ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 07 giugno 2013

Esercizio A

$R_9 = 100 \Omega$
$R_{10} = 3.2 \text{ k }\Omega$
$R_{11} = 20 \text{ k }\Omega$
$C_1 = 100 \text{ nF}$
$C_2 = 1 \mu F$
$C_3 = 1 \text{ nF}$
V _{CC} = 18 V

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS}=k(V_{GS}-V_T)^2$ con k=0.5 mA/V 2 e $V_T=1V$. Q_2 è un transistore BJT BC179A resistivo con $h_{re}=h_{oe}=0$; per gli altri parametri forniti dal costruttore si utilizzino i valori tipici o, in loro assenza, i valori massimi. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore delle resistenze R_4 in modo che, in condizioni di riposo, la tensione sull'emettitore di Q_2 sia V_E =11.4 V; si ipotizzi di trascurare la corrente di base di Q_2 rispetto alla corrente che scorre nella resistenza R_7 . Determinare, inoltre il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: R_4 = 1677.82 Ω)
- 2) Determinare il guadagno V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -103.51$)
- 3) (Solo per 12 CFU) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 3553.13$ Hz; $f_{z2} = 49.74$ Hz; $f_{p2} = 1369.84$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 6860.13$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (\overline{A+C}) \cdot (\overline{BD} + B(A+CD)) + (\overline{B+C}) \cdot (A+D)$$

con in totale, non più di 8 transistori e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i 8 transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_5 = 100 \Omega$
$R_2 = 4 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 1 μF
$R_4 = 300 \Omega$	$V_{CC} = 5 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e V_T =1V e l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 766.98 Hz)