5. Частично наредени множества

Нека R е бинарна релация в A. Казваме, че R е антисиметрична релация в A точно тогава, когато за всички $x,y \in A$, ако xRy и yRx, то x=y.

Дефиниция

Нека R е бинарна релация в А. Казваме, че R е релация на частична наредба или просто частична наредба в А точно тогава, когато R е едновременно рефлексивна, антисиметрична и транзитивна.

Нека R е бинарна релация в A. Казваме, че R е антисиметрична релация в A точно тогава, когато за всички $x,y \in A$, ако xRy и yRx, то x=y.

Дефиниция

Нека R е бинарна релация в A. Казваме, че R е релация на частична наредба или просто частична наредба в A точно тогава, когато R е едновременно рефлексивна, антисиметрична и транзитивна. Релациите на частична наредба ще означаваме най-често с \leq или \leq или \subseteq .

Дефиниция

Частично наредено множество (съкратено ч.н.м.) наричаме наредена двойка $\langle A, \leq \rangle$, където A е непразно множество и \leq е частична наредба в A. Ако множеството A е крайно, то $\langle A, \leq \rangle$ се нарича крайно ч.н.м.

Релациите на частична наредба ще означаваме най-често с ≤ или ≤ или ⊆.

Дефиниция

Частично наредено множество (съкратено ч.н.м.) наричаме наредена двойка $\langle A, \leq \rangle$, където A е непразно множество и \leq е частична наредба в A. Ако множеството A е крайно, то $\langle A, \leq \rangle$ се нарича крайно ч.н.м.

- $\langle \mathbb{N}, \leq \rangle$;
- \bullet $\langle \mathbb{R}, \leq \rangle$;
- $\langle \mathcal{P}(A), \subseteq \rangle$ за произволно непразно множество A.
- Нека разгледаме ч.н.м. $\langle J_2, \leq \rangle$. Да определим множеството $\langle J_2^2, \leq \rangle$, и релацията \leq определени с еквивалентността:

$$(a_1,b_1) \preceq (a_2,b_2) \Longleftrightarrow a_1 \leq a_2 \& b_1 \leq b_2.$$

- $\langle \mathbb{N}, \leq \rangle$;
- $\langle \mathbb{R}, \leq \rangle$;
- $\langle \mathcal{P}(A), \subseteq \rangle$ за произволно непразно множество A.
- Нека разгледаме ч.н.м. ⟨J₂, ≤⟩. Да определим множеството ⟨J²₂, ≤⟩, и релацията ≤ определени с еквивалентността:

$$(a_1, b_1) \preceq (a_2, b_2) \Longleftrightarrow a_1 \leq a_2 \& b_1 \leq b_2$$

- $\langle \mathbb{N}, \leq \rangle$;
- $\langle \mathbb{R}, \leq \rangle$;
- $\langle \mathcal{P}(A), \subseteq \rangle$ за произволно непразно множество A.
- Нека разгледаме ч.н.м. ⟨J₂, ≤⟩. Да определим множеството ⟨J²₂, ≼⟩, и релацията ≤ определени с еквивалентността:

$$(a_1,b_1) \preceq (a_2,b_2) \Longleftrightarrow a_1 \leq a_2 \& b_1 \leq b_2.$$

- $\langle \mathbb{N}, \leq \rangle$;
- $\langle \mathbb{R}, \leq \rangle$;
- $(\mathcal{P}(A), \subseteq)$ за произволно непразно множество A.
- Нека разгледаме ч.н.м. $\langle J_2, \leq \rangle$. Да определим множеството $\langle J_2^2, \leq \rangle$, и релацията \leq определени с еквивалентността:

$$(a_1, b_1) \leq (a_2, b_2) \Longleftrightarrow a_1 \leq a_2 \& b_1 \leq b_2.$$

Означение

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а е строго по-малко от b и пишем а<b точно тогава, когато а \leq b и а \neq b.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а \in А е най-малък елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всяко b \in А е изпълнено а \leq b.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а \in А е най-голям елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всяко b \in А е изпълнено b \leq а.

Означение

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а е строго по-малко от b и пишем а<b точно тогава, когато а \leq b и а \neq b.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $a \in A$ е най-малък елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всяко $b \in A$ е изпълнено $a \leq b$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $a \in A$ е най-голям елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всяко $b \in A$ е изпълнено $b \leq a$.

