Recall from last time ...

Why is Dimensionality Reduction useful?

Why is Dimensionality Reduction useful?

Data Compression

- Reduce time complexity: less computation required
- Reduce space complexity: less number of features
- More interpretable: it removes noise
- Data Visualization
- To mitigate "the curse of dimensionality"

The Curse of Dimensionality

The Curse of Dimensionality

Even a basic 4D hypercube is incredibly hard to picture in our mind.

The Curse of Dimensionality

Optimal number of features

How to reduce dimensionality?

How to reduce dimensionality?

• Feature Selection: choosing a subset of all the features (the ones more informative).

$$\circ$$
 $\mathbf{x_1}$, $\mathbf{x_2}$, $\mathbf{x_3}$, $\mathbf{x_4}$, $\mathbf{x_5}$

• Feature Extraction: create a subset of new features by combining the existing ones.

$$\circ$$
 $z = f(x_1, x_2, x_3, x_4, x_5)$

PCA: Principal Component Analysis

Principal Component Analysis (PCA)

- The most popular dimensionality reduction algorithm.
- PCA have two steps:
 - It identifies the hyperplane that lies closest to the data.
 - It projects the data onto it.

• Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \subseteq \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

• Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, ..., u^{(k)}$ onto which to project the data, so as to minimize the projection error.

PCA Algorithm By Singular Value Decomposition

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Data Preprocessing

Training set: $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

Center the data

If different features on different scales, scale features to have comparable range of values.

Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

$$[U, S, V] = svd(sigma)$$
 Singular Value Decomposition

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n} \qquad x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

$$z = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} & \cdots & u^{(k)} \\ 1 & 1 & 1 \end{bmatrix}^T x$$

$$k \times n \qquad n \times 1$$

After mean normalization and optionally feature scaling:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}}$$

[U, S, V] = svd(sigma)

$$z = (\mathbf{U}_{\text{reduce}})^{\mathrm{T}} \times x$$

Choosing the Number of Principal Components

Choosing k (#Principal Components)

eigenvalues

 $[U, \mathbf{S}, V] = \text{svd(sigma)}$

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}$$

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^{2}$$

$$1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}}$$

Using PCA (Iris Dataset)

150 iris flowers from three different species.

The three classes in the Iris dataset:

- 1. Iris-setosa (n=50)
- 2. Iris-versicolor (n=50)
- 3. Iris-virginica (n=50)

The four features of the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

PCA Algorithm By Eigen Decomposition

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first *k* eigenvectors
- 5. Project data to k eigenvectors

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first *k* eigenvectors
- 5. Project data to k eigenvectors

Data Preprocessing

Training set: $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

Center the data

If different features on different scales, scale features to have comparable range of values.

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first *k* eigenvectors
- 5. Project data to k eigenvectors

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Covariance of dimensions x_1 and x_2 :

- Do x_1 and x_2 tend to increase together?
- or does x_2 decrease as x_1 increases?

$$\begin{array}{c}
 x_1 & x_2 \\
 x_1 & 2.0 & 0.8 \\
 x_2 & 0.8 & 0.6
 \end{array}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$x_1 \quad \begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$x_1 \quad \begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

Turns towards direction of variation

Want vectors u which aren't turned: $\Sigma u = \lambda u$

 $u = eigenvectors of \Sigma$

 λ = eigenvalues

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first *k* eigenvectors
- 5. Project data to k eigenvectors

1. Find eigenvalues by solving: $det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} =$$

1. Find eigenvalues by solving: $\det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} = (2.0 - \lambda)(0.6 - \lambda) - (0.8)(0.8)$$

1. Find eigenvalues by solving: $det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} = (2.0 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = \lambda^2 - 2.6\lambda + 0.56 = 0$$
$$\{\lambda_1, \lambda_2\} = \{2.36, 0.23\}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$u_{1} \sim \begin{bmatrix} 2.2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = 0.23 \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} \quad \mathbf{u}_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = 0.23 \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} \quad u_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix} \qquad u_1 \sim \begin{bmatrix} 2.2 \\ 1 \end{bmatrix}$$

3.
$$1^{st}$$
 PC: $\begin{bmatrix} 0.91 \\ 0.41 \end{bmatrix}$ and 2^{nd} PC: $\begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first k eigenvectors
- 5. Project data to k eigenvectors

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue $\lambda_i = \text{variance along } u_i$

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue λ_i = variance along u_i
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue $\lambda_i = \text{variance along } u_i$
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue $\lambda_i = \text{variance along } u_i$
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance
 - Typical threshold: 90%, 95%, 99%

0.95

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvalues and pick first *k* eigenvectors
- 5. Project data to *k* eigenvectors

