SOLUTION MA 201: COMPLEX ANALYSIS ASSIGNMENT-1

- (1) Prove the following:
 - (a) Prove that $\max\{|\text{Re }(z)|, |\text{Im}(z)|\} \le |z| \le |\text{Re }(z)| + |\text{Im}(z)| \le \sqrt{2}|z|$.

Observe that, for any two real numbers x and y, $(|x|-|y|)^2 \ge 0 \Longrightarrow |x|^2+|y|^2 \ge 2|x||y|$. Let z = x+iy be any complex number.

$$(|x| + |y|)^{2} = |x|^{2} + |y|^{2} + 2|x| |y| \le |x|^{2} + |y|^{2} + |x|^{2} + |y|^{2}$$
$$= 2(|x|^{2} + |y|^{2}) = 2(x^{2} + y^{2}) = 2|z|^{2}.$$

This gives that $|\text{Re }(z)| + |\text{Im}(z)| = |x| + |y| < \sqrt{2}|z|$.

$$|z| = \sqrt{x^2 + y^2} \le \sqrt{x^2 + y^2 + 2|x| |y|} = \sqrt{|x|^2 + |y|^2 + 2|x| |y|}$$
$$= \sqrt{(|x| + |y|)^2} = |x| + |y|.$$

That is, $|z| \leq |\text{Re }(z)| + |\text{Im}(z)|$.

(b) $|z_1 + z_2| \leq |z_1| + |z_2|$ and equality holds if and only if one is a nonnegative (real) scalar multiple of the other.

Answer: Do yourself.

(c) If either $|z_1| = 1$ or $|z_2| = 1$, but not both, then prove that $\left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right| = 1$. What exception must be made for the validity of the above equality when $|z_1| = |z_2| = 1$?

Answer: Case I: $|z_1| = 1$ and $|z_2| \neq 1$

$$\left| \frac{z_1 - z_2}{1 - \overline{z_1}} \right|^2 = \frac{|z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1 \overline{z_2})}{1 + |\overline{z_1} z_2|^2 - 2\operatorname{Re}(z_1 \overline{z_2})}$$
$$= \frac{1 + |z_2|^2 - 2\operatorname{Re}(z_1 \overline{z_2})}{1 + |z_2|^2 - 2\operatorname{Re}(z_1 \overline{z_2})} = 1.$$

Observe that the denominator $1 + |\overline{z_1}z_2|^2 - 2\text{Re }(z_1\overline{z_2}) \neq 0 \text{ if } |z_1| = 1 \text{ and } |z_2| \neq 1.$

Case II: $|z_2| = 1$ and $|z_1| \neq 1$. It can be worked out similarly as in the previous

Case III: $|z_1| = 1$ and $|z_2| = 1$ Then, $\left| \frac{z_1 - z_2}{1 - \overline{z_1}} \right|^2 = \frac{2 - 2\text{Re}(z_1\overline{z_2})}{2 - 2\text{Re}(z_1\overline{z_2})} = 1$ if the denominator $2 - 2\text{Re}(z_1\overline{z_2}) \neq 0$. That is, Re $(z_1\overline{z_2}) \neq 1$ if and only if $z_1 \neq z_2$. So, the exception is to be made for the validity of the above equality in this case is $z_1 \neq z_2$.

(2) Show that the equation $z^4 + z + 5 = 0$ has no solution in the set $\{z \in \mathbb{C} : |z| < 1\}$.

Answer: Suppose α is a solution. So $|\alpha| < 1$ and $\alpha^4 + \alpha = -5$. Then $5 = |\alpha^4 + \alpha| \le 2$.

(3) If z and w are in \mathbb{C} such that $\operatorname{Im}(z) > 0$ and $\operatorname{Im}(w) > 0$, show that $|\frac{z-w}{z-\overline{w}}| < 1$.

Answer: $\left|\frac{z-w}{z-\bar{w}}\right|^2 \le 1 \iff (z-\bar{z})(w-\bar{w}) < 0$. Clearly $(z-\bar{z})(w-\bar{w}) < 0$ if Im(z) > 0 and

(4) When does $az + b\overline{z} + c = 0$ has exactly one solution?

