DISEÑO ARQUITECTÓNICO

ARQUITECTURA DE SOFTWARE

• El l diseño arquitectónico es un proceso de diseño que permite la identificación de los sub-sistemas que componen un sistema y su comunicación

• El resultado de este proceso de diseño es una descripción de la arquitectura de software.

DISEÑO ARQUITECTÓNICO

- Una fase temprana del proceso de diseño del sistema.
- Representa el vínculo entre los procesos de especificación y diseño.
- Suelen llevarse a cabo en paralelo con las actividades de algunas especificaciones.
- Se trata de identificar los principales componentes del sistema y sus comunicaciones.

VENTAJAS DE LA ARQUITECTURA EXPLÍCITA

- Comunicación entre los stakeholders
 - La arquitectura puede ser utilizada como un foco de discusión del sistema por los stakeholders.
- Análisis del sistema
 - Significa que el análisis de si el sistema puede hacer frente a sus requerimientos no funcionales es posible.
- Reutilización a gran escala
 - La arquitectura puede ser reutilizable a través de una variedad de sistemas.

LA ARQUITECTURA Y CARACTERÍSTICAS DEL SISTEMA

Rendimiento

• Reducir al mínimo las operaciones de comunicaciones. Uso de grano grueso en lugar de componentes de grano fino.

Seguridad

• Una arquitectura con los procesos críticos en las capas interiores.

Disponibilidad

• Incluir componentes redundantes y los mecanismos de tolerancia a fallos.

Mantenibilidad

Uso de grano fino, los componentes reemplazables.

ESTRUCTURA DEL SISTEMA

- Concerniente a la descomposición del sistema en sub-sistemas.
- El diseño arquitectónico se expresa normalmente como un diagrama de bloques que presentan un panorama general de la estructura del sistema.
- Modelos más específicos muestran cómo los subsistemas comparten los datos, se distribuyen y la interfaz con los demás también pueden ser desarrollados.

SISTEMA DE CONTROL DE ROBOT DE EMBALAJE

BOX Y DIAGRAMAS

- Muy abstracto que no muestran la naturaleza de los componentes ni las relaciones de las propiedades visibles externamente de los subsistemas.
- Sin embargo, útil para la comunicación con las partes interesadas y para la planificación de proyectos.

DECISIONES DE DISEÑO ARQUITECTÓNICO

- Diseño arquitectónico es un proceso creativo, por lo que el proceso es diferente dependiendo del tipo de sistema que se está desarrollado.
- Sin embargo, es común una serie de decisiones, en todos los procesos de diseño.

DECISIONES DE DISEÑO ARQUITECTÓNICO

- Existe una arquitectura de aplicaciones genéricas que se pueden utilizar?
- o Cómo se distribuirá el sistema?
- Qué estilos arquitectónicos son apropiados?
- Qué enfoque se utilizará para la estructura del sistema?
- o Cómo el sistema se descompone en módulos?
- Qué estrategia de control se debe utilizar?
- Cómo el diseño arquitectónico se evaluará?
- Cómo debe ser documentada la arquitectura?

REUTILIZACIÓN DE LA ARQUITECTURA

- Sistemas en el mismo dominio a menudo tienen arquitecturas similares que reflejan conceptos del dominio.
- La aplicación de líneas de producción se construye en torno a un núcleo con arquitectura particular, con variantes que satisfagan las necesidades del cliente.

ESTILOS ARQUITECTÓNICOS

- El modelo arquitectónico de un sistema puede ajustarse a un modelo genérico o estilo arquitectónico.
- La conciencia de estos estilos puede simplificar el problema de la definición de arquitecturas de sistemas.
- Sin embargo, la mayoría de los grandes sistemas son heterogéneos y no siguen un mismo estilo arquitectónico.

MODELOS ARQUITECTÓNICOS

- Utilizarse para documentar un diseño arquitectónico.
- Modelo estructural estático, que muestra los principales componentes del sistema.
- Modelo de proceso dinámico que muestra el modelo de proceso de la estructura del sistema.
- Modelo de interfaz que define las interfaces de sub-sistemas.
- Modelo de relaciones, como un modelo de flujo de datos que muestra las relaciones de sub-sistemas.
- Modelo de distribución que muestra cómo los subsistemas se distribuyen a través de computadoras.

