Molecular Dynamics Simulation of Water by TIP5P

Motohiko Tanaka, PhD., Prof., Nagoya, Japan

Procedures of molecular dynamics simulation for water are written for the 5-point TIP5P method. Formerly, the shake/rattle method was used to show that ice state is not melted by microwaves - our theory discovery in J.Chem.Phys. 2007. Today instead, we use five-body water molecules with two hydrogens and two L1, L2 hydrogens of dummy sites. The fifth site of an oxygen site is used with Lennard-Jones potential Psi=A/r^12 -B/r^6. We regain similar results (values are different), due to the structure of six-membered ice!

Ref. "Classical Mechanics", H. Goldstein, C. Poolee, J. Safko, 3rd Edition, Pearson Education Inc., England, 2003.

Procedures of water molecules by 5-body Method

- A. Five sites are oxygen(O), $hydrogen\ 1$ and 2(H), and $hydrogen\ virtual\ L$ sites. They have, 0, +0.241e, and -0.241e charges, respectively. The L1 and L2 are called dummy sites.
- B. Separate \mathbf{R}_i , \mathbf{V}_i and \mathbf{r}_k with i=1-N for molecules, and $\mathbf{s}_{i,k} = (x_{i,k}, y_{i,k}, z_{i,k})$ means for the five sites k=1-5.

 The separation is done at the starting step only; once determined at t=0, they become constant in time.
- C. The half time step is first executed for a predictor step, and the full time step is made for advance of time.
- D. Before the end of one step, the forces are calculated at $\mathbf{r}_{i,k} = \mathbf{R}_i + A^{-1}\mathbf{s}_k$ with three sites of k = 1-3, and the L sites are also calculated by algebraic operation.
- E. After correction of quaternions, go to the beginning of the cycle. The leap – frog method is used for the plasmas and waters.

Each step is: translation (1), rotation (2-4), and adding the fields (5-8).

- 0. Read quaternions from the file, 'read(30)e0,e1,e2,e3' (by Dr.M.Matsumoto, Okayama University).
- 1. Sumup five sites and advance, $\frac{d\mathbf{V}_i}{dt} = \frac{1}{m_i} \sum_{k=1}^{5} \mathbf{F}_{i,k}$, $\frac{d\mathbf{R}_i}{dt} = \mathbf{V}_i$, for the translational motion.
- 2. $\frac{d\mathbf{L}_{i}}{dt} = \sum_{k} \left(y_{i,k} F_{i,k}^{z} z_{i,k} F_{i,k}^{y}, \quad z_{i,k} F_{i,k}^{x} x_{i,k} F_{i,k}^{z}, \quad x_{i,k} F_{i,k}^{y} y_{i,k} F_{i,k}^{x} \right)$ for the rotational motion: the sums are made over the five sites.
- 3. $\omega_{i,\alpha} = (A_{\alpha 1}L_x + A_{\alpha 2}L_y + A_{\alpha 3}L_z)/Im_{i,\alpha}$, the angular frequency for speices $A_{\alpha\beta}$ and inertia moments $Im_{i,\alpha}$ at $\alpha = x, y, z$.
- 4. $\frac{d\mathbf{q}_{i}}{dt} = \frac{1}{2}Q(e_{i,0}, e_{i,1}, e_{i,2}, e_{i,3}) \left(\omega_{i,x}, \omega_{i,y}, \omega_{i,z}, 0\right)$ $\dot{\mathbf{q}}_{i} \text{ of } Q \text{ and } \boldsymbol{\omega} \text{ has four components in the Goldstein's book.}$

5. Get a new rotational matrix $A_{ij}(e_0, e_1, e_2, e_3)$ written in the book p.205 for the next time step.

6.
$$\mathbf{r}_{i,k} = \mathbf{R}_i + \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} \begin{pmatrix} x_{i,k} \\ y_{i,k} \\ z_{i,k} \end{pmatrix}$$
 at the three sites $\mathbf{r}_{i,k}$ and the

position \mathbf{R}_i . The dummy sites are calculated by algebraic operation.

- 7. Forces at Coulomb and LJ potentials are calculated using five sites.
- 8. Correction a normalization of quaternions is made at every 10 steps, and go to the next time step of Step (1).

Note that a time step is important. It will be $\Delta t = 0.025. -0.05$, else the code is inaccurate or goes overflow.

