House Prices - Advanced Regression Techniques

Background & Objectives

Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. The dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

Objective: With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, the project predict the final price of each home.

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
from sklearn.preprocessing import LabelEncoder
from sklearn.linear model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.kernel ridge import KernelRidge
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.model selection import KFold, cross val score, train test split
from sklearn.metrics import mean squared error
import xgboost as xgb
import lightgbm as lgb
```

Data Import & Description

```
In [2]:

train_csv = pd.read_csv('train.csv')
test_csv = pd.read_csv('test.csv')

In [3]:

train_csv['dataset']='1'
test_csv['dataset']='0'
hp_csv=pd.concat([train_csv,test_csv],axis=0)
```

```
In [ ]:
train_csv.
```

In [4]:

```
train_csv.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 82 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
	~	1 4 6 0 7 7 7	

In [5]:

```
test_csv.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1459 non-null	int64
1	MSSubClass	1459 non-null	int64
2	MSZoning	1455 non-null	object
3	LotFrontage	1232 non-null	float64
4	LotArea	1459 non-null	int64
5	Street	1459 non-null	object
6	Alley	107 non-null	object
7	LotShape	1459 non-null	object
8	LandContour	1459 non-null	object
9	Utilities	1457 non-null	object
10	LotConfig	1459 non-null	object
11	LandSlope	1459 non-null	object
12	Neighborhood	1459 non-null	object
13	Condition1	1459 non-null	object
14	Condition2	1459 non-null	object
15	BldgType	1459 non-null	object
16	HouseStyle	1459 non-null	object
17	OverallQual	1459 non-null	int64
18	OverallCond	1459 non-null	int64
19	YearBuilt	1459 non-null	int64
20	YearRemodAdd	1459 non-null	int64
21	RoofStyle	1459 non-null	object
22	RoofMatl	1459 non-null	object
23	Exterior1st	1458 non-null	object
24	Exterior2nd	1458 non-null	object
25	MasVnrType	1443 non-null	object
26	MasVnrArea	1444 non-null	float64
27	ExterQual	1459 non-null	object
28	ExterCond	1459 non-null	object
29	Foundation	1459 non-null	object
30	BsmtQual	1415 non-null	object
31	BsmtCond	1414 non-null	object
32	BsmtExposure	1415 non-null	object
33	BsmtFinType1	1417 non-null	object
34	BsmtFinSF1	1458 non-null	float64
35	BsmtFinType2	1417 non-null	object
36	BsmtFinSF2	1458 non-null	float64
37	BsmtUnfSF	1458 non-null	float64
38	TotalBsmtSF	1458 non-null	float64
39	Heating	1459 non-null	object
40	HeatingQC	1459 non-null	object
41	CentralAir	1459 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1459 non-null	int64
44	2ndFlrSF	1459 non-null	int64
45	LowQualFinSF	1459 non-null	int64
46	GrLivArea	1459 non-null	int64
47	BsmtFullBath	1457 non-null	float64
48	BsmtHalfBath	1457 non-null	float64
49	FullBath	1459 non-null	int64
50	HalfBath	1459 non-null	int64
51	BedroomAbvGr	1459 non-null	int64

```
52
     KitchenAbvGr
                     1459 non-null
                                      int64
 53
     KitchenQual
                     1458 non-null
                                      object
 54
     TotRmsAbvGrd
                     1459 non-null
                                      int64
 55
     Functional
                     1457 non-null
                                      object
 56
     Fireplaces
                     1459 non-null
                                      int64
 57
     FireplaceQu
                     729 non-null
                                      object
 58
     GarageType
                     1383 non-null
                                      object
 59
     GarageYrBlt
                     1381 non-null
                                      float64
     GarageFinish
                     1381 non-null
                                      object
 60
 61
     GarageCars
                     1458 non-null
                                      float64
                                      float64
 62
     GarageArea
                     1458 non-null
 63
                     1381 non-null
                                      object
     GarageQual
 64
     GarageCond
                     1381 non-null
                                      object
 65
     PavedDrive
                     1459 non-null
                                      object
 66
     WoodDeckSF
                     1459 non-null
                                      int64
                     1459 non-null
                                      int64
 67
     OpenPorchSF
                     1459 non-null
                                      int64
 68
     EnclosedPorch
 69
     3SsnPorch
                     1459 non-null
                                      int64
 70
     ScreenPorch
                     1459 non-null
                                      int64
 71
     PoolArea
                     1459 non-null
                                      int64
 72
     PoolOC
                     3 non-null
                                      object
 73
     Fence
                     290 non-null
                                      object
 74
     MiscFeature
                                      object
                     51 non-null
 75
     MiscVal
                     1459 non-null
                                      int64
 76
                     1459 non-null
                                      int64
     MoSold
 77
     YrSold
                     1459 non-null
                                      int64
                     1458 non-null
                                      object
 78
     SaleType
 79
     SaleCondition 1459 non-null
                                      object
 80
     dataset
                     1459 non-null
                                      object
dtypes: float64(11), int64(26), object(44)
```

memory usage: 923.4+ KB

In [6]:

hp csv.head()

Out[6]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Ut
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	Α
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	Δ
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	Δ
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	Α
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	Δ

5 rows × 82 columns

In [7]:

