Chapitre M6 – Mouvement dans un champ de gravitation newtonien

Plan du cours

I Position du problème

- I.1 Lois de Kepler
- **I.2** Champ de gravitation newtonien

II Caractère central de la force d'interaction gravitationnelle

- II.1 Conservation du moment cinétique
- II.2 Planéité du mouvement
- II.3 Loi des aires

III Caractère conservatif de la force

- III.1 Conservation de l'énergie mécanique
- III.2 Énergie potentielle effective
- III.3 Nature des trajectoires

IV Cas du mouvement circulaire

- IV.1 Vecteurs vitesse et accélération
- IV.2 Période
- IV.3 Satellite géostationnaire

Ce qu'il faut savoir et savoir faire

- → Établir la conservation du moment cinétique à partir du théorème du moment cinétique.
- → Etablir les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.
- \rightarrow Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement
- → Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective.
- → Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective.
- → Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique.
- → Déterminer les caractéristiques des vecteurs vitesse et accélération du centre de masse d'un système en mouvement circulaire dans un champ de gravitation newtonien.
- → Établir et exploiter la troisième loi de Kepler dans le cas du mouvement circulaire.

Questions de cours

- \rightarrow Énoncer les trois lois de Kepler.
- → Établir la conservation du moment cinétique (TMC) et expliciter ses conséquences (planéité du mouvement et loi des aires).
- → Établir l'expression de l'énergie potentielle effective (TEM), la représenter graphiquement et discuter des différentes trajectoires possibles en fonction de la valeur de l'énergie mécanique.
- \rightarrow Établir l'expression de la vitesse et/ou de l'énergie mécanique dans le cas d'une trajectoire circulaire de rayon r_0 (PFD).
- → Énoncer, puis établir la troisième loi de Kepler dans le cas d'une orbite circulaire (PFD).
- → Donner les caractéristiques de l'orbite géostationnaire.

Documents

Document 1 - Énergie potentielle effective

FIGURE 1 – Évolution de l'énergie potentielle effective adimensionnée en fonction de la distance r^* entre l'astre central et le point matériel. L'allure de la courbe $\mathcal{E}_{p,eff}(r)$ dépend de la valeur de la constante des aires, elle même liée aux conditions initiales.

Pour un point matériel de masse m dans un champ de gravitation newtonien créé par un astre central de masse M_O , l'énergie potentielle effective $\mathcal{E}_{p,\text{eff}}$ permet de décrire le mouvement radial du point. Elle vaut :

$$\mathcal{E}_{\text{p,eff}}(r) = \frac{1}{2}m\frac{\mathcal{C}^2}{r^2} - G\frac{mM_O}{r},$$

où C est la constante des aires, r la distance entre le point matériel et l'astre central et G la constante gravitationnelle.

En prévision d'une résolution numérique, on introduit l'énergie potentielle effective adimensionnée $\mathcal{E}_{p,\text{eff}}^*$ en choisissant la distance r_0 pour laquelle $\mathcal{E}_{p,\text{eff}}$ est minimale et $\mathcal{E}_0 = -\mathcal{E}_{p,\text{eff}}(r_0)$ comme échelles de distance et d'énergie. On a alors $r^* = r/r_0$ et

$$\mathcal{E}_{\mathrm{p,eff}}^*(r^*) = \frac{\mathcal{E}_{\mathrm{p,eff}}(r)}{\mathcal{E}_0} = \frac{1}{r^{*2}} - \frac{2}{r^*} \quad \text{où} \quad r_0 = \frac{\mathcal{C}^2}{GM_O} \quad \text{et} \quad \mathcal{E}_0 = G\frac{mM_O}{2r_0}.$$

Document 2 - Balance cosmique

En exploitant la troisième loi de Kepler, il est possible de déterminer la masse d'un astre « simplement » en analysant la trajectoire d'un objet qui orbite autour. On peut par exemple déterminer la masse du Soleil ($M_{\odot} = 2 \times 10^{30} \,\mathrm{kg}$) en analysant le mouvement des planètes du système solaire, mais aussi estimer celle du trou noir Sagittarius A* (Sgr A*) situé au centre de la Voie lactée, grâce aux étoiles qui orbitent autour.

