SWX1 Results Analysis C

Python Imports

except ValueError:

assume 2 level categorical

```
import numpy as np
import pandas as pd
from prettypandas import PrettyPandas
import patsy
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api
from pyomo.environ import *
from sklearn.linear model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from IPython.display import display, Markdown, HTML
%matplotlib inline
PlotWidth = 6
import warnings
warnings.filterwarnings('ignore')
# helper functions for this notebook
# use SVG for matplotlib-based figures
%matplotlib inline
%config InlineBackend.figure format = 'svg'
def coded_to_actual(coded_data, actual_lows, actual_highs):
    """Converts a pandas DataFrame from coded units to actuals."""
    actual data = coded data.copy()
    for col in actual data.columns:
        if not (col in actual_highs and col in actual_lows):
            continue
        try:
            # convert continuous variables to their actual value
            actual data[col] *= 0.5 * (float(actual highs[col]) - float(actual lows[co
1]))
            # don't need to cast to float here, if either are not a float exception wi
11 have been thrown
            actual_data[col] += 0.5 * (actual_highs[col] + actual_lows[col])
```

```
actual_data[col] = actual_data[col].map({-1: actual_lows[col], 1: actual_h
ighs[col]})
    return actual data
def get tick labels(key, lows, highs, units):
    """Returns a list of low/high labels with units (e.g. [8mm, 10mm])"""
    return [str(lows[key]) + units[key], str(highs[key]) + units[key]]
def backward regression(X, y,
                           threshold out,
                           verbose=True):
    included=list(X.columns)
    while True:
       changed=False
        model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included]))).fit()
        # use all coefs except intercept
        pvalues = model.pvalues.iloc[1:]
        worst pval = pvalues.max() # null if pvalues is empty
        if worst pval > threshold out:
            changed=True
            worst feature = pvalues.idxmax()
            included.remove(worst feature)
            if verbose:
                print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval
))
        if not changed:
            break
    return included
def build model(X, values, verbose=True):
    X = [sub.replace('alh', 'model.X1') for sub in X]
    X = [sub.replace('aps', 'model.X2') for sub in X]
    X = [sub.replace('aid', 'model.X3') for sub in X]
   X = [sub.replace('arw', 'model.X4') for sub in X]
    X = [sub.replace('awt', 'model.X5') for sub in X]
    X = [sub.replace(':', '*') for sub in X]
    model = str(values[0])
    i=1
    for v in X:
        model += " + " + str(values[i]) + " * " + v
        i += 1
    if verbose:
       print(model)
    return model
```

Process CSV Files

```
# importing the pandas library
import pandas as pd
# reading the csv file using read csv
# storing the data frame in variable called df
df cost = pd.read csv('https://raw.githubusercontent.com/wilsongis/3DP Experiments/mai
n/Data/swx1 cost rework.txt', sep='\t')
df time = pd.read csv('https://raw.githubusercontent.com/wilsongis/3DP Experiments/mai
n/Data/swx1_time_rework.txt', sep='\t')
# creating a list of column names by
# calling the .columns
list of columns cost = list(df cost.columns)
list_of_columns_time = list(df_time.columns)
# displaying the list of column names
print('List of Cost column names : ',
      list of columns cost)
print('List of Time column names : ',
      list_of_columns_time)
List of Cost column names : ['trial', 'lh', 'ps', 'id', 'rw', 'wt', 'alh', 'aps', 'ai
d', 'arw', 'awt', 'rep', 'cost']
List of Time column names : ['trial', 'lh', 'ps', 'id', 'rw', 'wt', 'alh', 'aps', 'ai
d', 'arw', 'awt', 'rep', 'time']
display((Markdown("### Statistics for Cost")))
df cost.cost.describe()
```

