Automne 2014

Modèles Mathématiques pour l'Image

Raphaëlle Chaine

Master Professionnel Image

Université Claude Bernard - Lyon 1

Modèle fréquentiel

- Quittons à présent le modèle statistique
 - où les distributions de probabilité se décomposaient en mixture de Gaussiennes
-pour étudier le modèle fréquentiel
 - où les signaux se décomposent en somme de sinusoïdes

Un peu de traitement du signal

- Signaux analogiques 1D présents dans la nature
 - Le plus simple est le signal constant
 - Il y a ensuite tous les signaux correspondant à des sinusoïdes
 - Produits par des phénomènes oscillants (mouvement de pendule ou de ressort vibration d'une corde, de la membrane d'un instrument de musique)

g(t)=Asin(2πft+φ)

- Qu'est-ce qu'une fréquence?
 - Nombre de fois qu'un phénomène périodique se reproduit par unité de temps.
 - Le délai avant que le phénomène périodique se répète est la période

 $g(t)=Asin(2\pi ft+\phi)$

Fréquence f=1/T=w/(2π) Amplitude A

Les sinusoïdes

- Fonctions sinus et cosinus:
 - outils pour suivre les coordonnées d'un nombre complexe qui tourne sur un cercle centré sur l'origine et de rayon 1, en fonction de l'angle qu'il forme avec l'axe des abscisses

$$\cos(r) = \sin(\pi/2 - r)$$

- Les nombres complexes sont l'outil avec lequel on va représenter les sinusoïdes...
- Rappel : Module m et argument a d'un nombre complexe P de partie réelle x et de partie imaginaire y

Deux manières alternatives de représenter **P**

P = x + iv

P = meia (exponentielle complexe)

Rappel: $i^2 = -1$

• Considérons le complexe P(t) suivant

$$P(t) = me^{i(2nft+\phi)}$$

= $m(cos(2nft+\phi) + isin(2nft+\phi))$

Quand ${f t}$ varie, ${f P}$ tourne sur le cercle de centre ${f O}$ et de rayon ${f m}$ avec la fréquence ${f f}$

• Les sinusoïdes s'expriment en sommes de 2 exponentielles complexes

$$\cos(2\pi ft) = \frac{e^{i2\pi ft} + e^{-i2\pi ft}}{2}$$
$$\sin(2\pi ft) = \frac{e^{i2\pi ft} - e^{-i2\pi ft}}{2i}$$

Représentation fréquentielle vs temporelle

- Idée de Fourier : Toutes les fonctions peuvent être vues comme des sommes d'exponentielles complexes (ou de sinusoïdes)
 - Représentation en fonction des fréquences (des sinusoïdes) contenues dans le signal plutôt qu'en fonction du temps...

 Sous cet angle là, des propriétés du signal vont apparaître... (utile pour certains traitements)

Représentation fréquentielle

• Spectre d'amplitude

 Remarque: les fréquences négatives n'ont aucune réalité physique (juste là pour équilibrer les exp. complexes en sinusoïdes)

Représentation fréquentielle

Pour faire le spectre de la fonction sin, on se rend compte que le spectre d'amplitude ne suffit pas... (coefficients complexes avec $i=e^{i\pi/2}$)

oefficients complexes avec
$$i=e^{i\pi/2}$$
)
$$A\sin(2\pi ft)=\frac{-iAe^{i2\pi ft}+iAe^{-i2\pi ft}}{2}$$

• Spectre d'amplitude

Représentation fréquentielle

- Somme de signaux sinusoïdaux
 - Leur spectre se construit par superposition des spectres des sinusoïdes qui composent la somme
- Spectre de la fonction

$$s(t) = 10.\cos(2\pi 100t) + 60.\cos(2\pi 200t) + 40.\cos(2\pi 400t)$$

• On parle de spectres de « raies »

Somme de signaux sinusoïdaux

• Quizz:

11

- La somme de 2 signaux sinusoïdaux fait-elle apparaître de nouvelles fréquences dans le spectre?
- La somme de 2 signaux sinusoïdaux est elle nécessairement périodique?

