# PSZB17-210 - Seminar\_4

# Zoltan Kekecs

Marcius 4, 2020

# 4. Ora - Adatexploracio

Az ora celja az adatexploracios modszerek elsajatitasa.

# Package-ek betoltese

A kovetkező package-ekre lesz szuksegunk

```
if (!require("gridExtra")) install.packages("gridExtra")
library(gridExtra) # for grid.arrange
if (!require("psych")) install.packages("psych")
library(psych) # for describe
if (!require("tidyverse")) install.packages("tidyverse")
library(tidyverse) # for dplyr and ggplot2
```

## Adatok betoltese

Beolvassuk a WHO altal 2020.09.28-an feltoltott COVID-19 adatokat a read\_csv() funkcioval, es elmentjuk egy COVID\_adat nevu objektumba. A **read\_csv()** funkcio a tidyverse resze, es egybol tibble formatumban menti el az adatainkat.

COVID\_adat <- read\_csv("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-co

## Adatok attekintese

Mindig erdemes azzal kezdeni, hogy megismerkedunk az adat szerkezetevel es tartalmaval.

A tibble objektum meghivasaval kapthatunk nemi informaciot az adattabla szerkezeterol. Lathatjuk hany sor es hany oszlop van az adattablaban, es lathatjuk milyen class-ba tartoznak (chr, dbl ...)

COVID\_adat

```
## # A tibble: 46,902 x 41
##
      iso_code continent location date
                                                total_cases new_cases new_cases_smoot~
##
      <chr>
                <chr>
                          <chr>
                                    <date>
                                                      <dbl>
                                                                 <dbl>
                                                          0
                                                                     0
##
    1 AFG
               Asia
                          Afghani~ 2019-12-31
                                                                                      NΑ
##
   2 AFG
               Asia
                          Afghani~ 2020-01-01
                                                          0
                                                                     0
                                                                                      NA
   3 AFG
                          Afghani~ 2020-01-02
                                                          0
                                                                     0
                                                                                      NA
##
               Asia
    4 AFG
                          Afghani~ 2020-01-03
                                                          0
                                                                     0
                                                                                      NA
##
               Asia
  5 AFG
                                                          0
                                                                     0
                                                                                      NA
##
                          Afghani~ 2020-01-04
               Asia
   6 AFG
                          Afghani~ 2020-01-05
                                                          0
                                                                     0
                                                                                      NA
               Asia
##
   7 AFG
                Asia
                          Afghani~ 2020-01-06
                                                          0
                                                                     0
                                                                                       0
##
    8 AFG
                Asia
                          Afghani~ 2020-01-07
                                                          0
                                                                     0
                                                                                       0
## 9 AFG
                          Afghani~ 2020-01-08
                                                                                       0
               Asia
```

```
Asia
                         Afghani~ 2020-01-09
                                                                  0
                                                                                   0
## # ... with 46,892 more rows, and 34 more variables: total_deaths <dbl>,
       new deaths <dbl>, new deaths smoothed <dbl>, total cases per million <dbl>,
       new_cases_per_million <dbl>, new_cases_smoothed_per_million <dbl>,
## #
## #
       total_deaths_per_million <dbl>, new_deaths_per_million <dbl>,
       new deaths smoothed per million <dbl>, new tests <lgl>, total tests <lgl>,
## #
       total tests per thousand <lgl>, new tests per thousand <lgl>,
## #
       new_tests_smoothed <lgl>, new_tests_smoothed_per_thousand <lgl>,
## #
## #
       tests_per_case <lgl>, positive_rate <lgl>, tests_units <lgl>,
## #
       stringency_index <dbl>, population <dbl>, population_density <dbl>,
       median_age <dbl>, aged_65_older <dbl>, aged_70_older <dbl>,
       gdp_per_capita <dbl>, extreme_poverty <dbl>, cardiovasc_death_rate <dbl>,
## #
## #
       diabetes_prevalence <dbl>, female_smokers <dbl>, male_smokers <dbl>,
       handwashing_facilities <dbl>, hospital_beds_per_thousand <dbl>,
## #
## #
       life_expectancy <dbl>, human_development_index <dbl>
```

#### Leiro statisztikak

Ha az egyes valtozok **leiro statisztikaira** (descriptive statistics) vagyunk kivancsiak, kerhetjuk ezt a mar tanult modon.