Statistics for Cost

plt.show()

```
count
         80.00000
         1.006563
mean
          0.304323
std
min
          0.593000
25%
          0.794500
50%
          0.980000
75%
          1.324750
          1.387000
max
Name: cost, dtype: float64
plt.figure(figsize=(PlotWidth, PlotWidth))
sns.boxplot(data=df cost['cost'])
plt.title('Box Plot of Cost')
plt.ylabel('Cost')
```

```
plt.figure(figsize=(PlotWidth, PlotWidth))
df_cost['cost'].hist()
plt.title('cost')
plt.xlabel('cost)')
plt.show()

plt.figure(figsize=(PlotWidth*2, PlotWidth))
plt.scatter(df_cost['trial'], df_cost['cost'])
plt.title('cost vs. trial')
plt.xlabel('trial')
plt.ylabel('cost')
plt.show()
```



```
display((Markdown("### Statistics for Time")))
df_time.time.describe()
```

40

trial

50

60

70

80

Statistics for Time

10

20

30

0

```
80.00000
count
         11719.350000
mean
          2959.361294
std
min
          7767.000000
25%
          9101.000000
         11418.500000
50%
75%
         14610.500000
         18254.000000
Name: time, dtype: float64
```

```
plt.figure(figsize=(PlotWidth, PlotWidth))
sns.boxplot(data=df_time['time'])
plt.title('Box Plot of Time')
plt.ylabel('Time')
plt.show()

plt.figure(figsize=(PlotWidth, PlotWidth))
df_time['time'].hist()
plt.title('time')
```

```
plt.xlabel('time)')
plt.show()

plt.figure(figsize=(PlotWidth*2, PlotWidth))
plt.scatter(df_time['trial'], df_time['time'])
plt.title('time vs. trial')
plt.xlabel('trial')
plt.ylabel('time')
plt.show()
```

Cost Analysis

```
f = 'cost ~ (alh+aps+aid+arw+awt)**2'
y, X = patsy.dmatrices(f, df_cost, return_type='dataframe')
print(y[:5])
print(X[:5])
   cost
  0.781
0
  1.368
1
  0.626
 1.339
  0.619
  Intercept
             alh
                         aid arw awt
                                        alh:aps alh:aid alh:arw alh:awt \
                    aps
                                                    0.040
0
        1.0 0.16 60.0 0.25 0.4
                                   0.8
                                            9.60
                                                             0.064
                                                                      0.128
1
        1.0 0.28 60.0 0.25 0.4 1.2
                                           16.80
                                                    0.070
                                                             0.112
                                                                     0.336
2
        1.0 0.16 72.0
                         0.25 0.4
                                   1.2
                                           11.52
                                                    0.040
                                                             0.064
                                                                     0.192
3
        1.0 0.28 72.0
                         0.25 0.4
                                   0.8
                                           20.16
                                                    0.070
                                                             0.112
                                                                     0.224
        1.0 0.16 60.0
                         0.15
                               0.4
                                   1.2
                                            9.60
                                                             0.064
                                                                     0.192
4
                                                    0.024
  aps:aid aps:arw
                   aps:awt aid:arw aid:awt arw:awt
0
     15.0
              24.0
                       48.0
                                0.10
                                         0.20
                                                  0.32
1
              24.0
                       72.0
                                                  0.48
     15.0
                                0.10
                                         0.30
2
     18.0
              28.8
                       86.4
                                0.10
                                         0.30
                                                  0.48
3
     18.0
              28.8
                       57.6
                                0.10
                                         0.20
                                                  0.32
      9.0
              24.0
                       72.0
                                0.06
                                         0.18
                                                  0.48
```

```
## An intercept is not added by default, so we need to add that here
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
results.summary()

print(results.summary())

plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
```

```
plt.xlabel('Predicted cost')
plt.ylabel('Actual cost')
plt.title('Actual vs. Predicted cost')
plt.show()
```

