

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Doctorado en Modelación Matemática

00027

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
THE DE BY NOIGHATON		
	Biomatemática	

CEMECEDE			
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS	
Optativa		TOTAL DE HURAS	
Optativa	292901	80	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Estudiar y analizar los modelos clásicos en biomatemáticas usando como herramienta principal la teoría fundamental de las ecuaciones diferenciales ordinarias.

TEMAS Y SUBTEMAS

1. Modelos de interacción de especies que dependen de la edad

- 1.1. Modelo presa-depredador dependiente de la edad.
- 1.2. Modelo de competencia dependiente de la edad.
- 1.3. Modelo de simbiosis dependiente de la edad.
- 1.4. Simulaciones numéricas de los modelos.

2. Modelos matemáticos en epidemiología con estructura de edad y sexo

- 2.1. El modelo SIR con demografía y muerte por la enfermedad.
- 2.2. El modelo SIRS con demografía y muerte por la enfermedad.
- 2.3. El modelo SEIR con demografía y muerte por la enfermedad.
- 2.4. Simulaciones numéricas de los modelos.

3. Modelos matemáticos en ecoepidemiología

- 3.1. Modelo presa-depredador con enfermedad en alguna de las especies.
- 3.2. Modelo de competencia con enfermedad en alguna de las especies.
- 3.3. Modelo de simbiosis con enfermedad en alguna de las especies.
- 3.4. Simulaciones numéricas de los modelos.

4. Modelos en Neurociencias

- 4.1. Las ecuaciones de Hodgkin-Huxley.
- 4.2. El modelo de Morris-Lecar.
- 4.3. El modelo de FitzHugh-Nagumo.
- 4.4. Otros modelos sobre neurociencias.
- 4.5. Simulaciones numéricas de los modelos.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, poniendo énfasis entre la biología y la matemática que hay detrás del modelo. Los estudiantes acudirán a asesorías extra clase, resolverán proyectos en equipo para presentarlos como requisito para el examen final.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Otras actividades que se consideran para la evaluación son las participaciones en clase, asistencias a clases y el cumplimiento de tareas.

BIBLIOGRAFÍA

Básica:

- 1. An introduction to mathematical population dynamics: along the trail of volterra and lotka, Iannelli, M., & Pugliese, A., Springer, 2015.
- 2. Mathematical models in epidemiology, Brauer, F., Castillo-Chavez, C., & Feng, Z., New York: Springer, 2019.

Universidad Tecnológica de la Mixteca Clave DGP: 200089

Doctorado en Modelación Matemática

00028

PROGRAMA DE ESTUDIOS

3. Mathematical foundations of neuroscience, Ermentrout, B., & Terman, D. H., New York: springer, 2010.

Consulta:

- 1. Size-structured populations: ecology and evolution, Ebenman, B., & Persson, L., Springer Science & Business Media, 2012.
 2. Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation, Malchow, H., Petrovskii, S. V., & Venturino, E., CRC Press, 2007.
- 3. Dynamical systems in neuroscience, Izhikevich, Eugene M., MIT press, 2007.

PERFIL PROFESIONAL DEL DOCENTE

Estudios de Doctorado en Matemáticas o en Matemáticas Aplicadas con conocimientos en Modelación.

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS VISION DE ESTUDIOS

DE POSGRADO

AUTORIZÓ

DR. RAFAEL MARTÍNEZ MARTÍNEZ

VICE-RECTOR ACADÉMICO

ACADÉMICA