Chapter 5

Intégrale Stochastique

On se place dans $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ dans les conditions habituelles et on considère W un $(\mathcal{F}_t)_{t\geq 0}$ -M.B.S. L'application $t\mapsto W_t$ n'étant dérivable nulle part on ne peut donner un sens classique à $\int H_s \ dW_s$ car on ne peut écrire $dW_s = b(s) \ ds$.

Il va donc falloir construire un nouvel objet mathématique.

5.1 Intégrale de Wiener

5.1.1 Intégration des fonctions étagées

Définition 5.1. Pour toute fonction constante par morceau $f:[0,T] \to \mathbb{R}$ de représentation

$$f(t) = \sum_{k=1}^{n} a_k \mathbf{1}_{[t_{k-1}, t_k[}(t)]$$

où $0 = t_0 < t_1 < \dots < t_n = T$ et $(a_k)_{1 \le k \le n} \in \mathbb{R}^n$, on définit le processus X(f) intégrale stochastique élémentaire de f par W sur [0,T] par

$$X_t(f) = \sum_{k=1}^{n} a_k (W_{t_k \wedge t} - W_{t_{k-1} \wedge t}), \ \forall t \ge 0.$$

Ainsi $\forall t \in [t_k, t_{k+1}]$ on a

$$X_t(f) = \sum_{j=1}^k a_j (W_{t_j} - W_{t_{j-1}}) + a_{k+1} (W_t - W_{t_k})$$

Proposition 5.2. Le processus X(f) est un processus gaussien centré à trajectoires continues et de fonction de covariance

$$K(s,t) = \sum_{i=1}^{n} a_i^2(t \wedge s \wedge t_i - t \wedge s \wedge t_{i-1}) = \int_0^{t \wedge s} f^2(u) \ du$$

de plus $\forall t \geq s \geq 0$ l'accroissement $X_t(f) - X_s(f)$ est indépendant de \mathcal{F}_s .

Remarques:

- (a) X(f) est un processus $(\mathcal{F}_t)_{t>0}$ -adapté;
- (b) $\forall t \geq 0$ la loi de $X_t(f)$ est gaussienne centrée de variance

$$\sum_{i=1}^{n} a_i^2(t \wedge t_i - t \wedge t_{i-1}) = \int_0^t f^2(s) \ ds$$

Preuve. La continuité des trajectoires de X(f) est une simple conséquence de la continuité des trajectoires de W. On montre à présent que X(f) est à accroissements indépendants : soient $0 \le s < t \le T$ supposons que $s \in [t_k, t_{k+1}[$ alors

$$X_t(f) - X_s(f) = \sum_{j=k+2}^{n} a_j (W_{t \wedge t_j} - W_{t \wedge t_{j-1}}) + a_{k+1} (W_{t \wedge t_{k+1}} - W_s)$$

qui par les propriétés de W est indépendant de \mathcal{F}_s .

À présent on va montrer par récurrence que $\forall p \geq 1, \forall 0 \leq s_1 < s_2, \dots < s_p \text{ et } \forall \alpha = (\alpha_1, ..., \alpha_p) \in \mathbb{R}^p \text{ la v.a. } \alpha^T \cdot (X_{s_1}, ..., X_{s_p}) \text{ est gaussienne.}$

Pour p = 1 c'est bien le cas par la remarque (b) précédente.

On suppose alors la propriété vraie pour $p \ge 1$, on va la montrer pour p + 1.

