Contents

Problem 1											 											2
Problem 2		 									 											3
Problem 3		 									 											4
Problem 4											 											4
Problem 5											 											4
Problem 6																						
Problem 7																						
Problem 8											 											7
Problem 9											 											Ģ
Problem 10)										 											Ģ
Problem 11																						(

Math 350 - Advanced Calculus Homework 4

Chan Nguyen

October 1, 2012

Problem 1

- (i) Prove that if $a_n < b_n$ and $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $a \le b$
- (ii) Prove that if $a_n \le c_n \le b_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$, then $\lim_{n \to \infty} c_n = L$

Solution

- (i) First, we introduce two claims:
 - Claim 1: If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ then $\lim_{n\to\infty} (a_n b_n) = a b$
 - Claim 2: If the limit of (a_n) exists and $a_n \ge 0$ then $\lim_{n \to \infty} a_n \ge 0$.

Claim 1:

Proof. By definition of limit, for $\epsilon > 0$, there exist N_1, N_2 such that for all $n > N_1$ and $n > N_2$

$$|a_n - a| \le \frac{\epsilon}{2}$$
 and $|b_n - b| \le \frac{\epsilon}{2}$

Let $N = \max(N_1, N_2)$ then for all $n \ge N$, we have

$$|(a_n - b_n) - (a - b)| = |(a_n - a) - (b_n - b)| \le |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Claim 2:

Proof. Let $\lim_{n\to\infty} a_n = M$. Suppose that $a_n \geq 0$ but M < 0. Let

$$\epsilon = -\frac{M}{2}$$

since $M<0 \rightarrow -\frac{M}{2}>0 \rightarrow \epsilon>0$. By definition of limit,

$$|a_n - M| < -\frac{M}{2}$$

which implies $a_n-M<-\frac{M}{2}\Leftrightarrow a_n<-\frac{M}{2}+M\Leftrightarrow a_n<\frac{M}{2}.$ In other words, $a_n<0$ which is a contradiction. Therefore,

$$\lim_{n \to \infty} a_n \ge 0$$

Now we are ready for the original problem! Consider the sequence (c_n) where

$$c_n = b_n - a_n$$

since $b_n > a_n$, we must have $c_n > 0$, then from Claim 1 and Claim 2 we have

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n = b - a > 0$$

which implies b > a.

(ii) Prove that if $a_n \le c_n \le b_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$, then $\lim_{n \to \infty} c_n = L$

Proof. By definition of limit, for all $\epsilon>0$ there exists $N_1\in \mathbf{N}$ for all $n\geq N_1$, then $|a_n-L|<\epsilon$ and there exists $N_2\in mathbf{N}$ for all $n\geq N_2$ then $|b_n-L|<\epsilon$. Let $N=\max(N_1,N_2)$, then for all n>N, we have

$$|a_n - L| < \epsilon$$
 and $|b_n - L| < \epsilon$

Consider

$$\begin{aligned} a_n &\leq c_n \leq b_n \\ \Leftrightarrow & a_n - L \leq c_n - L \leq b_n - L \\ \Leftrightarrow & -\epsilon < a_n - L \leq c_n - L \leq b_n - L < \epsilon \\ \Leftrightarrow & -\epsilon < c_n - L < \epsilon \end{aligned}$$

$$\therefore \lim_{n \to \infty} c_n = L$$

Problem 2 Prove that

(i)
$$\lim_{n \to \infty} \frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \frac{3}{4}$$

(ii)
$$\lim_{n\to\infty} \frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}} = \frac{1}{2}$$

Solution

(i)
$$\lim_{n \to \infty} \frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \frac{3}{4}$$

Proof. Divide both numerator and denominator by n^3

$$\lim_{n \to \infty} \frac{3n^3 + 7n^2 + 1}{4n^3 - 8n + 63} = \lim_{n \to \infty} \frac{3 + \frac{7}{n} + \frac{1}{n^3}}{4 - \frac{8}{n^2} + \frac{63}{n^3}} = \frac{3}{4}$$

