INDLEJREDE SYSTEMER

Drivhus 3 – Kondensator og Køling

Dagsorden

- Kondensatoren
 - Hvor og hvorfor bruger man en kondensator
 - Hvordan virker en kondensator
 - Capacitive Soil Moisture Sensor
- Køling af elektronik
 - Hvorfor kan det være nødvendigt
 - Beregning på en AMS1117 der findes på ESP32

Kondensatoren: hvor og hvorfor?

- i AC/DC strømforsyninger
 - for at udglatte den ensrettede AC til en "flad DC"
 - kaldes en udglatninskondensator
 - har often en stor værdi, tommelfingerregel 1 mF/A

- til at fjerne uønsket AC støj på eller i et kredsløb
 - kaldes en "afkoblingskondensator"
 - ofte anvendes flere og med forskellige værdier og materialetyper
- som energiresevoir
 - fx når der skal laves puls
 - spidsstrømmen er hurtigere end en spændingsregulator kan følge med til
- til at blokere for DC så kun AC kommer igennem
 - fx i et oscilloskop, AC-forstærker
 - kaldes en overførings- eller blokeringskondensator
- i radio kredsløb, sammen med en spole, til at afstemme frekvensen/virkningen

Tuning Circuit (Parallel Type)

Kondensatoren: hvordan virker den?

- Hvordan virker kondensatoren?
 - Når der sættes en spænding på den så opbygges der sig ladninger (Q) på pladerne
 - Der opbygges så et elektrisk felt, der holder på energien
 - Når der tappes en strøm så fjernes ladningen og det elektriske feltet reduceres
- Kapaciteten afhænger af
 - Pladernes areal, større areal større kapacitet
 - Afstanden mellem pladerne, større afstand mindre kapacitet
 - Dielektrikummets permittivitet (ε, epsilon), større ε større kapacitet
- Kondensatoren har en modstand både over for AC og DC
 - AC: frekvensafhængig modstand $X_C = 1 / 2\pi fC$ (+ equivalent series resistance, ESR)
 - DC: "uendelig"
 - Derfor kan den bruges som DC-blokering og AC-afkobling
- Kondensatorer findes i mange typer, materialer, spændinger, faste/variable og kan godt bestå af flere multi-parallelle plader

Fugtighedssensoren

- Fugtighed kan måles ved
 - at dielektrikummet ændres som funktion af jordens fugtighed
 - jo større fugtighed desto bedre leder jorden
- Capasitive Soil Moisture Sensor
 - LM555 er en universal IC til mange formal så som: timer, pulsgenerator, lydgiver
 - LM555 laver et firkantet AC-signal på ben 3
 - R3 og jorden udgør en spændingsdeler (AC)
 - D1 ensretter og 1 nF udglatter, 1 M Ω aflader
 - Fugtigheden kan så måles som en DC spænding
 - https://www.circuitschools.com/interface-capacitive-soil-moisture-sensor-v1-2-with-arduino-lcd-and-oled/
- http://www.555-timer-circuits.com/
- https://www.ti.com/lit/ds/symlink/lm555.pdf

Køling af elektronik 1

Elektronik bliver varmt fordi det afsættes effekt i det: $P_{ln} = P_D + P_{Out}$

Eksempel med en AMS1117 3,3 V spændingeregulator, fx på en ESP32

ABSOLUTE MAXIMUM RATINGS (Note 1)

Power Dissipation	Internally limited
Input Voltage	15V
Operating Junction Temperature	
Control Section	-40°C t <u>o 125°</u> C
Power Transistor	-40°C to 125°C
Storage temperature	- 65°C to +150°C

Soldering information
Lead Temperature (25 sec)
Thermal Resistance
SO-8 package
TO-252 package
SOT-223 package

 265° C $\phi_{JA} = 160^{\circ}$ C/W $\phi_{JA} = 80^{\circ}$ C/W $\phi_{JA} = 90^{\circ}$ C/W*

