WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

US

(51) International Patent Classification 5: A01N 35/08, 43/50, 43/54

A1

(11) International Publication Number:

WO 91/17659

A01N 51/00

(43) International Publication Date:

28 November 1991 (28.11.91)

(21) International Application Number:

10 May 1991 (10.05.91)

(60) Parent Application or Grant

PCT/US91/03118

(22) International Filing Date:

(30) Priority data: 524,738

17 May 1990 (17.05.90)

mours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US). (81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (Eu-

(74) Agents: COSTELLO, James, A. et al.; E.I. du Pont de Ne-

ropean patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent),

(63) Related by Continuation US

Filed on

524,738 (CIP) 17 May 1990 (17.05.90)

(71) Applicants (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US). UNIVERSITY OF SOUTH CAROLINA [US/US]; Osborne Administration Building, Columbia, SC 29208 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): CHAPMAN, James, Mood [US/US]; 1111 Watermark Place, Columbia, SC 29210 (US). KOLLMEYER, Willy, Dietrich [US/US]; 28 Raphael Road, Hockessin, DE 19707 (US). KOSH, Joseph, William [US/US]; 105 Nut Tree Court, Lexington, SC 29072 (US). McCANN, Stephen Frederick [US/US]; 2012 Christiana Meadows, Bear, DE 19702 (US). SOWELL, Joseph, Walter [US/US]; 1704 Blackbird Drive, West Columbia, SC 29169 (US). ZWICK, Faith, Blersch [US/US]; 1228 Paper Mill Road, Newark, DE 19711 (US). (US).

Published With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

amendments.

(54) Title: ARTHROPODICIDAL NITROETHYLENES AND NITROGUANIDINES

$$\begin{array}{c|c}
z\\
\downarrow \\
R^1-X-A-N\\
\downarrow \\
R^2
\end{array}$$

$$\begin{array}{c|c}
R^3\\
\downarrow \\
R^4
\end{array}$$
(I)

(57) Abstract

Arthropods are controlled in agronomic and nonagronomic environments by contacting them or their environment with an effective amount of a compound of formula (I), wherein R1 to R4, X, A, and Z are as defined in the text, including arthropodicidal compositions containing said compound(s).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	ΙT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	Ll	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		

10

15

20

TITLE

ARTHROPODICIDAL NITROETHYLENES AND NITROGUANIDINES BACKGROUND OF THE INVENTION

Field of the Invention

This invention concerns nitroethylene and nitroguanidine compositions and a method for using the nitroethylene and nitroguanidine compounds of Formula I to control arthropods in agronomic and nonagronomic environments.

State of the Art

Insecticidal nitroethylene compounds are disclosed in EPA 302,389 and EPA 302,833. Insecticidal alkylenediamines are disclosed in U.S. 4,025,529 and U.S. 4,806,553. Heterocyclic alkylenediamine insecticides are disclosed in EPA 254,859. Insecticidal 1-nitro-2,2-diaminoethylenes are disclosed in AU 88/20510. U.K. 1,483,633 discloses 2-(nitromethylene)-1,3-diazocycloalkanes as insecticides.

SUMMARY OF THE INVENTION

The invention pertains to use of compounds of Formula I, including all geometric and stereoisomers, agriculturally suitable salts thereof, and agricultural compositions containing them, for the control of planthoppers and leafhoppers. The compounds are:

$$\begin{array}{c|c}
\mathbf{Z} \\
\mathbb{R}^{1}-\mathbf{X}-\mathbf{A}-\mathbf{N} \\
\mathbb{R}^{2} \\
\mathbb{R}^{4}
\end{array}$$

30 wherein:

35

Z is selected from the group CHNO₂ and NNO₂; X is selected from $S(O)_n$;

	A is selected from the group C_1 - C_4 alkylene optionally substituted with C_1 - C_3 alkyl, C_2 - C_3 alkoxycarbonyl, halogen
	and CN;
5	R^1 is selected from the group C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl and C_4 - C_6 cycloalkylalkyl;
	n is 0 , 1 or 2 ; $ m R^2$ and $ m R^3$ are independently selected from the group H, CH $_2$ CN
	C ₁ -C ₄ alkyl, CHO, C ₂ -C ₄ alkylcarbonyl, C ₂ -C ₃
10	alkoxycarbonyl C2-C4 alkoxyalkyl, C3-C6 dialkoxyalkyl,
	C ₁ -C ₃ alkoxy, C ₁ -C ₃ alkylsulfonyl, C ₃ -C ₄ alkenyl, C ₃ -C ₄
	alkynyl, C ₁ -C ₄ alkylamino, C ₂ -C ₄ dialkylamino and benzyl
	substituted with R^5 ;
	\mathbb{R}^4 is selected from the group \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl,
15	C3-C6 cycloalkyl and C4-C6 cycloalkylalkyl; or
	$ m R^2$ and $ m R^4$ can be taken together as $ m C_2 ext{-}C_3$ alkylene or $ m C_2 ext{-}C_3$
	alkenylene each optionally substituted with 1-4 C ₁ -C ₂ alkyl;
	and
00	$ m R^{5}$ is selected from the group halogen, $ m C_{1} ext{-}C_{2}$ alkyl, $ m C_{1} ext{-}C_{2}$
20	haloalkyl, C ₁₋ C ₂ alkoxy, C ₁ -C ₂ thioalkyl, C ₁ -C ₂
	halothioalkyl, C ₁ -C ₂ haloalkoxy, NO ₂ and CN.
	Preferred Method A for controlling plant and leaf hoppers
25	comprises use of compounds of Formula I wherein Z is CHNO2.
20	Preferred Method B employs compounds of Formula I wherein Z is NNO ₂ . Preferred Method C employs compounds A wherein:
	A is $\mathrm{CH_2CH_2}$;
	R^1 is selected from the group C_1 - C_4 alkyl;

 ${
m R}^2$ and ${
m R}^3$ are independently selected from the group H, ${
m C}_1{
m -}{
m C}_4$

 R^4 is selected from the group C_1 - C_4 alkyl.

alkyl, C2-C3 alkoxycarbonyl and C2-C4 alkylcarbonyl; and

PCT/US91/03118

5

10

15

20

25

30

35

Preferred Method D employs compounds A wherein:
R² and R⁴ are taken together and independently selected from
the group C₂-C₃ alkylene and C₂-C₃ alkenylene, each
optionally substituted by 1-4 C₁-C₄ alkyl.

Preferred Method E employs compounds C wherein X is S. Preferred Method F employs compounds D wherein X is S.

This invention also concerns novel arthropodicidal compositions comprising an effective amount of a compound of Formula I and a carrier therefor which is effective to deliver the compound to agronomic and nonagronomic arthropods, particularly planthoppers and leafhoppers, and their environment so that said arthropods are controlled.

In the above definitions, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl", denotes straight chain or branched alkyl such as methyl, ethyl, n-propyl, isopropyl or the different butyl isomers. Alkoxy denotes methoxy, ethoxy, n-propyloxy and isopropyloxy. Alkenyl denotes straight chain or branched alkenes such as vinyl, 1-propenyl, 2-propenyl, 3-propenyl and the different butenyl isomers. Alkynyl denotes straight or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl isomers. Alkylthio denotes methylthio, ethylthio and the different propylthio and butylthio isomers. Alkylsulfonyl and alkylamino are defined analogously to the above examples. Cycloalkyl denotes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "halogen", either alone or in compound words as "haloalkyl", denotes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl" said alkyl can be partially or fully substituted with halogen atoms, which can be the same or different. Examples of haloalkyl include CH2CHF2, CF2CF3 and CH2CHFCl.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 6. For example, C₁-C₃ alkylsufonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxy designates OCH₂CH₃ and C₃ alkoxy designates OCH₂CH₃ and OCH(CH₃)₂; C₂ alkylcarbonyl designates

15

20

25

C(O)CH₃ and C₄ alkylcarbonyl designates C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂; C₃ alkoxyalkyl designates CH₂OCH₂CH₃ and CH₂CH₂OCH₃; C₄ alkoxyalkyl designates CH₂OCH₂CH₂CH₃, CH₂CH₂OCH₂CH₃ and CH₂OCH(CH₃)₂; and as a final example, C₄ dialkoxyalkyl designates CH₂OCH₂CH₂OCH₃.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by the reaction of nitroethenes and nitroimines of Formula II with an amine of Formula III (Scheme 1). Alternatively, compounds of Formula I can be prepared by the reaction of nitroethenes and nitroimines of Formula IV with amines of Formula V (Scheme 2) using procedures which are analogous to those used for reactions of compounds of Formula II with compounds of Formula III; therefore, for brevity only reactions of compounds of Formula II with compounds of Formula III are described. Typical conditions involve combination of II with a stoichiometric excess of III in a suitable solvent or combination of solvents at temperatures generally in the range of about 0 to 100°C. Suitable solvents typically have sufficient polarity to effect solution of the Formula II compound and the Formula III amine and include, but are not limited to, alcohols such as methanol, ethanol and isopropanol; ethers such as diethyl ether, tetrahydrofuran and dioxane; esters such as ethyl acetate; water; and polar and aprotic solvents such as dimethylformamide and dimethylacetamide. Amine III can also be used as its hydrochloride salt and in these cases an equivalent amount of a base (such as potassium hydroxide) is added to the reaction mixture.

SCHEME 1

III

II

wherein:

A, X, Z, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , and \mathbb{R}^4 are as previously defined.

5

IV

wherein:

15

20

25

30

35

A, X, Z, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , and \mathbb{R}^4 are as previously defined.

Compounds of Formula I include both geometrical and optical isomers as well as Z and E isomers around the nitroethene or imine double bond. These isomers may vary in their biological activity. In some instances, it may be desirable to obtain compounds which are geometrically and/or optically pure or which are enriched in one or more of the possible isomers. All such isomers are included within the scope of the invention. They, as well as all salts, are included within the term "compound(s)".

For the sake of simplifying the description of this invention, the generic formula (Formula I) encompasses certain compounds that may have long term stability problems and/or are difficult to prepare. For example, haloalkylamines when R^4 is C_1 to C_4 haloalkyl are unstable when the halo substituent is directly adjacent to nitrogen. These generally decompose to the corresponding hydrogen halides and imine. Similarly, Formula I compounds where A is a C₁ haloalkyl would be expected to be hydrolytically unstable. These compounds, however, are relatively few; their identity would be obvious to one skilled in the art, and their excision from the scope would unduly complicate and lengthen the description of the invention.

10

15

25

30

35

Compounds of Formula II where Z is CHNO2 can be prepared using processes known in the art involving reaction of nitroethene VI with an amine of Formula V (Scheme 3). Compounds of Formula IV where Z is CHNO2 can be prepared by procedures which are analogous to those for compounds of Formula II; therefore, for brevity, only the compounds of Formula II are described. Typical conditions involve the combination of equimolar amounts of V and VI in a suitable solvent or solvent mixture at temperatures in the range of about 0 to 100°C. Suitable solvents typically have sufficient polarity to effect solution of V and VI and include, but are not limited to, alcohols such as methanol, ethanol and isopropanol; ethers such as diethyl ether, tetrahydrofuran and dioxane; esters such as ethyl acetate; polar aprotic solvents such as dimethylformamide and dimethylacetamide; water as well as mixtures of solvents.

SCHEME 3

VI

Amines of Formula VII with an amine of Formula VIII (Scheme 4). Typical conditions involve combination of VII with a stoichiometric excess of VIII in a suitable solvent or combination of solvents at temperatures in the range of about 0 to 100°C. Suitable solvents or solvent mixtures typically have sufficient polarity to effect solution of the Formula VIII amine and the Formula V product and include, but are not limited to, alcohols such as methanol, ethanol and isopropanol; ethers such as tetrahydrofuran and dioxane; water and acetonitrile. Amine VIII can also be used as its hydrochloride salt and in these cases an equivalent amount of a base (such as potassium hydroxide) is added to the reaction mixture.

SCHEME 4

$$R^{1}XAY + R^{2}NH_{2} \longrightarrow V$$
VII VIII

wherein:

Y is a leaving group; and A, X, R¹ and R² are as previously defined.

Compounds of Formula I where R² and R⁴ are taken together as an optionally substituted C₂-C₃ alkylene or C₂-C₃ alkenylene group can be prepared using the analogous procedures illustrated by Schemes 5 and 6.

SCHEME 5

SCHEME 6

30
$$R^{1}XA-N$$

$$B$$

$$NH + R^{3}Y \xrightarrow{Proton} I$$

$$Acceptor$$

$$I (R^{3} = H) \qquad X \qquad (R^{3} \neq H)$$

wherein:

10

B is C₂-C₃ alkylene or C₂-C₃ alkenylene each optionally substituted with 1-4 C₁-C₂ alkyl;

Y is a leaving group; and A, X, R₁, R₃, and Z are as previously defined.

Reactions such as those shown in Scheme 5 are typically carried out by treatment of a solution of Formula IX and VII compounds in a suitable solvent with a proton acceptor such as, but not limited to, sodium hydride at a temperature of about 0 to 100°C. Suitable solvents include, but are not limited to, dimethylformamide and THF. Completely analogous procedures can be used to effect the reactions illustrated by Scheme 6, and, for the sake of brevity, will not be discussed further.

Scheme 7 illustrates the formation of Formula IX compounds.

15 Procedures for this transformation are analogous to those previously described for Scheme 5.

SCHEME 7

25

wherein:

B and Z are as previously defined.

When B is equal to C₂ alkenylene and Z is equal to NNO₂,

Formula XI compounds may exist as the amino-imidazole tautomer, XII.

Scheme 8 illustrates the formation of Formula IX nitroguanidines using the precursors of Formula XII. Scheme 9 illustrates the formation of Formula I compounds where Z is NNO₂ and B is an optionally substituted C₂ alkenylene using the precursors of Formula XII. The

35

procedures illustrated by Schemes 8 and 9 are completely analogous to those described previously for Scheme 5.

5 SCHEME 8

wherein:

35

15 R^6 and R^7 are H, or C_1 - C_2 alkyl.

SCHEME 9

Formula XII nitroaminoimidazoles can be formed by the reaction of S-methyl-N-nitro-isothiourea with amino-acetals of Formula XIII.

Typical reaction conditions involve the treatment of a mixture of XIII and S-methyl-N-nitroisothiourea in a suitable solvent with 0 to 5 equivalents of an acid catalyst such as hydrochloric acid at a temperature of 0°C to the reflux temperature of the solvent. Typical solvents include, but are not limited to, methanol, ethanol and isopropanol. Scheme 10 illustrates this transformation.

15

20

30

35

SCHEME 10

IIIX

wherein: R^8 is an alkyl or aryl group; and R^6 and R^7 are as previously defined.

One skilled in the art will recognize Formula XIII compounds as acetals of α -amino aldehydes and α -amino-ketones, whose syntheses are well precedented.

Compounds of Formula XI where B is an optionally substituted C2-C3 alkylene and Z is CHNO2 can be prepared by the reactions of diamines of Formula XIV with V in a suitable solvent at temperatures in the range of about 0 to 100°C. Suitable solvents include, but are not limited to, alcohols such as methanol, ethanol and isopropanol, and water, as well as other polar solvents. Typical reactions involve the use of equimolar amounts of V and XIV. Scheme 11 illustrates this transformation.

25 SCHEME 11

Compounds of Formula XI where B is an optionally substituted C2-C3 alkylene and Z is NNO2 can be prepared by the reactions of Formula XIV diamines with nitroguanidine using procedures completely analogous to those described for Scheme 11 and, for the sake of brevity, will not be discussed further.

10

15

25

30

35

Ŷ

Formula XIV compounds are 1,2- and 1,3-diamines whose preparations are known in the art.

Compounds of Formula II where Z is NNO₂ can be prepared by the reaction of N-nitroimines of Formula XV with an alkylating agent of Formula VII in a suitable solvent in the presence of a proton acceptor (Scheme 12). Typical proton acceptors are metal hydrides such as sodium hydride, metal alkoxides such as sodium methoxide or potassium t-butoxide and carbonates such as cesium carbonate. Suitable solvents for reactions using metal hydride include DMF and THF. Suitable solvents for reactions using metal alkoxides include alcohols such as methanol, ethanol and t-butanol and THF. Suitable solvents for reactions using carbonate bases include methanol, ethanol and acetonitrile. The reactions are typically run at temperatures that range from 0 to 100°C. Typical reactions involve the use of equimolar amounts of VII and XV.

SCHEME 12

wherein:

 \mathbb{R}^2 is as previously defined.

Compounds of Formula IV where Z is NNO₂ can be prepared by the reaction of N-nitroimines of Formula XVI with an alkylating agent of Formula XVII (Scheme 13) using procedures that are analogous to those described for Scheme 12.

Compounds of Formula XV can be prepared by the reaction of an alkylating agent of Formula XVIII with S-methyl-N-nitroisothiourea (Scheme 14) using procedures that are analogous to those described for Scheme 12.

Compounds of Formula XVI can be prepared by the reaction of an alkylating agent of Formula X with S-methyl-N-nitroisothiourea (Scheme 15) using procedures that are analogous to those described for Scheme 12.

5

SCHEME 13

SCHEME 14

SCHEME 15

25 wherein:

30

35

 \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 and Y are as previously defined.

Compounds of Formula I where X is SO can be obtained by reaction of the corresponding compound of Formula I where X is S with a variety of oxidants including, but not limited to, peracids, periodates and hydroperoxides in a suitable solvent. Compounds of Formula I where X is SO₂ can be obtained using analogous reaction conditions wherein the amount of oxidant used is greater than or equal to two oxidizing equivalents.

The following Examples further illustrate the invention.

EXAMPLE 1

Step A: N-Methyl-2-(methylthio)ethanamine

Solid 85% potassium hydroxide (54 g, 0.81 moles) was added in portions to a solution of methylamine hydrochloride (50 g, 0.74 moles) 5 and water (200 mL), maintaining the temperature below 30°C. The resulting solution was treated with a solution of 2-chloroethyl methyl sulfide (15 mL, 0.15 moles) and ethanol (50 mL) at room temperature. After 1 hour, the temperature of the initially two-phase reaction had risen to about 40°C and the reaction became homogeneous. After stirring 10 for 10 hours at room temperature, the reaction was saturated with solid sodium chloride and the aqueous layer was extracted with ether (3×100) mL). The combined organic layers were washed with brine made basic with potassium hydroxide, dried over potassium carbonate and concentrated under vacuum to yield 11.1 g (70%) of a clear oil that was 15 used without further purification. 1_{H NMR} (200 MHz, CDCl₃) δ: 2.80 (t, 2H), 2.65 (t, 2H), 2.46 (s, 3H), 2.11 (s, 3H), 1.5 (br s, 1H).

20 Step B: <u>Methyl N-methyl-N-[2-(methylthio)ethyl]-2-nitro-</u> ethanimidothioate

give 0.76 g (30%) of a yellow oil.

A solution of the amine from Step A (1.0 g, 9.5 mmoles), 1,1-bis(methylthio)-2-nitroethylene (1.9 g, 11.4 mmoles) and ethanol (34 mL) was heated at reflux for 5 hours and then cooled to room temperature. The resulting mixture was dissolved in acetone, silica gel (5 g) was added and the solvent was removed under vacuum. The residue was chromatographed on silica gel eluting with 1:1 hexanes-ethyl acetate to

1_{H NMR} (200 MHz, CDCl₃) δ: 6.72 (s, 1H), 3.78 (t, 2H), 3.15 (s, 3H),
 2.75 (t, 2H), 2.49 (s, 3H), 2.16 (s, 3H).

Step C: <u>N.N'-Dimethyl-N-[2-(methylthio)ethyl]-2-nitro-1.1-</u> ethenediamine

Aqueous sodium hydroxide (50%, 0.5 mL, 9.0 mmoles) was added to a solution of the product of Step B (0.4 g, 1.8 mmoles), methylamine

WO 91/17659 PCT/US91/03118

hydrochloride (0.6 g, 9 mmoles), ethanol (5 mL), tetrahydrofuran (2 mL) and water (1 mL). The resulting solution was stirred for 20 hours at room temperature and then silica gel (2 g) was added and the solvent was removed. Flash chromatography of the residue on silica gel using 5% ethanol in methylene chloride gave 0.36 g (98%) of the title compound as a yellow oil.

¹H NMR (200 MHz, CDCl₃) δ: 9.8 (br s, 1H), 6.56 (s, 1H), 3.42 (t, 2H), 3.05 (d, 3H), 2.94 (s, 3H), 2.73 (t, 2H), 2.13 (s, 3H).

10

EXAMPLE 2

Step A: 2-(Nitromethylene)-imidazolidine

A solution of 4.0 mL (0.06 moles) of ethylene diamine, 10 g (0.06moles) of 2,2 bis(methylthio)nitroethylene and 60 mL of ethanol was heated at reflux for 12h and then concentrated to give 7.6 g of a beige solid.

¹H NMR (200 MHz, DMSO-d₆) δ: 6.33 (s, 1H), 3.58 (s, 4H).

Step B: <u>1-[2-(Methylthio)ethyll-2-(nitroethylene)imidazolidine</u>

20

25

30

15

The product from Step A (2.0 g, 0.016 moles) was added to a suspension of 60% sodium hydride (0.7 g, 0.017 moles) and 31 mL of DMF at room temperature. The resulting mixture was stirred for 10 min and then 1.5 mL (0.016 moles) of 2-chloroethyl methyl sulfide was added. Resulting mixture was heated at 100°C for 12 h and then cooled to room temperature. Ethanol, 20 ml, was added and the reaction was concentrated at 70°C. The residue was dissolved in 50 mL of EtOH; 5 g of silica gel was added, and the mixture was concentrated. The residue was chromatographed on 100 g silica gel eluting with CH₂Cl₂-EtOH-48% NH₄OH (20:1:0.1) to give 1.0 g of a brown oil that solidified on standing. Trituration of the solid with MeOH gave a light yellow solid; mp = 102-104°C.

¹H NMR (400 MHz, CDCl₃) δ: 8.65 (br s, 1H), 6.55 (s, 1H), 3.78 (m, 4H), 3.38 (t, 2H), 2.70 (t, 2H), 2.16 (s, 3H).

