Пензенский государственный университет Кафедра «Вычислительная техника»

ОТЧЕТ

по лабораторной работе № 13 по дисциплине: "Арифметические и логические основы вычислительной техники"

на тему: "Минимизация систем булевых функций"

Выполнили: студенты группы хххххххххххххххх

Принял: xxxxxxxxxxx

Лабораторное задание

- 1. Произвести минимизацию функций для преобразователя D-кодов из лабораторной работы №10, как системы булевых функций.
- 2. Проверить правильность минимизации моделированием в среде Electronics Workbench v5.12.

Ход работы

D	\mathbf{X}_1	X_2	X ₃	X_4
0	0	0	0	0
1	0	0	0	1
2	0	1	0	0
3	0	1	0	1
4	0	0	1	0
5	0	0	1	1
6	0	1	1	0
7	0	1	1	1
8	1	1	1	0
9	1	1	1	1

D	Y ₁	\mathbf{Y}_2	Y ₃	Y ₄
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

1. Выписали конституенты-1 всех функций и выполнили склеивание, учитывая принадлежность конституент одной и той же функции.

Шаг 1:

Ne	X ₁	X ₂	Х ₃	X ₄	номер функции	пара	скленвание	номер функции
1	0	0	0	1	4	1-5	00X1	4
2	0	0	1	0	2	2-5	001X	2
3	0	1	0	0	3	3-4	010X	3
4	0	1	0	1	3, 4	3-6	01X0	3
5	0	0	1	1	2, 4	4-7	01X1	3, 4
6	0	1	1	0	2, 3	5-7	0X11	2, 4
7	0	1	1	1	2, 3, 4	6-7	011X	2, 3
8	1	1	1	0	1	7-9	X111	4
9	1	1	1	1	1, 4	8-9	111X	1

2. Выполнили операцию поглощения между импликантами и конституентами, принадлежащими одинаковым функциям.

N₽			X ₃		номер функции	пара	склеивание	номер функции
1	0	0	Х	1	4	1-5	0XX1	4
2	0	0	1	Х	2	2-7	0X1X	2
3	0	1	0	Х	3	3-7	01XX	3
4	0	1	х	0	3	4-5	01XX	3
5	0	1	Х	1	3, 4			
6	0	Х	1	1	2, 4			
7	0	1	1	Х	2, 3			
8	X	1	1	1	4			
9	1	1	1	Х	1			
10	0	1	1	1	2, 3, 4			
11	1	1	1	1	1, 4			

3. Построили импликантную таблицу.

	Y	is	Y ₂			Y ₃			Y ₄						
	1110	1111	0010	0011	0110	0111	0100	0101	0110	0111	0001	0101	0011	0111	1111
0XX1(4)											•	•	•	•	
0X1X(2)			•	•	•	•									
01XX(3)							•	•	•	•					
01X1(3,4)								•		•		•		•	
0X11(2,4)				•		•							•	•	
011X(2,3)					•	•			•						
X111(4)														•	•
111X(1)	•	•													
0111(2,3,4)						•				•				•	
1111(1,4)		•													•

4. Выбрали импликанты, обеспечивающие минимальную длину записи функции.

$$Y_{1MДH\Phi} = x_1 \wedge x_2 \wedge x_3$$

$$Y_{2MДH\Phi} = \neg x_1 \wedge x_3$$

$$Y_{3MДH\Phi} = \neg x_1 \wedge x_2$$

$$Y_{4MДH\Phi} = (\neg x_1 \land x_4) \lor (x_2 \land x_3 \land x_4)$$

5. Выполнили проверку.

$$Y_{1MДH\Phi} = x_1 \wedge x_2 \wedge x_3$$

 $Y_{2MДH\Phi} = \neg x_1 \wedge x_3$

 $Y_{3MДH\Phi} = \neg x_1 \wedge x_2$

 $Y_{4MДH\Phi} = (\neg x_1 \land x_4) \lor (x_2 \land x_3 \land x_4)$

Вывод: Получили навыки в минимизации систем булевых функций.