On Independent Domination Number of Regular Graphs¹

bv

Peter Che Bor Lam², Wai Chee Shiu² and Liang Sun³

Abstract

Let G be a simple graph. The independent domination number i(G) is the minimum cardinality among all maximal independent sets of G. Haviland (1995) conjectured that any connected regular graph G of order n and degree $\delta \leq n/2$ satisfies $i(G) \leq \lceil 2n/3\delta \rceil \delta/2$. In this paper, we will settle the conjecture of Haviland in the negative by constructing counterexamples. Therefore a larger upper bound is expected. We will also show that a connected cubic graph G of order $n \geq 8$ satisfies $i(G) \leq 2n/5$, providing a new upper bound for cubic graphs.

Key Words and phrases: Independent domination number, regular graph.

AMS 1991 Subject Classification: 05C35

1. Introduction

Let G = (V, E) be a simple graph of order n and minimum degree δ . For a nonempty set $W \subset V$, its neighborhood N(W) denote the set of all elements of V adjacent with at least one element of W. If $W = \{v\}$, then N(W) is simply written as N(v). An independent set is a set of pairwise non-adjacent vertices of G. A subset I of V is a dominating set if $N(I) \cup I = V$. The independent domination number i(G) is the minimum cardinality among all independent dominating sets of G. An independent set is dominating if and only if it is maximal, so i(G) is also the minimum cardinality of a maximal independent set in G.

The parameter i(G) was introduced by Cockayne and Hedetniemi in [5] and some results on it can be found in [1-10]. Favaron [6] and Haviland [8] established upper bounds for i(G) in terms of n and δ . For regular graphs of degree different from zero, we can prove that $i(G) \leq n/2$. However, for most values of δ this is far from best possible. In [6] it was shown that for any graph with $n/2 \leq \delta \leq n$, we have $i(G) \leq n - \delta$, and this bound could be attained only by complete multipartite graphs with vertex classes all of the same order. By adapting arguments from [8], the following result can readily be proved (see [9]).

¹Partially supported by Faculty Research Grant, Hong Kong Baptist University.

²Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong.

³Department of Applied Mathematics, Beijing Institute of Technology, P. O. Box 237, Beijing 100081, China. Research was done while visiting Hong Kong Baptist University.

Proposition 1.1. Let G be a regular graph. If $n/4 \le \delta \le (3-\sqrt{5})n/2$ then $i(G) \le n-\sqrt{n\delta}$ and if $(3 - \sqrt{5})n/2 \le \delta \le n/2$ then $i(G) \le \delta$.

If $n=2m\delta$, then $i(mK_{\delta,\delta})=n/2$ and $mK_{\delta,\delta}$ is disconnected for m>1. Haviland [8] thought that if G was connected then the upper bound for i(G) could be a function of n and δ . She also stated the following Conjecture in [9].

If G is a connected r-regular graph with $r = \delta \leq n/2$, then $i(G) \leq n/2$ Conjecture 1.2. $\lceil 2n/3\delta \rceil \delta/2$.

In section 2, we provide counterexamples to Conjecture 1.2. In section 3, we shall show that $i(G) \le 2n/5$ for any connected cubic graphs, providing a new upper bound for i(G) as a function of the number of vertices.

2. Counterexamples

Lemma 2.1 Given positive integers $r \geq 2$ and $s \geq 3$, let G(r, s) be the family of graphs such that $V = \bigcup_{j=1}^r (X_j \cup Y_j \cup Z_j)$, and $E = (E_1 \cup E_2 \cup E_3 \cup E_4)$, where

1.
$$X_j = \{x_{j1}, x_{j2}, \dots, x_{j(s-1)}\},$$
 2. $Y_j = \{y_{j1}, y_{j2}, \dots, y_{js}\},$

2.
$$Y_i = \{y_{i1}, y_{i2}, \cdots, y_{is}\}.$$

3.
$$Z_j = \{z_{j1}, z_{j2}, \cdots, z_{js}\}$$

3.
$$Z_j = \{z_{j1}, z_{j2}, \dots, z_{js}\},$$
 4. $E_1 = \bigcup_{j=1}^r \{x_{jk}y_{jl} | 1 \le k \le s-1, 1 \le l \le s\},$

