Distribuições Contínuas de Carga

- Campo elétrico
- Potencial elétrico

Densidades de carga

Densidades de carga

Densidade de carga por unidade de	Definição	Unidade	Se for constante
Comprimento	$\lambda = \frac{dq}{dl}$	$\frac{C}{m}$	$\lambda = rac{Q}{L}$
Área	$\sigma = \frac{dq}{dA}$	$\frac{C}{m^2}$	$\sigma = rac{m{Q}}{m{A}}$
Volume	$\rho = \frac{dq}{dv}$	$\frac{C}{m^3}$	$ ho = rac{oldsymbol{Q}}{oldsymbol{V}}$

Campo Elétrico

$$\overrightarrow{dE} = \frac{1}{4 \pi \varepsilon_0} \frac{dq}{r^2} \hat{r}$$

$$\vec{E} = \int \vec{dE} = \int \frac{1}{4 \pi \, \varepsilon_0} \frac{dq}{r^2} \hat{r}$$

$$dq = \lambda dl$$

Campo Elétrico

$$\overrightarrow{dE} = \frac{1}{4 \pi \varepsilon_0} \frac{dq}{r^2} \hat{r}$$

$$\vec{E} = \int \vec{dE} = \int \frac{1}{4 \pi \, \varepsilon_0} \frac{dq}{r^2} \hat{r}$$

$$dq = \sigma dA$$

Campo Elétrico

$$\overrightarrow{dE} = \frac{1}{4 \pi \varepsilon_0} \frac{dq}{r^2} \hat{r}$$

$$\vec{E} = \int \vec{dE} = \int \frac{1}{4 \pi \, \varepsilon_0} \frac{dq}{r^2} \hat{r}$$

$$dq = \rho dv$$

Potencial Elétrico

$$dV = \frac{1}{4\pi \,\varepsilon_0} \frac{dq}{r}$$

$$V = \int dV = \int \frac{1}{4 \pi \, \varepsilon_0} \frac{dq}{r}$$

Distribuição linear de carga

$$dq = \lambda dl$$

Distribuição superficial de carga

$$dq = \sigma dA$$

Distribuição volumétrica de carga

$$dq = \rho dv$$

Relação entre campo elétrico e potencial elétrico - Electrostática

$$\vec{E} = -\vec{\nabla}V$$

$$V = -\int \vec{E} \bullet \overrightarrow{dr}$$

As linhas de campo elétrico são perpendiculares às superfícies equipotenciais e apontam no sentido dos potenciais decrescentes.

