Analysis I

Die Mitarbeiter von http://mitschriebwiki.nomeata.de/

12. Dezember 2016

Inhaltsverzeichnis

ınr	naitsverzeichnis	3
I.	Vorwort I.1. Über dieses Skriptum I.2. Wer I.3. Wo	5
H.	Eingeführte Begriffe II.1. Mengen	7 7 7 7
1.	Reelle Zahlen	9
2.	Natürliche Zahlen	13
3.	Folgen, Abzählbarkeit	17
4.	Wie Sie Wollen	19
5.	Wurzeln und rationale Exponenten	21
6.	Konvergente Folgen	23
7.	Wichtige Beispiele	27
8.	Häufungswerte und Teilfolgen	31
9.	Oberer und unterer Limes	33
10	.Das Cauchy-Kriterium	37
11	. Unendliche Reihen	39
12	. Konvergenzkriterien	43
13	.Umordnungen und Produkte von Reihen	47
14	. Potenzreihen	53
15	g-adische Entwicklungen	55
16	Grenzwerte bei Funktionen	59
17	Stetigkeit	63

In halts verzeichn is

18. Eigenschaften stetiger Funktionen	65
19. Funktionsfolgen und -reihen	69
20. Gleichmäßige Stetigkeit	73
21. Differenzierbarkeit	75
22. Höhere Ableitungen	83
23. Das Riemann-Integral	87
24. Uneigentliche Integrale	103
25. Funktionen von beschränkter Variation	105
26. Das Riemann-Stieltjes-Integral	107
A. Satz um Satz (hüpft der Has)	111
Stichwortverzeichnis	114
B. Credits für Analyis I	117

I. Vorwort

I.1. Über dieses Skriptum

Dies ist ein erweiterter Mitschrieb der Vorlesung "Analysis I" von Herrn Schmoeger im Wintersemester 04/05 an der Universität Karlsruhe (TH). Die Mitschriebe der Vorlesung werden mit ausdrücklicher Genehmigung von Herrn Schmoeger hier veröffentlicht, Herr Schmoeger ist für den Inhalt nicht verantwortlich.

I.2. Wer

Gestartet wurde das Projekt von Joachim Breitner. Beteiligt am Mitschrieb sind ausser Joachim noch Manuel Holtgrewe, Wenzel Jakob, Pascal Maillard und Jonathan Picht.

1.3. Wo

Alle Kapitel inklusive IATEX-Quellen können unter http://mitschriebwiki.nomeata.de abgerufen werden. Dort ist ein Wiki eingerichtet und von Joachim Breitner um die IATEX-Funktionen erweitert. Das heißt, jeder kann Fehler nachbessern und sich an der Entwicklung beteiligen. Auf Wunsch ist auch ein Zugang über Subversion möglich.

II. Eingeführte Begriffe

II.1. Mengen

Durchschnitt, Vereinigung, Differenz, Leere Menge: \emptyset , $M\subseteq N$, $M\subset N$, $a\in M$, $a\notin M$

II.2. Funktionen

M,N Mengen, $M,N \neq \emptyset$; $f:M \rightarrow N$

II.3. Logik

- $\bullet \Rightarrow Implikation$
- ullet \Leftrightarrow Äquivalenz
- $\bullet := per Definition gleich$
- $\bullet \ :\Leftrightarrow \operatorname{per}$ Definiton äquivalent
- $\bullet \ \forall$ Abkürzung für "für jedes", "für alle"
- $\bullet \ \exists$ Abkürzung für "es gibt", "es existiert"

1. Reelle Zahlen

Die Reellen Zahlen sind eine Erfindung des menschlichen Geistes, sie haben von Natur aus keine Eigenschaften. Wie Schachfiguren haben sie nur eine Bedeutung im Rahmen der Regeln. Diese Regeln heißen hier Axiome, das sind Forderungen, die wir an etwas stellen, und aus denen wir dann weitere Erkenntnisse erlangen.

Die Grundmenge der Analysis ist \mathbb{R} , die Menge der reellen Zahlen: Diese Menge führen wir axiomatisch ein, durch die folgenden 15 Axiome.

In \mathbb{R} sind zwei Verknüpfungen "+"und "·"gegeben, die jedem Paar $a,b\in\mathbb{R}$ genau ein $a+b\in\mathbb{R}$ und genau ein $ab:=a\cdot b\in\mathbb{R}$ zuordnen.

Axiom (Körperaxiome)

(A1)
$$a + (b + c) = (a + b) + c \ \forall a, b, c \in \mathbb{R}$$

(A2)
$$a(bc) = (ab)c \ \forall a, b, c \in \mathbb{R}$$

(A3)
$$a + b = b + a \ \forall a, b \in \mathbb{R}$$

(A4)
$$ab = ba \ \forall a, b \in \mathbb{R}$$

(A5)
$$\exists 0 \in \mathbb{R} : a + 0 = a \ \forall a \in \mathbb{R}$$

(A6)
$$\exists 1 \in \mathbb{R} \setminus \{0\} : a \cdot 1 = a \ \forall a \in \mathbb{R}$$

(A7)
$$\forall a \in \mathbb{R} \exists -a \in \mathbb{R} : a + (-a) = 0$$

(A8)
$$\forall a \in \mathbb{R} \setminus \{0\} \exists a^{-1} \in \mathbb{R} : aa^{-1} = 1$$

(A9)
$$a(b+c) = ab + ac \ \forall a, b, c \in \mathbb{R}$$

Dabei nennt man A1 und A2 Assoziativgesetze, A3 und A4 Kommutativgesetze und A9 Distributivgesetz,

Alle Regeln der Grundrechenarten lassen sich aus (A1) bis (A9) herleiten. Diese Regeln seien von nun an bekannt.

Beispiele:

(1) Behauptung: Es gibt genau ein $0 \in \mathbb{R}$ mit $a + 0 = a \ \forall a \in \mathbb{R}$.

Beweis: Die Existenz folgt direkt aus (A5). Der Beweis der Eindeutigkeit: Es sei $\tilde{0} \in \mathbb{R}$ mit $a + \tilde{0} = a \ \forall a \in \mathbb{R}$. Daraus folgt $0 + \tilde{0} = 0 \Rightarrow 0 = 0 + \tilde{0} = \tilde{0} + 0 = \tilde{0}$, also $0 = \tilde{0}$. (Aufgabe: Beweise die Eindeutigkeit von 1, -a, ...)

(2) **Behauptung:** $a \cdot 0 = 0 \ \forall a \in \mathbb{R}$

Beweis: Sei $a \in \mathbb{R}$ und $b := a \cdot 0$. Dann $b = a(0+0) = a \cdot 0 + a \cdot 0 = b$. Aus **(A7)** folgt dann 0 = b + (-b) = (b+b) + (-b) = b + (b+(-b)) = b + 0 = b.

(3) **Behauptung:** Aus ab = 0 folgt a = 0 oder b = 0. Beweis zur Übung

Schreibweisen: Für $a, b \in \mathbb{R} : a - b := a + (-b)$; ist $b \neq 0 : \frac{a}{b} := ab^{-1}$.

Axiom (Anordnungsaxiome)

In $\mathbb R$ ist eine Relation "≤" gegeben. Es sollen gelten:

- (A10) für $a, b \in \mathbb{R}$ gilt $a \leq b$ oder $b \leq a$.
- (A11) aus $a \le b$ und $b \le a$ folgt a = b.
- (A12) aus $a \le b$ und $b \le c$ folgt $a \le c$.
- (A13) aus $a \leq b$ und $c \in \mathbb{R}$ folgt $a + c \leq b + c$.
- (A14) aus $a \le b$ und $0 \le c$ folgt $ac \le bc$.

Alle Regeln für Ungleichungen lassen sich aus (A1) bis (A14) herleiten. Diese Regeln seinen von nun an bekannt.

Schreibweisen: (1) $a < b :\Leftrightarrow a \le b \text{ und } a \ne b$

- (2) $a > b : \Leftrightarrow b < a$
- (3) $a \ge b :\Leftrightarrow b \le a$

|a| wird der **Betrag** von a genannt und entspricht dem "Abstand" von a und a. |a-b| entspricht dem "Abstand" von a und a.

Satz 1.3 (Betragssätze)

- (1) $|a| \ge 0 \ \forall a \in \mathbb{R}; |a| = 0 \Leftrightarrow a = 0$
- $(2) |a-b| = |b-a| \forall a, b \in \mathbb{R}$
- (3) $|ab| = |a| \cdot |b| \ \forall a, b \in \mathbb{R}$
- $(4) \pm a \le |a|$
- (5) $|a+b| \le |a| + |b| \ \forall a, b \in \mathbb{R}$
- (6) $||a| |b|| \le |a b| \ \forall a, b \in \mathbb{R}$

- (5) Fall 1: $a + b \ge 0 \Leftrightarrow |a + b| = a + b \le |a| + |b|$ Fall 2: $a + b < 0 \Leftrightarrow |a + b| = -(a + b) = -a + (-b) \le |a| + |b|$
- (6) $|a| = |(a-b) + b| \le |a-b| + |b| \Rightarrow |a| |b| \le |a-b|$, analog $|b| |a| \le |b-a| = |a-b|$.

Definition (Intervall)

Seien $a, b \in \mathbb{R}$, a < b:

- (1) $(a, b) := \{x \in \mathbb{R} : a < x < b\}$: offenes Intervall
- (2) $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$: abgeschlossenes Intervall
- (3) $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$: halboffenes Intervall
- $(4) [a, \infty) := \{ x \in \mathbb{R} : a \le x \}$

Entsprechend: $[a, b), (-\infty, a], (a, \infty), (-\infty, a), (-\infty, \infty) := \mathbb{R}$.

Definition (Beschränkte Menge)

Es sei $\emptyset \neq M \subseteq \mathbb{R}$. M heißt nach oben (unten) beschränkt genau dann, wenn es ein $\gamma \in \mathbb{R}$, so dass alle $x \in M$ kleiner gleich $(gr\"{o}\beta er\ gleich)\ \gamma$ sind. In diesem Fall heißt γ obere Schranke $(OS)\ (untere\ Schranke\ (US))\ von\ M$.

Ist γ eine OS (US) von M und gilt $\gamma \leq \tilde{\gamma}$ $(\gamma \geq \tilde{\gamma})$ für jede weitere OS (US) $\tilde{\gamma}$ von M, so heißt γ das **Supremum** (Infimum) von M und man schreibt $\gamma = \sup M$ $(\gamma = \inf M)$.

Ist $\gamma = \sup M \in M$ ($\gamma = \inf M \in M$), so heißt γ das **Maximum** (*Minimum*) von M: $\gamma = \max M$ ($\gamma = \min M$).

Beispiele:

- (1) aus M = (1, 2) folgt: $2 = \sup M$, M hat kein Maximum
- (2) aus M = (1, 2] folgt: $2 = \sup M = \max M$
- (3) aus $M = [3, \infty)$ folgt: M ist nicht nach oben beschränkt, $3 = \inf M$

Axiom (Vollständigkeitsaxiom)

(A15) Ist $\emptyset \neq M \subseteq \mathbb{R}$ und ist M nach oben beschränkt, so existiert sup M.

Anmerkung: $M = \{x \in \mathbb{Q} : x > 0, x^2 < 2\}$ hat kein Supremum in \mathbb{Q} , also sind die rationalen Zahlen keine Menge, die unsere Anforderungen an die reellen Zahlen erfüllt.

Satz 1.5 (Vollständigkeit von ℝ bezüglich dem Infimum)

Sei $\emptyset \neq M \subseteq \mathbb{R}$ und sei M nach unten beschränkt, dann existiert inf M

Sei $\tilde{M} := \{-x : x \in M\}$. Sei γ eine untere Schranke von M. d.h. $\gamma \leq x \ \forall x \in M \implies -x \leq -\gamma \ \forall x \in M \implies \tilde{M}$ ist nach oben beschränkt, $-\gamma$ ist eine obere Schranke von \tilde{M} . (A15) $\implies \exists s := \sup \tilde{M} \implies s \leq -\gamma . -x \leq s \ \forall x \in M \implies -s \leq x \ \forall x \in M \implies -s$ ist eine untere Schranke von M. Aus $s \leq -\gamma \implies \gamma \leq -s$, daher ist $-s = \inf M$.

Satz 1.6 (Existenz des Supremum)

Sei $\emptyset \neq M \subseteq \mathbb{R}$, M sei nach oben beschränkt, γ sei eine obere Schranke von M.

$$\gamma = \sup M \iff \forall \varepsilon > 0 \ \exists x \in M : x > \gamma - \varepsilon$$

Beweis

" \Longrightarrow ": Sei $\gamma = \sup M$ und $\varepsilon > 0 \implies \gamma - \varepsilon$ ist keine obere Schranke von $M \implies \exists x \in M : x > \gamma - \varepsilon$.

" \Leftarrow ": (A15) $\Longrightarrow \exists s = \sup M$. Annahme: $\gamma \neq s \Longrightarrow s < \gamma \Longrightarrow \varepsilon = \gamma - s > 0$. Laut Vorausetzung gilt: $\exists x \in M : x > \gamma - \varepsilon = \gamma - (\gamma - s) = s$, Widerspruch zu $x \leq s$.

Analog gilt: Sei $\emptyset \neq M \subseteq \mathbb{R}$, M sei nach unten beschränkt, γ sei eine untere Schranke von M.

$$\gamma = \inf M \iff \forall \varepsilon > 0 \ \exists x \in M : x < \gamma + \varepsilon$$

Definition (Beschränktheit von Mengen)

Sei $\emptyset \neq M \subseteq \mathbb{R}$. M heißt **beschränkt**: $\iff M$ ist nach oben und nach unten beschränkt $\iff \exists c > 0 : |x| \leq c \ \forall x \in M$. Beweis als Übung

2. Natürliche Zahlen

Definition (Induktionsmengen)

Sei $M \subseteq \mathbb{R}$. M heißt eine **Induktionsmenge** (IM):

- $(1) \ 1 \in M$
- (2) Aus $x \in M$ folgt stets $x + 1 \in M$

Beispiel

 \mathbb{R} , $[1, \infty)$, und $\{1\} \cup [2, \infty)$ sind Induktionsmengen.

 $J:=\{A\subseteq\mathbb{R}:A \text{ ist eine IM }\};\,\mathbb{N}:=\bigcap_{A\in J}A$ heißt die Menge der natürlichen Zahlen.

Satz 2.1 (Induktionsmengen)

- (1) $\mathbb{N} \in J$
- (2) $\mathbb{N} \subseteq A \ \forall A \in J$
- (3) \mathbb{N} ist *nicht* nach oben beschränkt.
- (4) $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} : n > x$
- (5) Prinzip der vollständigen Induktion: Ist $A \subseteq \mathbb{N}$ und $A \in J \implies A = \mathbb{N}$

Beweis

- (1) $1 \in A \ \forall A \in J \implies x+1 \in A \ \forall x \in A \ \forall A \in J \implies x+1 \in \mathbb{N} \ \forall x \in \mathbb{N}$
- (2) folgt aus der Definition von N
- (3) Annahme: \mathbb{N} ist nach oben beschränkt. (A15): $s := \sup \mathbb{N}$. 1.3 $\Longrightarrow \exists n \in \mathbb{N} : n > s 1$; (1) $\Longrightarrow n + 1 \in \mathbb{N} \Longrightarrow n + 1 > s$; Widerspruch
- (4) folgt aus (3)

(5)
$$A \subseteq \mathbb{N} \subseteq A \implies A = \mathbb{N}$$

Satz 2.2 (Beweisverfahren durch vollständige Induktion)

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gemacht. Es gelte: (I) A(1) ist wahr und (II) aus $n \in \mathbb{N}$ und A(n) wahr folgt stets A(n+1) ist wahr.

Behauptung: A(n) ist wahr für jedes $n \in \mathbb{N}$.

 $A := \{n \in \mathbb{N} : A(n) \text{ ist wahr}\}. \text{ Dann: } A \subseteq \mathbb{N}, \text{ aus (I) und (II) folgt } A \in J.$

Beispiele:

- (1) $A(n) := n \ge 1$. $A(n) \ \forall n \in \mathbb{N}$. Beweis (induktiv): Induktionsanfang (IA): $1 \ge 1$, also ist A(1) wahr. Induktionsvorausseztung (IV): Sei $n \in \mathbb{N}$ und A(n) wahr (also $n \ge 1$) Induktionsschritt (IS, $n \curvearrowright n+1$): $n+1 \ge 1+1 \ge 1$, also A(n+1) wahr.
- (2) Für $n \in \mathbb{N}$ sei $A_n := (\mathbb{N} \cap [1, n]) \cup [n + 1, \infty)$. Behauptung: $\underbrace{A_n \text{ ist eine Induktionsmenge}}_{A(n)} \forall n \in \mathbb{N}$
- (3) Sei $n \in \mathbb{N}, x \in \mathbb{R}$ und n < x < n + 1. Behauptung: $x \notin \mathbb{N}$. Beweis: Annahme: $x \in \mathbb{N}$. Sei A_m wie im oberen Beispiel (2) $\Longrightarrow A_m \in J \Longrightarrow \mathbb{N} \subseteq A_m \Longrightarrow x \in A_m \Longrightarrow x \le m$ oder $x \ge m + 1$, Widerspruch!
- (4) Behauptung: $\underbrace{1+2+\cdots+n=\frac{n(n+1)}{2}}_{A(n)} \ \forall n \in \mathbb{N}$

Beweis: (induktiv)

IA: $\frac{1+1}{2} = 1 \implies A(1)$ ist wahr.

IV: Sei $n \in \mathbb{N}$ und $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

IS: $(n \curvearrowright n+1)$

 $1+2+\cdots+n+(n+1)\stackrel{(IV)}{=}\frac{n(n+1)}{2}+(n+1)(IV)=(n+1)(\frac{n}{2}+1)=\frac{(n+1)(n+2)}{2}\Longrightarrow A(n+1)$ ist wahr

Definition (Summen- und Produktzeichen)

(1) Seien $a_1, a_2, \ldots, a_n \in \mathbb{R}, n \in \mathbb{N}$.

$$\sum_{k=1}^{n} a_k := a_1 + a_2 + \ldots + a_n$$

$$\prod_{k=1}^{n} a_k := a_1 \cdot a_2 \cdot \ldots \cdot a_n$$

(2) $\mathbb{N}_0 := \mathbb{N} \cup \{0\},$ $\mathbb{Z} := \mathbb{N}_0 \cup \{-n : n \in \mathbb{N}\} \ (ganze \ Zahlen),$ $\mathbb{Q} = \{\frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}\} \ (rationale \ Zahlen).$

Satz 2.3 (Ganze Zahlen)

Sei $\emptyset \neq M \subseteq \mathbb{R}$.

- (1) Ist $M \subseteq \mathbb{N}$, so existiert min M
- (2) Ist $M \subseteq \mathbb{Z}$ nach oben beschränkt, so existiert $\max M$; ist $M \subseteq \mathbb{Z}$ nach unten beschränkt, so existiert $\min M$.

- (3) Ist $a \in \mathbb{R}$, so existiert genau ein $k \in \mathbb{Z} : k \leq a < k+1$. Bezeichnung: [a] := k.
- (4) Sind $x, y \in \mathbb{R}$ und x < y, so existiert ein $r \in \mathbb{Q}$: x < r < y.

- (1) $1 \le n \ \forall n \in M \implies M$ ist nach unten beschränkt. $1.2 \implies \exists \alpha = \inf M \ \text{mit} \ \alpha + 1$ ist keine untere Schranke von $M. \implies \exists m \in M : m < \alpha + 1$. Sei $n \in M$. Annahme: $n < m \implies n < m < \alpha + 1 \le n + 1 \implies n < m < n + 1$. Da $n \in \mathbb{N}$: Widerspruch.
- (2) Zur Übung
- (3) $M:=\{z\in\mathbb{Z}:z\leq a\}$. Annahme: $M=\emptyset\implies z>a\;\forall z\in\mathbb{Z}\implies -n>a\;\forall n\in\mathbb{N}\implies n<-a\;\forall n\in\mathbb{N}.$ Widerspruch zu 2.1(3); also: $M\neq\emptyset$. (2) \Longrightarrow $\exists k:=\max M.$

$$(4) \ y - x > 0 \overset{2.1(4)}{\Longrightarrow} \ \exists n \in \mathbb{N} : n > \frac{1}{y - x} \implies \frac{1}{n} < y - x \implies x + \frac{1}{n} < y$$

$$m := [nx] \in \mathbb{Z} \implies m < nx < m + 1 \implies \frac{m}{n} \le x < \frac{m + 1}{n} = \frac{m}{n} + \frac{1}{n} \le x + \frac{1}{n} \implies x < \frac{m + 1}{n} < y$$

3. Folgen, Abzählbarkeit

Definition (Eigenschaften von Funktionen)

f heißt **bijektiv**: \iff f ist injektiv und surjektiv

Seien A, B nichtleere Mengen und $f: A \to B$ eine Funktion. $f(A) := \{f(x) : x \in A\} \subseteq B$ heißt Bildmenge von f.

```
f heißt surjektiv: \iff f(A) = B
f heißt injektiv: \iff aus x_1, x_2 \in A und f(x_1) = f(x_2) folgt stets x_1 = x_2
```

Definition (Folgen)

Eine Funktion $a: \mathbb{N} \to B$ heißt eine Folge in B. Schreibweisen: a_n statt a(n) (mit $n \in \mathbb{N}$) ist das n-te Folgenglied. (a_n) oder $(a_n)_{n=1}^{\infty}$ oder (a_1, a_2, \ldots) statt a. Ist $B = \mathbb{R}$, so heißt (a_n) eine reelle Folge.

Beispiele:

$$(1)$$
 $a_n := \frac{1}{n} \ (n \in \mathbb{N}), \ (a_n) = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$

(2)
$$a_{2n} := 0$$
, $a_{2n-1} := 1$ $(n \in \mathbb{N})$, $(a_n) = (1, 0, 1, 0, 1, \ldots)$.

Definition (Endlich, unendlich, abzählbar, überabzählbar)

Sei B eine nichtleere Menge.

- (1) B heißt **endlich**: $\iff \exists n \in \mathbb{N} \text{ und eine surjektive Funktion } f: \{1, ..., n\} \to B, \text{ also } B = \{f(1), ..., f(n)\}.$
- (2) B heißt **unendlich** : \iff B ist nicht endlich.
- (3) B heißt **abzählbar** : $\iff \exists (a_n) \in B : B = \{a_1, a_2, a_3, \ldots\} \ (\iff \exists a : \mathbb{N} \to B \text{ mit } a \text{ surjektiv}).$

"Die Elemente von B können mit natürlichen Zahlen durchnummeriert werden." Beachte: Endliche Mengen sind abzählbar!

(4) B heißt **überabzählbar** : \iff B ist nicht abzählbar.

Beispiele:

- (1) \mathbb{N} ist abzählbar, denn $\mathbb{N} = \{a_1, a_2, \ldots\}$ mit $a_n := n \ (n \in \mathbb{N})$
- (2) \mathbb{Z} ist abzählbar, denn $\mathbb{Z} = \{a_1, a_2, a_3, \ldots\}$ mit $a_1 := 0, a_{2n} := n, a_{2n+1} := -n$
- (3) $\mathbb{N} \times \mathbb{N} := \{(n, m) : n, m \in \mathbb{N}\}$ ist abzählbar. **Beweis:** Sei $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit $g(n, m) := n + \frac{1}{2}(n + m - 1)(n + m - 2)$. g ist bijektiv $(\ddot{U}bung!)$, dann ist $g^{-1} : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ ebenfalls bijektiv.
- (4) Q ist abzählbar

Beweis: $\mathbb{Q}^+ := \{x \in \mathbb{Q} : x > 0\}, f : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+ \text{ mit } f(n,m) := \frac{n}{m}, f \text{ ist surjektiv.}$ $b_n := f(g^{-1}(n)) \ (n \in \mathbb{N}). \text{ Dann: } \mathbb{Q}^+ = \{b_1, b_2, b_3, \ldots\}. \ a_1 := 0, a_{2n} := b_n, a_{2n+1} := -b_n \implies \mathbb{Q} = \{a_1, a_2, a_3, \ldots\}$

3. Folgen, Abzählbarkeit

(5) Sei B die Menge der Folgen in $\{0,1\}$. Also $(a_n) \in B \iff a_n \in \{0,1\} \ \forall n \in \mathbb{N}$. B ist überabzählbar.

Beweis: Annahme: B ist abzählbar, also $B = \{f_1, f_2, f_3, \ldots\}$ mit $f_j = (a_{j1}, a_{j2}, a_{j3}, \ldots)$ und $a_{jk} \in \{0, 1\}$. Setze $a_n := \begin{cases} 1, \text{ falls } a_{nn} = 0 \\ 0, \text{ falls } a_{nn} = 1 \end{cases}$. Es ist $(a_n) \in B$. $\exists m \in \mathbb{N} : (a_n) = f_m = (a_{m1}, a_{m2}, \ldots) = (a_1, a_2, \ldots) \implies a_n = a_{mn} \ \forall n \in \mathbb{N} \implies a_m = a_{mm}$, Widerspruch!

Satz

- (1) Sei $\emptyset \neq B \subseteq A$ und A sei abzählbar. Dann ist B abzählbar.
- (2) Seien B_1, B_2, B_3, \ldots abzählbar viele Mengen und jedes B_j sei abzählbar. $\bigcup_{j=1}^{\infty} B_j$ ist abzählbar.

Beweis

(1) $A = \{a_1, a_2, \ldots\}$, sei $b \in B$ fest gewählt.

$$b_n := \begin{cases} a_n & \text{falls } a_n \in B \\ b & \text{falls } a_n \notin B \end{cases}$$

Also $C := \{b_1, b_2, \ldots\} \subseteq B$. $\forall x \in B \implies x \in A \implies \exists m \in \mathbb{N} : x = a_m \implies a_m \in B \implies b_m = a_m \implies x = b_m \implies x \in C \implies B \subseteq C \implies B = C$.

(2) Siehe Übungsblatt 2

4. Wie Sie Wollen

Definition (Potenz, Fakultät, Binominalkoeffizienten)

(1) Für $a \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt $a^n := a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a$ (n Faktoren) und heißt die n-te Potenz von a $a^0 := 1$ Für $a \neq 0$ gilt: $a^{-n} = 1$

Für $a \neq 0$ gilt: $a^{-n} = \frac{1}{a^n}$

- (2) Für $n \in \mathbb{N}$ gilt $n! := 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ und heißt die **Fakultät** von n, 0! := 1.
- (3) Für $n\in\mathbb{N},\,k\in\mathbb{N}_0$ und $k\leq n$ gilt $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$ ("n über k")

Satz 4.1 (Eigenschaften von Binomialkoeffizienten)

- $\binom{n}{0} = \binom{n}{n} = 1 \ \forall n \in \mathbb{N}$
- (2) Für $n, k \in \mathbb{N}, k \le n$ gilt $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$
- (3) Für $a, b \in \mathbb{R}, n \in \mathbb{N}$ gilt $a^{n+1} b^{n+1} = (a-b)(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + b^n) = (a-b)\sum_{k=0}^n a^{n-k}b^k$

Satz 4.2 (Folgerung)

Für b = 1 und x = a liefert 4.1 (3):

Für $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \ldots + x^{n} = \begin{cases} n+1 & \text{falls } x = 1\\ \frac{1-x^{n+1}}{1-x} & \text{falls } x \neq 1 \end{cases}.$$

Satz 4.3 (Bernoullische Ungleichung (BU))

Ist $x \ge -1$, so gilt: $(1+x)^n \ge 1 + nx \ \forall n \in \mathbb{N}$.

Beweis

$$n = 1$$
: $1 + x \ge 1 + x$ $\sqrt{ }$

 $n \Rightarrow n+1$:

$$(1+x)^n \ge 1 + nx \qquad \text{(IV)}$$

$$(1+x)(1+x)^n \ge (1+nx)(1+x)$$

$$(1+x)^{n+1} \ge 1 + nx + x + \underbrace{nx^2}_{\ge 0} \ge 1 + nx + x = 1 + (n+1)x$$

$$\implies (1+x)^{n+1} \ge 1 + (n+1)x.$$

Satz 4.4 (Der binomische Satz)

Seien $a, b \in \mathbb{R}$. Dann gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \ \forall n \in \mathbb{N}$$

Beispiel

$$(a+b)^2 = a^2 + 2ab + b^2$$

Beweis

$$n = 1$$
: $\binom{1}{0}a + \binom{1}{1}b = a + b$ $\sqrt{}$

$$n \longrightarrow n+1$$
:

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$= (a+b)\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^{k} + \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1}$$

$$= \binom{n}{0} a^{n+1} + \sum_{k=1}^{n} \binom{n}{k} a^{n+1-k} b^{k} + \sum_{k=0}^{n-1} \binom{n}{k} a^{n-k} b^{k+1} + \binom{n}{n} b^{n+1}$$

$$= \binom{n+1}{0} a^{n+1} + \sum_{k=1}^{n} \binom{n}{k} a^{n+1-k} b^{k} + \sum_{k=1}^{n} \binom{n}{k-1} a^{n-(k-1)} b^{k} + \binom{n+1}{n+1} b^{n+1}$$

$$= \binom{n+1}{0} a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^{n+1-k} b^{k} + \binom{n+1}{n+1} b^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^{n+1-k} b^{k}.$$

$$(IV)$$

5. Wurzeln und rationale Exponenten

Hilfssatz 5.1

- (1) Sind $x, y \in \mathbb{R}, x, y \ge 0$ und $n \in \mathbb{N}$, so gilt: $x \le y \Leftrightarrow x^n \le y^n$
- (2) Ist $\beta > 0 \Rightarrow \exists m \in \mathbb{N} : \frac{1}{m} < \beta$

Beweis

(1) ,, \Rightarrow "(induktiv)

I.A.
$$n=1\sqrt{}$$

I.V. Sei $n \in \mathbb{N}$ und $x^n \leq y^n$

I.S.
$$x^{n+1} = x^n x \le y^n x \le y^n y = y^{n+1}$$

"\equiv i: Annahme: $y < x \xrightarrow{\text{wie oben}} y^k < x^k \ \forall k \in \mathbb{N}$, Wid.

(2)
$$2.1(4) \Rightarrow \exists m \in \mathbb{N} : m > \frac{1}{\beta} \Rightarrow \frac{1}{m} < \beta$$
.

Definition 5.2 (Wurzeln)

Sei $a \in \mathbb{R}, a \geq 0$ und $n \in \mathbb{N}$. Dann existiert genau ein $x \in \mathbb{R}$ mit: $x \geq 0$ und $x^n = a$. Dieses x heißt die n-te **Wurzel** aus a und wird mit $\sqrt[n]{a}$ bezeichnet $(\sqrt{a} := \sqrt[2]{a})$.

Bemerkung: (1) $\sqrt[n]{a} \ge 0$ (Beispiel: $\sqrt{4} = 2, \sqrt{4} \ne -2$; die Gleichung $x^2 = 4$ hat zwei Lösungen)

$$(2) \ \sqrt{b^2} = |b| \ \forall b \in \mathbb{R}$$

Beweis

Eindeutigkeit: Sei $x,y\geq 0$ und $x^n=a=y^n\xrightarrow{5.1(1)}x=y$

Existenz: O.B.d.A.: a > 0 und n > 2

$$M := \{ y \in \mathbb{R} : y \ge 0, y^n < a \}, M \ne \emptyset, \text{ denn } 0 \in M$$

Sei $y \in M \Rightarrow y^n < a < 1 + na \stackrel{\mathrm{BU}}{\leq} (1 + a)^n \stackrel{5.1(1)}{\Longrightarrow} y < 1 + a.$ M ist nach oben beschränkt.

$$(\mathbf{A15}) \Rightarrow \exists x := \sup M.$$
 Wir zeigen: $x^n = a$

Annahme: $x^n < a$. Sei $m \in \mathbb{N}$:

$$(x + \frac{1}{m}) \stackrel{4.4}{=} \sum_{k=0}^{n} \binom{n}{k} x^{n-k} \frac{1}{m^k} = x^n + \sum_{k=1}^{n} \binom{n}{k} x^{n-k} \underbrace{\frac{1}{m^k}}_{\leq \frac{1}{m}} \leq x^n + \frac{1}{m} \underbrace{\sum_{k=1}^{n} \binom{n}{k} x^{n-k}}_{\alpha}$$

$$\Rightarrow (x+\frac{1}{m})^n \leq x^n + \frac{\alpha}{m}. \ 4.1(2) \implies \exists m \in \mathbb{N}: \frac{1}{m} < \frac{a-x^2}{\alpha} \implies x^2 + \frac{\alpha}{m} < a. \ \mathrm{Dann}$$

$$(x+\frac{1}{m})^n \leq x^n + \frac{\alpha}{m} < a \implies x + \frac{1}{m} \in M \implies x + \frac{1}{m} \leq x \implies \frac{1}{m} < 0. \ \mathrm{Widerspruch}$$

$$\implies x^n \geq a$$

Annahme: $x^n > a$. $(x - \frac{1}{m})^n = (x(1 - \frac{1}{mx}))^n = x^n(1 - \frac{1}{mx})^n \stackrel{\text{BU}}{\geq} x^n(1 - \frac{n}{mx}) \text{ falls } -\frac{1}{mx} \geq -1,$ also falls $\frac{1}{m} \leq x$. Also: $(x - \frac{1}{m})^n \geq x^n(1 - \frac{n}{mx})$ für $m \in \mathbb{N}$ mit $\frac{1}{m} \leq x$. [Nebenrechnung: $x^n(1 - \frac{n}{mx}) > a \iff \frac{1}{m} < \frac{x(x^n - a)}{nx^n} =: \alpha$] 5.1(2) $\implies \exists m \in \mathbb{N} \text{ mit } \frac{1}{m} \leq x \text{ und } \frac{1}{m} \leq \alpha.$

5. Wurzeln und rationale Exponenten

$$\begin{array}{ll} \operatorname{Dann}\; (x-\frac{1}{m})^n > a.\; x-\frac{1}{m}\; \text{ist keine obere Schranke von}\; M \implies \exists y \in M: y > x-\frac{1}{m} \; \stackrel{5.1(1)}{\Longrightarrow} \\ y^n > (x-\frac{1}{m})^n > a.\; \text{Also}\; y^n > a.\; \text{Widerspruch, denn}\; y \in M. \\ \operatorname{Daraus\; folgt:}\; x^n = a. \end{array}$$

Satz 5.3 (Eindeutigkeit von rationalen Potenzen)

Sei $a \ge 0, m, n, p, q \in \mathbb{N}$ und es sei $\frac{m}{n} = \frac{p}{q}$. Dann $(\sqrt[n]{a})^m = (\sqrt[q]{a})^p$.

Beweis

$$x:=(\sqrt[n]{a})^m,\,y:=(\sqrt[q]{a})^p.$$
 Wegen 5.1(1) genügt es zu zeigen: $x^q=y^q.$ Es ist $mq=np.$ $x^q=\sqrt[n]{a}^{mq}=\sqrt[n]{a}^{np}=a^p=\sqrt[q]{a}^{pq}=y^q$

Definition (Rationale Potenzen)

- (1) Sei $a \in \mathbb{R}$, $a \ge 0$ und $r \in \mathbb{Q}^+ = \{x \in \mathbb{Q} : x > 0\}$. Dann existiert $m, n \in \mathbb{N} : r = \frac{m}{n}$. Es sei $a^r := \sqrt[n]{a}^m$. (Wegen 5.3 ist a^r wohldefiniert).
- (2) Sei $a>0,\,r\in\mathbb{Q}$ und r<0. $a^r=\frac{1}{a^{-r}}$

Es gelten die Rechenregeln $(a^{r+s} = a^r a^s,...)$ als bekannt.

6. Konvergente Folgen

Definition (Umgebung)

Sei $a \in \mathbb{R}$ und $\varepsilon > 0$: $U_{\varepsilon}(a) : \{x \in \mathbb{R} : |x - a| < \varepsilon\}$ heißt ε -Umgebung von a.

$$x \in U_{\varepsilon}(a) \iff -\varepsilon < x - a < \varepsilon \iff a - \varepsilon < x < a + \varepsilon \iff x \in (a - \varepsilon, a + \varepsilon)$$

Also gilt: $U_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$

Definition (,,für fast alle")

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gemacht. A(n) gilt **für fast alle** (ffa) $n \in \mathbb{N}$ \iff $\exists m \in \mathbb{N}$ so dass A(n) wahr ist für alle $n \geq m$. Ein Beispiel ist $n^2 \geq n + 17$ gilt ffa $n \in \mathbb{N}$.

Vereinbarung: Alle vorkommenden Folgen seien Folgen in \mathbb{R} .

Definition (Beschränkte Folgen)

 (a_n) heißt beschränkt $(nach\ oben\ beschränkt)/(nach\ unten\ beschränkt): \iff \{a_1, a_2, a_3, \ldots\}$ ist beschränkt $(nach\ oben\ beschränkt)/(nach\ unten\ beschränkt).$

Ist (a_n) nach oben beschränkt, so setze

$$\sup_{n=1}^{\infty} a_n := \sup_{n \in \mathbb{N}} a_n := \sup_{n \ge 1} \{a_1, a_2, a_3, \ldots\}$$

Ist (a_n) nach unten beschränkt, so setze

$$\inf_{n=1}^{\infty} a_n := \inf_{n \in \mathbb{N}} a_n := \inf_{n \ge 1} \{a_1, a_2, a_3, \ldots\}$$

Beachte: (a_n) ist beschränkt $\iff \exists c > 0 : |a_n| \le c \ \forall n \in \mathbb{N}.$

Definition (Konvergente Folge)

Sei (a_n) eine Folge. (a_n) heißt **konvergent** : $\iff \exists a \in \mathbb{R}$, so dass es für $jedes \ \varepsilon > 0$ ein $n_0 = n_0(\varepsilon) \in \mathbb{N}$ gibt, so dass $|a_n - a| < \varepsilon \ \forall n \ge n_0$ gilt. In diesem Fall heißt a der **Grenzwert** (GW) oder **Limes** von (a_n) und man schreibt: $\lim_{n\to\infty} (a_n) = a$ oder $\lim_{n\to\infty} a = a$

Also:
$$a_n \to a \ (n \to \infty)$$
 $\iff \forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : |a_n - a| < \varepsilon \ \forall n \ge n_0$
 $\iff \forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : a_n \in U_{\varepsilon}(a) \ \forall n \ge n_0$
 $\iff \forall \varepsilon > 0 \ \text{gilt: } a_n \in U_{\varepsilon}(a) \ \text{ffa } n \in \mathbb{N}.$

Satz 6.1 (Grenzwert und Beschränktheit konvergenter Folgen)

 (a_n) sei konvergent.

- (1) Dann ist der Grenzwert von (a_n) eindeutig bestimmt.
- (2) (a_n) ist beschränkt.

- (1) Es gelte $a_n \to a$ und $a_n \to b$. **Annahme:** $a \neq b$, etwa a < b. $\varepsilon := \frac{b-a}{2} > 0$. Dann $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$ (*) $a_n \to a \implies a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N}$, $a_n \to b \implies a_n \in U_{\varepsilon}(b)$ ffa $n \in \mathbb{N} \implies a_n \in U_{\varepsilon}(a) \cap U_{\varepsilon}(b)$ ffa $n \in \mathbb{N}$. Widerspruch zu (*), also a = b.
- (2) Sei $a := \lim(a_n)$. Zu $\varepsilon = 1$ existiert ein $n \in \mathbb{N} : |a_n a| < 1 \ \forall n \ge n_0$. Dann: $|a_n| = |a_n a + a| \le |a_n a| + |a| < 1 + |a| =: c_1 \ \forall n \ge n_0$. $c_2 := \max\{|a_1|, |a_2|, \dots, |a_{n_0 1}|\}$, $c := \max\{c_1, c_2\}$. Dann: $|a_1| \le c \ \forall n \in \mathbb{N}$.