5.
$$E_2 = \bigcup_{i=1}^r \{y_{jk}z_{jk} | 1 \le k \le s\},\$$

6.
$$E_3 = \bigcup_{i=1}^r [\{z_{jk}z_{jl} | 1 \le k, l \le s, k \ne l, \} \setminus \{z_{j1}z_{js}\}], and$$

7.
$$E_4 = \{z_{js}z_{(j+1)1} | 1 \le j \le r-1\} \cup \{z_{rs}z_{11}\}.$$

Then

(1)
$$|V| = r(3s-1)$$

- (2) G(r,s) is both connected and s-regular, and
- (3) i(G(r,s)) = rs.

(Note that G(r, s) contains r subgraphs, which we shall call blocks, isomorphic to each other. A typical block of G(r, 5), consisting of 14 vertices, is shown in Fig. 2.1.)

Proof of Lemma 2.1: (1) and (2) are trivial. Because $\bigcup_{j=1}^r Y_j$ is an independent dominating set, $i(G(r,s)) \leq rs$. So (3) is also proved if we can show that $i(G(r,s)) \geq rs$.

We claim that for every $1 \leq j \leq r$, $|I \cap (X_j \cup Z_j)| \geq s$. Consider any such j between 1 and r. If $X_j \cap I \neq \emptyset$, then $Y_j \cap I = \emptyset$. Since I must dominate X_j , we have $X_j \subseteq I$. Now for any 1 < k < s, $z_{j,k}$ is not adjacent to any vertex outside of $Y_j \cup Z_j$, and so in order for I to dominate $z_{j,k}$, it must be that $Z_j \cap I \neq \emptyset$. Thus $|I \cap (X_j \cup Z_j)| \geq s$.

On the other hand, if $X_j \cap I = \emptyset$, then for each $1 \le k \le s$, exactly one of $y_{j,k}$ or $z_{j,k}$ is in I. And so in this case it also follows that $|I \cap (Y_j \cup Z_j)| \ge s$.

I

Thus, it follows that $i(G(r,s)) \geq rs$, and hence that i(G(r,s)) = rs.

Fig. 2.1

Theorem 2.2 If r is sufficiently large and $s \ge 3$, then G = G(r, s) is a connected s-regular graph with $i(G) > \lceil 2n/3s \rceil s/2$, where n is the order of G.

Proof: We have
$$\lceil 2r(3s-1)/3s \rceil s/2 \le (2r - \lfloor 2r/3s \rfloor) s/2$$

= $rs - (\lfloor 2r/3s \rfloor s/2)$
< $i(G)$,

provided r is sufficiently large.

Theorem 2.2 settles Conjecture 1.2 in the negative for all $\delta \geq 3$. If $\delta = 3$, then by Theorem 2.2, the upper bound of i(G)/n is at least 3/8, as shown by the previous example with s=3. However, if Conjecture 1.2 holds, then this upper bound would have been less than (n+4)/3n, which is strictly less than 3/8 if n>32.

Note that in the above, δ is fixed and n is large. In what follows, we shall construct connected

regular graphs G with $\delta(G)$ small relative to n, but i(G)/n is as close to 1/2 as we wish.

Lemma 2.3 Given positive integers $r \ge 1$ and $s \ge 2$, let $G^*(r, s)$ be the graph (V, E) with $V = U \cup \left[\bigcup_{j=1}^{2r+1} (V_j \cup W_j) \right]$, and $E = (E_1 \cup E_2 \cup E_3 \cup E_4)$, where

