Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

СибГУТИ

Кафедра прикладной математики и кибернетики РГР по дисциплине Визуальное программирование и человеко-машинное взаимодействие. Ч. 1

> Выполнил: студент 2 курса, группы ИП-014 Альхимович Михаил Валерьевич Проверил: ст. преподаватель Милешко Антон Владимирович

РГР. Часть 1

Задание на РГР

Создать ПО для отображения и обработки статистических данных для определённого вида спорта. ПО должно включать 2 основных окна: окно отображающее таблицы БД со статистической информацией и результаты запросов к БД, переключение таблиц ирезультатов должно быть реализовано через вкладки; и окно для менеджера запросов к БД.

Первое окно должно давать возможность просматривать и изменять все таблицы БД, а также просматривать результаты запросов к БД. Должна иметься возможность удалить вкладки с результатами запросов, но не вкладки с таблицами. Также должна иметься возможность перейти к окну менеджера запросов.

Окно менеджера запросов должно предоставлять интерфейс для создания, сохранения, удаления, редактирования запросов. Созданные запросы должны отображаться в виде спискас названиями запросов, в который можно добавлять новые запросы, удалять, просматривать существующие. Для создания и редактирования запросов должен предоставляться визуальный интерфейс, а не язык запросов. Редактор запросов должен поддерживать операции выборки, соединения, группирования, подзапросы (в качестве подзапроса используются ранее сохранённые запросы).

Ход работы:

- 1. Исследование предметной области и создание ER диаграммы.
- 2. Перевод ER диаграммы в реляционную модель, создание и заполнение БД.
- 3. Проработка визуального интерфейса приложения
- 4. Создание диаграммы классов приложения
- 5. Реализация основного окна приложения
- 6. Реализация менеджера запросов
- 7. Тестирование и отладка

Вариант задания - 1

1. Футбол (клубы) (https://www.soccerstats.com/ https://fbref.com/en/)

Предметная область

Тема: Футбол (клубы)

- 1. Футбольные клубы;
 - 1.1 Чемпионская лига;
 - 1.2 Дата проведения турнира;
 - 1.3 Групповой этап (отборочные);
 - 1.3.1 Группа α , α {A, B, ..., Z};
 - 1.3.2 Дата проведения игры;
 - 1.3.3 Название команд;
 - 1.3.4 Результат матча;
 - 1.3.5 Сводка прошедших в лигу команд;
 - 1.3.5.1 Общая статистика команд за группу(GP, W, D, L, etc.);
 - 1.4 Final League Parts;
 - 1.4.1 n-th Finals (где n $\frac{1}{2^m}$, $m \in R_+$);
 - 1.4.2 Дата проведения игры;
 - 1.4.3 Название команд;
 - 1.4.4 Результат матча;
 - 1.4.5 Итог турнира (финальный матч);
 - 1.5 Общая статистика турнира;
- 1.5.1 Время гола ((0-15),(16-30),(31-45),(46-60),(61-75),(76-90)) + овертаймы;
 - 1.5.2 Время гола по половинам ((0-45),(46-90));
 - 1.5.3 Ср. время гола в матче;
 - 1.5.4 Early Scoring analysis (крат. статистика);
 - 1.5.5 Широкая статистика голов;
 - 1.6 Игроки;
 - 1.6.1 Ф.И.О игрока;
 - 1.6.2 Команда игрока;
 - 1.6.3 Статистика игрока;

ER-диаграмма

Сущности: четверти, группы, матчи, команды, игроки, результат мачта в команде, результат матча игрока.

РГР. Часть 2

Задание на РГР

Создать ПО для отображения и обработки статистических данных для определённого вида спорта. ПО должно включать 2 основных окна: окно отображающее таблицы БД со статистической информацией и результаты запросов к БД, переключение таблиц ирезультатов должно быть реализовано через вкладки; и окно для менеджера запросов к БД.

Первое окно должно давать возможность просматривать и изменять все таблицы БД, а также просматривать результаты запросов к БД. Должна иметься возможность удалить вкладки с результатами запросов, но не вкладки с таблицами. Также должна иметься возможность перейти к окну менеджера запросов.

