Context free (CF) grammars

In a nutshell

- the most widespread formalism for defining the syntax of a PL
- more expressive than regular expressions
 - basic operators: concatenation and union
 - difference w.r.t. regular expressions: it is possible to use names and recursive (=inductive) definitions

Example of BNF grammar (Backus-Naur Form or Backus Normal Form)

A CF grammar for simple expressions

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= '0' | '1'
```

Remark

- Num is defined in the grammar only for completeness
- In practice, tokens as Num are defined separately by a regular expression

Context free (CF) grammars

Revisited example

```
Exp ::= NUM | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
NUM is defined by 0|1
```

Notation

- in Exp only the first letter is capitalized: it is defined in the grammar
- in NUM all letters are capitalized: it is defined separately by a regular expression

Terminology of (CF) grammars

Example

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= '0' | '1'
```

Terminology: grammar G = (T, N, P)

- $\{'+', '*', '(', ')', '0', '1'\}$ is the set T of terminal symbols
- {Exp, Num} is the set N of non-terminal symbols
- {(Exp,Num), (Exp,Exp '+'Exp), (Exp,Exp '*'Exp), (Exp,' ('Exp ')'), (Num,'0'), (Num,'1')} is the set P of productions

Remarks

- each non terminal corresponds to a language; languages are defined as unions of concatenations
- terminal symbols are lexemes of the languages defined by the grammar
- productions have shape (B, α) where $B \in N$ and $\alpha \in (T \cup N)^*$

Grammars as inductive definitions of languages

Example

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= '0' | '1'
```

Inductive definition of languages

```
\begin{aligned} \textit{Exp} &= \textit{Num} \cup (\textit{Exp} \cdot \{ \texttt{"+"} \} \cdot \textit{Exp}) \cup (\textit{Exp} \cdot \{ \texttt{"*"} \} \cdot \textit{Exp}) \cup (\{ \texttt{"} \ (\texttt{"} \} \cdot \textit{Exp} \cdot \{ \texttt{"} ) \ \texttt{"} \}) \\ \textit{Num} &= \{ \texttt{"0"} \} \cup \{ \texttt{"1"} \} \end{aligned}
```

Remarks

- $Exp = Num \cup ...$ is the base case for Exp: a number is an expression
- Exp is defined on top of Num, Num is defined only by base cases

Grammars as inductive definitions of languages

Another example

```
Exp ::= Term | Exp '+' Term | Exp '*' Term
Term ::= '(' Exp ')' | Num
Num ::= '0' | '1'
```

Remarks

The definitions of Exp and Term are mutually recursive

Derivations

Grammar

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')'
Num ::= '0' | '1'
```

Languages generated by a grammar

- A grammar generates a language for each non-terminal symbol
- ullet The grammar above generates the two languages L_{Exp} and L_{Num}
- The language for Num is pretty simple: $L_{Num} = \{"0","1"\}$

Questions

- How is L_{Exp} defined?
- How can we show that "1+0" $\in L_{Exp}$ and "1+* (" $\notin L_{Exp}$

Answer: one-step and multi-step derivations are used

One-step derivation

Grammar

```
Exp ::= Num | Exp '+' Exp | Exp '*' Exp | '(' Exp ')' Num ::= '0' | '1'
```

Example of one-step derivations

Remarks

- there is no derivation from '0''*'1' (no production can be used)
- '0''*''1' is the string "0*1" which belongs to L_{Exp}

Definition of derivation

One-step derivation \rightarrow

One-step derivation for a grammar G = (T, N, P)

- it has shape $\alpha_1 B \alpha_2 \rightarrow \alpha_1 \gamma \alpha_2$
- $\alpha_1, \alpha_2 \in (T \cup N)^*$
- $(B, \gamma) \in P$ that is, (B, γ) is a production

Multi-step derivation →⁺

Transitive closure of \rightarrow :

- base case: if $\gamma_1 \to \gamma_2$, then $\gamma_1 \to^+ \gamma_2$
- inductive case: if $\gamma_1 \to \gamma_2$ and $\gamma_2 \to^+ \gamma_3$, then $\gamma_1 \to^+ \gamma_3$

Language generated

Language L_B generated from G = (T, N, P) for non-terminal $B \in N$

- all strings of terminals that can be derived in one or more steps from B
- formally: $L_B = \{u \mid B \rightarrow^+ u\}$

Derivation tree (or parse tree)

Observation 1

- CF grammars are used to define languages and implement parsers
- Parsers should generate trees, but derivations are not tree!

Observation 2

- a derivation step is determined by
 - the used production
 - 2 the specific non-terminal symbol which is replaced
- choice 2 does not influence the final string of terminals obtained from the derivation

Intuition

A derivation tree is a generalization of multi-step derivation such that

- the derived string contains only terminals
- non-terminal are replaced "in parallel"

Examples of derivation trees (in ANTLR)

ANTLR Grammar

```
grammar SimpleExp;
exp : num | exp '*' exp | exp '+' exp | '(' exp ')';
num : '0' | '1';
```

Derivation tree for "1*1+1"

10/11

Examples of derivation trees (in ANTLR)

ANTLR Grammar

```
grammar SimpleExp;
exp : num | exp '*' exp | exp '+' exp | '(' exp ')';
num : '0' | '1';
```

Derivation tree for "(1+1) *1"

11/11