

Entrance Exam 2004 -2005

Mathematics

Duration: 3 hours On 17/07/20004

The grades are over 25

I- (4.5 pts) The plane is referred to an orthonormal system $(O; \vec{i}, \vec{j})$ Consider the points A(m, 0) and B(0, n) where m and n are two real numbers. Let P be the point such that $\overrightarrow{OA} = 2\overrightarrow{BP}$.

- 1- Determine the coordinates (x, y) of P in terms of m and n.
- 2- Suppose that m and n vary such that AB = 2.
 - a- Prove that the sets of points P is the ellipse (E) of equation $4x^2 + y^2 = 4$
 - b- Determine the focal axis, the vertices, the foci and the directress of (E). Construct (E).
- 3-Let (C) be the curve of equation $5x^2 + 6xy + 5y^2 = 8$
 - a-Prove that (C) is the transform of (E) by the rotation r of center O and angle $\frac{\pi}{4}$.
 - b-Deduce that (C) is a conic whose nature is to be determined.
 - c-Determine the focal axis and a focus of (C). Calculate the eccentricity and the area of (C).
- II- (3.5 pts) Given n urns $U_1, U_2, ..., U_n$ where n is a natural number such that $n \ge 2$. The urn U_1 contains 2 black balls and one red ball and each of the other urns contains 1 black ball and 1 red ball. We draw at random a ball from U_1 and we put in U_2 , then we draw a ball from U_2 and we put in U_3 then we draw a ball from U_3 and so on. Let E_k be the event "the ball drawn from U_k is red" and E_k the event opposite to E_k and denote by P_k the probability of E_k : $P_k = P(E_k)$.
 - 1) Determine $p(E_1)$, $p(E_2/pE_1)$ and $p(E_2/p\overline{E_1})$ and prove that $p_2 = \frac{4}{9}$.
 - 2) Prove that for all natural number k such that $1 \le k \le n$, $p_{k+1} = \frac{1}{3}p_k + \frac{1}{3}$
 - 3) Consider the sequence (V_k) defined by $V_k = p_k \frac{1}{2}$ with $k \ge 1$
 - a- Calculate V_I and prove that (V_k) is a geometric sequence.
 - b- Calculate p_k in terms of k. Prove that the sequence (p_k) is convergent and calculate its limit.
- **III-** (8 pts) Parts A, B and C of the problem are independent.

The complex plane is referred to an orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$ Consider the transformation T that, to each point M of affix z, associates the point M of affix z such that z' = az + b where a and b are two complex numbers such that $a \neq 0$, $b \neq 0$, and $a \neq b$.

A- Suppose in this part that $a = \frac{3}{4}$ and $b = \frac{1}{4}$

- 1) Determine the nature and the characteristic elements of *T*.
- 2) Determine the nature and the characteristic elements of T^{-1}
- **B-** Suppose in this part that a = 1 + i and b = -i
 - 1) Determine the nature and the characteristic elements of T. Let w be the invariant point of T.
 - 2) Consider the sequence of points M_n defined by M_0 (which is a point of the axis of abscissas with affix z_0) and $M_n = T(M_{n-1})$ and the sequence of their affixes z_n defined by:

$$z_0 = x_0 > 1$$
 and $z_n = (1+i) z_{n-1} - i$. Let $W_n = z_n - 1$.

- a- Prove that the sequence of general term W_n is a geometric sequence whose common ratio is to be determined.
- b- Calculate W_n in terms of x_0 and n.
- c- Calculate the modulus and an argument of W_n .
- d- Determine the values of the natural number n for which M_n of affix z_n is a point of the axis of abscissas.
- e- Determine x_0 so that M_4 is confounded with the origin O of the reference system.
- f- Plot in this case the points M_0 , M_1 , M_2 , M_3 , and M_4 .
- C- Consider in this part the transformation T whose complex expression is z' = az + b and the transformation S whose complex form is z' = bz + a such that $T \circ S = S \circ T$.
- 1) Prove that a and b are the roots of the equation $z^2 z + m = 0$ where m is a number to be determined.
- 2) Prove that T, S and S o T have the same invariant point which is a fixed point.

