Spektralsequenzen und der Satz von Serre

Tim Baumann

Geboren am 15. Juni 1994 in Friedberg 27. Juni 2015

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Bernhard Hanke

Zweitgutachter: Prof. Dr. X Y

Institut für Mathematik

MATHEMATISCH-NATURWISSENSCHAFTLICH-TECHNISCHE FAKULTÄT
UNIVERSITÄT AUGSBURG

1 Spektralsequenzen

1.1 Faserungen

Definition. Eine Serre-Faserung ist eine stetige Abbildung $p: E \to B$, welche die Homotopieliftungseigenschaft (HLE) für die Scheiben D^n besitzt, d. h. für alle $n \ge 0$ und für alle stetigen Abbildungen H, H_0 wie unten, sodass das äußere Quadrat kommutiert, gibt es eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

$$D^{n} \xrightarrow{H_{0}} E$$

$$\downarrow^{i_{0}} \qquad \exists \tilde{H} \qquad \downarrow^{p}$$

$$D^{n} \times I \xrightarrow{H} B$$

Dabei ist i_0 die Inklusion von D^n in $D^n \times I$ als $D^n \times \{0\}$. Eindeutigkeit von \tilde{H} wird nicht gefordert.

Lemma. Es sei $p:E\to B$ eine stetige Abbildung. Dann sind äquivalent:

- a) p ist eine Serre-Faserung
- b) p besitzt die relative Homotopieliftungseigenschaft für CW-Paare, d. h. für alle CW-Paare (X, A) und für alle H_0 und H wie unten, sodass das äußere Quadrat kommutiert, gibt eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

Beweis. "b) \implies a)" Folgt sofort mit $(X, A) := (D^n, \emptyset)$.

"a) \Longrightarrow b)" Wir behandeln zunächst den Fall $(X,A)=(D^n,S^{n-1}),\ n\in\mathbb{N}$. Dann ist $(D^n\times I,D^n\times\{0\}\cup S^{n-1}\cup I)\approx(D^n)$ homöomorph als Raumpaar. Somit ist die relative Homotopieliftungseigenschaft in diesem Fall gleichbedeutend zur Homotopieliftungseigenschaft für die Scheibe D^n .

Es sei nun (X,A) ein beliebiges Raumpaar. Dann kann man induktiv die Homotopie H auf die i-Zellen e^i_α von $X\setminus A$ fortsetzen. Dabei ist die Homotopie auf $S^{n-1}=\partial D^n$ durch die Komposition der bisher konstruierten Homotopie mit der anheftenden Abbildung $\phi_\alpha:S^{n-1}\to X^{n-1}$ vorgegeben. Man erhält die Fortsetzung durch Anwenden des zuerst bewiesenen Falls. \square

Lemma. Es seien $p: E \to B$ eine Serre-Faserung, $b_0 \in B$, $F := p^{-1}(b_0)$ die Faser über b_0 und $f_0 \in F$. Dann gibt es eine lange exakte Sequenz

$$\ldots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \ldots \to \pi_1(B, b_0)$$

von Homotopiegruppen. Dabei ist $i: F \hookrightarrow E$ die Inklusion.

Beweis. Die gesuchte exakte Sequenz ist die lange exakte Homotopiesequenz

$$\dots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \dots \to \pi_1(E, F, f_0)$$

des Raumpaares (E, F). Es bleibt zu zeigen: $\pi_n(E, F, f_0) \cong \pi_n(B, b_0)$ als Gruppe für n > 1 und als punktierte Menge für n = 1. Der Isomorphismus muss außerdem so gewählt werden, dass

$$p_* = \left(\pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\cong} \pi_n(B, b_0)\right).$$

Wir zeigen: $p_*: \pi_n(E, F, f_0) \to \pi_n(B, b_0)$ ist der gesuchte Isomorphismus (damit ist obige Gleichung erfüllt).

