

مجموعه سوالات فصل ۱ (معادلات خطی در جبر خطی)

توجه!!! :

- ضمن تبریک عید باستانی نوروز به دانشجویان گرامی و آرزوی سالی خوش ،خرم و همراه با موفقیت برای عزیزان ،سری اول تمرینات با موضوع معادلات خطی در جبر خطی تقدیم شما می شود.
 - این سری تمرین شامل ۱۲ سوال نظری است که سوالات شبیه سازی نیز به زودی در اختیار شما قرار خواهد گرفت.
- پس از حل مسائل آن ها را به صورت یک فایل pdf در قسمت مورد نظر آپلود کنید همچنین تمرینات عملی و شبیه سازی را نیز در یک پوشه قرار دهید و در قسمت در نظر گرفته شده با توجه به اصول ارسال تمارین که در کانال و مودل قرار گرفته است ارسال کنید.
 - تمرینات نظری را به شکل:

9531000 T Sokratis Papastathopoulos HW1.pdf

و تمرینات عملی و شبیه سازی را به شکل:

 $9531000_S_Sokratis\ Papastathopoulos_HW1.pdf$

ارسال فرمایید.

• مهلت تحویل تمارین ساعت ۱۱:۵۵ روز جمعه ۹۷/۱/۲۴ خواهد بود.

تمارين:

۱. در زیر دو دستگاه معادلات مشاهده می کنید،برای این دستگاه ها ابتدا ماتریس افزوده را تشکیل دهید سپس ماتریش افزوده
 آن ها را به شکل کاهش یافته سطری پلکانی در بیاورید و در مورد تعداد جواب های این دستگاه ها بحث کنید و آن ها را به شکل
 پارامتریک برداری بیان کنید،در نهایت یک توصیف هندسی از این جواب ها ارائه دهید.

$$\begin{cases} x_1 + rx_r + x_r &= 1 \\ -rx_1 - rx_r + rx_r &= -1 \\ -rx_r - rx_r &= -r \end{cases} \qquad \begin{cases} x_1 + rx_r - \Delta x_r &= r \\ x_1 + rx_r + -\lambda x_r &= r \\ -rx_1 - rx_r + rx_r &= -r \end{cases}$$

: در دستگاه معادلات زیر h و k را به گونه ای انتخاب کنید که :

۱. معادلات جواب نداشته باشند.

۲. معادلات جواب یکتا داشته باشند.

۳. بیش از یک جواب داشته باشند.

١

به هر قسمت به طور جداگانه پاسخ دهید.

$$\left\{ \begin{array}{ll} x_1 + hx_7 &= \mathbf{7} \\ \mathbf{f}x_1 + \lambda x_7 &= k \end{array} \right. \quad \left\{ \begin{array}{ll} x_1 + \mathbf{f}x_7 &= \mathbf{7} \\ \mathbf{f}x_1 + hx_7 &= k \end{array} \right.$$

۳. تمام جواب های ممکن برای x_1, x_7, x_7, x_7, x_6 از دستگاه معادلات زیر بیابید.

یک پارامتر است. y

۴. در مورد تعداد جواب های دستگاه معادلات زیر را برای مقادیر مختلف a,b مشخص کنید.

ه. خطوط راست در صفحه xy را در نظر بگیرید نشان دهید سه خط

$$l_1: ax + by + c = \cdot l_7: bx + cy + a = \cdot l_7: cx + ay + b = \cdot$$

در یک نقطه متقاطعند اگر و فقط اگر $c = b + c = \epsilon$ باشند.

۶. درستی و نادرستی گزاُره های زیر را مشخص کنید در صورت درست بودن آن را ثابت کنید و در صورت نادرست بودن برای آن ها مثال نقض بزنید.

- ۱. اگر v_1, v_2, v_3 مستقل خطی باشند و v_2, v_3, v_4 وابسته خطی باشند آنگاه v_1, v_2, v_3 است و v_3, v_4, v_5 است.
- آنگاه $span(A)=\mathbb{R}^n$ یک مجموعه از بردار ها عضو \mathbb{R}^n که مستقل خطی باشند و $A=\{v_1,v_7,\dots,v_n\}$ آنگاه $span(B)=\mathbb{R}^n$ ین مجموعه مستقل خطی است که $B=\{v_1+v_7,v_7+v_7,\dots,v_{n-1}+v_n,v_n+v_1\}$
- ۳. اگر v_1, v_2, \dots, v_n بردار هایی مستقل خطی هستند اگر و فقط اگر هیچکدام از v_i ها را نتوان به شکل ترکیب خطی بقیه بردار ها نوشت.
- گ. اگر هر r-1 بردار از مجموعه بردار های v_1,v_2,\ldots,v_r مستقل خطی باشند آنگاه v_1,v_2,\ldots,v_r مستقل خطی است.
- ۵. یک سیستم معادلات خطی کاهش یافته(دستگاه معادلاتی که تعداد معادلات کمتر از متغیر ها باشد) با توجه به نوع ضرایب می تواند فقط یک جواب داشته باشد یا جواب نداشته باشد.
 - ۶. شکل اکولون (echelon) یک ماتریس یکتاست.
 - اد. اگر $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ و $bc
 eq \cdot b$ آنگاه A = A فقط جواب بدیهی دارد. $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.۷

olimits مربع های جادویی (magic squre)یکی از ساختار های جالب ترکیبیاتی در ریاضی هستند که در بخش ها گوناگون ریاضی کاربرد دارند و ارتباطات جالبی بین مربع جادویی و ساختار های گرافی و ... وجود دارد،حتی این ساختار ها در علوم دیگر از جمله مکانیک و کامپیوتر نیز کاربرد دارند و هنوز تعداد زیادی مسئله حل نشده در این زمینه وجود دارد. مربع جادویی یا وفقی جدولی است $n \times n$ اصد $n \times n$ که خانه های آن با اعداد مثبت ۱ تا $n \times n$ بر شده است به نحوی که مجموع اعداد هر ستون عمودی و هر سطر افقی و قطر آن عدد ثابتی را نشان می دهد برای مثال شکل زیر یک مربع جادویی $n \times n$ است:

