Chap 16

重积分

Chap 16 — 1

二重积分的概念和性质

16.1.1 曲顶柱体的体积

可求面积图形 设 $D \subset \mathbb{R}^2$,若 $\forall \epsilon > 0$,存在网格,使得 ∂D 所交网格面积总和小于 ϵ .

曲顶柱体 设D为可求面积有界闭集.以D为底, 曲面 S: z = f(x,y)为顶, ∂D 为准线, 母线平行于Oz轴的柱面 为侧面的立体.

问题 如何求此曲顶柱体的体积?

设 $D\subset [a,b]\times [c,d]$. $\diamondsuit f(x,y)=0$, $(x,y)\in [a,b]\times [c,d]\setminus D$.

- (1) **分割**: 取[a,b]×[c,d]的分划T:{ $x_0, x_1, ..., x_n; y_0, y_1, ..., y_m$ } 得小矩形 D_{ii} ,其面积记为 $\Delta \sigma_{ii}$.
- (2) **求和**: 当 D_{ij} 很小时, 其上的小曲顶柱体的体积用平顶柱体近似. 任取 $(\xi_i, \eta_j) \in D_{ij}$, 则有总体积 $V \approx \sum_{i=1}^n \sum_{j=1}^m f(\xi_i, \eta_j) \Delta \sigma_{ij}.$
- (3) 取极限: 记 $\|T\| = \max_{1 \leq i \leq n, 1 \leq j \leq m} \{\text{diam}\{D_{ij}\}\}, 则有$

$$V = \lim_{\|T\| \to 0} \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i, \eta_j) \Delta \sigma_{ij}.$$

✔ 用类似思想可求面密度不为常数的平面薄板质量.

16.1.2 二重积分定义

设f(x,y)在可求面积有界闭集 $D \subset [a,b] \times [c,d]$ 上定义. 令f(x,y) = 0, $(x,y) \in [a,b] \times [c,d] \setminus D$. 若对 $[a,b] \times [c,d]$ 的 \forall 矩形分划 D_{ij} 及 \forall $(\xi_i,\eta_j) \in D_{ij}$, $(i=1,2,\cdots,n;j=1,2,\cdots,m)$, 总有 $\lim_{\|T\| \to 0} \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i,\eta_j) \Delta \sigma_{ij} = I$.

其中 $\|T\| = \max_{1 \le i \le n, 1 \le j \le m} \{ \operatorname{diam}\{D_{ij}\} \}, \, \text{则称} f(x,y)$ 在D上可积, I称为f(x,y)在D上的二重积分, 记为 $\iint_D f(x,y) \, d\sigma$, 其中 \iint 为积分号,D为积分区域,f(x,y)为被积函数,

$d\sigma$ 为面积元素, $\sum_{i=1}^{n}\sum_{j=1}^{m}f(\xi_{i},\eta_{j})\Delta\sigma_{ij}$ 称为Riemann和.

一、几何、物理意义

- ◆ 以有界闭集D为底, 以曲面S: z = f(x,y)为顶的曲顶柱体体积 $V = \iint_{D} f(x,y) d\sigma.$
 - ◆ 形状为D, 面密度为 $\mu(x,y)$ 的平面薄板质量

$$m = \iint_D \mu(x, y) d\sigma.$$

二、可积的条件

必要条件 若 $f \in R(D)$, 则f 在D上有界.

充要条件 设 f 在D上有界. 则 $f \in R(D) \Leftrightarrow$

(I)
$$\iint_{D} f(x, y) d\sigma = \iint_{\overline{D}} f(x, y) d\sigma.$$

 $(II) \forall \varepsilon > 0, \exists$ 分划T: $\sum_{T} \omega_{ij} \Delta \sigma_{ij} < \varepsilon$, 其中 ω_{ij} 为f在 D_{ij} 上振幅.

$$(III) \forall \varepsilon > 0, \forall \sigma > 0, \exists \text{分划} T: \sum_{(i,j) \in \Lambda} \Delta \sigma_{ij} < \varepsilon, \Lambda = \{(i,j) \middle| \omega_{ij} > \sigma\}$$

充分条件 若 $f \in C(D)$, 则 $f \in R(D)$.

