$\mathbf{Th.}\ \mathcal{A}: V^n \to V^n, \mathcal{A} = \mathcal{A}^* \implies \exists \{e_i\}_{i=1}^n, e_1$ - собственные вектора \mathcal{A} и $\{e_i\}$ - ортонормированный базис

 \square e_1 - собственный вектор $\mathcal A$

 e_1 найдется, если $\mathcal{A}x = \lambda x$ имеет нетривиального решение $\iff \det(\mathcal{A} - \lambda I) = 0 \stackrel{\mathcal{A} \text{ - camocomp.}}{\implies} \exists \lambda \in \mathbb{R}$ Для вектора e_1 строим инвариантное подпространство $V_1 \perp e_1$ (см. лемму), $\dim V_1 = n - 1$

В подпространстве V_1 \mathcal{A} действует как самосопряженный и имеет собственный вектор $e_2 \perp e_1$. Для e_2 строим $V_2 \perp e_2, e_1$

Затем, V_3, V_4, V_5, \ldots , в котором, найдя e_i , ортогональный всем предыдущим

Составили ортогональный базис из e_i , который можно нормировать

Nota. Чтобы упорядочить построение базиса, в котором V_i может брать $\max \lambda_i$

Nota. Из теоремы следует, что самосопряженный оператор диагонализируется: Σ алг. крат. = n (степень уравнения), а Σ геом. крат. = $\dim\{e_1,\ldots,n\}=n$

Разложение самосопряж. оператора в спектр:

 $x \in V^n \quad \{e_i\}_{i=1}^n$ - базис из собственных векторов \mathcal{A} (ортонорм.)

$$x = x_1 e_1 + \dots + x_n e_n = (x, e_1) e_1 + \dots + (x, e_n) e_n = \sum_{i=1}^n (x, e_i) e_i$$

Def. Оператор $P_i x = (x, e_i) e_i$ называется проектором на одномерное пространство, порожденное e_i (линейная оболочка)

Свойства:

- 1) $P_i^2 = P_i$ (более того $P_i^m = P_i$)
- 2) $P_i P_i = 0$
- 3) $P_i = P_i^*$ $((P_i x, y) \stackrel{?}{=} (x, P_i y)) \iff (P_i x, y) = ((x, e_i)e_i, y) = (x, e_i)(e_i, y) = (x, (y, e_i)e_i) = (x, P_i y)$

Итак, если $\mathcal{A}: V^n \to V^n$ - самосопряженный и $\{e_i\}$ - ортонормированный базис собственных векторов \mathcal{A} , то

$$x = \sum_{i=1}^{n} P_{i}x = \sum_{i=1}^{n} (x, e_{i})e_{i}$$

$$\mathcal{A}x \stackrel{y=\Sigma(y, e_{i})e_{i}}{=} \sum_{i=1}^{n} (\mathcal{A}x, e_{i})e_{i} = \sum_{i=1}^{n} (x, \mathcal{A}e_{i})e_{i} = \sum_{i=1}^{n} (x, \lambda_{i}e_{i})e_{i} = \sum_{i=1}^{n} \lambda_{i}(x, e_{i})e_{i} = \sum_{i=1}^{n} \lambda_{i}P_{i}x$$

$$\iff \mathcal{A} = \sum_{i=1}^{n} \lambda_{i}P_{i} - \text{спектральное разложение } \mathcal{A}, \text{ спектр} = \{\lambda_{1}, \dots, \lambda_{n} \mid \lambda_{i} \leq \dots \leq \lambda_{n}\}$$

Ex.

$$y = y_1e_1 + y_2e_2 = (y, e_1)e_1 + (y, e_2)e_2 = (\mathcal{A}x, e_1)e_1 + (\mathcal{A}x, e_2)e_2 = \lambda_1x_1e_1 + \lambda_2x_2e_2$$

2.9. Ортогональный оператор

Mem. Орт. оператор $T:V^n \to V^n \stackrel{def}{\Longleftrightarrow} \forall$ о/н базиса матрица T - ортогональная $T^{-1}=T^T$

Nota. Иначе, T - ортогональный оператор $\Longleftrightarrow T^{-1} = T^* \Longrightarrow TT^* = I$

 $\mathbf{Def.}\ T$ - ортог. оператор, если (Tx,Ty)=(x,y)

Следствие: ||Tx|| = ||x||, то есть T сохраняет расстояние

Nota. Ранее в теореме об изменении матрицы A при преобразовании координат T - ортогональный оператор

Это необязательно, то есть можно переходить в другой произвольный базис (док-во теоремы позволяет)

Диагонализация самосопряженного оператора:

Дана матрица A_f

- 1) Находим $\lambda_1, \ldots, \lambda_n$
- 2) Находим $e_1, \dots e_n$ ортогональный базис собственных векторов
- 3) Составляем $T = \begin{pmatrix} e_{11} & \dots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{n1} & \dots & e_{nn} \end{pmatrix}$ матрица поворота базиса
- 4) Находим $T_{e \to f} A_f T_{f \to e} = A_e$ диагональная

