Rank-65547 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1431655833

General information

Number of lines	3
Number of points	21
Number of singular points	3
Number of Eckardt points	0
Number of double points	3
Number of single points	9
Number of points off lines	9
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$2^3, 1^9, 0^9$

Singular Points

The surface has 3 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{101}$$

Rank of lines: (0, 16, 336)

Rank of points on Klein quadric: (0, 2, 101)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_2 = (0,0,1,0) = \ell_1 \cap \ell_2$$

Single Points

The surface has 9 single points:

The single points on the surface are:

$$0: P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_0

1:
$$P_6 = (2, 1, 0, 0)$$
 lies on line ℓ_0

$$2: P_7 = (3, 1, 0, 0)$$
 lies on line ℓ_0

$$3: P_8 = (1,0,1,0)$$
 lies on line ℓ_1

4:
$$P_9 = (2, 0, 1, 0)$$
 lies on line ℓ_1

The single points on the surface are:

5: $P_{10} = (3, 0, 1, 0)$ lies on line ℓ_1

6:
$$P_{11} = (0, 1, 1, 0)$$
 lies on line ℓ_2

7:
$$P_{15} = (0, 2, 1, 0)$$
 lies on line ℓ_2

8:
$$P_{19} = (0, 3, 1, 0)$$
 lies on line ℓ_2

Points on surface but on no line

The surface has 9 points not on any line:

The points on the surface but not on lines are:

$$0: P_4 = (1, 1, 1, 1)$$

$$1: P_{48} = (3, 2, 1, 1)$$

$$2: P_{51} = (2, 3, 1, 1)$$

$$3: P_{60} = (3, 1, 2, 1)$$

4:
$$P_{63} = (2, 2, 2, 1)$$

$$5: P_{66} = (1, 3, 2, 1)$$

$$6: P_{75} = (2, 1, 3, 1)$$

7:
$$P_{78} = (1, 2, 3, 1)$$

$$8: P_{84} = (3, 3, 3, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_0	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_1	P_2

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$8: P_9 = (2,0,1,0)$	16: $P_{63} = (2, 2, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$9: P_{10} = (3,0,1,0)$	17: $P_{66} = (1, 3, 2, 1)$
$2: P_2 = (0,0,1,0)$	$10: P_{11} = (0, 1, 1, 0)$	$18: P_{75} = (2, 1, 3, 1)$
$3: P_4 = (1, 1, 1, 1)$	$11: P_{15} = (0, 2, 1, 0)$	19: $P_{78} = (1, 2, 3, 1)$
$4: P_5 = (1, 1, 0, 0)$	$12: P_{19} = (0, 3, 1, 0)$	$20: P_{84} = (3, 3, 3, 1)$
$5: P_6 = (2, 1, 0, 0)$	13: $P_{48} = (3, 2, 1, 1)$	
$6: P_7 = (3, 1, 0, 0)$	$14: P_{51} = (2, 3, 1, 1)$	
$7: P_8 = (1,0,1,0)$	$15: P_{60} = (3, 1, 2, 1)$	