UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA INFORMATIKY

Martin Rotter (rotter.martinos@gmail.com) Jiří Zehnula (jiri.zehnula01@upol.cz) Radek Janoštík (radek.janostik01@upol.cz)

KMI/FJAA – Formální jazyky a automaty

Abstrakt

Tento dokument je pouze přepisem zápisků a poznámek z přednášek předmětu KMI/FJAA. Přednášel doc. Vilém Vychodil Ph.D.. Do tohoto dokumentu přispěli opravami i další lidé, jmenovitě A. Baron

Obsah

1.	Historie	1
2.	Kódová analýza	1
	2.1. Lexikální analýza	1
	2.2. Syntaktická analýza	1
3.	Základní pojmy	1
4.	Operace s řetězci	2
5.	Formální jazyk	4
6.	Lexikografické uspořádání	4
7.	Operace nad jazyky	5
	7.1. Množinové	5
	7.2. Ostatní	5
8.	Gramatiky	5
	8.1. Přepisovací generovací pravidla	5
	8.1.1. Vlastnosti pravidel	6
	8.1.2. Příklady pravidel	6
	8.1.3. Přímé odvozování řetězců pomocí pravidel	6
	8.2. Formální gramatiky	7
	8.3. Hierarchie gramatik	8
	8.4. Gramatika nezkracující	10
	8.5. Základní vlastnosti bezkontextových gramatik	10
	8.6. Jazyky bez gramatického základu	13
9.	Determinismus versus nedeterminismus	1 4
10	.Konečné deterministické automaty	1 4
	10.1. Reprezentace KDA	15
	10.1.1. Reprezentace přechodovou tabulkou	15
	10.1.2. Reprezentace přechodovým diagramem	15
	10.2. Konfigurace a výpočet KDA	16
	10.3. Rozšířená přechodová funkce pro KDA	18
	$10.4.\mathrm{KDA}$ s neúplnou přechodovou funkcí	19
	10.5. Implementace KDA	19

11.Konečné nedeterministické automaty	2 0
11.1. Reprezentace KNA	21
11.2. Nedeterministický výpočet	21
11.3. Rozšířená přechodová funkce	22
11.4. Řetězce přijímané KNA	22
11.5. Determinizace KNA	23
11.6. Algoritmus pro převod KNA na KDA	24
12.Vztah regulárních jazyků a konečných automatů	25
12.1. Regulární jazyky jsou rozpoznatelné KDA (implikace zleva) $\ \ldots \ \ldots \ \ldots \ \ldots$	25
12.2. Jazyky rozpoznatelné KDA jsou regulární (implikace zprava) $\ \ldots \ \ldots \ \ldots$	27
12.3. Regulární gramatiky	28
13. Nedeterministický konečný automat s $arepsilon$ -přechody	30
13.1. Reprezentace εKNA	30
13.2. Nedeterministický výpočet	31
13.3. ε -uzávěry množin stavů	31
13.3.1. Tvorba ε -uzávěru	31
13.4. Rozšířená přechodová funkce	32
13.5. Přijímaný řetězec $\varepsilon \mathrm{KNA}$	32
13.6. Ekvivalence s KDA	32
14. Algoritmus na převod ε KNA na KDA	33
15.Regulární výrazy	34
16.Jazyky generované regulárními výrazy	34
17.Uzávěrové vlastnosti regulárních jazyků	35
17.1. Základní uzávěrové vlastnosti	35
17.2. Další uzávěrové vlastnosti	38
17.3. Pumping lemma	39
18.Minimalizace KDA	40
18.1. Zprava invariantní ekvivalence	40
18.2. Faktorizace automatu	40
18.3. Algoritmus pro hledání redukovaného automatu	42
19.Izomorfismus automatů	44
20.Bezkontextové gramatiky	44
20.1. Derivační stromy	47
20.2. Jednoznačné a nejednoznačné bezkontextové gramatiky	49
20.2. Jednoznacne a nejednoznacne bezkontextove gramatiky	
20.2. Jednoznacne a nejednoznacne bezkontextové gramatiky	49

21. Nedeterministický zásobníkový automat	
21.1. Reprezentace NZA	52
21.1.1. Přechodová tabulka	52
21.1.2. Přechodový diagram	52
21.2. Jazyky rozpoznávané NZA	53
$21.3. \mathrm{Rozpozn}$ ání jazyk způsobem přechodu od koncových stavů k vyprázdnění zásobníku	53
21.4. Rozpoznání jazyk způsobem přechodu od vyprázdnění zásobníku k přijímání koncovými stavy	54
21.5. Automaty pracující s celým zásobníkem	54
21.6. Poznámky o vlastnostech NZA	55
21.7. Od gramatik k automatům	55
21.8. Od automatů ke gramatikám	58
22. Deterministické zásobníkové automaty	59

Seznam obrázků

1.	Grafické znázornění komutativity zřetězení řetězců
2.	Vychodilovo "vajíčko."
3.	Názorný příklad KDA
4.	Přechodový diagram pro KDA
5.	Náčrt zásobníkového automatu
6.	Vkládání hodnot na zásobník u NZA
7.	Vychodilovo "vajíčko 2."

Seznam tabulek

1.	Přechodová tabulka pro KDA	16
2.	Přechodová tabulka s množinami stavů	21
3.	Přechodová tabulka pro 29. přiklad	31
4.	Tabulkový popis rozkladů stavů	44
5.	Ukázka přechodové tabulky pro NZA	52

3. ZÁKLADNÍ POJMY 1

1. Historie

Počátek úvah, jež byly později základem seriozního zkoumání formálních jazyků potažmo automatů se datuje do 30. let 20. století. Průkopníkem této oblasti byl Noam Chomsky ¹.

Důsledná (až antropologická) úvaha nad tvarem jazyků (opravdu nemáme na mysli vepřovy jazyk) je základním kamenem k efektivní a přívětivé implementaci překladačů, rozhodovacích systémů nebo programovacích jazyků obecně. Je proto nanejvýš vhodné proniknout do tajů vytváření jazyků (generativní formalismus) a jejich rozpoznávání a analýzy (analytický formalismus).

Jako příklad selhání autora programovacího jazyka si uveďme jazyk Fortran, jehož konstrukce byla po syntaktické stránce špatná, což vedlo ke gramatické ne jednoznačnosti tohoto jazyka.

2. Kódová analýza

Analýza kódu je elementárním stavebním kamenem analýzy jazyka, jenž je tímto kódem reprezentován, protože existuje (ne nutně silná) spojitost mezi syntaktickou "krásou" kódu a následnou kvalitou (případně sémantikou) daného jazyka atp.

2.1. Lexikální analýza

V této analýze hraje prim dělení vstupního kódu na tokeny², jež se zapisují ve stylu:

```
( znak, identifikátor )
```

Příkladem je tedy i token (=, assignment), případně další tokeny.

2.2. Syntaktická analýza

Syntaktická analýza vytváří stromovou závislost jednotlivých tokenů, jejíž reprezentace se nazývá derivační strom. V rámci této analýzy rozlišme:

- 1. Teorii jazyků, jež se zabývá stavbou jazyka (respektive jeho syntaxí) a poskytuje tzv. *generativní aparát*. Gramatika říká, v jakém tvaru může být zapsán validní program, tedy definuje všechna slova³, která jsou obsažena v daném jazyce.
- 2. Teorii automatů, jež poskytuje tzv. *analytický aparát*. Automatem se rozumí v podstatě jednoduchý algoritmus, který rozhoduje zdané dané vstupní slovo patří či nepatří do nějakého určitého jazyka.

3. Základní pojmy

Symbol (případně znak) - jedná se o syntaktický pojem (význam tedy nehraje roli), který představuje jméno (analogicky k písmenu z přirozeného jazyka). Mezi symboly počítejme například 0, +, Š, while. Symbol může mít jakoukoliv zástupnou grafickou reprezentaci.

 $^{^1\}mathrm{Jm\acute{e}no}$ této osoby čti $[\check{c}omski]$ a zapamatuj si ke státnicím, že Chomsky byl $nebezpe\check{c}n\acute{y}$ levicový intelektuál.

 $^{^2}$ Překládej jako část, díl nebo také fráze.

³Pojem *slovo* je v tomto kontextu poněkud zavádějící. V některé z následujících kapitol bude zaveden přesnější termín na vystihnutí prvku jazyka

- 2
- Abeceda abecedou rozumíme množinu (například množinu X) všech přípustných symbolů (znaků), přičemž taková množina je neprázdná (tedy |x|>0) a konečná. Konečnost množiny je omezení dané reprezentovatelností množiny v rámci počítačové techniky. Abecedy značíme řeckými písmeny. Například $\Sigma, \Sigma', \Gamma, \ldots, \Omega$. Například $\Sigma = \{a, b, c\}$, tedy "abeceda Σ obsahuje symboly a, b, c."
- \check{R} etězec jedná se o konečnou posloupnost symbolů (znaků) vybraných z nějaké dané abecedy. Například n-tice $\langle a_1, a_2, \dots, a_n \rangle \in \Sigma$ je řetězecem.

Formálně definujme řetězec jakožto zobrazení ve tvaru:

$$x:\{1,2,3,4,\ldots,n\}\to\Sigma$$

kde

$$1 \rightarrow a, 2 \rightarrow b, 3 \rightarrow c$$

Vidíme, že se jedná o zobrazení z přirozených čísel do symbolů z nějaké abecedy, v tomto případě do abecedy Σ . Délku řetězce označme |x|.

• $Pr\'{a}zdn\'{y}$ řetězec - jedná se o řetězec, pro který platí, že |x|=0 a značíme jej ε , přičemž platí, že:

$$\varepsilon \subset \emptyset \to \Sigma$$

Prázdný řetězec neobsahuje byť jeden symbol, tedy $\varepsilon \notin \Sigma$. Jedná se o jakýsi imaginární prvek, jehož role je však klíčové, jak se dozvíme později.

Věta 1: Nad k-prvkovou abecedou je právě k^n řetězců délky n.

Poznámka 1: Předchozí věta je relativně intuitivní, protože pokud máme k-prvkovou abecedu a tvoříme z ní řetězec, pak na každé místo v tomto řetězci můžeme vybrat právě jeden z k symbolů abecedy. Avšak takto volit bude hned n-krát, protože konstruujeme řetězec délky n. Tato úvaha vede na kombinatorický problém počtu variací s opakováním, který se dá spočíst dle notoricky známeho vzorce $V(n,k) = k^n$.

Uveďme si značení pro dva důležité pojmy:

- Σ^* označuje množinu všech řetězců nad abecedou Σ .
- Σ^+ označuje množinu všech řetězců nad abecedou Σ vyjma ε .

4. Operace s řetězci

• Zřetězení (konkatenace) - jde v podstatě o spojení⁴ dvou řetězců v daném pořadí do jednoho řetězce.

Příklad 1: Mějme dva řetězce $a=a_1\ldots a_n,\ b=b_1\ldots b_m,$ pak jejich zřetězení má tvar:

$$a_1 \dots a_n b_1 \dots b_m$$

Identifikátorem
5 operace zřetězení je o, například $x\circ y$ je zřetězením řetězců x
a y. Formálně takto:

$$\begin{aligned} x: \{1, \dots, n\} &\to \Sigma \\ y: \{1, \dots, m\} &\to \Sigma \\ x \circ y: \{1, \dots, n+m\} &\to \Sigma \end{aligned}$$

 $^{^4\}mathrm{Pro}$ milovníky jazyka Scheme můžeme tuto operaci přirovnat k proceduře append

 $^{^5}$ Identifikátor zřetězení se velmi často v zápisech zřetězení vynechává. Je to analogická situace k násobení výrazů.

3

Algebraicky je tatáž operace zapsána jako $\langle \Sigma^*, \circ, \varepsilon \rangle$.

- *Rovnost řetězců* pro prohlášení dvou řetězců za sobě rovné v žádaném smyslu je třeba splnit obecně dvě následující podmínky:
 - 1. Oba řetězce mají stejnou délku, tedy |x| = |y|.
 - 2. Bude-li délka označena jako n, pak musí platit, že $\forall i | i \in \{1, \dots, n\}, x(i) = y(i)$. Tedy každé dva k sobě náležící symboly z daných řetězců jsou si rovny.

Uvažujeme-li rovnost řetězců, pak je záhodno uvažovat:

- Prefix řetězce značme jej $Pfx(x) = \{y | \exists z \text{ tak, } \text{že } yz = x\}.$
- Infix řetězce značme jej $Ifx(x) = \{y | \exists z_1, z_2 \text{ tak, že } z_1yz_2 = x\}.$
- Sufix řetězce značme jej $Sfx(x) = \{y | \exists z \text{ tak, } \text{že } zy = x\}.$

Věta 2: Nechť platí:

$$xy = xz \implies y = z$$

 $yx = zx \implies y = z$

Nebo-li pokud máme k dispozici dva řetězece a ty jsou si rovny a navíc mají identický prefix, pak je jasné, že "zadnice" těchto řetězců mají stejnou délku a jsou si také rovny. Algebraicky je operace zapsána jako $\langle \Sigma^*, \cdot, \varepsilon \rangle$.

Věta 3: Vyslovme předpoklad, že platí xy = uv. Pak platí právě jedno z těchto tvrzení:

$$x=u,y=v$$

$$|x|>|u| \text{ a } \exists w|w\neq \varepsilon, \text{ tak \'ze } x=uw \text{ a } v=wy$$

$$|x|<|u| \text{ a } \exists w|w\neq \varepsilon, \text{ tak \'ze } u=xw \text{ a } y=wv$$

• N-tá mocnina řetězce - je popsána následující definicí:

$$x^{n} = \begin{cases} \varepsilon & \text{pro } n = 0\\ x & \text{pro } n = 1\\ xx^{n-1} & \text{pro } x > 1 \end{cases}$$

Mějme na paměti, že operace mocnění má vyšší prioritu než-li operace konkatenace (zřetězení).

Věta 4: Mějme u a $v \in \Sigma^*$, pak platí uv = vu (komutativita) právě tehdy, když $\exists z | z \in \Sigma^*$ a nezáporná celá čísla p, q tak, že $u = z^p$ a $v = z^q$.

Předpokládejme, že pro p, z, q máme $u = z^p, v = z^q$. Pak obecně platí, že:

$$uv = z^p z^q = z^{p+q} = z^q z^p = vu$$

Předpokládejme, že uv = vu. Indukcí přes |uv| předpokládáme, že tvrzení platí pro libovolné dva řetězce, jejichž délka zřetězení je menší než-li |uv|. Mohou nastat tyto případy:

- 1. $|u|=|v|,\ \mathrm{pak}\ u=v,\ \mathrm{pak}\ z=u, p=q=1$
- 2. |u| < |v|

Navíc berme v potaz také následující zápis doplněný obrázkem 1.:

$$uw=v$$

$$wu=v$$

$$uw=wu$$

$$|uw|<|uv|, \text{ tedy } \exists z,p,q \text{ tak, } \text{\'e} u=z^p,w=z^q,v=z^{p+q}$$

Obrázek 1. Grafické znázornění komutativity zřetězení řetězců.

5. Formální jazyk

Zaveďme si pojem formální jazyk nad množinou všech řetězců Σ^* . Označme tento jazyk jako L. Pak platí tato tvrzení:

```
\begin{array}{lll} L &\subseteq& \Sigma^* \mbox{ (každá podmnožina abecedy je jazykem)} \\ L &=& \emptyset \mbox{ (prázdný jazyk)} \\ L &=& \{\varepsilon\} \mbox{ (jazyk s prázdným řetězcem)} \\ &\vdots \end{array}
```

Pozor, obecně platí že prázdný jazyk \neq jazyk s prázdným řetězcem.

Formálním jazykem obecně myslíme nějakou množinu *řetězců*, které navíc většinou mají určitou společnou vlastnost, jak uvidíme později.

6. Lexikografické uspořádání

Předpokládejme uspořádání na množině všech řetězců Σ^* . Nazvěme toto uspořádání striktním totálním. Pak toto uspořádání například pro $\Sigma = \{a_1, \ldots, a_n\}$ je $a_1 < a_2 < a_3 < \ldots < a_n$. Totální striktní uspořádání označme $<_l$.

Položme $x <_l y$ pro $x, y \in \Sigma^*$. To ale platí pokud platí alespoň jedno z následujících dvou tvrzení:

- 1. |x| < |y|
- 2. |x| = |y| a $\exists i$ tak, že x(i) < y(i) a zároveň x(j) = y(j) pro $\forall j | j < i$

Příklad 2: $\Sigma = \{0,1\}$. Triviálně tedy máme 0 < 1. Následně striktně $\varepsilon <_l 0 <_l 1 <_l 00 <_l 01 <_l 10 <_l 11$.

Věta 5: Striktní totální uspořádání je asymetrické a tranzitivní. A pro $x \neq y$ platí buď $x <_l y$ nebo $y <_l x$.

Důsledek 1: Důsledkem věty 5 je tvrzení, že množina Σ^* je spočetně nekonečná. Dodejme, že jazyk je (obvykle) spočetná množina.

7. Operace nad jazyky

7.1. Množinové

Množinové operace nad jazyky jsou prakticky totožné operacím na kterýchkoliv jiných množinách. Můžeme tedy použít množinový průnik, sjednocení, komplement (doplněk) nebo rozdíl.

7.2. Ostatní

• Zřetězení (produkt) množin. Vyjádřeme produkt takto:

$$L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Produkt množin není obecně komutativní, ale je asociativní, přičemž prázdná množina tuto operaci anihiluje. Uveďme si rovněž monoid $\langle 2^{\Sigma^*}, \circ, \{\varepsilon\} \rangle$.

• Mocnina jazyka. Mocninu vyjádříme takto:

$$L^n = \left\{ \begin{array}{ll} \{\varepsilon\} & \text{pro } n = 0 \\ LL^{n-1} & \text{pro } n \geq 1 \end{array} \right.$$

• Kleeneho⁶ uzávěr neboli iterace. Tento uzávěr vyjádříme takto:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

• Pozitivní uzávěr neboli pozitivní iterace. Tento uzávěr vyjádříme takto:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Všimněte si podobností mezi těmito dvěma uzávěry. Pozitivní uzávěr vynechává prázdný řetězec.

8. Gramatiky

Jak víme, tak jazyky mohou být *nekonečné* ve smyslu, že obsahují nekonečný počet slov. Nabízí se tedy otázka, jak tyto jazyky rozumně popsat, jak je reprezentovat resp. jak vytvořit *konečnou* sadu pravidel, jejichž aplikace by vedla k opětovné generaci původního jazyka.

8.1. Přepisovací generovací pravidla

Pravidlem rozumíme zpravidla každou dvojici:

$$\langle x, y \rangle \in \Sigma^* \times \Sigma^*$$

Pak neformálně tvrdíme, že x se přepisuje na y. Nutno dodat, že předchozí zápis lze zapsat i například takto.

 $x \to y,$ kde symbol $\to \not \in \Sigma$ můžeme prohlásit za tzv. metasymbol.

⁶Stephen Cole Kleene je známý matematik, jenž se významně podílel na položení základů teoretických počítačových věd.

8.1.1. Vlastnosti pravidel

• Nezkracující pravidlo je pravidlo, o kterém platí, že $|x| \le |y|$. Tedy aplikaci tohoto pravidla na vstupní řetězec určitě nevznikne řetězec kratší, než-li jeho předloha.

• ε - pravidlo je pravidlo tvaru $x \to \varepsilon$.

