

Test report No. Page

Issued date FCC ID

: 11384033H : 1 of 36

: August 24, 2016 : 2AJCWPXPML1

RADIO TEST REPORT

Test Report No.: 11384033H

Applicant

Phoenix Engineering Corp.

Type of Equipment

Bluetooth Low Energy Module

Model No.

PX-BML

FCC ID

: 2AJCWPXPML1

Test regulation

FCC Part 15 Subpart C: 2016

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.

.

.

- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

July 27 and 28, 2016

Representative test engineer:

Yuta Moriya

Engineer

Consumer Technology Division

Approved by:

Yakayuki Shimada

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 2 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

REVISION HISTORY

Original Test Report No.: 11384033H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11384033H	August 24, 2016	-	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date FCC ID

: 11384033H : 3 of 36 : August 24, 2016 : 2AJCWPXPML1

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5: SECTION 6: SECTION 7:** Power Density 30 **APPENDIX 3:** Worst Case Position.......36

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 4 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

SECTION 1: Customer information

Company Name : Phoenix Engineering Corp.

Address : 466-3 Fujikubo Miyoshi-machi, Iruma-gun, Saitama-ken 354-0041

Japan

Telephone Number : +81-49-258-1771 Facsimile Number : +81-49-258-2370 Contact Person : Yoshitaka Okubo

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Bluetooth Low Energy Module

Model No. : PX-BML

Serial No. : Refer to Section 4, Clause 4.2 Rating : DC 3.0 V (DC 1.9 to 3.3 V)

Receipt Date of Sample : July 26, 2016

Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: PX-BML (referred to as the EUT in this report) is a Bluetooth Low Energy Module.

Radio Specification

Bluetooth Low Energy

Radio Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Modulation : GFSK
Power Supply (radio part input) : DC 1.35 V
Antenna type : Pattern Antenna

Antenna Gain : 0.1 dBi

Clock frequency : 32.768 kHz, 16.000 MHz

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 5 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC part 15 final revised on April 6, 2016.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	QP 30.9 dB, 0.15000 MHz, L AV 36.9 dB, 0.50365 MHz, L	Complied	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(1)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(4)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(2)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.13	IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	14.8 dB 2483.500 MHz AV, Vertical	Complied	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

This EUT provides stable voltage (DC 1.35~V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v03r05 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

: 11384033H Test report No. Page : 6 of 36 : August 24, 2016 **Issued date**

: 2AJCWPXPML1 FCC ID

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Antenna terminal test Uncertainty (+/-)							
Po	Power meter Conducted emission and Power density Conducted emission						
Below	Above	Below	1 GHz	3 GHz	18 GHz	26.5 GHz	Channel power
1 GHz	1 GHz	1 GHz	-3 GHz	-18 GHz	-26.5 GHz	-40 GHz	
0.9 dB	1.0 dB	1.4 dB	1.7 dB	2.8 dB	2.8 dB	2.9 dB	2.6 dB

	Conducted emission
Frequency range	using AMN(LISN)
	(+/-)
0.009 –	3.5 dB
0.15MHz	3.5 db
0.15 – 30MHz	3.0 dB

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3m	3.8 dB
10m	3.7 dB

	Radiated emission (Below 1GHz)					
Polarity	(3 m*) (+	/-)	(10 m ²	^k) (+/-)		
1 Olaitty	30 – 200 MHz	200 –	30 – 200 MHz	200 –		
	30 - 200 WIIIZ	1000MHz	30 – 200 WIIIZ	1000MHz		
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB		
Vertical	4.7 dB	5.9 dB	5.0 dB	5.1 dB		

Radiated emission (Above 1GHz)					
(3	m*) (+/-)	(1 m*	(10 m*) (+/-)		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz		1 -18 GHz	
5.2 dB	5.4 dB	5.5 dB	5.5 dB	5.4 dB	

^{*}Measurement distance

 $\frac{Conducted\ Emission\ test}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

 $\frac{Radiated\ emission\ test}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H Page : 7 of 36 : August 24, 2016 : 2AJCWPXPML1

Issued date FCC ID

3.5 **Test Location**

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site		Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H Page : 8 of 36

