CS221: Digital Design

http://jatinga.iitg.ernet.in/~asahu/cs221

Finite State Machine

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Discussion about Quiz
 - Q1: JK FF, Q2: value just before clock edge,
 - Q3: FSM implementation using D-FF of 3 bit Grey Ctr
 - Q4: FSM of 3 bit Ctr, $Z_1Z_2Z_3$ are output based on state
 - Q5: FSM of 3 bit Gray Ctr, $Z_1Z_2Z_3$ are output based on state
- FSM Examples
- FSM of Register and Counter
- Design of Counters using FSM and other FFs

Outline

Q3, Q4 and Q5

• Z1: 00101000 00101000 00101000....

• Z2: 11011011 11011011 11011011....

Z3: 00110111 00110111 00110111....

СВА	CnBnAn	Z1Z2Z3
000	001	010
001	010	010
010	011	101
011	100	011
100	101	110
101	110	001
110	111	011
111	000	011

Grey	Code:

CnBnAn	Z1Z2Z3
001	010
011	010
110	101
010	011
000	110
100	001
111	011
101	011
	001 011 110 010 000 100 111

FSM Example 1: Parity Encoder

- Input: 1 or 0 // entering as stream
- Out put: output a 1 when total number of 1 is even

FSM Example 2 : Button Press Synchronizer

- English Language Specification
- We want simple sequential circuit
 - Converts button press to single cycle duration

Regardless of length of time that button actually

pressed

FSM Example 2 : Button Press Synchronizer

FSM inputs: bi; FSM outputs: bo

Step 1: Design FSM

FSM Example 3: 1: 0,1,1,1,repeat

- Want 0, 1, 1, 1, 0, 1, 1, 1, ...
 - Each value for one clock cycle
- Can describe as FSM: Four states, Transition on rising clock edge to next state

FSM Example 3:: 0,1,1,1,repeat

- Want 0, 1, 1, 1, 0, 1, 1, 1, ...
 - Each value for one clock cycle
- Can describe as FSM: Four states, Transition on rising clock edge to next state

FSM Example 4: Three-Cycles High Laser Timer

- Four states: Wait in "Off" state while b is 0
 (b')
- When b=1 (& rising clock edge), transition to On1
 - Sets X=1
 - On next two clock edges, transition to On2, then On3, which also set x=1
- So x=1 for three cycles after button pressed

FSM Example 4 : Three-Cycles High Laser Timer

FSM Example 4 : Three-Cycles High Laser Timer

FSM Example 4: Three-Cycles High Laser <u>Timer</u>

- Showing rising clock on every transition: cluttered
- Make implicit -- assume every edge has rising clock
- What if we wanted a transition without a rising edge
 - Asynchronous FSMs -- less common, and advanced topic
 - We consider synchronous FSMs
 - All transition on rising edge

FSM Simplification: Rising Clock Edges Implicit

Note: Transition with no associated condition thus transistions to next state on next clock cycle

FSM Simplification: Rising Clock Edges Implicit

Note: Transition with no associated condition thus transistions to next state on next clock cycle

FSM Simplification: Rising Clock Edges Implicit

Note: Transition with no associated condition thus transistions to next state on next clock cycle

FSM Example 4A: Sequence generator

- Generate two output sequence
 - X1= 01110111....repeat
 - X2=01100110...repeat

FSM Example 5 : Code Detector

- Unlock door (u=1) only when buttons pressed in sequence:
 - -start, then red, blue, green, red
- Input from each button: s, r, g, b

Also, output a indicates that some colored button

pressed

FSM Example 5: Code Detector

- Wait for start (s=1) in "Wait",
- Once started ("Start")
 - If see red, go to "Red1"
 - -Then, if see blue, go to "Blue", Then, if see green, go to "Green", Then, if see red, go to "Red2"
 - —In that state, open the door (u=1)
 - -Wrong button at any step, return to "Wait"

FSM Example 5 : Code Detector

Q: Can you trick this FSM to open the door, without knowing the code?

A: Yes, hold all buttons simultaneously

Improve FSM for Code Detector

- New transition conditions detect if wrong button pressed, returns to "Wait"
- FSM provides formal, concrete means to accurately define desired behavior