This review material provides you with a list of important theories and concepts we've learned from lectures before the first midterm. You can take it as a "table of content" to guide you to specific pages in lecture slides or section notes.

1 Simple Linear Regression

1.1 Introduction

- Correlation Versus Causation
 - Lecture Slides: Handout1 (pp.4-9)
- Experimental and Observational Data
 - Lecture Slides: Handout1 (pp.10-12)
- Empirical Problem
 - Lecture Slides: Handout1 (pp.13-17)

1.2 Population and sample regression models

- Population and sample
 - Lecture Slides: Handout1 (pp.18-20)
 - Section Notes: Section3 (pp.1-3)
- Ordinary least squares (OLS)
 - Lecture Slides: Handout1 (pp.21-33)
- Formulas of $\hat{\beta}_0$ (fitted line goes through sample average) and $\hat{\beta}_1$ (ratio of covariance to variance), relationship between slope estimator and correlation coefficient, predicted values, and residuals
 - Lecture Slides: Handout1 (pp.33-35); Matrix form: Handout2 (pp.14-16)
 - Section Notes: Section2 (pp.4-7)
- Coefficient interpretation (**sign and size by now**; "holding everything else constant" when multiple linear regression)
 - Lecture Slides: Handout1 (pp.36-39)
- Probability Framework for Linear Regression (LR)
 - Lecture Slides: Handout2 (pp.3)
- 2 interpretations of Linear Regression (LR)
 - Lecture Slides: Handout2 (pp.4-8)

1.3 Assumptions for LR Model

- Assumption 1: $Y_i = \mathbf{X}_i' \boldsymbol{\beta} + \epsilon_i$ and $\mathbb{E}\left[\epsilon_i | X_i\right] = 0$ (Key Concept 4.3.1 in Text, p.131)
 - Lecture Slides: Handout2 (pp.9-11)
 - Section Notes: Section3 (pp.3-4)
- Assumption 2: $\{X_i, Y_i\}_{i=1}^n$ is an i.i.d. sample (Key Concept 4.3.2)
 - Lecture Slides: Handout2 (pp.12)

- Section Notes: Section3 (pp.4)
- Assumption 3: The matrix $\mathbb{E}\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}\right]$ is invertible (non-singular) (Implicitly assumed in Text)
 - Lecture Slides: Handout2 (pp.26-27)
 - Section Notes: Section3 (pp.5)
- Assumption 4: The matrix $\mathbb{E}\left[\mathbf{X}_{i}\epsilon_{i}^{2}\mathbf{X}_{i}'\right]$ is non-singular (Implicitly assumed in Text)
 - Lecture Slides: Handout2 (pp.41)
 - Section Notes: Section3 (pp.5)
- Assumption 5: The random variables (X_i, Y_i) have finite fourth moments.
 - Lecture Slides: Handout2 (pp.45)
 - Section Notes: Section3 (pp.5)

1.4 Properties of OLS estimator

- Under assumptions 1-3, $\mathbb{E}[\hat{\beta}] = \beta$, that is, $\hat{\beta}$ is an unbiased estimator of β .
 - Section Notes: Section3 (pp.8)
- Under assumptions 1-3, $\hat{\beta} \xrightarrow[n \to \infty]{p} \beta$, and thus the OLS estimator $\hat{\beta}$ is consistent for β . In large samples, the OLS estimator should be close to β with high probability.
 - Lecture Slides: Handout2 (pp.18-32)
 - Section Notes: Section3 (pp.5-8)
- Under all 5 assumptions, $\sqrt{n}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\right)$ will in large samples be approximately bivariate normal with mean vector equal to [0,0]' and variance matrix $\hat{\mathbf{V}} = \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}'\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}e_{i}^{2}\mathbf{X}_{i}'\right)\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}'\right)^{-1}$, where $e_{i}=Y_{i}-\mathbf{X}_{i}'\hat{\boldsymbol{\beta}}$, i.e., $\sqrt{n}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\right)\xrightarrow[n\to\infty]{d}\mathcal{N}\left(\mathbf{0},\hat{\mathbf{V}}\right)$.
 - Lecture Slides: Handout2 (pp.33-46)
 - Section Notes: Section3 (pp.5-9)

