Einführung in die Geometrie und Topologie - Definitionen und Sätze -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp, Simon Bischof

7. Dezember 2011

Inhaltsverzeichnis

Ι	Definitionen	und	Sätze	aus	\mathbf{der}	Vorlesung	2
II	Definitionen	und	Sätze	aus	der	Übung	21

Zusammenfassung

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

Kapitel I

Definitionen und Sätze aus der Vorlesung

Topologischer Raum

Ein topologischer Raum X ist gegeben durch eine Menge X und ein System $\mathcal O$ von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält. X Menge, $\mathcal O \subset \mathcal P(X)$:

- (1) $O_1, O_2 \in \mathcal{O} \Rightarrow O_1 \cap O_2 \in \mathcal{O}$
- (2) $O_{\alpha} \in \mathcal{O}, \alpha \in A, A$ Indexmenge $\Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \mathcal{O}$
- $(3) X, \emptyset \in \mathcal{O}$

Metrischer Raum

Ein metrischer Raum X ist eine Menge X mit einer Abbildung $d\colon X\times X\to\mathbb{R},$ der "Metrik" auf X, die folgende Eigenschaften erfüllt: $\forall x,y,z\in X$ gilt:

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"

Stetigkeit

Eine Abbildung $F\colon X\to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Homotopie

Eine Homotopie $H\colon f\simeq g$ zwischen zwei (stetigen) Abbildungen $f,g\colon X\to Y$ ist eine (stetige) Abbildung

$$H \colon X \times I \to Y, (x,t) \mapsto H(x,t)$$

mit H(x,0) = f(x) und $H(x,1) = g(x) \quad \forall x \in X$. (Hier ist $I = [0,1] \subset \mathbb{R}$)

f und g heißen dann homotop, in Zeichen: $f \simeq g$.

Homotope Abbildungen $f, g: X \to Y$

Zwei (stetige) Abbildungen heißen
 <u>homotop,</u> in Zeichen: $f\simeq g$, falls eine Homotopie mit Anfan
gf und Ende g existiert.

Nullhomotopie

Eine stetige Abbildung $f\colon X\to Y$ heißt <u>nullhomotop</u>, falls sie homotop zu einer konstanten Abbildung ist.

Korollar I.1. Jede stetige Abbildung $f: X \to \mathbb{R}^n$ ist nullhomotop, d.h. für jeden topologischen Raum X besteht $[X, \mathbb{R}^n]$, n beliebig, nur aus einem Punkt!

Teilraumtopologie

Es sei (X, \mathcal{O}) topologischer Raum und $A \subset X$. Die auf A durch

$$\mathcal{O}\Big|_{A} := \{ U \cap A \mid U \in \mathcal{O} \}$$

induzierte Topologie heißt <u>Teilraumtopologie</u> und der dadurch gegebene topologische Raum $(A, \mathcal{O}\Big|_A)$ heißt <u>Teilraum</u> von (X, \mathcal{O}) .

Abgeschlossenheit

 $A \subset X, X$ topologischer Raum, heißt abgeschlossen

 $:\Leftrightarrow X\backslash A \text{ ist offen.}$

Umgebung

Ist X topologischer Raum und $x \in X$, so heißt jede <u>offene</u> Teilmenge $O \subset X$ mit $x \in O$ eine Umgebung von x.

Basis

Ist (X, \mathcal{O}) topologischer Raum mit $\mathcal{B} \subset \mathcal{O}$, so heißt \mathcal{B} Basis der Topologie : \Leftrightarrow Jede (nichtleere) offene Menge ist Vereinigung von Mengen aus \mathcal{B} .

Produkt-Topologie

Sind (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) topologische Räume, so bildet

$$\mathcal{B}_{X\times Y} := \{U\times V\mid U\in\mathcal{O}_X, V\in\mathcal{O}_Y\}$$

die Basis einer Topologie für die Menge $X \times Y,$ und diese heißt Produkt-Topologie auf $X \times Y.$

Versehen mit der Produkt-Topologie ist $X\times Y$ sebst ein topologischer Raum und für gegebene X,Y denkt man sich $X\times Y$ stillschweigend mit der Produkt-Topologie versehen.

