In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\smb06\Downloads\loan1 (2).csv")
df
```

Out[2]:

	Home Owner Marital Status		Annual Income	Defaulted Borrower	
0	Yes	Single	125	No	
1	No	Married	100	No	
2	No	Single	70	No	
3	Yes	Married	120	No	
4	No	Divorced	95	Yes	
5	No	Married	60	No	
6	Yes	Divorced	220	No	
7	No	Single	85	Yes	
8	No	Married	75	No	
9	No	Single	90	Yes	

In [3]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
Column Non-Null Count Dtype
--- ---- -----

Mon-Null Count Dtype

--- --- --- ---- ---
Mon-Null Count Dtype

10 non-null object

Marital Status 10 non-null object

Annual Income 10 non-null int64

Defaulted Borrower 10 non-null object

dtypes: int64(1), object(3)
memory usage: 452.0+ bytes

```
In [4]:
```

```
df['Marital Status'].value_counts()
```

Out[4]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

In [5]:

```
df['Annual Income'].value_counts()
```

Out[5]:

Name: count, dtype: int64

In [6]:

```
convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[6]:

	Home Owner Marital Status		Annual Income	Defaulted Borrower	
0	1	Single	125	No	
1	0	Married	100	No	
2	0	Single	70	No	
3	1	Married	120	No	
4	0	Divorced	95	Yes	
5	0	Married	60	No	
6	1	Divorced	220	No	
7	0	Single	85	Yes	
8	0	Married	75	No	
9	0	Single	90	Yes	

In [7]:

```
convert={'Marital Status':{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
df
```

Out[7]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

In [8]:

```
x=["Home Owner", "Annual Income"]
y=["Yes", "No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
```

In [9]:

```
(x\_train,x\_test,y\_train,y\_test) = train\_test\_split(all\_inputs,all\_classes,test\_size=0.5)
```

In [11]:

```
clf=DecisionTreeClassifier(random_state=0)
```

In [12]:

```
clf.fit(x_train,y_train)
```

Out[12]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [13]:	
score=clf.score(x_test,y_test) print(score)	

0.8

In []:			