# Association Rule Mining FPGrowth

Huiping Cao

#### Issues with Apriori-like approaches

■ Candidate set generation is costly, especially when there exist prolific patterns and/or long patterns.

 Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without Candidate Generation. SIGMOD 2000:1-12.

#### Concepts

- Set of items:  $I = \{a_1, \dots, a_m\}$
- Transaction database:  $DB = \langle T_1, \dots, T_n \rangle$  where  $T_i$  is a transaction containing a set of items in I.
- A pattern A: a set of items
- Support (or occurrence frequency) of a pattern A: the number of transactions that contain A, denoted as sup(A)
- Frequent pattern: if  $sup(A) \ge \xi$
- Problem: Given DB and  $\xi$ , find the complete set of frequent patterns.

#### Running example & basic ideas

• Given  $\xi = 3$  and DB

|     | ,                      |  |
|-----|------------------------|--|
| TID | Items Bought           |  |
| 100 | f, a, c, d, g, i, m, p |  |
| 200 | a, b, c, f, l, m, o    |  |
| 300 | b, f, h, j, o          |  |
| 400 | b, c, k, s, p          |  |
| 500 | a, f, c, e, l, p, m, n |  |

- Observations and basic ideas
  - Only keep the frequent items in the transaction (one scan)
  - Store the set of frequent items in a compact data structure (FP-tree)

#### Construct a frequent pattern tree (Example)

■ Scan DB once, find frequent 1-itemset (single item pattern) A scan of *DB* to derive a list of frequent items

| $\langle (f:4), (c:4), (a:3), (b:3), (m:3), (p:3) \rangle$ |                        |                          |  |
|------------------------------------------------------------|------------------------|--------------------------|--|
| TID                                                        | Items Bought           | (Ordered) Frequent Items |  |
| 100                                                        | f, a, c, d, g, i, m, p | f, c, a, m, p            |  |
| 200                                                        | a, b, c, f, l, m, o    | f, c, a, b, m            |  |
| 300                                                        | b, f, h, j, o          | f, b                     |  |
| 400                                                        | b, c, k, s, p          | c, b, p                  |  |
| 500                                                        | a, f, c, e, l, p, m, n | f, c, a, m, p            |  |

- Sort frequent items in frequency descending order, f-list = f c a b m p
- Scan DB again, construct FP-tree



#### Construct a frequent pattern tree (Example)

- Create the root of a tree labeled with null.
- Scan the DB the second time to update the tree.
  - 1st transaction: creates a branch \((f:1),(c:1),(a:1),(m:1),(p:1)\)
    2nd transection: (f, c, a, b, m), which shares a common prefix
  - (f, c, a) with the first transaction
    - the count of each node along the prefix is incremented by  $\boldsymbol{1}$
    - Create a new node (b:1) as a child of (a:2)
    - Create a new node (m:1) as a child of (b:1)
  - 3rd transaction: (f, b), which share a common prefix f with the previous two transactions
    - the count for node with f is incremented by 1
    - create a new node (b:1) as a child of (f:3)
  - 4th transaction: (c, b, p), create a second branch  $\langle (c:1), (b:1), (p:1) \rangle$
  - 5th transaction: is identical to the 1st transaction, increment the counts on each node.

#### Header table

- head of node-link
- node-links



#### Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to *f*-list
  - f-list=f c a b m p
  - Patterns containing p
  - Patterns having *m* but no *p*,
  - . . .
  - Patterns having c but no a nor b, m, p
  - Pattern f



### Conditional pattern base



| item | cond. pattern base |  |
|------|--------------------|--|
| С    | f:3                |  |
| а    | fc: 3              |  |
| b    | fca:1, f:1, c:1    |  |
| m    | fca:2, fcab:1      |  |
| р    | fcam:2, cb:1       |  |

#### From Conditional Pattern-bases to Conditional FP-trees

■ For each pattern-base

Accumulate the count for each item in the base

 Construct the FP-tree for the frequent items of the pattern base

#### Algorithm - Mining frequent patterns using FP-Tree

- Node-Link property: for any frequent item  $a_i$ , all the possible frequent patterns that contain  $a_i$  can be obtained by following  $a_i$ 's node links, starting from  $a_i$ 's head in the FP-tree header.
- All patterns that  $a_i$  participate: start from  $a_i$ 's head and follow  $a_i$ 's node-links
- Start from the bottom of the header table:  $p, m, \cdots$ 
  - Starting at the frequent item header table in the FP-tree
  - Traverse the FP-tree by following the link of each frequent item p
  - Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