Bemerkung (Endlich viele Elemente sind egal): Sind (a_n) und (b_n) Folgen und gilt $a_n = b_n$ ffa $n \in \mathbb{N}$, so gilt (a_n) konvergent \iff (b_n) konvergent. Im Konvergenzfall: $\lim(a_n) = \lim(b_n)$.

Beispiele:

- (1) Sei $c \in \mathbb{R}$ und $a_n = c$ ffa $n \in \mathbb{N}$. Dann: $|a_n c| = 0$ ffa $n \in \mathbb{N}$, d.h. $\lim a_n = c$.
- (2) $a_n = \frac{1}{n}$. Behauptung: $a_n \to 0$ (**Nullfolge**). Beweis: Sei $\varepsilon > 0$. 2.1(4) $\Longrightarrow \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon} \Longrightarrow \frac{1}{n_0} < \varepsilon$. Für $n \ge n_0 : |a_n 0| = \frac{1}{n} \le \frac{1}{n_0} < \varepsilon$.
- (3) $a_n = n$. 2.1(3) \implies (a_n) ist nicht beschränkt. $\stackrel{6.1(2)}{\Longrightarrow}$ (a_n) ist divergent.
- (4) $a_n = (-1)^n$, also $(a_n) = (-1, 1, -1, \cdots) |a_n| = 1 \ \forall n \in \mathbb{N} \implies a_n$ ist beschränkt. Annahme: (a_n) ist konvergent. Sei $a := \lim a_n$. $\exists n_0 \in \mathbb{N} : |a_n a| < \frac{1}{2} \ \forall n \geq n_0$. Dann: $2 = |a_{n_0} a_{n_0+1}| = |a_{n_0} a + a a_{n_0+1}| \leq |a_{n_0} a| + |a_{n_0+1} a| < \frac{1}{2} + \frac{1}{2} = 1$ Widerspruch! Also: (a_n) ist divergent.
- (5) $a_n = \frac{n^2}{n^2+1}$. Behauptung: $a_n \to 1$. $|a_n 1| = |\frac{n^2}{1+n^2} \frac{n^2+1}{n^2+1}| = \frac{1}{1+n^2} \le \frac{1}{n^2} \le \frac{1}{n}$. Sei $\varepsilon > 0$. Bsp(2) $\Longrightarrow \exists n_0 \in \mathbb{N} : \frac{1}{n} < \varepsilon \ \forall n \ge n_0 \implies |a_n 1| < \varepsilon \ \forall n \ge n_0$.
- (6) $a_n = \sqrt{n+1} \sqrt{n}$. $a_n = \frac{(\sqrt{n+1} \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}}$. D.h. $|a_n 0| = a_n \le \frac{1}{\sqrt{n}}$. Sei $\varepsilon > 0$. 2.1(4) $\implies \exists n_0 \in \mathbb{N} : n_0 > \frac{1}{\varepsilon^2} \implies \frac{1}{\sqrt{n_0}} < \varepsilon$. Sei $n \ge n_0 : |a_n 0| \le \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{n_0}} \le \varepsilon$. D.h. $a_n \to 0$.

Bemerkung: Sei $p \in \mathbb{Z}$ fest. Eine Funktion $a: \{p, p+1, p+2, \ldots\} \to \mathbb{R}$ heißt ebenfalls Folge in \mathbb{R} . Schreibweise: $a = (a_n)_{n \geq p} = (a_n)_{n=p}^{\infty}$. Beispiele: $(a_n)_{n=0}^{\infty}$, $(a_n)_{n=-1}^{\infty} = (a_{-1}, a_0, a_1, \ldots)$

Satz 6.2 (Konvergenzsätze)

 $(a_n), (b_n), (c_n)$ seien Folgen in \mathbb{R} .

- (1) $a_n \to a \ (n \to \infty) \iff |a_n a| \to 0 \ (n \to \infty)$
- (2) Sei $a \in \mathbb{R}$ und es gelte $|a_n a| \le b_n$ ffa $n \in \mathbb{N}$ und $b_n \to 0$. Dann: $a_n \to a$.
- (3) Es gelte $a_n \to a$, $b_n \to b$.
 - (i) gilt $a_n \leq b_n$ ffa $n \in \mathbb{N} \implies a \leq b$
 - (ii) gilt a = b und $a_n \le c_n \le b_n$ ffa $n \in \mathbb{N} \implies c_n \to a$.

- (iii) $|a_n| \rightarrow |a|$
- (iv) $a_n + b_n \rightarrow a + b$
- (v) $\alpha a_n \to \alpha a \quad \forall \alpha \in \mathbb{R}$
- (vi) $a_n \cdot b_n \to a \cdot b$
- (vii) Ist $b \neq 0$, so existiert ein $m \in \mathbb{N}$: $b_n \neq 0 \ \forall n \geq m$ und die Folge $(\frac{1}{b_n})_{n \geq m}$ konvergiert gegen $\frac{1}{b}$

- (1) folgt aus der Definition der Konvergenz
- (2) $\exists m \in \mathbb{N}: |a_n a| \leq b_n \ \forall n > m$. Sei $\varepsilon > 0$. $\exists n_1 \in \mathbb{N}: b_n \leq \varepsilon \ \forall n > n_1$. $m_0 := \max\{m, n_1\}$. Dann: $|a_n a| \leq b_n < \varepsilon \ \forall n \geq n_0$.

(3)

- (i) Annahme: b < a. $\varepsilon := \frac{a-b}{2}$. $a_n \to a \implies a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N} \implies a_n > a \varepsilon$ ffa $n \in \mathbb{N}$. $b_n \to b \implies b_n \in U_{\varepsilon}(b)$ ffa $n \in \mathbb{N} \implies b_n < b + \varepsilon$ ffa $n \in \mathbb{N} \implies b_n < b + \varepsilon = a \varepsilon < a_n$ ffa $n \in \mathbb{N}$. Widerspruch zur Voraussetzung $\implies a_n < b_n$ ffa $n \in \mathbb{N}$.
- (ii) Sei $\varepsilon > 0$. $a_n \to a$, $b_n \to a \implies a \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$ ffa $n \in \mathbb{N} \implies c_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N}$.
- (iii) $||a_n| |a|| \le |a_n a| \implies |a_n| \to |a|$
- (iv) Zur Übung
- (v) Zur Übung
- (vi) $|a_nb_n ab| = |a_nb_n a_nb + a_nb ab| = |a_n(b_n b) + b(a_n a)| \le |a_n||b_n b| + |b||a_n a|$. 6.1(2) $\Longrightarrow \exists c > 0 : |a_n| \le c \ \forall n \in \mathbb{N} \Longrightarrow |a_nb_n - ab \le c \cdot |b_n - b| + |b||a_n - a| =: \alpha_n$. (iv),(v) $\Longrightarrow \alpha_n \to 0 \stackrel{(2)}{\Longrightarrow} a_nb_n \to ab$.
- (vii) (iii) $\Longrightarrow |b_n| \to b \Longrightarrow |b| > 0.$ $\varepsilon := \frac{|b|}{2};$ $|b_n| \to |b| \Longrightarrow |b_n| \in U_{\varepsilon}(|b|)$ ffa $n \in \mathbb{N}$ $\Longrightarrow |b_n| > |b \varepsilon| = \frac{|b|}{2}$ ffa $n \in \mathbb{N}$: $b_n \neq 0 \ \forall n > m$. Für n > m: $|\frac{1}{b_n} \frac{1}{b}| = |\frac{b b_n}{b_n \cdot b}| = \frac{|b b_n|}{|b_n||b|} \le \frac{2}{|b|^2} |b_n b| =: \beta_n.$ $\beta_n \to 0 \Longrightarrow \frac{1}{b_n} \to |\frac{1}{b}|.$

Beispiel

$$a_n = \frac{n^2 + 3n + 5}{n^2 - 3n + 8} = \frac{1 + \frac{3}{n} + \frac{5}{n^2}}{1 - \frac{3}{n} + \frac{8}{n^2}} \to 1 \ (n \to \infty)$$

Definition (Monotonie)

- (a_n) heißt monoton wachsend : $\iff a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$
- (a_n) heißt streng monoton wachsend : $\iff a_{n+1} > a_n \ \forall n \in \mathbb{N}$

6. Konvergente Folgen

- (a_n) heißt monoton fallend : $\iff a_{n+1} \le a_n \ \forall n \in \mathbb{N}$
- (a_n) heißt streng monoton fallend : $\iff a_{n+1} < a_n \ \forall n \in \mathbb{N}$
- (a_n) heißt **monoton**: \iff (a_n) ist monoton wachsend oder fallend.
- (a_n) heißt streng monoton : \iff (a_n) ist streng monoton wachsend oder fallend.

Satz 6.3 (Monotoniekriterium)

 (a_n) sei monoton wachsend (fallend) und sei nach oben (unten) beschränkt. Dann ist (a_n) konvergent. $\lim_{n\to\infty} a_n = \sup_{n=1}^{\infty} a_n \pmod{n-1}$ $(\inf_{n=1}^{\infty} a_n)$.

Beweis

$$a := \sup_{n=1}^{\infty} a_n = \sup\{a_1, a_2, \ldots\}. \ a - \varepsilon \text{ ist keine obere Schranke von } \{a_1, a_2, \ldots\} \implies \exists n_0 \in \mathbb{N} : a_{n_0} > a - \varepsilon. \text{ Für } n > n_0 : a - \varepsilon < a_{n_0} \le a_n \le a < a + \varepsilon \implies |a_n - a| < \varepsilon \ \forall n \ge n_0.$$

Beispiel

$$a_1 := \sqrt[3]{6}, a_{n+1} := \sqrt[3]{6 + a_n} \ (n \in \mathbb{N})$$

 $a_2 := \sqrt[3]{6 + a_1} > \sqrt[3]{6} = a_1 \ (\text{wegen Satz 5.1 (1)})$
 $a_3 := \sqrt[3]{6 + a_2} > \sqrt[3]{6 + a_1} = a_2$

Behauptung: $a_{n+1} > a_n \ \forall n \in \mathbb{N}$

Beweis

n = 1: s.o.

$$n \longrightarrow n+1$$
: $a_{n+2} = \sqrt[3]{6+a_{n+1}} \stackrel{\text{IV}}{>} \sqrt[3]{6+a_n} = a_{n+1}$.

Also: (a_n) ist streng monoton wachsend.

$$a_1 = \sqrt[3]{6} < 2$$

$$a_2 = \sqrt[3]{6 + a_1} < \sqrt[3]{8} = 2$$

Behauptung: $a_n < 2 \ \forall n \in \mathbb{N}$

Beweis

n = 1: s.o.

$$n \longrightarrow n+1$$
: $a_{n+1} = \sqrt[3]{6+a_n} \stackrel{\text{IV}}{<} \sqrt[3]{6+2} = 2$.

Also: (a_n) ist nach oben beschränkt. Aus 6.3 folgt: (a_n) ist konvergent.

$$a := \lim_{n \to \infty} a_n$$

$$a_{n+1} = \sqrt[3]{6 + a_n} \implies a_{n+1}^3 = 6 + a_n \implies a^3 = 6 + a$$

$$\implies 0 = a^3 - a - 6 = (a - 2)(a^2 + 2a + 3) = (a - 2)\underbrace{((a + 1)^2 + 2)}_{>0} \implies a = 2$$

7. Wichtige Beispiele

Satz 7.1 (Konvergenzsatz für Wurzeln)

Sei (a_n) eine konvergente Folge, $a_n \geq 0$. Es sei $a := \lim a_n \ (\stackrel{6.2}{\Longrightarrow} a \geq 0)$ und $p \geq 2$. Dann: $\sqrt[p]{a_n} \rightarrow \sqrt[p]{a}$.

Beweis

Fall 1: a = 0 Sei $\varepsilon > 0$. $a_n \to 0 \implies \exists n_0 \in \mathbb{N} : a_n < \varepsilon^p \ \forall n > n_0 \stackrel{5.1}{\Longrightarrow} \ \sqrt[p]{a_n} < \varepsilon \ \forall n \ge n_0 \implies \sqrt[p]{a_n} \to 0$

Fall 2: a > 0 $|a_n - a| = |\underbrace{\sqrt[p]{a_n}}_{=:x} |^p - \underbrace{\sqrt[p]{a_n}}_{=:y} |^p| = |x^p - y^p| \stackrel{4.2}{=} |x - y| \cdot |x^{p-1} + x^{p-2}y + \ldots + xy^{p-2} + y^{p-1}$

$$\geq |x-y| \cdot \underbrace{y^p - 1}_{=:c} = |x-y| \cdot c = |\sqrt[p]{a_n} - \sqrt[p]{a_n}| \cdot c \implies |\sqrt[p]{a_n} - \sqrt[p]{a_n}| \leq \underbrace{\frac{1}{c}|a_n - a|}_{=:0} \implies \sqrt[p]{a_n} \rightarrow \sqrt[p]{a_n}$$

Beispiel 7.2

Sei $x \in \mathbb{N}$ und $a_n := x^n \ (n \in \mathbb{N})$.

Fall 1: $x = 0 \implies (a_n)$ ist konvergent und $a_n \to 0$

Fall 2: $x = 1 \implies (a_n)$ ist konvergent und $a_n \to 1$

Fall 3: $x = -1 \implies (a_n)$ ist divergent.

Fall 4: |x| > 1: $\exists \delta > 0$: $|x| = 1 + \delta \implies |a_n| = |x^n| = |x|^n = (1 + \delta)^n \ge 1 + n\delta \ge n\delta \implies a_n$ ist nicht beschränkt. $6.1(2) \implies (a_n)$ ist divergent.

Fall 5: 0 < |x| < 1: Dann $\frac{1}{|x|} > 1 \implies \exists \eta > 0 : \frac{1}{|x|} = 1 + \eta \implies \frac{1}{|a_n|} = \frac{1}{|x^n|} = (\frac{1}{|x|})^n = (1 + \eta)^n \ge 1 + n\eta \ge n\eta \implies |a_n| \le \frac{1}{n\eta} \ \forall n \in \mathbb{N} \implies a_n \to 0$

Beispiel 7.3

Sei $x \in \mathbb{R}$ und $s_n := 1 + x + x^2 + \ldots + x^n = \sum_{k=0}^n x^k$

$$\S 4 \implies s_n = \begin{cases} n+1 & \text{falls } x=1\\ \frac{1-x^{n+1}}{1-x} & \text{falls } x \neq 1 \end{cases}$$

7.2 \implies (s_n) ist konvergent \iff |x| < 1. In diesem Fall: $s_n \to \frac{1}{1-x}$ $(n \to \infty)$

Satz 7.4 (Satz über $\sqrt[n]{n}$)

Es gilt: $\sqrt[n]{n} \to 1 \ (n \to \infty)$

Beweis

$$a_n := \sqrt[n]{n} - 1 \implies a_n > 0 \ \forall n \in \mathbb{N}. \text{ Zu zeigen ist: } a_n \to 0. \text{ Für } n \ge 2: \ \sqrt[n]{n} = 1 + a_n \implies n = (1 + a_n)^n = \sum_{k=0}^n \binom{n}{k} a_n^k \ge \binom{n}{2} a_n^2 = \frac{1}{2}(n)(n-1)a_n^2 \implies a_n^2 \le \frac{2}{n-1} \ \forall n \ge 2 \implies \underbrace{0}_{\to 0} < a_n < \underbrace{\frac{\sqrt{2}}{\sqrt{n-1}}}_{0} \implies a_n \to 0$$

Beispiel 7.5 (Konvergenz von Wurzeln)

Sei c > 0. Dann: $\sqrt[n]{c} \to 1 \ (n \to \infty)$.

Beweis

Fall
$$1: c \ge 1 \ \exists m \in \mathbb{N}: m \ge c \implies 1 \le c \le n \ \forall n \ge m \implies \sqrt[n]{n} \le \underbrace{\sqrt[n]{n}}_{-1} \xrightarrow{7.4} \sqrt[n]{c} \to 1$$

$$\text{Fall 2: } c < 1 \implies \frac{1}{c} > 1 \stackrel{\text{Fall 1}}{\Longrightarrow} \underbrace{\sqrt[n]{\frac{1}{c}}}_{0} \rightarrow 1 \stackrel{\text{6.2(vii)}}{\Longrightarrow} \sqrt[n]{c} \rightarrow 1$$

Satz 7.6 (Satz und Definition von e)

$$a_n := (1 + \frac{1}{n})^n \ (n \in \mathbb{N}); \ b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n!} \ (n \in \mathbb{N}_0)$$

 (a_n) und (b_n) sind konvergent und es gilt $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

Definition: $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$ heißt eulersche Zahl. $(2 < e < 3, e \approx 2,718)$

Beweis

In der großen Übung wurde gezeigt: $a \le a_n < a_{n+1} < 3 \ \forall n \in \mathbb{N}$. 6.3 \Longrightarrow (a_n) ist konvergent, $a := \lim a_n$.

 $b_{n+1} = b_n + \frac{1}{(n+1)!} > b_n \implies (b_n)$ ist monoton wachsend.

$$b_n = 1 + 1 + \underbrace{\frac{1}{2}}_{\leq \frac{1}{2^1}} + \underbrace{\frac{1}{2 \cdot 3}}_{< \frac{1}{2^2}} + \underbrace{\frac{1}{2 \cdot 3 \cdot 4}}_{< \frac{1}{2^3}} + \dots + \underbrace{\frac{1}{2 \cdot 3 \cdot \dots \cdot n}}_{< \frac{1}{2^{n-1}}}$$

$$<1+(1+\frac{1}{2}+\frac{1}{2}^2+\ldots+\frac{1}{2}^{n-1})=1+\frac{1-\frac{1}{2}^n}{1-\frac{1}{2}}=1+2(1-\frac{1}{2}^n)<3$$

 $\implies (b_n)$ ist nach oben beschränkt. 6.3 $\implies (b_n)$ ist konvergent, $b := \lim b_n$

Zu zeigen: a = b.

Für $n \geq 2$:

$$a_n = (a + \frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

$$= 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \underbrace{(1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n})}_{<1}$$

$$< 1 + 1 + \sum_{k=2}^n \frac{1}{k!} = b_n$$
(*)

Also: $a_n < b_n \ \forall n \ge 2 \implies a \le b$.

Sei $j \in \mathbb{N}, j \geq 2$ (fest) und n > j. Aus (*) folgt:

$$a_n \ge 1 + 1 + \sum_{k=2}^{j} \frac{1}{k!} \underbrace{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)}_{\to 1(n \to \infty)} = c_n^{(j)}$$

$$\implies c_n^{(j)} \to 1 + 1 + \sum_{k=2}^{j} \frac{1}{k!} = b_j \quad (n \to \infty)$$

$$\implies a_n \ge c_n^{(j)} \xrightarrow{n \to \infty} a \ge b_j.$$

Also: $b_j \le a \ \forall j \ge 2 \xrightarrow{j \to \infty} b \le a$.

8. Häufungswerte und Teilfolgen

Erinnerung: $a_n \to a \iff \forall \varepsilon > 0$ gilt: $a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N}$.

Definition (Häufungwerte)

 (a_n) sei eine Folge und $\alpha \in \mathbb{R}$. α heißt ein **Häufungswert** (HW) von (a_n) : $\iff \forall \varepsilon > 0$ gilt: $a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N}$. $\mathcal{H}(a_n) := \{\alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n)\}$.

Beispiele:

- (1) $a_n = (-1)^n$. $a_{2n} = 1, a_{2n-1} = -1$. Sei $\varepsilon > 0$: $a_{2n} \in U_{\varepsilon}(1) \ \forall n \in \mathbb{N} \Rightarrow a_n \in U_{\varepsilon}(1)$ für unendlich viele $n \in \mathbb{N} \Rightarrow 1 \in \mathscr{H}(a_n)$. Analog: $a_n \in U_{\varepsilon}(-1)$ für unendlich viele $n \in \mathbb{N} \Rightarrow -1 \in \mathscr{H}(a_n)$. Sei $\alpha \in \mathbb{R}$ und $1 \neq \alpha \neq -1$. Wähle $\varepsilon > 0$ so, dass $1, -1 \notin U_{\varepsilon}(\alpha) \Rightarrow a_n \notin U_{\varepsilon}(\alpha) \ \forall n \in \mathbb{N} \Rightarrow \alpha \notin \mathscr{H}(a_n)$. Fazit: $\mathscr{H}(a_n) = \{1; -1\}$.
- (2) $a_n = n$. Sei $\alpha \in \mathbb{R}$ und $\varepsilon > 0$. $\exists n_0 \in \mathbb{N} : n_0 > \alpha + \varepsilon \Rightarrow n > \alpha + \varepsilon \ \forall n \geq n_0 \Rightarrow a_n \notin U_{\varepsilon}(\alpha) \ \forall n \geq n_0 \Rightarrow a_n \in U_{\varepsilon}(\alpha)$ für höchstens endlich viele $n \in \mathbb{N}$. $\Rightarrow \alpha \notin \mathscr{H}(a_n)$. Fazit: $\mathscr{H}(a_n) = \emptyset$.
- (3) \mathbb{Q} ist abzählbar. Also: $\mathbb{Q} = \{a_1, a_2, \ldots\}$.

Behauptung: $\mathcal{H}(a_n) = \mathbb{R}$.

Beweis: Sei $\alpha \in \mathbb{R}$ und $\varepsilon > 0$. $\alpha_n := \alpha + \frac{\varepsilon}{n+1}$ $(n \in \mathbb{N}), \alpha_n \in U_{\varepsilon}(\alpha) \ \forall n \in \mathbb{N}$.

 $2.4 \Rightarrow \exists r \in \mathbb{Q} : \alpha_2 < r < \alpha_1 \text{ (dann: } r \in U_{\varepsilon}(\alpha)); \exists n_1 \in \mathbb{N} : r = a_{n_1}.$

Also: $a_{n_1} \in U_{\varepsilon}(\alpha)$. $2.4 \Rightarrow \exists n_2 \in \mathbb{N} : \alpha_3 < a_{n_2} < \alpha_2$. Dann: $n_2 \neq n_1$. $2.4 \Rightarrow \exists n_3 \in \mathbb{N} : \alpha_4 < a_{n_r} < \alpha_3$ und $n_3 \neq n_2, n_3 \neq n_1$. Etc.

Wir erhalten so eine Folge von Indices $(n_1, n_2, n_3, ...)$ in \mathbb{N} mit $a_{n_k} \in U_{\varepsilon}(\alpha)$ und $n_k \neq n_j$ für $k \neq j$.

 $\Rightarrow a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N} \Rightarrow \alpha \in \mathcal{H}(a_n)$.

Definition (Teilfolge)

Sei (a_n) eine Folge in \mathbb{R} und (n_1, n_2, \ldots) sei eine Folge in \mathbb{N} mit: $n_1 < n_2 < n_3 < \ldots$ Dann heißt $(a_{n_k}) = (a_{n_1}, a_{n_2}, \ldots)$ eine **Teilfolge** (TF) von (a_n) .

Beispiele:

- (1) $n_k = 2k : (a_2, a_4, a_6, \cdots)$ ist eine Teilfolge von (a_n) .
- (2) $n_k = 2k 1 : (a_1, a_3, a_5, \cdots)$ ist eine Teilfolge von (a_n) .
- (3) $n_k = k^2 : (a_1, a_4, a_9, \cdots)$ ist eine Teilfolge von (a_n) .
- (4) $(a_1, a_3, a_2, a_4, a_5, a_7, \cdots)$ ist keine Teilfolge.

Satz 8.1 (Sätze zu Teilfolgen)

(1) Sei (a_n) eine Folge und $\alpha \in \mathbb{R}$. Dann: $\alpha \in \mathcal{H}(a_n) \iff$ Es existiert eine TF (a_{n_k}) von (a_n) mit: $a_{n_k} \to \alpha \ (k \to \infty)$

- (2) Ist $\alpha \in \mathbb{R}$, so existert eine Folge (r_k) in \mathbb{Q} : $r_k \to \alpha \ (k \to \infty)$
- (3) Ist (a_n) konvergent und $a := \lim a_n \implies \mathcal{H}(a_n) = \{a\}$. Ist (a_{n_k}) eine Teilfolge von (a_n) , so ist (a_{n_k}) konvergent und $a_{n_k} \to a$ $(k \to \infty)$

- (1) ,, \Longrightarrow ": Sei $\alpha \in \mathcal{H}(a_n)$. Zu $\varepsilon = 1$ existiert $n_1 \in \mathbb{N}$: $a_{n_1} \in U_1(\alpha)$. Zu $\varepsilon = \frac{1}{2}$ existiert $n_2 \in \mathbb{N}$: $a_{n_2} \in U_{\frac{1}{2}}(\alpha)$ und $n_2 > n_1$ Zu $\varepsilon = \frac{1}{3}$ existiert $n_2 \in \mathbb{N}$: $a_{n_3} \in U_{\frac{1}{3}}(\alpha)$ und $n_3 > n_2$. etc Wir erhalten so eine Teilfolge von (a_{n_k}) von (a_n) mit $a_{n_k} \in U_{\frac{1}{k}}(\alpha) \ \forall k \in \mathbb{N}$, also: $|a_{n_k} \alpha| < \frac{1}{k} \ \forall k \in \mathbb{N} \implies a_{n_k} \to \alpha \ (k \to \infty)$. ,, \Leftarrow ": Sei (a_{n_k}) eine Teilfolge von (a_n) und $a_{n_k} \to \alpha \ (k \to \infty)$. Sei $\varepsilon > 0 \implies \exists k_0 \in \mathbb{N}$: $a_{n_k} \in U_{\varepsilon}(\alpha) \ \forall k > k_0 \implies a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N} \implies \alpha \in \mathcal{H}(a_n)$
- (2) Sei $\mathbb{Q} = \{a_1, a_2, \ldots\}$. Bekannt: $H(a_n) = \mathbb{R}$. Also: $\alpha \in \mathscr{H}(a_n) \stackrel{(1)}{\Longrightarrow}$ Behauptung.
- (3) Klar: $a \in \mathcal{H}(a_n)$ Sei (a_{n_k}) eine Teilfolge von (a_n) und $\varepsilon > 0$. $a = \lim a_n \implies a_n \in U_{\varepsilon}(a)$ ffa $n \in \mathbb{N} \implies a_{n_k} \in U_{\varepsilon}(a)$ ffa $k \in \mathbb{N} \implies a_{n_k} \to a$ $(k \to \infty)$. Aus (1) folgt noch $H(a_n) = a$.

Hilfssatz (Monotone Teilfolge)

Sei (a_n) eine Folge. Dann enthält (a_n) eine monotone Teilfolge.

Beweis

 $m \in \mathbb{N}$ heißt niedrig (für (a_n)) : $\iff a_n \ge a_m \ \forall n \ge m$.

Fall 1: Es existieren unendlich viele niedrige Indices n_1, n_2, n_3, \ldots etwa: $n_1 < n_2 < n_3 < \ldots$ (s. 2.3!). Sei $k \in \mathbb{N}$: n_k ist niedrig. $n_{k+1} > n_k \implies a_{n_{k+1}} \ge a_{n_k} \implies$ die Teilfolge (a_{n_k}) ist monoton wachsend.

Fall 2: Es gibt höchstens endlich viele niedrige Indices $\implies \exists m \in \mathbb{N}: m, m+1, m+2, \dots$ sind alle nicht niedrig $\implies n_3 > n_2 : a_{n_3} < a_{n_2}$ etc. Wir erhalten so eine mononte Teilfolge (a_{n_k}) .

Satz 8.2 (Satz von Bolzano-Weierstraß)

 (a_n) sei eine beschränkte Folge. Dann $H(a_n) \neq \emptyset$.

Beweis

 $\exists c > 0 : |a_n| \le c \ \forall n \in \mathbb{N}$. Hilfssatz \Longrightarrow (a_n) enthält eine monotone Teilfolge (a_{n_k}) . $|a_{n_k}| \le c \ \forall k \in \mathbb{N}$. (a_{n_k}) ist aber schränkt. 6.3 \Longrightarrow (a_{n_k}) ist konvergent. $\alpha := \lim_{k \to \infty} a_{n_k}$. 8.1(1) $\Longrightarrow \alpha \in \mathscr{H}(a_n)$.

Oberer und unterer Limes

Vereinbarung: In diesem Paragraphen sei (a_n) stets eine beschränkte Folge in \mathbb{R} . 8.2 $\Longrightarrow \mathcal{H}(a_n) \neq 0$.

Satz 9.1 (Beschränktheit und Abgeschlossenheit der Häufungswerte)

 $\mathcal{H}(a_n)$ ist beschränkt. Weiter existieren $\max \mathcal{H}(a_n)$ und $\min \mathcal{H}(a_n)$

Beweis

 $\exists c > 0 : |a_n| \le c \ \forall n \in \mathbb{N}. \text{ Sei } \alpha \in \mathscr{H}(a_n). \ 8.1 \implies \exists \mathrm{TF}(a_{n_k}) \text{ von } (a_n) \text{ mit } a_{n_k} \to \alpha \ (k \to \infty),$ $6.2 \implies |a_{n_k}| \to |\alpha| \ (k \to \infty); |a_{n_k}| \le c \ \forall k \in \mathbb{N} \ \stackrel{k \to \infty}{\Longrightarrow} \ |\alpha| \le c. \text{ Also: } |\alpha| \le c \ \forall \alpha \in \mathscr{H}(a_n). \ \mathscr{H}(a_n) \text{ ist also beschränkt. Sei } s := \sup \mathscr{H}(a_n), \text{ z.Z.: } s \in \mathscr{H}(a_n) \text{ (analog zeigt man: inf } \mathscr{H}(a_n) \in \mathscr{H}(a_n))$

Sei $\varepsilon > 0$. Dann ist $s - \varepsilon$ keine obere Schranke von $\mathscr{H}(a_n) \Longrightarrow \exists \alpha \in \mathscr{H}(a_n) : \alpha > s - \varepsilon$. Wähle $\delta > 0$ so, dass $U_{\delta}(\alpha) \subseteq U_{\varepsilon}(s) \Longrightarrow a_n \in U_{\delta}(\alpha)$ für unendlich viele $n \in \mathbb{N} \Longrightarrow a_n \in U_{\varepsilon}(s)$ für unendlich viele $n \in \mathbb{N} \Longrightarrow s \in \mathscr{H}(a_n)$.

Definition

 $\limsup a_n := \lim_{n \to \infty} \sup a_n := \max \mathscr{H}(a_n)$ heißt **oberer Limes** oder **Limes superior** von (a_n)

 $\liminf a_n := \lim_{n \to \infty} \inf a_n := \min \mathcal{H}(a_n)$ heißt unterer Limes oder Limes inferior von (a_n)

Beachte: $\liminf a_n \leq \alpha \leq \limsup a_n \ \forall \alpha \in \mathcal{H}(a_n)$.

Beispiele:

- (1) Ist (a_n) konvergent $\stackrel{8.1}{\Longrightarrow} \mathcal{H}(a_n) = \{\lim a_n\} \implies \lim \sup a_n = \lim \inf a_n = \lim a_n$.
- (2) $a_n = (-1)^n (1 + \frac{1}{n})^n$; $|a_n| = (1 + \frac{1}{n})^n \stackrel{7.6}{\leq} 3 \implies (a_n)$ ist beschränkt. $a_{2n} = (a + \frac{1}{2n})^{2n} \implies (a_{2n})$ ist eine Teilfolge von (a_n) und von der Folge $((1 + \frac{1}{n})^n) \stackrel{8.1}{\Longrightarrow} a_{2n} \to e \ (n \to \infty)$. Analog: $a_{2n-1} = -(1 + \frac{1}{2n-1})^{2n-1} \to -e$. Also: $e, -e \in \mathcal{H}(a_n)$. Sei $\alpha \in \mathbb{R} : e \neq \alpha \neq -e$.

Wähle $\varepsilon > 0$ so, dass: $\underbrace{(U_{\varepsilon}(e) \cup U_{\varepsilon}(-e))}_{=:U} \cap U_{\varepsilon}(\alpha) \neq \emptyset$ (*)

Etwa $\varepsilon := \frac{1}{2} \min\{|\alpha - e|, |\alpha + e|\}$. $a_{2n} \to e \implies a_n \in U_{\varepsilon}(e)$ ffa gerade n. $a_{2n-1} \to -e \implies a_n \in U_{\varepsilon}(-e)$ ffa ungerade n. $\implies a_n \in U$ ffa $n \in \mathbb{N} \implies a_n \in U_{\varepsilon}(\alpha)$ für höchstens endlich viele $n \in \mathbb{N} \implies \alpha \neq \mathscr{H}(a_n)$. Fazit: $\mathscr{H}(a_n) = \{e, -e\}$, $\limsup a_n = e$, $\liminf a_n = -e$.

Satz 9.2 (Eigenschaften des Limes superior und inferior)

Sei $\alpha \in \mathbb{R}$. Dann:

 $\alpha = \liminf a_n \iff \forall \varepsilon > 0 \text{ gilt:}$

- (1) $\alpha \varepsilon < a_n$ ffa $n \in \mathbb{N}$
- (2) $a_n < \alpha + \varepsilon$ für unendlich viele $n \in \mathbb{N}$.

 $\alpha = \limsup a_n \iff \forall \varepsilon > 0 \text{ gilt:}$

- (1) $\alpha \varepsilon < a_n$ für unendlich viele $n \in \mathbb{N}$
- (2) $a_n < \alpha + \varepsilon$ ffa $n \in \mathbb{N}$.

Beweis

nur für lim inf.

" \Longrightarrow ": Sei $\alpha = \liminf a_n$. Sei $\varepsilon > 0$. $\alpha \in \mathcal{H}(a_n) \implies a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N} \implies$ (ii).

Annahme: (i) gilt nicht. D.h.: $a_n \leq \alpha - \varepsilon$ für unendlich viele n, etwa für n_1, n_2, n_3, \ldots mit $n_1 < n_2 < n_3 < \ldots$ Dann ist a_{n_k} eine Teilfolge von (a_n) mit $a_{n_k} \leq \alpha - \varepsilon \ \forall k \in \mathbb{N}$. a_{n_k} ist beschränkt. $\overset{8.2}{\Longrightarrow} (a_{n_k})$ enthält eine konvergente Teilfolge $(a_{n_{k_j}})$; $\beta := \lim_{j \to \infty} a_{n_{k_j}}$. $(a_{n_{k_j}})$ ist auch eine Teilfolge von $(a_n) \overset{8.1}{\Longrightarrow} \beta \in \mathscr{H}(a_n) \Longrightarrow \alpha \leq \beta$. $a_{n_{k_j}} \leq \alpha - \varepsilon \ \forall j \in \mathbb{N} \overset{j \to \infty}{\Longrightarrow} \beta \leq \alpha - \varepsilon \Longrightarrow \alpha \leq \alpha - \varepsilon$,

Widerspruch! " \Leftarrow ": für jedes $\varepsilon > 0$ gelte (i) und (ii). Sei $\varepsilon > 0 \xrightarrow{\text{(i),(ii)}} \alpha - \varepsilon < a_n < \alpha + \varepsilon$ für unendlich viele $n \implies a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \implies \alpha \in \mathscr{H}(a_n)$. Sei $\beta < \alpha$. Zu zeigen: $\beta \neq \mathscr{H}(a_n)$.

 $n \implies a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \implies \alpha \in \mathcal{H}(a_n)$. Sei $\beta < \alpha$. Zu zeigen: $\beta \neq \mathcal{H}(a_n)$. $\varepsilon := \frac{\alpha - \beta}{2} \implies \beta + \varepsilon = \alpha - \varepsilon$. (i) $\implies a_n > \alpha - \varepsilon = \beta + \varepsilon$ ffa $n \in \mathbb{N} \implies a_n \in U_{\varepsilon}(\beta)$ für höchstens endlich viele $n \implies \beta \neq \mathcal{H}(a_n)$.

Satz 9.3 (Äquivalenzaussagen zur Konvergenz)

Die folgende Aussagen sind äquivalent:

- (1) $\liminf a_n = \limsup a_n$
- (2) (a_n) hat genau einen Häufungswert
- (3) (a_n) ist konvergent

Beweis

- (1) $(1) \iff (2)$ Klar.
- $(2) (3) \implies (2) 8.1.$
- (3) (2) \Longrightarrow (3) Sei $\mathscr{H}(a_n) = \{\alpha\} \Longrightarrow \limsup a_n = \liminf a_n = \alpha$. Sei $\varepsilon > 0 \Longrightarrow \alpha - \varepsilon < a_n < \alpha + \varepsilon \text{ ffa } n \in \mathbb{N} \Longrightarrow |a_n - \alpha| < \varepsilon \text{ ffa } n \in \mathbb{N} \Longrightarrow a_n \to \alpha \ (n \to \infty)$.

Folgerung 9.4

Sei (b_n) eine Folge in \mathbb{R} . (b_n) ist konvergent genau dann, wenn (b_n) beschränkt ist und genau einen Häufungswert hat. **Beweis** " \Longrightarrow ": 6.1, 9.3; " \Leftarrow ": 9.3

Beispiel

auf die Voraussetzung " (b_n) beschränkt"kann in 9.4 nicht verzichtet werden! **Beispiel:** $(b_n) = (1, 0, 3, 0, 5, 0, \ldots)$

Satz 9.5 (Rechenregeln für den Limes superior und inferior)

Sei (b_n) eine weitere beschränkte Folge in \mathbb{R} .

- (1) aus $a_n \leq b_n$ ffa $n \in \mathbb{N}$ folgt $\limsup a_n \leq \limsup b_n$ aus $a_n \leq b_n$ ffa $n \in \mathbb{N}$ folgt $\liminf a_n \leq \liminf b_n$
- (2) $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$ $\lim \inf (a_n + b_n) \ge \liminf a_n + \liminf b_n$
- (3) $\limsup (\alpha a_n) = \alpha \lim \sup a_n \ \forall \alpha \ge 0$ $\lim \inf (\alpha a_n) = \alpha \lim \inf a_n \ \forall \alpha \ge 0$
- (4) $\limsup(-a_n) = -\liminf a_n$ $\liminf(-a_n) = -\limsup a_n$

Beweis: Übung

10. Das Cauchy-Kriterium

Motivation: Sei (a_n) eine konvergente Folge, $a := \lim a_n$. Sei $\varepsilon > 0$. Dann existiert ein $n_0 = n_0(\varepsilon) \in \mathbb{N}$: $|a_n - a| < \frac{\varepsilon}{2} \ \forall n \ge n_0$.

Für $n, m \ge n_0$: $|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon$.

Eine konvergente Folge (a_n) hat also die folgende Eigenschaft:

$$(*)\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n, m \geq n_0 : |a_n - a_m| < \varepsilon$$

Definition (Cauchy-Folge)

Hat (a_n) die Eigenschaft (*), so heißt (a_n) eine **Cauchyfolge** (CF). **Beachte:** (a_n) ist eine Cauchyfolge $\iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |a_n - a_m| < \varepsilon \ \forall n > m \ge n_0 \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |a_n - a_{n+p}| < \varepsilon \ \forall n \ge n_0 \ \forall p \in \mathbb{N}.$

Beispiel

Beispiel
$$s_n := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k} \ (n \in \mathbb{N})$$

$$s_{2n} - s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} - (1 + \frac{1}{2} + \dots + \frac{1}{n}) = \underbrace{\frac{1}{n+1}}_{\geq \frac{1}{2n}} + \underbrace{\frac{1}{n+2}}_{\geq \frac{1}{2n}} + \dots + \underbrace{\frac{1}{2n}}_{\geq \frac{1}{2n}} \geq \underbrace{\frac{1}{2n}}_{\geq \frac{1}{2n}}$$

 $n \cdot \frac{1}{2n} = \frac{1}{2} \implies |s_{2n} - s_n| \ge \frac{1}{2} \ \forall n \in \mathbb{N} \implies (s_n)$ ist keine Cauchyfolge!

Satz 10.1 (Cauchy-Kriterium)

 (a_n) ist konvergent \iff (a_n) ist eine Cauchyfolge.

