WHAT IS CLAIMED IS:

1	1. A	A probe that is removably insertable into a gas phase ion
2	spectrometer, the probe	comprising a substrate having a surface and a hydrogel material
3	on the surface, wherein	the hydrogel material is crosslinked and comprises binding
4	functionalities for bindi	ing with an analyte detectable by the gas phase ion spectrometer.
1	2. T	The probe of claim 1 wherein the substrate is in the form of a strip
2	or a plate.	
1 2	$\mathcal{L}^{n}\mathcal{Z}_{+}$.	The probe of claim 1 wherein the substrate is electrically
1	4. Т	The probe of claim 1 wherein the surface of the substrate is
2	conditioned to adhere the	ne hydrogel material.
1	5. T	The probe of claim 1 wherein the surface of the substrate is
2	conditioned with a meta	al coating, an oxide coating, a sol gel, a glass coating, or a
3	s coupling agent.	
1	6. Т	The probe of claim 1 wherein the surface of the substrate is rough,
2	2 porous or microporous.	
1	7. 1	The probe of claim 1) wherein the hydrogel material is in situ
2	polymerized on the surf	face of the substrate.
1	8. T	The probe of claim 1 wherein the surface of the substrate is coated
2	with a glass coating and	I wherein the hydrogel material is in situ polymerized on the glass
3	coating by depositing a	solution comprising monomers onto the glass coating, wherein
4	the monomers are pre-f	unctionalized to provide binding functionalities.
1	9. 7	The probe of claim 5 wherein the thickness of the coating and the
2	hydrogel material comb	pined is at least about 1 micrometer.
1	10. Т	The probe of claim 1 wherein the hydrogel material is at least about
1	10.	
2		

1	11. The probe of claim 1 wherein the hydrogel material is in the form
2	of a discontinuous pattern.
1	12. The probe of claim 1 wherein the hydrogel material is in the form
2	of discontinuous, discrete spots.
1	13. The probe of claim 1 wherein the hydrogel material is continuous
2	and has one or two-dimensional gradient of one or more of the binding functionalities.
1	14. The probe of claim 1 wherein a plurality of different hydrogel
2	materials comprising different binding functionalities are on the surface of the substrate.
1	15. The probe of claim 1 wherein the hydrogel material is a
2	homopolymer, a copolymer, or a blended polymer.
1	16. The probe of claim 1 wherein the hydrogel material is derived from
2	substituted acrylamide monomers, substituted acrylate monomers, or derivatives thereof.
1	17. The probe of claim 1 wherein the binding functionalities attract the
2	analyte by salt-promoted interactions, hydrophilic interactions, eletrostatic interactions,
3	coordinate interactions, covalent interactions, enzyme site interactions, reversible
4	covalent interactions, nonreversible covalent interactions, glycoprotein interactions,
5	biospecific interactions, or combinations thereof.
1	18. The probe of claim 1 wherein the binding functionalities of the
2	hydrogel material are selected from the group consisting of a carboxyl group, a sulfonate
3	group, a phosphate group, an ammonium group, a hydrophilic group, a hydrophobic
4	group, a reactive group, a metal chelating group, a thioether group, a biotin group, a
5	boronate group, a dye group, a cholesterol group, and derivatives thereof.
1	19. The probe of claim 18 wherein the binding functionalities are a
2	carboxyl group and the hydrogal material is derived from monomers selected from the
3	group consisting of (meth)acrylic acid, 2-carboxyethyl acrylate, N-acryloyl-
4	aminohexanoic acid, N-carboxymethylacrylamide, 2-acrylamidoglycolic acid, and
5	derivatives thereof.

