Consider the following problem, which we call \exists_2 -SAT.

Input. A boolean formula $\varphi(\mathbf{x}, \mathbf{y})$ in 2n variables, where $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$.

Task. Decide if there exist an assignment for x such that, for all $y \in \{0,1\}^n$, $\varphi(x,y)$ is true.

For example, consider the following boolean formula $\varphi(\mathbf{x}, \mathbf{y}) = (x_1 \wedge x_2) \vee (y_1 \wedge y_2)$. Assigning $x_1 = x_2 = 1$ produces a tautological formula and hence, any binary string for \mathbf{y} satisfies $\varphi(\mathbf{x}, \mathbf{y})$.

Prove that, if P = NP, then \exists_2 -Sat $\in P$.

Hint. If P = NP, there exist a polynomial-time algorithm that solves SAT...

Solution. Solution begins here...