Package 'epiG'

June 12, 2016

Type Package
Title Statistical Inference of Epi-allelic Patterns from Whole-Genome Bisulphite Sequencing Data
Version 0.9.0
Date 2016-06-12
Author Martin Vincent
Maintainer Martin Vincent <martin.vincent.dk@gmail.com></martin.vincent.dk@gmail.com>
Description Statistical method to infer epi- allelic haplotypes, annotated with CpG methylation marks and polymorphisms, from whole- genome bisulphite sequencing data, and nucleosome occupancy from NOMe-seq data
URL
License GPL (>= 2)
LazyLoad yes
Depends R (>= $3.0.0$)
LinkingTo Rcpp, RcppProgress, RcppArmadillo
RoxygenNote 5.0.1
NeedsCompilation yes
R topics documented:
auto_config BSeq chain_info end.epiG epiG epiG_chunks epiG_config fetch_alt fetch_reads 1 fetch_read_info 1 fetch_ref 1

2 auto_config

file_info
6t
header_info
length.epiG
load_reads
locate_C
locate_CG
locate_DGCH
locate_GC
locate_HCGD
locate_mismatch
nchain
nchunks
NOMeSeq
nread 2
position_info
print.epiG
print.epiG.config
print.epiG.model
print.epiG.reads
read_count
read_depth
read_fasta
read_info
read_info.epiG
read_info.epiG_reads
set_run_configuration
start.epiG
subregion
vector search 3

auto_config

Create Standard Configuration

Description

Create a epiG configuration with standard parameters

Usage

```
auto_config(ref_file, alt_file, bam_file, chr, start, end, seq_type = "BSeq",
  paired_reads = NULL, min_CG = NULL, min_HCGD = NULL, min_DGCH = NULL,
  min_overlap = NULL, ...)
```

auto_config 3

Arguments

ref_file	genome reference file (path to .fa file)
alt_file	alternative nucleotide file (path to .fa file)
bam_file	bam file (path to .bam file)
chr	reference name
start	start position of region to processes
end	end position of region to processes
seq_type	sequencing type ("BSeq" for bisulphite sequencing, "NOMeSeq" for NOMe sequencing)
paired_reads	should pair information be used (TRUE/FALSE or NULL, if NULL then paired information is used if pairs are present in bam file)
min_CG	minimum overlapping CG positions (if NULL deafult value is used)
min_HCGD	minimum overlapping HCGD positions (if NULL deafult value is used)
min_DGCH	minimum overlapping DGCH positions (if NULL deafult value is used)
min_overlap	minimum overlapping length (if NULL deafult value is used)
• • •	additional arguments (overrides default values)

Value

An epiG configuration

Author(s)

Martin Vincent

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
ref_file <- system.file("extdata", "hg19_GNAS.fa", package="epiG")
alt_file <- system.file("extdata", "dbsnp_135.hg19_GNAS.fa", package="epiG")

# Specify region
chr <- "chr20"
start <- 57400000
end <- 57400000 + 1000

# Build epiG configuration
config <- auto_config(
bam_file = bam_file,
ref_file = ref_file,
alt_file = alt_file,
chr = chr,
start = start,
end = end,</pre>
```

4 BSeq

```
# If ref_file and alt_file contains the entire chromosome this is not needed
ref_offset = 57380000,
alt_offset = 57380000)

config # print a summary of the configuration

# Run epiG
fit <- epiG(max_threads = 2, config = config)

fit # print a summary of inferred model</pre>
```

BSeq

Bisulphite Conversion Model

Description

Create a bisulphite sequencing conversion model

Usage

```
BSeq(bisulphite_rate = 0.95, bisulphite_inap_rate = 0.05, Lmax = 110, ...)
```

Arguments

Value

an epiG conversion model

Author(s)

Martin Vincent

Examples

BSeq()

chain_info 5

chain_info

Information about chains

Description

Rerive information about infered haplotype chains

Usage

```
chain_info(object)
```

Arguments

object

epiG model

Value

A data.frame with nchain (object) rows. With the following columns:

