Integrazione numerica

Matteo Duranti

matteo.duranti@pg.infn.it

(cfr. http://www.fisica.unipg.it/~borromeo/Appunti/FisComp/FisComp2014/pdf/integrali.pdf

https://it.wikipedia.org/wiki/Divisione_dei_polinomi

https://en.wikipedia.org/wiki/Legendre_polynomials

https://pomax.github.io/bezierinfo/legendre-gauss.html

http://mathworld.wolfram.com/GaussianQuadrature.html

http://mathworld.wolfram.com/Legendre-GaussQuadrature.html)

Integrazione numerica

Sicuramente:

- integrali → somme
- infinitesimi → intervalli piccoli

In generale l'idea è quella di suddividere il range di integrazione in *N* intervalli:

$$\int_a^b f(x) dx = \sum_{j=0}^N w_j f(x_j) \quad a \le x \le b$$

dove:

- -N deve essere il più grande possibile (ma questo "costa" tempo CPU);
- $-w_j$ sono dei pesi che dipendono dal singolo intervallo scelto (che "dimensioni" avranno questi pesi?)

Integrazione a spaziatura fissa

$$\int_{a}^{b} f(x) dx \longrightarrow x_{j} = a + h \cdot j \qquad 0 \le j \le N \qquad h = \frac{b - a}{N}$$

dove:

- -h è la dimensione dell'intervallino;
- $-x_j$ è una posizione "caratteristica" ed univoca dell'intervallino (i.e. il bordo sinistro, ma anche il centro, quello destro, etc... sono scelte valide)

(* *N* intervalli sono definiti da *N*+1, da *0* a *N*, "bordi")

Integrazione a spaziatura fissa: metodo del rettangolo

$$\int_{a}^{b} f(x) \, dx = \sum_{j=0}^{N} w_{j} f(x_{j})$$

l'area di ogni intervallo viene calcolata come quella del rettangolo definito da h e $f(x_i)$:

$$\int_{a}^{b} f(x) dx = h \sum_{j=0}^{N-1} f(x_{j})$$

quindi:

$$-w_j = h$$

Integrazione a spaziatura fissa: sviluppo in serie di Taylor

Si può anche pensare di "migliorare" la cosa usando la formula di Taylor. Per ogni intervallo $[x_i, x_i+h]$:

$$\int_0^h f(x) dx = \int_0^h \left(f(0) + x \cdot f'(0) + O(x^2) \right) dx$$
$$= h \cdot f(0) + \frac{h^2}{2} f'(0) + O(h^3)$$

Integrazione a spaziatura fissa: sviluppo in serie di Taylor

Si può anche pensare di "migliorare" la cosa usando la formula di Taylor. Per ogni intervallo $[x_i, x_i+h]$:

$$\int_0^h f(x) dx = \int_0^h \left(f(0) + x \cdot f'(0) + O(x^2) \right) dx$$
$$= h \cdot f(0) + \frac{h^2}{2} f'(0) + O(h^3)$$

ovviamente questo lo possiamo fare se, oltre a conoscere $f(x_j)$, sappiamo anche $f'(x_j)$, cioè non è applicabile, ad esempio, se la nostra f(x) è una cosa, essa stessa, numerica:

double func(double x)

$$\int_0^h f(x) dx = \int_0^h \left(f(0) + x \cdot f'(0) + O(x^2) \right) dx$$
$$= h \cdot f(0) + \frac{h^2}{2} f'(0) + O(x^3)$$

Fra due generici punti, però, posso sempre "tracciare una lina" e f sarà, banalmente, il coefficiente angolare f'(0) = m = (f(h) - f(0))/h

$$\int_0^h f(x) \, dx = \int_0^h \left(f(0) + x \cdot f'(0) + O(x^2) \right) \, dx$$
$$= h \cdot f(0) + \frac{h^2}{2} f'(0) + O(x^3)$$