(ii)
$$\lim_{n \to \infty} \frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}} = \frac{1}{2}$$

Proof. We have,

$$\lim_{n \to \infty} \frac{2^n + (-1)^n}{2^{n+1} + (-1)^{n+1}} = \lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}} + \lim_{n \to \infty} \frac{(-1)^n}{2^{n+1} + (-1)^{n+1}}$$

$$= \lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}} + 0$$

$$= \lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}}$$

There are two cases that we need to consider: $(-1)^n$ is either -1 or 1,

• If n is even, then $(-1)^{n+1} = -1$,

$$\lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}} \quad = \quad \lim_{n \to \infty} \frac{2^n}{2^{n+1} - 1} \ge \lim_{n \to \infty} \frac{2^n}{2^{n+1}} = \frac{1}{2}$$

• If n is odd, then $(-1)^{n+1} = 1$,

$$\lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}} = \lim_{n \to \infty} \frac{2^n}{2^{n+1} + 1} \le \lim_{n \to \infty} \frac{2^n}{2^{n+1}} = \frac{1}{2}$$

Combine these two cases, we have $\frac{1}{2} \leq \lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}} \leq \frac{1}{2}$. By Squeeze's Theorem (Sandwich's Lemma), $\lim_{n \to \infty} \frac{2^n}{2^{n+1} + (-1)^{n+1}} = \frac{1}{2}$

Problem 3 Prove that if a > 0, then $\lim_{n \to \infty} \sqrt[n]{a} = 1$

Solution

Proof. If a = 1, there is nothing to prove!

If 0 < a < 1, the we can consider $a = \frac{1}{b}$ for some $b \neq 0$ then the limit becomes $\lim_{n \to \infty} \sqrt[n]{\frac{1}{b}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\frac{1}{b}}}$ which

deduce to case a > 1 because if 0 < a < 1 then $\frac{1}{a} > 1$. If a > 1 then $\sqrt[n]{a} > 1$. Let $\sqrt[n]{a} = (1+x)$ for some x > 0. Hence

$$(\sqrt[n]{a})^n = (1+x)^n \Leftrightarrow a = (1+x)^n$$

Look at the binomial expansion of $(1+x)^n$,

$$(1+x)^n = 1 + nx + \underbrace{\binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots \binom{n}{n}x^n}_{>0}$$

which tells us that $(1+x)^n \ge 1 + nx$ for $x \ge 0$. Thus

$$(1+x)^n = a > 1 + nx \Rightarrow \frac{a-1}{n} > x$$

Adding $1 < \sqrt[n]{a}$ to obtain:

$$1 < \sqrt[n]{a} = 1 + x < 1 + \frac{a-1}{n}$$

It's easy to see that

$$\lim_{n \to \infty} \left(1 + \frac{a - 1}{n} \right) = 1$$

Applying "Sandwich" lemma, we have:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

Problem 4 Prove that $\lim_{n\to\infty} \sqrt[n]{n}=1$. (Hint: put $\sqrt[n]{n}=1+a_n$, prove that $a_n>0$ for n>1, deduce that $n-1\geq \frac{1}{2}n(n-1)a_n^2$ for n>1 hence $0\leq a_n^2\leq \frac{2}{n}$)

Solution

Proof. Let $\sqrt[n]{n} = 1 + a_n \Rightarrow (\sqrt[n]{n})^n = (1 + a_n)^n \Rightarrow n = (1 + a_n)^n$. Using Binomial theorem, we have that:

$$n \ge \frac{n(n-1)}{2}a_n^2$$
 for $n > 1$

Hence,

$$a_n^2 \le \frac{2}{n-1}$$
 where $a_n^2 \ge 0$, so $0 \le a_n^2 \le \frac{2}{n-1} \Rightarrow 0 \le a_n \le \sqrt{\frac{2}{n-1}}$

Next we consider the limit,

$$\lim_{n\to\infty}\sqrt{\frac{2}{n-1}}=0$$

Apply Squeeze's Theorem (Sandwich Lemma) for a_n ,

$$0 \le a_n \le 0$$

, then we must have

$$\lim_{n \to \infty} a_n = 0$$

where $\sqrt[n]{n} = a_n + 1$ which implies $\lim_{n \to \infty} \sqrt[n]{n} = 1$

<u>Problem 5</u> Does the sequences $a_1, a_2, a_3 \dots$ converge or diverge? If it converges, what is the limit?

