Real-Time River Water Quality Monitoring and Control

System

Team ID :PNT2022TMID41301

Team Lead : Saranya M
Team Member 1: Sopana R
Team Member 2: Monisha K
Team Member 3: Punitha T

Mentor : Dr Dinesh Ganesan

Introduction

- River water quality can be monitored by the web application.
- pH level of the water can be monitored.
- Water temperature can be monitored.
- Alerting the authorities

shortflaws

- Weakness in data security,
- Communication coverage,
- Energy consumption management.

Objectives

- Sending random pH ,temperature and turbidity values will be sent to the IBM IoT platform
- Sensors values can be monitored in the MIT App Inventer
- Notifies the random values cross the threshold value

Methodologies:

- Python Script
- IBM Watson Cloud

Node-Red

MIT app Inventor

Python Script

- Python code for publishing random sensor data (Water turbidity, PH values, if required temperature) to the IBM lot platform.
- Python code is used to send random sensor data to the cloud
- Receive commands from the cloud.

IBM Watson

- IBM Watson IOT Platform acts as the mediator
- Create a device in the IBM Watson IOT platform
- Configure the connection security
- Create API keys
- Node-Red service for accessing the IBM IOT platform.

Node-Red

- The Node-RED flow to receive data from the IBM IoT platform.
- Use Cloudant DB(data base) nodes to store the received sensor data
- To create use dashboard nodes
- To visualize the data in graphical format.
- Create an HTTP API for communicating with Mobile applications.

MIT app Inventor

- User Interface to display the Water Turbidity, and pH values.
- we will build a basic mobile application to show the sensor data.
- Design the application to receive the data from the cloud.
- The mobile app to send commands to users using buttons.

Features

Instantaneous data

Improved accuracy of measurements

Contact Guardian Water Treatment

Reference

1) S. Thombre, R. U. Islam, K. Andersson, and M. S. Hossain, "IP based Wireless Sensor Networks: performance Analysis using Simulations and Experiments", Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 7, no. 3, pp. 53–76, 2016.

- 2) K. S. Adu-Manu, C. Tapparello, W. Heinzelman, F. A. Katsriku, and J.-D. Abdulai, "Water quality monitoring using wireless sensor networks: Current trends and future research directions," ACM Transactions on Sensor Networks (TOSN), vol. 13, p. 4, 2017.
- 3) B. Chen, Y. Song, T. Jiang, Z. Chen, B. Huang, and B. Xu, "Real-time estimation of population exposure to PM2.5 using mobile- and station-based big data," Int J Environ Res Public Health, vol. 15, Mar 23 2018.
- 4)B. Paul, "Sensor based water quality monitoring system," BRAC University, 2018.

Thank You