Instituto tecnológico de Costa Rica

Sede central Cartago

Escuela de Ingeniería Electrónica EL4703 - Señales y sistemas

Formulario general

Emanuel Esquivel López

Mapeos e Integración

Mapeo de inversión

Mapeo de círculos

$$|w - w_0| = r_w$$

$$r_w = \left|\frac{r}{\alpha}\right|$$

$$w_0 = -\frac{z_0^*}{\alpha}$$

$$\alpha = r^2 - |z_0|^2$$

$$v = \frac{x_0}{y_0}u - \frac{1}{2y_0}$$

Mapeo de rectas

$$v = \frac{\operatorname{Re} \{a - b\}}{\operatorname{Im} \{a - b\}} u$$

$$w_0 = \frac{(a - b)^*}{\beta}$$

$$r_w = \left| \frac{a - b}{\beta} \right|$$

$$\beta = |a|^2 - |b|^2$$

Integración trigonometrica

$$sen \theta = \frac{1}{2j} \left(z - \frac{1}{z} \right)$$

$$cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

$$d\theta = \frac{dz}{jz}$$

$$z = e^{j\theta}$$

Funciones trigonométricas

Definición en un triangulo rectángulo

$$\operatorname{sen} A = \frac{a}{c} = \frac{\operatorname{Cateto\ opuesto}}{\operatorname{Hipotenusa}}$$

$$\operatorname{cos} A = \frac{b}{c} = \frac{\operatorname{Cateto\ adyacente}}{\operatorname{Hipotenusa}}$$

$$\operatorname{tan} A = \frac{a}{b} = \frac{\operatorname{Cateto\ opuesto}}{\operatorname{Cateto\ adyacente}}$$

$$\operatorname{cot} A = \frac{b}{a} = \frac{\operatorname{Cateto\ adyacente}}{\operatorname{Cateto\ opuesto}}$$

$$\operatorname{sec} A = \frac{c}{b} = \frac{\operatorname{Hipotenusa}}{\operatorname{Cateto\ adyacente}}$$

$$\operatorname{csc} A = \frac{c}{a} = \frac{\operatorname{Hipotenusa}}{\operatorname{Cateto\ opuesto}}$$

Funciones para cualquier angulo A en el plano

Considere un sistema de coordenadas XY, donde las coordenadas de un punto P=(x,y), la distancia del punto P al origen $r=\sqrt{x^2+y^2}$ y el ángulo A positivo como se muestra en la figura.

Funciones trigonométricas para un ángulo A en cualquier cuadrante:

$$sen A = \frac{y}{r}$$

$$cos A = \frac{x}{r}$$

$$sec A = \frac{r}{y}$$

$$tan A = \frac{y}{x}$$

$$cot A = \frac{x}{y}$$

Relaciones entre grados y radianes

1 radián =
$$\frac{180}{\pi}^{\circ}$$
 θ rad = $\frac{\theta^{\circ} \cdot \pi \text{ rad}}{180^{\circ}}$

$$1^{\circ} = \frac{\pi}{180} \text{ radianes}$$
 $\theta^{\circ} = \frac{\theta \text{ rad} \cdot 180^{\circ}}{\pi \text{ rad}}$

Relaciones entre las funciones trigonométricas

$$\tan A = \frac{\sin A}{\cos A}$$

$$\cot A = \frac{\cos A}{\sin A}$$

$$\sec^2 A - \tan^2 A = 1$$

$$\sec A = \frac{1}{\cos A}$$

$$\csc A = \frac{1}{\sin A}$$

$$\csc A = \frac{1}{\sin A}$$

Signos e intervalos de variación

Cuadrante	$\operatorname{sen} A$	$\cos A$	$\tan A$	$\cot A$	$\sec A$	$\csc A$
Т	+	+	+	+	+	+
1	0 a 1	1 a 0	$0 \ \mathrm{a} \ \infty$	∞ a 0	$1~\mathrm{a}~\infty$	∞ a 1
II	+	_	_	_	_	+
	1 a 0	0 a - 1	$-\infty \text{ a } 0$	$0 \text{ a } -\infty$	$-\infty a - 1$	1 a ∞
III	_	_	+	+	_	_
	0 a - 1	-1 a 0	0 a ∞	∞ a 0	$-1 a - \infty$	$-\infty a - 1$
IV	_	+	_	_	+	_
	-1 a 0	0 a 1	$-\infty \text{ a } 0$	$0 \text{ a } -\infty$	∞ a 1	$-1 a - \infty$