Soient $\alpha = (\alpha_1, ..., \alpha_{p+1}) \in \mathbb{R}^{p+1}$ et $0 \le s_1 < s_2, \dots < s_{p+1}$. On a

$$\alpha^T \cdot (X_{s_1}, ..., X_{s_{p+1}}) = \sum_{j=1}^{p+1} \alpha_j X_{s_j} = \sum_{j=1}^{p-1} \alpha_j X_{s_j} + (\alpha_p + \alpha_{p+1}) X_{s_p} + \alpha_{p+1} (X_{s_{p+1}} - X_{s_p})$$

par l'hypothèse de récurrence $\sum_{j=1}^{p-1} \alpha_j X_{s_j} + (\alpha_p + \alpha_{p+1}) X_{s_p}$ est de loi normale et est \mathcal{F}_{s_p} -mesurable. Par ailleurs l'accroissement $X_{s_{p+1}} - X_{s_p}$ est indépendant de \mathcal{F}_{s_p} et également de loi normale. La somme est donc bien gaussienne, ce qui conclut la récurrence.

Enfin $\forall t \geq s \geq 0$ on a

$$K(s,t) = \mathbf{Cov}(X_s(f), X_s(f)) + \mathbf{Cov}(X_s(f), X_t(f) - X_s(f)) = \sum_{i=1}^{n} a_i^2(s \wedge t_i - s \wedge t_{i-1}) + 0 = \int_0^{t \wedge s} f^2(x) \ dx$$

Définition 5.3. On note \mathcal{E} l'espace vectoriel des fonctions étagées et \mathcal{C} l'ensemble des processus stochastiques sur $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ à trajectoires continues. Enfin on notera $I: \mathcal{E} \to \mathcal{C}$ l'application, appelée intégrale stochastique des fonctions étagées par W, définie par

$$I_t(f) = \sum_{i=1}^{\infty} a_i (W_{t \wedge t_i} - W_{t \wedge t_{i-1}}), \ \forall t \ge 0$$

pour toute fonction $f \in \mathcal{E}$ de représentation

$$f(t) = \sum_{i=1}^{\infty} a_i \mathbf{1}_{[t_{i-1}, t_i[}(t)$$

Proposition 5.4. Pour tout $f \in \mathcal{E}$ le processus $I(f) = (I_t(f))_{t \geq 0}$ est une $(\mathcal{F}_t)_{t \geq 0}$ -martingale à trajectoires continues, nulle en t = 0 et de carré intégrable. De plus le processus $(I_t(f)^2 - \int_0^t f^2(s) \ ds)_{t \geq 0}$ est une $(\mathcal{F}_t)_{t \geq 0}$ -martingale.

Preuve. Par la proposition précédente I(f) est à trajectoires continues et $\forall t \geq 0$, $I_t(f)$ est de loi normale donc de carré intégrable. Par construction $I_0(f) = 0$ et de plus I(f) est $(\mathcal{F}_t)_{t \geq 0}$ -adaptée. Enfin on a $\forall 0 \leq s < t$

$$\mathbb{E}[I_t(f)|\mathcal{F}_s] = I_s(f) + \mathbb{E}[I_t(f) - I_s(f)|\mathcal{F}_s] = I_s(f)$$

car on a que $I_t(f) - I_s(f)$ est indépendant de \mathcal{F}_s et $\mathbb{E}[I_t(f)] - \mathbb{E}[I_s(f)] = 0$. De plus

$$\mathbb{E}[I_t(f)^2] = \mathbf{Var}[I_t(f)] = \int_0^t f^2(s) \ ds$$

Le processus $(I_t(f)^2 - \int_0^t f^2(s) \ ds)_{t\geq 0}$ est $(\mathcal{F}_t)_{t\geq 0}$ -adapté et intégrable et par orthogonalité des accroissements des martingales (cf. TD) on a

$$\mathbb{E}[I_t(f)^2 - I_s(f)^2 | \mathcal{F}_s] = \mathbb{E}[(I_t(f) - I_s(f))^2 | \mathcal{F}_s]$$

$$= \mathbb{E}[(I_t(f) - I_s(f))^2]$$

$$= \int_0^t f^2(x) \, dx - \int_0^s f^2(x) \, dx$$

Ce qui implique

$$\mathbb{E}\left[I_t(f)^2 - \int_0^t f^2(x) \ dx | \mathcal{F}_s\right] = I_s(f)^2 - \int_0^s f^2(x) \ dx$$

5.1.2 Intégration des fonctions de carré intégrable

L'objectif est d'étendre la définition de l'intégrale stochastique précédente des fonctions étagées aux fonctions de carré intégrable sur [0, T]. On note

$$L^2([0,T]) = \left\{ f : [0,T] \to \mathbb{R}, \ f \text{ mesurable telle que } \int_0^T f^2(s) \ ds < +\infty \right\}$$

L'espace vectoriel des fonctions mesurables de carré intégrable su [0, T].

