# 第十八章 样例学习

## Learning from examples



### Outline

- 18.1 学习形式
- 18.2 监督学习
- 18.3 决策树归纳



#### ▶什么是学习

- 学习是一个过程,通过学习可以对 Agent 的性能进行改进
- Simon:学习就是系统中的变化,这种变化 使系统比以前更有效地去做同样的工作
- 对于未知环境,缺少全知,学习是必要的
- Agent 任何部件的性能都可以通过从数据中 进行学习来改进



• 智能体性能的改进依赖以下四个主要因素:

- 要改进哪个部件?
- 使用什么样的表示法?
- Agent 具备什么样的先验知识?
- 学习类型?

有监督学习 无监督学习 半监督 / 自监督学习 强化学习



• 问题求解 Agent : 状态空间

• 逻辑 Agent :命题逻辑或一阶逻辑

· 不确定推理 Agent :贝叶斯网络

### • 有监督学习(Supervised learning)

- 对每一个输入都有一个正确的目标输出,从一组输入-输出的实例数据集中, 学习出一个"输入-输出"的映射函数:Y=h(X)(模型参数)

)= "Cat"

- 当新的数据到来时,可以根据 h 函数预测结果



**Labelled Data** 

- 无监督学习 ( Unsupervised learning )
  - 没有来自外部环境的直接反馈(输出值),自组织学习输入的模式
  - 一需要挖掘数据中的隐含规律
  - 最常见的任务是聚类

Training set:  $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$ 



- 强化学习(Reinforcement learning)
  - 一外部环境仅给出一个对当前输出的一个评价(奖赏或惩罚信号),不会给出具体的期望输出
  - 系统从环境学习以使得奖励最大





### Outline

- 18.1 学习形式
- 18.2 监督学习
- 18.3 决策树归纳



 给定一个训练集 N 个样本 , (x<sub>1</sub>, y<sub>1</sub>) , (x<sub>2</sub>, y<sub>2</sub>),...(x<sub>n</sub>, y<sub>n</sub>) , 其 中, $y_i = f(x_i)$ ,真实的 f 是未知的。如果假说空间 H 中存在一个假 说或者函数 h ( hypothesis ) , 使得  $h \approx f$  , 就称 h 是一致假







验证阶段

测试阶段

预测未来

- ▶ 监督学习
- 分类学习问题:如果输出 y 是离散的值



- 回归学习问题:如果 y 是一个连续的数值
  - 预测明天的最高温度

- 举例:曲线拟合
  - 在某些数据点上拟合一个单变量 函数,样例是(x,y)平面上的 点,其中y=f(x)
  - 在真实函数 f 未知的情况下,用 一个函数 h 逼近它



- 举例:曲线拟合
  - 在某些数据点上拟合一个单变量 函数,样例是(x,y)平面上的 点,其中y=f(x)
  - 在真实函数 f 未知的情况下,用 一个函数 h 逼近它



- 举例:曲线拟合
  - 在某些数据点上拟合一个单变量 函数,样例是(x,y)平面上的 点,其中y=f(x)
  - 在真实函数 f 未知的情况下,用 一个函数 h 逼近它



- 举例:曲线拟合
  - 在某些数据点上拟合一个单变量 函数,样例是(x,y)平面上的 点,其中y=f(x)
  - 在真实函数 f 未知的情况下,用 一个函数 h 逼近它



- 举例:曲线拟合
  - 在真实函数 f 未知的情况下,用一个函数 h 逼近它
  - 较好拟合训练数据的复杂假说和 更好泛化的简单假说之间存在折中



归纳学习中的基本问题:如何从多个一致假说中抉择?

答案:选择与数据一致的最简单的假说(奥坎姆剃刀)

- 假说空间选择很重要。若假说空间包含真实函数,学习问题是可实现的。
- 不幸的是,由于真实函数未知,一个给定学习问题是否可实现的,并不 总是可判定的

- 通过选择在给定数据下  $h^* = \underset{h \in \mathscr{H}}{\operatorname{arg max}} P(h \mid \operatorname{data})$  说  $h^*$  ,能够实现监督学习
- 由贝叶斯公式,可得:  $h^* = \underset{h \in \mathscr{H}}{\operatorname{arg max}} P(\operatorname{data} \mid h)P(h)$

### Outline

- ■机器学习
- 18.3 决策树归纳
  - 18.3.1 决策树表示法
  - 18.3.2 决策树的表达能力
  - 18.3.3 从样例归纳决策树
  - 18.3.4 选择测试属性



