Kahn in C++

```
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
  //Function to return list containing vertices in
Topological order.
  vector<int> topoSort(int V, vector<int> adj[])
     int indegree [V] = \{0\};
     for (int i = 0; i < V; i++) {
        for (auto it : adj[i]) {
          indegree[it]++;
     queue<int> q;
     for (int i = 0; i < V; i++) {
        if (indegree[i] == 0) {
          q.push(i);
     vector<int> topo;
     while (!q.empty()) {
        int node = q.front();
        q.pop();
        topo.push_back(node);
        // node is in your topo sort
       // so please remove it from the indegree
        for (auto it : adj[node]) {
          indegree[it]--;
          if (indegree[it] == 0) q.push(it);
     return topo;
};
int main() {
  //V = 6;
  vector<int> adj[6] = \{\}, \{\}, \{3\}, \{1\}, \{0, 1\}, \{0, 2\}\};
  int V = 6;
  Solution obj;
  vector<int> ans = obj.topoSort(V, adj);
  for (auto node: ans) {
     cout << node << " ";
  cout << endl;
  return 0;
```

Input Graph (Adjacency List)

Step 1: Calculate In-Degree of Each Node

Node	Incoming Edges from	In-degree
0	4, 5	2
1	3, 4	2
2	5	1
3	2	1
4	-	0
5	-	0

 $[\]rightarrow$ Initial indegree [] = {2, 2, 1, 1, 0, 0}

Initial Queue: q = [4, 5]

Step 3: BFS Loop & Topological Sorting

Iteration	Node Popped	_	Decrease In-degree	Queue after Push
1	4	[4]	$0 \rightarrow 1, 1 \rightarrow 1$	[5]
2	5	[4, 5]	$0 \rightarrow 0 \text{$\lozenge$}, \\ 2 \rightarrow 0 \text{\lozenge}$	[0, 2]
3	0	[4, 5, 0]	-	[2]
4	2	[4, 5, 0, 2]	3→0 ∜	[3]
5	3	[4, 5, 0, 2,	1→0 ∜	[1]

Iteration	Node Popped		Decrease In-degree	Queue after Push
		3]		
6		[4, 5, 0, 2, 3, 1]	-	[] (done)

\mathscr{C} Final Output

Topological Order = [4, 5, 0, 2, 3, 1]

Summary Table

Node	Final In-degree	Status
0	0	Printed
1	0	Printed
2	0	Printed
3	0	Printed
4	0	Printed
5	0	Printed

Output:-4 5 0 2 3 1