```
y=hp_csv['SalePrice'][hp_csv['dataset']=='1']
y.describe()
```

Out[7]:

count	1460.000000
mean	180921.195890
std	79442.502883
min	34900.000000
25%	129975.000000
50%	163000.000000
75%	214000.000000
max	755000.000000
	G - 1 - D - ' 11

Name: SalePrice, dtype: float64

In [8]:

```
sns.distplot(y)
```

Out[8]:

<AxesSubplot:xlabel='SalePrice', ylabel='Density'>

Data processing

missing data

In [9]:

```
total=hp_csv.isnull().sum().sort_values(ascending=False)
percent=(hp_csv.isnull().sum()/hp_csv.isnull().count()).sort_values(ascending=True)
missingdata=pd.concat([total,percent],axis=1,keys=['total','percent'])
missingdata=missingdata[missingdata['total']>0]
```

In [10]:

```
print(missingdata)
```

```
total
                      percent
PoolOC
               2909
                     0.996574
MiscFeature
               2814
                     0.964029
               2721
                     0.932169
Alley
               2348
                     0.804385
Fence
SalePrice
               1459
                     0.499829
FireplaceQu
               1420 0.486468
LotFrontage
                486
                     0.166495
GarageYrBlt
                159
                     0.054471
                159 0.054471
GarageQual
GarageFinish
                159 0.054471
GarageCond
                159
                     0.054471
                157
                     0.053786
GarageType
BsmtCond
                 82
                     0.028092
                 82
                     0.028092
BsmtExposure
BsmtQual
                 81
                     0.027749
                 80 0.027407
BsmtFinType2
BsmtFinType1
                 79 0.027064
                 24
                     0.008222
MasVnrType
```

In [11]:

```
missd_name=list(missingdata.index)
object_list=[]
non_object_list=[]
for i in missd_name:
    if hp_csv[i].dtype==object:
        object_list.append(i)
    else:
        non_object_list.append(i)
print("object_list:",object_list)
print("non_object_list:",non_object_list)
```

```
object_list: ['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQ u', 'GarageQual', 'GarageFinish', 'GarageCond', 'GarageType', 'BsmtCon d', 'BsmtExposure', 'BsmtQual', 'BsmtFinType2', 'BsmtFinType1', 'MasVn rType', 'MsZoning', 'Functional', 'Utilities', 'Electrical', 'Exterior 2nd', 'Exterior1st', 'SaleType', 'KitchenQual'] non_object_list: ['SalePrice', 'LotFrontage', 'GarageYrBlt', 'MasVnrAr ea', 'BsmtFullBath', 'BsmtHalfBath', 'BsmtFinSF1', 'GarageCars', 'Gara geArea', 'TotalBsmtSF', 'BsmtUnfSF', 'BsmtFinSF2']
```

In [12]:

```
for i in object_list:
    hp_csv[i].fillna('None',inplace=True)
```

In [13]:

```
for i in non_object_list[2:]:
    hp_csv[i].fillna(0,inplace=True)
```

For those over 40% missing values, it means that it can be deleted. Therefore, 'PoolQC', 'MiscFeature', 'Alley', 'Fence', and 'FireplaceQu' should be deleted.

