

Diffusion MRI: Introduction to Tractography

Marta M. Correia
MRC Cognition and Brain Sciences Unit

Overview

- Introduction to Tractography
- Probabilistic Modelling
- Multiple-fibre models

Diffusion ellipsoid: Eigenvalues and eigenvectors

Isotropic Diffusion

Colour coded FA maps

- Let ε₁ designate the longest axis of the diffusion ellipsoid.
- ϵ_1 can be identified with the main direction of diffusion.
- This directional information can be added to the FA map using a colour code:

Red indicates directions in the *x* axis: right to left or left to right.

Green indicates directions in the *y* axis: front to back or back to front.

Blue indicates directions in the *z* axis: foot-to-head direction or vice versa.

Colour coded FA map.

Introduction to Tractography

Tractography: basic principles

- After model fitting, the principal direction ε₁ can been calculated for all voxels.
- The trajectories of water molecules can be reconstructed using a method similar to the children's activity "connect the dots".
- We connect each voxel to the adjacent one toward which the fibre direction, ε₁, is pointing.

Tractography in the Brain

Fibre tracks obtained for a dataset of a healthy volunteer using simple streamlining (FACT).

Probabilistic Modeling of Diffusion MRI Signal

Probabilistic Modelling

- The information provided by DTI can be very useful for the characterisation of brain white matter.
- However, the estimated tensor can be highly dependent on noise.
- Probabilistic modelling can be used to estimate a probability distribution function for the DTI model parameters.
- For the fibre orientation, this distribution is called orientation distribution function (ODF).

Rafael Neto Henriques Pybrain workshop 2020

Rafael Neto Henriques Pybrain workshop 2020

Example: 10 samples extracted from the ODF of each voxel

 Regions of one-fibre populations have very narrow distributions, while regions of crossing fibres show greater variability.

Probabilistic Tractography

- For each sample of the directional PDF we can produce a track (or streamline).
- Repeat this for a large number of samples.
- The probability of voxels A and B being connected can be calculated by dividing the number of streamlines that reach B, by the total number of streamlines generated from A.

Probabilistic Tractography in the Brain

Probabilistic tractography dataset obtained for a healthy volunteer.

Multiple fibres Beyond the Diffusion Tensor

Multiple fibre approaches

Model-Based Approaches

The multi-tensor model

Non-Parametric Approaches

- Diffusion Spectrum Imaging (DSI)
- Q-ball Imaging
- Constrained Spherical Deconvolution (CSD)
- Persistent Angular Structure (PAS)

Multiple fibre approaches

Model-Based Approaches

The multi-tensor model

Non-Parametric Approaches

- Diffusion Spectrum Imaging (DSI)
- Q-ball Imaging
- Constrained Spherical Deconvolution (CSD)
- Persistent Angular Structure (PAS)

- CSD is able to estimate the distribution of fibre orientations within a voxel without making assumptions about the number of fibres present.
- The original method (Tournier et al. 2007) requires a <u>single-shell</u> high angular resolution diffusion data (>60 directions).
- Ideally, the b-value used should be in the region of 2,500 3,000 s/mm² (for in vivo human brains).
- Multi-shell multi-tissue CSD (MSMT-CSD) was introduced by Jeurissen et al. in 2014.
- MSMT-CSD requires <u>multi-shell</u> high angular resolution diffusion data, containing multiple b-values.
- To resolve WM, GM & CSF the acquisition should contain at least 2 shells plus the *b*=0 volumes (i.e. 3 unique *b*-values).

- Two distinct fibre orientations
- $S_1(\theta,\phi)$, $S_2(\theta,\phi)$ diffusion weighted signal attenuation
- f_1, f_2 volume fractions

Axially symmetric response function describing the signal attenuation measured for a single fibre population.

White matter
Grey matter
CSF

From Gabriel Girard, DIPY tutorial 2021

Creating the Connectome

- Parcellate the brain using Freesurfer
- Apply parcellation to the tractogram to generate a connectivity matrix, representing the number of streamlines connecting each pair of ROIs

Interpretation of results

- Streamlines generated with diffusion MRI tractography lack polarity
- Even the best fiber orientation reconstruction algorithm cannot resolve all crossing fibers
- Structural connectomes are dominated by false positives
- Choice of fitting model, tracking algorithm, stopping criteria, etc, can also influence the connectome

Questions?

