Università degli Studi di Verona

Sistemi ad eventi discreti

RIASSUNTO DEI PRINCIPALI ARGOMENTI

 $Giorgia\ Gulino,\ Davide\ Bianchi$

Contents

1	Mac	cchine a stati	2
	1.1	Output-Determinismo	2
	1.2	Non-Determinismo	2
	1.3	Equivalenze	2
	1.4	Bisimulazione	2
	1.5	Isomorfe	2
	1.6	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSD	2
	1.7	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSpseudo-nondet	3
	1.8	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSND	3
	1.9	Simulazione per Det $\rightarrow M_1$ da M_2	3
	1.10	Simulazione per Output-Det	3
	1.11	Simulazione	3
	1.12	Bisimulazione per Det	3
2	LIN	IGUAGGI	4
	2.1	Il linguaggio K è controllabile?	4
	2.2	Osservabilità	4
	2.3	Proprietà di Controllabilità	4
	2.4	Riguardo il sottolinguaggio supremo	4
	2.5	Riguardo il sovralinguaggio infimo	5

1 Macchine a stati

Definizione 1.0.1 (Macchina a stati deterministica) Una macchina a stati è deterministica se valgono:

- esiste un solo uno stato iniziale;
- per ogni stato e per ogni input esiste solo un stato successivo;

Inoltre se M_2 è deterministica allora M_1 è **simulata** da M_2 sse è **equivalente** a M_2 .

1.1 Output-Determinismo

Definizione 1.1.1 Una macchina a stati è **output-deterministica** se esiste un solo stato iniziale e per ogni stato e ogni coppia di I/O c'è un solo stato successivo. Se M_2 è **output-deterministica** allora M_2 simula M_1 .

 $determinismo \Rightarrow output-determinismo$, non vale il viceversa.

1.2 Non-Determinismo

In una macchina a stati non deterministica può esistere più di uno stato iniziale e per ogni stato e ogni coppia di I/O può esistere più di uno stato successivo. Se M_2 è non deterministica, M_1 è **simulata** da M_2 allora M_1 **raffina** M_2 , ma non viceversa.

Una macchina a stati è progressiva quando l'evoluzione è definita per ogni ingresso, cioè la funzione è definita come

$$States \times Inputs \Rightarrow \mathcal{P}(States \times Outputs) \setminus \emptyset$$

dove \mathcal{P} rappresenta l'insieme potenza e l'insieme vuoto impone che sia progressiva.

1.3 Equivalenze

Data una macchina a stati X:

- se X è deterministica: $input[M_1] = input[M_2]$; $output[M_1] = output[M_2]$.
- se X è non deterministica: $Behaviour[M_1] = Behaviour[M_2]$.
- se due macchine a stati M_1 e M_2 sono bisimili, allora sono equivalenti.

Definizione 1.3.1 (Raffinamento) M_1 raffina $M_2 \Leftrightarrow \Big(Inputs[M_1] = Inputs[M_2] \land Outputs[M_1] = Outputs[M_2] \land Behaviour[M_1] \subseteq Behaviour[M_2]\Big).$

1.4 Bisimulazione

Bisimulazione tra M_1 e M_2 sse l'unione delle **simulazioni** è simmetrica e c'è **isomorfismo** tra minimize (M_1) e minimize (M_2) .

1.5 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSD

Se M_1 è det, M_1 è **simulata** da M_2 sse M_1 è equivalente a M_2 , cioè se M_1 raffina M_2 e viceversa.

1.6 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSpseudonondet

Se M_2 è psuedo-non det, M_1 è **simulata** da M_2 sse M_1 è equivalente a M_2 , cioè se M_1 **raffina** M_2 .

1.7 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSND

Se M_2 non è deterministica, M_1 è **simulata** da M_2 implica M_1 **raffina** M_2 , ma M_1 raffina M_2 non implica M_1 **simula** M_2 .

