Image and Video Analysis

Project 1: Crowd Monitoring

12 Dec 2023

Abdulrahman Alsatouf & Amelia Yolanda

Crowd Counting

- Calculating the number of objects in a single image, used for e.g. urban planning, public safety.
- Crowd counting technique categories:
 - detection-based.
 - o <u>regression-based</u>,
 - density estimation,
 - CNN-based density estimation.

Fig. 1: A brief chronology of crowd counting. The first incorporation of deep learning techniques for crowd counting is from 2015. See Section 1 for more detailed description. Milestone models in this figure: MLR [52], KRR [53], Chan et al. [27], Lemptisky et al. [16], RR [40], CA-RR [54], Count Forest [48], Wang et al. [49], Fu et al. [50], Cross scene [51], MCNN [1], Hydra-CNN [2], CP-CNN [6], CMTL [55], switching CNN [5], CSRNet [12], SANet [11], PSSDN [56] and LSF-CNN [57]. The trend in the past few years has been designing crowd counting models based on multi-column (in green), single-column (in red) network architecture and object localization or tracking depending on counting techniques (in crimson), which are either contemporary and potential direction in future. While traditional heuristic methods are highlighted with the blue-shaded area and the modern CNN-based density estimation and crowd counting models are with the red-shaded backgrounds, respectively.

Dataset

Annotation Process

https://www.makesense.ai/ > Object Detection

object	x	у	image
Person	148	766	1660284000.jpg
Person	105	769	1660284000.jpg
Person	621	719	1660287600.jpg
Person	865	746	1660287600.jpg
Person	929	608	1660287600.jpg
Person	949	608	1660287600.jpg
Person	820	513	1660287600.jpg
Person	582	531	1660287600.jpg
Person	1128	730	1660287600.jpg

Separate images to exclude background (noise)

Cropped Image

Background Image

- Apply grayscale
- Apply windowing, for more contrast

Windowed Image

- Apply Otsu's Thresholding & invert to negative
- Apply morphological opening & closing

- Apply Sobel edge detection
- Filter contours based on area and aspect ratio
- Calculate the number of persons on the image

Result

Output image with centroid of bounding box

Validation

- Image-level: Mean Squared Error of 3097.60
- Person-level:
 Average accuracy
 per image of
 42.47%

Image	Annotated	Detected from	True
Number	Image	Algorithm	Positives
	_	_	
1	2.	4	0
2	15.	18	7
3	34.	17	8
4	52.	29	26
5	56.	34	28
6	56.	26	18
7	58.	39	37
8	64.	59	43
9	64.	45	35
10	79.	33	29

What is interesting?

- 1. **Image Annotation:** not easy to decide whether it's a person or inanimate object.
- 2. **Algorithm:** trial and error process to achieve the current results.
- 3. **Result:** using centroid of bounding box allows us to obtain more accurate results.

What needs improvement?

- Annotation process: set a criteria to define proper label.
- 2. Algorithm: consider more complex algorithms (e.g. ML)
- Evaluation: try different performance measures (e.g. precision and recall)

Thank you