中国科学技术大学计算机学院 《数字电路实验》报告

实验题目:_简单组合逻辑电路_

学生姓名: _宋玮__

学生学号: PB20151793____

完成日期: _2021.10.28_

计算机实验教学中心制

【实验题目】

实验二: 简单组合逻辑电路

【实验目的】

- 1. 熟悉掌握 Logisim 的基本用法
- 2. 进一步熟悉 Logisim 更多功能
- 3. 用 Logisim 设计组合逻辑电路并进行仿真
- 4. 初步学习 Verilog 语法

总:在本次实验中,进一步熟悉 Logisim 用真值表,表达式快速搭建电路, verilog 的初步学习。

【实验环境】

实验平台: vlab. ustc. edu. cn

实验设备: 电脑(上的虚拟机)

实验软件: Logisim, 编辑器

【实验过程】

1. 用真值表自动生成电路

2. 用表达式生成电路图

通过"Project"—> "Get Circuit Statistics"选项统计电路的基本信息。

3. Verilog HDL 语法入门

【实验练习】

题目 1. 依据如下真值表,通过 Logisim 编辑真值表功能,完成电路设计。电路下方需标注姓名学号。

该电路是一个1位全加器:

题目 2: 根据下列真值表,通过 Logisim 的编辑表达式功能完成电路设计,电路下方需标注姓名学号。

输入					输出								
G1	G2	G3	A2	A1	A0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	YO
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	Х	X	X	1	1	1	1	1	1	1	1
0	X	X	X	Х	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

分析如下:

Y7=g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1~a0 Y6= g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1 a0

Y5= g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2 a1~a0+ g1~g2~g3 a2 a1 a0

Y4= g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1~a0+ g1~g2~g3 a2 a1 a0

Y3= g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1~a0+ g1~g2~g3 a2 a1 a0

Y2= g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1~a0+ g1~g2~g3 a2 a1 a0

Y1=g2+g3+~g1+g1~g2~g3~a2~a1~a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1~a0+ g1~g2~g3 a2 a1 a0

Y0= g2+g3+~g1+g1~g2~g3~a2~a1 a0+ g1~g2~g3~a2 a1~a0+ g1~g2~g3~a2 a1 a0+ g1~g2~g3 a2~a1~a0+ g1~g2~g3 a2~a1 a0+ g1~g2~g3 a2 a1~a0+ g1~g2~g3 a2 a1 a0

借助"Minimized"选项卡对表达式进行简化,然后生成电路;

题目 3: 使用 Logisim 绘制 1bit 位宽的二选一选择器电路图,并根据生成的电路图编写 Verilog 代码。输入信号为 a,b,sel,输出信号为 out,sel 为 0 时选通 a 信号。

Verilog 代码如下:

module 21mux(input a, b, sel,

output out);

assign out=(~sel)&a|sel&b;

endmodule

题目 4: 通过例化题目 3 中的二选一选择器,用 Verilog 实现一个四选一选择器,并画出对应的电路图。输入信号为 a, b, c, d, sel1, sel0, out, sel1 和 sel0 都为 0 时选中 a 信号。

Verilog 代码如下:

```
module 41mux(input a, b, c, d, sel0, sel1,
output out);
wire o1, o2;
21mux 21mux_1(
    .a(a),
    .b(b),
    .sel(sel0),
    .out(o1));
21mux 21mux_2(
    .a(c),
    .b(d),
    .sel(sel0),
    .out(o2));
21mux 21mux_3(
    .a(o1),
    .b(o2),
    .sel(sel1),
    .out(out));
end module\\
```

题目 5: 根据前面用到的八位优先编码器真值表,编写 verilog 代码。

输入								输出		
i7	i6	i5	i4	i3	i2	i1	i0	у2	y1	y0
1	X	X	X	X	X	X	X	1	1	1
0	1	X	X	X	X	X	X	1	1	0
0	0	1	X	X	X	X	X	1	0	1
0	0	0	1	X	X	X	X	1	0	0
0	0	0	0	1	X	X	X	0	1	1
0	0	0	0	0	1	Х	Х	0	1	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	0	0	1	0	0	0

Verilog 代码如下:

module 8coder(input i7, i6, i5, i4, i3, i2, i1, i0,

output y2, y1, y0);

assign y0 = i7
$$|(^{\sim}i7)&(^{\sim}i6)&i5$$

endmodule

题目 6: 阅读如下 Verilog 代码,描述其功能,并画出其对应的电路图。

module test(input a, b, c, output s1, s2);

assign s1= ~a &~b & c | ~a & b &~c | a &~b &~c | a & b & c;
assign s2= ~a & b & c | a &~b & c | a & b &~c;
endmodule

描述功能:

当 a, b, c 三个输入中 1 的个数为奇数时, s1 输出为 1, s2 输出为 0;

当 a, b, c 三个输入中 1 的个数为偶数时(包括个数为 0), s2 输出为 1, s1 输出为 0;

电路图如下:

【总结与思考】

通过本次实验,了解了快速生成电路的几种方法;并且对 verilog 语法有了一个了解,能用 verilog 编写简单电路。 本次难度不高,任务量不大,无改进建议。