UNIVERSITE LIBANAISE FACULTE DE GENIE

Examen d'entrée 2008-2009

Physique

Durée: 2 heures

I- [16 pts] Atome de mercure

Constante de Planck = $6,626 \times 10^{-34} \text{ J} \cdot \text{s}$, c = $2,998 \times 10^8 \text{ m/s}$, e = $1,602 \times 10^{-19} \text{ C}$

A- Transitions

La figure ci-contre montre une partie du spectre d'émission d'une lampe à vapeur de mercure (M) et le diagramme énergétique de quelques niveaux d'énergie de l'atome de mercure.

- 1. Les niveaux d'énergie de l'atome de mercure sont quantifiés. Justifier.
- 2. Calculer l'énergie d'ionisation de l'atome lorsqu'il est dans chacun des niveaux d'énergie : " E_1 " et " E_5 ".
- 3. Un atome de mercure se trouve dans le niveau d'énergie "E₉". Il retourne vers l'état fondamental en passant successivement par les niveaux "E₅" et "E₂".
 - a) Déterminer la transition à laquelle est associée une radiation de longueur d'onde 577 nm.
 - b) Justifier alors la présence du doublet jaune (577, 579).
- 4. Expliquer ce qui se passe lorsqu'un :
 - a) électron d'énergie cinétique 6,00 eV entre en collision avec un atome de mercure pris dans l'état fondamental;
 - b) photon d'énergie 6,00 eV entre en collision avec un atome de mercure pris dans l'état fondamental.

0.18

B- Constante de Planck

Le doublet jaune va être considéré comme une seule raie de longueur d'onde 578 nm. La lampe (M), munie de plusieurs filtres, éclaire la cathode en césium d'une cellule photoélectrique dont le travail de sortie vaut $W_S = 2,15$ eV. Pour chacune des longueurs d'onde, on mesure l'énergie cinétique maximale E_C des électrons émis (tableau ci-contre).

- 1. Déterminer l'expression de E_C en fonction de $1/\lambda$.
- 2. Déterminer la valeur de la constante de Planck.
- 3. a) Déterminer la longueur d'onde seuil λ_s associée au césium.
 - b) Interpréter la présence des zéros dans le tableau.
- 4. a) L'effet photoélectrique met en évidence un aspect de la lumière. Lequel ?
 - b) Un autre phénomène met en évidence l'autre aspect de la lumière. Lequel ?

II-[21 pts] Le dipôle RLC série

On considère le circuit électrique schématisé par la figure ci-contre comprenant un générateur idéal de f.é.m E, un condensateur de capacité $C = 20 \mu F$, une bobine d'inductance L et de résistance négligeable, deux conducteurs ohmiques, ($R_1 = 5 \Omega$ et $R_2 = 35 \Omega$), et deux interrupteurs K et K'. On utilise un dispositif approprié pour visualiser la tension $u_C = u_{AM}$ et la tension $u_R = u_{BM}$.

0,75

0.97

UNIVERSITE LIBANAISE FACULTE DE GENIE

A- Charge du condensateur

Initialement, les deux interrupteurs sont ouverts et le condensateur est non chargé. À un instant $t_0 = 0$, on ferme K. À un instant t, le circuit est parcouru par un courant d'intensité i.

- 1. Reproduire le schéma du circuit en y indiquant le sens réel de i.
- 2. Établir l'équation différentielle qui régit les variations de u_C en fonction du temps.

- 3. La solution de cette équation différentielle est de la forme : $u_C = A \ (1 e^{-\tau})$. Déterminer les expressions de A et τ .
- 4. a) En utilisant l'oscillogramme de la figure 2, déterminer les valeurs de E et τ.
 - b) Justifier la valeur de τ par le calcul.

B- Décharge du condensateur

Une fois le condensateur est chargé, on ouvre K, puis, à une date $t_0 = 0$, on ferme K'. Le circuit est alors le siège d'oscillations électriques, la durée d'une oscillation étant T. À partir de la date $t_0 = 0$, on visualise les variations des tensions u_C et u_R avec les échelles respectives 1 V/div et 0,2 V/div. (Figure 3)

1. Sachant que l'équation différentielle qui régit les variations de uc est de la forme :

$$\frac{d^{2}u_{C}}{dt^{2}} + 2b\frac{du_{C}}{dt} + \omega_{0}^{2}u_{C} = 0.$$

Trouver, en fonction de R_1 , R_2 , L et C, les expressions de b et ω_0 .

