Dolphin species classification

Technical report

Vyacheslav Lyubchich et al.

2025-08-20

Table of contents

1	Pac	kages									•											 		1
2	Ger	neral p	arame	eters																		 		2
3	Dat	a sum	marie	s																		 		2
4	Res	ults .																				 		4
	4.1	Comp	are mo	dels																				4
	4.2	Analy	sis of t	he sel	ected	mod	lel .																	7
			Level																					
		4.2.2	Level	2: Ev	vents .																			10
		4.2.3	Miscl	assifie	ed ever	nts .																		16
	4.3	Use th	ne selec	eted m	nodel .																			16
		4.3.1	Chesa	apeak	e Bay	bott	len	ose																16
		4.3.2	Unlal	oeled •	data .																			17
R	efere	nces .									•									 •				20
S1	Арр	pendix	·																					21
	S1.1	Whist	le char	acteri	stics b	y sp	eci	es .																21
	S1.2	Whist	le char	acteri	stics b	y da	ata	sou	irce															23
	S1.3	Whist	le char	acteri	stics f	or th	ne n	nan	uso	crip	ot s	sui	nn	ar	y t	ab	le							26
	S1.4	Partia	al depe	ndenc	e plots	fro	m t	he :	$\operatorname{sel}\epsilon$	ect	$_{\mathrm{ed}}$	$_{ m m}$	ode	el .								 		26

1 Packages

Load R packages used in this report, including dplyr (Wickham et al. 2023), tidyr (Wickham et al. 2024b), ggplot2 (Wickham et al. 2024a), patchwork (Pedersen 2024), banter (Archer and Sakai 2023), pdp (Greenwell 2022), and rfPermute (Archer 2023).

2 General parameters

Significance level $\alpha = 5\%$.

3 Data summaries

PAMGuard and ROCCA whistle summaries were additionally processed using code/dataprocess.R comprising the following steps.

- 1. For the T1C data, use the column UTC to update ROCCA-generated event IDs:
 - Sort the data chronologically and identify uninterrupted sequences of event IDs from the ROCCA output;
 - Number the uninterrupted sequences of event IDs;
 - Update the event IDs by appending the ROCCA-generated event ID and the assigned number;
 - Split the new events such that the time gap between consecutive whistles is no more than 5 minutes, update the event IDs again.
- 2. For the NOAA data, correct the dates, using the original column Source.
- 3. For the Watkins data, correct the dates, using the original column Source and metadata.
- 4. For the Brazil data, use the column UTC to split the data in 5-minute events and update the ROCCA-generated single event ID.
- 5. From each dataset, select the columns species, ID columns (Source, event.id, call.id, Year, Month, and UTC), and potential predictors.
- 6. Combine the datasets.
- 7. Remove columns in which all values are the same.

Eventually, assign the response variable: species.

Predictors for whistle classification (50 predictors) in alphabetic order: duration, freqAbsSlope-Mean, freqBeg, freqBegDwn, freqBegEndRatio, freqBegSweep, freqBegUp, freqCenter, freqCOFM, freqEnd, freqEndDwn, freqEndSweep, freqEndUp, freqMax, freqMaxMinRatio, freqMean, freqMedian, freqMen, freqNegSlopeMean, freqNumSteps, freqPosSlopeMean, freqQuarter1, freqQuarter2, freqQuarter3, freqRange, freqRelBW, freqSlopeMean, freqSlopeRatio, freqSpread, freqStdDev, freqStepDown, freqStepUp, freqSweepDwnPercent, freqSweepFlatPercent, freqSweepUpPercent, infldur, inflMaxDelta, inflMaxMinDelta, inflMeanDelta, inflMedianDelta, inflMinDelta, inflStdDevDelta, numInflections, numSweepsDwnFlat, numSweepsDwnUp, numSweepsFlatDwn, numSweepsFlatUp, numSweepsUpDwn, numSweepsUpFlat, stepdur.

Total number of whistles is 14822, including 8375 whistles of bottlenose dolphins and 6447 whistles of common dolphins (see details in Table 1).

Table 1: Number of whistles available from each source and year along with the event counts.

