M2 – Ingénierie Economique et Financière

PROJET D'ECONOMETRIE

Introduction

Nous avons choisi d'étudier et de modéliser, dans ce projet, l'évolution hebdomadaire du VIX, indice phare de la volatilité des marchés, et calculé comme la volatilité implicite du S&P 500, principal indice action des Etats-Unis.

La période d'observation va du 24/10/1997 au 13/10/2017, pour un échantillon total de 1042 observations.

Notre choix d'étude s'est porté sur le VIX afin de modéliser la volatilité globale du marché, le VIX en étant un bon indicateur.

En effet, nous pensions qu'une non-linéarité pourrait être observée sur cet indicateur, dans la mesure où, sur la période considérée, les marchés financiers ont dû faire face à de nombreuses crises (bulle technologique et immobilière des années 2000, crises des subprimes en 2008 et crise de la dette en 2010), qui pourrait logiquement faire varier la volatilité dans deux régimes distincts.

On peut facilement imaginer un modèle à 2 régimes, le premier, classique, pour les périodes où l'économie mondiale est dans un période de croissance, et un régime secondaire en période de crises économiques et financières.

Afin de modéliser, d'estimer, et de tester les caractéristiques du modèle non-linéaire SETAR associé au VIX hebdomadaire entre 1997 et 2017, nous procéderons de la manière suivante :

- Dans un premier temps, étude de la stationnarité de la série.
- Si nécessaire, stationnarisation de la série.
- Estimation du modèle ARMA correspondant, en essayant toutefois de travailler sur un modèle AR, afin de pouvoir estimer un modèle SETAR par la suite.
- Estimation du modèle SETAR associé à la série, avec un décalage temporel de la variable de changement de régime de 1.
- Test du modèle AR contre le modèle SETAR.
- Estimation du décalage temporel optimal pour la variable de changement de régime, en minimisant la probabilité critique du test AR vs SETAR.
- Enfin, test d'un modèle AR contre un modèle STAR.

L'intégralité du projet et des conclusions sont tirés de routines et de fonctions Matlab, dont les résultats ont par la suite été vérifiés avec EViews.

Aussi, on choisira, pour les tests statistiques de ce projet, un risque de première espèce α = 5%.

Enfin, dans un souci de clarté, les tests seront résumés, tout au long du projet, dans des tableaux produit via Microsoft Excel, ces résultats pourront bien évidemment être vérifiés, avec les routines et fonctions Matlab associées, ou encore à l'aide des sorties EViews en Annexe.

Question 1 : Choisissez une série financière ou macroéconomique. Vérifier la stationnarité de cette série à l'aide de tests de racine unitaire ou de stationnarité. Par la suite, on travaillera avec la série stationnarisée.

Dans un premier temps, nous commençons par étudier la stationnarité de la série, et ce afin de travailler par la suite sur une série stationnaire.

Nous procéderons à cet effet à deux tests :

- Test de Dickey-Fuller Augmenté (ADF) Afin de tester la présence de racine unitaire dans le modèle, et de déterminer le type de série auquel nous avons à faire (DS ou TS).
- Test de Philippe Perron (PP) Afin de vérifier la stationnarité du modèle issu du test ADF.

1.1) **Test ADF**

Les détails du test sont disponibles en Annexe 1.1. Nous récapitulons le test dans le tableau ci-dessous :

	Test ADF					
Racine Unitaire			Signif	icativité du Coeff	icient	
1	T-stat	Valeur Tabulée	P-critique	T-stat	Valeur Tabulée	P-critique
Modèle 3	-5,3	-3,41	0,01%	1,58	1,96	11,36%
Modèle 2	-5,05	-2,86	0%	4,74	1,96	0%
Modèle 1	-1,75	-1,94	7,55%	-1,75	1,96	7,98%

Attention, la valeur tabulée pour le test de significativité du coefficient est à chercher dans la table de DF si l'hypothèse de racine unitaire n'a pu être rejetée, mais se trouve dans la table de Student si l'hypothèse de racine unitaire est rejetée.

Modèle 3:

→ Racine unitaire: Test de Racine Unitaire. Rejet de l'hypothèse nulle de racine unitaire : Par la valeur critique : -5,3 > -3,41

Par la P-critique : 0,01% < 5%

→ Significativité du coefficient : Test de Significativité Student.

Non rejet de l'hypothèse nulle de non-significativité du coefficient associé à la tendance :

Par la valeur critique : |1,58| < 1,96 Par la P-critique : 11,36% > 5%

→ On ne choisit donc pas le modèle 3.

Modèle 2:

→ Racine unitaire : Test de Racine Unitaire. Rejet de l'hypothèse nulle de racine unitaire :

Par la valeur critique : -5,05 > -2,86

Par la P-critique : 0% < 5%

→ Significativité du coefficient : Test de Significativité Student.

Rejet de l'hypothèse nulle de non-significativité du coefficient associé à la tendance :

Par la valeur critique : |4,74| > 1,96

Par la P-critique : 0% < 5%

→ On choisit donc le modèle 2.

Nous sommes donc en présence d'un processus X_t tel que la variable aléatoire X_t :

 $X_t \sim I(0) + c$

 $Et: \Delta X_t = c + \rho X_{t-1} + \varepsilon_t$

1.2) Test PP

Les détails du test sont disponibles en Annexe 1.2. Nous récapitulons le test dans le tableau ci-dessous :

Test PP						
	Racine Unitaire Significativité du Coefficient					icient
	T-stat	Valeur Tabulée	P-critique	T-stat	Valeur Tabulée	P-critique
Modèle 3	-5,94	-3,41	0,00%	1,88	1,96	6,09%
Modèle 2	-5,61	-2,86	0%	5,6	1,96	0%
Modèle 1	-1,74	-1,94	7,77%	-2,19	1,96	2,85%

Les résultats et le choix du modèle issus du test ADF sont confirmés par le test PP.

→ Puisque notre série est I(0) (i.e. stationnaire), nous n'avons pas besoin de la stationnariser.

Nous pouvons donc passer à l'estimation du modèle ARMA correspondant.

Question 2 : Estimez le modèle ARMA correspondant, en cherchant de préférence un modèle AR(p)

Avec la série stationnaire ou stationnarisée obtenue à la question précédente, nous pouvons maintenant estimer le modèle ARMA (Auto Regressive and Moving Average Model) issu de cette série.

Nous procéderons, pour ce faire, de la manière suivante :

- Etudes préliminaires de l'autocorrélogramme et de l'autocorrélogramme partiel de la série afin d'approximer graphiquement les retards optimaux pour la partie AR.
- Estimation des paramètres du modèle ARMA à l'aide de la méthode du maximum de vraisemblance.

1 <u>Etudes préliminaires : Autocorrélation et Autocorrélogramme</u>

On commence par étudier l'autocorrélogramme (en niveau), pour étudier la corrélation de la variable avec elle-même à différents écarts de périodes (ce qu'on appelle l'autocorrélation). De même l'autocorrélogramme partiel permet d'étudier la corrélation de la variable avec elle-même à différents écarts de périodes, indépendamment des autres périodes.

1.1) Autocorrélogramme

L'autocorrélation est calculé par la formule suivante :

$$\rho_k = \frac{E((Xt - \mu)(Xt + k - \mu))}{\sigma^2}$$

L'autocorrélogramme est de la forme suivante :

On peut voir qu'il y'a une très forte autocorrélation à l'ordre 1, et que l'autocorrélation n'est pas linéairement décroissante : elle est très décroissante entre les décalage 1 et 6, puis décroit de moins en moins fortement pour finir par être presque constante.

1.2) Autocorrélogramme Partiel

L'autocorrélation partielle est calculée par la formule suivante :

$$x_{t+1-m} = c_1(x_t - m) + c_2(x_{t-1} - m) + \dots + c_{k-1}(x_{t-k} - m) + p_k(x_{t-k+1} - m)$$

Où l'autocorrélation partielle pk est le dernier coefficient de cette équation. L'autocorrélogramme partiel est de la forme suivante :

On observe une très forte autocorrélation partielle à l'ordre 1, une autocorrélation partielle significative à l'ordre 2, puis des autocorrélations partielles faibles et alternativement positive et négative.

Nous décidons de tester le modèle ARMA(p, q) de notre série pour des décalages temporels p et q allant de 0 jusqu'à 3.

2 <u>Estimation du modèle ARMA correspondant</u>

On commence tout d'abord par sélectionner le nombre de retards p et q optimaux (p* et q*) des parties AR et MA de notre modèle.

Pour cela, nous allons calculer le critère d'Aikaike (AIC) des modèles ARMA(p,q) de notre série pour des décalages temporels p et q allant de 0 jusqu'à 3.

