CS 4973/ CS 6983

Trustworthy Generative Al Fall 2024

Alina Oprea
Professor
Khoury College of Computer Science

September 12 2024

Outline: Review of ML

- Classification and Regression
- Gradient descent for training models
- Deep learning
 - Neural networks architectures
 - Feed-forward neural networks
 - Convolutional networks
- Large Language Models (LLMs)
 - Transformers and self-attention
 - GPT-2 architecture

Supervised Learning: Classification

Training

Testing

Supervised Learning: Regression

Training

Testing

Supervised learning

Training data

- $-x_i = [x_{i,1}, \dots x_{i,d}]$: vector of features
- $-y_i$: labels

Models (hypothesis)

Example: Linear model

Loss function

Error function to minimize during training

Training algorithm

- Training: Learn model parameters heta to minimize objective
- Output: "optimal" model according to loss function

Testing

- Apply learned model to new data x' and generate prediction h(x')

Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane

$$h_{\theta}(x) = f(\theta^T x)$$

For example f = sign:

- If $\theta^T x > 0$ classify "Class 1"
- If $\theta^T x < 0$ classify "Class 0"

Linear vs Non-Linear Classifiers

Logistic Regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

- Assume a threshold and...
 - Predict Y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict Y = 0 if $h_{\theta}(x) < 0.5$

Logistic Regression is a linear classifier!

Cross-Entropy Loss

- Standard loss function for binary classification
- Derived from Maximum Likelihood Estimation (MLE)

$$\min_{\theta} J(\theta)$$

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Softmax classifier

- Predict the class with highest probability
- Generalization of sigmoid/logistic regression to multi-class

How to Train ML Models?

Goal: find $\boldsymbol{\theta}$ to min $J(\boldsymbol{\theta})$

Gradient Descent

Goal: find $\boldsymbol{\theta}$ to min $J(\boldsymbol{\theta})$

- Choose initial value for heta
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

Gradient Descent

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

- Gradient = slope of line tangent to curve
- Function decreases faster in negative direction of gradient

Vector update rule: $\theta \leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta}$

Deep Learning: End-to-End Representation Learning

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features Mid Level Features High Level Features Lines & Edges High Level Features Facial Structure

Deep Learning

Training

Neural Network Architectures

Feed-Forward Networks

 Neurons from each layer connect to neurons from next layer

Convolutional Networks

- Includes convolution layer for feature reduction
- Learns hierarchical representations

Deep Convolutional Network (DCN)

Recurrent Networks

- Keep hidden state
- Have cycles in computational graph

Recurrent Neural Network (RNN)

The Perceptron

Feed-Forward Neural Network

Feed-Forward Neural Network

Layer Operations

$$z_1^{[1]} = W_1^{[1]} \ x + b_1^{[1]} \ \text{and} \ a_1^{[1]} = g(z_1^{[1]})$$

$$\vdots \ \vdots \ \vdots \ \vdots \ z_4^{[1]} = W_4^{[1]} \ x + b_4^{[1]} \ \text{and} \ a_4^{[1]} = g(z_4^{[1]})$$

$$\underbrace{\begin{bmatrix} z_1^{[1]} \\ \vdots \\ z_4^{[1]} \end{bmatrix}}_{z^{[1]} \in \mathbb{R}^{4 \times 1}} = \underbrace{\begin{bmatrix} -W_1^{[1]} \\ -W_2^{[1]} \\ \vdots \\ -W_4^{[1]} \end{bmatrix}}_{w^{[1]} \in \mathbb{R}^{4 \times 3}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x \in \mathbb{R}^{3 \times 1}} + \underbrace{\begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_4^{[1]} \end{bmatrix}}_{b^{[1]} \in \mathbb{R}^{4 \times 1}}$$

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g(z^{[1]})$$

Linear

Non-Linear

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Binary Classification

tanh

tanh(x)

Regression

ReLU

 $\max(0, x)$

Intermediary layers

Neural Network Classification

Binary classification

$$y = 0 \text{ or } 1$$

1 output unit $(s_{L-1} = 1)$

Sigmoid

Given:

$$\begin{aligned} &\{(\mathbf{x}_1,y_1),\ (\mathbf{x}_2,y_2),\ ...,\ (\mathbf{x}_n,y_n)\}\\ &\mathbf{s} \in \mathbb{N}^{+L} \text{ contains \# nodes at each layer}\\ &-\ s_o = d \text{ (\# features)} \end{aligned}$$

Multi-class classification (K classes)

$$\mathbf{y} \in \mathbb{R}^K \quad \text{e.g.} \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ \text{pedestrian car motorcycle truck} \\ \end{bmatrix}$$

$$K$$
 output units $(s_{L-1} = K)$

Softmax

Convolutional Nets

- Particular type of Feed-Forward Neural Nets
 - Invented by [LeCun 89]
- Applicable to data with natural grid topology
 - Time series
 - Images
- Use convolutions on at least one layer
 - Convolution is a linear operation that uses local information
 - Also use pooling operation
 - Used for dimensionality reduction and learning hierarchical feature representations for computer vision

Image Representation

- Image is 3D "tensor": height, width, color channel (RGB)
- Black-and-white images are 2D matrices: height, width
 - Each value is pixel intensity

The Convolution Operation

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs...

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1,	1,0	1,	0	0						<i>0</i> 4 ==	
0,0	1,	1,0	1	0		1	0	1	4		
0,1	0,	1,	1	1	\otimes	0	1	0			
0	0	1	1	0		1	0	1			
0	1	1	0	0			filter		feature map		

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1	1	1	0	0								
0,,1	1,0	1,1	1	0		1	0	1		4	3	4
0,0	0,,1	1,0	1	1	\otimes	0	1	0		2		
0,,1	0,0	1,	1	0		1	0	1				
0	1	1	0	0	filter					feature map		

CNNs for Classification

- Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data. Learn weights of filters in convolutional layers.