2. La solution de cette équation différentielle est de la forme :

 $u_C = Ae^{-25t}\cos(249 t - 0.1)$. Déterminer la valeur de A.

- 3. a) Calculer l'énergie électrique de l'oscillateur respectivement à la date $t_0=0$ et à la date $t_1=T$.
 - b) Déterminer la valeur de l'énergie dissipée entre les dates $t_0 = 0$ et $t_1 = T$.
 - c) Calculer la valeur moyenne de l'énergie dissipée entre les dates $t_0 = 0$ et t' = T/4.
 - d) En déduire l'énergie magnétique emmagasinée dans la bobine à la date t' = T/4.
 - e) Déterminer l'intensité du courant à la date t' = T/4.
 - f) Déterminer la valeur de L.
- 4. La valeur de L peut être obtenue par une autre méthode. Déterminer sa valeur.

III- [23 pts] Mécanique

Un canon est solidaire d'un chariot qui peut se déplacer sans frottement sur des rails horizontaux. Le chariot est fixé à un mur par un ressort de raideur $k = 2 \times 10^4$ N/m. Un obus, assimilé à une particule de masse m = 200 kg, est lancé d'un point O (voir figure) à la date $t_0 = 0$ avec une vitesse \vec{V}_0 faisant l'angle $\alpha = 45^\circ$ avec l'horizontale ; il s'élève et atteint la hauteur maximale h = 250 m.

Prendre le plan horizontal contenant O comme niveau de référence de l'énergie potentielle de pesanteur. Négliger la résistance de l'air et prendre $g = 10 \text{ m/s}^2$.

UNIVERSITE LIBANAISE FACULTE DE GENIE

A- Mouvement de l'obus

- 1. En utilisant la deuxième loi de Newton, déterminer, en fonction de α et V_0 (valeur de \vec{V}_0), l'expression donnant la valeur V_1 de la vitesse de l'obus dans sa position la plus élevée.
- 2. Déterminer la valeur de V₀.
- B- Mouvement du système (C) (canon, chariot)
- Étude théorique

À partir de la date $t_0 = 0$, le système (C) de masse M = 5000 kg, lancé avec la vitesse $\vec{V}_C = V_C \vec{i}$ horizontale, effectue un mouvement rectiligne sinusoïdal d'amplitude 1,42 m et de période propre T_0 .

- 1. En appliquant la conservation de l'énergie mécanique, déterminer la valeur de V_C.
- 2. Établir l'équation différentielle qui régit le mouvement du système [(C), ressort].
- 3. Déterminer l'équation horaire du mouvement de (C).
- 4. Tracer l'allure de la courbe donnant les variations de l'abscisse x de (C) en fonction du temps.
- 5. En comparant la quantité de mouvement juste avant le tir à celle juste après le tir :
 - a) montrer la non-conservation de la quantité de mouvement du système [(C), obus] ;
 - b) vérifier la valeur de V_C par application de la deuxième loi de Newton.
- Étude pratique

En fait, (C) est muni d'un amortisseur qui exerce sur (C) une force d'amortissement \vec{F} avec $\vec{F} = -\lambda \vec{v} = -\lambda v \vec{i}$, où λ est une constante positive et \vec{v} la vitesse de (C) à une date t.

La figure ci-contre présente les trois courbes donnant les variations de l'abscisse x de (C) en fonction du temps, chacune pour une valeur de λ . Les valeurs de λ considérées sont : $\lambda_1 = 5 \times 10^3$ kg/s, $\lambda_2 = 1,5 \times 10^4$ kg/s et $\lambda_3 = 3 \times 10^4$ kg/s.

- 2. Préciser, pour chacune des deux autres courbes, le régime correspondant.
- 3. Que vaut la durée T d'une oscillation au cours d'oscillations amorties ?
- 4. Comparer T avec T₀ et justifier le résultat.