La figure ci-dessous représente les relevés de position de quelques étoiles en orbite autour de Sgr A* (Schödel et al., 2003). L'analyse de leurs trajectoire permet de déterminer la masse du trou noir, voisine de quatre million de masses solaires.

eso.org

Document 3 – Satellites géostationnaires

Près de 3000 satellites artificiels sont actuellement opérationnels et en orbite autour de la Terre. Ils trouvent de très nombreuses applications scientifiques, civiles ou militaires : télécommunications, GPS, prévisions météorologiques, tests fondamentaux, etc.

On distingue plusieurs orbites adaptées à différents usages :

- orbite basse, entre 300 km et 2000 km d'altitude;
- orbite moyenne, située à une altitude de 20 000 km;
- l'orbite géostationnaire, située à $\sim 36\,000\,\mathrm{km}$ d'altitude.

L'orbite géostationnaire est particulièrement peuplée (500 satellites) : le lancement de nouveaux satellites sur cette orbite requiert une précision de l'ordre de 50 km.

eoxc-apps2.bd.esri.com

1 Position du problème

On souhaite décrire le mouvement d'un point matériel M de masse m en orbite autour d'un astre de masse M_O , avec $m \ll M_O$: l'astre central sera considéré immobile. C'est notamment le cas d'une planète en orbite autour du Soleil, ou encore d'un satellite naturel ou artificiel autour d'une planète.

1.1 Lois de Kepler

Au début du XVII^{ème} siècle, Johannes Kepler a établi trois lois empiriques concernant le mouvement des planètes autour du Soleil en exploitant les mesures réalisées par Tycho Brahe.

— Première loi de Kepler, ou loi des orbites -

Les trajectoires des planètes du système solaire sont des **ellipses dont le Soleil est l'un des foyers**.

- Deuxième loi de Kepler, ou loi des aires

Des aires égales sont balayées en des temps égaux : l'aire balayée par le rayon Soleil – planète par unité de temps est constante au cours du mouvement.

Troisième loi de Kepler, ou loi des périodes

Le carré de la période T divisé par le cube du demi-grand axe a est une grandeur commune à toutes les planètes du système solaire :

$$\frac{T^2}{a^3}$$
 = cste.

1.2 Champ de gravitation newtonien

La seule force considérée est la force d'interaction gravitationnelle due à l'astre central :

$$\vec{F}_G = -G \frac{mM_O}{r^2} \vec{e_r},$$

qui dérive de l'énergie potentielle

$$\mathcal{E}_{\rm p} = -G \frac{mM_O}{r}.$$

Il s'agit d'un cas particulier de force centrale newtonienne.

Définition

On parle de **force centrale** de centre O si la droite d'action de cette force passe toujours par O.

Définition

Une force centrale est dite **newtonienne** si elle s'exprime en coordonnées sphériques sous la forme :

$$\vec{F} = \frac{K}{r^2} \vec{e_r}.$$

Elle est associée à une énergie potentielle de la forme :

$$\mathcal{E}_{\mathrm{p}}(r) = \frac{K}{r},$$

où la référence d'énergie potentielle est choisie nulle à l'infini.

La force d'interaction gravitationnelle en est un exemple, mais on peut aussi citer la force liée à l'interaction coulombienne entre deux particules chargées

$$\vec{F}_C = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \vec{e_r}.$$

2 Caractère central de la force d'interaction gravitationnelle

2.1 Conservation du moment cinétique

On considère un point matériel M de masse m et de vitesse \vec{v} dans un référentiel \mathcal{R} supposé galiléen, soumis à une force centrale $\vec{F} = F(r, \theta, \varphi)\vec{e_r}$ de centre O fixe dans \mathcal{R} .

Le théorème du moment cinétique par rapport à ${\cal O}$ appliqué au point ${\cal M}$ s'écrit

$$\frac{\mathrm{d}\vec{L}_O}{\mathrm{d}t} = \overrightarrow{OM} \wedge \overrightarrow{F} = \overrightarrow{0},$$

car \overrightarrow{OM} et \overrightarrow{F} sont colinéaires.

Propriété

Le moment cinétique est conservé : $\overrightarrow{L}_O = \overrightarrow{\text{cste}}$. On parle d'**intégrale première du mouvement**.

On peut en déduire deux conséquences sur le mouvement de M:

- le mouvement est **plan**;
- il vérifie la loi des aires.

2.2 Planéité du mouvement

La conservation du moment cinétique implique notamment la conservation de sa direction : le mouvement est plan.

On peut donc utiliser les coordonnées cylindriques (r, θ, z) , en choisissant l'origine du repère en O, tel que le mouvement se fasse autour de l'axe (Oz).

