II. REMARKS

Claims 1-31 and 33-57 are pending, and claims 1-8, 15-24, 34-36 and 43-52 are allowed. The Applicant's attorney has amended claims 9-14 and 37-42 and has added new claims 58-59. In light of the following, all of the claims are now in condition for allowance, and, therefore, the Applicant's attorney requests the Examiner to withdraw all of the outstanding rejections.

Rejection of Claims 9-14, 25-31, 33, 37-42, and 53-57 Under 35 U.S.C. § 102(b) As Being Anticipated By "VLSI Implementation Of Inverse Discrete Cosine Transformer . . .". Masaki et al.

As discussed below, the Applicants' attorney disagrees with this rejection.

Claim 9

Claim 9 recites a processor operable to combine a first matrix column of first intermediate values with a second matrix column of second intermediate values to generate a set of resulting values and to store the set of resulting values in more than one memory row.

For example, referring, e.g., to pp. 22-23 and FIGS. 12-18 of the patent application, a computing unit 112 (FIG. 13) of a processor 108 (FIG. 12) computes $\frac{1}{2}$ the sum of and $\frac{1}{2}$ the difference between even Masaki values de_{00} - de_{03} from a first matrix column and respective odd Masaki values do_{00} - do_{03} from a second matrix column to generate a set of resulting values l'_{00} - l'_{07} . Referring to FIGS. 17 and 18, the computing unit 112 then stores l'_{00} - l'_{07} in respective rows (Reg1 . . .) to effectively transpose the l' matrix without executing a separate transpose instruction.

In contrast, Masaki does not disclose storing a set of resulting values in more than one memory row. Referring, *e.g.*, to FIGS. 5 and 6(a), Masaki generates first and second groups $x_3 - x_0$ and $x_4 - x_7$ of intermediate inverse-transform values, and inverts the order of the first group $(x_3 - x_0 \rightarrow x_0 - x_3)$ such that the top row of the memory (FIG. 6(a)) contains

 x_0 - x_7 in the positions 1, 2, 3, 4, 4, 3, 2, 1 respectively. As such, Masaki stores a set of values x_0 - x_7 in a single, not more than one, row.

Claims 10-14

These claims are patentable by virtue of their dependency from claim 9.

Claim 25

Claim 25 recites a processor operable to store pixel values that respectively occupy every other position of a row in a first continuous section of a register and to store the pixel values that respectively occupy remaining positions of the row in a second continuous section of the register.

For example, referring to FIGS. 3, 13 and 16 and equation (12) (p. 12) of the patent application, a computing unit 112 (FIG. 13) of a processor 108 (FIG. 12) receives discrete cosine transform (pixel) values $D_{00} - D_{07}$ (FIG. 3) that each occupy a respective position within a row of pixel values. Because equation (12) requires that these values be rearranged into even and odd matrix columns D_{00} , D_{02} , D_{04} , D_{06} and D_{01} , D_{03} , D_{05} , D_{07} , the unit 112 executes an inverse zig-zag operation that stores in the left half (a first continuous section) of a register 136a (FIG. 16) the pixel values (e.g, D_{00} , D_{02} , D_{04} , D_{06}) that occupy every other position of the row, and stores in the right half (second continuous section) of the register 136a the pixel values (e.g., D_{01} , D_{03} , D_{05} , D_{07}) that occupy the remaining positions of the row.

In contrast, Masaki does not disclose storing pixel values that respectively occupy every other position of a row in a first continuous section of a register, or storing the pixel values that respectively occupy remaining positions of the row in a second continuous section of the register. Referring, e.g., to FIG. 5, Masaki generates first and second groups $x_3 - x_0$ and $x_4 - x_7$ of intermediate inverse-transform values, and inverts the order of the first group $(x_3 - x_0 \rightarrow x_0 - x_3)$ such that the top row of the memory (FIG. 6(a)) contains $x_0 - x_7$ in the positions 1, 2, 3, 4, 4, 3, 2, 1 respectively. But inverting the order of first group x_3

 $-x_0$ is not the same as the claimed technique, which would yield x_3 , x_1 , x_4 , x_6 , x_2 , x_0 , x_5 , x_7 in the top row of Masaki's memory.

Claims 26-29

These claims are patentable by virtue of their dependencies from claim 25.

Claim 30

Claim 30 as amended is patentable for the same reasons cited by the Examiner in support of the allowability of claim 1.

Claims 31 and 33

These claims are patentable by virtue of their dependency from claim 30.

Claim 37

Claim 37 is patentable for reasons similar to those discussed above in support of the patentability of claim 9.

Claims 38-42

These claims are patentable by virtue of their dependencies from claim 37.

Claim 53

Claim 53 is patentable for reasons similar to those discussed above in support of the patentability of claim 25.

Claim 54 - 57

These claims are patentable by virtue of their dependencies on claim 53.

Conclusion

In light of the foregoing, claims 1-29, 31, and 33-57 as previously pending and claim 30 as amended are in condition for allowance, which is respectfully requested.

In the event additional fees are due as a result of this amendment, payment for those fees has been enclosed in the form of a check. Should further payment be required to cover such fees you are hereby authorized to charge such payment to Deposit Account No. 07-1897.

If the Examiner believes that a phone interview would be helpful, he is respectfully requested to contact undersigned, at (425) 455-5575.

DATED this 2014 day of February, 2005.

Respectfully Submitted,

GRAYBEAL JACKSON HALEY LLP

P. G. Scott Born

Attorney for Applicant

Registration No. 40, 53

Registration No. 40, 523 155 – 108th Ave. NE, Suite 350

Bellevue, WA 98004-5973

(425) 455-5575