Beweis

"⇒": siehe oben

Annahme: (a_n) ist divergent $\stackrel{9.3}{\Longrightarrow} \alpha := \liminf a_n < \limsup a_n =: \beta$

$$\varepsilon := \frac{\beta - \alpha}{3}; \quad \exists n_0 \in \mathbb{N} : |a_n - a_{n_0}| < \varepsilon \ \forall n, m \ge n_0$$

$$\alpha \in H(a_n) \implies \exists n \in \mathbb{N} : a_n \in U_{\varepsilon}(\alpha) \text{ und } n \ge n_0 \implies a_n < \alpha + \varepsilon$$

$$\beta \in H(a_n) \implies \exists m \in \mathbb{N} : a_m \in U_{\varepsilon}(\beta) \text{ und } m \geq n_0 \implies a_m < \beta - \varepsilon$$

$$\implies a_m > a_n \implies |a_m - a_n| = a_m - a_n > \beta - \varepsilon - (\alpha + \varepsilon) = \beta - \alpha - 2\varepsilon = 3\varepsilon - 2\varepsilon = \varepsilon.$$

Folgerung 10.2

Die Folge (s_n) mit $s_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \quad (n \in \mathbb{N})$ ist divergent.

11. Unendliche Reihen

Definition

Sei (a_n) eine Folge in \mathbb{R} . Die Folge (s_n) mit $s_n := a_1 + a_2 + \ldots + a_n \quad (n \in \mathbb{N})$ heißt (unendliche) Reihe und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet (oder mit $a_1 + a_2 + \ldots + a_n$). s_n heißt die **n-te Teilsumme** von $\sum_{n=1}^{\infty} a_n$ und a_n heißt **n-tes Reihenglied** von $\sum_{n=1}^{\infty} a_n$. $\sum_{n=1}^{\infty} a_n$ heißt konvergent (divergent): \iff (s_n) konvergiert (divergiert). Ist $\sum_{n=1}^{\infty} a_n$ konvergent, so heißt $\lim_{n\to\infty} s_n$ der Reihenwert oder die Reihensumme und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet (Im Konvergenzfall hat also das Symbol $\sum_{n=1}^{\infty} a_n$ zwei Bedeutungen).

Bemerkung: (1)
$$\sum_{n=1}^{\infty} a_n = \sum_{i=1}^{\infty} a_i = \sum_{k=1}^{\infty} a_k$$

(2) Sei $p \in \mathbb{Z}$ und $(a_n)_{n \geq p}$ eine Folge. Dann definiert man entsprechend $s_n := a_p + a_{p+1} + \ldots + a_n \quad (n \geq p)$ und $\sum_{n=p}^{\infty} a_n$. Meist gilt: p = 1 oder p = 0.

Beispiele:

- (1) Die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$: $a_n = \frac{1}{n}, s_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \xrightarrow{10.2} (s_n) \text{ divergiert.}$ Also: $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.
- (2) Die **geometrische Reihe** $\sum_{n=0}^{\infty} x^n \quad (x \in \mathbb{R})$: $\stackrel{7.3}{\Longrightarrow} (s_n) \text{ konvergiert} \iff |x| < 1. \text{ In diesem Fall: } s_n \to \frac{1}{1-x} \quad (n \to \infty).$ Also: $\sum_{n=0}^{\infty} x^n$ ist konvergent $\iff |x| < 1.$ In diesem Fall: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$
- (3) $\sum_{n=0}^{\infty} \frac{1}{n!}$. §7 \Longrightarrow $\sum_{n=0}^{\infty} \frac{1}{n!}$ ist konvergent und $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.
- (4) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, $a_n = \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1} \implies s_n = (1 \frac{1}{2}) + (\frac{1}{2} \frac{1}{3}) + \dots + (\frac{1}{n-1} \frac{1}{n}) + (\frac{1}{n} \frac{1}{n+1}) = 1 \frac{1}{n+1} \to 1 \ (n \to \infty)$. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ ist konvergent, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$
- (5) $\mathbb{Q} = \{a_1, a_2, \cdots\}$ Sei $\varepsilon > 0$. $I_n := (a_n \frac{\varepsilon}{2^{n+1}}, a_n + \frac{\varepsilon}{2^{n+1}}). \ a_n \in I_n \ \forall n \in \mathbb{N} \implies \mathbb{Q} \subseteq \bigcup_{n=1}^{\infty} I_n.$ Länge von $I_n := |I_n|; \sum_{n=1}^{\infty} |I_n| = \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n}; \ s_n = \frac{\varepsilon}{2} + \frac{\varepsilon}{2^2} + \cdots + \frac{\varepsilon}{2^n} = \frac{\varepsilon}{2} (1 + \frac{1}{2} + \cdots + (\frac{1}{2})^{n-1}) = \frac{\varepsilon}{2} (\frac{1 (\frac{1}{2})^n}{1 \frac{1}{2}}) \to \varepsilon \ (n \to \infty) \ (\textit{Unendliche geometrische Reihe}). \ \text{D.h.} \ \sum_{n=1}^{\infty} |I_n|$ ist konvergent und $\sum_{n=1}^{\infty} |I_n| = \varepsilon$. Die Rationalen Zahlen können so mit abzählbaren Intervallen überdeckt werden, dass die Summe der Intervalle beliebig klein ist.

Satz 11.1 (Cauchy- und Monotoniekriterium sowie Nullfolgeneigenschaft) (a_n) sei eine Folge in \mathbb{R} und $s_n := a_1 + a_2 + \ldots + a_n$.

(1) Cauchy-Kriterium: $\sum_{n=1}^{\infty} a_n$ konvergiert $\iff \forall \varepsilon > 0 \ \exists n_0 := n_0(\varepsilon) \in \mathbb{N}$:

$$\left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon \forall n > m \ge n_0.$$

- (2) Monotoniekriterium: Sind alle $a_n \geq 0$ und ist (s_n) beschränkt, so folgt daraus: $\sum_{n=1}^{\infty} a_n$ konvergiert.
- (3) $\sum_{n=1}^{\infty} a_n$ sei konvergent. Dann:
 - (i) $a_n \to 0 \quad (n \to \infty)$
 - (ii) Für $\nu \in \mathbb{N}$ ist $\sum_{n=\nu+1}^{\infty} a_n = a_{\nu+1} + a_{\nu+2} + \dots$ konvergent und für $r_{\nu} := \sum_{n=\nu+1}^{\infty} a_n$ gilt: $r_{\nu} \to 0 \quad (\nu \to \infty)$

Beweis

- (1) Wende Cauchy-Kriterium (10.1) auf (s_n) an.
- (2) $s_{n+1} = a_1 + a_2 + \ldots + a_n + a_{n+1} = s_n + a_{n+1} \ge s_n \implies s_n \text{ ist monoton wachsend } \xrightarrow{\text{Vor.}} (s_n)$ konvergiert.
- (3) Sei $s := \lim s_n$, also $\sum_{n=1}^{\infty} a_n = s$.
 - (i) $s_n s_{n-1} = a_n \implies a_n \to s s = 0 \quad (n \to \infty)$
 - (ii) Für $n \ge \nu + 1$: $\sigma_n := a_{\nu+1} + a_{\nu+2} + \ldots + a_n = s_n (a_1 + \ldots + a_{\nu}) = s_n s_{\nu}$ $\implies \sigma_n \to s - s_{\nu} \quad (n \to \infty)$ $\implies \sum_{n=\nu+1}^{\infty} a_n \text{ konvergiert und } r_{\nu} = s - s_{\nu}$ $\implies r_{\nu} \to 0 \quad (\nu \to \infty)$

Satz 11.2 (Rechenregeln bei Reihen)

Seien $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ konvergent. Weiter seien $\alpha, \beta \in \mathbb{R}$. Dann ist $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n)$ konvergent und $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{\infty} a_n + \beta \sum_{n=1}^{\infty} b_n$.

Beweis

klar.

Definition

Die Reihe $\sum_{n=1}^{\infty} a_n$ heißt **absolut konvergent** : $\iff \sum_{n=1}^{\infty} |a_n|$ ist konvergent.

Satz 11.3 (Dreiecksungleichung für Reihen)

Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent, so ist $\sum_{n=1}^{\infty} a_n$ konvergent und

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

Beweis

Sei $\varepsilon > 0$. Aus der Voraussetzung und Satz 11.1(1) folgt:

$$\exists n_0 \in \mathbb{N} : \sum_{k=m+1}^n |a_k| < \varepsilon \ \forall n > m \ge n_0$$

$$\implies |\sum_{k=m+1}^n a_k| \le \sum_{k=m+1}^n |a_k| < \varepsilon \ \forall n > m \ge n_0$$

$$\xrightarrow{11.1(1)} \sum_{n=1}^\infty a_n \text{ ist konvergent.}$$

$$s_n := a_1 + a_2 + \dots + a_n; \quad \sigma_n := |a_1| + |a_2| + \dots + |a_n| \implies |s_n| \le \sigma_n$$

$$\xrightarrow{n \to \infty} |\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|.$$

Beispiel

Die alternierende Harmonische Reihe $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Hier: $a_n = (-1)^{n+1} \frac{1}{n}$. $|a_n| = \frac{1}{n} \implies \sum_{n=1}^{\infty} a_n$ konvergiert nicht absolut. Behauptung: $\sum_{n=1}^{\infty} a_n$ ist konvergent. (Später: $\sum_{n=1}^{\infty} a_n = \log 2$)

Beweis: $s_n = a_1 + a_2 + \ldots + a_n$.

 $s_{2n+2} = s_{2n} + a_{2n+1} + a_{2n+2} = s_{2n} + \underbrace{\frac{1}{2n+1} - \frac{1}{2n+2}}_{\text{co}} \implies (s_{2n}) \text{ ist monoton wachsend. Analog:}$

 (s_{2n-1}) ist monoton fallend. $s_{2n} = s_{2n-1} + a_{2n} = s_{2n-1} - \frac{1}{2n}$ (*)

Dann gilt $s_2 \le s_4 \le \ldots \le s_{2n} \stackrel{(*)}{=} s_{2n-1} - \frac{1}{2n} < s_{2n-1} \le \ldots \le s_3 \le s_1 \Longrightarrow (s_{2n})$ und (s_{2n-1}) sind beschränkt. 6.3 $\Longrightarrow (s_{2n})$ und (s_{2n-1}) sind konvergent. Aus (*) folgt dann $\lim s_{2n} = \lim s_{2n-1}$. A16 $\implies (s_n)$ hat genau einen Häufungswert. 9.3 $\implies (s_n)$ ist konvergent.

12. Konvergenzkriterien

Satz 12.1 (Leibnizkriterium)

Sei (b_n) eine monoton fallende Nullfolge und $a_n := (-1)^{n+1}b_n$. Dann ist $\sum_{n=1}^{\infty} a_n$ konvergent.

Beweis

Wie bei $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Von $(b_n) = (\frac{1}{n})$ wurde nur benutzt: $\frac{1}{n}$ ist eine fallende Nullfolge.

Bemerkung: Gilt $a_n = b_n$ ffa $n \in \mathbb{N}$, so gilt: $\sum_{n=1}^{\infty} a_n$ ist genau dann konvergent, wenn $\sum_{n=1}^{\infty} b_n$ konvergent ist.

Satz 12.2 (Majoranten- und Minorantenkriterium)

- (1) **Majorantenkriterium**: Gilt $|a_n| \le b_n$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ konvergent, so gilt: $\sum_{n=1}^{\infty} a_n$ ist absolut konvergent.
- (2) **Minorantenkriterium**: Gilt $a_n \ge b_n \ge 0$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ divergent, so gilt: $\sum_{n=1}^{\infty} a_n$ ist divergent.

Beweis

- (1) $s_n := b_1 + b_2 + \ldots + b_n$, $\sigma_n := |a_1| + \ldots + |a_n| \ \forall n \in \mathbb{N}$. O.b.d.A.: $|a_n| \le b_n \ \forall n \in \mathbb{N}$. (s_n) ist konvergent $\stackrel{6.1}{\Longrightarrow} (s_n)$ ist beschränkt $\Longrightarrow \exists c \ge 0 : a_n \le c \ \forall n \in \mathbb{N} \Longrightarrow 0 \le \sigma_n = |a_1| + |a_2| + \ldots + |a_n| \le b_1 + b_2 + \ldots + b_n = s_n \le c \ \forall n \in \mathbb{N} \Longrightarrow (\sigma_n)$ ist beschränkt $\stackrel{11.1(1)}{\Longrightarrow} (\sigma_n)$ konvergent.
- (2) Annahme: $\sum_{n=1}^{\infty} a_n$ ist konvergent $\stackrel{(1)}{\Longrightarrow} \sum_{n=1}^{\infty} b_n$ ist konvergent. Widerspruch!

Beispiele:

- (1) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$, $a_n = \frac{1}{(n+1)^2} = \frac{1}{n^2+2n+1} \le \frac{1}{n^2+2n} \le \frac{1}{n(n+1)} =: b_n$. Bekannt: $\sum_{n=1}^{\infty} b_n$ konvergent $\xrightarrow{12.2(2)} \sum_{n=1}^{\infty} a_n$ ist konvergent. Folgerung: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist konvergent.
- (2) $\sum_{n=1}^{\infty} \frac{1}{n^2 n + \frac{1}{8}}, a_n = \frac{1}{n^2 n + \frac{1}{8}}, b_n := \frac{1}{n^2}, \frac{a_n}{b_n} = \frac{n^2}{n^2 n + \frac{1}{8}} \to 1 \ (n \to \infty) \implies \exists m \in \mathbb{N} : \frac{a_n}{b_n} \le 2 \ \forall n \ge m \implies a_n \le 2b_n \ \forall n \ge m \ (|a_n| = a_n)$ $\sum_{n=1}^{\infty} 2b_n \text{ ist konvergent} \xrightarrow{\underline{12.2(1)}} \sum_{n=1}^{\infty} a_n \text{ ist konvergent}.$
- (3) Sei $\alpha \in (0,1] \cap \mathbb{Q}$: $\frac{1}{n^{\alpha}} \geq \frac{1}{n} \ \forall n \in \mathbb{N} \xrightarrow{12.2(2)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist divergent.
- (4) Sei $\alpha \geq 2, \alpha \in \mathbb{Q}$: $\frac{1}{n^{\alpha}} \leq \frac{1}{n^2} \ \forall n \in \mathbb{N} \xrightarrow{12.2(1)} \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist konvergent.

(5) In der Übung gezeigt: Ist $\alpha > 0, \, \alpha \in \mathbb{Q}$: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist konvergent genau dann, wenn $\alpha > 1$. Bemerkung: Ist später die allgemeine Potenz a^x $(a>0,x\in\mathbb{R})$ bekannt, so zeigt man analog: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \iff \alpha > 1 \ \forall \alpha \in \mathbb{R}.$

Definition (∞ als Limes Superior)

Ist (α_n) eine Folge und $\alpha_n \geq 0 \ \forall n \in \mathbb{N}$ und ist (α_n) nicht nach oben beschränkt, so setzte $\limsup \alpha_n := \limsup_{n \to \infty} \alpha_n := \infty.$

Vereinbarung: $x < \infty \ \forall x \in \mathbb{R}$

Satz 12.3 (Wurzelkriterium)

Sei (a_n) eine Folge und $\alpha := \limsup \sqrt[n]{|a_n|}$.

- (1) Ist $\alpha < 1 \implies \sum_{n=1}^{\infty} a_n$ absolut konvergent
- (2) Ist $\alpha > 1 \implies \sum_{n=1}^{\infty} a_n$ divergent
- (3) Ist $\alpha = 1$, so ist keine allgemeine Aussage möglich.

Beweis

- (1) $\alpha < 1$. Sei $\varepsilon > 0$ so, dass $x := \alpha + \varepsilon < 1$. 9.2 $\Longrightarrow \sqrt[n]{|a_n|} < \alpha + \varepsilon = x$ ffa $n \in \mathbb{N} \Longrightarrow$ $|a_n| < x^n$ ffa $n \in \mathbb{N}$. $\sum_{n=1}^{\infty} x^n$ ist konvergent $\xrightarrow{12.1(1)}$ Behauptung.
- (2) (i) $\alpha > 1, \alpha < \infty$: Sei $\varepsilon > 0$ so, dass $\alpha \varepsilon > 1$. 9.2 $\Longrightarrow \sqrt[n]{|a_n|} > \alpha \varepsilon > 1$ für unendlich viele $n \in \mathbb{N} \implies |a_n| > 1$ für unendlich viele $n \in \mathbb{N} \implies a_n \to 0 \implies \sum_{n=1}^{\infty} a_n$ ist divergent.
 - (ii) $\alpha = \infty \implies \sqrt[n]{|a_n|} > 1$ für unendlich viele $n \in \mathbb{N} \xrightarrow{\text{wie eben}} \sum_{n=1}^{\infty} a_n$ ist divergent.
- (3) Siehe Beispiele

Beispiele:

- (1) $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent. $\sqrt[n]{\frac{1}{n}} = \frac{1}{\sqrt[n]{n}} \to 1$, also $\alpha = 1$.
- (2) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist konvergent. $\sqrt[n]{\frac{1}{n^2}} = (\frac{1}{\sqrt[n]{n}})^2 \to 1$, also $\alpha = 1$.
- (3) $\sum_{n=1}^{\infty} \underbrace{(-1)^n (1 + \frac{1}{n})^{-n^2}}_{=:a_n} \cdot \sqrt[n]{|a_n|} = (1 + \frac{1}{n})^{-n} = \frac{1}{(1 + \frac{1}{n})^n} \to \frac{1}{e} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ ist absolut}$
- (4) Sei (a_n) eine Folge und $x \in \mathbb{R}$ mit $a_n := \begin{cases} \frac{1}{2^n} & \text{für } n \text{ gerade} \\ n \cdot x^n & \text{für } n \text{ ungerade} \end{cases}$ Betrachte $\sum_{n=1}^{\infty} a_n$. $\alpha_n := \sqrt[n]{|a_n|} = \begin{cases} \frac{1}{2} & \text{für } n \text{ gerade} \\ \sqrt[n]{n}|x| & \text{für } n \text{ ungerade} \end{cases}$. $\alpha_{2n} = \frac{1}{2} \to \frac{1}{2}$. $\alpha_{2n-1} = \sqrt[2n-1]{2n-1} \cdot |x| \to |x|$. A16 $\Longrightarrow \mathscr{H}(\alpha_n) = \{\frac{1}{2}, |x|\}$.

Ist
$$|x| < 1 \implies \limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$$
 konvergiert absolut

Ist
$$|x| > 1 \implies \limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n$$
 divergiert.

Ist
$$|x| < 1 \implies \limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$$
 konvergiert absolut.
Ist $|x| > 1 \implies \limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n$ divergiert.
Sei $|x| = 1$: $|a_{2n-1}| = |(2n-1)x^{2n-1}| = 2n-1 \implies a_n \to 0 \implies \sum_{n=1}^{\infty} a_n$ ist divergent.

(5) Sei $p \in \mathbb{N}$ und $q \in \mathbb{R}$ und |q| < 1. **Behauptung:** $\lim_{n \to \infty} n^p q^n = 0$. **Beweis:** $a_n := n^p q^n$. $\sqrt[n]{|a_n|} = \sqrt[n]{n^p}|q| = (\sqrt[n]{n})^p|q| \to |q| < 1 \implies \sum_{n=1}^{\infty} a_n$ ist absolut konvergent $\implies a_n \to 0$

Satz 12.4 (Quotientenkriterium)

Sei (a_n) eine Folge in \mathbb{R} und $a_n \neq 0$ ffa $n \in \mathbb{N}$. $\alpha_n := \frac{a_{n+1}}{a_n}$ (ffa $n \in \mathbb{N}$).

- (1) Ist $|\alpha_n| \ge 1$ ffa $n \in \mathbb{N} \implies \sum_{n=1}^{\infty} a_n$ ist divergent.
- (2) Es sei (α_n) beschränkt, $\beta := \liminf |\alpha_n|$ und $\alpha := \limsup |\alpha_n|$.
 - (i) Ist $\beta > 1 \implies \sum_{n=1}^{\infty} a_n$ ist divergent.
 - (ii) Ist $\alpha < 1 \implies \sum_{n=1}^{\infty} a_n$ ist absolut konvergent.
 - (iii) Ist $\alpha = \beta = 1$, so ist keine allgemeine Aussage möglich.

Beweis

O.B.d.A.: $a_n \neq 0 \ \forall n \in \mathbb{N}$

- (1) Dann: $|a_2| \ge |a_1| > 0$, $|a_3| \ge |a_2| \ge |a_1| > 0$, ... allgemein: $|a_n| \ge |a_1| > 0 \ \forall n \in \mathbb{N} \implies a_n \nrightarrow 0 \implies$ die Behauptung.
- (2) (i) Sei $\beta > 1$, Sei $\varepsilon > 0$ so, dass $\beta \varepsilon > 1$. 9.2 \Longrightarrow $|\alpha_n| > \beta \varepsilon > 1$ ffa $n \in \mathbb{N} \Longrightarrow$ die Behauptung.
 - (ii) Sei $\alpha < 1$. Sei $\varepsilon > 0$ so, dass $x := \alpha + \varepsilon < 1$. 9.2 $\Longrightarrow |\alpha_n| < \alpha + \varepsilon = x$ ffa $n \in \mathbb{N}$. Dann: $|a_2| \le |a_1|x$, $|a_3| \le |a_2|x \le |a_1|x^2$,... allgemein: $|a_n| \le |a_n1|x^{n-1}$ ffa $n \in \mathbb{N}$. $\sum_{n=1}^{\infty} |a_1|x^{n-1}$ ist konvergent $\Longrightarrow \sum_{n=1}^{\infty} a_n$ ist absolut konvergent.
 - (iii) siehe Beispiele

Beispiele:

- (1) $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent. $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1$, also $\alpha = \beta = 1$.
- (2) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ist konvergent. $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2} \to 1$, also $\alpha = \beta = 1$.

Beispiel 12.5 (Exponentialfunktion)

Für $x \in \mathbb{R}$ betrachte die Reihe

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

Für welche $x \in \mathbb{R}$ konvergiert diese Reihe (absolut)?.

Klar: für x = 0 konvergiert die Reihe.

Sei $x \neq 0$ und $a_n = \frac{x^n}{n!}$;

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 \quad (n \to \infty) \quad (\text{also } \alpha = \beta = 0)$$

12.4 $\implies \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist absolut konvergent für alle $x \in \mathbb{R}$.

Also wird durch $E(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$ $(x \in \mathbb{R})$ eine Funktion $E : \mathbb{R} \to \mathbb{R}$ definiert. Diese Funktion E heißt die **Exponentialfunktion**.

$$E(0) = 1, E(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

Bemerkung: Später zeige wir: $E(r) = e^r \ \forall r \in \mathbb{Q}$. Dann definieren wir $e^x := E(x) \ (x \in \mathbb{R})$.

Motivation: $b_n := (-1)^n \quad (n \in \mathbb{N}), \ b_n \to 0 \implies \sum_{n=1}^\infty b_n = b_1 + b_2 + \dots$ ist divergent. $a_1 := b_1 + b_2, \ a_2 := b_3 + b_4, \dots$ also: $a_n = 0 \ \forall n \in \mathbb{N} \implies \sum_{n=1}^\infty a_n = (b_1 + b_2) + (b_3 + b_4) + \dots$ ist konvergent. Also: "Im Allgemeinen darf man Klammern in konvergenten Reihen nicht weglassen."

Satz 12.6 (In konvergenten Folgen darf man Klammern setzen)

Sei $\sum_{n=1}^{\infty} a_n$ konvergent und es seien $n_1, n_2, \ldots \in \mathbb{N}$ mit $n_1 < n_2 < \ldots$. Setze $b_1 := a_1 + \ldots + a_{n_1}, b_2 := a_{n_1+1} + \ldots + a_{n_2}$, allgemein: $b_k := a_{n_{k-1}+1} + \ldots + a_{n_k} \quad (k \ge 2)$. Dann ist $\sum_{n=1}^{\infty} b_n$ konvergent und $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$.

Beweis

 $s_n := a_1 + a_2 + \ldots + a_n; \ \sigma_k := b_1 + b_2 + \ldots b_k.$ Es ist $\sigma_k = a_1 + a_2 + \ldots + a_{n_k} = s_{n_k} \implies \sigma_k$ ist eine Teilfolge von $s_n \stackrel{8.1(3)}{\Longrightarrow} (\sigma_k)$ konvergent und $\lim_{k \to 0} \sigma_k = \lim_{n \to \infty} s_n.$

13. Umordnungen und Produkte von Reihen

Definition (Umordnung)

Sei (a_n) eine Folge und $\phi: \mathbb{N} \to \mathbb{N}$ bijektiv. Setzt man $b_n := a_{\phi(n)}$ $(n \in \mathbb{N})$, so heißt (b_n) $(\sum_{n=1}^{\infty} b_n)$ eine **Umordnung** von (a_n) $(\sum_{n=1}^{\infty} a_n)$.

Beispiel

 $(a_1, a_3, a_2, a_4, a_5, a_7, a_6, a_8)$ ist eine Umordnung von (a_n) (aber keine Teilfolge!).

Hilfssatz

- (1) Sei $\phi: \mathbb{N} \to \mathbb{N}$ bijektiv und $m_0 \in \mathbb{N}$. Dann gilt: $\phi(n) \geq m_0$ ffa $n \in \mathbb{N}$
- (2) (b_n) ist eine Umordnung von $(a_n) \iff (a_n)$ ist eine Umordnung von (b_n) $\sum_{n=1}^{\infty} b_n$ ist eine Umordnung von $\sum_{n=1}^{\infty} a_n \iff \sum_{n=1}^{\infty} a_n$ ist eine Umordnung von $\sum_{n=1}^{\infty} b_n$

Beweis

(1) $A := \{n \in \mathbb{N} : \phi(n) < m_0\}$. z.z.: A ist endlich.

Annahme: A ist unendlich, etwa $A = \{n_1, n_2, n_3, \ldots\}$ mit $n_1 < n_2 < n_3 < \ldots; \phi$ bijektiv $\implies \phi(A)$ ist unendlich.

 $n \in \phi(A) \implies n = \phi(n_k), n_k \in A \implies n < m_0 \implies \phi(A) \subseteq \{1, 2, \dots, m_0 - 1\},$ Widerspruch!

(2) Es sei $b_n = a_{\phi(n)}$ und $\phi : \mathbb{N} \to \mathbb{N}$ bijektiv, $\phi^{-1} : \mathbb{N} \to \mathbb{N}$ bijektiv. $b_{\phi^{-1}(n)} = a_{\phi(\phi^{-1}(n))} = a_n \implies (a_n)$ ist eine Umordnung von (b_n) .

Satz 13.1 (Riemannscher Umordnungssatz)

 (b_n) sei eine Umordnung von (a_n) .

- (1) Ist (a_n) konvergent, dann gilt: (b_n) ist konvergent und $\lim b_n = \lim a_n$.
- (2) Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent, dann gilt: $\sum_{n=1}^{\infty} b_n$ ist absolut konvergent und $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$.
- (3) Riemannscher Umordnungssatz: $\sum_{n=1}^{\infty} a_n$ sei konvergent aber *nicht* absolut konvergent.
 - (i) Es gibt divergente Umordnungen von $\sum_{n=1}^{\infty} a_n$.
 - (ii) Ist $s \in \mathbb{R}$, so existiert eine Umordnung von $\sum_{n=1}^{\infty} a_n$ mit Reihenwert s.

Beweis

Für (1) und (2) sei $\phi : \mathbb{N} \to \mathbb{N}$ bijektiv und $b_n = a_{\phi(n)}$.

(1) Sei $a := \lim a_n$. Sei $\varepsilon > 0$, $\exists m_0 \in \mathbb{N} : |a_n - a| < \varepsilon \ \forall n \ge m_0$.

Aus Hilfssatz (1) folgt: $\exists n_0 \in \mathbb{N} : \phi(n) \ge m_0 \ \forall n \ge n_0$. Für $n \ge n_0 : |b_n - a| = |a_{\phi(n)} - a| < \varepsilon$.

(2) Wir schreiben \sum statt $\sum_{n=1}^{\infty}$.

Fall 1: $a_n \ge 0 \ \forall n \in \mathbb{N}$

 $s_n := a_1 + a_2 + \ldots + a_n, \sigma_n := b_1 + b_2 + \ldots + b_n. a_n \ge 0 \implies (s_n)$ ist wachsend, sei $s := \lim s_n (= \sum a_n)$. Es gilt: $s_n \le s \ \forall n \in \mathbb{N}$.

Sei $n \in \mathbb{N}$ und $j := \max\{\phi(1), \phi(2), \dots, \phi(n)\}$. Dann: $\{\phi(1), \phi(2), \dots, \phi(n)\} \subseteq \{1, 2, \dots, j\} \implies \sigma_n = b_1 + b_2 + \dots + b_n = a_{\phi(1)} + a_{\phi(2)} + \dots + a_{\phi(n)} \le a_1 + a_2 + \dots + a_j = s_j \le s \implies (\sigma_n)$ ist wachsend und beschränkt.

6.3 \Longrightarrow (σ_n) ist konvergent. Weiter: $\lim \sigma_n \leq s$, d.h. $\sum b_n \leq \sum a_n$. Vertauschung der Rollen von $\sum a_n$ und $\sum b_n$ liefert: $\sum a_n \leq \sum b_n$.

Fall 2, der allgemeine Fall: $\sum |b_n|$ ist eine Umordnung von $\sum |a_n| \xrightarrow{\text{Fall } 1} \sum |b_n|$ konvergiert und $\sum |b_n| = \sum |a_n|$. Noch z.z.: $\sum b_n = \sum a_n$.

 $\alpha_n := a_n + |a_n|, \beta_n := b_n + |b_n|. \text{ Dann: } \alpha_n, \beta_n \geq 0 \ \forall n \in \mathbb{N}. \ \sum \alpha_n, \sum \beta_n \text{ konvergieren, } \sum \beta_n \text{ ist eine Umordnung von } \sum \alpha_n. \text{ Fall } 1 \implies \sum \beta_n = \sum \alpha_n.$

Dann: $\sum a_n = \sum (\alpha_n - |a_n|) = \sum \alpha_n - \sum |a_n| = \sum \beta_n - \sum |b_n| = \sum (\beta_n - |b_n|) = \sum b_n$.

(3) ohne Beweis.

Vereinbarung: Für den Rest des Paragraphen seien gegeben: $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$. Wir schreiben \sum statt $\sum_{n=0}^{\infty}$. Weiter sei, falls $\sum a_n$ und $\sum b_n$ konvergent, $s := (\sum a_n)(\sum b_n)$.

Definition

Eine Reihe $\sum_{n=0}^{\infty} p_n$ heißt eine Produktreihe von $\sum a_n$ und $\sum b_n : \iff \{p_0, p_1, p_2, \ldots\} = \{a_j b_k : j = 0, 1, \ldots; k = 0, 1, \ldots\}$ und jedes $a_j b_k$ kommt in $(p_n)_{n=0}^{\infty}$ genau einmal vor.

Satz 13.2 (Alle Produktreihen sind Umordnungen voneinander)

Sind $\sum p_n$ und $\sum q_n$ zwei Produktreihen von $\sum a_n$ und $\sum b_n$, so ist $\sum p_n$ eine Umordnung von $\sum q_n$.

Beweis

Übung.

Satz 13.3 (Absolute Konvergenz geht auf Produktreihen über)

Sind $\sum a_n$ und $\sum b_n$ absolut konvergent, und ist $\sum p_n$ eine Produktreihe von $\sum a_n$ und $\sum b_n$, dann ist $\sum p_n$ absolut konvergent und $\sum p_n = s$.

Beweis

 $\sigma_n = |p_0| + |p_1| + \ldots + |p_n| \ (n \in \mathbb{N})$. Sei $n \in \mathbb{N}_0$. Dann existiert ein $m \in \mathbb{N}$: $\sigma_n \le (\sum_{k=0}^m |a_k|)(\sum_{k=0}^m |b_k|)$.

 $\alpha_k := |a_0| + |a_1| + \ldots + |a_k|, (\alpha_k)$ konvergiert und $\alpha_k \to \sum |a_k|, (\alpha_k)$ ist wachsend $\implies \alpha_k \le \sum |a_n| \implies 0 \le \sigma_n \le (\sum |a_n|)(\sum |b_n|) \ \forall n \in \mathbb{N}_0 \implies (\sigma_n)$ ist beschränkt (und wachsend).

 $6.3 \implies (\sigma_n)$ konvergiert $\implies \sum p_n$ ist absolut konvergent. Noch z.z.: $\sum p_n = s$.

Dazu betrachten wir eine spezielle Produktreihe $\sum q_n$ ("Anordnung nach Quadraten"):

$$q_0 := a_0 b_0, \ q_1 := a_0 b_1, \ q_2 := a_1 b_1, \ q_3 := a_1 b_0, \ q_4 := a_0 b_2, \ q_5 := a_1 b_2, \dots$$

 $s_n := q_0 + q_1 + \dots + q_n$

Nach dem schon Bewiesenen konvergiert $\sum q_n$, also auch (s_n) .

Nachrechnen:
$$\underbrace{(a_0 + a_1 + \ldots + a_n)}_{\rightarrow \sum a_n} \underbrace{(b_0 + b_1 + \ldots + b_n)}_{\rightarrow \sum b_n} = s_{n^2 + 2n} \ \forall n \in \mathbb{N}$$

$$\stackrel{n\to\infty}{\Longrightarrow} s = \sum q_n.$$

Aus 13.1 und 13.2 folgt:
$$\sum p_n = \sum a_n \sum b_n = s$$
.

Definition (Cauchyprodukt)

Setze $c_n := \sum_{k=0}^n a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0 \ (n \in \mathbb{N}_0)$, also: $c_0 = a_0 b_0$, $c_1 = a_0 b_1 + a_1 b_0$, ...

 $\sum_{n=0}^{\infty} c_n$ heißt Cauchyprodukt von $\sum a_n$ und $\sum b_n$.

Satz 13.4 (Cauchyprodukt absolut konvergierender Folgen konvergiert)

Sind $\sum a_n$ und $\sum b_n$ absolut konvergent, so konvergiert ihr Cauchyprodukt $\sum c_n$ und $\sum c_n = s$.

Beweis

Sei $\sum p_n$ die Produktreihe von $\sum a_n$ und $\sum b_n$, die durch "Anordnung nach Diagonalen"entsteht. $(p_0 = a_0b_0, p_1 = a_0b_1, p_2 = a_1b_0, p_3 = a_0b_2, p_4 = a_1b_1, p_5 = a_0b_3, \ldots)$. Dann: $c_0 = a_0b_0 = p_0, c_1 = p_1 + p_2, c_2 = p_3 + p_4 + p_5$. $\sum c_n$ ensteht also aus $\sum p_n$ durch Setzen vom Klammern. $13.3 \implies \sum p_n$ konvergiert absolut und $\sum p_n = s \stackrel{12.6}{\Longrightarrow}$ Behauptung.

Beispiel

Für $x \in \mathbb{R}$ mit |x| < 1 ist $\sum_{n=0}^{\infty} x^n$ absolut konvergent und $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. Für |x| < 1: $\frac{1}{(1-x)^2} = (\sum_{n=0}^{\infty} x^n)(\sum_{n=0}^{\infty} x^n) \stackrel{13.4}{=} \sum_{n=0}^{\infty} c_n$, wobei $c_n = \sum_{k=0}^n x^k x^{n-k} = \sum_{k=0}^n x^n = (n+1)x^n$.

$$\implies \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}.$$

Satz 13.5 $(E(r) = e^r \ \forall r \in \mathbb{Q})$

Erinnerung: $E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$

(1)
$$E(x + y) = E(x)E(y) \ \forall x, y \in \mathbb{R}$$
; allgemein: $E(x_1 + x_2 + \ldots + x_n) = E(x_1)E(x_2)\cdots E(x_n) \ \forall x_1, x_2, \ldots, x_n \in \mathbb{R}$.

13. Umordnungen und Produkte von Reihen

(2)
$$E(x) > 1 \ \forall x > 0$$
.

(3)
$$E(x) > 0 \ \forall x \in \mathbb{R}, E(-x) = \frac{1}{E(x)} \ \forall x \in \mathbb{R}.$$

(4) Aus
$$x < y$$
 folgt: $E(x) < E(y)$.

(5)
$$E(r) = e^r \ \forall r \in \mathbb{Q}.$$

Beweis

Sewers
$$(1) \ E(x)E(y) = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{y^n}{n!}\right) \stackrel{13.4}{=} \sum_{n=0}^{\infty} c_n \text{ mit}$$

$$c_n = \sum_{k=0}^{n} \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \frac{(x+y)^n}{n!}.$$

$$\implies E(x)E(y) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = E(x+y).$$

(2)
$$x > 0$$
: $E(x) = 1 + \underbrace{x + \frac{x^2}{2!} + \dots}_{>0} > 1$.

(3)
$$1 = E(0) = E(x + (-x)) \stackrel{(1)}{=} E(x)E(-x)$$
. Wir wissen: $E(x) > 0 \ \forall x > 0$.
Sei $x < 0 \implies -x > 0 \implies E(-x) > 0 \implies E(x) > 0$.

$$(4) \text{ Sei } x < y \implies y - x > 0 \stackrel{(2)}{\Longrightarrow} 1 < E(y - x) \stackrel{(1)}{=} E(y)E(-x) \stackrel{(3)}{=} \frac{E(y)}{E(x)} \implies E(x) < E(y).$$

(5) Seien
$$n, m \in \mathbb{N}$$
. $E(n) = E(\underbrace{1 + \ldots + 1}_{n \text{ mal}}) \stackrel{\text{(1)}}{=} E(1)^n = e^n$.

$$e = E(1) = E(n \cdot \frac{1}{n}) = E(\underbrace{\frac{1}{n} + \ldots + \frac{1}{n}}_{n \text{ mal}}) = E(\frac{1}{n})^n \implies E(\frac{1}{n}) = e^{\frac{1}{n}} \ (= \sqrt[n]{e}).$$

$$E(\frac{m}{n}) = E(\underbrace{\frac{1}{n} + \ldots + \frac{1}{n}}_{m \text{ mal}}) \stackrel{\text{(1)}}{=} E(\frac{1}{n})^m = (e^{\frac{1}{n}})^m = e^{\frac{m}{n}}. \text{ Also: } E(r) = e^r \ \forall r \in \mathbb{Q} \text{ mit } r \geq 0.$$

Sei
$$r \in \mathbb{Q}$$
 und $r < 0$. Dann: $-r > 0 \implies E(-r) = e^{-r} \stackrel{(3)}{\Longrightarrow} E(r) = e^{r}$.

Definition (e^x)

$$e^x := E(x) \ (x \in \mathbb{R}).$$

Hilfssatz 13.6

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

Beweis

 $\alpha_n = \frac{1}{\sqrt[n]{n!}}, \ 0 \le \alpha_n \le 1 \ \forall n \in \mathbb{N}, \ (\alpha_n)$ ist also beschränkt. $\alpha = \limsup \alpha_n$. Wegen 9.3 genügt es zu zeigen: $\alpha = 0$. Annahme: $\alpha > 0$. Setze $x := \frac{2}{\alpha}; \ a_n = \frac{x^n}{n!} \implies \sum a_n$ ist konvergent. $\sqrt[n]{|a_n|} = \frac{|x|}{\sqrt[n]{n!}} = |x| \cdot \alpha_n \implies \limsup \sqrt[n]{|a_n|} = |x| \cdot \alpha = 2 > 1 \implies \sum a_n$ ist divergent, Widerspruch!

Beispiel 13.7

Behauptung: Die Reihen

$$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

und

$$\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

konvergieren absolut für alle $x \in \mathbb{R}$.

