Complexidade de Algoritmos

Análise e notação assintótica

Prof. Marcelo de Souza

45RPE – Resolução de Problemas com Estruturas de Dados Universidade do Estado de Santa Catarina

Material de apoio

Leitura principal:

► Capítulo 4 de Goodrich e Tamassia (2013)¹ – Ferramentas de análise.

Leitura complementar:

- ► Capítulos 1 a 3 de Toscani e Veloso (2012)².
- ► Capítulos 2 e 3 de Preiss (2001)³.

¹Michael T Goodrich e Roberto Tamassia (2013). Estruturas de Dados & Algoritmos em Java 5ª ed. Bookman Editora.

²Laira Vieira Toscani e Paulo A. S. Veloso (2012). *Complexidade de Algoritmos*. 3ª ed. Vol. 13. Bookman: Porto Alegre.

³Bruno R Preiss (2001). Estruturas de dados e algoritmos: padrões de projetos orientados a objetos com Java. Campus.

Um **problema** é caracterizado pela descrição da sua **entrada** e **saída**.

Um **problema** é caracterizado pela descrição da sua **entrada** e **saída**.

Exemplo:

Problema da ordenação (não decrescente)

Entrada: uma sequência $\langle a_1, a_2, \ldots, a_n \rangle$ de n números.

Saída: uma permutação dos números $\langle a_1', a_2', \ldots, a_n' \rangle$ tal que $a_1' \leq a_2' \leq \ldots \leq a_n'$.

Um **problema** é caracterizado pela descrição da sua **entrada** e **saída**.

Exemplo:

Problema da ordenação (não decrescente)

Entrada: uma sequência $\langle a_1, a_2, \dots, a_n \rangle$ de n números.

Saída: uma permutação dos números $\langle a_1', a_2', \ldots, a_n' \rangle$ tal que $a_1' \leq a_2' \leq \ldots \leq a_n'$.

Exemplo concreto do problema da ordenação

Entrada: 7 8 1 4 6 3 9 → **instância**

Saída: 1 3 4 6 7 8 9 \rightarrow solução/resultado

Dado um problema:

- ► Como saber se um algoritmo é bom para resolvê-lo?
- ► Como saber qual é o melhor algoritmo entre duas opções?

Dado um problema:

- Como saber se um algoritmo é bom para resolvê-lo?
- Como saber qual é o melhor algoritmo entre duas opções?

Qual medida usar para definir bom ou melhor?

- Correção;
- Simplicidade;
- Facilidade em codificar;
- Facilidade em manter;
- ▶ Tempo de processamento;
- Consumo de memória.

Dado um problema:

- Como saber se um algoritmo é bom para resolvê-lo?
- Como saber qual é o melhor algoritmo entre duas opções?

Qual medida usar para definir bom ou melhor?

- Correção;
- Simplicidade;
- Facilidade em codificar;
- Facilidade em manter;
- Tempo de processamento;
- Consumo de memória.

Análise de algoritmos (complexidade)

Como medir a complexidade de um algoritmo?

Como medir a complexidade?

Podemos executar o(s) algoritmo(s) e medir/plotar os resultados. Problemas:

- ▶ Sensível às entradas escolhidas, ao *software* e ao *hardware* usados;
- Comparação prejudicada;
- ▶ Necessário implementar e executar todos os algoritmos.

Como medir a complexidade?

Podemos executar o(s) algoritmo(s) e medir/plotar os resultados. Problemas:

- ▶ Sensível às entradas escolhidas, ao *software* e ao *hardware* usados;
- Comparação prejudicada;
- ► Necessário implementar e executar todos os algoritmos.

Solução: métodos analíticos.

ightharpoonup Definem a complexidade como uma função f(n) do tamanho n da entrada.

Como medir a complexidade?

Podemos executar o(s) algoritmo(s) e medir/plotar os resultados. Problemas:

- ► Sensível às entradas escolhidas, ao *software* e ao *hardware* usados;
- Comparação prejudicada;
- ► Necessário implementar e executar todos os algoritmos.