UNIVERSITE LIBANAISE FACULTE DE GENIE

Durée: 2 heures

Examen d'entrée 2008-2009

Solution de Physique

Partie de la Q.	Corrigé (Premier exercice Atome de mercure)	Note
A-1	1. Les niveaux d'énergie de l'atome de mercure sont quantifiés car l'énergie de cet atome ne prend que des valeurs discrètes (cet atome émet un spectre discontinu de raies).	1
A-2	Pour E_1 : $E_i = E_{\infty}$ - $E_1 = 10,38$ eV ; Pour E_5 : $E_i = E_{\infty}$ - $E_5 = 3,71$ eV	0.5- 0.5- 0.5
A-3.a	$\Delta E = \frac{hc}{\lambda} = \frac{6,626 \times 10^{-34} \times 2,998 \times 10^{8}}{577 \times 10^{-9} \times 1,602 \times 10^{-19}} = 2,15 \text{ eV}$ Ceci correspond à la transition du niveau E ₉ au niveau E ₅ .	0.5- 1
A-3.b	Le doublet jaune (577) : de E ₉ vers E ₅ et (579) : de E ₈ vers E ₅ . $\frac{6,626 \times 10^{-34} \times 2,998 \times 10^{8}}{(-1,57+3,71)1,602 \times 10^{-19}} = 579 \text{ nm}$	0.5 0.5-1
A-4.a	Dans le cas d'un électron, on a $E + E_1 = -4,38$ eV, donc l'atome peut passer à un des niveaux E_2 , E_3 ou E_4 , et le reste d'énergie est emportée par l'électron.	0.5 1-0.5
A-4.b	Dans le cas d'un photon : l'atome reste dans l'état fondamental car $E+E_1=-4,38\ eV$ ne correspond à aucun niveau d'énergie de l'atome.	0.5
B-1	D'après l'hypothèse d'Einstein : $E_C = h\nu - W_S \Rightarrow E_C = \frac{hc}{\lambda} - W_S$.	1
B-2	$\begin{split} E_C \text{ est une fonction linéaire en } \frac{1}{\lambda}, \text{ ainsi la pente vaut : } hc &= \Delta(E_C)/\Delta(\frac{1}{\lambda}) : \\ hc &= \frac{(0.97 - 0.18) \times 1.602 \times 10^{-19}}{(\frac{10^9}{405} - \frac{10^9}{546})} = 1.985 \times 10^{-25} \\ &\Rightarrow h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}. \end{split}$	1
B-3.a	$W_{S} = \frac{hc}{\lambda_{S}} \Rightarrow \lambda_{S} = \frac{hc}{W_{S}} = \frac{6.62 \times 10^{-34} \times 2.998 \times 10^{8}}{2.15 \times 1.602 \times 10^{-19}} = 576 \text{ nm}$	0.5- 1
B-3.b	$\frac{W_S - \frac{1}{\lambda_S}}{\lambda_S} \Rightarrow \frac{\lambda_S - \frac{1}{W_S}}{W_S} - \frac{1}{2,15 \times 1,602 \times 10^{-19}} = 376 \text{ mm}$ $615 \text{ et } 578 \text{ nm sont} > \lambda_S \Rightarrow E_C = 0.$	1
B-4.a	Particule aspect	0.5
B- 4.b	Interférence – Diffraction	0.5

