Machine learning with biomedical ontologies

Presented by Sarah Alghamdi, Azza Althagafi, Robert Hoehndorf, Maxat Kulmanov, Sumyyah Toonsi, Fernando Zhapa-Camacho

Learning Outcomes

- Introduce Ontologies and the description logic
- Discuss unsupervised machine learning methods that can "embed" from one structure to another
- Introduce different methods that use ontologies in machine learning models
- Introduce mOWL, a software library for machine learning with ontologies
- Incorporate mOWL in Biomedical data analysis using different approaches

 "An ontology is a logical theory designed in order to capture the intended models corresponding to a certain conceptualization and to exclude the

unintended ones" ... Guarino 2009

- Classes and relations
- Standard identifiers
- Axioms and formal definitions
- Metadata:
 - Labels, Synonyms
 - database cross references
 - 0

Introduction

- Examples of ontologies application in biomedical domain:
 - Annotation and data integration
 - Ontologies as vocabularies
 - Statistical and predictive data analysis:
 - Enrichment analysis
 - Semantic similarity
 - Regression analysis
 - Relation prediction
 - Classification
 - Supervised
 - Unsupervised

Preliminaries: ontologies

Ontology consist of :

$$O=\{C,R,I,\vdash\}$$

- T-Box
 - Set of terminological
- A-Box
 - Set of assertions

Preliminaries: ontologies

Description Logic (DL) is used to formally and explicitly represent ontologies

Name	DL syntax	Semantics
Top concept	T	$\Delta^{\mathcal{I}}$
Bottom concept	1	Ø
Concept	C	$C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
Concept disjunction	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}}\cap C_2^{\mathcal{I}}$
Concept conjunction	$C_1 \sqcup C_2$	$C_1^{\overline{\mathcal{I}}} \cup C_2^{\overline{\mathcal{I}}}$
Concept negation	$\neg C$	$\Delta^{\mathcal{I}} ackslash C^{\mathcal{I}}$
Universal restriction	$\forall R.C$	$\{x \in \Delta^{\mathcal{I}} \forall y \in \Delta^{\mathcal{I}}((x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}})\}$
Existential restriction	$\exists R.C$	$\{x \in \Delta^{\mathcal{I}} \exists y \in \Delta^{\mathcal{I}}((x, y) \in R^{\mathcal{I}} \to y \in C^{\mathcal{I}})\}$
Subclass of	$C_1 \sqsubseteq C_2$	$C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$
Subproperty of	$R_1 \sqsubseteq R_2$	$R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$
Equivalent class	$C_1 \equiv C_2$	$C_1^{\tilde{\mathcal{I}}} = C_2^{\tilde{\mathcal{I}}}$
Equivalent property	$R_1 \equiv R_2$	$R_1^{\overline{I}} = R_2^{\overline{I}}$

```
Concepts, Roles
Person = T
Female □ Male □ ⊥
Female □ Male □ T
Female = ¬ Male
Parent ≡ ∃ has child. Person
Son \sqsubseteq Male \sqcap \exists child of. Person
Mother 

Female 

Parent
Sibling □ ∃ has sibling. Person
has brother \( \sigma \) has sibling
```

Preliminaries: ontologies

Description Logic (DL) is used to formally and explicitly represent ontologies

DL Syntax	Manchester Syntax
$C \sqcap D$	C and D
$C \sqcup D$	C or D
$\neg C$	not C
∃ <i>R</i> . <i>C</i>	R some C
∀R.C	R only C
$(\geq nR.C)$	R min n C
$(\leq nR.C)$	R max n C
(= nR.C)	R exactly n C
$\{a\}\sqcup\{b\}\sqcup$	{a b}

```
Classes, Relations
Person = T
Female □ Male □ ⊥
Female □ Male □ T
Female = ¬ Male
Parent ≡ ∃ has child. Person
Son \sqsubseteq Male \sqcap \exists child of. Person
Mother 

Female 

Parent
Sibling □ ∃ has sibling. Person
has brother \( \sigma \) has sibling
```

- Annotations and data integration
 - Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

- Annotations and data integration
 - Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

Annotations and data integration

GAF fields

The annotation flat file format is comprised of 17 tab-delimited fields.

Column	Content	Required?	Cardinality	Example	
1	DB	required	1	UniProtKB	
2	DB Object ID	required	1	P12345	
3	DB Object Symbol	required	1	PHO3	
4	Qualifier	required	1 or 2	NOTlinvolved_in	
5	GO ID	required	1	GO:0003993	
6	DB:Reference (IDB:Reference)	required	1 or greater	PMID:2676709	
7	Evidence Code	required	1	IMP	
8	With (or) From	optional	0 or greater	GO:0000346	
9	Aspect	required	1	F	
10	DB Object Name	optional	0 or 1	Toll-like receptor 4	
	DB Object Name	optional	0 0. 1	Ton mile to copies	
11	DB Object Synonym (ISynonym)	optional	0 or greater	hToll	Tollbooth
11	\$1000000000000000000000000000000000000			Programme Section • Charles of	Tollbooth
	DB Object Synonym (ISynonym)	optional	0 or greater	hToll	Tollbooth
12	DB Object Synonym (ISynonym) DB Object Type	optional required	0 or greater	hToll protein	Tollbooth
12	DB Object Synonym (ISynonym) DB Object Type Taxon(Itaxon)	optional required required	0 or greater 1 1 or 2	hToll protein taxon:9606	Tollbooth
12 13 14	DB Object Synonym (ISynonym) DB Object Type Taxon(Itaxon) Date	optional required required required	0 or greater 1 1 or 2	hToll protein taxon:9606 20090118	Tollbooth