```
chain.id a unique chain id

start first position of the chain

end last position of the chain

length length of the chain

nreads number of reads in the chain

nreads.fwd number of fwd reads in the chain

nreads.rev number of rev reads in the chain

depth.fraction the computed depth fraction
```

Author(s)

Martin Vincent

```
data(example)
chains <- chain_info(fit)
subset(chains, nreads > 2)
```

6 epiG

end.epiG

End position

Description

Return the last position in the model

Usage

```
## S3 method for class 'epiG' end(x, \dots)
```

Arguments

```
x an epiG model... ignored
```

Value

the last position in model

Author(s)

Martin Vincent

Examples

```
data(example)
end(fit)
```

epiG

Fit an epiG epigenotype model

Description

Fit an epiG epigenotype model

Usage

```
epiG(config, max\_threads = 2L)
```

Arguments

```
config epiG configuration
max_threads maximal number of threads to use
```

epiG_chunks 7

Value

fitted model

Author(s)

Martin Vincent

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
ref_file <- system.file("extdata", "hg19_GNAS.fa", package="epiG")
alt_file <- system.file("extdata", "dbsnp_135.hg19_GNAS.fa", package="epiG")</pre>
# Specify region
chr <- "chr20"
start <- 57400000
end <- 57400000 + 1000
# Build epiG configuration
config <- auto_config(</pre>
bam_file = bam_file,
ref_file = ref_file,
alt_file = alt_file,
chr = chr,
start = start,
end = end,
# If ref_file and alt_file contains the entire chromosome this is not needed
ref_offset = 57380000,
alt\_offset = 57380000)
# Run epiG
fit <- epiG(max_threads = 2, config = config)</pre>
# Fetch additional information
fit <- fetch_reads(fit)</pre>
fit <- fetch_ref(fit)</pre>
fit <- fetch_alt(fit)</pre>
# Information about fitted model
fit
# Information about haplotype chains
chain_info(fit)
```

8 epiG_config

Description

Fit epiG epigenotype models

Fit an epiG epigenotype model for each configuration in the list configs.

Usage

```
epiG_chunks(configs, max_threads = 8L)
```

Arguments

```
configs list of epiG configurations
max_threads maximal number of threads to use
```

Value

list of fitted models

Author(s)

Martin Vincent

```
epiG_config Create an epiG Configuration
```

Description

Create a custom epiG configuration

Usage

```
epiG_config(ref_file, alt_file, ref_offset = 1, alt_offset = 1, model,
   min_overlap, min_CG, min_HCGD, min_DGCH, ref_prior = 1 - 1e-04,
   structual_prior = 1, quality_threshold = 0.02, margin = 5,
   chunk_method = "reads", chunk_size = 5000, hard_limit = 6000,
   paired_reads, max_iterations = 1e+05, max_stages = 1, verbose = TRUE,
   ...)
```

Arguments

```
ref_file genome reference file (path to .fa file)

alt_file alternative nucleotide file (path to .fa file)

ref_offset ref file offset (usually ref_offset = 1)

alt_offset alt file offset (usually alt_offset = 1)

model conversion model

min_overlap minimum overlapping length
```

epiG_config 9

```
min_CG
                 minimum overlapping CG positions
                 minimum overlapping HCGD positions
min_HCGD
                 minimum overlapping DGCH positions
min_DGCH
ref_prior
                 genotype prior parameter
structual_prior
                 structural prior scaling
quality_threshold
                 discard reads with mean epsilon quality higher than quality_threshold
                 cut off margin
margin
chunk method Method used to split region into chunks ('none' only one chunk, 'reads' chunks
                 of approximately chunk_size reads, 'bases' chunks of chunk_size bases)
chunk_size
                 chunk size
hard limit
                 maximal number of reads loaded per chunk (reads not loaded will be completely
                 ignored)
paired_reads used pair information (reads with the same name in the bam file is paired and
                 will be forced into the same haplotype chain)
max iterations
                 maximal number of iterations
                 experimental stage optimization (if <= 1 then stage optimization is off)
max_stages
verbose
                 show information while running
                 ignored
. . .
```

Value

an epiG configuration

Author(s)

