Fine Grained Complexity

5 января 2022 г.

Содержание

1. Оценки под SETH	1
2. ETH. Нижние оценки про coloring'и	3

1. Оценки под SETH

2 сентября

1.1 Введение

Зачем нужно Fine-grained complexity? Мы отвратительны в доказательстве нижних оценок. Поэтому мы делаем следующее: берём задачу, которую очень долго не могут решить, рассматриваем её как гипотезу и в этом предположении строим условные нижние оценки на другие задачи.

Задача. (*k*-SAT)

Дана формула на n логических переменных в КНФ, такая что размер каждого клоза не больше k. Проверить, существует ли означивание переменных, выполняющее формулу.

 Γ ипотеза. (ETH) [Impagliazzo and Paturi, 2001] 3-SAT не решается за время $2^{o(n)}$.

 Γ ипотеза. (SETH) [Impagliazzo and Paturi, 2001] Для $\forall \epsilon > 0$ найдётся k > 0, такое что k-SAT не решается за время $2^{(1-\epsilon)n}$.

Утверждение 1. SETH \Rightarrow ETH.

Доказательство. Сведём k-SAT \rightarrow 3-SAT, добавлением (k-3)m новых переменных. Чтобы получить линейное разрастание числа переменных, воспользуемся Sparsification леммой (**TODO**: ссылка на лемму).

Замечание. Это единственные именно *гипотезы*, все остальные будут *conjecture*. Причина того, что эти ребята гипотезы (по словам Ивана) в том, что авторы не сильно в них верили.

Замечание. Если мы сломаем 3-Sum-conjecture, то просто получим более быстрый алгоритм для 3-Sum. Если сломаем ЕТН, то перевернём мир схемной сложности (**TODO**: ссылка на теорему про ЕТН и E^{NP}).

Определение. (Fine-grained сведение)

Будем говорить, что задача $P(\mathbf{T_1}, \mathbf{T_2})$ fine-grained сводится к задаче Q (пишем $P \xrightarrow{T_1, T_2} Q$), если существует такой алгоритм A, который решает P с оракульным доступом к Q так что:

- Сложность A на входе размера n составляет $\mathcal{O}(T_1(n)^{1-\alpha})$ для $\alpha>0$
- Для $\forall \delta > 0$ найдётся $\varepsilon > 0$, так что для любого входа размера nоракульные запуски $S_1, \dots S_k$ удовлетворяют следующему условию: $\sum_{i=1}^k T_2(S_i)^{1-\delta} \leqslant T_1(n)^{1-\varepsilon}$

1.2 Нижние оценки под SETH

Здесь и далее вместо условных нижних оценок будет писать только fg-сведения.

Задача. (Orthogonal Vectors (OV)) Даны 2 набора A и B из n векторов из $\{0,1\}^d$, где d=o(n). Нужно узнать существуют ли $a\in A,b\in B$, такие что: $\sum_{i=1}^d a_ib_i=0$.

Сведение. (k-SAT $\xrightarrow{2^n,n^2}$ ORTHOGONAL VECTORS) [Pătrascu and Williams, 2010] Построим наборы размера $2^{n/2}$ и размерности m. В первом наборе на i-ой позиции поставим 0, если данное означивание первых n/2 переменных выполняет i-ый клоз. Во втором аналогично. Теперь

скалярное произведение двух наборов будет равно $0 \Leftrightarrow$ данное означивание выполняет все клозы.

3адача. (d-HITTING SET)

Дан универс \mathcal{U} , $|\mathcal{U}|=n$ и набор \mathcal{S} подмножеств U мощности не более d. Проверить, существует ли $X\subseteq\mathcal{U}$, $|X|\leqslant k$, такой что $\forall i,S_i\cap X\neq\varnothing$.