Valores exactos de las funciones para ciertos ángulos

A°	$A \operatorname{rad}$	$\operatorname{sen} A$	$\cos A$	$\tan A$	$\cot A$	$\sec A$	$\csc A$
0°	0	0	1	0	∞	1	∞
15°	$\frac{\pi}{12}$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	$\sqrt{6} + \sqrt{2}$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	2
45°	$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	2	$\frac{2}{3}\sqrt{3}$
75°	$\frac{5\pi}{12}$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$\sqrt{6} + \sqrt{2}$	$\sqrt{6}-\sqrt{2}$
90°	$\frac{\pi}{2}$	1	0	$\pm\infty$	0	$\pm \infty$	1
105°	$\frac{7\pi}{12}$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-2-\sqrt{3}$	$-2+\sqrt{3}$	$-\sqrt{6}-\sqrt{2}$	$-\sqrt{6}+\sqrt{2}$
120°	$\frac{2\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	-2	$\frac{2}{3}\sqrt{3}$
135°	$\frac{3\pi}{4}$	$\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	2
165°	$\frac{11\pi}{12}$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-2+\sqrt{3}$	$-2-\sqrt{3}$	$-\sqrt{6}+\sqrt{2}$	$\sqrt{6} + \sqrt{2}$
180°	π	0	-1	0	$\mp\infty$	-1	$\pm\infty$
195°	$\frac{13\pi}{12}$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$2-\sqrt{3}$	$2+\sqrt{3}$	$-\sqrt{6}+\sqrt{2}$	$-\sqrt{6}-\sqrt{2}$
210°	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$	-2
225°	$\frac{5\pi}{4}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	1	1	$-\sqrt{2}$	$-\sqrt{2}$
240°	$\frac{4\pi}{3}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	-2	$-\frac{2}{3}\sqrt{3}$
255°	$\frac{17\pi}{12}$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$2+\sqrt{3}$	$2-\sqrt{3}$	$-\sqrt{6}-\sqrt{2}$	$-\sqrt{6}+\sqrt{2}$
270°	$\frac{3\pi}{2}$	-1	0	$\pm \infty$	0	$\mp\infty$	-1
285°	$\frac{19\pi}{12}$	$-\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$-2-\sqrt{3}$	$-2+\sqrt{3}$	$\sqrt{6} + \sqrt{2}$	$-\sqrt{6}+\sqrt{2}$
300°	$\frac{5\pi}{3}$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	2	$-\frac{2}{3}\sqrt{3}$
315°	$\frac{7\pi}{4}$	$-\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	-1	-1	$\sqrt{2}$	$-\sqrt{2}$
330°	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	-2
345°	$\frac{23\pi}{12}$	$-\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)$	$\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)$	$-2+\sqrt{3}$	$-2-\sqrt{3}$	$\sqrt{6}-\sqrt{2}$	$-\sqrt{6}-\sqrt{2}$
360°	2π	0	1	0	$\mp\infty$	1	$\mp\infty$

Representación gráfica de las funciones

Funciones de ángulos negativos

$$\operatorname{sen}(-A) = -\operatorname{sen} A$$

$$\cos(-A) = \cos A$$

$$\tan(-A) = -\tan A$$

$$\csc(-A) = -\csc A$$

$$\sec(-A) = \sec A$$

$$\cot(-A) = -\cot A$$

Formulas de adicion

$$sen(A \pm B) = sen A cos B \pm cos A sen B$$

$$tan(A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$$

$$cos(A \pm B) = cos A cos B \mp sen A sen B$$

$$cot(A \pm B) = \frac{cot A cot B \mp 1}{cot A \pm cot B}$$

Funciones de ángulos reducidos al primer cuadrante

 $(con k \in \mathbb{Z})$

Función	-A	$\frac{\pi}{2} \pm A$	$\pi \pm A$	$\frac{3\pi}{2} \pm A$	$2k\pi + A$
sen	$-\operatorname{sen} A$	$\cos A$	$\mp \operatorname{sen} A$	$-\cos A$	$\pm \operatorname{sen} A$
cos	$\cos A$	$\mp \operatorname{sen} A$	$-\cos A$	$\pm \operatorname{sen} A$	$\cos A$
tan	$-\tan A$	$\mp \cot A$	$\pm \tan A$	$\mp \cot A$	$\pm \tan A$
csc	$-\csc A$	$\sec A$	$\mp \csc A$	$-\sec A$	$\pm \csc A$
sec	$\sec A$	$\mp \csc A$	$-\sec A$	$\pm \csc A$	$\sec A$
cot	$-\cot A$	$\mp \tan A$	$\pm \cot A$	$\mp \tan A$	$\pm \cot A$

