goal: definitions & interpretations of H2 and Has system norms

refs: definitions - Dogle, Glover, Khargone kar, Francis 1989

State-Space Solutions to Standard \mathcal{IC}_2 and \mathcal{IC}_{∞} Control Problems

JOHN C. DOYLE, KEITH GLOVER, MEMBER, IEEE, PRAMOD P. KHARGONEKAR, MEMBER, IEEE, AND BRUCE A. FRANCIS, FELLOW, IEEE

interpretations - Dulleud & Paganini 2013 Ch 6, 7

o consider the following feedback block diagram between process P and controller C:

w cartains disturbances
(i.e. ball input & aut put disturbances)
3 cartains "errors" to be minimized
(i.e. tracking error, cartrol effort)

T₃w = P₃w + P₃u (I - C P_yu) - C P_yw - verify this formula * our goal as cantrol engineers is to minimize || T₃w|| the action of engineers is to unitarity 11 13w11

Lywell focus on H2 and H00 norms

H2 noin

o suppose we know the disturbance a priori (eg a fixed reference) $W:(-\infty,\infty) \to \mathbb{R}^n$

- since system ξ controller one LTI, focus on scalar Dirac delta. W = 8

oby definition: $||3||_2^2 = \int_{-\infty}^{\infty} 3^*(t) 3(t) dt \leftarrow 3 \in L_2$

 $= \frac{1}{2\pi} \int_{-\infty}^{\infty} 3^{4}(j\omega) 3(j\omega) d\omega - \|3\|_{2} = \|3\|_{2}$ where $3 = \Gamma_{3}$

 $=\frac{1}{2\pi}\int_{-\infty}^{\infty} f^{*}(j\omega) f(j\omega) d\omega \leftarrow 3 = Tw = T8$

=> 3= T.1

 $=\|\widehat{\top}\|_2^2$

in other words, $\|3\|_2 = \|\widehat{T}\|_2$, i.e. the H_2 -norm of T ("H" is for "Hardy"

· similar calculations apply when statistics of w are known - ea when reference is zero, noise is Gaussian, - eg when reference is zero, noise is Gaussian, $z = (x, u) \leftarrow i.e.$ we want to minimize $\|x\|_2$, $\|u\|_2$ the controller C that minimizes $\|T_{3w}\|_2$ is LGG

Hoo noim

· what if we have no a priori knowledge of w?

-> then it makes sense to consider worst-case scenario:

minimize $\|T\|_{L_2 \to L_2}$ where 3 = Tw $= \|\hat{T}\|_{\infty}, i.o. the Hoo-voin of \hat{T}$ $* \|\hat{T}\|_{\infty} \text{ grantifies han much "energy" in disturbance}$ passes Hrough T to output