Genetic & Evolutionary Algorithms: More Investigation: Selection

March 19, 2013
Prof. Chang Wook Ahn

Sungkyunkwan Evolutionary Algorithms Lab.
School of Info. & Comm. Eng.
Sungkyunkwan University

Contents

- ❖ GAs Review
- ❖ GAs − Pseudo-code
- Conventional Approach
 - Neighborhood Search (NS)
- * Application
 - > 0-1 Knapsack Problem
 - > Resource Allocation
- More Investigation: Selection
 - > Proportional Selection
 - ✓ Selection Noise, Scaling
 - > Ordinal Selection
 - ✓ Rank selection, Tournament selection

GAs - Review (1)

- * "Evolution" is still evolving in places.
 - > Biological Evolution gives the inspiration to do new research
 - ✓ Psychology, The Humanities, Computer Science, etc.
 - > GAs are an outcome of the Darwinian + the computing algorithm

GAs - Review (2)

❖ What's the Target of Interest?

- > Optimization Problems
 - ✓ Can be defined by specifying the set of all feasible candidates.
 - ✓ The goal is to find the best solution(s)

Formal Definition

For a search space Ω

There is a function $g:\Omega\mapsto\Re$

The task is to find $v^* = \arg \max_{v \in \Omega} g$

Here, v is a vector of decision variables, and g is the objective function

GAs - Review (3)

***** Key Components & Terminology

- > Encoding: variables (phenotype) are encoded into a chromosome (genotype)
- > Population: a set of chromosomes (i.e., individuals or candidate solutions)
- Fitness function: measure the goodness of each candidate solution: it can be mathematical terms, computer simulation, human evaluation
- > Genetic operators: boosting chromosomes up towards the optimum

✓ Crossover: realize the genetic inheritance

GAs – Pseudocode

* Possible Implementation

```
t:=0; Create initial population \mathbf{P}^{(0)}=(P_1{}^{(0)},\ldots,P_N{}^{(0)}) WHILE stopping condition not fulfilled
```

```
(* proportional selection - RWS *)

FOR i := 1 TO N

x := random[0,1];
k := 1;

WHILE k < N && x > \sum_{j=1}^{k} f\left(P_{j}^{(t)}\right) / \sum_{l=1}^{N} f\left(P_{l}^{(t)}\right)

k := k+1;

tmp_P<sub>i</sub>(t) := P<sub>k</sub>(t)

END

(* tournament selection *)

FOR i := 1 TO N
```

 $x := random_int[1, N];$

 $tmp_{\underline{P}_{i}(t)} := P_{x}(t);$

ELSE $tmp_P_i^{(t)} := P_i^{(t)};$

 $IF f(P_i^{(t)}) < f(P_v^{(t)})$

```
(* one-point crossover *)
              FOR i := 1 \text{ TO } N/2
                  IF random[0,1] \leq P_c
                     pos := random_int[1, n-1];
Shuffling
                     FOR k := pos+1 TO n
                        aux := tmp_{i}^{(t)}[k];
                        tmp_{P_{i}^{(t)}}[k] = tmp_{P_{i+N/2}^{(t)}}[k];
                        tmp_{i+N/2}(t)[k] = aux;
                      END END
               END
            (* mutation *)
               FOR i := 1 TO N
                  FOR k := 1 TO n
                     IF random[0,1] < P_{M}
                        invert( tmp_P_i^{(t)}[k] );
               END
                      END END
               P := tmp_P;
               t := t+1;
            END
```


Conventional Approach

Neighborhood Search

- Also, called 'Hill-climbing'
- ➤ Widely used in various COPs
- > Simple procedures as follows:
 - All neighbors are evaluated
 - 2. The best one is selected
 - 3. Iterate until no more improvement

It is prone to be converged into the sub-optimum.

It cannot escape from the sub-optimum.

```
(* Pseudo-code of NS *)
Generate an initial solution \nu;
Specify a neighborhood function N(v);
Store v^* as current best v and evaluate g^*=f(v);
WHILE termination condition are not satisfied
   select a solution v' \in \mathbb{N}(v);
   evaluate g' = f(v');
   IF g'<g* then
      store v' as current best v^* and g' as g^*
      // v^* := v'; g^* := g';
   END
END
Output v^* and g^*
```

What if GA and NS are compared in a fair manner?

Application: 0-1 Knapsack Problem

- \Rightarrow A set of *n* items is available to packed into a knapsack with capacity c units.
- \Leftrightarrow Item i has a value w_i (e.g., \$) and uses up c_i units (e.g., kg) of capacity
- * The aim is to maximize the amount of values while keeping the overall capacity
- * That is, determining the subset I of items to pack in order to

Problem formulation!

