

CONTENTS

Pap	er 1 Optimization of device geometry in single-plate DMF	1
1.1	Abstract Summary	1
1.2	Problems to be solved	1
1.3	Proposed Method	2
1.4	Results and Findings	2
1.5	Discussion and Critique	2
1.6	Applications to My work	2

OPTIMIZATION OF DEVICE GEOMETRY IN SINGLE-PLATE DMF

1.1 Abstract Summary

- 1. Combination of numerical simulations and experimental tests to compare six different single-plate (open-type) designs.
- 2. **COMSOL**, via finite element analysis, is used to:
 - a) Calculate electrodynamic actuation forces in each designs
- 3. Forces predicted by the electrodynamic model were in agreement with forces predicted using electromechanical models

1.2 Problems to be solved

- 1. There is no predefined geometry for positioning ground electrodes relative to actuation electrodes in single plate devices.
- 2. Changing the position of the grounding electrodes/wires on the device will change the intensity and distribution of the electric field in the vicinity of the droplet should:
 - a) Change the actuation force on the droplet
 - b) Maximum droplet speed that can be achieved
- 3. However, until now, there have been no studies on the optimum design of such devices possibly due to:
 - a) Time and cost that would be required to experimentally evaluate the different geometries
 - b) Lack of accessible and verifiable numerical modeling tools that can compare the different designs
 - c) Use in-house written codes
 - d) Available source codes that require the writing of long and complex scripts

1.3 Proposed Method

Preparation

- 1. To model in COMSOL, use *electrodynamic* instead of electrowetting or electromechanical models
 - Calculate actuation forces on droplets approximated as spherical caps with unchanging geometry (no wetting or contact angle change)
- 2. Electrodynamic and electrowetting/mechanical models are not mutually exclusive, as contact angle change in electrowetting can be interpreted as an equilibrium between electrodynamic forces and surface tension.
- 3. Solve for the electric field around the droplet and calculated the charge density accumulated on droplet surfaces for six single-plate designs reported in the literature.
- 4. Use Maxwell-stress tensor formulation to calculate the droplet actuation forces in each design.
- 5. Validate the modeling results experimentally by estimating the forces acting on droplets in devices corresponding to three of the modeled designs using a unique measurement technique.
- 6. Modeling results were used to generate a list of design tips for production of devices with maximum actuation forces.

Geometrical Parameters

- 1.4 Results and Findings
- 1.5 Discussion and Critique
- 1.6 Applications to My work