# 二、语法分析 (5. *LR*0 语法分析器)

# 魏恒峰

hfwei@nju.edu.cn

2023年05月24日



#### 只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树



今日主题: LR 语法分析器

自顶向下的、

递归下降的、

预测分析的、

适用于LL(1) 文法的、

LL(1) 语法分析器

## LL(k) 的弱点:

在仅看到右部的前 k 个词法单元时就必须预测要使用哪条产生式

## LR(k) 的优点:

看到与正在考虑的这个产生式的整个右部对应的词法单元之后再决定

自底向上的、

不断归约的、

基于句柄识别自动机的、

适用于LR 文法的、

LR 语法分析器

# 自底向上构建语法分析树

根节点是文法的起始符号 S

每个中间非终结符节点表示使用它的某条产生式进行归约

**叶节点**是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

#### 自顶向下的"推导"与自底向上的"归约"

$$E \underset{\mathrm{rm}}{\Longrightarrow} T \underset{\mathrm{rm}}{\Longrightarrow} T * F \underset{\mathrm{rm}}{\Longrightarrow} T * \mathbf{id} \underset{\mathrm{rm}}{\Longrightarrow} F * \mathbf{id} \underset{\mathrm{rm}}{\Longrightarrow} \mathbf{id} * \mathbf{id}$$

$$(1) E \rightarrow E + T$$

(2) 
$$E \rightarrow T$$

(3) 
$$T \rightarrow T * F$$

(4) 
$$T \rightarrow F$$

(5) 
$$F \rightarrow (E)$$

(6) 
$$F \rightarrow \mathbf{id}$$



$$w = id * id$$

 $E \Leftarrow T \Leftarrow T * F \Leftarrow T * id \Leftarrow F * id \Leftarrow id * id$ 

# "推导" $(A \rightarrow \alpha)$ 与 "归约" $(A \leftarrow \alpha)$

$$S \triangleq \gamma_0 \implies \dots \gamma_{i-1} \implies \gamma_i \implies \gamma_{r+1} \implies \dots \implies r_n = w$$
$$S \triangleq \gamma_0 \iff \dots \gamma_{i-1} \iff \gamma_i \iff \gamma_{r+1} \iff \dots \iff r_n = w$$

自底向上语法分析器为输入构造反向推导

#### LR 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右 (Rightmost) 推导

"反向最右推导"与"从左到右扫描"相一致

#### LR 语法分析器的状态

在任意时刻, 语法分析树的上边缘与剩余的输入构成当前句型



 $E \Longleftarrow T \twoheadleftarrow T * F \Longleftarrow T * \mathbf{id} \Longleftarrow F * \mathbf{id} \Longleftarrow \mathbf{id} * \mathbf{id}$ 

LR 语法分析器使用<mark>栈</mark>存储语法分析树的**上边缘** 它包含了语法分析器目前所知的所有信息

#### 演示"栈"上操作

(1) 
$$E \rightarrow E + T$$

(2) 
$$E \rightarrow T$$

(3) 
$$T \rightarrow T * F$$

(4) 
$$T \rightarrow F$$

(5) 
$$F \rightarrow (E)$$

(6) 
$$F \rightarrow \mathbf{id}$$



## 两大操作: 移人输入符号 与 按产生式归约

直到栈中仅剩开始符号 E, 且输入已结束, 则成功停止

#### 基于栈的 LR 语法分析器

 $Q_1$ : 何时归约? (何时移入?)

 $Q_2$ : 按哪条产生式进行归约?

#### 基于栈的 LR 语法分析器

(1) 
$$E \rightarrow E + T$$

- (2)  $E \rightarrow T$
- (3)  $T \to T * F$
- $(4) T \rightarrow F$
- (5)  $F \rightarrow (E)$
- (6)  $F \rightarrow \mathbf{id}$



为什么第二个 F 以 T\*F 整体被归约为 T?

