Author: Dr. Shi Guo

The reason of the article is to provide a basic review of several key concepts in measure theory. Each concept is illustrated with an example so that one can easily understand.

1 σ Algebra

a. Sigma algebra definition

Given a non-empty set Ω , a sigma algebra is defined

- 1) Include empty set and whole set
- 2) Include the complement of any element itself
- 3) Closed under countable union

b. Sigma algebra example by tossing a coin

The procedure to find out the sigma algebra is to enumerate all the subsets under the whole set Ω . We now see an example.

We first toss a coin 0 time, there is no outcome, so $\Omega = \{\emptyset\}$. And the σ algebra contains an empty set only.

```
F_0 = \{\emptyset\}
```

In this case, it is trivial to check 1) 2) and 3)

We then toss the coin once, the outcome is either Head(H) or Tail(T)

Check 1) $\Omega = H$, T

Enumerate all of the subsets of Ω , we get

 $F_1 = \{0, \Omega, H, T\}$

Check 2) $\emptyset^c = \Omega$, $\Omega^c = \emptyset$, $H_c = T$ in F_1 , $T_c = H$ in F_1

Check 3) $H \cup T = \Omega$ in F_1

So we confirm

 $F_1 = 0, \Omega, H, T$

We then toss the coin twice

Check 1) $\Omega = \{ HH, HT, TH, TT \}$

Enumerate all the subsets of Ω , we get

 $F_2 = \{\emptyset, \Omega, HH, HT, TH, TT,$

 $HH \cup HT, HH \cup TH, HH \cup TT, HT \cup TH, HT \cup TT, TH \cup TT,$

 $HH \cup HT \cup TH, HH \cup HT \cup TT, HH \cup TH \cup TT, HT \cup TH \cup TT, \}$

It is easy to check 2), for example $HH^c = HT \cup TH \cup TT$ in F_2 , $HT^c = HH \cup TH \cup TT$ in F_2 , $TH^c = HH \cup HT \cup TT$ in F_2 , $TT^c = HH \cup HT \cup TH$ in F_2

The rest check is ignored.

3) is easy to check too. So we confirm

 $F_2 = \{\emptyset, \Omega, HH, HT, TH, TT,$

 HH^c, HT^c, TH^c, TT^c

 $HH \cup HT, HH \cup TH, HH \cup TT, HT \cup TH, HT \cup TT, TH \cup TT,$

 TT^c, TH^c, HT^c, HH^c

c. Why define sigma algebra?

On top of the sigma algebra, we can define the probability, because the object that probability measure takes is the sigma algebra.

2 Filtration

Consider a sequence of coin toss For the first toss, we get F_1 For the first and second toss, we get F_2 For the first n tosses, we get F_n The collection of sigma algebra F_1 , F_2 F_n is called a Filtration.

3 Random variable

a. Definition

A random variable is function from Ω to R, with the property that for every Borel subset B of R, its inverse image from the subset of Ω is in σ -algebra F.

b. Example

Consider 3 toss case, H with prob p, T with prob q Def. random variable S $S_0(w_0) = 4$ for all ω

$$S_{n+1}(w_{n+1}) = 2S_n(w_n) \text{ if } w_{n+1} = H$$

$$\frac{1}{2}S_n(w_n) \text{ if } w_{n+1} = T$$

so $S_0(w_1w_2w_3) = 4 \text{ for all } w_i$ $S_1(w_1w_2w_3) = 8 \text{ if } w_1 = H$ $S_1(w_1w_2w_3) = 2 \text{ if } w_1 = T$ $S_2(w_1w_2w_3) = 16 \text{ if } w_1 = w_2 = H$ $S_2(w_1w_2w_3) = 4 \text{ if } w_1 \neq w_2$ $S_2(w_1w_2w_3) = 1 \text{ if } w_1 = w_2 = T$

4 σ Algebra Generated by a Random Variable and Measurable Function

Give consider a random variable $S: \Omega$ to R, for every open set in R, the collection of their inverse image forms an sigma algebra, and it is called the sigma algebra generated by S. And S is called F-measurable. The concept measurable is not very intuitive to understand. An easy way to understand this is S is completely determined by F, then S is F measurable.