Source	Dolphin species	1958	1975	1987	2014	2016	2017	2018	Whistle, count	Whistle,	Event, count	Event,
AMAPPS	S Common	0	0	0	0	2637	0	0	2637	17.791	9	0.696
T1C	Bottlenose	0	0	0	0	5251	2049	1075	8375	56.504	1225	94.668
UFRJ	Common	0	0	0	3580	0	0	0	3580	24.153	29	2.241
Watkins	Common	131	97	2	0	0	0	0	230	1.552	31	2.396
Total	-	131	97	2	3580	7888	2049	1075	14822	100	1294	100.001

From Table 2 and Figure 1, bottlenose dolphin encounters and common dolphin encounters recorded in the Watkins dataset contain much fewer whistles than common dolphin encounters from the UFRJ and AMAPPS datasets.

Table 2: Statistical summaries of the number of whistles per event.

Source	Dolphin species	n	mean	sd	median	min	max	skew	kurtosis	se
AMAPPS	Common	9	293.00	316.82	127	24	1023	1.27	0.27	105.61
T1C	Common	1225	6.84	10.21	3	1	101	3.94	22.67	0.29
UFRJ	Bottlenose	29	123.45	143.29	51	1	495	1.21	0.20	26.61
Watkins	Common	31	7.42	9.01	4	1	32	1.79	1.82	1.62

Figure 1: Distributions of events by the number of whistles in each. The bin width is 20.

4 Results

4.1 Compare models

See Figure 2 and Table 3 with results of 5-fold cross-validation applied 5 times (each boxplot corresponds to 25 values). The folds were created considering the underlying species proportions, hence each testing set (validation fold) contained about 245 events with bottlenose dolphins and about 14 events with common dolphins.

Figure 2: Boxplots of classification performance metrics from cross-validation.

Table 3: Average performance of different methods in cross-validation.

Method	Sensitivity	Specificity	Balanced Accuracy
Banter	0.98	0.91	0.95
NN	0.97	0.67	0.82
RF	0.97	0.84	0.91
RF + Boruta	0.97	0.83	0.90

Figure 3 shows high variability of accuracy of classification based on the number of whistles in an event. Figure 4 focuses on the events with fewer whistles and shows that the accuracy is generally increasing with the number of whistles in an event, and accuracy of classifying events with just one whistle is not very different from accuracy obtained for events with more whistles.

The best-performing model is the BANTER model (stacked random forests) retrained to classify between two species of dolphins.

Figure 3: Cross-validation accuracy of classifying events for each species, based on the applied method and whistle count per event.

Figure 4: Cross-validation accuracy of classifying events for each species (for events with up to 20 whistles), based on the applied method and whistle count per event. The point sizes correspond to the number of times the events of given length appeared in cross-validation.

4.2 Analysis of the selected model

Refit the model on the whole dataset.

4.2.1 Level 1: Whistles

Summary of the detector-level model from the package BANTER

```
#> Model run times:
#> start stop run.time
#> dw "2025-07-08 13:42:50" "2025-07-08 13:44:01" "1.19 mins"
#>
#> Number of events and model classification rate:
#> species num.events dw
#> 1 Bottlenose 1225 91.52
#> 2 Common 69 82.64
#> 3 Overall 1294 87.66
```

7665 710 0.08477612 1119 5328 0.17356910

Another summary

#> Bottlenose

#> Common

Figure 5: Detector-level model performance on out-of-bag (OOB) data.

Figure 6: Detector-level model performance on out-of-bag (OOB) data.

Figure 7: Variables in the detector-level model ranked by their importance (mean decrease in classification accuracy), with the most important on top.

