

Report No: VT1311180026E-2

FCC REPORT

Applicant: MANOVA INTERNATIONAL LTD.

Address of Applicant: Flat A, 13/F., Century Industrial Centre, 33~35 Au Pui Wan

Street, Fo Tan, N.T., H.K.

Equipment Under Test (EUT)

Product Name: "WiDE" Portable Stereo Bluetooth Speaker

Model No.: BT-68N

FCC ID: UKWMANOVA-BT-68N

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2013

Date of sample receipt: November.18, 2013

Date of Test: November. 18, 2013 ~ December.04, 2013

Date of report issued: December.06, 2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jason Manager TOP TOP ROVED DE

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the Volt product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Volt International Electrical Approvals or testing done by Volt International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by Volt International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No: VT1311180026E-2

Version

Version No.	Date	Description
00	December.06, 2013	Original

Prepared By:	Jen -	Date:	December.06, 2013
	Project Engineer	_	
Check By:	Darren	Date:	December.06, 2013

Reviewer

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: VT1311180026E-2

Contents

			Page
1	CC	OVER PAGE	1
2	VF	ERSION	3
3		ONTENTS	
4	TE	EST SUMMARY	4
5	GF	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	5.10	DESCRIPTION OF EUT ATTACHMENT	7
	5.11	TEST INSTRUMENTS LIST	8
6	TE	EST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20DB OCCUPY BANDWIDTH	20
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	BAND EDGE	
		8.1 Conducted Emission	
		8.2 Radiated Emission	
	6.9		
		9.1 Conducted Spurious Emission	
		9.2 Radiated Spurious Emission	
		6.9.2.1 Radiated emission below 1GHz	
		6.9.2.2 Transmitter emission above 1GHz	
	6 10	PSELLYOD ANDOM EDECTIONCY HODDING SECTIONCE	56

Report No: VT1311180026E-2

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	15.207	PASS
Conducted Peak Output Power	15.247 (b)(1)	PASS
20dB Occupied Bandwidth	15.247 (a)(1)	PASS
Carrier Frequencies Separation	15.247 (a)(1)	PASS
Hopping Channel Number	15.247 (a)(1)	PASS
Dwell Time	15.247 (a)(1)	PASS
Band Edge	15.247(d)/15.205/15.209	PASS
Spurious Emission	15.247(d)/15.205/15.209	PASS
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	PASS

Remark:

- Pass: The EUT complies with the essential requirements in the standard.
- Tx: In this whole report Tx (or tx) means Transmitter.
- Rx: In this whole report Rx (or rx) means Receiver.

Report No: VT1311180026E-2

General Information

5.1 Client Information

Applicant:	MANOVA INTERNATIONAL LTD.
Address of Applicant:	Flat A, 13/F., Century Industrial Centre, 33~35 Au Pui Wan Street, Fo Tan, N.T., H.K.
Manufacturer/Factory:	MANOVA INTERNATIONAL LTD.
Address of Manufacturer /Factory:	Flat A, 13/F., Century Industrial Centre, 33~35 Au Pui Wan Street, Fo Tan, N.T., H.K.

5.2 General Description of E.U.T.

"WiDE" Portable Stereo Bluetooth Speaker
BT-68N
2402MHz~2480MHz
79
1MHz
Frequency Hopping Spread Spectrum (FHSS)
GFSK, π/4 PSK, 8DPSK
PCB Antenna
0dBi (Declare by manufacturer)
DC 3.7V/1100mAh by Battery
N/A

Report No: VT1311180026E-2

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	52 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode:	Keep the EUT in communicating mode on transmitter function.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 987723

Dongguan Volt Compliance Testing Service Co.,Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 987723, July 08, 2013.

● Industry Canada (IC) —Submission No.: 169466

The 3m Semi-anechoic chamber of Dongguan Volt Compliance Testing Service Co.,Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Submission No.: 169466.

