1 Opis języka akcji

Język akcji zaprojektowany na potrzeby zadania, musi spełniać następujące warunki:

- 1. Prawo inercji.
- 2. Sekwencyjność działań.
- 3. Możliwe akcje niedeterministyczne.
- 4. Liniowy model czasu czas dyskretny.
- 5. Pełna informacja o wszystkich:
 - (a) akcjach,
 - (b) skutkach bezpośrednich.
- 6. Akcja posiada:
 - (a) warunek początkowy,
 - (b) czas trwania $t \ge 1, t \in \mathbb{N}$,
 - (c) efekt akcji.
- 7. Podczas trwania akcji, wartości zmiennych, na które ona wpływa, nie są znane.
- 8. Występujące rodzaje efektów:
 - (a) środowiskowe,
 - (b) dynamiczne.
- 9. Akcje mogą być niewykonalne.
- 10. Stany opisywane częściowo (obserwacje). (TODO wyjaśnić)
- 11. Pewne stany mogą rozpocząć wykonywanie pewnych akcji.

Językiem odpowiadającym powyższym założeniom jest język AL opisujący domeny akcji z czasem liniowym.

1.1 Sygnatura języka

```
\psi=(F,Ac,\mathbb{N})gdzie:

F-zbiór zmiennych inercji (fluentów)

Ac-zbiór akcji

\mathbb{N}-zbiór liczb naturalnych (czas trwania akcji)
```

1.2 Opis domeny

Rodzaje zdań występujących w projektowanym języku (domena języka): Oznaczenia:

f – fluent

 $Ac_i, Ac_j \in Ac$

 $\pi \in Forms(F)$ $d_i, d \in \mathbb{N}$

- initially α
 Określa stan początkowy fluentów w formule α.
- (Ac_i, d_i) causes α if π Akcja Ac_i trwająca d_i chwil powoduje stan α , jeśli zachodzi warunek π .
- (Ac_i, d_i) invokes (Ac_j, d_j) after d if π Akcja Ac_i trwająca d_i chwil powoduje wykonanie akcji Ac_j trwającej d_j chwil po d chwilach od zakończenia akcji Ac_i , jeśli zachodzi warunek π .
- (Ac_i, d_i) releases f if π Akcja Ac_i trwająca d_i chwil powoduje uwolnienie f po zakończeniu akcji Ac_i , jeśli zachodzi warunek π .
- π triggers (Ac_i, d_i) Akcja Ac_i trwająca d_i chwil jest wykonywana, jeśli zajdzie warunek π .

1.3 Scenariusze działań

Scenariusze działań opisane są w następujący sposób:

- Sc = (OBS, ACS)
- $OBS = \{(\gamma_1, t_1), ..., (\gamma_m, t_m)\}$, gdzie: $m \ge 0$ – obserwacje, gdzie każda obserwacja jest stanem częściowym (stanem spełniającym warunek γ w pewnym punkcie czasu t). γ – zbiór (np. $x_1 = True, x_2 = True, x_3 = False$).
- $ACS = \{((Ac_1, d_1), t_1), ..., ((Ac_n, d_n), t_n)\}$, gdzie: $n \ge 1$, $Ac_i \text{akcja}$, $d_i \text{czas trwania akcji}$, $t_i \text{punkt w czasie (rozpoczęcie akcji)}$.

1.4 Semantyka

Definicja 1.1. Semantyczną strukturą języka AL nazywamy system S = (H, O, E) taki, że:

- $H: F \times \mathbb{N} \longrightarrow \{0,1\}$ jest funkcją historii, pozwala ona stwierdzić, jaki stan ma pewny fluent w danej chwili czasu.
- $O: Ac \times \mathbb{N} \longrightarrow 2^F$ jest funkcją okluzji. Dla pewnej ustalonej akcji A i chwili czasu $t \in \mathbb{N}$ funkcja O(A,t) zwraca zbiór fluentów, na który akcja A ma wpływ, jeśli zostanie zakończona od czasu t-1 do t.
- E ⊆ Ac×N×N jest relacją wykonań akcji. Para (A, t, d) należy do relacji E jeśli akcja A trwająca d czasu jest rozpoczęta w czasie t. W naszym modelu zakładamy warunek sekwencyjności działań. Oznacza on, że tylko jedną akcje możemy wykonać w danym czasie tak, więc jeśli (A, t, d) ∈ E oraz (B, t, d) ∈ E, to A = B.

Niech: A, B będą akcjami, f - fluentem, α, π - będą formułami, d, d_2, d_3 - liczbami naturalnymi (oznaczającymi czas trawania akcji) oraz $fl(\alpha)$ będzie zbiorem fluentów występujących w α . Wtedy dla zdań języka AL muszą być spełnione następujące warunki:

- Dla każdego wyrażenia $((A,d) \ causes \ \alpha \ if \ \pi) \in D$ i dla każdego momentu w czasie $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t,d) \in E$, wtedy $H(\alpha,t+d)=1$ i $fl(\alpha) \subseteq O(A,t+d)$.
- Dla każdego wyrażenia $((A,d) \ release \ f \ if \ \pi) \in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t,d) \in E$, wtedy $f \in O(A,t+d)$.
- Dla każdego wyrażenia (π triggers (A,d)) $\in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$, wtedy $(A,t,d) \in E$.
- Dla każdego wyrażenia $((A, d_1) invokes (B, d_2) after d if \pi) \in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi, t) = 1$ oraz $(A, t, d_1) \in E$, wtedy $(B, t + d + d_1, d_2) \in E$.

Definicja 1.2. Niech S = (H, O, E) będzie strukturą języka AL, Sc = (OBS, ACS) będzie scenariuszem, oraz D domeną. Powiem, że S jest strukturą dla Sc zgodnym z opisem domeny D jeśli:

- Dla każdej obserwacji $(\alpha, t) \in OBS, H(\alpha, t) = 1$
- $ACS \subseteq E$

Definicja 1.3. Niech $O_1,O_2: X \longrightarrow 2^Y$, mówimy, że $O_1 \prec O_2$ jeżeli $\forall x \in X \ O_1(x) \subseteq O_2(x)$ oraz $O_1 \neq O_2$.

Definicja 1.4. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. Mowimy, że S jest O-minimalną strukturą, jeżeli nie istnieje struktura S' = (H', O', E') dla tego samego scenariusza i domeny taka, że $O' \prec O$.

Definicja 1.5. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. S będziemy nazywać modelem Sc zgodnym z opisem D jeżeli:

- S jest O-minimalny
- Dla każdego momentu w czasie $t, d \in \mathbb{N}$, jeżeli istnieje $f \in F$: takie, że $H(f, t) \neq H(f, t + d)$ to istnieje pewna akcja $A \in Ac$ trwająca d czasu, taka, że $f \in O(A, t + d)$.
- Nie istnieje, żadna struktura S' = (H', O', E') dla Sc zgodna z opisem D która spełnia poprzednie warunki oraz taka, że $E' \subset E$.

Uwaga 1.1. Nie dla każdego scenariusza można ułożyć model. Mówimy, że scenariusz Sc jest zgodny jeśli istnieje do niego model zgodny z domeną D.