4.2.2 Level 2: Events

Summary of the detector-level model from the package BANTER

```
#> Model run times:
        start
                                                   run.time
                              stop
        "2025-07-08 13:42:50" "2025-07-08 13:44:01" "1.19 mins"
#> dw
#> event "2025-07-08 13:44:01" "2025-07-08 13:44:04" "3.76 secs"
#> Number of events and model classification rate:
       species num.events
                            dw event
#> 1 Bottlenose
                   1225 91.52 97.71
#> 2
        Common
                     69 82.64 91.30
#> 3
       Overall
                   1294 87.66 97.37
#> Number of trees: 1000
#> Sample sizes:
#> Bottlenose
                 Common
#>
           1
                      1
#>
#> Distribution of percent correctly classified overall in last 500 (50%) trees:
   Min. 1st Qu. Median
                            Mean 3rd Qu.
                                           Max.
#>
    97.30 97.37
                  97.37
                            97.37 97.37
                                           97.37
#>
#> Sample inbag proportion distribution:
           Min. 1st Qu. Median Mean 3rd Qu. Max.
                0.4 0.8 0.8
#> expected 0.1
                                    1.1 1.4
#> observed 0.0
                    0.0
                          0.1 0.2
                                       0.1 2.4
#>
#> Confusion matrix:
             Bottlenose Common pct.correct LCI_0.95 UCI_0.95
#> Bottlenose
                   1197
                           28 97.71429 96.71335 98.47591
                                 91.30435 82.02793 96.74171
#> Common
                    6
                            63
                               97.37249 96.34754 98.17366
#> Overall
                           NA
                    NA
```


Another summary

#> Bottlenose

#> Common

```
#>
#> Call:
#> randomForest(formula = species ~ ., data = x@model.data, ntree = ntree, sampsize = sampsize, replace = FAI
#> Type of random forest: classification
#> Number of trees: 1000
#> No. of variables tried at each split: 1
#>
#> 00B estimate of error rate: 2.63%
#> Confusion matrix:
#> Bottlenose Common class.error
```

Overall performance is adequate, with high overall accuracy.

28 0.02285714 63 0.08695652

1197

Table 4 shows BANTER summary with the percent of each species correctly classified for each detector model and the event model. It is a summary of the diagonal values from the confusion matrices for all models.

Table 4: Percent of correct classifications by different levels of the model.

species	dw	event
Bottlenose	91.522	97.714
Common	82.643	91.304
Overall	87.660	97.372

Figure 8: Event-level model performance on out-of-bag (OOB) data.

Table 5: Percent of correct classifications given different thresholds for the proportion of trees that need to vote for that species.

	Bottlenose	Common	Overall
pct.correct_0.1	97.7	91.3	97.4
$pct.correct_0.2$	97.7	91.3	97.4
$pct.correct_0.3$	97.7	91.3	97.4
$pct.correct_0.4$	97.7	91.3	97.4
$pct.correct_0.5$	97.7	91.3	97.4
$pct.correct_0.6$	97.3	89.9	96.9
$pct.correct_0.7$	96.2	88.4	95.8
$pct.correct_0.8$	94.7	84.1	94.1
$pct.correct_0.9$	89.6	75.4	88.9
$pct.correct_0.95$	84.9	72.5	84.2

From https://taikisan21.github.io/PAMpal/banterGuide.html#UNDER_DEVELOPMENT: "These values will always decrease as the percent of trees threshold increases. That is because as stringency is decreased (lower thresholds), more samples are likely to be correctly classified. These values give an indication of the fraction of events that can be classified with high certainty."

In our analysis, there are many cases which were classified with high certainty (see Table 5). The certainty is higher for bottlenose dolphins (Table 5). However, some of the events that were classified as common dolphins with high certainty (> 90%) were bottlenose dolphin occurrences (right plot in Figure 11).

Figure 9: Event-level model performance on out-of-bag (OOB) data.

Figure 10: Number of trees that predicted each species (i.e., votes from each tree).

Figure 11: Distribution of votes (assignment probabilities) for each of the predicted species. The true species are coded by colors.

Figure 12: Distribution of votes (assignment probabilities) for each of the predicted species. The true species are coded by colors.

Figure 13: Variables in the event-level model ranked by their importance (mean decrease in classification accuracy), with the most important on top.

4.2.3 Misclassified events

There are 34 misclassified events (Table 6).