Annotations and data integration

1.	UniProtKB	1.	MGI
2.	A0A024RBG1	2.	MGI:1913300
3.	NUDT4B	3.	0610009B22Rik
4.	enables	4.	enables
5.	GO:0003723	5.	GO:0001222
6.	GO REF:0000043	6.	MGI:MGI:4834177 GO_REF:000
7.	IEA		0096
8.	UniProtKB-KW:KW-0694	7.	ISO
_		8.	UniProtKB:P0DI82
9.	F	9.	F
10.	Diphosphoinositol polyphosphate	10.	RIKEN cDNA 0610009B22 gene
	phosphohydrolase		
11.	NUDT4B	11.	
12.	NUDT4B	12.	protein_coding_gene
13.	Protein	13.	taxon:10090
14.	taxon:9606 20221109	14.	20210709
15.	UniProt	15.	MGI
	Offir for	16.	
16.		17.	
17			

GAF fields

The annotation flat file format is comprised of 17 tab-delimited fields.

Column	Content	Required?	Cardinality	Example	
1	DB	required	1	UniProtKB	
2	DB Object ID	required	1	P12345	
3	DB Object Symbol	required	1	PHO3	
4	Qualifier	required	1 or 2	NOTlinvolved_in	
5	GO ID	required	1	GO:0003993	
6	DB:Reference (IDB:Reference)	required	1 or greater	PMID:2676709	
7	Evidence Code	required	1	IMP	
8	With (or) From	optional	0 or greater	GO:0000346	
9	Aspect	required	1	F	
10	DB Object Name	optional	0 or 1	Toll-like receptor 4	
				A CONTRACTOR OF THE PARTY OF	
11	DB Object Synonym (ISynonym)	optional	0 or greater	hToll	Tollbooth
11	DB Object Synonym (ISynonym) DB Object Type	optional required	0 or greater	hToll protein	Tollbooth
		50.			Tollbooth
12	DB Object Type	required	1	protein	Tollbooth
12	DB Object Type Taxon(Itaxon)	required	1 1 or 2	protein taxon:9606	Tollbooth
12 13 14	DB Object Type Taxon(Itaxon) Date	required required required	1 1 or 2	protein taxon:9606 20090118	Tollbooth

Annotations and data integration

Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

True path rule:

Annotation for a class is passed to its ancestors

Annotations and data integration

Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

True path rule:

Annotation for a class is passed to its ancestors

Annotations and data integration

Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

True path rule:

Annotation for a class is passed to its ancestors

Annotations to T-Box

The annotated entity **C** is added as a class to the ontology. The annotation is added a relation *R* as follows

 $\mathbf{C} \sqsubseteq \exists R. \mathbf{D}$

Example:

Annotating protein A0AVI2 To Gene Ontology

○ A0AVI2 □ ∃ annotated with. Plasma membrane

Annotations to T-Box

The annotated entity **C** is added as a class to the ontology. The annotation is added a relation *R* as follows

 $\mathbf{C} \sqsubseteq \exists R. \mathbf{D}$

Example:

Annotating protein A0AVI2 To Gene Ontology

A0AVI2 □ ∃ annotated_with. Plasma membrane

Problem, when an entity is annotated to disjoint annotations.

Annotations to T-Box

The annotated entity **C** is added as a class to the ontology. The annotation is added a relation *R* as follows

 $\mathbf{C} \sqsubseteq \exists R. \mathbf{D}$

Example:

Annotating protein A0AVI2 To Gene Ontology

○ A0AVI2 □ ∃ annotated_with. Plasma membrane

Problem, when an entity is annotated to disjoint annotations.

Annotations to T-Box

The annotated entity **C** is added as a class to the ontology. The annotation is added a relation *R* as follows

$$\mathbf{C} \sqsubseteq \exists R. \mathbf{D}$$

Example:

Annotating protein A0AVI2 To Gene Ontology

○ A0AVI2 □ ∃ annotated with. Plasma membrane

Problem, when an entity is annotated to disjoint annotations.

Example:

Annotating protein **A0AVI2** To Gene Ontology

- Annotations to T-Box
 - \circ **A0AVI2** \sqsubseteq \exists annotated with. **GO:0005886**

- Annotations to A-Box
 - Protein(A0AVI2)
 - annotated_with(*A0AVI2*, *GO:0005886*)

Following this

- Ontologies and text mining → utilizing class labels and descriptions
- Graph based embedding → utilizing axioms and class labels and descriptions
- Syntactic embedding → utilizing axioms and class labels and descriptions
- Semantic embedding → utilizing axioms