Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №4.5.2

Интерференция лазерного излучения

Студент Ришат ИСХАКОВ 513 группа

Преподаватель Александр Александрович Казимиров

Цель работы: исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используются: гелий-неоновый лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф С1-76, поляроид, линейка.

1. Теоретическая часть

Лазер состоит из двух зеркал, составляющих лазерный резонатор, и расположенной между ними газообразной усиливающей среды, состоящей из гелия и неона. Характерное расстояние между зеркалами $-0.2 \div 1$ м.

Излучение распространяется по резонатору в прямом и обратном направлениях. При этом максимальным усилением обладают волны, для которых набег фазы при полном обходе резонатора кратен 2π . Тогда можно сформулировать условие на разность частот излучения. Так как:

$$\frac{2\pi}{\lambda}2L = 2\pi m, \quad L = m\lambda, \quad \nu_m = \frac{mc}{2L},$$

тогда:

$$\Delta \nu_m = \nu_{m+1} - \nu_m = \frac{c}{2L},\tag{1}$$

где L — длина резонатора, m — целое число. Поэтому лазер генерирует отдельные типы колебаний, называемые модами, удовлетворяющие условию (1).

Спектральная ширина отдельной моды определяется добротностью резонатора лазера и мощностью излучения. В He-Ne лазере из-за малого усиления активной среды используются зеркала с высоким отражением. добротность резонатора большая и спектральная ширина моды может быть очень узкой, вплоть до единиц Γ ц. Ввиду наличия тепловых флуктуаций длины резонатора типичная ширина моды составляет 10^5 Γ ц. Количество генерируемых мод определяется шириной спектра усиления активной среды. Эта ширина складывается из естественной ширины линии излучения атомов неона и доплеровского уширения, вызванного тепловым движением атомов. При температуре 400К ширина по полувысоте спектра излучения газообразного неона равна $1.5 \cdot 10^9$ Γ ц.

Вследствие тепловых флуктуаций длина резонатора меняется, в результате чего моды "переползают"с одного края контура на другой, там исчезают, а на другом краю рождаются новые. Таким образом температура нестабильность приводит к медленным изменениям амплитуд колебаний в лазерных модах и числа самих мод.

Видность интерференционной картины. Если в плоскости наблюдения две плоские волны с длиной волны λ_0 сходятся под малым углом α , то наблюдается интерференционная картина в виде последовательности темных и светлых полос с расстоянием между ними:

$$\Delta x = \frac{\lambda_0}{\alpha} \tag{2}$$

Рис. 1: Осциллограмма сигналов фотодиода

Для оценки чёткости интерференционной картины в окрестности некоторой точки используют параметр видимости:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} и I_{min} — максимальная и минимальная интенсивности света интерференционной картины вблизи выбранной точки. Человеческий глаз может уверенно различать чередование светлых и темных полос при $V \geq 0, 1$.

Пусть интерферируют две волны с амплитудами A_m и B_m . Если в точке наблюдения разность фаз между волнами равна $k_m l$, где k_m – волновое число, l – разность хода, то интенсивность света в этой точке:

$$I_m = A_m^2 + B_m^2 + 2A_m B_m \cos(k_m l) \tag{4}$$

В максимуме интенсивность $I_{max} = (A_m + B_m)^2$, в минимуме $I_{min} = (A_m - B_m)^2$. Отсюда видность:

$$V_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = (B_m/A_m)^2$.

Рассмотрим влияние спекрального состава на видность интерференционной картины:

$$V_2(l) = \frac{\sum_{n=1}^{\infty} A_n^2 cos(\frac{2\pi\Delta\nu nl}{c})}{\sum_{n=1}^{\infty} A_n^2}.$$
 (6)

Введем также поправку к видности, связанную с углом между плоскостями поляризации падающих волн:

$$V_3 = \cos\beta,\tag{7}$$

где β — угол между плоскостями поляризации. Кроме того, по данным осциллограммы (рис.1) можно определить

$$\delta = \frac{h_1}{h_2} \tag{8}$$

$$V = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

где V — полная видимость. Если имеют место все три фактора уменьшения видимости: неравенство амплитуд, несовпадение поляризаций и разная оптическая задержка между интерферирующими пучками, то:

$$V = V_1 \cdot V_2 \cdot V_3. \tag{10}$$

2. Экспериментальная установка

Рис. 2: Схема экспериментальной установки

Экспериментальная установка представляет собой интерферометр Майкельсона, смонтированный на вертикально стоящей плите. Источником света служит гелий-неоновый лазер ($\lambda_0 = 632, 8$ нм). Пучок лазерного излучения отражается от зеркала З и проходит через ромб Френеля(РФ).

Пучок 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π_1 и, частично отражаясь от диагональной плоскости делительного кубика, выходит из интерферометра, попадая на зеркало 3_3 и фотодиод Φ Д. При этом можно вращать Π_1 , изменяя плоскость поляризации.

Пучок 2 проходит линзу Π , поляроид Π_2 , отражается от зеркала \Im_2 , снова проходит Π_2 , линзу Π и делительный кубик, выходит из интерферометра, попадает на зеркало \Im_3 и далее на фотодиод Φ Д. Таким образом, от зеркала \Im_3 под небольшим углом друг к другу идут на фотодиод два пучка, проходящие через разные плечи интерферометра. Для питания усилителя сигнала фотодиода и управления пьезокерамикой используется блок питания Π .

3. Установка и параметры измерения

Расстояние между зеркалами лазера: 65 см.

