Possibili domande teoria 1

Sunday, 5 November 2023

17:08

- 1) Spiegare perchè il risultato ottimale si troverà sempre nei vertici/spigoli
- 2) Quali sono le possibili soluzioni di un problema PL e perchè possono accadere
 - o 1 unica soluzione, vertice del poligono convesso
 - o Infinite soluzioni ottime, lato del poligono convesso
 - Non ammette soluzioni
 - Regione amissibile vuota
 - Regione amissibile illimitata e funzione obiettivo illimitata
- 3) Quali sono le assunzioni implicite di un PL
 - Proporzionalità, il contributo di ogni variabile decisionale è proporzionale al valore assunto dalla variabile stessa

Adittiva, ogni funzione è la somma dei contributi delle variabili decisioni
Se abbiamo 2 variabili decisionali

$$(1, 0) + (0, 1) = (1, 1)$$

Se però ci esce che

$$(1,0) = 5$$

$$(0,1) = 3$$

$$(1,1) = 9$$

$$(1,0) + (0,1) = 5 + 3 = 8 \neq (1,1) = 9$$

Allora non è soddisfatta

- o Continuità, ogni valore in Rn è accettabile (ma possibile non amissibile)
- Certezza il valore assegnato ad ogni parametro è noto e costante
- 4) Cos'è un vertice e come si determina se 2 vertici sono adiacenti? E cos'è uno spigolo? Un vertice è l'intersezione di n equazioni, si dice che un vertice è amissibile quando rientra nei nostri vincoli, si dice che sono adicacenti se sono collegati da 1 spigolo. Uno spigolo giace all'intersezione di n-1 equazioni di frontiera

- 5) Quando si può dire che una soluzione è ottimale parlando di tabluau? Dato il test di ottimalità, se una soluzione vertice non ammette vertici adiacenti con funzione obiettivo Z migliore, allora la soluzione in questione è ottimale
- 6) Cosa sono le variabili slack ed a cosa servono Esse servono affinchè noi possiamo trasformare delle disequeazioni in equazioni, e questo è necessario affinchè noi possiamo attraversare il nostro poligono attraverso i vertici.

Es:

$$x_1 \le 4 \Rightarrow s_1 = 4 - x_1 \Rightarrow x_1 + s_1 = 4, s_1 \ge 0$$

- 7) Proprietà dei vertici ammissibili:
 - 1) Se esiste solo 1 soluzione ottimale, allora il vertice è amissibile Se esistono soluioni ottime multiple, allora almeno 2 di queste soluzioni son vertici amissibili tra loro adiacenti
 - 2) Esiste un numero finito di vertici amissibili
 - Se un vertice ammissibile non amette vertici amissibili a lui adiacenti con soluzione migliore, allora non esistono soluzioni ottimali migliori, quindi lui è la soluzione ottiamle
- 8) Indicare le differenze tra problema standardizzato primale e duale (Doamanda fatta dal prof)
 - cia dai proi) O Da un problema di massimizzazione diventa un problema di minimizzazione
 - o I coefficenti del primale diventano termini noto del duale
 - o I termini noti del primale diventano coefficenti del duale
 - I coefficenti di ogni variabile nei vincoli del primale diventano il corrispondente del duale
 - ≤⇒≥

- 9) Indica le proprietà della relazione tra primale-duale (Domanda fatta dal prof)
 - Proprietà di dualità debole Se x è una soluzione ammissibile per il problema primale, ed y è una soluzione amissibile per il problema duale, allora si sa che $cx \le by$
 - O Proprietà di dualità forte Se x^* è una soluzione ottimale del problema primale, ed y^* è una soluzione ottimale del problema duale $cx^* = by^*$

Noi chiameremo y_i^* come prezzi ombra del problema primale

10) Cosa servono i prezzi ombra?

I prezzi ombra servono per mostrare il contributo delle singole variabili alla funzione obiettivo

- 11) Dire le proprietà della teoria di dualità
 - Proprietà di simmetria

Per ogni problema prima e relativo problema duale tutte le relazioni tra di loro sono simmetriche

Soluzioni complementari

Ogni sluzioni x del primale ci sarà sempre una soluzione complementare y del duale dove

$$cx = yb$$

Se x non è ottimale nel primale, y non è amissibile nel duale qui

Soluzioni ottimali complementari

Se troviamo una soluzione ottimale del prima, avremo anche una soluzione ottimale del duale

$$cx^* = by^*$$

- Le sole possibili relazioni tra duale e primale sono:
 - Se un problema ha soluzioni amissibili e funzione limitata, allora lo stesso succederà con l'altro, quindi proprietà debole e forte sono applicabili
 - Se una ha soluzioni amissibili e funzione obiettivo illimitata, l'altro nor ha soluzioni amissibili
 - L'inverso del punto di sopra
- 12) Definire la proprietà complementare dello slackness Le variabili slackness diventano variabili surplus

			coefficiente di				termine	
			x_1	x_2		x_n	noto	
Problema Duale	nte	y_1	a ₁₁	a ₁₂		a_{1n}		della ettivo ione)
	coefficiente di	y_2	a ₂₁	a_{22}		a_{2n}	$\leq b_2$	obi obi zaz
					•••		≤ …	coefficienti Inzione ob minimizzaz
		y_m	a_{m1}	a_{m2}		a_{mn}	$\stackrel{-}{\leq} b_m$	coefficie funzione (minimiz
	termine		VI	VI	VI	VI		
Ф	noto		c_1	c_2		c_n		
				nti della fu massimiz				

E' possibile in un tableau avere una soluzione ottimale se abbiamo un valore negativo in Z? (Domanda fatta dal prof)

Questo è sufficente ma non necessario

- 14) Relazione tra primale e duale nelle soluzioni (Domanda fatta dal prof)
 - o Se nel primale abbiamo un ottimo finito, allora anche nel duale
 - o Se abbiamo nel primale un ottimo illimitato, nel duale è impossibile
 - Se nel primale è impossibile, nel duale o è impossibile oppure illimitato
- 15) Se il primale ha un ottimo multiplo, in duale ha un ottimo degenere? (domanda fatta dal prof)

16)

Primale (MAX)		Duale (MIN)		Primale (MIN)		Dual	e (MAX)	
Vincolo di variabile	≥	≥	Vincolo funzionale	Vincolo di variabile	≥	≤	Vincolo funzionale	
	free	=			free	=		
	\leq	≤			≤	≥		
Vincolo funzionale	≥	\leq	Vincolo di variabile	Vincolo funzionale	≥	≥	Vincolo di	
	=	free			=	free	variabile	
	\leq	≥			\leq	≤		