8.1.2. Příklady pravidel

Příklad 3: Mějme zadání abecedy $\Sigma = \{a, b, c\}$. Pravidla s využitím této abecedy by mohla být například tato.

$$\begin{array}{ccc} aa & \rightarrow & bc \\ bb & \rightarrow & abba \\ c & \rightarrow & \varepsilon \end{array}$$

Příklad 4: Mějme další zadání abecedy $\Sigma = \{expr, +, \times\}$. Pravidla s využitím této abecedy by mohla být například takto.

$$egin{array}{ll} expr &
ightarrow & expr + expr \ expr &
ightarrow & expr imes expr \end{array}$$

8.1.3. Přímé odvozování řetězců pomocí pravidel

Uvažujme odvozovací pravidlo $x \to y$ nad abecedou Σ , pak řekneme, že řetězec v je přímo odvozen z řetězec u pomocí pravidla $x \to y$, pokud $\exists p, q \in \Sigma^*$ tak, že

$$u = pxq$$
$$v = pyq$$

Značení předchozí operace je následující:

$$u \Rightarrow_{x \to y} v$$

Slovně bychom tento zápis vystihli jako "přímý přepis dle pravidla $x \to y$."

Řetězec v vznikne přímým přepisem z u pomocí pravidel $P \subseteq \Sigma^* \times \Sigma^*$, pokud $\exists \pi \in P$ tak, že $u \Rightarrow_{\pi} v$.

Značme $u \Rightarrow_P v$. P je množinou užitých pravidel. P i \Rightarrow_p jsou binární relace na Σ^* a $P \subseteq \Rightarrow_p$, tedy "P je podmnožinou šipky p." Platí, že $x \to y \in P$ a $x \Rightarrow_{x \to y} y$. Můžeme tedy poněkud nadneseně říci, že množina pravidel P obsahuje jen podmnožinu všech možných pravidel, který je možno sestrojit nad danými terminálními a neterminálními symboly (o těch se dozvíme více informaci později).

Příklad 5: Mějme abecedu $\Sigma = \{a, b, c\}$ a soubor pravidel $P = \{aa \to bc, a \to cab, bb \to \varepsilon\}$. Pak by odvození v jednom kroku mohla vypadat například takto:

$$baaa \rightarrow bbca$$

 $bac \rightarrow bcabc$

Definice 1: Definujme pojem *derivace*. Jedná se o posloupnost řetězců ve tvaru:

$$x_0, \ldots, x_k$$
, kde $k \ge 0$ a kde $\{x_0, \ldots, x_k\} \in \Sigma^*$

se nazývá *P-derivace délky k*, pokud $x_{i-1} \Rightarrow_p x_i, \forall 1 \leq i \leq k$. Symbolicky totéž $x_0 \Rightarrow_p x_1 \Rightarrow_p \dots \Rightarrow_p x_k$. Počet odvození tedy značí *délku* derivace.

Pokud pro $u, v \in \Sigma^* \quad \exists$ P-derivace $u = x_0 \dots x_k = v$, pak říkáme, že v je odvozeno z u pomocí pravidel z P, což značíme například $u \Rightarrow_P^* v$, tímto je pochopitelně myšleno odvození ve více krocích. Platí, že $P \subseteq \Rightarrow_P \subseteq \Rightarrow_P^+$.

Příklad 6: Mějme abecedu $\Sigma = \{a, \dots, z\}$ a pravidla stejná jako v příkladu 5. Nyní odvozujeme například takto:

 $b\underline{aa}a, \underline{bb}ca, \underline{ca}, \underline{ccab}$

8.2. Formální gramatiky

Mějme následující entity:

- \bullet Σ abeceda terminálních symbolů (tyto symboly tvoří řetězce daného jazyka).
- N abeceda neterminálních symbolů (tyto symboly se užívají k řízení průběhu odvozování).

Dodejme, že obě množiny by měly být neprázdné a konečné.

Definice 2: Odvozovací pravidlo $x \to y$ se nazývá generativní, pokud x obsahuje alespoň jeden neterminální symbol.

Definice 3: Mějme strukturu $G = \langle N, \Sigma, P, S \rangle$, kde N je abecedou neterminálních symbolů, Σ je abecedou terminálních symbolů, P je množinou odvozovacích pravidel a $S \in N$ je tzv. počátečním resp. startovním neterminálem. Pak tuto čtveřici nazveme gramatikou.

Poznámka 2: Pokud chceme vyjádřit, že z jednoho symbolu odvozujeme několik možných alternativ, tak to zapíšeme místo klasického dlouhé zápisu $y \to x_1, y \to x_2, \ldots$ pomocí zkrácené notace např. $y \to x_1 |x_2| \ldots$

Příklad 7: Gramatika může vypadat třeba takto:

$$\begin{array}{lcl} N & = & \{\varepsilon, S, D, I\} \\ \Sigma & = & \{0, \dots, 9, +, -\} \\ P & = & \{S \rightarrow -I| + I|I, I \rightarrow DI|D, D \rightarrow 0|1|\dots|9\} \\ G & = & \langle N, \Sigma, P, S \rangle \end{array}$$

Příklad 8: Nebo takto:

$$\begin{array}{lcl} N & = & \{S,X,Y\} \\ \Sigma & = & \{a,b,c\} \\ P & = & \{S \rightarrow XcYcX,X \rightarrow aX,X \rightarrow bX,X \rightarrow cX,X \rightarrow \varepsilon,Y \rightarrow abY,Y \rightarrow ab\} \\ G & = & \langle N,\Sigma,P,S \rangle \end{array}$$

Definice 4: Každý řetězec $x \in (N \cup \Sigma)^*$, pro který platí $S \to^* x$, je *větná forma* gramatiky $G = \langle N, \Sigma, P, S \rangle$. Větná forma se nazývá *větou*, pokud $x \in \Sigma^*$.

Definice 5: Jazyk generovaný gramatikou definujme jako:

$$L(G) = \{x \in \Sigma^* | S \Rightarrow_C^* x\}$$

Vidíme tedy, že takový jazyk obsahuje $v \check{e} t y$, které lze odvodit ze startovacího neterminálu pomocí pravidel této gramatiky.

Příklad 9: Tento příklad čerpá gramatiku z příkladu 8.

 $\begin{array}{lll} S & \Rightarrow_G^* & abbccYcX \\ S & \Rightarrow_G^* & Xcababababc \\ S & \Rightarrow_G^* & cYcbaX \\ S & \Rightarrow_G^* & abbccabca \\ S & \Rightarrow_G^* & cabababc \end{array}$

Definice 6: Gramatiky G_1 a G_2 jsou *ekvivalentní*, pokud generují stejný jazyk.

8.3. Hierarchie gramatik

- Gramatiky typu 0 jedná se o gramatiky bez omezení.
- Gramatiky typu 1 jedná se o tzv. kontextové nebo kontextově závislé gramatiky. Ty splňují následující omezení na tvar pravidel. Pro každé pravidlo gramatik tohoto typu platí, že:
 - 1. Buď je (pravidlo) ve tvaru $pAq \to pxq$, kde $p, q \in (\Sigma \cup N)^*, A \in N, x \in (\Sigma \cup N)^+$, kde p a q se nazývají levým resp. pravým kontextem.
 - 2. Nebo je (pravidlo) ve tvaru $S \to \varepsilon$, kde S je startovní terminál gramatiky, ale pouze za předpokladu, že S se nevyskytuje na pravé straně žádného pravidla.

Zároveň platí pro každé pravidlo (s výjimkou pravidla $S \to \varepsilon$), že délka odvozeného řetězce je minimálně stejně velká jako délka vstupního řetězce. Gramatika tedy zároveň obsahuje pouze tzv. nezkracující pravidla.

• Gramatiky typu 2 – jedná se o tzv. bezkontextové gramatiky, jenž obsahují pravidla ve tvaru:

$$A \to x$$
, kde $A \in N, x \in (\Sigma \cup N)^+$

Na levých stranách pravidel tedy očekáváme pouze neterminální symbol a na pravé straně očekáváme minimálně jeden symbol (s výjimkou ε -pravidla).

Očividně platí, že je-li gramatika bezkontextová, pak je i kontextová, nebo $p=\varepsilon, q=\varepsilon$ jsou také kontexty, byť jsou "prázdné".

Příklad 10: Mějme tuto gramatiku:

$$\begin{array}{rcl} G &=& \langle N, \Sigma, P, S \rangle \\ N &=& \{A, S\} \\ \Sigma &=& \{0, 1\} \\ P &=& \{S \rightarrow 0A, A \rightarrow \varepsilon\} \end{array}$$

- Gramatiky typu 3 jedná se o tzv. regulární resp. pravolineární gramatiky, které obsahují pravidla ve třech následujících tvarech:
 - 1. $A \to bB$, kde $A, B \in N, b \in \Sigma$
 - $2. A \rightarrow a$
 - 3. $S \to \varepsilon$ (přičemž platí stejné podmínky, jako u gramatik typu 1)

Věta 6: Každý konečný jazyk je regulární.

Důkaz 1: Mějme jazyk $L = \{x_1, \dots, x_n\}$. Abychom tento jazyk prohlásili za regulární, tak je třeba najít regulární gramatiku, která tento jazyk generuje.

Mějme tedy nějaké dané Σ a Sa zvolme N. Následně platí $\forall x_i \in L$ je dvojího typu:

- 1. $x_i = \varepsilon$ a následně $S \to \varepsilon$
- 2. $x_i = a_1 \dots a_k$ a následně $S \to a_{i1}A', A' \to a_{i2}A'', \dots, A^k \to a_{ik}$

Obrázek 2. Vychodilovo "vajíčko."

Příklad 11:

$$\begin{array}{rcl} N & = & \{S\} \\ \Sigma & = & \{a,b\} \\ P & = & \{S \rightarrow aSb|\varepsilon\} \\ L(G) & = & \{a^nb^n| \quad n \geq 0\} \end{array}$$

Máme tedy bezkontextový jazyk.

Příklad 12:

$$\begin{array}{lll} N & = & \{S\} \\ \Sigma & = & \{a,b\} \\ P & = & \{S \rightarrow SS|aSb|bSa|\varepsilon\} \end{array}$$

L(G) je $\mathit{bezkontextov}\acute{y}$ jazyk.

Příklad 13:

$$\begin{array}{lcl} N & = & \{S,V\} \\ \Sigma & = & \{p,),(,\Rightarrow,!\} \\ P & = & \{S\rightarrow V|(S\Rightarrow S)|!S,V\Rightarrow pV|p\} \end{array}$$

L(G) je jazyk všech výrokových formulí.

8.4. Gramatika nezkracující

Gramatika G se nazývá nezkracující, pokud má pouze nezkracující pravidla. Avšak navíc může mít tato gramatika pravidlo ve tvaru $S \to \varepsilon$, přičemž S se nesmí nacházet na pravé strané žádného pravidla.

Příklad 14:

$$\begin{array}{lll} N & = & \{S,A,B,C\} \\ \Sigma & = & \{a,b,c\} \\ P & = & \{S \rightarrow \varepsilon | abc | Ac,A \rightarrow aBcb,Bcb \rightarrow bBc,Bcc \rightarrow Ccc,bc \rightarrow Cb,aC \rightarrow aab | aA\} \end{array}$$

Věta 7: Gramatiky typu 1(viz. 8.3.) a 3(viz. 8.3.) jsou nezkracující.

Věta 8: Ke každé gramatice G, existuje ekvivalentní gramatika G', ve které jsou všechna pravidla obsahující terminální symboly ve tvaru $A \to a$, kde $A \in N$, $a \in \Sigma$.

Důkaz 2: Pro každý terminál $a \in \Sigma$, zavedeme pomocný neterminál N_a a pravidlo $N_a \to a$. Všechny výskyty terminálů ve výchozích pravidlech nahradíme příslušnými pomocnými neterminály, tedy:

- $Bcb \rightarrow bBc$ se změní na $BN_cN_b \rightarrow N_bBN_c$
- \bullet Pomocná pravidla jsou následně $N_c \to c$ a $N_b \to b$

Věta 9: Ke každé nezkracující gramatice existuje ekvivalentní gramatika, která je kontextově závislá⁷.

Důkaz 3: Předpokládejme, že $G = \langle N, \Sigma, P, S \rangle$ je nezkracující gramatika. Pak můžeme předpokládat, že všechna pravidla jsou buď ve tvaru $A \to a$ nebo ve tvaru obecně: $A_1 A_2 \cdots A_m \to B_1 B_2 \cdots B_n$, kde $A_1, \ldots, A_m, B_1, \ldots, B_n \in N$ a navíc $m \leq n$.

Taková pravidla lze psát ve tvaru $A_1A_2\cdots A_m\to B_1B_2\cdots B_my$, kde $y=B_{m+1}\cdots B_n$ Budeme uvažovat nové pomocné neterminály $X_1,...,X_m$ ⁸. A zavedeme následující pravidla:

$$A_1A_2\cdots A_m \to X_1A_2\cdots A_m$$

$$X_1A_2\cdots A_m \to X_1X_2A_3\cdots A_m$$

$$\vdots$$

$$X_1X_2\cdots X_{m-1}A_m \to X_1\cdots X_{m-1}X_my$$

$$X_1X_2\cdots X_my \to B_1X_2X_3\cdots X_my$$

$$\vdots$$

$$B_1B_2\cdots B_{m-1}X_my \to B_1B_2\cdots B_{m-1}B_my$$

Tento postup se aplikuje pro všechna pravidla. Hledaná gramatika $G^{'}$ se skládá z Σ, N a navíc všech pomocných neterminálů a odvozovacích pravidel.

8.5. Základní vlastnosti bezkontextových gramatik

Pro bezkontextové gramatiky obecně platí:

 $^{^7}$ Mějme na paměti, že říkáme-li, že je gramatika kontextové zásvislá, tak tím myslíme, že je kontextová. $^8{\rm pro}$ každé pravidlo se uvažují zvlášť

- 1. Levé strany odvozovacích pravidel obsahují jediný neterminál⁹.
- 2. Odvozování nezávisí na kontextu.

Věta 10: Mějme bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$ a nechť navíc existuje $X_1 \cdots X_k, \ldots, z$ P-derivace délky n, kde $X_1, \ldots, X_k \in (N \cup \Sigma)$ a $z \in (N \cup \Sigma)^*$ a potom pro každé $i = 1, \ldots, k$ existuje řetězec $z_i \in (N \cup \Sigma)^*$ a P-derivace X_i, \ldots, z_i délky n_i tak, že $z = z_1 \cdot z_2 \cdots z_k$ a $n = n_1 + n_2 + \cdots + n_k$

Důkaz 4: Větu 10 prokážeme indukcí přes délku výchozí derivace $X_1 \cdots X_k, \dots, z$.

- 1. Pro n=0 je situace triviální, protože $z=X_1\cdots X_k, z_i=X_i, n_i=0$. Každé X_i je derivace délky 0.
- 2. Nechť tvrzení platí pro libovolnou derivaci délky n a dokážeme, že $X_1\cdots X_k$ je P-derivace délky n+1. Jelikož má uvažovaná P-derivace délku n+1, lze ji psát ve tvaru:

$$X_1 \cdots X_k, \dots, y, z$$
délka je n

Máme $y \Rightarrow_G z$. Můžeme aplikovat indukční předpoklad:

Existují řetězce y_1, \ldots, y_k a P-derivace X_1, \ldots, y_1 až X_k, \ldots, y_k délek $n_1 \cdots n_k$ tak, že $y = y_1 y_2 \cdots y_k$ a $n = n_1 + n_2 + \cdots + n_k$.

Z faktu, že $y \Rightarrow_G z$ a z toho, že gramatika je bezkontextová plyne, že y je ve tvaru y = y''y'Aw'w'' pro i = 1, ..., k. Pak z je ve tvaru z = y''y'uw'w'' a $A \rightarrow u \in P$, to jest $X_i, ..., y_i, y'uw'$ je P-derivace délky n_{i+1} . Hledané derivace jsou:

$$X_1, \dots, y_1$$
 \vdots
 X_{i-1}, \dots, y_{i-1}
 $X_i, \dots, y_i y' u w'$
 X_{1+1}, \dots, y_{i+1}
 X_k, \dots, j_k

Příklad 15:

$$\begin{array}{lll} N & = & \{S\} \\ \Sigma & = & \{a,b\} \\ P & = & \{S \rightarrow SS|aSb|bSa|\varepsilon\} \end{array}$$

Posloupnost

SbSaS, SbSa, SbaSba, aSbbaSba, abbaSba

je P-derivací délky 4. Následně hledané P-derivace jsou:

- 1. S, aSb, ab (délka 2)
- 2. b (délka 0)

⁹Toto tvrzení má praktický dopad. Jakmile se v odvozované větě objeví terminální symbol, tak již nemůže zmizet. Nemůže být například odvozen pravidlem, které na levé straně tento termínál obsahuje, protože takové pravidlo neexistuje.

- 3. S, aSb (délka 1)
- 4. a (délka 0)
- 5. S, ε (délka 1)

Poznámka 3: U regulárních a kontextových gramatik jest hned vidět, zda $\varepsilon \in L(G)$.

Pro bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$ zavedeme následující podmnožiny:

$$E_0 = \{A \in N | A \to \varepsilon \in P\}$$

$$E_{i+1} = E_i \cup \{A \in N | A \to x, \text{ kde } x \in E_i^*\}$$

Příklad 16:

$$A \rightarrow \varepsilon$$

$$B \rightarrow \varepsilon$$

$$F \rightarrow ABBA$$

$$G \rightarrow BAF$$

$$E_0 = \{A, B\}$$

$$E_1 = \{A, B, F\}$$

$$E_2 = \{A, B, F, G\}$$

$$E_i \subseteq N, E_N = \bigcup_{i=0}^{\infty} E_i$$

Jelikož je N konečná, musí platit:

$$E_0 \subseteq E_1 \subseteq E_2 \subseteq \cdots \subseteq E_i = E_{i+1} = E_{i+2}$$

 $E_N = E_i$

Věta 11: Pro každou bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$ a pro příslušné E_N platí následující $A \Rightarrow_G^* \varepsilon$ právě když $A \in E_N$. Speciálně $\varepsilon \in L(G)$ právě když $S \in E_N$.

Důkaz 5: Dokazujeme obě implikace:

1. Pokud $A \Rightarrow_G^* \varepsilon$, pak prokážeme indukci přes délku P-derivace, tj. triviální případ je $A \Rightarrow_G \varepsilon$, tj. existuje pravidlo $A \to \varepsilon \in P$ tj. $A \in E_0$.

Předpokládejme, že tvrzení platí pro všechny P-derivace délky n.

Mějme A, \ldots, ε P-derivace délky n + 1. Použitím předchozí věty $(A, X_1 \cdots X_k, \ldots, \varepsilon)$ $A, X_i \cdots X_n, \ldots, \varepsilon$. Tzn. existují derivace X_i, \ldots, ε délek nejvýše n. Z předpokladu $X_i \in E_n$, pro každé i tj. i $A \in E_N$.

- 2. Opačnou implikaci bychom dokázali tak, že pro každé E_i platí, pokud $E \in E_i$ a tedy pak $A \Rightarrow_G^* \varepsilon$. Pro E_0 zřejmé. $A \to X_0 \cdots X_k, A \in E_j$.
- **Věta 12:** Pro každou bezkontextovou gramatiku G existuje bezkontextová gramatika G', neobsahující ε pravidla tak, že $L(G) \setminus \{\varepsilon\} = L(G')$.

Důkaz 6: Mějme gramatiku $G = \langle N, \Sigma, P, S \rangle$.

Stanovme množinu E_n dle předchozího postupu a pak stanovme gramatiku

$$G^{'} = \langle N, \Sigma, P^{'}, S \rangle$$

$$P^{'} = \{A \to y | A \to x \in P \text{ a } y \in D_{(x)}\}$$

Kde $D_{(x)}$ značí množinu řetězců, které jsou neprázdné a vznikly z řetězce x vynecháním libovolného množství neterminálů z E_N .

Příklad 17: Mějme množinu $E_n = \{A, B\}$.

