Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

	- 3
	(

Source:

Spring and Durum Wheat Quality Laboratory USDA, Agricultural Research Service Harris Hall, N.D.S.U.
Fargo, North Dakota 58105

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE in cooperation with STATE AGRICULTURAL EXPERIMENT STATIONS

QUALITY EVALUATION OF DURUM WHEAT VARIETIES

1988 CROP1/

by '

A. A. Ottenbacher, R. D. Crawford, Technicians, E. W. Winter, Secretary, Agricultural Research Service; $\underline{2}$ / L. L. Nolte and M. Skunberg, Technicians, NDSU. $\underline{3}$ / M. S. Masri, Research Scientist. $\underline{2}$ /

This report was compiled by the Agricultural Research Service, U. S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for their facilities and services provided in support of these studies. The report is not intended for publication and should not be referred to in literature citations or quoted in publicity or advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved. Cooperators submitting samples for analysis have been given analytical data on their samples prior to release of this report.

This is a progress report of cooperative investigations containing some results that have not been sufficiently confirmed to justify general release; interpretations may be modified with additional experimentation. Confirmed results will be published through established channels. The report is primarily a tool for use of cooperators and their official staffs and by those persons having direct and special interest in the development of agricultural research programs.

^{2/} USDA/ARS, Hard Red Spring & Durum Wheat Quality Lab., NDSU.

^{3/} Dept. of Cereal Science & Food Technology, NDSU.

TABLE OF CONTENTS

INTRODUCTION

The twenty-fifth Durum Wheat Quality Report contains data for the 1988 crop. Samples of standard varieties and new strains of durum wheat grown in cooperative experiments in the durum wheat regions of the United States 4/ were milled and evaluated by the Hard Red Spring and Durum Wheat Quality Laboratory in cooperation with the Department of Cereal Science and Food Technology on the campus of North Dakota State University at Fargo, ND. Methods and techniques are described in detail in the text of the report.

All samples received that were large enough to mill on the Buhler experimental mill were processed into spaghetti using the macro spaghetti processing method as described on page 13-14. A five pound wheat sample is required for the above method. All other samples were milled using the micro procedure and were not processed into spaghetti. Those samples having acceptable kernel characteristics and dust color score, if possible, should be included for macro processing the following year.

The purpose of this report is to make available to cooperators the quality data on standard varieties and new selections of durum wheat from the 1988 crop.

^{4/} Cantrell, R.G. Wheat varieties grown in cooperative plot and nursery experiments in the spring wheat region in 1988. Department of Agronomy, North Dakota State University, Fargo, ND.

SOURCE OF THE 1988 CROP SAMPLES

Tests were performed on 535 samples from 20 stations in seven states (California, Oregon, Arizona, North Dakota, Montana, Minnesota and South Dakota) for quality evaluation. Data presented in this report are from the Field Plot Nursery, Uniform Regional Nursery, Western Durum Nursery, Special Nursery and the Advanced Nursery samples.

FIELD PLOTS - 15

Minot and Langdon, North Dakota Tucson, Arizona

UNIFORM REGIONAL NURSERY - 288

Day County and Selby - South Dakota Crookston and Morris - Minnesota Bozeman, Sidney and Conrad - Montana Williston, Carrington and Prosper - North Dakota

WESTERN DURUM NURSERY - 30

Hermiston, Oregon

ADVANCED NURSERY - 191

Imperial Valley, Kings County, Delta and Davis - California

<u>Special Nursery - 11</u>

Casa Grande, Arizona Pendleton, Oregon

1988 UNIFORM REGIONAL DURUM NURSERY LIST OF ENTRIES

		Sel. or	Year	
Entry No.	Entry	P.I No.	Entered	Origin
		=006	1000	
1	Mindum	5296	1929	Minnesota
2	Stoa		1988	ND-USDA
2 3	Ward	15892	1969	ND-USDA
4	Rugby	17284	1970	ND-USDA
5	Vic	17789	1976	ND-USDA
4 5 6 7	Lloyd	476211*	1978	ND-USDA
	Monroe	478289	1981	ND-USDA
8	Renville	510696	1985	ND-USDA
9	Medora		1980	AC, Winnipeg
10	Sceptre		1985	Univ. Sask.
11	Stockholm*		1984	NAPB
12	Fjord		1984	NAPB
13	D773/Vic	D8261*	1986	ND
14	D773/Clt	D8291*	1986	ND
15	•	FA883-323	1986	WPB
16	D785/D7869	D8302	1987	ND
17	D78121/78181	D8370*	1987	ND
18	D78114/78129	D8374*	1987	ND
19	D78142/D78114	D8380*	1987	ND
20	D776/D7224	D83103*	1987	ND
21	D7838/D7869	D8434	1988	ND
22	D8030/D8016	D8458	1988	ND
23	и и	D8459	1988	ND
24	19 19	D8460	1988	ND
25	D79122/D797	D8475	1988	ND
26	D7984/D7926/D7982/D79155	D8479	1988	ND
27	D78114/D78181	D84130*	1988	ND
28	D78144/D78172	D84134*	1988	ND
	-,			

^{*} Denotes semidwarf entries.

WESTERN REGIONAL DURUM NURSERY

LIST OF ENTRIES

Aldura	PBS 02105
Carc "S"	PBS 02120
Durox	PSB 03113
Lloyd	PSB 03429
Stockholm	т 83138
Titan	TL 801045
Vic lA	TL 801065
Waid	TL 820100
Westbred 881	TL 820112
Yavaros	UC 606
YGA "S"	UC 640
FLD 87050	UC 642
FLD 87336	UC 686
ND 80269	UC 714
NK 859615	WPB 884206

METHODS

The methods used in the testing of the samples were essentially the same as given in the last report.

Briefly, the following methods and terminologies were applied:

Test Weight Per Bushel - The weight per Winchester bushel of dockage-free wheat.

Thousand Kernel Weight - The 1000 kernel weight was determined by counting the number of kernels in a 10 g sample of cleaned, picked wheat on a Seedburo seed counter 5/.

<u>Kernel Size</u> - The percentage of the size of the kernels [large, medium, and small] was determined on a wheat sizer as described by Shuey6/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler # 7 with 2.92 mm opening Middle Sieve - Tyler # 9 with 2.24 mm opening Bottom Sieve - Tyler #12 with 1.65 mm opening

<u>Protein Content</u> - Both the Kjeldahl procedure and the near infrared technique were used to determine protein content. Nitrogen values, as determined by the Kjeldahl procedure, were multiplied by 5.7 to calculate protein values.

Hardness Test - The procedure used requires grinding the wheat samples with a UDY grinder, and obtaining data from a Technicon 400 near infrared analyzer.

Wavelengths used were 1680 nm and 2230 nm. This procedure was developed by Mr. Karl Norris, USDA, Beltsville through a collaborative research project in which this Laboratory also participated. This procedure is not official and may be replaced with another in the

- Mention of a trademark name or proprietary product does not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.
- 6/ Shuey, William C. A wheat sizing technique for predicting flour milling yield. Cereal Sci. Today 5:71 (1960).

future. Durum wheat hardness scores for the 1988 crop ranged from a low of 67 to a high of 137 with an average of 106.6.

Milling - All samples were cleaned by passing the wheat through an Emerson kicker and dockage tester and through a modified Forster scourer Model 6. The clean, dry wheat from the larger 2 kg samples was tempered in three statges: first to 12.5% moisture at least 72 hours prior to the second stage which is to add an additional 2.0% for 18 hours to give a cumulative moisture of 14.5%, then a final temper of 3.0%, 45 minutes prior to milling. The smaller 200 gram samples were pretempered to 12.5% moisture for at least 72 hours. They were then tempered to 16.5% moisture and allowed to stand overnight prior to milling.

The large field plot, special and advanced samples were milled on a Buhler experimental mill specially designed for milling durum wheat. The mill is equipped with corrugated rolls throughout, and the semolina is purified on a Miag laboratory purifier. All of the stock is handled pneumatically. The mill flow is shown on page 10. Quality testing is done using this purified semolina. The semolina extraction was calculated on a total products basis. Prior to milling this year's samples, the Buhler mill and purifiers were adjusted to maximize semolina yield, yet keep the speck count to an acceptable level.

The small samples were milled on a Brabender Quadrumat Jr. mill. The flow diagram of this system is shown on page 11. The unpurified semolina was rebolted on a strand sifter equipped with a #35 tyler sieve. The sample was sifted for 30 seconds. The throughs of the #35 tyler sieve were classified as rebolted semolina. The overs of the #35 tyler sieve were reground and sieved again for 30 seconds. The throughs were combined with the first sieving. This was the material tested. The overs of the #35 tyler sieve were classified as crude shorts, and the overs of the rotating #34 wire sieve were classified as bran.

<u>Semolina Extraction</u> - For both the macro and micro method of milling, the percent semolina extraction was calculated on a total product basis.

<u>Speck Count</u> - The number of specks in three different one-inch square areas of semolina enclosed by a special glass and frame were counted. Any materials other than pure endosperm chunks, such as bran particles, etc. were

considered specks. The average of three readings was converted to the number of specks per 10 sq in (speck count). Speck count is done only on the macro milled samples.

Mixograph Analysis - The mixogram was determined by using 10 g of semolina and adding 5.7 cc of water. All mixograms were run with constant weights of semolina and volume of water.

Mixogram Pattern - The reference mixogram patterns given at the end of the report demonstrate the different types of mixograms that were obtained. A single number is assigned each pattern to characterize the classification of the curves - - - the large number indicating stronger curve characteristics.

Color Score - The color of the spaghetti or semolina has been generally accepted as the most important single grading factor. A deep amber or golden color is the most preferable. The amount of yellow pigmentation determines the color.

Cooked Weight - After cooking the 10 g of spaghetti for 12 minutes, the samples were washed thoroughly with distilled water and allowed to drain in a buchner funnel for 2 minutes. The sample was then weighed, and this weight is recorded as the cooked weight.

FLOW DIAGRAM FOR SMALL DURUM WHEAT SAMPLES MICRO PROCEDURE

REBOLTED ON A STRAND SIFTER EQUIPPED WITH A #35 TYLER SIEVE

Samples which have a color rating 1.5 point below the standard spaghetti score or 15 points below the standard semolina color score are unsatisfactory. It is possible that the average color score for a crop year may be higher or lower than average; therefore, this would be taken into consideration when giving the overall rating of a variety over a number of years.

The grading system shown below has been adopted for scoring the semolina color and spaghetti relative to the standard color score.

COLOR SCORE

Semolina	<u>Spaghetti</u>	Description
15 above	1.5 above	Much deeper and intense yellow pigmentation than standard
10 above	1.0 above	Deeper and more intense yellow pigmentation than standard
5 above	0.5 above	Slightly deeper and more intense yellow pigmentation than standard
Equal to Standard	Equal to Standard	Standard quality, depth and intensity of yellow pig-mentation
5 below	0.5 below	Slightly less depth and in- tensity, but sufficient quantity of pigmentation
10 below	1.0 below	Slightly less quantity as well as depth and intensity of pigmentation than the standard, but still sufficient to be rated satisfactory on the basis of color
15 below	1.5 below	Sufficiently less quantity of yellow pigmentation than the standard to give a pale yellow color and graded unsatisfactory for color score.

Semolina Color Score - The semolina color score was determined by using Model D25M-9 Hunterlab tristimulus colorimeter equipped with an optical sensor and a signal processor. The instrument was calibrated using a yellow standard tile with Hunter L, a, b values of L = 77.33, a = -1.91, b = 20.94. A sample of semolina was placed in a cell normally used for near infrared analysis of flour in a Technicon 400 Infra Analyzer. This cell fits in the opening of the optical sensor. The b value was converted to a yellow color score ranging from 1-14, with 14 being a deep yellow and the most desirable color. In this report, the semolina color score, reported as "Du" in the tables, is multiplied by a factor of 10.

Spaghetti Color - The spaghetti color scores also were measured in the Model D25M-9 colorimeter. The specimen area (2 inches in diameter) was covered with straight spaghetti strands and readings were taken against a black background with 0% reflectance. Color difference values (L%, a% and b%) were measured for all the spaghetti samples by the method of Walsh, Gilles and Shuey7/. A uniform chromaticity chart was used for determining spaghetti color scores.

MACRO Spaghetti Processing - Spaghetti was processed on a semi-commercial scale pasta extruder (DEMACO). The control as well as all samples was processed with the following extruding conditions.

Temperature . . . 49.5°C

Rate 12 rpm

Absorption . . . 32.5%

Vacuum 18 in Hg

These were the optimum conditions for processing spaghetti.

Malsh, D. E., Gilles, K. A. and Shuey, W. C. Color determination of spaghetti by the tristimulus method. Cereal Chem. 46:7 (1969).

To process the spaghetti, a 1000 g batch was premixed by slowly adding the water and mixing at a slow speed for approximately 30 seconds and high speed for 10 seconds. Then the remainder of the water was added at slow speed in a Hobart C-100-T mixer equipped with a pastry knife agitator. After all of the water had been added, the semolina and water were blended at high speed for 30 seconds; the mixer was stopped to scrape down the sides of the bowl, and the blending continued for 90 seconds more to complete the premix stage. The premixed pasta was then transferred to the vacuum mixer of the press and extruded through an 84-strand 0.043 in. Teflon spaghetti die. A jacketed extension tube (94 long x 1-3/4" inside diameter) was attached to the semicommercial pasta extruder to allow a longer time for hydration of the semolina and minimize the number of white specks (unhydrated semolina) in the spaghetti. Extrusion temperature was controlled by a circulating water bath.

Spaghetti Drying - Spaghetti was dried in an experimental pasta dryer for an 18 hour, computer controlled cycle. The drying cycle was a modification of that described by Gilles, Sibbitt and Shuey8/. During the drying period, the humidity of the dryer was decreased linearly from 95 to 50% R.H. and the temperature was held at 40°C for the first 10 hour and was then decreased linearly from 40°C - 25°C during the last 8 hours of the cycle.

^{8/} Gilles, K. A., Sibbitt, L. D. and Shuey, W. C. Automatic laboratory dryer for macaroni products. Cereal Sci. Today 11:322 (1966).

