KDD-24 Research Track Paper

Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck

Sangwoo Seo, Sungwon Kim, Jihyeong Jung, Yoonho Lee, Chanyoung Park

Korea Advanced Institute of Science and Technology (KAIST)

EXPLANATION FOR TEMPORAL GRAPH

Temporal Graph Models

Temporal graph models can predict the occurrence of target events based on past events.

Need for Explanation Models in Temporal Graphs

- Temporal graph models are often considered as black boxes because they cannot identify how past events
 influence outcomes.
- Increased reliability and transparency in predictions.

Objective of Temporal Graph Explanations

• The goal of an explanation model for temporal graphs is to detect past events that are important for predicting the occurrence of the target event.

T-GNNEXPLAINER

Explaining Temporal Graph Models through an Explorer-Navigator Framework

- Post-hoc explanation model
 - Explanations are generated based on a pretrained base model.
- Require separate models for prediction and explanation.

MOTIVATION

- Major Drawback of Post-hoc models
 - 1) Explanation model needs frequent retraining based on the retrained base model.
 - 2) Examining the behavior of an already trained base model can be challenging to fully comprehend the base model.

MOTIVATION

- Our Self-Explainable Model
 - Built-in explanation framework for temporal graphs.
 - End-to-end model for temporal graphs that generates predictions and explanations simultaneously.

OVERALL PROCESS

- Our Self-Explainable Model
 - 1. Define a temporal graph as the collection of past events that occurred before the current time.
 - 2. Use L-hop computational subgraph of target event as candidate graph.
 - 3. Extract important candidate events as explanation graph.
 - 4. Predict the occurrence of the target event based on explanation graph.

Main idea

- Considers the **interaction between the target event and candidate events** to extract important candidate events.
- Utilize the Information Bottleneck (IB) approach
 - Control information flow from candidate events to predictions by introducing stochasticity into edges.
 - → Focus on the most relevant information for making accurate predictions

GIB-based Objective for Temporal Graph

- We extract explanation graph \mathcal{R}^k for the target edge e_k from its L-hop neighborhood \mathcal{G}^k .
- \mathcal{R}^k is a subgraph of e_k 's L-hop computation graph \mathcal{G}^k .
- Y_k is the label information indicating the occurrence of the event.

$$\min_{\mathcal{R}^k} -I\left(Y_k; \mathcal{R}^k\right) + \beta I\left(\mathcal{R}^k; e_k, \mathcal{G}^k\right)$$

- 1. Sufficiently learn label-relevant information
- 2. $\mathcal{R}^{\mathbf{k}}$ efficiently includes only important information related to e_k and \mathcal{G}^k

- GIB-based Objective for Temporal Graph
 - We obtain an upper bound on each term to optimize the objective function.

$$\min_{\mathcal{R}^k} -I\left(Y_k; \mathcal{R}^k\right) + \beta I\left(\mathcal{R}^k; e_k, \mathcal{G}^k\right)$$

$$\begin{split} -I(Y_k; \mathcal{R}^k) &= \mathbb{E}_{Y_k, e_k, \mathcal{R}^k} \left[-\log \frac{p(Y_k, \mathcal{R}^k)}{p(Y_k)p(\mathcal{R}^k)} \right] \\ &= \mathbb{E}_{Y_k, e_k, \mathcal{R}^k} \left[-\log \frac{p(Y_k | \mathcal{R}^k)}{p(Y_k)} \right] \\ &= \mathbb{E}_{Y_k, e_k, \mathcal{R}^k} [-\log p(Y_k | \mathcal{R}^k)] + \mathbb{E}_{Y_k} [\log p(Y_k)] \\ &= \mathbb{E}_{Y_k, e_k, \mathcal{R}^k} [-\log p(Y_k | \mathcal{R}^k)] - H(Y) \\ &\leq \mathbb{E}_{Y_k, e_k, \mathcal{R}^k} [-\log q_{\theta}(Y_k | \mathcal{R}^k)] - H(Y) \\ &\leq \mathbb{E}_{Y_k, e_k, \mathcal{R}^k} [-\log q_{\theta}(Y_k | \mathcal{R}^k)] - E_{cls} \end{split}$$

