基於像素值差異與矩陣嵌入應用於彩色影像集之研究

學生姓名:李東岳

一、摘要

由於資訊科技的發展以及網際網路的便利性,使得資料得以快速傳輸。為了避免機密資料輕易被竊取,資料加密及資訊隱藏的技術成為了重要的研究課題。傳統的資訊隱藏使用最低位元替換藏密法(Least Significant Bit, LSB),優點是很難被人類視覺系統察覺,但是藏密量不多。像素值差異藏密法(Pixel Value Differencing, PVD)將機密訊息透過更改兩兩相鄰之像素值差異,按規則藏入影像中,大幅增加藏密量。矩陣嵌入(matrix embedding)是透過漢明碼的特性來隱藏資料,本文將會改良matrix embedding隱藏法,並與PVD做結合。

二、改進方法

PVD 隱藏法能夠依照像素差值大小來決定藏密量,但是在平滑區間裡的藏密量並不高,於是有了 PVD-LSB 來予以改進。但是 LSB 會被 RS 偵測檢測出來,於是本文採用 matrix embedding 來做結合,由於 matrix embedding 本身隱藏完品質不佳(如圖一所示),本文也提出 matrix embedding 的改良方法。

圖一 漢明碼資料隱藏(左)與原圖(右)比較

PVD與matrix embedding結合的隱藏演算法:

步驟一:經由式子(1)計算出影像中相鄰像素Pi與Pi+1差值d。

 $d = |P_i - P_{i+1}| \tag{1}$

步驟二:定義lower-level(if $d \le 63$)或higher-level(if d > 63)。

步驟三:如果為higher-level,進行PVD隱藏;如果為lower-level,進行步驟四。

步驟四:從機密訊息中取6個位元: m_1 , m_2 , m_3 , m_4 , m_5 , m_6 。將 m_1 m_2 m_3 以matrix embedding藏入 P_i 後六個位元中得到 P'_{i+1} 。

以下為擷取訊息的步驟:

步驟一:利用式子(2)計算出影像中相鄰像素P'i與P'i+1差值d'。

步驟二:如果為higher-level,進行PVD擷取,若為lower-level,進行步驟三。

步驟三:分別對P'i與P'i+1做matrix embedding擷取。

matrix embedding改良演算法:

步驟一:從像素值Pi取後面6個位元C,從機密資料取出3個位元S。

步驟二:根據徵狀值S找出該列資料(d1~d8)。

步驟三:依照式子(2)計算出C'。

 $C' = \min(|d_i - C|)$ $1 \le i \le 8, i \in N$ (2)

步驟四:將Pi後六個位元取代為C'得到P'i。

指導老師:吳坤熹 教授

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \tag{3}$$

擷取資料時,取P'i後面6個位元乘上HT得到機密資訊。

表一 (6,3) hamming code

徵狀值	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
000	0	28	42	49	54	45	27	7
100	32	60	10	17	22	13	59	39
010	16	12	58	33	38	61	11	23
001	8	20	34	57	62	37	19	15
011	4	24	46	53	50	41	31	3
101	2	30	40	51	52	47	25	5
110	1	29	43	48	55	44	26	6
111	36	56	14	21	18	9	63	35

三、實驗結果

由表二數據可得知,在相同的藏密量下, peak signal-to-noise ratio (PSNR) 值與原本的方法比較大約增加了1.6倍。

表二 掩護影像為786K的改良前後比較

藏密量	(6,3)漢明碼隱藏改良前 PSNR	(6,3)漢明碼隱藏改良後		
		PSNR		
296K	18.9768db	30.8069db		
270K	19.5155db	31.2288db		
120K	22.5079db	35.1205db		

由表三數據可以得知: PVD matrix embedding的藏密量是PVD的 $1.8\sim1.98$ 倍,而PSNR 值與PVD相較僅下降3.42db ~10.26 db;與PVD-LSB比較的話藏密量約增 $m0.9\%\sim4.8\%$,而PSNR值下降了0.48db ~4.82 db。

表三 演算法在彩色影像上的比較

影像	PVD		PVD and	d LSB	PVD and matrix embedding	
	藏密量(byte)	PSNR(db)	藏密量(byte)	PSNR(db)	藏密量(byte)	PSNR(db)
A	153235	39.10	286464	32.82	295017	30.81
В	149303	39.10	292314	33.66	295019	28.84
С	163702	32.95	281478	29.21	295172	28.26
D	155505	33.36	291295	30.42	295358	29.94
Е	148984	33.66	263579	30.50	273620	29.62

四、結論與未來展望

本篇所提的 matrix embedding 改良方法大幅提高了影像的品質,與 PVD 結合有較高藏密量。在 matrix embedding 中,利用了(6,3)漢明碼來進行資料隱藏,未來如果有掩護序列在六個位元以下,但一樣能夠藏入三個位元的矩陣出現,便能夠再度提高藏密量以及影像的品質。