Peldaul lekerhetjuk a valtozo alapveto legalacsonyabb es legmagasabb erteket, atlagat, medianjat, a kvartiliseket, es hogy hany hianyzo adat van (ha van) a **summary()** funkcioval (miutan a select funkcioval kivalasztottuk, melyik valtozora vagyunk kivancsiak)

```
COVID_adat %>%
  select(total_cases) %>%
  summary()
```

```
##
     total cases
                     0
##
    Min.
    1st Qu.:
##
                   61
##
   Median:
                 1046
    Mean
               103338
##
    3rd Qu.:
                11200
            :33423469
##
    Max.
    NA's
            :614
##
```

Vagy megkapthatjuk ugyanezt az osszes valtozora, ha ugyanezt az egesz adattablara futtatjuk le. Persze a karakter osztalyba tartozo valtozoknal mindezeknek a leiro statisztikaknak nincs ertelme, ott csak a class informaciot kaptjuk az output-ban.

```
COVID_adat %>%
summary()
```

## Gyakorlas

- Hany regisztralt eset volt osszesen Magyarorszagon a tegnapi napig (total cases)?
- Mi volt a legmagasabb uj eset-szam Magyarorszagon (new cases)?

# Megtobb leiro statisztika

A Psych package segitsegevel a describe() funkcio megtobb hasznos informaciot adhat. Ez a funkcio elsosorban szam-valtozok leirasara szolgal, es karakter tipusu kategorikus valtozok eseten sok warning

message-et ad, ezert erdemes a funciot csak a szam-valtozokra lefuttatni (ezt alabb a select() funkcioval erem el.)

COVID\_adat %>%
 select(-date, -iso\_code, -continent, -location, -contains("tests"), -positive\_rate) %>%
 describe()

| ## |                                                      | vars  | n       | mean        |              | sd  | median     |
|----|------------------------------------------------------|-------|---------|-------------|--------------|-----|------------|
|    | total_cases                                          |       | 46288   | 103338.19   | 1069717.     |     | 1046.00    |
|    | new cases                                            |       | 46078   | 1450.73     | 13164.       |     |            |
|    | -                                                    |       | 45296   | 1438.72     | 12977.       |     | 15.00      |
|    | new_cases_smoothed                                   |       | 46288   | 4131.58     | 38418.       |     | 20.00      |
|    | total_deaths                                         |       | 46078   | 431.58      | 366.         |     | 0.00       |
|    | new_deaths                                           |       | 45296   | 43.65       | 357.         |     | 0.00       |
|    | new_deaths_smoothed<br>total_cases_per_million       |       | 46014   | 1934.39     | 4085.        |     | 284.71     |
|    | new_cases_per_million                                |       | 46014   | 24.86       | 4005.<br>75. |     | 1.58       |
|    | new_cases_per_million new_cases_smoothed_per_million |       | 45231   | 24.49       | 57.          |     | 2.98       |
|    | total_deaths_per_million                             |       | 46014   | 58.27       | 144.         |     | 5.03       |
|    | new_deaths_per_million                               |       | 46014   | 0.57        | 3.           |     | 0.00       |
|    | new_deaths_smoothed_per_million                      |       | 45231   | 0.57        | 1.           |     | 0.00       |
|    | stringency_index                                     |       | 39192   | 57.37       | 27.          |     | 62.96      |
|    | population                                           |       |         | 88435794.18 |              |     |            |
|    | population_density                                   |       | 44499   | 360.83      | 1656.        |     | 88.12      |
|    | median_age                                           |       | 41819   | 31.32       | 9.           |     | 31.40      |
|    | aged_65_older                                        |       | 41197   | 9.26        | 6.           |     |            |
