2020		Vedant Milind Athavale	
1921-2020	EWE-Tutorial 4	TY Brech EXTC	
QIJ	a) $R = G = G = RC = 20 \times 63$ L C L 0.3 XI	×10 ⁻¹²	
	0.3 ×10		
	G = 4.2 × 10-3 s/m		
	2		
	$\alpha = \sqrt{RG} = \sqrt{20 \times 4.2 \times 10^{-3}} = 0.2898$ $\beta = \omega \sqrt{LC} = 2\pi \times 120 \times 10^{4} \sqrt{0.3 \times 10^{-6} \times 63 \times 10^{-12}} = 3.278$		
	$\beta = \omega / 12 = 2\pi \times 120 \times 10^{3} / 0.3 \times 10^{-6} \times 63 \times 10^{-12} = 3.278$		
	V = 0.2898 + j3.278/m		
p.)	Let Vo be its original magnitude		
	Vo e-42 = 0.2 Vo		
	$=) e^{\kappa z} = 5$		
	$Z = \frac{1}{2} \ln 5 = \frac{5.554}{2} \text{ m}$		
			
c·)	BL = 45° = 11/4 = l = 11 =	4	
	4B 4×3.278		
	= 1 = 0.2396 m		
62-]	We are given that there's a 60D lossless line connected to		
	a jource with		
	$V_g = 10 \angle 0^\circ V_{rm_4}$ & $Z_g = 50 - j40 \triangle$. Load is of $j40 \triangle$. $length$, $l=100m$, $\beta = 0.25$ rad lm		
	load is of j40 Ω.		
	length, 1=100m, B= 0.25 rad lm		
a:)	Bl = 1 x 100 = 25 rad = 1432.4° = 3	52.4°	
	4		
	Zin = 60 $[j40 + j60 tan 352.4°]$	= 129.375.0	
	L 60 -40tan 352.4]		

	$V(Z=0) = V_0 = Z_{in} V_g = \int_{129.375}^{29.375} (1000)$ $= Z_{in} + Z_g \qquad j29.375 + 50 - j40$ $= 29.375 \times 290^\circ = 0.575 \times 1002^\circ$ $= 51.116 \times 2-12^\circ$	
b:)	Zin = Z_ = j40 D	
	VL = Vs (Z=1), Vo = VL. ejpl	
	VL = Vo. e-jp1 = (0.575. e 1102°) (e-j352.4°)	
	= 0.575 <u>\(-250.4\)</u>	
c·)	$\beta l = 1 \times 4 = 1 \text{ and } = 57.3^{\circ}$	
	$Z_{in} = 60 \left[\frac{140 + 160 + 2057.3}{60 - 40 + 2057.3} \right] = -\frac{13487.11}{200}$	
	$V = V_{L} e^{j\beta L} = (0.575 \angle -250.4^{\circ}) e^{j570^{\circ}}$ $= 0.575 \angle -193.1^{\circ}$	
d·)	3 m from the source is the same as 97 m from the load,	
	$l = 100 - 3 = 97 \text{ m}$, $\beta l = 1 \times 97 = 24.25 \text{ rad} = 309.42^{\circ}$	
	$Z_{in} = 60 \left[\frac{1}{140} + \frac{1}{160} + \frac{1}{160} + \frac{1}{160} + \frac{1}{160} \right] = -\frac{1}{18.2} \Omega_{10}$ $60 - 40 \tan 309.42^{\circ}$	
	$V = V_L e^{j\beta l} = (0.575 \angle -250.4^{\circ}) e^{j309.42^{\circ}}$	
	=) V = 0.575 \(59.02° \)	