Následně pravidla:

$$\begin{array}{cccc} X & \rightarrow & aAbAB \\ & \cdots \\ X & \rightarrow & aAbAB \\ X & \rightarrow & abAB \\ X & \rightarrow & aAbB \\ X & \rightarrow & aAbB \\ X & \rightarrow & aAbA \\ X & \rightarrow & abB \\ X & \rightarrow & abA \\ X & \rightarrow & aAb \\ X & \rightarrow & abA \\ X & \rightarrow & ab \end{array}$$

Věta 13: Pro každou bezkontextovou gramatiku existuje ekvivalentní bezkontextová gramatika, která je navíc kontextová (a tudíž nezkracující).

Důkaz 7: Mějme gramatiku G.

Dle předchozí věty existuje G' tak, že $L(G) \setminus \{\varepsilon\} = L(G')$. G' je nezkracující a kontextová, protože nemá ε - pravidla. Pokud ε nepatří do L(G), pak jsme hotovi. Pokud $\varepsilon \in L(G)$. Pak G' rozšíříme tak, že přidáme startovní neterminální symbol S' a pravidlo $S' \to \varepsilon$ a $S' \to S$.

8.6. Jazyky bez gramatického základu

Věta 14: Označme třídu všech jazyků nad abecedou Σ jako 2^{Σ^*} . Následně o takovéto třídě můžeme prohlásit, že je nespočetná.

Důkaz 8: Víme, že Kleeneho uzávěr Σ^* je spočetná množina, lze tedy psát, že $\Sigma^* = \{x_1, x_2, \dots, x_5, \dots\}.$

Sporem nechť je množina 2^{Σ^*} spočetná, lze tedy napsat, že $2^{\Sigma^*} = \{L_1, L_2, \ldots\}$ a $L = \{x_i | x_i \notin L_i\}$.

Kdyby pro nějaké j platilo, že $L = L_j$, pak $x_j \in L \iff x_j \in L_j$, což je spor.

Věta 15: Nad abecedou obsahující jediný symbol $\{a\}$ \exists jazyk jež není typu 0. (Nelze jej generovat žádnou formální gramatikou.)

Důkaz 9: Mějme abecedu $\Gamma = \{,, \rightarrow, \{,\}, a, n, \#\}.^{10}$ Pomocí Γ jsme schopni kódovat jazyk pravidel gramatiky. (Neterminály můžeme kódovat jako n, nn, \ldots).

¹⁰Všechny prvky množiny jsou symboly, včetně symbolu "čárka"

 Γ^* je spočetná tedy existuje spočetně mnoho gramatik.

 2^{Σ^*} je nespočetná, tedy musí existovat jazyk, které nelze generovat gramatikou z Γ^* .

9. Determinismus versus nedeterminismus

Za determinismus považujme takovou konfiguraci, pro kterou platí, že je v každém jejím kroku jasné, co bude následovat. Naopak u nedeterministických konfigurací není v určitých případech možné další krok přesně vyjádřit na základě znalostí aktuálního kroku.

Automaty realizují tzv. analytický formalismus a naproti tomu gramatiky realizují tzv. generativní formalismus.

10. Konečné deterministické automaty

Jak již bylo řečeno, tak KDA realizují analytický (resp. výpočetní) formalismus a představují jakési "jednoduché počítače". KDA a jejich činnost jsou charakterizovány několika prvky:

- 1. Vstupem jsou řetězce nad určitou abecedou, která se obv
vykle značí $\Sigma.$
- 2. Řídící jednotka automatu se skládá z konečně mnoha stavů (aby byla reprezentovatelná v počítačích).
- 3. Počátek činnosti automatu představuje okamžik, kdy na vstupu automatu je celý vstupní řetězec a řídící jednotka je v iniciálním stavu.
- 4. Automat vykonává svou primární činnost tím, že přečte ze vstupu aktuální symbol a na základě stavu, ve kterém se právě nachází se řídící jednotka přepne do jiného stavu a odebere onen přečtený symbol ze vstupního řetězce.
- 5. Konec činnosti automatu nastává v případě, že na vstupu již není co číst. Byl tedy zpracován celý vstupní řetězec. V tomto okamžiku automat nachází v určitém stavu, podle typu stavu následně řekneme, že automat řetězec přijímá nebo zamítá. Existují tedy přijímací (neboli koncové) stavy a nepřijímací (neboli nekoncové) stavy.

Příklad 18: Nyní si ukažme, jak vypadá typický KDA.

Dvojitě kroužkovaný stav označuje stav koncový. Šipky mezi jednotlivými stavy označují přechody, přičemž popisek u jednotlivých přechodů indikuji symbol, který se čte, pokud je tento přechod využit. Automat na obrázku 3. by přijímal například slovo 13.6E+2, obecně jakékoliv číslo kodované v tradiční fixní a pohyblivé notaci s desetinnou tečkou.

Definice 7: Konečný deterministický automat s úplnou přechodovou funkcí je struktura:

$$A = \langle \Sigma, Q, \delta, q_0, F \rangle$$

Nyní si popišme jednotlivé členy automatu:

 Σ = vstupní abeceda

Q = konečná množina stavů

 $q_0 \in Q$ = počáteční stav

 $F \subseteq Q$ = množina koncových stavů

 $\delta \ = \ \operatorname{zobrazeni} \, \delta : \ Q \times \Sigma \to Q,$ neboli přechodová funkce

Obrázek 3. Názorný příklad KDA

U přechodové funkce δ uvažujeme zápis například $\delta(r,a)=q$, který čteme: "Při vstupním symbolu $a\in \Sigma$ a aktuálním stavu r přejde automat do nového stavu q."

Předpokládáme, že Qje konečná a δ je zobrazení.

Příklad 19: Automat s nadefinovanými přechody dle δ by mohl vypadat například takto:

$$\begin{array}{lll} A & = & \langle \Sigma, Q, \delta, q_0, F \rangle \\ \Sigma & = & \{a, b, c\} \\ Q & = & \{q_0, q_1, q_2, q_3, q_4\} \\ F & = & \{q_4\} \\ \delta & = & \{ < q_0, a, q_0 >, < q_0, b, q_0 >, < q_0, c, q_1 > \\ & < q_1, a, q_2 >, < q_1, b, q_0 >, < q_1, c, q_1 > \\ & < q_2, a, q_0 >, < q_2, b, q_3 >, < q_2, c, q_1 > \\ & < q_3, a, q_2 >, < q_4, b, q_0 >, < q_3, c, q_4 > \\ & < q_4, a, q_4 >, < q_4, b, q_4 >, < q_4, c, q_4 > \} \end{array}$$

10.1. Reprezentace KDA

10.1.1. Reprezentace přechodovou tabulkou

Řádky tabulky představují stavy a sloupce jednotlivé symboly vstupní abecedy. Znak * označuje, že stav je koncový.

10.1.2. Reprezentace přechodovým diagramem

	a	b	c
q_0	q_0	q_0	q_1
q_1	q_2	q_0	q_1
q_2	q_0	q_3	q_1
q_3	q_2	q_0	q_4
q_4^*	q_4	q_4	q_4

Tabulka 1. Přechodová tabulka pro KDA

Obrázek 4. Přechodový diagram pro KDA

10.2. Konfigurace a výpočet KDA

Konfgurace jednoznačně určuje aktuální fázi výpočtu a jsou to dvojice $\langle q,w\rangle, q\in Q, w\in \Sigma^*$, následně samotná konfigurace $Q\times \Sigma^*$.

Počáteční konfigurace zahrnuje obvykle počáteční stav q_0 , tedy například $\langle q_0, w \rangle$.

Koncová konfigurace je konfigurací, kdy jsme přečetli celý vstupní řetězec, tedy $\langle q, \varepsilon \rangle$. Nicméně je třeba rozlišit dva stavy:

- 1. Koncová přijímací konfigurace, pro případ, kdy $q \in F$.
- 2. Koncová zamítací konfigurace, pro případ, kdy $q \notin F.$

Definice 8: Mějme automat $A = \langle \Sigma, Q, \delta, q_0, F \rangle$ a řetězec $w \in \Sigma^*$. Pak posloupnost konfigurací r_i, w_i pro $i \in \{0, 1, \dots, n\}$ splňující podmínky:

- 1. r_0 je počáteční stav automatu A.
- 2. $w_0 = w$
- 3. $w_n = \varepsilon$
- 4. $w_i = a_i w_{i+1}$ a $\delta(r_i, a_i) = r_{i+1}$ pro každé $i \in \{0, 1, \dots, n-1\}$

nazveme výpočet automatu A délky n pro řetězec w.

Popíšme si nyní jeden krok výpočtu, tj. obecně:

$$\langle r_i, w_i \rangle = \langle r_{i+1}, w_{i+1} \rangle$$

tj. w_{i+1} vznik
nlo z w_i odebráním prvního symbolu, který si označm
e a_i . Do stavu r_{i+1} jsme se dostali ze stavu
 r_i při vstupním symbolu a_i .

Příklad 20: Typický automatový výpočet vypadá například takto:

$$\langle q_0; accbcabca \rangle$$

 $\langle q_0; ccbcabca \rangle$
 $\langle q_1; cbcabca \rangle$
 $\langle q_1; bcabca \rangle$
 $\langle q_0; cabca \rangle$
 $\langle q_1; abca \rangle$
 $\langle q_2; bca \rangle$
 $\langle q_3; ca \rangle$
 $\langle q_4; c \rangle$
 $\langle q_4; \varepsilon \rangle$

Věta 16: KDA A má pro řetězec délky n jednoznačný výpočet rovněž délky n.

10.3. Rozšířená přechodová funkce pro KDA

Rozšířená přechodová funkce má rekurzivní předpis:

$$\begin{split} \delta^*: & Q \times \Sigma^* \to Q \\ \delta^*(q,u) = \{ \begin{array}{ll} q & \text{pokud } u = \varepsilon \\ \delta^*(\delta(q,a),v) & \text{pokud } u = av, a \in \Sigma, \end{array} \end{split}$$

Věta 17: Pro každé $u,v\in \Sigma^*$ platí, že $\delta^*(q,uv)=\delta^*(\delta^*(q,u),v)$

Důkaz 10: Větu 17 dokážeme indukcí přes délku řetězce následujícím způsobem:

- 1. Pokud |u| = 0, pak $\delta^*(\delta^*(q, u), v) = \delta^*(\delta^*(q, \varepsilon), v) = \delta^*(q, v) = \delta^*(q, \varepsilon v) = \delta^*(q, uv)$
- 2. Pokud |u|>0, pak předpokládáme, že tvrzení platí pro \forall řetězce kratší délky. Tj. pro $u=aw, a\in \Sigma, w\in \Sigma^*$ máme:

$$\delta^*(\delta^*(q, u), v) = \delta^*(\delta^*(q, aw), v)$$

$$= \delta^*(\delta^*(\delta(q, a), w), v)$$

$$= \delta^*(\delta(q, a), wv)$$

$$= \delta^*(q, awv)$$

$$= \delta^*(q, uv)$$

Poznámka 4: Automat A přijím řetězec a, pokud $\delta^*(q_0, w) \in F$.

Věta 18: Řetězec w je přijat automatem, právě když existuje přijímací výpočet pro w.

Důkaz 11: Stačí dokázat, že $\delta^*(q_0, w) \in F$ každý výpočet $\langle r_0, w_0 \rangle \cdots \langle r_n, w_n \rangle$ je přijímající, tj. když $r_n \in F$. Pro každé $\langle r_i, w_i \rangle$ prokážeme, že $\delta^*(r_i, w_i) = r_n$, což dokazujeme indukcí přes i.

1. Pro i = n mějme $\delta^*(r_n, w_n) = \delta^*(r_n, \varepsilon) = r_n$. Pak lze předpokládat, že máme nějaké i a pro každé j takové, že $i < j \le n$ tvrzení platí.

2. Dle bodu 4 z definice výpočtu platí, že $w_i = a_i w_{i+1}$ a $\delta(r_i, a_i) = r_{i+1}$. Tj. $\delta^*(r_i, w_i) = \delta^*(r_i, a_i w_{i+1}) = \delta^*(\delta(r_i, a_i), w_{i+1}) = \delta^*(r_{i+1}, w_{i+1}) = r_n$

Jazyk rozpoznaný konečným deterministickým automate lze formulovat jako $L(A)=\{w\in \Sigma^*| \delta^*(q_0,w)\in F\}.$

10.4. KDA s neúplnou přechodovou funkcí

Mějme KDA $A=\langle \Sigma,Q,\delta,q_0,F\rangle$ a upřesněme $\delta,$ které se liší.

 δ je neúplná přechodová funkce tvaru $\delta \subseteq Q \times \Sigma \times Q$, přičemž také platí, že pokud $\langle q, a, r_1 \rangle \in \delta$ a $\langle q, a, r_2 \rangle \in \delta$, pak $r_1 = r_2$ a δ : $Q \times \Sigma \to Q$.

Z toho plynou dvě situace:

- 1. $\delta(q,a)$ je definována, $\langle q,a,r\rangle\in\delta$ pro nějaké r takové, že $\delta(q,a)=r$.
- 2. $\delta(q, a)$ není definováno, pokud $\langle q, a, r \rangle \notin \delta$ pro žádná r.

V grafu se toto projeví tak, že ze stavu q_i nevede žádná hrana pro symbol a_i .

Výpočet se liší v bodu 4 $w_i = a_i w_{i+1}$ a $\delta(r_i, a_i)$ je definována a $\delta(r_i, a_i) = r_{i+1}$ pro každé $i \in \{0, 1, \dots, n\}$.

Řetězec w je přijat automatem A, právě tehdy, když existuje výpočet A pro w, kteý je přijímající. Následně jazyk rozpoznaný automatem A je $L(A) = \{w \in \Sigma^* | \delta^*(q_0, w) \in F\}$.

Věta 19: Ke každému KDA s neúplnou přechodovu funkcí δ existuje KDA s úplnou přechodovu funkcí δ , který rozpoznává stejný jazyk.

Důkaz 12: Každý KDA s úplnou přechodovou funkcí je zároveň KDA s neúplnou přechodovou funkcí. Tedy $A' = \langle \Sigma, Q \cup \{\#\}, \delta', q_0, F \rangle$

$$\delta'(q,a) = \begin{cases} \delta(q,a) & \text{pokud } \delta(q,a) \text{ je definováno} \\ \# & \text{pokud } q = \#, \forall a \in \Sigma \\ \# & \text{pokud } \delta(q,a) \text{ není definováno} \end{cases}$$

Následně tedy L(A) = L(A').

10.5. Implementace KDA

- 1. δ jako dvourozměrné pole "ďábelsky rychlé", paměťově náročné
- 2. δ jako seznam/hashovací tabulka vhodné když $|\delta| <<< |Q \times \Sigma|$
- 3. δ jako orientovaný graf

11. Konečné nedeterministické automaty

Příklad 21: Mějme automat:

Vstupní řetězce: abba (nepřijat), baba (nepřijat), baab (přijat), bbaa (přijat). V případě řetězce baab máme dokonce 3 možnosti výpočtu:

- 1. $\langle q_0, baab \rangle, \langle q_0, aab \rangle, \langle q_0, ab \rangle, \langle q_0, b \rangle, \langle q_0, \varepsilon \rangle$ končí neúspěchem.
- 2. $\langle q_0, baab \rangle, \langle q_0, aab \rangle, \langle q_1, ab \rangle, \langle q_2, b \rangle$ končí neúspěchem.
- 3. $\langle q_0, baab \rangle, \langle q_0, aab \rangle, \langle q_0, ab \rangle, \langle q_1, b \rangle, \langle q_2, \varepsilon \rangle$ končí úspěchem.

Předchozí zápisy můžeme pojmenovat také jako "nedeterministický výpočet." Jiným zápisem téhož může být také ten následující.

$$\langle \{q_0\}, baab \rangle, \langle \{q_0\}, aab \rangle, \langle \{q_0, q_1\}, ab \rangle, \langle \{q_0, q_1, q_2\}, b \rangle, \langle \{q_0, q_2\}, \varepsilon \rangle$$

Definice 9: Strukturu $A=\langle \Sigma,Q,\delta,I,F\rangle$ nazvěme konečným nedeterministickým automatem nad abecedou Σ . Pro tuto strukturu následně platí tato tvrzení:

- \bullet Σ, Q a F jsou stejné jako u konečného deterministického automatu.
- \bullet $I\subseteq Q$ označuje množinu počátečních stavů, která by měla být obecně neprázdná.
- δ označuje přechodovou funkci ve tvaru $\delta: Q \times \Sigma \to 2^Q$, tedy $\delta(q, a) = \{r_1, \dots, r_k\}$. Totéž slovně: "Automat může při stavu q při symbolu a přejít do kteréhokoliv stavu z $\{r_1, \dots, r_k\}$."

Příklad 22:

$$\begin{array}{rcl} \Sigma & = & \{a,b\} \\ P & = & \{q_0,q_1,q_2,q_3\} \\ I & = & \{q_0,q_3\} \\ F & = & \{q_2\} \end{array}$$

Následně přechodová funkce:

$$\delta = \{ \langle q_0, a, \{q_0, q_1\} \rangle, \langle q_0, b, \{q_0\} \rangle, \langle q_1, a, \{q_2\} \rangle, \langle q_1, b, \{q_2\} \rangle, \\ \langle q_2, a, \emptyset \rangle, \langle q_2, b, \emptyset \rangle, \langle q_3, a, \emptyset \rangle, \langle q_3, b, \{q_1\} \rangle \}$$

	a	b
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2*	Ø	Ø
$\rightarrow q_3$	Ø	$\{q_1\}$

Tabulka 2. Přechodová tabulka s množinami stavů

11.1. Reprezentace KNA

Předchozí příklad číslo 22 lze reprezentovat několika způsoby:

- 1. Přechodová tabulka, která ve svém těle obsahuje množiny stavů.
- 2. Diagram, který automat demonstruje v grafičtější podobě.

11.2. Nedeterministický výpočet

Nyní si popišme nedeterministický výpočet, který je definován následujícími věcmi:

- Konfigurace, což je dvojice ve tvaru $\langle stav, \check{r}et\check{e}zec \rangle$.
- Počáteční konfigurace ve tvaru $\langle q,w\rangle$ kde $q\in I.$
- Koncová konfigurace ve tvaru $\langle q, \varepsilon \rangle.$
- Koncová přijímací konfigurace $\langle q, \varepsilon \rangle$ kde $q \in F$.

Definice 10: Mějme $A = \langle \Sigma, Q, \delta, I, F \rangle$ a $w \in \Sigma^*$. Pak posloupnost konfigurací $\langle r_i, w_i \rangle$ pro $i = \{0, \ldots, n\}$ splňující podmínky:

$$r_0 \in I \tag{1}$$

$$w_0 = w \tag{2}$$

$$w_n = \varepsilon \tag{3}$$

$$w_i = a_i w_{i+1} \text{ a } r_{i+1} \in \delta(r_i, a_i) \text{ pro } i = \{0, \dots, n-1\}$$
 (4)

nazveme nedeterministický výpočet.

11.3. Rozšířená přechodová funkce

Definice 11: Rozšířená přechodová funkce má tvar:

$$\delta^*: 2^Q \times \Sigma^* \to 2^Q$$

$$\delta^*(R, w) = \left\{ \begin{array}{ll} R & \text{pokud } w = \varepsilon \\ \delta^*(\bigcup_{q \in R} \delta(q, a), u) & \text{pokud } w = au, \text{ kde } a \in \Sigma, u \in \Sigma^* \end{array} \right\}$$

Věta 20: Platí $\delta^*(R, w) = \delta^*(\delta^*(R, u), v), \forall R \subseteq Q, uv \in \Sigma^*.$

Důkaz 13: Předchozí tvrzení dokazujeme indukcí přes délku řetězce.