IV- (9 pts) The plane is referred to and orthonormal system $(O; \vec{i}, \vec{j})$

A-Let h be a function defined on R whose representative curve (ℓ) is given in the adjacent figure such that (ℓ) is tangent at O to y'Oy and admits (d) as an asymptote at $+\infty$ and x'Ox as an asymptotic direction.

- 1) Prove that h admits on R an inverse function g such that g(0) = 0.
- 2) let (γ) be the representative curve of g.
 - a- Determine the tangent to (γ) at point O and deduce g'(0).
 - b- Prove that (d) is an asymptote to (γ) and determine the point of intersection of (γ) and (d).
 - c- Draw (γ) in a new reference system.
 - d- Prove that g(x) and x have opposite signs.

- 3) Suppose that g is defined on R by $g(x) = (ax + b)(1 + e^x) + c$, where a, b and c are three real numbers.
 - a- Calculer g'(x).
 - b- Using the values of g(0), g'(0) and g(2) determined above, calculate a, b and c and verify that $g(x) = (2-x)e^x x 2$
- B- Consider the differential equation (E): $(1 + e^x) y' y = 0$...
 - 1) Knowing that $\frac{1}{1+e^x} = \frac{e^{-x}}{1+e^{-x}}$, calculate $\int \frac{dx}{1+e^x}$
 - 2) Solve the differential equation (E). Determine the particular solution of (E) whose representative curve passes through the point I(0; 2).
- C- Let f be the function defined on R by $f(x) = \frac{4e^x}{1+e^x}$, and designates by (C) its representative curve.
 - 1) Study the variations of f. Prove that f has an inverse function f^{-1} whose domain of definition is to be determined and calculate $f^{-1}(x)$.
 - 2) Prove that the point I(0; 2) is a center of symmetry of (C) and determine an equation of the tangent (T) to (C) at point I.
 - 3) Using the function g defined in part A, study the relative position of (C) and (T).
 - 4) Draw (C) and (T).
- **D-** Define on R, the function F by $F = g \circ f$.
 - 1) Prove that F is decreasing.
 - 2) Calculate F(0) and the limit of F at $-\infty$.

Entrance Exam 2004 -2005

Solution of Mathematics

Duration: 3 hours On 17/07/20004

The grades are over 25

I-
$$A(m, 0)$$
, $B(n, 0)$, $P(x; y)$ and $\overrightarrow{OA} = 2\overrightarrow{BP}$

Then,
$$2((x_p - x_B) = x_A$$
 and $2(y_p - y_B) = y_A$ which gives $x = \frac{m}{2}$ and $y = n$

2)
$$a-AB^2 = 4$$
; then $m^2 + n^2 = 4$

and consequently $(2x)^2 + (y)^2 = 4$. So, the set of the points P is the ellipse (E) of equation $4x^2 + y^2 = 4$.

b) The equation
$$4x^2 + y^2 = 4$$
 can be written as (E): $x^2 + \frac{y^2}{4} = 1$

The focal axis is (y'y), the principal vertices are $A_1(0; 2)$, $A'_1(0; -2)$, the secondary vertices are $B_1(1; 0)$ and $B'_1(-1; 0)$

$$c^2 = a^2 - b^2 = 3$$
, the foci are F $(0, \sqrt{3})$ and F' $(0, -\sqrt{3})$

The directress is the straight lines of equations: $y_1 = \frac{a^2}{c} = \frac{4\sqrt{3}}{3}$ and $y_2 = -\frac{a^2}{c} = -\frac{4\sqrt{3}}{3}$

3) a- the complex form of r is $z' = e^{i\frac{\pi}{4}}z$ which gives $z = e^{-i\frac{\pi}{4}}z'$; If M(x, y) is a point of (E) and M'(x, y) its image by r then

$$x+iy=e^{-i\frac{\pi}{4}}(x'+iy')=\left(\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)(x'+iy')$$

$$= \frac{\sqrt{2}}{2}(1-i)(x'+iy') = \frac{\sqrt{2}}{2}(x'+iy'-ix'+y')$$
 Therefore

$$x = \frac{\sqrt{2}}{2} (x' + y')$$
, $y = \frac{\sqrt{2}}{2} (y' - x')$ and as $x^2 + \frac{y^2}{4} = 1$

we have
$$\frac{1}{2}(x'+y')^2 + \frac{1}{2}\frac{(y'-x')^2}{4} = 1$$

Let
$$4(x' + y')^2 + (y' - x')^2 = 8$$
 and hence $5x'^2 + 6x'y' + 5y'^2 = 8$
then the image of (E) by r is the curve (C) of equation: $5x^2 + 6xy + 5y^2 = 8$