Cooking Characteristics of Spaghetti

A. Cooking Procedure

Spaghetti (10 g) which had been broken into lengths of approximately 5 cm, was placed into 300 ml of boiling water in a 500 ml beaker. After 12 minutes cooking, the samples were washed thoroughly with distilled water in a Buchner funnel, allowed to drain for 2 minutes and then weighed to determine cooked weight.

B. Firmness Score

Two strands of cooked spaghetti were placed on a plexiglass plate and sheared at a 90° angle with a special plexiglass tooth. A continuous recording of distance versus force was made by the instrument during the operation. An automatic integrator was used to calculate the area under the curve (g-cm) which was the amount of work required to shear the cooked spaghetti. To measure firmness, the average of three integrator scores was used, and the average work to shear was used as a measure of spaghetti firmness.

Calculations were as follows:

 $E = 0.0216 \times A (g-cm)$

A = Average integrator reading

E = Area of curve expressed as q-cm (work)

The higher the value, the firmer the spaghetti. A value of approximately 7.00 appears to be preferred.

C. Residue

This is the weight of the solids remaining after the combined cooking and washing water was evaporated.

DISCUSSION

The following discussion represents some of the basic techniques and criteria used in the milling and cooking quality evaluation of durum wheat samples. Several testing factors are used to determine the overall quality characteristics or final evaluation of a particular sample including, in general, the kernel characteristics, milling performance and cooking performance.

Each evaluation factor can be important. A sample could be of sufficiently poor quality for a given factor to eliminate it from possible future testing. However, a sample submitted for the first time and found to show little promise should be tested again to establish if it has some good promise, or no promise. A sample which is consistently rated as little promise or no promise should be discontinued.

Data presented in this report were processed by using the Statistical Analysis System (SAS Institute, Inc., SAS Circle, Box 8000, Cary, NC 27511). The program developed from this system allows flexibility within the quality grading factors. This should allow us to relate more directly to industry and consumer requirements.9/

In this evaluation system 11 dependent variables are used. These are test weight, 1000 kernel weight, percent small kernels, wheat protein, total extraction, semolina extraction, dust color, speck count, semolina protein, spaghetti visual color score and spaghetti firmness score. Seven additional variables are measured and included in the tables for the reader's use and information but are not used in the computerized evaluation of the samples. These are percent large kernels, hardness, mixograph score, semolina ash, falling number, cooked weight and cooking residue.

After computing an average of each of the 11 variables for the standards from a station or nursery, the computer subtracts established values from each of the standard averages to determine major (MJ) and minor (MI) faulting limits. There are two exceptions where precise values have been assigned, which are independent of the station standards. The first exception is wheat protein, where percentages below 11.5% will be classified as MJ faults, and percentages between 11.5% - 12.5% will be MI faults (14% m.b.). The second exception is semolina protein, where percentages below 11.0% are classified as MJ faults, and percentages between 11.0 and 11.5% are classified as MI faults (14% m.b.). Hence, the wheat and semolina protein faulting values remain the same for all stations and nurseries.

9/ Nolte, L.L., Youngs, V.L., Crawford, R.D. and Kunerth,

Nolte, L.L., Youngs, V.L., Crawford, R.D. and Kunerth W.H. 1985. Computer program evaluation of hard red spring wheat. Cereal Foods World 30:227-229.

SELECTION OF STANDARDS

Whenever possible, the standards selected were named varieties grown at each location or in each nursery. In the tables of data, the varieties used as standards are identified by an "s" in the second column. At the bottom of each table are cited "average of standards". Quality deviation from these values determine the major and minor faults (note preceding paragraph). In nurseries where breeders did not grow named varieties, standard quality data were obtained from the 1988 North Dakota standard ('Vic'), which was processed separately with each nursery. This standard was grown in North Dakota, not at the particular nursery location. Other deviations are footnoted in the tables.

HOW SAMPLES ARE SCORED

Each sample is assigned an evaluation score of 4. Major and minor faults determined from the data by the computer will reduce this score, depending upon the quality factor being faulted. The effects of the different quality faults are shown in the table which follows:

DURUM PROGRAM FAULTING AND SCORING VALUES

Variable	Ran	nge <u>a</u> /	Effect on Score	
	Minor fault	Major fault	Minor fault	Major fault
Test Wt. (lb/bu)	-2.2	-3.1	-	-1
1000 KWT (g)	-2.1	-5.1	_	-1
Small Kernels (%)	+5	+10	-	-1
Wheat Prot. (%)	12.5	11.5	-1	-2
Tot. Ext. (%)	-2.5	- 3.5	-1	-2
Semo. Ext.(%)	-3.0	-4.0	-1	-2
Dust color	-10	-15	-2	-3
Specks/10 sq. in.	+10	+15	_	-1
	11.5	11.0	-1	-2
Visual Spag. color	-1.0	-1.5	-2	-3
Firmness (g cm)	-1.5	-2.25	-1	-2

<u>a</u>/ Wheat and semolina protein percents are fixed lower limits for faults. All other values represent the deviation from the average of the standards required to warrant a minor or major fault.

 $[\]underline{b}$ / These values are subtracted from a beginning score of 4.

EXPERIMENTAL RESULTS - 1988 CROP

The results are tabulated and presented in the following order: Tables 1-10, Uniform Regional Nursery; Table 11, Western Durum Nursery; Tables 12-14, Field Plot Nursery; Tables 15-16, Special Nursery; Tables 17-21, Advanced Nursery.

UNIFORM REGIONAL NURSERY

Two hundred eighty-eight samples were received from ten stations in four states. Twenty-eight samples were received from eight stations, and thirty-three samples were received from two stations. Twelve of these samples were named varieties from eight stations and thirteen named varieties were from two stations. The remainder were experimental lines. The word descriptions of these numerical scores are as follows: 1-1.4, no promise; 1.5-2.4, little promise; 2.5-3.4, some promise; 3.5-4.0, good promise. The discussion which follows is based on averaged data from the nine stations. The samples from Sidney, Montana were not included in the following discussion due to the small amount of sample.

Fjord $(4.0 - 11/2) \underline{10}$ (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - Small kernels.

Milling Performance - Satisfactory.

<u>Laker</u> (2.6 - 12/2) (3 years) - Some promise.

This variety was grown in 1987 at only two locations. Morris and Crookston, Minnesota.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Dust color.

^{10/ (}Average General Evaluation - Number of Total Deficiencies/Major Deficiencies)

Lloyd (4.0 - 18/7) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Semolina extraction.

Medora (4.0 - 10/3) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

Mindum (1.5 - 39/21) (3 years) - Little promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Dust color.

Monroe (4.0 - 3/1) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Semolina extraction.

Renville (4.0 - 17/1) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Satisfactory.

Rugby (4.0 - 14/1) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Dust color.

Sceptre (3.6 - 25/6) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

Stoa (1.0 - 19/17) (3 years) - No promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Dust color.

Stockholm (3.3 - 26/8) (3 years) - Some promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Wheat protein.

 $\underline{\text{Vic}}$ (4.0 - 1/1) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - Test weight.

Milling Performance - Satisfactory.

Ward (3.7 - 18/4) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

FA 883-323 (3.9 - 6/1) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8261 (3.5 - 18/4) (3 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8291 (3.3 - 30/15) (3 years) - Some promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels,
test weight.

Milling Performance - Satisfactory.

D8302 (3.8 - 10/1) (2 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Satisfactory.

D8370 (2.6 - 28/18) (2 years) - Some promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT, small kernels, test weight.

Milling Performance - Semolina extraction.

D8374 (3.8 - 7/1) (2 years) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8380 (3.5 - 22/3) (2 years) - Good promise.

Faults (1988 crop)

Kernel Characteristics - 1000 KWT, small kernels, wheat protein.

Milling Performance - Semolina extraction, dust color.

D8434 (3.2 - 4/1) (1 year) - Some promise.

Faults (1988 crop)

Kernel Characteristics - 1000 KWT.

Milling Performance - Dust color.

D8458 (4.0 - 7/0) (1 year) - Good promise.

Faults (1988 crop)

Kernel Characteristics - 1000 KWT, test weight.

Milling Performance - Satisfactory.

D8459 (3.9 - 8/1) (1 year) - Good promise.

Faults (1988 crop)

Kernel Characteristics - 1000 KWT, test weight.

Milling Performance - Satisfactory.

D8460 (4.0 - 5/0) (1 year) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8475 (3.8 - 3/1) (1 year) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina Extraction.

D8479 (3.7 - 4/2) (1 year) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

D83103 (3.9 - 3/0) (1 year) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

D84130 (3.5 - 3/2) (1 year) - Good promise.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

D84134 (3.2 - 11/4) (1 year) - Some promise.

Faults (1988 crop)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

29A (3.5 - 1/1) (1 year) - Some promise.

This variety was grown at only two locations. Morris and Crookston, Minnesota.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

29B (4.0 - 1/0) (1 year) - Good promise.

This variety was grown at only two locations. Morris and Crookston, Minnesota.

Faults (1988 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

29C (3.0 - 1/1) (1 year) - Some promise.

This variety was grown at only two locations. Morris and Crookston, Minnesota.

Faults (1988 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Dust color.

WESTERN DURUM NURSERY

Hermiston, Oregon - Table 11

Thirty samples were received from one station. All analyses were done the same as for the Uniform Regional Nursery using our micro procedure. Aldura and Westbred 881 were used as the standards. The average general score was 2.5. Dust color was the main deficiency.

FIELD PLOT NURSERY

Minot and Langdon, North Dakota and Tucson, Arizona - Tables 12-14

Fifteen samples were received from these three stations; all were named varieties except one station which had an experimental line along with five named varieties. All samples were milled, and the semolina was processed into spaghetti using our macro method. Vic was used as the standard for the two locations in North Dakota. Aldura and Westbred 881 were used as the standards from the Tucson location.

SPECIAL NURSERY

Casa Grande, Arizona and Pendleton, Oregon - Tables 15-16

Eleven samples were received from these two stations. The two samples from Casa Grande were named varieties. These samples were milled, and the semolina was processed into spaghetti using our macro method. Vic was used as the standard for this station.

The Pendleton station had one named variety which was used as the standard for that station, and eight experimental lines. The samples from this station were analyzed using the micro procedure.

ADVANCED NURSERY

A total of 191 samples were received from four stations in one state. All samples were milled, and the semolina was processed into spaghetti using our macro method.

Imperial Valley, California - Table 17

Forty-one samples were received from this station. Aldura, Yavaros and Mexicali were used as the standards. The average general score for this station was 2.0.

Kings County, California - Table 18

Thirty-four samples were received from this station. Aldura, Yavaros and Mexicali were used as the standards. The average general score for this station was 2.4.

Delta area, California - Table 19

Thirty-five samples were received from this station. Aldura, Yavaros and Mexicali were used as the standards. The average general score for this station was 2.9.

<u>Imperial Valley, California - Table 20</u>

Forty-seven samples were received from this station. Mexicali was used as the standard. The average general score for this station was 2.5.

Davis Valley, California - Table 21

Thirty-four samples were received in this station. Aldura, Yavaros, and Mexicali were used as the standards. The average general score for this station was 2.0.

EXPLANATION OF ABBREVIATIONS LISTED UNDER THE HEADINGS AND UNDER MINOR AND MAJOR DEFICIENCIES IN TABLES

MINOR AND MAJOR DEFICIENCIES ON COMPUTER PRINTOUT

S or STD = Standard TW = Test Weight

1000 KWT or KW = 1000 Kernel Weight

LG = % Large Kernels SM = % Small Kernels

WHT ASH = Wheat Ash

WHT PRO or WP = Wheat Protein

HRD = Hardness

TOTL EXTR or TX = Total Extraction (Semolina Plus Flour)

SEMO EXTR or SX = Semolina Extraction DU = Semolina Dust Color Score (High score is more desirable)

SPK or SK = Semolina Speck Count SEMO ASH = Semolina Ash

FALL NO = Semolina Falling Number Value (Values above 300 are desired)
SEMO PRO or SP = Semolina Protein

VI = Spaghetti Visual Color Score (The higher the score, the more desirable)

CWT = Cooked Weight

FIRM or FR = Cooked Spaghetti Firmness Score (Approx. 6.50 to 8.50 is the desirable range)

***EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=COOD PROMISE

MAJOR FAULTING VALUES SE.6 21.9 33 11.5 43.3 70

DEFICIENCIES AND OF STANDARDS MINOR FAULTING VALUES		D 84130		D 8479	D 8475					D 8360	D 8374	D 9370	0000 d	D 8291	D 8261	FA 883-32	s daum	VIC S	STOCKHOLM	STOA	SCEPTRE	RUGEY	RENVILLE	MONROE	MUUUMIM	MEDORA	ב מאס s	FJORD	VARIETY STD		
TW KW 55.7 27.	53.9	57.4	CII CII FO		55.8	55. 1	56.7	56.4		56.7				55. 8				55. 1		50. U				다 다		54.1	9,55	Çľi	Т	TEST	
16 M Z 10 00 01 10 0	24.0	27.0	26.6	27.6	26.0	ro Gi	30.B	ស ស ស	€4.8	E4. 0	27.4	10 10 10 10 10 10 10 10 10 10 10 10 10 1	29.1	27.6	105. 4	©4.0				(i)			m	69. E	24.6	©4.5	27.∂	m	K.WT	1000	
10.6 4	٥ ۵				ro ro			1 1	- 10	⊢ (⊌				ro ro ro															MS 97	*	
9X 47.3	EQ FO	g)	7	FQ	ro	18	10	19	(u)	0	œ	(·)	7	ro	7	Ćů	0	Ö	ro	Ð	כח	7	FQ	Ö	*	(T)	ro	-	İΞ		
DU 85	17.9	18.3	18.7	18.3	19.7	19, 1	17.4	18.9	18.4	18.3	19.0	18.6	18.0	18.1	19.6	18.1	18.6	18.4	19.0	17.7	19.4		18.0	18. 9	19. 1	18.0	18.8	18.8	₽RO	THI	
	90	119	110	117	110	110	118	118	119	103	110	116	113	115	114	117	119	109	130	114	110	68	108	110	109	108	601	112	NESS	HARD	
	48. 1	43.1	43.7	44.4	40.3	47.9	51.6		8 13	40. U	49.1	44. ≥	47.9	47. ≥		40.U		46.5		50.0	44. €	51.4	49.1	46.8	46.0	47.0	49.6	45. B	EXTR	SEMO	
	50	95	80	85	88	80	0	95	85	90	85	85	28	90	90	28	90	೦೮	85	G) C)	88	<u>ი</u>	90	38	86	85	95	90	COLOR	DUST	
	O	Ó	4	ප	CŪ	Θ	(T)	6	7	7	ප	4	7	7	8	7	8	4	4	כנו	В	ניז	Θ	В	Θ	В	B	4	SCR	OXIM	
	H	ro	(J)	4	ro	4	4	4	4	(e)	4	[4]	4	4	4	4	4	4	4	J	ស	-	4	4	4	ធ	4	4	* *	SCORE	
	MI MI								IK	IM IM						ĭ			MI MI	H.	IE				NI	FW IW		ΙM	TW KW SM WP SX DU	DEFICIENCIES	
	F.	짓	MI		MJ					MI		Z.								ΓE	31	F.							th ex pu	NCIES	

