WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

E21B 47/12, G08C 23/00

(11) International Publication Number:

WO 92/06278

(43) International Publication Date:

16 April 1992 (16.04.92)

(21) International Application Number:

PCT/GB91/01599

A1

(22) International Filing Date:

18 September 1991 (18.09.91)

(30) Priority data:

9021253.1

29 September 1990 (29.09.90) GB

(71) Applicant (for all designated States except US): METROL TECHNOLOGY LIMITED [GB/GB]; 1 Whitemyres Avenue, Mastrick, Aberdeen AB2 6HQ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SMITH, David, Balfour [GB/GB]; East Neuk, Netherley, Stonehaven, Kincardinshire AB3 2NQ (GB).

(74) Agent: PATTULLO, Norman; Murgitroyd and Company, Mitchell House, 333 Bath Street, Glasgow G2 4ER (GB). (81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), CS, DE (European patent), DK (European patent), EX (European tent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL (European patent), NO, PL, RO, SD, SE (European patent), SN (OAPI patent), SU+,TD (OAPI patent), TG (OAPI patent), US.

Published

With international search report.

(54) Title: TRANSMISSION OF DATA IN BOREHOLES

(57) Abstract

Data is transmitted along a borehole containing a drill stem (2) by means of a transmitter (6) which converts electric data signals to acoustic signals propagating along the drill stem (2). The acoustic signals are converted back to electric form by a receiver (12) which also processes the signals. In the preferred form the signals are stored in a receiver memory (15) for subsequent retrieval using a pick-up tool (5) lowered into the borehole. The system is particularly useful in moving data past an obstruction such as a shut-in valve (4).

+ DESIGNATIONS OF "SU"

Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

× 1					4. 1	
·AT		Austria	ES	Spain	MG.	Madagascar
AU		Australia	Fl	Finland	ML	Mali
BB	- 13	Barbados	FR :	France	MN	Mongolia
BE		Belgium	GA	Gabon	MR	Mauritania
BF		Burkina Faso	GB	United Kingdom	MW	Malawi
BG		Bulgaria	GN .	Guinca	NL,	Netherlands
. BJ	1.1	Benin	GR -	Greece	NO :	Norway
BR	· '	Brazil	HU .	Hungary	PL	Poland
CA		Canada	JT -	Italy	RO	Romania
CF		Central African Republic	JP	Japan	SD	Sudan
CC	٠.	Congo	KP	Democratic People's Republic	SE	Sweden
CH		Switzerland		of Korea	SN C	Senegal
CI		Côte d'Ivoire	KR	Republic of Korca	รบ+	Soviet Union
CM	٠.	Cameroon	LI .	Liechtenstein	TD '	Chad
cs	٠.,	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE		Germany	LU	Luxembourg	US	United States of America
DK		Denmurk	MC	Monaco		the contract of the total

"Transmission of Data in Boreholes" 1 This invention relates to a method of and apparatus for 3 transmitting data in boreholes such as oil wells. 4 5. To optimise the efficiency both of the detection of oil 6 reserves and the recovery of these reserves, it is 8 important to obtain as much detailed information as possible about the ambient environmental conditions at the base of an oil well. This information is obtained 10 by a variety of sensors located at the base of a well 11 12 when required. The information obtained by the sensors 13 may be transmitted to the surface of an open well using 14 sonic waves which propagate through the drilling mud. 15 16 However, this method may only be employed during drilling when sufficient hydraulic power is available 17 18 to generate the signal at the base of the well. During 19. well testing and production this power source is not available and a valve or plug may be inserted in the 20 well resulting in there being no direct fluid path 21 through the centre of the well from the base of the 22 well to the surface. 23 24

25 One situation to which this particularly applies is in

shut-in testing where a shut-in valve is included in 1 the well. A test generally consists of flowing the Ž. 3 well, thus drawing down the well pressure, and then suddenly stopping the flow by closing the shut-in valve. Information regarding the potential of the reservoir can be derived from examination of the 6 7 ensuing pressure rise/time characteristic, requiring a pressure gauge beneath the valve. The shut-in is best 8 done down-hole rather than at the surface, to avoid 10 well-bore storage effects which are difficult to compensate for.

12

11

13 It is possible to adapt valves to produce a hydraulic or electrical path through the valve to enable the 14 transmission of signals from a sensor below the valve 15 16 to a receiver above the valve. The path through the valve terminates in a connector which is suitable for 17 connection to the receiver, the receiver in turn being 18. connected via a cable to the surface of the well. 19 20 However, this system is extremely difficult to operate as the small connector on the surface of the valve is 21 extremely difficult to contact with the receiver and a 22 23 considerable length of time is taken to make a suitable connection. 24.