Martin Vincent

```
# Retrieve paths to raw data files
ref_file <- system.file("extdata", "hg19_GNAS.fa", package="epiG")
alt_file <- system.file("extdata", "dbsnp_135.hg19_GNAS.fa", package="epiG")
config <- epiG_config(

ref_file = ref_file,
alt_file = alt_file,
ref_offset = 57380000,
alt_offset = 57380000,

model = BSeq(),</pre>
```

10 fetch_alt

```
min_overlap = 80,
min_CG = 0,
min\_HCGD = 0,
min_DGCH = 0,
ref_prior = 0.999,
structual_prior = 1,
margin = 5,
quality_threshold = 0.020,
chunk_method = "reads",
chunk\_size = 8000,
hard_limit = 10000,
paired_reads = TRUE,
max_iterations = 1e5,
verbose = TRUE
config # print a summary of the configuration
# Specify region and bam file
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")</pre>
chr <- "chr20"
start <- 57400000
end <- 57400000 + 1000
config <- set_run_configuration(config, bam_file, chr, start, end)</pre>
# Run epiG
fit <- epiG(max_threads = 2, config = config)</pre>
fit # print a summary of inferred model
```

fetch_alt

Fetch Alternative Nucleotides

Description

Load alternative nucleotides and include it in epiG object.

Usage

```
fetch_alt(object)
```

Arguments

object a epiG model

fetch_reads 11

Value

epiG model

Author(s)

Martin Vincent

fetch_reads

Fetch Reads

Description

Reads will be loaded and include in the epiG object

Usage

```
fetch_reads(object)
```

Arguments

object

epiG epigenotype model

Value

model with reads included (this may increase the memory use)

Author(s)

Martin Vincent

fetch_read_info

Information About Reads

Description

Fetch information about reads overlapping the specified region

Usage

```
fetch_read_info(file, refname, start, end)
```

Arguments

file path to bam file refname reference name start start of region end of region

fetch_ref

Value

data.frame with information abut reads. Columns:

```
name name of read
start start position of read
end end position of read
length length of read
```

Author(s)

Martin Vincent

Examples

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
fetch_read_info(bam_file, "chr20", 57400000, 57400000 + 100)</pre>
```

fetch_ref

Fetch Reference Genom

Description

Load reference genome and include it in epiG object.

Usage

```
fetch_ref(object)
```

Arguments

object

epiG epigenotype model

Value

epiG epigenotype model with reference genome included

Author(s)

file_info

file_info

Fetch Bam File Information

Description

Fetch information about bam file

Usage

```
file_info(file)
```

Arguments

file

path to bam file

Value

a data.frame with the following columns:

```
ref refname
```

length length of ref

nreds number of reads assigned to refname

mean_read_length the mean read length of reads assigned to refname

Author(s)

Martin Vincent

Examples

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
file_info(bam_file)</pre>
```

fit

Example fit

Description

TODO

14 length.epiG

header_info

Fetch Bam Header

Description

Load bam file header

Usage

```
header_info(file)
```

Arguments

file

path to bam file

Value

a list of refnames and lengths associated with the file

Author(s)

Martin Vincent

Examples

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
header_info(bam_file)</pre>
```

length.epiG

Length of model

Description

Length of model in base pairs

Usage

```
## S3 method for class 'epiG' length(x, \dots)
```

Arguments

```
x epiG model... ignored
```

load_reads 15

Value

Length of model in base pairs

Author(s)

Martin Vincent

Examples

```
data(example)
length(fit)
```

load_reads

Load Reads

Description

Load the reads overlapping the specified region

Usage

```
load_reads(file, refname, start, end, quality_threshold = 1,
  raw_quality_scores = FALSE)
```

Arguments

```
file path to bam file

refname reference name

start start of region

end end of region

quality_threshold
 quality threshold

raw_quality_scores
 if TRUE raw quality score will be returned
```

Value

```
a list with the following entries:

reads a list of reads (each read represented by a vector of bases)
quality a list quality scores

positions a vector of the start positions of the reads

lengths a vector of the lengths of the reads

names a vector of the names of the reads
```

locate_C

Author(s)

Martin Vincent

Examples

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
info <- load_reads(bam_file, "chr20", 57400000, 57400000 + 100)

# Bases, qualities, start position, length and name of first read
info$reads[[1]]
info$quality[[1]]
info$position[1]
info$lengths[1]
info$names[1]</pre>
```

locate_C

Locate C

Description

Locate C positions

Usage

```
locate_C(object)
```

Arguments

object

epiG object

Value

positions of C in object

Author(s)