Fra due generici punti, però, posso sempre "tracciare una lina" e f sarà, banalmente, il coefficiente angolare f'(0) = m = (f(h) - f(0))/h

andando a integrare su 2 intervalli:

$$\int_0^{2h} f(x)dx = \frac{h}{2} \cdot f(0) + h \cdot f(h) + \frac{h}{2} \cdot f(2h)$$

e generalizzando a N (tali da coprire tutto il range [a,b]):

$$\int_0^{Nh} f(x)dx = \frac{h}{2}f(0) + hf(h) + \dots + hf((N-1)h) + \frac{h}{2}f(Nh)$$

$$\int_0^h f(x) \, dx = \int_0^h \left(f(0) + x \cdot f'(0) + O(x^2) \right) \, dx$$
$$= h \cdot f(0) + \frac{h^2}{2} f'(0) + O(x^3)$$

"interpolando" linearmente e generalizzando a N (tali da coprire tutto il range [a,b]):

$$\int_0^{Nh} f(x)dx = \frac{h}{2}f(0) + hf(h) + \dots + hf((N-1)h) + \frac{h}{2}f(Nh)$$

che quindi, in generale, significa:

$$\int_{a}^{b} f(x) \, dx = \sum_{j=0}^{N} w_{j} f(x_{j})$$

$$- w_0 = w_5 = h/2$$

$$- w_1 = w_2 = w_3 = w_4 = h$$

$$\int_0^h f(x) \, dx = \int_0^h \left(f(0) + x \cdot f'(0) + O(x^2) \right) \, dx$$
$$= h \cdot f(0) + \frac{h^2}{2} f'(0) + O(x^3)$$

"interpolando" linearmente e generalizzando a N (tali da coprire tutto il range [a,b]):

$$\int_0^{Nh} f(x)dx = \frac{h}{2}f(0) + hf(h) + \dots + hf((N-1)h) + \frac{h}{2}f(Nh)$$

che quindi, in generale, significa:

$$\int_{a}^{b} f(x) \, dx = \sum_{j=0}^{N} w_{j} f(x_{j})$$

$$- w_0 = w_N = h/2$$

$$- w_1 = w_2 = \dots = w_{N-1} = h$$

Invece che integrare tanti rettangolini possiamo pensare di fare meglio ed integrare tanti trapezi:

L'area di ogni trapezio sarà:

$$\frac{1}{2} (f_j + f_{j+1}) (x_{j+1} - x_j) =$$

$$\frac{1}{2} (f_j + f_{j+1}) h$$

Invece che integrale tanti rettangolini possiamo pensare di fare meglio ed integrare tanti trapezi:

L'area di ogni trapezio sarà:

$$\frac{1}{2} (f_j + f_{j+1}) (x_{j+1} - x_j) = \frac{1}{2} (f_j + f_{j+1}) h$$

Invece che integrale tanti rettangolini possiamo pensare di fare meglio ed integrare tanti trapezi:

L'area di ogni trapezio sarà:

$$\frac{1}{2} (f_j + f_{j+1}) (x_{j+1} - x_j) = \frac{1}{2} (f_j + f_{j+1}) h$$

e quindi, nell'esempio con N=5, $x_0=a$, $x_5=b$:

$$\int_{a}^{b} f(x) dx \approx h \cdot \left(\frac{1}{2} \cdot (f_0 + f_1) + \frac{1}{2} \cdot (f_1 + f_2) + \frac{1}{2} \cdot (f_2 + f_3) + \frac{1}{2} \cdot (f_3 + f_4) + \frac{1}{2} \cdot (f_4 + f_5) \right)$$

Cioè, in generale:

$$- w_0 = w_5 = h/2$$

 $- w_1 = w_2 = w_3 = w_4 = h$

Invece che integrale tanti rettangolini possiamo pensare di fare meglio ed integrare tanti trapezi:

L'area di ogni trapezio sarà:

$$\frac{1}{2} (f_j + f_{j+1}) (x_{j+1} - x_j) = \frac{1}{2} (f_j + f_{j+1}) h$$

e quindi, nell'esempio con N=5, $x_0=a$, $x_5=b$:

$$\int_{a}^{b} f(x) dx \approx h \cdot \left(\frac{1}{2} \cdot (f_0 + f_1) + \frac{1}{2} \cdot (f_1 + f_2) + \frac{1}{2} \cdot (f_2 + f_3) + \frac{1}{2} \cdot (f_3 + f_4) + \frac{1}{2} \cdot (f_4 + f_5) \right)$$

