Divide and Conquer 2

CS240

Rui Fan

Spring 2024

Ŋ.

Counting inversions

- Given a sequence $a_1, ..., a_n$, the pair (a_i, a_j) is an inversion if i < j but $a_i > a_j$.
- **Ex** In 5,2,6,1,4,3, there are 9 inversions.
- Can count number of inversions in $O(n^2)$ time.
- Use divide and conquer to solve in $O(n \log n)$ time.
- Basic idea Divide sequence in half.
 - Count the number of inversions in both halves.
 - Count number of inversions between the halves.

Counting inversions

- Let L and R be the left and right halves of a sequence.
- Observation No matter how we permute L and R, the number of inversions between L and R stays the same.
 - □ Ex There are 7 inversions betweem 5,2,6 and 1,3,4. There are also 7 inversions between 2,5,6 and 1,3,4.
- Counting inversions between halves is easy if the halves are sorted in nondecreasing order.
 - □ Keep a pointer i for L, j for R, initially both 0.
 - \square If $L_i > R_j$, increment j.
 - Also increment number of inversions by |L| i, because $L_k > R_j$ for all $k \ge i$, because L and R are sorted.
 - □ Otherwise increment i.
 - □ Just like merging L and R.
 - \square Takes O(n) time, where n = |L| + |R|.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

Combine: 222

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6+3+2+2

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6+3+2+2

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

M

Counting inversions

- Let A be a sequence with left / right halves L / R.
- Function C counts the number of inversions in A, and returns A in sorted order.
 - \square Compute x = C(L), y = C(R).
 - After this, L and R are sorted.
 - Merge L and R, while counting number of inversions z.
 - □ Return x+y+z, and the merged sequence.
- Let T be the time complexity for C.
 - $\Box T(n) = 2T\left(\frac{n}{2}\right) + O(n).$
 - \square Thus, $T(n) = O(n \log n)$.

M

Maximum subarray

Motivation Make money on stocks by buying and selling on days with largest price difference.

- Ex Buy on day 7, sell on day 11, make \$106 \$63 = \$43.
- If there are n days, can compute price difference of all $O(n^2)$ pairs of days and take the max.
- Is there a faster way?

Maximum subarray

- Let P be the array of stock prices.
- Goal Find i < j such that P[j] P[i] is maximum.
- We first compute the price change on consecutive days.
 - \square Ex On day 4, the price change is \$105-\$85=\$20.
 - □ Call the array of changes A.
 - □ So A[i] = P[i] P[i-1], for i = 1, ..., n.

M

Maximum subarray

maximum subarray

- Observation Finding i < j with max P[j] P[i] is the same as finding i < j with max $\sum_{k=i+1}^{j} A[k]$.
 - $\square \text{ Ex } P[11] P[7] = 43 = A[8] + A[9] + A[10] + A[11].$
- Thus, we want to find a subarray of A with the maximum sum.
 - I.e. want to find a continuous set of elements of A with the largest sum.
 - □ Ex For A above, it's the 8th to 11th elements.

M

Maximum subarray

- Goal Given array A, find i < j with max $\sum_{k=i+1}^{j} A[k]$.
- Seems no easier than initial problem... Still $O(n^2)$ pairs i, j to consider.
 - □ In fact, computing $\sum_{k=i+1}^{j} A[k]$ takes O(n) time, so finding max subarray seems to take O(n³) time!
 - \square Actually, can find $\sum_{k=i+1}^{j} A[k]$ for all pairs i,j in $O(n^2)$ time. How?
- But with divide and conquer, can find max subarray in $O(n \log n)$ time.

100

A divide and conquer algorithm

Observation

- Divide A down the middle. Then a max subarray of A either
 - □ Lies entirely in the left half.
 - □ Lies entirely in the right half.
 - ☐ Crosses the midpoint.

Algorithm

- Break A into left and right halves.
- Compute the max subarrays in each half.
- Compute the max subarray crossing the midpoint.
- Return max of these three subarrays.
- Analysis S(n) = 2S(n/2) + T(n) + O(1).
 - \square Finding max subarray in each half takes S(n/2) time.
 - \Box T(n) = time to find max subarray crossing midpoint.
- We will show T(n) = O(n).
- $\bullet \quad \mathsf{So} \, S(n) = O(n \log n).$

Max crossing subarray

- Goal Find max subarray crossing the midpoint.
- Solution Find the max leftwards subarray from the midpoint.
 - □ I.e. find a subarray containing the midpoint and lying to the left, that has the max sum.
 - □ Also find the max rightwards subarray from the midpoint.
 - □ Combine them and return this.
- \blacksquare Ex A = [3,2,-8,1,6,7,-4,2,8,2,-4,1,-2, 3,1].
 - \square Max leftwards subarray from 2 is [1,6,7,-4,2].
 - ☐ Max rightwards subarray from 2 is [2,8,2].
 - \square Max crossing subarray is [1,6,7,-4,2,8,2].

Max crossing subarray

- Algorithm To find max leftwards subarray, sum array elements leftwards starting from midpoint.
 - □ Whenever sum exceeds current max, remember the index as the current max.
 - Similar for rightwards subarray.
- Analysis Scan through once to left and right. O(n) time.

