LIMITS OF CONTEXT-FREE
GRAMMARS/LANGUAGES

1. HALT-Problem is somehow complicated



- 1. HALT-Problem is somehow complicated
- 2. easy kind of automata: finite automata (regular expressions)



- 1. HALT-Problem is somehow complicated
- easy kind of automata: finite automata (regular expressions)
- 3. problem:  $\{a^n b^n | n \in \mathbb{N}\}$  is not regular



- 1. HALT-Problem is somehow complicated
- easy kind of automata: finite automata (regular expressions)
- 3. problem:  $\{a^nb^n|n\in\mathbb{N}\}$  is not regular
- 4. more sophisticated way: context-free grammars



- 1. HALT-Problem is somehow complicated
- easy kind of automata: finite automata (regular expressions)
- 3. problem:  $\{a^nb^n|n\in\mathbb{N}\}$  is not regular
- 4. more sophisticated way: context-free grammars
- 5. is everything producible by context-free grammars?



- 1. HALT-Problem is somehow complicated
- easy kind of automata: finite automata (regular expressions)
- 3. problem:  $\{a^nb^n|n\in\mathbb{N}\}$  is not regular
- 4. more sophisticated way: context-free grammars
- 5. is everything producible by context-free grammars?
- 6. what is with  $\{a^nb^nc^n|n\in\mathbb{N}\}$ ?



# THE PUMPING LEMMA FOR CFLS

# Reminder: How to prove non-regularity?

- no DFA/NFA/regexp exists for the language
- contradict the supposition that it is regular using the Pumping Lemma
- prove that the index of the Myhill-Nerode-relation is infinite



# Pumping Lemma for Context-Free Languages

#### Lemma

 $L\ context-free\ language \Rightarrow \exists p \in \mathbb{N} \forall z \in L^{\geq p} \exists u,v,w,x,y \in \Sigma^*:$ 

- 1. z = uvwxy
- **2.**  $vx \neq \varepsilon$
- 3.  $|vwx| \leq p$
- 4.  $\forall i \in \mathbb{N}_0 : uv^i w x^i y \in L$



#### Definition

Parse Tree for a word z producible by a grammar in CNF:

- $\bigcirc$  nodes  $N = V \cup \Sigma$
- start with *S*
- $\bigcirc$  if the rule  $L \rightarrow \ell$  is applied:  $\ell$  is a child of L
- $\bigcirc$  if the rule  $L \rightarrow R_1R_2$  is applied:  $R_1$  and  $R_2$  are children



$$G = (V, \Sigma, S, P)$$
 CFG with  $|V| = n$ 

○ we need to proof that the conclusion really holds!



$$G = (V, \Sigma, S, P)$$
 CFG with  $|V| = n$ 

- we need to proof that the conclusion really holds!
- $\bigcirc$  set  $p = 2^{n+1}$



$$G = (V, \Sigma, S, P)$$
 CFG with  $|V| = n$ 

- we need to proof that the conclusion really holds!
- $\bigcirc$  set  $p = 2^{n+1}$
- $\bigcirc z \in L(G), |z| \ge n$



$$G = (V, \Sigma, S, P)$$
 CFG with  $|V| = n$ 

- we need to proof that the conclusion really holds!
- $\bigcirc$  set  $p = 2^{n+1}$
- $\bigcirc z \in L(G), |z| \ge n$
- $\bigcirc$  any parse tree for *z* has depth at least n + 1



$$G = (V, \Sigma, S, P)$$
 CFG with  $|V| = n$ 

- we need to proof that the conclusion really holds!
- $\bigcirc$  set  $p = 2^{n+1}$
- $\bigcirc z \in L(G), |z| \ge n$
- $\bigcirc$  any parse tree for z has depth at least n+1
- $\bigcirc$   $\Rightarrow$  the longest path has length at least n + 1



$$G = (V, \Sigma, S, P)$$
 CFG with  $|V| = n$ 

- we need to proof that the conclusion really holds!
- $\bigcirc$  set  $p = 2^{n+1}$
- $\bigcirc z \in L(G), |z| \ge n$
- $\bigcirc$  any parse tree for z has depth at least n+1
- $\bigcirc$   $\Rightarrow$  the longest path has length at least n+1
- $\bigcirc$  only *n* variables  $\Rightarrow$  one occurs at least twice



read longest path from bottom to top and take the first two variables X occurring twice





read longest path from bottom to top and take the first two variables  $\boldsymbol{X}$  occurring twice





read longest path from bottom to top and take the first two variables X occurring twice





read longest path from bottom to top and take the first two variables *X* occurring twice