Cioè, in generale:

$$- w_0 = w_N = h/2$$

 $- w_1 = w_2 = ... = w_{N-1} = h$

Equivale a sviluppare in serie di Taylor, fermandosi al primo ordine

Assumiamo che l'integrale, nell'intervallo $[x_i, x_i+2h]$, possa essere scritto così:

$$\int_0^{2h} f(x) \, dx = Af(0) + Bf(h) + Cf(2h)$$

Sviluppando la f(x) in serie di Taylor ed integrandola:

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(0) + \frac{1}{6}x^3f'''(0) + \frac{1}{24}x^4f^{iv}(0)$$

$$\int_0^{2h} f(x) dx = 2hf(0) + \frac{1}{2}(2h)^2f'(0) + \frac{1}{6}(2h)^3f''(0)$$

$$+ \frac{1}{24}(2h)^4f'''(0) + \frac{1}{120}(2h)^5f^{iv}(0) + O(h^6)$$

$$\int_0^{2h} f(x) dx = 2hf(0) + 2h^2f'(0) + \frac{4}{3}h^3f''(0)$$

$$+ \frac{2}{3}h^4f'''(0) + \frac{4}{15}h^5f^{iv}(0) + O(h^6)$$

che è valutabile nel solo punto x=0 (f(0), f'(0), f''(0), etc...)

$$\int_0^{2h} f(x) \, dx = Af(0) + Bf(h) + Cf(2h)$$

Se ora usiamo lo sviluppo, che dipende solo da f(0), f'(0), f''(0), etc... per valutare f(h) e f(2h) troviamo un' altra espressione che sappiamo valutare sul solo punto x=0:

$$= Af(0) + B \left[f(0) + hf'(0) + \frac{h^2}{2}f''(0) + \frac{h^3}{6}f'''(0) + \frac{h^4}{24}f^{iv}(0) \right]$$

$$+ C \left[f(0) + 2hf'(0) + 2h^2f''(0) + \frac{4}{3}h^3f'''(0) + \frac{2}{3}h^4f^{iv}(0) \right]$$

$$= (A + B + C)f(0) + h(B + 2C)f'(0) + h^2 \left[\frac{B}{2} + 2C \right] f''(0)$$

$$+ h^3 \left[\frac{1}{6}B + \frac{4}{3}C \right] f'''(0) + h^4 \left[\frac{1}{24}B + \frac{2}{3}C \right] f^{iv}(0)$$

che dovrà essere uguale a:

$$=2hf(0)+2h^2f'(0)+\frac{4}{3}h^3f''(0)+\frac{2}{3}h^4f'''(0)+\frac{4}{15}h^5f^{iv}(0)+O(h^6)$$

$$\int_0^{2h} f(x) \, dx = Af(0) + Bf(h) + Cf(2h)$$

I coefficienti delle derivate dello stesso ordine dovranno coincidere:

1.
$$A + B + C = 2h$$

2.
$$h(B+2C) = 2h^2$$

3.
$$h^2(\frac{1}{2}B + 2C) = \frac{4}{3}h^3$$

4.
$$h^3(\frac{1}{6}B + \frac{4}{3}C) = \frac{2}{3}h^4$$

5.
$$h^4(\frac{1}{24}B + \frac{2}{3}) = \frac{4}{15}h^5$$

Le prime tre equazioni sono un sistema di 3 equazioni in 3 incognite. Sottraendo *h*/2 volte la seconda dalla terza, si ottiene:

$$C = \frac{h}{3}$$
 $B = 2h - \frac{2}{3} = \frac{4}{3}h$ $A = 2h - \frac{4}{3}h = \frac{1}{3}h$

E le altre due equazioni? Sono soddisfatte?

