Online Lewis Weight Sampling

Taisuke Yasuda

Carnegie Mellon University

based on work with

David P. Woodruff Carnegie Mellon University

ℓ_p Approximation

How small can T be?

- Input: n vectors $\{a_i\}_{i=1}^n \subseteq \mathbb{R}^d$ in d dimensions, $n \gg d$
 - Goal: approximate $\{a_i\}_{i=1}^n$ by a smaller weighted subset
- Spectral approximation: subset $T \subseteq [n]$ and weights s_i for $i \in T$ such that...

for every
$$x \in \mathbb{R}^d$$
,
$$||Ax||_2^2 = \sum_{i=1}^n |\langle a_i, x \rangle|^2 = (1 \pm \varepsilon) \sum_{i \in T} s_i |\langle a_i, x \rangle|^2$$

• ℓ_p subspace embedding: subset $T \subseteq [n]$ and weights s_i for $i \in T$ such that...

for every
$$x \in \mathbb{R}^d$$
,
$$||Ax||_p^p = \sum_{i=1}^n |\langle a_i, x \rangle|^p = (1 \pm \varepsilon) \sum_{i \in T} s_i |\langle a_i, x \rangle|^p$$

• Applications: linear regression, low rank approximation, ...

Algorithms for ℓ_p Approximation: Sampling

- Natural approach for estimating a sum: sampling
 - 1. For each $i \in [n]$, compute sampling probabilities p_i
 - 2. Set $s_i = \begin{cases} \frac{1}{p_i} & \text{with probability } p_i \\ 0 & \text{with probability } 1 p_i \end{cases}$
 - 3. Set $T = \{i \in [n] : s_i > 0\}$
- T is a random variable with $\mathbf{E}|T| = \sum_{i=1}^{n} p_i$

 ℓ_p Lewis Weight Sampling

Theorem (ℓ_p **Lewis Weight Sampling, Cohen—Peng 2015).** There exist sampling probabilities $\{p_i\}_{i=1}^n$ that samples an ε -approximate ℓ_p subspace embedding with probability at least 2/3, and

$$\mathbf{E}|T| = \sum_{i=1}^{n} p_i = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p \le 2\\ \tilde{O}(\varepsilon^{-5}d^{p/2}) & p > 2 \end{cases}$$

- Based on work by Lewis (1978)
- Developed by Bourgain—Lindenstrauss—Milman (1989), Ledoux—Talagrand (1991), and others

ℓ_p Approximation

- Input: n vectors $\{a_i\}_{i=1}^n \subseteq \mathbb{R}^d$ in d dimensions, $n \gg d$, that arrive one by one
- Output: subset $T \subseteq [n]$ and weights s_i for $i \in T$ chosen online
 - At time step $i \in [n]$, either:
 - Irrevocably assign a weight s_i and keep row i, OR
 - Irrevocably discard row *i*
- Can we output an ε -approximate spectral approximation?
- Can we output an ε -approximate ℓ_p subspace embedding?

Online Spectral Approximation

Theorem (Online Spectral Approximation, Cohen—Musco—Pachocki 2016).

There exist sampling probabilities $\{p_i\}_{i=1}^n$ that can be computed online that samples an ε -approximate spectral approximation with probability at least 2/3, and

$$\mathbf{E}|T| = \sum_{i=1}^{n} p_i = \tilde{O}(\varepsilon^{-2}d\log\kappa^{\mathsf{OL}}) \qquad \kappa^{\mathsf{OL}} = \text{"online condition number"}$$

- ullet Main question we study: does a similar result hold for ℓ_p subspace embeddings?
- Several challenges encountered by previous attempts

Main Result 1: Online \mathcal{E}_p Lewis Weight Sampling

Theorem (Online ℓ_p Lewis Weight Sampling, Woodruff—Y 2023). There exist sampling probabilities $\{p_i\}_{i=1}^n$ that can be computed online that samples an ε -approximate ℓ_p subspace embedding with probability at least 2/3, and

$$\mathbf{E}|T| = \sum_{i=1}^{n} p_i = \begin{cases} \tilde{O}(\varepsilon^{-2} d \log(n\kappa^{\mathsf{OL}})) & p \le 2\\ \tilde{O}(\varepsilon^{-2} d^{p/2} \log(n\kappa^{\mathsf{OL}})) & p > 2 \end{cases}$$

$$\kappa^{\mathsf{OL}} = \text{"online condition number"}$$

- ullet We match offline ℓ_p Lewis weight sampling up to a necessary $\log \kappa^{\rm OL}$ factor
- Answers an open question of Braverman—Drineas—Musco—Musco—Upadhyay—Woodruff (2020)
- We improve the exponent on ε from ε^{-5} to ε^{-2} , also using ideas from online ℓ_p Lewis weight sampling!

Main Result 2: Offline \mathcal{C}_p Lewis Weight Sampling

Theorem (ℓ_p Lewis Weight Sampling, Cohen—Peng 2015 / Woodruff—Y 2023).

