## Data scraping, computing IV, SVI model

Elezov Daniil

April 22, 2023

#### Reference Forward

The forward of an equity at time T as seen from t < T is given by:

$$F(t,T) = S(t) \frac{RF(t,T).DivF(t,T)}{DF(t,T)}$$

where:

**DF(t,T)** is the discount factor from t to T. If  $r_s$  is the instantaneous spot rate,  $\mathbf{DF(t,T)} = E_t^Q \left[ \exp(-\int_t^T r_s ds) \right]$ , Q being the risk neutral measure.  $\mathbf{RF(t,T)}$  is the repo factor from t to T. It correspond to the borrowing cost of the share. We can represent it as  $\mathbf{RF(t,T)} = \exp(-\int_t^T b_s ds)$   $\mathbf{DivF(t,T)}$  is expresssed as  $\mathbf{DivF(t,T)} = \exp(-\int_t^T q_s ds)$ , with q the dividend yield

## Dividend yield

$$\textit{Dividend yield} = \frac{\textit{AverDiv} \times \textit{FP}}{\textit{SP}}$$

where:

AverDiv is Average size of dividens for the last year,

FP is frequently of payments dividends,

*SP* is spot price.

Remark: Data scraped by Yahoo Finance

#### Discount Factor

Three-Month SOFR Futures with different expiration from yahoo finance.

$$r(t) = 100 - F(t)$$



Figure: SOFR rate curve on 10:30 22, April 2023

For discount factor at time T used linear approximation based on SOFR curve

### Some result





Implied Volatility for different listed companies on 22:06 21, April 2023

### Some result





Figure: AMZN

Figure: AAPL

Implied Volatility for different listed companies on 22:06 21, April 2023

## SVI Model (Stochastic volatility inspired)

SVI model is some function that used to approximate the implied volatility curve.  $x = ln(K/F_0)$  and  $\omega = T\widetilde{\sigma}^2$  - full implied variance

## Definition SVI model (raw parametrization)

$$\omega(x) = a + b\left(\rho(x - m) + \sqrt{(x - m)^2 + \sigma^2}\right)$$

 $a,b,
ho,m,\sigma$  - parameters, where  $(a\in\mathbb{R},b\geqslant0,|
ho|<1,m\in\mathbb{R},\sigma>0)$ 

### Meaning of parameters:

- ① a and m changing the curve vertically and horizontally
- ② b sets the corner between the left and right asymptotes  $\omega(x) \sim a b(1-\rho)(x-m)$  at  $x \to -\infty$   $\omega(x) \sim a + b(1+\rho)(x-m)$  at  $x \to +\infty$
- $\bullet$   $\rho$  sets turn curve



## SVI Model (Stochastic volatility inspired)

## Definition SVI model (natural parametrization)

$$\omega(x) = \Delta + \frac{\omega}{2} \left( 1 + \zeta \rho(x - \mu) + sqrt(\zeta(x - \mu) + \rho)^2 + 1 - \rho^2 \right)$$

$$\Delta,\mu,
ho,\omega,\zeta$$
 - parameters, where  $(\omega\geqslant 0,\mu\in\mathbb{R},\Delta\in\mathbb{R}|
ho|<1,\zeta>0)$ 

Parameters in raw and natural parametrization are equivalent and there is following ratio:

$$(a, b, \rho, m, \sigma) = \left(\Delta + \frac{\omega}{2}(1 - \rho)^2, \frac{\omega\zeta}{2}, \rho, \mu - \frac{\rho}{\zeta}, \frac{\sqrt{1 - \rho^2}}{\zeta}\right)$$

Remark: that if we make several changes of variables and consider  $\lim_{T \to \infty}$  then the Heston model turn out the special case of the SVI model (natural parametrization)

# SVI Model (Stochastic volatility inspired)

### SVI-Jump-Wings parameterizati

For a given time to expiry t>0 and a parameter set  $[v_t,\phi_t,p_t,c_t,\widetilde{v_t}]$  the SVI-JW parameters are defined from the raw SVI parameters as follows:

$$\begin{split} v_t &= \frac{a + b(-\rho m + \sqrt{m^2 + \sigma^2})}{t} - \text{gives the ATM variance} \\ \phi_t &= \frac{1}{\sqrt{\omega_t}} \frac{b}{2} \left( -\frac{m}{\sqrt{m^2 + \sigma^2}} + \rho \right) - \text{gives the ATM skew} \\ p_t &= \frac{1}{\sqrt{\omega_t}} b(1 - \rho) - \text{gives the slope of the left (put) wing} \\ c_t &= \frac{1}{\sqrt{\omega_t}} b(1 + \rho) : - \text{gives the slope of the right (call) wing} \\ \widetilde{v}_t &= \frac{1}{t} \left( a + b\sigma \sqrt{1 - \rho^2} \right) : - \text{is the minimum implied varience} \end{split}$$