Prendiamo la quarta:

$$B + 8C = 4h$$
 con $B = \frac{4}{3}h$ e $C = \frac{1}{3}h$

$$\frac{4}{3}h + \frac{8}{3}h = \frac{12}{3}h = 4h$$

è soddisfatta. La quinta, invece, non lo è:

5.
$$h^4(\frac{1}{24}B + \frac{2}{3}) \stackrel{?}{=} \frac{4}{15}h^5 \rightarrow \frac{1}{18}h^5 + \frac{2}{3}h^4 \neq \frac{4}{15}h^5$$

Questo significa che

$$\int_0^{2h} f(x) \, dx = Af(0) + Bf(h) + Cf(2h)$$

non è in grado di descrivere una qualsiasi funzione.

Ci sarà un errore di ordine h⁵

La formula di Simpson integra, esattamente, i polinomi di grado non superiore al terzo.

Se prendiamo, infatti, x³, che sappiamo integrare "a mano":

$$\int_0^{2h} x^3 dx = \left| \frac{x^4}{4} \right|_0^{2h} = \frac{2^4 h^4}{4} = 4h^4$$

La formula di Simpson ci da esattamente lo stesso valore:

$$\int_0^{2h} f(x) dx = Af(0) + Bf(h) + Cf(2h)$$

$$C = \frac{h}{3} \qquad B = 2h - \frac{2}{3} = \frac{4}{3}h \qquad A = 2h - \frac{4}{3}h = \frac{1}{3}h$$

$$\Rightarrow \frac{1}{3}hf(x=0) + \frac{4}{3}hf(x=h) + \frac{1}{3}hf(x=2h)$$

$$= 0 + \frac{4}{3}h^4 + \frac{8}{3}h^4 = \frac{12}{3}h^4 = 4h^4$$

Nel caso generale dell'intervallo [a, b], diviso in tanti intervalli di ampiezza 2h:

Cioè, in generale:

$$-w_0$$
 = w_N = 1/3 h
 $-w_1 = w_3 = ... = w_{N-3} = w_{N-1} = 4/3$ h
 $-w_2 = w_4 = ... = w_{N-4} = w_{N-2} = 2/3$ h

... ed è bene verificare che N sia multiplo di 2 ...

Aver ricondotto l'integrale ad un'espressione con 3 coefficienti liberi, *A*, *B* e *C*

$$\int_0^{2h} f(x) \, dx = Af(0) + Bf(h) + Cf(2h)$$

significa descrivere la f(x), all'interno di ogni intervallo, con una parabola

$$f(x) \approx P(x) = \alpha x^2 + \beta x + \gamma$$

Metodo di Gauss (Quadratura di Gauss)

Finora ci siamo limitati a intervalli regolari (spaziatura fissa) e l'unico modo per "migliorare" la precisione è quello di aumentare il grado dello sviluppo di Taylor, per integrare polinomi di ordine crescente.

Usando l'arbitrarietà nelle posizioni x_i , si possono trovare formule esatte.

Consideriamo, per semplicità, solo intervalli [-1, 1]. Ogni intervallo generico [a, b], potrà esservici ricondotto con un cambio di variabile:

$$\int_a^b f(x) dx \qquad x = \frac{a+b}{2} + \frac{b-a}{2}y$$

con
$$-1 \le y \le 1$$
, $dx = \frac{b-a}{2} dy$ ottengo

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{a+b}{2} + \frac{b-a}{2}y) dy$$

Scegliendo del punti, x_j , ad hoc, dove valutare la funzione, è possibile risalire ai pesi, w_i , per rendere l'integrazione esatta.

Il sistema di N equazioni in N incognite (w_j)

$$\int_{-1}^{1} p(x)dx = \sum_{j=1}^{N} w_j \cdot p(x_j)$$

ha un'unica soluzione se p(x) è uno dei monomi del tipo $1,x,x^2,x^3,...x^{N-1}$ o una loro combinazione lineare, cioè un qualsiasi polinomio di grado inferiore ad N

 \rightarrow possiamo però usare l'arbitrarietà dei punti x_j per integrare polinomi di grado superiore

Polinomi di Legendre, $P_n(x)$:

$$P_0(x) = 1$$
 $P_1(x) = x$
 $nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)$
quindi per n=2:

$$2P_2(x) = 3xP_1(x) - P_0(x) = 3x^2 - 1 \Longrightarrow P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$$