5.5 Test Location

All tests were performed at:

Dongguan Volt Compliance Testing Service Co.,Ltd.

Address: 6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China. Tel: +86-769-21663588, Fax:+86-769-21660978

5.6 Description of Support Units

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last cal date (mm-dd-yy)	Cal Interval
1	Desktop Computers	HP	Pro 3005 MT	4CV1324FBS	N/A	N/A

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Description of EUT attachment

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

Item	Appellation	Model No.	Length (m)	Shielding performance
1.	Mini USB Charger Line	N/A	0.25	Unshielded
2.	Audio Input Line	N/A	0.25	Unshielded

5.11 Test Instruments list

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last cal date	Cal		
Item					(mm-dd-yy)	Interval		
1	Test Receiver	Rohde & Schwarz	ESCI	101152	Oct.25,2013	1 year		
2	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Oct.09,2013	1 year		
3	L.I.S.N	Schwarzbeck	NNLK8129	8129-212	Oct.09,2013	1 year		
4	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Oct.09,2013	1 year		
5	Pulse Limiter	MTS-systemtechnik	MTS-IMP-136	261115-010- 0022	Oct.09,2013	1 year		

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	acturer Model No.	Serial No.	Last cal date	Cal	
пеш	rest Equipment	Walturacturer		Serial No.	(mm-dd-yy)	Interval	
1	Loop Antenna	COM-Power	AL-130	AL-142	Oct.28,2013	1 year	
2	Log-periodic Antenna	Schwarzbeck	VULB9162	9162-010	Oct.28,2013	1 year	
3	Horn Antenna	COM-Power	AH-118	071078	Oct.28,2013	1 year	
4	Horn Antenna	Schwarzbeck	BBHA9170	9170-372	Oct.28,2013	1 year	
5	Power Amplifier	HP	HP 8447D	1145A00203	Oct.09,2013	1 year	
6	Pre-Amplifier	Agilent	8449B	3008A02964	Oct.09,2013	1 year	
7	Test Receiver	Rohde & Schwarz	ESCI7	100837	Oct.25,2013	1 year	
8	Spectrum Analyzer	Agilent	E4408B	MY41440717	Oct.25,2013	1 year	
9	Cable	Huber + Suhner	CBL2-NN-9M	22390001	Oct.09,2013	1 year	
10	Cable	Huber + Suhner	CIL02	N/A	Oct.09,2013	1 year	
11	Positioning Controller	UC	UC 3000	N/A	N/A	N/A	
12	Single Phase Power Line Filter	SAEMC	PF201A-32	110210	N/A	N/A	
13	3 Phase Power Line Filter	SAEMC	PF401A-200	110318	N/A	N/A	
14	DC Power Filter	SAEMC	PF301A-200	110245	N/A	N/A	
15	Color Monitor	SUNSPO	SP-140A	N/A	N/A	N/A	

RF c	RF conducted:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last cal date	Cal	
пеш	rest Equipment	Manulacturei	Widdel No.	Serial No.	(mm-dd-yy)	Interval	
1	Test Receiver	Rohde & Schwarz	ESCI7	100837	Oct.25,2013	1 year	
2	Spectrum Analyzer	Agilent	E4408B	MY41440717	Oct.25,2013	1 year	
3	Coaxial cable	Volt	20cm	N/A	N/A	N/A	

