

Term Evaluation (Odd) Semester Examination September 2025

Roll no. 2-419 9 5 2

Name of the Course: Bachelor of Technology

Semester: 3rd

Name of the Paper: Discrete Structures and Combinatorics

Paper Code: TMA 316

Time: 1.5 Hour

Note:

Maximum Marks: 50

- Answer all the questions by choosing any one of the sub-questions
- (ii) Each question carries 10 marks.

(10 Marks) (CO 1) a) Let $S = \{1, 2, 3\}$ and P(S) denotes the power set of set S. Given $(P(S), \subseteq)$ is a poset, construct its

Hasse diagram. Also find the element(s) which is/are

(i) Greatest

(ii) Maximal

(iii) Minimal

(iv) Least.

b) Prove that the relation $R = \{(a,b) \in A \times A : a \mid b \text{ (a divides b)}\}\$ on the set $A = \{1,2,3,4,6,12\}$ forms a lattice.

a) Define equivalence relation. Prove that the relation

 $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - y) \text{ is divisible by } 3\}$

is an equivalence relation.

OR

b) Prove that the function f(x) = ax + b, where $f: \mathbb{R} \to \mathbb{R}$; $a, b \in \mathbb{R}$ and $a \neq 0$, is an invertible function. Hence find inverse of the function f.

(10 Marks) (CO1&2)

(10 Marks) (CO1)

- a) Let R and S be the relations defined on set $A = \{1,2,3\}$ as $R = \{(1,1),(1,3),(2,1),(2,2)\}$ and $S = \{(1,2), (2,3), (3,1), (3,3)\}.$
 - (i) Find the composition of relations S and R, i.e. $(S \circ R)$.
 - (ii) Give matrix and digraph representation of the relation $S \circ R$.
 - (iii) Find $R \cup S$, $R \cap S$ and their cardinality.

b) An unbiased coin is tossed 6 times. Find the probability of obtaining:

(i) Exactly 4 heads

(ii) Less than 3 heads (iii) More than 4 heads

(iv) At least 2 heads. (10 Marks) (CO2)

a) A random variable X has the following probability distribution:

X	0	1	2	3	1 1	5	The state of the s	-
DOV 3	1	-		1	1 7)	1 0	
P(X=x)	K	3K	5k	7k	9k	12k	5k	8k

- (i) Find the value of k.
- (ii) Find the expected mean (expectation) and variance of X.
- (iii) Find P(X < 3) and P(2 < X < 6).

b) Suppose an item is manufactured by 3 machines X, Y and Z. All the 3 machines have equal capacity and operate at the same rate. It is known that percentages of defective items produced by X, Y and Z are 2%, 7% and 12%, respectively. All the items produced by X, Y and Z are put into one bin. From this bin 1 item is drawn at random and found to be defective. What is the probability that this item was produced by Y?

(10 Marks) (CO2)

Term Evaluation (Odd) Semester Examination September 2025

a) X is normally distributed with mean 12 and standard deviation 4. Find

(i) $P(X \ge 20)$ (ii) $P(X \le 20)$ (iii) $P(0 \le X \le 12)$

Given $\phi(2) = 0.9772$, $\phi(0) = 0.5$ and $\phi(3) = 0.9987$, where $\phi(z) = P(Z \le z)$.

- b) Calls arrive at a helpdesk at an average rate of 2 per minute (Poisson distribution with $\lambda = 2$). Evaluate the following:
 - (i) Probability of getting exactly 3 calls in a minute,
- (ii) Probability of getting at most 2 calls in a minute.