Table 6: List of misclassified events with the model vote proportions for each species.

id	original	predicted	Bottlenose	Common
Id	Original	*	Dottlellose	Common
Bra_B13h55m12s08may2014_17	Common	Bottlenose	0.99	0.01
Bra_B13h55m12s08may2014_8	Common	Bottlenose	0.60	0.40
$T1C_2016MarApr_AutoEvent75_0225$	Bottlenose	Common	0.37	0.63
T1C_2016MayJun_AutoEvent17_0553	Bottlenose	Common	0.11	0.89
T1C_2017AprSep_AutoEvent178_0679	Bottlenose	Common	0.44	0.56
T1C_2017AprSep_AutoEvent190_0687	Bottlenose	Common	0.47	0.53
T1C_2017AprSep_AutoEvent47_0593	Bottlenose	Common	0.45	0.55
T1C_2017AprSep_AutoEvent89_0626	Bottlenose	Common	0.19	0.81
T1C_2017OctDec_AutoEvent118_0776	Bottlenose	Common	0.12	0.88
T1C_2017OctDec_AutoEvent121_0778	Bottlenose	Common	0.10	0.90
T1C_2017OctDec_AutoEvent147_0786	Bottlenose	Common	0.05	0.95
T1C_2017OctDec_AutoEvent199_1013	Bottlenose	Common	0.43	0.57
T1C_2017OctDec_AutoEvent217_0792	Bottlenose	Common	0.33	0.67
T1C_2017OctDec_AutoEvent221_1023	Bottlenose	Common	0.46	0.54
T1C_2017OctDec_AutoEvent335_1036	Bottlenose	Common	0.18	0.82
T1C_2017OctDec_AutoEvent356_0946	Bottlenose	Common	0.25	0.75
T1C_2017OctDec_AutoEvent435_0959	Bottlenose	Common	0.41	0.59
T1C_2017OctDec_AutoEvent47_0906	Bottlenose	Common	0.08	0.92
T1C_2017OctDec_AutoEvent52_0909	Bottlenose	Common	0.45	0.55
T1C_2017OctDec_AutoEvent550_1054	Bottlenose	Common	0.32	0.68
T1C_2017OctDec_AutoEvent701_0886	Bottlenose	Common	0.02	0.98
T1C_2017OctDec_AutoEvent794_0891	Bottlenose	Common	0.01	0.99
T1C_2018JulAug_AutoEvent10_1247	Bottlenose	Common	0.03	0.97
T1C_2018JulAug_AutoEvent12_1272	Bottlenose	Common	0.15	0.85
T1C_2018JulAug_AutoEvent14_1149	Bottlenose	Common	0.01	0.99
T1C_2018JulAug_AutoEvent29_1072	Bottlenose	Common	0.01	0.99
T1C_2018JulAug_AutoEvent30_1136	Bottlenose	Common	0.01	0.99
T1C_2018JulAug_AutoEvent34_1140	Bottlenose	Common	0.40	0.60
T1C_2018JulAug_AutoEvent3_1193	Bottlenose	Common	0.46	0.54
T1C_2018JulAug_AutoEvent9_1214	Bottlenose	Common	0.46	0.54
Wat_AutoEvent10	Common	Bottlenose	0.51	0.49
Wat_AutoEvent6	Common	Bottlenose	0.79	0.21
Wat_AutoEvent8	Common	Bottlenose	0.51	0.49
Wat_AutoEvent9	Common	Bottlenose	0.66	0.34

4.3 Use the selected model

4.3.1 Chesapeake Bay bottlenose

The 22 unlabeled events were mostly classified as bottlenose dolphins (Table 7).

Table 7: Summary of the predicted species.

	Number of events	Percent
Bottlenose	22	100

Show which events (if any) were classified as common dolphins

```
#> [1] event.id n UTC Year Month Source prop.dw dw.Bottle
#> [9] dw.Common predicted
#> <0 rows> (or 0-length row.names)
```

Check number of whistles per event (Figure 14):

Figure 14: number of whistles per event in the Chesapeake Bay dataset.

4.3.2 Unlabeled data

The 2458 unlabeled events were mostly classified as bottlenose dolphins (Table 8).

Table 8: Summary of the predicted species.

	Number of events	Percent
Bottlenose	2339	95.16
Common	119	4.84

```
#> predicted
#> Source Bottlenose Common
#> A5C 2117 94
#> MBuoy 222 25
```


Figure 15: Assignment probabilities for each of the species (since this is a binary classification, the plots are mirrow images of each other).

