07 ₂

통계적 추론

표본분포 2

한국방송통신대학교 통계·데이터과학과 이 긍희 교수

학습내용

- 표본평균의 차의 분포를 이해한다.
- 표본분산의 비의 분포를 이해한다.
- 확률적 수렴과 분포의 수렴을 이해한다.
- 증심극한정리를 이해한다.

01

표본평균과

표본분산 관련 분포

- 표본평균과 표본분산의 분포
 - $X_i \sim N(\mu, \sigma^2), i = 1, 2, \dots, n,$ 확률표본 $-\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$ $-\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$

- 표본평균의 차이 분포 : 분산이 다를 때
 - $X_i \sim N(\mu_1, \sigma_1^2), i = 1, 2, \dots, m$
 - $Y_j \sim N(\mu_2, \sigma_2^2), j = 1, 2, \dots, n$
 - 확률표본, *X_i*, *Y_i* 독립
 - $\bar{X} \bar{Y} \sim N(\mu_1 \mu_2, \sigma_1^2/m + \sigma_2^2/n)$

- 표본평균의 차이 분포 : 분산이 같을 때
 - $X_i \sim N(\mu_1, \sigma^2)$, $i = 1, 2, \dots, m$
 - $Y_j \sim N(\mu_2, \sigma^2), j = 1, 2, \dots, n$
 - 확률표본, *X_i*, *Y_i* 독립
 - \overline{X} \overline{Y} $\sim N(\mu_1 \mu_2, \sigma^2 \left[\frac{1}{m} + \frac{1}{n}\right])$

○ 공동 표본분산의 분포

$$S_p^2 = \frac{1}{m+n-2} \{ \sum_{i=1}^m (X_i - \bar{X})^2 + \sum_{i=1}^n (Y_i - \bar{Y})^2 \}$$

$$\frac{(m+n-2)S_p^2}{\sigma^2} \sim \chi^2(m+n-2)$$

● 표본평균의 차이 분포: 모분산 미지, 동일

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$$

● F분포

•
$$V_1 \sim \chi^2(r_1), V_2 \sim \chi^2(r_2)$$
, 독립

$$F = \frac{V_1/r_1}{V_2/r_2} \sim F(r_1, r_2)$$

$$f(x) = \frac{\Gamma\left(\frac{r_1 + r_2}{2}\right)}{\Gamma\left(\frac{r_1}{2}\right)\Gamma\left(\frac{r_2}{2}\right)} \frac{r_1}{r_2} \left[\frac{r_1}{r_2}x\right]^{\frac{r_1}{2} - 1} \left[1 + \frac{r_1}{r_2}x\right]^{\frac{r_1 + r_2}{2}}, x > 0$$

● F분포

- F분포의 성질
 - $F \sim F(r_1, r_2) \Rightarrow \frac{1}{F} \sim F(r_2, r_1)$
 - $T \sim t(n) \Rightarrow T^2 \sim F(1, n)$

- 표본분산의 비교
 - $X_i \sim N(\mu_1, \sigma_1^2)$, $Y_i \sim N(\mu_2, \sigma_2^2)$, $i = 1, 2, \dots, n$, 확률표본, X_i, Y_i 독립
 - $S_1^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i \bar{X})^2$, $S_2^2 = \frac{1}{n-1} \sum_{j=1}^n (Y_j \bar{Y})^2$

● 표본분산의 비교

$$\frac{(m-1)S_1^2}{\sigma_1^2} \sim \chi^2(m-1), \frac{(n-1)S_2^2}{\sigma_2^2} \sim \chi^2(n-1)$$

$$F = \frac{\frac{(m-1)S_1^2}{\sigma_1^2}/(m-1)}{\frac{(n-1)S_2^2}{\sigma_2^2}/(n-1)} = \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(m-1, n-1)$$

