RF/Microwave Circuit and System

Lecture 7

Active components

http://v.youku.com/v_show/id_XMTQ1NzM5MDU5Ng==.html#paction

- **Active RF Components**
- Semiconductor Basics
- PN-Junction
- Schottky Contact
- Schottky Diode
- PIN Doide
- Varactor Diode
- IMPATT Diode
- Tunnel Diode
- Bioploar Transistor
- RF Field Effect Transistor

Semiconductor Basics

(a) Planar representation of covalent bonds

$$\sigma = q n_i (\mu_n + \mu_p) = q \sqrt{N_C N_V} \exp \left[-\frac{W_g}{2kT} \right] (\mu_n + \mu_p)$$

Conductivity of Si, Ge, GaAs in the range from -50°C to 250°C.

Lattice structure and energy band model for (a) intrinsic, (b) n-type, and (c) p-type semiconductors at no thermal energy. W_D and W_A are donor and acceptor energy levels.

PN-Junction

$$C = A \left\{ \frac{q\varepsilon}{2V_{\text{diff}}} \frac{N_A N_D}{N_A + N_D} \right\}^{1/2}$$

The pn-junction with abrupt charge carrier transition in the absence of an externally applied voltage.

External voltage applied to the pn-junction in reverse and forward directions.

Schottky Contact

Energy-band diagram of Schottky contact, (a) before and (b) after contact.

Metal electrode in contact with p-semiconductor.

Work function potentials of some metals

Material	Work function potential, V_{M}
Silver (Ag)	4.26 V
Aluminum (Al)	4.28 V
Gold (Au)	5.1 V
Chromium (Cr)	4.5 V
Molybdenum (Mo)	4.6 V
Nickel (Ni)	5.15 V
Palladium (Pd)	5.12 V
Platinum (Pt)	5.65 V
Titanium (Ti)	4.33 V

$$C_J = A \frac{\varepsilon}{d_S} = A \left\{ \frac{q\varepsilon}{2(V_d - V_A)} N_D \right\}^{\frac{1}{2}}$$

Schottky Diode

Cross-sectional view of Si Schottky diode.

$$I = I_S(e^{(V_A - IR_S)} - 1)$$

$$I_S = A\left(R^*T^2 \exp\left[\frac{-qV_b}{kT}\right]\right)$$

Reverse-saturation current

PIN Doide

$$I = A \left(\frac{q n_i W}{\tau_p} \right) \left(e^{V_A / (2V_T)} - 1 \right)$$

PIN diode in series connection.

Attenuator circuit with biased PIN diode in series and shunt configurations.

Varactor Diode

Simplified electric circuit model and capacitance behavior of varactor diode.

Pulse generation with a varactor diode.

IMPATT Diode

$$f_0 = \frac{1}{2\pi} \sqrt{2I_Q \frac{v_{d\max}}{\varepsilon} \alpha'}$$

Applied voltage, ionization current, and total current of an IMPATT diode.

Tunnel Diode

Tunnel diode and its band energy representation.

$$|G_T| = \frac{4}{R_L} \frac{1}{R_G (1/R_L + 1/R_G - g)^2}$$

Tunnel diode circuit for amplification/oscillation behavior.

Bioploar Transistor

(a) Cross-sectional view of a multifinger bipolar junction transistor Base bonding pad

Emitter bonding pad

(b) Top view of a multifinger bipolar junction transistor

Interdigitated structure of high-frequency BJT.

FCross-sectional view of a GaAs heterojunction bipolar transistor involving a GaAlAs-GaAs interface.

(a) Biasing circuit for npn BJT in common-emitter configuration

Biasing and input, output characteristics of an npn BJT.

Frequency Response

Transition frequency is related to the transit time

Transition frequency as a function of collector current for the 17 GHz npn wideband transistor BFG403W (courtesy of Philips Semico nductors).

Temperature behavior

Thermal equivalent circuit of BJT.