Nous sélectionnerons ensuite le nombre de retards minimisant ce critère.

Nous pourrons ensuite estimer les paramètres optimaux du modèle ARMA(p*, q*)

2.1) Estimation des retards p* et q* du modèle ARMA(p,q)

On peut voir en Annexe 1.1 que EViews a, automatiquement, dans les tests ADF précédents, sélectionné un décalage temporel de 1 pour la série, sur un décalage maximum de 21. On peut penser qu'à priori c'est le décalage optimal.

Pour choisir le nombre de retards p et q respectivement du processus AR(p) et MA(q), nous estimons les modèles ARMA(p, q) avec p et q allant de 0 à 3.

Nous choisissons ensuite le nombre de retards qui minimise le critère d'information de Akaike (AIC).

Le modèle est le suivant :

$$X_t = c + \sum_{i=1}^p \emptyset_i X_{t-i} + \sum_{j=1}^q \varphi_j \varepsilon_{t-j}$$
 ; Avec : $p,q \in \{0,3\}$

Le détail des 16 sorties EViews de chaque estimation est disponibles en Annexes 2.1. Voici un tableau récapitulatif de nos résultats :

AIC	AIC du modèle ARMA(p,q) en fonction de p et q					
q D	0	1	2	3		
0	7.1506	6.3080	5.8436	5.5891		
1	5.0944	5.0740	5.0750	5.0759		
2	5.0718	5.0754	5.0761	5.0779		
3	5.0744	5.0773	5.0787	5.0804		

le nombre de retards p* et q* optimaux sont donc tels que :

- o p* = 2
- o q* = 0

Et le modèle suit un ARMA(p^* , q^*) = AR(p^*) = AR(2), i.e. :

$$X_t \sim AR(2)$$

2.2) Esimation des coefficients du modèle

Voici un tableau récapitulatif de l'estimation du modèle AR(2) :

	AR(2)					
	Coefficient estimé	Ecart-Type	T-stat	P-critique		
С	1,165	0,246	4,737	0%		
X_{t-1}	0,784	0,031	24,432	0%		
X_{t-2}	0,159	0,031	5,171	0%		
R^2	0,875					
SCR	9663,67					
AIC	5,072					
SIC		5,086				

Le modèle est donc de la forme suivante :

$$X_t = c + \emptyset_1 X_{t-1} + \emptyset_2 X_{t-2} + \varepsilon_t$$

Avec:

c = 1,165

 $\emptyset_1 = 0.784$

 $\emptyset_2 = 0,159$

Qui sont tous les 3 significatifs.

La sortie EViews de l'estimation du modèle AR(2) est disponible en Annexe 2.2. De plus, on peut voir que le coefficient de détermination \mathbb{R}^2 est plutôt élevé (87,5%), ce qui montre un modèle de qualité.

2.3) Spécification du modèle

Nous devons vérifier :

- Que tous les coefficients de notre modèle peuvent être considérés comme étant significatif, par un test de significativité de Student.
- Que nos erreurs ne sont pas autocorrélées, qu'elles sont homoscédastiques, et qu'elles peuvent être considérées comme suivant une Loi Normale.

a) Significativité des coefficients (Test de Significativité de Student) :

On peut, dans le tableau récapitulatif de l'estimation de l'AR(2), voir que nos coefficients sont tous significativement différent de 0 :

- Leurs p-values sont toutes inférieures à 5% (niveau de risque de première espèce choisi).
- Leurs t-stat sont toutes supérieures à 1,96 (valeur tabulée de Student pour un risque de 5%).

b) Autocorrélation des erreurs (Test de Ljung Box) :

Voici un tableau récapitulatif du test de Ljung Box d'autocorrélation des erreurs :

	Test de Ljung Box d'Autocorrélation des erreurs					
Décalages temporels	Autocorrélation	Autocorr. Partielle	Q-Stat	P-Critique		
1	0,002	0,002	0,0049	94,40%		
2	0,008	0,008	0,0767	95,20%		
3	-0,027	-0,027	0,8273	84,30%		
4	0,014	0,015	1,0454	90,30%		
5	0,003	0,004	1,0582	95,80%		
6	0,011	0,01	1,1915	97,70%		
7	-0,054	-0,053	4,1995	75,70%		
8	0,053	0,054	7,2048	51,50%		
9	-0,044	-0,043	9,1988	41,90%		
10	-0,074	-0,078	14,916	13,50%		
11	-0,059	-0,054	18,584	6,90%		
12	-0,029	-0,032	19,491	7,70%		
13	0,027	0,026	20,273	8,90%		
14	0,054	0,05	23,317	5,50%		
15	0,048	0,056	25,784	4%		
16	-0,021	-0,025	26,258	5%		
17	-0,02	-0,003	26,261	7%		
18	-0,08	-0,007	26,335	9,20%		
19	0,035	0,0028	27,655	9%		
20	0,055	0,051	30,891	5,70%		

On a 30,891 < 31,41, les résidus de notre modèle ne peuvent donc pas être considérés comme étant autocorrélés.

Le détail du test est disponible en Annexe 2.3.

c) Homoscédastisité des erreurs :

Voici un tableau récapitulatif du test de d'Homoscédasticité des erreurs :

	Test d'Hétéroscédasticité des erreurs					
Décalages temporels	Autocorrélation	Autocorr. Partielle	Q-Stat	P-Critique		
1	0,158	0,158	26,094	0,00%		
2	0,131	0,109	44,028	0,00%		
3	0,358	0,334	177,94	0,00%		
4	0,308	0,245	277,43	0,00%		
5	0,069	-0,042	282,42	0,00%		
6	0,074	-0,103	288,24	0,00%		
7	0,247	0,081	352,27	0,00%		
8	0,062	-0,036	356,27	0,00%		
9	0,054	0,041	359,32	0,00%		
10	0,084	-0,015	366,76	0,00%		

On voit que:

- Les p-value sont toutes inférieures à 5%
- o La q-stat à l'ordre 10 est de 366,76 > 31,41 (quantile du Khi2 correspondant)
- → Nous sommes donc ici en présence de résidus hétéroscédastiques, c'est-à-dire dont la variance n'est pas constante.

Le détail du test est disponible en Annexe 2.4.

d) Test de normalité des erreurs (Test de Jarque-Bera) :

La statistique de Jarque-Bera du modèle est égale à 3134,284 > $\chi^2_{0,05}(2)$ = 5,991. De même, sa probabilité critique de 0% est < 5%.

On rejette donc l'hypothèse nulle de normalité des erreurs : on ne peut pas considérer que les erreurs suivent une loi Normale.

Le détail du test est disponible en Annexe 2.5.

- → Ainsi, les coefficients de notre modèle sont significatifs et les résidus de notre modèle sont :
 - Non autocorrélés
 - Hétéroscédastiques
 - Non normaux

Le principal problème que nous voulions éviter était l'autocorrélations des erreurs, créeant des modèles où la variance n'est plus minimum pour les estimateurs du modèle.

L'hétéroscédasticité et la non normalité des erreurs ne modifiant pas ni le biais ni la variance de nos estimateurs, nous pouvons conclure que le modèle est malgré tout bien spécifié.

Question 3 : Estimez le modèle SETAR avec $q_t = X_{t-1}$ comme variable de changement de régime. On suppose qu'il y'a deux régimes et que le nombre de retards dans chaque régime est celui de l'AR(p) de la question précedente.

1) Le modèle

Nous avons défini, à la question précédente, que nous étudierions le modèle comme un processus AR(2).

Le modèle non linéaire TAR (Threshold AutoRegressive Model) associé est donc de la forme :

$$X_{t} = \begin{cases} c_{1} + \sum_{i=1}^{p} \emptyset_{1,i} X_{t-i} + \varepsilon_{t} , si \ q \leq c \\ c_{1} + \sum_{i=1}^{p} \emptyset_{1,i} X_{t-i} + \varepsilon_{t} , si \ q > c \end{cases}$$

Avec:

c1, c2 : les constantes du modèles 1 et 2 respectivement

 $\emptyset_1,\,\emptyset_2$: les vecteurs de coefficients des modèles 1 et 2 respectivement

 ε_t : le résidu

q : variable de changement de régime c : seuil de changement de régime p : nombre de retards du modèle

Et où chaque régime suit un AR(2), on a donc p = 2.

De plus, nous estimons ici un modèle SETAR (Self Exciting TAR), qui est un modèle TAR où la variable de changement de régime q est la variable expliquée décalée dans le temps.