The raw SVI parameters express from SVI-JW parameters as follows:

$$a = \widetilde{v_t} \, T - b\sigma \sqrt{1 - \rho^2} \qquad \rho = 1 - \frac{2p_t}{c_t + p_t} \qquad b = \frac{1}{2} \sqrt{v_t} \, \overline{T}(c_t + p_t)$$
 
$$\beta = \rho - \frac{2\phi \sqrt{v_t} \, \overline{T}}{b}$$
 
$$if \, |\beta| \leqslant 1, \beta \neq 0 \begin{cases} \alpha = sgn(\beta) \sqrt{\beta^{-2} - 1} \\ m = \frac{(v_t - \widetilde{v_t}) \, T}{b(\rho + sgn(\alpha) \sqrt{1 + \alpha^2} - \alpha \sqrt{1 - \rho^2})} \\ \sigma = \alpha m \end{cases}$$
 
$$if \, \beta = 0 \begin{cases} m = 0 \\ \sigma = \frac{(v_t - \widetilde{v_t}) \, T}{b(1 - \sqrt{1 - \rho^2})} \end{cases}$$

If  $|\beta| > 1$  then the curve isn't convex, that doesn't happen in practice

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

### Calibration of parameters in the SVI model

Consider a raw parameterization for a fixed expiration moment T with parameters  $a,b,\rho,m,\sigma$ . Let  $\omega_m(x_i), i=1,2,..,n$  - denote the total market variances. Let's introduce a function:

$$y(x) = \frac{x - m}{\sigma}$$

Then the total variance in SVI model is equal:

$$\omega(x) = a + dy(x) + cz(x)$$
 
$$z(x) = \sqrt{y(x)^2 + 1}, \ d = \rho b\sigma, \ c = b\sigma$$
 
$$f(a, b, \rho, m, \sigma) = \sum_{i=1}^{n} (\omega_i - \omega(x_i))^2 \to min$$

### Internal optimization issue

### Internal optimization issue

$$\sum_{i=1}^{n} (a + dy(x_i) + cz(x_i) - \omega_m(x_i))^2 \rightarrow min, where (a, d, c) \in \mathcal{D}$$

where  $\mathcal{D}$  given the following condition:

$$0 \leqslant c \leqslant 2\sigma,$$
  
 $|d| \leqslant c,$   
 $|d| \leqslant 2\sigma - c,$   
 $0 \leqslant a \leqslant \max \omega(x_i)$ 

These conditions follow from the correctness of the model and the asymptotic behavior of the volatility curve.

Remark: The field  $\mathcal D$  is compact, the function is convex, hence the minimum is reached

## External optimization issue, find $m, \sigma$

### External optimization issue

$$\sum_{i=1}^{n} (\omega(x_{i}|m,\sigma,a^{*}(m,\sigma),b^{*}(m,\sigma),\rho^{*}(m,\sigma)) - \omega_{m}(x_{i}))^{2} \rightarrow min,$$

where  $(m, \sigma) \in \mathcal{E}$  and  $a^*, b^*, \sigma^*$  are computed by internal optimization.

where  $\mathcal{E}$  is the region:

$$min(x_i) \leqslant m \leqslant max(x_i)$$

$$\sigma_{min} \leqslant \sigma \leqslant \sigma_{max}$$

Boundary conditions for  $\sigma_{min}$ ,  $\sigma_{max}$  set directly, for example:

$$\sigma_{min} = 10^{-4}, \sigma_{max} = 10$$

Remark: The function isn't convex and it's necessary to use some global optimization methods.

# Asymptotics for large and small strikes (Lee's formula)

Consider an arbitrary non arbitrage market model in which the initial measure P is a martingale and r=0 Let  $\widetilde{\sigma}(x)$  - variance of call option with In-moneyness  $x=\ln(\frac{K}{S_0})$  and  $\omega(x=T\widetilde{\sigma}^2(x))$ 

### Lee's formula for right wing

$$\widetilde{p} = \sup(p > 0 : E(S_T^{1+p} < \infty), \quad \beta_R = \lim_{x \to +\infty} \sup \frac{\omega(x)}{x}$$
 Then:  
 $\beta_R = 2 - 4(\sqrt{\widetilde{p}^2 + \widetilde{p}} - \widetilde{p}), \text{ where } \beta_R \in [0, 2]$ 