Relaciones entre funciones de los ángulos en el primer cuadrante

Función		$\cos A = u$	$\tan A = u$	$\cot A = u$	$\sec A = u$	$\csc A = u$
$\operatorname{sen} A$	u	$\sqrt{1-u^2}$	$\frac{u}{\sqrt{1+u^2}}$	$\frac{1}{\sqrt{1+u^2}}$	$\frac{\sqrt{1-u^2}}{u}$	$\frac{1}{u}$
$\cos A$	$\sqrt{1-u^2}$	u	$\frac{1}{\sqrt{1+u^2}}$	$\frac{u}{\sqrt{1+u^2}}$	$\frac{1}{u}$	$\frac{\sqrt{1-u^2}}{u}$
$\tan A$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{\sqrt{1-u^2}}{u}$	u	$\frac{1}{u}$	$\sqrt{1-u^2}$	$\frac{1}{\sqrt{1-u^2}}$
$\cot A$	$\frac{\sqrt{1-u^2}}{u}$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{1}{u}$	u	$\frac{1}{\sqrt{1-u^2}}$	$\sqrt{1-u^2}$
$\sec A$	$\frac{1}{\sqrt{1-u^2}}$	$\frac{1}{u}$	$\sqrt{1+u^2}$	$\frac{\sqrt{1-u^2}}{u}$	u	$\frac{u}{\sqrt{1-u^2}}$
$\csc A$	$\frac{1}{u}$	$\frac{1}{\sqrt{1-u^2}}$	$\frac{\sqrt{1+u^2}}{u}$	$\sqrt{1+u^2}$	$\frac{u}{\sqrt{1-u^2}}$	u

Formulas del ángulo doble

$$sen 2A = 2 sen A cos A$$

$$cos 2A = cos2 A - sen2 A = 1 - 2 sen2 A = 2 cos2 A - 1$$

$$tan 2A = \frac{2 tan A}{1 - tan2 A}$$

Formulas de medio ángulo

Formulas de ángulos múltiplos

Potencias de funciones trigonométricas

$$sen2 A = \frac{1}{2} - \frac{1}{2}\cos 2A
sen2 A = \frac{1}{2} + \frac{1}{2}\cos 2A
sen3 A = \frac{3}{4}\sin A - \frac{1}{4}\sin 3A
cos3 A = \frac{3}{4}\cos A + \frac{1}{4}\cos 3A$$

$$sen4 A = \frac{3}{8} - \frac{1}{2}\cos 2A + \frac{1}{8}\cos 4A
cos4 A = \frac{3}{8} + \frac{1}{2}\cos 2A + \frac{1}{8}\cos 4A
sen5 A = \frac{5}{8}\sin A - \frac{5}{16}\sin 3A + \frac{1}{16}\sin 5A
cos5 A = \frac{5}{8}\cos A + \frac{5}{16}\cos 3A + \frac{1}{16}\cos 5A$$

Suma, diferencia y producto de las funciones

$$\operatorname{sen} A + \operatorname{sen} B = 2 \operatorname{sen} \left(\frac{A+B}{2} \right) \operatorname{cos} \left(\frac{A-B}{2} \right)$$

$$\operatorname{sen} A - \operatorname{sen} B = 2 \operatorname{cos} \left(\frac{A+B}{2} \right) \operatorname{sen} \left(\frac{A-B}{2} \right)$$

$$\operatorname{cos} A + \operatorname{cos} B = 2 \operatorname{cos} \left(\frac{A+B}{2} \right) \operatorname{cos} \left(\frac{A-B}{2} \right)$$

$$\operatorname{cos} A - \operatorname{cos} B = 2 \operatorname{sen} \left(\frac{A+B}{2} \right) \operatorname{sen} \left(\frac{A-B}{2} \right)$$

$$\operatorname{sen} A \operatorname{sen} B = \frac{1}{2} \left[\operatorname{cos} (A-B) - \operatorname{cos} (A+B) \right]$$

$$\operatorname{cos} A \operatorname{cos} B = \frac{1}{2} \left[\operatorname{cos} (A-B) + \operatorname{cos} (A+B) \right]$$

$$\operatorname{sen} A \operatorname{cos} B = \frac{1}{2} \left[\operatorname{sen} (A-B) + \operatorname{sen} (A+B) \right]$$

$$\operatorname{cos} A \operatorname{sen} B = \frac{1}{2} \left[\operatorname{sen} (A+B) - \operatorname{sen} (A+B) \right]$$

Formulas generales

$$sen nA = sen A \left[(2\cos A)^{n-1} - \binom{n-2}{1} (2\cos A)^{n-3} + \binom{n-3}{1} (2\cos A)^{n-5} - \cdots \right]$$

$$cos nA = \frac{1}{2} \left[(2\cos A)^n - n(2\cos A)^{n-2} + \frac{n}{2} \binom{n-3}{1} (2\cos A)^{n-4} - \frac{n}{3} \binom{n-4}{2} (2\cos A)^{n-6} + \cdots \right]$$

$$sen^{2n-1} A = \frac{(-1)^{n-1}}{2^{2n-2}} \left[sen(2n-1)A - \binom{2n-2}{1} sen(2n-3)A + \cdots (-1)^{n-1} \binom{2n-1}{n-1} sen A \right]$$

