

Phy2 test - excersice

Physics 2 (Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh)

Midterm Examination

Date: 09/12/2021 Duration: 120 minutes

Open Book and Online

SUBJECT: PHYSICS 2 (FLUID MECHANICS AND THERMAL PHYSICS)	
(ID: PH014IU)	
Approval by Chair of Department of Physics	Lecturer: Nguyễn Đức Diệu
Signature	Signature:
Donger	100
Full name: Phan Bảo Ngọc	Full name: Nguyễn Đức Diệu
Proctor 1	Proctor 2
Signature	Signature
Full name:	Full name:
STUDENT INFO	
Student name:	
Student ID:	

INSTRUCTIONS: the total of point is 100 (equivalent to 20% of the course)

1. Purpose:

- Test your understanding of basic knowledge from the chapter 1 (Fluid Mechanics) and the chapter 2 (Heat, Temperature and the First Law of Thermal Dynamics) (CLO 3).
- Examine your skill in analysis and design a problem in science and engineering (CLO 2).
- Test your ability in applying knowledge of mathematics and physics (CLO 1).
- Evaluate your English skills in writing communication manner (CLO 4).

2. Requirement:

- Read carefully each question and answer it following the requirements.
- Write the answers and draw models CLEAN and TIDY directly in the exam paper.
- Submit your exam including this cover page and the solutions of the following problems.

The exam has five (5) questions in total

QUESTION 1: (20 marks)

A large pipe with a cross-sectional area of 1 m² descends 5 m in height and narrows to 0.5 m², where it terminates in a valve at point 1 (see Figure 1). If the assumed pressures at point 1 and 2 are both atmospheric pressure (P_0) , and the valve is opened wide and water allowed to flow freely, find the speed of the water leaving the pipe.

Figure 1

QUESTION 2: (20 marks)

(a) A solid substance has an isotropic density ϱ_0 at a temperature T_0 . If its temperature is increased by an amount $\Delta T = T - T_0$, show that its density at the higher temperature is given by (10 marks):

$$\rho = \frac{\rho_0}{1+\beta\Delta T} = \frac{\rho_0}{1+\beta(T-T_0)}$$
, where β is the coefficient of volume expansion.

(b) Assuming the substance is lead, which has a density of $\varrho = 11.3 \times 10^3 \, \text{kg/m}^3$ at 0°C and a coefficient of thermally linear expansion $\alpha = 29 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$. Note that we are still assuming the lead density is isotropic, then the condition $\beta = 3\alpha$ is valid. What is the density of lead at 90°C? (10 marks)

QUESTION 3: (20 marks)

- 3.1. A gas expands from I to F along the three paths indicated in Figure 2. Calculate the work done on the gas along paths (a) IAF, (b) IF, and (c) IBF. (10 marks)
- 3.2. A gas expands from I to F in Figure 2. The energy added to the gas by heat is 418 J when the gas goes from I to F along the diagonal path.
- (a) What is the change in internal energy of the gas? (5 marks)
- (b) How much energy must be added to the gas by heat for the indirect path IAF to give the same change in internal energy? (5 marks)

Figure 2

QUESTION 4: (20 marks)

A copper slug whose mass $m_c = 150$ g is heated in a laboratory oven to a temperature $T = 312^{\circ}$ C. The slug is then dropped into a glass beaker containing a mass $m_w = 110$ g of water. The heat capacity C_b of the beaker is 45 cal/K. The initial temperature T_i of the water and the beaker is 12° C. Assuming that the slug, beaker, and water are an isolated system and the water does not vaporize, find the final temperature T_f of the system at thermal equilibrium. Given the specific heat capacity of copper and water are $c_c = 0.0923$ cal/(g.K) and $c_w = 1.00$ cal/(g.K), respectively.

Caution: the heat capacity C_b of the beaker is accounted for its mass already in this problem, thus $C_b = c_b m_b$ and its unit is given by cal/K not cal/(g.K) as of the specific heat capacity of water and copper.

QUESTION 5: (20 marks)

Figure 3 shows the cross section of a wall made of three layers. The layer thicknesses are L_1 , L_2 = 0.7 L_1 , and L_3 = 0.35 L_1 . The thermal conductivities are k_1 , k_2 = 0.9 k_1 , and k_3 = 0.8 k_1 . The temperatures at the left side and right side of the wall are T_H = 70° C and T_C = -35° C, respectively. Thermal conduction is steady.

- (a) What is the temperature difference ΔT_2 across layer 2 (between the left and right sides of the layer)? (10 marks)
- (b) If k_2 were, instead, equal to $1.1k_1$, would the rate at which energy is conducted through the wall be greater than, less than, or the same as previously (10 marks)

Figure 3

-END-