Answer: Let z = x + iy, $a = a_1 + ia_2$, $b = b_1 + ib_2$ and $c = c_1 + ic_2$ and put these values in the given equation $az + b\overline{z} + c = 0$. After simplification (please check it carefully!) we have,

$$(a_1x - a_2y) + i(a_2x + a_1y) + (b_1x + b_2y) + i(b_2x - b_1y) + c_1 + ic_2 = 0$$

After equating real and imaginary parts we get the following system of linear equations

$$(a_1 + b_1)x + (b_2 - a_2)y = c_1$$

$$(a_2 + b_2)x + (a_1 - b_1)y = c_2.$$

Therefore given equation has exactly one solution if the above system of linear equations has unique solution. In this case

$$(a_1 + b_1)(a_1 - b_1) - (b_2 - a_2)(a_2 + b_2) \neq 0.$$

In fact the given equation has exactly one solution if $|a| \neq |b|$.

- (5) If $1 = z_0, z_1, ..., z_{n-1}$ are distinct n^{th} roots of unity, prove that $\prod_{j=1}^{n-1} (z z_j) = \sum_{j=0}^{n-1} z^j$. **Answer** The points $1 = z_0, z_1, ..., z_{n-1}$ are the roots of $z^n - 1 = 0$. So $z^n - 1 = (z - 1)\prod_{j=1}^{n-1} (z - z_j) = (z - 1)\sum_{j=0}^{n-1} z^j$. Let $f(z) = \prod_{j=1}^{n-1} (z - z_j)$ and $g(z) = \sum_{j=0}^{n-1} z^j$. Thus f(z) = g(z) for $z \neq 1$. Since both f, g are continuous it follows that f(1) = g(1) as well.
- (6) For each of the following subsets of \mathbb{C} , determine whether it is open, closed or neither. Justify your answers.
 - (a) $S = \{z \in \mathbb{C} : Re(z) = 1 \text{ and } Im(z) \neq 4\}$

Answer: The set $S = \{z = x + iy : x = 1\} \setminus \{1 + 4i\}$ is neither open nor closed. $S^o = \emptyset$ and $\partial S = S' = \overline{S} = \{z = x + iy : x = 1\}$

(b) $\{z \in \mathbb{C} : Re(z) \in (-1,2) \cup (2,\frac{5}{2}) \text{ and } Im(z) = 0\}$

Answer: The $S = \{z \in \mathbb{C} : Re(z) \in (-1,2) \cup (2,\frac{5}{2}) \text{ and } Im(z) = 0\}$ is neither open nor closed. $S^o = \emptyset$ and $\partial S = S' = \overline{S} = \{z = x + iy : x \in [-1,\frac{5}{2}] \text{ and } y = 0\}.$

(c) $\{z = x + iy \in \mathbb{C} : xy > 1\}$

Answer: The set $S = \{z = x + iy \in \mathbb{C} : xy > 1\}$ is an open set, hence $S = S^o$. $\partial S = \{z = x + iy \in \mathbb{C} : xy = 1\}$ and $\overline{S} = S' = \{z = x + iy \in \mathbb{C} : xy \geq 1\}$.

(d) $\{z = x + iy \in \mathbb{C} : x \in \mathbb{Q} \text{ and } y \in \mathbb{R} \setminus \mathbb{Q} \}$

Answer: The set $S = \{z = x + iy \in \mathbb{C} : x \in \mathbb{Q} \text{ and } y \in \mathbb{R} \setminus \mathbb{Q} \}$ is neither open nor closed. $S^o = \emptyset$ and $\partial S = S' = \overline{S} = \mathbb{C}$

(e) $\left\{\frac{1}{n} + \frac{i}{m} : n, m \in \mathbb{N}\right\}$

Answer: The set $S = \left\{\frac{1}{n} + \frac{i}{m} : n, m \in \mathbb{N}\right\}$ is neither open nor closed. $S^o = \emptyset$, $S' = \left\{\frac{1}{n} + 0i\right\} \cup \left\{0 + \frac{i}{m}\right\} \cup \left\{(0,0)\right\}$ and $\partial S = \overline{S} = S \cup S'$.