Сведение. (k-SAT $\xrightarrow{2^n,2^{n/2}} d$ -HITTING SET)

Возьмём в качестве универса литералы (переменные и их отрицания), в качестве множеств из \mathcal{S} : $\{x_i, \overline{x_i}\}$ (чтобы выбрать означивание) и $\{x_{i,1}, \dots x_{i,k}\}$ (литералы, выполняющие i-ый клоз), получаем $d \leq max(2,k)$.

Сведение. (k-SAT $\xrightarrow{2^n,2^n}$ d-HITTING SET) [Cygan et al., 2016] тык

Создадим универс из n' (определим позднее) элементов, которые разобьём на группы по p, где $2 \nmid p, p \mid n'$. Заставим брать в Hitting set ровно $\lfloor p/2 \rfloor$ элементов из каждого блока: тогда каждый блок закодирует

 $\binom{p}{\lfloor p/2 \rfloor}$ вариантов — означивание для $\alpha_p = \lfloor \log \binom{p}{\lfloor p/2 \rfloor} \rfloor$ переменных. $\frac{\alpha_p}{p} = \frac{\lfloor \log \binom{p}{\lfloor p/2 \rfloor} \rfloor}{p} \sim \frac{\log (\frac{2^p}{\sqrt{p}})}{p} \xrightarrow{p \to \infty} 1$, так что размер универса будет $n' = \frac{n}{\alpha_p} p \sim n$.

Чтобы в каждом блоке бралось хотя бы по $\lfloor p/2 \rfloor$ элементов, положим все подмножества из $\lceil p/2 \rceil$ элементов в \mathcal{S} (теперь, если мы взяли меньше $\lfloor p/2 \rfloor$, то дополнение этих элементов не похичено). Также докинем в \mathcal{S} все дополнения подмножеств размера $\lfloor p/2 \rfloor$, которые не соответствуют означиваниям (такие могли появиться из-за округлений). Так как p — константа, всех этим множеств будет какое-то линейное от n число.

Чтобы в каждом блоке бралось не более $\lfloor p/2 \rfloor$ элементов положим $|X| = k = \frac{n}{\alpha_p} \lfloor p/2 \rfloor$.

Осталось заставить это всё выполнять клозы. Пусть клоз c_i содержит литералы $x_{i_1}, \ldots, x_{i_{k_i}}$ из блоков $b_{i_1}, \ldots, b_{i_{k_i}}$. Тогда переберём все означивания переменных в этих блоках, не выполняющие клоз c_i и положим объединение дополнения соответствующих им подмножеств размера $\lfloor p/2 \rfloor$ в \mathcal{U} . Так как p — константа, получаем линейное от m число множеств.

Можем ещё оценить d как $\max(\lceil p/2 \rceil, k \cdot \lceil p/2 \rceil)$

1.3 Семинар

Упражнение. Построить $(2^n, n^t)$ fg-сведение $k\text{-SAT} \to t\text{-Dominating Set}$

Упражнение. Построить $(2^n, n^{t-1})$ fg-сведение k-SAT $\to t$ -Sparse Dominating Set $(\frac{|E(G)|}{|V(G)|} = n^{o(1)})$

Задача. (*k*-SUM)

Дано k массивов A_1, \ldots, A_k длины n, состоящие из целых чисел из $\{-M..M\}$, где $M=n^{\mathcal{O}(1)}$. Существуют ли индексы $j_1, \ldots j_k$ такие что: $\sum_{i=1}^k A_{i,j_i}=0$.

Упражнение. Покажите нижнюю оценку $n^{\Omega(k)}$ для k-Sum, построив цепочку fg-сведений 3-SAT \to 1-IN-3-SAT $\to k$ -Sum (в 1-IN-3-SAT хотим выполнить клоз ровно одной переменной)

2. ETH. Нижние оценки про coloring'и

Чем хороша ЕТН? Из неё вытекает оочень много условных нижних оценок на разные экспоненциальные задачи, например, на большинство задач из списка Карпа [Кагр, 1972]. (Забавно, что это вообще не так для SETH: из всего большого списка только HITTING SET имеет условную нижнюю оценку под SETH). Единственная проблема ЕТН в том, что мы различаем с её помощью $2^{o(n)}$ и $2^{\Theta(n)}$, а между ними огромный зазор.

