13. Безопасность в распределенных системах

Сухорослов Олег Викторович 04.12.2023

План лекции

- Требования к безопасности в РС
- Базовые техники и механизмы
 - Шифрование
 - Аутентификация
 - Цифровая подпись
 - Управление ключами
 - Авторизация

Возможные угрозы?

Угрозы

- Interception несанкционированный доступ к данным
- Modification несанкционированное изменение данных
- Fabrication вставка поддельных данных и действий
- Interruption нарушение доступности системы

Атаки

- Подслушивание (eavesdropping)
- Фальсификация данных (data tampering)
- Человек посередине (man-in-the-middle)
- Подмена (masquerading, spoofing, phishing)
- Повтор (replaying)
- Отказ в обслуживании (denial-of-service)
- Вредоносное ПО (malware, вирус, сетевой червь, spyware)

Требования

- Конфиденциальность
- Целостность
- Доступность
- Невозможность отказа
- Аутентификация
- Авторизация
- Масштабируемость

Introduction to Performance Evaluation of Systems

Методика

- Анализ угроз
- Предотвращение угроз
- Валидация
- Аудит

Предположения и принципы

- Интерфейсы доступны всем
- Сети сами по себе не обеспечивают безопасность
- Время жизни и действие секретов должны быть ограничены
- Алгоритмы и код доступны атакующим
- Атакующие могут иметь доступ к большим вычислительным мощностям
- Минимизация критически важных компонентов (trusted computing base)

Базовые техники и механизмы

- Криптография (защищенный канал)
 - Конфиденциальность
 - Целостность
 - Аутентификация
 - Невозможность отказа
- Контроль доступа
 - Авторизация (ACL, capabilities, groups, roles)
 - Проверка и изолированное выполнение кода
 - Межсетевые экраны, защита от DoS-атак
- Управление безопасностью
 - Распространение ключей, цифровые сертификаты, делегирование прав...

Шифрование

Шифрование

- Симметричное (secret-key, shared-key)
 - $-P = D_K(E_K(P))$
 - $-K_{A,B}$ ключ, используемый A и B
 - Блочные шифры (DES, 3DES, TEA, IDEA, Blowfish, Twofish, AES)
 - Поточные шифры (RC4)
- Асимметричное (public-key)
 - $-P = D_{K_D}(E_{K_E}(P))$
 - $-K_{A}^{+}$ открытый ключ A
 - $-K_{A}^{-}$ закрытый (секретный) ключ A
 - Шифрование с открытым ключом (RSA, ElGamal, ECDSA)

Симметричное шифрование

Шифр Вернама (одноразовый блокнот)

Plain text:	Н	0	W	Α	R	E	Υ	0	U
	7	14	22	0	17	4	24	14	20
+									
OTP:	13	2	1	19	25	16	0	17	23
	Ν	С	В	Τ	Z	Q	Α	R	X
Initial total:	20	16	23	19	42	20	24	31	43
Mod 26:	20	16	23	19	16	20	24	5	17
Ciphertext:	U	Q	X	Т	Q	U	Υ	F	R

Шифрование с открытым ключом

Односторонние функции

- Разложение больших чисел на простые множители
 - RSA (Rivest-Shamir-Adleman)
- Дискретное логарифмирование в конечном поле
 - Криптосистема Эль-Гамаля
- Вычисление корней алгебраических уравнений (на основе эллиптических уравнений)
 - ECDSA (Elliptic Curve Digital Signature Algorithm)

Сравнение

- Симметричное шифрование
 - Требуется распространение ключа по защищенному каналу
 - Для каждой пары участников нужен отдельный ключ
 - В системе из N участников требуется N(N-1)/2 ключей
- Шифрование с открытым ключом
 - Требуется механизм распространения и проверки открытых ключей
 - В системе из N участников требуется N пар ключей
 - Более длинные ключи и значительно большее (x10-100) время работы

Гибридная схема

Аутентификация

- В начале взаимодействия стороны должны убедиться в подлинности друг друга
- После взаимной аутентификации между ними может быть установлен защищенный канал с использованием шифрования

Аутентификация (shared key)

Оптимизация?

Reflection Attack

Key Distribution Center

Key Distribution Center + Ticket

Протокол Нидхема-Шрёдера

Протокол Нидхема-Шрёдера (fixed)

Single Sign-on (Kerberos)

Аутентификация (public key)

Цифровая подпись

- Как в процессе взаимодействия обеспечить
 - проверку подлинности сообщений
 - невозможность их фальсификации
 - невозможность отказа
- Для этого используются цифровые подписи

Подпись (шифр. с открытым ключом)

Подпись (message digest)

Message Authentication Code (MAC)

Хеширование

- Сообщение произвольной длины \rightarrow строка фиксированной длины
- Свойства криптографических хеш-функций
 - сопротивление поиску первого прообраза
 - сопротивление поиску второго прообраза
 - стойкость к коллизиям
- Примеры
 - MD5, SHA-1, bcrypt, Whirlpool, SHA-2, SHA-3

Управление ключами

- Как сторонам договориться об используемом ключе?
- Как убедиться в подлинности открытого ключа?
- Как уменьшить риски при компрометации ключа?

Получение общего ключа (Diffie-Hellman)

Распространение ключей (shared)

Распространение ключей (public/private)

Цифровой сертификат

Отзыв сертификата

Step 3. Client contacts the CA's certificate revocation server and downloads the certificate revocation list.

d ate

Client Step 2. Server sends client its SSL/TLS certificate.

Step 1. Client seeks to connect to a website.

Протокол SSL/TLS

TLS Handshake

TLS Termination и CDN

Авторизация: ACL vs capabilities

Материалы

- <u>Distributed Systems: Principles and Paradigms</u> (глава 9)
- <u>Distributed Systems: Concepts and Design</u> (глава 11)
- High Performance Browser Networking (глава 4)