Summary | Differential Equations

Introduction

Equations which are composed of an unknown function and its derivatives.

Types

Ordinary Differential Equations

When a differential equation involves one independent variable, and one or more dependent variables.

An example:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos(x)$$

Partial Differential Equations

When a differential equation involves more than one independent variables, and more than one dependent variables.

$$rac{\partial y}{\partial x} = y_x = \cos(x)$$

Linear

A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function (dependant variable) and its derivatives, that is an equation of the form:

$$P_0(x)y + P_1(x)y' + \ldots + P_n(x)y^{(n)} + Q(x) = 0$$

Here:

ullet P_0,P_1,\ldots,P_n,Q are all differentiable functions of x , doesn't depend on y

• y(x) is the unknown function

• $y^{(n)}$ denotes the n th derivative of y

Nonlinear

Nonlinear differential equations are any equations that cannot be written in the above form. In particular, these include all equations that include:

ullet y and/or its derivatives raised to any power other than 1

ullet nonlinear functions of $oldsymbol{y}$ or any of its derivative

• any product or function of these

Properties of Differential Equations

Order

Highest order derivative.

Degree

Power of highest order derivative.

Initial Value Problem (IVP)

A differential equation along with appropriate number of initial conditions.

Initial condition(s) is/are required to determine which solution (out of the infinite number of solutions) is the suitable one for the given problem.

Picard's Existence and Uniqueness Theorem

Consider the below IVP.

$$rac{\mathrm{d}y}{\mathrm{d}x}=f(x,y)\;;\;y(x_0)=y_0$$

Suppose: D is an open neighbourhood in \mathbb{R}^2 containing the point (x_0,y_0) .

If f and $\frac{\partial f}{\partial y}$ are continuous functions in D, then the IVP has a unique solution in some closed interval containing x_0 .

Solving First Order Ordinary Differential Equations

Separable equation

Separable if x and y functions can be separated into separate one-variable functions (as shown below).

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y)$$

$$\int rac{1}{g(y)} \mathrm{d}y = \int f(x) \mathrm{d}x$$

Homogenous equation

$$rac{\mathrm{d}y}{\mathrm{d}x} = f(x,y)$$

A function f(x,y) is homogenous when $f(x,y)=f(\lambda x,\lambda y)$.

To solve:

- ullet Use y=vx substitution, where v is a function of x and y
- Differentiate both sides: dy = v + v dx
- · Apply the substitution to make it separable

Reduction to homogenous type

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{ax+by+c}{Ax+By+C}$$

This type of equation can be reduced to homogenous form.

If a:b=A:B, use the substitution: u=ax+by.

In other cases:

- ullet Find h and k such that ah+bk+c=0 and Ah+Bk+C=0
- Use substitutions:

$$\circ X = x + h$$

$$\circ Y = y + k$$

The reduced equation would be:

$$\frac{\mathrm{d}Y}{\mathrm{d}X} = \frac{aX + bY}{AX + BY}$$

Linear equation

$$rac{\mathrm{d}y}{\mathrm{d}x} + P(x) \, y = Q(x)$$

The above form is called the standard form.

The equation would be separable if Q(x)=0.

Otherwise:

- ullet Identify P(x) from the standard form
- ullet Calculate **integrating factor**: $I=e^{\int P(x)\mathrm{d}x}$. Integrate $\ P(x)$. Put it as the power of $\ e$
- ullet Multiply both sides by $\it I$
- L.H.S becomes $\frac{d}{dx}(yI)$
- Integrate both sides to solve for y

Bernoulli's equation

$$rac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n \;\; ; \; n \in \mathbb{R}$$

When n=0 or n=1, the equation would be linear.

Otherwise, it can be converted to linear using $v=y^{1-n}$ as substituion.

None of the above

The equation must be converted to one of the above by using a suitable substitution.