Solução: métodos analíticos.

Definem a complexidade como uma função f(n) do tamanho n da entrada.

Ideia geral (complexidade de tempo):

- Contar o número de operações primitivas executadas pelo algoritmo;
- Cada operação primitiva executa em um tempo constante;
- Quanto menor o número de operações, mais eficiente é o algoritmo.

Operações primitivas

Operações primitivas são passos básicos do algoritmo

- Atribuição de valores;
- Operações aritméticas ou lógicas;
- Comparação de valores;
- Acesso a um elemento de um vetor:
- Recuperar a referência de um objeto;
- Chamada de um método;
- Retorno de um método.

Exemplos

```
int a = 10;
int b = a - 7
    if (b < 5)
int c = v[3];
Object x = this;
this.compute();
return result;
```


Exemplo I

Algoritmo arrayMax(A, n):

```
// Entrada: um vetor A com n ≥ 1 elementos inteiros.
// Saída: o maior elemento de A.

currentMax ← A[0]
for i ← 1 to n - 1 do
 if currentMax < A[i] then
 currentMax ← A[i]

return currentMax</pre>
```

Exemplo I

```
Algoritmo arrayMax(A, n):
```

```
// Entrada: um vetor A com n ≥ 1 elementos inteiros.
// Saída: o maior elemento de A.

currentMax ← A[0]
for i ← 1 to n - 1 do
   if currentMax ← A[i] then
   currentMax ← A[i]

return currentMax
```

Linha	Operações	
4	1 acesso ao vetor + 1 atribuição	2
5	1 inicialização $+$ n comparações $+$ $2(n-1)$ incrementos	3n - 1
6	1 acesso ao vetor $+$ 1 comparação, repetidos $\mathfrak{n}-1$ vezes $ o$ $2(\mathfrak{n}-1)$	2n - 2
7	0 [cond. nunca satisfeito] a $2(n-1)$ [cond. sempre satisfeito]	[0, 2n - 2]
9	1 retorno	1

Exemplo I

Complexidade de tempo no **melhor caso** (A[0] é o maior elemento):

$$T(n) = 2 + 3n - 1 + 2n - 2 + 1 = 5n.$$

Complexidade de tempo no **pior caso** (A[n - 1] é o maior elemento):

$$T(n) = 2 + 3n - 1 + 2n - 2 + 2n - 2 + 1 = 7n - 2.$$

Complexidade de tempo no caso médio:

Depende da distribuição das entradas e do uso de teoria de probabilidades.

Exemplo I

Complexidade de tempo no **melhor caso** (A[0] é o maior elemento):

$$T(n) = 2 + 3n - 1 + 2n - 2 + 1 = 5n.$$

Complexidade de tempo no **pior caso** (A[n - 1] é o maior elemento):

$$T(n) = 2 + 3n - 1 + 2n - 2 + 2n - 2 + 1 = 7n - 2.$$

Complexidade de tempo no caso médio:

Depende da distribuição das entradas e do uso de teoria de probabilidades.

Normalmente se considera a complexidade no **pior caso**, pois fornece um limite superior do tempo de execução. Logo:

- ▶ O algoritmo arrayMax executará no máximo 7n 2 operações para cumprir sua tarefa;
- Seja α o tempo gasto na operação primitiva mais complexa sob determinados *hardware* e *software*, o tempo de execução do algoritmo arrayMax será de, no máximo, $\alpha(7n-2)$.

Exemplo II

Qual a complexidade de tempo (operações) no pior caso do algoritmo abaixo?

Exemplo II

Qual a complexidade de tempo (operações) no pior caso do algoritmo abaixo?

```
for(int i = 0; i < n; i++) {
   for(int j = 0; j < n; j++) {
      if(matriz[i][j] != 0)
      // Operação com complexidade 1
   }
}</pre>
```

- O laço externo executa 3n + 2 operações.
 - lnicialização (1), comparações (n + 1) e incremento (2n).
- Mesma complexidade do laço interno, que repete n vezes. Logo, $n(3n + 2) = 3n^2 + 2n$.
- \triangleright O condicional é executado n^2 vezes. Logo, $2n^2$.
- ightharpoonup A operação interna é executada n^2 vezes, no pior caso.
- T(n) = $3n + 2 + 3n^2 + 2n + 2n^2 + n^2$: T(n) = $6n^2 + 5n + 2$.

