Curso 2 – CD, AM e DM MBA EM IA e BIGDATA

ARVORES DE DECISÃO

PROFA. ROSELI AP. FRANCELIN ROMERO

Curso 2 – CD, AM e DM MBA EM IA e BIGDATA MEDIDAS DE DISTÂNCIA KNN

Principais tópicos

- Aprendizado baseado em instâncias
- 1-vizinho mais próximo
- Medidas de distância
- Similaridade e dissimilaridade
- Proximidade
- K-vizinhos mais próximos
- Conclusão

AM e Geometria

- Medidas de distância
 - Podem ser usadas para
 - Classificar novos dados
 - Ex.: K-NN
 - Agrupar dados
 - Ex.: K-médias
 - Existem várias medidas

1-vizinho mais próximo

- Versão simples do algoritmo k-NN
 - Geralmente usado para classificação
- Algoritmo lazy (preguiçoso)
 - Olha os dados de treinamento apenas quando vai classificar um novo objeto
 - Não constrói um modelo explicitamente
 - Diferente de algoritmos
 - Induzem modelo
 - Ex.: ADs, RNs e SVMs

1-vizinho mais próximo

Métodos baseados em distância

- Consideram proximidade entre dados
 - Similaridade
 - Dissimilaridade

- Existem várias
 - Euclidiana
 - Norma máxima
 - Bloco-cidade
 - **..**

Propriedade de Distâncias

- Medidas de distância, em geral, têm as seguintes propriedades
 - Seja d(p, q) a distância (dissimilaridade) entre dois objetos $p \in q$
 - $d(p, q) \ge 0 \ \forall \ p \in q \in d(p, q) = 0$ se somente se p = q (definida positiva)
 - $d(p, q) = d(q, p) \forall p \in q$ (simetria)
 - $d(p, r) \le d(p, q) + d(q, r) \forall p, q \in r$ (designaldade triangular)
- Medidas que satisfazem essas propriedades são denominadas métricas

Propriedade de Distâncias

- Medidas de similaridade também têm propriedades bem definidas:
 - Seja s(p, q) a similaridade entre dois objetos p
 e q
 - s(p, q) = 1 (similaridade máxima) apenas se p = q
 - $s(p, q) = s(q, p) \forall p \in q$ (simetria)

Distância de Minkowski

Medida de distância generalizada

$$dist = (\sum_{k=1}^{m} |p_k - q_k|^r)^{\frac{1}{r}}$$

- Valor de r leva a diferentes distâncias:
 - 1 (L₁): Distância bloco cidade (Manhattan)
 - Hamming (valores binários)
 - 2 (L₂): Distância Euclidiana

Medidas de distância

- Distância Euclidiana
 - Sistema de coordenadas cartesianas

$$dist = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

- Distância de norma máxima
 - Menor complexidade e menos exatidão

$$dist = MAX(|p_k - q_k|)$$

Medidas de distância

Distância Euclidiana

Distância Manhattan

Exercício

- Qual das três medidas resulta na maior e na menor distância entre os exemplos abaixo?
 - Manhattan
 - Euclidiana
 - Norma máxima

$$Ex1 = (3, 1, 10, 2)$$

$$Ex2 = (2, 5, 3, 2)$$

Exercício

- ■Utilizando distância de Manhattan, definir:
 - ■Qual par dos números binários abaixo tem a distância mais semelhante à diferença entre seus valores na base decimal?

 110000, 111001, 000111, 001011, 100111, 101001

Similaridade x Dissimilaridade

- Similaridade
 - Mede o quanto dois objetos são parecidos
 - Quanto mais parecidos, maior o valor
- Dissimilaridade
 - Mede o quanto dois objetos são diferentes
 - Distância
 - Quanto mais diferentes, maior o valor
- Medida de proximidade pode ser usada