Feiner und gröber

Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X und $\mathcal{O}_1 \subset \mathcal{O}_2$, so heißt \mathcal{O}_2 feiner als \mathcal{O}_1 und \mathcal{O}_1 gröber als \mathcal{O}_2 .

ϵ -Ball, Sphäre

Für einen metrischen Raum (X, d) und $\epsilon > 0$ sei für $p \in X$

- $B_{\epsilon}(p) := \{x \in C \mid d(p, x) < \epsilon\}$ der offene ϵ -Ball um p
- $D_{\epsilon}(p) := \{x \in C \mid d(p, x) \leq \epsilon\}$ der abgeschlossene ϵ -Ball um p
- $S_{\epsilon}(p):=\{x\in C\mid d(p,x)=\epsilon\}$ die __{e-Sphäre} um p (oder Sphäre vom Radius ϵ um p

Metrischer Unterraum

Ist (X,d) metrischer Raum und $A\subset X$, so heißt der metrische Raum $(A,d|_{A\times A})$ (metrischer) Unterraum von X.

Beschränktheit, Durchmesser

 $A \subset (X, d)$ heißt beschränkt

 $\Rightarrow \exists 0 < \rho \in \mathbb{R} : d(x,y) < \rho \ \forall x,y \in A$

Das Infimum, diam A, dieser ρ heißt dann <u>Durchmesser von A</u>.

Abstand

(X,d) sei metrischer Raum und $A \subset X, p \in X$.

$$d(p,A) := dist(p,A) := \inf\{d(p,a) \mid a \in A\}$$

heißt Abstand von p und A.

Innerer Punkt, äußerer Punkt, Randpunkt

Für $p \in A \subset X,\, X$ topologischer Raum, heißt p

- (1) <u>innerer Punkt</u> von A, falls es eine in A enthaltene Umgebung U um p gibt.
- (2) <u>äußerer Punkt</u>, falls eine zu p disjunkte Umgebung V in X existiert.
- (3) Randpunkt von A, falls jede Umgebung von p nichtleeren Durchschnitt mit A und $X \setminus A$ hat.

Inneres

Für $A\subset X$ heißt die größte in X offene und in A enthaltene Teilmenge \mathring{A} Inneres von A.

Abschluss

Der <u>Abschluss</u> \bar{A} von A ist $X \setminus ((\mathring{X} \setminus A))$.

Rand

Der Rand ∂A von A ist

$$\partial A := \bar{A} \backslash \mathring{A},$$

d.h. Rand $A = \{ \text{Randpunkte von A } \}.$

Stetigkeit

 $f \colon X \to Y$ ist stetig
: $\Leftrightarrow \forall$ offenen Mengen in Yist das Urbild unter
 foffene Menge in X.

Stetigkeit

 $f \colon X \to Y$ ist stetig in $x \in X$

 $:\Leftrightarrow \forall$ Umgebungen V von $f(x) = \exists$ Umgebung U von x mit

$$f(U) \subset V$$
.

Isometrische Einbettung, Isometrie

Sind X,Y metrische Räume, so heißt eine Abbildung $f\colon X\to Y$ isometrische Einbettung

 $:\Leftrightarrow \forall x, x' \in X \text{ gilt } d_Y(f(x), f(x')) = d_X(x, x').$

Eine isometrische Einbettung ist immer injektiv.

Ist f zusätzlich bijektiv, so heißt f <u>Isometrie</u>.

Homöomorphismus

Eine invertierbare Abbildung $f\colon X\to Y$ topologischer Räume heißt Homöomorphismus, falls f und f^{-1} stetig sind.

homöomorph

Zwei topologische Räume X und Y heißen homöomorph oder you gleichen Homöomorphistyp, in Zeichen $X\cong Y$, falls es einen Homöomorphismus $f\colon X\to Y$ gibt.

Einbettung

 $f \colon X \to Y$ stetig heißt Einbettung

 $:\Leftrightarrow X \xrightarrow{f} f(X) \subset Y$ Homö
omorphismus.

