Inleveropgave 1 Deadline 21 september 2022, 09:00

In de eerste inleveropgave gaan we kijken naar een oneindige doorsnede van verzamelingen van reële getallen.

- a. Geef een geïndiceerde collectie $\{A_n\}_{n\in\mathbb{N}}$ zodat alle A_n verschillend zijn, de doorsnede gelijk is aan het interval [3,6] en de vereniging gelijk is aan het interval [2,6]. Je hoeft niet te bewijzen dat je antwoord correct is; dat doe je in de volgende deelvragen.
- b. Bewijs dat de verzamelingen A_n paarsgewijs verschillend zijn (d.w.z.: $A_n \neq A_m$ als $n \neq m$).
- c. Bewijs dat de vereniging van de collectie inderdaad gelijk is aan [2,6].
- d. Bewijs de inclusie

$$[3,6] \subseteq \bigcap_{n \in \mathbb{N}} A_n.$$

e. Extra/Bonus* Bewijs ook de andere inclusie:

$$\bigcap_{n\in\mathbb{N}} A_n \subseteq [3,6]$$

ENGLISH VERSION FOLLOWS ON NEXT PAGE

^{*}Onderdeel e is niet verplicht, alleen voor de liefhebber die het bewijs compleet wil maken. Deze inclusie is (waarschijnlijk †) het moeilijkst te bewijzen en gaat het beste met bewijstechnieken die we nog niet hebben besproken.

[†]Afhankelijk van je keuze voor A_n .

In the first assignment we will consider an infinite intersection of sets of real numbers.

- a. Find an indexed collection $\{A_n\}_{n\in\mathbb{N}}$ of sets such that all A_n are distinct, their intersection is equal to the interval [3,6] and their union is equal to the interval [2,6]. You don't have to show that your answer is correct; you will do that in the next subquestions.
- b. Prove that the A_n are pairwise distinct (that is, if $m \neq n$, then $A_n \neq A_m$).
- c. Prove that the union of your collection is equal to [2,6].
- d. Prove the inclusion

$$[3,6] \subseteq \bigcap_{n \in \mathbb{N}} A_n.$$

e. Extra/Bonus[‡] Prove the other inclusion:

$$\bigcap_{n\in\mathbb{N}} A_n \subseteq [3,6]$$

[‡]Subquestion e is optional, only for those seeking the challenge to complete the proof. This inclusion is (probably[§]) the hardest one to prove and is best done using proving methods that we did not discuss yet.

[§]Depending on your choice of A_n .