

Ranking Models

Vector Space Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The ranking problem

Given

o Some evidence of the user's need

Droduce

- ∘ A list of matching information items
- ∘ In decreasing order of relevance

The ranking problem

Given

o Some evidence of the user's need query

Produce

- A list of matching information items documents
- o In decreasing order of relevance

The ranking problem

Why rank?

Couldn't **f(q,d)** be just an indicator function?

Why not select?

The classifier is unlikely accurate

- o Over-constrained: no relevants returned
- Under-constrained: too many relevants returned
- Hard to find an appropriate threshold

Not all relevant documents are equally relevant!

o Prioritization is needed

Probability Ranking Principle (PRP)

Ranking documents by decreasing probability of relevance results in optimal effectiveness, provided that probabilities are estimated (1) with certainty and (2) independently.

• Robertson, 1977

Ranking effectiveness

Effectiveness is about doing the right thing; it's about finding documents that are relevant to the user

Relevance is influenced by many factors

- o Topical relevance vs. user relevance
- $\circ \, \mathsf{Task}, \, \mathsf{context}, \, \mathsf{novelty}, \, \mathsf{style} \\$

Ranking models define a view of relevance

Ranking models

Provide a mathematical framework for ranking

Each model builds upon different assumptions

Progress in ranking models has corresponded with improvements in effectiveness

 An effective model should score relevant documents higher than non-relevant documents

Fundamental elements

Many classical models

Similarity-based models: f(q, d) = sim(q, d)

Vector space models

Probabilistic models: f(d,q) = p(R = 1|d,q)

- o Classic probabilistic models
- Language models
- o Information-theoretic models

Many extended models

Structural models

o Beyond bags-of-words

Semantic models

Beyond lexical matching

Contextual models

o Beyond queries

VSM is a framework

Queries and documents as term vectors

∘ Term as the basic concept (e.g., word or phrase)

A vocabulary V defines a |V|-dimensional space

Vector components as real-valued term weights

Relevance estimated as f(q, d) = sim(q, d)

 $\circ q = (x_1, ..., x_{|V|}) \text{ and } d = (y_1, ..., y_{|V|})$

What VSM doesn't say

How to define vector dimensions

Concepts are assumed to be orthogonal

How to place vectors in the space

- \circ Term weight in query indicates importance of term
- o Term weight in document indicates topicality

How to define the similarity measure

Simplest VSM = BOW + bit vectors + dot $q = (x_1, ..., x_{|V|}) \quad \sin(q, d)$ $d = (y_1, ..., y_{|V|}) \quad = q \cdot d$ $= x_1 y_1 + ... + x_{|V|} y_{|V|}$ $x_{i_*} y_i \in \{0,1\}$ 1: word w_i is present 0: word w_i is absent What does this ranking function intuitively capture? Is this a good ranking function?

q = [news about presidential campaign]	f(q,d)	ranking	ideal
d ₁ news about	2	d_2	$d_4 +$
d_2 news about organic food campaign	3	d_3	d_3 +
d ₃ news of presidential campaign	3	d_4	$d_1 -$
d ₄ news of presidential campaign presidential candidate	3	d_1	d_2 -
news of organic food campaign campaigncampaigncampaign	2	d_5	d ₅ -

Inverse document frequency (idf) $\mathrm{idf_w} = \log \frac{n+1}{n_w}$ $\circ n$: number of documents in the corpus $\circ n_w$: number of documents where w appears

Ranking using VSM with tf-idf vectors q = [news about presidential campaign] $\frac{d_2}{\dots \text{news about organic food campaign...}}$ $\frac{d_3}{\dots \text{news of presidential campaign...}}$ $V = \{\text{news, about, presidential, campaign, food, ...}\}$ $\text{idf} = \{1.5, 1.0, 2.5, 3.1, 1.8, ...\}$ $q = \{1.1, 1, 1, 0, ...\}$ $d_2 = \{1 * 1.5, 1 * 1.0, 0, 1 * 3.1, 0, ...\}$ $sim(q, d_2) = 5.6$ $d_3 = \{1 * 1.5, 0, 1 * 2.5, 1 * 3.1, 0, ...\}$ $sim(q, d_3) = 7.1$

Ranking using VSM with tf-idf vectors q = [news about presidential campaign] $\boxed{d_4} \quad \text{... news of presidential campaign ...} \\ \text{... presidential campaign ...} \\ \text{... news of organic food campaign...} \\ \boxed{d_5} \quad \text{... news of organic food campaign...} \\ \text{campaign... campaign... campaign...} \\ V = \{\text{news, about, presidential, campaign, food, ...} \} \\ \text{idf} = \{1.5, 1.0, 2.5, 3.1, 1.8, ...\} \\ q = \{1, 1, 1, 1, 0, ...\} \\ d_4 = \{1 * 1.5, 0, 2 * 2.5, 1 * 3.1, 0, ...\} \\ \text{sim}(q, d_4) = 9.6 \\ d_5 = \{1 * 1.5, 0, 0, 4 * 3.1, 1 * 1.8, ...\} \\ \text{sim}(q, d_5) = 13.9$

Document length normalization

Penalize long documents

- Avoid matching by chance
- Must also avoid over-penalization

A document is long because

- \circ It uses more words \rightarrow more penalization
- \circ It has more content \rightarrow less penalization

Pivoted length normalization (pln)

$$pln_d = (1 - b) + b \frac{|d|}{avdl}$$

- $\circ |d|$: document length in tokens
- o avdl: average document length in the corpus
- \circ *b* ∈ [0,1]: parameter

State-of-the-art VSM ranking

Pivoted length normalization VSM [Singhal et al. 1996]

$$\circ f(q,d) = \sum_{w \in q} c(w,q) \frac{\ln(1 + \ln(1 + c(w,d)))}{(1 - b) + b \frac{|d|}{avdl}} \log \frac{n + 1}{n_w}$$

Okapi/BM25 [Robertson and Walker, 1994]

$$\circ f(q,d) = \sum_{w \in q} c(w,q) \frac{(k_1+1) \, c(w,d)}{c(w,d) + k_1 \left((1-b) + b \frac{|d|}{avdl} \right)} \log \frac{n+1}{n_w}$$

Summary

Fundamental ranking components

- Term and document frequency
- Document length

VSM is a framework

- \circ Components as term and document weights
- o Relevance as query-document similarity

Summary

Lack of theoretical justification

• Axiomatic approaches, probabilistic approaches

Room for further improvement

- o Structure, semantics, feedback, context
- o Feature-based models

References

<u>Text Data Management: A Practical Introduction to Information Retrieval and Text Mining</u>, Ch. 6
Zhai and Massung, 2016

<u>Search Engines: Information Retrieval in Practice</u>, Ch. 7 Croft et al., 2009

References

<u>Pivoted document length normalization</u> Singhal et al., SIGIR 1996

Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval

Robertson and Walker, SIGIR 1994

The probability ranking principle in IR

Robertson, J. Doc. 1977