Taxa de crescimento

Note que T(n) = 7n - 2 é uma função linear.

- ▶ O tempo de processamento cresce na mesma proporção do tamanho da entrada (n);
- A complexidade tempo desse algoritmo é linear.

Taxa de crescimento

Note que T(n) = 7n - 2 é uma função linear.

- ightharpoonup O tempo de processamento cresce na mesma proporção do tamanho da entrada (n);
- A complexidade tempo desse algoritmo é linear.

A complexidade T(n) pode ser definida por funções com diferentes taxas de crescimento:

- constante ≈ 1
- ▶ logarítmica ≈ log n
- ▶ linear $\approx n$
- ▶ $n-\log-n$ ≈ $n\log n$
- ▶ quadrática $\approx n^2$
- \triangleright cúbica $\approx n^3$
- \triangleright polinomial $\approx n^k$
- \triangleright exponencial $\approx a^n \quad (a > 1)$

Taxa de crescimento das funções de complexidade

Taxa de crescimento das funções de complexidade

Número de operações

						ac operações
n	log n	n	n log n	n^2	n^3	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4 096	65 536
32	5	32	160	1024	32768	$4,3 \times 10^{9}$
64	6	64	384	4 0 9 6	262 144	1.8×10^{19}
128	7	128	896	16384	$2,1 \times 10^{6}$	$3,4 \times 10^{38}$
256	8	256	2 048	65 536	$1,7 \times 10^{7}$	$1,2 \times 10^{77}$
512	9	512	4 608	262 144	$1,3 \times 10^{8}$	$1,3 \times 10^{154}$

Taxa de crescimento das funções de complexidade

Número de operações

					radificio e	ic operações
n	log n	n	n log n	n^2	n^3	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4 096	65 536
32	5	32	160	1024	32768	$4,3 \times 10^{9}$
64	6	64	384	4 0 9 6	262 144	1.8×10^{19}
128	7	128	896	16384	$2,1 \times 10^{6}$	$3,4 \times 10^{38}$
256	8	256	2 048	65 536	$1,7 \times 10^{7}$	$1,2 \times 10^{77}$
512	9	512	4 608	262 144	$1,3 \times 10^{8}$	$1,3 \times 10^{154}$

Tempo de processamento

						2 ⁿ
100	< 1s	< 1s	< 1s	< 1s	< 1s	10 ¹³ anos 10 ²⁸⁴ anos 10 ²⁹⁹³ anos –
1000	< 1s	< 1s	< 1s	< 1s	1s	10 ²⁸⁴ anos
10000	< 1s	< 1s	< 1s	< 1s	16 min	10 ²⁹⁹³ anos
100000	< 1s	< 1s	< 1s	10 s	12 dias	_
1000000	< 1s	< 1s	< 1s	16 min	32 anos	_

Taxa de crescimento das funções de complexidade

Exemplo: em um jogo existem 70 itens para compra (e.g., materiais, poderes e armas). Cada item tem um custo e fornece algum benefício. Itens combinados fornecem benefícios diferenciados. A fim de tomar a melhor decisão possível, queremos avaliar toda combinação possível de compra de itens, verificando o custo total e os benefícios esperados.

- Podemos representar uma compra usando um vetor binário $V \in \{0, 1\}^{70}$, onde o valor de uma posição $i \in [0, 70]$ indica se o item i será comprado ou não.
- Devemos avaliar toda combinação possível de valores a V.

Taxa de crescimento das funções de complexidade

Exemplo: em um jogo existem 70 itens para compra (e.g., materiais, poderes e armas). Cada item tem um custo e fornece algum benefício. Itens combinados fornecem benefícios diferenciados. A fim de tomar a melhor decisão possível, queremos avaliar toda combinação possível de compra de itens, verificando o custo total e os benefícios esperados.

