HW for PSTAT 207

Haosheng Zhou

Sept, 2022

SECTION 7.2

4.

$$F_{Y_n}(y) = \mathbb{P}\left(n[1 - F(X_{(n)})] \le y\right) \tag{1}$$

$$= \mathbb{P}\left(F(X_{(n)}) \ge 1 - \frac{y}{n}\right) \tag{2}$$

$$= \mathbb{P}\left(X_{(n)} \ge F^{-1}\left(1 - \frac{y}{n}\right)\right) \tag{3}$$

$$=1-\mathbb{P}\left(X_{(n)}< F^{-1}\left(1-\frac{y}{n}\right)\right) \tag{4}$$

$$=1-\left[\mathbb{P}\left(X_1 \le F^{-1}\left(1-\frac{y}{n}\right)\right)\right]^n\tag{5}$$

$$=1-\left[F\left(F^{-1}\left(1-\frac{y}{n}\right)\right)\right]^{n}\tag{6}$$

$$=1-\left(1-\frac{y}{n}\right)^n\to 1-e^{-y}\ (n\to\infty) \tag{7}$$

6.

Denote the maximum as M_n , so

$$\forall \varepsilon > 0, \mathbb{P}\left(|M_n - \theta| \ge \varepsilon\right) = \mathbb{P}\left(\theta - M_n \ge \varepsilon\right) \tag{8}$$

$$= \mathbb{P}\left(M_n \le \theta - \varepsilon\right) \tag{9}$$

$$= \left[\mathbb{P} \left(X_1 \le \theta - \varepsilon \right) \right]^n \tag{10}$$

$$= \frac{(\theta - \varepsilon)^n}{\theta^n} \to 0 \ (n \to \infty) \tag{11}$$

for small enough $\varepsilon \in (0, \theta)$, so $M_n \stackrel{p}{\to} \theta \ (n \to \infty)$.

SECTION 7.3:

1.

$$\log Z_n = \frac{\sum_{i=1}^n \log X_i}{n} \xrightarrow{p} \mathbb{E} \log X_1 \ (n \to \infty)$$
 (12)

by weak law of large numbers. As a result,

$$\mathbb{E}\log X_1 = \int_0^1 \log x \, dx = (x \log x - x)|_{(0,1)} = -1 \tag{13}$$

so

$$Z_n \stackrel{p}{\to} \frac{1}{e} \ (n \to \infty) \tag{14}$$

SECTION 7.5:

4.

Now $X_n \sim Gamma(n,\beta)$, so the MGF $M_{X_n}(t) = \left(1 - \frac{t}{\beta}\right)^{-n}$ and $M_{\frac{X_n}{n}}(t) = M_{X_n}(\frac{t}{n}) = \left(1 - \frac{t}{n\beta}\right)^{-n} \rightarrow e^{\frac{t}{\beta}} \ (n \to \infty)$ which is the MGF of the limiting distribution.

SECTION 7.6:

4.

 $X \sim B(n, \theta)$ is the sum of *i.i.d.* Bernoulli random variables, so CLT holds when n is large enough. We see that $\mathbb{E}X = n\theta, Var(X) = n\theta(1-\theta)$ and

$$\frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}} \xrightarrow{d} N(0, 1) \ (n \to \infty)$$
 (15)

now the probability is just

$$\mathbb{P}\left(X > \frac{n}{2}\right) = \mathbb{P}\left(\frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}} > \frac{\frac{n}{2} - n\theta}{\sqrt{n\theta(1 - \theta)}}\right) = 1 - \Phi\left(\frac{\frac{n}{2} - n\theta}{\sqrt{n\theta(1 - \theta)}}\right) \ge 0.9 \tag{16}$$

so $\frac{\frac{n}{2} - 0.45n}{\sqrt{n\theta(1-\theta)}} = -1.28$ (such n does not exist)

6. Now $\mathbb{E}\overline{X}_n = 75$, so

$$\mathbb{P}\left(|\overline{X}_n - 75| \ge 6\right) \le \frac{Var(\overline{X}_n)}{36} = \frac{\frac{225}{100}}{36} = \frac{225}{3600} = 0.0625 \tag{17}$$

by CLT

$$\frac{\overline{X}_n - 75}{\sqrt{2.25}} = \frac{\overline{X}_n - 75}{1.5} \xrightarrow{d} N(0, 1) \ (n \to \infty)$$
 (18)

SO

$$\mathbb{P}\left(|\overline{X}_n - 75| \ge 6\right) = \mathbb{P}\left(\overline{X}_n \le 69\right) + \mathbb{P}\left(\overline{X}_n \ge 81\right) \tag{19}$$

$$= \mathbb{P}\left(\frac{\overline{X}_n - 75}{1.5} \le -4\right) + \mathbb{P}\left(\frac{\overline{X}_n - 75}{1.5} \ge 4\right) \tag{20}$$

$$= \Phi(-4) + 1 - \Phi(4) = 2\Phi(-4) = 0.00006 \tag{21}$$

8.3.1

(a):

The joint likelihood is

$$p_{\alpha,\beta}(x) = \prod_{i=1}^{n} \frac{1}{B(\alpha,\beta)} \mathbb{I}_{x_i \in (0,1)} x_i^{\alpha-1} (1-x_i)^{\beta-1}$$
(22)

$$= \frac{1}{[B(\alpha,\beta)]^n} (\prod_i x_i)^{\alpha-1} [\prod_i (1-x_i)]^{\beta-1} \mathbb{I}_{x_1,\dots,x_n \in (0,1)}$$
 (23)

When α is known, β unknown,

$$p_{\beta}(x) = \frac{1}{[B(\alpha, \beta)]^n} \left[\prod_i (1 - x_i)^{\beta - 1} (\prod_i x_i)^{\alpha - 1} \mathbb{I}_{x_1, \dots, x_n \in (0, 1)} \right]$$
(24)

and by factorization theorem, $T(X) = \prod_{i=1}^{n} (1 - X_i)$ is sufficient.

When β is known, α is unknown,

$$p_{\alpha}(x) = \frac{1}{[B(\alpha, \beta)]^n} (\prod_i x_i)^{\alpha - 1} [\prod_i (1 - x_i)]^{\beta - 1} \mathbb{I}_{x_1, \dots, x_n \in (0, 1)}$$
 (25)

and by factorization theorem, $T(X) = \prod_{i=1}^{n} X_i$ is sufficient.

When both parameters are unknown,

$$p_{\alpha,\beta}(x) = \frac{1}{[B(\alpha,\beta)]^n} (\prod_i x_i)^{\alpha-1} [\prod_i (1-x_i)]^{\beta-1} \mathbb{I}_{x_1,\dots,x_n \in (0,1)}$$
(26)

and by factorization theorem, $T(X) = (\prod_{i=1}^n X_i, \prod_{i=1}^n (1 - X_i))$ is sufficient.

(b):

The joint likelihood is

$$p_{\alpha,\beta}(x) = \prod_{i=1}^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} e^{-\beta x_i} \mathbb{I}_{x_i > 0}$$
(27)

$$= \frac{\beta^{n\alpha}}{[\Gamma(\alpha)]^n} (\prod_i x_i)^{\alpha - 1} e^{-\beta \sum_i x_i} \mathbb{I}_{x_1, \dots, x_n > 0}$$
(28)

When α unknown, β known

$$p_{\alpha}(x) = \frac{\beta^{n\alpha}}{[\Gamma(\alpha)]^n} (\prod_i x_i)^{\alpha - 1} e^{-\beta \sum_i x_i} \mathbb{I}_{x_1, \dots, x_n > 0}$$

$$\tag{29}$$

and by factorization theorem, $T(X) = \prod_{i=1}^{n} X_i$ is sufficient.

When β unknown, α known

$$p_{\beta}(x) = \frac{\beta^{n\alpha}}{[\Gamma(\alpha)]^n} e^{-\beta \sum_i x_i} (\prod_i x_i)^{\alpha - 1} \mathbb{I}_{x_1, \dots, x_n > 0}$$
(30)

and by factorization theorem, $T(X) = \sum_{i=1}^{n} X_i$ is sufficient.

When both are unknown,

$$p_{\alpha,\beta}(x) = \frac{\beta^{n\alpha}}{[\Gamma(\alpha)]^n} e^{-\beta \sum_i x_i} (\prod_i x_i)^{\alpha-1} \mathbb{I}_{x_1,\dots,x_n > 0}$$
(31)

and by factorization theorem, $T(X) = (\prod_{i=1}^n X_i, \sum_{i=1}^n X_i)$ is sufficient.