|    | aged_70_older                                        |       | 41602   | 5.86        | 4.           |     |            |
|    | gdp_per_capita                                       |       | 41279   | 20905.50    | 20433.       |     |            |
|    | extreme_poverty                                      |       | 27542   | 12.11       | 19.          |     |            |
|    | cardiovasc_death_rate                                |       | 41827   | 251.57      | 117.         |     |            |
|    | diabetes_prevalence                                  |       | 43303   | 8.05        | 4.           |     |            |
|    | female_smokers                                       |       | 32768   | 10.81       | 10.          |     |            |
|    | male_smokers                                         |       | 32353   | 32.64       | 13.          |     |            |
|    | handwashing_facilities                               |       | 19582   | 52.46       | 31.          |     | 55.18      |
|    | hospital_beds_per_thousand                           | 26    | 37786   | 3.11        | 2.           | 53  | 2.50       |
|    | life_expectancy                                      | 27    | 46040   | 74.03       | 7.           | 37  | 75.49      |
|    | human_development_index                              | 28    | 40355   | 0.72        | 0.           | 15  | 0.75       |
| ## |                                                      | 1     | trimmed | d mad       | min          |     | max        |
| ## | total_cases                                          | -     | 7697.92 | 1547.83     | 0.00         | 3.3 | 342347e+07 |
|    | new_cases                                            |       | 99.65   | 14.83       | 3 -8261.00   | 3.5 | 209380e+05 |
| ## | new_cases_smoothed                                   |       | 103.42  | 22.24       | 4 -552.00    | 2.9 | 968079e+05 |
| ## | total_deaths                                         |       | 179.19  | 29.6        | 0.00         | 1.0 | 002678e+06 |
| ## | new_deaths                                           |       | 1.82    | 0.00        | -1918.00     | 1.0 | 049100e+04 |
| ## | new_deaths_smoothed                                  |       | 1.99    | 0.2         | 1 -232.14    | 7.4 | 456710e+03 |
| ## | total_cases_per_million                              |       | 967.10  | 421.88      | 0.00         | 4.3 | 349475e+04 |
| ## | new_cases_per_million                                |       | 9.44    | 2.3         | 5 -2212.55   | 4.9 | 944380e+03 |
| ## | new_cases_smoothed_per_million                       |       | 10.78   | 3 4.42      | 2 -269.98    | 8.8 | 829200e+02 |
| ## | total_deaths_per_million                             |       | 21.08   | 7.46        | 0.00         | 1.: | 237550e+03 |
| ## | new_deaths_per_million                               |       | 0.13    | 0.00        | -67.90       | 2.  | 153800e+02 |
| ## | ${\tt new\_deaths\_smoothed\_per\_million}$          |       | 0.17    | 7 0.03      | -9.68        | 6.3 | 314000e+01 |
| ## | stringency_index                                     |       | 59.55   | 5 27.46     | 0.00         | 1.0 | 000000e+02 |
| ## | population                                           | 15702 | 2555.21 | 12405280.40 | 809.00       | 7.  | 794799e+09 |
| ## | population_density                                   |       | 124.61  | L 94.65     | 0.14         | 1.9 | 934750e+04 |
| ## | median_age                                           |       | 31.35   | 5 12.16     | 15.10        | 4.8 | 820000e+01 |
| ## | aged_65_older                                        |       | 8.69    | 5.93        | 3 1.14       | 2.  | 705000e+01 |
| ## | aged_70_older                                        |       | 5.38    | 3.9         | 0.53         | 1.8 | 849000e+01 |
|    |                                                      |       |         |             |              |     |            |