#### **Decision Trees**

- 决策树归纳是一类最简单的机器学习形式,是一种以样例为基础的归纳学习方法
- 从一组训练数据中学习到的函数,一棵决策树表示一个函数:y = f(x)
  - 输入 x : 属性值向量
  - 输出 y: 一个决策
- 输入输出可以离散的,也可以连续的
- 布尔分类(二分类)
  - 输入值是离散的,输出为二值的情况
  - 输出为真:正例
  - 输出为假:反例



### 决策树学习 - 就餐问题

#### 基于下面的 10 个属性,决定是否要在餐馆等座位?

- 1. Alternate (候选): 附近是否有另一家合适的餐馆?
- 2. Bar (酒吧):该餐馆中供顾客等候的吧区是否舒适?
- 3. Fri/Sat (周五/周六)是周五或周六吗?
- 4. Hungry (饥饿)是否饥饿?
- 5. Patrons(顾客): 该餐馆中有多少顾客 (None, Some, Full)
- 6. Price (价格): 餐馆的价格范围(\$,\$\$,\$\$\$)
- 7. Raining (下雨)外面是否在下雨?
- 8. Reservation (预约): 是否预约过?
- 9. Type (类型): 餐馆的种类 (French, Italian, Thai, Burger)
- 10. WaitEstimate (等候时间估计):估计的等候时间(0-10, 10-30, 30-60, >60)

### 基于属性的表示

- 决定是否要在餐馆等座位的实例集  $X_1 \sim X_{12}$
- 实例是通过属性值描述的

| E | xample   |     | Attributes |     |     |      |        |      |     |         |       |      |
|---|----------|-----|------------|-----|-----|------|--------|------|-----|---------|-------|------|
|   | 1        | Alt | Bar        | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | Wait |
|   | $X_1$    | Т   | F          | F   | Т   | Some | \$\$\$ | F    | Т   | French  | 0-10  | Т    |
|   | $X_2$    | Т   | F          | F   | Т   | Full | \$     | F    | F   | Thai    | 30–60 | F    |
|   | $X_3$    | F   | Т          | F   | F   | Some | \$     | F    | F   | Burger  | 0-10  | Т    |
|   | $X_4$    | Т   | F          | Т   | Т   | Full | \$     | F    | F   | Thai    | 10-30 | Т    |
|   | $X_5$    | Т   | F          | Т   | F   | Full | \$\$\$ | F    | Т   | French  | >60   | F    |
|   | $X_6$    | F   | Т          | F   | Т   | Some | \$\$   | Т    | Т   | Italian | 0-10  | Т    |
|   | $X_7$    | F   | Т          | F   | F   | None | \$     | Т    | F   | Burger  | 0-10  | F    |
|   | $X_8$    | F   | F          | F   | Т   | Some | \$\$   | Т    | Т   | Thai    | 0-10  | Т    |
|   | $X_9$    | F   | Т          | Т   | F   | Full | \$     | Т    | F   | Burger  | >60   | F    |
|   | $X_{10}$ | Т   | Т          | Т   | Т   | Full | \$\$\$ | F    | Т   | Italian | 10-30 | F    |
|   | $X_{11}$ | F   | F          | F   | F   | None | \$     | F    | F   | Thai    | 0-10  | F    |
|   | $X_{12}$ | Т   | Т          | Т   | Т   | Full | \$     | F    | F   | Burger  | 30–60 | Т    |

• 实例分类: 正 (T) 、 负 (F)

输入属性值的可能组合 9216 种,仅通过 12 个样例学习,

对缺失的 9204 个输出值给出

预测。

#### **Decision Trees**

- > 假设空间的一种可能表示
- > 决策树通过把实例从根节点排列到某个叶子节点来分类



■ 一棵决策树表示一个函数: y = f(x)

| Example      |     | 9J  | St. 55 |     |     | tributes |      |     |      |     | Target |
|--------------|-----|-----|--------|-----|-----|----------|------|-----|------|-----|--------|
| LJ. Kalinpie | Alt | Bar | Fri    | Hun | Pat | Price    | Rain | Res | Type | Est | Wait   |

- x= ( Yes , No, No, Yes, Some , ...
  , No )
- y = ?