The joint likelihood is

$$p_{N_1,N_2}(x) = \prod_{i=1}^n \frac{1}{N_2 - N_1} \mathbb{I}_{x_i \in \{N_1 + 1, \dots, N_2\}}$$
(32)

$$= \frac{1}{(N_2 - N_1)^n} \mathbb{I}_{x_1, \dots, x_n \in \{N_1 + 1, \dots, N_2\}}$$
(33)

When N_1 is known and N_2 unknown,

$$p_{N_2}(x) = \frac{1}{(N_2 - N_1)^n} \mathbb{I}_{x_{(n)} \le N_2} \mathbb{I}_{x_{(1)} \ge N_1 + 1} \mathbb{I}_{x_1, \dots, x_n \in \mathbb{Z}}$$
(34)

so by factorization theorem, $T(X) = X_{(n)}$ is sufficient.

When N_2 known and N_1 unknown,

$$p_{N_1}(x) = \frac{1}{(N_2 - N_1)^n} \mathbb{I}_{x_{(1)} \ge N_1 + 1} \mathbb{I}_{x_{(n)} \le N_2} \mathbb{I}_{x_1, \dots, x_n \in \mathbb{Z}}$$
(35)

so by factorization theorem, $T(X) = X_{(1)}$ is sufficient.

When both unknown,

$$p_{N_1,N_2}(x) = \frac{1}{(N_2 - N_1)^n} \mathbb{I}_{x_{(1)} \ge N_1 + 1} \mathbb{I}_{x_{(n)} \le N_2} \mathbb{I}_{x_1,\dots,x_n \in \mathbb{Z}}$$
(36)

so by factorization theorem, $T(X) = (X_{(1)}, X_{(n)})$ is sufficient.

The joint likelihood is

$$p_{\theta}(x) = \prod_{i=1}^{n} e^{\theta - x_i} \mathbb{I}_{x_i > \theta}$$

$$= e^{n\theta} \mathbb{I}_{x_{(1)} > \theta} e^{-\sum_{i} x_i}$$
(38)

$$=e^{n\theta}\mathbb{I}_{x_{(1)}>\theta}e^{-\sum_{i}x_{i}}\tag{38}$$

so by factorization theorem, $T(X) = X_{(1)}$ is sufficient.

(e):

The joint likelihood is

$$p_{\mu,\sigma}(x) = \prod_{i=1}^{n} \frac{1}{x_i \sigma \sqrt{2\pi}} e^{-\frac{(\log x_i - \mu)^2}{2\sigma^2}} \mathbb{I}_{x_i > 0}$$
(39)

$$= \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_i (\log x_i - \mu)^2} (2\pi)^{-\frac{n}{2}} (\prod_{i=1}^n x_i)^{-1} \mathbb{I}_{x_1, \dots, x_n > 0}$$

$$\tag{40}$$

$$= \sigma^{-n} e^{-\frac{n\mu^2}{2\sigma^2}} e^{-\frac{1}{2\sigma^2} \sum_i \log^2 x_i} e^{\frac{\mu}{\sigma^2} \sum_i \log x_i} (2\pi)^{-\frac{n}{2}} (\prod_{i=1}^n x_i)^{-1} \mathbb{I}_{x_1,\dots,x_n>0}$$

$$\tag{41}$$

so by factorization theorem, $T(X) = (\sum_{i=1}^n \log^2 X_i, \sum_{i=1}^n \log X_i)$ is sufficient.

(f):

The joint likelihood is

$$p_{\theta}(x) = \prod_{i=1}^{n} c(\theta) 2^{-\frac{x_i}{\theta}} \mathbb{I}_{x_i \in \{\theta, \theta+1, \dots\}}$$
 (42)

$$= c^{n}(\theta) 2^{-\frac{1}{\theta} \sum_{i} x_{i}} \mathbb{I}_{x_{1},\dots,x_{n} \in \theta + \mathbb{N}}$$

$$\tag{43}$$

$$= c^{n}(\theta) 2^{-\frac{1}{\theta} \sum_{i} x_{i}} \mathbb{I}_{x_{(1)} \ge \theta} \mathbb{I}_{\forall i, j, x_{i} - x_{j} \in \mathbb{Z}}$$

$$\tag{44}$$

so by factorization theorem, $T(X) = (\sum_{i=1}^{n} X_i, X_{(1)})$ is sufficient.

(g):

The joint likelihood is

$$p_{\theta,p}(x) = \prod_{i=1}^{n} (1-p)p^{x_i-\theta} \mathbb{I}_{x_i \in \{\theta,\theta+1,\dots\}}$$
(45)

$$= (1-p)^n p^{\sum_i x_i - n\theta} \mathbb{I}_{x_{(1)} \ge \theta} \mathbb{I}_{\forall i, j, x_i - x_j \in \mathbb{Z}}$$

$$\tag{46}$$

When p known θ unknown,

$$p_{\theta}(x) = p^{-n\theta} \mathbb{I}_{x_{(1)} > \theta} (1 - p)^n p^{\sum_i x_i} \mathbb{I}_{\forall i, j, x_i - x_i \in \mathbb{Z}}$$

$$\tag{47}$$

so by factorization theorem, $T(X) = X_{(1)}$ is sufficient.

When θ known p unknown,

$$p_p(x) = (1-p)^n p^{\sum_i x_i - n\theta} \mathbb{I}_{x_{(1)} \ge \theta} \mathbb{I}_{\forall i, j, x_i - x_j \in \mathbb{Z}}$$

$$\tag{48}$$

so by factorization theorem, $T(X) = \sum_{i=1}^{n} X_i$ is sufficient.

When both unknown,

$$p_{\theta,p}(x) = (1-p)^n p^{\sum_i x_i - n\theta} \mathbb{I}_{x_{(1)} \ge \theta} \mathbb{I}_{\forall i,j,x_i - x_j \in \mathbb{Z}}$$

$$\tag{49}$$

so by factorization theorem, $T(X) = (\sum_{i=1}^{n} X_i, X_{(1)})$ is sufficient.

8.3.2

The joint density is

$$p_{\sigma}(x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \alpha\sigma)^2}{2\sigma^2}}$$

$$\tag{50}$$

$$= (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_i (x_i - \alpha\sigma)^2}$$
(51)

$$= \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_i x_i^2} e^{\frac{\alpha}{\sigma} \sum_i x_i} e^{-\frac{\alpha^2}{2}} (2\pi)^{-\frac{n}{2}}$$
(52)

$$= g_{\sigma}(T(X)) \cdot h(x) \tag{53}$$

where $g_{\sigma}(T(X)) = \sigma^{-n} e^{-\frac{1}{2\sigma^2}T_2(x)} e^{\frac{\alpha}{\sigma}T_1(x)}$, $h(x) = e^{-\frac{\alpha^2}{2}}(2\pi)^{-\frac{n}{2}}$, so by factorization theorem, T(X) is sufficient for σ . Now consider $g(x,y) = (1+\alpha^2)x^2 - (1+n\alpha^2)y$, so $\forall \sigma, \mathbb{E}_{\sigma}g(T(X)) = 0$ but g(T(X)) is not almost surely 0 since

$$(1+\alpha^2)\mathbb{E}(\sum_{i} X_i)^2 = (1+\alpha^2)[n\sigma^2(1+\alpha^2) + n(n-1)\alpha^2\sigma^2] = (1+\alpha^2)n\sigma^2(1+n\alpha^2)$$
(54)

and

$$(1 + n\alpha^2)\mathbb{E}\sum_{i} X_i^2 = (1 + n\alpha^2)n\sigma^2(1 + \alpha^2)$$
(55)

but

$$g(T(X)) = (1 + \alpha^2)(\sum_{i} X_i)^2 - (1 + n\alpha^2)(\sum_{i} X_i^2)$$
(56)

that's why the family of distribution of T(X) is not complete.

8.3.3

No, if it's complete then since it's sufficient, it's minimal sufficient, it's the function of all sufficient statistic. Since $T(X) = (\sum_i X_i, \sum_i X_i^2)$ is a sufficient statistic for the normal distribution, and notice that X is not a function of T(X) (there exists $x = e_1, y = e_2 \in \mathbb{R}^n$ such that $T(x) = T(y), x \neq y$), so it's not complete.

8.3.11

(a):

Consider likelihood ratio

$$\frac{p_{\lambda}(x)}{p_{\lambda}(y)} = \frac{\prod_{i=1}^{n} \lambda^{x_i} e^{-\lambda}}{\prod_{i=1}^{n} \lambda^{y_i} e^{-\lambda}}$$

$$= \frac{\lambda^{\sum_{i} x_i} e^{-n\lambda}}{\lambda^{\sum_{i} y_i} e^{-n\lambda}}$$
(57)

$$= \frac{\lambda^{\sum_{i} x_{i}} e^{-n\lambda}}{\lambda^{\sum_{i} y_{i}} e^{-n\lambda}} \tag{58}$$

$$= \lambda^{\sum_i x_i - \sum_i y_i} \tag{59}$$

is independent of λ iff $\sum_i x_i = \sum_i y_i$, so $T(X) = \sum_{i=1}^n X_i$ is minimal sufficient.