Äquivalenz von Einbettungen

Zwei Einbettungen $f,g\colon X\to Y$ heißen <u>äquivalent</u> : \Leftrightarrow \exists Homö
omorphismen $h_X\colon X\to X, h_Y\colon Y\to Y$ mit g <u>ö</u> $h_X=h_Y\circ f,$

d.h. dass das Diagramm

kommutiert.

Knoten

Eine Einbettung $S^1 \to \mathbb{R}^3$ heißt <u>Knoten</u>.

zusammenhängend

Ein topologischer Raum heißt <u>zusammenhängend</u>: \Leftrightarrow Die einzigen in X gleichzeitig offenen und abgeschlossenen Teilmengen sind \emptyset und X. Ansonsten heißt X <u>un-</u> oder nicht zusammenhängend.

Überdeckung

Eine Familie $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}^a \text{ von Teilmengen von } X \text{ heißt } \underline{\ddot{\mathsf{U}}} \text{berdeckung von } X : \Leftrightarrow X = \bigcup_{\alpha \in A} U_{\alpha}.$

 \mathcal{U} heißt <u>offene</u> beziehungsweise <u>abgeschlossene</u> Überdeckung \Leftrightarrow alle U_{α} sind offen beziehungsweise abgeschlossen.

Für $X' \subset X$ heißt eine Familie $\mathcal{U} = \{U_{\alpha}\}$ wie oben Überdeckung von $X' : \Leftrightarrow X' \subset \bigcup_{\alpha \in A} U_{\alpha}$.

Partition

Eine <u>Partition</u> oder <u>Zerlegung</u> einer Menge ist eine Überdeckung dieser Menge durch paarweise disjunkte, nichtleere Teilmengen.

^aA Indexmenge

Zusammenhangskomponente

Eine Zusammenhangskomponente eines topologischen Raumes X ist eine im Sinne der Inklusion von Mengen maximale zusammenhängende Teilmenge von X.

Satz I.1. Stetige Bilder zusammenhängender Mengen sind zusammenhängend.

(D.h.: Ist $f: X \to Y$ stetig und X zusammenhängend, so auch $f(X) \subset Y$.)

Korollar I.2. Zusammenhang bleibt unter Homöomorphismen erhalten, und ebenso die Zahl der Zusammenhangskomponenten.

Korollar I.3. Zwischenwertsatz: Eine stetige Funktion $f: [a,b] \to \mathbb{R}$ nimmt jeden Wert zwischen f(a) und f(b) an.

Weg, Anfangspunkt, Endpunkt

ein Weg in einem topologischen Raum X ist eine stetige Abbildung $\gamma\colon \overline{[0,1]}\to X,$ und $\gamma(0)$ heißt Anfangs-, $\gamma(1)$ Endpunkt.

Wegzusammenhang

X heißt wegzusammenhängend

mit
$$\gamma(0) = x, \gamma(1) = x'$$
.

Kompaktheit

Ein topologischer Raum X heißt kompakt, falls jede offene Überdeckung von X eine endliche Teilüberdeckung enthält.

T_1 -Raum

Ein topologischer Raum X heißt $\underline{T_1$ -Raum bzw. erfüllt das erste Trennungsaxiom : \Leftrightarrow Für je zwei verschiedene Punkte von X existiert für jeden dieser Punkte eine Umgebung in X, die den anderen nicht enthält.

 $\forall x \neq y \in X \exists U = U_X \colon y \notin U_X$

T_2 -Raum

X heißt <u>Hausdorff-</u> oder <u>T2-Raum</u> bzw. <u>erfüllt das zweite Trennungsaxiom</u> : \Leftrightarrow Je zwei verschiedene Punkte in X besitzen disjunkte Umgebungen.

 $\forall x \neq y \in X \exists U_x \ni x, U_y \ni y \text{ mit } U_x \cap U_y = \emptyset$

Grenzwert

Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge von Punkten in einem topologischen Raum X, so heißt $x\in X$ Grenzwert der Folge (x_n) genau dann, wenn zu jeder Umgebung U von x ein $N\in\mathbb{N}$ existiert mit $x_n\in U$ $\forall n\geq N$.