Approximaton

Soit $f \in L^2([0,T])$ on va construire une suite de fonctions étagées $(f_n)_{n\geq 1}$ qui convergent dans L^2 vers f. Ainsi $\forall n\geq 1$ on considère la partition de [0,T]: $t_k=(k/2^n)T$ pour tous $k\in\{0,1,...,2^n\}$ et on définit

$$f_n(t) = \sum_{k=1}^{2^n - 1} \frac{2^n}{T} \int_{\frac{(k-1)}{2^n} T}^{\frac{k}{2^n} T} f(s) \ ds \cdot \mathbf{1}_{\left[\frac{k}{2^n} T, \frac{(k+1)}{2^n} T\right]}(t)$$
 (5.1)

Remarque : Le décalage entre l'intervalle d'intégration et l'intervalle de l'indicatrice est volontaire. Dans $L^2([0,T])$ (le carré de) la distance entre f et f_n est

$$\int_{0}^{T} |f(t) - f_{n}(t)|^{2} dt = \sum_{k=0}^{2^{n}-1} \int_{\frac{k}{2^{n}}T}^{\frac{(k+1)}{2^{n}}T} |f(t) - f_{n}(t)|^{2} dt$$

$$= \int_{0}^{\frac{T}{2^{n}}} |f(t)|^{2} + \sum_{k=1}^{2^{n}-1} \int_{\frac{k}{2^{n}}T}^{\frac{(k+1)}{2^{n}}T} |f(t) - \frac{2^{n}}{T} \int_{\frac{(k-1)}{2^{n}}T}^{\frac{k}{2^{n}}T} f(s) ds \Big|^{2} dt$$

Si on suppose f continue sur [0,T] alors elle y est uniformément continue donc

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \text{t.q.} \ |s - t| \le \eta \Rightarrow |f(t) - f(s)| \le \varepsilon$$

Pour un *n* suffisament grand on aura $2T/2^n \le \eta$ donc

$$\forall s \in \left\lceil \frac{(k-1)}{2^n} T, \frac{k}{2^n} T \right\rceil, \ \forall t \in \left\lceil \frac{k}{2^n} T, \frac{(k+1)}{2^n} T \right\rceil, \text{ on aura } |f(t) - f(s)| \le \varepsilon$$

d'où par l'inégalité triangulaire

$$\int_0^T |f(t) - f_n(t)|^2 dt \le M_{T/2^n} \frac{T}{2^n} + \sum_{k=1}^{2^n - 1} \int_{\frac{k}{2^n} T}^{\frac{(k+1)}{2^n} T} \frac{2^n}{T} \int_{\frac{(k-1)}{2^n} T}^{\frac{k}{2^n} T} |f(t) - f(s)|^2 ds dt$$

où $M_t = \max_{0 \le s \le t} |f(t)|^2$ et $\lim_{t \searrow 0} M_t = |f(0)|^2$ par continuité. On en déduit qu'à partir d'un certain rang

$$M_{T/2^n} \frac{T}{2^n} \le \varepsilon^2$$

d'où

$$\int_{0}^{T} |f(t) - f_n(t)|^2 dt \le \varepsilon^2 + \sum_{k=1}^{2^n - 1} \int_{\frac{k}{2^n} T}^{\frac{(k+1)}{2^n} T} \varepsilon^2 dt \le (T+1)\varepsilon^2$$

En conclusion on a que si f est une fonction continue de carré intégrable sur [0,T] alors $(f_n)_{n\geq 1}$ converge dans $L^2([0,T])$ vers f.