Consider likelihood ratio

$$\frac{p_{\theta}(x)}{p_{\theta}(y)} = \frac{\prod_{i=1}^{n} \frac{1}{\theta} \mathbb{I}_{x_{i} \in (0,\theta)}}{\prod_{i=1}^{n} \frac{1}{\theta} \mathbb{I}_{y_{i} \in (0,\theta)}}$$

$$= \frac{\mathbb{I}_{x_{(1)} > 0} \mathbb{I}_{x_{(n)} < \theta}}{\mathbb{I}_{y_{(1)} > 0} \mathbb{I}_{y_{(n)} < \theta}}$$
(60)

is independent of θ iff $x_{(n)} = y_{(n)}$, so $T(X) = X_{(n)}$ is minimal sufficient.

(c):

Consider likelihood ratio

$$\frac{p_p(x)}{p_p(y)} = \frac{\prod_{i=1}^n p(1-p)^{x_i}}{\prod_{i=1}^n p(1-p)^{y_i}}$$

$$= (1-p)^{\sum_i x_i - \sum_i y_i}$$
(62)

is independent of p iff $\sum_i x_i = \sum_i y_i$, so $T(X) = \sum_{i=1}^n X_i$ is minimal sufficient. (d):

Consider likelihood ratio

$$\frac{p_{N}(x)}{p_{N}(y)} = \frac{\prod_{i=1}^{n} \frac{1}{N} \mathbb{I}_{x_{i} \in \{1, \dots, N\}}}{\prod_{i=1}^{n} \frac{1}{N} \mathbb{I}_{y_{i} \in \{1, \dots, N\}}}$$

$$= \frac{\mathbb{I}_{x_{1}, \dots, x_{n} \in \{1, \dots, N\}}}{\mathbb{I}_{y_{1}, \dots, y_{n} \in \{1, \dots, N\}}}$$

$$= \frac{\mathbb{I}_{x_{(1)} \ge 1} \mathbb{I}_{x_{(n)} \le N} \mathbb{I}_{x_{1}, \dots, x_{n} \in \mathbb{Z}}}{\mathbb{I}_{y_{(1)} \ge 1} \mathbb{I}_{y_{(n)} \le N} \mathbb{I}_{y_{1}, \dots, y_{n} \in \mathbb{Z}}}$$
(65)

is independent of N iff $x_{(n)} = y_{(n)}$, so $T(X) = X_{(n)}$ is minimal sufficient.

(e):

Consider joint likelihood

$$\frac{p_{\mu,\sigma}(x)}{p_{\mu,\sigma}(y)} = e^{-\frac{1}{2\sigma^2} \left[\sum_i (y_i^2 - x_i^2) + 2\mu \sum_i (x_i - y_i)\right]}$$
(67)

to find it's independent of μ , σ iff $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, $\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2$, so $T(X) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ is minimal sufficient statistic.

(f):

Consider joint likelihood

$$\frac{p_{\alpha,\beta}(x)}{p_{\alpha,\beta}(y)} = \frac{\frac{\beta^{n\alpha}}{[\Gamma(\alpha)]^n} e^{-\beta \sum_i x_i} (\prod_i x_i)^{\alpha-1} \mathbb{I}_{x_1,\dots,x_n>0}}{\frac{\beta^{n\alpha}}{[\Gamma(\alpha)]^n} e^{-\beta \sum_i y_i} (\prod_i y_i)^{\alpha-1} \mathbb{I}_{y_1,\dots,y_n>0}}$$
(68)

$$= e^{-\beta(\sum_{i} x_{i} - \sum_{i} y_{i})} \left(\prod_{i} \frac{x_{i}}{y_{i}}\right)^{\alpha - 1} \frac{\mathbb{I}_{x_{1}, \dots, x_{n} > 0}}{\mathbb{I}_{y_{1}, \dots, y_{n} > 0}}$$

$$(69)$$

to find it's independent of α, β iff $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i, \prod_{i=1}^{n} \frac{x_i}{y_i} = 1$, so $T(X) = (\sum_{i=1}^{n} X_i, \prod_{i=1}^{n} X_i)$ is minimal sufficient statistic.

(g):

Consider joint likelihood

$$\frac{p_{\alpha,\beta}(x)}{p_{\alpha,\beta}(y)} = \frac{\frac{1}{[B(\alpha,\beta)]^n} (\prod_i x_i)^{\alpha-1} [\prod_i (1-x_i)]^{\beta-1} \mathbb{I}_{x_1,\dots,x_n \in (0,1)}}{\frac{1}{[B(\alpha,\beta)]^n} (\prod_i y_i)^{\alpha-1} [\prod_i (1-y_i)]^{\beta-1} \mathbb{I}_{y_1,\dots,y_n \in (0,1)}}$$
(70)

$$= \left(\prod_{i} \frac{x_{i}}{y_{i}}\right)^{\alpha-1} \left(\prod_{i} \frac{1-x_{i}}{1-y_{i}}\right)^{\beta-1} \frac{\mathbb{I}_{x_{1},\dots,x_{n} \in \{0,1\}}}{\mathbb{I}_{y_{1},\dots,y_{n} \in \{0,1\}}}$$

$$(71)$$

to find it's independent of α, β iff $\prod_{i=1}^n \frac{x_i}{y_i} = 1, \prod_{i=1}^n \frac{1-x_i}{1-y_i} = 1$, so $T(X) = (\prod_{i=1}^n X_i, \prod_{i=1}^n (1-X_i))$ is minimal sufficient statistic.

(h):

Consider joint likelihood

$$\frac{p_{\theta}(x)}{p_{\theta}(y)} = \frac{\prod_{i} \frac{2}{\theta^{2}} (\theta - x_{i}) \mathbb{I}_{x_{i} \in (0,\theta)}}{\prod_{i} \frac{2}{\theta^{2}} (\theta - y_{i}) \mathbb{I}_{y_{i} \in (0,\theta)}}$$

$$(72)$$

$$= \frac{\prod_{i}(\theta - x_{i})}{\prod_{i}(\theta - y_{i})} \frac{\mathbb{I}_{x_{(1)} > 0, x_{(n)} < \theta}}{\mathbb{I}_{y_{(1)} > 0, y_{(n)} < \theta}}$$
(73)

$$= \frac{\prod_{i}(\theta - x_{(i)})}{\prod_{i}(\theta - y_{(i)})} \frac{\mathbb{I}_{x_{(1)} > 0, x_{(n)} < \theta}}{\mathbb{I}_{y_{(1)} > 0, y_{(n)} < \theta}}$$
(74)

to find it's independent of θ iff $\forall i, x_{(i)} = y_{(i)}$, so $T(X) = (X_{(1)}, ..., X_{(n)})$ is minimal sufficient statistic (we can also argue by noticing that this is a location family with density $f(x - \theta)$).

8.3.18.

Since $X_1, ..., X_n \sim N(\theta, 1)$, we know that X is multi-variate Gaussian and $(\sum_i a_i X_i, \sum_i X_i)$ is a linear transformation of X so it's also a Gaussian random vector. As a result, being independent is equivalent to being uncorrelated.

$$cov(\sum_{i} a_i X_i, \sum_{j} X_j) = \sum_{i,j} a_i cov(X_i, X_j) = \sum_{i} a_i$$

$$(75)$$

that's why they are independent iff $\sum_i a_i = 0$.

8.3.20.

WLOG, just show it for n = 2.

Consider $V = \frac{X_1}{X_1 + X_2}$ and use the Jacobian of the mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = \left(x_1, \frac{x_1}{x_1 + x_2}\right)$ to see that the joint density

$$f_{X_1,V}(x_1,v) = f_{X_1,X_2}(x_1,x_2) \cdot \left| \det \frac{\partial(x_1,x_2)}{\partial(x,v)} \right|$$
 (76)

$$= \theta^2 e^{-\theta x_1 - \theta(\frac{1}{v} - 1)x_1} \cdot \frac{x_1}{v^2} \tag{77}$$

$$= \theta^2 e^{-\theta \frac{x_1}{v}} \cdot \frac{x_1}{v^2} \ (x_1 > 0, 0 < v < 1) \tag{78}$$

so the marginal density of V is given by

$$f_V(v) = \int_0^\infty f_{X_1,V}(x_1,v) \, dx_1 = 1 \, (v \in (0,1)) \tag{79}$$

so $V \sim U(0,1)$ is uniform and of course ancillary.

Notice that \overline{X} is complete and sufficient, by Basu's theorem, \overline{X} is independent of $\frac{X_1}{X_1+X_2}$. 5.5.1.

(a):

Binomial is in exponential family only when n is known! Support does not depend on p

$$p_p(x) = p^{\sum_i x_i} (1 - p)^{n - \sum_i x_i}$$
(80)

$$= e^{\left(\sum_{i} x_{i}\right) \log p + \left(n - \sum_{i} x_{i}\right) \log\left(1 - p\right)} \tag{81}$$

$$=e^{n\log(1-p)+\sum_{i}x_{i}\log\frac{p}{1-p}}$$
(82)

where $c(p) = e^{n \log(1-p)}, Q(p) = \log \frac{p}{1-p}, T(x) = \sum_{i} x_i$.