Окно менеджера запросов должно предоставлять интерфейс для создания, сохранения, удаления, редактирования запросов. Созданные запросы должны отображаться в виде списка с названиями запросов, в который можно добавлять новые запросы, удалять, просматривать существующие. Для создания и редактирования запросов должен предоставляться визуальный интерфейс, а не язык запросов. Редактор запросов должен поддерживать операции выборки, соединения, группирования, подзапросы (в качестве подзапроса используются ранее сохранённые запросы).

Ход работы:

- 8. Исследование предметной области и создание ER диаграммы.
- 9. Перевод ER диаграммы в реляционную модель, создание и заполнение БД.
- 10. Проработка визуального интерфейса приложения
- 11. Создание диаграммы классов приложения
- 12. Реализация основного окна приложения
- 13. Реализация менеджера запросов
- 14. Тестирование и отладка

Вариант задания - 1

2. Футбол (клубы) (https://fbref.com/en/)

Перевод ER-диаграммы в реляционную модель

Концептуальные модели позволяют более точно представить предметную область, чем реляционные и другие более ранние модели. Но в настоящее время существует немного систем управления базами данных, поддерживающих эти модели. На практике наиболее распространены системы, реализующие реляционную модель.

Поэтому необходим метод перевода концептуальной модели в реляционную. Такой метод основывается на формировании набора предварительных таблиц.

Каждой сущности создается таблица. Причем каждому атрибуту сущности соответствует столбец таблицы.

Правила генерации таблиц из ER-диаграмм опираются на два основных фактора – тип связи и класс принадлежности сущности. Изложим их:

Правило 1. Если связь типа 1:1 и класс принадлежности обеих сущностей является обязательным, то необходима только одна таблица. Первичным ключом этой таблицы может быть первичный ключ любой из двух сущностей.

Правило 2. Если связь типа 1:1 и класс принадлежности одной сущности является обязательным, а другой — необязательным, то необходимо построить таблицу для каждой сущности. Первичный ключ сущности должен быть первичным ключом соответствующей таблицы. Первичный ключ сущности, для которой класс принадлежности является необязательным, добавляется как атрибут в таблицу для сущности с обязательным классом принадлежности.

Правило 3. Если связь типа 1:1 и класс принадлежности обеих сущностей является необязательным, то необходимо построить три таблицы — по одной для каждой сущности и одну для связи. Первичный ключ сущности должен быть первичным ключом соответствующей таблицы. Таблица для связи среди своих атрибутов должна иметь ключи обеих сущностей.

Правило 4. Если связь типа 1:М и класс принадлежности сущности на стороне М является обязательным, то необходимо построить таблицу для каждой сущности. Первичный ключ сущности должен быть первичным ключом соответствующей таблицы. Первичный ключ сущности на стороне 1 добавляется как атрибут в таблицу для сущности на стороне М.

Правило 5. Если связь типа 1:М и класс принадлежности сущности на стороне М является необязательным, то необходимо построить три таблицы — по одной для каждой сущности и одну для связи. Первичный ключ сущности должен быть первичным ключом соответствующей таблицы. Таблица для связи среди своих атрибутов должна иметь ключи обеих сущностей.

Правило 6. Если связь типа М, то необходимо построить три таблицы — по одной для каждой сущности и одну для связи. Первичный ключ сущности должен быть первичным ключом соответствующей таблицы. Таблица для связи среди своих атрибутов должна иметь ключи обеих сущностей.

Цели создания реляционной модели:

- Обеспечение более высокой степени независимости otданных. Прикладные программы не должны зависеть OT изменений внутреннего организации файлов, представления данных, В частности OT изменений переупорядочивания записей и путей доступа.
- Создание прочного фундамента для решения семантических вопросов, а также проблем непротиворечивости и избыточности данных. В частности, в статье Кодда вводится понятие нормализованных отношений, т.е. отношений без повторяющихся групп.
- Расширение языков управления данными за счет включения операций над множествами.

