Machine Learning

1 Terminology

- Data generating process: (X,Y) is a (p+1) dimensional random vector with joint distribution P(x,y).
 - Input vector: $X \in D \subset \mathbb{R}^p$.
 - Output vector: $Y \in E \subset \mathbb{R}$.
 - Data: Given the sample $\{(X_1,Y_1),(X_2,Y_2),\cdots,(X_N,Y_N)\}$ following the distribution P(x,y), The training data or text data $T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$ consist of the realization values of the sample.
- ullet Objective: Find a decision function \hat{f} to minimize the expected loss

$$\min_{\hat{f} \in \mathcal{F}} \mathrm{E}(L(Y, \hat{f}(X)))$$

- Decision function: $\hat{f}: \mathbb{R}^p \supset D \longrightarrow \mathbb{R}$ serves to produce the prediction $\hat{y} = \hat{f}(x)$ of Y, provided a specified value x of X.
- Loss function: $L(Y, \hat{f}(X))$ normally has the form of

$$L_2 = (Y - \hat{f}(X))^2$$
 or $L_1 = |Y - \hat{f}(X)|$.

- Hypothesis space: \mathcal{F} is a collection of all decision functions \hat{f} to be selected. In some cases, we suppose that as a candidate \hat{f} can be specified by several parameters. Thus $\mathcal{F} = \{\hat{f}_{\theta} : Y = \hat{f}_{\theta}(X), \ \theta \in \mathbb{R}^n\}$ can be described by the parametric space $\Theta = \{\theta : Y = \hat{f}_{\theta}(X), \ \theta \in \mathbb{R}^n\}$.
- Optimization strategies: empirical risk minimization:

$$\min_{\hat{f} \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

structural risk minimization:

$$\min_{\hat{f} \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$