

From the Prague Dependency Treebank to the Uniform Meaning Representation:

Gold-Standard Czech UMR Data and Partial Automatic Conversion

Markéta Lopatková, Hana Hledíková, Jan Štěpánek, Daniel Zeman

ITAT 2025, WAFNL, Sept. 2029, Telgárt, Slovakia

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Motivation

- goal: Uniform Meaning Representation for Czech
 - semantics, abstracting away from syntax
 - cross-linguistic applicability
 - broad sem. interpretation of the text for cross-lingual applications
- annotation from scratch:
 - time consuming
 - expertise and training
- re-use existing corpus:
 - automatic conversion from Prague Dependency Treebank
 - rich annotation already there
 - the same procedure for all languages with PDT annotation
 - expertise and training still needed
 - evaluation: manually annotated data

Uniform Meaning Representation

```
# meta-info :: sent id = u tree-cs-s1-root
# :: snt1
         2
Index: 1
Words: Lindsay left in order to eat lunch .
# sentence level graph:
(s11 / leave-02
  :ARG0 (s1p / person
        :name (s1n / name :op1 "Lindsay"))
   :aspect performance
  :purpose (s1e / eat-01
        :ARG0 s1p
        :ARG1 (5112 / lunch)
        :aspect performance))
# alignment:
s11: 2-2 s1p: 1-1 s1n: 0-0 s1e: 6-6 s1l2: 7-7
# document level annotation:
(s1s0 / sentence
   :temporal ((document-creation-time :before s11)
             (s1l :after s1e))
   :modal ((root :modal author)
          (author :full-affirmative s1l)
          (author :full-negative s1e)))
```


Prague Dependency Treebank

t-cmpr9410-011-p2s1

PRED

mira

ACT

n denot

APP

vyvíjet se enunc

protikladně

MANN

nezaměstnanost

n.denot.neg

adj.denot

#PersPron

n.pron.def.pers

ACT

vyvíjet_se

CPR.basic

ekonomika

LOC basic

standardní

adi.denot

RSTR

n.denot

root

Míra nezaměstnanosti by se měla vyvíjet protikladně než ve standardní ekonomice.

The unemployment rate should develop in the opposite direction to that in a standard economy.

From PDT to UMR

download PDT-C 2.0 http://hdl.handle.net/11234/1-5813

UMR

represents meaning

PDT

- represents linguistically structured meaning (vs. situational meaning)
- topic-focus articulation

UMR

represents meaning

 encodes the frame-based predicateargument structure of all eventive concepts

PDT

- represents linguistically structured meaning (vs. situational meaning)
- topic-focus articulation
- predicate-argument structure (valency) and dependency relations

UMR

represents meaning

- encodes the frame-based predicateargument structure of all eventive concepts
- for each event, complex information
 - aspect
 - temporal chains
 - epistemic modality

PDT

- represents linguistically structured meaning (vs. situational meaning)
- topic-focus articulation
- predicate-argument structure (valency) and dependency relations
- meaning of individual morphological categories

UMR

represents meaning

- encodes the frame-based predicateargument structure of all eventive concepts
- for each event, complex information
 - aspect
 - temporal chains
 - epistemic modality
- coreference

PDT

- represents linguistically structured meaning (vs. situational meaning)
- topic-focus articulation
- predicate-argument structure (valency) and dependency relations
- meaning of individual morphological categories

coreference

Gold-standard data:									
(sub)corpus	sentences	tokens	tokens per sentence	PDT-C nodes	UMR nodes	UMR per PDT-C			
PDT	25	467	18.7	378	375	0.99			
PDTSC	50	374	7.5	321	442	1.38			
PCEDT	16	474	29.6	400	307	0.77			
total	91	1315	14.5	1099	1124	1.02			

Gold-standar (sub)corpus	rd data: sentences	tokens	tokens per sentence	PDT-C	UMR nodes	UMR per PDT-C
PDT	25	467	18.7	378	375	0.99
PDTSC	50	374	7.5	321	442	1.38
PCEDT	16	474	29.6	400	307	0.77
total	91	1315	14.5	1099	1124	1.02

Parallel anno (sub)corpus	otations: sentences	tokens	tokens per sentence	PDT-C nodes	UMR nodes Annot1 / Annot2	UMR per PDT-C (avg.)
PDT PDTSC	11 10	192 63	17.5 6.3	151 68	153 / 150 75 / 71	1.00 1.26
total	21	255	12.1	209	228 / 221	1.07

Download the data: http://hdl.handle.net/11234/1-5951

Inter-Annotator Agreement (IAA)

```
UMR graphs = as a set of triples (x,y,z):
```

- (node, relation, node)
- (node, attribute, value)

Metric for graph comparison:

- 1) Match nodes:
 - different number of nodes
 - different alignment (nodes to words)

- maps nodes primarily by word alignment
- for nodes without alignment, requires concept identity
- forces 1:1 mapping (selected the "best" node from 1:N)
- 2) Similarity is measured as the F₁-score of the triples