5 Conditional Expectation

a. Definition

- 1) E[X|G] is G measurable, which means the value of E[X|G] is completely determined by G
- 2) $\int_A E[X|G](w)dP(w) = \int_A X(w)dP(w)$ for all A which belongs to G

b. Example to understand 2)

Consider 3 toss case, H with prob p, T with prob q

Define random variable S

 $S_0(w) = 4$ for all w

 $S_{n+1}(w) = 2S_n(w)$ if $w_{n+1} = H$

 $S_{n+1}(w) = \frac{1}{2}S_n(w)$ if $w_{n+1} = T$

Expectation of 3 tosses random variable S_3 give the first two is HH

$$E_2(S_3|HH) = pS_3(HHH) + qS_3(HHT)$$

 $E_2(S_3|HT) = pS_3(HTH) + qS_3(HTT)$

 $E_2(S_3|TH) = pS_3(THH) + qS_3(THT)$

 $E_2(S_3|TT) = pS_3(TTH) + qS_3(TTT)$

 $E_2(S_3|HH)P(HH) = prob(HHH)S_3(HHH) + prob(HHT)S_3(HHT)$

 $E_2(S_3|HT)P(HT) = prob(HTH)S_3(HTH) + prob(HTT)S_3(HTT)$

 $E_2(S_3|TH)P(TH) = prob(THH)S_3(THH) + prob(THT)S_3(THT)$

 $E_2(S_3|TT)P(TT) = prob(HTH)S_3(TTH) + prob(TTT)S_3(TTT)$

This confirms def 2), for A = HH or HT or TH or TT $\int E_2(S_3|G)(w)dP(w) = \int_A X(w)dP(w)$

c. Properties

- 1) The conditional expectation is a random variable. Because the value is dependent on G.
- 2) If X is G measurable, then E[X|G] = X.
- 3) If X is G measurable E[XY|G] = XE[Y|G], this is to take out what is known.
- 4) If X is independent of G, E[X|G] = EX

To understand 2), 3) and 4), consider two extreme cases

Define random variable S

 $S_0(w) = 4$ for all w

 $S_{n+1}(w) = 2S_n(w) \text{ if } w_{n+1} = H$

 $S_{n+1}(w) = \frac{1}{2}S_n(w)$ if $w_{n+1} = T$

Then a condition expectation can be defined as

 $E[S_n|F_t] = E[S_n|\omega_1, \omega_2, ..., \omega_t]$

If t=n, then $E[S_n|F_n] = S_n$, this is because when F_n is known, then S_n is known, there is nothing to average. This corresponds to Property 2) and 3)

If t=0, then $E[S_n|F_0] = E[S_n]$, this is because F_0 provides no restriction to average S_n , the conditional expectation needs to average all possible cases, it is a general expectation. This corresponds to Property 4).

5) If G is a subset of H
$$E[E[X|G|H]] = E[X|H]$$

6 Law of Large Numbers

a. Weak law of large number

Suppose $X_1, X_2,..., X_n$ are iid, and u is the expectation. $\lim_{n\to\infty} Pr(|\bar{X}-u|>>\epsilon)=0$

b. Strong law of large number

$$Pr(\lim_{n\to\infty}\bar{X}=u)=1$$

c. Difference

In weak case, $|X-u| > \epsilon$ can happen infinite times, however, in strong case, it does not. There exist in certain case where X_n converges in weak case but does not converge in strong case. An example would be a series of X_n that is conditionally convergent, which means the series does not converge absolutely, and by rearranging terms, the series converges to a different value. For example, if X be random variable following geometric distribution with probability 0.5. Then the expectation of a new random variable $2^X(-1)^X X^{-1}$ is

$$E[2^{X}(-1)^{X}X^{-1}] = \sum_{1}^{\infty} \frac{(-1)^{x}}{x}$$
$$= -1 + \frac{1}{2} - \frac{1}{3}...$$
$$= -\ln 2$$

By rearranging the terms,

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5}$$

$$= (-1 + \frac{1}{2}) + \frac{1}{4} + (-\frac{1}{3} + \frac{1}{6}) + \frac{1}{8}$$

$$= -\frac{1}{2}ln2$$

Therefore, this is conditionally convergent, meaning it satisfies the weak law not the strong law.