Master-MIRI Topics on Optimization and Machine Learning (TOML)

José M. Barceló Ordinas Departament d'Arquitectura de Computadors (UPC)

Basic Terminology

An optimization problem (non-linear) is expressed in its standard form as:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ i=1,...,m
 $h_i(x) = 0$ i=1,...,p

where,

$$x \in R^n$$
 optimization variable
 $f_0: R^n \longrightarrow R$ objective function
 $f_i: R^n \longrightarrow R$ inequality constraint functions
 $h_0: R^n \longrightarrow R$ equality constraint functions

If m=p=0 then the problem is called unconstrained

Basic Terminology

The set of points at which the objective function and all constraint functions are defined is called **domain D**:

$$D=dom f_0 \cap_{i=1...m} dom f_i \cap_{i=1...p} dom h_i$$

a point $x \in D$ is **feasible** if it satisfies the constraints,

$$f_i(x) \le 0$$
 i=1,...,m
 $h_i(x) = 0$ i=1,...,p

Otherwise is called unfeasible

The set of all feasible points is called feasible set

The **optimal value p*** is defined as

$$p*=\inf\{ f_0(x) \mid f_i(x) \le 0, i=1,...,m; h_i(x)=0, i=1,...,p \} < \infty$$

The problem is **unfeasible** if $p^* = \infty$

The problem is **unbounded below** if there are feasible points x_k with $f(x_k) \rightarrow -\infty$ with $k \rightarrow \infty$ and then $p^* = -\infty$

Optimal and locally optimal points

We say x^* is an **optimal point** if x^* is feasible and $f_0(x^*)=p^*$

The optimal set is then:

$$X_{opt} = \{x \mid f_i(x) \le 0, i=1,...m; h_i(x) = 0, i=1,...p; f_0(x) = p^* \}$$

A feasible point x with $f_0(x) \le p^* + \varepsilon$ ($\varepsilon > 0$) is called a ε -suboptimal point and the set of all ε -suboptimal points is called the ε -suboptimal set.

A point x is **locally optimal** if there is an R>0 such that

$$f_0(x) = \inf \{f_0(z) \mid f_i(z) \le 0, i=1,...m; h_i(z) = 0, i=1,...p; ||z-x||_2 \le R\}$$

If x is feasible and $f_i(x)=0$ then the i-th inequality $f_i(x)\leq 0$ is active

If x is feasible and $f_i(x) < 0$ then the i-th inequality $f_i(x) \le 0$ is **inactive**

The equality constraints are always active

If m=p=0 then the problem is unconstraint

Feasibility problems

 In order to find whether a point x is feasible we can solve the following optimization problem

minimize 0
subject to
$$f_i(x) \le 0$$
 i=1,...,m
 $h_i(x) = 0$ i=1,...,p

that it has optimal solution $p^*=0$ if x is a feasible point and has solution $p=\infty$ if there is no any feasible point

Conversion to the standard form

- Rearrange the inequality by subtracting any non-zero righthand side.
 - For example $g_i(x)=q_i(x) \rightarrow h_i(x)=g_i(x)-q_i(x)=0$
 - For example $g_i(x)>0 \rightarrow -g_i(x)\leq 0$
 - For example:

minimize
$$f_0(x)$$

subject to $I_i \le x_i \le u_i = 1,...,n$

is equivalent to:

minimize
$$f_0(x)$$

subject to $I_i - x_i \le 0$ $i=1,...,n$
 $x_i - u_i \le 0$ $i=1,...,n$

• For example, maximize $f_0(x)$ is equivalent to minimize $-f_0(x)$

Equivalent problems

Two problems are **equivalent** if from a solution of one problem a solution of the other is readily found.

• Examples:

- Transformation of the objective and constraint functions
- Change of variables x=g(z) if g is one-to-one (biyective)
- Slack variables: $f_i(x) \le 0 \rightarrow f_i(x) + s_i = 0$ with $s_i \ge 0$ for i = 1, ..., m
- Eliminate an equality constraint. Imagine that $h_i(x)=x-g(z)=0$ for each i=1,...,p. Then, we change variables x=g(z) and eliminate $h_i(x)$.
- Introduce equality constraints, e.g. $f_o(A_ox+b) \rightarrow f_o(y_o)$ and $y_o=A_ox+b$

Convex Optimization Problems (COP)

Are those ones that

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i=1,...,m$
 $a^T_i x=b_i$ $i=1,...,p$

where f_0 , f_1 ,..., f_m are convex functions. In other words, with respect a classical optimization problem (slide 2), the requirements are:

- i. The objective function $\mathbf{f_0}$ must be convex
- ii. The inequality constraint functions f_i (i=1,...,m) must be convex
- iii. The equality constraint functions $\mathbf{h}_i = \mathbf{a}^T_i \mathbf{x} \mathbf{b}_i$ (i=1,...,p) must be affine
- iv. Moreover, the feasible set of a convex optimization problem is convex: the set $D=\cap_{i=0...m}$ dom f_i is convex

If \mathbf{f}_0 is quasi-convex, then the problem is quasi-convex

Concave Optimization Problems

Are those ones that

$$\begin{array}{lll} \text{maximize} & & f_0(x) \\ \text{subject to} & & f_i(x) \leq 0 \quad i = 1, \dots, m \\ & & a^T_i x = b_i \quad & i = 1, \dots, p \end{array}$$

where f_0 is concave and f_1 ,..., f_m are convex functions.

