

Professor Blake Madill LATEXer Iris Jiang

Winter 2021

Contents

3	Splitting Fields	2
3.1	Existence of Splitting Field	2
3.2	Uniqueness of Splitting Fields	2
3.3	Degrees of Splitting Fields	3
	Index	3

3. Splitting Fields

Definition 3.1 — splits over.

Let E/F be a field extension. We say $f(x) \in F[x]$ split over E if E contains all roots of f(x), i.e., f(x) is a product of linear factors in E[x]

Definition 3.2 — splitting field.

Let \tilde{E}/F be a field extension, $f(x) \in F[x]$, and $FE \subseteq \tilde{E}$. If

- (1) f(x) splits over E
- (2) there is no proper subfield of E such that f(x) splits over

Then we say E a splitting field of $f(x) \in F[x]$ in \tilde{E}

3.1 Existence of Splitting Field

Theorem 3.1.1

Let $p(x) \in F[x]$ be irreducible. The quotient ring $F[x]/\langle p(x)\rangle$ is a field containing F and a root of p(x)

Theorem 3.1.2 — Kronecker.

Let $f(x) \in F[x]$. There exists a field E containing F such that f(x) splits over E

Theorem 3.1.3

Every $f(x) \in F[x]$ has a splitting field, which is a finite extension of F

3.2 Uniqueness of Splitting Fields

Definition 3.3 — extend.

Let $\phi: R \to R_1$ be a ring homomorphism, and $\Phi: R[x] \to R_1[x]$ be the unique ring

homomorphism satisfying $\Phi|_R = \phi$ and $\Phi(x) = x$. In this case, we say Φ **extends** ϕ . More generally, if $R \subseteq S$ and $R_1 \subseteq S_1$ and $\Phi: S \to S_1$ is a ring homomorphism with $\Phi|_R = \phi$, we say Φ **extends** ϕ .

Theorem 3.2.1

Let $\phi: F \to F_1$ be an isomorphism of fields and $f(x) \in F[x]$. Let $F[x] \to F_1[x]$ be the unique ring isomorphism which extends ϕ . Let $f_1(x) = \Phi(f(x))$ and E/F and E_1/F_1 be splitting fields of f(x) and $f_1(x)$ respectively. Then there exists an isomorphism $\psi: E \to E_1$ which extends ϕ .

Corollary 3.1

Any two splitting fields of $f(x) \in F[x]$ over F are F-isomorphic. Thus we can now say 'the' splitting field of f(x) over F

3.3 Degrees of Splitting Fields

Theorem 3.3.1

Let F be a field and $f(x) \in F[x]$ with $\deg(f) = n \ge 1$. If E/F is the splitting field of f(x), then [E:F]|n!