David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

September 17, 2023

Generalized Hodge Theorem

Hodge Star Operator

Definition (Hodge Star Operator)

$$\star: A^{p,q} \mapsto A^{1-p,1-q}, \quad \star 1 = \Omega, \star \Omega = 1, \star dz_{\alpha} = -idz_{\alpha}, \star d\bar{z}_{\alpha} = id\bar{z}_{\alpha}.$$

Definition (Inner Product)

The inner product of $A^p(M)$ can be written as

$$(\eta_1,\eta_2):=\int_M \eta_1\wedge^*\eta_2.$$

The Hodge star operator has the following properties:

- \bullet $\star^2 = (-1)^{p+q}$
- $(\star \eta_1, \star \eta_2) = (\eta_1, \eta_2)$

Operator δ and ϑ

Definition (δ and ϑ operators)

$$\delta = - \star d \star \quad \vartheta = - \star \partial \star$$

On a compact Riemann surface δ and ϑ are adjoint operators of d and ∂ :

$$(d\eta_1, \eta_2) = (\eta_1, \delta\eta_2) \quad (\partial\eta_1, \eta_2) = (\eta_1, \vartheta\eta_2)$$

Operator Δ and \square

Definition (Δ and \square operators)

$$\Delta, \Box: A^{p,q}(M) \to A^{p,q}(M)$$

$$\Delta = d\delta + \delta d \quad \Box = \bar{\partial}\vartheta + \vartheta\bar{\partial}$$

Lemma

On a compact Riemann surface

$$\Delta\omega = 0 \iff d\omega = 0, \delta\omega = 0$$

$$\Box \omega = 0 \iff \bar{\partial} \omega = 0, \, \vartheta \omega = 0$$

and

$$\star \Delta = \Delta \star \quad \star \Box = \Box \star$$

Proved by direct computation.

Operator \square

Lemma

$$\Box = \frac{1}{2}\Delta$$

Proof.

 $d = \partial + \bar{\partial}$ and $\delta = \vartheta + \bar{\vartheta}$,

$$\Delta = d\delta + \delta d = (\partial + \bar{\partial})(\vartheta + \bar{\vartheta}) + (\vartheta + \bar{\vartheta})(\partial + \bar{\partial})$$
$$= \Box + \bar{\Box} + (\partial\vartheta + \vartheta\partial) + \bar{\partial\vartheta} + \bar{\vartheta}\bar{\partial},$$

by direct computation, we have

$$\Box = \bar{\Box} \quad \partial \vartheta + \vartheta \partial = 0.$$

hence $\Delta = 2\square$.

Harmonic Form

Definition (Harmonic Form)

Suppose $\square \omega = 0$, the ω is called a harmonic form.

If f is a smooth function defined on a compact Riemann surface, then $\int_M f\Omega = 0$ if and only if there is a function g, such that $f = \Box g$.

Generalized Hodge * operator

Suppose M is a Riemann surface, L is a holomorphic line bundle on M. Choose Hermite metrics h for T_hM and g for L respectively. Generalize Hodge star operator $*:A^{p,q}(M)\to A^{1-p,1-q}(M)$ to L-valued (p,q) forms.

Definition (Hodge Star Operator)

The Hodge star operator $*: A^{p,q}(L) \to A^{1-p,1-q}(L)$ acting on a L-valued (p,q)-form $\sigma = \omega s$, where ω is a local (p,q)-form, s a local section, let

$$*\sigma = (*\omega)s.$$

It can be easily verified that

$$*^2 = (-1)^{p+q}$$
.

Generalized Inner Product

Definition (Inner Product)

Suppose $\sigma_1 = \omega_1 s_1$ and $\sigma_2 = \omega_2 s_2$ are L-valued (p, q) differential forms, let

$$(\sigma_1, \sigma_2) = \int_M \langle s_1, s_2 \rangle \omega_1 \wedge *\bar{\omega}_2,$$

this gives an Hermite inner product on $A^{p,q}(L)$.

L-valued differential forms with different degrees are orthogonal. This defines an Hermite inner product on A(L), Hodge \ast operator preserves the inner product.