Higher Order Ordinary Differential Equations

Linear Differential Equations

$$rac{\mathrm{d}^n y}{\mathrm{d} x^n} + p_1(x) rac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}} + \ldots \ + p_n(x) y = q(x)$$

Based on q(x), the above equation is categorized into 2 types:

- Homogenous if q(x)=0
- Non-homogenous if $q(x) \neq 0$

♠ For 1st semester

Only linear, ordinary differential equations with constant coefficients are required.

They can be written as:

$$rac{\mathrm{d}^n y}{\mathrm{d} x^n} + a_1 rac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}} + \ldots \ + a_n y = q(x)$$

Solution

The general solution of the equation is $y=y_p+y_c$.

Here

- ullet y_p particular solution
- ullet y_c complementary solution

Particular solution

Doesn't exist for homogenous equations. For non-homogenous equations check <u>steps section of 2nd</u> <u>order ODE</u>.

Complementary solution

Solutions assuming LHS=0 (as in a homogenous equation).

$$y_c = \sum_{i=1}^n c_i \, y_i$$

Here

- ullet c_i constant coefficients
- ullet y_i a linearly-independent solution

Linearly dependent & independent

n-th order linear differential equations have n linearly independent solutions.

Two solutions of a differential equation u,v are said to be **linearly dependent**, if there exists constants $c_1,c_2 \ (\neq 0)$ such that $c_1u(x)+c_2v(x)=0$.

Otherwise, the solutions are said to be linearly independent, which means:

$$\sum_{i=1}^n c_i y_i = 0 \implies orall c_i = 0$$

Linear differential operators with constant coefficients

(!) WTF?

I don't understand anything in this section.

Differential operator

Defined as:

$$\mathrm{D}^i = rac{\mathrm{d}^i}{\mathrm{d}x^i} \; ; \; n \in \mathbb{Z}^+$$

We can write the above equation using the differential operator:

$$D^n y + a_1 D^{n-1} y + \dots + a_n y = q(x)$$

Here if we factor out y (how tf?), we get:

$$(D^n + a_1D^{n-1} + \ldots + a_n)y = P(D)y = q(x)$$

where
$$P(D) = (D^n + a_1 D^{n-1} + \dots + a_n)$$
.

P(D) is called a polynomial differential operator with constant coefficients.

Solving Second Order Ordinary Differential Equations Homogenous

$$rac{\mathrm{d}^2 y}{\mathrm{d}x^2} + a rac{\mathrm{d}y}{\mathrm{d}x} + + by = 0 \; ; \; a,b \, \mathrm{are \, constants}$$

Consider the function $y=e^{mx}$. Here m is a constant to be found.

By applying the function to the above equation, we get:

$$m^2 + am + b = 0$$

The above equation is called the **Auxiliary equation** or **Characteristic equation**.

Case 1: Distinct real roots

$$y = Ae^{m_1x} + Be^{m_2x}$$

Case 2: Equal real roots

$$y = (Ax + B)e^{mx}$$

Case 3: Complex conjugate roots

$$y = Ae^{(p+iq)x} + Be^{(p-iq)x} = e^{px} ig(C\cos{(qx)} + D\sin{(qx)} ig)$$

Non-homogenous

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + a \frac{\mathrm{d}y}{\mathrm{d}x} + by = q(x); \ a, b \, \mathrm{are \, constants}$$

Method of undetermined coefficients

We find y_p by guessing and substitution which depends on the nature of q(x).

