

Part 3: Beams in Bending Introduction and Shape Functions

FEEG3001/SESM6047 FEA in Solid Mechanics Prof A S Dickinson

From 22nd October 2024

Reminder of linear interpolation functions for rods in axial tension and compression:

- Why use Shape Functions?
 - A continuum has an infinite number of Degrees of Freedom
 - FEA:
 - describes the mechanics of problems approximately,
 - using an equivalent description that has finite DoF, and
 - describes the displacement field in between using a pre-determined shape function.
- Shape Functions should provide continuity between adjoining elements...

- Similar to what we saw for rods, but displacements w(x) are perpendicular to the element's axis
- What parameters give it its bending properties?
 - E, Young's modulus
 - I, Second moment of area

Euler-Bernoulli hypothesis assumptions:

- Cross sections do not change during bending
- Cross section remains perpendicular to the neutral axis during bending

• Without deriving it, we define that the strain energy stored in the bent beam is given by:

$$U = \frac{1}{2} \int_{0}^{L} EI(w(x)'')^{2} dx$$

• where $(\cdot)' = \frac{d}{dx}(\cdot)$

Recalling FEEG1002:

```
EAu'' = longitudinal loading (rods, tens/comp)
EIw'''' = transverse loading (beams)
```

- the axial rod differential equation has a second derivative of deformation
- the beam bending differential equation has a 4th derivative of deformation
- How do we handle this without solving the differential equation?
- We use a shape or interpolation function again;
- We cannot use linear interpolation we need 'cubic' interpolation (i.e. the order of the D.E. minus 1).

- We require continuity of deformation from one element to the next, and continuity
 of 1st derivative of deformation. Beams: transverse deflection and slope
- If we use cubic interpolation for transverse deflection:
 - $M(x) = EI \frac{d^2w(x)}{dx^2}$ can capture linearly varying bending moment within an element
 - Since $\sigma = \frac{My}{I}$ this means we can capture linearly varying stress within an element
 - $V(x) = EI \frac{d^3w(x)}{dx^3}$ can capture constant shear force within an element
- Though deflection and slope must be continuous from element to element, bending moments and shear force are not. This allows us to apply concentrated moments and forces on nodes.
- FEA is popular because it 'weakens' the restriction on continuity of our interpolation functions (interpolation order is order of the differential equation -1)

- Now we will define four cubic interpolation functions in the x=0 to L domain, defined by their value and their slope.
- These are called the 'Hermite cubics':

	Left Node	Right Node
Value	1	0
Slope	0	0

	Left Node	Right Node
Value	0	0
Slope	1	0

	Left Node	Right Node
Value	0	1
Slope	0	0

	Left Node	Right Node
Value	0	0
Slope	0	1

$$f_1(x) = 1 - 3\frac{x^2}{L^2} + 2\frac{x^3}{L^3}$$
 $f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$ $f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$ $f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$

$$f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$$

$$f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$$

The Hermite Cubics

 and we make our approximation by saying the displacement anywhere in the element is approximated as:

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

• where $f_i(x)$ are the four shape functions or interpolation functions, each having the form:

$$f_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$$

- We also now have four q_i values to find...
- We won't solve it 4 times, and you won't need to remember them, but you should now understand how, based on the axial rod.

$$f_{1}(x) = 1 - 3\frac{x^{2}}{L^{2}} + 2\frac{x^{3}}{L^{3}} \qquad f_{2}(x) = x - 2\frac{x^{2}}{L} + \frac{x^{3}}{L^{2}} \qquad f_{3}(x) = 3\frac{x^{2}}{L^{2}} - 2\frac{x^{3}}{L^{3}}$$

$$f_{1}(x) = f_{2}(x) \qquad f_{3}(x) = f_{3}(x)$$

$$f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$$

$$f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

What can we say about the values of deflection at each end?

$$w(0) = f_1(0)q_1 + f_2(0)q_2 + f_3(0)q_3 + f_4(0)q_4 = q_1$$

$$w(L) = f_1(L)q_1 + f_2(L)q_2 + f_3(L)q_3 + f_4(L)q_4 = q_3$$

so these are meaningful results! End deflections: generalised coordinates

$$f_{1}(x) = 1 - 3\frac{x^{2}}{L^{2}} + 2\frac{x^{3}}{L^{3}} \qquad f_{2}(x) = x - 2\frac{x^{2}}{L} + \frac{x^{3}}{L^{2}} \qquad f_{3}(x) = 3\frac{x^{2}}{L^{2}} - 2\frac{x^{3}}{L^{3}}$$

$$f_{1}(x) \qquad f_{2}(x) \qquad f_{3}(x) = 3\frac{x^{2}}{L^{2}} - 2\frac{x^{3}}{L^{3}}$$

$$f_2(x) = x - 2\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$f_3(x) = 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}$$

$$f_4(x) = -\frac{x^2}{L} + \frac{x^3}{L^2}$$

$$w(x) = f_1(x)q_1 + f_2(x)q_2 + f_3(x)q_3 + f_4(x)q_4$$

What can we say about the values of rotation at each end?

$$w'(0) = f_1'(0)q_1 + f_2'(0)q_2 + f_3'(0)q_3 + f_4'(0)q_4 = q_2$$

$$w'(L) = f_1'(L)q_1 + f_2'(L)q_2 + f_3'(L)q_3 + f_4'(L)q_4 = q_4$$

also meaningful results! End slopes/rotations: generalised coordinates.

 because with small deformations, rotations and slopes are equivalent

$$w' = \frac{dw}{dx} = \tan \theta$$
 and for small $\theta \approx \sin \theta \approx \tan \theta$

• recall we don't know what w(x) is, but if we make the elements small enough (refined enough mesh), we can approximate throughout the element using the end deflections and slopes.

Recap:

- These are the shape functions for the 'Euler-Bernoulli Beam'
- This neglects transverse shear but often gives adequate predictions of beam deflection and stress with appropriate length: thickness ratios
- Next we will derive and start assembling beam element Stiffness Matrices!