Math 133: Statistical Learning Methods - Module 2 Assessment

Pranav Jayakumar

February 19, 2025

1 Exercises

1.1 Election Predictions

We will use voter demographic data from the 2016 United States presidential elections to predict whether or not a person voted for Donald Trump.

1.1.1 Linear Model

We will begin by fitting a linear model of the form:

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

Where:

- 1. \hat{y} is trump.vote
- 2. β is the model coefficients
- 3. X_1 is non.citizen
- 4. X_2 is unemployed
- 5. X_3 is metro
- 6. ϵ is the residual error

```
data <- read.csv("../../data/election2016.csv")
trump_lm <- lm(trump.vote~non.citizen+unemployed+metro, data=data
)
summary(trump_lm)
```

Table 1: Coefficients

Coefficients	Estimate	Std. Error	t-value	$\Pr(> t)$
(Intercept)	0.62064	0.06793	9.136	6.65×10^{-12}
non.citizen	-1.25402	0.57049	-2.198	0.0330
unemployed	1.58516	1.15351	1.374	0.1760
metro	-0.18211	0.10118	-1.800	0.0784

Table 2: Model Performance

Residual Standard Error	0.08011 on 46 degrees of freedom		
Multiple R-squared	0.4072		
Adjusted R-squared	0.3686		
F-statistic	10.53 on 3 and 46 DF		
p-value	2.157×10^{-5}		

We observe that only the non.citizen variable is significant (p = 0.0330).

1.1.2 Reduced Linear Model

We will now fit a reduced linear model of the form:

$$\hat{y} = \beta_0 + \beta_1 X_1 + \epsilon$$

Where:

- 1. \hat{y} remains as trump.vote
- 2. β is the model coefficients
- 3. X_1 is non.citizen
- 4. ϵ remains the residual error

```
reduced_lm <- update(trump_lm, .~.-unemployed-metro)
summary(reduced_lm)
```

Table 3: Reduced Model Coefficients

Coefficients	Estimate	Std. Error	t-value	$\Pr(> t)$
(Intercept)	0.5979	0.0225	26.569	$< 2 \times 10^{-16}$
non.citizen	-1.9392	0.3783	-5.126	5.25×10^{-6}