$$cos^{2n-1} A = \frac{1}{2^{2n-2}} \left[cos(2n-1)A + \binom{2n-2}{1} cos(2n-3)A + \cdots + \binom{2n-1}{n-1} cos A \right]$$

$$sen^{2n} A = \frac{1}{2^{2n}} \binom{2n}{n} + \frac{(-1)^n}{2^{2n-1}} \left[cos 2nA - \binom{2n}{1} cos(2n-2)A + \cdots (-1)^{n-1} \binom{2n}{n-1} cos 2A \right]$$

$$cos^{2n} A = \frac{1}{2^{2n}} \binom{2n}{n} + \frac{1}{2^{2n-1}} \left[cos 2nA + \binom{2n}{1} cos(2n-2)A + \cdots + \binom{2n}{n-1} cos 2A \right]$$

Funciones trigonométricas inversas

Valores principales para $x \ge 0$	Valores principales para $x < 0$
$0 \le \operatorname{sen}^{-1} x \le \frac{\pi}{2}$	$-\frac{\pi}{2} \le \operatorname{sen}^{-1} x < 0$
$0 \le \cos^{-1} x \le \frac{\pi}{2}$	$\frac{\pi}{2} < \cos^{-1} x \le \pi$
$0 \le \tan^{-1} x < \frac{\pi}{2}$	$-\frac{\pi}{2} < \tan^{-1} x < 0$
$0 \le \cot^{-1} x \le \frac{\pi}{2}$	$\frac{\pi}{2} < \cot^{-1} x < \pi$
$0 \le \sec^{-1} x < \frac{\pi}{2}$	$\frac{\pi}{2} < \sec^{-1} x \le \pi$
$0 \le \csc^{-1} x \le \frac{\pi}{2}$	$-\frac{\pi}{2} \le \csc^{-1} x < 0$

Relaciones entre trigonométricas inversas

Funciones inversas en su forma compleja

$$sen^{-1} x = -j \ln \left(jx + \sqrt{1 - x^2} \right) \qquad csc^{-1} x = -j \ln \left(\frac{j}{x} + \sqrt{1 - \frac{1}{x^2}} \right)$$

$$cos^{-1} x = -j \ln \left(x + \sqrt{x^2 - 1} \right) \qquad sec^{-1} x = -j \ln \left(\frac{1}{x} + \sqrt{1 - \frac{i}{x^2}} \right)$$

$$tan^{-1} x = \frac{j}{2} \ln \left(\frac{j + x}{j - x} \right) \qquad cot^{-1} x = \frac{j}{2} \ln \left(\frac{j - x}{j + x} \right)$$

Relaciones entre lados y ángulos en un triangulo plano

Ley de senos

$$\frac{a}{\operatorname{sen} A} = \frac{b}{\operatorname{sen} B} = \frac{c}{\operatorname{sen} C}$$

Ley de cosenos

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Ley de tangentes

$$\frac{a+b}{a-b} = \frac{\tan\left(\frac{A+B}{2}\right)}{\tan\left(\frac{A-B}{2}\right)}$$

Relacion de Heron

$$\operatorname{sen} A = \frac{2}{ab} \sqrt{s(s-a)(s-b)(s-c)}$$

$$\operatorname{con} s = \frac{a+b+c}{2}$$

Relaciones entre lados y ángulos en un triangulo esférico

Ley de senos

$$\frac{\operatorname{sen} a}{\operatorname{sen} A} = \frac{\operatorname{sen} b}{\operatorname{sen} B} = \frac{\operatorname{sen} c}{\operatorname{sen} C}$$

Ley de cosenos

$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$
$$\cos A = -\cos B \cos C + \sin B \sin C \cos a$$

Ley de tangentes

$$\frac{\tan\left(\frac{A+B}{2}\right)}{\tan\left(\frac{A-B}{2}\right)} = \frac{\tan\left(\frac{a+b}{2}\right)}{\tan\left(\frac{a-b}{2}\right)}$$

Relacion de Heron

$$\cos \frac{A}{2} = \sqrt{\frac{\operatorname{sen} s \operatorname{sen}(s - c)}{\operatorname{sen} b \operatorname{sen} c}}$$

$$con s = \frac{a+b+c}{2}$$

$$\cos \frac{a}{2} = \sqrt{\frac{\cos(S-B)\cos(S-C)}{\operatorname{sen} B \operatorname{sen} C}}$$

$$con S = \frac{A+B+C}{2}$$

Funciones exponenciales y logarítmicas

Forma polar de los números complejos

$$z = x + jy = r(\cos \theta + j \sin \theta) = re^{j\theta}$$

Donde $r = \sqrt{x^2 + y^2}$ y $\theta = \text{Arg}\{z\}$

Operaciones con números complejos en forma polar

$$(r_1e^{j\theta_1})(r_2e^{j\theta_2}) = r_1r_2e^{j(\theta_1+\theta_2)}$$
$$\frac{r_1e^{j\theta_1}}{r_2e^{j\theta_2}} = \frac{r_1}{r_2}e^{j(\theta_1+\theta_2)}$$
$$(re^{j\theta})^p = r^pe^{jp\theta}$$
$$(re^{j\theta})^{\frac{1}{n}} = r^{\frac{1}{n}}e^{j\frac{\theta+2k\pi}{n}}$$