$$I(\mathcal{R}^{k}; e_{k}, \mathcal{G}^{k}) = \mathbb{E}_{\mathcal{R}^{k}, e_{k}, \mathcal{G}^{k}} \left[\log \frac{p(\mathcal{R}^{k}; e_{k}, \mathcal{G}^{k})}{p(\mathcal{R}^{k}) p(e_{k}, \mathcal{G}^{k})} \right]$$

$$= \mathbb{E}_{\mathcal{R}^{k}, e_{k}, \mathcal{G}^{k}} \left[\log \frac{p(\mathcal{R}^{k} | e_{k}, \mathcal{G}^{k})}{p(\mathcal{R}^{k})} \right]$$

$$= \mathbb{E}_{\mathcal{R}^{k}, e_{k}, \mathcal{G}^{k}} \left[\log p(\mathcal{R}^{k} | e_{k}, \mathcal{G}^{k}) - \log p(\mathcal{R}^{k}) \right]$$

$$\leq \mathbb{E}_{\mathcal{R}^{k}, e_{k}, \mathcal{G}^{k}} \left[\log p(\mathcal{R}^{k} | e_{k}, \mathcal{G}^{k}) - \log q(\mathcal{R}^{k}) \right]$$

$$\leq \mathbb{E}_{e_{k}, \mathcal{G}^{k}} \left[KL[p(\mathcal{R}^{k} | e_{k}, \mathcal{G}^{k}) \parallel q(\mathcal{R}^{k})] \right] = \mathcal{L}_{MI}$$

- Time-aware event representation
 - For the self-attention mechanism, we define the query, key and value as:

Query embedding attribute encoding
$$Q^{(l)}(t) = \begin{bmatrix} h_z^{(l-1)}(t) \| att_{z,0} \| \Phi_{d_T}(0) \end{bmatrix}$$

$$\text{Key } K^{(l)}(t) = \begin{bmatrix} K_1^{(l)}(t) \| att_{z,0} \| \Phi_{d_T}(t-t_{z,1}) \| att_{z,1} \| \Phi_{d_T}(t-t_{z,1}) \| b_{d_T}(t-t_{z,1}) \| b_{d_T}(t-t_{z,1})$$

Each node collects information from its neighboring nodes, and the attention weights are defined as:

Attention
weight
$$\alpha_i^{(l)}(t) = \operatorname{softmax} \left(\frac{Q^{(l)}(t)K_i^{(l)}(t)^T}{\sqrt{(d + f_{\text{edge}} + d_T)}} \right)$$

Finally, we obtain the hidden neighborhood representations as follows:

Neighborhood representation
$$\tilde{h}_{z}^{(l)}(t) = \operatorname{Attn}\left(Q^{(l)}(t), K^{(l)}(t), V^{(l)}(t)\right) = \operatorname{softmax}\left(\frac{Q^{(l)}(t)K^{(l)}(t)}{\sqrt{(d+f_{\operatorname{edge}}+d_{T})}}\right)V^{(l)}(t)$$

- Time-aware event representation
 - We concatenate the neighborhood representation with the node feature, and use it as the input to a feedforward network as follows:

Final node Neighborhood Node embedding representation feature
$$h_z^{(l)}(t) = \text{FFN}\left(\left[\tilde{h}_z^{(l)}(t) \| x_z\right]\right)$$

$$= \text{ReLU}\left(\left[\tilde{h}_z^{(l)}(t) \| x_z\right] W_0^{(l)} + b_0^{(l)}\right) W_1^{(l)} + b_1^{(l)}$$

• We construct the time-aware event representation for the target event and candidate event.