- 1. Pro $u = \varepsilon$ je situace triviální.
- 2. Pokud $u = ay, |y| < |u|, \text{ pak } \delta^*(R, w) = \delta^*(R, ayv) = \delta^*(R, a(yv)).$
- 3. Nyní aplikujme definici.

$$\begin{split} \delta^*(\bigcup_{q\in R}\delta(q,a),yv) &= \text{ indukční předpoklad} \\ \delta^*(\delta^*(\bigcup_{q\in R}\delta(q,a),y),v) &= \text{ definicie } \delta^* \\ \delta^*(\delta^*(R,ay),v) &= \delta^*(\delta^*(R,u),v) \end{split}$$

Věta 21: Platí následující tvrzení:

$$\delta^*(\bigcup_{i=1}^k R_i, w) = \bigcup_{i=1}^k \delta^*(R_i, w)$$
 pro každé $R_i \subseteq Q, w \in \Sigma^*$

Důkaz 14: Předchozí tvrzení dokazujeme indukcí přes délku řetězce w.

$$\delta^*(\bigcup_{i=1}^k R_i, w) = \delta^*(\bigcup_{i=1}^k R_i, au) = \delta^*(q \in \bigcup_{\bigcup_{i=1}^k} \delta(q, a), u)$$
$$\delta^*(\bigcup_{i=1}^k \bigcup_{q \in R_i} \delta(q, a), u) \dots \text{indukční předpoklad}$$
$$\bigcup_{i=1}^k \delta^*(\bigcup_{q \in R_i} \delta(q, a), u)$$
$$\bigcup_{i=1}^k \delta^*(R, a_n) = \bigcup_{q \in R_i} \delta(R, w)$$

11.4. Řetězce přijímané KNA

KNA A přijímá řetězec w, pokud $\delta^*(I,w) \cap F \neq \emptyset$. Navíc jazyk, přijímaný KNA A si definujme jako $L(A) = \{w \in \Sigma^* | \delta^*(I,w) \cap F \neq \emptyset\}$.

Věta 22: Platí, že $w \in L(a)$ právě tehdy, když KNA A má přijímací výpočet pro w.

Důkaz 15: Předchozí tvrzení lze dokázat indukcí přes délku řetězce w.

 $q \in \delta^*(I,w)$ právě tehdy, když existuje výpočet pro w
, končící ve stavu q dekompozice naví
cw=ua

11.5. Determinizace KNA

Věta 23: Pro každý KDA $A = \langle \Sigma, Q, \delta, q_0, F \rangle \exists$ KNA A' tak, že L(A) = L(A').

Důkaz 16: Pro výchozí A uvažujme $A' = \langle \Sigma, Q, \delta', \{q_0\}, F \rangle$, pak $\delta'(q, a) = \{\delta(q, a)\}$. Zbytek důkazu je zřejmý.

Věta 24: Pro každý KNA A existuje KDA A^D tak, že $L(A) = L(A^D)$.

Důkaz 17: Předchozí větu lze dokázat následujícím způsobem:

- 1. Uvažujme $A^D = \langle \Sigma, 2^Q, \delta^D, I, F^D \rangle$, kde $F^D = \{R \subseteq 2^Q | R \cap F \neq \emptyset\}, \delta^D(R, a) = \delta^*(R, a)$. Nyní zbývá ukázat, že $\delta^*(I, w) \cap F \neq \emptyset$ právě tehdy, když $(\delta^D)^*(I, w) \in F^D$, což prokážeme indukcí přes délku řetězce w.
- 2. Pro $w = \varepsilon$ je situace zřejmá. Jinak $(\delta^D)^*(R, w) = (\delta^D)^*(R, \varepsilon) = R = \delta^*(R, \varepsilon) = \delta^*(R, w)$.
- 3. Předpokládejme, že tvrzení platí pro řetězce délky n a nechť w má délku n+1 a w=au pro $a\in \Sigma, |u|<|w|$. Pak:

$$(\delta^{D})^{*}(R, w) = (\delta^{D})^{*}(R, au) = (\delta^{D})^{*}(\delta^{D}(R, a), u) =$$

= $\delta^{*}(\delta^{D}(R, a)u) = \delta^{*}(\delta^{*}(R, a), u) = \delta^{*}(R, au) = \delta^{*}(R, w)$

Příklad 23: Vemme KNA z příkladu 22.

Ještě jeden automat, nepřečtu to dobře ze sešitu. :)

11.6. Algoritmus pro převod KNA na KDA

Nyní si ukažme pseudokód algoritmu pro převod konečných nedeterministických automatů na konečné deterministické automaty, pro které platí, že akceptují řetězce stejného jazyka.

Algoritmus 1 Pseudokód pro převod KNA na KDA.

```
\delta^D \leftarrow \emptyset; \ Q^D \leftarrow \emptyset; \ F^D \leftarrow \emptyset; \ W \leftarrow I
while W \neq Q do
           select R \in W
           W \leftarrow W \smallsetminus R; Q^D \leftarrow Q^D \cup R
           if R \cap F \neq \emptyset then
                    F^D \leftarrow F^D \cup R
           end if \\
            for each a \in \Sigma do
                    N \leftarrow \delta^*(R, a)
                     if N \neq \emptyset then
                              if N \notin W \cup Q^D then
                                      W \leftarrow W \cup N
                             \delta^D \leftarrow \delta^D \cup \langle R, a, N \rangle
                     endif
           \quad \text{end} \quad
end
return <\Sigma, Q^D, \delta^D, I, F^D>
```

Definice 12: Trie je prefixový strom, který umožňuje "rychlé hledání ve slovníku."

Definice 13: Jako slovník označujeme konečný neprázdný jazyk který neobsahuje ε .

Definice 14: Trie slovníku L je KDA $T_L = \langle \Sigma, Q, \delta, \varepsilon, F \rangle$, přičemž:

$$Q$$
 — množina prefixů všech řetězců
$$Q \quad - \quad \bigcup_{w \in L} Pfx(w)$$

$$F \quad = \quad L^{w \in L}$$

$$\delta(w,a) \quad = \quad wa, \text{ pokud } wa \in Q, \text{ jinak } \delta(w,a) \text{ není definováno}$$

Příklad 24: Uveďme si příklad konečného slovníkového automatu D_L , který je pochopitelně deterministický:

12. Vztah regulárních jazyků a konečných automatů

12.1. Regulární jazyky jsou rozpoznatelné KDA (implikace zleva)

Věta 25: Pro každou regulární gramatiku $G=\langle N,\Sigma,P,S\rangle$ existuje konečný deterministický automat A tak, že jazyk generovaný gramatikou je totéž, jako jazyk rozpoznatelný automatem, tj. L(G)=L(A)

Důkaz 18: Nejprve uvažujeme situaci, že $\varepsilon \notin L(G)$. Uvažujme konečný nedeterministický automat $A = \langle \Sigma, N \cup \{\#\}, \delta, \{S\}, \{\#\} \rangle$.

$$\delta(A,b) = \left\{ \begin{array}{ll} \{B \in N | A \to bB \in P\} & \text{pokud} \quad A \in N \land A \to b \notin P \\ \{B \in N | A \to bB \in P\} \cup \{\#\} & \text{pokud} \quad A \in N \land A \to b \in P \\ \emptyset & \text{jinak} \end{array} \right.$$

Pro důkaz L(G)=L(A) stačí prokázat, že pro každé $A\in N$ a $x\in \Sigma^*$ platí, že $A\Rightarrow_G^* x$ právě když $\#\in \delta^*(\{A\},x)$.

Důkaz provedeme indukcí přes délku řetězce x.

- 1. Pro |x|=1 zřejmé. $A\Rightarrow_G^* x$ právě když $A\Rightarrow_G x$, tj. existuje pravidlo $A\to x\in P$ tj. z definice δ^* platí, že $\#\in\delta^*(\{A\},x)$. Nechť |x|=n a nechť tvrzení platí pro všechny řetězce kratší délky. Jelikož gramatika G je regulární, má P-derivace A,\ldots,x právě n kroků. Pokud |x|>1 pak $A\Rightarrow_G bB\Rightarrow_G^* by=x$ pro nějaké $A\to bB\in P$.
- 2. Pro |y| < n z indukčního předpokladu platí, že $\# \in \delta^*(\{B\}, y)$. Tím spíš $\delta^*(\{A\}, x) = \delta^*(\{A\}, by) = \delta^*(\delta(A, b), y) = \delta^*(\{B, \ldots\}, y) \supseteq \delta^*(\{B\}, y)$ tj. $\# \in \delta^*(\{A\}, \#)$ protože $A \to bB \in P$ tj. $B \in \delta(A, b)$
- 3. Tím jsme prokázali, že pokud $A \Rightarrow_G^* x$ pak $\# \in \delta^*(\{A\}, x)$.
- 4. Obráceně, pokud # $\in \delta^*(\{A\}, x)$ pak pro $x = by, b \in \Sigma$ máme: # $\in \delta^*(\{A\}, by) = \delta^*(\delta(A, b), y) = \delta^*(\bigcup_{B \in \delta(A, b)} \{B\}, y) = \bigcup_{B \in \delta(A, b)} \delta^*(\{B\}, y)$ Tj. existuje $B \in \delta(A, b)$ tak, že # $\in \delta^*(\{B\}, y)$. Ze zavedení δ plyne, že $A \to bB \in P$
- 5. Aplikací indukčního předpokladu, existuje P-derivace B, \ldots, y . Hledaná P-derivace je ve tvaru: $A, bB, \ldots, by = x$,tj. $A \Rightarrow_G^* x$.

V případě, že $\varepsilon \in L(G)$, rozšíříme automat následovně, jednou ze tří možností:

- 1. Přidáme S do množiny koncových stavů.
- 2. Přidáme # mezi počáteční stavy. 11
- 3. Zavedeme nový stav, který bude počáteční a zároveň koncový a nevedou z něj žádné přechody jinam.

Poznámka 5: Nyní zbývá automat pouze determinizovat.

Příklad 25: Máme gramatiku G.

$$\begin{array}{lcl} G &=& \langle N, \Sigma, P, S \rangle \\ \Sigma &=& \{e, d, .\} \\ P &=& \{S \rightarrow .F | dT, T \rightarrow .E | .F | dT | ., D \rightarrow dD | d, E \rightarrow eD, F \rightarrow dE | dF | d\} \end{array}$$

Automat rozpoznávající jazyk, generovaný gramatikou G, bude vypadat následovně:

Když tento automat zdeterminizujeme, dostaneme následující automat:

¹¹Též nazývána jako "Konyho finta".

12.2. Jazyky rozpoznatelné KDA jsou regulární (implikace zprava)

Věta 26: Pro každý konečný deterministický automat $A = \langle \Sigma, Q, \delta, q_0, F \rangle$ existuje regulární gramatika G tak, že L(A) = L(G).

Důkaz 19: Za neterminální symboly G vezmeme stavy automatu. Startovní neterminál bude q_0 . Uvažujeme gramatiku: $G=\langle Q, \Sigma, P, q_0 \rangle$

$$\begin{split} P &= \{q \rightarrow ar | \text{ pokud } \delta(q,a) = r, \text{ pro } q,r \in Q \text{ a } a \in \Sigma \} \\ &\cup \{q \rightarrow a | \text{ pokud } \delta(q,a) \in F \} \end{split}$$

Prokážeme že: $q\Rightarrow_G^* x$ právě když $\delta^*(q,x)\in F$

Pro |x|=1 platí: $q\Rightarrow_G^* x$ právě když existuje pravidlo $q\to x\in P$, tj. z definice P platí $\delta(q,x)\in F$ Pro x=by, kde $b\in \Sigma^*$ předpokládejme, že tvrzení platí pro y. Platí, že $q\Rightarrow_G br\Rightarrow_G^* by=x$ právě když $\delta(q,b)=r$ a $\delta^*(r,y)\in F$

To znamená $\delta^*(q, by) = \delta^*(\delta(q, b), y) \in F$

Předchozí dokazuje, že $x \in L(G)$ právě když $x \in L(A)$ pro každý neprázdný x.

PokudAnepřijímá ε , pak jsme hotovi.

Uvažujeme nový neterminál S,který bude nový startovní symbol, tj. místo Guvažujeme $G'=\langle Q\cup\{S\},\Sigma,P',S\rangle$

$$P' = \{S \to \varepsilon\} \cup \{S \to x | q_0 \to x \in P\} \cup P$$

Pak L(A) = L(G).

Příklad 26: Mějme abecedu $\Sigma = \{a, b\}$ a automat zadaný diagramem:

Odvozovací pravidla gramatiky, generující tento jazyk budou:

12.3. Regulární gramatiky

Co jsou to regulární gramatiky a jaké podmínky jejich odvozovací pravidla splňují již víme, ale můžeme si je ještě rozdělit na dva druhy, právě podle tvaru odvozovacích pravidel.

- 1. Zprava regulární gramatiky: Obsahují pravidla ve tvaru $A \to bB$, tedy neterminál je napravo od terminálního symbolu.
- 2. Zleva regulární gramatiky: Obsahují pravidla ve tvaru $A\to Bb$. Analogicky se neterminál nachází vlevo od terminálního symbolu.

Věta 27: Pro každou zleva regulární gramatiku $G = \langle N, \Sigma, P, S \rangle$ existuje konečný deterministický automat A tak, že L(A) = L(G).

Důkaz 20: Budeme konstruovat automat, jehož stavy budou N, nový pomocný počáteční stav # a jediný koncový stav je S.

Hledaný KNA $A=\langle \Sigma, N \cup \{\#\}, \delta, \{\#\}, \{S\} \rangle$ s následovně definovanou přechodovou funkcí δ

$$\delta(q,a) = \left\{ \begin{array}{ll} \{A \in N | A \rightarrow a \in P\} & \text{pokud} & q = \# \\ \{A \in N | A \rightarrow Ba \in P\} & \text{pokud} & q = B \end{array} \right.$$

Ekvivalence L(A)=L(G) se dokazuje vzájemně jednoznačnou korespondencí P-derivace a nedeterministického výpočtu.

Pro derivaci:

$$x_0 = S, x_1, x_2, \dots, x_{n-1}, x_n = x$$

jsme schopni sestavit posloupnost $\langle \#, X_n \rangle, \langle A_{n-1}, y_{n-1} \rangle, \dots, \langle A_1, y_1 \rangle, \langle S, \varepsilon \rangle$ kde $x_i = A_i y_i$

Příklad 27: Máme gramatiku G s následovně definovanými pravidly.

$$S \rightarrow Aa|Ba|Bb|a$$

$$A \rightarrow Aa|Bb$$

$$B \rightarrow Ab|Ba|b$$

Automat rozpoznávající jazyk generovaný touto gramatikou bude vypadat následovně:

Věta 28: Pro každý konečný deterministický automat A existuje zleva regulární gramatika taková, že L(A) = L(G)

Důkaz 21: Neterminály gramatiky jsou stavy automatu a budeme uvažovat dodatečný startovní neterminál S.

$$\begin{array}{ll} P = & \{ & \delta(q,a) \to qa | q \in Q \land a \in \Sigma \} \ \cup \\ & \{ & \delta(q_0,a) \to a | q_0 \text{ je počáteční stav} \} \ \cup \\ & \{ & S \to w | w \text{ je pravá strana každého pravidla } q \to w, \text{ kde } q \in F \} \end{array}$$

Příklad 28: Vezmeme KDA z příkladu 26. Odvozovací pravidla budou vypadat takto:

$$\begin{array}{llll} q_{0} & \to & q_{0}b \mid b \mid q_{3}b \\ q_{1} & \to & q_{0}a \mid a \mid q_{3}a \\ q_{2} & \to & q_{1}a \mid q_{2}a \\ q_{3} & \to & q_{1}b \mid q_{2}b \\ S & \to & q_{1}a \mid q_{1}b \mid q_{2}a \mid q_{2}b \end{array}$$

Definice 15: Regulární jazyky jsou jazyky, generované zprava (zleva) regulárními gramatikami, tj. jsou rozpoznatelné konečnými ne/deterministickými automaty.

Poznámka 6: Pravidla zprava a zleva nelze míchat.

13. Nedeterministický konečný automat s ε -přechody

Značíme ε KNA.

Příklad 29: Zde je jeden motivační příklad na úvod.

Definice 16: Nedeterministický konečný automat s ε-přechody je struktura $\langle \Sigma, Q, \delta, I, F \rangle$, kde Σ, Q, δ, I, F mají stejný význam jako u KNA. δ je přechodová funkce $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$.

Fakt $\delta(q, a) = \{r_1, \dots, r_k\}$ čteme: "automat A při čtení symbolu a přejde ze stavu q do některého ze stavů r_1, \dots, r_k ."

Fakt $\delta(q,\varepsilon)=\{r_1,\ldots,r_k\}$ čteme: "automat A přejde samovolně ze stavu q do některého ze stavů r_1,\ldots,r_k ."

13.1. Reprezentace εKNA

1. *Přechodová tabulka*, vypadá stejně jako u KNA s tím, že přidáme jeden sloupec, ve kterém budeme zaznamenávat ε -přechody.

Takto bude vypadat předchozí příklad číslo 29, reprezentovaný pomocí tabulky.

	+,-		$0,\ldots,9$	ε
$\rightarrow q_0$	$\{q_1\}$	Ø	Ø	$\{q_1\}$
q_1	$\{q_2\}$	Ø	$\{q_1,q_2\}$	Ø
q_2	Ø	Ø	$\{q_3\}$	Ø
q_3	Ø	Ø	$\{q_3\}$	$\{q_5\}$
q_4	Ø	$\{q_3\}$	Ø	Ø
q_5	Ø	Ø	Ø	Ø

Tabulka 3. Přechodová tabulka pro 29. přiklad

2. $P\check{r}echodový$ diagram, u kterého mohou být některé hrany ohodnoceny ε . Viz příklad 29.

13.2. Nedeterministický výpočet

Pojem konfigurace pro nás zůstává stejný, jedná se stále o dvojici (stav, řetězec).

Definice 17: Mějme automat $A = \langle \Sigma, Q, \delta, I, F \rangle$ a řetězec $w \in \Sigma^*$. Posloupnost konfigurací $\langle r_i, w_i \rangle$ pro $i = 0, \ldots, n$ splňující podmínky:

- 1. $r_0 \in I, w_0 = w$
- 2. $w_n = \varepsilon$
- 3. pro každé $i = 0, \ldots, n$
 - (a) $w_i = aw_{i+1}, r_{i+1} \in \delta(r_i, a)$
 - (b) $w_i = w_{i+1}, r_{i+i} \in \delta(r_i, \varepsilon)$

13.3. ε -uzávěry množin stavů

Je dána množina stavů $R \subseteq Q$, jež se nazývá ε-uzavřená, pokud $\delta(q, \varepsilon) \subseteq R$ pro každý stav $q \in R$.

Příklad 30: Lze ukázat na našem příkladě 29.

$$\{q_0\}$$
není ε -uzavřená protože $\delta(q_0,\varepsilon)=\{q_1\}\nsubseteq\{q_0\}$ $\{q_0,q_1\}$ je ε -uzavřená

13.3.1. Tvorba ε -uzávěru

- 1. Mějme ε -uzávěr R.
- 2. Prohlašme, že $E_0=R$ a následně pro $i\geq 1$ tvrďme, že:
 - $E_i = E_{i-1} \cup \{\delta(q, \varepsilon) | q \in E_{i-1}\}$
 - $E_A(R) = \bigcup_{i=0}^{\infty} E_i$
 - $E_0 \subseteq E_1 \subseteq E_2 \subseteq \ldots \subseteq E_A(R)$

Poznámka 7: Vzhledem ke konečnosti množiny $E_A(R)$ musí existovat index k, pro který platí $E_k = E_{k+1} = \ldots = E_A(R)$

Můžeme pozorovat, že $E_A(R)$ není jen ε -uzavřená, ale je také nejmenší ε -uzavřená. Z toho můžeme vyvodit, že

$$E_A: 2^Q \to 2^Q$$

je uzávěrový operátor.