Quaternions in Place of Angles: Goldstein's book

$$e_0 = \cos\frac{\theta}{2}\cos\frac{\phi + \psi}{2}$$

$$e_1 = \sin\frac{\theta}{2}\cos\frac{\phi - \psi}{2}$$

$$e_2 = \sin\frac{\theta}{2}\sin\frac{\phi - \psi}{2}$$

$$e_3 = \cos\frac{\theta}{2}\sin\frac{\phi + \psi}{2}$$

Classical Mechanics (3rd Edition) H. Goldstein, C.P. Poole, J.Safko, Pearson Education Inc., England 2003.

Only three of them are independent to avoid a gimbal lock

Quaternion representation (4.47)

Rotation matrix

$$r = R + A^t r'''$$

Potation matrix
$$\mathbf{r} = \mathbf{R} + \mathbf{A}^{t} \mathbf{r}^{"}$$

$$\mathbf{A} = \begin{bmatrix} e_{0}^{2} + e_{1}^{2} - e_{2}^{2} - e_{3}^{2} & 2(e_{1}e_{2} + e_{0}e_{3}) & 2(e_{1}e_{3} - e_{0}e_{2}) \\ 2(e_{1}e_{2} - e_{0}e_{3}) & e_{0}^{2} - e_{1}^{2} + e_{2}^{2} - e_{3}^{2} & 2(e_{2}e_{3} + e_{0}e_{1}) \\ 2(e_{1}e_{3} + e_{0}e_{2}) & 2(e_{2}e_{3} - e_{0}e_{1}) & e_{0}^{2} - e_{1}^{2} - e_{2}^{2} + e_{3}^{2} \end{bmatrix}$$

Time derivative of quaternions e0,e1,e2,e3

$$\begin{pmatrix} \dot{e}_0 \\ \dot{e}_1 \\ \dot{e}_2 \\ \dot{e}_3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -e_1 & -e_2 & -e_3 & e_0 \\ e_0 & -e_3 & e_2 & e_1 \\ e_3 & e_0 & -e_1 & e_2 \\ -e_2 & +e_1 & e_0 & e_3 \end{pmatrix} \begin{pmatrix} \omega_{x'} \\ \omega_{y'} \\ \omega_{z'} \\ 0 \end{pmatrix}$$

The Lennard-Jones potential

With the Coulombic interactions, the Lennard–Jones 12–6 potential is adopted for the TIP4P and TIP5P cases:

$$\Phi(r) = A/r^{12} - B/r^{6}$$

for TIP4:
 $A = 4.17 \times 10^{-8} erg \bullet Ang^{12}, B = 4.24 \times 10^{-11} erg \bullet Ang^{6}$
for TIP5 – Ewald sum:
 $A = 3.85 \times 10^{-8} erg \bullet Ang^{12}, B = 4.36 \times 10^{-11} erg \bullet Ang^{6}$

Some parameters are,

$$r(OH) = 0.9572 \text{ Ang}, \Delta HOH = 104.52^{\circ}$$

 $r(OM) = 0.15 \text{ Ang } for TIP4P \text{ only}$

The equipartition line of the virtual M site is on the plain that equally separates the HOH angle. The TIP5P cases are also available.

Check of quaternion: A_{ij} coefficient

$$A_{11} = (-\xi^2 + \eta^2 - \zeta^2 + \chi^2) = -\sin^2\frac{\theta}{2}\sin^2\frac{\psi - \phi}{2} + \sin^2\frac{\theta}{2}\cos^2\frac{\psi - \phi}{2}$$

$$-\cos^2\frac{\theta}{2}\sin^2\frac{\psi + \phi}{2} + \cos^2\frac{\theta}{2}\cos^2\frac{\psi + \phi}{2})$$

$$= \sin^2\frac{\theta}{2}(-\sin^2\frac{\psi - \phi}{2} + \cos^2\frac{\psi - \phi}{2}) - \cos^2\frac{\theta}{2}(\sin^2\frac{\psi + \phi}{2} - \cos^2\frac{\psi + \phi}{2})$$

$$= \sin^2\frac{\theta}{2}(2\cos^2\frac{\psi - \phi}{2} - 1) + \cos^2\frac{\theta}{2}(\cos^2\frac{\psi + \phi}{2} - 1)$$

$$= \sin^2\frac{\theta}{2}(1 + \cos(\psi - \phi) - 1) + \cos^2\frac{\theta}{2}(1 + \cos(\psi + \phi) - 1)$$

$$= \sin^2\frac{\theta}{2}\cos(\psi - \phi) + \cos^2\frac{\theta}{2}\cos(\psi + \phi)$$