UNIVERSITE LIBANAISE FACULTE DE GENIE

A-1 1. Voir figure 1. Voir figure	Part of the Q	Corrigé (deuxième Exercice le circuit RLC)	Note
$\begin{array}{c} E = R_1 I + u_C; \ But \ 1 = \frac{1}{dt} = C \frac{1}{dt} \Rightarrow E = R_1 C \frac{1}{dt} + u_C. \\ \frac{1}{dt} = \frac{1}{\tau} \Rightarrow E = R_1 C \frac{1}{\tau}$		1. Voir figure	1
$\begin{array}{c} E = R_1 I + u_C; \ But \ 1 = \frac{1}{dt} = C \frac{1}{dt} \Rightarrow E = R_1 C \frac{1}{dt} + u_C. \\ \frac{1}{dt} = \frac{1}{\tau} \Rightarrow E = R_1 C \frac{1}{\tau}$	1	i E C	
$\begin{array}{lll} \Rightarrow \tau = R_1C. & 0.5-0.5 \\ A - 4.a. & A \ partir de l'oscillogramme : E = 6 \ V \\ Et \ pour \ t = \tau, \ u_C = 0.63 \times 6 = 3.78 \ V = 0.1 \ ms \Rightarrow \tau = 0.1 \ ms \\ A - 4.b. & La \ valeur \ de \ \tau = R_1C = 5 \times 20 \times 10^{-6} = 10^{-4} \ s = 0.1 \ ms \\ & 1 \\ D - 1 & On \ a: \ u_C = (R_1 + R_2) \ i + L \ \frac{di}{dt} \ ; \ avec \ i = -C \ \frac{du_C}{dt} \\ & \Rightarrow LC \ \frac{d^2u_C}{dt^2} + (R_1 + R_2) C \ \frac{du_C}{dt} + u_C = 0; \\ & \Rightarrow \frac{d^2u_C}{dt^2} + \frac{R_1 + R_2}{L} \ \frac{du_C}{dt} + \frac{1}{LC} \ u_C = 0. \\ & En \ comparant: \ \frac{d^2u_C}{dt^2} + 2b \ \frac{du_C}{dt} + \omega_0^2 u_C = 0 \Rightarrow b = \frac{R_1 + R_2}{2L} \ et \ \omega_0 = \sqrt{\frac{1}{L}}. \\ & B - 3.a. & A \ l'instant \ t_0 = 0: \ u_C(0) = A \cos(-0.1) = 6 \ \Rightarrow A = 6.03 \ V. \\ & A \ l'instant \ t_1 = T: \ u_C(T) = 3.2 \ V \ et \ W_E(0) = 1/2C \ u_C^2(0) = 3.6 \times 10^{-4} \ J. \\ & B - 3.b. & la \ valeur \ de \ l'énergie \ perdue \ entre \ t_0 \ et \ t_1: \ \Delta W_E = 2.576 \times 10^{-4} \ J. \\ & B - 3.c. & l'énergie \ moyenne \ perdue \ entre \ t_0 \ et \ t_1: \ \Delta W_E/4 = 2.576 \times 10^{-4} \ J. \\ & 0.5 - 0.5 \\ & $	A-2	$E = R_1 i + u_C$; But $i = \frac{dq}{dt} = C \frac{du_C}{dt} \implies E = R_1 C \frac{du_C}{dt} + u_C$.	0.5- 1-0.5
$\begin{array}{lll} \Rightarrow \tau = R_1C. & 0.5-0.5 \\ A - 4.a. & A \ partir de l'oscillogramme : E = 6 \ V \\ Et \ pour \ t = \tau, \ u_C = 0.63 \times 6 = 3.78 \ V = 0.1 \ ms \Rightarrow \tau = 0.1 \ ms \\ A - 4.b. & La \ valeur \ de \ \tau = R_1C = 5 \times 20 \times 10^{-6} = 10^{-4} \ s = 0.1 \ ms \\ & 1 \\ D - 1 & On \ a: \ u_C = (R_1 + R_2) \ i + L \ \frac{di}{dt} \ ; \ avec \ i = -C \ \frac{du_C}{dt} \\ & \Rightarrow LC \ \frac{d^2u_C}{dt^2} + (R_1 + R_2) C \ \frac{du_C}{dt} + u_C = 0; \\ & \Rightarrow \frac{d^2u_C}{dt^2} + \frac{R_1 + R_2}{L} \ \frac{du_C}{dt} + \frac{1}{LC} \ u_C = 0. \\ & En \ comparant: \ \frac{d^2u_C}{dt^2} + 2b \ \frac{du_C}{dt} + \omega_0^2 u_C = 0 \Rightarrow b = \frac{R_1 + R_2}{2L} \ et \ \omega_0 = \sqrt{\frac{1}{L}}. \\ & B - 3.a. & A \ l'instant \ t_0 = 0: \ u_C(0) = A \cos(-0.1) = 6 \ \Rightarrow A = 6.03 \ V. \\ & A \ l'instant \ t_1 = T: \ u_C(T) = 3.2 \ V \ et \ W_E(0) = 1/2C \ u_C^2(0) = 3.6 \times 10^{-4} \ J. \\ & B - 3.b. & la \ valeur \ de \ l'énergie \ perdue \ entre \ t_0 \ et \ t_1: \ \Delta W_E = 2.576 \times 10^{-4} \ J. \\ & B - 3.c. & l'énergie \ moyenne \ perdue \ entre \ t_0 \ et \ t_1: \ \Delta W_E/4 = 2.576 \times 10^{-4} \ J. \\ & 0.5 - 0.5 \\ & $	A-3	$\frac{du_C}{dt} = \frac{A}{\tau}e^{-\frac{t}{\tau}} \Rightarrow E = R_1C\frac{A}{\tau}e^{-\frac{t}{\tau}} + A - Ae^{-\frac{t}{\tau}}; \Rightarrow A = E \text{ et } (R_1C\frac{A}{\tau} - A)e^{-\frac{t}{\tau}} = 0$	0.5-0.5
Et pour $t = \tau$, $u_C = 0.63 \times 6 = 3.78 \text{ V} = 0.1 \text{ ms} \Rightarrow \tau = 0.1 \text{ ms}$ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.			0.5-0.5
A-4.b La valeur de $\tau = R_1C = 5 \times 20 \times 10^{-6} = 10^{-4} \text{ s} = \textbf{0,1 ms}$ B-1 On a: $u_C = (R_1 + R_2) \text{ i} + L \frac{di}{dt}$; avec $i = -C \frac{du_C}{dt}$ $u_C = -(R_1 + R_2) C \frac{du_C}{dt} - LC \frac{d^2u_C}{dt^2}$ $\Rightarrow LC \frac{d^2u_C}{dt^2} + (R_1 + R_2)C \frac{du_C}{dt} + u_C = 0;$ $\Rightarrow \frac{d^2u_C}{dt^2} + \frac{R_1 + R_2}{L} \frac{du_C}{dt} + \frac{1}{LC} u_C = 0.$ En comparant: $\frac{d^2u_C}{dt^2} + 2b \frac{du_C}{dt} + \omega_0^2 u_C = 0 \Rightarrow b = \frac{R_1 + R_2}{2L} \text{ et } \omega_0 = \sqrt{\frac{1}{LC}}.$ B-2 Pour $t_0 = 0$, $u_C(0) = A\cos(-0, 1) = 6 \Rightarrow A = 6.03 \text{ V}.$ B-3.a À l'instant $t_1 = T$: $u_C(T) = 3.2 \text{ V et W}_E(0) = 1/2C u_C^2(0) = 3.6 \times 10^4 \text{ J}$ A l'instant $t_1 = T$: $u_C(T) = 3.2 \text{ V et W}_E(T) = 1/2C u_1^2(T) = 1.024 \times 10^4 \text{ J}.$ 0.5-0.5 B-3.b la valeur de l'énergie perdue entre t_0 et t_1 : $\Delta W_E = 2.576 \times 10^4 \text{ J}$ 0.5 B-3.c l'énergie moyenne perdue entre t_0 et t' : $\Delta W_E/4 = 2.576 \times 10^{-4}/4 = 0.644 \times 10^{-4} \text{ J}$. 0.5-0.5 B-3.e L'intensité du courant à l'instant $t' = T/4$: $u_C(T) = T/4$: $u_C(T$	A-4.a		0.5-0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Et pour $t = \tau$, $u_C = 0.63 \times 6 = 3.78 \text{ V} = 0.1 \text{ ms}$	