Nous procéderons à une estimation par MCO séquentiels, c'est-à-dire :

- Séries de MCO sur le modèle où l'on fait varier c, la variable de changement de régime, sur un ensemble de valeurs possibles
- On récupère la valeur de c qui minimise la variance résiduelle, c*.
- Estimation des paramètres du modèle à l'aide du seuil de changement de régime optimal, c*.
- o Nous obtenons aussi les coefficients estimés optimaux du modèle SETAR.

2) <u>Estimation du seuil de changement de régime optimale.</u>

Nous commençons par mettre en place la régression de notre modèle, notamment en donnant forme à la matrice des régresseurs.

Les détails de la mise en place de l'estimation est disponible en Annexe 3.1.

Avec une réécriture du modèle à l'aide de variables indicatrices, on définit une matrice des régresseurs classiques nous permettant d'estimer les 2*(k+1) paramètres à estimer (avec k le nombres de variables explicatives, soit dans un modèle AR le nombre de décalages temporels, ici, 2).

Afin d'avoir un modèle SETAR optimal, il est nécessaire de trouver le « vrai » seuil à partir duquel la variable expliquée peut être considérée comme étant régie par le régime 2. Afin de trouver ce seuil, nous allons procéder de la façon suivante :

- o On commence par trier par ordre croissant le vecteur de la variable expliquée.
- On supprime une certaine fraction en haut et en bas de cet échantillon, afin de supprimer les valeurs extrêmes.
- On essaye ensuite chacun des seuils dans le vecteur nouvellement crée, en effectuant une estimation des paramètres du modèle SETAR pour chaque seuil. On prend soin de récupérer l'écart type résiduel de chaque régression.
- On sélectionne ensuite le seuil c qui minimise l'écart type résiduel du modèle.

On aurait également pu définir un autre critère de sélection, comme par exemple la minimisation de l'AIC, la maximisation du R2, etc....

On trouve à la suite de cet procédure la valeur de c qui minimise la variance du modèle.

$$c^* = 25,07$$

Voici un tableau montrant quelques résultats des valeurs prises par c et de la variance résiduel du modèle associé :

Esimation du seuil de changement de régime optimal		
Valeur de c	Variance résiduelle	
12,62	9,3318	
14,81	9,3186	
16,04	9,3205	
18,94	9,3061	
21,76	9,3071	
25,07	9,3022	
27,11	9,3213	
27,52	9,3302	

La valeur de C qui minimise la variance résiduelle est 25,07, qui donne une variance résiduelle de 9,3022. C'est le seuil que nous choisissons comme seuil de changement de régime optimal.

3) <u>Estimation du modèle optimal.</u>

Doté maintenant du seuil optimal de changement de régime de notre modèle, nous pouvons déterminer les coefficients du modèle : ce sont les coefficients optimaux du modèle SETAR. Les coefficients optimaux de notre modèle sont les suivants :

	SETAR(2,2) d = 1	c* = 25,07		
	Coefficient estimé	Ecart-Type	T-stat	P-critique
c1	0,546	0,196	1,230	11%
X(-1)	0,824	0,002	16,770	0%
X(-2)	0,160	0,002	3,628	096
c2	0,743	0,597	0,962	17%
X(-1)	0,795	-0,015	17,098	0%
X(-2)	0,155	-0,002	3,582	0%
SCR	9627,8			

On voit que, les constantes mises à part, nos coefficients sont significativement différents de 0.

La différence entre les deux régimes tient surtout à la valeur de la constante, qui est légèrement plus importante pour le régime 2. Les deux coefficients associés à X(t-1) et X(t-2) sont presque similaire dans les deux régimes.

On constate ainsi que l'impact des valeurs passées (X(t-1) et X(t-2)) sur la valeur présente est quasiment constant entre les deux régimes. Seul le niveau de base, constant et indépendant des valeurs passées (la constante) est plus élevé et donne ainsi des valeurs du VIX plus élevé lorsqu'il se trouve dans le régime 2.

Aussi, on calcule à titre informatif la proportion d'occurrence du régime 1 et du régime 2 dans notre modèle.

On constate que dans 78% des cas, le modèle est dans le régime 1, tandis que dans 22% des cas il est dans le régime 2.

On peut donc supposer que le régime 2 représente les périodes plus agités sur les marchés, sans pour autant qu'il corresponde exactement aux périodes de crises financières.

(Nous n'avons pas été 1 jour sur 5 en crise financière depuis 1997, et fort heureusement!).

Nous retrouvons ces résultats dans le graphique en Annexe 3.2, qui montre les occurrences du régime 2 en fonction du temps. On constate que celui-ci intervient, sans surprises, principalement entre:

- o 1998 et 2004 (Apogée de la bulle technologique/bulle internet des années 2000, + bulle immobilière américaine)
- o 2007 et 2012 (Crises des Subprimes en 2008, Crise de la dette en 2010).

Ce qui confirme bien notre hypothèse que le régime 2 correspond aux périodes de « turbulences » voir de « crises » sur les marchés financiers.

Question 4 : Faites le test d'un modèle AR(p) (hypothèse nulle) contre un modèle SETAR(p) (hypothèse alternative).

Reportez la probabilité critique de ce test et commentez.

Afin de vérifier que nous utilisons un modèle AR à seuil (Threshold Auto Regressive Model : TAR) à bon escient, c'est-à-dire que nous n'utilisons pas un modèle SETAR non-linéaire alors qu'un modèle AR linéaire apporterait autant d'informations, nous allons effectuer le test d'une modèle AR contre un modèle SETAR.

Nous allons pour cela appliquer la procédure de test suivante :

- o Calcul de la statistique du test à l'aide de l'estimation d'un modèle AR et du modèle SETAR correspondant
- o Calcul de la probabilité critique du test par une méthode de simulation numérique
- o Conclusion du test à l'aide de la zone de rejet

1) Paramétrage du test et calcul de la F-stat

Hypothèse du test :

H0 : Modèle AR, le modèle est linéaire Hu: Modèle SETAR, le modèle est non linéaire

Statistique du test :

$$F = T * (\frac{\widehat{\sigma_{\varepsilon}^2} - \widehat{\sigma_{\varepsilon}^2(\widehat{c})}}{\widehat{\sigma_{\varepsilon}^2(\widehat{c})}})$$

Avec:

- o T = nombres d'observations disponibles
- \circ $\widehat{\sigma_{\varepsilon}^2}(\widehat{c})$ = variance résiduelle du modèle SETAR
- \circ $\widehat{\sigma_{\varepsilon}^2}$ = variance résiduelle du modèle AR

De la question 2), on sait :

$$\Rightarrow \widehat{\sigma_{\varepsilon}^2} = \frac{SCR}{(n-(k+1))} : \frac{9663,67}{(1041-3)} = 9,31$$

De même, de la question 3), on sait :

$$\rightarrow \widehat{\sigma_{\varepsilon}^2}(\widehat{c}): 9,3022$$

d'où :
$$F = 1041 * \left(\frac{9,31 - 9,3022}{9,3022}\right) = 0,8729$$

2) <u>Estimation de la distribution de la F-stat par simulation numérique</u>

Afin d'évaluer la distribution de probabilités de la F-stat, et d'ainsi pouvoir donner un intervalle de confiance pour la F-stat observé de la série, nous procédons à une optimisation numérique :

- Nous commençons par générer 20 séries aléatoires de variables suivant une loi normale centrée réduite
- Nous effectuons la régression, pour chaque tirage, du vecteur aléatoire gaussien contre les X(t-1) et X(t-2), pour le modèle AR(2) comme pour le modèle SETAR(2,2).
- Nous récupérons de ces régressions la variance résiduelle, pour chaque tirage, des deux modèle AR et SETAR correspondant, et nous calculons la F-statistique comme nous l'avons fait à l'étape précédente.
- Nous obtenons ainsi une distribution de probabilités estimée pour la F-stat, et on peut de cette façon conclure sur le test.

Voici un tableau récapitulatif de l'estimation :

Estima	tion de la distribution de la F-st	at
Numéro du tirage aléatoire	F-stat	F-stat > 0,8729 ?
1	13,94578635	VRAI
2	5,478377991	VRAI
3	9,11726066	VRAI
4	2,715193407	VRAI
5	6,731185434	VRAI
6	22,51126606	VRAI
7	1,583665102	VRAI
8	3,66745193	VRAI
9	10,96283662	VRAI
10	1,623469317	VRAI
11	-0,905422908	FAUX
12	10,46407311	VRAI
13	7,190624934	VRAI
14	6,160107289	VRAI
15	10,83804353	VRAI
16	13,78496532	VRAI
17	0,7580457	FAUX
18	-3,406133908	FAUX
19	4,970456916	VRAI
20	4,344061513	VRAI
	P(F-stat > 0,8729) = P-critique	85%
Γ	Conclusion du test	On ne rejette pas HO

3) <u>Conclusion du test</u>

Nous obtenons une probabilité critique, calculée comme la proportion des valeurs des F-statistiques simulées supérieures à la F-statistique observée de notre modèle.

