Report No.: RZA2009- 1439 Page 121of 173

WCDMA Band IV Towards Ground Low

Date/Time: 11/7/2009 12:27:34 PM

Communication System: WCDMA Band IV; Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1712.4 MHz; $\sigma = 1.42 \text{ mho/m}$; $\epsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(4.84, 4.84, 4.84); Calibrated: 11/25/2008

Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.800 mW/g

Towards Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.2 V/m; Power Drift = 0.089 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.723 mW/g; SAR(10 g) = 0.431 mW/g

Maximum value of SAR (measured) = 0.795 mW/g

Figure 87 Body, Towards Ground, WCDMA Band IV Channel 1312

Report No.: RZA2009- 1439 Page 122of 173

Figure 88 Z-Scan at power reference point (Body, Towards Ground, WCDMA Band IV Channel 1312)

Report No.: RZA2009- 1439 Page 123of 173

WCDMA Band IV Towards Phantom Middle

Date/Time: 11/7/2009 11:24:23 AM

Communication System: WCDMA Band IV; Frequency: 1732.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1733 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(4.84, 4.84, 4.84); Calibrated: 11/25/2008

Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Phantom Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.177 mW/g

Towards Phantom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 9.36 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.163 mW/g; SAR(10 g) = 0.096 mW/g

Maximum value of SAR (measured) = 0.178 mW/g

Figure 89 Body, Towards Phantom, WCDMA Band IV Channel 1412

Report No.: RZA2009- 1439 Page 124of 173

Figure 90 Z-Scan at power reference point (Body, Towards Phantom, WCDMA Band IV Channel 1412)

Report No.: RZA2009- 1439 Page 125of 173

WCDMA Band IV with Earphone Towards Ground High

Date/Time: 11/7/2009 12:53:59 PM

Communication System: WCDMA Band IV; Frequency: 1752.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1753 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liqiud Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1737; ConvF(4.84, 4.84, 4.84); Calibrated: 11/25/2008

Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.792 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.4 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.711 mW/g; SAR(10 g) = 0.415 mW/g

Maximum value of SAR (measured) = 0.771 mW/g

Figure 91 Body, Towards Ground, WCDMA Band IV Channel 1513

Report No.: RZA2009- 1439 Page 126of 173

Figure 92 Z-Scan at power reference point (Body, Towards Ground, WCDMA Band IV Channel 1513)

Report No.: RZA2009- 1439 Page 127of 173

WCDMA Band IV+HSDPA Towards Ground High

Date/Time: 11/7/2009 1:12:52 PM

Communication System: WCDMA Band IV+HSDPA; Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1753 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 – SN1737; ConvF(4.84, 4.84, 4.84); Calibrated: 11/25/2008

Electronics: DAE4 Sn452; Calibrated: 11/18/2008

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Towards Ground High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.785 mW/g

Towards Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.700 mW/g; SAR(10 g) = 0.411 mW/g

Maximum value of SAR (measured) = 0.771 mW/g

Figure 93 Body, Towards Ground, WCDMA Band IV HSDPA Channel 1513

Report No.: RZA2009- 1439 Page 128of 173

Figure 94 Z-Scan at power reference point (Body, Towards Ground, WCDMA Band IV HSDPA Channel 1513)

Report No.: RZA2009- 1439 Page 129of 173

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

A Shanghai (Auden)

Cartificate No: FT3-1737 Nov08

editation No.: SCS 108

CALIBRATION	CERTIFICAT	TE SERVICE SERVICE		1250
Object	ET3DV6 - SN:1	737		
Calibration procedure(s)	M000104057475731517479458	QA CAL-12.v5 and QA CAL-23.v cedure for dosimetric E-field probe	ACCURATION AND ADDRESS OF THE PARTY OF THE P	
Calibration date:	November 25, 2	2008		
Condition of the calibrated item	In Tolerance			
The measurements and the unce	ortainties with confidence	stonal standards, which realize the physical up probability are given on the following pages at ory facility: environment temperature (22 \pm 3)*	nd are part of the certificate.	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09	
Power sensor E4412A	MY41495277	1-Apr-06 (No. 217-00788)	Apr-09	
	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09	
Power sensor E4412A				
	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09	
Reference 3 dB Attenuator	SN: S5054 (3c) SN: S5086 (20b)	1-Jul-08 (No. 217-00865) 31-Mar-08 (No. 217-00787)	Jul-09 Apr-09	*
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator			100000000	*
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	31-Mar-08 (No. 217-00787)	Apr-09	*
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	SN: S5086 (20b) SN: S5129 (30b)	31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866)	Apr-09 Jul-09	٠
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: S5086 (20b) SN: S5129 (30b) SN: 3013	31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jun08)	Apr-09 Jul-09 Jan-09	•
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep06)	Apr-09 Jul-09 Jun-09 Sep-09	,
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700	31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep06) Check Date (in house) 4-Aug-99 (in house check Oct-07)	Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09	•
Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep06) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09	
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00866) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep06) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Apr-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09	