Target Event
$$X_{e_k}(t_k) = \begin{bmatrix} h_{u_k}(t_k) \parallel h_{v_k}(t_k) \parallel \Phi_{d_T}(0) \parallel \operatorname{att}_k \end{bmatrix}$$
 Candidate Event
$$Z_{e_j}(t_k) = \begin{bmatrix} h_{u_j}(t_j) \parallel h_{v_j}(t_j) \parallel \Phi_{d_T}(t_k - t_j) \parallel \operatorname{att}_j \end{bmatrix}$$

- Minimizing $I(\mathcal{R}^k; e_k, \mathcal{G}^k)$
 - We obtain upper bound of $I(\mathcal{R}^k; e_k, \mathcal{G}^k)$.

$$I(\mathcal{R}^{k}; e_{k}, \mathcal{G}^{k}) \leq \mathbb{E}_{e_{k}, \mathcal{G}^{k}} \left[KL \left[p \left(\mathcal{R}^{k} | e_{k}, \mathcal{G}^{k} \right) \| q \left(\mathcal{R}^{k} \right) \right] \right]$$

• We decompose $p(\mathcal{R}^k|e_k,\mathcal{G}^k)$ into a multivariate Bernoulli distribution.

$$p(\mathcal{R}^k|e_k,\mathcal{G}^k) = \prod_{e_j \in \mathcal{R}_k} p_j^k \cdot \prod_{e_j \in \mathcal{G}^k \setminus \mathcal{R}_k} (1 - p_j^k)$$

• Each p_j^k is computed as the output of an MLP that takes X_{e_k} and Z_{e_j} as input.

Importance score Target event Candidate event
$$p_j^k = p(e_j|e_k,\mathcal{G}^k) = \sigma\left(g\left(X_{e_k}(t_k),\ Z_{e_j}(t_k)\right)\right)$$

- Minimizing $I(\mathcal{R}^k; e_k, \mathcal{G}^k)$
 - We use a multivariate Bernoulli distribution for $q(\mathcal{R}^k)$.

$$q(\mathcal{R}^k) = r^{|\mathcal{R}^k|} (1 - r)^{|\mathcal{G}^k| - |\mathcal{R}^k|}$$

• Finally, we specify upper bound of $I(\mathcal{R}^k; e_k, \mathcal{G}^k)$ and define the mutual information loss \mathcal{L}_{MI} .

$$\begin{split} I(\mathcal{R}^k; e_k, \mathcal{G}^k) &\leq \mathbb{E}_{e_k, \mathcal{G}^k} \left[\text{KL} \left[p \left(\mathcal{R}^k | e_k, \mathcal{G}^k \right) || q \left(\mathcal{R}^k \right) \right] \right] \\ &= \mathbb{E}_{p(e_k, \mathcal{G}^k)} \left[\sum_{e_j \in \mathcal{G}^k} p_j^k \log \frac{p_j^k}{r} + (1 - p_j^k) \log \frac{1 - p_j^k}{1 - r} \right] \end{split}$$

$$\begin{split} & \mathrm{I}\big(\mathcal{R}^k; e_k, \mathcal{G}^k\big) \leq \mathbb{E}_{e_k, \mathcal{G}^k} \left[\mathrm{KL}\big[p\big(\mathcal{R}^k \big| e_k, \mathcal{G}^k\big) \parallel q\big(\mathcal{R}^k\big)] \right] \\ & = \mathbb{E}_{e_k, \mathcal{G}^k} \left[\log \frac{p\big(\mathcal{R}^k \big| e_k, \mathcal{G}^k\big)}{q\big(\mathcal{R}^k\big)} \right] \\ & = \mathbb{E}_{e_k, \mathcal{G}^k} \left[\log \left(\frac{\prod_{e_j \in \mathcal{R}^k} p_j^k \cdot \prod_{e_j \in \mathcal{G}^k \backslash \mathcal{R}^k} (1 - p_j^k)}{r|\mathcal{R}^k| \cdot (1 - r)|\mathcal{G}^k| - |\mathcal{R}^k|} \right) \right] \\ & = \mathbb{E}_{e_k, \mathcal{G}^k} \left[\log \frac{\prod_{e_j \in \mathcal{R}^k} p_j^k}{r|\mathcal{R}^k|} + \log \frac{\prod_{e_j \in \mathcal{G}^k \backslash \mathcal{R}^k} (1 - p_j^k)}{(1 - r)|\mathcal{G}^k| - |\mathcal{R}^k|} \right] \\ & = \mathbb{E}_{e_k, \mathcal{G}^k} \left[\sum_{e_j \in \mathcal{R}^k} \log \frac{p_j^k}{r} + \sum_{e_j \in \mathcal{R}^k} \log \frac{1 - p_j^k}{1 - r} \right] \\ & = \mathbb{E}_{e_k, \mathcal{G}^k} \left[\sum_{e_j \in \mathcal{G}^k} p_j^k \log \frac{p_j^k}{r} + (1 - p_j^k) \log \frac{1 - p_j^k}{1 - r} \right] \end{split}$$

- Minimizing $-I(Y_k; \mathcal{R}^k)$
 - We sample stochastic weights from the Bernoulli distribution and obtain a valid event representation.