2

3

1	The probe of claim 18 wherein the binding functionalities are a
2	sulfonate group and the hydrogel material is derived from acrylamidomethyl-propane
3	sulfonic acid monomers or derivatives thereof.
1	21. The probe of claim 18 wherein the binding functionalities are a
2	phosphate group and the hydrogel material is derived from N-phosphoethyl acrylamide
3	monomers or derivatives thereof.
1	22. The probe of claim 18 wherein the binding functionalities are an
2	ammonium group and the hydrogel material is derived from monomers selected from the
3	group consisting of trimethylaminoethyl methacrylate, diethylaminoethyl methacrylate,
4	diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide, diethylaminopropyl
5	methacrylamide, aminopropyl acrylamide, 3-
6	(methacryloylamino)propyltrimethylammonium chloride, 2-aminoethyl methacrylate,
7	N-(3-aminopropyl)methacrylamide, 2-(1/butylamino)ethyl methacrylate, 2-(N, N-
8	dimethylamino)ethyl (meth)acrylate, N-(2-(N, N-dimethylamino))ethyl
9	(meth)acrylamide, N-(3-(N, N-dimethylamino))propyl methacrylamide, 2-
10	(meth)acryloyloxyethyltrimethylammonium chloride, 3-methacryloyloxy-2-
1	hydroxypropyltrimethylammonium chloride, (2-acryloyloxyethyl)(4-
12	benzoylbenzyl)dimethylammonium bromide, 2 vinylpyridine, 4-vinylpyridine,
13	vinylimidazole, and derivatives thereof.
1	23. The probe of claim 18 wherein the binding functionalities are a
2	hydrophilic group and the hydrogel material is derived from monomers selected from the
3	group consisting of N-(meth)acryloyltris(hydroxymethyl)methylamine, hydroxyethyl
4	acrylamide, hydroxypropyl methacrylamide, N-acrylamido-1-deoxysorbitol,
5	hydroxyethyl(meth)acrylate, hydroxypropylacrylate, hydroxyphenylmethacrylate,
6 .	polyethylene glycol monomethacrylate, polyethylene glycol dimethacrylate, acrylamide,
7	glycerol mono(meth)acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl methacrylate, 2-
8	methacryloxyethyl glucoside, poly(ethyleneglycol) monomethyl ether monomethacrylate,
9	vinyl 4-hydroxybutyl ether, and derivatives thereof.
1	24. The probe of claim 18 wherein the binding functionalities are a

hydrophobic group and the hydrogel material is derived from monomers selected from the

group consisting of N, N-dimethyl acrylamide, N, N-diethyl (meth)acrylamide, N-methyl

2

3 4

1

2

3

1

2

3

4

- methacrylamide, N-propyl acrylamide, N-butyl acrylamide, Noctyl (meth)acrylamide, N-dodecyl methacrylamide, N-octadecyl acrylamide, propyl (meth)acrylate, decyl (meth)acrylate, stearyl (meth)acrylate, octyltriphenylmethylacrylamide, butyl-triphenylmethylacrylamide, octadedcyl-7 triphenylmethylacrylamide, phenyl-triphenylmethylacrlamide, benzyl-8 9 triphenylmethylacrylamide, and derivatives thereof. 1 25. The probe of claim 18 wherein the binding functionalities are a 2 metal chelating group and the hydrogel material is derived from monomers selected from 3 the group consisting of N-(3-N, N-biscarboxymethylamino) propyl methacrylamide, 5-4 methacrylamido-2-(N, N-biscarboxymethylamino)pentanoic acid, N-(acrylamidoethyl)ethylenediamine N, N', N'-triacetic acid, and derivatives thereof. 5 1 26. The probe of claim 18 wherein the binding functionalities are a DOBSOY15 DUEVIN 2 reactive group and the hydrogel material is derived from monomers selected from the group consisting of glycidyl acrylate, acryloyl chloride, glycidyl(meth)acrylate, 3 4 (meth)acryloyl chloride, N-acryloxysuccinimide, vinyl azlactone, acrylamidopropyl 5 pyridyl disulfide, N-(acrylamidopropyl)maleimide, acrylamidodeoxy sorbitol activated with bis-epoxirane compounds, allylchloroformate, (meth)acrylic anhydride, acrolein, allylsuccinic anhydride, citraconic anhydride, allyl glycidyl ether, and derivatives thereof. 1
 - 27. The probe of claim 18 wherein the binding functionalities are a thioether group and the hydrogel material is derived from thiophilic monomers selected from the group consisting of 2-hydroxy-3-mercaptopyridylpropyl (methacrylate), 2-(2-(3-(meth)acryloxyethoxy)ethanesulfonyl)ethylsulfanyl ethanol, and derivatives thereof.
 - 28. The probe of claim 18 wherein the binding functionalities are a biotin group and the hydrogel material is derived from biotin monomers selected from the group consisting of N-biotinyl-3-(meth)acrylamidopropylamine and derivatives thereof.
 - 29. The probe of claim 18 wherein the binding functionalities are a boronate group and the hydrogel material is derived from boronate monomers selected from the group consisting of N-(m-dihydroxyboryl)phenyl (meth)acrylamide and derivatives thereof.

