

دوره جامع پایتون: بخش محاسبات عددی جلسه هفدهم

دكتر ذبيح اله ذبيحي

كتابخانه Scipy

```
Pip install scipy

-----
import scipy
print(scipy.__version__)
```

- constants: physical constants and conversion factors
- **cluster**: hierarchical clustering, vector quantization, K-means
- **fft**: Discrete Fourier Transform algorithms
- **fftpack**: Legacy interface for Discrete Fourier Transforms
- **integrate**: numerical integration routines
- **interpolate**: interpolation tools
- io: data input and output
- **lib**: Python wrappers to external libraries
- **linalg**: linear algebra routines
- misc: miscellaneous utilities (e.g. image reading/writing)
- ndimage: various functions for multi-dimensional image processing
- optimize: optimization algorithms including linear programming
- signal: signal processing tools
- sparse: sparse matrix and related algorithms
- spatial: KD-trees, nearest neighbors, distance functions
- **special**: special functions
- stats: statistical functions
- weave: tool for writing C/C++ code as Python multiline strings

ثابت ها

• ليست ثوابت

from scipy import constants print(dir(constants)) print(constants.pi)

```
print(constants.yotta)
                      #1e+24
                      #1e+21
print(constants.zetta)
print(constants.exa)
                      #1e+18
print(constants.peta)
                      #100000000000000
print(constants.tera)
                      #1000000000.0
print(constants.giga)
                       #1000000.0
print(constants.mega)
print(constants.kilo)
                     #1000.0
                       #100.0
print(constants.hecto)
print(constants.deka)
                      #10.0
print(constants.deci)
                      #0.1
                      #0.01
print(constants.centi)
                     #0.001
print(constants.milli)
                       #1e-06
print(constants.micro)
print(constants.nano)
                       #1e-09
print(constants.pico)
                      #1e-12
                       #1e-15
print(constants.femto)
print(constants.atto)
                      #1e-18
print(constants.zepto)
                       #1e-21
```

```
print(constants.atomic mass) #1.66053904e-27
print(constants.m u)
                        #1.66053904e-27
print(constants.u)
                      #1.66053904e-27
print(constants.minute)
                         #60.0
print(constants.hour)
                        #3600.0
print(constants.day)
                       #86400.0
print(constants.week)
                        #604800.0
print(constants.year)
                       #31536000.0
print(constants.kmh)
                          #0.27777777777778
print(constants.mph)
                          #0.44703999999999994
print(constants.mach)
                          #340.5
print(constants.speed of sound) #340.5
print(constants.knot)
                         #0.51444444444445
```

ريشه معادلات

```
F(x)=0
root(fun,x0)
from scipy.optimize import root
from math import cos
def f(x):
 return x + cos(x)
myroot = root(f, 0)
print(myroot.x)
```

چند معادله چندمجهول

```
x+3y+5z=10
2x+5y+z=8
2x+3y+8z=3
```

```
from scipy import linalg
import numpy as np
a = np.array([[1, 3, 5], [2, 5, 1], [2, 3, 8]])
b = np.array([10, 8, 3])
x = linalg.solve(a, b)
print (x)
```

دترمينان

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 1 * 4 - 2 * 3 = 6$$

from scipy import linalg import numpy as np A = np.array([[1,2],[3,4]]) x = linalg.det(A) print (x)

ویژه مقادیر و ویژه بردار

```
from scipy import linalg
import numpy as np
A = np.array([[1,2],[3,4]])
a, b = linalg.eig(A)
print(a)
print (b)
```

درون یابی (interpolation) و برون یابی (extrapolation)

• فرض کنید جدول تابعی موجود باشد (یعنی مقادیر داده ها در بازه مشخصی را داشته باشیم)

X	x 1	x 2	×п
f(x)	f(x ₁)	f(x)	f(x)

- اگر بخوایم مقدار تابع را در نقاطی داخل بازه $[x_1,x_n]$ تخمین بزنیم این عمل را درون یابی گویند.
- اگر بخوایم مقدار تابع را در نقاطی خارج بازه $[x_1,x_n]$ تخمین بزنیم این عمل را برون یابی گویند.

