Agile Text Mining for the i2b2 2014 Risk Factors Challenge (Track 2)

Linguamatics and Northwestern University

James Cormack

i2b2 workshop - AMIA

November 14th 2014

i2b2 Task 2: Definition

- 790 annotated training documents
- 269 held out for development
- 514 test documents
- Annotate risk factors at document-level with the temporal relation to the document (before, during, after):
 - Positive mentions of CAD, Obesity, Hyperlipidemia, Hypertension
 - Medications related to these conditions
 - High blood pressure, glucose, cholesterol, A1C, BMI
 - CAD events (such as heart attack), symptoms related to CAD and positive CAD tests (e.g. a positive stress test)
 - Family history of premature CAD
 - Smoking history

i2b2 Strategy

NLP-based Rule Engine

- We used I2F
 - commercial text mining platform
 - used in 17/20 top pharma companies
 - combines search technology and NLP to provide "agile" text mining
- Rules created in a graphical interface using an index of:
 - Tokens
 - POS tags
 - Shallow syntactic chunks
 - Semantic entities
 - Sentences
 - Document regions
- Results in seconds allowing interactive refinement

An Example

- Linguistic items are 'containers' for other linguistic items
- Documents contain sentences, sentences contain words, phrases, syntactic chunks and semantic concepts.

i2b2 Strategy - Training

Rule Engineering

Start with high recall, low precision patterns:

Start tightening up constraints to increase precision:

Identifying Concepts

- Started with existing controlled terminologies
 - NCI Thesuarus
 - MeSH
 - RxNorm

- Terminologies modified while building rules:
 - Found similar words generated using distributional similarity
 - Word2vec over PubMed central/Wikipedia
 - Byblo + I2E patterns over MEDLINE
 - Words generated by generic rule patterns/regular expressions
 - Used I2E rules to find terms in similar contexts
 - Supplemented by synonyms (or common misspellings) present in the training data but not found with the above.
 - Used I2E rules over annotated text spans in the gold standard

Smoking Categorization

- Trained separately on 2007 smoking challenge dataset and then tuned on this year's data.
- Classification is done at the sentence level
 - Conflicting sentences had to be resolved in postprocessing
- This dataset had more ambiguous annotations in the training data: 'History of smoking' could be current, 'ever' or past.
- Annotators seemed reluctant to use the 'ever' category.
- More form-based/parameter value records made this challenging
 - Smear on 14/02/10 <u>negative</u> smoking status 14/02/10 has not quit

Lines and Tables

- Indexing the positions of the beginning and ends of a line
- Using the positional information of the word to extract result

Date/Time	CHOL	TRIG	HDL	LDLCAL
05/08/2066	272 (*)	301 (*)	46	166 (*)

- Relies on similar table format throughout reports
- We had also hoped that the line breaks would be useful as sentence break indicators
- This seemed useful as table row indicators, but gave worse results in general

Post-processing

- Logical constraints
 - Do the values satisfy the guidelines?
 - Correct range for the risk factor?
 - Correct number of values? e.g. 2 high glucose values
 - Resolving duplicate candidates for annotation e.g. Past smoker/Current smoker.
 - "Notable for tobacco use...he has since guit smoking"

Temporal Relation Extraction (1/3)

- Much of the temporal processing is implied by the risk factor/test type described rather than explicit in the text
- Need some way of representing the information the doctors have when they write patient notes
 - "Medications are presumed to be continuing unless I write otherwise"
- Rather than using specifically defined knowledge bases, this can be leveraged from the data
 - Provided that there are enough annotations for every risk factor...

Temporal Relation Extraction (2/3)

 When building rule add any linguistic items that express time to the output representation.

A1C	Numerics	Time Evidence	Time Evidence		Doc		Hit
▼A1C	4.9	on 6-04-87	was	1	159-02	1	This is borne out by her last hemoglobin A1C on 6-04-87 which was 4.9.
	7.8	on 12/27/66	was	1	<u>400-04</u>	1	(A1C on 12/27/66 was 7.8.

- Normalise them to 'before', 'during', 'after' type expressions if possible
- Let the post-processing decide the temporal annotation on the basis of the evidence extracted

Temporal Relation Extraction (3/3)

- Fed these as high level features into a classifier which contained rules and machine learning components
- Data-derived rules some risk factors had a very skewed distribution of possible values for temporal attributes
 - Almost all cardiac events were in the past
 - Medications and diseases were annotated as before, during and after unless there was an associated match with a word list of before/during/after expressions
- Logical rules:
 - Cardiac events can't be reported in the future
- Machine learned classifiers
 - Used for lab tests as they were the most varied in terms of time expressions in the training data

Lab Test Temporal Relation Classifier

- Lab values temporal attributes classified using simple features
 - Test Type
 - Date associated with the test (considered past)
 - Matches with a 'before' and 'during' word list associated with test
 - Tense of the associated verb (this was not always useful though)
- Features were generally too sparse in the training data for huge improvements over the baseline (guessing the most common).

Classifier	Accuracy (on held out set)
Baseline	65%
Naïve Bayes	77%
CART Decision Tree	83%

Results

Data	Macro P	Macro R	Macro F1	Micro P	Micro R	Micro F1
Training	91.3	94.4	92.8	91.2	94.6	92.9
Development	88.2	92.7	90.4	88.7	92.9	90.7
Test	89.9	93.6	91.7	89.8	93.8	91.7

 For the test set, querying with I2E took 8.2 seconds and post-processing took 10 seconds (on a 3.1GHz Intel® Core™ i5-2400)

Effect of skewed training data

- Even though this approach was mostly rule based, the number of annotations for a given risk factor had a big impact on the accuracy for that feature
- Rules still require enough examples

Challenges

- For less frequent risk factors, it was unclear whether to use the guidelines or the annotations, where they appeared to conflict
- Loss of structure in the documents
 - Table processing produced false positives particularly for glucose
 - Results looked good to us, but actually lowered our score
 - Form based parameter-value caused difficulties in sentence break detection
- A very similar system for smoking for the i2b2 2007 dataset gave 90% Micro F-score on the test set [unpublished work], whereas the performance of smoking categorization on this set was 84%

Conclusions

- An agile approach to text mining is a good fit for this task
 - A well performing system was developed in a few weeks, including contribution from Northwestern University who were new to I2E
- High-level features from rule based systems can provide discriminatory features for temporal relation classification
- More time could be spent trying to give structure to the document where the formatting of the document has some syntactic properties
- More unannotated data would have been useful to raise the scores for less frequent risk factors

Acknowledgements

- Team from Linguamatics: James Cormack, David Milward
- Team from Northwestern University: Chinmoy Nath, Kalpana Raja, Siddhartha Jonnalagadda
- Thanks to i2b2 for challenge organization and data