Реляционная модель основана на математическом понятии отношения, физическим представлением которого, является таблица.

Попробуем преобразовать исходную ER-модель в реляционную модель:

Исходная ER-модель

Для начала уточним некоторые поля сущностей, чтобы более четко внести их в базу данных:

Распишем каждое отношение, его атрибуты и домены атрибутов:

1. Группа:

ID группы	Номер группы	Список команд	Список матчей
-----------	--------------	---------------	---------------

Домен ID группы (Суперключ):

Имя домена: ID группы.

Содержимое домена: Множество всех допустимых ID команд.

Определение домена: Символьный, размер 4, диапазон от 0001 - FFFF.

Домен номер группы:

Имя домена: Номер группы.

Содержимое домена: Множество всех допустимых обозначений футбольных групп.

Определение домена: Символьный, размер 1, диапазон от А - Z.

Домен список команд:

Имя домена: Список команд.

Содержимое домена: список всех возможных команд Чемпионской лиги.

Определение домена: список отношений "Команды"(?).

Домен список матчей:

Имя домена: Список матчей.

Содержимое домена: Список всех возможных матчей Чемпионской лиги.

Определение домена: Список отношений "Матчи"(?).

2. Четверти:

ID четверти	Номер четверти	Список команд	Список матчей
-------------	----------------	---------------	---------------

Домен ID четверти (Суперключ):

Имя домена: ID четверти.

Содержимое домена: Множество всех допустимых ID четвертей.

Определение домена: Символьный, размер 4, диапазон от 0001 - FFFF.

Домен номер группы:

Имя домена: Номер четверти

Содержимое домена: Множество всех допустимых обозначений части финала.

Определение домена: Численный, размер 1, диапазон от $\frac{1}{2} - \frac{1}{2^n}$, $n \in R_+$.

Домен список команд:

Имя домена: Список команд.

Содержимое домена: Список всех возможных команд Чемпионской лиги.

Определение домена: Список отношений "Команды"(?).

Домен список матчей:

Имя домена: Список матчей.

Содержимое домена: Список всех возможных матчей Чемпионской лиги.

Определение домена: Список отношений "Матчи"(?).

3. Матчи:

ID матча	Дата	Список	Список рез.	Список рез.
	проведения	команд	команд	игроков
	мачта			

Домен ID матча (Первичный ключ):

Имя домена: ID матча.

Содержимое домена: Множество всех допустимых ID матчей.

Определение домена: Символьный, размер 4, диапазон от 0001 - FFFF.

Домен дата проведения матча:

Имя домена: Дата

Содержимое домена: Все возможные даты.

Определение домена: Дата, диапазон от 2021/22, формат DD.MM.YY.

Домен список команд:

Имя домена: Список команд.

Содержимое домена: Список всех возможных команд Чемпионской лиги.

Определение домена: Список отношений "Команды"(?).

Домен список результатов команд:

Имя домена: Результаты команд.

Содержимое домена: Список всех возможных результатов матча.

Определение домена: Список отношений "Результаты матча команды" (?).

Домен список результатов игроков:

Имя домена: Результаты игроков.

Содержимое домена: Список всех возможных результатов игрока.

Определение домена: Список отношений "Результаты игрока за матч" (?).

4. Результаты матча команды:

Название	Время гола	Время		Ср. время		Early Scoring	Широкая	ID матча
команды		гола	по	гола	В	Analysis	статистика	
		полови	нам	матче			голов	

Домен название команды (Первичный ключ):

Имя домена: Название команды.

Содержимое домена: Список всех возможных команд Чемпионской лиги.

Определение домена: Буквенный, диапазон латинского и английского алфавитов.

Домен время гола:

Имя домена: Время гола (по 15 м.).

Содержимое домена: Все возможное время матча включая овертаймы.

Определение домена: Время, диапазон от 00:00 - 99:00, формат mm:ss.

Время гола по половинам:

Имя домена: Время гола по половинам.

Содержимое домена: Все возможное время матча включая овертаймы.

Определение домена: Время, диапазон от 00:00 - 99:00, формат mm:ss.