Martin Vincent

```
data(example)

fit <- fetch_ref(fit)
locate_C(fit)</pre>
```

locate_CG

locate_CG

Locate CpG

Description

Locate CpG positions in the refrence genom

Usage

```
locate_CG(object)
```

Arguments

object

epiG model

Value

a vector of CpG positions

Author(s)

Martin Vincent

Examples

```
data(example)
fit <- fetch_ref(fit)
locate_CG(fit)</pre>
```

locate_DGCH

Locate DGCH

Description

Locate DGCH (isolated GpC) positions in the refrence genom

Usage

```
locate_DGCH(object)
```

Arguments

object

epiG model

locate_GC

Value

a vector of isolated GpC positions

Author(s)

Martin Vincent

Examples

```
data(example)
fit <- fetch_ref(fit)
locate_DGCH(fit)</pre>
```

locate_GC

Locate GpC

Description

Locate GpC positions in the refrence genom

Usage

```
locate_GC(object)
```

Arguments

```
object epiG model
```

Value

a vector of GpC positions

Author(s)

Martin Vincent

```
data(example)

fit <- fetch_ref(fit)
locate_GC(fit)</pre>
```

locate_HCGD 19

locate_HCGD

Locate HCGD

Description

locate HCGD (isolated CpG) positions in the refrence genom

Usage

```
locate_HCGD (object)
```

Arguments

object

epiG model

Value

a vector of isolated CpG positions

Author(s)

Martin Vincent

Examples

```
data(example)
fit <- fetch_ref(fit)
locate_HCGD(fit)</pre>
```

locate_mismatch

Locate Mismatches

Description

Locate positions where at least one chain has a genotype not matching with the reference.

Usage

```
locate_mismatch(object)
```

Arguments

object

an epiG model

20 nchain

Value

a vector of postions of mismatches

Author(s)

Martin Vincent

Examples

```
data(example)
fit <- fetch_ref(fit)
locate_mismatch(fit)</pre>
```

nchain

Number of chains

Description

Number of chains in the model

Usage

```
nchain(object)
```

Arguments

object

epiG model

Value

number of chains in the model

Author(s)

Martin Vincent

```
data(example)
nchain(fit)
```

nchunks 21

nchunks

Number of chunks

Description

Number of chunks in the epiG object

Usage

```
nchunks(object)
```

Arguments

object

epiG model

Value

the number of chunks in the epiG object

Author(s)

Martin Vincent

Examples

```
data(example)
nchunks(fit)
```

NOMeSeq

NOMe-sequencing Conversion Model

Description

Create a NOMe-seq conversion model

Usage

```
NOMeSeq(bisulphite_rate = 0.95, bisulphite_inap_rate = 0.05, Lmax = 110,
...)
```

22 nread

Arguments

Value

an epiG conversion model

Author(s)

Martin Vincent

Examples

NOMeSeq()

nread

Number of reads in model

Description

Number of reads in model

Usage

```
nread(object)
```

Arguments

 ${\tt object} \qquad \qquad {\tt epiG} \; {\tt model} \\$

Value

number of reads contined in model

Author(s)

Martin Vincent

```
data(example)
nread(fit)
```

position_info 23

position_info

Position Info

Description

Retriev information about the estimated epi-genotype at a given position in the model

Usage

```
position_info(object, pos)
```

Arguments

object epiG model pos position

Value

??

Author(s)

Martin Vincent

print.epiG

Print Information About an Fitted epiG Model

Description

Print Information About an Fitted epiG Model

Usage

```
## S3 method for class 'epiG'
print(x, ...)
```

Arguments

```
x epiG model... ignored
```

Author(s)

24 print.epiG.model

```
print.epiG.config
Print Information About an epiG Configuration
```

Description

Print Information About an epiG Configuration

Usage

```
## S3 method for class 'epiG.config' print(x, ...)
```

Arguments

```
x epiG configuration... ignored
```

Author(s)

