



# Radiance Caching for realtime Global Illumination

Daniel Wright - Epic Games

@EpicShaders









# **Background**



### Global Illumination

$$Lo(v) = Le(v) + \int Li(l)fs(l \to v)cos(\Theta l)dl$$

What we are solving for every pixel



### Global Illumination

$$\boxed{Lo(v)} = Le(v) + \boxed{\int Li(l) fs(l \to v) cos(\Theta l) dl}$$

Final pixel lighting is the Integral over incoming radiance times the BRDF



### Monte Carlo Integration

$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} \underbrace{\frac{Li(l)fs(l\to v)cos(\Theta l)}{Pk}}_{}$$

- Estimate with discrete samples
- Find incoming radiance in a direction with Ray Tracing



## Ray Traces are slow

- Two level BVH
  - Incoherent tree traversal
  - Instance overlap







## Ray Traces are slow

- Can only afford 1/2 ray per pixel
- But quality GI needs hundreds!









## How can this be made realtime?



### Previous real-time work: Irradiance Fields

- Ray Trace from a small set of probes
  - Arranged in world space grids [Tatarchuk 2012]
- Pre-calculate Irradiance
- Interpolate to full resolution pixels
- Probe Occlusion to reduce leaking [Valient 2014] [McGuire 2019]



### Irradiance Field problems

- Leaking and over-occlusion
- Probe placement
- Slow lighting update
- Distinctive flat look
  - Irradiance near occluders is higher frequency than spatial probe resolution



### Previous real-time work: Screen Space Denoiser

- Ray Trace from pixels
  - Cos distribution
  - ~1 ray per pixel
- Denoise with spatial and temporal reuse
  - o Spatiotemporal Variance-Guided Filtering [Schied et al 2017]
  - Fast Denoising with Self Stabilizing Recurrent Blurs [Zhdan 2020]



## Screen Space Denoiser problems

Input is too noisy - fixed sample rate





### Noise increases as bright feature becomes smaller

Near bright window



#### Far from window





# Our approach



## Screen Space Radiance Caching





## Downsample incoming radiance

Incoming light is coherent, geometry normals are not



## Integrate incoming lighting over the BRDF at full res







Filter in radiance cache space, not screen space



Better sampling in the first place - importance sample incoming lighting





### Stable distant lighting with World Space Radiance Caching







# Final Gather Pipeline











### Screen Probe structure

- Octahedral atlas with border
  - Typically 8x8 per probe
  - Uniformly distributed world space directions
  - Neighbors have matching directions
- Radiance and HitDistance in 2d atlas





### Screen Probe placement

- Adaptive placement with Hierarchical Refinement [Křivánek et al 2007]
  - Iteratively place where interpolation fails





### Screen Probe placement

- Adaptive placement with Hierarchical Refinement [Křivánek et al 2007]
  - Iteratively place where interpolation fails
- Flood fill for final level



## Adaptive sampling

- Need upper limit for real-time
- Don't want extra barriers for processing adaptive probes
  - Place adaptive probes at the bottom of the atlas



### Screen Probe jittering

- Temporally jitter placement grid and direction
- Place directly on pixels
  - No leaking
  - Occlusion differences within screen cell have to be hidden with temporal filter



### Interpolation

- Plane distance weighting
  - Prevents foreground misses leaking onto background





### Interpolation

- Plane distance weighting
  - Prevents foreground misses leaking onto background
- Jitter offset into interpolation
  - \*only if still in same plane
  - Distributes differences between probes spatially
  - Temporally stabilizes final lighting by expanding TAA 3x3 neighborhood



Advances in Real-Time Rendering SIGC

### Screen Space Radiance Cache pipeline validation

Matches path tracer when cranked up



## But too much noise at ½ ray per pixel





# **Importance Sampling**



$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} \underbrace{Li(l) fs(l\to v) cos(\Theta l)}_{Pk}$$

- We would like to distribute rays proportional to the integrand
- How can we estimate these?



