Predict 411 SEC 56

Auto Insurance Problem

Introduction

Auto Insurance Problem data set contains approximately 8,100 records presenting customers at an auto insurance company. Each record has two target variables, TARGET_FLAG which indicates if a customer has been involved in a car crash and the second variable of TARGET_AMT which would be zero if a customer has not crashed his/her vehicle, or be greater than zero if there has been a crash.

For this assignment, the goal is to build components for a probability/severity model by constructing a linear regression to estimate the probability that a customer will be involved in an accident, and a model to estimate the cost in the event of a crash.

Introduction to Exploratory Data Analysis and Data Preparation

Some background will be presented followed by an initial examination. Following steps will occur after;

- Obtain histograms for all continuous variables. (seeking variability)
- Examine the bi-serial correlations for each continuous variable and the dependent variable. (seeking higher correlation for better independent variable)
- Discretize each continuous variable with cut-points. (seeking dichotomous relationship to dependent variable)
- Examine the cross tabulation of the discretized variables. (seeking non-linear relationship to dependent variable)
- If there are any differences in the proportion profiles the originating variable will be incorporated into the model.
- May consider transformation of the originating variable.
- Obtain frequency counts for all categorical variables. (seeking variability)
- Obtain crosstabs of our dependent variable by each categorical variable. (seeking proportional variation)
- Code each categorical variable with dummy variables. (seeking individual explanation over dependent variable)

With these procedures, I will identify variables with a high variability for inclusion in the model. Not all diagnostics graphics will be included but I will attempt to convey the thorough nature of exploration.

Data Background

A data dictionary is provided in this assignment which describes variables and provides an estimate at the theoretical effect.

Table 1 Data Dictionary, with Data Types

VARIABLE NAME	TYPE	DEFINITION
AGE	continuous	Age of Driver
BLUEBOOK	continuous	Value of Vehicle
CAR_AGE	continuous	Vehicle Age
CAR_TYPE	categorical	Type of Car
CAR_USE	categorical	Vehicle Use
CLM_FREQ	continuous	#Claims(Past 5 Years)
EDUCATION	categorical	Max Education Level
HOMEKIDS	continuous	#Children @Home
HOME_VAL	continuous	Home Value
INCOME	continuous	Income
JOB	categorical	Job Category
KIDSDRIV	categorical	#Driving Children
MSTATUS	categorical	Marital Status
MVR_PTS	continuous	Motor Vehicle Record Points
OLDCLAIM	continuous	Total Claims (Past 5 Years)
PARENT1	categorical	Single Parent
RED_CAR	categorical	A Red Car
REVOKED	categorical	License Revoked (Past 7 Years)
SEX	categorical	Gender
TIF	continuous	Time in Force
TRAVTIME	continuous	Distance to Work
URBANICITY	categorical	Home/Work Area
YOJ	continuous	Years on Job

From Table 1, some variables which seem to be continuous from to their initial data type could be categorical instead, such as the number of children at home. While all variables will be equally attended to, if low correlation between the dependent variable and an indicative variable based on description, considerations will be made on how manipulations of such variable will turn out.

Exploratory Data Analysis on Continuous Variables

First step is an examination of continuous variable means with respect to the dependent variable, shown under Table 2.

Table 2 Means with respect to the Dependent Variable (Target Flag)

	N				N					
TARGET_FLAG	Obs	Variable	Label	N	Miss	Mean	Std Dev	Range	5th Pctl	95th Pctl
0	600	AGE	Age	600	1	45.322790	8.2022705	65.0000000	32.000000	58.000000
	8	BLUEBOOK	Value of	7	0	1	8401.95	68240.00	0	0
		CAR_AGE	Vehicle	600	368	16230.95	5.7201267	28.0000000	5300.00	31500.00
		CLM_FREQ	Vehicle Age	8	0	8.6709220	1.0860488	5.0000000	1.0000000	18.000000
		HOMEKIDS	#Claims(Pas	564	0	0.6486352	1.0762090	5.0000000	0	0
		HOME_VAL	t 5 Years)	0	343	0.6439747	129938.83	885282.34	0	3.0000000
		INCOME	#Children	600	335	169075.41	48552.20	367030.26	0	3.0000000
		MVR_PTS	@Home	8	0	65951.97	1.8916611	11.0000000	0	390219.07
		OLDCLAIM	Home	600	0	1.4137816	8143.61	53986.00	0	159516.58
		TIF	Value	8	0	3311.59	4.2020970	24.0000000	0	5.0000000
		TRAVTIME	Income	566	0	5.5557590	16.131290	137.120630	1.0000000	22642.00
		YOJ	Motor	5	331	33.030344	0	4	6.3550660	13.000000
			Vehicle	567		6	3.9175259	23.0000000	0	0
			Record	3		10.671833				60.506403
			Points	600		7				8
			Total	8						15.000000
			Claims(Past	600						0
			5 Years)	8						
			Time in	600						
			Force	8						
			Distance to	600						
			Work	8						
			Years on	567						
			Job	7						

