1-1 數列

※數列的定義

將一些數字依序地排成一列,就成一個數列。

一般而言 \cdot 數列可以寫成 $a_1, a_2, \dots, a_n, \dots$ 的樣子 \cdot

或者用符號 $\langle a_n \rangle$ 表示,其中 a_n 是此數列的第n項,又稱為一般項。

例題 1 ------

- (1) 試寫出數列 $\langle 2n-1 \rangle$ 的前五項
- (2) 設數列的 $\left\langle a_{n}\right\rangle$ 的一般項為 $a_{n}=\left(-1\right)^{n}\frac{1}{n}$, 試寫出此數列的前五項

隨堂練習------

- (1) 試寫出數列 $\langle 2n+1 \rangle$ 的前五項
- (2) 設數列的 $\langle a_n \rangle$ 的一般項為 $a_n = \frac{n(n+1)}{2}$, 試寫出此數列的前五項

※等差數列

若等差數列 $\langle a_n \rangle$ 的首項為 a_1 . 公差為d .

則其一般項為

$$a_n = a_1 + (n-1)d \cdot$$

隨堂練習------

試寫出下列數列的前五項,並求出其一般項 a_n

(1)等差數列首項為2,公差為3

※等比數列

若等比數列 $\langle a_n \rangle$ 的首項為 $a_1 (a_1 \neq 0)$. 公比為 $r (r \neq 0)$.

則其一般項為

$$a_n = a_1 r^{n-1}$$

隨堂練習

試寫出下列數列的前五項,並求出其一般項 a_n

(1)等比數列首項為 1 , 公比為 $\frac{1}{2}$

文興高中	數學(二)1-1 數列	班級:	_座號:	_姓名:	3

※遞迴數列

尋找數列的規律

(1) 對於首項為a · 公差為d 的等差數列 $\langle a_n \rangle$ 中 , 可改寫成

$$\begin{cases} a_1 = a \\ a_n = a_{n-1} + d \quad (n \ge 2) \end{cases}$$

(2) 對於首項為a ($a \neq 0$). 公比為r ($r \neq 0$) 的等比數列 $\langle a_n \rangle$ 可改寫成

$$\begin{cases} a_1 = a \\ a_n = ra_{n-1} & (n \ge 2) \end{cases}$$

一般而言,若一數列的後項可以由前面的項,根據某個規則而推得,這樣的數列稱為遞迴數列。

隨堂練習------

試將下列數列寫成遞迴式:

- (1) 已知等差數列的首項為 3, 公差為 4
- (2) 已知等比數列的首項為 1 , 公比為 $-\frac{2}{3}$

例題 2 -----

試寫出下列遞迴數列的前五項:

(1) $a_1 = 1$, $\coprod a_n = a_{n-1} + n^2 (n \ge 2)$.

(2) $a_1 = 1$, $\coprod a_n = 2a_{n-1} + 1(n \ge 2)$.

隨堂練習-------

試寫出下列遞迴數列的前五項:

- (1) $a_1 = 1$, $\coprod a_n = a_{n-1} + n(n \ge 2)$.
- (2) $a_1 = 1$, $\coprod a_n = na_{n-1} (n \ge 2)$.

例題 3 ------

用黑白兩種顏色的正方形地磚依照如下的規律,黑色地磚每次增加一塊,拼成若干圖形:

第2圖

第3圖

設 a, 是第 n 圖中白色地磚的塊數.

(1) 試求 a_1 、 a_2 、 a_3 、 a_4 ·

文興高中 數學(二)1-1 數列	班級:	座號:	姓名:	6
(2) 求出 a_n 和 a_{n-1} 之間的關係.				
(3) 寫出數列 $\langle a_n \rangle$ 的遞迴關係式.				
(4) 試求 a _n ·				

隨堂練習-----

用火柴棒排成 n 個相鄰的正方形, 如圖 \circ

令 an 表示需要用到的火柴棒數,則:

- (1) 試求 *a*₁, *a*₂, *a*₃, *a*₄。
- (2) 設 $n \ge 2$,求出 a_n 與 a_{n-1} 之間的關係。
- (3) 寫出數列 $\langle a_n \rangle$ 的遞迴式, 並求出 $a_n \circ$