$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} \underbrace{\frac{Li(l)fs(l\to v)cos(\Theta l)}{Pk}}_{}$$

- Incoming Radiance:
  - Reproject last frame's Screen Probe Radiance!
    - No need to do an expensive search
    - Rays already indexed by position and direction
  - Fallback to World Space Probe Radiance on disocclusion

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \frac{Li(l) fs(l \to v) cos(\Theta l)}{Pk}$$

#### BRDF:

• Accumulate from pixels that will use this Screen Probe

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \frac{Li(l)fs(l \to v)cos(\Theta l)}{Pk}$$

 Even better, we would like to sample proportional to the product of the incoming Radiance and BRDF

### Structured Importance Sampling

- Assigns a small number of samples to hierarchically structured areas of the Probability Density Function (PDF) [Agarwal et al 2003]
  - Achieves good global stratification
  - Sample placement requires offline algorithm





### Maps perfectly to Octahedral mip quadtree!







### Integrating into pipeline

- Add indirection to tracing lanes
  - Store RayCoord, MipLevel
- After tracing, composite TraceRadiance into uniform probe layout for final integration



### Ray Generation algorithm

- Calculate BRDF PDF \* Lighting PDF for each Octahedral texel
- Start with uniformly distributed probe ray directions
  - Want fixed output ray count keep tracing lanes full
- Sort rays by PDF
- For every 3 rays with PDF below cull threshold, supersample matching high PDF ray





### Improvements

- Don't allow Lighting PDF to cull rays
  - Lighting PDF is approximate, BRDF is accurate
- Can cull more aggressively by leaning on spatial filter
  - Cull with higher BRDF threshold
  - Reduce weight of culled rays during spatial filter
    - Fixes darkening around corners







#### Importance Sampling recap

- Guide this frame's rays with last frame's lighting, and distant lighting
- Bundling rays into probes lets us afford smarter sampling



# **Spatial filtering**



### Filtering in Radiance Cache space

- Large spatial filter for cheap
  - o 3^2 in probe space vs 48^2 screen space
- Can ignore normal differences between spatial neighbors
  - Only depth weighting



### Gather Radiance from neighbors

- Gather from matching Octahedral cell in neighbor probes
- Error weighting:
  - o Angle error from reprojected neighbor ray hits
  - Filters distant lighting, preserves local shadowing







### Preserving contact shadows

- Angle error biases toward distant light = leaking
  - Distant light has no parallax and never gets rejected
- Solution: clamp neighbor hit distance to our own before reprojection.









# World Space Radiance Cache



#### Problem: distant lighting

- Noise from small bright feature increases with distance
- Long incoherent traces are slow
- Distant lighting is changing slowly opportunity to cache
  - Redundant operations for nearby Screen Probes



### Solution: separate sampling for distant Radiance

- World space Radiance Caching for distant lighting
  - o The Technology of The Tomorrow Children [McLaren 2015]
- Stable error since world space easy to hide
  - Just like Volumetric Lightmaps







### Pipeline integration

- Place around Screen Probes
- Then trace to compute Radiance
- Interpolate to solve distant lighting for Screen Probe rays



# Connecting rays





### Avoiding self-lighting

• World Probe ray must skip the interpolation footprint



### Connecting rays

• Screen Probe ray must cover interpolation footprint + skipped distance



## Problem: leaking!

- World probe radiance should have been occluded
  - But wasn't due to incorrect parallax





### Solution: simple sphere parallax

 Reproject Screen Probe ray intersection with World Probe sphere





### Sparse coverage

- 3d clipmap grids centered around camera storing ProbeIndex into atlas
  - Clipmap distribution maintains bounded screen size



### Atlas

- Octahedral probe atlas storing Radiance, TraceDistance
  - Typically 32x32 Radiance per probe



#### Placement and caching

- Mark any position that we will interpolate from later in clipmap indirections
- For each marked world probe:
  - Reuse traces from last frame, or allocate new probe index
  - Re-trace a subset of cache hits to propagate lighting changes





### Problem: highly variable costs

• Fast camera movements and disocclusions require many uncached probes to be traced



### Problem: highly variable costs

- Fast camera movements and disocclusions require many uncached probes to be traced
- Solution: Fixed budget for full resolution probes
  - Additional probe traces for cache misses are at lower resolution
  - Additional probe traces for lighting updates are skipped