(b):

Support does not depend on α, β

$$p_{\alpha,\beta}(x) = \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)} (\prod_i x_i)^{\alpha-1} e^{-\beta \sum_i x_i}$$
(83)

If α is known,

$$p_{\beta}(x) = \frac{\beta^{n\alpha}}{\Gamma^{n}(\alpha)} (\prod_{i} x_{i})^{\alpha - 1} e^{-\beta \sum_{i} x_{i}}$$
(84)

so
$$c(\beta) = \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)}, h(x) = (\prod_i x_i)^{\alpha-1}, Q(\beta) = -\beta, T(x) = \sum_i x_i.$$

If β is known,

$$p_{\alpha}(x) = \frac{\beta^{n\alpha}}{\Gamma^{n}(\alpha)} (\prod_{i} x_{i})^{\alpha - 1} e^{-\beta \sum_{i} x_{i}}$$
(85)

$$= \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)} e^{-\beta \sum_i x_i} e^{(\alpha-1) \sum_i \log x_i}$$
(86)

so
$$c(\alpha) = \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)}, h(x) = e^{-\beta \sum_i x_i}, Q(\alpha) = \alpha - 1, T(x) = \sum_i \log x_i.$$
 (c):

Support does not depend on α, β

$$p_{\alpha,\beta}(x) = \frac{1}{B^n(\alpha,\beta)} (\prod_i x_i)^{\alpha-1} [\prod_i (1-x_i)]^{\beta-1}$$
 (87)

If α is known,

$$p_{\beta}(x) = \frac{1}{B^{n}(\alpha, \beta)} (\prod_{i} x_{i})^{\alpha - 1} [\prod_{i} (1 - x_{i})]^{\beta - 1}$$
(88)

$$= \frac{1}{B^n(\alpha,\beta)} \left(\prod_i x_i\right)^{\alpha-1} e^{(\beta-1)\sum_i \log(1-x_i)}$$
(89)

so
$$c(\beta) = \frac{1}{B^n(\alpha,\beta)}$$
, $h(x) = (\prod_i x_i)^{\alpha-1}$, $Q(\beta) = \beta - 1$, $T(x) = \sum_i \log(1 - x_i)$
If β is known,

$$p_{\alpha}(x) = \frac{1}{B^{n}(\alpha, \beta)} (\prod_{i} x_{i})^{\alpha - 1} [\prod_{i} (1 - x_{i})]^{\beta - 1}$$
(90)

$$= \frac{1}{B^{n}(\alpha, \beta)} \left[\prod_{i} (1 - x_{i}) \right]^{\beta - 1} e^{(\alpha - 1) \sum_{i} \log x_{i}}$$
(91)

so
$$c(\alpha) = \frac{1}{B^n(\alpha,\beta)}, h(x) = [\prod_i (1-x_i)]^{\beta-1}, Q(\alpha) = \alpha-1, T(x) = \sum_i \log x_i$$
 (d):

Support does not depend on p

$$p_p(x) = (1-p)^x p^r = p^r e^{x \log(1-p)}$$
(92)

so
$$c(p) = p^r, Q(p) = \log(1 - p), T(x) = x.$$

5.5.5.

(a):

Support does not depend on α, β

$$p_{\alpha,\beta}(x) = \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)} (\prod_i x_i)^{\alpha-1} e^{-\beta \sum_i x_i}$$
(93)

$$= \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)} e^{(\alpha-1)\sum_i \log x_i} e^{-\beta \sum_i x_i}$$
(94)

so
$$c(\alpha, \beta) = \frac{\beta^{n\alpha}}{\Gamma^n(\alpha)}$$
, $Q_1(\alpha, \beta) = \alpha - 1$, $T_1(x) = \sum_i \log x_i$, $Q_2(\alpha, \beta) = -\beta$, $T_2(x) = \sum_i x_i$. (b):

Support does not depend on α, β

$$p_{\alpha,\beta}(x) = \frac{1}{B^n(\alpha,\beta)} (\prod_i x_i)^{\alpha-1} [\prod_i (1-x_i)]^{\beta-1}$$
(95)

$$= \frac{1}{B^n(\alpha,\beta)} e^{(\alpha-1)\sum_i \log x_i} e^{(\beta-1)\sum_i \log(1-x_i)}$$
(96)

so
$$c(\alpha, \beta) = \frac{1}{B^n(\alpha, \beta)}, Q_1(\alpha, \beta) = \alpha - 1, T_1(x) = \sum_i \log x_i, Q_2(\alpha, \beta) = \beta - 1, T_2(x) = \sum_i \log(1 - x_i).$$

8.8.2

(a):

Since loss is SEL, Bayes estimator is just posterior mean.

The likelihood is

$$p_{\lambda}(x) = \lambda^{\sum_{i} x_{i}} e^{-n\lambda} \tag{97}$$

so the posterior is

$$\pi(\lambda|x) \propto \pi(\lambda) \cdot p_{\lambda}(x) = \lambda^{\sum_{i} x_{i}} e^{-(n+1)\lambda}$$
 (98)

is actually a gamma distribution $\lambda|_x \sim \Gamma(\sum_i x_i + 1, n + 1)$, so posterior mean is $\frac{\sum_i x_i + 1}{n+1}$. So $\delta_{\pi}(X) = \frac{\sum_{i=1}^n X_i + 1}{n+1}$ is the Bayes estimator.

(b):

Just need to get $\mathbb{E}_{\lambda \sim \pi(\cdot|x)} e^{-\lambda}$. Now the posterior distribution is already known, and notice that if $Z \sim \Gamma(\alpha, \beta)$, then

$$\mathbb{E}e^{-Z} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_0^{\infty} z^{\alpha - 1} e^{-(\beta + 1)z} dz \tag{99}$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha)(\beta+1)^{\alpha}} \int_0^\infty u^{\alpha-1} e^{-u} du \ (u = (\beta+1)z)$$
 (100)

$$=\frac{\beta^{\alpha}}{(\beta+1)^{\alpha}}\tag{101}$$

so plugging in numbers to see that $\mathbb{E}_{\lambda \sim \pi(\cdot|x)} e^{-\lambda} = \left(\frac{n+1}{n+2}\right)^{\sum_{i=1}^{n} x_i + 1}$. So Bayes estimator is $\delta_{\pi}(X) = \left(\frac{n+1}{n+2}\right)^{\sum_{i=1}^{n} X_i + 1}$.

Under SEL, the Bayes estimator is the posterior mean. Now the likelihood is

$$p_{\theta}(x) = \theta^{-n} (x_1, ..., x_n \in (0, \theta))$$
 (102)

so by the Bayes theorem, the posterior is

$$\pi(\theta|x) \propto p_{\theta}(x) \cdot \pi(\theta) = \theta^{-n} \frac{\alpha a^{\alpha}}{\theta^{\alpha+1}}$$
 (103)

$$\propto \theta^{-n-\alpha-1} \ (\theta \ge a, \theta \ge x_{(n)})$$
 (104)

let's set $\beta = \max\{a, x_{(n)}\}$, so $\theta \ge \beta$ is the support of the posterior.

Notice that

$$\int_{\beta}^{\infty} \theta^{-n-\alpha-1} d\theta = \frac{\beta^{-n-\alpha}}{n+\alpha}$$
 (105)

so $\pi(\theta|x) = (n+\alpha)\beta^{n+\alpha}\theta^{-n-\alpha-1}$ $(\theta \ge \beta)$ is the posterior density and to calculate the expectation

$$(n+\alpha)\beta^{n+\alpha} \int_{\beta}^{\infty} \theta^{-n-\alpha} d\theta = (n+\alpha)\beta^{n+\alpha} \frac{\beta^{-n-\alpha+1}}{n+\alpha-1} = \beta \frac{n+\alpha}{n+\alpha-1}$$
 (106)

so the Bayes estimator is $\delta_{\pi}(X) = \max \{a, X_{(n)}\} \cdot \frac{n+\alpha}{n+\alpha-1}$.