In Tables 1 through 33, the following notations have been used:

allyl 5

 $CH_2CH=CH_2$

propargyl

 $CH_2C\equiv CH$

Me

-CH₃

10

 $\mathbf{E}\mathbf{t}$

 $-CH_2-CH_3$

n-Pr

 $-CH_2-CH_2-CH_3$

15

i-Pr

-CH-CH3 CH₃

n-Bu

 $-CH_2-CH_2-CH_2-CH_3$

20

i-Bu

-CH $_2$ -CH-CH $_3$ CH₃

s-Bu

 $-CH-CH_2-CH_2$

CH₃

25

t-Bu

ÇН₃ -C-CH₃

Ċн₃

30

 $\mathbf{P}\mathbf{h}$

c-Pr

15

c-Bu =

10 c-hexyl =

c-pentyl

20

25

30

TABLE 1

 $\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

	\mathbb{R}^1	\mathbb{R}^3	R4	R ¹	\mathbb{R}^3	R ⁴
10						
	Me	i-Pr	н	Me	$CH_2OC(CH_3)_2OCH_3$	H
	Me	n-Bu	н	Me	SO_2CH_3	H
	Me	i-Bu	н	Me	$SO_2CH_2CH_3$	H
	Me	s-Bu	H	Me	$SO_2CH_2CH_2CH_3$	H
15	Me	t-Bu	н	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	H
	Me	н	н	Me	CH ₂ CHCH ₂	H
	Me	COCH ₃	н	Me	CH ₂ CH ₂ CHCH ₂	H
	Me	СНО	н	Me	CH2CHCHCH3	H
	Me .	COCH ₂ CH ₃	н	Me	CH ₂ CCH	H
20	Me	CH ₂ OCH ₃	н	Me	CH ₂ CH ₂ CCH	H
	Me	CH ₂ OCH ₂ CH ₃	н	Me	CH ₂ CCCH ₃	H
	Me	CH ₂ OCH ₂ CH ₂ CH ₃	н	Me	CH ₂ CN	H
	Me	CH ₂ OCH ₂ CH ₂ OCH ₃	н	Me	NHCH ₃	H
	Me	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	H	Me	NHCH ₂ CH ₃	H
25	Me	OCH ₃	н	Me	NHCH(CH ₃) ₂	H
	Me	OCH ₂ CH ₃	н	Me	NHC(CH ₃) ₃	H
	Me	OCH ₂ CH ₂ CH ₃	н	Me	NHCH2CH2CH2CH3	H
	Me	OCH(CH ₃) ₂	н	Me	NHCH ₂ CH ₂ CH ₃	H
	Me	CH2OCH(CH3)OCH3	н	Me	N(CH ₃) ₂	H
30		0 0 0		Me	N(CH ₃)CH ₂ CH ₃	H
				Me	N(CH ₂ CH ₃) ₂	H
				Me	CH ₂ Ph	H
				Me	Et	Me
				Me	n-Pr	Me
35				Me	i-Pr	Me
-			14	Me	1-FT	TATE

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	R1	<u>R</u> 3	<u>R</u> 4
5	Me	n-Bu	Me	Me	OCH_2CH_3	Et
_	Me	COCH ₃	Me	Me	SO ₂ CH ₃	Et
	Me	СНО	Me	Me	$\mathrm{CH_2CH_2SO_2Me}$	Et
	Me	COCH ₂ CH ₃	Me	Me	${ m CH_2CHCH_2}$	Et
	Me	CH ₂ OCH ₃	Me	Me	CH ₂ CCH	Et
10	Me	${ m CH_2OCH_2CH_2OCH_3}$	Me	Me	CH ₂ CN	Et
	Me	OCH ₃	Me	Me	$N(CH_3)_2$	Et
	Me	OCH ₂ CH ₃	Me	Me	n-Pr	n-Pr
	Me	SO_2CH_3	Me	Me	i-Pr	i-Pr
	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	Me	Me	COCH ₃	n-Pr
15	Me	CH ₂ CCH	Me	Me	СНО	n-Pr
	Me	CH ₂ CN	Me	Me	сосн ₂ сн ₃	n-Pr
	Me	NHCH ₃	Me	Me	CH ₂ OCH ₃	n-Pr
	Me	$N(CH_3)_2$	Me	Me	$\mathrm{CH_2OCH_2CH_2OCH_3}$	n-Pr
	Me ·	Et	Et	Me	OCH ₃	n-Pr
20	Me	COCH ₃	Et	Me	OCH ₂ CH ₃	n-Pr
	Me	СНО	Et	Me	SO_2CH_3	n-Pr
	Me	сосн ₂ сн ₃	Et	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	n-Pr
	Me	CH ₂ OCH ₃	Et	Me	CH ₂ CN	n-Pr
	Me	CH2OCH2CH2OCH3	Et	Me	$N(CH_3)_2$	n-Pr
25	Me	OCH ₃	Et			

	R ¹	R ³	R ⁴	R ¹	\mathbb{R}^3	<u>R</u> ⁴
5	Me	COCH ₃	n-Bu	Me	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-Bu
	Me	СНО	n-Bu	Me	CH ₂ CCH	c-Bu
	Me	COCH ₂ CH ₃	n-Bu	Me	$N(CH_3)_2$	c-Bu
	Me	CH ₂ OCH ₃	n-Bu	Me	H	$(CH_2)_3Cl$
	Me	${ m CH_2OCH_2CH_2OCH_3}$	n-Bu	Me	Me	$(CH_2)_3Cl$
10	Me	OCH ₃	n-Bu	Me	Et	$(CH_2)_3Cl$
	Me	SO ₂ CH ₃	n-Bu	Me	OCH ₃	$(CH_2)_3Cl$
	Me	CH ₂ CN	n-Bu	Me	H	c-pentyl
	Me	Me	e-Pr	Me	Me	c-pentyl
	Me	Et	c-Pr	Me	Et	c-pentyl
15	Me	n-Pr	c-Pr	Me	och ₃	c-pentyl
	Me	OCH ₃	c-Pr	Me	CH_2CHCH_2	c-pentyl
	Me	CH2CHCH2	c-Pr	Me	$\mathrm{CH}_2\mathrm{CCH}$	c-pentyl
	Me	CH ₂ CCH	c-Pr	Me	CH_2Ph	c-pentyl
	Me	N(CH ₃) ₂	c-Pr	Me	н	c-hexyl
2 0	Me	Me	c-Bu	Me	Me	c-hexyl
	Me	Et	c-Bu	Me	Et	c-hexyl
	Me	n-Pr	c-Bu	Me	OCH ₃	c-hexyl
	Me	OCH ₃	c-Bu	Me	$\mathbf{CH_2}\mathbf{CHCH_2}$	c-hexyl
			- 1	Me	CH ₂ CCH	c-hexyl

	R ¹	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Me	CH ₂ Ph	CH ₂ -c-Pr	Et	сн ₂ осн ₃	H
Ū	Me	COCH ₃	CH ₂ -c-Pr	Et	$(CH_2)_2OCH_2CH_3$	H
	Me	CHO	CH ₂ -c-Pr	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	H
	Me	CH ₂ OCH ₃	CH ₂ -c-Pr	Et	OCH ₃	H
	Me	SO_2CH_3	CH ₂ -c-Pr	Et	OCH ₂ CH ₃	H
10	Me	CH ₂ CN	CH ₂ -e-Pr	Et	SO ₂ CH ₃	H
	Me	H	CH ₂ C(Cl)CH ₂	Et	$(CH_2)_2SO_2CH_3$	H
	Me	Me	CH ₂ C(Cl)CH ₂	Et	CH_2CHCH_2	H
	Me	Et	CH ₂ C(Cl)CH ₂	Et	$CH_2CHCHCH_3$	H
	Me	n-Pr	$CH_2C(Cl)CH_2$	Et	$(CH_2)_2CHCH_2$	H
15	Me	СНО	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CCH	H
	Me	och ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH_2CCCH_3	H
	Me	SO_2CH_3	$\mathrm{CH_2C(Cl)CH_2}$	Et	$\mathrm{CH_{2}CN}$	H
	Me	$N(CH_3)_2$	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	NHCH ₃	H
	Et	. H	H	Et	$N(CH_3)_2$	H
20	Et	Me	н	Et	CH ₂ Ph	H
	Et	Et	H	Et	Et	Me
	Et	n-Pr	H	Et	n-Pr	Me
	Et	i-Pr	H	Et	Me	Me
	Et	n-Bu	H	Et	COCH ₃	Me
2 5	Et	i-Bu	H	Et	CHO	Me
	Et	s-Bu	H	Et	CH ₂ OCH ₃	Me
	Et	t-Bu	H	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	Me
	Et	COCH ₃	H	Et	OCH ₃	Me
	Et '	СНО	H	Et	SO_2CH_3	Me

	R ¹	\mathbb{R}^3	R ⁴	\mathbb{R}^1	<u>R</u> ³	\mathbb{R}^4
5	Et	$(CH_2)_2SO_2CH_3$	Me	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	n-Pr
ð	Et	CH ₂ CHCH ₂	Me	Et	OCH ₃	n-Pr
	Et	CH ₂ CCH	Me	Et	SO_2CH_3	n-Pr
	Et	CH ₂ CN	Me	Et	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	n-Pr
	Et	NHCH ₃	Me	Et	CH ₂ CHCH ₂	n-Pr
10	Et	N(CH ₃) ₂	Me	Et	CH ₂ CCH	n-Pr
10	Et	CH ₂ Ph	Me	Et	CH ₂ CN	n-Pr
	Et	Et	Et	Et	$N(CH_3)_2$	n-Pr
	Et	COCH ₃	Et	Et	CH ₂ Ph	n-Pr
	Et	СНО	Et	Et	n-Bu	n-Bu
15	Et	${ m CH_2OCH_3}$	Et	Et	СНО	n-Bu
10	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	Et	Et	COCH ₃	n-Bu
	Et	OCH ₃	Et	Et	CH ₂ OCH ₃	n-Bu
	Et	SO_2CH_3	Et	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	n-Bu
	Et	$(CH_2)_2SO_2CH_3$	Et	Et	OCH ₃	n-Bu
20	Et	CH ₂ CCH	Et	Et	SO_2CH_3	n-Bu
20	Et	CH ₂ CHCH ₂	Et	Et	CH ₂ CN	n-Bu
	Et	CH ₂ CN	Et	Et	CH ₂ Ph	n-Bu
	Et	N(CH ₃) ₂	Et	Et	i-Pr	i-Pr
	Et	CH ₂ Ph	Et	Et	Me	c-Pr
25	Et	n-Pr	n-Pr	Et	Et	c-Pr
	Et	СНО	n-Pr	Et	n-Pr	c-Pr
	Et	COCH ₃	n-Pr	Et	och ₃	c-Pr
	Et	CH ₂ OCH ₃	n-Pr	Et	CH ₂ CHCH ₂	c-Pr

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	R ³	R ⁴
5	Et	CH ₂ CCH	c-Pr	Et	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl
Ū	Et	$N(CH_3)_2$	c-Pr	Et	CH ₂ Ph	c-hexyl
	Et	CH ₂ Ph	c-Pr	Et	CH ₂ Ph	CH ₂ -c-Pr
	Et	н	c-Pr	Et	CHO	CH ₂ -c-Pr
	Et	H	c-Bu	Et	${ m CH_2OCH_3}$	$\mathrm{CH}_{2} ext{-c-Pr}$
10	Et	Me	c-Bu	Et	SO_2CH_3	CH ₂ -c-Pr
	Et	OCH ₃	c-Bu	Et	CH ₂ CN	CH_2 -c-Pr
	Et	$N(CH_3)_2$	c-Bu	Et	H	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	CH ₂ Ph	c-Bu	Et	Me	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	H	(CH ₂) ₃ Cl	Et	Et	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
1 5	Et	Me	(CH ₂) ₃ Cl	$\mathbf{E}\mathbf{t}$	n-Pr	$CH_2C(CI)CH_2$
	Et	OCH ₃	(CH ₂) ₃ Cl	Et	осн ₃	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	CH ₂ Ph	(CH ₂) ₃ Cl	Et	$N(CH_3)_2$	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	н	c-pentyl	n-Pr	н	H
	Et	Me	c-pentyl	n-Pr	Me	H
20	Et	E t	c-pentyl	n-Pr	Et	H
	Et	och ₃	c-pentyl	n-Pr	n-Pr	H
	Et	CH_2CHCH_2	c-pentyl	n-Pr	i-Pr	H -
	Et	CH ₂ CCH	c-pentyl	n-Pr	n-Bu	H
	Et	CH ₂ Ph	c-pentyl	n-Pr	i-Bu	H
2 5	Et	H	c-hexyl	n-Pr	s-Bu	H
	Et	Me	c-hexyl	n-Pr	t-Bu	H
	Et	Et	c-hexyl	n-Pr	CHO	H
	Et	och ₃	c-hexyl	n-Pr	COCH ₃	H
	Et	$\mathrm{CH_2CHCH_2}$	c-hexyl	n-Pr	CH ₂ OCH ₃	H

	R ¹	R ³	R ⁴	\mathbb{R}^1	R ³	R ⁴
5	n-Pr	OCH ₃	H	n-Pr	${ m CH_2Ph}$	n-Pr
U	n-Pr	SO_2CH_3	H	n-Pr	n-Bu	n-Bu
	n-Pr	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	H	n-Pr	CHO	n-Bu
	n-Pr	$\mathrm{CH_2CHCH_2}$	H	n-Pr	SO_2CH_3	n-Bu
	n-Pr	CH ₂ CCH	H	n-Pr	CH ₂ CN	n-Bu
10	n-Pr	CH ₂ CN	H	n-Pr	$\mathrm{CH_2Ph}$	n-Bu
10	n-Pr	$N(CH_3)_2$	H	n-Pr	Me	c-Pr
	n-Pr	$\mathrm{CH_2Ph}$	H	n-Pr	H	c-Pr
	n-Pr	Me	Me	n-Pr	H	$(CH_2)_3CI$
	n-Pr	СНО	Me	n-Pr	H	c-pentyl
15	n-Pr	COCH ₃	Me	n-Pr	H	c-hexyl
	n-Pr	OCH ₃	Me	n-Pr	H	$CH_2C(Cl)CH_2$
	n-Pr	SO_2CH_3	Me	n-Pr	H	CH ₂ -c-Pr
	n-Pr	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	Me	n-Bu	Me	H
	n-Pr	CH ₂ CN	Мe	$\mathrm{CH_2CH_2Cl}$	Me	H
20	n-Pr	$\mathrm{CH_2Ph}$	Me	$(CH_2)_3Cl$	Me	H
20	n-Pr	Et	Et	(CH ₂) ₄ Cl	Me	H
	n-Pr	CHO	Et	c-Pr	Me	H
	n-Pr	COCH ₃	Et	c-Bu	Me	H
	n-Pr	осн ₃	Et	i-Pr	Me	H
25	n-Pr	SO ₂ CH ₃	Et	c-pentyl	Me	н
	n-Pr	CH ₂ CN	Et	c-hexyl	Me	H
	n-Pr	$\mathrm{CH_2Ph}$	Et	CH ₂ -c-Pr	Me	H
	n-Pr	i-Pr	i-Pr	CH ₂ -c-pentyl	Me	H
	n-Pr	СНО	n-			
30	Pr			0-		
_ •	n-Pr	SO ₂ CH ₃	n-			
	Pr			97		

TABLE 2

10	\mathbb{R}^1	<u>R</u> ³	R ⁴	R ¹	\mathbb{R}^3	R4
	Me	i-Pr	н	Me	CH2OC(CH3)2OCH3	H
	Me	n-Bu	н	Me	SO ₂ CH ₃	H
	Me	i-Bu	н	Me	SO ₂ CH ₂ CH ₃	н
	Me	s-Bu	H	Me	$SO_2CH_2CH_2CH_3$	H
15	Me	t-Bu	н	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	H
	Me	н	H	Me	CH ₂ CHCH ₂	H
	Me	COCH ₃	H	Me	$\mathrm{CH_2CH_2CHCH_2}$	H
	Me	СНО	H	Me	CH ₂ CHCHCH ₃	H
	Me	COCH ₂ CH ₃	H	Me	CH ₂ CCH	H
20	Me	CH ₂ OCH ₃	H	Me	CH ₂ CH ₂ CCH	H
	Me	CH ₂ OCH ₂ CH ₃	H	Me	CH ₂ CCCH ₃	H
	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}CH_{3}}$	H	Me	CH ₂ CN	H
	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}OCH_{3}}$	H	Me	NHCH ₃	H
	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}OCH_{2}CH_{3}}$	H	Me	$\mathrm{NHCH_{2}CH_{3}}$	H
2 5	Me	OCH3	H	Me	NHCH(CH ₃) ₂	H
	Me	OCH ₂ CH ₃	H	Me	NHC(CH ₃) ₃	H
	Me	OCH ₂ CH ₂ CH ₃	н	Me	$\mathrm{NHCH_{2}CH_{2}CH_{2}CH_{3}}$	H
	Me	OCH(CH ₃) ₂	H	Me	$\mathrm{NHCH_{2}CH_{2}CH_{3}}$	H
	Me	CH ₂ OCH(CH ₃)OCH ₃	H	Me	$N(CH_3)_2$	H
30				Me	N(CH ₃)CH ₂ CH ₃	H
				Me	$N(CH_2CH_3)_2$	H
				Me	CH ₂ Ph	H
				Me	Et	Me
0.5				Me	n-Pr	Me
3 5				Me	i-Pr	Me

	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4	R ¹	R ³	\mathbb{R}^4
5	Me	n-Bu	Me	Me	осн ₂ сн ₃	Et
	Me	COCH3	Me	Me	so ₂ сн ₃	Et
	Me Me	CHO COCH ₂ CH ₃	Me Me Me	Me Me Me	CH ₂ CH ₂ SO ₂ Me CH ₂ CHCH ₂ CH ₂ CCH	Et Et Et
10	Me Me Me	CH ₂ OCH ₃ CH ₂ OCH ₂ CH ₂ OCH ₃ OCH ₃	Me Me	Me Me	CH ₂ CN N(CH ₃) ₂	Et Et
	Me	OCH ₂ CH ₃	Me	Me	n-Pr	n-Pr
	Me	SO ₂ CH ₃	Me	Me	i-Pr	i-Pr
	Me	CH ₂ CH ₂ SO ₂ CH ₃	Me	Me	COCH ₃	n-Pr
1 5	Me	CH ₂ CCH	Me	Me	CHO	n-Pr
	Me	CH ₂ CN	Me	Me	COCH ₂ CH ₃	n-Pr
	Me	NHCH ₃	Me	Me	CH ₂ OCH ₃	n-Pr
	Me	N(CH ₃) ₂	Me	Me	CH ₂ OCH ₂ CH ₂ OCH ₃	n-Pr
	Me	Et	Et	Me	OCH ₃	n-Pr
2 0	Me Me	сосн ₃	Et Et	Me Me	OCH ₂ CH ₃ SO ₂ CH ₃	n-Pr n-Pr
	Me	COCH ₂ CH ₃	Et	Me	CH ₂ CH ₂ SO ₂ CH ₃	n-Pr
	Me	CH ₂ OCH ₃	Et	Me	CH ₂ CN	n-Pr
	Me	CH ₂ OCH ₂ CH ₂ OCH ₃	Et	Me	N(CH ₃) ₂	n-Pr
2 5	Me	OCH _{3.}	Et			

	R1	\mathbb{R}^3	R ⁴	R1	R ³	R ⁴
5	Me	COCH ₃	n-Bu	Me	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-Bu
	Me	СНО	n-Bu	Me	CH ₂ CCH	c-Bu
	Me	COCH ₂ CH ₃	n-Bu	Me	$N(CH_3)_2$	c-Bu
	Me	CH ₂ OCH ₃	n-Bu	Me	H	$(CH_2)_3Cl$
	Me	$\mathtt{CH_2OCH_2CH_2OCH_3}$	n-Bu	Me	Me	$(CH_2)_3Cl$
10	Me	OCH ₃	n-Bu	Me	Et	$(CH_2)_3Cl$
	Me	SO_2CH_3	n-Bu	Me	OCH ₃	$(CH_2)_3Cl$
	Me	CH ₂ CN	n-Bu	Me	H	c-pentyl
	Me	Me	c-Pr	Me	Me	c-pentyl
	Me	Et	c-Pr	Me	Et	c-pentyl
15	Me	n-Pr	c-Pr	Me	OCH ₃	c-pentyl
	Me	OCH ₃	c-Pr	Me	CH_2CHCH_2	c-pentyl
	Me	CH ₂ CHCH ₂	c-Pr	Me	CH ₂ CCH	c-pentyl
	Me	CH ₂ CCH	c-Pr	Me	CH_2Ph	c-pentyl
	Me ·	$N(CH_3)_2$	c-Pr	Me	н	c-hexyl
20	Me	Me	c-Bu	Me	Me	c-hexyl
	Me	Et	c-Bu	Me	Et	c-hexyl
	Me	n-Pr	c-Bu	Me	осн ₃	c-hexyl
	Me	OCH ₃	c-Bu	Me	CH_2CHCH_2	c-hexyl
				Me	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl

	\mathbb{R}^1	R ³	R ⁴	R ¹	\mathbb{R}^3	\mathbb{R}^4
5	Me	$\mathrm{CH_2Ph}$	CH ₂ -c-Pr	Et	сн ₂ осн ₃	н
U	Me	COCH ₃	CH ₂ -c-Pr	Et	$(CH_2)_2OCH_2CH_3$	H
	Me	СНО	CH ₂ -c-Pr	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	H
	Me	CH ₂ OCH ₃	CH ₂ -c-Pr	Et	OCH ₃	H
	Me	SO ₂ CH ₃	CH ₂ -c-Pr	Et	OCH ₂ CH ₃	H
10	Me	CH ₂ CN	CH ₂ -c-Pr	Et	SO ₂ CH ₃	H
10	Me	H	CH ₂ C(Cl)CH ₂	Et	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	H
	Me	Me	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH_2CHCH_2	H
	Me	Et	CH ₂ C(Cl)CH ₂	Et	$CH_2CHCHCH_3$	H
	Me	n-Pr	CH ₂ C(Cl)CH ₂	Et	$(CH_2)_2CHCH_2$	H
15	Me	СНО	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CCH	H
10	Me	OCH ₃	CH ₂ C(Cl)CH ₂	Et	CH ₂ CCCH ₃	H
	Me	SO_2CH_3	CH ₂ C(Cl)CH ₂	Et	CH ₂ CN	H
	Me	$N(CH_3)_2$	CH ₂ C(Cl)CH ₂	Et	NHCH ₃	H
	Et	H	н	Et	$N(CH_3)_2$	H
20	Et	Me	н	Et	CH ₂ Ph	H
	Et	Et	н	Et	Et	Me
	Et	n-Pr	н	Et	n-Pr	Me
	Et	i-Pr	н	Et	Me	Me
	Et	n-Bu	н	Et	COCH ₃	Me
2 5	Et	i-Bu	н	Et	СНО	Me
	Et	s-Bu	н	Et	CH ₂ OCH ₃	Me
	Et	t-Bu	н	Et	$CH_2O(CH_2)_2OCH_3$	Me
	Et	COCH ₃	Н	Et	OCH ₃	Me
	Et	СНО	н	Et	SO ₂ CH ₃	Me

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Et	$(CH_2)_2SO_2CH_3$	Me	Et	CH ₂ O(CH ₂) ₂ OCH ₃	n-Pr
	Et	CH_2CHCH_2	Me	Et	OCH ₃	n-Pr
	Et	CH ₂ CCH	Me	Et	SO ₂ CH ₃	n-Pr
	Et	CH ₂ CN	Me	Et	$(CH_2)_2SO_2CH_3$	n-Pr
	Et	NHCH ₃	Me	Et	CH ₂ CHCH ₂	n-Pr
10	Et	$N(CH_3)_2$	Me	Et	CH ₂ CCH	n-Pr
	Et	CH_2Ph	Me	Et	CH ₂ CN	n-Pr
	Et	Et	Et	Et	$N(CH_3)_2$	n-Pr
	Et	COCH ₃	Et	Et	CH ₂ Ph	n-Pr
	Et	CHO	Et	Et	n-Bu	n-Bu
15	Et	CH ₂ OCH ₃	Et	Et	СНО	n-Bu
	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	Et	Et	COCH ₃	n-Bu
	Et	OCH ₃	Et	Et	CH ₂ OCH ₃	n-Bu
	Et	SO_2CH_3	Et	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	n-Bu
	Et	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	Et	Et	OCH ₃	n-Bu
20	Et	CH ₂ CCH	Et	Et	SO ₂ CH ₃	n-Bu
	Et	CH_2CHCH_2	Et	Et	CH ₂ CN	n-Bu
	Et	CH ₂ CN	Et	Et	CH ₂ Ph	n-Bu
	Et	$N(CH_3)_2$	Et	Et	i-Pr	i-Pr
	Et	CH ₂ Ph	Et	Et	Ме	c-Pr
2 5	Et	n-Pr	n-Pr	Et	Et	c-Pr
	Et	CHO	n-Pr	Et	n-Pr	c-Pr
	Et	COCH ₃	n-Pr	Et	OCH ₃	c-Pr
	Et	CH ₂ OCH ₃	n-Pr	Et	CH ₂ CHCH ₂	c-Pr

	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4	R ¹	\mathbb{R}^3	R ⁴
5	Et	CH ₂ CCH	c-Pr	Et	CH ₂ CCH	c-hexyl
Đ	Et	$N(CH_3)_2$	c-Pr	Et	CH ₂ Ph	c-hexyl
	Et	CH ₂ Ph	c-Pr	Et	CH ₂ Ph	CH ₂ -c-Pr
	Et	н	c-Pr	Et	CHO	CH ₂ -c-Pr
	Et	H	c-Bu	Et	CH ₂ OCH ₃	CH ₂ -c-Pr
10	Et	Me	c-Bu	Et	SO_2CH_3	CH ₂ -c-Pr
10	Et	OCH ₃	c-Bu	Et	CH ₂ CN	CH ₂ -c-Pr
	Et	$N(CH_3)_2$	c-Bu	Et	H	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	CH ₂ Ph	c-Bu	Et	Me	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	н	$(CH_2)_3Cl$	Et	Et	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	Me	(CH ₂) ₃ Cl	Et	n-Pr	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
15	Et	OCH ₃	(CH ₂) ₃ Cl	Et	осн ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	CH ₂ Ph	(CH ₂) ₃ Cl	Et	$N(CH_3)_2$	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	н	c-pentyl	n-Pr	H	H
	Et	.Me	c-pentyl	n-Pr	Me	H
20	Et	Et	c-pentyl	n-Pr	Et	H
	Et	och ₃	c-pentyl	n-Pr	n-Pr	H
	Et	CH2CHCH2	. c-pentyl	n-Pr	i-Pr	H
	Et	CH ₂ CCH	c-pentyl	n-Pr	n-Bu	H
	Et	$\mathrm{CH_2Ph}$	c-pentyl	n-Pr	i-Bu	H
25	Et	н	c-hexyl	n-Pr	s-Bu	H
20	Et	Me	c-hexyl	n-Pr	t-Bu	H
	Et	Et	c-hexyl	n-Pr	CHO	H
	Et	OCH ₃	c-hexyl	n-Pr	COCH ₃	H
	Et	CH ₂ CHCH ₂	c-hexyl	n-Pr	CH ₂ OCH ₃	H

