浙江大学实验报告

课程名称:_	数字社	见音频处理	实验类型: _	综合
实验项目名和	尔 :	语音差异分析与说	话人识别	_
学生姓名:_	* *	专业: 数字媒	某体技术学号	<u>1</u> ;
同组学生姓名	名: 无_	指导老师:	杨莹春	
实验地点:		实验日期	l: 2019年1	月 5 日

一、 实验目的和要求

- 1. 15次以上诗歌朗诵录音(每周1次以上)
- 2. VOICEBOX 作 MFCC, GMM 训练与测试,记录结果。
- 3. 找出识别得分偏低的语句,用 PRAAT 分析其与模板语音之间的听感、特征等差异
- 4. 通过数据处理和创意设计,展示语音的时间变化趋势

二、实验环境

编程工具: Matlab R2018b

录音工具: Windows10 录音机

可视化工具: echarts

Praat: 语音分析

三、 实验步骤

1. 语音采集使用:

登鹳雀楼王之涣,白日依山尽,黄河入海流,欲穷千里目,更上一层楼,八千里 路云和月,共六句话。

每周录制 1 次,采集 15 周共 15 次以上语音,每次分别用正常、快速、慢速三种方式录制。保持同一电脑和麦克风,安静的环境。第一周录音的正常语速部分语音用于训练模拟,其余各次语音按句用于测试模型。

每周的录音存在一个文件夹中,命名格式为 ID- W1、ID- W2.....其中录音文件命名格式 N1、N2.....N6 为正常, F1、F2.....F6 为快速, S1、S2.....S6 为慢速。

2. 使用 VOICEBOX 作 MFCC, GMM 训练与测试,记录结果:

通过wavread 以及melcepst 读取.wav 文件并提取特征train_feature(12维MFCC),然后使用 gmm_estimate 为说话人训练模型(16 阶 GMM),得到模型的 3 个参数[mu, sigma, c]。最后将被测特征 test_feature 和要比对的说话人模型参数传入函数 lmultigauss,即得到该被测特征与指定模型的比对得分 IY。

2.1 参数设置:

```
MFCC_size=12;%mfcc的维数
GMMM_component=16;%GMM component 个数
mu_model=zeros(MFCC_size,GMMM_component);%高斯模型 分量 均值
sigma_model=zeros(MFCC_size,GMMM_component);%高斯模型 分量 方差
weight_model=zeros(GMMM_component);%高斯模型 分量 权重
```

2.2 训练模型:

```
%train mode1
%使用1_1~1_6训练
]for i=1:num_train
    train_file=[train_file_path 'N' num2str(i) '.wav'];
    [wav_data ,fs]=audioread(train_file);
    train_feature=melcepst(wav_data ,fs);
    all_train_feature=[all_train_feature; train_feature];
end
[mu_model, sigma_model, weight_model]=gmm_estimate(all_train_feature', GMMM_component);
```

2.3 测试:

```
for i=1:3
       for j=1:6
           test_file=[test_file_path file(i) num2str(j) '.wav'];
           [wav_data , fs] = audioread(test_file);
           test_feature=melcepst(wav_data,fs);
           [1YM, 1Y] = 1multigauss(test_feature', mu_model, sigma_model, weight_model);
           score((i-1)*6+j) = mean(1Y);
           fprintf('Test: %s_%d score: %f\n', file(i), j, score((i-1)*6+j));
       end
    end
2.4 结果打印:
     %result
     [max_score, max_id] = max(score);
     [min_score, min_id] = min(score);
     fprintf('Max score:%f\nMin score:%f\n', max_score, min_score);
     fprintf('Max-id:%d\nMin-id:%d\n', max_id, min_id);
```

将每周的结果存入 txt 文件中,并在 matlab 中 load 为 18(每周 18 句)*13(15 周除去 第 1、7 周)的矩阵:

⊞ 18x13 double													
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	-17.2419	-16.8547	-17.0917	-17.7169	-17.5280	-19.3668	-16.7219	-16.7219	-17.0401	-17.3763	-17.6679	-16.7117	-16.8614
2	-16.4356	-15.5463	-16.4840	-15.8504	-16.3654	-17.3589	-16.5517	-16.5517	-16.7930	-16.5398	-16.9067	-16.7350	-17.2197
3	-16.7248	-16.5896	-16.8976	-15.9732	-16.2855	-17.7589	-16.4894	-16.4894	-17.0623	-17.3334	-16.7162	-17.0642	-17.3687
4	-17.2154	-16.0825	-15.8821	-15.9623	-15.4852	-17.9563	-16.3475	-16.3475	-17.6783	-17.0009	-16.2302	-16.6664	-17.1278
5	-16.2887	-17.2812	-15.6651	-16.3869	-16.5321	-17.1115	-16.7684	-16.7684	-17.2452	-16.7515	-16.3243	-16.6518	-17.0145
6	-17.6172	-17.4139	-16.4265	-17.5854	-17.5384	-18.1622	-18.1962	-18.1962	-17.9750	-18.5673	-17.0442	-17.8531	-17.9345
7	-18.5201	-16.8526	-17.6014	-17.6174	-16.7450	-19.1014	-17.8372	-17.8372	-17.0625	-17.3520	-17.7598	-16.8421	-18.0782
8	-16.6078	-16.6802	-16.9847	-17.2174	-16.6168	-20.6151	-16.7338	-16.7338	-17.2339	-17.4388	-16.4883	-17.5090	-18.7199
9	-17.7956	-16.5148	-17.4126	-15.9952	-15.7461	-17.8295	-16.2749	-16.2749	-16.7921	-17.8048	-17.8179	-17.4534	-16.8991
10	-16.1078	-17.0599	-15.4464	-15.0422	-16.5730	-16.1680	-16.4245	-16.4245	-17.1641	-17.8762	-16.2235	-17.8434	-18.4735
11	-17.0830	-16.8171	-15.6559	-15.5716	-16.1691	-16.8833	-16.7780	-16.7780	-17.6495	-17.6225	-17.3304	-17.2883	-17.2853
12	-18.0121	-17.0640	-17.2192	-16.8733	-16.5101	-18.3187	-18.6038	-18.6038	-17.9017	-16.6175	-18.0981	-17.7908	-17.5391
13	-15.7950	-17.6191	-16.4036	-15.9753	-16.2613	-16.3077	-18.0074	-18.0074	-17.6384	-18.0552	-18.0454	-17.9899	-18.4654
14	-17.2612	-17.2301	-15.8118	-16.7486	-16.5465	-16.4842	-17.1719	-17.1719	-17.5018	-18.2118	-18.5232	-17.2340	-17.6807
15	-18.3881	-18.3175	-16.7509	-17.3233	-16.4130	-15.8420	-18.1482	-18.1482	-17.3191	-18.8636	-17.0954	-18.6549	-18.0869
16	-17.7788	-16.1520	-16.1497	-16.5131	-14.8276	-16.7379	-17.2851	-17.2851	-17.0738	-18.2669	-17.7254	-18.0875	-17.1946
17	-16.7643	-16.5282	-16.4950	-16.0158	-16.1412	-16.2582	-17.6313	-17.6313	-16.7044	-17.3987	-17.4435	-17.6784	-17.0037
18	-17.5320	-17.4317	-17.0729	-18.3200	-16.4018	-17.2510	-17.9044	-17.9044	-17.8702	-18.6656	-18.6461	-18.7742	-17.4690

3. 找出得分偏低的语句,进行差异分析:

上图为每周每句音频的评分分布图,中可以看出,除了第七周,其他各周评分差异不大。对于第七周的反常情况,原因是当时耳机出了问题,没有意识到,所以在做分析时,去除第七周的样本。

除去第七周的样本,放大y轴,标识出每一周的最高分、最低分及平均分的结果:

分数最高前六:

W3,N2:-15.5462853576475 W4,F4:-15.4463983556844 W5,F4:-15.0421941238949 W5,F5:-15.5716246051991 W6,N4:-15.4852268923935 W6,S4:-14.8275794788201

统计分数最高的前六句,结合两幅图,我们可以看出第四句和其他几句相比分数较高。

分数最低前六:

w8,N1: -19.3668079307752 w8,F1:-19.1013568108366 w8,F2:-20.6150759196586 w12,S3:-18.8636007937392 w14,S6:-18.7742138049902

w15,F2:-18.7198991390077

统计分数最低的前六句,结合两图,我们可以看出,第一句的评分相对较低,但是差 别不是特别明显。

接下来对评分较低的语句进行分析,以第一句为例:

不同速度语句的分数随时间的变化图

由上图可看出,分数较高的语句和模板语句的形状比较相似,而分数较低的语句由于重音,吐词清晰度,连贯性等不同,与模板语句相差较大。W8-N1 和模板语音相比前几个音发的比较重,后面几个音一掠而过,没有强调。W2-F1 的"登"和"鹳"字发音较重较长。W15-S1 每一个字都太过强调,与模板语音不同。

强度分析:

从强度分析可以看出,得高分的语句曲线形状和模板语句几乎相同,W8-N1(低分)的前段强度较低,W2-F1(低分)的峰值起点较后,W15-S1(低分)的形状与模板语句相差的较多。

频谱分析:

从频谱分析可以看出,W8-F1(高分)与模板频谱形状及浓淡都比较相似,最后轻音的几个字比较淡。W8-N1(低分)与模板的前几个字差异较大,且字与字之间较难分辨。W2-F1(低分)中间几个字的发音较模板偏重。W15-S1(低分)相比模板整体的发音较重,每一个字都说的比较清楚。

基频分析:

从基频分析可以看出, W8-F1(高分)的基频与模板相似, 每个字的发音频率都十分相似。 W8-N1(低分)的"雀"字发音与模板相比不够高。 W2-F1(低分)的"登"字和"之"字与模板相比较高。 W15-S1(低分)的"雀"字和模板比较高,"楼"字和"王"字直接的区别较小。

4. 音频的时间变化分析

下图为N1-S6 随时间变化的分布图,从中可以看出,音频的识别分数总体呈现微弱的下降的趋势,说明人的声音是随时间而发生缓慢的变化的,但是不是很明显。其中第八周分数总体明显的偏低,可能是因为感冒或者当时嗓子的状态不太好导致。

5. 总结:

在本次实验中,我学会了praat 软件的基本操作,利用该软件对语音进行分析。其可视化的将语音的各个信息展示出来,让我对语音的不同属性有了更好的理解,明白了语音之间的差异主要体现在哪些地方。希望以后有时间再对这方面的知识进行更深入的了解,尝试实现不同的语音识别的算法。