- b) (E) is an ellipse and since rotation preserves geometric figures then (C) is an ellipse.
- c) The focal axis (Δ) of (C) is the image of the focal axis of (E) by r. But the focal axis of (E) is the axis y'y of equation x = 0

x = 0 gives $\frac{\sqrt{2}}{2}(x' + y') = 0$ then the straight line (Δ) of equation y = -x is the focal axis of (C)

F (0, $\sqrt{3}$) is a focus of (E), this point F is transformed onto a point F₁ by the rotation r

$$z_{F_1} = e^{i\frac{\pi}{4}} z_F = \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)(i\sqrt{3}) = \frac{i\sqrt{6}}{2} - \frac{\sqrt{6}}{2} \text{ therefore } F_1 \left(-\frac{\sqrt{6}}{2}; \frac{\sqrt{6}}{2}\right) \text{ is a focus of (C)}$$

The eccentricity of (C) is equal to that of (E), therefore, $e = \frac{\sqrt{3}}{2}$.

Area of (C) = area of (E) = $\pi ab = 2\pi$ squareunits

II- 1) $P(E_1) = \frac{1}{3} E_1$ has occurred, then urn U_2 contains two red balls and one black ball, then $P(\frac{E_2}{E_1}) = \frac{2}{3}$.

 $\overline{E_1}$ has occurred, then urn U_2 contains one red balls and two black balls, then $P(\frac{E_2}{\overline{E_1}}) = \frac{1}{3}$

$$P(E_{2}) = P_{2} = P(E_{2} \cap E_{1}) + P(E_{2} \cap \overline{E_{1}})$$

$$= P(E_{1}) \times P(\frac{E_{2}}{E_{1}}) + P(\overline{E_{1}}) \times P(\frac{E_{2}}{\overline{E_{1}}}) = \frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times (1 - \frac{1}{3}) = \frac{4}{9}$$

2)
$$P_{k+1} = P(E_{k+1}) = P(E_k \cap E_{k+1}) + P(\overline{E}_k \cap E_{k+1})$$
$$= p(\frac{E_{k+1}}{E_k}) \times p(E_k) + p(\frac{E_{k+1}}{E_k}) \times p(\overline{E_k}) \quad \text{or}$$
$$p(\frac{E_{k+1}}{E_k}) = \frac{2}{3} \quad \text{and} \quad p(\frac{E_{k+1}}{\overline{E_k}}) = \frac{1}{3}$$

$$P_{k+1} = P(E_{k+1}) = \frac{2}{3} \times P_k + \frac{1}{3} \times (1 - P_k) = \frac{1}{3} P_k + \frac{1}{3}$$

3) a-
$$V_1 = P_1 - \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = -\frac{1}{6}$$

$$V_{k+1} = P_{k+1} - \frac{1}{2} = \frac{1}{3}P_k + \frac{1}{3} - \frac{1}{2} = \frac{1}{3}P_k - \frac{1}{6} = \frac{1}{3}(P_k - \frac{1}{2}) = \frac{1}{3}V_k$$

Then V_k is a geometric sequence of common ratio 1/3

b-
$$V_k = V_1 \times q^{k-1} = -\frac{1}{6} \left(\frac{1}{3}\right)^{k-1}$$
 where $P_k = V_k + \frac{1}{2} = -\frac{1}{6} \left(\frac{1}{3}\right)^{k-1} + \frac{1}{2}$

The sequence (V_k) is bounded above by $\frac{1}{2}$ since $-\frac{1}{6} \left(\frac{1}{3}\right)^{k-1} + \frac{1}{2} < \frac{1}{2}$

Also, the sequence (V_k) is increasing since

$$P_{k+1} - P_k = \frac{1}{6} \left(\frac{1}{3}\right)^{k-1} - \frac{1}{6} \left(\frac{1}{3}\right)^k = \frac{1}{6} \left(\frac{1}{3}\right)^{k-1} \left(1 - \frac{1}{3}\right) = \frac{2}{3} \times \frac{1}{6} \left(\frac{1}{3}\right)^{k-1} > 0$$

