Final Exam Review - ELE 202 W 2023

Q 1: [20 marks]

Q 1: Part a) The switch in Figure 1 a has been opened for a long time. At t = 0, the switch is closed.

- i) Calculate $i_L(0^+)$ and $i_L(\infty)$ (Use Source Transformation only when solving for $i_L(\infty)$) [4 marks]
- ii) Determine an expression for $i_L(t)$ for t>0 [3 marks]
- iii) Determine an expression for $v_L(t)$ for t>0 [2 marks]
- v) Draw $i_L(t)$ versus time

[2 marks]

Hints:
$$\tau = \frac{L}{R}$$
, $y(t) = y(\infty) + [y(0^+) - y(\infty)]e^{-\frac{t}{\tau}}$

Q 1: Part b)

The switch in Figure 1 b has been closed for a long time. At t = 0, the switch is opened.

- i) Calculate $v_{\mathcal{C}}(0^+)$ and $v_{\mathcal{C}}(\infty)$ (Use Superposition Principle only when solving for $v_{\mathcal{C}}(0^+)$) [4 marks]
- ii) Determine an expression for $v_c(t)$ for t>0 [3 marks]
- iii) Determine an expression for $i_{\mathcal{C}}(t)$ for t>0 [2 marks]

Hints:
$$\tau = RC$$
 , $y(t) = y(\infty) + [y(0^+) - y(\infty)]e^{-\frac{t}{\tau}}$

Figure 1 b: RC circuit with DC input

Q 2: [20 marks] Solve the circuit given below using Nodal Analysis.

1.	Write the nodal equations at all the non-reference nodes	[6 marks]
2.	Simplify the equations	[4 marks]
3.	Rearrange the equations in Matrix form	[2 marks]
4.	Show all the steps of Cramer's rule to find the Node voltage	[2 marks]
5.	Using a calculator, calculate the numerical values of the Node voltages at all the	non reference
	nodes	[2 marks]
6.	Express \overline{I} in terms of the node voltages and calculate its numerical value.	[2 marks]
7.	Draw a phasor diagram showing \overline{V}_{s1} and \overline{I} phasors.	[2 marks]

Note: All sources are AC.

Figure 2: Circuit for Q 2

Q 3: [20 marks] Solve the circuit given below using Mesh Analysis.

1.	Write all the mesh equations	[10 marks]
2.	Simplify the equations	[4 marks]
3.	Rearrange the equations in Matrix form	[2 marks]
4.	Show all the steps of Cramer's rule to find the mesh currents	[2 marks]
5.	Using a calculator, calculate the numerical value for the mesh currents	[2 marks]

Note: All sources are AC.

Figure 3: Circuit for Q 3

Q 4: [20 marks] Determine the Thevenin equivalent at terminals a - b of the circuit shown in Figure 4. The circuit is given in time domain. Please convert the component values to phasor domain before solving for the required variables.

- 1. Calculate the Thevenin equivalent voltage, V_{th} . Use the **source transformation only** as an analysis tool. If you use any other methods, marks will not be assigned even the value calculated is correct. [8 marks]
- 2. Calculate Z_{th} . [8 marks]
- 3. Calculate the value of Z_L for maximum power [2 marks]
- 4. Determine the maximum power absorbed by Z_L [2 marks]

$$\dot{l}_{s}(t) = 2\cos(1500t + 32^{\circ}) A$$

Figure 4: Circuit for Q 4 – Thevenin Theorem

$$\dot{l}_{s}(t) = 2\cos(1500t + 32^{\circ}) A$$

Q 5: [20 marks] For the circuit shown in Figure 5, complete the following:

1.	Calculate the total apparent power	[3 marks]
2.	Calculate the total average power	[3 marks]
3.	Calculate the total reactive power	[3 marks]
4.	Calculate the total power factor	[3 marks]
5.	Calculate the total impedance	[3 marks]
6.	Calculate the rms value of Vs (both magnitude and phase)	[5 marks]