| ## | gdp_per_capita                              | 17707.82     | 1580  | 08.23   | 661.24 | 1.169356      | Se+05 |
|----|---------------------------------------------|--------------|-------|---------|--------|---------------|-------|
|    | extreme_poverty                             | 7.67         |       | 2.37    |        | 0.10 7.760000 |       |
|    | cardiovasc_death_rate                       | 240.43       | 12    | 121.87  |        | 7.244200      | e+02  |
|    | diabetes_prevalence                         | 7.63         |       | 3.68    |        | 2.336000      |       |
|    | female_smokers                              | 9.49         |       | 8.01    | 0.10   | 4.400000      | e+01  |
|    | male_smokers                                | 31.98        | 1     | L4.38   | 7.70   | 7.810000      | e+01  |
|    | handwashing_facilities                      | 53.01        |       | 15.28   | 1.19   | 9.900000      | e+01  |
|    | hospital_beds_per_thousand                  | 2.73         |       | 1.93    | 0.10   | 1.380000      | e+01  |
|    | life_expectancy                             | 74.72        |       | 6.98    | 53.28  | 8.675000      | e+01  |
|    | human_development_index                     | 0.73         |       | 0.16    |        | 9.500000      |       |
| ## |                                             | range        | skew  | kurtosi | .s     | se            |       |
| ## | total_cases                                 | 3.342347e+07 | 20.81 | 501.2   | 25 49  | 972.04        |       |
| ## | new_cases                                   | 3.291990e+05 | 16.64 | 315.4   | 7      | 61.33         |       |
| ## | new_cases_smoothed                          | 2.973599e+05 | 16.51 | 308.4   | 2      | 60.98         |       |
| ## | total_deaths                                | 1.002678e+06 | 17.96 | 366.5   | 8      | 178.57        |       |
| ## | new_deaths                                  | 1.240900e+04 | 14.66 | 245.5   | 57     | 1.71          |       |
| ## | new_deaths_smoothed                         | 7.688860e+03 | 13.91 | 211.6   | 6      | 1.68          |       |
| ## | total_cases_per_million                     | 4.349475e+04 | 4.31  | 25.5    | 51     | 19.04         |       |
| ## | new_cases_per_million                       | 7.156920e+03 | 12.49 | 507.5   | 9      | 0.35          |       |
| ## | new_cases_smoothed_per_million              | 1.152900e+03 | 5.23  | 41.7    | 1      | 0.27          |       |
| ## | total_deaths_per_million                    | 1.237550e+03 | 4.25  | 22.4    | :1     | 0.67          |       |
| ## | new_deaths_per_million                      | 2.832800e+02 | 30.75 | 1637.6  | 55     | 0.01          |       |
| ## | ${\tt new\_deaths\_smoothed\_per\_million}$ | 7.282000e+01 | 9.70  | 153.8   | 30     | 0.01          |       |
| ## | stringency_index                            | 1.000000e+02 | -0.60 | -0.6    | 6      | 0.14          |       |
| ## | population                                  | 7.794798e+09 | 11.80 | 144.0   | 8 2838 | 568.97        |       |
| ## | population_density                          | 1.934736e+04 | 9.93  | 106.2   | 26     | 7.85          |       |
| ## | median_age                                  | 3.310000e+01 | -0.03 | -1.2    | 22     | 0.04          |       |
| ## | aged_65_older                               | 2.591000e+01 | 0.65  | -0.8    | 37     | 0.03          |       |
| ## | aged_70_older                               | 1.797000e+01 | 0.79  | -0.5    | 55     | 0.02          |       |
| ## | gdp_per_capita                              | 1.162744e+05 | 1.65  | 3.4     | :6     | 100.57        |       |
| ## | extreme_poverty                             | 7.750000e+01 | 1.81  | 2.3     | 32     | 0.12          |       |
| ## | cardiovasc_death_rate                       | 6.450500e+02 | 0.91  | 0.8     | 86     | 0.57          |       |
|    | diabetes_prevalence                         | 2.237000e+01 | 1.09  | 1.4     | :2     | 0.02          |       |
|    | female_smokers                              | 4.390000e+01 | 0.89  | -0.3    | 31     | 0.06          |       |
|    | male_smokers                                | 7.040000e+01 | 0.55  | 0.3     |        | 0.07          |       |
| ## | handwashing_facilities                      | 9.781000e+01 | -0.13 | -1.4    | :5     | 0.23          |       |
|    | hospital_beds_per_thousand                  | 1.370000e+01 | 1.77  | 3.9     | 5      | 0.01          |       |
|    | life_expectancy                             | 3.347000e+01 |       | -0.1    | .1     | 0.03          |       |
| ## | human_development_index                     | 6.000000e-01 | -0.50 | -0.7    | 4      | 0.00          |       |
|    |                                             |              |       |         |        |               |       |

