Gymnázium Evolution Jižní Město

Jakýsi úvod do matematické analýzy

Áďula vod Klepáčů

14. června 2024

Předmluva

Matematická analýza je věda o reálných číslech; tuším ovšem, že kolegové analytici mě za ono nedůstojně zjednodušující tvrzení rádi mít příliš nebudou. Snad mohou nicméně souhlasit, že v jejím jádru je pojem *nekonečna*. Nikoli nutně ve smyslu čísla, jež převyšuje všechna ostatní, ale spíše myšlenky, jež zaštiťuje přirozené jevy jako *okamžitá změna*, *blížení* či *kontinuum*.

O zrod matematické analýzy, jež zvláště v zámoří sluje též *kalkulus*, se bez pochyb podělili (nezávisle na sobě) Sir Isaac Newton a Gottfried Wilhelm Leibniz v 17. století po Kristu. Sir Isaac Newton se tou dobou zajímal o dráhy vesmírných těles a učinil dvě zásadní pozorování – zemská tíže působí na objekty zrychlením a zrychlení je *velikost okamžité změny* rychlosti. Potřeboval tedy metodu, jak onu velikost spočítat. Vynález takové metody po přirozeném zobecnění vede ihned na teorii tzv. *limit*, které právě tvoří srdce kalkulu. Pozoruhodné je, že Gottfried Leibniz, nejsa fyzik, dospěl ke stejným výsledkům zpytem geometrických vlastností křivek. V jistém přirozeném smyslu, který se zavazujeme rozkrýt, jsou totiž tečny *limitami* křivek. Ve sledu těchto rozdílů v přístupu obou vědců se v teoretické matematice dodnes, s mírnými úpravami, používá při studiu limit značení Leibnizovo, zatímco ve fyzice a diferenciální geometrii spíše Newtonovo.

Následující text je shrnutím – lingvistickým, vizuálním a didaktickým pozlacením – teorie limit. Hloubka i šíře této teorie ovšem přesáhla původní očekávání a kalkulus se stal součástí nespočtu matematických (samozřejmě i fyzikálních) odvětví bádání. První kapitola je věnována osvěžení nutných pojmů k pochopení textu. Pokračují pojednání o limitách posloupností a reálných číslech, limitách součtů, limitách funkcí a, konečně, derivacích. Tento sled není volen náhodně, nýbrž, kterak bude vidno, znalost předšedších kapitol je nutná k porozumění příchozích.

Jelikož se jedná o text průběžně doplňovaný a upravovaný, autor vyzývá čtenáře, by četli okem kritickým a myslí čistou, poskytovali připomínky a návrhy ke zlepšení.

Obsah

I	I Reálné funkce		
1 Taylorův polynom		lorův polynom	9
	1.1	Definice Taylorova polynomu	12
	1.2	Tvary zbytku	13

Část I Reálné funkce

Kapitola 1

Taylorův polynom

Tato kapitola se nachází v pracovní verzi. Neočekávejte obrázky, naopak očekávejte chyby a podivné formulace.

Polynomy jsou hezké funkce. Dají se donekonečna derivovat – všechny tyto derivace jsou navíc spojité – pomocí Hornerova schématu se snadno počítá jejich hodnota v daném bodě a stejně snadno se hledají jejich kořeny – body, kde jsou nulové. Není proto překvapivé, že se matematici již dlouho snaží aproximovat hodnoty nepolynomiálních funkcí (jako exp, log atd.) hodnotami polynomů. V této kapitole si ujasníme, co vlastně myslíme *aproximací*, jak jednu konkrétní sestrojit a (aspoň povrchově), k čemu je dobrá.

Definice 1.0.1 (Polynomiální funkce)

Řekneme, že funkce $f: \mathbb{R} \to \mathbb{R}$ je polynomiální, když existuje $n \in \mathbb{N}$ a koeficienty $a_i \in \mathbb{R}, i \le n$, takové, že

$$f(x) = \sum_{i=0}^{n} a_i x^i \quad \forall x \in \mathbb{R}.$$

Poznámka 1.0.2

Striktně vzato je rozdíl mezi polynomem a polynomiální funkcí. Polynom je formální výraz tvaru

$$\sum_{i=0}^{n} a_i x^i,$$

kde x je pouze symbol a nepředstavuje žádnou hodnotu. Polynomiální funkce je pak funkce, která vlastně dosazuje do nějakého polynomu za x číslo.

My však těchto rozdílů dbát nebudeme a slovy *polynom* i *polynomiální funkce* budeme mínit objekt z definice 1.0.1.