There exist sampling probabilities $\{p_i\}_{i=1}^n$ that samples an ε -approximate ℓ_p subspace embedding with probability at least 2/3, and

$$\mathbf{E}|T| = \sum_{i=1}^{n} p_i = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p \le 2\\ \tilde{O}(\varepsilon) & p > 2 \end{cases}$$

$$\tilde{O}(\varepsilon) \tilde{d}^{p/2} \quad p > 2$$

Technical Discussion

Leverage Score Sampling for Spectral Approximation

- Sampling algorithm for offline spectral approximation: leverage score sampling
 - For each $i \in [n]$, define the ith leverage score: $\tau_i(A) = \sup_{x \in \mathbb{R}^d} \frac{|\langle a_i, x \rangle|^2}{\|Ax\|_2^2} = a_i^\top (A^\top A)^{-1} a_i$
 - Set sampling probability $p_i \leftarrow \varepsilon^{-2} \tau_i(A)$

$$\mathbf{E}|T| = \varepsilon^{-2} \sum_{i=1}^{n} \tau_i(A) = \varepsilon^{-2} d$$

The largest fraction of ℓ_2 mass occupied by the ith coordinate

• Intuition: sample "heavier" rows with higher probability

Online Leverage Score Sampling (Cohen—Musco—Pachocki 2016)

- At time $i \in [n]$, let $A_i \in \mathbb{R}^{i \times d}$ denote the first i rows of A
 - Submatrix of *A* formed by the rows we have seen so far
- Online leverage scores $\tau_i^{\mathsf{OL}}(A) := \tau_i(A_i)$
 - $\tau_i(A_i) \ge \tau_i(A)$, so this also gives an ε -approximate spectral approximation
 - Can also show $\sum_{i=1}^{n} \tau_i^{\text{OL}}(A) \leq O(d \log \kappa^{\text{OL}})$, so only $\tilde{O}(\varepsilon^{-2}d \log \kappa^{\text{OL}})$ rows are sampled

How can we compute $\tau_i^{OL}(A)$ without storing A?

Online Leverage Score Sampling (Cohen—Musco—Pachocki 2016)

- Computing $\tau_i^{OL}(A) = \tau_i(A_i)$:
 - Cohen—Musco—Pachocki 2016: approximate A_i using previously sampled rows
 - Analysis using martingale argument, difficult to extend to $p \neq 2$
 - Woodruff—Y 2023: deterministically maintain $A_i^T A_i$ using d^2 space
 - $\bullet \tau_i^{\mathsf{OL}}(A) = a_i^{\mathsf{T}} (A_i^{\mathsf{T}} A_i)^{\mathsf{T}} a_i$
 - Decouple the *computation* of sampling probabilities p_i from *sampling*
 - This generalizes well to $p \neq 2!$

Online \mathcal{C}_p Lewis Weight Sampling

• Offline ℓ_p Lewis weights (Cohen—Peng 2015): compute weights w_i that satisfy

$$w_i = \left(a_i^{\mathsf{T}} (A^{\mathsf{T}} \operatorname{diag}(w)^{1-2/p} A)^{-} a_i\right)^{p/2}$$

• Online ℓ_p Lewis weights (Woodruff—Y 2023): compute weights w_i that satisfy

$$w_i = \left(a_i^{\mathsf{T}} (A_{i-1}^{\mathsf{T}} \operatorname{diag}(w)_{i-1}^{1-2/p} A_{i-1})^{-} a_i\right)^{p/2}$$

- Maintain $A_i^{\mathsf{T}} \mathrm{diag}(w)_i^{1-2/p} A_i$ deterministically
- We show this works!

How do online ℓ_p Lewis weights help with offline ℓ Lewis weight sampling?

- Key difficulty of ℓ_p Lewis weights for p > 2: non-monotonicity
 - ullet When rows are added to A, leverage scores can only decrease: monotonicity
 - When rows are added to A, ℓ_p Lewis weights can *increase*
 - Leads to $\tilde{O}(\varepsilon^{-5}d^{p/2})$ bound rather than $\tilde{O}(\varepsilon^{-2}d^{p/2})$ bound
- Observation: online ℓ_p Lewis weights are monotonic, even for p>2!
 - ullet We show that this observation indeed can be used to obtain $\tilde{O}(\varepsilon^{-2}d^{p/2})$ bound

Conclusion

- ullet We study sampling algorithms for ℓ_p subspace embeddings in the online setting
 - ullet We introduce *online* \mathcal{C}_p *Lewis weight sampling,* which obtains nearly optimal sample complexity bounds
 - This answers an open question of Braverman—Drineas—Musco—Musco—Upadhyay—Woodruff (2020)
- In the offline setting, we use online ℓ_p Lewis weights to obtain the first $\tilde{O}(\varepsilon^{-2}d^{p/2})$ bound for ℓ_p Lewis weight sampling for p>2
 - ullet This improves a previous $\tilde{O}(\varepsilon^{-5}d^{p/2})$ bound by Cohen—Peng (2015)