13.4. Rozšířená přechodová funkce

Pro automat $A=\langle \Sigma,Q,\delta,I,F\rangle$ je rozšířená přechodová funkce definovaná jako $\delta^*:2^Q\times\Sigma^*\to 2^Q$

$$\delta^*(R, w) = \begin{cases} E_A(R) & \text{pokud} \quad w = \varepsilon \\ \delta^*(E_A(\bigcup_{q \in E_A(R)} \delta(q, a), u)) & \text{pokud} \quad w = au, a \in \Sigma, u \in \Sigma^* \end{cases}$$

Věta 29: Pro libovolné množiny $R_i \subseteq Q$ (i = 1, ..., k) platí:

$$\bigcup_{i=1}^{k} E_A(R_i) = E_A(\bigcup_{i=1}^{k} R_i)$$

Důkaz 22: Z monotonie E_A dostáváme

 $E_A(R_i) \subseteq E_A(\bigcup_{i=1}^k R_i)$ pro všechna i

$$\bigcup_{i=1}^k E_A(R_i) \subseteq E_A(\bigcup_{i=1}^k R_i)$$

Opačná inkluze

 $\bigcup_{i=1}^k E_A(R_i)$ je ε -uzavřená a obsahuje $\bigcup_{i=1}^k R_i$

z extenzivity E_A plyne, že $\bigcup_{i=1}^k R_i \subseteq \bigcup_{i=1}^k E_A(R_i)$

Stačí tedy ukázat, že $\bigcup_{i=1}^k E_A(R_i)$ je ε -uzavřená.

$$q \in \bigcup_{i=1}^k E_A(R_i) \Rightarrow \exists k \ q \in E_A(R_i)$$

Protože $E_A(R_i)$ je ε -uzavřená, $\delta(q,\varepsilon) \in E_A(R_i) \Rightarrow \delta(q,\varepsilon) \in \bigcup_{i=1}^k E_A(R_i) \Rightarrow \bigcup_{i=1}^k (E_A(R_i))$ je ε -uzavřená množina.

13.5. Přijímaný řetězec ε KNA

Nechť $A=\langle \Sigma,Q,\delta,I,F\rangle$ je ε KNA. Řetězec $w\in \Sigma^*$ nazýváme řetězec přijímaný A, pokud $\delta^*(I,w)\cap F\neq\emptyset$

jinak w nazýváme řetězec zamítaný A.

Jazyk přijímaný A: $L(A) = \{ w \in \Sigma^* | \delta^*(I, w) \cap F \neq \emptyset \}$

13.6. Ekvivalence s KDA

Věta 30: Ke každému ε KNA $A=\langle \Sigma,Q,\delta,I,F\rangle$ existuje KNA $A^S=\langle \Sigma,Q,\delta^S,I^S,F\rangle$ takový, že $L(A)=L(A^S).$

Důkaz 23:
$$I^{S} = E_{A}(I)$$

$$\delta^S(q,a) = \delta^*(\{q\},a) = E_A(\bigcup_{u \in E_A(\{q\})} \delta(u,a))$$

Indukcí přes délku řetězce $w \in \Sigma^*$ prokážeme, že $(\delta^S)^*(E_A(R), w) = \delta^*(R, w)$

- 1. $w = \varepsilon$ platí triviálně
- 2. Předpokládejme, že tvrzení platí pro w délky n a dokážeme pro slova w délky n+1.

$$w = av$$
, $a \in \Sigma$, $v \in \Sigma^*$, $|v| = n$, $R \subseteq Q$

$$(\delta^{S})^{*}(E_{A}(R), w) = (\delta^{S})^{*}(E_{A}(R), av)$$

$$= (\delta^{S})^{*}(\bigcup_{q \in E_{A}(R)} \delta^{S}(q, a), u)$$

$$= (\delta^{S})^{*}(\bigcup_{q \in E_{A}(R)} E_{A}(\bigcup_{u \in E_{A}(\{q\})} \delta(u, a)), u)$$

$$= (\delta^{S})^{*}(E_{A} \bigcup_{q \in E_{A}(R)} \bigcup_{u \in E_{A}(\{q\})} \delta(u, a)), u)$$

$$= (\delta^{S})^{*}(E_{A} \bigcup_{q \in E_{A}(R)} \delta(q, a)), u)$$

$$= (\delta^{S})^{*}(E_{A}(E_{A} \bigcup_{q \in E_{A}(R)} \delta(q, a))), u)$$

$$= \delta^{*}(E_{A} \bigcup_{q \in E_{A}(R)} \delta(q, a)), u)$$

$$= \delta^{*}(E_{A} \bigcup_{q \in E_{A}(R)} \delta(q, a)), u)$$

$$= \delta^{*}(R, w)$$

14. Algoritmus na převod ε KNA na KDA

Máme $A = \langle \Sigma, Q, \delta, I, F \rangle$ a víme, že W je neprázdná množina dosud nezpracovaných stavů.

Algoritmus 2 Pseudokód pro převod ε KNA na KDA.

```
\delta^s \leftarrow \emptyset; Q^s \leftarrow \emptyset; F^s \leftarrow \emptyset; w \leftarrow E_A(I)
while w \neq Q do
           select R \in w
           w \leftarrow w \smallsetminus R \, ; \ \ Q^s \leftarrow Q^s \cup R
            if R \cap F \neq \emptyset then
                    F^s \leftarrow F^s \cup R
            endif
           for each a \in \Sigma do
                    N \leftarrow \delta^*(R, a)
                    if N \neq \emptyset then
                              if N \notin w \cup Q^s then
                                      w \leftarrow w \cup N
                             \delta^s \leftarrow \delta^s \cup \langle R, a, N \rangle
                     endif
           end
end
return <\Sigma, Q^s, \delta^s, I, F^s>
```

15. Regulární výrazy

Definice 18: Nechť je dána $\Sigma = \{a_1, \dots, a_k\}$. Pak regulární výraz na Σ je:

```
    ∅
    ε
    symboly a<sub>1</sub>,..., a<sub>k</sub>
    pokud R<sub>1</sub>, R<sub>2</sub> jsou RV, pak (R<sub>1</sub>|R<sub>2</sub>) je RV
    pokud R<sub>1</sub>, R<sub>2</sub> jsou RV, pak (R<sub>1</sub>R<sub>2</sub>) je RV
    pokud R je RV, pak R* je RV
```

Příklad 31: Podívejme se na následující výrazy a rozhodněme, zda-li jsou regulární:

```
• ((ab)c)^*, ((a|b)c)^* – jsou RV
• a^*b), a||b – nejsou RV
```

Poznámka 8: Priorita $|\cdot, \cdot, *|$ je stejná jako (po řadě) $+, \cdot, ^{-1}$ v aritmetických výrazech.

16. Jazyky generované regulárními výrazy

Definice 19: Nechť R je RV nad Σ . Pak $L(R) \subseteq \Sigma^*$. Pak také platí:

```
    L(R) = Ø, pokud R = Ø.
    L(R) = {ε}, pokud R = ε.
```

- 3. $L(R) = \{a_i | \text{pokud } R = a_i \}.$
- 4. $L(R) = L(R_1) \cup L(R_2)$, pokud $R = \{R_1 | R_2\}$.
- 5. $L(R) = L(R_1) \circ L(R_2)$, pokud $R = \{R_1 \circ R_2\}$.
- 6. $L(R) = L(R_1)^*$, pokud $R = R_1^*$.

Věta 31: Každý regulární výraz lze převést na konečný automat.

Věta 32: Každý jazyk generovaný regulárním výrazem je regulární.

Důkaz 24: Předchozí body dokážeme indukcí dle složitosti regulárního výrazu.

- Pro body 1 až 3 je vše zřejmé.
- Pro bod $4-R=R_1|R_2$, kde R_1,R_2 jsou regulární výrazy. Předpokládáme, že existuje KDA, rozpoznávající jazyky $L(R_1)$ a $L(R_2),L(R_1)=L(A_1),L(R_2)=L(A_2)$.

Pak vytvoříme KNA, který má tvar $\langle \Sigma, Q_1 \cup Q_2, \delta 1 \cup \delta_2, \{q_0, q_0^*\}, F_1 \cup F_2 \rangle$.

- Pro bod 5 $R = R_1 R_2$. Z koncových stavů A_1 vytvoříme ε -přechody do počátečního stavu automatu A_2 a počátečním stavem bude stav q_0 z automatu A_1 .
- Pro bod $6 R = R_1^*, L(A_1) = L(R_1)$. Následně sestavujeme ε KNA tak, že před počátečním stavem vytvoříme nový koncový stav, který bude navíc novým počátečním stave a do kterého vedeme ε přechody z již existujících koncových stavů a z našeho nového koncového stavu navíc vedeme ε přechod do původního počátečního stavu.

Věta 33: Každý regulární jazyk lze generovat regulárním výrazem.

17. Uzávěrové vlastnosti regulárních jazyků

17.1. Základní uzávěrové vlastnosti

• Komplement

Pokud je L regulární, pak je $\Sigma^*\backslash L$ regulární.

Důkaz 25: Pro L existuje KDA s úplnou přechodovou funkcí tak, že L(A) = L. Na základě tohoto automatu zkonstruujeme $A' = \langle \Sigma, Q, \delta, q_0, Q \backslash F \rangle$, A i A' mají stejnou rozšířenou přechodovu funkci δ^* .

Tj.
$$\Sigma^* \backslash L = L(A')$$

• Sjednocení

Jsou-li L_1 a L_2 regulární, pak je $L_1 \cup L_2$ regulární.

Důkaz 26: Pro
$$L_1$$
 existuje $A_1 = \langle \Sigma, Q_1, \delta_1, q_{01}, F_1 \rangle$, tak že $L_1 = L(A_1)$

Pro
$$L_2$$
 existuje $A_2 = \langle \Sigma, Q_2, \delta_2, q_{02}, F_2 \rangle$, tak že $L_2 = L(A_2)$

Předpokládáme-li, že A_1 a A_2 mají disjunktní množiny stavů, tj. $Q_1 \cap Q_2 = \emptyset$, sestavíme následující KNA:

 $A=\langle \Sigma,Q_1\cup Q_2,\delta,\{q_{01},q_{02}\},F_1\cup F_2\rangle$ s přechodovou funkcí δ definovanou jako

$$\delta(q, a) = \begin{cases} \{\delta_1(q, a)\} & \text{pokud} \quad q \in Q_1 \\ \{\delta_2(q, a)\} & \text{pokud} \quad q \in Q_2 \end{cases}$$

Příklad 32: Nyní si uvedeme protipříklad, co by se stalo, kdyby množiny stavů nebyly disjunktní.

První automat přijímá řetězec ab, druhý automat přijímá řetězec ba, čili od jejich sjednocení očekáváme, že bude přijímat ab i ba. Jelikož množiny stavů nejsou disjunktní (q_1 je společný pro oba), sjednocení těchto automatů může stejně dobře přijímat i řetězce aa nebo bb, což je nežádoucí.

• Průnik

S použitím De Morganových zákonů, dostáváme:

$$L_1 \cap L_2 = \Sigma^* \setminus (\Sigma^* \setminus L_1 \cup \Sigma^* \setminus L_2)$$

tj. $L_1 \cap L_2$ je regulární.

Důkaz 27: Uvažujeme konečné deterministické automaty s úplnou přechodovou funkcí $A_1 = \langle \Sigma, Q_1, \delta_1, q_{01}, F_1 \rangle$ a $A_2 = \langle \Sigma, Q_2, \delta_2, q_{02}, F_2 \rangle$

Zkonstruujeme automat $A_1 \times A_2$ (direktní součin):

$$A_1 \times A_2 = \langle \Sigma, Q_1 \times Q_2, \delta, \langle q_{01}, q_{02} \rangle, F_1 \times F_2 \rangle$$

s přechodovou funkcí δ :

$$\delta(\langle q, r \rangle, a) = \langle \delta_1(q, a), \delta_2(r, a) \rangle$$

platí:

$$L_1 \cap L_2 = L(A_1 \times A_2)$$

• Produkt (zřetězení)

 $L_1 \cdot L_2$

Předpokládáme existenci automatů $A_1 = \langle \Sigma, Q_1, \delta_1, q_{01}, F_1 \rangle$ a $A_2 = \langle \Sigma, Q_2, \delta_2, q_{02}, F_2 \rangle$ takových, že $L_1 = L(A_1)$ a $L_2 = L(A_2)$.

Sestavíme εKNA

$$A = \langle \Sigma, Q_1 \cup Q_2, \delta, \{q_{01}\}, F_2 \rangle$$

s přechodovou funkcí $\delta: (Q_1 \cup Q_2) \times (\Sigma \cup \{\varepsilon\}) \to 2^{Q_1 \times Q_2}$

$$\delta(q, a) = \begin{cases} \{\delta_1(q, a)\} & \text{pokud} \quad q \in Q_1 \\ \{\delta_2(q, a)\} & \text{pokud} \quad q \in Q_2 \end{cases}$$

$$\delta(q,\varepsilon) = \begin{cases} \{q_{02}\} & \text{pokud} \quad q \in F_1\\ \emptyset & \text{pokud} \quad q \notin F_1 \end{cases}$$

• Kleeneho uzávěr

Pokud je L regulární, pak je L^* regulární.

Předpokládáme, že existuje automat A tak, že L = L(A)

Poznámka 9: Automat rozpoznávající L^* musí mít možnost dostat se z koncového stavu zpět na začátek.

Pro automat $A=\langle \Sigma,Q,\delta,q_0,F\rangle$ je potřeba zavést nový počáteční stav $q_T\notin Q$. Konstruovaný ε KNA bude vypadat následovně:

$$A' = \langle \Sigma, Q \cup \{q_T\}, \delta', \{q_T\}, F \cup \{q_T\} \rangle$$

s přechodovou funkcí δ' :

$$\delta'(q, a) = \{\delta(q, a)\} \qquad \text{pokud} \quad q \in Q$$

$$\delta'(q, \varepsilon) = \emptyset \qquad \text{pokud} \quad q \in Q \setminus F$$

$$\delta'(q, \varepsilon) = \{q_T\} \qquad \text{pokud} \quad q \in F$$

$$\delta'(q_T, \varepsilon) = \{q_0\}$$

$$\delta'(q_T, a) = \emptyset \qquad a \in \Sigma$$

17.2. Další uzávěrové vlastnosti

- Množinový rozdíl Jsou-li L_1 a L_2 regulární, pak $L_1 \backslash L_2 = L_1 \cap (\Sigma^* \backslash L_2)$ je regulární.
- Kleeneho pozitivní uzávěr Je-li L regulární, pak $L^+=(L^*\backslash\{\varepsilon\})\cup L$ je regulární.
- N-tá mocnina jazyka L^n ... plyne z uzavření na produkt
- Jazyk reverzních řetězců

 $L^R = \{w^R \mid w \in L\}$ Zdůvodníme pomocí konstrukce automatu rozpoznávající L^R (viz cvičení 6)

• $Jazyk \ sufixů$ $Sfx(L) = \bigcup_{w \in L} Sfx(w)$

Důkaz 28: Pro L uvažujeme A tak, že L = L(A). Navíc A je KDA s úplnou přechodovou funkcí takový, že všechny jeho stavy jsou dosažitelné.

Námi hledaný automat je KNA definován jako:

$$A' = \langle \Sigma, Q, \delta, Q, F \rangle$$

s přechodovou funkcí

$$\delta(q, a) = \{\delta(q, a)\}\$$

Poznámka 10: Všechny stavy jsou označeny za počáteční, aby měl automat možnost skočit do libovolné fáze výpočtu a tím "uhádnout" vynechané znaky řetězce, jehož sufix zkoumáme.

• Jazyk prefixů

$$Pfx(L) = \bigcup_{w \in L} Pfx(w)$$

 $Pfx(L) = (Sfx(L^R))^R$

Důkaz plyne z uzavření na Sfx a reverzní řetězec.

• Jazyk infixů

$$Ifx(L) = Pfx(Sfx(L))$$

Důkaz je taktéž zřejmý.

17.3. Pumping lemma

Poznámka 11: Jen drobné upozornění na začátek: jedná se o tvrzení ve tvaru když \to pak, tj. "Pokud je L regulární, pak . . . "

Věta 34: Nechť L je regulární jazyk nad Σ . Pak existuje $n \in \mathbb{N}$ tak, že pro každý řetězec $w \in L$ délky alespoň n platí, že existují $x, y, z \in \Sigma^*$ tak, že jsou splněny podmínky:

- 1. w = xyz
- $2. |xy| \leq n$
- 3. $y \neq \varepsilon$
- 4. pro každé $i \geq 0$ platí, že $xy^iz \in L$

Důkaz 29: Rozlišíme dva případy.

- L je konečný
 pak je tvrzení triviální. Hledané n je ve tvaru l+1, kde l je délka nejdelšího řetězce z L. Pak není v L žádný řetězec delší než n a tvrzení 1. 4. platí triviálně.
- L je nekonečný pak pro něj existuje KDA s množinou stavů Q tak, že L(A) = L. Položíme n = |Q|. Pro každý řetězec $w = a_1 a_2 \cdots a_m$ kde $m \ge n$ existuje přijímací výpočet délky m:

$$\langle q_0, w \rangle = \langle r_0, a_1 \cdots a_m \rangle, \langle r_1, a_2 \cdots a_m \rangle \dots \langle r_{m-1}, a_m \rangle, \langle r_m, \varepsilon \rangle$$

Jelikož je $m \geq n$, tak nevyhnutelně musí existovat alespoň 1 stav, který je v tomto přijímacím výpočtu zopakován.

Následně dle obrázku mějme:

$$x = a_1 a_2 \dots a_i$$

$$y = a_{i+1} a_{i+2} \dots a_j$$

$$z = a_{j+1} a_{j+2} \dots a_m$$

Vidíme tedy, že všechny podmínky Pumping lemmy jsou splněny.

Příklad 33: Jazyk $L = \{a^n b^n | \text{ kde } n \in N\}$ není regulární.

Důkaz 30: Předchozí příklad 33 není regulární, což dokážeme sporem. Nechť je tedy L regulární a dle předchozí věty existuje číslo n tak, že vezmeme řetězec $a^nb^n=xyz$ tak, že $x=a^k,y=a^l,z=a^{n-k-l}b^n$.

Tím jsme došli ke sporu, protože xy^iz pro každé $i \ge 0$ obecně nemusí patřit do jazyku L (ovlivníme tím počet a v řetězci a tím se počet znaků a a b nerovná).

18. Minimalizace KDA

Poznámka 12: Pro regulární jazyk L existuje více, než jeden automat A tak, že L = L(A) a navíc můžeme mít A_1, A_2 tak, že $L(A_1) = L(A_2)$, ale $|Q_1| < |Q_2|$.

18.1. Zprava invariantní ekvivalence

Definice 20: Předpokládejme, že máme $A = \langle \Sigma, Q, \delta, q_0, F \rangle$ a relaci ekvivalence $\Theta \subseteq Q \times Q$ nazveme *zprava invariantní ekvivalencí* vzhledem k δ , pokud platí, že $\langle q, r \rangle \in \Theta$ a $a \in \Sigma$, pak $\langle \delta(q, a), \delta(r, a) \rangle \in \Theta$.

Pravá invariance reprezentuje přirozenou vlastnost, kterou musí mít relace nerozlišitelnosti stavů. Mezními případy invariantních relací zprava jsou:

- 1. identita $\Theta = \{ \langle q, q \rangle | \quad q \in Q \}$
- 2. $\Theta = Q \times Q$

18.2. Faktorizace automatu

Definice 21: Mějme KDA $A = \langle \Sigma, Q, \delta, q_0, F \rangle$ a zprava invariantní ekvivalenci Θ vzhledem k δ , pak zavedeme $A/\theta = \langle \Sigma, Q/\Theta, \delta^{A/\Theta}, [q_0]_{\Theta}, F^{A/\Theta} \rangle$, kde

$$\delta^{A/\Theta} = ([q]_{\Theta}, a) = [\delta(q, a)]_{\Theta} \text{ a } F^{A/\Theta} = \{[q]_{\Theta} | \quad q \in F\}$$

Věta 35: Automat A je dobře definovaný KDA.