### Outline

- 18.2 监督学习
- 18.3 决策树归纳
  - 18.3.1 决策树表示法
  - 18.3.2 决策树的表达能力
  - 18.3.3 从样例归纳决策树
  - 18.3.4 选择测试属性

### 决策树的表示能力

- 决策树能表示输入属性的任何函数
- 对布尔型函数,真值表中每一行对应树中根到叶节点的一条路径:



### 决策树的表示能力

 对于具有 10 个布尔属性的 饭店例子,有 2<sup>1024</sup> 或者大 约 10<sup>308</sup> 个候选的函数

• 在如此大的空间中寻找好的假说,需要设计精巧的算法



### 决策树学习要点

- 目标:找到和训练集一致的较小的树(树中所有的路径都很短,整棵树的规模比较小)
- 思想:递归地选择"最好"或"最佳"的属性作为树或子树的根,通过较少数量的测试就能得到正确的分类
- 最好:分类能力最好

### Outline

- 18.2 监督学习
- 18.3 决策树归纳
  - 18.3.1 决策树表示法
  - 18.3.2 决策树的表达能力
  - 18.3.3 从样例归纳决策树
  - 18.3.4 选择测试属性

## Features and examples

#### ■ 就餐问题的样例

- 12 个训练样例
- 10 个分类属性
- 目标 WillWait( 真 : 正例 , 假 : 反 (

|   | Example         |     |     |     |     | At   | tributes      | }             |     |         |       | Target   |
|---|-----------------|-----|-----|-----|-----|------|---------------|---------------|-----|---------|-------|----------|
|   | <b>Dirempre</b> | Alt | Bar | Fri | Hun | Pat  | Price         | Rain          | Res | Type    | Est   | WillWait |
|   | $X_1$           | T   | F   | F   | T   | Some | \$\$\$        | F             | T   | French  | 0–10  | T        |
|   | $X_2$           | T   | F   | F   | T   | Full | \$            | F             | F   | Thai    | 30–60 | F        |
|   | $X_3$           | F   | T   | F   | F   | Some | \$            | F             | F   | Burger  | 0–10  | T        |
|   | $X_4$           | T   | F   | T   | T   | Full | \$            | F             | F   | Thai    | 10–30 | T        |
|   | $X_5$           | T   | F   | T   | F   | Full | <i>\$\$\$</i> | F             | T   | French  | >60   | F        |
| 1 | $X_6$           | F   | T   | F   | T   | Some | <i>\$\$</i>   | $\mathcal{T}$ | T   | ltalian | 0–10  | T        |
| 1 | $X_7$           | F   | T   | F   | F   | None | \$            | Τ             | F   | Burger  | 0–10  | F        |
|   | $X_8$           | F   | F   | F   | T   | Some | <i>\$\$</i>   | Τ             | T   | Thai    | 0–10  | T        |
|   | $X_9$           | F   | T   | T   | F   | Full | \$            | $\mathcal{T}$ | F   | Burger  | >60   | F        |
|   | $X_{10}$        | T   | T   | T   | Τ   | Full | \$\$\$        | F             | T   | ltalian | 10–30 | F        |
|   | $X_{11}$        | F   | F   | F   | F   | None | \$            | F             | F   | Thai    | 0–10  | F        |
|   | $X_{12}$        | T   | T   | T   | T   | Full | \$            | F             | F   | Burger  | 30–60 | T        |

目标:寻找一棵决策树:与样例一致,且规模尽可能小。

即:通过较少的测试达到正确分类。

## **Decision Tree Learning**

■ 采用贪婪"分而治之"( Divide- and -conquer )的策

#### 略

- 将问题分解为更小的子问题,这些子问题又可以 被递归求解
- 总是优先测试最重要的属性
- "最重要的属性":对于样例分类具有最大差异的 属性



### 选择一个属性

- 采用贪婪"分而治之"( Divide- and -conquer )的策略
  - 总是优先测试最重要的属性
  - ■"最重要的属性":对于样例分类具有最大差异的属性



### **Decision Tree Learning**

#### ■ 决策树生成要考虑 4 种情况:

- 1. 如果剩余样例都是正例(或反例), 则返回,可回答 Yes 或 No
- 2. 如果既有正例又有反例,则选择最好 属性继续分裂
- 3. 如果没有留下任何<u>样例</u>,则返回一个 缺省值(父结点样例中最常见的输出)
- 4. 如果没有<u>属性</u>,返回剩余样例中得票 最多的分类。



