Unit Testing with JUnit

Prof. Dr. Dirk Riehle

Friedrich-Alexander University Erlangen-Nürnberg

ADAP Y02

Licensed under CC BY 4.0 International

Definition Unit Testing

- Recap
- Unit = Component (in our context)
- Often classes are seen as units

Example of Test Harness

- JUnit (Java Unit Testing Framework)
 - A test harness implemented as an object-oriented testing framework
 - Supports tests and test suites, set-ups, tear-downs, etc.
 - Small and simple, easy to learn
 - Well-supported by tools / integrated into IDEs like Eclipse

JUnit popularized unit testing: "Never in the field of software development have so many owed so much to so few lines of code." [M07]

JUnit Information

- Available from http://junit.org
 - Comes as pre-installed plug-in with Eclipse and most other IDEs
 - See course literature for an introduction to JUnit
- Version history of JUnit
 - Prior to JUnit 4 conventions rather than annotations
 - Wahlzeit uses JUnit 4
- JUnit 5
 - Is the new major version of the testing framework
 - Is a complete rewrite of JUnit 4
 - Provides new foundation for developer-side testing on the JVM
 - Uses Java 8 features, for example, lambdas
 - Has a modular concept, imports only what is needed

JUnit Example: Component Under Test

 Scheduler for tasks that are triggered the first time on a certain point in time and then in a defined fix interval

```
1 package osrg.adap.testing;
 3 import java.util.Date;
  public class Scheduler {
       public Date calculateExecutionDate(Date givenExecutionDate, long interval) {
11
          Date now = new Date();
13
           if (givenExecutionDate.after(now)) {
               return givenExecutionDate;
15
           long offset = (now.getTime() - givenExecutionDate.getTime()) % interval;
           return new Date(now.getTime() + interval - offset);
21 }
```

JUnit Example: Simple Unit Tests (1/2)

```
1 package osrg.adap.testing;
 3 import org.junit.Test;
 4 import java.util.Date;
 5 import static org.junit.Assert.*;
 7 public class SchedulerTest {
      @Test
      public void testCalculateExecutionDateFromFutureDate() {
          Date futureDate = new Date(new Date().getTime() + 600000);
12
          Scheduler scheduler = new Scheduler();
          Date calculatedDate = scheduler.calculateExecutionDate(futureDate, 1000L);
          assertEquals(futureDate, calculatedDate);
      @Test
      public void testCalculateExecutionDateFromPastDate() {
21
          Date pastDate = new Date(new Date().getTime() - 1000);
          Scheduler scheduler = new Scheduler();
          Date calculatedDate = scheduler.calculateExecutionDate(pastDate, 60000L);
          assertEquals(pastDate.getTime() + 60000, calculatedDate.getTime());
28 }
```

- Annotate test method with @Test
- Conventions:
 - Containing class name ends with 'Test'
 - Test methods start with 'test'
 - File locations depend on build tool, e.g. Gradle
 - Sources: \$project/src/main/java
 - Tests: \$project/src/test/java
 - Test package hierarchy should mirror the main hierarchy

JUnit Example: Simple Unit Tests (2/2)

```
1 package osrg.adap.testing;
 3 import org.junit.Test;
 4 import java.util.Date;
 5 import static org.junit.Assert.*;
 7 public class SchedulerTest {
      @Test
      public void testCalculateExecutionDateFromFutureDate() {
          Date futureDate = new Date(new Date().getTime() + 600000);
12
          Scheduler scheduler = new Scheduler();
          Date calculatedDate = scheduler.calculateExecutionDate(futureDate, 1000L);
          assertEquals(futureDate, calculatedDate);
      @Test
      public void testCalculateExecutionDateFromPastDate() {
21
          Date pastDate = new Date(new Date().getTime() - 1000);
          Scheduler scheduler = new Scheduler();
          Date calculatedDate = scheduler.calculateExecutionDate(pastDate, 60000L);
          assertEquals(pastDate.getTime() + 60000, calculatedDate.getTime());
28 }
```