Таким образом диагонализация самосопряженного \mathcal{A} - это нахождение композиции поворотов и симметрий, как приведение пространства к главным направлением

3. Билинейные и квадратичные формы

3.1. Билинейные формы

 $\mathbf{Def.}\ x,y\in V^n$ Отображение $\mathcal{B}:V^n\to\mathbb{R}$ (обозн. $\mathcal{B}(x,y)$) называется билинейной формой, если выполнены

- 1) $\mathcal{B}(\lambda x + \mu y, z) = \lambda \mathcal{B}(x, z) + \mu \mathcal{B}(y, z)$
- 2) $\mathcal{B}(x, \lambda y + \mu z) = \lambda \mathcal{B}(x, y) + \mu \mathcal{B}(x, z)$

Ex.

- 1) $\mathcal{B}(x,y) \stackrel{\mathrm{B}}{=} \stackrel{E_{\mathbb{R}}^{n}}{=} (x,y)$
- 2) $\mathcal{B}(x,y) = P_y x$ проектор x на y

Матрица Б.Ф.

Th.
$$\{e_i\}_{i=1}^n$$
 - базис $V_n,\ u,v\in V^n$. Тогда $\mathcal{B}(u,v)=\sum_{j=1}^n\sum_{i=1}^nb_{ij}u_iv_j,$ где $b_{ij}\in\mathbb{R}$

 $u = u_1 e_1 + \cdots + u_n e_n$

$$v = v_1 e_1 + \cdots + v_n e_n$$

$$\mathcal{B}(u,v) = \mathcal{B}(\sum_{i=1}^{n} u_{i}e_{i}, \sum_{j=1}^{n} v_{j}e_{j}) = \sum_{i=1}^{n} u_{i}\mathcal{B}(e_{i}, \sum_{j=1}^{n} v_{j}e_{j}) = \sum_{i=1}^{n} u_{i}(\sum_{j=1}^{n} v_{j}\mathcal{B}(e_{i}, e_{j})) \overset{\text{обозн. }}{=} \sum_{i=1}^{n} u_{i} \sum_{j=1}^{n} v_{j}b_{ij} = \sum_{i=1}^{n} u_{i}\mathcal{B}(e_{i}, e_{j}) \overset{\text{of some }}{=} \sum_{i=1}^{n} u_{i} \sum_{j=1}^{n} v_{j}b_{ij} = \sum_{i=1}^{n} u_{i}\mathcal{B}(e_{i}, e_{j}) \overset{\text{of some }}{=} \sum_{i=1}^{n} u_{i} \overset{\text{of some }}{=} \overset{\text{of some }}{=$$

$$\sum_{i=1}^n \sum_{j=1}^n u_i v_j b_{ij}$$

Nota. Составим матрицу из $\mathcal{B}(e_i, e_j)$

$$B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$$

Def. Если

- 1) $\mathcal{B}(u,v) = \mathcal{B}(v,u)$, то \mathcal{B} симметричная
- 2) $\mathcal{B}(u,v) = -\mathcal{B}(v,u),$ то \mathcal{B} антисимметричная
- 3) $\mathcal{B}(u,v)=\overline{\mathcal{B}(v,u)},$ то \mathcal{B} кососимметричная (в \mathcal{C})

Def. $rang\mathcal{B}(u,v) \stackrel{def}{=} rangB$

Nota.

1) $\mathcal B$ называется невырожденной, если $rang \mathcal B = n$

2) $rang\mathcal{B}_e = rang\mathcal{B}_{e'}$ (e,e' - различные базисы V^n), то есть $rang\mathcal{B}$ инвариантно относительно преобразования $e \to e'$

$$Ex. \ \mathcal{B}(u,v) \stackrel{\text{ск. пр.}}{=} (u,v)$$
 $u = u_1 e_1 + u_2 e_2$, тогда $\mathcal{B}(e_i,e_j) \stackrel{\text{of}}{=} b_{ij} = (e_i,e_j)$
 $v = v_1 e_1 + v_2 e_2$

Таким образом,
$$B = \begin{pmatrix} (e_1,e_1) & (e_1,e_2) \\ (e_2,e_1) & (e_2,e_2) \end{pmatrix}$$
 - матрица Грама

Ex.
$$u(t) = 1 + 3t$$
, $\{e_i\} = (1, t)$, $\mathcal{B}(u, v) = (u, v) = \int_{-1}^{1} uv dt$

Тогда,
$$B = \begin{pmatrix} \int_{-1}^{1} dt & \int_{-1}^{1} t dt \\ \int_{-1}^{1} t dt & \int_{-1}^{1} t^{2} dt \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{2}{3} \end{pmatrix}$$