Figure 16: Number of events and their predicted species by month.

Figure 17: Number of events and their predicted species grouped by year. Note different scales across the years.

Figure 18: Number of events and their predicted species grouped by month of detections (all years combined).

References

- Archer E (2023) rfPermute: Estimate permutation p-values for random forest importance metrics. R package version 2.5.2, https://github.com/EricArcher/rfPermute
- Archer E, Sakai T (2023) Banter: BioAcoustic eveNT classifiER. R package version 0.9.6, https://CRAN.R-project.org/package=banter
- Greenwell BM (2022) Pdp: Partial dependence plots. R package version 0.8.1, https://github.com/bgreenwell/pdp
- Pedersen TL (2024) Patchwork: The composer of plots. R package version 1.2.0, https://patchwork.data-imaginist.com
- Wickham H, Chang W, Henry L, et al (2024a) ggplot2: Create elegant data visualisations using the grammar of graphics. R package version 3.5.1, https://ggplot2.tidyverse.org
- Wickham H, François R, Henry L, et al (2023) Dplyr: A grammar of data manipulation. R package version 1.1.4, https://dplyr.tidyverse.org
- Wickham H, Vaughan D, Girlich M (2024b) Tidyr: Tidy messy data. R package version 1.3.1, https://tidyr.tidyverse.org

S1 Appendix

S1.1 Whistle characteristics by species

Summaries of important whistle characteristics by species:

