- CC2-S1 -

- 2016-2017

- Correction - Algèbre -

Exercice 1

- **1. a.** Pour $(P,Q) \in (E_n)^2$ et $\lambda \in \mathbb{R}$, on a $u_n(\lambda P + Q) = \lambda u_n(P) + u_n(Q)$ car la dérivation est linéaire, d'où la linéarité de u_n .
 - $P \in E_n \Rightarrow \deg(P) \leqslant n \Rightarrow (\deg(P'') \leqslant n 2 \text{ et } \deg(XP') \leqslant n) \Rightarrow \deg(u_n(P)) \leqslant n \Rightarrow u_n(P) \in E_n,$ donc $u_n(E_n) \subset (E_n)$.

Conclusion : u_n est bien un endomorphisme de E_n .

b. Pour tout entier $k \leq n$, on a $u_n(X^k) = k(k-1)X^{k-2} - 2kX^k$, ce qui nous donne alors :

$$M_{B_n}(u_n) = \begin{pmatrix} 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & -2 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & n(n-1) \\ \vdots & & & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & -2n \end{pmatrix}.$$

- c. Cette matrice étant triangulaire, on en déduit immédiatement que $Sp(u_n) = \{0, -2, \dots, -2n\}$ et, puisque les valeurs propres sont deux à deux distinctes, que u_n est diagonalisable.
- **2. a.** Soit $n \in \mathbb{N}$.
 - i. Montrons par récurrence que la dérivée d'ordre n de f est de la forme $f^{(n)}=f\times H_n$ où $H_n\in E_n$:
 - $f^{(0)}(x) = f(x) = e^{-x^2} = f(x) \times X^0$; en notant $H_0 = X^0$, on a $H_0 \in E_0$, donc la propriété est vraie au rang 0.
 - Supposons que $f^{(k)} = f \times H_k$ où $H_k \in E_k$. On a alors :

$$f^{(n+1)}(x) = f'(x)H_n(x) + f(x)H_n'(x) = f(x)\left[-2xH_n(x) + H_n'(x)\right] = f(x) \times H_{n+1}(x),$$
 où $H_{n+1} = -2XH_n + H_n'$; comme $H_n \in E_n, H_{n+1} \in E_{n+1}$, d'où l'hérédité.

A ce stade, on a également démontré que $H_{n+1} = H'_n - 2XH_n$.

Conclusion : on a bien $f^{(n)} = f \times H_n$ avec $H_n \in E_n$ qui vérifie $H_{n+1} = H'_n - 2XH_n$.

- ii. Par une récurrence immédiate, puisque on a $H_0 = X^0$ et $H_{k+1} = -2XH_k + H_k'$, on montre que tout polynôme H_k est de degré k, donc que $B_n' = (H_0, H_1, \dots, H_n)$ est une famille de polynômes échelonnée en degrés, donc une base de E_n .
- **b.** On considère un entier naturel n non nul. On a, d'après la formule de Leibniz :

$$\frac{d^{n+1}}{dx^{n+1}}\left(e^{-x^2}\right) = \frac{d^n}{dx^n}\left(-2xe^{-x^2}\right) = \sum_{k=0}^n \binom{k}{n}\frac{d^k}{dx^k}\left(-2x\right) \times \frac{d^{n-k}}{dx^{n-k}}\left(e^{-x^2}\right).$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 3

Comme $\frac{d^k}{dx^k}(-2x) = 0$ pour $k \ge 2$, on obtient :

$$\frac{d^{n+1}}{dx^{n+1}} \left(e^{-x^2} \right) = \sum_{k=0}^1 \binom{k}{n} \frac{d^k}{dx^k} \left(-2x \right) \times \frac{d^{n-k}}{dx^{n-k}} \left(e^{-x^2} \right) = -2x \frac{d^n}{dx^n} \left(e^{-x^2} \right) - 2n \frac{d^{n-1}}{dx^{n-1}} \left(e^{-x^2} \right),$$

ce qui s'écrit également :

$$f^{(n+1)}(x) = -2xf^{(n)}(x) - 2nf^{(n-1)}(x),$$

d'où l'on déduit, à l'aide de la question **2.a** et en simplifiant par $f(x) = e^{-x^2}$ qui est toujours non nul, que l'on a bien :

$$H_{n+1} = -2XH_n - 2nH_{n-1}.$$

c. On déduit immédiatement des questions 2.a et 2.b que, pour tout entier naturel n non nul, on a :

$$H_{n+1} = H'_n - 2XH_n = -2XH_n - 2nH_{n-1} \Rightarrow H'_n = -2nH_{n-1}.$$

d. On considère un couple d'entiers (k, n) tel que $0 \le k \le n$.