```
In [14]:
hp_new=hp_csv.drop(['PoolQC','MiscFeature','Alley','Fence','FireplaceQu'],axis=1)
In [15]:
hp_csv['LotFrontage']=hp_csv.groupby(['Neighborhood']).transform(lambda x: x.fillna())
In [16]:
hp_csv['LotFrontage']=hp_csv['LotFrontage'].astype(int)
```

Variable processing and encoding

```
In [17]:
```

```
full_name=list(hp_csv.columns)
object_full_list=[]
nonobject_full_list=[]
for i in full_name:
    if hp_csv[i].dtype==object:
        object_full_list.append(i)
    else:
        nonobject_full_list.append(i)
print("object_list:",object_full_list)
print("nonobject_list:",nonobject_full_list)
```

```
object_list: ['MSZoning', 'Street', 'Alley', 'LotShape', 'LandContou
r', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition
1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl',
'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond',
'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinTypel',
'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'K
itchenQual', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinis
h', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'Misc
Feature', 'SaleType', 'SaleCondition', 'dataset']
nonobject_list: ['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'Overal
lQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'Bsm
tFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFl
rSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'Fu
llBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd',
'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF',
'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolAre
a', 'MiscVal', 'MoSold', 'YrSold', 'SalePrice']
```

In [18]:

```
for i in object_full_list+non_object_list:
    lbl=LabelEncoder()
    lbl.fit(list(hp_csv[i].values))
    hp_csv[i]=lbl.transform(list(hp_csv[i].values))
```

In [19]:

hp_csv.head()

Out[19]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Ut
0	1	60	4	0	8450	1	1	3	3	
1	2	20	4	1	9600	1	1	3	3	
2	3	60	4	2	11250	1	1	0	3	
3	4	70	4	3	9550	1	1	0	3	
4	5	60	4	4	14260	1	1	0	3	

5 rows × 82 columns

In [20]:

```
from sklearn.preprocessing import MinMaxScaler
hp_new2=hp_csv.drop(['Id','SalePrice'],axis=1)
col_name=list(hp_new2.columns)
scaler=MinMaxScaler().fit(hp_new2[col_name])
hp_new2[col_name]=scaler.transform(hp_new2[col_name])
hp_new2
```

Out[20]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Uŧ
0	0.235294	0.8	0.000000	0.033420	1.0	0.5	1.0	1.0	
1	0.000000	0.8	0.000343	0.038795	1.0	0.5	1.0	1.0	
2	0.235294	0.8	0.000685	0.046507	1.0	0.5	0.0	1.0	
3	0.294118	0.8	0.001028	0.038561	1.0	0.5	0.0	1.0	
4	0.235294	0.8	0.001371	0.060576	1.0	0.5	0.0	1.0	
			•••						
1454	0.823529	1.0	0.998629	0.002973	1.0	0.5	1.0	1.0	
1455	0.823529	1.0	0.998972	0.002776	1.0	0.5	1.0	1.0	
1456	0.000000	0.8	0.999315	0.087406	1.0	0.5	1.0	1.0	
1457	0.382353	0.8	0.999657	0.042726	1.0	0.5	1.0	1.0	
1458	0.235294	0.8	1.000000	0.038921	1.0	0.5	1.0	1.0	

2919 rows × 80 columns

In [21]:

```
full_col=list(hp_new2.columns)
train_cc=hp_new2[full_col]
skew_cc=train_cc.skew(axis=0)
skew=skew_cc[abs(skew_cc)>0.75]
skew=skew.to_frame(name='skewness')
print(skew)
print(skew.index)
```

