SONiC Network Telemetry from User Perspective Yongfeng Liu

Network Telemetry Overview

Network telemetry on both Control plane and Data plane

- Switch/System level telemetry
 - Switch level ASIC status and statistics
 - Port/Queue counters
 - Buffer utilization/TAM snapshot
 - etc
 - Streamed to external collector from control plane.
- Packet/Flow level telemetry
 - Packet/Flow level event and information
 - Flow tracking event (generate event based on TCP SYN/FIN packet)
 - Per flow Latency/path change/congestion event
 - Packet drop event with detailed reason reported with flow info
 - Sent to external monitor/analyzer from data plane

Switch level telemetry via gRPC

Efficient collection stack

Change only mode

Push instead of poll

SONiC gRPC Architecture

Challenge of flow/packet level telemetry

- Lack of production deployment and operation experience.
- Flow/packet level information process requires heavy ASIC resources.
- Metrix of supporting feature requires flexibility and programmability of switch ASIC on varies aspects.
- Needs minimum side effect to packet forwarding functions.
- Inter-operability between different ASIC vendors.

Data plane telemetry workflow

Specify flow spaces to monitor

- Match on packet header fields, switch ports, etc.
- Provide telemetry action parameters

Example triggering events:

- Flow events
 - Flow start or terminate
 - o Timer based event (e.g., one report per flow per second)
 - o Change of any per-flow state such as routing path or latency
- Packet dropped by switch
- Queue congestion

Send telemetry report to the monitor

Telemetry Identification Header

- Header format
 - Option 1: Probe marker
 - Option 2: DSCP
- Rule table
 - Option 1: dedicated watch list
 - Option 2: reuse existing ACL
- Action
 - Option 1: apply on original packet
 - Option 2: apply on copied packet
- Policy
 - Option 1: insert header for each packet of matched flow
 - Option 2: insert header with sampled rate of matched flow

Telemetry Instruction Header

- Header format
 - Header version
 - Instruction bit map
- Instruction bitmap could be and not limited to:
 - Switch ID
 - Ingress/egress port ID
 - Hop latency/Ingress timestamp/Egress timestamp
 - Queue ID + Queue occupancy/congestion status
 - TX utilization on egress port

Telemetry event detection

- Listed telemetry event from user perspective
 - TCP flow status reflecting establish and termination event.
 - Path change
 - Latency
 - Queue occupancy
 - Congestion status
 - TX utilization
 - Drop with reason code

Telemetry Report

- Report format
 - UDP/ERSPAN encapsulation
 - Composed with filled telemetry metadata
 - Along with truncated packet header
- Report handling
 - INT vs. Postcard
 - INT: Event detect on sink node
 - Stack metadata according to instruction hop by hop
 - Drop events needs special handling
 - Postcard: Event detect on each node
 - Trigger report as a mirrored packet on each hop
 - Analyzer needs additional steps to correlate mirrored packet of same flow acress multiple hops.
 - Options to periodically trigger report;
 - Options to suppress report without losing effective telemetry info;
 - Options to force report for debug purpose;

References

- on gRPC
 - https://github.com/jipanyang/sonictelemetry/blob/master/doc/grpc_telemetry.md
- on DTEL (data plane telemetry)
 - https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
 - https://github.com/p4lang/p4applications/blob/master/docs/telemetry_report.pdf
 - https://github.com/CiscoDevNet/iOAM
 - https://tools.ietf.org/html/draft-ietf-ippm-ioam-data-02