# Gyakorlas

- Mi az egy millio fore eso uj esetek ( $new\_cases\_per\_million$ ) ferdesegi mutatoja (skew/skewness)?
- Hany valid (nem NA) adat szerepel az adatbazisban az egy fore eso gdp-rol ( $gdp\_per\_capita$ )?

# **Faktorok**

Nehany karaktervaltozonak csak **korlatozott mennyisegu eleme** lehet, mint peldaul a continent (North America, Asia, Africa, Europe, South America, Oceania). Ezeket megjelolhetjuk faktor (factor) osztalyu valtozokent, es akkor az R tobb informaciot fog adni rola.

A levels() funkcio megmutatja mik a faktorunk szintjei, de lathato ez akkor is ha csak meghivjuk a valtozot

#### magat.

## [126] Europe

## [131] Africa

Europe

Africa

A table() funkcio pedig tablazatot keszit arrol, hogy az egyes csoportokban hany megfigyeles talalhato

Amikor kilistazzuk a faktor valtozot, akkor is kiirja az R a lista aljara, hogy milyen faktorszintek vannak. (Alabb csinalunk egy COVID\_adat\_tegnap valtozot, amivel csak a tegnapi adatokat nezzuk, hogy kisebb legyen az adattabla amivel dolgozunk.)

```
COVID_adat <- COVID_adat %>%
              mutate(continent = factor(continent),
                      location = factor(location))
levels(COVID_adat$continent)
## [1] "Africa"
                                         "Europe"
                                                         "North America"
## [5] "Oceania"
                        "South America"
table(COVID_adat$continent)
##
##
          Africa
                           Asia
                                       Europe North America
                                                                    Oceania
##
           10942
                          11224
                                        12320
                                                        7325
                                                                       1751
## South America
##
            2792
COVID_adat_tegnap = COVID_adat %>%
  filter(date == "2020-09-28")
COVID adat tegnap$continent
##
     [1] Asia
                        Europe
                                      Africa
                                                     Europe
                                                                    Africa
##
     [6] North America North America South America Asia
                                                                    North America
##
    [11] Oceania
                        Europe
                                      Asia
                                                     North America Asia
##
    [16] Asia
                        North America Europe
                                                                    North America
                                                     Europe
##
    [21] Africa
                        North America Asia
                                                     South America North America
##
    [26] Europe
                        Africa
                                      South America North America Asia
##
    [31] Europe
                        Africa
                                      Africa
                                                     Asia
                                                                    Africa
    [36] North America Africa
##
                                      North America Africa
                                                                    Africa
   [41] South America Asia
                                      South America Africa
                                                                    Africa
                                                     North America North America
##
   [46] North America Africa
                                      Europe
    [51] Europe
                                      Africa
                                                                    Africa
##
                        Europe
                                                     Europe
##
   [56] North America North America South America Africa
                                                                    North America
   [61] Africa
                        Africa
                                      Europe
                                                     Africa
                                                                    Europe
   [66] South America Oceania
##
                                      Europe
                                                     Europe
                                                                    Oceania
##
    [71] Africa
                        Africa
                                      Asia
                                                     Europe
                                                                    Africa
##
  [76] Europe
                        Europe
                                      North America North America Oceania
                                      Africa
                                                                    South America
   [81] North America Europe
                                                     Africa
##
   [86] North America North America Europe
                                                                    Asia
                                                     Europe
   [91] Asia
                        Asia
                                      Asia
                                                                    Europe
                                                     Europe
##
  [96] Asia
                        Europe
                                      North America Asia
                                                                    Europe
## [101] Asia
                        Asia
                                      Africa
                                                     Europe
                                                                    Asia
## [106] Asia
                        Asia
                                      Europe
                                                     Asia
                                                                    Africa
## [111] Africa
                        Africa
                                      Europe
                                                                    Europe
                                                     Europe
## [116] Europe
                        Africa
                                      Africa
                                                     Asia
                                                                    Asia
## [121] Africa
                                      Africa
                                                                    North America
                        Europe
                                                     Africa
```

Europe

Africa

North America

Asia

Asia

Asia

```
## [136] Europe
                        Oceania
                                      Oceania
                                                     North America Africa
  [141] Africa
                        Oceania
                                                                    Asia
                                      Europe
                                                     Asia
                                                     South America South America
## [146] Asia
                        North America Oceania
## [151] Asia
                                                     North America Asia
                        Europe
                                      Europe
## [156] Europe
                        Europe
                                      Africa
                                                     North America North America
## [161] North America Europe
                                                                    Africa
                                      Africa
                                                     Asia
## [166] Europe
                                                                    North America
                        Africa
                                      Africa
                                                     Asia
## [171] Europe
                        Europe
                                      Africa
                                                     Africa
                                                                    Asia
## [176] Africa
                        Europe
                                      Asia
                                                     Africa
                                                                    South America
## [181] Africa
                        Europe
                                      Asia
                                                     Asia
                                                                    Asia
## [186] Africa
                        Asia
                                      Asia
                                                     Africa
                                                                    North America
## [191] Africa
                        Asia
                                      North America Africa
                                                                    Europe
## [196] Asia
                                      North America North America South America
                        Europe
## [201] Asia
                        Europe
                                      South America Asia
                                                                    Africa
## [206] Asia
                                      Africa
                                                     <NA>
                                                                    <NA>
                        Africa
## Levels: Africa Asia Europe North America Oceania South America
```

Igy mar a fenti summary() funkcio is kiadja az egyes faktorszintekrol hogy hanyan tartoznak oda.

```
COVID_adat_tegnap %>%
  select(continent) %>%
  summary()
```

```
##
             continent
##
    Africa
                  :55
##
    Asia
                  :46
##
    Europe
                  :50
##
   North America:36
    Oceania
##
    South America:13
##
    NA's
```

Van, hogy szeretnenk kizarni bizonyos faktorszinteket az elemzesbol. Pl. ha valamelyik faktor szintbol nagyon keves megfigyeles van, mondjuk Oceaniat, mondjuk mert ugy gondoljuk hogy az tulsagosan "elszigetelt" a vilag tobbi reszetol, oket lehet hogy szeretnenk kizarni a kesobbi elemzesekbol hogy egyszerusitsuk az eredmenyeink ertelmezeset. Ezt a mar korabban tanult filter() funkcio segitsegevel konnyeden megtehetjuk, azonban arra figyelnunk kell, hogy az R megjegyzi a faktorszinteket, es azt azt kovetoen is a valtozohoz rendelve tartja, miutan mar az adott faktorszintbol nincs egy megifgyeles sem az adattablaban.

```
COVID_adat_tegnap %>%
  filter(continent != "Oceania") %>%
  select(total_cases, continent) %>%
  summary()
```

```
##
     total cases
                                 continent
##
    Min.
                   3
                                      .55
           :
                        Africa
    1st Qu.:
                1731
                        Asia
                                      :46
##
    Median:
                9664
                        Europe
                                      :50
##
    Mean
            : 165381
                        North America:36
    3rd Qu.:
##
               72210
                                      : 0
                        Oceania
            :7115046
                        South America:13
```