	N				N					
TARGET_FLAG	Obs	Variable	Label	N	Miss	Mean	Std Dev	Range	5th Pctl	95th Pctl
1	215	AGE	Age	214	5	43.301210	9.5646287	60.0000000	27.000000	60.000000
	3	BLUEBOOK	Value of	8	0	4	8299.81	60740.00	0	0
		CAR_AGE	Vehicle	215	142	14255.90	5.5353874	28.0000000	4100.00	29330.00
		CLM_FREQ	Vehicle Age	3	0	7.3674789	1.2483641	5.0000000	1.0000000	18.000000
		HOMEKIDS	#Claims(Pas	201	0	1.2169066	1.1954470	5.0000000	0	0
		HOME_VAL	t 5 Years)	1	121	0.9368323	118150.14	750455.22	0	3.0000000
		INCOME	#Children	215	110	115256.55	42782.04	320126.98	0	3.0000000
		MVR_PTS	@Home	3	0	50641.30	2.5791851	13.0000000	0	311529.40
		OLDCLAIM	Home	215	0	2.4816535	10071.09	57037.00	0	130380.98
		TIF	Value	3	0	6061.55	3.9329017	20.0000000	0	8.0000000
		TRAVTIME	Income	203	0	4.7807710	15.185385	91.6143255	1.0000000	32025.00
		YOJ	Motor	2	123	34.768120	5	19.0000000	9.6941973	13.000000
			Vehicle	204		3	4.5122598		0	0
			Record	3		10.016748				60.340343
			Points	215		8				8
			Total	3						15.000000
			Claims(Past	215						0
			5 Years)	3						
			Time in	215						
			Force	3						
			Distance to	215						
			Work	3						
			Years on	203						
			Job	0						

From Table 2, several variables have missing records. More importantly, there are noticeable differences in means between 0/1 target flag although they are within the variable standard deviation.

Of missing records, no variables are exceedingly large proportions within the observed data. Therefore, a blanket approach will be utilized in imputation of the mean. While there may be deeper consequences in assigning the mean to imputed values, it may be better than removing the observations from the data set.

Histograms of variables will be made as tests for normality. Some variables appear to resemble categorical variables, notably CLM_FREQ, HOMEKIDS, MVR_PTS. It seems reasonable to pull them to the categorical side of the analysis. However, they are much easier to interpret if they are used as continuous variables. It is easier to understand what one unit increase will affect in these variables.

From the histograms, three variables have very strong presences to the left side; IMP_CAR_AGE, IMP_HOME_VAL, and OLDCLAIM. For the variable IMP_CAR_AGE, there appears to be little data prior to

one year of car age. For IMP_HOME_VAL, it can be argued that survey method may be behind in creating this significant left side presence.

Figure 1Distribution of IMP_HOME_VAL

It is highly likely that a driver without a house would report the value as zero, which will create a distortion in mean. Thus, it is an indicator variable for the home ownership. A pre-qualifier question as whether a driver owns a house may have deterred this distortion, followed by an approximation of home values.

This applies to the variable OLDCLAIM. A significant left presence in the variable likely indicates the lack of divided questions in the method of data collection instead of the measured phenomena. Thus, a potential transformation is to be considered only if there are promises for inclusion into the model.

The simple correlation between the continuous variables and the dependent variable is showed under Table 3.