02

극한 분포

확률적 수렴

- 확률적 수렴의 정의
 - $Y_n \xrightarrow{p} c$
 - $\lim_{n\to\infty} P(|Y_n-c|\geq \varepsilon)=0$, 임의의 상수 $\varepsilon>0$
 - $\Leftrightarrow \lim_{n \to \infty} P(|Y_n c| < \varepsilon) = 1$, 임의의 상수 $\varepsilon > 0$

) 확률적 수렴

○ 확률적 수렴

•
$$X_i \sim N(\mu, \sigma^2), i = 1, 2, \dots, n$$
, 확률표본 $\Rightarrow \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

•
$$n \to \infty$$
 ⇒ $\bar{X} \vdash \mu$ 에근접

· 확률적 수렴

- 마코프 부등식
 - **•** *u(X):X*의 양의 함수,임**의의 상수** ε > 0
 - $P[u(X) \ge \varepsilon] \le \frac{E[u(X)]}{\varepsilon}$
 - $P[u(X) < \varepsilon] \ge 1 \frac{E[u(X)]}{\varepsilon}$

| 확률적 수렴

- 약대수 법칙
 - $X_i \sim (\mu, \sigma^2), i = 1, 2, \cdots, n$, 확률표본일 때 \bar{X}_n 이 μ 에 확률적으로 수렴

| 확률적 수렴

- 약대수 법칙
 - $X_i \sim (\mu, \sigma^2), i = 1, 2, \cdots, n$, 확률표본일 때 \bar{X}_n 이 μ 에 확률적으로 수렴

확률적 수렴

● 약대수 법칙

| 확률적 수렴

● 확률적 수렴의 성질

•
$$Y_n \xrightarrow{p} c$$
, $W_n \xrightarrow{p} d$, $(a, b, c, d 상수)$

$$(3) Y_n W_n \xrightarrow{p} cd, \qquad (4) \xrightarrow{1} \xrightarrow{p} \xrightarrow{1} c$$

$$(4) \frac{1}{Y_n} \xrightarrow{p} \frac{1}{c}$$

$$(5)$$
 g 연속 $\Rightarrow g(Y_n) \stackrel{p}{\rightarrow} g(c)$

확률적 수렴

예
$$X_1, X_2, \cdots, X_n$$
 : (μ, σ^2) 의 확률표본일 때
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \stackrel{p}{\to} \sigma^2$$

확률적 수렴

예
$$X_1, X_2, \cdots, X_n$$
 : (μ, σ^2) 의 확률표본일 때
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \stackrel{p}{\to} \sigma^2$$

2 분포의 수렴

- 분포의 수렴의 정의
 - $Y_n \xrightarrow{d} Y$
 - $\lim_{n\to\infty} F_n(y) = F(y) \text{ or } \lim_{n\to\infty} M_n(t) = M(t)$

2 분포의 수렴

 X_1, X_2, \cdots, X_n :Ber(p)의 확률표본, p 가 0에 가 깝고, $np = \mu$ 일 때 $Y_n = \sum_{i=1}^n X_i$ 이 n이 무한히 커짐에 따라 포아송분포를 따름을 보여라.

2 분포의 수렴

 X_1, X_2, \cdots, X_n :Ber(p)의 확률표본, p 가 0에 가 깝고, $np = \mu$ 일 때 $Y_n = \sum_{i=1}^n X_i$ 이 n이 무한히 커짐에 따라 포아송분포를 따름을 보여라.

