Моделирование аукционов. Домашняя работа - 3.

- 1. Техническая задача.
 - (a) Выразите $(a+c) \lor (b+c)$ через $a \lor b$. Выразите $(a+c) \land (b+c)$ через $a \land b$.
 - (b) Случайные величины $Z_1, ..., Z_n$ аффилированы между собой. Случайные величины $W_1, ..., W_k$ аффилированы между собой. Набор случайных величин $Z_1, ..., Z_n$ не зависит от набора $W_1, ..., W_k$. Верно ли, что набор случайных величин $Z_1, ..., Z_n, W_1, ..., W_k$ аффилирован?

$$(a+c) \lor (b+c) = a \lor b+c \tag{1}$$

$$(a+c) \wedge (b+c) = a \wedge b + c \tag{2}$$

Да, набор Z_1 , ..., Z_n , W_1 , ..., W_k аффилирован. В силу независимости логарифм совместной функции плотности разлагается в сумму логарифмов:

$$\ln f_{Z,W}(z_1, ..., z_n, w_1, ..., w_k) = \ln f_Z(z_1, ..., z_n) + \ln f_W(w_1, ..., w_k)$$
(3)

И смешанные производные равны либо нулю, либо неотрицательны в силу аффилированности Z_i между собой и W_i между собой.

- 2. Пусть V общая ценность товара для двух игроков, равномерна на [1;2]. Величины R_1 и R_2 независимы между собой и с V и равномерны на [-0.5;0.5]. По смыслу: R_1 и R_2 это ошибки игроков при подсчете ценности товара V. Игроки получают сигналы $X_i = V + R_i$, т.е. игроки знают ценность V с ошибкой.
 - (а) Найдите совместную функцию плотности X_1 и X_2 . Верно ли, что X_1 и X_2 аффилированны?
 - (b) Найдите $v(x,y) = E(V|X_1 = x, Y_1 = y)$. Найдите равновесие Нэша на аукционе второй цены.
 - (c) Найдите совместную функцию плотности X_1 и Y_1 , g(x,y)

Hint: В решении контрольной есть похожая задача. А g(x,y) можно неплохо упростить пользуясь предыдущей задачей.

Поскольку игроков всего двое, то g(x,y) — это просто совместная функция плотности X_1 и X_2 .

Находим условную совместную плотность:

$$p(x_1, x_2|v) = 1, \quad x_1, x_2 \in [v - 0.5; v + 0.5]$$
 (4)

Значит:

$$p(x_1, x_2, v) = 1, \quad x_1, x_2 \in [v - 0.5; v + 0.5], v \in [1; 2]$$
 (5)

Заметим, что область, где плотность положительна, можно описать условием:

$$v \in [(x_1 - 0.5) \lor (x_2 - 0.5); (x_1 + 0.5) \land (x_2 + 0.5)] = [v_{min}; v_{max}]$$
 (6)

Интегрируем по v и получаем:

$$p(x_1, x_2) = \int_{v_{min}}^{v_{max}} 1 dv = v_{max} - v_{min} = x_1 \land x_2 - x_1 \lor x_2 + 1$$
 (7)

$$E(V|X_1 = x_1, X_2 = x_2) = \int vp(v|x_1, x_2)dv = \int v\frac{p(x_1, x_2, v)}{p(x_1, x_2)}dv = \frac{\int vp(x_1, x_2, v)dv}{p(x_1, x_2)}$$
(8)

В числителе:

$$\int_{v_{min}}^{v_{max}} v dv = \frac{v_{max}^2 - v_{min}^2}{2} \tag{9}$$

Значит в итоге:

$$v(x_1, x_2) = \frac{v_{max}^2 - v_{min}^2}{2 \cdot (v_{max} - v_{min})} = \frac{v_{max} + v_{min}}{2} = \frac{x_1 \wedge x_2 + x_1 \vee x_2}{2}$$
(10)

Равновесие Нэша на аукционе второй цены:

$$v(x,x) = x \tag{11}$$

- 3. Пусть R_1 , R_2 и S равномерны на [0;1] и независимы. Ценность товара для первого игрока, $V_1=0.8X_1+0.2X_2$ и для второго $V_2=0.8X_2+0.2X_1$. Первый игрок получает сигнал $X_1=S+R_1$. Второй игрок получает сигнал $X_2=S+R_2$.
 - (a) Найдите g(x,y), R(y|x) и $v(x,y) = E(V|X_1 = x, Y_1 = y)$
 - (b) Используя предыдущие функции найдите равновесие Нэша на аукционе второй цены, первой цены и кнопочном аукционе

Игроков всего два, значит g(x,y) — просто совместная функция плотности X_1 и X_2 .

$$p(x_1, x_2|s) = 1 \cdot 1, \quad x_1, x_2 \in [s; s+1]$$
(12)

Следовательно:

$$p(x_1, x_2, s) = 1 \cdot 1, \quad x_1, x_2 \in [s; s+1], s \in [0; 1]$$
 (13)

Заметим, что область, где плотность положительна, можно описать условием:

$$s \in [x_1 \lor x_2 - 1; x_1 \land x_2] = [s_{min}; s_{max}] \tag{14}$$

Интегрируем по s и получаем:

$$p(x_1, x_2) = \int_{s_{min}}^{s_{max}} 1 ds = s_{max} - s_{min} = x_1 \land x_2 - x_1 \lor x_2 + 1$$
 (15)

Плотность обращается в ноль за пределами участка $0 \le x_1, x_2 \le 2, x_1 - 1 \le x_2 \le x_1 + 1.$

Чтобы найти R(y|x) вспоминаем что это такое:

$$R(y|x) = \frac{g(x,y)}{\int_0^y g(x,t)dt}$$
(16)

Возникает четыре случая для R(y|x)...

