Proposition 34.8 shows that geometrically every nonzero wedge $u_1 \wedge \cdots \wedge u_n$ corresponds to some oriented version of an n-dimensional subspace of E.

34.3 Some Useful Isomorphisms for Exterior Powers

We can show the following property of the exterior tensor product, using the proof technique of Proposition 33.13.

Proposition 34.9. We have the following isomorphism:

$$\bigwedge^{n}(E \oplus F) \cong \bigoplus_{k=0}^{n} \bigwedge^{k}(E) \otimes \bigwedge^{n-k}(F).$$

34.4 Duality for Exterior Powers

In this section all vector spaces are assumed to have finite dimension. We define a nondegenerate pairing $\bigwedge^n(E^*) \times \bigwedge^n(E) \longrightarrow K$ as follows: Consider the multilinear map

$$(E^*)^n \times E^n \longrightarrow K$$

given by

$$(v_1^*, \dots, v_n^*, u_1, \dots, u_n) \mapsto \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \, v_{\sigma(1)}^*(u_1) \cdots v_{\sigma(n)}^*(u_n) = \det(v_j^*(u_i))$$

$$= \begin{vmatrix} v_1^*(u_1) & \cdots & v_1^*(u_n) \\ \vdots & \ddots & \vdots \\ v_n^*(u_1) & \cdots & v_n^*(u_n) \end{vmatrix}.$$

It is easily checked that this expression is alternating w.r.t. the u_i 's and also w.r.t. the v_j^* . For any fixed $(v_1^*, \ldots, v_n^*) \in (E^*)^n$, we get an alternating multilinear map

$$l_{v_1^*,\dots,v_n^*}\colon (u_1,\dots,u_n)\mapsto \det(v_j^*(u_i))$$

from E^n to K. The map $l_{v_1^*,\dots,v_n^*}$ extends uniquely to a linear map $L_{v_1^*,\dots,v_n^*}: \bigwedge^n(E) \to K$ making the following diagram commute:

$$E^n \xrightarrow{\iota_{\wedge}} \bigwedge^n(E)$$

$$\downarrow^{l_{v_1^*,\dots,v_n^*}} \qquad \downarrow^{K}.$$

We also have the alternating multilinear map

$$(v_1^*, \dots, v_n^*) \mapsto L_{v_1^*, \dots, v_n^*}$$