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

```
left-sum = -\infty
    sum = 0
    for i = mid downto low
        sum = sum + A[i]
        if sum > left-sum
            left-sum = sum
            max-left = i
    right-sum = -\infty
    sum = 0
    for j = mid + 1 to high
        sum = sum + A[j]
12
        if sum > right-sum
13
            right-sum = sum
            max-right = j
    return (max-left, max-right, left-sum + right-sum)
```


Closest point pair

- Given a set of n points in the plane, find the pair that's closest.
- Naive algorithm computes distances between all $O(n^2)$ pairs of points and chooses min.
- Use divide and conquer to improve complexity to O(n log n).

Closest point pair

- Split the points evenly using a vertical line, i.e. half the points lie on the left and half on the right.
- Observation The closest pair of points either
 - Both lie in the left half
 - □ Both lie in the right half, or
 - Straddles the line, i.e. one point on each side.
- This suggests the following algorithm.

Closest point pair

- Divide points evenly using vertical line.
- Recursively find closest point pair in left half and right half.
 - □ Let the min distance between any point pair in either half be δ .
- Look for closest pair of points straddling line with distance $< \delta$.
 - □ Don't need to consider straddling pairs with distance $\geq \delta$, since we already found such pairs on the left or right.
- If pair exists, return their distance.
- **Else** return δ .

Algorithm analysis

- Let S(n) be time to find closest point pair of n points.
- S(n) = 2S(n/2) + O(n)
 - \square Can divide the points in O(n) time.
 - Details on slide 46.
 - \square 2*S*(*n*/2) time to recursively find closest point pair in both halfs.
 - \square Can find closest straddling pair in O(n) time.
 - Details next slide.
- S(2) = O(1).
 - If only two points, they're the closest pair.
- $So S(n) = O(n \log n).$

- Divide the points evenly.
- Recursively find closest pair on left and right.
- ☐ Find closest straddling pair.
- Return the min of the three.

Closest straddling point pair

- Goal Find closest straddling pair, assuming their distance is $< \delta$.
- Only need to consider points within a band of width 2δ centered on dividing line.
 - \square Pairs outside band can't be closer than δ .
- Let B be set of points in band.
 - □ To form B, iterate through all points in any order, pick ones within distance δ from line.
 - □ Takes O(n) time.
- Assume points in B sorted by y coordinate, i.e. from top to bottom.
 - By iterating in the right order when forming B, can get this property "for free", without actually sorting B.
 - Details later.
- Now, use following lemma to find closest straddling pairs.

2δ band around divding line

100

Sparsity lemma

- Lemma Let $p, q \in B$. Suppose q is below p, and has distance $< \delta$ from p. Then
 - 1. q lies in a $\delta \times 2\delta$ rectangle centered on the dividing line, and with p on the top edge.
 - The rectangle contains at most 6 points from B (including p and q).
 - 3. If we list the points in order B from top to bottom, the points in the rectangle immediately follow p in the ordering.

Sparsity lemma proof

- 1. Any point below the rectangle is $> \delta$ distance from p.
- 2. Any two points in rectangle on same side of the line are distance $\geq \delta$ apart.
 - * Because δ is the min distance between any pair of points on either side.
 - So, at most 6 points in B fit in the rectangle.
 - Ex The 6 points can fit in the corners and the middle, as shown.
- 3. Points in the rectangle precede any points below it in y ordering.

100

Closest straddling point pair

- Algorithm Sweep through points in B from top to bottom.
 - For each point p, check next 5 points in R below it.
 - \square Let δ_p be distance to nearest one.
 - □ After sweeping through all points in B, return the minimum δ_p value or δ , whichever is smaller.
- Correctness By sparsity lemma, only next 5 points in B below p can be distance $< \delta$ from p.
 - □ Since we return the closest pair among these 5 points, we find overall closest straddling pair.
 - \square If no straddling pairs have distance $< \delta$, we return δ .
- Analysis Algorithm takes O(n) time.
 - □ B contains O(n) points.
 - □ For each point in B, check its distance to 5 other points.

M

Dividing points evenly

- At the beginning of the algorithm, sort all points horizontally and store in an array H.
 - \square Takes $O(n \log n)$ time.
- Assume at some level of recursion, input array is sorted horizontally.
- Then points to the left / right of dividing line are points in the first / second half of array.
 - \square Outputting either half takes O(n) time.
- These points are sorted horizontally, for the next level of recursion.
 - \square So at every level of recursion, can get points in sorted order in O(n) time.
- Add this $O(n \log n)$ preprocessing time to algorithm's running time.
 - \square Algorithm still $O(n \log n)$.

re.

Sorting R points by y coordinate

- At the beginning of the algorithm, also sort all the points vertically. Store them in a separate array V.
 - \square Takes $O(n \log n)$ time.
- Points in H and V have pointers to each other.
 - □ I.e. given p in H, its pointer gives p's index in V. Similarly given p in V, we can get p's index in H.
- When picking out points left (or right) of dividing line using H, mark them in V by following the pointers.
- Next, iterate through V (in vertical order) and pick out marked points.
 - ☐ These points are again sorted vertically.
 - \square Takes O(n) time.
- Add this $O(n \log n)$ preprocessing time to algorithm's running time. Algorithm still $O(n \log n)$.