Principal Component Analysis (12 videos, 3-15min)

https://www.youtube.com/playlist?list=PLBv09BD7ez_5_yapAg86Od6JeeypkS4YM

Search Q

Principal Component Analysis

12 videos • 119,895 views • Last updated on May 21, 2014

Lectures 18 and 19 in the Introductory Applied Machine Learning (IAML) course by Victor Lavrenko at the

PCA 4: principal components = eigenvectors

Victor Lavrenko

PCA 5: finding eigenvalues and eigenvectors

Victor Lavrenko

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8
 "Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 8

Linear Discriminant Analysis Machine Learning and Pattern Recognition

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

Today's Agenda

- Linear Discriminant Analysis
 - PCA vs LDA
 - LDA: Simple Example
 - LDA Algorithm
 - LDA Step by Step

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA)

- LDA pick a new dimension that gives:
 - Maximum separation between means of projected classes
 - Minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrix

LDA: Simple Example

Reducing 2D to 1D

LDA: Simple Example

Reducing 2D to 1D

LDA: Simple Example

Reducing 2D to 1D

LDA: Simple Example

Reducing 2D to 1D

LDA: Simple Example

Reducing 2D to 1D

Reducing 2D to 1D

The new axis is created according two criteria:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

1. Maximize the distance between the means:

The new axis is created according two criteria:

1. Maximize the distance between the means:

This is the scatter around the pink dots.

The new axis is created according two criteria:

1. Maximize the distance between the means:

This is the scatter around the blue dots.

The new axis is created according two criteria:

The new axis is created according two criteria:

The new axis is created according two criteria:

The new axis is created according two criteria:

Why both distance and scatter are important?

If we only maximize the distance between means ...

Why both distance and scatter are important?

If we only maximize the distance between means ...

How we measure the distance among the means?

Then measure the distance between a point that is central in each class and the main central point.

$$\frac{d^2 + d^2 + d^2}{s^2 + s^2 + s^2}$$

LDA in a Nutshell (Eigen Decomposition)

- 1. Compute the d-dimensional mean vectors for the different classes.
- 2. Compute the scatter matrices (between-class S_R and within-class S_W).
- 3. Compute the eigenvectors $(u_1, u_2, ..., u_d)$ and eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices $S_W^{-1}S_R$.
- 4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.
- 5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

http://sebastianraschka.com/Articles/2014_python_lda.html

150 iris flowers from three different species.

The three classes in the Iris dataset:

- 1. Iris-setosa (n=50)
- 2. Iris-versicolor (n=50)
- 3. Iris-virginica (n=50)

The four features of the Iris dataset:

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm

1. Compute the d-dimensional mean vectors for the different classes.

1. Compute the d-dimensional mean vectors for the different classes.

```
\mu_1: [5.01 3.42 1.46 0.24]

\mu_2: [5.94 2.77 4.26 1.33]

\mu_3: [6.59 2.97 5.55 2.03]
```

2. Compute the **scatter matrices** (between-class S_B and within-class S_W)

Within-class scatter matrix S_w :

$$S_W = \sum_{i=1}^{c} S_i$$
 , where $S_i = \sum_{x \in D_i}^{n} (x - \mu_i)(x - \mu_i)^T$

2. Compute the scatter matrices (between-class S_B and within-class S_W)

Within-class scatter matrix S_W :

```
      38.96
      13.68
      24.61
      5.66

      13.68
      7.04
      8.12
      4.91

      24.61
      8.12
      27.22
      6.25

      5.66
      4.91
      6.25
      6.18
```

2. Compute the scatter matrices (between-class S_B and within-class S_W)

Between-class scatter matrix S_R :

$$S_B = \sum_{i=1}^{c} N_i (\mu_i - \mu) (\mu_i - \mu)^{\mathrm{T}}$$

where μ is the overall mean, and μ_i and N_i are the sample mean and sizes of the respective classes.

2. Compute the scatter matrices (between-class S_{B} and within-class S_{W})

Between-class scatter matrix S_R :

```
      63.21
      -19.53
      165.16
      71.36

      -19.53
      10.98
      -56.05
      -22.49

      65.16
      -56.05
      436.64
      186.91

      71.36
      -22.49
      186.91
      80.60
```

3. Compute the eigenvectors $(u_1, u_2, ..., u_d)$ and eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_d)$ for the scatter matrices $S_W^{-1}S_B$.

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

Eigenvalues in decreasing order:

32.27

0.27

5.71e-15

5.71e-15

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

Eigenvalues in decreasing order:

32.27

0.27

5.71e-15

5.71e-15

Variance explained:

 λ_1 : 99.15%

 λ_2 : 0.85%

 λ_3 : 0.00%

 λ_4 : 0.00%

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors.

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

LDA Step by Step http://sebastianraschka.com/Articles/2 014_python_lda.html

5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace.

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8
 "Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"