Report No.: RZA2009- 1439 Page 130of 173

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

ConvF

DCP

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

Polarization o Polarization 9 φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Report No.: RZA2009- 1439 Page 131of 173

ET3DV6 SN:1737

November 25, 2008

Probe ET3DV6

SN:1737

Manufactured:

September 27, 2002

Last calibrated:

February 19, 2007

Repaired:

November 18, 2008

Recalibrated:

November 25, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Report No.: RZA2009- 1439 Page 132of 173

ET3DV6 SN:1737

November 25, 2008

DASY - Parameters of Probe: ET3DV6 SN:1737

S	ensitivity in Fre	y in Free Space ^A			compression ^B
	NormX	1.42 ± 10.1%	$\mu V/(V/m)^2$	DCP X	93 mV
	NormY	1.68 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV
	NormZ	1.63 + 10.1%	$\mu V/(V/m)^2$	DCP Z	85 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

00 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{te} [%]	Without Correction Algorithm	10.7	6.9
SAR _{be} [%]	With Correction Algorithm	0.3	0.4

TSL

1750 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR ₀₀ [%]	Without Correction Algorithm	12.5	8.4
SAR _{ce} [%]	With Correction Algorithm	0.8	0.5

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

Numerical linearization parameter: uncertainty not required.

Report No.: RZA2009- 1439 Page 133of 173

ET3DV6 SN:1737

November 25, 2008

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Report No.: RZA2009- 1439 Page 134of 173

ET3DV6 SN:1737

November 25, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Report No.: RZA2009- 1439 Page 135of 173

ET3DV6 SN:1737

November 25, 2008

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Report No.: RZA2009- 1439 Page 136of 173

ET3DV6 SN:1737

November 25, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.36	1.84	7.20	± 13.3% (k=2)
835	±50/±100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.25	3.53	6.33	± 11.0% (k=2)
900	± 50 / ± 100	Head	$41.5\pm5\%$	$0.97 \pm 5\%$	0.27	3.53	6.14	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.56	2.77	5.35	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.72	4.89	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.51	1,60	4.39	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.27	1.80	7.52	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.36	2.75	6.14	± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.43	2.51	5.98	± 11.0% (k=2)
1750	± 50 / ± 100	Body	$53.4 \pm 5\%$	1.49 ± 5%	0.99	1.74	4.84	± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.99	1.50	4.60	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	89.0	1.42	3.91	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1737_Nov08

Report No.: RZA2009- 1439 Page 137of 173

ET3DV6 SN:1737

November 25, 2008

Deviation from Isotropy in HSL

Error (¢, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Report No.: RZA2009- 1439 Page 138of 173

ANNEX E: D835V2 Dipole Calibration Certificate

CALIBRATION CERTIFICATE

D835V2 - SN: 4d020

Calibration Procedure(s) TMC-XZ-01-027

Object

Calibration procedure for dipole validation kits

Calibration date: July 15, 2009

Condition of the calibrated item In Tolerance

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID# (Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	101253	19-Jun-09 (TMC, No.JZ09-248)	Jun-10
Power sensor NRV-Z5	100333	19-Jun-09 (TMC, No. JZ09-248)	Jun-10
Reference Probe ES3DV3	SN 3149	08-Dec-08(SPEAG, No.ES3-3149_Dec08)	Dec-09
DAE4	SN 771	21-Nov-08(SPEAG, No.DAE4-771_Nov08	Nov-09
RF generator E4438C	MY45092879	18-Jun-09(TMC, No.JZ09-302)	Jun-10
Network Analyzer 8753E	US38433212	03-Aug-08(TMC, No.JZ08-056)	Aug-09

	Name	Function	Signature
Calibrated by:	Lin Hao	SAR Test Engineer	林光
Reviewed by:	Qi Dianyuan	SAR Project Leader	STORE
Approved by:	Lu Bingsong	Deputy Director of the laboratory	加斯斯
		(Taker)	4 14 15 2000

