Type I and Type II Sum of Squares and Partial \mathbb{R}^2

Type I vs. Type II Sum of Square Terms

Variable	Type I SS	Type II SS
X_1	$SSR(X_1)$	$SSR(X_1 X_2,X_3)$
X_2	$SSR(X_2 X_1)$	$SSR(X_2 X_1,X_3)$
X_3	$SSR(X_3 X_1,X_2)$	$SSR(X_3 X_1,X_2)$

```
The F tests in the
anova(model4)
                                                 library(car)
                  #type I
                                                 Anova(model4, type="II") #type II
                                                                                         Type II ANOVA table
                                                                                         are equivalent to
Analysis of Variance Table
                                                     Anova Table (Type II tests)
                                                                                         The T tests in the
                                                                                         Model summary.
                                                     Response: y
 Response: y
                                                               Sum Sq Df F value Pr(>F)
          Df Sum Sq Mean Sq F value
                                     Pr(>F)
                                                               12.705 1
                                                                          2.0657 0.1699
x1
           1 352.27 352.27 57.2768 1.131e-06 ***
                                                                7.529 1 1.2242 0.2849
                                                     x2
                     33.17 5.3931
                                    0.03373 *
           1 33.17
                                                               11.546 1 1.8773 0.1896
x3
           1 11.55
                     11.55 1.8773
                                    0.18956
                                                     Residuals 98,405 16
 Residuals 16 98.40
                      6.15
```

The effect of order of predictors entering the model

Type I SS would change by the order

Variable	Type I SS	Type II SS
X_3	$SSR(X_3)$	$SSR(X_3 X_1,X_2)$
X_2	$SSR(X_2 X_3)$	$SSR(X_2 X_1,X_3)$
X_1	$SSR(X_1 X_2,X_3)$	$SSR(X_1 X_2,X_3)$

```
Anova Table (Type II tests)
          Analysis of Variance Table
                                                               Response: y
          Response: y
                                                                          Sum Sq Df F value Pr(>F)
                   Df Sum Sq Mean Sq F value
                                              Pr(>F)
                                                               x3
                                                                          11.546
                                                                                     1.8773 0.1896
                                              0.2193
          xЗ
                    1 10.05
                             10.05 1.6343
                                                              x2
After
                                                                           7.529 1
                                                                                     1.2242 0.2849
                    1 374.23
                             374.23 60.8471 7.684e-07 ***
                                                                         12.705 1
                                                                                    2.0657 0.1699
                                                               Residuals 98.405 16
                    1 12.70
                              12.70 2.0657
                                              0.1699
          х1
                                                              Analysis of Variance Table
          Residuals 16 98.40
                               6.15
                   Sum up to SSR=SSTO-SSE
                                                              Anova Table (Type II tests)
          Analysis of Variance Table
                                                              Response: y
          Response: y
                                                                          Sum Sq Df F value Pr(>F)
                    Df <u>Sum Sq</u> Mean Sq F value
                                                Pr (>F)
                                                                          12.705 1
                                                               x1
                                                                                      2.0657 0.1699
                              352.27 57.2768 1.131e-06 ***
          x1
                    1 352.27
Before
                                                                           7.529 1
                                                              x2
                                                                                      1.2242 0.2849
          x2
                       33.17
                               33.17 5.3931
                                               0.03373 *
                                                                          11.546 1
                                                                                      1.8773 0.1896
                       11.55
                               11.55 1.8773
                                               0.18956
          x3
                                                               Residuals 98.405 16
                       98.40
          Residuals 16
                                6.15
                                                                 Type II SS would not change.
```

Comments

- Type I SS always sum to SSR for the model with all predictors.
- Type I SS can give different values depending on the order in which variables are specified (e.g., switching X_1 and X_2).
- Type I SS are generally less useful than Type II SS unless you are specifically interested in partitioning variation among an ordered set of predictors.
- Type II SS can be considered a special case of Type I SS.
- When there is no assumption violation and the Type I and II ANOVA tables are similar, the order doesn't matter in the marginal effect of the predictors given others. We can conclude that the predictors are independent.