Table 3 Continuous Variable Correlation to TARGET_FLAG

Pearson Correlation Coefficients, N = 8161 Prob > r under H0: Rho=0						
TARGET_FLAG IMP_AGE BLUEBOOK IMP_CAR_AGE CLM_FRI						
IMP_AGE	-0.10313 <.0001	1.00000	0.16492 <.0001	0.17080 <.0001	-0.02408 0.0296	
BLUEBOOK	-0.10338	0.16492	1.00000	0.18337	-0.03634	
Value of Vehicle	<.0001	<.0001		<.0001	0.0010	
IMP_CAR_AGE	-0.09734 <.0001	0.17080 <.0001	0.18337 <.0001	1.00000	-0.00902 0.4151	
IMP_HOME_VAL	-0.17848	0.20422	0.25181	0.20487	-0.09143	
	<.0001	<.0001	<.0001	<.0001	<.0001	
IMP_INCOME	-0.13824	0.17614	0.41849	0.39093	-0.04655	
	<.0001	<.0001	<.0001	<.0001	<.0001	
OLDCLAIM Total Claims(Past 5 Years)	0.13808	-0.02928	-0.02952	-0.01300	0.49513	
	<.0001	0.0082	0.0077	0.2402	<.0001	
TIF Time in Force	-0.08237	-0.00007	-0.00542	0.00752	-0.02302	
	<.0001	0.9952	0.6242	0.4971	0.0375	
TRAVTIME Distance to Work	0.04815	0.00560	-0.01680	-0.03680	0.00641	
	<.0001	0.6131	0.1292	0.0009	0.5625	
IMP_YOJ	-0.06849	0.13198	0.13961	0.05760	-0.02554	
	<.0001	<.0001	<.0001	<.0001	0.0210	

Variables will move forward into the model construction phase if it exceeds the 0.10 threshold. The travel time has low correlation. While the concept of longer travel may seem to increase the likelihood of a crash, variables TIF, TRAVTIME and YOJ will not be considered for usage.

From the cross correlations, there are some potential issues with variables. Decisions will be held off until the model construction stage and after computing the variance inflation factor.

Next step is calculation of point bi-serial correlations. First, creation of indicator variable families for each of the continuous variables will be made. Points will be made along the Q1, Mean and Q3 quantiles. For some variables, such as IMP_HOME_VAL, other quartiles must be considered due to skewness.

Examining the point bi-serial correlations show the proportion profiles. Each continuous variable is broken into four points. From observations, there are different proportion profiles in every single continuous variable. In addition, there is a change in proportion profile across points which indicates that there is a non-linear relationship between the dependent variable and the continuous variables. This likely indicates that transformations are needed to the variable during model incorporation. Of the

continuous variables, IMP_HOME_VAL cannot be used raw. An indicator variable called I_HOMEOWN will be made with zero value if IMP_HOME_VAL is zero, and one if the variable reports a value. Result is that 28% of observations include the missing values that have been imputed are not home owners.

Categorical Variables

A bi-serial correlation will be performed the proportion profiles will be examined. From the observations, the dataset is pre-processed with variables with the z_* prefix. This made easier to consider the categorical variable such as MSTATUS as both married and unmarried status can be examined. Every single categorical variable has differences in proportion profiles except for URBANICITY. This variable will not be considered further based on this criterion. Considering MVR_PTS as a categorical variable may have been a mistake since the variable has 13 bins. Instead, MVR_PTS will be considered as a continuous variable.

Next step is to codify each categorical variable as a family of dummy variables. To avoid the dummy variable trap, variables of references are chosen with the smallest category in each variable. The only exception will be the 'Yes'/'No' variables and they will have dummy variables to be one value with Yes answer.

Build Models (Logistics, Probability of Crash)

A logistics regression model will be made with the default scoring method, which is the equivalent to fitting by iteratively reweighted least squares. This method results in a large grid of the Chi-Square score for each model, incrementing by the number of incorporated variables. Table 4 examines the best scoring for the two top models with a single variable through seven variables.

Table 4 Logistics Regression by Fisher Score

N Variables	Chi-Square Score	Incorporated Variables
1	360.5259	MVR_PTS
1	349.4074	CLM_FREQ
2	508.7027	CLM_FREQ MVR_PTS
2	504.413	MVR_PTS REV_L
3	641.5337	CLM_FREQ MVR_PTS REV_L
3	639.9598	MVR_PTS USE_P REV_L
4	775.7635	IMP_INCOME MVR_PTS USE_P REV_L

N Variables	Chi-Square Score	Incorporated Variables
4	763.1352	CLM_FREQ IMP_INCOME USE_P REV_L
5	888.9681	CLM_FREQ IMP_INCOME MVR_PTS USE_P REV_L
5	880.2277	IMP_INCOME MVR_PTS USE_P MARRIED_Y REV_L
6	983.9883	CLM_FREQ IMP_INCOME MVR_PTS USE_P MARRIED_Y REV_L
6	968.6079	CLM_FREQ IMP_INCOME MVR_PTS I_HOMEOWN USE_P REV_L
7	1044.1525	CLM_FREQ IMP_INCOME MVR_PTS TYPE_MINI USE_P MARRIED_Y REV_L
7	1028.586	CLM_FREQ IMP_INCOME MVR_PTS I_HOMEOWN TYPE_MINI USE_P REV_L

While using a single selection criteria, produced models are optimistic. The top performing models will be constructed with these number of variables. Four variables will be first due to the increase in Chi-Square score as more models are included. No more than seven variables will be considered as there will be a need to include the use of each TYPE_* for every vehicle in the data set. It makes the explanation less complicated.

