The Second Cohomology of Hess(X,H) and the Dot Action in types B/C

Nate Lesnevich nlesnev@okstate.edu

Oklahoma State University

Interactions between Geometry, Combinatorics, and Flag Varieties
October 2025

A flag variety is the quotient G/B for G an (appropriate) algebraic group and B a Borel subgroup.

Type A
$$\longrightarrow$$
 Flag(\mathbb{C}^n) = { $(V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n)$ }

A *Hessenberg variety* is a subvariety of G/B defined using $X \in \mathfrak{g}$ and a B-stable $H \subset \mathfrak{g}$:

$$\operatorname{Hess}(X,H) = \{ gB \mid \operatorname{ad}(g^{-1}).X \in H \}$$

In type A, H naturally defines $h: [n] \rightarrow [n]$ such that

Type A
$$\longrightarrow \operatorname{Hess}(X, h) = \{(V_1 \subset \cdots \subset V_n = \mathbb{C}^n) \mid XV_i \subset V_{h(i)}\}$$

We focus on types B and C, and when X is regular semisimple.

Goal: Understand $H_{\tau}^*(\operatorname{Hess}(X,H))$ and $H^*(\operatorname{Hess}(X,H))$

Motivation: There's a natural (dot) action of the Weyl group W on $H_T^*(\operatorname{Hess}(X, H))$ and $H^*(\operatorname{Hess}(X, H))$ with many connections:

- Chromatic Quasisymmetric Functions [7, 3, 5]
- Unicellular LLT polynomials [2, 1]
- Hecke Algebra Characters [8]
- Monodromy [3]

N.Lesnevich

We want to:

- generalize results from type A to other Lie types [6]
- See which special behaviors from type A might hold in all Lie types.

The Second Cohomology

Our result is in types B and C, where the Weyl group is the signed permutations \mathfrak{W}_n .

Main Theorem

The character of the dot action representation of W on $H^2(\text{Hess}(X, H))$ is a nonnegative sum of characters of the following representations:

- The trivial representation
- The action on cosets of $\mathfrak{S}_k \times \mathfrak{W}_{n-k}$
- The action on cosets of $\mathfrak{W}_1 \times \mathfrak{W}_{n-1}$
- The 1-dim'l representation δ

Fact

Each of these representations have characters that are $h_{\lambda}(x)h_{\mu}(y)$ -positive under the Frobenius character map to $\Lambda(x, y)$.

GKM Theory

5

The T-equivariant cohomology of a GKM (Goresky-Kottwitz-MacPherson) variety can be given a combinatorial description [4].

GKM Varieties include:

- Schubert varieties,
- Regular semisimple Hessenberg varieties,
- and many more.

A key combinatorial construction is the GKM-graph, where

$$\begin{aligned} \{ \mathsf{Vertices} \} &\longleftrightarrow \{ \mathsf{Torus} \; \mathsf{Fixed} \; \mathsf{Points} \} \\ \{ \mathsf{Edges} \} &\longleftrightarrow \left\{ \begin{matrix} \mathsf{One} \; \mathsf{Dimensional} \\ \mathsf{Torus} \; \mathsf{Orbits} \end{matrix} \right\} \\ \left\{ \begin{matrix} \mathsf{Edge} \\ \mathsf{Labels} \end{matrix} \right\} &\longleftrightarrow \left\{ \begin{matrix} \mathsf{Torus} \\ \mathsf{Weights} \end{matrix} \right\} \end{aligned}$$

For (regular semisimple) $\operatorname{Hess}(X, H)$ in types B and C, this is:

We can turn this problem fully combinatorial by translating s_{α} to a *signed transposition*.

Let
$$\overline{i} := -i$$
 and $[\overline{n}] := \{1, \dots, n, \overline{n}, \dots, \overline{1}\}$

The signed permutations $w \in \mathfrak{W}_n$ are bijections $w : [\overline{n}] \to [\overline{n}]$ such that $w(\overline{i}) = \overline{w(i)}$.

One-line notation is $\longrightarrow [w(1), w(2), \dots, w(n)]$

$$\mathfrak{W}_2 \text{ contains: } \begin{bmatrix} [1,2], & [1,\overline{2}], & [\overline{1},2], & [\overline{1},\overline{2}] \\ [2,1], & [2,\overline{1}], & [\overline{2},1], & [\overline{2},1] \end{bmatrix}.$$

The signed transpositions are:

$$\bullet (i,j) := (i,j)(\bar{i},\bar{j}) \qquad \bullet (i,\bar{j}) := (i,\bar{j})(\bar{i},j) \qquad \bullet (i,\bar{i})$$

We translate from roots to transpositions by how the corresponding reflection actions on $e_1, ..., e_n$

Type B roots	Vector	Type C roots	Vector	Transposition
[100]	(1, -1, 0)	[100]	(1, -1, 0)	(1, 2)
[010]	(0,1,-1)	[010]	(0,1,-1)	(2,3)
[001]	(0,0,1)	[001]	(0,0,2)	$(3,\overline{3})$
[110]	(1,0,-1)	[110]	(1, 0, -1)	(1, 3)
[012]	(0, 1, 1)	[011]	(0, 1, 1)	$(2,\overline{3})$
[011]	(0, 1, 0)	[021]	(0,2,0)	$(2,\overline{2})$
[112]	(1, 0, 1)	[111]	(1, 0, 1)	$(1,\overline{3})$
[122]	(1, 1, 0)	[121]	(1, 1, 0)	$(1,\overline{2})$
[111]	(1,0,0)	[221]	(2,0,0)	$(1,\overline{1})$

Roots and Transpositions for \mathfrak{W}_3 in both types.