If q(x) is:

- ullet a constant, $oldsymbol{y_p}$ is a constant
- kx , $y_p = ax + b$
- $ullet kx^2$, $y_p=ax^2+bx+c$
- $k\sin x$ or $k\cos x$, $y_p=a\sin x+b\cos x$
- ullet e^{kx} , $y_p=ce^{kx}$ (Only works if k is **not** a root of auxiliary equation)
- A product of e^{kx} and some f(x), guess y_p for f(x) individually, and then multiply by e^{kx} (without coefficients)
- ullet A product of polynomials and trig functions, guess y_p for the polynomial, and multiply that by the appropriate cosine. Then add on a new guess for the polynomial with different coefficients and multiply that by the appropriate sine.
- A sum of functions, can be guessed individually and be summed up

Steps

- Solve for y_c
- ullet Based on the form of $\,q(x)\,$, make an initial guess for $\,y_p\,$.
- Check if any term in the guess for y_p is a solution to the complementary equation.
- ullet If so, multiply the guess by $\,x$. Repeat this step until there are no terms in $\,y_p\,$ that solve the complementary equation.
- ullet Substitute y_p into the differential equation and equate like terms to find values for the unknown coefficients in y_p .
- If coefficients were unable to be found (they cancelled out or something like that), multiply the guess by $m{x}$ and start again.
- $y = y_p + y_c$

Wronskian

Consider the equation, where P,Q are functions of x alone, and which has 2 fundamental solutions u(x),v(x):

$$y'' + Py' + Qy = 0$$

The Wronskian w(x) of two solutions u(x),v(x) of differential equation, is defined to be:

$$w(x) = egin{bmatrix} u(x) & v(x) \ u'(x) & v'(x) \end{bmatrix}$$

Theorem 1

The Wronskian of two solutions of the above differential equation is identically zero or never zero.

(i) Note

Identically zero means the function is always zero.

Proof

Consider the equation, where P,Q are functions of \boldsymbol{x} alone.

$$y'' + Py' + Qy = 0$$

Let u(x), v(x) be 2 fundamental solutions of the equation:

$$u'' + Pu' + Qu = 0 \quad \wedge \quad v'' + Pv' + Qv = 0$$

$$w=egin{array}{c|c} u & v \ u' & v' \end{array}=uv'-vu'$$

$$w'=uv''-vu''=-P[uv'-vu']=-Pw$$

By solving the above relation:

$$w = c \cdot \exp\left(-\int P \,\mathrm{d}x
ight)$$

Suppose there exists x_0 such that $w(x_0)=0$. That implies c=0. That implies w is always 0.

Theorem 2

The solutions of the above differential equation are *linearly dependent* iff their Wronskian vanish identically.

Variation of parameters

Consider the equation, where P,Q are functions of x alone, and which has 2 fundamental solutions y_1,y_2 :

$$y'' + Py' + Qy = f(x)$$

The general solution of the equation is:

$$y_g = c_1 y_1 + c_2 y_2$$

Now replace c_1,c_2 with u(x),v(x) and we get $y_p=uy_1+vy_2$ which can be found using the method of variation of parameters.

$$u = -\int rac{y_2 f}{W(x)} \, \mathrm{d}x \ \wedge \ v = \int rac{y_1 f}{W(x)} \, \mathrm{d}x$$

Proof

$$y_p = uy_1 + vy_2$$

$$y_p' = u'y_1 + uy_1' + v'y_2 + vy_2'$$

Set $u'y_1+v'y_2=0 \ \ (1)$ to simplify further equations. That implies $y_p'=uy_1'+vy_2'$.

$$y_p'' = uy_1'' + u'y_1' + vy_2'' + v'y_2$$

Substituting $y_p^{\prime\prime},y_p^{\prime},y_p$ to the differential equation:

$$y_p''+Py_p'+Qy_p=u'y_1'+v'y_2'$$

This implies $u'y_1'+v'y_2'=f(x)$ (2).

From equations (1) and (2), where W(x) is the wronskian of y_1,y_2 :

$$u'=-rac{y_2f}{W(x)} \ \wedge \ v'=rac{y_1f}{W(x)}$$

$$u = -\int rac{y_2 f}{W(x)} \,\mathrm{d}x \ \wedge \ v = \int rac{y_1 f}{W(x)} \,\mathrm{d}x$$

 y_p can be found now using u,v,y_1,y_2

This PDF is saved from https://s1.sahithyan.dev