Case Study-Designing an EV Database on MySQL

Prepared by:

Nabamita De

Instructor: Dr. Junaid Qazi

Southern Alberta Institute of Technology

June 03, 2025

Table of Contents

Introduction:	3
Organization Selection:	3
Purpose:	3
Goals:	3
Entity Identification	3
Attribute Specification	4
Table: dim_vehicle	4
Table: dim_dealership	4
Table: dim_time	4
Table: dim_employee	5
Table: fact_sales	5
Primary and Foreign Keys	6
Establishing Entity Relationships	6
Data Integrity Constraints	6
Entity-Relationship Diagram	7
SQL Statements	7
Sample Queries and Views	7
Analytical views	8
Monthly EV Sales	8
Top Performing Dealerships	8
Regional vehicle trends	9
Revenue by vehicle	9
Final Notes	0

Introduction:

The project outlines the design and implementation of a database system for managing EV sales, and dealership operations for a hypothetical organization.

Organization Selection:

Organization: Tee – Electrified Vehicles Division (Hypothetical)

Domain: Automotive sales and infrastructure for electric vehicles (including BEVs, PHEVs, and Hybrids).

Purpose and Goals:

Purpose: To create a database system that tracks sales, inventory, employees, and dealership data for Tee's EV business.

Goals:

- Sales Analysis: Capture and analyze sales transactions and trends over any time-period.
- Dealership Performance: Monitor and evaluate dealership performance and regional trends.
- Employee & Marketing Insights: Track sales representatives and buying trend to support targeted.

Entity Identification

In the proposed star schema, we use one fact table and four dimension tables:

Dimension Tables:

```
dim_vehicle - Electric vehicle details.
dim_dealership - Dealership data.
dim_time - Date, month, quarter, year, holiday status.
dim_employee - Sales representative information.
```

Fact Table:

fact_sales - Central sales table referencing all dimensions.

Attribute Specification

Table: dim_vehicle

Field	Туре	Constraints
vehicle_id	INT	PRIMARY KEY
model_name	VARCHAR (50)	NOT NULL
vehicle_type	ENUM ('BEV', 'PHEV', 'Hybrid')	NOT NULL
battery_capacity	INT	NOT NULL, CHECK
		(battery_capacity > 0)
range_miles	INT	NOT NULL
base_price	DECIMAL(10,2)	NOT NULL
launch_year	YEAR	NOT NULL
drive_type	VARCHAR (20)	NOT NULL
charge_time	DECIMAL (4,2)	(Hours for a full charge; NULL
		allowed if not applicable)
colour_variety	VARCHAR (100)	Each Available colour as a separate
		record
VIN_number	VARCHAR(17)	NOT NULL
Engine_number	VARCHAR(17)	NOT NULL

Table: dim_dealership

Field	Туре	Constraints
dealership_id	INT	PRIMARY KEY
dealership_name	VARCHAR (100)	NOT NULL
contact_email	VARCHAR (100)	UNIQUE
Phone	INT	NOT NULL
city	VARCHAR (50)	NOT NULL
province	VARCHAR (2)	NOT NULL
region	VARCHAR (20)	NOT NULL
has_fast_charging	BIT	DEFAULT FALSE
total_ev_inventory	INT	NOT NULL
display_capacity	INT	NOT NULL

Table: dim_time

Field	Туре	Constraints
time_id	INT	PRIMARY KEY
sale_date	DATE	NOT NULL
month	INT	NOT NULL, CHECK (month BETWEEN 1 AND 12)
quarter	VARCHAR (5)	NOT NULL
year	INT	NOT NULL
is_holiday	BIT	DEFAULT FALSE

Table: dim_employee

Field	Туре	Constraints	
employee_id	INT	PRIMARY KEY, AUTO_INCREMENT	
first_name	VARCHAR (50)	NOT NULL	
last_name	VARCHAR (50)	NOT NULL	
position	VARCHAR (50)	DEFAULT 'Sales Associate'	
dealership id INT		FOREIGN KEY REFERENCES	
dealership_id	IIVI	dim_dealership(dealership_id)	