К сожалению, в явном виде хорошего мало. Стандартная максимизация с чудозаменой дает дифференциальное уравнение:

$$(0.8x - b'(x)) \int_0^x p(x, x_2) dx_2 + x - b(x) = 0$$
(17)

Возникает два случая из-за ломаной $p(x_1, x_2)...$

Если $x \in [0; 1]$, то:

$$(0.8x - b'(x)) \cdot (x - 0.5x^2) + x - b(x) = 0$$
(18)

Из этого уравнения надо выбрать решение с b(0) = 0.

Если $x \in [1; 2]$, то:

$$(0.8x - b'(x)) \cdot 0.5 + x - b(x) = 0 \tag{19}$$

Из этого уравнения надо выбрать решение непрерывно склеивающееся с первым в точке x=1.

Hаходим v(x,y):

$$v(x,y) = E(V_1|X_1 = x, Y_1 = y) = E(V_1|X_1 = x, X_2 = y) = 0.8x + 0.2y$$
 (20)

Равновесие Нэша на аукционе второй цены:

$$b(x) = v(x, x) = x \tag{21}$$

Кнопочный аукцион совпадает с аукционом второй цены.

4. Продолжение задачи 2 с контрольной (можно использовать все полученные в ней результаты). На аукционе продается картина, которая равновероятно является «Джокондой» Леонардо да Винчи или ее подделкой. За нее торгуются п покупателей. Ценность картины для всех покупателей одинакова, V₁ = V₂ = ... = V_n = V и равна 1, если это оригинал и 0, если подделка.

Если V=0, то сигналы X_i условно независимы и равномерны на [0;1]. Если V=1, то сигналы X_i условно независимы и имеют функцию плотности f(x|V=1)=2x при $x\in[0;1]$

- (а) Найдите равновесие Нэша на аукционе второй цены
- (b) Найдите $E(V|X_1=x_1,X_2=x_2,X_3=x_3...X_n=x_n)$
- (c) С помощью предыдущего пункта найдите функции $b^n(x)$, $b^{n-1}(x,p_n)$ и $b^{n-2}(x,p_{n-1},p_n)$ в равновесии Нэша на кнопочном аукционе

В решении контрольной 3 мы получили результат:

$$v(x,y) = \frac{4xy^{n-1}}{1 + 4xy^{n-1}} \tag{22}$$

Следовательно, равновесие Нэша на аукционе второй цены:

$$b(x) = v(x, x) = \frac{4x^n}{1 + 4x^n}$$
 (23)

Можно отметить, что функция растет с ростом x и падает с ростом n.

Теперь рассмотрим $A = \{X_1 \in [x_1; x_1 + \Delta] \cap ... \cap X_n \in [x_n; x_n + \Delta]\}$. Как и в решении задачи с контрольной:

$$E(V|A) = P(V = 1|A) = \frac{P(V = 1 \cap A)}{P(A)} = \frac{P(A|V = 1) \cdot P(V = 1)}{P(A)} = \frac{0.5P(A|V = 1)}{P(A)}$$
(24)

Согласно методу о-малых аналогичная формула справедлива для плотностей:

$$E(V|X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \frac{0.5 \cdot 2^n \prod_{i=1}^n x_i}{0.5 + 0.5 \cdot 2^n \prod_{i=1}^n x_i} = \frac{2^n \prod_{i=1}^n x_i}{1 + 2^n \prod_{i=1}^n x_i}$$
(25)

Теперь частично находим стратегию на кнопочном аукционе:

$$b^{n}(x) = \frac{2^{n}x^{n}}{1 + 2^{n}x^{n}} \tag{26}$$

Если все игроки используют эту функцию, то чтобы игрок вышел на цене p ценность должна равняться:

$$x = \frac{1}{2} \left(\frac{p}{1-p} \right)^{1/n} \tag{27}$$

Подставляя один такой x в ожидаемую ценность получаем:

$$b^{n-1}(x, p_n) = \frac{2^{n-1} x^{n-1} \left(\frac{p_n}{1-p_n}\right)^{1/n}}{1 + 2^{n-1} x^{n-1} \left(\frac{p_n}{1-p_n}\right)^{1/n}}$$
(28)

Если второй выходит на цене p_{n-1} , то его ценность была равна:

$$x = \frac{1}{2} \left(\frac{p_n}{1 - p_n} \right)^{1/n(n-1)} \left(\frac{p_{n-1}}{1 - p_{n-1}} \right)^{1/(n-1)}$$
(29)

Значит:

$$b^{n-2}(x, p_{n-1}, p_n) = \frac{2^{n-2} x^{n-2} \left(\frac{p_n}{1-p_n}\right)^{1/n(n-1)} \left(\frac{p_{n-1}}{1-p_{n-1}}\right)^{1/(n-1)}}{1 + 2^{n-2} x^{n-2} \left(\frac{p_n}{1-p_n}\right)^{1/n(n-1)} \left(\frac{p_{n-1}}{1-p_{n-1}}\right)^{1/(n-1)}}$$
(30)