19日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A) 平3-199392

⑤Int. Cl. 5

識別記号

庁内整理番号

④公開 平成3年(1991)8月30日

C 25 C 1/20

6919-4K

審査請求 未請求 請求項の数 1 (全4頁)

匈発明の名称 銀電解液の浄液方法

②特 願 平1-339559

②出 願 平1(1989)12月27日

⑫発 明 者 河 本 明 宏 愛媛県新居浜市王子町1-7

⑩発明者古味広志愛媛県新居浜市中西町10-12

⑫発 明 者 妻 鳥 二 郎 愛媛県新居浜市垣生2-8-4

⑪出 願 人 住友金属鉱山株式会社 東京都港区新橋5丁目11番3号

個代 理 人 弁理士 中村 勝成 外1名

明細 書

__/. 発明の名称 銀電解液の浄液方法

2特許請求の範囲

(1) 少なくとも Cu、Pb、Pd のイオンを不純物として含む銀電解液から Pd イオンのみを、官能基としてイミノジ酢酸基を有するキレート性ィオン交換樹脂で吸着除去することを特徴とする銀電解液の浄液方法。

3.発明の詳細な説明

(産業上の利用分野)

本発明は粗銀を電解して高純度銀を得る銀電解精製において、電解液を浄液する方法に関する。(従来の技術)

銀の電解精製法では、一般に Au、Pt、Pd、Cu、Pb、Bi 等の不純物を含む粗銀を隔膜袋で覆つたものを陽極に、ステンレス鋼板を陰極にして硝酸酸性硝酸銀溶液中で電解精製する。そして Ag は 除極表面に電着する。

これを電気銀と云い純度 99.99 重**量 8** 以上となる。

陽極中に含まれる不純物のうち Au、Pt、Pd など Ag より貴な金属は電解液へ溶出せず隔膜袋内に泥(スライム)として堆積する。そしてこの泥は金精製工程へと送られる。一方、 Ag より卑な金属である Cu、Pb、B1 の殆ど全部と Pd の一部が銀電解液中に溶出してくる。

これらの不純物の銀電解液中の濃度が上昇すると付着、巻込、電着等により電気銀を汚染する為銀電解液中からこれらの不純物を除去する浄液工程が必要となる。

従来の浄液方法としては、銀電解液中の一部を銀電解終了時又は電解中に抜き出し、浄液槽に集めて酸化銀を加えて中和する方法がある。このとき加水分解が起こり銀電解液中のCu、Ptl、B1、Pdは水酸化物の沈酸を生成する。この沈酸を濾過により分離する(例えば特公昭47-26590号)。その後、濾液は硝酸と純水でAg 濃度及びpHを調整してから、次の電解開始は粗銀の電解にかける前の精製工程へと繰り返す。

しかしながらこの方法には次のような問題点があった。

(1) Cu、Pb 等の Ag より卑な金属による電気銀の 汚染は主として付着、巻き込みによるもので、電 解によつて針状晶として得られる電気銀を熔解し てィンゴットにする前に水で洗浄するとか、電解 条件を適切に選ぶことによつて付着、巻き込みの 生じにくい整つた針状晶が生成するようにするこ とによつてある程度防ぐことが出来る。

従って、これら卑な金属の銀電解液中の濃度は多少高くても(5~6 g/l 以下程度) 差支えないが、 Pd は Ag より貴な金属であるため次式のような電着反応、置換反応をおこす。この為低濃度(0.05~0.06 g/l) でも電気銀を汚染する。

 $Pd^{2+} + 2e^{-} \rightarrow Pd$

(陰極電着反応)

Pd²⁺+2Ag→Pd+2Ag⁺ (電気銀との置換反応) ところが前記した酸化銀による中和法は、Cu、Pb 等と共にPd を除去する方法であるため、Pd 濃度 を低く抑えるために頻煩に大量の銀電解液を中和 処理せねばならず、大変手間がかかる。