(i)
$$a_n = \frac{n}{n+1} - \frac{n+1}{n}$$

(ii)
$$a_n = \frac{2^n}{n!}$$

(iii) a_n the *n*th decimal digit of $\sqrt{2}$ (thus $a_1 = 4$, $a_2 = 1$, $a_3 = 4$, $a_4 = 2$... and so on).

Solution

(i) $a_n = \frac{n}{n+1} - \frac{n+1}{n}$ converges.

Proof.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{n}{n+1} - \frac{n+1}{n} \right)$$

$$= \lim_{n \to \infty} \frac{n^2 - (n+1)^2}{n(n+1)}$$

$$= \lim_{n \to \infty} \frac{(n-n-1)(n+n+1)}{n(n+1)}$$

$$= \lim_{n \to \infty} \frac{-(\frac{2}{n} + \frac{1}{n^2})}{1 + \frac{1}{n}} = \frac{0}{1} = 0$$

(ii)
$$a_n = \frac{2^n}{n!}$$
 converges.

Proof. Consider

$$\frac{2 \cdot 2 \cdot 2 \cdots 2}{1 \cdot 2 \cdot 3 \cdots n} \le \frac{2}{1} \cdot \frac{2}{n} \text{ since } \frac{2 \cdot 2 \cdots 2}{2 \cdot 3 \cdots (n-1)} < 1$$

In addition, we have that:

$$\frac{1}{n!} \le \frac{2^n}{n!}$$

where

$$\lim_{n \to \infty} \frac{1}{n!} = 0 = \lim_{n \to \infty} 2 \cdot \frac{2}{n}$$

which implies

$$0 \le \frac{2^n}{n!} \le 0$$

Hence, by Squeeze's Theorem (Sandwich's Lemma)

$$\lim_{n \to \infty} \frac{2^n}{n!} = 0$$

(iii) a_n the *n*th decimal digit of $\sqrt{2}$ (thus $a_1 = 4$, $a_2 = 1$, $a_3 = 4$, $a_4 = 2$... and so on).

Proof. Assume that we know $\sqrt{2}$ is irrational where $a_n \in D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, if a_n converge, then the number would be of the form:

$$d.d_1d_3d_4d_id_id_i\dots$$

Suppose that it converges, thus the limit exits:

$$\lim_{n\to\infty} a_n = d, \text{ for some } d \in D$$

By definition of limit, for all $\epsilon > 0$, there exits a $N \in \mathbb{N}$ such that for all n > N:

$$|a_n - d| < \epsilon$$

Pick $\epsilon=1 \to |a_n-d|<1$ where a_n,d are decimal digits which is in D. The only way for $|a_n-d|<1$ is when $a_n=d$ which is clearly a contradiction because this implies $\sqrt{2}$ is rational. Therefore, nth decimal digit of $\sqrt{2}$ does not converge.

<u>Problem 6</u> Prove or give a counterexample. Let a_1, a_2, \ldots be a sequence such that $\lim_{n \to \infty} (a_{n+1} - a_n) = 0$. Does a_n have to converge?

Solution

This is false. A counterexample could be:

$$a_n = \sqrt{n}$$

The limit of $a_{n+1} - a_n$ is:

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \left(\frac{(\sqrt{n+1})^2 - (\sqrt{n})^2}{\sqrt{n+1} + \sqrt{n}} \right)$$
$$= \lim_{n \to \infty} \left(\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \right)$$
$$= \lim_{n \to \infty} \left(\frac{1}{\sqrt{n+1} + \sqrt{n}} \right) = 0$$

but

$$\lim_{n \to \infty} \sqrt{n} = \infty$$

<u>Problem 7</u> Prove that the sequence $x_1, x_2, x_3 \dots$ of real numbers defined by $x_1 = 1$ and $x_{n+1} = x_n + \frac{1}{x_n^2}$ is unbounded.