这与 $\mathbf{t}$ 的当前状态 "T\*F" 相关

#### LR (实际为 SLR) 分析表指导 LR 语法分析器

|     | · · · · · · · · · · · · · · · · · · · | _ |    |            | ACTION |            |      |     |   |   | GOTO |  |  |
|-----|---------------------------------------|---|----|------------|--------|------------|------|-----|---|---|------|--|--|
| _ 1 | 1A.763                                |   | id | +          | *      | (          | )    | \$  | E | T | F    |  |  |
|     | 0                                     |   | s5 |            |        | s <b>4</b> | •    |     | 1 | 2 | 3    |  |  |
|     | 1                                     |   | [  | s6         |        |            |      | acc |   |   |      |  |  |
| Ì   | 2                                     |   |    | r2         | s7     |            | r2   | r2  | ĺ |   |      |  |  |
| l   | 3                                     |   |    | r4         | r4     |            | r4   | r4  |   |   |      |  |  |
| ĺ   | 4                                     |   | s5 |            |        | s4         |      |     | 8 | 2 | 3    |  |  |
| 1   | 5                                     |   |    | <b>r</b> 6 | r6     |            | r6   | r6  |   |   |      |  |  |
| (   | 6                                     |   | s5 | v          |        | s4         |      |     | l | 9 | 3    |  |  |
|     | 7                                     |   | s5 |            |        | 54         |      |     |   |   | 10   |  |  |
| 1   | 8                                     |   |    | s6         |        |            | s11  |     | 1 |   |      |  |  |
|     | 9                                     |   |    | r1         | s7     |            | r1   | r1  |   |   |      |  |  |
|     | 10                                    |   | }  | r3         | r3     |            | r3   | r3  | 1 |   |      |  |  |
|     | 11                                    |   |    | r5         | r5     |            | _ r5 | r5  |   |   |      |  |  |

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

ACTION 表指明动作, GOTO 表仅用于归约时的状态转换

| 状态            |     |                     |            | AC | TION       | ACTION |     |   |             |    |  |  |
|---------------|-----|---------------------|------------|----|------------|--------|-----|---|-------------|----|--|--|
| _ 1A.763<br>_ |     | $\operatorname{id}$ | +          | *  | (          | )      | \$  | E | $T_{\perp}$ | F  |  |  |
| 0             | l ' | s <b>5</b>          |            |    | s <b>4</b> |        |     | 1 | 2           | 3  |  |  |
| 1             |     |                     | s6         |    |            |        | acc |   |             |    |  |  |
| 2             |     |                     | r2         | s7 |            | r2     | r2  | ĺ |             |    |  |  |
| 3             |     |                     | r4         | r4 |            | r4     | r4  |   |             |    |  |  |
| 4             | Ι.  | s5                  |            |    | s4         |        |     | 8 | 2           | 3  |  |  |
| 5             |     |                     | <b>r</b> 6 | r6 |            | r6     | r6  | } | _           |    |  |  |
| 6             | Ι.  | s5                  | v          |    | s4         |        |     | l | 9           | 3  |  |  |
| 7             |     | s5                  |            |    | 54         |        |     |   |             | 10 |  |  |
| 8             |     |                     | s6         |    |            | s11    |     | 1 |             |    |  |  |
| 9             |     |                     | r1         | s7 |            | r1     | r1  | ] |             |    |  |  |
| 10            |     | }                   | r3         | r3 |            | r3     | r3  | 1 |             |    |  |  |
| 11            |     |                     | r5         | r5 |            | r5     | r5  |   |             |    |  |  |

| sn  | 移入输入符号,并进入状态 n  |
|-----|-----------------|
| rk  | 使用k 号产生式进行归约    |
| gn  | 转换到 <b>状态</b> n |
| acc | 成功接受, 结束        |
| 空白  | 错误              |

