8 - Solution methods for constrained optimization problems

Mauro Passacantando

Department of Computer Science, University of Pisa mauro.passacantando@unipi.it

Optimization Methods and Game Theory

Master of Science in Artificial Intelligence and Data Engineering
University of Pisa – A.Y. 2020/21

Problems with linear equality constraints

Consider a constrained problem

$$\begin{cases}
\min f(x) \\
Ax = b
\end{cases}$$

where

- f is strongly convex and twice continuously differentiable
- ▶ A is $p \times n$ matrix with rank(A) = p

It is equivalent to an unconstrained problem:

write $A=(A_B,A_N)$ with $det(A_B)\neq 0$, then Ax=b is equivalent to

$$A_B x_B + A_N x_N = b \implies x_B = A_B^{-1} (b - A_N x_N),$$

thus

$$\left\{ \begin{array}{l} \min \ f(x) \\ Ax = b \end{array} \right. \text{ is equivalent to } \left\{ \begin{array}{l} \min \ f(A_B^{-1}(b - A_N x_N), x_N) \\ x_N \in \mathbb{R}^{n-p} \end{array} \right.$$

Active-set method Penalty methods Barrier methods Barrier methods

Problems with linear equality constraints

Example. Consider

$$\begin{cases} \min \ x_1^2 + x_2^2 + x_3^2 \\ x_1 + x_3 = 1 \\ x_1 + x_2 - x_3 = 2 \end{cases}$$

Since $x_1 = 1 - x_3$ and $x_2 = 2 - x_1 + x_3 = 1 + 2x_3$, the original constrained problem is equivalent to the following unconstrained problem:

$$\begin{cases} \min (1 - x_3)^2 + (1 + 2x_3)^2 + x_3^2 = 6x_3^2 + 2x_3 + 2 \\ x_3 \in \mathbb{R} \end{cases}$$

Therefore, the optimal solution is $x_3 = -1/6$, $x_1 = 7/6$, $x_2 = 2/3$.

Consider a quadratic programming problem

$$\begin{cases} \min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ A x \le b \end{cases}$$

where

- Q is positive definite
- ▶ for any feasible point x the vectors $\{A_i: A_ix = b_i\}$ are linearly independent

The active-set method solves at each iteration a quadratic programming problem with equality constraints only.

- **0.** Choose a feasible point x^0 , set $W_0 = \{i : A_i x^0 = b_i\}$ (working set) and k = 0.
- **1.** Find the optimal solution y^k of the problem

$$\begin{cases}
\min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\
A_i x = b_i \quad \forall i \in W_k
\end{cases}$$

- 2. If $y^k \neq x^k$ then go to step 3 else go to step 4
- 3. If y^k is feasible then $t_k = 1$ else $t_k = \min \left\{ \frac{b_i A_i x^k}{A_i (y^k x^k)} : i \notin W_k, \ A_i (y^k x^k) > 0 \right\}$, end $x^{k+1} = x^k + t_k (y^k x^k), \ W_{k+1} = W_k \cup \{i \notin W_k : \ A_i x^{k+1} = b_i\}$, k = k+1 and go to step 1
- 4. Compute the KKT multipliers μ^k related to y^k If $\mu^k \geq 0$ then STOP else $x^{k+1} = x^k$, $\mu^k_j = \min_{i \in W_k} \mu^k_i$, $W_{k+1} = W_k \setminus \{j\}$, k = k+1 and go to step 1

Example. Solve the problem

$$\begin{cases} \min \frac{1}{2}(x_1 - 3)^2 + (x_2 - 2)^2 \\ -2x_1 + x_2 \le 0 \\ x_1 + x_2 \le 4 \\ -x_2 \le 0 \end{cases}$$

by means of the active-set method starting from $x^0 = (0,0)$.

The working set $W_0=\{1,3\}$ hence $y^0=x^0$; KKT multipliers are $\mu_1^0=-3/2$, $\mu_3^0=-11/2$. The new point $x^1=x^0$ with $W_1=\{1\}$; y^1 is the optimal solution of

$$\begin{cases} \min \frac{1}{2}(x_1 - 3)^2 + (x_2 - 2)^2 \\ -2x_1 + x_2 = 0 \end{cases}$$

which is equivalent to

$$\begin{cases}
\min \frac{9}{2}x_1^2 - 11x_1 \\
x_1 \in \mathbb{R}
\end{cases}$$

thus $y^1=(11/9,22/9)$ which is feasible, therefore $x^2=y^1$ and $W_2=\{1\}$. We already know that $y^2=x^2$; the KKT multiplier is $\mu_1^2=-8/9$, hence $x^3=x^2$ and $W_3=\emptyset$.