Dep. Variabl	e:	Co	ost R-squa	ared:		0.879	
Model:		(OLS Adj. F	R-squared:		0.851	
Method:		Least Squar	res F-stat	istic:		31.04	
Date:	Sa	at, 31 Jul 20	021 Prob (Prob (F-statistic):			
Time:		18:50	:16 Log-Li	Log-Likelihood:			
No. Observations:			80 AIC:	AIC:			
Df Residuals	S:		64 BIC:	BIC:			
Df Model:			15				
Covariance T	Type:	nonrob	ıst				
	coef	std err	 t	P> t	[0.025	 0.975]	
Intercept	-6.7997	1.267		0.000	-9.332	 -4.268	
alh	14.9792	2.872	5.215	0.000	9.241	20.717	
aps	0.1432	0.018	8.147	0.000	0.108	0.178	
aid	-3. 8274	3.421	-1. 119	0.267	-10. 662	3.007	
arw	0.1830	0.873	0.210	0.835	-1. 561	1.927	
awt	3.1783	0.832	3.819	0.000	1.516	4.841	
alh:aps	-0. 1874	0.037	-5. 134	0.000	-0. 260	-0. 114	
alh:aid	16.3792	4.380	3.739	0.000	7.629	25.130	
alh:arw	-6. 4344	1.095	-5 .876	0.000	-8 .622	-4. 247	
alh:awt	0.3865	1.095	0.353	0.725	-1. 801	2.574	
aps:aid	-0. 1333	0.044	-3. 043	0.003	-0. 221	-0.046	
aps:arw	0.0176	0.011	1.610	0.112	-0. 004	0.040	
aps:awt	-0. 0764	0.011	-6 .977	0.000	-0. 098	-0. 055	
aid:arw	3.5262	1.314	2.683	0.009	0.901	6.151	
aid:awt	7.0162	1.314	5.339	0.000	4.391	9.641	
arw:awt	-0. 7059	0.329	-2. 149	0.035	-1. 362	-0. 050	
Omnibus:		51.	======= 730 Durbir	 1-Watson:		2.230	
Prob(Omnibus):				Jarque-Bera (JB):			
Skew:		-1.	-	Prob(JB):		778.361 9.57e-170	
Kurtosis:		18.0		Cond. No.		3.75e+04	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.75e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Actual vs. Predicted cost

Reduced Cost Model

```
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
results.summary()

print(results.summary())

plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
plt.xlabel('Predicted cost')
plt.ylabel('Actual cost')
plt.title('Actual vs. Predicted cost')
plt.show()
```

		OLS Req	gression Res 	ults			
Dep. Variab	ole:	ost R-squa					
Model:	odel: OLS			-squared:		0.854	
Method:	Method: Least Squares			istic:		39.59	
Date:	Sa	t, 31 Jul 20	021 Prob (1.08e-25			
Time:		18:50	:18 Log-Li	kelihood:		65.790	
No. Observa	ations:		80 AIC:			-105.6	
Df Residual	S:		67 BIC:			-74.61	
Df Model:			12				
Covariance		nonrob	ıst				
	coef	std err	t	P> t	[0.025	0.975]	
const	-7. 5128	0.913	-8.232	0.000	-9.334	-5.691	
alh	15.5943	2.608	5.979	0.000	10.388	20.800	
aps	0.1501	0.015	10.015	0.000	0.120	0.180	
awt	3.3569	0.778	4.314	0.000	1.804	4.910	
alh:aps	-0. 1874	0.036	-5. 194	0.000	-0. 259	-0.115	
alh:aid	14.9741	4.153	3.605	0.001	6.684	23.264	
alh:arw	-6. 3471	1.040	-6. 102	0.000	-8 .423	-4.271	
aps:aid	-0. 1754	0.023	-7. 625	0.000	-0. 221	-0.130	
aps:arw	0.0203	0.006	3.356	0.001	0.008	0.032	
aps:awt	-0. 0764	0.011	-7. 059	0.000	-0. 098	-0.055	
aid:arw	3.2956	1.208	2.728	0.008	0.884	5.707	
aid:awt	6.4414	1.199	5.374	0.000	4.049	8.834	
arw:awt	-0. 6702	0.301	-2. 229	0.029	-1. 270	-0. 070	
Omnibus:	:=======	44.2	======= 267 Durbin	======================================	=======	 2.202	
Prob(Omnibu	ıs):			-Bera (JB):		749.960	
Skew:		-0.9	_	Prob(JB):			
Kurtosis: 17.869			`	Prob(JB): 1.41e Cond. No. 3.44			