- ▶ Podemos representar uma compra usando um vetor binário $V \in \{0, 1\}^{70}$, onde o valor de uma posição $i \in [0, 70]$ indica se o item i será comprado ou não.
- Devemos avaliar toda combinação possível de valores a V.

Resultado: o algoritmo de avaliação terá complexidade de tempo exponencial $\rightarrow 2^n$.

Taxa de crescimento das funções de complexidade

Um algoritmo com complexidade 2^n , para n = 70, executando em um computador capaz de processar 10^9 operações por segundo, demoraria $37\,436$ anos para terminar sua execução!

Taxa de crescimento das funções de complexidade

Um algoritmo com complexidade 2^n , para n = 70, executando em um computador capaz de processar 10^9 operações por segundo, demoraria $37\,436$ anos para terminar sua execução!

E se usarmos um computador mais rápido?

► 100× mais rápido

→ 374 anos;

▶ 1000× mais rápido

→ 37 anos;

▶ 1000000× mais rápido

→ 136 dias;

▶ 100 000 000× mais rápido

 $\rightarrow 1$ dia.

- Para n = 80, demoraria 140 dias;
- Para n = 100, demoraria 401 969 anos.

Taxa de crescimento das funções de complexidade

Um algoritmo com complexidade 2^n , para n = 70, executando em um computador capaz de processar 10^9 operações por segundo, demoraria $37\,436$ anos para terminar sua execução!

E se usarmos um computador mais rápido?

► $100 \times$ mais rápido \rightarrow 374 anos;

► 1000× mais rápido \rightarrow 37 anos;

► 1000000× mais rápido \rightarrow 136 dias;

► $100\,000\,000\times$ mais rápido $\rightarrow 1$ dia.

Para n = 80, demoraria 140 dias;

Para n = 100, demoraria 401 969 anos.

Moral da história

Um algoritmo melhor executando em um computador mais lento **ganhará sempre** de um algoritmo pior em um computador mais rápido, para instâncias suficientemente grandes.

A análise completa (contagem de operações) é muito detalhada e onerosa.

A análise completa (contagem de operações) é muito detalhada e onerosa.

Além disso, o que importa na prática é a taxa de crescimento da função de complexidade!

A análise completa (contagem de operações) é muito detalhada e onerosa.

Além disso, o que importa na prática é a taxa de crescimento da função de complexidade!

A análise assintótica foca em descrever a taxa de crescimento da complexidade de um algoritmo em função do tamanho n da entrada.

A análise completa (contagem de operações) é muito detalhada e onerosa.

Além disso, o que importa na prática é a taxa de crescimento da função de complexidade!

A análise assintótica foca em descrever a taxa de crescimento da complexidade de um algoritmo em função do tamanho n da entrada.

Para isso, usaremos a notação \mathcal{O} (big-oh).

ightharpoonup Bem como as notações Θ e Ω .

Exemplo concreto

Qual a complexidade assintótica do algoritmo arrayMax?

```
// Entrada: um vetor A com n ≥ 1 elementos inteiros.

// Saída: o maior elemento de A.

currentMax ← A[0]

for i ← 1 to n - 1 do

if currentMax < A[i] then

currentMax ← A[i]

return currentMax
```


Exemplo concreto

Qual a complexidade assintótica do algoritmo arrayMax?

```
// Entrada: um vetor A com n ≥ 1 elementos inteiros.
// Saída: o maior elemento de A.

currentMax ← A[0]
for i ← 1 to n - 1 do
   if currentMax < A[i] then
    currentMax ← A[i]</pre>
return currentMax
```

Sabemos que, no pior caso, são executadas 7n-2 operações. Logo, esse algoritmo tem complexidade $\mathcal{O}(n)$. Isto é, complexidade linear.

▶ Não precisamos contar todas as operações. Basta identificarmos o termo de maior complexidade (neste caso, n), pois é quem define a taxa de crescimento da função!

Notação $\mathcal O$

Usamos a **notação** \mathcal{O} para descrever a **taxa de crescimento** da função de complexidade.