Umgebungsbasis

Ist X topologischer Raum und $x \in X$, so ist eine <u>Umgebungsbasis</u> oder <u>Basis von X in x eine Familie von Umgebungen von x, sodass jede Umgebung von x eine Umgebung aus der Familie enthält.</u>

Abzählbarkeitsaxiome, Separabilität

X <u>erfüllt das erste Abzählbarkeitsaxiom</u> : \Leftrightarrow jeder Punkt $x \in X$ besitzt eine abzählbare Basis.

X erfüllt das zweite Abzählbarkeitsaxiom : $\Leftrightarrow X$ selbst besitzt eine abzählbare Basis.

X heißt separabel : $\Leftrightarrow X$ enthält eine abzählbare und dichte $(\bar{A} = X)$ Menge A.

Lokale Kompaktheit

X heißt <u>lokal</u> kompakt

: \Leftrightarrow Jeder Punkt $x \in X$ besitzt eine Umgebung U, sodass \overline{U} kompakt ist.

Lokale Endlichkeit

Eine Familie Γ von Teilmengen eines topologischen Raumes X heißt lokal endlich : $\Leftrightarrow \forall x \in X \quad \exists U = U(x) \colon A \cap U = \emptyset \quad \forall A \in \Gamma$ bis auf endlich viele A.

Verfeinerung

 Γ, Δ Überdeckungen von X. Δ heißt <u>Verfeinerung</u> von Γ : $\Leftrightarrow \forall A \in \Delta \exists B \in \Gamma \colon A \subset B$.

Parakompaktheit

Mannigfaltigkeit, Karte

Ein topologischer Raum M heißt $\underline{n\text{-dimensionale}}$ (topologische) Mannigfaltigkeit, wenn gilt:

- 1. M ist ein Hausdorff-Raum mit abzählbarer Basis der Topologie
- 2. M ist lokal homö
omorph zu \mathbb{R}^n , d.h. zu jedem $p \in M$ existieren eine Umgebung $U = U(p) \subset_{offen} M$ und ein Homö
omorphismus $\varphi \colon U \to V, V \subset_{offen} \mathbb{R}^n$.

Jedes solche Paar (U,φ) heißt eine <u>Karte</u> oder ein <u>lokales Koordinatensystem</u> um p.

Atlas

Ein Atlas für eine topologische n-Mannigfaltigkeit M ist eine Menge $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}^a \text{ von Karten } \varphi_{\alpha} \colon U_{\alpha} \to V_{\alpha} = \varphi(U_{\alpha}) \subset \mathbb{R}^n, \text{ so dass } M = \bigcup_{\alpha \in \Lambda} U_{\alpha}$

C^k -Atlas, Kartenwechsel

Ein Atlas heißt <u>differenzierbar</u> <u>von der Klasse C^k </u> (oder: C^k -Atlas von M), wenn für alle $\alpha, \beta \in \Lambda$ mit $U_\alpha \cap U_\beta \neq \emptyset$ der <u>Kartenwechsel</u> $\varphi_\beta \circ \varphi_\alpha^{-1} \colon \varphi_\alpha(U_\alpha \cap U_\beta) \to \varphi_\beta(U_\alpha \cap U_\beta)$ eine C^k -Abbildung, also k-mal stetig differenzierbar ist. $(k = 0, 1, 2, ..., \infty, \omega)$

Verträglichkeit, differenzierbare Struktur

Ist M topologische Mannigfaltigkeit und $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}$ ein C^k -Atlas von M, so heißt eine Karte (φ, U) von M mit \mathcal{A} verträglich, falls $\mathcal{A}' := \mathcal{A} \cup \{(\varphi, U)\}$ ebenfalls C^k -Atlas ist. Ein C^k -Atlas heißt maximal (oder differenzierbare Struktur (der Klasse C^k)), falls \mathcal{A} alle mit \mathcal{A} verträglichen Karten enthält.

C^k -Mannigfaltigkeit, glatt

Eine differenzierbare Mannigfaltigkeit der Klasse C^k (kurz: C^k -Mannigfaltigkeit) ist ein Paar (M,\mathcal{A}) bestehend aus einer topologischen Mannigfaltigkeit M und einer C^k -Struktur auf M. Eine C^∞ -Mannigfaltigkeit heißt auch glatt.