Logaritmo de un numero complejo

$$\ln\left(re^{j\theta}\right) = \ln r + i(\theta + 2k\pi)$$

$$\operatorname{con} \ k \in \mathbb{Z}$$

Funciones hiperbólicas

Definición de las funciones

Relaciones entre funciones

$$\operatorname{senh} x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{cosh} x = \frac{e^x + e^{-x}}{2}$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\operatorname{coth} x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$\operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

$$\operatorname{csch} x = \frac{2}{e^x - e^{-x}}$$

$$\tanh x = \frac{\operatorname{senh} x}{\operatorname{cosh} x}$$

$$\coth x = \frac{\operatorname{cosh} x}{\operatorname{senh} x}$$

$$\operatorname{sech} x = \frac{1}{\operatorname{cosh} x}$$

$$\operatorname{csch} x = \frac{1}{\operatorname{senh} x}$$

$$\operatorname{csch} x - \sinh^2 x = 1$$

$$\operatorname{sech}^2 x - \operatorname{csch}^2 x = 1$$

Funciones de ángulos negativos

$$\operatorname{senh}(-x) = -\operatorname{senh} x$$

$$\cosh(-x) = \cosh x$$

$$\tanh(-x) = -\tanh x$$

$$\operatorname{csch}(-x) = -\operatorname{csch} x$$

$$\operatorname{sech}(-x) = \operatorname{sech} x$$

$$\coth(-x) = -\coth x$$

Formulas de adicion

$$\operatorname{senh}(x \pm y) = \operatorname{senh} x \cosh y \pm \cosh x \operatorname{senh} y$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tan y}$$

$$\cosh(x\pm y)=\cosh x\cosh y\pm \sinh x \sinh y$$

$$\coth(x \pm y) = \frac{\coth x \coth y \pm 1}{\coth x \pm \coth y}$$

Formulas del ángulo doble

$$\operatorname{senh} 2x = 2 \operatorname{senh} x \operatorname{cosh} x$$

$$\operatorname{cosh} 2x = \operatorname{cosh}^2 x + \operatorname{senh}^2 x = 1 + 2 \operatorname{senh}^2 x = 2 \operatorname{cosh}^2 x - 1$$

$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

Formulas de medio ángulo

$$\operatorname{senh} \frac{A}{2} = \pm \sqrt{\frac{\cosh x - 1}{2}}$$

$$\operatorname{cosh} \frac{A}{2} = \sqrt{\frac{\cosh x + 1}{2}}$$

$$\tanh \frac{A}{2} = \pm \sqrt{\frac{\cosh x - 1}{\cosh x + 1}}$$

$$= \frac{\sinh x}{\cosh x + 1} = \frac{\cosh x - 1}{\sinh x}$$

$$(+ \operatorname{si} x > 0, - \operatorname{si} x < 0)$$

Formulas de ángulos múltiplos

Potencias de funciones trigonométricas

$$senh^{2} x = \frac{1}{2} \cosh 2x - \frac{1}{2} \qquad senh^{3} x = \frac{1}{4} \operatorname{senh} 3x - \frac{3}{4} \operatorname{senh} x \qquad senh^{4} x = \frac{3}{8} - \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$$

$$cosh^{2} x = \frac{1}{2} + \frac{1}{2} \cosh 2x \qquad cosh^{3} x = \frac{3}{4} \cosh x + \frac{1}{4} \cosh 3x \qquad cosh^{4} x = \frac{3}{8} + \frac{1}{2} \cosh 2x + \frac{1}{8} \cosh 4x$$

Suma, diferencia y producto de las funciones

$$\begin{split} & \operatorname{senh} x + \operatorname{senh} y = 2 \operatorname{senh} \left(\frac{x+y}{2} \right) \operatorname{cosh} \left(\frac{x-b}{2} \right) \\ & \operatorname{senh} x - \operatorname{senh} y = 2 \operatorname{cosh} \left(\frac{x+y}{2} \right) \operatorname{senh} \left(\frac{x-y}{2} \right) \\ & \operatorname{cosh} x + \operatorname{cosh} y = 2 \operatorname{cosh} \left(\frac{x+y}{2} \right) \operatorname{cosh} \left(\frac{x-y}{2} \right) \\ & \operatorname{cosh} x - \operatorname{cosh} y = 2 \operatorname{senh} \left(\frac{x+y}{2} \right) \operatorname{senh} \left(\frac{x-y}{2} \right) \\ & \operatorname{senh} x \operatorname{senh} y = \frac{1}{2} \left[\operatorname{cosh} (x+y) - \operatorname{cosh} (x-y) \right] \\ & \operatorname{cosh} x \operatorname{cosh} y = \frac{1}{2} \left[\operatorname{cosh} (x+y) + \operatorname{cosh} (x-y) \right] \\ & \operatorname{senh} x \operatorname{cosh} y = \frac{1}{2} \left[\operatorname{senh} (x+y) + \operatorname{senh} (x-y) \right] \end{split}$$

