

Seth D. Potter
The Boeing Company
Reusable Space Systems
5301 Bolsa Avenue, MC H013-C321
Huntington Beach, CA 92647
Telephone: (714) 934-0628

FAX: (714) 934-1792 E-mail: seth.d.potter@boeing.com

BOEING

- Inexhaustible "fuel" supply -- sunlight
- No emissions of carbon dioxide or other gases (except for launch vehicles)
- No nuclear waste
- Land use advantages over other renewables:
- Less land required per unit power
- Rectennas not opaque, so dual use of land may be possible (e.g., for agriculture or conventional solar cells)
- Well-understood principles
- However, a great deal of engineering needs to be done
- Need for long-distance transmission over land is reduced -a global power grid is possible
- Need for storage reduced power can be continuous
- Multiple-use: terrestrial and space applications

Available Power

Available Power

Note: Conversion loss not shown.

Beam width does not depend on power level.

NASA Sun Tower SPS (Fresh Look Study 1997)

System Concept

- Modular systems; self-assembling at high LEO
- Gravity-gradient / GN&C stabilized
- Aggressive technology for solar arrays, integrated propulsion, others
- RF phased array for Wireless Power Transmission
- > ± 15 degrees Beam Steering

Architecture

- 12,000 KM equatorial orbit
- ± 30 degrees Latitude Coverage
- Power services of ~ 400 MW (example)
- Requires moderate terrestrial energy storage (level varies depending on platform configuration and specific orbit)
- ~12 SPS yields power to 12 sites, etc.
- Power for Emerging Markets: South & Central America, Africa, Asia, India...

Transportation

 Deployment using Commercial Launch Services (RLV-class @ \$400/kg)

smission	Light		
Power Transmission	Microwaves		
		Photovoltaic Cells	Solar Dynamic (heat engines)
		noiti	Powo Staneta

ATTRIBUTE	MICROWAVES	OPTICAL
		Small; gives flexibility of system
Aperture Size	Large, so system must be large	design
Interference	Electromagnetic spectrum	None, except perhaps astronomy
Rain, Cloud	Lower frequencies can penetrate clear	Optical wavelengths are attenuated
Attenuation	clouds, and light rain	by clouds and rain
Legal Issues	FCC, NTIA, ITU	ABM treaty, if power density high
Dual Use of	Rectennas used for SSP only (possibly	Terrestrial PV arrays: can receive
Infrastructure	communication)	sunlight
Dual Use of		
Land	Crops or PV under rectennas	PV arrays on rooftops, etc.
Perception		Governments may fear weapons
Issues	Public fears of "cooking"	application
Safety	Safe, but must keep aircraft out of beam	Safe, if power density is kept low
Efficiency of		
space segment	High	Improving
i.		
Efficiency of		
ground segment High	High	Improving
Traceability	Heritage to communications and radar	MSC 1 and 3
PMAD	Heavy due to centralized WPT	Light; WPT can be distributed

(BOEING

Cosine losses around noon & midnight cannot be avoided

Balanced electrical and thermal loads
 Closer packing reduces overall length

•Shadowing losses around noon & midnight cannot be avoided •Shadowing complicates cell arrangement and PMAD operation

•Gimballing mechanisms avoid cosine losses

Normalized Average Output from SPS (Tracking Arrays) Normalized Average Output from SPS (Non-Tracking 24 Tracking Vs. Non-Tracking SPS Arrays Arrays) 4 Time of Day (Hours) (Arrays spaced 41% of width) 7 9 9.0 0. 0.8 0.2 0.0 0.4 Normalized Power / Area

·		

Average SPS Power at Ground = 1/4 x Noon Sun Peak SPS Power at Ground = 1 x Noon Sun BOEING 35 degrees 1370 W/m^2 0.7 785.6 W/m² 0.36 Average Output from SPS (W/m^2) Average Output from Sun (W/m^2) Total Average Output (W/m^2) Monochromatic solar cell eff. = Atmospheric Transmittivity = Voontime solar constant at Solar Constant in Space = Solar cell efficiency = Non-Tracking Array SPS time offset = ASSUMPTIONS: 24 _atitude = latitude = 3 Daily Electricity Demand Pattern SPS Time (Hours) Sunlight (Arbįtrary Scale) 9 9 8 160 120 100 Average Power / Area (W/m^2)

Terrestrial PV Array Output

Criteria	Sub-Criteria	Comments
Cost	Cost/Power Delivered Installed Cost Launch Cost Cost to First Power	Standard metric for terrestrial power Standard metric for terrestrial power Total system mass Minimum size of an economical system
Technological Difficulty		Technology readiness, R&D³, Modularity, ease of assembly, and ease of stationkeeping
Reliability/ Maintainability		MTBF, fault tolerance, system life
Market Issues	Market Compatibility Growth Potential Infrastructure compat.	Matching energy and geographic demand Ability to expand to TW power levels Interaction with existing infrastructure
Dual Use of Technology		Application to other missions/architectures
Environmental Issues	Env. Impact on Earth Env. Impact on Space EMC/EMI	Launch vehicle exhaust, microwave/laser Debris creation, orbital slots Interference with satellites, terrestrial com.
Political Issues	Perception Legal	Microwaves cooking, weapons in space International laws and treaties

Critoria	Circle Circle	Criteria	Sub-Criteria
CHIELIA	Sub Cilicina	Rating	Rating
COST		0.22512	
	\$/POWER		0.07067
	INSTALL \$		0.05990
	LAUNCH\$		0.02869
	1STPOWER		0.06587
TECH-DIF		0.21570	
RELIABLE		0.18323	
MARKET		0.13490	
	COMPATIB		0.06567
	GROWTH		0.01912
	INFRASTR		0.05011
DUAL USE		0.10446	
ENVIRON		0.07455	
	EARTHIMP		0.03629
	SPACEIMP		0.01057
	EMC/EMI		0.02769
POLITIC		0.06203	
	PERCEPTN		0.01772
	LEGAL		0.04430

The overall inconsistency is 0.00639 which shows a very high degree of consistency

 Spirals to operational orbit using solar electric propulsion

 Transmits power to satellites during eclipse period

Option 1: store power while in sunlight for transmission during eclipse

 Option 2: Power Plug always stays in sunlight, e.g., ~12° inclined orbit is always in sunlight when GEO satellite is in eclipse

- Solar power satellites in geostationary orbit using solar cells for energy conversion and microwaves for power transmission continue to show promise
- low-intensity laser light to transmit power also shows The use of heat engines instead of solar cells and/or promise
- Level of detail in studies done so far is not sufficient for a fair comparison with systems using solar cells and microwaves
- Near-term applications of SSP technology can make an development of space, while paving the way toward important contribution to the exploration and commercial SSP.