- Assertions for checking the results
- Explicit assertions / failures in code
 - assert(...)
 - fail(...)
- Annotations with expected results
 - @Test(expected = SomeException.class)
 - @Test(timeout = 500)

3A Pattern

```
1  @Test
2  public void testCalculateExecutionDateFromFutureDate() {
3     Date futureDate = new Date(new Date().getTime() + 600000);
4     Scheduler scheduler = new Scheduler();
6     Date calculatedDate = scheduler
7     .calculateExecutionDate(futureDate, 1000L);
8     assertEquals(futureDate, calculatedDate);
10 }
```

- 1. Arrange
- 2. Act (execute)
- 3. Assert (check)

Test Results

1) Pass

2) Fail

a) Program is defect

b) Test is defect

3) Test execution error

```
1 package osrg.adap.testing;
      3 import org.junit.Test;
      4 import static org.junit.Assert.fail;
      6 public class TestResultTypes {
            @Test
            public void succeedingTest() {
                return;
            @Test
            public void failingTest() {
                fail();
            public void executionError() {
                throw new IllegalStateException();
     22 }
🔀 Test Results

    Osrg.adap.testing.TestResultTypes

     executionError

✓ succeedingTest

     failingTest
```

JUnit Static Test Setup & Teardown

- Setting up / tearing down test environment for every test in a class
 - @Before
 - @After
- Setting up / tearing down test environment once for all tests in a class
 - @BeforeClass
 - @AfterClass

```
1 package osrg.adap.testing;
3 import org.junit.After;
 import org.junit.Before;
5 import org.junit.Test:
7 public class SimpleSetupTearDown {
     private Scheduler schedulerUnderTest;
     @Before
     public void setupScheduler() {
          schedulerUnderTest = new Scheduler();
          schedulerUnderTest.setMode("BEST EFFORT");
          schedulerUnderTest.start();
     @After
     public void teardownScheduler() {
          schedulerUnderTest.stop();
     @Test
     public void testSchedulerDryrun() {
```

JUnit Dynamic Test Setup & Teardown

- Reusable Setup and Teardown
- TestRule
 - e.g. TmpDir Rule
 - Temporary directory that is cleared after each test case
 - Rule chain supports composition of test rules
 - Rule chain lines up test rules in sequence
 - Fluid programming style chains methods
 - Use @Rule and @ClassRule analogous to @Before and @BeforeClass
- ExternalResource
 - More complex set-ups to be run once or only a few times
 - Applies, for example, to heavyweight database set-up

```
1 package osrg.adap.testing;
  import org.junit.Rule:
  import org.junit.Test;
  import org.junit.rules.TemporaryFolder;
 6 import java.io.File;
  import java.io.IOException;
 8 import static org.junit.Assert.assertTrue;
  public class TmpDirTest {
11
12
      @Rule
      public TemporaryFolder folder = new TemporaryFolder();
15
      @Test
      public void testTmpFolder() throws IOException {
17
           File file = folder.newFile("testfile.txt");
           assertTrue(file.exists());
19
20 }
```

Changes in JUnit Versions

- Tests are implemented in test classes
 - JUnit 3.8 or before
 - Start test method name with "test"
 - End test class name with "Test"
 - JUnit 4
 - Annotate test method with @Test
 - Annotate set-up methods with @Before and @BeforeClass
 - Annotate tear-down methods with @After and @AfterClass
 - End class name with Test (optional)
 - JUnit 5
 - Annotate test method with @Test
 - Annotate set-up methods with @BeforeEach and @BeforeAll
 - Annotate tear-down methods with @AfterEach and @AfterAll
 - End class name with Test (optional)

Test Drivers and Test Doubles

- Components are part of a dependency graph
- We need to isolate components in order to test them as a single unit
- Using components as inspiration for test drivers (calling the component under test)
- Used components need to be replaced by test doubles

