Euklidische und unitäre Vektorräume

- Skalarprodukte
- Orthogonalität
- Matrizen

- Skalarprodukte
- Orthogonalität
- Matrizen

In diesem Kapitel werden nur endlich dimensionale Vektorräume über $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ betrachtet.

- Skalarprodukte
- Orthogonalität
- Matrizen

8

In diesem Kapitel werden nur endlich dimensionale Vektorräume über $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$ betrachtet.

Der Querstrich bezeichnet die komplexe Konjugation

$$z = x + iy$$
, $\overline{z} = x - iy$.

Wenn der zugrunde liegende Vektorraum reell ist, so hat er keine Bedeutung.

8.1 Skalarprodukte

Sei V ein linearer Raum über \mathbb{K} . Eine Abbildung

$$(\cdot,\cdot):V\times V\to\mathbb{K}$$

heißt inneres Produkt oder Skalarprodukt in V, wenn die folgenden Bedingungen erfüllt sind für alle $\alpha_i \in \mathbb{K}$ und $x_i \in V$:

(a)
$$(\alpha_1 x_1 + \alpha_2 x_2, x_3) = \alpha_1(x_1, x_3) + \alpha_2(x_2, x_3)$$
 (Linearität),

8.1 Skalarprodukte

Sei V ein linearer Raum über \mathbb{K} . Eine Abbildung

$$(\cdot,\cdot):V\times V\to\mathbb{K}$$

heißt inneres Produkt oder Skalarprodukt in V, wenn die folgenden Bedingungen erfüllt sind für alle $\alpha_i \in \mathbb{K}$ und $x_i \in V$:

(a)
$$(\alpha_1 x_1 + \alpha_2 x_2, x_3) = \alpha_1(x_1, x_3) + \alpha_2(x_2, x_3)$$
 (Linearität),

(b)
$$(x_1, x_2) = \overline{(x_2, x_1)}$$
 (Antisymmetrie),

8.1 Skalarprodukte

Sei V ein linearer Raum über \mathbb{K} . Eine Abbildung

$$(\cdot,\cdot):V\times V\to\mathbb{K}$$

heißt inneres Produkt oder Skalarprodukt in V, wenn die folgenden Bedingungen erfüllt sind für alle $\alpha_i \in \mathbb{K}$ und $x_i \in V$:

(a)
$$(\alpha_1 x_1 + \alpha_2 x_2, x_3) = \alpha_1(x_1, x_3) + \alpha_2(x_2, x_3)$$
 (Linearität),

(b)
$$(x_1, x_2) = \overline{(x_2, x_1)}$$
 (Antisymmetrie),

(c)
$$(x,x) > 0$$
 für $x \neq 0$ (Definitheit),

Wegen (b) ist $(x, x) \in \mathbb{R}$.

Wegen (b) ist $(x, x) \in \mathbb{R}$.

Aus (a) und (b) folgt, dass das innere Produkt eine Sesquilinearform ist, d.h. es ist linear in der ersten Komponente und antilinear in der zweiten,

$$(x_1, \alpha_2x_2 + \alpha_3x_3) = \overline{(\alpha_2x_2 + \alpha_3x_3, x_1)} =$$

Wegen (b) ist $(x, x) \in \mathbb{R}$.

Aus (a) und (b) folgt, dass das innere Produkt eine Sesquilinearform ist, d.h. es ist linear in der ersten Komponente und antilinear in der zweiten,

$$(x_1, \alpha_2x_2 + \alpha_3x_3) = \overline{(\alpha_2x_2 + \alpha_3x_3, x_1)} = \overline{\alpha_2}(x_1, x_2) + \overline{\alpha_3}(x_1, x_3).$$

Wegen (b) ist $(x, x) \in \mathbb{R}$.

Aus (a) und (b) folgt, dass das innere Produkt eine Sesquilinearform ist, d.h. es ist linear in der ersten Komponente und antilinear in der zweiten,

$$(x_1,\alpha_2x_2+\alpha_3x_3)=\overline{(\alpha_2x_2+\alpha_3x_3,x_1)}=\overline{\alpha_2}(x_1,x_2)+\overline{\alpha_3}(x_1,x_3).$$

Im Fall reeller Räume ist das innere Produkt eine Bilinearform.

Metrische Struktur

Mit Hilfe des Skalarprodukts definieren wir später Abstände zwischen zwei Punkten des Vektorraums.

Metrische Struktur

Mit Hilfe des Skalarprodukts definieren wir später Abstände zwischen zwei Punkten des Vektorraums.

Mit

$$||x|| = (x,x)^{1/2}$$

können wir die "Entfernung" des Punktes x zum Nullpunkt definieren.

Im \mathbb{R}^n ist das Standardprodukt

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k, \quad |x| = ||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}.$$

Im \mathbb{R}^n ist das Standardprodukt

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k, \quad |x| = ||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}.$$

Nach dem Satz des Pythagoras ist |x| gerade die Länge des Vektors x.

Im \mathbb{R}^n ist das Standardprodukt

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k, \quad |x| = ||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}.$$

Nach dem Satz des Pythagoras ist |x| gerade die Länge des Vektors x.

Notation:

 (\cdot, \cdot) = allgemeines Skalarprodukt,

 $\langle \cdot, \cdot \rangle = \mathsf{Standardprodukt} \ \mathsf{im} \ \mathbb{K}^n.$

Im \mathbb{R}^n ist das Standardprodukt

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k, \quad |x| = ||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}.$$

Nach dem Satz des Pythagoras ist |x| gerade die Länge des Vektors x.

Notation:

 (\cdot, \cdot) = allgemeines Skalarprodukt,

 $\langle \cdot, \cdot \rangle = \mathsf{Standardprodukt} \ \mathsf{im} \ \mathbb{K}^n.$

Für $\mathbb{K} = \mathbb{C}$:

$$\langle x,y\rangle = \sum_{k=1}^{n} x_k \overline{y_k}.$$

Im \mathbb{R}^n ist das Standardprodukt

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k, \quad |x| = ||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}.$$

Nach dem Satz des Pythagoras ist |x| gerade die Länge des Vektors x.

Notation:

 (\cdot, \cdot) = allgemeines Skalarprodukt,

 $\langle \cdot, \cdot \rangle = \mathsf{Standardprodukt} \ \mathsf{im} \ \mathbb{K}^n.$

Für $\mathbb{K} = \mathbb{C}$:

$$\langle x,y\rangle = \sum_{k=1}^n x_k \overline{y_k}.$$

Im Komplexen wird in der zweiten Komponente des Produkts komplex konjugiert, damit $\langle x, x \rangle$ reell und ≥ 0 ist.

Euklidische und unitäre Vektorräume

Ein Vektorraum mit Skalarprodukt heißt euklidischer Vektorraum ($\mathbb{K} = \mathbb{R}$), unitärer Vektorraum ($\mathbb{K} = \mathbb{C}$)).