Ср. время гола в матче:

Имя домена: Ср. время гола.

Содержимое домена: Все возможное время матча включая овертаймы.

Определение домена: Время, диапазон от 00:00 - 99:00, формат mm:ss.

Early Scoring Analysis:

Имя домена: Краткая статистика.

Содержимое домена: Множество возможных статистик.

Определение домена: (?).

Домен широкая статистика гола:

Имя домена: Широкая статистика.

Содержимое домена: Множество возможных статистик.

Определение домена: (?).

Домен ID матча (Внешний ключ):

Имя домена: ID матча.

Содержимое домена: Множество всех допустимых ID матчей.

Определение домена: Символьный, размер 4, диапазон от 0001 - FFFF.

(!?) Необходимо ли сделать название команды + ID матча - суперключом, для обозначения уникальности?

5. Результат игрока за матч:

Ф.И.О.	Кол-во голов	Кол-во передач	ID матча
Ψ.Π.Ο.	TOM-DO LOMOD	жол-во передач	ID Marta

Домен Ф.И.О. (Первичный ключ):

Имя домена: Ф.И.О.

Содержимое домена: Множество всех возможных Ф.И.О. Чемпионской лиги.

Определение домена: Буквенный, диапазон латинского и английского алфавитов.

Домен количество голов:

Имя ломена: Количество голов.

Содержимое домена: Множество положительных чисел;

Определение домена: Численный, диапазон от $0 - \infty$.

Домен количество передач:

Имя домена: Количество передач.

Содержимое домена: Множество положительных чисел;

Определение домена: Численный, диапазон от $0 - \infty$.

Домен ID матча (Внешний ключ):

Имя домена: ID матча.

Содержимое домена: Множество всех допустимых ID матчей.

Определение домена: Символьный, размер 4, диапазон от 0001 - FFFF.

(!?) Необходимо ли сделать Ф.И.О. + ID матча - суперключом, для обозначения уникальности?

6. Команды:

TT		TT 0
Название команды	Список игроков	История матчей команды

Домен название команды (Суперключ):

Имя домена: Название.

Содержимое домена: Множество всех возможных результатов матча.

Определение домена: Буквенный, диапазон латинского и английского алфавитов.

Домен список игроков:

Имя домена: Список игроков.

Содержимое домена: Множество всех возможных игроков Чемпионской лиги.

Определение домена: Список отношений "Игроки"(?).

Домен история матчей команды:

Имя домена: Список матчей.

Содержимое домена: Список всех возможных матчей Чемпионской лиги.

Определение домена: Список отношений "Матчи"(?).

7. Игроки:

Ф.И.О.	История матчей игрока

Домен Ф.И.О. (Первичный ключ):

Имя домена: Ф.И.О.

Содержимое домена: Множество всех возможных Ф.И.О. Чемпионской лиги.

Определение домена: Буквенный, диапазон латинского и английского алфавитов.

Домен история матчей игрока:

Имя домена: Список матчей.

Содержимое домена: Список всех возможных матчей Чемпионской лиги.

Определение домена: Список отношений "Матчи" (?).

Реляционная модель:

Анализ состава атрибутов показывает, что некоторые отношения являются составными частями других отношений, поэтому я простраивал, в таких случаях, связь от атрибута к отношению, которое является составной частью другого отношения. Не знаю, на сколько это правильно, а тем более как это делать, но пока так.

В SQLite тоже не получилось что-то подобное сделать...

Спустя 5 часов работы в базой данных, я ее закончил, но поменялась и

реляционная модель и ER-диаграмма соответственно. То, что я сделал по изначальной ER-диаграмме больше похоже на структуру взаимодействия классов в программе, но никак не что-то для создания БД.