### **Decision Tree Learning**

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function Decision-Tree-Learning(examples, attributes, parent_examples) returns
a tree
  if examples is empty then return PLURALITY-VALUE(parent_examples)
  else if all examples have the same classification then return the classification
  else if attributes is empty then return PLURALITY-VALUE(examples)
  else
      A \leftarrow \operatorname{argmax}_{a \in attributes} | \operatorname{IMPORTANCE}(a, examples) |
      tree \leftarrow a new decision tree with root test A
      for each value v_k of A do
          exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}
          subtree \leftarrow \text{DECISION-TREE-LEARNING}(exs, attributes - A, examples)
          add a branch to tree with label (A = v_k) and subtree subtree
      return tree
```



## Example: Learned Tree

Decision tree learned from these 12 examples:



- Substantially simpler than "true" tree
- Also: it's reasonable

### Outline

- 18.2 监督学习
- 18.3 决策树归纳
  - 18.3.1 决策树表示法
  - 18.3.2 决策树的表达能力
  - 18.3.3 从样例归纳决策树
  - 18.3.4 选择测试属性

### 选择一个属性

• 思想: 理想的属性是将实例分为只包含正例或只包含反例的集合



- Patrons? 不理想,但是很不错
- we need a measure of how "good" a split is, even if the results aren't perfectly separated out

### **Entropy and Information**

■ 形式化度量"相当好"和"真正无用",使用信息收益的概念定义属性的 Importance

- 熵是信息论中的基本量(Shannon, Weaver, 1949)
  - 熵是随机变量的不确定性度量,量化整个概率分布中的不确定性总量
  - 不确定性越小,熵越小
  - 单位:比特
  - 一般地,设<mark>随机变量 V</mark> 取值为  $v_k$  的概率:  $P(v_k)$  ,则 V 的熵定义为:



Entropy: 
$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

### **Entropy and Information**

- 熵是信息论中的基本量(Shannon, Weaver,1949)
  - 熵是随机变量的不确定性度量
  - Scale: bits

Entropy: 
$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- Answer to Boolean question with prior <1/2, 1/2>? 抛硬币的熵
- Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>? 四面色子的熵
- Answer to 4-way question with prior <0, 0, 0, 1>?
- Answer to 3-way question with prior <1/2, 1/4, 1/4>?



## **Entropy**

- Also called the entropy of the distribution
  - More uniform = higher entropy
  - More values = higher entropy
  - More peaked = lower entropy

■ 设布尔随机变量以 q 的概率为真,则可以定义该变量的熵:

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$



### Entropy

■ 设布尔随机变量以 q 的概率为真,则可以定义该变量的熵:

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$

■ 例如,一个训练集包括 p 个正例样本和 n 个负例样本,目标属性的熵:

$$H(Goal) = B\left(\frac{p}{p+n}\right)$$

$$\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$



• 信息增益(Information Gain ):一个属性 A 的信息增益就是由于使用这个属性分裂样例而导致的期望熵降低,即不确定性的减少量

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$



• Remainder(A) 是用属性 A 测试后剩余的<u>期望</u>熵:一个属性 A 假定有 d 个不同的取值,根据其取值可以将数据集 E 分成  $E_1$ , ...,  $E_d$  子集,每个子集  $E_i$  包含  $P_i$  个正例,  $P_i$  个负例,

$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$



Remainder(A) = 
$$\frac{2}{12}B(\frac{0}{2}) + \frac{4}{12}B(\frac{4}{4}) + \frac{6}{12}B(\frac{2}{6})$$

■ 按属性 A 分裂的信息增益,是熵的期望降低的量

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$





$$Gain(Patrons) = 1 - \left[ \frac{2}{12} B \left( \frac{0}{2} \right) + \frac{4}{12} B \left( \frac{4}{4} \right) + \frac{6}{12} B \left( \frac{2}{6} \right) \right] \approx 0.541$$
比特
$$Gain(Type) = 1 - \left[ \frac{2}{12} B \left( \frac{1}{2} \right) + \frac{2}{12} B \left( \frac{1}{2} \right) + \frac{4}{12} B \left( \frac{2}{4} \right) + \frac{4}{12} B \left( \frac{2}{4} \right) \right] = 0$$
比特

其他的属性的信息增益也可以进行类似的计算

结论: Patrons 具有最高的信息增益,被决策树算法选为决策树的根

### Next Step: Recurse

- 继续找下一个属性!
- Two branches are done
- What to do under "full"?
  - See what examples are there...

| Example  |     |     |     |     | At   | tributes      | 3    |     |         |       | Target   |
|----------|-----|-----|-----|-----|------|---------------|------|-----|---------|-------|----------|
|          | Alt | Bar | Fri | Hun | Pat  | Price         | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T   | F   | F   | T   | Some | <i>\$\$\$</i> | F    | T   | French  | 0–10  | T        |
