$Nota.\ Ker\ \mathcal{A}$ и $Im\ \mathcal{A}$ - подпространства $V\ (\mathcal{A}:V\to V)$

Вообще-то $Ker \mathcal{A} \subset V, Im \mathcal{A} \subset W (\mathcal{A} : V \to W)$

 $\dim W \leq \dim V,$ тогда можно считать, что $W \subset V'$ и рассмотрим $\mathcal{A}: V \to V'$ (где V' изоморфен V)

 $Ker\mathcal{A}$ - подпространство, то есть $Ker\mathcal{A} \subset V$ и $\Sigma c_i x_i \subset \mathcal{A}$, если $\forall x_i \in Ker\mathcal{A}$

$$\mathcal{A}(\Sigma c_i x_i) = \Sigma c_i \mathcal{A} x_i \stackrel{x_i \in \mathcal{A}}{=} \Sigma c_i 0 = 0$$

Следствие: $Ker\mathcal{A} = 0 \Longrightarrow \mathcal{A}$ - вз.-однозн.

□ От противного:

 \exists \mathcal{A} - не вз.-однозн., то есть $\exists x_1, x_2 \in V(x_1 \neq x_2) | \mathcal{A}x_1 = \mathcal{A}x_2 \Longleftrightarrow \mathcal{A}(x_1 - x_2) = 0 \Longrightarrow x_1 - x_2 \in Ker\mathcal{A}$ - противоречие

Nota. Обратное также верно:

$$\mathcal{A}$$
 - вз.-однозн. $\Longleftrightarrow y_1=y_2\Longrightarrow x_1=x_2$, так как $\mathcal{A}(x_1-x_2)=0\Longrightarrow x_1-x_2=0$

Тогда 0 является образом только 0-вектора $\Longrightarrow Ker\mathcal{H} = 0$

Nota. Также очевидно, что

$$Ker \mathcal{A} = 0 \iff Im \mathcal{A} = V$$

$$Ker\mathcal{A} = V \Longrightarrow Im\mathcal{A} = 0$$
 и $\mathcal{A} = 0$

Th. $\mathcal{A}: V \to V$, тогда $\dim Ker\mathcal{A} + \dim Im\mathcal{A} = \dim V$

 \square Так как $Ker\mathcal{A}$ - подпространство V, то можно построить дополнение до прямой суммы (взяв базисные векторы ядра, дополнить их набор до базиса $V: e_1^k, \dots e_m^k, e_{m+1}^k, \dots e_n^k$)

Обозначим дополнение W, тогда $Ker\mathcal{A} \oplus W = V \Longrightarrow \dim Ker\mathcal{A} + \dim W = \dim V$

Докажем, что W и $Im\mathcal{A}$ - изоморфны

 $\mathcal{A}:W\to Im\mathcal{A}$

 $\mathcal{A}: Ker\mathcal{A} \to 0$

Докажем, что \mathcal{A} действует из W в $Im\mathcal{A}$ взаимно-однозначно

 $\exists \mathcal{A}$ невз.-однозн., тогда $\exists x_1, x_2 \in W(x_1 \neq x_2) | \mathcal{A}x_1 = \mathcal{A}x_2 \in Im\mathcal{A}$

$$\mathcal{A}(x_1-x_2)=0\Longrightarrow x_1-x_2\stackrel{\text{обозн.}}{=}x\in Ker\mathcal{A}, \text{ но }x\neq 0, \text{ так как }x_1\neq x_2$$

Но для прямой суммы $W \cup Ker\mathcal{A} = 0, x \ni W \cup Ker\mathcal{A} \Longrightarrow$ предположение неверно

 $\Longrightarrow \mathcal{H}$ - лин. вз.-однозн. $\Longrightarrow \dim W = \dim Im \mathcal{H}$

 $V = W_1 \oplus W_2$ найдется ЛО $\mathcal{A}: V \to V$

 $W_1 = Ker\mathcal{A}, W_2 = Im\mathcal{A}$

Def. Рангом оператора $\mathcal A$ называется $\dim Im\mathcal A$: $rang\mathcal A \stackrel{def}{=} \dim Im\mathcal A (=r(\mathcal A)=rank\mathcal A)$

Nota. Сравним ранг оператора с рангом его матрицы

$$\mathcal{A}x = y \quad \mathcal{A}: V^n \to W^m$$

$$A$$
 - матрица $\mathcal{A}, x = x_1e_1 + x_2e_2 + \cdots + x_ne_n, y = y_1f_1 + \cdots + y_mf_m$

$$\mathcal{A}x = y \Longleftrightarrow \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Или при преобразовании базиса $Ae_i = e_i'$:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}^T = \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \end{pmatrix}$$
Здесь
$$\begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}^T$$
 - это матрица $(e_1 & \dots & e_n) = \begin{pmatrix} e_{11} & e_{12} & \dots \\ \vdots & \vdots & \vdots \\ e_{n1} & e_{n2} & \dots \end{pmatrix}$

Nota. Поиск матрицы $\mathcal A$ можно осуществить, найдя ее в «домашнем» базисе $\{e_i\}$, то есть $A(e_1,\ldots e_n)=(e'_1,\ldots,e'_m)$

Затем, можно найти матрицу в другом (нужном) базисе, используя формулы преобразований (см. позже)

Тогда $Ker\mathcal{A} = K$ - множество векторов, которые решают систему

AX = 0 (dim $K = m = \dim \Phi CP = n - rangA$) и при этом dim $K = n - \dim Im \mathcal{A}$

 $rang\mathcal{A} = rangA = \dim Im\mathcal{A}$

Следствия (без док-в)

- 1) $rang(\mathcal{AB}) \leq rang(\mathcal{A})$ (или $rang\mathcal{B}$)
- 2) $rang(\mathcal{AB}) \ge rang(\mathcal{A}) + rang(\mathcal{B}) \dim V$

Nota. Рассмотрим преобразование координат, как линейный оператор $T:V^n\to V^n$ (переход из системы $Ox_i\to Ox_i',\ i=1..n$)

 $\dim ImT = n, \dim KerT = 0 \Longrightarrow T$ - вз.-однозн.

Поставим задачу отыскания матрицы в другом базисе, используя $T_{e \to e'}$

2.6. Преобразование матрицы оператора при переходе к другому базису