

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=11; day=6; hr=9; min=35; sec=23; ms=48;]

=====

Reviewer Comments:

<210> 9
<211> 9600
<212> DNA
<213> Artificial sequence

<220>
<221> promoter
<222> (5649)..(5859)
<223> Promoter GAL 1 (pVP2)

<220>
<221> promoter
<222> (7402)..(8080)
<223> Promoter GAL 2 (VP3-GFP)

<220>
<221> CDS
<222> (8086)..(9597)
<223> VP3-GFP ORF

For all sequences using "Artificial sequence", for numeric identifier <213>, a mandatory feature is required to explain the source of the genetic material. The feature consists of <220>, which remains blank, and <223>, which states the source of the genetic material. To explain the source, if the sequence is put together from several organisms, please list those organisms. If the sequence is made in the laboratory, please indicate that the sequence is synthesized. These errors appear in other sequences in the sequence listing. Please make all necessary changes.

Application No: 10576988 Version No: 1.0

Input Set:

Output Set:

Started: 2008-10-08 19:20:50.704
Finished: 2008-10-08 19:20:51.787
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 83 ms
Total Warnings: 10
Total Errors: 1
No. of SeqIDs Defined: 10
Actual SeqID Count: 10

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
E 224	<220>,<223> section required as <213> has Artificial sequence or Unknown in SEQID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)

SEQUENCE LISTING

<110> Rodriguez Aguirre et al.

<120> EMPTY CAPSIDs (VLPs(-VP4)) OF THE INFECTIOUS BURSAL DISEASE VIRUS
(IBDV), OBTAINMENT PROCESS AND APPLICATIONS

<130> 8026-74818-01

<140> 10576988

<141> 2008-10-08

<150> PCT/EP2005/000694

<151> 2005-01-21

<150> ES P200400121

<151> 2004-01-21

<160> 10

<170> PatentIn version 3.1

<210> 1

<211> 35

<212> DNA

<213> Artificial sequence

<220>

<223> Oligo I primer

<400> 1

gcgcagatct atgacaaacc tgtcagatca aaccc 35

<210> 2

<211> 34

<212> DNA

<213> Artificial sequence

<220>

<223> Oligo II primer

<400> 2

gcgcaagctt aggcgagagt cagctgcctt atgc 34

<210> 3

<211> 7595

<212> DNA

<213> Artificial sequence

<220>

<223> Plasmid pFBD/pVP2-his-VP3

<220>

<221> promoter
 <222> (157)..(285)
 <223> Promotor ppolh

<220>
 <221> CDS
 <222> (291)..(1289)
 <223> pVP2 ORF

<220>
 <221> promoter
 <222> (7443)..(7503)
 <223> Promoter p10

<400> 3
 gggatcaa gtcttcgtcg agtgattgt aataaaatgt aatttacagt atagtatttt 60
 aattaatata caaatgattt gataataatt cttatthaac tataatataat tgtgttgggt 120
 tgaattaaag gtccgtatac tccggaatat taatagatca tggagataat taaaatgata 180
 accatctcgc aaataaataa gtatTTTact gtttgcgtaa cagTTTgt aaaaaaaaaac 240
 ctataaaatat tccggattat tcataaccgtc ccaccatcg ggccggatct atg aca 296
 Met Thr
 1

aac ctg tca gat caa acc cag cag att gtt ccg ttc ata cgg agc ctt 344
 Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg Ser Leu
 5 10 15

ctg atg cca aca acc gga ccg gcg tcc att ccg gac gac acc ctg gag 392
 Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr Leu Glu
 20 25 30

aag cac act ctc agg tca gag acc tcg acc tac aat ttg act gtg ggg 440
 Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr Val Gly
 35 40 45 50

gac aca ggg tca ggg cta att gtc ttt ttc cct gga ttc cct ggc tca 488
 Asp Thr Gly Ser Gly Ile Val Phe Phe Pro Gly Phe Pro Gly Ser
 55 60 65

att gtg ggt gct cac tac aca ctg cag ggc aat ggg aac tac aag ttc 536
 Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr Lys Phe
 70 75 80

gat cag atg ctc ctg act gcc cag aac cta ccg gcc agt tac aac tac 584
 Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr Asn Tyr
 85 90 95

tgc agg cta gtg agt cgg agt ctc aca gtg agg tca agc aca ctt cct 632
 Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr Leu Pro
 100 105 110

ggt ggc gtt tat gca cta aac ggc acc ata aac gcc gtg acc ttc caa 680
 Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr Phe Gln

