ATT7022C 用户手册

V0.6

ATT7022C 用户手册

ATT7022C用户手册	1
特性:	
功能说明 :	
采样数据缓存功能:	
电流有效值小信号精度加强:	
间接得到高精度的电压夹角	
寄存器说明:	4
从采样数据得到FFT的推荐流程	5
附	6
一次插值FFT仿真结果	6
采样功能示例:	

版本	日期	修改人	内容
V0.1	2008-08-14	Mxzhang	初始版本
V0.2	2008-09-17	Mxzhang	1,增加起动电流的说明
			2,增加校验和寄存器的说明
V0.3	2008-09-22	Mxzhang	1,增加采样功能对 FFT 的推荐
V0.4	2008-09-23	Mxzhang	1,修改笔误
V0.5	2008-11-11	Mxzhang	1,增加高精度电压夹角的方法
V0.6	2008-11-27	Mxzhang	1,增加一次插值 FFT 仿真结果

特性.

- 完全兼容 ATT7022B
- ADC 采样数据缓存功能,缓存长度 240
- 支持单通道、双通道或者三通道的同步采样
- 电流有效值小信号精度加强
- 间接得到高精度的电压夹角 (大角度时优于 0.2 度)

功能说明:

ATT7022C 为 ATT7022B 的升级版本。在保留 ATT7022B 所有功能的基础上,增加了 ADC 采样数据缓存开放功能,用户不需要频繁的产生中断来读取实时的 ADC 数据。ATT7022C 同时加强了电流有效值小信号的精度。

采样数据缓存功能:

ATT7022C 新增了一个长度为 240 的缓存存储区,用以实时保存原始采样数据,供用户做进一步的分析。用户发送命令(任务开始+预定 channel 的数据)后,ATT7022C 在每个采样周期将相应的 ADC 数据保存到缓存中,直到缓存满为止。只要不发送新的命令,缓存的数据会保持上一次的数据。

用户可以随时读取缓存的内容。通过 C1 命令改变 gWaveAddress,用户可以任意指定要读的缓存的起始地址;每读一次缓存后,该地址会自加一,大于缓存长度后,会变为 0。

读有效数据的方法是,用户可以等待相应采样间隔以上的时间后,去读取缓存的内容(比如:单通道时 240 个采样间隔时间,双通道 120 个采样间隔时间,采样率为 3.2k)。或者,读取地址小于 ptrWaveFormRd 的内容。(ptrWaveFormRd 为 ATT7022C 内部保存数据时的指针,对应于 7E 的内容。)

SPI 读取到的数据格式: 高 2byte 为 16bit 的 ADC 数据, 低 1byte 为缓冲区指针。多通道时的数据为实际的存储顺序,以 UA UB UC 为例,在缓存中的数据依次为 UA0 UB0 UC0 UA1 UB1 UC1 ... UA79 UB79 UC79。

缓存区的初始值 0x00 01 00~0x00 F0 00。

电流有效值小信号精度加强:

ATT7022C 改善了电流有效值小信号的精度,电流启动阈值 0x1F 也需要做相应的调整。默认值为 0x0001F0。

 $Istartup = INT(G*I_0*2^2)$

G 为 0.648

I0 为起动点。

INT 为取整。

例:为保证 0.1%Ib 起动,起动点设置为 0.08%Ib,假设电流管脚上为 0.1v,则 I0=0.1*0.0008=0.00008

Istartup=INT(0.648*0.00008*2^23)=434=0x0001B2.

间接得到高精度的电压夹角

ATT7022B/C 自身的电压夹角分辨率为 5 度左右,为了得到更高的分辨率,可以利用电压电流夹角的原理,得到高精度的电压夹角。

电压 u 电流 i 夹角原理:

$$\varphi = a\cos(pf) = a\cos(P/S) = a\cos(\frac{\sum_{k=1}^{N} u(k) * i(k)/N}{urms * irms})$$

其中N为一个周期的采样点 对应于电压夹角,比如UaUb,则

$$\varphi U_{ab} = a\cos(\frac{\sum_{k=1}^{N} Ua(k) * Ub(k) / N}{Uarms * Ubrms})$$

其中, Uarms 和 Ubrms 可以直接从寄存器得到, N 可以从频率寄存器得到, Ua(k), Ub(k)可以从同步采样(UaUbUc)模式的缓存中得到。

经过仿真,夹角10度以上,误差在0.2度以内。

需要注意的是,原始的 ADC 数据未经过增益补偿,实际计算时在最后的总和上需要乘上相应的增益。

寄存器说明:

- 1, 命令 0xC0 0xC1 参数寄存器 0x7E 0x7F 为采样数据功能相关寄存器。
- 2,校表寄存器 0x1F 因为电流小信号精度加强,修改其默认值,同时导致参数寄存器 0x3E 0x5F 的默认值变化。

操作	地址	名称	复位值	功能描述
SPI	0xC0	gWaveCommand	0x000000	如果为 0xCCCCCY,则启动
写命令				波形数据缓存; 其他格式无
				效。这里Y代表需要保存数
				据的通道号,0~0x0B有效,
				依次: Ua\Ia\Ub\Ib\Uc\Ic\In,
				$\Ua+Ia\Ub+Ib\Uc+Ic$
				$\Ua+Ub+Uc\Ia+Ib+Ic$ \circ
	0xC1	gWaveAddress	0x000000	用户指定读取的位置,数值
				取 0~239 范围内有效,超过

ıŀΕ	+	隹	ьť
74	//	-	DX.

				边界时自动归零处理。
	0x1F	W_Istartup	0x0001F0	起动电流阈值设置。修改其
				默认值。
SPI	0x7E	ptrWaveFormRd	0x000000	下一个写数据的位置,有效
读数据				范围 0~240,数据更新完毕
				后数值停在240。
	0x7F	mWaveDatatmp	0x000000	用户反复读取数据,内部指
				针自动增1,遇到边界时,
				用户读指针 gWaveAddress
				清 0,循环读取。
	0x3E or	R_checksum	0x043C73	三相四线模式。
	0x5F		0x16BC73	三相三线模式。

从采样数据得到 FFT 的推荐流程

- 1, 开启采样功能(0xC0命令:通道选择+启动)。
- 2, 等待采样数据完成。
- 3, 设置用户读指针的起始地址(通过0xC1命令),读取采样数据
- 4, 对数据进行预处理。
- 5, FFT 变换。
- 6, 如需下一次操作,则执行 step1~5

注:

- 1, 采样数据为原始的 ADC 数据,未做 offset 校正和增益校正。增益校正时,系数与有效 值的校正系数一致。
- 2, 通过 SPI 读取的数据为 3 字节。高 2 字节为 ADC 数据, 高位在前; 低字节无效, 为内 部的写指针。
- 3, 采样数据为固定采样率, 因而做 64 点 FFT 时, 如果频率偏离 50Hz, 则会发生频谱泄漏; 对精度要求高时,需要对数据做相应的处理。(一种简单的方案:由于采样点数远超过 一个周期的数据,可以用一次插值的方式进行修正,可以保证7次谐波符合国标)
- 4, 等待采样数据完成时,方案 I:等待相应的时间;方案 II: 读取 0x7E,判断内部写指针是 否超过期望的值,等于240时,代表一次操作完成。

附

一次插值 FFT 仿真结果

加入 50%的 3 次 (0 度)、5 次 (-60 度) 谐波仿真结果 (50Hz)

一阶插值 FFT 结果 3 次谐波/基波: 0.5000 5 次谐波/基波: 0.5000 无插值 FFT 结果 3 次谐波/基波: 0.5000 5 次谐波/基波: 0.5000

加入 50%的 3 次 (0 度)、5 次 (-60 度) 谐波仿真结果 (45Hz)

一阶插值 FFT 结果 3 次谐波/基波: 0.4982 5 次谐波/基波: 0.4926 无插值 FFT 结果 3 次谐波/基波: 0.4977 5 次谐波/基波: 0.2849

加入 50%的 3 次 (0 度)、5 次 (-60 度) 谐波仿真结果 (63Hz)

一阶插值 FFT 结果 3 次谐波/基波: 0.4926 5 次谐波/基波: 0.4829 无插值 FFT 结果 3 次谐波/基波: 0.2091 5 次谐波/基波: 0.1156

采样功能示例:

机台上, UaIa, 对应通道 Y=0x07, UI 同相:

机台上, UaIa, 对应通道 Y=0x07, UI 为 0.5L 时:

机台上, UaUbUc, 对应通道 Y=0x0A:

机台上, IaIbIc, 对应通道 Y=0x0B:

