Universidade Federal do Espírito Santo (**UFES**) Centro Universitário Norte do Espírito Santo (**CEUNES**) **Bacharelado em Ciência da Computação**

Trabalho I — Processamento Digital de Sinais **Sistema Reverberador**

João Victor do Rozário Recla Novembro 2022

Universidade Federal do Espírito Santo (**UFES**) Centro Universitário Norte do Espírito Santo (**CEUNES**)

Bacharelado em Ciência da Computação

PDS Sistema Reverberador

Conteúdo

1	Intr	odução	4
	1.1	Objetivos	4
	1.2	Sistema Proposto	4
2	Sina	l de Áudio	4
	2.1	Aquisição do Sinal	4
	2.2	Representações do Sinal	5
	2.3	Frequência de Amostragem	6
	2.4	Classificação do Sinal	7
3	Siste	ema Reverberador	8
	3.1	Sistema	8
		3.1.1 1º Método de Schroeder	8
		3.1.2 2º Método de Schroeder	9
		3.1.3 Filtro Universal	10
	3.2	Respostas do Sistema	11
		3.2.1 Resposta a Função Impulso $\sigma[n]$:	11
		3.2.2 Resposta a Função Degrau u[n]:	13
	3.3	Propriedades do Sistema	14
4	Resi	ıltados	15
5	Imp	lementação	16
6	Refe	rências	16

Universidade Federal do Espírito Santo (**UFES**) Centro Universitário Norte do Espírito Santo (**CEUNES**)

Bacharelado em Ciência da Computação

Sistema Reverberador

Lista de Figuras

PDS

1	Aquisição do sinal e frequência de amostragem do áudio. (Arquivo <i>Main.py</i>)	4
2	Representação do sinal no tempo	5
3	Espectro de amplitude do sinal	5
4	Espectro de fase do sinal	6
5	Informações do sinal de áudio	6
6	Filtros All-pass em série. (1º Método de Schroeder)	8
7	Estrutura do filtro All-pass	9
8	Reverberador de Schroeder. (2º Método de Schroeder)	9
9	Estrutura do filtro de delay. (Comb-filter IIR)	10
10	Estrutura do filtro universal	10
11	Parâmetros de configuração do filtro universal	11
12	Resposta ao Impulso no tempo.	11
13	Espectro de amplitude em resposta ao Impulso.	12
14	Espectro de fase em resposta ao Impulso	12
15	Resposta ao Degrau no tempo	13
16	Espectro de amplitude em resposta ao Degrau.	13
17	Espectro de fase em resposta ao Degrau	14
18	Resposta ao sinal no tempo.	15
19	Espectro de amplitude em resposta ao Sinal.	15
20	Espectro de fase em resposta ao Sinal.	16

1 Introdução

1.1 Objetivos

O objetivo deste trabalho é propor um sistema **LTI**, ou ainda **LIT** (**Linear e Invariante no Tempo**), e aplicá-lo no processamento de um sinal de áudio, com canal *mono* e formato .wav, usando a linguagem de programação **Python**.

1.2 Sistema Proposto

"Sistema Reverberador" é o nome do sistema proposto para este trabalho. A sua modelagem se baseia na aplicação do efeito de reverberação [6] em um sinal de áudio. Após o processamento digital de um sinal, a resposta esperada para a saída do sistema é um sinal do próprio áudio condicionado as características do efeito de reverberação.

2 Sinal de Áudio

2.1 Aquisição do Sinal

Após importar um arquivo de áudio, com canal *mono* e formato .wav, para dentro da pasta do projeto, o sinal do áudio foi obtido através do comando .read() da biblioteca soundfile, que recebe o caminho do arquivo no projeto e retorna o sinal e a frequência de amostragem relacionado ao áudio (Conforme a figura 1).

```
import soundfile as Sound

import soundfile as Soundfile

import sou
```

Figura 1: Aquisição do sinal e frequência de amostragem do áudio. (Arquivo *Main.py*)

2.2 Representações do Sinal

O sinal do áudio adquirido pode ser representado tanto em função do tempo (Figura 2) como em função da frequência, sendo a frequência apresentada como o espectro de amplitude do sinal (Figura 3) e como o espectro de fase do sinal (Figura 4).

