Analiza matematyczna Lista zadań nr 4 (Funkcje - wykresy, granica, ciągłość)

- 1. Pokaż, że $\sin(x + \frac{\pi}{2}) = \cos x$, $\cos(x + \frac{\pi}{2}) = -\sin x$ oraz $\tan(x + \frac{\pi}{2}) = -\cot x$.
- 2. Korzystając ze wzorów

 $\sin(x+y) = \sin x \cos y + \sin y \cos x$ or $\cos(x+y) = \cos x \cos y - \sin x \sin y$ wyprowadź wzory na $\sin 2x$, $\sin 3x$, $\cos 2x$, $\cos 3x$.

- 3. Narysuj, korzystając z przeglądarki Google, wykresy funkcji $f(x) = \frac{1}{2}(\cos 2x + 1)$ oraz $g(x) = \cos^2 x$. Wyjaśnij zaobserwowane zjawisko.
- 4. Naszkicuj wykresy funkcji $f_k(x) = \sqrt{1-x^2} \cdot \sin kx$ dla k=1,10,100,200.
- 5. Naszkicuj na wspólnym wykresie wykresy funkcji $f(x)=|x|+\sqrt{1-x^2}-1$ oraz $g(x)=|x|-\sqrt{1-x^2}-1$.
- 6. Naszkicuj na wspólnym wykresie wykresy funkcji $f(x) = (|x| + \sqrt{1-x^2} 1)\cos^2 200x$ oraz $g(x) = (|x| - \sqrt{1 - x^2} - 1) \cos^2 200x$.
- 7. Niech $f(x) = \frac{1}{x^2-4}$.
 - a) Wyznacz następujące granice: $\lim_{x\to\infty} f(x)$, $\lim_{x\to-\infty} f(x)$, $\lim_{x\to-2^-} f(x)$, $\lim_{x\to-2^+} f(x)$, $\lim_{x \to 2^{-}} f(x), \lim_{x \to 2^{+}} f(x).$
 - b) Naszkicuj wykres tej funkcji.
- 8. Niech

$$sgn(x) = \begin{cases} -1 & dla & x < 0, \\ 0 & dla & x = 0, \\ 1 & dla & x > 0. \end{cases}$$

- a) Pokaz, że funkcja sgn nie jest ciągła w punkcie 0.
- b) Wyznacz punkty ciągłości funkcji sgn.
- 9. Wyznacz punkty ciągłości następujących funkcji: $f_1(x) = \operatorname{sgn}(\sin x), f_2(x) = \operatorname{sgn}(\cos x),$ $f_3(x) = \lfloor x \rfloor, f_4(x) = \lfloor \frac{1}{x} \rfloor.$
- 10. Niech

$$f(x) = \begin{cases} 1 & \text{dla} \quad x \in \mathbb{Q}, \\ 0 & \text{dla} \quad x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Pokaż, że funkcja f nie jest ciągła w żadnym punkcie.

- 11. Korzystając z twierdzeń o arytmetyce granic funkcji oblicz granice:
 - a) $\lim_{x \to 64} \frac{\sqrt[3]{x-4}}{\sqrt{x-8}}$; b) $\lim_{x \to 0} \frac{\sqrt{x+1} \sqrt{1-x}}{2x}$; c) $\lim_{x \to -\infty} (\sqrt{x^2 + 1} + x)$.
- 12. Korzystając z twierdzenia o trzech funkcjach uzasadnij równości:
 - a) $\lim_{x \to 0} x^3 \arctan \frac{1}{x} = 0$; b) $\lim_{x \to \infty} \frac{\lfloor x\sqrt{8} \rfloor}{\lfloor x\sqrt{2} \rfloor} = 2$; c) $\lim_{x \to -\infty} \frac{2^{-x} + \sin x}{2^{-x} + \cos x} = 1$.
- 13. Korzystając z granic podstawowych wyrażeń nieoznaczonych oblicz następujące granice:

- a) $\lim_{x \to 0} \frac{\sin^2 3x}{x^2}$; b) $\lim_{x \to -\infty} \frac{\ln(1+2^x)}{3^x}$; c) $\lim_{x \to 0^+} \frac{2^x 1}{4^{\sqrt{x}} 1}$; d) $\lim_{x \to 0} (1 + \tan(2x))^{\cot x}$.

14. Znajdź wszystkie asymptoty wykresu funkcji:

a)
$$y = \frac{x^3 + x^2}{x^2 - 4}$$
; b) $y = \frac{x - 3}{\sqrt{x^2 - 9}}$; c) $y = \frac{\sin^2 x}{x^3}$.

- 15. Narysuj wykresy funkcji zadanych wzorami: $y = \frac{x}{x-1}$, $y = x \lfloor x \rfloor$, $y = x \sin \frac{1}{x}$, $y = x \sin \frac{1}{x}$, $y = x \sin \frac{1}{x}$ oraz wyznacz ich granice w punkcie x = 0.
- 16. Naszkicuj wykresy funkcji zadanych wzorami: $y=\frac{1}{x^2-1},\ y=\frac{x}{x^2-1},\ y=\frac{x^2}{x^2-1},$ $y=\frac{x^2}{x^2-1}$.
- 17. Załóżmy, że funkcja f jest ciągła. Pokaż, że funkcja g(x) = |f(x)| jest również ciągła. (Wsk: złożenie funkcji ciągłych jest funkcją ciągłą.)
- 18. Załóżmy, że funkcje f i g są ciagłe. Niech $h(x) = \max\{f(x), g(x)\}$. Pokaż, że h jest funkcją ciągłą.
- 19. Oblicz granice wielomianu postaci $w(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ w nieskonczoności oraz w minus nieskonczoności. (Wsk: Rozważ oddzielnie przypadek dla n parzystego oraz n nieparzystego.)
- 20. Pokaż, że każdy wielomian stopnia nieparzystego ma pierwiastek. (Wsk: Skorzystaj z poprzedniego zadania oraz własnosci Darboux funkcji ciągłych.)
- 21. Załóżmy, że $f:[0,1]\to [0,1]$ jest funkcją ciągłą. Pokaż, że istnieje takie $x\in [0,1]$, że f(x)=x. (Wsk: Przyjrzyj się funkcji g(x)=f(x)-x.)