例題 4------

已知正三角形 $A_1B_1C_1$ 的邊長為 1, 如圖, 依次連接 $\triangle A_1B_1C_1$ 三邊 $\overline{A_1B_1}$, $\overline{B_1C_1}$, $\overline{C_1A_1}$ 的中

點 C_2 , A_2 , B_2 而成 $\triangle A_2B_2C_2$, 又再次連接 $\triangle A_2B_2C_2$ 的三邊 $\overline{A_2B_2}$,

設 a_n 是 $\triangle A_n B_n C_n$ 的周長, 則:

- (1) 試求 *a*₁, *a*₂, *a*₃。
- (2) 設 $n \ge 2$,求出 a_n 與 a_{n-1} 之間的關係。
- (3) 寫出數列 $\langle a_n \rangle$ 的遞迴式。

文興高中	數學(二)1-1 數列	班級:	座號:	姓名:	_8
(4) 試求	$a_n \circ$				

已知正方形 S_1 的邊長為 2, 連接 S_1 四邊的中點得正方形 S_2 , 依此規律

得一系列正方形 S_3 , S_4 , …, 如圖 $5 \circ$ 設 a_n 表示 S_n 的面積, 則:

- (1) 寫出數列 $\langle a_n \rangle$ 的遞迴式。
- (2) 試求 *a_n* ∘

例題 5------

小璿在水果攤打工,把橘子堆成金字塔形:底盤是正方形,每四個橘子的空隙上方再放一個 橘子,如圖。

設 a_n 表示疊了 n 層所需的橘子數,則:

- (1) 寫出數列 $\langle a_n \rangle$ 的遞迴式。
- (2) 若要疊七層, 100 個橘子夠不夠?

文興高中 數學(二)1-1 數列 隨堂練習			姓名:	10
小璿的弟弟將一元硬幣鋪成三角形,如圖				角形所需的
硬幣數。 一种數			(A.T)	
(1) 寫出數列〈 a_n 〉的遞迴式。				
(2) 試求 a_{20} 。				
例題 6				
實驗室中的某種細菌以下列的方式繁殖:在	王第一秒時有	3 隻細菌。	写過一 秒,會∶	先死去一隻
細菌, 然後剩下的細菌每一隻都會分裂成兩	対隻。因此第二	二秒時有 4 隻	是細菌, 第三秒	沙時有 6 隻
細菌。令 a_n 表示第 n 秒時的細菌數目。				
(1) 寫出數列〈 an〉的遞迴式。				
(2) 試求第七秒時的細菌數目。				
隨堂練習				
承例題 6, 試問:				

(1) 第九秒和第十秒時有多少隻細菌?

文興高中 數學(二)1-1 數列	班級:	l 1
(2) 若第一秒時只有 2 隻細菌, 身	則第九秒和第十秒時有多少隻細菌?	

數學歸納法原理

數學歸納法原理就是骨牌效應的原理。

- 1. 第 1 張骨牌倒下。
- 2. 假設第 k 張骨牌倒下,會導致第 (k+1) 張骨牌倒下。 因此,所有的骨牌都會倒。

※數學歸納法

如果一個與正整數 n 有關的命題滿足下列兩個條件:

- (1) 當 n=1 時命題成立。
- (2) 設 n=k 時命題成立,由此可以推出 n=k+1 時命題也成立。

則此命題對於所有自然數 n 都成立。

例題 7------

細菌的隻數所成的數列〈 a_n 〉滿足遞迴式 $\begin{cases} a_1=3, \\ a_n=2 \ (a_{n-1}-1), n \ 2 \end{cases}$

試推測此數列的一般項 *an*, 並用數學歸納法證明之。

隨堂練習.