Coefficients of partial determination

The <u>relative</u> <u>marginal reduction</u> in the variation in Y <u>associated with some predictor</u> when <u>others are already in the model</u> is

$$R_{Y2|1}^2 = 0.232$$

$$R_{Y3|12}^2 = 0.105$$

$$R_{Y1|2}^2 = 0.031$$

When X2 is added to the model containing X1, the error sum of squares is reduced by 23.2%. The error sum of squares containing both X1 and X2 is reduced by 10.5% when X3 is added. Adding X1 to the model containing X2, the error sum of squares is reduced only by 3.1%.

Coefficients of partial determination (example 1)

The <u>relative</u> <u>marginal reduction</u> in the variation in Y <u>associated with some predictor</u> when <u>others are</u> <u>already in the model</u> is

$$R_{Y2|1}^2 = 0.232$$

When X2 is added to the model containing X1, the existing error sum of squares is reduced by 23.2%...

Model 1, Y~X1

	Df	SS		MS	
x1	1		352		352
Residuals	18		143		7.9
Total	19		495		

R^2

$$R^2 = \frac{352}{495} = 71\%$$

Model 3, Y~X1+X2

	Df	SS	MS
x1	1	352	352
x2	1	33	33
Residuals	17	110	6.5
Total	19	495	

$$R^2 = \frac{385}{495} = 78\%$$

Model 4, Y~X1+X2+X3

	Df	SS	MS
x1	1	352	352
x2	1	33	33
x3	1	12	12
Residuals	16	98	6.1
Total	19	495	

$$R^2 = \frac{397}{495} = 80\%$$

$$SSE(X_1) = 143$$
 $SSE(X_2|X_1) = 33$

$$R_{Y2|1}^2 = \frac{SSE(X_2|X_1)}{SSE(X_1)} = \frac{33}{143} = 0.232$$

Coefficients of partial determination (example 2)

The <u>relative</u> <u>marginal reduction</u> in the variation in Y <u>associated with some predictor</u> when <u>others are already in the model</u> is

$$R_{Y3|1,2}^2 = 0.105$$

When X3 is added to the model containing X1 X2, the existing error sum of squares is reduced by 10.5%.

Model 1, Y~X1

	Df	SS		MS	
x1	1		352		352
Residuals	18		143		7.9
Total	19		495		

 R^2

$$R^2 = \frac{352}{495} = 71\%$$

Model 3, Y~X1+X2

	Df	SS	MS
x1	1	352	352
x2	1	33	33
Residuals	17	110	6.5
Total	19	495	

$$R^2 = \frac{385}{495} = 78\%$$

$$SSE(X_1, X_2) = 110$$
 $SSE(X_3|X_1X_2) = 12$

Model 4, Y~X1+X2+X3

	Df	SS	MS
x1	1	352	352
x2	1	33	33
х3	1	12	12
Residuals	16	98	6.1
Total	19	495	

$$R^2 = \frac{397}{495} = 80\%$$

$$R_{Y3|12}^2 = \frac{SSE(X_3|X_1X_2)}{SSE(X_1, X_2)} = \frac{12}{110} = 0.105$$

Coefficients of partial determination

A coefficient of partial determination measures the marginal contribution of one X variable when all others Are already included in the model

For example,
$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$$

The <u>relative</u> <u>marginal reduction</u> in the variation in Y <u>associated with X1</u> when <u>X2 is already in the model</u> is

$$R_{Y1|2}^{2} = \frac{SSE(X2) - SSE(X1, X2)}{SSE(X2)} = \frac{SSR(X1|X2)}{SSE(X2)}$$

$$R_{Y2|1}^{2} = \frac{SSE(X1) - SSE(X1, X2)}{SSE(X1)} = \frac{SSR(X2|X1)}{SSE(X1)}$$

Q: Which of following represents the <u>relative marginal reduction</u> in the variation in Y <u>associated with X3</u> when <u>X1 and X2 are already in the model</u>

