Bài giảng

PHÂN TÍCH ECG BÌNH THƯỜNG

BS CKI Trần Thanh Tuấn thanhtuanphd@gmail.com

Giới thiệu

- ECG giúp phát hiện nhiều bệnh lý tim mạch như rối loạn nhịp, lớn nhĩ thất, nhồi máu cơ tim, thiếu máu cơ tim, rối loạn điện giải v...v
- Mỗi bệnh lý đều có những thay đổi riêng.
- Để nhận biết các bất thường điều đầu tiên ta cần phải nhận biết các dấu hiệu bình thường

Mục tiêu

- 1. Nắm được các bước đọc ECG
- 2. Nhận biết các dấu hiệu bình thường trên ECG
- 3. Khi nào gọi là tim xoay trái, khi nào gọi là tim xoay phải

Nhắc lại một số khái niệm cơ bản

Hoạt động điện của tim

Các loại điện cực

- Ngoại vi:
 - Màu đỏ gắn vào tay phải
 - Màu vàng gắn vào tay trái
 - Màu xanh gắn vào chân phải
 - Màu đen gắn vào chân trái
- Trước ngực
 - V1 V6

Kết quả của 1 ECG/ giấy đo

Sự tạo thành các sóng trên ECG

Kết quả hoạt động điện tim

Một số quy ước

- Sóng Dương đầu tiên là R
- Sóng âm trước sóng R là sóng Q
- Sóng âm đầu tiên sau sóng
 R là sóng S
- Sóng dương sau sóng R là sóng R'
- Sóng âm sau sóng R' là S'
- Không có sóng R là sóng QS

Các bước đọc ECG

Các bước đọc ECG

- 1. Chú ý về biên độ và vận tốc đo
- 2. Nhịp gì?
- 3. Đều hay không đều ? Tần số tim bao nhiêu ?
- 4. Trục điện tim?
- 5. Sóng P: thời gian, biên độ
- 6. Thời gian khoảng PR
- 7. Phức bộ QRS: thời gian, biên độ
- 8. Thời gian Khoảng QT
- 9. Sóng Q có không ? Thời gian biên độ
- 10. Đoạn ST
- 11. Sóng T biên độ
- 12. Các bất thường khác

Phân tích

Biên độ và vận tốc

Nhịp bình thường: nhịp xoang

Nhịp bình thường: nhịp xoang

- Sóng P dương ở DI, DII, aVF
- Sóng P âm ở avR
- Sau mỗi sóng P là phức bộ QRS (tỉ lệ 1:1)

Nhịp điệu: nhịp đều

Nhịp điệu: nhịp đều

Tần số: 60 – 100 lần/ phút

Nhịp đều:

Luật 300 : 300 / Số ô lớn

Counting large boxes for heart rate. The rate is 60 bpm.

Xác định tần số - nhịp đều

Nhịp đều:

• 1500/ số ô nhỏ

Ví dụ: 1500 / 27 = 55 lần/ phút

Tần số bao nhiêu ? 1500/17

Trục bình thường: trung gian

Trục điện tim

Copyright @2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Axis	Net QRS Voltage		
	Lead I	aVF	Lead II
Normal axis (0° to 90°)	+	+	
Normal variant (0° to -30°)	+	-	+
Left axis deviation (-30° to -90°)	+	-	-
Right axis deviation (> 100°)	-	+	
Right superior axis (-90° to +180°)	-	-	

[&]quot;+" represents positive (> 0) net QRS voltage

[&]quot;-" represents negative (< 0) net QRS voltage

Sóng P

Phản ánh hoạt động khử cực của nhĩ

Bình thường ở DII

• Thời gian: 0,08 – 0,12 giây

Biên độ: 0,5 – 2mm

Ở V1 : sóng P có hai pha, pha dương và pha âm

Sóng P

Khoảng PR

Thời gian dẫn truyền từ nút xoang đến nút nhĩ thất

Tính từ đầu sóng P đến đầu phức bộ QRS

DII:

• Thời gian: 0,12 – 0,20 giây

Khoảng PR

Phức bộ QRS

- Khử cực của thất
- Ở DII thời gian 0,08 0,12 giây

Thời gian QRS

Biên độ QRS ở ngoại vi Bình thường > 5mm

Biên độ QRS ở trước ngực Bình thường > 10mm

Phức bộ QRS

- Biên độ V1 V6 tăng dần rồi giảm dần
- Chuyển đạo chuyển tiếp V3, V4

Biên độ QRS ở trước ngực R/S = 1 ở V3

Biên độ QRS ở trước ngực R ở V1 không quá 7

Khoảng QT

Phản ảnh hoạt động điện của thất : khử cực và tái cực

Bắt đầu từ sóng Q đến hết sóng T

Khoảng QT

Khoảng QT

Cách tính

- $QT_c = QT + 1.75(RR - 60)$

$$- QTc = \frac{QT}{\sqrt{RR}}$$

- Tần số tim < 100 lần/ phút QT bình thường khi < 50% RR tương ứng
- Nam < 0.44s
- Nữ < 0.46s

Khoảng QT =

Sóng Q sinh lý ở DIII, aVF

Đoạn ST

Phản ánh hoạt động tái cực của thất

Bắt đầu từ sóng S đến đầu sóng T

Đoạn ST

Xác định độ chênh đoạn ST:

- Điểm J, điểm kết thúc hoặc chuyển tiếp phức bộ QRS sang đoạn ST
- Đường đẳng điện là đường T P

Đoạn ST đẳng điện, chênh không quá 0,5mm

Sóng T

Bình thường

- + Dương DI, DII, V3, V4, V5, V6
- + Âm aVR
- + Thay đổi DIII, aVL, aVF, V1, V2

Sóng T bình thường

Sóng T bình thường biên độ không quá 5mm ở chuyển đạo ngoại vi và không quá 10mm ở chuyển đạo trước tim

Hoặc

Sóng T cao < 3/4 sóng R tương ứng.

Sóng T thấp > 1/10 sóng R tương ứng

Sóng T

Kết luận

 Phân tích đầy đủ các bước giúp nhận biết một điện tâm đồ bình thường và không bỏ xót tổn thương

