Nodes Radials

$$R_{1,0}(r) = 2\left(\frac{Z}{a_0}\right)^{\frac{3}{2}}e^{-\frac{1}{2}\rho}$$

$$R_{1,0}(r) = 2\left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{1}{2}\frac{2}{a_0}r} = 2\left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{1}{a_0}r}$$

$$R_{1,0}(r) = 2\left(\frac{1}{a_0}\right)^{\frac{3}{2}} e^{-\frac{1}{a_0}r} = 0$$

$$e^{-\frac{1}{a_0}r} \neq 0$$

La funció no té cap node! (tal com es veu en la representació)

Màxim de probabilitat de trobar l'electró

Per buscar el màxim de probabilitat haurem d'agafar la funció de distribució radial, derivar-la I igualar-la a zero.

$$\frac{d}{dr}\left(4\pi r^2 R_{1,0}^{2}(r)\right) = \frac{d}{dr}\left(4\pi r^2 2^2 \left(\frac{1}{a_0}\right)^{\frac{3|2}{2}} e^{-\frac{1|2}{a_0}r}\right) = 4\pi 2^2 \left(\frac{1}{a_0}\right)^{\frac{3|2}{2}} \frac{d}{dr}\left(r^2 e^{-\frac{2}{a_0}r}\right) = 0$$

$$\frac{d}{dr}\left(r^{2}e^{-\frac{2}{a_{0}}r}\right) = 2re^{-\frac{2}{a_{0}}r} - r^{2}e^{-\frac{2}{a_{0}}r} \frac{2}{a_{0}} = \left(2r - r^{2}\frac{2}{a_{0}}\right)e^{-\frac{2}{a_{0}}r} = 0 \qquad r\left(2 - \frac{2r}{a_{0}}\right) = 0 \quad r = 0 \quad r = a_{0}$$

$$r\left(2 - \frac{2r}{a_0}\right) = 0 \quad r = 0 \quad r = a_0$$

r=0 és un mínim

$$r=a_0$$
 és un màxim $^{(1)}$

(1) Hauríem de fer la segona derivada per comprovar-ho!

Orbital 2s n=1 l=0

Proposta d'exercici, igual que el que acabem de fer amb l'orbital 1s. A partir de la taula de funcions radials que teniu a teoria, i considerant que es tracta de l'àtom de hidrogen (Z=1), trobeu:

- (a) Els nodes de la funció radial
- (b) Plantegeu com trobaríeu el màxim(s) de probabilitat de trobar l'electró. Quin valor obteniu? (mireu gràfic, o busqueu-lo, no pas calculeu-lo)

A sota teniu la representació de les dues funcions, la part Radial i la funció de distribució radial, fetes a partir de Wolfram.

