BESIII Physics & Software Meeting Measurement of the CP even fraction F_+ in $D^0 \to K^+K^-\pi^+\pi^-$

Martin Tat Guy Wilkinson Sneha Malde Yu Zhang

University of Oxford

10th June 2022

Outline

- Introduction and motivation
- 2 Strategy of strong-phase analysis
- Selection
- 4 Fit of single tag yields
- 5 Fit of double tag yields
 - Fit strategy
 - CP tags
 - $K_{S,L}\pi\pi$ tags
- 6 Reweighting of $KK\pi\pi$ model
- 8 Systematics
- Summary and conclusion

Introduction

- Perform strong-phase analysis of $D^0 \to K^+K^-\pi^+\pi^-$
- This analysis: Phase space integrated analysis
 - $2.93\,\mathrm{fb^{-1}}\ \psi(3770)\ \mathrm{data}\ \mathrm{from}\ 2010\text{-}2011$
 - Measure CP even fraction F₊
- Future analysis: Binned phase space analysis
 - Expect pprox 20 fb $^{-1}$ ψ (3770) data from 2010-2011 and 2021-2023
 - Measure amplitude-averaged cosine and sine of strong-phase c_i and s_i
 - Plan to analyse 2021-2022 data initially

Introduction to GGSZ analysis of γ

- Main motivation: Measure γ in $B^\pm \to DK^\pm$ with self-conjugate multi-body D decay
 - Model independent measurement: Bins of D decay phase space
 - External inputs: Measure c_i and s_i at BESIII
 - ullet Poor binning reduces statistical sensitivity o No bias!
- ullet J. High Energ. Phys. 2021, 169 (2021): $B^\pm o D h^\pm$, $D o K_S^0 h^+ h^-$
 - Single most precise measurement: $\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$

Introduction to GGSZ analysis of γ

- Our aim: Analyse $B^\pm \to [K^+K^-\pi^+\pi^-]_D h^\pm$ in bins of phase space
 - Develop binning scheme using LHCb model JHEP 02 (2019) 126
 - ullet Simultaneously analyse c_i/s_i at BESIII and γ at LHCb
 - Expected precision $\Delta\gamma \approx 12^\circ$ with LHCb Run 1+2

Figure 1: Binning scheme for $D^0 \to K^+K^-\pi^+\pi^-$

Introduction to D mixing and CP-violation

- $D o KK\pi\pi$ can also be used to study D-mixing
- Phase space integrated analysis:
 - Physical Review D, 91(9), 2015
 - Measure mixing parameter $y_{\rm CP}$ and CP-violation parameter A_{Γ} in self-conjugate multi-body decays
- Analysis in bins of phase space:
 - Phys. Rev. Lett. 127, 111801 (2021)
 - Bin-flip analysis of $D \to K_S \pi \pi$
 - Measure mixing parameters x, y and CP-violation parameters |q/p|, φ

(a) Source: HFLAV

(b) Source: LHCb outreach

Motivation for F_+ measurement

- ullet F_+ describes the CP content of a self-conjugate multi-body decay
 - $F_+ = 1$ (0) for CP even (odd) final states
- F_+ can be measured with current $3 \, \text{fb}^{-1}$ dataset
 - First model independent measurement of $F_{\perp}^{KK\pi\pi}!$
 - Useful to test agreement with LHCb model prediction: $F_+ = 0.736$
- ullet Important input to quasi-GLW analysis of the CKM angle γ
 - Current GLW modes: KK, $\pi\pi$, $\pi\pi\pi\pi$
 - ullet Minimal effort to include $KK\pi\pi$ in GLW analyses \Longrightarrow More statistics
- Other F_+ measurements:
 - $D^0 \to \pi^+\pi^-\pi^+\pi^-$ JHEP 01 (2018) 144
 - $D^0 \to K_S \pi^+ \pi^- \pi^0$ JHEP 01 (2018) 82
 - $D^0 \rightarrow h^+ h^- \pi^0$ Physics Letters B 747 (2015)
 - Measurements are from CLEO-c, BESIII analyses ongoing

Strategy for strong-phase analysis

- **①** Select double tags of $KK\pi\pi$ vs flavour, CP and self-conjugate tags
- Normalise double tag yields by the corresponding single tag yields
- Measure flavour tag yields K_i
- Fit c_i with CP tags and c_i+s_i with self-conjugate tags:

c_i/s_i analysis: Bins of $KK\pi\pi$ phase space

CP:
$$M_i \propto (K_i + K_{-i} - 2c_i \sqrt{K_i K_{-i}} (2F_+^{\text{tag}} - 1))$$

