### Problem of the Month

# **Averaging Digits**

March 2010

**How many** four-digit numbers are composed of four distinct digits (no leading 0s), such that **one digit is the average of the other three**? Examples of such numbers: 3621 (3 is the average of 6, 2 and 1), 5210 (2 is the average of 5, 1 and 0).

**SUBMIT** your solution to

- Dr. Erol Akbas @ matexa@langate.gsu.edu or
- Dr. Yuanhui Xiao @ matyxx@langate.gsu.edu

before the deadline: Friday, March 26, 2010, 5:00PM.

You may get a copy of this problem from the wall behind you.

## **Problem of Last Month: Car Crashing?**

Imagine a planet in the shape of a regular tetrahedron (its surface consists of 4 equilateral triangles). Suppose that on each face there is a car traveling at a constant speed in clockwise direction along the edges bounding the face. Can they travel without crashing?



#### Winner: Robert Xu.

#### Solution.

Denote the vertices of the tetrahedron by A, B, C and D as in the above picture. Let  $c_1$ ,  $c_2$ ,  $c_3$ ,  $c_4$  be four cars traveling at constant speeds on the paths ABC, ADB, ACD and BDC respectively. Without loss of generality, assume that  $c_1$  has the smallest speed. Examine the moment when  $c_1$  is passing through the point A traveling toward the point B. The car  $c_2$  can not be on AB because of unavoidable collision. It can not be on DB either because its speed is greater than or equal to speed of  $c_1$ . So the car  $c_2$  has to be traveling on AD. Similarly  $c_3$  can not be on AC and CD (running the cars in reverse direction proves this). In order to avoid collision with  $c_1$ , both  $c_2$  and  $c_3$  have to be on AD. Then collision between  $c_2$ ,  $c_3$  will be unavoidable. So this implies that even if there are three cars traveling with constant speed, collision is inevitable.