Eigenface Algorithm for Facial Recognition

David Torpey

April 18, 2017

Contents

1	Introduction	3
2	Algorithm	3
3	Projecting Points on Eigenface Subspace	3
4	Predicting Points	4

1 Introduction

Eigenfaces is an algorithm for performing facial recognition. In order to achieve this, we need a dataset of images of faces all the same size as well as in approximately the same position in the image.

The algorithm provides a simple and efficient way for performing facial recognition. The images are compressed via dimensionality reduction, and it is the reduced image space in which the faces are represented.

2 Algorithm

- 1. Assume we have a dataset D, where |D| = M and $I_i \forall i \in \{1, ..., M\}$ are the individual images in the set. Further, assume each image I_i is of dimensionality $N \times M$.
- 2. For each image I_i , reshape it into an image vector Γ_i of dimensionality (NxM)x1.
- 3. Calculate the mean face, ψ : $\psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i$.
- 4. Calculate the mean-normalized face, for each image: $\phi_i = \Gamma_i \psi$.
- 5. Form a matrix A of the mean-normalized faces, where each column in the matrix is a face: $A = [\phi_1 \phi_2 \dots \phi_M]$. The dimensionality of A will be $(N \times M) \times M$.
- 6. Instead of calculate the eigenvectors and eigenvalues of covariance matrix AA^T , which is (NxM)x(NxM), we instead calculate them for the matrix A^TA , since this has dimensionality MxM. This is for speedup reasons. It should be noted that the M eigenvalues of A^TA (along with their associated eigenvectors) correspond to the M largest eigenvalues of AA^T (along with their associated eigenvectors).
- 7. We then reduce the dimensionality of eigenvector matrix V calculate above from $M \times M$ to $M \times K$, where K is the number of principal components we want to retain. These K eigenvectors correspond to the largest K eigenvectors of the matrix.
- 8. We then calculate the projection matrix u: u = AV.
- 9. Lastly, we find the eigenface subspace Ω : $\Omega = u^T A$.

3 Projecting Points on Eigenface Subspace

1. Consider the test image I. Reshape it into a vector Γ of dimensionality $(N \mathbf{x} M) \mathbf{x} 1$.

- 2. Normalize the vector by subtracting the mean face calculated above to yield $\phi = \Gamma \psi$.
- 3. Project the face onto the eigenface subspace by calculating: $\hat{\phi} = u^T \phi$.

4 Predicting Points

Given an image projected onto the eigenface subspace - $\hat{\phi}$, the class prediction can be found using the following formula:

$$prediction = \arg\min_{i} (\Omega_i - \hat{\phi}_i)^2$$
 (1)