XUEQI YANG

Homepage, Github, Linkedin, ResearchGate +1-571-392-0734 ♦ xyang37@ncsu.edu

EDUCATION

PhD in Computer Science

Aug 2018 - Present

North Carolina State University, Advisor: Dr. Tim Menzies

Research interests: Software Engineering, Static Code Analysis, Data Mining and Deep Learning

Coursework: Automated SE | Algorithm | Networking | Spatial Temporal Data Mining | Natural Language Processing

Bachelor in Information Management and Information System

Sep 2014 - July 2018

Dongbei University of Finance and Economics, China, GPA: 90/100

Coursework: C | Java | Data Structure | Data Mining | Database | Web Design | Operation Research

SKILLS AND STRENGTHS

Languages Python, C, Java, Bash, JavaScript, MATLAB, SQL, ASP.Net

Tools PyTorch, Keras, TensorFlow, Scikit-learn, LaTex

Others Operation Research, Statistics

WORK EXPERIENCE

Microsoft Research Research Intern in Cloud and Infrastructure Security Group May 2022 - Aug 2022

Seattle, WA

Mentor: Mariusz Jakubowski

Address Transformer Token-length limitation with **Learned Token Pruning** algorithm and **Longformer** to detect vulnerability in command line dataset with long input sequences.

Explore recent advancements in natural language processing (CodeBERT and other Transformer-based models) in helping to structure and analyze peta-scale security data in cloud environments.

SELECTED PROJECTS

Security Bug Detection and Localization

NSF funded project in the RAISE lab

May 2021 - Feb
 2022

 $Raleigh,\ NC$

- · Propose a lexer to resolve the feature extraction in security vulnerability analysis in open-source C/C++ projects.
- · Leverage placeholders in token embedding in source code to address the out-of-vocabulary (OOV) issue.
- · Utilize an attention mechanism, CAM (Class Activation Mapping), to interpret and localize the vulnerability in source code.

Detection for Static Defects with Incrementally Active Learning NSF funded project in the RAISE lab

July 2020 - Dec 2020 Raleigh, NC

- · Test the Linux mainline at source tree level with **coccinelle**, a program matching and transformation engine which provides the language SmPL (Semantic Patch Language) for specifying desired matches and transformations in C code.
- · Implement feature extractors from warning messages and patches generated from coccinelle with TF-IDF and code2vec embedding methods.

${\bf Simpler\ Hyperparameter\ Optimization\ for\ Software\ Analytics}$

May 2020 - Sep 2020

Raleigh, NC

NSF funded project in the RAISE lab

- · Apply a simpler hyperparameter optimization (DODGE, using a technique called ϵ -domination) to 120 SE datasets to find the optimal control settings for data miners.
- · Avoid the high training overhead by **evaluating and ranking the parameter space** in comparison with traditional optimizers, either Differential evolution (DE) or Genetic algorithm (GA).
- · Implement **Box-counting methods** to estimate the intrinsic dimensionality of SE datasets and standard Machine learning datasets (UCI).

Detection for Static Defects with DNN Models

NSF funded project in the RAISE lab

Sep 2019 - Jan 2020 Raleigh, NC

- · Implement deep neural networks in Keras and PyTorch with static defect artifacts to predict real defects to act on.
- · Utilize regularisers to avoid DNN models from overfitting and lower the running overhead.
- · Use Box-counting methods to explore the **intrinsic dimension** of SE data and match the complexity of machine learning algorithms with the datasets it handles.

Static Warnings Analysis using active learning

NSF funded project in the RAISE lab

Jan 2019 - Aug 2019 Raleigh, NC

- · Identify actionable static warnings of nine Java projects generated by FindBugs with **incrementally active learning** and machine learning algorithms to achieve higher recall with lower cost by reducing false alarms.
- · Utilize different sampling approaches (random sampling, uncertainty sampling and certainty sampling) to query warnings suggested by active learning algorithm.
- · Interact the system with a human oracle to update the system.

Multi-task Learning for Evaluating Peer Assessments

Coursework project

Sep 2020 - Dec 2020Raleigh, NC

- · Leverage a benchmark language representation model (BERT, Deep Bidirectional Transformers) in multi-task learning to automatically evaluate peer feedback comments. Utilize oversampling method (at data-level and algorithm-level) to avoid the data imbalance issue. Use Subword Tokenization method, WordPiece which splits a text into subwords, to address the out-of-vocabulary (OOV) problem in NLP. And compare the performance of multi-task model with baseline method, single-task model.
- Implement word2vec (CBOW and Skip-grams) and doc2vec (Doc2vec and Part-of-speech tagging) models in Python 3 on Sentimental Analysis Dataset and Question Answering Dataset. Compare performance of the proposed methods with baseline methods (TF-IDF and BOW) in individual projects.

Spatial Temporal Object Change Detection and Localization Coursework project

Jan 2020 - May 2020 Raleigh, NC

· Utilize Mask R-CNN implemented with PyTorch for satellite image change detection and localization.

· Assess building damage from satellite imagery with a variety of disaster events and different damage extents.

SmartWeather App with Agile Development

Coursework project

Jan 2020 - May 2020 Raleigh, NC

- · Implement SmartWeather App in C# with Xamarin and Visual Studio.
- · Follow the **Scrum process** to iterate and manage software development.
- · Use Architecture Diagram, Context Diagram and Quality Attribute Scenarios in software design.
- · Utilize Fuzzy logic controller to convert a crisp input value into a fuzzy set with a predetermined lower and upper bound of impreciseness.

PUBLICATIONS

- [1] Xueqi Yang, Mariusz Jakubowski, Kelly Kang, Haojie Yu and Tim Menzies, Sparse Attention on Transformer-based Models for Long Sequence Source Code Analysis, (under review).
- [2] Rahul Yedida, Hong Jin Kang, Huy Tu, Xueqi Yang, David Lo, Tim Menzies, How to Find Actionable Static Analysis Warnings, Transactions on Software Engineering, (accepted), 2023.
- [3] <u>Xueqi Yang</u>, Jianfeng Chen, Rahul Yedida, Zhe Yu and Tim Menzies, Learning to Recognize Actionable Static Code Warnings (is Intrinsically Easy), **Empirical Software Engineering**, (accepted), 2021, International Conference on Software Engineering Journal-First, (accepted), 2022.
- [4] Xueqi Yang, Zhe Yu, Junjie Wang and Tim Menzies, Understanding Static Code Warnings: an Incremental AI Approach, Expert Systems with Applications (accepted), 2021.
- [5] Amritanshu Agrawal, Xueqi Yang, Rishabh Agrawal, Xipeng Shen and Tim Menzies, Simpler Hyperparameter Optimization for Software Analytics: Why, How, When?, Transactions on Software Engineering (accepted), 2021.
- [6] Jian Luo, <u>Xueqi Yang</u>, Ye Tian and Wenwen Yu, Corporate and Personal Credit Scoring via Fuzzy Non-kernal SVM with Fuzzy within-class Scatter, **Journal of Industrial and Management Optimization (accepted)**, 2017.