* With package soldering to copper area over backside ground plane or internal power plane ϕ_{JA} can vary from 46°C/W to >90°C/W depending on mounting technique and the size of the copper area.

$$U_{ln} = 10 \text{ V}, U_{Out} = 3.3 \text{ V} \rightarrow U_{LDO} = 6.7 \text{ V og I} = 100 \text{ mA} \rightarrow P = U_{LDO} \cdot I = 670 \text{ mW}$$

$$T_{Junction} = T_{Ambient} + R_{JunctionAmbient} \cdot P = 20 \text{ °C} + 90 \text{ °C/W} \cdot 670 \text{ mW} = 80 \text{ °C} \le 125 \text{ °C}$$

Køling af elektronik 2

Hvad nu hvis strømmen er 200 mA?

$$U_{In} = 10 \text{ V}, \ U_{Out} = 3.3 \text{ V} \rightarrow U_{LDO} = 6.7 \text{ V} \text{ og } I = 200 \text{ mA} \rightarrow P = U_{LDO} \cdot I = 1.34 \text{ W}$$

$$T_{Junction} = T_{Ambient} + R_{JunctionAmbient} \cdot P = 20 \, ^{\circ}C + 90 \, ^{\circ}C/W \cdot 1,34 \, W = 141 \, ^{\circ}C > 125 \, ^{\circ}C$$

Hvad gør man så? Et kongerige for en køleplade!

COPPE	ER AREA		THERMAL RESISTANCE
TOP SIDE*	BACK SIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)
2500 Sq. mm	2500 Sq. mm	2500 Sq. mm	55°C/W
1000 Sq. mm	2500 Sq. mm	2500 Sq. mm	55°C/W
225 Sq. mm	2500 Sq. mm	2500 Sq. mm	65°C/W
100 Sq. mm	2500 Sq. mm	2500 Sq. mm	80°C/W
1000 Sq. mm	1000 Sq. mm	1000 Sq. mm	60°C/W
1000 Sq. mm	0	1000 Sq. mm	65°C/W

^{*} Tab of device attached to topside copper.

Køling af elektronik 3

		r	<u>r</u>
COPPER AREA			THERMAL RESISTANCE
TOP SIDE*	BACK SIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)
2500 Sq. mm	2500 Sq. mm	2500 Sq. mm	55°C/W
1000 Sq. mm	2500 Sq. mm	2500 Sq. mm	55°C/W
225 Sq. mm	2500 Sq. mm	2500 Sq. mm	65°C/W
100 Sq. mm	2500 Sq. mm	2500 Sq. mm	80°C/W
1000 Sq. mm	1000 Sq. mm	1000 Sq. mm	60°C/W
1000 Sq. mm	0	1000 Sq. mm	65°C/W

The thermal resistance from the junction to the tab for the AMS1117 is 15 °C/W.

$$\begin{aligned} &U_{In} = 10 \text{ V}, \ U_{Out} = 3,3 \text{ V} \Rightarrow U_{LDO} = 6,7 \text{ V og I} = 200 \text{ mA} \Rightarrow \text{P} = U_{LDO} \cdot \text{I} = 1,34 \text{ W} \\ &T_{junction} = T_{Ambient} + R_{JunctionTab} \cdot \text{P} + R_{TabAmbient} \cdot \text{P} \\ &= T_{Ambient} + (R_{JunctionTab} + R_{TabAmbient}) \cdot \text{P} = T_{Ambient} + R_{JunctionAmbient} \cdot \text{P} \\ &= 20 \text{ °C} + 65 \text{ °C/W} \cdot 1,34 \text{ W} = \textbf{107 °C} \leq 125 \text{ °C} \end{aligned}$$

MICROCHIP

TP1

VIN

VIN

J1

TP2

C1

TP4

GND

SOT223-3 Voltage Reg
Eval Board 102-00199

TP9

VOUT

TP6

+IQ

TP1

TP10

TP10

R5

R6

GND

^{*} Tab of device attached to topside copper.