Зависимость видности от угла β поворота поляроида

Таблица 1: Измерим зависимость видности ν_3 от угла поворота поляроида при нулевой разности хода

да										
β , °	h_1	h_2	h_3	h_4	δ	ν	ν_1	ν_3	$\cos \beta$	$\cos^2 \beta$
90	0.2	1.4	1.1	2.2	0.14	0.33	0.66	0.50	0.00	0.00
85	0.2	1.5	1.1	2.3	0.13	0.35	0.64	0.55	0.09	0.01
80	0.3	1.5	1.1	2.5	0.20	0.39	0.75	0.52	0.17	0.03
75	0.3	1.5	1	2.6	0.20	0.44	0.75	0.60	0.26	0.07
70	0.4	1.4	0.9	2.8	0.29	0.51	0.83	0.62	0.34	0.12
65	0.4	1.4	0.8	2.8	0.29	0.56	0.83	0.67	0.42	0.18
60	0.5	1.4	0.7	3	0.36	0.62	0.88	0.71	0.50	0.25
55	0.5	1.4	0.7	2.9	0.36	0.61	0.88	0.69	0.57	0.33
50	0.8	1.4	0.6	3.7	0.57	0.72	0.96	0.75	0.64	0.41
45	0.9	1.3	0.6	4	0.69	0.74	0.98	0.75	0.71	0.50
40	1	1.3	0.5	4.2	0.77	0.79	0.99	0.79	0.77	0.59
35	1.2	1.3	0.5	4.6	0.92	0.80	1.00	0.80	0.82	0.67
30	1.3	1.4	0.5	4.6	0.93	0.80	1.00	0.80	0.87	0.75
25	1.3	1.4	0.5	4.8	0.93	0.81	1.00	0.81	0.91	0.82
20	1.4	1.4	0.5	4.8	1.00	0.81	1.00	0.81	0.94	0.88
15	1.5	1.3	0.5	4.9	1.15	0.81	1.00	0.82	0.97	0.93
10	1.5	1.3	0.5	5.1	1.15	0.82	1.00	0.82	0.98	0.97
5	1.6	1.4	0.5	5.3	1.14	0.83	1.00	0.83	1.00	0.99
0	1.7	1.4	0.4	5.4	1.21	0.86	1.00	0.87	1.00	1.00

Рис. 3: График зависимости $\nu(\cos^2\beta)$

Зависимость видности ν_2 от координаты x блока

Таблица 2: Измерим зависимость видности ν_2 от координаты x блока

x	h_1	h_2	h_3	h_4	δ	ν	ν_1	ν_2
10	1.2	0.7	1	2.8	0.58	0.47	0.96	0.49
12	1.2	0.8	0.9	3.3	0.67	0.57	0.98	0.58
14	1.2	1.1	0.9	3.8	0.92	0.62	1.00	0.62
16	1.2	1.3	0.9	4.1	1.08	0.64	1.00	0.64
18	1.2	1.4	1	4.3	1.17	0.62	1.00	0.62
20	1.2	1.8	1.3	4.7	1.50	0.57	0.98	0.58
22	1.2	1.5	1.3	4.1	1.25	0.52	0.99	0.52
24	1.2	0.8	1.2	2.9	0.67	0.41	0.98	0.42
26	1.2	0.6	1	2	0.50	0.33	0.94	0.35
32	1.2	1.6	2.6	2.8	1.33	0.04	0.99	0.04
38	1.2	1.2	2.3	2.6	1.00	0.06	1.00	0.06
44	1.2	0	1.2	1.4	0.00	0.08	1.00	0.08
50	0.9	1.8	2.4	2.9	2.00	0.09	0.94	0.10
54	0.9	1.8	2.4	2.9	2.00	0.09	0.94	0.10
66	1.4	3.4	4.4	4.8	2.43	0.04	0.91	0.05
70	1.2	2.6	3.3	4.2	2.17	0.12	0.93	0.13
72	1.2	3	3.2	6	2.50	0.30	0.90	0.34
74	1.2	3	3.1	7	2.50	0.39	0.90	0.43
76	1.2	3	2.9	6.4	2.50	0.38	0.90	0.42
78	1.3	3.3	2.7	6	2.54	0.38	0.90	0.42
81	1.2	3.5	2.5	5.7	2.92	0.39	0.87	0.45
84	1.2	3.7	2.2	5	3.08	0.39	0.86	0.45

Рис. 4: График зависимости $\nu_2(x)$

По полученному графику определим примерный размер резонатора лазера:

$$L \approx 77 - 15 = 62 \text{ cm}$$

Тогда межмодовое расстояние равно:

$$\Delta \nu_m = \frac{c}{2L} = 2.4 \cdot 10^8 \ \Gamma$$
ц

Полуширина первого максимума:

$$l_{1/2} = 16 \text{ cm}$$

Тогда диапазон частот, в котором происходит генерация продольных мод оценивается выражением:

$$\Delta F = \frac{\sqrt{\ln 2}c}{l_{1/2}} = 13 \cdot 10^8 \ \Gamma$$
ц

Оценим число генерируемых лазером продольных мод:

$$n \approx 1 + 1.2 \frac{L}{l_{1/2}} = 6$$

4. Вывод

Исследуя видность интерференционной картины излучения гелий-неонового лазера мы измерили диапазон частот, в котором происходит генерация продольных мод, число продольных мод. Почти точно определили размер резонатора. Зависимость $\nu_2(\cos^2\beta)$ оказалось линейной, но не проходит через ноль из-за неточности установки и измерений (поляроид не перекрывал свет полностью).