Einführung in die Analysis

Joana Portmann FS 2021

Übungsblatt 5

Die Ableitungsfunktion

Aufgabe 1.

Für die nachfolgenden Funktionen bestimmen Sie die Steigung und die Geradengleichung der Sekante durch die Punkte $P_0(x_0|f(x_0))$ und $P_1(x_1|f(x_1))$.

(a)
$$f_1(x) = 2x^2 - 4x + 3$$
, $P_0(1|f_1(1))$ und $P_1(3|f_1(3))$

(b)
$$f_2(x) = \frac{2}{x}$$
, $x > 0$ $P_0(2|f_2(2))$ und $P_1(4|f_2(4))$

(c)
$$f_3(x) = 3\sqrt{x}, x \ge 0$$
 $P_0(0.25|f_3(0.25)) \text{ und } P_1(9|f_3(9))$

Aufgabe 2.

Wo sind die skizzierten Funktionen differenzierbar? Skizzieren Sie die Ableitungsfunktionen.

Aufgabe 3.

Bestimmen Sie die Ableitungen f'(x) der folgenden Funktionen.

(a)
$$f(x) = 5x + 7$$

(c)
$$f(x) = 4$$

(b)
$$f(x) = mx + q$$

(d)
$$f(x) = c$$
 für eine Konstante $c \in \mathbb{R}$

Aufgabe 4.

Sei die Funktion $f(x) = x^2 - 2x$ gegeben.

- (a) Bestimmen Sie die erste Ableitung f'(x) und die zweite Ableitung f''(x).
- (b) Bestimmen Sie die Gleichung der Tangente an f(x) durch den Punkt (8 | ...) auf der Funktion f.

Aufgabe 5.

Untersuchen Sie, wo die Ableitung von f(x) = |x-3| definiert ist und berechnen Sie die Ableitung in diesen Punkten.