Issued date : August 24, 2016 FCC ID : 2AJCWPXPML1

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

 Mode
 Remarks*

 Bluetooth Low Energy (BT LE)
 Maximum Packet Size, PRBS9

*Power of the EUT was set by the software as follows;

Power settings: 0dBm

Software: Remote, Version: V03 *This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
Conducted Emission,	BT LE Tx	2402 MHz
Spurious Emission (Radiated / Conducted),		2440 MHz
6dB Bandwidth,		2480 MHz
Maximum Peak Output Power,		
Power Density,		
99% Occupied Bandwidth		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 9 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Bluetooth Low Energy	PX-BML	C88ED1D000BB for AT, CE*	Phoenix	EUT
	Module		C88ED1D000BC for RE*	Engineering Corp.	
В	Jig board	PML-EVAB-01	001	Phoenix	*1)
				Engineering Corp.	
С	DC Power Supply	PMC35-2A	13090501	KIKUSUI	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.1	Unshielded	Unshielded	-
2	AC Cable	2.2	Unshielded	Unshielded	

^{*}AT: Antenna Terminal Conducted test, CE: Conducted Emission test, RE: Radiated Spurious Emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Jig board does not affect RF characteristics.

 Test report No.
 : 11384033H

 Page
 : 10 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz – 30 MHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 11 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "558074 D01 DTS Meas Guidance v03r05".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 12 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

cstricted band of re	id of FCC13.2037 Table of the RSS-Gen 6.10 (IC).									
Frequency	Below 1 GHz	Above 1 GHz		20 dBc						
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer						
Detector	QP	PK AV		PK						
IF Bandwidth	BW 120 kHz	RBW: 1 MHz VBW: 3 MHz	Average Power Method: RBW: 1 MHz VBW: 3 MHz Detector: Power Averaging (RMS) Trace: 100 traces If duty cycle was less than	RBW: 100 kHz VBW: 300kHz						
			98%, a duty factor was added to the results.							
Test Distance	3 m	3 m *1) (1 GHz	– 10 GHz),	3 m *1) (1 GHz – 10 GHz),						
		1 m *2) (10 GH	z – 26.5 GHz)	1 m *2) (10 GHz – 26.5 GHz)						

^{*1)} Distance Factor: $20 \times \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 M - 26.5 GHz
Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Test report No. : 11384033H
Page : 13 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	2 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v03r05".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

 Test report No.
 : 11384033H

 Page
 : 14 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

APPENDIX 1: Test data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Ise EMC Lab. No.3 Semi Anechoic Chamber Date: 2016/07/27

Report No. : 11384033H

Temp./Humi. : 23deg. C / 54% RH
Engineer : Keisuke Kawamura

Mode / Remarks : BT LE Tx 2480

LIMIT : FCC15. 207 QP FCC15. 207 AV

F	Reading	Level	Corr.			Lin	nit	Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	21. 6	2. 3	13. 2	34. 8	15. 5	66. 0	56.0	31. 2	40. 5	N	
0. 18012	15. 9	-1.0	13. 2	29. 1	12. 2	64. 5	54. 5	35.4		N	
0. 21525	10.8	-2. 2	13. 2	24. 0	11.0	63. 0	53. 0	39.0	42. 0	N	
0.50389	-1.4	-4. 3	13.3	11.9	9.0	56.0	46. 0	44. 1	37. 0	N	
0. 78243	-1. 7	-4. 5	13.3	11.6		56. 0	46. 0	44. 4	37. 2	N	
3. 34628	-0. 5	-5. 1	13.6	13. 1	8.5	56.0	46. 0	42. 9	37. 5	N	
0.15000	21.9	2. 4	13. 2	35. 1	15. 6	66. 0	56.0	30. 9	40.4	L	
0. 17514	17. 1	-0. 5	13. 2	30. 3	12.7	64. 7	54. 7	34. 4	42.0	L	
0. 21036	11.3	-2. 1	13. 2	24. 5	11.1	63. 2	53. 2	38. 7	42. 1	L	
0.50365	-1.5	-4. 2	13.3	11.8	9. 1	56.0	46. 0	44. 2	36. 9	L	
0.80720	-1.6	-4. 4	13.3	11. 7		56. 0	46. 0	44. 3	37. 1	L	
3. 34141	-0. 5	-5. 0	13.6	13. 1	8.6	56. 0	46. 0	42. 9	37.4	L	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11384033H Test report No. Page : 15 of 36 **Issued date** : August 24, 2016 FCC ID : 2AJCWPXPML1