1	10° The probe of claim 18 wherein the binding functionalities are a dye
2	group and the hydrogel material is derived from dye monomers selected from the group
3	consisting of N-(N'-dye coupled aminopropyl) (meth)acrylamide and derivatives thereof.
1	The probe of claim 18 wherein the binding functionalities are a
2	cholesterol group and the hydrogel material is derived from cholesterol monomers
3	selected from the group consisting of N-cholesteryl-3-(meth) acrylamidopropylamine and
4	derivatives thereof.
1	32. A probe that is removably insertable into a gas phase ion
2	spectrometer, the probe comprising a substrate having a surface and a plurality of
3	particles that are substantially uniform in diameter on the surface, the particles
4	comprising binding functionalities for binding with an analyte detectable by the gas phase
5	ion spectrometer.
1	33. The probe of claim 32 wherein the plurality of particles have an
2	average diameter of less than about 1000 μm.
1	34. The probe of claim 32 wherein the partieles have a coefficient of
2	diameter variation of less than about 5%.
1	
1	35. The probe of claim 32 wherein the surface of the substrate is
2	conditioned to adhere to the particles.
1	36. The probe of claim 32 wherein the binding functionalities of the
2	particles are selected from the group consisting of a carboxyl group, a sulfonate group, a
3	phosphate group, an ammonium-group, a hydrophilic group, a hydrophobic group, a
4	reactive group, a metal chelating group, a thioether group, a biotin group, a boronate
5	group, a dye group, a cholesterol group, and derivatives thereof.
1	37. A system for detecting an analyte comprising:
2	a gas phase ion spectrometer comprising an inlet system, and
3	a removably insertable probe inserted into the inlet system of the
4	gas phase ion spectrometer, the probe comprising a substrate having a surface and a
5	hydrogel material on the surface, wherein the hydrogel material is crosslinked and
6	comprises binding functionalities for binding with the analyte.

1	38.	The system of claim 37 wherein the gas phase ion spectrometer is a
2	mass spectrometer.	
1	39. \	The system of claim 38, wherein the mass spectrometer is a laser
2	desorption mass spec	trometer.
	40	
1	40.	The system of claim 39 wherein the substrate is in the form of a
2	strip or a plate.	
1	41.	The system of claim 39 wherein the hydrogel material is in situ
2	polymerized on the s	surface of the substrate by depositing a solution comprising
3	monomers onto the s	substrate surface, wherein the monomers are pre-functionalized to
4	provide binding func	tionalities.
1	42.	A system for detecting an analyte comprising:
2	72.	a gas phase ion spectrometer comprising an inlet system; and
3		a removably insertable probe that is inserted into the inlet system
4	of the gas phase ion	spectrometer, the probe comprising a substrate having a surface and a
5		that are substantially uniform in diameter on the surface, the particles
6		functionalities for binding with the analyte.
U	comprising omaing i	discionanties for briding with the analyte.
1	43.	The system of claim 42 wherein the gas phase ion spectrometer is a
2	mass spectrometer.	\mathcal{M}
1	44.	The system of claim 43 wherein the mass spectrometer is a laser
2	desorption mass spec	etrometer.
1	45.	The system of claim 44 wherein the plurality of particles have an
2	average diameter of	less than about 1000 μm.
1	46.	The system of claim 44 wherein the particles have a coefficient of
2	diameter variation of	Fless than about 5%.
1	47.	A method of making a probe that is removably insertable into a gas
2	phase ion spectromet	ter, the method comprising:
3		providing a substrate having a surface;
4		conditioning the surface of the substrate; and

5	\uparrow placing a hydrogel material on the surface of the substrate, wherein
6	the hydrogel material is crosslinked and comprises binding functionalities for binding
7	with an analyte detectable by the gas phase ion spectrometer.
1	48. The method of claim 47 wherein the surface of the substrate is
2	conditioned by roughening.
1	49. The method of claim 47 wherein the surface of the substrate is
2	conditioned by laser etching, chemical etching, or sputter etching.
1	50. The method of claim 47 wherein the surface of the substrate is
2	conditioned by incorporating a metal coating, an oxide coating, a sol gel, a glass coating,
3	or a coupling agent.
1	51. The method of claim 47 wherein the hydrogel material is produced
2	by polymerizing monomers in situ on the surface of the substrate.
1	52. The method of claim 51, wherein the monomers are pre-
2	functionalized to provide binding functionalities.
1	53. The method of claim 47 wherein the binding functionalities are
2	selected from the group consisting of a carboxyl group, a sulfonate group, a phosphate
3	group, an ammonium group, a hydrophilid group, a hydrophobic group, a reactive group,
4	a metal chelating group, a thioether group, a biotin group, a boronate group, a dye group,
5	a cholesterol group, and derivatives thereof.
1	54. The method of claim 47 wherein the hydrogel material is
2	crosslinked by irradiation.
1	55. The method of claim 47 wherein the hydrogel material is produced
2	by crosslinking monomers by irradiation in situ on the surface of the substrate.
1	56. A method of making a probe that is removably insertable into a gas
2	phase ion spectrometer, the method comprising:
3	providing a substrate with a surface;
4	conditioning the surface of the substrate; and