Table: fact_sales

Field	Туре	Constraints
sale_id	INT	PRIMARY KEY, AUTO_INCREMENT
customer_id	INT	FOREIGN KEY REFERENCES
		dim_customer(customer_id)
vehicle_id	INT	FOREIGN KEY REFERENCES dim_vehicle(vehicle_id)
dealership_id	INT	FOREIGN KEY REFERENCES
		dim_dealership(dealership_id)
Time_period_id	INT	FOREIGN KEY REFERENCES dim_time(time_id)
employee_id	INT	(OPTIONAL—if tracking which sales rep made the sale)
		FOREIGN KEY REFERENCES
		dim_employee(employee_id)
sale_price	DECIMAL (10,2)	NOT NULL, CHECK (sale_price > 0)
tax_amount	DECIMAL (10,2)	NOT NULL
financing_used	BIT	(Indicates whether the customer used Tee financing)

Primary and Foreign Keys

- Each dimension has a unique PRIMARY KEY.
- fact_sales table includes FOREIGN KEY constraints linking to all dimension tables.
- These keys ensure referential integrity and accurate join operations

Primary Keys in Each Table

Table Name	Primary Key	
dim_vehicle	vehicle_id	
dim_dealership	dealership_id	
dim_time	time_id	
dim_employee	employee_id	
fact_sales	sale_id	

Foreign Keys in fact_sales Table

Foreign Key in	Reference Table	References
fact_sales		Column
vehicle_id	dim_vehicle	vehicle_id
dealership_id	dim_dealership	dealership_id
time_id	dim_time	time_id
employee_id	dim_employee	employee_id
Foreign Key in	Reference Table	References

Establishing Entity Relationships

In our star schema design, the fact_sales table sits at the center and links directly to all dimension tables. The relationships are one-to-many from each dimension to the fact table:

- dim_vehicle → fact_sales: (One to many) Each vehicle may be associated with many sales.
- dim_dealership → fact_sales: (One to many) A dealership appears in multiple sales.
- dim_time_period → fact_sales: (One to many) Every sale is associated with a specific sale date (and related time attributes).
- dim_employee → fact_sales: (One to many) Each sales representative may be involved in numerous sales.

Data Integrity Constraints

- Unique and non-null constraints on critical fields.
- ENUM and CHECK constraints on type, range, and price.
- Foreign key references to maintain relational consistency.

Entity-Relationship Diagram

SQL Statements

MySQL syntax is used to define all five tables with proper constraints and key definitions. (Refer to the full SQL code section.)

Sample Queries and Views

SELECT with Filter

```
SELECT *
FROM dim_dealership d
WHERE d.region= 'West';
```

SELECT with 1 JOIN and GROUP BY

```
t.year,
    t.month,
    COUNT(s.sale_id) AS total_sales,
    SUM(s.sale_price) AS total_revenue
FROM fact_sales s
JOIN dim_time t ON s.time_id = t.time_id
GROUP BY t.year, t.month;
```

SELECT with 2 JOINS and GROUP BY

```
170 CREATE VIEW vw_top_vehicles_region AS

171 SELECT

172 d.region,

173 v.model_name,

174 COUNT(s.sale_id) AS sales_count

175 FROM fact_sales s

176 JOIN dim_vehicle v ON s.vehicle_id = v.vehicle_id

177 JOIN dim_dealership d ON s.dealership_id = d.dealership_id

178 GROUP BY d.region, v.model_name;

179
```

Analytical views

Monthly EV Sales

Top Performing Dealerships

• Regional vehicle trends

```
--3. Top Vehicles by Region

CREATE VIEW vw_top_vehicles_region AS

SELECT

d.region,
v.model_name,
COUNT(s.sale_id) AS sales_count

FROM fact_sales s

JOIN dim_vehicle v ON s.vehicle_id = v.vehicle_id

JOIN dim_dealership d ON s.dealership_id = d.dealership_id

GROUP BY d.region, v.model_name;
```

• Revenue by vehicle

```
-- 4. Top Vehicles by Revenue

CREATE VIEW vw_top_vehicles_revenue AS

SELECT

v.model_name,
SUM(s.sale_price) AS total_revenue

FROM fact_sales s

JOIN dim_vehicle v ON s.vehicle_id = v.vehicle_id

GROUP BY v.model_name;
```


Final Notes

This design meets all database design principles, supports analytical processing, and provides scalable data management for Tee's EV division. It ensures:

- Defined purpose and business use-case alignment
- Entity and attributes clarity
- Referential integrity and normalization
- Readiness for performance monitoring and decision-making