Self-conjugate:
$$M_{ij} \propto \left(K_i K_{-j}' + K_{-i} K_j' - 2 \sqrt{K_i K_{-i} K_j' K_{-j}'} (c_i c_j' + s_i s_{-j}')\right)$$

F_+ analysis: Sum over all $KK\pi\pi$ phase space bins

CP:
$$M \propto \left(1 - 2(2F_{+}^{KK\pi\pi} - 1)(2F_{+}^{\text{tag}} - 1)\right)$$

Self-conjugate:
$$M_j \propto \left(K_j' + K_{-j}' - 2c_j' \sqrt{K_j' K_{-j}'} (2F_+^{KK\pi\pi} - 1)\right)$$

Selection

- Selection of charged and neutral particles follow standard track and shower requirements
- Require flight significance > 2 for K_S
- K_S veto for $KK\pi\pi$ and $\pi\pi\pi^0$ tags
- ΔE cut of 3σ
- ullet ΔE fit for 4-body modes allows a non-smooth background at $\Delta E=0$

Figure 3: Double Gaussian signal and Chebychev polynomial background

Single tag fits

- Fit strategy: Fit $m_{
 m BC}$
- Fit model:
 - Signal: PDF from signal MC, convoluted with single or double Gaussian
 - Flat background: Argus PDF
 - Peaking background shape and yield fixed
 - Fit shape to dedicated MC samples
 - Calculate yield from ratios of efficiencies and branching fractions

Single tag fits

Figure 5: Single tag fits of CP even tags

Single tag fits

Figure 6: Single tag fits of CP odd tags

Single tag yields and efficiencies

Tag mode	Single tag yield	Single tag efficiency (%)
$K^+K^-\pi^+\pi^-$	10642 ± 156	19.02 ± 0.09
K ⁺ K ⁻	56303 ± 262	63.41 ± 0.11
$\pi^+\pi^-$	20386 ± 179	67.41 ± 0.10
$K_S\pi^0$	67876 ± 278	38.18 ± 0.11
$K_S\pi^0\pi^0$	22392 ± 229	14.35 ± 0.08
$K_L\pi^0$	47595 ± 1653	27.83 ± 0.23
$K_{S}\eta$	9308 ± 113	31.78 ± 0.10
$K_{\mathcal{S}}\eta'_{\pi\pi\eta}$	3213 ± 62	12.81 ± 0.07
$K_S \eta'_{ ho\gamma}$	8283 ± 116	20.80 ± 0.09
$\pi^+\pi^-\pi^0$	107504 ± 602	36.65 ± 0.11
$K_S\omega$	22068 ± 217	14.50 ± 0.08
$K_S\pi^+\pi^-$	161914 ± 440	36.40 ± 0.11
$K_S \pi^+ \pi^-$ part. reco.	161914 ± 440	$\textbf{36.40} \pm \textbf{0.11}$
$K_L \pi^+ \pi^-$	223141 ± 2146	46.1 ± 0.3

- Fit strategy:
 - ullet Fully reconstructed tags: Only fit signal $\emph{m}_{
 m BC}$ because of low statistics
 - ullet Partially reconstructed tags: Fit missing mass squared $m_{
 m miss}^2$
- Fit model:
 - Signal: PDF from signal MC, convoluted with single Gaussian
 - Background: Argus PDF
 - Peaking backgrounds fixed, with quantum correlation accounted for
 - Simple sideband subtraction for correct signal but wrong tag event
- For tags with multiple bins, perform a simultaneous fit of all bins
 - Shape is floated and shared across all bins
 - Yield of signal and combinatorial background is floated in each bin

Figure 7: Double tag fits of CP even tags

Figure 8: Double tag fits of CP odd tags

CP double tag yields and efficiencies

Daubla tag viold	Double tag officionsy (0/)
	Double tag efficiency (%)
28 ± 10	14.52 ± 0.06
2 ± 4	15.02 ± 0.06
48 ± 7	6.87 ± 0.04
8.0 ± 2.8	2.873 ± 0.026
7 ± 5	5.29 ± 0.04
8.9 ± 3.0	5.72 ± 0.04
2.2 ± 1.6	2.024 ± 0.021
8.7 ± 3.0	3.295 ± 0.027
53 ± 10	7.66 ± 0.04
9 ± 3	2.234 ± 0.022
	48 ± 7 8.0 ± 2.8 7 ± 5 8.9 ± 3.0 2.2 ± 1.6 8.7 ± 3.0 53 ± 10