Замечание. Для многих задач строится линейное сведение под ЕТН (например, число вершин в графе линейно относительно числа вершин/клозов). Для всех таких задач получаем оценку $2^{\Omega(n+m)}$.

2.1 3-Coloring

Задача. (3-COLORING) Дан граф G. Можно ли его правильно раскрасить в 3 цвета.

Задача. (Sparse 3-Coloring) Дан граф G, такой что $E(G) = \mathcal{O}(V(G))$. Можно ли его правильно раскрасить в 3 цвета.

Сведение. (3-SAT $\xrightarrow{2^{o(n)},2^{o(n+m)}}$ SPARSE 3-COLORING) Создадим гаджет K_3 , задающий 3 цвета: T, F и N.

Создадим по 2 вершины на каждую переменную x_i и $\overline{x_i}$, соединим их с вершиной N и друг с другом: так они будут принимать различные значения из $\{T, F\}$.

Опишем OR-гаджет $(x \lor y)$: K_3 , две вершины соединены с x и y соответственно, третья — выходная. Легко заметить, что она будет обязана быть покрашена в $F \Leftrightarrow x$ и y обе окрашены в F.

Переменные каждого клоза соединим двумя OR-гаджетами, выходную вершину клоза соединим с F.

Получаем 3 вершины для цветов, по 2 вершины на переменную и по 6 на каждый клоз. Рёбер тоже линейное число (поэтому получаем sparse инстанс).

Задача. (Planar 3-Coloring) Дан планарный граф G. Можно ли его правильно раскрасить в 3 пвета.

Факт. (Planar separator theorem) [Lipton and Tarjan, 1979] В планарном графе существует сбалансированный сепаратор (размер частей $\leq \frac{2n}{3}$) размера $\mathcal{O}(\sqrt{n})$. Более того, его можно найти за линейное время.

Алгоритм. $2^{\mathcal{O}(\sqrt{n})}$ для Planar List 3-Coloring

Найдём сепаратор, переберём его раскраску. Решим LIST 3-COLORING для половинок. Итого $3^{\sqrt{n}}=2^{\sqrt{n}}$

Замечание. Часто, когда для задачи долго не получается придумать более быстрый алгоритм, оказывается, что это точная верхняя оценка. Так что сейчас мы покажем соответствующую нижнюю оценку для Planar 3-Coloring

Сведение. (Sparse 3-Coloring → Planar 3-Coloring)

Построим гаджет, исправляющий пересечения рёбер (рис 1), при раскраске в 3 цвета цвета противоположных внешних вершин совпадают (и все пары раскрасок существуют). Воткнём такой гаджет на место каждого пересечения рёбер. Так как рёбер линейно от числа вершин.

3адача. (H-COLORING)

Даны два графа G и H, проверить, существует ли гомоморфизм из G в H. (гомоморфизм — отображение $g: G \to H$, t.y. $\forall (u, v) \in E(G), (g(u), g(v)) \in E(H)$

Замечание. Coloring — потому что если взять в качестве H k-клику, получится просто k-Coloring. То есть мы красим вершины G в цвета — вершины H — но не все пары цветов запрещены.

Замечание. Есть похожая задача — про миноры: проверить, что один граф является минором другого. И вот оказывается, что самым сложным минором является k-клика, её можно искать только за $k^{\Omega(k)}$.

Задача. ((2,k)-CSP) (Constraint satisfaction problem)

Даны n переменных, принимающих значения из алфавита размера k и множество условий (предикатов) на двух переменных (любые условия, не только ДНФ).