Nous obtenons ici une probabilité critique de 85%, et pouvons ainsi conclure au non rejet de HO

Nous pouvons considérer que le modèle SETAR non-linéaire n'apporte pas plus d'informations que le modèle AR linéaire.

Ainsi le VIX ne semble pas adopter deux régimes différents, et peut tout aussi bien être modélisé par un seul régime linéaire autorégressif, qui apporterait autant d'informations et aurait une même qualité de prédiction, que le modèle non linéaire SETAR.

Pour le bon déroulé de ce projet, nous continuerons néanmoins par la suite à travailler sur notre modèle non linéaire SETAR.

Question 5 : Estimer le retard d optimal pour la variable de changement de régime

Après avoir estimé le seuil de changement de régime, c, optimal, il nous reste encore un paramètre à optimiser.

En effet, nous avons, au début du projet, postuler de manière arbitraire que nous prendrions comme variable de changement de régime $q_t = X_{t-d}$ (définition d'un modèle SETAR), avec d

Néanmoins, nous devons également optimiser ce paramètre d, afin de déterminer la variable de changement de régime optimale.

Nous aurons ainsi un modèle SETAR avec le seuil de changement de régime optimal ainsi que la variable de changement de régime optimale.

Nous allons donc:

- \circ Estimer la valeur d* de la variable de changement de régime, X_{t-d} .
- o Estimer les paramètres de notre modèle final optimisé.

1) Estimation du niveau d* optimal pour la variable de changement de régime X_{t-d}

Afin d'estimer le retard optimal de la variable $q_t = X_{t-d}$, nous allons procéder de la manière suivante :

- o Définition d'un intervalle des possibles pour la valeur d. Nous essayerons les valeurs 1 à 5.
- o Régression SETAR en fonction de chaque valeur possible de d, en prenant soin de calculer, pour chaque nouvelle valeur de d, le seuil de changement de régime optimal c*.
- o Test d'un modèle AR contre le modèle SETAR(c*) pour chacune des régressions
- o On sélectionne le retard d qui minimise la probabilité critique du test

Voici un tableau récapitulatif des résultats :

Estimation de la variable de changement de régime optimal				
Décalage de q(t) = x(t-d) Seuil C optimal P-Critique AR vs SETAR Variance résiduelle				
1	25,07	0,85	9,293	
2	26,62	0,1	9,197	
3	16,19	0	9,159	
4	16,41	0,05	9,168	
5	16,91	0,45	9,213	

On constate ainsi que:

- o La valeur du décalage temporel d* optimal pour la variable de changement de régime, $q_t = X_{t-d}$, est de 3, soit $q_t = X_{t-3}$.
- o Le seuil de changement de régime c* optimal associé à ce niveau de d, est de 16,19.
- o La variance résiduelle est quant à elle de 9,159.
- Enfin, notre modèle non-linéaire SETAR apporte plus d'information qu'un modèle AR linéaire, puisque sa probabilité critique est de 0% < 5%.

2) Estimation des paramètres du modèle SETAR final

Voici un tableau récapitulatif présentant le modèle SETAR estimé final :

	SETAR(2,2) d* = 3 c* 16,19				
	Coefficient estimé	Ecart-Type	T-stat	P-critique	
c1	3,926	0,878	4,190	1,51E-05	
X(-1)	0,632	0,007	7,685	1,77E-14	
X(-2)	0,090	0,009	0,974	17%	
c2	1,730	0,134	4,725	1,31E-06	
X(-1)	0,796	0,001	24,060	0%	
X(-2)	0,131	0,001	3,905	5,02E-05	

On peut observer que seul 1 coefficient est non significatif.

Le modèle final est donc de la forme :

$$X_{t} = \begin{cases} 3,926 + \sum_{i=1}^{p} \emptyset_{1,i} X_{t-i} + \varepsilon_{t} , si X_{t-3} \leq 16,19 \\ 1,73 + \sum_{i=1}^{p} \emptyset_{1,i} X_{t-i} + \varepsilon_{t} , si X_{t-3} > 16,19 \end{cases}$$

Ce modèle est le modèle SETAR final optimisé pour la série du VIX hebdomadaire entre 1997 et 2017.

Question 6 : Faites le test d'un modèle AR contre un modèle STAR

Afin de tenter d'apporter une linéarisation de notre modèle SETAR non linéaire, nous allons tester l'hypothèse nulle d'un modèle AR contre un modèle STAR (Smooth TAR), afin de déterminer si le passage d'un régime à l'autre ne devrais pas être moins brusque, et au contraire se faire de manière progressive, avec une fonction de transition.

Pour ce faire, nous aurons recours à deux tests :

- Le Test du Multiplicateur de Lagrange, qui test l'hypothèse nulle d'un modèle AR contre un modèle STAR
- Le test de Fisher, qui teste la même chose que le test du Multiplicateur de Lagrange, mais qui est préférable pour de petites tailles d'échantillon.

On considère le modèle STAR suivant :

$$X_t = \emptyset'_1 z_t * (1 - G(x_{t-d}, \gamma, c)) + \emptyset'_2 z_t * G(x_{t-d}, \gamma, c) + \varepsilon_t$$

UNIVERSITE PARIS DAUPHINE – M2 EIF – VIRGILE AMATO – MAISSANE LAKEHAL-AYAT 👤 14 –

Avec:

- o z_t : la matrice des variables explicatives, ici donc (1, X(t-1), X(t-2))
- o \emptyset_n : le vecteur des coefficients du régime n
- o $G(x_{t-1}, \gamma, c)$: la fonction de transition du modèle STAR

Voici un tableau récapitulatif de nos résultats :

Test d'un modèle STAR			
Test du Multiplicateur	Test du Multiplicateur de Lagrange		
Variable de changement de régime = X(t-1)			
LM Stat 29,2059			
Valeur critique 12,5916			
Probabilité critique	0,00005		
F-stat	4,9711		
Valeur critique	2,1074		
Probabilité critique	0,00004		

On rejette ainsi, avec les deux tests, l'hypothèse nulle d'un modèle AR : un modèle STAR est plus pertinent et apporte plus d'informations qu'un modèle AR classique.

Notre modèle sur le VIX est donc bien un modèle à seuil, mais il peut être pertinent, au lieu d'utiliser des seuils fixe créant de brusques changements de régimes (modèle SETAR), d'utiliser un modèle à seuil avec fonction de transition (modèle STAR), permettant une linéarisation du changement de régime.

Conclusion

Ainsi, nous sommes parvenus à modéliser, tout au long de ce projet, pour le VIX hebdomadaire entre 1997 et 2017, un modèle SETAR(2,2), à 2 régimes, où chaque régime suit un AR(2).

Lorsque la variable de changement de régime $q_t = X_{t-1}$, on trouve $c^* = 26,07$. Les coefficients sont, constantes mises à part, significatives, mais l'on ne peut pas dire, après test, que le modèle non linéaire SETAR soit plus pertinent que le modèle AR linéaire associé. En revanche, lorsque l'on optimise d, et que l'on prend $q_t^* = X_{t-3}$, comme variable de changement de régime, on trouve $c^* = 16,19$, et le modèle s'avère apporter plus d'informations que le modèle AR correspondant.

Par ailleurs, les coefficients de ce modèle (sauf un) sont significatifs, et l'on dispose d'un bon R^2 .

Enfin, on constate après test qu'il pourrait être pertinent d'étudier, au lieu d'un modèle SETAR, à changement de régime brutaux en fonction du niveau de la variable expliquée, un modèle où le changement de régime serait linéaire et dépendrait d'une fonction de transition : un modèle STAR.

Annexe 1.1: Test ADF

1) Test de Dickey Fuller Augmenté

Modèles:

(3)
$$\Delta X_t = c + bt + \rho X_{t-1} + \varepsilon_t$$

(2) $\Delta X_t = c + \rho X_{t-1} + \varepsilon_t$
(1) $\Delta X_t = \rho X_{t-1} + \varepsilon_t$

Hypothèses du test :

$$H_0: \quad \rho = 0$$

$$vs$$

$$H_1: \quad \rho < 0$$

Statistique du test :

$$t_{\text{obs}} = \frac{\widehat{\rho}}{\sigma_{\rho}}$$

si $t_{\text{Obs}} < \text{VC} = t_{\text{tab}}$ (tabulé par Dickey Fuller), alors on rejete l'hypothèse nulle de présence de racine unitaire.

