Vibrations

Monday, 8 April 2024 10:37 AM

=> Single digree of freedom vibrations

Equation of motion:

$$m\ddot{x} + c\dot{x} + kx = f(t) \rightarrow 2^{nd}$$
 order linear ODE

(I) Undamped free vibration:

$$m\ddot{x} + kx = 0$$

Ansatz: x = ce

$$mS^2 + k = 0 \Rightarrow S = \pm i \frac{k}{m}$$

$$(x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$
 $\omega = \frac{k}{m}$: Natural frequency

L) Simple harmonic motion.

C1, C2 can be obtained from the initial conditions x(0), x(0)

$$x(t) = x(0) \cos(\omega t) + \dot{x}(0) \sin(\omega t)$$

ı	
	= $\times (\omega t + \phi)$
<u>(II)</u>	Undamped vibrations under constant forcing
	$m\ddot{x} + kx = F$
	substitute x - F = y
	$m\ddot{y} + ky = 0$
	$y = A \cos(\omega t) + B \sin(\omega t)$ $\omega = \frac{k}{m}$
	x = F + Avas(wt) + Bsin(wt)
	i.e. Under a constant force, only the equilibrium position changes.
(11)	Periodic forcing:
	mx + kx = focos(wt)
	xρ = A cos (wH + B sin (wt) => particular solution.
	xp = - Aw sin (wt) + Bw ws (wt)
	χρ= -Aw² cos (wt) - Bw²sin (wt)
	$\cos\left(\omega t\right) \cdot \left[-mAw^{2} + kA\right] + \sin\left(\omega t\right) \left[-mBw^{2} + kB\right] = \cos\left(\omega t\right)$

,	
	Define $S = C$ $\sqrt{4mk}$
	\(\frac{4mk}{}\)
	Runihing equation of motion:
	$\frac{1}{x} + 2 \zeta w_n x + w_n^2 x = 0$
	$S_{+} = -S \omega_{n} + \omega_{n} \sqrt{S^{2}-1}$
	Case 1: 5<1. (Underdamped)
	$s = -S w_n \pm i w_n \sqrt{1-s^2}$
	$X(t) = e^{-Sw_{n}t} \left(A\cos(w_{d}t) + B\sin(w_{d}t) \right)$
	Wd= Wn [1-52 => Damped Noutvrou frequency
	Case 2: S>1 (Overdamped)
	$S = -Sw_n + w_n \sqrt{S^2-1}$
	$x(t) = e \left(A \cosh \left(w_n \sqrt{s^2 - 1} t \right) + B \sinh \left(w_n \sqrt{s^2 - 1} t \right) \right)$
	Exponential decay.
	Case 3: 5=1 (critically damped)
	$S = -\omega_n$, $-\omega_n$

 $\frac{-sw_nt}{x(t)} = (A+Bt)e$ Exponential decay (v) Forced damped vibrations F. cos(wt) $M\ddot{x} + C\dot{x} + kx = F_0 cos(\omega t)$ Particular solution: Xp = A cos(wt) + Bsin (wt) - mw2 (A cas (wt) + B sin (wt)) + cw (-A sin (wt) + B cos (wt)) + K (Aws (wt) + BSin (wt)) = fo cas (ws) -mw B - Awc + KB = 0 $B(K-mw^2) = Awc B = \frac{wc}{k-mw^2}$ -mwA +BCw + kA = Fo $A\left(k-mw^{2}+cw.wc\right)=F_{0}$

$A = \frac{F_0 \left(k - m \omega^2 \right)}{\left(k - m \omega^2 \right)^2 + \left(\omega \zeta \right)^2}$
$(K-m\omega)^2+(\omega c)^2$
$x(t) = x_h(t) + x_p(t) $ (3<1)
= c -swnt (Acos (Wat) + B Sin (Wat)) +
$\frac{f_0\left(K-m\omega^2\right)^2+\left(\omega c\right)^2}{\left(k-m\omega^2\right)^2+\left(\omega c\right)^2}\cdot \left[\frac{\cos\left(\omega t\right)+\left(\omega c\right)}{\left(k-m\omega^2\right)}\sin\left(\omega t\right)\right]$
$x_{p}(t) = X_{p} \cos(\omega t - \Psi)$
7 (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$ \Psi = \tan^{-1}\left(\frac{2s\omega_n}{1-r^2}\right) $ $ \gamma = \omega/\omega_n $
$X_{D} = \frac{F_{D}}{K}$ $y = \frac{C}{C}$
$\frac{\chi_{p} = \frac{f_{0}/k}{\left[\left(1-\gamma^{2}\right)^{2}+\left(2(\gamma)^{2}\right]^{1/2}}$
Xp = 1 = A
$\frac{xp}{(F_0/K)} = \frac{1}{(1-r^2)^2 + (2(r)^2)^{1/2}} = A$
homogeneous part of solution decays with time.
At t=0, system occiliates with forcing frequency.
Resonance: $\frac{d}{d\nu} \left(\frac{1-\omega^2}{\omega_0^2} + \frac{2\varepsilon\omega^2}{\omega_0} \right) = 0$
$\omega_{s} = \omega_{n} \sqrt{1-2s^{2}}$ $\downarrow \qquad \downarrow \qquad$