Conducted Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H Date July 27, 2016 23 deg. C / 54 % RH Temperature / Humidity Engineer Keisuke Kawamura

Mode Tx BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 16 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

6dB Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya
Mode Tx BT LE

Mode	Frequency	6dB Bandwidth	Limit
	[MHz]	[MHz]	[kHz]
BTLE	2402	0.684	> 500
	2440	0.681	> 500
	2480	0.689	> 500

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 17 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

6dB Bandwidth

BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 18 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

Maximum Peak Output Power

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Re	sult	Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dBm]	[mW]	[dB]
2402	-13.44	1.01	10.09	-2.34	0.58	30.00	1000	32.34
2440	-12.17	1.02	10.09	-1.06	0.78	30.00	1000	31.06
2480	-10.90	1.02	10.09	0.21	1.05	30.00	1000	29.79

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenuator\ Loss$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 19 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Res	sult	Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]
2402	-16.42	1.01	10.09	-5.32	0.29	1.81	-3.51	0.45
2440	-15.04	1.02	10.09	-3.93	0.40	1.81	-2.12	0.61
2480	-13.69	1.02	10.09	-2.58	0.55	1.81	-0.77	0.84

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power average) = Time average + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 20 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Burst rate confirmation

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya
Mode Tx BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 21 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H

Date

July 27, 2016

Temperature / Humidity

Engineer

July 27, 2016

23 deg. C / 54 % RH

Keisuke Kawamura
(Below 1GHz)

July 27, 2016

23 deg. C / 59 % RH

Takafumi Noguchi
(Above 1GHz)

Mode Tx BT LE 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	23.1	14.0	7.2	32.2	-	12.1	40.0	27.9	
Hori	80.000	QP	22.6	6.3	7.8	32.2	-	4.5	40.0	35.5	
Hori	170.000	QP	22.1	15.8	8.8	32.1	-	14.6	43.5	28.9	
Hori	300.000	QP	22.2	13.5	9.8	31.9	-	13.6	46.0	32.4	
Hori	610.000	QP	22.0	19.2	11.9	32.1	-	21.0	46.0	25.0	
Hori	960.000	QP	21.2	22.3	13.7	30.6	-	26.6	46.0	19.4	
Hori	2390.000	PK	42.8	26.7	6.8	32.7	-	43.6	73.9	30.3	
Hori	4804.000	PK	39.6	31.0	8.1	31.8	-	46.9	73.9	27.0	Floor noise
Hori	7206.000	PK	40.3	35.7	8.9	32.6	-	52.3	73.9	21.6	Floor noise
Hori	9608.000	PK	41.6	37.2	9.6	33.2	-	55.2	73.9	18.7	Floor noise
Hori	2390.000	AV	33.4	26.7	6.8	32.7	1.8	36.0	53.9	17.9	*1)
Hori	4804.000	AV	30.9	31.0	8.1	31.8	-	38.2	53.9	15.7	Floor noise
Hori	7206.000	AV	32.3	35.7	8.9	32.6	-	44.3	53.9	9.6	Floor noise
Hori	9608.000	AV	33.3	37.2	9.6	33.2	-	46.9	53.9	7.0	Floor noise
Vert	41.254	QP	24.4	13.5	7.2	32.2	-	12.9	40.0	27.1	
Vert	80.000	QP	22.9	6.3	7.8	32.2	-	4.8	40.0	35.2	
Vert	170.000	QP	22.1	15.8	8.8	32.1	-	14.6	43.5	28.9	
Vert	300.000	QP	22.2	13.5	9.8	31.9	-	13.6	46.0	32.4	
Vert	610.000	QP	22.0	19.2	11.9	32.1	-	21.0	46.0	25.0	
Vert	960.000	QP	21.3	22.3	13.7	30.6	-	26.7	46.0	19.3	
Vert	2390.000	PK	43.2	26.7	6.8	32.7	-	44.0	73.9	29.9	
Vert	4804.000	PK	39.5	31.0	8.1	31.8	-	46.8	73.9	27.1	Floor noise
Vert	7206.000	PK	40.2	35.7	8.9	32.6	-	52.2	73.9	21.7	Floor noise
Vert	9608.000	PK	41.5	37.2	9.6	33.2	-	55.1	73.9	18.8	Floor noise
Vert	2390.000	AV	33.8	26.7	6.8	32.7	1.8	36.4	53.9	17.5	*1)
Vert	4804.000	AV	30.8	31.0	8.1	31.8	-	38.1	53.9	15.8	Floor noise
Vert	7206.000	AV	32.3	35.7	8.9	32.6	-	44.3	53.9	9.6	Floor noise
Vert	9608.000	AV	33.2	37.2	9.6	33.2	-	46.8	53.9	7.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