Solution

Proof. Prove by contradiction:

Suppose that the limit of this sequence exists, then by definition of limit, for all $\epsilon > 0$, there exists a natural number N such that for all n > N then $|x_n - L| < \epsilon$. But there is no such ϵ because $x_{n+1} > x_n$. We will prove this by induction:

Base case,

$$x_2 = 1 + \frac{1}{1^2} = 1 + 1 = 2$$

Inductive hypothesis,

$$x_n > x_{n-1}$$

Consider,

$$x_{n+1} = x_n + \frac{1}{x_n^2}$$

where
$$\frac{1}{x_n^2} > 0$$
 Thus

$$x_{n+1} > x_n$$

Therefore the limit doesn't exists.

Another way to prove it is to consider the following fact: "If the limit exists, it must satisfy an algebraic expression". In other words, if the sequence converge we will have $x_n = x_{n-1}$,

$$x_n = x_n + \frac{1}{x_n^2}$$

Cancel x_n from both sides of the equation, we obtain:

$$0 = \frac{1}{x_n^2}$$

which is impossible, thus we have a contradiction.

Problem 8 Prove or give a counterexample

(i) If (a_n) is a non-decreasing sequence that is $a_1 \le a_2 \le a_3 \le \dots$ such that $\lim_{n \to \infty} (a_{n+1} - a_n) = 0$, then (a_n) is convergent.

(ii) If (a_n) is non-decreasing and bounded above, and $\lim_{n\to\infty}a_n=a$ then $a_n\leq a$

Solution

(i) This is false. A counterexample would be the same as problem 6.

$$a_n = \sqrt{n}$$

because a non-decreasing sequence is also an increasing sequence. However if we want to be more precise about the equal sign, we could choose

$$a_n = \sqrt{\left\lfloor \frac{n}{2} \right\rfloor}$$

Apparently,

$$\lim_{n \to \infty} a_n = \infty$$

What we need to show is that

$$\lim_{n \to \infty} a_{n+1} - a_n = 0$$

There are two cases that we need to consider:

• $n \pmod{2} \equiv 0 \rightarrow n = 2k$ for some positive integers k. We have,

$$a_n = \sqrt{\left\lfloor \frac{2k}{2} \right\rfloor} = \sqrt{2k/2} = \sqrt{k}$$

$$a_{n+1} = \sqrt{\left\lfloor \frac{2k+1}{2} \right\rfloor} = \sqrt{k}$$

This case is trivial since

$$\lim_{n \to \infty} (a_{n+1} - a_n) \lim_{n \to \infty} (\sqrt{k} - \sqrt{k}) = 0$$

• $n \pmod{2} \equiv 1 \rightarrow n = 2k + 1$ for some positive integers k. We have,

$$a_n = \sqrt{\left\lfloor \frac{2k+1}{2} \right\rfloor} = \sqrt{k}$$

$$a_n = \sqrt{\left\lfloor \frac{2k+1+1}{2} \right\rfloor} = \sqrt{k+1}$$

Note that as $n \to \infty$, so does $k \to infty$, so we can replace the n in the limit as k.

$$\lim_{n \to \infty} (a_{n+1} - a_n) = \lim_{k \to \infty} (\sqrt{k+1} - \sqrt{k})$$

$$= \lim_{k \to \infty} \left(\frac{(\sqrt{k+1})^2 - (\sqrt{k})^2}{\sqrt{k+1} + \sqrt{k}} \right)$$

$$= \lim_{k \to \infty} \left(\frac{k+1-k}{\sqrt{k+1} + \sqrt{k}} \right)$$

$$= \lim_{k \to \infty} \left(\frac{1}{\sqrt{k+1} + \sqrt{k}} \right)$$

$$= \frac{1}{\infty} = 0$$

(ii) If (a_n) is non-decreasing and bounded above, and $\lim_{n\to\infty} a_n = a$ then $a_n \leq a$

