Limiti per françois di vouialile complessa $\underline{\mathcal{D}}_{\bullet} f : \Omega \leq \mathcal{C} \to \mathcal{C} , \quad \sharp \in acc(\Omega) , \quad \ell \in \mathcal{C}$ $\lim_{z \to \pm^{\circ}} f(z) = \ell \stackrel{\text{def}}{\rightleftharpoons} \forall V(\ell) \exists U(z^{\circ}) \text{ tole she} :$ $(f(\pm) \to \ell) \qquad \forall \pm \in (U(z^{\circ}) \cap \Omega) \setminus \{z^{\circ}\}, \quad f(z) \in V(\ell).$ Def. f: DCd -> d, F C OCC (D) n (L $\exists \lim_{z \to z^0} f(z) = f(z^0)$ Opervarioni · 2=x+iy, 2=x+iyo, l=l1+il2, b=u+iv $\lim_{2 \to 20} f(x) = l \iff \lim_{(x,y) \to (x^0,y^0)} u(x,y) = l_1$ $\lim_{(x,y) \to (x^0,y^0)} v(x,y) = l_2$

· con le oterse notationi f continua in \neq $\langle \Rightarrow u \in v'$ confinue in (x^0, y^0) . · Sono continue (sul loro dominio di def) tutte le suntioni etementari intrabilein procedeure · Vale l'aloyebra dei limiti « il terrema del limite della funcione composta (=) compositione di continue T = C U d 20 } $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ 2 -> ~ (=) de U(~) (-) |d|> R (-) |d|-) +~ · Vale il terrena di unicità del limite.

Def.
$$f: \Omega \subseteq C \rightarrow C$$
, $f: Qee(\Omega) \cap \Omega$

f derivable (in anso complesso) in to <=> • \exists lim $\int_{\pm -\pm 0}^{\pm 2} \int_{\pm -\pm 0}^{\pm 2} (\xi t)$, etal limite si dice $\int_{\pm -\pm 0}^{1} (t^2)$

$$f(\pm h) - f(\pm h) - \lambda \cdot h \qquad 0 \iff f(\pm h) - f(\pm h) = \lambda$$
h
h
h
h
 $genti$

Esempi 1) $f(\pm) = \pm^3$ duivalife in $\pm^{\circ} \in \mathbb{C}$, $f'(\pm^{\circ}) = 3\pm^3$

2)
$$f(\pm) = \text{Im} \pm \pm \pm n + iy \Rightarrow b(\pm) = y$$

NON \bar{e} decivally in ± 0 , point

 $f(\pm) = f(0)$ overo $f(\pm) = 1$

and

 $f(\pm) = f(0)$

Recall
$$u: \mathbb{R}^2 \rightarrow \mathbb{R}$$
 differentialise in $(x^0, y^0) \stackrel{def}{\Longrightarrow}$
 $\exists du(x^0, y^0): \mathbb{R}^2 \rightarrow \mathbb{R}$ lineare tolecte

lin $u(x^0 + h_1, y^0 + h_2) - u(x^0, y^0) - du(x^0, y^0) [(h_1, h_2)] = 0$
 $h = (h_1, h_2) \rightarrow (0,0)$

In positional $\exists u(x^0, y^0) \Rightarrow \forall v \in \exists u(x^0, y^0)$
 $\exists u(x^0, y^0) = \exists u(x^0, y$

Teorema (caratterissarione della derivalilità). $f: \Omega \subseteq C \longrightarrow C$, $z^{\circ} \in \Omega \cap QQQ(Q)$ $z^{\circ} = x^{\circ} + iy^{\circ}$, $f = u + iv^{\circ}$. f derivalife in to <=> [u e o differentialis, in (x, y) $\int u_{\times}(x^{0}, y^{0}) = v_{y}(x^{0}, y^{0})$ $= -v_{\times}(x^{0}, y^{0})$ $+ v_{\times}(x^{0}, y^{0})$ Leondizioni di Cauchy-Riemann. Inaltre, in tal caso $f'(x^0) = u_x(x^0, y^0) - i u_y(x^0, y^0)$ $= v_y(x^0, y^0) + i v_x(x^0, y^0)$ On. $J(u,v) = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$ Def. f si dice OLOTTORFA su Ω se é decivalité in L'épèr ogni L'EQ.

Exempi
1)
$$f(\pm) = \text{Im} \pm u(x,y) = y$$
, $v(x,y) = 0$
 $\pm e = 0$
 $ux \stackrel{?}{=} vy \qquad u_{x} = 0$, $vy = 0$
 $uy = -vx \qquad uy = 1$, $vy = 0$
2) $f(\pm) = e^{\pm} \qquad f'(\pm) = e^{\pm}e \qquad \forall \pm e \in C$
 $f(\pm) = e^{\pm} \qquad \text{oriny}$
 $f(x,y) = e^{\pm} \qquad \text{oriny}$
 $f(x) = e^{\pm} \qquad \text{oriny}$
 $f(\pm) = e^{\pm} \qquad \text{oriny}$
 $f'(\pm) = e^{\pm} \qquad \text{oriny}$

3) Si verifica che sono decivalili su tetto (P(x), ex, sinx, enx, sinhx, enh z evoloques le stesse formule voliche in R

Di mostrovioue

(0) $f(z+h) = f(z^{0}) + f'(z^{0})h + g con g = o(h)$ $u(x^2+h_1, y^2+h_2) + iv(x^2+h_1, y^2+h_2) =$ $u(x^2, y^2) + iv(x^2, y^2) + (z+i\beta)(h_1+ih_2) + g_1+ig_2$

$$u(x^{0}, y^{0}) + i v(x^{0}, y^{0}) + (\lambda + i\beta)(h_{1} + ih_{2}) + g_{1} + ig_{2}$$

(1) $u(x^{0} + h_{1}, y^{0} + h_{2}) = u(x^{0}, y^{0}) + (\alpha h_{1} - \beta h_{2}) + g_{1}$
 $(\alpha_{1} - \beta_{1}) \cdot (h_{1}, h_{2}) = u(x^{0}, y^{0}) + (\alpha h_{1} - \beta h_{2}) + g_{1}$
 $(\alpha_{1} - \beta_{2}) \cdot (h_{1}, h_{2}) = u(x^{0}, y^{0}) + (\alpha h_{2} - \beta h_{2}) + g_{1}$

$$(2,-\beta)^{\bullet}(h_{1},h_{2}) = o(x_{1},y_{2}) + (\beta h_{1}+\lambda h_{2}) + g_{2}$$

$$(\beta,\lambda) \cdot (h_{1},h_{2}) = o(h_{1},h_{2})$$

$$(\beta,\lambda) \cdot (h_{1},h_{2}) = o(h_{1},h_{2})$$

(2)
$$v(x^{2}+h_{1}, y^{2}+h_{2}) = v(x^{2}, y^{2}) + (\beta h_{1} + \alpha h_{2}) + \beta \alpha$$

$$(\beta, \alpha) \cdot (h_{1}, h_{2}) + (\beta h_{1}, h_{2}) +$$