200DC Du	20the Data Siece													
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark				
				Factor										
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]					
Hori	2402.000	PK	88.0	26.7	6.8	32.7	88.8	-	-	Carrier				
Hori	2400.000	PK	38.4	26.7	6.8	32.7	39.2	68.8	29.6					
Vert	2402.000	PK	87.9	26.7	6.8	32.7	88.7	-	-	Carrier				
Vert	2400.000	PK	37.1	26.7	6.8	32.7	37.9	68.7	30.8					

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11384033H
Page : 22 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H
Date July 27, 2016
Temperature / Humidity 23 deg. C / 59 % RH
Engineer Takafumi Noguchi
(Above 1GHz)

Mode Tx BT LE 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 23 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H

Date
July 27, 2016
July 27, 2016
Temperature / Humidity
Engineer
Keisuke Kawamura
(Below 1GHz)
July 27, 2016
23 deg. C / 59 % RH
Takafumi Noguchi
(Above 1GHz)

Mode Tx BT LE 2440 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	23.2	14.0	7.2	32.2	-	12.2	40.0	27.8	
Hori	80.000	QP	22.6	6.3	7.8	32.2	-	4.5	40.0	35.5	
Hori	170.000	QP	22.0	15.8	8.8	32.1	-	14.5	43.5	29.0	
Hori	300.000	QP	22.3	13.5	9.8	31.9	-	13.7	46.0	32.3	
Hori	610.000	QP	22.0	19.2	11.9	32.1	-	21.0	46.0	25.0	
Hori	960.000	QP	21.2	22.3	13.7	30.6	-	26.6	46.0	19.4	
Hori	4880.000	PK	39.7	31.3	8.1	31.7	-	47.4	73.9	26.5	Floor noise
Hori	7320.000	PK	40.2	35.6	8.9	32.6	-	52.1	73.9	21.8	Floor noise
Hori	9760.000	PK	41.2	37.2	9.6	33.3	-	54.7	73.9	19.2	Floor noise
Hori	4880.000	AV	30.7	31.3	8.1	31.7	-	38.4	53.9	15.5	Floor noise
Hori	7320.000	AV	32.0	35.6	8.9	32.6	-	43.9	53.9	10.0	Floor noise
Hori	9760.000	AV	31.9	37.2	9.6	33.3	-	45.4	53.9	8.5	Floor noise
Vert	41.269	QP	24.4	13.4	7.2	32.2	-	12.8	40.0	27.2	
Vert	80.000	QP	22.7	6.3	7.8	32.2	-	4.6	40.0	35.4	
Vert	170.000	QP	22.1	15.8	8.8	32.1	-	14.6	43.5	28.9	
Vert	300.000	QP	22.2	13.5	9.8	31.9	-	13.6	46.0	32.4	
Vert	610.000	QP	22.0	19.2	11.9	32.1	-	21.0	46.0	25.0	
Vert	960.000	QP	21.2	22.3	13.7	30.6	-	26.6	46.0	19.4	
Vert	4880.000	PK	39.5	31.3	8.1	31.7	-	47.2	73.9	26.7	Floor noise
Vert	7320.000	PK	40.2	35.6	8.9	32.6	-	52.1	73.9	21.8	Floor noise
Vert	9760.000	PK	40.9	37.2	9.6	33.3	-	54.4	73.9	19.5	Floor noise
Vert	4880.000	AV	30.9	31.3	8.1	31.7	-	38.6	53.9	15.3	Floor noise
Vert	7320.000	AV	31.8	35.6	8.9	32.6	-	43.7	53.9	10.2	Floor noise
Vert	9760.000	AV	31.6	37.2	9.6	33.3	-	45.1	53.9	8.8	Floor noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier)$