Означение

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а е строго по-малко от b и пишем а<b точно тогава, когато а \leq b и а \neq b.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $a \in A$ е най-малък елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всяко $b \in A$ е изпълнено $a \leq b$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $a \in A$ е най-голям елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всяко $b \in A$ е изпълнено b < a.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $a \in A$ е минимален елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато не съществува $b \in A$ така, че b < a.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а \in А е максимален елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато не съществува b \in А така, че а < b.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а \in А е минимален елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато не съществува b \in А така, че b < а.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а \in А е максимален елемент в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато не съществува $b \in A$ така, че а < b.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава $\langle A, \leq \rangle$ притежава както минимален, така и максимален елемент.

Доказателство

Ще докажем твърдението само за минимален елемент. Да допуснем, че не съществува минимален елемент. Да изберем произволен елемент a_0 . Той не е минимален, откъдето съществува a_1 , $a_1 < a_0$. Така построяваме безкрайна строго намаляваща редица $\cdots < a_2 < a_1 < a_0$ от елементи на A, което противоречи на факта, че A е крайно. C това твърдението е доказано.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава $\langle A, \leq \rangle$ притежава както минимален, така и максимален елемент.

Доказателство

Ще докажем твърдението само за минимален елемент. Да допуснем, че не съществува минимален елемент. Да изберем произволен елемент a_0 . Той не е минимален, откъдето съществува a_1 , $a_1 < a_0$. Така построяваме безкрайна строго намаляваща редица $\cdots < a_2 < a_1 < a_0$ от елементи на A, което противоречи на факта, че A е крайно. С това твърдението е доказано.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава $\langle A, \leq \rangle$ притежава както минимален, така и максимален елемент.

Доказателство

Ще докажем твърдението само за минимален елемент. Да допуснем, че не съществува минимален елемент. Да изберем произволен елемент a_0 . Той не е минимален, откъдето съществува a_1 , $a_1 < a_0$. Така построяваме безкрайна строго намаляваща редица $\cdots < a_2 < a_1 < a_0$ от елементи на A, което противоречи на факта, че A е крайно. С това твърдението е доказано.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава $\langle A, \leq \rangle$ притежава както минимален, така и максимален елемент.

Доказателство

Ще докажем твърдението само за минимален елемент. Да допуснем, че не съществува минимален елемент. Да изберем произволен елемент a_0 . Той не е минимален, откъдето съществува a_1 , $a_1 < a_0$. Така построяваме безкрайна строго намаляваща редица $\cdots < a_2 < a_1 < a_0$ от елементи на A, което противоречи на факта, че A е крайно. С това твърдението е доказано.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава $\langle A, \leq \rangle$ притежава както минимален, така и максимален елемент.

Доказателство

Ще докажем твърдението само за минимален елемент. Да допуснем, че не съществува минимален елемент. Да изберем произволен елемент a_0 . Той не е минимален, откъдето съществува a_1 , $a_1 < a_0$. Така построяваме безкрайна строго намаляваща редица $\cdots < a_2 < a_1 < a_0$ от елементи на A, което противоречи на факта, че A е крайно. С това

твърдението е доказано.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава $\langle A, \leq \rangle$ притежава както минимален, така и максимален елемент.

Доказателство

Ще докажем твърдението само за минимален елемент. Да допуснем, че не съществува минимален елемент. Да изберем произволен елемент a_0 . Той не е минимален, откъдето съществува a_1 , $a_1 < a_0$. Така построяваме безкрайна строго намаляваща редица $\cdots < a_2 < a_1 < a_0$ от елементи на A, което противоречи на факта, че A е крайно. C това твърдението е доказано.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а и b са сравними в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато а \leq b или b \leq а.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $B \subseteq A$ е верига (линейно наредено подмножество) в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всеки два елемента $a, b \in B$ е изпълнено a и b са сравними в $\langle A, \leq \rangle$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $\langle A, \leq \rangle$ е линейно нареденомножество точно тогава, когато A е верига в $\langle A, \leq \rangle$.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а и b са сравними в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато а \leq b или b \leq а.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $B \subseteq A$ е верига (линейно наредено подмножество) в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всеки два елемента $a, b \in B$ е изпълнено a и b са сравними в $\langle A, \leq \rangle$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $\langle A, \leq \rangle$ е линейно нареденомножество точно тогава, когато A е верига в $\langle A, \leq \rangle$.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а и b са сравними в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато а \leq b или b \leq а.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $B \subseteq A$ е верига (линейно наредено подмножество) в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всеки два елемента $a, b \in B$ е изпълнено a и b са сравними в $\langle A, \leq \rangle$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $\langle A, \leq \rangle$ е линейно наредено множество точно тогава, когато A е верига в $\langle A, \leq \rangle$.