Se:

- A(x) è un polinomio di grado M
- B(x) è un polinomio di grado N
 è sempre possibile scrivere

$$A(x) = B(x) \cdot Q(x) + R(x)$$

dove:

- possiamo scegliere un R(x) di grado minore di N (i.e. N-1)
- Q(x) è di grado M-N

Se:

- p(x) è un polinomio di grado M = 2N-1
- $P_N(x)$ è un polinomio di grado N è sempre possibile scrivere

$$p(x) = q(x)P_N(x) + r(x)$$

dove:

- r(x) è grado minore di N (i.e. N-1)
- q(x) è di grado M-N = 2N-1-N = N-1

Se:

- p(x) è un polinomio di grado 2N-1
- $P_N(x)$ è un polinomio di grado N è sempre possibile scrivere

$$p(x) = q(x)P_N(x) + r(x)$$

dove:

- r(x) è grado minore di N (i.e. N-1)
- *q(x)* è di grado *2N-1-N* = *N-1*

Ne segue che il nostro integrale può essere scritto come:

$$\int_{-1}^{1} p(x) dx = \int_{-1}^{1} q(x) P_N(x) dx + \int_{-1}^{1} r(x) dx$$

Sfruttando ora la proprietà dei polinomi di Legendre di essere ortogonali a tutti i polinomi di grado inferiore:

$$\int_{-1}^{1} q(x)P_N(x) dx = 0 \quad \text{se} \quad q(x) \quad \text{è di grado inferiore a N}$$

L'integrazione del polinomio di grado 2N-1 è ridotta a quella di un polinomio di grado N-1, che però non conosco

Sfruttando ora la proprietà dei polinomi di Legendre di essere ortogonali a tutti i polinomi di grado inferiore:

$$\int_{-1}^{1} q(x)P_N(x) dx = 0 \quad \text{se} \quad q(x) \quad \text{è di grado inferiore a N}$$

L'integrazione del polinomio di grado 2N-1 è ridotta a quella di un polinomio di grado N-1, che però non conosco

(*ricorda: utilzzando una somma su *N* termini si integra esattamente un polinomio di grado fino a *N-1*)

Possiamo utilizzare l'arbitrarietà nella scelta degli x_j per "liberarci" di r(x). Dato che:

$$p(x) = q(x)P_N(x) + r(x)$$

posso scegliere, per le x_j , gli N zeri di $P_N(x)$, che sappiamo esistere, sono reali e tabulati.

In questo caso, quindi:

$$p(x_j) = q(x_j)P_N(x_j) + r(x_j) = r(x_j)$$

e cioè la mia r(x), incognita, almeno nei punti x_i , è uguale a p(x), da cui:

$$\int_{-1}^{1} p(x) dx = \sum_{k=1}^{N} w_k r(x_k) = \sum_{k=1}^{N} w_k p(x_k)$$

- gli $N x_k$ sono gli zeri di $P_N(x) \rightarrow$ tabulati
- si dimostra che anche gli w_k non dipendono da p(x), q(x) e r(x) ma solo da $P_N(x)$:

$$w_i = \frac{2}{(1 - x_i^2) [P'_n(x_i)]^2} = \frac{2(1 - x_i^2)}{(n+1)^2 [P_{n+1}(x_i)]^2}$$

che quindi possono essere calcolati, anch'essi, una volta per tutte, e tabulati

- gli $N x_k$ sono gli zeri di $P_N(x) \rightarrow$ tabulati
- si dimostra che anche gli w_k non dipendono da p(x), q(x) e r(x) ma solo da P_N(x) → tabulati

Per una generica funzione, f(x), si scriverà quindi:

$$\int_{-1}^{1} f(x) dx = \sum_{k=1}^{N} w_k f(x_k)$$

Questa formula a N punti:

- è <u>esatta</u> per polinomi fino al grado 2N-1
- integra bene funzioni polinomiali o che assogmigliano a polinomi
- non funziona bene con funzioni come e-x o e-x*x