Generalized Connection Operator

The generalized connection operator

$$D: A^{p,q}(L) \to A^{p+1,q}(L) \oplus A^{p,q+1}(L),$$

D can be decomposed into $D = D' + \bar{\partial}$,

$$D':A^{p,q}(L)\to A^{p+1,q}(L)$$

$$\bar{\partial}:A^{p,q}(L)\to A^{p,q+1}(L)$$

Suppose $\sigma = \omega s_{\alpha}$, then

$$D'\sigma = (\partial \omega + (-1)^{p+q}\omega \wedge \theta_{\alpha})s_{\alpha}$$
$$\bar{\partial}\sigma = (\bar{\partial}\omega)s_{\alpha}.$$

Generalized Operator ϑ

Definition (ϑ operator)

The operator

$$\vartheta: A^{p,q}(L) \to A^{p,q-1}(L), \vartheta = -*D'*$$

Lemma

The operators $\bar{\partial}$ and ϑ are adjoint with respect to (,),

$$(\bar{\partial}\sigma_1,\sigma_2)=(\sigma_1,\vartheta\sigma_2),\quad\forall\sigma_1\in A^{p,q-1}(L),\sigma_2\in A^{p,q}(L).$$

$\bar{\partial}$ -Laplace operator

Definition ($\bar{\partial}$ -Laplace operator)

The operator $\square: A^{p,q}(L) \to A^{p,q}(L)$,

$$\Box = \bar{\partial}\vartheta + \vartheta\bar{\partial}$$

- ullet $\Box = rac{1}{2}\Delta$
- $*\Delta = \Delta *$, $*\Box = \Box *$
- Self-adjoint: $\forall \sigma_1, \sigma_2 \in A^{p,q}(L)$,

$$(\Box \sigma_1, \sigma_2) = (\sigma_1, \Box \sigma_2).$$

• $\Delta \omega = 0 \iff d\omega = 0, \delta \omega = 0; \ \Box \omega = 0 \iff \bar{\partial} \omega = 0, \vartheta \omega = 0.$

☐ Local representation

Suppose s_{α} is a local holomorphic section of L, nowhere zero, the Hermite metric of L has local representation $\{g_{\alpha}\}$, the Hermite metric of T_hM has local representation

$$h = h_{\alpha} dz_{\alpha} \otimes d\bar{z}_{\alpha}.$$

the volume form of h is $\Omega = \frac{\sqrt{-1}}{2} h_{\alpha} dz_{\alpha} \wedge d\bar{z}_{\alpha}$, the curvature form of g is $\Theta = \bar{\partial} \partial \log g_{\alpha}$, the curvature K is:

$$\Theta = \frac{K}{\sqrt{-1}}\Omega, \quad K = -\frac{2}{h_{\alpha}} \frac{\partial^2 \log g_{\alpha}}{\partial z_{\alpha} \bar{\partial} z_{\alpha}}.$$

The local representation of the operator \square_0 is:

$$\Box_0 = \frac{-2}{h_\alpha} \left(\frac{\partial^2}{\partial z_\alpha \partial \bar{z}_\alpha} + \frac{\partial \log g_\alpha}{\partial z_\alpha} \frac{\partial}{\partial \bar{z}_\alpha} \right)$$

☐ Local representation

when $\sigma = \sigma_{\alpha} s_{\alpha} \in A^{0,0}(L)$,

$$\Box \sigma = (\Box_0 \sigma_\alpha) s_\alpha;$$

when $\sigma = \sigma_{\alpha} dz_{\alpha} s_{\alpha} \in A^{1,0}(L)$,

$$\Box \sigma = \left\{ \left(\Box_0 - 2 \frac{\partial h_\alpha^{-1}}{\partial z_\alpha} \frac{\partial}{\partial \overline{z}_\alpha} \right) \sigma_\alpha \right\} dz_\alpha \otimes s_\alpha;$$

when $\sigma=\sigma_{lpha}dar{z}_{lpha}s_{lpha}\in A^{0,1}(L)$,

$$\square \sigma = \left\{ \left(\square_0 - 2 \frac{\partial h_{\alpha}^{-1}}{\partial z_{\alpha}} \frac{\partial}{\partial \bar{z}_{\alpha}} + \left[K - 2 \frac{\partial h_{\alpha}^{-1}}{\partial z_{\alpha}} \frac{\partial \log g_{\alpha}}{\partial \bar{z}_{\alpha}} \right] \right) \sigma_{\alpha} \right\} d\bar{z}_{\alpha} \otimes s_{\alpha};$$

when $\sigma = \sigma_{\alpha} \Omega s_{\alpha} \in A^{1,1}(L)$,

$$\sigma = [(\Box_0 + k)\sigma_\alpha]\Omega \otimes s_\alpha.$$

Definition (Harmonic L-valued (p, q) form)