On rejette H0 si t_{obs} < VC = t_{tab}

On suit la stratégie séquentielle de tests de racine unitaire « classique », qui consiste à tester en premier lieu le Modèle 3, puis le 2, et enfin le 1 :

Voici le résumé de la stratégie séquentielle de test de racine unitaire que nous avons mené sur le cours mensuel du VIX :

a) Modèle 3:

$$\Delta X_t = c + bt + \rho X_{t-1} + \varepsilon_t$$

Avec:

 ΔX_t = Variation mensuelle du VIX

 X_{t-1} = Cours du VIX

 ρ = coefficient associé au cours du VIX

 ε_t = résidus (bruit blanc)

t = tendance linéaire (grandit linéairement avec t)

b = coefficient associée à la tendance linéaire

Voici la sortie EViews (Quick < Series Statistic < Unit Root Test) d'un test ADF:

- en niveau (On test le processus de la variable X_t , quand bien même dans le modèle la variable à expliquer est ΔX_t), on sélectionne donc « Test for unit root in : » Level.
- Du modèle 3, avec tendance et constante. On sélectionne donc « Include in test equation: » Trend and intercept.

			t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic	;	-5.298101	0.0001
Test critical values:	1% level 5% level 10% level		-3.966888 -3.414136 -3.129172	
*MacKinnon (1996) on	e-sided n-value			
,	•			
Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 3 1	13:14 043			
Date: 10/20/17 Time:	13:14 043	ustments Std. Error	t-Statistic	Prob.
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations: Variable	13:14 043 1041 after adju	Std. Error		
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations:	13:14 043 1041 after adju Coefficient -0.062296 -0.156633	Std. Error 0.011758 0.030886	-5.298101 -5.071334	0.000
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations: Variable SERIES01(-1)	13:14 043 1041 after adju Coefficient -0.062296	Std. Error 0.011758	-5.298101	0.000 0.000 0.000
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations: Variable SERIES01(-1) D(SERIES01(-1)) C @TREND("1") R-squared	13:14 043 1041 after adju Coefficient -0.062296 -0.156633 1.012555 0.000526	Std. Error 0.011758 0.030886 0.263964 0.000332 Mean depen	-5.298101 -5.071334 3.835958 1.583462 dent var	0.000 0.000 0.000 0.113
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations: Variable SERIES01(-1) D(SERIES01(-1)) C @TREND("1") R-squared Adjusted R-squared	13:14 043 1041 after adju Coefficient -0.062296 -0.156633 1.012555 0.000526 0.060298 0.057579	Std. Error 0.011758 0.030886 0.263964 0.000332 Mean depen S.D. depend	-5.298101 -5.071334 3.835958 1.583462 dent var ent var	0.000 0.000 0.000 0.113 0.01298 3.14076
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations: Variable SERIES01(-1) D(SERIES01(-1)) C @TREND("1") R-squared Adjusted R-squared S.E. of regression	13:14 043 1041 after adju Coefficient -0.062296 -0.156633 1.012555 0.000526	Std. Error 0.011758 0.030886 0.263964 0.000332 Mean depen	-5.298101 -5.071334 3.835958 1.583462 dent var ent var	0.000 0.000 0.000 0.113
Date: 10/20/17 Time: Sample (adjusted): 3 1 Included observations: Variable SERIES01(-1) D(SERIES01(-1)) C @TREND("1") R-squared Adjusted R-squared	13:14 043 1041 after adju Coefficient -0.062296 -0.156633 1.012555 0.000526 0.060298 0.057579 3.048999	Std. Error 0.011758 0.030886 0.263964 0.000332 Mean depen S.D. depend Akaike info o	-5.298101 -5.071334 3.835958 1.583462 dent var ent var sriterion erion nn criter.	0.000 0.000 0.000 0.113 0.01298 3.14076 5.07133

On peut voir que l'hypothèse de racine unitaire est rejetée à 5% : -5,29 < -3,41 et 0,01% < 5%.

Nous n'avons donc pas de racine unitaire pour le coefficient associé à X_{t-1} .

Il nous faut maintenant tester la significativité du coefficient associé au trend, b.

L'hypothèse de non-significativité du coefficient associé au trend n'est en revanche pas rejetée : |1,58| < 1,96 et 11,36% > 5%.

(La valeur tabulée du test de significativité est cherchée dans la table de Student car le test de racine unitaire a été rejeté)

Le coefficient associé au trend est donc statistiquement proche de ou égale à 0, on ne peut donc pas utiliser le modèle 3, et, suivant la stratégie séquentielle de test que nous avons posée, nous passons au modèle 2.

b) Modèle 2:

$$\Delta X_t = c + \rho X_{t-1} + \varepsilon_t$$

Voici la sortie EViews , d'un test ADF en niveau pour le modèle 2 (Intercept) :

Null Hypothesis: SERIES01 has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=21)

	t-Statistic Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level 10% level	-5.053875 0.0000 -3.436413 -2.864106 -2.568188

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SERIES01)

Method: Least Squares
Date: 10/20/17 Time: 13:19
Sample (adjusted): 3 1043
Included observations: 1041 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SERIES01(-1) D(SERIES01(-1)) C	-0.056307 -0.159550 1.165034	0.011141 0.030853 0.245952	-5.053875 -5.171246 4.736844	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.058026 0.056211 3.051212 9663.670 -2636.889 31.97038 0.000000	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.012988 3.140760 5.071832 5.086092 5.077241 1.982382

On peut voir que l'hypothèse de racine unitaire est rejetée à 5% : -5,05 < -2,87 et 0% < 5%. De même, tous les coefficients sont significatifs, notamment celui de la constante : |4,73| > 1,96 et 0% < 5%.

Nous pouvons donc utiliser le modèle 2, et nous sommes ici en présence d'un processus X_t tel que:

$$X_t \sim I(0) + c$$

et :
$$\Delta X_t = c + \rho X_{t-1} + \varepsilon_t$$

Nous testons quand même le modèle 1, il devrait en toute rigueur ne pas être stationnaire, afin d'être sûr que nous choisissions le bon modèle.

c) Modèle 1:

$$\Delta X_t = \rho X_{t-1} + \varepsilon_t$$

Voici la sortie EViews, d'un test ADF, en niveau, pour le modèle 1 (None) :

Null Hypothesis: SERIES01 has a unit root Exogenous: None Lag Length: 1 (Automatic - based on SIC, maxlag=21) t-Statistic Prob.* Augmented Dickey-Fuller test statistic
Test critical values: 1% level
5% level -1.753596 -2.567185 -1.941128 0.0755 -1.616495 *MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(SERIES01)

Method: Least Squares
Date: 10/20/17 Time: 13:22
Sample (adjusted): 3 1043
Included observations: 1041 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SERIES01(-1) D(SERIES01(-1))	-0.007590 -0.183717	0.004328 0.030741	-1.753596 -5.976311	0.0798 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.037664 0.036737 3.082529 9872.562 -2648.020 1.988092	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Quir	ent var riterion erion	0.012988 3.140760 5.091297 5.100803 5.094903

Le processus apparait comme étant non-stationnaire dans le modèle 1 :

-1,75 > -1,95 et 7,55% > 5%.

Le modèle est donc supposé présenter une racine unitaire pour le coefficient associé à la variable explicative.

De même, la variable explicative n'apparait pas comme étant statistiquement significative (|-1,75| < 1,96 et 7,98% > 5%).

Nous vérifions que le modèle choisi est bien stationnaire, et qu'il est le « bon » modèle à choisir, avec un test de Phillipe Perron.

Annexe 1.2: Test Philipe Perron

Modèle:

(2)
$$\Delta X_t = c + \rho X_{t-1} + \varepsilon_t$$

Hypothèses du test :

$$H_0: \quad \rho = 0$$

$$vs$$

$$H_1: \quad \rho < 0$$

Statistique du test :

$$t_{obs}^{PP} = f(t_{obs}^{ADF}) \rightarrow$$
 c'est une fonction de la statistique du test ADF.