16.1.3 二重积分的性质

设以下性质中出现的积分均存在.

性质1(线性)设 α , β 是常数,则

$$\iint_{D} [\alpha f(x, y) + \beta g(x, y)] d\sigma = \alpha \iint_{D} f(x, y) d\sigma + \beta \iint_{D} g(x, y) d\sigma$$

性质2(可加性) 若D分成内部不交的子集 D_1, D_2 ,

$$\iint\limits_{D} f(x,y) d\sigma = \iint\limits_{D_1} f(x,y) d\sigma + \iint\limits_{D_2} f(x,y) d\sigma$$

性质3
$$\iint_D \operatorname{Id}\sigma = A_D \qquad (D的面积)$$

性质4 (单调性) 若 $f(x,y) \leq g(x,y)$, 则

$$\iint_{D} f(x, y) d\sigma \le \iint_{D} g(x, y) d\sigma$$

推论 (1) 若 $f(x,y) \ge 0$, 则 $\iint_D f(x,y) d\sigma \ge 0$.

- (2) (绝对值不等式) $\left| \iint_{D} f(x,y) d\sigma \right| \leq \iint_{D} |f(x,y)| d\sigma.$
- (3) (估值不等式) 若 $m \le f(x,y) \le M$, 则

$$mA_D \leq \iint_D f(x, y) d\sigma \leq MA_D.$$

性质5 (中值定理) 设D是连通有界闭集, $f(x,y) \in C(D)$,

则 $\exists (\xi, \eta) \in D$, 使得

$$\iint_D f(x, y) d\sigma = f(\xi, \eta) A_D.$$

Chap16 — 2

二重积分的计算

16.2.1 二重积分与二次积分

定义 设 $f:[a,b]\times[c,d]\to \mathbf{R}.$ 固定 $x\in[a,b]$, 若存在

首次积分 $\varphi(x) = \int_{c}^{d} f(x, y) dy$, 且 φ 在[a, b]可积, 则称

$$\int_{a}^{b} \varphi(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

为f在[a,b]×[c,d]上先y后x的累次(二次)积分,也记为

$$\int_{a}^{b} \mathrm{d}x \int_{c}^{d} f(x, y) \mathrm{d}y$$

想一想 先x后y的累次积分的定义?

> 二重积分存在不能导出二次积分存在

例1考察

$$f(x,y) = \begin{cases} \frac{1}{m} + \frac{1}{p}, & (x,y) = \left(\frac{n}{m}, \frac{q}{p}\right), \\ 0, & \text{otherwise.} \end{cases}$$

在[0,1]×[0,1]上二重积分和二次积分的存在性.

解记 $D = [0,1] \times [0,1]$. 对 $\forall \varepsilon > 0$, $\forall \sigma > 0$, 若 $f(x, y) > \sigma$,

则
$$(x,y) = \left(\frac{n}{m}, \frac{q}{p}\right)$$
, 且 m, p 中至少一个小于 $\frac{2}{\sigma}$.

区间[0,1]中分母小于 $\frac{2}{\sigma}$ 的有理数至多有限个,设为

 $r_1, r_2, ..., r_p$. 取[0,1]的分割 T_x, T_y 使得 $||T_x||, ||T_y|| < \frac{\varepsilon}{4p}$. 令 $T = \{T_x\} \cup \{T_y\}$,得D的矩形分割.显见f有界,若f在 小矩形 $D_{ij}=[x_{i-1},x_i]\times[y_{j-1},y_j]$ 上的振幅 $\omega_{ij}>\sigma$,则 D_{ij} 至少 一条边含 r_k (1 $\leq k \leq p$). 由于含 r_k 的小区间至多2p个, 其 长度和不超 过 $2p \cdot \frac{\varepsilon}{4p} = \frac{\varepsilon}{2}$, 故横边和纵边含 r_k 的小矩形

面积和都不超过 $\frac{\varepsilon}{2}$,从而总面积不超过 ε ,即 $f \in R(D)$.

