1

EE3900 : Gate Assignment-2

Nelakuditi Rahul Naga - AI20BTECH11029

Download all python codes from

https://github.com/Rahul27n/EE3900/blob/main/ Gate_Assignment_2/Gate_Assignment_2.py

and latex-tikz codes from

It is given by:

$$H'(s) = \frac{1}{s(s + \frac{1}{5})}$$
 (2.0.2)

Hence the step response x(t) using the Lemma-2.1 is given by :

$$x(t) = 5(1 - e^{-\frac{t}{5}})u(t)$$
 (2.0.3)

1 QUESTION: GATE EC 2007 Q.49

The frequency response of a linear, time-invariant system is given by :

$$H(f) = \frac{5}{1 + j10\pi f}$$

The step response of the system is:

(A)
$$5(1 - e^{-5t})u(t)$$

(B)
$$5(1 - e^{-\frac{t}{5}})u(t)$$

(C)
$$\frac{1}{5}(1-e^{-5t})u(t)$$

(D)
$$\frac{1}{5}(1-e^{-\frac{t}{5}})u(t)$$

Fig. 4: Step response x(t) vs t

2 SOLUTION

Lemma 2.1 (Table of Laplace Transforms).

Echima 2:1 (Table of Eaplace Transforms):	
Time Function	Laplace transform of $f(t)$
$f(t) = \mathcal{L}^{-1} \left\{ F(s) \right\}$	$F(s) = \mathcal{L}\{f(t)\}\$
u(t)	$\frac{1}{s}$, $s > 0$
$\frac{1}{a}(1-e^{-at})u(t)$	$\frac{1}{s(s+a)}, \ s(s+a) > 0$

The frequency response H(f) of the system can be rewritten as follows:

$$H(s) = \frac{5}{1+5s} = \frac{1}{s+\frac{1}{5}}$$
 (2.0.1)

where $s = j\omega$ and $w = 2\pi f$. The Laplace transform of the impulse response y(t) is given by H(s). To find the step response x(t) we need to multiply H(s) with $\frac{1}{s}$.