# 虚拟世界的几何模型 The Geometry of Virtual Worlds

### Outline

1 几何建模

2 刚体的变换

3 联接多个变换

### 几何建模

#### 右手坐标系

- 让 W 为一个 3D 世界, 其中  $W \subseteq R^3$
- 空间中每个点可用坐标 (x, y, z) 表示, 其中  $(x, y, z) \in W$



Figure 3.1: Points in the virtual world are given coordinates in a right-handed coordinate system in which the y axis is pointing upward. The origin (0,0,0) lies at the point where axes intersect. Also shown is a 3D triangle is defined by its three vertices, each of which is a point in  $\mathbb{R}^3$ .

图片来自 [3]

### 两种模型

#### 在虚拟世界中有两类模型

- 固定模型:
  - 用世界坐标系来描述
- 可移动模型:
  - 有多种可能的变换
  - 通常由刚体组成,每个刚体用自身坐标系

### 构造立体几何 (Constructive Solid Geometry, CSG)



### 多边形 (Polygon) 表示法



多边形方法制作的大象模型



多边形方法制作的轮胎实体模型

图片来自 [1]

#### 其他建模方法

- 非统一有理 B 样条(Non-uniform Rational B-Splines NURBS)
- 半代数曲面(semi-algebraic surfaces)





(a) 酒杯截面造型

(b) 酒杯造型

酒杯截面造型过程

图片来自 [1]

#### 建模方法

- 实体表示法 solid representation: 3D 基本单元
- 边界表示法 boundary representation: 2D 基本单元 考虑障碍物和碰撞测试

我们将讨论使用三角形作为基本单元。

### 三角形网格组成的几何模型



Figure 3.2: A geometric model of a dolphin, formed from a mesh of 3D triangles (from Wikipedia user Chrschn).

- 如何确定 VR 用户查看每个三角形时,它们是什么样子?
- 如何让对象"移动"?

图片来自 [3]

HHU

### Outline

1 几何建模

2 刚体的变换

3 联接多个变换

## 为什么要进行变换?

变换是一个将空间中的点 x 映射成其他点 x' 的函数。为什么要进行变换?

- 运动的模型 movable models
- 对静止的感知 perception of stationary:
  - 需要对固定在人身上的刺激进行反向旋转
  - 反向变换需要进行跟踪 (tracking)
- 广泛应用于: morphing, deformation, viewing, projection, real-time shadows....

### 刚体的变换

刚体的变换:对三角形的每个端点进行变换

在理论力学中,物体的自由度(Degree of Freedom, DOF)是确定物体的位置所需要的独立坐标数。

#### 3 种情况:

- 简单: 平移 2D-2DOFs: 3D-3DOFs
- 更难: 旋转 2D-1DOFs; 3D-3DOFs
- 最难: 平移 + 旋转 2D-3DOFs; 3D-6DOFs

## 平移

对三角形平移 
$$(x_t, y_t, z_t)$$
  $(x_i, y_i, z_i) \rightarrow (x_i + x_t, y_i + y_t, z_i + y_t)$ , 其中  $i = 1, 2, 3$ .



Figure 3.4: Every transformation has two possible interpretations, even though the math is the same. Here is a 2D example, in which a triangle is defined in (a). We could translate the triangle by  $x_t = -8$  and  $y_t = -7$  to obtain the result in (b). If we instead wanted to hold the triangle fixed but move the origin up by 8 in the x direction and 7 in the y direction, then the coordinates of the triangle vertices change the exact same way, as shown in (c).

图片来自 [3]

### 2D 线性变换

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$(x, y) \to (x', y')$$

对笛卡尔坐标系的基坐标进行变换:

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} m_{11} \\ m_{21} \end{bmatrix}$$

$$\left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] = \left[\begin{array}{c} m_{12} \\ m_{22} \end{array}\right]$$

# 2D 变换示例



## 2D 变换示例



### 2D 旋转

#### 2D 旋转规则:

- 坐标轴没有拉伸 no strenching of axes:  $m_{11}^2 + m_{21}^2 = 1$  和  $m_{12}^2 + m_{22}^2 = 1$
- 无错切 no shearing:  $m_{11}m_{12} + m_{21}m_{22} = 0$
- 无镜像 no mirror images:  $det(\left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right])=1$  而不是-1

最终的矩阵为: 
$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 反旋转:  $R^T = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ 

## 3D 旋转

#### 3D 旋转规则:

- $||v_1|| = ||v_2|| = ||v_3|| = 1$ , 减少 3DOFs
- $v_1 \cdot v_2 = v_2 \cdot v_3 = v_1 \cdot v_3 = 0$ , 减少 3DOFs