Definition (Kosinus und Sinus)

$$\cos x := \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} \ (x \in \mathbb{R}) \ (\textbf{Kosinus})$$

$$\sin x := \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} \ (x \in \mathbb{R}) \ (\mathbf{Sinus})$$

Beweis

Nur für die erste Reihe:

$$a_n := (-1)^n \cdot \frac{x^{2n}}{(2n)!} \implies \sqrt[n]{|a_n|} = \frac{x^2}{((2n)!)^{\frac{1}{n}}} = \frac{x^2}{(((2n)!)^{\frac{1}{2n}})^2} \stackrel{13.6}{\longrightarrow} 0 \ (n \to \infty) \ (\text{wegen } 12.3).$$

14. Potenzreihen

Definition (Potenzreihe)

Sei $(a_n)_{n=0}^{\infty}$ eine Folge in \mathbb{R} . Eine Reihe der Form $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$ heißt eine **Potenzreihe** (PR). Die Menge $\{x \in \mathbb{R} : \sum_{n=0}^{\infty} a_n x^n \text{ konvergent}\}$ heißt der **Konvergenzbereich** (KB) der Potenzreihe. Klar: Die Potenzreihe konvergiert für x=0.

Erinnerung: Ist (x_n) eine Folge, die nicht nach oben beschränkt ist und $x_n \geq 0 \ \forall n \in \mathbb{N}$, so war $\limsup x_n = \infty$.

Vereinbarung: $\frac{1}{0} := \infty$, $\frac{1}{\infty} := 0$

Satz 14.1 (Konvergenz von Potenzreihen)

 $\sum_{n=0}^{\infty} a_n x^n$ sei eine Potenzreihe, $\rho := \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ und $r := \frac{1}{\rho}$ (also r = 0, falls $\rho = \infty$ und $r = \infty$ falls $\rho = 0$).

- (1) Ist r=0, so konvergiert die Potenzreihe nur für x=0
- (2) Ist $r = \infty$, so konvergiert die Potenzreihe absolut $\forall x \in \mathbb{R}$
- (3) Ist $0 < r < \infty$, so konvergiert die Potenzreihe absolut für |x| < r und sie divergiert für |x| > r (Im Falle |x| = r, also für x = r und x = -r ist keine allgemeine Aussage möglich).

Die Zahl r heißt der Konvergenzradius der Potenzreihe. Der Konvergenzbereich der Potenzreihe hat also folgende Form: $\{0\}$, falls r=0; \mathbb{R} falls $r=\infty$ und (-r,r), (-r,r], [-r,r) oder [-r,r] wenn $0 < r < \infty$.

Beweis

- (1) $r = 0 \implies \rho = \infty \implies \sqrt[n]{|a_n|}$ ist nicht nach oben beschränkt. Sei $x \in \mathbb{R}$, $x \neq 0$. $(\sqrt[n]{|a_n x^n|}) = (\sqrt[n]{|a_n|}|x|) \implies (\sqrt[n]{|a_n x^n|})$ ist nicht nach oben beschränkt $\stackrel{12.3}{\Longrightarrow} \sum a_n x^n$ divergent.
- (2) Sei $r = \infty \implies \rho = 0$. $x \in \mathbb{R}$: $\limsup \sqrt[n]{|a_n x^n|} = \limsup \sqrt[n]{|a_n|} |x| = \rho |x| = 0 < 1 \implies \sum a_n x^n$
- (3) $0 < r < \infty, x \in \mathbb{R}$: $\limsup_{n \to \infty} \sqrt[n]{|a_n x^n|} = \rho|x| = \frac{|x|}{r} < 1 \iff |x| < r$. Behauptung folgt aus

Beispiele:

- (1) $\sum_{n=0}^{\infty} x^n (a_n = 1 \forall n \in \mathbb{N}_0) \implies r = \rho = 1. \sum x^n \text{ konvergent } \iff |x| < 1$
- (2) $\sum_{n=1}^{\infty} \frac{x^n}{n^2} (a_0 = 0, a_n = \frac{1}{n^2} (n \ge 1))$ $\sqrt[n]{|a_n|} = \frac{1}{(\sqrt[n]{n})^2} \to 1(\rho = 1 = r)$. Die Potenzreihe konvergiert absolut für |x| < 1, sie divergiert für |x| > 1. $x = 1 : \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ konvergent (Leibniz!)

- (3) $\sum_{n=1}^{\infty} \frac{x^n}{n}$, $\rho = r = 1$. Die Potenzreihe konvergiert absolut für |x| < 1, sie divergiert für |x| > 1. x = 1: $\sum \frac{1}{n}$ divergent; x = -1: $\sum \frac{(-1)^n}{n}$ konvergent
- $(4) \sum_{n=0}^{\infty} \underbrace{(n^4 + 2n^2)} x^n; \ 1 \le a_n \le n^4 + 2n^4 = 3n^4 \forall \ n \in \mathbb{N} \implies 1 \le \sqrt[n]{|a_n|} \le \underbrace{\sqrt[n]{3}(\sqrt[n]{n})^4}_{1} \implies$ $\sqrt[n]{|a_n|} \to 1 \implies r = \rho = 1$ Die Potenzreihe konvergiert für |x| < 1 absolut, sie divergiert für |x| > 1. Für |x| = 1: $|a_n x^n| = |a_n||x^n| \to 0 \implies \text{divergent in } x = 1, x = -1$.
- (5) $\sum_{n=0}^{\infty} n^n x^n$; $a_n := n^n \sqrt[n]{|a_n|} = n \implies \rho = \infty \implies r = 0$
- (6) $\sum_{n=0}^{\infty} a_n x^n \text{ mit } a_n := \begin{cases} 0 & \text{n gerade} \\ n2^n & \text{n ungerade} \end{cases}$. A16 $\Longrightarrow \mathscr{H}(\sqrt[n]{|a_n|}) = \{0, 2\} \Longrightarrow \rho = 2 \Longrightarrow 0$ $r=\frac{1}{2}$. Die Potenzreihe konvergiert absolut für $|x|<\frac{1}{2}$, sie divergiert für $|x|>\frac{1}{2}$. Sei $|x| = \frac{1}{2}$. $|a_n x^n| = |a_n| \frac{1}{2^n} = n$ falls n ungerade $\implies a_n x^n \nrightarrow 0 \implies$ die Potenzreihe divergiert für $|x| = \frac{1}{2}$.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$

Die folgenden Potenzreihen haben jeweils den Konvergenzradius
$$r=\infty$$
: $e^x=\sum_{n=0}^\infty\frac{x^n}{n!},\ \sin x=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!},$ $\cos x=\sum_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!},\ f'(x)=\sum_{n=0}^\infty a_nnx^{n-1},\ \text{falls}\ f(x)=\sum_{n=0}^\infty a_nx^n\ \text{KR}\ r=\infty\ \text{hat}.$

Definition

 $\cosh x := \frac{1}{2}(e^x + e^{-x}) \ (x \in \mathbb{R}) \ (\text{Cosinus Hyperbolikus})$ $\sinh x := \frac{1}{2}(e^x - e^{-x}) \ (x \in \mathbb{R}) \ (\text{Sinus Hyperbolikus})$ $\text{Nachrechnen: } \cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} (x \in \mathbb{R})$

Vereinbarung: Sei $\mathbb{R} := \mathbb{R} \cup \{\infty\}$. Seien $a, b \in \mathbb{R}$ und a < b.

 $(a-r,b+r):=(-\infty,\infty)=\mathbb{R} \text{ falls } r=\infty \text{ Sei } r_1,r_2\in \tilde{\mathbb{R}} \text{ und } r_1=\infty \text{ oder } r_2=\infty.$

$$\min\{r_1, r_2\} := \begin{cases} \infty & \text{falls } r_1 = \infty = r_2 \\ r_2 & \text{falls } r_2 < \infty, r_1 = \infty \\ r_1 & \text{falls } r_1 < \infty, r_2 = \infty \end{cases}$$

Satz 14.2 (Konvergenzradien von Cauchyprodukten)

 $\sum_{n=0}^{\infty} a_n x^n$ und $\sum_{n=0}^{\infty} b_n x^n$ seien Potenzreihen mit den Konvergenzradien r_1 bzw. r_2 . Sei $c_n:=\sum_{k=0}^n a_k b_{n-k}$ $(n\in\mathbb{N}_0)$ und r sei der Konvergenzradius der Potenzreihe $\sum_{n=0}^\infty c_n x^n$. $R:=\min\{r_1,r_2\}$. Dann: $R\leq r$ und für $x\in(-R,R):\sum_{n=0}^\infty c_n x^n=(\sum_{n=0}^\infty a_n x^n)(\sum_{n=0}^\infty b_n x^n)$

Beweis

Sei
$$x \in (-R, R) : (\sum_{n=0}^{\infty} a_n x^n) (\sum_{n=0}^{\infty} b_n x^n) \stackrel{13.4}{=} \sum_{n=0}^{\infty} d_n$$
 wobei $d_n = \sum_{k=0}^{n} a_k x^k b_{n-k} x^{n-k} = x^n c_n \implies R \le r$ und $\sum_{n=0}^{\infty} c_n x^n = (\sum_{n=0}^{\infty} a_n x^n) (\sum_{n=0}^{\infty} b_n x^n).$

Bemerkung: Sei $(a_n)_{n=0}^{\infty}$ eine Folge und $x_0 \in \mathbb{R}$. Eine Reihe der Form $(*) \sum_{n=0}^{\infty} a_n (x-x_0)^n$ heißt ebenfalls eine Potenzreihe (x_0 heißt **Entwicklungspunkt** der Potenzreihe). Substitution $t:=x-x_0$, dann erhält man die Potenzreihe $\sum_{n=0}^{\infty}a_nt^n$. Sei r der Konvergenzradius dieser Potenzreihe. Dann: ist r=0, so konvergiert die Potenzreihe in (*) nur in $x=x_0$. Ist $r=\infty$, so konvergiert die Potenzreihe absolut $\forall x \in \mathbb{R}$. Ist $0 < r < \infty$, so konvergiert die Potenzreihe in (*) absolut für $|x - x_0| < r$, sie divergiert für $|x - x_0| > r$.

15. g-adische Entwicklungen

Vereinbarung: Stets in diesem Paragraphen: $g \in \mathbb{N}, g \geq 2, G := \{0, 1, \dots, g - 1\}.$

Satz 15.1 (Konvergenz g-adischer Entwicklungen)

- (1) Sei $(z_n)_{n\geq 1}$ eine Folge in $G \implies \sum_{n=1}^{\infty} \frac{z_n}{g^n}$ ist konvergent.
- (2) Ist $m \in \mathbb{N} \implies \sum_{n=m}^{\infty} \frac{g-1}{q^n} = \frac{1}{q^{m-1}}$

Beweis

- (1) $\frac{|z_n|}{q^n} = \frac{z_n}{q^n} \le \frac{g-1}{q^n} \ \forall n \in \mathbb{N}. \ \sum_{n=1}^{\infty} \frac{g-1}{q^n} \ \text{ist konvergent} \ \stackrel{12.2}{\Longrightarrow} \ \text{Behauptung.}$
- $(2) \sum_{n=m}^{\infty} \frac{g-1}{g^n} = \frac{g-1}{g^m} + \frac{g-1}{g^{m+1}} + \dots = \frac{g-1}{g^m} \cdot \left(1 + \frac{1}{g} + \frac{1}{g^2} + \dots\right) = \frac{g-1}{g^m} \cdot \frac{1}{1 \frac{1}{g}} = \frac{1}{g^{m-1}}.$

Definition

Sei $(z_n)_{n\geq 1}$ eine Folge in G und es gelte $(*)z_n\neq g-1$ für unendlich viele $n\in\mathbb{N}$. Dann heißt $0, z_1 z_2 z_3 \ldots := \sum_{n=1}^{\infty} \frac{z_n}{g^n}$ ein g-adischer Bruch oder eine g-adische Entwicklung.

Beispiele:

- (1) g = 10 (Dezimalentwicklung); $0, 333... = \sum_{n=1}^{\infty} \frac{3}{10^n} = \frac{1}{3}$
- (2) g = 2 (Dualentwicklung); $0, 111000... = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$.

(1) Die Negation von (*) lautet: $z_n = g - 1$ ffa $n \in \mathbb{N}$.

- (2) Ist $0, z_1 z_2 z_3 \dots$ ein g-adischer Bruch und existiert ein $m \in \mathbb{N}: z_n = 0$ für n > m, so schreibt man: $0, z_1 z_2 z_3 \dots z_m$
- (3) $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ seien konvergent und es gelte $a_n \leq b_n \ \forall n \in \mathbb{N} \implies \sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$. Gilt zusätzlich $a_n < b_n$ für ein $n \in \mathbb{N}$, so gilt $\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} b_n$ (Beweis in

Satz 15.2 (Eindeutigkeit der g-adischen Entwicklung)

Sei $a = 0, z_1 z_2 z_3 \dots$ ein g-adischer Bruch.

- $(1) \ a \in [0,1)$
- (2) Ist $0, w_1 w_2 w_3 \dots$ eine weitere g-adische Entwicklung von a, so gilt $z_n = w_n \ \forall n \in \mathbb{N}$.

(2) **Annahme:** $\exists n \in \mathbb{N} : z_n \neq w_n$. Sei m der kleinste solche Index, also $z_m \neq w_m$ und $z_j = w_j$ für $j = 1, \ldots, m-1$. Etwa $z_m < w_m \implies z_m - w_m < 0 \xrightarrow{z_m - w_m \in \mathbb{Z}} z_m - w_m \leq -1$. $\forall n \in \mathbb{N} : z_n - w_n \leq z_n \leq g-1$. $\exists \nu \in \mathbb{N} \text{ mit } \nu \geq m+1 \text{ und } z_{\nu} - w_{\nu} < g-1$. (andererenfalls $z_{\nu} - w_{\nu} = g-1$ $\forall \nu \geq m+1 \implies z_{\nu} = w_{\nu} + g-1$ $\forall \nu \geq m+1 \implies w_{\nu} = 0 \ \forall \nu \geq m+1 \implies z_{\nu} = g-1 \ \forall \nu \geq m+1$. Widerspruch zu (*)). Dann: $0 = a - a = \sum_{n=1}^{\infty} \frac{z_n}{g^n} - \sum_{n=1}^{\infty} \frac{w_n}{g^n} = \sum_{n=1}^{\infty} \frac{z_n - w_n}{g^n} = \sum_{n=m}^{\infty} \frac{z_n - w_n}{g^n} = \sum_{n=m+1}^{\infty} \frac{z_n - w_n}{g^n} = \sum_{n=m+1}^{\infty} \frac{z_n - w_n}{g^n} = 0$ $= \underbrace{\sum_{n=m+1}^{\infty} \frac{z_n - w_n}{g^n}}_{\leq -\frac{1}{g^m}} + \underbrace{\sum_{n=m+1}^{\infty} \frac{g-1}{g^n}}_{\leq -\frac{1}{g^m}} \leq -\frac{1}{g^m} + \underbrace{\sum_{n=m+1}^{\infty} \frac{g-1}{g^n}}_{=\frac{15}{2} \cdot \frac{1}{g^n}} = 0$ $\Rightarrow 0 < 0 \text{ Widerspruch.}$

Satz 15.3 (Existenz der q-adischen Entwicklung)

Ist $a \in [0,1)$, so lässt sich a eindeutig als g-adischer Bruch darstellen.

Beweis

Eindeutigkeit siehe 15.2.

Existenz: Definiere $(z_n)_{n\geq 1}$ wie folgt: $z_1:=[a\cdot g], z_{n+1}:=[(a-\frac{z_1}{g}-\frac{z_2}{g}-\cdots-\frac{z_n}{g})\cdot g^{n+1}]$ $(n\geq 1).$ In der Übung: $z_n\in G$ $\forall n\in\mathbb{N}$

Es gilt:
$$(**)\underbrace{\frac{z_1}{g} + \frac{z_2}{g^2} + \cdots \frac{z_n}{g^n}}_{=:s_n} \le a < \underbrace{\frac{z_1}{g} + \frac{z_2}{g^2} + \cdots \frac{z_n}{g^n}}_{=:s_n} + \frac{1}{g^n} \ \forall n \in \mathbb{N} \implies s_n \le a < s_n + \frac{1}{g^n} \ \forall n \in \mathbb{N}$$

$$\stackrel{n \to \infty}{\longrightarrow} a = \sum_{n=1}^{\infty} \frac{z_n}{g^n}.$$

Noch zu zeigen ist: $z_n \neq g-1$ für unendlich viele n. **Annahme**: $\exists m \in \mathbb{N} : z_n = g-1 \ \forall n \geq m$.

Dann:
$$a = \sum_{n=1}^{\infty} z_n g^n = \sum_{n=1}^{m-1} \frac{z_n}{g^n} + \sum_{n=m}^{\infty} \frac{g-1}{g^n} \implies a = s_{m-1} + \frac{1}{g^{m-1}} \text{ Widerspruch zu (**).}$$

Bemerkung: Ist $a \in \mathbb{R}$, $a \geq 0$, so lässt sich a eindeutig in der Form $a = [a] + 0, z_1 z_2 z_3 \dots$ darstellen. Ist g = 10, so schreibt man dafür $a = [a], z_1 z_2 z_3 \dots$ Beispiel: $1, 333 \dots$

Satz 15.4 (\mathbb{R} ist überabzählbar)

Die Menge der reellen Zahlen ist überabzählbar.

Beweis

Es genügt zu zeigen: [0,1) ist überabzählbar.

Annahme: [0,1) ist abzählbar, also $[0,1)=\{a_1,a_2,\ldots\}, a_j\neq a_k$ für $j\neq k$. Für $j\in\mathbb{N}$ sei $a_j=0,z_1^{(j)}z_2^{(j)}z_3^{(j)}\ldots$ die 3-adische Entwicklung von $a_j.$ $(z_k^{(j)}\in\{0,1,2\}).$

$$z_k := \begin{cases} 1 & \text{falls } z_k^{(k)} \in \{0, 2\} \\ 0 & \text{falls } z_k^{(k)} = 1 \end{cases}$$

Dann: $z_k \neq z_k^{(k)} \ \forall k \in \mathbb{N}, \ z_k \neq g-1 \ \forall k \in \mathbb{N}. \ a := 0, z_1 z_2 z_3 \dots = \sum_{n=1}^{\infty} \frac{z_n}{g^n}. \ 15.2 \implies a \in [0,1) \implies \exists m \in \mathbb{N}: a = a_m \implies 0, z_1 z_2 z_3 \dots = 0, z_1^{(m)} z_2^{(m)} z_3^{(m)} \dots \ 15.2 \implies z_j = z_j^{(m)} \ \forall j \in \mathbb{N} \implies z_m = z_m^{(m)}.$ Widerspruch!

16. Grenzwerte bei Funktionen

Definition (Häufungspunkt)

Sei $D \subseteq \mathbb{R}$ und $x_0 \in \mathbb{R}$. x_0 heißt ein **Häufungspunkt** (HP) von $D : \iff \exists$ Folge x_n in $D \setminus \{x_0\}$ mit $x_n \to x_0$.

Beispiele:

- (1) Ist D endlich, so hat D keine Häufungspunkte.
- (2) D = (0, 1]. x_0 ist Häufungspunkt von $D \iff x_0 \in [0, 1]$.
- (3) $D = \{\frac{1}{n} : n \in \mathbb{N}\}$. D hat genau einen Häufungspunkt: $x_0 = 0$
- (4) $D = \mathbb{Q}$. 8.1(2) \Longrightarrow jedes $x_0 \in \mathbb{R}$ ist ein Häufungspunkt von \mathbb{Q} .

Bemerkung: Unterscheide zwischen " x_0 ist Häufungswert von (a_n) "und " x_0 ist Häufungspunkt von $\{a_1, a_2, \ldots\}$ ". Beispiel: $a_n = (-1)^n$. $\mathcal{H}(a_n) = \{1, -1\}, \{a_1, a_2, \ldots\} = \{-1, 1\}$ hat keine Häufungspunkte.

Zur Übung: Sei $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$. x_0 ist Häufungspunkt von $D \iff \forall \varepsilon > 0$ gilt: $D \cap (U_{\varepsilon}(x_0) \setminus \{x_0\}) \neq \emptyset$

Vereinbarung: Ab jetzt sei in dem Paragraphen gegeben: $\emptyset \neq D \subseteq \mathbb{R}$. x_0 ist Häufungspunkt von D und $f: D \to \mathbb{R}$ eine Funktion.

Definition

 $\lim_{x\to x_0} f(x)$ exisitiert : $\iff \exists a\in\mathbb{R} \text{ mit: für jede Folge } (x_n) \text{ in } D\setminus\{x_o\} \text{ mit } x_n\to x_0 \text{ gilt: } f(x_n)\to a.$ In diesem Fall schreibt man: $\lim_{x\to x_0} f(x)=a \text{ oder } f(x)\to a \text{ } (x\to x_0)$

Bemerkung: (1) Existiert $\lim_{x \to x_0} f(x)$, so ist obiges a eindeutig bestimmt. (Übung)

(2) Falls $x_0 \in D$, so ist der Wert $f(x_0)$ in obiger Definition nicht relevant.

Beispiele:

(1) D = (0, 1].

$$f(x) = \begin{cases} x^2 & \text{falls } x \in (0, \frac{1}{2}) \\ \frac{1}{2} & \text{falls } x = \frac{1}{2} \\ 1 & \text{falls } x \in (\frac{1}{2}, 1) \\ 0 & \text{falls } x = 1 \end{cases}$$

 $x_0 = 0$: Sei (x_n) eine Folge in D mit $x_n \to 0$. Dann $x_n < \frac{1}{2}$ ffa $n \in \mathbb{N} \implies f(x_n) = x^2$ ffa $n \in \mathbb{N} \implies f(x_n) \to 0$, d.h. $\lim_{x \to 0} f(x) = 0$.

 $x_0 = 1$: Analog: $\lim_{x \to 0} f(x) = 1$.

 $x_0 = \frac{1}{2}$: Sei (x_n) eine Folge in $D \setminus \{\frac{1}{2}\}$ und $x_n < \frac{1}{2} \ \forall n \in \mathbb{N} \implies f(x_n) = x_n^2 \to \frac{1}{4}$. Sei (z_n) eine Folge in $D \setminus \{\frac{1}{2}\}$ und $z_n > \frac{1}{2} \ \forall n \in \mathbb{N} \implies f(z_n) = 1 \to 1$ d.h.: $\lim_{x \to \frac{1}{2}} f(x)$

existiert nicht. Aber: $\lim_{x \to \frac{1}{2}} f(x)$ existiert und ist $\frac{1}{4}$ und $\lim_{x \to \frac{1}{2}} f(x)$ existiert und ist 1. $x \in (0, \frac{1}{2})$

Dafür schreibt man: $\lim_{x \to \frac{1}{2}-} f(x) = \frac{1}{4}$ und $\lim_{x \to \frac{1}{2}+} f(x) = 1$.

(2) $D = [0, \infty), p \in \mathbb{N}, f(x) = \sqrt[p]{x}$. Sei $x_0 \in D$. Sei (x_n) Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$. 7.1 $\Longrightarrow f(x_n) = \sqrt[p]{x_n} \to \sqrt[p]{x_0}$. Das heißt: $\lim_{x \to x_0} f(x) = f(x_0)$.

Vereinbarung: Für $\delta > 0$: $D_{\delta}(x_n) = D \cap U_{\delta}(x_0)$. $\dot{D}_{\delta}(x_0) = D_{\delta}(x_0) \setminus \{x_0\}$.

Satz 16.1 (Grenzwertsätze bei Funktionen)

- (1) $\lim_{x \to x_0} f(x)$ existiert \iff für jede Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$ ist $f(x_n)$ konvergent.
- (2) Für $a \in \mathbb{R}$ gilt: $\lim_{x \to x_0} f(x)$ existiert und ist gleich $a \iff \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \text{mit} \ (*)$ $|f(x) a| < \varepsilon \ \forall x \in \dot{D}_{\delta}(x_0).$
- (3) Cauchykriterium: $\lim_{x \to x_0} f(x)$ existiert $\iff \forall \varepsilon > 0 \ \exists \delta > 0 : |f(x) f(x')| < \varepsilon \forall x, x' \in \dot{D}_{\delta}(x_0)$

Beweis

- (1) " \Longrightarrow ": aus Definition. " \Leftarrow ": Seien $(x_n), (z_n)$ Folgen in $D \setminus \{x_0\}$ mit $x_n \to x_0$, $z_n \to x_0$. Voraussetzung \Longrightarrow es existiert $a := \lim f(x_n)$ und $b := \lim f(z_n)$. Zu zeigen ist: a = b. Sei t_n definiert durch $(t_n) := (x_1, z_1, x_2, z_2, \ldots)$. (t_n) ist Folge in $D \setminus \{x_0\}$ mit $t_n \to x_0$, Voraussetzung $\Longrightarrow \exists c := \lim f(t_n)$. $(f(x_n))$ ist Teilfolge von $(f(t_n)) \Longrightarrow a = c$, analog: $b = c \Longrightarrow a = b$.
- (2) " \Longrightarrow ": Sei $\varepsilon > 0$. **Annahme**: Es gibt kein $\delta > 0$, so dass (*) gilt. Das heißt: $\forall \delta > 0$ exisistert ein $x_j \in \dot{D}_{\delta}(x_j)$: $|f(x_j) a| \ge \varepsilon$, also $\forall n \in \mathbb{N} \ \exists x_n \in \dot{D}_{\frac{1}{n}}(x_0) : |f(x_n) a| \ge \varepsilon$. Das heißt: (x_n) ist eine Folge in $D \setminus \{x_0\}$ mit $x_n \to x_0$ und $f(x_n) \nrightarrow a$, Widerspruch. " \Leftarrow ": Sei x_n eine Folge in $D \setminus \{x_n\}$ mit $x_n \to x_0$. Zu zeigen ist: $f(x_n) \to a$. Sei $\varepsilon > 0$. $\exists \delta > 0$ so dass (*) gilt. Dann: $x_n \in \dot{D}_{\delta}(x_0)$ ffa $n \in \mathbb{N} \Longrightarrow |f(x_n) - a| < \varepsilon$ ffa $n \in \mathbb{N}$.
- (3) In Übung.

Satz 16.2 (Rechnen mit Funktionsgrenzwerten)

Seien $g, h: D \to \mathbb{R}$ zwei weitere Funktionen und es gelte $f(x) \to a, g(x) \to b \ (x \to x_0)$.

- (1) $f(x) + g(x) \to a + b$, $f(x) \cdot g(x) \to ab$, $|f(x)| \to |a| (x \to x_0)$
- (2) Ist $a \neq 0 \implies \exists \delta > 0 : f(x) \neq 0 \ \forall x \in \dot{D}_{\delta}(x_0)$. Für $\frac{1}{f} : \dot{D}_{\delta}(x_0) \to \mathbb{R}$ gilt: $\frac{1}{f(x)} \to \frac{1}{a}$.

- (3) Existiert ein $\delta > 0$ mit $f \leq g$ auf $\dot{D}_{\delta}(x_0) \implies a \leq b$
- (4) Existiert ein $\delta > 0$ mit $f \le h \le g$ auf $\dot{D}_{\delta}(x_0)$ und $a = b \implies \lim_{x \to x_0} h(x) = a$.

Beweis

folgt aus 6.2

Zum Beispiel: (3) Sei (x_n) Folge in $D\setminus\{x_0\}$ und $x_n\to x_0$. Dann: $x_n\in \dot{D}_{\delta}(x_0)$ ffa $n\in\mathbb{N}$ \Longrightarrow $f(x_n)\leq g(x_n)$ ffa $n\in\mathbb{N}$ \Longrightarrow $a=\lim_{n\to\infty}f(x_n)\leq \lim_{n\to\infty}g(x_n)=b$.

Definition

- (1) Sei (a_n) eine Folge in \mathbb{R} . $\lim a_n = \infty \text{ (oder } a_n \to \infty) : \iff \forall c > 0 \ \exists n_0 = n_0(c) \in \mathbb{N} : a_n > c \forall n \ge n_0.$ $\lim a_n = -\infty \text{ (oder } a_n \to -\infty) : \iff \forall c < 0 \ \exists n_0 = n_0(c) \in \mathbb{N} : a_n < c \forall n \ge n_0.$
- (2) $\lim_{x\to x_0} f(x) = \infty$ (oder $f(x) \to \infty$ $(x \to x_0)$) : \iff für jede Folge (x_n) in $D\setminus\{x_0\}$ und $x_n \to x_0$ gilt: $f(x_n) \to \infty$. $\lim_{x\to x_0} f(x) = -\infty$ (oder $f(x) \to -\infty$ $(x \to x_0)$) : \iff für jede Folge (x_n) in $D\setminus\{x_0\}$ und $x_n \to x_0$ gilt: $f(x_n) \to -\infty$.
- (3) Sei D nicht nach oben beschränkt. $\lim_{x\to\infty} f(x) = a$ (oder $f(x)\to a$): \iff für jede Folge (x_n) in D mit $x_n\to\infty$ gilt: $f(x_n)\to a$ $(a=\pm\infty$ zugelassen). Sei D nicht nach unten beschränkt. $\lim_{x\to-\infty} f(x) = a$ (oder $f(x)\to-\infty$): \iff für jede Folge (x_n) in D mit $x_n\to-\infty$ gilt: $f(x_n)\to a$ $(a=\pm\infty$ zugelassen).

Beispiele:

- (1) $a_n := x^n \ (x > 1)$. Behauptung: $x^n \to \infty \ (n \to \infty)$. Sei c > 0. $c < \frac{1}{x^n} < 1 \implies \frac{1}{x^n} \to 0 \implies \frac{1}{x^n} < \frac{1}{c}$ ffa $n \in \mathbb{N} \implies x^n > c$ ffa $n \in \mathbb{N}$.
- (2) Sei $p \in \mathbb{N}$. Dann $x^p \to \infty$ $(x \to \infty)$. Siehe Übung.
- (3) $\frac{1}{x} \to \infty \ (x \to 0+), \ \frac{1}{x} \to -\infty \ (x \to 0-).$

Satz 16.3 (Grenzwerte der Exponentialfunktion)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$$

- (1) Für $p \in \mathbb{N}_0 : \frac{e^x}{x^p} \to \infty \ (x \to \infty)$
- (2) $e^x \to \infty \ (x \to \infty)$
- (3) $e^x \to 0 \ (x \to -\infty)$

Beweis

(1) $e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^p+1}{(p+1)!} + \dots \ge \frac{p+1}{(p+1)!} \ \forall x \ge 0 \implies \frac{e^x}{x^p} \ge \frac{x}{(p+1)!} \ \forall x > 0 \implies \text{Behauptung.}$

16. Grenzwerte bei Funktionen

(2) Folgt aus 1 mit p = 0.

(3)
$$e^{-x} = \frac{1}{e^x} \xrightarrow{(2)} 0 \ (x \to -\infty) \implies e^x \to 0 \ (x \to -\infty).$$

17. Stetigkeit

Vereinbarung: In diesem Paragraphen seien stets: $\emptyset \neq D \subseteq \mathbb{R}$, $x_0 \in D$ und $f: D \to \mathbb{R}$ eine Funktion.

Definition

- (1) f heißt stetig in $x_0 : \iff$ für jede Folge (x_n) in D mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$.
- (2) f heißt stetig auf $D : \iff f$ ist in jedem $x \in D$ stetig.
- (3) $C(D) := \{g : D \to \mathbb{R} : g \text{ ist stetig auf } D\}.$

Beispiele: (1)
$$D := [0,1] \cup 2$$
. $f(x) := \begin{cases} x^2 & \text{für } x \in [0,1) \\ 0 & \text{für } x = 1 \\ 1 & \text{für } x = 2 \end{cases}$

Klar: f ist stetig in jedem $x \in [0, 1)$. $x_0 = 1$: $x_n = 1 - \frac{1}{n} \implies x_n \to 1$. $f(x_n) = (1 - \frac{1}{n})^2 \to 1 \neq 0 = f(1) \implies f$ ist in $x_0 = 1$ nicht stetig

 $x_0 = 2$: Sei (x_n) eine Folge in D mit $x_n \to 2 \implies x_n = 2$ ffa $n \in \mathbb{N} \implies f(x_n) = 1$ ffa $n \in \mathbb{N} \implies f(x_n) \to 1 = f(2)$. Das heißt: f ist stetig in $x_0 = 2$.

(2) $D := [0, \infty), p \in \mathbb{N}, f(x) := \sqrt[p]{x}, \S 16 \implies f \in C[0, \infty).$

Satz 17.1 (Stetigkeitssätze)

- (1) f ist stetig in $x_0 \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) : |f(x) f(x_0)| < \varepsilon \ \forall x \in D_{\delta}(x_0)$.
- (2) Ist x_0 Häufungspunkt von D, so gilt: f ist stetig in $x_0 \iff \lim_{x \to x_0} f(x)$ existiert und ist gleich $f(x_0)$.
- (3) Ist $g: D \to \mathbb{R}$ eine weitere Funktion und sind f, g stetig in x_0 , dann sind f + g, fg und |f| stetig in x_0 .
- (4) Sei $\tilde{D} := \{x \in D : f(x) \neq 0\}$ und $x_0 \in \tilde{D}$ und f sei stetig in x_0 . Dann ist $\frac{1}{f} : \tilde{D} \to \mathbb{R}$ stetig in x_0 .

Beweis

- (1) Wie bei 16.1
- (2) Als Übung
- (3) und
- (4) wie bei 16.2

Satz 17.2 (Stetigkeit der Potenzreihen)

 $\sum_{n=0}^{\infty}a_nx^n$ sei Potenzreihe mit dem Konvergenzradius r>0.Es sei D=(-r,r) und $f(x):=\sum_{n=0}^{\infty}a_nx^n\ (x\in D).$ Dann: $f\in C(D).$ Insbesondere gilt für $x_0\in D$:

$$\lim_{x \to x_0} \sum_{n=0}^{\infty} a_n x^n = \lim_{x \to x_0} f(x) \stackrel{17.1(2)}{=} f(x_0) = \sum_{n=0}^{\infty} a_n x_0^n = \sum_{n=0}^{\infty} \lim_{x \to x_0} a_n x^n$$

Beweis

Später in §19

Beispiel 17.3

- (1) e^x , $\sin x$, $\cos x$ sind auf \mathbb{R} stetig.
- $(2) \lim_{x \to 0} \frac{\sin x}{x} = 1.$
- (3) $\lim_{x \to 0} \frac{e^x 1}{x} = 1.$
- (4) $\lim_{h \to 0} \frac{e^{x_0 + h} e^{x_0}}{h} = e^{x_0}.$

Beweis

- (1) Folgt aus 17.2
- (2) Für $x \neq 0$:

$$\frac{1}{x}\sin x = \frac{1}{x} \cdot \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots\right) = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots \xrightarrow{17.2} 1 \ (x \to 0)$$

Potenzreihe mit KR ∞ , also stetig (in x=0)

(3) Für $x \neq 0$:

$$\frac{e^x - 1}{x} = \frac{1}{x} \cdot (1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots - 1) = \underbrace{1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots}_{17.2} \xrightarrow{17.2} 1 \ (x \to 0)$$

Potenzreihe mit KR ∞ , also stetig (in x=0)

(4)
$$\frac{e^{x_0+h}-e^{x_0}}{h}=e^{x_0}\frac{e^h-1}{h} \xrightarrow{(3)} e^{x_0}\cdot 1=e^{x_0} (h\to 0)$$

Satz 17.4 (Stetigkeit von verketteten stetigen Funktionen)

Sei $E \subseteq \mathbb{R}$, $g: E \to \mathbb{R}$ eine Funktion und $f(D) \subseteq E$. f sei stetig in $x_0 \in D$ und g sei setig in $y_0 := f(x_0)$. Dann ist $g \circ f: D \to \mathbb{R}$ stetig in x_0 .

Beweis

Sei (x_n) eine Folge in D mit $x_n \to x_0$. f ist stetig in $x_0 \implies \underbrace{f(x_n)}_{=:y_n} \to f(x_0) = y_0$. g stetig in

$$y_0 \Longrightarrow \underbrace{g(y_n)}_{=g(f(x_n))=(g\circ f)(x_n)} \to g(y_0) = g(f(x_0)) = (g\circ f)(x_0).$$

18. Eigenschaften stetiger Funktionen

Satz 18.1 (Zwischenwertsatz)

Sei a < b und $f \in C[a,b] := C([a,b])$, weiter sei $y_0 \in \mathbb{R}$ und $f(a) \leq y_0 \leq f(b)$ oder $f(b) \leq y_0 \leq f(a)$. Dann existiert ein $x_0 \in [a,b]$ mit $f(x_0) = y_0$

Beweis

O.B.d.A: $f(a) < y_0 < f(b)$, $M := \{x \in [a,b] : f(x) \le y_0\}$. $M \ne \emptyset$, denn $a \in M$. $M \subseteq [a,b] \implies M$ ist beschränkt. $x_0 := \sup M$. $\forall n \in \mathbb{N}$ ist $x_0 - \frac{1}{n}$ keine obere Schranke von $M \implies \forall n \in \mathbb{N} \exists x_n \in M : x_0 - \frac{1}{n} < x_n \le x_0 \implies x_n \to x_0$. $x_n \in [a,b] \implies x_0 \in [a,b]$, f stetig in $x_0 \implies \underbrace{f(x_n)}_{\le y_0} \to f(x_0) \implies f(x_0) \le y_0$. Es ist $x_0 < b$ (anderenfalls: $f(x_0) \le y_0 < f(b) = f(x_0)$

Widerspruch!) $z_n := x_0 + \frac{1}{n}; z_n \in [a, b]$ ffa $n \in \mathbb{N}; z_n \to x_0;$ f stetig in $x_0 \implies f(z_n) \to f(x_0).$ $z_n \notin M \implies f(z_n) > y_0 \forall n \in \mathbb{N} \implies \lim f(z_n) \ge y_0 \implies f(x_0) \ge y_0$

Satz 18.2 (Nullstellensatz von Bolzano)

Sei $f \in C[a,b]$ und $f(a) \cdot f(b) < 0$, dann existiert ein $x_0 \in [a,b] : f(x_0) = 0$. Beweis folgt aus 18.1 und $y_0 = 0$

Anwendung 18.3

Sei $E(x) := e^x (x \in \mathbb{R})$. Behauptung: $E(\mathbb{R}) = (0, \infty)$

Beweis

13.3 $\implies e^x > 0 \forall x \in \mathbb{R} \implies E(\mathbb{R}) \subseteq (0, \infty)$. Sei $y_0 \in (0, \infty)$ z.z: $\exists x_0 \in \mathbb{R} : e^{x_0} = y_0$. 16.3 $\implies e^x \to \infty (x \to \infty) \implies \exists b \in \mathbb{R} : y_0 < e^b$. 16.3 $\implies e^x \to 0 (x \to -\infty) \implies \exists a \in \mathbb{R} : e^a < y_0 \implies e^a < y_0 < e^b \xrightarrow{\text{e streng wachsend}} a < b$. 18.1 $\implies \exists x_0 \in [a, b] : e^{x_0} = y_0$.

Definition

 $A \subseteq \mathbb{R}$ heißt **abgeschlossen**: \iff für jede konvergente Folge (x_n) in A gilt: $\lim x_n \in A$ $B \subseteq \mathbb{R}$ heißt **offen**: $\iff \forall x \in B \ \exists \delta = \delta(x) > 0 : U_{\delta}(x) \subseteq B$.

Beispiele:

- (1) [a,b] ist abgeschlossen, aber nicht offen. (a,b) ist offen, aber nicht abgeschlossen.
- (2) (a, b] und [a, b) sind weder abgeschlossen, noch offen
- (3) \mathbb{R} ist offen, abgeschlossen. \emptyset ist offen, abgeschlossen

Hilfssatz

(1) $A \subseteq \mathbb{R}$ ist abgeschlossen \iff jeder Häufungspunkt von A gehört zu A

- (2) $B \subseteq \mathbb{R}$ ist offen $\iff \mathbb{R} \setminus B$ ist abgeschlossen
- (3) $D \subseteq \mathbb{R}$ ist abgeschlossesn u. beschränkt \iff jede Folge (x_n) in D enthält eine konvergente Teilfolge (x_{n_k}) mit $\lim x_{n_k} \in D$. In diesem Fall existiert $\max D$ und $\min D$.

