- 1. (Cancelled)
- 2. (Currently Amended) A substituted amine according to claim 148

where R₁ is:

where R_N is:

 $R_{N-1}\mbox{-}X_{N^-}$ where X_N is selected from the group consisting of:

-CO-, and

-SO₂-,

where R_{N-1} is $-R_{N-arvl}$;

where R_A is:

 $-C_1-C_8$ alkyl,

-(CH₂)₀₋₃-(C₃-C₇) cycloalkyl,

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$,

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$,

or

-C=OR $_7$, where R $_7$ is

C1 - C6 alkyl,
phenyl,
thioalkoxyalkyl,
(aryl)alkyl, phenylalkyl,
cycloalkyl,
cycloalkylalkyl,
hydroxyalkyl,
alkoxyalkyl,
aryloxyalkyl, phenyloxyalkyl
haloalkyl,

where X is -N or -O, with the proviso that when X is O, R_{B} is absent; and when X is N, $\,$

carboxyalkyl,

R_B is:

3. (Currently Amended) A substituted amine according to claim 2

where R_1 is:

 $\frac{-(CH_2)-(R_{1-aryl})}{(CH_2)-(R_{1-aryl})}$, benzyl, wherein the phenyl portion is optionally substituted with 1 or 2 groups that are F, Cl, C_1 - C_4 alkoxy, CF_3 , C_1 - C_4 alkyl optionally substituted with one

-3-

substituent selected from the group consisting of C_1 - C_3 alkyl,

-F, -Cl, -Br, -OH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and _NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ a and R $_{1-b}$ -H or C_1 - C_4 alkyl,

-CO-,

where R_{N-1} is $-R_{N-aryl7}$ phenyl, substituted with one, two or three of the following substituents which can be the same or different and are C_1 - C_4 alkyl, optionally substituted with one or two substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_1$ - $_a$ R $_1$ - $_b$, -OH, -NO $_2$, -F, -Cl, -Br, or -I, -CO-OH, -C \equiv N, -(CH $_2$) $_{0-4}$ -CO-NR $_1$ - $_2$ R $_1$ - $_3$, -(CH $_2$) $_{0-4}$ -SO $_2$ -NR $_1$ - $_3$ R $_1$ - $_4$ -SO $_2$ -(C $_1$ - $_4$ -C $_4$ -Alkyl), -(CH $_2$) $_{0-4}$ -SO $_2$ -(C $_1$ -C $_4$ -Alkyl), -(CH $_2$) $_{0-4}$ -SO $_2$ -(C $_3$ -C $_7$ -Cycloalkyl), -(CH $_2$) $_{0-4}$ -O-(C $_1$ -C $_4$ -Alkyl) optionally substituted with one, two, three, four, or five -F), C $_3$ -C $_7$ -Cycloalkyl, or -(CH $_2$) $_{0-4}$ -C $_3$ -C $_7$ -Cycloalkyl, where R $_1$ - $_2$ -And R $_2$ - $_3$ -Are the same or different and are selected

from the group consisting of H, and -C₁-C₆ alkyl optionally substituted with one substituent selected from -OH, and -NH₂, -C₁-C₆ alkyl

optionally substituted with one to three -F, -Cl, -Br, or -I, -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), and -(C₁-C₄ alkyl)-O-(C₁-C₃ alkyl);

where RA is:

 $-C_1-C_8$ alkyl,

 $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,

- $(CR_{A-x}R_{A-y})_{0-4}-R_{A-ary1}$

-cyclopentyl or -cyclohexyl ring fused to $R_{\text{A-aryl}}$,

-cyclopentyl or -cyclohexyl ring fused to R_{A-aryl} ,

-C=OR $_7$, where R $_7$ is

 C_i - C_6 alkyl,

(aryl)alkyl, phenylalkyl,

cycloalkyl,

cycloalkylalkyl,

hydroxyalkyl,

alkoxyalkyl, or

haloalkyl,

where X is -N or -O, with the proviso that when X is O, $R_{\mbox{\scriptsize B}}$ is absent;

and when X is N, and

R_B is:

 $-C_1-C_8$ -alkyl, H or $-C_1-C_6$ alkyl.

