Sine

Cosine

Tangent

$$y = \sin \theta$$

domain is an angle range is a real number

$$\sin \theta = \frac{opposite}{hypotenuse}$$

 $\sin\theta$ is the *y*-coordinate of a point on the unit circle formed by the angle θ

graph goes through the origin and oscillates

$$y = \cos \theta$$

domain is an angle range is a real number

$$\cos\theta = \frac{adjacent}{hypotenuse}$$

 $\cos\theta$ is the *x*-coordinate of a point on the unit circle formed by the angle θ

graph goes through (0, 1) and oscillates

$$y = \tan \theta$$

domain is an angle range is a real number

domain issues: $\cos \theta \neq 0$

$$\tan \theta = \frac{opposite}{adjacent}$$

 $\tan\theta$ is the ratio of the y and x coordinates of a point on the unit circle formed by the angle θ

graph has vertical asymptotes at odd multiples of $\frac{\pi}{2}$

Cotangent

Secant

Cosecant

 $y = \cot \theta$

domain is an angle range is a real number

domain issues: $\sin \theta \neq 0$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{adjacent}{opposite}$$

 $\cot \theta$ is the reciprocal of $\tan \theta$

graph has vertical asymptotes at multiples of π

$$y = \sec \theta$$

domain is an angle range is a real number

domain issues: $\cos \theta \neq 0$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{hypotneuse}{adjacent}$$

 $\sec \theta$ is the reciprocal of $\cos \theta$

graph has vertical asymptotes at odd multiples of $\frac{\pi}{2}$

$$y = \csc \theta$$

domain is an angle range is a real number

domain issues: $\sin \theta \neq 0$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{hypotenuse}{opposite}$$

 $y = \csc \theta$ is the reciprocal of $\sin \theta$

graph has vertical asymptotes at multiples of π

