Asymptotic Notations

(Class 6)

From Book's Page No 50 (Chapter 3)

- Many people sloppily use O when they should use θ .
- The book we are following also uses θ to express worst-case running time.
- For example, an algorithm analyst may end up with a time function $T(n) = n^2 + n + 2$ and immediately conclude that $T(n) = O(n^2)$ which is technically right, but a sharper assertion would be $T(n) = \theta(n^2)$.

- We can attribute this oblivious behavior to two reasons. First, many see O to be more popular and acceptable, possibly because of its long history. Recall that it was introduced more than a century ago, whereas θ and Ω were introduced only in 1976 (by Donald Knuth).
- Second, it could be because O is readily available on the keyboard, whereas θ is not!

- From a technical point of view, however, the main reason careful analysts prefer to use θ over θ is that the θ covers "greater territory" than the θ .
- If we take an example of some binary search and want to use θ we will have to make two assertions:
 - One for the best case, namely $\theta(1)$
 - Another for the worst case, namely $\theta(\log n)$
- With O we make only one assertion, namely $O(\log n)$.

The need of Asymptotic Notations

• If we are given running times of some algorithm:

$$T(n) = 4n^2 + 2n + 5$$

$$T(n) = n^2 + 10n + 9$$

$$T(n) = 95n^2 + 40n$$

Which one is better?

- We may get confused by simply watching these polynomial equations.
- But if we only take the dominating term from each equation:

$$T(n) \approx n^2$$
 $T(n) \approx n^2$
 $T(n) \approx n^2$

 Now we can easily say that all these algorithms have equal running time.

Growth of Function (Book's Page Number 32)

- We use Asymptotic Notations to describe the growth rate of the function.
- We know that for the growth of a function, the highest order term matters the most.
- e.g., the term c_1n^2 in the function $c_1n^2+c_2n+c_3$ and thus we can neglect the other terms.

Commonly Used Functions and Their Comparison

Constant Functions

• Whatever is the input size *n* these functions take a constant amount of time.

$$f(n) = 1$$

- Linear Functions
- These functions grow linearly with the input size n.

$$f(n) = n$$

Quadratic Functions

• These functions grow faster than the super-linear functions i.e., $n \log(n)$.

$$f(n) = n^2$$

Cubic Functions

• Faster growing than quadratic but slower than exponential.

$$f(n) = n^3$$

Logarithmic Functions

These are slower growing than even linear functions.

$$f(n) = \log(n)$$

- Super-linear Functions
- Faster growing than linear but slower than quadratic.

$$f(n) = n \log(n)$$

Exponential Functions

 Faster than all of the functions mentioned here except the factorial functions.

$$f(n) = c^n$$

- Factorial Functions
- Fastest growing than all these functions mentioned here.

$$f(n) = n!$$

• From the graph, you can see that for any sufficiently larger n:

$$n! \ge c^n \ge n^3 \ge n^2 \ge n \log(n) \ge n \ge \log(n) \ge 1$$

- We always want to keep the rate of the growth as low as possible.
- We try to make an algorithm to follow the function with least growth rate to accomplish a task.

Asymptotic Notations

- We use some mathematical tools to describe the behavior of the running time.
- There are mainly three asymptotic notations:
 - *O*-Notation (Big O)
 - Ω -Notation (Omega)
 - θ -Notation (Theta)

O-Notation

- Big-O notation represents the upper bound of the running time of an algorithm.
- Thus, it gives the worst-case complexity of an algorithm.
- O-Notation characterizes an *upper bound* on the asymptotic behavior of a function.

- In other words, it says that a function grows no faster than a certain rate, based on the highest-order term.
- Consider, for example, the function $7n^3 + 100n^2 + 20n + 6$.
- Its highest-order term is $7n^3$, and so we say that this function's rate of growth is n^3 .
- Because this function grows no faster than n^3 , we can write that it is $O(n^3)$.
- Also, the restriction is not applied to the region of $n \leq n_{\circ}$.

Formal Definition of *O*-Notation

• For a given function g(n), we denote by O(g(n)) the set of functions.

$$O(g(n)) = \{ f(n) :$$

there exist positive constants c and n_o such that

$$0 \le f(n) \le cg(n)$$

for all $n \ge n_{\circ}$

$$f(n) \in O(g(n))$$

• A function f(n) belongs to the set O(g(n)) if there exists a positive constant c such that $f(n) \le cg(n)$ for sufficiently large n.

Ω -Notation

- Ω -Notation characterizes a *lower bound* on the asymptotic behavior of a function.
- Omega notation represents the lower bound of the running time of an algorithm.
- Thus, it provides the best-case complexity of an algorithm.

- In other words, it says that a function grows at least as fast as a certain rate.
- Because the highest-order term in the function $7n^3 + 100n^2 + 20n + 6$ grows at least as fast as n^3 , this function is $\Omega(n^3)$.
- This function is also $\Omega(n^2)$ and $\Omega(n)$.
- More generally, it is $\Omega(n^c)$ for any constant $c \leq 3$).

Formal Definition of Ω -Notation

• For a given function g(n), we denote by $\Omega(g(n))$ the set of functions.

$$\Omega(g(n)) = \{ f(n) :$$

there exist positive constants c and n_o such that

$$0 \le cg(n) \le f(n)$$

for all $n \ge n_{\circ}$

θ -Notation

- θ -Notation characterizes a *tight bound* on the asymptotic behavior of a function.
- Theta notation encloses the function from above and below. Since it represents the *upper* and the *lower bound* of the running time of an algorithm, it is used for analyzing the average-case complexity of an algorithm.
- It says that a function grows *precisely* at a certain rate, based on the highest-order term.

Formal Definition of θ -Notation

• For a given function g(n), we denote by $\theta(g(n))$ the set of functions.

$$\theta(g(n)) = \{ f(n) :$$

there exist positive constants c_1 , c_2 and n_o such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
for all $n \ge n_0$ }