

Redes de Computadores

Licenciatura em Engenharia Informática (LEI) Licenciatura em Engenharia Eletrotécnica e de Computadores (LEEC)

Atividade Laboratorial nº 3:

Configuração e Análise do Funcionamento de um Switch

ESTSetúbal/IPS, ano letivo 2020/2021 (v1)

ÍNDICE

1. In	L. Introdução		
2. Co	oncentradores da Rede Local: Hubs, Bridges e Switches	3	
2.1.	Hubs	3	
2.2.	Bridges	4	
2.3.	Switch	5	
3. CI	SCO IOS	6	
4. Re	ealização Prática	8	
4.1.	Pesquisa sobre os tipos de memórias dos equipamentos de rede	8	
4.2.	Rede de trabalho no Packet Tracer	8	
4.3.	Primeiro contacto com a CLI	9	
4.4.	Alteração da prompt	10	
4.5.	Criação da mensagem inicial	10	
4.6.	Configuração da password de acesso ao modo de utilizador	11	
4.7.	Criação da password de acesso ao modo privilegiado	11	
4.8.	Configuração do acesso remoto por Telnet	11	
4.9.	Teste do acesso por Telnet e observação da tabela de MAC	12	
4.10	. Criação do acesso remoto por SSH	13	
4.11	Teste do acesso remoto por SSH e observação da tabela de MAC	13	
4.12	. Verificação e gravação da configuração do switch	14	
4.13	Resumo dos comandos	14	
5. Re	elatório	15	

1. Introdução

Este trabalho de laboratório tem como principal objetivo o estudo da operação e configuração básica de *switches*. Utiliza-se uma rede de teste realizada no simulador de redes Packet Tracer.

Nos capítulos teóricos, analisa-se e compara-se os concentradores da rede local: Hubs, Bridges e Switches, e é apresentado o Internetwork Operating System (IOS) da empresa CISCO Systems.

Na realização prática vai se configurar diversos aspetos básicos num *switch*, nomeadamente a *prompt*, a mensagem inicial, as senhas de acesso local, o acesso remoto, entre outros.

2. CONCENTRADORES DA REDE LOCAL: HUBS, BRIDGES E SWITCHES

Neste capítulo vai se estudar os equipamentos de rede denominados de concentradores da rede local. Estes equipamentos implementam uma topologia em estrela para interligação de todos os *hosts* (postos) da rede. Em termos cronológicos, foram criados os *hubs*, em seguida as *bridges* e finalmente os *switches*. O desempenho da rede implementada por estes equipamentos vem melhorando de geração para geração.

2.1. Hubs

O *hub*, também conhecido por repetidor multiporta, é um equipamento que quando recebe um pacote de dados numa porta, reencaminha-o para todas as restantes portas (ver Figura 1).

Figura 1 – Modo de encaminhamento do Hub.

Este comportamento implica que só pode existir no *hub* uma comunicação de cada vez. Se no momento de uma comunicação a partir de um *host*, um outro tentar transmitir, as duas mensagens colidem na rede, inutilizando ambas as comunicações. A este fenómeno dá-se o nome de **colisão**.

2.2. Bridges

Com o objetivo de diminuir o número de colisões na rede, criou-se um equipamento denominado de *bridge* (ponte). Como se pode observar na Figura 2, este equipamento divide uma rede local em dois ou mais segmentos. Estes segmentos são denominados de **domínios de colisão**. A *bridge* analisa os endereços físicos dos equipamentos (MAC *addresses*) e só encaminha os pacotes entre segmentos, se o endereço MAC do *host* de destino, estiver no outro segmento de rede. Nesta topologia, é possível a comunicação simultânea host A \leftrightarrow host B e host C \leftrightarrow host D, da Figura 2.

Figura 2 – Ligação via bridge de 2 segmentos da rede local.

Como no início do funcionamento da rede, a *bridge* não conhece os endereços dos postos em cada secção, terá de os aprender ao longo do tempo. Por esta razão, no início do seu funcionamento, a rede poderá ter muitas colisões, que vão diminuindo ao longo do tempo.

2.3. Switch

O switch é uma bridge multiporta (tipicamente com 8, 24 ou 48 portas). O switch segmenta a rede num número de segmentos (ou domínios de colisão) igual ao seu número de portas. Em termos práticos, num switch de 8 portas, se o equipamento tiver capacidade de encaminhamento suficiente, podem existir 4 comunicações simultâneas (ver Figura 3).