Application 1 – Conservation du moment cinétique

On s'intéresse à une comète de masse m ayant une trajectoire elliptique autour du Soleil. Elle passe au plus près de l'étoile en un point P appelé périhélie, situé à une distance r_P du Soleil. Dans le référentiel héliocentrique, elle a alors une vitesse $\overrightarrow{v_P}$ de norme v_P .

- 1. Rappeler la définition du référentiel héliocentrique. Faire une schéma.
- 2. Que peut-on dire du moment cinétique \overrightarrow{L}_O de la comète par rapport au centre du Soleil? Exprimer sa norme en coordonnées cylindriques, puis en fonction des données de l'énoncé.
- 3. Commenter l'évolution de la vitesse angulaire au cours du mouvement.
- 4. Exprimer la norme de sa vitesse v_A à l'aphélie, point de la trajectoire le plus éloigné du Soleil, situé à une distance r_A

python Vitesse angulaire

chapM6-animations.ipynb

2.3 Loi des aires

La conservation du moment cinétique implique aussi la conservation de sa norme $mr^2\dot{\theta}$.

Définition

On définit la constante des aires C par la relation

$$C = r^2 \dot{\theta} = \frac{\overrightarrow{L}_O \cdot \overrightarrow{e_z}}{m}.$$

La quantité Cdt est homogène à une surface, on peut l'interpréter graphiquement.

L'aire d \mathcal{A} balayée par le rayon vecteur \overrightarrow{OM} durant dt est :

$$|d\mathcal{A}| = \frac{1}{2} \|\overrightarrow{OM}(t)\| \cdot \|\overrightarrow{OM}(t+dt)\| \sin d\theta$$
$$= \frac{1}{2} \|\overrightarrow{OM}(t) \wedge \overrightarrow{OM}(t+dt)\|.$$

Or

$$\overrightarrow{OM}(t) \wedge \overrightarrow{OM}(t + dt) = \overrightarrow{OM}(t) \wedge (\overrightarrow{OM}(t) + d\overrightarrow{OM})$$

$$= \overrightarrow{OM}(t) \wedge d\overrightarrow{OM}$$

$$= r\overrightarrow{e_r} \wedge (dr\overrightarrow{e_r} + rd\theta\overrightarrow{e_\theta}) = r^2d\theta\overrightarrow{e_z},$$

d'où

$$|\mathrm{d}\mathcal{A}| = \frac{1}{2}|r^2\mathrm{d}\theta|.$$

Les quantités $d\mathcal{A}$ et $d\theta$ sont algébriques et de même signe : on a donc

$$d\mathcal{A} = \frac{1}{2}r^2d\theta$$
, soit $\frac{d\mathcal{A}}{dt} = \frac{1}{2}r^2\dot{\theta} = \frac{1}{2}\mathcal{C}$ avec $\mathcal{C} = r^2\dot{\theta}$.

Propriété.

La vitesse aréolaire, c'est-à-dire l'aire balayée par le rayon vecteur \overrightarrow{OM} par unité de temps est constante :

$$\frac{\mathrm{d}\mathcal{A}}{\mathrm{d}t} = \frac{1}{2}\mathcal{C},$$

où $C = r^2 \dot{\theta}$ est la constante des aires.

python Aire balayée

chapM6-animations.ipynb

3 Caractère conservatif de la force

3.1 Conservation de l'énergie mécanique

Application 2 - Conservation de l'énergie mécanique

On considère un système constitué d'un point matériel M (par exemple une planète) de masse m en rotation autour d'un point O fixe (par exemple une étoile) de masse $M_O \gg m$. On étudie le mouvement de M dans le référentiel lié à O, supposé galiléen.

- 1. Montrer que l'énergie mécanique de M est conservée.
- 2. Retrouver ce résultat en partant du PFD.
- 3. Exprimer l'énergie mécanique de M en coordonnées cylindriques.

Propriété _

Le système n'est soumis qu'à la force d'interaction gravitationnelle qui est conservative : le mouvement est **conservatif**, c'est-à-dire que

$$\mathcal{E}_{m} = \text{cste}.$$

L'énergie mécanique est aussi une intégrale première du mouvement.