```
skewness
MSSubClass
                1.376165
MSZoning
               -2.575195
               12.829025
LotArea
Street
              -15.508104
LandContour
               -3.118295
Utilities
               33.990952
LotConfig
               -1.196901
                4.977715
LandSlope
Condition1
                2.984648
Condition2
               12.066294
BldqType
                2.193388
RoofStyle
                1.554106
RoofMatl
                8.712245
MasVnrArea
                1.557110
ExterOual
               -1.802335
ExterCond
               -2.499003
BsmtCond
               -2.864057
BsmtExposure
               -1.115430
               -3.045893
BsmtFinType2
BsmtFinSF2
                3.478350
Heating
               12.084999
CentralAir
               -3.460801
               -3.049382
Electrical
                1.470360
1stFlrSF
2ndFlrSF
                0.862118
LowQualFinSF
               12.094977
GrLivArea
                1.270010
BsmtHalfBath
                3.933616
KitchenAbvGr
                4.304467
                0.758757
TotRmsAbvGrd
Functional
               -3.820689
               -3.075732
GarageQual
GarageCond
               -3.597639
PavedDrive
               -2.980616
                1.843380
WoodDeckSF
                2.536417
OpenPorchSF
EnclosedPorch
                4.005950
3SsnPorch
               11.381914
ScreenPorch
                3.948723
PoolArea
               16.907017
              -20.734650
PoolQC
               -1.994802
Fence
                5.066925
MiscFeature
MiscVal
               21.958480
               -3.325081
SaleType
SaleCondition -2.789472
Index(['MSSubClass', 'MSZoning', 'LotArea', 'Street', 'LandContour',
       'Utilities', 'LotConfig', 'LandSlope', 'Condition1', 'Condition
2',
       'BldgType', 'RoofStyle', 'RoofMatl', 'MasVnrArea', 'ExterQual',
```

In [22]:

```
for i in list(skew.index):
    hp_csv[i]=np.log1p(hp_csv[i])
```

In [23]:

```
full_col=list(hp_csv.columns)
train_cc=hp_csv[full_col]
skew_cc=train_cc.skew(axis=0)
skew=skew_cc[abs(skew_cc)>0.75]
skew=skew.to_frame(name='skewness')
print(skew)
print(skew.index)
```

	skewness
MSZoning	-3.749173
Street	-15.508104
LandContour	-3.528663
Utilities	32.722387
LotConfig	-1.353095
LandSlope	4.486542
Condition1	-0.959142
Condition2	-4.781968
BldgType	1.971066
RoofStyle	1.294681
RoofMatl	8.254887
ExterQual	-3.049371
ExterCond	-3.182679
BsmtCond	-3.320867
BsmtExposure	-1.457024
BsmtFinType2	-3.951148
BsmtFinSF2	2.515870
Heating	9.592262
~	~ 460001

In [24]:

```
hp_new2.describe()
```

Out[24]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotSh
count	2919.000000	2919.000000	2919.000000	2919.000000	2919.000000	2919.000000	2919.000
mean	0.218457	0.793765	0.500000	0.041450	0.995889	0.492806	0.649
std	0.250104	0.171681	0.288824	0.036865	0.063996	0.130046	0.469
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
25%	0.000000	0.800000	0.250000	0.028877	1.000000	0.500000	0.000
50%	0.176471	0.800000	0.500000	0.038108	1.000000	0.500000	1.000
75%	0.294118	0.800000	0.750000	0.048003	1.000000	0.500000	1.000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000

8 rows × 80 columns

In [89]:

```
train_new=hp_new2[hp_new2['dataset']==1]
test_new=hp_new2[hp_new2['dataset']==0]
```

feature selection and deduction

K-means

```
In [27]:
train_real=train_new.drop(['dataset'],axis=1)
```

```
In [90]:
```

```
test_real = test_new.drop(['dataset'],axis=1)
```

In [30]:

```
from sklearn.cluster import KMeans
inertia=[]
list_num_clusters = list(range(1,11))
for num_clusters in list_num_clusters:
    km=KMeans(n_clusters=num_clusters)
    km.fit(train_real)
    inertia.append(km.inertia_)
```

In [31]:

```
plt.plot(list_num_clusters,inertia)
plt.scatter(list_num_clusters,inertia)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```


In [32]:

```
km2=KMeans(n_clusters=3).fit(train_real)
train_real['group']=km2.labels_
```

In [33]:

```
train_new2=pd.concat([train_new,train_real['group']],axis=1)
```

In [34]:

```
train_new2.head()
```

Out[34]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilitie
0	0.235294	0.8	0.000000	0.033420	1.0	0.5	1.0	1.0	0
1	0.000000	0.8	0.000343	0.038795	1.0	0.5	1.0	1.0	0
2	0.235294	0.8	0.000685	0.046507	1.0	0.5	0.0	1.0	0
3	0.294118	0.8	0.001028	0.038561	1.0	0.5	0.0	1.0	0
4	0.235294	0.8	0.001371	0.060576	1.0	0.5	0.0	1.0	0