Figura 3 – Modo de encaminhamento de um switch.

À semelhança das *bridges*, existe no *switch* um tempo de aprendizagem para registo dos endereços MAC dos *hosts*, até preencher a tabela que relaciona os endereços MAC com as portas do equipamento.

3. CISCO IOS

Neste capítulo apresenta-se o sistema operativo dos *routers*, *switches* e pontos de acesso *wireless* da empresa CISCO Systems (equipamentos estes disponíveis no laboratório), denominado de *Internetwork Operating System* (IOS).

Figura 4 – Command-Line Interface (CLI).

Este sistema operativo de rede, desenvolvido inicialmente nos anos 80, disponibiliza uma linha de comandos (ver Figura 4), denominada em inglês de Command-Line Interface (CLI).

Figura 5 – Ambiente de configuração de equipamentos CISCO.

Para se aceder à CLI, liga-se um PC ao equipamento a configurar, utilizando um cabo de comunicação série, chamado de cabo de consola (ou um cabo USB). No - Página 6 de 15 -

equipamento, existe uma entrada dedicada a esta tarefa (porta de consola). No PC, tem de se executar um programa denominado de terminal, que executa a comunicação série para o dispositivo de rede. Exemplos de programas de comunicação série serão por exemplo o Hyperterminal, o Putty ou o Teraterm. Na Figura 5 apresenta-se uma ilustração do ambiente de configuração.

A linha de comandos apresenta os 3 principais modos de configuração:

- Modo de utilizador (EXEC Mode): identificado por uma prompt do tipo "Switch>", que permite apenas dar comandos para ver o estado de configuração do equipamento e realizar testes de ligações.
- Modo privilegiado (Privileged EXEC Mode), identificado por uma prompt do tipo "Switch#", permite, além de ver o estado e realizar testes de ligações, entrar no modo de configuração global do equipamento.
- Modo de configuração global (Global Configuration Mode),
 identificado por uma prompt do tipo "Switch(config)#", permite
 efetuar a configuração do equipamento (ver Figura 6).

Na parte prática deste trabalho de laboratório, vai-se ter um contacto com diversos comandos de configuração e de teste disponíveis no CLI.

Figura 6 – Opções disponíveis no Modo de Configuração Global.

4. REALIZAÇÃO PRÁTICA

Em seguida, apresentam-se as atividades práticas a desenvolver neste laboratório.

Deve registar as capturas de ecrã pedidas, efetuar comentários às mesmas e responder às questões colocadas. Mais tarde, deve elaborar um relatório seguindo as recomendações dadas na última secção deste guia.

4.1. Pesquisa sobre os tipos de memórias dos equipamentos de rede

Pesquise que tipos de memórias existem nos dispositivos de rede (routers e switches), indicando quais os seus tipos e a as suas funções.

4.2. Rede de trabalho no Packet Tracer

Carregue no Packet Tracer a rede de teste que efetuou no laboratório anterior (ver Figura 7). Acrescente mais um posto (PC2) ligado ao switch1. Configure na rede o endereçamento IP dado na Teste a conectividade da rede entre os vários postos terminais. Registe uma imagem que comprove que os *pings* foram bem-sucedidos. Se algum *ping* falhar deve detetar e corrigir o problema.

Tabela 1.

Figura 7 – Rede de Teste no Packet Tracer.

Teste a conectividade da rede entre os vários postos terminais. Registe uma imagem que comprove que os *pings* foram bem-sucedidos. Se algum *ping* falhar deve detetar e corrigir o problema.

Gateway Máscara de Equipamento **Porta** Endereço IP por Sub-rede omissão F0/0 192.168.10.1 255.255.255.0 ----Router0 F0/1 192.168.20.1 255.255.255.0 PC0 FastEthernet0 192.168.10.10 255.255.255.0 192.168.10.1 PC1 255.255.255.0 192.168.10.1 FastEthernet0 192.168.10.20 PC2 FastEthernet0 192.168.10.40 255.255.255.0 192.168.10.1 Servidor FastEthernet0 192.168.20.10 255.255.255.0 192.168.20.1

Tabela 1 - Tabela de endereçamento IP da rede de teste.

