Representing Rotations

Orientation Representation

Interpolation

Concatenation

3-D Transformations

- Translate, scale, or rotate a point P to P'
 - P'=P+T
 - **-**P'=SP
 - P'=RP
- How to treat these transformations in a unified way?
 - -P' = MP
- Representing P in the homogeneous coordinate
- M can be used for animation, viewing, or modeling

Homogeneous Coordinate

- In graphics, we use homogeneous coordinate for transformation
- 4x4 matrix can represent translation, scaling, and rotation and other transformations

$$(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}) = [x, y, z, w]$$

 $(x, y, z) = [x, y, z, 1]$

Typically, when transforming a point in 3D space,
 we set w = 1

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix}$$
New point in 3D space
Point in 3D space

Transformation matrix

Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Rotation

X axis

$$R_{x}(\theta) \begin{bmatrix} x \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & x \\ 0 & \cos\theta & -\sin\theta & 0 & y \\ 0 & \sin\theta & \cos\theta & 0 & z \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Y axis

$$R_{y}(\theta)$$
 $\begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = \begin{vmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix}$

Z axis

$$R_{z}(\theta) \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Compounding Transformations

 Transformations can be treated as a series of matrix multiplications

$$P' = M_1 M_2 M_3 \cdots M_n P$$

$$P'^T = (M_1 M_2 M_3 \cdots M_n P)^T$$

$$M = M_1 M_2 M_3 \cdots M_n$$

$$M^T = M_n^T M_{n-1}^T \cdots M_2^T M_1^T$$

$$P' = MP$$

$$P'^T = P^T M^T$$

$$\text{rotation, scaling}$$

$$s_x \cos \theta - \sin \theta = 0$$

$$\sin \theta - s_y \cos \theta = 0$$

$$0 - s_z = t_z$$

$$0 = 0 - 0 - 1$$

$$translation$$

Two Ways of Interpreting a Rotation Matrix

Rotating a vector

$$x' = r\cos(\theta + \alpha)$$

$$= r(\cos\theta\cos\alpha - \sin\theta\sin\alpha)$$

$$= (\cos\theta r\cos\alpha - \sin\theta r\sin\alpha)$$

$$= (\cos\theta x - \sin\theta y)$$

$$y' = r\sin(\theta + \alpha)$$

$$y' = r\sin(\theta + \alpha)$$

$$= (\sin \theta r \cos \alpha + \cos \theta r \sin \alpha)$$

$$= (\sin \theta x + \cos \theta y)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Two Ways of Interpreting a Rotation Matrix

Rotating a coordinate

$$\mathbf{V} = x^{0}\overline{\mathbf{x}} + y^{0}\overline{\mathbf{y}} = x^{1}\overline{\mathbf{u}} + y^{1}\overline{\mathbf{v}}$$

$$= x^{1}(\cos\theta\overline{\mathbf{x}} + \sin\theta\overline{\mathbf{y}}) + y^{1}(-\sin\theta\overline{\mathbf{x}} + \cos\theta\overline{\mathbf{y}})$$

$$\begin{bmatrix} x^0 \\ y^0 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x^1 \\ y^1 \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{u}} & \overline{\mathbf{v}} \end{bmatrix} \begin{bmatrix} x^1 \\ y^1 \end{bmatrix}$$

Transformation that maps from coordinate 1 to coordinate 0

Axes of coordinate 1 represented in coordinate 0

Rotation Matrix

- Rows/columns of matrix must be orthonormal
 - Unit length and orthogonal
- Numerical errors cause a nonorthonomral matrix when a series of rotations apply
- How to interpolate between matrices?
 - Interpolating the components of two matrices doesn't maintain the orthonormality
 - The generated matrix is not a rotation matrix

Interpolate Rotation Matrix?

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$90^{\circ} \text{ z-axis}$$

$$-90^{\circ} \text{ z-axis}$$

The halfway matrix you get by linearly interpolating each entry is

Not a rotation matrix any more!

Representing 3D rotations

- Rotation Matrix
- Fixed Angle
- Euler Angle
- Axis angle
- Quaternion

Fixed Angle Representation

- Ordered triple of rotations about global axes
- Any triple can be used that doesn't repeat an axis immediately, e.g., x-y-z is fine, so is x-y-x. But x-x-z is not.

e.g., x-y-z order
$$(\theta_x, \theta_y, \theta_z)$$

$$P' = R_z(\theta_z) R_y(\theta_y) R_x(\theta_x) P$$

Fixed Angle Representation

(0,90,0) in x-y-z order

(90,45,90) in x-y-z order

Interpolation Problem in Fixed Angle

- The rotation from (0,90,0) to (90,45,90) is a 45degree x-axis rotation
- Directly interpolating between (0,90,0) and (90,45,90) produces a halfway orientation (45, 67.5, 45)
- Desired halfway orientation is (90, 22.5, 90)

Euler Angle

- Ordered triple of rotations about local axes
- As with fixed angles, any triple can be used that doesn't immediately repeat an axis, e.g., x-y-z, is fine, so is x-y-x. But x-x-z is not.
- Euler angle ordering is equivalent to reverse ordering in fixed angles