IMP_INCOME is incorporated into each of the models. Its histogram showed a heavy left. While It passed the tests for normality, a log transformation was performed which resulted in decrease performance in ROC, concordant and discordant. Therefore, IMP_INCOME will be continuously used even with its skewed histogram.

Select Model (Logistics, Probability of Crash)

Details for three selected models will be listed and the results are interpreted.

$$Logit(Y) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_4 + e$$

Table 5 Model with Four Variables

In Model	In Data	Label
Yis	TARGET_FLAG	Crashes
X_1 is	IMP_INCOME	Imputed Income

X_2 is	MVR_PTS	Motor Vehicle Record Points
X_3 is	USE_P	Vehicle Use (Personal/Commercial)
X ₄ is	REV_L	Licensed Revoked

Table 6 Coefficient Values on Model with Four Variables

Analysis of Maximum Likelihood Estimates					
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-0.6500	0.0624	108.6164	<.0001
IMP_INCOME	1	-8.2E-6	6.583E-7	155.0936	<.0001
MVR_PTS	1	0.2013	0.0117	295.9227	<.0001
USE_P	1	-0.6941	0.0540	165.2281	<.0001
REV_L	1	0.9122	0.0732	155.2338	<.0001

The interpretation of the above model, all variables being held, is that: For a one unit increase in income there will be a 0.000065% decrease in the likelihood of an accident. For a one unit increase in the amount of motor vehicle record points there is a 0.0117% increase in the likelihood of a crash. If one is using a personal vehicle there is a 5.4% increase of an accident. Finally, if the driver has had a license revoked in the past, there is a 7.32% increase in the likelihood of a crash.

Figure 2 ROC Curve for Model

From examining ROC, the model performs at 0.6951 coverage. The curve above the diagonal line. While the IMP_INCOME variable is difficult in interpretability, scaling after parameter estimate is not acceptable and scaling before parameter estimate seems unreasonable, or illogical.

Logit (Y) =
$$\theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_4 + \theta_5 X_5 + e$$

Table 7 Model with Five Variables

In N	/lodel	In Data	Label
Y	'is	TARGET_FLAG	Crashes
<i>X</i> ₁	is	CLM_FREQ	#Claims (Past 5 Years)
<i>X</i> ₂	is	IMP_INCOME	Imputed Income
<i>X</i> ₃	is	MVR_PTS	Motor Vehicle Record Points
X ₄	is	USE_P	Vehicle Use (Personal/Commercial)
X ₅	is	REV_L	Licensed Revoked

Table 8 Coefficient Values on Model with Five Variables

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-0.8074	0.0646	156.3133	<.0001
CLM_FREQ	1	0.2709	0.0233	135.2113	<.0001
IMP_INCOME	1	-8.19E-6	6.654E-7	151.5979	<.0001
MVR_PTS	1	0.1463	0.0126	135.3884	<.0001
USE_P	1	-0.6694	0.0545	150.7663	<.0001
REV_L	1	0.8967	0.0739	147.2318	<.0001

For one unit increase in the claim frequency (another claim within the last five-year period) the likelihood of a crash increases by 2.33%. For a unit increase in income the likelihood of a crash increases by 0.000665%. For one unit increase in motor vehicle record points the likelihood of a crash increases by 1.26%. Use of a personal vehicle results in 5.45% more likelihood of a crash as opposed to a commercial vehicle. Finally, if the driver has their licensed revoked in the past there is 7.39% increase in likelihood of a crash.

Figure 3 ROC Curve for Model #2

Five-variable model increased area under the curve from 0.6951 to 0.7143 with the inclusion of CLM_FREQ into the model.

$$Logit (Y) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_4 + \theta_5 X_5 + \theta_6 X_6 + e$$

Table 9 Model with Six Variables

In Model	In Data	Label
Yis	TARGET_FLAG	Crashes
X_1 is	CLM_FREQ	#Claims(Past 5 Years)
X ₂ is	IMP_INCOME	Imputed Income
X_3 is	MVR_PTS	Motor Vehicle Record Points
X ₄ is	USE_P	Vehicle Use (Personal/Commercial)
<i>X</i> ₅ is	MARRIED_Y	Marital Status (Yes Married)
X ₆ is	REV_L	Licensed Revoked

