# Chapter 3: Analyzing Data Using SAS® Visual Analytics

3.1 Working with Data Items

3.2 Exploring Data with Charts and Graphs

3.3 Creating Data Items and Applying Filters

3.4 Performing Data Analysis



### Objectives

- Discuss the Analyze phase of the SAS Visual Analytics methodology.
- Change data items (modify formats, modify aggregations, modify classifications, rename data items) in Visual Analytics for the analysis.



### Visual Analytics Methodology: Analyze

In the *Analyze* phase, you can evaluate the data by doing the following:



- modifying data item properties
- creating new calculated items needed for analysis
- applying any necessary filters for the analysis
- exploring relationships between data items using charts and graphs
- discovering trends and patterns between data items
- creating, testing, and comparing models based on patterns discovered\*



### **SAS Viya Applications**

**SAS Report Viewer** 





**SAS Visual Analytics App** 







SAS Cloud Analytic Services

**SAS Theme Designer** 



(CAS)

**SAS Graph Builder** 





#### **Business Scenario: Customers**



Based on the investigation of the data and the assignment (analyze profits for the Marketing team and analyze delivery times for the Shipping team), you need to make some changes to data items in the **CUSTOMERS** table.





You can make more changes as you perform the analysis.





## SAS Data Studio versus Visual Analytics





#### Data Item Properties

In the Data pane, properties can be modified for each data item to aid in your analysis.

#### Category



#### **Datetime**



#### Measure







# Working with Data Items

This demonstration illustrates how to modify data item properties (name, format, aggregation) in Visual Analytics.



# Chapter 3: Analyzing Data Using SAS® Visual Analytics

3.1 Working with Data Items

3.2 Exploring Data with Charts and Graphs

3.3 Creating Data Items and Applying Filters

3.4 Performing Data Analysis



### **Objectives**

- Discuss when to use descriptive graphs (histogram, box plot, bar chart) in Visual Analytics.
- Maximize graphs objects to view details.
- Modify roles and options for graph objects.



## Objects: Graphs (Descriptive)



Use a *histogram* to view the distribution of a single measure.



Use a *box plot* to view information about the variability of the data and extreme values.



## Objects: Graphs (Descriptive)

Use a bar chart to compare summarized data for the following:

#### Nominal values



#### Time series data



#### **Rankings**



#### Parts of a whole





Copyright @ SAS Institute Inc. All rights reserved

# Chapter 3: Analyzing Data Using SAS® Visual Analytics

3.1 Working with Data Items

3.2 Exploring Data with Charts and Graphs

3.3 Creating Data Items and Applying Filters

3.4 Performing Data Analysis



#### **Objectives**

- Describe the types of data items that can be created in Visual Analytics.
- Discuss the difference between calculated items and aggregated measures.
- Describe the various ways that data can be filtered in Visual Analytics.
- Discuss when to use geographic maps in Visual Analytics.



### **Creating Data Items**

The following data items can be created in Visual Analytics:



















### Calculated Item: Example

Calculated items are created by performing operations on unaggregated data.



| Gender | Salary | Increase | New Salary |  |
|--------|--------|----------|------------|--|
| Male   | 40,000 | 1.05     | 42,000     |  |
| Female | 65,000 | 1.10     | 71,500     |  |
| Female | 32,000 | 1.05     | 33,600     |  |
| Male   | 80,000 | 1.10     | 88,000     |  |
| Female | 56,000 | 1.15     | 64,400     |  |





### Aggregated Measure: Example

Aggregated measures are created by aggregating and then performing the operation.



| Gender | Salary |  |
|--------|--------|--|
| Male   | 40,000 |  |
| Female | 65,000 |  |
| Female | 32,000 |  |
| Male   | 80,000 |  |
| Female | 56,000 |  |

| Gender | Salary  |   |
|--------|---------|---|
| Male   | 120,000 | 4 |
| Female | 153,000 |   |
| TOTAL  | 273,000 |   |





### Custom Category: Example

Custom categories create labels for groups of category or measure data items.

#### **Calculated item**



This calculated item and custom category produce equivalent results.

#### **Custom category**





### Calculated Columns: Customer Age



The *Now* operator creates a datetime value using the current date and time, where the current date and time is evaluated every time you view the report.

The DatePart operator converts a datetime value to a date value.

The *TreatAs* operator enables a numeric, or datetime, value to be used as a different data type within other operators.

The *Floor* operator rounds the number down to the nearest integer.



### Filtering Data

Many different types of filters can be created to subset data in Visual Analytics:



Report Designer

#### Detail report filters

- Data source
- Basic
- Advanced

Post-aggregate report filters



#### **Prompts**

- Report
- Page

#### **Actions**

- Filter
- Links



## Objects: Graphs (Geography)

Use a geo map when location is a critical component of the analysis.

#### **Bubbles**



Use a *geo contour* 

map to show very

dense data.

#### Coordinates



Use a geo region map or geo coordinate map only when there is an even distribution of values within each region.

#### Contour



#### **Regions**





5

## What Is a Hierarchy?





# Chapter 3: Analyzing Data Using SAS® Visual Analytics

3.1 Working with Data Items

3.2 Exploring Data with Charts and Graphs

3.3 Creating Data Items and Applying Filters

3.4 Performing Data Analysis



#### **Objectives**

- Discuss when to use analysis graphs in Visual Analytics.
- Describe the types of fit lines that can be added to analysis graphs.
- Describe the forecasting capabilities available in Visual Analytics.



### Objects: Graphs (Analysis)



Use a *bubble plot* to display three dimensions of data (horizontal location, vertical location, size of bubble) for some group of category values.



Use a *treemap* to display lots of information in a small amount of space. Use size and color to draw attention to specific areas of interest.



## Objects: Graphs (Analysis)



Use a *correlation matrix* to evaluate the linear relationship between measures.





Use a *scatter plot* to evaluate the relationship between two measures.

Use a *heat map* to evaluate the relationship between two high-cardinality measures, between two categories, or between a category and a measure.



#### Fit Lines

Fit lines can be added to scatter plots and heat maps to plot the relationship between variables.



### Objects: Graphs (Analysis)



Use a *time series plot* to show trends of measures over time.



Use a *line chart* to show trends over some ordinal variable (time, age group).



## Objects: Analytics (Forecasting)



Use a forecasting object to show estimates of future values based on historical trends in the data.

Visual Analytics automatically selects the best forecasting model for your data.