Martin Vincent

Description

Print Information About an epiG Conversion Model

Usage

```
## S3 method for class 'epiG.model'
print(x, ...)
```

Arguments

```
epiG conversion modelignored
```

Author(s)

print.epiG.reads 25

print.epiG.reads

Print Information About an epiG Reads Object

Description

Print information about an epiG reads object

Usage

```
## S3 method for class 'epiG.reads'
print(x, ...)
```

Arguments

x epiG reads object... ignored

Author(s)

Martin Vincent

read_count

Count Reads

Description

Count reads overlapping the specified region

Usage

```
read_count(file, refname, start, end)
```

Arguments

file path to bam file refname reference name start start of region end of region

Value

number of reads and total bps in reads overlapping region

Author(s)

26 read_depth

Examples

```
# Retrieve paths to raw data files
bam_file <- system.file("extdata", "GNAS_small.bam", package="epiG")
read_count(bam_file, "chr20", 57400000, 57400000 + 100)</pre>
```

read_depth

Read depth

Description

Retrive the read depth at a given position in the model

Usage

```
read_depth(object, pos = NULL)
```

Arguments

object epiG model pos position

Value

??

Author(s)

Martin Vincent

```
data(example)
read_depth(fit)
```

read_fasta 27

read_fasta

Read FASTA File

Description

Read a raw FASTA file

Usage

```
read_fasta(file, refname, start, len, offset = 1)
```

Arguments

```
file path to fasta file

refname reference name

start start of region

len length of region

offset file offset (position of first base in file, usually offset = 1)
```

Value

a vector of length len containing the bases

Author(s)

Martin Vincent

```
ref_file <- system.file("extdata", "hg19_GNAS.fa", package="epiG")

# Specify region
chr <- "chr20"
start <- 57400000
end <- 57400000 + 100

#Note that usually offset = 1
read_fasta(ref_file, chr, start, len = end-start+1, offset = 57380000)</pre>
```

28 read_info.epiG

read_info

Information about reads

Description

Retrive information about reads in the model

Usage

```
read_info(object, ...)
```

Arguments

```
object epiG model
```

... additional arguments

Value

??

Author(s)

Martin Vincent

read_info.epiG

Information about reads

Description

Retrive information about reads in the model

Usage

```
## S3 method for class 'epiG'
read_info(object, inc.symbols = FALSE, ...)
```

Arguments

```
object epiG model
```

inc.symbols if TRUE each line in the returned data.frame will correspond to one nuleobase,

if FALSE one read.

... ignored

Value

??

read_info.epiG_reads 29

Author(s)

Martin Vincent

```
read_info.epiG_reads
```

Information about reads

Description

Retrive information about reads from a epiG read object produced with load_reads

Usage

```
## S3 method for class 'epiG_reads'
read_info(object, inc.symbols = FALSE, ...)
```

Arguments

```
object epiG read object
inc.symbols if TRUE each line in the returned data.frame will correspond to one nuleobase, if FALSE one read.
... ignored
```

Value

??

Author(s)

Martin Vincent

```
set_run_configuration
```

Run Configuration

Description

set run configuration

Usage

```
set_run_configuration(config, filename, refname, start, end)
```

30 start.epiG

Arguments

config an epiG configuration filename bam file (path to .bam file)

refname reference name

start start position of region to processes
end end position of region to processes

Value

an epiG configuration

Author(s)

Martin Vincent

Examples

```
# See epiG_config example
```

start.epiG

Start position

Description

Return the first position in the model

Usage

```
## S3 method for class 'epiG' start(x, ...)
```

Arguments

x an epiG model... ignored

Value

the first position in the model

Author(s)

Martin Vincent

```
data(example)
start(fit)
```

subregion 31

subregion Subregion

Description

Exatract a subregion of an epiG model

Usage

```
subregion(object, start, end, chop.reads = FALSE)
```

Arguments

object epiG model

start start position of subregion end end position of subregion

chop.reads if TRUE reads will be choped at the boundaries of the region

Value

an epiG model

Author(s)

Martin Vincent

Examples

#TODO examples subregion

vector_search

Pattern Search

Description

Search for pattern in integer vector

Usage

```
vector_search(pattern, x)
```

Arguments

pattern integer vector

x integer vector to search in

32 vector_search

Value

position of pattern in x

Author(s)