$$(MA^{2} + K) V e^{A^{2}} = 0$$

$$Ath \left(MA^{2} + K\right) = 0$$

$$A^{2}M_{1}M_{1} + A^{2}M_{2}M_{3} + K_{1}M_{2}M_{4} + K_{2}M_{3} + K_{1}M_{3} + K_{2}M_{3} + K_{2}M_{3} + K_{1}M_{3} + K_{2}M_{3} + K_{2}M_{3}$$

X (t)	= V, A cos (w,t) + B.(in (w,t)) + V (C cos (w,t) + D.(in(w,t))
V. V	; found by solving eigenvalue equation with 1, 1.
, , v	1 Journ og stiving significant spiller spiller
4 6 (, D found from initial conditions.
13, W, V	4 D John Miria Conditions.
Mode	
NO U U	(snaper):
(a) = Ial.	$= \left[-k - k \right] \left[V_1 \right] = 0$
00 00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	P 4
	$V_1 = 1$ $V_2 = -1$ \Rightarrow M_1
W=W,	$=$ $\begin{bmatrix} k & -k \end{bmatrix} \begin{bmatrix} v_1 \end{bmatrix} = 0$
	$-k$ k V_{ν} M_{1} M_{2}
	$V_1 = 1$ $V_2 = 1$ m_1 m_2
Forud u	indamped vibrations:
Let	F= Fo Los (Ly)
	D)
M x	L VX = C

MX + KX = F
Let $X_p = \begin{pmatrix} A \end{pmatrix} wo(at)$ (No sin (at) because no first
derivative on LMS)
$\begin{bmatrix} -M L + K \end{bmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} F_0 \\ 0 \end{pmatrix}$
$\begin{pmatrix} -m\alpha^{2}+2k & -k \\ -k & -m\alpha^{2}+2k \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} F_{0} \\ 0 \end{pmatrix}$
(-ma+2k) A -kB = R
-KA + (-m2+2h) B = 0
B = Ak 2k ma ²
(2K-m2) A - AK = Fo
$A \left(\frac{2k - mx^2}{-k} \right) - k$
$A = \frac{f_0(\lambda k - m\lambda^2)}{3k^2 - 4mk\alpha^2 + (m\lambda^2)^2} = \frac{f_0/3k(2 - \frac{m}{k}\lambda^2)}{(1 - 4m\lambda^2 + m\lambda^2)}$
$\frac{3k^{2}-4mk\alpha^{2}+(m\lambda^{2})^{2}}{3k}\left(\frac{1-4m}{3k}\frac{\lambda^{2}+m}{3k}\frac{m\lambda^{2}}{k}\right)$
$= F_0/J_k \left(2 - \left(\frac{4}{3}\omega_{i}\right)^{\frac{1}{2}}\right)$

$= \frac{F_0/J_k}{1 - \left(\frac{\lambda}{W_1} + \frac{\lambda}{W_1}\right) + \frac{\lambda}{W_1}}$
$A = \frac{F_{1}}{3k} \left(\frac{2 - \left(\frac{\chi}{\omega_{1}} \right)^{2}}{\omega_{1}^{2}} \right) \left(\frac{1 - \left(\frac{\chi}{\omega_{1}} \right)^{2}}{\omega_{1}^{2}} \right) \left($
$B = \frac{f_0/3k}{\left(1 - \left(\frac{\kappa}{\omega_1}\right)^2\right)\left(1 - \left(\frac{\kappa}{\omega_2}\right)^2\right)}$
Vibration isolation - Male c A= O. (Choose m, k such that x= \tau_{\text{New}}