

# UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE INGENIERÍA DE LA COMPUTACIÓN

## DESARROLLO DEL MÓDULO PRINCIPAL Y ESTADÍSTICAS DE LA LIBRERÍA AUDITORÍAS TURPIAL

Por: Stefani Carolina Castellanos Torres

#### INFORME DE PASANTÍA

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero de la Computación



### UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE INGENIERÍA DE LA COMPUTACIÓN

## DESARROLLO DEL MÓDULO PRINCIPAL Y ESTADÍSTICAS DE LA LIBRERÍA AUDITORÍAS TURPIAL

Por: Stefani Carolina Castellanos Torres

Realizado con la asesoría de: Tutor Académico: Angela Di Serio Tutor Industrial: Ing. Pedro Romero

#### INFORME DE PASANTÍA

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Ingeniero de la Computación

### $\mathbf{RESUMEN}$

Este es el resumen

### DEDICATORIA

## RECONOCIMIENTOS Y AGRADECIMIENTOS

First of all, I would like to thank . . . .

## ÍNDICE

| $\mathbf{R}$ | ESUI | ${ m MEN}$                  | iii |
|--------------|------|-----------------------------|-----|
| ÍN           | DIC  | E                           | vi  |
| LI           | STA  | DE TABLAS                   | iii |
| LI           | STA  | DE FIGURAS                  | ix  |
| LI           | STA  | DE SÍMBOLOS                 | xi  |
| LI           | STA  | DE ABREVIACIONES            | κii |
| IN           | ITRO | DDUCCIÓN                    | 1   |
| 1            | ENT  | ΓORNO EMPRESARIAL           | 2   |
|              | 1.1  | Descripción                 | 2   |
|              | 1.2  | Misión                      | 2   |
|              | 1.3  | Visión                      | 2   |
|              | 1.4  | Estructura                  | 2   |
| 2            | DEI  | FINICIÓN DEL PROBLEMA       | 3   |
|              | 2.1  | Antecedentes                | 3   |
|              | 2.2  | Justificación               | 3   |
|              | 2.3  | Planteamiento del problema  | 3   |
|              | 2.4  | Objetivo general            | 3   |
|              | 2.5  | Objetivos específicos       | 3   |
| 3            | MA   | RCO TEÓRICO                 | 4   |
|              | 3.1  | Auditoría                   | 5   |
|              | 3.2  | Acciones auditables         | 5   |
|              | 3.3  | Sistema                     | 5   |
|              | 3.4  | Microservicio               | 5   |
|              | 3.5  | Integración Contínua        | 5   |
|              | 3.6  | Gestión de versiones        | 5   |
|              | 3.7  | Pruebas automatizadas       | 5   |
|              | 3.8  | Aplicación                  | 5   |
|              | 3.9  | Servidor Web                | 5   |
|              | 3.10 | Bases de Datos Relacionales | 5   |

|   | 3.11 | Modelos Abstractos                              |
|---|------|-------------------------------------------------|
|   | 3.12 | Framework                                       |
|   | 3.13 | Ambiente virtual                                |
|   | 3.14 | Patrón Modelo-Vista-Controlador                 |
|   | 3.15 | Patrón Modelo-Vista-Plantilla                   |
|   | 3.16 | Señales         5                               |
|   | 3.17 | Mixins                                          |
|   | 3.18 | Turpial Team                                    |
| 4 | MA   | RCO TECNOLÓGICO                                 |
|   | 4.1  | Python                                          |
|   | 4.2  | Virtualenv                                      |
|   | 4.3  | Django                                          |
|   | 4.4  | HTML                                            |
|   | 4.5  | Javascript                                      |
|   | 4.6  | Pytest                                          |
|   | 4.7  | Django-Graphos o Chart.js                       |
|   | 4.8  | PostgreSQL                                      |
|   | 4.9  | MySQL                                           |
|   | 4.10 | SQLite                                          |
|   | 4.11 | JSON                                            |
|   | 4.12 | Git                                             |
|   | 4.13 | Jenkins                                         |
| 5 | MA   | RCO METODOLÓGICO                                |
| 6 | DES  | SARROLLO                                        |
|   | 6.1  | Fase de investigación                           |
|   | 6.2  | Fase de concepción                              |
|   | 6.3  | Fase de construcción del núcleo                 |
|   | 6.4  | Fase de construcción del módulo de estadísticas |
|   | 6.5  | Fase de transición                              |
| C | ONC  | LUSIONES                                        |
|   | Cond | elusiones                                       |

|                 | viii |
|-----------------|------|
| Recomendaciones | 9    |
| REFERENCIAS     | 10   |
| A ALGORITHMS    | 11   |
| APÉNDICES       | 11   |