Figura 2: Representação do sinal no tempo.

Figura 3: Espectro de amplitude do sinal.

Figura 4: Espectro de fase do sinal.

2.3 Frequência de Amostragem

Para representar digitalmente o sinal do áudio no tempo é necessário obter a sua frequência de amostragem, que já é retornado pelo comando .read() (Conforme a figura 1). Após obter essa informação podemos usá-la para: (1) calcular a taxa, ou período, de amostragem do sinal (Dado por Ts = 1 / Freq), (2) extrair o tempo de duração do áudio, em segundos, (Duração = Amostras * Ts) e, assim, (3) poder representar o sinal em tempo discreto.

Figura 5: Informações do sinal de áudio.

Universidade Federal do Espírito Santo (**UFES**) Centro Universitário Norte do Espírito Santo (**CEUNES**)

Bacharelado em Ciência da Computação

PDS Sistema Reverberador

2.4 Classificação do Sinal

Observando as representações do sinal do áudio no tempo (Figura 2) e na frequência (Figuras 3 e 4), podemos analisar o sinal e classificá-lo como sendo:

- Contínuo O Sinal é analógico;
- **Causal** O sinal é definido a partir do instante de tempo t = 0s;
- **Real** O sinal apresenta valores reais em qualquer instante *t*;
- **Aleatório** O sinal apresenta valores aleatórios em qualquer instante *t*;
- **Aperiódico** O sinal não satisfaz a equação x(t) = x(t + Ts).

Sistema Reverberador

3 Sistema Reverberador

A implementação do "Sistema Reverberador" é baseada em dois algoritmos apresentados por *Schroeder* [4] em seu artigo: "Natural Sounding Artificial Reverberation" [7]. Nesse artigo o objetivo geral descrito pelo autor é a simulação de um efeito artificial de reverberação, por meios digitais, que seja indistinguível do efeito natural de reverberação em um ambiente fechado.

Além da aplicação desses algoritmos, o sistema implementado tem como base outro método que permite a configuração do efeito artificial a partir do ajuste de alguns parâmetros, que podem ser modificados de tal modo que é possível representar outros efeitos apenas com algumas mudanças.

3.1 Sistema

3.1.1 1º Método de Schroeder

O primeiro algoritmo abordado no artigo — e o que será utilizado como base nesse relatório — consiste na passagem de um sinal de áudio por um conjunto de filtros **All-pass** em série (Figuras **6** e **7**), sendo de **4-5** a quantidade de filtros necessários para se obter um sinal reverberado com boa qualidade.

Figura 6: Filtros All-pass em série. (1º Método de Schroeder)

Sistema Reverberador

Figura 7: Estrutura do filtro All-pass.

3.1.2 2º Método de Schroeder

O segundo algoritmo abordado no artigo é um sistema que consiste na passagem de um sinal de áudio por um conjunto de **4** filtros "*Comb*" em paralelo, seguido da passagem do sinal resultante por um conjunto de **2** filtros *All-pass* em série, obtendo-se assim um sinal reverberado (Figura **8**). Para esse método o filtro "*Comb*" utilizado por *Schroeder* [4] é um filtro do tipo **IIR** que aplica um efeito de *delay* no sinal de entrada (Figura **9**).

Figura 8: Reverberador de Schroeder. (2º Método de Schroeder)

Figura 9: Estrutura do filtro de delay. (Comb-filter IIR)

3.1.3 Filtro Universal

Tomando como base o artigo "Implementação de efeito de áudio: atraso e reverberação." [5] e o filtro universal (Figura 10), construído a partir da junção de um filtro IIR com um filtro FIR, é possível reproduzir tanto os métodos de Schroeder, quanto criar outros efeitos apenas configurando alguns parâmetros, conforme a figura 11, e combinando os filtros com a equação (1).

$$\mathbf{y[n]} = \mathbf{BL} * x[n] + \mathbf{FF} * x[n-M] + \mathbf{BL} * \mathbf{FB} * y[n-M]$$
 (1)

Figura 10: Estrutura do filtro universal.