5 rows × 81 columns

In [43]:

```
from pandas import DataFrame
y_sale=DataFrame({'SalePrice':y})
```

In [44]:

y_sale

Out[44]:

	rice	

- **o** 208500.0
- **1** 181500.0
- 2 223500.0
- **3** 140000.0
- 4 250000.0
-
- **1455** 175000.0
- **1456** 210000.0
- **1457** 266500.0
- **1458** 142125.0
- **1459** 147500.0

1460 rows × 1 columns

In [46]:

```
train new3=pd.concat([train new2,y sale],axis=1)
print(train_new3.head())
   MSSubClass
                 MSZoning
                            LotFrontage
                                             LotArea
                                                       Street
                                                                Alley
                                                                        LotShap
е
0
     0.235294
                       0.8
                                0.00000
                                            0.033420
                                                           1.0
                                                                   0.5
                                                                              1.
0
     0.00000
                       0.8
                                0.000343
                                                           1.0
1
                                            0.038795
                                                                   0.5
                                                                              1.
0
2
     0.235294
                       0.8
                                0.000685
                                            0.046507
                                                                   0.5
                                                                              0.
                                                           1.0
0
     0.294118
                                0.001028
3
                       0.8
                                           0.038561
                                                           1.0
                                                                   0.5
                                                                              0.
0
     0.235294
                       0.8
                                0.001371
                                           0.060576
                                                                   0.5
                                                                              0.
4
                                                           1.0
0
                                                                        MiscVal
   LandContour
                               LotConfig
                                                         MiscFeature
                  Utilities
                                                 Fence
\
                         0.0
                                                                  0.25
                                                                             0.0
0
            1.0
                                      1.0
                                                    1.0
                                            . . .
1
            1.0
                         0.0
                                      0.5
                                            . . .
                                                    1.0
                                                                  0.25
                                                                             0.0
            1.0
2
                         0.0
                                      1.0
                                                    1.0
                                                                  0.25
                                                                             0.0
3
                         0.0
                                      0.0
                                                                             0.0
            1.0
                                                    1.0
                                                                  0.25
                                            . . .
                         0.0
                                                                             0.0
4
            1.0
                                      0.5
                                                    1.0
                                                                  0.25
                                   SaleCondition dataset
                                                                       SalePric
              YrSold
                        SaleType
                                                               group
е
   0.090909
                 0.50
                              1.0
0
                                               0.8
                                                          1.0
                                                                    1
                                                                         208500.
0
1
   0.363636
                 0.25
                              1.0
                                               0.8
                                                          1.0
                                                                    0
                                                                         181500.
```

[5 rows x 82 columns]

0.727273

0.090909

1.000000

In [47]:

0

0

0

4

0

```
group_data=train_new3.groupby(['group']).mean()
group_data['SalePrice']
```

0.8

0.0

0.8

1.0

1.0

1.0

1

0

1

223500.

140000.

250000.

Out[47]:

```
group
0 152732.001890
1 240521.496610
2 121530.891496
Name: SalePrice, dtype: float64
```

0.50

0.00

0.50

1.0

1.0

1.0

Difference in sales is obivous so it may be a good clustering However, too much dimensions ends in 3 clusters might lose a lot of information. The target is to predict the housing price so the K-means method is not applicable for predicting housing prices. Next Steps: (1) Used PCA to decrease the dimensions (2) Used models(Regression, Bagging and boosting methods) to predict the housing prices

PCA

```
In [48]:
train_real2=train_real.drop('group',axis=1)

In [49]:
train_real2.shape

Out[49]:
(1460, 79)

In [91]:
test_real.shape

Out[91]:
(1459, 79)
```

In [51]:

```
from sklearn.decomposition import PCA
pca list=list()
feature weight list=list()
for n in range(1,40):
    PCAmod=PCA(n components=n)
    PCAmod.fit(train real2)
    pca_list.append(pd.Series({'n':n,'model':PCAmod,
                                'var':PCAmod.explained_variance_ratio_.sum()}))
    abs_feature_values=np.abs(PCAmod.components_).sum(axis=0)
    feature weight list.append(pd.DataFrame({
                                 'n':n,
                                 'features':train real2.columns,
                                 'values':abs_feature_values/abs_feature_values.sum()
}))
pca df=pd.concat(pca list,axis=1).T.set index('n')
pca df
```