Surjektivität: Sei $[g:(I^{n+1},\partial I^{n+1},b_0)\to (B,\{b_0\},b_0)]\in \pi_{n+1}(B,b_0),\ n\geq 0.$ Sei \tilde{g} der Lift im folgenden relativen HLE-Diagramm:

$$U \xrightarrow{\text{konst } f_0} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$I^n \times I \xrightarrow{g} B$$

wobei $U := I^n \times \{0\} \cup (\partial I^n) \times I \subset I^{n+1}$. Dann kann man \tilde{g} als eine Abbildung $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{f_0\})$ von Raumtripeln auffassen, welche ein Element von $\pi_{n+1}(E, F, f_0)$ repräsentiert. Es gilt $p_*[\tilde{g}] = [p \circ \tilde{g}] = [g]$.

Injektivität: Seien $[h_0], [h_1] \in \pi_{n+1}(E, F, f_0)$ mit $p_*[h_0] = p_*[h_1]$. Sei

$$H: I \times I^{n+1}, \quad (t, x) \mapsto H_t(x)$$

eine Homotopie mit $H_0 = p \circ h_0$, $H_1 = p \circ h_1$, welche zu jedem Zeitpunkt $t \in I$ eine Abbildung $H_t : (I^{n+1}, \partial I^{n+1}) \to (B, \{b_0\})$ von Raumpaaren ist. Betrachte folgendes HLE-Diagramm:

mit $V := I^{n+1} \times \{0\} \cup (\partial I^{n+1}) \times I \subset I^{n+2}$ und

$$h|_{\{0\}\times I^{n+1}} := h_0, \quad h|_{\{1\}\times I^{n+1}} := h_1, \quad h|_{I\times U} := \text{konst } f_0.$$

Nun ist \tilde{H} eine Homotopie von h_0 nach h_1 , welche zu jedem Zeitpunkt t eine Abbildung \tilde{H}_t : $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{b_0\})$ von Raumtripeln ist.

Definition. Es seien $p: E \to B$ und $g: X \to B$ stetig. Der Pullback von p entlang g ist die Abbildung $g^*(p): g^*(E) \to X$, wobei $g^*(E) := X \times_B E$ das Faserprodukt von X und E über B vermöge g und p ist.

Bemerkung. Pullback ist funktoriell: $(g \circ f)^* = f^* \circ g^*$ und $id^* = id$.

Lemma. Pullbacks von Serre-Faserungen sind Serre-Faserungen.

Beweis. Sei $p:E\to B$ eine Serre-Faserung und $g:X\to B$ stetig. Wir müssen die Existenz des Morphismus \tilde{H} im folgenden Diagramm zeigen:

$$D^{n} \xrightarrow{H_{0}} g^{*}(E) \xrightarrow{h} E$$

$$\downarrow i_{0} \qquad \downarrow f \qquad \downarrow g^{*}(p) \qquad \downarrow p$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Aus der HLE von p erhält wie folgt einen Morphismus K:

$$D^{n} \xrightarrow{H_{0}} X \times_{B} E \xrightarrow{h} E$$

$$\downarrow i_{0} \downarrow K$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Nun ist $D^n \times I$ vermöge H und K ein Kegel über dem Diagramm ($X \xrightarrow{g} B \xleftarrow{p} E$). Die universelle Eigenschaft von $g^*(E)$ induziert einen Morphismus $\tilde{H}: D^n \times I \to X \times_B E$ mit $g^*(p) \circ \tilde{H} = H$ und $h \circ \tilde{H} = K$. Aus der univ. Eigenschaft von $g^*(E)$ (Eindeutigkeit) folgt nun $\tilde{H} \circ i_0 = H_0$. \square

Definition. Ein Morphismus $(g, \tilde{g}): p' \to p$ von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$ ist ein kommutatives Quadrat der Form

$$E' \xrightarrow{\tilde{g}} E$$

$$\downarrow^{p'} \qquad \downarrow^{p}$$

$$B' \xrightarrow{g} B$$

Beispiel. Pullback einer Serre-Faserung p entlang einer stetigen Abbildung g induziert einen Morphismus $(g, \tilde{g}) : g^*(p) \to p$ von Serre-Faserungen.