Isolating Units with Test Doubles

- Test Doubles
 - Object or component that we install in place of the real component for a test
- Dummy Object
 - Placeholder object that is passed to the SUT as an argument (or an attribute of an argument) but is never actually used
- Test Stub
 - Replaces component that SUT depends on, configure indirect inputs to the SUT
- Mock Object
 - Test Stub + ability to verify inputs of the SUT by behaviour expectation
- Test Spy
 - Test Stub + ability to verify inputs of the SUT by recording calls to the spy that can be verified
- Fake Object
 - Replaces component with an alternative implementation of the same functionality

Mockito

- Available from https://site.mockito.org/
- Serves a variety of testing double functionality
 - Stubbing
 - Mocking
 - Spying
 - Etc.
- Easy syntax to create test doubles
- Easy syntax to verify test double behaviour
- Interacts very well with JUnit

Mockito Example: Component under Test

```
1 package osrg.adap.testing;
  public class TodoService {
       private TodoRepository todoRepository;
       private SlackNotificator notificator;
       public TodoService(TodoRepository todoRepository, SlackNotificator notificator) {
           this.todoRepository = todoRepository;
           this.notificator = notificator;
10
11
12
13
       public void setDone(long id) {
           TodoItem todo = this.todoRepository.get(id);
14
           todo.setDone(true);
15
17
           this.todoRepository.save(todo);
           this.notificator.notify("Todo " + todo.getId() + " has been settled!");
19
20 }
```

Inversion of Control

Mockito Example

```
1 package osrg.adap.testing;
 3 import org.iunit.Test:
  import static org.mockito.Mockito.*;
 6 public class TodoServiceTest {
      @Test
       public void testSetDone() {
           TodoRepository repository = mock(TodoRepository.class);
           SlackNotificator notificator = mock(SlackNotificator.class);
13
           long todoId = 123L;
14
           TodoService todoService = new TodoService(repository, notificator);
           when(repository.get(todoId)).thenReturn(new TodoItem(todoId, "test todo"));
17
           todoService.setDone(todoId);
           verify(repository, times(1)).get(todoId);
           verify(repository, times(1)).save(new TodoItem(todoId, "test todo", true));
           verify(notificator, times(1)).notify(anyString());
26 }
```

- Mock creation with static mock method or with @Mock annotation
- Behaviour specification with static when method
- Behaviour verification with static verify method
- Inversion of Control

Thank you! Questions?

dirk.riehle@fau.de – http://osr.cs.fau.de

dirk@riehle.org – http://dirkriehle.com – @dirkriehle

Credits and License

- Original version
 - © 2019 Friedrich-Alexander University Erlangen-Nürnberg and Dirk Riehle, all rights reserved
- Contributions
 - Georg Schwarz (2019)

Unit Testing with JUnit

Prof. Dr. Dirk Riehle Friedrich-Alexander University Erlangen-Nürnberg

ADAP Y02

Licensed under CC BY 4.0 International

It is Friedrich-Alexander University Erlangen-Nürnberg – FAU, in short. Corporate identity wants us to say "Friedrich-Alexander University".

Definition Unit Testing

- Recap
- Unit = Component (in our context)
- Often classes are seen as units

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Example of Test Harness

- JUnit (Java Unit Testing Framework)
 - A test harness implemented as an object-oriented testing framework
 - Supports tests and test suites, set-ups, tear-downs, etc.
 - Small and simple, easy to learn
 - · Well-supported by tools / integrated into IDEs like Eclipse

JUnit popularized unit testing: "Never in the field of software development have so many owed so much to so few lines of code." [M07]

Advanced Design and Programming © 2019 FAU - All Rights Reserved

JUnit Information

- Available from http://junit.org
 - · Comes as pre-installed plug-in with Eclipse and most other IDEs
 - · See course literature for an introduction to JUnit
- Version history of JUnit
 - Prior to JUnit 4 conventions rather than annotations
 - Wahlzeit uses JUnit 4
- JUnit 5
 - Is the new major version of the testing framework
 - Is a complete rewrite of JUnit 4
 - Provides new foundation for developer-side testing on the JVM
 - Uses Java 8 features, for example, lambdas
 - · Has a modular concept, imports only what is needed