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 3.44e+04. This might indicate that there are strong multicollinearity or other numerical problems.


```
cost_eq = build_model(cost_included,results.params,False)
print("Cost = " + cost_eq)

Cost = -7.512756311165274 + 15.594282277667375 * model.X1 + 0.1501013849966114 * model
```

```
Cost = -7.512756311165274 + 15.594282277667375 * model.X1 + 0.1501013849966114 * model .X2 + 3.3568541135900944 * model.X5 + -0.1873958333333725 * model.X1*model.X2 + 14.974 06461978116 * model.X1*model.X3 + -6.3471031138125085 * model.X1*model.X4 + -0.1754447 2807322514 * model.X2*model.X3 + 0.02025357325229224 * model.X2*model.X4 + -0.07640624 999999765 * model.X2*model.X5 + 3.2956081485919615 * model.X3*model.X4 + 6.44143552627 4299 * model.X3*model.X5 + -0.6702353647414601 * model.X4*model.X5
```

Time Analysis

```
f = 'time ~ (alh+aps+aid+arw+awt)**2'
y, X = patsy.dmatrices(f, df_time, return_type='dataframe')
```

```
print(y[:5])
print(X[:5])
     time
0
 16946.0
  9136.0
1
 12906.0
3
  9831.0
 14617.0
  Intercept
           alh
                      aid arw awt alh:aps alh:aid alh:arw alh:awt \
                  aps
0
       1.0 0.16 60.0 0.25 0.4 0.8
                                       9.60
                                               0.040
                                                       0.064
                                                               0.128
       1.0 0.28 60.0 0.25 0.4 1.2
1
                                      16.80
                                              0.070
                                                       0.112
                                                               0.336
2
       1.0 0.16 72.0 0.25 0.4 1.2
                                      11.52 0.040
                                                       0.064
                                                               0.192
3
       1.0 0.28 72.0 0.25 0.4 0.8
                                      20.16 0.070
                                                       0.112
                                                              0.224
        1.0 0.16 60.0 0.15 0.4 1.2
                                       9.60
                                              0.024
                                                       0.064
                                                               0.192
4
  aps:aid aps:arw aps:awt aid:arw aid:awt arw:awt
0
     15.0
             24.0
                     48.0
                             0.10
                                     0.20
                                             0.32
1
     15.0
             24.0
                     72.0
                             0.10
                                     0.30
                                             0.48
2
    18.0
             28.8
                    86.4
                             0.10
                                     0.30
                                             0.48
3
    18.0
             28.8
                    57.6
                             0.10
                                     0.20
                                             0.32
      9.0
             24.0
                     72.0
                             0.06
                                     0.18
                                             0.48
4
## An intercept is not added by default, so we need to add that here
X = sm.add constant(X)
results = sm.OLS(y, X).fit()
results.summary()
print(results.summary())
plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
plt.xlabel('Predicted Time')
plt.ylabel('Actual Time')
plt.title('Actual vs. Predicted Time')
plt.show()
                        OLS Regression Results
______
Dep. Variable:
                             time
                                   R-squared:
                                                                 0.977
Model:
                              OLS
                                   Adj. R-squared:
                                                                 0.972
Method:
                                  F-statistic:
                                                                183.9
                     Least Squares
Date:
                  Sat, 31 Jul 2021 Prob (F-statistic):
                                                             1.37e-46
Time:
                         18:50:20
                                  Log-Likelihood:
                                                              -600.98
No. Observations:
                               80
                                   AIC:
                                                                1234.
Df Residuals:
                                   BIC:
                                                                1272.
                               64
Df Model:
                               15
Covariance Type:
                        nonrobust
______
```