Notação ${\cal O}$

Usamos a **notação** \mathcal{O} para descrever a **taxa de crescimento** da função de complexidade.

Em particular, a complexidade \mathcal{O} é um majorante para a função de complexidade do algoritmo, i.e.

- Fornece um **limite superior** para a complexidade.
- ► A complexidade do algoritmo é menor ou igual à complexidade *O*.
- ightharpoonup O desempenho do algoritmo nunca será pior que sua complexidade \mathcal{O} .

Regras básicas

Função polinomial: sempre considerar o maior grau.

$$\triangleright 5n^4 + 3n^3 + 2n^2 + 4n + 1 \notin \mathcal{O}(n^4)$$

$$n^3 + 600n \in \mathcal{O}(n^3)$$
.

Constantes e multiplicadores são eliminados.

$$\triangleright$$
 2ⁿ⁺² + 4 é $\mathcal{O}(2^n)$

$$4n^3 \text{ \'e } \mathcal{O}(n^3).$$

Função mista: sempre considerar o termo de maior complexidade.

$$\triangleright$$
 5n² + 3n log n + 2n + 5 é $\mathcal{O}(n^2)$

$$2n + 100 \log n \in \mathcal{O}(n)$$
.

Sempre considerar a menor complexidade possível.

 \blacktriangleright É verdade que $4n^2 + 10$ é $\mathcal{O}(n^4)$, mas é melhor dizer que é $\mathcal{O}(n^2)$ [limite mais ajustado].

Sempre considerar a representação mais simples.

▶
$$4n^2 + 2 \log n$$
 é $\mathcal{O}(n^2)$, o que é melhor que $\mathcal{O}(n^2 + \log n)$.

Exemplo I

Algoritmo sumNumbers(n1, n2):

```
// Soma dois números inteiros.
public static int sumNumbers(int n1, int n2) {
  int result = n1 + n2;
  return result;
}
```


Exemplo I

Algoritmo sumNumbers(n1, n2):

```
// Soma dois números inteiros.
public static int sumNumbers(int n1, int n2) {
  int result = n1 + n2;
  return result;
}
```

Análise:

- Linhas 3 e 4 executam operações de tempo constante;
- ightharpoonup Complexidade constante: $\mathcal{O}(1)$;
- Algoritmo de tempo constante.

Exemplo II

Algoritmo disjoint1(int[] vA, int[] vB, int[] vC):

```
// Retorna true se não existe nenhum elemento comum nos três grupos.
// Cada vetor possui elementos distintos dentro de si.
public static boolean disjoint1(int[] vA, int[] vB, int[] vC) {
  for (int a : vA)
  for (int b : vB)
  for (int c : vC)
     if ((a == b) && (b == c))
     return false;
  return true;
}
```


Exemplo II

Algoritmo disjoint1(int[] vA, int[] vB, int[] vC):

```
// Retorna true se não existe nenhum elemento comum nos três grupos.
// Cada vetor possui elementos distintos dentro de si.
public static boolean disjoint1(int[] vA, int[] vB, int[] vC) {
  for (int a : vA)
  for (int b : vB)
  for (int c : vC)
     if ((a == b) && (b == c))
     return false;
  return true;
}
```

Análise:

- A operação constante da linha 7 é repetida $n \times n \times n = n^3$ vezes;
- ► Complexidade **cúbica**: $\mathcal{O}(n^3)$;
- ► Algoritmo de tempo cúbico.