 $[^]a\Lambda$ Indexmenge

C^l -Abbildung

Es seien (M,\mathcal{A}) eine n-dimensionale C^k -Mannigfaltigkeit, (M',\mathcal{A}') eine n'-dimensionale $C^{k'}$ -Mannigfaltigkeit und $l \leq \min(k,k')$. Eine stetige Abbildung $f \colon M \to M'$ heißt <u>differenzierbar</u> (von der Klasse C^l) oder kurz: C^l -Abbildung, falls gilt:

$$\forall (\varphi, U) \in \mathcal{A} \text{ und } (\varphi', U') \in \mathcal{A}' \text{ mit } f(U) \cap U' \neq \emptyset \text{ ist}$$

$$\varphi' \circ f \circ \varphi^{-1} \colon \varphi(U \cap f^{-1}(U')) \to \varphi'(f(U) \cap U')$$

eine C^l -Abbildung im üblichen Sinn.

Satz I.2 (Äquivalente Beschreibungen einer Untermannigfaltigkeit von \mathbb{R}^{n+l}). Für Teilmengen $M \subset \mathbb{R}^{n+l}$ sind äquivalent:

(a) $\forall x_0 \in M \exists \ Umgebung \ U = U(x_0) \subset_{offen} \mathbb{R}^{n+l} \ und$

$$f \in C^{\infty}(U, \mathbb{R}^l) := \{g \colon U \to \mathbb{R}^l \mid g \text{ ist } C^{\infty}\} \text{ mit Rang } Df(x) = l \quad \forall x \in U$$

 $^{1}~dergestalt,~dass~U\cap M=f^{-1}(0)=\{x\in U\mid f(x)=0\}$

(b) $\forall x_0 \in M \exists U = U(x) \subset_{offen} \mathbb{R}^{n+l} \ und \ \varphi \colon U \to \mathbb{R}^{n+l} \ mit \ folgenden$ Eigenschaften: $\varphi(U) \subset \mathbb{R}^{n+l} \ ist \ offen,$ $\varphi \ ist \ C^{\infty}$ -Diffeomorphismus $U \to \varphi(U) \ und$

$$\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{(y_1, \dots, y_{n+l}) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+l} = 0\}$$

 $^{^1}Df$ ist die Jacobi-Matrix von f

- (c) $\forall x_0 \in M \exists U = U(x_0) \subset_{offen} \mathbb{R}^{n+l}, W \subset \mathbb{R}^n \text{ offen } und \ \psi \in C^{\infty}(W, U)$ mit
 - ψ ist Homöomorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$

(Jedes solche ψ heißt lokale Parametrisierung von M).

Untermannigfaltigkeit

 \mathbb{R}^{n+l} , Eine Menge Mdie eine der Bedingungen heißt (a), oder (c) erfüllt, dann *n*-dimensionale (glatte/differenzierbare) Untermannigfaltigkeit von \mathbb{R}^{n+l} .

Satz I.3. Äquivalente Beschreibung einer glatten Untermannigfaltigkeit von \mathbb{R}^{n+l} Es sei $M \subseteq \mathbb{R}^{n+l}$. Es sind äquivalent:

- (a) $\forall x_0 \in M \exists U = U(x_0) \subseteq_{offen} \mathbb{R}^{n+l} \ und \ f \in C^{\infty}(U, \mathbb{R}^l)$ $mit \ Rang \ Df(x) = l \ f\"{u}r \ alle \ x \in U \ dergestalt, \ dass \ U \cap M = f^{-1}(0).$
- (b) $\forall x_0 \in M \exists U = U(x) \subseteq_{offen} \mathbb{R}^{n+l} \ und \ \varphi \colon U \to \mathbb{R}^{n+l} \ mit \ folgenden \ Eigenschaften:$
 - $\varphi(U) \subseteq \mathbb{R}^{n+l}$ ist offen
 - φ ist C^{∞} -Diffeomorphismus $U \to \varphi(U)$
 - $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{(y_1, \dots, y_n) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+1} = 0\}$
- (c) $\forall x_0 \in M \exists U = U(x_0) \subseteq_{offen} \mathbb{R}^{n+l}, W \subseteq \mathbb{R}^n \text{ offen } und \ \psi \in C^{\infty}(W, U)$ mit folgenden Eigenschaften:
 - ψ ist Homöomorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$.