Новая ER-модель:

Сущности: Группы, Четверти, Матчи, Результаты в группе, Результаты в четверти, команды

Распишем каждую сущность как отношение:

1. Группы:

ІД ГРУППЫ	ID MATYA	НОМЕР ГРУППЫ

2. Четверти:

І ЧЕТВЕРТИ	ID MATYA	номер четверти
ID IEIDEI III	110 111111 111	HOWEL LEIDELIN

3. Матчи:

ID МАТЧА	ДАТА	ПЕРВАЯ	ВТОРАЯ	PE3.	PE3.	PE3.
		КОМАНДА	оманда команда і		ВТОРОЙ	МАТЧА
		КОМАПДА	КОМАПДА	КОМАНДЫ	КОМНАДЫ	

4. Результат в группе

ID PE3. КОМАНЛ	НАЗВАН ИЕ	MECT O	ОБЩЕ Е КОЛ-	побед	ниче й		мячей Забито	МЯЧЕЙ ПРОПУ	РАЗНИП МЯЧЕЙ	ID ГРУ
ыв	КОМАН	втопе	BO		11	Limin	JABITO	Щ-	WINT TEXT	ПП
ГРУППЕ	ды		ИГР					ЕНО		Ы

5. Результат в четверти

ID PE3. КОМАНД	НАЗВАН ИЕ	МЕСТО ВТОПЕ	ОБЩЕЕ КОЛ-ВО	побед	ниче й	МЯЧЕЙ ЗАБИТО	МЯЧЕЙ ПРОПУЩ-	РАЗНИЦА МЯЧЕЙ	очки
Ы В ЧЕТВЕРТ И	КОМАН ДЫ		ИГР				ЕНО		

6. Команды

Название	Вратари	Защитники	Полузащитники	Нападающие
команды				

РГР. Часть 3

Задание на РГР

Создать ПО для отображения и обработки статистических данных для определённого вида спорта. ПО должно включать 2 основных окна: окно отображающее таблицы БД со статистической информацией и результаты запросов к БД, переключение таблиц ирезультатов должно быть реализовано через вкладки; и окно для менеджера запросов к БД.

Первое окно должно давать возможность просматривать и изменять все таблицы БД, а также просматривать результаты запросов к БД. Должна иметься возможность удалить вкладки с результатами запросов, но не вкладки с таблицами. Также должна иметься возможность перейти к окну менеджера запросов.

Окно менеджера запросов должно предоставлять интерфейс для создания, сохранения, удаления, редактирования запросов. Созданные запросы должны отображаться в виде списка с названиями запросов, в который можно добавлять новые запросы, удалять, просматривать существующие. Для создания и редактирования запросов должен предоставляться визуальный интерфейс, а не язык запросов. Редактор запросов должен поддерживать операции выборки, соединения, группирования, подзапросы (в качестве подзапроса используются ранее сохранённые запросы).

Ход работы:

- 15. Исследование предметной области и создание ER диаграммы.
- 16. Перевод ER диаграммы в реляционную модель, создание и заполнение БД.
- 17. Проработка визуального интерфейса приложения
- 18. Создание диаграммы классов приложения
- 19. Реализация основного окна приложения
- 20. Реализация менеджера запросов
- 21. Тестирование и отладка

Вариант задания - 1

3. Футбол (клубы) (https://fbref.com/en/)

Проработка визуального интерфейса приложения

Главное окно приложения содержит:

Окно инструментов:

File - кнопка, которая открывает вложенное окно, содержащее:

Save - кнопка, которая перезаписывает исходный файл базы данных.

Load - кнопка, которая загружает указанный файл в приложение и выводит все отношения, содержащиеся на данный момент в базе данных.

Tables - открытая по умолчанию вкладка, отображающая все отношения базы данных. Если пользователь находится во Write request, то при нажатии на кнопку Tables, пользователь будет возвращаться обратно ко всем отношениям базы данных.

Write request - кнопка, которая отвечает за переход к написанным нами SQL-запросам, в правой части приложения за место кнопок Table 1, 2, 3, ..., п, появятся Request 1, 2, 3, ..., п, За место атрибутов таблицы, будут выведены атрибуты запроса.

About - кнопка, которая открывает вложенное окно с карт. Описанием кнопок и информацией о создателе приложения.

Панель отображения таблиц:

В этой панели отображаются все отношения базы данных, при переходе в на панели инструментов во вкладку Request, все названия отношения поменяются на название запросов.