25 26

27

28

29: 30

3.1

Accordingly, the present invention provides a method of transmitting data in a borehole, the method comprising providing an electric signal representative of the data to be transmitted, converting said electric signal into a sonic signal, propagating said sonic signal along an elongate member, and processing the sonic signal for onward transmission.

32 33

The processing of the sonic signal may for example be 34 at the surface, or it may be downhole by retransmission 35

```
or it may be by electronic data storage for later
      pick-up.
  3
      In another aspect, the invention provides apparatus for
  4
      transmitting data in a borehole, the apparatus
  5
      comprising a transmitter and a receiver; the
 6
      transmitter including means for converting data
  7.
 8
      parameters into an electric signal and first transducer
     means responsive to said electric signal to generate an
 9
10
     acoustic signal, the first transducer means being
11
     adapted for physical coupling to an elongate member
     extending along the borehole whereby the acoustic
12
     signal is propagated in said elongate member; the
13
     receiver comprising second transducer means adapted for
14
15
     physical coupling to said elongate member to produce an
16
     electrical output corresponding to said acoustic
17
     signal, and signal processing means connected to
     receive said output and operative to process the data
18
     into a condition for onward transmission.
19
20
     An embodiment of the invention will now be described,
21
     by way of example only, with reference to the drawings,
22:
     in which:
23
24
          Fig. 1 is a schematic cross-sectional side
25
          view of apparatus in accordance with the
26
          invention in use in a well;
27
28
          Fig. 2 is a block diagram of a transmitter
          forming part of Fig. 1;
29
          Fig. 3 is a block diagram of a receiver
30
          forming part of Fig. 1; and
31
          Fig. 4 is a block diagram of an alternative
32
33
          form of receiver.
34
35
     Referring to Fig. 1, a drill stem 1 is sealed to a well
```

bore 23 by a packer 2, leaving an annulus 3 to contain mud and well control fluid. Any production fluids will pass up the centre of the drill stem 1 via a shut-in valve 4. The present embodiment utilises the invention to pass data relating to the fluid pressure in the drill stem bore 24 below the shut-in valve 4 to a

8

location above it.

A transmitter designated generally at 6 is positioned 9 10 in an external recess 25 of the drill stem 1. 11 transmitter 6 is powered by a battery 7 and includes a 12 pressure transducer 9 communicating with a lower bore 24 via a port 8. The analog pressure signal generated 13: by the transducer 9 passes to an electronics module 10 14 in which it is digitised and serially encoded for 15 transmission by a carrier frequency, suitably of 2-10 16 17 The resulting bursts of carrier are applied to a 18 magnetostrictive transducer 11 comprising a coil formed around a core whose ends are rigidly fixed to the drill 19 20 stem 1 at axially spaced locations. The digitally 21 coded data is thus transformed into a longitudinal 22 sonic wave in the drill stem 1.

23 24

25

26

27

28

A receiver generally designated at 12 is housed in an external recess 26 of the drill stem 1 at a location above the shut-in valve 4. The receiver 12 comprises a filter 13 and transducer 14 connected to an electronics module 15 powered by a battery 17.

29

30 The output of the electronics module 15 drives a signal 31 coil 16.

32

The filter 13 is a mechanical band-pass filter tuned to the data carrier frequency, and serves to remove some of the acoustic noise in the drill stem 1 which could

RNSDOCID WO 920627841 1

otherwise swamp the electronics. The transducer 14 is 1 a piezoelectric element. The filter 13 and transducer 14 are mechanically coupled in series, and the 3 combination is rigidly mounted at its ends to the drill 4 stem 1, aligned with the longitudinal axis of the latter. Thus, the transducer 14 provides an electrical 6 output representative of the sonic data signal. A preferred method of retrieving the data is to store . 9 it in memory in the electronics module 15, for 10 retrieval at a convenient time by a pick-up tool 5. 11 This avoids the problems inherent in providing a 12 real-time data path along the whole length of the well. 13 The pick-up tool 5 is lowered on a cable or wireline 22 14 to locate in a nipple 18 which causes the signal in the 15 receiver 16 to be aligned with a coil 19 in the pick-up 16 The coils 16 and 19 are then inductively 17. coupled, allowing the data to be transferred to the 18 pick-up tool 5 serially on a suitable carrier wave to 19 20 the pick-up tool 5. 21 The pick-up tool 5 includes an electronics package 20 22 which is arranged to send a transmit command to the 23 24. receiver 12 when the tool 5 is seated on the nipple 18. The electronics package 20 may be arranged to decode 25. and store the data if the tool is on wireline, or to 26 re-transmit the data if the tool is on cable. In the 27 latter case, power may be supplied to the tool via the 28 cable; otherwise, power is derived from an internal 29 30 battery 21. 31 32 Referring now to Fig. 2, the transmitter electronics module 10 in the present embodiment comprises a signal 33 conditioning circuit 30, a digitising and encoding 34