(f) $\left\{ z = re^{i\theta} \in \mathbb{C} : 0 < r < 1 \text{ and } \theta \in \left(\frac{\pi}{4}, \frac{\pi}{3}\right) \right\}$

Answer: The set $S = \{z = re^{i\theta} \in \mathbb{C} : 0 < r < 1 \text{ and } \theta \in (\frac{\pi}{4}, \frac{\pi}{3})\}$ is an open set, hence $S = S^o$. $\overline{S} = S' = \{z = re^{i\theta} \in \mathbb{C} : 0 \le r \le 1 \text{ and } \theta \in [\frac{\pi}{4}, \frac{\pi}{3}]\}$.

$$\partial S = \left\{ z = re^{i\theta} \in \mathbb{C} : \ 0 \le r \le 1 \ \text{ and } \theta = \frac{\pi}{4}, \frac{\pi}{3} \right\} \cup \left\{ z = e^{i\theta} : \ \theta \in \left[\frac{\pi}{4}, \frac{\pi}{3} \right] \right\}.$$

(g) $\left\{r\left(\cos\left(\frac{1}{n}\right) + i\sin\left(\frac{1}{n}\right)\right) \in \mathbb{C} : r > 0, n \in \mathbb{N}\right\} \cup \left\{z \in \mathbb{C} : Re(z) < 0\right\}$

Answer: The set $\left\{r\left(\cos\left(\frac{1}{n}\right)+i\sin\left(\frac{1}{n}\right)\right)\in\mathbb{C}:r>0,n\in\mathbb{N}\right\}\cup\left\{z\in\mathbb{C}:Re(z)<0\right\}$ is neither open nor closed. $S^o=\left\{z\in\mathbb{C}:Re(z)<0\right\}$.

 $\begin{array}{ll} \partial S = \left\{r\left(\cos\left(\frac{1}{n}\right) + i\sin\left(\frac{1}{n}\right)\right) \in \mathbb{C} : r > 0, n \in \mathbb{N}\right\} \cup \left\{\text{ positive real axis }\right\} \cup \left\{\text{ imaginary axis }\right\}. \\ \overline{S} = S' = \left\{r\left(\cos\left(\frac{1}{n}\right) + i\sin\left(\frac{1}{n}\right)\right) \in \mathbb{C} : r > 0, n \in \mathbb{N}\right\} \ \cup \ \left\{\text{ positive real axis }\right\} \ \cup \left\{z \in \mathbb{C} : Re(z) \leq 0\right\} \end{array}$

(7) Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there do not exist any point c on the line y = 1 - x joining z_1 and z_2 such that

$$\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)$$

(Mean value theorem does not extend to complex derivatives).

Answer $\left| \frac{f(1) - f(i)}{1 - i} \right| = \left| \frac{1 + i}{1 - i} \right| = 1$. Any point on [1, i] has mod value $\geq \frac{1}{\sqrt{2}}$. So $|f'(z)| = |3z^2| \geq \frac{3}{2} > 1$.

(8) If f(z) is a real valued function in a domain $D \subseteq \mathbb{C}$, then show that either f'(z) = 0 or f'(z) does not exist in D.

Hint: Use C–R equation.

(9) Let U be an open set and $f: U \to \mathbb{C}$ be a differentiable function. Let $\overline{U} := \{\overline{z} : z \in U\}$. Show that the function $g: \overline{U} \to \mathbb{C}$ defined by $g(z) := \overline{f(\overline{z})}$ is differentiable on \overline{U} .

Answer:

$$\lim_{w \to w_0 \in \bar{U}} \frac{g(w) - g(w_0)}{w - w_0} = \lim_{z \to z_0 \in U} \frac{g(\bar{z}) - g(\bar{z}_0)}{\bar{z} - \bar{z}_0} = \lim_{z \to z_0 \in U} \frac{\overline{f(z) - f(z_0)}}{z - z_0} = \overline{f'(z_0)}$$

(10) Derive the Cauchy-Riemann equations in polar coordinates.