8.8.10

Since loss is SEL, Bayes estimator is just posterior mean. Likelihood is

$$p_{\theta}(x) = e^{n\theta - \sum_{i} x_{i}} (x_{1}, ..., x_{n} > \theta)$$
 (107)

so by the Bayes theorem, the posterior is

$$\pi(\theta|x) \propto p_{\theta}(x) \cdot \pi(\theta) = e^{n\theta - \sum_{i} x_{i}} \cdot e^{-\theta} \ (0 < \theta < x_{(1)})$$
 (108)

$$\propto e^{(n-1)\theta} \ (0 < \theta < x_{(1)})$$
 (109)

notice that

$$\int_0^{x_{(1)}} e^{(n-1)\theta} d\theta = \frac{e^{(n-1)x_{(1)}} - 1}{n-1}$$
(110)

so $\pi(\theta|x) = \frac{n-1}{e^{(n-1)x_{(1)}}-1}e^{(n-1)\theta}$ $(0 < \theta < x_{(1)})$ is the posterior density and to calculate the expectation

$$\frac{n-1}{e^{(n-1)x_{(1)}} - 1} \int_0^{x_{(1)}} \theta e^{(n-1)\theta} d\theta = \frac{n-1}{e^{(n-1)x_{(1)}} - 1} \frac{1}{n-1} \left(x_{(1)} e^{(n-1)x_{(1)}} - \frac{e^{(n-1)x_{(1)}} - 1}{n-1} \right)$$
(111)

$$=\frac{x_{(1)}e^{(n-1)x_{(1)}}}{e^{(n-1)x_{(1)}}-1}-\frac{1}{n-1}$$
(112)

so the Bayes estimator is $\delta_{\pi}(X) = \frac{X_{(1)}e^{(n-1)X_{(1)}}}{e^{(n-1)X_{(1)}}-1} - \frac{1}{n-1}$.

8.8.11

Consider the risk $R(\theta, \delta_a(X))$ that

$$R(\theta, \delta_a(X)) = \mathbb{E}_{\theta} \left[\theta - a \left(X_{(1)} - \frac{1}{n} \right) \right]^2$$
(113)

with the density of $X_{(1)}$ as

$$f_1(x) = ne^{n(\theta - x)} \quad (x > \theta) \tag{114}$$

so the risk can be calculated as

$$R(\theta, \delta_a(X)) = \int_{\theta}^{\infty} \left(\theta + \frac{a}{n} - ax\right)^2 ne^{n(\theta - x)} dx = n \int_{0}^{\infty} \left[(1 - a)\theta + \frac{a}{n} - au \right]^2 e^{-nu} du$$
 (115)

change variables v = nu to see

$$R(\theta, \delta_a(X)) = \int_0^\infty \left[(1-a)\theta + \frac{a}{n} - \frac{a}{n}v \right]^2 e^{-v} dv$$
(116)

$$= \left[(1-a)\theta + \frac{a}{n} \right]^2 - 2\left[(1-a)\theta + \frac{a}{n} \right] \frac{a}{n} + \frac{2a^2}{n^2}$$
 (117)

$$= \left[(1-a)\theta + \frac{a}{n} \right]^2 - \frac{2a(1-a)\theta}{n} \tag{118}$$

$$= (1-a)^2 \theta^2 + \frac{a^2}{n^2} \tag{119}$$

so $\sup_{\theta>0} R(\theta, \delta_a(X)) = \begin{cases} +\infty & a \neq 1 \\ \frac{1}{n^2} & a = 1 \end{cases}$ so $a^* = 1$ achieves the inf and the minimax decision rule in this class is $\delta(X) = (X_{(1)} - \frac{1}{n}).$

In minimax setting, take sup w.r.t. $\theta \in \Theta$ and the parameter space does not depend on sample realization x. 8.8.3

Compute the risk

$$R(\theta, \delta_{\alpha}(X)) = \mathbb{E}_{\theta}(\theta - \overline{X} - \alpha)^{2}$$
(120)

$$= (\theta - \alpha)^2 - 2(\theta - \alpha)\mathbb{E}_{\theta}\overline{X} + \mathbb{E}_{\theta}\overline{X}^2$$
(121)

$$= (\theta - \alpha)^2 - 2(\theta - \alpha)\theta + \frac{n\theta + n(n-1)\theta^2}{n^2}$$
(122)

$$= -\frac{1}{n}\theta^2 + \frac{1}{n}\theta + \alpha^2 \tag{123}$$

so $\sup_{\theta \in (0,1)} R(\theta, \delta_{\alpha}(X)) = \frac{1}{4n} + \alpha^2$, and $\alpha = 0$ achieves $\inf_{\alpha \in \mathbb{R}} \sup_{\theta \in (0,1)} R(\theta, \delta_{\alpha}(X))$, so minimax decision rule is $\delta(X) = \overline{X}$.

8.8.5

Compute posterior

$$\pi(\theta|x) \propto p_{\theta}(x) \cdot \pi(\theta) = \theta^{x} (1 - \theta)^{n - x} \cdot 1 \ (0 < \theta < 1)$$
(124)

so the posterior is actually Beta(x+1, n-x+1).

Compute expected posterior loss that

$$l(d,x) = \int_{\Theta} L(\theta,d) \cdot \pi(\theta|x) \, d\theta \tag{125}$$

$$= \frac{1}{B(x+1, n-x+1)} \int_0^1 \frac{(\theta-d)^2}{\theta(1-\theta)} \cdot \theta^x (1-\theta)^{n-x} d\theta$$
 (126)

simplify to get

$$\frac{1}{B(x+1,n-x+1)} \int_0^1 (\theta - d)^2 \theta^{x-1} (1-\theta)^{n-x-1} d\theta$$
 (127)

$$= \frac{1}{B(x+1,n-x+1)} \left[\int_0^1 \theta^{x+1} (1-\theta)^{n-x-1} d\theta - 2d \int_0^1 \theta^x (1-\theta)^{n-x-1} d\theta + d^2 \int_0^1 \theta^{x-1} (1-\theta)^{n-x-1} d\theta \right]$$
(128)

$$= \frac{B(x+2,n-x)}{B(x+1,n-x+1)} - 2d\frac{B(x+1,n-x)}{B(x+1,n-x+1)} + d^2\frac{B(x,n-x)}{B(x+1,n-x+1)}$$
(129)

$$=\frac{x+1}{n-x}-2d\frac{n+1}{n-x}+d^2\frac{n(n+1)}{x(n-x)}$$
(130)

then minimize EPL w.r.t. d to get

$$d_0(x) = \arg\min_{d} l(d, x) = \frac{x}{n} \tag{131}$$

so $\delta_{\pi}(X) = \frac{X}{n}$ is Bayes estimator.

Notice that the Bayes estimator has risk

$$R(\theta, \delta_{\pi}(X)) = \frac{1}{\theta(1-\theta)} Var\left(\frac{X}{n}\right) = \frac{1}{n}$$
(132)

is constant in θ , so it must also be minimax.

SECTION 10.6

2.

(b):

The expected posterior loss is

$$l(d_0, x) = \mathbb{E}_{\theta \sim \pi(\cdot|x)} L(\theta, d_0) \tag{133}$$

$$=2\pi(\theta_1|x)\tag{134}$$

$$l(d_1, x) = \mathbb{E}_{\theta \sim \pi(\cdot|x)} L(\theta, d_1) \tag{135}$$

$$=\pi(\theta_0|x)\tag{136}$$

so now the Bayes test is a test that rejects H_0 iff $\pi(\theta_0|x) < 2\pi(\theta_1|x)$, i.e. $\pi(\theta_0)p_{\theta_0}(x) < 2\pi(\theta_1)p_{\theta_1}(x)$ so $\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} > \frac{\pi_0}{2\pi_1}$. This tells us that the family of Bayes test is

$$\delta_k(x) \tag{137}$$

that rejects H_0 iff $\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = \frac{\theta_1^{\sum_i x_i} (1-\theta_1)^{5-\sum_i x_i}}{\theta_0^{\sum_i x_i} (1-\theta_0)^{5-\sum_i x_i}} = \left(\frac{3}{2}\right)^{\sum_i x_i} \left(\frac{1}{2}\right)^{5-\sum_i x_i} > k$ so $\sum_i x_i > \log_3(32k) = c$. So consider the family of Bayes test

$$\delta_c(x) \tag{138}$$

that rejects H_0 iff $\sum_i x_i > c$.

In order to find the minimax test, we want to find c such that the risk function is constant.

$$R(\theta_0, \delta_c) = \mathbb{E}_{X \sim p_{\theta_0}} L(\theta_0, \delta_c(X)) = \mathbb{P}_{\theta_0} \left(\delta_c(X) = d_1 \right)$$
(139)

$$= \mathbb{P}_{\theta_0} \left(\sum_i X_i > c \right) \tag{140}$$

with $\sum_i X_i|_{\theta=\theta_0} \sim B(5,\frac{1}{2})$. So $R(\theta_0,\delta_c) = \sum_{k=c+1}^5 {5 \choose k} \frac{1}{32}$. Similarly,

$$R(\theta_1, \delta_c) = \mathbb{E}_{X \sim p_{\theta_1}} L(\theta_1, \delta_c(X)) = 2\mathbb{P}_{\theta_1} \left(\delta_c(X) = d_0 \right)$$
(141)

$$=2\mathbb{P}_{\theta_1}\left(\sum_i X_i \le c\right) \tag{142}$$

with $\sum_{i} X_{i}|_{\theta=\theta_{1}} \sim B(5, \frac{3}{4})$. So $R(\theta_{1}, \delta_{c}) = 2 \sum_{k=0}^{c} {5 \choose k} (\frac{3}{4})^{k} (\frac{1}{4})^{5-k}$.

