Test and verification approaches in conformance checking

Kevin Jahns

RWTH Aachen University

kevin.jahns@rwth-aachen.de

January 22, 2014

 Kevin Jahns
 MBT
 January 22, 2014
 1 / 17

Formal test and verification approaches in conformance checking

Kevin Jahns

RWTH Aachen University

kevin.jahns@rwth-aachen.de

January 22, 2014

 Kevin Jahns
 MBT
 January 22, 2014
 2 / 17

Overview

- Why testing
- 2 Conformance
- 3 Test and verification approaches
 - Monkey testing
 - Model based testing
 - Model checking
- 4 Conclusion

 Kevin Jahns
 MBT
 January 22, 2014
 3 / 17

Why software testing and verifying is important

National Institute of Standards and Technology (2002)

Software errors cost the U.S. economy \$59.5 billion US dollars annually [2]

Cambridge University (2013)

Software errors cost the whole economy \$312 billion US dollars annually [3]

4 / 17

Kevin Jahns MBT January 22, 2014

Why software testing and verifying is important

) a (~

Kevin Jahns MBT January 22, 2014

Conformance is ..

 Kevin Jahns
 MBT
 January 22, 2014
 6 / 17

Conformance is ..

(1) when it does not throw errors?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)
- (5) whet it conforms to some sort of specification?

- (1) when it does not throw errors?
- (2) whet it works for the developer (everything else is a user error)?
- (3) when it works for the user?
- (4) when it does not explode;)
- (5) whet it conforms to some sort of specification?
- → Conformance is hard to express

How to check conformance

Expressing conformance \rightarrow checking conformance

 Kevin Jahns
 MBT
 January 22, 2014
 7 / 17

Test vs. verification

Test

You may find an error after the execution of a test.

Verification

The evaluation of whether or not something complies with a specified conformance property

 Kevin Jahns
 MBT
 January 22, 2014
 8 / 17

Testing a robot

Test "Don't kill me"

 If the robot kills you, you can be sure that the property is not fulfilled.

 Kevin Jahns
 MBT
 January 22, 2014
 9 / 17

Verifying a robot

Test "Don't kill me"

 After verifying that a robot won't kill you, he won't kill you
 :)

10 / 17

Monkey testing

Infinite monkey theorem

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type a given text, such as the complete works of William Shakespeare.[1]

11 / 17

Kevin Jahns MBT January 22, 2014

Model based testing

Idea

- 1. Create Specification
- 2. Derive test cases
- 3. Test against software
- 4. If all tests succeed: Unit under test conforms

Pros and cons

- + Minimizes human error
- + Test cases are derived automatically
 - Evolving topic
 - Complicated

Figure: Candy machine specification

Model checking

```
main = do
     putStrLn $
 3
          "What is the the"
4
       ++ "answer to life"
5
       ++ "the universe"
6
7
       ++ "and everything?"
     answer <- getLine
8
     case answer of
       "42" ->
10
         putStrLn
11
            "You're right"
12
13
         putStrLn
14
            "Nope"
15
     main
```

Figure: Simple transition system

200 Kevin Jahns **MBT** January 22, 2014 13 / 17

Verifying average soft-	Real world TS	thousands of states
ware		

14 / 17

Kevin Jahns **MBT** January 22, 2014

Verifying average soft-	Real world TS	thousands of states
ware		
Each state depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$

990

14 / 17

Kevin Jahns **MBT** January 22, 2014

Verifying average soft-	Real world TS	thousands of states
ware		
Each state depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$
Time complexety of model checking algorithm is NP-hard	$O(2^{TS})$ computation steps	$pprox 2^{1000^{1000}} pprox 10^{10^{3000}} cumputationsteps$

4 □ > 4 □ > 4 豆 > 4 豆 > 豆 の Q ○

Kevin Jahns MBT January 22, 2014 14 / 17

Verifying average soft- ware	Real world TS	thousands of states
Each state depends on the variables of the Programm	Real world programs have thousands of vari- ables	dimension of new TS $\approx 1000^{1000}$
Time complexety of model checking algorithm is NP-hard	$O(2^{TS})$ computation steps	$pprox 2^{1000^{1000}}pprox 10^{10^{3000}}$ cumputationsteps
Number of atoms in the entire observable universe		$pprox 10^{80}$

990

14 / 17

Kevin Jahns **MBT** January 22, 2014

Which approaches do software developer use to test software

Kevin Jahns MBT January 22, 2014 15 / 17

References

Software errors cost u.s. economy \$59.5 billion annually, June 2002.

URL: http://www.abeacha.com/NIST_press_release_bugs_cost.htm.

Cambridge university study states software bugs cost economy \$312 billion per year, 2013.

URL: http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_States_Software_Bugs_Cost

Economy\$312_Billion_Per_Year.

16 / 17

That's it: Questions?

