Matemática Discreta 2022

Escola de Matemática Aplicada, Fundação Getulio Vargas Professora Maria Soledad Aronna Monitor Felipe Vieira Costa

1 de setembro de 2022

Lista 3

Exercício 1 Encontre um ciclo hamiltoniano em cada grafo abaixo:

Exercício 2 Mostre que nenhum dos grafos a seguir contém um ciclo hamiltoniano

Exercício 3 Determine se cada grafo a seguir contém um ciclo hamiltoniano ou não. Se existir um ciclo hamiltoniano, exiba-o. Caso contrário, dê um argumento que prove que não existe um ciclo hamiltoniano.

Exercício 4 Dê um exemplo de um grafo que tem um ciclo euleriano mas não contém um ciclo hamiltoniano.

Exercício 5 Dê um exemplo de um grafo que tem um ciclo euleriano e um ciclo hamiltoniano que não são idênticos.

Exercício 6 Para que valores de m e n o grafo do Exercício 7 da Lista 2 contém um ciclo hamiltoniano?

Exercício 7 Quando o grafo bipartido completo $K_{m,n}$ contém um ciclo hamiltoniano?

Exercício 8 Mostre que o ciclo (e, b, a, c, d, e) é uma solução para o Problema do Caixeiro Viajante para o grafo a seguir:

Exercício 9 No xadrez, o movimento do cavalo consiste em se mover duas casas horizontalmente ou verticalmente e daí mover uma casa na direção perpendicular. A partir disso, definimos o grafo GK_n , um grafo com $n \times n$ vértices, cada um representando uma casa do tabuleiro $n \times n$. As arestas deste grafo seguem a seguinte regra: dois vértices estão ligados por uma aresta se for possível fazer um movimento de cavalo entre as casas representadas. Veja como fica GK_4 :

Encontre um ciclo hamiltoniano em GK_6 .

Exercício 10 Descreva um modelo gráfico apropriado para resolver o seguinte problema: As permutações de $\{1, 2, ..., n\}$ podem ser arrumadas em uma sequência tal que permutações adjacentes

$$p: p_1, ..., p_n,$$
 $q: q_1, ..., q_n$

satisfaçam $p_i \neq q_i$, para i = 1, ..., n?

Exercício 11 Resolva o problema do exercício anterior para n = 1, 2, 3, 4.

Exercício 12

Definição. Um caminho hamiltoniano em um grafo G é um caminho simples que passa por todos os vértices uma única vez. (Um caminho hamiltoniano começa e termina em vértices diferentes.)

- (a) Se um grafo tem um ciclo hamiltoniano, ele deve ter um caminho hamiltoniano? Explique.
- (b) O grafo do Exercício 3 (b) tem um caminho hamiltoniano?
- (c) Para que valores de m e n o grafo do Exercício 7 da Lista 2 tem um caminho hamiltoniano?