#### 演示"栈"上操作:移入与归约

(1) 
$$E \rightarrow E + T$$

(2) 
$$E \rightarrow T$$

(3) 
$$T \to T * F$$

(4) 
$$T \rightarrow F$$

(5) 
$$F \rightarrow (E)$$

(6) 
$$F \rightarrow \mathbf{id}$$

|     | 1: <del>-k-</del> |    | _  | AC | TION       |     |      | [ | GOTO |    |  |
|-----|-------------------|----|----|----|------------|-----|------|---|------|----|--|
| _ 1 | 犬态                | id | +  | *  | (          | )   | \$   | E | T    | F  |  |
|     | 0                 | s5 |    |    | s4         | •   |      | 1 | 2    | 3  |  |
|     | 1                 |    | s6 |    |            |     | acc  |   |      |    |  |
| Ì   | 2                 |    | r2 | s7 |            | r2  | r2   | ĺ |      |    |  |
|     | 3                 |    | r4 | r4 |            | r4  | r4   | 1 |      |    |  |
| ĺ   | 4                 | s5 |    |    | s4         |     |      | 8 | 2    | 3  |  |
|     | 5                 |    | r6 | r6 |            | r6  | r6   |   |      |    |  |
|     | 6                 | s5 | 4. |    | s4         |     |      | l | 9    | 3  |  |
|     | 7                 | s5 |    |    | s <b>4</b> |     |      |   |      | 10 |  |
|     | 8                 |    | s6 |    |            | s11 |      | 1 |      |    |  |
|     | 9                 |    | r1 | s7 |            | r1  | r1   |   |      |    |  |
|     | 10                | }  | r3 | r3 |            | r3  | r3   | l |      |    |  |
|     | 11                |    | r5 | r5 |            | r5  | r5 _ |   |      |    |  |

 $w = \mathbf{id} * \mathbf{id}$ \$

栈中存储语法分析器的状态 (编号), "编码" 了语法分析树的上边缘

```
1: procedure LR()
                                                                 \triangleright 或 Push(S, \$_{s_0})
        PUSH(S, s_0)
 2:
        token \leftarrow NEXT-TOKEN()
 3:
        while (1) do
4:
 5:
            s \leftarrow \text{Top}(S)
            if ACTION[s, token] = s_i then
                                                                               ▷移入
6:
                                                           \triangleright 或 PUSH(S, token<sub>s:</sub>)
                PUSH(S, i)
 7:
                 token \leftarrow NEXT-TOKEN()
8:
            else if ACTION[s, token] = r_i then
                                                                 \triangleright 归约; i:A\to\alpha
9:
                 |\alpha| 次 Pop(S)
10:
                s \leftarrow \text{Top}(S)
11:
                 PUSH(S, GOTO[s, A]) > 转换状态; 或 PUSH(S, A_{GOTO[s, A]})
12:
            else if ACTION[s, token] = acc then
                                                                               > 接受
13:
14:
                 break
            else
15:
                 ERROR(...)
16:
```

#### 如何构造 LR 分析表?

| ,H   | 态     | 1 | <del></del> |    | AC' | LION |      |     | GOTO |   |    |
|------|-------|---|-------------|----|-----|------|------|-----|------|---|----|
| _ 1^ | 77767 |   | id          | +  | *   | (    | )    | \$  | E    | T | F  |
|      | 0     |   | s5          |    |     | s4   |      |     | 1    | 2 | 3  |
|      | 1     |   |             | s6 |     |      |      | acc |      |   |    |
| Ì    | 2     |   |             | r2 | s7  |      | r2   | r2  | ĺ    |   |    |
|      | 3     |   |             | r4 | r4  |      | r4   | r4  | 1    |   |    |
|      | 4     |   | s5          |    |     | s4   | _    |     | 8    | 2 | 3  |
| 1    | 5     |   |             | ŗ6 | r6  |      | r6   | r6  |      |   |    |
|      | 6     |   | s5          | v  |     | s4   |      |     | l    | 9 | 3  |
|      | 7     |   | s5          |    |     | 54   |      |     | ļ    |   | 10 |
| 1    | 8     |   |             | s6 |     |      | s11  |     | )    |   |    |
|      | 9     |   |             | r1 | s7  |      | r1   | r1  |      |   |    |
|      | 10    |   | }           | r3 | r3  |      | r3   | r3  | 1    |   |    |
|      | 11    |   |             | r5 | r5  |      | _ r5 | r5  |      |   |    |

