

PARYLENE ELECTROTHERMAL VALVE FOR RAPID IN VIVO DRUG DELIVERY

Po-Ying Li¹, Daniel P. Holschneider², Jean-Michel I. Maarek³, and Ellis Meng³ ¹Department of Electrical Engineering, University of Southern California, Los Angeles, USA ²Department of Neurology, University of Southern California, Los Angeles, USA ³ Department of Biomedical Engineering, University of Southern California, Los Angeles, USA

Motivation for a Parylene as Valve Material¹

- **Electrothermal valve**
- ⇒ Thermal element: Pt, Au, Cu, Ni, ...
- ⇒ Membrane: Metal, Si, SiN_x, and Polymer Previous valve required high power
- ⇒ Pt: 2250 mW²
- ⇒ Si: 300 mW³
- ⇒ SiN_{*}: 16000 mW⁴
- ⇒ PDMS: 150 mW⁵ ⇒ PMMA: 67 mW⁶
- Parylene C as the valve material
- ⇒ USP Class VI material
- ⇒ Well established MEMS mataerial
- ⇒ Good mechanical strength
- ⇒ Thermal properties allow low power consumption √ Thermal oxidation temperature = 125 - 200°C
- ✓ Melting temperature = 290°C
- ⇒ Low power consumption (25 mW)

Opened

Research	Platinum Drug Reservoir Valve ²	Silicon Micro Isolation Valve ³	Nitride Micro Valve⁴	PDMS Channel Valve⁵	PMMA Microheater Valve ⁶	Parylene Electrothermal Valve
	Trace Membrane Current flow Substrate Sealing layer or additional substrate	Meral Leads Valve Outlet Plus Meralization Reseas Valve Index 35 years wide publishers weeks	AN POLITICAL DE LA CONTRACTION	Fluid-filled channels 20-µm separation	Air(or water) heater PMMA	
Biocompatible	Yes	No	Yes	No	No	Yes
Rapid delivery	No	Yes	Yes	No	Yes	Yes
Opening Temperature	High (1770°C)	High (1400 °C)	High (1900°C)	Medium (675 °C)	Medium (490 °C)	Low (290 °C)
Power	High (2250 mW)	High (300mW)	High (16000mW)	Medium (150 mW)	Low (67mW)	Low (25mW)

Thermal Modeling

- > Thermal requirements
- ⇒ Rapid valve opening with opening time < 1 sec
- ⇒ Uniform heat distribution over entire valve area
- > Transient FEM thermal analysis
- ⇒ Time increment = 133 msec
- ⇒ Total run time = 400 msec
- Valve opening experiment
- ⇒ Time-sequence microscopic images

CCD Camera ——

To Computer

Testing

Fixture

ID: 3302 Rate = 0 300 - a1 200 - 2nd-Order 0 10	a2 a3 a	4	(a2) (a3)
Ramping	33020	50020	50040
Rate (mA/sec)	Open	Open	Open
(ITIA/SEC)	or Not	or Not	or Not

Ramping	33020	50020	50040
Rate (mA/sec)	Open or Not	Open or Not	Open or Not
0.025	0	0	0
0.1	0	0	0
0.2	X	×	0
0.4	0	×	×
2.0	x	×	×

1000 msec

Mechanical Modeling

- > Mechanical requirements
 - ⇒ Mouse blood pressure = 110 mmHg **⇒** Reservoir Pressure
 - ✓ Average = 200 mmHg
- ✓ Instant = ~760 mmHg Large deflection theory
- ⇒ Circular clamped thin plate
- **⇒** Uniform pressure Nonlinear FEM analysis
- ⇒ Nonlinear static module
- Load-deflection experiment
- **⇒** Pressure = 2.5 15 psi ⇒ Max deflection at center

Conclusion

- Developed two single-use, low power Parylene MEMS electrothermal valves for *in vivo* functional neuroimaging
- Second design optimized valve performance through simple geometry change
- Performed fabrication, packaging, modeling, and benchtop experiments
- Successfully performed preliminary in vivo study

References

- . P.-Y. Li, T. K. Givard, D. P. Holschneider, J.-M. I. Maarek, and E. Meng, Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton
- Head Island, SC, 32-35 (2008). 2. J. M. Maloney, S. A. Uhland, B. F. Polito, J. N. F. Sheppard, C. M. Pelta, and J. J. T. Santini, Journal of Controlled Release,109 244 (2005).
- 3. J. Mueller, E.-H. Yang, A. Green, V. White, I. Chakraborty, and R. Reinicke, Proceedings of SPIE, San Francisco, CA, 57-71 (2001).
- 4. A. M. Cardenas-Valencia, J. Dlutowski, J. Bumgarner, C. Munoz, W. Wang, R. Popuri, and L. Langebrake, Sensors and Actuators A, 136 374 5. J. C. McDonald, S. J. Metallo, and G. M. Whitesides, Analytical Chemistry, 73 5645 (2001).
- . C. Luo, X.C. Liu, R. Poddar, J. Garra, A. P. Gadre, E. V. Keuren, T. Schneider, R. White, J. Currie, and M. Paranjape, Journal of Micromechanics and Microengineering, 16 580 (2006).
- . T. von Karman, Encyklopadie der Mathematischen Wissenschaften, 4 348 (1910).

Acknowledgments

This work was funded in part by the NIH/NIBIB (1 RO1 NS050171). The authors would like to thank Dr. Donghai Zhu, Dr. Tuan Hoang, Mr. Neil Sardesai, and members of the Biomedical Microsystems Lab at the University of Southern California.