115	120	125	130	
gga agc ctg agt gaa ctg aca gat gtt agc tac aat ggg ttg atg tct Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu Met Ser				728
135	140	145		
gca aca gcc aac atc aac gac aaa att ggg aac gtc cta gta ggg gaa Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val Gly Glu				776
150	155	160		
ggg gtc acc gtc ctc agc tta ccc aca tca tat gat ctt ggg tat gtg Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly Tyr Val				824
165	170	175		
agg ctt ggt gac ccc att ccc gca ata ggg ctt gac cca aaa atg gta Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys Met Val				872
180	185	190		
gcc aca tgt gac agc agt gac agg ccc aga gtc tac acc ata act gca Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile Thr Ala				920
195	200	205	210	
gcc gat gat tac caa ttc tca tca cag tac caa cca ggt ggg gta aca Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly Val Thr				968
215	220	225		
atc aca ctg ttc tca gcc aac att gat gcc atc aca agc ctc agc gtt Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu Ser Val				1016
230	235	240		
ggg gga gag ctc gtg ttt cga aca agc gtc cac ggc ctt gta ctg ggc Gly Gly Glu Leu Val Phe Arg Thr Ser Val His Gly Leu Val Leu Gly				1064
245	250	255		
gcc acc atc tac ctc ata ggc ttt gat ggg aca acg gta atc acc agg Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile Thr Arg				1112
260	265	270		
gct gtg gcc gca aac aat ggg ctg acg acc ggc acc gac aac ctt atg Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn Leu Met				1160
275	280	285	290	
cca ttc aat ctt gtg att cca aca aac gag ata acc cag cca atc aca Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro Ile Thr				1208
295	300	305		
tcc atc aaa ctg gag ata gtg acc tcc aaa agt ggt ggt cag gca ggg Ser Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gly Gln Ala Gly				1256
310	315	320		
gat cag atg tca tgg tcg gca aga ggg agc cta gcagtgacga tccatggtag Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu				1309
325	330			
caactatcca gggccctcc gtcccgtaac gctagtgccc tacgaaagag tggcaacagg				1369
atccgtcggtt acgggtcgctg gggtgagcaa cttcgagctg atccccaaatc ctgaactagc				1429

aaagaacctg gttacagaat acggccgatt tgaccagga gccatgaact acacaaaatt 1489
gatactgagt gagagggacc gtctggcat caagaccgtc tggccaacaa gggagtacac 1549
tgacttcgt gaatacttca tggaggtggc cgacctcaac tctcccctga agattgcagg 1609
agcattcggc ttcaaagaca taatccgggc cataaggagg atagctgtgc cggtggtctc 1669
cacattgttc ccacctgccc ctcccctagc ccatgcaatt gggaaaggtg tagactacct 1729
gctgggcgat gaggcccagg ccgcattcagg aactgctcga gccgcgtcag gaaaagcaag 1789
agctgcctca ggccgcataa ggcaagctgac tctcgctaa gcttgcgag aagtactaga 1849
ggatcataat cagccataacc acattttag aggtttact tgcttaaaa aacctccac 1909
acctccccct gaacctgaaa cataaaatga atgcaattgt tgggttaac ttgtttattg 1969
cagcttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt 2029
tttcaactgca ttctagttgt ggttgtcca aactcatcaa tgtatcttat catgtctgga 2089
tctgatcaact gcttgcgcct aggagatccg aaccagataa gtgaaatcta gttccaaact 2149
atttgtcat ttttaatttt cgtattagct tacgacgcta cacccagttc ccatctattt 2209
tgtcaacttt ccctaaataa tcctaaaaaa ctccatttcc acccctccca gttccaaact 2269
atttgtccg cccacagcgg ggcatttttc ttctgttat gttttaatc aaacatcctg 2329
ccaactccat gtgacaaacc gtcatcttcg gctactttt ctctgtcaca gaatgaaaat 2389
tttctgtca tctctcggtt attaatgttt gtaattgact gaatatcaac gcttatttgc 2449
agcctgaatg gcgaatggga cgcgcctgt agcggcgcataa gtcgcggc ggggtgtggg 2509
gttacgcgca gcgtgaccgc tacacttgcc agcgccttag cggccgtcc ttgcgtttc 2569
ttcccttcct ttctcgccac gttcgccggc ttccccgtc aagctctaaa tcgggggctc 2629
ccttagggt tccgatttag tgcttacgg cacctcgacc ccaaaaaact tgattaggg 2689
gatggttcac gtagtgggcc atgcgcctga tagacggttt ttgcgcctt gacgttggag 2749
tccacgttct ttaatagtgg actcttgcgtt caaactggaa caacactcaa ccctatctcg 2809
gtctattctt ttgatttata agggattttg ccgatttcgg cctattgggt aaaaaatgag 2869
ctgatttaac aaaaatttaa cgcaatttt aacaaaatat taacgtttac aatttcaggt 2929
ggcacttttc gggaaatgt ggcggaaacc cctatttgc tattttctaaata aatacattca 2989
aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg 3049
aagagtatga gtattcaaca ttccgtgtc gcccatttc ctttttgc ggcattttgc 3109

cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagtgg 3169
ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagttt 3229
cgccccgaag aacgtttcc aatgatgagc actttaaag ttctgctatg tggcgcgta 3289
ttatcccgtt ttgacgccgg gcaagagcaa ctccgtcgcc gcatacacta ttctcagaat 3349
gacttggttt agtactcacc agtcacagaa aagcatctt cggatggcat gacagtaaga 3409
gaattatgca gtgctgccat aaccatgagt gataacactg cgcccaactt acttctgaca 3469
acgatcgagg gaccgaagga gctaaccgct ttttgacaca acatggggga tcatgttaact 3529
cgcccttgcgt gttggaaacc ggagctgaat gaagccatac caaacgacga gcgtgacacc 3589
acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga actacttact 3649
ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc aggaccactt 3709
ctgcgctcg ccctccggc tggctggtt attgctgata aatctggagc cggtgagcgt 3769
gggtctcgcg gtatcattgc agcaactggg ccagatggta agccctcccg tatcgttagtt 3829
atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat cgctgagata 3889
ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata tatactttag 3949
attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct tttgataat 4009
ctcatgacca aaatcccttta acgtgagtt tcgttccact gagcgtcaga ccccgtagaa 4069
aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca 4129
aaaaaaaccac cgctaccaggc ggtgggttgt ttgccggatc aagagctacc aactctttt 4189
ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg 4249
tagttaggcc accacttcaa gaactctgtt gcaccgccta catacctcgc tctgctaattc 4309
ctgttaccag tggctgctgc cagtggcgat aagtctgtc ttaccgggtt ggactcaaga 4369
cgatagttac cggataaggc gcagcggctcg ggctgaacgg ggggttcgtg cacacagccc 4429
agcttggagc gaacgaccta caccgaactg agataacctac agcgtgagca ttgagaaagc 4489
gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcgaaaca 4549
ggagagcgca cgagggagct tccaggggaa aacgcctggt atctttatag tcctgtcggt 4609
tttcgcccacc tctgacttga gcgtcgattt ttgtgtatgtc cgtcaggggg gggagccta 4669
tggaaaaacg ccagcaacgc ggcctttta cggttctgg cctttgtcg gcctttgtc 4729
cacatgttct ttcctgcgtt atccctgtat tctgtggata accgtattac cgcccttgag 4789
tgagctgata ccgctcgccg cagccgaacg accgagcgcg gcgagtcagt gagcgaggaa 4849