A)
$$R_{Y12|3}^2 = \frac{SSR(X1|X2|X3)}{SSE(X3)}$$
 B) $R_{Y12|3}^2 = \frac{SSR(X3|X1|X2)}{SSE(X1|X2)}$

C)
$$R_{Y3|12}^2 = \frac{SSR(X1|X2|X3)}{SSE(X3)}$$
 D) $R_{Y3|12}^2 = \frac{SSR(X3|X1|X2)}{SSE(X1|X2)}$

Type I and Type II Partial coefficient determination R²

Partial determination can be calculated from the Type I and Type II SS:

- Type I Squared Partial Correlation uses Type I SS: $R^2 = \frac{SS1}{SS1 + SSE}$
- Type II Squared Partial Correlation uses Type II SS: $R^2 = \frac{SS2}{SS2 + SSE}$

Where SS1 and SS2 are the Type I and Type II sums of squares for a particular predictor variable, and SSE is the sum of equared error for the full model.

The partial correlation $r = \sqrt{R^2}$

Type I Coefficients of Partial Determination

The order matters! Suppose the variables enter the model in the order of X3, X2, X1

• Type II coefficients of partial determination can be denoted and computed the same way as type I.

 $= \frac{SSR(X1|X3|X2)}{SSR(X1|X3|X2) + SSE(X3|X2|X1)} = \frac{12.7}{12.7 + 98.4} = 0.114$

- $ightharpoonup R_{Y\,2|3}^2$ is also the type II coefficient of partial determination of X2 in the MLR with just X2 and X3 predictors.
- Arr $R_{Y|1|3,2}^2$ is also the type II coefficient of partial determination of X1 in the MLR with just X1, X2 and X3 predictors.

Type II Coefficients of Partial Determination

 Measures the marginal contribution of one X variable when all other variables are already included in the model.

$$R_{Y\ 1|2,3}^2 = \frac{SSR(X1|X2,X3)}{SSR(X1|X2,X3) + SSE}$$

$$R_{Y\ 2|1,3}^2 = \frac{SSR(X2|X1\ X3)}{SSR(X2|X1,X3) + SSE}$$

$$R_{Y3|1,2}^2 = \frac{SSR(X3|X1|X2)}{SSR(X3|X1,X2) + SSE}$$

- Type II coefficient of partial determination of a predictor (X_i) is its Type I coefficient when it entering the model last.
 - The order of other predictors entering the model doesn't matter.

Compute the Type II Coefficients of Partial Determination of X1 and X3 from the type I ANOVA table

$$R_{Y\ 1|2,3}^2 = \frac{SSR(X1|X2,X3)}{SSE(X2,X3)} = 0.114$$

$$R_{Y3|1,2}^2 = \frac{SSR(X3|X1|X2)}{SSE(X1,X2)} = 0.105$$

Partial Coefficient of Determination R^2 , connection between type I and type II

Variable	Type I (order 1,2,3)	Type I (order 3,2,1)	Type I (order 1,3,2)	Type II
	0.711		0.711	0.114
X2	0.231	0.771	0.071	0.071
X3	0.105	0.02	0.26	0.105

Type II \mathbb{R}^2 is the same as type I for a predictor when it is the last one entering the model.

Partial Correlation Coefficient r, (in population, ρ) and Coefficients of Determination (R^2)

- Correlation coefficient measures the linear association between two (continuous) variables.
- Partial correlation measures the strength and direction of a linear association between two continuous variables while controlling one or more other continuous variables. $r_{Y\,3}=\pm\sqrt{R_{Y\,3}^2}$ $r_{Y\,2|\,3}=\pm\sqrt{R_{Y\,2|\,3}^2}$ $r_{Y\,1|2,3}=\pm\sqrt{R_{Y\,1|2,3}^2}$

• In MLR, $R^2 = SSR/SST$ is the proportion of variation explained by the linear model, while the *coefficient of partial determination* for X_k measures the marginal increase in SSR that results from including X_k in the model.