impl SelectionMeasure for RangeDivergence

Michael Shoemate

April 12, 2025

1 Hoare Triple

Precondition

Compiler-verified

- Associated Constant ONE_SHOT
 - <code>ONE_SHOT</code> is true if the measure supports one-shot top- $\!k$ composition.
- Associated Type RV
 - RV must implement trait InverseCDF.
- Method random_variable Types consistent with pseudocode.
- Method aprivacy_map Types consistent with pseudocode.

Caller-verified

- Method random_variable
 - scale is positive (cannot be null due to FBig dtype).
- Method privacy_map
 - d_in is non-null and non-negative.
 - scale is non-null and non-negative.

Pseudocode

```
class RangeDivergence(SelectionMeasure):
      ONE_SHOT = True
      RV = GumbelRV
      def random_variable(shift: FBig, scale: FBig) -> GumbelRV:
          return GumbelRV(shift=shift, scale=scale)
      @staticmethod
9
      def privacy_map(d_in: f64, scale: f64, k: usize) -> f64:
10
11
              raise ValueError("input distance must be non-negative")
12
13
          if scale.is_zero():
14
              return f64.INFINITY
15
          return d_in.inf_div(scale).inf_mul(f64.inf_cast(k))
```

Postcondition

Theorem 1.1. The implementation is consistent with all associated items in the SelectionMeasure trait.

- 1. Associated Constant ONE_SHOT
- 2. Associated Type RV
- 3. Method random_variable
- 4. Method privacy_map

Proof of valid associated constant: ONE_SHOT. Since the proof of privacy_map only holds if k is less than two, ONE_SHOT is defined to be false.

Definition 1.2. A random variable follows the Exponential distribution if it has density

$$f(x) = \frac{1}{\beta}e^{-z} \tag{1}$$

where $z = \frac{x-\mu}{\beta}$, μ is the shift (location) parameter and β is the scale parameter.

Proof of valid associated type: RV. The associated type RV is defined as ExponentialRV, which represents a random variable following the Exponential distribution 1.2. The compiler verifies that ExponentialRV implements the InverseCDF trait.

Proof of valid method: random_variable. By the precondition on scale being positive, random_variable returns a valid instance of ExponentialRV.