4 端口 USB3. 0 HUB 控制器芯片 CH634

手册 1 版本: 1.8 https://wch.cn

1、概述

CH634 是符合 USB3. 2 Gen1 协议规范的 4 端口 USB 超高速 HUB 控制器芯片,单芯片集成 4 口 USB HUB 和 USB PD 功能。CH634 具有独立的 SS HUB 控制器和 USB2. 0 HUB 控制器,内置 5 组 SS PHY、5 组 USB2. 0 PHY 和 2 组 PD PHY。CH634 芯片的上行端口支持 USB3. 0 超高速 5Gbps、USB2. 0 高速 480Mbps 和全速 12Mbps,下行端口支持 USB3. 0 超高速、USB2. 0 高速、全速和低速 1.5Mbps。

CH634X 内置两组 Type-C 双通道 USB3. 0 PHY 和双 PD PHY, 兼容 USB-C 线缆和连接规范, 原生支持 Type-C 正反插自适应, 原生支持 PDHUB、Type-C 电源 15W 和 PD 的 100W 快充(20V*5A)。

CH634 支持高性能的并发处理 MTT 模式,采用工业级设计,外围精简,可应用于计算机和工控机 主板、扩展坞、外设、嵌入式系统等场景。

下图为 CH634 的系统框图。

图 1-1 系统框图

V1. 8 1

2、特点

● 4 □ USB3. 2 Gen1 HUB 集线器,提供 4 个下行端口,支持 USB3. 2 Gen1 (5Gbps),并且向前兼容 USB3. 1、USB3. 0、USB2. 1、USB2. 0、USB1. 1、USB1. 0 协议规范

- USB3. 2 Gen1 HUB 模块支持符合 USB3. 2 Gen1 协议规范的 U0/U1/U2/U3 电源管理模式
- 部分型号内置两组自研的 Type-C 双通道 USB3.0 PHY,原生支持 Type-C 正插和反插自适应
- USB2.0 HUB 模块支持符合 USB2.1 协议规范的 L0/L1/L2/L3 电源管理模式
- 支持低成本的 STT 或高性能的 MTT 模式, MTT 为每个端口配置独立的 TT 实现高速传输
- 内置两路 USB PD PHY, 原生支持 Type-C 电源 15W 和 PD 的 100W 快充, 支持 PDHUB 和扩展坞
- 下行口支持 BC1. 2 充电协议和 CDP
- 兼容 USB Type-C 线缆和连接规范, 3 种 C 口工作模式, 支持下行双 C 口或上行 C 口
- 每个下行端口的 USB3.0 和 USB2.0 支持拆开独立应用,4口 HUB 最多支持8个 USB 设备
- 支持 GANG 整体联动电源控制和 GANG 整体过流检测
- 部分型号支持各端口独立电源控制和各端口独立过流检测
- 自研的 HUB 专用 USB PHY, 低功耗技术, 支持自供电或总线供电
- 部分型号支持 SMBus 总线,支持主板集成和管理
- CH634M、CH634X、CH634W6C 和 CH634W8G 支持上行口交换功能, 便于 2 个 USB 主机管理多个 USB 设备
- 支持通过 I/0 引脚配置独立或整体控制、供电模式等功能
- 可通过外部 EEPROM、外部 FLASH 或内部 EEPROM 配置 HUB 芯片是否支持复合设备、不可移除设备、自定义 VID、PID、端口配置和 USB 厂商、产品、序列号字符串描述符等
- 内置信息存储器,针对行业特殊需求可批量定制厂商或产品信息及配置
- 集成了 3.3V 的 LDO 调压器和 1.2V 的 DC-DC 降压器,支持外部 5V 电源供电,外围精简
- 部分型号支持外加 Type-C 接口芯片 CH211 实现 28V 高压 PDHUB 和扩展坞
- 青稞 RISC-V 处理器内核、超高速 USB、高速 USB、USB PD 等控制器和物理层收发器 IP 全自研,各模块紧密协同,效率高成本低,免除 IP 授权费
- 提供 QFN32、QFN48、QFN64、QFN68 等多种封装形式

表 2-1 同簇型号功能对比

					12 2	一回族亞	こっか形	: ^ J \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
型号 功能	634F	634M	634X	W5M	W6C	W6G	W6T	W7G	W7R	W7S	W7U	W7V	W8G
USB2 端口	4	4	4	4	4	4	4	4	4	4	4	4	4
USB3 端口	2	4	4+2C	4	4	4	4	4	4	4	4	4	4+2C
PD 控制器	×	1	2	×	×	1	\times	×	×	×	×	×	2
上行口交换	×	√	√	×	√	×	×	×	×	×	×	×	√
MTT 模式	√	√	√	√	√	√	✓	√	√	√	√	√	✓
独立过流 检测	×	×	4	4	4	×	4	4	4	4	2	4	4
整体过流 检测	√	√	√	√	√	√	√	√	√	√	√	√	√
独立电源 控制	×	×	4	4	×	×	4	4	4	4	2	4	4
整体电源 控制	√	√	√	√	√	√	✓	1	√	√	✓	1	√
I/0 配置 整体/独立	-	-	√	√	√	-	1	√	-	✓	_	_	1
I/0 配置 电源控制 极性	-	-	-	-	-	√	√	-	_	-	_	√	_
LED 指示灯	×	1	1	×	1	1	4	4+4+1	4+4	4	4+4+1	4	4+1
内部 EEPROM 配置信息	√	√	√	√	√	√	1	1	√	√	1	1	1
外部 EEPROM 配置信息	×	×	×	×	×	×	√	×	√	×	×	×	×
外部 FLASH 配置信息	×	×	×	√	√	√	×	√	√	√	✓	1	√
SMBus 接口 配置信息	√	√	√	√	√	×	√	√	√	×	√	√	√
定制配置 信息	√	√	√	√	√	√	√	√	√	√	√	√	√
I/0 配置 BC 充电	-	√	-	√	√	√	-	√	√	√	√	√	√
Type-C 快充 15W	×	√	√	×	×	√	×	×	×	×	×	×	√
PDHUB 快充 100W	×	√	√	×	×	√	×	×	×	×	×	×	√
单 5V 供电	X	√	√	X	√	1	×	√	√	√	√	√	√
单 3. 3V 供电	×	√	√	×	√	√	×	√	√	√	√	√	√
3. 3V+1. 2V 双供电	√	√	√	√	√	√	√	√	√	√	√	√	√
封装引脚数	32	48	68	56	64	64	64	76	76	76	76	76	88
封装尺寸	4*4	5*5	8*8	7*7	8*8	8*8	9*9	9*9	9*9	9*9	9*9	9*9	10*10

注:对于表中整体/独立、电源控制极性、BC 充电这 3 种功能, "-"表示支持 EEPROM 或 FLASH 配置, "√"表示还支持 I/O 配置。

3、引脚排列

封装形式	塑体尺寸	引思	[]] 节距	封装说明	订货型号
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线 32 脚	CH634F
QFN48	5*5mm	0. 35mm	13.8mil	四边无引线 48 脚	CH634M
QFN68	8*8mm	0. 4mm	15.7mil	四边无引线 68 脚	CH634X
QFN64	8*8mm	0. 4mm	15. 7mil	四边无引线 64 脚	CH634W6G

注: 1、0#引脚是 QFN 封装的底板, 是必要连接。

2、CH634F、CH634W5M、CH634W6T 内部没有 LD0 调压器和 DC-DC 降压器, 需外部同时供电 3.3V 和 1.2V。其它型号内置 3.3V 的 LD0 调压器和 1.2V 的 DC-DC 降压器, 外部单一供电 5V 或 3.3V。

3、CH634F 的 4 个下行端口包含 2 个 USB3. 2 Gen1 和 4 个 USB2. 0; 其它型号包含 4 个 USB3. 2 Gen1 下行端口和 4 个 USB2. 0; 其中,CH634X 和 CH634W8G 包含两组原生 Type-C/PD 正反插自适应端口。

4、客制引脚 CH634W5M、CH634W6C、CH634W6T、CH634W7G、CH634W7R、CH634W7S、CH634W7U、CH634W7V、CH634W8G,仅批量预定。其引脚排列、引脚定义和封装信息请参考《CH634DS2》手册。