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

## 状态是什么?如何跟踪状态?

| 142 | <br>k    |    |    | AC' | LION |               |      | GOTO |   |    |
|-----|----------|----|----|-----|------|---------------|------|------|---|----|
| 1/1 | 状态<br>   |    | +  | *   | (    | )             | \$   | E    | T | F  |
|     | )        | s5 |    |     | s4   |               |      | 1    | 2 | 3  |
| 1   | .        |    | s6 |     |      |               | acc  |      |   |    |
| 2   | !        |    | r2 | s7  |      | $\mathbf{r}2$ | r2   | ĺ    |   |    |
| 3   | :        |    | r4 | r4  |      | r4            | r4   | 1    |   |    |
| 4   | l I      | s5 |    |     | s4   | _             |      | 8    | 2 | 3  |
| 5   |          | ļ  | ŗ6 | r6  |      | r6            | r6   |      |   |    |
| ( 6 | <b>)</b> | s5 | v  |     | s4   |               |      | l    | 9 | 3  |
| 7   | '        | s5 |    |     | 54   |               |      | ļ    |   | 10 |
| 8   | 3        |    | s6 |     |      | s11           |      | )    |   |    |
| 9   | )        |    | r1 | s7  |      | r1            | r1   |      |   |    |
| 10  | 0        | }  | r3 | r3  |      | r3            | r3   | 1    |   |    |
| 1   | 1        |    | r5 | r5  |      | r5            | r5 _ |      |   |    |

状态是语法分析树的上边缘, 存储在栈中

#### 何时归约? 使用哪条产生式进行归约?

| 状态     | 1 | <del></del> |    | AC' | LION |     |      | [ | GOTO |     |  |
|--------|---|-------------|----|-----|------|-----|------|---|------|-----|--|
| 10.765 |   | id          | +  | *   | (    | )   | \$   | E | T    | F   |  |
| 0      |   | s5          |    |     | s4   |     |      | 1 | 2    | 3   |  |
| 1      | ļ |             | s6 |     |      |     | acc  |   |      | l   |  |
| 2      | ļ |             | r2 | s7  |      | r2  | r2   | ĺ |      |     |  |
| 3      |   |             | r4 | r4  |      | r4  | r4   |   |      | į   |  |
| 4      | ) | s5          |    |     | s4   |     |      | 8 | 2    | 3   |  |
| 5      | Į |             | ŗ6 | r6  |      | r6  | r6   | } |      |     |  |
| 6      |   | s5          | v  |     | s4   |     |      | l | 9    | 3   |  |
| 7      | 1 | s5          |    |     | 54   |     |      | ļ |      | 10  |  |
| 8      |   |             | s6 |     |      | s11 |      | ) |      | ļ   |  |
| 9      |   |             | r1 | s7  |      | r1  | r1   |   |      |     |  |
| 10     |   | ı           | r3 | r3  |      | r3  | r3   | 1 |      | - 1 |  |
| 11     |   |             | r5 | r5  |      | r5  | r5 _ |   |      | ]   |  |

必要条件: 当前状态中, 已观察到某个产生式的完整右部

#### 何时归约? 使用哪条产生式进行归约?

## Definition (句柄 (Handle))

在输入串的 (唯一) 反向最右推导中, **如果**下一步是逆用产生式  $A \to \alpha$  将  $\alpha$  归约为 A, 则称  $\alpha$  是当前句型的**句柄**。

| 最右句型               | 句柄            | 归约用的产生式                                                                   |
|--------------------|---------------|---------------------------------------------------------------------------|
| $id_1 * id_2$      | $id_1$        | $F 	o \mathrm{id}$                                                        |
| $F*id_2$           | F             | $T \to F$                                                                 |
| $T * id_2$ $T * F$ | $d_2 = T * F$ | $egin{array}{c} F  ightarrow {f id} \ T  ightarrow T \ * \ F \end{array}$ |
| T                  |               | $E \to T$                                                                 |

LR 语法分析器的关键就是高效寻找每个归约步骤所使用的句柄。

#### 句柄可能在哪里?

#### Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。



图 4-29 一个最右推导中两个连续步骤的两种情况

$$S \xrightarrow[\mathrm{rm}]{*} \alpha Az \xrightarrow[\mathrm{rm}]{*} \alpha \beta Byz \xrightarrow[\mathrm{rm}]{*} \alpha \beta \gamma yz \quad S \xrightarrow[\mathrm{rm}]{*} \alpha BxAz \xrightarrow[\mathrm{rm}]{*} \alpha Bxyz \xrightarrow[\mathrm{rm}]{*} \alpha \gamma xyz$$

#### Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

设计一种满足"句柄总是出现在栈顶"性质的 LR 语法分析器。

#### LR(0) 句柄识别有穷状态自动机 (Handle-Finding Automaton)



#### 状态是什么?

#### 状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (LR(0) 项 (Item))

文法 G 的一个 LR(0) 项是 G 的某个产生式加上一个位于体部的点。

#### 项指明了语法分析器已经观察到了某个产生式的某个前缀

$$A o XYZ$$
 
$$[A o \cdot XYZ]$$
 
$$[A o X \cdot YZ]$$
 
$$[A o XY \cdot Z]$$
 
$$[A o XYZ \cdot ]$$
 
$$[A o XYZ \cdot ]$$
 (产生式  $A o \epsilon$  只有一个项  $[A o \cdot]$ )

#### 状态刻画了"当前观察到的针对所有产生式的右部的前缀"

Definition (项集)

项集就是若干项构成的集合。

因此, 句柄识别自动机的一个状态可以表示为一个项集

Definition (项集族)

项集族就是若干项集构成的集合。

因此, 句柄识别自动机的状态集可以表示为一个项集族

## LR(0) 句柄识别自动机



项、项集、项集族

# Definition (增广文法 (Augmented Grammar))

文法 G 的增广文法 G' 是在 G 中加入产生式  $S' \to S$  得到的文法。

目的:告诉语法分析器何时停止分析并接受输入符号串

语法分析器当前栈中仅有 S 且面对 \$,

**要使用**  $S' \rightarrow S$  **进行归约**时, 输入符号串被接受

## LR(0) 句柄识别自动机



初始状态是什么?

# 点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

(0) 
$$E' \to E$$

(1) 
$$E \rightarrow E + T$$

(2) 
$$E \rightarrow T$$

(3) 
$$T \rightarrow T * F$$

(4) 
$$T \rightarrow F$$

(5) 
$$F \rightarrow (E)$$

(6) 
$$F \rightarrow \mathbf{id}$$



CLOSURE $(\{[E' \to \cdot E]\})$ 

CLOSURE $(\{[E' \to \cdot E]\})$ 

一开始,栈为空,期望输入是 E 可以展开得到的一个句子并以 \$ 结束。

输入以 E 开始, 意味着它可能以 E 的任何一个右部开始。

#### LR(0) 句柄识别自动机



状态之间如何转移?

#### 演示 LR(0) 句柄识别自动机的构造过程



 $J = \text{goto}(I, \mathbf{X}) = \text{closure}\Big(\Big\{[A \to \alpha \mathbf{X} \cdot \beta] \Big| [A \to \alpha \cdot \mathbf{X}\beta] \in I\Big\}\Big)$ 



接受状态:  $F = \{I \in C \mid \exists [A \to \alpha \cdot] \in I\}$ 

(此时, 产生式  $A \rightarrow \alpha$  的完整右部出现在栈顶)



点指示了栈顶, 左边 (与路径) 是栈中内容, 右边是期望看到的文法符号串

## LR(0) 分析表



|    |       |    | ACT    | ION |     |     | GOTO |    |     |  |
|----|-------|----|--------|-----|-----|-----|------|----|-----|--|
|    | id    | +  | *      | (   | )   | \$  | E    | T  | F   |  |
| 0  | s5    |    |        | s4  |     |     | g1   | g2 | g3  |  |
| 1  |       | s6 |        |     |     | acc |      |    |     |  |
| 2  | r2    | r2 | s7, r2 | r2  | r2  | r2  |      |    |     |  |
| 3  | r4    | r4 | r4     | r4  | r4  | r4  |      |    |     |  |
| 4  | s5    |    |        | s4  |     |     | g8   | g2 | g3  |  |
| 5  | r6    | r6 | r6     | r6  | r6  | r6  |      |    |     |  |
| 6  | s5    |    |        | s4  |     |     |      | g9 | g3  |  |
| 7  | s5    |    |        | s4  |     |     |      |    | g10 |  |
| 8  |       | s6 |        |     | s11 |     |      |    |     |  |
| 9  | r1    | r1 | s7, r1 | r1  | r1  | r1  |      |    |     |  |
| 10 | r3    | r3 | r3     | r3  | r3  | r3  |      |    |     |  |
| 11 | $r_5$ | r5 | $r_5$  | r5  | r5  | r5  |      |    |     |  |