Advanced Design and Programming © 2019 FAU - All Rights Reserved

JUnit Example: Component Under Test

 Scheduler for tasks that are triggered the first time on a certain point in time and then in a defined fix interval

Advanced Design and Programming © 2019 FAU - All Rights Reserved

JUnit Example: Simple Unit Tests (1/2)

```
package osrg.adap.testing;

import org.junit.Test;
import java.util.Date;
import static org.junit.Assert.*;

public class SchedulerTest {

@Test
public void testCalculateExecutionDateFromFutureDate() {
    Date futureDate = new Date(new Date().getTime() + 60000);

    Scheduler scheduler = new Scheduler();
    Date calculatedDate = scheduler.calculateExecutionDate(futureDate, 1000L);

assertEquals(futureDate, calculatedDate);

public void testCalculateExecutionDateFromPastDate() {
    Date pastDate = new Date(new Date().getTime() - 1000);

Scheduler scheduler = new Scheduler();
    Date calculatedDate = scheduler.calculateExecutionDate(pastDate, 60000L);

assertEquals(pastDate.getTime() + 60000, calculatedDate.getTime());
}

assertEquals(pastDate.getTime() + 60000, calculatedDate.getTime());
}
```

- Annotate test method with @Test
- Conventions:
 - Containing class name ends with 'Test'
 - · Test methods start with 'test'
 - File locations depend on build tool, e.g. Gradle
 - Sources: \$project/src/main/javaTests: \$project/src/test/java
 - Test package hierarchy should mirror the main hierarchy

Advanced Design and Programming © 2019 FAU - All Rights Reserved

JUnit Example: Simple Unit Tests (2/2)

```
package osrg.adap.testing;

import org.junit.Test;
import java.util.Date;
import static org.junit.Assert.*;

public class SchedulerTest {

@Test
public void testCalculateExecutionDateFromFutureDate() {
    Date futureDate = new Date(new Date().getTime() + 60000);

    Scheduler scheduler = new Scheduler();
    Date calculatedDate = scheduler.calculateExecutionDate(futureDate, 1000L);

assertEquals(futureDate, calculatedDate);

public void testCalculateExecutionDateFromPastDate() {
    Date pastDate = new Date(new Date().getTime() - 1000);

Scheduler scheduler = new Scheduler();
    Date calculatedDate = scheduler.calculateExecutionDate(pastDate, 60000L);

assertEquals(pastDate.getTime() + 60000, calculatedDate.getTime());
}
```

- Assertions for checking the results
- Explicit assertions / failures in code
 - assert(...)
 - fail(...)
- Annotations with expected results
 - @Test(expected = SomeException.class)
 - @Test(timeout = 500)

Advanced Design and Programming © 2019 FAU - All Rights Reserved

3A Pattern

```
1  @Test
2  public void testCalculateExecutionDateFromFutureDate() {
3     Date futureDate = new Date(new Date().getTime() + 600000);
4     Scheduler scheduler = new Scheduler();
6     Date calculatedDate = scheduler
7     .calculateExecutionDate(futureDate, 1000L);
8     assertEquals(futureDate, calculatedDate);
10 }
```

- 1. Arrange
- 2. Act (execute)
- 3. Assert (check)

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Test Results

1) Pass

a) Program is defect
b) Test is defect

3) Test execution error

Advanced Design and Programming © 2019 FAU - All Rights Reserved

JUnit Static Test Setup & Teardown

- Setting up / tearing down test environment for every test in a class
 - @Before
 - @After
- Setting up / tearing down test environment once for all tests in a class
 - @BeforeClass
 - @AfterClass

```
package osrg.adap.testing;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class SimpleSetupTearDown {

private Scheduler schedulerUnderTest;

egger

public void setupScheduler() {
 schedulerUnderTest = new Scheduler();
 schedulerUnderTest.setMode("BEST_EFFORT");
 schedulerUnderTest.start();

egger

defer

public void teardownScheduler() {
 schedulerUnderTest.stop();
 }

egger

defer

public void teardownScheduler() {
 schedulerUnderTest.stop();
 }

egger

defer

public void testSchedulerDryrun() {
 // just a dry-run
 }

egger

public void testSchedulerDryrun() {
 // just a dry-run
 }

egger

public void testSchedulerDryrun() {
 // just a dry-run
 }

egger

egger
```

