

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

END Semester Examination

Subject Code: CT 16006

Subject Name: Discrete Structures and Graph Theory

Course: S.Y. B. Tech

Semester: III

Branch: Computer Engineering

Academic Year: 2019-20

Date :30th Nov 2019

Max Marks: 60

Duration: 3 Hours

Instructions

Student MIS No.

1. Figures to the right indicate the full marks.

2. Mobile phones and programmable calculators are strictly prohibited.

3. Writing anything on question paper is not allowed.

4. Exchange/Sharing of stationery, calculator etc. not allowed.

5. Write your MIS Number on Question Paper

6. Assume any suitable data if needed.

	Section A						
Q 1.		Marks	CO	PO			
A)	Use rules of inference to show that if $\forall x (P(x) \lor Q(x))$, $\forall x (\neg Q(x) \lor S(x))$, $\forall x (R(x) \to \neg S(x))$, and $\exists x \neg P(x)$ are true, then $\exists x \neg R(x)$ is true.	2	1,2	4			
B)	A detective has interviewed four witnesses to a crime. From the stories of the witnesses the detective has concluded that if the B is telling the truth then so is the C; the C and the G cannot both be telling the truth; the G and the H are not both lying; and if the H is telling the truth then the C is lying. For each of the four witnesses, can the detective determine whether that person is telling the truth or lying? Explain your reasoning.	3	1,2	4			
C)	Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives). a) $\neg \forall y \forall x (P(x, y) \lor Q(x, y))$ b) $\neg (\exists x \exists y \neg P(x, y) \land \forall x \forall y Q(x, y))$ c) $\neg \forall x (\exists y \forall z P(x, y, z) \land \exists z \forall y P(x, y, z))$	3.	1,2	4			
Q 2.			-				
A)	Use the extended Euclidean algorithm to express gcd(26, 91) as a linear combination of 26 and 91.	4		4			
В)	Use the method of back substitution to find all integers x such that $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{6}$, and $x \equiv 3 \pmod{7}$.	4		4			

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

	C) Consider the graphs given below:		2	4 4
	B D V X			-
	F Z			
	Determine if two Graphs are Isomorphic. What is a reason(s) for why these graphs could be isomorphic? Or What is a reason(s) for why these graphs could NOT be isomorphic?			
Q 3. A	and $A = \{1 \cdot a, 4 \cdot b, 1 \cdot d\}$ respectively, then, determine a) $A \cup B$ b) $A \cap B$ c) $A - B$ d) $B - A$	2	1	7
·	ii. How many positive integers not exceeding 100 are divisible either by 4 or by 6?	2		
B)	Solve the difference recurrence equation $a_r - 7a_{r-1} + 10a_{r-2} = 0$ satisfying the conditions $a_0 = 0$, $a_1 = 6$.	3	1,3	5
B)	OR		 	
	If a relation R={(1,2), (2,3), (3,4), (2,1)} on set A={1,2,3,4} Find transitive closure of R using Warshall's Algorithm.	3	1	5,7
	Let $f: Z \to Z$ be a function defined as $f(x) = x + 5$. Determine whether the function is invertible or not. If it is invertible then find its inverse.	2	i	5
D)	If a relation on A={1,2,3,4,5} is defined as matrix $M_R = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ Check that the state of	3	1,5	
,	Check that the relation is a POSET or not? If yes draw a hasse diagram?			
0.4	Section B			
Q 4. A)	In how many ways a garland maken			
,	In how many ways a garland maker can stich the flowers to make a garland with 4 red and 10 white roses all with different sizes, so that a) No two red roses come together. b) All red roses come together.	2 2	5	5,7

COLLEGE OF ENGINEERING, PUNE (An Autonomous Institute of Government of Maharashtra.)

				· · · · · ·
В)	 i. If a given binomial is (2x + 3y)¹⁵. Find a) Last term. b) Coefficient of term x⁷y⁸. c) Draw a pascal's triangle of coefficients for first 5 powers for (2x + 3y) 	2 2 2	5	5,
	ii. If a shopkeeper has 50 bicycles in his shop. A shopkeeper wanted to colour them. If he used 7 colours to colour those bicycles. Calculate the minimum number of same coloured bicycles.	2	5	5,
Q 5.				 -
A)	How many vertices and how many edges do these graphs have? For which values of n are following graph bipartite? a) K_n b) C_n c) $K_{m,n}$	3	4	7
B)	Prove that for any connected planar graph $G=(V,E)$ with $e\geq 3$, $v-e+r=2$, where $v= V $, $e= E $, and is the number of regions in the graph by using Mathematical Induction.	3	4	7
C)	Implement Dijkstra's algorithm to the following graph and find the shortest path from a node A to the remaining nodes. B C A C B C A C B C A C B C C C C C C C C C C C	4	4	5,7
Q 6.		·		····
A)	Complete the following operation table to obtain a semi group. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5	8
B)	If S= {1,2,3,6,12}, where $a * b$ is defined as GCD(a, b). a) Construct an operation table b) Is it a semigroup? if yes Determine it is commutative. c) Is it algebraic structure a monoid? if yes specify identity element.	2 2 2 2	5	8