GOTO 函数被拆分成 ACTION 表 (针对终结符) 与 GOTO 表 (针对非终结符)

## (1) Goto $(I_i, a) = I_i \wedge a \in T \implies \text{Action}[i, a] \leftarrow sj$



|    |    |    |        | GOTO |     |     |    |    |     |
|----|----|----|--------|------|-----|-----|----|----|-----|
|    | id | +  | *      | (    | )   | \$  | E  | T  | F   |
| 0  | s5 |    |        | s4   |     |     | g1 | g2 | g3  |
| 1  |    | s6 |        |      |     | acc |    |    |     |
| 2  | r2 | r2 | s7, r2 | r2   | r2  | r2  |    |    |     |
| 3  | r4 | r4 | r4     | r4   | r4  | r4  |    |    |     |
| 4  | s5 |    |        | s4   |     |     | g8 | g2 | g3  |
| 5  | r6 | r6 | r6     | r6   | r6  | r6  |    |    |     |
| 6  | s5 |    |        | s4   |     |     |    | g9 | g3  |
| 7  | s5 |    |        | s4   |     |     |    |    | g10 |
| 8  |    | s6 |        |      | s11 |     |    |    |     |
| 9  | r1 | r1 | s7, r1 | r1   | r1  | r1  |    |    |     |
| 10 | r3 | r3 | r3     | r3   | r3  | r3  |    |    |     |
| 11 | r5 | r5 | r5     | r5   | r5  | r5  |    |    |     |

(2)  $GOTO(I_i, A) = I_i \land A \in \mathbb{N} \implies GOTO[i, A] \leftarrow gj$ 

 $\begin{array}{c}
I_{2} \\
E \to T \\
T \to T & * F
\end{array}$ 

 $I_{10}$   $T \rightarrow T * F \cdot$ 

|    |       |    | ACT    | ION |     |     |    | GOT | D   |
|----|-------|----|--------|-----|-----|-----|----|-----|-----|
|    | id    | +  | *      | (   | )   | \$  | E  | T   | F   |
| 0  | s5    |    |        | s4  |     |     | g1 | g2  | g3  |
| 1  |       | s6 |        |     |     | acc |    |     |     |
| 2  | r2    | r2 | s7, r2 | r2  | r2  | r2  |    |     |     |
| 3  | r4    | r4 | r4     | r4  | r4  | r4  |    |     |     |
| 4  | s5    |    |        | s4  |     |     | g8 | g2  | g3  |
| 5  | r6    | r6 | r6     | r6  | r6  | r6  |    |     |     |
| 6  | s5    |    |        | s4  |     |     |    | g9  | g3  |
| 7  | s5    |    |        | s4  |     |     |    |     | g10 |
| 8  |       | s6 |        |     | s11 |     |    |     |     |
| 9  | r1    | r1 | s7, r1 | r1  | r1  | r1  |    |     |     |
| 10 | r3    | r3 | r3     | r3  | r3  | r3  |    |     |     |
| 11 | $r_5$ | r5 | r5     | r5  | r5  | r5  |    |     |     |

(3)  $[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}$ . ACTION[i,t] = rk



|    |       |    | ACT    | ION |     |     |    | GOT | O   |
|----|-------|----|--------|-----|-----|-----|----|-----|-----|
|    | id    | +  | *      | (   | )   | \$  | E  | T   | F   |
| 0  | s5    |    |        | s4  |     |     | g1 | g2  | g3  |
| 1  |       | s6 |        |     |     | acc |    |     |     |
| 2  | r2    | r2 | s7, r2 | r2  | r2  | r2  |    |     |     |
| 3  | r4    | r4 | r4     | r4  | r4  | r4  |    |     |     |
| 4  | s5    |    |        | s4  |     |     | g8 | g2  | g3  |
| 5  | $r_6$ | r6 | r6     | r6  | r6  | r6  |    |     |     |
| 6  | s5    |    |        | s4  |     |     |    | g9  | g3  |
| 7  | s5    |    |        | s4  |     |     |    |     | g10 |
| 8  |       | s6 |        |     | s11 |     |    |     |     |
| 9  | r1    | r1 | s7, r1 | r1  | r1  | r1  |    |     |     |
| 10 | $r_3$ | r3 | r3     | r3  | r3  | r3  |    |     |     |
| 11 | $r_5$ | r5 | r5     | r5  | r5  | r5  |    |     |     |