#>												
#>	Descriptive sta	atist	ics by	y group								
#>	group: Bottleno	se										
#>		vars	n	mean	sd	median	min	max	range	skew	kurtosis	se
#>	${\tt freqMaxMinRatio}$	1	8375	1.11	0.11	1.07	1.01	2.27	1.26	2.91	13.31	0.00
#>	freqRelBW	2	8375	0.10	0.09	0.07	0.01	0.78	0.77	2.17	6.49	0.00
#>	freqStdDev	3	8375	393.89	290.55	300.15	65.18	2705.87	2640.69	1.86	5.09	3.17
#>	${\tt freqMean}$	4	8375	13992.09	3922.10	12415.76	7347.90	23874.02	16526.13	1.12	0.26	42.86
#>	freqRange	5	8375	1253.45	872.75	984.38	187.50	7921.88	7734.38	1.82	4.56	9.54
#>	${\tt freqSlopeRatio}$	6	8375	-1.15	0.69	-1.02	-10.34	0.00	10.34	-2.43	13.51	0.01
#>	freqCenter			13992.94				23812.50		1.13	0.26	
	freqCOFM		8375	0.12	0.08	0.10	0.00	0.70		1.83		0.00
	duration		8375	0.20	0.05	0.18	0.15	0.72	0.58		8.02	0.00
#>	freqSlopeMean		8375				-26311.55				1.55	62.25
	freqBeg			13741.96					18796.88		0.16	44.69
	group: Common											
#>		vars	n		sd	${\tt median}$	min	max	range	skew	kurtosis	se
	freq Max Min Ratio								•			
#>			6447	1.19	0.18	1.14	1.02		1.84	2.31	8.22	
	freqRelBW	2	6447	0.16	0.13	0.13	0.02	0.96	1.84 0.95	2.31 1.51	2.77	0.00
	freqStdDev	2 3	6447 6447	0.16 622.27	0.13 511.32	0.13 490.12	0.02 79.90	0.96 4686.51	1.84 0.95 4606.61	2.31 1.51 1.87	2.77 5.12	0.00 6.37
#>	freqStdDev freqMean	2 3 4	6447 6447 6447	0.16 622.27 15089.43	0.13 511.32 3614.75	0.13 490.12 14519.53	0.02 79.90 7346.59	0.96 4686.51 26094.23	1.84 0.95 4606.61 18747.64	2.31 1.51 1.87 0.36	2.77 5.12 -0.70	0.00 6.37 45.02
#> #>	freqStdDev freqMean freqRange	2 3 4 5	6447 6447 6447 6447	0.16 622.27 15089.43 2196.97	0.13 511.32 3614.75 1692.38	0.13 490.12 14519.53 1828.12	0.02 79.90 7346.59 281.25	0.96 4686.51 26094.23 12187.50	1.84 0.95 4606.61 18747.64 11906.25	2.31 1.51 1.87 0.36 1.53	2.77 5.12 -0.70 2.91	0.00 6.37 45.02 21.08
#> #> #>	freqStdDev freqMean freqRange freqSlopeRatio	2 3 4 5 6	6447 6447 6447 6447	0.16 622.27 15089.43 2196.97 -1.07	0.13 511.32 3614.75 1692.38 0.55	0.13 490.12 14519.53 1828.12 -1.00	0.02 79.90 7346.59 281.25 -6.00	0.96 4686.51 26094.23 12187.50 0.00	1.84 0.95 4606.61 18747.64 11906.25 6.00	2.31 1.51 1.87 0.36 1.53 -2.09	2.77 5.12 -0.70 2.91 9.06	0.00 6.37 45.02 21.08 0.01
#> #> #> #>	freqStdDev freqMean freqRange freqSlopeRatio freqCenter	2 3 4 5 6 7	6447 6447 6447 6447 6447	0.16 622.27 15089.43 2196.97 -1.07 15084.02	0.13 511.32 3614.75 1692.38 0.55 3568.88	0.13 490.12 14519.53 1828.12 -1.00 14578.12	0.02 79.90 7346.59 281.25 -6.00 7889.06	0.96 4686.51 26094.23 12187.50 0.00 25593.75	1.84 0.95 4606.61 18747.64 11906.25 6.00 17704.69	2.31 1.51 1.87 0.36 1.53 -2.09 0.36	2.77 5.12 -0.70 2.91 9.06 -0.74	0.00 6.37 45.02 21.08 0.01 44.45
#> #> #> #>	freqStdDev freqMean freqRange freqSlopeRatio freqCenter freqCOFM	2 3 4 5 6 7 8	6447 6447 6447 6447 6447 6447	0.16 622.27 15089.43 2196.97 -1.07 15084.02 0.30	0.13 511.32 3614.75 1692.38 0.55 3568.88 0.26	0.13 490.12 14519.53 1828.12 -1.00 14578.12 0.22	0.02 79.90 7346.59 281.25 -6.00 7889.06 0.00	0.96 4686.51 26094.23 12187.50 0.00 25593.75 2.29	1.84 0.95 4606.61 18747.64 11906.25 6.00 17704.69 2.28	2.31 1.51 1.87 0.36 1.53 -2.09 0.36 1.64	2.77 5.12 -0.70 2.91 9.06 -0.74 3.82	0.00 6.37 45.02 21.08 0.01 44.45 0.00
#> #> #> #> #>	freqStdDev freqMean freqRange freqSlopeRatio freqCenter freqCOFM duration	2 3 4 5 6 7 8 9	6447 6447 6447 6447 6447 6447 6447	0.16 622.27 15089.43 2196.97 -1.07 15084.02 0.30 0.23	0.13 511.32 3614.75 1692.38 0.55 3568.88 0.26 0.10	0.13 490.12 14519.53 1828.12 -1.00 14578.12 0.22 0.20	0.02 79.90 7346.59 281.25 -6.00 7889.06 0.00 0.15	0.96 4686.51 26094.23 12187.50 0.00 25593.75 2.29 1.02	1.84 0.95 4606.61 18747.64 11906.25 6.00 17704.69 2.28 0.87	2.31 1.51 1.87 0.36 1.53 -2.09 0.36 1.64 2.50	2.77 5.12 -0.70 2.91 9.06 -0.74 3.82 8.71	0.00 6.37 45.02 21.08 0.01 44.45 0.00 0.00
#> #> #> #> #> #>	freqStdDev freqMean freqRange freqSlopeRatio freqCenter freqCOFM	2 3 4 5 6 7 8 9	6447 6447 6447 6447 6447 6447 6447	0.16 622.27 15089.43 2196.97 -1.07 15084.02 0.30 0.23	0.13 511.32 3614.75 1692.38 0.55 3568.88 0.26 0.10 9841.61	0.13 490.12 14519.53 1828.12 -1.00 14578.12 0.22 0.20 2313.31	0.02 79.90 7346.59 281.25 -6.00 7889.06 0.00 0.15 -60646.19	0.96 4686.51 26094.23 12187.50 0.00 25593.75 2.29 1.02	1.84 0.95 4606.61 18747.64 11906.25 6.00 17704.69 2.28 0.87	2.31 1.51 1.87 0.36 1.53 -2.09 0.36 1.64 2.50	2.77 5.12 -0.70 2.91 9.06 -0.74 3.82 8.71	0.00 6.37 45.02 21.08 0.01 44.45 0.00 0.00 122.57

