APEye Teknisk Dokumentation

Komponenter och information om dessa:

Lolin D1 Mini

FCC / CE / TELEC Certifications

Clock Speed: Default 80Mhz, kan köra 160Mhz

Rekommenderad input voltage 7-12V. Över 12V kan resultera i att voltregulatorn blir

överhettad och skadar kortet.

Operating Temperature -40 ~ 125 grader C

Operating Voltage 3.0 ~ 3.6V

WiFi Module på Lolin D1 Mini

Certificates FCC/CE/TELEC/SRRC

WiFi Protocols 802.11: IEEE b/g/n

Frequency Range 2.4G-2.5G (2400M-2483.5M)

Tx Power 802.11 b: +20 dBm 802.11 g: +17 dBm 802.11 n: +14 dBm

Rx Sensitivity 802.11 b: -91 dbm (11 Mbps) 802.11 g: -75 dbm (54 Mbps) 802.11 n: -72 dbm (MCS7)

Types of Antenna PCB Trace, External, IPEX Connector, Ceramic Chip

NeoPixel x24 RGB LED WS2812

Power with VDC. ~18mA each LED. 8MHz or faster processor required.

LED characteristic parameter:

Color:	Wavelength:	Luminous Intensity:	Current:	Voltage:
Red	620-630nm	550-700mcd	20mA	1.8-2.2V
Green	515-530nm	1100-1400 mcd	20mA	3.0-3.2V
Blue	465-475nm	200-400mcd	20mA	3.2-3.4V

Alex Markusson

Power supply voltage VCC +6.0~+7.0 V Power supply voltage VDD +6.0~+7.0 V

Input voltage -0.5~VDD+0.5 V

Operation junction temperature -25~+80 °C

Storage temperature range -55~+150 °C

2x Push Buttons

2x 10k Resistors

13x Sladdar

1x Breadboard

Monokrom OLED-display

Supply Voltage -0.3V to +4V VCC 0 to 16V

SEG output voltage 0 to VCC V

COM output voltage 0 to 0.9*VCC V

Input voltage VSS-0.3 to VDD+0.3 V

Operating Temperature -40 to +85 °C

Storage Temperature Range -65 to +150 °C

Programvara som använts:

Git, Arduino IDE, avr-g++, VIm

Bibliotek:

SPI.h

Wire.h

Adafruit_GFX.h

Adafruit_SSD1306.h

ESP8266WiFi.h

Adafruit_NeoPixel.h

Länk till projekt:

https://github.com/AlexMargsson/APEye

Tester:

Fokus under utvecklingen har legat på en komponent i taget.

Jag har fått den att fungera som jag vill genom att ta exempelkod och modifiera den bitvis och lagt upp det på den ihopkopplade hårdvaran och sett så att den gör det som förväntats för att sedan applicera den i huvudprogrammet och se så att alla fungerar tillsammans. Produkten har även startats upp och testats för att finjustera tidsmässiga delar i koden och dylikt.

Uppritning av projektet:

