SUPPLEMENTARY MATERIALS: HOPF BIFURCATIONS OF REACTION NETWORKS WITH ZERO-ONE STOICHIOMETRIC COEFFICIENTS*

XIAOXIAN TANG† AND KAIZHANG WANG‡

SM1. Application: MAPK cascade. Theorem 3.1 states that if a zero-one network admits a Hopf bifurcation, then the rank of the stoichiometric matrix is at least four. In this subsection, we show that a rank-four subnetwork that admits a Hopf bifurcation can be obtained from the well-known mitogen-activated-protein-kinase (MAPK) cascade, which represents a crucial step of the chemical signal transduction in cellular systems and is widely conserved in eukaryotes [SM5]. In fact, this rank-four subnetwork is first found in [SM11], where the authors do not emphasize it has the minimum rank that admits a Hopf bifurcation. Here, we use the same notation as that used in [SM11]. The MAPK cascade network, denote by Net_{MAPK}, consists of 14 species and 18 reactions (see (SM1.1a) to (SM1.1f)).

(SM1.1a)
$$B + A^* \xrightarrow{\kappa_{13}} A^* B \xrightarrow{\kappa_{2}} A^* + B_1$$
(SM1.1b)
$$A^* + B_1 \xrightarrow{\kappa_{33}} A^* B_1 \xrightarrow{\kappa_{4}} A^* + B_2$$
(SM1.1c)
$$B_2 + C \xrightarrow{\kappa_{5}} CB_2 \xrightarrow{\kappa_{6}} C + B_1$$
(SM1.1d)
$$B_1 + C \xrightarrow{\kappa_{7}} CB_1 \xrightarrow{\kappa_{8}} C + B$$
(SM1.1e)
$$D_1 + A \xrightarrow{\kappa_{9}} D_1 A \xrightarrow{\kappa_{10}} D_1 + A^*$$
(SM1.1f)
$$D_2 + A^* \xrightarrow{\kappa_{11}} D_2 A^* \xrightarrow{\kappa_{12}} D_2 + A.$$

The authors in [SM11] present a small oscillating network obtained from Net_{MAPK} , denoted by $SubNet_{MAPK}$, which consists of 6 species and 7 reactions (see (SM1.2a) to (SM1.2e)).

(SM1.2a)
$$B + A^* \xrightarrow{\tau_1} A^* B \xrightarrow{\tau_2} A^* + B_1$$
(SM1.2b)
$$A^* + B_1 \xrightarrow{\tau_3} A^* + B_2$$
(SM1.2c)
$$B_2 \xrightarrow{\tau_4} B_1$$
(SM1.2d)
$$B_1 \xrightarrow{\tau_5} B$$
(SM1.2e)
$$A \xrightarrow{\tau_6} A^*.$$

First, we explain how to obtain SubNet_{MAPK} from Net_{MAPK}.

- (i) We obtain (SM1.2a) by removing the reverse reaction indexed by the rate constant κ_{13} from (SM1.1a).
- (ii) We obtain (SM1.2b) by removing the reverse reaction indexed by the rate constant κ_{14} and the intermediate A^*B_1 from (SM1.1b).
- (iii) We obtain (SM1.2c) by removing the reverse reaction indexed by the rate constant κ_{15} , the intermediate CB_2 , and the specie C from (SM1.1c). Similarly, we obtain (SM1.2d) from (SM1.1d), and we obtain (SM1.2e) from (SM1.1e)–(SM1.1f).

Funding: XT was funded by the NSFC12001029.

^{*}Submitted to the editors DATE.

[†]School of Mathematical Sciences, Beihang University, Beijing, China (xiaoxian@buaa.edu.cn, https://sites.google.com/site/rootclassification/).

[‡]School of Mathematical Sciences, Beihang University, Beijing, China (wangkz@buaa.edu.cn).

It is straightforward to check that the rank of the stoichiometric matrix of the network SubNet_{MAPK} is four. Next, we show that SubNet_{MAPK} admits a simple Hopf bifurcation according to Definition 2.6. We denote by y_1, \ldots, y_6 the concentrations of the 6 species in SubNet_{MAPK}, see Table SM1. Let $\tau = (\tau_1, \ldots, \tau_7)$, and let $y = (y_1, \ldots, y_6)$.

 $\begin{array}{c} {\rm Table~SM1} \\ {\it Species~concentrations~of~SubNet_{MAPK}} \end{array}$

y_1	y_2	y_3	y_4	y_5	y_6
A^*	B	B_1	A^*B	B_2	A

Denote the system of ODEs by $\dot{y} = \hat{f}(\tau, y)$. Let $\operatorname{Jac}_{\hat{f}}^{\operatorname{red}}(\tau, y)$ be a reduced Jacobian matrix of $\hat{f}(\tau, y)$ with respect to y. Let

$$\tau^* = (100, 1, 100, 1, 10, 2.39, 0.239).$$

And, pick a corresponding positive steady state

$$y^* = (0.1, 0.1, 0.1, 1, 1, 1).$$

Notice here that this point exactly lies on the Hopf bifurcation curve given in [SM11, Figure 7]. The eigenvalues of $\operatorname{Jac}_{\hat{f}}^{\operatorname{red}}(\tau^*, y^*)$ are approximately

$$-22.314 + 6.993i$$
, $-22.314 - 6.993i$, **0.815**i, **-0.815**i.

