Made By: Kenan Gazwan

Heaps ICS202-Summary

King Fahd University of Petroleum and Minerals

Telegram: @KenanGazwan

(Heaps)

✓ Binary Heaps

A binary heap is a **complete** binary tree with one of the following heap order properties:

- MinHeap property: Each node key is less than or equal to the children keys.
- MaxHeap property: Each node key is greater than or equal to children keys. (Duplication is allowed)

Recall: A complete binary tree may have missing nodes only on the right side of the lowest level.

A heap is manipulated more efficiently using an array.

Array Representation of A MinHeap:

Advantageous of Array Representation:

- The Main Operations are O(1):
 - Add a node at the end of array
 - Find Parent / Child
 - Swap Parent and Child
- A lot of dynamic memory allocation of tree nodes is avoided

Percolate Up/Down: The process of swapping an element with its parent to restore the heap order property.

Heap Insertion: O(log n)

- ✓ Insert the key at the end of the heap.
- ✓ As long as the heap order property is violated: percolate up.

Heap Deletion: O(log n)

- ✓ Copy the last key node to the deleted node
- ✓ Delete the last node
- ✓ As long as the heap order property is violated: percolate up/down

Building Heaps:

✓ Building A Heap (Top Down): O(n log n)

Insert 4, 6, 10, 20, and 8 into MaxHeap:

✓ Convert An Array Into A Heap (Top Down): $O(n \log n)$

The Procedure of Conversion:

Always solve the nodes inside the current rectangle until it reaches the heap property. You can solve above the current rectangle if needed but not below it.

✓ Example: Convert An Array Into A Heap (Top Down): It is solved in detail. It might look long; however, it is just a systematic procedure 😊 Illustration

\checkmark Convert An Array Into A Heap (Bottom Up): O(n)

The Procedure of Conversion:

Always solve the nodes inside the current rectangle until it reaches the heap property.

✓ Example: Convert An Array Into A Heap (Bottom Up):

Heap sort steps:

- Build a min / max heap from an unsorted array.
- Remove the current minimums / maximums from the heap *n* times and store in an array.

The overall complexity of Heap Sort = $O(n \log n)$

Heap Operations Complexity	
Add a node at the end of array	0 (1)
Find Parent / Child	0 (1)
Swap Parent and Child	0 (1)
Heap Insertion	$O(\log n)$
Heap Deletion	$O(\log n)$
Top-Down Building / Converting	O(n logn)
Bottom-Up Converting	0 (n)
Delete Max/Min	$O(\log n)$
HeapSort	O(n logn)