#### Algorithm - FPGrowth

```
Input: FP-tree, minimum support threshold \xi
```

Output: the complete set of frequent patterns

Initial call: FP-Growth(FP-tree tree, null)

 $\mathsf{FP}\text{-}\mathsf{Growth}(\mathsf{FP}\text{-}\mathsf{tree}\ \mathit{tree},\alpha)$ 

- If tree contains a single path P
  - for each node-combination  $\beta$  of P, – generate  $\beta \cup \alpha$  with support  $= sup(\beta)$
- else
  - for each  $\alpha_i$  in the header of *tree* 
    - (1) generate pattern  $\beta = \alpha_i \cup \alpha$  with support  $= \sup(\alpha_i)$
    - (2) Calculate  $\beta$ 's conditional pattern base
    - (3) Construct  $\beta$ 's FP-tree  $tree_{\beta}$
    - (4) if  $tree_{\beta} \neq \emptyset$ , call FP-Growth( $Tree_{\beta}, \beta$ )

# FPGrowth example



Given tree t1 as shown in the figure.

Initial call: FP-Growth(t1, null)

■ The else branch of FP-Growth is executed because t1 contains a complex tree (not a single path p).

The else branch needs to check every itemset in the header table. For this example,  $\alpha_i$  can be p, m, b, a, c, and f.

- For  $\alpha_i = \{p\}$ , (1) generate a pattern  $\beta = \{p\}$  with support 3; (2) calculate p's conditional base, which are fcam : 2 and cb : 1; (3) create a FP tree  $t_p$  from the conditional base; (4) recursively call **FP-Growth**( $t_p$ , p). Details see following slides.
- For  $\alpha_i = \{m\}$ , (1) generate a pattern  $\beta = \{m\}$  with support 3; (2) calculate m's conditional base, which are fca : 2 and fcab : 1; (3) create a FP tree  $t_m$  from the conditional base; (4) recursively call **FP-Growth**( $t_m$ , m). Details see following slides.
- For  $\alpha_i = \{b\}$ ,  $\{a\}$ ,  $\{c\}$ , and  $\{f\}$  do similar.

#### Find Patterns Having p from p-conditional Database

- Two paths:  $\langle f: 4, c: 3, a: 3, m: 2, p: 2 \rangle, \langle c: 1, b: 1, p: 1 \rangle$
- Two prefix paths: (f:2,c:2,a:2,m:2),(c:1,b:1). These paths are called p's conditional pattern base.
- Construct an FP-tree on this conditional pattern base, which consists of (c:3) as the only branch. This FP-tree is called p's conditional FP-tree. I.e., tree  $t_p$  consists of (c:3) as the only branch.
- Call FP-Growth $(t_p, p)$ .
- The if branch of FP-Growth is executed because it is a path. Thus, it reports frequent pattern (*cp* : 3)

#### Algorithm - Mining frequent patterns using FP-Tree

#### For node m

- Two paths:  $\langle f:4,c:3,a:3,m:2\rangle, \langle f:4,c:3,a:3,b:1,m:1\rangle$
- m's conditional pattern base:  $\{(f:2,c:2,a:2),(f:1,c:1,a:1,b:1)\}.$
- Construct an FP-tree on this conditional pattern base, m's conditional FP-tree, which only has one branch  $\langle f: 3, c: 3, a: 3 \rangle$ .
- From m's conditional FP-tree  $t_m$ , mine( $\langle f:3,c:3,a:3\rangle|m$ )

# Algorithm – $mine(\langle f:3,c:3,a:3\rangle|m)$

 $\blacksquare$  m's conditional FP-tree  $t_m$  is shown below.



- Call **FP-Growth**( $t_m$ , m).
- **FP-Growth** $(t_m, m)$  will execute the **if** brach because it contains only one path.
- All the possible combinations are f, fc, fca, c, ca, and a.
- Thus the frequent patterns are fm, fcm, fcam, cm, cam, and am.