STATE SOUTH DAKOTA STATION-DAY CO. NURSERY-UNIFORM

1988 CROP

OTHER THAN DUE OF DIBLING SUMPLES

DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES	D 84134	D 84130	D 93103	D 8479	D 8475	D 9460	D 8459		D 9434		D 8374		D 8302	D 8291		FA 883-32	S GNAM		STOCKHOLM	STDA	SCEPTRE	RUGBY	RENVILLE	MONROE	MINDUM	MEDORA	rrayb s	FJORD	VARIETY STD	
TW KK 59.5 35. 57.3 33. 56.4 30.	59. 7		59.0	59.4			59.0	58.0					58.7		59.7						58.7	60. 3			eo. ट	58.4	50, 8	60.0	٦	TEST
SM S 6 4 11 4 16	33.7	29.3					(3) (3)	31. আ	35.7	31.6		26.7			35, 6				31.8	≥3.7	૩૦, ૩	32.7	31.9	39. E	33.7	ស ទោ	39.7	35.7	大。WT	1000
₩D 16.0 10.5 11.5 4	-	(4)								(c) 14		-								شموا									MS 97	*
50 50 50 50 50	0	(D	7	Œ	Œ	1			C		Œ	TO:	4	ro	ርባ	ù	7	\$	æ	В	7	7	ιο	(v)	(H)	7	ξņ.	4	3	
DU 83 73	16.0									15. 1		10. 10		15.6		15.7		16.3	15, 5	16.6	15.8	16.5	16.0	15.9	16.4	16.8	15.6		PRO	ТНМ
	114	104	110	115	116	109	110	100	119	110	10≥	103	116	107	109	110	10 fo	118	109	84	107	117	109	113	111	1 (0) (0)	110	110	SSBN	HARD
	54,6	51.0	53.7	<u>ព្រ</u>	52.0	54, 3	51.8	0.00 0.00				©1. ⊌		56, 3	60.7					57.3		57.1	55.7	61.7	51.3	48.0	55° 1		EXTR	SEMO
	75	36	36	85	85	90	85	85	75	90	85	80	90	90	85	90	80	85	95	n O	90	75	80	85	60	80	85	90	COLOR	DUST
	ው	gn.	σ	7	7	ው	Φ	Cil	(J)	Φ	Φ	4	٤٦	6	7	4	ю	בַח	ው	7	٤ŋ	fü	4	ſij	ro	4	ניו	7	SCR	
	4	(v)	4	4	4	4	4	4	4	4	4	ro	4	4	4 .	4	4	4	4	j	(H	4	4	4	 	ю	4	4	**	SCORE
		3	31		MI	MI	I Z	IM IM		MI MI			IM IM				ΝI		ΙK	ችግ	포스	ΙĽ	IM IM			MI			TW KW SM WP SX DU	DEFICIENCIES
,																				ГM					МJ	₹,			nd xs	SES

***EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=600D PROMISE

STATE MINNESTON STATION CROOKSTON

NURSERY - UNIFORM

1988 CROP

w	

1	Ē
,	w
ŀ	
į	

w	

L	ں	

VARIETY

STD

TEST

1000 K.WT

I,G SM

NESS

SEMO

DUST COLOR

SCORE

A.L

ME

ĸ

Z

DEFICIENCIES
KW SM WD SX

DU

1	į.
1	U
ì	
i	
1	

61. 6 61. 6 62. 4 662. 5 662. 6 662. 6 662. 6 662. 6 662. 6 662. 6 662. 6 662. 6 663.

442.6 42.6 43.7.7 44.7.2 44.7 44.7 44.7 44.7 44.7 44.

17.1 15.7 116.3 117.8 117.8 117.8 117.8 117.2 116.4 116.7 116.7 116.7 116.7 116.7 116.9 116.9 116.9 116.9

골

3 3

건

DEFICIENCIES
AVG OF STANDARDS
MINOR FAULTING VALUES
MAJOR FAULTING VALUES

TW 61.2 59.0 58.1

40.v

2 7 2 M

WI' 16.7 12.5 11.5

57.3 56.3

87 77

ĭ

Z

H

ACCEVALUATION 1 NO PROMISE,

2-LITTLE PROMISE,

3.SOME PROBLEE, 4:GOOD PROMISE

STOA SCEPTRE RUGBY

WARD 833-323 PA 883-323 PA 883-323 PA 8291-323 PA 8370 PA 8370 PA 8370 PA 8458 PA 8459 PA 8459 PA 8459 PA 8479 PA 8479 PA 84130 P

ကျေ

VIC

STOCKHOLM

MINDUM MONROE

LLOYD MEDORA

FJORD LAKER

വ

59.6 62.2 61.3 60.8 61.6 59.2

RENVILLE

DEFICIENCIES AVG OF STANDARDS MINON FAULTING VALUES MAJON FAULTING VALUES	FJORD LAKER LLOYD MEDORA MINDUM MONROE RENVILLE RUGBY SCEPTRE STOCKHOLM STOCKHOLM VIC STOCK 83-323 D 8291-323 D 8291-323 D 8370 D 8370 D 8370 D 8370 D 8459 D 8459 D 8459 D 8459 D 8459 D 84130 D 84134 29A 29A	
TW 57.2355.03	600.66 600.66 600.66 600.66 600.66 600.66 600.66 600.66 600.66 600.66 600.66	3
0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3375 WI 3375 W	
WP S 15.3 52 12.5 49 11.5 48	LG SM 20 6 29 5 118 5 114 4 114 4 119 7 111 7 110 7 110 7 111 7 111 6 113 6 21 6 21 6 21 6	Þ
X DU .2 87 .2 77	PROPERTY OF THE PROPERTY OF TH	
	NESS 1106 1119 1104 1106 1111 1007 1008 1108 1109 1109 1109 1109 1109 1109	; ; ;
	557. 1 1 5 5 5 7 7 7 8 5 8 7 9 9 7 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9	
	COLOR 200 00 00 00 00 00 00 00 00 00 00 00 00	2
	E	
	;) *) *	
	TW KW SH WD SX	755775570755
	מ או או מי	4

STATE=MONTANA STATION=BOZEMAN NURSERY=UNIFORM

DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES	D 84134	8413	8310	847	847	846	845	845	843	828	837	837	830	829	D 8261	FA 883-32	WARD S	IC	STOCKHOLM	STOA	SCEPTRE	RUGBY	RENVILLE	MONROE	MINDUM	MEDORA	LLOYD S	FJORD	VARIETY STD	
TW 62.5 4 S 60.3 3 S 59.4 3	62.4	u	2.	2.	ü	ω	2.	2.	Ü	ω	ω	2.	2.	:	Ľ	2.	ω.	2.	·	ω ·	2.	2.	2.	ω	2.		۳	رى •	J.M	TEST
KW SM 0.0 2 7.9 7 4.9 12	32.6	9	<u>۵</u>	0.	7.	5	6.	5	2.	6.	о	ω.	7.	٠.	4.	1.	(C)	2.	9.	0.	٠	7.	7.	5.	7.	0.	9.	ŝ		1000
WP SX 13.8 62. 12.5 59. 11.5 58.	15 4	27	7	ω	0	2	0	ω	9	9	2	0	1	9		_	G	9	-	~	2	G	μ.	9	G	8	0	2	TG SW	oʻo
X DU .5 93	14.1	u	ω	ω	٠.	<u>.</u> ~	٠.	4.	4	ü	ω ·	ω		ω	٠.	<u>.~</u>	.₽	4.	2.	٠	4.	<u>.</u>	٠.	4.	4.	.4	ري •	٠	PRO	TIIW
	115	\circ	0	0	\vdash	0		9	0		0	9		0	9	0	0		0		0		0	0		0		0	NESS	HARD
	61.8	4	ω	ω	ω	٠.	4	5	ω.	ω		.	0.	0.	2.	2.	ω.		1.	5	2.	ω.	6.	6.	4.	2.	·	1.	EXTR	SEMO
	95			0																									COLOR	DUST
	40 (Jī	6	U	ហ	ហ	4	4	ω	U	û	ω	ω	ω	6	ω	2	6	U	6	ω	2	ن	ω	2	ω	O	7	SCR	OXIM
	ω.	43	4	4.	4	4	4	4	4	4	4	ω	4	ω	ω	4	4	4	ω	_	4	۵.	4	2	┙	4	4	<u>.</u>	*	SCORE
	ľУ					ИІ	MI	МI		NI		N,		MJ	Ŋ				ИN	му му	HI	HI	ч	PW	ГW				TW KW SM WP SX DU	DEFICIENCIES

^{***}EVALUATION 1:80 PROBLEE, 2:LITTLE PROBLEE, 3:SOME PROBLEE, 4:GOOD PROBLEE

DEFICIENCIES AVG OF STANDARDS HINOR FAULTING VALUES HAJOR FAULTING VALUES	D 0475 D 8479 D 33103	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U U U U U U U U U U U U U U U U U U U	D 8370	91	WARD FA 983-32	ALC SLOCKHOTM STOV	RUGBY	MONROE REHVILLE	S GACTI CACCA	VARIETY STD
W W					• •		• •	0 0	o o		WEST
· · · ×				e e			0 0		e. e	• •	1000 K.WT
WP 5			P + 0						• •	0 0	FG SM
		17.7 16.9 17.9	16.5						0 0	16. 16.	WHT
	103	108 98 107	108 103	103	108	102	112	109	103	94 115	HARD
							B 0		e o	• •	SENO EXTR
	e o o	e 6 e	• • •		0 0			Ф 6		o e	DUST
		• • •			0 0	9 0 0	• •	• •		e 0	MIXO
	داء هاء داء	a a a a	તા તા તા	. 4.4	44	ata ata	D 10 1	c2u c2u c∶	de eta	<i>&</i>	SCORE
											DEFICIENCIES

PRESCRIPTION 1:NO PROMISE, 2 LITTLE PROMISE, 3: SOME PROMISE, 4:GOOD PROMISE

DEFICIENCIES AVG OF STANDARDS MIHOR FAULTING VALUES MAJOR FAULTING VALUES	D 84134	D 34130	D 83103	D 8479	D 8475	D 8460	D8459	D 8458	D 8434	D 8380	D 8374	D 8370	D 8302	D 8291	D 8261	FA 883-32	WARD		STOCKHOLM	STOA	SCEPTRE	RUGBY	RENVILLE	MONROE	MINDUM	MEDORA	LLOYD S	FJORD	VARIETY STD	
TW K 63.1 40 60.9 38 60.0 35	63.5	ω	ω.	.2	ω	ω	ü	2.	ω.	ω	ω.	U	ω	2.	ω	ω	ω	ω.	ω.	2.	ω	4.	ω.	ω	ω	ω	2		TW	TEST
W SM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37.5	9	9	°	<u>ස</u>	7.	9.	8	0	ς.	9.	ω	7.	5.	2	0	7.	1.	8	9	7.	7.		ω	6.	1.	2.	9.	K.WT	1000
WP S 3.7 66 2.5 63 1.5 62	28 2	0	ငာ	œ	1	ω	8	ω	0	1	7	œ	2	1	7	4	4	_	w		4	0	0	4	œ	æ	42	6	MS 57	c ₂ .
X DU .2 93 .2 83 .2 78	13.1	ω	ω	ω	ω	.4	ω	ω	ω	2.	2.	2.	ω	2.	2.	ü	٠	٠	2	ω	4.	4.	ω	ω	4.	۵.	ω	ω.	PRO	TIIW
•	98							0		0	0	0	0			0		0				0	0		0		0	0	NESS	HARD
	63.3	2	4	2.	<u>ب</u>	5	5	5	ω.	5	4.	ω	ω	ω	တ	5.	5.	٥.	٥.		6.	Ċ		9	5.	6.	7.	5.	EXTR	SEMO
	100							0	တ																				COLOR	DUST
	4	4	σı	ഗ	ω	ω	ω	ω	ω	ιJ	ω	ω	ω	ω	ω	ω	2	ω	ω	6	ω	2	ω	ω	2	ω	4	4	SCR	OXIM
	4	w	4	2	4	4	4	4	4	ω	42	ω	4	4	4	4	4	4	<i>ح</i> د	₽	4	4	4	4	1	4	4	4	* *	SCORE
	IM	ZI.		LN IM	ин	чі		NI		И		ГH	ИІ				ии			ГW	NI	IN	ИI		IM				TW KW SM WP SX DU	DEFICIENCIE:
																				ſΆ					Ľ				DU	()

DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES	D 8374 D 8380 D 8434 D 8458 D 8459 D 8460 D 8475 D 8479 D 84130	STOCKHOLM VIC S WARD S FA 883-32 D 8261 D 8291 D 8302 D 8370	FJORD LLOYD S MEDORA MINDUM MONROE RENVILLE RUGBY SCEPTRE STOA	VARIETY STD
TW K 58.4 30 56.2 28 55.3 25	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	œ. œ. 7 æ. 9 æ. æ. æ.	78878, 889	TEST
W SM .1 8 1 .0 13 1	31. 25.2 33.0 26.2 25.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	69680709	1777	1000 K.WT
WP SX 9.3 56. 2.5 53. 1.5 52.	7 7 3 9 13 2 5 10 4 13 8 7 5 10 7 5 7 5 7			MS DJ
DU 5 87 5 77 5 72	118.6 119.9 119.9 119.9 119.0 119.0	• • • • • • • •	709990089	WHT PRO
	1115 1001 1116 1112 1103 1103 1111 1116 1116 1113 1113	1110020	7222111	HARD NESS
	56.6 55.9 54.9 59.6 58.5 58.2 58.3 55.1	6.7888186	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	SEMO
	8 9 8 8 5 5 5 0 0 5 5 5 0 0 5 5 5 5 6 0 0 0 0 0			DUST COLOR
	7. & & 7 & & & & 5	บ บ ด ด ด ด น น ळ) & & & & & & & & & & & & & & & & & & &	MIXO SCR
	ם יין ממממט מממ ט	♣ ♣ ♣ ♣ ♣ ♣	444444	SCORE ***
	и			TW
	H H H H	# # #	AKKK K	DEFICIENCIES
	IN CH	ટુ	FF	CIES SX DU

DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES	FJORD LLOYD MINDUM MINDUM MINDUM MINDUM MOUROE REMUGBY SCEPTRE RUGBY SCEPTRE STOA STOCKHOLM VIC STOA STOCKHOLM VIC B370 D8261 D8261 D8261 D8291 D8370 D8370 D8370 D8370 D8370 D8370 D8479 D8475 D8475 D8475 D8475 D8475 D847130 D84130 D84130	
TW 159.73157.5356.63	550 550 550 550 550 550 550 550 550 550	TECT
KW SM 6.5 6 1 4.4 11 1	23 25 25 25 25 25 25 25 25 25 25 25 25 25	1000
WP SX 15.5 58. 12.5 55. 11.5 54.	LG SH 46 3 16 8 38 5 56 6 56 3 21 8 21 8 21 8 21 8 21 8 21 8 21 8 21 8	₁ .5
DU 8 93 8 83 8 78	PRO	E E
	NESS NESS 110 105 105 1106 1106 1106 1106 1106 1007 1100 1007 1007	ממאוו
	55 55 55 55 55 55 55 55 55 55 55 55 55	a EMO
	COLOR	DI 127
	: :: 	N I N
) >* פובטם בב ב מ ב ב ב ב מ ב ב ב ב מ >* 5 * 5 * 7 *	3000 E
,	TW KW SM WP SX DU MJ MJ MJ MJ MJ MJ MJ MJ MJ M	Dad I C Lenc
	I W CW	_ ๆ ภ

STATE=NORTH DAKOTA STATION=PROSPER NURSERY=UNIFORM

DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES	847 847 841 841	D 84380 D 8458 D 8459	TOCK IC ARD A 88 A 829 829 837	MEDORA MINDUM MONROE RENVILLE RUGBY SCEPTRE STOA	VARIETY STD FJORD LLOYD S
TW 61.3 3 59.1 3 58.2 3	1.1.0.	000225	62.2 61.8 61.3 62.0 62.0	1111000	ES WT
KW SM 8.7 3 6.6 8	6.09.	10.50.00	38. 39. 39. 39. 35. 29. 20.	5.547.	0. 0. 0.
WP S 15.6 62 12.5 59 11.5 58	62576		15 2 25 2 19 3 27 2 34 2 17 4 17 4	4785424	0 0 0
3X DU 2.3 88 9.3 78 8.3 73	14. 14. 15.	15.15.	11111111111111111111111111111111111111	15. 15. 15.	WHT PRO 15.
		10111	7 102 7 109 7 1113 1 113 6 114 2 103 2 103 4 106 6 94	11 10 10 11 11 10	HA NE 10
•	0 2 2 7 4		63.4 63.1 65.3 60.2	$\begin{smallmatrix} 0 & \ddots &$	SEM EXT 62.
	. 90 90 90 90	9 9 8 7 9 0 1 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 70 85 85 85 30	CO 8 8
	ഗ ഗ ത ത ത	. <i>.</i>	ﺳﯩﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨﺪﯨ	υ ω <u>α α ν</u> α ω	wπ
	ه م م م ه	1 4 C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			SCORE ***
	И	IN IN IN IN	и и и и и и и и и и и и и и и и и и и	FA TH IN TH	DEFICIENCIES

***EVALUATION 1=NO P	DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES	0 6	TL 801045 TL 801065 TL 820100 TL 820112 UC 606	NK 859615 PBS 02105 PBS 02120 PBS 03113 PBS 03429 T 83138	$\sigma \omega \circ \tau \sigma = \sigma \sigma$	ALDURA S. CARC 'S' DUROX LLOYD STOCKHOLM TITAN VIC 1A WAID	VARIETY STD
PROMISE,	TW 62.0 4	1 6 6 6	10923	101213	246704	62.0 61.7 63.0 59.5 63.1 61.8 61.8	TEST
2=1.1TTLE	KW SM 4.1 0 1 2.0 5 1 9.0 10 1	12.55.	29434	206276	37.93.75	44.1 38.3 39.2 45.0 43.5	1000 K.WT
PROMISE	WP S 5.3 62 2.5 59 1.5 58	თთთთი	ω Γ ο 4 4 o	903736	168715	50 26 0 0	MS DJ
, 3=	X DU .6 90 .6 80 .6 75	ישישיטיט	, , , , , , , , , , , , , , , , , , ,	* ``````		15.3 14.8 13.8 15.3 14.7	WHT PRO
SOME PROMISE,		98 100 91 107	93 99 100 100	107 107 81 101 109	107 102 102 111 103	107 112 73 101 98 103 103	HARD NESS
		0 to 1 to 0	221222	21.21.02	32 H 62 6	665. 655. 655. 655. 655. 655. 655. 655.	SEMO
4=GOOD PROMISE		88889	75 80 80	889785 80005	90 70 70 90 80	88989569 00050	DUST
38		1 W & W F	- w w w h	ν 4 4 10 10 10	7 2 4 4 7 7	αυυαααω υα	MIXO SCR
		2000	- U - W - U - L	44444	444482	שרושששמטר	SCORE ***
			и и	ч	NJ MI MI NJ	и и и и	DEFICIENCIE:
		II IX	IH IH	IN UN	IN CM CM	H L H	C DU

QUALITY DATA OF DURUM SAMPLES 1988 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=FIELD PLOT

			LLOYD RUGBY VIC WARD		TAE
DEFICIENCIES TW AVG OF STANDARDS 58.0 MINOR FAULTING VALUES 55.0 MAJOR FAULTING VALUES 54.0 **EVALUATION 1=NO PROMISE,	LLOYD RUGBY VIC WARD	VARIETY	D YE	VARIETY	TABLE 12
ES RDS RDS VA G VA		1 1	v	STD	! ! !
VALUES VALUES	ហ	STD	60.4 61.1 58.0	TEST WT #/BU	
ON II S S S S S	115.	SEMO PRO		<u> </u>	! !
TW 58.0 55.8 54.9	8 10 9 10 6 10		37.3 38.5 38.0	1000 K. WT	! ! !
KW 38.0 35.9 32.9 2=LI1	10.5 10.0 11.0	VIS		1	, ! !
7 SM 0 4 9 9 9 14	30. 31. 31.	COOX	18 36 22 43	% % HG SM	! !
12 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· † &	ΝΑωΝ	S M C	! !
KW SH WP TX 38.0 4 14.7 77.7 35.9 9 12.5 75.2 32.9 14 11.5 74.2 2=LITTLE PROHISE,	5.96 5.27 7.30 5.44	FIRM- NESS	1.54 1.82 1.84 2.02	WHT ASH %	
	6,47 6,00 6,00 6,00	RES	13.8 16.7 14.7	WHT PRO	
DU 7 110 7 100 7 95 OME PR	4444	SCORE	109 123 107	HARD- NESS	! ! ! !
SX DU SK SP VI 59.7 110 10 14.1 11.0 56.7 100 20 11.5 10.0 55.7 95 25 11.0 9.5 3=SOME PROMISE, 4=GOOD		T W	400 400 400	FALL NO SEC	! ! ! ! !
P VI .1 11.0 .5 10.0 .0 9.5		MS N	76. 7 77. 4 77. 7 77. 7	TOTL EXTR	! ! !
FR 7.3 5.8 5.0 PROM		WP TX	61.0 59.8 59.7 60.5	SEMO EXTR	! ! ! !
ISE		CIENCIES-	23 23 10 50	SPK	! !
	נא	IENCIES SX DU SK SP	0.61 0.78 0.64 0.73	1	
	ra I ra I ra	2	61 78 64 73	SEMO ASH %	
	3 3 1 1		105 95 110	DUST]
	u I u I	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 (11) (1)	MIXO	

QUALITY DATA OF DURUM SAMPLES 1988 CROP STATE=NORTH DAKOTA STATION=LANGDON NURSERY=FIELD PLOT

DEFICIENCIES TW AVG OF STANDARDS 62.2 MINOR FAULTING VALUES 60.0 MAJOR FAULTING VALUES 59.1 **EVALUATION 1=NO PROMISE,	CANDO LLOYD RUGBY VIC WARD	VARIETY		CANDO LLOYD RUGBY VIC WARD	VARIETY	TABLE 13
DIES DARDS (NG V		1 1	; 1 1 1	w	STD	
S VALUES VALUES	ν 	STD		62. 5 62. 7 62. 5 62. 3	TEST WT #/BU	
TW 62.2 S 60.0 S 59.1	14. 0 12. 9 14. 9 15. 4	PRO	! ! !	39. 48. 41. 47.	1000 K. WT	
	10.5	COL	! ! !	9 8 0 3 7	-	
KW SM 47.8 1 45.7 6 42.7 11 2=LITTLE	30. 31. 28.	COOK WT G.	!	42 67 47 68	% CG TZISI	
SH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 20 0 9	· + &	1 1 3	2 - 2 2 -	% WS SING	! !
WP TX 15.9 76.0 12.5 73.5 11.5 72.5 PROMISE,	5. 18 6. 54 5. 75 7. 41 6. 13	FIRM-		1.57 1.54 1.60 1.65 1.58	WHT ASH %	
C. C	0.00 0.00 0.00	RES G.	1 1 1 1 1	14.8 14.2 16.6 15.9	WHT PRO	
3 A B B B B B B B B B B B B B B B B B B	८४-५५	SCORE		110 111 122 128 120	HARD- NESS	1 1 1 1
SK 53 63 68 70		! ! ! ! ! ! ! ! ! !		400 400 400 400 400	FALL NO SEC	! ! ! !
e	וא ען	KW SM		75. 4 76. 4 77. 2 76. 0 77. 9	TOTL EXTR	1 1 1 1
VI .FR 10.5 7.4 9.5 5.9 9.0 5.1 GOOD PROM		DEFIC		58. 2 60. 8 59. 6 59. 3	SEMO EXTR %	
R 41 91 16 16		CIEN	 	33 37 70 53 23	SPK	
	Ħ.J.	XX 8	1	0.64 0.59 0.67 0.65 0.65	SEMO ASH	! ! ! !
	a a	SP VI		105 95 95	DUST	1 1 1 1 1
	я я п	1 1		νωνων	MIXO SCORE	: ! ! ! !

STATE=ARIZONA STATION=TUCSON NURSERY=FIELD PLOT

	VARIETY STD WT K.WT LG SM ASH PRO NESS NO EXTR E	TEST 1000 SIZING WHT WHT HARD- FALL TOTL S	
80.4 64.8 78.2 64.9 78.8 64.0 77.1 62.3	EXTR EXTR	TOTL SEMO	
43 0.60 95 53 0.51 70 30 0.56 90 47 0.58 95		SEMO DUST M	

QUALITY DATA OF DURUM SAMPLES 1988 CROP

GEM AVG OF STANDARDS 63.3 51.0 MINOR FAULTING VALUES 61.1 48.9 MAJOR FAULTING VALUES 60.2 45.9 YAVAROS TURBO NK 850 WESTBRED ALDURA ----VAR I ETY----DEFICIENCIES STD ಬ ಬ STATE=ARIZONA STATION=TUCSON NURSERY=FIELD PLOT 10.7 10.2 10.5 PRO SEMO COL 9.0 9.5 9.0 V SM WP TX SX .0 1 12.1 78.7 63.5 .9 6 12.5 76.2 60.5 .9 11 11.5 75.2 59.5 30.8 33.6 31.8 30.9 COOK 5.40 5.21 6.33 4.49 5.51 NESS FIRM-RES G. 7.1 7.1 5.7 7.1 SCORE 95 85 80 * * -----SK SP 45 11.1 55 11.5 60 11.0 -----DEFICIENCIES-----TW KW SM WP TX SX DU SK SP VI FR ĭ VI 9.3 8.3 7.8 FR 5.86 4.36 3.61 r F F F F Ę Z CH CH F. F. F. Ħ IH K