On a: $u_C = (R_1 + R_2) 1 + L \frac{d}{dt}$; avec $1 = -C \frac{d}{dt}$ $u_C = -(R_1 + R_2) C \frac{du_C}{dt} - LC \frac{d^2u_C}{dt^2}$ $\Rightarrow LC \frac{d^2u_C}{dt^2} + (R_1 + R_2)C \frac{du_C}{dt} + u_C = 0;$ $\Rightarrow \frac{d^2u_C}{dt^2} + \frac{R_1 + R_2}{L} \frac{du_C}{dt} + \frac{1}{LC} u_C = 0.$ En comparant: $\frac{d^2u_C}{dt^2} + 2b \frac{du_C}{dt} + \omega_0^2 u_C = 0 \Rightarrow b = \frac{R_1 + R_2}{2L} \text{ et } \omega_0 = \sqrt{\frac{1}{LC}}.$ 1.5 B-2 Pour $t_0 = 0$, $u_C(0) = A\cos(-0, 1) = 6 \Rightarrow A = 6,03 \text{ V}.$ B-3.a À l'instant $t_0 = 0$: $u_C(0) = 6 \text{ V et } W_E(0) = 1/2C u_C^2(0) = 3,6 \times 10^4 \text{ J}.$ 0.5-0.5 À l'instant $t_1 = T$: $u_C(T) = 3,2 \text{ V et } W_E(T) = 1/2C u_1^2(T) = 1,024 \times 10^4 \text{ J}.$ 0.5-0.5 B-3.b la valeur de l'énergie perdue entre t_0 et t' :: $\Delta W_E/4 = 2,576 \times 10^4/4 = 0,644 \times 10^4 \text{ J}.$ 0.5-0.5 B-3.c l'énergie moyenne perdue entre t_0 et t' :: $\Delta W_E/4 = 2,576 \times 10^4/4 = 0,644 \times 10^4 \text{ J}.$ 0.5-0.5 B-3.e L'intensité du courant à l'instant $t' = T/4$: $u_C(t')/R = (4,8 \times 0,2)/35 = 0,0274 \text{ A}$ 0.5-0.5	A-4.b	La valeur de $\tau = R_1 C = 5 \times 20 \times 10^{-6} = 10^{-4} \text{ s} = \mathbf{0.1 ms}$	
B-2 Pour t ₀ = 0, u _C (0) = Acos(-0,1) = 6 \Rightarrow A = 6,03 V. 1 B-3.a À l'instant t ₀ = 0: u _C (0) = 6 V et W _E (0) = 1/2C u _C ² (0) = 3,6×10 ⁻⁴ J 0.5-0.5 À l'instant t ₁ = T: u _C (T)= 3,2 V et W _E (T) = 1/2C u ₁ ² (T) = 1,024×10 ⁻⁴ J. 0.5-0.5 B-3.b la valeur de l'énergie perdue entre t ₀ et t ₁ : ΔW _E = 2,576×10 ⁻⁴ J. 0.5 B-3.c l'énergie moyenne perdue entre t ₀ et t':. ΔW _E /4 = 2,576×10 ⁻⁴ /4 = 0,644×10 ⁻⁴ J. 0.5 B-3.d À l'instant t' = T/4 : u _C = 0, donc W _E (t') = 0 0.5-0.5 donc Wm = W _E (0) - ΔW _E /4 = 2,956×10 ⁻⁴ J. 0.5 B-3.e L'intensité du courant à l'instant t' = T/4 : u _R (t')/R = (4,8×0,2)/35 = 0,0274 A 0.5-0.5	B-1	$\begin{split} u_{C} &= -(R_{1} + R_{2}) C \frac{du_{C}}{dt} - LC \frac{d^{2}u_{C}}{dt^{2}} \\ &\Rightarrow LC \frac{d^{2}u_{C}}{dt^{2}} + (R_{1} + R_{2})C \frac{du_{C}}{dt} + u_{C} = 0; \\ &\Rightarrow \frac{d^{2}u_{C}}{dt^{2}} + \frac{R_{1} + R_{2}}{L} \frac{du_{C}}{dt} + \frac{1}{LC} u_{C} = 0. \end{split}$	A