Satz I.4. $(C^{\infty}$ -Untermannigfaltigkeiten von \mathbb{R}^{n+l} sind C^{∞} -Mannigfaltigkeiten) Es sei $M \subseteq \mathbb{R}^{n+l}$ n-dimensionale C^{∞} -Untermannigfaltigkeit von \mathbb{R}^{n+l} und $\{\psi_{\alpha} \colon W_{\alpha} \to U_{\alpha} \cap M \mid \alpha \in \Lambda\}$ eine Menge lokaler Parametrisierungen (wie in (c)) mit $M \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha}$. Dann ist $\mathcal{A} = \{(\psi_{\alpha}^{-1}, U_{\alpha} \cap M) \mid \alpha \in \Lambda\}$ ein C^{∞} -Atlas und M eine C^{∞} -Mannigfaltigkeit.

Quotienten(raum)topologie

Eine Teilmenge $U \subset X/S$ heißt offen : $\Leftrightarrow \pi^{-1}(U)$ ist offen in X

Quotientenabbildung

Ist S eine Partition von X in nichtleere disjunkte Teilmengen und $f: X \to Y$ eine Abbildung, die auf jedem Element von S konstant ist, so existiert eine Abbildung $X/S \to Y$, die jedes Element A von S auf $f(a), a \in A$, abbildet.

Diese heißt dann **Quotientenabbildung** von f nach S, in Zeichen f/S.

Korollar I.4. X kompakt, Y Hausdorffsch und $f: X \to Y$ sei stetig \Rightarrow Der injektive Quotient $f/_{S(f)}$ ist Homöomorphismus $X/_{S(f)} \to f(X)$

injektiver Quotient

 $\underline{\underline{\operatorname{Bede}}}$ Abbildung $f\colon X\to Y$ definiert eine Partition S=S(f) von X, und zwar in die nichtleeren Urbilder der Elemente von Y unter f. Die induzierte Abbildung $f/_{S(f)}\colon X/_{S(f)}\to Y$ ist dann $\underline{\operatorname{injektiv}}$ und heißt injektiver Quotient von f.

Kontraktion

Die Quotientenmenge eines topologischen Raumes X bzgl. einer Partition S von X, welche aus einer Teilmenge A von X und allen Einpunktmengen aus $X \backslash A$ besteht,

$$S = A \cup \{\{x\} \mid x \in X \backslash A\}$$

heißt Kontraktion (von X bzgl. $X \backslash A$), und für X/S schreibt man einfach X/A.

В

Verkleben

Sind A und B disjunkte Teilräume eines topologischen Raum-

es X und ist $f\colon A\to B$ ein Homöomorphismus, so heißt der Übergang zum Quotientenraum, der durch die Partition von X in die Einpunktmengen von $X\backslash (A\cup B)$ und die Zweipunktmengen $\{x,f(x)\},x\in A$ gegeben ist, Verkleben (von X längs A und B via des Homöomorphismus f) und dieser Prozess einfach auch Verkleben von A und B.

Notation:

$$X/_{[a \sim f(a)]}$$
 (mit $a \in A$)

n-dimensionaler projektiver Raum

Der n-dimensionale reell-projektive Raum a ist

$$\mathbb{RP}^n := S^n/_{[x \sim -x]}$$

und der n-dimensionale komplex-projektive Raum ist

$$\mathbb{CP}^n := \underbrace{S^{2n+1}}_{\subset \mathbb{C}^{n+1}}/_{[v \sim \lambda v, \lambda \in S^1]}$$

 $[^]a$ Anschaulich (projektive Geometrie): Die Menge aller Geraden durch den Ursprung im \mathbb{R}^{n+1}

homotop bezüglich der Endpunkte

Zwei Wege $u,v\colon I\to X,\ X$ topologischer Raum, heißen
 <u>homotop</u> (bezüglich der Endpunkte) : \Leftrightarrow