• 
$$det(\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}) = 1$$
 而不是-1

#### 剩余 3DOFs

### 3种典型旋转

3 种典型旋转: pitch 俯仰; yaw 偏航; roll 滚动



图片来自 [1]

### 3种典型旋转

Pitch 俯仰 
$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
 Yaw 偏航  $R_y = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$  Roll 滚动  $R_z = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$   $R = R(\alpha)R(\beta)R(\gamma)$ ,其中  $\alpha \in [-\pi/2,\pi/2]$ , $\beta \in [-\pi,\pi]$ , $\theta \in [-\pi,\pi]$ 

- 顺序很重要,3D 旋转不满足交换律
- 运动奇异性 (kinematic singularities) 和不均匀表示(non-uniform representation)

# 万向节死锁 Gimbal Lock



Normal situation: the three gimbals are independent



Gimbal lock: two out of the three gimbals are in the same plane, one degree of freedom is lost

### 欧拉旋转定理

所有 3D 旋转都有一种坐标轴-角度的表示方法(axis-angle representaion): $(\mathbf{v},\theta)$ ,其中  $\mathbf{v}=(v_1,v_2,v_3),\|\mathbf{v}\|=1$ 



Figure 3.9: Euler's rotation theorem states that every 3D rotation can be considered as a rotation by an angle  $\theta$  about an axis through the origin, given by the unit direction vector  $v = (v_1, v_2, v_3)$ .

图片来自 [3]

### 四元数 quaternion

单元四元数 unit quaternion 更好的表示了 3D 旋转

• 
$$q = (a, b, c, d) \in \mathbb{R}^4$$
 ,  $a^2 + b^2 + c^2 + d^2 = 1$ 

所有单位四元数的集合是一个超球面  $(S^3)$ 

坐标轴-角度表示法与四元数:

$$(\mathbf{v}, \theta) \leftrightarrow (\cos \theta/2, v_1 \sin \theta/2, v_2 \sin \theta/2, v_3 \sin \theta/2)$$

从四元数 (a, b, c, d) 恢复  $(\mathbf{v}, \theta)$ :

$$\theta = 2 \operatorname{arccos} \theta, \mathbf{v} = \frac{1}{\sqrt{1-a^2}}(b, c, d)$$

## 四元数 quaternion 示例

| Quaternion                                       | Axis-Angle        | Description       |
|--------------------------------------------------|-------------------|-------------------|
| (1,0,0,0)                                        | (undefined, 0)    | Identity rotation |
| (0, 1, 0, 0)                                     | $((1,0,0),\pi)$   | Pitch by $\pi$    |
| (0,0,1,0)                                        | $((0,1,0),\pi)$   | Yaw by $\pi$      |
| (0,0,0,1)                                        | $((0,0,1),\pi)$   | Roll by $\pi$     |
| $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0)$ | $((1,0,0),\pi/2)$ | Pitch by $\pi/2$  |
| $(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0)$ | $((0,1,0),\pi/2)$ | Yaw by $\pi/2$    |
| $(\frac{1}{\sqrt{2}}, 0, 0, \frac{1}{\sqrt{2}})$ | $((0,0,1),\pi/2)$ | Roll by $\pi/2$   |

Figure 3.11: For these cases, you should be able to look at the quaternion and quickly picture the axis and angle of the corresponding 3D rotation.

## 反变换和多种表示



Figure 3.12: Simple relationships between equivalent quaternions and their inverses.

图片来自 [3]

### 四元数运算

如何将四元数 h = (a, b, c, d) 表示的旋转作用于物体? 可将四元数转换成旋转矩阵或直接进行四元数运算

$$R(h) = \begin{bmatrix} 2(a^2 + b^2) - 1 & 2(bc - ad) & 2(bd + ac) \\ 2(bc + ad) & 2(a^2 + c^2) - 1 & 2(cd - ab) \\ 2(bd - ac) & 2(cd + ab) & 2(a^2 + d^2) - 1 \end{bmatrix}$$

## 四元数运算

两个四元数的乘积 
$$q_1 * q_2 = q_3$$
 可表示为:  
 $a_3 = a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2$   
 $b_3 = a_1 b_2 + a_2 b_1 + c_1 d_2 - c_2 d_1$   
 $c_3 = a_1 c_2 + a_2 c_1 + b_2 d_1 - b_1 d_2$   
 $d_3 = a_1 d_2 + a_2 d_1 + b_1 c_2 - b_2 c_1$ .