	coef	std err	t	P> t	[0.025	0.975]
 Intercept	3.908e+04	5339.602	7.319	0.000	2.84e+04	4.97e+04
alh	-9.723e+04	1.21e+04	-8. 035	0.000	-1.21e+05	-7.31e+04
aps	-139. 2986	74.068	-1. 881	0.065	-287.266	8.669
aid	2.967e+04	1.44e+04	2.058	0.044	875.294	5.85e+04
arw	-1.258e+04	3676.724	-3. 423	0.001	-1.99e+04	-5239. 900
awt	-2183. 1667	3506.060	-0. 623	0.536	-9187.3 27	4820.994
alh:aps	784.8611	153.775	5.104	0.000	477.661	1092.061
alh:aid	-1.917e+04	1.85e+04	-1. 039	0.303	-5.6e+04	1.77e+04
alh:arw	4518.7500	4613.237	0.980	0.331	-4697.251	1.37e+04
alh:awt	1497.9167	4613.237	0.325	0.746	-7718. 084	1.07e+04
aps:aid	-334. 9167	184.529	-1. 815	0.074	-703. 557	33.723
aps:arw	8.6875	46.132	0.188	0.851	-83. 473	100.848
aps:awt	-88 .8958	46.132	-1. 927	0.058	-181.056	3.264
aid:arw	3845.0000	5535.884	0.695	0.490	-7214. 201	1.49e+04
aid:awt	-1395. 0000	5535.884	-0. 252	0.802	-1.25e+04	9664.201
arw:awt	8843.7500	1383.971	6.390	0.000	6078.950	
======= Omnibus:	:=======	103.		-Watson:		1.989
Prob(Omnib	ous):	0.	000 Jarque	-Bera (JB)):	1972.446
Skew:		4.	063 Prob(J	B):		0.00
Kurtosis:		25.	928 Cond.	No.		3.75e+04

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.75e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Time Reduced Model

```
time_included = backward_regression(X,y,.05)
time_included.pop(0)
print(time included)
Drop aps:arw
                                     with p-value 0.851224
Drop aid:awt
                                     with p-value 0.800387
Drop alh:awt
                                     with p-value 0.742837
Drop awt
                                     with p-value 0.494038
Drop aid:arw
                                     with p-value 0.478725
                                     with p-value 0.316918
Drop alh:arw
Drop alh:aid
                                     with p-value 0.288586
Drop aps:aid
                                     with p-value 0.0661897
['alh', 'aps', 'aid', 'arw', 'alh:aps', 'aps:awt', 'arw:awt']
y = df_time['time']
```

```
X = X[time_included]

## An intercept is not added by default, so we need to add that here
X = sm.add_constant(X)
results = sm.OLS(y, X).fit()
results.summary()

print(results.summary())

plt.figure(figsize=(PlotWidth, PlotWidth))
sns.regplot(x=results.predict(X), y=y)
plt.xlabel('Predicted Time')
plt.ylabel('Actual Time')
plt.title('Actual vs. Predicted Time')
plt.show()
```

		OLS Re	gress	sion Re	esults		
Dep. Vari	able:	 t	ime	R-squ	ared:		0.975
Model:			OLS	Adj.	R-squared:		0.973
Method:		Least Squa	res	F-sta	atistic:		401.6
Date:		Sat, 31 Jul 2	021	Prob	(F-statisti	ic):	5.04e-55
Time:		18:50	:21	Log-I	Likelihood:		-604.83
No. Obser	vations:		80	AIC:			1226.
Df Residu	als:		72	BIC:			1245.
Df Model:			7				
Covarianc	e Type:	nonrob	ust				
=======	========	========					
	coef	std err		t	P> t	[0.025	0.975]
const	4.076e+04	2315.381	17	.604	0.000	3.61e+ <mark>04</mark>	4.54e+04
alh	-9.686e+04	1.01e+04	-9	.606	0.000	-1.17e+05	-7.68e+04
aps	-171.2235	36.913		.639	0.000	-244. 808	-97. 639
aid	4256.0000	1095.376	3	8.885	0.000	2072.408	6439.592
arw	-1e+04	1349.427	-7	.414	0.000	-1.27e+04	-7314. 273
alh:aps	784.8611	152.136	5	.159	0.000	481.584	1088.138
aps:awt	-118.7417	12.610	-9	.416	0.000	-143. 879	-93. 604
arw:awt	8599.5563	1321.349	6	5.508	0.000	5965.496	1.12e+04
Omnibus:	========	 . 98	951	Durbi	======== in-Watson:	========	1.924
Prob(Omni	bus):		000		ie-Bera (JB)):	1599.055
Skew:			871	Prob	, ,	, -	0.00
Kurtosis:			488	Cond	` '		1.80e+04
=======	=======		=====	-====			