B-3.a À l'instant $t_0 = 0$: $u_C(0) = 6$ V et $W_E(0) = 1/2$ C $u_C^2(0) = 3,6 \times 10^{-4}$ J 0.5 -0.5 À l'instant $t_1 = T$: $u_C(T) = 3,2$ V et $W_E(T) = 1/2$ C $u_1^2(T) = 1,024 \times 10^{-4}$ J. 0.5 -0.5 B-3.b la valeur de l'énergie perdue entre t_0 et t_1 : $\Delta W_E = 2,576 \times 10^{-4}$ J. 0.5 B-3.c l'énergie moyenne perdue entre t_0 et t' : $\Delta W_E/4 = 2,576 \times 10^{-4}/4 = 0,644 \times 10^{-4}$ J. 0.5 B-3.d À l'instant $t' = T/4$: $u_C = 0$, donc $W_E(t') = 0$ donc $W_E(t') = 0$ donc $W_E(0) - \Delta W_E/4 = 2,956 \times 10^{-4}$ J. 0.5 B-3.e L'intensité du courant à l'instant $t' = T/4$: $u_R(t')/R = (4,8 \times 0,2)/35 = 0,0274$ A 0.5 -0.5		En comparant: $\frac{d^2 u_C}{dt^2} + 2b \frac{du_C}{dt} + \omega_0^2 u_C = 0 \Rightarrow b = \frac{R_1 + R_2}{2L}$ et $\omega_0 = \sqrt{\frac{1}{LC}}$.	0.5-0.5
			1
B-3.b la valeur de l'énergie perdue entre t_0 et t_1 : $\Delta W_E = 2,576 \times 10^{-4}$ J. 0.5 B-3.c l'énergie moyenne perdue entre t_0 et t' :. $\Delta W_E/4 = 2,576 \times 10^{-4}/4 = 0,644 \times 10^{-4}$ J. 0.5 B-3.d À l'instant $t' = T/4$: $u_C = 0$, donc $W_E(t') = 0$ donc $W_E(t') = 0$ donc $W_E(0) - \Delta W_E/4 = 2,956 \times 10^{-4}$ J. 0.5-0.5 B-3.e L'intensité du courant à l'instant $t' = T/4$: $u_R(t')/R = (4,8 \times 0,2)/35 = 0,0274$ A 0.5-0.5	B-3.a		
B-3.c l'énergie moyenne perdue entre t_0 et t' :. $\Delta W_E/4 = 2,576 \times 10^{-4}/4 = 0,644 \times 10^{-4}$ J. 0.5 B-3.d À l'instant t' = T/4 : $u_C = 0$, donc $W_E(t') = 0$ donc $W_E(t') = 0$ 0.5-0.5 donc $W_E(t') = 0$ 0.5-0.5 B-3.e L'intensité du courant à l'instant t' = T/4 : $u_R(t')/R = (4,8 \times 0,2)/35 = 0,0274$ A 0.5-0.5	D 2 h	La colonia de 12 (marcia nonde contra de 14 de 15 de 1	0.5-0.5
B-3.d À l'instant t' = T/4 : $u_C = 0$, donc $W_E(t') = 0$ 0.5-0.5 donc $W_E(0) - \Delta W_E/4 = 2,956 \times 10^{-4} J$. 0.5 B-3.e L'intensité du courant à l'instant t' = T/4 : $u_R(t')/R = (4,8 \times 0,2)/35 = 0,0274 A$ 0.5-0.5	D-3.0	ia valeur de l'energie perdue entre t_0 et t_1 : $\Delta W_E = 2.5/6 \times 10^{-4} \text{ J}$.	0.5
$donc \ Wm = W_E(0) - \Delta W_E/4 = 2,956 \times 10^{-4} J.$ 0.5 B-3.e L'intensité du courant à l'instant t' = T/4 : $u_R(t')/R = (4,8 \times 0,2)/35 = 0,0274 \ A$ 0.5-0.5	B-3.c	l'énergie moyenne perdue entre t_0 et t':. $\Delta W_E/4 = 2,576 \times 10^{-4}/4 = 0,644 \times 10^{-4} \text{ J}.$	0.5
B-3.e L'intensité du courant à l'instant t' = $T/4$: $u_R(t')/R = (4.8 \times 0.2)/35 = 0.0274$ A 0.5-0.5	B-3.d		0.5-0.5
() / - / / / / - / / / - / / - / / - / / - / / - / / - / / - / / - / / - / / - / / /		donc Wm = $W_E(0) - \Delta W_E/4 = 2,956 \times 10^{-4} J$.	0.5
0.5	B-3.e	L'intensité du courant à l'instant t' = $T/4$: $u_R(t')/R = (4.8 \times 0.2)/35 = 0.0274$ A	0.5-0.5 0.5

