Digital Interventions to Reduce Distress Among Frontline Health Care Providers: Analysis of Self-Perceived Stress

Binh Nguyen*, Andrei Torres, Alice Rueda, Walter Sim, Douglas M Campbell, Wendy Lou, Bill Kapralos, Lindsay Beavers, Adam Dubrowski, Venkat Bhat, and Sridhar Krishnan

Introduction

 Healthcare workers have reported experiencing moral distress due to the constraints of COVID-19 Pandemic

Objective

- Understand moral distress through the use VR simulation to simulate the ICU during COVID-19
- Use and evaluate potential digital interventions

Dataset

- n=15 healthcare workers
- Data collection involved
 - Passive physiological signals
 - Active mental health questionnaires

Dataset

- VR
 - Simulation
- Biopac
 - Respiration
 - Oxygen Saturation
 - Heart Rate
 - Skin conductance
- Mental health questionnaire
 - Perceived Stress Scale (PSS)-10

Methods

- Pre-processing
- Feature extraction
- Classification

Pre-processing

- Physiological data
 - Normalization of data
 - Segmented the data
 - Windowing of 20 seconds
- PSS-10
 - Clustered to low, moderate and high severity **

Segment 1 - Pre-brief (Entry Questionnaire) Pre-test: VR Simulation

Pre-test: VR Simulation

Post-test: VR Simulation

Post-test: VR Questionnaire)

Feature Analysis

Feature	Description	
Mean	Average value of the window	
Variance	Variance value of the window	
LF	Relative power of low frequency band of HRV (0.04-0.15 Hz)	
HF	Relative power of low frequency band of HRV (0.15-0.4 Hz)	
VLF	Relative power of low frequency band of HRV (0.0033-0.04 Hz)	
LF/HF	Ratio of Low and High frequency	
RMSSD	Root mean square of successive RR interval differences	

Classification and validation

- Classification evaluated the separability between the PSS-10 severities among the users
- SVM and DT
 - Synthetic Minority Oversampling Technique (SMOTE)
 - Weighted classification
 - Downsampling

Results

Results

- Collected n=15
- Experimental length were an average of 47.12 with a variation of 6.41 minutes
- The average length of Segment 1 and 2 were 22.16 and 24.96 minutes, respectively
- A total of 2144 windows were created from 20-second windows

DT	Weighted	Downsampling	SMOTE
	Classification		
Accuracy (%)	82.23	78.55	93.50
Precision (%)	79.79	78.11	93.41
Recall (%)	79.94	78.36	93.31
F1 (%)	79.82	78.14	93.35
SVM			
Accuracy (%)	87.42	70.75	77.69
Precision (%)	84.67	72.76	78.08
Recall (%)	85.65	70.48	77.03
F1 (%)	85.11	70.11	76.92

Discussion and Conclusion

- Our findings support literature to evaluate mental health through the use of physiological data
- Advantages of using a low-complexity algorithm are that it allows for potential deployment on edge computing devices
- Important to consider the potential limitations and ethical concerns such as data storage and analysis
- Further research is needed to evaluate the performance of the algorithm in real-world settings

Contact us!

Binh Nguyen

Email: binh.nguyen@torontomu.ca

Twitter: @binhkimnguyen / @sar_research

LinkedIn: linkedin.com/in/binhnguyens