• در برون یابی فرض برین است که رفتار تابع خارج از بازه مشابه داخل بازه است. اما امکان دارد این مطلب همیشه معتبر نباشد.

درون یابی

• تکنیک عمومی درون یابی، برازش یک چند جمله ای بر تعدادی نقطه می باشد که نقطه x که مقدار تابع باید در آن حساب شود، را در میان دارد. این چند جمله ای، تقریبی برای تابع است و برای f(x) بکار می رود.

چند جمله ای خط راست

$$f(x)=a_1^+a_2^-x$$

$$f(x_1)=a_1+a_2x_1$$

$$f(x_2)=a_1+a_2x_2$$

$$Q_{\gamma} = \frac{\left[\frac{1}{2} (x_{\gamma}) - \frac{1}{2} (x_{\gamma}) \right]}{2 (x_{\gamma} - 2x_{\gamma})}$$

$$Q_{\gamma} = \frac{\left[\frac{1}{2} (x_{\gamma}) - \frac{1}{2} (x_{\gamma}) \right]}{2 (x_{\gamma} - 2x_{\gamma})}$$

مثال

f(x=0.16)=?

مقدار دقیق تابع:

f(x=0.16)=cosh(0.16)=1.0128

$$\frac{\sqrt{\sqrt{2}}\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}\sqrt{\sqrt{2}}}$$
 $\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}\sqrt{2}}$ $\frac{\sqrt{2}\sqrt{2}\sqrt{2}}{\sqrt{2}\sqrt{2}}$ مقدار دقیق _ مقدار محاسبه شده = خطای مطلق

چند جمله ای در جه دوم

$$\begin{cases}
y_{1} = a_{1} + a_{1} + a_{1} + a_{1} \\
y_{r} = a_{1} + a_{r} + a_{r} + a_{r} \\
y_{r} = a_{1} + a_{r} + a_{r} + a_{r} + a_{r}
\end{cases}$$

چند جمله ای بالا مثلثی (روش نیوتن-گریگوری)

$$\begin{cases} J_{1} = b_{1} \\ J_{2} = b_{1} + b_{2} (x_{2} - x_{1}) \\ J_{3} = b_{1} + b_{2} (x_{2} - x_{1}) + b_{3} (x_{2} - x_{1}) | x_{2} - x_{1} \end{cases}$$

$$b_{1} = J_{1}$$

$$b_{r} = J_{r} - J_{1}$$

$$b_{r} = [J_{r} J_{1}] - [\frac{(J_{r} - J_{1})(2u_{r} - v_{1})}{2v_{r} - v_{1}}]$$

$$(2u_{r} - v_{1})(2u_{r} - v_{1})$$

$$= J_{r} - J_{1}$$

$$(2u_{r} - v_{1})(2u_{r} - v_{1})$$

$$= J_{r} - J_{1}$$

$$(2u_{r} - v_{1})(2v_{r} - v_{1})$$

مثال:

f(x=0.16)=?

مقدار دقيق تابع:

f(x=0.16)=cosh(0.16)=1.0128

$$b_{r} = 1,000$$

$$b_{r} = 0,010/0,1=0,10$$

$$b_{r} = (0,070-0,010)/0,07=0,0$$

$$Cosh(\circ,19) = 1, \circ \circ \Delta + \circ, 1\Delta(\circ, \circ 9) + \circ, \Delta(\circ, \circ 9)(-\circ, \circ 4) = 1, \circ 17A$$

چند جمله ای لاگرانژ

$$f(x) = c_1(x - x_r)(x - x_r) + c_r(x - x_1)(x - x_r) + c_r(x - x_1)(x - x_r)$$

$$f(x_1) = c_1(x_1 - x_r)(x_1 - x_r)$$

$$f(x_r) = c_r(x_r - x_1)(x_r - x_r)$$

$$f(x_r) = c_r (x_r - x_1)(x_r - x_1)$$

$$c_{1} = \frac{f(x_{1})}{(x_{1} - x_{r})(x_{1} - x_{r})}$$

$$c_{2} = \frac{f(x_{2})}{(x_{2} - x_{1})(x_{2} - x_{2})}$$

$$c_{3} = \frac{f(x_{2})}{(x_{3} - x_{1})(x_{3} - x_{2})}$$

$$c_{4} = \frac{f(x_{2})}{(x_{3} - x_{1})(x_{3} - x_{3})}$$

$$\frac{f(x_1)(x-x_1)(x-x_1)}{(x_1-x_1)(x_1-x_1)} + \frac{f(x_1)(x-x_1)(x-x_1)}{(x_1-x_1)(x_1-x_1)} + \frac{f(x_1)(x-x_1)(x-x_1)}{(x_1-x_1)(x_1-x_1)}$$