• final IAA (after reconciliation; table taken from Štěpánek et al., 2025)

UMR node map Annot1 nodes 228	ping: Annot2 nodes 221	mapped 215	recall 94%	precision 97%	F ₁ 96%
Concept and rel	lation comparisor	only map	ped nod	es):	
Annot1 triples	Annot2 triples	match	recall	precision	F_1
633	644	595	94%	92%	93%
Concept and rel	lation comparisor	1:			
Annot1 triples	Annot2 triples	match	recall	precision	$ju:mcetf = F_1$
663	659	595	90%	90%	90%

- analysis of main mismatches in the paper (events and argument structure, ellipses, granularity of NE classification, relations vs. attributes, attributes and their values)
- UMR allows for multiple valid annotations of the same meaning

111

based on the tectogrammatical structure:

- structural transformations
 - coordination
 - coreference
 - relative clauses
 - raising and control verbs
- node labels
 - t_lemma → concept
- edge labeling
 - valency lexicon → PropBank default table
- selected attributes
 - aspect
 - refer-person, refer-number
 - degree, polarity, quant
- node alignment

based on the tectogrammatical structure:

- structural transformations
 - coordination
 - coreference
 - relative clauses
 - raising and control verbs
- node labels
 - t_lemma → concept
- edge labeling
 - valency lexicon → PropBank default table
- selected attributes
 - aspect
 - refer-person, refer-number
 - degree, polarity, quant
- node alignment

often interact further increases the conversion complexity

based on the tectogrammatical structure:

- structural transformations
 - coordination
 - coreference
 - relative clauses
 - raising and control verbs
- node labels
 - t_lemma → concept
- edge labeling
 - valency lexicon → PropBank default table
- selected attributes
 - aspect
 - refer-person, refer-number
 - degree, polarity, quant
- node alignment

often interact further increases
the conversion complexity

ignored (so far)

- attributes:
 - mode, polite
 - quote, modal-strength
 - wiki
- most of the document level annotation
 - temporal
 - modal

Automatic (Partial) Conversion – Quantitative Comparison

• Automatic conversion:

(tables taken from Štěpánek et al., 2025)

UMR no	de mapping:					
corpus	MAN nodes	AUTO nodes	mapped	recall	precision	F_1
PDT	375	349	284	76%	81%	78%
PDTSC	442	305	235	53%	77%	63%
PCEDT	307	327	244	79%	75%	77%
total	1124	981	763	68%	78%	72%

Manual annotation (inter-annotator agreement):

UMR node map	ping:				
Annot1 nodes	Annot2 nodes	mapped	recall	precision	F ₁
228	221	215	94%	97%	96%

Automatic (Partial) Conversion – Quantitative Comparison

• Automatic conversion:

(tables taken from Štěpánek et al., 2025)

Concept	and relation co	mparison (only r	napped no	des):		
corpus	MAN triples	AUTO triples	match	recall	precision	F_1
PDT	844	819	502	59%	61%	60%
PDTSC	622	633	352	57%	56%	56%
PCEDT	714	588	342	48%	58%	53%
total	2180	2040	1196	55%	59%	57%

Manual annotation (inter-annotator agreement):

Concept and relation comparison (only mapped nodes):							
Annot1 triples	Annot2 triples	match	recall	precision	F,		
633	644	595	94%	92%	93%		

Automatic (Partial) Conversion – Quantitative Comparison

• Automatic conversion:

(tables taken from Štěpánek et al., 2025)

		mparison:				
corpus	MAN triples	AUTO triples	match	recall	precision	$ju:mcetf = F_1$
PDT	1082	916	502	46%	55%	50%
PDTSC	1318	770	352	27%	46%	34%
PCEDT	916	757	342	37%	45%	41%
total	3316	2443	1196	36%	49%	42%

Manual annotation (inter-annotator agreement):

Concept and re	lation comparison	ı:ˈ					
Annot1 triples	Annot2 triples	match	recall	precision	ju:	mæff =	F_1
663	659	595	90%	90%	(90%)

From PDT to UMR:

Gold-Standard Czech UMR Data and Partial Automatic Conversion

- two different meaning representations
- manually annotated Czech UMR gold-standard data
 - IAA 90 %
- evaluation of the automatic (partial) conversion
 - transforms selected language phenomena from PDT to UMR
 - 53-60% accuracy on the aligned nodes
 - plan: cover more phenomena in the (near) future
- automatic conversion as an essential first step to reduce costs for full manual annotation

Acknowledgements

The work described herein has been supported by the following grants:

- Czech Science Foundation, Language Understanding: from Syntax to Discourse (Project No. 20-16819X)
- Ministry of Education, Youth, and Sports of the Czech Republic, LINDAT/CLARIAH-CZ (Project No. LM2023062)
- The project has been using data and tools provided by the LINDAT/CLARIAH-CZ
 Research Infrastructure (https://lindat.cz), supported by the Ministry of
 Education, Youth and Sports of the Czech Republic (Project No. LM2023062).

