Advanced Econometrics: Exercise #9

October 6, 2025

Professor Paulo Parente

Amy Qian

Problem 1

Obtain the 95% confidence interval for the **mean** of lhhexp1 using:

i. Standard asymptotic theory

Solution

sum lhhexp1

Variable	0bs	Mean	Std. dev.	Min	Max
lhhexp1	5 , 999	9.341561	.6877458	6.543108	12.20242
ci means lhhexp1					
Variable	0bs	Mean	Std. err.	[95% (conf. interval]
lhhexp1	5,999	9.341561	.0088795	9.3241	L54 9.358968

The 95% confidence interval is [9.324154, 9.358968]

ii. Standard asymptotic theory using the boostrap mean and the boostrap standard errors

Solution

bootstrap r(mean), reps(499): sum lhhexp1

First generate bootstrap sample with 499 repetitions at the mean then showing the summary.

Bootstrap results

Number of obs = 5,999
Replications = 499

Command: summarize lhhexp1
 _bs_1: r(mean)

 	Observed coefficient	Bootstrap std. err.	z	P> z	Normal- [95% conf.	
 _bs_1	9.341561	.0089509	1043.65	0.000	9.324018	9.359105

The 95% confidence interval is [9.324018, 9.359105].

iii. The boostrap percentile method

Solution

estat bootstrap, all

This is asking STATA to show the information of all bootstrap confidence interval construction methods. The middle line is the bootstrap confidence interval using the percentile method.

Bootstrap results

Number of obs = 5,999 Replications = 499

Command: summarize lhhexp1

_bs_1: r(mean)

	Observed coefficient	Bias	Bootstrap std. err.	[95% conf.	interval]	
_bs_1	9.3415612	.0001288	.00895086	9.324018 9.32274 9.323156	9.359105 9.359476 9.359813	(N) (P) (BC)

Key: N: Normal

P: Percentile BC: Bias-corrected

The 95% confidence interval is [9.32274, 9.359476]

iv. The boostrap t-statistics with both methods

Solution

Minimizing $S(b) = \frac{1}{N} \sum_{i=1}^{N} (Y - b)^2 \to \text{taking the derivative and setting to zero}$

$$\frac{2}{N} \sum_{i=1}^{N} (Y_i - \hat{b}) = 0$$

$$\frac{2}{N} \sum_{i=1}^{N} Y_i - \frac{2}{N} \sum_{i=1}^{N} \hat{b} = 0$$

$$\frac{2}{N} \sum_{i=1}^{N} Y_i - \frac{2}{N} N \hat{b} = 0$$

$$2\hat{b} = 2\frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$\hat{b} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

which is just the sample mean.

The first method is the **non-symmetric test** with the critical values of $cv_{boot}(\frac{\alpha}{2})$ and $cv_{boot}(1-\frac{\alpha}{2})$ for $(\hat{t}_1,\ldots,\hat{t}_B)$.

The second method is the **symmetric test** with the critical value of $cv_{boot}^a(1-\alpha)$ for $(|\hat{t}_1|,\ldots,|\hat{t}_B|)$.

Problem 2

Suppose X_1, \ldots, X_n are i.i.d. continuous r.v. from distribution with cumulative distribution function $F_X(\cdot)$ and probability density function $f_X(\cdot)$. Let M_n be the **sample median** and m_0 be the **population median**. In this case $\sqrt{n}(M_n - m_0) \stackrel{d}{\to} N\left(0, \frac{1}{4(f_X(m_0))^2}\right)$.

i. Propose a consistent estimator for the asymptotic variance of $\sqrt{n}(M_n - m_0)$

Solution

A consistent estimator for the density is $\frac{1}{4\hat{f}_x^2(M_N)}$ where $\hat{f}_x(M_N) = \frac{1}{Nh}\sum_{i=1}^N K\left(\frac{y_i-M_N}{h}\right)$, a kernal density estimator.

ii. Obtain a 95% CI for the median of lhhexp1

A. using standard asymptotic theory with the consistent estimator proposed previously

Solution

$$SE(M_N) = \frac{1}{\sqrt{n}\sqrt{4f_X^2(M_N)}}$$

$$(M_N - Z_{\frac{\alpha}{2}} SE(M_N), M_N + Z_{\frac{\alpha}{2}} SE(M_N))$$

$$P(Z > Z_{\frac{\alpha}{2}}) = \frac{\alpha}{2}, Z \sim N(0, 1)$$

 $h=0.09904 \rightarrow \text{obtained from Exercise sheet 8 with Silverman's rule of thumb}$

Steps to do:

- 1. Find the median
- 2. Generate the sequence
- 3. Find the mean of sequence

B. using standard asymptotic theory with the bootstrap mean and bootstrap standard error

Solution

C. using the boostrap percentile method

Solution