Nr.	Derivate
1.	c' = 0
2.	x'=1
3.	$(x^n)' = nx^{n-1}$
4.	
5.	$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$ $\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$
6.	$\left(e^x\right)' = e^x$
7.	$\left(a^x\right)' = a^x \ln a$
8.	$(\ln x)' = \frac{1}{x}$
9.	$(\log_a x)' = \frac{1}{x \ln a}$
10.	$(\operatorname{arctg} x)' = \frac{1}{x^2 + 1}$
11.	$(\operatorname{arcctg} x)' = -\frac{1}{x^2 + 1}$
12.	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$
13.	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$
14.	$(\sin x)' = \cos x$
15.	$(\cos x)' = -\sin x$
16.	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$
17.	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$
18.	$\left(\sqrt{x^2 - a^2}\right)' = \frac{x}{\sqrt{x^2 - a^2}}$
19.	$\left(\sqrt{x^2 + a^2}\right)' = \frac{x}{\sqrt{x^2 + a^2}}$
20.	$(\sqrt{a^2 - x^2})' = -\frac{x}{\sqrt{a^2 - x^2}}$

Nr.	Integrale
1.	$\int dx = x + C$
2.	$\int x dx = \frac{x^2}{2} + C$
3.	$\int x^n \ dx = \frac{x^{n+1}}{n+1} + C$
4.	$\int \sqrt{x} \ dx = \frac{2}{3} \ x\sqrt{x} + C$
5.	$\int e^x dx = e^x + C$
6.	$\int a^x dx = \frac{a^x}{\ln a}$
7.	$\int \frac{1}{x} dx = \ln x + C$
8.	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
9.	$\int \frac{1}{x^2 + 1} dx = \arctan x + C$
10.	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$
11.	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left x + \sqrt{x^2 - a^2} \right + C$
12.	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$
13.	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$
14.	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$
15.	$\int \sin x dx = -\cos x + C$
16.	$\int \cos x dx = \sin x + C$
17.	$\int \operatorname{tg} x dx = -\ln \cos x + C$
18.	$\int \operatorname{ctg} x dx = \ln \sin x + C$
19.	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$
20.	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C$
21.	$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$
22.	$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} + C$
23.	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$