1.
$$u(0) = v(0), u(1) = v(1)$$

2. \exists Homotopie $H: u \simeq v \text{ (mit } H(0,t) \equiv u(0), H(1,t) \equiv u(1))$

Produkt von Wegen

Sind u,v Wege in X mit u(1)=v(0), so heißen u und v <u>zusammensetzbar</u> oder aneinanderfügbar und ihr <u>Produkt</u> $u\cdot v$ ist definiert als

$$(u \cdot v)(s) := \begin{cases} u(2s) & 0 \le s \le \frac{1}{2} \\ v(2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$$

Konstanter Weg, Inverser Weg, Geschlossener Weg

- Für $x \in X$ sei $c_x : I \to X$ mit $c_x \equiv x$ der konstante Weg in $x \in X$.
- Für einen Weg $u: I \to X$ sei $u^{-1}: I \to X, s \mapsto u(1 s)$, der zu u inverse (oder: umgekehrt durchlaufene) Weg.

• $u\colon I\to X$ heißt geschlossener Weg (oder: Schleife) in $x\in X$

$$:\Leftrightarrow u(0) = x = u(1)$$

nullhomotop, einfach zusammenhängend

- Ein geschlossener Weg u in x heißt <u>nullhomotop</u> $\Leftrightarrow [u] = [c_x]$
- X heißt einfach zusammenhängend : \Leftrightarrow X ist wegzusammenhängend und jeder geschlossene Weg u in X ist nullhomotop (zu $c_{u(0)}$).

Lemma I.1. Für Wege $u, v, w: I \rightarrow X$

gilt

1.
$$[u] \cdot [u^{-1}] = [u \cdot u^{-1}] = [c_x]$$

2.
$$[u^{-1}] \cdot [u] = [u^{-1} \cdot u] = [c_y]$$

3.
$$[u] \cdot [c_y] = [u] = [c_x] \cdot [u]$$

4.
$$[u] \cdot ([v] \cdot [w]) = ([u] \cdot [v]) \cdot [w]$$

Satz I.5. Für einen topologischen Raum X und $x_0 \in X$ ist

$$\pi_1(X,x_0) := \{[u] \mid u \colon I \to X \text{ geschlossener Weg in } x_0\}$$

 $\textit{bezüglich} \ [u] \cdot [v] := [u \cdot v] \ \textit{eine} \ \textit{Gruppe}, \ \textit{die sogenannte} \ \underline{\textit{Fundamentalgruppe}}$

oder <u>erste Homotopiegruppe</u> von X in x_0 . Neutrales <u>Element</u> ist $1 = 1_{x_0} := [c_{x_0}]$ und <u>Inverses</u> zu $\alpha = [u]$ ist $\alpha^{-1} = [u^{-1}]$.

Satz I.6 (Unabhängigkeit vom Basispunkt). Ist $w\colon I\to X$ Weg von x_0 nach $x_1,$ so ist die Abbildung

$$w_{\#} \colon \pi_1(X, x_0) \to \pi_1(X, x_1), \quad [u] \mapsto [w^{-1} \cdot u \cdot w]$$

ein Gruppen-Isomorphismus.

Schleife

Es sei $S^1=\{x\in\mathbb{R}^2\mid ||x||=1\}=\{z\in\mathbb{C}\mid |z|=1\}$ und $1:=(1,0)\in S^1$

Eine stetige Abbildung $\gamma \colon S^1 \to X, X$ topologischer Raum, $x_0 \in X$, mit $\gamma(1) = x_0$, heißt Schleife in x_0 .

schleifenhomotop

Zwei Schleifen γ, γ' in x_0 heißen (schleifen-)homotop, falls es eine Homotopie zwischen ihnen gibt, die auf $1 \in S^1$ stationär ist, also $\gamma(1) = x_0 = \gamma'(1)$ die ganze Zeit festhält.

