The tale of the

Febration & Cethod

THE QUEST OF RATIONAL POINTS
- CHALLENGE

If I give you a variety X/Q, tell me if $X(Q) \neq \emptyset$!

HASSE'S SUGGESTION:

dim
$$X = 1 \sim 2y^2 = x^4 - 17 \neq 0$$
 (Lind - Reichardt '40)
dim $X = 2 \sim y^2 + 3^2 = (3 - x^2)(x^2 - 2)$ (Ishowshikh '71)

(2) MANIN'S SUGGESTION

BRAUER-MANIN PAIRING

$$X/Q$$
, $X(A_Q) := TT \times (Q_V)$, $B_R(x) := H_{et}^2(x, G_m)$
 $X(A_Q) \times B_R(x) \longrightarrow Q/Z$
 $((x_V), \alpha) \longmapsto \sum_{v \in Q_Q} im v_v x_v \alpha$

BRAUER-MANIN SET: X(AQ) (Q) (Q) (lass field theory

Conjecture: if X is proper, smooth and nationally connected then:
$$X(Q) \neq \emptyset \iff X(A_Q) \xrightarrow{B_1(X)} \emptyset \text{ (X reijes GHP)}$$

(3) Manin's suggestion in Family

Conjecture (fibration method) smooth, proper, geom. connected X PQ Xt if f:X -> PQ s.t.:

1) Vt EP1(Q), Xt verifies (GHP) 2) Xy is smooth & nationally connected . Then X verifies (GHP)

Theorem (B., in progress)

Let
$$f: X \to \mathbb{F}^1_{frq}(t)$$
 and B its set of bad fibres st.:

1) $\forall t \in \mathbb{F}^1(frq(t))$, X_t varifies (GHP)

2) X_η smooth & separably rationally connected

Then $X(A_Q)^{Br(X)} \neq \emptyset \Rightarrow \forall r \gg 1$, $X(frq_r(t)) \neq \emptyset$

deg(B)

Chank you!