

Electrical Circuits for Engineers (EC1000)

Lecture-3 (B)
Super Node and Super Mesh
(Ch.3.3)

Super Node(Nodal Analysis with Voltage Sources)

- We now consider how voltage sources affect nodal analysis.
- We use the circuit below for illustration.

Supernode i_4 v_1 v_2 v_3 v_4 v_4 v_5 v_4 v_5 v_6 v_8 v_9 v_9

Consider the following two possibilities

- **1**. If a voltage source is connected between the reference node and a non-reference node, we simply set the voltage at the non-reference node equal to the voltage of the voltage source. See Fig, $V_1 = 10 \text{ V}$
- 2. If the voltage source (dependent or independent) is connected between two non-reference nodes, the two non-reference nodes form a generalized node or *supernode*;

we apply both KCL and KVL to determine the node voltages.

A *supernode* is formed by enclosing a (dependent or independent) voltage source connected between two non-reference nodes and any elements connected in parallel with it.

Super Node

(Nodal Analysis with Voltage Sources)

KCL must be satisfied at a supernode like any other node. Hence, at the supernode in Figure,

$$i_1 + i_4 = i_2 + i_3$$

$$\frac{v_1 - v_2}{2} + \frac{v_1 - v_3}{4} = \frac{v_2 - 0}{8} + \frac{v_3 - 0}{6}$$

To apply KVL to the supernode in Figure, we redraw the circuit as shown in Figure (see right side). Going around the loop in the clockwise direction gives

$$-v_2 + 5 + v_3 = 0 \implies v_2 - v_3 = 5$$

5 V + + + + + v₂ v₃

we obtain the node voltages

- The voltage source inside the supernode provides a constraint equation needed to solve for the node voltages.
- A supernode has no voltage of its own.
- A supernode requires the application of both KCL and KVL.

Super Node

For the circuit shown in Figure, find the node voltages.

Applying KCL to the supernode

$$2 = i_1 + i_2 + 7$$

Expressing i_1 and i_2 in terms of the node voltages

To get the relationship between v_1 and v_2 , we apply KVL to the circuit

$$-v_1 - 2 + v_2 = 0$$
 $\Rightarrow v_2 = v_1 + 2$

$$v_2 = v_1 + 2 = -20 - 2v_1$$

(a) KCL to the supernode, (b) KVL to the loop.

and $v_2 = v_1 + 2 = -5.333$ V. Note that the 10- Ω resistor does not make any difference because it is connected across the supernode.

Problems

1. Apply nodal analysis to find node voltages

2. Find v and i in the circuit of Figure.

Thank You