Beweis

- (1) Übung
- (2) " \Longrightarrow ": Sei (x_n) eine konvergente Folge in $\mathbb{R} \setminus B$ und $x_0 := \lim x_n$. Annahme: $x_0 \in B$. B offen $\Longrightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq B$. $x_n \to x_0 \Longrightarrow x_n \in U_{\delta}(x_0) \subseteq B$ ffa $n \in \mathbb{N}$, Widerspruch! " \Leftarrow ": Sei $x \in B$. Annahme: $U_{\delta}(x) \nsubseteq B \forall \delta > 0$. $\Longrightarrow U_{\frac{1}{n}}(x) \nsubseteq B \forall n \in \mathbb{N} \Longrightarrow \forall n \in \mathbb{N} \exists x_n \in U_{\frac{1}{n}}$ mit: $x_n \in \mathbb{R} \setminus B \Longrightarrow (x_n)$ ist eine Folge in $\mathbb{R} \setminus B : x_n \to x$. $\mathbb{R} \setminus B$ abgeschlossen $\Longrightarrow x \in \mathbb{R} \setminus B$, Widerspruch!
- (3) " \Longrightarrow ": Sei (x_n) Folge in D. D beschränkt \Longrightarrow (x_n) beschränkt. 8.2 \Longrightarrow (x_n) enthält eine konvergente Teilfolge (x_{n_k}) . D abgeschlossen \Longrightarrow $\lim x_{n_k} \in D$. " \Leftarrow ": Übung. Sei D beschränkt und abgeschlossen. Sei $s := \sup D$. z.z.: $s \in D$ (analog zeigt man inf $D \in D$). $\forall n \in \mathbb{N}$ ist $s \frac{1}{n}$ keine obere Schranke von s. $\Longrightarrow \forall n \in \mathbb{N} \exists \ x_n \in D$ mit $s \frac{1}{n} < x_n \le s \Longrightarrow x_n \to s$. D abgeschlossen $\Longrightarrow s \in D$

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt **beschränkt** : $\iff f(D)$ ist beschränkt $(\iff \exists c \geq 0 : |f(x)| \leq c \ \forall x \in D)$.

Satz 18.4 (Eigenschaften von Bildmengen stetiger Funktionen)

Sei $\emptyset \neq D \subseteq \mathbb{R}$, sei D beschränkt, abgeschlossen und $f \in C(D)$. Dann ist f(D) beschränkt und abgeschlossen. Insbesondere ist f beschränkt und $\exists x_1, x_2 \in D : f(x_1) \leq f(x_2) \ \forall x \in D$.

Beweis

Annahme: f ist nicht beschränkt. Dann: $\forall n \in \mathbb{N} \exists x_n \in D : |f(x_n)| > n$. $\mathrm{HS}(3) \Longrightarrow (x_n)$ enthält eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim x_{n_k} \in D$. f stetig $\Longrightarrow f(x_{n_k}) \to f(x_0) \Longrightarrow (f(x_{n_k}))$ ist beschränkt, aber: $|f(x_{n_k})| > n_k \ \forall \ k \in \mathbb{N}$, Widerspruch! Sei (y_n) eine konvergente Folge in f(D) und $y_0 := \lim y_n$. z.z.: $y_0 \in f(D)$. \exists Folge (x_n) mit $f(x_n) = y_n \ \forall n \in \mathbb{N}$. \exists HS(e) $\Longrightarrow (x_n)$ enthält eine konvergente Teilfolge (x_{n_k}) mit $x_0 := \lim x_{n_k} \in D$. f stetig $\Longrightarrow \underbrace{f(x_{n_k})}_{=y_{n_k}} \to f(x_0)$. Aber auch: $y_{n_k} \to y_0 = f(x_0) \in f(D)$

Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ streng monoton wachsend (fallend) $\Longrightarrow f$ ist auf I injektiv. $\Longrightarrow \exists f^{-1}: f(I) \to \mathbb{R}$. f^{-1} ist streng monoton wachsend (fallend). Es gilt: $f^{-1}(f(x)) = x \ \forall x \in I$, $f(f^{-1}(y)) = y \ \forall y \in f(I)$ Übung: Sei $M \subseteq \mathbb{R}$. M ist ein Intervall: \iff aus $a, b \in M$ und $a \leq b$ folgt stets $[a, b] \subseteq M$.

Satz 18.5 (Bildintervalle und Umkehrbarkeit stetiger, montoner Funktionen) Sei $I \subseteq \mathbb{R}$ ein Intervall und $f \in C(I)$.

- (1) f(I) ist ein Intervall
- (2) Ist f streng monoton wachsend (fallend) $\Longrightarrow f^{-1} \in C(f(I))$

Beweis

- (1) Übung (mit obiger Übung und 18.1)
- (2) O.B.d.A: I = [a, b]. $\alpha := f(a), \beta := f(b) \underset{\text{f wachsend}}{\overset{\text{(1)}}{\underset{\text{f wachsend}}{\underset{\text{wachsend}}{\underset{\text{for all }}{\underset{\text{for all }}}{\underset$

$$f(x_0) \implies f(\alpha) = f(x_0) \xrightarrow{\text{finjektiv}} \alpha = x_0. \text{ d.h. } \mathscr{H}(x_n) = \{x_0\}. \text{ Aus } 9.3 \text{ folgt: } x_n \to x_0 \blacksquare$$

Satz 18.6 (Der Logarithmus)

Sei $I = \mathbb{R}$ und $f(x) = e^x$. Bekannt: $f \in C(\mathbb{R})$, f ist streng monoton wachsend und $f(I) = f(\mathbb{R}) = (0, \infty)$. Also existiert $f^{-1} : (0, \infty) \to \mathbb{R}$.

$$\log x := \ln x := f^{-1}(x) \ (x \in (0, \infty)) \ Logarithmus$$

Eigenschaften

- (1) $\log 1 = 0, \log e = 1$
- (2) $\log e^x = x \ \forall x \in \mathbb{R}, e^{\log x} = x \ \forall x \in (0, \infty)$
- (3) $x \mapsto \log x$ ist stetig auf $(0, \infty)$ und streng monoton wachsend
- (4) $\log(xy) = \log x + \log y$; $\log(\frac{x}{y}) = \log x \log y \ \forall x, y > 0$
- (5) $\log x \to \infty \ (x \to \infty); \log x \to -\infty \ (x \to 0^+)$
- (6) $\log(a^r) = r \log a \ \forall a > 0 \ \forall r \in \mathbb{Q} \ d.h.$ $a^r = e^{r \log a} \ \forall a > 0 \ \forall r \in \mathbb{Q}$

Beweis

- (1) klar (2) klar (3) 18.5
- (4) $e^{\log xy} = xy = e^{\log x}e^{\log y} = e^{\log x + \log y} \implies \log(xy) = \log(x) + \log(y)$
- (5) folgt aus 16.3
- (6) Sei a > 0. $n, m \in \mathbb{N}$. $\log(a^n) \stackrel{4}{=} n \log a$. $\log(a^{-n}) = \log(\frac{1}{a^n}) \stackrel{4}{=} \log 1 \log a^n = -n \log a$ $\log a = \log((a^{\frac{1}{n}})^n) = n \log a^{\frac{1}{n}} \implies \log a^{\frac{1}{n}} = \frac{1}{n} \log a$ $\log(a^{\frac{m}{n}}) = \log((a^{\frac{1}{n}})^m) = m \log(a^{\frac{1}{n}}) = \frac{m}{n} \log a$

18. Eigenschaften stetiger Funktionen

Definition (Die allgemeine Potenz)

Sei a > 0. Motiviert durch 18.6(6): $a^x = e^{x \log a}$ $(x \in \mathbb{R})$

Eigenschaften

- (1) $x \to a^x$ ist auf \mathbb{R} stetig
- (2) $a^{x+y} = a^x a^y$; $(a^x)^y = a^{x \cdot y}$, $a^{-x} = \frac{1}{a^x} \ \forall x, y \in \mathbb{R}$.
- (3) $\log(a^x) = x \cdot \log a$

Beweis

(1) Klar

(2)
$$a^{x+y} = e^{(x+y)\log a} = e^{x\log a} \cdot e^{y\log a} = a^x a^y$$

(3)
$$\log(a^x) = \log(e^{x \cdot \log a}) = x \cdot \log a$$

In der Übung:
$$\lim_{x\to x_0}(1+\frac{1}{x})^x=\lim_{t\to 0}(1+t)^{\frac{1}{t}}=e$$

19. Funktionsfolgen und -reihen

In diesem Paragraphen seien: $\emptyset \neq D \subseteq \mathbb{R}$ und (f_n) sei eine **Folge von Funktionen**. $f_n : D \to \mathbb{R}$. $s_n = f_1 + f_2 + \cdots + f_n \ (n \in \mathbb{N})$. Unter $\sum_{n=1}^{\infty} f_n$ versteht man die Folge (s_n) . $\sum_{n=1}^{\infty} f_n$ heißt **Funktionsreihe**.

Definition

 (f_n) heißt auf D punktweise konvergent : \iff für jedes $x \in D$ ist $(f_n(x))_{n=1}^{\infty}$ konvergent. In diesem Fall heißt $f(x) := \lim_{n \to \infty} f_n(x)$ die Grenzfunktion von f_n .

 $\sum_{n=1}^{\infty} f_n$ heißt auf D punktweise konvergent : \iff für jedes $x \in D$ ist $(s_n(x))_{n=1}^{\infty}$ konvergent. In diesem Fall heißt $f(x) := \sum_{n=1}^{\infty} f_n(x)$ die Summenfunktion von $\sum_{n=1}^{\infty} f_n$.

Beispiele:

(1) $D = [0, 1], f_n(x) = x^n \ (x \in D, n \in \mathbb{N})$

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0, & \text{falls } x \in [0, 1) \\ 1, & \text{falls } x = 1 \end{cases} =: f(x)$$

 (f_n) konvergiert punktweise auf D gegen f.

- (2) $D = (0, \infty), f_n(x) = \frac{nx}{1+n^2x^2} = \frac{\frac{x}{n}}{\frac{1}{n^2}+x^2} \to 0 \ (n \to \infty) \ \forall x \in D.$ Das heißt: (f_n) konvergiert auf D punktweise gegen f(x) = 0. Übung: $0 \le f_n \le \frac{1}{2} \ \forall n \in \mathbb{N}, f_n(\frac{1}{n}) = \frac{1}{2} \ \forall n \in \mathbb{N}.$
- (3) Sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius r > 0, D := (-r, r), $f(x) = \sum_{n=0}^{\infty} a_n x^n$ $(x \in D)$. $(f_n(x) = a_n x^n)$. $\sum_{n=0}^{\infty} a_n x^n$ konvergiert auf D punktweise gegen f)

Konvergiert (f_n) auf D punktweise gegen $f: D \to \mathbb{R}$, so bedeutet dies: Ist $\varepsilon > 0$ und $x \in D$, so existiert ein $n_0 = n_0(\varepsilon, x) \in \mathbb{N}$: $|f_n(x) - f(x)| < \varepsilon \ \forall n \ge n_0$

Definition

 (f_n) heißt auf D gleichmäßig (glm) konvergent : \iff \exists Funktion $f: D \to \mathbb{R}$ mit $\forall \varepsilon > 0$ $\exists n_0 = n_0(\varepsilon) \in \mathbb{N}$: $|f_n(x) - f(x)| < \varepsilon \ \forall n \geq n_0 \ \forall x \in D$.

 $\sum_{n=1}^{\infty} f_n$ heißt auf D gleichmäßig (glm) konvergent : \iff \exists Funktion $f: D \to \mathbb{R}$ mit $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N}$: $|s_n(x) - f(x)| < \varepsilon \ \forall n \ge n_0 \ \forall x \in D$.

Klar: gleichmäßige Konvergenz ⇒ punktweise Konvergenz. (← im Allgemeinen falsch)

Bemerkung: (f_n) sei auf D punktweise konvergent gegen $f: D \to \mathbb{R}$ (f_n) konvergiert auf D gleichmäßig gegen $f: \iff \exists m \in \mathbb{N} : f_n - f$ ist auf D beschränkt $\forall n \geq m$ und für $M_n := \sup\{|f_n(x) - f(x)| : x \in D\}$ $(n \geq m)$ gilt $M_n \to 0$ $(n \to \infty)$

Beispiele:

(1) D, f_n und f seien wie in obigem Beispiel (1). $f_n(\frac{1}{\sqrt[n]{2}}) = \frac{1}{2} \ \forall n \in \mathbb{N}$. $f_n - f$ ist beschränkt auf $D \ \forall n \in \mathbb{N}$. $|f_n(\frac{1}{\sqrt[n]{2}}) - f(\frac{1}{\sqrt[n]{2}})| = \frac{1}{2} \ \forall n \in \mathbb{N} \implies M_n \ge \frac{1}{2} \ \forall n \in \mathbb{N} \implies M_n \nrightarrow 0 \implies (f_n)$ konvergiert nicht gleichmäßig auf D.

- (2) Sei $0 < \alpha < 1$, $D := [0, \alpha]$, $f_n(x) = x^n$, (f_n) konvergiert auf D punktweise gegen $f \equiv 0$. Sei $x \in D = [0, \alpha]$. $|f_n(x) - f(x)| = x^n \le \alpha^n \implies M_n = \alpha^n$. $\alpha < 1 \implies \alpha^n \to 0 \implies M_n \to 0$. Das heißt (f_n) konvergiert auf $[0, \alpha]$ gleichmäßig gegen f.
- (3) $\sum_{n=0}^{\infty} x^n$ konvergiert auf D = (-1,1) punktweise gegen $f(x) := \frac{1}{1-x}$. $s_n(x) = 1 + x + \cdots + x^n = \frac{1-x^{n+1}}{1-x}$. $|s_n(x) f(x)| = \frac{|x|^{n+1}}{1-x} \xrightarrow{x \to 1} \infty \implies s_n f$ ist auf D nicht beschränkt $\forall n \in \mathbb{N} \implies \sum_{n=0}^{\infty} x^n$ konvergiert auf D nicht gleichmäßig.

Satz 19.1 (Funktionskonvergenzkriterien)

- (1) f_n konvergiert auf D punktweise gegen $f: D \to \mathbb{R}$. (f_n) konvergiert auf D gleichmäßig gegen $f: \iff \exists$ Nullfolge $(\alpha_n) \in \mathbb{R}$ und ein $m \in \mathbb{N} : |f_n(x) f(x)| \le \alpha_n \ \forall n \ge m \ \forall x \in D$.
- (2) Kriterium von Weierstraß: Sei (c_n) eine Folge in \mathbb{R} sei $\sum_{n=0}^{\infty} c_n$ konvergent, sei $m \in \mathbb{N}$ und es gelte: (*) $|f_n(x)| \leq c_n \ \forall n \geq m \ \forall x \in D$. Dann konvergiert $\sum_{n=0}^{\infty} f_n$ auf D gleichmäßig.
- (3) Sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius r > 0, D := (-r, r) und $[a, b] \subseteq D$. Dann konvergiert die Potenzreihe auf [a, b] gleichmäßig.

Beweis

- (1) Klar
- (2) Aus (*) und 12.2 folgt: $\forall x \in D$ ist $\sum_{n=1}^{\infty} f_n(x)$ absolut konvergent. $f(x) := \sum_{n=1}^{\infty} f_n(x)$. $|f_n(x) f(x)| = |\sum_{k=n+1}^{\infty} f_k(x)| \le \sum_{k=n+1}^{\infty} |f_k(x)| \le \sum_{k=n+1}^{\infty} c_k =: \alpha_n \ \forall n \ge m \ \forall x \in D$. 11.1 $\implies \alpha_n \to 0 \stackrel{\text{(1)}}{\implies}$ Behauptung.
- (3) Sei $\delta > 0$ so, dass $[a, b] \subseteq [-\delta, \delta] \subseteq D$. Sei $x \in [a, b] \Longrightarrow |x| \le \delta \Longrightarrow |a_n x^n| = |a_n||x^n| \le |a_n|\delta^n =: c_n \ \forall n \in \mathbb{N}. \ \sum c_n = \sum |a_n|\delta^n \ \text{ist konvergent} \Longrightarrow$ Behauptung.

Satz 19.2 (Stetigkeit bei gleichmäßiger Konvergenz)

- (f_n) konvergiert auf D gleichmäßig gegen f.
 - (1) Ist $x_0 \in D$ und sind alle f_n stetig in $x_0 \implies f$ ist stetig in x_0
 - (2) Gilt $f_n \in C(D) \ \forall n \in \mathbb{N} \implies f \in C(D)$

Bemerkung: Voraussetzung und Bezeichnungen wie in 19.2. Sei x_0 auch noch Häufungspunkt von D.

$$\lim_{x \to x_0} (\lim_{n \to \infty} f_n(x)) = \lim_{x \to x_0} f(x) \stackrel{13.1(1)}{=} f(x_0) = \lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} (\lim_{x \to x_0} f_n(x))$$

Beweis

(1) Sei $\varepsilon > 0$. $\exists m \in \mathbb{N} : |f_m(x) - f(x)| < \frac{\varepsilon}{3} \ \forall x \in D$ (i). 17.1 $\Longrightarrow \exists \delta > 0 : |f_m(x) - f_m(x_0)| < \frac{\varepsilon}{3} \ \forall x \in D \cap U_{\delta}(x_0)$ (ii).

$$\begin{aligned} & \text{Für } x \in D \cap U_{\delta}(x_0) : |f(x) - f(x_0)| = |f(x) - f_m(x) + f_m(x) - f_m(x_0) + f_m(x_0) - f(x_0)| \leq \\ & \underbrace{|f(x) - f_m(x)|}_{(i)} + \underbrace{|f_m(x) - f_m(x_0)|}_{(ii)} + \underbrace{|f_m(x_0) - f(x_0)|}_{(ii)} \leq \frac{\varepsilon}{3} \end{aligned} \\ & \underbrace{+ \underbrace{|f_m(x) - f_m(x_0)|}_{(ii)} + \underbrace{|f_m(x_0) - f(x_0)|}_{(ii)} \leq \frac{\varepsilon}{3}}_{(ii)} \\ & \underbrace{+ \underbrace{|f_m(x) - f_m(x_0)|}_{(ii)} + \underbrace{|f_m(x_0) - f(x_0)|}_{(ii)} \leq \frac{\varepsilon}{3}}_{(ii)} \end{aligned}$$

(2) Folgt aus (1)

Beweis (Nachtrag: Beweis von 17.2)

17.2: $\sum_{n=0}^{\infty} a_n x^n$ sei eine Potenzreihen mit Konvergenzradius > 0, D := (-r, r). $f(x) := \sum_{n=0}^{\infty} a_n x^n$. Behauptung: $f \in C(D)$. Sei $x_0 \in D$. Sei [a, b] so, dass $x_0 \in [a, b] \subseteq D$. 19.1(3) $\Longrightarrow \sum_{n=0}^{\infty} a_n x^n$ konvergiert auf [a, b] gleichmäßig. $\Longrightarrow f \in C[a, b] \Longrightarrow f$ ist stetig in x_0 . $x_0 \in D$ beliebig \Longrightarrow Behauptung

Satz 19.3 (Identitätssatz für Potenzreihen)

Sei r > 0, D := (-r, r), $(r = \infty \text{ zugelassen})$. $\sum_{n=0}^{\infty} a_n x^n \text{ und } \sum_{n=0}^{\infty} b_n x^n \text{ seien Potenzreihen,}$ die auf D konvergieren. $f(x) := \sum_{n=0}^{\infty} a_n x^n, g(x) := \sum_{n=0}^{\infty} b_n x^n \ (x \in D)$ Weiter sei x_k eine Folge in $D \setminus \{0\}$ mit $x_k \to 0$ $(k \to \infty)$ und $f(x_k) = g(x_k) \ \forall k \in \mathbb{N}$. Dann: $a_n = b_n \ \forall n \in \mathbb{N}_0$

Beweis

$$h(x) := f(x) - g(x) = \sum_{n=0}^{\infty} \underbrace{(a_n - b_n)}_{:=c_n} x^n = \sum_{n=0}^{\infty} c_n x^n. \text{ z.z. } c_n = 0 \forall n \in \mathbb{N}_0. \underbrace{h(x_k)}_{=0} \xrightarrow{17.2} h(0) = 0$$

$$c_0 \implies c_0 = 0.$$

Annahme:
$$\exists n \in \mathbb{N} : c_n \neq 0. \ m := \min\{n \in \mathbb{N} : c_n \neq 0\}. \ \text{Also: } c_m \neq 0, \ c_1, \cdots, c_{m-1} = 0 \implies h(x) = c_m x^m + c_{m+1} x^{m+1} + \cdots. \ \text{Für } x \in D \setminus \{0\} : \frac{h(x)}{x^m} = \underbrace{c_m + c_{m_1} x + c_{m+2} x^2 + \cdots}_{\text{Potential with the following in the set of Delegations}}^{17.2}$$

$$c_m(x \to \infty) \implies \underbrace{\frac{h(x_k)}{x_k^m}}_{=0} \to c_m(k \to \infty) \implies c_m = 0$$
, Widerspruch!

20. Gleichmäßige Stetigkeit

Vereinbarung: In diesem Paragraphen seien stets: $\emptyset \neq D \subseteq \mathbb{R}, f: D \to \mathbb{R}$ eine Funktion.

Erinnerung: Sei $f \in C(D)$, $x_0 \in D$ und $\varepsilon > 0$. 17.1 $\Longrightarrow \exists \delta = \delta(\varepsilon, x_0)$ mit: $(*) |f(x) - f(x_0)| < \varepsilon \ \forall x \in D$ mit $|x - x_0| < \delta$ Im allgemeinen hängt δ von ε und x_0 ab.

Definition

f heißt auf D gleichmäßig stetig : $\iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : (**) |f(x) - f(z)| < \varepsilon \ \forall x, z \in D \ \text{mit} |x - z| < \delta.$

Beachte: Ist f gleichmäßig stetig auf $D \implies f \in C(D)$; Die Umkehrung ist im allgemeinen falsch.

Beispiel

 $\begin{array}{ll} D=[0,\infty), f(x):=x^2. \text{ Klar: } f\in C(D). \text{ Annahme: } f \text{ ist auf } D \text{ gleichmäßig stetig. Dann} \\ \text{existiert zu } \varepsilon=1 \text{ ein } \delta>0: |x^2-z^2|<1 \ \forall x,z\in D \text{ mit } |x-z|<\delta. \text{ Sei } x\in D. \ z:=x+\frac{\delta}{2} \Longrightarrow |x-z|=\frac{\delta}{2} \Longrightarrow |x^2-z^2|=|x+z||x-z|=(2x+\frac{\delta}{2})\frac{\delta}{2}=x\delta+\frac{\delta^2}{4}<1 \Longrightarrow x\delta<1 \Longrightarrow \delta<\frac{1}{x}. \\ \text{Also: } \delta<\frac{1}{x} \ \forall x>0 \stackrel{x\to\infty}{\Longrightarrow} \delta\leq 0, \text{ Widerspruch!} \end{array}$

Definition

$$f$$
 heißt auf D Lipschitz stetig : $\iff \exists L \ge 0 : \underbrace{|f(x) - f(z)| \le L|x - z|}_{(***)} \ \forall x, z \in D$

Satz 20.1 (Stetigkeitsstätze)

- (1) Ist f auf D Lipschitz stetig $\implies f$ ist auf D gleichmäßig stetig
- (2) Ist D beschränkt und abgeschlossen und $f \in C(D) \implies f$ ist auf D gleichmäßig stetig (Satz von Heine).

Reweis

- (1) Sei $L \ge 0$ und es gelte (***). O.B.d.A.: L 0. Sei $\varepsilon > 0$. $\delta := \frac{\varepsilon}{L}$. Seien $x, z \in D$ und $|x z| < \delta \implies |f(x) f(z)| \le L|x z| < L\delta = \varepsilon$
- (2) Annahme: f ist auf D nicht gleichmäßig stetig $\Longrightarrow \exists \varepsilon > 0$: (**) ist für kein $\delta > 0$ richtig. $\Longrightarrow \forall \delta > 0 \exists x = x(\delta), z = z(\delta) \in D$: $|x z| < \delta$ aber $|f(x) f(z)| \ge \varepsilon$. $\Longrightarrow \forall n \in \mathbb{N} \exists x_n, z_n : |x_n z_n| < \frac{1}{n}$, aber $|f(x_n) f(z_n)| \ge \varepsilon$. D beschränkt $\Longrightarrow (x_n)$ beschränkt $\Longrightarrow (x_n)$ enthält eine konvergente Teilfolge $(x_{n_k}), x_0 := \lim x_{n_k}$. D abgeschlossen $\Longrightarrow x_0 \in D$. $|x_{n_k} z_{n_k}| \le \frac{1}{n_k} \ \forall k \in \mathbb{N} \implies z_{n_k} x_{n_k} \to 0 (k \to \infty) \Longrightarrow z_{n_k} = z_{n_k} x_{n_k} + x_{n_k} \to x_0$. f stetig $\Longrightarrow |f(x_{n_k}) f(z_{n_k})| \to |f(x_0) f(x_0)| = 0$. Widerspruch zu $|f(x_{n_k}) f(z_{n_k})| \ge \varepsilon \ \forall k \in \mathbb{N}$

Beispiel

 $D = [0, 1], f(x) := \sqrt{x}$. Satz $\implies f$ ist auf D gleichmäßig stetig. Annahme: $\exists L > 0 : |\sqrt{x} - \sqrt{z}| \le L|x - z| \ \forall x, z \in [0, 1] \implies \sqrt{x} \le Lx \ \forall x \in [0, 1] \implies 1 \le L\sqrt{x} \ \forall x \in (0, 1] \stackrel{x \to 0}{\Longrightarrow} 1 \le 0$, Widerspruch!

21. Differenzierbarkeit

In diesem Paragraphen seien stets: $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

Definition

- (1) f heißt in $x_0 \in I$ differenzierbar (db) genau dann, wenn der $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert und $\in \mathbb{R}$ ist. ($\iff \exists \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ und ist $\in \mathbb{R}$). In diesem Fall heißt $f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ die **Ableitung von** f in x_0 .
- (2) f heißt auf I differenzierbar genau dann, wenn f in jedem $x \in I$ differenzierbar ist. In diesem Fall wird durch $x \mapsto f'(x)$ eine Funktion $f': I \to \mathbb{R}$ definiert, die **Ableitung von** f **auf** I.

Beispiele:

- (1) Sei $c \in \mathbb{R}$ und $f(x) = c \ \forall x \in I$. f ist differenzierbar auf I, $f'(x) = 0 \ \forall x \in I$.
- (2) Sei $I = \mathbb{R}$, $n \in \mathbb{N}$ und $f(x) = x^n$. Seien $x, x_0 \in \mathbb{R}$, $x_0 \neq x$. $\frac{f(x) f(x_0)}{x x_0} = \frac{x^n x_0^n}{x x_0} \stackrel{\S 1}{=} x^{n-1} + x_0^{n-2}x + x^{n-3}x^2 + \dots + x_0x^{n-2} + x^{n-1} \to nx_0^{n-1} \ (x \to x_0)$. f ist also differenzier bar auf \mathbb{R} und $f'(x) = nx^{n-1} \ \forall x \in \mathbb{R}$. Kurz: $(x^n)' = nx^{n-1}$ auf \mathbb{R} .
- (3) $I = \mathbb{R}$, f(x) = |x|, $x_0 = 0$. $x \neq 0$: $\frac{f(x) f(x_0)}{x x_0} = \frac{|x|}{x} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases} \implies f \text{ ist in } x_0 = 0$ nicht differenzierbar. (Beachte: f ist stetig in x_0)
- (4) $I = \mathbb{R}, f(x) = e^x$. 17.3 $\Longrightarrow \lim_{h \to 0} \frac{e^{x_0 + h} e^{x_0}}{h} = e^{x_0} \ \forall x_0 \in \mathbb{R}$. Kurz: $(e^x)' = e^x$.

Satz 21.1 (Differenzierbarkeit und Stetigkeit)

Ist f differenzierbar in $x_0 \in I$, so ist f stetig in x_0

Beweis

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \xrightarrow{x \to x_0} f'(x_0) \cdot 0 = 0 \ (x \to x_0) \implies \lim_{x \to x_0} f(x) = f(x_0) \blacksquare$$

Satz 21.2 (Ableitungsregeln)

 $g: I \to \mathbb{R}$ sei eine weitere Funktion, f und g ableitbar in $x_0 \in I$.

(1) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g$ differenzierbar in x_0 und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

(2) fg ist differenzierbar in x_0 und

$$(fq)'(x_0) = f'(x_0)q(x_0) + f(x_0)q'(x_0)$$

(3) Es sei $g(x) \neq 0 \ \forall x \in I. \ \frac{f}{g}$ differenzierbar in x_0 und

$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$

Beweis

- (1) Klar. Für (2) und (3) beachte: $f(x) \to f(x_0), g(x) \to g(x_0)$ $(x \to x_0)$ (wegen 21.1)
- $(2) \quad \frac{f(x)g(x) f(x_0)g(x_0)}{x x_0} = \frac{f(x) f(x_0)}{x x_0}g(x) + \frac{g(x) g(x_0)}{x x_0}f(x_0) \to f'(x_0)g(x_0) + g'(x_0)f(x_0) \quad (x \to x_0)$
- (3) $h := \frac{f}{g} : \frac{h(x) h(x_0)}{x x_0} = \frac{1}{g(x)g(x_0)} \left(\frac{f(x) f(x_0)}{x x_0} g(x_0) \frac{g(x) g(x_0)}{x \to x_0} f(x_0) \right) \to \frac{1}{g(x_0)^2} (f'(x_0)g(x_0) g'(x_0)f(x_0)) \quad \blacksquare$

Beispiele:

- (1) $f(x) = e^{-x} = \frac{1}{e^x}, f'(x) = \frac{-e^x}{(e^x)^2} = -\frac{1}{e^x} = -e^{-x} \ \forall x \in \mathbb{R}$
- (2) $(\cosh x)' = (\frac{1}{2}(e^x + e^{-x}))' = \frac{1}{2}(e^x e^{-x}) = \sinh x \text{ auf } \mathbb{R}.$ $(\sinh x)' = (\frac{1}{2}(e^x - e^{-x}))' = \frac{1}{2}(e^x + e^{-x}) = \cosh x \text{ auf } \mathbb{R}.$

Satz 21.3 (Kettenregel)

Sei $J \subseteq \mathbb{R}$ ein Intervall, $g: J \to \mathbb{R}$ eine Funktionen und $g(J) \subseteq I$. Weiter sei g differenzierbar in $x_0 \in J$ und f differenzierbar in $y_0 := g(x_0)$. Dann ist $f \circ g: J \to \mathbb{R}$ differenzierbar in x_0 und $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$

Beweis
$$h(y) = \begin{cases} \frac{f(y) - f(y_0)}{y - y_0} & , y \in I \setminus \{y_0\} \\ f'(y_0) & , y = y_0 \end{cases}$$
 ist differenzierbar in $y_0 \implies h(y) \to f'(y) = f'(g(x)) \ (y \to y_0)$. 21.1 $\implies g(x) \to g(x_0) = y_0 \ (x \to x_0) \implies h(g(x)) \to f'(g(x_0))$ Es ist $f(y) - f(y_0) = h(y)(y - y_0) \ \forall y \in I \implies \frac{f(g(x)) - f(g(x_0))}{x - x_0} = h(g(x)) \frac{g(x) - g(x_0)}{x - x_0} \to f'(g(x))g'(x_0) \ (x \to x_0)$

Beispiele:

- (1) Sei $I = \mathbb{R}$, a > 0, $a^x = e^{x \log a} = f(g(x))$ mit $f(x) = e^x$, $g(x) = x \log a \implies (a^x)' = f'(g(x))g'(x) = e^{x \log a} \log a = a^x \log a$ auf \mathbb{R}
- (2) $I = [0, \infty), f(x) = x^2, f'(x) = 2x, f'(0) = 0$ $f^{-1}(x) = \sqrt{x} \ (x \in [0, \infty)).$ Es gilt: $x = f(f^{-1}(x))(*) \ \forall x \ge 0$ Annahme: f^{-1} ist differenzierbar in $x_0 = 0$ $\xrightarrow{21.3, (*), x_0 = 0}$ $1 = \underbrace{f'(f^{-1}(0))}_{0} \cdot (f^{-1})'(0) = 0$ Widerspruch!

Das heißt $f^{-1}(x_0)$ ist in $x_0 = 0$ nicht differenzierbar.

Satz 21.4 (Ableitung der Umkehrfunktion)

 $f \in C(I)$ sei streng monoton, f differenzierbar in $x_0 \in I$ und $f'(x_0) \neq 0$. Dann ist $f^{-1}: f(I) \to I$ differenzierbar in $y_0 := f(x_0)$ und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

Sei
$$(y_n)$$
 eine Folge in $f(I)\setminus\{y_0\}$ und $y_n\to y_0$ und $\alpha_n=\frac{f^{-1}(y_n)-f^{-1}(y_0)}{y_n-y_0}$. Zu zeigen: $\alpha_n\to\frac{1}{f'(x_0)}$ $(n\to\infty)$ $x_n:=f^{-1}(y_n)\implies y_n=f(x_n),\ x_n\in I,\ \forall n\in\mathbb{N}\implies \alpha_n=\frac{x_n-x_0}{f(x_n)-f(x_0)}\to\frac{1}{f'(x_0)}$ $(n\to\infty)$

Beispiele:

- (1) $I = \mathbb{R}$, $f(x) = e^x$, $f^{-1}(y) = \log y$ (y > 0). Sei y > 0, also $y = e^x$ $(x \in \mathbb{R}) \implies (f^{-1})(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{y}$. Kurz: $(\log x)' = \frac{1}{x}$ auf $(0, \infty)$.
- (2) Sei $\alpha \in \mathbb{R}$ und $f(x) = x^{\alpha}$ (x > 0), dann: $f(x) = e^{\alpha \log x} \implies f'(x) = e^{\alpha \log x} \cdot (\alpha \log x)' = x^{\alpha} \cdot \frac{\alpha}{x} = \alpha x^{\alpha 1}$. Kurz: $(x^{\alpha})' = \alpha x^{\alpha 1}$ auf $(0, \infty)$
- (3) Für $\alpha = \frac{1}{2}$ liefert Beispiel (2): $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ auf $(0, \infty)$

Definition

Zu $\emptyset \neq M \subseteq \mathbb{R}$ und $x_0 \in M$. x_0 heißt ein **innerer Punkt** von M genau dann, wenn es ein $\delta > 0$ gibt, so dass $U_{\delta}(x_0) \subseteq M$.

Beispiele:

- (1) M ist offen genau dann, wenn jedes $x \in M$ ein innerer Punkt von M ist.
- (2) Sei $a < b, M \in \{[a, b], (a, b), [a, b), (a, b]\}$. $x_0 \in M$ ist innerer Punkt von M genau dann, wenn $x_o \in (a, b)$
- (3) Q hat keine inneren Punkte

Definition

Sei $\emptyset \neq D \subseteq \mathbb{R}$, $g: D \to \mathbb{R}$ und $x_0 \in D$, g hat in x_0 ein **relatives Maximum**: $\iff \exists \delta > 0$: $g(x) \leq g(x_0) \ \forall x \in D \cap U_{\delta}(x_0)$.

Sei $\emptyset \neq D \subseteq \mathbb{R}$, $g: D \to \mathbb{R}$ und $x_0 \in D$, g hat in x_0 ein **relatives Minimum**: $\iff \exists \delta > 0$: $g(x) \geq g(x_0) \ \forall x \in D \cap U_{\delta}(x_0)$.

Ein relatives Extremum ist ein relatives Maximum oder Minimum.

Satz 21.5 (Erste Ableitung am relativen Extremum)

f sei differenzierbar in $x_0 \in I$, f habe in x_0 ein relatives Extremum und x_0 sei ein innerer Punkt von I. Dann gilt: $f'(x_0) = 0$.

Beweis

f habe in x_0 ein relatives Maximum. Dann existiert $\delta > 0$: $U_{\delta}(x_0) \subseteq I$ und $f(x) \leq f(x_0) \ \forall x \in U_{\delta}(x_0)$.

Sei
$$x \in U_{\delta}(x_0)$$
 und $x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \implies f'(x_0) \quad (x \to x_0 -)$
> $\leq \qquad (x \to x_0 +)$

Also:
$$f'(x_0) = 0$$
.

Bemerkungen:

- (1) Die Voraussetzung " x_0 ist ein innerer Punkt von I" ist wesentlich. Beispiel: $f(x) = x, x \in [0,1], x_0 = 0$ oder $x_0 = 1$.
- (2) Ist f differenzierbar in x_0 und $f'(x_0) = 0$, so muss f in x_0 kein relatives Extremum haben. Beispiel: $f(x) = x^3$, $x_0 = 0$.

Satz 21.6 (Mittelwertsatz der Differenzialrechnung)

Sei I = [a, b] (a < b), $f, g \in C(I)$ und f und g seien differenzierbar auf (a, b). Weiter sei $g'(x) \neq 0 \ \forall x \in (a, b)$.

(1) Satz von Rolle: Es sei f(a) = f(b). Dann existiert $\xi \in (a, b)$:

$$f'(\xi) = 0.$$

(2) Mittelwertsatz (MWS) der Differenzialrechnung:

$$\exists \xi \in (a,b) : \frac{f(b) - f(a)}{b - a} = f'(\xi).$$

(3) Erweiteter Mittelwertsatz: Es ist $g(b) \neq g(a)$ und $\exists \xi \in (a,b)$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Beweis

(1) 18.3 $\Longrightarrow \exists s, t \in [a, b] : f(s) \le f(x) \le f(t) \ \forall x \in [a, b].$

Fall 1: $s, t \in \{a, b\} \implies f$ ist auf I konstant $\implies f' = 0$ auf $I \implies$ Beh.

Fall 2: $s \in (a, b)$ oder $t \in (a, b)$. Etwa: $s \in (a, b) \implies s$ ist ein innerer Punkt von I und f hat in s ein Minimum. 21.5 $\implies f'(s) = 0$.

- (2) folgt aus (3) mit g(x) = x.
- (3) h(x) := (f(b) f(a))g(x) (g(b) g(a))f(x) ($x \in I$). Dann gilt: $h \in C(I)$, h ist differenzierbar auf (a, b).

$$h(a) = h(b) \stackrel{(1)}{\Longrightarrow} \exists \xi \in (a,b) : 0 = h'(\xi) = (f(b) - f(a))g'(\xi) - (g(b) - g(a))f'(\xi)$$

$$\implies (f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi).$$

Aus (1) folgt: $g(a) \neq g(b)$ (sonst existierte $x_0 \in (a, b)$ mit $g'(x_0) = 0$).

$$\implies \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Folgerungen 21.7

 $f, g: I \to \mathbb{R}$ seien differenzierbar auf I.

(1) Ist f'=0 auf $I \implies f$ ist auf I konstant

$$\geq$$
 wachsend \leq fallend $>$ streng wa

- streng wachsend
- streng fallend
- (2) Ist f' = g' auf $I \implies \exists c \in \mathbb{R} : f = g + c$ auf I.

Beweis

- (1) Seien $x_1, x_2 \in I$ und $x_1 < x_2$. 21.6 (2) $\implies \exists \xi \in (x_1, x_2) : f(x_2) f(x_1) = f'(\xi)(x_2 \xi)$ $x_1) \Longrightarrow Beh.$
- (2) $h := f g \implies h' = 0$ auf $I \stackrel{\text{(1)}}{\Longrightarrow}$ Beh.

Beispiele:

(1) Es existiert genau ein $x_0 \in \mathbb{R} : e^{-x_0} = x_0$.

$$f(x) := e^{-x} - x \ (x \in \mathbb{R}) \quad f(0) = 1 > 0, \ f(1) = \frac{1}{e} - 1 < 0. \ 18.2 \implies \exists x_0 \in (0,1) : f(x_0) = 0, \ \text{also:} \ e^{-x_0} = x_0.$$

$$f'(x) = -e^{-x} - 1 < 0 \ \forall x \in \mathbb{R} \stackrel{21.7}{\Longrightarrow} f$$
 ist streng fallend $\Longrightarrow f$ hat genau eine Nullstelle, nämlich $x_0. \Longrightarrow \text{Beh.}$

(2) Ist $f: \mathbb{R} \to \mathbb{R}$ differenzierbar auf \mathbb{R} und f' = f auf $\mathbb{R} \implies \exists c \in \mathbb{R} : f(x) = ce^x \ (x \in \mathbb{R}).$

Bewels
$$h(x) := \frac{f(x)}{e^x} \implies h'(x) = \frac{f'(x)e^x - e^x f(x)}{(e^x)^2} = 0 \ \forall x \in \mathbb{R} \stackrel{21.7}{\Longrightarrow} \exists c \in \mathbb{R} : h(x) = c \ \forall x \in \mathbb{R} \implies$$
 Beh.