Сведение. (3-Coloring $\xrightarrow{2^{\Omega(n)},2^{\Omega(n\log k)}}$ (2, k)-CSP) По графу на n вершинах построим (2, k)-CSP формулу на $\frac{n}{\log_3 k}$ переменных. Каждая переменная соответствует раскраске $\log_3 k$ вершин. А условия для каждой пары переменных запрещают противоречащие раскраски. Ну и понятно, нужно ещё запретить означивания переменных, в которых вершины из одного блока покрашены неправильно.

Утверждение 2. H-Coloring — частный случай (2, k)-CSP.

Доказательство. Означивание переменной соответствует "цвету" вершины. И единственные предикаты, которые можем использовать, задаются матрицей смежности H.

Заметим, что из этого факта вытекает, что 3-Coloring — также частный случай (2,k)-CSP, в нём используется только предикат \neq .

Сведение. (LIST H-COLORING $\xrightarrow{2^{\Omega(n \log k)}, 2^{\Omega(n \log k)}}$ H-COLORING), где k = |V(H)| [Cygan et al., 2017] (скетч)

Пример: LIST 3-COLORING \rightarrow 3-COLORING. Создадим треугольничек — "палитру" — и соединим вершины, в которых запрещены какие-то цвета с соответствующими вершинами треугольничка.

Рассмотрим такой гаджет. Его понт в том, что при любом гомоморфизме центр переходит в центр. Чтобы работало и при большом H (и не коллизилось с другими вершинами, засунем в центр клику K_{k+3}).

Рис. 2: Пример гаджета для k=3, и вершины x, т.ч. $L(x)=\{1\}$

Теперь сцепим k таких гаджетов в цепочку. К каждому гаджету подвесим по две вершинки a_i и b_i , это наша "палитра". Теперь вершинку графа G соединим с a_i , и если её нельзя красить в i-ый цвет ещё и с b_i (рис. 2). Аналогично соединяем с "палитрой" граф H. Примерно понятно, почему это работает (но тут скетч, так что строго не будет).

Утверждение 3. [Cygan et al., 2017]

Lemma 3.2. For any constant $d \geq 1$, there exist positive integers $\lambda = \lambda(d)$, $n_0 = n_0(d)$ and a polynomial time algorithm that for a given graph G on $n \geq n_0$ vertices of maximum degree d and a positive integer $r \leq \sqrt{\frac{n}{2\lambda}}$, finds a grouping \tilde{G} of G and a coloring $\tilde{c}: V(\tilde{G}) \to [\lambda r]$ such that

(i) The number of buckets of \tilde{G} is

$$|V(\tilde{G})| \leq \frac{|V(G)|}{r};$$

- (ii) The coloring \tilde{c} is a proper coloring of \tilde{G}^2 ;
- (iii) Each bucket $B \in V(\tilde{G})$ is an independent set in G, that is, for every $u, v \in B$, $uv \notin E(G)$;
- (iv) For every pair of buckets $B_1, B_2 \in V(\tilde{G})$ there is at most one edge between them in G, that is.

$$|\{uv \in E(G) : u \in B_1, v \in B_2\}| \le 1.$$

Сведение. (Bounded Degree 3-Coloring $\xrightarrow{2^{\Omega(n)},2^{\Omega(n\log k)}}$ List H-Coloring), где k=|V(H)|.

Хотим построить сведение примерно как для (2,k)-CSP — разбить вершинки на блоки, сжать блоки и решить H-COLORING для сжатого графа. Проблема в том, что мы не можем прослеживать связи между вершинами из разных блоков. Поэтому сведение будет более хитрым и потребует "фактов из теории графов".

Возьмём разбиение из утв. 3 и его раскраску (будет говорить, что она задаёт не цвета, а лейблы, цвета — в исходном 3-Coloring'e). Блоки образуют независимые множества и между двумя блоками не более одного ребра. Более того, так как раскраска переносится на \widetilde{G}^2 , то для каждого блока все его соседи разных лейблов.

