But recall that by hypothesis $u_{k^-} < 0$, yet $v_j \ge 0$ and $\gamma_{k^-}^j \ge 0$ for all j, so the component of index k^- is zero or positive on the left, and negative on the right, a contradiction. Therefore, (P2) is indeed not feasible.

Case (B2). We have $\gamma_{k^-}^j < 0$ for some j.

We pick the column A^j entering the basis among those for which $\gamma_{k^-}^j < 0$. Since we assumed that $c_j - c_K \gamma_K^j \leq 0$ for all $j \in N$ by $(*_2)$, consider

$$\mu^{+} = \max \left\{ -\frac{c_{j} - c_{K} \gamma_{K}^{j}}{\gamma_{k-}^{j}} \mid \gamma_{k-}^{j} < 0, \ j \in N \right\} = \max \left\{ -\frac{\overline{c}_{j}}{\gamma_{k-}^{j}} \mid \gamma_{k-}^{j} < 0, \ j \in N \right\} \le 0,$$

and the set

$$N(\mu^+) = \left\{ j \in N \,\middle|\, -\frac{\overline{c}_j}{\gamma_{k^-}^j} = \mu^+ \right\}.$$

We pick some index $j^+ \in N(\mu^+)$ as the index of the column entering the basis (using some pivot rule).

Recall that by hypothesis $c_i - c_K \gamma_K^i \leq 0$ for all $j \notin K$ and $c_i - c_K \gamma_K^i = 0$ for all $i \in K$. Since $\gamma_{k^-}^{j^+} < 0$, for any index i such that $\gamma_{k^-}^i \geq 0$, we have $-\gamma_{k^-}^i/\gamma_{k^-}^{j^+} \geq 0$, and since by Proposition 46.2

$$c_i - c_{K^+} \gamma_{K^+}^i = c_i - c_K \gamma_K^i - \frac{\gamma_{k^-}^i}{\gamma_{k^-}^{j^+}} (c_{j^+} - c_K \gamma_K^{j^+}),$$

we have $c_i - c_{K^+} \gamma_{K^+}^i \leq 0$. For any index i such that $\gamma_{k^-}^i < 0$, by the choice of $j^+ \in K^*$,

$$-\frac{c_i - c_K \gamma_K^i}{\gamma_{k^-}^i} \le -\frac{c_{j^+} - c_K \gamma_K^{j^+}}{\gamma_{k^-}^{j^+}},$$

SO

$$c_i - c_K \gamma_K^i - \frac{\gamma_{k^-}^i}{\gamma_{k^-}^{j^+}} (c_{j^+} - c_K \gamma_K^{j^+}) \le 0,$$

and again, $c_i - c_{K^+} \gamma_{K^+}^i \leq 0$. Therefore, if we let $K^+ = (K - \{k^-\}) \cup \{j^+\}$, then $y^+ = c_{K^+} A_{K^+}^{-1}$ is dual feasible. As in the simplex algorithm, θ^+ is given by

$$\theta^+ = u_{k^-}/\gamma_{k^-}^{j^+} \ge 0,$$

and u^+ is also computed as in the simplex algorithm by

$$u_i^+ = \begin{cases} u_i - \theta^{j^+} \gamma_i^{j^+} & \text{if } i \in K \\ \theta^{j^+} & \text{if } i = j^+ \\ 0 & \text{if } i \notin K \cup \{j^+\} \end{cases}.$$