Binary Classification with a Tabular Reservation Cancellation Dataset

Авторы:

Трифонов Степан Кривенко Михаил

Description of the data and the task

#	Column	Non-Null Count	Dtype		
0	id	42100 non-null	int64		
1	no_of_adults	42100 non-null	int64		
2	no_of_children	42100 non-null	int64		
3	no_of_weekend_nights	42100 non-null	int64		
4	no_of_week_nights	42100 non-null	int64		
5	type_of_meal_plan	42100 non-null	int64		
6	required_car_parking_space	42100 non-null	int64		
7	room_type_reserved	42100 non-null	int64		
8	lead_time	42100 non-null	int64		
9	arrival_year	42100 non-null	int64		
10	arrival_month	42100 non-null	int64		
11	arrival_date	42100 non-null	int64		
12	market_segment_type	42100 non-null	int64		
13	repeated_guest	42100 non-null	int64		
14	no_of_previous_cancellations	42100 non-null	int64		
15	<pre>no_of_previous_bookings_not_canceled</pre>	42100 non-null	int64		
16	avg_price_per_room	42100 non-null	float64		
17	no_of_special_requests	42100 non-null	int64		
18	booking_status	42100 non-null	int64		
dtypes: float64(1), int64(18)					
memory usage: 6.1 MB					

- The dataset for this competition (both train and test) was generated from a deep learning model trained on the Reservation Cancellation
 Dataset
- It is necessary to predict the target variable - whether the reservation was canceled

Data preparation and Train

- Adding polynomial features
- Detecting outliers
- Detection of categorical features

1. LightGBM (LGBMClassifier):

- Gradient boosting on root trees, optimized for speed and performance.

2. XGBoost (XGBClassifier):

- Another popular implementation of gradient boosting, known for its efficiency and accuracy in classification and regression tasks.

3. CatBoost (CatBoostClassifier):

- A specialized library for working with categorical invitations; gradient boosting is used.

Stacking/Blending. Meta-training that uses the results of the predictions of three models to improve the final predictive ability. This is achieved by optimizing the weights of the models using the Nelder-Mead method to maximize the ROC AUC estimate.

Use early stopping rounds

Result

Private Score (i)	Public Score 🛈
0.91960	0.92804

75 private perc	85 private perc	95 private perc
0,9036	0,91136	0,91795

Kaggle