4、引脚定义

表 4-1 USB 信号相关引脚功能描述

USB 信号引脚	引脚名称	类型⑴	功能描述
- 스	UP_SS_TXA UP_SS_TXB	USB3	上行端口 USBSS 差分发送信号线 TX+/TX-或TX-/TX+(自动识别交叉)。
上行端口 USBSS 差分信号	UP_SS_RXA UP_SS_RXB	USB3	上行端口 USBSS 差分接收信号线 RX+/RX-或RX-/RX+(自动识别交叉)。
上行端口 USB2. 0 差分信号	UP_HS_DP	USB2	上行端口 USB2. 0 差分信号线 D+。
	UP_HS_DM	USB2	上行端口 USB2. 0 差分信号线 D-。
】 1#下行端口 USBSS 差分信号	P1_SS_TXA P1_SS_TXB	USB3	1#下行端口 USBSS 差分发送信号线 TX+/TX- 或 TX-/TX+(自动识别交叉)。
1# \1] 埼山 USBSS 左刀语号 	P1_SS_RXA P1_SS_RXB	USB3	1#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
	P1_HS_DP	USB2	1#下行端口 USB2. 0 差分信号线 D+。
1#下行端口 USB2. 0 差分信号	P1_HS_DM	USB2	1#下行端口 USB2. 0 差分信号线 D-。
	P2_SS_TXA P2_SS_TXB	USB3	2#下行端口 USBSS 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
2#下行端口 USBSS 差分信号	P2_SS_RXA P2_SS_RXB	USB3	2#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
	P2_HS_DP	USB2	2#下行端口 USB2. 0 差分信号线 D+。
2#下行端口 USB2. 0 差分信号	P2_HS_DM	USB2	2#下行端口 USB2. 0 差分信号线 D-。
3#下行端口 USBSS 差分信号	P3_SS_TXA P3_SS_TXB	USB3	3#下行端口 USBSS 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
3#14]端口 00000 左刀旧与	P3_SS_RXA P3_SS_RXB	USB3	3#下行端口 USBSS 差分接收信号线 RX+/RX- 或 RX-/RX+(自动识别交叉)。
3#下行端口 USB2. 0 差分信号	P3_HS_DP	USB2	3#下行端口 USB2. 0 差分信号线 D+。
5 ドリ州口 0002. 0 左刀 同う	P3_HS_DM	USB2	3#下行端口 USB2. 0 差分信号线 D-。
┃ ┃ ┃ 4#下行端口 USBSS 差分信号	P4_SS_TXA P4_SS_TXB	USB3	4#下行端口 USBSS 差分发送信号线 TX+/TX- 或 TX-/TX+(自动识别交叉)。
4# 下1] 埼山 USBSS 左刀信号 	P4_SS_RXA P4_SS_RXB	USB3	4#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
	P4_HS_DP	USB2	4#下行端口 USB2. 0 差分信号线 D+。
4#下行端口 USB2. 0 差分信号	P4_HS_DM	USB2	4#下行端口 USB2. 0 差分信号线 D-。
1#或 2#下行端口	PxC_SS_TXA PxC_SS_TXB	USB3	1#或 2#下行端口 Type-C 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
Type-C 差分信号	PxC_SS_RXA PxC_SS_RXB	USB3	1#或 2#下行端口 Type-C 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。

表 4-2 CH634F 和 CH634M 引脚定义

引脚号(同名 CH634F	4引脚可参考) CH634M	引脚 名称	类型⑴	功能描述
-	9	VDD5	Р	5V 电源输入,建议外接 0.1uF 并联 10uF 退耦电容。如果 VDD5 电压小于 3.6V 则应短接 VDD33。

		,		
_	10	VSW	P	DCDC 输出端, 需贴近引脚串接电感产生 1.2V 电源, 且 1.2V 电源需就近放置对地电容, 建议用
	10	V 011	'	2. 2uH 电感且至少一个 10uF 电容。
				3. 3V LDO 输出端, 模拟电源和 I/O 引脚电源输入,
-	8	VDD33	P	建议外接 0. 1uF 并联 10uF 退耦电容。
				模拟电源和 1/0 引脚电源输入,建议外接 0.1uF
30	_	VDD33	P	并联 10uF 退耦电容。
				1. 2V 内核电源和 2#下行端口 1. 2V 电源输入,建
29	7	VDD12	P	议外接 0. 1uF 或 1uF 退耦电容。
0	0	GND	Р	公共接地端,必须连接 GND。
14	32	UP VDD12	P	上行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。
9	25	P1 VDD12	P	1#下行端口1.2V电源输入,外接0.1uF退耦电容。
	44	P3 VDD12	P	3#下行端口1.2V电源输入,外接0.1uF退耦电容。
_	37	P4_VDD12	P	4#下行端口1.2V电源输入,外接0.1uF退耦电容。
	07	1 4_10012	•	晶体振荡器输入端,接外部 24MHz 晶体一端及对
4	20	ΧI	I	地电容。
3	19	ХО	0	晶体振荡器反相输出端,接外部 24MHz 晶体另一
				端及对地电容。
	31、30、34、33		USB3	上行端口 USBSS 差分发送或接收信号线。
17、18	28、29	UP_HS_xx	USB2	上行端口 USB2. 0 差分信号线。
8、7、11、10	24、23、27、26	P1_SS_xxx	USB3	1#下行端口 USBSS 差分发送或接收信号线。
5,6	21、22	P1_HS_xx	USB2	1#下行端口 USB2. 0 差分信号线。
27、28、25、26	3、4、5、6	P2_SS_xxx	USB3	2#下行端口 USBSS 差分发送或接收信号线。
23、24	1, 2	P2_HS_xx	USB2	2#下行端口 USB2. 0 差分信号线。
_	43、42、46、45	P3_SS_xxx	USB3	3#下行端口 USBSS 差分发送或接收信号线。
21、22	47、48	P3_HS_xx	USB2	3#下行端口 USB2. 0 差分信号线。
-	36、35、39、38	P4_SS_xxx	USB3	4#下行端口 USBSS 差分发送或接收信号线。
19、20	40、41	P4_HS_xx	USB2	4#下行端口 USB2. 0 差分信号线。
32	14	0VCUR#	I	整体模式下行端口过流检测输入引脚,低电平过流,内置上拉。
		SMBDAT	1/0	SMBus 总线数据信号线。
2	_	PWREN#	0	整体模式下行端口电源输出控制引脚,低电平开
		T IIIXEIN#		启。
				SMBus 总线时钟信号线。
				在复位期间作为配置引脚,用于配置 CH634F 芯片
1	_	SMBCLK	l	的 SMBDAT/PWREN#引脚功能,如果检测到外部有
				上拉电阻(如 10K 电阻),则配置 2#引脚为 SMBDAT
				功能,否则配置为 PWREN#功能。
31	18	RESET#	ı	外部复位输入,内置上拉电阻,低电平有效,不
			-	使用时可以悬空,建议短接 VDD33 防干扰。
			1/0	通用 HUB 模式: SMBus 总线数据信号线。
-		01:55:=		在复位期间作为配置引脚,用于启用或关闭
		SMBDAT	ı	SMBus 接口,如果外部接地则关闭 SMBus、使能上
	17			行口交换功能、并且配置 SMBCLK 引脚为 EXCH#功
				能,否则开启 SMBus 接口。
		SDA	1/0	PD-HUB 模式: 2 线串行接口的数据信号线,用于
				连接 CH211 芯片。
_	16	SMBCLK	ı	开启 SMBus 的通用 HUB 模式: SMBus 总线时钟信
				号线。

