

Supporting Information

for Adv. Electron. Mater., DOI: 10.1002/aelm.202200293

X-ray Detectors With Ultrahigh Sensitivity Employing High Performance Transistors Based on a Fully Organic Small Molecule Semiconductor/Polymer Blend Active Layer

Adrián Tamayo, Ilaria Fratelli, Andrea Ciavatti, Carme Martínez-Domingo, Paolo Branchini, Elisabetta Colantoni, Stefania De Rosa, Luca Tortora, Adriano Contillo, Raul Santiago, Stefan T. Bromley, Beatrice Fraboni,* Marta Mas-Torrent,* and Laura Basiricò

Supporting Information

X-ray detectors with ultrahigh sensitivity employing high performance transistors based on a fully organic small molecule semiconductor/polymer blend active layer

Adrián Tamayo,¹ Ilaria Fratelli,² Andrea Ciavatti,² Carme Martínez-Domingo,¹ Paolo Branchini,^{3,4} Elisabetta Colantoni,^{3,4,5} Stefania De Rosa,^{3,4} Luca Tortora,^{3,4,6} Adriano Contillo,⁷ Raul Santiago,⁸ Stefan T. Bromley,^{8,9} Beatrice Fraboni,^{2,*} Marta Mas-Torrent,^{1,*} Laura Basiricò²

¹ Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus de la Universitat Autònoma de Barcelona, Cerdanyola, E-08193 Barcelona, Spain.

² Department of Physics and Astronomy, University of Bologna and National Institute for Nuclear Physics - INFN section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.

³ Surface Analysis Laboratory INFN Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy.

⁴ INFN, Roma Tre, via della Vasca Navale 84, Rome, Italy.

⁵ Department of Mathematics and Physics, Roma Tre University, via della Vasca Navale 84, Rome, Italy.

⁶ Department of Sciences, Roma Tre University, Via della Vasca Navale 84, Rome, Italy.

⁷ Elettra-Sincrotrone Trieste, Area Science Park Strada Statale 14, km 163.5, 34149 Basovizza, Trieste , Italy

⁸ Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain.

⁹ Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

Table S1. Electrical parameters of OFETs based on films of TMTES and TMTES:PS deposited by BAMS. The parameters are calculated for OFETs with the conducting channel parallel (\parallel) and perpendicular (\perp) to the coating direction.

Ink formulation	Speed (mm s ⁻¹)		Mobility (cm ² V ⁻¹ s ⁻¹)	V _{TH} (V)	On/Off	$\mu^{max} (cm^2 V^{} \\ ^{1} s^{1})$	
TMTES	1	II	$(1.1 \pm 0.3) \cdot 10^{-1}$	(30 ± 10)	10^{3}	0.19 ± 0.2	
		1	$(9 \pm 4) \cdot 10^{-2}$	(40 ± 10)	10 ³	0.11 ± 0.2	
TWILD	10	II	$(1.0 \pm 0.3) \cdot 10^{-1}$	(27 ± 9)	10 ³	0.22 ± 0.3	
			$(7.4 \pm 1.9) \cdot 10^{-2}$	(34 ± 9)	10^{3}	0.10 ± 0.2	
TMTES:PS	1	II	1.2 ± 0.2	2 ± 2	10^{4}	1.4 ± 0.2	
(4:1)		T	0.2 ± 0.1	4 ± 3	10^{4}	0.4 ± 0.2	
PS_{10K}	10	II	1.3 ± 0.3	1 ± 1	10^{4}	1.6 ± 0.2	
2011		T	0.7 ± 0.3	-0.1 ± 0.3	10^{4}	0.9 ± 0.2	
TMTES:PS	1		0.7 ± 0.1	-(2 ± 1)	10^{4}	0.9 ± 0.2	
		T	0.4 ± 0.3	$-(2.6 \pm 0.7)$	10 ⁴	0.7 ± 0.2	
(4:1) PS _{280K}	10		1.7 ± 0.4	$-(0.7 \pm 0.2)$	10^{4}	2.3 ± 0.3	
2001			1.0 ± 0.2	$-(0.2 \pm 0.6)$	10 ⁴	1.5 ± 0.2	
	1	II	2.4 ± 0.4	-(0.53 ±	10 ⁵	3.6 ± 0.4	
TMTES:PS (2:1) PS _{280K}				0.17)	10		
		1	2.0 ± 0.4	-(0.45 ±	10 ⁵	2.5 ± 0.3	
				0.15)	10		
1 5280K	10	II	2.6 ± 0.6	$-(1.1 \pm 0.2)$	10 ⁵	3.1 ± 0.2	
	10	1	2.1 ± 0.6	-(1.00±0.11)	10 ⁵	2.8 ± 0.3	
TMTES:PS	1	I	1.1±0.2	$-(0.4 \pm 0.8)$	10^{4}	1.6 ± 0.2	
(1:2)		1	1.0±0.3	$-(0.4 \pm 0.3)$	10^{4}	1.4 ± 0.3	
PS_{280K}	10	II	0.9±0.2	$-(1.0 \pm 0.2)$	10^{4}	1.4 ± 0.2	
- ~200A			0.7±0.3	$-(0.9 \pm 0.3)$	10 ⁴	1.0 ± 0.2	