## LISTA DE TABLAS

| B.1 | Typology of Machine Scheduling Problems           | 14 |
|-----|---------------------------------------------------|----|
| B.2 | A Comparison of Different Local Search Algorithms | 15 |

### LISTA DE FIGURAS

| A.1 | Algorithm of Simulated Annealing      | 11 |
|-----|---------------------------------------|----|
| A.2 | Algorithm of a Genetic Algorithm      | 12 |
| A.3 | Unified Tabu Search: Procedure SEARCH | 13 |

## LISTA DE SÍMBOLOS

símbolos

#### LISTA DE ABREVIACIONES

VIM Variational Iteration Method

MVIM Multistage Variational Iteration Method

ODEs Ordinary Differential Equations
PDEs Partial Differential Equations

 $\lambda$  Lagrange Multiplier

ADM Adomian Decomposition Method

SADM Standard Adomian Decomposition Method MADM Modified Adomian Decomposition Method

RK4 Fourth-order Runge-Kutta Method

HAM Homotopy Analysis Method

## INTRODUCCIÓN

Implementar, probar y presentar las funcionalidades de selección, gestión y listados de auditorías y todas las funcionalidades del módulo Estadísticas de la librería de Auditorías Turpial e implantar un sistema de integración continua con el repositorio.

#### Entorno empresarial

- 1.1 Descripción
- 1.2 Misión
- 1.3 Visión

#### 1.4 Estructura

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

#### Definición del problema

- 2.1 Antecedentes
- 2.2 Justificación
- 2.3 Planteamiento del problema
- 2.4 Objetivo general
- 2.5 Objetivos específicos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Marco teórico

- 3.1 Auditoría
- 3.2 Acciones auditables
- 3.3 Sistema
- 3.4 Microservicio
- 3.5 Integración Contínua
- 3.6 Gestión de versiones
- 3.7 Pruebas automatizadas
- 3.8 Aplicación
- 3.9 Servidor Web
- 3.10 Bases de Datos Relacionales
- 3.11 Modelos Abstractos
- 3.12 Framework
- 3.13 Ambiente virtual
- 3.14 Patrón Modelo-Vista-Controlador
- 3.15 Patrón Modelo-Vista-Plantilla
- 3.16 Señales
- 3.17 Mixins
- 3.18 Turpial Team

### Marco tecnológico

| 4.1 | Python     |
|-----|------------|
|     | 1 , 011011 |

- 4.2 Virtualenv
- 4.3 Django
- 4.4 HTML
- 4.5 Javascript
- 4.6 Pytest
- 4.7 Django-Graphos o Chart.js
- 4.8 PostgreSQL
- 4.9 MySQL
- 4.10 SQLite
- 4.11 **JSON**
- 4.12 Git
- 4.13 Jenkins

Marco metodológico

#### Desarrollo

- 6.1 Fase de investigación
- 6.2 Fase de concepción
- 6.3 Fase de construcción del núcleo
- 6.4 Fase de construcción del módulo de estadísticas
- 6.5 Fase de transición

## CONCLUSIONES

Conclusiones

Recomendaciones

## REFERENCIAS

## APÉNDICE A

#### **ALGORITHMS**

#### A.0 Simulated Annealing

```
Random decimal numbers g to a and T to T_0
Loop - Cooling
Loop - Local Search

Derive a neighbour, j of i
\triangle E := E(j) - E(i)
If \triangle E < 0
Then i := j
Else derive random number r \in [0, 1]
If r < e^{-\frac{\triangle E}{T}}
Then i := j
End If
End If
End Loop - Local Search
Exit (when goal is satisfied or the stopping criterion is reached)
T = C(T)
End Loop - Cooling
```