- gli N x_k sono gli zeri di P_N(x) → tabulati
- si dimostra che anche gli w_k non dipendono da p(x), q(x) e r(x) ma solo da P_N(x) → tabulati

TABLE OF THE ZEROS OF THE LEGENDRE POLYNOMIALS OF ORDER 1-16 AND THE WEIGHT COEFFICIENTS FOR GAUSS' MECHANICAL QUADRATURE FORMULA¹

ARNOLD N. LOWAN, NORMAN DAVIDS AND ARTHUR LEVENSON

Gauss' method of mechanical quadrature has the advantage over most methods of numerical integration in that it requires about half the number of ordinate computations. This is desirable when such computations are very laborious, or when the observations necessary to determine the average value of a continuously varying physical quantity are very costly. Gauss' classical result² states that, for the range (-1, +1), the "best" accuracy with n ordinates is obtained by choosing the corresponding abscissae at the zeros x_1, \dots, x_n of the Legendre polynomials $P_n(x)$. With each x_i is associated a constant a_i such that

(1)
$$\int_{-1}^{1} f(x)dx \sim a_1 f(x_1) + a_2 f(x_2) + \cdots + a_n f(x_n).$$

The accompanying table computed by the Mathematical Tables Project gives the roots x_i for each $P_n(x)$ up to n=16, and the corresponding weight coefficients a_i , to 15 decimal places.

The first such table, computed by Gauss gave 16 places up to n=7.3 More recently work was done by Nyström, 4 who gave 7 decimals up to n=10, but for the interval (-1/2, +1/2). B. de F. Bayly has given the roots and coefficients of $P_{12}(x)$ to 13 places. 5

The Gaussian quadrature formula for evaluating an integral with arbitrary limits (p, q) is given by

Oct 25, 1941

Presented to the Society, October 25, 1941, under the title Tables for Gauss' mechanical quadrature formula; received by the editors December 18, 1941.

¹ The results reported here were obtained in the course of the work done by the Mathematical Tables Project conducted by the Work Projects Administration for New York City under the sponsorship of the National Bureau of Standards, Dr. Lyman J. Briggs, Director.

- gli $N x_k$ sono gli zeri di $P_N(x) \rightarrow$ tabulati
- si dimostra che anche gli w_k non dipendono da p(x), q(x) e r(x) ma solo da P_N(x) → tabulati

Qui https://pomax.github.io/bezierinfo/legendre-gauss.html un codice Mathematica per calcolare nodi e pesi e tutte le tabelle fino a n=64. Ho caricato qui Legendre-GaussQuadrature.nb (e su Unistudium) il foglio Mathematica (rivisto e corretto):

```
In[37]:= symboliclegendre[n_, x_] := Solve[LegendreP[n, x] == 0];
legendreprime[n_, a_] := D[LegendreP[n, x], x] /. x → a;
weights[n_, x_] := 2 / ((1 - x^2) legendreprime[n, x]^2);
(*how many terms should be generated*)
h = 10;
(*what numerical precision is desired?*)
precision = 16;
```

```
str = OpenWrite["~/Desktop/lgvalues.txt"];
Do
           WriteString[str,
                   "\n = ",
                   n,
                   "\n"
             1;
           WriteString[str,
                   "i = \t \in x_{i} \in x_
            ];
            Print[
                  "\n = ",
             ];
             Print[
                   "i \t\t\t weight, w {i} \t\t\t abscissa x {i}"
            1;
            nlist = symboliclegendre[n, x];
            xnlist = x /. nlist;
            Do
                  WriteString str,
                         i,
                         ": \t\t\t ",
                         ScientificForm[Re[N[weights[n, Part[xnlist, i]], {Infinity, precision}]],
                                    NumberFormat \rightarrow (#1 <> "*10^(" <> #3 <> ")" &) ] // ToString,
                         " \t\t\t ",
                         ScientificForm[Re[N[Part[xnlist, i], {Infinity, precision}]],
                                    NumberFormat \rightarrow (#1 <> "*10^(" <> #3 <> ")" &) ] // ToString,
                          "\n"
                    ];
```

```
Print[
    i,
    ": \t\t\t ",
    Re[N[weights[n, Part[xnlist, i]], {Infinity, precision}]],
    " \t\t\t ",
    Re[N[Part[xnlist, i], {Infinity, precision}]]
    ]
    , {i, Length[xnlist]};
    , {n, 2, h}];
Write[str];
Close[str];
```