对点 
$$(x, y, z)$$
 进行旋转,旋转用  $q = (a, b, c, d)$  表示让  $p = (0, x, y, z), p' = q * p * q^{-1} = (0, x', y', z')$ 

齐次坐标的本质是使用四维数组来表示三维空间中的点和向量。 平移:  $x \longrightarrow x' = x + x_t, y \longrightarrow y' = y + y_t, z \longrightarrow z' = z + z_t$ 

十移: 
$$x \longrightarrow x = x + x_t, y$$
 一  
把平移矢量记为  $T = \begin{bmatrix} x_t \\ y_t \\ z_t \end{bmatrix}$ 

平移可用齐次矩阵表示为:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & x_t \\ 0 & 1 & 0 & y_t \\ 0 & 0 & 1 & z_t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}, 变换矩阵可记为 \begin{bmatrix} I & T \\ 0 & 1 \end{bmatrix}$$

反变换矩阵:  $\begin{bmatrix} 1 & 0 & 0 & -x_t \\ 0 & 1 & 0 & -y_t \\ 0 & 0 & 1 & -z_t \\ 0 & 0 & 0 & 1 \end{bmatrix}$ , 可记为  $\begin{bmatrix} I & -T \\ 0 & 1 \end{bmatrix}$ 

反变换矩阵: 
$$\begin{bmatrix} 0 & 1 & 0 & -y_t \\ 0 & 0 & 1 & -z_t \end{bmatrix}$$

$$0 \ 0 \ 0 \ 1$$

可记为 
$$\begin{bmatrix} I & -T \\ 0 & 1 \end{bmatrix}$$

旋转: 
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
把  $R_{3\times3}$  表示旋转矩阵,齐次旋转矩阵可表示为: 
$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & 0 \\ m_{21} & m_{22} & m_{23} & 0 \\ m_{31} & m_{32} & m_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, 变换矩阵可记为  $\begin{bmatrix} R_{3\times3} & 0 \\ 0 & 1 \end{bmatrix}$  反变换矩阵: 
$$\begin{bmatrix} m_{11} & m_{21} & m_{31} & 0 \\ m_{12} & m_{22} & m_{32} & 0 \\ m_{13} & m_{23} & m_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, 可记为  $\begin{bmatrix} (R_{3\times3})^T & 0 \\ 0 & 1 \end{bmatrix}$ 

先平移再旋转:

$$\begin{bmatrix} R_{3\times3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & T \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{3\times3} & R_{3\times3}T \\ 0 & 1 \end{bmatrix}$$

反变换: 先反旋转再反平移

$$\begin{bmatrix} I & -T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (R_{3\times3})^T & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (R_{3\times3})^T & -T \\ 0 & 1 \end{bmatrix}$$

先旋转再平移:

$$\begin{bmatrix} I & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{3\times3} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{3\times3} & T \\ 0 & 1 \end{bmatrix}$$

反变换: 先反平移再反旋转

$$\begin{bmatrix} \begin{pmatrix} (R_{3\times3})^T & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I & -T \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} (R_{3\times3})^T & -(R_{3\times3})^TT \\ 0 & 1 \end{bmatrix}$$

#### 先旋转再平移:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} x_t \\ y_t \\ z_t \end{bmatrix}$$

#### 等效的 4×4 矩阵变换:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & x_t \\ m_{21} & m_{22} & m_{23} & y_t \\ m_{31} & m_{32} & m_{33} & z_t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

反变换是什么?

### Outline

1 几何建模

2 刚体的变换

3 联接多个变换

### 要解决的问题

#### 从虚拟的三维场景及相机的位置信息中,生成出一幅二维图像



Figure 3.13: If we placed a virtual eye or camera into the virtual world, what would it see? Section 3.4 provides transformations that place objects from the virtual world onto a virtual screen, based on the particular viewpoint of a virtual eye. A flat rectangular shape is chosen for engineering and historical reasons, even though it does not match the shape of our retinas.

图片来自 [3]

#### 多个变换的联接 the chain of transformations:

$$T = T_{vp} T_{can} T_{eye} T_{rb}$$

### 图像和像素

#### 图像

- 图像可以看成是一个二维离散函数:f(x, y)
- 函数 f 的定义域是由矩阵排列着的许多格子组成, 这些格子被称为 像素 (pixel)
- 图像 f 的取值则为各个像素的色彩: 对于彩色图像, 可以是 RGB 或者是 RGBA; 对于灰度图像, f 为单值函数。



## 视图变换 Eye transformation

 $T_{eye}$ : 世界坐标系 (World coordinate frame)  $\longrightarrow$  眼睛坐标系 (Eye coordinate frame)



Figure 3.14: Consider an eye that is looking down the z axis in the negative direction. The origin of the model is the point at which light enters the eye.

