

Building a Multilayer Perceptron for Regression in PyTorch

Antonio Rueda-Toicen

Learning goals

- Implement a fully connected network in PyTorch with nn.Linear and nn.Sequential syntax
- Explore the necessary agreements between processing units and input size
- Understand the motivations for image input resizing
- Code input units, hidden layers, and output units
- Examine the representation of weights, gradients, and loss in PyTorch

A minimal network

input layer hidden layer


```
import torch.nn as nn
# Input layer to hidden layer (3 -> 4)
i_h_layer = nn.Linear(in_features=3, out_features=4, bias = False)
# Hidden layer to output layer (4 -> 1)
h_o_layer = nn.Linear(in_features=4, out_features=1, bias = False)
# Connecting the layers, notice that 'hidden layer' is implicit
model = nn.Sequential(
            i_h_layer,
            nn.ReLU(),
            h_o_layer,
# The input has as many entries as we have input units
input_data = torch.tensor([1.0, 2.0, 3.0], dtype=torch.float32)
# Feedforward pass
prediction = model(input_data)
# The value that we want to match
target = torch.tensor([11.], dtype=torch.float32)
# Our measure of error
loss_function = nn.L1Loss()
# Evaluate how good our prediction is
loss_value = loss_function(target, prediction)
```

Inspecting nn.Linear

```
import torch
import torch.nn as nn
# Define a linear layer
layer = nn.Linear(in_features=4, out_features=1, bias=True)
# Examine parameters, weights and bias
for name, param in layer.named_parameters():
   print(f"{name}: {param.shape}")
   print(param)
# Forward pass
x = torch.randn(5, 4) # Batch of 5 samples, 4 features each
output = layer(x)
                                                     weight: torch.Size([1, 4])
                                                     Parameter containing:
                                                     tensor([[-0.0576, 0.3385, -0.3604, -0.1795]], requires grad=True)
# Batch of 5 samples, single output value
                                                     bias: torch.Size([1])
print(output.shape)
                                                     Parameter containing:
                                                     tensor([0.3461], requires grad=True)
```

Bias vs no bias

A Colab demo notebook

Inspecting nn.Sequential

```
# Connecting the layers,
# notice that 'hidden layer' is implicit
model = nn.Sequential(
          nn.Linear(in_features=3, out_features=4, bias = False),
          nn.ReLU(),
          nn.Linear(in_features=4, out_features=1, bias = False)
# Forward pass
x = torch.randn(5, 3) # Batch of 5 samples, 3 features each
output = model(x)
# Batch of 5 outputs, each one having one regression target value
print(output.shape) # prints torch.Size([5, 1])
```


Fully connected networks (aka multilayer perceptrons)

Resizing the input to reduce the number of parameters


```
H = 1920

W = 1282

C = 3 (RGB)
```



```
transforms.Compose([
  transforms.ToImage(),
  transforms.Resize((224, 224)),
transforms.ToDtype(torch.float32,scale=True)
])
```


H = 224

W = 224

CenterCrop to capture more of the object of interest


```
H = 1920

W = 1282

C = 3 (RGB)
```


Stochastic gradient descent - the weight update rule

 w_{ij} = weight from neuron i to neuron j

learning_rate = step size for updates, a constant like 0.01

L = loss function

$$w_{ij} = w_{ij}$$
 – (learning rate * $\frac{dL}{dw_{ij}}$)

Implementing the network

```
# Number of units on the hidden layer, this number is <u>arbitrary</u>
p = 100
                                                                               100
                                                                               125
# We use nn.Sequential to concatenate PyTorch modules in order
                                                                               150
multilayer_perceptron=nn.Sequential(
                                                                              175
                                                                                               125
                       nn.Flatten(), # Flattens the images within a batch
                       nn.Linear(in_features= C * H * W, # This matches the image shape
                                 out_features= p,
                                                                                  H = 192
                                                                                  W = 192
                                 bias=True),
                                                                                  C = 3 (RGB)
                       nn.ReLU(),
                                                                                   = 83999 EUR
                       nn.Linear(in_features=p,
                                 out_features=1, # We are predicting a single value
                                 bias=True),
```

Implementing the weight update rule

multilayer_perceptron[0].weight = new_weights_0
multilayer_perceptron[2].weight = new_weights_2

Image from ideogram.ai

$$w_{ij} = w_{ij}$$
 – (learning rate * $\frac{dL}{dw_{ij}}$)

Training with an optimizer

import torch.optim as optim

optim.SGD(multilayer_perceptron.parameters(), lr=1e-2) 0 0.8 0.7 $w_{ij} = w_{ij}$ – (learning rate * $\frac{dL}{dw_{ij}}$ 0.5 0.4 0.3

Training with an optimizer

optimizer.step()

```
import torch
import torch.nn as nn
import torch.optim as optim
# Define an Stochastic Gradient Descent optimizer
optimizer = optim.SGD(multilayer_perceptron.parameters(), lr=1e-2)
# Define a loss function
criterion = nn.L1Loss()
# Forward pass
pred = multilayer_perceptron(x)
# Compute loss
loss = criterion(pred, y)
# Backprop
                          w_{ij} = w_{ij} – (learning rate *
optimizer.zero_grad()
loss.backward().
# Update weights
```

The importance of the learning rate

Summary

PyTorch building blocks

- Multilayer perceptrons in PyTorch combine Linear layers, activation functions, and loss functions. The framework handles gradient computation through autograd.
- We can use the Sequential syntax to wrap up components, this is an alternative to subclassing nn.Module

Input processing

 Image input requires preprocessing through resizing and normalization to create manageable feature tensors. The input size determines the network architecture.

Model training

 Training combines forward passes, loss computation, backpropagation, and weight updates. The learning rate controls optimization stability and convergence speed.

Further reading

What is torch.nn really?

https://pytorch.org/tutorials/beginner/nn_tutorial.html

Tensorflow playground

https://playground.tensorflow.org/

SPONSORED BY THE

