Examen Enero 2021 Virtual

Verdadero o Falso

Pregunta 1

Se considera O, x, y, z un sistema ortonormal de coordenadas y σ el plano determinado por OPQ, según la figura:

¿Existe alguna transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ tal que $N(T)=\sigma$ e $Im(T)\subseteq \sigma$?

Seleccione una:

a. Verdadero

Ob. Falso

Pregunta 2

Se considera O, x, y, z un sistema ortonormal de coordenadas, π el plano que contiene al OPQ y r la recta indicada:

 $\lim_{Im(T)=r^{?}} Im(T) = 1$

¿Existe una transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ tal que $N(T)=\sigma$ e Im(T)=r?

Seleccione una:

oa. Falso

b. Verdadero

Teo din: Lim 123=2+1 V y xe' pasan x el origen.

Se considera O, x, y, z un sistema ortonormal de coordenadas, π y σ los planos que contienen a los triángulos indicados en las figuras:

¿Existe una transformación lineal $T:\mathbb{R}^3 o \mathbb{R}^3$ tal que $T(\pi) \subseteq \sigma$?

Seleccione una:

- a. Falso
- Ob. Verdadero

$$T(x_1y_1,z)=(x_1x_2,0)$$

Pregunta 4

Se considera O, x, y, z un sistema ortonormal de coordenadas, σ y r el plano y la recta de la figura:

¿Existe una transformación lineal $T:\mathbb{R}^3 o \mathbb{R}^3$ tal que $T(r)=\sigma$?

Seleccione una:

- a. Falso
- b. Verdadero

Se considera O, x, y, z un sistema ortonormal de coordenadas, π y σ los planos de la figura:

Pregunta 1

Se consideran en el espacio un sistema de coordenadas ortonormal y los puntos O=(0,0,0), P=(1,1,1), Q=(0,0,1) y $R=(\frac{1}{3},\frac{1}{3},\frac{2}{3})$. Estos 4 puntos son coplanares y tienen posiciones relativas según la figura:

Entonces, el área encerrada por la poligonal O, P, Q, R es:

En un restaurante se producen 3 tipos de menús M1, M2, M3, los cuales incorporan 5 ingredientes de costo significativo I1, I2, I3, I4 e I5. La cantidad de ingredientes requerida para producir cada uno de los menús viene dada por la siguiente tabla (en unidades):

	l1	12	13	14	15
M1	5	2	2	3	7
M2	2	4	5	1	3
M3	0	2	2	2	5

M1:
$$5I_1 + 2I_2 + 2I_3 + 3I_4 + 7I_5$$

1 $M_1 - \$1208$
 $M_2: 2I_1 + 4I_2 + 5I_3 + I_4 + 3I_5$

1 $M_2 - \$725$

El costo por unidad de cada uno de los ingredientes viene dado por la siguiente tabla:

Ingrediente	Costo/unidad
l1	\$ 100
12	\$ 25
13	\$ 43
14	\$ 123
15	\$ 29

$$M_{3}$$
: $ZI_{2} + ZI_{3} + ZI_{4} + SI_{5}$

$$1 M_{3} - $527$$

Entonces el costo de un servicio de 15 menús M_1 , 12 menús M_2 y 8 menús M_3 es:

Sea $T:\mathbb{R}_2[x] o\mathbb{R}^3$ la transformación lineal tal que $_U(T)_E=\left(egin{array}{ccc} 2&-3&1\\0&-1&-1\\-1&4&0 \end{array}
ight)$

donde
$$E = \{1, x + 1, (x + 1)^2\}$$
 y $U = \{(1, 1, 0), (1, 2, 3), (3, 2, 1)\}$.

Entonces el vector de coordenadas de $T(x^2+x-1)$ en la base canónica de \mathbb{R}^3 es:

Sean las funciones $S,T,U:\mathbb{R}^3
ightarrow \mathbb{R}^3$ dadas por

•
$$S(x, y, z) = (0, 2x, y)$$
.

$$\bullet T(x,y,z) = (x,sen(x),z). \rightarrow No \ es + l.$$

$$\bullet U(x,y,z) = (sen(x),y,z-sen(y/2)). \longrightarrow No \ QS + 1.$$

Para cada enunciado escoger una de las tres opciones V(verdadero), F(falso), NR(no respondo).