 $-(CH_2)_{\theta\rightarrow}-(C_3-C_7)$ cycloalkyl,

- (CR_{B x}R_{B y})₀₋₄ R_{B aryl}

4. (Currently Amended) A substituted amine according to claim 3, where R_A is: $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$, -cyclopentyl or -cyclohexyl ring fused to R_{A-aryl} , or -C=OR₇, where

R_{A-aryl} is phenyl, 1-naphthyl, or 2-naphthyl, substituted with one, two or three of the following substituents which can be the same or different and are C_1 - C_4 alkyl, optionally substituted with one or two substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C=N, -CF₃, C_1 - C_3 alkoxy, and -NR_{1-a}R_{1-b}, -OH, -NO₂, -F, -Cl, -Br, or -I, -CO-OH, -C=N, -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3}, -(CH₂)₀₋₄-SO₂-NR_{N-2}R_{N-3}, -(CH₂)₀₋₄-SO₂-(C_1 - C_6 alkyl), -(CH₂)₀₋₄-SO₂-(C_1 - C_6 alkyl), -(CH₂)₀₋₄-O-(C_1 - C_6 alkyl optionally substituted with one, two, three, four, or five -F), C_3 - C_7 cycloalkyl, or -(CH₂)₀₋₄- C_3 - C_7 cycloalkyl, where R_{N-2} and R_{N-3} are the same or different and are selected

from the group consisting of H, and $-C_1-C_6$ alkyl optionally substituted with one substituent selected from -OH, and -NH₂, -C₁-C₆ alkyl optionally substituted with one to three -F, -Cl, -Br, or -I, -C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), and -(C₁-C₄ alkyl)-O-(C₁-C₃ alkyl);

 R_7 is C_1 - C_6 alkyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, or haloalkyl,

 R_{A-x} and R_{A-y} are -H, C_1 - C_4 alkyl optionally substituted with one or two -OH, C_1 - C_4 alkoxy optionally substituted with one, two, or three -F, or phenyl;

where R_B is H or C_1 - C_4 alkyl.

where Ra is:

 $\frac{-(CR_{B-x}R_{B-y})_{0-4}-R_{B-aryl}, or}{cyclopentyl or cyclohexyl-ring fused to <math>R_{B-aryl}$.

 $-(CH_2)-(R_{1-ary1})$ where $R_{1-ary1}-is$ phenyl.

- 6. (Currently Amended) A substituted amine according to claim $\frac{5}{148}$ where R_1 is benzyl substituted with 2 fluorines.
- $\frac{-(CH_2)-(R_{1-aryl})}{-F}$ where R_{1-aryl} is phenyl substituted with two
- 7. (Currently Amended) A substituted amine according to claim 6 where the F substitution R_1 is 3,5-difluorobenzyl.
 - 8. (Cancelled)

9. (Cancelled)

Claim 5 148 where R_N is R_{N-1} X_N where X_N is CO, where R_{N-1} is R_{N-1} where R_N is phenyl CO, where R_N is R_{N-1} where R_N is phenyl CO, where R_N is R_N substituted with one $CO-NR_{N-2}R_{N-3}$ where the substitution on phenyl is 1,3.

(Currently Amended) A substituted amine according to claim 10 where R_{N-2} and R_{N-3} are independently H or C_1 - C_6 alkyl.

(Currently Amended) A substituted amine according to claim $\frac{5}{148}$ where R_N is $\frac{-C(0)}{12}$, wherein the

 $R_{N-1}-X_N$ where X_N is CO , where R_{N-1} is R_{N-ary1} where R_{N-ary1} is phenyl is substituted with one C_1 -alkyl methyl group and with one -CO-NR_{N-2}R_{N-3} where the substitution on the phenyl is 1,3,5.

(Currently Amended) A substituted amine according to claim 12 where R_{N-2} and R_{N-3} are independently H or C_1 - C_6 alkyl.

14-15. (Cancelled)

16. (Currently Amended) A substituted amine according to either claim 10 or 12 148 where R_A is:

 $-(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl} \text{ where } R_{A-aryl} \text{ is phenyl, } \underline{\text{which is}}$ optionally substituted with one or two substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}R_{1-b}$; and wherein the phenyl is optionally fused to a cyclopentyl or cyclohexyl ring; eyclopentyl or -cyclohexyl ring fused to a R_{A-aryl} ; and R_{A-x} and R_{A-y} , if present, are both H.