	BL	FB	FF
Filtro FIR	1	0	Gd
Filtro IIR	1	Gd	0
Filtro passa-tudo	Gd	-Gd	1
Delay puro	0	0	1

Figura 11: Parâmetros de configuração do filtro universal.

3.2 Respostas do Sistema

Para o primeiro método de Schroeder (Figura **6**), utilizado para montar esse relatório, obtemos as seguintes respostas do sistema às funções "*Impulso*" e "*Degrau*":

3.2.1 Resposta a Função Impulso $\sigma[n]$:

Figura 12: Resposta ao Impulso no tempo.

Figura 13: Espectro de amplitude em resposta ao Impulso.

Figura 14: Espectro de fase em resposta ao Impulso.

3.2.2 Resposta a Função Degrau u[n]:

Figura 15: Resposta ao Degrau no tempo.

Figura 16: Espectro de amplitude em resposta ao Degrau.

Figura 17: Espectro de fase em resposta ao Degrau.

3.3 Propriedades do Sistema

O "Sistema Reverberador", com base no 1° Método de Schroeder (Figura 6) e na configuração do filtro universal pela equação (1), pode ser classificado conforme as seguintes propriedades:

· Com memória:

O sistema depende de valores do sinal de entrada no *passado*, ou seja, de pontos deslocados no tempo com base em um delay.

· Estável:

A saída do sistema não diverge, enquanto o sinal de entrada não for divergente.

· Causal:

A saída do sistema depende somente de valores do sinal de entrada no *presente* ou no *passado*.

· Linear:

O sistema satisfaz os princípios da superposição de aditividade e mudança de escala.

· Invariante:

A saída do sistema apresenta o mesmo deslocamento no tempo aplicado no sinal de entrada.

Sistema Reverberador

Figura 18: Resposta ao sinal no tempo.

Figura 19: Espectro de amplitude em resposta ao Sinal.

Figura 20: Espectro de fase em resposta ao Sinal.

5 Implementação

Os arquivos de áudio, códigos e gráficos que compõem o relatório e a implementação do sistema podem ser encontrados neste endereço eletrônico: GitHub-Implementação

6 Referências

- [1] Sean Costello. *Schroeder Reverbs: The forgotten algorithm*. Abr. de 2022. URL: https://valhalladsp.com/2009/05/30/schroeder-reverbs-the-forgotten-algorithm/.
- [2] Rishikesh Daoo. Coding a basic reverb algorithm Part 2: An introduction to audio programming. Mar. de 2019. URL: https://medium.com/the-seekers-project/coding-a-basic-reverb-algorithm-part-2-an-introduction-to-audio-programming-4db79dd4e325.
- [3] Irina Dornean, Marina Topa e Botond Sandor Kirei. «Digital Implementation of Artificial Reverberation Algorithms». Em: *Acta Technica Napocensis* 49.4 (2008).
- [4] Manfred R. Schroeder. Jul. de 2021. URL: https://en.wikipedia.org/wiki/Manfred_R. Schroeder.
- [5] Pedro Merencio Primo PASSOS et al. «Implementação de efeito de áudio: atraso e reverberação.» Em: (2015).
- [6] Reverberação. Nov. de 2022. URL: https://pt.wikipedia.org/wiki/Reverbera%C3%A7%C3%A3o.
- [7] Manfred R. Schroeder. «Natural Sounding Artificial Reverberation». Em: *Journal of the Audio Engineering Society* 10.3 (jul. de 1962), pp. 219–223. URL: http://www.aes.org/e-lib/browse.cfm?elib=849.