The optimal solution $y^3 = (3, 2)$ is not feasible, the step size is

$$t_3 = \min \left\{ \frac{b_2 - A_2 x^3}{A_2 (y^3 - x^3)} , \frac{b_3 - A_3 x^3}{A_3 (y^3 - x^3)} \right\} = \min \left\{ \frac{1}{4}, \frac{11}{2} \right\} = \frac{1}{4},$$

$$x^4=x^3+t_3(y^3-x^3)=(5/3,7/3)$$
 and $W_4=\{2\}$. The optimal solution $y^4=(7/3,5/3)$ is feasible, hence $x^5=y^4$ and $W_5=\{2\}$. Finally, $y^5=x^5$ and $\mu_2^5=2/3>0$, thus x^5 is the global minimum of the original problem.

Exercise 8.1. Solve the problem

$$\begin{cases} \min \ 2x_1^2 + x_2^2 - x_1x_2 - 2x_1 + x_2 \\ -x_1 \le 0 \\ -x_2 \le 0 \\ x_1 + x_2 \le 12 \end{cases}$$

by means of the active-set method starting from the point (0,10).

Consider a constrained optimization problem

$$\begin{cases}
\min f(x) \\
g_i(x) \le 0
\end{cases} \quad \forall i = 1, \dots, m$$
(P)

Define the quadratic penalty function

$$p(x) = \sum_{i=1}^{m} (\max\{0, g_i(x)\})^2$$

and consider the unconstrained penalized problem

$$\begin{cases}
\min f(x) + \frac{1}{\varepsilon}p(x) := p_{\varepsilon}(x) \\
x \in \mathbb{R}^n
\end{cases} (P_{\varepsilon})$$

Note that

$$p_{\varepsilon}(x)$$
 $\begin{cases} = f(x) & \text{if } x \in \Omega \\ > f(x) & \text{if } x \notin \Omega \end{cases}$

Proposition

- If f, g_i are continuously differentiable, then p_{ε} is continuously differentiable and $\nabla p_{\varepsilon}(x) = \nabla f(x) + \frac{2}{\varepsilon} \sum_{i=1}^{m} \max\{0, g_i(x)\} \nabla g_i(x)$
- ▶ If f and g_i are convex, then p_{ε} is convex
- ▶ Any (P_{ε}) is a relaxation of (P), i.e., $v(P_{\varepsilon}) \leq v(P)$ for any $\varepsilon > 0$
- ▶ If $0 < \varepsilon_1 < \varepsilon_2$, then $v(P_{\varepsilon_2}) \le v(P_{\varepsilon_1})$
- ▶ If x_{ε}^* solves (P_{ε}) and $x_{\varepsilon}^* \in \Omega$, then x_{ε}^* is optimal also for (P)

Proposition

- If f, g_i are continuously differentiable, then p_{ε} is continuously differentiable and $\nabla p_{\varepsilon}(x) = \nabla f(x) + \frac{2}{\varepsilon} \sum_{i=1}^{m} \max\{0, g_i(x)\} \nabla g_i(x)$
- ▶ If f and g_i are convex, then p_{ε} is convex
- ▶ Any (P_{ε}) is a relaxation of (P), i.e., $v(P_{\varepsilon}) \leq v(P)$ for any $\varepsilon > 0$
- ▶ If $0 < \varepsilon_1 < \varepsilon_2$, then $v(P_{\varepsilon_2}) \le v(P_{\varepsilon_1})$
- ▶ If x_{ε}^* solves (P_{ε}) and $x_{\varepsilon}^* \in \Omega$, then x_{ε}^* is optimal also for (P)

Penalty method

- **0.** Set $\varepsilon_0 > 0$, $\tau \in (0,1)$, k = 0
- **1.** Find an optimal solution x^k of the penalized problem (P_{ε_k})
- 2. If $x^k \in \Omega$ then STOP else $\varepsilon_{k+1} = \tau \varepsilon_k$, k = k+1 and go to step 1.

Theorem

- ▶ If f is coercive, then the sequence $\{x^k\}$ is bounded and any of its cluster points is an optimal solution of (P).
- ▶ If $\{x^k\}$ converges to x^* , then x^* is an optimal solution of (P).
- ▶ If $\{x^k\}$ converges to x^* and the gradients of active constraints at x^* are linear independent, then x^* is an optimal solution of (P) and the sequence of vectors $\{\lambda^k\}$ defined as

$$\lambda_i^k := \frac{2}{\varepsilon_k} \max\{0, g_i(x^k)\}, \qquad i = 1, \dots, m$$

converges to a vector λ^* of KKT multipliers associated to x^* .

