Stephanie Knill 54882113 Due: March 31, 2016

Question 61

Let $n \geq 3$

(a) Show the number of pairs (T, e) where T is a spanning tree of K_n and e is an edge of T is $n^{n-2}(n-1)$.

By our in-class Corollary 6, we know that the number of spanning trees in K_n is $T = n^{n-2}$. By Homework 9, we know that the number of edges e in a tree of n vertices is given by e = n - 1. Multiplying these together gives us $n^{n-2}(n-1)$, the number of pairs (T, e).

(b) Show that the number of spanning trees of K_n containing a specific edge is $2n^{n-2}$.

To find the number of spanning trees of K_n containing a specific edge, we must take the number of pairs (T, e) and multiply this by the probability of selecting any edge in K_n . Since there are $\frac{n(n-1)}{2}$ edges in K_n , the probability of selecting any edge is $\frac{2}{n(n-1)}$. Multiplying this by the result found in part a) gives us

$$n^{n-2}(n-1) \cdot \frac{2}{n(n-1)} = \frac{2n^{n-2}}{n} = 2n^{n-3}$$

(c) Show that for some edge e in K_n , we have $\tau(K_n - e) = (n-2)n^{n-3}$

Deleting any edge e from K_n and calculating the number of spanning trees of the resulting graph $K_n - e$ is equivalent to calculating all possible spanning trees of K_n

and subtracting the number of spanning trees that contain edge e. Thus we have

$$\tau(K_n - e) = \tau(K_n) - 2n^{n-3}$$
$$= n^{n-2} - 2n^{n-3}$$
$$= (n-2)n^{n-3}$$

Question 62

For the following graphs Figure 1, we may start at the vertex labelled 1 and conduct a Depth First Search (blue) and a Breadth First Search (red)

Figure 1: Depth First Search and Breadth First Search of various graphs.

Question 63

For the weighted graph G (Figure 2), we can compute the shortest distance from vertex A to each vertex (Table 1).

Figure 2: Shortest paths in a weighted graph G.

Start & End	Distance	Path
$A \to A$	0	
$A \to B$	2	AB
$A \to C$	4	AC
$A \to D$	6	AD or ACD
$A \to E$	6	ABFE
$A \to F$	5	ABF
$A \to G$	5	ACG
$A \to H$	8	ABFH

Table 1: Table of shortest path distance between vertex A and the remaining vertices in graph G.

Question 64

Assign integer weights to the edges of K_n . Prove that the total weight on every cycle is even if and only if the total weight on every triangle (i.e. cycle of length 3) is even.

 $Proof. \Rightarrow Assume that the total weight of every cycle is even. Since a triangle is a cycle of length 3, then the total weight is also even.$

 \Leftarrow Assume that the total weight on every triangle is even. We will do an induction over the size m of a cycle.

Base Case: For a cycle of size m = 3, we have a triangle. By our initial assumption, our cycle has an even total weight.

Induction Step: Assume that the statement holds true for cycles of size 3 < m < k. For a cycle C of size m = k, let us choose any path of length 3 from vertices u to v, traversing edges a and b. Deleting edges a and b from our cycle and joining vertices u and v by a new edge c, we have by our induction assumption a cycle D of even weight. Since we also have a triangle of edges a, b, and c we know that this cycle is also of even weight. Thus the parity of the weights W(a) + W(b) and W(c) must be the same. Therefore the cycles D and C also have weights of the same parity, so C is of even weight.

Conclusion: By the principle of induction, the statement is true for all $n \geq 3$.

Question 65

Find a simple connected graph and assign the edge weights (1,1,1,2,2,3,3,3) in two ways: one way so the minimal spanning tree is unique and another way so it is not unique

Minimal Spanning Tree Unique

Here our simple connected graph G is depicted in Figure 3a and its unique minimal spanning tree in Figure 3b.

Minimal Spanning Tree Not Unique

Here our simple connected graph H is depicted in Figure 4 and its non-unique minimal spanning trees in Figure 5.

Figure 4: Graph H

Figure 5: Minimal spanning trees of H.

Question 60

A minimal spanning tree T for the graph is

Here, the weight is

$$W(T) = 1 \cdot (6) + 2 \cdot (2) + 3 \cdot (4) = 22$$