Out[51]:

	model	var
n		
1	PCA(n_components=1)	0.176047
2	PCA(n_components=2)	0.253102
3	PCA(n_components=3)	0.315185
4	PCA(n_components=4)	0.36202
5	PCA(n_components=5)	0.402422
6	PCA(n_components=6)	0.440148
7	PCA(n_components=7)	0.475287
8	PCA(n_components=8)	0.507335
9	PCA(n_components=9)	0.538172
10	PCA(n_components=10)	0.566593
11	PCA(n_components=11)	0.592579
12	PCA(n_components=12)	0.614398
13	PCA(n_components=13)	0.634967
14	PCA(n_components=14)	0.654127
15	PCA(n_components=15)	0.672641
16	PCA(n_components=16)	0.68879
17	PCA(n_components=17)	0.705023
18	PCA(n_components=18)	0.720251
19	PCA(n_components=19)	0.735925
20	PCA(n_components=20)	0.751022
21	PCA(n_components=21)	0.765266
22	PCA(n_components=22)	0.77862
23	PCA(n_components=23)	0.791751

n		
24	PCA(n_components=24)	0.804461
25	PCA(n_components=25)	0.816113
26	PCA(n_components=26)	0.827413
27	PCA(n_components=27)	0.838586
28	PCA(n_components=28)	0.849058
29	PCA(n_components=29)	0.858548
30	PCA(n_components=30)	0.867633
31	PCA(n_components=31)	0.876647
32	PCA(n_components=32)	0.884759
33	PCA(n_components=33)	0.892515
34	PCA(n_components=34)	0.89962
35	PCA(n_components=35)	0.906323
36	PCA(n_components=36)	0.912802
37	PCA(n_components=37)	0.918935
38	PCA(n_components=38)	0.924703
39	PCA(n_components=39)	0.930199

model

var

In [52]:

79 dimensions could be deducted to 35 dimensions, with variances more than 90.6%

In [53]:

```
pca=PCA(n_components=35)
X_scaled=pca.fit_transform(train_real2)
print(X_scaled)
print(X_scaled.shape)
[[ 0.62139404 -0.09039312 -0.56881117 ... -0.04505445 0.08500836]
```

```
[ ] 0.62139404 - 0.09039312 - 0.56881117 \dots -0.04505445 0.08500836 ]
  -0.130484691
 [ 0.14268384 \ 0.57654452 \ -0.32490471 \ \dots \ 0.06578555 \ -0.05847321 
  -0.14479061
 [ 0.87281173  0.12776005  0.21598469  ... -0.0675353
                                                                0.00393354
  -0.02567861
 [ 0.0727726  -0.30419109  -0.31129305  ...  0.10830725
                                                               0.38508199
   0.021750341
 [-0.61378183 \quad 0.22254815 \quad -0.40579911 \quad \dots \quad -0.00675809
                                                               0.10073956
   0.262858671
 [-0.24102832 \quad 0.61016369 \quad -0.51363074 \quad \dots \quad -0.00328618 \quad 0.12384418
   0.13034319]]
(1460, 35)
```

In [92]:

```
pca=PCA(n_components=35)
Test_scaled=pca.fit_transform(test_real)
print(Test_scaled.shape)
```

(1459, 35)

Modelling

We choose several models and use 5-folds cross-calidation to evaluate these models. Models include:

LinearRegression Ridge Lasso Random Forrest Gradient Boosting Tree Support Vector Regression Linear Support Vector Regression ExtraTreesRegressor XgBoost Adaboost GBDT

In [55]:

```
from sklearn.model_selection import cross_val_score, GridSearchCV, KFold
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, Extra
from sklearn.svm import SVR, LinearSVR
from sklearn.linear_model import ElasticNet, SGDRegressor, BayesianRidge
from sklearn.kernel_ridge import KernelRidge
from xgboost import XGBRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingRegressor
```

In [62]:

```
y1=np.log1p(y)
```

In [58]:

```
X_scaled=pd.DataFrame(X_scaled)
```

In [59]:

```
X_scaled.info()
```

```
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 35 columns):
 #
     Column Non-Null Count Dtype
 0
     0
              1460 non-null
                               float64
 1
     1
              1460 non-null
                               float64
 2
     2
              1460 non-null
                               float64
 3
     3
              1460 non-null
                               float64
 4
                               float64
     4
              1460 non-null
 5
     5
              1460 non-null
                               float64
 6
              1460 non-null
                               float64
     6
 7
     7
              1460 non-null
                               float64
 8
              1460 non-null
     8
                               float64
 9
     9
              1460 non-null
                               float.64
 10
     10
              1460 non-null
                               float64
              1460 non-null
                               float64
 11
     11
 12
     12
              1460 non-null
                               float64
     13
              1460 non-null
 13
                               float.64
```