On a, d'après la question précédente, $H'_k = -2kH_{k-1}$.

Par dérivation de cette relation on obtient $H_k'' = -2kH_{k-1}'$.

De ces deux relations on déduit que l'on a :

$$u_n(H_k) = H''_k - 2XH'_k$$

= $-2kH'_{k-1} - 2X \times (-2kH_{k-1})$
= $-2k(H'_{k-1} - 2XH_{k-1})$
= $-2kH_k$ d'après la question **2.a**

Le polynôme H_k étant non nul (puisque élément d'une base), on en déduit que c'est un vecteur propre de u_n associé à la valeur propre -2k.

e. On en déduit immédiatement que l'on a :

$$M_{B'_n}(u_n) = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & -2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -2n \end{pmatrix}.$$

Exercice 2

1. Le polynôme caractéristique de f est un polynôme de $\mathbb{R}_2[X]$ qui admet $\lambda = \frac{e^{2i\frac{\pi}{3}}}{\sqrt{2}}$ pour racine. Or on sait que les polynômes réels qui admettent une racine complexe admette son conjugué comme autre racine et qu'un polynôme caractéristique est unitaire, donc :

$$\chi_f = (X - \lambda)(X - \overline{\lambda}) = \left(X - \frac{e^{2i\frac{\pi}{3}}}{\sqrt{2}}\right) \left(X - \frac{e^{-2i\frac{\pi}{3}}}{\sqrt{2}}\right) = X^2 + \frac{X}{\sqrt{2}} + \frac{1}{2}$$

- 2. Le théorème de Cayley-Hamilton nous permet d'affirmer que le polynôme caractéristique est un polynôme annulateur, donc que l'on a bien $f \circ f + \frac{1}{\sqrt{2}}f + \frac{1}{2}Id_E = 0$.
- 3. Soit a un vecteur non nul de E.
 - a. Soit $(\mu_1, \mu_2) \in \mathbb{R}^2$ tel que $\mu_1 a + \mu_2 f(a) = 0$. Si $\mu_2 \neq 0$, alors on a $f(a) = -\frac{\mu_1}{\mu_2} a$, ce qui implique (puisque a est non nul) que $-\frac{\mu_1}{\mu_2}$ est valeur propre de f, ce qui est impossible puisque les deux racines de χ_f sont complexes non réelles. On a donc $\mu_2 = 0$, donc $\mu_1 a = 0$, et donc x = 0 (puisque a est non nul). On en déduit que B = (a, f(a)) est libre dans E (qui est de dimension 2), donc une base de E.

Spé PT Page 2 sur 3

b. On a vu que l'on avait $f \circ f + \frac{1}{\sqrt{2}}f + \frac{1}{2}Id_E = 0$, ce qui implique que $f(f(a)) = -\frac{1}{\sqrt{2}}f(a) - \frac{1}{2}a$, et donc que :

$$A = M_B(f) = \begin{pmatrix} 0 & -\frac{1}{2} \\ 1 & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

c. On trouve :

$$E_{\lambda} = \operatorname{Vect}(1, -2\lambda)$$
 et $E_{\overline{\lambda}} = \operatorname{Vect}(1, -2\overline{\lambda})$.

On obtient alors:

$$P^{-1}AP = D = \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} \quad \text{ avec } \quad P = \begin{pmatrix} 1 & 1 \\ -2\lambda & -2\overline{\lambda} \end{pmatrix} \quad \text{ et } \quad P^{-1} = \frac{-i}{\sqrt{6}} \begin{pmatrix} -2\overline{\lambda} & -1 \\ 2\lambda & 1 \end{pmatrix},$$

et on en déduit :

$$A^{n} = P \begin{pmatrix} \lambda^{n} & 0 \\ 0 & \overline{\lambda}^{n} \end{pmatrix} P^{-1} = \frac{-i}{\sqrt{6}} \begin{pmatrix} -2\overline{\lambda}\lambda^{n} + 2\lambda\overline{\lambda}^{n} & -\lambda^{n} + \overline{\lambda}^{n} \\ 4\overline{\lambda}\lambda^{n+1} - 4\lambda\overline{\lambda}^{n+1} & 2\lambda^{n+1} + 2\overline{\lambda}^{n+1} \end{pmatrix}$$

4. Puisque $|\lambda| = |\overline{\lambda}| = \frac{1}{\sqrt{2}} < 1$, on en déduit immédiatement que l'on a $\lim_{n \to +\infty} D^n = 0$, ce qui implique :

$$\forall x \in E, \quad \lim_{n \to +\infty} f^n(x) = 0.$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 3