FM1 Notes, Spring 2020 Market Anomalies

I. What is wrong with the standard CAPM?

Motivations

Empirical anomalies

- (1) Size effect (Banz): returns on small stocks are too high.
- (2) Leverage effect: Bhandari finds that returns are positively related to leverage. He finds that leverage helps explain the cross-section of average stock returns in tests that include size and market beta.
- (3) Book/market ratio effect: Stattman and Rosenberg et al. find that returns are positively related to BE/ME.
- (4) E/P ratio effect: Basu finds that the E/P ratio helps explain returns in tests that includes size and market beta.

Ball argues that E/P is a proxy for unnamed factors in expected returns. E/P is likely to be higher for stocks with higher risk and expected return.

This argument may also apply to size, leverage, and book/market ratio. These variables can be regarded as different ways to scale stock prices to extract info in prices about risk and expected returns.

Since E/P, size, leverage and book/market ratio are all scaled versions of price, some of them may be redundant for describing average returns.

Fama and French want to evaluate the joint roles of beta, size, E/P, leverage and, book/market ratio in the cross section of average returns.

II. Fama and French three-factor model

$$r_{i,t} - r_{f,t} = \alpha + \beta_m (r_{m,t} - r_{f,t}) + \beta_{SMB} SMB_t + \beta_{HML} HML_t + \varepsilon_t$$

where

 $(r_{m,t} - r_{f,t})$: the market factor (market return – risk-free rate);

 SMB_t : the size factor (return on firms with smallest sizes – return on firms with biggest sizes);

 HML_t : the value factor (return on firms with highest book/market ratios – return on firms with lowest book/market ratios).

III. Important market anomalies (Examples)

Prior returns

- 1. Short-term reversal (STREV): Prior one-month return is negatively related to future return.
- 2. Momentum (MOM): Stocks with high returns over the past 3-12 months have high returns for the next 3-12 months.
- 3. Long-term reversal (LTR): Stocks with low returns over the past 3-5 years have high returns over the next 3-5 years.

External financing

- 4. Net stock issuance (NSI): Stock returns are lower after stock issuance.
- 5. Long-term stock issuance (LSI): Stocks with low composite issuance have high future returns.

Valuation

- 6. Book-to-market (BM): Stocks with high book-to-market ratios have high future returns.
- 7. Earning-to-price (EP): Stocks with high earnings-to-price ratios have high future returns.
- 8. Sales-to-price (SP): Stocks with high sales-to-price ratios have high future returns.

Earnings

- 9. Returns on assets (ROA): Stocks with high returns on assets have high future returns.
- 10. Standardized unexpected earnings (SUE): Stocks with high standardized unexpected earnings have high future returns.
- 11. Sales growth (SG): Stocks with low past sales growths have high future returns.
- 12. Growth profitability premium (GP): Stocks with high profitability have high future returns.

Distress

13.O-score (OS): Stocks with low Ohlson scores (lower probability of default) have high future returns.

Investment

- 14. Investment-to-assets (IA): Stocks with low investment-to-assets ratios have high future returns.
- 15. Asset growth (AG): Stocks with low asset growths have high future returns.
- 16. Accruals (TOTA): Stocks with low accruals have high future returns.
- 17. Net operating assets (NOA): Stocks with low net operating assets have high future returns.
- 18. Investment-to-capital (IK): Stocks with low investment-to-capital ratios have high future returns.
- 19. Investment growth (IG): Stocks with low investment growths have high future returns.

Others

- 20. Turnover (TO): Stocks with low turnovers over the past 3-12 months have high future returns.
- 21. Idiosyncratic volatility (IVOL): Stocks with high idiosyncratic return volatilities have low future returns.

IV. Empirical evidence on anomalies

All NYSE/AMEX/Nasdaq Stocks, Monthly Data, 1981.1 – 2018.2

Strategy		Return on Hedge Portfolio		Risk-adjusted Return (Fama- French alpha)					Return on Hedge Portfolio		Risk-adjusted Return (Fama- French alpha)	
		ret		α			Strategy		ret		α	
		(% per	t-stat	(% per	t-stat				(% per	t-stat	(% per	t-stat
		month)		month)					month)		month)	
1	STREV	0.80	4.06	0.64	3.13		12	GP	0.66	5.15	0.68	5.12
2	MOM	0.95	3.97	1.15	5.12		13	OS	0.65	4.17	0.83	5.85
3	LTR	0.40	2.64	0.23	1.81		14	IA	0.86	7.92	0.89	8.09
4	NSI	0.76	4.16	0.78	6.50		15	AG	0.88	6.92	0.81	6.96
5	LSI	0.74	3.97	0.76	6.00		16	TOTA	0.40	5.50	0.33	4.53
6	BM	0.89	4.28	0.57	3.41		17	NOA	0.66	4.44	0.78	6.45
7	EP	0.66	3.23	0.37	2.95		18	IK	0.45	3.48	0.42	4.93
8	SP	0.87	4.06	0.47	3.08		19	IG	0.50	5.97	0.46	5.39
9	ROA	1.03	5.52	1.17	7.07		20	TO	0.64	2.73	0.78	5.68
10	SUE	1.20	11.87	1.25	14.50		21	IVOL	0.26	0.91	0.52	3.18
11	SG	0.49	4.37	0.40	3.97		CO)MB	0.71	9.30	0.66	15.40

V. Other types of factors

1. Fundamental factors (accounting based) e.g., size, B/M, D/P, E/P, CF/P

2. Technical factors (historical returns)

e.g., momentum (intermediate term, 3-12 months), reversal (short term, and long term)

3. Macroeconomic factors

e.g., Chen, Roll and Ross factors: default premium, maturity premium, unanticipated inflation, growth in industrial production.

- 4. Market factors
- 5. Statistical factors

Principal components

VI. More recent developments

1. Four-factor model

$$r_{t,t} - r_{t,t} = \alpha + \beta_m (r_{m,t} - r_{t,t}) + \beta_{SMB} SMB_t + \beta_{HML} HML_t + \beta_{UMD} UMD_t + \varepsilon_t$$

where UMD_t is the momentum (or Carhart) factor.

2. Fama and French five-factor model

$$r_{t,t} - r_{f,t} = \alpha + \beta_m (r_{m,t} - r_{f,t}) + \beta_{SMB} SMB_t + \beta_{HML} HML_t + \beta_{RMW} RMW_t + \beta_{CMA} CMA_t + \varepsilon_t$$
 where

 RMW_t : the profitability factor (return on firms with robust profitability - return on firms with weak profitability);

 CMA_t : the investment factor (return on firms with conservative investments – return on firms with aggressive investments).

3. Hou, Xue and Zhang (HXZ) q-factor model

$$r_{i,t} - r_{f,t} = \alpha + \beta_m (r_{m,t} - r_{f,t}) + \beta_{ME} r_{ME,t} + \beta_{I/A} r_{I/A,t} + \beta_{ROE} r_{ROE,t} + \varepsilon_t$$

where

 r_{ME} : the difference between the return on a portfolio of small size stocks and the return on a portfolio of big size stocks;

 $r_{I/A}$: the difference between the return on a portfolio of low investment stocks and the return on a portfolio of high investment stocks;

 r_{ROE} : the difference between the return on a portfolio of high profitability (return on equity, ROE) stocks and the return on a portfolio of low profitability stocks.