	5	placing a plurality of particles that are substantially uniform in
	6	diameter on the surface of the substrate, the particles comprising binding functionalities
	7	for binding with an analyte detectable by the gas phase ion spectrometer.
	1	57. The method of claim 56 wherein the surface of the substrate is
	2	conditioned by roughening.
	1	58. The method of claim 56 wherein the surface of the substrate is
	2	conditioned by laser etching, chemical etching, or sputter etching.
	1	59. The method of claim 56 wherein the surface of the substrate is
	2	conditioned by a crosslinking reagent so that particles can be covalently bonded to the
	3	surface of the substrate.
102	1	60. A method for detecting an analyte comprising:
mir Been	2	(a) providing a probe that is removably insertable into a gas
and He shan had and and had sad	3	phase ion spectrometer, the probe comprising a substrate having a surface and a hydroge
Minu V	4	material on the surface, wherein the hydrogel material is crosslinked and comprises
F.	5	binding functionalities for binding with the analyte;
=	6	(b) exposing the binding functionalities of the hydrogel
يَّ = =	7	material to a sample containing an analyte under conditions to allow binding between the
կոլի կույն բնոռ Արու 9 ի կույն	8	analyte and the binding functionalities of the hydrogel material;
	9	(c) striking the probe surface with energy from an ionization
-	10	source;
	11	(d) desorbing the bound analyte from the probe by the gas
	12	phase ion spectrometer; and
	13	(e) detecting the desorbed analyte.
	1	61. The method of claim 60 wherein the gas phase ion spectrometer is
	2	a mass spectrometer.
	1	62. The method of claim 61 wherein the mass spectrometer is a laser
	2	desorption mass spectrometer.

1	63. \int The method of claim 62 further comprising a washing step to
2	selectively modify a threshold of binding between the analyte and the binding
3	functionalities of the hydrogel material.
1	64. The method of claim 62 further comprising a step of modifying the
2	analyte chemically or enzymatically while bound to the binding functionalities of the
3	hydrogel material.
1	65. The method of claim 62 wherein the analyte is selected from the
2	group consisting of amine-containing combinatorial libraries, amino acids, dyes, drugs,
3	toxins, biotin, DNA, RNA, peptides, oligonucleotides, lysine, acetylglucosamine, procion
4	red, glutathione, and adenosinemorophosphate.
1	66. The method of claim 62 wherein the analyte is selected from the
2	group consisting of polynucleotides, avidin, streptavidin, polysaccharides, lectins,
3	proteins, pepstatin, protein A, agglutinin, heparin, protein G, and concanavalin.
,	
1	67. The method of claim 62 wherein the analyte comprises a complex
2	of different biopolymers.
1	68. A method for detecting an analyte comprising:
2	(a) providing a probe that is removably insertable into a gas
3	phase ion spectrometer, the probe comprising a substrate having a surface and a plurality
4	of particles that are substantially uniform in diameter on the surface, the particles
5	comprising binding functionalities for binding the analyte;
6	(b) exposing the binding functionalities of the particles to a
7	sample containing an analyte under conditions to allow binding between the analyte and
8	the binding functionalities of the particles;
. 9	(c) striking the probe surface with energy from an ionization
10	source;
11	(d) desorbing the bound analyte from the probe by the gas
12	phase ion spectrometer; and
13	(e) detecting the desorbed analyte.

1	69. The method of claim 68 wherein the gas phase ion spectrometer is
2.	a mass spectrometer.
1	70. The method of claim 69 wherein the mass spectrometer is a laser
2	desorption mass spectrometer.
1	71. The method of claim 70 further comprising a washing step to
2	selectively modify a threshold of binding between the analyte and the binding
3	functionalities of the particles.
1	72. The method of claim 70 further comprising a step of modifying the
2	analyte chemically or enzymatically while bound to the binding functionalities of the
3	particles.
1	73. The method of claim 70 wherein the analyte is selected from the
2	group consisting of amine-containing combinatorial libraries, amino acids, dyes, drugs,
3	toxins, biotin, DNA, RNA, peptides, oligonucleotides, lysine, acetylglucosamine, procion
4	red, glutathione, and adenosinemonophosphare.
1	74. The method of claim $\sqrt{0}$ wherein the analyte is selected from the
2	group consisting of polynucleotides, avidin, streptavidin, polysaccharides, lectins,
3	proteins, pepstatin, protein A, agglutinin, heparin, protein G, and concanavalin.
1	75. The method of claim 70 wherein the analyte comprises a complex
2	of different biopolymers.