に実施することは不可能に近い。

以上のように従来の方法では、銀電解液中の微量の Pd を除去するのに Cu、Pb と一緒に除去していた。その為処理液量は Pd を十分低い濃度に下げれるだけ浄液しなければならないため膨大な量となり、又、設備、薬品代は Cu、Pb を同時に処理するように使用する為これまた大きなものとなり、実操業の大きな負担となつていた。

従って、 Pd のみを選択的に簡便に除去することができ、 Cu、 Pb の浄液と別系統化することができれば Cu、 Pb の浄液設備への負担を大きく軽減できることが期待される。

(発明が解決しようとする課題)

従つて本発明は、 Pd を選択的且つ簡便に銀電解液中より除去することにより下記の課題を解決することを目的とする。

- (1) Pa品位の高い粗銀の電解精製を可能にする。
- (2) 除去された Pd を前工程に繰り返すことなく 直接 Pd 精製工程へ送り Pd の製品化日数を短縮する。

又、粗銀中の Pd 品位が高い (Pd 1 重量 %以上) ものは、銀電解液中の Pd 濃度の増加に対して洗 浄が追い着かなくなり銀電解精製そのものが困難 になる。

(2) 中和によつて除去された Cu、Pb、Bi、Pd 等の不純物の沈澱は銀電解精製工程の前工程である粗銀精製工程に繰り返される。

粗銀精製工程では Cu、Pb、B1 は除去されるが、Pd は再び粗銀中へ濃縮され銀電解精製工程へ戻ってくる。従つて、Pd の一部が粗銀精製工程と銀電解精製工程とを循環することになり、粗銀中Pd 品位がそれだけ高くなつて浄液工程に負担がかかると共にPd の製品化日数も長くなる結果となる。

又上記した方法の他に、 Cu、 Pb、 B1、 Pd の殆ど全てに選択性のあるイオン交換樹脂に銀電解液を通液して Cu、 Pb、 B1、 Pd イオンの全てを吸着除去する方法も提案されている (特公昭 61 - 44156号)。 しかしこの方法では銀電解装置に比して膨大な量の樹脂と樹脂再生用の薬品が必要で経済的

(3) Paのみをキレート性イオン交換樹脂に吸着させ、使用樹脂量、付帯設備を小さくする。 (課題を解決するための手段)

上記課題を解決するために本発明は、少なくとも Cu、Pb、Pd のイオンを不純物として含む銀電解液から Pd イオンのみを、官能基としてイミノジ酢酸基を有するキレート性イオン交換樹脂で吸着除去することを特徴とする銀電解液の浄液方法にある。

本発明の浄液法では、不純物として少なくともCu、Pb、Pd その他 B1 等のイオンを含有する銀電解液を、官能基としてイミノジ酢酸基を有するキレート性イオン交換樹脂を充填した樹脂簡(カラム)内を通過させ、Pd イオンのみを選択的に吸着除去する。そして Cu イオン、 Pb イオン、 B1 イオン等の除去は従来の方法、例えば酸化銀添加による中和法を用いる。