> 二次积分存在不能导出二重积分存在

例2考察

$$f(x, y) = \begin{cases} 1, & (x, y) = \left(\frac{n}{m}, \frac{q}{m}\right), \\ 0, & \text{otherwise.} \end{cases}$$

在[0,1]×[0,1]上二重积分和二次积分的存在性.

提示 对任意区间[a,b]和[c,d],它们必含分母相同且

为素数的有理数.

16.2.2 化二重积分为二次积分

定理 设f(x, y)在[a, b]×[c, d]可积, 且 $\forall x \in [a, b]$, 存在

首次积分
$$F(x) = \int_{c}^{d} f(x, y) dy$$
, 则

$$\iint_{[a,b]\times[c,d]} f(x,y) d\sigma = \int_a^b dx \int_c^d f(x,y) dy$$

试一试另一情形 $\iint_{[a,b]\times[c,d]} f(x,y) d\sigma = \int_{c}^{d} dy \int_{a}^{b} f(x,y) dx$

推论1 若f(x,y)在[a,b]×[c,d]连续,则有

$$\iint_{[a,b]\times[c,d]} f(x,y) d\sigma = \int_a^b dx \int_c^d f(x,y) dy = \int_c^d dy \int_a^b f(x,y) dx$$

推论2 若f 在x型区域 $D = \{(x,y) | a \le x \le b, y_1(x) \le y \le y_2(x)\}$

连续,则有

$$\iint_D f(x, y) dxdy = \int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

试一试y型区域情形!

$$\iint_D f(x, y) dxdy = \int_c^d dy \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$

注 面积元素 $d\sigma = dxdy$

几何直观过x处且垂直x轴的平面截曲顶柱体得

 $A(x) = \int_{y_2(x)}^{y_2(x)} f(x, y) dy$

曲边梯形,其面积 故曲顶柱体体积

$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \left(\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy \right) dx$$

结论 记 $D = [a, b] \times [c, d], f \in C[a, b], g \in C[c, d], 则有$

$$\iint_D f(x)g(y) dxdy = \int_a^b f(x) dx \cdot \int_c^d g(y) dy$$

例3 计算二重积分 $\iint_D xy dx dy$,其中D是由抛物线 $y^2 = x$ 与直线 y = x - 2 所围区域.

◆ 直角坐标计算二重积分步骤

- ➤ 画出区域D的草图, 并确定类型;
- ➤ 按所确定的类型表示区域D;
- ▶ 化二重积分为二次积分(注意上、下限);
- > 计算二次积分.
- ◆ 确定积分区域D类型的原则
 - > 对它划分的块数越少越好;
 - ▶ 首次积分可以且容易算出.

例4 计算二次积分
$$I = \int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy$$

例5 交换二次积分次序

$$\int_0^1 dy \int_0^{1-\sqrt{1-y^2}} f(x,y) dx + \int_1^2 dy \int_0^{2-y} f(x,y) dx$$

- ◆ 交换二次积分次序步骤
 - ▶ 将二次积分还原为二重积分;
 - ▶ 由积分限确定积分区域D, 并按另一类型表示它;
 - ▶ 化二重积分为另一次序的二次积分.

例6 计算二重积分
$$I = \iint (y + y^2 \sin^3 x) dx dy$$
,

其中D是上半圆域 $\{(x,y) | x^2 + y^2 \le 4, y \ge 0\}$.

◆ 用积分区域对称性和被积函数奇偶性简化积分计算 若D关于y轴对称,记 D_1 为D中 $x \ge 0$ 部分,则

$$\iint_{D} f(x, y) dxdy = \begin{cases} 0, & f(-x, y) = -f(x, y) \\ 2\iint_{D_{1}} f(x, y) dxdy, & f(-x, y) = f(x, y) \end{cases}$$

若D关于x轴对称,有类似的结果.

