Math 2060 Class notes Spring 2021

Peter Westerbaan

Last updated: January 17, 2021

Table Of Contents

13.1: Vectors and the Geometry of Space	1
13.2: Vectors in Three Dimensions	6
13.3: Dot Products	13
13.4: Cross Products	18
13.5: Lines and Planes in Space	24
13.6: Cylinders and Quadric Surfaces	30

13.1: Vectors and the Geometry of Space

Definition.

- Vectors
 - Have a direction and magnitude,
 - vector \overrightarrow{PQ} has a tail at P and a head at Q,
 - Can be denoted as \mathbf{u} or \vec{u} ,
 - Equal vectors have the same direction and magnitude (not necessarily the same position)

- Scalars are quantities with magnitude but no direction (e.g. mass, temperature, price, time, etc.)
- **Zero vector**, denoted **0** or $\vec{0}$, has length 0 and no direction

Scalar-vector multiplication:

- Denoted $c\mathbf{v}$ or $c\vec{v}$,
- length of vector multiplied by |c|,
- $c\mathbf{v}$ has the same direction as \mathbf{v} if c > 0, and has the opposite direction as \mathbf{v} if c < 0, (what if c = 0?)
- \mathbf{u} and \mathbf{v} are parallel if $\mathbf{u} = c\mathbf{v}$. (what vectors are parallel to $\mathbf{0}$?)

Vector Addition and Subtraction:

Given two vectors \mathbf{u} and \mathbf{v} , their sum, $\mathbf{u} + \mathbf{v}$, can be represented by the parallelogram (triangle) rule: place the tail of \mathbf{v} at the head of \mathbf{u}

The difference, denoted $\mathbf{u} - \mathbf{v}$, is the sum of $\mathbf{u} + (-\mathbf{v})$:

Vector Components:

A vector \mathbf{v} whose tail is at the origin (0,0) and head is at (v_1, v_2) is a **position vector** (in **standard position**) and is denoted $\langle v_1, v_2 \rangle$. The real numbers v_1 and v_2 are the x-and y-components of \mathbf{v} .

Vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are equal if and only if $u_1 = v_1$ and $u_2 = v_2$.

Magnitude:

Given points $P(x_1, y_1)$ and $Q(x_2, y_2)$, the **magnitude**, or **length**, of vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$, denoted $|\overrightarrow{PQ}|$, is the distance between points P and Q.

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The magnitude of position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is $|\mathbf{v}|$. (How do $|\overrightarrow{PQ}|$ and $|\overrightarrow{QP}|$ relate to each other?)

Note: The norm, denoted $\|\mathbf{u}\|$ or $\|\mathbf{u}\|_2$, is equivalent to the magnitude of a vector.

Equation of a Circle:

Definition.

A **circle** centered at (a, b) with radius r is the set of points satisfying the equation

$$(x-a)^2 + (y-b)^2 = r^2.$$

A **disk** centered at (a, b) with radius r is the set of points satisfying the inequality

$$(x-a)^2 + (y-b)^2 \le r^2$$
.

Vector Operations in Terms of Components

Definition. (Vector Operations in \mathbb{R}^2)

Suppose c is a scalar, $\mathbf{u} = \langle u_1, u_2 \rangle$, and $\mathbf{v} = \langle v_1, v_2 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

Vector addition

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle$$

Scalar multiplication

Example. Let $\mathbf{u} = \langle 1, 2 \rangle$, $\mathbf{v} = \langle -2, 3 \rangle$, c = 2, and d = 3. Find the following:

$$\mathbf{u} + \mathbf{v}$$

 $c\mathbf{u}$

$$c\mathbf{u} + d\mathbf{v}$$

 $\mathbf{u} - c\mathbf{v}$

Definition.

A unit vector is any vector with length 1.

In \mathbb{R}^2 , the **coordinate unit vectors** are $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

Example. Let $\mathbf{u} = \langle -7, 3 \rangle$. Find two unit vectors parallel to \mathbf{u} . Find another vector parallel to \mathbf{u} with a magnitude of 2.

