Computational Phonology - Class3

Jeffrey Heinz (Instructor) Jon Rawski (TA)

LSA Summer Institute UC Davis July 01, 2019

UC Davis | 2019/07/01 J. Heinz | 1

Last Week

- 1 We learned the successor model for words.
- 2 We learned how to express constraints in First Order Logic with this model.
- 3 We encountered some limitations in the expressivity of this class.
- 4 There are many paths forward from $FO(\triangleleft)$.
- 5 We briefly encountered the precedence model for words.

OUTSTANDING QUESTIONS

- 1 What constraints can we write (and not write) with FO(<)?
- 2 This defines constraints as functions $f: \Sigma^* \to \{ \texttt{true}, \texttt{false} \}$? How do we count violations? Assign probabilities?
- 3 This defines constraints. How do we define transformations?
- 4 What happens when we change the signature? What other signatures are there?
- 5 What happens when we change the logic? What other logics are there?

Today

- 1 Analysis of FO(<)</p>
- 2 Weighting Constraints with Semirings

Part I

Analysis of FO(<)

What constraints can we write (and not write) with FO(<)?

Theorem

A constraint is FO-definable with precedence if and only if there is a natural number n such that for all strings x, y, z and m > n, either both xy^nz and xy^mz obey the constraint or neither does.

(Schutzenberger 1965, McNaughton and Paper 1971)

EXAMPLES

- Even-Nasal is NOT definable with FO(<).
 - Let x = y = z = na.
 - Consider $xy^2z = na(nana)na$ obeys Even-Nasal.
 - But $xy^3z = na(nanana)na$ does not.
 - In fact, for any n, $xy^{2n}z$ obeys Even-Nasal but, $xy^{2n+1}z$ does not.

EXAMPLES

- Even-Nasal is NOT definable with FO(<).
 - Let x = y = z = na.
 - Consider $xy^2z = na(nana)na$ obeys Even-Nasal.
 - But $xy^3z = na(nanana)na$ does not.
 - In fact, for any n, $xy^{2n}z$ obeys Even-Nasal but, $xy^{2n+1}z$ does not.
- Every constraint which can be written in FO(*<*) can be written in FO(*<*). This is because "successor" is FO-definable with precedence.

$$x \triangleleft y \stackrel{\text{def}}{=} x \triangleleft y \land \neg \exists z [x \triangleleft z \land z \triangleleft y]$$

OUTSTANDING QUESTIONS

- What constraints can we write (and not write) with FO(<)</p>
- 2 This defines constraints as functions f: Σ* → {true, false}? How do we count violations? Assign probabilities?
- 3 This defines constraints. How do we define transformations?
- 4 What happens when we change the signature? What other signatures are there?
- 5 What happens when we change the logic? What other logics are there?

OUTSTANDING QUESTIONS

- 1 What constraints can we write (and not write) with FO(<)
- 2 This defines constraints as functions $f: \Sigma^* \to \{\texttt{true}, \texttt{false}\}$? How do we count violations? Assign probabilities?
- 3 This defines constraints. How do we define transformations?
- 4 What happens when we change the signature? What other signatures are there?
- 5 What happens when we change the logic? What other logics are there?

Monadic Second Order Logic

MSO allows quantification over sets of individuals.

Additional Symbols in MSO logic					
X, Y, Z	variables which range over sets				
	of elements of the domain				
$x \in X$	checks whether an element x belongs				
	to a set of elements X				

Some Important Facts

- Precedence is MSO definable with successor.
- Even-Nasal is MSO definable with successor (and precedence).

SUMMARY OF THE EXPRESSIVITY OF THE LOGICAL LANGUAGES (SO FAR)

Another view

Another view

Another view

UC Davis | 2019/07/01 J. Heinz | 11

Outstanding Questions

- 1 What constraints can we write (and not write) with FO(<)
- 2 This defines constraints as functions $f: \Sigma^* \to \{\text{true}, \text{false}\}$? How do we count violations? Assign probabilities?
- 3 This defines constraints. How do we define transformations?
- 4 What happens when we change the signature? What other signatures are there?
- 5 What happens when we change the logic? What other logics are there?

Part II

Weighting Constraints with Semirings

SEMIRINGS

Semirings abstract away from the details of certain mathematical sets. A semiring is a set S

- 1 with two operations \oplus and \otimes over each of its elements, and
- 2 S contains two *identity* elements: 0 for \oplus and 1 for \otimes .