Now set the values of risk function at two points to be equal

$$16\left(32 - \sum_{k=0}^{c} {5 \choose k}\right) = \sum_{k=0}^{c} {5 \choose k} 3^k \tag{143}$$

$$512 = \sum_{k=0}^{c} {5 \choose k} (3^k + 16) \tag{144}$$

to find that such c is between 2 to 3 and does not exist. However, this is telling us that when $\sum_i X_i$ is 0 or 1 or 2 we shall reject H_1 and when the sum is 4 or 5 we shall reject H_0 . So why don't we consider the randomized decision rule that when the sum is 3 we have p probability of rejecting H_0 . Let's compute the risk function

$$R(\theta_0, \delta_c) = \sum_{k=4.5}^{5} {5 \choose k} \frac{1}{32} + {5 \choose 3} \frac{1}{32} p$$
(145)

$$=\frac{6+10p}{32} \tag{146}$$

and

$$R(\theta_1, \delta_c) = 2 \sum_{k=0,1,2} {5 \choose k} \left(\frac{3}{4}\right)^k \left(\frac{1}{4}\right)^{5-k} + 2 {5 \choose 3} \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right)^2 (1-p)$$
 (147)

$$=2\frac{1+15+90+270(1-p)}{4^5} \tag{148}$$

$$=\frac{212+540(1-p)}{4^5}=\frac{752-540p}{1024} \tag{149}$$

so $\sup_{\theta} R(\theta, \delta_c(X)) = \max\left\{\frac{6+10p}{32}, \frac{752-540p}{1024}\right\}$, so to minimize it, these two numbers shall be the same and $p = \frac{28}{43}$ so the minimax rule is to reject H_0 iff $\sum_{i=1}^5 X_i$ is 4 or 5 and $\frac{28}{43}$ probability to reject when the sum is 3.

(c):

The Bayes test is to reject H_0 iff $\left(\frac{3}{2}\right)^{\sum_i x_i} \left(\frac{1}{2}\right)^{5-\sum_i x_i} > k = \frac{\pi_0}{2\pi_1} = \frac{1}{4}$ so it's equivalent to saying $\sum_i x_i \geq 2$.

The expected posterior loss is

$$l(d_0, x) = \mathbb{E}_{\theta \sim \pi(\cdot|x)} L(\theta, d_0) \tag{150}$$

$$=\pi(\theta_1|x)\tag{151}$$

$$l(d_1, x) = \mathbb{E}_{\theta \sim \pi(\cdot|x)} L(\theta, d_1) \tag{152}$$

$$= \pi(\theta_0|x) \tag{153}$$

so now the Bayes test is a test that rejects H_0 iff $\pi(\theta_0|x) < \pi(\theta_1|x)$, i.e. $\pi(\theta_0)p_{\theta_0}(x) < \pi(\theta_1)p_{\theta_1}(x)$ so $\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} > \frac{\pi_0}{\pi_1} = 2$.

Now let's calculate the likelihood ratio

$$\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = \frac{\theta_1^n e^{-\theta_1 \sum_i x_i}}{\theta_0^n e^{-\theta_0 \sum_i x_i}} = 2^n e^{-\sum_i x_i} > 2$$
 (154)

so we shall reject H_0 iff $n \log 2 - \sum_i X_i > \log 2$, i.e. $\sum_{i=1}^n X_i < (n-1) \log 2$.

5.

The Bayes solution to classification problem is the MAP estimator, i.e. choose the decision with the largest posterior likelihood. Now

$$\pi(\theta_1|x) = \frac{p_{\theta_1}(x)\pi(\theta_1)}{m(x)} \tag{155}$$

so we just need to compare $p_{\theta_1}(x)\pi(\theta_1) = \frac{2}{5}\frac{1}{\sqrt{2\pi}}e^{-\frac{(x+1)^2}{2}}, p_{\theta_2}(x)\pi(\theta_2) = \frac{2}{5}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, p_{\theta_3}(x)\pi(\theta_3) = \frac{1}{5}\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-1)^2}{2}}$ and find the largest one.

So let's consider $\max\left\{2e^{-X-\frac{1}{2}},2,e^{X-\frac{1}{2}}\right\}$ and we see that the Bayes rule is to take the decision d_i if the *i*-th term in the max takes the maximum.

6.

Now in classification with k possible values for parameter θ as $\theta_1, ..., \theta_k$ with prior $\pi_i = \pi(\theta_i)$ such that $\pi_1 + ... + \pi_k = 1$ with 0-1 loss function. Consider the expected posterior loss

$$l(d_i, x) = \mathbb{E}_{\theta \sim \pi(\cdot|x)} L(\theta, d_i)$$
(156)

$$= \sum_{j \neq i} \pi(\theta_j | x) \tag{157}$$

so if now we have $\forall j \neq i, \pi_i p_{\theta_i}(x) \geq \pi_j p_{\theta_i}(x)$, then $\forall j \neq i, \pi(\theta_i | x) \geq \pi(\theta_j | x)$ so

$$\forall k \neq i, \sum_{j \neq i} \pi(\theta_j | x) \le \sum_{j \neq k} \pi(\theta_j | x) \tag{158}$$

and this tells us that in order to minimize the expected posterior loss, we shall set $d = d_i$, which means that the Bayes rule is to accept θ_i .

SECTION 8.6

2

Set $\frac{\alpha}{\beta} = \overline{X}, \frac{\alpha}{\beta^2} + \frac{\alpha^2}{\beta^2} = \frac{\alpha^2 + \alpha}{\beta^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$ to solve out moment estimators

$$\hat{\alpha} = \frac{\overline{X}^2}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2}, \hat{\beta} = \frac{\overline{X}}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2}$$

$$(159)$$

4

Set $\frac{\alpha}{\alpha+\beta} = \overline{X}$, $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} + \frac{\alpha^2}{(\alpha+\beta)^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$ to solve out moment estimators $\hat{\alpha}$, $\hat{\beta}$.

5.

Set $e^{\mu + \frac{\sigma^2}{2}} = \overline{X}$, $e^{\sigma^2} e^{2\mu + \sigma^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$ to solve out $\hat{\mu}$, $\hat{\sigma}$.

SECTION 8.7

2.

(c).

$$p_{\theta}(x) = (2\pi)^{-\frac{n}{2}} \theta^{-n} e^{-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2\theta^2}}$$
(160)

$$l(\theta) = -\frac{n}{2}\log(2\pi) - n\log\theta - \frac{\sum_{i=1}^{n}(x_i - \theta)^2}{2\theta^2}$$
(161)

$$= -\frac{n}{2}\log(2\pi) - n\log\theta - \frac{\sum_{i=1}^{n} x_i^2 - 2\theta\sum_{i=1}^{n} x_i + n\theta^2}{2\theta^2}$$
 (162)

$$= -\frac{n}{2}\log(2\pi) - n\log\theta - \frac{\sum_{i=1}^{n}x_i^2}{2}\theta^{-2} + \sum_{i=1}^{n}x_i\theta^{-1} - \frac{n}{2}$$
(163)

take derivative set to 0

$$-\frac{n}{\theta} - \sum_{i=1}^{n} x_i \theta^{-2} + \sum_{i=1}^{n} x_i^2 \theta^{-3} = 0$$
 (164)

$$-n\theta^2 - \sum_{i=1}^n x_i \theta + \sum_{i=1}^n x_i^2 = 0$$
 (165)

solve it to get MLE (and check second derivative).

(e).

$$p_{\theta}(x) = (2\pi)^{-\frac{n}{2}} \theta^{-\frac{n}{2}} e^{-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2\theta}}$$
(166)

$$l(\theta) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\theta - \frac{\sum_{i=1}^{n}(x_i - \theta)^2}{2\theta}$$
 (167)

$$= -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\theta - \frac{\sum_{i=1}^{n}x_i^2 - 2\theta\sum_{i=1}^{n}x_i + n\theta^2}{2\theta}$$
 (168)

$$= -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\theta - \frac{\sum_{i=1}^{n}x_i^2}{2}\theta^{-1} + \sum_{i=1}^{n}x_i - \frac{n}{2}\theta$$
 (169)

take derivative set to 0

$$-\frac{n}{2\theta} - \frac{n}{2} + \frac{\sum_{i=1}^{n} x_i^2}{2} \theta^{-2} = 0 \tag{170}$$

$$-\frac{n}{2}\theta - \frac{n}{2}\theta^2 + \frac{\sum_{i=1}^n x_i^2}{2} = 0 \tag{171}$$

solve it to get MLE (and check second derivative).

3

We actually just know $Y_1, ..., Y_n$ i.i.d. with distribution $B(1, \Phi(-\mu)), Y_i = 1$ means $X_i < 0$ and $Y_i = 0$ means $X_i \ge 0$. Now we know that $\sum_{i=1}^n Y_i = m$.