$$f(x) = \sum_{i=1}^{r} f(x_i) \prod_{\substack{j \neq i \\ j=1}}^{r} \frac{(x - x_j)}{(x_i - x_j)}$$

• چند جمله ای لاگرانژ را می توان به شکل زیر برای مرتبه n ام تعمیم داد:

$$f(x) \sum_{i=1}^{n+1} f(x_i) \prod_{\substack{j \neq i \\ j=1}}^{n+1} \frac{(x-x_j)}{(x_i-x_j)}$$

-	х	1.5	3	6
	F(x)	-0.25	2	20

$$f(x) = \frac{-\circ , 7\Delta(x-\pi)(x-\beta)}{(1, \Delta-\pi)(1, \Delta-\beta)} + \frac{7(x-1, \Delta)(x-\beta)}{(\pi-1, \Delta)(\pi-\beta)} + \frac{7\circ(x-1, \Delta)(\pi-\beta)}{(\pi-1, \Delta)(x-\pi)} + \frac{7\circ(x-1, \Delta)(x-\pi)}{(\beta-1, \Delta)(\beta-\pi)}$$

روش نیوتن گریگوری

$$f(x) = b_1 + b_r(x - x_1) + b_r(x - x_1)(x - x_r)$$

جداول تفاضل

$$f(x_{1}) \quad \Delta_{d} f_{1} = b_{r} = \frac{f(x_{r}) - f(x_{1})}{x_{r} - x_{1}}$$

$$f(x_{r}) \quad \Delta_{d}^{r} f_{1} = b_{r} = (\Delta_{d} f_{r} - \Delta_{d} f_{1})/(x_{r} - x_{1})$$

$$f(x_{r}) \quad \Delta_{d} f_{r} = \frac{f(x_{r}) - f(x_{r})}{x_{r} - x_{r}}$$

$$f(x) = f(x_1) + \Delta_d f_1(x - x_1) + \Delta_d^r f_1(x - x_1)(x - x_2)$$

• در حالت کلی برای برازش یک چند جمله مرتبه n-1 بر n نقطه مندرج در یک جدول تابعی:

$$f(x) = f(x_1) + \Delta_d f_1(x - x_1) + \Delta_d^r f_1(x - x_1)(x - x_1)$$

$$+ \Delta_d^r f_1(x - x_1)(x - x_1)(x - x_1) + ...$$

$$+ \Delta_d^{n-1} f_1(x - x_1)(x - x_1)...(x - x_{n-1})$$

که در آن

$$\Delta_d^n f_1 = (\Delta_d^{n-1} f_n - \Delta_d^{n-1} f_{n-1}) / (x_n - x_1)$$

$$f(x=2.5)=?$$

Х	-3	-1	0	3	5
F(x)	-30	-22	-12	330	3458

х	f(x)	$\Delta_d f$	$\Delta_d^{r} f$	$\Delta_d^{r} f$	$\Delta_d^{\mathfrak{f}} f$
-٣	-٣0				
-1	-77	۴	٢		
0	-17	10	78	۴	۸
٣	7 70	114	79 0	kk	۵
۵	۳۴۵۸	1084			

بنابراین چندجملهای عبارت است از:

$$f(x) = -r \circ + r(x+r) + r(x+r)(x+1) + r(x+r)(x+1)x$$
$$+ \Delta(x+r)(x+1)(x-r)$$