Limiting Values

Operating domain of BJT in active mode with breakdown mechanisms.

RF Field Effect Transistor

(a) Metal insulator semiconductor FET (MISFET)

(b) Junction field effect transistor (JFET)

Low V_{DS} High V_{D} $S = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ V_{GS} $S = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $I = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (a) Operation in the linear regio n. (b) Operation in the saturation region.

Functionality of MESFET for different drain-source voltages.

$$I_{Dsat} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{T0}} \right)^2 \qquad \tau = \frac{L}{v_{sat}}$$

(c) Metal semiconductor FET (MESFET)

High Electron Mobility Transistors

Generic heterostructure of a depletion-mode HEMT.

Energy band diagram of GaAlAs-GaAs interface for an HEMT.

Active RF Component Modeling

Diode Models

Nonlinear I-V characteristics

$$I_D = I_S(e^{V_A/(nV_T)} - 1)$$

Diode model parameters and their corresponding SPICE parameters

Symb SPICE ol		Description	Typical values		
I_S	IS	saturation current	1 fA-10 μA		
n	N	emission coefficient	1		
$ au_T$	TT	transit time	5 ps–500 μs		
R_S	RS	Ohmic resistance	0.1–20 Ω		
^v diff	VJ	barrier voltage	0.6–0.8 V (<i>pn</i>) 0.5–0.6 V (Schottky)		
cJ0	CJ0	zero-bias junction capacit ance	5–50 pF (<i>pn</i>) 0.2–5 pF (Schottky)		
m	M	grading coefficient	0.2-0.5		
W_g	EG	bandgap energy	1.11 eV (Si) 0.69 eV (Si-Schottky)		
p_t	XTI	saturation current temperature coefficient	3 (pn) 2 (Schottky)		

SPICE parameters

SPICE (Simulation Program with Integrated Circuit Emphasis)^[1] is a general-purpose, open source analog electronic circuit simulator. It is a powerful program that is used in integrated circuit and board-level design to check the integrity of circuit designs and to predict circuit behavior.

take a text netlist describing the circuit elements (transistors, resistors, capacitors, etc.) and their connections, and translate this description into equations to be solved. The general equations produced are nonlinear differential algebraic equations which are solved using implicit integration methods, Newton's method and sparse matrix techniques.

SPICE parameters

S-parameters

Difference

Part Reference Name NP1		ne	Frequency Units			S Parameter Values ○ Re/Im ● Mag/Ph ○ dB/P				
			GHz ∨		h					
No Ports	2					*Ph	ase is in	degrees		
							505	100 mg/s	46	
ormat En	ter freque	ency an	d con	nplex-ve	alued	S matri	x eleme	nts column by	column.	
Example:	Re(s11)	lm(s11)	Re(s	21) lm(s	21) R	e(s31)	Im(s31)			
Note: For *	Complex	imped	ance	, use me	2 IOM	at The	عرد) اسرد	.) -		
0.500 0.43	72 -152.8	7.986	90.3	0.0600	50.2	0.3671	-49.3			
0.600 0.43		6.798		0.0673		0.3352				ā
0.700 0.43	62-173.1	5.886	78.9	0.0739	51.1	0.3094	-52.2			
0.800 0.43	91 179.9	5.169	73.9	0.0811	50.5	0.2872	-53.5			
0.900 0.43	90 173.0	4.630	69.3	0.0892	50.7	0.2710	-54.6			
1.000 0.44	72 166.5	4.187	65.1	0.0960	50.4	0.2586	-57.0			
1.100 0.45	73 161.4	3.823	61.2	0.1031	49.8	0.2460	-60.1			
1.200 0.46	52 155.9	3.531		0.1112	49.4	0.2336	-62.3			
1.300 0.47		3.258	53.3	0.1187		0.2218				
1.400 0.47		3.018		0.1255		0.2139				
1.500 0.48		2.842		0.1337		0.2067				
1.600 0.49		2.659		0.1417		0.1971	-76.0			
1.700 0.50		2.520		0.1500	43.1	0.1858				
1.800 0.51	96 131.4	2.400	35.0	0.1578	41.5	0.1798	-83.4			v
()	
				-						
	Imp.	50		Ohm		O 4 1 %		or Complex Imp	V	