Denote $\mathcal{H}^{p,q}(L) = \{ \sigma \in A^{p,q}(L) | \Box \sigma = 0 \}$, the elements in $\mathcal{H}^{p,q}(L)$ are called the L-valued harmonic (p,q) form. The set of all harmonic forms is denoted as $\mathcal{H}(L) := \bigoplus_{p,q} \mathcal{H}^{p,q}(L)$.

Suppose $\sigma \in A^{p,q}(L)$ is a L-valued harmonic (p,q)-form, for any $\tau \in A^{p,q-1}(L)$,

$$(\sigma + \bar{\partial}\tau, \sigma + \bar{\partial}\tau) = (\sigma, \sigma) + (\sigma, \bar{\partial}\tau) + (\bar{\partial}\tau, \sigma) + (\bar{\partial}\tau, \bar{\partial}\tau)$$
$$= (\sigma, \sigma) + (\vartheta\sigma, \tau) + (\tau, \vartheta\sigma) + (\bar{\partial}\tau, \bar{\partial}\tau)$$
$$= (\sigma, \sigma) + (\bar{\partial}\tau, \bar{\partial}\tau) \ge (\sigma, \sigma)$$

Therefore, each Dolbeault cohomological class has at most one harmonic form.

Theorem (Hodge)

Suppose L is a holomorphic line bundle on a compact Riemann surface M, there are Hermite metrics on T_hM and L respectively, then

- $\mathcal{H}(L)$ is a finite dimensional vector space;
- **②** there is a compact operator G:A(L) o A(L), such that

$$\textit{Ker } G = \mathcal{H}(L), G(A^{p,q}(L)) \subset A^{p,q}(L), \quad G\bar{\partial} = \bar{\partial}G, \vartheta G = G\vartheta.$$

and

$$A(L) = \mathcal{H}(L) \oplus \Box GA(L) = \mathcal{H}(L) \oplus G\Box A(L).$$

Definition (Projection)

The projection map $H:A(L)\to \mathcal{H}(L)$ is defined as

$$H(\sigma) := \sigma - G \square \sigma \in \mathcal{H}(L).$$

Therefore, we have the unique decomposition

$$\sigma = H(\sigma) + G\square \sigma, \quad \forall \sigma \in A(L).$$

If $\bar{\partial}\sigma=0$, then

$$\sigma = H(\sigma) + G \square \sigma$$

= $H(\sigma) + G(\vartheta \bar{\partial} + \bar{\partial} \vartheta) \sigma$
= $H(\sigma) + \bar{\partial} (G \vartheta \sigma)$.

In the Dolbeault cohomological class $[\sigma]$, there is a unique harmonic representative $[H(\sigma)]$.

Corollary

For any $p, q \ge 0$, there are isomorphisms

$$H^q(M;\Omega^p(L))\cong H^{p,q}_{\bar\partial}(M)\cong \mathcal{H}^{p,q}(L).$$

Proof.

The linear map $H: H^{p,q}_{\bar{\partial}}(M) \to \mathcal{H}^{p,q}(L)$, $[\sigma] \mapsto [H(\sigma)]$ is well defined, and is injective and surjective, hence it is an isomorphism.

Suppose L is a holomorphic line bundle on a compact Riemann surface M, h is the Hermite metric of T_hM with local representation $\{h_\alpha\}$.