Règle de décision :

Si $t_{obs}^{PP} < t_{tab}^{DF}$, alors on rejette H0. Il est important de noter que l'on se sers des valeurs tabulées de Dickey Fuller.

a) Modèle 3:

Voici la sortie Eviews du test de Phillippe Perron, en niveau, sur le modèle 3 (Trend & Intercept):

Bandwidth: 8 (Newey-\	Adi. t-Stat Prob.*					
			Adj. t-Stat	Prob.*		
Phillips-Perron test state	tistic		-5.949600	0.0000		
Test critical values:	1% level 5% level		-3.966879 -3.414131			
	10% level		-3.129170			
*MacKinnon (1996) one	e-sided p-value	es.				
Residual variance (no d HAC corrected varianc	correction) e (Bartlett kern	el)		9.481423 8.328385		
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time:	(SERIES01) s 13:43					
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1	(SERIES01) 13:43 043	ustments				
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1	(SERIES01) 13:43 043	ustments Std. Error	t-Statistic	Prob.		
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations:	(SERIES01) 13:43 043 1042 after adju Coefficient -0.073679	Std. Error 0.011668	-6.314347	0.0000		
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations: Variable	(SERIES01) 13:43 043 1042 after adju	Std. Error				
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations: Variable SERIES01(-1) C @TREND("1") R-squared	(SERIES01) 13:43 043 1042 after adju Coefficient -0.073679 1.186876 0.000628 0.036973	Std. Error 0.011668 0.264144 0.000335 Mean depen	-6.314347 4.493297 1.876122	0.0000 0.0000 0.0609 0.013013		
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations: Variable SERIES01(-1) C @TREND("1") R-squared Adjusted R-squared	(SERIES01) 5 13:43 043 1042 after adju Coefficient -0.073679 1.186876 0.000628 0.036973 0.035120	Std. Error 0.011668 0.264144 0.000335 Mean depending S.D. depending	-6.314347 4.493297 1.876122 Ident var	0.0000 0.0000 0.0609 0.013013 3.139252		
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations: Variable SERIES01(-1) C @TREND("1") R-squared Adjusted R-squared S.E. of regression	(SERIES01) 13:43 043 1042 after adju Coefficient -0.073679 1.186876 0.000628 0.036973 0.035120 3.083634	Std. Error 0.011668 0.264144 0.000335 Mean depend S.D. depend Akaike info	-6.314347 4.493297 1.876122 Ident var lent var criterion	0.0000 0.0000 0.0609 0.013013 3.139252 5.092970		
SERIES01(-1)	(SERIES01) 5 13:43 043 1042 after adju Coefficient -0.073679 1.186876 0.000628 0.036973 0.035120	Std. Error 0.011668 0.264144 0.000335 Mean depending S.D. depending	-6.314347 4.493297 1.876122 Ident var lent var criterion erion nn criter.	0.0000 0.0000 0.0609 0.013013 3.139252		

Le test confirme bien le rejet de l'hypothèse nulle de présence de racine unitaire (-5,95 < -2,87 et 0% < 5%).

De même, il confirme également la non-significativité du coefficient associé à la tendance.

b) <u>Modèle 2 :</u>

Voici la sortie Eviews du test de Phillippe Perron, en niveau, sur notre modèle 2 (Intercept) :

			Adj. t-Stat	Prob.*	
Phillips-Perron test statistic -5.614644 0.000 Test critical values: 1% level -3.436407 5% level -2.864103 10% level -2.568186					
*MacKinnon (1996) one	e-sided p-value	s.			
Residual variance (no d HAC corrected variance	correction) e (Bartlett kern	el)		9.513544 8.148329	
Phillips-Perron Test Eq	uation				
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations:	(SERIES01) 3 13:26 043 1042 after adju				
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time:	(SERIES01) S 13:26	ustments Std. Error	t-Statistic	Prob.	
Dependent Variable: D Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 1 Included observations:	(SERIES01) 3 13:26 043 1042 after adju		t-Statistic -6.023502 5.599294	Prob. 0.0000 0.0000	

Le test confirme bien le rejet de l'hypothèse nulle de présence de racine unitaire (-5,61 < -2,87 et 0% < 5%).

De même, il confirme également la significativité des coefficients de la régression, notamment celui de la constante.

c) Modèle 1:

Voici la sortie Eviews du test de Phillippe Perron, en niveau, sur notre modèle 2 (Intercept) :

Null Hypothesis: SERIES01 has a unit root Exogenous: None Bandwidth: 8 (Newey-West automatic) using Bartlett kernel					
			Adj. t-Stat	Prob.*	
Phillips-Perron test stati Test critical values:	0.0777				
*MacKinnon (1996) one	-sided p-value	S.			
Residual variance (no c	orrection) e (Bartlett kern	el)		9.800341 6.441714	
Phillips-Perron Test Equation Dependent Variable: D(SERIES01) Method: Least Squares Date: 10/20/17 Time: 13:44 Sample (adjusted): 2 1043 Included observations: 1042 after adjustments					
included observations.					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
	Coefficient -0.009613	Std. Error 0.004384	-2.192896	Prob. 0.0285	

Le test confirme bien le non-rejet de l'hypothèse nulle de présence de racine unitaire (-1,73 < -1,94 et 7,77% > 5%).

De même, il confirme également la non-significativité du coefficient associé à la variable explicative.

Annexe 2.1: 16 Sorties EViews des estimations de p* et q* du modèle ARMA(p*, q*)

a) ARMA(3,p) avec $p = \{0, 1, 2, 3\}$

Dependent Variable: SERIES01
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 10/20/17 Time: 15:09
Sample: 4 1043
Included observations: 1040
Convergence achieved after 44 iterations
Coefficient covariance computed using outer product of gradients Coefficient Std. Error Prob. Variable t-Statistic 1.116189 0.508392 0.737718 -0.299984 0.279531 -0.352923 0.033564 9.269349 0.8979 0.9141 0.2106 0.9364 0.9527 0.9116 0.9437 0.0000 0.128386 0.107900 1.252775 -0.079845 0.059315 -0.111057 0.070662 45.56823 C SERIES01(-1) SERIES01(-2) SERIES01(-3) MA(1) MA(2) MA(3) SIGMASQ 8.693985 4.711689 4.711689 0.588867 3.757070 4.712650 3.177867 0.475003 0.203417 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) 0.875376 0.874531 3.056338 9640.123 -2633.847 1035.557 0.000000 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 20.41411 8.628443 5.080475 5.118529 5.094911 1.986961 Inverted MA Roots

Dependent Variable: SERIES01 Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/20/17 Time: 15:10 Sample: 4 1043 Included observations: 1040 Convergence achieved after 30 iterations Coefficient covariance computed using outer product of gradients					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
SERIES01(-1) SERIES01(-2) SERIES01(-3) MA(1) SIGMASQ	2.122960 -0.005330 0.803411 0.099299 0.795377 9.271526	0.488740 0.226438 0.166422 0.052190 0.223609 0.201028	4.343742 -0.023540 4.827544 1.902638 3.557005 46.12049	0.0000 0.9812 0.0000 0.0574 0.0004 0.0000	
R-squared Adjusted R-squared S.E. of regression S.E. of regression Log likelihood F-statistic Prob(F-statistic)	0.875347 0.874744 3.053740 9642.387 -2634.210 1452.200 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion an criter.	20.41411 8.628443 5.077326 5.105867 5.088153 1.990603	
Inverted MA Roots	80				

Dependent Variable: SERIES01 Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/20/17 Time: 15:10 Sample: 4 1043 Included observations: 1040 Convergence achieved after 40 iterations Coefficient covariance computed using outer product of gradients				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SERIES01(-1) SERIES01(-2) SERIES01(-3) MA(1) MA(2) SIGMASQ	1.578380 0.249641 0.758266 -0.084103 0.538869 -0.172888 9.270008	0.727206 0.427439 0.235339 0.188588 0.427860 0.148016 0.201000	2.170472 0.584040 3.222013 -0.445962 1.259452 -1.168031 46.11955	0.0302 0.5593 0.0013 0.6557 0.2082 0.2431 0.0000
R-squared				
Inverted MA Roots	.23	76		

Dependent Variable: SERIES01 Method: Least Squares Date: 10/20/17 Time: 15:11 Sample (adjusted): 4 1043 Included observations: 1040 after adjustments				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SERIES01(-1) SERIES01(-2) SERIES01(-3)	1.183671 0.786384 0.170588 -0.014179	0.248868 0.031273 0.039412 0.031300	4.756229 25.14612 4.328322 -0.453005	0.0000 0.0000 0.0000 0.6506
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875104 0.874742 3.053763 9661.184 -2634.722 2419.625 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		20.41411 8.628443 5.074465 5.093492 5.081683 1.986037

b) ARMA(2,p) avec $p = \{0, 1, 2, 3\}$

Dependent Variable: SERIES01 Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/20/17 Time: 15:11 Sample: 3 1043 Included observations: 1041 Convergence achieved after 54 iterations Coefficient covariance computed using outer product of gradients					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C SERIES01(-1) SERIES01(-2) MA(1) MA(2) MA(3) SIGMASQ	1.781674 0.140213 0.773663 0.647392 -0.099573 -0.005665 9.262393	0.406711 0.220567 0.209793 0.223562 0.045943 0.024004 0.202063	4.380686 0.635693 3.687742 2.895803 -2.167308 -0.236000 45.83905	0.0000 0.5251 0.0002 0.0039 0.0304 0.8135 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875541 0.874819 3.053702 9642.151 -2636.096 1212.324 0.000000	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	20.40363 8.630913 5.077995 5.111266 5.090616 1.986432	
Inverted MA Roots	.16	04	77		

