What is claimed is:

1	1. A communications network comprising:
2	a connection-oriented subnetwork;
3	a permanent topology of routers coupled to the subnetwork and
4	interconnected by virtual circuits, the routers further comprising:
5	means for calculating a shortcut path through the subnetwork;
6	a forwarding table comprising a first entry along a path through the
7	permanent topology and a second entry along the shortcut path; and
8	means for establishing a virtual circuit to another router along the
9	shortcut path;
1	2. The communication network of claim 1 wherein the virtual circuits
2	interconnecting the permanent topology of routers are permanent virtual circuits.
1	3. The communication network of claim 1 wherein the shortcut is an
2	intra-area shortcut.
l	4. The communication network of claim 1 wherein the shortcut is an
2	inter-area shortcut.
1	5. The communication network of claim 1 wherein the routers further
2	comprise means for receiving and processing link state packets containing connectivity
3	information broadcast by another router.

1	6. The communication network of claim 1 wherein the routers further
2	comprise means for receiving and processing link state packets containing shortcut
3	information broadcast by another router.
1	7. The communication network of claim 1 wherein the subnetwork is a
2	non-broadcast multiple access network.
1	8. The communication network of claim 1 wherein the subnetwork is an
2	ATM network.
1	9. A method of operating a router in a communication network coupled
2	to a connection-oriented subnetwork comprising the steps of:
3	receiving a link state packet;
4	using information in the link state packet to compute a permanent path to a
5	destination address;
6	using information in the link state packet to compute a shortcut path
7	through the connection-oriented subnetwork to the destination address; and
8	storing in a forwarding table
9	a first entry to a router along the permanent path and
10	a second entry to a router along the shortcut path through the
11	connection-oriented network.
1	10. The method of claim 9 wherein the shortcut path through the
2	connection-oriented network is to a router on the permanent path to the destination
3	address.

1	11. The method of claim 9 further comprising the step of setting up a
2	virtual circuit along the shortcut path through the connection-oriented network to the
3	destination address.
1	12. The method of claim 9 wherein the subnetwork is a non-broadcast
2	multiple access network.
1	13. The method of claim 9 wherein the subnetwork is an ATM network.
1	14. A method of operating a router in a communication network having a
2	plurality of interfaces to at least one connection-oriented subnetwork comprising the
3	steps of:
4	assigning a number to each of the interfaces;
5	grouping the interfaces into connectivity classes;
6	encoding information identifying the interfaces and the connectivity
7	classes into a link state packet; and
8	transmitting the link state packet to other routers in the communication
9	network.
1	15. The method of claim 14 wherein the link state packet is an OSPF link
2	state advertisement.
1	16. The method of claim 14 wherein the link state packet is in an opaque
2	format

- 1 17. The method of claim 14 wherein the subnetwork is a non-broadcast
- 2 multiple access network.
- 1 18. The method of claim 14 wherein the subnetwork is an ATM network.