Mecánica - Problemas Cinemática solido rígido

Proyecto Mars Rover

EPISODIO 8: Levantar la piedra (cinemática solido rígido)

En este momento el ángulo en punto A respecto la horizontal es (que escogemos nosotros). El movimiento rotacional en punto A es ω 1=5 rpm y ω 2=10 rpm en punto B.

¿Qué es la velocidad instantánea del punto C (su modulo, su sentido y dirección)?

Necesitamos: Longitud de los compontes del brazo, altura de la articulación en el Rover.

Una escalera AB de longitud 3 m está apoyada en la pared y se desliza por la pared y el suelo. En el instante en que el ángulo entre la escalera y la pared es de 30°, el extremo inferior de la escala (B) se mueve hacia la derecha con una celeridad constante de 2,0 m / s. Determina la velocidad del extremo superior (A) y la velocidad angular de la escala en este instante.

Solución: 1,15 m/s

La rueda del mecanismo corredora-cigüeñal representado en la figura gira en sentido antihorario con celeridad constante de 10 rad / s. Determine la velocidad v_B de la corredera y la velocidad angular ω_{AB} de la biela AB del mecanismo cuando θ = 60°.

Solucion: v_{Bx} =-2,25m/s; ω_{B} = -1,55 rad/s

El mecanismo representado en la figura es un esquema simplificado de una prensa de imprenta. Al girar la manivela AB (5 rpm, constante), el tambor C se mueve en un sentido o en otro sobre el papel. Para el instante representado $(\Theta = 50^{\circ})$ determine:

- a) La velocidad del punto B
- b) La velocidad angular del brazo BC
- c) La velocidad angular C del tambor C ω

 $v_B = -50,137 \cdot i + 42,07 \cdot j \text{ mm/s}$

 ω_{BC} = -0,0956 rad/s

 $v_c = -59,28 \text{ mm/s}; \ \omega_c = -0,474 \text{ rad/s}$