Consider joint likelihood

$$p_{\mu}(y) = [\Phi(-\mu)]^{\sum_{i=1}^{n} y_i} [1 - \Phi(-\mu)]^{n - \sum_{i=1}^{n} y_i}$$
(172)

$$= [\Phi(-\mu)]^{\sum_{i=1}^{n} y_i} [\Phi(\mu)]^{n - \sum_{i=1}^{n} y_i}$$
(173)

$$l(\mu) = \sum_{i=1}^{n} y_i \cdot \log \Phi(-\mu) + (n - \sum_{i=1}^{n} y_i) \cdot \log \Phi(\mu)$$
 (174)

$$l'(\mu) = -\sum_{i=1}^{n} y_i \cdot \frac{\varphi(-\mu)}{\Phi(-\mu)} + (n - \sum_{i=1}^{n} y_i) \cdot \frac{\varphi(\mu)}{\Phi(\mu)} = 0$$
 (175)

to solve out $\hat{\mu} = \Phi^{-1}(\frac{n-m}{n})$ as the MLE.

4

(a)

$$p_{\alpha,\beta}(x) = \beta^{-n} e^{-\beta^{-1} (\sum_{i=1}^{n} x_i - n\alpha)}$$
(176)

$$l(\alpha, \beta) = -n\log\beta - \beta^{-1}(\sum_{i=1}^{n} x_i - n\alpha)$$
(177)

$$\frac{\partial l}{\partial \alpha} = \frac{n}{\beta} > 0, \frac{\partial l}{\partial \beta} = -\frac{n}{\beta} + \frac{1}{\beta^2} (\sum_{i=1}^{n} x_i - n\alpha)$$
(178)

so when β is fixed and α gets larger, likelihood is larger. However, α has upper bound $X_{(1)}$ so $\hat{\alpha}=X_{(1)}$. Now

maximize w.r.t. β so set partial derivative to 0 to get $\hat{\beta} = \overline{X} - X_{(1)}$ to be MLE. (b)

$$\mathbb{P}(X_1 \ge 1) = \begin{cases} 1 & \alpha \ge 1\\ e^{-\frac{1}{\beta}(1-\alpha)} & \alpha < 1 \end{cases}$$
 (179)

so the MLE should be

$$\mathbb{P}(\hat{X_1} \ge 1) = \begin{cases} 1 & X_{(1)} \ge 1 \\ e^{-\frac{1}{\overline{X} - X_{(1)}}(1 - X_{(1)})} & X_{(1)} < 1 \end{cases}$$
(180)

by functional invariance.

15

$$p_{\mu}(x) = (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \sum_{i} (x_{i} - \mu)^{2}}$$
(181)

$$l(\mu) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i}(x_i - \mu)^2 \ (\mu \ge 0)$$
(182)

$$l'(\mu) = \sum_{i} (x_i - \mu) = -n\mu + n\overline{X}$$
(183)

so if $\overline{X} \geq 0$, then $\hat{\mu} = \overline{X}$ is the MLE and otherwise $\hat{\mu} = 0$ is the MLE.

SECTION 8.4

2

We want to find unbiased estimator for σ^p so naturally we consider S^p where $V=(n-1)\frac{S^2}{\sigma^2}\sim\chi^2_{n-1}=\Gamma\left(\frac{n-1}{2},\frac{1}{2}\right)$. So now

$$(n-1)^{\frac{p}{2}} \frac{\mathbb{E}S^p}{\sigma^p} = \mathbb{E}V^{\frac{p}{2}} = \frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2})} \int_0^\infty v^{\frac{p}{2}} v^{\frac{n-3}{2}} e^{-\frac{v}{2}} dv \tag{184}$$

$$= \frac{\left(\frac{1}{2}\right)^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2})} 2^{\frac{n+p-1}{2}} \int_0^\infty u^{\frac{n+p-3}{2}} e^{-u} du$$
 (185)

$$=2^{\frac{p}{2}}\frac{\Gamma(\frac{n+p-1}{2})}{\Gamma(\frac{n-1}{2})}=C$$
(186)

and we find that $\hat{\sigma^p} = \frac{(n-1)^{\frac{p}{2}}}{C}S^p$ is an unbiased estimator for σ^p .

It's obvious that the minimum MSE estimator does not exist (since parameter space contains more than 1 elements). Now if we consider the minimum MSE estimator among all unbiased estimator, it must be UMVUE and notice that the estimator we have already got is a function of (\overline{X}, S^2) , the complete sufficient statistic and that it's unbiased, it must be UMVUE.

5

If there exists T(X) unbiased then

$$\forall \lambda > 0, \mathbb{E}T = \sum_{k=0}^{\infty} T(k) \frac{\lambda^k}{k!} e^{-\lambda} = \frac{1}{\lambda}$$
 (187)

so

$$\forall \lambda > 0, \sum_{k=0}^{\infty} T(k) \frac{\lambda^k}{k!} = \frac{e^{\lambda}}{\lambda} = \sum_{k=0}^{\infty} \frac{1}{\lambda} \frac{\lambda^k}{k!}$$
 (188)

and $\forall \lambda > 0, \sum_{k=0}^{\infty} [T(k) - \frac{1}{\lambda}] \frac{\lambda^k}{k!} = 0$ since $\mathbb{E}|T| < \infty$ the series is absolute convergent. This tells us that $\forall k, T(k) = \frac{1}{\lambda}$ which is impossible since the estimator cannot contain the unknown parameter, contradiction!

9

Let's notice that $d(\theta) = \mathbb{E}\mathbb{I}_{X_1=0}$ so take $U = \mathbb{I}_{X_1=0}$ as an unbiased estimator and notice that $X_1, ..., X_n \sim NB(1, p)$ so

$$p_p(x) = p^n (1 - p)^{\sum_i x_i}$$
(189)

and likelihood ratio $\frac{p_p(x)}{p_p(y)} = (1-p)^{\sum_i x_i - \sum_i y_i}$ so $T = \sum_{i=1}^n X_i$ is minimal sufficient. Now notice that

$$p_p(x) = e^{\log p + x \log(1-p)} \tag{190}$$

so T is also complete by verifying OSC. Now $V = \mathbb{E}(U|T)$ must be UMVUE so

$$\mathbb{E}(U|T=t) = \mathbb{P}(X_1 = 0|T=t) \tag{191}$$

$$= \frac{\mathbb{P}(X_1 = 0, X_2 + \dots + X_n = t)}{\mathbb{P}(T = t)}$$
(192)

$$= \frac{\mathbb{P}(X_1 = 0) \,\mathbb{P}(X_2 + \dots + X_n = t)}{\mathbb{P}(T = t)}$$
(193)

with $T \sim NB(n, p), X_2 + ... + X_n \sim NB(n - 1, p)$ so

$$\mathbb{E}(U|T=t) = \frac{p\binom{t+n-2}{t}(1-p)^t p^{n-1}}{\binom{t+n-1}{t}(1-p)^t p^n}$$
(194)

$$=\frac{n-1}{t+n-1} \tag{195}$$

so UMVUE is $\frac{n-1}{\sum_{i=1}^{n} X_i + n - 1}$.

15

 $X_1,...,X_n \sim P(\lambda)$, now take unbiased estimator $U = \mathbb{I}_{X_1=k}$ and we have complete sufficient statistic $T = \mathbb{I}_{X_1=k}$

 $\sum_{i=1}^{n} X_i$. By Rao-Blackwell, we just have to compute

$$\mathbb{E}(U|T=t) = \mathbb{P}(X_1 = k|T=t) \tag{196}$$

$$= \frac{\mathbb{P}(X_1 = k, X_2 + \dots + X_n = t - k)}{\mathbb{P}(T = t)}$$
(197)

$$=\frac{\mathbb{P}\left(X_{1}=k\right)\mathbb{P}\left(X_{2}+\ldots+X_{n}=t-k\right)}{\mathbb{P}\left(T=t\right)}$$
(198)

$$=\frac{\frac{\lambda^k}{k!}e^{-\lambda\frac{[(n-1)\lambda]^{t-k}}{(t-k)!}}e^{-(n-1)\lambda}}{\frac{(n\lambda)^t}{t!}e^{-n\lambda}}$$
(199)

$$= {t \choose k} \frac{1}{n^k} \left(1 - \frac{1}{n}\right)^{t-k} \tag{200}$$

so the UMVUE is $\binom{\sum_{i=1}^n X_i}{k} \frac{1}{n^k} \left(1 - \frac{1}{n}\right)^{\sum_{i=1}^n X_i - k}$.

