

Reward Centering

Abhishek Naik, Yi Wan, Manan Tomar, Richard S. Sutton

{abhishek.naik,mtomar,rsutton}@ualberta.ca, yiwan@meta.com

THE IDEA

Estimate the average reward and subtract it from the observed rewards.

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \left[R_{t+1} - \bar{R}_t + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t) \right]$$

 $S_0 A_0 R_1 S_1 A_1, R_2 \dots S_t A_t R_{t+1} S_{t+1} A_{t+1} R_{t+2} \dots$

Implication #1

TRENDS ARE CONSISTENT ACROSS PARAMETERS

THEORY

Standard discounted value function

$$v_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s \right]$$

Average reward

$$r(\pi) \doteq \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{\pi} \left[\sum_{t=1}^{n} R_{t} \right]$$

Differential value function

$$\tilde{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \left(R_{t+k+1} - r(\pi)\right) \mid S_{t} = s\right]$$

Centered discounted value function

$$\tilde{v}_{\pi}^{\gamma}(s) \doteq \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} \left(R_{t+k+1} - r(\pi) \right) \mid S_{t} = s \right]$$

		s_A	s_B	s_C
Standard discounted values	$\gamma = 0.8$	6.15	3.93	4.92
	$\gamma = 0.9$	11.07	8.97	9.96
	$\gamma = 0.99$	101.01	98.99	99.99
Centered discounted values	$\gamma = 0.8$	1.15	-1.07	-0.08
	$\gamma = 0.9$	1.07	-1.03	-0.04
	$\gamma = 0.99$	1.01	-1.01	-0.01
Differential values		1	-1	0

TWO WAYS TO ESTIMATE THE AVERAGE REWARD

On-policy

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t (R_{t+1} - \bar{R}_t)$$

Off-policy

$$\bar{R}_{t+1} \doteq \bar{R}_t + \beta_t \delta_t$$

$$\delta_t \doteq R_{t+1} - \bar{R}_t + \gamma \max_{a'} Q_t(S_{t+1}, a') - Q_t(S_t, A_t)$$

ALSO MORE ROBUST TO SHIFTED REWARDS

Implication #2

Reward Centering can improve the performance of every discounted algorithm for continuing problems, especially as $\gamma \to 1$.