$T_D n^o 3$

Langages et expressions régulières

1 Propriétés sur les mots

1. Soit $u_2, v_2 \in \Sigma^*$ tels que $w = uu_2$ et $w = vv_2$. Si $|u_2| = |v_2|$, alors $u = v = v\varepsilon$ donc v est préfixe de u. Si $|u_2| < |v_2|$, u_2 est suffixe de v_2 . Soit $u_3 \in \Sigma^*$ tel que $v_2 = u_2u_3$. Ainsi, $w = vu_3u_2 = uu_2$, d'où $u = vu_3$. On en déduit que v est un préfixe de u. Similairement, si $|u_2| > |v_2|$, par symétrie du problème, en inversant u et v, puis u_2 et v_2 , on se trouve bien dans le cas précédent. Ainsi, on a bien u est un préfixe de v.

2. Soit $u=u_1\ldots u_n$ avec, pour tout $i\in [\![1,n]\!]$, $u_i\in \Sigma$. Or, au=ub donc $au_1\ldots u_n=u_1\ldots u_nb$ donc, pour tout $i\in [\![1,n-1]\!]$, $u_i=u_{i+1}$. Or, $u_1=a$. De proche en proche, on a $\forall i\in [\![1,n]\!]$, $u_i=a$. Or, $u_n=b$ et donc a=b. On en déduit également que $u\in a^*$.

3. La suite de la correction de cet exercice est disponible sur cahier-de-prepa.

x	y
y	x

2 Une équivalence sur les mots

La correction de cet exercice est disponible sur cahier-de-prepa.

3 Langages

La correction de cet exercice est disponible sur cahier-de-prepa.

4 Propriétés sur les opérations régulières

1. On a

$$\varnothing^* = \{\varepsilon\}; \qquad \varnothing \cdot A = \varnothing; \qquad \{\varepsilon\} \cdot A = A.$$

2. (1) On procède par double-inclusion.

" \subseteq " Soit $w \in (A \cdot B) \cdot C$. On pose $w = u \cdot v$ avec $u \in A \cdot B$ et $v \in C$. On pose ensuite $u = x \cdot y$ avec $x \in A$ et $y \in B$. Or, comme l'opération " \cdot ," pour les mots, est associative, on a bien $w = (x \cdot y) \cdot v = x \cdot (y \cdot v)$, et donc $w \in A \cdot (B \cdot C)$.

"\(\text{"}\)" Soit $w \in A \cdot (B \cdot C)$. On pose $w = u \cdot v$ avec $u \in A$ et $v \in B \cdot C$. On pose ensuite $v = x \cdot y$ avec $x \in B$ et $y \in C$. Or, comme l'opération "\cdot\"," pour les mots, est associative, alors $w = u \cdot (x \cdot y) = (u \cdot x) \cdot y$ et donc $w \in A \cdot (B \cdot C)$.

(2) On suppose $A\subseteq B$. On a donc $B=A\cup (B\setminus A)$, et par définition $A^*=\bigcup_{n\in\mathbb{N}}A^n$, et $B^*=\bigcup_{n\in\mathbb{N}}B^n$. Montrons par récurrence, pour $n\in\mathbb{N},$ P(n): " $A^n\subseteq B^n$."

- On a $A^0 = \{\varepsilon\} \subseteq B^0 = \{\varepsilon\}$ d'où P(0).
- Soit $n \in \mathbb{N}$ tel que $A^n \subseteq B^n$. On a $A^{n+1} = A^n \cdot A$ et $B^{n+1} = B^n \cdot B$. Or, comme $A^n \subseteq B^n$ et $A \subseteq B$, et que "·"est croissant (dans l'inclusion), on en déduit que $A^{n+1} \subseteq B^{n+1}$. D'où P(n+1).
- (3) On procède par double-inclusion.
 - "
 \[\text{"}\] On a $A^* = (A^*)^1 \subseteq \bigcup_{n \in \mathbb{N}} (A^*)^n = (A^*)^*.$
 - " \subseteq " Soit $w \in (A^*)^*$. On pose donc $w = u_1 \dots u_n$ avec, pour tout $i \in \llbracket 1, n \rrbracket, u_i \in A^*$. On pose également, pour tout $i \in \llbracket 1, n \rrbracket, u_i = v_{i,1} \dots v_{i,m_i}$ où, pour tout $j \in \llbracket 1, m_i \rrbracket, v_{i,j} \in A$. D'où, $w = v_{11} \dots v_{1,m_1} v_{21} \dots v_{2,m_2} \dots v_{n,m_n} \in A^*$. On en déduit que $(A^*)^* \subseteq A^*$.
- (4) On procède par double-inclusion.
 - $\text{``\subseteq"} \ \ \text{On a} \ \{\varepsilon\} \subseteq A^* \ \text{et donc} \ A^* = A^* \cdot \{\varepsilon\} \subseteq A^* \cdot A^*. \ \text{D'où} \ A^* \subseteq A^* \cdot A^*.$
 - " \supseteq " Soit $w \in A^* \cdot A^*$. On décompose ce mot : soient $u_1, u_2 \in A^*$ tels que $w = u_1 \cdot u_2$. On pose $n = |u_1|$, et $m = |u_2|$. On décompose également ces deux mots : soient $(w_1, w_2, \ldots, w_n) \in A^n$ et $(w_{n+1}, w_{n+2}, \ldots, w_{n+m}) \in A^m$ tels que $u_1 = w_1 \cdot w_2 \cdot \ldots \cdot w_n$ et $u_2 = w_{n+1} \cdot w_{n+2} \cdot \ldots \cdot w_{n+m}$. Ainsi,