例7 计算二重积分 $\iint_D e^{\max\{x^2,y^2\}} dxdy$,

其中 $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}.$ (考研试题)

例8 设函数 $f(x) \in C[0, 1]$, 且设 $\int_0^1 f(x) dx = A$, 计算 $\int_0^1 dx \int_x^1 f(x) f(y) dy.$

例9 计算圆柱面 $x^2 + y^2 = R^2$ 与 $x^2 + z^2 = R^2$ 所围立体的体积.

16.2.3 极坐标计算二重积分

当积分区域边界曲线或被积函数用极坐标表示简单时, 可用极坐标来计算二重积分

考虑面积元素 $d\sigma$ 在极坐标下的形式.

用r=常数(圆周族)和 θ =常数(射线族)分割区域D,则小区域面积

$$\Delta \sigma = \frac{1}{2} [(r + \Delta r)^2 \Delta \theta - r^2 \Delta \theta] = r \Delta r \Delta \theta + \frac{1}{2} (\Delta r)^2 \Delta \theta$$

$$\Rightarrow$$
 d $\sigma = r dr d\theta$

从直角坐标到极坐标时的二重积分变换公式

$$\iint_{D} f(x, y) dxdy = \iint_{D'} f(r\cos\theta, r\sin\theta) r drd\theta$$

其中D'是D在极坐标下的表示形式.

特别地,若

$$D' = \{ (r, \theta) \mid \alpha \le \theta \le \beta, r_1(\theta) \le r \le r_2(\theta) \}$$

则有

$$\iint_{D'} f(r\cos\theta, r\sin\theta) r dr d\theta$$

$$= \int_{\alpha}^{\beta} d\theta \int_{r_1(\theta)}^{r_2(\theta)} f(r\cos\theta, r\sin\theta) r dr$$

例10 将 $I = \iint_D f(x,y) dxdy$ 化为极坐标下的累次积分, 其中D为

- (1) 由y = x, 上半圆周 $x^2 + y^2 = 4x$ 及 $x^2 + y^2 = 8x$ 围成.
- (2) 由直线y = x, y = 0和x = 1围成.

◆ 用极坐标表示积分区域

> 关键: 化积分区域边界为极坐标方程.

 \triangleright 方法: 将 $x = r\cos\theta$, $y = r\sin\theta$ 代入边界的直角坐标方程.

例11 求球体 $x^2 + y^2 + z^2 \le R^2$ 被圆柱面 $x^2 + y^2 = \pm Rx$ 所割下 部分的体积*V*.

◆ 积分区域边界曲线方程或被积函数含x² + y²,

可考虑用极坐标

例12 (1)计算
$$I_R = \iint_{D_R} e^{-(x^2+y^2)} dxdy$$
, 其中 $D_R : x^2 + y^2 \le R^2, x \ge 0, y \ge 0$

(2) 计算**Poisson**积分
$$I = \int_0^{+\infty} e^{-x^2} dx$$
.

16.2.4 二重积分的变量代换

设变换 T: $\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$ 有连续偏导数,且满足

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} \neq 0, \quad \nabla f(x, y) \in C(D), \quad \mathbb{N}$$

$$\iint_D f(x, y) dxdy = \iint_{D'} f(x(u, v), y(u, v)) |J| dudv.$$

其中T将D'变为D.

例13 计算二重积分 $\iint_{D} (x+y) dx dy$, 其中区域 D为

$$x^2 + y^2 \le x + y + 1.$$

思考 若D 改为
$$\frac{(x-2)^2}{a^2} + \frac{(y+1)^2}{b^2} \le 1$$
 如何?

例14 计算积分 $\iint_D xy dx dy$, 其中 D 为由曲线 xy = 1, xy = 2, y = x 和 y = 4x 在第一象限所围区域.

例15 计算积分 $I = \iint_D |x| dxdy$, 其中D为 $2x^2 - 2xy + y^2 \le 1$.