Fixed angle: (90,45,90) in x-y-z order

Gimbal Lock

- A gimbal is a mechanical device allowing the rotation of an object in multiple dimensions
- Gimbal lock occurs when two of the rotation axes align

Gimbal Lock

 Gimbal lock is a basic problem with 3D representations using fixed or Euler angles

http://www.anticz.com/eularqua.htm

Axis Angle Representation

- Euler's rotation theorem
 - Any 3-D rotation can be described by 4 parameters
- Rotate about A by θ (A_x,A_y,A_z,θ)

Axis Angle Interpolation

Interpolate axis and angle separately

$$B = A_1 \times A_2$$

$$\phi = \cos^{-1} \frac{A_1 \cdot A_2}{|A_1||A_2|}$$

$$A_k = R_B(k\phi)A_1$$

$$\theta_k = (1-k)\theta_1 + k\theta_2$$

Axis Angle vs. Quaternion

- Axis angle
 - Can interpolate the axis and angle separately
 - No gimbal lock
 - Cannot compose rotations efficiently
- Quaternion
 - Good interpolation
 - No gimbal lock
 - Can be composed

Quaternion

- 4-tuple of real numbers
 - -q=(s,x,y,z) or [s,v]
 - s is a scalar; v is a vector
- Same information as axis/angle but in a different form

$$q = \left[\cos(\frac{\theta}{2}), \sin(\frac{\theta}{2}) \cdot (A_x, A_y, A_z)\right]$$

Quaternion Math

Addition

$$[s_1, v_1] + [s_2, v_2] = [s_1 + s_2, v_1 + v_2]$$

Multiplication

$$[s_1, v_1] \cdot [s_2, v_2] = [s_1 s_2 - v_1 \cdot v_2, s_1 v_2 + s_2 v_1 + v_1 \times v_2]$$

Multiplication is associative but not commutative

$$q_1(q_2q_3) = (q_1q_2)q_3$$
 $q_1q_2 \neq q_2q_1$

Quaternion Math (cont.)

- A point in space is represented as [0, x, y, z]
- Multiplicative identity $q \cdot [1, 0, 0, 0] = q$
- Inverse

$$q^{-1} = \frac{\left[s, -v\right]}{\left\|q\right\|^2}$$

$$||q|| = \sqrt{s^2 + x^2 + y^2 + z^2}$$

$$qq^{-1} = [1, 0, 0, 0]$$

Quaternion Rotation

- To rotate a vector v using quaternion
 - Represent the vector as [0, v]
 - Represent the rotation as a quaternion q

$$v' = Rot_q(v) = q \cdot v \cdot q^{-1}$$

q and –q represent the same orientation

Compose Rotations

$$Rot_{q}(Rot_{p}(v)) = Rot_{q}(pvp^{-1})$$

$$= qpvp^{-1}q^{-1}$$

$$= qpv(qp)^{-1}$$

$$= Rot_{qp}(v)$$

Prove by yourself that

$$p^{-1}q^{-1} = (qp)^{-1}$$

Summary of Rotation Representations

- Rotation Matrix
 - orthornormal columns/rows
 - bad for interpolation
- Fixed Angle
 - rotate about global axes
 - bad for interpolation, gimbal lock
- Euler Angle
 - rotate about local axes
 - same problem as fixed angle

Summary of Rotation Representations

Axis angle

- rotate about A by θ , (A_x, A_y, A_z, θ)
- good interpolation, no gimbal lock
- bad for compounding rotations

Quaternion

- similar to axis angle but in different form
- -q=[s,v]
- good for compounding rotations

Visualizing Rotations

View rotations as points lying on an n-D sphere

- Interpolating rotation means moving on n-D sphere
- How about 3-angle rotation (quaternion)?

Quaternion Interpolation

- A quaternion is a point on a 4D unit sphere
- Unit quaternion: q=(s,x,y,z), ||q||=1

Interpolating rotations means moving on 4D

sphere

Linear Interpolation

 Linear interpolation generates unequal spacing of points after projecting to circle

Spherical Linear Interpolation (slerp)

 Want equal increment along arc connecting two quaternions on the spherical surface

$$slerp(q_1, q_2, u) = \frac{\sin(1-u)\Omega}{\sin\Omega}q_1 + \frac{\sin u\Omega}{\sin\Omega}q_2$$

Normalize to regain unit quaternion

Proof of Slerp Equation

It can be proved that

$$P = \frac{\sin(\Omega - \theta)}{\sin\Omega}A + \frac{\sin\theta}{\sin\Omega}B$$

$$P = \alpha A + \beta B$$

$$||P||=1$$

$$AB = \cos \Omega$$

$$AP = \cos \theta$$

Proof of Slerp Equation (cont.)

$$P = \alpha A + \beta B$$

$$||P|| = 1$$

$$A \cdot B = \cos \Omega$$

$$A \cdot P = \cos \theta$$

$$A(\alpha A + \beta B) = \alpha |A|^2 + \beta A \cdot B = \alpha |A|^2 + \beta \cos \Omega = \cos \theta$$
$$\alpha + \beta \cos \Omega = \cos \theta$$

$$|P|^2 = P \cdot P = \alpha^2 |A|^2 + 2\alpha\beta A \cdot B + \beta^2 |B|^2 = 1$$
$$\alpha^2 + 2\alpha\beta \cos\Omega + \beta^2 = 1$$

