PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-027904

(43) Date of publication of application: 31.01.1995

(51)Int.CI.

G02B 5/02 B32B 7/02 B32B 27/04 B32B 27/20 GO2F 1/1335

(21)Application number: 05-167701

(71)Applicant: MITSUI TOATSU CHEM INC

(22)Date of filing:

07.07.1993

(72)Inventor: KIKKAI MASAAKI

NARIMATSU OSAMU **HOSOKAWA YOICHI SAKAI YOSHIHIRO** SANO AKIYOSHI

(54) LIGHT-DIFFUSING SHEET

(57)Abstract:

PURPOSE: To provide such a light-diffusing sheet that both of transmission efficiency and diffusion efficiency for light are largely improved compared with a conventional light-diffusing sheet and high brightness is obtd. when the sheet is used for a back light. CONSTITUTION: This light-diffusing sheet is obtd. by forming a resin transparent layer 2 and a light-diffusing layer 3 on the one surface of a transparent plastic sheet 1. The difference of refractive index between the resin layer 2 and the plastic sheet 1 is small. The lightdiffusing layer 3 consists of 30-97 pts.wt. plastic beads and 70-3 pts.wt. resin component.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE COP

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-27904

(43)公開日 平成7年(1995)1月31日

(51) Int. Cl. 6	識別記号		FI
G02B 5/02	В.	9224-2K	
B32B 7/02	103	7148-4F	
27/04	2	8413-4F	
27/20	2	8413-4F	
G02F 1/1335	530	7408-2K	
			審査請求 未請求 請求項の数4 OL (全7頁)
(21)出願番号	特顧平5-167701		(71)出願人 000003126
			三井東圧化学株式会社
(22)出顧日	平成5年(1993)7月7日		東京都千代田区霞が関三丁目2番5号
			(72)発明者 吉開 正彰
			愛知県名古屋市南区丹後通2丁目1番地
			三井東圧化学株式会社内
			(72)発明者 成松 治
			愛知県名古屋市南区丹後通2丁目1番地
			三井東圧化学株式会社内
			(72)発明者 細川 羊一
			愛知県名古屋市南区丹後通2丁目1番地
			三井東圧化学株式会社内
			最終頁に続く

(54) 【発明の名称】光拡散シート

(19)日本国特許庁 (JP)

(57)【要約】

【目的】 従来の光拡散シートに比べて光の透過効率・ 拡散効率がともに大幅に向上せしめられて、バックライ トに用いた場合高い輝度が得られる優れた光反射シート を供給する。

【構成】 透明なプラスチックシートの片表面にプラス チックシートとの屈折率の差が小さい透明樹脂層、続い てプラスチックビーズ30~97重量部と樹脂分70~ 3 重量部からなる光拡散層を形成して光拡散シートを得 る。

【特許請求の範囲】

【請求項1】透明樹脂シートの片面に透明樹脂層を設け 更にプラスチックビーズと透明樹脂の混合層を積層した ことを特徴とする光拡散シート。

1

【請求項2】透明樹脂層の光屈折率と透明樹脂シートの 光屈折率の差が0.25以下である事を特徴とする請求 項1記載の光拡散シート。

【請求項3】プラスチックピーズの平均粒子径が $5\sim5$ 0 μ mであることを特徴とする請求項1記載の光拡散シート。

【請求項4】プラスチックビーズと透明樹脂の混合比がプラスチックビーズ30~97重量部に対して透明樹脂が70~3重量部であることを特徴とする請求項1の光拡散シート。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光拡散シートに関する。 詳しくは本発明は、透明樹脂層、続いてプラスチックビーズを含む樹脂層を積層した透明樹脂シートからなる光 拡散効率の高い光拡散シートに関する。本発明にかかる 20 光拡散シートは、ワードプロセッサーやパーソナルコン ピューター、携帯型のビデオ録画機のモニター等の液晶 表示パネルのバックライト、プロジェクター方式のディ スプレー等に使用するのに適している。

[0002]

【従来の技術】近年、液晶表示装置は、あらゆる分野で使用されてきており、特に、ワードプロセッサーやパーソナルコンピューター、液晶表示方式のテレビなどの電子産業分野で数多く使用されている。この液晶表示装置の分野では、現在液晶表示面のカラー化や大型化の傾向 30を示しつつあり、これらの為には液晶表示面の表示品位を向上させる必用がある。このために、液晶表示装置に用いられるバックライトは、少しでも多くの光を液晶部に供給し、且つ均一な光を供給することが求められている。