Figure S1: Boxplots of predictors for whistle classification, by species.

S1.2 Whistle characteristics by data source

Summaries of important whistle characteristics by source of the data:

#>												
#>	Descriptive sta	atist	ics b	v group								
	group: AMAPPS	20100	100 0) group								
#>	group. mmr.	vars	n	mean	sc	l median	mir	n max	rang	re ske	w kurtosi	is se
	freqMaxMinRatio		2637		0.21		1.02		•	•		
	freqRelBW		2637		0.14		0.02					
	freqStdDev		2637		561.46		83.98					
	freqMean			13473.15		12581.90		26094.23				
	freqRange		2637		1787.84			12187.50				
	freqSlopeRatio		2637		0.26		-4.11	0.00	4.1	11 -1.3		
	freqCenter			13475.54		12562.50	8250.00	25593.75	17343.7	75 1.4	2 1.7	78 65.13
	freqCOFM	8	2637	0.49	0.27	0.45	0.04	2.29	2.2	25 1.3	1 3.0	0.01
	duration	9	2637	0.23	0.09	0.20	0.15	0.86	0.7	71 2.2	0 6.7	71 0.00
#>	freqSlopeMean	10	2637	3619.21	12880.54	5042.99	-60646.19	62068.97	122715.1	15 -0.3	8 1.8	34 250.83
	freqBeg	11	2637	13025.95	3514.78	12187.50	5812.50	26625.00	20812.5	50 1.2	1 1.5	55 68.45
#>												
#>	group: T1C											
#>	•	vars	n	mean	sd	median	min	max	range	skew	kurtosis	se
#>	freqMaxMinRatio	1	8375	1.11	0.11	1.07	1.01	2.27	1.26	2.91	13.31	0.00
#>	freqRelBW	2	8375	0.10	0.09	0.07	0.01	0.78	0.77	2.17	6.49	0.00
#>	freqStdDev	3	8375	393.89	290.55	300.15	65.18	2705.87	2640.69	1.86	5.09	3.17
#>	freqMean	4	8375	13992.09	3922.10	12415.76	7347.90	23874.02	16526.13	1.12	0.26	42.86
#>	freqRange	5	8375	1253.45	872.75	984.38	187.50	7921.88	7734.38	1.82	4.56	9.54
#>	${\tt freqSlopeRatio}$	6	8375	-1.15	0.69	-1.02	-10.34	0.00	10.34	-2.43	13.51	0.01
#>	freqCenter	7	8375	13992.94	3909.31	12398.44	8226.56	23812.50	15585.94	1.13	0.26	42.72
#>	freqCOFM	8	8375	0.12	0.08	0.10	0.00	0.70	0.70	1.83	5.50	0.00
#>	duration	9	8375	0.20	0.05	0.18	0.15	0.72	0.58	2.30	8.02	0.00
#>	freqSlopeMean		8375		5697.00		-26311.55			0.15		62.25
#>	freqBeg	11	8375	13741.96	4089.48	12281.25	5156.25	23953.12	18796.88	1.01	0.16	44.69
#>												
	group: UFRJ											
#>	6	vars	n		sd 0 10	median	min	max	range		kurtosis	se
	freqMaxMinRatio		3580		0.12	1.07	1.02	2.49	1.48	2.71	13.01	0.00
	freqRelBW freqStdDev		3580 3580		0.09 410.80	0.07 326.63	0.02 79.90	0.85 3165.63	0.84 3085.74	1.92	5.13 4.38	0.00 6.87
	freqMean			16406.20				23674.41			-0.59	54.30
	freqRange		3580			1078.12		11671.88		1.95	5.51	21.21
	freqSlopeRatio		3580		0.68	-1.00	-6.00	0.00		-1.67	5.17	0.01
	freqCenter		3580					23671.88			-0.61	53.82
	freqCOFM		3580		0.13	0.12	0.00	1.95	1.95	2.80	16.43	0.00
	duration		3580			0.19	0.15	1.02		2.61	9.42	
	freqSlopeMean			1691.33								108.39
	freqBeg	11	3580	16141.22	3353.66	17625.00	6703.12	23953.12	17250.00	-0.27		56.05
#>												
#>	group: Watkins											
#>		vars	n	mean	sd	median	min	max	range	skew	kurtosis	se
#>	${\tt freqMaxMinRatio}$	1	230	1.28	0.24	1.21	1.03	2.46	1.44	2.07	5.56	0.02
#>	freqRelBW	2	230	0.23	0.16	0.19	0.03	0.84	0.82	1.30	1.76	0.01
#>	${\tt freqStdDev}$	3	230	879.26	607.46	688.81	116.79	3428.53	3311.73	1.03	0.68	40.05
#>	${\tt freqMean}$	4	230	13124.69	2829.04	12717.09	7950.09	21488.50		0.71	0.11	186.54
#>	freqRange		230	2935.28	1928.54	2426.37	355.08	9243.75	8888.67	0.97	0.35	127.16
	${\tt freqSlopeRatio}$		230	-1.06	0.75	-0.88	-4.63	0.00		-1.69	4.47	0.05
	${\tt freqCenter}$			13190.45		12841.99		21316.41				181.92
#>	freqCOFM	8	230	0.30	0.21	0.24	0.04	1.30	1.26	1.42	2.42	0.01