Lemma. Die langen exakten Sequenzen der Homotopiegruppen von Faserungen sind natürlich: Es sei $(g, \tilde{g}): p' \to p$ ein Morphismus von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$, $b'_0 \in B'$, $b_0 \coloneqq g(b'_0)$, $F' \coloneqq p'^{-1}(b'_0)$, $F \coloneqq p^{-1}(b_0)$, $f'_0 \in F'$, $f_0 \coloneqq \tilde{g}(f'_0)$. Dann gibt es eine "Leiter" bestehend aus kommutativen Quadraten zwischen den Homotopiesequenzen:

$$\dots \longrightarrow \pi_n(F', f'_0) \xrightarrow{i'_*} \pi_n(E', f'_0) \xrightarrow{p'_*} \pi_n(B', b'_0) \xrightarrow{\partial} \pi_{n-1}(F', f'_0) \longrightarrow \dots$$

$$\downarrow^{(\tilde{g}|_{F'})_*} \qquad \downarrow^{\tilde{g}_*} \qquad \downarrow^{g_*} \qquad \downarrow^{(\tilde{g}|_{F'})_*}$$

$$\dots \longrightarrow \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \longrightarrow \dots$$

Beweis. Folgt aus der Natürlichkeit der langen exakten Homotopiesequenz von Raumpaaren.

Es sei $p:E\to B$ eine Serre-Faserung, $\gamma:I\to B$ ein stetiger Weg. Betrachte die lange exakte Sequenz

$$\dots \to \pi_n(F_{\gamma(0)}) \to \pi_n(\gamma^*(E)) \to \pi_n(I) \to \pi_{n-1}(F_{\gamma(0)}) \to \dots$$

der Homotopiegruppen von $\gamma^*(p): \gamma^*(E) \to I$ mit Faser

$$F_{\gamma(t)} \coloneqq \gamma^*(p)^{-1}(t) \subset \gamma^*(E) = \{(t,e) \in I \times E \,|\, \gamma(t) = p(e)\}.$$

In dieser Sequenz sind die Gruppen $\pi_n(I)$ trivial. Folglich sind die Abbildungen $(i_{\gamma(t)})_*: \pi_n(F_{\gamma(t)}, *) \to \pi_n(\gamma^*(E), *)$ Isomorphismen. In anderen Worten: $i_{\gamma(t)}$ ist eine schwache Äquivalenz. Aus einem Korollar des Whitehead-Theorems folgt nun, dass i_t auch in Homologie und Kohomologie Isomorphismen induziert (vgl. Spanier, AT, S. 406, Cor 7.6.25). Wir untersuchen den Isomorphismus

$$T_{\gamma} := (i_{\gamma(1)})^* \circ ((i_{\gamma(0)})^*)^{-1} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\gamma(1)}).$$

Lemma. T_{γ} hängt lediglich von der Weghomotopieklasse von γ ab, d. h. ist η ein zweiter Weg mit $\gamma \simeq \eta$, so gilt $T_{\gamma} = T_{\eta}$.

Beweis. Sei $H: I \times I \to B$ eine Homotopie zw. den Wegen γ und η , d.h. $H_0 \coloneqq H(0,-) = \gamma$, $H_1 = \eta$, $H(-,0) \equiv x$ und $H(-,1) \equiv y$ mit $x \coloneqq \gamma(0) = \eta(0)$ und $y \coloneqq \gamma(1) = \eta(1)$. Für festes $s \in I$ sei $i_s: I \to I \times I$, $t \mapsto (s,t)$ die Inklusion als $\{s\} \times I$. Betrachte das kommutative Diagramm

