Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Высшая школа прикладной математики и вычислительной Физики

Интервальный анализ Отчёт по лабораторной работе №1

Выполнил:

Студент: Дамаскинский Константин

Группа: 5040102/10201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1.	Постановка задачи	2
2.	Теория	3
3.	Реализация	4
4.	Результаты	4
5.	Обсуждение	7
6.	Приложения	8
C	писок иллюстраций	
 2. 3. 4. 5. 	Схема установки для исследования фотоэлектрических характеристик . Загруженные данные	5 5 6
6.	Результат наложения данных при максимальном коэффициенте Жак-	_

1. Постановка задачи

Проводится исследование из области солнечной энергетики. На рис. 1 показана схема установки для исследования фотоэлектрических характеристик.

Схема установки для исследования фотоэлектрических характеристик

Измеряемый сигнал (мВ или мА), поступающий с фотоприемника ФП1 (Канал 1) или фотоприемника ФП2 (Канал 2)

Рис. 1. Схема установки для исследования фотоэлектрических характеристик

Калибровка датчика $\Phi\Pi 2$ производится по эталону $\Phi\Pi 1$. Зависимость между квантовыми эффективностями датчиков предполагается постоянной для каждой пары наборов измерений:

$$QE_2 = \frac{I_2}{I_1} \cdot QE_1 \tag{1}$$

где QE_2 , QE_1 — эталонная эффективность эталонного и исследуемого датчика, I_2 , I_1 — измеренные токи. Данные с датчиков находятся в файлах **Канал2_800nm_0.2.csv**, **Канал1_800nm_0.2.csv** и полагаются линейными. Требуется определить коэффициент калибровки:

2 ТЕОРИЯ 3

$$R_{21} = \frac{I_2}{I_1} \tag{2}$$

на основе линейной регрессии на множестве интервальных данных и коэффициента Жаккара.

2. Теория

2.1. Простая линейная регрессия для вещественных данных

Пусть заданы две последовательности $X = \{x_i\}_{i=1}^n, Y = \{y_i\}_{i=1}^n, x_i, y_i \in \mathbb{R} \ \forall i = \overline{1,n}$. Простой линейной регрессией для этих последовательностей называется функция:

$$f(x) = \beta_0 + \beta_1 \cdot x \tag{3}$$

подобранная так, чтобы вектор $F = \{f(x_i)\}_{i=1}^n$ был в каком-то смысле максимально близок к вектору Y.

Таким образом, для решения задачи простой линейной регрессии необходимо найти коэффициенты β_0, β_1 . В зависимости от выбираемого метода поиска коэффициентов будет меняться и мера близости подобранной линейной функции к вектору Y.

В данной работе будет использоваться метод наименьших квадратов (МНК). Данный метод позволяет решить задачу простой линейной регрессии, поставив задачу минимизации второй (евклидовой) нормы разности векторов F и Y:

$$\sum_{i=1}^{n} \|\beta_0 + \beta_1 x_i - y_i\|_2 \underset{\beta_0, \beta_1}{\longrightarrow} \min$$
 (4)

2.2. Обынтерваливание данных для интервальной регрессии

Поскольку показания датчиков обладают погрешностью, полученные данные на самом деле следует рассматривать как интервалы, центр которых совпадает со считанными показаниями, а радиус равен некоторой базовой погрешности ε , умноженной на вес w_i . ε является константой.

Для каждого из наборов данных $X^{(1)}$ и $X^{(2)}$, прочитанных из соответствующих файлов, построим простую линейную регрессию на вещественных числах в результате чего получим аппроксимацию:

$$Lin_k(i) = a_i^{(k)} \cdot i + b_i^{(k)}, \ k \in \{1, 2\}, \ i = \overline{1, n}$$
 (5)

Определим для каждой из выборки вектор весов W_k простым способом: если значение аппроксимирующей прямой Lin_k в точке i не попадает в интервал $x_i^{(k)} \pm \varepsilon$, то увеличим радиус интервала в $w_i^{(k)}$ раз так, чтобы $Lin_k(i)$ оказалось на одной из границ интервала.