	L	-L
Hermite Metric	$\{g_{lpha}\}$	$\{g_{lpha}^{-1}\}$
Transition function	$\{f_{etalpha}\}$	$\{f_{etalpha}^{-1}\}$
Connection 1-form	θ_{lpha}	$\tilde{\theta}_{\alpha} = -\theta_{\alpha}$
local holomorphic section	$\{s_{\alpha}\} = \{\psi_{\alpha}^{-1}(\cdot,1)\}$	$\{ ilde{s}_lpha\}=\{ ilde{\psi}_lpha^{-1}(\cdot,1)\}$
nowhere zero		

Table: Duality

Definition (Dual Operator \sim)

The operator \sim : $A^{p,q}(L) \rightarrow A^{q,p}(-L)$,

$$\sigma = \omega s_{\alpha} \mapsto \tilde{\sigma} = \bar{\omega} g_{\alpha} \tilde{s}_{\alpha}.$$

Suppose σ has another local representation $\sigma=\omega's_{\beta}$, $\omega'=f_{\beta\alpha}\omega$, then

$$\bar{\omega}' g_{\beta} \tilde{s}_{\beta} = \bar{\omega} \bar{f}_{\beta \alpha} g_{\beta} f_{\beta \alpha} \tilde{s}_{\alpha} = \bar{\omega} g_{\alpha} \tilde{s}_{\alpha},$$

namely \sim is well defined. $\sim^2 = -1$.

Definition (Dual Operator *)

The operator $\widetilde{*}:A^{p,q}(L)\to A^{1-p,1-q}(-L)$,

$$\tilde{*} = *0 \sim = \sim 0 *$$
.

It is easy to see

$$\tilde{*}(f\sigma) = \bar{f}\tilde{*}(\sigma), \quad \forall f \in A^{0,0}(M), \sigma \in A^{p,q}(L).$$

hence $\tilde{*}$ is conjugate isomorphic.

Suppose the connection of -L is \tilde{D} , let

$$ilde{\vartheta}: A^{p,q}(-L) o A^{p,q-1}(-L), \quad ilde{\vartheta} = - * ilde{D}'*,$$

and the $\bar{\partial}$ -Laplace operator

$$\tilde{\square}: A^{p,q}(-L) \to A^{p,q}(-L), \quad \tilde{\square} = \tilde{\vartheta}\tilde{\partial} + \tilde{\partial}\tilde{\vartheta}.$$

Lemma (*-operator)

The $\tilde{*}$ -operator has the properties: for any $\sigma \in A^{p,q}(L)$,

- $\bullet \tilde{*}\vartheta\sigma = (-1)^{p+q}\bar{\partial}\tilde{*}\sigma ;$
- $\tilde{*}\bar{\partial}\sigma = (-1)^{p+q+1}\tilde{\vartheta}\tilde{*}\sigma ;$

This lemma shows * maps harmonic forms to harmonic forms.

Corollary

$$\widetilde{*}:\mathcal{H}^{p,q}(L)\to\mathcal{H}^{1-p,1-q}(-L), \forall p,q\geq 0$$

is a conjugate isomorphism between two complex vector spaces.

Theorem (Serre Duality)

Suppose L is a holomorphic line bundle on a compact Riemann surface, then

$$H^q(M;\Omega^p(L))\cong H^{1-q}(M;\Omega^{1-p}(-L)),\quad p,q\geq 0.$$

Particularly, when $L = \lambda(D)$,

$$H^0(M; \Omega^1(\lambda(-D)) \cong H^1(M; \Omega^0(\lambda(D)).$$

Lemma

For any divisor D, $I(D) \cong \Gamma_h(\lambda(D)) = H^0(M; \Omega^0(\lambda(D))$.

Lemma

For any holomorphic line bundle

$${s \in \mathfrak{M}(L)|(s) - D \ge 0} \cong \Gamma_h(L - \lambda(D))$$

particularly,

$$H^0(M;\Omega^1(\lambda(-D))\cong i(D)\cong \Gamma_h(T_h^*M-\lambda(D))=H^0(M;\Omega^0(T_h^*M-\lambda(D))).$$

Proof.