Euklidische und unitäre Vektorräume

Ein Vektorraum mit Skalarprodukt heißt euklidischer Vektorraum ($\mathbb{K} = \mathbb{R}$), unitärer Vektorraum ($\mathbb{K} = \mathbb{C}$)).

Wir sprechen von einem Raum mit Skalarprodukt, wenn wir es offen lassen, ob der Raum reell oder komplex ist.

Cauchy-Ungleichung

Lemma In einem Raum mit Skalarprodukt gilt für alle x, y

$$|(x,y)| \leq ||x|| \, ||y||.$$

$$0 \le (\alpha x + y, \alpha x + y) = |\alpha|^2 ||x||^2 + (\alpha x, y) + (y, \alpha x) + ||y||^2$$

$$0 \le (\alpha x + y, \alpha x + y) = |\alpha|^2 ||x||^2 + (\alpha x, y) + (y, \alpha x) + ||y||^2$$
$$= |\alpha|^2 ||x||^2 + 2\operatorname{Re}(\alpha(x, y)) + ||y||^2.$$

$$0 \le (\alpha x + y, \alpha x + y) = |\alpha|^2 ||x||^2 + (\alpha x, y) + (y, \alpha x) + ||y||^2$$
$$= |\alpha|^2 ||x||^2 + 2\operatorname{Re}(\alpha(x, y)) + ||y||^2.$$

Wir können $x \neq 0$ voraussetzen und wählen $\alpha = -\overline{(x,y)}/\|x\|^2,$ also

$$0 \le \|\alpha x + y\|^2 = \|y\|^2 - \frac{|(x, y)|^2}{\|x\|^2}.$$

Induzierte Norm

Lemma $||x|| = (x, x)^{1/2}$ ist eine *Norm* auf V, sie besitzt die Eigenschaften

(a) ||x|| > 0 für $x \neq 0$ (Definitheit),

Induzierte Norm

Lemma $||x|| = (x, x)^{1/2}$ ist eine *Norm* auf V, sie besitzt die Eigenschaften

- (a) ||x|| > 0 für $x \neq 0$ (Definitheit),
- (b) $\|\alpha x\| = |\alpha| \|x\|$ für alle $\alpha \in \mathbb{K}$ (positive Homogenität),

Induzierte Norm

Lemma $||x|| = (x,x)^{1/2}$ ist eine *Norm* auf V, sie besitzt die Eigenschaften

- (a) ||x|| > 0 für $x \neq 0$ (Definitheit),
- (b) $\|\alpha x\| = |\alpha| \|x\|$ für alle $\alpha \in \mathbb{K}$ (positive Homogenität),
- (c) $||x + y|| \le ||x|| + ||y||$ (Dreiecksungleichung).

Die Dreiecksungleichung beweist man mit Hilfe der Cauchy-Ungleichung

$$||x + y||^2 = ||x||^2 + 2\operatorname{Re}(x, y) + ||y||^2$$

Die Dreiecksungleichung beweist man mit Hilfe der Cauchy-Ungleichung

$$||x + y||^2 = ||x||^2 + 2\operatorname{Re}(x, y) + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Umgekehrte Dreiecksungleichung

Aus der Dreiecksungleichung folgt die *umgekehrte Dreiecksungleichung*

$$|||x|| - ||y||| \le ||x - y||.$$

Umgekehrte Dreiecksungleichung

Aus der Dreiecksungleichung folgt die *umgekehrte Dreiecksungleichung*

$$|||x|| - ||y||| \le ||x - y||.$$

Dies folgt aus

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||.$$

Umgekehrte Dreiecksungleichung

Aus der Dreiecksungleichung folgt die *umgekehrte Dreiecksungleichung*

$$|||x|| - ||y||| \le ||x - y||.$$

Dies folgt aus

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||.$$

Die andere Richtung beweist man, indem man die Rollen von x und y vertauscht.

8.2 Orthogonalität

Sei V ein Vektorraum mit Skalarprodukt.

8.2 Orthogonalität

Sei V ein Vektorraum mit Skalarprodukt.

$$x, y \in V$$
 heißen orthogonal $\Leftrightarrow (x, y) = 0$

8.2 Orthogonalität

Sei V ein Vektorraum mit Skalarprodukt.

$$x,y \in V$$
 heißen orthogonal $\Leftrightarrow (x,y) = 0$

Schreibweise $x \perp y$.

Satz von Pythagoras

Satz (a) In einem euklidischen oder unitären Vektorraum gilt

$$x \perp y \Rightarrow ||x||^2 + ||y||^2 = ||x + y||^2.$$

Satz von Pythagoras

Satz (a) In einem euklidischen oder unitären Vektorraum gilt

$$x \perp y \Rightarrow ||x||^2 + ||y||^2 = ||x + y||^2.$$

(b) In einem euklidischen Vektorraum gilt auch die Umkehrung:

$$||x||^2 + ||y||^2 = ||x + y||^2 \implies x \perp y.$$

(a)
$$||x + y||^2 = (x + y, x + y) = ||x||^2 + (x, y) + (y, x) + ||y||^2 = ||x||^2 + ||y||^2$$
.

(a)
$$||x + y||^2 = (x + y, x + y) = ||x||^2 + (x, y) + (y, x) + ||y||^2 = ||x||^2 + ||y||^2$$
.

(b) Im euklidischen Fall gilt in der letzten Formel

$$(x,y) + (y,x) = 2(x,y).$$

(a)
$$||x + y||^2 = (x + y, x + y) = ||x||^2 + (x, y) + (y, x) + ||y||^2 = ||x||^2 + ||y||^2$$
.

(b) Im euklidischen Fall gilt in der letzten Formel

$$(x, y) + (y, x) = 2(x, y).$$

Dagegen ist bei unitären Räumen

$$(x,y)+(y,x)=(x,y)+\overline{(x,y)}=2\mathrm{Re}(x,y).$$

(a)
$$||x + y||^2 = (x + y, x + y) = ||x||^2 + (x, y) + (y, x) + ||y||^2 = ||x||^2 + ||y||^2$$
.

(b) Im euklidischen Fall gilt in der letzten Formel

$$(x, y) + (y, x) = 2(x, y).$$

Dagegen ist bei unitären Räumen

$$(x,y) + (y,x) = (x,y) + \overline{(x,y)} = 2\text{Re}(x,y).$$

Wir erhalten in diesem Fall nur, dass (x, y) rein imaginär ist.

Orthogonalsystem

Eine Menge von Vektoren x_1, \ldots, x_k heißt *Orthogonalsystem*, wenn:

- $ightharpoonup x_i \neq 0$,
- $(x_i, x_j) = 0 \text{ für } i \neq j.$

Orthogonalsystem

Eine Menge von Vektoren x_1, \ldots, x_k heißt *Orthogonalsystem*, wenn:

- $ightharpoonup x_i \neq 0$,
- $(x_i, x_i) = 0 \text{ für } i \neq j.$

Ein Orthogonalsystem heißt *Orthonormalsystem*, wenn zusätzlich $\|x_i\|=1$ für $i=1,\ldots,k$ erfüllt ist.