Choose u, v, w, x, y at the bottom of the tree with

- w is generated by lower occurrence of X
- v is generated by left child of upper occurrence of X
- x is generated by right child of upper occurrence of X
- $\bigcirc$  *u* is part before *v*
- $\bigcirc$  *y* is part after *x*



o trick:



- O trick:
- $\bigcirc$  both subtrees beneath the both *S* are valid derivations



- O trick:
- both subtrees beneath the both *S* are valid derivations
- $\, \bigcirc \,$  exchange the lower one by the upper one



- trick:
- $\bigcirc$  both subtrees beneath the both *S* are valid derivations
- output exchange the lower one by the upper one
- $\bigcirc$   $\Rightarrow$  we doubled v and x and are still in the language



- trick:
- $\bigcirc$  both subtrees beneath the both *S* are valid derivations
- o exchange the lower one by the upper one
- $\Rightarrow$  we doubled v and x and are still in the language
- we can do this as often as we want



- trick:
- $\bigcirc$  both subtrees beneath the both *S* are valid derivations
- o exchange the lower one by the upper one
- $\bigcirc \Rightarrow$  we doubled v and x and are still in the language
- we can do this as often as we want
- $\bigcirc$   $\Rightarrow$  claim proven for all i > 0



- trick:
- both subtrees beneath the both *S* are valid derivations
- occidence control exchange the lower one by the upper one
- $\bigcirc \Rightarrow$  we doubled v and x and are still in the language
- we can do this as often as we want
- $\bigcirc$   $\Rightarrow$  claim proven for all i > 0
- $\bigcirc$  for i = 0: exchange the upper one by the lower one



- trick:
- $\bigcirc$  both subtrees beneath the both *S* are valid derivations
- occidence control exchange the lower one by the upper one
- $\supset \Rightarrow$  we doubled v and x and are still in the language
- we can do this as often as we want
- $\bigcirc$   $\Rightarrow$  claim proven for all i > 0
- $\bigcirc$  for i = 0: exchange the upper one by the lower one
- $\bigcirc$  v, x are gone!



Context-Freedom is not the jack of all trades device.

#### Lemma

The language  $L = \{a^n b^n a^n | n \in \mathbb{N}_0\}$  is not context-free.



Context-Freedom is not the jack of all trades device.

#### Lemma

The language  $L = \{a^n b^n a^n | n \in \mathbb{N}_0\}$  is not context-free.



Context-Freedom is not the jack of all trades device.

#### Lemma

The language  $L = \{a^nb^na^n | n \in \mathbb{N}_0\}$  is not context-free.

#### Proof:

 $\bigcirc$  Contradiction: Suppose L is context free



Context-Freedom is not the jack of all trades device.

#### Lemma

The language  $L = \{a^nb^na^n | n \in \mathbb{N}_0\}$  is not context-free.

- $\bigcirc$  Contradiction: Suppose L is context free
- $\bigcirc$  PL  $\Rightarrow$  exists  $p \in \mathbb{N}$  (take it)



Context-Freedom is not the jack of all trades device.

#### Lemma

The language  $L = \{a^nb^na^n | n \in \mathbb{N}_0\}$  is not context-free.

- $\bigcirc$  Contradiction: Suppose L is context free
- $\bigcirc$  PL  $\Rightarrow$  exists  $p \in \mathbb{N}$  (take it)
- $\bigcirc$  set  $z = a^p b^p a^p$



Context-Freedom is not the jack of all trades device.

#### Lemma

The language  $L = \{a^n b^n a^n | n \in \mathbb{N}_0\}$  is not context-free.

- $\bigcirc$  Contradiction: Suppose L is context free
- $\bigcirc$  PL  $\Rightarrow$  exists  $p \in \mathbb{N}$  (take it)
- $\bigcirc$  set  $z = a^p b^p a^p$
- $\bigcirc \Rightarrow w \in L, |z| \ge p$









we have to check all decompositions into uvwxy









 $\, \bigcirc \,$  case 1: no change in third part





- case 1: no change in third part
- $\bigcirc$  case 2: no change in third part





- case 1: no change in third part
- case 2: no change in third part
- case 3: no change in first part





- case 1: no change in third part
- case 2: no change in third part
- case 3: no change in first part
- case 4: no change in first part





- case 1: no change in third part
- case 2: no change in third part
- case 3: no change in first part
- case 4: no change in first part

contradiction to (4)!

