1. $\Delta p = \sigma\left(\frac{1}{a} + \frac{1}{b}\right)$, a и b — длины полуосей сечения (пузырек будет иметь форму эллипсоида вращания сечения капилляра вокруг меньшего диаметра)

2.

$$2\pi r\sigma = \pi r^2 \rho g h$$
$$h = \frac{2\sigma}{rg\rho} \approx 3 \, \text{cm}$$

- 3. Опускаю иглу так, чтобы она касалась поверхности воды. Верхний конец иглы открыт в атмосферу. Воздух над поверхностью воды немного разрежается. Атмосфера начинает выдавливать пузырек. Сначала он становится полусферой с радиусом иглы. При дальнейшем расширении он отделяется из-за ограниченности пленки у иглы. Перепад давления равен $\Delta p = \frac{2\sigma}{r}$, откуда нахожу радиус иглы (измеряя перепад давлений и зная из таблицы σ спирта).
- 4. Погрешность измерения диаметра микроскопом ($\varepsilon \approx 0.03$)
- 5. При критической температуре $\sigma=0,\,T_{\rm kp}=T+\sigma/k=700\pm10\,{\rm K},\,T$ некоторая точка с графика, σ поверхностное натяжение при этой температуре, k наклон графика $\sigma(T)$