```
In [1]: # This Python 3 environment comes with many helpful analytics libraries installed
         # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
        # For example, here's several helpful packages to load
         import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         # Input data files are available in the read-only "../input/" directory
         # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
         import os
         for dirname, _, filenames in os.walk('/kaggle/input'):
             for filename in filenames:
                 print(os.path.join(dirname, filename))
         # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a
         # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
In [2]: import seaborn as sns
In [4]: | df = pd.read_csv('insurance_data.csv')
In [5]: df.head()
Out[5]:
           index PatientID age gender bmi bloodpressure diabetic children smoker
                                                                                           claim
                                                                                   region
         0
              0
                        1 39.0
                                 male 23.2
                                                     91
                                                                      0
                                                                            No southeast 1121.87
                                                            Yes
                        2 24.0
                                 male 30.1
                                                     87
                                                                      0
                                                             No
                                                                            No southeast 1131.51
         2
               2
                        3 NaN
                                 male 33.3
                                                     82
                                                            Yes
                                                                      0
                                                                             No southeast 1135.94
         3
              3
                        4 NaN
                                 male 33.7
                                                     80
                                                                      0
                                                                             No northwest 1136.40
                                                             No
                                 male 34.1
                                                                            No northwest 1137.01
         4
              4
                        5 NaN
                                                    100
                                                                      0
                                                             No
```

Column Types

- Numerical Index, PatientID, age, bmi, bloodpressure, children, claim
- Categorical gender, diabetic, smoker, region

Univariate Analysis

Age

```
In [6]: df['age'].describe()
                 1335.000000
        count
Out[6]:
                   38.078652
        mean
        std
                   11.102924
        min
                   18.000000
        25%
                   29.000000
        50%
                   38.000000
        75%
                   47.000000
                   60.000000
        max
        Name: age, dtype: float64
In [7]: sns.set(style='ticks', palette='Set2')
        sns.displot(data=df, x='age', kind='hist', bins=22).set(title='Age distribution')
        <seaborn.axisgrid.FacetGrid at 0x7fd897893640>
Out[7]:
```


In [8]: sns.displot(data=df,x='age',kind='kde', fill=True,color=sns.color_palette()[3]).set(title='Age distribution - KDE plot
Out[8]: <seaborn.axisgrid.FacetGrid at 0x7fd897ef5f10>

conclusions

- Age is normally (almost) distributed
- Maximum number of people are aged between 25 50
- There are less number of people aged between 38 40

BMI

```
In [11]: df['bmi'].describe()
```

```
10/23/24, 6:16 PM
```

```
1340.000000
         count
Out[11]:
         mean
                     30.668955
                      6.106735
         std
                     16.000000
         min
                     26.275000
         25%
         50%
                     30.400000
         75%
                     34.700000
                     53.100000
         max
         Name: bmi, dtype: float64
In [12]: df['bmi'].isnull().sum()
Out[12]:
```

In [13]: sns.displot(data=df, x='bmi', kind='hist', color=sns.color_palette()[2]).set(title='BMI distribution')

Out[13]: <seaborn.axisgrid.FacetGrid at 0x7fd897f89e20>

In [14]: sns.displot(data=df, x='bmi', kind='kde', color=sns.color_palette()[4], fill=True).set(title='BME distribution - KDE Fout[14]: <seaborn.axisgrid.FacetGrid at 0x7fd897ef5df0>


```
In [15]: df['bmi'].skew()
Out[15]: df['bmi'].describe()
```

```
1340.000000
         count
Out[16]:
                     30.668955
         mean
         std
                      6.106735
                     16.000000
         min
                     26.275000
         25%
         50%
                     30.400000
         75%
                     34.700000
                     53.100000
         max
         Name: bmi, dtype: float64
```

If your BMI is less than 18.5, it falls within the underweight range. If your BMI is 18.5 to 24.9, it falls within the Healthy Weight range. If your BMI is 25.0 to 29.9, it falls within the overweight range. If your BMI is 30.0 or higher, it falls within the obese range (Source)

- We can see from the study that general BMI range is from 18.5 to 24.9, but in our dataset, more than 50% of people have a BMI higher than 30 and the maximum is 53 which is extremely high
- Let's take a closer look at these points

```
In [17]: df[df['bmi'] > 26]
```

Out[17]:

:		index	PatientID	age	gender	bmi	bloodpressure	diabetic	children	smoker	region	claim
	1	1	2	24.0	male	30.1	87	No	0	No	southeast	1131.51
	2	2	3	NaN	male	33.3	82	Yes	0	No	southeast	1135.94
	3	3	4	NaN	male	33.7	80	No	0	No	northwest	1136.40
	4	4	5	NaN	male	34.1	100	No	0	No	northwest	1137.01
	5	5	6	NaN	male	34.4	96	Yes	0	No	northwest	1137.47
	•••											
	1335	1335	1336	44.0	female	35.5	88	Yes	0	Yes	northwest	55135.40
	1336	1336	1337	59.0	female	38.1	120	No	1	Yes	northeast	58571.07
	1337	1337	1338	30.0	male	34.5	91	Yes	3	Yes	northwest	60021.40
	1338	1338	1339	37.0	male	30.4	106	No	0	Yes	southeast	62592.87
	1339	1339	1340	30.0	female	47.4	101	No	0	Yes	southeast	63770.43

1017 rows × 11 columns

```
In [18]: sns.kdeplot(data=df, x='bmi', fill=True) sns.rugplot(data=df, x='bmi', color=sns.color_palette()[5]).set(title='BMI distribution -KDE + Rug Plot')

Out [18]: [Text(0.5, 1.0, 'BMI distribution -KDE + Rug Plot')]
```



```
In [19]: sns.boxplot(data=df, y='bmi').set(title='BMI distribution - Box Plot')
Out[19]: [Text(0.5, 1.0, 'BMI distribution - Box Plot')]
```


The boxplot says the median value is at 30 and the data has outliers over the value of 47 (around). This still seems really high and we will not this in our obervations

conclusions

- The BMI is normally distributed
- The BMI has very high values, values reaching over 45
- Median iss at 30, which is considered as obese
- no missing values

Bloodpressure

```
In [20]: df['bloodpressure'].describe()
                  1340.000000
         count
Out[20]:
                    94.157463
         mean
                    11.434712
         std
                    80.000000
         min
         25%
                    86.000000
         50%
                    92.000000
         75%
                    99.000000
                   140.000000
         Name: bloodpressure, dtype: float64
In [21]: sns.displot(data=df, x='bloodpressure', kind='hist', color=sns.color_palette()[6]).set(title='Bloodpressure distribut:
         <seaborn.axisgrid.FacetGrid at 0x7fd898824220>
Out[21]:
```


In [22]: sns.displot(data=df, x='bloodpressure', kind='kde', color=sns.color_palette()[7], fill=True).set(title='Bloodpressure

Out[22]: <seaborn.axisgrid.FacetGrid at 0x7fd898e51e20>


```
In [23]: df['bloodpressure'].skew()
```

Out[23]: 1.4835342102293079

In [24]: sns.catplot(data=df, y='bloodpressure', kind='box', color=sns.color_palette()[5]).set(title='Bloodpressure distribution out [24]: <seaborn.axisgrid.FacetGrid at 0x7fd898a223a0>

There seem to lots of ouliers in the data according to the boxplot, lets check it out

```
In [25]: df[df['bloodpressure'] > 120]
```

Out[25]:

						insu	rance-claim-an	alysis-comple	te-eda-data-ei		
:	index	PatientID	age	gender	bmi	bloodpressure	diabetic	children	smoker	region	claim
114	7 1147	1148	29.0	female	32.7	128	Yes	2	No	northwest	26018.95
1150	1150	1151	55.0	female	27.1	135	No	1	No	southwest	26140.36
1152	2 1152	1153	38.0	female	35.9	128	No	1	No	northeast	26392.26
1153		1154	43.0	male	36.8	126	No	2	No	northwest	26467.10
1154		1155	31.0	male	23.8	126	Yes	0	Yes	southeast	26926.51
1156		1157	46.0	female	23.0	137	Yes	0	Yes	southeast	27037.91
116		1162	22.0	male	22.4	137	Yes	2	No	northeast	27375.90
1166		1167	23.0	male	26.7	123	Yes	0	Yes	northeast	28101.33
1169		1170	27.0	male	36.7	130	No	1	No	northwest	28468.92
1174		1175	44.0	female	29.1	139	No	0	Yes	northwest	29141.36
118		1182	32.0	male	28.6	132	No	0	No	northeast	30260.00
1184	1184	1185	45.0	female	36.9	122	Yes	1	No	northeast	31620.00
1192	1192	1193	47.0	male	31.7	129	Yes	0	Yes	northeast	33732.69
1194	1194	1195	48.0	female	30.2	129	Yes	0	Yes	southwest	33900.65
1196	1196	1197	36.0	female	31.4	136	Yes	0	Yes	southwest	34166.27
1197	7 1197	1198	30.0	male	31.1	136	No	0	Yes	northeast	34254.05
1202	1202	1203	32.0	male	31.7	125	No	0	Yes	southeast	34672.15
120	1205	1206	20.0	male	34.9	124	Yes	0	Yes	southwest	34828.65
1210	1210	1211	25.0	male	30.8	140	Yes	0	Yes	southwest	35491.64
1212	1212	1213	56.0	female	31.0	129	Yes	3	Yes	southeast	35595.59
1216	1216	1217	34.0	female	36.9	131	No	0	Yes	southeast	36149.48
1218	1218	1219	37.0	male	34.4	126	No	0	Yes	southwest	36197.70
1220	1220	1221	32.0	male	38.2	135	Yes	0	Yes	southeast	36307.80
122	1225	1226	50.0	female	34.8	140	Yes	2	No	southwest	36910.61
1226	1226	1227	46.0	male	35.5	140	Yes	0	Yes	southeast	36950.26
122	7 1227	1228	48.0	female	33.5	124	No	0	Yes	southwest	37079.37
1229		1230	41.0	male	37.6	127	Yes	1	Yes	southeast	37165.16
1230		1231		female	30.8	139	No	0	Yes	northeast	37270.15
1238		1239		male	26.1	131	Yes	1	Yes	southeast	38245.59
1239		1240	29.0	male		124	No	1	Yes	southeast	38282.75
1242		1243	27.0	female	36.7	140	No	2	Yes	northeast	38511.63
1244			22.0	male		123	No	2	Yes	southwest	
124		1243	28.0	male		137	No	3	Yes	northwest	38746.36
		1247	25.0								
1246				female	42.2	131	Yes	0	Yes	southeast	38792.69
1252		1253	37.0		30.8	125	Yes	3	Yes	northeast	39597.41
1254		1255	46.0	male		138	Yes	0	Yes	southeast	39722.75
1256		1257	27.0	male	30.9	139	No	0	Yes	southwest	39727.61
125		1258			36.7	139	Yes	1	Yes	northeast	
1258		1259	38.0	female		132	No	2	Yes	southwest	39836.52
1268		1269	42.0	female		131	Yes	3	Yes		40932.43
1270		1271	27.0	female	33.1	128	No	0	Yes	southeast	40974.16
1276	1276	1277	20.0	male	38.4	124	Yes	3	Yes	southeast	41949.24
1278	1278	1279	35.0	female	35.5	135	No	0	Yes	northeast	42111.66
1279	1279	1280	37.0	male	45.5	124	Yes	2	Yes	southeast	42112.24
1283	1283	1284	28.0	male	38.1	125	Yes	2	Yes	southeast	42560.43
1289	1289	1290	52.0	female	31.2	127	No	0	Yes	northwest	43578.94
1290	1290	1291	47.0	male	41.9	140	Yes	3	Yes	northeast	43753.34
1292	1292	1293	45.0	female	40.4	123	No	2	Yes	southeast	43896.38
1294	1294	1295	36.0	female	30.2	130	No	1	Yes	northwest	43943.88
1302	1302	1303	35.0	female	32.5	134	Yes	0	Yes	southeast	45008.96
130	1307	1308	47.0	male	31.4	137	No	3	Yes	northwest	46130.53
131	1315	1316	23.0	male	35.1	121	No	0	Yes	southeast	47055.53
132	1325	1326	52.0	female	36.4	133	Yes	1	Yes	northeast	48517.56
1333	1333	1334	44.0	male	36.4	127	No	1	Yes	southwest	51194.56
1334	1334	1335	43.0	male	32.8	125	No	0	Yes	southwest	52590.83
vert/html/insurance-claim-analysis-complete-eda-data-engineering.jpvnb?download=false											

As we can see that the people who have high BP are smokers or are diabetic and both of these affect the blood pressure; So I really dont think that these are outliers. They are just part of the data

In [28]: df['bloodpressure'].isnull().sum()
Out[28]: 0

conclusions

- Right skewed
- No missing values
- No outliers (according to me)

Claim

```
In [29]: df['claim'].describe()
                   1340.000000
         count
Out[29]:
                  13252.745642
         mean
                  12109.609288
         std
                    1121.870000
         min
         25%
                    4719.685000
         50%
                   9369.615000
         75%
                  16604.305000
                  63770.430000
         max
         Name: claim, dtype: float64
In [30]: sns.displot(data=df, x='claim', kind='hist', color=sns.color_palette()[3]).set(title='Claim distribution')
         <seaborn.axisgrid.FacetGrid at 0x7fd89927e3a0>
Out[30]:
```