$$H_{s}^{*}(E) \stackrel{\widetilde{i_{s}}}{\longleftarrow} H^{*}(E) \xrightarrow{F} E$$

$$H_{s}^{*}(p) \downarrow \qquad H^{*}(p) \downarrow \qquad \downarrow p$$

$$I \stackrel{i_{s}}{\longleftarrow} I \times I \xrightarrow{H} B$$

$$H_{s}$$

Sei $t \in I$ fest. Sei $F_{s,t} := (H_s^*(p))^{-1}(t) = (H^*(p))^{-1}((s,t))$ und $f_0 \in F$. Das linke komm. Diagramm induziert einen Morphismus zw. den langen ex. Homotopieseq. von $H_t^*(p)$ und $H^*(p)$:

$$\dots \longrightarrow \pi_{n+1}(I,t) \xrightarrow{\partial} \pi_n(F_{s,t},f_0) \xrightarrow{(i'_{s,t})^*} \pi_n(H_s^*(E),f_0) \xrightarrow{H_s^*(p)_*} \pi_n(I,t) \longrightarrow \dots$$

$$\downarrow_{i_{s*}} \qquad \qquad \downarrow \downarrow_{i_{\tilde{s}}} \qquad \downarrow_{i_{\tilde{s}}} \downarrow_{i_{s*}}$$

$$\dots \longrightarrow \pi_{n+1}(I \times I,(s,t)) \xrightarrow{\partial} \pi_n(F_{s,t},f_0) \xrightarrow{(i_{s,t})_*} \pi_n(H^*(E),f_0) \xrightarrow{H^*(p)_*} \pi_n(I \times I,(s,t)) \longrightarrow \dots$$

In diesen Sequenzen verschwinden die Gruppen $\pi_n(I,t)$ bzw. $\pi_n(I \times I,(s,t))$. Folglich induzieren die Abbildungen $\widetilde{i_s}$ Isomorphismen in Homotopie und in Kohomologie. Es gilt nun

$$T_{\gamma} = (i'_{0,1})^* \circ ((i'_{0,0})^*)^{-1} = (i'_{0,1})^* \circ (\widetilde{i_0})^* \circ (\widetilde{i_0})^{-1} \circ ((i'_{0,0})^*)^{-1}$$

$$= (i_{0,1})^* \circ ((i_{0,0})^*)^{-1} \stackrel{(\star)}{=} (i_{1,1})^* \circ ((i_{1,0})^*)^{-1}$$

$$= (i'_{1,1})^* \circ (\widetilde{i_1})^* \circ (\widetilde{i_1})^{-1} \circ ((i'_{1,0})^*)^{-1} = (i'_{1,1})^* \circ ((i'_{1,0})^*)^{-1} = T_{\eta}.$$

Die Gleichung (*) gilt wegen $i_{0,1} \simeq i_{1,1}$ und $i_{0,0} \simeq i_{1,0}$.

Mit ganz ähnlicher Technik kann man zeigen:

Lemma. Seien $\gamma, \eta: I \to B$ stetige Wege mit $\gamma(1) = \eta(0)$. Dann gilt

$$T_{\eta} \circ T_{\gamma} = T_{\gamma,\eta} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\eta(1)}).$$

Dabei ist die Komposition von γ und η folgender Weg:

$$\gamma \cdot \eta : I \to B, \quad s \mapsto \begin{cases} \gamma(2s), & \text{falls } s \in [0, \frac{1}{2}], \\ \eta(2s-1), & \text{falls } s \in [\frac{1}{2}, 1]. \end{cases}$$

