HAX501X – Groupes et anneaux 1

Contrôle continu 1

Clément Dupont

- Durée: 1h.
- Tout matériel électronique est interdit ainsi que les documents de cours.
- Une partie du barème sera consacrée à la clarté de la rédaction ainsi qu'à la propreté/lisibilité de la copie.

Questions diverses.

- 1) L'élément $\overline{8}$ est-il inversible dans $\mathbb{Z}/39\mathbb{Z}$? Si oui, calculer son inverse.
- 2) Soient G et H deux groupes, et $f: G \to H$ un morphisme de groupes. Soit H' un sous-groupe de H. Montrer que l'image réciproque $f^{-1}(H')$ est un sous-groupe de G.
- 3) Donner un exemple d'un groupe d'ordre 6 qui n'est pas cyclique. On justifiera brièvement.
- 4) On se place dans le groupe $G = \mathfrak{S}_4$. Trouver deux sous-groupes d'ordre 4 de G, l'un cyclique et l'autre non cyclique. On justifiera brièvement.

Exercice : morphismes de groupes. Le but de cet exercice est de classifier les morphismes de groupes de $\mathbb{Z}/m\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$, pour deux entiers $m,n\in\mathbb{N}^*$. Pour un entier relatif k, on note \widetilde{k} sa classe dans $\mathbb{Z}/m\mathbb{Z}$, et \overline{k} sa classe dans $\mathbb{Z}/n\mathbb{Z}$. On note $d=m\wedge n$ et on écrit n=de.

- 1) Soit $u \in \mathbb{Z}$.
 - a) Montrer que l'application

$$g_u: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} , \ k \mapsto \overline{uek}$$

passe au quotient par la relation de congruence modulo m.

b) On note

$$h_u: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \ , \ \widetilde{k} \mapsto \overline{uek}$$

l'application induite. Montrer que h_u est un morphisme de groupes.

- 2) Soit $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ un morphisme de groupes.
 - a) On note $\overline{a} = f(\widetilde{1})$. Montrer que $\overline{ma} = \overline{0}$.
 - b) En déduire que $\overline{a} \in \langle \overline{e} \rangle$.
 - c) En déduire qu'il existe $u \in \mathbb{Z}$ tel que $f = h_u$.
- 3) Faire la liste des morphismes de groupes de $\mathbb{Z}/110\mathbb{Z}$ vers $\mathbb{Z}/504\mathbb{Z}$.