Inferencia Estadística y Modelos Poblacionales

Demián Wassermann

Departamento de Radiología

Harvard Medical School & Brigham and Women's Hospital

(Adaptado de la presentación de Thomas Nichols, University of Warwick)

Evaluando un Estadístico

Evaluando Imágenes Estadísticas

¿Donde está la señal?

Umbral Alto

Buena Especificidad

Bajo Poder (riesgo de falsos negativos) Umbral Medio

Umbral Bajo

Baja Especificidad (riesgo de falsos positivos)

Buen Poder ...; porqué umbralar?

No Umbralar, modelar la señal

No Umbralar,

modelar la señal

- No Umbralar,
- modelar la señal
- ¿Localización?
 - Estimadores e ICs en ubicación (x,y,z)

- No Umbralar,
- modelar la señal
- ¿Localización?
 - Estimadores e ICs en ubicación (x,y,z)
- ¿Magnitud?
 - ICs en el % de cambio

- No Umbralar,
- modelar la señal
- ¿Localización?
 - Estimadores e ICs en ubicación (x,y,z)
- ¿Magnitud?
 - ICs en el % de cambio
- ¿Extensión?
 - Estimadores e IC del volumen de la señal
 - Robusto a la selección de modelo de agrupamiento

- No Umbralar,
- modelar la señal
- ¿Localización?
 - Estimadores e ICs en ubicación (x,y,z)
- ¿Magnitud?
 - ICs en el % de cambio
- ¿Extensión?
 - Estimadores e IC del volumen de la señal
 - Robusto a la selección de modelo de agrupamiento
- ...esto requiere un modelo espacial específico

5

Espacio

Inferencia en la vida real

Localización

- Maximo local sin inferencia
- Centro de masa sin inferencia
 - Sensible al umbralado para definir la burbuja

Magnitud

Intensidad Local Máxima
 P-valores (y ICs)

Extensión

- Volumen del Grupo P-Valor, sin ICs
 - Sensible al umbralado para definir la burbuja

Inferencia a nivel voxel

- Seleccionar voxels sobre un umbral de nivel de α , u_{α}
- La mejor especificidad espacial
 - La hipótesis nula se rechaza a nivel de voxel

Inferencia de Grupos

- Proceso de dos pasos
 - Definir agrupamientos y un umbral u_{clus}
 - Retener grupos más grandes que un nivel α a u umbral k_{α}

Inferencia de Grupos

- Tipicamente más sensible
- La especificidad espacial es peor
 - La hipótesis nula se rechaza por grupo

Inferencia a nivel conjuntos

- Contar el número de burbujas c
 - Considerar la burbuja de tamaño mínimo k
- La peor especificidad espacial
 - Uno solo puede considerar la hipótesis global

Con c = 1; sólo hay I grupo más grande que k

Comparaciones Múltiples...

Test de Hipótesis

- Hipótesis Nulas H₀
- Estadístico del test T
 - t realización observada de T
- Nivel de X
 - Nivel aceptable de falsos positivos (FP)
 - Nivel $\alpha = P(T>u_{\alpha} \mid H_0)$
 - Umbral u_{α} controla FP
- P-valor
 - Evaluación de t asumiendo H_0
 - $P(T > t | H_0)$
 - Prob. de obtener t en otro experimento

Problema de las Comparaciones Múltiples

- ¿Cual de los 100,000 voxels es señal?
 - $-\alpha=0.05 \Rightarrow 5{,}000 \text{ falsos positivos}$

- ¿Cuál de los (al azar, ej.) 100 grupos es significativo?
 - $-\alpha=0.05 \Rightarrow 5$ grupos con falsos positivos

Measuring False Positives

- Familywise Error Rate (FWER)
 - Error de la Familia
 - Existencia de uno o mas falsos posiivos
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declarados activos, V falsamente entonces
 - Realizaciónde la razón de falsos descubrimientos:V/R

Bonferroni

- Para un Estadístico *T*...
 - $-T_i$ ith voxel de la imagen estadística T
- ...usar $\alpha = \alpha_0/V$
 - $-\alpha_0$ nivel FWER (e.g. 0.05)
 - -V numero de voxels
 - $-u_{\alpha}$ α -level umbral estadístico, $P(T_i \ge u_{\alpha}) = \alpha$
- Por la desigualdad de Bonferroni...