Table S2. Comparison of our results with the electrical transport parameters of solution processed OFETs based on TMTES reported in literature.

	OSC Formulation	Scalable to Roll- to-Roll (Deposition Technique)	Binder	μ (cm ² ·V- 1·s ⁻¹)	V _{TH} (V)	Ref
	2.0 wt % CB (2:1) PS	YES (Solution Shearing)	YES	2.6±0.6	-1	This work
	2.0 wt % CB	YES (Solution Shearing)	NO	0.10±0.03	~30	This work
	0.5 wt % TL	NO (Drop casting)	NO	1.3±0.4	NA	1
	1.2 wt % TE (1:2) 4- iPrCN-TAA/C8-Flu (70:30)	NO (Spin coating)	YES	4.3±0.3	~10	2
_	TE	NO (Spin coating)	NO	2.6-3.5	~40	3
	1wt % TE	NO (Drop casting)	NO	0.3	~0	4
	1 wt% TE (1:1) (iPVN)	NO (Drop casting)	YES	0.07	~0	4
	n.r.	NO (Spin coating)	NO	1.9		5

(CB) chlorobenzene, (TL) toluene, (TE) tetralin, (iPVN) isotactic poly(a-vinyl naphthalene and (4-iPrCN-TAA/C8-Flu) 4-isopropylcyano triarylamine/n-octyl Fluorene, 70/30 copolymer. n.r.: not reported.

Figure S1. Topographic AFM images (top) and depth profiles (bottom) for thickness estimation of the TMTES and TMTES:PS thin films.

Figure S2. ToF-SIMS 2D surface chemical maps of TMTES and TMTES:PS thin films deposited by BAMS at high coating speed. Normalized (to total counts) sum of $Si_2C_{42}H_{50}^+$ (m/z = 610.34), $Si_2^{13}CC_{41}H_{50}^+$ (m/z = 611.35), $Si_2^{13}C_2C_{40}H_{50}^+$ (m/z = 612.35), $^{30}SiSi^{13}CC_{41}H_{50}^+$ (m/z=613.34), $^{30}SiSi^{13}C_2C_{40}H_{50}^+$ (m/z = 614.35), and $^{30}SiSi^{13}C_3C_{39}H_{50}^+$ (m/z = 615.35) secondary ion signals from (a) TMTES and (b) TMTES:PS surface acquired outside the interdigitated electrodes. 3D surface height profiles maps of c) TMTES and d) TMTES:PS films with the interdigitated gold electrodes.

Figure S3. X-ray diffractograms of TMTES and TMTES:PS thin films deposited by BAMS.