The problem is solved minimizing $-\mathbf{f_0}$

If $\mathbf{f_0}$ is quasi-concave, then the problem is quasi-concave

- An optimality criterion for differentiable f₀
 - Let the objective function f_0 be differentiable (in a COP), so that for all $x,y \in \text{dom } f_0$

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T(y-x)$$

And let X denote the feasible set

$$X=\{x \mid f_i(x) \le 0, i=1,...m; h_i(x)=0, i=1,...p\}$$

Then, x is **optimal** iif $x \in X$ and $\nabla f_0(x)^T(y-x) \ge 0$.

<u>Geometrically:</u> $\nabla f_0(x) \neq 0$ means that $-\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x

Unconstraint COP

- Are those ones in which m=p=0 \rightarrow minimize $f_0(x)$
- Then, the optimality condition $\nabla f_0(x)^T(y-x) \ge 0$ reduces to

$$\nabla f_0(x) = 0$$

• To proof this, think in the following: since $f_0(x)$ is differentiable, its domain is open and all y close to x are feasible.

Let this $y=x-t\nabla f_0(x)$ with $t\in \mathbb{R}$, for t small and positive:

$$\nabla f_0(x)^T(y-x) = -t | |\nabla f_0(x)||_2 \ge 0 \rightarrow ||\nabla f_0(x)||_2 = 0 \rightarrow \nabla f_0(x) = 0$$

- **Example:** Unconstrained quadratic optimization: $f_0(x)=(1/2)x^TPx+q^Tx+r \rightarrow \nabla f_0(x)=Px+q=0$. Then,
 - If $q \notin Rank(P) \rightarrow there$ is no solution $\rightarrow f_0$ is unbounded below
 - If P>0 then there is a unique solution x*=-P-1q
 - If P is singular and $q \in Rank(P)$ then the set of optimal points are $X_{opt} = -P^{-1}q + Null(P)$ where Null(P) is the Nullspace of P (x such that Px=0), where $P^{-1} = (P^T P)^{-1} P^T$ (pseudo-inverse)

11

- Some COP: Linear Optimization (LP) problems
 - LP: When the objective and constraint are all affine

minimize c^Tx+d subject to $Gx \le h$ Ax=b

with $G \in \mathbb{R}^{mxn}$ and $A \in \mathbb{R}^{pxn}$, LP is convex in its different forms, e.g. standard form

minimize c^Tx subject to Ax=b $x \ge 0$

The LP in its convex form can be easily converted in the classical standard form using the variables $x=x^+-x^-$,

minimize $c^Tx^+-c^Tx^-+d$ subject to $Gx^+-Gx^-+s=h$ $Ax^+-Ax^-=b$ $s\geq 0, x^+\geq 0, x^-\geq 0$

- Some COP: Linear Fractional problems
 - LFP: When the objective are linear fractional functions

minimize $(c^Tx+d)/(e^Tx+f)$ subject to $Gx \le h$ Ax=b

with dom $f=\{x \mid e^Tx+f>0\}$ can be transformed to a LP,

minimize c^Ty+dz

subject to Gy-hz≤0

Ay-bz=0

 $e^{T}y+fz=1$

z≥0

with:

 $y=x/(e^{T}x+f)$

 $z=1/(e^{T}x+f)$

- Some COP: Quadratic (QP) optimization problems
 - QP: When the objective function is quadratic

minimize (1/2)x^TPx+q^Tx+r subject to Gx≤h Ax=b

with $P \in S_+^n$, $G \in R^{mxn}$ and $A \in R^{pxn}$,

 QCQP (quadratically constrained QP): When the objective and constraint inequalities are quadratic

> minimize $(1/2)x^TPx+q^Tx+r$ subject to $(1/2)x^TP_ix+q^Tx_i+r \le 0$ for i=1,...,m Ax=b

with $P_i \in S_+^n$ (i=0,...,m), $G \in R^{mxn}$ and $A \in R^{pxn}$

- Some COP: Quadratic (QP) optimization problems
 - Some examples:
 - **Least squares and regression:** $||Ax-b||^2_2 = x^TA^TAx 2b^TAx + b^Tb$ is a unconstrained QP
 - Distance between polyhedra: $dist(P_1,P_2)=\inf\{||x_1-x_2||_2 \mid x_1 \in P_1, x_2 \in P_2\}$ with $P_i=\{x \mid A_ix \le b_i\}$ (i=1,2) is equivalent to the QP

minimize $||x_1-x_2||^2$ subject to $A_1x \le b_1$, $A_2x \le b_2$

Variance problems: remember that Var f=E(f²)-E(f)², then

minimize $E(f^2)-E(f)^2=\sum_{i=1..n}f_i^2p_i-(\sum_{i=1..n}f_ip_i)^2$ subject to $p\geq 0$, $\mathbf{1}^Tp=1$,

- Some COP: Geometric (GP) optimization problems
 - The function f: $R^n \longrightarrow R$ with dom f= R^n++ defined as

$$f(x) = d x_1^{a1} x_2^{a2} ... x_n^{an},$$

with d>0 and $a_i \in R$ is called a **monomial function**.

