SENSORES ANALOGO DIGITAL

SENSORES MQ

Clase 16

SENSORES MQ

Son sensores electroquímicos los cuales varían su resistencia de acuerdo a un gas especifico internamente posee un calentador encargado de aumentar la temperatura interna y con esto el sensor pueda reaccionar con los gases provocando un cambio en el valor de la resistencia.

Tipos de presentación:

CLASIFICACIÓN POR GAS

MQ135

MODELO	DESCRIPCIÓN	ALIMENTACIÓN
MQ2	Metano, butano, GLP, humo	5V
MQ3	Alcohol, etanol, humo	5V
MQ4	Metano, gas comprimido (GNP)	5V
MQ5	Gas natural, GLP	5V
MQ6	Butano, GLP	5V
MQ7	Monóxido de carbono	1.4V – 5V
MQ8	Hidrógeno	5V
MQ9	Monóxido de carbono y gases inflamables	5V
MQ131	Ozono	6V

Benceno, alcohol, humo, calidad de aire

5V

SENSOR DE GAS MQ2

El sensor MQ2 es el más básico de los sensores MQ, el cual nos permite detectar diferentes tipos de gases entre los que tenemos:

GLP, propano, metano, alcohol, hidrógeno, humo. Dando énfasis al GLP y propano.

Se puede utilizar en diferentes proyectos como ser:

- Detección de incendios.
- Sistemas de fugaz de gas.
- Sistemas de gases en minas.

SENSOR DE GAS MQ2 – CARACTERÍSTICAS

- Voltaje de Operación: 5V DC
- Respuesta rápida y alta sensibilidad
- Rango de detección: 300 a 10000 ppm
- Gas característico: 1000ppm, Isobutano
- Resistencia de censado: 1KΩ 50ppm Tolueno a 20KΩ in
- ➤ Tiempo de Respuesta: ≤ 10s
- ➤ Tiempo de recuperación: ≤ 30s
- > Temperatura de trabajo: -20 °C ~ +55 °C
- Humedad: ≤ 95% RH
- Contenido de oxigeno ambiental: 21%
- Consume menos de 150mA a 5V.

TABLA DE ESCALADO DEL MQ2

O B O

Resistance of sensor(Rs): Rs=(Vc/VRL-1)×RL

Sensitivity Characteristics

Influence of Temperature/Humidity

EJEMPLO 1 – CIRCUTO

Imprimir por el monitor serie los valores obtenidos por el sensor MQ2 a razón de 500 milisegundos.

EJEMPLO 1 – SOLUCIÓN

Imprimir por el monitor serie los valores obtenidos por el sensor MQ2 a razón de 500 milisegundos.

```
S16-E1
1 int mq2=A1, lectura;
2 void setup() {
3 Serial.begin (9600);
5 void loop() {
    lectura=analogRead(mg2);
    Serial.println(lectura);
    delay (500);
                         TUTOR:NAGIB LUIS VALLEJOS M.
```

EJEMPLO 2 – CIRCUTO

Si la presencia de humo es > 50% encender el led rojo y el led verde se apaga, de lo contrario apagar el rojo y encender el verde

EJEMPLO 2 – SOLUCIÓN

Si la presencia de humo es > 50% encender el led rojo y el led verde se apaga, de lo contrario apagar el rojo y encender el verde

```
S16-E2
1 int mq2=A1, lectura,
                                                     if (porcen>50) {
                                                10
2 ledR=5, ledV=7;
                                                       digitalWrite(ledR,1);
3 void setup() {
                                                       digitalWrite(ledV,0);
                                                12
   pinMode(ledR,OUTPUT);
                                                13
   pinMode(ledV,OUTPUT);
                                                     else{
                                                       digitalWrite(ledR,0);
7 void loop() {
                                                       digitalWrite(ledV,1);
                                                16
   lectura=analogRead(mq2);
   int porcen=map(lectura, 0, 808, 0, 100);
```

EJEMPLO 3 – CIRCUTO

Si el humo detectado es >30% se enciende el led verde de lo contrario se apaga. Si el humo detectado es >50% se enciende el led amarillo de lo contrario se apaga y si el humo detectado es >80% se enciende el led rojo de lo contrario se apaga.