1.
$$U = \{u_1, u_2, \cdots, u_{2r+1}\},\$$

2.
$$V_i = \{v_{i,1}, v_{i,2}, \cdots, v_{i,s+2r}\}$$

3.
$$W_j = \{w_{j,1}, w_{j,2}, \cdots, w_{j,s+2r-1}\},\$$

4.
$$E_1 = \{u_i u_k | 1 \le j < k \le 2r + 1\},$$

5.
$$E_2 = \bigcup_{i=1}^{2r+1} \{u_i v_{i,k} | 1 \le k \le s\},\$$

6.
$$E_3 = \bigcup_{j=1}^{2r+1} [\{v_{j,s+2k-1}v_{j,s+2k} | 1 \le k \le r\}]$$
 and

7.
$$E_4 = \bigcup_{i=1}^{2r+1} [\{v_{j,k}w_{j,l} | 1 \le k \le s+2r, 1 \le l \le s+2r-1\}].$$

Then

(1)
$$|V| = 2(2r+1)(s+2r),$$

- (2) $G^*(r,s)$ is both connected and (s+2r)-regular, and
- (3) $i(G^*(r,s)) = 2r(s+r) + r + 1.$

Proof: (1) and (2) are trivial. Because S =

$$\left[\bigcup_{j=1}^{2r} \left[\{ v_{j,k} | \ 1 \le k \le s \} \cup \{ v_{j,s+2k} | \ 1 \le k \le r \} \right] \right] \bigcup \left[\{ u_{2r+1} \} \cup \{ v_{2r+1,s+2k} | \ 1 \le k \le r \} \right]$$

is a maximal independent set of $G^*(r,s)$, and |S|=2r(s+r)+r+1, we have $i(G^*(r,s))\leq 2r(s+r)+r+1$.

Suppose I is a maximal independent set of order $i(G^*(r,s))$ and $I_j = I \cap [V_j \cup W_j \cup \{u_j\}]$ for $1 \leq j \leq 2r+1$. Clearly, $I = \bigcup_{j=1}^{2r+1} |I_j|$ and $|I| = \sum_{j=1}^{2r+1} |I_j|$. If $u_j \notin I$, then $|I \cap (V_j \cup W_j)| \geq s+r$, and if $u_j \in I$, then $|I \cap (V_j \cup W_j)| \geq r$. Because I is independent and the induced subgraph on U is complete, there is at most one j with $u_j \in I$. It follows that $i(G^*(r,s)) \geq 2r(s+r) + r + 1$ and (3) follows.

Theorem 2.4 Suppose $0 < \epsilon < 1$ and $N \ge 2$. Then there exists a connected δ -regular graph of order n with $\delta < n/N$ and $i(G) > n/(2 + \epsilon)$.

Proof: Let r_1 be the smallest integer such that $2(2r_1+1) > N$. Because $\lim_{r \to \infty} \frac{r}{2r+1} = \frac{1}{2}$, we can find r_2 such that if $r \ge r_2$, then $\frac{r}{2r+1} > \frac{1}{2} - \frac{\epsilon}{12}$. Put $r = \max\{r_1, r_2\}$. Also, for fixed r, we

have $\lim_{s\to\infty} \frac{2r(s+r)+r+1}{2(2r+1)(s+2r)} = \frac{r}{2r+1}$, so we can find s such that $\frac{2r(s+r)+r+1}{2(2r+1)(s+2r)} > \frac{r}{2r+1} - \frac{\epsilon}{12}$. Let $G = G^*(r,s)$ and n = |G|. Then G is a δ -regular graph with $\delta = s+2r$.

By Lemma 2.3 and the definition of r, $\delta/n = 1/2(2r+1) < 1/N$. Moreover, by Lemma 2.3 again and the definition of r and s,

$$\frac{i(G)}{n} = \frac{2r(s+r)+r+1}{2(2r+1)(s+2r)} > \frac{r}{2r+1} - \frac{\epsilon}{12} > \frac{1}{2} - \frac{\epsilon}{6} > \frac{1}{2+\epsilon}$$

provided $0 < \epsilon < 1$.

3. Regular Cubic Graphs

In this section, we obtain an upper bound for the independent domination number of a connected cubic graph.