		SCL	1/0	PD-HUB 模式: 2 线串行接口的时钟信号线,用于连接 CH211 芯片。
		EV.011//		关闭 SMBus 的通用 HUB 模式:该引脚为上行口和
		EXCH#		1#下行端口交换控制输入引脚,悬空或上拉不切 换,输入低电平控制切换。
-	11	PWREN#	0	整体模式下行端口电源输出控制引脚,低电平开启。
		SUSP	0	睡眠状态输出引脚,可用于驱动 LED,睡眠时输出的电平与上下拉电阻配置的默认状态相同,正常工作时输出的电平则相反。
-	- 15	PDHUB#	I	在复位期间作为配置引脚,用于配置通用 HUB 模式或 PD-HUB 模式,内置上拉电阻,悬空或高电平配置为通用 HUB 模式,外加下拉电阻置低电平配置为 PD-HUB 模式。
		PWR_CC	1/0	PD-HUB 模式:外供电端 PD 协议通信引脚,用于连接 Type-C 电源适配器。
		GP100	1/0	通用 GP100, 用于 1/0 口输入或输出。
- 13	BC_EN#	I	通用 HUB 模式: 在复位期间作为配置引脚, 用于配置是否使能 BC 充电功能, 内置上拉电阻, 悬空或高电平为禁止 BC 充电,外加下拉电阻置低电平为使能 BC 充电。	
-	12	HUB_CC	1/0	PD-HUB 模式:上行口 PD 协议通信引脚,用于连接手机/电脑等 USB 主机。
		GP101	1/0	通用 GPI01, 用于 I/0 口输入或输出。

表 4-3 CH634W6G 引脚定义

引脚号(同名引脚可参考)	引脚 名称	类型⑴	功能描述
			DCDC 的电源输入,建议外接 10uF 对地电容。
20	VDD5	Р	3. 3V LDO 的 5V 电源输入,建议外接 1uF 电容。
			如果 VDD5 电压小于 3. 6V 则应短接 VDD33。
			DCDC 输出端,需贴近引脚串接电感产生 1.2V 电源,
19	VSW	Р	且 1.2V 电源需就近放置对地电容,建议用 2.2uH 电
			感且至少一个 10uF 电容。
17	VFB	P	DCDC 电压反馈端,建议外接 0.1uF 对地电容,且直
17	VFB		连 DC-DC 输出的 1. 2V 电源。
21	VDD33/ V1033	Р	3.3V LDO 输出端和 I/O 引脚电源输入, 建议外接
21			0. 1uF 并联 10uF 或 4. 7uF 退耦电容。
35	AVDD33	Р	3.3V 模拟电源输入,建议外接 0.1uF 并联 10uF 或
			4. 7uF 退耦电容。
27	DVDD12	P	1. 2V 内核电源输入,建议外接 0. 1uF 或 1uF 退耦电
	DVDD12	<u>'</u>	容。
54	V1033	P	I/O 引脚电源输入,外供 3. 3V,建议外接 1uF 或 0. 1uF
J-	V1000	<u>'</u>	退耦电容。
18	GND_DCDC	Р	DCDC 接地端,必须连接 GND。
0	GND	Р	公共接地端,必须连接 GND。
16	GND	Р	可选接地端,建议连接 GND。
40	UP_VDD12	Р	上行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。

 		,	
49、13、3、58	Px_VDD12	Р	1-4#下行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。
45	ΧI	I	晶体振荡器输入端,接外部 24MHz 晶体一端及对地电容。
1			□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
44	X0	0	及对地电容。
39、38、42、41	UP_SS_xxx	USB3	上行端口 USBSS 差分发送或接收信号线。
37、36	UP_HS_xx	USB2	上行端口 USB2. 0 差分信号线。
48、47、51、50	P1_SS_xxx	USB3	1#下行端口 USBSS 差分发送或接收信号线。
52, 53	P1 HS xx	USB2	1#下行端口 USB2. 0 差分信号线。
12、11、15、14	P2_SS_xxx	USB3	2#下行端口 USBSS 差分发送或接收信号线。
9、10	P2_HS_xx	USB2	2#下行端口 USB2. 0 差分信号线。
2、1、5、4	P3_SS_xxx	USB3	3#下行端口 USBSS 差分发送或接收信号线。
6、7	P3_HS_xx	USB2	3#下行端口 USB2. 0 差分信号线。
57、56、60、59	P4_SS_xxx	USB3	4#下行端口 USBSS 差分发送或接收信号线。
63、64	P4 HS xx	USB2	4#下行端口 USB2. 0 差分信号线。
			1#下行端口过流检测输入引脚, 低电平过流;
33	0VCUR#	I	整体模式下行端口过流检测输入引脚,低电平过流。
		_	1#下行端口电源输出控制引脚,低电平开启;
		0	整体模式下行端口电源输出控制引脚,低电平开启。
	DWDEAL!!		在复位期间作为配置引脚,用于配置电源控制引脚
34	PWREN#	_	的输出极性,内置上拉电阻,悬空或高电平则 PWREN
		ı	引脚为输出低电平有效;外加下拉电阻置低电平则
			PWREN 引脚为输出高电平有效。
	DEOET#		外部复位输入,内置上拉电阻,低电平有效,不使
24	RESET#	ı	用时可以悬空,建议短接 VDD33 防干扰。
28	SPI_MOSI	0	SPI 接口的数据输出。
	SPI_SCS	0	通用 HUB 模式: SPI 接口的片选输出。
			在复位期间作为配置引脚,用于配置通用 HUB 模式
31	PDHUB#		或 PD-HUB 模式,内置上拉电阻,悬空或高电平配置
	РИПОБ#	I	为通用 HUB 模式,外加下拉电阻置低电平配置为
			PD-HUB 模式。
	SPI_SCK	0	通用 HUB 模式: SPI 接口的时钟输出。
29	COL	1./0	PD-HUB 模式: 2 线串行接口的时钟信号线, 用于连
	SCL	1/0	接 CH211 芯片。
	SPI_MISO	I	通用 HUB 模式: SPI 接口的数据输入, 内置上拉电阻。
30	SDA	1/0	PD-HUB 模式: 2 线串行接口的数据信号线,内置上
	SUA	1/0	拉电阻,用于连接 CH211 芯片。
			通用 HUB 模式: USB 总线 VBUS 状态检测输入,应将
	VBUS_DET	I	VBUS 电源通过两个电阻分压后接入该引脚;不用此
25			功能时,该引脚需短接 VI033。
	PWR CC	1/0	PD-HUB 模式:外供电端 PD 协议通信引脚,用于连接
	1 1111 _00	1/0	Type-C 电源适配器。
	RSVD	ı	通用 HUB 模式: 保留引脚, 内置上拉电阻, 建议悬
26	NOVD		空。
20	HUB_CC	1/0	PD-HUB 模式:上行口 PD 协议通信引脚,用于连接手
	1100_00	1/0	机/电脑等 USB 主机。
32	SUSP	0	睡眠状态输出引脚,可用于驱动 LED,睡眠时输出的
52	0001		电平与上下拉电阻配置的默认状态相同,正常工作

			时输出的电平则相反。
			在复位期间作为配置引脚,用于配置是否使能 BC 充
	CFG2	I	电功能,内置上拉电阻,高电平为使能 BC 充电,悬
			空或外加下拉电阻置低电平为禁止 BC 充电。
			2#下行端口功能配置;
			在复位期间作为配置引脚,外加下拉电阻置低电平
23	CFG1	I	则禁用 2#下行端口;悬空则配置 2#下行端口为不可
			移除设备;外加上拉电阻置高电平则配置该引脚为
			2#下行端口过流指示灯。
			3#下行端口功能配置;
22		1	在复位期间作为配置引脚,悬空则配置 3#下行端口
22	CFG0		为不可移除设备;外加上拉电阻置高电平则配置该
			引脚为 3#下行端口过流指示灯。
8、43、46、55、61、62	NC	_	空脚,建议悬空。