Důkaz 31: Větu 35 si ověříme tak, že definice $\delta^{A/\Theta}$ nezávisí na výběru prvků z třídy rozkladu dle Θ .

Mějme $[q]_{\Theta} = [r]_{\Theta}$, to jest $\langle q, r \rangle \in \Theta$. Potom pro $a \in \Sigma$ platí $\langle \delta(q, a), \delta(r, a) \rangle \in \Theta$, to jest $[\delta(q, a)]_{\Theta} = [\delta(r, a)]_{\Theta}$.

Obecně $L(A/\Theta) \neq L(A)$. Snažíme se najít co největší Θ , tak aby tato rovnost platila.

Příklad 34: $\Theta = Q \times Q$

Věta 36: Platí, že $(\delta^{A/\Theta})^*([q]_{\Theta}, x) = [\delta^*(q, x)]_{\Theta}$ pro každý $x \in \Sigma^*$.

Důkaz 32: Dokážeme indukcí přes délku řetězce.

• Tedy $x = \varepsilon$, pak

$$(\delta^{A/\Theta})^*([q]_{\Theta}, \varepsilon) = [q]_{\Theta} = [\delta^*(q, \varepsilon)]_{\Theta}$$

• pak nechť toto tvrzení platí pro $u \in \Sigma^*$ a řetězec x = au, kde $a \in \Sigma$.

$$(\delta^{A/\Theta})^*([q]_{\Theta}, au) = (\delta^{A/\Theta})^*(\delta^{A/\Theta}([q]_{\Theta}, a), u) =$$

$$= (\delta^{A/\Theta})^*([\delta(q, a)]_{\Theta}, u) = [\delta^*(\delta(q, a), u]_{\Theta} = [\delta^*(q, au)]_{\Theta}$$

Definice 22: Mějme KDA $A=\langle \Sigma,Q,\delta,q_0,F\rangle$ s úplnou přechodovou funkcí. Pro stavy $q,r\in Q$ položme $q\equiv_A r$, pokud pro každý řetězec $x\in\Sigma*$ platí, že $\delta^*(q,x)\in F$, právě když $\delta^*(r,x)\in F$.

Věta 37: \equiv_A je zprava invariantní operace.

Důkaz 33: Dokazujeme větu 37. Důkaz reflexivity je zřejmý, stejně tak symetrie i tranzitivita. Nechť $q \equiv_A r$ a máme $a \in \Sigma$. Máme dokázat, že $\delta(q, a) \equiv_A \delta(r, a)$. Pro každé $x \in \Sigma^*$ platí:

$$\begin{array}{lcl} \delta^*(\delta(q,a),x) & = & \delta^*(q,ax) \\ \delta^*(\delta(r,a),x) & = & \delta^*(r,ax) \end{array}$$

Užitím faktu, že $\delta^{*(q,ax)} \in F$ dostaneme $\delta^*(r,ax) \in F$, tedy $\delta^*(\delta(q,a),x) \in F$ právě tehdy, když $\delta^*(\delta(r,a),x) \in F$, to jest $\delta(q,a) \equiv_A \delta r$, a a tedy A/\equiv_A .

Věta 38: Pro A/\equiv_A a stav $q\in Q$ platí, že $q\in F$ právě, když $[q]_{\equiv_A}\in F^{A/\equiv_A}$.

Důkaz 34: Předchozí větu dokážeme tak, že dokážme implikace z obou stran.

- \bullet Implikace zleva doprava (" \Rightarrow ") plyne z definice.
- Implikace zprava doleva (" \Leftarrow "): pokud $[q]_{\equiv_A} \in F^{A/\equiv_A}$, pak z definice $\exists r \in F$ tak, že $r \in [q]_{\equiv_A}$. To znamená, že $r \equiv_A q$ pro každý $x \in \Sigma^*$ platí, že $\delta^*(r,x) \in F$ právě tehdy, když $\delta^*(q,x) \in F$, speciálně pro $x = \varepsilon$, navíc $\delta^*(r,\varepsilon) = r \in F$, to jest $\delta^*(q,\varepsilon) = q \in F$.

Důsledek 2: KDA A nazveme redukovaný, pokud je \equiv_A identita.

Věta 39: KDA A/\equiv_A je redukovaný.

Důkaz 35: Automat $A \equiv_A$ označme jako B, následně prokážeme, že \equiv_B je identita, tozn., že pokud $[q]_{\equiv_A} \equiv_B [r]_{\equiv_A}$, tak pak $[q]_{\equiv_A} = [r]_{\equiv_A}$.

Předpokládejme, že platí $[q]_{\equiv_A} \equiv_B [r]_{\equiv_A}$.

- Pak podle definice \equiv_B tozn, že pro $\forall x \in \Sigma^*$ platí $(\delta^{A/\equiv_A})^*([q]_{\equiv_A}, x) \in F^{A/\equiv_A}$ právě, když $(\delta^{A/\equiv_A})^*([r]_{\equiv_A}, x) \in F^{A/\equiv_A}$.
- S využitím věty 36 pro každé $x \in \Sigma^*$:

$$[\delta^*(q,x)]_{\equiv_A}\in F^{A/\equiv_A}$$
 právě tehdy, když $[\delta^*(r,x)]_{\equiv A}\in F^{A/\equiv_A}$

Následně aplikujeme větu 38:

$$\delta^*(q,x) \in F$$
 právě tehdy, když $\delta^*(r,x) \in F$, tozn., že $q \equiv_A r$ a tedy $[q]_{\equiv_A} = [r]_{\equiv_A}$

Věta 40: $L(A) = L(A/\equiv_A)$, což plyne užitím vět 38 a 36.

Důkaz 36: Máme dokázat, že $\delta^*(q_0, x) \in F$, právě, když $(\delta^{A/\equiv_A})^*([q_0]_{\equiv_A}, x) \in F^{A/\equiv_A}$. Z věty 36: $\delta^*(q_0, x)$ právě, když $[\delta^*(q_0, x)]_{\equiv_A} \in F^{A/\equiv_A}$, to ale platí z věty 38.

Důsledek 3: Obecně platí, že $L(A) \subseteq L(A/\Theta)$.

Věta 41: Pokud je každý stav automatu A dosažitelný, pak má A/\equiv_A také každý stav dosažitelný.

18.3. Algoritmus pro hledání redukovaného automatu

- 1. Označíme A/\equiv_A jako A^R , konstruujeme posloupnost rozkladů na Q tak, že $\varphi_1, \varphi_2, \ldots, \varphi_i = \varphi_{i+1}$, kde $\varphi_1 = \{F, Q \setminus F\}$
- 2. Při odvození rozkladů φ_i z φ_{i-1} postupujeme následovně:

Pro $\forall R \in \varphi_{i-1}$ provedeme:

- (a) Vezmeme libovolný stav $r \in R$.
- (b) Položíme $S = \{ s \in R | \text{ pro každé } a \in \Sigma \text{ platí také, že } \delta(S, a) \in [\delta(R, a)] \}.$
- (c) Pokud S=R, pak vložíme R do φ_i , pokud $S\subseteq R$, pak vložíme S a $R\setminus S$ do φ_i .

Věta 42: Korektnost algoritmu pro nalezení \equiv_A : pokud $\varphi_i = \varphi_{i+1}$, pak $\varphi_i = Q / \equiv_A$.

Důkaz 37: Ověříme, že $q \equiv_A r$ právě, když $q \in [r]_{\varphi_i}$.

Pokud $q \in [r]_{\varphi_i}$, pak z toho, jak jsme zavedli posloupnost rozkladů, plyne, že nemůže platit $q \equiv_A r$. Pokud $q \equiv_A r$, pak $q \in [r]_{\equiv_A}$ a zbývá dokázat opačnou implikaci, což provedeme indukcí přes délku řetězce:

- Máme libovolná $q, r \in Q$.
- Pokud $q \in [r]_{\varphi_i}$, pak $\delta^*(q, x) \in F$ právě, když $\delta^*(r, x) \in F$.
- 1. Pro $x=\varepsilon$ je situace triviální. Máme dokázat, že $q\in F$ právě, když $r\in F$, ale to obecně platí, protože $\varphi_i=\{F,Q\setminus F\}$

2. Pro $x \in \Sigma^*, x = au$, kde $a \in \Sigma, u \in \Sigma^*$. Z předpokladu, že $q \in [r]_{\varphi_i}$ a $\varphi_i = \varphi_{i+1}$ platí, že $[\delta(q,a)]_{\varphi_i} = [\delta(r,a)]_{\varphi_i}$, to jest $\delta(q,a) \in [\delta(q,a)]_{\varphi_i}$ - zde použijeme indukční předpoklad.

$$\delta^*(\delta(q,a)r)\in F$$
 právě tehdy, když $\delta^*(q,x)\in F$ $\delta^*(\delta(r,a)r)\in F$ právě tehdy, když $\delta^*(r,x)\in F$

Tvrzení dokázáno pro každé x,
tedy $q \equiv_A r$.

Příklad 35: Mějme výraz b(ab)*ba*. Dále

$$\begin{array}{lcl} \varphi_1 & = & \{\{q_0,q_1,q_2,q_3,q_5\},\{q_4,q_6\}\} \\ \varphi_2 & = & \{\{q_0,q_1,q_3\},\{q_2.q_5\},\{q_4,q_6\}\} \\ \varphi_3 & = & \{\{q_0,q_3\},\{q_1\},\{q_2.q_5\},\{q_4,q_6\}\} \end{array}$$

Následně rozklady:

V tabulce 4. se objevují znaky Xna pozicích, pro které platí, že:

$$T[q,x] \quad \text{ kde plat} \quad q \in F, x \not\in F$$
 nebo
$$q \not\in F, x \in F$$

Projdeme prázdná místa, T[q,r]="prázdno, pokud" $\exists a\in \Sigma$ tak, že:

	q_0	q_1	q_2	q_3	q_4	q_5	q_6
q_0	*	X	X	*	X	X	X
$\overline{q_1}$	-	*	X	X	X	X	X
q_2	-	-	*	X	X	*	X
q_3	-	-	-	*	X	X	X
q_4	-	-	-	-	*	X	*
q_5	-	-	-	-	-	*	X
q_6	-	-	-	-	-	-	*

Tabulka 4. Tabulkový popis rozkladů stavů

- bud $T[\delta(q, a), \delta(r, a)] = X$
- nebo $T[\delta(r, a), \delta(q, a)] = X$

Pokud ano, tak "X" na pozici [q, r].

19. Izomorfismus automatů

Pro KDA ${\cal A}_1$ a ${\cal A}_2$ mějme zobrazení

$$h: Q_1 \to Q_2$$

a toto zobrazení označme jako izomorfismus, pokud platí:

- 1. Zobrazení h je bijektivní.
- 2. Počáteční stav automatu A_1 e zobrazí na počáteční stav automatu A_2 .
- 3. Pro všechna $q \in Q$ platí, že $Q \in F_1$ právě, pokud $q \in F_2$.
- 4. Zobrazení h je kompatibilní s přechodovou funkcí.

Věta 43: Jsou-li dva automaty izomorfní, pak $L(A_1) = L(A_2)$.

Definice 23: Mějme regulární jazyk L, pak KDA s úplnou přechodovou funkcí je minimálním automatem pro L, pokud L(A) = L a pro každý KDA B takový, že L(B) = L platí, že B má tolik stavů jako A.

Věta 44: Je-li automat A minimální pro jazyk L, pak je redukovaný a nemá nedosažitelné stavy.

Věta 45: Pokud jsou automaty A, B KDA bez nedosažitelných stavů a pokud jsou tyto automaty navíc redukované a existuje stejný jazyk, který generují, pak jsou izomorfní.

Věta 46: A je minimální automat pro jazyk L právě tehdy, když A neobsahuje nedosažitelné stavy a je redukovaný.

20. Bezkontextové gramatiky

V této části se vrátíme k problematice bezkontextových gramatik. Před dalším čtením je potřeba ovládat základní pojmy, zejména

- Bezkontextové gramatiky
- Bezkontextové jazyky
- P-derivace
- Odvozování řetězců
- Věty a větné formy

Navíc si zavedeme duální pojem k derivaci - redukci.

Definice 24: Řetězec v lze redukovat na řetězec u, pokud $u \Rightarrow_G^* v$. Značíme $v \Leftarrow_G^* u$.

V následujícím příkladě si ukážeme problém nejednoznačnosti bezkontextových gramatik.

Příklad 36: Mějme gramatiku:

```
\begin{split} G &= \langle N, \Sigma, P, S \rangle \\ \Sigma &= \{a, b, c, 0, 1, +, -, *, /, (,)\} \\ N &= \{S, E, C, V\} \\ P &= \{ S \to E, \\ E \to E * E|E/E|E + E|E - E| - E|C|V|(E), \\ C \to 0C|1C|0|1, \\ V \to aV|bV|cV|a|b|c \ \} \end{split}
```

Uvažujme větu w = ac * 1 - c. K ní se lze dostat buď:

$$S \Rightarrow_G E \Rightarrow_G E*E \Rightarrow_G V*E \Rightarrow_G V*E-E \Rightarrow_G V*E-V \Rightarrow_G aV*E-V \Rightarrow_G ac*E-V \Rightarrow_G ac*E-V \Rightarrow_G ac*C-V \Rightarrow_G ac*C-c \Rightarrow_G ac*1-c$$

nebo

$$S \Rightarrow_G E \Rightarrow_G E * E \Rightarrow_G V * E \Rightarrow_G aV * E \Rightarrow_G ac * E \Rightarrow_G ac * E - E \Rightarrow_G ac * C - E \Rightarrow_G ac * 1 - E \Rightarrow_G ac * 1 - V \Rightarrow_G ac * 1 - C$$

Ačkoliv odvozujeme stejnou větu, můžeme zde pozorovat jakousi nejednoznačnost, způsobenou tím, že neterminály derivujeme v libovolném pořadí.

Tento problém bychom mohli vyřešit použitím tzv. lineární bezkontextové gramatiky, tedy takové, jejíž odvozovací pravidla obsahují pouze jeden neterminální symbol na pravé straně.

Příklad 37: Lineární gramatika může vypadat např. takto:

```
\begin{split} G &= \langle N, \Sigma, P, S \rangle \\ P &= \{ S \to abB, \\ A \to aaBb | \varepsilon, \\ B \to bbAa \} \\ L(G) &= \{ ab(bbaa)^n bba(ba)^n \mid n \geq 0 \} \end{split}
```

Ovšem k nejednoznačnosti může stejně dojít, pokud by se z různých neterminálních symbolů daly odvodit stejná slova.

Příklad 38: Příklad nejednoznačné lineární gramatiky:

```
\begin{split} G &= \langle N, \Sigma, P, S \rangle \\ P &= \{ \quad S \rightarrow aA \mid aB, \\ A \rightarrow bA|a, \\ B \rightarrow bB|a \quad \} \end{split}
```

Uvažujme slovo w = abba, ke kterému lze dojít buď:

$$S \Rightarrow_G aA \Rightarrow_G abA \Rightarrow_G abbA \Rightarrow_G abba$$

nebo:

$$S \Rightarrow_G aB \Rightarrow_G abB \Rightarrow_G abbB \Rightarrow_G abba$$

Mějme bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$.

Definice 25: P-derivace x_0, \ldots, x_k se nazývá nejlevější P-derivace, pokud pro každé $i \in \{1, \ldots, k\}$ platí, že x_{i-1} je ve tvaru uAv, kde $u \in \Sigma^*$, $A \in N$, $v \in (\Sigma \cup N)^*$ a x_i je ve tvaru uyv, kde $A \to y \in P$.

Poznámka 13: Řetězci u se říká uzavřená forma a řetězci Av otevřená forma (větné formy uAv). Odvození pomocí nejlevější derivace značíme $u \Rightarrow_{G,l} v$.

Věta 47: Mějme $v \in \Sigma^*$ a $X \in N$. Pokud existuje P-derivace X, \ldots, v , pak existuje nejlevější P-derivace X, \ldots, v používající stejnou množinu pravidel jako výchozí P-derivace.

Důkaz 38: Tvrzení dokážeme indukcí přes délku P-derivace

- Pro délku 0 platí triviálně.
- Předpokládejme, že tvrzení platí pro P-derivaci délky $\leq n$.

Uvažujme P-derivaci délky n+1, ve tvaru $x_0, x_1, \ldots, x_{n+1}$. Pokud x_1 vzniklo z x_0 použitím pravidla $X \to w_0 X_{i_1} w_1 X_{i_2} \cdots X_{i_k} w_k$ kde $w_0, \ldots, w_j \in \Sigma^*$, $X_{i_j} \in N$, $1 \le j \le k$ pak X_{n+1} je ve tvaru $w_0 u_1 w_1 u_2 w_2 \cdots w_k$ tak, že $x_{i_j} \Rightarrow_G^* u_j$.

To znamená, že existují P-derivace délek $\leq n$: X_{i_j}, \ldots, u_j

Z indukčního předpokladu: existují nejlevější P-derivace X_{i_j},\dots,u_j používající stejnou množinu pravidel.

Dále platí:

$$\begin{array}{ll} X & \Rightarrow_{G,l} & w_0 X_{i_1} w_1 X_{i_2} \dots X_{i_k} w_k \\ & \Rightarrow_{G,l} & w_0 u_1 w_1 X_{i_2} \dots X_{i_k} w_k \\ & \Rightarrow_{G,l} & w_0 u_1 w_1 u_2 \dots X_{i_k} w_k \\ & \dots \\ & \Rightarrow_{G,l} & w_0 u_1 w_1 u_2 w_2 \dots u_k w_k \end{array}$$

To jest, existuje nejlevější P-derivace $X, \ldots, w_0 \cdots w_k$

Příklad 39: Uvažujme gramatiku z příkladu 36

 $S \Rightarrow_G^* E + C$ tady problém není

 $S\Rightarrow_{G,l}^*E+C$ tento výraz už smysl nedává. Pomocí nejlevější derivace bychom zákonitě museli nejdříve derivovat E na levé straně výrazu E+E

Poznámka 14: Lze zavést duálně nejpravější derivaci.

Příklad 40: Zase se odkážeme na příklad 36.

Výraz 10 + (ca * 110) má jedinou nejlevější derivaci

Naopak a + 10 * c jich má několik:

$$S \Rightarrow_{G,l} E \Rightarrow_{G,l} E + E \Rightarrow_{G,l} V + E \Rightarrow_{G,l} a + E \Rightarrow_{G,l} a + E * E \Rightarrow_{G,l} a + C * E \Rightarrow_{G,l} a + 1C * E \Rightarrow_{G,l} a + 10 * E \Rightarrow_{G,l} a + 10 * V \Rightarrow_{G,l} a + 10 * C$$

nebo:

 $S \Rightarrow_{G,l} E \Rightarrow_{G,l} E * E \Rightarrow_{G,l} \ldots \Rightarrow_{G,l} a + 10 * c$ (už ve druhém odvození můžeme pozorovat rozdíl) Je to způsobeno jinou nejednoznačností než tou, kterou jsme eliminovali pomocí nejlevější derivace.

20.1. Derivační stromy

Slouží ke grafickému znázornění nejlevějších derivací. Mějme gramatiku $G = \langle N, \Sigma, P, S \rangle$.

Definice 26: Derivačním stromem slova $x \in (\Sigma \cup N)^*$ z $X \in N$ podle pravidel z G je každý strom splňující:

- 1. každý vnitřní uzel je ohodnocen neterminálem
- 2. kořen je ohodnocen X
- 3. pokud je vnitřní uzel označený $A\in N$ a jeho potomci jsou zleva doprava označeni $X_1,\dots,X_k\in N\cup \Sigma$ pak existuje pravidlo $A\to X_1\cdots X_k\in P$
- 4. zřetězením hodnot v listech při průchodu stromu do hloubky a zleva doprava získáme řetězec \boldsymbol{x}

Příklad 41: Opět pracujeme s gramatikou z příkladu 36.