Issued: July 15, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Certificate No: D835V2-4d020_Jul09

Page 1 of 9

Report No.: RZA2009- 1439 Page 139of 173

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020 Jul09 Page 2 of 9

Report No.: RZA2009- 1439 Page 140of 173

Measurement Conditions

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.91mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C	535	

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 mW/g
SAR normalized	normalized to 1W	9.60 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 mW/g
SAR normalized	normalized to 1W	6.20 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.07 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d020_Jul09 Page 3 of 9

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: RZA2009- 1439 Page <u>141of 173</u>

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6%	0.99mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C	225	223

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 mW/g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.28 mW /g ± 17.0 % (k=2)

SAR averaged over 10 $\ cm^3$ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d020_Jul09 Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: RZA2009- 1439 Page 142of 173

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω -3.7 jΩ	
Return Loss	- 25.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4Ω - 5.1 jΩ	
Return Loss	-25.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns
Electrical Delay (one direction)	1.30/ 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

DASY5 Validation Report for Head TSL

Certificate No: D835V2-4d020_Jul09 Page 5 of 9

Report No.: RZA2009- 1439 Page 143of 173

Date/Time: 2009-7-15 14:54:13

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 4d020

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\epsilon_x = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ESSDV3 - SN3149; ConvF(6.34, 6.34, 6.34); Calibrated: 08.12.08

Electronics: DAE4 Sn771; Calibration: 21.11.08

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value - 55.2 V/m; Power Drift - -0.019 dB

Peak SAR (extrapolated) = 3.16 W/kg

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.55 mW/g

Maximum value of SAR (measured) = 2.74 mW/g

0 dB = 2.74 mW/g

Report No.: RZA2009- 1439 Page 144of 173

Impedance Measurement Plot for Head TSL

Report No.: RZA2009- 1439 Page 145of 173

DASY5 Validation Report for Body TSL

Date/Time: 2009-7-15 11:27:23

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 4d020

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Medium: Body 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon_{\tau} = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ESSDV3 - SN3149; ConvP(6.02, 6.02, 6.02); Calibrated: 08.12.08

Electronics: DAE4 Sn771; Calibration: 21.11.08

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value - 54.1 V/m; Power Drift - -0.004 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.71 mW/g

Report No.: RZA2009- 1439 Page 146of 173

Impedance Measurement Plot for Body TSL

Report No.: RZA2009- 1439 Page 147of 173

ANNEX F: D1800V2 Dipole Calibration Certificate

Certificate No: D1800V2-2d055_Feb09

Report No.: RZA2009- 1439 Page 148of 173

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d055 Feb09

Page 2 of 9

Report No.: RZA2009- 1439 Page 149of 173

信息产业部通信计量中心

Telecommunication Metrology Center of MII

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	7719-79-79-

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.40mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) "C		-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.87 mW / g
SAR normalized	normalized to 1W	39.5 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.11 mW/g
SAR normalized	normalized to 1W	20.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.5 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-2d055_Feb09

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: RZA2009- 1439 Page 150of 173

信息产业部通信计量中心 TM Telecommunication Metrology Center of MII

Body TSL parameters

The following parameters and calculations were applied.

30 30 50 50 50	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6%	1.49mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) *C	-2	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW/g
SAR normalized	normalized to 1W	40.8 mW/g
SAR for nominal Body TSL parameters ²	normalized to 1W	40.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	Condition		
SAR measured	250 mW input power	5.28 mW / g	
SAR normalized	normalized to 1W	21.1 mW/g	
SAR for nominal Body TSL parameters ²	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)	

Certificate No: D1800V2-2d055_Feb09

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: RZA2009- 1439 Page 151of 173

信息产业部通信计量中心 TML Telecommunication Metrology Center of MII

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.8Ω + 4.0 jΩ	
Return Loss	- 25.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω + 7.1 jΩ	
Return Loss	- 22.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	4.224 ns	
Electrical Delay (one direction)	4.224 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 16, 2002	

Certificate No: D1800V2-2d055 Feb09

Report No.: RZA2009- 1439 Page 152of 173

信息产业部通信计量中心 TM

Telecommunication Metrology Center of MII

DASY5 Validation Report for Head TSL

Date/Time: 2009-2-16 14:15:30

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN: 2d055

Communication System: CW Frequency: 1800 MHz Duty Cycle: 1:1

Medium: Head 1800MHz

Medium parameters used: f = 1800 MHz; σ = 1.40 mho/m; ϵ , = 40.4; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(5.18, 5.18, 5.18); Calibrated: 08.12.08