表 4-4 CH634X 引脚定义

引脚号(同名引脚可参考)	引脚 名称	类型")	功能描述
36	VDD5	Р	3.3V LDO 的 5V 电源输入,建议外接 1uF 电容。 如果 VDD5 电压小于 3.6V 则应短接 VDD33。
37	VSW	Р	DCDC 输出端,需贴近引脚串接电感产生 1.2V 电源,且 1.2V 电源需就近放置对地电容,建议用 2.2uH 电感且至少一个 10uF 电容。
35	VDD33	P	3. 3V LDO 输出端,建议外接 1uF~10uF 对地电容。
43	DVDD12	Р	1. 2V 内核电源输入,建议外接 0. 1uF 或 1uF 退耦 电容。
0	GND	Р	公共接地端,必须连接 GND。
66	UP_VDD12	Р	上行端口 1.2V 电源输入,外接 0.1uF 退耦电容。
57 (52) 、17 (22) 、12、3	Px_VDD12	Р	1-4#下行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。
48	ΧI	I	晶体振荡器输入端,接外部 24MHz 晶体一端及对 地电容。
47	X0	0	晶体振荡器反相输出端,接外部 24MHz 晶体另一端及对地电容。
65、64、68、67	UP_SS_xxx	USB3	上行端口 USBSS 差分发送或接收信号线。
62、63	UP_HS_xx	USB2	上行端口 USB2. 0 差分信号线。
58、59、55、56	P1_SS_xxx	USB3	1#下行端口 USBSS 差分发送或接收信号线。
51、50、54、53	P1C_SS_xxx	USB3	1#下行端口 Type-C 差分发送或接收信号线。
60、61	P1_HS_xx	USB2	1#下行端口 USB2. 0 差分信号线。
16、15、19、18	P2_SS_xxx	USB3	2#下行端口 USBSS 差分发送或接收信号线。
23、24、20、21	P2C_SS_xxx	USB3	2#下行端口 Type-C 差分发送或接收信号线。
25、26	P2_HS_xx	USB2	2#下行端口 USB2. 0 差分信号线。
11、10、14、13	P3_SS_xxx	USB3	3#下行端口 USBSS 差分发送或接收信号线。
8、9	P3_HS_xx	USB2	3#下行端口 USB2. 0 差分信号线。
2、1、5、4	P4_SS_xxx	USB3	4#下行端口 USBSS 差分发送或接收信号线。
6、7	P4_HS_xx	USB2	4#下行端口 USB2. 0 差分信号线。
28	PWREN1#	0	1#下行端口电源输出控制引脚,低电平开启。
30	PWREN2#	0	2#下行端口电源输出控制引脚,低电平开启。

32	PWREN3#	0	3#下行端口电源输出控制引脚,低电平开启。
34	PWREN4#	0	4#下行端口电源输出控制引脚,低电平开启。
27	0VCUR1#	1	1#下行端口过流检测输入引脚,低电平过流。
29	0VCUR2#	I	2#下行端口过流检测输入引脚,低电平过流。
	0VCUR3#		3#下行端口过流检测输入引脚,低电平过流。
			在复位期间作为配置引脚,用于配置整体模式或
31		1	独立模式,内置上拉电阻,高电平为独立模式,
	GANG_EN#		检测到外部有下拉电阻且 OVCUR4#也检测到外部
			有下拉电阻时为整体模式。
	0VCUR4#		4#下行端口过流检测输入引脚,低电平过流。
İ		-	在复位期间作为配置引脚,用于配置整体模式或
33	0410 511	ı	独立模式,内置上拉电阻,高电平为独立模式,
	GANG_EN#		检测到外部有下拉电阻且 0VCUR3#也检测到外部
			有下拉电阻时为整体模式。
			睡眠状态输出引脚,可用于驱动 LED, 睡眠时输
	SUSP	0	出的电平与上下拉电阻配置的默认状态相同,正
			常工作时输出的电平则相反。
44			在复位期间作为配置引脚,用于配置通用 HUB 模
	PDHUB#	1	式或 PD-HUB 模式,内置上拉电阻,悬空或高电平
	РИПОВ#	'	配置为通用 HUB 模式,外加下拉电阻置低电平配
			置为 PD-HUB 模式。
	SMBCLK	1	开启 SMBus 的通用 HUB 模式: SMBus 总线时钟信
	CIIDOLIN	<u>'</u>	号线。
	SCL	1/0	PD-HUB 模式: 2 线串行接口的时钟信号线, 用于
45		', "	连接 CH211 芯片。
	_		关闭 SMBus 的通用 HUB 模式:该引脚为上行口和
	EXCH#	I	1#下行端口交换控制输入引脚,悬空或上拉不切
			换,输入低电平控制切换。
46	RESET#	ı	外部复位输入,内置上拉电阻,低电平有效,不
			使用时可以悬空,建议短接 VDD33 防干扰。
		1/0	通用 HUB 模式: SMBus 总线数据信号线。
	040047		在复位期间作为配置引脚,用于启用或关闭
10	SMBDAT	ı	SMBus 接口,如果外部接地则关闭 SMBus、使能上
49			行口交换功能、并且配置 SMBCLK 引脚为 EXCH#功
			能,否则开启 SMBus 接口。
	SDA	1/0	PD-HUB 模式: 2 线串行接口的数据信号线,用于连接 CH211 芯片。
			通用 HUB 模式:1#下行端口 PD 协议通信引脚 CC1。
			PD-HUB 模式: 1#下行端口 PD 协议通信引脚 CC1。
		1/0	在关闭 SMBus 的通用 HUB 模式下,如果 EXCH#为
42	P1_CC1	I/0 (FT)	低电平,则该引脚跟随 1#下行端口切换为新的上
		(FI)	行端口的 PD 协议通信引脚 CC1。 如果切换为上行端口,则该引脚需要通过 5.1K
			如果切换为工行端口,则该引脚需要通过 5. IK 电阻接地。如果 P1_CC1 通过 5. IK 电阻接地,则
			P1C_SS*信号无效, 1#端口从 C 口改为 A 口。
			通用 HUB 模式:1#下行端口 PD 协议通信引脚 CC2。
			在关闭 SMBus 的通用 HUB 模式下,如果 EXCH#为
41	P1_CC2	1/0	低电平,则该引脚跟随 1#下行端口切换为新的上
]		(FT)	行端口的 PD 协议通信引脚 CC2。
			如果切换为上行端口,则该引脚需要通过 5.1K
	L		クロクトクリスクリエロ神口, 別以川岬而女児とし.

			电阻接地。如果 P1_CC2 通过 5.1K 电阻接地,则
			P1_SS*信号无效,1#端口从C口改为A口,且选
			择使用 P1C_SS*信号引脚。
	PWR CC	1/0	PD-HUB 模式:外供电端 PD 协议通信引脚,用于
	FWK_00	1/0	连接 Type-C 电源适配器。
		1./0	通用 HUB 模式:2#下行端口 PD 协议通信引脚 CC1。
	P2_CC1	1/0 (FT)	如果 P2_CC1 通过 5.1K 电阻接地,则 P2C_SS*信
40			号无效, 2#端口从 C 口改为 A 口。
	HUB_CC	1/0	PD-HUB 模式:上行口 PD 协议通信引脚,用于连
			接手机/电脑等 USB 主机。
			通用 HUB 模式:2#下行端口 PD 协议通信引脚 CC2。
			如果 P2_002 通过 5.1K 电阻接地, 则 P2_SS*信号
39	P2_CC2	1/0 (CT)	无效, 2#端口从 C 口改为 A 口, 且选择使用
		(FT)	P2C_SS*信号引脚。
			PD-HUB 模式: 1#下行端口 PD 协议通信引脚 CC2。
38	NC	_	空脚,建议悬空

注1: 引脚类型缩写解释:

USB3 = USB3.0 信号引脚;

USB2 = USB2.0 信号引脚;

I = 信号输入;

0 = 信号输出;

P = 电源或地;

NC = 空脚;

FT = 耐受 5V 电压。

5、功能说明

5.1 过流检测和电源控制

5.1.1 过流检测

CH634 部分型号支持两种过流保护模式:独立过流模式和整体过流模式,部分型号仅支持整体过流模式,如表 5-1 所示。

芯片型号	过流配置	过流模式	过流检测的采样引脚	参考图
CH634F	-	整体过流	OVCUR#	图 5-2
CH634M	_	整体过流	OVCUR#	图 5-2
CH634W6G	_	整体过流	0VCUR#	图 5-2
CH634W5M CH634W6C CH634W6T	EEPROM 默认配置/ GANG_EN=低电平 (注: W7S 和 X 为 GANG_EN#= 高电平)	独立过流	OVCUR1#, OVCUR2#, OVCUR3#, OVCUR4#	图 5-1
CH634W7G CH634W7S CH634W8G CH634X	EEPROM 配置成整体过流 /GANG_EN=高电平 (注: W7S 和 X 为 GANG_EN#= 低电平)	整体过流	OVCUR1#	图 5-2
CH634W7R	EEPROM 默认配置	独立过流	OVCUR1#, OVCUR2#, OVCUR3#, OVCUR4#	图 5-1
CH634W7U CH634W7V	EEPROM 配置成整体过流	整体过流	OVCUR1# (注: W7V 为 OVCUR3#)	图 5-2

表 5-1 过流保护控制说明

5.1.2 电源控制

CH634 部分型号支持两种电源控制模式:独立电源控制模式和整体电源控制模式,部分型号仅支持整体电源控制模式,如表 5-2 所示。

芯片型号	电源控制配置	电源控制	电源控制引脚	参考图
CH634F	_	整体控制	PWREN#	图 5-2
CH634M	-	整体控制	PWREN#	图 5-2
CH634W6C	-	整体控制	PWREN#	图 5-2
CH634W6G	-	整体控制	PWREN#	图 5-2
CH634W5M CH634W6T CH634W7G	EEPROM 默认配置/ GANG_EN=低电平 (注: W7S 和 X 为 GANG_EN#= 高电平)	独立控制	PWREN1#, PWREN2#, PWREN3#, PWREN4# (注: W5M 和 W6T 默认为高电平有效)	图 5-1
CH634W7S CH634W8G CH634X	EEPROM 配置成整体控制 /GANG_EN=高电平 (注: W7S 和 X 为 GANG_EN#= 低电平)	整体控制	PWREN1# (注: W5M 和 W6T 默认为高电平有效)	图 5-2
CH634W7R	EEPROM 默认配置	独立控制	PWREN1#, PWREN2#, PWREN3#, PWREN4# (注:W7V 默认为高电平有效)	图 5-1
CH634W7U CH634W7V	EEPROM 配置成整体控制	整体控制	PWREN1# (注:W7V 为 PWREN3,默认为高电平 有效)	图 5-2

表 5-2 电源控制说明

5.1.3 独立过流检测和独立电源控制

图 5-1 CH634 独立过流检测和独立电源控制

上图中,VBUS1-VBUS4 分别连接下行端口 1-4 的 VBUS 电源引脚。U4~U7 为 USB 限流配电开关芯片,内部集成了过流检测,用于 VBUS 电源分配管理。在 5V 没有外部供电的应用中,建议通过 ISET 外接电阻将限流设置在 1A 以下。U4~U7 的 FLAG 引脚是开漏输出,需要分别通过电阻上拉。CH634 芯片的 OVCUR#引脚提供内置的弱上拉电流,所以可省掉电阻 R16、R18、R20 和 R22。部分型号 CH634 芯片的 PWRENx#引脚开启电源时输出为低电平,部分型号 CH634 芯片的 PWRENx#引脚开启电源时输出为低电平,部分型号 CH634 芯片的 PWRENx#引脚开启电源时输出为高电平(不适用上图),可通过 PWREN_POL 引脚进行配置或通过 EEPROM 进行参数配置。

5.1.4 整体过流检测和整体电源控制

图 5-2 整体过流检测和整体电源控制

U5 为 USB 限流电源开关芯片,例如 CH217 芯片或类似功能的芯片。默认配置下可以省掉 R11。C14 的容量可以根据需要选择。VBUS-ALL 同时连接下行端口 1-4 的 VBUS 电源引脚。U5 的限流设置值需考

虑 4 个下行端口及是否自供电。

5.2 复位

芯片内嵌有上电复位模块,一般情况下,无需外部提供复位信号。同时也提供了外部复位输入引脚 RESET#,该引脚内置有上拉电阻。

5.2.1 上电复位

当电源上电时,芯片内部 POR 上电复位模块会产生上电复位时序,并延时 Troor 约 25mS 以等待电源稳定。在运行过程中,当电源电压低于 Vivr时,芯片内部 LVR 低压复位模块会产生低压复位直到电压回升,并延时以等待电源稳定。下图为上电复位过程以及低压复位过程。

5.2.2 外部复位

外部复位输入引脚 RESET#已内置上拉电阻,如果外部需要对芯片进行复位,那么可以将该引脚驱动为低电平,复位的低电平脉宽需要大于 4uS。

5.3 总线供电与自供电

CH634 支持 USB 总线供电模式和自供电模式。总线供电来自 USB 上行端口,供电能力为 500mA 或 900mA、1. 5A 等多种标准,USB 线材内阻损耗和 HUB 自身消耗会降低对下行端口的供电能力,下行端口电压可能偏低。自供电通常来自外部电源端口,取决于外部电源供电能力。

由于自供电与总线供电的电压难以完全相等,所以 HUB 需要避免两者直接短接而产生大电流。另外,当 USB 上行端口断电后, HUB 也要避免自供电的外部电源向 USB 总线及 USB 主机倒灌电流。

5.3.1 单一 5V 供电方案

有 VDD5 引脚的 CH634 支持单一 5V 供电方案,使用内置的 LD0 和 DC-DC。额定 5V 从 VDD5 输入,提供给 LD0 调压器和 DC-DC 降压器,LD0 调压器产生 3. 3V 到 VDD33 再连接到 AVDD33 和 VI033,DC-DC 降压器产生 1. 2V 连接到 VDD12 和 P*_VDD12 及 VFB,建议 1. 2V 电源经 LC 滤波后再提供给 P*_VDD12。3. 3V 电源的对地电容累计不小于 10uF, 1. 2V 电源的对地电容累计不小于 10uF,建议双 10uF 电容并联,5V 电源的对地电容不小于 10uF。5V 供电支持较宽的电压范围,可低至 4V,建议 5V 电源加上 5. 5V 过压保护器件。

图 5-4 单一 5V 供电方案示意图

注:图中加粗的线表示电流较大,设计PCB时需要保证足够的线宽和过孔数量。

5.3.2 单一3.3V 供电方案

有 VDD5 引脚的 CH634 支持单一 3. 3V 供电方案,使用内置的 DC-DC。额定 3. 3V 连接到 AVDD33 和 VI033 及 VDD33,同时,额定 3. 3V 从 VDD5 输入,提供给 DC-DC 降压器,DC-DC 降压器产生 1. 2V 连接到 VDD12 和 P*_VDD12 及 VFB,建议 1. 2V 电源经 LC 滤波后再提供给 P*_VDD12。3. 3V 电源的对地电容累计不小于 10uF, 1. 2V 电源的对地电容累计不小于 10uF, 建议双 10uF 电容并联。

图 5-5 单一 3.3V 供电方案示意图

注:图中加粗的线表示电流较大,设计PCB时需要保证足够的线宽和过孔数量。

5.3.3 3.3V+1.2V 双供电方案

没有 VDD5 引脚的 CH634 仅支持 3. 3V+1. 2V 双供电方案。额定 3. 3V 连接到 AVDD33 和 VI033,同时,额定 1. 2V(建议 1. 23V,参考 6. 2 节)连接到 VDD12 和 P*_VDD12。3. 3V 电源的对地电容累计不小于 10uF, 1. 2V 电源的对地电容累计不小于 10uF。

有 VDD5 引脚的 CH634 如需改用外部 3.3V+1.2V 双供电,可以参考单一 3.3V 供电方案去掉 VSW 引脚的电感,再外供额定 1.2V (建议 1.23V)。因为内置的 LDO 和 DC-DC 均未关闭,所以静态电流略大,

如需关闭内置 LDO 和 DC-DC,可联系技术人员,针对具体型号去除相关电源连接。

5.4 LED 指示灯

CH634 芯片部分型号提供了下行端口状态 LED 指示灯控制引脚,端口对应的绿灯亮起表明端口状态正常,绿灯熄灭表明端口无设备或挂起 Suspend,端口对应的红灯亮起表明端口异常。

图 5-6 为 CH634W7G 芯片的 8 灯模式应用示意图, 其中 LED1-4 分别为端口 1-4 的正常状态指示灯 (绿灯), 点亮表明端口有设备插入且端口正常, 熄灭表明端口无设备或挂起 Suspend。LED5-8 分别为端口 1-4 的异常状态指示灯(红灯), 点亮表明端口异常, 比如过流。