**EVALUATION 1=NO PROMISE,

2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

STATE=ARIZONA STATION=CASA GRANDE NURSERY=SPECIAL

TABLE 15	STA	TE=AI	STATE=ARIZONA		ATTO	STATION=CASA GRANDE	A GRA	NDE		NORSERY=SPECIAL	PECIA	ŧ-				
	# !	TEST	1000	SIZING	ING	WHT	THW		HARD-	FALL	TOTL	SEMO	 	SEMO	DUST	OXIM
VARIETY STD	l	WT #/BU	K.WT	% 0.1	* X	ASH %		 	NESS	SEC	EXTR	EXTR	SPK	ASH &	COLOR	SCORE
ALDENTE TURBO N DAK STD VIC S		62.9 62.0 60.3	50.0 48.1 44.4	76 76 67	- ω -	1.42 1.53	13.1 12.7 16.2		107 108 145	400	73.6 73.8 72.3	57.3 56.5	13 43	0.57 0.58 0.66	8 8 9 5 5 5	اک جب جب
		QU	QUALITY	DATA	OF 1	DURUM	SAMPLES	LES		1988 0	CROP					
	STA	TE=A	STATE=ARIZONA	1	AT I OI	STATION=CASA	A GRANDE	NDE	NUR	NURSERY=SPECIAL	SPECIA	i [** 	1 			
VARIETY 57	STD	SEMO PRO	VIS	COOK WT	FIRM		1 6	SCORE **	1	TW KW	M.	WP TX SX DU	ENCIE	IES	VI FR	' '
ALDENTE TURBO N DAK STD VIC	ω 11 11	11.9 11.1 15.3	10.0	31.1 31.3 29.9	6.00 5.60 6.50		7.0 7.2 6.5	a. ω a.						H		
DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES		TW 60.3 58.1 57.2	KW 44.4 42.3 39.3	SM WP 1 16.2 6 12.5 11 11.5		TX 72.3 5 69.8 5 68.8 5	55.3 52.3	DU 85 75	SK 40 1 50 1	SP V 15.3 10 11.5 9 11.0 8	VI 10.0 6 9.0 5 8.5 4	FR 6.50 5.00 4.25				
**EVALUATION 1=NO PE	PROMISE,		2=LITTLE		PROMISE,		3=SOME		PROMISE,	, 4=GOOD		PROMISE				

QUALITY DATA OF DURUM SAMPLES

TABLE 16 STATE=OREGON STATION=PENDELTON NURSERY=SPECIAL 1988 CROP

DEFICIENCIES AVG OF STANDARDS MINOR FAULTING VALUES MAJOR FAULTING VALUES	CANDO S S 9	VARIETY STD
TW 63.7 5 61.5 5	63.7 64.6 62.2 63.1 64.8 62.8	TEST
KW SM 52.1 1 50.0 6 47.0 11	52.1 61.0 53.5 54.6 57.3 46.7 58.5 52.1	1000 K.WT
WP 12.6 (12.5 (11.5 (81 82 88 89 91	NS DT
SX 63.8 59.8	010010111	K K
70 60 55	12.6 12.7 11.0 12.8 12.0 11.3 12.2	WHT PRO
	9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9	HARD NESS
	63.8 57.8 57.9 60.2 60.6	SEMO EXTR
	70 65 65 70 70	DUST
	a a, u u u u u a n	MIXO SCR
	241132114	SCORE ***
	IN IN CM IN CM	DEFICIENCIES TW KW SH WP SX DU

GUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=ADVANCED

FMC D5172 FMC D5238 FMC D5269 FMC FMC FMC S S TABLE FMC D5081 WESTBRED TURBO WESTBRED S. VHVA STIFFTAIL CARCOMUN ALTAR 84 YAVAROS NUTRISEED MEXICALI YECORO ROJO IMPERIAL ALDURA ----VARIETY----85D 9614 85D 9687 780 781 782 743 884-11 884-32 85D 9699 742 741 738 739 883-2 25126 740 D5633 884-57 05573 D5110 05691 D5384 D5317 881 28-1 4 U STD ហ ហ ហ 66.3 62.6 64.4 64.5 64.0 65.4 65. 1 65. 2 65. 0 64.5 66.4 62.0 64.4 64.8 65.7 66. 2 65. 3 65. 4 63. 2 64. 4 65. 5 64.8 64.4 64.3 63.9 64.8 65.8 65.7 63.9 66.3 64.9 63.8 64.6 64.2 64.5 64.6 62.6 63.5 64.8 #/BU TEST 43.9 46.3 47.7 41.8 48.1 46.9 43.5 54.3 43. 5 52. 1 43. 1 44.4 49.8 50.3 41.7 44.2 45.5 43.5 45.7 43.9 39.5 46.7 47.6 42.6 45.8 45.0 54.1 44.8 38.0 54.9 54.3 53.2 48.1 48.1 47.1 1000 50.3 K. WT ů LC 76 SIZING S ASH % 1.92 1.69 1, 65 1.65 1.80 1.70 1.67 1, 65 1.64 1.71 1.73 1.80 1.77 1.78 1.74 1.71 1.62 1.79 1.66 1.58 1.62 1.69 1.75 1.76 . 63 56 WHT PRO 12.0 12.7 12.7 11.9 11.9 12.7 12.7 12.2 13. 0 12. 9 12. 1 12. 2 12. 8 11.9 13.8 13.2 12. 2 12. 0 12. 0 12. 9 12.6 14.3 13.2 12.3 12. 4 13. 1 11. 8 12. 4 12. 6 12. 0 13.0 12.9 11.9 13.0 12.6 11.7 11.8 13.7 12. 12. NESS 91 94 110 96 108 108 97 HARD-103 102 102 106 94 97 97 94 91 102 93 96 99 97 00 92 93 87 67 99 69 99 SEC FALL 400 NO 75. 1 77. 8 774. 5 774. 7 774. 7 774. 3 774. 3 775. 0 75. 0 74.3 73.0 72.7 73.2 73.5 74.9 74.2 74.3 70.9 75.6 73.3 74.0 74. 6 63. 1 74.6 EXTR TOTL 74.1 73.0 74.7 73. 5 74.0 80.2 74.7 × SEMO 60.7 60.0 60.6 60.1 EXTR 60.5 60.0 58. 59.7 59. 56. 59. 59.3 57.5 99 56.2 58.0 58.3 58.0 58.0 57.7 57.3 59.6 59.3 58.2 48.0 59.5 59.2 57.0 58. 58. 59.4 58.4 58. 57.9 57.8 58. σ 0 B 83 47 60 37 87 87 53 43 83 67 60 77 43 53 73 43 67 67 37 50 50 43 70 SPK 47 40 0.60 0.63 0.62 0.66 0.65 SEMO Ö 99 0 HSA × DUST COLOR OXIM SCORE

STATE=CALIFORNIA STATION:IMPERIAL VALLEY NURSERY=ADVANCED

FMC D5081 FMC D5118 FMC D5172 FMC D5238 MAJOR FAULTING VALUES 62.0 AVG OF STANDARDS FMC FMC FMC S C UC UC C XX NK 85D 9614 CD YECORO ROJO YAVAROS WESTBRED WESTBRED WAHA 'S' STIFFTAIL NUTRISEED MEXICALI IMPERIAL CARCOMUN ALTAR 84 TABLE 17 (Cont.) ----VARIETY----884-11 884-32 884-57 740 738 85D 9699 782 780 742 741 739 25126 781 743 883-2 85D 9687 DEFICIENCIES D5573 D5317 D5384 D5730 16950 D5269 05633 881 TURBO 4 28-1 STD ហ ហ ហ 65.2 13.2 11.8 10.5 11. 11.0 11. 10.5 10. 12.0 11. 10. 12.8 11.2 11.5 11.3 12.0 12.5 12. 10. 13. SEMO 11.3 11.7 12.2 11.9 11.3 11.9 12.3 10. PRO 12. 11.6 11. 10.3 10.7 M.L 44. 24. 21. 49.3 10.0 9.50 9. X X 9.0 9. 9.99.99.99 9.0 5.0 8.0 9. 0 9. 5 8. S 9.0 COL VIS 0.09. 0 こくと COOK 32.7 30.6 33.1 32.0 32.1 32.1 32.8 30.0 30.9 32.5 31.5 33.0 32.2 33.1 32.7 30.6 32.0 31.8 19 19 12. 1 Ę 4. 99 5. 34 5. 66 5. 66 3. 93 5. 01 5. 46 6.03 5.68 5. 18 6. 29 4.54 5.53 5.36 7.97 5. 92 5. 25 6. 59 5.46 4.77 5.66 4.73 5.62 5.49 NESS 4.41 7: 8 74.9 4 លលល ò ū 'n ÿ 7. 4. ξū S 4.0 FIRM 01 \vec{x} 86 49 25 41 57. 60. 1 7.7 7. 3 7. 7 7. 3 7. 0 7. 0 7. 9 6. 6 7. 4 6. B 6. 6 6. 9 7. 1 6.8 7.4 6. 6 7. 1 7. 3 7. 1 7. 1 8.0 7.1 7. 4 6. 5 7. 6 RES 7. ij Ü Ъ SCORE 83 83 83 * * * 5222 11.5 ភ ΗI ЦJ Ħ -----DEFICIENCIES-----T E HH H H H H H H H H H TH H 2222 I H H KW SM WP TX SX DU SK SP ΗI HH H 8.7 7.7 7.2 IA 4, 92 9, 42 2, 67 I H H H H H HI HH ΜI HHH HH HH H H H 7 ĦJ HH HH r E HI Ľ, MI 7 7 ĭ r r r HI PH Ę Ę μЈ IH 2222 HH IH HI МJ HHH HH HU 114 E H VI FR HJ H

**EVALUATION 1*NO PROMISE,

2=LITTLE PROMISE,

3.SOME PROMISE, 4.6000 PROMISE

QUALITY DATA OF DURUM SAMPLES 1988 CROP STATE=CALIFORNIA STATION=KINGS CO. NURSERY=ADVANCED

VARIETY	STD	TEST WT #/BU	1000 K. WT	% LG SIZ	X WS ING	WHT ASH	WHT PRO	HARD- NESS	FALL NO SEC	TOTL EXTR	SEMO EXTR	SPK	SEMO ASH	DUST	MIXO
AI DIIRA	ν ,	63	ָ ה	74	-	1 44	o i		400) 	ا د	ا د ا د		ט ס	-
TAR		•	46.9	73	N	1.38	11.0	124	400	78.4	•	47		90	ω
ARCOMU		ω	9	67	4.	U	2	116	400	•	'n	20		70	ω
			ω	87	-	g	4.	114	400	77. 1	۲.	67		90	б
MEXICALI	ខ	62.3		75	-	4	Ņ	116	400		4.	40		90	ហ
NUDURA		5	5	92	0		ω	122	400	77.9	5	53		100	4
SEED		2	5	70	N	ប	ω	116	400	•	0	23		80	Ŋ
STIFFTAIL 4		ω		78	N		•	124	400		5	ဒဝ		80	ω
WAHA 'S'		Ω	9	61	ы	1.51	12.8	122	400		5	27		95	N
STBRED 881		63. 2	51.0	79) -	4 (113	400	76.9	60.8	63	0.61	100	ហ
YAVAROS	Ŋ	4 .	ט ני	800	- 1	֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֡֝֝֝֝֝֡֝֝֝֡ ֓֓֞֞֞֞֞֞֞֞֞֞		127	400		<u>ب</u> د	ນ (B 0	ມເ
251	,	ភ :	8	80	- 1	4	12.9	117	400	77.9	- :	30	0, 61	95	ω
U		'n	9	65	N	ហ		115	400		5	30		100	4
DS		4.	46.7	77	-	1.45		124	400	•	59.8	63		100	ω
G		ω	51.5	80	-	1.56		116	400	78.1	64.4	47		90	4
D526		ω		70	Ŋ	1.50	-	111	400		63.4	27		95	4
D5317		63.2	7.	79	0	1.61	13.1	105	400	77.6	62.4	53		100	ហ
85D 968		4.	54.9	83	-		-	114	400		ω	33		100	4
~		ω	54.1	88	-	1.45	13.1	116	400	85.1		33		100	ហ
883-		4.	52.1	83	-	1.44		125	400	78.1	62.6	47		100	7
884-1		ы		55	0	1.56	13.2	117	400	77.3	5	50		95	7
PH 884-32		63.5	9	62	۳	1.60		118	400		'n	37		95	4
PH 884-57		ω	53. 5	79	-	1.39	•	118	400	78.6	'n	43		90	ω
UC 712		63.5		82	⊢	1.43	12.7	114	400		62.8	53		95	ហ
			•	65			14.1	123	400		ь	73		85	-
		'n	•	61	-			117	400	7.	٠	37		100	ω
		4.	46.7	77	, <u>-</u>	4.1		123	400	75.9	60.3	47		105	N
		4.	0	80	0	1. 58	Ψ	118	400			63		95	, ,
		'n		71	_	1.58	μ	125	400		5	37		90	ω
UC 743		65.0		80	-	1. 51	13. 2	121	400	77.3	12	20		100	ιω
		μ	ė	62	N		5	111	400		'n	60		95	ហ
UC 781		63.1	45.8	61	Ŋ	1.42	12.4	119	400	77.2	H	3		90	ω
		ຸ້ນ	50.0	81	_	1.48	•	122	400	9	-	37	0.62	85	4

GUALITY DATA OF DURUM SAMPLES STATE=CALIFORNIA STATION=KINGS CO.