【0003】また、一方で液晶表示装置は、省電力であることを特徴としており、また、この特徴を生かすために使用するバックライトも省電力タイプであるものが要求されている。

【0004】バックライトから光を多量にかつ均一に送 40 り、しかも使用する電力を少なくする為には、拡散効率が高く、全光線透過率の高い光拡散シートが必要とされている。

【0005】バックライトは、図1で示したように、光源を透明な導光板の横に置く方式と直接光源を液晶部の後部に置く方式とがある。いずれの方式においても光拡散シートは、光源からでた光を少しでも多くしかも均一に送るために用いられているが、光拡散シートの光線透過率が低いと光の拡散効率が高くても液晶部に伝わる光量が少なくなるために、結果的には薄暗い画面となる。

一方で、光線透過率が高くても光の拡散効率が低いと、 光源の明暗をそのまま液晶部に伝えるために、均一な画 面が得られなくなる。従って、液晶部の後部に置く光拡 散シートは、全光線透過率が高く、しかも光拡散効率の 高いものが求められている。

【0006】従来、用いられてきた透明樹脂の表面を工 ンポス処理した拡散シートでは、光線透過率は高いもの の光を拡散させる為の物質がシート中に存在しないため に拡散効率が悪く不十分であった。拡散効率を向上させ 10 るために特開平3-85586号記載には多数の円錐状 突起を有するプラスチックシートが提案されている。し かし、光源を液晶部の後部に直接置く場合には、この拡 散シートを用いることにより均一な明るい光が得られる が、光源を導光板の横に置く場合には、横方向から光を 入射するため、円錐状突起物の効果がでず光透過率、光 拡散効率が共に悪くなる欠点があり十分ではない。ま た、特開平1-172801号記載のシリコーン球状粒 子を分散させた樹脂からなるシートは、光の拡散効率は 高くなるものの、シリコーン球状粒子自身による光の反 射が起こるために光の透過効率が悪くなり、明るい画面 が得られないという欠点があり、ともにかかる要請に応 えるには不十分であった。

[0007]

【発明が解決しようとする課題】本発明の目的は、これらの問題を解決し、従来の光拡散シートに比べて、光の拡散効率が大幅に向上した、しかも全光線透過率が高い、液晶表示装置に組み込んだ場合高輝度の画面が得られる優れた光拡散シートを供給することにある。

[0008]

50

【課題を解決するための手段】本発明者らは、鋭意検討した結果透明樹脂シートの片面に透明な樹脂層、好ましくは屈折率が透明樹脂シートと屈折率の差が少ない樹脂層を積層することにより透明な樹脂シート単体よりはるかに光透過率が向上することを発見した。又、更にプラスチックビーズと透明樹脂の混合層を積層する事によりプラスチックビーズだけの層を積層した光拡散シートよりはるかに光拡散が大きいことを発見した。更にこれらの層を積層する事により相乗的に輝度が向上することを見いだし本発明を完成した。

【0009】即ち、本発明の要旨は、透明樹脂シートの片面に透明樹脂層を設け更にプラスチックビーズと透明樹脂の混合層を積層したことを特徴とする光拡散シートであり、好ましい態様は、透明樹脂層の光屈折率と透明樹脂シートの光屈折率の差が0.25以下で、プラスチックビーズの平均粒子径が5~50 μ mであり、プラスチックビーズと透明樹脂の混合比がプラスチックビーズ30~97重量部に対して透明樹脂が70~3重量部である。

【0010】本発明で使用する透明樹脂シートとしては、例えば、ポリエチレンテレフタレート、ポリエーテ

ルサルフォン、ポリエステル、ポリ(メタ)アクリレー ト、ポリカーボネート、ポリアミド及びポリ塩化ビニー ル等のホモポリマー、またはこれら樹脂のモノマーと共 重合可能なモノマーとのコポリマー等から成るシートが 挙げられ、適宜選択して使用することが出来る。