	\mathbb{R}^1	\mathbb{R}^3	R4	\mathbb{R}^1	R ³	R ⁴
5	n-Pr	OCH3	н	n-Pr	$\mathrm{CH_2Ph}$	n-Pr
	n-Pr	SO_2CH_3	H	n-Pr	n-Bu	n-Bu
	n-Pr	$(CH_2)_2SO_2CH_3$	H	n-Pr	СНО	n-Bu
	n-Pr	CH_2CHCH_2	H	n-Pr	SO_2CH_3	n-Bu
	n-Pr	CH ₂ CCH	H	n-Pr	$\mathrm{CH}_2\mathrm{CN}$	n-Bu
10	n-Pr	CH ₂ CN	H	n-Pr	$\mathrm{CH_2Ph}$	n-Bu
	n-Pr	$N(CH_3)_2$	н	n-Pr	Me	c-Pr
	n-Pr	CH ₂ Ph	H	n-Pr	H	c-Pr
	n-Pr	Me	Me	n-Pr	H	$(CH_2)_3Cl$
	n-Pr	СНО	Me	n-Pr	H	c-pentyl
15	n-Pr	COCH ₃	Mе	n-Pr	H	c-hexyl
	n-Pr	OCH ₃	Me	n-Pr	H	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	n-Pr	SO_2CH_3	Me	n-Pr	H	CH ₂ -c-Pr
	n-Pr	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	Me	n-Bu	Me	H
	n-Pr	CH ₂ CN	Me	$\mathrm{CH_2CH_2Cl}$	Me	H
20	n-Pr	CH ₂ Ph	Me	$(CH_2)_3CI$	Me	H
	n-Pr	Et	Et	(CH ₂) ₄ Cl	Me	H
	n-Pr	CHO	Et	c-Pr	Me	H
	n-Pr	COCH ₃	Et	c-Bu	Me	H
	n-Pr	OCH ₃	Et	i-Pr	Me	H
2 5	n-Pr	SO ₂ CH ₃	Et	c-pentyl	Me	H
	n-Pr	CH ₂ CN	Et	c-hexyl	Me	H
	n-Pr	CH ₂ Ph	Et	CH ₂ -c-Pr	Me	H
	n-Pr	i-Pr	i-Pr	CH ₂ -c-pentyl	Me	H
	n-Pr	CHO	n-			
30	Pr					
	n-Pr	SO_2CH_3	n-			
	Pr					

TABLE 3

 NO_2 5 -R³ R¹S $\dot{\mathbf{R}^4}$ Мe \mathbb{R}^4 \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^3 10 H CH2OC(CH3)2OCH3 Me H Me i-Pr Me SO₂CH₃ H H Me n-Bu SO₂CH₂CH₃ Me Н H i-Bu Me Me SO₂CH₂CH₂CH₃ H H Me s-Bu 15 H CH2CH2SO2CH3 Me H t-Bu Me H Me CH₂CHCH₂ H H Me H COCH₃ CH₂CH₂CHCH₂ Me Me H H Me CH2CHCHCH3 H Me CHO CH_2CCH H H Me COCH₂CH₃ Me 20 H H Me CH₂CH₂CCH CH₂OCH₃ Me Н H Me CH₂CCCH₃ CH₂OCH₂CH₃ Me CH2OCH2CH2CH3 H Me CH₂CN H Me H H Me NHCH₃ Me CH₂OCH₂CH₂OCH₃ H CH₂OCH₂CH₂OCH₂CH₃ H Me NHCH₂CH₃ Me 25 OCH₃ NHCH(CH₃)₂ H Me H Me H H Me NHC(CH₃)₃ Me OCH₂CH₃ H Me NHCH2CH2CH2CH3 H OCH₂CH₂CH₃ Me H Me NHCH₂CH₂CH₃ H Me OCH(CH₃)₂ $N(CH_3)_2$ H CH2OCH(CH3)OCH3 H Me Me 30 H Me N(CH₃)CH₂CH₃ $N(CH_2CH_3)_2$ H Me H Me CH₂Ph Me Me Et Me Me n-Pr 35 Me Me i-Pr

WO 91/17659 PCT/US91/03118

5 Me Me	n-Bu COCH ₃	Me	Me	OCTT CTT	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Me	Me	OCH ₂ CH ₃ SO ₂ CH ₃	Et Et
Me	CHO	Me	Me	CH ₂ CH ₂ SO ₂ Me	Et
Me Me	COCH ₂ CH ₃ CH ₂ OCH ₃	Me Me	Me Me	CH ₂ CHCH ₂ CH ₂ CCH	Et Et
10 Me Me	CH ₂ OCH ₂ CH ₂ OCH ₃ OCH ₃	Me Me	Me Me	CH ₂ CN N(CH ₃) ₂	Et Et
Me Me	OCH ₂ CH ₃ SO ₂ CH ₃	Me Me	Me Me	n-Pr i-Pr	n-Pr i-Pr
Me	$\mathrm{CH_2CH_2SO_2CH_3}$	Me Me	Me	COCH ₃	n-Pr
Me	CH ₂ CN	Me	Me Me	CHO COCH ₂ CH ₃	n-Pr n-Pr
Me Me	o	Me Me	Me Me	CH ₂ OCH ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	n-Pr n-Pr
Me 20 Me		Et Et	Me Me	OCH ₃ OCH ₂ CH ₃	n-Pr n-Pr
Me Me	CHO COCH ₂ CH ₃	Et Et	Me Me	SO_2CH_3 $CH_2CH_2SO_2CH_3$	n-Pr n-Pr
Me Me	CH ₂ OCH ₃	Et Et	Me Me	CH ₂ CN	n-Pr n-Pr
25 Me	2 2 2 0	Et	Me	N(CH ₃) ₂	H-LL

	R ¹	\mathbb{R}^3	R ⁴	R ¹	\mathbb{R}^3	R ⁴
5	Me	COCH ₃	n-Bu	Me	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-Bu
	Me	СНО	n-Bu	Me	CH ₂ CCH	c-Bu
	Me	COCH ₂ CH ₃	n-Bu	Me	$N(CH_3)_2$	c-Bu
	Me	CH ₂ OCH ₃	n-Bu	Me	H	$(CH_2)_3Cl$
	Me	CH2OCH2CH2OCH3	n-Bu	Me	Me	$(CH_2)_3Cl$
10	Me	OCH ₃	n-Bu	Me	Et	$(CH_2)_3Cl$
	Me	SO ₂ CH ₃	n-Bu	Me	och ₃	$(CH_2)_3Cl$
	Me	CH ₂ CN	n-Bu	Me	H	c-pentyl
	Me	Me	c-Pr	Me	Me	c-pentyl
	Me	Et	c-Pr	Me	Et	c-pentyl
15	Me	n-Pr	c-Pr	Me	OCH3	c-pentyl
	Me	OCH ₃	c-Pr	Me	CH_2CHCH_2	c-pentyl
	Me	CH ₂ CHCH ₂	c-Pr	Me	CH_2CCH	c-pentyl
	Me	CH ₂ CCH	c-Pr	Me	${ m CH_2Ph}$	c-pentyl
	Me	N(CH ₃) ₂	c-Pr	Me	H	c-hexyl
20	Me	Me	c-Bu	Me	Me	c-hexyl
	Me	Et	c-Bu	Me	Et	c-hexyl
	Me	n-Pr	c-Bu	Me	осн ₃	c-hexyl
	Me	OCH ₃	c-Bu	Me	CH_2CHCH_2	c-hexyl
		J	100	Me	CH ₂ CCH	c-hexyl

	R1	<u>R</u> 3	R ⁴	<u>R</u> 1	R ³	\mathbb{R}^4
5	Me	$\mathrm{CH_2Ph}$	CH ₂ -c-Pr	Et	CH ₂ OCH ₃	H
•	Me	COCH ₃	CH ₂ -c-Pr	Et	$(CH_2)_2OCH_2CH_3$	H
	Me	СНО	CH ₂ -c-Pr	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	H
	Me	CH ₂ OCH ₃	CH ₂ -c-Pr	Et	OCH ₃	H
	Me	SO_2CH_3	CH ₂ -c-Pr	Et	OCH_2CH_3	H
10	Me	CH ₂ CN	CH ₂ -c-Pr	Et	SO_2CH_3	H
	Me	H	CH ₂ C(Cl)CH ₂	Et	$(CH_2)_2SO_2CH_3$	H
	Me	Me	CH ₂ C(Cl)CH ₂	Et	CH_2CHCH_2	H
	Me	Et	CH ₂ C(Cl)CH ₂	Et	$\mathrm{CH}_2\mathrm{CHCHCH}_3$	H
	Me	n-Pr	CH ₂ C(Cl)CH ₂	Et	$(CH_2)_2CHCH_2$	H
15	Me	CHO	CH ₂ C(Cl)CH ₂	Et	CH ₂ CCH	H
	Me	och ₃	CH ₂ C(Cl)CH ₂	Et	CH ₂ CCCH ₃	H
	Me	SO ₂ CH ₃	CH ₂ C(Cl)CH ₂	Et	CH ₂ CN	H
	Me	$N(CH_3)_2$	CH ₂ C(Cl)CH ₂	Et	NHCH ₃	H
	Et	H	H	Et	$N(CH_3)_2$	H
20	Et	Me	H	Et	CH ₂ Ph	H
	Et	Et	H	Et	Et	Me
	Et	n-Pr	H	Et	n-Pr	Me
	Et	i-Pr	н	Et	Me	Me
	Et	n-Bu	H	Et	COCH ₃	Me
2 5	Et	i-Bu	H	Et	CHO	Me
	Et	s-Bu	H	Et	CH ₂ OCH ₃	Me
	Et	t-Bu	H	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	Me
	Et	COCH ₃	H	Et	OCH ₃	Me
	Et	СНО	н	Et	SO ₂ CH ₃	Me

	\mathbb{R}^1	\mathbb{R}^3	<u>R</u> ⁴	R ¹	<u>R</u> ³	R4
5	Et	$(CH_2)_2SO_2CH_3$	Me	Et	CH ₂ O(CH ₂) ₂ OCH ₃	n-Pr
Ð	Et	CH ₂ CHCH ₂	Me	Et	OCH ₃	n-Pr
	Et	CH ₂ CCH	Me	Et	SO_2CH_3	n-Pr
	Et	CH ₂ CN	Me	Et	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	n-Pr
	Et	NHCH3	Me	Et	CH ₂ CHCH ₂	n-Pr
10	Et	$N(CH_3)_2$	Me	Et	CH ₂ CCH	n-Pr
10	Et	CH ₂ Ph	Me	Et	CH ₂ CN	n-Pr
	Et	- Et	Et	Et	$N(CH_3)_2$	n-Pr
	Et	COCH ₃	Et	Et	$\mathrm{CH_2Ph}$	n-Pr
	Et	СНО	Et	Et	n-Bu	n-Bu
1 5	Et	CH ₂ OCH ₃	Et	Et	СНО	n-Bu
10	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	Et	Et	COCH ₃	n-Bu
	Et	OCH ₃	Et	Et	CH ₂ OCH ₃	n-Bu
	Et	SO_2CH_3	Et	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	n-Bu
	Et	$(CH_2)_2SO_2CH_3$	Et	Et	OCH ₃	n-Bu
20	Et	CH ₂ CCH	Et	Et	SO ₂ CH ₃	n-Bu
20	Et	CH ₂ CHCH ₂	Et	Et	CH ₂ CN	n-Bu
	Et	CH ₂ CN	Et	Et	$\mathrm{CH_2Ph}$	n-Bu
	Et	N(CH ₃) ₂	Et	Et	i-Pr	i-Pr
	Et	$\mathrm{CH_2Ph}$	Et	Et	Me	c-Pr
25	Et	n-Pr	n-Pr	Et	Et	c-Pr
	Et	СНО	n-Pr	Et	n-Pr	c-Pr
	Et	COCH ₃	n-Pr	Et	OCH ₃	c-Pr
	Et	CH ₂ OCH ₃	n-Pr	Et	$\mathrm{CH_2CHCH_2}$	c-Pr

	$\mathbf{R^1}$	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
	<u>w</u> -	T.	W -	<u>w</u> -	W.	L -
5	Et	$\mathrm{CH_2CCH}$	c-Pr	Et	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl
Ū	Et	$N(CH_3)_2$	c-Pr	Et	$\mathrm{CH_2Ph}$	c-hexyl
	Et	$\mathrm{CH_2Ph}$	c-Pr	Et	$\mathrm{CH_2Ph}$	CH ₂ -c-Pr
	Et	н	c-Pr	Et	CHO	CH_2 -c-Pr
	Et	н	c-Bu	Et	CH ₂ OCH ₃	$\mathrm{CH_{2} ext{-}c ext{-}Pr}$
10	Et	Me	c-Bu	Et	SO_2CH_3	CH ₂ -c-Pr
	Et	осн ₃	c-Bu	Et	CH ₂ CN	CH ₂ -c-Pr
	Et	$N(CH_3)_2$	c-Bu	Et	H	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	$\mathrm{CH_2Ph}$	c-Bu	Et	Me	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	H	(CH ₂) ₃ Cl	Et	Et	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
15	Et	Me	(CH ₂) ₃ Cl	Et	n-Pr	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
20	\mathbf{E} t	OCH3	(CH ₂) ₃ Cl	Et	OCH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	$\mathrm{CH}_2\mathrm{Ph}$	(CH ₂) ₃ Cl	Et	$N(CH_3)_2$	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	Ħ	c-pentyl	n-Pr	H	н
	Et	Me	c-pentyl	n-Pr	Me	H
20	Et	Et	c-pentyl	n-Pr	Et	H
	Et	осн ₃	c-pentyl	n-Pr	n-Pr	H
	Et	CH_2CHCH_2	c-pentyl	n-Pr	i-Pr	H
	Et	CH ₂ CCH	c-pentyl	n-Pr	n-Bu	H
	Et	$\mathrm{CH_2Ph}$	c-pentyl	n-Pr	i-Bu	H
2 5	Et	H	c-hexyl	n-Pr	s-Bu	H
	Eŧ	Me	c-hexyl	n-Pr	t-Bu	H
	Et	Et	c-hexyl	n-Pr	СНО	H
	Et	OCH ₃	c-hexyl	n-Pr	COCH ₃	H
	Et	${ m CH_2CHCH_2}$	c-hexyl	n-Pr	CH_2OCH_3	H .
00						

	R1	R ³	R ⁴	\mathbb{R}^1	R ³	R ⁴
5	n-Pr	осн ₃	н	n-Pr	$\mathrm{CH_2Ph}$	n-Pr
Ð	n-Pr	SO ₂ CH ₃	н	n-Pr	n-Bu	n-Bu
	n-Pr	$(CH_2)_2SO_2CH_3$	н	n-Pr	CHO	n-Bu
	n-Pr	CH ₂ CHCH ₂	н	n-Pr	SO_2CH_3	n-Bu
10	n-Pr	CH ₂ CCH	н	n-Pr	CH ₂ CN	n-Bu
	n-Pr	CH ₂ CN	н	n-Pr	CH_2Ph	n-Bu
10	n-Pr	$N(CH_3)_2$	н	n-Pr	Me	c-Pr
	n-Pr	CH ₂ Ph	н	n-Pr	H	c-Pr
	n-Pr	Me	Me	n-Pr	H	$(CH_2)_3Cl$
	n-Pr	СНО	Me	n-Pr	H	c-pentyl
15	n-Pr	COCH ₃	Me	n-Pr	H	c-hexyl
	n-Pr	OCH ₃	Me	n-Pr	H	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	n-Pr	SO ₂ CH ₃	Me	n-Pr	H	CH ₂ -c-Pr
	n-Pr	$(CH_2)_2SO_2CH_3$	Me	n-Bu	Me	H
	n-Pr	CH ₂ CN	Me	$\mathrm{CH_2CH_2Cl}$	Me	H
20	n-Pr	CH ₂ Ph	Me	$(CH_2)_3Cl$	Me	H
40	n-Pr	Et	Et	$(CH_2)_4Cl$	Me	H
	n-Pr	СНО	Et	c-Pr	Me	H
	n-Pr	COCH ₃	Et	c-Bu	Me	H
	n-Pr	och ₃	Et	i-Pr	Me	H
2 5	n-Pr	SO_2CH_3	Et	c-pentyl	Me	H
	n-Pr	CH ₂ CN	Et	c-hexyl	Me	H
	n-Pr	CH ₂ Ph	Et	CH ₂ -c-Pr	Me	H
	n-Pr	i-Pr	i-Pr	CH ₂ -c-pentyl	Me	H
	n-Pr	CHO	n-			
30	Pr n-Pr	SO ₂ CH ₃	n-			
	Pr					

5 $\begin{array}{c|c}
 & N^{O_2} \\
 & N^{$

10	R ¹	R ³	R ⁴	R ¹	R ³	\mathbb{R}^4
	Me	i-Pr	н	Me	$\mathrm{CH_2OC(CH_3)_2OCH_3}$	H
	Me	n-Bu	H	Me	SO_2CH_3	H
	Me	i-Bu	н	Me	$SO_2CH_2CH_3$	H
4 =	Me	s-Bu	H	Me	$SO_2CH_2CH_2CH_3$	H
15	Me	t-Bu	н	Me	CH ₂ CH ₂ SO ₂ CH ₃	H
	Me	H	н	Me	CH ₂ CHCH ₂	H
	Me	COCH ₃	H	Me	$\mathrm{CH_{2}CH_{2}CHCH_{2}}$	H
	Me	СНО	H	Me	CH ₂ CHCHCH ₃	H
00	Me	COCH ₂ CH ₃	H	Me	CH ₂ CCH	H
20	Me	CH ₂ OCH ₃	н	Me	CH ₂ CH ₂ CCH	H
	Мe	${ m CH_2OCH_2CH_3}$	H	Me	CH ₂ CCCH ₃	H
	Me	$\mathrm{CH_2OCH_2CH_2CH_3}$	н	Me	CH ₂ CN	H
	Me	CH2OCH2CH2OCH3	H	Me	NHCH ₃	H
05	Me	${ m CH_2OCH_2CH_2OCH_2CH_3}$	н	Me	NHCH ₂ CH ₃	H
2 5	Me	OCH ₃	H	Me	NHCH(CH ₃) ₂	H
	Me	OCH ₂ CH ₃	н	Me	NHC(CH ₃) ₃	H
	Me	OCH ₂ CH ₂ CH ₃	H	Me	$\mathrm{NHCH_2CH_2CH_2CH_3}$	H
	Me	$OCH(CH_3)_2$	H	Me	NHCH ₂ CH ₂ CH ₃	H
	Me	CH ₂ OCH(CH ₃)OCH ₃	H	Me	$N(CH_3)_2$	H
30				Me	$N(CH_3)CH_2CH_3$	H
				Me	$N(CH_2CH_3)_2$	H
				Me	$\mathrm{CH_2Ph}$	H
				Me	Et	Me
35				Me	n-Pr	Me
				Me	i-Pr	Me

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Me	n-Bu	Me	Me	OCH ₂ CH ₃	Et
ð	Me	COCH ₃	Me	Me	SO_2CH_3	Et
	Me	СНО	Me	Me	$\mathrm{CH_{2}CH_{2}SO_{2}Me}$	Et
	Me	COCH ₂ CH ₃	Me	Me	$\mathrm{CH_{2}CHCH_{2}}$	Et
	Me	CH ₂ OCH ₃	Me	Me	CH ₂ CCH	Et
10	Me	CH2OCH2CH2OCH3	Me	Me	CH ₂ CN	Et
10	Me	OCH ₃	Me	Me	$N(CH_3)_2$	Et
	Me	OCH ₂ CH ₃	Me	Me	n-Pr	n-Pr
	Me	SO_2CH_3	Me	Me	i-Pr	i-Pr
	Me	$\mathrm{CH_{2}CH_{2}SO_{2}CH_{3}}$	Me	Me	COCH ₃	n-Pr
15	Me	CH ₂ CCH	Me	Me	СНО	n-Pr
10	Me	CH ₂ CN	Me	Me	$COCH_2CH_3$	n-Pr
-	Me	NHCH ₃	Me	Me	$\mathrm{CH_{2}OCH_{3}}$	n-Pr
	Me	$N(CH_3)_2$	Me	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}OCH_{3}}$	n-Pr
	Me	Et	Et	Me	OCH ₃	n-Pr
20	Me	COCH ₃	Et	Me	осн ₂ сн ₃	n-Pr
20	Me	СНО	Et	Me	SO_2CH_3	n-Pr
	Me	COCH ₂ CH ₃	Et	Мe	$\mathrm{CH_2CH_2SO_2CH_3}$	n-Pr
	Me	CH ₂ OCH ₃	Et	Me	CH ₂ CN	n-Pr
	Me	CH ₂ OCH ₂ CH ₂ OCH ₃	Et	Me	$N(CH_3)_2$	n-Pr
25	Me	OCH _{3,}	Et			

	\mathbb{R}^1	R ³	R ⁴	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Me	COCH ₃	n-Bu	Me	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-Bu
	Me	СНО	n-Bu	Me	$\mathrm{CH}_2\mathrm{CCH}$	c-Bu
	Me	COCH ₂ CH ₃	n-Bu	Me	$N(CH_3)_2$	c-Bu
	Me	сн ₂ осн ₃	n-Bu	Me	H	$(CH_2)_3Cl$
	Me	${ m CH_2OCH_2CH_2OCH_3}$	n-Bu	Me	Me	$(CH_2)_3CI$
10	Me	OCH ₃	n-Bu	Me	Et	$(CH_2)_3Cl$
	Me	SO_2CH_3	n-Bu	Me	OCH ₃	$(CH_2)_3Cl$
	Me	CH ₂ CN	n-Bu	Me	H	c-pentyl
	Me	Me	c-Pr	Me	Me	c-pentyl
	Me	Et	c-Pr	Me	Et	c-pentyl
15	Me	n-Pr	c-Pr	Me	och ₃	c-pentyl
	Me	OCH ₃	c-Pr	Me	$\mathrm{CH_2CHCH_2}$	c-pentyl
	Me	CH ₂ CHCH ₂	c-Pr	Me	$\mathrm{CH}_2\mathrm{CCH}$	c-pentyl
	Me	CH ₂ CCH	c-Pr	Me	${ m CH_2Ph}$	c-pentyl
	Me	$N(CH_3)_2$	c-Pr	Me	H	c-hexyl
20	Me	Me	c-Bu	Me	Me	c-hexyl
	Me	Et	c-Bu	Me	Et	c-hexyl
	Me	n-Pr	c-Bu	Me	OCH ₃	c-hexyl
	Me	OCH ₃	c-Bu	Me	CH_2CHCH_2	c-hexyl
				Me	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl

	\mathbb{R}^1	R ³	\mathbb{R}^4	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Me	CH ₂ Ph	CH ₂ -c-Pr	Et	CH ₂ OCH ₃	H
0	Me	COCH ₃	CH ₂ -c-Pr	Et	$(CH_2)_2OCH_2CH_3$	H
	Me	СНО	CH ₂ -c-Pr	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	H
	Me	CH ₂ OCH ₃	CH ₂ -c-Pr	Et	OCH ₃	H
	Me	SO_2CH_3	CH ₂ -c-Pr	Et	OCH ₂ CH ₃	H
10	Me	CH ₂ CN	CH ₂ -c-Pr	Et	SO ₂ CH ₃	H
10	Me	H	CH ₂ C(Cl)CH ₂	Et	$(CH_2)_2SO_2CH_3$	H
	Me	Me	CH ₂ C(Cl)CH ₂	Et	CH ₂ CHCH ₂	H
	Me	Et	CH ₂ C(Cl)CH ₂	Et	CH ₂ CHCHCH ₃	H
	Me	n-Pr	CH ₂ C(Cl)CH ₂	Et	$(CH_2)_2CHCH_2$	H
15	Me	CHO	CH ₂ C(Cl)CH ₂	Et	CH ₂ CCH	H
	Me	OCH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CCCH ₃	H
	Me	SO ₂ CH ₃	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$	Et	CH ₂ CN	H
	Me	$N(CH_3)_2$	CH ₂ C(Cl)CH ₂	Et	NHCH ₃	H
	Et	H	н	Et	$N(CH_3)_2$	H
20	Et	Me	н	Et	CH ₂ Ph	H
	Et	Et	н	Et	Et	Me
	Et	n-Pr	н	Et	n-Pr	Ме
	Et	i-Pr	н	Et	Me	Me
	Et	n-Bu	н	Et	COCH ₃	Me
2 5	Et	i-Bu	н	Et	СНО	Me
	Et	s-Bu	н	Et	CH ₂ OCH ₃	Me
	Et	t-Bu	H	Et	$CH_2O(CH_2)_2OCH_3$	Me
	Et	COCH ₃	H	Et	OCH ₃	Me
	Et	СНО	н	Et	SO ₂ CH ₃	Me