Modelo –vista-controlador

APLICACION WEB CON ARQUITECTURA MVC

EL MODELO REPOSITORIO

- Sub-sistemas de intercambio de datos. Esto puede hacerse de dos maneras:
 - Datos compartidos se lleva a cabo en un repositorio o base de datos central y puede ser visitada por todos los sub-sistemas;
 - Cada sub-sistema mantiene su propia base de datos y pasa datos explícitamente a otros subsistemas.
- Cuando grandes cantidades de datos sean compartidos, el modelo de repositorio compartido es más comúnmente utilizado.

ARQUITECTURA DE REPOSITORIO IDE

Modelo Repositorio Características

Ventajas

- Manera eficaz de compartir grandes cantidades de datos;
- Sub-sistemas no tienen por qué preocuparse de cómo los datos se producen, por ejemplo, la gestión centralizada copia de seguridad, seguridad, etc
- Un modelo a compartir se publica como el esquema del repositorio.

Desventajas

- Sub-sistemas deben ponerse de acuerdo sobre un modelo repositorio de datos. Inevitablemente, un compromiso;
- La evolución de datos es difícil y costosa;
- No hay lugar para las políticas de gestión específicas;
- Difícil de distribuir de manera eficiente.

Modelo cliente-servidor

- Sistema distribuido que muestra cómo el modelo de datos y procesamiento se distribuye a través de una gama de componentes.
- Conjunto de servidores independientes que ofrecen servicios específicos, tales como la impresión, gestión de datos, etc
- Conjunto de clientes que piden a éstos los servicios.
- Red que permite a los clientes acceder a los servidores.

BIBLIOTECA DE IMÁGENES Y PELÍCULAS

CLIENTE-SERVIDOR CARACTERÍSTICAS

Ventajas

- Distribución de datos es sencilla;
- Hace un uso eficaz de los sistemas en red. Puede requerir hardware más barato;
- Fácil añadir nuevos servidores o actualizar los servidores existentes.

Desventajas

- No hay un modelo de datos compartidos, así que los subsistemas utilizan diferentes datos de la organización.
 Intercambio de datos puede ser ineficaz;
- Redundantes en la gestión de cada servidor;
- No hay registro central de nombres y servicios que puede ser difícil de averiguar qué servidores y servicios están disponibles.

Modelo de capas

- Se utiliza para modelar la interacción de subsistemas.
- Organiza el sistema en un conjunto de capas (o máquinas abstractas) cada uno de los cuales provee un conjunto de servicios.
- Apoya el desarrollo gradual de sub-sistemas en diferentes capas. Cuando una capa cambia, sólo la capa adyacente se ve afectada.

SISTEMA DE GESTIÓN

Interfaz de usuario

Gestión de interfaz de usuario Autenticación y autorización

Lógica empresarial núcleo/funcionalidad de aplicación Utilidades del sistema

Soporte del sistema (OS, base de datos, etc.)

SISTEMA DE BIBLIOTECA

Interfaz de navegador Web Conexión Gestor formatos Gestor impresión LIBSYS y consulta Búsqueda Recuperación Gestor Contabilidad distribuida de documentos derechos Índice de biblioteca DB₁ DB₂ DB3 DB4 DBn

Modelo de tuberia y filtro

- Cada componente de procesamiento (filtro) es discreto y realiza un tipo de transformación de datos.
- Los datos fluyen (como en una tubería) de un componente a otro para su procesamiento.
- Se utiliza en aplicaciones de procesamiento de datos (tanto basadas en lotes como en transacciones),

Modelo de tuberia y filtro

THE STRUCTURE OF TRANSACTION PROCESSING APPLICATIONS

THE SOFTWARE ARCHITECTURE OF AN ATM SYSTEM

LAYERED INFORMATION SYSTEM ARCHITECTURE

User interface

User communications

Authentication and authorization

Information retrieval and modification

Transaction management

Database

THE ARCHITECTURE OF THE MHC-PMS

Web browser

Login Role checking Form and menu Data manager validation

Security Patient info. Data import Report management manager and export generation

> Transaction management Patient database

THE ARCHITECTURE OF A LANGUAGE PROCESSING SYSTEM

A PIPE AND FILTER COMPILER ARCHITECTURE

REPOSITORY ARCHITECTURE FOR A LANGUAGE PROCESSING SYSTEM