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

RF Antenna

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, F

Fax:+86-769-21660978

Report No: VT1311180026E-2

6.2 Conducted Emissions

Test Requirement: FCC Part15 C Section 15.207 Test Method: ANSI C63.4:2003 Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Aver 0.15-0.5 66 to 56* 56 to 0.5-5 56 40 5-30 60 50					
Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Aver 0.15-0.5 66 to 56* 56 to 0.5-5 56 40 5-30 60 50					
Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Aver 0.15-0.5 66 to 56* 56 to 0.5-5 56 44 5-30 60 50					
Receiver setup: RBW=9KHz, VBW=30KHz Limit (dBuV)					
Limit: Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 56 to 56* 0.5-5 56 44 5-30 60 50					
Frequency range (MHZ) Quasi-peak Aver 0.15-0.5 66 to 56* 56 to 0.5-5 56 40 5-30 60 50					
0.15-0.5 66 to 56* 56 to 0.5-5 56 40 5-30 60 50					
0.5-5 56 40 5-30 60 50	40*				
5-30 60 50					
* Decreases with the logarithm of the frequency.	J				
line impedance stabilization network(L.I.S.N.). The provide a 500hm/50uH coupling impedance for the measuring equipment peripheral devices are also connected to the main power through that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refers to the block diagram of the test setu photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission,	500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be				
Test setup: Reference Plane 40cm 80cm Filter AC Test table/Insulation plane	power				
Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	₽				
E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network	¢3				
E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	٩				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

Peter

Live Line:

EV1311180026-2 Report No.:

Test Standard: FCC PART 15B_Class B_QP

Test item: Conducted Emission Phase: L1

Applicant: MANOVA 24(C) / 54 % Temp.()/Hum.(%): "WiDE" Portable Stereo Bluetooth Speaker Product: AC 120V/60Hz Power Rating: BT-68N-BT-68 Model No.: Test Engineer:

Test Mode: Charging+BT mode

Remark:

No.	Frequency (MHz)	Factor (dBuV)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.6740	10.80	32.70	43.50	56.00	-12.50	QP	Р	
2	0.6740	10.80	26.70	37.50	46.00	-8.50	AVG	Р	
3	2.2540	10.80	32.20	43.00	56.00	-13.00	QP	Р	
4	2.2540	10.80	26.70	37.50	46.00	-8.50	AVG	Р	
5	2.7020	10.80	34.40	45.20	56.00	-10.80	QP	Р	
6	2.7020	10.80	25.40	36.20	46.00	-9.80	AVG	Р	
7	3.1500	10.80	33.70	44.50	56.00	-11.50	QP	Р	
8	3.1500	10.80	21.70	32.50	46.00	-13.50	AVG	Р	
9	3.8260	10.80	32.70	43.50	56.00	-12.50	QP	Р	
10	3.8260	10.80	23.70	34.50	46.00	-11.50	AVG	Р	
11	4.7260	10.80	31.70	42.50	56.00	-13.50	QP	Р	
12	4.7260	10.80	23.70	34.50	46.00	-11.50	AVG	Р	

Notes: Level=Reading+Factor. Margin=Level-Limit.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

Neutral Line:

Report No.: EV1311180026-2

Test Standard: FCC PART 15B_Class B_QP

Test item: Conducted Emission Phase:

Applicant: MANOVA Temp.()/Hum.(%): 24(C) / 54 %

Product: "WiDE" Portable Stereo Bluetooth Speaker Power Rating: AC 120V/60Hz

Model No.: BT-68N Test Engineer: Peter

Test Mode: Charging+BT mode

Remark:

No.	Frequency (MHz)	Factor (dBuV)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.6740	10.80	28.10	38.90	56.00	-17.10	QP	Р	
2	0.6740	10.80	22.90	33.70	46.00	-12.30	AVG	Р	
3	1.1220	10.80	29.00	39.80	56.00	-16.20	QP	Р	
4	1.1220	10.80	20.40	31.20	46.00	-14.80	AVG	Р	
5	1.3460	10.80	28.60	39.40	56.00	-16.60	QP	Р	
6	1.3460	10.80	19.70	30.50	46.00	-15.50	AVG	Р	
7	1.7940	10.80	28.70	39.50	56.00	-16.50	QP	Р	
8	1.7940	10.80	20.70	31.50	46.00	-14.50	AVG	Р	
9	2.2460	10.80	28.70	39.50	56.00	-16.50	QP	Р	
10	2.2460	10.80	22.70	33.50	46.00	-12.50	AVG	Р	
11	4.2700	10.80	29.70	40.50	56.00	-15.50	QP	Р	
12	4.2700	10.80	19.40	30.20	46.00	-15.80	AVG	Р	

Notes: Level=Reading+Factor. Margin=Level-Limit.