Somme de signaux sinusoïdaux

Quizz

- La somme de 2 signaux sinusoïdaux fait-elle apparaître de nouvelles fréquences dans le spectre?
 - NON (superposition des raies des 2 spectres)
- La somme de deux signaux sinusoïdaux est elle nécessairement périodique?
 - NON, la périodicité n'est acquise que si il existe un multiple commun de leurs périodes respectives
- · Cela nous permet d'entrevoir qu'il n'y a pas que les signaux périodiques qui se décomposent en somme de sinusoïdes!

- La décomposition en somme de signaux sinusoïdaux se fait à l'aide de la Transformée de
- Cas des signaux périodiques de période To
 - − Fréquence fondamentale f₀=1/T₀
 - Un tel signal se décompose de manière unique en une comme d'exponentielles complexes (signaux sinusoïdaux) dont la fréquence est multiple de f₀

$$s_{T_0}(t) = \sum_{n=-\infty}^{\infty} F_n e^{i2\pi n f_0 t}$$
 — avec ${\sf F_n}$ correspondant à une moyenne du signal ${\sf s_{T0}}({\sf t})$

$$F_n = rac{1}{T_0} \int_{t=a}^{t=a+T_0} s_{T_0}(t) e^{-i2\pi n f_0 t} dt_{ ext{S}}$$

• Dans le cas d'un signal périodique réel (ie non complexe), le spectre d'amplitude est symétrique, le spectre de phase antisymétrique

Spectre en amplitude

Spectre en phase

• La décomposition en exponentielles complexes est également valable pour les signaux complexes périodiques.

• Dans la littérature, la décomposition de

Cela est complètement équivalent...

Fourier des signaux réels périodiques se fait

souvent sur des sinusoïdes directement (sans passer par les exponentielles complexes).

Exemples

• Décomposition de la fonction $f(x) = \begin{cases} 0, & -2 \le x < 0 \\ x, & 0 \le x \le 2 \end{cases}$

$$f(x) \sim \frac{1}{2} + \sum_{n=1}^{\infty} \left[\frac{2}{n^2 \pi^2} ((-1)^n - 1) \cos \left(n \frac{\pi x}{2} \right) + \frac{2}{n \pi} (-1)^{n+1} \sin \left(n \frac{\pi x}{2} \right) \right].$$

Notion d'énergie d'un signal

- Tous les signaux physiques admettent une décomposition de Fourier
 - C'est parce qu'ils sont dotés d'une énergie finie
- Une énergie finie est une condition suffisante pour admettre une décomposition de Fourier
 - Traduction mathématiques : critère de carré intégrabilité

$$E(s_{T_0}) = \frac{1}{T_0} \int_{t=a}^{t=a+T_0} |s_{T_0}(t)|^2 dt$$

– Dans ce cas, chaque coefficient F_n de la décomposition correspond à la projection de la fonction s_{70} sur l'ensemble des fonctions $e^{i2\pi n I_0 t}, n \in \mathbb{N}$ qui forment une base orthonormée de l'ensemble des fonctions périodiques de période T_n

22

Cas des signaux 2D

- Le temps t est remplacé par le vecteur $\begin{pmatrix} x \\ y \end{pmatrix}$
- Qu'est-ce que des sinusoïdes en 2D?
 - On remplace le produit ft par le produit scalaire $\begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} f_x \\ f_y \end{pmatrix}$ où interviennent 2 fréquences f_x et f_y
 - La sinusoïde $\sin(2\pi(f_xx+f_yy))$ est périodique de période $\frac{1}{\sqrt{(f_x^2+f_y^2)}}$
 - dans la direction $\begin{pmatrix} f_x \\ f_y \end{pmatrix}$

Signal analogique infini :
Sinusoïde s(x,y)

Transformée
de Fourier

Transformée
de Fourier

Transformée
de Fourier

Transformée

Cas des signaux 2D

- La décomposition d'un signal 2D se fait de la même manière qu'en 1D, en identifiant la fréquence fondamentale en x et en y
- Décomposition sur la base de fonctions

$$e^{i2\pi(mf_{x_0}x+nf_{y_0}y)}, m \in \mathbb{N}, n \in \mathbb{N}$$

