

SC1005 Digital Logic

Recap and Discussion

Lecture 17 and 18

Sequential Circuits

Summary of Lecture 17

- Intro to Sequential Circuits
- Latches
- Timing

Summary of Lecture 18

- Sequential Circuits
 - Gated/Enabled SR Latch
 - Transparent D-Latch
 - Edge-Triggered Flip-Flop
 - Registers

Review of Combinational Circuits

- So far, we have investigated combinational circuits
- The output of a combinational circuit is purely a function of the inputs to it
 - output = f (input)
- When the inputs are changed, the output will change to that determined by those inputs (after a short propagation delay)
- Knowing only the *current* inputs, we can always determine the output

Sequential Circuits

- Sequential circuits introduce the idea of state
 - The state of a circuit encodes information about the past to determine how it will react with the inputs to produce an output
- The output of a sequential circuit depends on **both** the *current* inputs and what has previously happened
 (the *previous* inputs determine the "state")
- In this sense, sequential circuits have memory, whereas combinational circuits have no memory.

Exercise 2

R

- Consider two styles of fan speed control:
 - Dial-based (Off, Lo, Med, Hi)
 - Button-based (+,–)
- Which of the following correctly define the type of circuit used for implementing the fan control for L and R?

- A. L Combinational
 - R Combinational
- C. L Sequential
 - R Combinational

- L Combinational B.
 - R Sequential

- D. L Sequential
 - R Sequential

Ans: B. For the first, the fan speed depends on which input is selected. For the second, the fan speed depends on the input and the current fan speed

Set-Reset (SR) Latch

The most basic circuit for storing a bit is the Set-Reset (SR) Latch

S	R	Q+	Function
0	0	Q	Store
0	1	0	Reset
1	0	1	Set

Note: S = R = 1 is not defined

The SR latch allows us to build a flight attendant call system

- Connect "call" to S, and "cancel" to R
- Q stays at 1 even after "call" is released

Set-Reset (SR) Latch

Operation:

Set-Reset (SR) Latch

- There is, though, a problem with the SR Latch
- What happens when both S and R are asserted?

- When both S and R is then de-asserted at the same time, we may get oscillation at the output:
 - Constant swapping from 0 to 1 to 0 ...
- Normally, one gate is a little faster so the output will eventually stabilize, but which?
 - Impossible to know

Recap: Latches

Set-Reset (SR) Latch

Enabled SR Latch

S	R	Q+	Function
0	0	Q	Store
0	1	0	Reset
1	0	1	Set
1	1	?	Undefined

Ε	S	R	Q+	Function
0	X	Χ	Q	Store
1	0	0	Q	Store
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	?	Undefined

Ε	D	Q+	Function
0	Χ	Q	Store
1	0	0	Transparent
1	1	1	Transparent

The Clock

- In digital systems, sequential components are connected to what we call a "clock"
- The clock is a signal that continuously toggles between 0 and 1 at a fixed rate:

- The period of the clock is the time it takes to complete one complete cycle – we call this a cycle
- The frequency is the inverse of the period:
 - A 10ns ($10x10^{-9}$ s) period gives a frequency of $1/10x10^{-9} = 10^{8}$ Hz = 100MHz
 - This is where the MHz and GHz numbers for chips come from – how fast the clock oscillates

Timing in Circuits

 Assume an and gate has a delay of 4ns and an inverter has a delay of 2ns:

- The propagation delay, t_p, may differ between different inputs and outputs in the same circuit
- If we report a single number, we always use the worst (i.e. longest path)

Timing of Latches

Transparent (level-sensitive) latches are problematic!!

Recap: Edge-Triggered Flip-Flops

- Use an edge triggered flip-flop to overcome the limitation of D latches
- We build edge-triggered flip-flops using two D-latches in a master-slave arrangement.

 A flip-flop is a circuit that changes its outputs only at the control signal's edges

- Positive edge-triggered: output changes when control goes from 0 to 1
- Negative edge-triggered: output changes when control goes from 1 to 0

Recap: Edge Triggered Flip-Flops

- Use edge triggered flip-flops to overcome the limitation of D latches
 - Apply a 1 to the input. The current state of the FFs is unknown (X)

Recap: Edge Triggered Flip-Flops

Use edge triggered flip-flops to overcome the limitation of D latches

The duty cycle of the clock has no impact on the FF operation.

Exercise 3

If enable = 1 and the current state of the circuit is $Q_3Q_2Q_1Q_0$ = 0101, what is the next state?

A. 1111

B. 1010

C. 1100

D. 0011

E. 0000

Ans: E = 0000

 Q_2 is '1', so Q_2 ' = '0'. Q_3 and Q_1 will be '0' at the next rising edge. The other outputs will just propagate through.

What is the next state if enable=0 and $Q_3Q_2Q_1Q_0 = 0101$?

Ans: $Q_3Q_2Q_1Q_0 = 0101$ (No change)

Edge-Triggered Flip-Flops

NANYANG TECHNOLOGICAL UNIVERSITY

- We've seen the D flip-flop:
 - Q takes the value on D at the rising edge of C

- If both J and K are asserted, the output toggles at the rising edge
- And a T flip-flop:
 - Q toggles at the rising edge if T=1

clk	Т	Q+
↑	0	Q
↑	1	Q'
	Χ	Q

(Also a lesser seen SR flip-flop)

clk	D	Q+
†	0	0
†	1	1
	Χ	Q

clk	J	K	Q+
1	0	0	α
1	0	1	0
1	1	0	1
1	1	1	ď
	Χ	Χ	Q

Registers

- A flip-flop is a circuit that changes its outputs only at the control
 - signal's edges
 - Positive edge-triggered
 - Negative edge-triggered

- The D-type flip-flop is the fundamental building block in synchronous design
- But we often deal with multi-bit signals
- When we combine multiple D flip-flops together to store multiple bits, we call this a register:

Registers

 When dealing with multi-bit registers, we can show these values in a timing diagram without splitting up

Registers

 When dealing with multi-bit registers, we can show these values in a timing diagram without splitting up

the bits:

- We can use decimal or hex (or even binary), but make it clear
- Again, transitions only happen at the rising edge

Lecture 18 (Task 1)

Complete the timing diagram of the shift register

Lecture 18 (Task 1)

Complete the timing diagram of the shift register

Selected Past Exam Questions

CE/CZ1005 2017-2018 Semester 2 (Apr/May 2018)

Q4(a) Differentiate between a level-sensitive D-latch and edge-triggered D-flip-flop with the help of a timing diagram.

(5 marks)

ANS: A level sensitive D-latch will propagate signals though the latch when the enable signal is high. An edge triggered D-FF uses a master-slave arrangement so that the signals move through the FF only during the clock transition period.

Consider:

Selected Past Exam Questions

CE/CZ1005 2017-2018 Semester 1 (Nov/Dec 2017)

Q4(a) What is a SR latch? Briefly describe how it works.

(6 marks)

ANS: A latch has 2 stable states, Q=1 and Q=0. A SR latch sets Q to 1 when S=1 and resets Q to 0 when R=1. When S=R=0 the latch holds its value. The output is undefined when S=R=1. The simplest SR latch is constructed using cross-coupled NOR gates. It is defined by:

S	R	Q+	Function
0	0	Q	Store
0	1	0	Reset
1	0	1	Set