【0011】また、透明樹脂層の光屈折率と透明樹脂シ ートの光屈折率の差が0.25以下である事が好まし く、0.22以下であることが更に好ましい。透明樹脂 層の光屈折率と透明樹脂シートの光屈折率の差が0.2 5以下である場合には、透明樹脂シート/透明樹脂層、 透明樹脂層/プラスチックビーズと透明樹脂の混合層界 面での光の散乱・反射がないために光線透過率が高くな る。一方、屈折率の差が0.25より大きい場合には透 明樹脂シート/透明樹脂層、透明樹脂層/プラスチック ビーズと透明樹脂の混合層界面での光の散乱・反射が起 こるために光線透過率が落ち、輝度の高い光拡散シート は得られない。

【0012】透明樹脂層に用いる樹脂としては上記の条 件を満たしていれば特に限定しないが、例えばプラスチ ックシートとしてポリエチレンテレフタレートを用いる 20 場合にはポリプチルアクリレート、ポリエチルアクリレ ートなどのアクリレート、メタクリレート樹脂、ポリプ ロピレン、ポリスチレン、ポリビニルアルコール、ポリ 酢酸ビニルなどの樹脂があげられる。

【0013】透明樹脂層の形成法としてはカレンダー 法、押出法、キャスト法が使用でき、特に限定はしない が、液体状の樹脂を塗布する場合には例えば、リバース ロールコーター、グラビアコーター、バーコーター、ダ イコーター、コンマコーター等のコーティング方法、ま たは、スプレー塗布法等の公知の塗布方法が挙げられ る。乾燥温度は通常100℃前後で、乾燥時間は通常1 分間前後である。

【0014】また、透明樹脂層の厚みとしては特に限定 はしないが、生産性、ハンドリング性より5~50 µm が好ましい。

【0015】プラスチックビーズとしては、ポリプロピ レン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポ リメチルメタクリレート、ポリスチレン等のホモポリマ ー、またはこれらの樹脂のモノマーと共重合可能なモノ マーとのコポリマー等からなるビーズが挙げられ、適宜 40 選択して使用することが出来る。

【0016】プラスチックビーズの平均粒子径としては $5\sim50\mu$ mが好ましく $10\sim30\mu$ mが更に好まし い。プラスチックピーズの平均粒子径が上記の範囲にあ る場合にはプラスチックビーズでの光の散乱が効果的に 行われるために光拡散能の高い層となる。

【0017】プラスチックビーズの平均粒子径が5μm より小さい場合にはプラスチックピーズが透明樹脂層の 中に埋まってしまうために表面での光の拡散が少なくな り、拡散効率の高いシートとはならない。一方、50 μ 50 し、120 $\mathbb C$ で2分間乾燥させ、膜厚20 μ mの透明樹

mより大きくなると樹脂との分散性が悪くなり、また、 生産性、ハンドリング性が悪くなり好ましくない。

【0018】また、プラスチックビーズと混合する樹脂 としては、例えば、ポリビニルアルコール、エチレンー ビニルアルコール共重合体、アクリル樹脂、ポリエステ ル樹脂、スチレン樹脂、アルキッド樹脂、アミノ樹脂、 ウレタン樹脂、エポキシ樹脂等が挙げられ、適宜選択し て使用することができる。また、上記で用いた透明樹脂 層の樹脂と同一であってもかまわない。樹脂の形状は、 10 エマルジョン型、ディスパージョン型、溶剤型等が好ま しいが、塗布できる状態ならばいずれの型でも使用でき

【0019】樹脂とプラスチックビーズとの混合割合 は、樹脂70~3重量部に対してプラスチックビーズ3 0~97重量部が好ましく、樹脂50~5重量部に対し てプラスチックビーズ50~95重量部がさらに好まし い。樹脂とプラスチックビーズとの混合割合がこの範囲 にある場合には塗布した場合にプラスチックビーズが密 に詰まった良好な塗布膜が得られるが、樹脂の割合が大 きすぎるとプラスチックビーズが密に配列しないため に、光の拡散効率が悪くなる。一方、プラスチックビー ズの割合が大きくなると塗布膜の接着強度が悪くなるた めに適しない。

【0020】樹脂とプラスチックビーズとの混合物から なる光拡散層の形成法としてはリバースロールコータ ー、グラビアコーター、バーコーター、ダイコーター、 コンマコーター等の公知のコーティング方法が挙げられ

【0021】樹脂とプラスチックビーズの混合層の厚み としてはプラスチックビーズの平均粒子径より大きく、 プラスチックビーズの平均粒子径の二倍より小さいこと が好ましい。厚みが上記の範囲内にある場合にはプラス チックビーズが一層密に並んだ混合層が得られる。厚み がプラスチックビーズの平均粒子径より小さい場合には プラスチックビーズが塗布されない。一方、プラスチッ クビーズの平均粒子径の二倍よりも大きい場合には、部 分的にプラスチックビーズが二層並んだ不均一な混合層 となり均一な光の反射が得られなくなり好ましくない。 乾燥温度は通常100℃前後で、乾燥時間は通常1分間 前後である。

[0022]

【実施例】以下、実施例により本発明を詳しく説明す る。

実施例1

固形分40%の水中分散型アクリル系エマルジョン(三 井東圧化学(株)製ツルタックBH-3:屈折率1.5 3) を厚み100μmのポリエチレンテレフタレートシ ート(ユニチカ(株)製エンプレットT-100:屈折 率1.66)の片面にメイヤーパーコート法により塗布

脂層を得た。この透明樹脂層上に乾燥分中で90重量% のポリメチルメタクリレートビーズ(松本油脂製薬

(株) 製マツモトマイクロスフェアーM-500: 平均 粒子径20μm)を含むポリピニルアルコール(日本合 成化学(株)製ゴーセノールKH-17)水溶液をメイ ヤーバーコート法により塗布し、120℃で2分間乾燥 し、膜厚20μmの光拡散層を得た。得られた光拡散シ ートを導光板方式のバックライト装置(富士通(株)) の光拡散シートの位置に置き、導光板上での輝度を測定 した。また、得られたシートの全光線透過率、ヘーズ (HAZE) を測定した。その結果を表1および表2に 示す。輝度測定にはミノルタカメラ(株)製輝度計LS -110型を、全光線透過率、ヘーズの測定には日本電 色(株)製NDH-300Aを用いた。

[0023] 実施例2

固形分45%のポリ酢酸ビニル(和光純薬(株)製:屈 折率1.47)エタノール溶液を厚み100μmのポリ エチレンテレフタレートシート(ユニチカ(株)製エン ブレットT-100:屈折率1.66)の片面にメイヤ ーバーコート法により塗布し、120℃で2分間乾燥さ 20 せ、膜厚20μmの透明樹脂層を得た以外は実施例1と 同様にして光拡散シートを得た。この光拡散シートの輝 度、光透過率、およびヘーズを実施例1と同様にして測 定した。結果を表1に合わせて示す。

【0024】実施例3

実施例1において用いるプラスチックビーズをポリスチ レンビーズ (積水化成品工業 (株) 製MBP:平均粒径 30 μm) とした以外は実施例1と同様にして光拡散シ ートを得たところ光拡散層の厚みは30μmであった。 この光拡散シートの輝度、光透過率、およびヘーズを実 30 施例1と同様にして測定した。結果を表1および表2に 合わせて示す。

【0025】実施例4

実施例1においてポリメチルメタクリレートビーズの割 合を乾燥分中で60重量%とした以外は実施例1と同様 にして光拡散シートを得た。この光拡散シートの輝度、 光線透過率、およびヘーズを実施例1と同様にして測定 した。結果を表1および表2に合わせて示す。

【0026】実施例5

0 重量%のポリメチルメタクリレートビーズを含む水中 分散型アクリルエマルジョンをメイヤーバーコート法に より塗布し、120℃で2分間乾燥し、膜厚30µmの 光拡散層を得た。この光拡散シートの輝度、光線透過 率、およびヘーズを実施例1と同様にして測定した。結 果を表1および表2に合わせて示す。

【0027】実施例6

用いたプラスチックフィルムを厚み100μmのポリカ ーポネートシート(帝人(株)製パンライト:屈折率 1.587)とした以外は実施例1と同様にして光拡散 50 して測定した。結果を表1および表2に併せて示す。

フィルムを得た。この光拡散フィルムの輝度、光線透過 率、およびヘーズを実施例1と同様にして測定した。結 果を表1および表2に合わせて示す。

【0028】比較例1

表面をマット状にエンボス加工した厚み100μmのポ リエチレンテレフタレートシート(東レ(株)製、ルミ ラーx44)を光拡散シートとした。この光拡散シート を用いた場合の輝度、光線透過率およびヘーズを実施例 1と同様にして測定した。結果を表1および表2に併せ 10 て示す。

【0029】比較例2

シリコーン球状粒子(東芝シリコーン(株)製トスパー ル120)とメタクリルプレポリマーとを混合し、二枚 のガラス板の間に注入、硬化、プレス延伸させ、厚み1 00μmの光拡散シートを得た。シート中のシリコン球 状粒子の割合は5重量%であった。この光拡散シートを 用いた場合の輝度、光線透過率、ヘーズを実施例1と同 様にして測定した。結果を表1および表2に併せて示 す。

【0030】比較例3

厚み 0.5 mmのアルミ板に深さ 2 0 μm、頂点の角度 50度の円錐上の凹部を形成した。このアルミ板ともう 一枚のアルミ板の間にメタクリルプレポリマーを注入、 硬化させ厚み150μmの光拡散シートを得た。この光 拡散シートを用いた場合の輝度、光線透過率、およびへ ーズを実施例1と同様にして測定した。結果を表1およ び表2に併せて示す。

【0031】比較例4

実施例1において用いた厚み100μmのポリエチレン テレフタレートシート上にポリメチルメタクリレートビ ーズを敷き詰め二枚の鉄板の間に挟み230℃、15a tmの条件で1時間熱プレスを行いピーズを固定した。 得られたシートを光り拡散シートとして用い実施例1と 同様にして、輝度、光線透過率、及びヘーズを測定し た。結果を表1及び表2に併せて示す。

【0032】比較例5

実施例1において乾燥分中で80重量%のポリメチルメ タクリレートピーズを含む水中分散型アクリルエマルジ ョンをポリエチレンテレフタレートシート上にメイヤー 実施例1において作成した透明樹脂層上に乾燥分中で8 40 バーコート法により塗布し、120℃で2分間して、膜 厚20μmの光拡散層を得た。この光拡散フィルムの輝 度、光線透過率、およびヘーズを測定した結果を表1お よび表2に合わせて示す。

【0033】比較例6

実施例1において得た透明樹脂層の上にポリメチルメタ クリレートピーズ(松本油脂製薬(株)製マツモトマイ クロスフェアーM-500:平均粒子径20μm)を散 布する事により光拡散シートを得た。この光拡散シート の輝度、光線透過率、およびヘーズを実施例1と同様に

【0034】比較例7

固形分30%のクロロトリフルオロエチレン(ダイキン工業(株)製:屈折率1.38)の水性ディスパージョン溶液を実施例1において用いたポリエチレンテレフタレートシートの片面にメイヤーバーコート法により塗布し、120℃で2分間乾燥し、透明樹脂層を得た以外は実施例1と同様にして光拡散シートを得た。この光拡散シートの輝度、光線透過率、およびヘーズを実施例1と同様にして測定した。結果を表1および表2に合わせて示す。

【0035】比較例8

実施例 6 において用いたポリメチルメタクリレートビーズを積水化成品工業(株)製テクポリマーMB-100:平均径 100 μ mとした以外は同様にして光拡散シートを得たところ光拡散層の厚みは 100 μ mであった。得られた光拡散フィルムの輝度、光線透過率、およびへ一ズを実施例 1 と同様にして測定した。結果を表 1 および表 2 に合わせて示す。

【0036】比較例9

実施例6において用いたポリメチルメタクリレートピー 20

ズを積水化成品工業(株)製テクポリマーMB-4:平均径 4μ mとした以外は同様にして光拡散シートを得たところ光拡散層の厚みは 4μ mであった。得られた光拡散シートの輝度、光線透過率、およびヘーズを実施例 1と同様にして測定した。結果を表 1 および表 2 に合わせて示す。

【0037】比較例10

実施例1においてポリメチルメタクリレートビーズの割合を乾燥分中で99%ととした以外は実施例1と同様にして光拡散シートを作成したが、光拡散層の密着力がわるく良好な塗布膜が得られなかった。

【0038】比較例11

実施例1においてポリメチルメタクリレートビーズの割合を乾燥分中で25%ととした以外は実施例1と同様にして光拡散シートを得た。この光拡散シートの輝度、光線透過率、およびヘーズを測定した結果を表1および表2に合わせて示す。

[0039]

【表1】

	基材シート			透明樹脂層			
	樹脂*2	屈折率	厚み μm	樹 脂	屈折率	厚 み μm	
実施例 1	PET	1.66	100	アクリルエマルジョン	1. 53	20	
実施例 2	PET	1.66	100	ポリ酢酸ピニル	1.47	20	
実施例 3	PET	1.66	100	アクリルエマルジョン	1. 53	20	
実施例 4	PET	1.66	100	アクリルエマルジョン	1.53	20	
実施例 5	PET	1.66	100	アクリルエマルジョン	1.53	20	
実施例 6	PC	1. 59	100	アクリルエマルジョン	1.53	20	
比較例 1	PET	1. 66	100	表面をエンポスタ	1 心理	i	
比較例 2	 	-	_		-	 	
比較例 3	円錐状突起を有するPMMAシート						
比較例 4	PET	1.66	100	_	-	-	
比較例 5	PET	1.66	100	_	_	-	
比較例 6	PET	1.66	100	アクリルエマルジョン	1.53	20	
比較例 7	PET	1.66	100	PCTFE*5	1. 38	20	
比較例 8	PC	1. 59	100	アクリルエマルジョン	1. 53	20	
比較例 9	PC	1.59	100	アクリルエマルジョン	1.53	20	
比較例10	PET	1.66	100	アクリルエマルジョン	1.53	20	
比較例11	PET	1.66	100	アクリルエマルジョン	1. 53	20	

【表2】

4	r	٠	
3	L	a	

	光拡散層							
	樹脂*8 │	!ーズ 粒子径 μm	樹脂	ピーズ の割合 %	塗布 厚み μm	輝度 cd/㎡	光線 透過率 %	ヘーズ
実施例 1	PMMA	20	PVA	90	20	1560	99.7	99. 0
実施例 2	PMMA	20	PVA	90	20	1510	99. 2	98. 9
実施例 3	PS	30	PVA	90	30	1480	98.9	99. 0
実施例 4	PMMA	20	PVA	60	20	1460	98.6	98. 6
実施例 5	PMMA	20	*1	80	20	1530	99.4	98. 5
実施例 6	PMMA	20	PVA	90	20	1450	98.6	98.8
比較例 1	-	_	-	-	-	880	98.4	90.0
比較例 2	_	_	-	-	-	990	95.0	92. 5
比較例 3	Si02	4	PMMA	2	1000	980	94.5	97.0
比較例 4	PMMA	20	-	100	20	880	96.6	90.0
比較例 5	PMMA	20	PVA	80	20	860	95.1	97.0
比較例 6	PMMA	20	-	100	20	760	96.0	91.0
比較例 7	PMMA	20	PVA	90	20	980	94.0	99. 0
比較例 8	PMMA	4	PVA	90	4	910	99.0	84. 0
比較例 9	PMMA	100	PVA	90	100	960	98.0	99.1
比較例10	PMMA	20	PVA	99	20	-	-	-
比較例11	PMMA	20	PVA	25	20	820	98.8	85. 0

*1:アクリルエマルジョン

*2 PET:ポリエチレンテレフタレート

PC:ポリカーポネート

*3 PMMA:ポリメチルメタクリレート

PS:ポリスチレン

*4 PVA:ポリビニルアルコール

*5 PTCFE:ポリテトラクロロフルオロエチレン 【0041】

【発明の効果】本発明のプラスチックシートと屈折率の差が小さい樹脂を有するプラスチックシート上にプラスチックビーズを含む樹脂層を塗布した光拡散シートは、従来の光拡散シートと比べて、高い光線透過率とヘーズを保持し、かつ、液晶表示装置などのバックライトに用いると高い輝度の得られるバックライトとなる。

【図1】

【図面の簡単な説明】

【図1】 本発明の光拡散シートの一実施例の断面図である。

【図2】 光源部を透明な導光板の横に置く方式の、液 30 晶表示装置用バックライトの一実施例の概略図である。

【符号の説明】

- 1. 透明樹脂シート
- 2. 透明樹脂層
- 3. 混合層
- 4. 光源部
- 5. ランプハウス用光反射板
- 6. 導光板
- 7. 拡散板
- 8. バックライト用光反射シート

【図2】

フロントページの続き

(72)発明者 坂井 祥浩

愛知県名古屋市南区丹後通2丁目1番地

三井東圧化学株式会社内

(72)発明者 佐野 明美

愛知県名古屋市南区丹後通2丁目1番地

三井東圧化学株式会社内