Pour avoir la propriété générale on utilise la densité des fonctions continue dans $L^2([0,T])$ (que l'on admet ici) pour obtenir que $\forall f \in L^2([0,T])$ on a convergence de la suite $(f_n)_{n\geq 1}$ (définie ci dessus) dans $L^2([0,T])$ vers f.

Extension de l'intégrale.

Théorème 5.5. Il existe une unique application linéaire $J: L^2([0,T]) \to \mathcal{C}$ telle que

- (1) $\forall f \in \mathcal{E} \text{ on } a J(f) = I(f);$
- (2) $\forall f \in L^2([0,T])$ le processus J(f) est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale de carré intégrable à trajectoires continues. De plus le processus

$$(J(f)^2 - \int_0^t f^2(u) \ du)_{t \ge 0}$$

est une $(\mathcal{F}_t)_{t>0}$ -martingale à trajectoires continues.

(3) Le processus J(f) est gaussien centré de fonction de covariance

$$K(s,t) = \int_0^{t \wedge s} f^2(u) \ du$$

Preuve. On commence par l'

Unicité : Si J existe alors $\forall f \in L^2([0,T])$ par continuité de J on a

$$J_t(f) = \lim_{n \to +\infty} J_t(f_n) = \lim_{n \to +\infty} I_t(f_n)$$

où $(f_n)_{n>1}$ est la suite de fonction de \mathcal{E} définie par (5.1). La propriété (2) du théorème implique

$$\mathbb{E}(J_t(f)^2) < +\infty$$

donc les limite ci-dessus sont à prendre dans L^2 .

A présent si on suppose $\exists J'$ vérifiant les mêmes propriétés alors

$$\mathbb{E}\left[(J_t'(f) - J_t(f))^2 \right] = \lim_{n \to +\infty} \left[(I_t(f_n) - I_t(f_n))^2 \right] = 0$$

donc $J'_t(f) = J_t(f)$, \mathbb{P} -p.s. pour tous $t \geq 0$. Donc J'(f) est une version de J(f) et par continuité ces processus sont indistingables. D'où l'unicité.

Existence: On considère $f \in L^2([0,T])$ et la suite $(f_n)_{n\geq 1}$ de fonction de \mathcal{E} définie par (5.1). La suite $(I(f_n))_{n\geq 1}$ est bornée dans $L^2([0,T])$: en effet

$$\mathbb{E}\left[I_t(f_n)^2\right] = \mathbb{E}\left[\int_0^t f_n^2(s) \ ds\right]$$

car $(I_t(f_n)^2 - \int_0^t f_n^2(s) \ ds)_{t\geq 0}$ est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale. Par suite

$$\mathbb{E}\left[I_{t}(f_{n})^{2}\right] = \sum_{k=1}^{2^{n}-1} \left(\frac{2^{n}}{T} \int_{\frac{k-1}{2^{n}}T}^{\frac{k}{2^{n}}T} f(s) \ ds\right)^{2} \int_{\frac{k}{2^{n}}T}^{\frac{k+1}{2^{n}}T} \mathbf{1}_{[0,t]}(s) \ ds$$

$$\leq \sum_{k=1}^{2^{n}-1} \int_{\frac{k-1}{2^{n}}T}^{\frac{k}{2^{n}}T} f^{2}(s) \ ds$$

$$\leq \int_{0}^{t} f^{2}(s) \ ds$$

De plus $\forall n, p \ge 0$ on a

$$\mathbb{E}\left[|I_t(f_n) - I_t(f_p)|^2\right] = \mathbb{E}\left[|(I_t(f_n - f_p))^2\right] = \int_0^t (f_n(u) - f_p(u))^2 du$$

comme la suite $(f_n)_{n\geq 1}$ est convergente elle est de Cauchy, ce qui implique par l'égalité ci-dessus que $(I_t(f_n))_{n\geq 1}$ est de Cauchy dans $L^2(\Omega)$. Or l'espace $L^2(\Omega)$ est complet ce qui implique que $(I_t(f_n))_{n\geq 1}$ est convergente dans $L^2(\Omega)$. Ce qui implique qu'il exite M_t une v.a. de carré intégrable telle que

$$M_t = \lim_{n \to +\infty} I_t(f_n)$$

dans $L^2(\Omega)$. On pose alors $J_t(f) = M_t$. Ce qui conclut l'existence.