Co vlastně znamená *aproximovat* funkci? Funkci exp můžeme například na intervalu [0, 1] aproximovat číslem –69, ale intuice čtenářům, doufáme, napovídá, že toto není "dobrá" aproximace. Jistě nemůžeme obecně doufat v aproximaci funkce polynomem na celé její doméně; smysluplným však zdá sebe býti snažit se aproximovat na okolí zvoleného bodu.

Úspěšnost polynomiální aproximace má dobrý smysl měřit rovněž polynomem. Totiž, z výpočetních důvodů často potřebujeme omezit stupeň (nejvyšší mocninu) aproximujícího polynomu. Přejeme si, aby chyba aproximace polynomem stupně n na okolí daného bodu klesala (při blížení se k tomuto bodu) aspoň tak rychle, jak nejrychleji může polynom stupně n na okolí nějakého bodu k 0 klesat. Je patrné, že nejrychleji ze všech polynomů stupně n klesá na okolí bodu n0 k nule polynom n0, neb má v n0 na okolí včene. Ukážeme, že ve skutečnosti můžeme požadovat, aby chyba aproximace na okolí n0 klesala k 0 ještě rychleji.

Definice 1.0.3 (Aproximace stupně *n*)

Ať $f:M\to\mathbb{R}$ je reálná funkce, $a\in M$ a $n\in\mathbb{N}$. Řekneme, že polynom P je aproximací f na okolí a stupně n, když

$$\lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^n} = 0.$$

Vyjádřeno slovy: P je aproximací f na okolí a stupně n, když chyba aproximace na okolí a klesá k 0 rychleji, než $(x-a)^n$.

Pojďme si nyní rozmyslet, jak aproximace f hledat. Začněme nejjednodušším případem – lineární aproximací (tj. aproximací stupně 1) polynomem rovněž stupně nejvýše 1, tedy "přímkou". Položme tedy $P(x) \coloneqq \psi x + \omega$ a počítejme

$$\lim_{x \to a} \frac{f(x) - P(x)}{x - a} = \lim_{x \to a} \frac{f(x) - \psi x - \omega}{x - a} = 0.$$

Poslední rovnost bystrým čtenářům připomene definici derivace. Vskutku, přepokládáme-li, že existuje konečná f'(a), pak můžeme poslední limitu upravit do tvaru

$$\lim_{x\to a} \frac{f(x)-\psi x-\omega}{x-a} = \lim_{x\to a} \frac{f(x)-f(a)}{x-a} - \lim_{x\to a} \frac{\psi x+\omega-f(a)}{x-a} = f'(a) - \lim_{x\to a} \frac{\psi x+\omega-f(a)}{x-a}.$$

Náš úkol je tímto výrazně zjednodušen. Potřebujeme, aby se poslední limita rovnala konstantě f'(a). Toho lze docílit více způsoby; ten nejvíce přímočarý je snad zařídit, aby se čitatel zlomku rovnal f'(a)(x-a), neboť zřejmě

$$\lim_{x \to a} \frac{f'(a)(x-a)}{x-a} = f'(a).$$

Odtud plyne rovnost

$$\psi x + \omega - f(a) = f'(a)(x - a),$$

ze které již snadno

$$\psi = f'(a),$$

$$\omega = f(a) - a \cdot f'(a),$$

čili

$$P(x) = \psi x + \omega = f'(a)(x - a) + f(a)$$

je lineární aproximací funkce f na okolí a. Funkci P(x) se obvykle přezdívá tečna ke grafu funkce f v bodě a, neboť je to přímka, která prochází bodem (a, f(a)) a na okolí a roste stejně rychle jako f.

Definice 1.0.4 (Derivace vyšších řádů)

Ať $f:M\to \mathbb{R}$ je reálná funkce. Induktivně definujeme n-tou derivaci funkce f v bodě a předpisem

$$f^{(n)}(a) \coloneqq \lim_{h \to 0} \frac{f^{(n-1)}(a+h) - f^{(n-1)}(a)}{h} = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a},$$

 $kde f^{(0)} = f.$

Poznámka 1.0.5 (Značení derivací)

V této kapitole budeme vždy n-tou derivaci (vizte definici 1.0.4) funkce f značit symbolem $f^{(n)}$, a to i tehdy, když je tato derivace první. Místo f' tedy dočasně píšeme $f^{(1)}$.