(Currently Amended) A substituted amine according to claim 16 where R_A is phenyl. $\frac{(CR_{A \ *}R_{A \ y})_{0 \ 4} - R_{A \ aryl}}{(CR_{A \ *}R_{A \ y})_{0 \ 4} - R_{A \ aryl}}$ where R_A is phenyl.

(Currently Amended) A substituted amine according to elaim 17 claim 16 where phenyl is mono-substituted in at the 3-position or disubstituted at the 3,5-positions.

19-20. (Cancelled)

12. (Original) A substituted amine according to claim 16 where R_A is: -cyclohexyl ring fused to a phenyl ring.

(Currently Amended) A substituted amine according to $\frac{1}{2}$. (Currently Amended) A substituted amine according to claim 148 claim 17, where R_B is H or C_1 - C_4 alkyl. R_B is:

23. (Currently Amended) A substituted amine according to claim 22 where R_B is \underline{H} . is: $(CR_{B-x}R_{B-y})_{0-4}$ R_{B-aryl} where R_{B-aryl} is phenyl,

(Currently Amended) A substituted amine according to claim $\frac{22}{100}$ claim $\frac{22}{100}$ where $\frac{R_B}{100}$ is methyl. phenyl is substituted in the 3 position or 3,5 positions.

25-26. (Cancelled)

37. (Cancelled)

28. (Currently Amended) A substituted amine according to claim 148, where \underline{X} is oxygen and R_B is absent.

29. (Previously Presented) A substituted amine according to claim 148 chosen from the group consisting of:

N-[1-(3,5-Difluoro-benzyl)-2-hydroxy-3-(N'-methyl-N'-phenyl-hydrazino)-propyl]-5-methyl-N',N'-dipropyl-isophthalamide,

 $N-\{1-(3,5-Difluoro-benzyl)-2-hydroxy-3-[N'-methyl-N'-(4-methyl-pentanoyl)-hydrazino]-propyl\}-5-methyl-N',N'-dipropyl-isophthalamide, and$

N-[1-(3,5-Difluoro-benzyl)-2-hydroxy-3-phenoxyamino-propyl]-5-methyl-N',N'-dipropyl-isophthalamide.

21

30. (Previously Presented) A substituted amine according to claim 148 where the pharmaceutically acceptable salt is selected from the group consisting of salts of the following acids acetic, aspartic, benzenesulfonic, benzoic, bicarbonic, bisulfuric, bitartaric, butyric, calcium edetate, camsylic, carbonic, chlorobenzoic, citric, edetic, edisylic, estolic, esyl, esylic, formic, fumaric, gluceptic, gluconic, glutamic, glycollylarsanilic, hexamic, hexylresorcinoic, hydrabamic, hydrobromic, hydrochloric, hydroiodic, hydroxynaphthoic, isethionic, lactic, lactobionic, maleic, malic, malonic, mandelic, methanesulfonic, methylnitric, methylsulfuric, mucic, muconic, napsylic, nitric, oxalic, p-nitromethanesulfonic, pamoic, pantothenic, phosphoric, monohydrogen phosphoric, dihydrogen phosphoric, phthalic, polygalactouronic, propionic, salicylic, stearic, succinic, sulfamic, sulfanilic, sulfonic, sulfuric, tannic, tartaric, teoclic and toluenesulfonic.

31-143. (Cancelled)

22

144. (Previously Presented) A composition comprising a compound of formula XV

where R_1 , R_2 , R_3 , R_N , R_N , R_N , R_N , and X are as defined in claim 148; and an inert diluent or edible carrier.

145. (Original) The composition of claim 144, where said carrier is an oil.

146. (Previously Presented) A composition comprising a compound of formula XV

where R_1 , R_2 , R_3 , R_N , R_A , R_B , and X are as defined in claim 148; and an binder, excipient, disintegrating agent, lubricant, or gildant.

25

147. (Previously Presented) A composition comprising a compound of formula XV

where R_1 , R_2 , R_3 , R_N , R_A , R_B , and X are as defined in claim 148, disposed in a cream, ointment, or patch.