 S^3 es una transformación lineal ($S^3 = S \circ S \circ S$).

 $U\circ S^2$ es una transformación lineal ($S^2=S\circ S$).

 $U\circ S\circ T$ es una transformación lineal.

Pregunta 5

Sean las funciones $S, T, U : \mathbb{R}^3 \to \mathbb{R}^3$ dadas por

$$\bullet S(x,y,z) = (z,y,x^2-1).$$
 No es $+ 1$

•
$$T(x, y, z) = (2x, y, z^2 - 1)$$
. No as $+$. Q

$$\bullet U(x,y,z) = (x+2y,x-y,z).$$
 Si es $+1$.

Para cada enunciado escoger una de las tres opciones V(verdadero), F(falso), NR(no respondo).

S=U es una transformación lineal.

 $(s-U)(\sigma)=(Q,Q,-1)$

T+2U es una transformación lineal.

で 50/十人 大学 T(可) = の

$$T+2U=(-,-,2\frac{2}{-1}+22)$$

 $T+2U(0)=(0,0,-1)$

Ex even zozl T:V-sW t.l.

· Im(T) CW son sev de WyV · N(T) CV respectivemente.

e SEV de IR³: triviales (R³, 0°) rectos y planos por el origen.

Too dim $\mathbb{R}^3 = \dim N(T) + \dim I_m(T)$ dim:

 $V-U = \lambda(u-w)$ $\sqrt{-u} = \lambda(u-w)$ $\sqrt{-u} = \lambda(u-w)$

 $T(v)-T(u)=\lambda [T(u)-T(w)]$ Lo esno

er el codonicio

■ Ge@Gebra

	<u></u>	<
	P = (1, 1, 1)	:
	Q = (0, 0, 1)	:
	$R = \left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$ $\to (0.33, 0.33, 0.67)$	•
	O = (0, 0, 0)	
+	Entrada	

Prop

Seem u, v des vectores en R3.

del mondro formado sor n de

$$\vec{V} = \vec{OQ} = (0,0,1)$$

$$\vec{W} = \vec{OR} = (1/3, 1/3, 2/3)$$

$$vxw = \begin{vmatrix} \hat{\tau} & \hat{f} & k \\ 0 & 0 & 1 \\ \frac{1}{3} & \frac{7}{3} & \frac{2}{3} \end{vmatrix} = (-\frac{1}{3}, \frac{1}{3}, 0)$$

$$3/2$$
 manilly = $\sqrt{2} = \frac{1}{3\sqrt{2}}$

$$\frac{2}{2} = R - Q = (\frac{1}{3}, \frac{1}{3}, \frac{2}{3}) - |0,0,1\rangle = (\frac{1}{3}, \frac{1}{3}, -\frac{1}{3})$$

$$\frac{2}{2} = R - Q = (\frac{1}{1}, \frac{1}{1}) - (0,0,1) = (\frac{1}{1}, \frac{1}{1})$$

$$\frac{1}{3} \frac{1}{3} \frac{1}{3} = (\frac{1}{3}, -\frac{1}{3}, 0) \longrightarrow |1(\frac{1}{3}, -\frac{1}{3}, 0)| = \frac{\sqrt{2}}{3}$$

$$\frac{1}{3} \frac{1}{3} \frac{1}{3} - \frac{1}{3} = (\frac{1}{3}, -\frac{1}{3}, 0) \longrightarrow |1(\frac{1}{3}, -\frac{1}{3}, 0)| = \frac{\sqrt{2}}{3}$$

$$\frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{\sqrt{2}}{3} = \frac{\sqrt{2$$

F @ MO

$$S(x, y, z) = (x, S(n(x), z))$$

$$S_{o}T = S(T) = S(x, sen(x), z) = (0, 2x, sen(x))$$

$$U(S_{o}T) = U(0, 2x, sen(x)) = (0, 2x, sen(x) - sen(x))$$