Satz 21.8 (Die Regeln von de l'Hospital)

 $f,g:(a,b)\to\mathbb{R}$ seien auf (a,b) differenzierbar und es sei $g'(x)\neq 0\ \forall x\in(a,b)\ (a=-\infty)$ oder $b = \infty$ zugelassen). Weiter existiere $L := \lim_{x \to a} \frac{f'(x)}{g'(x)}$ ($L = \pm \infty$ zugelassen) und es gelte

(I)
$$\lim_{\substack{x \to a \\ x \to b}} f(x) = \lim_{\substack{x \to a \\ x \to b}} g(x) = 0 \text{ oder}$$

(II)
$$\lim_{\substack{x \to a \\ x \to b}} f(x) = \lim_{\substack{x \to a \\ x \to b}} g(x) = \pm \infty.$$

Dann gilt:
$$\lim_{\substack{x \to a \\ x \to b}} \frac{f(x)}{g(x)} = L.$$

Beweis

Nur unter der Voraussetzung (I) und nur für $x \to a$.

Fall 1:
$$a \in \mathbb{R}$$
. $f(a) := g(a) := 0 \xrightarrow{(I)} f, g \in C[a, b)$.

Sei
$$x \in (a,b)$$
. 21.6 (3) $\Longrightarrow \exists \xi = \xi(x) \in (a,x) : \frac{f(x)}{g(x)} = \frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(x)}{g'(x)} \to L$ (für $x \to a$, da dann auch $\xi \to a$).

<u>Fall 2</u>: $a = -\infty$. Substituiere $x = \frac{1}{t}$, also $t = \frac{1}{x}$ $(x \to a = -\infty \iff t \to 0-)$.

$$\varphi(t):=f(\tfrac{1}{t})=f(x),\ \psi(t):=g(\tfrac{1}{t})=g(x).\ \text{z.z.:}\ \tfrac{\varphi(t)}{\psi(t)}\to L\ (t\to 0-)$$

$$\varphi'(t) = f'(\frac{1}{t})(\frac{1}{-t^2}) = f'(x)(-x^2)$$

$$\psi'(t) = g'(x)(-x^2)$$

$$\implies \frac{\varphi'(t)}{\psi'(t)} = \frac{f'(x)}{g'(x)} \to L \ (t \to 0-) \ \stackrel{\text{Fall 1}}{\Longrightarrow} \ \frac{\varphi(t)}{\psi(t)} \to L \ (t \to 0-).$$

Beispiele:

(1)
$$a, b > 0$$
: $\lim_{x \to 0} \frac{a^x - b^x}{x} = \lim_{x \to 0} \frac{a^x \log a - b^x \log b}{1} = \log a - \log b$

$$(2) \lim_{x \to \infty} \frac{\log x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

(3)
$$\lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} e^{\frac{\log x}{x}} = e^0 = 1$$

(4)
$$\lim_{z \to 0} \frac{\log(1+tz)}{z} = \lim_{z \to 0} \frac{\frac{1}{1+tz} \cdot t}{1} = t \ (t \in \mathbb{R})$$

(5) Für
$$t \in \mathbb{R}$$
: $\lim_{x \to \infty} (1 + \frac{t}{x})^x = e^t$ (insbesondere $\lim_{n \to \infty} (1 + \frac{t}{n})^n = e^t$, $n \in \mathbb{N}$)

Beweis

$$\varphi(x) := (1 + \frac{t}{x})^x.$$

$$\lim_{x \to \infty} \log \varphi(x) = \lim_{x \to \infty} x \log \left(1 + \frac{t}{x}\right)^{z = \frac{1}{x}} \lim_{x \to \infty} \frac{\log (1 + tz)}{z} = t$$

$$\implies \varphi(x) \to e^t \ (x \to \infty).$$

Satz 21.9 (Ableitung von Potenzreihen)

Sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe mit Konvergenzradius $r>0, I:=(x_0-r,x_0+r), (I=\mathbb{R}, \text{ falls } r=\infty) \text{ und } f(x):=\sum_{n=0}^{\infty} a_n(x-x_0)^n(x\in I)$

- (1) Die Potenzreihe $\sum_{n=0}^{\infty} na_n(x-x_0)^{n-1}$ hat den Konvergenzradius r.
- (2) f ist auf I differenzierbar und $f'(x) := \sum_{n=0}^{\infty} na_n(x-x_0)^{n-1} \quad \forall x \in I$, also $(\sum_{n=0}^{\infty} a_n(x-x_0)^n)' = \sum_{n=0}^{\infty} (a_n(x-x_0)^n)'$

Beweis

- (1) $\limsup \sqrt[n]{|na_n|} = \limsup \sqrt[n]{n} \sqrt[n]{|a_n|} = \limsup \sqrt[n]{|a_n|} \implies \text{Behauptung.}$
- (2) Später

Beispiele:

(1)
$$(\sin x)' = \sum_{n=0}^{\infty} ((-1)^n \frac{x^{2n+1}}{(2n+1)!})' = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x \text{ auf } \mathbb{R}.$$

 $(2) (\cos x)' = -\sin x$

Satz 21.10 (Eigenschaften trigonometrischer Funktionen)

- (1) $\forall x \in \mathbb{R} : \cos^2 x + \sin^2 x = 1, |\cos x| \le 1, |\sin x| \le 1, |\sin x| \le |x|$
- (2) Additions theoreme: $\forall x, y \in \mathbb{R} : \sin(x+y) = \sin x \cos y + \cos x \sin y, \cos(x+y) = \cos x \cos y \sin x \sin y$
- (3) $\sin x > x \frac{x^3}{3!} > 0 \ \forall x \in (0,2)$; insbesondere: $\sin 1 > \frac{5}{6}$.
- (4) $\exists \xi_0 \in (0,2) \text{ mit } \cos \xi_0 = 0 \text{ und } \cos x \neq 0 \ \forall x \in [0,\xi_0), \pi := 2\xi_0 \text{ (Pi). Also: } \pi \in (0,4) \ (\pi \approx 3,14..), \cos \frac{\pi}{2} = 0, \cos x \neq 0 \ \forall x \in [0,\frac{\pi}{2}).$
- $(5) \sin \frac{\pi}{2} = 1$
- (6) $\sin(-x) = -\sin x$, $\cos(-x) = \cos x$ $\sin(x + \frac{\pi}{2}) = \cos x$, $\cos(x + \frac{\pi}{2}) = -\sin x$ $\sin(x + \pi) = -\sin x$, $\cos(x + \pi) = -\cos x$ $\sin(x + 2\pi) = \sin x$, $\cos(x + 2\pi) = \cos x$
- (7) Für $x \in [0, \pi] : \cos x = 0 \iff x = \frac{\pi}{2}$
- (8) $\sin x = 0 \iff \exists k \in \mathbb{Z} : x = k\pi.$ $\cos x = 0 \iff \exists k \in \mathbb{Z} : x = k\pi + \frac{\pi}{2}.$

Beweis

- (1) $f(x) := \cos^2 x + \sin^2 x 1$. $f'(x) = 2\cos x(-\sin x) + 2\sin x \cos x = 0$. 21.7 $\implies f$ ist auf \mathbb{R} konstant. $f(0) = 0 |\cos x| = \sqrt{\cos^2 x} \le \sqrt{\cos^2 x + \sin^2 x} = 1$, ObdA $x \ne 0$. $\sin x = \sin x \sin 0 \stackrel{\text{MWS}}{=} |\cos \xi| |x| \le |x|$
- (2) Sei $y \in \mathbb{R}$ und $f(x) := (\sin(x+y) \sin x \cos y \cos x \sin y)^2 + (\cos(x+y) \cos x \cos y + \sin x \sin y)^2$. Klar: f(0) = 0. Nachrechnen: f' = 0 auf \mathbb{R} . 21.7 $\implies f \equiv 0$ auf \mathbb{R} .
- (3) Für $x \in (0,2) : \sin x = \underbrace{(x \frac{x^3}{3!})}_{>0} + \underbrace{(\frac{x^5}{5!} \frac{x^7}{7!})}_{>0} + \cdots \implies \text{Behauptung.}$
- (4) $\cos 0 = 1 > 0$. $\cos 2 = \cos(1+1) = \cos^2 1 \sin^2 1 = \cos^2 1 + \sin^2 1 2\sin^2 1 = 1 2\sin^2 1 \stackrel{(3)}{<}$ $1 - 2\frac{25}{36} < 0$. $18.2 \implies \exists \xi_0 \in (0,2) : \cos \xi_0 = 0$, In (0,2): $(\cos x)' = -\sin x \stackrel{(3)}{<} 0 \implies \cos x$ ist in (0,2) streng monoton fallend $\implies \cos x \neq 0 \ \forall x \in [0,\xi_0)$
- (5) $\sin^2 \frac{\pi}{2} = 1 \cos^2 \frac{\pi}{2} = 1 \implies \sin \frac{\pi}{2} = \pm 1$. (3) $\implies \sin \frac{\pi}{2} > 0 \implies \sin \frac{\pi}{2} = 1$.
- (6) Die erste Behauptung mit kann mit Potenzreihen, der Rest mit den Additionstheoremen bewiesen werden.
- (7) ,, \Leftarrow ": Klar, ,, \Rightarrow ": Sei $x \in [0,\pi]$ und $\cos x = 0 \stackrel{(4)}{\Longrightarrow} x \ge \frac{\pi}{2}, y := \pi x, y \in [0,\frac{\pi}{2}]$ und $\cos y = \cos(x+\pi) \stackrel{(6)}{=} -\cos(-x) = -\cos(x) \stackrel{(4)}{\Longrightarrow} y \le \frac{\pi}{2}, x = \frac{\pi}{2}.$

(8) In den gr. Übungen

Definition 21.11 (Tangens)

$$\tan x := \frac{\sin x}{\cos x} \text{ für } x \in \mathbb{R} \setminus \{k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\}.$$

$$I := \left(-\frac{\pi}{2}, \frac{\pi}{2}\right); \ f(x) := \tan x \ (x \in I). \ \text{Dann:} \ f \in C(I). \ \lim_{x \to \frac{\pi}{2}} f(x) = \infty, \ \lim_{x \to -\frac{\pi}{2}} f(x) = -\infty,$$

$$f'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \frac{\sin^2 x}{\cos^2 x} = 1 + \tan^2 x > 0 \text{ auf } I \implies f \text{ ist auf } I \text{ streng monoton}$$
 wachsend $\Longrightarrow \exists f^{-1} : \mathbb{R} \to I, \arctan x := f^{-1}(x)(x \in \mathbb{R}) \text{ Arcustangens. Sei } y = \tan x \ (x \in I).$
$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{1 + \tan^2 x} = \frac{1}{1 + y^2}. \text{ Also: } (\arctan x)' = \frac{1}{1 + x^2} \text{ auf } \mathbb{R}.$$

Definition

Sei $I \subseteq \mathbb{R}$ ein Intervall; $f: I \to \mathbb{R}$ eine Funktion und $x_0 \in I$. f wird in einer Umgebung von x_0 durch eine Potenzreihe dargestellt: $\iff \exists \delta > 0$ und \exists eine Potenzreihe $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ mit Konvergenzradius $\geq \delta$ und $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \ \forall x \in I \cap U_{\delta}(x_0)$.

Beispiele:

- (1) $I = (-\infty, 1), f(x) = \frac{1}{1-x}$. Bekannt: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ für $x \in (-1, 1)$. Also: $f(x) = \sum_{n=0}^{\infty} x^n$ für $x \in (-1, 1)$
- (2) $I = \mathbb{R}, f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} \ (x \in (-1,1))$
- (3) $I = (-1, \infty), f(x) = \log(1+x)$. Behauptung: (*) $\log(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} (x \in (-1, 1))$

Beweis

Bewels $g(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} \ (x \in (-1,1)) \ 21.9 \implies g \text{ ist auf } (-1,1) \text{ differenzierbar und } g'(x) = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1-(-x)} = \frac{1}{1+x} = f'(x) \ \forall x \in (-1,1). \ 21.7 \implies \exists c \in \mathbb{R} : f(x) = g(x) + c \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = f(0) = g(0) + c = c \implies f(x) = g(x) \ \forall x \in (-1,1) \implies 0 = g(x) + c \implies 0 = g(x) +$

22. Höhere Ableitungen

Stets in diesem Paragraphen: $I \subseteq \mathbb{R}$ sei ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

Definition

- (1) f sei auf I differenzierbar und $x_0 \in I$. f heißt in x_0 zweimal differenzierbar genau dann, wenn f' in x_0 differenzierbar ist. In diesem Fall heißt $f''(x_0) = (f')'(x_0)$ die zweite Ableitung von f in x_0 .
- (2) f heißt auf I zweimal differenzierbar genau dann, wenn f in jedem $x \in I$ zweimal differenzierbar ist. In diesem Fall heißt f'' = (f')' die zweite Ableitung von f auf I.
- (3) Entsprechend definiert man (falls vorhanden): $f'''(x_0), f^{(4)}(x_0), \dots$ bzw. $f''', f^{(4)}, \dots$
- (4) Sei $n \in \mathbb{N}$. f heißt auf I n-mal stetig differenzierbar genau dann, wenn f auf I n-mal differenzierbar ist und $f, f', \ldots, f^{(n)} \in C(I)$.
- (5) Sei $n \in \mathbb{N}$. $C^n(I) := \{g : I \to \mathbb{R} : g \text{ ist auf } I \text{ } n\text{-mal stetig differenzierbar}\}, C^0(I) := C(I),$ $f^{(0)} := f, C^{\infty}(I) := \bigcap_{n \in \mathbb{N}} C^n(I).$

Beispiele:

- (1) $(\sin x)' = \cos x$, $(\sin x)'' = -\sin x$, ...
- (2) $(e^x)^{(n)} = e^x$ auf $\mathbb{R} \ \forall n \in \mathbb{N}_0$
- (3) $f(x) := \begin{cases} x^2 & ; x \ge 0 \\ -x^2 & ; x < 0 \end{cases}$. Für x > 0: f'(x) = 2x, für x < 0: f'(x) = -2x.

Für x = 0: $\frac{f(x) - f(0)}{x - 0} = \frac{\pm x^2}{x} = \pm x$ $\xrightarrow{x \to 0} 0 \implies f$ ist in x = 0 differenzierbar und f'(0) = 0. Also: $f'(x) = 2|x| \ \forall x \in \mathbb{R}$. Also ist f in x = 0 nicht zweimal differenzierbar.

(4)
$$f(x) := \begin{cases} x^{\frac{3}{2}} \sin(\frac{1}{x}) & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

Für $x \in (0,1]$: $f'(x) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x} + x^{\frac{3}{2}}\cos\frac{1}{x}(-\frac{1}{x^2}) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x} - \frac{1}{\sqrt{x}}\cos\frac{1}{x}$.

Für x = 0: $\frac{f(x) - f(0)}{x - 0} = \sqrt{x} \sin \frac{1}{x} \xrightarrow{x \to 0} 0$. f ist also auf [0, 1] differenzierbar. $x_n := \frac{1}{n\pi} \ (n \in \mathbb{N})$. Dann $x_n \to 0 \ (n \to \infty)$. $f'(x_n) = (-1)^{n+1} \sqrt{n\pi} \nrightarrow 0 \ (n \to \infty) \implies f'$ ist nicht stetig in x = 0. Also $f \notin C^1([0, 1])$. Für später: f' ist auf [0, 1] nicht beschränkt.

Satz 22.1 (Differenzierbarkeit von Potenzreihen)

Sei $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ eine Potenzreihe mit Konvergenzradius $r>0, I:=(x_0-r,x_0+r)$ $(I=\mathbb{R} \text{ falls } r=\infty)$ und $f(x)=\sum_{n=0}^{\infty} a_n(x-x_0)^n$ $(x\in I)$.

- (1) $f \in C^{\infty}(I)$
- (2) $\forall x \in I \ \forall k \in \mathbb{N} : f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) \cdot a_n (x-x_0)^{n-k}$.

(3)
$$a_k = \frac{f^{(k)}(x_0)}{k!} \quad \forall k \in \mathbb{N}_0$$

- (1) und
- (2) folgen induktiv aus 21.9.
- (3) folgt aus (2) und $x = x_0$

Motivation: Ist also f wie in 22.1, so gilt: $f \in C^{\infty}(I)$ und $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \ \forall x \in I$ I.

Definition

Sei $f \in C^{\infty}(I)$ und $x_0 \in I$. Die Potenzreihe $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ heißt die zu f (und x_0) gehörende **Taylorreihe**.

Motivation: Frage: Wird f in einer Umgebung von x_0 durch seine Taylorreihe dargestellt? Antwort: Manchmal!

Beispiele:

(1) Ist f wie in 22.1, so lautet die Antwort: ja!

(2)
$$f(x) := \begin{cases} e^{-\frac{1}{x^2}} & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

Übungsblatt: $f \in C^{\infty}(\mathbb{R})$ und $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$.

Dann:
$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = 0 \neq f(x) \ \forall x \in \mathbb{R} \setminus \{0\}$$

Definition

Sei $n \in \mathbb{N}_0$, $f \in C^n(I)$ und $x_0 \in I$. $T_n(x; x_0) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ heißt das **Taylorpolynom** von f.

Satz 22.2 (Satz von Taylor)

Voraussetzungen wie in obiger Definition. Weiter sei f n+1-mal differenzierbar auf I und $x \in I$. Dann existiert ein ξ zwischen x und x_0 mit:

$$f(x) = T_n(x; x_0) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Beweis

Ohne Beschränkung der Allgemeinheit sei $x_0 = 0$ und $x > x_0$.

$$\rho := (f(x) - T_n(x;0)) \frac{(n+1)!}{x^{n+1}} \implies f(x) - T_n(x;0) = \frac{\rho}{(n+1)!} x^{n+1}$$

Zu zeigen ist: $\exists \xi \in [0, x] : \rho = f^{(n+1)}(\xi)$.

Definiere $h: [0,x] \to \mathbb{R}$ durch $f(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^k - \rho \frac{(x-t)^{n+1}}{(n+1)!}$. Nachrechnen:

$$h(0) = h(x)$$
 und $h'(t) = \rho \frac{(x-t)^n}{n!} - \frac{f^{(n+1)}(t)}{n!} (x-t)^n$.

$$h(0) = h(x) \text{ und } h'(t) = \rho \frac{(x-t)^n}{n!} - \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

$$0 = \frac{h(x) - h(0)}{x - 0} \stackrel{\text{MWS}}{=} h'(\xi) \; \xi \in (0, x) \implies \rho \frac{(x-\xi)^n}{n!} = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n \implies \rho = f^{(n+1)}(\xi).$$

Beispiele:

(1) Behauptung: $e \notin \mathbb{Q}$

Beweis: Bekannt: 2 < e < 3.

Annahme: $\exists m, n \in \mathbb{N} : e = \frac{m}{n}$. Dann: $n \geq 2$ (Sonst: $e = m \in \mathbb{N}$, Wid!) $f(x) := e^x, x_0 = 0, x = 1$

22.2
$$\Longrightarrow \exists \xi \in (0,1) \text{ mit } \frac{m}{n} = e = f(1) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} + \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

$$\frac{m}{n} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!} + \frac{e^{\xi}}{(n+1)!} \mid \cdot n!.$$

$$\underbrace{m(n-1)!}_{\in \mathbb{N}} = \underbrace{n! + n! + \frac{n!}{2!} + \dots + \frac{n!}{n!}}_{\in \mathbb{N}} + \underbrace{\frac{e^{\xi}}{n+1}}_{>0} \implies \underbrace{\frac{e^{\xi}}{n+1}} \in \mathbb{N} \implies 1 \le \frac{e^{\xi}}{n+1} < \frac{e}{n+1} < \underbrace{\frac{e^{\xi}}{n+1}}_{>0} < \underbrace{\frac{e^{\xi}}{n+1}}_{$$

$$\frac{3}{n+1} \stackrel{n\geq 2}{\leq} 1$$
. Wid!

(2) Behauptung: $\log 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ Beweis: $I = (-1, \infty), \ f(x) = \log(1+x), \ x_0 = 0, \ x = 1$. Durch vollständige Induktion lässt sich zeigen:

$$f^{(k)}(x) = \frac{(-1)^{k+1}(k-1)!}{(1+x)^k} \ (k \in \mathbb{N})$$

Also gilt:

$$\frac{f^{(k)}(0)}{k!} = \begin{cases} 0, & k = 0\\ \frac{(-1)^{k+1}}{k}, & k \in \mathbb{N} \end{cases}$$

Wegen dem Satz von Taylor folgt:

$$\forall n \in \mathbb{N} \ \exists \xi_n \in (0,1) : \log 2 = f(1) = T_n(1;0) + \frac{f^{(n+1)}(\xi_n)}{(n+1)!}$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} + \frac{f^{(n+1)}(\xi_n)}{(n+1)!} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \underbrace{\frac{f^{(n+1)}(\xi_n)}{(n+1)!}}_{=:c_n}$$

zu zeigen: $c_n \to 0 \ (n \to \infty)$.

$$|c_n| = \left| \frac{(-1)^{n+2} n!}{(n+1)! (1+\xi_n)^{n+1}} \right| = \frac{1}{n+1} \cdot \underbrace{\frac{1}{(1+\xi_n)^{n+1}}}_{\leq 1} \implies c_n \to 0 \ (n \to \infty).$$

Satz 22.3 (Bestimmung von Extrema durch höhere Ableitungen)

Sei $n \in \mathbb{N}$, $n \geq 2$, $f \in C^n(I)$, $x_0 \in I$ und x_0 sei ein innerer Punkt von I. Weiter gelte: $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ und $f^{(n)}(x_0) \neq 0$.

- (1) Ist n gerade und $f^{(n)}(x_0) > 0 \implies f$ hat in x_0 ein relatives Minimum. Ist n gerade und $f^{(n)}(x_0) < 0 \implies f$ hat in x_0 ein relatives Maximum.
- (2) Ist n ungerade $\implies f$ hat in x_0 kein relatives Extremum.

 $f \in C^n(I) \implies f^{(n)} \in C(I), \ f^{(n)}(x_0) \neq 0.$ Damit folgt nach §18:

$$\exists \delta > 0 : U_{\delta}(x_0) \subseteq I \text{ und } f^{(n)}(x_0) f^{(n)}(\xi) > 0 \ \forall \xi \in U_{\delta}(x_0).$$
 (*)

Sei $x \in U_{\delta}(x_0) \setminus \{x_0\}$. Nach dem Satz von Taylor existiert ein ξ zwischen x und x_0 mit:

$$f(x) = \underbrace{T_{n-1}(x; x_0)}_{\stackrel{\text{Vor.}}{=} f(x_0)} + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n = f(x_0) + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n.$$

Zu (1): Sei n gerade, $x \neq x_0 \implies (x - x_0)^n > 0$. Aus $f^{(n)}(x_0) > 0$ folgt wegen (*):

$$f^{(n)}(\xi) > 0 \implies \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n > 0 \implies f(x) > f(x_0)$$

 \implies f hat in x_0 ein relatives Minimum. Analog: Aus $f^{(n)}(x_0) < 0$ folgt: f hat in x_0 ein relatives Maximum.

Zu (2): Sei *n* ungerade. Sei $f^{(n)}(x_0) > 0$. Aus $x > x_0$ folgt:

$$(x-x_0)^n > 0$$
, $f^{(n)}(\xi) > 0 \implies f(x) > f(x_0)$.

Analog: Aus $x > x_0$ folgt: $f(x) < f(x_0) \implies f$ hat in x_0 kein Extremum.

Analog: Ist
$$f^{(n)}(x_0) < 0 \implies f(x) < f(x_0)$$
 für $x > x_0$ und $f(x) > f(x_0)$ für $x < x_0$.

Beispiel

Bemerkung: Dieses Beispiel zeigt, wann man den Satz nicht anwenden sollte.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Bekannt: $f \in C^{\infty}(\mathbb{R})$, $f^{(n)}(0) = 0 \ \forall n \in \mathbb{N}_0$. $f(x) \geq 0 \ \forall x \in \mathbb{R}$, $f(0) = 0 \implies f$ hat in $x_0 = 0$ ein absolutes Minimum.

23. Das Riemann-Integral

In diesem Paragraphen gilt stets: $a, b \in \mathbb{R}$, a < b, I = [a, b] und $f : I \to \mathbb{R}$ sei beschränkt. $m := \inf f(I)$, $M := \sup f(I)$.

Definition

$$Z = \{x_0, x_1, ..., x_n\} \subseteq I$$
 heißt eine **Zerlegung** von $I : \iff a = x_0 < x_1 < ... < x_n = b$. $I_j := [x_{j-1}, x_j], |I_j| = x_j - x_{j-1}, m_j := \inf f(I_j), M_j := \sup f(I_j) \ (j = 1, ..., n)$

Dann gilt:
$$m \le m_j \le M_j \le M \ (j = 1, ..., n), \ \sum_{j=1}^n |I_j| = b - a \ (= |I|)$$

$$s_f(Z) := \sum_{j=1}^n m_j |I_j|$$
 heißt die **Untersumme** von f bzgl. Z . $S_f(Z) := \sum_{j=1}^n M_j |I_j|$ heißt die **Obersumme** von f bzgl. Z .

$$m \le m_j \le M_j \le M \implies m|I_j| \le m_j|I_j| \le M_j|I_j| \le M|I_j|$$

Durch Summation erhält man: $m(b-a) \le s_f(Z) \le S_f(Z) \le M(b-a)$.

 $\mathfrak{Z}:=\{Z:Z \text{ ist eine Zerlegung von } I\}$. Sind $Z_1,Z_2\in\mathfrak{Z}\implies Z_1\cup Z_2\in\mathfrak{Z}$. Gilt $Z_1\subseteq Z_2$, so heißt Z_2 eine **Verfeinerung** von Z_1 .

Satz 23.1 (Zerlegungs-Verfeinerungen)

Seien $Z_1, Z_2 \in \mathfrak{Z}$.

(1) Ist
$$Z_1 \subseteq Z_2 \implies s_f(Z_1) \le s_f(Z_2), \ S_f(Z_2) \le S_f(Z_1)$$

(2)
$$s_f(Z_1) \leq S_f(Z_2)$$

Beweis

(1) Übung (es genügt zu betrachten: $Z_2 = Z_1 \cup \{t_0\}, \ t_0 \notin Z_1$)

(2)
$$Z := Z_1 \cup Z_2$$
. Dann: $s_f(Z_1) \stackrel{(1)}{\leq} s_f(Z) \leq S_f(Z) \stackrel{(1)}{\leq} S_f(Z_2)$.

Definition

$$\int_a^b f dx := \int_a^b f(x) dx := \sup\{s_f(Z) : Z \in \mathfrak{Z}\} \text{ heißt unteres Integral von } f$$

$$\int_a^b f dx := \int_a^b f(x) dx := \inf\{S_f(Z) : Z \in \mathfrak{Z}\} \text{ heißt oberes Integral von } f$$

Sei
$$Z \in \mathfrak{Z}$$
. Dann: $m(b-a) \leq s_f(Z) \leq \int_a^b f dx \stackrel{23.1(2)}{\leq} S_f(Z) \leq M(b-a) \implies m(b-a) \leq \int_a^b f dx \leq \int_a^b f dx \leq M(b-a)$

Definition

f heißt (Riemann-)integrierbar über $[a,b]:\iff \int_a^b f \mathrm{d}x = \int_a^b f \mathrm{d}x$. In diesem Fall heißt

$$\int_a^b f dx := \int_a^b f(x) dx := \int_a^b f dx \ (= \int_a^b f dx)$$

das (Riemann-)**Integral** von f über [a, b].

 $R[a,b] := \{g : [a,b] \to \mathbb{R} : g \text{ ist auf } [a,b] \text{ beschränkt und integrierbar über } [a,b] \}$

Beispiele:

(1) Sei $c \in \mathbb{R}$ und $f(x) = c \ \forall x \in [a, b]$. Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}; \ m_j = M_j = c \ (j = 1, \dots, n) \implies s_f(Z) = S_f(Z) = \sum_{j=1}^n c|I_j| = c(b-a) \implies f \in R[a, b] \text{ und } \int_a^b c dx = c(b-a).$

(2)
$$f(x) := \begin{cases} 1, & x \in [a, b] \cap \mathbb{Q} \\ 0, & x \in [a, b] \setminus \mathbb{Q} \end{cases}$$

Sei
$$Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}, \ m_j = 0, \ M_j = 1 \ (j = 1, \dots, n)$$

 $\implies s_f(Z) = 0, \ S_f(Z) = \sum_{j=1}^n |I_j| = b - a.$

$$\implies \int_a^b f dx = 0 \neq b - a = \int_a^b f dx \implies f \notin R[a, b].$$

(3) [a,b] = [0,1], f(x) = x. Sei $n \in \mathbb{N}$ und $Z = \{x_0, \dots, x_n\}$, wobei $x_j := j\frac{1}{n} \ (j = 0,..,n)$. m_j, M_j, I_j wie immer. Dann: $|I_j| = \frac{1}{n}$.

$$m_j = f(x_{j-1}) = (j-1)\frac{1}{n}. s_f(Z) = \sum_{j=1}^n (j-1)\frac{1}{n^2} = \frac{1}{n^2}(0+1+\dots+(n-1)) = \frac{1}{n^2}\frac{(n-1)n}{2} = \frac{n-1}{2n}$$

$$M_j = f(x_j) = \frac{j}{n}$$
. $S_f(Z) = \sum_{i=1}^n j \frac{1}{n^2} = \frac{1}{n^2} (1 + \dots + n) = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n}$

$$\frac{n-1}{2n} = s_f(Z) \le \int_0^1 x dx \le \int_0^1 x dx \le S_f(Z) = \frac{n+1}{2n} \implies f \in R[0,1] \text{ und } \int_0^1 x dx = \frac{1}{2}$$

Satz 23.2 (Rechenregeln für Integrale)

Es seien $f, g \in R[a, b]$

(1) Ist
$$f \leq g$$
 auf $[a,b] \implies \int_a^b f dx \leq \int_a^b g dx$

(2) Sind
$$\alpha, \beta \in \mathbb{R} \implies \alpha f + \beta g \in R[a, b]$$
 und $\int_a^b (\alpha f + \beta g) dx = \alpha \int_a^b f dx + \beta \int_a^b g dx$

Beweis

- (1) Übung.
- (2) Übung: $\alpha f \in R[a, b]$ und $\int_a^b (\alpha f) dx = \alpha \int_a^b f dx$. Zu zeigen: $f + g \in R[a, b]$ und $\int_a^b (f + g) dx = \int_a^b f dx + \int_a^b g dx$. Sei $z = \{x_0, \dots, x_n\} \in \mathfrak{Z}, m_j, M_j, I_j$ wie immer. $\widetilde{m_j} := \inf g(I_j), \ \widetilde{\widetilde{m_j}} := \inf (f + g)(I_j). \ x \in I_j : \ (f + g)(x) = 0$

Satz 23.3 (Riemannsches Integrabilitätskriterium)

 $f \in R[a, b] \iff \forall \varepsilon > 0 \; \exists Z \in \mathfrak{Z} : S_f(Z) - s_f(Z) < \varepsilon.$

Beweis

 $\begin{array}{ll} \text{,,\Leftarrow}\text{``: Sei $\varepsilon > 0$. Voraussetzung} \implies \exists Z \in \mathfrak{Z}: S_f(Z) < s_f(Z) + \varepsilon \implies \int_a^b f \mathrm{d}x \leq S_f(Z) < s_f(z) + \varepsilon \leq \int_a^b f \mathrm{d}x + \varepsilon. \text{ Also: } \int_a^b f \mathrm{d}x < \int_a^b f \mathrm{d}x \ \forall \varepsilon > 0 \implies \int_a^b f \mathrm{d}x \leq \int_a^b f \mathrm{d}x \leq \int_a^b f \mathrm{d}x) \implies f \in R[a,b]. \\ \text{,,\implies``: $S:= $\int_a^b f \mathrm{d}x$. Sei $\varepsilon > 0$. $\exists Z_1, Z_2 \in \mathfrak{Z}: s_f(Z_1) > \int_a^b f \mathrm{d}x - \frac{\varepsilon}{2} = S - \frac{\varepsilon}{2}. S_f(Z_2) < S + \frac{\varepsilon}{2}. Z: = Z_1 \cup Z_2 \in \mathfrak{Z}. S_f(Z) - s_f(Z) \stackrel{23.1}{\leq} S_f(Z_2) - s_f(Z_1) < S + \frac{\varepsilon}{2} - (S - \frac{\varepsilon}{2}) = \varepsilon. \end{array}$

Satz 23.4 (Integratibilität monotoner und stetiger Funktionen)

- (1) Ist f auf [a, b] monoton $\implies f \in R[a, b]$.
- (2) $C[a,b] \subseteq R[a,b]$.

Beweis

- (1) f sei wachsend auf [a,b]. Sei $n \in \mathbb{N}$ und $Z = \{x_0, \dots, x_n\}$ sei die **äquidistante Zerlegung** von [a,b] mit n+1 Teilpunkten. $x_j = a + j \frac{b-a}{n}$ $(j=0,\dots,n)$, dann: $|I_j| = \frac{b-a}{n}$. m_j, M_j wie immer: $S_f(Z) s_f(z) = \sum_{j=1}^n (\underbrace{M_j m_j}_{f(x_{j-1})}) |I_j| = \sum_{j=1}^n (f(x_j) f(x_{j-1})) \frac{b-a}{n} = \underbrace{f(x_j)}_{n} f(x_1) f(x_0) + f(x_2) f(x_1) + \dots + f(x_n) f(x_{n-1}) = \underbrace{b-a}_{n} (f(x_n) f(x_0)) = \underbrace{b-a}_{n} (f(b) f(a)) =: \alpha_n$. Sei $\varepsilon > 0$, dann: $\exists n \in \mathbb{N} : \alpha_n < \varepsilon \xrightarrow{23.3}$ Behauptung.
- (2) Sei $f \in C[a, b]$ und $\varepsilon > 0$. $\exists \delta > 0 : (*) |f(t) f(s)| < \frac{\varepsilon}{b-a} \ \forall t, s \in [a, b] \ \text{mit} |t s| < \delta$. Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z} \ m_j, \ M_j, \ |I_J| \ \text{seien wie immer}; \ z \ \text{sei so gewählt, daß} |I_j| < \delta \ (j = 1, \dots, n)$. Betrachte $I_j : 18.3 \Longrightarrow \exists s_j, t_j \in I_j : m_j = f(s_j), \ M_j = f(t_j)$. $|t_j s_j| < \delta \stackrel{(*)}{\Longrightarrow} \underbrace{f(t_j) f(s_j)}_{=M_j m_j} < \frac{\varepsilon}{b-a} \Longrightarrow S_f(Z) s_f(Z) = \sum_{j=1}^n \underbrace{(M_j m_j)}_{\leq \frac{\varepsilon}{b-a}} |I_j| < \frac{\varepsilon}{b-a} \sum_{j=1}^n |I_j| = \varepsilon \stackrel{23.3}{\Longrightarrow} f \in R[a, b]$

Definition

Sei $J \subseteq \mathbb{R}$ ein Intervall und $G, g : J \to \mathbb{R}$ seien Funktionen. G heißt eine **Stammfunktion** (SF) von g auf $J : \iff$ G ist differenzierbar auf J und G' = g auf J.

Beachte:

- (1) Sind G_1 und G_2 Stammfunktionen von g auf $J \stackrel{21.7}{\Longrightarrow} \exists c \in \mathbb{R} : G_1 = G_2 + c$ auf J.
- (2) Sei I = [a, b]. Es gibt Funktionen, die auf [a, b] Stammfunktionen besitzen, aber über [a, b] nicht integrierbar sind.

Beispiel

$$F(x) := \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

Bekannt: (§22): F ist auf [0,1] differenzierbar und f := F' ist auf [0,1] nicht beschränkt. Also: $f \notin R[0,1]$, besitzt aber auf [0,1] die Stammfunktion F.

(3) Sei I = [a, b]. Es gibt Funktionen in R[a, b], die auf [a, b] keine Stammfunktionen besitzen.

 $\begin{array}{l} \textbf{Beispiel} \\ \text{Sei } [a,b] = [-1,1], \, f(x) := \begin{cases} 1 & x \in [0,1] \\ 0 & x \in [-1,0) \end{cases}. \, f \text{ ist monoton auf } [-1,1] \stackrel{23.4}{\Longrightarrow} \, f \in R[-1,1]. \\ \text{Annahme: } f \text{ besitzt auf } [-1,1] \text{ die Stammfunktion } F. \text{ Auf } [0,1] : F'(x) = f(x) = 1 = \\ (x)' \stackrel{21.7}{\Longrightarrow} \, \exists c_1 \in \mathbb{R} : F(x) = x + c_1 \, \forall x \in [0,1]. \, \text{Auf } [-1,0) : F'(x) = f(x) = 0 \stackrel{21.7}{\Longrightarrow} \, \exists c_2 \in \mathbb{R} : F(x) = c_2 \, \forall x \in [-1,0). \, \lim_{x \to 0+} F(x) = c_1, \, \lim_{x \to 0-} F(x) = c_2. \, F \text{ stetig in } x = 0 \implies \\ c_1 = c_2. \lim_{x \to 0+} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0+} \frac{x + c_1 - c_1}{x} = 1, \, \lim_{x \to 0-} \frac{F(x) - F(0)}{x - 0} = \frac{c_2 - c_1}{x} = 0, \\ \text{Widerspruch zur Differenzierbarkeit von } F \text{ in } x_0 = 0. \end{array}$

Satz 23.5 (1. Hauptsatz der Differential- und Integralrechnung)

Es sei $f \in R[a, b]$ und f besitze auf [a, b] die Stammfunktion F. Dann:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: F(x)|_{a}^{b} =: [F(x)]_{a}^{b}$$

Beweis

Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}; m_j, M_j, I_j$ sei wie gehabt. Sei $j \in \{1, \dots, n\}$. MWS $\Longrightarrow \exists \xi_j \in I_j : F(x_j) - F(x_{j-1}) = F'(\xi_j)(x_j - x_{j-1}) = f(\xi_j) \cdot |I_j| \Longrightarrow \sum_{j=1}^n f(\xi_j)|I_j| = \sum_{j=1}^n (F(x_j) - F(x_{j-1})) = F(b) - F(a)$

$$F(x_{j-1}) = F(b) - F(a)$$

$$m_j |I_j| \le f(\xi_j) |I_j| \le M_j |I_j| \xrightarrow{\text{Summation}} s_f(Z) \le F(b) - F(a) \le S_f(Z) \ \forall Z \in \mathfrak{Z} \implies \underbrace{\int_a^b f dx}_{a} \le \int_a^b f dx$$

$$F(b) - F(a) \le \underbrace{\int_a^b f dx}_{= \int_a^b f dx} \implies F(b) - F(a) = \int_a^b f dx$$

Beispiele:

(1) $\int_0^{\frac{\pi}{2}} \cos x dx$, $\cos x$ ist stetig auf $[0, \frac{\pi}{2}]$, also integrierbar. $F(x) = \sin x$ ist eine Stammfunktion von $\cos x \implies \int_0^{\frac{\pi}{2}} \cos x dx = \sin x \Big|_0^{\frac{\pi}{2}} = 1$.