Для блока зададим 4-ичный вектор длины $\chi(\widetilde{G})$. На t-ой позиции этого вектора запишем цвет (в 3-Coloring'e) соседа этого блока с лейблом t (или 0, если такого нет). Тогда вершина в H задаёт лейбл блока и кодировку. List H-Coloring'om (частью про List) добиваемся того, что блок отображается только в свой лейбл. Соединяем в H вершины, раскраски которых согласованы ($\phi_a(b) \neq \phi_b(a) \vee \phi_a(b)\phi_b(a) = 0$).

Теперь оценим время. Выберем размер блока равным r, тогда $|V(\widetilde{G})| \leqslant \frac{n}{r}, \ |V(H)| \leqslant \chi(\widetilde{G})4^{\widetilde{G}} = \mathcal{O}(r4^{\mathcal{O}(r)})$. Выбрав $r = \mathcal{O}(\log n)$ получаем $|V(G)| = \mathcal{O}(\frac{n}{\log n}), \ |V(H)| = n^{\mathcal{O}(1)}$.

Задача. (Subgraph Isomorphism) Даны графы G и H, проверить, является ли H подграфом G.

Сведение. (*H*-Coloring $\xrightarrow{2^{\Omega(n\log n)}, 2^{\Omega(n\log n)}}$ Subgraph Isomorphism)

Переберём a_i , $\sum_{i=1}^{|V(H)|} a_i = |V(G)|$ — сколько вершин G отобразится в i-ую вершину H. Продублируем i-ую вершину H i раз, поищем изоморфизм из H в G. Так как неупорядоченных разбиений на слагаемые будет не более $2^{|V(G)|} = 2^n$ получили нужную оценку.

2.2 Семинар

Упражнение. $\forall \alpha > 0$ построить $(2^n, n^{1+\alpha})$ fg-сведение НАМ СҮСLЕ $\to 3$ -SUM

Задача. (MAX INNER PRODUCT)

Даны 2 набора A и B из n векторов из $\{0,1\}^d$, где d=o(n). Найти $\max\{\langle a,b\rangle|a\in A,b\in B\}$.

Упражнение. Покажите, что MAX INNER PRODUCT не решается за время $\mathcal{O}(n^{2-\varepsilon})$ под SETH.

Упражнение. Покажите оценку в $2^{\Omega(n)}$ на Bounded Degree 3-Coloring $(\frac{|E(G)|}{|V(G)|} = n^{o(1)})$ под ETH.

Задача. (CROSS MATCHING) Дан граф G с разбиением вершин на две доли по n вершин. Проверить, существует ли такое совершенное паросочетание M в G, что концы каждого ребра паросочетания находятся в разных долях и G/M (стянутые рёбра) образует клику.

Упражнение. [Fomin et al., 2021] Покажите оценку в $n^{\Omega(n)}$ на задачу CROSS MATCHING под ЕТН.

Список литературы

- [Cygan et al., 2016] Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., and Wahlström, M. (2016). On problems as hard as cnf-sat. *ACM Trans. Algorithms*, 12(3).
- [Cygan et al., 2017] Cygan, M., Fomin, F. V., Golovnev, A., Kulikov, A. S., Mihajlin, I., Pachocki, J., and Socała, A. (2017). Tight lower bounds on graph embedding problems. *J. ACM*, 64(3).
- [Fomin et al., 2021] Fomin, F. V., Lokshtanov, D., Mihajlin, I., Saurabh, S., and Zehavi, M. (2021). Computation of hadwiger number and related contraction problems: Tight lower bounds. *ACM Trans. Comput. Theory*, 13(2).
- [Impagliazzo and Paturi, 2001] Impagliazzo, R. and Paturi, R. (2001). On the complexity of k-sat. *Journal of Computer and System Sciences*, 62(2):367–375.
- [Karp, 1972] Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA.
- [Lipton and Tarjan, 1979] Lipton, R. J. and Tarjan, R. E. (1979). A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177–189.
- [PătraScu and Williams, 2010] PătraScu, M. and Williams, R. (2010). On the possibility of faster SAT algorithms, pages 1065–1075.