gcggaagagc gcctgatgca gtatccctc cttacgcata tggcggtat ttcacaccgc 4909
agaccagccg cgtaacctgg caaaatcggt tacggtgag taataaatgg atgcctgcg 4969
taagcgggtg tggcgaca ataaagtctt aaactgaaca aaatagatct aaactatgac 5029
aataaagtct taaactagac agaatagttg taaactgaaa tcagtcagg tatgctgtga 5089
aaaagcatac tggacttttg ttatggctaa agcaaactct tcatttctg aagtgcaa 5149
tgcccgttgt attaaagagg ggcgtggcca agggcatggt aaagactata ttgcggcgt 5209
tgtgacaatt taccgaacaa ctccgcggcc gggaaagccga tctcggttg aacgaattgt 5269
taggtggcggt tactgggtc gatatcaaag tgcatacatt cttccgtat gcccaacttt 5329
gtatagagag ccactgcggg atcgccaccc taatctgctt gcacgttagat cacataagca 5389
ccaagcgcgt tggcctcatg ctgaggaga ttgatgagcg cggggcaat gccctgcctc 5449
cggtgctcgc cggagactgc gagatcatag atatagatct cactacgcgg ctgctcaa 5509
ctgggcagaa cgtaagccgc gagagcgcca acaaccgctt ctgggtcgaa ggcagcaagc 5569
gcgatgaatg tcttactacg gagcaagttc ccgaggtaat cggagtccgg ctgatgttg 5629
gagtaggtgg ctacgtctcc gaactcacga ccgaaaagat caagagcagc ccgcattggat 5689
ttgacttggg cagggccgag cctacatgtc cgaatgatgc ccatacttga gccaccta 5749
tttggggtag ggcgactgcc ctgctgcgtaa acatcggtgc tgctgcgtaa catcggtgc 5809
gctccataaac atcaaacatc gacccacggc gtaacgcgt tgctgttgg atgcccggagg 5869
catagactgt aaaaaaaaaac agtcataaca agccatgaaa accgccactg cgccgttacc 5929
accgctgcgt tcggtaagg ttctggacca gttgcgtgag cgcatacgct acttgcatta 5989
cagtttacga accgaacagg cttatgtcaa ctgggttgtc gccttcatcc gttccacgg 6049
tgtgcgtcac cggcaacct tgggcagcag cgaagtcgag gcatttctgt cctggctggc 6109
gaacgagcgc aagggttcgg tctccacgca tcgtcaggca ttggcggtt tgctgttctt 6169
ctacggcaag gtgcgtgtca cggatctgcc ctggcttcag gagatcggtaa gacctcggtc 6229
gtcgccggcgc ttggccgtgg tgctgacccc ggtgaagtgc ttgcgtatcc tcgggtttct 6289
ggaaggcgcgag catcggttgtc tgccccagga ctctagctat agttctagtg gttggccatc 6349
gtacccgttag tggctatggc agggcttgcc gccccgacgt tggctgcgag ccctggccct 6409
tcacccgaac ttgggggttg gggtggggaa aaggaagaaa cggggcgta ttggtccaa 6469
tggggtctcg gtggggatc gacagagtgc cagccctggg accgaacccc gcgttatga 6529

acaaacgacc caacacccgt gcgttttatt ctgtctttt attgccgtca tagcgccgggt	6589
tccttcgggt attgtctcct tcctgtttc agttagcctc ccccatctcc cggtaccgca	6649
tgcctcgaga ctgcaggctc tagattcgaa agcggccgag actagtgagc tcgtcgacgt	6709
aggccttga attccggatc ctactcaag gtcctcatca gagacggtcc tgcatccagcg	6769
gcccagccga ccagggggtc tctgtgttgg agcattgggt tttggcttgg gctttggtag	6829
agcccgccctg ggattgcgtat gcttcataatc catcgacgtc aagagcagat ctttcatctg	6889
ttcttggtt gggccacgtc catgggtat ttcatagact ttggcaactt cgtctatgaa	6949
agcttgggggt ggctctgcct gtcctggagc cccgttagatc gacgttagctg cccttaggat	7009
tggttcttct gatgccaacc ggctttctc tgcatacgtc tagtctagat agtccctgtt	7069
tgggtccgggt atttctcggtt tggtctgcca gtactttacc tggcctgggc ttggccctcg	7129
tgccccattt agtgctaccc attctgggt tgcaaagtag atgcccattt tctccatctt	7189
cttttagatc cgtgtgtctt ttccctctg tgcttcctctt ggtgtggggc cccgagccctc	7249
cactccgtat cctgctgtcc cgtacttggc ctttgcgtac ttgctgcctg cttgtgggtgc	7309
gtttgcaaga aaatttcgca tccgatgggc gttcgggtcg ctgagtgacg agttggccat	7369
gtcagtcaca atccatttctt ctccagcca catgaacaca ctgagtgacg attgaaatag	7429
tgggtccacg ttggctgctg ctccatttc tctgacggca ctctcgagtt cgggggtctc	7489
tttgaactct gatgcagcca tggcgccctg aaaatacagg tttcgggtcg ttggatatc	7549
gtaatcgta tgggtatgggt gatggtagta cgacatgggtt tcggac	7595