	R1	\mathbb{R}^3	R ⁴	R1	<u>R</u> 3	R ⁴
5	Et	$(CH_2)_2SO_2CH_3$	Me	Et	CH ₂ O(CH ₂) ₂ OCH ₃	n-Pr
J	Et	CH_2CHCH_2	Me	Et	OCH ₃	n-Pr
	Et	CH ₂ CCH	Me	Et	SO_2CH_3	n-Pr
	Et	CH ₂ CN	Me	Et	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	n-Pr
	Et	NHCH3	Me	Et	CH ₂ CHCH ₂	n-Pr
10	Et	$N(CH_3)_2$	Me	Et	CH ₂ CCH	n-Pr
	Et	CH ₂ Ph	Me	Et	CH ₂ CN	n-Pr
	Et	Et	Et	Et	$N(CH_3)_2$	n-Pr
	Et	COCH ₃	Et	Et	CH ₂ Ph	n-Pr
	Et	CHO	Et	Et	n-Bu	n-Bu
15	Et	CH ₂ OCH ₃	Et	Et	СНО	n-Bu
	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	Et	Et	COCH ₃	n-Bu
	Et	OCH ₃	E t	Et	CH ₂ OCH ₃	n-Bu
	Et	SO_2CH_3	Et	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	n-Bu
	Et	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	Et	Et	OCH ₃	n-Bu
20	Et	CH ₂ CCH	Et	Et	SO_2CH_3	n-Bu
	Et	CH_2CHCH_2	Et	Et	CH ₂ CN	n-Bu
	Et	CH ₂ CN	Et	Et	CH ₂ Ph	n-Bu
	Et	$N(CH_3)_2$	Et	Et	i-Pr	i-Pr
	Et	CH ₂ Ph	Et	Et	Me	c-Pr
2 5	Et	n-Pr	n-Pr	Et	Et	c-Pr
	Et	СНО	n-Pr	Et	n-Pr	c-Pr
	Et	COCH ₃	n-Pr	Et	OCH ₃	c-Pr
	Et	CH ₂ OCH ₃	n-Pr	Et	CH ₂ CHCH ₂	e-Pr

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	R ¹	<u>R</u> 3	R ⁴
.	Et	CH ₂ CCH	c-Pr	Et	CH ₂ CCH	c-hexyl
5	Et	$N(CH_3)_2$	c-Pr	Et	CH ₂ Ph	c-hexyl
	Et	CH ₂ Ph	c-Pr	Et	CH ₂ Ph	CH ₂ -c-Pr
	Et	н	c-Pr	Et	CHO	CH ₂ -c-Pr
	Et	H	c-Bu	Et	CH ₂ OCH ₃	CH ₂ -c-Pr
10	Et	Me	c-Bu	Et	SO_2CH_3	CH ₂ -c-Pr
10	Et	OCH ₃	c-Bu	Et	CH ₂ CN	CH ₂ -c-Pr
	Et	$N(CH_3)_2$	c-Bu	Et	H	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	CH ₂ Ph	c-Bu	Et	Me	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	Н	(CH ₂) ₃ Cl	Et	Et	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
1 5	Et	Me	(CH ₂) ₃ Cl	Et	n-Pr	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
19	Et	och ₃	(CH ₂) ₃ Cl	Et	OCH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	CH ₂ Ph	$(CH_2)_3Cl$	Et	$N(CH_3)_2$	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	н	c-pentyl	n-Pr	H	H
	Et	Me	c-pentyl	n-Pr	Me	H
20	Et	Et	c-pentyl	n-Pr	Et	H
20	Et	OCH ₃	c-pentyl	n-Pr	n-Pr	H
	Et	${ m CH_2CHCH_2}$	c-pentyl	n-Pr	i-Pr	H
	Et	CH ₂ CCH	c-pentyl	n-Pr	n-Bu	H
	Et	CH_2Ph	c-pentyl	n-Pr	i-Bu	H
25	Et	н	c-hexyl	n-Pr	s-Bu	H
20	Et	Me	c-hexyl	n-Pr	t-Bu	H
	Et	Et	c-hexyl	n-Pr	CHO	H
	Et	OCH3	c-hexyl	n-Pr	COCH ₃	Н
	Et	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-hexyl	n-Pr	CH ₂ OCH ₃	H

	\mathbb{R}^1	R ³	R ⁴	<u>R</u> 1	R ³	R ⁴
5	n-Pr	OCH ₃	н	n-Pr	$\mathrm{CH_2Ph}$	n-Pr
U	n-Pr	SO_2CH_3	н	n-Pr	n-Bu	n-Bu
	n-Pr	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	н	n-Pr	СНО	n-Bu
	n-Pr	CH ₂ CHCH ₂	н	n-Pr	SO_2CH_3	n-Bu
	n-Pr	CH ₂ CCH	H	n-Pr	CH ₂ CN	n-Bu
10	n-Pr	CH ₂ CN	H	n-Pr	$\mathrm{CH_2Ph}$	n-Bu
10	n-Pr	$N(CH_3)_2$	н	n-Pr	Me	c-Pr
	n-Pr	CH ₂ Ph	H	n-Pr	H	c-Pr
	n-Pr	Me	Me	n-Pr	H	$(CH_2)_3Cl$
	n-Pr	CHO	Me	n-Pr	H	c-pentyl
15	n-Pr	COCH ₃	Me	n-Pr	H	c-hexyl
10	n-Pr	OCH ₃	Me	n-Pr	H	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	n-Pr	SO_2CH_3	Me	n-Pr	H	CH_2 -c-Pr
	n-Pr	$(CH_2)_2SO_2CH_3$	Me	n-Bu	Me	H
	n-Pr	CH ₂ CN	Me	$\mathrm{CH_2CH_2Cl}$	Me	H
20	n-Pr	CH ₂ Ph	Me	$(CH_2)_3Cl$	Me	H
	n-Pr	Et	Et	$(CH_2)_4Cl$	Me	H
	n-Pr	СНО	Et	c-Pr	Me	H
	n-Pr	COCH ₃	Et	c-Bu	Me	H
	n-Pr	OCH ₃	Et	i-Pr	Me	H
25	n-Pr	SO_2CH_3	Et	c-pentyl	Me	H
	n-Pr	CH ₂ CN	Et	c-hexyl	Me	н
	n-Pr	$\mathrm{CH}_2\mathrm{Ph}$	Et	CH ₂ -c-Pr	Me	H
	n-Pr	i-Pr	i-Pr	CH ₂ -c-pentyl	Me	H
	n-Pr	CHO	n-			
30	Pr					
	n-Pr	${ m SO_2CH_3}$	n-			
	Pr					

$$R^1S$$
 NO_2
 $N-R^3$
 Et

10	R ¹	R ³	R ⁴	R1	R ³	\mathbb{R}^4
	Me	i-Pr	н	Me	CH ₂ OC(CH ₃) ₂ OCH ₃	н
	Me	n-Bu	н	Me	SO_2CH_3	H
	Me	i-Bu	н	Me	$SO_2CH_2CH_3$	H
15	Me	s-Bu	н	Me	$SO_2CH_2CH_2CH_3$	H
	Me	t-Bu	н	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	H
	Me	Н	н	Me	CH_2CHCH_2	H
	Me	COCH ₃	н	Me	CH2CH2CHCH2	H
	Me	СНО	н	Me	CH ₂ CHCHCH ₃	H
20	Me	COCH ₂ CH ₃	н	Me	CH ₂ CCH	H
	Me	CH ₂ OCH ₃	H	Me	CH ₂ CH ₂ CCH	H
	Me	CH ₂ OCH ₂ CH ₃	H	Me	CH ₂ CCCH ₃	H
	Me	CH ₂ OCH ₂ CH ₂ CH ₃	H	Me	CH ₂ CN	H
	Me	CH2OCH2CH2OCH3	н	Me	NHCH ₃	H
2 5	Me	CH2OCH2CH2OCH2CH3	н	Me	NHCH ₂ CH ₃	H
	Me	OCH ₃	H	Me	NHCH(CH ₃) ₂	H
	Me	OCH ₂ CH ₃	н	Me	$NHC(CH_3)_3$	H
	Me	OCH ₂ CH ₂ CH ₃	н	Me	$\mathrm{NHCH_2CH_2CH_2CH_3}$	H
	Me	OCH(CH ₃) ₂	H	Me	$\mathrm{NHCH_{2}CH_{2}CH_{3}}$	H
30	Me	CH ₂ OCH(CH ₃)OCH ₃	н	Me	$N(CH_3)_2$	H

	\mathbb{R}^1	R ³	<u>R</u> 4	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Me	$N(CH_3)CH_2CH_3$	H	Me	CH ₂ OCH ₃	Et
U	Me	$N(CH_2CH_3)_2$	H	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}OCH_{3}}$	Et
	Me	CH ₂ Ph	H	Me	OCH ₃	Et
	Me	Et	Me	Me	OCH_2CH_3	Et
	Me	n-Pr	Me	Me	SO_2CH_3	Et
10	Me	i-Pr	Me	Me	$\mathrm{CH_2CH_2SO_2Me}$	Et
	Me	n-Bu	Me	Me	CH_2CHCH_2	Et
	Me	COCH ₃	Me	Me	CH ₂ CCH	Et
	Me	СНО	Me	Me	CH ₂ CN	Et
	Me	$\mathtt{COCH_2CH_3}$	Me	Me	$N(CH_3)_2$	Et
15	Me	CH ₂ OCH ₃	Me	Me	n-Pr	n-Pr
	Me	$\mathtt{CH_2OCH_2CH_2OCH_3}$	Me	Me	i-Pr	i-Pr
	Me	OCH ₃	Me	Me	COCH ₃	n-Pr
	Me	OCH_2CH_3	Me	Me	СНО	n-Pr
	Me	SO_2CH_3	Me	Me	$COCH_2CH_3$	n-Pr
20	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	Me	Me	CH_2OCH_3	n-Pr
	Me	CH ₂ CCH	Me	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}OCH_{3}}$	n-Pr
	Me	CH ₂ CN	Me	Me	OCH ₃	n-Pr
	Me	NHCH ₃	Me	Me	OCH_2CH_3	n-Pr
	Me	$N(CH_3)_2$	Me	Me	SO_2CH_3	n-Pr
25	Me	Et	Et	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	n-Pr
	Me	COCH ₃	Et	Me	$\mathrm{CH_2CN}$	n-Pr
	Me	СНО	Et	Me	$N(CH_3)_2$	n-Pr
	Me	COCH ₂ CH ₃	Et			
				I		

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	R ³	\mathbb{R}^4
5	Me	COCH ₃	n-Bu	Me	CH ₂ CHCH ₂	
	Me	СНО	n-Bu	Me	CH_2CCH	c-Bu
	Me	$COCH_2CH_3$	n-Bu	Me	$N(CH_3)_2$	c-Bu
	Me	CH ₂ OCH ₃	n-Bu	Me	H	$(CH_2)_3Cl$
	Me	$\mathrm{CH_2OCH_2CH_2OCH_3}$	n-Bu	Me	Me	$(CH_2)_3Cl$
10	Me	OCH ₃	n-Bu	Me	Et	$(CH_2)_3Cl$
	Me	SO ₂ CH ₃	n-Bu	Me	OCH ₃	$(CH_2)_3Cl$
	Me	CH ₂ CN	n-Bu	Me	H	c-pentyl
	Me	Me	c-Pr	Me	Me	c-pentyl
	Me	Et	c-Pr	Me	Et	c-pentyl
1 5	Me	n-Pr	c-Pr	Me	OCH ₃	c-pentyl
	Me	OCH ₃	c-Pr	Me	$\mathbf{CH_2CHCH_2}$	c-pentyl
	Me	CH ₂ CHCH ₂	c-Pr	Me	$\mathrm{CH}_2\mathrm{CCH}$	c-pentyl
	Me	CH ₂ CCH	c-Pr	Me	$\mathrm{CH}_2\mathrm{Ph}$	c-pentyl
	Me	$N(CH_3)_2$	c-Pr	Me	H	c-hexyl
2 0	Me	Me	c-Bu	Me	Me	c-hexyl
	Me	Et	c-Bu	Me	Et	c-hexyl
	Me	n-Pr	c-Bu	Me	OCH ₃	c-hexyl
	Me	OCH ₃	c-Bu	Me	$\mathbf{CH_2}\mathbf{CHCH_2}$	c-hexyl
				Me	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl

	R1	\mathbb{R}^3	<u>R</u> 4	\mathbb{R}^1	\mathbb{R}^3	R ⁴
5	Me	CH ₂ Ph	CH ₂ -c-Pr	Et	сн ₂ осн ₃	H
J	Me	COCH ₃	CH ₂ -c-Pr	Et	$(CH_2)_2OCH_2CH_3$	H
	Me	СНО	CH ₂ -c-Pr	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	H
	Me	CH ₂ OCH ₃	CH ₂ -c-Pr	Et	OCH ₃	H
	Me	SO_2CH_3	CH ₂ -c-Pr	Et	OCH_2CH_3	H
10	Me	CH ₂ CN	CH ₂ -c-Pr	Et	SO_2CH_3	H
	Me	H	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$	Et	$(CH_2)_2SO_2CH_3$	H
	Me	Me	CH ₂ C(Cl)CH ₂	Et	$\mathrm{CH_2CHCH_2}$	H
	Me	Et	$CH_2C(CI)CH_2$	Et	$CH_2CHCHCH_3$	H
	Me	n-Pr	${ m CH_2C(Cl)CH_2}$	Et	$(CH_2)_2CHCH_2$	H
15	Me	CHO	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CCH	H
19	Me	оснз	$CH_2C(CI)CH_2$	Et	CH ₂ CCCH ₃	H
	Me	SO ₂ CH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CN	H
	Me	$N(CH_3)_2$	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$	Et	NHCH ₃	H
	Et	H	H	Et	$N(CH_3)_2$	H
20	Et	Me	H	Et	CH ₂ Ph	H
	Et	Et	H	Et	Et	Me
	Et	n-Pr	H	Et	n-Pr	Me
	Et	i-Pr	H	Et	Me	Me
	Et	n-Bu	H	Et	COCH ₃	Me
2 5	Et	i-Bu	H	Et	CHO	Me
	Et	s-Bu	H	Et	CH_2OCH_3	Me
	Et	t-Bu	H	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	Me
	Et	COCH ₃	H	Et	осн ₃	Me
	Et	СНО	н	· Et	SO ₂ CH ₃	Me

	R ¹	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4
5	Et	(CH ₂) ₂ SO ₂ CH ₃	Me	Et	CH ₂ O(CH ₂) ₂ OCH ₃	n-Pr
Ð	Et	CH ₂ CHCH ₂	Me	Et	OCH ₃	n-Pr
	Et	CH ₂ CCH	Me	Et	SO ₂ CH ₃	n-Pr
	Et	CH ₂ CN	Me	Et	$(CH_2)_2SO_2CH_3$	n-Pr
	Et	NHCH ₃	Me	Et	CH ₂ CHCH ₂	n-Pr
10	Et	N(CH ₃) ₂	Me	Et	CH ₂ CCH	n-Pr
10	Et	CH ₂ Ph	Me	Et	CH ₂ CN	n-Pr
	Et	Et	Et	Et	$N(CH_3)_2$	n-Pr
	Et	COCH ₃	Et	Et	CH ₂ Ph	n-Pr
	Et	СНО	Et	Et	n-Bu	n-Bu
15	Et	CH ₂ OCH ₃	Et	Et	СНО	n-Bu
10	Et	$\mathrm{CH_2O(CH_2)_2OCH_3}$	Et	Et	COCH ₃	n-Bu
	Et	OCH ₃	Et	Et	CH ₂ OCH ₃	n-Bu
	Et	SO ₂ CH ₃	Et	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	n-Bu
	Et	$(CH_2)_2SO_2CH_3$	Et	Et	OCH ₃	n-Bu
20	Et	CH ₂ CCH	Et	Et	SO ₂ CH ₃	n-Bu
20	Et	CH ₂ CHCH ₂	Et	Et	CH ₂ CN	n-Bu
	Et	CH ₂ CN	Et	Et	CH ₂ Ph	n-Bu
	Et	$N(CH_3)_2$	Et	Et	i-Pr	i-Pr
	Et	CH ₂ Ph	Et	Et	Me	c-Pr
2 5	Et	n-Pr	n-Pr	Et	Et	c-Pr
	Et	СНО	n-Pr	Et	n-Pr	c-Pr
	Et	COCH ₃	n-Pr	Et	OCH ₃	c-Pr
	Et	CH ₂ OCH ₃	n-Pr	Et	CH ₂ CHCH ₂	c-Pr

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	R ³	R ⁴
5	Et	$\mathrm{CH}_2\mathrm{CCH}$	c-Pr	Et	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl
J	Et	$N(CH_3)_2$	c-Pr	Et	$\mathrm{CH_2Ph}$	c-hexyl
	Et	$\mathrm{CH_2Ph}$	c-Pr	Et	CH ₂ Ph	CH ₂ -c-Pr
	Et	н	c-Pr	Et	СНО	CH ₂ -c-Pr
	Et	H	c-Bu	Et	CH_2OCH_3	CH ₂ -c-Pr
10	Et	Me	c-Bu	Et	SO_2CH_3	CH ₂ -c-Pr
10	Et	OCH ₃	c-Bu	Et	CH ₂ CN	CH ₂ -c-Pr
	Et	$N(CH_3)_2$	c-Bu	Et	H	$CH_2C(CI)CH_2$
	Et	$\mathrm{CH_2Ph}$	c-Bu	Et	Me	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	н	(CH ₂) ₃ Cl	Et	Et	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
15	Et	Me	(CH ₂) ₃ Cl	Et	n-Pr	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
10	Et	OCH ₃	(CH ₂) ₃ Cl	Et	OCH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	CH ₂ Ph	(CH ₂) ₃ Cl	Et	$N(CH_3)_2$	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	H	c-pentyl	n-Pr	H	H
	Et	Me	c-pentyl	n-Pr	Me	H
20	Et	Et	c-pentyl	n-Pr	Et	H
	Et	OCH ₃	c-pentyl	n-Pr	n-Pr	H
	Et	$\mathrm{CH_2CHCH_2}$	c-pentyl	n-Pr	i-Pr	H
	Et	$\mathrm{CH}_2\mathrm{CCH}$	c-pentyl	n-Pr	n-Bu	н
	Et	CH ₂ Ph	c-pentyl	n-Pr	i-Bu	H
2 5	Et	Ħ	c-hexyl	n-Pr	s-Bu	H
	Et	Me	c-hexyl	n-Pr	t-Bu	H
	Et	Et	c-hexyl	n-Pr	СНО	H
	Et	och ₃	c-hexyl	n-Pr	COCH ₃	H
	Et	${ m CH}_2{ m CHCH}_2$	c-hexyl	n-Pr	CH ₂ OCH ₃	H

	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^1	<u>R</u> 3	\mathbb{R}^4
_	n-Pr	OCH ₃	н	n-Pr	CH ₂ Ph	n-Pr
5	n-Pr	SO ₂ CH ₃	H	n-Pr	n-Bu	n-Bu
	n-Pr	$(CH_2)_2SO_2CH_3$	H	n-Pr	СНО	n-Bu
	n-Pr	CH ₂ CHCH ₂	H	n-Pr	SO_2CH_3	n-Bu
	n-Pr	CH ₂ CCH	н	n-Pr	CH ₂ CN	n-Bu
40	n-Pr	CH ₂ CN	H	n-Pr	$\mathrm{CH_2Ph}$	n-Bu
10	n-Pr	$N(CH_3)_2$	н	n-Pr	Me	c-Pr
	n-Pr	CH ₂ Ph	н	n-Pr	H	c-Pr
	n-Pr	Me	Me	n-Pr	H	$(CH_2)_3Cl$
	n-Pr	СНО	Me	n-Pr	н	c-pentyl
1 5	n-Pr	COCH ₃	Ме	n-Pr	H	c-hexyl
10	n-Pr	OCH ₃	Me	n-Pr	H	$CH_2C(Cl)CH_2$
	n-Pr	SO ₂ CH ₃	Me	n-Pr	H	CH ₂ -c-Pr
	n-Pr	$(CH_2)_2SO_2CH_3$	Me	n-Bu	Me	H
	n-Pr	CH ₂ CN	Me	$\mathrm{CH_2CH_2Cl}$	Me	H
20	n-Pr	$\mathrm{CH_2Ph}$	Me	$(CH_2)_3Cl$	Me	H
20	n-Pr	Et	Et	$(CH_2)_4Cl$	Me	н
	n-Pr	СНО	Et	c-Pr	Me	H
	n-Pr	COCH ₃	Et	c-Bu	Me	H
	n-Pr	OCH ₃	Et	i-Pr	Me	H
25	n-Pr	SO_2CH_3	Et	c-pentyl	Me	H
20	n-Pr	CH ₂ CN	Et	c-hexyl	Me	H
	n-Pr	$\mathrm{CH}_2\mathrm{Ph}$	Et	CH ₂ -c-Pr	Me	H
	n-Pr	i-Pr	i-Pr	CH_2 -c-pentyl	Me	H
	n-Pr	СНО	n-			
30	Pr					
-	n-Pr	SO ₂ CH ₃	n-			
	Pr		1.0			

 $\begin{array}{c|c}
 & N^{NO_2} \\
 & N^{$

10	<u>R</u> 1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	<u>R</u> 4
	Me	i-Pr	н	Me	$SO_2CH_2CH_2CH_3$	Н
	Me	n-Bu	н	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	H
	Me	i-Bu	H	Me	CH ₂ CHCH ₂	H
1 5	Me	s-Bu	н	Me	$CH_2CH_2CHCH_2$	H
	Me	t-Bu	н	Me	CH ₂ CHCHCH ₃	H
	Me	H	н	Me	CH ₂ CCH	H
	Me	COCH ₃	н	Me	$\mathrm{CH_{2}CH_{2}CCH}$	H
	Me	СНО	H	Me	CH ₂ CCCH ₃	H
20	Me	$COCH_2CH_3$	н	Me	CH ₂ CN	H
	Me	CH ₂ OCH ₃	H	Me	NHCH ₃	H
	Me	$\mathrm{CH_{2}OCH_{2}CH_{3}}$	н	Me	NHCH ₂ CH ₃	H
	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}CH_{3}}$	H	Me	NHCH(CH ₃) ₂	H
	Me	${ m CH_2OCH_2CH_2OCH_3}$	H	Me	NHC(CH ₃) ₃	H
25	Me	$\mathtt{CH_2OCH_2CH_2OCH_2CH_3}$	н	Me	$\mathrm{NHCH_{2}CH_{2}CH_{2}CH_{3}}$	H
	Me	OCH ₃	н	Me	$\mathrm{NHCH_{2}CH_{2}CH_{3}}$	H
	Me	OCH ₂ CH ₃	Н	Me	$N(CH_3)_2$	H
	Me	OCH ₂ CH ₂ CH ₃	H	Me	$N(CH_3)CH_2CH_3$	H
	Me	OCH(CH ₃) ₂	H	Me	$N(CH_2CH_3)_2$	H
30	Me	CH ₂ OCH(CH ₃)OCH ₃	H	Me	CH ₂ Ph	H
	Me	CH ₂ OC(CH ₃) ₂ OCH ₃	H	Me	Et	Me
	Me	SO_2CH_3	H	Me	n-Pr	Me
	Me	$SO_2CH_2CH_3$	H	Me	i-Pr	Me

	\mathbb{R}^1	\mathbb{R}^3	\mathbb{R}^4	R1	R ³	\mathbb{R}^4
_	Me	n-Bu	Me	Me	осн ₂ сн ₃	Et
5	Me	COCH ₃	Me	Me	SO_2CH_3	Et
	Me	СНО	Me	Me	$\mathrm{CH_{2}CH_{2}SO_{2}Me}$	Et
	Me	COCH ₂ CH ₃	Me	Me	$\mathrm{CH_2CHCH_2}$	Et
	Me	CH ₂ OCH ₃	Me	Me	CH ₂ CCH	Et
	Me	CH2OCH2CH2OCH3	Me	Me	CH ₂ CN	Et
10	Me	OCH ₃	Me	Me	$N(CH_3)_2$	Et
	Me	OCH ₂ CH ₃	Me	Me	n-Pr	n-Pr
	Me	SO_2CH_3	Me	Me	i-Pr	i-Pr
	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	Me	Me	COCH ₃	n-Pr
4 5	Me	CH ₂ CCH	Me	Me	CHO	n-Pr
15	Me	CH ₂ CN	Me	Me	$COCH_2CH_3$	n-Pr
	Me	NHCH ₃	Me	Me	$\mathrm{CH_{2}OCH_{3}}$	n-Pr
	Me	N(CH ₃) ₂	Me	Me	$\mathrm{CH_{2}OCH_{2}CH_{2}OCH_{3}}$	n-Pr
	Me	Et	Et	Me	OCH ₃	n-Pr
00	Me	COCH ₃	Et	Me	OCH ₂ CH ₃	n-Pr
20	Me	СНО	Et	Me	SO ₂ CH ₃	n-Pr
	Me	COCH ₂ CH ₃	Et	Me	$\mathrm{CH_2CH_2SO_2CH_3}$	n-Pr
	Me	CH ₂ OCH ₃	Et	Me	CH ₂ CN	n-Pr
	Me	CH2OCH2CH2OCH3	Et	Me	N(CH ₃) ₂	n-Pr
25	Me	OCH ₃	Et			