文興高中 數學	學(二)1-1 數列	班級:	座號	:	13
試推測此數列	列的一般項 an,	並用數學歸納法證明之	0		

例題 8------

設數列 $\langle a_n \rangle$ 滿足遞迴式 $\left\{ \begin{array}{l} a_1 = \frac{1}{2}, \\ a_n = a_{n-1} + \frac{1}{n^2 + n}, & n \geq \infty \end{array} \right.$

試求一般項 an 。

隨堂練習-----

設數列〈 a_n 〉滿足遞迴式 $\left\{ egin{aligned} a_1 = rac{1}{2}, \\ a_n = rac{1}{2 - a_{n-1}}, & n & 2 \end{cases} \right.$

試求一般項 a_n 。

文興高中 數學(二)1-1 數列 例題 9			_15
試證明: 對任意正整數 n , $a_n = 2^{2n-1} + 5^{2n-1}$			
隨堂練習		 	
試證明:對任意正整數 n , 25^n+2 是 3 的	倍數。		
예題 10		 	

利用數學歸納法證明: $1^2+2^2+\cdots+n^2=\frac{n\;(n+1)\;(2n+1)}{6}$ 對所有正整數 n 均成立。

利用數學歸納法證明: $1^3+2^3+\cdots+n^3=\left(\frac{n\ (n+1\)}{2}\right)^2$ 對所有正整數 n 均成立。

習 題 1-1

一、基本題

- 1.(1) 數列 $\langle a_n \rangle$ 的一般項為 $a_n = \frac{1}{n^2}$,試寫出這個數列的前七項。
 - (2) 數列 $\langle a_n \rangle$ 的一般項為 $a_n = (-1)^{n+1} (3n-2)$, 試寫出這個數列的前 七項。
 - (3) 數列 $\langle a_n \rangle$ 滿足 $a_1 = 1$, $a_2 = 1$, 且 $n \ge 3$ 時 $a_n = a_{n-1} + a_{n-2}$, 試寫出 這數列的前八項。
- 2.(1) 等差數列 $\langle a_n \rangle$ 的首項為 8,公差為-3,求其第 n 項。
 - (2) 等差數列 $\langle a_n \rangle$ 中, $a_3=3$, $a_6=18$, 求其首項與公差。
- 3.(1) 等比數列 $\langle a_n \rangle$ 的首項是 2, 公比是-3, 求其第 n 項。
 - (2) 等比數列〈 a_n 〉中, $a_1+a_3=10$, $a_4+a_6=\frac{5}{4}$,求其首項與公比。
- 4. 用火柴棒拼成以下的圖形,

試問:

- (1) 第 5 個圖需要幾根火柴棒?
- (2) \Rightarrow a_n 表示要拼成第 n 個圖所需的火柴棒的支數。求出 a_n 和 a_{n-1} 之間的關係。
- (3) 寫出數列 $\langle a_n \rangle$ 的遞迴式。
- 5. 試證明:對所有正整數 n,

$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \ (n+1) = \frac{n \ (n+1) \ (n+2)}{3}$$

均成立。

二、進階題

- 6. 在等差數列 $\langle a_n \rangle$ 中,已知 $a_1 + a_2 + a_3 + a_4 + a_5 = 30$,求 a_3 的值。
- 7. 試證明:對任意正整數 n, $2^{2n-1}+3^{2n-1}$ 是 5 的倍數。
- 8. 觀察下列圖形,

設 a_n 表示第 n 個圖形中的點數,

- (1) \bar{x} a_1 , a_2 , a_3 , a_4 °
- (2) 求出 a_n 和 a_{n-1} 之間的關係。
- (3) 寫出數列 $\langle a_n \rangle$ 的遞迴式。
- 9. 已知數列〈 a_n 〉的遞迴式為 $\begin{cases} a_1=3, \\ a_n=2a_{n-1}-1, n \end{cases}$ 2。 試推測這數列的一般項 a_n ,並用數學歸納法加以證明。

三、挑戰題

- 10. 觀察右方圖形,可以直觀說明 $1+3+5+7+9=5^2$ 。 一般化之後可以得到等式 $1+3+5+\cdots+(2n-1)=n^2$ 。
 - (1) 設計一個方法,可以直觀說明 1+2+3+4+5+4+3+2+1=52。
 - (2) 寫出一般化之後的等式。