Igy ezeket a szinteket ejthetjuk a droplevels() funkcioval.

```
COVID_adat_tegnap_noOceania = COVID_adat_tegnap %>%
filter(continent != "Oceania") %>%
mutate(continent = droplevels(continent))
```

```
COVID_adat_tegnap_noOceania %>%
  select(continent) %>%
  summary()
```

```
## continent
## Africa :55
## Asia :46
## Europe :50
## North America:36
## South America:13
```

Elofordul, hogy egy **numerikus valtozot akarunk atalakitani faktorra**, pl. elkepzelheto hogy ossze akarjuk hasonlitani azokat az orszagokat ahol 5000 alatti a gdp\_per\_capita azokkal akinel e feletti, hogy hogyan kulonboznek a COVID adatok.

```
COVID_adat_tegnap %>%
  select(gdp_per_capita, continent) %>%
  drop_na() %>%
  group_by(continent) %>%
  summarize(mean_gdp = mean(gdp_per_capita))
```

```
## # A tibble: 6 x 2
    continent mean_gdp
##
     <fct>
                     <dbl>
## 1 Africa
                     5444.
## 2 Asia
                     22185.
## 3 Europe
                     33029.
## 4 North America 21655.
## 5 Oceania
                     23315.
## 6 South America
                     13841.
```



## Folytonos valtozok atkodolasa kategorikus valtozova

Ilyenkor hasznalhatjuk a **mutate()** es **case\_when()** funkciok kombinaciojat hogy csinaljunk egy uj valtozot. Ebbe a kodba beleepitettem a **factor()** funkciot is, hogy azonnal meghatarozzuk, hogy ez az uj valtozo egy faktor, es nem egy egyszeru karaktervektor. A factor() funkcio nelkul is lefut a kod, de akkor meg kellene egy kulon sor ahol megadjuk hogy ez egy faktorvaltozo.

#### Kategorikus valtozo ujrakodolasa

Hasonlo eset ha kategorikus valtozokat szeretnenk atkodolni. Mondjuk ha szeretnenk a deli felteket az eszaki feltekevel osszehasonlitani. Ezt a **recode()** funkcioval lehet megoldani.

# Faktorszintek sorrendje, ordinalis valtozok

Amikor van ertelme a **sorrendisegnek** a faktorszintek kozott, **ordinalis valtozokrol** beszelunk (vagyis az egyik faktorszint alacsonyabb, vagy kisebb "erteku" mint a masik). Arra figyelnunk kell, hogy amikor faktorokat hozunk letre, az R automatikusan a faktorszintek neveinek **ABC sorrendje** alapjan rakja oket sorba, es az abrakon is igy szemlelteti majd oket.

```
COVID_adat_tegnap %>%
   ggplot() +
   aes(x = gdp_per_capita_kat) +
   geom_bar()
```



Ilyenkor erdemes meghatarozni a faktorszintek sorrendjet (order). Ezt legegyszerubben a factor() funkcion belul tehetjuk meg, az ordered = T beallitasaval, es a levels = resznel a szintek sorrendjenek meghatarozasaval.

Igy mar az R minden funkcioja tudni fogja, hogy egy ordinalis valtozorol van szo, ahol fontos a sorrend, es tudni fogja a sorrendet is.

```
COVID_adat_tegnap %>%
ggplot() +
aes(x = gdp_per_capita_kat) +
geom_bar()
```