N.Lesnevich

Let S(H) be the set of signed transpositions that correspond to H. Then $H_T^*(\operatorname{Hess}(X,H))$ is isomorphic to

$$\left\{ \rho \in \prod_{w \in \mathfrak{W}_n} \mathbb{C}[x_{\bullet}] \mid \rho(w) - \rho(w(i,j)) \in \left\langle x_{w(i)} - x_{w(j)} \right\rangle \text{ if } (i,j) \in S(H) \right\},$$

whose elements are called splines. This is

- A module over $\mathbb{C}[x_{\bullet}] \coloneqq \mathbb{C}[x_1,...,x_n]$ by pointwise-multiplication
- A ring by pointwise addition and multiplication
- A module over \mathfrak{W}_n by $w \cdot \rho(v) = w \rho(w^{-1}v)$

$$S(H) = \{(1,2),(2,\bar{2})\}$$

$$S(H) = \{(1,2),(2,\bar{2})\}$$

$$S(H) = \{(1,2), (2,\bar{2}), (1,\bar{2})\}$$

$$S(H) = \{(1,2), (2,\bar{2}), (1,\bar{2})\}$$

The dot action moves polynomials around and acts on the indices.

Let $t_i := (i, i+2)$ for $i \in [n-2]$, $t_{n-1} = (n-1, \overline{n-1})$, $t_n = (n-1, \overline{n})$, and $\mathcal{T} := \{t_1, ..., t_n\}$.

Lemma

The 2^{nd} equivariant $H^2_T(\operatorname{Hess}(X,H))$ and ordinary $H^2(\operatorname{Hess}(X,H))$ cohomology, as well as the dot action on both, is entirely determined by $S(H) \cap \mathcal{T}$.

- •allows us to unify the type-B and type-C calculations
- •gives a condition for $H_T^2(\operatorname{Hess}(X, H)) = H_T^2(\operatorname{Hess}(X, H'))$.

N.Lesnevich

Main Theorem

The character of the dot action representation on $H^2(\operatorname{Hess}(X, H))$ is determined from the following data of $S(H) \cap T$:

Trivial Representation
$$\longleftrightarrow$$
 $|S(H) \cap T|$ (+1)
Action on $\mathfrak{S}_k \times \mathfrak{W}_{n-k} \longleftrightarrow \{t_{k-1}, t_k\} \cap S(H) = \emptyset$
Action on $\mathfrak{S}_1 \times \mathfrak{W}_{n-1} \longleftrightarrow \{t_{k-1}, t_k\} \cap S(H) = t_{k-1}$
Action on $\mathfrak{W}_1 \times \mathfrak{W}_{n-1} \longleftrightarrow t_n \notin S(H)$
 $\delta \longleftrightarrow \{t_{n-1}, t_n\} \cap S(H) = t_n$

Many questions remain.

- Type D
- Total description of trivial (flag-isomorphic) cohomology?
- First non-trivial (non-flag isomorphic) cohomology?
- Bases for $H_T^*(\operatorname{Hess}(X, H))$?
- Graph coloring schema?
- Is the Frobenius Character always $h_{\lambda}(x)h_{\mu}(y)$ -positive?

Thank you!

References

[1] Per Alexandersson and Greta Panova. "LLT polynomials, chromatic quasisymmetric functions and graphs with cycles". In: *Discrete Math.* 341.12 (2018), pp. 3453–3482.

- [2] Anton Ayzenberg and Victor Buchstaber. "Manifolds of isospectral matrices and Hessenberg varieties". In: *Int. Math. Res. Not. IMRN* 2021.21 (2021), pp. 16671–16692.
- [3] Patrick Brosnan and Timothy Y. Chow. "Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties". In: *Adv. Math.* 329 (2018), pp. 955–1001.
- [4] Mark Goresky, Robert Kottwitz, and Robert MacPherson. "Equivariant cohomology, Koszul duality, and the localization theorem". In: *Invent. Math.* 131.1 (1998), pp. 25–83.
- [5] Mathieu Guay-Paquet. A second proof of the Shareshian-Wachs conjecture, by way of a new Hopf algebra. 2016. arXiv: 1601.05498 [math.CO].
- [6] Martha Precup and Eric Sommers. "Perverse sheaves, nilpotent Hessenberg varieties, and the modular law". In: *Pure Appl. Math. Q.* 21.1 (2025), pp. 495–540.
- [7] John Shareshian and Michelle L. Wachs. "Chromatic quasisymmetric functions". In: *Adv. Math.* 295 (2016), pp. 497–551.
- [8] Mark Skandera. Hyperoctahedral group characters and a type-BC analog of graph coloring. 2024. arXiv: 2402.04148 [math.CO].