The sum of monomial functions is called a posynomial function

$$f(x) = \sum_{i=1..K} d_i x_1^{a1i} x_2^{a2i} ... x_n^{ani}$$
, and $d_i > 0$

A **GP** is a problem such that

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$ $i=1,...,m$
 $h_i(x) = 1$ $i=1,...,p$

where $f_0,..., f_m$ are posynomials and $h_1,..., h_p$ are mononomials

- Some COP: Geometric (GP) optimization problems
 - Example:

Let us assume the following problem:

maximize
$$x/y$$

subject to $2 \le x \le 3$
 $x^2+3y/z \le (y)^{1/2}$
 $x/y=z^2$

Then, it can be transformed to:

minimize
$$x^{-1}y$$

subject to $2x^{-1} \le 1$
 $(1/3)x \le 1$
 $x^2y^{-1/2} + 3y^{1/2}z^{-1} \le 1$
 $xy^{-1}z^{-2} = 1$

- Some COP: Geometric (GP) optimization problems
 - A GP is not a COP, but it can easily be transformed to a COP
 Let us remember that y_i=log(x_i) and then x_i=exp(y_i), then taking into account that x_i^a=exp(a log x_i)=exp(ay_i)

$$f(x) = d x_1^{a1} x_2^{a2} ... x_n^{an} =$$

= $exp(b) exp(a_1 y_1) ... exp(a_n y_n) =$
= $exp(a^T y + b)$

with b=log(d). In case of having a posynomial:

$$f(x) = \sum_{k=1..K} d_k x_1^{a1k} x_2^{a2k} ... x_n^{ank} =$$

$$= \sum_{k=1..K} \exp(a_k^T y + b_k),$$

with
$$y^T = [y_1, ..., y_n]$$
, $y_i = log(x_i)$, $a_k^T = [a_{1k}, ..., a_{nk}]$ and $b_k = log(d_k)$

- Some COP: Geometric (GP) optimization problems
 - Thus the GP can be expressed as:

$$\begin{split} & & \text{minimize} & & \boldsymbol{\Sigma_{k=1..K0}} \text{ exp}(\boldsymbol{a_{ok}}^T \boldsymbol{y} + \boldsymbol{b_{0k}}), \\ & & \text{subject to} & & \boldsymbol{\Sigma_{k=1..Ki}} \text{ exp}(\boldsymbol{a_{jk}}^T \boldsymbol{y} + \boldsymbol{b_{jk}}) \leq 1 & & j=1,...,m \\ & & & \text{exp}(\boldsymbol{g_j}^T \boldsymbol{y} + \boldsymbol{h_j}) = 1 & & j=1,...,p \\ & & & \text{with } \boldsymbol{y_i} = \log(\boldsymbol{x_i}) \text{ for } i = 1,...,n \end{split}$$

Now, we take logarithms:

minimize
$$f_0(y) = \log(\Sigma_{k=1..K0} \exp(a_{ok}^T y + b_{0k}))$$
 subject to
$$f_i(y) = \log(\Sigma_{k=1..Ki} \exp(a_{jk}^T y + b_{jk})) \le 0 \qquad j=1,...,m$$

$$h_i(y) = g_i^T y + h_i = 0 \qquad i=1,...,p$$

That is called the **GP in convex form**

The log-sum-exp function $\log (\Sigma_{i=1..n} \exp(x_k))$ is convex in x

- Some COP: Geometric (GP) optimization problems
 - For example

minimize
$$x_1^{-1}x_2$$
 $a_{01}=[-1,1,0]$ subject to $2x_1^{-1} \le 1$ $a_{11}=[-1,0,0]$ $(1/3)x_1 \le 1$ $a_{21}=[1,0,0]$ $x_1^2x_2^{-1/2}+3x_2^{1/2}x_3^{-1} \le 1$ $a_{31}=[2,-\frac{1}{2},0],a_{32}=[0,\frac{1}{2},-1]$ $x_1x_2^{-1}x_3^{-2}=1$ $a_{41}=[1,-1,-2],$

would be expressed in its convex form as:

minimize
$$\log(\exp(-y_1+y_2)) = -y_1+y_2$$
 subject to
$$-y_1 + \log 2 \le 0$$

$$y_1 - \log 3 \le 0$$

$$\log(\exp(2y_1-1/2y_2) + \exp(1/2y_2-y_3 + \log 3)) \le 0$$

$$y_1 - y_2 - 2y_3 = 0$$

- Some general applications:
 - Regression, Least-squares estimation, residuals,
 - Maximum-Likelihood, Bayesian estimation,
 - Estimation and detection: hypothesis testing
 - Experiment design
 - Geometric Problems: euclidean distance problems, minimum distances to a point
 - Classification (pattern recognition and classification problems)