Q1.

Draw truth tables for each of the following logical functions of 3 Boolean variables:

(a)
$$z = f(a, b, c) = a + \overline{b} + \overline{c}$$

Solution: There should be a 1 in any row where a=1, as well as any row where b=0 or where c=0:

a	b	\mathbf{c}	\mathbf{z}
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(b)
$$z = f(a, b, c) = \overline{a}(b + \overline{c})$$

α		
~	lution	•
\mathbf{v}	lution	•

a	b	\mathbf{c}	\mathbf{z}
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

When building a truth table like the one above, it can be helpful to add intermediate columns that show the truth values of individual parts of the overall Boolean expression:

a	b	c		\overline{c}	$(b + \overline{c})$	z
0	0	0	1	1 0	1	1
0	0	1	1	0	0	0
0	1	0	1	1	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1 1 1	0	1	0	0	0	0
	1	0	0	1	1	0
1	1	1	0	0	1	0

(c)
$$z = f(a, b, c) = \overline{a}b\overline{c} + \overline{a}\overline{b}\overline{c} + \overline{a}bc$$

Solution:

```
c \mid z
   b
0
    0
        0
            1
0
        1
            0
0
    1
        0
           1
0
    1
        1
           1
    0
1
        0 \mid 0
1
    0
       1
           0
1
    1
        0
           0
        1 \mid 0
```

Note that this is the same truth table for $z = \overline{a}(b + \overline{c})$.

$$z = \overline{a}b\overline{c} + \overline{a}\overline{b}\overline{c} + \overline{a}bc$$

$$= \overline{a}((b\overline{c}) + (\overline{b}\overline{c}) + (bc))$$

$$= \overline{a}((b + \overline{b})\overline{c} + (bc))$$

$$= \overline{a}(\overline{c} + (bc))$$

$$= \overline{a}((\overline{c} + b)(\overline{c} + c))$$

$$= \overline{a}(\overline{c} + b)$$

- (d) $w = f(s, b, i) = i + (s\overline{b})$, where
 - w is 1 if a warning light should be on
 - s is 1 if the speed is greater than 0
 - \bullet b is 1 if the seatbelt is buckled
 - *i* is 1 if the ignition key has been turned in the last 5 seconds

Solution:

```
i
   b
        \mathbf{S}
            W
0
    0
        0
            0
0
    0
        1
             1
0
    1
        0
           0
    1
0
        1
    0
1
    0
        1
            1
1
    1
        0
            1
            1
        1
```

This answer is easy to check with a little Python:

```
>>> def bit_not(b):
...    return 1 if b == 0 else 0
...
>>> for i in (0,1):
...    for b in (0,1):
...    for s in (0,1):
...    w = i or (s and (bit_not(b)))
```

```
... print("{} {} {} | {} ".format(i, b, s, w))
...
0 0 0 | 0
0 0 1 | 1
0 1 0 | 0
0 1 1 | 0
1 0 0 | 1
1 0 1 | 1
1 1 1 | 1
```

Note that the built-in Python and or operators work with 1 and 0, but that we need to define our own version of not to get a truth table made only of 1's and 0's.

Q2.

Show that the two circuits in Fig. 1 are equivalent by drawing truth tables for each circuit. [Storey, Electronics: A Systems Approach, 5th Ed., Pearson]

Figure 1: Equivalent logic circuits

							$C = \overline{A} \cdot \overline{B}$
			0	0	1	1	1
Solution: Truth table for Fig. 1(a):				1		0	0
			1	0	0	1	0
		1	1	0	0	0 0	
					1		ı
	A	B	A+A	B ($C = \frac{1}{2}$	$\overline{A +}$	\overline{B}
	0	0	0			1	
Truth table for Fig. 1(b):	0	1	1			0	
	1	0				0	
	1	1	1			0	
			1	'			

Q3.

Given that A is a Boolean variable, evaluate and then simplify the following expressions: [Storey]

- \bullet $A \cdot 1$
- $\bullet A \cdot \overline{A}$
- 1 + A
- \bullet $A + \overline{A}$
- 1 ⋅ 0
- 1+0

Solution:

- $A \cdot 1 = A$ (Identity)
- $A \cdot \overline{A} = 0$ (And-Complement)
- 1 + A = 1 (Annihilation)
- $A + \overline{A} = 1$ (Or-Complement)
- $1 \cdot 0 = 0$ (Annihilation)
- 1 + 0 = 1 (Identity)

Q4.

Your team lead has handed you the logic circuit design (part of a test system for a digital camera) shown in Fig. 2 to analyse and simplify.

Figure 2: A logic circuit

(a) Write a Boolean expression for the output of this logic circuit in terms of its inputs.

Solution: $Q = A\overline{B}C + A(\overline{B}\overline{C})$

You can arrive at this in various ways. I like to work my way back from the output (Q, in this case) towards the inputs:

- 1. The first gate I hit is an OR, so I know that Q = ?+?.
- 2. Looking at one branch of the OR, I find a 3-input AND gate, with inputs A, \overline{B} , and C. So now I know that $Q = A\overline{B}C + ?$.
- 3. Looking at the other branch of the OR, I see A ANDed with the output of another AND gate that combines \overline{B} and \overline{C} . So $Q = A\overline{B}C + A(\overline{B}\overline{C}) = A\overline{B}C + A\overline{B}\overline{C}$
- (b) Apply the rules of Boolean algebra to find a simpler expression for Q.

Solution: Starting from the expression found in the previous part, we can do an algebraic simplification (factor out common terms, and use the fact that a logic variable ORed with its inverse is always TRUE):

$$Q = A\overline{B}C + A(\overline{B}\overline{C})$$

$$= A(\overline{B}C + \overline{B}\overline{C})$$

$$= A(\overline{B}(C + \overline{C}))$$

$$= A\overline{B}$$

(c) Draw a logic circuit which implements the simplified version of the design.