### Lee's formula for left wing

$$\widetilde{q} = \sup(q > 0 : E(S_T^{-q} < \infty), \quad \beta_L = \lim_{x \to -\infty} \sup \frac{\omega(x)}{x}$$
 Then:  
 $\beta_L = 2 - 4(\sqrt{\widetilde{q}^2 + \widetilde{q}} - \widetilde{q}), \text{ where } \beta_L \in [0, 2]$ 

Corollary: The SVI model does not contradict the Lee formula for both the left and right wings if  $(1 + |\rho|b \le 2)$  in raw parametrization

### Definition of static arbitration

#### **Definition**

Call option price surface  $C(T,K): \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$  doesn't allows static arbitrage if there is a martingale Xt, given on some probability space such as

$$C(T,K) = E(X_T - K)^+$$
, for each  $T, K$ 

The absence of static arbitrage indicates that the prices we received are consistent with some model that does not have dynamic arbitrage.

#### **Definition**

Volatility surface  $\sigma(T,K): \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$  doesn't allows static arbitrage if there is option surface C(T,K), that don't allows static arbitrage such as:

$$C(T,K) = C_B(T,K,\sigma(T,K))$$
, for each  $T,K$ 

where  $C_B(T, K, \sigma(T, K))$  are price of options in Black-Sholes or Black models

## Conditions for no static arbitrage

### Conditions for option price surface:

Let function C(T,K) is define to  $R_+^2$ , such as  $C(T,\cdot) \in C([0,\infty)) \cap C^1((0,\infty))$  for each T>0 and carry out following conditions:

- $\circ$  C(T,K) is convex by K
- $\lim_{K\to\infty}\lim_{K\to\infty}C(T,K)=0$
- C(T,0) = s where s > 0 some constant
- $(0, K) = (s K)^+$

Then there is a martingale  $X_t \ge 0$  that  $X_0 = s$  and

$$C(T,K) = E(X_T - K)^+$$

### Interpretation of conditions

**Condition (1)** is the absence of **calendar arbitrage**. If it is not done:

$$C(T_1, K) > C(T_2, K)$$
, for some  $T_1 < T_2$  and  $K > 0$ 

Then we can get arbitrage by selling the option call (T1; K) and buying the option call (T2; K)

Condition (2) is the absence of butterflies arbitrage. If it is not done:

$$C(T, K_1) + C(T, K_3 < 2C(T, K_2))$$
, for some  $K_1 < K_2 < K_3$  and  $T > 0$ 

We can buy one call option  $(T, K_1)$  and one  $(T, K_3)$  and sell two call option  $(T, K_2)$ 

**Condition (3)** If  $\lim_{K\to\infty} \lim_{K\to\infty} C(T,K) > 0$ , we can sell option with strike= K, which will execute with probability tending to 0 (It's non arbitrage, but anyway is too good, that to be a truth)

Conditions (4, 5) come from the definition of the pricing options

## Conditions for Volatility Surface

Let current futures price is f, then:

$$x = ln(K/s)$$
  $\theta = \sigma\sqrt(T)$   $d_1 = -\frac{x}{\theta} + \frac{theta}{2}$   $d_2 = d_1 - \theta$   
Then the Black's formula is:

$$C_B(T, K, \sigma) = C_B(x, \theta) = f\Phi(d_1) - fe^x\Phi(d_2)$$

In what follow,  $\sigma(T, K)$  we will define via functions  $\theta(T, x)$ 

Let function  $\theta(T,x) \in C^{1,2}((0,\infty) \times \mathbb{R})$  for each  $T > 0, x \in \mathbb{R}$  is satisfy following conditions:

- $\theta > 0$
- $\theta_T' \geqslant 0$
- $\lim_{x\to\infty} d_1(x,\theta(T,x)) = -\infty$

Then follow price option surface isn't allow static arbitrage:

$$C(T,K) = \begin{cases} C_B(x,\theta(T,x))|_{x=\ln\frac{K}{f}}, T > 0, K > 0\\ (f - K)^+, T = 0, K \ge 0\\ f, T \ge 0, K = 0 \end{cases}$$

## Checking conditions in the SVI model

The SVI model in raw parameterization (one cross section of the volatility for fixed T>0):

$$\theta^2(x) = a + b\left(\rho(x-m) + \sqrt{(x-m)^2 + \sigma^2}\right)$$

When calibration the parameters of the model SVI, conditions 1,4,5 don't cause problems, because these properties have observable option prices.

**Condition 2** (lack of calendar arbitration) and **condition 3** (lack of Butterfly Arbitration) needs to be checked for the calibrated parametres for model, some of the combinations of parameters may not work.

Article: Gatheral, Jacquier, 'Arbitrage-free SVI volatility surfaces', 2013