Probability Theory 2 – Proposed solution of model exam

1. In the solution of this question we will use the following version of Chernoff's inequality which was proved in the lecture:

Theorem 1 Let $X_1, ..., X_n$ be independent and identically distributed random variables, each satisfying $Pr(X_i = 1) = Pr(X_i = -1) = 1/2$. Then

$$Pr\left(\sum_{i=1}^{n} X_i > t\right) < e^{-t^2/(2n)}$$

for every t > 0.

Let Y be the random variable which determines the location of the particle after 100 steps. Let X_1, \ldots, X_{100} be mutually independent random variables such that $Pr(X_i = 1) = Pr(X_i = -1) = 1/2$ for every $1 \le i \le 100$. Then $Y = \sum_{i=1}^{100} X_i$. Using Theorem 1 we conclude that

$$Pr(Y > 20) = Pr\left(\sum_{i=1}^{100} X_i > 20\right) < e^{-20^2/(2 \cdot 100)} = e^{-2}.$$

- 2. The algorithm does the following:
 - (a) For every $1 \le i \le 3001$ sample a coordinate of (x_1, \ldots, x_n) uniformly at random with replacement. Denote the sampled value by y_i .
 - (b) If $\sum_{i=1}^{3001} y_i \ge 1501$, then output " (x_1, \ldots, x_n) is large". Otherwise output " (x_1, \ldots, x_n) is small".

It is evident that the algorithm runs in constant time (as usual we assume that sampling one element from a set of size n takes constant time). It remains to prove that, for every vector $(x_1, \ldots, x_n) \in F$, it outputs the correct answer with high probability. In our analysis we will make use of the following version of Chernoff's inequality which was stated in the lecture:

Theorem 2 Let $X_1, ..., X_n$ be independent and identically distributed random variables whose values lie in the segment [0,1] and let $X = \sum_{i=1}^{n} X_i$. Then

$$Pr\left(X < \mathbb{E}(X) - t\right) < e^{-2t^2/n}$$

for every t > 0.

Assume first that the input vector (x_1, \ldots, x_n) is large. Since the sampling is uniform and with replacement, for every $1 \le i \le 3001$, the probability that $y_i = 1$ is at least 2/3. It follows that $\mathbb{E}(Y) > 2000$, where $Y = \sum_{i=1}^{3001} y_i$. Since y_1, \ldots, y_{3001} are independent, we can apply Theorem 2 to deduce that the probability that the algorithm erroneously outputs (x_1, \ldots, x_n) is small" is at most

$$Pr(Y \le 1500) \le Pr(Y < \mathbb{E}(Y) - 500) < e^{-2.500^2/3001} \le 2^{-100}$$
.

An analogous argument shows that if " (x_1, \ldots, x_n) is small", then the probability that the algorithm erroneously outputs " (x_1, \ldots, x_n) is large" is at most 2^{-100} . We conclude that, for any input, the probability that the algorithm's outputs is correct is at least $1 - 2^{-100}$ as required.

3. By definition, the entropy of the pair (X,Y) is $H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} Pr(X = x_i, Y = y_j) \log_2 Pr(X = x_i, Y = y_j)$. Since X and Y are independent, for every $1 \le i \le n$ and $1 \le j \le m$ we have $Pr(X = x_i, Y = y_j) = p_i q_j$. Hence

$$H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p_{i}q_{j} \log_{2}(p_{i}q_{j}) = -\sum_{i=1}^{n} p_{i} \left[\sum_{j=1}^{m} q_{j}(\log_{2} p_{i} + \log_{2} q_{j}) \right]$$

$$= -\sum_{i=1}^{n} p_{i} \left[\sum_{j=1}^{m} q_{j} \log_{2} p_{i} + \sum_{j=1}^{m} q_{j} \log_{2} q_{j} \right] = -\sum_{i=1}^{n} p_{i} \left[\log_{2} p_{i} \cdot \sum_{j=1}^{m} q_{j} - H(Y) \right]$$

$$= -\sum_{i=1}^{n} p_{i} \log_{2} p_{i} + H(Y) \cdot \sum_{i=1}^{n} p_{i} = H(X) + H(Y),$$

where the fifth equality holds since $\sum_{j=1}^{m} q_j = 1$ and the sixth equality holds since $\sum_{i=1}^{n} p_i = 1$.

- 4. Let $H \sim B(n, n, 1/2)$. Denote its parts by X and Y and its edge set by E. In order to prove that H is connected, it suffices to prove that it satisfies the following two properties:
 - (a) Every two vertices in the same part have a common neighbour, i.e., for every $u, v \in X$ (respectively, $u, v \in Y$) there exists $w \in Y$ (respectively, $w \in X$) such that $uw, vw \in E$.
 - (b) No vertex is isolated (i.e. each vertex is incident to at least one edge).

Indeed, let $u, v \in X \cup Y$ be two arbitrary vertices. If $u, v \in X$ or $u, v \in Y$, then by (a) there is a path of length 2 between u and v in H. If on the other hand $u \in X$ and $v \in Y$, then by (b) there exists a vertex $w \in Y$ such that $uw \in E$ and by (a) there is a path of length 2 between v and w in H. This yields a path of length at most 3 between u and v in H. Either way, there is a path between u and v in H. Since u and v are two arbitrary vertices, this means that H is connected.

Therefore, in order to prove the claim, it suffices to show that the probability that H satisfies both (a) and (b) tends to 1 as n tends to infinity. The probability that H does not satisfy (b) is at most $2n(1-1/2)^n = n \cdot 2^{1-n}$ and the probability that H does not satisfy (a) is at most

$$2\binom{n}{2} \left(1 - (1/2)^2\right)^n < n^2 \cdot (3/4)^n.$$

It is evident that

$$\lim_{n \to \infty} \Pr(H \text{ is connected}) = 1 - \lim_{n \to \infty} n \cdot 2^{1-n} - \lim_{n \to \infty} n^2 \cdot (3/4)^n = 1.$$