Valid event Stochastic Candidate representation weight event $\tilde{Z}_{e_j}(t_k) = \alpha_j^k Z_{e_j}(t_k), \quad \alpha_j^k \sim Ber(p_j^k)$

• We obtain the representation of \mathcal{R}^k extracted from each valid event representation.

 \mathcal{R}^k representation $H_+^k = \text{Readout}\left[\left\{\tilde{Z}_{e_j}(t_k)|e_j \in \mathcal{G}^k\right\}\right]$

- Negative sample
 - We fix the node u and replace node v by randomly sampling a node from the entire graph.

Negative sample representation $X_{e_k^{\mathrm{neg}}}(t_k) = \left[\begin{array}{c|c} h_{u_k}(t_k) \parallel h_{n_k}(t_k) \parallel \Phi_{d_T}(0) \parallel att_k \end{array} \right]$

Finally, we use the time-aware link prediction loss function

$$\mathcal{L}_{\text{cls}} = \sum_{e_k \in S} -\log \left[\sigma \left(q_{\theta}(X_{e_k}, H_+^k) \right) \right] - N \cdot \mathbb{E}_{\text{neg} \sim P_n} \log \left[\sigma \left(q_{\theta}(X_{e_k}, H_-^k) \right) \right]$$

Architecture

Datasets

Dataset	Domain	#Nodes	#Edges	#Edge Features	Duration
Wikipedia	Social	9,227	157,474	172	1 month
UCI	Social	1,899	58,835	-	196 days
USLegis	Politics	225	60,396	1	12 terms
CanParl	Politics	734	74,478	1	14 years
Enron	Social	184	125,235	-	3 years
Reddit	Social	10,984	672,447	172	1 month

Baselines

- Link prediction
 - Jodie
 - DyRep
 - TGAT
 - TGN
 - TGL
 - CAW-N
 - GraphMixer

• Explanation performance

- ATTN
- Grad-CAM
- GNNExplainer
- PGExplainer
- T-GNNExplainer

Link Prediction

	Model	Wikipedia	UCI	USLegis	CanParl	Enron	Reddit
e	Jodie	94.62 ± 0.50	86.73 ± 1.00	73.31 ± 0.40	69.26 ± 0.31	77.31 ± 4.20	97.11 ± 0.30
	DyRep	92.43 ± 0.37	53.67 ± 2.10	57.28 ± 0.71	54.02 ± 0.76	74.55 ± 3.95	96.09 ± 0.11
tiv	TGAT	95.34 ± 0.10	73.01 ± 0.60	68.89 ± 1.30	70.73 ± 0.72	68.02 ± 0.10	98.12 ± 0.20
Transductiv	TGN	97.58 ± 0.20	80.40 ± 1.40	75.13 ± 1.30	70.88 ± 2.34	79.91 ± 1.30	98.30 ± 0.20
ısq	TCL	96.47 ± 0.16	89.57 ± 1.63	69.59 ± 0.48	68.67 ± 2.67	79.70 ± 0.71	97.53 ± 0.02
rai	CAW-N	98.28 ± 0.20	90.03 ± 0.40	69.94 ± 0.40	69.82 ± 2.34	89.56 ± 0.09	97.95 ± 0.20
I	GraphMixer	97.25 ± 0.03	93.25 ± 0.57	70.74 ± 1.02	77.04 ± 0.46	82.25 ± 0.16	97.31 ± 0.01
	TGIB	99.37 ± 0.09	93.60 ± 0.24	91.61 ± 0.34	87.07 ± 0.44	82.42 ± 0.11	99.68 ± 0.15

