# Regularization/Shrinkage

Schwartz

November 8, 2017

#### **Functions**



0. You want to make a decision based on an informed guess

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - ► Classification: predict a categorical class

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - ► Classification: predict a categorical class
- 1. Build a classification or regression model

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - Classification: predict a categorical class
- 1. Build a classification or regression model
  - a. Identify and collect relevant features and associated outcomes
  - b. Fit model ←⇒ capture features and outcomes associations

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - Classification: predict a categorical class
- 1. Build a classification or regression model
  - a. Identify and collect relevant features and associated outcomes
  - b. Fit model ←⇒ capture features and outcomes associations
- 2. Assess performance

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - Classification: predict a categorical class
- 1. Build a classification or regression model
  - a. Identify and collect relevant features and associated outcomes
  - b. Fit model ←⇒ capture features and outcomes associations
- 2. Assess performance
  - Iterate model/feature specification phase if insufficient
  - Deploy if sufficient

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - Classification: predict a categorical class
- 1. Build a classification or regression model
  - a. Identify and collect relevant features and associated outcomes
  - b. Fit model ←⇒ capture features and outcomes associations
- 2. Assess performance
  - Iterate model/feature specification phase if insufficient
  - Deploy if sufficient

So this works if features are available *before* prediction is needed...

- 0. You want to make a decision based on an informed guess
  - ▶ Regression: predict a real-valued outcome
  - ► Classification: predict a categorical class
- 1. Build a classification or regression model
  - a. Identify and collect relevant features and associated outcomes
  - b. Fit model ←⇒ capture features and outcomes associations
- 2. Assess performance
  - Iterate model/feature specification phase if insufficient
  - Deploy if sufficient

So this works if features are available before prediction is needed...

Have X to guess  $\hat{Y}$  to help decision making



# Model Complexity

$$1. \hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1$$

2. 
$$\hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1 + x^2\hat{\beta}_2$$

:

3. 
$$\hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1 + x^2\hat{\beta}_2 + x^3\hat{\beta}_3 + x^4\hat{\beta}_4 + x^5\hat{\beta}_5 + x^6\hat{\beta}_6 + x^7\hat{\beta}_7 + x^8\hat{\beta}_8$$



# Model Complexity

$$1. \hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1$$

2. 
$$\hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1 + x^2\hat{\beta}_2$$

:

3. 
$$\hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1 + x^2\hat{\beta}_2 + x^3\hat{\beta}_3 + x^4\hat{\beta}_4 + x^5\hat{\beta}_5 + x^6\hat{\beta}_6 + x^7\hat{\beta}_7 + x^8\hat{\beta}_8$$



Model fit to the data always improves until perfect data fit

# Model Complexity

$$1. \hat{Y} = \hat{\beta}_0 + x \hat{\beta}_1$$

2. 
$$\hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1 + x^2\hat{\beta}_2$$

:

3. 
$$\hat{Y} = \hat{\beta}_0 + x\hat{\beta}_1 + x^2\hat{\beta}_2 + x^3\hat{\beta}_3 + x^4\hat{\beta}_4 + x^5\hat{\beta}_5 + x^6\hat{\beta}_6 + x^7\hat{\beta}_7 + x^8\hat{\beta}_8$$



Model fit to the data always improves until *perfect* data fit  $R^2$  can only get better – never worse – with more features

#### Variance and Bias

<u>Variance</u>: (1) the volatility of a model prediction from data set to data set; (2) the amount of flexibility/ susceptibility the model has to being influenced by idiosyncratic outliers

<u>Bias</u>: the rigidity/inability/ limitations of the model to flexibly capture complex but true data associations



Bias and Variance characterize models robustness - a neutral word

#### Variance and Bias and Tradeoff

In Machine Learning, bias and variance refer to performance accuracy characteristics over hypothetical random data sets



#### Variance and Bias and Tradeoff

▶ In Machine Learning, bias and variance refer to performance accuracy characteristics over hypothetical random data sets Model Complexity: too simple=bias & too flexible=variance



#### Variance and Bias and Tradeoff

▶ In Machine Learning, bias and variance refer to performance accuracy characteristics over hypothetical random data sets Model Complexity: too simple=bias & too flexible=variance The Machine Learning objective is finding the right balance



#### Partition of Variation

Let  $y_i = \theta + \epsilon_i$  with  $\theta = f(x_0)$  and  $\epsilon \sim N(0, \sigma_{\epsilon}^2)$ For estimator  $\hat{\theta} = \hat{f}(x_0)$ ,

$$\begin{split} MSE &= \frac{1}{n} \sum_{i} \left( y_{i} - \hat{\theta} \right)^{2} \approx \operatorname{E} \left[ \left( y_{i} - \hat{\theta} \right)^{2} \right] \\ &= \operatorname{E} \left[ \left( y_{i} - \theta + \theta - E[\hat{\theta}] + E[\hat{\theta}] - \hat{\theta} \right)^{2} \right] \\ &= \operatorname{E} \left[ \left( \left( y_{i} - \theta \right) + \left( \theta - E[\hat{\theta}] \right) + \left( E[\hat{\theta}] - \hat{\theta} \right) \right)^{2} \right] \\ &\stackrel{!}{=} \operatorname{E} \left[ \left( y_{i} - \theta \right)^{2} \right] + \operatorname{E} \left[ \left( \theta - E[\hat{\theta}] \right)^{2} \right] + \operatorname{E} \left[ \left( E[\hat{\theta}] - \hat{\theta} \right)^{2} \right] \\ &= \sigma_{\epsilon}^{2} + \left( \operatorname{E}[\hat{\theta}] - \theta \right)^{2} + \sigma_{\hat{\theta}}^{2} \\ &= \operatorname{Residual Variance} + \operatorname{Model Bias}^{2} + \operatorname{Model Variance} \end{split}$$