Figure S4. Dependence of charge carrier mobility on the applied gate voltage for OFETs based on (a) TMTES and (b) TMTES:PS.

Figure S5. Transfer characteristics in saturation regime of TMTES OFETs measured 90 days after their fabrication

Figure S6. Consecutive transfer characteristics of the films TMTES:PS 2:1 under bias stress $(V_{GS}=-10\ V\ and\ VDS=-1\ V)$.

Figure S7. X-ray induced photocurrent response of a TMTES:PS BAMS-coated device upon three on/off switching cycles (green areas correspond to time windows of 60 s) employing a dose rate of 9.8 mGy s⁻¹.

Figure S8. Comparison of the sensitivity values per unit area achieved in this work (green triangle), with those reported at the state of the art for thin-film detectors based on perovskite (red triangles), organic-hybrid (blue circles), and full-organic (black squares) active layers.^[6-28]

Bibliography

- [1] G. R. Llorente, M. B. Dufourg-Madec, D. J. Crouch, R. G. Pritchard, S. Ogier, S. G. Yeates, Chem. Commun. 2009, 3059.
- [2] K. L. Mccall, S. R. Rutter, E. L. Bone, N. D. Forrest, J. S. Bissett, J. D. E. Jones, M. J. Simms, A. J. Page, R. Fisher, B. A. Brown, S. D. Ogier, Adv. Funct. Mater. 2014, 24, 3067.
- [3] J. F. Chang, T. Sakanoue, Y. Olivier, T. Uemura, M. B. Dufourg-Madec, S. G. Yeates, J. Cornil, J. Takeya, A. Troisi, H. Sirringhaus, Phys. Rev. Lett. 2011, 107, 066601.
- [4] M. M. Ibrahim, A. C. MacIel, C. P. Watson, M. B. Madec, S. G. Yeates, D. M. Taylor, Org. Electron. 2010, 11, 1234.
- [5] A. Y. B. Meneau, Y. Olivier, T. Backlund, M. James, D. W. Breiby, J. W. Andreasen, H. Sirringhaus, Adv. Funct. Mater. 2016, 26, 2326.
- [6] I. Temiño, L. Basiricò, I. Fratelli, A. Tamayo, A. Ciavatti, M. Mas-Torrent, B. Fraboni, Nat. Commun. 2020, 11, 2136.
- [7] A. Ciavatti, L. Basiricò, I. Fratelli, S. Lai, P. Cosseddu, A. Bonfiglio, J. E. Anthony, B. Fraboni, Adv. Funct. Mater. 2019, 29, 1806119.
- [8] A. M. Zeidell, T. Ren, D. S. Filston, H. F. Iqbal, E. Holland, J. D. Bourland, J. E. Anthony, O. D. Jurchescu, Adv. Sci. 2020, 7, 2001522.
- [9] S. Lai, P. Cosseddu, L. Basiricò, A. Ciavatti, B. Fraboni, A. Bonfiglio, Adv. Electron. Mater. 2017, 3, 1600409.