,	Model	Wikipedia	UCI	USLegis	CanParl	Enron	Reddit
	Jodie	93.11 ± 0.40	71.23 ± 0.80	52.16 ± 0.50	53.92 ± 0.94	76.48 ± 3.50	94.36 ± 1.10
	DyRep	92.05 ± 0.30	50.43 ± 1.20	56.26 ± 2.00	54.02 ± 0.76	66.97 ± 3.80	95.68 ± 0.20
/ e	TGAT	93.82 ± 0.30	66.89 ± 0.40	52.31 ± 1.50	55.18 ± 0.79	63.70 ± 0.20	96.42 ± 0.30
Inductive	TGN	97.05 ± 0.20	74.70 ± 0.90	58.63 ± 0.37	54.10 ± 0.93	77.94 ± 1.02	96.87 ± 0.20
þ	TCL	96.22 ± 0.17	87.36 ± 2.03	52.59 ± 0.97	54.30 ± 0.66	76.14 ± 0.79	94.09 ± 0.07
1	CAW-N	97.70 ± 0.20	89.65 ± 0.40	53.11 ± 0.40	55.80 ± 0.69	86.35 ± 0.51	97.37 ± 0.30
	GraphMixer	96.65 ± 0.02	91.19 ± 0.42	50.71 ± 0.76	55.91 ± 0.82	75.88 ± 0.48	95.26 ± 0.02
	TGIB	99.28 ± 0.11	91.26 ± 0.16	86.42 ± 0.16	79.56 ± 0.79	80.64 ± 0.59	99.54 ± 0.02

<u>Setup</u>

- Inductive Setting
- We predict the occurrence of events including nodes not observed during the training time.
- Transductive Setting
- We predict the occurrence of events including both observed and unobserved nodes during training time.

Observation

➤ TGIB demonstrated the significant performance compared to the baselines for the temporal graphs in both transductive and inductive settings.

• Explanation Performance

	Wikipedia	UCI	USLegis	CanParl	Enron
Random	70.91 ± 1.03	54.51 ± 0.52	54.24 ± 1.34	51.66 ± 2.26	48.94 ± 1.28
ATTN	77.31 ± 0.01	27.25 ± 0.01	62.24 ± 0.00	79.92 ± 0.01	68.28 ± 0.01
Grad-CAM	83.11 ± 0.01	26.06 ± 0.01	78.98 ± 0.01	50.42 ± 0.01	19.93 ± 0.01
GNNExplainer	84.34 ± 0.16	62.38 ± 0.46	89.42 ± 0.50	80.59 ± 0.58	77.82 ± 0.88
PGExplainer	84.26 ± 0.78	59.47 ± 1.68	91.42 ± 0.94	75.92 ± 1.12	62.37 ± 3.82
T-GNNExplainer	85.74 ± 0.56	68.26 ± 2.62	90.37 ± 0.84	80.67 ± 1.49	82.02 ± 1.94
TGIB	88.09 ± 0.68	87.06 ± 1.04	93.33 ± 0.72	89.72 ± 1.18	83.55 ± 0.91

<u>Setup</u>

- > To evaluate the performance of explanations, we measure the proportion of generated explanations that have the same predicted label as the original prediction.
- ➤ We evaluate the explanation performance over various sparsity levels (from 0 to 0.3 with intervals of 0.002) and calculate the area under the sparsity-accuracy curve.

Observation

➤ We can observe that our model provides a higher quality of explanation for the predictions compared to other baselines.

• Explanation Visualization

We marked the difference in occurrence timestamps between the target event and each of the five explanation events.

Observation

- > The timestamps of the explanation events in TGIB are closer to the target events than GNNExplainer and PGExplainer.
- > TGIB can capture temporal dependencies along with graph topology.

CONCLUSION

- We propose TGIB, a more reliable and practical explanation model for temporal graphs that can simultaneously perform prediction and explanation tasks.
- The main idea is to provide time-aware explanations based on Graph Information Bottleneck.
 - Restrict the flow of information to focus on the most relevant information for making accurate predictions.
- We demonstrate that our model shows significant performance in both prediction and explanation across various datasets.

Thank you!

[KDD' 24] Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck

[Full Paper] https://arxiv.org/abs/2406.13214 [Source Code] https://github.com/sang-woo-seo/TGIB

[Email] sangwooseo@kaist.ac.kr

