Análisis y detección de características de la varicela en imágenes de la piel

Virginia Arroyo, Julián Oyola y Ana Ruedin

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

20 de agosto de 2010

Contenido

- Motivación
 - Presentación del problema básico
 - Ejemplos

Contenido

- Motivación
 - Presentación del problema básico
 - Ejemplos
- 2 Resolución
 - Procesamiento digital de imágenes
 - Espacio de color
 - Detección de bordes
 - Detección de círculos
 - Falsos positivos y falsos negativos

Contenido

- Motivación
 - Presentación del problema básico
 - Ejemplos
- Resolución
 - Procesamiento digital de imágenes
 - Espacio de color
 - Detección de bordes
 - Detección de círculos
 - Falsos positivos y falsos negativos
- Conclusiones
 - Trabajo futuro
 - Preguntas
 - Datos de contacto

¿Cómo detectar patrones de enfermedades de la piel?

- ¿Cómo detectar patrones de enfermedades de la piel?
- Resultan naturales y poco complejos para un ser humano
- ¿Y para un ordenador?

Ejemplo: Dos enfermedades

Varicela

Sarampión

Ejemplo: Variabilidad de imágenes para una misma enfermedad

Procesamiento digital de imágenes

Este problema se enmarca en el procesamiento digital de imágenes.

Procesamiento digital de imágenes

Procesamiento digital de imágenes

Este problema se enmarca en el procesamiento digital de imágenes. Algunas dificultades:

Escala

- Escala
- Elementos que afectan la imagen

- Escala
- Elementos que afectan la imagen
- Espacio de color

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes
- Detección de círculos

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes
- Detección de círculos
- Falsos positivos y falsos negativos

- Escala
- Elementos que afectan la imagen
- Espacio de color
- Detección de bordes
- Detección de círculos
- Falsos positivos y falsos negativos
- Detección de la piel

Escala

Elementos que afectan la imagen

Problemas

- Ruido
- Imperfecciones de la piel
- Luces y sombras
- Elementos ajenos

Técnicas

- Ecualización del histograma (Contrast-limited adaptive histogram equalization)
- Reducción del ruido o suavización utilizando un filtro gaussiano

Espacio de color

¿Cómo representamos los colores y la luz en el ordenador?

- Espacios de color posibles
- Luminancia vs Crominancia
- YUV vs L*a*b

Luminancia: detección de bordes

Crominancia: detección de piel y falsos positivos

Luminancia vs Crominancia

Luminancia - componente L

Luminancia vs Crominancia

Crominancia - componente a

Luminancia vs Crominancia

Crominancia - componente b

Detección de bordes

- Resulta sencillo para el ser humano
- Borde: frontera entre el objeto y el fondo
- Existen varios métodos (Canny, Roberts, Sobel o Prewitt)
- Objetivos de un detector de borde:
 - Baja tasa de error
 - Buena localización del borde

Método de Canny

- Robusto contra el ruido
- Etapas del método:
 - Filtrado
 - Aplicar un filtrado convolutivo de la derivada primera de una función gaussiana normalizada
 - Objetivo: suavizar la imagen
 - Decisión inicial
 - Obtener el gradiente en las direcciones vertical y horizontal Objetivo: detección cambios en los valores de la señal
 - Histéresis
 Definir umbrales TL y TH, para decidir cuáles de los cambios detectados son bordes o fondo.

Operaciones morfológicas

- Herramientas muy utilizadas en el procesamiento de imágenes
- Simplificar los datos de una imagen
- Preservar las características esenciales
- Eliminar aspectos irrelevantes
- bridge: Une pixeles que están separados
- Otras operaciones: open, close, clean

Procesamiento digital de imágene Espacio de color Detección de bordes Detección de círculos

Ejemplo: Bordes detectados en la imagen

Procesamiento digital de imágenes Espacio de color Detección de bordes Detección de círculos

Ejemplo: Bordes detectados

Detección de círculos

- ¿Dados los bordes, cuándo conforman un círculo?
- CHT: Circular Hough Transform
 - Espacio de Hough
 - Arreglo de acumulación
- Selección de candidatos
 - Ponderación con respecto al máximo
 - Umbralización

Ejemplo: Imagen con bordes detectados

Ejemplo: Arreglo de acumulación

Ejemplo: Imagen con el círculo detectado

Falsos positivos y falsos negativos

Detección de círculos redundantes

Análisis del interior de la ampolla: trabajo en curso

Detección de la piel

Trabajo en curso Trabajos anteriores

- "Statistical Color Models with Application to Skin Detection" (Jones y Rehg, 1998)
- "Detección de Rostros Humanos en Posición Frontal..."
 (Macías Sánchez y Chávez Burbano, 2010)

Métodos utilizados

- Definiciones explícitas de regiones de color
- Modelado no paramétrico de la distribución de la piel
- Modelado paramétrico de la distribución de la piel

Imagen para detección de la piel

Trabajo futuro

- Detección de piel
- Detección de ampollas que no tengan forma circular
- Detección de patrones en las imágenes
 - Buscar características que permitan determinar cuándo se está en presencia de la varicela
 - Aprendizaje automático sobre el histograma del color de las ampollas detectadas

Preguntas?

. .

Gracias!

Virginia Arroyo (virginia.arroyo@gmail.com) Julián Oyola (joyola@dc.uba.ar) Anita Ruedin (ana.ruedin@dc.uba.ar)