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.8e+04. This might indicate that there are strong multicollinearity or other numerical problems.


```
time_eq = build_model(time_included,results.params,False)
print("Time = " + time_eq)

Time = 40760.7166666663415 + -96855.416666666564 * model.X1 + -171.22354749789565 * mode
1.X2 + 4256.000000000009 * model.X3 + -10004.306297709902 * model.X4 + 784.861111111115
9 * model.X1*model.X2 + -118.74173027989448 * model.X2*model.X5 + 8599.556297709905 *
model.X4*model.X5
```

Equations

```
display(Markdown("Cost = "))
print(cost_eq)

print("----")

display(Markdown("Time = "))
```

```
print(time_eq)
```

Cost =

```
-7.512756311165274 + 15.594282277667375 * model.X1 + 0.1501013849966114 * model.X2 + 3
.3568541135900944 * model.X5 + -0.1873958333333725 * model.X1*model.X2 + 14.9740646197
8116 * model.X1*model.X3 + -6.3471031138125085 * model.X1*model.X4 + -0.17544472807322
514 * model.X2*model.X3 + 0.02025357325229224 * model.X2*model.X4 + -0.076406249999997
65 * model.X2*model.X5 + 3.2956081485919615 * model.X3*model.X4 + 6.441435526274299 *
model.X3*model.X5 + -0.6702353647414601 * model.X4*model.X5
-----
```

Time =

```
40760.716666663415 + -96855.41666666564 * model.X1 + -171.22354749789565 * model.X2 + 4256.00000000009 * model.X3 + -10004.306297709902 * model.X4 + 784.86111111111159 * model.X1*model.X2 + -118.74173027989448 * model.X2*model.X5 + 8599.556297709905 * model.X4 + model.X5
```