#### 正交坐标系

3 维空间中的任何 3 个矢量, 满足

- ||u|| = ||v|| = ||w|| = 1
- $u \cdot v = v \cdot w = u \cdot w = 0$
- $w = u \times v$  (右手)

除了 XYZ, 还有很多坐标系: global, local, world, model, parts of model(head, eye, hands, ...)

# 视图变换 Eye transformation

- 眼球的位置: e
- 视线方向:  $\hat{c} = \frac{p-e}{\|p-e\|}$
- 向上的方向: û

#### 眼睛坐标系

- $\hat{x} = \hat{u} \times \hat{z}$
- $\hat{y} = \hat{z} \times \hat{x}$
- $\hat{z} = -\hat{c}$



Figure 3.15: The vector from the eye position e to a point p that it is looking at is normalized to form  $\hat{c}$  in (3.36). 图片来自 [3]

## 视图变换 Eye transformation

眼球的旋转: 
$$\begin{bmatrix} \hat{x_1} & \hat{y_1} & \hat{z_1} \\ \hat{x_2} & \hat{y_2} & \hat{z_2} \\ \hat{x_3} & \hat{y_3} & \hat{z_3} \end{bmatrix}$$
 平移:  $\hat{e}$  视图变换矩阵: 
$$T_{eye} = \begin{bmatrix} \hat{x_1} & \hat{x_2} & \hat{x_3} & 0 \\ \hat{y_1} & \hat{y_2} & \hat{y_3} & 0 \\ \hat{z_1} & \hat{z_2} & \hat{z_3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_1 \\ 0 & 1 & 0 & -e_2 \\ 0 & 0 & 1 & -e_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## 视图变换 Eye transformation

瞳孔间距 Interpupillary distance (IPD)-t 均值 0.064m

左眼视图变换:
$$\begin{bmatrix} 1 & 0 & 0 & t/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} T_{eye}$$
右眼视图变换:
$$\begin{bmatrix} 1 & 0 & 0 & -t/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} T_{eye}$$

#### 透视投影 Perspective projection



Figure 3.17: An illustration of perspective projection. The model vertices are projected onto a virtual screen by drawing lines through them and the origin (0,0,0). The "image" of the points on the virtual screen corresponds to the intersections of the line with the screen.

## 透视投影 Perspective projection



Figure 3.16: Starting with any point (x,y,z), a line through the origin can be formed using a parameter  $\lambda$ . It is the set of all points of the form  $(\lambda x, \lambda y, \lambda z)$  for any real value  $\lambda$ . For example,  $\lambda = 1/2$  corresponds to the midpoint between (x,y,z) and (0,0,0) along the line.

 $T_{can}$ : 为了把 3D 物体映射到 2D 图像上,眼睛坐标系 (Eye coordinate frame)  $\longrightarrow$  屏幕坐标系(Screen coordinate frame) within the range of [-1, 1]



Figure 3.18: The viewing frustrum.



Figure 3.19: The rectangular region formed by the corners of the viewing frustum, after they are transformed by  $T_p$ . The coordinates of the selected opposite corners provide the six parameters,  $\ell$ , r, b, t, n, and f, which used in  $T_{st}$ .

$$T_p = \left[ \begin{array}{cccc} n & 0 & 0 & -t/2 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{array} \right]$$



图片来自 Ravi Ramamoorthi Edx course

$$T_{st} = \begin{bmatrix} 2/(r-l) & 0 & 0 & -(r+l)/(r-l) \\ 0 & 2/(t-b) & 0 & -(t+b)/(t-b) \\ 0 & 0 & 2/(n-f) & -(n+f)/(n-f) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{can} = T_{st}T_{p}$$

- First center cuboid by translating
- Then scale into unit cube



图片来自 Ravi Ramamoorthi Edx course

#### 视口变换 Viewport transformation

 $T_{vp}$ : 屏幕坐标系 (Screen coordinate frame) within [-1, 1]  $\longrightarrow$  像 素坐标系(pixel coordinate frame)

$$m$$
: 每行的像素个数;  $n$ : 每列的像素个数 
$$T_{vp} = \begin{bmatrix} m/2 & 0 & 0 & (m-1)/2 \\ 0 & n/2 & 0 & (n-1)/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### 总结

多个变换的联接 the chain of transformations:

$$T = T_{vp} T_{can} T_{eye} T_{rb}$$



图片来自 Ravi Ramamoorthi Edx course

# Any Questions?