In [31]: sns.displot(data=df, x='claim', kind='kde', color=sns.color_palette()[4], fill=True).set(title='Claim distribution - k

```
sns.rugplot(data=df, x='claim',color=sns.color_palette()[7])
```

ut[31]: <AxesSubplot:title={'center':'Claim distribution - KDE Plot + Rug Plot'}, xlabel='claim', ylabel='Density'>


```
In [32]: sns.catplot(data=df, y='claim', kind='box').set(title='Claim distribution - Box Plot')
Out[32]: <seaborn.axisgrid.FacetGrid at 0x7fd8996c1460>
```



```
In [33]: df['claim'].skew()
Out[33]: 1.5167468509489237
```

In [34]: df['claim'].isnull().sum()

Out[34]: 0

colclusions

- Right skewed
- Claim amout is generally between 0 20,000

Bivariate Analysis

Gender and Claim

```
In [35]: sns.barplot(data=df, x='gender', y='claim').set(title='Gender vs Claim')
Out[35]: [Text(0.5, 1.0, 'Gender vs Claim')]
```



```
In [36]: sns.pointplot(data=df, x='gender', y='claim', errorbar=None).set(title='Gender vs Claim - Pointplot')
Out[36]: [Text(0.5, 1.0, 'Gender vs Claim - Pointplot')]
```


Men have more claims than women

Claim and Diabetic

```
In [37]: sns.barplot(data=df, x='diabetic', y='claim').set(title='Diabetic vs Claim')
Out[37]: [Text(0.5, 1.0, 'Diabetic vs Claim')]
```



```
In [38]: sns.pointplot(data=df, x='diabetic', y='claim', errorbar=None).set(title='Diabetic vs Claim - Pointplot')
Out[38]: [Text(0.5, 1.0, 'Diabetic vs Claim - Pointplot')]
```


Non - Diabetic people have more claims than non diabetic people

Claim and Smoker

```
In [39]: sns.barplot(data=df, x='smoker', y='claim').set(title='Smoker vs Claim')
Out[39]: [Text(0.5, 1.0, 'Smoker vs Claim')]
```



```
In [40]: sns.pointplot(data=df, x='smoker', y='claim', errorbar=None).set(title='Smoker vs Claim - Pointplot')
Out[40]: [Text(0.5, 1.0, 'Smoker vs Claim - Pointplot')]
```


Smokers have more claim than non smokers

Claim and Region

```
In [41]: sns.barplot(data=df, x='region', y='claim').set(title='Region vs Claim')
Out[41]: [Text(0.5, 1.0, 'Region vs Claim')]
```



```
In [42]: sns.pointplot(data=df, x='region', y='claim', errorbar=None).set(title='Region vs Claim - Pointplot')
Out[42]: [Text(0.5, 1.0, 'Region vs Claim - Pointplot')]
```


NorthEast has the most number of claims.

- This might indicate the more number of smokers are living in the NE region
- NE might have more men than women

lets check our assumptions

As you can see that most non smokers are living in the NE region, which confirms our assumption

Multivariate Analysis

BloodPressure and Gender on Claim

In [44]: import matplotlib.pyplot as plt

```
In [45]: sns.jointplot(data=df,x='bloodpressure',y='claim',kind='scatter',hue='gender', palette='bright')
plt.suptitle('BP & Gender on Claim')
plt.subplots_adjust(top=0.90)
```

BP & Gender on Claim

The plot reveals that there is some correlation between claim value and bloodpressure, in both male & female groups

Age, gender on claim

```
In [46]: sns.jointplot(data=df,x='age',y='claim',kind='scatter',hue='gender', palette='bright')
   plt.suptitle('Age & Gender on Claim')
   plt.subplots_adjust(top=0.90)
```

Age & Gender on Claim

Nothing significant can be observed from this

Age and Diabetes on claim

```
In [47]: sns.jointplot(data=df,x='age',y='claim',kind='scatter',hue='diabetic', palette='bright')
   plt.suptitle('Age & Diabetic on Claim')
   plt.subplots_adjust(top=0.90)
```


Nothing significant can be observed

Age and smoker on claim

```
In [48]: sns.jointplot(data=df,x='age',y='claim',kind='scatter',hue='smoker', palette='bright')
plt.suptitle('Age & Smoker on Claim')
plt.subplots_adjust(top=0.90)
```

Age & Smoker on Claim

This plot shows that smoker have a high claim value

End of EDA

If you have any suggestions, please do drop it in the comments

Tn []: