Willingness-to-pay for Warnings: Main Tables

A. Gaduh, P. McGee and A. Ugarov

November 10, 2021

Research Question

- How much do people value alerts (signals) about potential preventable threats?
- How do signal's probabilistic characteristics affect the willingness-to-pay for it and the welfare gains from using it?
- Applications:
 - Natural disaster warnings (tornados, floods, earthquakes)
 - Medical tests for treatable conditions
 - Investing in research on likelihood of catastrophic events (rogue Al, global warming, pandemics)
- Note: most real-life applications provide little practice with using the signal

Overview of the Experiment

- An insurance experiment:
 - ullet Two states of the world: bad $(\omega=1)$ and good $(\omega=0)$
 - Probability of a bad state is $P(\omega = 1) = \pi$
 - Bad state \implies loss of \$L
 - ullet A perfectly protective insurance can be purchased for $\$
- Subject can purchase a signal s before purchasing the insurance:
 - A signal is characterized by its true-positive ($P(s=1|\omega=1)$) and true-negative rates ($P(s=0|\omega=0)$)

Research objective

How do signal characteristics affect the WTP?

- Theoretically, what should be the WTP for a signal?
- If bad states are a priori rare ($\pi L << c$) \implies never protect without a signal
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(s=0|\omega=1)u(Y_0 - b^* - L) +$$
$$+(1-\pi)P(s=0|\omega=0)u(Y_0 - b^*) = (1-\pi)u(Y_0) + \pi u(Y_0 - L)$$

A risk-neutral agent then pays:

$$b^* = \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

- The formulas become more complicated if subjects can protect without a signal (bad state are not rare enough)
- The theoretical WTP b for an expected utility maximizer given a signal s is a solution b^* to the following:

$$P(s=1)u(Y_0 - b^* - c) + \pi P(0|1)u(Y_0 - b^* - L) + (1 - \pi)P(0|0)u(Y_0 - b^*) =$$

$$= \min[(1 - \pi)u(Y_0) + \pi u(Y_0 - L), u(Y_0 - c)]$$

A risk-neutral agent then pays:

$$b^* = \min[\pi L, c] - \pi(1 - P(s = 0 | \omega = 1))L - P(s = 1)c$$

Hypotheses

- Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates reduce the perceived value of the signal (WTP)
 - The opposite is true: subjects underreact to false positive and false negative rates and overpay for bad signals
- 2 Conditional on the signal's value for risk-neutral subjects, false positive and false negative rates increase expected costs
 - No: FP and FN rates have no significant effects on costs besides their predicted theoretical effect
- Extra: how much of these disrepancies result from belief updating issues or risk aversion?

Risk Aversion Measurement

- Measure risk aversion based on blind protection choices:
 - Exclude obs from subjects switching back and forth
 - \bullet The lowest probability for which a subject chooses to protect is π^*
 - ullet Calculate their coefficient of relative risk aversion heta as the solution to the following equation:

$$\pi^* u(Y_0 - L; \theta) + (1 - \pi^*) u(Y_0; \theta) = u(Y_0 - c; \theta)$$

• Where u() is the CRRA utility function:

$$u(x;\theta) = \frac{x^{1-\theta} - 1}{1 - \theta}$$

• Note: risk lovers have $\theta < 0$

CRRA Estimates

• Most subjects are moderately risk averse:

Probability (π^*)	θ	N
Always protect	>2	1
0.1	2	2
0.15	1.216	7
0.2	0.573	17
0.25	0	7
0.3	-0.539	5
Never protect	<-0.539	8

Note:

- There are 18 subjects (out of 65) switching multiple times
- Can use more sophisticated methods to measure risk aversion for those

WTP for the Signal

Theoretical value of signal for risk-neutral subject:

$$b^* = \underbrace{\min[\pi L, c]}_{\text{BP costs}} - \underbrace{\pi(1 - P(s = 0 | \omega = 1))L}_{\text{False neg. costs}} - \underbrace{P(s = 1)c}_{\text{Protection costs}}$$

- Two potential approaches:

$$V - b^* = \alpha_0 + \alpha_1 \text{FN costs} + \alpha_2 \text{Prot. costs} + \epsilon$$

Regress WTP directly on its components and account for censoring at 0:

$$V = \min[0, \beta_0 + \beta_1 \mathsf{FN} \; \mathsf{costs} + \beta_2 \mathsf{Prot}. \; \mathsf{costs} - \beta_3 \mathsf{BP} \; \mathsf{costs} + \gamma]$$

Note: protection costs include costs due to false positive signals

WTP for the Signal (Approach 1)

 Coefficient sign. different from zero is an anomaly: people overpay for bad signals
 Figure: WTP for Information (Discrepancy)

rigule. Will for information (Discrepancy)				
	(1) (2) (3)		(3)	(4)
	All	Risk-averse	Risk-loving	Switchers
Prot. costs	.205**	.372**	0232	.183
	(2.1)	(2.4)	(-0.1)	(1.0)
False neg. costs	.36***	.259**	.519***	.341**
	(4.4)	(2.0)	(3.1)	(2.6)
Constant	543***	58*	54	441
	(-2.8)	(-1.9)	(-1.5)	(-1.2)
Observations	390	156	126	108
Adjusted R^2	0.05	0.05	0.07	0.04

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

WTP for the Signal (Approach 2, Tobit Estimation)

Coefficient should **differ from one** in abs. value to show an anomaly (ignore stars for now)
 Figure: WTP for Information (Tobit Estimation)

Figure: WTP for Information (Tobit Estimation)					
	(1)	(2) (3)		(4)	
	All	Risk-averse	Risk-loving	Switchers	
model					
BP costs	.562***	.63***	.557***	.453**	
	(5.8)	(3.9)	(3.3)	(2.5)	
Prot. costs	342**	199	561**	321	
	(-2.5)	(-0.9)	(-2.3)	(-1.3)	
False neg. costs	398***	533***	214	395**	
	(-3.9)	(-3.4)	(-1.0)	(-2.5)	
Constant	.141	115	.0424	.704	
	(0.4)	(-0.2)	(0.1)	(1.2)	
sigma					
Constant	1.78***	1.81***	1.84***	1.59***	
	(24.8)	(15.5)	(12.9)	(13.4)	
Observations	390	156	126	108	
AIC	1413.41	575.80	452.26	392.50	

t statistics in parentheses

A. Gaduh, P. McGee and A. Ugarov

WTP for the Signal (Risk Aversion)

 Explaining the discrepancy between WTP and value with risk aversion:

I igure. VV I	rigure: vv i P for information (different risk aversion)				
	(1)	(2)	(3)	(4)	
	Heterogeneous	$\theta = 0.5$	$\theta = 1.0$	$\theta = 1.5$	
BP costs	284***	39***	157**	.165**	
	(-2.7)	(-5.3)	(-2.1)	(2.2)	
Prot. costs	.726***	.766***	.686***	.515***	
	(4.8)	(6.8)	(6.1)	(4.6)	
False neg. costs	.602***	.667***	.743***	.775***	
	(5.1)	(7.7)	(8.6)	(8.9)	
Constant	54	277	-1.15***	-2.21***	
	(-1.5)	(-1.1)	(-4.7)	(-9.2)	
Observations	228	390	390	390	
Adjusted \mathbb{R}^2	0.14	0.17	0.22	0.30	

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Actual Costs vs Theoretical Costs

- Calculate actual costs based on decisions made in the Informed Protection treatment and actual posterior probabilities of losses.
- Each reported participant's strategy s is a tuple of numbers (r_w, r_b) representing protection responses correspondingly to white and black hints
- Then the expected cost of each decision are:

$$EC(s) = \pi(P(0|1)(1 - r_w) + P(1|1)(1 - r_b))L + P(s = 1)c$$
$$+ (P(s = 0)r_w + P(s = 1)r_b)c$$

 Regress expected costs on minimal theoretical costs and other signal characteristics