148. (Currently Amended) A substituted amine of formula (XV)

or a salt thereof, where R_1 is $-(CH_2)_{n1}-(R_{1-aryl})$ where n_1 is zero or one and where R_{1-aryl} is phenyl, optionally substituted with one, two, or three, or four of the following substituents on the aryl ring:

(A) C_1 - C_6 alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ -H or C_1 - C_6 alkyl,

(B)- C_2 - C_6 -alkenyl with one or two double-bonds, optionally substituted with one, two or three substituents selected from the group consisting of F, Cl, OH, SH, C=N,

-CF₃, C_1 - C_3 -alkoxy, and -NR_{1-a}R_{1-b}-where R_{1-a}-and R_{1-b} are H or C_1 - C_6 -alkyl,

(C) C_2 C_6 alkynyl with one or two triple bonds, optionally substituted with one, two or three substituents selected from the group consisting of F, C_1 , C_1 , C_2 alkoxy, and C_1 C_2 where C_1 and C_2 alkoxy, and C_3 where C_4 and C_4 and C_4 are C_4 alkyl,

- (D) -F, Cl, -Br or -I,
- (F) $-C_1-C_6$ alkoxy optionally substituted with one, two, or three of: -F,
- (G) $-N\ensuremath{R_{N-2}}\ensuremath{R_{N-3}}$ where $\ensuremath{R_{N-2}}$ and $\ensuremath{R_{N-3}}$ are as defined below,
 - (H) -OH,
 - (I) -C≡N,

(K) $-CO-(C_1-C_4 \text{ alkyl})$,

(L) SO_2 $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(M) CO NR_{1 a}R_{1 b} where R_{1 a} and R_{1 b} are as defined above, or

 $\frac{\text{(N)} - \text{SO}_2 - (C_1 - C_4 - \text{alkyl})}{\text{(N)}}$

where R2 is:

(1)-H, or C_1 - C_3 alkyl;

(II)— C_1 — C_3 —alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 — C_3 alkyl, F, Cl, Br, I, OH, SH, C=N, CF₃, C_1 — C_3 alkoxy, and NR_{1-a}R_{1-b}—where R_{1-a}—and R_{1-b} are as defined above,

where R₃ is:

[(I)]-H, or C_1 - C_3 alkyl;

 $(\overline{II}) \ C_1 - C_3 - alkyl, \ optionally \ substituted \ with \ one, \ two or three substituents selected from the group consisting of <math>C_1 - C_3$ alkyl, $F_1 - C_1$, $-B_1 - C_3 - C_4$, $-C_3 - C_4 - C_3$, $-C_1 - C_3 - C_4 - C_3 - C_4$, where R_{1-a} and R_{1-b} are as defined above,

where R_N is $R_{N-1}\text{-}X_{N^-}$ where X_N is selected from the group consisting of:

- (A) -CO-,
- (B) $-SO_2-$,
- (C) -(CR'R") $_{1\text{-}6}$ where R' and R" are the same or different and are -H or $C_1\text{-}C_4$ alkyl,
 - (E) a single bond;

where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl, or 2-naphthyl, tetralinyl, indanyl, dihydronaphthyl-or-6,7,8,9-tetrahydro-5H benzo[a]cycloheptenyl, or dihydronaphthyl each of

which is optionally substituted with one, two or three of the following substituents which can be the same or different and are:

(1) C_1 - C_6 alkyl, optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above,

- (2) OH,
- (3) NO₂
- (4) -F, -Cl, -Br, or -I,
- (5) -CO-OH,
- (6) -C≡N,
- (7) -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of:
 - (a) -H,
- $\mbox{(b) $-C_1$-C_6 alkyl optionally substituted}$ with one substitutent selected from the group consisting of:
 - (i) -OH, and
 - (ii) $-NH_2$,
- (c) $-C_1-C_6$ alkyl optionally substituted with one to three -F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,