1.8 Simulazione per Det $\rightarrow M_1$ da M_2

- \forall p \in PossibiliInitialState[M_1], \exists q \in PossibiliInitialState[M_2], (p,q) \in S.
- $\forall p \in \text{Stati}[M_1], \forall q \in \text{Stati}[M_2].$
 - if $(p,q) \in S \Rightarrow \forall x \in Input, \forall y \in Output, \forall p_1 \in Stati[M_1];$
 - if (p1,y) ∈ PossibiliUpdates[M_1](p,x) $\Rightarrow \exists$ q1 ∈ Stati[M_1], (q1,y) ∈ PossibiliUpdates[M_2](q,x) e (p1,q1) ∈ S. (S contiene coppie di stati iniziali e coppie consultanti l'algoritmo).
 - ∀ p ∈ Stati[M_1] ∃ q ∈ Stati[M_2] per cui ∀ I/O possibili c'è corrispondenza tra I/O uguali di p e (p,q) ∈ S.

1.9 Simulazione per Output-Det

Data M ASFND trova la macchina output-det $\det(M)$ equivalente a M. SUBSET CONSTRUCTION

- InitialState[det(M)] = PossibileInitialState[M]
- States[det(M)]=InitialState[det(M)]
- Ripeti finché nuove transizioni possono essere aggiunte a det(M). Scegli
 - $-P \in States[det(M)] e(x,y) \in Input x Output$
 - $-Q=q\in States[M] \ -\exists \ p\in P, \ (q,y)\in PossibleUpdates[M](p,x)$ Se $Q\neq 0$ allora $States[det(M)]=States[det(M)]\cup Q$ $Update[det(M)](p,x){=}(q,y)$

Raggruppa tutti gli stati iniziali, \forall coppia I/O raggruppa tutti gli stati per cui quest'ultima è Possibleupdate.

1.10 Simulazione

- Se p \in PossibleInitialState[M_1] e PossibleInitialState[m_2] = q \Rightarrow (p,q) \in S.
- Se $(p,q) \in S$ e $(p1,y) \in PossibleUpdates[M_1](p,x)$ e $PossibleUpdates[M_2](q,x) = q$.

1.11 Bisimulazione per Det

Una relazione binaria B è una bisimulazione sse:

- InitialState[M_1], InitialState[M_2] \in B
- $\forall p \in \text{Stati}[M_1], \forall q \in \text{Stati}[M_2]$:
 - if $(p,q) \in B \Rightarrow \forall x \in Input[M_1]$, $Output[M_1](p,x) = Output[M_2](q,x)$ (nextState[M_1](p,x),nextState[M_2](q,x)) ∈ B. Stati iniziali di M_1 e M_2 sono in relazione e ogni coppia (p,q) relazionati, \forall input producono lo stesso output e nextState Relazionati.

2 LINGUAGGI

2.1 Il linguaggio K è controllabile?

Siano K e $M = \overline{M}$ linguaggi dell'alfabeto di eventi E, con $E_{uc} \subseteq E$. Si dice che K è controllabile rispetto a M e E_{uc} se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_{uc}$ si ha : $s\sigma \in M \Rightarrow s\sigma \in \overline{K}$. (Equivalente a $\overline{K}E_{uc} \cap M \subseteq \overline{K}$.)

Per la def di controllabilità si ha che K è controllabile sse \overline{K} è controllabile.

2.2 Osservabilità

Si considerino i linguaggi K e $M = \overline{M}$ definiti sull'alfabeto di eventi E, con $E_c \subseteq E$, $E_o \subseteq E$ e P la proiezione naturale da $E^* \Rightarrow E_0^*$.

Si dice che K è osservabile rispetto a M, E_o, E_c se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$ abbiamo:

$$(s\sigma \notin K) \land (s\sigma \in M) \Rightarrow P^{-1}[P(s)] \sigma \cap \overline{K} = \emptyset$$

L'insieme di stringhe denotato dal termine $P^{-1}[P(s)]$ $\sigma \cap \overline{K}$ contiene tutte le stringhe che hanno la medesima proiezione di s e possono essere prolungate in K con il simbolo σ . SE tale insieme non è vuoto, allora K contiene due stringhe s e s' tali che P(s)=P(s') per cui s $\sigma \notin \overline{K}$ e s' $\sigma \in \overline{K}$. Tali due stringhe richiederebbero un'azione di controllo diversa rispetto a σ (disabilitare σ nel caso di s, abilitare σ nel caso di s'), ma un supervisore non saprebbe distinguere tra s e s' per l'osservabilità ristretta. Non potrebbe quindi esistere un supervisore che ottiene esattamente il linguaggio \overline{K} .