#> duration 9 230 0.28 0.14 0.23 0.15 0.92 0.77 2.02 4.62 0.01 #> freqSlopeMean 10 230 1397.15 11554.53 2537.15 -41254.56 42737.23 83991.79 -0.09 1.08 761.88 #> freqBeg 11 230 12964.04 3141.67 12726.56 4621.88 21754.69 17132.81 0.53 0.35 207.16

Figure S2: Boxplots of predictors for whistle classification, by source.

\$1.3 Whistle characteristics for the manuscript summary table

Table S1: Summary of Whistle Characteristics by Source

AMAPPS	Watkins	UFRJ	Aggregated (UFRJ, AMAPPS, Watkins)	T1C
1.28 (0.21)	1.28 (0.24)	1.11 (0.12)	1.19 (0.18)	1.11 (0.11)
0.23(0.14)	0.23(0.16)	0.10(0.09)	0.16 (0.13)	0.10(0.09)
793.80 (561.46)	879.26 (607.46)	479.42 (410.80)	622.27 (511.32)	393.89 (290.55)
13473.15	13124.69	16406.20	15089.43 (3614.75)	13992.09
(3409.23)	(2829.04)	(3248.64)		(3922.10)
3017.21 (1787.84)	2935.28 (1928.54)	1545.36 (1269.20)	2196.97 (1692.38)	1253.45 (872.75)
-1.02 (0.26)	-1.06 (0.75)	-1.12 (0.68)	-1.07 (0.55)	-1.15 (0.69)
13475.54	13190.45	16390.47	15084.02 (3568.88)	13992.94
(3344.78)	(2759.01)	(3220.10)	,	(3909.31)
0.49 (0.27)	0.30 (0.21)	0.16 (0.13)	0.30 (0.26)	0.12 (0.08)
0.23(0.09)	0.28(0.14)	0.23(0.10)	0.23(0.10)	0.20(0.05)
3619.21	1397.15	1691.33 (6485.03)	2469.39 (9841.61)	2002.03 (5697.00)
(12880.54)	(11554.53)	,	,	,
13025.95	12964.04	16141.22	14753.64 (3748.58)	13741.96
(3514.78)	(3141.67)	(3353.66)	. ,	(4089.48)

S1.4 Partial dependence plots from the selected model

Figure S3: Partial dependence plots from the detector-level classification model, from the most to the least important predictor.