Nonlinear spectrum shifting

multiplying the two signal can be realized by nonlinear device

$$a_{2}(v_{1}+v_{2})^{2} = a_{2}(V_{1m}\cos\omega_{1}t + V_{2m}\cos\omega_{2}t)^{2}$$

$$= \frac{a_{2}}{2}V_{1m}V_{2m}[\cos(\omega_{2}+\omega_{1}) + \cos(\omega_{2}-\omega_{1})t] + \cdots$$

$$i = a_{0} + a_{1}v_{i} + a_{2}v_{i}^{2} + a_{3}v_{i}^{3} + \cdots + a_{N}v_{i}^{N} + \cdots$$
with $v_{i} = v_{1} + v_{2}$

$$|\pm p\omega_1 \pm q\omega_2|$$
 $(p+q\geq 3)$ are all Interference for frequency conversion

Solutions:

- (1) Feature of devices —— square law characteristics without high-order
- (2) Design of circuit —— balanced circuit structure, interference cancellation
 - (3) Input signals, Linear time variant

Linear time variant

Working condition: one is small signal, Another is large signal

$$v_1(t) = V_{1m} \cos \omega_1 t$$
$$v_2(t) = V_{2m} \cos \omega_2 t$$

$$V_{1m} >> V_{2m}$$

Static Bias V_{BEQ} Large signal $v_1(t)$ Time variant bias $V_{BEQ}(t) = V_{BEQ} + v_1(t)$ Time variant

 $^{ o}$ $i_{_{c}}$ In time variant work point

$$i_c$$
 In time variant work point

$$i_c(t) = a_0 + a_1 (v_{be} - V_{BEQ}(t)) + a_2 (v_{be} - V_{BEQ}(t))^2 + a_3 (v_{be} - V_{BEQ}(t))^3 + \cdots$$

$$\mathbf{With:} v_{be} = V_{BEQ} + v_1(t) + v_2(t) = V_{BEQ}(t) + v_2(t)$$

variant

bias

Small

With
$$v_{be} = V_{BEQ} + v_1(t) + v_2(t) = V_{BEQ}(t) + v_2(t)$$

Get:
$$i_c(t) = a_0 + a_1 v_2 + a_2 v_2^2 + a_3 v_2^3 + \cdots$$

Working point and $allowarda_i$ are time varying with $v_1(t)$

$$i_c(t) = a_0(t) + a_1(t)v_2 + a_2(t)v_2^2 + a_3(t)v_2^3 + \cdots$$

 $alpha_i$ change with large signal

 \mathcal{Q}_i frequency \mathcal{Q}_1 is same with large signal $v_1(t)$

$$a_0(t) = i_c(t) \Big|_{v_{be} = V_{BEO}(t)} \stackrel{\Delta}{=} I_0(t)$$
 Time varying static current

$$a_1(t) = \frac{di_c}{dv_{be}}\Big|_{v_{be} = V_{BEQ}(t)}$$
 $\sum_{be=V_{BEQ}(t)}^{\Delta} time-varying transcondactance$

 $a_0(t)$ and $a_1(t)$ are all nonlinear

$$a_0(t) = a_{00} + a_{01} \cos \omega_1 t + a_{02} \cos 2\omega_1 t + \cdots$$

$$a_1(t) = g_m(t) = g_{m0} + g_{m1} \cos \omega_1 t + g_{m2} \cos 2\omega_1 t + \cdots$$

Frequency $\omega_{\scriptscriptstyle 1}$ is the working frequency of large signal