Relaciones entre funciones hiperbólicas

Función	senh A = u	$ \cosh A = u $	$\tanh A = u$	$\coth A = u$	$\operatorname{sech} A = u$	$\operatorname{csch} A = u$
$\operatorname{senh} A$	u	$\sqrt{u^2-1}$	$\frac{u}{\sqrt{1-u^2}}$	$\frac{1}{\sqrt{u^2-1}}$	$\frac{\sqrt{1-u^2}}{u}$	$\frac{1}{u}$
$\cosh A$	$\sqrt{1+u^2}$	u	$\frac{1}{\sqrt{1-u^2}}$	$\frac{u}{\sqrt{u^2-1}}$	$\frac{1}{u}$	$\frac{\sqrt{1+u^2}}{u}$
$\tanh A$	$\frac{u}{\sqrt{1+u^2}}$	$\frac{\sqrt{u^2-}}{u}$	u	$\frac{1}{u}$	$\sqrt{1-u^2}$	$\frac{1}{\sqrt{1+u^2}}$
$\coth A$	$\frac{\sqrt{u^2+1}}{u}$	$\frac{u}{\sqrt{u^2-1}}$	$\frac{1}{u}$	u	$\frac{1}{\sqrt{1-u^2}}$	$\sqrt{1+u^2}$
$\operatorname{sech} A$	$\frac{1}{\sqrt{1+u^2}}$	$\frac{1}{u}$	$\sqrt{1-u^2}$	$\frac{\sqrt{u^2-1}}{u}$	u	$\frac{u}{\sqrt{1+u^2}}$
$\operatorname{csch} A$	$\frac{1}{u}$	$\frac{1}{\sqrt{u^2-1}}$	$\frac{\sqrt{1-u^2}}{u}$	$\sqrt{u^2-1}$	$\frac{u}{\sqrt{1-u^2}}$	u

Funciones hiperbólicas inversas

$$senh^{-1} x = \ln \left(x + \sqrt{x^2 - 1} \right)
tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right)
sech^{-1} x = \ln \left(\frac{1 + x}{1 - x} \right)
sech^{-1} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1} \right)
sech^{-1} x = \ln \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1} \right)$$

Relaciones entre hiperbólicas inversas

Relaciones entre funciones trigonométricas con hiperbólicas

$$\operatorname{sen}(jx) = j \operatorname{senh} x$$
 $\operatorname{cos}(jx) = \operatorname{cosh} x$ $\operatorname{tan}(jx) = j \operatorname{tan} x$ $\operatorname{csc}(jx) = -j \operatorname{csch} x$ $\operatorname{sec}(jx) = \operatorname{sech} x$ $\operatorname{cot}(jx) = -j \operatorname{coth} x$ $\operatorname{senh}(jx) = j \operatorname{sen} x$ $\operatorname{cosh}(jx) = \operatorname{cos} x$ $\operatorname{tanh}(jx) = j \operatorname{tan} x$ $\operatorname{csch}(jx) = -j \operatorname{csc} x$ $\operatorname{sech}(jx) = \operatorname{sec} x$ $\operatorname{coth}(jx) = -j \operatorname{cot} x$

Periodicidad de funciones hiperbólicas

$$\operatorname{senh}(x+2k\pi j) = \operatorname{senh} x$$
 $\operatorname{cosh}(x+2k\pi j) = \operatorname{cosh} x$ $\operatorname{tanh}(x+k\pi j) = \operatorname{tanh} x$ $\operatorname{csch}(x+2k\pi j) = \operatorname{csch} x$ $\operatorname{sech}(x+2k\pi j) = \operatorname{sech} x$ $\operatorname{coth}(x+k\pi j) = \operatorname{coth} x$ $\operatorname{Con} k \in \mathbb{Z}.$

Relaciones entre hiperbólicas inversas y trigonométricas inversas

$\operatorname{senh}^{-1}(jx) = j \operatorname{sen}^{-1} x$
$\cosh^{-1} x = \pm j \cos^{-1} x$
$\tanh^{-1}(jx) = j \tan^{-1} x$
$\coth^{-1}(jx) = -j\cot^{-1}x$
$\operatorname{sech}^{-1} x = \pm j \operatorname{sec}^{-1} x$
$\operatorname{csch}^{-1}(jx) = -j\operatorname{csc}^{-1}x$