Beweis. Betrachte folgendes kommutatives Diagramm:

$$\gamma^{*}(E) \xrightarrow{\widetilde{j}} (\gamma \cdot \eta)^{*}(E) \longrightarrow E$$

$$\gamma^{*}(p) \downarrow \qquad \qquad \qquad \downarrow p$$

$$I \xrightarrow{j} I \xrightarrow{\gamma \cdot \eta} B$$

Dabei ist $j:I\to I$ die Abbildung $s\mapsto s/2$. Analog zum letzten Lemma sieht man anhand des Leiterdiagramms der langen exakten Sequenzen der Faserungen $\gamma^*(p)$ und $(\gamma \cdot \eta)^*(p)$, dass \widetilde{j} einen Isomorphismus in Homotopie und Kohomologie induziert. Es gibt ein ähnliches Diagramm mit η statt γ und $k:I\to I,\ s\mapsto (1+s)/2$ statt j. Es induziert auch \widetilde{k} einen Isomorphismus in Kohomologie. Es gilt nun

$$T_{\eta} \circ T_{\gamma} = (i_{\eta(1)})^{*} \circ ((i_{\eta(0)})^{*})^{-1} \circ (i_{\gamma(1)})^{*} \circ ((i_{\gamma(0)})^{*})^{-1}$$

$$= (i_{\eta(1)})^{*} \circ \tilde{k}^{*} \circ (\tilde{k}^{*})^{-1} \circ ((i_{\eta(0)})^{*})^{-1} \circ (i_{\gamma(1)})^{*} \circ \tilde{j}^{*} \circ (\tilde{j}^{*})^{-1} \circ ((i_{\gamma(0)})^{*})^{-1}$$

$$= (\tilde{k} \circ i_{\eta(1)})^{*} \circ ((\tilde{k} \circ i_{\eta(0)})^{*})^{-1} \circ (\tilde{j} \circ i_{\gamma(1)})^{*} \circ ((\tilde{j} \circ i_{\gamma(0)})^{*})^{-1}$$

$$= (i_{\gamma \cdot \eta(1)})^{*} \circ ((i_{\gamma \cdot \eta(1/2)})^{*})^{-1} \circ (i_{\gamma \cdot \eta(1/2)})^{*} \circ ((i_{\gamma \cdot \eta(0)})^{*})^{-1}$$

$$= (i_{\gamma \cdot \eta(1)})^{*} \circ ((i_{\gamma \cdot \eta(0)})^{*})^{-1} = T_{\gamma \cdot \eta}.$$

1.2 Lokale Koeffizienten

Definition. Ein lokales Koeffizientensystem \underline{A} auf einem topologischen Raum B besteht aus abelschen Gruppen $(A_b)_{b\in B}$ und Isomorphismen $T_{\gamma}: A_{\gamma(0)} \xrightarrow{\cong} A_{\gamma(1)}$ für jeden stetigen Weg $\gamma: I \to B$, sodass gilt:

- Sind zwei Wege $\gamma, \eta: I \to B$ homotop modulo Endpunkte, so gilt $T_{\gamma} = T_{\eta}$.
- Für komponierbare Wege $\gamma, \eta: I \to B$ gilt $T_{\gamma, \eta} = T_{\eta} \circ T_{\gamma}$.
- Für den konstanten Weg $\gamma \equiv b$ gilt $T_{\gamma} = \mathrm{id}_{A_b}$.

Bemerkung. Man kann ein lokales Koeffizientensystem auf B auch als Funktor aus dem Fundamentalgruppoid von B in die Kategorie der abelschen Gruppen auffassen.

Beispiel. Im letzten Abschnitt wurde gezeigt: Bei einer Serre-Faserung $p: E \to B$ bilden die q-ten Kohomologiegruppen $A_b := H^q(p^{-1}(b))$ der Fasern ein lokales Koeffizientensystem. Wir bezeichnen dieses Koeffizientensystem im Folgenden mit $\mathcal{H}^q(F_p)$.

Beispiel. Für jede abelsche Gruppe G gibt es das konstante Koeffizientensystem \underline{G} mit $G_b := G$ für alle $b \in B$ und $T_{\gamma} = \mathrm{id}_G$ für alle $\gamma : I \to B$.

