Control de Análisis Matemático II (Marzo 2014)

Doble Grado en Informática y Matemáticas

- Tema teórico: Derivabilidad de la función suma de una serie de potencias. (Antecedentes (1 punto), Enunciado (0.5 puntos) Demostración, incluido lema precedente, (1.5 puntos). Aplicaciones (1 punto).)
- 2. Ejercicio 1 (3 puntos) Dado $\alpha \in \mathbb{R}$, consideremos la sucesión de funciones $\{f_n\}$, donde $f_n : [0, 1] \longrightarrow \mathbb{R}$ es la función definida para todo $x \in [0, 1]$ por:

$$f_n(x) = n^{\alpha} x (1 - x^2)^n.$$

¿Para qué valores de α hay convergencia uniforme en [0,1]? ¿Para qué valores de α hay convergencia uniforme en $[\rho,1]$, donde $\rho \in]0,1[$?

- 3. Ejercicio 2 (3 puntos)
- Estudia la derivabilidad de la función de Riemann $\xi:]1, +\infty[\longrightarrow \mathbb{R},$ definida para todo x > 1 por: $\xi(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$. Justifica también que $\lim_{x \to 1} \xi(x) = +\infty$.