Soluciones de ecuaciones algebraicas

Ecuación cuadrática $ax^2 + bx + c = 0$

Soluciones:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Si a, b, c son reales, y $\Delta = b^2 - 4ac$ es el discriminante, entonces las raíces son

i reales y designales si $\Delta > 0$

ii reales e iguales si $\Delta = 0$

iii conjugadas complejas si $\Delta < 0$

Si $x_1,\,x_2$ son las raíces entonces $x_1+x_2=-\frac{b}{a}$ y $x_1x_2=\frac{c}{a}$

Ecuacion cubica $x^3 + a_1x^2 + a_2x + a_3 = 0$

Sea

$$Q = \frac{3a_2 - a_1^2}{9} \qquad \qquad R = \frac{9a_1a_2 - 27a_3 - 2a_1^3}{54}$$

$$S = \sqrt{R + \sqrt{Q^3 + R^2}}$$
 $T = \sqrt{R - \sqrt{Q^3 + R^2}}$

Soluciones:

$$\begin{cases} x_1 = S + T - \frac{1}{3}a_1 \\ x_2 = -\frac{1}{2}(S+T) - \frac{1}{3}a_1 + \frac{1}{2}j\sqrt{3}(S-T) \\ x_3 = -\frac{1}{2}(S+T) - \frac{1}{3}a_1 - \frac{1}{2}j\sqrt{3}(S-T) \end{cases}$$

Si $a_1,\,a_2$, a_3 son reales, y $\Delta=Q^3+R^2$ es el discriminante, entonces las raíces son

i una real y dos complejas conjugadas si $\Delta>0$

ii todas reales y por lo menos dos de ellas iguales si $\Delta=0$

iii todas reales y distintas si $\Delta < 0$

Simplificación si $\Delta < 0$. Soluciones:

$$\begin{cases} x_1 = 2\sqrt{-Q}\cos\left(\frac{\theta}{3}\right) \\ x_2 = 2\sqrt{-Q}\cos\left(\frac{\theta}{3} + \frac{2\pi}{3}\right) \\ x_3 = 2\sqrt{-Q}\cos\left(\frac{\theta}{3} + \frac{4\pi}{3}\right) \end{cases}$$

donde
$$\cos \theta = -\frac{R}{\sqrt{-Q^3}}$$

Y ademas:

 $x_1 + x_2 + x_3 = -a_1$, $x_1x_2 + x_2x_3 + x_3x_1 = a_2$ y $x_1x_2x_3 = -a_3$ donde x_1 , x_2 y x_3 son las tres raíces.

Integrales

$$\int x^{n} dx = \frac{x^{n+1}}{n+1}, \quad n \neq -1$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \frac{dx}{a+bx} = \frac{\ln(a+bx)}{b}$$

$$\int \frac{x}{a+bx} = \frac{x}{b} - \frac{a}{b^{2}} \ln(a+bx)$$

$$\int \frac{dx}{x(a+bx)} = -\frac{1}{a} \ln\left(\frac{x+a}{x}\right)$$

$$\int \frac{dx}{(a+bx)^{2}} = -\frac{1}{b(a+bx)}$$

$$\int \frac{dx}{a^{2}+x^{2}} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right)$$

$$\int \frac{dx}{a^{2}-x^{2}} = \frac{1}{a} \tanh^{-1}\left(\frac{x}{a}\right)$$

$$\int \frac{dx}{x^{2}-a^{2}} = -\frac{1}{a} \tanh^{-1}\left(\frac{x}{a}\right)$$

$$\int \frac{dx}{\sqrt{a^{2}-x^{2}}} = \sin^{-1}\left(\frac{x}{a}\right), \quad a^{2}-x^{2} > 0$$

$$\int \frac{dx}{\sqrt{a^{2}-x^{2}}} = \ln\left(x+\sqrt{x^{2}\pm a^{2}}\right)$$

$$\int \frac{x}{\sqrt{a^{2}-x^{2}}} dx = -\sqrt{a^{2}-x^{2}}$$

$$\int \frac{x}{\sqrt{a^{2}-x^{2}}} dx = \sqrt{x^{2}\pm a^{2}}$$

$$\int \sqrt{a^{2}-x^{2}} dx = \frac{1}{2} \left[x\sqrt{a^{2}-x^{2}} + a^{2} \sin^{-1}\left(\frac{x}{a}\right)\right]$$

$$\int x\sqrt{a^{2}-x^{2}} dx = \frac{1}{3} \left[x\sqrt{x^{2}\pm a^{2}} \pm a^{2} \ln\left(x+\sqrt{x^{2}\pm a^{2}}\right)\right]$$

$$\int x\sqrt{x^{2}\pm a^{2}} dx = \frac{1}{3} \left[x\sqrt{x^{2}\pm a^{2}} \pm a^{2} \ln\left(x+\sqrt{x^{2}\pm a^{2}}\right)\right]$$