Exemplo III

Algoritmo disjoint2(int[] vA, int[] vB, int[] vC):

```
// Retorna true se não existe nenhum elemento comum nos três grupos.
// Cada vetor possui elementos distintos dentro de si.
public static boolean disjoint2(int[] vA, int[] vB, int[] vC) {
   for (int a : vA)
   for (int b : vB)
   if (a == b)
   for (int c : vC)
   if (a == c) return false;
   return true;
}
```


Exemplo III

Algoritmo disjoint2(int[] vA, int[] vB, int[] vC):

```
// Retorna true se não existe nenhum elemento comum nos três grupos.
// Cada vetor possui elementos distintos dentro de si.
public static boolean disjoint2(int[] vA, int[] vB, int[] vC) {
  for (int a : vA)
  for (int b : vB)
    if (a == b)
    for (int c : vC)
        if (a == c) return false;
  return true;
}
```

Análise:

- ▶ Os laços das linhas 4 e 5 sempre são executados $\mathcal{O}(n^2)$;
- No máximo n pares são iguais (lin. 6), então o laço da linha 7 executa no máximo n vezes;
- ► Complexidade quadrática: $n^2 + n^2 \iff \mathcal{O}(n^2)$.

Exemplo IV

Algoritmo repeat1(char c, int n):

```
// Compõe uma String com o caractere c repetido n vezes.
public static String repeat1(char c, int n) {
   String answer = "";
   for (int j = 0; j < n; j++)
        answer += c;
   return answer;
}</pre>
```


Exemplo IV

Algoritmo repeat1(char c, int n):

```
// Compõe uma String com o caractere c repetido n vezes.
public static String repeat1(char c, int n) {
   String answer = "";
   for (int j = 0; j < n; j++)
        answer += c;
   return answer;
}</pre>
```

Análise:

- ► Strings são imutáveis em Java: o comando answer += c implica em criar uma nova String, copiar cada caractere da String antiga para ela, e acrescentar o caractere c;
- A linha 5 executa operações conforme o tamanho de answer: $1 + 2 + \cdots + n 1$;
- Logo, sua complexidade é $\sum_{j=0}^{n-1} j = n(n+1)/2$;
- ► Complexidade quadrática: $\mathcal{O}(n^2)$.

Exemplo V

Algoritmo repeat2(char c, int n):

```
// Compõe uma String com o caractere c repetido n vezes.
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int j = 0; j < n; j++)
        sb.append(c);
   return sb.toString();
}</pre>
```


Exemplo V

Algoritmo repeat2(char c, int n):

```
// Compõe uma String com o caractere c repetido n vezes.
public static String repeat2(char c, int n) {
   StringBuilder sb = new StringBuilder();
   for (int j = 0; j < n; j++)
        sb.append(c);
   return sb.toString();
}</pre>
```

Análise:

- A classe StringBuilder implementa uma lista dinâmica, que permite executar a operação sb.append(c) em tempo constante;
- ► Complexidade linear: O(n);
- O algoritmo é o mesmo, o que muda é a estrutura de dados.

Exemplo VI

Algoritmo unique1(int[] data):

```
// Retorna true se não existe elemento duplicado no vetor.
public static boolean unique1(int[] data) {
   int n = data.length;
   for (int j = 0; j < n - 1; j++)
   for (int k = j + 1; k < n; k++)
   if (data[j] == data[k])
   return false;
   return true;
}</pre>
```


Exemplo VI

Algoritmo unique1(int[] data):

```
// Retorna true se não existe elemento duplicado no vetor.
public static boolean unique1(int[] data) {
   int n = data.length;
   for (int j = 0; j < n - 1; j++)
      for (int k = j + 1; k < n; k++)
      if (data[j] == data[k])
      return false;
   return true;
}</pre>
```

Análise:

- ▶ O laço interno é executado $(n-1) + (n-2) + \cdots + 2 + 1$ vezes;
- ► Complexidade quadrática: $\mathcal{O}(n^2)$.

Exemplo VII

Algoritmo unique2(int[] data):

```
// Retorna true se não existe elemento duplicado no vetor.
// O vetor é ordenado para verificar apenas elementos subsequentes.
public static boolean unique2(int[] data) {
   int n = data.length;
   Arrays.sort(data); // Operação O(n log n)
   for (int j = 0; j < n - 1; j++)
    if (data[j] == data[j+1])
        return false;
   return true;
}</pre>
```


Exemplo VII

Algoritmo unique2(int[] data):

```
// Retorna true se não existe elemento duplicado no vetor.
// O vetor é ordenado para verificar apenas elementos subsequentes.
public static boolean unique2(int[] data) {
   int n = data.length;
   Arrays.sort(data); // Operação O(n log n)
   for (int j = 0; j < n - 1; j++)
    if (data[j] == data[j+1])
        return false;
   return true;
}</pre>
```

Análise:

- ► A ordenação custa n log n e percorrer o vetor custa n;
- ► Complexidade $n \log n$: $n \log n + n \iff \mathcal{O}(n \log n)$.

Apêndice I

Definição formal da notação $\mathcal O$

Sejam f(n) e g(n) funções que mapeiam o tamanho da entrada no tempo de processamento, dizemos que f(n) é $\mathcal{O}(g(n))$ se existe uma constante real c>0 e uma constante inteira $n_0\geq 1$ tais que $f(n)\leq cg(n)$ para todo inteiro $n\geq n_0$.

Apêndice I

Definição formal da notação $\mathcal O$

Sejam f(n) e g(n) funções que mapeiam o tamanho da entrada no tempo de processamento, dizemos que f(n) é $\mathcal{O}(g(n))$ se existe uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tais que $f(n) \le cg(n)$ para todo inteiro $n \ge n_0$.

Na prática:

- Se f(n) é $\mathcal{O}(g(n))$, então f(n) é "menor ou igual" a g(n) a medida que n cresce.
- Com isso, g(n) é um limite superior para f(n).
- ightharpoonup Ou seja, f(n) é tão boa quando g(n).

Apêndice I

Definição formal da notação $\mathcal O$

Sejam f(n) e g(n) funções que mapeiam o tamanho da entrada no tempo de processamento, dizemos que f(n) é $\mathcal{O}(g(n))$ se existe uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tais que $f(n) \le cg(n)$ para todo inteiro $n \ge n_0$.

Na prática:

- Se f(n) é $\mathcal{O}(g(n))$, então f(n) é "menor ou igual" a g(n) a medida que n cresce.
- Com isso, g(n) é um limite superior para f(n).
- Ou seja, f(n) é tão boa quando g(n).

Exemplo: a função $T(n) = 7n - 2 \in \mathcal{O}(n)$.

Para c = 7 e $n_0 = 1$, temos que $7n - 2 \le cn$, para todo $n \ge n_0$. Logo T(n) é $\mathcal{O}(n)$.

Apêndice II

Notações $\mathcal{O},\,\Theta$ e Ω

Notação O (majorante)

Se f(n) é $\mathcal{O}(g(n))$, então cg(n) é um limite superior para f(n). Ou seja, f(n) não é pior que cg(n).

Apêndice II

Notações \mathcal{O} , Θ e Ω

Notação O (majorante)

Se f(n) é $\mathcal{O}(g(n))$, então cg(n) é um limite superior para f(n). Ou seja, f(n) não é pior que cg(n).

Notação Ω (minorante)

Se f(n) é $\Omega(g(n))$, então cg(n) é um limite inferior para f(n). Ou seja, f(n) não é melhor que cg(n).

Apêndice II Notações \mathcal{O} , $\Theta \in \Omega$

Notação O (majorante)

Se f(n) é $\mathcal{O}(g(n))$, então cg(n) é um limite superior para f(n). Ou seja, f(n) não é pior que cg(n).

Notação Ω (minorante)

Se f(n) é $\Omega(g(n))$, então cg(n) é um limite inferior para f(n). Ou seja, f(n) não é melhor que cg(n).

Notação ⊖ (limite "apertado" – majorante e minorante)

Se f(n) é $\Theta(g(n))$, então $c_1g(n)$ é um limite inferior para f(n) e $c_2g(n)$ é um limite superior para f(n). Ou seja, f(n) é igual a cg(n).

Apêndice III

Notações e suas relações

Detalhes:

- ▶ $f(n) \in \Theta(g(n)) \iff f(n) \in \mathcal{O}(g(n)) \in f(n) \in \Omega(g(n))$.
- ▶ $f(n) \notin \Theta(g(n)) \iff g(n) \notin \Theta(f(n))$.
- ▶ $f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))$.