Answer: Let $f(re^{i\theta}) = u(r,\theta) + iv(r,\theta)$ be differentiable at $z_0 = r_0e^{i\theta_0}$. First we calculate the limit $z \to z_0$ along the ray $\theta = \theta_0$. Then the following limit exists:

$$f'(z_{o}) = \lim_{r \to r_{0}} \frac{f(re^{i\theta_{0}}) - f(r_{0}e^{i\theta_{0}})}{re^{i\theta_{0}} - r_{0}e^{i\theta_{0}}}$$

$$= \frac{1}{e^{i\theta_{0}}} \lim_{r \to r_{0}} \frac{u(r,\theta_{0}) - u(r_{0},\theta_{0}) + i[v(r,\theta_{0}) - v(r_{0},\theta_{0})]}{r - r_{0}}$$

$$= \frac{1}{e^{i\theta_{0}}} \left(\frac{\partial u}{\partial r}(r_{0},\theta_{0}) + i \frac{\partial v}{\partial r}(r_{0},\theta_{0}) \right)$$

$$(0.1)$$

Now calculate the limit $z \to z_0$ along the circle $r \to r_0$. In this case we have:

$$f'(z_{o}) = \lim_{\theta \to \theta_{0}} \frac{f(r_{0}e^{i\theta}) - f(r_{0}e^{i\theta_{0}})}{r_{0}e^{i\theta} - r_{0}e^{i\theta_{0}}}$$

$$= \frac{1}{r_{0}} \lim_{\theta \to \theta_{0}} \frac{u(r_{0}, \theta) - u(r_{0}, \theta_{0}) + i[v(r_{0}, \theta) - v(r_{0}, \theta_{0})]}{e^{i\theta} - e^{i\theta_{0}}}$$

$$= \frac{1}{r_{0}} \lim_{\theta \to \theta_{0}} \left\{ \left(\frac{u(r_{0}, \theta) - u(r_{0}, \theta_{0}) + i[v(r_{0}, \theta) - v(r_{0}, \theta_{0})]}{\theta - \theta_{0}} \right) \frac{\theta - \theta_{0}}{e^{i\theta} - e^{i\theta_{0}}} \right\}$$

$$= \frac{1}{ir_{0}e^{i\theta_{0}}} \left(\frac{\partial u}{\partial \theta}(r_{0}, \theta_{0}) + i \frac{\partial v}{\partial \theta}(r_{0}, \theta_{0}) \right) = \frac{1}{r_{0}e^{i\theta_{0}}} \left(\frac{\partial v}{\partial \theta}(r_{0}, \theta_{0}) - i \frac{\partial u}{\partial \theta}(r_{0}, \theta_{0}) \right)$$

To get the C–R equation in polar form , equate the real and imaginary parts of eq.(0.1) and eq.(0.2)

- (11) Let Ω be an open connected subset of \mathbb{C} and $f:\Omega\to\mathbb{C}$ be a differentiable function. Show that the function f=u+iv is constant if
 - (a) either of the functions u or v is constant, or
 - (b) |f(z)| is constant for all $z \in \Omega$, or
 - (c) if there exists an $\alpha \in \mathbb{R}$ such that $f(z) = |f(z)|e^{i\alpha}$ for all $z \in \Omega$.

Hint: Use C–R equations.

(12) Let $f: \mathbb{D} \to \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, f(z) = f(w) whenever |z| = |w|. Prove that f is a constant function.

Hint: It is given that f(z) = f(w) if |z| = |w|. This means that the function f is independent of argument. (i.e. $f(e^{i\theta}z) = f(z)$ for all θ .) Now use C-R equations in polar coordinates.

(13) Let f = u + iv is an analytic function defined on the whole of \mathbb{C} . If $u(x,y) = \phi(x)$ and $v(x,y) = \psi(y)$ prove that, for all $z \in \mathbb{C}$, f(z) = az + b for some $a \in \mathbb{C}$, $b \in \mathbb{C}$.

Answer: From C-R equations we have $\phi'(x) = \psi'(y)$ for all $z = x + iy \in \mathbb{C}$. In particular $\phi'(0) = \psi'(y)$ and $\phi'(x) = \psi'(0)$ for all $x, y \in \mathbb{R}$. Also $f'(z) = \phi'(x) = \psi'(y)$ hence f'(z) = a =constant. If we take g(z) = f(z) - az, then g'(z) = 0. Therefore g(z) = b =constant i.e. f(z) = az + b.

(14) Let v be a harmonic conjugate of u. Show that $h = u^2 - v^2$ is a harmonic function.

Answer: Let f = u + iv. So by our assumption f is analytic and hence $f^2 = f \cdot f$ is also analytic. So Real part of $f^2 = f \cdot f = u^2 - v^2$ is harmonic.