Theorem 3.1 If G is a connected cubic graph of order n, where $n \geq 8$, then

$$i(G) \le \frac{2n}{5}.$$

Proof: Let I be an independent dominating set (IDS) of cardinality i(G). Also let $J = V \setminus I$ and B = (I, J) be the bipartite graph induced by edges of G joining a vertex in I to a vertex in J. Among all such choices of I, choose one so that B contains the smallest number of $K_{2,3}$'s. If $v \in J$ is connected to $u \in I$ by an edge in B, we say that v is guarded by u and that u is a guardian of v. For each t = 1, 2 and 3, let $J_t = \{v \in J : v \text{ has } t \text{ guardians}\}$. Since I is a dominating set, J is the disjoint union of J_1 , J_2 and J_3 . If $|J_3| \leq |J_1|$, then

$$3n = \sum_{v \in V} d_G(v) = 2 \sum_{v \in I} d_G(v) + 2|J_1| + |J_2|$$

$$\geq 6i(G) + |J_1| + |J_2| + |J_3|$$

$$= 6i(G) + (n - i(G)),$$

and therefore $i(G) \leq 2n/5$. So the theorem is proved if we can construct an injective map $f: J_3 \to J_1$. A vertex $v \in J$ is guarded by $I' \subset I$ if it is guarded by at least one vertex $u \in I'$. The set of guardians of a vertex $v_0 \in J_3$ shall be denoted by $I_0 = N(v_0) = \{u_1, u_2, u_3\}$. A vertex v that is guarded only by vertices of I_0 is called exclusive (with respect to v_0), otherwise not exclusive. V_{ex}

shall denote the set of exclusive vertices. Note that v_0 is not adjacent to any vertex in $V_{ex}\setminus\{v_0\}$. If $|V_{ex}| \leq 2$, then $[I \cup V_{ex}]\setminus I_0$ is a subminimal IDS. Henceforth, we suppose $|V_{ex}| \geq 3$. We have three possible cases.

Case 1: I_0 does not guard any J_1 -vertex.

In this case, $V_{ex} \subset J_2 \cup J_3$. If $|V_{ex} \cap J_3| = 3$, then n = 6. So besides v_0 , there is at most one J_3 -vertex in V_{ex} , and thus $J_2 \cap V_{ex} \neq \emptyset$. If $|V_{ex} \cap J_3| = 2$ and if w_1 and w_2 are two exclusive vertices in J_2 and $J_3 \setminus \{v_0\}$ respectively, then $[I \cup \{w_1\}] \setminus [N(w_1) \cap I]$ is a subminimal IDS. Hence $V_{ex} \cap J_3 = \{v_0\}$ and there are at least two J_2 -vertices in V_{ex} , say v_1 and v_2 . Suppose the guardian sets of v_1 and v_2 are not identical (see H_1 of Fig 3.1). The third vertex guarded by u_3 must be guarded by a vertex in $I \setminus \{u_2, u_3\}$ and therefore $[I \setminus \{u_2, u_3\}] \cup \{v_2\}$ is a subminimal IDS. So we assume that v_1 and v_2 have the same guardian set (see H_2 of Fig 3.1). Moreover, $V_{ex} = \{v_0, v_1, v_2\}$.

Fig. 3.1

If $z_1 = v_2$, then $(I \cup \{v_1\}) \setminus \{u_2, u_3\}$ is a subminimal IDS. Hence $z_1 \neq v_2$. If $z_1 \neq v_3$, then $I' = I \cup \{v_1, v_2\} \setminus \{u_2, u_3\}$ is an IDS with |I| = |I'|, but the bipartite graph $(I', V \setminus I')$ contains a smaller number of $K_{2,3}$'s (compare H_2 and H'_2 in Fig. 3.1). Therefore $z_1 = v_3 \in J_1$ and G contains the subgraph H_3 in Fig. 3.2. We let $f(v_0) = z_1$.