Podobným postupem je možné hledat aproximace vyšších stupňů. Hledáme-li polynom Q(x) stupně nejvýše 2 splňující

$$\lim_{x \to a} \frac{f(x) - Q(x)}{(x - a)^2},$$

upravíme nejprve tuto limitu na

$$\lim_{x \to a} \frac{\frac{f(x) - Q(x)}{x - a}}{x - a}.$$

Již totiž víme, že P(x) = f'(a)(x-a) + f(a) je lineární aproximací funkce f na okolí a. Budeme tedy směle předpokládat, že Q(x) = P(x) + R(x) a spočteme, čemu se rovná polynom R(x). Počítáme

$$\lim_{x \to a} \frac{\frac{f(x) - Q(x)}{x - a}}{x - a} = \lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^2} - \lim_{x \to a} \frac{R(x)}{(x - a)^2}.$$

Užitím l'Hospitalova pravidla spočteme

$$\lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^2} = \lim_{x \to a} \frac{f(x) - f(a) - f^{(1)}(a)(x - a)}{(x - a)^2} = \lim_{x \to a} \frac{f^{(1)}(x) - f^{(1)}(a)}{2(x - a)} = \frac{f^{(2)}(a)}{2}.$$

Chceme tudíž, aby platilo

$$\lim_{x \to a} \frac{R(x)}{(x-a)^2} = \frac{f^{(2)}(a)}{2},$$

z čehož plyne přirozená volba

$$R(x) \coloneqq \frac{f^{(2)}(a)}{2}(x-a)^2.$$

Iterováním tohoto postupu se dostaneme k tzv. Taylorovu polynomu.

1.1 Definice Taylorova polynomu

Definice 1.1.1 (Taylorův polynom)

Ať $f: M \to \mathbb{R}$ je reálná funkce, majíc konečné derivace všech řádů do $n \in \mathbb{N}$ včetně, a $a \in M$. Pak *Taylorovým polynomem stupně n funkce f v bodě a* rozumíme polynom

$$T_n^{f,a}(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

Lemma 1.1.2 (Derivace Taylorova polynomu)

Platí

$$(T_n^{f,a})^{(1)} = T_{n-1}^{f^{(1)},a}.$$

Důкaz. Z definice Taylorova polynomu počítáme

$$(T_n^{f,a})^{(1)}(x) = \left(\sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k\right)^{(1)} = \sum_{k=1}^n \frac{k \cdot f^{(k)}(a)}{k!} (x-a)^{k-1}$$

$$= \sum_{k=1}^n \frac{f^{(k)}(a)}{(k-1)!} (x-a)^{k-1} = \sum_{k=0}^{n-1} \frac{(f^{(1)})^{(k)}}{k!} (x-a)^k = T_{n-1}^{f^{(1)},a}(x).$$

Tvrzení 1.1.3 (Aproximace Taylorovým polynomem)

 $Aff: M \to \mathbb{R}$ je reálná funkce, majíc konečné derivace do řádu $n \in \mathbb{N}$ včetně, a $a \in M$. Pak je $T_n^{f,a}$ aproximací f stupně n na okolí a.

Důκaz. Budeme postupovat indukcí podle stupně $n \in \mathbb{N}$. Již víme, že pro n=1 je $T_1^{f,a}(x)=f(a)+f^{(1)}(a)(x-a)$ lineární aproximací f na okolí a.

Pro n>1 máme z l'Hospitalova pravidla a předchozího lemmatu

$$\lim_{x \to a} \frac{f(x) - T_n^{f,a}(x)}{(x - a)^n} = \lim_{x \to a} \frac{f^{(1)}(x) - T_{n-1}^{f^{(1)},a}(x)}{n(x - a)^{n-1}}.$$

Protože $f^{(1)}$ je reálná funkce a má konečné derivace do řádu n-1 včetně, je z indukčního předpokladu $T_{n-1}^{f^{(1)},a}$ aproximací $f^{(1)}$ stupně n-1 na okolí a. Platí pročež

$$\lim_{x \to a} \frac{f^{(1)}(x) - T_{n-1}^{f^{(1)},a}(x)}{n(x-a)^{n-1}} = 0,$$

a tedy i

$$\lim_{x \to a} \frac{f(x) - T_n^{f,a}(x)}{(x - a)^n} = 0,$$

jak jsme chtěli.

1.2. Tvary zbytku

Překvapivé možná je, že Taylorův polynom je jedinou aproximací funkce f stupně n polynomem stupně nejvýše n. K důkazu tohoto faktu si pomůžeme jedním technickým lemmatem.

Lemma 1.1.4

 $At'n \in \mathbb{N}$ a Q je polynom stupně nejvýše n. Platí-li $\lim_{x\to a} Q(x)/(x-a)^n = 0$, pak Q = 0.

Důκaz. Budeme pro spor předpokládat, že Q není nulový. Bez důkazu využijeme tvrzení, že když a je kořenem Q, pak $x-a\mid Q$. Protože $\lim_{x\to a}Q(x)/(x-a)^n$, jistě platí Q(a)=0, čili existuje $k\in\mathbb{N}$ takové, že $Q(x)=(x-a)^k\cdot R(x)$, kde R je polynom nemaje kořen a. Pak ale

$$\lim_{x \to a} \frac{Q(x)}{(x-a)^n} = \lim_{x \to a} \frac{R(x)}{(x-a)^{n-k}}.$$

Tato limita buď neexistuje (pokud k < n), nebo je rovna $R(a) \neq 0$ (pokud k = n). V obou případech je nenulová, což je spor.