- ▶ The question isn't how well does the model fit data you have
  - ▶ It can fit data you have exactly as closely as you want



(and once you've got the model you shake off the data and just use the model)

- ▶ The question isn't how well does the model fit data you have
  - ▶ It can fit data you have exactly as closely as you want



(and once you've got the model you shake off the data and just use the model)

► The question is how well does your model *generalize*? i.e., how well will it perform "in the wild"

- ▶ The question isn't how well does the model fit data you have
  - ▶ It can fit data you have exactly as closely as you want



(and once you've got the model you shake off the data and just use the model)

- ► The question is how well does your model *generalize*? i.e., how well will it perform "in the wild"
- ► How will you be able to know how well you'll to do??

- ▶ The question isn't how well does the model fit data you have
  - ▶ It can fit data you have exactly as closely as you want



(and once you've got the model you shake off the data and just use the model)

- ► The question is how well does your model *generalize*? i.e., how well will it perform "in the wild"
- ► How will you be able to know how well you'll to do??

# Train/Test split







Prediction Error



► How do we choose?



Sampling Variability?

▶ Why do we need V?

Low



► How do we choose? Widening gap means less generalizability



Model Complexity

Sampling Variability?

▶ Why do we need V?

High

Prediction Error





- How do we choose?
   Widening gap means less generalizability
   Minimum test error means best prediction
- Sampling Variability?

► Why do we need V?





- How do we choose?
   Widening gap means less generalizability
   Minimum test error means best prediction
- Sampling Variability? Occam's razor + this is one train/test split...
- ▶ Why do we need V?





- How do we choose?
   Widening gap means less generalizability
   Minimum test error means best prediction
  - ► Sampling Variability?

    Occam's razor + this
    is one train/test split...

    <Hold this thought>
  - ▶ Why do we need V?





- How do we choose?
   Widening gap means less generalizability
   Minimum test error means best prediction
- Sampling Variability? Occam's razor + this is one train/test split... <Hold this thought>
- ► Why do we need V? Complexity choice is "fit" from test data





- How do we choose?
   Widening gap means less generalizability
   Minimum test error means best prediction
- Sampling Variability? Occam's razor + this is one train/test split... <Hold this thought>
- ► Why do we need V?

  Complexity choice is

  "fit" from test data

  The validation set V

  actually "tests wild"

#### Quiz

What is the "prediction error" on the previous slide? (let's have two regression and two classification examples)

#### Quiz

What is the "prediction error" on the previous slide? (let's have two regression and two classification examples)

$$RMSE = \sqrt{\sum_{i=1}^{n} \left(Y_{i} - \hat{Y}_{i}\right)^{2}}$$

$$R^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y}_{i})(\hat{Y}_{i} - \hat{\bar{Y}}_{i})^{2}}{\hat{\sigma}_{Y}\hat{\sigma}_{\hat{Y}}}$$

$$Accuracy = \frac{\sum_{i=1}^{n} 1_{[Y_{i} = \hat{Y}_{i}]}}{n}$$

$$Sensitivity = \frac{\sum_{i=1}^{n} 1_{[Y_{i} = \hat{Y}_{i}]} 1_{[Y_{i} = 1]}}{\sum_{i=1}^{n} 1_{[Y_{i} = 1]}}$$



Benefits?



#### Benefits?

Uses all the data as "validation" set



#### Benefits?

- Uses all the data as "validation" set
- Shows variation in sample accuracy scores





#### Benefits?

- Uses all the data as "validation" set
- Shows variation in sample accuracy scores

#### Challenges?

► I just fit K models... which do I use?





#### Benefits?

- Uses all the data as "validation" set
- Shows variation in sample accuracy scores

- ► I just fit K models... which do I use?
- Refit with all data at a generalizable complexity level



1. How do you make this simpler/more complex?

$$\beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + x_4\beta_4 + x_5\beta_5 + x_6\beta_6 + x_7\beta_7 + \cdots$$

1. How do you make this simpler/more complex?

$$\beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + x_4\beta_4 + x_5\beta_5 + x_6\beta_6 + x_7\beta_7 + \cdots$$

2. What does "dampening"/"suppressing" the  $\beta_j$  towards 0 do?

1. How do you make this simpler/more complex?

$$\beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + x_4\beta_4 + x_5\beta_5 + x_6\beta_6 + x_7\beta_7 + \cdots$$

- 2. What does "dampening"/"suppressing" the  $\beta_j$  towards 0 do?
- 3. Why might we like this?

1. How do you make this simpler/more complex?

$$\beta_0 + x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + x_4\beta_4 + x_5\beta_5 + x_6\beta_6 + x_7\beta_7 + \cdots$$

- 2. What does "dampening"/"suppressing" the  $\beta_i$  towards 0 do?
- 3. Why might we like this?
- 4. Suppose every  $\beta_j$  was 1... what do you think about the following *shrinkage* profiles?







# Bias/Variance Tradeoff