(15) -(CH₂)₀₋₄-CO-R_{N-4} where $R_{\text{N-4}}$ is selected from the group consisting of morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl where each group is optionally substituted with one, two, three, or four of C_1 - C_6 alkyl, (16) -(CH2)0-4-CO-O-RN-5 where $R_{N\text{-}5}$ is selected from the group consisting of: (a) C_1 - C_6 alkyl, (b) -(CH₂) $_{0\text{--}2}$ -(R $_{1\text{-aryl}}$) where R $_{1\text{-aryl}}$ is as defined above, (c) C2 C6-alkenyl containing one-or-two double bonds. (d) C2 C6 alkynyl containing one or two triple bonds, (e) $C_3 \cdot C_7$ cycloalkyl, and (f) (CH₂)₀₋₂ (R_{1-heteroary1}) where R_{1-heteroary1} is as defined above, (17) $-(CH_2)_{0-4}$ $-SO_2$ $-NR_{N-2}R_{N-3}$ where $-R_{N-2}$ and $-R_{N-3}$ are as defined above, $-(18) - (CH_2)_{0-4} - SO - (C_1 - C_0 - alkyl)$, - (19) - (CH₂)₀₋₄-SO₂₋(C₁-C₁₂-alkyl), -(20) $-(CH_2)_{0-4}$ $-SO_2$ $-(C_3$ $-C_7$ cycloalkyl),

 $\mbox{(34)} \ \ \mbox{-} (\mbox{CH}_2)_{\,0\text{--}4}\mbox{-O-} (\mbox{C}_1\mbox{-C}_6 \ \mbox{alkyl optionally}$ substituted with one, two, three, four, or five -F),

(35) C_3 - C_7 cycloalkyl,

(36) $-C_2$ $-C_6$ alkenyl with one or two double bonds optionally substituted with $-C_1$ $-C_3$ alkyl, $-F_4$ $-C_1$ $-F_4$ $-F_5$ $-F_6$ $-F_6$ $-F_6$ $-F_7$ $-F_8$ where $-F_8$ and $-F_8$ are as defined above,

bonds optionally substituted with C_1 C_3 alkyl, F, C_1 , Br, I, OH, SH, C=N, CF_3 , C_1 C_3 alkoxy, or $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

and R_{N-2} —can be the same or different and are as described above, or

(39) $\sim (CH_2)_{0-4} - C_3 - C_7$ cycloalkyl,

where RA is:

(I)- C_1 - C_{10} alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, -NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above, -OC=O NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above, -S(=O) $_{0-2}$ R $_{1-a}$ where R $_{1-a}$ is as defined above, -NR $_{1-a}$ C=O NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as defined above, -C=O NR $_{1-a}$ R $_{1-b}$ where R $_{1-a}$ and R $_{1-b}$ are as

defined above, and $-S(=0)_2$ $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

 (H_1) $(CH_2)_{0-3}$ (C_3-C_8) cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents selected from the group consisting of C_1 C_3 alkyl, F, C_1 , B_T , -I, OH, SH, C=N, CF_3 , C_1 C_6 alkoxy, O phenyl, CO OH, OH,

(III) - $(CR_{A-x}R_{A-y})_{0-4}-R_{A-aryl}$ where R_{A-x} and R_{A-y} are (A) -H,

- (B) C_1 - C_4 alkyl optionally substituted with one or two -OH,
- (C) $C_1\text{-}C_4$ alkoxy optionally substituted with one, two, or three of: -F,
 - (D) $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl,
- (E) $C_2\text{-}C_6$ alkenyl containing one or two double bonds,
- (F) C_2 - C_6 alkynyl containing one or two triple bonds,
 - (G) phenyl,

and where R_{A-x} and R_{A-y} are taken together with the earbon to which they are attached to form a carbocycle of three, four, five, six, or seven carbon atoms, optionally where one carbon atom is replaced by a heteroatom selected from the group

consisting of 0 , S , SO_2 , and NR_{N-2} and $R_{A~ary1}$ is the same as RN aryl+ (IV) -cyclopentyl, -cyclohexyl, or -cycloheptyl ring fused to R_{A-aryl} , where R_{A-aryl} is as defined above where one carbon of cyclopentyl, cyclohexyl, or -cycloheptyl is optionally replaced with NH, NR_{N-5} , O, or $S(=0)_{0-2}$, and where cyclopentyl, cyclohexyl, or -cycloheptyl can be optionally substituted with one or two $-C_1-C_3$ alkyl, -F, -OH, -SH, $-C \equiv N$, $-CF_3$, C_1-C_6 alkoxy, =0, or $-NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above, (V) CH (-CH₂-OH) -CH (-OH) -phenyl NO₂, (VI) -H, (VII) -C=OC(HR₆)NHR₇, where R₆ and R₇ are as defined below -C=OR₇, where R₇ is as defined below, or -C-OOR, where R, is as defined below, or -SOOR, where R, is as defined below, wherein R6 is: hydrogen $-C_1$ $-C_3$ alkyl,