 $S \Rightarrow_{G,l}^* a + 10 * c$ Derivační strom bude vypadat následovně:

Věta 48: Pokud $X \Rightarrow_{G,l}^* x$ pak existuje derivační strom x z X podle G.

Důkaz 39: Tvrzení dokážeme jak jinak, než indukcí přes délku P-derivace.

Předpokládejme, že tvrzení platí pro derivace délky n a méně.

Mějme derivaci $X=x_0,\dots,x_{n+1}$ délky n+1 pak existuje pravidlo $x\to x_1\in P$

$$x_1 = w_0 X_1 w_1 X_2 w_2 \dots X_k w_k$$
kde $w_i \in \Sigma^*, \ X_i \in N$

 x_{n+1} je ve tvaru $w_0u_1w_1u_2\dots u_kw_k$

 $X_i \Rightarrow_{G,l}^* u_i \dots$ délky nejvýše n. Z indukčního předpokladu vyplývá, že existují derivační stromy $X_i \Rightarrow_{G,l}^* u_i.$

Věta 49: Pokud existuje derivační strom x z X podle G, pak $X \Rightarrow_{G,l}^* x$

Důkaz 40: Dokážeme indukcí přes výšku stromu.

• Pro 0 je to jasné

 \bullet Předpokládejme, že tvrzení platí pro stromy výšky n a méně.

Mějme strom výšky n+1, podle tohoto víme, jak vypadal první krok derivace $X\to w_0X_0w_1\dots$

Z indukčního předpokladu existují derivace $X_i \Rightarrow_{G,l}^* u_i$ a proto

$$X \Rightarrow_{G,l} w_0 X_1 w_1 X_2 \dots X_{i_k} w_k$$

$$\Rightarrow_{G,l} w_0 u_1 w_1 X_2 \dots X_{i_k} w_k$$

$$\dots$$

$$\Rightarrow_{G,l} w_0 u_1 w_1 u_2 w_2 \dots u_k w_k$$

Věta 50: $S \Rightarrow_{G,l}^* u$ právě když existuje derivační strom u z S podle G.

20.2. Jednoznačné a nejednoznačné bezkontextové gramatiky

Definice 27: Bezkontextová gramatika $G = \langle N, \Sigma, P, S \rangle$ se nazývá nejednoznačná, pokud existuje věta $x \in L(G)$, která má více než jeden derivační strom z S podle G. V opačném případě se nazývá jednoznačná bezkontextová gramatika.

Definice 28: Bezkontextový jazyk L se nazývá jednoznačný pokud existuje jednoznačná gramatika G tak, že L = L(G).

Definice 29: Bezkontextový jazyk L se nazývá inherentně nejednoznačný, pokud neexistuje žádná jednoznačná gramatika G taková, že L = L(G).

Věta 51: Každý regulární jazyk je jednoznačný.

Důkaz 41: Pokud L je regulární, pak existuje KDA A s úplnou přechodovou funkcí δ . Pak pro A lze sestavit gramatiku G tak, že bude platit L(A) = L(G).

Z toho jak byla gramatika G konstruována plyne, že pro každý $A \in N$ a $a \in \Sigma$ existuje nejvýše jedno pravidlo $A \to aB$. To jest, pro $x \in L$ existuje právě jedna P-derivace.

Důkaz 42:

Příklad 42: $L = \{a^n b^n c^p d^p \mid n, p \ge 0\}$ je inherentně nejednoznačný.

20.3. Uzávěrové vlastnosti bezkontextových jazyků

• Sjednocení

Mějme dány bezkontextové jazyky L_1 , L_2 a korespondující bezkontexotvé gramatiky G_1 a G_2 . Lze předpokládat, že množiny stavů obou gramatik jsou disjunktní (tj. $N_1 \cap N_2 = \emptyset$).

Dále uvažujeme gramatiku $G = \langle N, \Sigma, P, S \rangle$, kde

$$\begin{split} N &= N_1 \cup N_2 \cup \{S\} \\ \Sigma &= \Sigma_1 \cup \Sigma_2 \\ P &= P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\} \\ \text{Platí, že } L(G) &= L(G_1) \cup L(G_2). \end{split}$$

Produkt

 L_1 a L_2 jsou bezkontextové jazyky, G_1 a G_2 jsou odpovídající bezkontextové gramatiky.

Zavedeme gramatiku
$$G = \langle N, \Sigma, P, S \rangle$$
, kde $N = N_1 \cup N_2 \cup \{S\}$
$$\Sigma = \Sigma_1 \cup \Sigma_2$$

$$P = P_1 \cup P_2 \cup \{S \to S_1 S_2\}$$
 Platí, že $L(G) = L(G_1) \cdot L(G_2)$.

• Kleeneho uzávěr

Mějme bezkontextový jazyk La k němu odpovídající gramatiku ${\cal G}.$

Vytvoříme novou gramatiku $G' = \langle N \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow \varepsilon \mid SS'\}, S' \rangle$.

• Pozitivní uzávěr

Podobné jako u Kleeneho uzávěru, akorát výsledná gramatika se bude lišit v množině pravidel.

$$G' = \langle N \cup \{S'\}, \Sigma, P \cup \{S' \to S \mid SS'\}, S' \rangle$$

• Průnik

 \mathcal{L}_2 není uzavřená na průnik.

Příklad 43: Uvedeme si příklad, který nám tvrzení potvrdí.

$$\Sigma = \{a, b, c\}$$

$$L_1 = \{a^n b^n c^* \mid n \ge 0\}$$

$$L_2 = \{a^* b^n c^n \mid n \ge 0\}$$

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

Z toho také plyne, že není uzavřená ani na Komplement či Množinový rozdíl (De Morganovy zákony).

20.4. Bezkontextové gramatiky v programátorské praxi

BNF (Backus-Naurova forma): Vytvořili ji John Backus a Peter Naur. Zápis se řidí několika pravidly:

- neterminální symboly se zapisují do (...)
- \bullet používá se ::= místo \rightarrow
- terminální symboly se píší do uvozovek (" * ")
- pravidla se oddělují pomocí |

Příklad 44: Uvedeme si příklad zápisu gramatiky pomocí BNF.

```
 \begin{split} \langle expr \rangle &::= "("\langle expr \rangle")" \mid \langle expr \rangle \langle op \rangle \langle expr \rangle \mid \langle number \rangle \\ \langle op \rangle &::= "+" \mid "-" \mid "*" \mid "/" \\ \langle number \rangle &::= \langle digit \rangle \langle number \rangle \mid \langle digit \rangle \\ \langle digit \rangle &::= "0" \mid \dots \mid "9" \end{split}
```

Extended BNF: Zavedl Niklaus Wirth v roce 1977. Odpovídá BNF, pouze zjednodušuje její notaci a to tak že:

• každé pravidlo je ukončeno znakem";"

- terminální symboly se píší do uvozovek, neterminální ne
- [,] značí volitelnou část výrazu
- {,} indukují možnost opakování
- (,) jsou použity pro shlukování výrazů
- místo ::= se používá =
- terminální a neterminální symboly se oddělují čárkou

Příklad 45: Gramatiku z předchozího příkladu můžeme zapsat pomocí EBNF takto:

```
\begin{array}{l} expr = "(", expr,")" \mid expr, op, expr \mid number; \\ op = "+" \mid "+" \mid "-" \mid "*" \mid "/"; \\ number = [signum], digit, \{digit\}; \\ digit = "0" \mid \dots \mid "9"; \\ signum = "+" \mid "-"; \end{array}
```

21. Nedeterministický zásobníkový automat

Hledáme silnější analytický aparát, než jsou KDA, protože ty v určitých situacích selhávají.

Příklad 46: Mějme jazyk

$$L = \{x \in \Sigma^* | x \text{ je korektně uzávorkovaný výraz} \}$$

Následně podrobněji

$$L = \{x \in \Sigma^* | \Sigma = \{(,),[,]\} \ x$$
 je korektně uzávorkovaný výraz $\}$

Do tohoto jazyka patří například řetězce ()[], ([]), \dots , ale nepatří do něj řetězce ()),][[, \dots

Obrázek 5. Náčrt zásobníkového automatu.

Definice 30: Jako nedeterministický zásobníkový automat označme následující strukturu:

$$A = \langle \Sigma, \Gamma, Q, \delta, q_0, z_0, F \rangle$$

Nyní si popišme význam nám dosud neznámých prvků tohoto automatu:

 Γ – abeceda zásobnákových symbolů.

 z_0 – počáteční zásobníkový symbol.

Q – konečná množina stavů.

Navíc $\langle \sigma, abc \rangle \in \delta(q,a,d)$ znamená slovně: "Ze stavu q po přečtení a ze vstupu a symbolu d ze zásobníku přejde automat A do stavu σ a na zásobník zapíše řetězec "abc"." Mějme na paměti, že tento řetězec je na zásobník zapsán "obráceně".

Obrázek 6. Vkládání hodnot na zásobník u NZA.

21.1. Reprezentace NZA

21.1.1. Přechodová tabulka

V přechodové tabulce řádky odpovídají stavům a sloupce odpovídají prvkům $(\Sigma \cup \{\varepsilon\} \times \Gamma)$.

Příklad 47:

$$Q = \{q_0, q_1\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{0, 1\}$$

	$\langle a, 0 \rangle$	$\langle b,0 angle$	$\langle c, 0 \rangle$	$\langle a, 1 \rangle$	$\langle b, 1 \rangle$	$\langle c, 1 \rangle$
$ ightarrow q_0^{\cdot}$		• • •				
q_1^\cdot		$\{\langle r, w \rangle\}$				

Tabulka 5. Ukázka přechodové tabulky pro NZA

21.1.2. Přechodový diagram

Přechodové diagramy NZA jsou velmi podobné diagramům KA.

Definice 31: Konfigurací NZA je každý prvek z množiny $Q \times \Sigma^* \times \Gamma^*$, tedy $\langle q, abc, 001 \rangle \in Q \times \Sigma^* \times \Gamma^*$ znamená, že NZA je ve stavu q, na vstupu zbývá přečíst řetězec "abc" a na zásobníku je řetězec "001".

Pro konfigurace $\langle q_i, w_i, x_i \rangle$ a $\langle q_i, w_i, x_i \rangle$ klademe $\langle q_i, w_i, x_i \rangle \vdash \langle q_i, w_i, x_i \rangle$ právě, když platí:

- $x_i = zy$, kde $z \in \Gamma, y \in \Gamma^*$
- $w_i = aw_j$, kde $a \in (\Sigma \cup \{\varepsilon\}), w_j \in \Sigma^*$
- $\langle q_i, x \rangle \in \delta(q_i, a, z)$

Přičemž $x_i = xy$.

Reflexivní a tranzitivní uzávěr \vdash označíme \vdash^* a platí:

$$\langle q_i, w_i, x_i \rangle \vdash^* \langle q_j, w_j, x_j \rangle$$
 právě, když
$$\langle q_i, w_i, x_i \rangle \vdash \dots \vdash \langle q_i, w_i, x_j \rangle$$

Pokud $\langle q_i, w_i, x_i \rangle \vdash^* \langle q_j, w_j, x_j \rangle$ tak říkáme, že existuje výpočet NZA, kterým přejde tento NZA z $\langle q_i, w_i, x_i \rangle$ do $\langle q_j, w_j, x_j \rangle$.

21.2. Jazyky rozpoznávané NZA

1. Jazyk rozpoznávaný pomocí koncových stavů automatu, tedy:

$$L(A) = \{ w \in \Sigma^* | \langle q_0, w, z_0 \rangle \vdash^* \langle q, \varepsilon, x \rangle, q \in F, x \in \Gamma^* \}$$

2. Jazyk rozpoznávaný vyprazdňováním zásobníků, tedy:

$$N(A) = \{ w \in \Sigma^* | \langle q_0, w, z_0 \rangle \vdash^* \langle q, \varepsilon, \varepsilon \rangle, q \in Q \}$$

21.3. Rozpoznání jazyk způsobem přechodu od koncových stavů k vyprázdnění zásobníku

Věta 52: Ke každému NZA A existuje NZA A', pro který platí L(A) = N(A') = L(A')

Důkaz 43: Mějme automatu $A = \langle \Sigma, \Gamma, Q, \delta, q_0, z_0, F \rangle$. Zkonstruujeme automat A' tak, že platí L(A) = N(A') = L(A'), načež je třeba vyřešit dvě věci:

- 1. V případě, že automat A vyprázdní svůj zásobník, ale v koncovém stavu, potom A' nesmí vyprázdnit zásobník, což se řeší přidáním symbolu z'_0 na dno zásobníku automatu A.
- 2. V případě, že automat A skončí (s prázdným vstupem), tak by v koncovém stavu automat A' měl navíc ještě vyprázdnit zásobník, to ale zajistíme tak, že přidáme slovo $q_{\#}$, ve kterém A' vyprazdňuje svůj zásobník.

Uvažujme

$$A' = \langle \Sigma, \Gamma \cup \{z_0'\}, Q \cup \{q_0', q_\#'\}, \delta', q_0', z_0', \{q_\#'\} \rangle$$

kde δ' je přechodová funkce, jež vznikne rozšířením původní přechodové funkce o následující přechody:

$$\begin{split} \delta'(q_0',\varepsilon,z_0') &= \{\langle q_0,z_0,z_0'\rangle\} \\ \delta'(q,\varepsilon,z) &= \delta(q,\varepsilon,z) \cup \{\langle q_\#',\varepsilon\rangle\} \text{ pokud } q \in F, a \in \Gamma \cup \{z_0'\} \\ \delta'(q_\#',\varepsilon,z) &= \{\rangle q_\#',\varepsilon\langle\} \text{ pro } z \in \Gamma \cup \{z_0'\} \end{split}$$

21.4. Rozpoznání jazyk způsobem přechodu od vyprázdnění zásobníku k přijímání koncovými stavy

Věta 53: Ke každému NZA $A = \langle \Sigma, \Gamma, Q, \delta, q_0, z_0, F \rangle$ existuje NZA A' tak, že N(A) = L(A') = N(A').

Důkaz 44: Něchť je dán $A=\langle$ nemám poznačeno \rangle . Konstruujeme A', načež je třeba vyřešit dvě věci:

- 1. V případě, kdy výchozí automat A vyprázdnil vstup a zásobník (to může nastat v libovolném stavu), pak přejdeme do koncového stavu. To řešíme přidáním nového zásobníkového symbolu z_0' .
- 2. Je potřeba zamezit přijetí slova koncovým stavem bez vyprázdnění zásobníku. To řešíme tak, že máme jediný koncový stav, do kterého přejdeme jen pokud máme prázdný zásobník automatu A.

$$A' = \langle \Sigma, \Gamma \cup \{z'_0\}, Q \cup \{q'_\#, q'_0\}, \delta', q'_0, z'_0, \{q'_\#\} \rangle$$

$$\delta' \text{ je navíc rozšířením } \delta$$

$$\delta'(q'_0, \varepsilon, z'_0) = \{\langle q_0, z_0 z'_0 \rangle \}$$

$$\delta'(q, \varepsilon, z'_0) = \{\langle q'_\#, \varepsilon \rangle \}, \quad \forall q \in Q$$

21.5. Automaty pracující s celým zásobníkem

Pro automat pracující s celým zásobníkem má platit, že $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^* \to 2^{Q \times \Gamma^*}$ s omezením, že přechodová funkce je pro každé $q \in Q, a \in (\Sigma \cup \{\varepsilon\})$ definována pouze pro konečně mnoho řetězců $z \in \Gamma^*$ a navíc musí platit, že pro každý z konečně mnoha řetězců je $\delta(q,a,z)$ konečná.

Platí také:

$$\langle q_i, w_i, z_i \rangle \vdash \langle q_i, w_i, z_i \rangle$$

- 1. $z_i = zy, z \in \Gamma^*, y \in \Gamma^*$
- 2. $w_i = aw_i, a \in (\Sigma \cup \{\varepsilon\})$
- 3. $\langle q_i, x \rangle \in \delta(q_i, a, z)$
- 4. $z_j = xy$

 ${\bf Věta}$ 54: Pro každý NZA A pracující s celým zásobníkem existuje NZA A' pracující pouze s vrcholem zásobníku.

Důkaz 45: Mějme $A = \langle \Sigma, \Gamma, Q, \delta, q_0, z_0, F \rangle$ pracující s celým zásobníkem. Následně vytvoříme $A' = \langle \Sigma, \Gamma \cup \{z_0'\}, Q \cup \{q_0', q_\#\} \cup Q', q_0', z_0', F \rangle$ pracující s vrcholem zásobníku.

- $\bullet \ q_{\#}$ je nový nekoncový stav, ve kterém se vyprázdní zásobník automatu.
- ullet Q' je pomocná množina stavu, které potřebujeme pro nahrazení pravidel, která pracují s více zásobníkovými symboly.
- δ' je definována následovně:
 - Na počátku je prázdná.

- Přidáme přechody $\delta'(q'_0, \varepsilon, z'_0) = \{\langle q_0, z_0, z'_0 \rangle\}.$
 - 1. Pokud $\langle r, y \rangle \in \delta(q, a, \varepsilon)$ pak pro každé $z \in \Gamma \cup \{z'_0\}$ přidáme $\langle r, yz \rangle$ do $\delta'(q, a, z)$.
 - 2. Pokud $\langle r, y \rangle \in \delta(q, a, z), z \in \Gamma$, pak přidáme přechod $\langle r, y \rangle \in \delta'(q, a, z)$.
 - 3. Pokud $\langle r,y\rangle\in\delta(q,a,z), z=z_1z_2z_3\cdots z_n$ pro n>1, v tomto případě zavedeme dosud neuvažované stavy $q'_1,q'_2,\ldots,q'_{n-1}$ a ty přidáme do Q' a zavedeme přechody $\delta'(q,a,z_1)=\{\langle q'_1,\varepsilon,\rangle\},\delta(q'_1,\varepsilon)=\{\langle q'_2,\varepsilon\rangle\}=\ldots=\delta'(q'_{n-1},\varepsilon,z_n)=\{\langle q_\#,\varepsilon\rangle\}$
- Zavedeme přechod $\delta'(q, \varepsilon, z_0') = \{\langle q_{\#}, \varepsilon \rangle\}.$

Důsledek 4: Třídy automatu jsou ekvivalentní.

21.6. Poznámky o vlastnostech NZA

- 1. Pokud $\langle q, u, x \rangle \vdash^* \langle p, v, y \rangle$ pak $\langle q, uw, x \rangle \vdash^* \langle p, vw, y \rangle$ pro libovolný řetězec $w \in \Sigma^*$.
- 2. Pokud $\langle q, u, x \rangle \vdash^* \langle p, v, y \rangle$ pak $\langle q, u, xz \rangle \vdash^* \langle p, v, yz \rangle$ pro libovolný řetězec $w \in \Gamma^*$.
- 3. Pokud $\langle q, uw, x \rangle \vdash^* \langle p, vw, y \rangle$ pak $\langle q, u, x \rangle \vdash^* \langle p, v, y \rangle$.
- 1.+2. Pokud $\langle q, u, x \rangle \vdash^* \langle p, v, y \rangle$ pak $\langle q, uw, xz \rangle \vdash^* \langle p, vw, yz \rangle$ pro všechny řetězce $w \in \Sigma^*$ a $z \in \Gamma^*$.
- 1.+3. $\langle q, u, x \rangle \vdash^* \langle p, v, y \rangle$ právě když $\langle q, uw, x \rangle \vdash^* \langle p, vw, y \rangle$.