KINGS CO. NURSERY=ADVANCED

TABLE 18 (Cont.)	0		((NON UP AT 1 D 7				
VARIETY	STD	EMO PRO	VIS	COOK	FIRM-	RES	SCORE	TW KW S	M WP TX	IENC	CIES	SP VI FR
	i 	: ×		G.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G.	 	1	1 1 1	 		1 1 1
ALDURA			ָר ס	32. O	,		v	X -i	3 ₹			3 . →
ਲ :	· ·	0	េច		5.14	7.0	-	MJ I	Z :			M I
ARCOMU	_	0.6	•	٠.	٠.	•	-	H	H	ΓW	J	ГH
	_	4.	•		ω		ω	пп			МJ	
MEXICALI	S 1		•		4	•	ω					пп
NUDURA	-	1.4	9. 5		6.07	•	ω				ΙH	MI
NUTRISEED 28-1	_	1.8	9.0	32.3	5. 57	6.7	4.					
STIFFTAIL 4	,_	'n	•		6.20	•	4					
WAHA 'S'	⊢	-	•		5.46	•	ω	HI				HI
WESTBRED 881	_	1.7	9.5	31.0	6.16		ω				ГH	
WESTBRED TURBO	-ر		•		5. 29	7.0	–			HI	П	HI
> < (•		1 4) -	3	H			3 2
EMC DSO81		9 4	9,0	29.4	6.03	0 0 0	ωĸ	7 L				II.I
MC D511	_		•		5.62		ь .	H.		H	ΓĦ	
	-		•		5, 40		4					
FMC D5269	-		9.0	30.5	5.42	•	2	ГH				MI
C D53	_	2. 2	•	30.5	5. 81		4	ні			IH	
85D 9	_	0.5	9.5		5. 53	7.1	_		ГИ			ПJ
85D	_		•	31.3	5.90	•	4					
88	_	2, 5	•		6.35	•	44					
884-	_		•		6.29	•	ω	ГW			IM	
884-3	L	0.8	۰	31.1	5.64	٠	۳	ГW	H			FW
Ф	<u>سو</u>	10.6	•			۰	L		HI			FW
v	_				5. 92	7.3	ω				IM	HI
ω	—	-			•	•	N	ГW			ГW	
١ ٧		. 6			6.13	•	N	ГM	H			
	—	9			•	•	C1	ГW		HI		
UC 741		2.3	9.5		6.03	6.6	ω	HI			ГM	
			•			•	4	HI				
UC 743			ຸນ		0	•	ω	. H				
			•		ω	•	—	LM	HI		ГH	H
UC 781		0.9	9.0	30.8	5. 90	6.6	L	ГW	H			HJ
UC 782	L	1.5	•			•	ω	H				HI
DEFIC				SM WP	Τ×	XS		SP	FR			
F STANDARI	m	3.6	52.9	'n	78.	63.7		11.1 8.	5, 16			
	VALUES 6	4. R	000	6 12.	5 75.8	60.7		49 11, 5 7, 8	ა . 66			
*EVALUATION 1:		-	2=LIT		3	3=SOME	ME PRO	SE, 4=G00	SI	æ		

QUALITY DATA OF DURUH SAHPLES 1908 CKOP STATE=CALIFORNIA STATION=DELTA AREA NURSERY=ADVANCED

TEST 1000 SIZING WITT WITT HARD-FALL TOTL SENO DUST WIXO SCORE WITT WITT HARD-FALL TOTL SENO WITT WIXO SCORE WITT WITT HARD-FALL TOTL SENO WITT WIXO SCORE WITT WIXO WITT WIXO WITT WITT WIXO WIXO WITT WIXO WIXO WITT WIXO WITT WIXO WITT WIXO WIXO WITT WI	>	 		; 1 1	 	1	1	 		 	 	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 	! ! ! !		1 1 1 1 1
## APBU G. X X X X SEC X X X Z COCHUN. S.C. X X X X X X X X X X X X X X X X X X	VARIETY	STD	TES	1000 K. WT	S12	MS	HEA	WHT	o o	FAL	TOTL EXTR	\dashv \exists	SPK	» E	DUST COLOR	IXO
UNA S 63.1 \$1.0 85 1 1.44 13.4 137 400 76.6 62.5 83 0.64 95 620HUN 'S' 64.7 47.0 79 2 1.43 12.4 127 400 88.8 63.8 43 0.64 85 620HUN 'S' 64.4 48.5 81 2 1.44 13.2 127 400 88.8 63.8 43 0.64 85 621 62.2 68.5 86 2 1 1.44 13.2 124 400 79.2 61.7 63 0.60 65 75 62.5 83 63.8 43 0.68 85 10 1.44 13.2 124 400 79.2 61.7 63 0.68 85 127 124 125 125 125 125 125 125 125 125 125 125			#/B	G.	×	×	*	%		SEC	*	1	 	 %	 	
URA COLULN 'S' 63.1 51.0 63.1 1.44 13.4 137 400 88.6 62.5 83 0.64 95 66.1 64.7 48.5 81 2 1.44 12.4 128 400 79.2 61.7 63 0.64 85 62.1 62.2 68.5 96 62.5 83 12 1.44 12.4 128 400 79.2 61.7 63 0.60 85 62.2 68.5 96 62.5 83 12 1.44 12.4 128 400 79.2 61.7 63 0.60 85 100 100 100 100 100 100 100 100 100 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	į	1 1 1 1	 1 	1	1	1 1	1 1 1	1 1 1 1	1	1		1			
NAR BAN COCHUMN 'S' 64.4 48.5 81 2 1.44 122 400 86.6 63.8 43 0.64 85 ERIAL 10 62.2 68.5 96 2 1.69 16.5 133 400 76.8 60.4 40 0.77 80 185 ERIAL 10 62.2 68.5 96 2 1.69 16.5 133 400 76.8 60.4 40 0.77 80 185 ERIAL 10 63.5 95.5 87 1 1.42 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.5 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.5 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.5 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.5 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.5 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.5 13.3 400 77.9 63.4 83 0.68 85 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 97 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 97 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 97 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 97 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 97 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 97 11 1.41 13.8 12.7 400 77.5 62.0 83 0.65 95 95 12.1 43 13.3 13.3 13.3 13.3 13.3 13.3 13.3	ALDURA	ທ	ω	-		H		13.4	137	400	•	9	63	Θ	95	и
COCHUNIN 'S' 62.2 68.5 96 2 1.64 12.4 12.4 12.8 400 79.2 61.7 63 0.60 65 ERIALI 5 62.2 68.5 96 2 1.64 13.2 12.4 400 79.5 63.4 83 0.68 85 11 1.44 13.2 12.4 400 79.5 63.4 83 0.68 85 12 1.44 13.2 12.4 400 77.5 63.6 64.4 80.77 80 85 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	œ		4	7.		N			N	400	8	ω	43	σ	85	Ŋ
INALI S. 62.2 56.5 96 2 1.69 13.2 124 400 77.9 60.4 40 0.77 80 17.1 1.1 S. 62.9 56.8 85 1 1.44 13.2 124 400 77.9 60.6 83.4 83 0.68 85.7 11.52 13.7 121 400 77.9 60.6 83.4 83 0.68 100 100 100 100 100 100 100 100 100 10	NOE.		4	Θ.	81	N		'n	N	400	9.	-	63	Θ	65	ω
URALI URALI URALI URALI URALI URALI URALI RISEED 28-1 63.8 56.2 87 1 1.44 13.2 124 400 77.9 63.4 83 0.68 85 10 87 87 14 14 14 13.3 123 400 77.9 63.4 83 0.68 100 110 110 110 110 110 110 110 110 11	IMPERIAL		5	9	96	Ŋ	Θ	٥	ω	400	ê	0	40	7	80	œ
NEWA RISEED 28-1 63.5 59.5 87 1 1.42 63.9 63.3 92 1 1.39 13.9	MEXICALI	ທ	9	9	85	۲	4	ω	N	400	7.	ω	83	Θ	85	7
FRISEED 28-1 63.5 59.5 87 1 1.45 13.3 123 400 77.0 60.6 40 0.65 75 75711 4 64.2 52.6 79 11.41 13.8 127 400 77.5 62.0 83 0.65 95 97 11.41 13.8 127 400 77.5 62.0 83 0.65 95 97 11.41 13.8 127 400 77.5 62.0 83 0.65 95 97 11.41 13.8 127 400 77.5 62.0 83 0.65 95 97 11.41 13.8 127 400 77.5 62.0 83 0.65 95 97 11.41 13.8 127 400 77.5 62.0 83 0.65 95 97 11.42 13.8 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	NUDURA		ω	9	87	_			121	400		'n	50	σ	100	7
Fitall 4 63.9 63.3 92 1 1.39 13.9 120 312 77.3 61.4 57 0.63 75 127 127 128 128 128 129 129 129 129 129 129 129 129 129 129	EED 28-			9.	87	-	4	13.3	123	400		0	40	σ	75	2
THRED B81 64.2 52.6 79 1 1.41 13.8 127 400 77.5 62.0 83 0.65 99 17 11.41 13.8 127 400 77.5 62.0 83 0.65 99 17 11.41 13.8 127 131 400 76.2 61.0 83 0.65 95 17 11.41 13.8 127 131 400 76.2 61.0 83 0.65 95 17 12.14 13.4 13.4 13.4 13.4 13.4 13.4 13.4 1	4,			ω	92	-	ω		120	312		-	57	9	75	ហ
TRRED B81 TORRED TURBO S 65.6 58.8 89 1 1.54 131 400 76.2 61.0 83 0.68 95 18526 D5081 S 65.6 58.8 89 1 1.36 12.3 120 400 77.1 61.6 83 0.59 75 12526 D5081 D5081 S 65.6 58.8 89 1 1.36 12.3 120 400 76.9 59.8 70 0.67 90 125126 D5081 D5081 S 65.8 89 1 1.57 13.3 120 400 76.9 59.8 70 0.67 90 125128 D5172 D5172 S 58.8 83 1 1.57 13.9 120 400 78.7 62.1 37 0.68 95 12526 D5269 D526	WAHA 'S'			2	79	1	4		127	400		ы	83	Θ	90	4
TRRED TURBO 64.3 57.3 85 2 1.34 13.7 131 400 78.0 61.5 30 0.60 85 AROS 56.5.6 58.8 89 12 1.43 13.0 125 400 76.9 59.8 75 25126 55.0 63.2 49.5 80 2 1.49 13.3 119 400 76.9 59.8 70 0.67 90 105118 62.1 46.9 58 2 1.49 13.3 119 400 76.9 59.8 70 0.69 105 105 105118 56.3 64.5 57.1 1.48 14.9 13.3 119 400 78.7 62.1 37 0.69 105 105 105 105 105 105 105 105 105 105	TBRED 88		ω		94	_	ហ		131	400		-	63	σ	95	œ
ARROS S 65.6 58.8 89 1 1.36 12.3 12.0 400 77.1 61.6 83 0.59 75 D55118 62.1 46.9 58 2 1.49 13.3 11.5 400 76.7 59.8 75 0.67 90 0.67 90 0.69 105 11 105 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	TBRED TURB		4.	7.	85	N			131	400		-	မ	σ	85	9
25126 63.2 49.5 80 2 1.43 13.0 125 400 76.9 59.8 70 0.67 90 D5118 63.6 48.5 77 1 1.48 11.3 11.9 400 76.7 59.1 70 0.64 95 D5172 63.8 56.8 83 1 1.57 13.9 120 400 76.7 59.1 73 0.64 95 D5269 64.0 51.8 80 1 1.41 13.2 125 400 77.1 63.2 47 0.68 90 D5269 62.5 59.2 92 0 1.52 14.5 127 400 77.2 61.3 43 0.76 90 B5269 62.5 59.2 92 0 1.52 14.5 129 400 77.1 61.3 43 0.76 95 B84-11 1.1 1.41 12.5 14.5 12.5		S	ភ	8	89	_	ω		120	400	77.1		63	U	75	ω
D5081 62.1 46.9 58 2 1.49 13.3 119 400 78.7 62.1 37 0.69 105 D51172 63.6 48.5 77 1 1.48 13.3 100 78.7 55.1 37 0.64 95 D52172 63.0 56.8 83 1 1.57 13.9 120 400 76.7 55.1 73 0.64 95 D5317 64.3 51.8 80 1 1.41 13.2 125 400 77.1 63.2 47 0.68 90 B5 D9689 62.5 59.2 92 1.52 14.5 12.5 400 77.2 61.3 43 0.76 90 85 P9689 62.5 59.2 92 20 1.52 14.5 12.7 400 77.1 61.1 23 0.68 95 863 - 2 50.2 50.3 60.1 1.52 14.5 12.7	2512		ω	9	80	N	4		125	400	76.9	9	70	σ	90	ហ
D5118 63.6 48.5 77 1 1.48 14.9 133 400 76.7 59.1 73 0.64 95 D5269 64.0 51.8 83 1 1.57 11.9 120 400 78.7 62.5 63 0.75 85 D5217 62.8 51.8 80 0 1.61 14.1 116 400 77.2 61.3 43 0.76 90 B5 D9689 62.5 59.2 92 0 1.52 14.5 129 400 77.2 61.3 43 0.76 90 B83-22 62.5 59.2 92 0 1.52 14.5 129 400 77.7 60.6 47 0.72 100 B84-21 63.0 52.1 80 0 1.45 12.5 126 400 77.1 61.1 23 0.68 95 B84-32 62.8 59.5 83 2 1.42 <td>D508</td> <td></td> <td>9</td> <td>6.</td> <td>S 8</td> <td>N</td> <td>4</td> <td></td> <td>119</td> <td>400</td> <td>78.7</td> <td>'n</td> <td>37</td> <td>σ</td> <td>105</td> <td>œ</td>	D508		9	6.	S 8	N	4		119	400	78.7	'n	37	σ	105	œ
D5172 63.8 56.8 83 1 1.57 13.9 120 400 78.7 62.5 63 0.75 85 D52169 64.0 51.8 80 1 1.41 13.2 125 400 77.1 63.2 47 0.68 90 D52179 62.2 51.8 82 0 1.61 14.1 11.5 400 77.2 61.3 47 0.68 90 B5 D9699 62.5 59.2 92 0 1.52 14.5 12.9 400 77.7 60.6 47 0.70 105 B83-2 63.8 52.1 80 0 1.49 14.7 126 400 77.1 61.1 23 0.69 95 B84-11 63.7 54.3 84 1 1.51 13.5 126 400 77.1 61.1 23 0.69 95 B84-57 62.6 55.5 1 1.42 12.	D511			8	77	_	4		133	400		9	73	9	95	ω
D5269 64.0 51.8 80 1 1.41 13.2 125 400 77.1 63.2 47 0.68 90 D5317 62.8 51.8 82 0 1.61 14.1 116 400 77.2 61.3 43 0.76 90 85 D9699 62.5 59.2 92 0 1.52 14.7 126 400 77.2 60.6 47 0.72 105 883-2 63.8 52.1 80 0 1.49 14.7 126 400 77.1 61.1 23 0.68 95 883-22 63.7 50.8 66 1 1.52 12.7 11.8 400 77.1 61.1 23 0.68 95 883-27 63.8 59.5 83 2 1.42 12.7 11.8 400 77.1 61.1 23 0.69 95 95 63.1 1.42 12.3 12.1 400 </td <td>D517</td> <td></td> <td></td> <td></td> <td>83</td> <td>-</td> <td>U</td> <td></td> <td>120</td> <td>400</td> <td></td> <td>ы</td> <td>63</td> <td>7</td> <td>85</td> <td>6</td>	D517				83	-	U		120	400		ы	63	7	85	6
D5317 62.8 51.8 82 0 1.61 14.1 116 400 77.2 61.3 43 0.76 90 85 D96897 62.5 59.2 92 0 1.42 12.7 400 78.6 63.5 53 0.70 105 883-22 63.8 52.1 80 0 1.49 14.7 126 400 77.1 60.6 47 0.72 100 883-32 63.7 54.3 84 1 1.51 13.5 126 400 77.1 61.1 23 0.68 95 883-32 63.7 50.8 66 1 1.52 12.7 11.8 400 77.1 61.5 30 0.69 95 884-57 62.8 59.5 83 2 1.42 12.3 120 400 77.4 60.7 17 0.70 95 884-57 63.1 1.43 13.4 14.0 12	D526				80	_		'n	125	400		ω	47	σ	90	ហ
85 D9687 64.3 58.6 81 1 1.44 12.2 127 400 78.6 63.5 53 0.70 105 85 D9689 62.5 59.2 92 0 1.52 14.5 129 400 77.7 60.6 47 0.72 100 883-22 63.7 54.3 84 1 1.51 13.5 126 400 77.1 61.5 30 0.69 95 883-32 63.7 50.8 66 1 1.52 12.7 11.8 400 77.5 60.7 17 0.70 95 883-32 63.7 50.8 66 1 1.52 12.7 11.8 400 77.5 60.7 17 0.70 95 712 63.1 56.5 85 1 1.46 13.3 121 400 78.0 62.6 63 0.66 90 73.3 60.7 17 0.70 95 739 64.4 49.3 69 1 1.49 14.8 124 400 77.4 60.4 33 0.67 80 740 741 64.1 48.5 75 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 741 741 64.4 51.8 85 0 1.49 13.9 122 400 77.1 59.5 43 0.71 90 78.0 65.4 54.3 87 0 1.49 13.9 122 400 77.3 60.6 37 0.68 85 78.0 65.4 51.8 63.0 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 78.1 63.0 65.4 50.3 62 0 1.51 13.6 119 400 77.3 60.0 50 0.63 85 90 78.1 50.0 65.4 50.3 65	D531			-	82	0	9	4.	116	400		۲	43	7	90	00
85 D9699 62.5 59.2 92 0 1.52 14.5 129 400 77.7 60.6 47 0.72 100 883-2 63.8 52.1 80 0 1.49 14.7 126 400 77.1 61.1 23 0.68 95 884-11 63.7 54.3 84 1 1.51 13.5 126 400 77.1 61.1 23 0.68 95 883-32 63.7 54.8 85 2 1.42 12.3 126 400 77.1 61.5 30 0.69 95 884-57 62.1 56.5 85 1 1.42 12.3 120 400 77.5 60.7 17 0.70 95 712 712 63.1 56.5 85 1 1.49 14.8 12.4 400 77.5 60.7 17 0.70 95 739 64.4 49.3 69 1 1.49 14.8 12.4 400 77.4 60.4 33 0.67 80 741 64.4 51.8 78 1 1.55 14.0 12.2 328 75.9 58.8 50 0.65 90 742 64.4 51.8 85 0 1.43 13.9 12.2 400 75.7 59.5 43 0.64 100 76.3 60.6 90 76.3 65.4 54.3 87 0 1.49 13.9 122 400 76.3 60.6 37 0.68 85 76.1 63.0 49.8 65.4 51.8 84 11 1.33 12.8 121 400 77.3 60.6 37 0.68 85 76.1 63.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 90 65.4 50.3 62 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80	5 D968			8.	81	-			127	400		ω	ប	7	105	6
883-2 63.8 52.1 80 0 1.49 14.7 126 400 77.1 61.1 23 0.68 95 884-11 63.7 54.3 84 1 1.51 13.5 126 400 77.1 61.5 30 0.69 95 884-57 62.8 59.5 83 2 1.42 12.3 120 400 77.5 60.7 17 0.70 95 884-57 63.1 56.5 85 1 1.46 13.3 120 400 77.5 60.7 17 0.70 95 712 63.1 56.5 85 1 1.46 13.3 121 400 78.0 62.6 63 0.66 90 712 64.4 49.3 69 1 1.49 14.4 122 400 77.4 60.4 33 0.67 80 740 64.1 48.5 75 1 1.55 14.0 122 328 75.7 59.5 43 0.65 90	5 D969			9.	92	0		4	129	400	77.7	0	47	7	100	œ
884-11 63.7 54.3 84 1 1.51 13.5 126 400 77.1 61.5 30 0.69 95 883-32 63.7 50.8 66 1 1.52 12.7 11.8 400 77.5 60.7 17 0.70 95 884-57 62.8 59.5 83 2 1.42 12.3 120 400 77.5 60.7 17 0.70 95 712 63.1 56.5 85 1 1.46 13.3 121 400 78.4 61.0 40 0.70 95 738 64.7 50.0 81 1 1.45 13.3 121 400 78.4 61.0 40 0.70 95 740 64.1 48.5 75 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 741 63.8 51.8 78 1 1.55 14.5 122 400 75.7 59.5 43 0.64 100	83-		ω	'n	80	0		.4	126	400	77.1	₽.	23	σ	95	ထ
883-32 63.7 50.8 66 1 1.52 12.7 118 400 77.5 60.7 17 0.70 95 884-57 62.8 59.5 83 2 1.42 12.3 120 400 78.0 62.6 63 0.66 90 712 63.1 56.5 85 1 1.46 13.3 121 400 78.4 61.0 40 0.70 95 738 64.4 49.3 69 1 1.48 13.3 121 400 78.4 61.0 40 0.70 95 739 64.7 50.0 81 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 740 64.1 48.5 75 1 1.55 14.5 122 328 75.7 59.5 43 0.64 100 742 63.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 <td< td=""><td>84-1</td><td></td><td></td><td>4</td><td>84</td><td>ض</td><td></td><td></td><td>126</td><td>400</td><td>77.1</td><td>ŗ</td><td>30</td><td>σ</td><td>95</td><td>7</td></td<>	84-1			4	84	ض			126	400	77.1	ŗ	30	σ	95	7
884-57 62.8 59.5 83 2 1.42 12.3 120 400 78.0 62.6 63 0.66 90 712 63.1 56.5 85 1 1.46 13.3 121 400 78.4 61.0 40 0.70 95 738 64.4 49.3 69 1 1.49 14.8 124 400 77.4 60.4 33 0.67 80 739 64.7 50.0 81 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 740 64.1 48.5 75 1 1.50 14.1 125 400 75.7 59.5 43 0.64 100 741 64.4 51.8 85 0 1.45 122 400 75.7 59.5 43 0.64 100 743 65.4 54.3 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 781 65	83-3				66	_			118	400		0	17	7	95	7
712 63.1 56.5 85 1 1.46 13.3 121 400 78.4 61.0 40 0.70 95 738 64.4 49.3 69 1 1.49 14.8 124 400 77.4 60.4 33 0.67 80 739 64.7 50.0 81 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 740 64.1 48.5 75 1 1.50 14.1 125 400 75.7 59.5 43 0.64 100 741 64.4 51.8 78 1 1.55 14.5 122 400 75.7 59.5 43 0.64 100 742 63.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 743 65.4 54.3 87 0 1.43 13.9 128 400 77.3 60.6 37 0.68 85 781<	884-5			9.	83	N		'n	120	400		ы	63	9	90	9
738 64.4 49.3 69 1 1.49 14.8 124 400 77.4 60.4 33 0.67 80 64.7 50.0 81 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 740 664.1 48.5 75 1 1.50 14.1 125 400 75.7 59.5 43 0.64 100 741 63.8 51.8 85 0 1.43 13.9 122 400 74.1 57.7 43 0.71 90 63.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 761 65.4 54.3 87 0 1.49 13.9 128 400 77.3 60.7 53 0.68 90 76.1 66.4 51.8 84 1 1.33 12.8 121 400 77.3 60.2 53 0.61 90 76.2 65.4 50.3 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			63. 1	9	85	-		ώ	121	400		-	40	7	95	7
739 64.7 50.0 81 1 1.55 14.0 122 328 75.9 58.8 50 0.65 90 740 64.1 48.5 75 1 1.50 14.1 125 400 75.7 59.5 43 0.64 100 741 64.4 51.8 78 1 1.55 14.5 122 400 74.1 57.7 43 0.71 90 742 63.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 743 65.4 54.3 87 0 1.49 13.9 128 400 77.3 60.7 53 0.68 90 780 64.4 51.8 84 1 1.33 12.8 121 400 77.2 60.2 53 0.61 90 781 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			64.4	9.	69	1	1.49		124	400		0	3	Θ	80	2
740 64.1 48.5 75 1 1.50 14.1 125 400 75.7 59.5 43 0.64 100 741 664.4 51.8 78 1 1.55 14.5 122 400 74.1 57.7 43 0.71 90 742 65.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 743 65.4 54.3 87 0 1.49 13.9 128 400 77.3 60.7 53 0.68 90 780 64.4 51.8 84 1 1.33 12.8 121 400 77.2 60.2 53 0.61 90 781 65.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			64.7	0	81	-			122	328	ភ	8.	50	σ	90	4
741 64.4 51.8 78 1 1.55 14.5 122 400 74.1 57.7 43 0.71 90 742 63.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 743 65.4 54.3 87 0 1.49 13.9 128 400 77.3 60.7 53 0.68 90 780 64.4 51.8 84 1 1.33 12.8 121 400 77.2 60.2 53 0.61 90 781 63.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 782 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			64.1	8	75	۲		14.1	125	400	'n	9	43	Θ	100	4
742 63.8 51.8 85 0 1.43 13.9 122 400 76.3 60.6 37 0.68 85 743 65.4 54.3 87 0 1.49 13.9 128 400 77.3 60.7 53 0.68 90 780 64.4 51.8 84 1 1.33 12.8 121 400 77.2 60.2 53 0.61 90 761 63.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			64.4		78	1		•	122	400	74.1	7.	43	7	90	-
743 65.4 54.3 87 0 1.49 13.9 128 400 77.3 60.7 53 0.68 90 780 64.4 51.8 84 1 1.33 12.8 121 400 77.2 60.2 53 0.61 90 781 63.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			ω		8 5	0		Ω	Ľ1	400		0	37	σ	85	ω
780 . 64.4 51.8 84 1 1.33 12.8 121 400 77.2 60.2 53 0.61 90 781 63.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 782 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			5	4.	87	0	1.49	ω	128	400		0	53	89		ហ
761 63.0 49.8 69 1 1.41 12.2 116 400 77.3 60.0 50 0.63 85 762 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			64.4	۲	84	-	1.33		121	400		0	S	σ	90	6
782 65.4 50.3 82 0 1.51 13.6 119 400 77.1 59.0 30 0.67 80			9	9	69	-	1.41		116	400		9	50	6	85	4. (
	78		65.4	Ö	82	0	1.51	•	119	400	•	9.	30	σ	80	,