Sei im Folgenden $\Delta_n(B)$ die Menge der n-Simplizes in B, also die Menge der stetigen Abbildungen $\Delta^n \to B$ mit $\Delta^n := \operatorname{spann}\{e_0, \dots, e_n\} \subset \mathbb{R}^{n+1}$, und

$$d_n: \Delta_n(B) \to \Delta_{n-1}(B) \quad \sigma \mapsto \sigma_{\langle e_0, \dots, \hat{e_i}, \dots, e_n \rangle} \qquad (0 \le i \le n)$$

die Abbildung auf die *i*-Seite. Für einen *n*-Simplex σ bezeichne $\sigma_i := \sigma_{\langle e_i \rangle} \in \Delta_0(B) = B$ die *i*-te Ecke und $\sigma_{ij} := \sigma_{\langle e_i, e_j \rangle} \in \Delta_1(B)$ den Weg von von σ_i nach σ_j entlang der *ij*-Kante von σ $(0 \le i \le j \le n)$.

Definition. Sei B ein topologischer Raum, \underline{A} ein lokales Koeffizientensystem auf B. Der Ko-komplex der singulären Koketten auf B mit Koeffizienten in \underline{A} ist folgendermaßen definiert:

$$C^n(B;\underline{A}) := \{ \text{ Abbildungen } f, \text{ welche einem } n\text{-Simplex } \sigma \in \Delta_n(B)$$
 ein Element $f(\sigma) \in A_{\sigma_0} \text{ zuordnen } \}$

$$\delta^{n}(f) := (\sigma \in \Delta_{n+1}(B)) \mapsto T_{\sigma_{01}}^{-1}(f(d_{0}(\sigma))) + \sum_{i=1}^{n+1} (-1)^{i} f(d_{i}(\sigma)).$$

Man überprüft leicht, dass $\delta^{n+1} \circ \delta^n = 0$ gilt. Die Kohomologie $H^*(B; \underline{A}) := H^*(C^*(B; \underline{A}))$ dieses Kettenkomplexes heißt singuläre Kohomologie von B mit Koeffizienten in \underline{A} .

Beobachtung. Für das konstante Koeffizientensystem \underline{G} gilt $H^*(B;\underline{G}) \cong H^*(B;G)$. Gewöhnliche Kohomologie mit Koeffizienten ist also ein Spezialfall von Kohomologie mit Koeffizienten in einem lokalen System.

1.3 Spektralsequenzen

Es sei A im Folgenden ein kommutativer Ring mit Eins.

Definition. Eine (kohomologische) Spektralsequenz besteht aus

- A-Moduln $E_r^{p,q}$ für alle $p,q \in \mathbb{Z}$ und $r \geq 1$,
- A-Modul-Homomorphismen $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ mit $d_r^{p+r,q-r+1} \circ d_r^{p,q} = 0$
- und Isomorphismen $\alpha_r^{p,q}: H^{p,q}(E_r) \coloneqq \ker(d_r^{p,q}) / \operatorname{im}(d_r^{p-r,q+r-1}) \xrightarrow{\cong} E_{r+1}^{p,q}.$

Bemerkung. • Die Homomorphismen $d_{p,q}^r$ heißen Differentiale.

- Die Gesamtheit der Module $E^r_{p,q}$ und Differentiale d^{pq}_r mit $r \in \mathbb{N}$ fest heißt r-te Seite E^r .
- Man stellt Seiten für gewöhnlich in einem 2-dimensionalen Raster dar:

Definition. Eine Spektralsequenz konvergiert, falls für alle $p, q \in \mathbb{Z}$ ein $R \in \mathbb{N}$ existiert, sodass für alle $r \geq R$ die Differentiale von und nach $E_r^{p,q}$ null sind und damit $E_{p,q}^{\infty} := E_R^{p,q} \cong E_{R+1}^{p,q} \cong \dots$ Der Grenzwert der SS ist die Unendlich-Seite $E_{\infty} := \{E_{\infty}^{p,q}\}_{p,q}$.