Fig. 3.2

Suppose $N^*(u_4)$ is the set of vertices which are guarded by u_4 but not by any vertex in $I\setminus [I_0\cup \{u_4\}]$. If either $v_4\notin N^*(u_4)$ or $v_5\notin N^*(u_4)$, then $[I\cup \{v_0\}\cup N^*(u_4)]\setminus \{u_1,\ u_2,\ u_3,\ u_4\}$ is a subminimal IDS. Therefore $|N^*(u_4)|=3$. It follows that neither v_4 nor v_5 is in J_3 . Moreover, if

 v_4 is in J_2 , then it must be guarded by u_1 . The same is true for v_5 . If both v_4 and v_5 are in J_2 then G contains the subgraph H'_3 in Fig. 3.2.

Case 2: I_0 guards exactly one J_1 -vertex v', which is guarded by $u_3 \in I_0$.

Besides v_0 and v', there is an exclusive vertex in $J_2 \cup J_3$, because $|V_{ex}| \geq 3$. We have the following sub-cases.

Sub-case 2.1: $[V_{ex}\setminus\{v_0, v'\}] \subset J_2$ and there exists $v_2 \in V_{ex}\setminus\{v_0, v'\}$ guarded by u_3 .

In this sub-case, H_4 appears (Fig. 3.3). Relabeling v' as z_2 , we let $f(v_0) = z_2$.

Fig. 3.3

Sub-case 2.2: $[V_{ex}\setminus\{v_0, v'\}] \subset J_2$ and no vertex in $V_{ex}\setminus\{v_0, v'\}$ is guarded by u_3 .

Suppose $v_6 \in V_{ex} \setminus \{v_0, v'\}$ is guarded by u_1 and u_2 . Because G is cubic, u_1 guards a remaining vertex besides v_0 and v_6 . The same is true for u_2 . If these two remaining vertices v_7 and v'_7 are distinct, i.e. G contains H_5 (Fig. 3.3), then since they are not in J_1 , $I \cup \{v_6\} \setminus \{u_1, u_2\}$ is a subminimal IDS. Therefore both u_1 and u_2 guard the same remaining vertex, and G contains H'_5 (Fig. 3.3). We have v_6 not adjacent to v_7 , otherwise $I \cup \{v_6\} \setminus \{u_1, u_2\}$ is a subminimal IDS. We also have $v_6 = I \cup \{v_6, v_7\} \setminus \{u_1, u_2\}$, is an IDS with |I| = |I'|, but $(I', V \setminus I')$ contains less $K_{2,3}$'s than G (compare G with G in Fig. 3.3). The vertex G is different from G

for otherwise $(I \cup \{v_o, v'\}) \setminus \{u_1, u_2, u_3\}$ is a subminimal IDS. Therefore the guardian of z_3 is also different from the guardian of v', i.e. $u_4 \neq u_3$, and G contains the subgraph H_6 .

If u_3 also guards a J_3 -vertex besides v_0 , then all vertices in $N(u_4)\backslash J_1$ would be guarded by at least one vertex in $I\backslash (I_0\cup \{u_4\})$. Moreover $(I\cup \{v_0,\ v'\}\cup [N(u_4)\cap J_1])\backslash \{u_1,\ u_2,\ u_3,\ u_4\}$ would be a subminimal IDS if $|N(u_4)\cap J_1|=1$. Therefore $|N(u_4)\cap J_1|\geq 2$ and u_4 guards another J_1 -vertex besides z_3 . In this case, we let $f(v_0)=z_3$. If u_3 does not guard another J_3 -vertex besides v_0 , i.e. the third vertex it guards is in J_2 , then we relabel v' as z_4 and let $f(v_0)=z_4$.

Subcase 2.3 $[V_{ex} \setminus \{v_0, v'\}] \cap J_3 \neq \emptyset$.

Suppose $v_2 \in V_{ex} \cap J_3$ and so G contains H_7 . The set $I' = I \cup \{v'\} \setminus \{u_3\}$ is an IDS with |I'| = |I| but $(I', V \setminus I')$ contains a less $K_{2,3}$'s unless there are vertices $u_4 \in I$ and $u_5 \in I$, both of which guards v_3 as well as v_4 (compare H_7 with H'_7 in Fig. 3.4). Because G is cubic, u_1 , and similarly u_2 , cannot be u_4 or u_5 . Therefore G must contain H''_7 (Fig. 3.4).