Korollar I.5. Ist $s\colon I\to X$ Weg und Γ offene Überdeckung von X, so existiert eine Folge von Punkten

 $a_1, \ldots, a_N \in I \ mit \ 0 = a_1 < \ldots < a_{N-1} < a_N = 1 \ mit \ s([a_i, a_{i+1}]) \ ist \ in \ einem \ Element \ von \ \Gamma \ enthalten.$

Lemma I.2. $\forall n \geq 2$ gilt: \forall Wege $s: I \rightarrow S^n$ existiert eine endliche Unterteilung von I in Teilintervalle, so dass die Einschränkung von s auf jedes der Teilintervalle homotop zu einer Abbildung mit nirgendwo dichtem Bild ist, und zwar durch eine Homotopie, die auf den Endpunkten des Intervalls fixiert ist. (TODO: Bild 12)

Kapitel II

Definitionen und Sätze aus der Übung

Induzierte Topologie

Sei X eine Menge. Sei $d: X \times X \to \mathbb{R}$ eine Metrik. Diese Metrik d definiert durch folgende Bedingung eine Topologie \mathcal{O} auf X: $O \subseteq X$ ist genau dann offen (d.h. $O \in \mathcal{O}_d$), wenn für alle $x \in O$ ein $\epsilon > 0$ existiert mit

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \} \subseteq O.$$

 $(B_{\epsilon} \text{ nennt man offenen } \epsilon\text{-Ball.})$

Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten Topologie

$$\mathcal{B} = \{ B_{\frac{1}{m}}(x) \mid x \in \mathbb{Q}^n, m \in \mathbb{N} \}$$

Diese Basis ist abzählbar.

Homotopieäquivalenz

Seien X,Y topologische Räume. X heißt homotopie
äquivalent zu Y, falls es stetige Abbildungen $f\colon X\to Y$ und $g\colon Y\to X$ gibt, so dass $f\circ g\simeq id_Y$ und $g\circ f\simeq id_X$.

Überdeckung

- Eine Familie $\{\mathcal{U}_{\alpha} \mid \alpha \in A\}$ von Teilmengen von X heißt <u>Überdeckung</u> von X, falls gilt: $X = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$.
- Eine Überdeckung heißt <u>offen</u> (bzw. <u>abgeschlossen</u>), falls alle $\mathcal{U}_{\alpha}(\alpha \in A)$ offen (bzw. abgeschlossen) sind.
- Es heißt X kompakt, falls jede offene Überdeckung $\mathcal{U} = \{U_{\alpha}, \alpha \in A\}$ eine endliche Teilüberdeckung \mathcal{U}' besitzt, d.h. es existiert $A' \subset A$ endlich, so dass $\mathcal{U}' = \{\mathcal{U}_{\alpha} \mid \alpha \in A'\}$ eine offene Überdeckung von X ist.

Kompakte Menge

Eine <u>kompakte Menge</u> ist eine Teilmenge eines vom Kontext her klaren topologischen Raumes, die bezüglich der Teilraumtopologie kompakt ist.

Wegzusammenhang

- Ein Weg in X ist eine stetige Abbildung $\gamma \colon I(=[0,1]) \to X$ mit Anfangspunkt $\gamma(0)$ und Endpunkt $\gamma(1)$.
- Man nennt X wegzusammenhängend, falls für alle $x, y \in X$ ein Weg $\gamma \colon [0,1] \to X$ in X existiert mit $\gamma(0) = x, \gamma(1) = y$.
- Eine Wegzusammenhangskomponente von X ist eine wegzusammenhängende Teilmenge von X, die in keiner echt größeren solchen Teilmenge enthalten ist.

Homotopieäquivalenz

Für zwei topologische Räume X, Y heißt eine stetige Abbildung $f: X \to Y$ Homotopieäquivalenz, falls es eine

stetige Abbildung $g: Y \to X$ gibt, sodass $g \circ f \simeq id_x$ und $f \circ g \simeq id_Y$ gilt.

homotop

Es seien X,Y topologische Räume, $A\subseteq X$. Seien $f,g\in C(X,Y)$. Es heißt \underline{f} relativ A homotop zu \underline{g} (in Zeichen $f\simeq g$ rel A), falls eine Homotopie $H\colon X\times I\to Y$ von f nach g existiert, so dass H(a,t)=H(a,0) für alle $a\in A,t\in I$.

kontrahierbar

Man nennt X kontrahierbar, falls gilt: $X \simeq \{pt\}$.