• اگر توابع در بازه های مساوی h جدول بندی شوند یعنی

$$(x_r - x_1) = (x_r - x_r) = \dots = (x_n - x_{n-1}) = h$$

آنگاه

$$f(x) = b_1 + b_{\tau}(x - x_1) + b_{\tau}(x - x_1)(x - x_{\tau})...$$

$$+ b_n(x - x_1)...(x - x_n)$$

$$= f_1 + \frac{\Delta f_1}{h}(x - x_1) + \frac{\Delta^{\tau} f_1}{\tau! h^{\tau}}(x - x_1)(x - x_{\tau}) + \frac{\Delta^{\tau} f_1}{\tau! h^{\tau}}$$

$$(x - x_1)(x - x_{\tau})(x - x_{\tau}) + ... + \frac{\Delta^n f_1}{n! h^n}$$

$$(x - x_1)(x - x_{\tau})...(x - x_n)$$

 x_{i} $\Delta f_{1} = f_{2} - f_{1}$ $x_1 + h$ $f_1 = \Delta f_1 - \Delta f_2$ $\Delta f_{\mathbf{r}} = f_{\mathbf{r}} - f_{\mathbf{r}}$ $\Delta^{\mathsf{r}} f_{\mathbf{r}} = \Delta^{\mathsf{r}} f_{\mathbf{r}} - \Delta^{\mathsf{r}} f_{\mathbf{r}}$ $x_1 + rh$ $f_r = \Delta f_r - \Delta f_r$ $\Delta^r f_r = \Delta^r f_r - \Delta^r f_r$ $\Delta f_{\tau} = f_{\tau} - f_{\tau}$ $\Delta^{\tau} f_{\tau} = \Delta^{\tau} f_{\tau} - \Delta^{\tau} f_{\tau}$ $x_1 + 3h$ $f_r = \Delta f_r - \Delta f_r$ $\Delta f_{\epsilon} = f_{s} - f_{\epsilon}$ $x_1 + nh$

$$x = x_1 + uh$$

$$x - x_{1} = hu$$

$$x - x_{2} = x_{1} + hu - x_{1} - h = h(u - 1)$$

$$x - x_{2} = x - (x_{2} + h) = h(u - 1) - h = h(u - 1)$$

$$\vdots$$

$$x - x_{n} = h(u - n - 1)$$

$$f(x_1 + uh) = f_1 + \Delta f_1 u + \frac{\Delta^r f_1}{r!} u(u - 1) + \frac{\Delta^r f_1}{r!} u(u - 1)(u - 1)$$

$$+ \dots + \frac{\Delta^n f_1}{n!} u(u - 1)(u - 1)\dots(u - n - 1)$$

• که u عددی بین v و v است. چند جمله ای اسلاید قبل به فرمول درون یابی رو به جلو نیوتنv نیوتنv معروف است.

مثال

f(x=0.16)=?

مقدار دقیق تابع:

f(x=0.16)=cosh(0.16)=1.0128

X	f(x)			
١ره	۵۰۰۰۱			
		۱۵۰۰ و		
۲ر ه	1,070		۱۰ ۰ ۰ ۰ ۰	
		۲۵۰٫۰		۱۰۰ر۰
۳ر ٥	1,040		۱۱۰ره	
		۳۶ در ه		
۴٫٥	۸۱۰ره	4		

$$f(\circ)(?) = f(\circ)(+\circ) = f[\circ)(+\circ)(\circ))$$

$$f(0,18) = 1,000 + 0,8(0,010) + \frac{0,010}{7} \cdot 9(0,8-1) + \frac{0,001}{8}$$

$$0,8(0,8-1)(0,8-7)$$

$$= 1,000 + 0,0090 - 0,0017 + 0,000008 \approx 1,017A$$

خطای انباشته ناشی از خطای گردن کردن e

+ e				
	-Te			
- e		fe		
	re		-Ae	
+ e		-fe		18 e
	-re		۸e	
- e		re		-18 e
	Ye		-Ae	
+ e		-fe		
	-Ye			
- e				

خطای انباشته ناشی از یک خطای اولیه و

			· · · · · · · · · · · · · · · · · · ·		
0					
	0				
٥		•			
	0		e		
٥		e		-re	
	e		- ~e		1°e
e		-Ye		۶e	
	-e		٣e		-1°e
•		e		-fe	
	۰		-e		
o		0			
	•				
0		-		ž.	