Actual Costs vs Theoretical Costs

Figure: Actual Exp. Costs vs Theoretical Costs

	(1)	(2)	(3)	(4)	(5)	(6)
	ÒĽS	ÒĽŚ	ÒĽŚ	ÈÉ	ÈÉ	ÈÉ
Optimal exp. costs	.958***	.967***	.956	.987***	1.04***	.938***
	(9.2)	(8.2)	(1.6)	(17.5)	(6.3)	(11.4)
Prior prob.		.102	.0367		.632	
		(0.1)	(0.0)		(0.3)	
False neg. rate			106			111
			(-0.0)			(-0.1)
False pos. rate			.0229			841
			(0.0)			(-0.4)
Constant	-1.07***	-1.08**	-1.07	-1***	-1.06***	999***
	(-2.8)	(-2.2)	(-1.6)	(-7.9)	(-4.9)	(-8.4)
Observations	390	390	390	390	390	390
Adjusted \mathbb{R}^2	0.10	0.10	0.10	0.11	0.11	0.11

t statistics in parentheses

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01

Additional Complementary Tables

- Factors affecting informed protection responses
- The effect of beliefs on informed protection
- 4 How accurate are their beliefs?
- Oecomposition of belief updating: priors vs signals

Informed Protection: Determinants

Figure: Informed Protection				
	(1)	(2)	(3)	(4)
	All	All	Smart	Smart
Informed protection				
Posterior prob.	2.14***	.668**	2.29***	.708**
	(14.0)	(2.5)	(12.7)	(2.4)
Prior prob.		1.32***		1.34***
		(3.4)		(3.0)
Gremlin says Black		1.32***		1.43***
		(6.3)		(6.2)
Constant	702***	-1.12***	761***	-1.2***
	(-11.0)	(-8.6)	(-10.8)	(-8.2)

780

736.93

780

774.36

Observations

AIC

636

573.32

636

608.24

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Informed Protection: Do Subject's Beliefs Matter?

Figure: Informed Protection: Response to Reported Beliefs				
	(1)	(2)	(3)	
	All	All	Smart	
Informed protection				
Belief	2.49***	1.57***	1.71***	
	(13.8)	(7.0)	(6.8)	
Posterior prob.		1.22***	1.23***	
		(6.9)	(5.8)	
Constant	887***	985***	-1.07***	
	(-12.0)	(-12.8)	(-12.7)	
Observations	780	780	636	
AIC	767.11	720.08	558.84	

t statistics in parentheses

 $^{^{\}ast}$ p<0.10 , ** p<0.05 , *** p<0.01

Belief Updating: Correlation

Figure: Belief Elicitation: Belief vs Posterior				
	(1)	(2)	(3)	
	All	Not_honest	Good quiz	
Posterior prob.	.669***	.711***	.523***	
	(29.0)	(29.1)	(15.7)	
Constant	.151***	.147***	.226***	
	(16.2)	(14.1)	(17.8)	
Observations	780	636	520	
Adjusted ${\cal R}^2$	0.57	0.61	0.39	

t statistics in parentheses

 $^{^{\}ast}$ p < 0.10 , ** p < 0.05 , *** p < 0.01

Belief Updating: Decomposition

• Posterior probability $\mu = P(B|S=x)$ that the ball is black conditional on a hint S=x can be written as:

$$\ln\left(\frac{\mu}{1-\mu}\right) = \lambda_0 + S_B + S_W$$

- With $\lambda_0 \equiv \ln(p/(1-p))$ representing (transformed) prior beliefs
- And S_B , S_W describing the effect of new evidence:

$$S_B \equiv I(S = B) \ln(P(s = B|B)/P(s = B|W))$$

 $S_W \equiv I(S = W) \ln((1 - P(s = B|B))/(1 - P(s = B|W))$

Belief Updating: Decomposition

Figure: Belief Elicitation: Decomposition				
	(1)	(2)	(3)	
	OLS	FE	Smart, FE	
lt_prior	.162**	.132**	.141**	
	(2.0)	(2.6)	(2.3)	
signalB	.477**	.937***	1.04***	
	(2.2)	(5.0)	(4.6)	
signalW	.46**	0	0	
	(2.5)	(.)	(.)	
Constant	0878	595***	637***	
	(-0.4)	(-5.3)	(-4.8)	
Observations	172	172	140	
Adjusted \mathbb{R}^2	0.26	0.31	0.31	

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01