3.2 Énergie potentielle effective

On reprend la situation décrite dans l'application 2. L'énergie mécanique de M est

$$\begin{split} \mathcal{E}_{\mathrm{m}} &= \mathcal{E}_{\mathrm{c}} + \mathcal{E}_{\mathrm{p}} = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - G \frac{m M_O}{r} \\ &= \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m r^2 \dot{\theta}^2 - G \frac{m M_O}{r} \\ &= \underbrace{\frac{1}{2} m \dot{r}^2}_{\text{énergie cinétique associée au mvt radial}}_{\text{énergie potentielle effective}} + \underbrace{\frac{1}{2} m \frac{\mathcal{C}^2}{r^2} - G \frac{m M_O}{r}}_{\text{énergie potentielle effective}} \\ &= \frac{1}{2} m \dot{r}^2 + \mathcal{E}_{\mathrm{p,eff}}(r). \end{split}$$

Propriété _____

Le mouvement radial s'apparente à un mouvement conservatif à un degré de liberté dans une **énergie potentielle effective** :

$$\mathcal{E}_{\text{p,eff}}(r) = \frac{1}{2}m\frac{\mathcal{C}^2}{r^2} - G\frac{mM_O}{r}$$

3.2.1 Représentation graphique de la courbe d'énergie potentielle effective

On a

$$\lim_{r \to 0} \mathcal{E}_{\mathbf{p}, \text{eff}}(r) = +\infty \quad \text{et} \quad \lim_{r \to +\infty} \mathcal{E}_{\mathbf{p}, \text{eff}}(r) = 0.$$

De plus, la dérivée de l'énergie potentielle effective

$$\frac{\mathrm{d}\mathcal{E}_{\mathrm{p,eff}}}{\mathrm{d}r}(r) = -m\frac{\mathcal{C}^2}{r^3} + G\frac{mM_O}{r^2} \quad \text{s'annule en} \quad r = r_0 = \frac{\mathcal{C}^2}{GM_O}.$$

Il s'agit d'un minimum et l'énergie potentielle effective vaut alors

$$-\mathcal{E}_0 = \mathcal{E}_{p,\text{eff}}(r_0) = -G \frac{mM_O}{2r_0}.$$

Pour résoudre numériquement l'équation du mouvement on introduit souvent des grandeurs adimensionnées (Doc. 1).

3.3 Nature des trajectoires

La nature de la trajectoire dépend de la valeur de l'énergie mécanique :

- $\mathcal{E}_{\rm m} > 0$: le point M se rapproche de O avant de s'en éloigner infiniment. Le système est dans un état de diffusion, la trajectoire est une branche d'hyperbole.
- $\mathcal{E}_{\rm m}=0$: cas limite du précédent, où le point M à un vitesse radiale nulle à l'infini. Le système est aussi dans un état de diffusion, la trajectoire est une branche de parabole.
- $-\mathcal{E}_0 < \mathcal{E}_{\rm m} < 0$: r oscille périodiquement entre r_1 et r_2 , le point M est piégé dans le puits de potentiel créé par l'astre en O. Le système est dans un **état lié**, la trajectoire est une **ellipse** de demi grand-axe $a = \frac{r_1 + r_2}{2}$.

- $\mathcal{E}_{\rm m} = -\mathcal{E}_0$: r est constant et vaut r_0 . Le système est dans un **état lié**, la trajectoire est un **cercle**. C'est un cas particulier d'ellipse.
- $\mathcal{E}_{\rm m} < -\mathcal{E}_0$: impossible car cela correspondrait à $\frac{1}{2}m\dot{r}^2 < 0$.

 \mathbf{Rq} : Les valeurs de r_0 et $-\mathcal{E}_0$, et donc l'allure exacte de la trajectoire, dépendent de \mathcal{C} , c'està-dire des conditions initiales.

4 Cas du mouvement circulaire

4.1 Vecteurs vitesse et accélération

Application 3 - Caractéristiques des vecteurs vitesse et accélération

On considère une particule de masse m soumise au champ de gravitation newtonien créé par un astre de masse $M_O \gg m$ situé en O. Dans le référentiel \mathcal{R} lié à O, supposé galiléen, le mouvement de la particule est circulaire de centre O et de rayon r_0 dans le plan (xOy).

- 1. Rappeler l'expression des vecteurs vitesse et accélération en coordonnées cylindriques dans ce cas.
- 2. Justifier que le mouvement est uniforme.
- 3. Exprimer la norme de la vitesse en fonction de G, M_O et r_0 .
- 4. Faire l'application numérique en considérant le mouvement de la Terre en orbite autour du Soleil. Comparer cette valeur à celle obtenue par une autre méthode en exploitant les données et vos connaissances.

