{R}^n$. Entonces, la ecuación lineal $ax \leq 1$ es válida en Q si y solo si $a \in P$.

Solución.

 \implies Suponemos que $ax \le 1$ es válida en todo el poliedro Q. Por el Ejercicio 2,

$$(a; 1) \in \text{cone}((p_1; 1, p_N; 1), (0; 1)),$$

es decir, existen $\lambda_0, \lambda_1, \dots, \lambda_N \geq 0$ tales que

$$\begin{cases} a_1 = \lambda_1 p_1^1 + \cdots + \lambda_N p_1^N \\ \vdots & \vdots & \vdots \\ a_n = \lambda_1 p_n^1 + \cdots + \lambda_N p_n^N \end{cases}$$
$$1 = \lambda_0 + \lambda_1 + \cdots + \lambda_N$$

Como 0 está en el interior de P, tenemos expresado a como combinación convexa de elementos de P, en particular, de sus generadores como politopo y de $0 \in P$, por tanto, $a \in P$ por definición de politopo.

 \Leftarrow Sea $a \in P$. Por definición, existen $\lambda_1, \ldots, \lambda_N \geq 0$ con $\sum_{i=1}^N \lambda_i = 1$ tales que

$$\begin{cases} a_1 = \lambda_1 p_1^1 + \cdots + \lambda_N p_1^N \\ \vdots & \vdots & \vdots \\ a_n = \lambda_1 p_n^1 + \cdots + \lambda_N p_n^N \end{cases}$$

Sea $x=(x_1,\ldots,x_n)\in Q.$ Tenemos que probar que $ax\leq 1,$ es decir

$$ax \le 1 \quad \longleftrightarrow \quad (a_1 \cdots a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \le 1$$

$$\longleftrightarrow \quad (\lambda_1 p_1^1 + \cdots + \lambda_N p_1^N) x_1 + \cdots + (\lambda_1 p_n^1 + \cdots + \lambda_N p_n^N) x_n \le 1$$

Pero claramente se cumple porque podemos reordenar los términos y, aplicando la definición del poliedro Q, tenemos que

$$\lambda_1(p_1^1x_1 + p_2^1x_2 + \dots + p_n^1x_n) + \dots + \lambda_N(p_1^Nx_1 + \dots + p_n^Nx_n) \le \sum_{i=1}^N \alpha_i = 1$$

Por tanto, $ax \leq 1$ es válida en Q.