Proximidade entre valores

- ■Sejam a e b dois valores de um atributo
 - ■Nominal

■Ordinal

■Intervalar ou racional

$$\blacksquare$$
 sim = 1 - d ou sim = 1/(1+d)

$$d(a,b) = \begin{cases} 1, \text{ se } a \neq b \\ 0, \text{ se } a = b \end{cases}$$

$$d(a,b) = \frac{|pos_a - pos_b|}{n-1}$$
 n = #valores

$$d(a,b) = |a-b|$$

Exercício

- Para cada medida de distância
 - Quais são os dois exemplos da tabela abaixo mais próximos e os dois mais distantes?
 - Usar distâncias Euclidiana, bloco cidade e norma máxima

Estado	Escolaridade	Altura	Salário	Classe
SP	Médio	180	3000	Α
RJ	Superior	174	7000	В
RJ	Fundamental	100	2000	Α

K-vizinhos mais próximos

- Generalização do 1-vizinho mais próximo
- Algoritmo de AM baseado distância muito simples
 - Memória
- Número de vizinhos (k) pode variar

Quantos vizinhos?

- K muito grande
 - Vizinhos podem ser muito diferentes
 - Predição tendenciosa para classe majoritária
 - Custo computacional mais elevado
- K muito pequeno
 - Considera apenas os objetos muito parecidos
 - Não usa quantidade suficiente de informação
 - Previsão pode ser instável
 - Ruído

Quantos vizinhos?

Quantos vizinhos?

K-Vizinhos mais próximos

Seja k o número de vizinhos mais próximos
Para cada novo exemplo x
Definir a classe dos k exemplos
(vizinhos) mais próximos
Classificar x na classe majoritária
entre seus k vizinhos

K-vizinhos mais próximos

- Abordagem local
- Processo de classificação pode ser lento
 - Seleção de atributos
 - Eliminação de exemplos
 - Guardar conjunto de protótipos para cada classes
 - Algoritmos iterativos
 - Eliminação sequencial
 - Inserção sequencial

K-vizinhos mais próximos

- Algoritmos iterativos para eliminação
 - Eliminação sequencial
 - Começa com todos os exemplos
 - Descarta exemplos corretamente classificados pelos protótipos
 - Inserção sequencial
 - Conjunto inicial tem apenas os protótipos
 - Acrescenta exemplos incorretamente classificados pelos protótipos (expande protótipos)

Similaridade entre vetores binários

- Algumas vezes, objetos p e q têm apenas valores binários
 - Ex.: 0110 e 1100
- Similaridades podem ser computadas usando:
 - M_{01} = número de atributos em que p = 0 e q = 1
 - M_{10} = número de atributos em que p = 1 e q = 0
 - M_{00} = número de atributos em que p = 0 e q = 0
 - M_{11} = número de atributos em que p = 1 e q = 1

Similaridade entre vetores binários

Coeficiente de Casamento Simples

CCS =
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

Coeficiente Jaccard

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$

Agrupamento de dados

Exercício

■ Que medida de similaridade binária gera o maior valor de similaridade entre vetores p e q?

$$\begin{array}{ll} p &= 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0 \\ q &= 0\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 1 \end{array}$$

Similaridade cosseno

- Muito usado quando dados são textos
 - Bag of words
 - Grande número de atributos
 - Vetores esparsos
- Sejam *p* e *q* vetores representando documentos
 - $cos(p, q) = ||p|| ||q|| cos\theta = (p q) / (||p|| ||q||)$
 - •: vector produto interno entre vetores
 - || p ||: é o tamanho (norma) do vetor p

Distância cosseno

- Distância angular entre dois vetores
 - Invariante a escala dos atributos
 - 1 similaridade cosseno

$$dist_{\cos seno} = 1 - \frac{\sum_{k=1}^{m} p_{k}.q_{k}}{\sum_{k=1}^{m} p_{k}^{2}.\sum_{k=1}^{m} q_{k}^{2}}$$

Distância de Pearson

- Muito usada em bioinformática e séries temporais
 - 1 correlação entre dois vetores

$$dist_{Pearson} = 1 - \frac{\sum_{k=1}^{m} (p_k - \overline{p}).(q_k - \overline{q})}{\sqrt{\sum_{k=1}^{m} (p_k - \overline{p})^2.\sum_{k=1}^{m} (q_k - \overline{q})^2}}$$