即ち、一回の銀電解の実施の間、銀電解液をほぼ連続的に上記した樹脂簡(カラム)中を通過させて Pd イオンのみを吸着除去し、 Cu イオン、 Pb

イオン等の除去は、一回の銀電解操作が終つた後 銀電解液の必要量を抜き出して従来法により行な うようにすれば良い。

本発明法に供される銀電解液の代表的組成はAg $60 \sim 100 \text{ g/t}$, Cu $1 \sim 5 \text{ g/t}$, Pb $1 \sim 5 \text{ g/t}$, Bi < 0.01g/l、Pd 0.01~0.02 g/l、遊離硝酸 1~10 g/l であ る。このような電解液を官能基としてイミノジ酢 酸基を有するキレート性イオン交換樹脂を充填し た樹脂簡 (カラム) に、通液速度 SV = 2~4(U/L -R·hr) で通過させることにより、 Pd 濃度 0.001 B/L 以下でその他の組成には変化のない処理後液 が得られる。銀電解液が硝酸酸性溶液であるため、 その酸化作用等により樹脂が微量溶出して処理後 液中に入る。この処理後液をそのまり銀電解精製 に供すると電着銀の形状が悪化し、付着、巻込等 による電気銀の汚染が増大する。その為銀電解槽 へ処理後液を送る前に、処理後液を活性炭で処理 して前記した浴出分を吸着除去しておくことが望 ましい。

Paを吸着させたキレート性イオン交換樹脂は

(作用)

本発明の銀電解液の浄液方法によれば、銀電解液中の Pd のみを選択的に除去出来るという作用がある。

従つて、微量でも銀電解精製に悪影響のある Pd イオンの除去を、 Cu、Pb 等のイオンの除去と別に行なうことができるので、 Pd 含有量の高い粗銀の電解精製が可能となると共に、浄液工程の負担を軽減出来る。又、除去された Pd は前工程に繰り返すことなく Pd 精製工程へ送ることができる。

(実施例)

実施例 1

官能基としてイミノジ酢酸基を有するキレート性イオン交換樹脂、住友化学工業(辨製のスミキレートMC-30を100ml樹脂簡(カラム)に充填し、その樹脂簡(カラム)に銀電解液40000mlを通液速度200ml/hr(SV=2)にて通液した。銀電解液の樹脂簡通過前と通過後の品位を表1に示す。

無機酸で溶離再生して再利用することが出来る。 又、溶離液は高 Pa 濃度であるから、 Pa 精製工程へ原料として送ることが出来る。使用済樹脂の再生方法としては、 まず 0.1~1 N の硝酸と純水を 通液して銀電解液を洗い出した後、 2~6 N の塩酸を SV = 2~4 で通液して Pa を溶離する。その 後、純水と 0.1~1 N の硝酸を通液して塩素イオンを完全に除去してから再使用する。

本発明方法に使用する官能基としてイミノジ酢酸基を有するキレート性イオン交換樹脂は下記のような化学構造をもつものであり、例えば住友化学工業㈱製のスミキレート MC - 30 及び MC - 75 やサイブロンケミカル㈱製の IONAC・SR - 5 などがある。

表 1 銀電解液の品位

	液量	液	液品位 (g/l)		
	(ml).	Ag	Ou	Pъ	Pd
銀電解液(樹脂簡通過前)	40000	89.1	1.42	1. 45	0.156
銀電解液(樹脂筒通過後)	40000	89.1	1.42	1.45	<0.001

表 1 から、 Pd が選択的に除去されていることが判る。

Pd を吸着させた樹脂に対して、 0.1 N 硝酸 1500 ml、純水 500 ml、 2 N 塩酸 1000 ml、 純水 1500 mlの順に通液して、樹脂を再生した。再生液の品位を表 2 に示す。

表 2 樹脂再生液の品位

	液量	液品位 (g/1)				
	(ml)	Ag	Cu	Pb	Pd	
(1) 硝酸通過液	1500	12.9	0. 01	0, 24	0. 03	
(2) 純水通過液	500	0.04	0.05	0.00	0.03	
(3) 塩酸通過液	1000	0, 22	0.23	0. 03	6. 2	
(4) 純水通過液	1500	0, 01	0.00	0.00	0.02	

表2より(3)塩酸通過液中に Pd が回収されており、この液は Pd 品位が高いので Pd 精製工程へ送

ることが出来る。

尚、上記樹脂再生工程において、最初の(1) 硝酸 通過液は Ag ⁺ イニオンの除去が目的であり、次の(2) 純水通過液は No ⁻ イオンの除去が目的であり、(3) 塩酸通過液が Pa の溶離、最後の(4) 純水通過液は C ℓ ⁻ イオンの除去が目的である。