Two equations for Two unknowns

$$\alpha + \beta \cos \Omega = \cos \theta$$

$$- \alpha^{2} + 2\alpha\beta \cos \Omega + \beta^{2} \cos^{2} \Omega = \cos^{2} \theta$$

$$\alpha^{2} + 2\alpha\beta \cos \Omega + \beta^{2} = 1$$

$$1 - \beta^{2} + \beta^{2} \cos^{2} \Omega = \cos^{2} \theta$$

$$\beta^{2} \sin^{2} \Omega = \sin^{2} \theta$$

$$\alpha = \frac{\sin(\Omega - \theta)}{\sin \Omega}$$

$$\beta = \frac{\sin \theta}{\sin \Omega}$$

Slerp: Pick Shortest Path

- Recall that q and -q represent the same rotation
- Slerp can go the LONG way!
- Have to go the short way $q_1 \cdot q_2 > 0$

Useful Analogies

Euclidean Space
Position
Linear interpolation

4D Spherical Space
Orientation
Spherical linear interpolation
(slerp)

What if there are multiple segments?

 As linear interpolation in Euclidean space, we can have first order discontinuity

- Need a cubic curve interpolation to maintain first order continuity in Euclidean space
- Similarly, slerp can have 1st order discontinuity
- We also need a cubic curve interpolation in 4D spherical space for 1st order continuity

Bezier Interpolation in Euclidean Space

$$p(u) = [u3 \ u2 \ u \ 1] \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 3 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P1 \\ P2 \\ P3 \\ P4 \end{bmatrix}$$

$$p'(0) = 3(p2-p1), p'(1)=3(p4-p3)$$

Bezier Interpolation in Euclidean Space

Colinearity of the control points at either side of an endpoint guarantees the 1st order continuity

$$p'(0) = 3(p2-p1), P'(1)=3(p4-p3)$$

Bezier Interpolation of Quaternions

- Bezier interpolation on 4D sphere?
 - How are control points generated?
 - How are cubic splines defined?

- Control points are automatically generated as it is not intuitive to manually adjust them on a 4D sphere
- Construct Bezier curves by iteratively linear interpolation → applying slerp
- Let's first see how to do the above two procedures in Euclidean space

Generating Collinear Control Points

$$p(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 3 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_n \\ a_n \\ b_{n+1} \\ p_{n+1} \end{pmatrix}$$

De Casteljau Construction of Bézier Curve

Constructing Bezier curve by multiple linear interpolation

De Casteljau Construction of Bézier Curve

from www.wikipedia.org

Geometric Intuition for Bézier Curves

 By repeatedly cutting the corners off a polygon, we approach a smooth curve

This is called subdivision!

Subdivision Scheme

- Defines a curve by breaking a simpler curve into smaller pieces
- The limit curve (obtained by subdividing infinitely many times) will be a smooth curve

Subdivision Rule

• The above rule can be generalized $\mathbf{p}(u) = (1-u)((1-u)\mathbf{p}_0 + u\mathbf{p}_1) + u((1-u)\mathbf{p}_1 + u\mathbf{p}_2)$

Regrouping terms gives the quadratic Bézier

$$\mathbf{B}_{2}(u) = (1-u)^{2}\mathbf{p}_{0} + 2u(1-u)\mathbf{p}_{1} + u^{2}\mathbf{p}_{2}$$

De Casteljau Algorithm

 Constructs Bezier curve using a sequence of linear interpolation

Bezier Interpolation of Quaternions

 Automatically generating interior (spherical) control point

$$q'_{n-1} = double(q_{n-1}, q_n) = 2(q_{n-1} \cdot q_n)q_n - q_{n-1}$$

De Casteljau Construction on 4D Sphere

$$p_{1} = slerp(q_{n}, a_{n}, \frac{1}{3})$$

$$p_{2} = slerp(a_{n}, b_{n+1}, \frac{1}{3})$$

$$p_{3} = slerp(b_{n+1}, q_{n+1}, \frac{1}{3})$$

$$p_{12} = slerp(p_{1}, p_{2}, \frac{1}{3})$$

$$p_{23} = slerp(p_{2}, p_{3}, \frac{1}{3})$$

$$p_{24} = slerp(b_{n+1}, q_{n+1}, \frac{1}{3})$$

$$p_{15} = slerp(p_{15}, p_{25}, \frac{1}{3})$$

$$p_{16} = slerp(p_{15}, p_{25}, \frac{1}{3})$$

$$p_{17} = slerp(p_{17}, p_{25}, \frac{1}{3})$$

$$p_{18} = slerp(p_{17}, p_{25}, \frac{1}{3})$$

$$p_{19} = slerp(p_{17}, p_{25}, \frac{1}{3})$$

$$p_{19} = slerp(p_{17}, p_{25}, \frac{1}{3})$$