$$= \sin^2\frac{\theta}{2}(\cos\psi\cos\phi + \sin\psi\sin\phi) + \cos^2\frac{\theta}{2}(\cos\psi\cos\phi - \sin\psi\sin\phi)$$

$$= \frac{1}{2}(1 - \cos\theta)(\cos\psi\cos\phi + \sin\psi\sin\phi) + \frac{1}{2}(1 + \cos\theta)(\cos\psi\cos\phi - \sin\psi\sin\phi)$$

$$= \cos\psi\cos\phi - \cos\theta\sin\psi\sin\phi$$

$$\begin{split} A_{12} &= 2(\varsigma\chi - \xi\eta) = 2(\cos^2\frac{\theta}{2}\sin\frac{\psi + \phi}{2}\cos\frac{\psi + \phi}{2} - \sin^2\frac{\theta}{2}\sin\frac{\psi - \phi}{2}\cos\frac{\psi - \phi}{2}) \\ &= (1 + \cos\theta)\sin\frac{\psi + \phi}{2}\cos\frac{\psi + \phi}{2} - (1 - \cos\theta)\sin\frac{\psi - \phi}{2}\cos\frac{\psi - \phi}{2} \\ &= \sin\frac{\psi + \phi}{2}\cos\frac{\psi + \phi}{2} - \sin\frac{\psi - \phi}{2}\cos\frac{\psi - \phi}{2} + \cos\theta(\sin\frac{\psi + \phi}{2}\cos\frac{\psi + \phi}{2} \\ &+ \sin\frac{\psi - \phi}{2}\cos\frac{\psi - \phi}{2}) \\ &= \frac{1}{2}\sin(\frac{\psi + \phi}{2} + \frac{\psi + \phi}{2}) - \frac{1}{2}\sin(\frac{\psi - \phi}{2} + \frac{\psi - \phi}{2}) + \frac{1}{2}\cos\theta(\sin(\psi + \phi) \\ &+ \sin(\psi - \phi)) \\ &= \frac{1}{2}\sin(\psi + \phi) - \frac{1}{2}\sin(\psi - \phi) + \frac{1}{2}\cos\theta(\sin(\psi + \phi) - \frac{1}{2}\sin(\psi - \phi)) \\ &= \frac{1}{2}(\sin\psi\cos\phi + \cos\psi\sin\phi - \sin\psi\cos\phi + \cos\psi\sin\phi) + \frac{1}{2}\cos\theta(same) \\ &= \cos\psi\sin\phi + \cos\theta\sin\psi\cos\phi \end{split}$$

$$A_{13} = 2(\eta \zeta + \xi \chi) = 2(\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{\psi - \phi}{2} \sin \frac{\psi + \phi}{2}$$

$$+ \sin \frac{\theta}{2} \cos \frac{\theta}{2} \sin \frac{\psi - \phi}{2} \cos \frac{\psi + \phi}{2})$$

$$= 2\sin \frac{\theta}{2} \cos \frac{\theta}{2} [\cos \frac{\psi - \phi}{2} \sin \frac{\psi + \phi}{2} + \sin \frac{\psi - \phi}{2} \cos \frac{\psi + \phi}{2}]$$

$$= \sin \theta [\sin \frac{\psi + \phi}{2} \cos \frac{\psi - \phi}{2} + \cos \frac{\psi + \phi}{2} \sin \frac{\psi - \phi}{2}]$$

$$= \sin \theta [\sin (\frac{\psi + \phi}{2} + \frac{\psi - \phi}{2})]$$

$$= \sin \theta \sin \psi$$

$$A_{21} = -2(\xi \eta + \zeta \chi) = -2(\sin^2 \frac{\theta}{2} \cos \frac{\psi - \phi}{2} \sin \frac{\psi - \phi}{2}$$

$$+ \cos^2 \frac{\theta}{2} \sin \frac{\psi + \phi}{2} \cos \frac{\psi + \phi}{2})$$

$$= -(1 - \cos \theta) \cos \frac{\psi - \phi}{2} \sin \frac{\psi - \phi}{2} - (1 + \cos \theta) \sin \frac{\psi + \phi}{2} \cos \frac{\psi + \phi}{2}$$

$$= -\frac{1}{2} (1 - \cos \theta) \sin(\psi - \phi) - \frac{1}{2} (1 + \cos \theta) \sin(\psi + \phi)$$