(2) $\int_0^1 \frac{1}{1+x^2} dx = \arctan x \Big|_0^1 = \arctan 1 - \arctan 0 = \frac{\pi}{4}$

- **Beispiele:**(1) Sei $\mathbb{Q} \cap [0,1] = \{q_1, q_2, \ldots\}, f_n(x) = \begin{cases} 1, & x \in \{q_1, \ldots, q_n\} \\ 0, & x \in [0,1] \setminus \{q_1, \ldots, q_n\} \end{cases}, (n \in \mathbb{N}). (f_n) \text{ konvergient}$ auf [0,1] punktweise gegen $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [0,1] \\ 0, & x \in [0,1] \setminus \mathbb{Q} \end{cases}$. Bekannt: $f \notin R[0,1]$. In 23.10 werden wir sehen: $f_n \in R[0,1] \ \forall n \in \mathbb{N}$
 - (2) Für $x \in [0,1]$, $n \in \mathbb{N}$, $n \geq 3$ sei f_n wie in der Zeichnung:

$$f_n(x) = \begin{cases} n^2 x, & x \in [0, \frac{1}{n}] \\ 2n - n^2 x, & x \in (\frac{1}{n}, \frac{2}{n}] \\ 0, & x \in (\frac{2}{n}, 1] \end{cases}$$

 $f_n \in C[0,1] \implies f_n \in R[0,1]$. zur Übung: $\int_0^1 f_n dx = 1 \forall n \in \mathbb{N}$. (f_n) konvergiert auf [0,1]punktweise gegen f(x) = 0.

Aber: $\lim_{n\to\infty} \int_0^1 f_n dx = 1 \neq 0 = \int_0^1 f dx = \int_0^1 (\lim_{n\to\infty} f_n(x)) dx$

Satz 23.6 (Integrierbarkeit gleichmäßig konvergierender Funktionsfolgen)

 (f_n) sei eine Folge in R[a,b] und (f_n) konvergiert auf [a,b] gleichmäßig gegen $f:[a,b]\to\mathbb{R}$. Dann ist $f \in R[a, b]$ und

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f dx = \int_a^b (\lim_{n \to \infty} f_n) dx$$

 (f_n) sei eine Folge in R[a,b] und $\sum_{n=1}^{\infty} f_n$ konvergiert auf [a,b] gleichmäßig gegen $f:[a,b] \to \mathbb{R}$ \mathbb{R} . Dann ist $f \in R[a, b]$ und

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx$$

Beweis

- 1. Zu $\varepsilon = 1$ $\exists m \in \mathbb{N}: f_m 1 < f < f_m + 1$ auf [a, b]. f_n beschränkt auf [a, b].
- 2. $A_n := \int_a^b f_n dx \ (n \in \mathbb{N})$. Sei $\varepsilon > 0$. $\exists n_0 \in \mathbb{N} : f_n \varepsilon < f < f_n + \varepsilon \text{ auf } [a,b] \ \forall n \geq n_0 \implies \text{ für } f_n = 0$ $n \ge n_0$ folgt (wie im Beweis von 23.2(1)):

$$\underbrace{\int_{a}^{b} (f_{n} - \varepsilon) dx}_{=A_{n} - \varepsilon(b - a)} \le \underbrace{\int_{a}^{b} f dx}_{=:A} \le \underbrace{\int_{a}^{b} f x ds}_{=:B} \le \underbrace{\int_{a}^{b} (f_{n} + \varepsilon) dx}_{=A_{n} + \varepsilon(b - a)}$$

 $\implies |A_n - A| \le \varepsilon(b - a), |A_n - B| \le \varepsilon(b - a)$ $\forall n \in n_0 \implies A_n \to A, A_n \to B \ (n \to \infty) \implies A = B$ $\implies f \in R[a, b] \text{ und } A_n \to \int_a^b f dx$

Beispiel

$$g(x) = \begin{cases} 0, & x = 0 \\ 1, & x \in (0, 1] \end{cases}$$

 $g \text{ ist monoton } \implies g \in R[0,1].$

$$f(x) = \begin{cases} 1, & x = 0 \\ 0, & x \in [0, 1] \backslash \mathbb{Q} \\ \frac{1}{q}, & x = \frac{p}{q}, p, q \in \mathbb{N} \text{ teilerfremd} \end{cases}$$

Übungsblatt: $f \in R[0,1]$

$$(g \circ f)(x) = \begin{cases} 1, & x \in Q \cap [0, 1] \\ 0, & x \in [0, 1] \setminus \mathbb{Q} \end{cases} \notin R[0, 1]$$

Satz 23.7 (Integration von verketteten Funktionen)

Es sei $f \in R[a,b], D := f([a,b])$ und $h:D \to R$ sei Lipschitzstetig auf D. Dann: $h \circ f \in R[a,b]$

Beweis

 $\begin{array}{l} g:=h\circ f. \; \exists L>0. \; |h(t)-h(s)|\leq L|t-s| \; \forall t,s\in D. \; \text{O.B.d.A:} \; L>0. \; \text{Sei} \; Z=\{x_0,\ldots,x_n\}\in \mathfrak{Z}, \\ m_j,M_j,I_j \; \text{seien wie gehabt.} \; \tilde{m}_j:=\inf g(I_j), \; \tilde{M}_j:=\sup g(I_j). \; \text{Seien} \; x,y\in I_j, \; \text{etwa} \; f(x)\leq f(y): \\ g(x)-g(y)\leq |g(x)-g(< y|=|h(f(x))-h(f(y))|\leq L|f(x)-f(y)|=L(f(y)-f(x))\leq L(Mj-mj)=: c_j \implies g(x)\leq g(y)+c \; \forall x,y\in I_j \implies \tilde{M}_j\leq g(y)+c_j \; \forall y\in I_j \implies \tilde{M}_j-c_j\leq g(y) \; \forall y\in I_j \implies \tilde{M}_j-c_j\leq \tilde{m}_j \implies \tilde{M}_j-\tilde{m}_j\leq c_j=L(M_j-m_j) \implies S_g(Z)-s_g(Z)=\sum_{j=1}^n (\tilde{M}_j-\tilde{m}_j)|I_j|\leq L\sum_{j=1}^n (M_j-m_j)|I_j|=L(S_f(Z)-s_f(Z)) \; \forall z\in \mathfrak{Z} \stackrel{23.3}{\Longrightarrow} \; g\in R[a,b] \end{array}$

Satz 23.8 (Weitere Rechenregeln für Integrale)

Es seien $f, g \in R[a, b]$.

- (1) $|f| \in R[a,b]$ und $|\int_a^b f dx| \le \int_a^b |f| dx$ (Dreiecksungleichung für Integrale)
- (2) $fg \in R[a,b]$
- (3) Ist $g(x) \neq 0 \ \forall x \in [a,b]$ und $\frac{1}{g}$ beschränkt auf $[a,b] \implies \frac{1}{g} \in R[a,b]$

Beweis

- (1) $D := f([a,b]), h(t) := |t| (t \in D).$ Dann: $|f| = h \circ f.$ Für $t,s \in D$: $|h(t) h(s)| = ||t| |s|| \stackrel{\S1}{\leq} |t s| \stackrel{23.7}{\Longrightarrow} |f| \in R[a,b]$ $\pm f \leq |f|$ auf [a,b]. 23.2 $\Longrightarrow \pm \int_a^b f dx \leq \int_a^b |f| dx \implies |\int_a^b f dx| \leq \int_a^b |f| dx$
- (2) 1. $D := f([a,b]), h(t) := t^2 \ (t \in D).$ Dann: $f^2 = h \circ f.$ $\exists \gamma > 0 : |f(x)| \le \gamma \ \forall x \in [a,b] \implies |t| < \gamma \ \forall t \in D \ \text{Für} \ t, s \in D: |h(t) - h(s)| = |t^2 - s^2| = |t + s||t - s| \le (|t| + |s|) \cdot |t - s| \le 2\gamma |t - s| \xrightarrow{23.7} f^2 \in R[a,b]$ 2. $f + g, f - g \in R[a,b] \implies (f + g)^2, (f - g)^2 \in R[a,b] \implies \frac{1}{4} \left((f + g)^2 - (f - g)^2 \right) \in R[a,b] \implies f \cdot g \in R[a,b]$
- (3) $D := g([a,b]), h(t) := \frac{1}{t} \ (t \in D).$ Dann: $\frac{1}{g} = h \circ g$. $\exists \gamma > 0 : \frac{1}{|g(x)|} \le \gamma \ \forall x \in [a,b] \implies \frac{1}{|t|} \le \gamma \ \forall t \in D.$ Für $t,s \in D$: $|h(t) - h(s)| = |\frac{1}{t} - \frac{1}{s}| = \frac{|t-s|}{|t||s|} \le \gamma^2 |t-s| \implies \frac{1}{g} \in R[a,b]$

Satz 23.9 (Aufteilung eines Integrals)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt und $c\in(a,b)$. Dann gilt:

$$f \in R[a, b] \iff f \in R[a, c] \text{ und } f \in R[c, b].$$

In diesem Fall ist:

$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$$

Beweis

"⇒": Sei $\varepsilon > 0$. Aus 23.3 folgt: $\exists Z_1 \in \mathfrak{Z} : S_f(Z_1) - s_f(Z_1) < \varepsilon$.

 $Z := Z_1 \cup \{c\} \in \mathfrak{Z}$. Sei $Z = \{x_0, \ldots, x_k, x_{k+1}, \ldots, x_n\}$ mit $x_k = c$. $Z_0 := \{x_0, \ldots, x_k\}$ ist eine Zerlegung von [a, c]. M_i , m_i , I_i seien wie immer. Dann gilt:

$$S_f(Z_0) - s_f(Z_0) = \sum_{j=1}^k (M_j - m_j)|I_j| \le \sum_{j=1}^n (M_j - m_j)|I_j| = S_f(Z) - s_f(Z) \le S_f(Z_1) - s_f(Z_1) < \varepsilon \xrightarrow{23.3} f \in R[a, c].$$
 Analog: $f \in R[c, b].$

" \Leftarrow ": $S := \int_a^c f dx + \int_c^b f dx$. Sei $\varepsilon > 0$ Dann gibt es Zerlegungen Z_1 von [a, c] und Z_2 von $[c, b] : s_f(Z_1) = \int_a^c f dx - \varepsilon = \int_a^c f dx$, $s_f(Z_2) > \int_b^c f dx - \varepsilon$.

$$Z := Z_1 \cup Z_2 \implies Z \in \mathfrak{Z} \text{ und } \int_a^b f dx \ge s_f(Z) = s_f(Z_1) + s_f(Z_2) > S - 2\varepsilon.$$

Also:
$$S - 2\varepsilon < \int_a^b f dx \ \forall \varepsilon > 0 \xrightarrow{\varepsilon \to 0+} S \le \int_a^b f dx$$
.

Analog: $\int_a^b f dx \le S \implies f \in R[a, b], \int_a^b f dx = S.$

Satz 23.10 (Integral und Unstetigkeitsstellen)

 $f, g : [a, b] \to \mathbb{R}$ seien Funktionen.

- (1) Ist f beschränkt auf [a, b] und $A := \{x \in [a, b] : f \text{ ist in } x \text{ nicht stetig}\}$ endlich, dann gilt: $f \in R[a, b]$.
- (2) Ist $f \in R[a, b]$ und $A := \{x \in [a, b] : f(x) \neq g(x)\}$ endlich, dann gilt: $g \in R[a, b]$ und $\int_a^b g dx = \int_a^b f dx$.

Beweis

(1) $\exists \gamma \geq 0 : |f(x)| \leq \gamma \ \forall x \in [a, b]$. Es genügt zu betrachten: $A := \{t_0\}$ (wegen 23.9). O.B.d.A.: $t_0 = a$ oder $t_0 = b$. Etwa: $t_0 = a$.

Sei $\varepsilon > 0$. Wähle $\alpha \in (a, b)$ mit $2\gamma(\alpha - a) < \varepsilon/2$.

 $f \in C[\alpha, b] \implies f \in R[\alpha, b] \stackrel{23.3}{\Longrightarrow}$ Es gibt eine Zerlegung Z_1 von $[\alpha, b]$ mit: $S_f(Z_1) - s_f(Z_1) < \varepsilon/2$. $Z := Z_1 \cup \{a\} \implies Z \in \mathfrak{Z}$ und es gilt:

$$S_f(Z) - s_f(Z) = \underbrace{\sup f([a, \alpha]) - \inf f([a, \alpha]))(\alpha - 1)}_{\leq 2\gamma} + \underbrace{S_f(Z_1) - s_f(Z_1)}_{<\varepsilon/2}$$
$$< 2\gamma(\alpha - a) + \varepsilon/2 < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

(2) Klar: g ist beschränkt. h := g - f. Dann: $h(x) = 0 \ \forall x \in [a, b] \setminus A \implies h \in C([a, b] \setminus A) \stackrel{(1)}{\Longrightarrow} h \in R[a, b] \implies g = h + f \in R[a, b].$

Noch zu zeigen: $\int_a^b h dx = 0$. $\varphi := |h|$. Aus 23.8 folgt: $\varphi \in R[a, b]$ und $|\int_a^b h dx| \le \int_a^b \varphi dx$.

Sei
$$Z := \{x_0, \dots, x_n\} \in \mathfrak{Z}, \ m_j := \inf \varphi(I_j), \ \varphi(x) = 0 \ \forall x \in [a, b] \setminus A, \ \varphi(x) > 0 \ \forall x \in A \implies m_j = 0 \ (j = 1, \dots, n) \implies s_f(Z) = 0 \implies \int_a^b \varphi dx = \int_a^b \varphi dx = 0 \implies \int_a^b h dx = 0.$$

Satz 23.11 (Mittelwertsatz der Integralrechnung)

Es seien $f, g \in R[a, b], g \ge 0$ (oder $g \le 0$) auf $[a, b], m := \inf f([a, b]), M := \sup f([a, b])$

- (1) $\exists \mu \in [m, M] : \int_a^b fg dx = \mu \int_a^b g dx$
- (2) Ist $f \in C[a,b] \implies \exists \xi \in [a,b] : \int_a^b f dx = f(\xi)(b-a)$

Beweis

(1) $\alpha := \int_a^b g dx$, $\beta := \int_a^b f g dx$. $m \le f \le M$ auf $[a,b] \implies mg \le fg \le Mg$ auf $[a,b] \implies m\alpha < \beta < M\alpha$.

Es ist $\alpha \geq 0$. O.B.d.A.: $\alpha > 0$. Dann gilt: $m \leq \frac{\beta}{\alpha} \leq M, \ \mu := \frac{\beta}{\alpha}$.

(2) Setze in (1) $g \equiv 1 \implies \int_a^b f dx = \mu(b-a) \ (\mu \in [m,M])$. Aus 18.1 folgt: $\exists \xi \in [a,b] : \mu = f(\xi)$.

Der Riemannsche Zugang zum Integral Bemerkung: Wir haben bisher tatsächlich die Darbouxschen Integrale betrachtet. Hier wird nun die ursprüngliche Definition von Riemann vorgestellt

 $f:[a,b]\to\mathbb{R}$ sei beschränkt. Sei $Z:=\{x_0,\ldots,x_n\}\in\mathfrak{Z}.$ m_j,M_j,I_j seien wie immer.

Wählt man in jedem I_j einen Punkt ξ_j , so heißt $\xi := (\xi_1, \xi_2, \dots, \xi_n)$ ein zu Z passender **Zwischenvektor** und $\sigma_f(Z, \xi) := \sum_{j=1}^n f(\xi_j) |I_j|$ eine **Riemannsche Zwischensumme**.

$$m_j \le f(\xi_j) \le M_j \ (j = 1, \dots, n) \implies s_f(Z) \le \sigma_f(Z, \xi) \le S_f(Z)$$

Satz 23.12 (Äquivalenz der Riemannschen und Darbouxschen Integrale)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt. Dann gilt: $f\in R[a,b]$ genau dann, wenn es ein $S\in\mathbb{R}$ gibt mit:

$$\forall \varepsilon>0 \ \exists Z\in \mathfrak{Z}: |\sigma_f(Z,\xi)-S|<\varepsilon$$
 für jedes zu Z passende $\xi.$ (*)

In diesem Fall gilt:

$$S = \int_{a}^{b} f \mathrm{d}x.$$

Beweis

" \Rightarrow ": $S:=\int_a^b f dx$. Sei $\varepsilon>0$. Wie im Beweis von 23.3: $\exists Z\in \mathfrak{Z}: s_f(Z)>S-\varepsilon,\ S_f(Z)< S+\varepsilon$.

Sei ξ passend zu $Z \implies S - \varepsilon < s_f(Z) \le \sigma_f(Z, \xi) \le S_f(Z) < S + \varepsilon \implies |\sigma_f(Z, \xi) - S| < \varepsilon$.

" \Leftarrow ": Sei $\varepsilon > 0$. Nach Voraussetzung gibt es ein $Z \in \mathfrak{Z}$ so, dass (*) gilt. Sei $Z := \{x_0, \ldots, x_n\}, \ m_j, \ M_j, \ I_j$ wie immer. Sei $j \in \{1, \ldots, n\} : \exists \xi_j, \eta_j \in I_j : f(\xi_j) > M_j - \varepsilon, \ f(\eta_j) < m_j + \varepsilon, \ \xi := (\xi_1, \ldots, \xi_n), \ \eta = (\eta_1, \ldots, \eta_n)$ sind passend zu Z.

$$A := \sigma_f(Z, \xi), \ B := \sigma_f(Z, \eta). \ A = \sum_{j=1}^n f(\xi_j) |I_j| > \sum_{j=1}^n (M_j - \varepsilon) |I_j| = S_f(Z) - \varepsilon(b - a) \implies S_f(Z) < A + \varepsilon(b - a).$$
 (i)

Analog: $-s_f(Z) < \varepsilon(b-a) - B$. (ii)

Dann gilt: $S_f(Z) - s_f(Z) < A - B + 2\varepsilon(b - a) = A - S + S - B + 2\varepsilon(b - a) \le |A - S| + |B - S| + 2\varepsilon(b - a) \stackrel{(*)}{\leq} 2\varepsilon + 2\varepsilon(b - a) = \varepsilon(2 + 2(b - a)) \xrightarrow{23.3} f \in R[a, b].$

$$\int_{a}^{b} f dx = \int_{a}^{b} f dx \le S_{f}(Z) \stackrel{\text{(i)}}{<} A + \varepsilon(b-a) = A - S + S + \varepsilon(b-a) \le |A-S| + S + \varepsilon(b-a) \stackrel{\text{(*)}}{<} \varepsilon + S + \varepsilon(b-a).$$

Also: $\int_a^b f dx < S + \varepsilon (1 + (b - a)) \ \forall \varepsilon > 0 \implies \int_a^b f dx \le S$. Analog folgt mit (ii): $S \le \int_a^b f dx$.

Definition

Sei $f \in R[a, b]$. $\int_c^c f(x) dx := 0$ und $\int_b^a f(x) dx =: -\int_a^b f(x) dx$

Bemerkung: $\int_a^b f(x) dx = \int_a^b f(t) dt$.

Satz 23.13 (2. Hauptsatz der Differential- und Integralrechnung)

Sei $f \in R[a, b]$ und $F : [a, b] \to \mathbb{R}$ sei definiert durch $F(x) := \int_a^x f(t) dt$.

- (1) F ist auf [a,b] Lipschitzstetig, insbesondere $F \in C[a,b]$
- (2) Ist f in $x_0 \in [a, b]$ stetig $\implies F$ ist in x_0 differenzierbar und $F'(x_0) = f(x_0)$
- (3) Ist $f \in C[a, b] \implies F \in C^1[a, b]$ und F' = f auf [a, b]

Beweis

(1) $L := \sup\{|f(x)| : x \in [a,b]\}$. Sei $x,y \in [a,b]$, etwa $x \leq y$. $F(y) = \int_a^y f(t) dt \stackrel{23.9}{=} \int_a^x f(t) dt + \int_x^y f(t) dt = F(x) + \int_x^y f(t) dt \implies F(y) - F(x) = \int_x^y f(t) dt \implies |F(y) - F(x)| = |\int_x^y f(t) dt| \stackrel{23.8}{\leq} \int_x^y \underbrace{|f(t)|}_{\leq L} dt \leq \int_x^y L dt = L(y-x) = L|y-x|$

(2) Sei $x_0 \in [a,b)$. Wir zeigen: (*) $\lim_{h \to 0+} \frac{F(x_0+h) - F(x_0)}{h} = f(x_0)$ (analog zeigt man für $x_0 \in (a,b]$: $\lim_{h \to 0-} \frac{F(x_0+h) - F(x_0)}{h} = f(x_0)$) Sei also $x_0 \in [a,b)$, h > 0 und $x_0 + h < b$. $g(h) := |\frac{F(x_0+h) - F(x_0)}{h} - f(x_0)|$. Zu zeigen: $g(h) \to 0$ $(h \to 0+)$. Es ist $\frac{F(x_0+h) - F(x_0)}{h} \stackrel{\text{s.o.}}{=} \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt$, $\frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt = \frac{1}{h} f(x_0) h = f(x_0) \implies g(h) = \frac{1}{h} |\int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt| \stackrel{23.8}{\leq} \frac{1}{h} \int_{x_0}^{x_0+h} |f(t) - f(x_0)| dt$; $s(h) := \sup\{|f(t) - f(x_0)| : t \in [x_0, x_0 + h]\} \implies g(h) \le \frac{1}{h} \int_{x_0}^{x_0+h} s(h) dt = \frac{1}{h} s(h) h = s(h)$. Also: $0 \le g(h) \le s(h)$. f stetig in $x_0 \implies f(t) \to f(x_0)$ $(t \to x_0) \implies s(h) \to 0$ $(h \to 0+) \implies g(h) \to 0$ $(h \to 0+) \implies (*)$

Satz 23.14 (Anwendung des 2. Hauptsatzes auf stetige Funktionen)

Sei $J \subseteq \mathbb{R}$ ein beliebiges Intervall, $f \in C(J)$ und $\xi \in J$ (fest). $F: J \to \mathbb{R}$ sei definiert durch $F(x) := \int_{\xi}^{x} f(t) dt$. Dann ist $F \in C^{1}(J)$ und F' = f auf J.

Beweis

Seien $a,b\in J,\ a< b$ und I:=[a,b]. Es genügt zu zeigen: F ist differenzierbar auf I und F'=f auf I. $G(x):=\int_a^x f(t)dt\ (x\in I).$ Sei $\xi\leq a$ (analoger Beweis für $\xi\geq b$ und $\xi\in (a,b).$ Für $x\in [a,b]:\ F(x)=\int_\xi^x\cdots=\int_\xi^a\cdots+\int_a^x\cdots=F(a)+G(x) \stackrel{23.13}{\Longrightarrow} F$ ist differenzierbar auf I und F'=G'=f auf I.

Definition

Im folgenden seien $I, J \subseteq \mathbb{R}$ beliebige Intervalle.

- (1) Sei $g: I \to \mathbb{R}$ und $x_0 \in I$. $g(x)|_{x=x_0} := g(x_0)$.
- (2) Ist $f \in R[a, b]$, so heißt $\int_a^b f(x) dx$ auch ein **bestimmtes Integral**.
- (3) Besitzt $G: I \to \mathbb{R}$ auf I eine Stammfunktion, so schreibt man für eine solche auch $\int g(x) dx$ (unbestimmtes Integral). "Gleichungen" der Form $\int g(x) dx = h(x)$ gelten bis auf additive Konstanten! Beispiel: $\int e^x dx = e^x$, $\int e^x dx = e^x + 7$. $\int g(x) dx = h(x)$ auf I bedeutet: h ist eine Stammfunktion von g auf I.

Satz 23.15 (Partielle Integration)

(1) Es seien $f, g \in R[a, b]$ und F, G seien Stammfunktionen von f bzw. g auf [a, b]. Dann:

$$\int_{a}^{b} Fg dx = F(x)G(x)|_{a}^{b} - \int_{a}^{b} fG dx$$

(2) Sind $f, g \in C^1[a, b] \implies$

$$\int_a^b f'g dx = f(x)g(x)|_a^b - \int_a^b fg' dx$$

(3) Sind $f, g \in C^1(I) \implies \text{auf } I \text{ gilt:}$

$$\int f'g dx = f(x)g(x) - \int fg' dx$$

Reweis

(1)
$$(FG)' = F'G + FG' = fG + Fg \implies \int_a^b Fg dx + \int_a^b fG dx = \int_a^b (FG)' dx \stackrel{23.5}{=} F(x)G(x)|_a^b$$

(2) folgt aus (1)

(3)
$$(fg)' = f'g + fg' \implies fg = \int (f'g + fg') dx$$

Beispiele:

(1)
$$\int \log x dx = \int \underbrace{1}_{f'} \underbrace{\log x}_{g} dx = x \log x - \int x \frac{1}{x} dx = x \log x - x \text{ auf } (0, \infty).$$

(2)
$$\int \sin^2 x dx = \int \underbrace{\sin x}_{f'} \underbrace{\sin x}_{g} dx = -\cos x \sin x - \int -\cos^2 x dx = -\cos x \sin x + \int (1-\sin^2 x) dx = -\cos x \sin x + x - \int \sin^2 x dx$$
$$\implies \int \sin^2 dx = \frac{1}{2} (x - \cos x \sin x) \text{ auf } \mathbb{R}.$$

(3)
$$\int \underbrace{x}_{f'} \underbrace{e^x}_{g} dx = \frac{1}{2}x^2 e^x - \int \frac{1}{2}x^2 e^x dx \text{ komplizierter!}$$
$$\int \underbrace{x}_{f} \underbrace{e^x}_{g'} = xe^x - \int e^x dx = xe^x - e^x$$

Satz 23.16 (Substitutionsregeln)

Sei $f \in C(I)$ und $g \in C^1(J)$ und $g(J) \subseteq I$.

(1) Ist
$$J = [\alpha, \beta] \implies$$

$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt = \int_{g(\alpha)}^{g(\beta)} f(t)dt$$

(2) Auf J gilt:

$$\int f(g(t))g'(t)dt = \int f(x)dx|_{x=g(t)}$$

(3) g sei auf J streng monoton \implies auf I gilt:

$$\int f(x)dx = \int f(g(t))g'(t)dt|_{t=g^{-1}(x)}$$

Merkregel

Ist y = y(x) differenzierbar, so schreibt man für y' auch $\frac{dy}{dx}$. In 23.16 substituiere x = g(t) (fasse also x als Funktion von t auf) $\implies g'(t) = \frac{dx}{dt}$, $\implies dx = g'(t)dt$ ".

- (2) Sei F eine Stammfunktion von f auf I. G(t) := F(g(t)) $(t \in J)$. G'(t) = F'(g(t))g'(t) = f(g(t))g'(t) $(t \in J) \implies G$ ist eine Stammfunktion von $(f \circ g)g'$ auf $J \implies (2)$
- (1) $\int_{\alpha}^{\beta} f(g(t))g'(t)dt \stackrel{23.5}{=} G(\beta) G(\alpha) = F(g(\beta)) F(g(\alpha)) \stackrel{23.5}{=} \int_{g(\alpha)}^{g(\beta)} f(x)dx.$

(3)
$$\int f(g(t))g'(t)dt|_{t=g^{-1}(x)} = G(g^{-1}(x)) = F(g(g^{-1}(x))) = F(x)$$

Beispiele:

- (1) $\int_0^1 \sqrt{1-x^2} dx$ (Substitution $x = \sin t$, $t = 0 \implies x = 0$, $t = \frac{\pi}{2} \implies x = 1$, $dx = \cos t dt$). $\int_0^1 \sqrt{1-x^2} dx = \int_0^{\frac{\pi}{2}} \sqrt{1-\sin^2 t} \cos t dt = \int_0^{\frac{\pi}{2}} |\cos t| \cos t dt = \int_0^{\frac{\pi}{2}} \cos^2 t dt = \int_0^{\frac{\pi}{2}} (1-\sin^2 t) dt = t - \frac{1}{2} (t - \cos t \sin t)|_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$
- (2) $\int \frac{1}{x \log x} dx$ (Substitution $x = e^t$, $t = \log x$, $dt = \frac{1}{x} dx$). $\int \frac{1}{x \log x} = \int \frac{1}{t} dt = \log t = \log(\log(x))$ auf $(1, \infty)$.

Definition

(1) Seien p und q Polynome und $q \neq 0$. Dann heißt $\frac{p}{q}$ eine **rationale Funktion**.

 $\frac{p}{q}$ hat eine Darstellung der Form $\frac{p}{q}=p_1+\frac{p_2}{q},$ wobei p_1,p_2 Polynome und $\frac{p_2}{q}$ echt gebrochen rational, d.h.: Grad $p_2<$ Grad q.

- (2) Seien $b, c \in \mathbb{R}$. Dann heißt das Polynom $x^2 + bx + c$ unzerlegbar über $\mathbb{R} : \iff 4c b^2 > 0 \quad (\iff x^2 + bx + c \neq 0 \ \forall x \in \mathbb{R})$
- (3) Ein Partialbruch ist eine rationale Funktion der Form

$$\frac{A}{(x-x_0)^k}$$

wobei $A, x_0 \in \mathbb{R}, k \in \mathbb{N}, \text{ oder}$

$$\frac{Ax+B}{(x^2+bx+c)^k}$$

wobei $A, B, b, c \in \mathbb{R}, k \in \mathbb{N}$ und $x^2 + bx + c$ unzerlegbar über \mathbb{R} .

Satz 23.17 (Integration von rationalen Funktionen)

Es seien $b, c, x_0 \in \mathbb{R}, m \in \mathbb{N}, m > 1, p(x) := x^2 + bx + c \text{ und } D := 4c - b^2 > 0$

(1)
$$\int \frac{1}{x - x_0} dx = \log|x - x_0|$$

(2)
$$\int \frac{1}{(x-x_0)^m} dx = \frac{-1}{m-1} \cdot \frac{1}{(x-x_0)^{m-1}}$$

(3)
$$\int \frac{1}{p(x)} dx = \frac{2}{\sqrt{D}} \arctan\left(\frac{2x+b}{\sqrt{D}}\right)$$

(4)
$$\int \frac{1}{p(x)^m} dx = \frac{1}{(m-1)D} \cdot \frac{2x+b}{p(x)^{m-1}} + \frac{4m-6}{(m-1)D} \int \frac{1}{p(x)^{m-1}} dx$$

(5)
$$\int \frac{x}{p(x)} dx = \frac{1}{2} \log(p(x)) - \frac{b}{2} \int \frac{1}{p(x)} dx$$

(6)
$$\int \frac{x}{p(x)^m} dx = \frac{-1}{2(m-1)} \cdot \frac{1}{p(x)^{m-1}} - \frac{b}{2} \int \frac{1}{p(x)^m} dx$$

- (1) klar
- (2) klar
- (3) $p(x) = x^2 + bx + c = x^2 + bx + \frac{b^2}{4} + c \frac{b^2}{4} = (x + \frac{b}{2})^2 + \frac{D}{4} = \frac{D}{4}(\frac{4}{D}(x + \frac{b}{2})^2 + 1) = \frac{D}{4}((\frac{2x+b}{\sqrt{D}})^2 + 1) = \frac{D}{4}(t^2 + 1)$, wobei $t = \frac{2x+b}{\sqrt{D}}$, also $x = \frac{\sqrt{D}t b}{2}$ $\implies \int \frac{1}{p(x)} dx = \text{(Substitution } t = \frac{2x+b}{\sqrt{D}}, \ dx = \frac{\sqrt{D}}{2} dt \text{)} \frac{4}{D} \int \frac{1}{t^2 + 1} \cdot \frac{\sqrt{D}}{2} dt = \frac{2}{\sqrt{D}} \int \frac{1}{1 + t^2} dt = \frac{2}{\sqrt{D}} \arctan t = \frac{2}{\sqrt{D}} \arctan(\frac{2x+b}{\sqrt{D}})$
- (4) Übung, partielle Integration
- (5) $\int \frac{x}{p(x)} dx = \frac{1}{2} \int \frac{2x+b-b}{p(x)} dx = \frac{1}{2} \int \underbrace{\frac{p'(x)}{p(x)}}_{\log(p(x))} dx \frac{b}{2} \int \frac{1}{p(x)} dx$
- (6) Übung, partielle Integration

Definition

- (1) Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}, \ I_j = [x_{j-1}, x_j] \ (j = 1, \dots, n)$ $|Z| := \max\{|I_i| : j = 1, \dots, n\} \text{ heißt das } \textbf{Feinheitsmaß} \text{ von } Z.$
- (2) $\mathfrak{Z}^* := \{(Z,\xi) : Z \in \mathfrak{Z}, \xi \text{ ist passend zu } Z\}$. Eine Folge $((Z_n,\xi^{(n)}))$ in \mathfrak{Z}^* heißt eine Nullfolge $:\iff |Z_n| \to 0 \ (n \to \infty)$

Satz 23.18 (Folgen von Zerlegungen mit $|Z_n| \to 0$)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt; sei $\gamma\geq 0$ mit: $|f(x)|\leq \gamma \ \forall x\in [a,b].$

(1) Sind $Z_1, Z_2 \in \mathfrak{Z}$ und $Z_1 \subseteq Z_2$ und enthält Z_2 genau p Teilpunkte mehr als Z_1 , dann gilt:

$$s_f(Z_2) \le s_f(Z_1) + 2p\gamma |Z_1|$$
 und $S_f(Z_2) \ge S_f(Z_1) - 2p\gamma |Z_1|$.

(2) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall Z \in \mathfrak{Z} \; \text{mit} \; |Z| < \delta$:

$$s_f(Z) > \int_a^b f dx - \varepsilon, \ S_f(Z) < \int_a^b f dx + \varepsilon.$$

(3) Ist (Z_n) eine Folge in \mathfrak{Z} mit $|Z_n| \to 0$, dann gilt:

$$s_f(Z_n) \to \int_a^b f dx, \ S_f(Z_n) \to \int_a^b f dx.$$

- (1) Übung, es genügt den Fall p = 1 zu betrachten.
- (2) Beweis nur für Untersummen. Sei $\varepsilon > 0$. $\exists Z_1 \in \mathfrak{Z} : s_f(Z_1) > \int_a^b f dx \frac{\varepsilon}{2}; Z_1$ habe p Teilpunkte. $\delta := \frac{\varepsilon}{4\gamma p}$.

Sei
$$Z \in \mathfrak{Z}$$
 und $|Z| < \delta$. $Z_2 := Z \cup Z_1 \in \mathfrak{Z}$; Z_2 hat höchstens p Teilpunkte mehr als $Z \Longrightarrow s_f(Z) = \underbrace{s_f(Z) - s_f(Z_2)}_{\geq 1} + \underbrace{s_f(Z_2)}_{\geq s_f(Z_1)} > -2p\gamma |Z| + s_f(Z_1) > -\underbrace{2\gamma p\delta}_{=\frac{\varepsilon}{2}} + \int_a^b f dx - \frac{\varepsilon}{2} = \underbrace{s_f(Z_1)}_{\geq s_f(Z_1)} = \underbrace{s_f(Z_1)}_{\geq s_f(Z_1)} + \underbrace{s_f(Z_2)}_{\geq s_f(Z_1)} > -2p\gamma |Z| + \underbrace{s_f(Z_1)}_{\leq s_f(Z_1)} > -2p\gamma |Z| + \underbrace{s_f($

$$\int_{a}^{b} f dx - \varepsilon.$$

(3) Nur für Untersummen. $A := \int_a^b f dx$, $s_n := s_f(Z_n)$. Sei $\varepsilon > 0$. Aus (2) folgt dann: $\exists \delta > 0$: $s_f(Z) > A - \varepsilon \ \forall Z \in \mathfrak{Z}$ mit $|Z| < \delta$. $\exists n_0 \in \mathbb{N} : |Z_n| < \delta \ \forall n \geq n_0$. Also: $s_n \to A \quad (n \to \infty)$.

Beispiel

$$a_n := \sum_{j=1}^n \frac{\sqrt{j}}{n^{3/2}}$$
. Behauptung : $a_n \to \frac{2}{3}$

Beweis

$$a_n = \sum_{j=1}^n \underbrace{\sqrt{\frac{j}{n}}}_{=f(\frac{j}{n})} \frac{1}{n}, \ f(x) = \sqrt{x}, \ x \in [0, 1].$$

$$Z_n = \{0, \frac{1}{n}, \dots, \frac{n}{n}\} \implies a_n = S_f(Z_n) \xrightarrow[23.18(3)]{n \to \infty} \int_0^1 \sqrt{x} dx = \int_0^1 \sqrt{x} dx = \frac{2}{3}$$

Satz 23.19 (Riemannsche Definition des Integrals mit Nullfolgen)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt. $f\in R[a,b]\iff\exists S\in\mathbb{R}:\sigma_f(Z_n,\xi^{(n)})\to S\ (n\to\infty)$ für jede Nullfolge $((Z_n,\xi^{(n)}))in\mathfrak{Z}^*$. In diesem Fall gilt: $S=\int_a^bf\mathrm{d}x$.

Beweis

" \Rightarrow ": $S := \int_a^b f dx$. Sei $((Z_n, \xi^{(n)})) \in \mathfrak{Z}^*$ eine Nullfolge. Dann:

$$\underbrace{s_f(Z_n)}_{\stackrel{23.18}{\longrightarrow} S} \le \sigma_f(Z_n, \xi^{(n)}) \le \underbrace{S_f(Z_n)}_{\stackrel{23.18}{\longrightarrow} S} \ \forall n \in \mathbb{N}.$$

$$\implies \sigma_f(Z_n, \xi^{(n)}) \to S \ (n \to \infty).$$

" \Leftarrow ": Sei $\varepsilon > 0$ und (Z_n) eine Folge in \mathfrak{Z} mit $|Z_n| \to 0$. Wie im Beweis von 23.12: $\forall n \in \mathbb{N} \ \exists \xi^{(n)}, \eta^{(n)}$ passend zu Z_n mit:

$$S_f(Z_n) - \varepsilon < \sigma_f(Z_n, \xi^{(n)}); \ \sigma(Z_n, \eta^{(n)}) < s_f(Z_n) + \varepsilon$$

Aus 23.18(3) folgt für $n \to \infty$: $\int_a^b f dx - \varepsilon \le S \le \int_a^b f dx + \varepsilon \ \forall \varepsilon > 0 \implies \int_a^b f dx \le S \le \int_a^b f dx \implies f \in R[a,b] \text{ und } \int_a^b f dx = S.$

Beispiel

Bemerkung: Dies ist ein Beispiel zum nächsten Satz, nicht zum vorherigen.

$$f_n(x) = \frac{1}{n}\sin(nx) \ (n \in \mathbb{N}, \ x \in [0, \pi]); \ |f_n(x)| = \frac{1}{n}|\sin(nx)| \le \frac{1}{n} \ \forall x \in [0, \pi].$$

 $\implies (f_n)$ konvergiert gleichmäßig auf $[0,\pi]$ gegen $f \equiv 0$.

 $f'_n(x) = \cos(nx), \ f'_n(\pi) = \cos(n\pi) = (-1)^n$. Das heißt: (f'_n) konvergiert auf $[0, \pi]$ nicht punktweise.

Satz 23.20 (Gleichmäßige Konvergenz der Stammfunktion)

 (f_n) sei eine Folge in $C^1[a,b], x_0 \in [a,b]$ und es gelte:

- (i) $(f_n(x_0))$ konvergiert
- (ii) (f'_n) konvergiert gleichmäßig auf [a,b] gegen $g:[a,b]\to\mathbb{R}$.

Dann konvergiert (f_n) gleichmäßig auf [a, b] und für $f(x) := \lim_{n \to \infty} f_n(x)$ $(x \in [a, b])$ gilt: $f \in C^1[a, b]$ und f' = g auf [a, b].

Also: $(\lim_{n\to\infty} f_n(x))' = f'(x) = g(x) = \lim_{n\to\infty} f'_n(x) \ \forall x \in [a,b].$

Beweis

O.B.d.A.: $x_0 = a$ und $f_n(a) \to 0$ $(n \to \infty)$. $f(x) := \int_a^x g(t) dt$ $(x \in [a, b])$. Aus 19.2 folgt: $g \in C[a, b]$.

Damit wegen 23.13: $f \in C^1[a, b]$ und f' = g auf [a, b].