(4) 
$$[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

#### LR(0) 分析表构造规则总结

(1) 
$$\text{GOTO}(I_i, a) = I_j \land a \in T \implies \text{ACTION}[i, a] \leftarrow sj$$

(2) 
$$\text{GOTO}(I_i, A) = I_j \land A \in N \implies \text{GOTO}[i, A] \leftarrow gj$$

(3) 
$$[k:A \to \alpha \cdot] \in I_i \land A \neq S' \implies \forall t \in T \cup \{\$\}$$
. ACTION $[i,t] = rk$ 

(4) 
$$[S' \to S \cdot] \in I_i \implies \text{ACTION}[i, \$] \leftarrow acc$$

## Definition (LR(0) 文法)

如果文法 G 的LR(0) 分析表是无冲突的,则 G 是 LR(0) 文法。

|    | ACTION |    |        |    |     |     |    | GOTO |     |  |
|----|--------|----|--------|----|-----|-----|----|------|-----|--|
|    | id     | +  | *      | (  | )   | \$  | E  | T    | F   |  |
| 0  | s5     |    |        | s4 |     |     | g1 | g2   | g3  |  |
| 1  |        | s6 |        |    |     | acc |    |      |     |  |
| 2  | r2     | r2 | s7, r2 | r2 | r2  | r2  |    |      |     |  |
| 3  | r4     | r4 | r4     | r4 | r4  | r4  |    |      |     |  |
| 4  | s5     |    |        | s4 |     |     | g8 | g2   | g3  |  |
| 5  | r6     | r6 | r6     | r6 | r6  | r6  |    |      |     |  |
| 6  | s5     |    |        | s4 |     |     |    | g9   | g3  |  |
| 7  | s5     |    |        | s4 |     |     |    |      | g10 |  |
| 8  |        | s6 |        |    | s11 |     |    |      |     |  |
| 9  | r1     | r1 | s7, r1 | r1 | r1  | r1  |    |      |     |  |
| 10 | r3     | r3 | r3     | r3 | r3  | r3  |    |      |     |  |
| 11 | $r_5$  | r5 | r5     | r5 | r5  | r5  |    |      |     |  |

非 LR(0) 分析表/文法

# LR(0) 分析表每一行(状态) 所选用的归约产生式是相同的

|    | ACTION |    |        |    |     |     | GOTO |    |     |
|----|--------|----|--------|----|-----|-----|------|----|-----|
|    | id     | +  | *      | (  | )   | \$  | E    | T  | F   |
| 0  | s5     |    |        | s4 |     |     | g1   | g2 | g3  |
| 1  |        | s6 |        |    |     | acc |      |    |     |
| 2  | r2     | r2 | s7, r2 | r2 | r2  | r2  |      |    |     |
| 3  | r4     | r4 | r4     | r4 | r4  | r4  |      |    |     |
| 4  | s5     |    |        | s4 |     |     | g8   | g2 | g3  |
| 5  | $r_6$  | r6 | r6     | r6 | r6  | r6  |      |    |     |
| 6  | s5     |    |        | s4 |     |     |      | g9 | g3  |
| 7  | s5     |    |        | s4 |     |     |      |    | g10 |
| 8  |        | s6 |        |    | s11 |     |      |    |     |
| 9  | r1     | r1 | s7, r1 | r1 | r1  | r1  |      |    |     |
| 10 | r3     | r3 | r3     | r3 | r3  | r3  |      |    |     |
| 11 | $r_5$  | r5 | r5     | r5 | r5  | r5  |      |    |     |

**归约**时不需要向前看, 这就是"0"的含义

## LR(0) 语法分析器

L: 从左向右 (Left-to-right) 扫描输入

R: 构建反向 (Reverse) 最右推导

0: 归约时无需向前看

#### LR(0) 自动机与栈之间的互动关系

向前走 ⇔ 移入

回溯 ⇔ 归约

# 自动机才是本质, 栈是实现方式

(用栈记住"来时的路",以便回溯)

# Thank You!



Office 926 hfwei@nju.edu.cn