\$10 4 kg

- If we define

$$x_i = \begin{cases} 1, & \text{if item } i \text{ is packed} \\ 0, & \text{otherwise} \end{cases}$$

Chromosome

Population

- The knapsack problem is given as

$$\max \sum_{i=1}^{n} w_i x_i \quad \text{subject to } \sum_{i=1}^{n} c_i x_i \le C$$

Measure

Selection Crossover Mutation

Fitness evaluation

Genetic Operators

Application: Resource Allocation

		_	 		 _	
QoS Index	1	2	 14	15	 26	27
Video	High	High	 Mid.	Mid.	 Low	Low
Audio	High	High	 Mid.	Mid.	 Low	Low
Data	High	Mid.	 Mid.	Low	 Mid.	Low

Further Detailed Investigation on Selection

Proportional Selection (1)

Selection Noise

- What problem exists in the proportional selection (e.g., RWS) ?
 - > It is prone to be attracted by the selection noise!
 - > Thereby, the premature convergence can be taken place!

Proportional Selection (2)

Premature Convergence

* The whole population is too early converged (into a sub-optimum)

Proportional Selection (3)

Scaling

- We can relax the weakness of the proportional selection
 - Linear (or non-linear) scaling of the fitness

$$f = a \cdot fitness + b$$

$$\overline{f} = \overline{fitness}$$

where
$$\overline{f} = \overline{fitness}$$
 and $f_{\text{max}} = \varphi \cdot \overline{f}$

Continual re-scaling is needed.

fitness

How to set a & b?

Roulette Wheel

Ordinal Selection (1)

Ranking Selection

- Why do we resort to fitness values?
 - > The premature convergence has been brought forth from the fitness value itself
 - A key point in the selection is the relative dominance (i.e., ranking)!
- * Ranking may lose some information, but simpler and more efficient

- Suppose that the prob. of selecting the kth-rank individual

$$P[k] = \alpha + \beta \cdot k$$

- To be a probability distribution

$$\sum_{k=1}^{N} \alpha + \beta \cdot k = N \left(\alpha + \beta \frac{N+1}{2} \right) = 1$$

How to select individuals? What criterion can be used for selection?

Ordinal Selection (2)

Ranking Selection (Cont.)

- Selection pressure is defined by

$$\phi = \frac{P[selecting \ the \ fittest \ individual]}{P[selecting \ average \ individual]}$$

which implies that $1 \le \phi \le 2N/(N+1) \cong 2$

- The cumulative prob. distribution can be stated in terms of the sum of an arithmetic progress.
- With a random number r, finding the k is given by

$$\sum_{i=1}^{k} (\alpha + \beta \cdot i) = \alpha \cdot k + \beta \frac{k(k+1)}{2} = r$$

$$k = \frac{-(2\alpha + \beta) + \sqrt{(2\alpha + \beta)^2 + 8\beta \cdot r}}{2\beta}$$

→ With a given random number, the individual of the k-th rank can be selected!

Ordinal Selection (3)

Ranking Selection (Cont.)

- Using the ordinary proportional selection, it takes O(logN)
- But the ranking takes O(NlogN) by the sorting algorithm.
- Nevertheless, the prob. of keeping a constant selection pressure without re-scaling is an attractive one!

- For N=5, ϕ =1.5, we can get α = β =1/20
- For given random numbers (0.5, 0.9, 0.4, 0.1, 0.7), we have k=(3.22, 4.68, 2.77, 1.0, 4.0)

 → (4, 5, 3, 1, 4) individuals are selected!

Ordinal Selection (4)

Tournament Selection The best individual is chosen! (i.e., strict) 101 ... 110 -101 ... 110 80 ompetition 111 ... 100 \mathbf{I}_2 111 ... 100 10 001 ... 100 111 ... 100 010 ... 111 001 ... 100 101 ... 011 101 ... 011 Fitness ith Population (i+1)th Population

τ individuals are

chosen randomly.

- In a complete cycle (i.e., generating N individuals), each individual will be compared τ times on average
- Every time it is compared, the best one is selected. (it is called 'strict' tournament.)

- The chance of the median individual being chosen is the prob. that the remaining $(\tau-1)$ ones are all worse: $(\frac{1}{2})^{\tau-1}$
- Thus, the selection pressure is $\phi = 2^{\tau-1}$
- To obtain a selection pressures below 2, soft tournament can be used such that the chance of winning of the best is p<1
- We can get $\phi = 2^{\tau-1} p$
- The pair-wise soft tournament selection can produce the selection pressure as the ranking:

$$\phi = 2 p$$
 that exists $[0, 2]$