

FACULTAD DE CIENCIAS COMPUTACIÓN DISTRIBUIDA

PRACTICA 01

Semestre 2024 - 1

Profesor:

Luis Germán Pérez Hernández

Ayudantes:

Daniel Michel Tavera

Yael Antonio Calzada Martín

Autor

Marco Silva Huerta

Edgar Montiel Ledesma

Carlos Cortés

Algotitmo Dijkstra Distribuido

Forma de compilar

Funcionamiento

Pseudocódigo del Algotitmo

- 1. Inicializar todas las distancias en D con un valor infinito relativo, ya que son desconocidas al principio, exceptuando la de a, qué se debe colocar en 0, pues la distancia de a a si mismo sería 0. C es copia de V
- 2. Para todo vértice i en C se establece [PI] = a.
- 3. Se obtiene el vértice s en C tal que no existe otro vértice w en C tal que (D[w] < D[s]).

Para esto se envía un mensaje al nodo correspondiente y se regresa un mensaje de respuesta en donde se toma el tiempo y se le asigna a su distancia correspondiente. De manera concurrente el nodo destino realiza el mismo procedimiento para calcular su distancia a sus nodos vecinos que no han sido visitados.

```
// En lugar de buscar el vértice con la distancia más corta
// iterativamente, ahora se utiliza una heap para mantener una lista
// de vértices no visitados, ordenada por la distancia más corta. Así
// encontrar el vértice n la distancia más corta en tiempo logarítmico.
```

- 4. Se elimina de C el vértice s. El vértice u se elimina del conjunto C.
- 5. Para cada arista e en E de longitud l, que une el vértice s con algún otro vértice t en C, Para cada arista que sale del vértice u, se verifica si la distancia a través del vértice u es menor que la distancia actual del vértice t.

```
- Si l + D[s] < D[t], entonces:
    // Si la distancia a través del vértice u es menor que la distancia
    // actual del vértice t, entonces se actualiza la distancia del vértice t.
- Se establece D[t] := l + D[s].
    // La distancia del vértice t se establece en la suma de la distancia
    // del vértice u y el peso de la arista.
- Se establece P[t] := s.
// El predecesor del vértice t se establece en el vértice u.</pre>
```

6. Se regresa al paso 4.
// El algoritmo regresa al paso 4 y repite el proceso hasta que todos

// los vértices hayan sido visitados.

Desarrollo