Классификация грамматик и языков по Хомскому

грамматики классифицируются по виду их правил вывода

Четыре типа грамматик:

тип 0, тип 1, тип 2, тип 3

Язык, порождаемый грамматикой типа *k* (*k*=0,1,2,3), является языком *типа k*.

$$G = \langle T, N, P, S \rangle$$

Тип 0

Любая порождающая грамматика является грамматикой $muna\ 0$.

На вид правил грамматик этого типа не накладывается никаких дополнительных ограничений.

Класс языков типа 0 совпадает с классом рекурсивно перечислимых языков (распознаваемых МТ).

Грамматики с ограничениями на вид правил вывода

Тип 1

Грамматика $G = \langle T, N, P, S \rangle$ называется *неукорачивающей*, если правая часть каждого правила из P не короче левой части (т. е. для любого правила $\alpha \to \beta \in P$ выполняется неравенство $|\alpha| \le |\beta|$).

В виде исключения в неукорачивающей грамматике допускается наличие правила $S \to \varepsilon$, при условии, что S (начальный символ) не встречается в правых частях правил.

Грамматикой *типа 1* будем называть неукорачивающую грамматику.

Тип 1 в некоторых источниках определяют с помощью так называемых контекстно-зависимых грамматик.

Грамматика $G = \langle T, N, P, S \rangle$ называется контекстно-зависимой (КЗ), если каждое правило из P имеет вид $\alpha \to \beta$, где $\alpha = \xi_1 A \xi_2$, $\beta = \xi_1 \gamma \xi_2$, $A \in N$, $\gamma \in (T \cup N)^+$, ξ_1 , $\xi_2 \in (T \cup N)^*$.

В виде исключения в К3-грамматике допускается наличие правила $S \to \varepsilon$, при условии, что S (начальный символ) не встречается в правых частях правил.

К3-грамматика удовлетворяет определению неукорачивающей.

Неукорачивающие и К3-грамматики определяют один и тот же класс языков.

Тип 2

Грамматика $G = \langle T, N, P, S \rangle$ называется контекстно-свободной (КС), если каждое правило из P имеет вид $A \to \beta$, где $A \in N, \beta \in (T \cup N)^*$.

В КС-грамматиках допускаются правила с пустыми правыми частями.

Язык, порождаемый контекстно-свободной грамматикой, называется контекстно-свободным языком.

Грамматикой $muna\ 2$ будем называть контекстно-свободную грамматику.

Любую КС-грамматику можно преобразовать в эквивалентную неукорачивающую КС-грамматику. (т.е. КС, удовлетворяющую также и определению неукорачивающей)

Тип 3

Грамматика $G = \langle T, N, P, S \rangle$ называется *праволинейной*, если каждое правило из P имеет вид $A \to wB$ либо $A \to w$, где $A \in N, B \in N, w \in T^*$.

Грамматика $G = \langle T, N, P, S \rangle$ называется *леволинейной*, если каждое правило из P имеет вид $A \to Bw$ либо $A \to w$, где $A \in N$, $B \in N, w \in T^*$.

Праволинейные и леволинейные грамматики определяют один и тот же класс языков. Такие языки называются регулярными. Право- и леволинейные грамматики тоже называют регулярными.

Регулярная грамматика является грамматикой типа 3.

Aвтоматной грамматикой называется праволинейная (леволинейная) грамматика, такая, что каждое правило с непустой правой частью имеет вид: $A \to a$ либо $A \to aB$ (для леволинейной, соответственно, $A \to a$ либо $A \to Ba$), где $A \in N$, $B \in N$, $a \in T$.

Для любой регулярной (автоматной) грамматики G существует неукорачивающая регулярная (автоматная) грамматика G', такая что L(G) = L(G').

Иерархия Хомского

Справедливы следующие соотношения:

- 1) любая регулярная грамматика является КС-грамматикой;
- 2) любая неукорачивающая КС-грамматика является КЗ-грамматикой;
- 3) любая неукорачивающая грамматика является грамматикой типа 0.

Неукорачивающие Регулярные \subset Неукорачивающие $KC \subset K3 \subset T$ ип 0

(Запись $A \subset B$ означает, что A является собственным подклассом класса B)

Справедливы следующие соотношения для языков:

• каждый регулярный язык является КС-языком, но существуют КС-языки, которые <u>не являются</u> регулярными, например:

$$L = \{a^n b^n \mid n > 0\};$$

- каждый КС-язык является КЗ-языком, но существуют КЗязыки, которые <u>не являются</u> КС-языками, например:

$$L = \{a^n b^n c^n \mid n > 0\};$$

 каждый КЗ-язык является языком типа 0 (т. е. рекурсивно перечислимым языком), но существуют языки типа 0, которые не являются КЗ-языками, например: язык, состоящий из записей самоприменимых алгоритмов Маркова в некотором алфавите.

Иерархия классов языков

 $Tun\ 3\ (Peryлярныe) \subset Tun\ 2\ (KC) \subset Tun\ 1\ (K3) \subset Tun\ 0$

Проблема «Можно ли язык, описанный грамматикой типа k (k = 0, 1, 2), описать грамматикой типа k + 1?» является алгоритмически неразрешимой.

Язык $L_{a,b} = \{a, b\}$. Какого он типа? Обычно требуется указать максимально возможный тип.

Ответ: типа 3

 $S \to a \mid b$ — грамматика типа 3, порождающая данный язык.

 $(L_{a,b}$ является также языком типа 2, 1, 0 в силу иерархии Хомского)