Name	S	\oplus	\otimes	0	1
Boolean	$\{\mathtt{true},\mathtt{false}\}$	V	\wedge	false	true
Natural	\mathbb{N}	+	×	0	1
Real Interval	[0,1]	+	×	0	1

(See handout for full set of properties. And see Droste and Gastin (2009).)

SYNTAX WEIGHTED MSO LOGIC

Fix a relational model signature M.

Base Cases

```
(B1) s, for each s \in S (atomic semiring element)

(B2) x = y (equality)

(B3) \neg (x = y) (non-equality)

(B4) x \in X (membership)

(B5) \neg (x \in X) (non-membership)

(B6) R(\vec{x}), for each R \in \mathbb{M} (positive relational atom)

(B7) \neg R(\vec{x}), for each R \in \mathbb{M} (negative relational atom)
```

UC Davis | 2019/07/01

SEMANTICS OF WMSO

The base cases

(B1)
$$[\![s]\!](\mathbb{S},w)$$
 $\begin{tabular}{ll} $\operatorname{def} \\ = & s \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & s \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{iff } e_1 = e_2 \\ 0 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 1 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{otherwise} \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \end{tabular} s$ $\begin{tabular}{ll} $\operatorname{def} \\ = & 0 & \text{iff } \mathcal{M}_w \models R(\vec{e}) \e$

SYNTAX WEIGHTED MSO LOGIC

Inductive Cases If φ, ψ are formulas of MSO logic, then so are

```
(I1) (\varphi \lor \psi) (disjunction)

(I2) (\varphi \land \psi) (conjunction)

(I3) (\exists x)[\varphi] (existential quant. for individuals)

(I4) (\exists X)[\varphi] (existential quant. for sets of individuals)

(I5) (\forall x)[\varphi] (universal quant. for individuals)

(I6) (\forall X)[\varphi] (universal quant. for sets of individuals)
```

Nothing else is a formula of MSO logic. Note negation only applies to the base cases.

SEMANTIC OF WMSO

The inductive cases.

Main points:

- ${\rm 1\!\! I}$ existential quantification and disjunction are interpreted with \oplus
- 2 universal quantification and conjunction are interpreted with \otimes

Example: *C (CATEGORICAL)

Model signature: $\mathbb{M} = \langle D \mid a, b, c, \triangleleft \rangle$ Boolean Semiring

Name	S	\oplus	8	0	1
Boolean	$\{\mathtt{true},\mathtt{false}\}$	V	^	false	true

A WMSO Sentence for *c

$${}^*c \stackrel{\mathrm{def}}{=} \forall x [\neg \mathsf{c}(x)]$$
 (1)

Examples

2
$$\llbracket *c \rrbracket (abba) = \neg c(1) \land \neg c(2) \land \neg c(3) \land \neg c(4) = true$$

Example: *C (COUNTING VIOLATIONS)

Model signature: $\mathbb{M} = \langle D \mid a, b, c, \triangleleft \rangle$ Integer Semiring

Name	S	\oplus	8	0	1
Natural	\mathbb{N}	+	×	0	1

A WMSO Sentence for *c

$$*c \stackrel{\text{def}}{=} \exists x [c(x)]$$
 (2)

Examples

$$2 \| c\| (abba) = c(1) + c(2) + c(3) + c(4) = 0$$

EXAMPLE: *C (PROBABILITIES)

Model signature: $\mathbb{M} = \langle D \mid a, b, c, \triangleleft \rangle$

Real Interval Semiring

Name	S	\oplus	\otimes	0	1
Real Interval	[0, 1]	+	×	0	1

A WMSO Sentence for *c

Example

WMSO SUMMARY

- 1 In weighted logic, negation only applies to the base cases.
- 2 In the base cases, model satisfaction yields semiring 1, 0 otherwise.
- 3 Conjunction and disjunction are interpreted as semiring multiplication \otimes and addition \oplus .
- 4 There are many semirings, including ones for strings.
- 5 They form an important chapter in processing in NLP.
- 6 Use of logic does not preclude studying phenomena deemed gradient or probabilistic.
- 7 See handout for more examples with *NT.

Where we are

Today

- 1 Analysis of FO(<)</p>
- 2 WMSO with semirings.

Next Class

- So far, we have looked at generalizations over structures (constraints).
- How do we define transformations?

Homework

1 Let M include the precedence relation (<) and phonological features for unary relations. Using the natural semiring, consider the WMSO sentence

$${}^*\mathsf{N}..\mathsf{L} \stackrel{\mathrm{def}}{=} \exists x,y[x \lessdot y \land \mathtt{nasal}(x) \land \mathtt{lateral}(y)].$$

What is [*N..L](nilanola)? Show your work.