4.3. Primeiro contacto com a CLI

Num equipamento real, para se realizar a sua configuração, tem de se ligar um cabo de consola a um PC e executar um software do tipo terminal. No Packet Tracer, este procedimento é bem mais simples; basta premir o botão do rato do lado direito em cima, por exemplo do *Switch1*, e selecionar o separador *CLI* (*Command-Line Interface*) e premir *Enter*. Deverá aparecer o seguinte *prompt*, indicando que se encontra no modo de utilizador (*exec mode*):

Switch>

Neste modo apenas tem acesso a um conjunto limitado de comandos. Para obter os comandos disponíveis neste modo, prima "?". Registe uma imagem com os comandos disponíveis.

Para ter privilégios de configuração do *switch*, deverá elevar as suas permissões. Para tal, deve introduzir o comando enable. Verifique que o *prompt* se alterou, mudando o sinal ">" para o sinal "#".

Switch> enable
Switch#

Neste momento, encontra-se no modo **privilegiado**. Neste modo, poderá configurar o *switch*, tendo acesso a um maior conjunto de comandos.

Para iniciar qualquer configuração no modo privilegiado deverá dar o comando config.

```
Switch# config
```

O switch devolve a pergunta de onde pretendemos fazer a configuração (terminal, memory or network)?. Deve escolher Terminal; os outros modos de configuração não são permitidos pelo Packet Tracer. Por omissão, a escolha é Terminal.

Em alternativa, poderá indicar de uma vez o modo de configuração.

```
Switch# config terminal Ou apenas
Switch# conf t
```

Verificará que o prompt alterou-se novamente, indicando que mudou de modo.

```
Switch (config) #
```

Para sair do modo de configuração, pode utilizar o comando exit ou a sequência de teclas Controlo + z (tecla controlo e tecla z em simultânea).

Registe uma imagem com a sequência de comandos anterior, na qual se deve observar o modo de utilizador, o modo privilegiado e o modo de configuração.

Nas restantes secções deste guia de laboratório, parte-se do modo de configuração, para efetuar as diversas configurações mostradas.

4.4. Alteração da prompt

No modo privilegiado, entre o comando:

```
Switch(config) # hostname Switch1
```

Verifique que o prompt se alterou para Switch1, refletindo a alteração

4.5. Criação da mensagem inicial

Para a criação da mensagem inicial (em inglês, *Message Of The Day - MOTD*) introduza o comando:

#

A mensagem poderá ocupar várias linhas, sendo sempre delimitada pelos caracteres especiais ", & ou %.

4.6. Configuração da password de acesso ao modo de utilizador

Continuando no modo privilegiado, insira os comandos:

```
Switch1(config)# line console 0
Switch1(config-line)# password cisco
Switch1(config-line)# login
```

Para testar a existência da password, deve introduzir 3 vezes o comando exit. Quando premir Enter, deve observar que está a ser pedida uma *password* para acesso ao modo de utilizador.

4.7. Criação da password de acesso ao modo privilegiado

Para restringir o acesso ao modo privilegiado do *switch*, introduza o seguinte comando:

```
Switch1(config) # enable secret class
```

Desta forma, quando tentar entrar no modo privilegiado, terá de fornecer a password class.

Teste a utilização das *passwords* e da mensagem inicial, saindo dos modos privilegiado e do modo de utilizador através de sequências de comandos exit. Volte a entrar em modo privilegiado. Registe uma imagem onde se observe a mensagem inicial, a introdução da password de acesso ao modo de utilizador e a introdução da password de acesso ao modo privilegiado.

4.8. Configuração do acesso remoto por Telnet

Por vezes, não estamos no mesmo local físico onde o *switch* se encontra, e não podemos aceder à porta de consola para alterar as suas configurações. No entanto, poderemos configurar o *switch* através de acesso remoto, acedendo à *Command-Line Interface* (CLI), através da rede informática ao qual o equipamento está ligado. O acesso

remoto poderá ser efetuado por 2 protocolos distintos: Telnet ou SSH. Iremos agora configurar o *switch* por forma a que este permita o acesso remoto por Telnet.

No modo privilegiado, insira os comandos:

```
Switch1(config)# line vty 0 15 Nota vty: virtual terminal
Switch1(config-line)# password cisco_telnet
Switch1(config-line)# login
Switch1(config-line)# exit
```

No entanto, para aceder ao *switch* por acesso remoto, este terá de ter um endereço IP. Vamos então configurar o *switch* de forma semelhante a um posto de rede:

```
Switch1(config) # int vlan 1
Switch1(config-if) # ip address 192.168.10.30 255.255.255.0
Switch1(config-if) # no shutdown
Switch1(config-if) # exit
Switch1(config-if) # ip default-gateway 192.168.10.1
```

4.9. Teste do acesso por Telnet e observação da tabela de MAC

Vamos verificar o conteúdo da tabela de endereços MAC dos postos ligados ao Switch1. Como ainda não houve atividade na rede, esta tabela poderá estar vazia. Insira o comando:

```
Switch1# show mac-address-table
```

Registe uma imagem com o conteúdo da tabela.

