

PART (B): CHEMISTRY

Answer Key & Solution

- 31. (C)
 Lanthanum is d block element.
- 32. (C)
 C is antibonding overlap.
- 33. (A) $2 \times 500 + 5 \times V_1 = 2.5 \times (500 + V_1)$ $1000 + 5V_1 = 1250 + 2.5V_1$ $2.5V_1 = 250$ $V_1 = 100 \text{ ml}$
- 34. (C)
 1 of 1st orbit, 4 of 2nd orbit, 9 of 3rd orbit and 16 of 4th orbit.
- 35. (C)

- 36. (C)
 - (A) θ incorrect less than 109°28'
 - (B) incorrect position of lone pair
 - (C) correct square planar structure with $\theta = 90^{\circ}$
 - (D) θ incorrect because it is square planar with two lone pair at Xe and $\theta=90^o$
- 37. (B) $m = \frac{\text{No. moles of solute}}{\text{mass of solvent}} \times 1000$

$$m = \frac{\omega_2}{M_2} \times \frac{1000}{\frac{\omega_1}{M_1} \times M_1}$$

$$m = \frac{n_2 \times 1000}{n_2 \times M_1}$$

$$\chi_{solvent}=0.7, \chi_{solute}=0.3$$

$$(n_1)$$
 (n_2)

$$m = \frac{0.3 \times 1000}{0.7 \times 18} = 23.80 \text{ mol kg}^{-1}$$

De-Broglie wavelength
$$(\lambda) = \frac{h}{p}$$

K.E. of
$$e^{=} = eV$$

K.E. =
$$P^2/2m$$

$$eV = P^2/2 m$$

$$P = \sqrt{2meV}$$

$$\frac{h}{\lambda} = P = \sqrt{2meV}$$

I.E.: 4d series < 5d series

IE of Pd > IE of Ag

Neutral atom configuration is $3d^4\ 4s^2\ or 3d^5\ 4s^1$

42. (B)

Higher n+l

 $Co^{3+} \Rightarrow d^6 \rightarrow 4$ unpaired electron

Magnetic moment =
$$\sqrt{n(n+2)}$$

= $\sqrt{4(4+2)}$
= 4.90 BM

SF₄ is sp³d hybridization with 1 lone pair (see saw). BrF₃ is sp³d hybridization with 2 lone pair (T shape).

45. (D)

1 g atom of Fe (56 g Fe) is present in 1 mole of the compound

As 4.6 g Fe will be present in

$$=\frac{100}{4.6}\times56\,\mathrm{g}$$

= 1217 g of the compound.

So, approximate molecular mass = 1200.

46. (D)

Element	Carbon	Hydrogen
% Composition	92.3	7.7
Atomic ratio	92.3/12	7.7/1
	= 7.69	= 7.7
Simple ratio	7.69/7.69	7.7/7.69
	= 1	= 1

So, empirical formula is 'CH'.

47. (C)

$$BaCO_3 \rightarrow BaO + CO_2$$

197 gm

197 gm of BaCO₃ released $CO_2 = 22.4$ litre

1 gm of BaCO₃ released $CO_2 = \frac{22.4}{197}$ litre

9.85 gm of BaCO₃ released CO₂ = $\frac{22.4}{197} \times 9.85 = 1.12$ litre

48. (A)

p-orbital has single dumb bell and d orbital has double dumb bell.

49. (B)

2s should be filled before 2p.

50. (A)

$$_{28}Ni = 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^8\ 4s^2$$

$$Ni^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8$$

Hence, d-electrons in Ni and Ni²⁺ are same.

51. (8)

Bond angle is 134 degree.

52. (3)

SF₄ and SF₆ are non planar.

- 53. (3)
- 54. (2) CO₂ and XeO₂F₄

- 56. (191.66 to 191.67) sp^3d^2 , sp^2 and sp^3 respectively.
- 57. (0.07) Let molarity of Ba(OH)₂ = M₁ $2M_1 \times 25 = 0.1 \times 35$ $M_1 = 0.07 \text{ M}$
- 58. (5) Total values of $m = (2\ell + 1) = no$. of orbitals in subshell.

 As $\ell = 2$ represents 'd' subshell and d subshell has five orbitals. $(d_{xy}, d_{yz}, d_{zx}, d_{x^2-y^2}, d_{z^2})$.
- 59. (25) M^{2+} has 5 unpaired electrons. Atomic number is 25. $M \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$ $M^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^5$
- 60. (4) Orbit number is 4.