MAT4004: Topology 2

Notes taken by Junwoo Yang

Based on lecture by Youngsik Huh in fall $2021\,$

Contents

0	Review of Topology 1	2
1	Quotient topology	5
2	Fundamental group and applications	6
3	Jordan curve theorem	7
4	Seifert-Van Kampen theorem	8
5	Surfaces	9
6	Covering spaces	10

Review of Topology 1

Definition 1 (Topology). A topology on a set X is a collection of subsets of X, {open sets}, which satisfies followings

- 1. $\emptyset, X \in \mathcal{T}$.
- 2. Arbitrary union of elements in \mathcal{T} is in \mathcal{T} .
- 3. Finite intersection of elements in \mathcal{T} is in \mathcal{T} .

Elements in \mathcal{T} are called open sets.

Lemma 1. product topology on $X \times Y$ is coarest topology s.t. π_1, π_2 are continuous.

Definition 2 (Basis). A basis $\mathcal{B} \subset \mathcal{P}(X)$ is a collection of subsets of X s.t.

- 1. $\bigcup_{B \in \mathcal{B}} B = X.$
- 2. For any $x \in B_1 \cap B_2$ $(B_1, B_2 \in \mathcal{B})$, $\exists B \in \mathcal{B}$ such that $x \in B \subset B_1 \cap B_2$.

Definition 3 (Hausdorff). A topological space X is Hausdorff if $\forall x_1 \neq x_2$, \exists neighborhood $U_1 \ni x_1, U_2 \ni x_2$ s.t. $U_1 \cap U_2 = \emptyset$.

Theorem 1 (Tychonoff theorem). $\Pi_{\beta \in B} X_{\beta}$ is compact.

Definition 4 (Countable basis). X has a countable basis of nbds at x if $\exists \{O_n\}_{n\in\mathbb{N}}$ of x s.t. for any nbd U of x, $\exists O_n \subset U$ for some $n \in \mathbb{N}$.

Definition 5 (First countable). X is called first countable if X has countable basis of nbds at every point of X.

Example. Metric space is first countable. For any x, $O_n = B_{\frac{1}{n}}(x)$ $n \in \mathbb{N}$.

Figure 1: Example with four elements

Definition 6. A sequence $\{x_n\}$ converges to y if given any open $nbd\ U$ of $y, \exists N$ so that if $n > N, x_n \in U$.

Theorem 2. $A \subset X$ topological space. If $x_n \in A$ converges to y, then $y \in \overline{A}$. Converse holds if X is first countable, that is, if $y \in \overline{A}$, then $\exists x_n \in A \text{ with } x_n \to y$.

Proof. First statement is easy. Say X first countable. Pick $y \in \overline{A}$, we will find $x_n \to y$, $x_n \in A$. $\exists \{O_n\}$ countable basis of nbds of y. Set

$$U_1 = O_1$$

$$U_2 = O_1 \cap O_2$$

$$U_3 = O_1 \cap O_2 \cap O_3$$

$$\vdots$$

$$U_1 \supset U_2 \supset U_3 \cdots$$

 $\{U_n\}_{n\in\mathbb{N}}$ is also countable basis of nbds of y.

Now, $y \in \overline{A}$, $\Rightarrow U_n \cap A \neq \emptyset$. Pick $x_n \in U_n \cap A$. Claim: $x_n \to y$. Choose any nbd U of y. Then, $\exists N$ s.t. $O_n \subset U$.

Note. If
$$n > N$$
, $U_n = O_1 \cap \cdots \cap O_N \cap \cdots \cap O_n \subset O_N \subset U$.
 $\therefore x_n \in U$ for any $n > N$. $\therefore x_n \to y$.

Definition 7 (Second countable). X is called second countable if X has countable basis (of topology).

Example. \mathbb{R} , $\{(a,b) \mid a,b \in \mathbb{Q}\}$.

Example. $X_1 \times \cdots \times X_n$ (X_i : second countable) is also second countable.

Example. Compact metric space.

Question If X is second countable, does it have a countable dense subset?

Definition 8 (Separable). X is called separable if \exists countable subset whose closure is X.

Proposition 1. Second countable \Rightarrow separable.

Proposition 2. Separable metric space \Rightarrow second countable.

Definition 9 (Normal). X is normal if X is Hausdorff and for any closed subset C_1, C_2 with $C_1 \cap C_2 = \emptyset$, \exists open sets U_1, U_2 with $U_1 \supset C_1, U_2 \supset C_2$, $U_1 \cap U_2 = \emptyset$.

Proposition 3. Every compact Hausdorff space is normal.

Theorem 3 (Urysohn's lemma). Let X be normal and C_1, C_2 disjoint closed subsets. Then \exists continuous function $f: X \to [0,1]$ such that

- 1. $f(x) = 0 \quad \forall x \in A$.
- 2. $f(x) = 1 \quad \forall x \in B$.

Definition 10. Equivalence relation: (X, \sim) satisfies

- 1. $x \sim x$
- 2. $x \sim y \Rightarrow y \sim x$
- 3. $x \sim y, y \sim z \Rightarrow x \sim z$

 $X/_{\sim}$: the set of equivalence classes

Definition 11 (Locally compact). X is called locally compact if for any $x \in X$, \exists open nbd O of x such that \overline{O} is compact.

Quotient topology

https://en.wikipedia.org/wiki/Homotopy

Definition 12 (Homotopic). If f and f' are continuous maps of the space X into the space Y, we say that f is homotopic to f' if there is a continuous map $F \colon X \times I \to Y$ such that F(x,0) = f(x) and F(x,1) = f'(x) for each x. (Here I = [0,1].) The map F is called a homotopy between f and f'. If f is homotopic to f', we write $f \simeq f'$. If $f \simeq f'$ and f' is a constant map, we say that f is nulhomotopic.

Definition 13 (Evenly covered). Let $p \colon E \to B$, surjective map (so continuous). Let $U \subset B$ open. Then U is evenly covered iff $p^{-1}(U) = \bigcup_{\alpha \in I} V_{\alpha}$ with

- V_{α} open in E
- $V_{\alpha} \cap V_{\beta} = \emptyset$ if $\alpha \neq \beta$
- $p|_{V_{\alpha}}: V_{\alpha} \to U$ is a homeomorphism.

Figure 1.1: Evenly covered

Fundamental group and applications

Jordan curve theorem

 $\verb|https://en.wikipedia.org/wiki/Jordan_curve_theorem|\\$

Seifert-Van Kampen theorem

https://en.wikipedia.org/wiki/Seifert%E2%80%93Van_Kampen_theorem

Surfaces

Covering spaces