EJEMPLO 3 – SOLUCIÓN


```
S16-E3
 1 int mq2=A1, lectura,
 2 | ledR=5, ledA=6, ledV=7;
 3 void setup() {
    pinMode(ledR,OUTPUT);
    pinMode(ledA,OUTPUT);
    pinMode(ledV,OUTPUT);
 8 void loop() {
    lectura=analogRead(mq2);
     int porcen=map(lectura, 0, 808, 0, 100);
10
11
    digitalWrite(ledV,porcen>30 ? 1:0);
12
    digitalWrite(ledA,porcen>50 ? 1:0);
13
     digitalWrite(ledR,porcen>80 ? 1:0);
14|}
```

SENSOR DE GAS MQ3

El sensor MQ3 conocido también como sensor de alcohol, es un sensor que es muy sensible al **alcohol etanol**, puede detectar GLP, hexano, metano y CO con sensibilidad muy baja.

Se puede utilizar en diferentes proyectos como ser:

- > Alcoholímetros.
- Sistemas de fugaz de alcohol.
- Sistemas de fugas de gas
- Sistemas de gases en minas.

SENSOR DE GAS MQ3 – CARACTERÍSTICAS

Voltaje de Operación: 5VDC

Integrado amplificador LM393 con umbral mediante potenciómetro.

- 2 pines de salida (salida analógica y salida de nivel TTL).
- Salida de nivel TTL válida de bajo nivel, se puede conectar directamente al microcontrolador.
- Salida analógica de 0 ~ 5 V , el voltaje más alto equivale a una concentración más alta.
- Condiciones de trabajo: Temperatura ambiente:-10°C a 65°C
- ➤ Humedad: ≤95% HR
- Contenido de oxigeno ambiental: 21%

TABLA DE ESCALADO DEL MQ3

Fig.3 is shows the typical sensitivity characteristics of the MQ-3 for several gases.

in their: Temp: 20℃,

Humidity: 65%, O₂ concentration 21%

RL=200k Ω

Ro: sensor resistance at 0.4mg/L of

Alcohol in the clean air.

Rs:sensor resistance at various concentrations of gases.

EJEMPLO 4 – CIRCUTO

Imprimir por el monitor serie los valores obtenidos por el sensor MQ3 y

el umbral de voltaje de acuerdo a las medidas recibidas a razón de 1

segundo.

EJEMPLO 4 – SOLUCIÓN

Imprimir por el monitor serie los valores obtenidos por el sensor MQ3 y el umbral de voltaje de acuerdo a las medidas recibidas a razón de 1 segundo.

```
S16-E4
1 int mq3=A1, lectura;
2 void setup() {
    Serial.begin (9600);
5 void loop() {
    lectura=analogRead (mg3);
6
    float voltaje=lectura * (5.0/1023.0);
    Serial.println(String(lectura) + " - " + String(voltaje));
    delay(1000);
```

EJEMPLO 5 – CIRCUTO

Si la concentración de alcohol es <25% solo se enciende el led verde e imprimir "Sin presencia de alcohol", de lo contrario se apaga. Si la concentración de alcohol es <40% solo se enciende el led amarillo e imprimir "Presencia de alcohol en valores aceptables", de lo contrario se apaga y si la concentración de alcohol es >=40% solo se enciende el led rojo e imprimir

EJEMPLO 5 – SOLUCIÓN

```
O BO
```

```
S16-E5
 1 int mq3=A1, lectura,
                                                     Serial.println("Sin presencia de alcohol");
 2 ledR=5, ledA=6, ledV=7;
 3 void setup() {
                                                   else if(porcen<40){
     pinMode(ledR,OUTPUT);
                                               20
                                                     digitalWrite(ledV,0);
     pinMode(ledA,OUTPUT);
                                                     digitalWrite(ledA,1);
     pinMode(ledV,OUTPUT);
                                                     digitalWrite(ledR,0);
                                                     Serial.println("Presencia de alcohol en valores aceptables");
     Serial.begin (9600);
 8 }
                                               24
                                                   else{
10 void loop() {
                                                     digitalWrite(ledV,0);
                                                     digitalWrite(ledA,0);
11
     lectura=analogRead(mq3);
     int porcen=map(lectura, 0, 808, 0, 100);
                                                     digitalWrite(ledR,1);
12
                                                     Serial.println("Presencia de alcohol alta!");
     if (porcen<25) {
14
                                               30
       digitalWrite(ledV,1);
       digitalWrite(ledA,0);
15
                                                   delay(1000);
       digitalWrite(ledR,0);
                                               32
16
```

CONTACTOS

Suscríbete

(+591) 63096640

robotics.space.nv@gmail.com

fb.me/RoboticsSpaceNV

@NagibVallejos

Robotics Space NV

https://github.com/nagibvalejos/Robotics-Space-NV