Dependent Variable: SERIES01 Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/20/17 Time: 15:12 Sample: 3 1043 Included observations: 1041 Convergence achieved after 33 iterations Coefficient covariance computed using outer product of gradients				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SERIES01(-1) SERIES01(-2) MA(1) MA(2) SIGMASQ	1.809461 0.131544 0.780968 0.655625 -0.096910 9.262351	0.366328 0.155572 0.149283 0.160140 0.043454 0.195380	4.939456 0.845549 5.231444 4.094079 -2.230187 47.40679	0.0000 0.3980 0.0000 0.0000 0.0259 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875541 0.874940 3.052220 9642.108 -2636.110 1456.203 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	20.40363 8.630913 5.076100 5.104618 5.086918 1.985443
Inverted MA Roots	.12	78		

Dependent Variable: S Method: ARMA Maxim Date: 10/20/17 Time: Sample: 3 1043 Included observations: Convergence achieved Coefficient covariance	um Likelihood (15:13 1041 I after 48 iterati	ons		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
SERIES01(-1) SERIES01(-2) MA(1) SIGMASQ	1.330497 0.664052 0.271590 0.123594 9.280406	0.259298 0.128085 0.123045 0.138853 0.184855	5.131158 5.184450 2.207235 0.890105 50.20381	0.0000 0.0000 0.0275 0.3736 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875299 0.874817 3.053718 9660.903 -2636.747 1817.964 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	20.40363 8.630913 5.075403 5.099169 5.084418 1.988050
Inverted MA Roots	12			

Dependent Variable: SI Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 3 10 Included observations:	15:13)43	ıstments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SERIES01(-1) SERIES01(-2)	1.165034 0.784143 0.159550	0.245952 0.030833 0.030853	4.736844 25.43164 5.171246	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875263 0.875023 3.051212 9663.670 -2636.889 3641.755 0.000000	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion in criter.	20.40363 8.630913 5.071832 5.086092 5.077241 1.982382

c) ARMA(1,p) avec p = {0, 1, 2, 3}

Dependent Variable: S Method: ARMA Maxim Date: 10/20/17 Time: Sample: 2 1043 Included observations: Convergence achieved Coefficient covariance	um Likelihood (15:14 1042 I after 34 iterati	ons				
Variable	Variable Coefficient Std. Error t-Statistic Prob.					
C SERIES01(-1) MA(1) MA(2) MA(3) SIGMASQ	0.955515 0.953839 -0.166073 0.034050 -0.032560 9.268024	0.208280 0.006859 0.020102 0.019641 0.021031 0.192987	4.587640 139.0581 -8.261586 1.733651 -1.548201 48.02412	0.0000 0.0000 0.0000 0.0833 0.1219 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875531 0.874930 3.053146 9657.281 -2638.592 1457.473 0.000000	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	20.39331 8.633197 5.075993 5.104490 5.086802 1.988412		
Inverted MA Roots	.34	09+.29i	0929i			

Dependent Variable: S Method: ARMA Maxim Date: 10/20/17 Time: Sample: 2 1043 Included observations: Convergence achieved Coefficient covariance	um Likelihood (15:14 1042 d after 37 iterati	ons		;	
Variable Coefficient Std. Error t-Statistic Prob.					
C SERIES01(-1) MA(1) MA(2) SIGMASQ	1.022219 0.950554 -0.163125 0.031697 9.276652	0.188078 0.005329 0.019764 0.019853 0.178064	5.435082 178.3797 -8.253500 1.596583 52.09733	0.0000 0.0000 0.0000 0.1107 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875415 0.874935 3.053094 9666.272 -2639.076 1821.662 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		20.39331 8.633197 5.075001 5.098748 5.084008 1.988800	
Inverted MA Roots	.08+.16i	.0816i			

Dependent Variable: S Method: ARMA Maxim Date: 10/20/17 Time: Sample: 2 1043 Included observations: Convergence achieved Coefficient covariance	um Likelihood (15:15 1042 I after 29 iterati	ons			
Variable	Coefficient Std. Error t-Statistic Prob.				
C SERIES01(-1) MA(1) SIGMASQ	0.956964 0.953774 -0.163280 9.285379	0.181325 0.005127 0.019542 0.178005	5.277612 186.0463 -8.355259 52.16345	0.0000 0.0000 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875298 0.874938 3.053058 9675.364 -2639.565 2428.615 0.000000	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	20.39331 8.633197 5.074022 5.093019 5.081228 1.996966	
Inverted MA Roots	.16				

Dependent Variable: SI Method: Least Squares Date: 10/20/17 Time: Sample (adjusted): 2 10 Included observations:	15:15 043	ustments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SERIES01(-1)	1.372728 0.933283	0.245161 0.011076	5.599294 84.26071	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.872234 0.872111 3.087368 9913.112 -2652.199 7099.867 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		20.39331 8.633197 5.094432 5.103931 5.098035 2.281857

d) MA(p) avec p = {0, 1, 2, 3}

CDanandant Variable: 1	·			
Dependent Variable: \$ Method: ARMA Maxim Date: 10/20/17 Time: Sample: 1 1043 Included observations Convergence achieve: Coefficient covariance	num Likelihood (: 15:16 : 1043 d after 83 iteration	ons	t of gradients	i
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C MA(1) MA(2) MA(3) SIGMASQ	20.35749 1.004654 0.851731 0.417660 15.49102	0.485944 0.022500 0.030885 0.021608 0.338647	41.89269 44.65070 27.57792 19.32897 45.74388	0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.792068 0.791267 3.945331 16157.13 -2909.761 988.5065 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion en criter.	20.38297 8.635510 5.589187 5.612916 5.598187 1.668325
Inverted MA Roots	17+.77i	1777i	67	

Dependent Variable: S Method: ARMA Maxim Date: 10/20/17 Time: Sample: 1 1043 Included observations: Convergence achieved Coefficient covariance	num Likelihood (15:16 : 1043 d after 103 itera	tions				
Variable Coefficient Std. Error t-Statistic Prob.						
C MA(1) MA(2) SIGMASQ	20.37098 0.927254 0.568906 20.02506	0.427570 0.014956 0.016062 0.490504	47.64363 61.99708 35.41889 40.82548	0.0000 0.0000 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.731209 0.730433 4.483543 20886.14 -3043.486 942.1532 0.000000	Mean depend S.D. depende Akaike info c Schwarz chwarz Hannan-Quir Durbin-Watso	ent var riterion erion en criter.	20.38297 8.635510 5.843694 5.862677 5.850894 1.346833		
Inverted MA Roots	4659i	46+.59i				

Dependent Variable: S Method: ARMA Maxim Date: 10/20/17 Time: Sample: 1 1043 Included observations: Convergence achieved Coefficient covariance	um Likelihood (15:17 1043 d after 5 iteration	ns	of gradients			
Variable Coefficient Std. Error t-Statistic Prob.						
C MA(1) SIGMASQ	20.37486 0.732425 31.93372	0.388432 0.015687 0.828287	52.45408 46.69014 38.55393	0.0000 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.571363 0.570538 5.659137 33306.87 -3286.637 693.1465 0.000000	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion in criter.	20.38297 8.635510 6.308029 6.322267 6.313429 0.909838		
Inverted MA Roots	73					

Dependent Variable: SE Method: Least Squares Date: 10/20/17 Time: 1 Sample: 1 1043 Included observations:	15:18			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	20.38297	0.267390	76.22925	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 8.635510 77704.07 -3728.038 0.132028	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var riterion erion	20.38297 8.635510 7.150601 7.155347 7.152401

Annexe 2.2 : Sortie EViews de l'estimation du modèle $AR(p^*) = AR(2)$

Dependent Variable: SERIES01 Method: Least Squares Date: 10/20/17 Time: 16:15 Sample (adjusted): 3 1043 Included observations: 1041 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SERIES01(-1) SERIES01(-2)	1.165034 0.784143 0.159550	0.245952 4.736844 0.030833 25.43164 0.030853 5.171246		0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.875263 0.875023 3.051212 9663.670 -2636.889 3641.755 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion erion nn criter.	20.40363 8.630913 5.071832 5.086092 5.077241 1.982382

Annexe 2.3 : Test de Ljung Box – Autocorrélation des erreurs

Mise en place du test

Hypothèse du test :

Ho: Les résidus ne sont pas autocorréllés

H₁: les résidus sont autocorréllés

Statistique du test :

$$Q=n\left(n+2
ight)\sum_{k=1}^{h}rac{\hat{
ho}_{k}^{2}}{n-k}$$

avec n le nombre d'observations, ρ_k^2 le coefficient d'autocorrélation à l'ordre k élevé au carré, et h le degré de décalage temporel pour la Q-stat.

