Registrene er spesielle heltallsvariabler som er ekstra tett koblet til regneenheten. Vi skal bruke disse registrene:

%EAX %ECX %EDX %EBP %ESP

Parametre angir data til instruksjonen; antallet avhenger av instruksjonen. Vi vil bruke disse parametrene:

%EAX er et register.

\$17 er en tallkonstant.

f er navnet på en prosedyre eller en funksjon.

8(%ESP) angir en variabel eller en parameter.

Kommentarer ignoreres.

	.globl <i>xxx</i>	Navnet xxx skal være kjent utenfor filen
mo∨l	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Flytt $\langle v_1 \rangle$ til $\langle v_2 \rangle$.
cdq		Omform 32-bits %EAX til 64-bits %EDX:%EAX.
leal	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Flytt $\langle v_1 \rangle$ s adresse til $\langle v_2 \rangle$.
push1	$\langle \mathrm{v} \rangle$	Legg ⟨v⟩ på stakken.
popl	$\langle \mathrm{v} \rangle$	Fjern toppen av stakken og legg verdien i $\langle v \rangle$.
negl	$\langle v \rangle$	Skift fortegn på ⟨v⟩.
addl	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Adder $\langle v_1 \rangle$ til $\langle v_2 \rangle$.
subl	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Subtraher $\langle v_1 \rangle$ fra $\langle v_2 \rangle$.
imull	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Multipliser $\langle v_1 \rangle$ med $\langle v_2 \rangle$.
idivl	$\langle \mathrm{v} \rangle$	Del %EDX:%EAX med ⟨v⟩; svar i %EAX; rest i
		%EDX.
andl	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Logisk And.
orl	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Logisk Or.
xorl	$\langle \mathrm{v}_1 angle$, $\langle \mathrm{v}_2 angle$	Logisk Xor.
call	(lab)	Kall funksjon/prosedyre i ⟨lab⟩.
enter	$and n_1 $, $and n_2 $	Start funksjon/prosedyre på blokknivå $\langle n_2 \rangle$ med $\langle n_1 \rangle$ byte lokale variabler.
leave		Rydd opp når funksjonen/prosedyren er fer-
Teave		dig.
ret		Returner fra funksjon/prosedyre.
cmpl	$\langle \mathrm{v}_1 \rangle$, $\langle \mathrm{v}_2 \rangle$	Sammenligning $\langle v_1 \rangle$ og $\langle v_2 \rangle$.
jmp	(lab)	Hopp til 〈lab〉.
је	⟨lab⟩	Hopp til 〈lab〉 hvis =.
sete	$\langle v \rangle$	Sett $\langle v \rangle = 1$ om =, ellers $\langle v \rangle = 0$.
setne	$\langle \mathrm{v} \rangle$	Sett $\langle v \rangle = 1$ om \neq , ellers $\langle v \rangle = 0$.
setl	$\langle { m v} \rangle$	Sett $\langle v \rangle = 1$ om $\langle v \rangle = 0$.
setle	$\langle { m v} \rangle$	Sett $\langle v \rangle = 1$ om \leq , ellers $\langle v \rangle = 0$.
setg	$\langle { m v} \rangle$	Sett $\langle v \rangle = 1$ om >, ellers $\langle v \rangle = 0$.
setge	$\langle v \rangle$	Sett $\langle v \rangle = 1$ om \geq , ellers $\langle v \rangle = 0$.

Tabell: x86-instruksjoner brukt i prosjektet. Følgende symboler er brukt i tabellen:

- $\langle v \rangle$ kan være en konstant («\$17»),
 - et register («%EAX»),
 - en lokal variabel («-4(%EBP)») eller
 - en parameter(«8 (%EBP)»).
- $\langle n \rangle$ er en heltallskonstant.
- (lab) er en merkelapp som angir en minnelokasjon.