Données : masse du Soleil $M_S = 2.0 \times 10^{30} \, \mathrm{kg}$, rayon de l'orbite terrestre $r_T = 150 \times 10^6 \, \mathrm{km}$, constante gravitationnelle $G = 6.67 \times 10^{-11} \, \mathrm{N \cdot m^2 \cdot kg^{-2}}$.

Propriété _

Dans le cas d'un mouvement circulaire de rayon r_0 , l'accélération est radiale est dirigée vers le centre de la trajectoire : l'accélération est **centripète**.

$$\vec{a} = -\frac{GM_O}{r_0^2} \vec{e_r}.$$

Le mouvement est uniforme et la vitesse v_0 ne dépend que de la masse du centre attracteur et du rayon de la trajectoire :

$$v_0 = \sqrt{\frac{GM_O}{r_0}}.$$

Pour retrouver l'expression de la norme de la vitesse, on utilise le PFD.

L'énergie mécanique s'obtient directement :

$$\mathcal{E}_{\rm m} = \frac{1}{2} m v_0^2 - G \frac{m M_O}{r_0} = -G \frac{m M_O}{2r_0}.$$

Propriété

Pour une orbite circulaire, l'énergie mécanique du système est :

$$\mathcal{E}_{\rm m} = -G \frac{m M_O}{2r_0}.$$

 \mathbf{Rq} : Cette expression se généralise pour une orbite elliptique. Le rayon de la trajectoire circulaire est alors remplacé par le demi grand-axe de l'ellipse a:

$$\mathcal{E}_{\rm m} = -G \frac{mM_O}{2a}.$$

4.2 Période

Application 4 – Troisième loi de Kepler dans le cas d'une orbite circulaire

On reprend la situation de l'application 3.

- 1. Donner deux expressions de la vitesse v_0 de la particule, en fonction de G, M_O et r_0 , puis en fonction de r_0 et de la période de révolution T d'autre part.
- 2. Retrouver la troisième loi de Kepler.

Propriété

Dans le cas d'une orbite circulaire de rayon r_0 et de période T autour d'un astre de central de masse M_O , on démontre la troisième loi de Kepler :

$$\frac{T^2}{r_0^3} = \frac{4\pi^2}{GM_O}.$$

 \mathbf{Rq} : Comme précédemment, ce résultat se généralise à une orbite elliptique : a remplace r_0 et on a

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM_O}.$$

Le rapport T^2/a^3 ne dépend que de la masse de l'astre central : il est possible de le « peser » en observant les corps qui orbitent autour (Doc. ??).

4.3 Satellite géostationnaire

Définition

Un satellite géostationnaire est un satellite qui reste constamment au dessus d'un même point de la surface de la Terre :

- son orbite est contenue dans le plan de l'équateur;
- l'orbite géostationnaire est circulaire;
- le mouvement est synchrone avec la rotation de la Terre. La période de révolution d'un satellite géostationnaire est égale à un jour sidéral.

Ces propriétés sont largement exploitées pour de nombreux satellites d'observation (Doc. 3).

Application 5 – Orbite géostationnaire

On considère un satellite géostationnaire, assimilé à son centre de masse M.

- 1. Déterminer le rayon de la trajectoire, puis l'altitude du satellite.
- 2. Comparer le résultat obtenu à l'animation du Doc. 3.

Données : masse de la Terre $M_T=5.972\times 10^{24}\,\mathrm{kg}$, rayon de la Terre $R_T=6371\,\mathrm{km}$, constante gravitationnelle $G=6.67\times 10^{-11}\,\mathrm{N\cdot m^2\cdot kg^{-2}}$. Un jour sidéral dure 23 h 56 min 4 s.

Propriété.

L'orbite géostationnaire a une période d'environ $24\,\mathrm{h}$ et se situe à une altitude d'environ $36\,000\,\mathrm{km}$.

Jour sidéral

Le jour sidéral correspond à la période du mouvement de rotation de la Terre sur elle même, c'est-à-dire le temps nécessaire pour que la Terre effectue un tour sur elle même indépendamment de sa rotation autour du Soleil.

Application 6 – Jour sidéral (bonus)

Exprimer la durée d'un jour sidéral T_s en fonction de la durée du jour T et de la période de révolution de la Terre T_r . Faire l'application numérique.