| $X_2$    | T   | F   | F   | T   | Full | \$            | F    | F   | Thai    | 30–60 | F        |
| $X_3$    | F   | T   | F   | F   | Some | \$            | F    | F   | Burger  | 0–10  | T        |
| $X_4$    | T   | F   | T   | T   | Full | \$            | F    | F   | Thai    | 10–30 | T        |
| $X_5$    | T   | F   | T   | F   | Full | \$\$\$        | F    | T   | French  | >60   | F        |
| $X_6$    | F   | T   | F   | Τ   | Some | <i>\$\$</i>   | T    | T   | ltalian | 0–10  | T        |
| $X_7$    | F   | T   | F   | F   | None | \$            | T    | F   | Burger  | 0–10  | F        |
| $X_8$    | F   | F   | F   | Τ   | Some | <i>\$\$</i>   | T    | T   | Thai    | 0–10  | T        |
| $X_9$    | F   | T   | T   | F   | Full | \$            | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T   | T   | T   | T   | Full | \$\$\$        | F    | T   | Italian | 10–30 | F        |
| $X_{11}$ | F   | F   | F   | F   | None | \$            | F    | F   | Thai    | 0–10  | F        |
| $X_{12}$ | T   | T   | T   | T   | Full | \$            | F    | F   | Burger  | 30–60 | T        |



## 总结 - 选择测试属性

| Example  | Attributes |     |     |     |      |        |      |     |         |       |          |  |
|----------|------------|-----|-----|-----|------|--------|------|-----|---------|-------|----------|--|
|          | Alt        | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait |  |
| $X_1$    | T          | F   | F   | T   | Some | \$\$\$ | F    | T   | French  | 0–10  | T        |  |
| $X_2$    | T          | F   | F   | T   | Full | \$     | F    | F   | Thai    | 30–60 | F        |  |
| $X_3$    | F          | T   | F   | F   | Some | \$     | F    | F   | Burger  | 0–10  | T        |  |
| $X_4$    | T          | F   | T   | T   | Full | \$     | F    | F   | Thai    | 10–30 | T        |  |
| $X_5$    | T          | F   | T   | F   | Full | \$\$\$ | F    | T   | French  | >60   | F        |  |
| $X_6$    | F          | T   | F   | T   | Some | \$\$   | T    | T   | Italian | 0–10  | T        |  |
| $X_7$    | F          | T   | F   | F   | None | \$     | T    | F   | Burger  | 0–10  | F        |  |
| $X_8$    | F          | F   | F   | T   | Some | \$\$   | T    | T   | Thai    | 0–10  | T        |  |
| $X_9$    | F          | T   | T   | F   | Full | \$     | T    | F   | Burger  | >60   | F        |  |
| $X_{10}$ | T          | T   | T   | T   | Full | \$\$\$ | F    | T   | Italian | 10–30 | F        |  |
| $X_{11}$ | F          | F   | F   | F   | None | \$     | F    | F   | Thai    | 0–10  | F        |  |
| $X_{12}$ | T          | T   | T   | T   | Full | \$     | F    | F   | Burger  | 30–60 | T        |  |



$$H(Goal) = B\left(\frac{p}{p+n}\right)$$

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$

$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

# 练习:打球决策树

#### 数据:

14 天的气象数据(属性:outlook, temperature, humidity, windy),并已知这些天气是否打球(play)。

#### 问题:

根据决策树算法,构建一棵是否打球的决策树。并给出每个结点选择分裂属性时所作的计算。

| outlook  | temper<br>ature | humidit<br>y | windy | play |
|----------|-----------------|--------------|-------|------|
| sunny    | hot             | high         | FALSE | no   |
| sunny    | hot             | high         | TRUE  | no   |
| overcast | hot             | high         | FALSE | yes  |
| rainy    | mild            | high         | FALSE | yes  |
| rainy    | cool            | normal       | FALSE | yes  |
| rainy    | cool            | normal       | TRUE  | no   |
| overcast | cool            | normal       | TRUE  | yes  |
| sunny    | mild            | high         | FALSE | no   |
| sunny    | cool            | normal       | FALSE | yes  |
| rainy    | mild            | normal       | FALSE | yes  |
| sunny    | mild            | normal       | TRUE  | yes  |
| overcast | mild            | high         | TRUE  | yes  |
| overcast | hot             | normal       | FALSE | yes  |
| rainy    | mild            | high         | TRUE  | no   |