분포의 극한

$$n = 1$$

sample size = 1

Normal

Gamma

Uniform

Beta

분포의 극한

$$n = 5$$

sample size = 5

Normal

Gamma

Uniform

Beta

1

분포의 극한

$$n = 30$$

sample size = 30

Normal

Gamma

Uniform

Beta

분포의 극한

$$n = 50$$

sample size = 50

Gamma

Beta

Uniform

- 중심극한정리에 필요한 정리
 - $X_1, X_2, \dots, X_n : M(t) \Rightarrow M_{X_1 + X_2 + \dots + X_n}(t) = [M(t)]^n$
 - $\lim_{n\to\infty} (1+\frac{c}{n})^n = e^c$
 - Taylor 급수: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x a)^k$

$$-f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n$$

- 중심극한정리
 - $X_i \sim (\mu, \sigma^2), i = 1, 2, \dots, n$, 확률표본일 때 $Y_n = \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$

- 중심극한정리
 - $X_i \sim (\mu, \sigma^2), i = 1, 2, \dots, n$, 확률표본일 때 $Y_n = \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$

- 중심극한정리
 - $X_i \sim (\mu, \sigma^2), i = 1, 2, \dots, n$, 확률표본일 때 $Y_n = \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$

- 중심극한정리
 - $X_i \sim (\mu, \sigma^2), i = 1, 2, \dots, n$, 확률표본일 때 $Y_n = \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$

2

중심극한정리

예 $Y_n \sim \chi^2(n)$, $(Y_n - n)/\sqrt{2n}$ 의 극한 분포는?

3 이항분포의 정규근사

● 이항분포의 정규근사

$$Y_n \sim B(n, p), Z_n = \frac{Y_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\to} N(0, 1)$$

3 이항분포의 정규근사

● 이항분포의 정규근사

$$Y_n \sim B(n, p), Z_n = \frac{Y_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\to} N(0, 1)$$

4

· 극한분포의 연산

● 극한분포의 연산 (Slutsky 정리)

•
$$Y_n \xrightarrow{d} Y$$
, $W_n \xrightarrow{p} c$ 일 때(c 는 상수)
$$\Rightarrow Y_n + W_n \xrightarrow{d} Y + c$$
, $Y_n W_n \xrightarrow{d} cY$

극한분포의 연산

- 확률변수 함수의 극한분포

 - h(x)가 μ 에서 미분가능, $h'(\mu) \neq 0$

$$\Rightarrow \sqrt{n}[h(Y_n) - h(\mu)] \stackrel{d}{\rightarrow} N(0, [h'(\mu)]^2 \sigma^2)$$

급한분포의 연산

예
$$Y_n \sim B(n,p)$$
, $\hat{p}_n = \frac{Y_n}{n}$, $Z_n = \frac{\hat{p}_n - p}{\sqrt{\hat{p}_n(1 - \hat{p}_n)/n}}$ 의 극한 분포는?

급한분포의 연산

예
$$Y_n \sim B(n,p)$$
, $\hat{p}_n = \frac{Y_n}{n}$, $Z_n = \frac{\hat{p}_n - p}{\sqrt{\hat{p}_n(1 - \hat{p}_n)/n}}$ 의 극한 분포는?

 $\square X_1, X_2, \cdots X_m \sim N(\mu_1, \sigma^2)$ 확률표본, $Y_1, Y_2, \cdots Y_n \sim N(\mu_2, \sigma^2)$ 확률표본, σ^2 는 미지일 때 다음이 성립한다.

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(m + n - 2)$$

절리하기

 $\square X_1, X_2, \cdots X_m \sim N(\mu_1, \sigma_1^2)$ 확률표본, $Y_1, Y_2, \cdots Y_n \sim N(\mu_2, \sigma_2^2)$ 확률표본, X_i 와 Y_i 는 독립일 때 다음이 성립한다.

$$F = \frac{\frac{(m-1)S_1^2}{\sigma_1^2}/(m-1)}{\frac{(n-1)S_2^2}{\sigma_2^2}/(n-1)} = \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(m-1, n-1)$$

정리하기

- $\square X_1, X_2, \cdots, X_n \sim (\mu, \sigma^2)$ 의 확률표본일 때 \bar{X}_n 는 μ 에 확률적으로 수렴한다.
- $\square X_1, X_2, \cdots, X_n \sim (\mu, \sigma^2)$ 의 확률표본일 때 다음이 성립한다.

$$Y_n = \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$$

다음시간안내 점추정 1