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB DA00-705			
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.			
Test Instruments:	Refer to section 4.7 for details			
Test mode:	Refer to section 4.3 for details			
Test results:	Passed			

Report No: VT1311180026E-2

Measurement Data:

GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-2.31	30.00	Pass			
Middle	-2.16	30.00	Pass			
Highest	-2.32	30.00	Pass			
	П/4 PSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-3.89	30.00	Pass			
Middle	-3.74	30.00	Pass			
Highest	-3.78	30.00	Pass			
	8DPSK mod	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-3.63	30.00	Pass			
Middle	-3.38	30.00	Pass			
Highest	-3.66	30.00	Pass			

Test plot as follows:

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:12:36

Date: 2.DEC.2013 15:12:49

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:13:05

Date: 2.DEC.2013 15:13:24

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:13:40

Date: 2.DEC.2013 15:13:58

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:14:17

Date: 2.DEC.2013 15:14:48

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:15:05

Report No: VT1311180026E-2

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.4:2003 and KDB DA00-705			
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak			
Limit:	N/A			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.			
Test Instruments:	Refer to section 4.7 for details			
Test mode:	Refer to section 4.3 for details			
Test results:	Passed			

Measurement Data:					
T 101	20dB Occupy Bandwidth (KHz)				
Test Channel	GFSK	П /4 PSK	8DPSK		
Lowest	1135	1360	1375		
Middle	1135	1365	1375		
Highest	1135	1360	1370		

Test plot as follows:

Report No: VT1311180026E-2

Date: 2.DEC.2013 13:49:38

Date: 2.DEC.2013 13:54:33

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:00:12

Date: 2.DEC.2013 14:03:30

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:06:55

Date: 2.DEC.2013 14:12:22

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:16:11

Date: 2.DEC.2013 14:19:23

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:22:43

Report No: VT1311180026E-2

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.4:2003 and KDB DA00-705			
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak			
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.			
Test Instruments:	Refer to section 4.7 for details			
Test mode:	Refer to section 4.3 for details			
Test results:	Passed			

Report No: VT1311180026E-2

Measurement Data						
	GFSK mod	le				
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result			
Lowest	1000	917	Pass			
Middle	995	917	Pass			
Highest	1000	917	Pass			
	∏/4 PSK mo	ode				
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result			
Lowest	1000	917	Pass			
Middle	1000	917	Pass			
Highest	1000	917	Pass			
	8DPSK mode					
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result			
Lowest	1000	917	Pass			
Middle	1005	917	Pass			
Highest	1005	917	Pass			

Note: According to section 5.4,

recer recording to coolien or if					
Mode	20dB bandwidth (KHz)	Limit (KHz)			
Wode	(worse case)	(Carrier Frequencies Separation)			
GFSK	1135	757			
П/ 4 PSK	1365	910			
8DPSK	1375	917			

Test plot as follows:

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: VT1311180026E-2

Date: 2.DEC.2013 13:51:53

Date: 2.DEC.2013 13:57:43

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:01:37

Date: 2.DEC.2013 14:05:46

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:10:51

Date: 2.DEC.2013 14:15:00

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:18:06

Date: 2.DEC.2013 14:21:47

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:24:51

Report No: VT1311180026E-2

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	75 Channels.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.		
Test Instruments:	Refer to section 4.7 for details		
Test mode:	Refer to section 4.3 for details		
Test results:	Passed		

Measurement Data					
Mode	Hopping channel numbers	Limit			
GFSK	79	75			
8DPSK	79	75			

Test plot as follows:

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:29:39

Date: 2.DEC.2013 15:48:29

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test mode:	Hopping transmitting with all kind of modulation.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.		
Test Instruments:	Refer to section 4.7 for details		
Test mode:	Refer to section 4.3 for details		
Test results:	Passed		
Remark: The test period: T = 0.4 Second Dwell time = time slot length	and * 79 Channel = 31.6 s. * (Hopping rate / Number of hopping channels) * Period.		