-alkyl-substituted aryl,

- phenyl,

- eycloalkyl,

-thioalkoxyalkyl,

hydroxyalkyl,
——————————————————————————————————————
aryloxyalkyl,
haloalkyl,

alkoxycarbonylalkyl
aminoalkyl,
(N protected) aminoalkyl,
alkylaminoalkyl,
((N-protected)(alkyl)amino)alkyl
guanidinoalkyl,
lower alkenyl,
(heterocyclic)alkyl),
arylthioalkyl,
arylsulfonyalkyl,
- (heterocyclic)thioalkyl,
(heterocyclic)sulfonylalkyl,
(heterocyclic) oxyalkyl,
arylalkoxyalkyl,
arylthioalkoxyalkyl,
-arylalkylsulfonylalkyl,
(heterocyclic))alkoxyalkyl,

.

(heterocyclic)thioalkoxyalkyl,
——————————————————————————————————————
——————————————————————————————————————
cycloalkylthioalkyl,
cycloalkylsulfonylalkyl,
cycloalkylalkoxyalkyl,
cycloalkylthioalkoxyalkyl,
aminocarbonyl,
-alkylaminocarbonyl,
dialkylaminocarbonyl,
aroylalkyl,
(heterocyclic) carbonylalkyl,
——————————————————————————————————————
-aminocarbonylalkyl,
dialkylaminocarbonylalkyl,
aryloxyalkyl, or
alkylsulfonylalkyl,
thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl,
tetrahydrofuranyl, tetrahydrothienyl and tetrahydro[2H]pyranyl
and wherein the heterocycle is unsubstituted or substituted with
one-to-three-substituents independently selected from hydroxy,
nalo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, -24-

```
haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH,
-SO₃H, lower alkenyl or lower alkyl;
                     wherein R<sub>7</sub> is:
                          C_1 - C_6 alkyl,
                          phenyl,
                          thioalkoxyalkyl,
                          (aryl)alkyl,
                          cycloalkyl,
                          cycloalkylalkyl,
                          hydroxyalkyl,
                          alkoxyalkyl,
                          aryloxyalkyl,
                         haloalkyl,
                         carboxyalkyl,
                         alkoxycarbonylalkyl,
                         aminoalkyl,
                         (N-protected) aminocalkyl,
                         alkylaminoalkyl,
                         (N-protected) (alkyl) amino) alkyl,
                         dialkylaminoalkyl,
                         guanidinoalkyl,
                         lower alkenyl,
                        heterocyclic,
                         (heterocyclic)alkyl),
```

•	
	arylsulfonylalkyl,
	——————————————————————————————————————
	(hterocyclic)sulfonylalkyl
	-(heterocyclic)oxyalkyl
	——————————————————————————————————————
	arylthioalkoxyalkyl,
	arylalkylsulfonylalkyl
	(heterocyclic)alkoxyalkyl,
	(heterocyclic)thioalkoxyalkyl
	(heterocyclic)alkylsulfonylalkyl
	cycloalkyloxyalkyl,
	cyclolakylthioalkyl,
	cycloalkylalkylsulfonylalkyl,
	aminocarbonyl,
	alkylaminocarbonyl,
	dialkylaminocarbonyl,
	aroylalkyl,
	(heterocyclic) carbonylalkyl,
	——————————————————————————————————————
	aminocarbonylalkyl,
	-dialkylaminocarbonylalkyl,
	-26-

wherein heterocyclic is pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, furanyl, thienyl, tetrahydrofuranyl, tetrahydrothienyl, and tetrahydro[2H]pyranyl and wherein the heterocycle is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halo, amino, alkylamino, dialkylamino, alkoxy, polyalkoxy, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, COOH, SO3H, lower alkenyl or lower alkyl;

where X is -N, or -O, with the proviso that when X is O, $R_{\mbox{\scriptsize B}}$ is absent;

and when X is N,

R_B is:

[(I)] $-C_1-C_{10}$ alkyl optionally substituted with one, two or three substituents selected from the group consisting of C_1-C_3 alkyl, -F, -Cl, -Br, -I, -OH,

-SH, -C \equiv N, CF₃, C₁-C₆ alkoxy, -O-phenyl, -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, -OC=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, NR_{1-a} where R_{1-a} is as defined above, NR_{1-a} accondingly where R_{1-a} and R_{1-b} are as defined above, -C=O NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above, and S(=O)₂ NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} are as defined above,

(II) $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl where cycloalkyl can be optionally substituted with one, two or three substituents

selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, -O-phenyl, -CO-OH, -CO-O-(C_1 - C_4 alkyl), and NR $_{1-a}$ R $_{1-b}$; where R $_{1-a}$ and R $_{1-b}$ are as defined above.