Figure A.1: Algorithm of Simulated Annealing

#### A.1 Genetic Algorithm

- **S1:** [Start] Generate an initial population  $P_{pop}$ , of n chromosomes.
- **S2:** [Fitness] Evaluate the fitness g(x) of each chromosome x in the population.
- **S3:** [New Population] Create a new population by repeating the following steps until the new population is complete.
  - i. [Selection] Select 2 parent chromosomes from a population according to their fitness (the fitter, the better chance of being selected).
  - ii. [Crossover] With a crossover probability  $p_c$ , cross over the parents to form 2 new offspring (children). If no crossover was performed, the offspring is an exact copy of parents.
  - iii. [Mutation] With a mutation probability  $p_m$ , mutate new offspring at each locus (position in chromosome).
  - iv. [Replace] Place new offspring in the new population.
- **S4:** [Fitness] Evaluate the fitness g(x') of each chromosome x' in the new population.
- **S5:** [**Test**] If the end condition is satisfied, **STOP**, and return the fittest solution found; otherwise, go to **S3**.

Figure A.2: Algorithm of a Genetic Algorithm

#### A.2 Tabu Search

```
{\bf procedure} \ {\bf SEARCH}(t,k,diversify,z) :
      penalty^* := +\infty;
      for each j \in S_t do
             for each k-tuple K of bins not including t do
                   S := \{j\} \cup (\bigcup_{i \in K} S_i);
                   penalty := +\infty;
                    \mathbf{case}
                          A(S) < k:
                                 execute the move and update the solution value z;
                                 k := \max\{1, k-1\};
                                 return;
                          A(S) = k:
                                 if the move is not tabu or S_t \equiv \{j\} then
                                        execute the move and update the solution value z;
                                        if S_t \equiv \{j\} then k := \max\{1, k - 1\};
                                        return
                                 end if;
                          A(S) = k + 1 and k > 1:
                                 let I be the set of k+1 bins used by A;
                                 \overline{t} := \arg\min_{i \in I} \{ \varphi(Si) \}, \ T := (S_t \setminus \{j\}) \cup S_{\overline{t}};
                                 if A(T) = 1 and the move is not tabu then
                                        penalty := \min\{\varphi(T), \min_{i \in I \setminus \{\overline{t}\}} \{\varphi(S_i)\}\}
                    end case;
                   penalty^* := \min\{penalty^*, penalty\};
             end for;
      end for;
      if penalty^* \neq +\infty then execute the move corresponding to penalty^*
      else if k = k_{\max} then diversify := \mathsf{true} else k := k + 1
```

Figure A.3: Unified Tabu Search: Procedure SEARCH

#### APPENDIX B

#### **TABLES**

#### B.1 Complex Tables

Example of complex table ...e.g. Table B.1

Table B.1: Typology of Machine Scheduling Problems

| Characteristic   | Symbol                                                                                                | Description                                                   |
|------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                  | $\alpha_1 = \circ$                                                                                    | a single machine                                              |
|                  | $\alpha_1 = P$                                                                                        | identical parallel machines                                   |
|                  | $\alpha_1 = Q$                                                                                        | uniform parallel machines                                     |
| Machine          | $\alpha_1 = R$                                                                                        | unrelated parallel machines                                   |
| Environment      | $\alpha_1 = F$                                                                                        | a flow shop                                                   |
| $\alpha$         | $\alpha_1 = O$                                                                                        | an open shop                                                  |
|                  | $\alpha_1 = J$                                                                                        | a job shop                                                    |
|                  | $\alpha_2 = \circ$                                                                                    | the number of machines is arbitrary                           |
|                  | $\alpha_2 = m$                                                                                        | there are a fixed number of machines $m$                      |
|                  | $\beta_1 = \circ$                                                                                     | no release dates are specified                                |
|                  | $\beta_1 = r_j$ $\beta_2 = \circ$                                                                     | jobs have release dates                                       |
|                  | $\beta_2 = \circ$                                                                                     | no deadlines are specified                                    |
|                  | $\beta_2 = \bar{d}_j$ $\beta_3 = \circ$                                                               | jobs have deadlines                                           |
| Job              | $\beta_3 = \circ$                                                                                     | there are no setup times                                      |
| Characteristics  | $\beta_3 = s_{ifg}$                                                                                   | there are general family setup times                          |
| β                | $\beta_3 = s_{fg}$                                                                                    | there are machine independent family setup times              |
|                  | $\beta_3 = s_{if}$                                                                                    | there are sequence independent family setup times             |
|                  | $\beta_3 = s_f$ $\beta_4 = \circ$                                                                     | there are machine and sequence independent family setup times |
|                  |                                                                                                       | no precedence constraints are specified                       |
|                  | $\beta_4 = prec$                                                                                      | jobs have precedence constraints                              |
|                  | $\beta_4 = pmtn$                                                                                      | preemption of jobs is allowed                                 |
| Optimality       | $C_{\max}$                                                                                            | maximum completion time                                       |
| Criterion        | $L_{\max}$                                                                                            | maximum lateness                                              |
| $\gamma$         | $\sum (w_j)C_j$                                                                                       | total (weighted) completion time                              |
|                  | $\sum_{j}^{max} (w_j) C_j$ $\sum_{j}^{j} (w_j) T_j$ $\sum_{j}^{j} (w_j) U_j$ $\sum_{j}^{j} (w_j) E_j$ | total (weighted) tardiness                                    |
| (involves the    | $\sum_{j}^{J}(w_{j})U_{j}$                                                                            | total (weighted) number of late jobs                          |
| minimisation of) | $\sum_{j}^{J}(w_{j})E_{j}$                                                                            | total (weighted) earliness                                    |