جدول تفاضل رو به جلو

x,	f_{i}		
`	./ \	Δf_{γ}	
$x_1 + h$	f_{x}		$\Delta^{r} f_{r}$
$x_1 + \gamma h$	f_{\star}	Δf_{\star}	$\Delta^{r} f_{r}$
	J.	Δf_r	△ <i>J</i> _₹
$x_1 + rh$	f_*		$\Delta^{^{\operatorname{v}}}f_{^{\operatorname{v}}}$
× 1 % la	£	Δf_*	$\boldsymbol{\Delta}^{\!\scriptscriptstyleY} f_{\scriptscriptstyleY}$
$x_1 + 4h$	$f_{\scriptscriptstyle \Delta}$	Δf_{Δ}	△ J _₹
$x_1 + \Delta h$	f_s		

جدول تفاضل رو به عقب

	9, 760				
x_1	f,				
			∇f_{τ}		
x, + h	f_{τ}			$\nabla^{r} f_{r}$	
	2-		∇f_r		$\nabla^{r} f_{r}$
$x_1 + Th$	f_r			$\nabla^{\tau} f_{\tau}$	
			∇f_*		$\nabla^r f_s$
$x_1 + rh$	f.		17	$\nabla^{r} f_{a}$	11.2
			V/	Ale 15	$\nabla^{r} f_{s}$
$x_1 + fh$	f_{o}	tidi, on	Annay Com	$\nabla^{r} f_{\varepsilon}$	algerian per pet
-ce(x) tel	77.	, y.	∇f_s	ساز باشست آا	گیاه دو تفات
$x_1 + \Delta h$					

روش کمترین مربعات یا رگرسیون

• برازش کردن تابعی بر مجموعه ای از داده ها که دارای خطا هستند.

رگرسیون خطی

$$y = a_1 x + a_0$$

$$S = \sum_{i} (y_i - \overline{y_i})^2 = \sum_{i} [y_i - a_1 x_i - a_0]^2$$

$$\min S = \min(\sum_{i} [y_i - a_1 x_i - a_0]^2)$$

$$\frac{\partial S}{\partial a_0} = \sum_{i} 2(y_i - a_1 x_i - a_0)(-1) = 0$$

$$\rightarrow \sum y_i - a_1 \sum x_i - na_0 = 0$$

$$\frac{\partial S}{\partial a_0} = \sum_{i} 2(y_i - a_1 x_i - a_0)(-x_i) = 0$$

$$\to \sum_{i} x_i y_i + a_1 \sum_{i} x_i^2 + a_0 \sum_{i} x_i = 0$$

$$na_0 + \left(\sum x_i\right) a_1 = \sum y_i$$

$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 = \sum x_i y_i$$

$$a_0 = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_{\circ} = \frac{\frac{V \circ \times 77V - 7\Delta \times 6\Delta 7}{V \times 77V - (7\Delta)^{T}} = \frac{r\Delta}{rsr} = \frac{\Delta}{\Delta 7} = 0,095$$

$$a_{1} = \frac{\frac{V \times 6\Delta 7 - 7\Delta \times V \circ}{V \times 77V - (7\Delta)^{T}} = \frac{V71}{rsr} = \frac{107}{\Delta 7} = 1,93$$

$$y = 1,93X + 0,095$$

متغير مستقل	متغير وابسته			
<u> </u>	y	x^{r}	xy	
1	۲	1	۲	
۲	۵	*	١٥	
۴	Υ	18	۲۸	
۵	١٠	۲۵	۵۰	
۶	17	٣۶	٧٢	
٨	۱۵	۶۴	170	
٩	19	٨١	171	
۳۵	٧٠	777	FOT	جمعها

رگرسیون نمایی

$$y = ae^{-bx}$$

با تبدیل زیر داریم

$$z = \ln y = \ln ae^{-bx} = \ln a + (-bx)$$

با مقایسه با معادله خطی

$$a_0 = \ln a$$
$$a_1 = -b$$

بنابراین

$$z = a_0 + a_1 x$$

$$na_0 + \left(\sum x_i\right) a_1 = \sum \ln y_i$$

$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 = \sum x_i \ln y_i$$

$$a_0 = \frac{\sum \ln y_i \sum x_i^2 - \sum x_i \sum x_i \ln y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$a_1 = \frac{n\sum x_i \ln y_i - \sum x_i \sum \ln y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