1.5 Hypothesis Testing in Simple Regression

- Distribution of $\hat{\beta}$
 - Lecture Slides: Handout3 (pp.2)
 - Section Notes: Section4 (pp.1)
- Definition of type I error, type II error, critical value, etc.
 - Lecture Slides: Handout3 (pp.4-5)
 - Section Notes: Section4 (pp.2-3)
- Hypothesis testing for a single parameter t Test
 - Lecture Slides: Handout3 (pp.3-6)
 - Section Notes: Section4 (pp.3)
- Hypothesis testing for multiple parameters Wald Test
 - Lecture Slides: Handout3 (pp.7-17)
 - Section Notes: Section4 (pp.4-5)
- Hypothesis testing for multiple parameters F-Statistic
 - Lecture Slides: Handout3 (pp.18-19)

1.6 Confidence Intervals in Simple Regression

- Confidence interval for a single parameter
 - Lecture Slides: Handout3 (pp.20)
 - Section Notes: Section4 (pp.5)
- Confidence region for multiple parameters
 - Lecture Slides: Handout3 (pp.21-24)

1.7 Other Inference Related Concepts

- Conditional homoscedasticity
 - Lecture Slides: Handout3 (pp.25)
- Formula for the asymptotic variance under conditional homoscedasticity
 - Lecture Slides: Handout3 (pp.26-28)
- R-square
 - Lecture Slides: Handout3 (pp.29-31)
- Standard error of the regression
 - Lecture Slides: Handout3 (pp.32-34)

2 Multiple Regression

2.1 Motivation for Multiple Regression

- Interpret LR as Best Linear Predictor (BLP)
 - Lecture Slides: Handout4 (pp.5-11)
- Omitted variable bias: formula and assessment
 - Lecture Slides: Handout4 (pp.12-19)
 - Section Notes: Section4 (pp.1-8)

2.2 Multiple regression

- Population model for multiple regression and interpretation of the parameters ("holding everything else constant")
 - Lecture Slides: Handout4 (pp.20-21)
- Formula for the OLS estimator (same as in simple regression model if written in matrix form)
 - Lecture Slides: Handout4 (pp.26)
- Assumptions (same as in simple regression model, only differ in the dimensions of the matrices)
 - Lecture Slides: Handout4 (pp.26)
 - **Section Notes:** Section5 (*pp.8-9*)
- Properties of OLS estimator: consistency and asymptotic normality
 - Lecture Slides: Handout4 (pp.26)

2.3 Hypothesis Testing in Multiple Regression

- Distribution of $\hat{\beta}$
 - Lecture Slides: Handout5 (pp.2)
- Hypothesis testing for a single parameter t Test (same as in simple regression)
- Hypothesis testing for multiple parameters Wald Test
 - Lecture Slides: Handout5 (pp.3-8)Section Notes: Section6 (pp.1-5)

2.4 Confidence Regions in Multiple Regression

- Confidence interval for a single parameter (same as in simple regression)
- Confidence region for multiple parameters
 - Lecture Slides: Handout5 (pp.9-12)

2.5 Other Inference Related Concepts

- R-squared and adjusted R-squared, and their interpretations
 - Lecture Slides: Handout5 (pp. 13-15)
- Standard errors of the estimator in multiple regression under the additional assumption of conditional homoscedasticity
 - Lecture Slides: Handout5 (pp.16-18)

2.6 Nonlinear Regression Functions

- General non-linear regression model
 - Lecture Slides: Handout5 (pp.21-22)
 - Section Notes: Section6 (pp.6)
- Polynomials
 - Lecture Slides: Handout5 (pp.23-27)
 - **Section Notes:** Section6 (*pp.6*)
- Interaction terms: interactions between two binary variables, interactions between a continuous and a binary variable, interactions between two continuous variables
 - Lecture Slides: Handout6 (pp.3-16)
 - Section Notes: Section6 (pp.7-8)
- Dependent variable transformations: log-linear, linear-log, and log-log specifications
 - Lecture Slides: Handout6 (pp.17-20)
 - Section Notes: Section6 (pp.7)
- Application to empirical problem
 - Lecture Slides: Handout6 (pp.21-32)

2.7 Assessing Studies

- Internal validity: omitted variable bias, wrong functional form, measurement error, sample selection bias, simultaneous causality bias
 - **Lecture Slides:** Handout6 (*pp.33-52*, *pp.65-68*)
- External validity
 - Lecture Slides: Handout6 (pp.53-64)