Optimization

```
model = ConcreteModel()
model.X1 = Var(within=NonNegativeReals)
model.X2 = Var(within=NonNegativeReals)
model.X3 = Var(within=NonNegativeReals)
model.X4 = Var(within=NonNegativeReals)
model.X5 = Var(within=NonNegativeReals)
model.C1 = Constraint(expr = model.X1 <= .28)</pre>
model.C2 = Constraint(expr = model.X2 <= 72)</pre>
model.C3 = Constraint(expr = model.X3 <= .25)</pre>
model.C4 = Constraint(expr = model.X4 <= .8)</pre>
model.C5 = Constraint(expr = model.X5 <= 1.2)</pre>
model.C6 = Constraint(expr = model.X1 >= .16)
model.C7 = Constraint(expr = model.X2 >= 60)
model.C8 = Constraint(expr = model.X3 >= .15)
model.C9 = Constraint(expr = model.X4 >= .4)
model.C10 = Constraint(expr = model.X5 >= .8)
model.f1 = Var()
model.f2 = Var()
model.C f1 = Constraint(expr = model.f1 == (-7.512756311165274 + 15.594282277667375 *
model.X1 + 0.1501013849966114 * model.X2 + 3.3568541135900944 * model.X5 + -0.18739583
33333725 * model.X1*model.X2 + 14.97406461978116 * model.X1*model.X3 + -6.347103113812
```

```
5085 * model.X1*model.X4 + -0.17544472807322514 * model.X2*model.X3 + 0.02025357325229
224 * model.X2*model.X4 + -0.07640624999999765 * model.X2*model.X5 + 3.295608148591961
5 * model.X3*model.X4 + 6.441435526274299 * model.X3*model.X5 + -0.6702353647414601 *
model.X4*model.X5))
model.C f2 = Constraint(expr = model.f2 == (40760.716666663415 + -96855.41666666564 *
model.X1 + -171.22354749789565 * model.X2 + 4256.000000000009 * model.X3 + -10004.30629
7709902 * model.X4 + 784.8611111111159 * model.X1*model.X2 + -118.74173027989448 * mod
el.X2*model.X5 + 8599.556297709905 * model.X4*model.X5))
model.O_f1 = Objective(expr = model.f1, sense=minimize)
model.0 f2 = Objective(expr = model.f2, sense=minimize)
# max f1 separately
# install glpk solver: sudo apt-get install glpk-utils
model.0_f2.deactivate()
solver = SolverFactory('ipopt') #'cplex', 'ipopt'
solver.solve(model)
print('( X1 , X2, X3, X4, X5 ) = ( ' + str(value(model.X1)) + ' , ' + str(value(model.
X2)) + ' , ' + str(value(model.X3)) + ' , ' + str(value(model.X4)) + ' , ' + str(value
(model.X5)) + ')')
print('f1 = ' + str(value(model.f1)))
print('f2 = ' + str(value(model.f2)))
f2 min = value(model.f2)
# max f2 separately
model.0 f2.activate()
model.0 f1.deactivate()
solver = SolverFactory('ipopt') #'cplex', 'ipopt'
solver.solve(model)
print('( X1 , X2, X3, X4, X5 ) = ( ' + str(value(model.X1)) + ' , ' + str(value(model.
X2)) + ' , ' + str(value(model.X3)) + ' , ' + str(value(model.X4)) + ' , ' + str(value
(model.X5)) + ')'
print('f1 = ' + str(value(model.f1)))
print('f2 = ' + str(value(model.f2)))
f2 max = value(model.f2)
# apply augmented $\epsilon$-Constraint
                 f1 + delta*s
# max
\# constraint f2 - s = e
model.0 f1.activate()
model.0 f2.deactivate()
model.del component(model.0 f1)
model.del_component(model.0_f2)
model.e = Param(initialize=0, mutable=True)
model.delta = Param(initialize=0.00001)
model.slack = Var(within=NonNegativeReals)
model.O f1 = Objective(expr = model.f1 + model.delta * model.slack, sense=minimize)
```

```
model.C e = Constraint(expr = model.f2 - model.slack == model.e)
n = 100
step = int((f2_max - f2_min) / n)
steps = list(range(int(f2_min),int(f2_max),step)) + [f2_max]
x1_1, x2_1, x3_1, x4_1, x5_1 = [], [], [], [], []
f1 1, f2 1 = [], []
for i in steps:
   model.e = i
   solver.solve(model)
   x1 l.append(value(model.X1))
   x2 l.append(value(model.X2))
   x3_1.append(value(model.X3))
   x4 l.append(value(model.X4))
   x5 l.append(value(model.X5))
   f1 l.append(value(model.f1))
   f2 l.append(value(model.f2))
    # print(i, value(model.X1), value(model.X2), value(model.f1), value(model.slack),
value(model.f2))
(X1, X2, X3, X4, X5) = (0.15999999183403207, 59.999999533653316, 0.1499999910965)
4624 , 0.7999999847099541 , 1.2000000088828169 )
f1 = 0.5680095811532789
f2 = 14866.22869285591
(X1, X2, X3, X4, X5) = (0.2800000099999376, 72.00000071997307, 0.149999990000590)
22 , 0.39999999000739667 , 1.2000000119995191 )
f1 = 0.9517842950707984
```

```python

f2 = 7641.0830096684

\*\*\*