Linear is for simall signal $v_2(t)$

Out put current

$$i_c(t) = a_0(t) + a_1(t)v_2 + a_2(t)v_2^2 + a_3(t)v_2^3 + \cdots$$

 $v_2(t)$ is small enough, current can be ignored above quadratic

$$i_c(t) \approx a_0(t) + a_1(t)v_2 = I_0(t) + g_m(t)v_2(t)$$

Only linear component $v_2(t)$

spectrum shifting

$$i_c(t) \approx a_0(t) + a_1(t)v_2 = I_0(t) + g_m(t)v_2(t)$$

$$a_1(t) = g_m(t) = g_{m0} + g_{m1} \cos \omega_1 t + g_{m2} \cos 2\omega_1 t + \cdots$$

$$v_2(t) = V_{2m} \cos \omega_2 t$$

(
$$\omega_1 + \omega_2$$
) ($\omega_1 - \omega_2$ spectrum shifting

$$|p\omega_1 \pm \omega_2|$$
 Interference $p\omega_1$

Linear Diode Model

Small-signal diode model.

$$G_d = \left. \frac{1}{R_d} = \left. \frac{dI_D}{dV_A} \right|_{V_O} = \frac{I_Q + I_S}{nV_T} \cong \frac{I_Q}{nV_T}$$

$$C_d = \frac{I_S \tau_T}{nV_T} e^{V_Q / (nV_T)}$$

Large-Signal BJT Models

(a) Voltage and current convention for npn transistor

Large-signal Ebers-Moll circuit model.

 $E \circ - \circ E$ Large-signal BJT model in forward active mode.

Gummel-Poon model.

Large-signal Gummel-Poon model in normal active mode.

Small-Signal BJT Models

$$h_{11} = \left. \frac{v_{be}}{i_b} \right|_{v_{ab} = 0}$$

input impedance

$$h_{21} = \left. \frac{i_c}{i_b} \right|_{v_{ca}} = 0$$

foward current gain β_F

reverse voltage gain

$$h_{22} = \frac{i_c}{v_{ce}}\bigg|_{i_b = 0}$$

output admittance

Parameters of the BJT transistor

Symbol	Description	Typical value	
β_F	forward current gain		
I_S	saturation current	5.5 fA	
vAN	forward Early voltage	30 V	
τ_F	forward transition time	4 ps	
cJC0	base-collector junction capacitance at zero applied junction voltage	16 fF	
cJE0	base-emitter junction capacitance at zero applied junction voltage	37 fF	
m_C	collector capacitance grading coefficient	0.2	
m_E	emitter capacitance grading coefficient	0.35	
Be ff	base-emitter diffusion potential	0.9 V	
Berff	base-collector diffusion potential	0.6 V	
$r_{\scriptscriptstyle B}$	base body resistance	125 Ω	
r_C	collector body resistance	15 Ω	
r_E	emitter body resistance	1.5 Ω	
$L_{\scriptscriptstyle B}$	base lead inductance	1.1 nH	
L_C	collector lead inductance	1.1 nH	
L_E	emitter lead inductance	0.5 nH	

Biasing a BJT in common-emitter configuration.

Complete transistor model divided into four two-port networks.

S_{11} and S_{21} responses of a BJT for various model configurations.

Large-Signal FET Models

Benefits

- FETs exhibit a better temperature behavior.
- The noise performance of a FET is, in general, superior.
- The input impedance of FETs is normally very high, making them ideal for preamplification stages.
- The drain current of a FET shows a quadratic (and thus a more linear) functional behavior compared with the exponential collector current curve of a BJT.
- The upper frequency limit exceeds, often by a substantial margin, that of a BJT.
- The power consumption of a FET is smaller.

Disadvantages

- FETs generally possess smaller gains.
- Because of the high input impedance, matching networks are more difficult to construct.
- The power handling capabilities tend to be inferior compared with BJTs.

Static n-channel MESFET model.

Saturation region

$$V_{DS} \ge V_{GS} - V_{T0} > 0$$

Linear region

$$0 < V_{DS} < V_{GS} - V_{T0}$$

Reverse saturation region

$$-V_{DS} \ge V_{GD} - V_{T0} > 0$$

Dynamic FET model.