QUALITY DATA OF DURUM SAMPLES 1988 CROP STATE=CALIFORNIA STATION=DELTA AREA HURSERY=ADVANCED

VARIETY STD		SEMO PRO	COL	COOK WT	FIRM- NESS	RES	SCORE	TW KW SH	H WP TX SX	Z 1	SK ES	SP VI	FR
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. :	- 1		ı (n ¦	- 1	 		1	1	1	1	1
A1 TAB 84	→ ⊢	ב נ	ָ ס כ	31.0	4 97	۷ : د د	ړ. ۰	X 1	X ⊣			¥ -1	
CARCOMUN 'S'	⊢ ⊦ ⊢ ⊦	1.4	• •	0 :	o c	7.5	⊢ •	7 ·	# F	r M		IH IH	
	1→ 1 (7) 1		• •		0		ا داي		į	;			
MEXICALI S	<u>س</u>		•		σ		4.						
	_		0	31.2	œ	6,6	4						
NUTRISEED 28-1	12.	ω	•		4.97		ы			IH			
	12		8.0	30.9	6.09		2			IH			
WAHA 'S'	13.	0	9.0	32. 3	4.99	7. 1	4	IH					
WESTBRED 881	13.	6	9.5		6.72		4						
WESTBRED TURBO	12.	9	7.5	31.4	5, 55	6.7	2					IH	
YAVAROS S	10.	9	8.0	31.7		7.4	_		ΙH	IW		r H J	
CD 25126	11.	. 7	8.5	31.1	5.03		ω	ПЛ					
FMC D5081	₩	2.9 1	10.0	30. B	5, 70		ω	ГH					
	13.	9	9.5	31.4		6.5	2	ΓH		IH			
FMC D5172	13.	3. 4	9.5	30.8	6, 00	6.9	4						
	12.		9.0	30.5		6.3	4	IH					
C D5317	13.		•		6, 35		4	HI					
85	10.	7	•	31.6			-		ИI		_	ГИ	
NK 85 D9699	14.	0	9.5	30.4	6, 42	6, 7	4						
œ	14.		9. 5		6.50		4	ПH					
œ	12.		•		6.13		41						
PH 883-32	11.		9. 5	31.6	5.44	6.7	4.	HI					
PH 884-57	11	1.7	9. 0	31.4			-		пп				ГW
	⊢	2.3	9. 5			7.6	4						
	14.		9.0				ω	Ги					
	<u>ب</u>	з. o	9. 5				2	Ги		IH			
UC 740	13		10.0	30.5	5.83	6.6	ω	ГH					
	13	ω. 5	9.5	31.4		٠	↦	пп	ГИ	L			
V	13	3.0	9.0	31.4		•	4	IH					
UC 743	12	2.9	9.0	30.3	6, 24	6.5	4						
UC 780	12	2.0	9.0			•	4	пп					
UC 781	11	<u>-</u>	9. 5	32.1	4.54	7.0	-	FH	ПH		_	IH	
UC 782	12	6	Γu Φ	30.8			Ŋ	r H		ИI			
DEFICIENCIES	-1	TW		SM WP			חם	SK SP VI	FR.				
AVG OF STANDARDS	63	Ø	Ç,	1 13.	0		85	11.6 0.	5, 00				
FAULTING	S 61.	7	53.4	6 12.	5 75.4	59.5	75	11.5					
JOR FAULTING VAL	99.60	_	0.4	-	5 74.4		70			7			
**EVALUATION 1=80 PA	PROMISE,		Z=LITTLE		PROMISE,	3=50	3=SOME PROMISE,	MISE, 4=GOOD	PROMISE	Ē			

