Foundations of Deep Learning

Alfredo Canziani

Convolutional Neural Nets

Exploiting stationarity, locality, and compositionality of natural data

Signals can be represented as vectors

$$\boldsymbol{x} = [x_1 \ x_2 \ x_3 \ \dots \ x_t \ \dots]^{\top}$$

 x_t are waveform heights

$$\boldsymbol{x} = [x_{11} \ x_{12} \ \dots \ x_{1n} \ x_{21} \ x_{22} \ \dots]^{\top}$$

 x_{ij} are pixel values

"John picked up the apple"

$$\boldsymbol{x} = [x_1 \ x_2 \ x_3 \ x_4 \ x_5]^{\top}$$

 x_t are one-hot vectors

Signals can be represented as vectors

 x_t are one-hot vectors

Signals can be represented as vectors

$$\boldsymbol{x} = [x_1 \ x_2 \ x_3 \ \dots \ x_t \ \dots]^{\top}$$

$$\mathbf{x} = [x_{11} \ x_{12} \ \dots \ x_{1n} \ x_{21} \ x_{22} \ \dots]^{\top}$$

 x_{ij} are pixel values

"John picked up the apple"

$$\boldsymbol{x} = [x_1 \ x_2 \ x_3 \ x_4 \ x_5]^{\top}$$

 x_t are one-hot vectors

j-th row of $W^{(1)}$

Fully connected (FC) layer

Locality ⇒ sparsity

Stationarity ⇒ parameters sharing

Parameters sharing

- faster convergence
- better generalisation
- not constrained to input size
- kernel independence
 ⇒ high parallelisation

Connection sparsity

reduced amount of computation

Misspecification of model constraints

Misspecification of model constraints

Misspecification of model constraints

Kernels – 1D data

kernel size: $2 \times 7 \times 3$

1D data uses 3D kernels-collection!

Padding – 1D data

Standard spatial CNN

- Multiple layers
 - Convolution
 - Non-linearity (ReLU and Leaky)
 - Pooling
 - Batch normalisation
- Residual bypass connection

Pooling

$$\frac{n}{2}$$