- [10] L. Basiricò, A. Ciavatti, I. Fratelli, D. Dreossi, G. Tromba, S. Lai, P. Cosseddu, A. Bonfiglio, F. Mariotti, C. Dalla Val, V. Bellucci, J. E. Anthony, B. Fraboni, Front. Phys. 2020, 8, 10.3389/fphy.2020.00013.
- [11] H. M. Thirimanne, K. D. G. I. Jayawardena, A. J. Parnell, R. M. I. Bandara, A. Karalasingam, S. Pani, J. E. Huerdler, D. G. Lidzey, S. F. Tedde, A. Nisbet, C. A. Mills, S. R. P. Silva, Nat. Commun. 2018, 9, 2926.
- [12] L. Mao, Y. Li, H. Chen, L. Yu, J. Zhang, Nanomaterials 2021, 11, 1832.
- [13] Y. Gao, Y. Ge, X. Wang, J. Liu, W. Liu, Y. Cao, K. Gu, Z. Guo, Y. M. Wei, N. Zhou,D. Yu, H. Meng, X. F. Yu, H. Zheng, W. Huang, J. Li, Adv. Mater. 2021, 33, 2101717.
- [14] H. Li, X. Shan, J. N. Neu, T. Geske, M. Davis, P. Mao, K. Xiao, T. Siegrist, Z. Yu, J. Mater. Chem. C 2018, 6, 11961.
- [15] A. Ciavatti, R. Sorrentino, L. Basiricò, B. Passarella, M. Caironi, A. Petrozza, B. Fraboni, Adv. Funct. Mater. 2021, 31, 2009072.
- [16] M. P. A. Nanayakkara, L. Matjačić, S. Wood, F. Richheimer, F. A. Castro, S. Jenatsch, S. Züfle, R. Kilbride, A. J. Parnell, M. G. Masteghin, H. M. Thirimanne, A. Nisbet, K. D. G. I. Jayawardena, S. R. P. Silva, Adv. Funct. Mater. 2021, 31, 2008482.
- [17] H. M. Thirimanne, K. D. G. I. Jayawardena, A. Nisbet, Y. Shen, R. M. I. Bandara, C. A. Mills, G. Shao, S. R. P. Silva, IEEE Trans. Nucl. Sci. 2020, 67, 2238.
- [18] K. D. G. I. Jayawardena, H. M. Thirimanne, S. F. Tedde, J. E. Huerdler, A. J. Parnell, R. M. I. Bandara, C. A. Mills, S. R. P. Silva, ACS Nano 2019, 13, 6973.
- [19] J. Peng, K. Ye, Y. Xu, L. Cui, R. Li, H. Peng, Q. Lin, Sensors Actuators, A Phys. 2020, 312, 112132.

- [20] A. Ciavatti, T. Cramer, M. Carroli, L. Basiricò, R. Fuhrer, D. M. De Leeuw, B. Fraboni, Appl. Phys. Lett. 2017, 111, 183301.
- [21] J. Liu, B. Shabbir, C. Wang, T. Wan, Q. Ou, P. Yu, A. Tadich, X. Jiao, D. Chu, D. Qi,D. Li, R. Kan, Y. Huang, Y. Dong, J. Jasieniak, Y. Zhang, Q. Bao, Adv. Mater. 2019, 31, 1901644.
- [22] J. Zhao, L. Zhao, Y. Deng, X. Xiao, Z. Ni, S. Xu, J. Huang, Nat. Photonics 2020, 14,612.
- [23] H. Tsai, F. Liu, S. Shrestha, K. Fernando, S. Tretiak, B. Scott, D. T. Vo, J. Strzalka, W. Nie, Sci. Adv. 2020, 6, eaay0815.
- [24] H. Mescher, F. Schackmar, H. Eggers, T. Abzieher, M. Zuber, E. Hamann, T. Baumbach, B. S. Richards, G. Hernandez-Sosa, U. W. Paetzold, U. Lemmer, ACS Appl. Mater. Interfaces 2020, 12, 15774.
- [25] J. Guo, Y. Xu, W. Yang, B. Xiao, Q. Sun, X. Zhang, B. Zhang, M. Zhu, W. Jie, ACS Appl. Mater. Interfaces 2021, 13, 23928.
- [26] L. Basiricò, S. P. Senanayak, A. Ciavatti, M. Abdi-Jalebi, B. Fraboni, H. Sirringhaus, Adv. Funct. Mater. 2019, 29, 1902346.
- [27] S. Demchyshyn, M. Verdi, L. Basiricò, A. Ciavatti, B. Hailegnaw, D. Cavalcoli, M. C. Scharber, N. S. Sariciftci, M. Kaltenbrunner, B. Fraboni, Adv. Sci. 2020, 7, 2002586.
- [28] L. Basiricò, A. Ciavatti, T. Cramer, P. Cosseddu, A. Bonfiglio, B. Fraboni, *Nat. Commun.* **2016**, *7*, 13063.