Topic 7

Audio Modeling by Non-negative Matrix Factorization

(Some slides are adapted from Gautham J. Mysore's presentation)

Structure in Spectrograms

- Spectral structure
- Temporal structure

Time

Piano Notes

Non-negative Matrix Factorization

[Lee, Seung 2001]

ECE 477 - Computer Audition, Zhiyao Duan 2019

How to measure the approximation?

• Euclidean distance (Frobenius norm)

$$D(V || WH) = ||V - WH||_F^2$$
$$= \sum_{i,j} (V_{ij} - (WH)_{ij})^2$$

• When V = WH, the distance is 0.

How to measure the approximation?

Kullback-Leibler (KL) divergence

$$D(V || WH)$$
= $\sum_{i,j} \left(V_{ij} \ln \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij} \right)$

 KL divergence between two discrete probability distributions

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \ln \frac{P(i)}{Q(i)}$$

NMF

$$\min_{W,H} D(V \parallel WH)$$

where

$$V \in \mathbb{R}^{\geq 0, m \times n}$$
 $W \in \mathbb{R}^{\geq 0, m \times r}$
 $H \in \mathbb{R}^{\geq 0, r \times n}$
 $r \leq \min\{m, n\}$

- What is the possible rank of V?
- What is the possible rank of WH?

Singular Value Decomposition (SVD)

$$V = A\Sigma B^T$$

where

$$V \in \mathbb{R}^{m \times n}$$
$$A \in \mathbb{R}^{m \times m}$$
$$B \in \mathbb{R}^{n \times n}$$

- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with nonnegative elements.
- rank(V)=the number of nonzero diagonal elements of Σ .

Why NMF?

- Nonnegative data
- V is an addition of some "components"

$$V = WH = \sum_{i=1}^{r} \mathbf{w}_i \mathbf{h}_i^T$$

where
$$W = [w_1, ..., w_r], H = [h_1, ..., h_r]^T$$

- Nonnegative components
- Easy to interpret

Low-rank Decomposition

• rank(V) = the number of nonzero diagonal elements of Σ in SVD.

• Let $\operatorname{rank}_+(V)$ be the smallest integer k for which there exists $W \in \mathbb{R}^{\geq 0, M \times k}$ and $H \in \mathbb{R}^{\geq 0, k \times N}$, such that V = WH.

- $\operatorname{rank}(V) \le \operatorname{rank}_+(V) \le \min\{m, n\}$
- $rank(WH) \le min\{rank(W), rank(H))\} \le r$
- In NMF, we use $r \ll \operatorname{rank}(V)$.

Low-rank Decomposition

$V \approx WH$

- rank(V) could be pretty large (about the same size as the number of frames), since harmonics do not decay at the same rate.
- rank(WH) = 4
- But we get pretty good approximation.

If r is too large

• Let r = 7

Original

Reconstructed

 W^T

H

If r is too small

• Let r = 2

Reconstructed

 W^T

H

How to determine r?

This is the "secrete" of NMF.

Look at the data.

 Try different values, and choose the smallest that provides good enough reconstruction.

Convex Functions

• f(x) is convex if $\forall x_1, x_2$ and $\forall \lambda \in [0,1]$, we have

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$\bullet \ f(x) = (x-3)^2$$

$$\bullet \ f(x) = \frac{1}{x}, x > 0$$

Single local minimum (if it has a minimum)

Convex?

$$\bullet \ f(x,y) = x^2 - y^2$$

Convexity?

$$D(V \parallel WH) = \sum_{i,j} (V_{ij} - (WH)_{ij})^{2}$$

$$D(V \parallel WH) = \sum_{i,j} \left(V_{ij} \ln \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij} \right)$$

- Convex functions w.r.t. either W only or H only, but not W and H together
- Lots of local minima

The Algorithms

- Alternating non-negative least squares
- Projected gradient descent
- Active-set method
- Block principal pivoting
- ...

- Multiplicative update rule
 - Easy to implement
 - Never get to negative values

Multiplicative Update

For Euclidean distance

[Lee, Seung 1999]

$$W_{ia} \leftarrow W_{ia} \frac{(VH^T)_{ia}}{(WHH^T)_{ia}}$$

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}}$$

Multiplicative Update

For K-L divergence

[Lee, Seung 1999]

$$W_{ia} \leftarrow W_{ia} \frac{\sum_{\mu} H_{a\mu} V_{i\mu} / (WH)_{i\mu}}{\sum_{\nu} H_{a\nu}}$$

$$H_{a\mu} \leftarrow H_{a\mu} \frac{\sum_{i} W_{ia} V_{i\mu} / (WH)_{i\mu}}{\sum_{k} W_{ka}}$$

Convergence

 The multiplicative update rule decreases the cost function in each iteration.

