

## Correction to Crystal Engineering with the Uranyl Cation III. Mixed Aliphatic Dicarboxylate/Aromatic Dipyridyl Coordination Polymers: Synthesis, Structures, and Speciation

Andrew T. Kerr and Christopher L. Cahill

Cryst. Growth Des. 2011, 11 (12), 5634-5641. DOI: 10.1021/cg2011869

The original paper contained typographical errors in Table 1 and incorrect cell parameters in Table 2. Below are the corrected tables.

Table 1. Synthesis Conditions for Compounds 1-7

| compound                   | 1                            | 2                          | 3                            | 4                          | 5                            | 6                            | 7                          |
|----------------------------|------------------------------|----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|----------------------------|
| empirical formula          | $C_{32}H_{46}N_2O_{13}U_2\\$ | $C_{27}H_{52}N_2O_{39}U_6$ | $C_{36}H_{48}N_2O_{16}U_2\\$ | $C_{48}H_{60}N_4O_{26}U_5$ | $C_{30}H_{38}N_2O_{12}U_2\\$ | $C_{22}H_{28}N_2O_{10}U_2\\$ | $C_{39}H_{58}N_2O_{18}U_2$ |
| aliphatic<br>dicarboxylate | sebacic acid                 | glutaric acid              | suberic acid                 | suberic acid               | azelaic acid                 | sebacic acid                 | azelaic acid               |
| dipyridyl                  | BPE                          | BPE'                       | BPE'                         | BPE'                       | BPE'                         | BPE'                         | BPE'                       |
| pH (init./final)           | 4.95/4.91                    | 3.55/4.27                  | 4.83/3.85                    | 4.86/4.83                  | 2.14/4.02                    | 7.09/5.67                    | 3.63/3.46                  |
| topology                   | 3D                           | 2D sheets                  | 2D anionic chains            | 3D                         | 2D sheets                    | 2D sheets                    | 2D anionic chains          |
| secondary building unit    | monomers                     | edge sharing chains        | monomers                     | monomers and tetramers     | monomers                     | point sharing chains         | monomers                   |
| pure?                      | yes                          | no                         | no                           | no                         | no                           | no                           | no                         |
| role of dipyridyl          | direct<br>coordination       | charge balancing           | charge balancing             | direct coordination        | direct<br>coordination       | direct<br>coordination       | charge balancing           |

Table 2. Crystallographic Data for Compounds 1-7

| compound                        | 1                          | 2                          | 3                          | 4                          | 5                          | 6                            | 7                          |
|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------|----------------------------|
| empirical formula               | $C_{32}H_{46}N_2O_{13}U_2$ | $C_{36}H_{48}N_2O_{16}U_2$ | $C_{36}H_{47}N_2O_{16}U_2$ | $C_{48}H_{60}N_4O_{26}U_5$ | $C_{30}H_{38}N_2O_{12}U_2$ | $C_{22}H_{28}N_2O_{10}U_2\\$ | $C_{39}H_{58}N_2O_{18}U_2$ |
| formula weight                  | 2285.54                    | 2462.93                    | 1239.58                    | 2299.45                    | 1094.58                    | 956.58                       | 1318.93                    |
| crystal system                  | monoclinic                 | orthorhombic               | monoclinic                 | triclinic                  | triclinic                  | monoclinic                   | monoclinic                 |
| space group                     | C2                         | $C222_{1}$                 | $P2_1/n$                   | $P\overline{1}$            | $P\overline{1}$            | $P2_1/n$                     | C2/c                       |
| a (Å)                           | 20.5890(15)                | 12.534(2)                  | 8.9327(5)                  | 9.6535(9)                  | 8.1535(3)                  | 9.4706(4)                    | 25.4837(8)                 |
| b (Å)                           | 20.5391(15)                | 16.139(3)                  | 19.2047(11)                | 9.7736(9)                  | 9.4052(3)                  | 8.3098(3)                    | 15.9313(5)                 |
| c (Å)                           | 10.4699(8)                 | 25.294(4)                  | 11.8920(7)                 | 17.4401(17)                | 12.3338(4)                 | 17.9773(6)                   | 25.4808(11)                |
| $\alpha$ (deg)                  | 90                         | 90                         | 90                         | 87.842(2)                  | 108.60(1)                  | 90                           | 90                         |
| $\beta$ (deg)                   | 118.4780(10)               | 90                         | 94.4790(10)                | 75.9440(10)                | 96.0540(10)                | 113.185(2)                   | 118.76(2)                  |
| γ (deg)                         | 90                         | 90                         | 90                         | 70.2170(10)                | 100.7710(10)               | 90                           | 90                         |
| $V(Å^3)$                        | 3891.8(5)                  | 5116.6(15)                 | 2033.8(2)                  | 1500.2(2)                  | 866.67(5)                  | 1300.53(9)                   | 9068.4(6)                  |
| temp (K)                        | 298                        | 298                        | 298                        | 298                        | 100                        | 100                          | 100                        |
| Z                               | 4                          | 4                          | 4                          | 1                          | 2                          | 4                            | 8                          |
| $\lambda$ (Mo K $\alpha$ )      | 0.71073                    | 0.71073                    | 0.71073                    | 0.71073                    | 0.71073                    | 0.71073                      | 0.71073                    |
| $D_{\rm calc}~({ m g~cm}^{-3})$ | 1.950                      | 3.197                      | 2.026                      | 2.545                      | 2.097                      | 2.437                        | 1.932                      |
| $\mu \; (\mathrm{mm}^{-1})$     | 8.372                      | 19.031                     | 8.025                      | 13.532                     | 9.392                      | 12.492                       | 4.208                      |
| $R_{\rm int}$                   | 0.0964                     | 0.1327                     | 0.0390                     | 0.0215                     | 0.0181                     | 0.0484                       | 0.0478                     |
| $R_1[I > 2\sigma(I)]$           | 0.0361                     | 0.0522                     | 0.0220                     | 0.0191                     | 0.0199                     | 0.0174                       | 0.0263                     |
| $wR_2[I > 2\sigma(I)]$          | 0.0871                     | 0.1216                     | 0.0418                     | 0.0423                     | 0.0414                     | 0.0428                       | 0.0556                     |