Poznámka 15: Opak 2. vlastnosti neplatí: Pokud $\langle q,u,xz\rangle \vdash^* \langle p,v,yz\rangle$ pak obecně nelze odvodit, že $\langle q,u,x\rangle \vdash^* \langle p,v,y\rangle$. Speciálně: $x=y=\varepsilon$

Poznámka 16: $\langle q,u,z\rangle \vdash^* \langle p,\varepsilon,\varepsilon\rangle$: automat je schopen přejít ze stavu q do p, přitom zkonzumuje řetězec u ze vstupu a řetězec z ze zásobníku, ale bez toho, aniž by se někdy během činnosti dostal pod úroveň řetězec z na zásobníku.

21.7. Od gramatik k automatům

Prokážeme, že ke každé bezkontextové gramatice existuje NZA A tak, že L(G) = N(A). Uvažujme bezkontextovou gramatiku $G = \langle N, \Sigma, P, S \rangle$. Zkonstruujeme zásobníkový automat $A = \langle \Sigma, N \cup \Sigma, \{q\}, \delta, q, S, \emptyset \rangle$.

- Zásobníkové symboly se skládají z terminálních a neterminálních symbolů gramatiky
- Množina stavů je jednoprvková
- Množina koncových stavů je prázdná
- \bullet S je počáteční zásobníkový symbol
- \bullet simuluje provádění nejlevějších derivací

$$\delta(q,a,z) = \left\{ \begin{array}{ll} \{\langle q,\varepsilon\rangle\} & \text{pokud} \quad a \in \Sigma \text{ a } z = a \\ \{\langle q,y\rangle \mid z \to y \ \in P\} & \text{pokud} \quad a \in \Sigma \text{ a } z \in N \\ \emptyset & \text{jinak} \end{array} \right.$$

 Prvnímu případu říkáme operace srovnání: pokud je na vstupu i na vrcholu zásobníku stejný znak (terminál) pak jsou oba odebrány.

- Druhý případ se jmenuje operace expanze: bez čtení vstupu při neterminálu na vrcholu zásobníku se tento neterminál nahradí pravou stranou některého pravidla s tímto neterminálem na levé straně.
- U třetího případu dochází k zastavení činnosti.

Příklad 48: Uvedeme si gramatiku a na ní ukážeme činnost takového automatu:

```
\begin{split} G &= \langle N, \Sigma, P, S \rangle \\ \Sigma &= \{a, b, c, 0, 1, +, -, *, /, (,)\} \\ N &= \{S, E, C, V\} \\ P &= \{ S \to E, \\ E \to E * E|E/E|E + E|E - E| - E|C|V|(E), \\ C \to 0C|1C|0|1, \\ V \to aV|bV|cV|a|b|c \ \} \end{split}
```

Řetězec na vstupu Stav zásobníku

10 + (ca * 110)	S
10 + (ca * 110)	E
10 + (ca * 110)	E + E
10 + (ca * 110)	C + E
10 + (ca * 110)	1C + E
0 + (ca * 110)	C + E
0 + (ca * 110)	0+E
+(ca*110)	+E
(ca * 110)	E
(ca*110)	(E)
ca*110)	E
ca * 110)	E*E
ca * 110	V*E
ca * 110)	cV * E
a * 110)	V * E
a * 110)	a*E
*110)	*E
110)	E
110)	C
110)	1C
10)	C
10)	1C
0)	C)
0)	0)
))
ε	8

Věta 55: Pro každou bezkontextovou gramatiku G existuje NZA A tak, že L(G) = N(A).

Důkaz 46: Uvažujeme gramatiku $G = \langle N, \Sigma, P, S \rangle$ a odtud A zkonstruovaný pomocí operací expanze a srovnání (předchozí způsob).

Tvrdíme, že pro libovolný řetězec $w \in \Sigma^*$ platí:

$$S \Rightarrow_{G,l}^* w$$
 právě když $\langle q,w,S \rangle \vdash^* \langle q,\varepsilon,\varepsilon \rangle$

• Implikace zleva:

Nechť $S \Rightarrow_{G,l}^* w$, to znamená, že existuje nejlevější derivace $S = X_0, \ldots, X_n = w$. Indukcí pro $i = 0, \ldots, n$ prokážeme, že $\langle q, w, S \rangle \vdash^* \langle q, u_i, z_i \rangle$ pro $w = y_i \cdot u_i$. $X_i = y_i z_i$, kde buď

1. $z_i = \varepsilon$ nebo

2. $z_i = Av_i$, kde $A \in N$

Pro i=0 je tvrzení zřejmé, protože $x_0=S$ a můžeme položit $y_0=\varepsilon,\,u_i=w$ a $z_0=S.$

Nechť platí tvrzení pro i. Prokážeme jej pro i+1.

Z indukčního předpokladu $\langle q, w, S \rangle \vdash \langle q, u_i, z_i \rangle$ pro $w = y_i u_i$ a $x_i = y_i z_i$. Dále musí platit, že $z_i = A v_i$, jinak by byl x_i ze samách terminálních symbolů a posloupnost $X_1, X_2, \ldots, X_i, X_{i+1}, \ldots$ by nemohla být P-derivace.

Dále z předpokladu $X_i \Rightarrow_{G,l} X_{i+1}$ to jest z indukčního předpokladu $x_i = y_i z_i = y_i A v_i$, A je nejlevější neterminál, tj. existuje pravidlo $A \to w_i \in P$ tak, že $x_{i+1} = y_i w_i v_i$.

NZA A může přejít z konfigurace $\langle q, u_i, z_i \rangle = \langle q, u_i, Av_i \rangle$ do konfigurace $\langle q, u_i, w_i v_i \rangle$ (pomocí expanze). Dále může NZA přecházet do dalších konfiguací postupnou aplikací operace srovnání, dokud není vyprázdněn zásobník nebo není na vrcholu neterminál. Automat nakonec skončí v konfiguraci $\langle q, u_{i+1}, z_{i+1} \rangle$, kde buď $z_{i+1} = \varepsilon$ nebo $z_{i+1} = Bv_{i+1}$ kde $B \in N$.

Zřejmě $w = y_{i+1}u_{i+1}$ kde $x_{i+1} = y_iw_iv_i = y_{i+1}z_{i+1}$.

Ve speciálním případě: i=n dostáváme $\langle q,w,S\rangle \vdash^* \langle q,u_n,z_n\rangle$, kde $w=y_nu_n,\, X_n=y_nz_n=w$ tj. dle 1. vlastnosti, protože z_n je celý z terminálnch symbolů, platí, že $z_n=\varepsilon$, to jest $x_n=y_nz_n=y_n=w$ ale $w=y_nu_n$, odtud $u_n=\varepsilon$.

Takže $\langle q, w, S \rangle \vdash^* \langle q, \varepsilon, \varepsilon \rangle$.

• Implikace zprava:

Prokážeme obecnější tvrzení:

Pro každý neterminál $A \in N$ platí: pokud $\langle q, w, A \rangle \vdash^* \langle , \varepsilon, \varepsilon \rangle$ pak $A \Rightarrow_{G, l}^* w$.

Požadované tvrzení získáme jako důsledek pro $S \in N$.

Tvrzení se dokazuje přes délku výpočtu (pro n = 0 nelze).

Pro n=1 je triviální, protože $\langle q, w, A \rangle \vdash \langle q, \varepsilon, \varepsilon \rangle$ pak $w=\varepsilon$ a $A \to \varepsilon \in P$.

Předpokládejme, že tvrzení platí pro libovolný výpočet nejvýše u kroků dlouhý a předpokládejme, že výpočet, který se dostane z $\langle q, w, A \rangle$ do $\langle q, \varepsilon, \varepsilon \rangle$ má délku n+1.

První přechod v tomto výpočtu musí nahradit A na vrcholu zásobníku pravou stranou některého pravidla s A na levé straně. Musí tedy existovat $A \to z_1 z_2 \dots z_k \in P$ a $\langle q, w, A \rangle \vdash \langle q, w, z_1 z_2 \dots z_k \rangle$ je první krok výpočtu. Zbývajících n kroků výpočtu musí odstranit $z_1 z_2 \dots z_k$ ze zásobníku.

Řetězec w je ve tvaru $w=x_1x_2\cdots x_i$, kde každá část x_i odpovídá podřetězeci řetězec w, který byl odstraněn ze vstupu po odstranění z_{i-1} z vrcholu zásobníku až do chvíle, kdy byl odstrněn z_i z vrcholu zásobníku.

Formálně: $\langle q, x_i, z_i \rangle \vdash^* \langle q, \varepsilon, \varepsilon \rangle$

Jelikož výpočet nezávisí na části řetězce, který nebyl dosud zkoumán, platí

$$\langle q, x_i x_{i+1} \cdots x_k, z_i \rangle \vdash^* \langle q, x_{i+1} \cdots x_k, \varepsilon \rangle$$

Každý z příslušných výpočtů má délku nejvýše n. Pokud je tedy z_i neterminál, aplikujeme indukční předpoklad $z_i \Rightarrow_{G,l}^* x_i$.

To znamená:

$$A \Rightarrow_{G,l} z_1 z_2 \cdots z_k \Rightarrow_{G,l}^* x_1 z_2 \cdots z_k \Rightarrow_{G,l}^* x_1 x_2 z_3 \cdots z_k \Rightarrow_{G,l}^* x_1 \cdots x_k = w$$

21.8. Od automatů ke gramatikám

Věta 56: Pro každý NZA $A = \langle \Sigma, \Gamma, Q, \delta, q_0, z_0, F \rangle$ existuje bezkontextová gramatika G tak, že L(G) = N(A).

Důkaz 47: Množina N je $N = Q \times \Gamma \times Q \cup \{S\}$. Pravidla gramatiky vypadají následovně:

- 1. Pro každý stav $p \in Q$ obsahuje pravidlo $S \to \langle q_0, z_0, p \rangle$
- 2. Pokud $\langle u, z_1 z_2 \cdots z_k \rangle \in \delta(q, a, z)$, kde $a \in \Sigma \cup \{S\}$, pak pro libovolnou posloupnost stavů $r_1, \ldots, r_n = p \in Q$ platí, že P obsahuje pravidlo

$$\langle q, z, p \rangle \to a \langle r, z_1, u_1 \rangle \langle r_1, z_2, u_2 \rangle \cdots \langle r_{k-1}, z_k, u_k \rangle$$

Speciálně pokud $\langle r, \varepsilon \rangle \in \delta(q, a, z)$ pak P obsahuje pravidlo $\langle q, z, r \rangle \to a$ Budeme se snažit dokázat tvrzení $\langle q, z, p \rangle \Rightarrow_{G, l}^* w$ právě když $\langle q, w, z \rangle \vdash^* \langle p, \varepsilon, \varepsilon \rangle$

• Implikace zleva

Důkaz provedeme indukcí přes délku nejlevější derivace. předpokládejme, že $\langle q,z,p\rangle \Rightarrow_{G,l}^* w$ $\langle q,z,p\rangle \Rightarrow_{G,l} w$. Pak existuje $\langle q,z,p\rangle \to w$, tj. pravidlo je speciálním případem pravidla z bodu 2. To jest $w \in \Sigma \cup \{\varepsilon\}$ a $\langle p,\varepsilon\rangle \in \delta(q,w,z)$ - platí z toho, jak jsme zavedli pravidla. Potom ale $\langle q,w,z\rangle \vdash \langle p,\varepsilon,\varepsilon\rangle$.

Předpokládejme, že nejlevější derivace w z $\langle q,z,p\rangle$ má délku n>1 a tvrzení platí pro všechny derivace kratší délky.

Rozepsáním $\langle q, z, p \rangle \Rightarrow_{G,l}^* w$ dostaneme, že $\langle q, z, p \rangle \Rightarrow_{G,l} a \langle r_0, z_1, r_1 \rangle \cdots \langle r_{k-1}, z_k, r_k \rangle \Rightarrow_{G,l}^* w$ kde $r_1, \ldots, r_k \in Q$, $r_k = p$ a $\langle q, z, p \rangle \rightarrow a \langle r_0, z_1, r_1 \rangle \cdots \langle r_{k-1}, z_k, r_k \rangle$ je pravidlo dle bodu 2.

Dle bodu 2, musí platit, že $\langle r_0, z_1 \cdots z_k \rangle \in \delta(p, x, z)$ a $w = a \cdot x$, kde $x \in \Sigma^*$ a $a \in \Sigma \cup \{\varepsilon\}$. Jelikož $\langle r_i, z_{i+1}, r_{i+1} \rangle$ jsou všechno neterminály gramatiky.

Z vlastností bezkontextových gramatik platí, že x lze vyjádřit jako $x=w_1w_2\cdots w_k$ tak, že $\langle r_{i-1},z_i,r_i\rangle \Rightarrow_{G,l}^* w_i$.

Každá z těchto nejlevějších derivací má délku nejvýše n. Na každou z nich aplikujeme indukční předpoklad, tj.: $\langle r_{i-1}, w_i, z_i \rangle \vdash^* \langle r_i, \varepsilon, \varepsilon \rangle$.

Nyní můžeme zřetězit posloupnosti odpovídajících konfigurací:

$$\langle q, w, z \rangle = \langle q, ax, z \rangle \vdash \langle r_0, x, z_1 z_2 \cdots z_k \rangle \vdash^* \langle r_1, w_2 \cdots w_k, z_2 \cdots z_k \rangle \vdash^* \cdots \vdash^* \langle r_k, \varepsilon, \varepsilon \rangle$$

$$= \langle p, \varepsilon, \varepsilon \rangle$$

což jsme měli dokázat.

• Implikace zprava

Dokážeme indukcí přes délku výpočtu automatu A.

Předpokládejme, že platí $\langle q, w, z \rangle \vdash^* \langle p, \varepsilon, \varepsilon \rangle$. Výpočet má alespoň jeden krok, protože je třeba vyprázdnit zásobník. V tomto případě $w \in \Sigma \cup \{\varepsilon\}$.

Dále musí $\langle p, \varepsilon \rangle \in \delta(q, w, z)$. Ze speciálního případu bodu 2, pak máme, že $\langle q, z, p \rangle \to w$ je jedno z pravidel gramatiky. použitím tohoto pravidla $\langle q, z, p \rangle \Rightarrow_{G,l}^* w$.

Předpokládejme, že výpočet $\langle q,w,z\rangle \vdash^* \langle q,\varepsilon,\varepsilon\rangle$ má délku n>1 a tvrzení platí pro všechny výpočty ostře kratších délek.

První krok výpočtu $\langle q, w, z \rangle \vdash \langle r_0, x, z_1 \cdots z_k \rangle \vdash^* \langle p, \varepsilon, \varepsilon \rangle$, kde w lze psát jako $w = a \cdot x$, kde $a \in \Sigma \cup \{\varepsilon\}$ a platí, že $\langle r_0, z_1 \cdots z_k \rangle \in \delta(q, a, z)$

Z bodu 2, definujícího odvozovací pravidla gramatiky, máme, že existují pravidla ve tvarech $\langle q,z,p\rangle \to a\langle r_0,z_1,r_1\rangle \cdots \langle r_{k-1},z_k,r_k\rangle$ kde r_1,\ldots,r_{k-1} jsou libovolné stavy z Q a $r_k=p$. Jelikož $\langle r_0,x,z_1\cdots z_k\rangle \vdash^* \langle p,\varepsilon,\varepsilon\rangle$ pak můžeme x psát ve tvaru $x=w_1w_2\cdots w_k$ a existují stavy r_1,\ldots,r_{k-1} tak, že $\langle r_{i-1},w_i,z_i\rangle \vdash^* \langle r_i,\varepsilon,\varepsilon\rangle$

Dle indukčního předpokladu:

$$\langle r_{i-1}, z_i, r_i \rangle \Rightarrow_{G,l}^* w_i$$
$$\langle q, z, p \rangle \Rightarrow_{G,l} a \langle r_0, z_1, r_1 \rangle \cdots \langle r_{k-1}, z_k, r_k \rangle$$

Důsledek 5: Ke každému NZA existuje ekvivalentní automat rozpoznávající stejný jazyk, který má pouze 1 stav.

22. Deterministické zásobníkové automaty

Definice 32: Řekneme, že zásobníkový automat $A = \langle \Sigma, \Gamma, Q, \delta, q_0, z_0, F \rangle$ je deterministický (DZA), pokud jsou pro každé $q \in Q$ a $z \in \Gamma$ splněny následující podmínky:

- 1. pro všechny $a \in \Sigma \cup \{\varepsilon\}$ platí $|\delta(q, a, z)| \leq 1$
- 2. pokud $\delta(q,\varepsilon,z)\neq\emptyset$ pak $\delta(q,a,z)=\emptyset$ pro každé $a\in\Sigma$

Nabízí se otázka, jaké třídy jazyků, jsou vlastně rozpoznatelné deterministickým zásobníkový automatem pomocí buď koncových stavů, nebo vyprázdněním zásobníku.

Definice 33: Bezkontextový jazyk L se nazývá deterministický, pokud existuje deterministický zásobníkový automat A tak, že L = L(A).

Definice 34: Bezkontextový jazyk L má prefixovou vlastnost, pokud L neobsahuje dva různé řetězce x, y tak, že x je prefixem y.

Věta 57: Pro libovolný bezkontextový jazyk L jsou následující tvrzení ekvivalentní:

- 1. L = N(A) pro nějaký DZA A
- 2. L = L(A') pro nějaký DZA A' a L má prefixovou vlastnost

Důkaz 48: Nechť platí 1. tvrzení: L = N(A) pro DZA A

- 1. pozorování: L má prefixovou vlastnost $x \in L = N(A)$ tj. x je přijat vyprázdněním zásobníku. Zjišťujeme, že $\langle q_0, x, z_0 \rangle \vdash^* \langle p, \varepsilon, \varepsilon \rangle$ je jednoznačně daný výpočet.
- 2. pozorování:

Hledaný automat A' můžeme najít tak, že vytvoříme nový pomocný zásobníkový symbol z'_0 , který umístíme na počátku činnosti na dno zásobníku. Pak rozšíříme automat o přechody $\delta(p, \Sigma, z'_0) = \{\langle p\#, \varepsilon \rangle\}$. p# je nový a zároveň jediný koncový stav automatu A'.

Nechť platí 2. tvrzení.

Jelikož má L prefixovou vlastnost, pak automat A' můžeme upravit tak, že z každého koncového stavu zrušíme všechny vycházející přechody. Vzniklý automat opět přijímá L pomocí koncových stavů. Z koncových stavů vytvoříme ε -přechody do nového stavu, ve kterém vyprázdníme zásobník.

Důsledek 6: Deterministický bezkontextový jazyk má prefixovou vlastnost, právě když je přijímán nějakým DZA pomocí vyprázdnění zásobníku.

Věta 58: Každý regulární jazyk je deterministický.

Důkaz 49: Pro L existuje KDA $A = \langle \Sigma, Q, \delta, q_0, F \rangle$ s úplnou přechodovou funkcí.

Příklad 49: Následující jazyk je deterministický:

$$L = \{a^n b^n \mid n \ge 1\}$$

Poznámka 17: Mnoho regulárních jazyků nemá prefixovou vlastnost.

Věta 59: Pokud L = N(A) pro DZA A, pak je L jednoznačný.

Důkaz 50: Náznak důkazu je následující:

Na základě A sestavíme gramatiku G tak, že L(G)=N(A) a navíc prokážeme, že gramatika G má jednoznačné odvození každé věty.

Věta 60: Pokud L = L(A) pro DZA A, pak je L jednoznačný. Deterministické bezkontextové jazyky jsou jednoznačné.

Důkaz 51: Náznak důkazu:

Vyjdeme z toho, že L=L(A) a uvažujeme, že $L'=L\cdot\{\$\}$. I ten je deterministický. Tj. existuje A' tak, že $L(A')=L'=L\cdot\{\$\}$. Dle předchozí věty existuje jednoznačná gramatika G tak, že $L(G)=L\cdot\{\$\}$.

Obrázek 7. Vychodilovo "vajíčko 2."