Measurement Data:					
Mode	Packet	Dwell time (second)	Limit (second)		
GFSK	DH1	0.1296	0.4		
	DH3	0.2680	0.4		
	DH5	0.3115	0.4		
П /4 PSK	2-DH1	0.1312	0.4		
	2-DH3	0.2688	0.4		
	2-DH5	0.3120	0.4		
8DPSK	3-DH1	0.1336	0.4		
	3-DH3	0.2668	0.4		
	3-DH5	0.3139	0.4		

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

Test plot as follows:

Date: 2.DEC.2013 14:58:24

Date: 2.DEC.2013 14:58:45

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:59:09

Date: 2.DEC.2013 14:59:45

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:00:20

Date: 2.DEC.2013 15:00:51

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:01:37

Date: 2.DEC.2013 15:02:03

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:02:35

Report No: VT1311180026E-2

6.8 Band Edge

6.8.1 Conducted Emission

Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: ANSI C63.4:2003 and KDB DA00-705 Receiver setup: RBW=100KHz, VBW=300KHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer FC Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value. Test Instruments: Refer to section 4.7 for details Test mode: Hopping transmitting with all kind of modulation. Test results: Passed									
Receiver setup: RBW=100KHz, VBW=300KHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Ferumark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value. Test Instruments: Refer to section 4.7 for details Test mode: Hopping transmitting with all kind of modulation.	Test Requirement:	FCC Part15 C Section 15.247 (d)							
Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Ferumark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value. Test Instruments: Refer to section 4.7 for details Test mode: Hopping transmitting with all kind of modulation.	Test Method:	ANSI C63.4:2003 and KDB DA00-705							
spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value. Test Instruments: Refer to section 4.7 for details Test mode: Hopping transmitting with all kind of modulation.	Receiver setup:	RBW=100KHz, VBW=300KHz, Detector=Peak							
Spectrum Analyzer Non-Conducted Table	Limit:	spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or							
Cable loss was compensated from the measured value. Test Instruments: Refer to section 4.7 for details Test mode: Hopping transmitting with all kind of modulation.	Test setup:	Non-Conducted Table Ground Reference Plane Remark:							
Test mode: Hopping transmitting with all kind of modulation.									
	Test Instruments:	Refer to section 4.7 for details							
Test results: Passed	Test mode:	Hopping transmitting with all kind of modulation.							
	Test results:	Passed							

Remark:

During test the item, Pre-scan the GFSK, $\Pi/4$ PSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Report No: VT1311180026E-2

Test plot as follows:

Date: 2.DEC.2013 14:33:37

Date: 2.DEC.2013 14:48:08

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 14:35:46

Date: 2.DEC.2013 14:50:16

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

6.8.2 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205							
Test Method:	ANSI C63.4: 20	03								
Test Frequency Range:	2.3GHz to 2.5G	Hz								
Test site:	Measurement D	Distance: 3m (S	Semi-Anecho	ic Chambei	r)					
Receiver setup:										
·	Frequency Detector RBW VBW Remark									
	Above 1GHz Peak 1MHz 3MHz Peak Va									
	7.5010 10112	Peak	1MHz	10Hz	Average Value					
Limit:	Frequency Limit (dBuV/m @3m) Remark									
	Frequency Limit (dBuV/m @3m) Remark 54.0 Average Value									
	Above 1	GHz	74.0		Peak Value					
Test Procedure:	the ground 360 degree b. The EUT w antenna, who tower. c. The antenn ground to d horizontal a measuremed. d. For each su and then the and the rota find the maximal e. The test-reconspecified B f. If the emission the limit specified EUT have 10dB	at a 3 meter so s to determine as set 3 meter hich was mour a height is var etermine the nund vertical polent. Ispected emisse antenna was able table was ximum reading beiver system and width with ion level of the ecified, then te would be repomargin would	emi-anechoice the position is away from the don the to ded from one naximum valuarizations of the EUT is tuned from the turned from the EUT in peal sting could be re-tested to the re-tested of the position of the extension of the extension of the extension of the extension of the position of the posit	camber. Tof the higher the interference of a varial meter to foue of the fiethe antennation was arranghts from 10 degrees to eak Detect Fold Mode. It was a se the emissione by one	ence-receiving able-height antenna ur meters above the ald strength. Both a are set to make the ged to its worst case meter to 4 meters o 360 degrees to					

Report No: VT1311180026E-2

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No: VT1311180026E-2

Measurement data:

Test	: mode:	Transmit	tting	Test channel:		Lov	Lowest		Remark:		Pea	Peak	
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limi (dBu\		Margin (dB)	Detec	tor	Polarization	P/F	Remark	
1	2390.00	8.04	45.76	53.80	74.00 -2		-20.20	Peal	k	Vertical	Р		
2	2400.00	8.09	50.37	58.46	74.	00	-15.54	Peal	k	Vertical	Р		
3	2390.00	8.04	46.18	54.22	74.	00	-19.78	Peal	k	Horizontal	Р		
4	2400.00	8.09	53.82	61.91	74.	00	-12.09	Peal	k	Horizontal	Р		
Test	: mode:	Transmi	tting	Test chann	el:	Lov	vest		Re	emark:	Ave	rage	

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2390.00	8.04	30,34	38.38	54.00	-15.62	AVG	Vertical	Р	
2	2400.00	8.09	35.27	43.36	54.00	-10.64	AVG	Vertical	Р	
3	2390.00	8.04	28.63	36.67	54.00	-17.33	AVG	Horizontal	Р	
4	2400.00	8.09	33.28	41.37	54.00	-12.63	AVG	Horizontal	Р	

Test	Test mode: Transmitting		tting	Test channel:		Highest		F	Remark:		k
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV	/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2483.50	8.24	49.87	58.11	74.0	0	-15.89	Peak	Vertical	Р	
2	2500.00	8.96	46.59	55.55	74.0	0	-18.45	Peak	Vertical	Р	
3	2483.50	8.24	47.58	55.82	74.0	0	-18.18	Peak	Horizontal	Р	
4	2500.00	8.96	44.96	53.92	74.0	0	-20.08	Peak	Horizontal	Р	

Test	mode:	Transmitting		Test channel:		Highest			Remark:	Ave	Average	
											,	
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBu\		Margin (dB)	Detecto	Polarization	P/F	Remark	
1	2483.50	8.24	30.27	38.51	54.0	00	-15.49	AVG	Vertical	Р		
2	2500.00	8.96	27.42	36.38	54.0	00	-17.62	AVG	Vertical	Р		
3	2483.50	8.24	29.08	37.32	54.0	00	-16.68	AVG	Horizontal	Р		
4	2500.00	8.96	25.35	34.31	54.0	00	-19.69	AVG	Horizontal	Р		

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

6.9 Spurious Emission

6.9.1 Conducted Spurious Emission

Test Requirement:	FCC Part15 C Section 15.247 (d)									
Test Method:	ANSI C63.4:2003 and KDB DA00-705									
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.									
Test setup:										
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
	Remark:									
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. Cable loss was compensated from the measured value.									
Test Instruments:	Refer to section 4.7 for details									
Test mode:	Refer to section 4.3 for details									
Test results:	Passed									

Remark:

During test the item, Pre-scan the GFSK, $\Pi/4$ PSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Report No: VT1311180026E-2

Test plot as follows:

Date: 2.DEC.2013 15:04:03

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:04:52

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

Date: 2.DEC.2013 15:05:45

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588,

Fax:+86-769-21660978

Report No: VT1311180026E-2

6.9.2 Radiated Spurious Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4: 20	03								
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m	(Semi-Anecho	ic Chamber	-)					
Receiver setup:			`		,					
receiver setup.	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above IGHZ	Peak	1MHz	10Hz	Average Value					
Limit:										
	Freque		Limit (dBuV/	m @3m)	Remark					
	30MHz-88MHz 40.0 Quasi-peak									
	88MHz-216MHz 43.5 Quasi-peak Va									
	216MHz-960MHz 46.0 Quasi-peak Value									
	960MHz-1GHz 54.0 Quasi-peak Value									
	Above 1GHz 54.0 Average Value									
T (D)	g. The EUT was placed on the top of a rotating table 0.8 meters above									
Test Procedure:	the ground rotated 360 radiation. h. The EUT was antenna, whe antenna tow it. The antenna the ground Both horizon make the ministers and degrees to the second in a data shift. The radiation of	at a 3 meters degrees to determine and vertice asurement. It is pected emission the antenitation level of the cified, then the EUT would a 10dB margipeak or averseet.	semi-anechoice etermine the pers away from anted on the touried from one the maximum cal polarization assion, the EUT na was turned the was turned able was turned and was set to Pen Maximum Hole EUT in peal esting could be be reported. On would be regarge method and anteresting and anteresting could be regarge method and anteresting could be regargemethod and anteresting could be regargement.	camber. Toosition of the interference of a varial meter to for value of the analysis of the an	he table was he highest ence-receiving ble-height ur meters above e field strength. Itenna are set to ged to its worst rom 1 meter to 4 egrees to 360 Function and a 10dB lower than and the peak he emissions that by one using and then reported Y, Z axis					

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: VT1311180026E-2

6.9.2.1 Radiated emission below 1GHz

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	43.5800	-14.06	30.35	16.29	40.00	-23.71	QP	Vertical	Р	
2	100.8100	-16.11	29.03	12.92	43.50	-30.58	QP	Vertical	Р	
3	317.1200	-12.01	35.33	23.32	46.00	-22.68	QP	Vertical	Р	
4	102.7500	-12.03	29.55	17.52	43.50	-25.98	QP	Horizontal	Р	
5	256.0100	-11.54	38.90	27.36	46.00	-18.64	QP	Horizontal	Р	
6	309.3599	-10.22	47.98	37.76	46.00	-8.24	QP	Horizontal	Р	

Notes: For radiation emission below 30MHz, The measured value haven't been reported for down 20dB under the limit.

Level=Reading+Factor. Margin=Level-Limit.

6.9.2.2 Transmitter emission above 1GHz

Wors	Worse case mode: GFSK		Test ch	Test channel: Lo			Remark:	Remark:		
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2397.450	8.09	33.78	41.87	74.00	-32.13	Peak	Vertical	Р	
2	4804.000	14.63	40.74	55.37	74.00	-18.63	Peak	Vertical	Р	
3	7206.000	20.68	42.37	63.05	74.00	-10.95	Peak	Vertical	Р	
4	2397.150	8.09	34.55	42.64	74.00	-31.36	Peak	Horizontal	Р	
5	4804.000	14.63	41.23	55.86	74.00	-18.14	Peak	Horizontal	Р	
6	7206.000	20.68	41.97	62.65	74.00	-11.35	Peak	Horizontal	Р	

Wors	se case mode	: GFSK	FSK Test channel:		nannel:	Lowest		Remark:		Average
			_			-		-	-	
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2397.450	8.09	21.76	29.85	54.00	-24.15	AVG	Vertical	Р	
2	4804.000	14.63	29.87	44.50	54.00	-9.50	AVG	Vertical	Р	
3	7206.000	20.68	28.54	49.22	54.00	-4.78	AVG	Vertical	Р	
4	2397.150	8.09	22.12	30.21	54.00	-23.79	AVG	Horizontal	Р	
5	4804.000	14.63	29.70	44.33	54.00	-9.67	AVG	Horizontal	Р	
6	7206.000	20.68	28.66	49.34	54.00	-4.66	AVG	Horizontal	Р	