## Gyakorlas

- szurd az adatokat ugy hogy csak a 2020-09-28-ai adatokkal dolgozzunk csak.
- csinalj egy uj kategorikus valtozot (nevezzuk ezt <a href="new\_cases\_per\_million\_kat-nak">new\_cases\_per\_million\_kat-nak</a>) a mutate() funkcio hasznalataval amiben azok az orszagok ahol a <a href="new\_cases\_per\_million">new\_cases\_per\_million</a> valtozo 20 alatt van "small", ahol 20 vagy a felett van "large" kategoriaba keruljenek.
- figyelj oda hogy faktorkent jelold meg ezt az uj valtozot (Ezt lehet az elozo lepesben a mutate() funkcion belul, vagy egy kulon lepesben, de mindenkeppen a factor() vagy az as.factor() funkciokat erdemes hozza hasznalni)
- mentsd el ezt a valtozot az eredeti adatobjektumban ugy hogy kesobb is lehessen vele dolgozni
- keszits egy tablazatot arrol, hogy hanyan esnek a new\_cases\_per\_million\_kat egyes kategoriaiba.
- Add meg a faktorszintek helyes sorrendjet: small, large (Ird felul a new\_cases\_per\_million\_kat korabbi valtozatat ezzel a valtozattal ahol a szintek mar helyes sorrendben vannak, vagy ezt a sorrendezest is bele vonhatod az eredeti funkcioba, amivel a valtozot generaltad)
- Ellenorizd, hogy valoban helyes sorrendben szerepelnek-e a faktor szintjei.

# Exploracio vizualizacion keresztul

# Egyes valtozok vizualizacioja

Az egyes valtozok **abrak** (plot) segitsegevel is megvizsgalhatok. A **kategorikus** valtozokat gyakran oszlopdiagrammal (**geom\_bar**) abrazoljuk,

Mig a numerikus valtozokat inkabb dotplot , histogram, vagy density plot segitsegevel szoktuk abrazolni.

Az egyes valtozok vizualizacioja es a leiro statisztikak atvizsgalasa elengedhetetlen hogy azonositsuk az esetleges adatbeviteli hibakat es egyeb nemvart furcsasagokat az adataink kozott.

**MINDING** ellenorizd az adataidat ezekkel a modszerekkel mielott komolyabb adatelemzesbe kezdesz, hogy meggyozodj rola, hogy az adatok tisztak es megfelenek az elvarasaidnak.

```
COVID_adat_tegnap %>%
ggplot() +
aes(x = continent) +
geom_bar()
```



```
COVID_adat_tegnap %>%
ggplot() +
aes(x = total_deaths_per_million) +
geom_dotplot(binwidth = 10)
```

## Warning: Removed 1 rows containing non-finite values (stat\_bindot).



```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = total_deaths_per_million) +
  geom_histogram()
```

## `stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 1 rows containing non-finite values (stat\_bin).



```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = total_deaths_per_million) +
  geom_density()
```

## Warning: Removed 1 rows containing non-finite values (stat\_density).



## Gyakorlas

Szurd az adatokat ugy hogy csak a 2020-09-07-en jeletett adatokkal dolgozzunk

Hasznald a fent tanult modszereket, hogy azonositsd az COVID\_adat adattablaban levo hibakat vagy nem vart furcsasagokat.

- A vizualizacion tul a View(), describe(), es summary() funciokat erdemes hasznalni az adatok elso attekintesere
- A numerikus (vagy eppen folytonos) valtozoknal vizsgald meg a minimum es maximum erteket es a hianyzo adatok mennyiseget, valamint az eloszlast.
- A kategorikus valtozoknal vizsgald meg az osszes faktorszintet es az egyes szintekhez tartozo megfigyelesek mennyiseget.

# A hibakat a kovetkezokeppen javithatjuk.

A mutate() es a replace() funkciok hasznalataval cserelhetunk ki ertekeket mas ertekekre. Azt, hogy ilyenkor hianyzo adatra (NA), vagy egy masik, valoszinu ertekre kell megvaltoztatni az erteket, a szituaciotol fogg. Altalaban a biztosabb megoldas ha hianyzo adatnak jeloljuk a kerdeses erteket (NA), de ez sok adatveszteshez vezethet. Ha eleg valoszinu hogy mi a helyes valasz, beirhatjuk, DE minden javitast fel kell tuntetni a kutatasi jelentesben (es a ZH soran is), hogy az olvaso szamara tiszta legyen, hogy itt egy adathelyettesites vagy kizaras tortent!

Mindig erdemes a javitott adatokat **uj adattablaba** elmenteni. A mi esetunkben az COVID\_adat\_corrected nevet adtuk a javitott objektumnak. Igy a nyers adataink megmaradnak, ami hasznos lehet kesobbi

muveleteknel.

```
COVID_adat_corrected <- COVID_adat %>%
  mutate(new_cases = replace(new_cases, new_cases=="-8261", NA))
```