<210> 4
<211> 333
<212> PRT
<213> Artificial sequence

<220>
<223> pVP2-his-VP3 protein

<400> 4
Met Thr Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg
1 5 10 15

Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr
20 25 30

Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr
35 40 45

Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro
50 55 60

Gly	Ser	Ile	Val	Gly	Ala	His	Tyr	Thr	Leu	Gln	Gly	Asn	Gly	Asn	Tyr
65				70				75				80			
Lys	Phe	Asp	Gln	Met	Leu	Leu	Thr	Ala	Gln	Asn	Leu	Pro	Ala	Ser	Tyr
	85				90					95					
Asn	Tyr	Cys	Arg	Leu	Val	Ser	Arg	Ser	Leu	Thr	Val	Arg	Ser	Ser	Thr
	100				105					110					
Leu	Pro	Gly	Gly	Val	Tyr	Ala	Leu	Asn	Gly	Thr	Ile	Asn	Ala	Val	Thr
	115				120					125					
Phe	Gln	Gly	Ser	Leu	Ser	Glu	Leu	Thr	Asp	Val	Ser	Tyr	Asn	Gly	Leu
	130				135			140							
Met	Ser	Ala	Thr	Ala	Asn	Ile	Asn	Asp	Lys	Ile	Gly	Asn	Val	Leu	Val
	145				150				155			160			
Gly	Glu	Gly	Val	Thr	Val	Leu	Ser	Leu	Pro	Thr	Ser	Tyr	Asp	Leu	Gly
	165				170				175						
Tyr	Val	Arg	Leu	Gly	Asp	Pro	Ile	Pro	Ala	Ile	Gly	Leu	Asp	Pro	Lys
	180				185				190						
Met	Val	Ala	Thr	Cys	Asp	Ser	Ser	Asp	Arg	Pro	Arg	Val	Tyr	Thr	Ile
	195				200				205						
Thr	Ala	Ala	Asp	Asp	Tyr	Gln	Phe	Ser	Ser	Gln	Tyr	Gln	Pro	Gly	Gly
	210				215			220							
Val	Thr	Ile	Thr	Leu	Phe	Ser	Ala	Asn	Ile	Asp	Ala	Ile	Thr	Ser	Leu
	225				230				235			240			
Ser	Val	Gly	Gly	Glu	Leu	Val	Phe	Arg	Thr	Ser	Val	His	Gly	Leu	Val
	245				250				255						
Leu	Gly	Ala	Thr	Ile	Tyr	Leu	Ile	Gly	Phe	Asp	Gly	Thr	Thr	Val	Ile
	260				265				270						
Thr	Arg	Ala	Val	Ala	Ala	Asn	Asn	Gly	Leu	Thr	Thr	Gly	Thr	Asp	Asn
	275				280				285						
Leu	Met	Pro	Phe	Asn	Leu	Val	Ile	Pro	Thr	Asn	Glu	Ile	Thr	Gln	Pro
	290				295				300						
Ile	Thr	Ser	Ile	Lys	Leu	Glu	Ile	Val	Thr	Ser	Lys	Ser	Gly	Gly	Gln
	305				310				315			320			
Ala	Gly	Asp	Gln	Met	Ser	Trp	Ser	Ala	Arg	Gly	Ser	Leu			
	325				330										

<210> 5
 <211> 35
 <212> DNA
 <213> Artificial sequence

<220>
<223> Oligo III primer

<400> 5
gcgcagatct atgacaaacc tgtcagatca aaccc 35

<210> 6
<211> 34
<212> DNA
<213> Artificial sequence

<220>
<223> Oligo IV primer

<400> 6
gcgcaagctt aggcgagagt cagctgcctt atgc 34

<210> 7
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> Oligo V primer

<400> 7
gcgcgaattc gatggcatca gagttcaaag aga 33

<210>