$12n_{0225} (K12n_{0225})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -108733460839492u^{15} + 235633173020139u^{14} + \dots + 44568754122034192d - 655346094957840, \\ &- 5.82443 \times 10^{14}u^{15} + 2.17023 \times 10^{15}u^{14} + \dots + 8.91375 \times 10^{16}c + 4.50759 \times 10^{16}, \\ &- 2.11450 \times 10^{14}u^{15} + 6.65971 \times 10^{14}u^{14} + \dots + 4.45688 \times 10^{16}b - 9.31909 \times 10^{15}, \\ &40959130934865u^{15} - 340344314483579u^{14} + \dots + 89137508244068384a - 71636506057825568, \\ &u^{16} - 3u^{15} + \dots - 64u + 32 \rangle \\ &I_2^u &= \langle -2059u^7 - 2277u^6 + \dots + 6184d + 18886, \ 1033u^7a - 1546u^7 + \dots - 5850a + 12368, \\ &- 109u^7a + 121u^7 + \dots + 2066a - 3882, \ 9443u^7a - 4639u^7 + \dots - 14966a + 1182, \\ &u^8 + u^7 - 7u^6 - 4u^5 + 16u^4 - 3u^3 - 9u^2 - 8u - 4 \rangle \end{split}$$

$$\begin{split} I_1^v &= \langle a,\ d,\ c-v,\ b-1,\ v^2-v+1 \rangle \\ I_2^v &= \langle c,\ d+v-1,\ b,\ a-1,\ v^2-v+1 \rangle \\ I_3^v &= \langle a,\ d+1,\ c+a,\ b-1,\ v+1 \rangle \\ I_4^v &= \langle a,\ a^2d+c^2v-2ca-cv+a+v,\ dv-1,\ c^2v^2-2cav-v^2c+a^2+av+v^2,\ b-1 \rangle \end{split}$$

- * 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{array}{l} \text{I. } I_1^u = \langle -1.09 \times 10^{14} u^{15} + 2.36 \times 10^{14} u^{14} + \cdots + 4.46 \times 10^{16} d - 6.55 \times \\ 10^{14}, \ -5.82 \times 10^{14} u^{15} + 2.17 \times 10^{15} u^{14} + \cdots + 8.91 \times 10^{16} c + 4.51 \times 10^{16}, \ -2.11 \times \\ 10^{14} u^{15} + 6.66 \times 10^{14} u^{14} + \cdots + 4.46 \times 10^{16} b - 9.32 \times 10^{15}, \ 4.10 \times 10^{13} u^{15} - \\ 3.40 \times 10^{14} u^{14} + \cdots + 8.91 \times 10^{16} a - 7.16 \times 10^{16}, \ u^{16} - 3 u^{15} + \cdots - 64 u + 32 \rangle \end{array}$

(i) Arc colorings

$$\begin{array}{l} a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_4 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_5 = \begin{pmatrix} -0.000459505u^{15} + 0.00381819u^{14} + \dots + 0.107302u + 0.803663 \\ 0.00474436u^{15} - 0.0149425u^{14} + \dots + 0.0874996u + 0.209095 \end{pmatrix} \\ a_8 = \begin{pmatrix} u \\ u \end{pmatrix} \\ a_2 = \begin{pmatrix} -0.000459505u^{15} + 0.00381819u^{14} + \dots + 0.107302u + 0.803663 \\ -0.00677644u^{15} + 0.0186134u^{14} + \dots - 0.258343u - 0.131025 \end{pmatrix} \\ a_1 = \begin{pmatrix} -0.00723595u^{15} + 0.0224316u^{14} + \dots - 0.151041u + 0.672638 \\ -0.00677644u^{15} + 0.0186134u^{14} + \dots - 0.258343u - 0.131025 \end{pmatrix} \\ a_{10} = \begin{pmatrix} 0.00653421u^{15} - 0.0243470u^{14} + \dots + 2.83891u - 0.505689 \\ 0.00243968u^{15} - 0.00528696u^{14} + \dots + 0.774255u + 0.0147042 \end{pmatrix} \\ a_9 = \begin{pmatrix} 0.00653421u^{15} - 0.0243470u^{14} + \dots + 2.83891u - 0.505689 \\ 0.00173022u^{15} - 0.00528696u^{14} + \dots + 0.774255u + 0.0147042 \end{pmatrix} \\ a_{12} = \begin{pmatrix} -0.0137698u^{15} + 0.0405121u^{14} + \dots + 2.840506u - 0.270168 \\ -0.00358475u^{15} + 0.0138882u^{14} + \dots + 0.905304u - 0.518106 \end{pmatrix} \\ a_{11} = \begin{pmatrix} 0.00162230u^{15} + 0.00210951u^{14} + \dots + 0.961532u - 0.579761 \\ -0.00282285u^{15} + 0.0157954u^{14} + \dots + 0.870510u + 0.171332 \end{pmatrix} \\ a_6 = \begin{pmatrix} 0.00409453u^{15} - 0.0190600u^{14} + \dots + 2.06466u - 0.520393 \\ -0.000723742u^{15} - 0.00139819u^{14} + \dots - 0.209537u - 0.231550 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{16} + u^{15} + \dots - 9u + 1$
$c_2, c_4, c_6 \ c_9$	$u^{16} - 5u^{15} + \dots - u + 1$
c_3, c_7	$u^{16} - 3u^{15} + \dots - 64u + 32$
c_5, c_{11}	$u^{16} - u^{15} + \dots + 8u + 4$
c_{10}, c_{12}	$u^{16} - 9u^{15} + \dots + 24u + 16$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{16} + 39y^{15} + \dots + 25y + 1$
c_2, c_4, c_6 c_9	$y^{16} - y^{15} + \dots + 9y + 1$
c_{3}, c_{7}	$y^{16} - 15y^{15} + \dots + 5120y + 1024$
c_5, c_{11}	$y^{16} + 9y^{15} + \dots - 24y + 16$
c_{10}, c_{12}	$y^{16} - 3y^{15} + \dots + 1248y + 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.289911 + 0.801405I		
a = 0.654021 + 0.248004I		
b = 0.336785 - 0.506907I	-0.321814 + 1.225450I	-4.70206 - 4.90073I
c = 0.424894 + 0.573951I		
d = -0.009143 + 0.596034I		
u = 0.289911 - 0.801405I		
a = 0.654021 - 0.248004I		
b = 0.336785 + 0.506907I	-0.321814 - 1.225450I	-4.70206 + 4.90073I
c = 0.424894 - 0.573951I		
d = -0.009143 - 0.596034I		
u = -1.139570 + 0.424244I		
a = 0.589120 - 0.792720I		
b = -0.396064 + 0.812657I	0.71555 + 3.67228I	-1.72542 - 4.33532I
c = -0.538420 + 0.512682I		
d = -0.335035 + 1.153290I		
u = -1.139570 - 0.424244I		
a = 0.589120 + 0.792720I		
b = -0.396064 - 0.812657I	0.71555 - 3.67228I	-1.72542 + 4.33532I
c = -0.538420 - 0.512682I		
d = -0.335035 - 1.153290I		
u = 0.575594 + 0.321074I		
a = 1.017480 + 0.434986I		
b = -0.169050 - 0.355242I	-0.11872 + 1.44911I	0.36516 - 2.80335I
c = 0.486567 + 0.345761I		
d = 0.445993 + 0.577062I		
u = 0.575594 - 0.321074I		
a = 1.017480 - 0.434986I		
b = -0.169050 + 0.355242I	-0.11872 - 1.44911I	0.36516 + 2.80335I
c = 0.486567 - 0.345761I		
d = 0.445993 - 0.577062I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.067191 + 0.531573I		
a = 0.547892 + 0.020957I		
b = 0.822510 - 0.069711I	-2.85279 + 2.27613I	-11.67196 - 3.94896I
c = 0.32158 + 1.50666I		
d = -0.047954 + 0.289837I		
u = -0.067191 - 0.531573I		
a = 0.547892 - 0.020957I		
b = 0.822510 + 0.069711I	-2.85279 - 2.27613I	-11.67196 + 3.94896I
c = 0.32158 - 1.50666I		
d = -0.047954 - 0.289837I		
u = -0.33229 + 1.72297I		
a = 0.412801 - 0.282825I		
b = 0.648602 + 1.129520I	4.26031 - 4.58330I	-1.71878 + 4.05752I
c = -0.562057 + 0.484841I		
d = 0.350130 + 0.805225I		
u = -0.33229 - 1.72297I		
a = 0.412801 + 0.282825I		
b = 0.648602 - 1.129520I	4.26031 + 4.58330I	-1.71878 - 4.05752I
c = -0.562057 - 0.484841I		
d = 0.350130 - 0.805225I		
u = -1.81588 + 0.68377I		
a = -0.227904 + 0.980118I		
b = -1.22507 - 0.96795I	6.64229 - 8.00732I	-6.00576 + 3.88395I
c = -0.415075 - 0.689342I		
d = -0.25632 - 1.93561I		
u = -1.81588 - 0.68377I		
a = -0.227904 - 0.980118I		
b = -1.22507 + 0.96795I	6.64229 + 8.00732I	-6.00576 - 3.88395I
c = -0.415075 + 0.689342I		
d = -0.25632 + 1.93561I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.72439 + 0.95526I $a = -0.389017 - 0.972862I$ $b = -1.35436 + 0.88620I$ $c = 0.383140 - 0.726169I$ $d = 0.25852 - 2.04920I$	9.8252 + 14.1242I	-4.39428 - 6.97100I
u = 1.72439 - 0.95526I $a = -0.389017 + 0.972862I$ $b = -1.35436 - 0.88620I$ $c = 0.383140 + 0.726169I$ $d = 0.25852 + 2.04920I$	9.8252 - 14.1242I	-4.39428 + 6.97100I
u = 2.26504 + 0.41669I $a = -0.104392 - 0.792584I$ $b = -1.16335 + 1.24018I$ $c = 0.399366 - 0.621003I$ $d = 0.09381 - 1.83873I$	12.28130 + 3.00558I	-2.14690 - 1.40998I
u = 2.26504 - 0.41669I $a = -0.104392 + 0.792584I$ $b = -1.16335 - 1.24018I$ $c = 0.399366 + 0.621003I$ $d = 0.09381 + 1.83873I$	12.28130 - 3.00558I	-2.14690 + 1.40998I

II. $I_2^u = \langle -2059u^7 - 2277u^6 + \dots + 6184d + 1.89 \times 10^4, \ 1033au^7 - 1546u^7 + \dots - 5850a + 1.24 \times 10^4, \ -109au^7 + 121u^7 + \dots + 2066a - 3882, \ 9443au^7 - 4639u^7 + \dots - 1.50 \times 10^4a + 1182, \ u^8 + u^7 + \dots - 8u - 4 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0352523au^{7} - 0.0391332u^{7} + \dots - 0.668176a + 1.25550 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0352523au^{7} + 0.0391332u^{7} + \dots + 0.668176a - 1.25550 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0352523au^{7} + 0.0391332u^{7} + \dots + 1.66818a - 1.25550 \\ -0.0352523au^{7} + 0.0391332u^{7} + \dots + 0.668176a - 1.25550 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1033}{6184}u^{7}a + \frac{1}{4}u^{7} + \dots + \frac{2925}{3092}a - 2 \\ 0.332956u^{7} + 0.368208u^{6} + \dots - 4.89796u - 3.05401 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1033}{6184}u^{7}a + \frac{1}{4}u^{7} + \dots + \frac{2925}{3092}a - 2 \\ 0.150712au^{7} + 0.332956u^{7} + \dots - 0.141009a - 3.05401 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0391332au^{7} + 0.0133409u^{7} + \dots + 1.25550a - 2.01892 \\ -0.0187581au^{7} - 0.0163325u^{7} + \dots + 0.172057a - 3.19502 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0163325au^{7} + 0.0133409u^{7} + \dots + 0.804981a - 2.01892 \\ -0.00226391au^{7} - 0.0593467u^{7} + \dots - 0.324062a - 3.35220 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.167044au^{7} - 0.0829560u^{7} + \dots + 0.945990a + 1.05401 \\ 0.150712au^{7} - 0.483668u^{7} + \dots - 0.141009a + 3.19502 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{933}{1546}u^7 - \frac{561}{1546}u^6 + \frac{7043}{1546}u^5 + \frac{278}{773}u^4 - \frac{8922}{773}u^3 + \frac{11743}{1546}u^2 + \frac{10913}{1546}u - \frac{2838}{773}u^4 - \frac{10913}{1546}u^3 + \frac{10913}{1546}u^3$$

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{16} + 3u^{15} + \dots + 2336u + 256$
$c_2, c_4, c_6 \ c_9$	$u^{16} - 3u^{15} + \dots + 40u - 16$
c_3, c_7	$(u^8 + u^7 - 7u^6 - 4u^5 + 16u^4 - 3u^3 - 9u^2 - 8u - 4)^2$
c_5, c_{11}	$(u^8 - 2u^7 + 5u^6 - 6u^5 + 7u^4 - 7u^3 + 4u^2 - 4u + 1)^2$
c_{10}, c_{12}	$(u^8 - 6u^7 + 15u^6 - 14u^5 - 9u^4 + 31u^3 - 26u^2 + 8u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{16} + 17y^{15} + \dots - 2843136y + 65536$
$c_2, c_4, c_6 \ c_9$	$y^{16} - 3y^{15} + \dots - 2336y + 256$
c_3, c_7	$(y^8 - 15y^7 + 89y^6 - 252y^5 + 366y^4 - 305y^3 - 95y^2 + 8y + 16)^2$
c_5, c_{11}	$(y^8 + 6y^7 + 15y^6 + 14y^5 - 9y^4 - 31y^3 - 26y^2 - 8y + 1)^2$
c_{10}, c_{12}	$(y^8 - 6y^7 + 39y^6 - 146y^5 + 267y^4 - 239y^3 + 162y^2 - 116y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.170290 + 0.725937I		
a = 0.508470 + 0.631641I		
b = -0.226676 - 0.960653I	1.14222 - 1.62541I	-1.41499 + 1.42555I
c = -1.002720 + 0.319564I		
d = 0.519668 + 0.225325I		
u = 1.170290 + 0.725937I		
a = 0.406912 - 0.059872I		
b = 1.40546 + 0.35393I	1.14222 - 1.62541I	-1.41499 + 1.42555I
c = 0.507576 + 0.506015I		
d = 0.136526 + 1.108320I		
u = 1.170290 - 0.725937I		
a = 0.508470 - 0.631641I		
b = -0.226676 + 0.960653I	1.14222 + 1.62541I	-1.41499 - 1.42555I
c = -1.002720 - 0.319564I		
d = 0.519668 - 0.225325I		
u = 1.170290 - 0.725937I		
a = 0.406912 + 0.059872I		
b = 1.40546 - 0.35393I	1.14222 + 1.62541I	-1.41499 - 1.42555I
c = 0.507576 - 0.506015I		
d = 0.136526 - 1.108320I		
u = -0.195492 + 0.552709I		
a = 0.527146 + 0.046214I		
b = 0.882537 - 0.165040I	-2.92647 - 1.66195I	-9.38368 + 3.48117I
c = -0.51191 - 1.84722I		
d = -0.94136 - 3.95806I		
u = -0.195492 + 0.552709I		
a = -5.82950 + 3.76506I		
b = -1.121050 - 0.078180I	-2.92647 - 1.66195I	-9.38368 + 3.48117I
c = 0.76737 + 1.32533I		
d = -0.128596 + 0.282324I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.195492 - 0.552709I		
a = 0.527146 - 0.046214I		
b = 0.882537 + 0.165040I	-2.92647 + 1.66195I	-9.38368 - 3.48117I
c = -0.51191 + 1.84722I		
d = -0.94136 + 3.95806I		
u = -0.195492 - 0.552709I		
a = -5.82950 - 3.76506I		
b = -1.121050 + 0.078180I	-2.92647 + 1.66195I	-9.38368 - 3.48117I
c = 0.76737 - 1.32533I		
d = -0.128596 - 0.282324I		
u = -0.580387		
a = 0.467644		
b = 1.13838	-2.18625	-3.21290
c = -0.692019		
d = -0.969961		
u = -0.580387		
a = 1.67123		
b = -0.401639	-2.18625	-3.21290
c = 1.96141		
d = -0.271415		
u = 2.05532		
a = 0.059530 + 0.815129I		
b = -0.91088 - 1.22029I	7.78143	-4.64060
c = 0.443183 - 0.593724I		
d = 0.12235 - 1.67535I		
u = 2.05532		
a = 0.059530 - 0.815129I		
b = -0.91088 + 1.22029I	7.78143	-4.64060
c = 0.443183 + 0.593724I		
d = 0.12235 + 1.67535I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -2.21226 + 0.50002I $a = -0.131998 + 0.812425I$ $b = -1.19484 - 1.19923I$ $c = -0.440910 + 0.544962I$ $d = 0.02631 + 1.55679I$	12.14610 - 5.90409I	-2.27459 + 2.82977I
a = 0.02031 + 1.05013I $u = -2.21226 + 0.50002I$ $a = 0.140006 - 0.672065I$ $b = -0.70292 + 1.42606I$ $c = -0.397283 - 0.631875I$ $d = -0.11421 - 1.86330I$	12.14610 - 5.90409I	-2.27459 + 2.82977I
u = -2.21226 - 0.50002I $a = -0.131998 - 0.812425I$ $b = -1.19484 + 1.19923I$ $c = -0.440910 - 0.544962I$ $d = 0.02631 - 1.55679I$	12.14610 + 5.90409I	-2.27459 - 2.82977I
u = -2.21226 - 0.50002I $a = 0.140006 + 0.672065I$ $b = -0.70292 - 1.42606I$ $c = -0.397283 + 0.631875I$ $d = -0.11421 + 1.86330I$	12.14610 + 5.90409I	-2.27459 - 2.82977I

III.
$$I_1^v = \langle a, \ d, \ c-v, \ b-1, \ v^2-v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v - 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v - 1 \\ -v \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4v 1

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
$c_3, c_6, c_7 \ c_8, c_9$	u^2
c_4	$(u+1)^2$
c_5,c_{12}	$u^2 - u + 1$
c_{10}, c_{11}	$u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_6, c_7 c_8, c_9	y^2
c_5, c_{10}, c_{11} c_{12}	$y^2 + y + 1$

	Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	0.500000 + 0.866025I		
a =	0		
b =	1.00000	-1.64493 + 2.02988I	-3.00000 - 3.46410I
c =	0.500000 + 0.866025I		
d =	0		
v =	0.500000 - 0.866025I		
a =	0		
b =	1.00000	-1.64493 - 2.02988I	-3.00000 + 3.46410I
c =	0.500000 - 0.866025I		
d =	0		

IV.
$$I_2^v = \langle c, \ d+v-1, \ b, \ a-1, \ v^2-v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -v+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ -v+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -v \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -v+1\\ -v \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ v-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4v 5

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	u^2
c_5, c_{10}	$u^2 + u + 1$
c_{6}, c_{8}	$(u-1)^2$
<i>c</i> 9	$(u+1)^2$
c_{11}, c_{12}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y^2
$c_5, c_{10}, c_{11} \\ c_{12}$	$y^2 + y + 1$
c_6, c_8, c_9	$(y-1)^2$

	Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	0.500000 + 0.866025I		
a =	1.00000		
b =	0	-1.64493 - 2.02988I	-3.00000 + 3.46410I
c =	0		
d =	0.500000 - 0.866025I		
v =	0.500000 - 0.866025I		
a =	1.00000		
b =	0	-1.64493 + 2.02988I	-3.00000 - 3.46410I
c =	0		
d =	0.500000 + 0.866025I		

V.
$$I_3^v = \langle a, \ d+1, \ c+a, \ b-1, \ v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \ c_8$	u-1
c_3, c_5, c_7 c_{10}, c_{11}, c_{12}	u
c_4, c_9	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_8, c_9	y-1
$c_3, c_5, c_7 \\ c_{10}, c_{11}, c_{12}$	y

