

planetmath.org

Math for the people, by the people.

reversal

Canonical name Reversal

Date of creation 2013-03-22 18:55:20 Last modified on 2013-03-22 18:55:20

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771)
Entry type Definition
Classification msc 68Q70
Classification msc 68Q45
Synonym mirror image
Related topic Palindrome

Let Σ be an alphabet and w a word over Σ . The *reversal* of w is the word obtained from w by "spelling" it backwards. Formally, the *reversal* is defined as a function rev : $\Sigma^* \to \Sigma^*$ such that, for any word $w = a_1 \cdots a_n$, where $a_i \in \Sigma$, rev $(w) := a_n \cdots a_1$. Furthermore, rev $(\lambda) := \lambda$. Oftentimes w^R or mi(w) is used to denote the reversal of w.

For example, if $\Sigma = \{a, b\}$, and w = aababb, then rev(w) = bbabaa. Two properties of the reversal are:

- it fixes all $a \in \Sigma$: rev(a) = a.
- it is idempotent: $rev \circ rev = 1$, and
- it reverses concatenation: rev(ab) = rev(b) rev(a).

In other words, the reversal is an antihomomorphism. In fact, it is the antihomomorphism that fixes every element of Σ . Furthermore, g is an antihomomorphism iff $g \circ \text{rev}$ is a homomorphism. By the second property above, h is a homomorphism iff $h \circ \text{rev}$ is an antihomomorphism.

A word that is fixed by the reversal is called a palindrome. The empty word λ as well as any symbol in the alphabet Σ are trivially palindromes. Also, for any word w, the words $wx \operatorname{rev}(w)$ and $\operatorname{rev}(w)xw$ are both palindromes, where x is either a symbol in Σ or the empty word. In fact, every palindrome can be written this way.

The language consisting of all palindromes over an alphabet is contextfree, and not regular if Σ has more than one symbol. It is not hard to see that the productions are $\sigma \to \lambda$, $\sigma \to a$ and $\sigma \to a\sigma a$, where a ranges over Σ .

Reversal of words can be extended to languages: let L be a language over Σ , then

$$\operatorname{rev}(L) := \{\operatorname{rev}(w) \mid w \in L\}.$$

A family \mathscr{F} of languages is said to be *closed under reversal* if for any $L \in \mathscr{F}$, $\operatorname{rev}(L) \in \mathscr{F}$. It can be shown that regular languages, context-free languages, context-sensitive languages, and type-0 languages are all closed under reversal.