Then $P_{k+1} > P_k$.

$$\lim_{k \to +\infty} P_k = \frac{1}{2} \operatorname{since} \lim_{k \to +\infty} \left(\frac{1}{3} \right)^{k-1} = 0$$

- III- A-1) T is of the form $z' = (\frac{3}{4}z + \frac{1}{4})$ with $a = \frac{3}{4}$, which is a real number, hence T is a dilation of ratio $\frac{3}{4}$ and center the point w of affix $z_w = \frac{b}{1-a} = 1$.
 - 2) T⁻¹ is a dilation of ratio $\frac{4}{3}$ and the same center as T.
 - B- 1) *T* is of the form z' = (1+i)z i with $a = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$

T is a similar of ratio $\sqrt{2}$, angle $\frac{\pi}{4}$, and of center the point w of affix

$$z_{w} = \frac{b}{1-a} = \frac{-i}{-i} = 1$$

2) a- $W_{n+1} = z_{n+1}$ -1 = $(1+i)z_n - i - 1 = (1+i)(z_n - 1) = (1+i)W_n$

The sequence of general term W_n is a geometric sequence of ratio q = 1+i and a first term

$$W_0 = z_0 - 1 = x_0 - 1$$

b-
$$W_n = W_0 \times q^n = (x_0 - 1)(1 + i)^n$$

c-
$$1+i = \sqrt{2}e^{i\frac{\pi}{4}}$$
, where $|W_n| = |x_0 - 1| \times |1 + i|^n$ or $x_0 - 1 > 0$ where $|W_n| = (x_0 - 1) \times (\sqrt{2})^n$.
arg $W_n = \arg((x_0 - 1) \times (1 + i)^n) = \arg(x_0 - 1) + \arg(1 + i)^n$
arg $W_n = 0 + n\frac{\pi}{4}(2\pi) = n\frac{\pi}{4}(2\pi)$

d- If M_n is a point of the axis of abscissas axis then z_n is real, so $W_n = z_n - 1$ is real

such that $n\frac{\pi}{4} = k\pi$ and n = 4k with $k \in IN$ since k is a natural number.

e- if M_4 is confounded with O then $z_4 = 0$, where $W_4 = -1$, then

$$(x_0 - 1) \times (1 + i)^n = -1$$
, and $x_0 - 1 = \frac{-1}{(1 + i)^4} = \frac{1}{4}$ then $x_0 = \frac{5}{4}$

f-

C-1)
$$M(z) \xrightarrow{s} M'(z' = bz + a) \xrightarrow{T} M''(z'' = az + b)$$

$$M(z) \xrightarrow{T_{\circ}s} M''(z'' = abz + a^2 + b)$$

$$M(z) \xrightarrow{T} M_1(z_1 = az + b) \xrightarrow{s} M_2(z_2 = bz_1 + a)$$

$$M(z) \xrightarrow{s \cdot T} M_2(z_2 = abz + b^2 + a)$$

$$T \circ S = S \circ T$$
 gives $T \circ S(M) = S \circ T(M)$ then

$$abz + a^2 + b = abz + b^2 + a$$
, consequently $a^2 - b^2 = a - b$

$$(a-b)(a+b) - (a-b) = 0$$
 or $(a-b)(a+b-1) = 0$

$$a-b=0$$
 or $a+b-l=0$ and hence $a \neq b$ we get $a+b=1$

Hence a and b are the roots of the equation $z^2 - z + m = 0$ where m = ab

with $m \neq 0$ since $a \neq 0$ and $b \neq 0$

2)
$$z_{w_T} = \frac{b}{1-a} = \frac{1-a}{1-a} = 1$$
, $z_{w_s} = \frac{a}{1-b} = \frac{1-b}{1-b} = 1$
 $z_{w_{s} \circ T} = \frac{b^2 + a}{1-ab} = \frac{b^2 + 1 - b}{1-b(1-b)} = 1$, then T , S and $S \circ T$ have the same double point.