Orthogonalsystem

Eine Menge von Vektoren x_1, \ldots, x_k heißt *Orthogonalsystem*, wenn:

- $\rightarrow x_i \neq 0$,
- $(x_i, x_i) = 0 \text{ für } i \neq j.$

Ein Orthogonalsystem heißt *Orthonormalsystem*, wenn zusätzlich $\|x_i\|=1$ für $i=1,\ldots,k$ erfüllt ist.

Aus einem Orthogonalsystem x_1, \ldots, x_k erhalten wir mit der Normierung

$$y_i = x_i / ||x_i||$$

ein Orthonormalsystem y_1, \ldots, y_k .

Die Vektoren in einem Orthogonalsystem sind linear unabhängig.

Die Vektoren in einem Orthogonalsystem sind linear unabhängig.

ln

$$\alpha_1 x_1 + \ldots + \alpha_k x_k = 0$$

können wir von rechts mit x_j multiplizieren,

$$0 = (\alpha_1 x_1 + \ldots + \alpha_k x_k, x_j)$$

Die Vektoren in einem Orthogonalsystem sind linear unabhängig.

ln

$$\alpha_1 x_1 + \ldots + \alpha_k x_k = 0$$

können wir von rechts mit x_j multiplizieren,

$$0 = (\alpha_1 x_1 + \ldots + \alpha_k x_k, x_j) = \alpha_1(x_1, x_j) + \ldots + \alpha_k(x_k, x_j) = \alpha_j(x_j, x_j).$$

Die Vektoren in einem Orthogonalsystem sind linear unabhängig.

ln

$$\alpha_1 x_1 + \ldots + \alpha_k x_k = 0$$

können wir von rechts mit x_j multiplizieren,

$$0 = (\alpha_1 x_1 + \ldots + \alpha_k x_k, x_j) = \alpha_1(x_1, x_j) + \ldots + \alpha_k(x_k, x_j) = \alpha_j(x_j, x_j).$$

Es folgt $\alpha_i = 0$.

Nun wollen wir eine I.u. Menge von Vektoren u_1, \ldots, u_k so linear kombinieren, dass eine Orthogonalsystem x_1, \ldots, x_k entsteht mit

$$\mathrm{span}\,\{u_1,\dots,u_i\}=\mathrm{span}\,\{x_1,\dots,x_i\},\quad 1\leq i\leq k.$$

Nun wollen wir eine I.u. Menge von Vektoren u_1, \ldots, u_k so linear kombinieren, dass eine Orthogonalsystem x_1, \ldots, x_k entsteht mit

$$\operatorname{span} \left\{ u_1, \dots, u_i \right\} = \operatorname{span} \left\{ x_1, \dots, x_i \right\}, \quad 1 \leq i \leq k.$$

Spezialfall k = 2. Setze $x_1 = u_1$.

Nun wollen wir eine I.u. Menge von Vektoren u_1, \ldots, u_k so linear kombinieren, dass eine Orthogonalsystem x_1, \ldots, x_k entsteht mit

$$\operatorname{span} \{u_1, \ldots, u_i\} = \operatorname{span} \{x_1, \ldots, x_i\}, \quad 1 \leq i \leq k.$$

Spezialfall k = 2. Setze $x_1 = u_1$.

Bestimme $\alpha \in \mathbb{K}$ so, dass

$$\alpha x_1 + u_2 \perp x_1 \Rightarrow \alpha = -(u_2, x_1)/\|x_1\|^2.$$

Nun wollen wir eine I.u. Menge von Vektoren u_1, \ldots, u_k so linear kombinieren, dass eine Orthogonalsystem x_1, \ldots, x_k entsteht mit

$$\operatorname{span} \{u_1, \ldots, u_i\} = \operatorname{span} \{x_1, \ldots, x_i\}, \quad 1 \le i \le k.$$

Spezialfall k = 2. Setze $x_1 = u_1$.

Bestimme $\alpha \in \mathbb{K}$ so, dass

$$\alpha x_1 + u_2 \perp x_1 \Rightarrow \alpha = -(u_2, x_1)/\|x_1\|^2.$$

Mit diesem α ist dann $x_2 = \alpha x_1 + u_2 \perp x_1$.

Satz Sei V ein Vektorraum mit Skalarprodukt (\cdot, \cdot) und sei u_1, \ldots, u_k eine I.u. Menge von Vektoren in V.

Satz Sei V ein Vektorraum mit Skalarprodukt (\cdot, \cdot) und sei u_1, \ldots, u_k eine I.u. Menge von Vektoren in V.

Dann erhält man durch

$$x_1 = u_1, \quad x_{i+1} = u_{i+1} - \sum_{j=1}^{i} \frac{(u_{i+1}, x_j)}{\|x_j\|^2} x_j \text{ für } i = 1, \dots, k-1$$

ein Orthogonalsystem

Satz Sei V ein Vektorraum mit Skalarprodukt (\cdot, \cdot) und sei u_1, \ldots, u_k eine I.u. Menge von Vektoren in V.

Dann erhält man durch

$$x_1 = u_1, \quad x_{i+1} = u_{i+1} - \sum_{j=1}^{i} \frac{(u_{i+1}, x_j)}{\|x_j\|^2} x_j \text{ für } i = 1, \dots, k-1$$

ein Orthogonalsystem mit

$$\operatorname{span}\{u_1,\ldots,u_i\}=\operatorname{span}\{x_1,\ldots,x_i\} \text{ für } 1\leq i\leq k.$$

Satz Sei V ein Vektorraum mit Skalarprodukt (\cdot, \cdot) und sei u_1, \ldots, u_k eine I.u. Menge von Vektoren in V.

Dann erhält man durch

$$x_1 = u_1, \quad x_{i+1} = u_{i+1} - \sum_{j=1}^{i} \frac{(u_{i+1}, x_j)}{\|x_j\|^2} x_j \text{ für } i = 1, \dots, k-1$$

ein Orthogonalsystem mit

$$\operatorname{span}\left\{u_1,\ldots,u_i\right\}=\operatorname{span}\left\{x_1,\ldots,x_i\right\}\,\operatorname{f\"{u}r}\,1\leq i\leq k.$$

Weiter

$$x_i \neq 0 \Rightarrow y_i = x_i / ||x_i||$$
 ist Orthonormalsystem

Induktion über k: Für k = 1 ist $x_1 = u_1$ und $\operatorname{span}\{x_1\} = \operatorname{span}\{u_1\}.$

Induktion über k: Für k=1 ist $x_1=u_1$ und $\mathrm{span}\,\{x_1\}=\mathrm{span}\,\{u_1\}.$

Sei alles für k erfüllt. Ansatz:

$$x_{k+1} = u_{k+1} + \alpha_1 x_1 + \ldots + \alpha_k x_k.$$

Induktion über k: Für k = 1 ist $x_1 = u_1$ und $\operatorname{span} \{x_1\} = \operatorname{span} \{u_1\}.$

Sei alles für k erfüllt. Ansatz:

$$x_{k+1} = u_{k+1} + \alpha_1 x_1 + \ldots + \alpha_k x_k.$$

Multipliziere den Ansatz mit xi

$$(x_{k+1},x_i)=(u_{k+1},x_i)+lpha_i(x_i,x_i)$$
 wegen $(x_j,x_i)=0$ für $j
eq i$.

Induktion über k: Für k=1 ist $x_1=u_1$ und $\operatorname{span}\{x_1\}=\operatorname{span}\{u_1\}.$

Sei alles für k erfüllt. Ansatz:

$$x_{k+1} = u_{k+1} + \alpha_1 x_1 + \ldots + \alpha_k x_k.$$

Multipliziere den Ansatz mit xi

$$(x_{k+1},x_i)=(u_{k+1},x_i)+lpha_i(x_i,x_i)$$
 wegen $(x_j,x_i)=0$ für $j\neq i$.

Daher

$$(x_{k+1},x_i)=0 \Leftrightarrow \alpha_i=-(u_{k+1},x_i)/(x_i,x_i).$$

Induktion über k: Für k=1 ist $x_1=u_1$ und $\operatorname{span}\{x_1\}=\operatorname{span}\{u_1\}.$

Sei alles für *k* erfüllt. Ansatz:

$$x_{k+1} = u_{k+1} + \alpha_1 x_1 + \ldots + \alpha_k x_k.$$

Multipliziere den Ansatz mit x_i

$$(x_{k+1}, x_i) = (u_{k+1}, x_i) + \alpha_i(x_i, x_i)$$
 wegen $(x_j, x_i) = 0$ für $j \neq i$.

Daher

$$(x_{k+1},x_i)=0 \Leftrightarrow \alpha_i=-(u_{k+1},x_i)/(x_i,x_i).$$

Das ist gerade der behauptete Algorithmus.

Induktion über k: Für k = 1 ist $x_1 = u_1$ und $\operatorname{span}\{x_1\} = \operatorname{span}\{u_1\}.$

Sei alles für k erfüllt. Ansatz:

$$x_{k+1} = u_{k+1} + \alpha_1 x_1 + \ldots + \alpha_k x_k.$$

Multipliziere den Ansatz mit x_i

$$(x_{k+1}, x_i) = (u_{k+1}, x_i) + \alpha_i(x_i, x_i)$$
 wegen $(x_j, x_i) = 0$ für $j \neq i$.

Daher

$$(x_{k+1},x_i)=0 \Leftrightarrow \alpha_i=-(u_{k+1},x_i)/(x_i,x_i).$$

Das ist gerade der behauptete Algorithmus.

Wäre $x_{k+1} = 0$, so

$$u_{k+1} \in \operatorname{span} \{x_1, \dots, x_k\} = \operatorname{span} \{u_1, \dots, u_k\}$$

im Widerspruch zur vorausgesetzten linearen Unabhängigkeit der u_1, \ldots, u_{k+1} .

Aber!

Für die Orthogonalisierung mit einem Computerprogramm ist das hier vorgestellte Verfahren die denkbar schlechteste Möglichkeit.

Aber!

Für die Orthogonalisierung mit einem Computerprogramm ist das hier vorgestellte Verfahren die denkbar schlechteste Möglichkeit.

Besser ist daher das *modifizierte Gram-Schmidt-Verfahren* oder das *Householder-Verfahren*.

Sei V ein Vektorraum mit Skalarprodukt (\cdot, \cdot) und U ein Unterraum von V.

Die Menge

$$U^{\perp} = \{ x \in V : (x, u) = 0 \text{ für alle } u \in U \}$$

heißt orthogonales Komplement von U in V.

Sei V ein Vektorraum mit Skalarprodukt (\cdot, \cdot) und U ein Unterraum von V.

Die Menge

$$U^{\perp} = \{ x \in V : (x, u) = 0 \text{ für alle } u \in U \}$$

heißt orthogonales Komplement von U in V.

Gilt für einen Vektor $x \in V$, dass

$$(x, u) = 0$$
 für alle $u \in U$,

so sagen wir, dass x senkrecht auf U steht und schreiben $x \perp U$.

Beispiel

 \mathbb{R}^2 besitzt die prinzipiellen Unterräumen $\{0\}, g, \mathbb{R}^2$, wobei g eine Gerade durch den Nullpunkt in Richtung $x \in \mathbb{R}^2$ bezeichnet.

Beispiel

 \mathbb{R}^2 besitzt die prinzipiellen Unterräumen $\{0\}, g, \mathbb{R}^2$, wobei g eine Gerade durch den Nullpunkt in Richtung $x \in \mathbb{R}^2$ bezeichnet.

Es gilt dann

$$\{0\}^{\perp} = \mathbb{R}^2, \quad \mathbb{R}^{2^{\perp}} = \{0\}.$$

Beispiel

 \mathbb{R}^2 besitzt die prinzipiellen Unterräumen $\{0\}, g, \mathbb{R}^2$, wobei g eine Gerade durch den Nullpunkt in Richtung $x \in \mathbb{R}^2$ bezeichnet.

Es gilt dann

$$\{0\}^{\perp} = \mathbb{R}^2, \quad \mathbb{R}^{2^{\perp}} = \{0\}.$$

Alle Vektoren, die auf x senkrecht stehen, bilden das orthogonale Komplement von g. Mit $y \perp x$, $y \neq 0$, gilt dann

$$\mathbf{g}^{\perp} = \{ \alpha \mathbf{y} : \alpha \in \mathbb{R} \}.$$

Allgemeiner gilt in einem beliebigen Vektorraum mit Skalarprodukt

$$\{0\}^{\perp} = V, \quad V^{\perp} = \{0\}$$

Allgemeiner gilt in einem beliebigen Vektorraum mit Skalarprodukt

$$\{0\}^{\perp} = V, \quad V^{\perp} = \{0\}$$

Berechnung von U^{\perp} für einen nichttrivialen Unterraum U von V mit dim V=n:

▶ Wähle eine Basis u_1, \ldots, u_r von U,

Allgemeiner gilt in einem beliebigen Vektorraum mit Skalarprodukt

$$\{0\}^{\perp} = V, \quad V^{\perp} = \{0\}$$

Berechnung von U^{\perp} für einen nichttrivialen Unterraum U von V mit dim V=n:

- ▶ Wähle eine Basis u_1, \ldots, u_r von U,
- ergänzen sie nach dem Basisergänzungssatz mit u_{r+1}, \ldots, u_n zu einer Basis von V,

Allgemeiner gilt in einem beliebigen Vektorraum mit Skalarprodukt

$$\{0\}^{\perp} = V, \quad V^{\perp} = \{0\}$$

Berechnung von U^{\perp} für einen nichttrivialen Unterraum U von V mit dim V=n:

- ▶ Wähle eine Basis u_1, \ldots, u_r von U,
- ergänzen sie nach dem Basisergänzungssatz mit u_{r+1}, \ldots, u_n zu einer Basis von V,
- wende den Gram-Schmidt-Algorithmus an und normiere die erhaltenen Vektoren.

Allgemeiner gilt in einem beliebigen Vektorraum mit Skalarprodukt

$$\{0\}^{\perp} = V, \quad V^{\perp} = \{0\}$$

Berechnung von U^{\perp} für einen nichttrivialen Unterraum U von V mit dim V=n:

- ▶ Wähle eine Basis u_1, \ldots, u_r von U,
- ergänzen sie nach dem Basisergänzungssatz mit u_{r+1}, \ldots, u_n zu einer Basis von V,
- wende den Gram-Schmidt-Algorithmus an und normiere die erhaltenen Vektoren.

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Es gilt $U = \operatorname{span} \{x_1, \dots, x_r\}$ und die Vektoren in $U' = \operatorname{span} \{x_{r+1}, \dots, x_n\}$ stehen senkrecht auf U.

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Es gilt $U = \operatorname{span} \{x_1, \dots, x_r\}$ und die Vektoren in $U' = \operatorname{span} \{x_{r+1}, \dots, x_n\}$ stehen senkrecht auf U.

Daher ist $U' \subset U^{\perp}$.

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Es gilt $U = \operatorname{span} \{x_1, \dots, x_r\}$ und die Vektoren in $U' = \operatorname{span} \{x_{r+1}, \dots, x_n\}$ stehen senkrecht auf U.

Daher ist $U' \subset U^{\perp}$.

Jeder Vektor aus V lässt sich als eine Linearkombination

$$v = \sum_{i=1}^{n} \alpha_i x_i$$

schreiben.

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Es gilt $U = \operatorname{span} \{x_1, \dots, x_r\}$ und die Vektoren in $U' = \operatorname{span} \{x_{r+1}, \dots, x_n\}$ stehen senkrecht auf U.

Daher ist $U' \subset U^{\perp}$.

Jeder Vektor aus V lässt sich als eine Linearkombination

$$v = \sum_{i=1}^{n} \alpha_i x_i$$

schreiben.

Sei

$$u=\sum_{i=1}^r\alpha_ix_i.$$

Erhalte ein Orthonormalsystem x_1, \ldots, x_n von V.

Es gilt $U = \operatorname{span} \{x_1, \dots, x_r\}$ und die Vektoren in $U' = \operatorname{span} \{x_{r+1}, \dots, x_n\}$ stehen senkrecht auf U.

Daher ist $U' \subset U^{\perp}$.

Jeder Vektor aus V lässt sich als eine Linearkombination

$$v = \sum_{i=1}^{n} \alpha_i x_i$$

schreiben.

Sei

$$u = \sum_{i=1}^{r} \alpha_i x_i.$$

Ist u = 0, so ist $u \in U'$, andernfalls ist $u \in U$ mit (u, u) > 0. Damit ist $U' = U^{\perp}$ gezeigt.

Eigenschaften von U^{\perp}

Satz (a) U^{\perp} ist Unterraum von V,

- (b) $U \cap U^{\perp} = \{0\},\$
- (c) $\dim V = \dim U + \dim U^{\perp}$.

Sei $V=\mathbb{R}^3$ mit dem Standard-Skalarprodukt $\langle\cdot,\cdot
angle$ versehen. Sei

$$U = \{(x, y, z)^T : 2x + 3y + 4z = 0\}$$

eine Ebene.

Sei $V=\mathbb{R}^3$ mit dem Standard-Skalarprodukt $\langle\cdot,\cdot
angle$ versehen. Sei

$$U = \{(x, y, z)^T : 2x + 3y + 4z = 0\}$$

eine Ebene.

Dann ist $U^{\perp} = \operatorname{span} \{(2,3,4)^T\}$ wegen

$$\langle (2,3,4)^T, (x,y,z)^T \rangle = 0 \Leftrightarrow 2x + 3y + 4z = 0.$$

Allgemeiner nennen wir einen Unterraum U eines endlich dimensionalen Vektorraums V Hyperebene, wenn $\dim U = \dim V - 1 > 0$.

Allgemeiner nennen wir einen Unterraum U eines endlich dimensionalen Vektorraums V Hyperebene, wenn dim $U=\dim V-1>0$.

Wie in der Konstruktion des orthogonalen Komplements beschrieben erhalten wir $U^{\perp} = \operatorname{span}\{x\}$ mit $x \neq 0$. Dann gilt

$$U=\{u\in V: \langle x,u\rangle=0\} \ \Leftrightarrow \ U=\{u\in V: x_1u_1+\ldots+x_nu_n=0\}.$$

Allgemeiner nennen wir einen Unterraum U eines endlich dimensionalen Vektorraums V Hyperebene, wenn $\dim U = \dim V - 1 > 0$.

Wie in der Konstruktion des orthogonalen Komplements beschrieben erhalten wir $U^{\perp} = \operatorname{span}\{x\}$ mit $x \neq 0$. Dann gilt

$$U=\{u\in V: \langle x,u\rangle=0\} \iff U=\{u\in V: x_1u_1+\ldots+x_nu_n=0\}.$$

Man nennt dies die Hessesche Normalenform der Hyperebene U.

Sei $V=\mathbb{C}^3$ versehen mit dem Standard-Skalarprodukt $\langle\cdot,\cdot\rangle$. Für $U=\operatorname{span}\left\{(1,i,0)^T,(0,0,1)^T\right\}=\operatorname{span}\left\{x_1,x_2\right\}$

wollen wir das orthogonale Komplement bestimmen.

Sei $V = \mathbb{C}^3$ versehen mit dem Standard-Skalarprodukt $\langle \cdot, \cdot \rangle$. Für $U = \operatorname{span} \{(1, i, 0)^T, (0, 0, 1)^T\} = \operatorname{span} \{x_1, x_2\}$

wollen wir das orthogonale Komplement bestimmen.

Durch Probieren finden wir heraus, dass $e_2 = (0, 1, 0)^T$ nicht im Bild dieser beiden Vektoren ist.

Sei $V=\mathbb{C}^3$ versehen mit dem Standard-Skalarprodukt $\langle\cdot,\cdot
angle$. Für

$$U = \operatorname{span}\left\{\left(1, i, 0\right)^T, \left(0, 0, 1\right)^T\right\} = \operatorname{span}\left\{x_1, x_2\right\}$$

wollen wir das orthogonale Komplement bestimmen.

Durch Probieren finden wir heraus, dass $e_2 = (0, 1, 0)^T$ nicht im Bild dieser beiden Vektoren ist.

Mit Gram-Schmidt erhalten wir

$$x_{3} = e_{2} - \frac{\langle e_{2}, x_{1} \rangle}{\langle x_{1}, x_{1} \rangle} x_{1} - \frac{\langle e_{2}, x_{2} \rangle}{\langle x_{2}, x_{2} \rangle} x_{2}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$x_{3} = e_{2} - \frac{\langle e_{2}, x_{1} \rangle}{\langle x_{1}, x_{1} \rangle} x_{1} - \frac{\langle e_{2}, x_{2} \rangle}{\langle x_{2}, x_{2} \rangle} x_{2}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{aligned} x_3 &= e_2 - \frac{\langle e_2, x_1 \rangle}{\langle x_1, x_1 \rangle} x_1 - \frac{\langle e_2, x_2 \rangle}{\langle x_2, x_2 \rangle} x_2 \\ &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{-i}{2} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} \end{aligned}$$

$$x_{3} = e_{2} - \frac{\langle e_{2}, x_{1} \rangle}{\langle x_{1}, x_{1} \rangle} x_{1} - \frac{\langle e_{2}, x_{2} \rangle}{\langle x_{2}, x_{2} \rangle} x_{2}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - \frac{\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{-i}{2} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}$$

Damit ist $U^{\perp} = \text{span}\{(i, 1, 0)^{T}\}.$

Beispiel (iv)

lst
$$x = (x_1, x_2)^T \in \mathbb{K}^2$$
, so gilt für

$$x^{\perp} = (-\overline{x_2}, \overline{x_1})^T$$

 $\mathsf{dass}\ \langle x, x^\perp \rangle = 0.$

Sei *U* ein Unterraum des Raums *V*.

 x_1, \ldots, x_n sei Orthonormalbasis von V mit $U = \operatorname{span} \{x_1, \ldots, x_r\}$.

Sei *U* ein Unterraum des Raums *V*.

 x_1, \ldots, x_n sei Orthonormalbasis von V mit $U = \mathrm{span}\,\{x_1, \ldots, x_r\}$.

Dann

$$U^{\perp} = \mathrm{span}\,\{x_{r+1},\ldots,x_n\}.$$

Sei *U* ein Unterraum des Raums *V*.

 x_1, \ldots, x_n sei Orthonormalbasis von V mit $U = \operatorname{span} \{x_1, \ldots, x_r\}$.

Dann

$$U^{\perp} = \operatorname{span} \{x_{r+1}, \ldots, x_n\}.$$

Entwickle ein beliebiges $v \in V$ nach dieser Basis, $v = \sum_{i=1}^{n} \alpha_i x_i$, so erhalte mit

$$u = \sum_{i=1}^{r} \alpha_i x_i, \quad u^{\perp} = \sum_{i=r+1}^{n} \alpha_i x_i$$

eine Zerlegung

$$v = u + u^{\perp} \text{ mit } u \in U, u^{\perp} \in U^{\perp}.$$

Sei *U* ein Unterraum des Raums *V*.

 x_1, \ldots, x_n sei Orthonormalbasis von V mit $U = \operatorname{span} \{x_1, \ldots, x_r\}$.

Dann

$$U^{\perp} = \operatorname{span} \{x_{r+1}, \ldots, x_n\}.$$

Entwickle ein beliebiges $v \in V$ nach dieser Basis, $v = \sum_{i=1}^{n} \alpha_i x_i$, so erhalte mit

$$u = \sum_{i=1}^{r} \alpha_i x_i, \quad u^{\perp} = \sum_{i=r+1}^{n} \alpha_i x_i$$

eine Zerlegung

$$v = u + u^{\perp} \text{ mit } u \in U, u^{\perp} \in U^{\perp}.$$

u und u^{\perp} sind nach Konstruktion eindeutig bestimmt.

Orthogonalprojektion

Die Orthogonalprojektion von V auf U ist die Abbildung

$$p_U: V \to U \subset V, \quad v = u + u^{\perp} \mapsto u.$$

Orthogonalprojektion

Die Orthogonalprojektion von V auf U ist die Abbildung

$$p_U: V \to U \subset V, \quad v = u + u^{\perp} \mapsto u.$$

Satz Für $p_U: V \rightarrow U$ gilt:

- (a) p_U ist linear mit $p_U^2 = p_U \circ p_U = p_U$.
- (b) Bild $p_U = U$, Kern $p_U = U^{\perp}$.
- (c) Es gilt $||p_U v|| \le ||v||$.

Berechnung der Orthogonalprojektion

Es gilt

$$(u,x_j)=(\sum_{i=1}^n\alpha_ix_i,x_j)=\alpha_j(x_j,x_j)=\alpha_j.$$

Berechnung der Orthogonalprojektion

Es gilt

$$(u,x_j)=(\sum_{i=1}^n\alpha_ix_i,x_j)=\alpha_j(x_j,x_j)=\alpha_j.$$

Damit können wir durch einfaches Multiplizieren mit x_j das α_j rekonstruieren. Daher

$$p_U(v) = \sum_{i=1}^r (u, x_i) x_i.$$

Sei $V=\mathbb{R}^4$ versehen mit dem Standard-Produkt $\langle\cdot,\cdot
angle$. Sei

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

Sei $V=\mathbb{R}^4$ versehen mit dem Standard-Produkt $\langle\cdot,\cdot
angle$. Sei

$$U=\operatorname{span}\left\{\begin{pmatrix}1\\1\\0\\1\\0\end{pmatrix},\begin{pmatrix}2\\0\\1\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\\1\\0\end{pmatrix}\right\},\quad v=\begin{pmatrix}1\\2\\3\\4\\5\end{pmatrix}.$$

Gesucht ist die Orthogonalprojektion von V auf U. Wir bestimmen eine Orthonormalbasis von U:

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad |v_1| = \sqrt{3},$$

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1\\1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1\\0 \end{pmatrix} \right\}, \quad v = \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix}.$$

$$v_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad |v_2| = \sqrt{3},$$

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad v = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

$$v_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad |v_2| = \sqrt{3},$$

$$v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad |v_3| = \frac{2}{\sqrt{3}}.$$

Damit erhalten wir die Orthonormalbasis von U

$$x_1 = rac{1}{\sqrt{3}} egin{pmatrix} 1 \ 1 \ 0 \ 1 \ 0 \end{pmatrix}, \quad x_2 = rac{1}{\sqrt{3}} egin{pmatrix} 1 \ -1 \ 1 \ 0 \ 0 \end{pmatrix}, \quad x_3 = rac{1}{\sqrt{3}} egin{pmatrix} -1 \ 0 \ 1 \ 1 \ 0 \end{pmatrix}.$$

Damit erhalten wir die Orthonormalbasis von U

$$x_1 = rac{1}{\sqrt{3}} egin{pmatrix} 1 \ 1 \ 0 \ 1 \ 0 \end{pmatrix}, \quad x_2 = rac{1}{\sqrt{3}} egin{pmatrix} 1 \ -1 \ 1 \ 0 \ 0 \end{pmatrix}, \quad x_3 = rac{1}{\sqrt{3}} egin{pmatrix} -1 \ 0 \ 1 \ 1 \ 0 \end{pmatrix}.$$

Damit

$$p_U(v) = \langle v, x_1 \rangle x_1 + \langle v, x_2 \rangle x_2 + \langle v, x_3 \rangle x_3 = \frac{1}{3} (3, 5, 8, 13, 0)^T.$$

8.3 Orthogonale und unitäre Matrizen

In diesem Abschnitt betrachten wir nur die Vektorräume \mathbb{R}^n und \mathbb{C}^n versehen mit dem zugehörigen Standard-Produkt.

8.3 Orthogonale und unitäre Matrizen

In diesem Abschnitt betrachten wir nur die Vektorräume \mathbb{R}^n und \mathbb{C}^n versehen mit dem zugehörigen Standard-Produkt. Eine reelle bzw. komplexe $(n \times n)$ -Matrix heißt *orthogonal* bzw. *unitär*, wenn

$$A^T A = E_n$$
 bzw. $\overline{A}^T A = E_n$.

8.3 Orthogonale und unitäre Matrizen

In diesem Abschnitt betrachten wir nur die Vektorräume \mathbb{R}^n und \mathbb{C}^n versehen mit dem zugehörigen Standard-Produkt. Eine reelle bzw. komplexe $(n \times n)$ -Matrix heißt *orthogonal* bzw. *unitär*, wenn

$$A^T A = E_n$$
 bzw. $\overline{A}^T A = E_n$.

Dies bedeutet, dass A regulär ist mit $A^{-1}=A^T$ bzw. $A^{-1}=\overline{A}^T$.

8.3 Orthogonale und unitäre Matrizen

In diesem Abschnitt betrachten wir nur die Vektorräume \mathbb{R}^n und \mathbb{C}^n versehen mit dem zugehörigen Standard-Produkt. Eine reelle bzw. komplexe $(n \times n)$ -Matrix heißt *orthogonal* bzw. *unitär*, wenn

$$A^T A = E_n$$
 bzw. $\overline{A}^T A = E_n$.

Dies bedeutet, dass A regulär ist mit $A^{-1}=A^T$ bzw. $A^{-1}=\overline{A}^T$. Damit gilt auch $A\overline{A}^T=E_n$.

Zusammenhang mit Orthogonalität

Wir bezeichnen mit a_i die Spaltenvektoren von A, $A = (a_1 | \dots | a_n)$.

Dann bedeutet $A^TA = E_n$ im Reellen, dass

$$\langle a_i, a_j
angle = \delta_{ij} := \left\{ egin{array}{ll} 1 & \mathsf{falls} \ i = j \ 0 & \mathsf{falls} \ i
eq j \end{array}
ight. .$$

Zusammenhang mit Orthogonalität

Wir bezeichnen mit a_i die Spaltenvektoren von A, $A = (a_1 | \dots | a_n)$.

Dann bedeutet $A^T A = E_n$ im Reellen, dass

$$\langle a_i, a_j
angle = \delta_{ij} := \left\{ egin{array}{ll} 1 & \mathsf{falls} \ i = j \ 0 & \mathsf{falls} \ i
eq j \end{array}
ight. .$$

Die Spaltenvektoren der Matrix bilden damit ein Orthonormalsystem.

Zusammenhang mit Orthogonalität

Wir bezeichnen mit a_i die Spaltenvektoren von A, $A = (a_1 | \dots | a_n)$.

Dann bedeutet $A^T A = E_n$ im Reellen, dass

$$\langle a_i, a_j \rangle = \delta_{ij} := \left\{ egin{array}{ll} 1 & \mathsf{falls} \ i = j \ 0 & \mathsf{falls} \ i
eq j \end{array}
ight. .$$

Die Spaltenvektoren der Matrix bilden damit ein Orthonormalsystem.

Interpretieren wir $AA^T = E_n$ auf die gleiche Weise, kommen wir zur analogen Schlussfolgerung, dass auch die Zeilenvektoren ein Orthonormalsystem bilden.

Komplexer Fall

Im Komplexen können wir genauso folgern wegen

$$(\overline{A}^T A)_{ij} = \sum_k \overline{a}_{ki} a_{kj} = \langle a_j, a_i \rangle.$$

Äquivalente Definitionen der unitären Matrizen

Wir formulieren diese Ergebnisse nur für den komplexen Fall, im Reellen gilt der folgende Satz völlig analog.

Äquivalente Definitionen der unitären Matrizen

Wir formulieren diese Ergebnisse nur für den komplexen Fall, im Reellen gilt der folgende Satz völlig analog.

Satz Sei $A \in \mathbb{C}^{n \times n}$. Die folgenden Aussagen sind äquivalent:

- (a) A ist eine unitäre Matrix.
- (b) A ist regulär mit $A^{-1} = \overline{A}^T$.
- (c) Die Spaltenvektoren (bzw. Zeilenvektoren) bilden eine Orthonormalbasis des \mathbb{C}^n bezüglich des Standard-Produkts.

Im \mathbb{R}^2 sind die Drehmatrizen mit Winkel ω

$$A = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix}$$

offenbar orthogonal.

Im \mathbb{R}^n ist eine Hyperebene durch einen Vektor $w \in \mathbb{R}^n \setminus \{0\}$ gegeben:

$$U = \{x : \langle w, x \rangle = 0\}.$$

Im \mathbb{R}^n ist eine Hyperebene durch einen Vektor $w \in \mathbb{R}^n \setminus \{0\}$ gegeben:

$$U = \{x : \langle w, x \rangle = 0\}.$$

Können |w| = 1 setzen. Spiegelung an dieser Hyperebene:

$$S=E_n-2ww^T.$$

Im \mathbb{R}^n ist eine Hyperebene durch einen Vektor $w \in \mathbb{R}^n \setminus \{0\}$ gegeben:

$$U = \{x : \langle w, x \rangle = 0\}.$$

Können |w| = 1 setzen. Spiegelung an dieser Hyperebene:

$$S = E_n - 2ww^T$$
.

Dabei ist $A = ww^T$ die $(n \times n)$ -Matrix mit Einträgen

$$a_{ij} = w_i w_j$$
.

Im \mathbb{R}^n ist eine Hyperebene durch einen Vektor $w \in \mathbb{R}^n \setminus \{0\}$ gegeben:

$$U = \{x : \langle w, x \rangle = 0\}.$$

Können |w| = 1 setzen. Spiegelung an dieser Hyperebene:

$$S = E_n - 2ww^T$$
.

Dabei ist $A = ww^T$ die $(n \times n)$ -Matrix mit Einträgen

$$a_{ij} = w_i w_j$$
.

Ist $x \in \mathbb{R}^n$, so gilt

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

Im \mathbb{R}^n ist eine Hyperebene durch einen Vektor $w \in \mathbb{R}^n \setminus \{0\}$ gegeben:

$$U = \{x : \langle w, x \rangle = 0\}.$$

Können |w| = 1 setzen. Spiegelung an dieser Hyperebene:

$$S = E_n - 2ww^T$$
.

Dabei ist $A = ww^T$ die $(n \times n)$ -Matrix mit Einträgen

$$a_{ij} = w_i w_j$$
.

Ist $x \in \mathbb{R}^n$, so gilt

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

Die Spiegelung an U muss diesen Vektor abbilden auf $Sx = z - \alpha w$:

$$S = E_n - 2ww^T$$
.

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

$$S = E_n - 2ww^T$$
.

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

$$Sx = (E_n - 2ww^T)(z + \alpha w) = z + \alpha w - 2(ww^T)(z + \alpha w)$$

$$S = E_n - 2ww^T$$
.

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

$$Sx = (E_n - 2ww^T)(z + \alpha w) = z + \alpha w - 2(ww^T)(z + \alpha w)$$
$$= z + \alpha w - 2w(w^T z) - 2\alpha w(w^T w).$$

$$S = E_n - 2ww^T$$
.

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

$$Sx = (E_n - 2ww^T)(z + \alpha w) = z + \alpha w - 2(ww^T)(z + \alpha w)$$
$$= z + \alpha w - 2w(w^T z) - 2\alpha w(w^T w).$$

Im Reellen gilt für Spaltenvektoren x, y, dass $x^T y = \langle x, y \rangle$. Damit ist $w^T z = 0$ wegen $w \perp z$ und $w^T w = 1$ wegen |w| = 1.

$$S = E_n - 2ww^T$$
.

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

$$Sx = (E_n - 2ww^T)(z + \alpha w) = z + \alpha w - 2(ww^T)(z + \alpha w)$$
$$= z + \alpha w - 2w(w^T z) - 2\alpha w(w^T w).$$

Im Reellen gilt für Spaltenvektoren x, y, dass $x^T y = \langle x, y \rangle$. Damit ist $w^T z = 0$ wegen $w \perp z$ und $w^T w = 1$ wegen |w| = 1. Erhalte $Sx = z - \alpha w$ wie behauptet.

$$S = E_n - 2ww^T$$
.

$$x = z + \alpha w \text{ mit } z \in U \text{ wegen } U = \operatorname{span} \{w\}^{\perp}.$$

$$Sx = (E_n - 2ww^T)(z + \alpha w) = z + \alpha w - 2(ww^T)(z + \alpha w)$$
$$= z + \alpha w - 2w(w^T z) - 2\alpha w(w^T w).$$

Im Reellen gilt für Spaltenvektoren x, y, dass $x^T y = \langle x, y \rangle$. Damit ist $w^T z = 0$ wegen $w \perp z$ und $w^T w = 1$ wegen |w| = 1.

Dannt ist $w \ge 0$ wegen $w \perp 2$ und w = 1 wegen |w| = 1

Erhalte $Sx = z - \alpha w$ wie behauptet.

Es gilt

$$S^2 = Id$$
, $S = S^T \Rightarrow S$ ist orthogonal.

Strukturerhaltende Abbildungen

Für beliebige reelle $(n \times n)$ -Matrizen A gilt

$$\langle Ax, y \rangle = \langle x, A^T y \rangle$$
 für alle $x, y \in \mathbb{R}^n$

wegen

$$\langle Ax, y \rangle = \sum_{k=1}^{n} (Ax)_k y_k = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{kj} x_j y_k = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{jk}^T x_j y_k = \langle x, A^T y \rangle.$$

Strukturerhaltende Abbildungen

Für beliebige reelle $(n \times n)$ -Matrizen A gilt

$$\langle Ax, y \rangle = \langle x, A^T y \rangle$$
 für alle $x, y \in \mathbb{R}^n$

wegen

$$\langle Ax, y \rangle = \sum_{k=1}^{n} (Ax)_{k} y_{k} = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{kj} x_{j} y_{k} = \sum_{k=1}^{n} \sum_{j=1}^{n} a_{jk}^{T} x_{j} y_{k} = \langle x, A^{T} y \rangle.$$

Damit gilt für eine orthogonale $(n \times n)$ -Matrix A

$$\langle Ax, Ay \rangle = \langle x, A^T Ay \rangle = \langle x, y \rangle \Rightarrow |Ax| = |x|$$

Strukturerhaltende Abbildungen

Für beliebige reelle $(n \times n)$ -Matrizen A gilt

$$\langle Ax, y \rangle = \langle x, A^T y \rangle$$
 für alle $x, y \in \mathbb{R}^n$

wegen

$$\langle Ax,y\rangle = \sum_{k=1}^n (Ax)_k y_k = \sum_{k=1}^n \sum_{j=1}^n a_{kj} x_j y_k = \sum_{k=1}^n \sum_{j=1}^n a_{jk}^T x_j y_k = \langle x,A^T y \rangle.$$

Damit gilt für eine orthogonale $(n \times n)$ -Matrix A

$$\langle Ax, Ay \rangle = \langle x, A^T Ay \rangle = \langle x, y \rangle \Rightarrow |Ax| = |x|$$

Die zugehörigen orthogonalen Selbstabbildungen f(x) = Ax erhalten damit alle Strukturen, die in einem euklidischen Vektorraum vorhanden sind.

Hat eine $(n \times n)$ -Matrix A die Eigenschaft

$$|Ax| = |x|$$
 für alle $x \in \mathbb{K}^n$

so ist sie bereits orthogonal bzw. unitär.

Hat eine $(n \times n)$ -Matrix A die Eigenschaft

$$|Ax| = |x|$$
 für alle $x \in \mathbb{K}^n$

so ist sie bereits orthogonal bzw. unitär.

Im Reellen gilt

$$|Ax+Ay|^2 = |x+y|^2 \Rightarrow (Ax,Ay) = (x,y)$$
 we gen $|Ax| = |x|$, $|Ay| = |y|$, woraus $(x,A^TAy) = (x,y)$ folgt.

Hat eine $(n \times n)$ -Matrix A die Eigenschaft

$$|Ax| = |x|$$
 für alle $x \in \mathbb{K}^n$

so ist sie bereits orthogonal bzw. unitär.

Im Reellen gilt

$$|Ax+Ay|^2 = |x+y|^2 \Rightarrow (Ax,Ay) = (x,y)$$
 we gen $|Ax| = |x|$, $|Ay| = |y|$, woraus $(x,A^TAy) = (x,y)$ folgt.

Wir können hier für x die kanonischen Einheitsvektoren einsetzen und erhalten

$$A^T A y = y$$
 für alle $y \Rightarrow A^T A = E_n$.

Hat eine $(n \times n)$ -Matrix A die Eigenschaft

$$|Ax| = |x|$$
 für alle $x \in \mathbb{K}^n$

so ist sie bereits orthogonal bzw. unitär.

Im Reellen gilt

$$|Ax + Ay|^2 = |x + y|^2 \Rightarrow (Ax, Ay) = (x, y) \text{ wegen } |Ax| = |x|, |Ay| = |y|,$$

woraus $(x, A^T A y) = (x, y)$ folgt.

Wir können hier für x die kanonischen Einheitsvektoren einsetzen und erhalten

$$A^T A y = y$$
 für alle $y \Rightarrow A^T A = E_n$.

Im Komplexen folgt mit gleicher Überlegung nur $\operatorname{Re}(Ax,Ay)=\operatorname{Re}(x,y)$. Wir können hier aber x durch ix ersetzen und erhalten dann auch $\operatorname{Im}(Ax,Ay)=\operatorname{Im}(x,y)$. Der Rest verläuft genauso wie zuvor.