circuit 31, and a current driver 32. The details of

these circuits do not form part of the present 1 invention, and suitable circuitry will be readily 2 3 apparent to those skilled in the art. The transducer 11 has a coil 33 connected to the current driver 32 and formed round a core schematically indicated at 34. Suitably, the core is a laminated rod of nickel of about 25 mm diameter. The length of the rod is chosen to suit the desired sonic frequency which is suitably 8 in the range 100 Hz to 10kHz, preferably 2-6 kHz. 10 In the receiver, as seen in Fig. 3, the electronics 11 module 15 comprises in series as passive band-pass 12 13 filter 35, an active band-pass filter 36, and a phase-locked loop 37 supplying clean data signals to a 14 decoder 38. The decoded data is stored in memory 39. 15 When a pick-up tool 5 is positioned and activated, 16 carrier frequency induced in the signal coil 16 is 17 detected at 40 to enable control logic 41 to read data 18 19. from memory 39 for transmission via encoder 42, current 20 driver 43, and the signal coil 16. 21 The alternative receiver shown in Fig. 4 uses a similar 22 mechanical filter 13, transducer 14, and electronic 23 filters 35 and 36. In this case, however, the filtered 24 data signal is not stored but is used to control a 25 current driver 44 driving a magnetostrictive transducer 26 45 for sonic re-transmission further along the drill 27 stem. 28 29 Thus, the invention enables data to be transferred by 30 sonic transmission past a valve or the like and then 31 further handled by (a) storage in memory for later 32

retrieval, (b) real-time transmission electrically by 33 cable, or (c) sonic re-transmission. 34

WO 92/06278

Modifications may be made within the scope of the 1 invention. For example, the transmitter transducer may impart a torsional, rather than a longitudinal, sonic 3 vibration to the drill stem. Transducers of other than magnetostrictive type may be used, such as piezoelectric crystals or polymers. 7 Although described with particular reference to shut-in 8 testing in producing wells, the invention may be 9 10 applied to any situation where a borehole is The medium for sonic transmission need not obstructed. 11: be a drill stem but could, for instance, be casing or 12 other tubular. 13 14 15 16 17 18 19 20 21 22 23. 24 25 26 27. 28. 29

31323334

30

CT	A.	ТΜ	C
بارب	un.	<u> </u>	<u>.</u>

1. A method of transmitting data in a borehole, the
method comprising providing an electric signal
representative of the data to be transmitted,
converting said electric signal into a sonic
signal, propagating said sonic signal along an
elongate member, and processing the sonic signal
for onward transmission.

10

11 2. A method according to claim 1, in which data is
12 transmitted from one side to the other of a
13 physical obstruction in said elongate member, the
14 conversion of the electric signal into the sonic
15 signal being effected at a location on said one
16 side, and the processing being effected at said
17 other side.

18

A method according to claim 1 or claim 2, in which
 said processing comprises storing the data for
 subsequent retrieval.

22

23 4. A method according to claim 3, in which the
24 subsequent retrieval is effected by a pick-up tool
25 lowered down the borehole to a location adjacent
26 the obstruction.

27

28 5. A method according to claim 1 or claim 2, in which 29 said processing comprises sonic re-transmission.

30

31 6. A method according to any one of the preceding
32 claims, in which conversion from the electric
33 signal to the sonic signal includes digital
34 modulation of a carrier frequency in the range 100
35 Hz to 10 kHz.

BNSDOCID -WO GROSTRAIL >

7. A method according to any one of the preceding
 claims, in which the sonic transmission is
 effected by longitudinal vibration.

4

6

7

8

8. A method according to claim 2, in which the elongate member is a drill stem, the obstruction is a shut-in valve in the drill stem, and the data comprises pressure-versus-time in the drill stem beneath the shut-in valve.