UNIVERSITE LIBANAISE FACULTE DE GENIE

B-3.f	On a $W_m = \frac{1}{2} Li^2 \Rightarrow L = 2W_m/i^2 = 0,79 H.$	0.5-0.5
4	$25 = \frac{R_1 + R_2}{2L} = \frac{5 + 35}{2L} \Rightarrow L = 40/50 = 0.8 \text{ H};$ ou $T \approx T_0 = 2\pi \sqrt{LC}$, donc $L = \frac{T^2}{4\pi^2 C} = 0.025^2/(4\pi^2 \times 2 \times 10^{-5}) = 0.79 \text{ H}.$	0.5 – 0.5

Part of the Q	Corrigé (Troisième Exercice Mécanique)	Note
A-1	Deuxième loi de Newton: $m\vec{g} = \frac{d\vec{P}}{dt} \Rightarrow \frac{dP_x}{dt} = 0 \Rightarrow mV_{0x} = mV_1 \text{ (car } V_{1y} = 0), \Rightarrow V_1 = V_{0x} = V_0 \cos\alpha$	0.5-0.5 - 0.5-0.5- 0.5
A-2	Conservation de l'énergie mécanique: $E_m(O) = E_m(1) \Rightarrow 1/2 \text{ m } V_0^2 + 0 = 1/2 \text{ m } V_1^2 + \text{mgh.}$ $\Rightarrow 1/2 \text{ m } V_0^2 + 0 = 1/2 \text{ m } V_0^2 \cos^2\!\alpha + \text{mgh} \Rightarrow V_0^2 \sin^2\!\alpha + 0 = 2gh \Rightarrow V_0^2 = 4gh = 10^4$ $\Rightarrow V_0 = 100 \text{ m/s.}$	1 1 0.5
B-ET-1	Conservation de l'énergie mécanique du système [(C), ressort] : $1/2M V_C^2 + 0 = 0 + 1/2k X_m^2$ $\Rightarrow V_C^2 = (k/M) X_m^2 = (2 \times 10^4/5000) \times 1,42^2 = 8,06 \Rightarrow V_C = 2,84 \text{ m/s}.$	0.5 0.5 0.5-0.5
B-ET -2	Conservation de l'énergie mécanique du système [(C), ressort] : $1/2Mv^2 + 1/2kx^2 = constante$. Dérivée par rapport à t: $Mv\dot{v} + kx\dot{x} = 0 \Rightarrow \ddot{x} + (k/M)\dot{x} = 0$	0.5-0.5
B-ET -3	$ \begin{aligned} x &= a sin(\omega_0 t + \phi). \ \grave{A} \ t_0 = 0, \ x = 0 = a \ sin\phi \Rightarrow \phi = 0 \ ou \ \pi. \\ \text{La vitesse } v &= \dot{x} = \omega_0 a cos(\omega_0 t + \phi). \ \grave{A} \ t_0 = 0, \ \Rightarrow \dot{x}_0 = V_C = \omega_0 a cos\phi, \ (a \ et \ V_C > 0) \\ \Rightarrow \phi &= 0 \omega_0^2 = k/m = 4 \Rightarrow \omega_0 = 2 \ rd/s \\ x &= 1,42 \ sin(2t) \ (x \ en \ m \ et \ t \ en \ s) \end{aligned} $	1.5 1 0.5-0.5
B-ET -4	4. (figure ci-contre). 1.5	1
B-ET -5.a	$\vec{P}_{avant} = \vec{0} du et \vec{P}_{apres} = M \vec{V}_C + m \vec{V}_0 \neq 0.$	0.5-0.5- 0.5

B-ET -5.b	Le système [(C), obus] est soumis à la réaction normale \vec{N} des rails (pas de frottement) qui est verticale et à son poids $(m+M)\vec{g}$ qui est aussi vertical, donc :	0.5
1	$\vec{N} + (m+M)\vec{g} = \frac{d\vec{P}}{dt} \Rightarrow \frac{dP_x}{dt} = 0 \Rightarrow \Delta P_x = 0 \Rightarrow mV_{0x} + MV_C = 0$ $\Rightarrow V_C = -(m/M)V_{0x} = -(200/5000)(-100\cos 45^\circ) = 2,83 \text{ m/s}$	0.5-0.5 0.5 0.5
B-EP-1	La valeur correspondante: (graphique b) $\lambda_2 = 1.5 \times 10^4$ kg/s.	1
B-EP-2	Pour $\lambda_1 = 5 \times 10^3$ kg/s, oscillations amorties (graphique a); pour $\lambda_3 = 3 \times 10^4$ kg/s régime apériodique (graphique c).	1 1
B-EP-3	La durée T d'une oscillation = 3,25 s.	1
B-EP-4	$T > T_0$ à cause de l'amortissement. $T_0 = 3,14$ s.	0.5