Vamos agora simular o acesso remoto ao *switch* utilizando a ferramenta **Telnet**. Esta ferramenta encontra-se disponível no sistema operativo Win10, mas poderá ter de activar esta funcionalidade. Entre no desktop do PC1 e abra uma janela de **Command Prompt**. Faça **Telnet** para o endereço IP do *switch*:

```
C:\> telnet 192.168.10.30
```

• A *password* pedida pelo *switch* é a que foi configurada para acesso ao modo utilizador, ao modo privilegiado ou de terminal virtual?

Entre no switch e verifique a tabela de endereços MAC:

```
Switch1# show mac-address-table
```

Indique e justifique o conteúdo da tabela

4.10. Criação do acesso remoto por SSH

• Investigue quais as diferenças entre os acessos remotos por **Telnet** e por **SSH**.

Vamos alterar a configuração do *Switch1* para que o acesso remoto só seja permitido por SSH. Utilize os seguintes comandos:

Qual a função dos quatro últimos comandos introduzidos?

4.11. Teste do acesso remoto por SSH e observação da tabela de MAC

Entre no desktop do PC1 e abra uma janela de **Command Prompt**. Faça **Telnet** para o endereço IP do Switch1:

C:\> telnet 192.168.10.30			
O comando Telnet foi bem-sucedido? Porquê?			
Ainda no desktop do PC1 aceda remotamente por SSH ao Switch1:			
C:\> ssh -L admin 192.168.10.30			
Que <i>user</i> e <i>password</i> teve que introduzir para entrar no <i>switch</i> ?			
Depois de entrar no switch limpe a tabela de endereços MAC:			
Switch1# clear mac-address-table			
Porque aparece ainda o endereço MAC do PC1?			

A partir da linha de comando do PC1, faça ping para o PC2, PC0 e servidor. Entre no CLI do switch e volte a examinar a sua tabela de endereços MAC.

Termine a sessão SSH.

 Mostre e identifique a quem pertencem os endereços MAC que surgem na tabela. Refira por que razão o número de endereços cresceu e explique porque não surgem referências ao servidor.

Encerre a janela de comandos do PC1.

4.12. Verificação e gravação da configuração do switch

No Switch1, insira o comando para ver a configuração presente na RAM:

```
Switch1# show running-config
```

Verifique qual a configuração gravada na NVRAM, inserindo o comando:

```
Switch1# show startup-config
```

Compare e comente os conteúdos de ambos os ficheiros.

Para que as configurações efetuadas se mantenham válidas após a reinicialização do *switch*, é necessário gravar estas alterações para a memória não volátil do dispositivo. Para tal, deve copiar o conteúdo da memória de execução (memória RAM) para a memória de início (memória NVRAM). Para executar a cópia, insira o comando:

 Compare novamente os conteúdos das memórias RAM e NVRAM e comente as diferenças.

4.13. Resumo dos comandos

Elabore uma lista com os comandos utilizados neste laboratório, indicando qual a função de cada comando

Comando	Função

5. RELATÓRIO

Deve elaborar um relatório sucinto do trabalho realizado no laboratório. O Relatório deve ser constituído por:

- uma breve introdução;
- uma descrição da realização prática, incluindo as imagens pedidas e respondendo às questões levantadas no enunciado;
- uma secção de conclusões.

Não deve incluir descrições teóricas sobre os temas/assuntos tratados. Utilize o modelo (*template*) disponível no Moodle.

Crie um ficheiro compactado (extensão ZIP ou RAR) onde coloca o **relatório** (em formato pdf) e o **ficheiro** do Packet Tracer. Será esse ficheiro compactado que submeterá no Moodle.

Deve entregar o relatório no Moodle, no prazo de 1 semana em relação à realização da conclusão do trabalho no laboratório. Por cada semana de atraso são descontados 2 valores na nota do relatório.

Este relatório deve ter uma dimensão máxima de 10 páginas, excluindo a capa.