$$\int x\sqrt{x^{2}\pm a^{2}} dx = \frac{1}{3} \left[a^{2}\pm a^{2}\right]^{3/2}$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax}$$

$$\int \ln(ax) \, dx = x \ln(ax) - x$$

$$\int xe^{ax} \, dx = \frac{e^{ax}}{a^2}(ax - 1)$$

$$\int \frac{dx}{a + bx^{cx}} = \frac{x}{a} - \frac{1}{ac} \ln(a + bx^{cx})$$

$$\int \sin(ax) \, dx = -\frac{1}{a} \cos(ax)$$

$$\int \cos(ax) \, dx = \frac{1}{a} \sin[\sec(ax)]$$

$$\int \cot(ax) \, dx = \frac{1}{a} \ln[\sec(ax)]$$

$$\int \sec(ax) \, dx = \frac{1}{a} \ln[\sec(ax) + \tan(ax)]$$

$$\int \csc(ax) \, dx = \frac{1}{a} \ln[\csc(ax) - \cot(ax)]$$

$$\int \sec^2(ax) \, dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}$$

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$$

$$\int \frac{dx}{\sin^2(ax)} = -\frac{1}{a} \cot(ax)$$

$$\int \frac{dx}{\cos^2(ax)} = \frac{1}{a} \tan(ax)$$

$$\int \tan^2(ax) \, dx = \frac{1}{a} \tan(ax) - x$$

$$\int \cot^2(ax) \, dx = \frac{1}{a} \tan(ax) - x$$

$$\int \cot^2(ax) \, dx = -\frac{1}{a} \cot(ax) - x$$

$$\int \cot^2(ax) \, dx = x \sin^{-1}(ax) + \frac{\sqrt{1 - a^2x^2}}{a}$$

$$\int \cos^{-1}(ax) \, dx = x \cos^{-1}(ax) - \frac{\sqrt{1 - a^2x^2}}{a}$$

$$\int \frac{dx}{(x^2 + a^2)^{3/2}} = -\frac{x}{a^2\sqrt{x^2 + a^2}}$$

$$\int \frac{x}{(x^2 + a^2)^{3/2}} \, dx = -\frac{1}{\sqrt{x^2 + a^2}}$$

$$\int x \sin(ax) \, dx = \frac{1}{a^2} \left(\sin(ax) - ax \cos(ax) \right) \qquad \qquad \int \frac{x}{\sqrt{x^2 \pm a^2}} \, dx = \sqrt{x^2 \pm a^2}$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \left(\cos(ax) + ax \sin(ax) \right) \qquad \qquad \int \frac{x}{\sqrt{a^2 - x^2}} \, dx = -\sqrt{a^2 - x^2}$$

$$\int x^2 \sin(ax) dx = \frac{1}{a^3} \left(-a^2 x^2 \cos(ax) + 2 \cos(ax) + 2 ax \sin(ax) \right) \qquad \int x \sqrt{a^2 - x^2} \, dx = -\frac{x}{3} \left(a^2 - x^2 \right)^{3/2}$$

$$\int x^2 \cos(ax) dx = \frac{1}{a^3} \left(-a^2 x^2 \sin(ax) - 2 \sin(ax) + 2 ax \cos(ax) \right) \qquad \int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left[x \sqrt{a^2 - x^2} - a^2 \sin^{-1} \left(\frac{x}{a} \right) \right]$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln\left(x + \sqrt{x^2 \pm a^2} \right) \qquad \int x \sqrt{x^2 \pm a^2} dx = \frac{x}{3} \left(x^2 - a^2 \right)^{3/2}$$

Integral de probabilidad de Gauss

$$I_{0} = \int_{0}^{\infty} e^{-ax^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

$$I_{1} = \int_{0}^{\infty} x e^{-ax^{2}} dx = \frac{1}{2a}$$

$$I_{2} = \int_{0}^{\infty} x^{2} e^{-ax^{2}} dx = -\frac{dI_{0}}{da} = \frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}$$

$$I_{3} = \int_{0}^{\infty} x^{3} e^{-ax^{2}} dx = -\frac{dI_{1}}{da} = \frac{1}{2a}$$

$$I_{4} = \int_{0}^{\infty} x^{4} e^{-ax^{2}} dx = \frac{d^{2}I_{0}}{da^{2}} = \frac{3}{8} \sqrt{\frac{\pi}{a^{5}}}$$

$$I_{5} = \int_{0}^{\infty} x^{5} e^{-ax^{2}} dx = \frac{d^{2}I_{1}}{da^{2}} = \frac{1}{a^{3}}$$

$$\vdots$$

$$I_{2n} = (-1)^{n} \frac{d^{n}}{da^{n}} I_{0}$$

$$I_{2n+1} = (-1)^{n} \frac{d^{n}}{da^{n}} I_{1}$$