READING

SECTION 8.7

7

 $X \sim N(\mu, \sigma^2)$, then

$$p_{\mu,\sigma}(x) = (2\pi)^{-\frac{1}{2}} \sigma^{-1} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
(201)

$$l(\mu, \sigma) = -\frac{1}{2}\log(2\pi) - \log\sigma - \frac{(x-\mu)^2}{2\sigma^2}$$
 (202)

$$l'_{\mu} = \frac{x - \mu}{\sigma^2} \tag{203}$$

$$l_{\sigma}' = -\frac{1}{\sigma} + (x - \mu)^2 \sigma^{-3} \tag{204}$$

so we can always set $\mu = x$ and $\sigma \to 0$ so the likelihood explodes to infinity, that's why there's no MLE.

17

(a):

$$M(t) = \mathbb{E}e^{tT(X)} = \int e^{tT(x)}e^{\eta T(x) + D(\eta) + S(x)} dx$$
 (205)

$$= e^{D(\eta)} \int e^{(t+\eta)T(x)+S(x)+D(\eta+t)-D(\eta+t)} dx$$
 (206)

$$=e^{D(\eta)-D(\eta+t)}\tag{207}$$

since the density integrates to 1 when η is replaced with $\eta+t$. So $\mathbb{E}T(X)=M'(0)=-e^{D(\eta)-D(\eta)}D'(\eta)=-D'(\eta)$ and $\mathbb{E}[T(X)]^2=M''(0)=e^{D(\eta)-D(\eta)}([D'(\eta)]^2-D''(\eta))=[D'(\eta)]^2-D''(\eta)$ so $Var(T(X))=-D''(\eta)$. (b):

Now if $\mathbb{E}_{\eta}T(X) = T(x)$ has solution $\eta_0(x)$, then $-D'(\eta_0) = T(x)$. The likelihood is

$$p_n(x) = e^{\eta T(x) + D(\eta) + S(x)}$$
 (208)

$$l(\eta) = \eta T(x) + D(\eta) + S(x) \tag{209}$$

$$l'(\eta) = T(x) + D'(\eta) \tag{210}$$

so $l'(\eta_0) = 0$ takes the largest likelihood (since variance is positive, $D''(\eta_0) < 0$ so it's a maximum), so $\eta_0(X)$ is MLE. Prove uniqueness, if there is another statistic U(X) which is also MLE, then $\forall x \in \mathcal{X}, D'(\eta_0(x)) = D'(U(x))$ so $\forall x \in \mathcal{X}, \eta_0(x) = U(x)$ and contradiction!

SECTION 8.4

1

Sample mean \overline{X} is unbiased for p and sample variance S^2 is unbiased for p(1-p). So $\mathbb{E}[\overline{X}-S^2]=p-p(1-p)=p^2$ and $\overline{X} - S^2$ is unbiased estimator for p^2 .

3

$$MSE(\alpha S^2) = \mathbb{E}(\alpha S^2 - \sigma^2)^2 \tag{211}$$

$$= \left[\mathbb{E}\alpha S^2 - \sigma^2\right]^2 + Var(\alpha S^2) \tag{212}$$

$$= (1 - \alpha)^2 \sigma^4 + \alpha^2 Var(S^2) \tag{213}$$

since $(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$ has variance 2(n-1), so $Var(S^2) = \frac{2}{n-1}\sigma^4$. So $MSE(\alpha S^2) = \sigma^4\left(\frac{2}{n-1}\alpha^2 + (1-\alpha)^2\right)$ and minimize w.r.t. α to get $\alpha^* = \frac{n-1}{n+1}$ so the minimum MSE estimator is $\frac{n-1}{n+1}S^2$. Now $Var(\frac{n-1}{n+1}S^2) = \frac{2(n-1)}{(n+1)^2}\sigma^4$ and $Var(S^2) = \frac{2}{n-1}\sigma^4$ so $\frac{n-1}{n+1}S^2$ has less variance.

The complete sufficient statistic is $T = \sum_{i=1}^{n} X_i \sim B(n, p)$ so let's consider the factorial moment

$$\mathbb{E}[T(T-1)...(T-s+1)] = \sum_{k=s}^{n} k(k-1)...(k-s+1) \binom{n}{k} p^k (1-p)^{n-k}$$
(214)

$$=\frac{n!}{(n-s)!}p^s\tag{215}$$

this is telling us that UMVUE for p^s is just $\frac{(n-s)!}{n!} \sum_{i=1}^n X_i (\sum_{i=1}^n X_i - 1) ... (\sum_{i=1}^n X_i - s + 1)$.

Now we can already find a function of T to have expectation p^s and we just have to find a function of T with

expectation $(1-p)^{n-s}$. Now $Y_i = 1 - X_i \sim B(1,q)$ with p+q=1 so if $Q = \sum_{i=1}^n Y_i \sim B(n,q)$

$$\mathbb{E}[Q(Q-1)...(Q-n+s+1)] = \sum_{k=n-s}^{n} k(k-1)...(k-n+s+1) \binom{n}{k} q^k (1-q)^{n-k}$$
 (216)

$$=\frac{n!}{s!}q^{n-s} \tag{217}$$

so now this is telling us that $\frac{s!}{n!}Q(Q-1)...(Q-n+s+1)$ has expectation $(1-p)^{n-s}$ and since Q=n-T, we see that the UMVUE is

$$\frac{(n-s)!}{n!} \sum_{i=1}^{n} X_i (\sum_{i=1}^{n} X_i - 1) \dots (\sum_{i=1}^{n} X_i - s + 1) + \frac{s!}{n!} (n - \sum_{i=1}^{n} X_i) (n - 1 - \sum_{i=1}^{n} X_i) \dots (s + 1 - \sum_{i=1}^{n} X_i)$$
(218)

12

 $p(\lambda) = \mathbb{E}U$ where $U = \mathbb{I}_{X_1 \leq t_0}$, now $X_1, ..., X_n \sim \Gamma(1, \lambda)$ so $T = \sum_{i=1}^n X_i \sim \Gamma(n, \lambda)$ is complete sufficient statistic, by Rao-Blackwell, $V = \mathbb{E}(U|T)$ is UMVUE so

$$\mathbb{E}(U|T=t) = \mathbb{P}\left(X_1 \le t_0 | T=t\right) \tag{219}$$

and we want to see the distribution of $X_1|_T$. Note that

$$F_{T|X_1}(t|x) = \mathbb{P}(T \le t|X_1 = x)$$
 (220)

$$= \mathbb{P}(X_2 + ... + X_n \le t - x | X_1 = x)$$
(221)

$$= \mathbb{P}\left(X_2 + \dots + X_n \le t - x\right) \tag{222}$$

$$= \frac{\lambda^{n-1}}{\Gamma(n-1)} \int_0^{t-x} u^{n-2} e^{-\lambda u} du$$
 (223)

$$f_{T|X_1}(t|x) = \frac{\lambda^{n-1}}{\Gamma(n-1)} (t-x)^{n-2} e^{-\lambda(t-x)}$$
(224)

so

$$f_{(T,X_1)}(t,x) = \frac{\lambda^{n-1}}{\Gamma(n-1)} (t-x)^{n-2} e^{-\lambda(t-x)} \cdot \lambda e^{-\lambda x}$$
(225)

$$= \frac{\lambda^n}{\Gamma(n-1)} (t-x)^{n-2} e^{-\lambda t} \tag{226}$$

and the other conditional density is

$$f_{X_1|T}(x|t) = \frac{\frac{\lambda^n}{\Gamma(n-1)} (t-x)^{n-2} e^{-\lambda t}}{\frac{\lambda^n}{\Gamma(n)} t^{n-1} e^{-\lambda t}}$$
(227)

$$= (n-1)\frac{1}{t}\left(1 - \frac{x}{t}\right)^{n-2} \tag{228}$$

and now we see

$$V = \int_0^{t_0} (n-1)\frac{1}{t} \left(1 - \frac{x}{t}\right)^{n-2} dx \tag{229}$$

$$=1 - \left(1 - \frac{t_0}{t}\right)^{n-1} \tag{230}$$

if $t > t_0$ and 1 otherwise.

17

 $X_1,...,X_n \sim N(\theta,1), p = \Phi(x-\theta) = \mathbb{E}\mathbb{I}_{X_1 \leq x}$ now $T = \sum_{i=1}^n X_i \sim N(n\theta,n)$ is complete sufficient so $V = \mathbb{P}(X_1 \leq x|T)$ is UMVUE. Now calculate $\mathbb{P}(X_1 \leq x|T=t)$ and it's obvious that $X_1|_{T=t}$ is still Gaussian with $\mathbb{E}X_1|_{T=t} = \frac{t}{n}$ by symmetricity and by complicated calculations $Var(X_1|_{T=t}) = \frac{n-1}{n}$ so $X_1|_{T=t} \sim N(\frac{t}{n},\frac{n-1}{n})$ and

$$V = \Phi(\left[x - \frac{t}{n}\right]\sqrt{\frac{n}{n-1}}) = \Phi\left(\left(x - \overline{X}\right)\sqrt{\frac{n}{n-1}}\right)$$
 (231)

is the UMVUE.