## Algorithm – FP-Growth $(t_m, m)$ , run else branch (1)



- We demonstrate the execution of the else branch using
  - FP-Growth( $t_m = \langle f : 3, c : 3, c : 3 \rangle$ , m).  $\alpha_i$  can be  $\{a\}$ ,  $\{c\}$ , and  $\{f\}$ 
    - when  $\alpha_i = \{a\}$ : (1)  $\beta = \{am\}$ ,  $\beta$  is frequent. OUTPUT am. (2) get am's conditional base, which consists of f: 3, c: 3, (3) construct a FP-tree with one path f: 3, c: 3, call FP-Growth( $t_{am} = \langle f: 3, c: 3 \rangle$ , am)
    - when  $\alpha_i = \{c\}$ : (1)  $\beta = \{cm\}$ ,  $\beta$  is frequent. OUTPUT cm. (2) get cm's conditional base, which consists of f: 3, (3) construct a FP-tree with one path f: 3, call FP-Growth( $t_{cm} = \langle f : 3 \rangle$ , cm)
    - when  $\alpha_i = \{f\}$ : (1)  $\beta = \{fm\}$ ,  $\beta$  is frequent. OUTPUT fm. (2) get fm's conditional base, which is  $\emptyset$ . No recursive call.

# Algorithm – FP-Growth $(t_m, m)$ , run else branch (2)



- Run FP-Growth( $t_{am} = \langle f : 3, c : 3 \rangle$ , am).  $\alpha_i$  can be f, c.
  - when  $\alpha_i = \{c\}$ : (1)  $\beta = \{cam\}$ ,  $\beta$  is frequent. OUTPUT cam. (2) get cam's conditional base, which consists of f: 3, (3) construct a FP-tree with one path f: 3, call FP-Growth( $t_{cam} = \langle f: 3 \rangle$ , cam)
  - when  $\alpha_i = \{f\}$ : (1)  $\beta = \{fam\}$ ,  $\beta$  is frequent. OUTPUT fam. (2) get fm's conditional base, which is  $\emptyset$ . No recursive call.
- Run FP-Growth( $t_{cm} = \langle f : 3 \rangle$ , cm). The only  $\alpha_i$  is f: (1)  $\beta = \{fcm\}$ ,  $\beta$  is frequent. OUTPUT fcm. (2) get fcm's conditional base, which is  $\emptyset$ . No recursive call.

## Algorithm – FP-Growth( $t_m$ , m), run else branch (3)



- Run FP-Growth( $t_{cam} = \langle f : 3 \rangle$ , cam). The only  $\alpha_i$  is  $f: (1) \beta = \{fcam\}$ ,  $\beta$  is frequent. OUTPUT fcam. (2) get fcam's conditional base, which is  $\emptyset$ . No recursive call.
- The final results are: am, cam, fcam, cm, fcam, and fm

#### Algorithm - Mining frequent patterns using FP-Tree

#### For node b

- Three paths:  $\langle f:4,c:3,a:3,b:1\rangle, \langle f:4,b:1\rangle, \langle c:1,b:1\rangle$
- **b**'s conditional pattern base:  $\{(f:1,c:1,a:1),(f:1),(c:1)\}.$
- This generates no frequent items. Terminates.
- For node a
  - **a**'s conditional pattern base:  $\{(f:3,c:3)\}$ .
  - Frequent patterns {(fa:3), (ca:3), (fca:3)}
- For nodes c and f, do similar things

#### Analysis - FPGrowth

- Construct FP-tree: one scan of the data in *DB*, output *tree*, which is generally much smaller than *DB*
- The size of FP-tree shrinks in a factor of  $20 \sim 100$
- Size of FP-tree is not exponential to the number of frequent patterns.
  - E.g., a frequent pattern  $a_1, \dots, a_{100}$ , the complete set of frequent patterns contains  $2^{100}$
  - Size of the tree is still 100 (a path)

#### Scaling FP-growth by DB Projection

- FP-tree cannot fit in memory?DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. Partition projection techniques
- Parallel projection is space costly

#### References

- Chapter 5: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Implementation of the FPGrowth algorithm: https://pypi.org/project/fpgrowth-py/