Nitro NLP

Conjunctura lui Cotetz

Florin-Silviu Dinu Alexandru Tindeche Nichita Şincarenco Florin-Petrișor Tănasă

Introduction

Definition and Challenges:

- Sarcasm can be defined as mocking to hurt or amuse a certain person but there are different definitions according to different authors;
- The challenge was that it is harder to detect in writing vs. verbal communication;

Detection Cues:

 Many times in social networks discourses, sarcasm can be detected by writing in all caps, using distinctive signs and emojis;

Research Objective:

- Test models with and without attention mechanism on a labeled dataset;
- Labels are subjective, results interpreted accordingly.

Related Work

Related Work

Most popular models for sarcasm detection: LTSM, CNN, SVM, BERT

BERT Overview:

- Name: Bidirectional Encoder Representations from Transformers
- Function: Combines left and right context for bidirectional training (Devlin et al., 2019)
- Romanian BERT: Trained on vocabulary without "ş" and "ţ" (Dumitrescu et al., 2020)

XLM-RoBERTa:

- Created By: Alexandra Ciobotaru that is based on xlm-roberta-base
- **Training Data:** Large corpus (2.5 TB) of multilingual data which was trained in a self-supervised way (enabled training to be made on large amount of data)
- Advantages: handles multiple languages effectively, improves performance on NLP tasks across different languages

Related Work

XLM-RoBERTa:

- Reference Model by Meng et al. (2023), with four layers:
 - a. **Text Representation:** Uses BERT, provides 768 inputs to CNN;
 - Attention Layer: Captures content and context aspects;
 - **b. Semantic Feature Extraction:** One-layer CNN for phrase structure;
 - c. Sarcasm Semantic Relation: Detects semantical and emotional contradictions;
 - d. Sarcastic Intent Discrimination: Softmax function for sarcasm detection.

Method

Method

Objective: Test and compare models based on Meng et al. model, with modifications to reduce complexity

Modification steps:

- Model 1:
 - Remove attention mechanism
 - Add second convolutional layer to CNN
 - Use BERT for initial text representation
- Model 2:
 - Adapt attention mechanism to 'Model 1'
 - Use BERT and a 2-layer CNN, adjusting CNN for attention mechanism

Method

BERT Model Selection:

- Chosen Model: Alexandra Ciobotaru's BERT model;
- Reason: More complex, better data representation;

Implementation:

- We will use chosen BERT model with CNN
- We will perform necessary data permutations for CNN compatibility

Comparative Analysis:

 Compare models with SaRoCo fine-tuned RO-BERT and Meng et al.'s CNN with attention mechanism and evaluate both models against these baselines

Dataset and Preprocessing

Dataset and Preprocessing

Dataset:

- **Source:** Nitro NLP 2024 competition (Cristi Bleotiu)
- Similarity: Part of SaRoCo, state-of-the-art for Romanian satire
- Composition:
 - Total Articles: 55,608
 - Satirical: 27,628
 - Non-satirical: 27,980 (Rogoz et al., 2021)
- Characteristics: Balanced dataset

Preprocessing: Replace "ş" and "ţ" in training and test data (Dumitrescu et al., 2020)

Models

Models

Text processing:

- Text tokenized and truncated to 512 limit
- Padding applied if limit not reached

Model 1: CNN with Two Convolutional Layers

- 1. **Input**: Tokenized text (input_ids, attention_mask) into RoBERTa
- 2. Use RoBERTa's last hidden state
- 3. Permute data for CNN compatibility
- 4. **First Convolutional Layer**: Downsize 768 to 256, ReLU activation
- 5. Second Convolutional Layer: Downsize 256 to 128, ReLU activation
- 6. **Adaptive Max Pooling**: Reduce spatial dimension to 1
- 7. **Dense Layer**: Fully connected for non-linear relations
- 8. **Output**: Sigmoid function for sarcasm detection

Balanced accuracy: 87.612%

Models

Model 2: CNN with Attention Mechanism

- 1. Initial processing same as Model 1
- 2. First Convolutional Layer: Downsize 768 to 256, ReLU activation
- 3. Dropout: 0.5 for simplification (new)
- 4. Second Convolutional Layer: Upscale 256 to 768, ReLU activation (different)
- 5. Additional Dropout layer (new)
- Adaptive Max Pooling: Reduce spatial dimension to 1
- 7. Phrase Attention Layer:
 - a. Hyperbolic tangent activation
 - b. Log_softmax (new)
- 8. Self Attention Layer:
 - a. Compute semantic conflicts
 - b. Max pooling (new)
- 9. Permute self-attention result for CNN compatibility
- 10. Dense Layer: Fully connected for non-linear relations
- 11. Output: Sigmoid function for sarcasm detection

Balanced accuracy: 63.535%

Differences from Model 1:

- Added dropout layers for simplification
- Upscaled second convolutional layer
- Included Phrase and Self Attention layers

Limitations

Limitations

Comparison Constraints:

- SaRoCo Comparison: Limited due to small dataset
- Original Model Comparison: Not possible, uses a different BERT model
- Current Comparison: Only with Nitro NLP baseline

Future Testing:

Necessary to test models on the full SaRoCo dataset for comprehensive evaluation

Conclusions

Conclusions

Summary:

- Both models show modest balanced accuracy
- Initial hypothesis confirmed: Removing attention mechanism and adding a second convolutional layer improves performance

Key Observations:

- Attention mechanism performs worse than an additional convolutional layer for this task
- Second convolutional layer effectively captures non-linear data relations

Additional Conclusions:

- Text preprocessing can further enhance model performance
- Attention mechanism may still be useful with better-preprocessed data
- Future comparisons should include different BERT models for more insights

Future Work

Future Work

- Implement advanced text preprocessing techniques
- Explore other BERT models for potential improvements
- Test models on the full SaRoCo dataset for comprehensive evaluation

Ethical Considerations

Ethical Considerations

- Ethical use of sarcasm detection to avoid misuse for censorship
- Encouraged responsible deployment of NLP models

Thank You for Your Attention!