Let $\omega \in H^0(M;\Omega^1(\lambda(-D)))$ with local representations ω_α and ω_β , which are holomorphic 1-forms. we obtain $\omega_\beta = \omega_\alpha f_{\beta\alpha} = \omega_\alpha \frac{f_\beta}{f_\alpha}$, where $(f_\alpha) = -D \cap U_\alpha$ therefore

$$\omega' := \frac{\omega_{\beta}}{f_{\beta}} = \frac{\omega_{\alpha}}{f_{\alpha}}$$

is a globally defined meromorphic 1-form, $\omega' \in T_h^*M$,

$$((\omega')-D)\cap U_{\alpha}=(\omega_{\alpha})\cap U_{\alpha}-(f_{\alpha})-D\cap U_{\alpha}=(\omega_{\alpha})+D\cap U_{\alpha}-D\cap U_{\alpha}=(\omega_{\alpha})\geq 0$$

hence

$$\omega' \in \{s \in \mathfrak{M}(T_h^*M) | (s) - D \ge 0\} = \Gamma_h(T_h^*M - \lambda(D)).$$

Riemann-Roch

Definition (Euler Characteristic Number)

Suppose L is a holomorphic line bundle on a Riemann surface M, the Euler characteristic number of I is

$$\chi^p(L) := \sum_{i=0}^{\infty} (-1)^i \operatorname{dim} H^i(M, \Omega^p(L))$$

when p = 0, we use $\chi(L)$ to replace $\chi^0(L)$.

Suppose $L = \lambda(D)$,

$$\begin{split} \chi(\lambda(D)) &= \mathrm{dim} H^0(M,\Omega(\lambda(D))) - \mathrm{dim} H^1(M,\Omega(\lambda(D))) \\ &= \mathrm{dim} H^0(M,\Omega(\lambda(D))) - \mathrm{dim} H^0(M,\Omega^1(\lambda(-D))) \quad (\textit{SerreDual}) \\ &= \mathrm{dim} I(D) - \mathrm{dim} i(D). \end{split}$$

 $\chi_0(M) := \chi(\lambda(0)) = \dim H^0(M, \Omega^0) - \dim H^0(M, \Omega^1) = 1 - g.$

Lemma

Suppose L is a holomorphic line bundle on a Riemann surface M, $\forall p \in M$, there exists an exact sequence:

$$0 \to \Omega(L - \lambda(p)) \to \Omega(L) \to \mathcal{S}_p \to 0. \tag{1}$$

where S_p is a skyscraper sheaf.

Proof.

$$\Gamma(L - \lambda(D)) \cong \{s \in \mathfrak{M}(L) : (s) - D \ge 0\}$$

$$\Gamma(L - \lambda(D))(W) \cong \{s \in \mathfrak{M}(L|W) : (s) - D \cap W \ge 0\}, \quad \forall W \text{ open set}$$

$$\Omega(L - \lambda(D))(W) \cong \{s \in \Gamma(L|W) : (s) - D \cap W \ge 0\}, \quad \text{when } D \ge 0$$

$$\Omega(L - \lambda(p))(W) \cong \{s \in \Omega(L)(W) : (s) - p \cap W \ge 0\}$$

Lemma

Suppose

$$0 \to \mathcal{F}_1 \xrightarrow{\alpha} \mathcal{F}_2 \xrightarrow{\beta} \mathcal{F}_3 \to 0 \tag{2}$$

is a sheaf exact sequence, if

$$dimH^{j}(M,\mathcal{F}_{i})<\infty, \quad \forall i,j$$

and $H^{j}(M,\mathcal{F}_{i})=0$ when j is sufficiently large, then

$$\chi(\mathcal{F}_2) = \chi(\mathcal{F}_1) + \chi(\mathcal{F}_3).$$

Proof.

The exact sheaf sequence Eqn. (2) induces the exact sequence of cohomology groups

$$H^{i-1}(F_3) \xrightarrow{\delta^*} H^i(\mathcal{F}_1) \xrightarrow{\alpha^*} H^i(\mathcal{F}_2) \xrightarrow{\beta^*} H^i(\mathcal{F}_3) \xrightarrow{\delta^*} H^{i+1}(\mathcal{F}_1)$$

we have the isomorphism

$$\beta^* H^i(\mathcal{F}_2) \cong H^i(\mathcal{F}_2)/\alpha^* H^i(\mathcal{F}_1).$$

hence

$$\dim H^{i}(\mathcal{F}_{2}) = \dim \alpha^{*}H^{i}(\mathcal{F}_{1}) + \dim \beta^{*}H^{i}(\mathcal{F}_{2})$$

continued.