FWER = P(FWE)
= P(
$$\bigcup_i \{T_i \ge u_\alpha\} \mid H_0$$
)
 $\le \sum_i P(T_i \ge u_\alpha \mid H_0)$
= $\sum_i \alpha$

Muy conservativo con correlaciones

Independiente: V tests

Algo de dep.: ? tests

Dependencia total.: 1 test

15

Inferencia no Paramétrica

- Metodos Paramétricos
 - Se asume la distribución bajo la hipótesis nula
 - Necesitamos saber os pvalores, u_{α}

- Metodos no parametricos
 - Usamos los datos para la distribución
 - Cualquier estadístico vale

Inferencia no Paramétrica

- Metodos Paramétricos
 - Se asume la distribución bajo la hipótesis nula
 - Necesitamos saber os pvalores, u_{α}

- Metodos no parametricos
 - Usamos los datos para la distribución
 - Cualquier estadístico vale

16

TCE vs Bonf. vs Perm.

t Throchold

		tinresnoid				
		(0.05 Corrected)				
	df	RF	Bonf	Perm		
Verbal Fluency	4	4701.32	42.59	10.14		
Location Switching	9	11.17	9.07	5.83		
Task Switching	9	10.79	10.35	5.10		
Faces: Main Effect	11	10.43	9.07	7.92		
Faces: Interaction	11	10.70	9.07	8.26		
Item Recognition	11	9.87	9.80	7.67		
Visual Motion	11	11.07	8.92	8.40		
Emotional Pictures	12	8.48	8.41	7.15		
Pain: Warning	22	5.93	6.05	4.99		
Pain: Anticipation	22	5.87	6.05	5.05		

TCE vs Bonf. vs Perm.

No. Significant Voxels (0.05 Corrected)

			t		SmVar t
	df	RF	Bonf	Perm	Perm
Verbal Fluency	4	0	0	0	0
Location Switching	9	0	0	158	354
Task Switching	9	4	6	2241	3447
Faces: Main Effect	11	127	371	917	4088
Faces: Interaction	11	0	0	0	0
Item Recognition	11	5	5	58	378
Visual Motion	11	626	1260	1480	4064
Emotional Pictures	12	0	0	0	7
Pain: Warning	22	127	116	221	347
Pain: Anticipation	22	74	55	182	402

Teoría de Campos Aleatorios

Enfoque SPM: Campos Aleatorios...

- Consideramos la imagen como una grilla representando un campo aleatorio
- Usamos resultados de campos aleatorios

Soluciones FWER PCM: Teoría de Campos Aleatorios

- Característica de Euler χ,
 - Medida Topológica
 - #burbujas #agujeros
 - Si el umbral es alto, solo contamos burbujas
 - FWER = P(Max voxel ≥ $u \mid H_0$)

 $= P(Una o más burb. | H_{\bullet})$

 $\approx P(\chi_u \ge 1 \mid H_o)$

 $\approx E(\chi_u \mid H_o)$

Suprathreshold Sets

Detalles TCA: Esperanza de la Carac. de Euler

$$E(\chi_u) \approx \lambda(\Omega) |\Lambda|^{1/2} (u^2 - I) \exp(-u^2/2) / (2\pi)^2$$

- $-\Omega \longrightarrow Buscamos en el dominio <math>\Omega \subset R^3$
- $-\lambda(\Omega) \rightarrow volumen$
- $|\Lambda|^{1/2} \rightarrow aspereza$
- Hipótesis
 - Normal Multivariada
 - Estacionaria*
 - ACF dos veces diferenciable en 0
- * Estacionaria
 - Resultados válidos sin la hipótesis
 - Más precisos con ella

Random Field Theory Smoothness

- $E(\chi_u)$ depende de $|\Lambda|^{1/2}$
 - $-\Lambda$ matriz de aspereza:
- $$\begin{split} & \Lambda = \operatorname{Var} \left(\frac{\partial G}{\partial (x,y,z)} \right) \\ & = \begin{pmatrix} \operatorname{Var} \left(\frac{\partial G}{\partial x} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\ \operatorname{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \operatorname{Var} \left(\frac{\partial G}{\partial y} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\ \operatorname{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \operatorname{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \operatorname{Var} \left(\frac{\partial G}{\partial z} \right) \end{pmatrix} \\ & = \begin{pmatrix} \lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\ \lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\ \lambda_{zx} & \lambda_{zy} & \lambda_{zz} \end{pmatrix} \end{split}$$
- Suavidad
 parametrizada como
 Full Width at Half Maximum
 - FWHM de un núcleo Gaussiano necesitada para suavizar un campo de ruido blanco a la aspereza Λ

$$|\Lambda|^{1/2} = \frac{(4\log 2)^{3/2}}{\text{FWHM}_x \text{FWHM}_y \text{FWHM}_z}.$$

Random Field Theory Smoothness Parameterization

RESELS

- Resolution Elements
- 1 RESEL = FWHM_x × FWHM_y × FWHM_z
- Cantidad de RESELs R
 - $R = \lambda(\Omega) \sqrt{|\Lambda|} = (4\log 2)^{3/2} \lambda(\Omega) / (\text{FWHM}_x \times \text{FWHM}_y \times \text{FWHM}_z)$
 - Volumen de búsqueda en unidades de suavidad
 - Eg: 10 voxels, 2.5 FWHM 4 RESELS

- Cuidado con la siguiente RESEL mala interpretación
 - RESEL no son el "número de cosas independientes en la imagen"
 - Ver Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.

Teoría de Campos Aleatorios

- Suavidad est. de los residuos estandarizados
 - Variance del gradiente
 - Devuelve resels per voxel (RPV)
- Imagen de RPV
 - Estimación local de aspereza
 - Puede transformarse en est. de suavidad
 - FWHM Img = (RPV Img)-I/D
 - Dimension D, e.g. D=2 or 3

Intuición de CA

P-valor corregido para el t del voxel

```
P^{c} = P(\max T > t)

\approx E(\chi_{t})

\approx \lambda(\Omega) |\Lambda|^{1/2} t^{2} \exp(-t^{2}/2)
```

26

- El valor estático de t se incrementa
 - $-P^c$ se decrementa (mejor señal!)
- El volumen de búsqueda se incrementa (λ(Ω) ↑)
 - $-P^c$ se incrementa (CPM más severo)
- Suavidad se incrementa (|∧|¹/2↓)
 - $-P^{c}$ se decrementa (CPM menos severa)

Detalles de TCA: Fórmula Unificada

- Forma general de la característica de Euler
 - Campos χ^2 , F, & t Regiones restringidas D dimensiones•

$$E[\chi_{u}(\Omega)] = \sum_{d} R_{d}(\Omega) \rho_{d}(u)$$

 $R_d(\Omega)$: Funcional de Minkowski d-dimensional Ω

- función de dimensión D, espacio Ω y suavidad dada:

 $R_0(\Omega) = \chi(\Omega)$ característica de Euler de Ω

 $R_1(\Omega)$ = diámetro en resel

 $R_2(\Omega)$ = superficie en resel

 $R_3(\Omega)$ = volumen en resel

 $\rho_d(\Omega)$: densidad de CE *d*-dimensional de $Z(\underline{x})$

- función de dimensión y umbral, específica para cada tipo de CA:

Ej. Gaussian RF:

$$\rho_0(u) = 1 - \Phi(u)$$

$$O_1(u) = (4 \ln 2)^{1/2} \exp(-u^2/2) / (2\pi)$$

$$\rho_2(u) = (4 \ln 2) \exp(-u^2/2) / (2\pi)^{3/2}$$

$$\rho_3(u) = (4 \ln 2)^{3/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$$

$$\rho_4(u) = (4 \ln 2)^2 (u^3 - 3u) \exp(-u^2/2) / (2\pi)^{5/2}$$

 Ω

TAC Clusters

- Esperanza del tamaño del grupo
 - E(S) = E(N)/E(L)
 - S tamaño del grupo
 - N volumen sobre umbral $\lambda(\{T > u_{clus}\})$
 - L numero de grupos
- $E(N) = \lambda(\Omega) P(T > u_{clus})$
- $E(L) \approx E(\chi_u)$
 - Asumiendo que no hay agujeros

Limitaciones de TCA

- Necesidad de suavidad
 - La suavidad de FWHM 3-4× tam. voxel (Z)
 - En realidad ~10× para imágenes T images con pocos GL
- Estimación de la suavidad
 - Estimación sesgada cuando la imagen es áspera
- Normalidad multivariada
 - Imposible de verificar
- Muchas aproximaciones
- Necesidad de que sea estacionaria

SPM t_{11} : 5 groups of 10 vs all 50 5% FWE Threshold

4 5 10 22 31 33 36 39 42 47

6 7 12 17 26 37 38 46 48 49

SnPM t: 5 groups of 10 vs. all 50 5% FWE Threshold

6 7 12 17 26 37 38 46 48 49

31

4 5 10 22 31 33 36 39 42 47

SnPM *t*: 5 groups of 10 vs. all 50 **5% FWE Threshold**

Tuesday, November 12, 13

4 5 10 22 31 33 36 39 42 47

SnPM SmVar t: 5 groups of 10 vs. all 50 5% FWE Threshold