<class 'pandas.core.frame.DataFrame'>

In [60]:

```
models = {}
models['LR'] = LinearRegression()
models['Ridge'] = Ridge()
models['Lasso'] = Lasso(alpha=0.01, max_iter=10000)
models['RF'] = RandomForestRegressor()
models['SVR'] = SVR()
models['LR'] = LinearSVR()
models['Ela'] = ElasticNet(alpha=0.001, max_iter=10000)
models['SGD'] = SGDRegressor(max_iter=1000, tol=1e-3)
models['Bay'] = BayesianRidge()
models['KR'] = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5)
models['Extra'] = ExtraTreesRegressor()
models['XGB'] = XGBRegressor()
models['Ada'] = AdaBoostRegressor()
models['GBDT'] = GradientBoostingRegressor()
```

```
In [63]:
```

```
LR model scoring 0.1535, std 0.006914052523403825
Ridge model scoring 0.153, std 0.007007363047927657
Lasso model scoring 0.1956, std 0.008428107648325018
RF model scoring 0.1791, std 0.00619778429454758
SVR model scoring 0.1592, std 0.004861613521901746
Ela model scoring 0.1531, std 0.006963691626275504
SGD model scoring 0.1641, std 0.007061279691485609
Bay model scoring 0.153, std 0.006999910729121719
KR model scoring 0.1508, std 0.006837252265078653
Extra model scoring 0.1731, std 0.006562451583580815
XGB model scoring 0.1674, std 0.006237492230090017
Ada model scoring 0.2084, std 0.0066340950257160036
GBDT model scoring 0.1699, std 0.006902300916498008
```

Narrow down to better perfermance models: Adaboost RF, Extra Lasso

Next we do some hyperparameters tuning. First define a gridsearch method.

Lasso

In [73]:

```
Lasso best_estimatoris {'alpha': 0.0002, 'max_iter': 10000, 'normaliz e': False}, scoring 0.1529
```

Bagging Models

```
In [74]:
```

```
In [75]:
```

```
RandomForest model best_estimatoris {'n_estimators': 100},scoring 0.17 73

ExtraTree model best estimatoris {'n estimators': 500},scoring 0.1731
```

Boosting models

In [78]:

Adaboost model best_estimatoris {'learning_rate': 1, 'n_estimators': 1 00},scoring 0.2034

In [93]:

```
ad = AdaBoostRegressor(n_estimators = 100, learning_rate = 1)
ad .fit(X_scaled,y1)
y_predit= ad.predict(Test_scaled)
```

In [95]:

```
In [97]:
y_sale.shape
Out[97]:
(1459,)
In [98]:
test_csv.shape
Out[98]:
(1459, 81)
```

Submission

```
In [99]:
```

```
submission=pd.DataFrame({
    'ID':test_csv['Id'],
    'SalePrice':y_sale
})
submission.to_csv('submission.csv',index=False)
```

```
In [100]:
```

```
ls= Lasso(alpha=0.01,max_iter=10000)
ls. fit (X_scaled,y1)
y_lasso= ls.predict(Test_scaled)
y_lasso=np.expm1(y_lasso)
submission=pd.DataFrame({
    'ID':test_csv['Id'],
    'SalePrice':y_lasso
})
submission.to_csv('submission2.csv',index=False)
```

```
In [103]:
```

```
submission=pd.DataFrame({
    'ID':test_csv['Id'],
    'SalePrice':(y_sale+y_lasso*2)/3
})
submission.to_csv('submission3.csv',index=False)
```

Flaws and Next step

Conclusion: After cleaning the data, encoding and model fitting, the project had a 20% root mean squared error.

Flaws: (1) After The PCA deductions, the data retain 35 dimensions, which are still to much. (2) I did not use the features importance selections to choose from original variables. (3) I did not use the stack modelling to combine different models, which means the model might be overfitting.

Next step: (1) Use features importance methods to select models. (2) Explore other ways to deduct the dimensions (3) Use stack models to combine all models