SPICE modeling parameters for a MESFET

Symbol	SPICE	Description	
vT0	VTO	Threshold voltage	
λ	LAMBDA	Channel-length modulation coefficient	
β	BETA	Conduction parameter	
cGD	CGD	Zero-bias gate-to-drain capacitance	
cGS	CGS	Zero-bias gate-to-source capacitanc e	
r_D	RD	Drain resistance	
$r_{\scriptscriptstyle S}$	RS	Source resistance	

Small-Signal FET Models §

$$i_g = y_{11}v_{gs} + y_{12}v_{ds}$$

 $i_d = y_{21}v_{gs} + y_{22}v_{ds}$

High-frequency FET model

$$\begin{aligned} y_{21} &= \left. g_m = \frac{dI_D}{dV_{GS}} \right|_Q = \left. 2\beta_n (V_{GS}^Q - V_{T0}) (1 + \lambda V_{DS}^Q) \right. \\ y_{22} &= \left. \frac{1}{r_{ds}} = \left. \frac{dI_D}{dV_{DS}} \right|_Q = \left. \beta_n \lambda (V_{GS}^Q - V_{T0})^2 \right. \end{aligned}$$

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

Measurement of active devices

DC Characterization of Bipolar Transistor

Forward and reverse measurements to determine Ebers-Moll BJT model parameters.

$$I_C = I_S(e^{V_{BE}/V_T} - 1)$$

$$I_B = \frac{I_S}{\beta_F}(e^{V_{BE}/V_T} - 1)$$

$$I_B = \frac{I_S}{\beta_F} (e^{V_{BE}/V_T} - 1)$$

AC Parameters of Bipolar Transistor

Transconductance

$$g_m = \frac{dI_C}{dV_{BE}}\bigg|_{V_{CE} = 0} = \frac{I_C^Q}{V_T}$$

Input capacitance

$$C_{\pi} = \tau_{be} \frac{I_S}{V_T} e^{V_{BE}^Q/V_T} = \tau_{be} \frac{I_C^Q}{V_T}$$

Input resistance

$$r_{\pi} = \left. \frac{dV_{BE}}{dI_B} \right|_{V_{cc}^Q} = \left. \frac{v_{be}}{i_b} \right|_{v_{cc} = 0} = \frac{\beta_0}{g_m}$$

Output conductance

$$\frac{1}{r_0} = \left. \frac{dI_C}{dV_{CE}} \right|_{V_{RF}^Q} = \frac{I_C^Q}{V_{AN}}$$

Small-signal, low-frequency h-parameter representation.

- Transconductance $g_m = I_C^Q/V_T$ for a given junction temperature
- DC current gain $\beta_0 = I_C^Q / I_B^Q$
- Input resistance $r_{\pi} = \beta_0/g_m$
- Output resistance $r_0 = V_{AN}/I_C^Q$
- Input impedance $Z_{\rm in} = (1/r_{\pi} + j\omega C_{\pi})^{-1}$ recorded at a particular angular frequency and then solved for the capacitance C_{π}

Measurement of Field Effect Transistor Parameters

Generic measurement arrangement and transfer characteristics in saturation region.

The threshold voltage is determined indirectly by setting two different gate-source voltages V_{GS1} and V_{GS2} while maintaining a constant drain-source voltage $V_{DS} = \text{const} \ge V_{GS} - V_{T0}$ so that the transistor is operated in the saturation region. The result of these two measurements gives

$$\sqrt{I_{D1}} = \sqrt{\beta}(V_{GS1} - V_{T0})$$
$$\sqrt{I_{D2}} = \sqrt{\beta}(V_{GS2} - V_{T0})$$

Scattering Parameters Device Characterization

Cross-sectional view of directional coupler and signal path adjustment.

Recording of S-parameters with a vector voltmeter.

Block diagram of a network analyzer with S-parameter test set.