После того, как мы получили два интервальных вектора из \mathbb{IR}^n , вычтем из $x_i^{(k)}$ "наклонную" составляющую $a_i^{(k)} \cdot i$, получив таким образом "горизонтальные" векторы, для которых будем находить искомый коэффициент пропорциональности R_{21} .

2.3. Коэффициента Жаккара. Поиск R_{21}

Коэффициент Жаккара позволяет оценить, насколько хорошо совмещаются друг с другом заданные интервалы x_1, \ldots, x_n . Вычисляется путём деления длины интервала-пересечения на длину интервала объединения по формуле:

$$JK(x_1, \dots, x_n) = \frac{wid\left(\bigcap_{i=\overline{1,n}} x_i\right)}{wid\left(\bigcup_{i=\overline{1,n}} x_i\right)}$$

$$(6)$$

Используя данный коэффициент, мы можем подобрать такой $R_{21} \in \mathbb{R}$, чтобы полученные интервалы X_2 и $R_{21} \cdot X_1$ были максимально совместны. Для этого необходимо вычислять коэффициент Жаккара для совокупности компонент этих векторов.

Таким образом, для того, чтобы найти R_{21} , необходимо задать нижнюю и верхнюю границы поиска $\underline{R}, \overline{R}$, а затем при помощи бинарного поиска найти точку максимума коэффициента Жакккара в зависимости от выбранного R_{21} .

Числа \underline{R} , \overline{R} можно найти тривиально, поделив наименьшую верхнюю границу среди интервалов вектора $R_{21} \cdot X_1$ на наибольшую нижнюю границу среди интервалов вектора X_2 и, соответственно, наибольшую на наименбшую соответствующие границы.

3. Реализация

Данная работа реализована на языке программирования Python 3.10 с использованием пакетов numpy и scikitlearn. Код данного отчёта подготовлен с использованием редактора TeXstudio и компилятора pdflatex.

4. Результаты

Ниже приведены графики, полученные в результате работы реализованной программы.

Рис. 2. Загруженные данные

Рис. 3. Линейная регрессия для вещественных данных и результаты обынтерваливания

N	β_0	β_1
1	0.012	6.67e-6
2	0.014	6.96e-6

Таблица 1. Параметры линейной регрессии для двух входных наборов данных

6 4 РЕЗУЛЬТАТЫ

Рис. 4. Данные после вычитания "наклонной" составляющей

Рис. 5. Зависимость коэффициента Жаккара от R_{21}

Оптимальное соотношение $R_{opt} = 0.885$, было найдено в диапазоне [0.774; 0.953].

Рис. 6. Результат наложения данных при максимальном коэффициенте Жаккарда

5. Обсуждение

Исходя из представленных графиков, можно судить о том, что все описанные в теории этапы выполнены правильно.

- Простая линейная регрессия и обынтерваливание проведены так, что каждый интервал содержит соответствующую точку аппроксимирующей прямой, при этом аппроксимирующая прямая лежит визуально близко к исходным данным.
- В результате отсечения наклонной части действительно получились визуально горизонтальные графики.
- График зависимости коэффициента Жаккара от искомого множителя ожидаемо имеет один локальный максимум. При этом видно, что оценка интервала R_{21} с точки зрения меры Жаккара действительно очень грубая: значение коэффициента Жаккара в нижней оценке приблизительно равно -0.5. Данное число привело бы к абсолютно неприемлемому результату интервальной регрессии: хоть точечные наборы и получились бы визуально похожими, этого нельзя было бы сказать про интервалы. Учитывая характер полученных данных, важно удостовериться именно в максимальном совпадении интервалов.

• На последнем рисунке видно, что значительная часть интервалов совпадает практически идеально, что также является показателем качественно выполненной работы.

6. Приложения

1. Репозиторий с кодом программы и кодом отчёта:

https://github.com/kystyn/interval2