$$w = w_1 \cdot w_2 \cdot \ldots \cdot w_n \cdot w_{n+1} \cdot \ldots \cdot w_{n+m} \in A^*.$$

D'où $A^* \cdot A^* \subseteq A^*$.

- (5) On procède par double-inclusion.
 - " \subset " Soit $w \in A \cup B$.
 - Si $w \in A$, alors $w \in A^*$, et donc $w = w \cdot \varepsilon \in A^* \cdot B^*$.
 - Si $w \in B$, alors $w \in B^*$, et donc $w = \varepsilon \cdot w \in A^* \cdot B^*$.

On a donc bien $A\cup B\subseteq A^*\cdot B^*$, et par croissance de l'étoile, on a bien $(A\cup B)^*\subseteq (A^*\cdot B^*)^*$.

" \supseteq " Soit $w \in (A^* \cdot B^*)^*$. On pose

$$w = u_{11} \dots u_{1,n_1} v_{11} \dots v_{1,m_1}$$

$$\cdot u_{21} \dots u_{2,n_2} v_{21} \dots v_{2,n_2}$$

$$\vdots$$

$$\cdot u_{p,1} \dots u_{p,n_p} v_{p,1} \dots v_{p,m_p}$$

où, $u_{i,j} \in A$ et $v_{i,j} \in B$. On a donc $w \in (A \cup B)^*$.

- (6) On procède par double-inclusion.
 - "

 Soit $w \in A \cdot (B \cup C)$. On pose $w = u \cdot v$ avec $u \in A$ et $v \in B \cup C$.
 - Si $v \in B$, alors $w = u \cdot v \in A \cdot B$ et donc $w \in (A \cdot B) \cup (A \cdot C)$.
 - Si $v \in C$, alors $w = u \cdot v \in A \cdot C$ et donc $w \in (A \cdot B) \cup (A \cdot C)$.

On a bien montré $A \cdot (B \cup C) \subseteq (A \cdot B) \cup (A \cdot C)$.

- " \supseteq " Soit $w \in (A \cdot B) \cup (A \cdot C)$.
 - Si $w \in A \cdot B$, on pose alors $w = u \cdot v$ avec $u \in A$ et $v \in B \subseteq B \cup C$. Ainsi, on a bien $w = u \cdot v \in A \cdot (B \cup C)$.
 - Si $w \in A \cdot C$, on pose alors $w = u \cdot v$ avec $u \in A$ et $v \in C \subseteq B \cup C$. Ainsi, on a bien $w = u \cdot v \in A \cdot (B \cup C)$.

On a bien montré $A \cdot (B \cup C) \supseteq (A \cdot B) \cup (A \cdot C)$.

- 3. (1) Soit $A=\{a\}$ et $B=\{b\}$ avec $a\neq b$. On sait que $abab\in (A\cdot B)^*$. Or, $abab\not\in A^*\cdot B^*$ donc $L_1\not\subseteq L_2$. De plus, $a\in A^*\cdot B^*$ et $a\not\in (A\cdot B)^*$ donc $L_2\not\subseteq L_1$. Il n'y a aucune relation entre L_1 et L_2 .
 - (2) On sait que $(A \cdot B)^* \subseteq (A^* \cdot B^*)^*$ (car $A \cdot B \subseteq A^* \cdot B^*$ et par croissance de l'étoile). Mais, $(A \cdot B)^* \not\supseteq (A^* \cdot B^*)^*$. En effet, avec $A = \{a\}$ et $B = \{b\}$ où $a \neq b$, on a $ba \in (A^* \cdot B^*)^*$ (d'après la question précédente) mais $ba \not\in (A \cdot B)^*$. On a donc seulement $L_1 \subseteq L_2$.

