Electrical Networks and Pólya's Random Walk Theorem

Ernest Ng Mentor: Eric Goodman University of Pennsylvania ngernest@sas.upenn.edu

Penn Directed Reading Program 10 December 2020

Outline of Project

Project Goals

- 1. Examine applications of electrical network theory to random walks
- 2. Classify the behavior of random walks on graphs in different dimensions (\leq 2 vs. \geq 3)

Project References

- ▶ Peter G. Doyle and J. Laurie Snell, *Random Walks and Electric Networks*. The Mathematical Association of America, 1984.
- ▶ Padraic Bartlett, *Electrical Networks and Random Graphs*. Lectures 5 & 7 from Math 7H (2014) at University of California, Santa Barbara. Accessed last Dec 9, 2020 from http://web.math.ucsb.edu/~padraic/ucsb_2014_15/math_honors_f2014/math_honors_f2014_lecture5.pdf

Table of Contents

- ► Motivation: 1-D Random Walk
- ► Statement of Pólya's Random Walk Theorem
- ► Rayleigh's Monotonicity Law
- ▶ Doyle & Snell's Proof for 2-D by Shorting
- Cutting Method for Higher Dimensions

Motivation: 1-D Random Walk

▶ A random walker starts at node x and has a $\frac{1}{2}$ probability of moving to the left/right

Motivation: 1-D Random Walk

A random walker starts at node x and has a $\frac{1}{2}$ probability of moving to the left/right

From this, p(x) = x/n. As $n \to \infty$, $p(x) \to 0$, i.e. the random walker must return to the origin.

Pólya's Random Walk Theorem

- ➤ A walk is **recurrent** if it is certain that the random walker will return to the origin
- A walk is **transient** if the **escape probability** $p_{esc} > 0$, i.e. there is a positive probability that the random walker will *never* return to the origin
- (Definitions as in Doyle and Snell, modified from Pólya's original definitions)

Theorem

Simple random walks on a d-dimensional lattice \mathbb{Z}^d are:

- ightharpoonup Recurrent for d = 1, 2
- ▶ Transient for $d \ge 3$

Random Walks on \mathbb{Z}^2

- ► Is it certain that the random walker will return to the origin? (Recurrent)
- ▶ Or, is there a non-zero probability that the walker will never return to the origin? (*Transient*)

Electrical network on \mathbb{Z}^2

- It can be shown that the **escape probability** $p_{esc} \propto 1/R_{eff}$, where R_{eff} is the **effective resistance** from the origin to infinity
- ▶ To determine p_{esc} electrically, compute R_{eff} between the origin and far-away grounded points

Proof of Pólya's Theorem for \mathbb{Z}^2 : Shorting Nodes

- ➤ **Shorting**: Treat certain subsets of nodes as one node (electrically: connect nodes with perfectly conducting wires, i.e. set the resistance of certain edges to 0)
- Rayleigh's Monotonicity Law: Shorting nodes only decreases the effective resistance

Proof of Pólya's Theorem for \mathbb{Z}^2 : Shorting Nodes

- ➤ **Shorting**: Treat certain subsets of nodes as one node (electrically: connect nodes with perfectly conducting wires, i.e. set the resistance of certain edges to 0)
- ► Rayleigh's Monotonicity Law: Shorting nodes only decreases the effective resistance
- ▶ **Goal**: To prove that random walks on \mathbb{Z}^2 are recurrent, i.e.

$$p_{esc} \propto \frac{1}{R_{eff}} = 0 \iff R_{eff} = \infty$$

Technique: Short nodes on \mathbb{Z}^2 such that:

$$R_{eff} \geq R_{shorted} = \infty$$

(Shorted nodes in red)

(Shorted nodes in red)

(Shorted nodes in red)

Recalling Rayleigh's Monotonicity Law,

$$R_{eff} \ge R_{shorted} = \sum_{n=0}^{\infty} \frac{1}{8n+4} = \infty$$

Recalling Rayleigh's Monotonicity Law,

$$R_{eff} \ge R_{shorted} = \sum_{n=0}^{\infty} \frac{1}{8n+4} = \infty$$

▶ Thus, random walks on \mathbb{Z}^2 are recurrent!

Proof Idea for Higher Dimensions

- Cutting: Removing an edge from the network (increases resistance of edge)
- ► Rayleigh's Monotonicity Law: Cutting edges only increases the effective resistance
- ▶ Goal: To prove that random walks on Z³ are transient, i.e.

$$p_{esc} \propto \frac{1}{R_{eff}} > 0 \iff R_{eff} < \infty$$

► **Technique**: Cut edges outside an intricate tree such that:

$$R_{eff} \leq R_{cut} < \infty$$

Acknowledgements

Thank you for listening!

Special thanks to Eric Goodman, Mona Merling Thomas Brazelton, George Wang