Exercise 8.2.

a) Implement in MATLAB the penalty method for solving the problem

$$\begin{cases} \min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ A x \le b \end{cases}$$

where Q is a positive definite matrix.

b) Run the penalty method with $\tau=0.5$ and $\varepsilon_0=5$ for solving the problem

$$\begin{cases} \min \frac{1}{2}(x_1 - 3)^2 + (x_2 - 2)^2 \\ -2x_1 + x_2 \le 0 \\ x_1 + x_2 \le 4 \\ -x_2 \le 0 \end{cases}$$

[Use $max(Ax - b) < 10^{-3}$ as stopping criterion.]

. ,

Exact penalty method

Consider a convex constrained problem

$$\begin{cases}
\min f(x) \\
g_i(x) \le 0
\end{cases} \quad \forall i = 1, \dots, m$$
(P)

and define the linear penalty function

$$\widetilde{p}(x) = \sum_{i=1}^{m} \max\{0, g_i(x)\}.$$

Then the penalized problem

$$\begin{cases} \min f(x) + \frac{1}{\varepsilon} \widetilde{p}(x) \\ x \in \mathbb{R}^n \end{cases} (\widetilde{P}_{\varepsilon})$$

is unconstrained, convex and nonsmooth.

However, we do not need a sequence $\varepsilon_k \to 0$ to approximate an optimal solution of (P) (\to avoid numerical issues).

Exact penalty method

Proposition

Suppose that there exists an optimal solution x^* of (P) and λ^* is a KKT multipliers vector associated to x^* . Then, the sets of optimal solutions of (P) and $(\widetilde{P}_{\varepsilon})$ coincide provided that $\varepsilon \in (0,1/\|\lambda^*\|_{\infty})$.

Exact penalty method

- **0.** Set $\varepsilon_0 > 0$, $\tau \in (0,1)$, k = 0
- **1.** Find an optimal solution x^k of the penalized problem (P_{ε_k})
- 2. If $x^k \in \Omega$ then STOP else $\varepsilon_{k+1} = \tau \varepsilon_k$, k = k+1 and go to step 1.

Theorem

The exact penalty method stops after a finite number of iterations at an optimal solution of (P).

Barrier methods

Consider

$$\begin{cases} \min f(x) \\ g(x) \le 0 \end{cases}$$

where

- $ightharpoonup f, g_i$ convex and twice continuously differentiable
- \blacktriangleright there is no isolated point in Ω
- ▶ there exists an optimal solution (e.g. f coercive or Ω bounded)
- ▶ Slater constraint qualification holds: there exists \bar{x} such that

$$\bar{x} \in \text{dom}(f), \qquad g_i(\bar{x}) < 0, \ \forall \ i = 1, \dots, m$$

Hence strong duality holds.

Special cases: linear programming, convex quadratic programming

Unconstrained reformulation

The constrained problem

$$\begin{cases} \min f(x) \\ g(x) \le 0 \end{cases}$$

is equivalent to the unconstrained problem

$$\begin{cases} \min f(x) + \sum_{i=1}^{m} I_{-}(g_{i}(x)) \\ x \in \mathbb{R}^{n} \end{cases}$$

where

$$I_{-}(u) = \begin{cases} 0 & \text{if } u \le 0 \\ +\infty & \text{if } u > 0 \end{cases}$$

is called the indicator function of \mathbb{R}_{-} , that is neither finite nor differentiable.

Logarithmic barrier

The indicator function I_{-} can be approximated by the smooth convex function

$$u \mapsto -\varepsilon \log(-u)$$
, with $\varepsilon > 0$,

and the approximation improves as $\varepsilon \to 0$.

Hence, we can approximate the problem

$$\begin{cases} \min f(x) + \sum_{i=1}^{m} I_{-}(g_{i}(x)) \\ x \in \mathbb{R}^{n} \end{cases}$$

with

$$\begin{cases} \min f(x) - \varepsilon \sum_{i=1}^{m} log(-g_i(x)) \\ x \in int(\Omega) \end{cases}$$

Remark. I_{-} can also be approximated by the smooth convex function

$$u\mapsto -\frac{\varepsilon}{u}, \qquad \text{where } u<0.$$

Another barrier method is based on this approximation.