Erdemes **megbizonyosodni rola**, hogy az adatcsere sikeres volt. Alabb az adatok vizualizaciojaval gyozodunk meg errol, de az adatok megjelenitesevel, vagy a leiro statisztikak lekerdezesevel is megteheto ez, ha az informativ.

```
# hasznalhatnak meg az alabbiakat is arra,
# hogy megbizonyosodjunk abban, hogy sikeres volt a csere
# View(COVID_adat_corrected)
# describe(COVID_adat_corrected)
# summary(COVID_adat_corrected$szocmedia_3)
\# COVID_adat_corrected$szocmedia_3
old_plot <-
  COVID_adat %>%
  filter(date == "2020-09-07", new_cases < 1000) %>%
  ggplot()+
    aes(x = new_cases) +
    geom_histogram()
new_plot <-
  COVID adat corrected %>%
  filter(date == "2020-09-07", new_cases < 1000) %>%
  ggplot()+
    aes(x = new_cases) +
    geom_histogram()
grid.arrange(old_plot, new_plot, ncol=2)
```



# Tobb valtozo kapcsolatanak felterkepezese

Tobb valtozo kapcsolatat is felterkepezhetjuk tablazatok es abrak segitsegevel.

## Ket kategorikus (csoportosito) valtozo kapcsolatanak felterkepezese

## Feltaro elemzes

Most vizsgaljuk meg azt, hogy 2020-09-28-an mi az osszefuggese a gdp kategorianak (gdp\_per\_capita\_kat) a kontinenssel (continent) ahol az orszag elhelyezkedik.

A legegyszerubb modja ket csoportosito valtozo kapcsolatanak megvizsgalasara a ket valtozo kereszttablazatanak (crosstab) elkezsitese a table() funkcioval.

table(COVID\_adat\_tegnap\$gdp\_per\_capita\_kat, COVID\_adat\_tegnap\$continent)

| ## |        |        |      |        |       |                 |                 |               |         |
|----|--------|--------|------|--------|-------|-----------------|-----------------|---------------|---------|
| ## |        | Africa | Asia | Europe | North | ${\tt America}$ | ${\tt Oceania}$ | ${\tt South}$ | America |
| ## | small  | 37     | 8    | 0      |       | 2               | 1               |               | 0       |
| ## | medium | 6      | 12   | 3      |       | 6               | 1               |               | 3       |
| ## | large  | 10     | 24   | 38     |       | 19              | 2               |               | 9       |

Sokszor ennel sokkal szemleletesebb az abrak (plot) hasznalata.

Erre az egyik lehetoseg a **stacked bar chart** (egymasra tornyozott oszlopdiagram, a **geom\_bar()** geomot hasznaljuk) hasznalata. Itt az egyik valtozo kategoriai adjak meg hany oszlop lesz (ez a valtozo lesz az x tengelyen reprezentalva, igy ezt az "x =" reszen adhatjuk meg), a masik valtozo az oszlopokat szinekkel szegmentalja, ezt pedig a "fill =" reszen adhatjuk meg.

```
COVID_adat_tegnap %>%
ggplot() +
aes(x = continent, fill = gdp_per_capita_kat) +
geom_bar()
```



Ha az egyes faktorszinteken nagyon **kulonbozo mennyisegu megfigyeles** van, ez a megjelenites neha felrevezeto kovetkeztetesekhez vezethet, igy neha hasznosabb ha az oszlopok nem szamossagot (count), hanem **reszaranyt** (**proportion**) jelolnek. Ha ezt szeretnenk, ahelyett hogy uresen hagynank a geom\_bar() funkciot, a kovetkezot adjuk meg: **geom\_bar(position = "fill")**.

```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = continent, fill = gdp_per_capita_kat) +
  geom_bar(position = "fill")
```



new\_cases\_per\_million >= 20 ~ "large"), ordered = T, le

# Gyakorlas

Hasznald a fent tanult modszereket, hogy megvizsgald a COVID\_adat\_tegnap adatbazisban a new\_cases\_per\_million\_kat es a continent valtozok kozotti osszefuggest. - hasznalj geom\_bar() geomot a megjeleniteshez - probald meg mind a szamossagot, mind a reszaranyt kifejezo abrat megvizsgalni geom\_bar(position = "fill") - milyen kovetkeztetest tudsz levonni az abrakrol?

Ennel a megjelenitesnel fontos hogy ha az egyes megfigyelesek **keves megfigyelesbol allnak**, az abra megteveszto lehet, mert az abra nem jelzi a megfigyelesek szamat es igy azt, hogy milyen biztosak lehetunk

az eredmenyben. Ilyen esetekben az egyik kategoriat ki lehet venni az abrarol, vagy a **szamossagot es a reszaranyt abrazolo abrakat egymas mellet** lehet bemutatni, hogy igy kiegeszitsek egymast. Ehhez hasznalhatjuk a **grid.arrange()** funkciot.