← Optimization algorithms Quiz, 10 questions

9/10 points (90.00%)

						\neg
	✓ Congr	atulations! Yo	ou passed!		Next Item	
~	1 / 1 point					
1. Which	notation would you us	e to denote the 3rd lave	's activations when the inpu	it is the 7th evample	from the 8th minibat	rh?
VIIICII	$a^{[3]\{7\}(8)}$	e to denote the Srd layer	3 activations when the inpu	at is the 7th example	Trom the our minibati	CIT:
	$a^{[3]\{8\}(7)}$					
	W.					
Corr	ct					
	$a^{[8]\{7\}(3)}$					
	$a^{[8]\{3\}(7)}$					
~	1 / 1 point					
2.						
Which			descent do you agree with?			
O	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.					
Corr	ct					
	Training one epoch (cusing batch gradient		ining set) using mini-batch ຍ	gradient descent is fas	ster than training one	epoch
			escent without an explicit fo me time (vectorization).	r-loop over different i	mini-batches, so that	the
	1.11					
*	1 / 1 point					
3. Why is	the best mini-batch siz	e usually not 1 and not i	m, but instead something in	-between?		
	If the mini-batch size	is 1, you lose the benefit	s of vectorization across ex	amples in the mini-ba	atch.	
Corr	ct					
_						
	If the mini-batch size making progress.	is m, you end up with ba	tch gradient descent, which	has to process the w	hole training set befo	ore

•	Optimization algorithms Quiz, 10 questions	9/10 points (90.00%)
	If the mini-batch size is 1, you end up having to process the entire training set before making any p	orogress.
Un-s	elected is correct	
Un-s	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower that descent.	n mini-batch gradient
	1/1	

4.

point

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			

V

1/1 point

Optimization algorithms

Supposeuthe Deprimization algorithms
Supposeuthe Depressure in Casablanca over the first three days of January are the same:

9/10 points (90.00%)

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $v_2 = 10$, $v_2^{corrected} = 10$
- $v_2=7.5$, $v_2^{corrected}=7.5$
- $v_2=7.5$, $v_2^{corrected}=10$

Correct

 $v_2 = 10, v_2^{corrected} = 7.5$

1/1 point

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

Correct

- $lpha=0.95^tlpha_0$
- $\alpha = \frac{1}{\sqrt{t}} \alpha_0$

0/1 point

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $e^{u_t} = \beta Q ptinization in Equation (Check the temperature) (Check the theorem is a point of the computed using <math>\beta = 0.9$. What would happen to your red curve as you your $\beta = 0.9$. What would happen to your red curve as you your $\beta = 0.9$. What would happen to your red curve as your your $\beta = 0.9$. What would happen to your red curve as your your $\beta = 0.9$. What would happen to your red curve as your your your points (90.00%)?

Decreasing eta will shift the red line slightly to the right.				
This should not be selected False.				
Increasing eta will shift the red line slightly to the right.				
This should be selected				
Decreasing eta will create more oscillation within the red line.				
Correct True, remember that the red line corresponds to $eta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.				
Increasing eta will create more oscillations within the red line.				
Un-selected is correct				

point

8.

← □	Optimization algorithms Optimization algorithms Optimization for the weights	9/10 points (90.00%)						
Correct								
~	1 / 1 point							
10. Which	of the following statements about Adam is False?							
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)							
0	Adam should be used with batch gradient computations, not with mini-batches.							
Corr	rect							
	Adam combines the advantages of RMSProp and momentum							
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.							