### Importance Sampling

- BRDF importance sampling
  - Accumulate BRDF from Screen Probes
  - Dice probes into trace tiles
  - Generate trace tile resolution according to BRDF
- Supersample near camera
  - Up to 64x64 effective resolution
    - 4096 traces!
    - Very stable distant lighting





### Spatial filtering between probes

- Reproject neighbor hits again
- Problem: can't assume mutual visibility







### Preventing leaking

- Ideally re-trace neighbor ray path through probe depths
- Single occlusion test works well
  - Nearly free reuses probe depths











## Also used by

- Guiding Screen Probe importance sampling
- Hair
- Translucency
- Multi-bounce



# Full resolution steps







### Final integration









### Monte Carlo integration noise

- Importance sampling BRDF causes incoherent fetches
  - 8spp \* 4 neighbor probe direction lookups
- Can use mips (Filtered Importance Sampling),
   but that causes self-lighting [Colbert et al 2007]
  - Especially around areas of direct lighting





#### Convert Probe Radiance to 3rd order Spherical Harmonic

- SH is calculated per Screen Probe
- Full res pixels load SH coherently
- SH Diffuse integration cheap and high quality [Ramamoorthi 2001]



### Rough specular

- Ray Traced Reflections expensive at high roughness
  - Converges on diffuse



### Rough specular - reuse Screen Probes

- Generate directions from GGX, sample probe radiance
- Automatically leverage probe sampling and filtering already done!



## Downsampled tracing loses contact shadows



### Full resolution Bent Normal

- Computed with fast screen traces
  - Trace distance coupled to the distance between Screen Probes: ~16 pixels



### Integrating with Screen Space Radiance Cache

- Treat Screen Probe GI as Far-Field Irradiance
- Full resolution Bent Normal represents amount of Near-Field
  - o Horizon-Based Indirect Lighting [Mayaux 2018]
  - Multi-bounce approximation gives Near-Field Irradiance



## Results







### Temporal filter

- Jittering probe position requires reliable temporal filter
- Using depth rejection
  - Stable results, but also slow reaction to lighting changes





### Track hit velocity along with hit depth during tracing

Projected area belonging to fast moving objects



#### Switch to fast update mode when traces hit fast moving object

• Lower temporal filter, raise spatial filter



# Final Gather performance

























### Provides the Final Gather for Lumen in Unreal Engine 5

- Dynamic Global Illumination, Shadowed sky lighting, Emissive
- Opaque materials only
  - GI on transparency and fog provided through separate technique
- Rough specular integrates with Lumen's Ray Traced Reflections
- Documentation at <u>docs.unrealengine.com</u>



### Supports Lumen's hybrid tracing

- Software Ray Tracing
  - Per-Instance SparseSigned Distance Fields



- Hardware Ray Tracing
  - Per-Instance TriangleBVH







#### Future Work

- Disocclusion quality
- Temporal stability in highly dynamic scenes
- Applying Screen Space Radiance Cache to Lumen's Surface Cache for multibounce Gl



### Only presented the opaque Final Gather

- Many other important parts of Lumen!
  - Surface Caching
  - Software Ray Tracing
  - Hardware Ray Tracing
  - Reflections
  - Transparency GI

Lumen Team

Krzysztof Narkowicz

Patrick Kelly



#### Other Acknowledgements

Unreal Engine Ray Tracing
Yuriy O'Donnell
Juan Canada
Yujiang Wang
Kenzo ter Elst

Presentation review
Brian Karis
Michal Valient



#### References

- Irradiance Volumes for Games [Tatarchuk 2012]
- Taking Killzone Shadow Fall Image Quality into the Next Generation [Valient 2014]
- Ray-Traced Irradiance Fields [McGuire 2019]
- Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global Illumination [Schied et al 2017]
- Fast Denoising with Self Stabilizing Recurrent Blurs [Zhdan 2020]
- Practical Global Illumination with Irradiance Caching [Křivánek et al 2007]
- Structured Importance Sampling of Environment Maps [Agarwal et al 2003]
- The Technology of The Tomorrow Children [McLaren 2015]
- An Efficient Representation for Irradiance Environment Maps [Ramamoorthi 2001]
- Horizon-Based Indirect Lighting [Mayaux 2018]
- Real-time Shading with Filtered Importance Sampling [Colbert et al 2007]