E qui il suo output:

```
n = 2
i
                weight, w_{i}
                                              abscissa x_{i}
                 1.0000000000000000
                                                  -0.577350269189626
1:
2:
                 1.0000000000000000
                                                  0.577350269189626
n = 3
i
                 weight, w_{i}
                                              abscissa x_{i}
                                                  0. \times 10^{-16}
                 0.88888888888889
1:
2:
                 0.5555555555556
                                                  -0.774596669241483
3:
                 0.5555555555556
                                                  0.774596669241483
n = 4
i
                 weight, w_{i}
                                              abscissa x_{i}
1:
                 0.652145154862546
                                                  -0.339981043584856
2:
                 0.652145154862546
                                                  0.339981043584856
3:
                 0.347854845137454
                                                  -0.861136311594053
                 0.347854845137454
                                                  0.861136311594053
4:
n = 5
i
                 weight, w_{i}
                                              abscissa x_{i}
                                                  0. \times 10^{-16}
1:
                 0.568888888888889
2:
                 0.478628670499366
                                                  -0.538469310105683
```

E qui il suo output:

```
4:
                 0.236926885056189
                                                 -0.906179845938664
                0.236926885056189
5:
                                                 0.906179845938664
n = 6
i
                weight, w_{i}
                                             abscissa x_{i}
1:
                 0.3607615730481386
                                                  0.6612093864662645
2:
                 0.3607615730481386
                                                  -0.6612093864662645
3:
                 0.4679139345726910
                                                  -0.2386191860831969
4:
                 0.4679139345726910
                                                  0.2386191860831969
5:
                 0.1713244923791703
                                                  -0.9324695142031520
                 0.1713244923791703
                                                  0.9324695142031520
6:
n = 7
                weight, w_{i}
                                             abscissa x_{i}
i
                                                 0. 	imes 10^{-16}
1:
                 0.417959183673469
2:
                 0.3818300505051189
                                                  0.4058451513773972
3:
                 0.3818300505051189
                                                  -0.4058451513773972
4:
                 0.2797053914892767
                                                  -0.7415311855993944
5:
                 0.2797053914892767
                                                  0.7415311855993944
6:
                 0.1294849661688697
                                                  -0.9491079123427585
7:
                 0.1294849661688697
                                                  0.9491079123427585
```

Il metodo visto è in realtà solo un caso particolare di una classe di "quadrature di Gauss": quadratura di Legendre-Gauss.

Introducendo una funzione positiva di "peso" dentro l'integranda e permettendo intervalli di integrazioni diversi da [-1, 1]:

$$\int_{a}^{b} \omega(x) f(x) dx$$

esistono, per alcuni valori di a, b e ω , delle regole di integrazione simili a quelle di Legendre-Gauss (a=1, b=1, $\omega=1$):

1				
Interval	$\omega(x)$	Orthogonal polynomials	A & S	For more information, see
[-1, 1]	1	Legendre polynomials	25.4.29	See Gauss-Legendre quadrature above
(-1, 1)	$(1-x)^\alpha(1+x)^\beta, \alpha,\beta>-1$	Jacobi polynomials	25.4.33 ($\beta = 0$)	Gauss-Jacobi quadrature
(-1, 1)	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials (first kind)	25.4.38	Chebyshev–Gauss quadrature
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev polynomials (second kind)	25.4.40	Chebyshev-Gauss quadrature
[0, ∞)	e^{-x}	Laguerre polynomials	25.4.45	Gauss-Laguerre quadrature
[0, ∞)	$x^{lpha}e^{-x}, lpha > -1$	Generalized Laguerre polynomials		Gauss-Laguerre quadrature
(m m)	x2	Harmita polynomiala	25 4 46	Gauss Harmita quadratura