Villamosságtan (geci) Gyorstalpaló I.

- I. Egyenáramú hálózatok
- II. Mozgó töltések tere (Mágneses tér)
- III. Szinuszosan váltakozó áramkörök
- IV. Nyugvó töltések tere (Elektrosztatikus tér)

Villamosságtani alapfogalmak:

- <u>Töltés</u>: \mathbf{Q}^* proton = +1.6*10⁻¹⁹C (Coulomb) \mathbf{Q}^* elektron = -1.6*10⁻¹⁹C = AS (Amper secundum)
- <u>Áramerősség</u>: **I** = Töltéshordozók rendezett mozgása = $\Delta Q / \Delta t$ (Δ = delta) = (C / s \rightarrow AS / s = A) | μA (MicroAmper) = $10^{-6} A$ | mA = $10^{-3} A$

Potenciál (U) → 0V referenciahely ← A pont, aminek a 0V helyhez viszonyított feszültsége U_A azaz az <u>A pont potenciálja</u> & B pont, aminek a 0V helyzet viszonyított feszültsége U_B azaz a B pont potenciálja & az AB pont feszültsége U_{AB} azaz a két pont potenciáljának különbsége

- Villamosteljesítmény (P): U*I Feszültség * áram me: W (watt)
- Villamosmunka (W → vevé): U*I*t Feszültség*áram*idő me: Ws (watt secundum)
 KW*h Kilówatt óra = 10³ (1000) * 3600 = 3.6 * 10⁶ Ws
- PI: P = 1.8W
 t1 = 4 óra / nap
 t össz = 30 * 4 = 120 óra
 W = P*t = 1.8*120 = 216KWh
- <u>Villamosellenállás</u> (R Rezisztens): ρ^* (L/A) rhó * L/A ρ = fajlagos ellenállás me: Ω (ohm)

$$\rho^* cu = 0.0175^* (\Omega mm^2/m) = 0.0175^* 10^{-6} * (\Omega m^2/m) = 1.75^* 10^{-8} \Omega m$$
 ρ_{AL} (Alumínium) = 0.03*($\Omega mm^2/m$) = 3*10⁻⁸ Ωm

- Ohm törvény: Egy konstans ellenálláson az áram és a feszültség kapcsolata lineáris

-
$$P = U*I = I^2*R = U^2/R$$

 $U = I*R$
 $I = U/R$
 $W = U*I*t = I^2*R*t = (U^2/R)*t$

Kapacitás (C): Egy adott elrendezésre nézve a töltés / feszültség

hányadosa
$$\rightarrow$$
 C = Q/U = AS/V

PF (Pico Farad) =
$$10^{-12}$$
F

$$nF$$
 (Nano Farad) = $10^{-9}F$

$$\mu$$
F (mikro Farad) = 10^{-6} F

 t_0 = szobahőmérséklet

t_ü = üzemi hőmérséklet

t_{kr} = Kritikus hőmérséklet

 R_0 = villamosellenállás

R_ü = üzemi ellenállás

$$t_{kr\,cu}$$
 (réz) = -235C°

 $t_{kr al}$ (Alumínium) = -250C°

$$(R_{\ddot{u}} - R_0) / (t_{\ddot{u}} - t_0) = R_0 / t_0 + t_{kr} \rightarrow \Delta t = t_{\ddot{u}} - t_0 \text{ (hőfokváltozás)}$$

$$R_{\ddot{u}} - R_0 = R_0^* ((t_{\ddot{u}} - t_0) / (t_0 + t_{kr})) \rightarrow 1 / t_o(20) + t_{kr}(235) = \alpha (1/C^\circ) =$$

$$\alpha_{cu} = 3.9 * 10^{-3} * (1/C^{\circ})$$

$$R_{\ddot{u}} = R_0 + R_0 * \Delta t * \alpha = R_0 * (1 + \alpha * \Delta t)$$

$$W = 230V$$

$$P = U^2/R \rightarrow R_{\ddot{u}} = U^2/P = 230^2 / 100 = 529\Omega$$