9 10

Apparatus for transmitting data in a borehole, the 11 apparatus comprising a transmitter and a receiver; 12 the transmitter including means for converting 13 data parameters into an electric signal and first 14 transducer means responsive to said electric 15 signal to generate an acoustic signal, the first 16 transducer means being adapted for physical 17 coupling to an elongate member extending along the 18 borehole whereby the acoustic signal is propagated 19 in said elongate member; the receiver comprising 20 21 second transducer means adapted for physical coupling to said elongate member to produce an 22 23 electrical output corresponding to said acoustic 24 signal, and signal processing means connected to receive said output and operative to process the 25 data into a condition for onward transmission. 26

27

Apparatus according to claim 9 for use in 28. 10. transmitting data from one side to the other of an 29 obstruction in said elongate member, the first 30 transducer means being coupled, in use, to the 31 elongate member at a location on said one side of 32 the obstruction, and the second transducer means 33 being coupled, in use, to the elongate member at 34 the other side of the obstruction. 35

1	11.	Apparatus according to claim 9 or claim 10, in
2		which the first transducer means is a
3		magnetostrictive transducer adapted to be mounted
4		to the elongate member to produce longitudinal
5		sonic vibrations in it.
6		마음이 하는 소리 전환 교통 등이 들어 있다. 하는 것은 경험 경험을 받는 것이 되었다.
7	12.	Apparatus according to claim 10, in which the date
8		parameter converting means is a fluid pressure
9		transducer for monitoring fluid pressure below
10		said obstruction.
11		
12	13.	Apparatus according to any of claims 9 to 12, in
13		which said second transducer means comprises a
14		mechanical bandpass filter and a piezoactive
1.5		element mounted in series on the elongate member
L6		
17	14.	Apparatus according to any of claims 9 to 13, in
18		which the signal processing means includes
L9		electronic filter means.
20		
21	15.	Apparatus according to any of claims 9 to 14, in
22		which the signal processing means includes a
23		memory for storing received data, and means for
24		transferring data from the memory to a pick-up
25		tool lowered to an adjacent location in the
26		borehole.
27		소요하다는 경험을 통합하는데 하는 경험을 받는데 되었다. 그는 것은 것은 사람이 되었다. 그렇게 되었다. 사람이 생물하는 사람들이 하는데 그런 것을 보고 있다. 그를 되었다.
28	16.	Apparatus according to claim 15, in which the
29		pick-up tool includes a further memory in which
30		the data may be stored until the pick-up tool is
31		returned to the surface.
32		그 걸어면 했다. 그모르는 느로 살아 보다 하다는데 그리아 말았다.
33	17.	Apparatus according to claim 15, in which the
34		pick-up tool includes means for transmitting the
35		data to the surface via a cable.

BNSDOCID -MU GOUSTANT I

Apparatus according to any of claims 9 to 14 , in 18. which the signal processing means includes a further electroacoustic transducer for retransmitting the data as an acoustic signal along the elongate member. ∵ 9 20.

--

33.

WO 92/06278 PCT/GB91/

WO 92/06278 PCT/GB91/01599

3/3

International Application No

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, Indicate all) 6 According to International Patent Classification (IPC) or to both National Classification and IPC G08C23/00 Int.Cl. 5 E21B47/12; D. FIELDS SEARCHED Minimum Documentation Searched? Classification Symbols Classification System G08C Int.Cl. 5 E21B; Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to Claim No.13 Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 EP,A,O 033 192 (SPERRY CORPORATION) 5 August 1,2,6-14 1981 see page 1, line 1 - page 2, line 17; claims 3-4. 15-17 GB, A, 1 096 388 (TEXACO DEVELOPMENT CORPORATION) 3,4, 29 December 1967 15-17 see the whole document US,A,4 293 936 (COX) 6 October 1981 1,2,5,6, 9,10,18 see claims WO,A,8 910 573 (ATLANTIC RICHFIELD COMPANY) 2 1,9 November 1989 see page 2, line 16 - page 3, line 22; claims 1-4, 12, 13O Special extegories of cited documents: 10 later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance. earlier document but published on or after the international X" document of particular relevance; the claimed invention filing date annot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or involve an inventive step which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date daimed IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this International Search Report 08 JANUARY 1992 **1** 7. 01. 92 Signature of Authorized Officer International Searching Authority EUROPEAN PATENT OFFICE REEKMANS M. V.

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. GB 51504

This sames lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 08/01/92

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0033192	05-08-81	US-A- 4302826 US-A- 4282588	11-08-81 24-11-81 04-08-81 01-10-81
GB-A-1096388		None	
US-A-4293936	06-10-81	DE-A,C 2758770 FR-A,B 2376288 GB-A- 1598340 JP-C- 1394519 JP-A- 53101453	24-03-81 20-07-78 28-07-78 16-09-81 11-08-87 04-09-78 17-01-87
W0-A-8910573	02-11-89		12-02 - 91 24-11 - 89

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82