Bemerkung. Viele Spektralsequenzen sind im ersten Quadranten konzentriert, d. h. $E_r^{p,q}$ ist nur für $p,q \geq 0$ ungleich Null. Solche Spektralsequenzen konvergieren immer, denn für alle $p,q \in \mathbb{Z}$ führen für $r \geq \max(p+1,q+2)$ alle Differentiale von $E_r^{p,q}$ aus dem ersten Quadranten heraus und alle dort eintreffenden Differentiale kommen von außerhalb des ersten Quadranten und sind daher Null.

Definition. Eine Filtrierung eines A-Moduls M ist eine aufsteigende Folge ... $\subseteq F_pM \subseteq F_{p+1}M \subseteq ...$ von Untermoduln von M, $p \in \mathbb{Z}$. Eine Filtrierung heißt $regul\ddot{a}r$, falls

$$0 = \cap_p F_p M \coloneqq \lim_{p \to -\infty} F_p M \quad \text{und} \quad M = \cup_p F_p M \coloneqq \underset{p \to \infty}{\text{colim}} F_p M.$$

Definition. Eine Spektralsequenz E konvergiert gegen einen graduierten A-Modul $M = \bigoplus_{n \in \mathbb{Z}} M_n$ (notiert $E_r^{p,q} \Rightarrow M_{p+q}$), falls E überhaupt konvergiert und Filtrierungen . . . $\subseteq F_p M_n \subseteq F_{p+1} M_n \subseteq$. . . existieren, sodass für alle $p,q \in \mathbb{Z}$ der Eintrag E_{∞}^{p+q} isomorph zum Quotienten $F_{p+1} M_{p+q} / F_p M_{p+q}$ ist.

1.4 Die Spektralsequenz eines filtrierten Komplexes

Definition. Eine Filtrierung eines Kokettenkomplexes C^{\bullet} ist eine aufsteigende Folge von Unterkomplexen ... $\subseteq F^pC^{\bullet} \subseteq F^{p+1}C^{\bullet} \subseteq ... \subseteq C^{\bullet}$.

Lemma. Es sei C^{\bullet} ein filtrierter Kokettenkomplex. Es gibt eine Spektralsequenz mit $E_2^{pq} = H^q(F^pC^{\bullet}/F^{p-1}C^{\bullet})$. Falls die Filtrierung in einem gewissen Sinne endlich ist, so konvergiert diese Spektralsequenz gegen $H^*(C^{\bullet})$.

Wir führen zunächst etwas neue Notation ein. Diese hilft, den Beweis verständlicher zu formulieren. Wir fassen im folgenden den Kettenkomplex als ein einziges Modul $C := \bigoplus_{n \in \mathbb{Z}} C^n$ anstatt als Folge von Modulen auf. Dieses Modul ist filtriert durch die Untermodule $F^p := \bigoplus_{n \in \mathbb{Z}} F^p C^n$. Wir setzen $F^{\infty} := C$ und $F^{-\infty} := 0$. Die Korandabbildung fassen wir als Homomorphismen $d: C \to C$ mit $d \circ d = 0$ auf, der die Filtrierung von C respektiert.

Wir sind interessiert an der Kohomologie von C^{\bullet} , also an $H^*(C) := \ker(d)/\operatorname{im}(d)$ und an der Kohomologie von F^p/F^{p-1} , also $H^*(F^p/F^{p-1}) \cong (d|_{F^p})^{-1}(F^{p-1})/d(F^p)$. Wir geben nun eine Verallgemeinerung der Definition der Kohomologie von C^{\bullet} und der Kohomologie des Quotientenkomplexes F^p/F^q : Statt Zykeln (d. h. Elementen $c \in C$ mit d(c) = 0) betrachten wir z-Zykel, das sind Elemente $c \in C$ mit $d(c) \in F^z$. Wir teilen diese durch die Menge $d(F^b)$ der b- $R\ddot{a}nder$ anstatt durch die Menge d(C) der Ränder. Wir setzen

$$S[z,q,p,b] := \frac{F^p \cap d^{-1}(F^z)}{(F^p \cap d^{-1}(F^z)) \cap (F^q + d(F^b))}.$$

Wir haben als Spezialfälle

$$S[p,q,p,q] \cong F^p/F^q$$
 und $S[q,q,p,p] \cong H^*(F^p/F^q)$.