Proof. Since (a_n) is bounded above, there exists a least upper bound for (a_n) . Let $\sup((a_n)) = M$, we will show that M is actually a. By definition of the least upper bound, we know that $a_n \leq M$ for all $n \in \mathbb{N}$. Let ϵ be arbitrary number in \mathbb{R} such that $\epsilon > 0$, then we can choose a N such that

$$M - \epsilon \le a_N \le M$$

In addition, (a_n) is non-decreasing sequence $a_N \leq a_{N+1} \leq a_{N+2} \leq \ldots$ which implies

$$M - \epsilon < a_n \le M, \ \forall n > N \tag{1}$$

As we can see, the statement above is just a definition of limit in disguising form. In fact, we can rearrange (1) as:

$$|a_n - M| < \epsilon$$

which implies M is the limit of (a_n) . Hence,

$$\sup((a_n)) = \lim_{n \to \infty} a_n = a$$

Therefore $a_n \leq a, \ \forall n$

Problem 9

- (i) Give an example of a sequence of real numbers with subsequence converging to every integer.
- (ii) Give an example of a sequence of real numbers with subsequence converging to every real number.

Solution

(i) Sequence:

$$-1, 0, 1, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, \dots$$

(ii) Sequence:

$$-1.x0.x, 1.x, -2.x, -1.x, 0.x, 1.x, 2.x...$$

where x is a string of digit set $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with length |x| = w, then for $0 \le n, w - n < w$, we define x as following:

$$\underbrace{000}_{m0's} \underbrace{1234}_{\text{m0 stive integers that is less than } 10^{w-n}}$$

Problem 10 Prove that if the subsequence (a_{2n}) and (a_{2n+1}) of a sequence (a_n) of real numbers both converge to the same limit L then (a_n) converges to L.

Solution

Proof. Consider an $\epsilon > 0$ for both subsequences, we have

- If (a_{2n}) converges to L then there exists a natural number N_0 such that for all $n > N_0$, $|a_n L| < \epsilon$.
- If (a_{2n+1}) converges to L then there exists a natural number N_1 such that for all $n > N_1$, $|a_n L| < \epsilon$.

Let $N = \max(N_0, N_1)$ then for all n > N, $|a_n < L|$ for both subsequences. Therefore both subsequences converge to the same limit L.

Problem 11 Let (a_n) be a sequence of real numbers such that $0 < a_1 < 1$, and $a_{n+1} = \frac{2}{1+a_n}$ for all n > 1

- (i) Prove that the subsequence (a_{2n}) and (a_{2n+1}) are both monotonic, one is decreasing and the other is increasing.
- (ii) Prove that (a_n) converges and find its limit.

Solution

(i) To make sure that we understand the problem thoroughly, we start with a C++ program to demonstrate the sequence,

```
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

double f(double x) {
    return (2.0/(x + 1));
```

```
}
void display_seq(const vector<double>& seq) {
        for_each(seq.begin(), seq.end(), [&](double e) { cout << e << ","; });
        cout << '\n';</pre>
}
int main() {
        double init = 1.0/2.0;
        vector<double> evens;
        vector<double> odds;
        for (int i = 1; i \le 15; ++i) {
                if (i % 2 == 1) {
                         odds.push_back(init);
                } else {
                         evens.push_back(init);
                init = f(init);
        }
        display_seq(odds);
        display_seq(evens);
        return 0;
}
```

The output was:

As we can from the output, the odd sequence is going from $0.5 \to 1.0$ and the even sequence is going from $1.3 \to 1.0$ which is quite interesting where $a_1 = \frac{1}{2}$

Proof. Consider

(ii) Prove that (a_n) converges and find its limit.