Table 10 Coefficient Values on Model with Six Variables

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-0.4333	0.0727	35.5139	<.0001		
CLM_FREQ	1	0.2631	0.0235	124.9811	<.0001		
IMP_INCOME	1	-8.56E-6	6.705E-7	162.8418	<.0001		
MVR_PTS	1	0.1449	0.0127	130.5962	<.0001		
USE_P	1	-0.6733	0.0550	149.9436	<.0001		
MARRIED_Y	1	-0.5995	0.0543	121.8612	<.0001		
REV_L	1	0.8764	0.0746	138.1145	<.0001		

For one unit increase in the claim frequency (another claim within the last five-year period) the likelihood of a crash increases by 2.35%. For one unit increase in income the likelihood of a crash decreases by 0.000067%. For one unit increase in motor vehicle record points the likelihood of a crash increases by 1.27%. Use of a personal vehicle results in a 5.5% more likelihood of a crash as opposed to a commercial vehicle. Being married results in a 5.43% more likelihood of a crash. Finally, if the driver has their licensed revoked in the past there is a 7.46% increase in likelihood of a crash.

Figure 4 ROC Curve for Model #3

This model, with six variables, provides the highest ROC coverage of 0.7284.

For each of these models, increases are made in the ROC coverage values with additions of independent variables. Each of the included independent variables are simple to explain in their interpretations. For the model deployment, six variable model will be used to predict the likelihood of a crash.

As an experiment, the six-variable model was incorporated with a variable with an imputed with the mean. An indicator variable for the observations was made. Thus, a seven-variable model was created to examine whether the ROC curve improved, but the result was not improved. Thus, the six-variable model is the best choice for reduced complexity during deployment and interpretation.

Select Model #2 (Linear Regression, Estimation of Cost)

For this step of analysis, a logistics regression will be utilized as the selection criteria be based on the Adjusted R-Square metric. The models will be culled down to smaller numbers of parameters to support interpretability. The selection of a model is;

$$Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_2 X_2 + \theta_3 X_3$$

Table 11 Three Variable model for TARGET AMT

In Model	In Data	Label
Yis	TARGET_AMT	Cost after Crash
X_1 is	HOMEKIDS	Value of Vehicle
X_2 is	IMP_CAR_AGE	Vehicle Age
X_3 is	CLM_FREQ	#Claims (Past 5 Years)

Table 12 Three Variable Model Coefficient Values

Parameter Estimates						
Variable	Label	DF	Parameter Estimate	,	t Value	Pr > t
Intercept	Intercept	1	1324.6448 9	109.4986 2	12.10	<.0001
HOMEKIDS	#Children @Home	1	216.66500	46.73093	4.64	<.0001
IMP_CAR_AGE		1	-41.75664	9.44730	-4.42	<.0001
CLM_FREQ	#Claims(Past 5 Years)	1	464.81029	44.54290	10.44	<.0001

If all variables are held equal, the intercept provides us with an indication of the target amount crash cost. For every one unit increase in the number of kids at home, the cost increases by approximately \$217 on average. For an increase of age of the vehicle is that cost of crash decreases by approximately \$42 on average. For every one unit increase in the number of claims filed over the last five years, the cost increases approximately \$465 on average.

However, the model is far from the best model that can be found with the variables within this data set.

Table 13 Thee Variable Model Goodness-of-Fit

Source	
Root MSE	4659.18377
R-Square	0.0193
Adj R-Square	0.0190
F Value	53.61

Several models using automatic variable selection were made. The models that scored highest with goodness-of-fit selection criteria incorporated more than 15 variables, including dummy variables. Despite the poor performance, a simpler model for implementation is chosen instead.

Conclusion

The construction of logistics models requires a lot of preparatory data manipulation. Within the dataset, given variables have been prepared which assisted in analysis. However, there are a lot of iterative work to examine variables that would be acceptable to take forward into the model construction and selection. In the case of using variation in ratio, almost every single variable was qualified to be taken forward. As this modeling methodology was being utilized, it will be interesting to examine how early observation of variation in ratio will be indicative of need for incorporation into the model, and likely more importantly how the variable needs to be transformed.

All exhaustive transformation of variables was not explored and incorporated into the model and it likely will impact the overall performance of the models constructed. Some of the transformed variables early on due to examination of their nature (via histograms) did not perform any better after transformation.

Interestingly, few of the dummy variable families was selected during the automated variable selection techniques. In this analysis, when these variables were not considered to immediate model incorporations, it was viewed as acceptable due to their increase of the interpretation. The group membership dummy variables seemed to be more popular during selection, as well as provided a simpler form for interpretation.

The logistics model is more naturally interpretable than previous models constructed with the OLS method.