Non-resonant background in $K_S\omega$

- ullet $K_S\omega$ has CP-even contamination from non-resonant $K_S\pi\pi\pi^0$
 - $F_+(K_S\pi\pi\pi^0) = 0.238 \pm 0.012 \pm 0.012$ from CLEO
- ullet From $m_{
 m BC}$ fit, subtract flat background using sPlot and fit $\pi\pi\pi^0$

Double tag $K_S \omega$, ω mass fit

(b) Double tag

F_+ measurement with $K_{S,L}\pi\pi$ tags

• With $K_S\pi\pi$, increase sensitivity through binning of $K_S\pi\pi$ phase space

$$M_{j} \propto \left(K_{j}^{\prime} + K_{-j}^{\prime} - 2\sqrt{K_{j}^{\prime}K_{-j}^{\prime}}c_{j}^{\prime}(2F_{+}^{KK\pi\pi} - 1)\right)$$

• Problem: $KK\pi\pi$ reconstruction efficiency is too low \to Low yields!

ullet Likely explanation: Softer kaons o Kaons get stuck inside tracker

F_+ measurement with $K_{S,L}\pi\pi$ tags

- Solution: Partially reconstructed $KK\pi\pi$
- Strategy:
 - **1** Reconstruct $D \rightarrow K_S \pi \pi$
 - 2 Require 3 remaining good tracks consistent with $K\pi\pi$
 - Use missing mass to reconstruct missing kaon

Mode	Inclusive yield	Double tag efficiency
$K_S\pi\pi$ (fully reconstructed)	69 ± 9	6.56 ± 0.04
$K_S\pi\pi$ (partially reconstructed)	91 ± 15	$\textbf{7.01} \pm \textbf{0.04}$
$K_L\pi\pi$ (partially reconstructed)	158 ± 15	$\textbf{7.25} \pm \textbf{0.04}$

Partially reconstructed $KK\pi\pi$ vs $K_S\pi\pi$

- Main challenge with partially reconstructed $KK\pi\pi$: $K\pi\pi\pi\pi^0$
- Require no π^0 candidates

Figure 10: $KK\pi\pi$ vs $K_S\pi\pi$

Figure 11: $KK\pi\pi$ vs $K_S\pi\pi$ simultaneous fit

Efficiency corrections

- All yields must be corrected for efficiency
- Problem: BESIII simulation uses a very old $KK\pi\pi$ model in EvtGen
- Solution: Reweight BESIII simulation to look like the LHCb model
 - Use Python hep_ml Gradient Boosted Reweighter
 - Variables:

 - $2 m^2 (K^+ \pi^-)$
 - $m^2(K^-\pi^+)$
 - $m^2(\pi^+\pi^-)$

 - $m^2(K^+K^-\pi^+)$

Naive efficiency correction

Figure 12: Before reweighting

Naive efficiency correction

Figure 13: After reweighting

Does the naive reweighting work?

Figure 14: Single tag $D \to KK\pi\pi$ in data and MC after reweighting

Quantum correlated LHCb model

- Problem with naive reweighting:
 - ullet LHCb model assumes a pure $D^0 o K^+ K^- \pi^+ \pi^-$ decay
 - No quantum correlations
 - Example: If tag is $D \to KK$, the $D \to KK\pi\pi$ decay will be CP odd!
 - ullet Quantum correlations will affect phase space distribution \Longrightarrow Efficiencies could change
- Solution: Separate reweighters for CP even/odd $D o K^+K^-\pi^+\pi^-$
 - CP even tags: Use efficiencies after reweighting to CP odd model
 - CP odd tags: Use efficiencies after reweighting to CP even model
 - $K_{S,L}\pi\pi$ tags: Do a weighted average of the two efficiencies

Before weighting to CP even/odd models

Figure 15: $m^2(\pi^+\pi^-)$ before reweighting

After weighting to CP even/odd models

Figure 16: $m^2(\pi^+\pi^-)$ after reweighting

No reweighting	Naive reweighting	CP even model	CP odd model
18.0%	19.0%	18.1%	21.9%

Agreement between quantum correlated data and model

- Note: LHCb model knows nothing about quantum correlations
- $D^0/\bar{D^0}$ amplitudes simply combined to obtain CP even/odd models
- Important question: Can the model describe quantum correlated double tag data at all? Answer: Yes!