Example of landscape (or sideway) table ...e.g. Table B.2

Table B.2: A Comparison of Different Local Search Algorithms

| Due Date | Data  |       | SGA   |        |       | $\mathbf{MXGA}_F$ | [·     |       | $\overline{	ext{UTS}_{LGF}}$ |        |       | RDM   |        |
|----------|-------|-------|-------|--------|-------|-------------------|--------|-------|------------------------------|--------|-------|-------|--------|
| Class    | Class | Ratio | OBU   | ARD    | Ratio | OBU               | ARD    | Ratio | OBU                          | ARD    | Ratio | OBU   | ARD    |
|          | Н     | 1.056 | 83.10 | 16.58  | 1.042 | 85.26             | 12.37  | 1.053 | 83.42                        | 16.02  | 1.088 | 78.73 | 22.27  |
|          | Ξ     | 1.033 | 63.69 | 17.38  | 1.020 | 66.19             | 11.15  | 1.025 | 64.92                        | 13.17  | 1.025 | 65.36 | 12.00  |
|          | Η     | 1.109 | 71.36 | 30.86  | 1.078 | 75.40             | 22.00  | 1.084 | 74.51                        | 27.90  | 1.092 | 73.23 | 26.59  |
|          | Ν     | 1.047 | 89.09 | 21.74  | 1.047 | 61.65             | 17.29  | 1.033 | 62.25                        | 19.09  | 1.040 | 61.77 | 18.95  |
| Ą        | >     | 1.087 | 72.45 | 24.24  | 1.070 | 74.46             | 18.00  | 1.077 | 73.61                        | 21.97  | 1.076 | 73.53 | 21.73  |
|          | ΙΛ    | 1.110 | 54.51 | 23.23  | 1.093 | 56.01             | 16.66  | 1.110 | 54.41                        | 21.49  | 1.103 | 55.34 | 19.34  |
|          | VII   | 1.120 | 74.45 | 33.48  | 1.090 | 78.54             | 23.52  | 1.107 | 76.70                        | 29.67  | 1.099 | 77.10 | 29.46  |
|          | VIII  | 1.125 | 74.14 | 33.96  | 1.089 | 78.79             | 23.31  | 1.102 | 77.26                        | 29.99  | 1.103 | 76.41 | 29.03  |
|          | XI    | 1.007 | 44.07 | 1.68   | 1.007 | 44.10             | 1.68   | 1.007 | 42.92                        | 1.74   | 1.007 | 43.17 | 2.12   |
|          | ×     | 1.099 | 74.96 | 27.90  | 1.080 | 77.27             | 23.89  | 1.089 | 76.59                        | 32.05  | 1.093 | 74.93 | 27.54  |
| Average  | ge    | 1.079 | 67.34 | 23.10  | 1.062 | 69.77             | 16.99  | 1.069 | 99.89                        | 21.31  | 1.073 | 67.96 | 20.90  |
|          | I     | 1.065 | 81.82 | 34.93  | 1.046 | 84.73             | 24.17  | 1.069 | 81.58                        | 31.78  | 1.088 | 78.46 | 38.27  |
|          | Π     | 1.033 | 63.61 | 47.72  | 1.027 | 65.52             | 33.98  | 1.038 | 64.05                        | 39.68  | 1.032 | 63.68 | 33.46  |
|          | H     | 1.132 | 68.91 | 82.99  | 1.088 | 73.90             | 46.21  | 1.128 | 66.69                        | 64.99  | 1.107 | 71.50 | 56.46  |
|          | Ν     | 1.060 | 59.27 | 53.45  | 1.047 | 61.70             | 35.98  | 1.063 | 59.58                        | 49.09  | 1.060 | 59.22 | 45.72  |