Martingale : On a déjà montré l'intégrabilité, J(f) est bien $(\mathcal{F}_t)_{t>0}$ -adaptée et on vérifie que $\forall t \geq s \geq 0$ on a

$$\mathbb{E}[I_t(f_n)|\mathcal{F}_s] = I_s(f_n)$$

qui par passage aux limites quand $n \to +\infty$ donne

$$\mathbb{E}[J_t(f)|\mathcal{F}_s] = J_s(f)$$

J(f) est donc bien une $(\mathcal{F}_t)_{t\geq 0}$ -martingale.

Continuité : Par Doob

$$\mathbb{E}\left[\sup_{0 \le s \le T} |J_s(f_n) - J_s(f)|^2\right] \le C \sup_{0 \le s \le T} \mathbb{E}\left[|J_s(f_n) - J_s(f)|^2\right] \le C \int_0^T (f_n(u) - f(u))^2 du$$

On peut trouver une sous suite $(f_{\varphi(n)})_{n\geq 1}$ telle que

$$C \int_0^T (f_{\varphi(n)}(u) - f(u))^2 du \le \frac{1}{n^2}$$

ce qui entraine

$$\sum_{n\geq 1} \mathbb{E}\left[\sup_{0\leq s\leq T} |J_s(f_{\varphi(n)}) - J_s(f)|^2\right] < +\infty$$

ce qui implique par Borel-Cantelli on a $\mathbb{P}\text{-p.s.}$

$$\lim_{n \to +\infty} \sup_{0 \le s \le T} |J_s(f_{\varphi(n)}) - J_s(f)|^2 = 0$$

donc la continuité de J(f) est induite de celle de $J(f_n) = I(f_n)$. On vient de montrer que J(f) est une martingale à trajectoires continues telle que I(f) = J(f) pour tout $f \in \mathcal{E}$.

Compensateur : soient $0 \le s < t$ on a

$$\mathbb{E}\left[I_{t}(f_{n})^{2} - \int_{0}^{t} f_{n}^{2}(u) \ du | \mathcal{F}_{s}\right] = I_{s}(f_{n})^{2} - \int_{0}^{t} f_{n}^{2}(u) \ du$$

qui par passage à la limite quand $n \to +\infty$ donne

$$\mathbb{E}\left[J_t(f)^2 - \int_0^t f^2(u) \ du | \mathcal{F}_s\right] = J_s(f)^2 - \int_0^t f^2(u) \ du$$

Caractère Gaussien : Enfin en tant que limite de processus gaussien $((I_t(f_n))_{t\geq 0})_{n\geq 1}$ le processus $(J_t(f))_{t\geq 0}$ est gaussien centré et $\forall t>s\geq 0$

$$K(s,t) = \mathbb{E}[J_t(f)J_s(f)]$$

$$= \mathbb{E}[J_t(f)^2] + \mathbb{E}[(J_t(f) - J_s(f))J_s(f)]$$

$$= \mathbb{E}[J_t(f)^2] + \mathbb{E}[\mathbb{E}[(J_t(f) - J_s(f))|\mathcal{F}_s]J_s(f)]$$

$$= \int_0^s f^2(u) \ du$$

Définition 5.6. Pour tout $f \in L^2([0,T])$ le processus J(f) est appelé intégrale de Wiener de f. On la note

$$J_t(f) = \int_0^t f(u) \ dW_u$$