It converges to some local minimum.

• The convergence is pretty fast.

Problems of Multiplicative Updates

Non-uniqueness issue

$$WH = (W\Sigma)(\Sigma^{-1}H)$$

 Solution: normalize W to make each column sum to 1. Scale H accordingly.

- Zero elements won't get updated.
 - Solution: make sure W and H do not have zero elements in initialization.

Initialization

 Initialization affects the final result a lot, because the cost function is not convex.

For simple data, random initialization is usually ok.

- For more complex data, use domain knowledge to initialize the dictionary.
 - E.g. for music transcription, initialize basis as a bunch of harmonic combs.

The Dictionary Models Sound Source

Male speech

Frequency (Hz)

Motorcycles

\\.
Λ
An
Λ
N. N
\sim
Λ_{\sim}
Λ_{\sim}
\wedge
A_{λ}
A

Frequency (Hz)

Question

 Can we use the source dictionaries to separate sound sources in the mixture signal?

Mixture spectrogram
$$V_{mix} \approx V_1 + V_2$$
 Source 1 spectrogram spectrogram $\approx W_1 H_1 + W_2 H_2$ Source 2 spectrogram $= [W_1, W_2] \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$

Unsupervised Source Separation

Decompose the mixture spectrogram directly

$$V_{mix} \approx W_{mix}H_{mix}$$

- Figure out what columns of W_{mix} belong to what sources
 - Difficult, could be impossible, if sources have similar spectral profiles
- Extract those columns as W_1 ; Extract corresponding rows of H_{mix} as H_1
- Reconstruct the source signal W_iH_i

Supervised Source Separation

Decompose training signals of all sources

$$V_{\text{train,1}} \approx W_1 H_{\text{train,1}}, \qquad V_{\text{train,2}} \approx W_2 H_{\text{train,2}}$$

- Compose a new dictionary $W = [W_1, W_2]$
- Decompose mixture spectrogram using and fixing W, i.e. do not update W, but update H

$$V_{mix} \approx [W_1, W_2] \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$$

• Reconstruct the source signal W_iH_i

Supervised Source Separation illustration

Semi-supervised Source Separation

Decompose training signals of some source(s)

$$V_{\rm train,1} \approx W_1 H_{\rm train,1}$$

- Compose a new dictionary $W = [W_1, W_2]$, where W_2 is randomized.
- Decompose mixture spectrogram fixing W_1 , i.e. do not update W_1 , but update W_2 and H.

$$V_{mix} \approx [W_1, W_2] \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$$

• Reconstruct the source signal W_iH_i .

Semi-supervised Separation illustration

Look at NMF from another perspective!

- Think about the spectrogram V as a 2-d histogram of sound quanta.
- At each frame t, the sound quanta are distributed along the frequency axis according to $P_t(f)$.
- The number of sound quanta at (t, f) is V_{ft} .
- The number of sound quanta at frame t is $V_t = \sum_f V_{ft}$.

Probabilistic Latent Component Analysis

[Smaragdis, Raj 2006]

ECE 477 - Computer Audition, Zhiyao Duan 2019

Generative Process

- 1. Choose a dictionary element according to $P_t(z)$
- 2. Choose a frequency from dictionary element z according to the distribution P(f|z)
- 3. Continue the process for V_t draws

How to estimate the parameters?

• Observation: a bunch of sound quanta distributed as V_{ft}

Model:

$$P_t(f) = \sum_{z} P_t(f|z) P_t(z) \approx \sum_{z} P(f|z) P_t(z)$$

• Parameters: P(f|z) and $P_t(z)$

Maximum Likelihood Estimation

 The data likelihood, i.e. the joint probability of all sound quanta

$$\prod_{t} \prod_{f} P_t(f)^{V_{ft}}$$

Log data likelihood

$$\sum_{t} \sum_{f} V_{ft} \log P_t(f)$$

Expectation-Maximization

 E step: calculate the posterior distribution of latent components

$$P_t(z|f) = \frac{P(f|z)P_t(z)}{\sum_z P(f|z)P_t(z)}$$

• M step: maximize the expected complete log-likelihood w.r.t. parameters P(f|z) and $P_t(z)$.

$$\max_{P(f|z),P_t(z)} \mathbb{E}_{P_t(z|f)} \left\{ \sum_t \sum_f V_{ft} \log P_t(f,z) \right\}$$

Let's derive the update equations

See whiteboard.