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = $\,$ -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 Test report No.
 : 11384033H

 Page
 : 24 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H

Date
July 27, 2016
July 27, 2016
Temperature / Humidity
Engineer
Keisuke Kawamura
(Below 1GHz)
July 27, 2016
23 deg. C / 59 % RH
Takafumi Noguchi
(Above 1GHz)

Mode Tx BT LE 2480 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	23.1	14.0	7.2	32.2	-	12.1	40.0	27.9	
Hori	80.000	QP	22.7	6.3	7.8	32.2	-	4.6	40.0	35.4	
Hori	170.000	QP	22.1	15.8	8.8	32.1	-	14.6	43.5	28.9	
Hori	300.000	QP	22.2	13.5	9.8	31.9	-	13.6	46.0	32.4	
Hori	610.000	QP	22.0	19.2	11.9	32.1	-	21.0	46.0	25.0	
Hori	960.000	QP	21.3	22.3	13.7	30.6	-	26.7	46.0	19.3	
Hori	2483.500	PK	45.3	26.8	6.9	32.6	-	46.4	73.9	27.5	
Hori	4960.000	PK	39.4	31.5	8.1	31.7	-	47.3	73.9	26.6	Floor noise
Hori	7440.000	PK	40.1	35.5	9.0	32.7	-	51.9	73.9	22.0	Floor noise
Hori	9920.000	PK	40.3	37.2	9.7	33.4	-	53.8	73.9	20.1	Floor noise
Hori	2483.500	AV	35.8	26.8	6.9	32.6	1.8	38.7	53.9	15.2	*1)
Hori	4960.000	AV	30.5	31.5	8.1	31.7	-	38.4	53.9	15.5	Floor noise
Hori	7440.000	AV	31.8	35.5	9.0	32.7	-	43.6	53.9	10.3	Floor noise
Hori	9920.000	AV	31.9	37.2	9.7	33.4	-	45.4	53.9	8.5	Floor noise
Vert	41.262	QP	24.5	13.4	7.2	32.2	-	12.9	40.0	27.1	
Vert	80.000	QP	22.9	6.3	7.8	32.2	-	4.8	40.0	35.2	
Vert	170.000	QP	22.1	15.8	8.8	32.1	-	14.6	43.5	28.9	
Vert	300.000	QP	22.1	13.5	9.8	31.9	-	13.5	46.0	32.5	
Vert	610.000	QP	22.0	19.2	11.9	32.1	-	21.0	46.0	25.0	
Vert	960.000	QP	21.2	22.3	13.7	30.6	-	26.6	46.0	19.4	
Vert	2483.500	PK	45.7	26.8	6.9	32.6	-	46.8	73.9	27.1	
Vert	4960.000	PK	39.3	31.5	8.1	31.7	-	47.2	73.9	26.7	Floor noise
Vert	7440.000	PK	40.4	35.5	9.0	32.7	-	52.2	73.9	21.7	Floor noise
Vert	9920.000	PK	40.4	37.2	9.7	33.4	-	53.9	73.9	20.0	Floor noise
Vert	2483.500	AV	36.2	26.8	6.9	32.6	1.8	39.1	53.9	14.8	*1)
Vert	4960.000	AV	30.5	31.5	8.1	31.7	-	38.4	53.9	15.5	Floor noise
Vert	7440.000	AV	31.7	35.5	9.0	32.7	-	43.5	53.9	10.4	Floor noise
Vert	9920.000	AV	31.7	37.2	9.7	33.4	-	45.2	53.9	8.7	Floor noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)) - G$

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{^*}$ Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

 Test report No.
 : 11384033H

 Page
 : 25 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H
Date July 27, 2016
Temperature / Humidity 23 deg. C / 59 % RH
Engineer Takafumi Noguchi
(Above 1GHz)

Mode Tx BT LE 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 26 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11384033H