OUALITY DATA OF DURUM SAMPLES 1988 CROP
STATE=CALIFORNIA STATION=IMPERIAL VALLEY HURSERY=ADVANCED

TABLE 20	ATE=	STATE=CALIFORNIA	DRNIA	A J.S	TION	STATION=IMPERIAL		VALLEY	NURSER	NURSERY=ADVANC	NCED				
THE TOTAL PROPERTY OF THE PROP	STD	TEST	1000	215	Η.	THW	THW	HARD-	FALL	TOTL	SEMO	292	SEMO	DUST	OXIM
	7	#/BU	G.	× c	× !	× i	× 2	בו נ	SEC	% %	% %	-	Ĺ	0000	
			1	1	1	- 1 - 1 - 1	! ! !	!	! ! !	1 1	1 1 1 1	1	1	1	!
ALTAR		ŗ	ູ້		-	1.76		109	400		64.9			90	ω
MEXICALI 75	ល	2	ω		ω	1.78		97	400	79.7	9			90	4
RED 9		4.	51.5		-			99	400	•	4.	63		90	ω
٠				80	_			109	400	0.	4.			100	_
и			4.	75	L	1.70		112	400	79.3	4.			95	ω
ω				61	. р.		12	105	400	9	. 5			100	2
4 n			42°C	א פ	- ب			110	400	79.6	• ω	9 60		, 90 100	<i>ه</i> . د
ת נ				9 9	 }-	1. 80	13.4	110	400		0 0			0 C) K
7				84	- 1	1.85		96	400		ω:	67		90	ω۱
8				63	N			102	400		'n			95	4
9				38	ω			106	400		-			95	4
10		64.0		63	- ω	1.80		106	400	79. 3	62.9			90	υω
12				79	- 1		13.1	97	400		ω:			105	4.
13				54	ω	8		105	400		0			105	-
1.4			45. 2	9 6) -	1.83		107	400	79.0	'n			105	ω
16		65.2	43. 3	70	ب ر	1. 80		102	400	79.3	62.2	47	0.73	2 8 9	Α (.
17			24.3	85	_	1.82	13.1	97	400	79.2	ω			90	4
				73	N	1.84		101	400		ω			70	ω
20			34.0	υ ν 4 ¢	- N	1. 73	12.5	111	400	78. 9	2 12			80	sω
21				75	- ,	1.94		111	400		2	ω ω		95	ωι
22				57	ω	1.93	13.2	106	400	79.3	-			85	ω
23			36.4	ι ω 9	. ω			97	400		-			75	-
J. C.			44 F	2 0		1.63	13.7	100	400		- ω			80) N
29		65.5	43.7	70	⊢ ⊦	1.84	13.1	108	400	79.0	62.8			95	ω 1
			35.1	១ ១	ω			67	400	67.1	٠:			50	N
32			46. /	76	- ∧	1. //	13.4	112	400	78. 6	ωĸ	27		90	ω ι.
33 .		ភ	ភ	73	N			113	400		-			100	-
34			1 -	58	٠ω	1.91	13.7	106	400	77. 4	.0			90	, <u>-</u>
36		9.09 0.09	49.6	75	⊢ ⊦	1.82	13.8	110	400	77.7				90	CJ 1
37		ω		78	-			117	400	77.6	$\dot{\omega}$			90	IJ
30.00		65. 1	44.4	68	N	1.81		112	400	77.8	62.7			95	ı Uı
40		63.4	46.7	75	۔ ۔	1.70	13. 2	108	400	79.7	66.7			2 C	ა თ
41		65.4	49.0	77	- ,	1.71	12.5	101	400	78.7	63.6			95	ယ ၊
42		ູ		61	_	1.77	ω	104	400	79.5	-			80	-
. ω ω		65.6	41.0	61) -	1.82	13. 1	104	400		61.8			100	ω
A 2		7	40.5	76	- K	1. 61	14.1	123	400	77.5	62.4	3 G		56 707	- N
46		64.4	51.5	96	و مسو	1.69	13.4	111	400	79. 4	64.2	30		96	ю.
47		64.6	47. 4	79	-	1.70	13.7	116	400	79.5	64.7	27		100	ນ

	MOVETLA	MUNLITY DATA OF DURUM SAMPLES	1966 CROP
TATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=ADVANCED	TATE=CALIFORNIA	STATION-IMPERIAL VALLEY	NURSERY = ADVANCED

DEFIC AVG OF S	47	46	N 1	ט ב	1 C	4 1	4 6	39	38	37	36	35	34	ລລ	32	<u>a</u>	30	29 29	טט) K	22	21	20	19	18	17	16	14	13	12	11	5	0 60	7	9	S	4.	ω	2	+	ESTBRE	MEXICALI	ALTAR		TONICI	1
TICLENCIES STANDARDS																																								1		75				
YALUES																																									1	ល			į	CTD
TW 62.	0		0 U		١ ،	י כ	4. (1.9	1.4	2.5	4	œ	2.7	-	N	9 1	9 6	12.1	4 1	4.	9		11.6	10.6	11.1		11. 2	-	9	7	2.5	12.7	11.9	2			2			11.5	- 1	11.7	10.8		× 2	OWAS
α π 4.4	10.0	10.0	•	ָ ק ק				9		0	•	10.0	ô	•	9.	• •		0.00	ç		'n	9. 5	•	•	• •	ָ קי פי	۰	۰	•	•		ָ פּי	ຸດ	۰	•	•		•	9, 5	•	• •	9.0	9.0			SIA
E C E E E E	30. B	3 L) (30.7			29. 6		32.1			30.7	32.3) (C						31.8		2	٠,	31.9	2	1 0	7 -	COOK
WP 12.77	5.64	O F	л .	n 0	ין בי	n U. X.	າ ບຸ 24.2		6.37	•	N	6.09	4.99	5, 38	5.34	4.88	5 10	5.44	•	4. 4. U 4. 4. 7.	5, 72	5.70	5.12	4.99	5, 27	J U.	5.18	5. 27	4.62	6.05	6.07		, 55 55	5.68	5.08	8	D	-	-	9	G	6. 33	. 7	1 1 1	֓֞֞֞֜֜֞֜֜֞֜֜֜֞֜֜֜֓֓֓֓֓֓֓֓֜֜֜֜֓֓֡֓	FIRM-
TX 79.76	6.7			, t	ο σ	7.6	0			6, 5	6.7	7.2	•	9	•	7.3		7 0) \ \		7, 4	7.3			7.4	7 g	6.6	۰		6.5		ם הים	•	•	•	•	•	0	7.2		• •	7.1	7.6		ָה פֿל	010
06 0 99 06 0 99	۽ ڪي	b (1 C) N	<i>A</i> () -	۵ د	4, (2	N	ω	ω	2	N	2	⊢ 1	- (n =	. 1-	۰ ۲	· N	ω	4.	ب	⊢ (ມເ	υN	ω	-	ω	ယ (ນ ⊢	4. ه	4	-	4.	4.	ω	ω	ω۱	2 '	4	ب	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SCORE
0 ti ti X X X																																														1
SP 11.7				7	C								IM			;	1			3			IH		č	≭			ΙĦ			17	K		Ιμ											E
9. O						MI	:									M:	3		T.U.					ПH																	ĭ		ГW		:	DI
FR 6, 33		-	T =	. 5			3		3	3	3	3	3	3		3 :	- 	7				37		37		5	7			H		7 :	ť		H I H			. 7						1	;	DEFICI
		F	X 7		ı I	K	1	•	Н	J	H	Ħ	4		H	<u>.</u>	-	7	11 11	בו		ı, H		IN IN	L'E	F	X 1X	Ä	4		i	4 5	4		Γ¤			H								CIENCIES
						3			3								₹ 				,			. 7			:				3		r	HI				ΙΉ		~	~		7	1	;	S
						MJ.	•		H							ľu E	7		2	3 2	4			Ľ.	I M I		H					11.1	1							IM	ī		T.	-		7 V T
																				3									H															-		77 1

QUALITY DATA OF DURUM SAMPLES 1900 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

UC 782		UC 780			UC 741		UC 739	UC 738		æ	84-	84-	PH 883-2		NK 85D 9687	D50	FMC D5269	FMC D5172	FMC D5118	FMC D5081	CD 25126	YAVAROS	WESTBRED TURBO	WESTBRED 881	WAHA 'S'		NUTRISEED 28-1	NUDURA	MEXICALI	IMPERIAL	CARCOMUN'S'	ALTAR 84	ALDURA		VARIETY	TABLE 21
			•																				0												-	
																						ល							ល				ល	 	STD	
ຸບ	ů	63.4	64.9			63.8	64.0	63.8		63.6	63.2	62.3	ω		64.4	64.0			63.7	ω	65.8	65.2	64.6	63.4	64.4		9	4.	62.6	9	63.7	65. 1	63.9	#/BU	TEST WT	1 1 1
54.1	52.1	7.1		50.5	54.1	8	47.6	47.6	57.3	58.1	48.8	50.0	52.9	9		52.4	4.	58.5	50.5	52.9	52.1	5		9	52.6	61.7		61.0	7.	9	:	9	٠		1000 K. WT	
86	78	-	80	80	79	71	76	65	88	85	61	75	81	89	84	84	79	8	67	69	88	84	82	86	73	90	71	95	80	96	71	64	78		LG SI2	
0	_		-	_	_	_	0	N	_	_	2	Ŋ	_	-	_	_	-	-	-	-	0	-	-	0	_	0	-	0	-	0	N	N	-		SIZING	
σ	1.44	1.42	1.54		σ	1.63	1.67	1.64	1.53	1.49	1.67	1.61	1.56	1.56	1.46	1.75	1.57	1.68	1.53	1.56	1.51	1.36	4		1.50		1.52	σ	O	σ		1.55	4	: :	WHT ASH	
13. 1		11.7	12.3	•	13.5	•	13.0	13.4	12.4	11.6	12.0	13.0	13.6	12.8	11.7	٠.	12.2	13.6	12.4	12.2	12.4	•	12.2	12.9	11.3	13.3	11.4	•		14.1	•	11.9	•	: ! ! %	WHT PRO	
	112	120	122	113	114	120	120	117	114	115	111	121	110	113	112	113	113	118	112	114	121	108	122	113	110	122	102	119	116	119	Ö	121		1 	HARD-	1 1 1 1 1 1
400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	SEC	FALL	1
•	•	76.5	77.9	77.7		75. 9	75.4	77.4	78.0	77.3	76.1	77.8	76.9		77.2	76.8	•	78.0	77.9	77.8	78.8	79. 2	77.8	77.3	78.1	78.1	77.0			•	۰	79.3	9	! ! % !	TOTL EXTR	1 1 1 1 1 1
•	4.	59. 9	ŀ	۳	7.	ŝ	59.2	ô				62.2			'n	61.0	9	9	61.1	ω		ы	62.0			62.2	9.	Ö	ω	۲		4.	,2	: :	SEMO EXTR	1 1 1 1
57	37	37	17	30	27	27	40	50	23	40	4 ω	ဌ	63	24	40	57	23	63	57	73	83	<u>წ</u>	50	80	4 ω	27	10	57	37	57	4 ω	50	67	 	SPK	1
0, 68																			0.67		0.70					0.68		0.77			0.65				SEMO ASH	
80	90	90	95	85	90	100	90	80	95	90	95	95	95	100	95	90	90	90	95	100	90	75	85	95	90	80	80	95	85	85	65	85	95	 	DUST COLOR	
CI	ω	4	ω	ω	1	Ŋ	4.	r	Œ	44	ω	ው	7	ው	ው	7	4	4	ω	7	Οī	ω	4	Œ	Ŋ	ω	Ŋ	Φ	υ	œ	ω	4	2	 	MIXO SCORE	

QUALITY DATA OF DURUM SAMPLES 1988 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

DEFICIENCIES AVG OF STANDARDS HINOR FAULTING VALUE HAJOR FAULTING VALUE ••EVALUATION 1=NO PR		UC 712 UC 738 UC 739 UC 740 UC 741 UC 742		WESTBRED TURBO YAVAROS CD 25126 FMC D5081 FMC D5118 FMC D5172 FMC D5269 FMC D5317	URA BA COMUN	TABLE 21 (Cont.)
T 63 VALUES 61 VALUES 60 VALUES 60				w	თ თ	STD
. 9 . 8	11.6 10.6 10.4	12.11.2.14.2.12.9		110.4 100.7 100.7 110.7 111.2 112.9	.00000001	SEMO PRO
KW 57.3 55.2 52.2 2=LIT	8.000 8.000					VIS
SM 1 1 6 1 11 1 TLE	30. 7 30. 8 30. 8 30. 8			30.7 31.6 31.6 31.6 31.6 30.6		COOK WT
WP TX 2.2 78.8 2.5 76.3 1.5 75.3 PROMISE,	5. 70 5. 21 5. 18 5. 21	772477	813167	6. 16 4. 51 5. 25 5. 05 5. 64 4. 54 5. 10		FIRM-
SX 62.9 59.9 58.9 3=SOM	7. 3 7. 1 7. 1					RES
DU SK 85 52 75 62 70 67 1E PROMIS	ט מ יי יי ב	υ - ω ν	40,40	ט יו יו יו יו יו יו יו יו		SCORE
K SP 2 11.0 2 11.5 7 11.0 ISE, 4						1
VI 8.3 7.3 6.8	# # # # # # # # # # # # # # # # # # #	7 7 7 7 7	ה ה ה ה ה ה	AI AII	H H - H H H	W KW S
FR 5.41 3.91 3.16 PROMIS	חוח	IH IH IH IH	нн н	H H H H H H H H H H H H H H H H H H H	ו א דו די	M WP TX
Ë	Ħ	HHH	н	H H	# 	
			Ħ	IN FR FR FR FR	L L	m i
	нJ	ні	HI HI	H H H H H H H H H H H H H H H H H H H	. H.O. C. H.O.	SK SP VI FR

REFERENCE MIXOGRAMS
DURUM WHEAT