- (3) On a $L_1 \subseteq L_2$. En effet, $A \cap B \subseteq B$ donc $(A \cap B)^* \subseteq B^*$ par croissance l'étoile. De même, $A \cap B \subseteq A$ donc $(A \cap B)^* \subseteq A^*$. D'où $(A \cap B)^* \subseteq A^* \cap B^*$. Mais, $L_1 \not\supseteq L_2$. En effet, avec $A = \{a\}$ et $B = \{aa\}$, on a $A \cap B = \emptyset$ et donc $L_1 = (A \cap B)^* = \{\varepsilon\}$, mais, $L_2 = A^* \cap B^* = B^*$ (car $A^* \subseteq B^*$), et donc $L_2 \not\subseteq L_1$.
- (4) Comme $A^* \subseteq (A \cup B^*)$ et $B^* \subseteq (A \cup B)^*$, alors $A^* \cup B^* \subseteq (A \cup B)^*$. Mais, $A^* \cup B^* \not\supseteq (A \cup B)^*$. En effet, si $A = \{a\}$ et $B = \{b\}$ où $a \neq b$, alors on a $ba \in (A \cup B)^*$ mais $ba \notin A^* \cup B^*$. On a donc seulement $L_1 \subseteq L_2$.
- (5) On a $L_1\subseteq L_2$. En effet, soit $w\in A\cdot (B\cap C)$. On pose $w=u\cdot v$ avec $u\in A$ et $v\in B\cap C$. Comme $v\in B$, alors $w=u\cdot v\in A\cdot B$. De même, comme $v\in C$, alors $w=u\cdot v\in A\cdot C$. On a donc bien $w\in (A\cdot B)\cap (A\cdot C)$. D'où $L_1\subseteq L_2$. Mais, $L_1\not\supseteq L_2$. En effet, avec $A=\{a,aa\},\,B=\{b\}$ et $C=\{ab\}$ où $a\neq b$, on a $aab\not\in B\cap C=\varnothing$ mais, $aab\in A\cdot B$ et $aab\in A\cdot C$, donc $aab\in L_2$. On a donc seulement $L_1\subseteq L_2$.
- (6) On a, d'après la question 2.

$$L_1 = (A^* \cup B)^* = ((A^*)^* \cdot B^*)^* = (A^* \cdot B^*)^* = (A \cup B)^* = L_2.$$

5 Habitants d'expressions régulières

- 1. (1) Les mots de taille 1, 2, 3 et 4 de $\big((ab)^*\mid a\big)^*$ sont a,aa,ab,aaa,aaaa,abab,aba,abaa,aab,aab et aaba.
 - (2) On sait, tout d'abord, que l'expression régulière $(a \cdot ((b \cdot b)^* \mid (a \cdot \varnothing)) \cdot b) \mid \varepsilon$ est équivalente à $(a \cdot (bb)^* \cdot b)$. Les mots de taille 1, 2, 3 et 4 sont donc abbb et ab.
- - (2) Les mots de taille 1, 2 et 3 de $(a \cdot b)^* \mid (a \cdot c)^*$ sont ab et ac.

6 Regexp Crossword

https://regexcrossword.com/

7 Description d'automates au moyen d'expression régulières

- 1. $(a \mid b)^* \cdot a \cdot b \cdot b \cdot a \cdot (a \mid b)^*$;
- 3. $(a \cdot (ab)^*) | (a \cdot a \cdot (ba)^*);$

2. $a^* \cdot a \cdot b^*$;

4. $(aa) \cdot (aa)^*$.

8 Vocabulaire des automates

On représente, ci-dessous, l'automate $\mathcal A$ décrit dans l'énoncé.

Figure 1 – Automate décrit dans l'énoncé de l'exercice 8

1. Cet automate n'est pas complet : à l'état 0, la lecture d'un a peut conduire à l'état 0 ou bien à l'état 1.

- 2. Le mot baba est reconnu par $\mathcal A$ mais pas le mot cabcb.
- 3. L'automate reconnaît les mots dont la $3\underline{\grave{\rm eme}}$ lettre du mot, en partant de la fin, est un a.

9 Complétion d'automate

- 1. Non, cet automate n'est pas complet. Par exemple, la lecture d'un b à l'état 1 est impossible.
- 2. Cet automate reconnaît le langage $L = \mathcal{L} \big(a \cdot b \cdot (a \mid b)^* \big)$.
- 3.

Figure 2 – Automate complet équivalent à ${\mathscr A}$

10 Construction d'automates

11 Déterminisation 1

12 Déterminisation 2

13 Exercice supplémentaire 1

- $1.\ \ Montrer\ que\ l'ensemble\ des\ langages\ reconnaissables\ est\ stable\ par\ complémentaire.$
- $2.\ \ Montrer\ que\ l'ensemble\ des\ languages\ reconnaissables\ est\ stable\ par\ intersection.$
- 1. Soient $\mathcal{A}=(\mathcal{\Sigma},\mathbb{Q},I,F,\delta)$ et $\mathcal{A}'=(\mathcal{\Sigma},\mathbb{Q}',I',F',\delta')$ deux automates déterministes complets, tels que $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{A}')$. Alors

$$\mathscr{L}(\Sigma, \mathfrak{Q}', I', \mathfrak{Q}' \setminus F', \delta')) = \Sigma^* \setminus \mathscr{L}(\mathscr{A}).$$

2. On utilise les lois de De Morgan en passant au complémentaire les deux automates, puis l'union (que l'on a vu en cours), et on repasse au complémentaire.