Properties of Vector Operations:

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 Commutative property of addition

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 Associative property of addition

3.
$$\mathbf{v} + \mathbf{0} = \mathbf{v}$$
 Additive identity

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$
 Additive inverse

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 Distributive property 1

6.
$$(a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$
 Distributive property 2

7.
$$0\mathbf{v} = \mathbf{0}$$
 Multiplication by zero scalar

8.
$$c\mathbf{0} = \mathbf{0}$$
 Multiplication by zero vector

9.
$$1\mathbf{v} = \mathbf{v}$$
 Multiplicative identity

10.
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$
 Associative property of scalar multiplication

13.2: Vectors in Three Dimensions

The xyz- Coordinate System:

The three-dimensional coordinate system is created by adding the z-axis, which is perpendicular to both the x-axis and the y-axis. When looking at the xy-plane, the positive direction of the z-axis protrudes towards the viewer. This can also be shown using the right-hand rule (Figure 13.25 from Briggs):

Definition.

This three-dimensional coordinate system is broken up into eight **octants**, which are separated by

- the xy-plane (z = 0),
- the xz-plane (y = 0), and
- the yz-plane (x = 0).

The **origin** is the location where all three axes intersect.

Equations of Simple Planes:

Planes in three-dimensions are analogous to lines in two-dimensions. Below, we see the yz-plane, the xz-plane, and the xy-plane, along with planes that are parallel where x, y, and z are fixed respectively:

Example (Parallel planes). Determine the equation of the plane parallel to the xz-plane passing through the point (2, -3, 7).

Distances in xyz-Space:

Recall that in \mathbb{R}^2 , for some vector \overrightarrow{PR} , the distance formula is given by

$$|PR| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

where (x_1, y_1) and (x_2, y_2) represent the points P and R respectively. This idea can be further extended into \mathbb{R}^3 by considering the two sides of the triangle formed by the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$:

Distance Formula in xyz-Space

The **distance** between points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

The **midpoint** between points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is found by averaging the x-, y-, and z-coordinates:

Midpoint
$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

Magnitude and Unit Vectors:

Definition.

The **magnitude** (or **length**) of the vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ is the distance from $P(x_1, y_1, z_1)$ to $Q(x_2, y_2, z_2)$:

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

In \mathbb{R}^3 , the **coordinate unit vectors** are $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$.

Example. Consider P(-1,4,3) and Q(3,5,7). Find

- $\bullet \quad \left| \overrightarrow{PQ} \right|$
- The midpoint between P and Q
- Two unit vectors parallel to \overrightarrow{PQ}

Equation of a Sphere:

Definition.

A **sphere** centered at (a, b, c) with radius r is the set of points satisfying the equation

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}.$$

A ball centered at (a, b, c) with radius r is the set of points satisfying the inequality

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} \le r^{2}.$$

Example. Consider P(-1,4,3) and Q(3,5,7). Find the equation of the sphere centered at the midpoint passing through P and Q

Example. What is the geometry of the intersection between $x^2 + y^2 + z^2 = 50$ and z = 1?

Example. Rewrite the following equation into the standard form of a sphere:

$$x^2 + y^2 + z^2 - 2x + 6y - 8z = -1$$

Vector Operations in Terms of Components

Definition. (Vector Operations in \mathbb{R}^3)

Suppose c is a scalar, $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Vector addition

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2, u_3 - v_3 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2, cu_3 \rangle$$

Scalar multiplication

Properties of Vector Operations:

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1.
$$u + v = v + u$$

Commutative property of addition

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

Associative property of addition

3.
$$v + 0 = v$$

Additive identity

4.
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

Additive inverse

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

Distributive property 1

$$6. (a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$$

Distributive property 2

7.
$$0\mathbf{v} = \mathbf{0}$$

Multiplication by zero scalar

8.
$$c$$
0 = **0**

Multiplication by zero vector

9.
$$1\mathbf{v} = \mathbf{v}$$

Multiplicative identity

10.
$$a(c\mathbf{v}) = (ac)\mathbf{v}$$

Associative property of scalar multiplication

13.3: Dot Products

Definition. (Dot Product)

Given two nonzero vectors **u** and **v** in two or three dimensions, their **dot product** is

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta,$$

where θ is the angle between \mathbf{u} and \mathbf{v} with $0 \le \theta \le \pi$. If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = 0$, and θ is undefined.

A physical example of the dot product is the amount of work done when a force is applied at an angle θ as shown in figure 13.43:

Note: The result of the dot product is a scalar!

Definition. (Orthogonal Vectors)

Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector is orthogonal to all vectors. In two or three dimensions, two nonzero orthogonal vectors are perpendicular to each other.

- **u** and **v** are parallel $(\theta = 0 \text{ or } \theta = \pi)$ if and only if $\mathbf{u} \cdot \mathbf{v} = \pm |\mathbf{u}||\mathbf{v}|$.
- **u** and **v** are perpendicular $(\theta = \frac{\pi}{2})$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example. Given $|\mathbf{u}| = 2$ and $|\mathbf{v}| = \sqrt{3}$, compute $\mathbf{u} \cdot \mathbf{v}$ when

$$\bullet \quad \theta = \frac{\pi}{4}$$

$$\bullet \ \theta = \frac{\pi}{3}$$

$$\bullet \quad \theta = \frac{5\pi}{6}$$

Theorem 31.1: Dot Product

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$,

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3.$

Example. Given vectors $\mathbf{u} = \langle \sqrt{3}, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, \sqrt{3}, 0 \rangle$, compute $\mathbf{u} \cdot \mathbf{v}$ and find θ .

Properties of Dot Products

Theorem 13.2: Properties of the Dot Product

Suppose \mathbf{u}, \mathbf{v} and \mathbf{w} are vectors and let c be a scalar.

1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

Commutative property

2. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$

Associative property

3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Distributive property

Orthogonal Projections

Given vectors \mathbf{u} and \mathbf{v} , the projection of \mathbf{u} onto \mathbf{v} produces a vector parallel to \mathbf{v} using the "shadow" of \mathbf{u} cast onto \mathbf{v} .

Definition. ((Orthogonal) Projection of u onto v)

The orthogonal projection of u onto \mathbf{v} , denoted $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$, where $\mathbf{v} \neq \mathbf{0}$, is

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \underbrace{|\mathbf{u}| \cos \theta}_{\text{length}} \underbrace{\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)}_{\text{direction}}.$$

The orthogonal projection may also be computed with the formulas

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \operatorname{scal}_{\mathbf{v}} \mathbf{u} \left(\frac{\mathbf{v}}{|\mathbf{v}|} \right) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v},$$

where the scalar component of u in the direction of v is

$$\operatorname{scal}_{\mathbf{v}} \mathbf{u} = |\mathbf{u}| \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}.$$

Example. Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and $\operatorname{scal}_{\mathbf{v}} \mathbf{u}$ for the following:

•
$$\mathbf{u} = \langle 1, 1 \rangle, \, \mathbf{v} = \langle -2, 1 \rangle$$

•
$$\mathbf{u} = \langle 7, 1, 7 \rangle, \mathbf{v} = \langle 5, 7, 0 \rangle$$

Applications of Dot Products

Definition. (Work)

Let a constant force F be applied to an object, producing a displacement d. If the angle between **F** and **d** is θ , then the **work** done by the force is

$$W = |\mathbf{F}||\mathbf{d}|\cos\theta = \mathbf{F} \cdot \mathbf{d}$$

Example. A force $\mathbf{F} = \langle 3, 3, 2 \rangle$ (in newtons) moves an object along a line segment from P(1,1,0) to Q(6,6,0) (in meters). What is the work done by the force?

Parallel and Normal Forces:

Example. A 10-lb block rests on a plane that is inclined at 30° above the horizontal. Find the components of the gravitational force parallel to and normal (perpendicular) to the plane.

13.4: Cross Products

Definition. (Cross Product)

Given two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^3 , the **cross product** $\mathbf{u} \times \mathbf{v}$ is a vector with magnitude

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta,$$

where $0 \le \theta \le \pi$ is the angle between **u** and **v**.

The direction of $\mathbf{u} \times \mathbf{v}$ is given by the **right-hand rule**:

When you put your the vectors tail to tail and let the fingers of your right hand curl from \mathbf{u} to \mathbf{v} , the direction of $\mathbf{u} \times \mathbf{v}$ is the direction of your thumb, orthogonal to both \mathbf{u} and \mathbf{v} (Figure 13.56).

When $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, the direction of $\mathbf{u} \times \mathbf{v}$ is undefined.

Theorem 13.3: Geometry of the Cross Product

Let **u** and **v** be two nonzero vectors in \mathbb{R}^3 .

- 1. The vectors **u** and **v** are parallel $(\theta = 0 \text{ or } \theta = \pi)$ if and only if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- 2. If **u** and **v** are two sides of a parallelogram, then the area of the parallelogram is

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta$$

Example. Consider the vectors $\mathbf{u} = \langle 2, 0, 0 \rangle$ and $\mathbf{v} = \langle \sqrt{3}, 3, 0 \rangle$. The angle between these vectors is $\theta = \frac{\pi}{3}$. Find the area of the parallelogram formed by these vectors.

Theorem 13.4: Properties of the Cross Product Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be nonzero vectors in \mathbb{R}^3 , and let a and b be scalars.

1.
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$
 Anticommutative property

2.
$$(a\mathbf{u}) \times (b\mathbf{v}) = ab(\mathbf{u} \times \mathbf{v})$$
 Associative property

3.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$
 Distributive property

4.
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$
 Distributive property

Theorem 13.5: Cross Products of Coordinate Unit Vectors

$$\mathbf{i} \times \mathbf{j} = -(\mathbf{j} \times \mathbf{i}) = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = -(\mathbf{k} \times \mathbf{j}) = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = -(\mathbf{i} \times \mathbf{k}) = \mathbf{j}$ $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

Using the unit vectors, we can compute $\mathbf{u} \times \mathbf{v}$:

$$\mathbf{u} \times \mathbf{v} = (u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}) \times (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k})$$

$$= u_1 v_1 \underbrace{(\mathbf{i} \times \mathbf{i})}_{\mathbf{0}} + u_1 v_2 \underbrace{(\mathbf{i} \times \mathbf{j})}_{\mathbf{k}} + u_1 v_3 \underbrace{(\mathbf{i} \times \mathbf{k})}_{-\mathbf{j}}$$

$$+ u_2 v_1 \underbrace{(\mathbf{j} \times \mathbf{i})}_{-\mathbf{k}} + u_2 v_2 \underbrace{(\mathbf{j} \times \mathbf{j})}_{\mathbf{0}} + u_2 v_3 \underbrace{(\mathbf{j} \times \mathbf{k})}_{\mathbf{i}}$$

$$+ u_3 v_1 \underbrace{(\mathbf{k} \times \mathbf{i})}_{\mathbf{j}} + u_3 v_2 \underbrace{(\mathbf{k} \times \mathbf{j})}_{-\mathbf{i}} + u_3 v_3 \underbrace{(\mathbf{k} \times \mathbf{k})}_{\mathbf{0}}$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$$

Theorem 13.6: Evaluating the Cross Product

Let $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. Then

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Note:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2)\mathbf{i} - (u_1v_3 - u_3v_1)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}$$

Alternative approach:

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{i} & \mathbf{j} \\ u_1 & u_2 & u_3 & u_1 & u_2 \\ v_1 & v_2 & v_3 & v_1 & v_2 \end{vmatrix}$$

Example. Compute $\mathbf{u} \times \mathbf{v}$ for $\mathbf{u} = \langle 3, 5, 4 \rangle$ and $\mathbf{v} = \langle 1, -1, 9 \rangle$.

Example. Consider the vectors $\mathbf{u} = \langle \sqrt{3}, 1, 0 \rangle$ and $\mathbf{v} = \langle -\sqrt{3}, 1, 0 \rangle$. From the unit circle, we know the angle between these two vectors is $\theta = \frac{2\pi}{3}$. Use the definition of the cross product to show this.

Example. Find the area of the triangle formed by $\mathbf{u} = \langle 1, 2, 3 \rangle$ and $\mathbf{v} = \langle 3, -1, 1 \rangle$.

Example. Given a force \mathbf{F} applied to a point P at the head of the vector $\mathbf{r} = \overrightarrow{OP}$, the **torque** produced at point O is given by $\tau = \mathbf{r} \times \mathbf{F}$ with magnitude

$$|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}||\mathbf{F}|\sin\theta.$$

Now suppose a force of 20N is applied to a wrench attached to a bolt in a direction perpendicular to the bolt. Which produces more torque: applying the force at an angle of 60° on a wrench that is 0.15m long or applying the force at an angle of 135° on a wrench that is 0.25m long?

13.5: Lines and Planes in Space

Equation of a Line:

Recall the equation of a line in \mathbb{R}^2 :

$$y = mx + b$$

where b is the intercept and m is the slope. This idea can be extended into higher dimensions:

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

Here, \mathbf{r}_0 is a fixed point, and \mathbf{v} is the position vector that is parallel to the line \mathbf{r} .

Equation of a Line

A vector equation of the line passing through the point $P_0(x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} = \langle a, b, c \rangle$ is $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$, or

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle, \quad \text{for} \quad -\infty < t < \infty$$

Equivalently, the corresponding parametric equations of the line are

$$x = x_0 + at$$
, $y = y_0 + bt$, $z = z_0 + ct$, for $-\infty < t < \infty$

Example. Find the vector equation and parametric equation of the line that

• goes through the points P(-1, -2, 1) and Q(-4, -5, -3) where t = 0 corresponds to P,

• goes through the point P(1, -3, -3) and is parallel to the vector $\mathbf{r} = \langle -4, 1, -1 \rangle$,

• goes through the point P(-2, 5, -2) and is perpendicular to the lines x = 3 - 4t, y = 2 - 3t, z = -1 - t, and x = -2 + 0t, y = 2 - t, z = 3t, where t = 0 corresponds to P.

Distance from a Point to a Line:

Given a point Q and a line ℓ , the shortest distance to the line is the length of $\overrightarrow{QQ'}$.

From the definition of the cross product, we have

$$\left|\mathbf{v} \times \overrightarrow{PQ}\right| = \left|\mathbf{v}\right| \underbrace{\left|\overrightarrow{PQ}\right| \sin \theta}_{d} = \left|\mathbf{v}\right| d$$

From here, solving for d gives us the following:

Distance Between a Point and a Line

The distance d between the point Q and the $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ is

$$d = \frac{\left| \mathbf{v} \times \overline{PQ} \right|}{\left| \mathbf{v} \right|},$$

where P is any point on the line and \mathbf{v} is a vector parallel to the line.

Example. Find the distance from the point Q(-4, -1, -3) and the line x = -5 - 5t, y = -5 + t, z = -1 + 4t. (*Hint:* Let P be the point at t = 0)

Equations of Planes:

In \mathbb{R}^2 , two distinct points determine a line.

In \mathbb{R}^3 , three noncollinear points determine a unique plane. Alternatively, a plane is uniquely determined by a point and a vector that is orthogonal to the plane.

Definition. (Plane in \mathbb{R}^3)

Given a fixed point P_0 and a nonzero **normal vector n**, the set of points P in \mathbb{R}^3 for which $\overrightarrow{P_0P}$ is orthogonal to **n** is called a **plane**.

