ЗАВДАННЯ ДЛЯ ЗАХИСТУ АКАДЕМІЧНОЇ РІЗНИЦІ З ДИСЦИПЛІНИ «КОМП'ЮТЕРНА ЛОГІКА» БІЛЕТ № 18

Виконав:

Студент ННІКІТ СП-225

Крутофіст Олексій Іванович

1. Множення чисел, поданих паралельним кодом другим способом. Принцип множення. Навести операційну схему пристрою для виконання операцій множення чисел другим способом та надати пояснення її функціонування. Розрядність операндів: знак числа — 1 розряд, число 12 - розрядів.

Операційна схема пристрою для виконання операцій множення чисел другим способом

Пояснення функціонування операційної схеми пристрою для виконання операції множення чисел другим способом:

Перед початком множення другим способом, множник X записують в регістр RG2,а множене Y — в молодші розряди регістру RG3 (тобто в регістрі RG3 установлюють $Y_0 = Y2^{-n}$). В кожному і-му циклі множення додавання кодів RG3 і RG1 управляє цифра RG2(n), а в регістрі RG3 здійснюється зсув вліво на один розряд, в результаті чого формується величина $Y_i = 2Y_{i-1}$. Оскільки сума часткових добутків в процесі множення нерухома, зсув в регістрі RG3 можна сполучити в часі з підсумовуванням (як правило, $t_n \ge t_3$). В цьому випадку $t_m = nt_n$. Завершення операції множення визначається за нульовим вмістом регістру RG2, що також приводить до збільшення швидкодії, якщо множник ненормалізований.

2. Виконати операцію додавання чисел A і B у форматі з плаваючою комою згідно чотирьох етапів. Виконати дію округлення результату. Додавання виконувати у модифікованому доповнюваному коді. У процесі додавання кількість розрядів мантис чисел A і B може бути збільшено до необхідних значень, але результат додавання після округлення повинен бути в межах

заданої розрядної сітки: для порядку n-розрядів, і m-розрядів для мантис чисел A і B (без урахування кількості розрядів знака). Результат множення чисел A і B надати у прямому коді. Примітка: перед виконанням операції додавання операнди A і B привести до нормалізованого вигляду.

$$A = 2^{-2} * 1,0110111, B = 2^{2} * (-0,1001011), n=4, m=8.$$

3. Побудувати функціональну схему пристрою з розподіленою логікою для обчислення функції D. Надати пояснення та обґрунтування функціонального пристрою. Кількість розрядів для кожного з операндів A, B, C дорівнює п без урахування розрядів знака. Операцію множення виконувати другим способом.

Операційна схема пристрою для обчислення функції

Функціональна схема пристрою для обчислення функції

Для обчислення функції D використовується другий метод множення. Другий метод множення: Множник X записують в регістр RG3, а множене Y - в молодші розряди регістру RG1. В кожному і-му циклі множення додавання кодів RG1 і RG2 управляє цифра RG3(n), а в регістрі R1 здійснюється зсув вліво на один розряд, в результаті чого формується величина $Y_i = 2Y_{i-1}$. Оскільки сума часткових добутків в процесі множення нерухома, зсув в регістрі RG1 можна сполучити в часі з підсумовуванням (як правило, $t_n \ge t_3$). В цьому випадку $t_m = nt_n$. Завершення операції множення визначається за нульовим вмістом регістру RG3, що також приводить до збільшення швидкодії, якщо множник ненормалізований. Множене А записують в молодші розряди регістру RG1, до множника В додається +1 і записується в регістр RG3. В кожному циклі множення додаванням кодів управляє цифра RG3(n). Після завершення ітераційного процесу, проводиться здвиг в право на три, таким чином завершується процес розрахунку виразу. Логічний елемент (=1), для перевірки А, якщо А буде від'ємним числом, то цей елемент переведе число в оборотний код, а якщо позитивне, то ні чого не буде змінювати. На виході працює логічний елемент (Не), який інвертує значення, що приводить до готового результату.