Lemma. Es sei $z_1 \le q_1 \le p_1 = z_2 \le b_1 = q_2 \le p_2 \le b_2$. Dann ist folgende Abbildung ein wohldefinierter Homomorphismus:

$$d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1], \quad [c] \mapsto [d(c)].$$

Beweis. Falls [c] = 0 in $S[z_2, q_2, p_2, b_2]$, so existieren $x \in F^{q_2}$ und $y \in F^{b_2}$ mit c = x + d(y). Somit gilt $d^*[c] = [dc] = [d(x) + d^2(y)] = [d(x)] = 0$ in $S[z_1, q_1, p_1, b_1]$, da $F^{b_1} = F^{q_2}$.

Lemma. Es seien Filtrierungsindizes wie folgt gegeben:

$$z_3 \leq q_3 \leq p_3 \leq b_3$$

$$z_2 \leq q_2 \leq p_2 \leq b_2$$

$$z_1 \leq q_1 \leq p_1 \leq b_1$$

Dann ist

$$\alpha: S[q_1, q_2, p_2, p_3] \to \frac{\ker(d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])}{\operatorname{im}(d^*: S[z_3, q_3, p_3, b_3] \to S[z_2, q_2, p_2, b_2])}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis. Sei A der Quotient auf der rechten Seite.

Wohldefiniertheit: Sei [c] = 0 in $S[q_1, q_2, p_2, p_3]$, d. h. es gibt $e \in F^{q_2} = F^{b_1}$ und $f \in F^{p_1}$ mit c = e + d(f). Dann ist $d^*[c] = [d(c)] = [d(e)] = 0$ in $S[z_1, q_1, p_1, b_1]$, also $c \in \ker(d^* : S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])$. Nun ist $f \in d^{-1}(F^{z_3})$, da $d(f) = c - e \in F^{p_2} = F^{z_3}$. Es gilt $[c] = [e + d(f)] = [d(f)] = d^*[f] = 0$ in A.

Injektivität: Sei $c \in F^{p_2} \cap d^{-1}(F^{q_1})$ mit [c] = 0 in A. Das heißt, es gibt $e \in F^{q_2}$, $f \in F^{b_2}$ und $g \in F^{p_3} \cap d^{-1}(F^{z_3})$ mit c = e + d(f) + d(g). Dann ist [c] = [e + d(f + g)] = 0 in $S[q_1, q_2, p_2, p_3]$, da $f + g \in F^{p_3}$.

Surjektivität: Sei $\tilde{c} \in F^{p_2} \cap d^{-1}(F^{z_2})$ mit $[\tilde{c}] \in \ker(d^* : S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])$. Das heißt, es gibt $e \in F^{q_1}$ und $f \in F^{b_1} = F^{q_2}$ mit $d(\tilde{c}) = e + d(f)$. Dann ist $[\tilde{c}] = [\tilde{c} - f]$ in $S[q_1, q_2, p_2, p_3]$ mit $\tilde{c} - f \in F^{p_2} \cap d^{-1}(F^{q_1})$, da $d(\tilde{c} - f) = e \in F^{q_1}$.

Beweis des Lemma über Spektralsequenz. TODO

1.5 Die Serre-Spektralsequenz

Satz (Jean-Pierre Serre). Für jede Serre-Faserung $p: E \to B$ existiert eine Spektralsequenz mit

$$E_2^{p,q} = H^p(B; \mathcal{H}^q(F_p)),$$

welche gegen $H^*(E)$ konvergiert.