Electronics: DAE4 Sn771; Calibration: 21.11.08

Phanton: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.1 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.87 mW/g; SAR(10 g) = 5.11 mW/g

Maximum value of SAR (measured) = 11.1 mW/g

 $0 \, dB = 11.1 \, mW/g$

Report No.: RZA2009- 1439 Page 153of 173

信息产业部通信计量中心 TM Telecommunication Metrology Center of MII

Impedance Measurement Plot for Head TSL

Report No.: RZA2009- 1439 Page 154of 173

信息产业部通信计量中心 工工 Telecommunication Metrology Center of MII

DASY5 Validation Report for Body TSL

Date/Time: 2009-2-16 15:37:31

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN: 2d055

Communication System: CW Frequency: 1800 MHz Duty Cycle: 1:1

Medium: Body 1800MHz

Medium parameters used: f = 1800 MHz; σ = 1,49 mho/m; ϵ , = 52,1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(4.97, 4.97, 4.97); Calibrated: 08.12.08

Electronics: DAE4 Sn771; Calibration: 21.11.08

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.8 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.28 mW/g

Maximum value of SAR (measured) = 11.5 mW/g

0 dB = 11.5 mW/g

Report No.: RZA2009- 1439 Page 155of 173

Impedance Measurement Plot for Body TSL

Report No.: RZA2009- 1439 Page 156of 173

ANNEX G: D1900V2 Dipole Calibration Certificate

Client

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d060

Calibration Procedure(s)

TMC-XZ-01-027

Calibration procedure for dipole validation kits

Calibration date:

July 15, 2009

Condition of the calibrated item

In Tolerance

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)℃ and

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	101253	19-Jun-09 (TMC, No. JZ09-248)	Jun-10
Power sensor NRV-Z5	100333	19-Jun-09 (TMC, No. JZ09-248)	Jun-10
Reference Probe ES3DV3	SN 3149	08-Dec-08(SPEAG, No.ES3-3149_Dec08)	Dec-09
DAE4	SN 771	21-Nov-08(SPEAG, No.DAE4-771_Nov08)	Nov-09
RF generator E4438C	MY450928	379 18-Jun-09(TMC, No.JZ09-302)	Jun-10
Network Analyzer 8753E	US384332	12 03-Aug-08(TMC, No.JZ08-056)	Aug-09

2000000	Name	Function	Signature
Calibrated by:	Lin Hao	SAR Test Engineer	林井
Reviewed by:	Qi Dianyuan	SAR Project Leader	2003
Approved by:	Lu Bingsong	Deputy Director of the laboratory	西班牙

Issued: July 15, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Certificate No: D1900V2-5d060 Jul09

Page 1 of 9

Report No.: RZA2009- 1439 Page 157of 173

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d060 Jul09 Page 2 of 9

Report No.: RZA2009- 1439 Page 158of 173

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.40mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 ${cm}^3$ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.88 mW/g
SAR normalized	normalized to 1W	39.5 mW/g
SAR for nominal Head TSL parameters ¹	normalized to 1W	37.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.0 mW/g
SAR normalized	normalized to 1W	20.0 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	19.8 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Jul09 Page 3 of 9

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: RZA2009- 1439 Page 159of 173

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6%	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 ${\it cm}^3$ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.18 mW/g
SAR normalized	normalized to 1W	20.72 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	21.0 mW/g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Jul09 Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Report No.: RZA2009- 1439 Page 160of 173

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8Ω + 4.0 μΩ	
Return Loss	- 23.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω + 7.1 jΩ	
Return Loss	- 22.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

Certificate No: D1900V2-5d060_Jul09 Page 5 of 9

Report No.: RZA2009- 1439 Page 161of 173

DASY5 Validation Report for Head TSL

Date/Time: 2009-7-15 14:15:30

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 5d060

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ mho/m}$; $\epsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ESSDV3 - SN3149; ConvF(5.18, 5.18, 5.18); Calibrated: 08.12.08

Electronics: DAE4 Sn771; Calibration: 21.11.08

Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value - 85.1 V/m; Power Drift - -0.057 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.88 mW/g; SAR(10 g) = 5.0 mW/g