	R ¹	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	R ⁴
5	Me	COCH ₃	n-Bu	Me	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-Bu
	Me	СНО	n-Bu	Me	CH ₂ CCH	c-Bu
	Me	COCH ₂ CH ₃	n-Bu	Me	$N(CH_3)_2$	c-Bu
•	Me	CH ₂ OCH ₃	n-Bu	Me	H	$(CH_2)_3Cl$
	Me	$\mathtt{CH_2OCH_2CH_2OCH_3}$	n-Bu	Me	Me	$(CH_2)_3CI$
10	Me	OCH ₃	n-Bu	Me	Et	$(CH_2)_3Cl$
	Me	SO ₂ CH ₃	n-Bu	Me	OCH ₃	$(CH_2)_3Cl$
	Me	CH ₂ CN	n-Bu	Me	H	c-pentyl
	Me	Me	c-Pr	Me	Me	c-pentyl
	Me	Et	c-Pr	Me	Et	c-pentyl
1 5	Me	n-Pr	c-Pr	Me	OCH ₃	c-pentyl
	Me	OCH ₃	c-Pr	Me	$\mathrm{CH}_2\mathrm{CHCH}_2$	c-pentyl
	Me	CH ₂ CHCH ₂	c-Pr	Me	CH_2CCH	c-pentyl
	Me	CH ₂ CCH	c-Pr	Me	CH ₂ Ph	c-pentyl
	Me	$N(CH_3)_2$	c-Pr	Me	H	c-hexyl
20	Me	Me	c-Bu	Me	Me	c-hexyl
	Me	Et	c-Bu	Me	Et	c-hexyl
	Me	n-Pr	c-Bu	Me	OCH ₃	c-hexyl
	Me	OCH ₃	c-Bu	Me	CH_2CHCH_2	c-hexyl
				Me	$\mathrm{CH}_2\mathrm{CCH}$	c-hexyl

0

	\mathbb{R}^1	R ³	\mathbb{R}^4	R ¹	\mathbb{R}^3	\mathbb{R}^4
5	Me	CH ₂ Ph	CH ₂ -c-Pr	Et	CH ₂ OCH ₃	H
อ	Me	COCH ₃	CH ₂ -c-Pr	Et	$(CH_2)_2OCH_2CH_3$	H
	Me	CHO	CH ₂ -c-Pr	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	H
	Me	CH ₂ OCH ₃	CH ₂ -c-Pr	Et	осн ₃	H
	Me	SO_2CH_3	CH ₂ -c-Pr	Et	OCH_2CH_3	H
10	Me	CH ₂ CN	CH ₂ -c-Pr	Et	SO_2CH_3	H
10	Me	H	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	$(CH_2)_2SO_2CH_3$	H
	Me	Me	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$	Et	CH_2CHCH_2	H
	Me	Et	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	$CH_2CHCHCH_3$	H
	Me	n-Pr	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	$(CH_2)_2CHCH_2$	H
15	Me	CHO	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CCH	H
	Me	OCH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CCCH ₃	H
	Me	so ₂ CH ₃	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$	Et	CH ₂ CN	H
	Me	$N(CH_3)_2$	CH ₂ C(Cl)CH ₂	Et	NHCH ₃	H
	Et	н	H	Et	$N(CH_3)_2$	H
20	Et	Me	H	Et	CH ₂ Ph	H
	Et	Et	H	Et	Et	Me
	Et	n-Pr	н	Et	n-Pr	Me
	Et	i-Pr	н	Et	Me	Me
	Et	n-Bu	H	Et	COCH ₃	Me
25	Et	i-Bu	н	Et	СНО	Me
	Et	s-Bu	н	Et	CH ₂ OCH ₃	Me
	Et	t-Bu	н	Et	CH ₂ O(CH ₂) ₂ OCH ₃	Me
	Et	COCH ₃	н	Et	OCH ₃	Me
	Et	СНО	н	Et	SO ₂ CH ₃	Me

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	<u>R</u> ³	\mathbb{R}^4
5	Et	$(CH_2)_2SO_2CH_3$	Me	Et	CH ₂ O(CH ₂) ₂ OCH ₃	n-Pr
ย	Et	CH_2CHCH_2	Me	Et	OCH ₃	n-Pr
	Et	CH ₂ CCH	Me	Et	SO_2CH_3	n-Pr
	Et	CH ₂ CN	Me	Et	$(CH_2)_2SO_2CH_3$	n-Pr
	Et	NHCH3	Me	Et	CH ₂ CHCH ₂	n-Pr
10	Et	N(CH ₃) ₂	Me	Et	CH ₂ CCH	n-Pr
10	Et	CH ₂ Ph	Me	Et	CH ₂ CN	n-Pr
	Et	- Et	Et	Et	$N(CH_3)_2$	n-Pr
	Et	COCH ₃	Et	Et	-	n-Pr
	Et	СНО	Et	Et	n-Bu	n-Bu
15	Et	${ m CH_2OCH_3}$	Et	Et	CHO	n-Bu
15	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	Et	Et	COCH ₃	n-Bu
	Et	OCH ₃	Et	Et	CH ₂ OCH ₃	n-Bu
	Et	SO_2CH_3	Et	Et	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$	n-Bu
	Et	$(CH_2)_2SO_2CH_3$	Et	Et	OCH ₃	n-Bu
20	Et	CH ₂ CCH	Et	Et	SO_2CH_3	n-Bu
20	Et	CH ₂ CHCH ₂	Et	Et	CH ₂ CN	n-Bu
	Et	CH ₂ CN	Et	Et	CH ₂ Ph	n-Bu
	Et	$N(CH_3)_2$	Et	Et	i-Pr	i-Pr
	Et	$\mathtt{CH_2Ph}$	Et	Et	Me	c-Pr
25	Et	n-Pr	n-Pr	Et	Et	c-Pr
	Et	СНО	n-Pr	Et	n-Pr	c-Pr
	Et	COCH ₃	n-Pr	Et	OCH ₃	c-Pr
	Et	CH ₂ OCH ₃	n-Pr	Et	CH ₂ CHCH ₂	c-Pr
30				1		

	R ¹	\mathbb{R}^3	R ⁴	\mathbb{R}^1	<u>R</u> ³	R ⁴
5	Et	CH ₂ CCH	c-Pr	Et	CH ₂ CCH	c-hexyl
b	Et	$N(CH_3)_2$	c-Pr	Et	CH ₂ Ph	c-hexyl
	Et	CH ₂ Ph	c-Pr	Et	$\mathrm{CH_2Ph}$	CH_2 -c-Pr
	Et	H	c-Pr	Et	CHO	CH ₂ -c-Pr
	Et	H	c-Bu	Et	CH ₂ OCH ₃	CH_{2} -c-Pr
10	Et	Me	c-Bu	Et	SO_2CH_3	CH ₂ -c-Pr
10	Et	OCH ₃	c-Bu	Et	CH ₂ CN	CH_2 -c-Pr
	Et	$N(CH_3)_2$	c-Bu	Et	H	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	CH ₂ Ph	c-Bu	Et	Me	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
	Et	H	(CH ₂) ₃ Cl	Et	Et	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
15	Et	Me	(CH ₂) ₃ Cl	Et	n-Pr	$\mathrm{CH_2C}(\mathrm{Cl})\mathrm{CH_2}$
10	Et	OCH ₃	(CH ₂) ₃ Cl	Et	OCH ₃	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	CH ₂ Ph	(CH ₂) ₃ Cl	Et	$N(CH_3)_2$	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	Et	H	c-pentyl	n-Pr	н	H
	Et	Me	c-pentyl	n-Pr	Me	H
20	Et	Et	c-pentyl	n-Pr	Et	H
	Et	OCH ₃	c-pentyl	n-Pr	n-Pr	H
	Et	${ m CH_2CHCH_2}$	c-pentyl	n-Pr	i-Pr	H
	Et	CH ₂ CCH	c-pentyl	n-Pr	n-Bu	H
	Et	${ m CH_2Ph}$	c-pentyl	n-Pr	i-Bu	H
25	Et	H ,	c-hexyl	n-Pr	s-Bu	H
	Et	Me	c-hexyl	n-Pr	t-Bu	H
	Et	Et	c-hexyl	n-Pr	CHO	H
	Et	OCH ₃	c-hexyl	n-Pr	COCH ₃	H
	Et	${ m CH}_2{ m CHCH}_2$	c-hexyl	n-Pr	CH_2OCH_3	H

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^3	R ⁴
5	n-Pr	осн ₃	н	n-Pr	$\mathrm{CH_2Ph}$	n-Pr
Ū	n-Pr	SO_2CH_3	H	n-Pr	n-Bu	n-Bu
	n-Pr	$(\mathrm{CH_2})_2\mathrm{SO}_2\mathrm{CH}_3$	H	n-Pr	CHO	n-Bu
	n-Pr	CH ₂ CHCH ₂	H	n-Pr	SO_2CH_3	n-Bu
	n-Pr	CH ₂ CCH	H	n-Pr	CH ₂ CN	n-Bu
10	n-Pr	CH ₂ CN	H	n-Pr	CH ₂ Ph	n-Bu
10	n-Pr	$N(CH_3)_2$	H	n-Pr	Me	c-Pr
	n-Pr	$\mathrm{CH_2Ph}$	H	n-Pr	H	c-Pr
	n-Pr	Me	Me	n-Pr	H	$(CH_2)_3Cl$
	n-Pr	СНО	Me	n-Pr	H	c-pentyl
15	n-Pr	COCH ₃	Me	n-Pr	H	c-hexyl
	n-Pr	OCH ₃	Me	n-Pr	H	$\mathrm{CH}_2\mathrm{C}(\mathrm{Cl})\mathrm{CH}_2$
	n-Pr	SO_2CH_3	Me	n-Pr	H	CH ₂ -c-Pr
	n-Pr	$(CH_2)_2SO_2CH_3$	Me	n-Bu	Me	H
	n-Pr	CH ₂ CN	Me	CH ₂ CH ₂ Cl	Me	H
20	n-Pr	CH ₂ Ph	Me	(CH ₂) ₃ Cl	Me	H
	n-Pr	Et	Et	(CH ₂) ₄ Cl	Me	H
	n-Pr	СНО	Et	e-Pr	Me	н
	n-Pr	COCH ₃	Et	c-Bu	Me	H
	n-Pr	och ₃	Et	i-Pr	Me	н
25	n-Pr	SO_2CH_3	Et	c-pentyl	Me	н
	n-Pr	CH ₂ CN	Et	c-hexyl	Me	H
	n-Pr	CH ₂ Ph	Et	CH ₂ -c-Pr	Me	H
	n-Pr	i-Pr	i-Pr	CH ₂ -c-pentyl	Ме	H
	n-Pr	СНО	n-			
30	Pr					
	n-Pr	SO_2CH_3	n-			
	Pr					

WO 91/17659 PCT/US91/03118

TABLE 7

5

10	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R ¹	\mathbb{R}^2	R ³	R4
	Me	н	Me	н	Me	Et	Et	H
	Me	Me	Me	н	Me	n-Pr	Et	H
	Me	Et	Me	н	Me	CHO	Et	H
	Me	n-Pr	Me	н	Me	$\mathrm{CH}_2\mathrm{CN}$	Et	H
1 5	Me	CHO	Me	н	Me	COCH3	Et	H
	Me Me	CH ₂ CN	Me	H	Me	${ m CH_2NMe_2}$	Et	H
	Me	COCH ₃	Me	H	Et	H	Me	H
	Me	$\mathrm{CH_2NMe_2}$	Me	H	Et	Me	Me	H
	Me	H	Me	Me	Et	CHO	Me	H
20	Me	Me	Me	Me	Et	$\mathrm{CH}_2\mathrm{CN}$	Me	H
	Me	Et	Me	Me	Et	H	Me	Me
	Me	n-Pr	Me	Me	Et	Me	Me	Me
	Me	CHO	Me	Me	Et	CHO	Me	Me
	Me Me	CH ₂ CN	Me	Me	Et	$\mathrm{CH_2CN}$	Me	Me
25	Me	COCH ₃	Me .	Me	Et	H	Et	H
	Me	CH ₂ NMe ₂	Me	Me	Et	Me	Et	H
	Me	H	Et	H	Et	CHO	Et	H
	Me	Me	Et	H	Et	CH ₂ CN	Et	H

30

5

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ¹	R ²	\mathbb{R}^3	<u>R</u> 4
10				1				
	Me	H	Me	H	Me	Et	Et	H
	Me	Me	Me	H	Me	n-Pr	Et	H
	Me	Et	Me	н	Me	CHO	Et	H
	Me	n-Pr	Me	H	Me	CH ₂ CN	Et	H
15	Me	CHO	Me	H	Me	COCH ₃	Et	H
10	Me	$\mathrm{CH}_2\mathrm{CN}$	Me	H	Me	${ m CH_2NMe_2}$	Et	H
	Me	COCH ₃	Me	н	Et	H	Me	H
	Me	CH ₂ NMe ₂	Me	H	Et	Me	Me	H
	Me	H	Me	Me	Et	CHO	Me	H
20	Me	Me	Me	Me	Et	$\mathrm{CH_{2}CN}$	Me	H
	Me	Et	Me	Me	Et	H	Me	Me
	Me	n-Pr	Me	Me	Et	Me	Me	Me
	Me	CHO	Me	Me	Et	CHO	Me	Me
	Me	CH ₂ CN	Me	Me	Et	CH ₂ CN	Me	Me
25	Me	COCH3	Me	Me	Et	н	Et	H
	Me	CH2NMe2	Me	Me	Et	Me	Et	H
	Me	H	Et	H	Et	CHO	Et	H
	Me	Me	Et	H	Et	$\mathrm{CH}_2\mathrm{CN}$	Et	H

30

5

$$\mathbb{R}^{1} \mathbb{S}(CH_{2})_{4} \mathbb{N} \xrightarrow{\mathbb{N} - \mathbb{R}^{3}} \mathbb{R}^{2}$$

10	R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R1	\mathbb{R}^2	R ³	R4
	Me	H	Me	H	Me	Et	Et	H
	Me	Me	Me	H	Me	n-Pr	Et	H
	Me	Et	Me	н	Me	CHO	Et	H
	Me	n-Pr	Me	н	Me	CH ₂ CN	Et	H
15	Me	СНО	Me	н	Me	COCH ₃	Et	H
	Me	$\mathrm{CH}_2\mathrm{CN}$	Me	H	Me	${ m CH_2NMe_2}$	Et	H
	Me	COCH ₃	Me	H	Et	H	Me	H
	Me	${ m CH_2NMe_2}$	Me	H	Et	Me	Me	H
	Me	H	Me	Me	Et	СНО	Me	H
20	Me	Me	Me	Me	Et	CH ₂ CN	Me	H
	Me	Et	Me	Me	Et	H	Me	Me
	Me	n-Pr	Me	Me	Et	Me	Me	Me
	Me	CHO	Me	Me	Et	CHO	Me	Me
	Me	$\mathrm{CH_{2}CN}$	Me	Me	Et	$\mathrm{CH_{2}CN}$	Me	Me
2 5	Me	COCH ₃	Me	Me	Et	H	Et	H
	Me	${ m CH_2NMe_2}$	Me	Me	Et	Me	Et	H
	Me	H	Et	H	Et	CHO	Et	H
	Me	Me	Et	H	Et	CH ₂ CN	Et	H

30

TABLE 10

 ${\bf R^{1}S(CH_{2})_{4}}_{{\bf R^{2}}} {\bf N-NO_{2}}_{{\bf N-R^{3}}}$

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R1	R ²	R ³	R4
10	Me	н	Me	н	Me	Et	Et	н
	Me	Me	Me	H	Me	n-Pr	Et	H
	Me	Et	Me	H	Me	CHO	Et	H
	Me	n-Pr	Me	н	Me	CH_2CN	Et	H
	Me	СНО	Me	H	Me	COCH ₃	Et	H
1 5	Me	$\mathrm{CH}_2\mathrm{CN}$	Me	H	Me	${ m CH_2NMe_2}$	Et	H
	Me	COCH ₃	Me	H	Et	H	Me	H
	Me	${ m CH_2NMe_2}$	Me	н	Et	Me	Me	H
	Me	H	Me	Me	Et	CHO	Me	H
20	Me	Me	Me	Me	Et	CH ₂ CN	Me	H
20	Me	Et	Me	Me	Et	H	Me	Me
	Me	n-Pr	Me	Me	Et	Me	Me	Me
	Me	CHO	Me	Me	Et	CHO	Me	Me
	Me	$\mathrm{CH_2CN}$	Me	Me	Et	$\mathrm{CH}_2\mathrm{CN}$	Me	Me
05	Me	COCH ₃	Me	Me	Et	H	Et	H
2 5	Me	${ m CH_2NMe_2}$	Me	Me	Et	Me	Et	H
	Me	H	Et	H	Et	CHO	Et	H
	Me	Me	Et	H	Et	$\mathrm{CH_2CN}$	Et	H

30

5

$$R^1S$$

$$\begin{array}{c}
NO_2\\
N-Me\\
R^2\\
R^3
\end{array}$$

				R ²	R ³	
10	R ¹	\mathbb{R}^2	R ³	R1	\mathbb{R}^2	\mathbb{R}^3
	Me	n-Pr	н	Me	OCH ₃	allyl
	Me	n-Bu	H	Me	SO_2CH_3	allyl
	Me	i-Pr	Н	Me	$\mathrm{CH}_2\mathrm{CN}$	allyl
	Me	s-Bu	н	Me	$N(CH_3)_2$	allyl
1 5	Me	i-Bu	н	Me	${ m CH_2Ph}$	allyl
	Me	t-Bu	H	Me	CHO	propargyl
	Me	CHO	H	Me	OCH ₃	propargyl
	Me	COCH ₃	H	Me	SO_2CH_3	propargyl
	Me	OCH ₃	H	Me	$\mathrm{CH_2CN}$	propargyl
20	Me	$\mathrm{CH_2O(CH_2)_2OCH_3}$	H	Me	$N(CH_3)_2$	propargyl
	Me	SO ₂ CH ₃	H	Me	${ m CH_2Ph}$	propargyl
	Me	CH ₂ CN	H	Me	CHO	СНО
	Me	$N(CH_3)_2$	H	Me	COCH3	СНО
	Me	CH ₂ Ph	H	Me	OCH ₃	СНО
2 5	Me	n-Pr	Me	Me	$N(CH_3)_2$	СНО
	Me	n-Bu	Me	Me	$\mathrm{CH_{2}CN}$	CHO
	Me	СНО	Me	Me	OCH_3	COCH ₃
	Me	OCH ₃	Me	Me	$\mathrm{CH_2CN}$	COCH ₃
	Me	SO ₂ CH ₃	Me	Me	CHO	$\mathrm{CH_2O(CH_2)_2OCH_3}$
3 0	Me	CH ₂ CN	Me	Me	OCH3	$\mathrm{CH_2O(CH_2)_2OCH_3}$
	Me	$N(CH_3)_2$	Me	Me	CHO	SO ₂ CH ₃
	Me	CH ₂ Ph	Me	Me	OCH ₃	SO_2CH_3
	Me	СНО	allyl	Me	CH ₂ CN	SO ₂ CH ₃
0.5				i		

	\mathbb{R}^1	\mathbb{R}^2	<u>R</u> 3	R ¹	\mathbb{R}^2	R ³
5	Me	СНО	CH ₂ CN	n-Pr	CHO	H
	Me	OCH_3	CH ₂ CN	n-Bu	CHO	H
	Me	CH ₂ CN	$\mathrm{CH_2CN}$	$(CH_2)_2CI$	CHO	H
	Me	$N(CH_3)_2$	$\mathrm{CH_2CN}$	c-Pr	CHO	H
	Me	n-Pr	${ m CH_2Ph}$	c-pentyl	CHO	H
10	Me	CHO	CH ₂ Ph	CH ₂ -c-Pr	CHO	H
	Me	OCH ₃	$\mathrm{CH_2Ph}$			
	Me	CH ₂ CN	${ m CH_2Ph}$			
	Me	${ m CH_2Ph}$	$\mathrm{CH_2Ph}$			
	Et	n-Pr	H			
1 5	Et	CHO	H			
	Et	OCH ₃	H			
	Et	SO ₂ CH ₃	H			
	Et	CH ₂ CN	H			
	Et	n-Pr	Me			
20	Et	CHO	Me			
	Et	осн ₃	Me			
	Et	SO_2CH_3	Me			
	Et	CH ₂ CN	Me			
	Et	CHO	CHO			
25	Et	COCH ₃	CHO			
	$\mathbf{E}\mathbf{t}$	OCH ₃	CHO			
	Et	CH ₂ CN	CHO			
	Et	CHO	COCH ₃			
	Et	COCH3	COCH ₃			
30	Et	OCH ₃	COCH ₃			
	Et	$\mathrm{CH_{2}CN}$	COCH ₃			
				10		

 NO_2 5 N-Me R^1S' ${\stackrel{\scriptscriptstyle{1}}{R}}{}^{2}$ $\overset{\scriptscriptstyle{}}{R}{}^3$ \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^1 10 allyl OCH₃ Me H n-Pr Me allyl SO₂CH₃ Me H n-Bu Me allyl CH₂CN Me H i-Pr Me allyl $N(CH_3)_2$ Me H s-Bu Me allyl CH_2Ph Me 15 H i-Bu Me CHO propargyl H Me t-Bu Me OCH₃ Me propargyl H CHO Me SO₂CH₃ propargyl Me H Me COCH3 CH₂CN propargyl Η Me OCH₃ Me $N(CH_3)_2$ propargyl Me 20 $CH_2O(CH_2)_2OCH_3$ H Me propargyl CH_2Ph Me H SO₂CH₃ Me H CHO CH_2CN CHO Me Me CHO COCH₃ H Мe $N(CH_3)_2$ Me Me OCH₃ CHO H Me CH_2Ph CHO $N(CH_3)_2$ Me **2**5 Me Me n-Pr · CHO Me CH₂CN n-Bu Me Me OCH₃ COCH₃ Me CHO Me Me COCH₃ Me CH₂CN Me Me OCH₃ CH₂O(CH₂)₂OCH₃ CHO Me Me Me SO₂CH₃ CH2O(CH2)2OCH3 Me OCH₃ 30 Me Me CH₂CN CHO SO2CH3 Me Me $N(CH_3)_2$ Me SO_2CH_3 OCH₃ Me Me CH_2Ph Me

CH₂CN

Me

allyl

SO₂CH₃

Me

CHO

	R1	\mathbb{R}^2	<u>R</u> 3	R ¹
5	Me	СНО	CH ₂ CN	n-Pr
	Me	OCH ₃	CH ₂ CN	n-Bu
	Me	$\mathrm{CH_2CN}$	CH ₂ CN	$(CH_2)_2Cl$
	Me	$N(CH_3)_2$	CH ₂ CN	c-Pr
	Me	n-Pr	CH ₂ Ph	c-pentyl
10	Me	CHO	CH ₂ Ph	CH ₂ -c-Pr
	Me	OCH ₃	CH ₂ Ph	
	Me	CH ₂ CN	CH ₂ Ph	
	Me	CH ₂ Ph	CH ₂ Ph	
	Et	n-Pr	н	
15	Et	СНО	H	
	Et	осн ₃	H	
	Et	SO_2CH_3	H	
	Et	CH ₂ CN	н	
	Et	n-Pr	Me	
20	Et	CHO	Me	
	Et	осн ₃	Me	
	Et	SO_2CH_3	Me	
	Et	CH ₂ CN	Me	
	Et	CHO	СНО	
2 5	Et	COCH ₃	СНО	
	Et	OCH ₃	CHO	
	Et	CH ₂ CN	CHO	
	Et	CHO	COCH3	
	Et	COCH3	COCH ₃	
3 0	Et	OCH ₃	COCH ₃	
	Et	CH ₂ CN	COCH ₃	

R ¹	\mathbb{R}^2	\mathbb{R}^3
n-Pr	СНО	H
n-Bu (CH ₂) ₂ Cl	CHO CHO	H H
c-Pr c-pentyl CH ₂ -c-Pr	CHO CHO	H H

 $\begin{array}{c|c}
& & & \\
& & & \\
R^1 S(CH_2)_3 N & & N \\
& & & \\
& & & \\
R^2 & & \\
& & & \\
R^3
\end{array}$

10	R1	\mathbb{R}^2	R ³	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
	Me	n-Pr	H	Me	OCH ₃	allyl
	Me	n-Bu	H	Me	SO_2CH_3	allyl
	Me	i-Pr	H	Me	CH_2CN	allyl
-a 144	Me	s-Bu	н	Me	$N(CH_3)_2$	allyl
15	Me	i-Bu	H	Me	CH_2Ph	allyl
	Me	t-Bu	н	Me	CHO	propargyl
	Me	CHO	н	Me	OCH ₃	propargyl
	Me	COCH ₃	H	Me	SO_2CH_3	propargyl
	Me	OCH ₃	H	Me	$\mathrm{CH_2CN}$	propargyl
20	Me	CH ₂ O(CH ₂) ₂ OCH ₃	H	Me	$N(CH_3)_2$	propargyl
	Me	SO ₂ CH ₃	H	Me	CH_2Ph	propargyl
	Me	CH ₂ CN	H	Me	CHO	CHO
	Me	N(CH ₃) ₂	н	Me	COCH ₃	СНО
	Me	CH ₂ Ph	H	Me	OCH ₃	CH0
25	Me	n-Pr	Me	Me	$N(CH_3)_2$	СНО
	Me	n-Bu	Me	Me	CH ₂ CN	CH0
	Me	СНО	Me	Me	OCH_3	COCH ₃
	Me	OCH ₃	Me	Me	CH ₂ CN	COCH ₃
	Me	SO ₂ CH ₃	Me	Me	CHO	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$
3 0	Me	CH ₂ CN	Me	Me	OCH ₃	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$
	Me	$N(CH_3)_2$	Me	Me	CHO	SO ₂ CH ₃
	Me	CH ₂ Ph	Me	Me	och ₃	SO_2CH_3
	Me	СНО	allyl	Me	CH ₂ CN	so ₂ CH ₃

