

## Aufgabenseminar Magnetismus

pankratius.github.io/rolf

## Aufgabe 1 (Kraft zwischen Magneten)

Um die Kraft zwischen zwei kleinen Stabmagneten zu finden, wird folgendes Experiment durchgeführt: Einer der beiden Magneten wird mit einem (masselosen) Faden der Länge  $\ell=1$  m an der Decke befestigt. Der zweite wird langsam an den ersten geführt, sodass die horizontalen Symmetrieachsen der beiden Magneten immer auf einer Gerade liegen.

Als die Distanz der beiden Magneten gerade 4 cm beträgt, hat sich der hängende Magnet 1 cm bewegt. In diesem Moment verbinden sich die beiden Magneten schlagartig zueinander.

Es kann angenommen werden, dass die Kraft  $\vec{F}_m$  zwischen den beiden Magneten in der Form  $|\vec{F}_m| \propto d^{-n}$  modelliert werden kann, wobei d der Abstand der beiden Magneten ist, und  $n \in \mathbb{N}$ . Wie groß ist n?

## Aufgabe 2 (Geladene Kugel am Faden)

Eine geladene, kleine Kugel der Masse m=10 g hängt an einme isolierenden, masselosen Faden der Länge  $\ell=1$  m von einer Decke herab.

Sie befindet sich in einem homogenen, senkrechten Magnetfeld der Feldstärke B=50 mT. Die Kugel wird so in eine horizontale Rotation versetzt, dass der Faden einen Winkel von  $\alpha=30^\circ$  mit der Vertikalen einschließt. Die Rotationsfrequenzen im bzw. gegen den Uhrzeigersinn unterscheiden sich um  $\Delta f=2.0\,\cdot 10^{-3}$  Hz.

- 1. Wie groß ist die Ladung Q der Kugel.
- 2. Wie groß ist der Mittel  $\overline{f}$  der Rotationsfrequenzen?