Suppose $v_5 = v_6 = w$. If $N(w) \cap I \subset U = \{u_1, u_2, u_3, u_4, u_5\}$, then $I \cup \{v', w\} \setminus [N(w) \cup \{u_3\}]$ is a subminimal IDS. If $[N(w) \cap I] \setminus U \neq \emptyset$, then since u_1 and u_2 does not guard any J_1 -vertex, $I \cup \{v_0, v_2, v_3, v_4\} \setminus U$ is a subminimal IDS. Therefore $v_5 \neq v_6$.

If both $[N(v_5) \cap I] \setminus U$ and $[N(v_6) \cap I] \setminus U$ are non-empty, then $I \cup \{v_0, v_2, v_3, v_4\} \setminus U$ is a subminimal IDS. Therefore one of $[N(v_5) \cap I] \setminus U$ and $[N(v_6) \cap I] \setminus U$ must be empty. Without loss of generality, we may assume that $[N(v_5) \cap I] \setminus U = \emptyset$. Then $[I \cup \{v_5\}] \setminus [N(v_5) \cap \{u_1, u_2, u_4\}]$ is a subminimal IDS unless $|N(v_5) \cap \{u_1, u_2, u_4\}| = 1$. So v_5 is not guarded by u_1 or by u_2 . Therefore v_5 is a J_1 -vertex. Relabeling v' and v_5 as z_5 and z_6 respectively, we put $f(v_0) = z_5$ and $f(v_2) = z_6$.

Fig. 3.4

So far, the mapping is injective. Vertex z_1 is guarded by a vertex which guards only J_1 - or J_2 -vertices. Vertex z_2 is guarded by a vertex which also guards one J_2 - and one J_3 -vertex. The

latter is the pre-image of z_2 . Similar argument can be applied to z_4 . Vertex z_3 is guarded by a vertex which guards at least one other J_1 -vertex. Vertex z_5 is guarded by a vertex which guards two other J_3 -vertices. Vertex z_6 is guarded by a vertex which guards two other J_2 -vertices. If z_6 were the image of another J_3 -vertex as z_1 , then G would contain H_8 in Fig. 3.5 (see also H'_3 of Fig. 3.2), and $I \cup \{z_5, z_6, v_6\} \setminus \{u_i | 3 \le i \le 7\}$ would be a subminimal IDS. Therefore z_6 will not be mapped as z_1 .

Fig. 3.5

Case 3: I_0 guards two or more J_1 -vertices.

Suppose u_1 , one of the three guardians of v_0 , guards two J_1 -vertices v_8 and v_8' . By examining the type of vertices guarded by u_1 , we can conclude that neither v_8 nor v_8' can possibly be mapped as z_i unless i=3. If only one of v_8 and v_8' (say v_8) have been mapped as z_3 , then we rename v_8' as z_7 and define $f(v_0)=z_7$. If both v_8 and v_8' have been mapped as z_3 according to Sub-case 2.2, then G contains the sub-graph in Fig 3.6. If v_0 is not guarded by both u_4 and u_4' , then $I \cup \{v_1, v_2, v_8, v_1', v_2', v_8'\} \setminus \{u_1, u_2, u_3, u_4, u_2', u_3', u_4'\}$ is a subminimal IDS. Therefore v_0 is guarded by both u_4 and u_4' and we relabel v_2 as z_8 and let $f(v_0)=z_8$. We know that z_7 has not been mapped as z_3 . Because z_7 is guarded by a vertex which guards two J_1 -vertices and one J_3 -vertex, its pre-image, it cannot be z_i for $i=1,\cdots,6$ and it cannot be the image of two distinct J_3 -vertices. The guardian of z_8 guards two J_3 -vertices and the J_1 -vertex z_8 , but the guardian set of one of these two J_3 -vertices guards at least two J_1 -vertices. Among z_i , $i=1,\cdots,7$, only z_5 is guarded by a vertex which guards two J_3 -vertices, but both of these two J_3 -vertices has the same guardian set which guards exactly one J_1 -vertex.