実施例2

官能基としてイミノジ酢酸基を有するキレート性イオン交換樹脂、住友化学工業蝌製のスミキレートMC-75、100 mlを樹脂簡(カラム)に充填し、その樹脂簡(カラム)に銀電解液 57000 mlを通液速度 200 ml/hr (SV=2)にて通液した。このときの銀電解液の樹脂簡通過前と通過後の品位を表3に示す。

表 3 銀電解液の品位

·		液量	液品位 (g/L)			
		(ml)	Ag	Cu	Рb	Pd
銀電解液	(樹脂簡通過前)	57000	89. 1	1. 42	1. 45	0.156
	(樹脂簡通過後)	57000	89. 1	1. 42	1. 45	< 0.001

接続した浄液装置を付設した銀電解試験装置にてPd 品位が2重量名の粗銀を原料として、電解槽と浄液装置との間を550mVhr (SV=4)の流速で銀電解液を循環させて銀電解液中のPd を除去しながら、65時間電解精製を行なつた。

このときの銀電解液の組成の変化、及び得られた電気銀の品位を、浄液を行なわなかつた場合と 比較して、表 5 、表 6 に示す。

表 5 銀電解液の組成

			液品位 (g/l)				
			Ag	Cu	Pb	Pd	遊離硝酸
銀電解液	(開始時)		90.6	1.30	1.35	0.023	7. 8
銀電解液 (終了時)	浄液有	83. 2	2. 60	2.00	0.013	1 4. 1	
	(於」時)	浄液無	81.1	2.75	1. 75	0, 130	1 2. 4

表 6 電気銀の品位

	電気銀品位 (重量%)						
	Pd	Cu	Рb				
净液有	<0.0001	<0.0001	<0.0001				
浄液無	0.0015	<0.0001	<0.0001				

表 3 から、 Pd が 選択的に除去されていることが判る。

Pd 吸着後の樹脂に 0.1 N 硝酸 1500 ml 、純水500 ml 、 6 N 塩酸 2000 ml 、純水 1500 ml を 顧次通被して再生した。再生液の品位を表 4 に示す。

表 4 樹脂再生液の品位

	液量	液品位 (g/l)			
	(mL)	Ag	Cu	Ръ	Pd
(1)硝酸通過液	1500	19.7	0.25	0. 21	0.01
(2) 純水通過液	500	0.24	0.04	0.00	0.00
(3) 塩酸通過液	2000	0. 08	0.19	0.00	4.0
(4)純水通過液	1500	0.00	0.00	0.00	0.05

実施例 1 と同様に、(3) 塩酸通過液は Pd 品位の高いものが得られており、 Pd 精製工程に送ることが出来る。

実施例 3

3.6 Lの銀電解槽にイミノジ酢酸基を有するキレート性イオン交換樹脂(住友化学工業料製スミキレートMC-30)を137 mL充填した樹脂筒(カラム)と活性炭 137 mLを充填した活性炭簡を順次

この結果から、本浄液法を用いた銀電解精製では、 Pd 品位の高い粗銀を原料とした場合でも、 Pd 品位の低い電気銀が製造可能であることが判る。

(発明の効果)

本発明により下記の効果が得られる。

- (1) Pd を選択的に且つ簡便に銀電解液中から除去できるため浄液設備の負担が軽減出来る。
- (2) Pd 品位の高い粗銀 (Pd 1~2重量系) を電解精製して低 Pd 品位の電気銀 (Pd < 0.0001 重量系) を製造することが出来る。
- (3) 従来、前工程へ繰り返されていた銀電解液に 溶出した Pd が、キレート性イオン交換樹脂の再 生液に濃縮され、これを直接 Pd 精製工程へ送る ことができ、工程内に滞留している Pd の減少、 製品化日数の短縮ができる。

出 願 人 住友金属鉱山株式会社

代理人 弁理士中村朋