Sei
$$x \in [a, b]: f_n(x) - \underbrace{f_n(a)}_{\to 0} \stackrel{23.5}{=} \int_a^x f'_n(t) dt \stackrel{23.6}{\to} \int_a^x g(t) dt = f(x).$$

 $\implies (f_n)$ konvergiert punktweise gegen f.

Für
$$x \in [a, b]$$
: $|f_n(x) - f(x)| = |f_n(x) - f_n(a) - f(x) + f_n(a)| = |\int_a^x (f'_n(t) - g(t)) dt + f_n(a)| \le \int_a^x |f'_n - g| dt + |f_n(a)| \le \int_a^b |f'_n - g| dt + |f_n(a)| =: c_n$

Wegen Voraussetzung (ii) konvergiert $(|f'_n-g|)$ auf [a,b] gleichmäßig gegen 0. Wegen 23.6 folgt damit: $\int_a^b |f'_n-g| dt \to 0 \ (n \to \infty) \implies c_n \to 0 \ (n \to \infty) \implies (f_n)$ konvergiert gleichmäßig auf [a,b] gegen f.

Wir können nun den Satz 21.9 beweisen.

Beweis

Sei
$$a < b$$
 und $[a, b] \subseteq I$. $f_n(x) := \sum_{k=0}^n a_k x^k$, $f'_n(x) = \sum_{k=1}^n k a_k x^{k-1}$, $g(x) := \sum_{k=1}^\infty k a_k x^{k-1}$

Aus 19.1 folgt: (f_n) und (f'_n) konvergieren auf [a,b] gleichmäßig gegen f bzw. g. Wegen unserem neuen Satz 23.20 nun ist f auf [a,b] differenzierbar und f'=g auf [a,b]. $[a,b] \subseteq I$ beliebig \Longrightarrow Beh.

24. Uneigentliche Integrale

In diesem Paragraphen gelte stets: Ist $I \subseteq \mathbb{R}$ ein Intervall und $\varphi : I \to \mathbb{R}$ eine Funktion, so gelte $\varphi \in R[a,b]$ für jedes Intervall $[a,b] \subseteq I$.

(I) 1. Typ uneigentlicher Integrale Sei $a \in \mathbb{R}$, $\beta \in \mathbb{R} \cup \{\infty\}$, $a < \beta$ und $f : [a, \beta) \to \mathbb{R}$. Existiert der Grenzwert $\lim_{t\to\beta} \int_a^t f(x) \mathrm{d}x$ und ist dieser Grenzwert reell, so heißt das uneigentliche Integral $\int_a^\beta f(x) \mathrm{d}x$ konvergent und $\int_a^\beta f(x) \mathrm{d}x := \lim_{t\to\beta} \int_a^t f(x) \mathrm{d}x$. Ist das Integral $\int_a^\beta f \mathrm{d}x$ nicht konvergent, so heißt es divergent.

Beispiele:

(1)

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx \quad (a=0, \beta=1)$$

Für $t \in (0,1)$: $\int_0^t \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin|_0^t = \arcsin t \to \frac{\pi}{2} \ (t \to 1)$. Das heißt: $\int_0^1 \frac{1}{\sqrt{1-x^2}} \mathrm{d}x$ konvergiert und hat den Wert $\frac{\pi}{2}$.

(2)

$$\int_0^\infty \frac{1}{1+x^2} \mathrm{d}x \quad (a=0, \beta=\infty)$$

Für t > 0: $\int_0^t \frac{1}{1+x^2} dx = \arctan x|_0^t = \arctan t \to \frac{\pi}{2} \ (t \to \infty)$. Also: $\int_0^\infty \frac{1}{1+x^2} dx$ konvergiert und hat den Wert $\frac{\pi}{2}$.

(3) (wichtiq) Sei $\alpha > 0$. Übung:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} \mathrm{d}x \text{ konvergiert } \iff \alpha > 1$$

(II) 2. Typ uneigentlicher Integrale Sei $\alpha \in \mathbb{R} \cup \{-\infty\}$, $a \in \mathbb{R}$, $\alpha < a$ und $f : (\alpha, a] \to \mathbb{R}$ eine Funktion. Entsprechend zum 1. Typ definiert man die Konvergenz bzw. Divergenz des uneigentlichen Integrals $\int_{\alpha}^{a} f(x) dx$ (nämlich $\lim_{t \to \alpha} \int_{t}^{a} f(x) dx$).

Beispiele:

(1)

$$\int_{-\infty}^{0} \frac{1}{1+x^2} \mathrm{d}x$$

Für t < 0: $\int_t^0 \frac{1}{1+x^2} dx = \arctan x|_t^0 = -\arctan t = \arctan(-t) \to \frac{\pi}{2} \ (t \to -\infty)$

(2) (wichtig) Sei $\alpha > 0$. Übung:

$$\int_0^1 \frac{1}{x^{\alpha}} \mathrm{d}x \text{ konvergient} \iff \alpha < 1$$

(III) 3. Typ uneigentlicher Integrale Sei $\alpha \in \mathbb{R} \cup \{-\infty\}, \beta \in \mathbb{R} \cup \{-\infty\}, \alpha < \beta$ und $f:(\alpha,\beta)\to\mathbb{R}$ eine Funktion. Das uneigentliche Integral $\int_{\alpha}^{\beta}f(x)\mathrm{d}x$ ist **konvergent**, genau dann wenn es ein $c \in (\alpha, \beta)$ gibt mit: $\int_{\alpha}^{c} f(x) dx$ konvergiert und $\int_{c}^{\beta} f(x) dx$ konvergiert. In diesem Fall gilt: $\int_{\alpha}^{\beta} f dx := \int_{\alpha}^{c} f dx + \int_{c}^{\beta} f dx$ (Übung: diese Definition ist unabhängig von c)

- (1) $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ konvergiert und hat den Wert π .
- (2) $\int_0^\infty \frac{1}{r^2} dx$ divergiert, denn $\int_0^1 \frac{1}{r^2} dx$ divergiert.

Das Folgende formulieren wir nur für den Typ (I) (sinngemäß gilt alles auch für Typ (II), (III)):

 $\int_a^\beta f dx$ heißt **absolut konvergent** : $\iff \int_a^\beta |f| dx$ ist konvergent.

Sei $g:[a,\beta)\to\mathbb{R}$ eine weitere Funktion.

- (1) $\int_a^\beta f dx$ konvergiert $\iff \exists c \in (a, \beta) : \int_c^\beta f dx$ konvergiert.
 - In diesem Fall gilt: $\int_a^\beta f dx = \int_a^c f dx + \int_c^\beta f dx$.
- (2) Cauchykriterium: $\int_a^\beta f dx$ konvergiert $\iff \forall \varepsilon > 0 \ \exists c = c(\varepsilon) \in (a, \beta) : |\int_u^v f dx| < c(\varepsilon)$ $\varepsilon \ \forall u, v \in (c, \beta)$
- (3) Ist $\int_a^\beta f dx$ absolut konvergent, dann gilt: $\int_a^\beta f dx < \int_a^\beta |f| dx$ und $|\int_a^\beta f dx| < \int_a^\beta |f| dx$.
- (4) Majorantenkriterium: Ist $|f| \leq g$ auf $[a, \beta)$ und $\int_a^\beta g dx$ konvergent, dann konvergiert $\int_{a}^{\beta} f dx$ absolut.
- (5) Minorantenkriterium: Ist $f \geq g \geq 0$ auf $[a, \beta)$ und $\int_a^\beta g dx$ divergent, dann divergiert

Beispiele: (1)
$$\int_{1}^{\infty} \underbrace{\frac{x}{1+x^2}}_{=:f(x)} dx$$
, $g(x) := \frac{1}{x} \cdot \frac{f(x)}{g(x)} = \frac{x^2}{1+x^2} \to 1 \ (x \to \infty)$.

$$\implies \exists c \in (1,\infty) : \frac{f(x)}{g(x)} \ge \frac{1}{2} \ \forall x \ge c \implies f(x) \ge \frac{1}{2x} \ \forall x \ge c. \ \int_c^\infty \frac{1}{2x} \mathrm{d}x \ \mathrm{divergiert} \\ \implies \int_c^\infty f(x) \mathrm{d}x \ \mathrm{divergiert} \implies \int_1^\infty f(x) \mathrm{d}x \ \mathrm{divergiert}.$$

(2) $f(x) = \frac{1}{\sqrt{x}}$. $\int_0^1 f(x) dx$ konvergiert, $\int_0^1 f^2(x) dx$ divergiert.

25. Funktionen von beschränkter Variation

Definition

Sei $f: [a,b] \to \mathbb{R}$ und $Z = \{x_0, \ldots, x_n\} \in \mathfrak{Z}$. $V_f(Z) := \sum_{j=1}^n |f(x_j) - f(x_{j-1})|$ ist die **Variation** von f bezüglich Z.

Beachte: Sind $Z_1, Z_2 \in \mathfrak{Z}$ und $Z_1 \subseteq Z_2 \Longrightarrow V_f(Z_1) \leq V_f(Z_2)$. $M_f = \{V_f(Z) : Z \in \mathfrak{Z}\}$. f heißt von **beschränkter Variation**, in Zeichen: $f \in \mathrm{BV}[a,b] : \iff M_f$ ist nach oben beschränkt. In diesem Fall heißt $V_f[a,b] := \sup M_f$ die **Totalvariation** von f (auf [a,b]).

Beispiel

$$f(x) := \begin{cases} x \cos \frac{\pi}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

 $f \in C[0,1]$. Sei $n \in \mathbb{N}$. $Z_n := \{0, \frac{1}{n}, \frac{1}{n-1}, \frac{1}{n-2}, \dots, \frac{1}{n-(n-1)}\}$. Nachrechnen: $V_f(Z_n) \to \infty$ $(n \to \infty)$. Also: $f \notin BV[0,1]$.

Hilfssatz

Sei $f:[a,b]\to\mathbb{R}$ differenzierbar auf [a,b] und f' sei auf [a,b] beschränkt. Dann ist f auf [a,b] Lipschitzstetig.

Beweis

 $L := \sup\{|f'(x)| : x \in [a, b]\}$. Sei $x, y \in [a, b]$, etwa $x \le y$. $|f(x) - f(y)| = |f'(\xi)(x - y)| = |f'(\xi)||x - y| \le L|x - y|, \xi \in [x, y]$.

Satz 25.1 (Varianzeigenschaften)

- (1) Ist $f \in BV[a, b] \implies f$ ist beschränkt auf [a, b].
- (2) Ist f auf [a, b] Lipschitzstetig $\implies f \in BV[a, b]$.
- (3) Ist f differenzierbar auf [a, b] und f' beschränkt auf $[a, b] \implies f \in BV[a, b]$
- (4) $C^1[a,b] \subseteq BV[a,b]$
- (5) Ist f monoton auf $[a, b] \implies f \in BV[a, b]$ und $V_f[a, b] = |f(b) f(a)|$
- (6) BV[a, b] ist ein reeller Vektorraum
- (7) Ist $c \in (a, b)$, so gilt: $f \in BV[a, b] \iff f \in BV[a, c]$ und $f \in BV[c, b]$. In diesem Fall: $V_f[a, b] = V_f[a, c] + V_f[c, b]$.

Beweis

(1) Sei $x \in [a,b]$ (beliebig, fest). $Z := \{a,x,b\}, \ V_f(Z) = |f(x)-f(a)| + |f(b)-f(x)| \le V_f[a,b] \Longrightarrow |f(x)| = |f(x)-f(a)| + |f(a)| \le |f(x)-f(a)| + |f(a)| \le V_f[a,b] + |f(a)|$

- (2) $\exists L \ge 0 : |f(x) f(y)| \le L|x y| \ \forall x, y \in [a, b]. \ \text{Sei} \ Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}. \ \sum_{j=1}^n |f(x_j) f(x_{j-1})| \le \sum_{j=1}^n L|x_j x_{j-1}| = L \sum_{j=1}^n (x_j x_{j-1}) = L(b-a)$
- (3) folgt aus (2) und dem Hilfssatz
- (4) folgt aus (3)
- (5) f sei wachsend auf [a, b]. Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}$. $V_f(Z) = \sum_{j=1}^n |f(x_j) f(x_{j-1})| = \sum_{j=1}^n f(x_j) f(x_{j-1}) = f(b) f(a) = |f(b) f(a)|$
- (6) Übung.
- (7) $I := [a, b], I_1 := [a, c], I_2 := [c, b].$
 - "⇒": Sei Z_1 eine Zerlegung von I_1 und Z_2 eine Zerlegung von I_2 . $Z := Z_1 \cup Z_2 \implies Z \in \mathfrak{Z}$ und $V_f(Z_1), V_f(Z_2) \leq V_f(Z_1) + V_f(Z_2) = V_f(Z) \leq V_f[a,b] \implies f \in \mathrm{BV}(I_1)$ und $f \in \mathrm{BV}(I_2)$ und $V_f(I_1) + V_f(I_2) \leq V_f[a,b]$
 - " \Leftarrow ": Sei $Z \in \mathfrak{Z}, \tilde{Z} := Z \cup \{c\}, Z_1 := \tilde{Z} \cap I_1, Z_2 := \tilde{Z} \cap I_2.$ Z_1 und Z_2 sind Zerlegungen von I_1 bzw. I_2 und $V_f(Z) \overset{s.o.}{\leq} V_f(\tilde{Z}) = V_f(Z_1) + V_f(Z_2) \overset{}{\leq} V_f(I_1) + V_f(I_2) \implies f \in \mathrm{BV}[I]$ und $V_f(I) \overset{}{\leq} V_f(I_1) + V_f(I_2)$.

Satz 25.2 (Eigenschaften Funktion von beschränkter Varianz)

- (1) $f \in BV[a,b] \iff \exists f_1, f_2 : [a,b] \to \mathbb{R}$ mit: f_1, f_2 sind wachsend auf [a,b] und $f = f_1 f_2$.
- (2) $BV[a, b] \subseteq R[a, b]$.
- (3) Ist $f \in C^1[a,b] \implies V_f[a,b] = \int_a^b |f'| dx$.

Beweis

- (3) später in allgemeiner Form (Analysis II, §12 od. §13)
- (2) folgt aus (1) und 23.4
- (1) "⇒": $V_f[a,a] := 0$, $f_1(x) := V_f([a,x])$ ($x \in [a,b]$), $f_2 := f_1 f$. Dann: $f = f_1 f_2$. Seien $c,d \in [a,b]$ und c < d. $f_1(d) = V_f[a,d] \stackrel{25.1(7)}{=} V_f[a,c] + V_f[c,d] = f_1(c) + \underbrace{V_f[c,d]}_{\geq 0} \geq f_1(c) \implies f_1 \text{ ist wachsend. } f(d) f(c) \leq |f(d) f(c)| = V_f(\tilde{Z}) \text{ (wobei } \tilde{Z} = \{c,d\})$ $\leq V_f[c,d] = f_1(d) f_1(c) \implies f_2(d) f_2(c) \geq 0 \implies f_2 \text{ ist wachsend.}$ " \Leftarrow ": 25.1(5), (6)

26. Das Riemann-Stieltjes-Integral

Stets in diesem Paragraphen: $f, g : [a, b] \to \mathbb{R}$ beschränkt. RS := Riemann-Stieltjes.

Definition

(1) Sei $(Z, \xi) \in \mathfrak{Z}^*$.

$$\sigma_f(Z, \xi, g) := \sum_{j=1}^n f(\xi_j)(g(x_j) - g(x_{j-1}))$$

heißt eine Riemann-Stieltjes-Summe.

(2) f heißt **Riemann-Stieltjes-integrierbar** bzgl. g über $[a,b]:\iff \exists S\in\mathbb{R}:\sigma_f(Z_n,\xi^{(n)},g)\to S \quad (n\to\infty)$ für jede Nullfolge $((Z_n,\xi^{(n)}))\in\mathfrak{Z}^*$.

In diesem Fall heißt $\int_a^b f dg := \int_a^b f(x) dg(x) := S$ das **Riemann-Stieltjes-Integral** von f bzgl. g und wir schreiben $f \in R_g[a,b]$. g heißt auch **Integrator(funktion)**.

Beispiele:

- (1) Ist g(x) = x, so ist $R_g[a, b] = R[a, b]$ und $\int_a^b f dg = \int_a^b f dx$.
- (2) Ist g auf [a, b] konstant $\implies f \in R_g[a, b]$ und $\int_a^b f dg = 0$.
- (3) Sei $\tau \in (a, b)$.

$$g(x) = \begin{cases} 0, & x \in [a, \tau) \\ 1, & x \in [\tau, b] \end{cases}$$

Sei $(Z,\xi) \in \mathfrak{Z}^*$, $Z = \{x_0,\ldots,x_n\}$, $\xi = (\xi_1,\ldots,\xi_n)$. Es existiert genau ein j_0 mit $\tau \in (x_{j_0-1},x_{j_0}]$.

$$\sigma_f(Z,\xi,g) = \sum_{j=1}^n f(\xi_j)(g(x_j) - g(x_{j-1})) = f(\xi_{j_0})(g(x_{j_0}) - g(x_{j_0-1})) = f(\xi_{j_0}).$$

Ist f stetig in $\tau \implies f \in R_g[a,b]$ und $\int_a^b f dg = f(\tau)$.

Satz 26.1

(1) $R_g[a,b]$ ist ein reeller Vektorraum und die Abbildung

$$f \mapsto \int_a^b f dg$$

ist linear.

(2) Sei $h:[a,b]\to\mathbb{R}$ eine weitere beschränkte Funktion, $\alpha,\beta\in\mathbb{R},\ f\in R_g[a,b]$ und $f\in R_h[a,b]$. Dann gilt: $f\in R_{\alpha g+\beta h}[a,b]$ und $\int_a^b fd(\alpha g+\beta h)=\alpha\int_a^b fdg+\beta\int_a^b fdh$.

(3) Sei $c \in (a, b)$ und $f \in R_g[a, b] \implies f \in R_g[a, c], f \in R_g[c, b]$ und $\int_a^b f dg = \int_a^c f dg + \int_c^b f dg$.

Beweis

Übung. ■

Bemerkung zu 26.1(3): Ist $f \in R_g[a, c]$ und $f \in R_g[c, b]$, so gilt i.A. <u>nicht</u>: $f \in R_g[a, b]$ (Beispiel: Übungen).

Satz 26.2 (Partielle Integration)

Ist $f \in R_g[a,b] \implies g \in R_f[a,b]$ und

$$\int_{a}^{b} f dg = f(x)g(x)|_{a}^{b} - \int_{a}^{b} g df.$$

Beweis

Sei $(Z,\xi) \in \mathfrak{Z}^*$, $Z = \{x_0,\ldots,x_n\}$, $\xi = (\xi_1,\ldots,\xi_n)$, $\xi_0 := a$, $\xi_{n+1} := b$.

Nachrechnen:
$$\sigma_g(Z, \xi, f) = \underbrace{f(x)g(x)|_a^b}_{=:c} - \underbrace{\sum_{j=0}^n f(x_j)(g(\xi_{j+1}) - g(\xi_j))}_{-:A}$$

Die verschiedenen unter den Punkten ξ_0, \ldots, ξ_{n+1} definieren eine Zerlegung $\tilde{Z} \in \mathfrak{Z}$ mit $|\tilde{Z}| \leq 2|Z|$. Dann ist A eine RS-Summe $\sigma_f(\tilde{Z}, \eta, g)$, wobei η geeignet zu wählen ist.

Also: $\sigma_g(Z, \xi, f) = c - \sigma_f(\tilde{Z}, \eta, g)$.

Sei $((Z_n, \xi^{(n)})) \in \mathfrak{Z}^*$ eine Nullfolge. Zu jeden $(Z_n, \xi^{(n)})$ konstruiere $(\tilde{Z}_n, \eta^{(n)})$ wie oben. Dann ist $((\tilde{Z}_n, \eta^{(n)}))$ eine Nullfolge in \mathfrak{Z}^* und $\sigma_g(Z_n, \xi^{(n)}, f) = c - \sigma_f(\tilde{Z}_n, \eta^{(n)}, g) \ \forall n \in \mathbb{N}$. Aus der Voraussetzung folgt: $\sigma_f(\tilde{Z}_n, \eta^{(n)}, g) \to \int_a^b f dg \implies \sigma_g(Z_n, \xi^{(n)}, f) \to c - \int_a^b f dg \quad (n \to \infty)$.

Beispiel

f(x) = x, $R[a,b] = R_f[a,b]$. Sei $g \in R[a,b] = R_f[a,b] \xrightarrow{26.2} f \in R_g[a,b]$ und $\int_a^b x dg = xg(x)|_a^b - \int_a^b g dx$.

Satz 26.3

Sei $f \in R[a,b]$, g sei differenzierbar auf [a,b] und $g' \in R[a,b]$. Dann: $f \in R_q[a,b]$ und

$$\int_{a}^{b} f dg = \int_{a}^{b} f g' \mathrm{d}x.$$

Beweis

Sei $(Z,\xi) \in \mathfrak{Z}^*$, $Z = \{x_0,\ldots,x_n\}$, $\xi = (\xi_1,\ldots,\xi_n)$. m_j,M_j,I_j seien wie immer und $\alpha > 0$ sei so, dass $|g'(x)| \leq \alpha \ \forall x \in [a,b]$.

Aus dem Mittelwertsatz folgt: $\forall j \in \{1, ..., n\} \ \exists \eta_j \in I_j : g(x_j) - g(x_{j-1}) = g'(\eta_j)|I_j|$. Dann gilt:

$$\sigma_f(Z, \xi, g) = \sum_{j=1}^n f(\xi_j)(g(x_j) - g(x_{j-1})) = \sum_{j=1}^n f(\xi_j)g'(\eta_j)|I_j|$$

$$= \sum_{j=1}^n (f(\xi_j) - f(\eta_j))g'(\eta_j)|I_j| + \sum_{j=1}^n f(\eta_j)g'(\eta_j)|I_j| .$$

$$= \sigma_{fg'}(Z, \eta), \quad \eta := (\eta_1, \dots, \eta_n)$$

Daraus folgt:

$$|\sigma_f(Z,\xi,g) - \sigma_{fg'}(Z,\eta)| \le \sum_{j=1}^n \underbrace{|f(\xi_j) - g'(\eta_j)|}_{\le M_j - m_j} \underbrace{|g'(\eta_j)|}_{\le \alpha} |I_j|$$

$$\le \alpha \sum_{j=1}^n (M_j - m_j)|I_j| = \alpha (S_f(Z) - s_f(Z)).$$

Sei $((Z_n, \xi^{(n)}))$ eine Nullfolge. Zu jedem $(Z_n, \xi^{(n)})$ konstruiere man $\eta^{(n)}$ wie oben. Dann gilt:

$$|\sigma_f(Z_n, \xi^{(n)}, g) - \underbrace{\sigma_{fg'}(Z_n, \eta^{(n)})}_{\to \int_a^b fg' dx}| \le \alpha \underbrace{\left(S_f(Z_n) - s_f(Z_n)\right)}_{\to 0}$$

$$\implies \sigma_f(Z_n, \xi^{(n)}, g) \to \int_a^b fg' dx.$$

Beispiel

$$\int_0^1 e^x d(e^{-x}) = \int_0^1 e^x (-e^{-x}) dx = \int_0^1 (-1) dx = -1.$$

Satz 26.4 (Abschätzen des RS-Integrals mit Hilfe der Totalvarianz)

Sei $g \in BV[a, b]$ und $f \in R_g$. Dann:

$$\left| \int_{a}^{b} f dg \right| \leq \gamma V_{g}[a, b], \text{ wobei } \gamma := \sup\{|f(x)| : x \in [a, b]\}$$

Beweis

Sei
$$(Z, \xi) \in \mathfrak{Z}^*, Z = \{x_0, \dots, x_n\}, \ \xi = (\xi_1, \dots, \xi_n).$$

$$|\sigma_f(Z,\xi,g)| = |\sum_{j=1}^n f(\xi_j)(g(x_j) - g(x_{j-1}))| \le \sum_{j=1}^n |f(\xi_j)||g(x_j) - g(x_{j-1})| \le \gamma V_g(Z) \le \gamma V_g[a,b] \blacksquare$$

Bezeichnungen

Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}$. m_j, M_j, I_j seien wie immer, $d_j := g(x_j) - g(x_{j-1})$ $(j = 1, \dots, n)$. $s(Z) = \sum_{j=1}^n m_j d_j$, $S(Z) = \sum_{j=1}^n M_j d_j$.

Hilfssatz 26.5

g sei wachsend ($\Longrightarrow d_i \geq 0$)

- (1) $s(Z_1) \leq S(Z_2) \ \forall Z_1, Z_2 \in \mathfrak{Z}$.
- (2) $\sup\{s(z): z \in \mathfrak{Z}\} \le S(Z) \ \forall z \in \mathfrak{Z}.$

- (1) Wie in 23.1
- (2) folgt aus (1)

Satz 26.6 (Weiteres Kritierium zur RS-Integrierbarkeit)

Ist $f \in C[a, b]$ und $g \in BV[a, b] \implies f \in R_a[a, b]$.

Beweis

Wegen 25.2 und 26.1(2) O.B.d.A: g wachsend. $c := g(b) - g(a) (\ge 0)$. O.B.d.A: c > 0.

1. Sei $(Z,\xi), Z = \{x_0,\ldots,x_n\}, \xi = (\xi_0,\ldots,\xi_n).m_j, M_j, I_j, d_j \text{ seien wie oben. } S := \sup\{s(z):$ $z \in \mathfrak{Z}$, also $S \leq S(Z)$. $\alpha := S(Z) - s(Z)$

Es gilt: $m_j \leq f(\xi_j) \leq M_j \stackrel{d_j \geq 0}{\Longrightarrow} m_j d_j \leq f(\xi_j) d_j \leq M_j d_j \Longrightarrow (*) s(z) \leq \sigma_f(Z, \xi, g) \leq S(Z).$ Dann: $-\alpha = s(z) - S(Z) \leq S - S(Z) \stackrel{(*)}{\leq} S - \sigma_f(Z, \xi, g) \leq S(Z) - \sigma_f(Z, \xi, g) \stackrel{(*)}{\leq} S(Z) - s(z) = S(Z) \stackrel{(*)}{\leq} S(Z) - \sigma_f(Z, \xi, g) \stackrel{(*)}{\leq} S(Z) - s(Z) = S(Z) \stackrel{(*)}{\leq} S(Z) - \sigma_f(Z, \xi, g) \stackrel{(*)}{\leq} S(Z) - s(Z) = S(Z) \stackrel{(*)}{\leq} S(Z) - \sigma_f(Z, \xi, g) \stackrel{(*)}{\leq} S(Z) - s(Z) = S(Z) \stackrel{(*)}{\leq} S(Z) - \sigma_f(Z, \xi, g) \stackrel{(*)}{\leq} S(Z) - s(Z) = S(Z) \stackrel{(*)}{\leq} S(Z) - \sigma_f(Z, \xi, g) \stackrel{(*)}{\leq} S(Z) - s(Z) s(Z) -$ $\alpha \implies |s - \sigma_f(Z, \xi, g)| \le \alpha = \sum_{j=1}^n (M_j - m_j) d_j.$ Sei $\varepsilon > 0$. f ist auf [a, b] gleichmäßig stetig $\implies \exists \delta > 0 : |f(t) - f(s)| < \frac{\varepsilon}{c} \ \forall t, s \in [a, b]$ mit

$$|t-s| < \delta$$
. Sei $|Z| < \delta \implies M_j - m_j < \frac{\varepsilon}{c} \implies |s - \delta_f(Z, \xi, g)| < \frac{\varepsilon}{c} \sum_{j=1}^n d_j = \varepsilon$.

2. Sei $((Z_n, \xi^{(n)}))$ eine Nullfolge in \mathfrak{Z}^* . Sei $\varepsilon > 0$. Dann existiert ein $\delta > 0$ wie in (1), $|Z_n| \to 0 \implies \exists n_0 \in \mathbb{N} : |Z_n| < \delta \ \forall n \ge n_0 \implies |s - \sigma_f(Z_n, \xi^{(n)}, g)| < \varepsilon \ \forall n \ge n_0.$ Also: $\sigma_f(Z_n, \xi^{(n)}, g) \to S \ (n \to \infty).$

A. Satz um Satz (hüpft der Has)

1.3.	Betragssätze	10
1.5.	Vollständigkeit von $\mathbb R$ bezüglich dem Infimum	11
1.6.	Existenz des Supremum	12
2.1.	Induktionsmengen	13
2.2.	Beweisverfahren durch vollständige Induktion	13
2.3.	Ganze Zahlen	14
4.1.	Eigenschaften von Binomialkoeffizienten	19
4.2.	Folgerung	19
4.3.	Bernoullische Ungleichung (BU)	19
4.4.	Der binomische Satz	20
5.2.	Wurzeln	21
5.3.	Eindeutigkeit von rationalen Potenzen	22
6.1.	Grenzwert und Beschränktheit konvergenter Folgen	23
6.2.	Konvergenzsätze	24
6.3.	Monotoniekriterium	26
7.1.	Konvergenzsatz für Wurzeln	27
7.4.	Satz über $\sqrt[n]{n}$	28
7.6.	Satz und Definition von e	28
8.1.	Sätze zu Teilfolgen	31
8.2.	Satz von Bolzano-Weierstraß	32
9.1.	Beschränktheit und Abgeschlossenheit der Häufungswerte	33
9.2.	Eigenschaften des Limes superior und inferior	34
9.3.	Äquivalenzaussagen zur Konvergenz	34
9.5.	Rechenregeln für den Limes superior und inferior	35
10.1.	Cauchy-Kriterium	37

A. Satz um Satz (hüpft der Has)

11.1. Cauchy- und Monotoniekriterium sowie Nullfolgeneigenschaft	10
11.2. Rechenregeln bei Reihen	10
11.3. Dreiecksungleichung für Reihen	11
12.1. Leibnizkriterium	13
12.2. Majoranten- und Minorantenkriterium	13
12.3. Wurzelkriterium	14
12.4. Quotientenkriterium	15
12.6. In konvergenten Folgen darf man Klammern setzen	16
13.1. Riemannscher Umordnungssatz	17
13.2. Alle Produktreihen sind Umordnungen voneinander	18
13.3. Absolute Konvergenz geht auf Produktreihen über	18
13.4. Cauchyprodukt absolut konvergierender Folgen konvergiert	19
13.5. $E(r) = e^r \ \forall r \in \mathbb{Q} \ \dots \ $	Į9
14.1. Konvergenz von Potenzreihen	53
14.2. Konvergenzradien von Cauchyprodukten	54
15.1. Konvergenz <i>g</i> -adischer Entwicklungen	55
15.2. Eindeutigkeit der <i>g</i> -adischen Entwicklung	55
15.3. Existenz der <i>g</i> -adischen Entwicklung	66
15.4. $\mathbb R$ ist überabzählbar	66
16.1. Grenzwertsätze bei Funktionen	60
16.2. Rechnen mit Funktionsgrenzwerten	60
16.3. Grenzwerte der Exponentialfunktion	61
17.1. Stetigkeitssätze	3
17.2. Stetigkeit der Potenzreihen	64
17.4. Stetigkeit von verketteten stetigen Funktionen	64
18.1. Zwischenwertsatz	35
18.2. Nullstellensatz von Bolzano	35
18.4. Eigenschaften von Bildmengen stetiger Funktionen	66
18.5. Bildintervalle und Umkehrbarkeit stetiger, montoner Funktionen	66

18.6. Der Logarithmus	7
19.1. Funktionskonvergenzkriterien	'n
19.2. Stetigkeit bei gleichmäßiger Konvergenz	'n
19.3. Identitätssatz für Potenzreihen	'1
20.1. Stetigkeitsstätze	'3
21.1. Differenzierbarkeit und Stetigkeit	5
21.2. Ableitungsregeln	5
21.3. Kettenregel	'6
21.4. Ableitung der Umkehrfunktion	'6
21.5. Erste Ableitung am relativen Extremum	7
21.6. Mittelwertsatz der Differenzialrechnung	8
21.8. Die Regeln von de l'Hospital	'Ç
21.9. Ableitung von Potenzreihen	sC
21.10Eigenschaften trigonometrischer Funktionen	;1
21.11Tangens	52
22.1. Differenzierbarkeit von Potenzreihen	3
22.2. Satz von Taylor	,4
22.3. Bestimmung von Extrema durch höhere Ableitungen	55
23.1. Zerlegungs-Verfeinerungen	;7
23.2. Rechenregeln für Integrale	38
23.3. Riemannsches Integrabilitätskriterium	Ç
23.4. Integratibilität monotoner und stetiger Funktionen	Ç
23.5. 1. Hauptsatz der Differential- und Integralrechnung	C
23.6. Integrierbarkeit gleichmäßig konvergierender Funktionsfolgen	1
23.7. Integration von verketteten Funktionen	12
23.8. Weitere Rechenregeln für Integrale	12
23.9. Aufteilung eines Integrals	13
23.10Integral und Unstetigkeitsstellen	13
23.11Mittelwertsatz der Integralrechnung)4

A. Satz um Satz (hüpft der Has)

23.12Äquivalenz der Riemannschen und Darbouxschen Integrale
23.132. Hauptsatz der Differential- und Integralrechnung
23.14Anwendung des 2. Hauptsatzes auf stetige Funktionen
23.15Partielle Integration
23.16Substitutionsregeln
23.17Integration von rationalen Funktionen
23.18 Folgen von Zerlegungen mit $ Z_n \to 0$
23.19Riemannsche Definition des Integrals mit Nullfolgen
23.20Gleichmäßige Konvergenz der Stammfunktion
25.1. Varianzeigenschaften
25.2. Eigenschaften Funktion von beschränkter Varianz
26.1.
26.2. Partielle Integration
26.3.
26.4. Abschätzen des RS-Integrals mit Hilfe der Totalvarianz
26.6 Weiteres Kritierium zur RS-Integrierbarkeit

Stichwortverzeichnis

g-adische Entwicklung, 55 g-adischer Bruch, 55 n-mal stetig differenzierbar, 83 (unendliche) Reihe, 39	Fakultät, 19 Feinheitsmaß, 99 Folge von Funktionen, 69 Folgen, 17
überabzählbar, 17	Funktionsreihe, 69
abgeschlossene Menge, 65 abgeschlossenes Intervall, 11 Ableitung, 75 absolut konvergent, 40, 104 abzählbar, 17 alternierende Harmonische Reihe, 41 Anordnungsaxiome, 10 aquidistante Zerlegung, 89 Arcustangens, 82 Associativgsentze, 0	Ganze Zahlen, 14 geometrische Reihe, 39 gleichmäßig (glm) konvergent, 69 gleichmaßig stetig, 73 Grenzwert, 23 Häufungspunkt, 59 Häufungswert, 31 halboffenes Intervall, 11 harmonische Reihe, 39
Assoziativgesetze, 9	Heine, Satz von, 73
beschränkt, 12 beschrankter Variation, 105 bestimmtes Integral, 96 Betrag, 10 Betragssätze, 10 bijektiv, 17 Binominalkoeffizienten, 19 Cauchyfolge, 37 Cauchykriterium, 104 bei Funktionsgrenzwerten, 60 Cauchyprodukt, 49	Induktionsmenge, 13 Infimum, 11 injektiv, 17 innerer Punkt, 77 Integral, 88 Integrator(funktion), 107 integrierbar, 88 Intervall, 11 Körperaxiome, 9 Kommutativgesetze, 9
Differenzierbarkeit, 75 Distributivgesetz, 9 divergent, 23, 39, 103 Dreiecksungleichung für Integrale, 92	konvergent, 23, 39, 103, 104 Konvergenzbereich, 53 Konvergenzradius, 53 Kosinus, 51
echt gebrochen rational, 98 endlich, 17 Entwicklungspunkt, 54 Exponentialfunktion, 46 Extremum relatives, 77	Limes, 23 Limes inferior, 33 Limes superior, 33 Lipschitz stetig, 73 Majorantenkriterium, 43, 104 Maximum, 11 relatives, 77 Minimum, 11
für fast alle, 23	Minimum, 11

Stichwort verzeichn is

relatives, 77	Teilsumme, 39
Minorantenkriterium, 43, 104	Total variation, 105
monoton, 26	
monoton fallend, 26	Umgebung, 23
monoton wachsend, 25	Umordnung, 47
	unbestimmtes Integral, 96
natürlichen Zahlen, 13	uneigentliche Integral, 103
Nullfolge, 24, 99	unendlich, 17
1 01 1 11	untere Schranke, 11
obere Schranke, 11	unterer Limes, 33
oberer Limes, 33	unteres Integral, 87
oberes Integral, 87	Untersumme, 87
Obersumme, 87	unzerlegbar, 98
offene Menge, 65	Variation, 105
offenes Intervall, 11	Verfeinerung, 87
Partialbruch, 98	verlemerung, 87 vollständige Induktion, 13
Potenz	Vollständigkeitsaxiom, 11
	vonstandigkensaxiom, 11
allgemeine, 68	Weierstraß, Kriterium von, 70
natürliche, 19	Wurzel, 21
rationale, 22	,
Potenzreihe, 53 Produktzeichen, 14	Zerlegung, 87
Produktzeichen, 14	Zwischenvektor, 94
rationale Funktion, 98	
Reellen Zahlen, 9	
Reihenglied, 39	
Reihensumme, 39	
Reihenwert, 39	
relatives	
Extremum, 77	
Maximum, 77	
Minimum, 77	
Riemann-Stieltjes-Integral, 107	
Riemann-Stieltjes-integrierbar, 107	
Riemann-Stieltjes-Summe, 107	
Riemannsche Zwischensumme, 94	
Riemannscher Umordnungssatz, 47	
Sinus, 51	
Stammfunktion, 89	
streng monoton, 26	
streng monoton fallend, 26	
streng monoton wachsend, 25	
Summenzeichen, 14	
Supremum, 11	
surjektiv, 17	
Taylorpolynom, 84	
Taylorreihe, 84	
Teilfolge, 31	

B. Credits für Analyis I

Abgetippt haben die folgenden Paragraphen:

- § 1: Reelle Zahlen: Joachim Breitner
- § 2: Natürliche Zahlen: Joachim Breitner
- § 3: Folgen, Abzählbarkeit: Joachim Breitner
- § 4: Wie Sie Wollen: Joachim Breitner, Pascal Maillard
- § 5: Wurzeln und rationale Exponenten: Jonathan Picht, Joachim Breitner
- § 6: Konvergente Folgen: Joachim Breitner, Pascal Maillard
- § 7: Wichtige Beispiele: Joachim Breitner
- § 8: Häufungswerte und Teilfolgen: Joachim Breitner, Manuel Holtgrewe
- § 9: Oberer und unterer Limes: Joachim Breitner
- § 10: Das Cauchy-Kriterium: Joachim Breitner, Pascal Maillard
- § 11: Unendliche Reihen: Pascal Maillard
- § 12: Konvergenzkriterien: Joachim Breitner
- § 13: Umordnungen und Produkte von Reihen: Pascal Maillard
- § 14: Potenzreihen: Wenzel Jakob
- § 15: g-adische Entwicklungen: Joachim Breitner
- § 16: Grenzwerte bei Funktionen: Joachim Breitner
- § 17: Stetigkeit: Joachim Breitner
- § 18: Eigenschaften stetiger Funktionen: Wenzel Jakob, Joachim Breitner
- § 19: Funktionsfolgen und -reihen: Joachim Breitner und Wenzel Jakob
- § 20: Gleichmäßige Stetigkeit: Wenzel Jakob
- § 21: Differenzierbarkeit: Joachim Breitner, Pascal Maillard und Wenzel Jakob
- § 22: Höhere Ableitungen: Joachim Breitner, Pascal Maillard
- § 23: Das Riemann-Integral: Pascal Maillard, Wenzel Jakob und Joachim Breitner
- § 24: Uneigentliche Integrale: Pascal Maillard
- § 25: Funktionen von beschränkter Variation: Wenzel Jakob
- § 26: Das Riemann-Stieltjes-Integral: Pascal Maillard und Wenzel Jakob