- (a) Double tags of $KK\pi\pi$ vs CP even
- **(b)** Double tags of $KK\pi\pi$ vs CP odd

Figure 17: $m^2(\pi^+\pi^-)$ in double tags, compared with CP even/odd LHCb models

F_+ measurement with CP tags

$D^0 \rightarrow KK\pi\pi$ BF asymmetry

Figure 18: F_+ combination of CP tags Fit result: $F_+ = 0.703 \pm 0.042$, $\chi^2 = 1.4$

F_+ measurement with $K_{S,L}\pi\pi$ tags

$KK\pi\pi$ vs $K_1\pi\pi$ double tag yields

(a) Result: $F_+ = 0.872 \pm 0.091$, $\chi^2 = 1.3$ (b) Result: $F_+ = 0.679 \pm 0.103$, $\chi^2 = 0.8$

Figure 19: F_+ combination of $K_S\pi\pi$ (left) and $K_L\pi\pi$ (right)

F_+ combination

Figure 20: F_+ combination

- Observe large anti-correlation in $K_L\pi\pi$ because $F_+^{K_L\pi\pi} \approx 0.354$
 - Yield of $K_L\pi\pi$ is twice as large as that of $K_S\pi\pi$
 - ullet Fractional bin yields and total yield contains information about F_+
 - When $K_L\pi\pi$ BF is available, combine all tags!

Systematics

Tag-specific systematic uncertainties, in units of 10^{-2}

Source	CP tags	$K_{S,L}\pi\pi$ tags
Efficiency	0.1	0.4
External inputs	0.3	8.0
Peaking backgrounds	0.2	0.3
$K_L^0\pi^0$ ST yield	2.1	N/A
Efficiency factorisation	0.6	N/A
Total	2.2	0.9

Common systematic uncertainties, in units of 10^{-2}

Source	Common systematic
Efficiency reweighting	1.5
$K_{\mathcal{S}}^{0}$ veto	0.8

Summary

- First model-independent measurement of CP even fraction in $D^0 \to K^+ K^- \pi^+ \pi^-$
 - Analysis is now ready for review
 - $F_{+} = 0.730 \pm 0.040 \pm 0.017$
 - Statistics dominated!
 - Very consistent with model prediction: $F_+ = 0.736$
- Valuable input to:
 - ullet γ measurement with GLW method
 - D-mixing and CPV analyses
- ullet Future $\psi(3770)$ data will allow us to perform a binned analysis

Thank you!

Backup

Backup

Tag modes

- Flavour tags:
 - *K*π, *K*ππ⁰, *K*πππ, *Ke*ν
- CP even tags:
 - KK, $\pi\pi$, $\pi\pi\pi^0$ (mostly CP even), $K_S\pi^0\pi^0$, $K_L\pi^0$
- CP odd tags:
 - $K_S\pi^0$, $K_S\eta$, $K_S\omega$, $K_S\eta'_{\pi\pi\eta}$, $K_S\eta'_{\rho\gamma}$
- Self-conjugate tags:
 - K_Sππ, K_Lππ

Underlined tags have not been finalized yet

Figure 21: Partially reconstructed $KK\pi\pi$ vs $K_S\pi\pi$ simultaneous fit

Figure 22: $KK\pi\pi$ vs $K_L\pi\pi$ simultaneous fit

Peaking backgrounds

- Strategy for fixing peaking backgrounds:
 - Generate dedicated MC sample
 - Obtain retention rate of peaking background
 - Fit background with appropriate shape (Gaussian, Crystal Ball, ...)
 - Use BFs from PDG to fix background-to-signal ratio

Figure 23: Double Gaussian fit of K_SKK background in $KK\pi\pi$ single tag fit

Quantum correlation in peaking backgrounds

- Strategy for peaking backgrounds with different CP:
 - Correct using $F_{+}^{KK\pi\pi}$ from LHCb model
- Strategy for K_SKK background in $KK\pi\pi$
 - $F_{+}^{K_{S}KK} = 0.524 \pm 0.018$ from Phys. Rev. D **102**, 052008
 - Use dedicated MC to find retention in each K_SKK bin
 - K_S veto removes more $K_S\phi$ than $K_Sa(980)^0 \implies$ Calculate effective F_+ for K_SKK to $KK\pi\pi$ background