图 5-6 CH634W7G 芯片的 8 灯模式应用示意图

5.5 I/O 功能配置

CH634 芯片的部分功能可以通过 4 种方式进行配置:内置 EEPROM、外置 EEPROM、外置 SPI 接口 FLASH 和配置引脚。外部 EEPROM 和外置 SPI 接口 FLASH 的参数配置功能优先级高于内部 EEPROM 的参数配置功能,内部 EEPROM 的参数配置功能优先级高于引脚配置功能。配置引脚一般为复用引脚,在复位期间作为配置引脚,复位完成之后,再切换到对应的功能引脚。不同型号的具体配置引脚见对应的引脚说明列表。

CH634X 芯片具有 3 种 C 口工作模式,可通过 PDHUB#、SMBDAT 和 EXCH#引脚进行配置选择。 表 5-3 CH634X 芯片 C 口工作模式配置

C口工作模式	PDHUB#电平	SMBDAT 电平	EXCH#电平	功能描述
模式 0	复位期间 无下拉	复位期间 无下拉	_	通用 HUB 模式,上行口为 A 型接口,下行口为 2 个 Type-C 接口+2 个 A 型接口,Type-C 接口支持正反插自适应,开启 SMBus 接口。
模式 1	复位期间 无下拉	低电平	低电平	通用 HUB 模式,上行口为 Type-C 接口,下行口为 1个 Type-C 接口+3 个 A 型接口,Type-C 接口支持正反插自适应。关闭 SMBus 接口,开启上下行端口交换,配置 45#引脚为 EXCH#功能。
模式 2	低电平	-	-	PD-HUB 模式,上行口为单面 Type-C 接口,支持 Type-C/PD 快充功能,用于 PDHUB,下行口为 1 个 Type-C 接口+3 个 A 型接口,Type-C 接口支持正反插自适应。配置 45#和49#引脚分别为 SCL 功能和 SDA 功能,用于连接 CH211 芯片。

CH634M 芯片具有 3 种工作模式,可通过 PDHUB#、SMBDAT 和 EXCH#引脚进行配置选择。 表 5-4 CH634M 芯片工作模式配置

工作模式	PDHUB#电平	SMBDAT 电平	EXCH#电平	功能描述
模式 0	复位期间 无下拉	复位期间 无下拉	_	通用 HUB 模式,上行口为 A 型接口,下行口 为 4 个 A 型接口,开启 SMBus 接口。
模式 1	复位期间 无下拉	低电平	低电平	通用 HUB 模式,上行口为 A 型接口,下行口为 4 个 A 型接口,关闭 SMBus 接口,开启上下行端口交换,配置 16#引脚为 EXCH#功能。
模式 2	低电平	-	_	PD-HUB 模式,上行口为单面 Type-C 接口, 支持 Type-C/PD 快充功能,用于 PDHUB,下 行口为 4 个 A 型接口。配置 16#和 17#引脚分 别为 SCL 功能和 SDA 功能,用于连接 CH211 芯片。

CH634W8G 芯片也具有 3 种 C 口工作模式,可通过 LED_B4/FUN_CFG1 和 LED_B3/FUN_CFG0 引脚进行配置选择。

LED B3/ LED B4/ 功能描述 C口工作模式 FUN_CFG1 电平 FUN_CFG0 电平 上行口为 A 型接口, 下行口为 2 个 Type-C 接口+2 个 高电平 模式0 高电平 A型接口, Type-C接口支持正反插自适应。 上行口为 Type-C 接口,下行口为 1 个 Type-C 接口+3 低电平 模式1 高电平 个 A 型接口, Type-C 接口支持正反插自适应。 上行口为单面 Type-C 接口,支持 Type-C/PD 快充功 低电平 能,用于PDHUB,下行口为1个Type-C接口+3个A 模式 2 高电平 型接口, Type-C 接口支持正反插自适应。

表 5-5 CH634W8G 芯片 C 口工作模式配置

5.6 参数配置接口

CH634 部分型号提供两线 I2C 接口(SCL 和 SDA) 与外部 EEPROM 存储芯片通信, EEPROM 芯片地址为 0。CH634 部分型号提供四线 SPI 接口(SCS、SCK、MOSI 和 MISO) 与外部 SPI 接口的 FLASH 存储芯片通信。EEPROM 或 FLASH 中存储有自定义的厂商 ID、产品 ID、下行端口个数、下行端口的设备不可移除特性、USB 字符串描述符和功能配置等信息。

图 5-7 外部 EEPROM 连接示意图

图 5-8 外部 FLASH 连接示意图

CH634 内置信息存储器,针对行业特殊需求可以代替外部 EEPROM 或 FLASH 批量定制厂商或产品信息及配置,例如设置下行端口个数,设置下行端口的设备不可移除特性等。

5.7 SMBus 配置接口

CH634 部分型号提供两线 SMBus 从机接口与外部主控芯片通信, SMBus 接口包含 SMBCLK 和 SMBDAT 两个引脚,通信地址为 0x20,支持块读和块写操作,每块最多为 32 个字节。外部主控可以通过 SMBus 接口对芯片内置的 EEPROM 进行读写操作。图 5-9 为块读示意图,图 5-10 为块写示意图。

图 5-9 块读示意图 Master-to-Slave Slave-to- Master 1 1 7 1 Slave Address A Register Address Slave Address A 1 Byte Count = NData byte 1 Data byte 2 A Data byte N P Α 图 5-10 块写示意图 Master-to-Slave Slave-to- Master 1 Slave Address A Register Address

5.8 EEPROM 配置

Byte Count = N

Α

8

Data byte 1

Α

CH634 支持从外部 EEPROM/FLASH 或内部 EEPROM 中加载厂商识别码 VID、产品识别码 PID、USB 字符串描述符和功能配置等配置信息,如果 EEPROM 中的信息无效,则自动装载默认配置信息。表 5-5 为内置/外置 EEPROM/FLASH 具体配置信息描述。保留字节或保留位,在写入操作时需要按照原先读取的值写入。

8

Data byte 2

1

Α

Data byte N

1

P

表 5-6 内置/外置 EEPROM/FLASH 配置信息

偏移地址	参数简称	参数说明	默认值
------	------	------	-----

00h	VID_L	厂商识别码 VID 的低字节。	86h
01h	VID_H	厂商识别码 VID 的高字节。	1Ah
001	DID I	产品识别码 PID 的低字节, 默认为 A0h。	401
02h	PID_L	注: USB2.0的PID为AOh, USB3.0的PID为A1h。	A0h
03h	PID_H	产品识别码 PID 的高字节。	80h
04h	bcdDevice_L	bcdDevice 低字节,用于指示芯片封装型号;	跟随
0411	bcabevice_L	固定,不可修改。	型号
05h	bcdDevice H	bcdDevice 高字节,用于指示芯片版本;	跟随
0011	beadevice_ii	固定,不可修改。	型号
06h	Fun_Cfg1	功能性配置字节 1。 Bit7: 供电模式选择;	跟随
07h	Fun_Cfg2	功能性配置字节 2。 Bit7: 保留; Bit6: 保留; Bit5: 保留; Bit4: 保留; Bit3: HUB 是否是 Compound Device;	20h
08h	Fun_Cfg3	功能性配置字节 3。 Bit7-4: 保留,写入时需要写入原读取的值; Bit3: 端口重映射功能控制; 0: 禁止(默认); 1: 使能。 Bit2-1: 保留; Bit0: 字符串描述符使能控制; 0: 禁止(默认); 1: 使能。	00h
09h	Dev_ Removable	下行端口设备是否可移除控制。 Bit7-5:保留; Bit4-1:下行端口 4-1 的设备是否可移除; 0:可移除(默认);	跟随 型号