	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^1	\mathbb{R}^2	R ³
5	Me	СНО	CH ₂ CN	n-Pr	CHO	н
	Me	OCH ₃	CH ₂ CN	n-Bu	CHO	H
	Me	CH ₂ CN	CH ₂ CN	$(CH_2)_2Cl$	CHO	H
	Me	$N(CH_3)_2$	CH ₂ CN	c-Pr	CHO	H
	Me	n-Pr	CH ₂ Ph	c-pentyl	CHO	H
10	Me	CHO	CH ₂ Ph	$\mathrm{CH}_2 ext{-c-Pr}$	CHO	H
	Me	OCH ₃	CH ₂ Ph			
	Me	CH ₂ CN	CH ₂ Ph			
	Me	CH ₂ Ph	CH ₂ Ph			
	Et	n-Pr	н			
15	Et	CHO	н			
	Et	och ₃	H			
	Et	SO_2CH_3	H			
	Et	CH ₂ CN	н			
	Et	n-Pr	Me			
20	Et	CHO	Me			
	Et	осн ₃	Me			
	Et	SO_2CH_3	Me			
	Et	CH ₂ CN	Me			
	Et	CHO	СНО			
25	Et	COCH ₃	СНО			
	Et	OCH ₃	СНО			
	Et	CH ₂ CN	CHO			
	Et	CHO	COCH ₃			
	Et	COCH3	COCH ₃			
30	Et	осн ₃	COCH ₃			
	Et	CH ₂ CN	COCH ₃			

5 $\begin{array}{c|c} & & & & & \\ & & & & & \\ R^1 S(CH_2)_3 N & & & & \\ R^2 & & & & \\ & & & & R^3 \end{array}$

10	R ¹	\mathbb{R}^2	R ³	R ¹	\mathbb{R}^2	R ³
	Me	n-Pr	н	Me	OCH ₃	allyl
	Me	n-Bu	н	Me	SO_2CH_3	allyl
	Me	i-Pr	н	Me	$\mathrm{CH_2CN}$	allyl
15	Me	s-Bu	н	Me	$N(CH_3)_2$	allyl
19	Me	i-Bu	н	Me	$\mathrm{CH_2Ph}$	allyl
	Me	t-Bu	H	Me	СНО	propargyl
			H	Me	OCH ₃	propargyl
	Me Me	CHO COCH ₃	H	Me	SO ₂ CH ₃	propargyl
		OCH ₃	H	Me	CH ₂ CN	propargyl
20	Me	-	н	Me	N(CH ₃) ₂	propargyl
	Me	CH ₂ O(CH ₂) ₂ OCH ₃		Me	CH ₂ Ph	propargyl
	Me	SO ₂ CH ₃	H		_	
	Me	CH ₂ CN	H	Me	CHO	CHO
	Me	$N(CH_3)_2$	H	Me	COCH ₃	CHO
25	Me	CH ₂ Ph	H	Me	OCH ₃	CHO
	Me	n-Pr	Me	Me	$N(CH_3)_2$	СНО
	Me	n-Bu	Me	Me	$\mathrm{CH_{2}CN}$	СНО
	Me	СНО	Me	Me	OCH ₃	COCH ₃
	Me	OCH ₃	Me	Me	$\mathrm{CH_2CN}$	COCH ₃
30	Me	SO ₂ CH ₃	Me	Me	CHO	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$
30	Me	CH ₂ CN	Me	Me	OCH ₃	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$
	Me	N(CH ₃) ₂	Me	Me	CHO	SO_2CH_3
	Me	CH ₂ Ph	Me	Me	OCH3	SO ₂ CH ₃
		_	allyl	Me	CH ₂ CN	SO ₂ CH ₃
0.5	Me	СНО	anyı		-	- •
3 5			1			

	R ¹	R ²	R ³	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
5	Me	СНО	CH ₂ CN	n-Pr	CHO	н
·	Me	OCH ₃	CH ₂ CN	n-Bu	CHO	H
	Me	CH ₂ CN	CH ₂ CN	$(CH_2)_2Cl$	CHO	H
	Me	$N(CH_3)_2$	CH ₂ CN	c-Pr	CHO	H
	Me	n-Pr	CH ₂ Ph	c-pentyl	CHO	H
10	Me	СНО	CH ₂ Ph	CH ₂ -c-Pr	CHO	H
	Me	OCH ₃	CH ₂ Ph			
	Me	CH ₂ CN	CH ₂ Ph			
	Me	$\mathrm{CH_2Ph}$	CH ₂ Ph			
	Et	n-Pr	H			
15	Et	CHO	H			
	Et	OCH ₃	H			
	$\mathbf{E} \mathbf{t}$	SO_2CH_3	H			
	Et	CH ₂ CN	Н			
	Et	n-Pr	Me			
20	Et	CHO	Me			
	Et	och ₃	Me			
	Et	SO_2CH_3	Me			
	Et	CH ₂ CN	Me			
	\mathbf{E} t	CHO	CHO			
2 5	Et	COCH ₃	CHO			
	Et	осн ₃	CHO			
	Et	CH ₂ CN	СНО			
	Et	СНО	COCH ₃			
	Et	COCH ₃	COCH ₃			
3 0	Et	OCH ₃	COCH ₃			
	Et	CH ₂ CN	COCH ₃			

5

$$R^1S(CH_2)_4N$$
 R^2
 R^3

			0.0			
10	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^1	R ²	\mathbb{R}^3
10				Me	OCH ₃	allyl
	Me	n-Pr	H		•	-
	Me	n-Bu	H	Me	SO ₂ CH ₃	allyl
	Me	i-Pr	H	Me	CH ₂ CN	allyl
	Me	s-Bu	H	Me	$N(CH_3)_2$	allyl
15	Me	i-Bu	H	Me	CH_2Ph	allyl
	Me	t-Bu	H	Me	CHO	propargyl
	Me	CHO ·	H	Me	och ₃	propargyl
	Me	COCH ₃	H	Me	SO_2CH_3	propargyl
	Me	OCH ₃	H	Me	CH ₂ CN	propargyl
2 0	Me	$\mathrm{CH_2O(CH_2)_2OCH_3}$	H	Me	$N(CH_3)_2$	propargyl
	Me	SO ₂ CH ₃	H	Me	$\mathrm{CH_2Ph}$	propargyl
	Me	CH ₂ CN	H	Me	CHO	СНО
	Me	$N(CH_3)_2$	H	Me	COCH ₃	СНО
	Me	CH ₂ Ph	H	Me	och ₃	СНО
2 5	Me	n-Pr	Me	Me	$N(CH_3)_2$	СНО
	Me	n-Bu	Me	Me	CH_2CN	CHO
	Me	СНО	Me	Me	och ₃	COCH ₃
	Me	OCH ₃	Me	Me	CH ₂ CN	COCH ₃
	Me	SO ₂ CH ₃	Me	Me	CHO	$\mathrm{CH_2O}(\mathrm{CH_2})_2\mathrm{OCH_3}$
3 0	Me	CH ₂ CN	Me	Me	och ₃	$\mathrm{CH_2O(CH_2)_2OCH_3}$
	Me	N(CH ₃) ₂	Me	Me	CHO	SO ₂ CH ₃
	Me	CH ₂ Ph	Me	Me	OCH ₃	SO_2CH_3
	Me	CHO	allyl	Me	CH ₂ CN	SO ₂ CH ₃
95			4			

	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^1	\mathbb{R}^2	<u>R</u> 3
5	Me	СНО	CH ₂ CN	n-Pr	СНО	H
	Me	och ₃	CH ₂ CN	n-Bu	CHO	H
	Me	CH ₂ CN	CH ₂ CN	$(CH_2)_2Cl$	CHO	H
	Me	$N(CH_3)_2$	CH ₂ CN	c-Pr	CHO	H
	Me	n-Pr	CH ₂ Ph	c-pentyl	CHO	H
10	Me	СНО	CH ₂ Ph	CH ₂ -c-Pr	CHO	H
	Me	OCH ₃	CH ₂ Ph			
	Me	CH ₂ CN	$\mathrm{CH}_2\mathrm{Ph}$			
	Me	$\mathrm{CH_2Ph}$	$\mathrm{CH_2Ph}$			
	Et	n-Pr	H			
15	Et	СНО	H			
	Et	осн ₃	H			
	Et	SO_2CH_3	H			
	Et	CH ₂ CN	H		-	
	Et	n-Pr	Me			
2 0	Et	CHO	Me			
	Et	OCH ₃	Me			
	Et	SO_2CH_3	Me			
	Et	CH ₂ CN	Me			
	Et	CHO	CHO			
2 5	Et	COCH ₃	CHO			
	Et	OCH ₃	CHO			
	Et	CH ₂ CN	CHO			
	Et	CHO	COCH ₃			
	Et	COCH3	COCH3			
30	Et	OCH ₃	COCH ₃			
	Et	$\mathrm{CH}_2\mathrm{CN}$	COCH ₃			

5 $\begin{array}{c|c}
R^{1}S(CH_{2})_{3}N & N \longrightarrow Me \\
R^{2} & R^{3}
\end{array}$

10	\mathbb{R}^1	\mathbb{R}^2	R ³	R ¹	\mathbb{R}^2	R ³
	Me	n-Pr	н	Me	OCH ₃	allyl
	Me	n-Bu	н	Me	SO_2CH_3	allyl
	Me	i-Pr	н	Me	$\mathrm{CH_2CN}$	allyl
15	Me	s-Bu	н	Me	$N(CH_3)_2$	allyl
19	Me	i-Bu	н	Me	$\mathrm{CH_2Ph}$	allyl
		t-Bu	н	Мe	СНО	propargyl
	Me		н	Me	OCH ₃	propargyl
	Me Me	CHO COCH ₃	н	Me	SO ₂ CH ₃	propargyl
	Me	OCH ₃	H	Me	CH ₂ CN	propargyl
20		•	н	Me	$N(CH_3)_2$	propargyl
	Me	CH ₂ O(CH ₂) ₂ OCH ₃	н	Me	CH ₂ Ph	propargyl
	Me	SO ₂ CH ₃	Н		CHO	СНО
	Me	CH ₂ CN		Me Me	COCH ₃	CHO
	Me	N(CH ₃) ₂	H	Me	OCH ₃	СНО
2 5	Me	CH ₂ Ph	H			СНО
	Me	n-Pr	Me	Me	N(CH ₃) ₂	
	Me	n-Bu	Me	Me	CH ₂ CN	CHO
	Me	CHO	Me	Me	och ₃	COCH ₃
	Me ·	och ₃	Me	Me	CH ₂ CN	COCH ₃
3 0	Me	SO_2CH_3	Me	Me	CHO	$CH_2O(CH_2)_2OCH_3$
	Me	CH ₂ CN	Me	Me	och_3	$CH_2O(CH_2)_2OCH_3$
	Me	$N(CH_3)_2$	Me	Me	CHO	SO_2CH_3
	Me	CH ₂ Ph	Me	Me	och ₃	SO_2CH_3
	Me	СНО	allyl	Me	CH ₂ CN	SO ₂ CH ₃
3 5						

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ¹	\mathbb{R}^2
5	Me	СНО	CH ₂ CN	n-Pr	CHO
	Me	OCH ₃	CH ₂ CN	n-Bu	CHO
	Me	CH ₂ CN	CH ₂ CN	(CH ₂) ₂ Cl	CHO
	Me	$N(CH_3)_2$	$\mathrm{CH}_2\mathrm{CN}$	c-Pr	CHO
	Me	n-Pr	CH_2Ph	c-pentyl	CHO
10	Me	CHO	CH_2Ph	CH ₂ -c-Pr	CHO
	Me	OCH ₃	CH_2Ph		
	Me	CH ₂ CN	${ m CH_2Ph}$		
	Me	CH ₂ Ph	$\mathtt{CH_2Ph}$		
	Et	n-Pr	н		
15	Et	CHO	H		
	Et	och ₃	H		
	Et	SO ₂ CH ₃	H		
	Et	CH ₂ CN	H		
	Et ·	n-Pr	Me		
20	Et	CHO	Me		
	Et	OCH ₃	Me		
	Et	${ m SO_2CH_3}$	Me		
	Et	$\mathrm{CH_2CN}$	Me		
	Et	CHO	CHO		
2 5	Et	COCH ₃	CHO		
	Et	OCH ₃	CHO		
	Et	$\mathrm{CH_2CN}$	CHO		
	Et	CHO	COCH ₃		
	Et	COCH3	COCH ₃		
30	Et	OCH ₃	COCH ₃		
	Et	CH ₂ CN	COCH ₃		
		_	•		

\mathbb{R}^1	\mathbb{R}^2	R 3
n-Pr	CHO	H
n-Bu	CHO	H
$(CH_2)_2Cl$	CHO	H
c-Pr	CHO	H
c-pentyl	CHO	H
CH ₂ -c-Pr	CHO	H

TABLE 17

 $\begin{array}{c|c}
0 & & \\
\mathbb{R}^{1}S(CH_{2})_{2} & & NO_{2} \\
\end{array}$

0.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	\mathbb{R}^1	R ²	R ³	\mathbb{R}^4
10	Me	н	Н	н	Me	$N(CH_3)_2$	н	H
	Me	Me	H	н	Me	$N(CH_3)_2$	Me	H
	Me	н	Me [.]	H	Me	$N(CH_3)_2$	CHO	H
	Me	H	Me	Me	Me	$N(CH_3)_2$	CHO	Me
15	Me	H	Et	н	Me	$N(CH_3)_2$	Et	H
	Me	Me	Me	H	Et	H	Мe	H
	Me	Me	Me	Me	Et	H	Me	Me
	Me	Me	Et	н	Et	H	Et	H
	Me	Me	c-Pr	H	Et	H	CHO	H
20	Me	Me	n-Pr	H	Et	H	CHO	Me
	Me	Me	Me	СНО	Et	Me	Me	H
	Me	CHO	Ħ.	H	Et	Me	CHO	H
	Me	CHO	Me	H	Et	Me	CHO	Me
	Me	SO ₂ CH ₃	Me	H	Et	СНО	Me	H
2 5	Me	SO ₂ CH ₃	H	H	Et	СНО	Et	H
	Me	OCH ₃	H	H	Et	CHO	Me	Me
	Me	OCH ₃	Me	H				
	Me	OCH ₃	Me	СНО				
	Me	CH ₂ CN	Me	H				
30	Me	$\mathrm{CH_2CN}$	Me	Me				
	Me	CH ₂ CN	Et	H				

$$\mathbb{R}^{1} \stackrel{\text{O}}{\underset{\text{R}^{2}}{\overset{\text{N}}{\underset{\text{N}}{\overset{\text{N}}{\bigcirc}_{2}}}}} \mathbb{N}^{\text{NO}_{2}}$$

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4
10								
	Me	H	H	H	Me	$N(CH_3)_2$	H	H
	Me	Me	H	H	Me	$N(CH_3)_2$	Me	H
	Me	H	Me	H	Me	$N(CH_3)_2$	CHO	H
	Me	H	Me	Me	Me	$N(CH_3)_2$	CHO	Me
1 5	Me	H	Et	H	Me	$N(CH_3)_2$	Et	H
	Me	Me	Me	H	Et	H	Me	H
	Me	Me	Me	Me	Et	H	Me	Me
	Me	Me	Et	H	Et	H	Et	H
	Me	Me	c-Pr	H	Et	H	CHO	H
20	Me	Me	n-Pr	H	Et	H	CHO	Me
	Me	Me	Me	CHO	Et	Me	Me	H
	Me	CHO	H	H	Et	Me	CHO	H
	Me	CHO	Me	H	Et	Me	CHO	Me
	Me	SO_2CH_3	Me	H	Et	CHO	Me	H
25	Me	SO_2CH_3	H	H	Et	CHO	Et	H
	Me	OCH ₃	H	H	Et	CHO	Me	Me
	Me	OCH ₃	Me	H				
	Me	och ₃	Me	СНО				
	Me	${ m CH_2CN}$	Me	H				
3 0	Me	$\mathrm{CH_2CN}$	Me	Me				
	Me	$\mathrm{CH}_2\mathrm{CN}$	Et	H				

TABLE 19

 $\begin{array}{c|c}
0 & & \\
\mathbb{R}^{1}S(CH_{2})_{3} & & \mathbb{N}^{-}\mathbb{R}^{3} \\
\mathbb{R}^{2} & \mathbb{R}^{4}
\end{array}$

10	R1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ¹	\mathbb{R}^2	R ³	R4
10	Me	H	н	н	Me	$N(CH_3)_2$	H	H
	Me	Me	H	н	Me	$N(CH_3)_2$	Me	H
	Me	H	Me	н	Me	$N(CH_3)_2$	CHO	H
	Me	H	Me	Me	Me	$N(CH_3)_2$	CHO	Me
15	Me	H	Et	н	Me	$N(CH_3)_2$	Et	H
	Me	Me	Me	H	Et	H	Me	H
	Me	Me	Me	Me	Et	H	Me	Me
	Me	Me	Et	H	Et	H	Et	H
	Me	Me	c-Pr	н	Et	H	CHO	H
20	Me	Me	n-Pr	H	Et	H	CHO	Me
	Me	Me	Me	СНО	Et	Me	Me	H
	Me	CHO	H	H	Et	Me	CHO	H
	Me	CHO	Me	H	Et	Me	CHO	Me
	Me	SO_2CH_3	Me	H	Et	CHO	Me	H
2 5	Me	SO ₂ CH ₃	H	H	Et	CHO	Et	H
	Me	och3	H	H	Et	СНО	Me	Me
	Me	OCH ₃	Me	H				
	Me	OCH ₃	Me	СНО				
	Me	CH_2CN	Me	H				
3 0	Me	CH ₂ CN	Me	Me				
	Me	CH ₂ CN	Et	H				

TABLE 20

5 \mathbb{R}^1 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^2 \mathbb{R}^4 10 Me $N(CH_3)_2$ H H Me \mathbf{H} H H Me $N(CH_3)_2$ Me H Me Me H H $N(CH_3)_2$ CHO H Me H Me H Me Me $N(CH_3)_2$ CHO Me Me Me H Me 15 H Et Me $N(CH_3)_2$ Me \mathbf{H} Et H H Мe Me Et H Me H Me Me Me Me Me Et H Me Me H H Me Me Et Et Et H Me Me c-Pr H Et H CHO H 20 H Me n-Pr H Et CHO Me Me Me Me Me CHO Et Me Me H CHO H Me CHO Me H Et H CHO Me Me H Et Me CHO Me Н Me SO₂CH₃ Me CHO H Et Me **25** Me SO₂CH₃ H H Et CHO Et H OCH₃ H H Me CHO Et Me Me OCH₃ Me н Me CHO Me OCH₃ Me CH_2CN Me Me H 30 Me Me CH₂CN Me CH₂CN H Me Et

5 $R^1S(CH_2)_2N$ R² \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 10 Н $N(CH_3)_2$ H Me H H H Me H Me $N(CH_3)_2$ Me H Me H Me Н $N(CH_3)_2$ CHO Me H Me Me H Me CHO $N(CH_3)_2$ Me Me Me H Мe 15 H $N(CH_3)_2$ $\mathbf{E}\mathbf{t}$ Me H Et H Me Me H H H Et Me Me Me Me Me H Et Me Me Me Me Et H H Et H Me Me Et H H CHO H Et c-Pr Me Me 20 H CHO Me Et Η Me Me n-Pr H Me Me CHO Et Me Me Me CHO H Me H H Et Me CHO Me CHO Н Et Me CHO Me Me Η Me H SO₂CH₃ Me CHO Me Et **2**5 Н Et H SO₂CH₃ H CHO Me Et H H CHO Me Me OCH₃ Et Me OCH₃ Me H Me CHO OCH₃ Me Me Me H CH₂CN Me 30 CH_2CN Me Me Me CH_2CN Et H Me

TABLE 22

 $\begin{array}{c|c}
0 & NO_{2} \\
0 & NO_{2} \\
0 & R^{1}S(CH_{2})_{2}N & N-R^{3} \\
0 & R^{2} & R^{4}
\end{array}$

10	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴	R ¹	R ²	<u>R</u> 3	R4
	Me	H	н	н	Me	$N(CH_3)_2$	H	H
	Me	Me	Н	н	Me	$N(CH_3)_2$	Me	H
	Me	H	Me	н	Me	$N(CH_3)_2$	CHO	H
4 P	Me	н	Me	Me	Me	$N(CH_3)_2$	CHO	Me
15	Me	H	Et	н	Me	$N(CH_3)_2$	Et	H
	Me	Me .	Me	H	Et	H	Me	H
	Me	Me	Me	Me	Et	H	Me	Me
	Me	Me	Et	H	Et	H	Et	H
20	Me	Me	c-Pr	H	Et	H	CHO	H
20	Me	Me	n-Pr	H	Et	H	CHO	Me
	Me	Me	Me	СНО	Et	Me	Me	H
	Me	CHO	H	H	Et	Me	CHO	H
	Me	CHO	Me	H	Et	Me	CHO	Me
95	Me	SO_2CH_3	Me	H	Et	CHO	Me	H
2 5	Me	SO_2CH_3	H	H	Et	CHO	Et	H
	Me	och ₃	H	H	Et	CHO	Me	Me
	Me	OCH ₃	Me	H				
	Me	och ₃	Me	СНО				
90	Me	CH_2CN	Me	H				
30	Me	$\mathrm{CH}_2\mathrm{CN}$	Me	Me				
	Me	$\mathrm{CH}_2\mathrm{CN}$	Et	H				

NO2 5 $R^1\ddot{S}(CH_2)_3N$ \mathbb{R}^4 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^4 \mathbb{R}^1 \mathbb{R}^3 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4 10 н $N(CH_3)_2$ H Me H H Me H H Me $N(CH_3)_2$ Me H Me H Me H $N(CH_3)_2$ CHO Me H Me Н Me CHO Me $N(CH_3)_2$ Me Me Me Me H 15 $N(CH_3)_2$ Et H Me H Et H Me H H Me Et H Me · Me Me Me Мe H Me Et Me Me Me Et H Н Et H Et Me Me H CHO H Et H Me c-Pr Me 20 H CHO Me \mathbf{E} t H Me Мe n-Pr H Me Me CHO Et Me Me Me CHO H Me Et H Η Me CHO CHO Me Me Me H $\mathbf{E}t$ Me CHO H H Me CHO Me Me SO₂CH₃ Et **2**5 H Et H CHO SO₂CH₃ H Me Et OCH₃ H CHO Me Me Me H Et H Me Me OCH₃ CHO Me OCH₃ Me H CH₂CN Me Me **3**0 Me Me CH₂CN Me CH₂CN H Et Me

5 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^4 10 H Me $N(CH_3)_2$ \mathbf{H} Me H H H Me $N(CH_3)_2$ Me H H H Me Me $N(CH_3)_2$ CHO H Me H Me H Me Me $N(CH_3)_2$ CHO Me Me H Me Me 15 Me $N(CH_3)_2$ Et H H Et H Me Н H Me Me Me Et H Me Me Me Me Et H Me Me Me H H H Me Et Et Me Et H CHO H Me Me c-Pr H Et 20 Me n-Pr H H CHO Me Me Et Me H Me Me Me CHO Et Me Me CHO \mathbf{H} H Et Me CHO H Me CHO Me H Et Me CHO Me Me SO₂CH₃ H Me Et CHO Me H 25 SO₂CH₃ H Me H Et H Et CHO Me OCH₃ H H Et CHO Me Me OCH₃ H Me Me Me OCH₃ Me CHO Me CH₂CN H Me 30 Me CH₂CN Me Me Me CH₂CN $\mathbf{E}\mathsf{t}$ H