Logarithmic barrier

$$B(x) = -\sum_{i=1}^{m} log(-g_i(x))$$

is called logarithmic barrier function. It has the following properties:

- ▶ $dom(B) = int(\Omega)$
- B is convex
- B is smooth with

$$\nabla B(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)} \nabla g_i(x)$$

$$\nabla^{2}B(x) = \sum_{i=1}^{m} \frac{1}{g_{i}(x)^{2}} \nabla g_{i}(x) \nabla g_{i}(x)^{\mathsf{T}} + \sum_{i=1}^{m} \frac{1}{-g_{i}(x)} \nabla^{2}g_{i}(x)$$

Logarithmic barrier

If x_{ε}^* is the optimal solution of

$$\begin{cases} \min f(x) - \varepsilon \sum_{i=1}^{m} log(-g_i(x)) \\ x \in int(\Omega) \end{cases}$$

then

$$\nabla f(x_{\varepsilon}^*) + \sum_{i=1}^m \frac{\varepsilon}{-g_i(x_{\varepsilon}^*)} \nabla g_i(x_{\varepsilon}^*) = 0.$$

Define $\lambda_{\varepsilon}^* = \left(\frac{\varepsilon}{-g_1(x_{\varepsilon}^*)}, \dots, \frac{\varepsilon}{-g_m(x_{\varepsilon}^*)}\right) > 0$. Then the Lagrangian function

$$L(x, \lambda_{\varepsilon}^*) = f(x) + \sum_{i=1}^{m} (\lambda_{\varepsilon}^*)_i g_i(x)$$

is convex and $\nabla_x L(x_{\varepsilon}^*, \lambda_{\varepsilon}^*) = 0$, hence

$$f(x_{\varepsilon}^*) \geq v(P) \geq \varphi(\lambda_{\varepsilon}^*) = \min_{x} L(x, \lambda_{\varepsilon}^*) = L(x_{\varepsilon}^*, \lambda_{\varepsilon}^*) = f(x_{\varepsilon}^*) - \underbrace{\mathfrak{m}\varepsilon}_{\text{optimality gap}}$$

Interpretation via KKT conditions

The KKT system of the original problem is

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) = 0 \\ -\lambda_i g_i(x) = 0 \\ \lambda \ge 0 \\ g(x) \le 0 \end{cases}$$

Notice that $(x_{\varepsilon}^*, \lambda_{\varepsilon}^*)$ solves the system

$$\begin{cases} \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) = 0 \\ -\lambda_i g_i(x) = \varepsilon \\ \lambda \ge 0 \\ g(x) \le 0 \end{cases}$$

which is an approximation of the above KKT system.

Logarithmic barrier method

Logarithmic barrier method

- **0.** Set tolerance $\delta > 0$, $\tau < 1$ and $\varepsilon_1 > 0$. Choose $x^0 \in \text{int}(\Omega)$, set k = 1
- 1. Find the optimal solution x^k of

$$\begin{cases} \min f(x) - \varepsilon_k \sum_{i=1}^m \log(-g_i(x)) \\ x \in \operatorname{int}(\Omega) \end{cases}$$

using x^{k-1} as starting point

2. If $m \varepsilon_k < \delta$ then STOP else $\varepsilon_{k+1} = \tau \varepsilon_k$, k = k+1 and go to step 1

Choice of au involves a trade-off: small au means fewer outer iterations, more inner iterations

Choice of starting point

How to find $x^0 \in int(\Omega)$?

Consider the auxiliary problem

$$\left\{ \begin{array}{l} \min \ s \\ x,s \\ g_i(x) \leq s \end{array} \right.$$

- ▶ Take any $\tilde{x} \in \mathbb{R}^n$, find $\tilde{s} > \max_{i=1,...,m} g_i(\tilde{x})$ [(\tilde{x}, \tilde{s}) is in the interior of the feasible region of the auxiliary problem]
- ▶ Find an optimal solution (x^*, s^*) of the auxiliary problem using a barrier method starting from (\tilde{x}, \tilde{s})
- If $s^* < 0$ then $x^* \in \operatorname{int}(\Omega)$ else $\operatorname{int}(\Omega) = \emptyset$

Logarithmic barrier method

Exercise 8.3.

a) Implement in MATLAB the logarithmic barrier method for solving the problem

$$\begin{cases} \min \frac{1}{2} x^{\mathsf{T}} Q x + c^{\mathsf{T}} x \\ A x \le b \end{cases}$$

where Q is a positive definite matrix.

b) Run the logarithmic barrier method with $\delta=10^{-3}$, $\tau=0.5$, $\varepsilon_1=1$ and ϵ^{25} $\epsilon^0=(1,1)$ for solving the problem

$$\begin{cases} \min \frac{1}{2}(x_1 - 3)^2 + (x_2 - 2)^2 \\ -2x_1 + x_2 \le 0 \\ x_1 + x_2 \le 4 \\ -x_2 \le 0 \end{cases}$$