(V) cyclopentyl, cyclohexyl, or cycloheptyl ring fused to R_{B aryl} or R_{B heteroaryl} or R_{B heterocycle} where R_{B aryl} or R_B heteroaryl Or R_{B-heterocycle} are as defined above where one carbon of eyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with NH, NR_{N-5} , 0, or $S(=0)_{0-2}$, and where cyclopentyl, cyclohexyl, or cycloheptyl can be optionally substituted with one or two $-C_1-C_3$ alkyl, F, OH, SH, C=N, $-CF_3$, $-C_1-C_6$ alkoxy, -O, and $NR_{1-a}R_{1-b}$ where R_{1-a} and R_{1-b} are as defined above,

(VI) or -H.

149. (New) A compound according to claim 17, wherein

 R_N is of the formula

150. (New) A compound according to claim 149, wherein R_{N-2} and R_{N-3} are both C_3 alkyl.

151. (New) A compound according to claim 13, wherein

 R_{N} is of the formula

152. (New) A compound according to claim 151, wherein

 $R_{N\text{--}2}$ and $R_{N\text{--}3}$ are both C_3 alkyl.

New) A compound according to claim 28, wherein R₁ is benzyl, wherein the phenyl portion is optionally substituted with 1 or 2 groups that are F, Cl, C₁-C₄ alkoxy, CF₃, C₁-C₄ alkyl optionally substituted with one substituent selected from the group consisting of C₁-C₃ alkyl, -F, -Cl, -Br, -OH, -C=N, -CF₃, C₁-C₃ alkoxy, and -NR_{1-a}R_{1-b} where R_{1-a} and R_{1-b} -H or C₁-C₄ alkyl,

 R_2 is -H;

 R_3 is -H;

 R_N is $R_{N-1}-X_N$ — where X_N is -CO-, and R_{N-1} is phenyl substituted with one, two or three of the following substituents which can be the same or different and are C_1-C_4 alkyl, -OH, -NO₂, -F, -Cl, -Br, or -I, -CO-OH, -C \equiv N, -(CH₂) $_{0-4}$ -CO-NR_{N-2}R_{N-3}, where

 R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of H, and $-C_1-C_6$ alkyl optionally substituted with one substituent selected from -OH, and -NH₂, $-C_1-C_6$ alkyl optionally substituted with one to three -F, -Cl, -Br, or -I, $-C_3-C_7$ cycloalkyl, $-(C_1-C_2$ alkyl) - $(C_3-C_7$ cycloalkyl), and $-(C_1-C_4$ alkyl)-O- $(C_1-C_3$ alkyl).

 R_{A-ary1} is phenyl, 1-naphthyl, or 2-naphthyl, substituted with one, two or three of the following substituents which can be the same or different and are C_1 - C_4 alkyl optionally substituted with one or two substituents selected from the group consisting of C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, and -NR $_1$ - $_4$ R $_1$ - $_5$, -OH, -NO $_2$, -F, -Cl, -Br, or -I, -CO-OH, -C \equiv N, -(CH $_2$) $_{0-4}$ -CO-NR $_{N-2}$ R $_{N-3}$, -(CH $_2$) $_{0-4}$ -SO $_2$ -NR $_{N-2}$ R $_{N-3}$, -(CH $_2$) $_{0-4}$ -SO $_2$ -(C_1 - C_6 alkyl), -(CH $_2$) $_{0-4}$ -SO $_2$ -(C_3 - C_7 cycloalkyl), -(CH $_2$) $_{0-4}$ -O-(C_1 - C_6 alkyl optionally substituted with one, two, three, four, or five -F), C_3 - C_7 cycloalkyl, or -(CH $_2$) $_{0-4}$ - C_3 - C_7 cycloalkyl, where R_{N-2} and R_{N-3} are the same or different and are selected

from the group consisting of H, and $\text{-}C_1\text{-}C_6$ alkyl; R_7 is C_1 - C_6 alkyl;

 $R_{\text{A-x}}$ and $R_{\text{A-y}}$ are -H, $C_1\text{-}C_4$ alkyl, or phenyl.