10	Δ	\mathbb{R}^1	R ²	\mathbb{R}^3	R ⁴	A	\mathbb{R}^1	\mathbb{R}^2	R ³	R ⁴
	CH ₂ CH(CH ₃)	Me	н	Me	н	CH(CH ₃)(CH ₂) ₃	Me	Me	Me	H
	CH(CH ₃)CH ₂	Me	H	Me	н	CH ₂ CH(n-Pr)	Me	Me	Me	H
	(CH ₂) ₂ CH(CH ₃)	Me	H	Me	н	CH(n-Pr)CH ₂	Me	Me	Me	H
	CH(CH ₃)CH ₂ CH ₂	Me	H	Me	H	CH ₂ CH(Me)	Me	H	Me	Me
1 5	CH ₂ CH(CH ₃)CH ₂	Me	H	Me	н	$CH(Me)CH_2$	Me	H	Me	Me
	CH(CH ₃)(CH ₂) ₃	Me	H	Me	н	$(CH_2)_2CH(Me)$	Me	H	Me	Me
	(CH ₂) ₃ CH(CH ₃)	Me	H	Me	н	$CH(Me)(CH_2)_2$	Me	H	Me	Me
	CH ₂ CH(CH ₃)(CH ₂) ₂	Me	H	Me	H	CH ₂ CH(Et)	Me	H	Me	Me
	(CH ₂) ₂ CH(CH ₃)CH ₂	Me	H	Me	H	$CH(Et)CH_2$	Me	H	Me	Me
20	CH ₂ CH(Et)	Me	H	Me	н	$(CH_2)_3CH(Me)$	Me	H	Me	Me
	CH(Et)CH ₂	Me	H	Me	н	$CH(Me)(CH_2)_3$	Me	H	Me	Me
	CH ₂ CH(Et)CH ₂	Me	H	Me	H	CH ₂ CH(n-Pr)	Me	H	Me	Me
	CH ₂ CH(n-Pr)	Me	H	Me	н	$CH(n-Pr)CH_2$	Me	H	Me	Me
	CH(n-Pr)CH ₂	Me	H	Me	H	$CH_2CH(CH_3)$	Me	H	Et	H
25	CH ₂ CH(n-Pr)CH ₂	Me	H	Me	н	$CH_2CH(CH_3)$	Me	H	n-Pr	H
	CH ₂ CH(CH ₃)	Me	Me	Me	н	$CH_2CH(CH_3)$	Me	H	n-Bu	H
	CH(CH ₃)CH ₂	Me	Me	Me	н	$CH_2CH(CH_3)$	Me	CHO	Me	H
	$(CH_2)_2CH(CH_3)$	Me	Me	Me	H	$CH_2CH(CH_3)$	Me	СНО	Et	H
	CH(CH ₃)(CH ₂) ₂	Me	Me	Me	H	$CH(CH_3)CH_2$	Me	H	Et	H
30	CH ₂ CH(CH ₃)CH ₂	Me	Me	Me	н	$CH(CH_3)CH_2$	Me	H	n-Pr	H
	CH ₂ CH(Et)	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	H	n-Bu	H
	CH(Et)CH ₂	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	CHO	Me	H
	$(CH_2)_3CH(CH_3)$	Me	Me	Me	н	CH(CH ₃)CH ₂	Me	CHO	Et	H

10	A	R1	\mathbb{R}^2	\mathbb{R}^3	R4	A	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4
	$\mathrm{CH}_2\mathrm{CH}(\mathrm{CH}_3)$	Me	H	Me	H	$CH(CH_3)(CH_2)_3$	Me	Me	Me	H
	$CH(CH_3)CH_2$	Me	H	Me	H	CH ₂ CH(n-Pr)	Me	Me	Me	H
	$(CH_2)_2CH(CH_3)$	Me	H	Me	H	$CH(n-Pr)CH_2$	Me	Me	Me	H
	$\mathrm{CH}(\mathrm{CH_3})\mathrm{CH_2}\mathrm{CH_2}$	Me	H	Me	H	CH ₂ CH(Me)	Me	H	Me	Me
1 5	$\mathrm{CH_2CH}(\mathrm{CH_3})\mathrm{CH_2}$	Me	H	Me	н	$CH(Me)CH_2$	Me	H	Me	Me
	CH(CH ₃)(CH ₂) ₃	Me	H	Me	н	$(CH_2)_2CH(Me)$	Me	H	Me	Me
	$(CH_2)_3CH(CH_3)$	Me	H	Me	H	$CH(Me)(CH_2)_2$	Me	H	Me	Me
	$\mathrm{CH_2CH}(\mathrm{CH_3})(\mathrm{CH_2})_2$	Me	H	Me	H	CH ₂ CH(Et)	Me	H	Me	Me
	$(\mathrm{CH}_2)_2\mathrm{CH}(\mathrm{CH}_3)\mathrm{CH}_2$	Me	H	Me	H	CH(Et)CH ₂	Me	H	Me	Me
20	CH ₂ CH(Et)	Me	H	Me	H	(CH ₂) ₃ CH(Me)	Me	H	Me	Me
	CH(Et)CH ₂	Me	H	Me	H	CH(Me)(CH ₂) ₃	Me	H	Me	Me
	CH ₂ CH(Et)CH ₂	Me	H	Me	H	CH ₂ CH(n-Pr)	Me	H	Me	Me
	CH ₂ CH(n-Pr)	Me	H	Me	H	CH(n-Pr)CH ₂	Me	H	Me	Me
	CH(n-Pr)CH ₂	Me	H	Me	H	CH ₂ CH(CH ₃)	Me	H	Et	H
25	$\mathrm{CH_2CH(n\text{-}Pr)CH_2}$	Me	H	Me	H	CH ₂ CH(CH ₃)	Me	H	n-Pr	H
	$CH_2CH(CH_3)$	Me	Me	Me	H	CH ₂ CH(CH ₃)	Me	H	n-Bu	H
	$\mathrm{CH}(\mathrm{CH_3})\mathrm{CH_2}$	Me	Me	Me	H	CH ₂ CH(CH ₃)	Me	CHO	Me	H
	$(CH_2)_2CH(CH_3)$	Me	Me	Me	H	CH ₂ CH(CH ₃)	Me	CHO	Et	H
	$CH(CH_3)(CH_2)_2$	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	H	Et	H
3 0	$CH_2CH(CH_3)CH_2$	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	H	n-Pr	H
	CH ₂ CH(Et)	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	H	n-Bu	H
	CH(Et)CH ₂	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	CHO	Me	H
	$(CH_2)_3CH(CH_3)$	Me	Me	Me	H	CH(CH ₃)CH ₂	Me	CHO	Et	H

 NO_2 5 R^1S \mathbb{R}^3 \mathbb{R}^1 \mathbb{R}^3 B \mathbb{R}^1 B 10 $(CH_2)_3$ CHO H Me CH₂CH₂ Me (CH₂)₃COMe Me Me CH₂CH₂ Me $(CH_2)_3$ CH₂CN Me Et Me CH₂CH₂ CH_2NMe_2 CH_2CH_2 n-Pr Me (CH₂)₃Me OMe Me $(CH_2)_3$ CHO Me CH₂CH₂ 15 $(CH_2)_3$ allyl Me COMe CH₂CH₂ Me CH₂CCH Me (CH₂)₃CH₂CN CH₂CH₂ Me CH₂CCH CH_2CH_2 Me CH₂CH₂ CH₂NMe₂ Me H Et $(CH_2)_3$ CH₂CH₂ **OMe** Me Me $(CH_2)_3$ Et SO₂Me 20 Me CH₂CH₂ Et allyl Et (CH₂)₃CH₂CH₂ Мe CHO Et (CH₂)₃Et CH₂CH₂ H CH₂CN Et $(CH_2)_3$ CH₂CH₂ Et Me CH₂NMe₂ Et (CH₂)₃Et CH₂CH₂ Et CH₂CH₂ H CHO n-Pr CH₂CH₂ **2**5 Et Me n-Pr CH₂CH₂ CH₂CH₂ CH₂CN Et n-Pr CH₂CH₂ CHO CH₂CH₂ CH₂NMe₂ Et CH₂CN CH₂CH₂ n-Pr (CH₂)₃H Me CH₂NMe₂ Me n-Pr CH₂CH₂ $(CH_2)_3$ Me H c-Pr CH₂CH₂ Et (CH₂)₃30 Me CH₂CN c-Pr CH₂CH₂ n-Pr (CH₂)₃Me

	\mathbb{R}^1	B	R ³	\mathbb{R}^1	B	\mathbb{R}^3
5	CH ₂ -c-Pr	$\mathrm{CH_2CH_2}$	CH ₂ CN	Et	CHCH	CH ₂ CN
	CH ₂ -c-Pr	$\mathrm{CH_2CH_2}$	H	Et	CHCH	${ m CH_2NMe_2}$
	n-Pr	$(CH_2)_3$	H	n-Pr	CHCH	H
	n-Pr	$(CH_2)_3$	Me	n-Pr	CHCH	Me
	n-Pr	$(CH_2)_3$	CHO	n-Pr	CHCH	СНО
10	n-Pr	$(CH_2)_3$	CH ₂ CN	n-Pr	CHCH	CH ₂ CN
	n-Pr	$(CH_2)_3$	CH_2NMe_2	n-Pr	CHCH	CH_2NMe_2
	c-Pr	$(CH_2)_3$	H	c-Pr	CHCH	H
	c-Pr	$(CH_2)_3$	CH ₂ CN	c-Pr	CHCH	CH ₂ CN
	$\mathrm{CH}_{2} ext{-c-Pr}$	$(CH_2)_3$	H	CH ₂ -c-Pr	CHCH	H
15	CH_2 -c-Pr	$(CH_2)_3$	CH ₂ CN	CH ₂ -c-Pr	CHCH	CH ₂ CN
	Me	CHCH	H			
	Me	CHCH	Me			
	Me	CHCH	Et			
	Me	CHCH	n-Pr			
20	Me	CHCH	CHO			
	Me	CHCH	СОМе			
	Me	CHCH	CH ₂ CN			
	Me	CHCH	$\mathrm{CH_{2}NMe_{2}}$			
	Me	CHCH	ОМе			
2 5	Me	CHCH	SO ₂ Me			
	Me	CHCH	allyl			
	Me	CHCH	CH ₂ CCH			
	Et	CHCH	H			
	Et	CHCH	Me			
3 0	Et	CHCH	Et			
	Et	CHCH	CHO			

5 R1S \mathbb{R}^3 \mathbb{R}^1 \mathbb{R}^3 \mathbb{R}^1 В B 10 CHO Me (CH₂)₃H CH₂CH₂ Me COMe $(CH_2)_3$ Me Me Me CH₂CH₂ CH₂CN Et Me (CH₂)₃CH₂CH₂ Me CH_2NMe_2 Me (CH₂)₃n-Pr CH₂CH₂ Me OMe CHO Me (CH₂)₃CH₂CH₂ Me 15 (CH₂)₃allyl COMe Me Me CH₂CH₂ CH₂CCH $(CH_2)_3$ Me CH₂CH₂ CH_2CN Me CH₂CCH Me CH₂CH₂ CH_2NMe_2 CH₂CH₂ Me H Et (CH₂)₃CH₂CH₂ **OMe** Me Me Et $(CH_2)_3$ CH₂CH₂ SO₂Me 20 Me Et Et $(CH_2)_3$ allyl CH_2CH_2 Me CHO Et $(CH_2)_3$ H CH₂CH₂ Et CH_2CN Et (CH₂)₃CH₂CH₂ Me Et CH_2NMe_2 $\mathbf{E} \mathbf{t}$ $(CH_2)_3$ Et CH₂CH₂ Et CH₂CH₂ H n-Pr CH₂CH₂ CHO 25 Et Me n-Pr CH₂CH₂ CH₂CH₂ CH₂CN Et CHO CH₂CH₂ n-Pr CH₂CH₂ CH_2NMe_2 Et CH₂CN CH₂CH₂ n-Pr H Me (CH₂)₃ $\mathrm{CH}_2\mathrm{NMe}_2$ CH_2CH_2 n-Pr $(CH_2)_3$ Me Me H c-Pr CH₂CH₂ $(CH_2)_3$ Et 30 Me CH₂CN CH₂CH₂ n-Pr c-Pr (CH₂)₃Me

	R1	В	R ³	R ¹	B	<u>R</u> 3
5	CH ₂ -c-Pr	$\mathrm{CH_2CH_2}$	CH ₂ CN	Et	CHCH	CH ₂ CN
	$\mathrm{CH}_{2} ext{-}\mathrm{c} ext{-}\mathrm{Pr}$	CH_2CH_2	н	Et	СНСН	CH ₂ NMe ₂
	n-Pr	$(CH_2)_3$	H	n-Pr	CHCH	H
	n-Pr	$(CH_2)_3$	Me	n-Pr	CHCH	Me
	n-Pr	$(CH_2)_3$	CHO	n-Pr	CHCH	СНО
10	n-Pr	$(CH_2)_3$	CH ₂ CN	n-Pr	CHCH	$\mathrm{CH}_2\mathrm{CN}$
	n-Pr	$(CH_2)_3$	${ m CH_2NMe_2}$	n-Pr	CHCH	${ m CH_2NMe_2}$
	c-Pr	$(CH_2)_3$	H	c-Pr	CHCH	H
	c-Pr	$(CH_2)_3$	CH ₂ CN	c-Pr	CHCH	CH ₂ CN
	$\mathrm{CH}_2 ext{-c-Pr}$	$(CH_2)_3$	H	CH ₂ -c-Pr	CHCH	H
15	CH_2 -c-Pr	$(CH_2)_3$	CH ₂ CN	CH ₂ -c-Pr	CHCH	CH ₂ CN
	Me	CHCH	H			
	Me	CHCH	Me			
	Me	CHCH	Et			
	Me	CHCH	n-Pr			
2 0	Me	CHCH	СНО			
	Me	CHCH	COMe			
	Me	CHCH	CH ₂ CN			
	Me	CHCH	$\mathrm{CH_2NMe_2}$			
	Me	CHCH	OMe			
2 5	Me	CHCH	SO ₂ Me			
	Me	CHCH	allyl			
	Me	CHCH	CH ₂ CCH			
	Et	CHCH	H			
	Et	CHCH	Me			
30	Et	CHCH	Et			
	Et	CHCH	СНО			
				3		

$$R^1S(0)_nAN$$
 $N-R^3$

	$\mathbf{R^1}$	n	A	R ³
10				
	Me	0	$(CH_2)_3$	H
	Me	0	$(CH_2)_3$	Me
	Me	0	$(CH_2)_3$	CHO
	Me	0	$(CH_2)_3$	CH ₂ CN
15	Me	1	$\mathrm{CH_2CH_2}$	H
	Me	1	$\mathtt{CH_2CH_2}$	Me
•	Me	1	$\mathtt{CH_2CH_2}$	CHO
	Me	1	$\mathtt{CH_2CH_2}$	$\mathtt{CH_2CN}$
	. Me	1	$(CH_2)_3$	H
20	Me	1	$(CH_2)_3$	Me
	Me	1	$(CH_2)_3$	CHO
	Me	1	$(CH_2)_3$	CH ₂ CN
	Me	2	CH_2CH_2	H
	Me	2	CH_2CH_2	Me
2 5	Me	2	$\mathrm{CH_2CH_2}$	CHO
	Me	2	$\mathrm{CH_2CH_2}$	CH ₂ CN
	Me	2	$(CH_2)_3$	H
	Me	2	$(CH_2)_3$	Me
	Me	2	$(CH_2)_3$	CHO
30	Me	2	$(CH_2)_3$	CH ₂ CN

5

$$R^{1}S(O)_{n}AN$$
 $N-R^{3}$

	\mathbb{R}^1	n	A	\mathbb{R}^3
10				
	Me	0	$(CH_2)_3$	H
	Me	0	$(CH_2)_3$	Me
	Me	0	$(CH_2)_3$	CHO
	Me	0	$(CH_2)_3$	CH_2CN
15	Me	1	CH_2CH_2	H
	Me	1	$\mathrm{CH_{2}CH_{2}}$	Me
	Me	1	$\mathrm{CH_{2}CH_{2}}$	CHO
	Me	1	$\mathrm{CH_2CH_2}$	$\mathrm{CH}_2\mathrm{CN}$
	Me	1	$(CH_2)_3$	H
20	Me	1	$(CH_2)_3$	Me
	Me	1	$(CH_2)_3$	CHO
	Me	1	$(CH_2)_3$	$\mathrm{CH}_2\mathrm{CN}$
-	Me	2	CH ₂ CH ₂	H
	Me	2	CH ₂ CH ₂	Me
25	Me	2	CH ₂ CH ₂	CHO
	Me	2	CH ₂ CH ₂	$\mathrm{CH_2CN}$
	Me	2	(CH ₂) ₃	H
	Me	2	(CH ₂) ₃	Me
	Me	2	(CH ₂) ₃	CHO
30	Me	2	(CH ₂) ₃	$\mathrm{CH}_2\mathrm{CN}$

5

$$R^{1}S(O)_{n}AN$$
 $N-R^{3}$

10	R ¹	n	Δ	\mathbb{R}^3
	Me	0	$(CH_2)_3$	H
	Me	0	$(CH_2)_3$	Me
	Me	0	$(CH_2)_3$	CHO
15	Me	0	$(CH_2)_3$	$\mathrm{CH}_2\mathrm{CN}$
15	Me	1.	$\mathrm{CH_2CH_2}$	H
	Me	1	CH_2CH_2	Me
	Me	1	CH ₂ CH ₂	CHO
	Me	1	CH_2CH_2	CH_2CN
00	Me	1	$(CH_2)_3$	H
20	Me	1	$(CH_2)_3$	Me
	Me	1	$(CH_2)_3$	CHO
	Me	1	$(CH_2)_3$	CH ₂ CN
	Me	2	CH_2CH_2	H
or .	Me	2	CH_2CH_2	Me
25	Me	2	CH_2CH_2	CHO
	Me	2	CH_2CH_2	CH ₂ CN
	Me	2	$(CH_2)_3$	H
	Me	2	$(CH_2)_3$	Me
20	Me	2	$(CH_2)_3$	CHO
30	Me	2	$(CH_2)_3$	CH ₂ CN

5 $\mathbf{R^{1}S(O)_{n}AN} \underbrace{\mathbf{N^{-NO}_{2}}}_{\mathbf{N^{-R}^{3}}}$

10	R ¹	n	A	R ³
	Me	0	(CH ₂) ₃	H
	Me	0	$(CH_2)_3$	Me
	Me	0	$(CH_2)_3$	CHO
15	Me	0	$(CH_2)_3$	$\mathrm{CH}_2\mathrm{CN}$
15	Me	1	$\mathrm{CH_2CH_2}$	H
	Me	1	CH_2CH_2	Me
	Me	1	CH_2CH_2	CHO
	Me	1	$\mathrm{CH_2CH_2}$	$\mathrm{CH_{2}CN}$
	Me	1.	$(CH_2)_3$	H
20	Me	1	$(CH_2)_3$	Me
	Me	1	$(CH_2)_3$	CHO
	Me	1	$(CH_2)_3$	$\mathrm{CH_2CN}$
	Me	2	CH ₂ CH ₂	H
25	Me	2	$\mathrm{CH_2CH_2}$	Me
20	Me	2	CH ₂ CH ₂	CHO
	Me	2	CH ₂ CH ₂	CH ₂ CN
	Me	2	$(CH_2)_3$	H
	Me	2 .	$(CH_2)_3$	Me
90	Me	2	(CH ₂) ₃	CHO
30	Me	2	$(CH_2)_3$	$\mathrm{CH}_2\mathrm{CN}$

5

WO 91/17659

$$R^{1}S(O)_{n}AN$$
 $N-R^{3}$

	\mathbb{R}^1	n	A	\mathbb{R}^3
10				
	Me	0	$(CH_2)_3$	H
	Me	0	$(CH_2)_3$	Me
	Me	0	$(CH_2)_3$	CHO
	Me	0	$(CH_2)_3$	CH ₂ CN
15	Me	1	$\mathrm{CH_2CH_2}$	H
	Me	1	$\mathtt{CH_2CH_2}$	Me
	Me	1	$\mathrm{CH_{2}CH_{2}}$	CHO
	Me	1	$\mathrm{CH_2CH_2}$	$\mathrm{CH}_2\mathrm{CN}$
	Me	1	$(CH_2)_3$	H
20	Me	1	$(CH_2)_3$	Me
	Me	1	$(CH_2)_3$	CHO
	Me	1	$(CH_2)_3$	$\mathtt{CH}_2\mathtt{CN}$
	Me	2	$\mathrm{CH_2CH_2}$	H
	Me	2	CH_2CH_2	Me
2 5	Me.	2	CH_2CH_2	CHO
	Me	2	CH_2CH_2	CH ₂ CN
	Me	2	$(CH_2)_3$	H
	Me	2	$(CH_2)_3$	Me
	Me	2	(CH ₂) ₃	CHO
30	Me	2	(CH ₂) ₃	$\mathrm{CH_2CN}$
90				

 $R^{1}S(O)_{n}N$

	\mathbb{R}^1	n	A	<u>R</u> 3
10				
	Me	0	$(CH_2)_3$	H
	Me	0	$(CH_2)_3$	Me
	Me	0	$(CH_2)_3$	CHO
	Me	0	$(CH_2)_3$	$\mathtt{CH_2CN}$
15	Me	1	CH_2CH_2	H
	Me	1	CH_2CH_2	Me
	Me -	1	${ m CH_2CH_2}$	CHO
	Me	1	$\mathrm{CH_2CH_2}$	CH ₂ CN
	Me	1	$(CH_2)_3$	H
20	Me	1	$(CH_2)_3$	Me
	Me	1	$(CH_2)_3$	CHO
	Me	. 1	$(CH_2)_3$	CH ₂ CN
	Me	2	$\mathtt{CH_2CH_2}$	H
	Me	2	$\mathrm{CH_2CH_2}$	Me
25	Me.	2	$\mathtt{CH_2CH_2}$	CHO
	Me	2	$\mathrm{CH_2CH_2}$	$\mathrm{CH_2CN}$
	Me	2	$(CH_2)_3$	H
	Me	2	$(CH_2)_3$	Me
	Me	2	$(CH_2)_3$	CHO
30	Me	2	$(CH_2)_3$	CH ₂ CN

INDEX TABLE 1

 $\begin{array}{c|c}
 & Z \\
 & \mathbb{R}^3
\end{array}$ $\begin{array}{c|c}
 & \mathbb{R}^3 \\
 & \mathbb{R}^2 & \mathbb{R}^4
\end{array}$

	CMPD	<u>Z</u>	\mathbb{R}^2	<u>R</u> 3	\mathbb{R}^4	m.p.°C
10	1	$CHNO_2$	H	Me	Me	oil
	2	$CHNO_2$	H	Me	H	131.5-133 ^a
	3	$CHNO_2$	H	Et	H	85-87
	4	$CHNO_2$	Me	Me	H	oil
	5	$CHNO_2$	H	$MeS(CH_2)_2$	H	142-143
1 5	6	$CHNO_2$	H	CH ₂ -c-Pr	H	139-140
	7	CHNO ₂	H	n-Pr	\mathbf{H}	99-100
	8	CHNO ₂	H	H	H	146-150 (dec)
	9	$CHNO_2$	H	OMe	\mathbf{H}	oil
	10	$CHNO_2$	H	n-Bu	H	110-112
20	11	$CHNO_2$	H	$Me_2N(CH_2)_2$	H	oil

a_{Recrystallization} from ethanol provided material identical to the compound melting at 131.5-133°C by ¹H and ¹³C NMR but with a melting point of 115-116°C.

30

25

INDEX TABLE 2

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ \text{MeS(CH}_2)_3\text{NH} & & \\ & & & \\ & & & \\ \text{R}^3 & & \\ \end{array}$$

10	CMPD	<u>R</u> 3	<u>m.p.°C</u>
	12	H	75-77
	13	Me	oil

	CMPD	<u>B</u>	$m.p.^{\circ}C$
25	14	$\mathrm{CH_{2}CH_{2}}$	102-104
2 5	15	$\mathrm{CH_2CH_2CH_2}$	120-122

30

Formulation and Use

The compounds of this invention will generally be used in formulation with an agriculturally suitable carrier comprising a liquid or solid diluent or an organic solvent. Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include dusts, granules, baits, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like. Many of these can be applied directly. Sprayable formulations can be extended in - 10 suitable media and used at spray volumes of from about one to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain from less than about 1% to 99% by weight of active ingredient(s) and at least one of a) about 0.1% to 20% surfactant(s) and b) about 5% to 99% solid or liquid diluent(s). More specifically, they will contain effective amounts of these ingredients in the following approximate proportions:

		Percent by Weight			
20		Active Ingredient	Diluent(s)	Surfactant(s)	
	Wettable Powders	25-90	0-74	1-10	
2 5	Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates)	5-50	40-95	0-15	
	Dusts	1-25	70-99	0-5	
3 0	Granules, Baits and Pellets	0.01-95	5-99	0-15	
	High Strength Compositions	90-99	0-10	0-2	

Lower or higher levels of active ingredient can, of course, be
present depending on the intended use and the physical properties of the

5

10

15

20

25

compound. Higher ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, New Jersey. The more absorptive diluents are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable against phase separation at 0°C. "McCutcheon's Detergents and Emulsifiers Annual", Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth, etc. Preferably, ingredients should be approved by the U.S. Environmental Protection Agency for the use intended.

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, U.S. 3,060,084). Granules and pellets can be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pages 147 and following, and "Perry's Chemical Engineer's Handbook", 4th Ed., McGraw-Hill, New York, 1963, pages 8 to 59 and following.