As the value of τ_7 varies, in the neighborhood of τ_7^* , consider the curve of rate constants

(SM1.3)
$$\tau(\tau_7) = (100, 1, 100, 1, 10, 10\tau_7, \tau_7).$$

We remark that for every point on this curve, y^* is a corresponding positive steady state. When $\tau_7 = 0.228$, the eigenvalues of $\operatorname{Jac}_{\hat{f}}^{\operatorname{red}}(\tau(\tau_7), y^*)$ are approximately

$$-22.282 + 6.995i$$
, $-22.282 - 6.995i$, $0.0284 + 0.797i$, $0.0284 - 0.797i$.

In this case, a nearby oscillation is generated around the positive steady state y^* , see Figure SM1, where we set the initial concentrations to

(SM1.4)
$$y^{(0)} = (0.15, 0.15, 0.15, 1.1, 1.1, 1.1).$$

When $\tau_7 = 0.248$, the eigenvalues of $\operatorname{Jac}_{\hat{f}}^{\operatorname{red}}(\tau(\tau_7), y^*)$ are approximately

$$-22.340 + 6.991i$$
, $-22.340 - 6.991i$, $-0.0238 + 0.829i$, $-0.0238 - 0.829i$.

We observe that when the value of τ_7 changes from 0.228 to 0.248, the real parts of a pair of conjugate-complex eigenvalues changes from positive to negative, and become zero when $\tau_7 = \tau_7^*$. Moreover, all other eigenvalues remain with negative real parts. So, by Definition 2.6, SubNet_{MAPK} has a simple Hopf bifurcation at (τ^*, y^*) with respect to τ_7 .

Below, we show that the original network Net_{MAPK} also admits a simple Hopf bifurcation. Let x_1, \ldots, x_{14} denote the concentrations of the species in Net_{MAPK}, see Table SM2. Let $\kappa = (\kappa_1, \ldots, \kappa_{18})$, and let $x = (x_1, \ldots, x_{14})$. Denote the system of

FIG. SM1. The network SubNet_{MAPK} gives rise to oscillations with respect to the species in Table SM1. The rate constants are given by $\tau(\tau_7)$ in (SM1.3) where the value of τ_7 is 0.228. We set the initial concentrations to $y^{(0)}$ in (SM1.4).

Table SM2 $Species\ concentrations\ of\ Net_{MAPK}.$

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}
A^*	B	B_1	A^*B	B_2	A	D_1	D_2	D_1A	D_2A^*	C	CB_1	CB_2	A^*B_1

ODEs by $\dot{x} = f(\kappa, x)$. Let $\operatorname{Jac}_f^{\operatorname{red}}(\kappa, x)$ be a reduced Jacobian matrix of $f(\kappa, x)$ with respect to x. Let

$$\kappa^* = (200, 1, 200, 10, 2, 1, 20, 1, 1.00579, 0.00579, 1.0579, 0.00579, 1, 10, 1, 1, 1, 0.1).$$

Then, pick a positive steady state corresponding to κ^*

$$x^* = (0.1, 0.1, 0.1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.1).$$

The eigenvalues of $\operatorname{Jac}_f^{\operatorname{red}}(\kappa^*, x^*)$ are approximately

$$-76.416$$
, -32.662 , -15.519 , -5.290 , -3.364 , -3.015 , **0.225**i, **-0.225**i.

As the value of κ_{10} varies, in the neighborhood of κ_{10}^* , consider the curve of rate constants

(SM1.5)
$$\kappa(\kappa_{10}) = (200, 1, 200, 10, 2, 1, 20, 1, 1 + \kappa_{10}, \kappa_{10}, 1 + 10\kappa_{10}, \kappa_{10}, 1, 10, 1, 1, 1, 0.1),$$

and notice that for every point on the curve, x^* is a positive steady state. When $\kappa_{10} = 0.00479$, the eigenvalues of $\mathrm{Jac}_f^{\mathrm{red}}(\kappa(\kappa_{10}), x^*)$ are approximately

$$-76.411, -32.661, -15.519, -5.291, -3.363, -3.0128, \mathbf{0.00103} + \mathbf{0.223}i, \mathbf{0.00103} - \mathbf{0.223}i.$$

In this case, a nearby oscillation is generated around the positive steady state x^* , see Figure SM2, where we set the initial concentrations to

$$(\mathrm{SM}1.6) \\ x^{(0)} = (0.15,\ 0.15,\ 0.15,\ 1.1,\ 1$$

Notice that here, we see that the capacity of SubNet_{MAPK} for oscillations is inherited from Net_{MAPK} by the facts that y^* exactly gives the first six coordinates of x^* , and $y^{(0)}$ exactly gives the first six coordinates of $x^{(0)}$. When $\kappa_{10} = 0.00679$, the eigenvalues

FIG. SM2. The network Net_{MAPK} gives rise to oscillations, and we show here only the first six species in Table SM2. The rate constants are given by $\kappa(\kappa_{10})$ in (SM1.5) where the value of κ_{10} is 0.00479. We set the initial concentrations to $x^{(0)}$ in (SM1.6). We remark that the maximum amplitude of the green curve is no more than 0.01.

of $\operatorname{Jac}_f^{\operatorname{red}}(\kappa(\kappa_{10}), x^*)$ are approximately

$$-76.421, -32.664, -15.520, -5.290, -3.365, -3.0181, \textbf{-0.00104} + \textbf{0.227} i, \textbf{-0.00104} - \textbf{0.227} i.$$

We observe that when the value of κ_{10} changes from 0.00479 to 0.00679, the real parts of a pair of conjugate-complex eigenvalues change from positive to negative, and become zero when $\kappa_{10} = \kappa_{10}^*$. Moreover, all other eigenvalues remain with negative real parts. So, by Definition 2.6, Net_{MAPK} has a simple Hopf bifurcation at (κ^*, x^*) with respect to κ_{10} .