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F,Fuwei Buiding,No.88 Hongtu Road,Nancheng District,Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn

Report No: VT1311180026E-2

Wor	Worse case mode: GFSK			Test c	Test channel:		1	Remark:		Peak
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2452.500	8.27	33.92	42.19	74.00	-31.81	Peak	Vertical	Р	
2	4882.000	14.97	41.01	55.98	74.00	-18.02	Peak	Vertical	Р	
3	7323.000	20.91	41.23	62.14	74.00	-11.86	Peak	Vertical	Р	
4	2452.500	8.27	34.15	42.42	74.00	-31.58	Peak	Horizontal	Р	
5	4882.000	14.97	40.78	55.75	74.00	-18.25	Peak	Horizontal	Р	
6	7323.000	20.91	41.75	62.66	74.00	-11.34	Peak	Horizontal	Р	

Worse case mode: GFSK			Test c	Test channel:			Remark:		Average	
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2452.500	8.27	20.39	28.66	54.00	-25.34	AVG	Vertical	Р	
2	4882.000	14.97	28.61	43.58	54.00	-10.42	AVG	Vertical	Р	
3	7323.000	20.91	27.91	48.82	54.00	-5.18	AVG	Vertical	Р	
4	2452.500	8.27	19.94	28.21	54.00	-25.79	AVG	Horizontal	Р	
5	4882.000	14.97	27.94	42.91	54.00	-11.09	AVG	Horizontal	Р	
6	7323.000	20.91	27.99	48.90	54.00	-5.10	AVG	Horizontal	Р	

Dongguan Volt Compliance Testing Service Co.,Ltd.

Report No: VT1311180026E-2

Worse case mode: GFSK			Test channel:		Highest		Remark:		Peak	
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2483.750	8.37	34.28	42.65	74.00	-31.35	Peak	Vertical	Р	
2	4960.000	15.30	41.13	56.43	74.00	-17.57	Peak	Vertical	Р	
3	7440.000	21.16	41.59	62.75	74.00	-11.25	Peak	Vertical	Р	
4	2486.680	8.38	33.71	42.09	74.00	-31.91	Peak	Horizontal	Р	
5	4960.000	15.30	40.98	56.28	74.00	-17.72	Peak	Horizontal	Р	
6	7440.000	21.16	41.29	62.45	74.00	-11.55	Peak	Horizontal	Р	

Worse case mode: GFSK		(Test channel:		Highest		Remark:		Average	
			_	_				_		
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Polarization	P/F	Remark
1	2483.750	8.37	20.95	29.32	54.00	-24.68	AVG	Vertical	Р	
2	4960.000	15.30	29.56	44.86	54.00	-9.14	AVG	Vertical	Р	
3	7440.000	21.16	28.09	49.25	54.00	-4.75	AVG	Vertical	Р	
4	2486.680	8.38	20.83	29.21	54.00	-24.79	AVG	Horizontal	Р	
5	4960.000	15.30	29.27	44.57	54.00	-9.43	AVG	Horizontal	Р	
6	7440.000	21.16	28.05	49.21	54.00	-4.79	AVG	Horizontal	Р	

Remark:

Which above 5th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Report No: VT1311180026E-2

6.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

******End of Test Report*****

Dongguan Volt Compliance Testing Service Co.,Ltd.

6/F.Fuwei Buiding, No.88 Hongtu Road, Nancheng District, Dongguan, Guangdong, P.R.China

Tel: +86-769-21663588, Fax:+86-769-21660978 Http://www.volttest.com.cn