| В        | >     | 1.113 | 99.69 | 48.58  | 1.080 | 73.43             | 35.51  | 1.104 | 70.91                        | 48.33  | 1.094 | 71.59 | 40.41  |
|          | ΙΛ    | 1.110 | 54.34 | 48.85  | 1.110 | 54.93             | 37.73  | 1.090 | 55.34                        | 46.41  | 1.097 | 55.00 | 42.01  |
|          | VII   | 1.133 | 72.88 | 71.94  | 1.102 | 76.80             | 52.17  | 1.135 | 73.47                        | 65.82  | 1.122 | 74.28 | 58.16  |
|          | VIII  | 1.143 | 72.19 | 72.72  | 1.099 | 77.38             | 49.41  | 1.122 | 75.08                        | 67.28  | 1.118 | 74.27 | 60.49  |
|          | X     | 1.007 | 43.84 | 2.42   | 1.007 | 43.97             | 2.42   | 1.007 | 43.09                        | 2.53   | 1.007 | 43.30 | 3.79   |
|          | ×     | 1.113 | 73.38 | 67.45  | 1.087 | 76.31             | 53.48  | 1.125 | 72.90                        | 81.02  | 1.110 | 73.23 | 64.39  |
| Average  | ge    | 1.091 | 62.99 | 51.48  | 1.069 | 68.87             | 37.11  | 1.088 | 09.99                        | 49.69  | 1.084 | 66.45 | 44.32  |
|          | П     | 1.085 | 79.30 | 136.69 | 1.054 | 83.50             | 95.98  | 1.083 | 92.62                        | 115.41 | 1.104 | 76.50 | 128.02 |
|          | =     | 1.050 | 61.80 | 232.20 | 1.040 | 64.02             | 149.48 | 1.048 | 62.60                        | 165.41 | 1.040 | 62.44 | 179.75 |
|          | H     | 1.164 | 65.80 | 180.45 | 1.093 | 73.28             | 124.96 | 1.148 | 68.01                        | 173.81 | 1.127 | 69.10 | 148.03 |
|          | Ν     | 1.070 | 58.68 | 223.21 | 1.053 | 60.29             | 153.24 | 1.063 | 60.12                        | 210.69 | 1.063 | 59.19 | 183.06 |
| ರ        | >     | 1.134 | 67.32 | 149.25 | 1.088 | 72.38             | 105.04 | 1.134 | 68.20                        | 142.07 | 1.106 | 88.69 | 121.12 |
|          | IA    | 1.110 | 54.34 | 274.92 | 1.110 | 54.43             | 241.31 | 1.110 | 54.45                        | 264.36 | 1.117 | 53.73 | 251.38 |
|          | VII   | 1.161 | 70.18 | 296.58 | 1.106 | 76.20             | 209.59 | 1.164 | 70.42                        | 261.95 | 1.134 | 71.77 | 227.27 |
|          | VIII  | 1.153 | 70.86 | 421.53 | 1.101 | 76.79             | 273.28 | 1.172 | 69.72                        | 387.14 | 1.135 | 72.15 | 320.40 |
|          | XI    | 1.007 | 43.71 | 9.93   | 1.007 | 43.81             | 9.93   | 1.008 | 43.14                        | 15.13  | 1.008 | 43.29 | 18.72  |
|          | ×     | 1.131 | 71.33 | 396.65 | 1.100 | 75.24             | 318.50 | 1.148 | 70.83                        | 412.62 | 1.134 | 70.87 | 345.31 |
| Average  | ge    | 1.107 | 64.33 | 232.14 | 1.075 | 68.02             | 167.83 | 1.108 | 64.72                        | 214.86 | 1.097 | 64.89 | 192.31 |
|          |       |       |       |        |       |                   |        |       |                              |        |       |       |        |