Maximum value of SAR (measured) = 11.5 mW/g

 $0 \, dB = 11.5 \, mW/g$

Certificate No: D1900V2-5d060 Jul09 Page 6 of 9

Report No.: RZA2009- 1439 Page 162of 173

Impedance Measurement Plot for Head TSL

Report No.: RZA2009- 1439 Page 163of 173

DASY5 Validation Report for Body TSL

Date/Time: 2009-7-15 15:37:31

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 5d060 Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\epsilon_s = 52.9$; $\rho_s = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(4.97, 4.97, 4.97); Calibrated: 08.12.08

Electronics: DAE4 Sn771; Calibration: 21.11.08

Phanton: 2mm Oval Phantom ELI4; Type: QDOVA001BB

Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 79.6 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.18 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

Certificate No: D1900V2-5d060_Jul09

Page 8 of 9

Report No.: RZA2009- 1439 Page 164of 173

Impedance Measurement Plot for Body TSL

Report No.: RZA2009- 1439 Page 165of 173

ANNEX H: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

S

Certificate No: DAE4-452_Nov08 Auden CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 452 Object Calibration procedure(s) QA CAL-06.v12 Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 18, 2008 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Fluke Process Calibrator Type 702 SN: 6295803 30-Sep-08 (No: 7673) Sep-09 Keithley Multimeter Type 2001 30-Sep-08 (No: 7670) SN: 0810278 Sep-09 Secondary Standards Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 06-Jun-08 (in house check) In house check: Jun-09 Calibrated by: Dominique Steffen Technician Fin Bomholt R&D Director Approved by: Issued: November 18, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-452_Nov08

Page 1 of 5

Report No.: RZA2009- 1439 Page 166of 173

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schwelzerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Report No.: RZA2009- 1439 Page 167of 173

DC Voltage Measurement A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1......+3mV High Range: 1LSB = $6.1 \mu V$, 1LSB = Low Range: 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	404.585 ± 0.1% (k=2)	404.416 ± 0.1% (k=2)	404.565 ± 0.1% (k=2)
Low Range	3.97854 ± 0.7% (k=2)	3.95135 ± 0.7% (k=2)	3.98063 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	148°±1°
---	---------

Certificate No: DAE4-452_Nov08

Report No.: RZA2009- 1439 Page 168of 173

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	200000	0.00
Channel X + Input	20000	20006.89	0.03
Channel X - Input	20000	-20003.71	0.02
Channel Y + Input	200000	200000.5	0.00
Channel Y + Input	20000	20008.05	0.04
Channel Y - Input	20000	-20006.61	0.03
Channel Z + Input	200000	199999.6	0.00
Channel Z + Input	20000	20006.84	0.03
Channel Z - Input	20000	-20004.66	0.02

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	200.19	0.09
Channel X - Input	200	-199.99	0.00
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	199.38	-0.31
Channel Y - Input	200	-200.73	0.36
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	199.25	-0.38
Channel Z - Input	200	-201.52	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	2.99	1.90
	- 200	-1.54	-1.85
Channel Y	200	-8.82	-8.73
	- 200	6.90	6.96
Channel Z	200	9.94	10.21
	- 200	-13.53	-13.21

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.31	-0.98
Channel Y	200	1.52		2.97
Channel Z	200	-1.16	0.18	

Certificate No: DAE4-452_Nov08

Report No.: RZA2009- 1439 Page 169of 173

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16123	16646
Channel Y	15886	16452
Channel Z	16175	16346

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.53	-0.80	1.64	0.33
Channel Y	-1.51	-2,67	-0.89	0.35
Channel Z	-1.99	-3.07	-1.43	0.29

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	198.3
Channel Y	0.1999	200.1
Channel Z	0.1999	199.3

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Report No.: RZA2009- 1439 Page 170of 173

ANNEX I: The EUT Appearances and Test Configuration

Picture 6: Constituents of EUT

Picture 7: Left Hand Touch Cheek Position

Report No.: RZA2009- 1439 Page 171of 173

Picture 8: Left Hand Tilt 15 Degree Position

Picture 9: Right Hand Touch Cheek Position

Report No.: RZA2009- 1439 Page 172of 173

Picture 10: Right Hand Tilt 15 Degree Position

Picture 11: Body, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm

Report No.: RZA2009- 1439 Page 173of 173

Picture 12: Body, The EUT display towards phantom, the distance from handset to the bottom of the Phantom is 15mm

Picture 13: Body, The EUT display towards ground, the distance from handset to the bottom of the Phantom is 15mm