بنابراين

$$a = e^{a_0}$$
$$b = -a_1$$

درون يابي

درون یابی تک متغیره

- interp1d(x, y, kind='method')
- Specifies the kind of interpolation as a string or as an integer specifying the order of the spline interpolator to use. The string has to be one of 'linear', 'nearest', 'nearest-up', 'zero', 'slinear', 'quadratic', 'cubic', 'previous', or 'next'. 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order; 'previous' and 'next' simply return the previous or next value of the point; 'nearest-up' and 'nearest' differ when interpolating half-integers (e.g. 0.5, 1.5) in that 'nearest-up' rounds up and 'nearest' rounds down. Default is 'linear'.

from scipy.interpolate import interp1d import numpy as np

```
xs = np.array([0,1,2,3,4,5,6,7,8,9])
ys = np.array([1,3,5,7,9,11,13,15,17,19])
```

interp_func = interp1d(xs, ys)

newarr = interp_func(np.arange(2.1, 3, 0.1))

print(newarr)

from scipy.interpolate import UnivariateSpline import numpy as np

```
xs = np.array([0,1,2,3,4,5,6,7,8,9])
ys = np.array([1,2.84,5.90,10.14,16.24,25.04,36.72,50.65,65.98,82.41])
interp_func = UnivariateSpline(xs, ys)
newarr = interp_func(np.arange(2.1, 3, 0.1))
```

print(newarr)

```
from scipy.interpolate import Rbf
import numpy as np
xs = np.array([0,1,2,3,4,5,6,7,8,9])
ys= np.array([1,2.84,5.90,10.14,16.24,25.04,36.72,50.65,65.98,82.41])
interp func = Rbf(xs, ys)
newarr = interp func(np.arange(2.1, 3, 0.1))
print(newarr)
```

```
import matplotlib.pyplot as plt
from scipy import interpolate
import numpy as np
x = np.array([0,1,2,3,4,5,6,7,8,9])
y = np.array([0,1,1.41,1.73,2,2.23,2.44,2
```

f = interpolate.interp1d(x, y)
xnew = np.arange(0, 9, 0.1)
ynew = f(xnew)
plt.plot(x, y, 'o', xnew, ynew, '-')
plt.show()

فیت کردن تابع روی دیتا

scipy.optimize.curve_fit(f, xdata, ydata)

روش كمترين مربعات غير خطى

popt: Optimal values for the parameters

pcov:The estimated covariance of popt

مثال

$$y = ae^{-bx} + c$$

```
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
def f(x, a, b, c):
   return a * np.exp(-b * x) + c
x = np.linspace(0, 4, 50)
y = f(x, a=2.5, b=1.3, c=0.5)
yi = y + 0.2 * np.random.normal(size=len(x))
popt, pcov = curve fit(f, x, yi)
a, b, c = popt
print(a, b, c)
yfitted = f(x, popt[0], popt[1], popt[2]) # or <math>f(x, pop)
plt.plot(x, yi, 'o', label='data ')
plt.plot(x, yfitted, '-', label='fit ')
plt.xlabel('x')
plt.legend()
plt.show()
```


مثال

y=a sin(bx)

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
x_data = np.linspace(-5, 5, num=50)
y_{data} = 2.9 * np.sin(1.5 * x_data) + np.random.normal(size=50)
def f(x, a, b):
  return a * np.sin(b * x)
params, params_covariance = optimize.curve_fit(f, x_data, y_data)
print(params)
plt.scatter(x_data, y_data, label='Data')
plt.plot(x_data, f(x_data, params[0], params[1]),label='Fitted function')
plt.legend()
plt.show()
```


تمرین

• برازش هذلولی

کدی بنویسید که تابع زیر را بتوانید روی مجموعه ای از داده ها برازش کنید $y = \frac{1}{a+bx}$

• برازش یک تابع مثلثاتی

کدی بنویسید که تابع زیر را بتوانید روی مجموعه ای از داده ها برازش کنید $y = Asin(\omega x + \varphi)$

کدی بنویسید که خم زیر را بتوانید روی مجموعه ای از داده ها برازش کنید $y = ax^b + c$