Date July 27, 2016 July 27, 2016
Temperature / Humidity 23 deg. C / 54 % RH 23 deg. C / 59 % RH
Engineer Keisuke Kawamura (Below 1GHz) (Above 1GHz)

Mode Tx BT LE 2480 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 27 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya

Mode Tx BT LE 2402 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.70	-98.6	0.01	9.8	2.0	1	-86.8	300	6.0	-25.6	47.8	73.4	
150.00	-90.7	0.01	9.8	2.0	1	-78.8	300	6.0	-17.6	24.0	41.6	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

 $EIRP = Reading + Cable\ Loss + Attenator\ Loss + Antenna\ Gain + 10*log\ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 28 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya

Mode Tx BT LE 2440 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.12	-97.4	0.01	9.8	2.0	1	-85.6	300	6.0	-24.3	46.6	70.9	
150.00	-90.4	0.01	9.8	2.0	1	-78.5	300	6.0	-17.3	24.0	41.3	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

 $EIRP = Reading + Cable\ Loss + Attenator\ Loss + Antenna\ Gain + 10*log\ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 29 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya

Mode Tx BT LE 2480 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.59	-98.1	0.01	9.8	2.0	1	-86.3	300	6.0	-25.0	47.9	72.9	
374.00	-90.4	0.01	9.9	2.0	1	-78.5	300	6.0	-17.2	16.1	33.3	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

 $EIRP = Reading + Cable\ Loss + Attenator\ Loss + Antenna\ Gain + 10*log\ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11384033H

 Page
 : 30 of 36

 Issued date
 : August 24, 2016

 FCC ID
 : 2AJCWPXPML1

Power Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H
Date July 28, 2016
Temperature / Humidity 25 deg. C / 39 % RH
Engineer Yuta Moriya
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-29.25	1.01	10.09	-18.15	8.00	26.15
2440.00	-26.27	1.02	10.09	-15.16	8.00	23.16
2480.00	-26.27	1.02	10.09	-15.16	8.00	23.16

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 31 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11384033H Test report No. Page : 32 of 36 : August 24, 2016 Issued date FCC ID : 2AJCWPXPML1

99%Occupied Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11384033H July 28, 2016 Date Temperature / Humidity 25 deg. C / 39 % RH Engineer Yuta Moriya Mode Tx BT LE

BT LE

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11384033H
Page : 33 of 36
Issued date : August 24, 2016
FCC ID : 2AJCWPXPML1

APPENDIX 2: Test instruments

Test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	CE,RE	2015/10/01 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	CE,RE	2016/01/21 * 12
MJM-16	Measure	KOMELON	KMC-36	-	CE,RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	CE,RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	CE,RE	2016/05/19 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	CE,RE	2015/09/02 * 12
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE	2016/07/07 * 12
MCC-112	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W(10m)/SFM1 41(3m)/sucoform14 1-PE(1m)/421-010(1 .5m)/RFM-E321(Sw itcher)		СЕ	2016/07/26 * 12
MAT-66	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2016/01/14 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	CE,RE	2016/01/13 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2015/10/11 * 12
MLA-22	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	RE	2016/01/30 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2016/07/26 * 12
MAT-70	Attenuator(6dB)	Agilent	8491A-006	MY52460153	RE	2016/04/05 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2016/03/24 * 12
MRENT-130	Spectrum Analyzer	Agilent	E4440A	MY46187750	AT	2016/06/03 * 12
MPM-08	Power Meter	Anritsu	ML2495A	6K00003338	AT	2015/10/08 * 12
MPSE-11	Power sensor	Anritsu	MA2411B	011737	AT	2015/10/08 * 12
MAT-23	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	AT	2016/03/18 * 12
MCC-173	Microwave Cable	Junkosha	MWX221	1409S496	AT	2016/03/11 * 12
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2015/11/10 * 12
MCC-64	Coaxial Cable	UL Japan	-	-	AT	2016/03/10 * 12
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2015/12/08 * 12
MMM-17	DIGIITAL HITESTER	Hioki	3805	070900530	AT	2016/01/13 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2016/05/29 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2016/05/20 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2016/03/24 * 12
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2016/05/29 * 12
MHF-25	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	RE	2015/09/16 * 12
MHF-06	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	RE	2016/05/16 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN