# Probabilidad y Regresión Logística

Clasificación

## Visión Probabilística de la Regresión

• 
$$y = w_1 x + w_0$$

Hay infinitos modelos

• Elegir el modelo con la mayor probabilidad



# MLE (Maximum Likelihood Estimation)

- Estimación de máxima verosimilitud
- Problema de optimización.
- Permite estimar densidades de probabilidad de un conjunto de datos

#### Probabilidad

$$P(x; w) = L(x; w)$$

$$\max L(x; w) = \max \prod_{i} P(x_i; w)$$

Tomamos el logaritmo porque valores muy pequeños causan problemas. En lugar de 0.0001 se tiene -9.21.....

$$\max \log L(x; w) = \max \sum_{i} \log P(x_i; w)$$

#### Aplicando en regresión

$$\bullet \ y = w_1 x + w_0$$

•  $P(y|x) \to \max \sum_{i} \log P(y_i|x_i;h)$ 

- h es la función que buscamos
- h no necesariamente debe ser regresión lineal

## Equivalencia de MLE y Regresión Lineal

$$\max \sum_{i} \log P(y_i|x_i;h)$$

$$h \to y = w_1 x + w_0$$

$$P \to \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$$

 $y - \mu$  es el error

En la regresión tradicional

$$\min \sum_{i=1}^{n} (y_i - (w_1 x + w_0))^2$$

 $y_i - (w_1 x + w_0)$  es el error

$$\max \sum_{i} \log \frac{1}{\sigma \sqrt{2\pi}} \times e^{-\frac{1}{2} \left( \frac{y_i - (w_1 x + w_0)}{\sigma} \right)^2}$$

$$\max \sum_{i} \log \frac{1}{\sigma \sqrt{2\pi}} + \log e^{-\frac{1}{2} \left( \frac{y_i - (w_1 x + w_0)}{\sigma} \right)^2}$$

$$\max \sum_{i} -\frac{1}{2} \left( \frac{y_i - (w_1 x + w_0)}{\sigma} \right)^2$$

$$\min \frac{1}{2\sigma^2} \sum_{i} (y_i - (w_1 x + w_0))^2$$

En la regresión tradicional

$$\min \sum_{i=1}^{n} (y_i - (w_1 x + w_0))^2$$

Regresión Logistica



## Regresión Logística

Variables independientes: sin cambios a la regresión lineal

Variable dependiente: Categórica

#### La función



- Binaria (0,1)
- Usa la función logística

$$\bullet \ \sigma(z) = \frac{1}{1 + e^{-z}}$$

• Forma sigmoide

#### La función



- Encaja bien con el objetivo de clasificar
- Interpretable como probabilidad

#### La función



Objetivo de la regresión:
 Ajustar la función para que todos los datos de un conjunto estén cerca al 0, y los del otro conjunto, al 1

#### Recordemos

- Queremos clasificar en base a atributos
- $x = \{x_1, x_2 ..., x_n\}$
- $y = \{0,1\}$

- Agregamos pesos a los atributos
- $X = w_1 x_1 + w_2 x_2 \dots + w_n x_n$

#### Transformando la función

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

z es la suma ponderada de las variables independientes

$$z = w^T x$$

$$P(clase = 1) = \frac{1}{1 + e^{-w^T x}}$$

#### Limite de Decisión

- $p \ge 0.5$ , clase = 1
- $p \le 0.5$ , clase = 0



# Usando MLE para definir la función de pérdida

$$\max \sum_{i} \log P(y_i|x_i;h)$$

$$h \to \hat{y} = f(x; w) = \frac{1}{1 + e^{-w^T x}}$$

$$L_i = \hat{y}_i \times y_i + (1 - \hat{y}_i) \times (1 - y_i)$$

#### Distribución Bernouli

$$P = \begin{cases} p \to y = 1\\ 1 - p \to y = 0 \end{cases}$$

$$\bar{p} = p \times 1 + (1 - p) \times 0$$

#### Cross-Entropy

$$\min Costo = CE = -\frac{1}{m} \sum_{i} y_i \times \log(f(x_i; w)) + (1 - y_i) \times \log(1 - f(x_i; w))$$

En vectores

$$\min -y^T \times \log(f(x; w)) + (1 - y^T) \times \log(1 - f(x; w)) / m$$



# Para encontrar el mínimo

- Debemos usar gradient descent
- Puede que hayan varias respuestas (mínimos locales)
- Hay otros algoritmos para leer

#### Non-convex Example



#### La derivada de la sigmoide

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{d\sigma}{dz} = \sigma(z)(1 - \sigma(z))$$

Por lo tanto la derivada de la función de costo es...

$$\frac{\partial CE}{\partial w_i} = (f(x_j; w_j) - y)x_j$$

## Para múltiples variables



Uno vs el resto (one-vs-rest)

# ¿Y si no es lineal?



## Non-linear Decision Boundary



3

#### Decision Boundary de grado 2...3...4

• 
$$f = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 \dots$$

•  $W^T\Phi(x)$ 

• ¿Regularización?



## Regularización

Ridge 
$$CE + \lambda w^2$$

Lasso 
$$CE + \lambda ||w||$$

## Modelando en Python

```
Arror_mod = modifier_ob.
t mirror object to mirror
mirror_mod.mirror_object
peration = "MIRROR_X":
mirror_mod.use_x = True
### Irror_mod.use_y = False
mlrror_mod.use_z = False
 operation == "MIRROR Y"
irror_mod.use_x = False
mIrror_mod.use_y = True
 lrror mod.use z = False
  operation == "MIRROR Z"
  irror mod.use_x = False
 lrror mod.use_y = False
 rror_mod.use_z = True
 melection at the end -add
  ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modifier
  irror ob.select = 0
 bpy.context.selected object
  Mata.objects[one.name].sel
 int("please select exactle
 OPERATOR CLASSES ----
    ypes.Operator):
X mirror to the selecter
   ject.mirror_mirror_x
 ontext):
ext.active_object is not
```

# Evaluando nuestro modelo

Matriz de Confusión

|                        | Positivo real                           | Negativo real                          |
|------------------------|-----------------------------------------|----------------------------------------|
| Predicción<br>positiva | Verdadero<br>positivo (TP)              | Falso positivo<br>(FP)<br>Error tipo I |
| Predicción<br>negativa | Falso negativo<br>(FN)<br>Error tipo II | Verdadero<br>negativo (TN)             |

#### Evaluando nuestro modelo (Accuracy)

|                     | Positivo real           | Negativo real           |
|---------------------|-------------------------|-------------------------|
| Predicción positiva | Verdadero positivo (TP) | Falso positivo (FP)     |
| Predicción negativa | Falso negativo (FN)     | Verdadero negativo (TN) |
|                     |                         |                         |

Accuracy (Precision)

$$\bullet \frac{TP + TN}{TP + TN + FP + FN}$$

- Métrica más intuitiva
- No es el más adecuado si la data no está balanceada
- (10 de una clase 0 y 90 de la clase 1)

#### Evaluando nuestro modelo (Recall)



Recall (Sensitivity)

$$\bullet \ \frac{TP}{TP + FN}$$

• Para datos médicos, este valor es importante

#### Evaluando nuestro modelo (Specificity )

|                     | Positivo real           | Negativo real           |
|---------------------|-------------------------|-------------------------|
| Predicción positiva | Verdadero positivo (TP) | Falso positivo (FP)     |
| Predicción negativa | Falso negativo (FN)     | Verdadero negativo (TN) |

Specificity

$$\bullet \ \frac{TN}{TN + FP}$$

#### Evaluando nuestro modelo (Precision)

|                     | Positivo real           | Negativo real           |
|---------------------|-------------------------|-------------------------|
| Predicción positiva | Verdadero positivo (TP) | Falso positivo (FP)     |
| Predicción negativa | Falso negativo (FN)     | Verdadero negativo (TN) |

• Precision

$$\bullet \ \frac{TP}{TP + FP}$$

#### Evaluando nuestro modelo (F1 Score)

|                     | Positivo real           | Negativo real           |
|---------------------|-------------------------|-------------------------|
| Predicción positiva | Verdadero positivo (TP) | Falso positivo (FP)     |
| Predicción negativa | Falso negativo (FN)     | Verdadero negativo (TN) |

• F1 Score

• 
$$F1 = 2 \frac{precision \times recall}{precision + recall}$$

$$\bullet \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

- Métrica ponderada de Verdaderos positivos
- Útil cuando se le quiere dar más peso a una clase o cuando hay desbalance

#### Evaluando nuestro modelo (Resumen)



Más el F-score

#### Resumen de regresión

- Definir la función de pérdida
- Derivar para encontrar la gradiente
- Encontrar el mínimo de la función de pérdida
  - Si se aplica GD y variantes
    - Calcular la gradiente
    - Actualizar pesos
    - Repetir hasta converger en un mínimo
- Evaluar el modelo con data no vista