Solutions to I_3^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0		
b = 1.00000	-3.28987	-12.0000
c = 0		
d = -1.00000		

 $VI. \\ I_4^v = \langle a, \ c^2v - cv + \dots - 2ca + a, \ dv - 1, \ c^2v^2 - v^2c + \dots + a^2 + av, \ b - 1 \rangle$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} c \\ d \end{pmatrix}$$

$$a_9 = \begin{pmatrix} c + v \\ d \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} c - 1 \\ dc - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c - 1 \\ dc - c \end{pmatrix}$$

$$a_6 = \begin{pmatrix} c \\ d \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-d^2 v^2 4c 8$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$v = \cdots$		
$a = \cdots$		
$b = \cdots$	-3.28987 + 2.02988I	-8.06967 - 3.55149I
$c = \cdots$		
$d = \cdots$		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{2}(u-1)^{3}(u^{16}+u^{15}+\cdots-9u+1)(u^{16}+3u^{15}+\cdots+2336u+256)$
c_2, c_6	$u^{2}(u-1)^{3}(u^{16}-5u^{15}+\cdots-u+1)(u^{16}-3u^{15}+\cdots+40u-16)$
c_3, c_7	$u^{5}(u^{8} + u^{7} - 7u^{6} - 4u^{5} + 16u^{4} - 3u^{3} - 9u^{2} - 8u - 4)^{2}$ $\cdot (u^{16} - 3u^{15} + \dots - 64u + 32)$
c_4, c_9	$u^{2}(u+1)^{3}(u^{16}-5u^{15}+\cdots-u+1)(u^{16}-3u^{15}+\cdots+40u-16)$
c_5, c_{11}	$u(u^{2} - u + 1)(u^{2} + u + 1)$ $\cdot (u^{8} - 2u^{7} + 5u^{6} - 6u^{5} + 7u^{4} - 7u^{3} + 4u^{2} - 4u + 1)^{2}$ $\cdot (u^{16} - u^{15} + \dots + 8u + 4)$
c_{10}	$u(u^{2} + u + 1)^{2}$ $\cdot (u^{8} - 6u^{7} + 15u^{6} - 14u^{5} - 9u^{4} + 31u^{3} - 26u^{2} + 8u + 1)^{2}$ $\cdot (u^{16} - 9u^{15} + \dots + 24u + 16)$
c_{12}	$u(u^{2} - u + 1)^{2}$ $\cdot (u^{8} - 6u^{7} + 15u^{6} - 14u^{5} - 9u^{4} + 31u^{3} - 26u^{2} + 8u + 1)^{2}$ $\cdot (u^{16} - 9u^{15} + \dots + 24u + 16)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_8	$y^{2}(y-1)^{3}(y^{16}+17y^{15}+\cdots-2843136y+65536)$ $\cdot(y^{16}+39y^{15}+\cdots+25y+1)$
c_2, c_4, c_6 c_9	$y^{2}(y-1)^{3}(y^{16}-3y^{15}+\cdots-2336y+256)(y^{16}-y^{15}+\cdots+9y+1)$
c_3, c_7	$y^{5}(y^{8} - 15y^{7} + 89y^{6} - 252y^{5} + 366y^{4} - 305y^{3} - 95y^{2} + 8y + 16)^{2}$ $\cdot (y^{16} - 15y^{15} + \dots + 5120y + 1024)$
c_5, c_{11}	$y(y^{2} + y + 1)^{2}$ $\cdot (y^{8} + 6y^{7} + 15y^{6} + 14y^{5} - 9y^{4} - 31y^{3} - 26y^{2} - 8y + 1)^{2}$ $\cdot (y^{16} + 9y^{15} + \dots - 24y + 16)$
c_{10}, c_{12}	$y(y^{2} + y + 1)^{2}$ $\cdot (y^{8} - 6y^{7} + 39y^{6} - 146y^{5} + 267y^{4} - 239y^{3} + 162y^{2} - 116y + 1)^{2}$ $\cdot (y^{16} - 3y^{15} + \dots + 1248y + 256)$