		Mathematica file 7			
	Lection G(9)	→ Force General PAGENO.: Translation.nb PAGENO.:			
	FORCE CALCULT	TTON (General Translation)			
	This section deals with icalculating force acting on spheroid for the general displacement of applied magnetic field.				
	Spheroid is describe r(0) = R - Rs and the position vec	cos(20) — Dg tor to its surface, can be written			
usph					
nerma	as:-	0(20))2 Sind r-4Rs Cood Lin20 (R-Rs Coilly)			
	Eystem.	ulate Fx. Fy. Fz (force acting on to work in cartesian co-ordinate			
	n'cout. (0, q) = Ms.	vector in cartesian coordinate the transformation matrix from ian co-ordinate system.			
		. Тенккы s Signature,			

	PAGE NO.: DATE:
To	$M_{S-C} = \{cos \varphi sin \theta cos \varphi cos \varphi - sin \varphi \}$
	-8ino 0
	$n_{cout}(0, \varphi) = [normalcort]$
4	(R-2Rs-3Rs COO(20)) (R-Rs COO(20)) sin's coop, (R-2Rs-3Rs COO(20)) (R-Rs COO(20)) sin's sing, -6 (R+2Rs-3Rs COO(20)) (R-Rs COO(20)) sino COO)
	$n_{cout}(0,q) = (R-2RS-3RSCon(20))(R-RSCon(20))until $
1	1 cont (0, φ) = (R-2RS-3RS COD (20)) (R-Rs COD (20)) sin o sin φ

nx) nout(0,9) = (R-2RS-3Rs Cos(20)) (F

nz

n coret (0, φ) = (R+2RS-3RS COO (20)) (R-RS COO (20)) Sin O COO 0 - 9g

Hrea element of spheroid -

Sph To Cour | Coso sind coso sing coso sing coso sing coso sing coso sing

As explained in Section E (e) previously,

dAi=ni.ds - 109 where $\hat{n}_i \rightarrow unit normal vectors' ith component.$ ds = ||n|| do dq - (1) q

dAi = nidodq - (12)q

Ref -> Marsden (Vector Calculus) 6th Edition Pg-384 (Area of Parametrized surface)

	Magnetic field at surface of spheroid ->				
	Eq 38 f given in Mathematica file is used for the calculation of force acting on spheroid. —> Bow (r(0), 0, 0) — (3) g				
	Eg 38 f passes the test case of sphered (meaning it tends to the expression for sphere when s > 0) (A) g				
•	We also need to convert magnetic field at surface of spheroid into Cartesian co-ordinate system.				
Bout Caret	$B_{\text{out}}^{\text{cont}}(\tau(0),0,\varphi) = M_{S} \rightarrow c \cdot B_{\text{out}}(\tau(0),0,\varphi) - (15)g - 1$				
lim s -> 0	Bout $(r(0), 0, q) = (0, \frac{1}{4}b_z(6dzsin(0) + (000(3dz coo q + 10Rsin 0) + 3dy sin q))$				
	3/bz (dy cos p-dr ginp)				
	Bout $2[0, q] = (B_{\text{out}}(r(0), 0, q))^2$ $= (B_{\text{out}})^2 + (B_{\text{out}})^2 + (B_{\text{out}})^2 - (G_{\text{g}} - 2)$ $= (B_{\text{out}}, \times (0, q))$ $= (B_{\text{g}})^2 + (B_{\text{out}})^2 + (B_{\text{out}})^2 - (G_{\text{g}})^2$ $= (B_{\text{g}})^2 + (B_{\text{out}})^2 + (B_{\text{out}})^2 - (G_{\text{g}})^2$ $= (B_{\text{g}})^2 + (B_{\text{out}})^2 + (B_{\text{out}})^2 + (B_{\text{out}})^2 - (G_{\text{g}})^2$ $= (B_{\text{g}})^2 + (B_{\text{out}})^2 + (B_{\text$				

The Granding.

PAGE NO).;		
DATE:	1	1	

$$Bx^{2} = (B_{out}^{(out, y)^{2}})^{2}$$
 $By^{2} = (B_{out}^{(out, y)^{2}})^{2}$
 $Bz^{2} = (B_{out}^{(out, y)^{2}})^{2}$
 $Bz^{2} = (B_{out}^{(out, y)^{2}})^{2}$

Maxwell Stress Tensor is defined as

$$Tij = \frac{1}{\mu_0} \left(BiBj - \frac{1}{2} Sij B^2 \right) - 18g$$

fouce from maxwell stress Tensor can be given as

$$F = \int (\nabla T) dV - (3) g$$

$$= \oint T \cdot \hat{n} dS - (20) g$$

$$= \oint T \cdot \hat{n}' d0 d\phi - (21) g$$

$$f_{x_1} = \oint T_{xx} dA_x = \oint T_{xx} n_x d\theta d\phi - 29g$$

$$f_{x_2} = \oint T_{xx} dA_x = \oint T_{xx} n_x d\theta d\phi - 29g$$