Consider the normal vector $\mathbf{n} = \langle a, b, c \rangle$ at the point $P_0(x_0, y_0, z_0)$, and any point P(x,y,z) on the plane. Since **n** is orthogonal to the plane, it is also orthogonal to the vector $\overrightarrow{P_0P}$, which is also in the plane. Thus,

$$\mathbf{n} \cdot \overrightarrow{P_0 P} = 0$$

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = d$$

General Equation of a Plane in \mathbb{R}^3

The plane passing through the point $P_0(x_0, y_0, z_0)$ with a nonzero normal vector $\mathbf{n} = \langle a, b, c \rangle$ is described by the equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 or $ax + by + cz = d$,

where $d = ax_0 + by_0 + cz_0$.

Example. Find the equation of the plane that

• goes through the point P(-2, 5, 0) and is parallel to the plane x - 5y - 5z = 1,

• goes through the points P(5,-2,1), Q(5,1,3) and R(1,-5,-2)

• that is parallel to the vectors $\langle 4, -2, -3 \rangle$ and $\langle 3, 2, 3 \rangle$, passing through the point P(-2, -2, 5).

Example. Find the location where the line $\langle -3, 1, 4 \rangle + t \langle -1, -4, 2 \rangle$ and the plane 2x - 2y - 4z = 5 intersect.

Definition. (Parallel and Orthogonal Planes)

Two distinct planes are **parallel** if their respective normal vectors are parallel (that is, the normal vectors are scaling multiples of each other). Two plans are **orthogonal** if their respective normal vectors are orthogonal (that is, the dot product of the normal vectors is *zero*).

Example. Find the line of intersection between the planes 3x - y + 4z = -4 and x + 3y - 2z = 0.

Example. Find the smallest angle between the planes 3x - y + 4z = -4 and x + 3y - 2z = 0.

13.6: Cylinders and Quadric Surfaces

Cylinders and Traces:

When talking about three-dimensional surfaces, a *cylinder* refers to a surface that is parallel to a line. When considering surfaces that is parallel to one of the coordinate axes, that the associated variable is missing (e.g. $3y^2 + z^2 = 8$ is parallel to the x-axis).

Definition. (Trace)

A **trace** of a surface is the set of points at which the surface intersects a plane that is parallel to one of the coordinate planes. The traces in the coordinate planes are called the xy-trace, the yz-trace, and the xz-trace (Figure 13.80).

Example. Roughly sketch the following functions:

1.
$$x^2 + 4y^2 = 16$$

2.
$$x - \sin(z) = 0$$

Quadric Surfaces:

Quadric surfaces are described by the general quadratic (second-degree) equation in three variables,

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,$$

Where the coefficients A, \ldots, J and not all zero.

Example (An ellipsoid). The surface defined by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Graph a = 3, b = 4 and c = 5.

Example (An elliptic parabaloid). The surface defined by the equation $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$. Graph the elliptic paraboloid with a = 4 and b = 2.

Example (A hyperboloid of one sheet).

Graph the surface defined by the equation $\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$.

Example (A hyperboloid of two $-16x^2 - 4y^2 + z^2 + 64x - 80 = 0$.	sheets). Graph	the surface	defined by	the equation
13.6: Cylinders and Quadric Surfaces	34		Ma	th 2060 Class notes

Example (Elliptic cones). Graph the surface defined by the equation $\frac{y^2}{4} + z^2 = 4x^2$.

Example (A hyperbolic paraboloid).

Graph the surface defined by the equation $z = x^2 - \frac{y^2}{4}$.

Name	Standard Equation	Features	Graph
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	All traces are ellipses.	
Elliptic paraboloid	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	Traces with $z = z_0 > 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are parabolas.	y
Hyperboloid of one sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ are ellipses for all z_0 . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.	z y
Hyperboloid of two sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Traces with $z = z_0$ with $ z_0 > c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.	x, y
Elliptic cone	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$	Traces with $z = z_0 \neq 0$ are ellipses. Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines.	y
Hyperbolic paraboloid	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.	X y