2.3 Proprietà di Controllabilità

Esistono due tipi di linguaggi derivati da K:

- $K^{\uparrow C}$ il il sottolinguaggio supremo di K
- $K^{\downarrow C}$ il il sovralinguaggio controllabile infimo di K

Abbiamo i seguenti rapporti:

$$\emptyset\subseteq \mathcal{K}^{\uparrow\mathcal{C}}\subseteq\mathcal{K}\subseteq\overline{K}\subseteq\mathcal{K}^{\downarrow\mathcal{C}}\subseteq\mathcal{M}$$

- \bullet Se K_1 e K_2 sono controllabili, allora $K_1 \cup K_2$ è controllabile.
- ullet Se K_1 e K_2 sono controllabili, allora $K_1\cap K_2$ non ha bisogno di essere controllabile.
- Se K_1 e K_2 sono non in conflitto ed entrambi controllabili, allora $K_1 \cap K_2$ è controllabile. Si ricorda che K_1 e K_2 si dicono non in conflitto qualora $\overline{K_1} \cap \overline{K_2} = \overline{K_1 \cap K_2}$
- ullet Se K_1 e K_2 sono prefisso-chiuso e controllabili, allora $K_1\cap K_2$ è prefisso-chiuso e controllabile.

Definiamo due classi di linguaggi:

$$C_{\rm in}({\rm K}) := {\rm L} \subseteq {\rm K} : \overline{L} {\rm E}_{\rm uc} \cap {\rm M} \subseteq \overline{L}$$

$$CC_{\rm out}({\rm K}) := {\rm L} \subseteq {\rm E}^* : ({\rm K} \subseteq {\rm L} \subseteq {\rm M}) \wedge (\overline{L} = {\rm L}) \wedge (\overline{L} {\rm E}_{\rm uc} \cap {\rm M} \subseteq \overline{L})$$

2.4 Riguardo il sottolinguaggio supremo

- $C_{\rm in}({\rm K})$ è un insieme parzialmente ordinato (o poset) che è chiuso sotto unioni arbitrarie.
- $C_{\rm in}({\rm K})$ possiede un unico elemento supremo. Definito come:

$$K^{\uparrow C} := \bigcup_{L \in C_{\mathrm{in}}(K)} L$$

che è un elemento ben-definito di $C_{\rm in}(K)$.

- $K^{\uparrow C}$ è chiamato sottolinguaggio supremo controllabile di K.
 - Nel caso peggiore, K $^{\uparrow \mathrm{C}} = \emptyset$, dal momento che $\emptyset \in C_{in}(K)$
 - Se K è controllabile, allora K $^{\uparrow \mathrm{C}} = \mathrm{K}$
 - Osserviamo che K^{↑C} non necessita di essere prefisso-chiuso in generale

2.5 Riguardo il sovralinguaggio infimo

- \bullet $CC_{\rm out}({\rm K})$ è un (poset) che è chiuso sotto intersezioni arbitrarie (e unioni).
- \bullet $CC_{\mathrm{out}}(\mathrm{K})$ possiede un unico elemento $in \mathit{fimo}.$ Definito come:

$$K^{\downarrow C} := \bigcap_{L \in CC_{\operatorname{out}}(K)} L$$

che è un elemento ben-definito di $CC_{\text{out}}(K)$.

- \bullet Chiamiamo $K^{\downarrow C}$ il sovralinguaggio infimo a prefisso-chiuso e controllabile di K.
 - Nel caso peggiore, $K^{\downarrow C} = M$, dal momento che $M \in CC_{out}(K)$.
 - Se K è controllabile, allora $K^{\downarrow C} = \overline{K}$.