Fig. 3.6

Suppose v' is a J_3 -vertex whose guardian set guards two or more J_1 -vertices, but each guardian guards at most one J_1 -vertex. Let v be one of these J_1 -vertices. Because the guardian of v guards exactly one J_1 -vertex and at least one J_3 -vertex, v cannot have been mapped as z_1 , z_3 , z_6 and z_7 . The guardian of z_2 guards exactly one J_3 -vertex whose guardian set guards exactly one J_1 -vertex. Because the guardian set of v guards one J_3 -vertex whose guardian set guards at least two J_1 -vertices, v cannot have been mapped as z_2 . For the same reason, it cannot have been mapped as z_4 or z_5 . The guardian of z_8 guards two J_3 -vertices v_0 and v_1 , of Fig 3.6. The guardian set of v_1 guards exactly one J_1 -vertex, so v' cannot be v_1 . The guardian of v_2 guards one v_3 -vertex and two v_4 -vertices, so v' cannot be v_4 -vertex, so v' cannot be v_4 -vertex, so v' cannot be v_4 -vertex v', v_4 -vertex v'-vertex v'-vertex

Let $W = \{w_1, w_2, \dots, w_k\}$ be the set of J_3 -vertices whose guardian set guards two or more J_1 -vertices, but each guardian guards at most one J_1 -vertex; V_i be the set of J_1 -vertices guarded by the guardian set of w_i , $i = 1, \dots, k$; and $V^* = \bigcup_{i=1}^k V_i$. If the vertex v belongs to three distinct sets V_{i_1} , V_{i_2} and V_{i_3} , then the guardian of v will guard w_{i_1} , w_{i_2} and w_{i_3} . This is impossible because the graph is cubic. Therefore a vertex may belong to at most two distinct sets V_{i_1} and V_{i_2} , and $|V^*| \geq \frac{1}{2} \sum_{i=1}^k |V_i| \geq k$. We may now finish defining the injective map f from J_3 into J_1 .

Note that the graph G' in Fig. 3.7 has 10 vertices and i(G') = 4 = 2n/5. For $n \ge 12$, we do not know if there exists a graph G'' such that i(G'') = 2n/5, but we suspect that such graph does not exist. Moreover, we do not know how close this upper bound is to being the best possible.

Fig. 3.7

4. Acknowledgment

The authors acknowledge the valuable comments and suggestions of the referees.

References

- [1] B. Bollobas and E.J. Cockanye, Graph theoretic parameters concerning domination, independence and irredundance, J. Graph Theory, 3 (1979), 241-250.
- [2] E.J. Cockayne, O. Favaron, H. Li and G. MacGillivray, On the product of the independent domination numbers of a graph and its complement, Discrete Math. 90 (1991), 313-317.
- [3] E.J. Cockayne, O. Favaron, A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math. 33 (1983), 249-258.
- [4] E.J. Cockanye, G. Fricke and C.M. Mynhardt, On a Nordhaus-Gaddum type problem for independent domination, Report 142 93(3), Department of Mathematics, University of South Africa, 1993.
- [5] E.J. Cockanye and S.T. Hedetniemi, *Independence graphs*, Proc. 5th S.E. Conference on Combinatorics, Graph Theory and Computing, Utilitas Math. (1974), 471-491.
- [6] O. Favaron, Two relations between the parameters of independence and irredundance, Discrete Math. 70 (1988), 17-20.
- [7] J. Haviland, Cliques and independent sets, Ph.D Thesis, University of Cambridge, 1989.
- [8] J. Haviland, On minimum maximal independent sets of a graph, Discrete Math. 94 (1991), 95-101.
- [9] J. Haviland, Independent domination in regular graphs, Discrete Math. 143 (1995), 275-280.
- [10] S.T. Hedetniemi and R.C. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math. 86 (1990), 257-277.