Similarly

$$\begin{aligned} \dim &H^{i}(\mathcal{F}_{1}) = \dim \delta^{*}H^{i-1}(\mathcal{F}_{3}) + \dim \alpha^{*}H^{i}(\mathcal{F}_{1}) \\ \dim &H^{i}(\mathcal{F}_{3}) = \dim \delta^{*}H^{i}(\mathcal{F}_{3}) + \dim \beta^{*}H^{i}(\mathcal{F}_{2}) \end{aligned}$$

Hence

$$\begin{split} &\chi(\mathcal{F}_{2}) - \chi(\mathcal{F}_{1}) - \chi(\mathcal{F}_{3}) \\ &= \sum_{i=0}^{\infty} (-1)^{i} \text{dim} \alpha^{*} H^{i}(\mathcal{F}_{1}) + (-1)^{i} \text{dim} \beta^{*} H^{i}(\mathcal{F}_{2}) \\ &+ \sum_{i=0}^{\infty} (-1)^{i+1} \text{dim} \delta^{*} H^{i-1}(\mathcal{F}_{3}) + (-1)^{i+1} \text{dim} \alpha^{*} H^{i}(\mathcal{F}_{1}) \\ &+ \sum_{i=0}^{\infty} (-1)^{i+1} \text{dim} \delta^{*} H^{i}(\mathcal{F}_{3}) + (-1)^{i+1} \text{dim} \beta^{*} H^{i}(\mathcal{F}_{2}) \\ &= 0. \end{split}$$

Riemann-Roch

Theorem

Given a divisor D, the Euler characteristic number of $\lambda(D)$ is

$$\chi(\lambda(D)) = deg(D) + (1 - g) = diml(D) - dimi(D).$$

Proof.

Suppose $D=D_1-D_2$, $D_1\geq 0$ and $D_2\geq 0$, similar as the proof of Eqn. (1), we have the following exact sequence of sheaves

$$0 \to \Omega(L - \lambda(D_2)) \to \Omega(L) \to \mathcal{S}_{D_2} \to 0.$$

first let $L = \lambda(D_1)$,

Riemann-Roch

continued.

hence

$$\chi(\lambda(D_1)) = \chi(\lambda(D)) + \chi(S_{D_2}) = \chi(\lambda(D)) + \deg(D_2),$$

the skyscraper sheaf S_{D_2} is a fine sheaf, hence $\dim H^0(S_{D_2}) = \deg(D_2)$ and $H^q(S_{D_2}) = 0$, $\chi(S_{D_2}) = \deg(D_2)$. second let $L = \lambda(D_1)$ and replace D_2 by D_1 ,

$$\chi(\lambda(D_1)) = \chi(\lambda(D_1) - \lambda(D_1)) + \chi(\mathcal{S}_{D_1}) = \chi_0(M) + \deg(D_1)$$

we obtain

$$\chi(\lambda(D)) = \chi(\lambda(D_1)) - \deg(D_2)$$

= $\chi_0(M) + \deg(D_1) - \deg(D_2)$
= $\chi_0(M) + \deg(D)$.

$$\begin{aligned} &\dim\ I(D)-\dim\ i(D)\\ &=\dim\ \Gamma_h(\lambda(D))-\dim\ \Gamma_h(T_h^*M-\lambda(D))\\ &=\dim\ H^0(M;\Omega^0(\lambda(D)))-\dim\ H^0(M;\Omega^0(T_h^*M-\lambda(D)))\\ &=\dim\ H^0(M;\Omega^0(\lambda(D)))-\dim\ H^0(M;\Omega^1(\lambda(-D))) \quad (Serre\ Dual)\\ &=\dim\ H^0(M;\Omega^0(\lambda(D)))-\dim\ H^1(M;\Omega^0(\lambda(D)))\\ &=\chi(\lambda(D)). \end{aligned}$$

We obtain Riemann-Roch,

$$\chi(\lambda(D)) = (1-g) + \deg(D)$$