CNNs for Classification: Feature Learning

- I. Learn features in input image through convolution
- 2. Introduce non-linearity through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

LeNet 5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

History

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

How to train Neural Networks?

- Backpropagation algorithm
- David Rumelhart, Geoffrey Hinton, Ronald Williams. "Learning representations by back-propagating errors". Nature. 323 (6088): 533–536. 1986
- Applicable to both FFNN and CNN
- Extension of Gradient Descent to multi-layer neural networks

Training Neural Networks

- Training data $x_1, y_1, \dots x_N, y_N$
- One training example $x_i = (x_{i1}, ... x_{id})$, label y_i
- One forward pass through the network
 - Compute prediction $\hat{y}_i = h(x_i)$
- Loss function for one example

$$-L(\hat{y}, y) = -[(1 - y)\log(1 - \hat{y}) + y\log\hat{y}]$$

Cross-entropy loss

Loss function for training data

$$-J(W,b) = \frac{1}{N} \sum_{i} L(\widehat{y}_{i}, y_{i})$$

GD for Neural Networks

Initialization

- For all layers ℓ
 - Initialize $W^{[\ell]}$, $b^{[\ell]}$

Backpropagation

- Fix learning rate α
- For all layers ℓ (starting backwards)

•
$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

GD for Neural Networks

Initialization

- For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random

Backpropagation

- Fix learning rate α
- Repeat
 - For all layers ℓ (starting backwards)

•
$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial W^{[\ell]}}$$
•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

•
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{N} \frac{\partial L(\hat{y}_i, y_i)}{\partial b^{[\ell]}}$$

This is expensive!

Mini-batch Stochastic Gradient Descent

- Initialization
 - For all layers ℓ
 - Set $W^{[\ell]}$, $b^{[\ell]}$ at random
- Backpropagation
 - Fix learning rate α
 - Repeat
 - For all layers ℓ (starting backwards)
 - For all batches b of size B with training examples x_{ib} , y_{ib}

$$W^{[\ell]} = W^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial W^{[\ell]}}$$
$$b^{[\ell]} = b^{[\ell]} - \alpha \sum_{i=1}^{B} \frac{\partial L(\hat{y}_{ib}, y_{ib})}{\partial b^{[\ell]}}$$

New Trend in AI: Foundation Models

On the Opportunities and Risks of Foundation Models

Training LLMs

Context: Sequence of words

Training LLMs

Context: Sequence of words

Training LLMs

Context: Fixed-size Sequence of words / tokens

Tokenization

Autoregressive Language Models

Autoregressive Language Models

Autoregressive Language Models

- Usually, when training a model, we minimize loss function
- Loss function is perplexity: exp of negative log likelihood of tokens given context
- Train with backpropagation

Generating Text

In training, model learns probability distribution of next token given context

Sampling strategies for next token generation:

- Greedy: Get the most probable token (has low diversity)
- Top-k: Sample from top-k with highest likelihood by re-normalizing the probabilities
- Beam search: Keep a number of most likely sequences and then select highest probability

Greedy search

Beam search

Top-k Sampling

LLM Architectures

LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a fancier feedforward network, but based on attention

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †
University of Toronto

aidan@cs.toronto.edu

Google Brain

lukaszkaiser@google.com

Łukasz Kaiser*

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformer Models

- Token embedding: Represent tokens as numerical vectors
- **Self-Attention**: Automatically learn which tokens in context are most relevant
- Training: Standard backpropagation to learn probability of next token

Encoding Language

Neural networks cannot interpret words

Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size.

2. Indexing: Word to index

3. Embedding: Index to fixed-sized vector

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its meaning changes in context.

The chicken didn't cross the street because it was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

- Intuition: a representation of meaning of a word should be different in different contexts!
- Contextual Embedding: each word has a different vector that expresses different meanings depending on the surrounding words
- How to compute contextual embeddings?
 - Attention

Intuition of Attention

Build up the contextual embedding from a word by selectively integrating information from all the neighboring words

We say that a word "attends to" some neighboring words more than others

Attention

Attention Definition

Given a sequence of token embeddings:

$$\mathbf{X}_1$$
 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_5 \mathbf{X}_1

Produce: \mathbf{a}_i = a weighted sum of \mathbf{x}_1 through \mathbf{x}_5 Weighted by their similarity to \mathbf{x}_i

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$
 $\alpha_{ij} = softmax(score(\mathbf{x}_i, \mathbf{x}_j)) \ \forall j \leq i$
 $\mathbf{a}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{x}_j$

Attention

Goal: identify and attend to most important features in input.

- I. Encode **position** information
- 2. Extract query, key, value for search
- Compute attention weighting
- 4. Extract features with high attention

Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

- I. Encode **position** information
- 2. Extract query, key, value for search
- Compute attention weighting
- Extract features with high attention

Key

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting

Extract features with high attention

Attention weighting: where to attend to! How similar is the key to the query?

$$softmax\left(\frac{Q \cdot K^T}{scaling}\right)$$

Attention weighting

Goal: identify and attend to most important features in input.

- I. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Last step: self-attend to extract features

$$softmax\left(\frac{Q \cdot K^{T}}{scaling}\right) \cdot V = A(Q, K, V)$$

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

These operations form a self-attention head that can plug into a larger network. Each head attends to a different part of input.

$$softmax\left(\frac{Q\cdot K^T}{scaling}\right)\cdot V$$

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Dan Jurafsky
 - Alexander and Ava Amini
- Thanks!