1 N

JUnit Dynamic Test Setup & Teardown

- · Reusable Setup and Teardown
- TestRule
 - e.g. TmpDir Rule
 - Temporary directory that is cleared after each test case
 - Rule chain supports composition of test rules
 - Rule chain lines up test rules in sequence
 - Fluid programming style chains methods
 - Use @Rule and @ClassRule analogous to @Before and @BeforeClass
- ExternalResource
 - More complex set-ups to be run once or only a few times
 - Applies, for example, to heavyweight database set-up

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Changes in JUnit Versions

- · Tests are implemented in test classes
 - JUnit 3.8 or before
 - Start test method name with "test"
 - End test class name with "Test"
 - JUnit 4
 - Annotate test method with @Test
 - Annotate set-up methods with @Before and @BeforeClass
 - Annotate tear-down methods with @After and @AfterClass
 - End class name with Test (optional)
 - JUnit 5
 - Annotate test method with @Test
 - Annotate set-up methods with @BeforeEach and @BeforeAll
 - Annotate tear-down methods with @AfterEach and @AfterAll
 - End class name with Test (optional)

Test Drivers and Test Doubles

- · Components are part of a dependency graph
- We need to isolate components in order to test them as a single unit
- Using components as inspiration for test drivers (calling the component under test)
- Used components need to be replaced by test doubles

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Isolating Units with Test Doubles

- · Test Doubles
 - · Object or component that we install in place of the real component for a test
- Dummy Object
 - Placeholder object that is passed to the SUT as an argument (or an attribute of an argument) but is never actually used
- Test Stub
 - · Replaces component that SUT depends on, configure indirect inputs to the SUT
- · Mock Object
 - · Test Stub + ability to verify inputs of the SUT by behaviour expectation
- Test Spy
 - Test Stub + ability to verify inputs of the SUT by recording calls to the spy that can be verified
- Fake Object
 - · Replaces component with an alternative implementation of the same functionality

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Mockito

- Available from https://site.mockito.org/
- Serves a variety of testing double functionality
 - Stubbing
 - Mocking
 - Spying
 - Etc.
- Easy syntax to create test doubles
- Easy syntax to verify test double behaviour
- Interacts very well with JUnit

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Mockito Example: Component under Test

```
package osrg.adap.testing;

public class TodoService {

private TodoRepository todoRepository;
private SlackNotificator notificator;

public TodoService(TodoRepository todoRepository, SlackNotificator notificator) {
    this.todoRepository = todoRepository;
    this.notificator = notificator;
}

public void setDone(long id) {
    TodoItem todo = this.todoRepository.get(id);
    todo.setDone(true);

this.todoRepository.save(todo);
    this.notificator.notify("Todo " + todo.getId() + " has been settled!");
}

this.notificator.notify("Todo " + todo.getId() + " has been settled!");
}
```

Inversion of Control

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Mockito Example

- Mock creation with static mock method or with @Mock annotation
- Behaviour specification with static when method
- Behaviour verification with static verify method

Inversion of Control

Advanced Design and Programming © 2019 FAU - All Rights Reserved

Thank you! Questions? dirk.riehle@fau.de - http://osr.cs.fau.de dirk@riehle.org - http://dirkriehle.com - @dirkriehle DR

Credits and License

- Original version
 - © 2019 Friedrich-Alexander University Erlangen-Nürnberg and Dirk Riehle, all rights reserved
- Contributions
 - Georg Schwarz (2019)

Advanced Design and Programming © 2019 FAU - All Rights Reserved