3\
155. (New) A compound according to claim 154, wherein

R1 is benzyl, wherein the phenyl portion is substituted with 1 or

2 groups that are F, Cl, C1-C4 alkoxy, CF3, or C1-C4 alkyl;

RA-aryl is phenyl substituted with one or two of the following

substituents C1-C4 alkyl, optionally substituted with

one or two substituents selected from the group consisting of C_1 - C_3 alkyl, -OH, -NO₂, -F, -Cl, -Br, or -I, -CO-OH, -C \equiv N, -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3}, and -(CH₂)₀₋₄-O-(C_1 - C_6 alkyl optionally substituted with one, two, three, four, or five -F, where

 $R_{N\text{--}2}$ and $R_{N\text{--}3}$ are the same or different and are selected from the group consisting of H, and $-C_1-C_6$ alkyl.

156. (New) A substituted amine according to claim 155 where R_N is -C(0)-phenyl, wherein the phenyl is substituted with one $-CO-NR_{N-2}R_{N-3}$.

157. (New) A substituted amine according to claim 156 where R_{N-2} and R_{N-3} are independently H or C_1 - C_6 alkyl.

26

159. (New) A substituted amine according to claim 155 where R_N is -C(0)-phenyl, wherein the phenyl is substituted with one methyl group and with one $-CO-NR_{N-2}R_{N-3}$.

36 (New) A substituted amine according to claim 159 where

 R_{N-2} and R_{N-3} are independently H or C_1 - C_6 alkyl.

 \mathcal{H} [New) A compound according to claim 160, wherein R_{N-2} and R_{N-3} are both C_3 alkyl.

3, 1.62. (New) A compound according to claim 4, wherein R_7 is C_1 - C_6 alkyl;

 R_1 is benzyl, wherein the phenyl portion is substituted with 1 or 2 groups that are F, Cl, $C_1\text{-}C_4$ alkoxy, CF_3 , or $C_1\text{-}C_4$ alkyl; and

 R_N is $R_{N-1}-X_N-$ where X_N is -CO-, and R_{N-1} is phenyl substituted with one, two or three of the following substituents which can be the same or different and are C_1-C_4 alkyl, -OH, -NO₂, -F, -Cl, -Br, or -I, -CO-OH, -C \equiv N, -(CH₂)₀₋₄-CO-NR_{N-2}R_{N-3}, where

 R_{N-2} and R_{N-3} are the same or different and are selected from the group consisting of H, and $-C_1-C_6$ alkyl optionally substituted with one substituent selected from -OH, and -NH₂, $-C_1-C_6$ alkyl optionally substituted with one to three -F, -Cl, -Br, or -I, $-C_3-C_7$ cycloalkyl, $-(C_1-C_2$ alkyl) $-(C_3-C_7$ cycloalkyl), and $-(C_1-C_4$ alkyl) $-(C_1-C_3$ alkyl).

163. (New) A compound according to claim 162, wherein

 R_N is -C(O)-phenyl, wherein the phenyl is substituted with one $-CO-NR_{N-2}R_{N-3}. \label{eq:constraint}$

164. (New) A substituted amine according to claim 163 where R_{N-2} and R_{N-3} are independently H or C_1 - C_6 alkyl.

165. (New) A compound according to claim 164, wherein $R_{N\text{-}2}$ and $R_{N\text{-}3}$ are both C_3 alkyl.

166. (New) A substituted amine according to claim 162 where R_N is -C(O)-phenyl, wherein the phenyl is substituted with one methyl group and with one -CO-NR_{N-2}R_{N-3}.

 $\label{eq:4.4} 4^{3}$ 167. (New) A substituted amine according to claim 166 where $$R_{N-2}$$ and $$R_{N-3}$$ are independently H or C_1 -C6 alkyl.

45

1-68. (New) A compound according to claim 167, wherein $R_{N\text{-}2}$ and $R_{N\text{-}3}$ are both C_3 alkyl.