		1: 不可移除;		
		Bit0: 保留, 必须为 0。		
		自供电模式下端口禁止。		
		Bit7-5: 保留;		
		Bit4-1: 下行端口 4-1 是否禁止;		
0Ah	Port_Dis_Sp	0: 使能(默认);	00h	
		1: 禁止;		
		总线供电模式下端口禁止。		
		Bit7-5: 保留;		
		│Bit4−1: 下行端口 4−1 是否禁止;		
0Bh	Port_Dis_Bp	0: 使能(默认);	00h	
		1: 禁止;		
		': 宗正; Bit0: 保留,必须为 0。		
001	N. D. C.		041	
0Ch	MaxPwr_Sp	自供电模式下最大工作电流,单位为 2mA。	01h	
0Dh	MaxPwr_Bp	总线供电模式下最大工作电流,单位为 2mA。	32h	
0Eh	HubCurrent_Sp	自供电模式下 HUB 要求的最大电流。	01h	
0Fh	HubCurrent_Bp	总线供电模式下 HUB 要求的最大电流。	32h	
10h	Pwr_OnTime	下行端口上电到电源有效的延迟时间。	32h	
11h	Language ID_H	语言 ID 高字节。	00h	
12h	Language ID_L	语言 ID 低字节。	00h	
13h	Vendor_StrLen	厂商字符串描述符长度。	00h	
14h	Product_StrLen	产品字符串描述符长度。	00h	
15h	SN_StrLen	序列号字符串描述符长度。	00h	
471 501	V 1 0	厂商字符串描述符;	001	
16h-53h	Vendor String	Unicode 码格式的厂商字符串描述符。	00h	
541 041	D	产品字符串描述符;	201	
54h-91h	Product String	Unicode 码格式的产品字符串描述符。	00h	
	Serial Number	序列号字符串描述符:		
92h-CFh	String	Unicode 码格式的序列号字符串描述符。	00h	
			跟随	
D0h	PortNum	下行端口个数,有效范围: 1−4。	型号	
		USB 版本低字节。		
		bcdUSB L=0x00, USB2.00;		
D1h	bcdUSB_L	bcdUSB L=0x01, USB2.01;	10h	
		bcdUSB L=0x10, USB2.10。		
		功能性配置字节 4。		
		別能は配置すりす。 Bit7-2: 保留, 写入时需要写入原读取的值;		
		Bit1: 强制下行端口为全速模式;		
		0: 高速模式(默认);		
D2h	Fun_Cfg4	1: 全速模式;	00h	
		 Bit0: 指示灯功能使能配置;		
		-		
		0: 禁止(默认); 1. 使能		
		1: 使能。		
		功能性配置字节 5。		
		Bit7: LED 指示灯极性配置;	□□ m+	
D3h	Fun_Cfg5	0: 低电平有效(默认);	跟随	
		1: 高电平有效;	型号	
		Bit6: 端口过流检测极性配置;		
		0: 低电平有效(默认);		

	Ţ		
		1: 高电平有效; Bit5: 端口电源控制极性配置;	
		•	
		0: 低电平有效(部分型号默认);	
		1: 高电平有效(部分型号默认);	
		Bit4: 下行端口 BC 充电配置;	
		0: 禁止(默认);	
		1: 使能;	
		Bit3: LPM 配置是否使能;	
		0: 禁止;	
		1: 使能(默认);	
		Bit2: 上行口交换功能是否使能;	
		0: 禁止(默认);	
		1: 使能;	
D.4. E01	D00 11111D	Bit1-0: 保留。	001
D4-E3h	BOS_UUID	BOS 描述符中的 UUID 字段, 占 16 个字节。	00h
		上行端口实时状态	
		Bit7: 保留;	
		Bit6: 上行端口 U3 连接状态;	
		0: 未连接;	
		1: 已连接或挂起;	
		Bit5-4: 上行端口 U3 连接速度;	
		00: 低速; 01: 全速;	
E4h	PortUp_Status	10: 高速; 11: 超高速;	00h
		Bit3: 保留;	
		Bit2: 上行端口 U2 连接状态;	
		0: 未连接;	
		1:已连接或挂起;	
		Bit1-0: 上行端口 U2 连接速度;	
		00: 低速; 01: 全速;	
		10: 高速; 11: 超高速;	
		下行 1#和 2#端口实时状态	
		Bit7: 保留;	
		Bit6: 1#下行端口 U3 或 U2 设备连接状态;	
E5h	Port12_Status	Bit5-4: 1#下行端口 U3 或 U2 设备连接速度;	00h
		Bit3: 保留;	
		Bit2: 2#下行端口 U3 或 U2 设备连接状态;	
		Bit1-0: 2#下行端口 U3 或 U2 设备连接速度;	
		下行 3#和 4#端口实时状态	
		Bit7: 保留;	
		Bit6: 3#下行端口 U3 或 U2 设备连接状态;	
E6h	Port34_Status	Bit5-4: 3#下行端口 U3 或 U2 设备连接速度;	00h
		Bit3: 保留;	
		Bit2: 4#下行端口 U3 或 U2 设备连接状态;	
		Bit1-0: 4#下行端口 U3 或 U2 设备连接速度;	
E7-FEh	Reserved	保留。	00h
		上行口交换功能控制字节;	
		该字节默认为 00h, 写入特定值进行特殊控制。	
FFh	Switch_Ctl	Bit7: 0: 控制字节无效,不执行任何操作;	00h
		1:控制字节有效,执行控制动作;	
		Bit6: 0: 取消交换(恢复不交换状态);	

1:控制交换(原上行口交换为 1#下行端口,原 1#下行端口交换为上行口);

Bit5: 0: 只执行控制动作不保存;

1: 执行控制动作且掉电保存;

Bit4: 0: 使能原下行口(1#下行端口)U3 功能;

1: 禁用原下行口(1#下行端口)U3功能;

Bit3: 0: 使能原下行口(1#下行端口)U2 功能;

1: 禁用原下行口(1#下行端口)U2功能;

Bit2: 保留;

Bit1: 0: 交换后的新下行口(原上行口)U3 功能 正常;

> 1: 交换后的新下行口(原上行口)U3 功能 禁用:

Bit0: 0: 交换后的新下行口(原上行口)U2 功能 正常;

1: 交换后的新下行口(原上行口)U2 功能禁用:

例如:

- (1)、写入 COh 表示控制交换,交换后的新下行口 (原上行口)U3 功能正常、U2 功能正常;
- (2)、写入 E1h 表示控制交换,交换后的新下行口(原上行口)U3 功能正常、U2 功能禁用;
- (3)、写入80h表示取消交换,恢复为不交换状态;
- (4)、写入 98h 表示取消交换, 且禁用原下行口(1#下行端口)U3 和 U2 功能。

6、参数

6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

 名称	参数说明	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
TJ	结温度范围	-40	100	°C
Ts	储存时的环境温度	-55	150	°C
$V_{ exttt{DD5}}$	LDO 调压器和 DC-DC 降压器输入电源电压(Voos)	-0. 4	5. 5	V
*V _{DD33}	工作电源电压(V _{DD33} /AV _{DD33})	-0. 4	4. 0	٧
V ₁₀₃₃	I/0 电源电压 (V ₁₀₃₃)	-0. 4	4. 0	V
*V _{DD12}	USB 模块电源电压 (P*_V _{DD12}) /内核电源电压 (DV _{DD12})	-0. 4	1. 5	V
$V_{\sf FB}$	DCDC 电压反馈端	-0. 4	1. 5	V
V_{USB2}	USB2. 0 物理信号引脚上的电压	-0. 4	V _{DD33} +0. 4	V
V_{USB3}	USB3. 0 物理信号引脚上的电压	-0. 4	V _{DD12} +0. 4	V
l v	FT(耐受 5V)引脚上的输入电压	-0. 4	5. 5	V
V_{IN}	其他引脚上的输入电压	-0. 4	V ₁₀₃₃ +0. 4	V
V _{ESD (HBM)}	普通 I/O 引脚的 ESD 静电放电电压(HBM)	-	4K	V

6.2 电气参数 (测试条件: T_A = 25°C, *V_{DD33} = V₁₀₃₃ = 3.3V, *V_{DD12} = 1.23V)