۶	٧	۲
١	۵	٩
٨	٣	۴

 \S اگر تعداد مربع های جادویی 9×9 را بیابید نمره درس جبر خطی کاربردی شما $1 \cdot 1$ منظور می شود :) \S اگر تعداد مربع جادویی $i \times i$ باشد که درایه های آن اعداد متناظر بر روی یک مربع جادویی $i \times i$ باشد آنگاه حاصل ضرب های ماتریسی زیر را بیابید:

$$M_1 imes [1] \qquad M_7 imes \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad M_7 imes \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad M_n imes \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{n imes 1}$$

همچینین تعیین کنید یک ماتریس M_i با کدامیک از اعمال سطری پلکانی همچنان به شکل جادویی می ماند. Λ . گزاره های زیر ثابت کنید:

- B . اگر معادله ax=b بدیهی داشته باشد آنگاه ماتریس ax=b فقط جواب بدیهی داشته باشد آنگاه ماتریس ax=b دارد. را بدین شکل از ماتریس a می سازیم که تمامی ستون های کمتر از ax=b ام را با ستون ax=b فقط جواب بدیهی دارد. ax=b فقر خواب دارد و به ازای ax=b فقر جواب بدیهی دارد. ax=b فقر حواب بدیهی دارد.
- ۲. نشان دهید اگر معادله x=0 فقط جواب بدیهی داشته باشد و A به شکل $[a_1a_7\dots a_n]$ باشد که a_i فقط جواب بدیهی داشته باشد و a_i ماتریس a_i های ماتریس a_i های ماتریس a_i سازگار باشد که a_i ماتریس a_i های ماتریس a_i سازگار باشد که a_i ماتریس a_i های ماتریس a_i ماتریس مات
- ۳. فرض کنید w حوابی از Ax=b باشد و تعریف می کنیم $v_h=w-p$ نشان دهید v_h جوابی از Ax=b باشد و تعریف می کنیم $w=p+v_h$ است و $w=p+v_h$

u,v را دو بردار مستقل خطی عضو \mathbb{R}^r در نظر بگیرید و P را صفحه ای در نظر بگیرید که از این دو بردار و نقطه ۰ می گذرد. $T:\mathbb{R}^r \longrightarrow \mathbb{R}^r$ صفحه P را به نمایش پارامتریک P به شکل $T:\mathbb{R}^r \longrightarrow \mathbb{R}^r$ است .نشان دهید که یک تبدیل خطی $T:\mathbb{R}^r \longrightarrow \mathbb{R}^r$ صفحه ای که از ۰ می گذرد یا به خطی که از ۰ می گذرد و یا به مبدا مختصات در \mathbb{R}^r نگاشت می کند و همچنین چه چیزی باید در مورد T(u), T(v) صدق کند که تصویر صفحه T یک صفحه باشد.

باشد که $T:\mathbb{R}^n\longrightarrow\mathbb{R}^n$ و $span\{v_1,v_1,\dots,v_p\}=\mathbb{R}^n$ یک ترکیب خطی باشد که آبی اسد که است کنید که $span\{v_1,v_2,\dots,v_p\}$

$$\forall i \in \{1, \ldots, p\} \ T(v_i) = \cdot$$

 $(\forall x \in \mathbb{R}^n \ T(x) = \cdot$ آنگاه نشان دهید که T یک تبدیل صفر است.(به تبدیلی تبدیل صفر گویند که T

۱۱. فرض کنید $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ یک تبدیل خطی باشد نشان دهید اگر T دو بردار مستقل خطی را به یک مجموعه وابسته خطی نگاشت کند آنگاه T(x) = t جواب غیر بدیهی دارد.

۱۲. در هر کدام از تبدیل های زیر مشخص کنید تبدیل خطی هست یا نه و در صورت خطی بودن ماتریس استاندارد آن را مشخص کنید.

١.

$$T: \mathbb{R}^{\mathsf{T}} \longrightarrow \mathbb{R}^{\mathsf{T}}$$
$$(x_1, x_{\mathsf{T}}) \longrightarrow (\mathsf{f} x_1 - \mathsf{T} x_{\mathsf{T}}, \mathsf{T} | x_{\mathsf{T}} |)$$

۲.

$$T: \mathbb{R}^{\mathsf{T}} \longrightarrow \mathbb{R}^{\mathsf{T}}$$
$$(x_{\mathsf{L}}, x_{\mathsf{T}}) \longrightarrow (sin(x_{\mathsf{L}}), x_{\mathsf{T}})$$

۳.

$$T: \mathbb{R}^{\mathsf{r}} \longrightarrow \mathbb{R}^{\mathsf{r}}$$
$$(x_1, x_{\mathsf{r}}, x_{\mathsf{r}}) \longrightarrow (\mathsf{r} x_1, x_1 - x_{\mathsf{r}}, \mathsf{r} x_1 + x_{\mathsf{r}} + x_{\mathsf{r}})$$