Věta 1.1.5 (Jednoznačnost Taylorova polynomu)

 $Atf: M \to \mathbb{R}$ je funkce, majíc konečné derivace do řádu $n \in \mathbb{N}$ včetně, a $a \in M$. Předpokládejme, že P je polynom stupně nejvýše n, jenž je rovněž aproximací f na okolí a stupně n. Pak $P = T_n^{f,a}$.

Důkaz. Podle tvrzení 1.1.3 platí

$$\lim_{x \to a} \frac{f(x) - T_n^{f,a}(x)}{(x - a)^n} = 0.$$

Z předpokladu a věty o aritmetice limit

$$\lim_{x \to a} \frac{T_n^{f,a}(x) - P(x)}{(x - a)^n} = \lim_{x \to a} \frac{T_n^{f,a}(x) - f(x)}{(x - a)^n} + \lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^n} = 0 + 0 = 0,$$

čili podle lemmatu 1.1.4 jest $P - T_n^{f,a} = 0$.

1.2 Tvary zbytku

V této sekci spočteme tzv. "tvary zbytku" Taylorova polynomu. Jsou to výrazy, které vyjadřují – aspoň řádově – velikost chyby při aproximace funkce Taylorovým polynomem na okolí daného bodu. Budou se hodit primárně při zpytu poloměru okolí, na němž můžeme stále tvrdit, že Taylorův polynom aproximuje funkci "dobře".

Věta 1.2.1 (Obecný tvar zbytku)

Ať $a, x \in \mathbb{R}$ a f má na [a, x] konečné derivace do řádu n + 1 včetně. Ať je dále φ libovolná spojitá funkce na [a, x] s konečnou první derivací na (a, x). Pak existuje $\xi \in (a, x)$ takové, že

$$f(x) - T_n^{f,a}(x) = \frac{1}{n!} \frac{\varphi(x) - \varphi(a)}{\varphi^{(1)}(\xi)} f^{(n+1)}(\xi) (x - \xi)^n.$$

Důкаz. Definujme funkci $F:[a,x] \to \mathbb{R}$ předpisem

$$F(t) := f(x) - (f(t) + f^{(1)}(t)(x - t) + \frac{1}{2}f^{(2)}(t)(x - t)^2 + \dots + \frac{1}{n!}f^{(n)}(t)(x - t)^n.$$

Pak je F spojitá na [a, x] a $F^{(1)}$ existuje konečná na (a, x). Podle Cauchyho věty o střední hodnotě existuje $\xi \in (a, x)$ takové, že

$$\frac{F(x) - F(a)}{\varphi(x) - \varphi(a)} = \frac{F^{(1)}(\xi)}{\varphi^{(1)}(\xi)}.$$
 (\(\delta\)

Snadno spočteme, že

$$F^{(1)}(\xi) = -f^{(1)}(\xi) + f^{(1)}(\xi) - f^{(2)}(\xi) + f^{(2)}(\xi) - \dots - \frac{1}{n!} f^{(n+1)}(\xi) (x - \xi)^n$$
$$= -\frac{1}{n!} f^{(n+1)}(\xi) (x - \xi)^n.$$

Zřejmě F(x)=0 a $F(a)=f(x)-T_n^{f,a}(x)$. Čili z rovnosti (\diamond) máme

$$\frac{T_n^{f,a}(x) - f(x)}{\varphi(x) - \varphi(a)} = -\frac{1}{\varphi^{(1)}(x)} \left(\frac{1}{n!} f^{(n+1)}(\xi) (x - \xi)^n \right).$$

Odtud přímočarou úpravou plyne tvrzení.

Uvědomme si, že ve větě 1.2.1 je φ zcela libovolná funkce s dodatečnými podmínkami spojitosti a diferencovatelnosti. Tím máme k dispozici celou třídu vyjádření zbytků Taylorova polynomu pouhým dosazováním za φ . Dvě konkrétní dosazení (jež sobě dokonce vysloužila jména) se nám budou v dalším textu hodit více než jiná.

Důsledek 1.2.2 (Lagrangeův tvar zbytku)

Ať f je spojitá na [a,x] a má konečné derivace na (a,x) do řádu n+1 včetně. Pak existuje $\xi \in (a,x)$ takové, že

$$f(x) - T_n^{f,a}(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-a)^{n+1}.$$

Důкаz. Plyne z dosazení $\varphi(t) =$