$$= -\frac{1}{2} (\sin(\psi - \phi) + \sin(\psi + \phi)) + \frac{1}{2} \cos \theta (\sin(\psi - \phi) - \sin(\psi + \phi))$$

$$= -\frac{1}{2} (sc - cs + sc + cs) + \frac{1}{2} \cos \theta (sc - cs - sc - cs)$$

$$= -\sin \psi \cos \phi - \cos \theta \cos \psi \sin \phi$$

$$A_{22} = \xi^{2} - \eta^{2} - \zeta^{2} + \chi^{2}$$

$$= \sin^{2} \frac{\theta}{2} (\sin^{2} \frac{\psi - \phi}{2} - \cos^{2} \frac{\psi - \phi}{2}) + \cos^{2} \frac{\theta}{2} (-\sin^{2} \frac{\psi + \phi}{2} + \cos^{2} \frac{\psi + \phi}{2})$$

$$= \sin^{2} \frac{\theta}{2} (1 - 2\cos^{2} \frac{\psi - \phi}{2}) + \cos^{2} \frac{\theta}{2} (2\cos^{2} \frac{\psi + \phi}{2} - 1)$$

$$= -\sin^{2} \frac{\theta}{2} \cos(\psi - \phi)) + \cos^{2} \frac{\theta}{2} \cos(\psi + \phi)$$

$$= -\frac{1}{2} (1 - \cos \theta) \cos(\psi - \phi) + \frac{1}{2} (1 + \cos \theta) \cos(\psi + \phi)$$

$$= \frac{1}{2} (-\cos(\psi - \phi) + \cos(\psi + \phi)) + \frac{1}{2} \cos \theta (\cos(\psi - \phi) + \cos(\psi + \phi))$$

$$= \frac{1}{2} (-cc - ss + cc - ss) + \frac{1}{2} \cos \theta (cc + ss + cc - ss)$$

$$= -\sin \psi \sin \phi + \cos \theta \cos \psi \cos \phi$$

$$A_{23} = 2(\eta \chi - \xi \zeta) = 2(\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{\psi + \phi}{2} \cos \frac{\psi - \phi}{2})$$

$$-\sin \frac{\theta}{2} \cos \frac{\theta}{2} \sin \frac{\psi + \phi}{2} \sin \frac{\psi - \phi}{2})$$

$$= 2\sin \frac{\theta}{2} \cos \frac{\theta}{2} (\cos \frac{\psi + \phi}{2} \cos \frac{\psi - \phi}{2} - \sin \frac{\psi + \phi}{2} \sin \frac{\psi - \phi}{2})$$

$$= 2\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos (\frac{\psi + \phi}{2} + \frac{\psi - \phi}{2})$$

$$= \sin \theta \cos \psi$$

$$A_{31} = 2(\eta \zeta - \xi \chi) = 2(\sin \frac{\theta}{2} \cos \frac{\theta}{2} \sin \frac{\psi + \phi}{2} \cos \frac{\psi - \phi}{2})$$

$$-\sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{\psi + \phi}{2} \sin \frac{\psi - \phi}{2})$$

$$= 2\sin \frac{\theta}{2} \cos \frac{\theta}{2} (\sin \frac{\psi + \phi}{2} \cos \frac{\psi - \phi}{2} - \cos \frac{\psi + \phi}{2} \sin \frac{\psi - \phi}{2})$$

$$= 2\sin \frac{\theta}{2} \cos \frac{\theta}{2} \sin(\frac{\psi + \phi}{2} - \frac{\psi - \phi}{2})$$

$$= \sin \theta \sin \phi$$

$$A_{32} = -2(\xi \zeta + \eta \chi) = -2\sin\frac{\theta}{2}\cos\frac{\theta}{2}(\sin\frac{\psi + \phi}{2}\sin\frac{\psi - \phi}{2} + \cos\frac{\psi + \phi}{2}\cos\frac{\psi - \phi}{2})$$
$$= -\sin\theta\cos(\frac{\psi + \phi}{2} - \frac{\psi - \phi}{2})$$

 $=-\sin\theta\cos\phi$

$$A_{33} = -\xi^2 - \eta^2 + \xi^2 + \chi^2$$

$$= -\sin^2 \frac{\theta}{2} \left\{ \sin^2(-) + \cos^2(-) \right\} + \cos^2 \frac{\theta}{2} \left\{ \sin^2(+) + \cos^2(+) \right\}$$

$$= -\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} = \frac{1}{2} \left\{ -(1 - \cos \theta) + 1 + \cos \theta \right\} = \cos \theta \quad QED!$$