Картка № 1 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала АМ-2 для отношений сигнал/шум h_0^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-4. Полоса пропускания канала связи 10 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot10^{-5}$?

Укладач	Іващенко П.В

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 2 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_0^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-8. Полоса пропускания канала связи 7 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-6}$?

Укладач	Іващенко	П.В.
э полиди г	 тращение	11.1.

Картка № 3 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала Φ M-2 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-16. Полоса пропускания канала связи 6 кГц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $8\cdot 10^{-5}$?

Укладач І

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 4 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала Φ M-4 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=50 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 30 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко	П.В.
, ,	 , ,	

Картка № 5 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ФРМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ОФМ-4. Полоса пропускания канала связи 10 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-7}$?

Укладач	Іващенко П.В.

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 6 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ФРМ-4 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 30 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $7\cdot 10^{-6}$?

Укладач	Іващенко П.В.

Картка № 7 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала КАМ-8 для отношений сигнал/шум h_0^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФРМ-2. Полоса пропускания канала связи 20 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $8\cdot 10^{-5}$?

Укладач І

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 8 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала ФМ-8 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 30 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко	П.В.
э полода г	тращение	11.10.

Картка № 9 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального некогерентного демодулятора сигнала КАМ-16 для отношений сигнал/шум h_0^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 30 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 10 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала АМ-2 для отношений сигнал/шум h_0^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=32 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 50 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко	П.В.
, ,	 , ,	

Картка № 11 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-4. Полоса пропускания канала связи 12 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 12 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ФРМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-8. Полоса пропускания канала связи 8 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко	П.В.
э полиди г	 тращение	11.1.

Картка № 13 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_0^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом AM-2. Полоса пропускания канала связи 20 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.	R
у кладач	іващенко і і. і	D.

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 14 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-16. Полоса пропускания канала связи 6 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot10^{-5}$?

Укладач	Іващенко	П.В.
, ,	 ,	

Картка № 15 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 9 и 13 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 12 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-6}$?

Укладач	Іващенко П.В.
---------	---------------

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 16 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала АМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФРМ-2. Полоса пропускания канала связи 20 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-6}$?

Укладач	 Іващенко П.В
o itsiaqui i	 IDamointo II.D

Картка № 17 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_0^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-4. Полоса пропускания канала связи 12 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В.

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 18 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала Φ M-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-8. Полоса пропускания канала связи 10 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-6}$?

Укладач	Іващенко П.В
, ,	 1

Картка № 19 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала Φ M-4 для отношений сигнал/шум h_0^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p=f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-16. Полоса пропускания канала связи 6 кГц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $8\cdot 10^{-5}$?

Укладач	Іващенко П.В	į
у кладач	іващенко і і. Б	١.

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 20 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ФРМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ЧМ-2. Полоса пропускания канала связи 30 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-6}$?

Укладач	Іващенко П.В
, ,	 1

Картка № 21 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ФРМ-4 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-16. Полоса пропускания канала связи 6 кГц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-7}$?

Укладач	Іващенко П.	R
у кладач	тващенко тт.	ப .

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 22 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала КАМ-8 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом АМ-2. Полоса пропускания канала связи 20 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $7\cdot10^{-6}$?

Укладач	Іващенко	П.В.
, ,	 ,	

Картка № 23 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала ФМ-8 для отношений сигнал/шум h_0^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФРМ-2. Полоса пропускания канала связи 20 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $8\cdot 10^{-5}$?

Укладач	Іващенко П.В
---------	--------------

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 24 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального демодулятора сигнала КАМ-16 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-4. Полоса пропускания канала связи 10 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко	П.В.
, ,	 ,	

Картка № 25 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала АМ-2 для отношений сигнал/шум h_0^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_0^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-4. Полоса пропускания канала связи 10 кГц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В.
---------	---------------

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 26 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-8. Полоса пропускания канала связи 8 кГц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко	П.В.
, ,	 ,	

Картка № 27 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ФРМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом КАМ-16. Полоса пропускания канала связи 6 кГц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П	\mathbf{R}
у кладач	твашенко тт	.D.

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 28 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-4. Полоса пропускания канала связи 10 к Γ ц. При каком отношении средних мощностей сигнала и шума на входе демодулятора P_s / P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В
, ,	 1

Картка № 29 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p = f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФРМ-4. Полоса пропускания канала связи 10 кГц. Прием когерентный. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В.

Кафедра Теорії електричного зв'язку ім. А.Г. Зюко Навчальна дисципліна Теорія електрозв'язку

Картка № 30 для самостійної роботи студента на практичному занятті на тему «Завадостійкість оптимальних демодуляторів сигналів цифрових видів модуляції»

- 1. Вычислить вероятности ошибки бита p на выходе оптимального когерентного демодулятора сигнала ЧМ-2 для отношений сигнал/шум h_6^2 на входе демодулятора 6 и 10 дБ. Изобразить на графике $p=f(h_6^2)$ вычисленные значения (масштаб для p должен быть логарифмическим).
- 2. Цифровой сигнал со скоростью R=16 кбит/с передается сигналом ФМ-8. Полоса пропускания канала связи 8 кГц. При каком отношении средних мощностей сигнала и шума на входе оптимального демодулятора P_s/P_n будет достигнута вероятность ошибки $2\cdot 10^{-5}$?

Укладач	Іващенко П.В.