Федеральное государственное автономное образовательное учреждение высшего	
образования «Национальный исследовательский университет ИТМО»	
Факультет программной инженерии и компьютерных технологий	

Лабораторная работа №6 Работа с системой компьютерной вёрстки ТЕХ Вариант 64

Выполнила: Павличенко Софья Алексеевна, Р3115

> Проверила: Авксентьева Елена Юрьевна, к.п.н., доцент факультета ПИиКТ

или, наконец,

$$l_{AC} + l_{A_1C} < \frac{2}{3}AA_1 + \frac{1}{3}LL_1$$

Умножив полученное неравенство на п, мы и получим неравенство (1).

Дальнейшее исследование основного неравенства

Нами установлено, что число π лежит в первой трети интервала $(p_n,q_n.)$ при всех $n\geq 3$. Для того чтобы уточнить расположение числа в этом новом интервале, рассмотрим отношение длин интервалов (p_n,π) и (p,q_n) . Вычисления показывают (см. таблицы 1, 2), что это отношение длин, т.е. значения дробей

$$(q_n - \pi)/(\pi - p_n), n = 3, 6, 12, 24,$$

достаточно близки к 2. На основании этих вычислений мы с большой степенью уверенности можем предположить, что в действительности имеет место соотношение

$$\lim_{x \to \infty} \frac{q_n - \pi}{\pi - p_n} = 2 \tag{5}$$

Для доказательства соотношения (5) заметим, что (рис.9)

$$p_n = n \cdot \sin \frac{\pi}{n}, q_n = n \cdot \operatorname{tg} \frac{\pi}{n}, n \ge 3,$$

и, следовательно,

$$\frac{q_n-\pi}{\pi-p_n} = \frac{1}{\cos\frac{\pi}{n}} \cdot \frac{n\sin\frac{\pi}{n} - \pi\cos\frac{\pi}{n}}{\pi-n\sin\frac{\pi}{n}}.$$

Для анализа полученного выражения нам понадобятся неравенства

$$x - \frac{x^3}{6} < \sin x < x - \frac{x^3}{6} + \frac{x^5}{120},$$

$$x > 0,$$
(6)

значельно улучшающие известное не-

Рис. 9

равенство $\sin x < x$ при x>0. Чтобы доказать левое неравенство в (6), положим

$$f(x) = \sin x - x + \frac{x^3}{6}.$$

Тогда имеем

$$g_1(x) = f'(x) = \cos x - 1 + \frac{x^2}{2},$$

$$g_2(x) = g_2'(x) = -\sin x + x.$$

Так как $\sin x < x$ при x>0, получим $g_2(x)>0$ при x>0. Тем самым функция $g_1(x)$ возрастает при x>0. Но $g_1(0)=0$ и, следовательно, $g_1(x)>0$ при x>0. Функция $g_1(x)$ является производной для функции f(x), для которой также f(0)=0. Но при x>0 имеем $g_1(x)>0$, поэтому функция f(x) также возрастает, следовательно, принимает только положительные значения, т.е. f(x)>0 при x>0, что и утверждалось.

Аналогично устанавливается правая часть неравенства (6), а также неравенства

$$1 - \frac{x^2}{2} < \cos x < 1 - \frac{x^2}{2} + \frac{x^4}{24},$$

$$x > 0.$$
(7

(Докажите их самостоятельно!)

Из неравенств (6) и (7) вытекают следующие приближенные формулы:

$$\sin\frac{\pi}{n} \approx \frac{\pi}{n} - \frac{\pi^3}{6n^3}, \cos\frac{\pi}{n} \approx 1 - \frac{\pi^2}{2n^2}.$$

Следовательно,

$$\frac{q_n - \pi}{\pi - p_n} = 2 \cdot (1 - \frac{\pi^2}{2n^2})^{-1}.$$

Что и завершает доказательство соотношения (5), так как $\frac{\pi^2}{2n^2}$ стремится к нулю при $n \to \infty$.

Равенство (5) позволяет сделать следующий качественный вывод: число π , находясь при любом $n \geq 3$ в интервале $(p_n, \frac{2}{3}p_n + \frac{1}{3}q_n)$, при всех достаточно большших значениях п ближе к правому концу этого интервала, чем к левому.

Формула Гюйгенса и ее эффективность

Архимед использовал для вычисления числа π приближенную формулу $\pi \approx p_n, n \geq 3$.

Гюйгенс в своей работе, в частности, получил другую приближенную формулу $\pi \approx \frac{2}{3}p_n + \frac{1}{3}q_n, n \geq 3$, т.е. взял в качестве приближения для числа π правую часть неравенства (1).

Большую эффективность формулы Гюйгенса по сравнению с формулой Архимеда можно обнаружить непосредственными вычислениями на микрокалькуляторе (см.табл.1,3). Отметим, что провести такие вычисления - увлекательная и непростая задача.

Можно сравнить эффективность формул Архимеда и Гюйгенса другим методом, не производя конкретных вычислений для n и q_n . Можно использовать так называемые априорные оценки для точности этих формул, т.е. такие неравенства, которые позво-

Таблица 1

n	p_n	\mathbf{q}_n
3	2,59807621	5,19615242
6	3,00000000	3,46410161
12	3,10582854	3,21539030
24	3,13262861	3,15965994
48	3,13935020	3,14608621
96	3,14103195	3,14271459
192	3,14145247	3,14187304
384	3,14158389	3,14166274
768	3,14158389	3,14161017
1536	3,14159046	3,14159703
3072	3,14159210	3,14159374

ща 1 Таблица 2

	таолица 2
n	$q_n - \pi / (\pi - p_n)$
3	3,78012440
6	2,27772383
12	2,06345553
24	2,01552959
48	2,00386204
96	2,00096424
192	2,00024098
384	2,0006024
768	2,0000150
1536	2,00000376
3072	2,00000094

а 2 Таблица 3

n	$\frac{2}{3}p_n + \frac{1}{3}q_n$
3	3,464101615137
6	3,154700538379
12	3,142349130544
24	3,141639056219
48	3,141595540408
96	3,14159283380
192	3,141592664850
384	3,141592654293
768	3,141592653633
1536	3,141592653592
3072	3.141592653589

Ноты гимна Литвы

Первые 28 нот гимна Литвы, написанные с помощью пакета MusiXTeX