20%

Example A

Emulsifiable Concentrate

N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

5 1,1-ethenediamine

blend of oil soluble sulfonates

and polyoxyethylene ethers 10%

isophorone 70%

The ingredients are combined and stirred with gentle warming to speed solution. A fine screen filter is included in packaging operation to insure the absence of any extraneous undissolved material in the product.

Example B

15 Wettable Powder

N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

1,1-ethenediamine	30%
sodium alkylnaphthalenesulfonate	2%
synthetic amorphous silica	3%
kaolinite	63%

The active ingredient is mixed with the inert materials in a blender. After grinding in a hammermill, the material is re-blended and sifted through a 50 mesh screen.

25 Example C

Dust

20

Wettable powder of Example B 10% pyrophyllite (powder) 90%

The wettable powder and the pyrophyllite diluent are thoroughly blended and then packaged. The product is suitable for use as a dust.

Example D

Granule

N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

35 1,1-ethenediamine 10%

5

attapulgite granules (low volative matter, 0.71/0.30 mm; U.S.S. No.

25-50 sieves)

90%

The active ingredient is dissolved in a volatile solvent such as acetone and sprayed upon dedusted and pre-warmed attapulgite granules in a double cone blender. The acetone is then driven off by heating. The granules are then allowed to cool and are packaged.

10 Example E

Granule

Wett able powder of Example B 15% gypsum 69% potassium sulfate 16%

The ingredients are blended in a rotating mixer and water sprayed on to accomplish granulation. When most of the material has reached the desired range of 0.1 to 0.42 mm (U.S.S. No. 18 to 40 sieves), the granules are removed, dried, and screened. Oversize material is crushed to produce additional material in the desired range. These granules contain 4.5% active ingredient.

Example F

Solution

35

N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

25 1,1-ethenediamine

25%

N-methyl-pyrrolidone

75%

The ingredients are combined and stirred to produce a solution suitable for direct, low volume application.

30 Example G

Aqueous Suspension

N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

1,1-ethenediamine	2.0%
Isopropyl phosphoric ester	0.2%
White Carbon	1.0%

PCT/US91/03118

Finely powdered talc

96.8%

The ingredients are thoroughly blended and pulverized to make a driftless dust. The material can then be packaged.

5

Example H

Oil Suspension

N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

1,1-ethenediamine

35.0%

10 blend of polyalcohol carboxylic

6.0%

esters and oil soluble petroleum

sulfonates

xvlene range solvent

59.0%

The ingredients are combined and ground together in a sand mill to produce particles substantially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

Example I

Bait Granules

20 N-methyl-N'-[2-(methylthio)ethyl]-2-nitro-

1,1-ethenediamine

3.0%

blend of polyethoxylated nonyl-

9.0%

phenols and sodium dodecyl-

benzene sulfonates

25

ground up corn cobs

88.0%

The active ingredient and surfactant blend are dissolved in a suitable solvent such as acetone and sprayed onto the ground corn cobs. The granules are then dried and packaged.

Compounds of Formula I can also be mixed with one or more other insecticides, fungicides, nematocides, bactericides, acaricides, or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of effective agricultural protection. Examples of other agricultural protectants with which compounds of this invention can be formulated are:

35

-		-		
1-00		~	~~	٠
insec	ULC	ш	CO	

- 3-hydroxy-N-methylcrotonamide(dimethylphosphate)ester (monocrotophos)
- 5 methylcarbamic acid, ester with 2,3-dihydro-2,2-dimethyl-7-benzofuranol (carbofuran)
 - O-[2,4,5-trichloro-a-(chloromethyl)benzyl]phosphoric acid, O',O'-dimethyl ester (tetrachlorvinphos)
 - 2-mercaptosuccinic acid, diethyl ester, S-ester with
- thionophosphoric acid, dimethyl ester (malathion)
 phosphorothioic acid, O,O-dimethyl, O-p-nitrophenyl
 ester (methyl parathion)
 - methylcarbamic acid, ester with a-naphthol (carbaryl) methyl O-(methylcarbamoyl)thiolacetohydroxamate (methomyl)
 - N'-(4-chloro-o-tolyl)-N,N-dimethylformamidine (chlordimeform)
 - O,O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidylphosphorothioate (diazinon)
- 20 octachlorocamphene (toxaphene)
 - O-ethyl-O-p-nitrophenyl phenylphosphonothioate (EPN)
 - (S)-a-cyano-m-phenoxybenzyl-(1R,3R)-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate (deltamethrin)
- 25 Methyl-N',N'-dimethyl-N-[(methylcarbamoyl)oxy]-1thioox amimidate (oxamyl)
 - cyano(3-phenoxyphenyl)-methyl-4-chloro-a-(1-methyl-ethyl)benzeneacetate (fenvalerate)
- (3-phenoxyphenyl)methyl(+)-<u>cis,trans</u>-3-(2,2-dichloro ethenyl)-2,2-dimethylcyclopropanecarboxylate (permethrin)
 - a-cyano-3-phenoxybenzyl 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate (cypermethrin)
- O-ethyl-S-(<u>p</u>-chlorophenyl)ethylphosphonodithioate 35 (profenofos)

phosphorothiolothionic acid, O-ethyl-O-[4-(methylthio)-phenyl]-S-<u>n</u>-propyl ester (sulprofos).

5

10

Additional insecticides are listed hereafter by their common names: triflumuron, diflubenzuron, methoprene, buprofezin, thiodicarb, acephate, azinphosmethyl, chlorpyrifos, dimethoate, fonophos, isofenphos, methidathion, methamidiphos, monocrotphos, phosmet, phosphamidon, phosalone, pirimicarb, phorate, terbufos, trichlorfon, methoxychlor, bifenthrin, biphenate, cyfluthrin, fenpropathrin, fluvalinate, flucythrinate, tralomethrin, metal-dehyde and rotenone.

Fungicides:

15 methyl 2-benzimidazolecarbamate (carbendazim)
tetramethylthiuram disulfide (thiuram)
n-dodecylguanidine acetate (dodine)
manganese ethylenebisdithiocarbamate (maneb)
1,4-dichloro-2,5-dimethoxybenzene (chloroneb)

20 methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate (benomyl)

1-[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole (propiconazole)
2-cyano-N-ethylcarbamoyl-2-methoxyiminoacetamide

25 (cymoxanil)

1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone (triadimefon)

 ${\bf N-} (trichloromethyl thio) tetra hydrophthalimide \ (captan)$

N-(trichloromethylthio)phthalimide (folpet)
1-[[[bis(4-fluorophenyl)][methyl]silyl]methyl]-1H-

30 1-[[[bis(4-fluorophenyl)][methyl]silyl]methyl]-1H-1,2,4-triazole.

Nematocides:

S-methyl-1-(dimethylcarbamoyl)-N-(methylcarbamoyloxy)-

35 thioformimidate

S-methyl 1-carbamoyl-N-(methylcarbamoyloxy)thioformimidate N-isopropylphosphoramidic acid O-ethyl O'-[4-(methylthio)-m-tolyl]diester (fenamiphos)

5

Bactericides:

tribasic copper sulfate streptomycin sulfate

10 Acaricides:

senecioic acid, ester with 2-<u>sec</u>-butyl-4,6-dinitrophenol (binapacryl)

6-methyl-1,3-cithiolo[4,5-ß]quinoxalin-2-one (oxythioquinox)

15 ethyl 4,4'-dichlorobenzilate (chlorobenzilate)

1,1-bis(p-chlorophenyl)-2,2,2-trichloroethanol (dicofol)

bis(pentachloro-2,4-cyclopentadien-1-yl) (dienochlor) tricyclohexyltin hydroxide (cyhexatin)

20 trans-5-(4-chlorophenyl)-N-cyclohexyl-4-methyl-2-oxo-

thiazolidine-3-carboxamide (hexythiazox)

amitraz

propargite

fenbutatin-oxide

25

35

Biological

Bacillus thuringiensis

Avermectin B.

30 Utility

The compounds of this invention exhibit activity in agricultural and non-agricultural environments against a wide spectrum of foliar and soil-inhabiting arthropods which are pests of growing and stored agronomic crops, forestry, greenhouse crops, ornamentals, nursery crops, stored food and fiber products, livestock, household, and public and

WO 91/17659 PCT/US91/03118

105

animal health. The compounds are particularly useful against planthoppers and leafhoppers. Those skilled in the art will recognize that not all compounds are equally effective against all pests but the compounds of this invention display activity against:

Larvae of the order Lepidoptera including fall and beet armyworm and other Spodoptera spp., tobacco budworm, corn earworm and other Heliothis spp., European corn borer, navel orangeworm, stalk/stem borers and other pyralids, cabbage and soybean loopers and other loopers, codling moth, grape berry moth and other tortricids, black cutworm, spotted cutworm, other cutworms and other noctuids, diamondback moth, green cloverworm, velvetbean caterpillar, green cloverworm, pink bollworm, gypsy moth, and spruce budworm; Foliar feeding larvae and adults of the order Coleoptera including Colorado potato beetle, Mexican bean beetle, flea beetle, Japanese beetles, boll weevil, leaf beetles including rice beetle, and root-feeding insects such as the rice water and rice root weevils, Diabrotica spp., Japanese beetle, European chafer and other coleopteran grubs and wireworms:

Adults and nymphs of the orders Hemiptera and Homoptera including brown planthopper, small brown planthopper, green leafhopper and other rice plant and leafhoppers, other leafhoppers (Cicadellidae) and planthoppers (Superfamily Fulgoroidea especially Cixidae, Delphacidae, Flatidae, Fulgoridae, Issidae and Meenoplidae), tarnished plant bugs (Miridae), stink bugs (Pentatomidae), cinch, rice and other seed bugs (Lygaeidae), squash bugs (Coreidae), rice bugs (Alydidae), red bugs and cotton stainers (Pyrrhocoridae), aphids (Aphididae), scales (Coccidae and Diaspididae), lace bugs (Tingidae), cicadas (Cicadidae), spittlebugs (Cercopidae), whiteflies (Aleurodidae), psyllids (Psyllidae), phylloxerans (Phylloxeridae) and mealybugs (Pseudococcidae);

Adults and nymphs of the order Thripidae;

Adults, larvae and eggs of the order <u>acari</u> (mites) including European red mite, two spotted spider mite, rust mites, McDaniel mite, and foliar feed mites;

5

10

15

20

25

Adults and immatures of the order <u>Orthoptera</u> including grasshoppers;

Adults and immatures of the order <u>Diptera</u> including leafminers, midges, fruit flies (tephritidae), and soil maggots;

Ē

ą

£

Adults and immatures of the order <u>Thysanoptera</u> including onion thrips and other foliar feeding thrips;

Insect pests of the order <u>Hymenoptera</u> including carpenter ants, bees, hornets and wasps;

Insect pests of the order <u>Diptera</u> including house flies, stable flies, face flies, horn flies, blow flies, and other muscoid fly pests, horse flies, deer flies and other <u>Brachycera</u>, mosquitoes, black flies, biting midges, sand flies, sciarids, and other <u>Nematocera</u>;

Insect pests of the order <u>Orthoptera</u> including cockroaches and crickets;

Insect pests of the order <u>Isoptera</u> including the Eastern subterranean termite and other termites;

Insect pests of the order <u>Mallophaga</u> and <u>Anoplura</u> including the head louse, body louse, chicken head louse and other sucking and chewing parasitic lice that attack man and animals; and

Insect pests of the order <u>Siphonoptera</u> including the cat flea, dog flea and other fleas.

A more preferred spectrum of activity for the compounds of this invention are foliar and soil-inhabiting arthropods which are pests of agronomic crops, as well as greenhouse, ornamental, nursery and fruit crops. The compounds of this invention display activity against economically important agronomic, greenhouse, ornamental, fruit and nursery crop pests.

The specific species for which control is exemplified are: aster leafhopper (Macrosteles fascifrons), rice planthopper (Sogatodes orzicola), black been aphid (Aphis fabae), and southern corn rootworm (Diabrotica undecimpunctata). The pest control protection afforded by compounds of the present invention is not limited, however, to these species.

5

10

15

20

25

WO 91/17659 PCT/US91/03118 107

Application

5

10

15

20

25

30

35

Arthropod pests are controlled by applying one or more of the Formula I compounds of this invention, in an effective amount, to the locus of infestation, to the area to be protected, or directly on the pests to be controlled. Because of the diversity of habitat and behavior of these arthropod pest species, many different methods of application are employed. A preferred method of application is by spraying with equipment that directs the compound to the environment of the pests, on the foliage, in the soil or paddy, to the plant part that is infested or needs to be protected. Alternatively, granular formulations of these compounds can be applied to or incorporated into the soil, paddy or nursery box. Other methods of application can also be employed including direct and residual sprays.

The compounds of this invention can be applied in their pure state, but most often application will be of a formulation comprising one or more compounds in a carrier that may include diluents and/or surfactants in a formulation compatible with agronomic and nonagronomic utility. Preferred methods of application involve spraying a water dispersion, refined oil solution or dust containing the compound.

The rate of application of the Formula I compounds required for effective control will depend on such factors and the species of arthropod to be controlled, the pest's life cycle, life stage, location, time of year, host crop, feeding and mating behavior, ambient moisture and temperature, and the like. In general, application rates of 0.55-0.055 kg of active ingredient per hectare are sufficient to provide large-scale effective control of pests in agronomic ecosystems under normal circumstances. Application rates as low as about 0.1 mg/sq meter or less up to about 150 mg/sq meter or more can be employed on arthropods in a nonagronomic environment such as the household or other building or nonagronomic locus.

The following Examples demonstrate the control efficacy of compounds of Formula I on specific pests; See Table 1 for compound descriptions. Compounds not listed with data were either not screened

WO 91/17659 PCT/US91/03118

108

on that test species or produced less than 80% mortality when tested as described in Examples 3 and 4.

EXAMPLE 3

5 Aster Leafhopper

Test units were prepared from a series of 12 oz. (350 ml) cups, each containing oat (<u>Avena satavia</u>) seedlings in a 1-inch layer of sterilized soil. Solutions of test compounds were prepared in a 75 acetone:25 water solvent and applied to the seedlings with a hydraulic sprayer by passing three sets of cups on a conveyor belt, beneath a flat-fan nozzle calibrated to deliver 0.055 kg/HA at 30 psi (207 kPa). Approximately 1 hour after treatment, a thin layer of sand was placed over the soil in each cup, the units capped and 10-20 adult aster leafhoppers (<u>Macrosteles fascifrons</u>) each aspirated into the cups. The units were held at 27°C, 50% RH and 14L:10D for 48 hours, after which time mortality readings were taken. The following table lists the activity of the compounds against aster leafhopper.

EXAMPLE 4

20 Rice Planthopper

The test procedure of Example 3 was repeated for efficacy against adults of the rice planthopper (<u>Sogatodes orzicola</u>) except four sets of cups containing rice (<u>Oryza satavia</u>) seedlings were treated. The sprayer was calibrated to deliver 0.055 kg/HA. The results are tabulated below.

1

25

10

15

		TABLE			
	Compound	% Mortality Leafhopper	% Mortality Planthopper		
	1	100	<80		
30	2	100	100		
30	14	100	100		
	15	98	82		

CLAIMS

What is claimed is:

5

1. An arthropodicidal composition comprising, as active ingredient, a compound of the formula:

10

$$\begin{array}{c|c}
z \\
\parallel \\
R^1-x-A-N \\
\downarrow \\
R^2 \\
\downarrow \\
R^4
\end{array}$$

I

15

in an amount effective to control planthoppers and leafhoppers, and a carrier therefor, wherein:

Z is selected from the group CHNO2 and NNO2;

X is selected from $S(O)_n$;

20

A is selected from the group C₁-C₄ alkylene optionally substituted with C₁-C₃ alkyl, C₂-C₃ alkoxycarbonyl, halogen and CN:

R¹ is selected from the group C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl and C₄-C₆ cycloalkylalkyl;

25

n is 0, 1 or 2;

R² and R³ are independently selected from the group H, CH₂CN,

C₁-C₄ alkyl, CHO, C₂-C₄ alkylcarbonyl, C₂-C₃ alkoxycarbonyl C₂-C₄ alkoxyalkyl, C₃-C₆ dialkoxyalkyl, C₁-C₃ alkoxy, C₁-C₃ alkylsulfonyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₁-C₄ alkylamino, C₂-C₄ dialkylamino and benzyl substituted with R⁵;

aikynyi, C

 R^4 is selected from the group C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 cycloalkyl and C_4 - C_6 cycloalkylalkyl; or

35

.

Ĩ

	\mathbb{R}^2 :	and R ⁴ can be taken together as C ₂ -C ₃ alkylene or C ₂ -C ₃ alkenylene each optionally substituted with 1-4 C ₁ -C ₂ alkyl;
		and
5	$\mathbf{R^{5}}$	is selected from the group halogen, C_1 - C_2 alkyl, C_1 - C_2
		haloalkyl, C_1 - C_2 alkoxy, C_1 - C_2 thioalkyl, C_1 - C_2
		halothioalkyl, C ₁ -C ₂ haloalkoxy, NO ₂ and CN.
10	2.	A composition according to Claim 1 wherein Z is CHNO $_2$.
	3.	A composition according to Claim 1 wherein Z is NNO2.
	4.	A composition according to Claim 2 wherein: A is CH ₂ CH ₂ ;
15		R^1 is selected from the group C_1 - C_4 alkyl;
		$ m R^2$ and $ m R^3$ are independently selected from the group H, $ m C_1\text{-}C_4$ alkyl, $ m C_2\text{-}C_3$ alkoxycarbonyl and $ m C_2\text{-}C_4$
		alkylcarbonyl; and
20		R^4 is selected from the group C_1 - C_4 alkyl.
	5. taken toget	A composition according to Claim 2 wherein R ² and R ⁴ are ther and independently selected from the group C ₂ -C ₃
		ad C_2 - C_3 alkenylene, each optionally substituted by 1-4 C_1 - C_4
2 5	alkyl.	
	6.	A composition according to Claim 4 wherein X is S.
	7.	A composition according to Claim 5 wherein X is S.
30	•	A
	8.	A method for controlling planthoppers and leafhoppers
	_	prises applying to them or to their environment an effective
	OWNERST AT	a compating at the tarming.

$$R^{1-X-A-N} \downarrow R^{2}$$

5

20

I

wherein:

Z is selected from the group CHNO2 and NNO2;

X is selected from $S(O)_n$;

A is selected from the group C₁-C₄ alkylene optionally substituted with C₁-C₃ alkyl, C₂-C₃ alkoxycarbonyl, halogen and CN;

15 R1 is selected from the group C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl and C₄-C₆ cycloalkylalkyl;

n is 0, 1 or 2;

R² and R³ are independently selected from the group H, CH₂CN, C₁-C₄ alkyl, CHO, C₂-C₄ alkylcarbonyl, C₂-C₃ alkoxycarbonyl C₂-C₄ alkoxyalkyl, C₃-C₆ dialkoxyalkyl, C₁-C₃ alkoxy, C₁-C₃ alkylsulfonyl, C₃-C₄ alkenyl, C₃-C₄ alkynyl, C₁-C₄ alkylamino, C₂-C₄ dialkylamino and benzyl substituted with R⁵;

25 R⁴ is selected from the group C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl and C₄-C₆ cycloalkylalkyl; or

 R^2 and R^4 can be taken together as C_2 - C_3 alkylene or C_2 - C_3 alkenylene each optionally substituted with 1-4 C_1 - C_2 alkyl; and

30 R⁵ is selected from the group halogen, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy, C₁-C₂ thioalkyl, C₁-C₂ haloalkoxy, NO₂ and CN.

9. A method according to Claim 8 wherein Z is CHNO2.

35

ŧ

	10.	A method according to Claim 8 wherein Z is NNO $_2$.
5	11.	A method according to Claim 9 wherein: A is CH ₂ CH ₂ ;
		R^1 is selected from the group C_1 - C_4 alkyl;
		$ m R^2$ and $ m R^3$ are independently selected from the group H, $ m C_1\text{-}C_4$ alkyl, $ m C_2\text{-}C_3$ alkoxycarbonyl and $ m C_2\text{-}C_4$
		alkylcarbonyl; and
10		\mathbb{R}^4 is selected from the group \mathbb{C}_1 - \mathbb{C}_4 alkyl.
1 5		A method according to Claim 9 wherein R ² and R ⁴ are taken d independently selected from the group C ₂ -C ₃ alkylene and nylene, each optionally substituted by 1-4 C ₁ -C ₄ alkyl.
	13.	A method according to Claim 11 wherein X is S.
	14.	A method according to Claim 12 wherein X is S.
20		
2 5		

30

INTERNATIONAL SEARCH REPORT

International Application No

I. CLASS	IFICATION OF SUBJ	ECT MATTER	(if caveral class	dication arm	ala aa			<u> PÇ1/</u>	02 31/03118
According	g to International Paten	Classification (PC) or to both N	incation sym	ois ap	Hy, indicate all)°		
int.C	1.5 N 51/00	A 01 N	35/08	A 01	N 4	43/50	A 01	N 43	/54
II. FIELD	S SEARCHED								
			Minimu	n Documenta	tion Se	arched ⁷			
Classifica	ition System			Cla	ssificat	ion Symbols			<u> </u>
Int.C	1.5	A 01	N				-		MACO CONTRACTOR CONTRA
		Docs to the Ext	mentation Search tent that such Do	ned other tha cuments are	n Minir Include	num Document in the Fields	lation Searched ⁸		
III. DOCU	MENTS CONSIDERE	n to be bei	VANT9						
Category °			indication, where	OBT TO STATE OF STATE	of the		12		
		cament, with	indication, where	appropriate,	or the	elevant passag	es 14	·	Relevant to Claim No. ¹³
X	see cla	183633 (aims 1,15 applicat	SHELL) 24 -18; page ion)	August 4, lir	: 197 ies 1	77, 113-118	(cited		1,2,5,7 ,8,9,12 ,14
X	FR,A,23 see cla applica	ims 2,5	SHELL) 1 & US-A-4	April 1 025 529	977, (ci	ted in	the		1,2,4-9 ,11-14
X	INDUSTR 3, line	IES) 8 Fe 5 - page	TAKEDA CH ebruary 19 5, line oplication	989, se 39: pa	e cl ge 4	aim 12, 2, line	page 31		1,2,8,9
(,P	INDUSTR	IES) 8 Au	TAKEDA CHI Igust 1990 3-18; page	0, see e 20, 1	page ines /-	5, form	nula V;		1,2,8,9
"A" doct	categories of cited docu ument defining the gener sidered to be of particular	ral state of the a		*T*	Ur or	to understand	DOT IN COMMING	T WITH The	ional filing date application but underlying the
"L" docu which citat	er document but publish g date ment which may throw o h is cited to establish th ion or other special reas	doubts on priority e publication dat on (as specified)	claim(s) or e of another		involv	nent of particular to be considered to an inventive nent of particular to be considered.	d novel or car step lar relevance:	inot be co	nsidered to
P" docu	ament referring to an ora r means ment published prior to r than the priority date c	the international		*&*	ments in the	nent is combine s, such combine	ed with one of ation being of	r more oth ovious to a	ner such docu- a person skilled
v. certif	ICATION								
ate of the A	ctual Completion of the	International Se	earch		Date o	f Mailing of th	nis Internation	al Search	Report
	27-08-19	91	···			.,		OCT	
nternational :	Searching Authority EUROPEAN	PATENT OF	FICE			ire of Authoriz	-	1	Nipol

Form PCT/ISA/210 (second sheet) (January 1985)

International Application No

Page 2 PCT/US 91/03118

III. DOCUMENT	International Application No PCT/ TS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	US 91/03118
Category °		
	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	EP,A,0254859 (NIHON TOKUSHU NOYAKU SEIZO) 3 February 1988, & US-A-4 806 553 (cited in the application)	
PCT/ISA/210 (av	fra sheet) (January 1985)	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9103118 SA 47604

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 19/09/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A- 1483633	24-08-77	AU-A- 7486774 BE-A- 821282 CA-A- 1041093 CH-A- 611127 DE-A,C 2445421 FR-A,B 2249880 JP-C- 1204033 JP-A- 50071676 JP-B- 58038402 NL-A- 7414165 OA-A- 4952 US-A- 3948934	21-04-75 24-10-78 31-05-79 07-05-75 30-05-75 25-04-84 13-06-75 23-08-83 06-05-75 31-10-80
FR-A- 2322849	01-04-77	US-A- 4025529 CH-A- 605608 DE-A- 2640094 GB-A- 1533134 JP-A- 52033606 NL-A- 7609872	29-09-78 07-04-77 22-11-78 14-03-77
EP-A- 0302389	08-02-89	JP-A- 2000171	05-01-90
EP-A- 0381130	08-08-90	JP-A- 2275841	09-11-90
EP-A- 0254859	03-02-88	JP-A- 63010762 US-A- 4806553 ZA-A- 8704717	18-01-88 21-02-89 07-01-88