IV) **A**)

- 1) h is continuous and strictly decreasing over IR then it admits an inverse function g over IR Since (ℓ) passes through O then g passes through O hence g(0) = 0
- 2) Let (γ) be the representative curve of g
 - a- The axis y'y is tangent to (ℓ) at O, then the curve (γ) is tangent to the axis x'x at O, consequently g'(0) = 0
 - b- The straight line (d) is an asymptote to (ℓ) , (γ) has as an oblique asymptote the straight line (d') symmetric of (d) with respect to the straight line of equation y = x. But, (d) passes through the point (0; -2), (d') passes through the point (-2; 0) similarly, (d) passes through the point (-2; 0) so (d') passes through the point (0; -2), (d') is (d) itself consequently (d) is an asymptote of (γ)

c-

d- From the representative curve of g, we note that a part of (γ)

is situated in the first quadrant and a part in the fourth quadrant and in both cases g(x) and x have opposite signs except for O where g(0) = 0

3) a-
$$g'(x) = a (1 + e^x) + e^x (ax + b)$$

b- $g(0) = 0$ gives $2b + c = 0$
 $g'(0) = 0$ gives $2a + b = 0$
 $h(-4) = 2$, and $g(2) = -4$ which gives $(2a + b) (1 + e^2) + c = -4$
But $2a+b=0$ so $c = -4$; $2b+c=0$
Then $b = 2$, $2a+b=0$, $a = -1$ so $g(x) = (-x+2) (1 + e^x) - 4$, consequently $g(x) = (2-x) e^x - x - 2$

B) 1)
$$\int \frac{dx}{1+e^x} = \int \frac{e^{-x}}{1+e^{-x}} dx = -\ln(1+e^{-x}) + k$$

2) (E):
$$(1+e^x)$$
 y'-y = 0 is equivalent to
$$\frac{y'}{y} = \frac{1}{1+e^x} \text{ where } \int \frac{y'}{y} dx = \int \frac{1}{1+e^x} dx, \text{ then } \ln|y| = -\ln(1+e^{-x}) + k$$

Let
$$\ln|y| + \ln(1 + e^{-x}) = k \ or \ln|y(1 + e^{-x})| = k \ then \ y(1 + e^{-x}) = \pm e^{k}$$

A result
$$y = \pm \frac{e^k}{1 + e^{-x}}$$
. Consequently, $y = \frac{C}{1 + e^{-x}}$

At the point I (0; 2) we have $2 = \frac{C}{1+1}$, which gives C = 4 and consequently $y = \frac{4}{1+e^{-x}} = \frac{4e^x}{1+e^x}$

C) 1)
$$f'(x) = \frac{4e^x}{(1+e^x)^2} > 0$$
, $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to +\infty} f(x) = 4$

X	$-\infty$		+ ∞
f'(x)		+	
f(x)			4
	0		

f is continuous and strictly increasing over IR, the nit admits an inverse functio f^{-1} whose domain is]0, 4[

$$y = \frac{4e^x}{1+e^x}$$
 gives $y + ye^x = 4e^x$ then $e^x (4-y) = y$, which gives $e^x = \frac{y}{4-y}$

$$x = \ln \frac{y}{4 - y}$$
 then $f^{-1}(x) = \ln \frac{x}{4 - x}$

2)
$$f(-x) + f(x) = \frac{4e^{-x}}{1 + e^{-x}} + \frac{4e^{x}}{1 + e^{x}} = \frac{4e^{x} + 4}{1 + e^{x}} = \frac{4(e^{x} + 1)}{1 + e^{x}} = 4$$
 then the point $I(0, 2)$ is a center of

symmetry for (C)

An equation of the tangent (T) to (C) at the point I is y=f(0)+f'(0)(x-0)=2+I(x-0) let y=x+2

3)
$$f(x) - y = \frac{4e^x}{1 + e^x} - x - 2 = \frac{4e^x - x - xe^x - 2 - 2e^x}{1 + e^x} = \frac{g(x)}{1 + e^x}$$
 But, x and $g(x)$ have opposite signs, where if $x > 0$, $g(x) < 0$, (C) is below (T) if $x < 0$, $g(x) > 0$, (C) is above (T)

4)

D- 1) F(x) = g(f(x)), $F'(x) = g'(f(x)) \times f'(x)$, but g is decreasing so g'(f(x)) < 0 and f is strictly increasing f'(x) > 0 then F'(x) < 0 and F is decreasing.

2)
$$F(0) = g(f(0)) = g(2) = -4$$

$$\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} g(f(x)) = g(0) = 0$$