Нека $\langle A, \leq_1 \rangle$ и $\langle A, \leq_2 \rangle$ са ч.н.м. Казваме, че \leq_2 е продължение на \leq_1 точно тогава, когато за всеки два елемента $a,b \in A$ такива, че $a \leq_1 b$ е изпълнено и, че $a \leq_2 b$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. и $B \subseteq A$. Ограничение на частичната наредба \leq върху множеството B ще означаваме с $\leq_{|B}$ и а $\leq_{|B}$ b точно тогава, когато $a, b \in B$ и $a \leq b$. Когато няма опасност от недоразумение ще използуваме и само $a \leq b$.

Нека $\langle A, \leq_1 \rangle$ и $\langle A, \leq_2 \rangle$ са ч.н.м. Казваме, че \leq_2 е продължение на \leq_1 точно тогава, когато за всеки два елемента $a,b \in A$ такива, че $a \leq_1 b$ е изпълнено и, че $a \leq_2 b$.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. и $B \subseteq A$. Ограничение на частичната наредба \leq върху множеството B ще означаваме с $\leq_{|B}$ и а $\leq_{|B}$ b точно тогава, когато $a,b \in B$ и $a \leq b$. Когато няма опасност от недоразумение ще използуваме и само $a \leq b$.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Локазателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н. Така получаваме

 $A = \{a_0, a_1, \dots, a_n\}$. Определяме $a \le b \iff a = a_i \& b = a_i \& i \le b$.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на А в редица.

Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м.

 $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н.Така получаваме $A = \{a_0, a_1, \dots, a_n\}$.Определяме $a <_1 b \iff a = a_i \& b = a_i \& i <_i$.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н. Така получаваме $A = \{a_0, a_1, \ldots, a_n\}$. Определяме $a \leq_1 b \iff a = a_i \& b = a_j \& i \leq j$. Ще покажем, че \leq_1 е продължение на \leq . Да приемем, че $a \leq b$. Тогава $a = a_i$ и $b = a_j$ и очевидно $i \leq j$. Това доказва

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на А в редица. Избираме минимален елемент а₀ в ⟨А, ≤⟩.След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$,

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$.След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$,а след това избираме минимален елемент a_2 в ч.н.м.

$$\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$$
 и т.н. Така получаваме $A = \{a_0, a_1, \dots, a_n\}.$ Определяме

$$a \le_1 b \iff a = a_i \& b = a_j \& i \le j.$$

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на А в редица. Избираме минимален елемент а₀ в ⟨А, ≤⟩.След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$,а след това избираме минимален елемент а2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н.Така получаваме $A = \{a_0, a_1, \dots, a_n\}$. Определяме

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н. Така получаваме $A = \{a_0, a_1, \ldots, a_n\}$. Определяме $a \leq_1 b \iff a = a_i \& b = a_j \& i \leq j$.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н. Така получаваме $A = \{a_0, a_1, \ldots, a_n\}$. Определяме $a \leq_1 b \iff a = a_i \& b = a_j \& i \leq j$.

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н. Така получаваме $A = \{a_0, a_1, \ldots, a_n\}$. Определяме $a \leq_1 b \iff a = a_i \& b = a_j \& i \leq j$. Ше покажем, че \leq_1 е продължение на \leq . Да приемем, че

Нека $\langle A, \leq \rangle$ е крайно ч.н.м. Тогава съществува продължение \leq_1 на \leq такова, че $\langle A, \leq_1 \rangle$ е линейно ч.н.м..

Доказателство

Най напред ще подредим елементите на A в редица. Избираме минимален елемент a_0 в $\langle A, \leq \rangle$. След това избираме минимален елемент a_1 в ч.н.м. $\langle A \setminus \{a_0\}, \leq_{|A \setminus \{a_0\}} \rangle$, а след това избираме минимален елемент a_2 в ч.н.м. $\langle A \setminus \{a_0, a_1\}, \leq_{|A \setminus \{a_0, a_1\}} \rangle$ и т.н. Така получаваме $A = \{a_0, a_1, \ldots, a_n\}$. Определяме $a \leq_1 b \iff a = a_i \& b = a_j \& i \leq j$.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а и b са несравними в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато нито а \leq b нито b \leq а.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $B \subseteq A$ е антиверига в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всеки два различни елемента $a, b \in B$ е изпълнено a и b са несравними в $\langle A, \leq \rangle$.

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че а и b са несравними в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато нито а \leq b нито b \leq а.

Дефиниция

Нека $\langle A, \leq \rangle$ е ч.н.м. Казваме, че $B \subseteq A$ е антиверига в ч.н.м. $\langle A, \leq \rangle$ точно тогава, когато за всеки два различни елемента $a, b \in B$ е изпълнено а и b са несравними в $\langle A, \leq \rangle$.