名称	参	数说明	最小值	典型值	最大值	单位
V_{DD5}	LDO 调压器和 DCDC 陷	F压器输入电源电压	4. 0	5. 0	5. 25	٧
*V _{DD33}	单一3.3V供电方案或芯片封装没有VDD5引脚情况下的工作电源电压		3. 2	3. 3	3. 4	٧
V DD33	单一 5V 供电方案下的出)	り工作电压(LDO调压器输	3. 2	3. 3	3. 4	V
*V _{DD12}	USB 模块电源电压((DV _{DD12})	[P*_V _{DD12}) /内核电源电压	1. 18	1. 23 ⁽¹⁾	1. 3	V
V ₁₀₃₃	1/0 引脚供电电压		3. 0	3. 3	3. 6	V
I _{SLP}	深度睡眠电源电流(不含 1.5KΩ上拉)			1. 7		mA
	低电平输入电压	标准 1/0 引脚	0		0.8	V
VIL	低电平制人电压 	FT I/O 引脚	0		0.8	٧
		标准 Ⅰ/0 引脚	2. 0		V ₁₀₃₃	V
V _{IH}	高电平输入电压	FT I/0 引脚	2. 0		5. 0	V
V _{OL}	低电平输出电压	灌电流 5mA		0. 4	0. 6	V
V _{OH}	高电平输出电压	源电流 5mA	V ₁₀₃₃ -0. 6	V ₁₀₃₃ -0. 4		V
R _{PU}	内部上拉等效电阻			70		ΚΩ
R _{PD}	内部下拉等效电阻			70		ΚΩ

注: 1. *V₀₀₁₂ 电流较大,考虑 PCB 走线压降损失,建议额定 1. 2V 再加 20~60mV。

6.3 典型工作电流(测试条件: CH634X 或 CH634W8G, T_A = 25℃)

下行口连接设备个数		单一 5V 供电方案	3. 3V+1. 2V	双供电方案	单位
N1J □	迁按以苗门数	5V 电源	3. 3V 电源	1. 2V 电源	半江
	睡眠状态	0. 50	0. 28	0. 30	mA
USB3. 0	挂起状态	1. 9	1.5	1. 2	mA
	1	88. 1	19. 6	234	mA

	2	114	19. 6	308	mA
	3	141	19. 6	380	mA
	4	170	19. 6	450	mA
	睡眠状态	0. 50	0. 28	0. 30	mA
	挂起状态	0. 90	0. 82	1. 2	mA
USB2. 0	1	46	41	17	mA
USB2. U	2	59	55	17. 1	mA
	3	73	71	17. 3	mA
	4	97	84	17. 5	mA

注: 单一5V 供电方案只从5V 消耗电流; 而 3. 3V+1. 2V 双供电方案分别从 3. 3V 和 1. 2V 消耗电流。

7、封装信息

说明:尺寸标注的单位是 mm (毫米)。 引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

7.1 QFN32

7. 2 QFN48

7.3 QFN64

7.4 QFN68

8、应用

8.1 双 Type-C 正反插自适应下行口应用

下图 8-1 为 CH634X 芯片工作在模式 0 的参考电路图。P1-P4 为 HUB 的 4 个下行 USB 口,其中 P1 和 P2 为 Type-C 接口,兼容 USB-C 线缆和连接规范,原生支持 Type-C 正反插自适应,P3 和 P4 为 A型接口,P5 为 HUB 的上行 USB 口,一般连接 PC 或其它 HUB 主机,P6 为外部纯供电 Type-C 接口。

U3 是低压降理想二极管 CH213,它具有简单的过流和短路保护功能,且保护响应更快,可以替代保险电阻 Fuse。主要用于避免 P6 外部电源向上行端口 P5 的 VDD5 倒灌,尤其是上行端口例如计算机关机而 P6 外部仍然供电时的情况。理论上 U3 可以换成肖特基二极管,但需要选择自身压降较低的器件,否则会降低下行端口 VBUS 的输出电压,在 300mA 负载电流时,肖特基二极管的压降约 0. 3V,理想二极管的压降约 0. 05V。由于 P6 自身及外部电源通常没有负载,所以一般不考虑 P5 向 P6 的倒灌。

CH634X 芯片默认工作在独立电源配电控制和独立过流检测模式,可通过 OVCUR3#/GANG_EN#引脚和 OVCUR4#/GANG_EN#引脚配置成整体电源配电控制和整体过流检测。U4-U7 是支持过流保护的 USB 配电开关芯片 CH217。图中 R17、R19、R22 和 R25 根据电源供电能力设置限流门限,USB 限流电源开关芯片的 FLAG#引脚可以产生过流或过温报警信号通知 HUB 控制器及计算机,CH634X 的 OVCUR#引脚已内置上拉电阻。

CH634X 芯片的 P1 和 P2 端口也可以作为 A 型接口使用,如果 USB3.0 信号线使用 PxC_SS_RXA、PxC_SS_RXB、PxC_SS_TXA 和 PxC_SS_TXB,则 Px_CC2 引脚需要通过 5.1K 电阻接地;如果 USB3.0 信号线使用 Px SS RXA、Px SS RXB、Px SS TXA 和 Px SS TXB,则 Px CC1 引脚需要通过 5.1K 电阻接地。

对于板载应用, CH634 每个下行端口的 USB3. 0 和 USB2. 0 都支持拆开分别连接 USB3. 0 板载设备和 USB2. 0/1. 0 设备, 4 口 HUB 最多同时支持 8 个 USB 设备。

设计 PCB 时需考虑实际工作电流承载能力, VDD5、VBUS_OUT*、5V 和 P6 及各端口 GND 走线路径的 PCB 尽可能宽,如有过孔则建议多个并联。

在下行端口 USB 设备带电热插拔的瞬间,动态负载可能使 VBUS 和 5V 电压瞬时跌落,进而可能产生 LVR 低压复位,从而出现整个 HUB 断开再连接的现象。改进方法:①在规范允许范围内加大 5V 电源的电解电容(加大图示 C14 容量),缓解跌落;②加大 HUB 芯片电源输入端的电容(加大图示 C37容量,例如 22uF);③增强 5V 供电能力或改为自供电,另外,提升 USB 线材质量也会改善供电能力。

建议 5V 加过压保护器件,建议所有 USB 信号加 ESD 保护器件,例如 CH412K,其 VCC 应接 3.3V。

图 8-1 CH634X 芯片参考电路图

8.2 Type-C/PDHUB 100W 快充应用

下图 8-2 为 CH634W6G 工作于 PDHUB 模式的参考电路图。PD 协议由 CH634W6G 实现,原生支持 USB PD2. 0/3. 0 协议,可在 Type-C 接口 USB HUB 通讯的同时进行最大 100W 功率(20V*5A)的充电。CH211 是内置了高压开关和升压模块的 Type-C/PD 高压接口芯片,配合 CH634W6G 提供高压驱动,支持低成本的 N 型 MOSFET 功率开关。

P1-P4 为 HUB 的 4 个下行 USB 口, P5 为 HUB 的上行 USB 口, 一般连接 PC 或其它 HUB 主机, P6 为 纯供电 Type-C 接口, 仅用于连接外部电源适配器。P5 端口是单面 Type-C 接口, 支持 Type-C 电源角色 DRP 切换。如果 P6 接入外部电源适配器,那么 P5 端口将工作于 SRC/DFP 模式,该 PDHUB 将外部电源传输给 PC 充电,同时提供给 DC-DC 产生 5V,用于 USB 的 VBUS 电源。如果仅连接 PC、P6 端口无电源,那么 P5 端口工作于 SINK/UFP 模式,该 PDHUB 从 PC 申请电源提供给 DC-DC。

DC-DC 将 VHV 最高 20V 电压降压到 5V,DC-DC 控制器需支持满占空比输出,持续输出电流不小于 4 个下行端口的实际需求,建议不低于 3A。MOSFET 内阻建议不超过 $16m\Omega$,以减少持续 5A 充电电流时的发热。如果仅需支持 5V*3A,那么可以省掉 DC-DC 并可以降低 MOSFET 的耐压。

图中 R12 用于禁止 BC 充电。如果去掉 R12 则使能 BC 充电, LED1 代替 LED3。

如需支持 28V 电压 140W 功率或者其它特定电压/功率的快充、或者双向快充、或者为下行 Type-C 端口提供 PD 高功率快充,请联系我司。

图 8-2 CH634W6G 芯片参考电路图