On vas enfaite calculer cette Q-stat pour les 20 premiers décalages temporels de la série, puis sommer ces 20 Q-stats, pour obtenir la statistique du test.

Sous H0, la Q-stat suit une loi de Khi2 à h degrés de libertés.

$$Q_h \sim \chi^2_{1-\infty,h}$$

Pour la série considére, $\chi^2_{1-\alpha,h}$ = 31,41

On rejette H0 si $Q_h > \chi^2_{1-\infty,h}$.

Commande EViews:

"View > Residuals Diagnostic > Correlogram - Q Statistics "

Date: 10/20/17 Time: 16:36 Sample: 1 1043 Included observations: 1041 Q-statistic probabilities adjusted for 2 dynamic regressors PAC Autocorrelation **Partial Correlation** Q-Stat Prob 0.002 0.002 0.0049 0.9440.0767 0.8273 234567 0.008 0.008 0.962 -0.027-0 027 Ф 0.843 1.0454 0.015 0.014 1.0582 0.003 0.004 0.010 7.2048 9.1988 0.054 10 11 -0.074 -0.078 8 -0.059 -0.054 -0.03214 15 16 0.054 0.048 -0.021 0.050 -0.025 -0.002-0.00326.261 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 33 35 36 27.655 30.891 0.051 -0.006-0.016 0.013 0.009 -0.039 -0.017 0.018 -0.008 0.001 -0.032 -0.007-0.00637.596 0.2280.015 37.829 0.258-0.005 -0.007 39.730 0.307

Lorsque la probabilité critique d'un coefficient d'autocorrélation est supérieur à α (risque de première espèce), on ne rejette pas l'hypothèse nulle de non significativité du coefficient. On peut observer que les coefficients d'autocorrélation entre les erreurs du modèle sont presque toutes non-significatives, seul le coefficient autocorrélation des résidus à l'ordre 15 s'avère significatif.

On peut donc supposer une absence d'autocorrélations entre nos résidus dans le modèle.

La Q-stat est la somme cumulée des Q-stat.

Nous avons décide de retenir l'ordre 20 pour la statistique du test.

On peut voir que la somme cumulée des Q-stat jusqu'à l'ordre 20 de décalage temporel donne un Q-stat de 30,891.

30,891 < 31,41, on ne peut donc pas rejeter l'hypothèse nulle de non-autocrrélation entre les résidus.

Annexe 2.4 : Test d'Hétéroscédasticité des erreurs du modèle

Commande EViews:

"View > Residuals Diagnostic > Correlogram Squared Residual"

Included observation	ns: 1041					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		12345678901112314567891112322245627893313333333333333333333333333333333333	0.158 0.131 0.358 0.308 0.069 0.074 0.054 0.084 0.009 0.024 0.005 0.010 0.024 0.005 0.015 0.010 0.002 0.007 0.007 0.007 0.007 0.007 0.007 0.001 0.002 0.010 0.009 0.001 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.000	0.158 0.109 0.334 0.245 -0.042 -0.103 0.081 -0.091 -0.091 -0.015 -0.091 -0.024 0.058 0.004 0.030 -0.007 -0.007 -0.011 -0.014 -0.013 -0.014 -0.015 -0.011 -0.0101 -0.01	26.094 44.028 177.94 277.43 282.42 288.24 352.27 356.77 366.76 367.75 367.75 367.75 368.48 368.84 368.89 369.69 369.70 369.80 369.80 369.90 370.14 370.14 371.32 371.42 371.32 371.91 372.00 372.00	0.000 0.000

Annexe 2.5 : Test de Jarque-Bera – Normalité des erreurs

Commande EViews:

"View > Residuals Diagnostic > Histogram - Normality Test"

Annexe 3.1: Mise en place de la régression pour l'estimation du modèle SETAR

On commence par définir notre seuil de changement de régime c comme la moyenne de l'échantillon.

On trouve $\overline{X} = c = XXX$.

On a défini q comme étant égal à X_{t-1} .

Ainsi, lorsque X_{t-1} est inférieur ou égale à c, nous nous trouvons dans le régime 1.

Lorsque X_{t-1} est en revanche supérieur à c, nous sommes dans le régime 2.

Afin de pouvoir modèliser cela comme un modèle linéaire multivarié classique, et donc de pouvoir effectuer une régression linéaire simple afin d'estimer les paramètres du modèle, on introduit une variable indicatrice $1(X_{t-1} \le c)$:

$$1(X_{t-1} \le c) = \begin{cases} 1 & \text{, si } q = X_{t-1} \le c \\ 0 & \text{, sinon} \end{cases}$$

Nous remarquons dés lors que le modèle peut être écrit sous la forme similaire suivante :

$$X_{t} = \left[c_{1} + \sum_{i=1}^{p} \emptyset_{1,i} X_{t-i} + \varepsilon_{t}\right] \times 1(X_{t-1} \le c) + \left[c_{2} + \sum_{i=1}^{p} \emptyset_{1,i} X_{t-i} + \varepsilon_{t}\right] \times (1 - 1(X_{t-1} \le c))$$

On a Y, le vecteur de la variable expliquée.

Si Z est le vecteur $(1, X_{t-1}, X_{t-2}, ..., X_{t-p})$

Alors on peut définir la matrice X comme :

$$X = [Z^*1(X_{t-1} \le c) Z^*(1-1(X_{t-1} \le c))]$$

En notant : $1(X_{t-1} \le c) = I$

La matrice des regresseurs X est donc de la forme suivante :

$$\begin{pmatrix} 1 \times I & X_{t-1} \times I & X_{t-2} \times I & 1 \times (1-I) & X_{t-1} \times (1-I) & X_{t-2} \times (1-I) \\ \vdots \vdots & \vdots \vdots & \vdots \vdots & \vdots \vdots & \vdots \vdots \\ 1 \times I & X_{n-1} \times I & X_{n-2} \times I & 1 \times (1-I) & X_{n-1} \times (1-I) & X_{n-2} \times (1-I) \end{pmatrix}$$

Régime 1:

- Une colonne pour la constante du régime 1 : vaut 1 si $q \le c$, 0 sinon.
- \circ Une colonne pour la variable explicative X_{t-1} du régime 1 : c'est Y décalé de 1 périodes. Vaut X_{t-1} , si $q \le c$, 0 sinon.

- Une colonne pour la variable explicative X_{t-2} du régime 1 : c'est Y décalé de 2 périodes. Vaut X_{t-2} , si $q \le c$, 0 sinon.
- o ...
- Une colonne pour la variable explicative X_{t-p} du régime 1 : c'est Y décalé de p périodes. Vaut X_{t-p} , si $q \le c$, 0 sinon.

Régime 2 :

- Une colonne pour la constante du modèle 2 : vaut 1 si q > c, 0 sinon.
- o Une colonne pour la variable explicative X_{t-1} du régime 2 : c'est Y décalé de 1 périodes. Vaut X_{t-1} , si q>c, 0 sinon.
- o Une colonne pour la variable explicative X_{t-2} du régime 2 : c'est Y décalé de 2 périodes. Vaut X_{t-2} , si q>c, 0 sinon.
- 0 ...
- o Une colonne pour la variable explicative X_{t-p} du régime 2 : c'est Y décalé de p périodes. Vaut X_{t-p} , si q>c, 0 sinon.

La matrice X contient donc 2*(k+1) colonnes, avec k le nombre de paramètres à estimer. Avec cette disposition, on peut facilement effectuer une régression linéaire classique de X sur Y.

On obtient ainsi les 2*(k+1) coefficients estimés du modèle par la formule :

$$\emptyset = (X'X)(X'Y)$$

Sur l'axe des ordonnées, Y vaut 1 lorsque nous nous trouvons dans le régime 2, et 0 sinon. On peut voit que les périodes ont interviennent le régime deux sont principalement entre 1998 et 2003, puis entre 2007 et 2010, avant de reprendre entre 2011 et 2012. Plus précisément, les deux pics d'occurrence du régime 2 se situe entre 2002 et 2003, et entre 2008 et 2009.