Панель отображения атрибутов:

Панель, в которой находятся все атрибуты каждого отношения. В каждом столбце атрибута, будет содержаться информация описанная в атрибуте. Столбцы можно будет скорллить как в лево, так и вправо с помощью скроллполей.

Окно написания запросов содержит:

Окно инструментов:

File - некликабельное поле, отвечающее за панель взаимодействия с файлом.

Список кнопок с запросами - набор кнопок, который отвечает за переключение между запросами. Отображает название запроса и то, что в нем содержится.

New - кнопка, отвечающая за создание нового запроса.

Delete - кнопка, отвечающая за удаление уже существующего запроса.

Run - кнопка, отвечающая за запуск запроса и формирование отношения.

Окно написание запроса:

Поле Name отвечает за название запроса.

Select - кнопка, формирующая запрос аналогичный запросу Select в SQL.

Join - кнопка, формирующая запрос аналогичный запросу Join в SQL.

Group by - кнопка, формирующая запрос аналогичный запросу Group by в SQL.

Представленные ниже поля будут отвечать за введения атрибутов для взаимодействия в запросе. А также из каких таблиц их брать. Поля с Request будут отвечать за подзапросы.

РГР. Часть 4

Задание на РГР

Создать ПО для отображения и обработки статистических данных для определённого вида спорта. ПО должно включать 2 основных окна: окно отображающее таблицы БД со статистической информацией и результаты запросов к БД, переключение таблиц ирезультатов должно быть реализовано через вкладки; и окно для менеджера запросов к БД.

Первое окно должно давать возможность просматривать и изменять все таблицы БД, а также просматривать результаты запросов к БД. Должна иметься возможность удалить вкладки с результатами запросов, но не вкладки с таблицами. Также должна иметься возможность перейти к окну менеджера запросов.

Окно менеджера запросов должно предоставлять интерфейс для создания, сохранения, удаления, редактирования запросов. Созданные запросы должны отображаться в виде списка с названиями запросов, в который можно добавлять новые запросы, удалять, просматривать существующие. Для создания и редактирования запросов должен предоставляться визуальный интерфейс, а не язык запросов. Редактор запросов должен поддерживать операции выборки, соединения, группирования, подзапросы (в качестве подзапроса используются ранее сохранённые запросы).

Ход работы:

- 22. Исследование предметной области и создание ER диаграммы.
- 23. Перевод ER диаграммы в реляционную модель, создание и заполнение БД.
- 24. Проработка визуального интерфейса приложения
- 25. Создание диаграммы классов приложения
- 26. Реализация основного окна приложения
- 27. Реализация менеджера запросов
- 28. Тестирование и отладка

Вариант задания - 1

4. Футбол (клубы) (https://fbref.com/en/)

Создание диаграммы классов приложения

В первую очередь, стоит отметить, что архитектура приложения будет основана на архитектуре Avalonia MVVM (Model-View-ViewModel), с использованием кроссплатформенного XAML фреймворк для платформы .NET Avalonia.

Бизнес логика приложения, в паттерне первая буква "M" (Model). В данном слое описывается логика и основные задачи приложения. Взаимодействие с файловой системой, базой данных, API, описание сущностей системы и т.п. Часто общение с различными источниками данных, выделяют в отдельную под-часть (Services).

Интерфейс – в паттерне буква V (**View**) описывается с помощью языка разметки XAML.

ViewModel — связывающий слой между Model и View с помощью технологии привязки (Binding). Для понятия Binding, введем понятие свойства (Property) — изменяемое поле данных во ViewModel. Простыми словами, с помощью binding, все property, описанные в ViewModel доступны для View. Важным, также является изменяемость property — под этим следует, что любые изменения во View или Model о которых "узнает" ViewModel будут автоматически изменены в зависимости от того, откуда пришли изменение (ввод текстового поля, получение ответа от API и т.п)

Описание слоев:

Model:

Опишем здесь классы, которые являются объектами предметной области, которую мы моделируем. То есть классы, с помощью которых в слое ViewModel мы будем прописывать логику приложения.