Got 2 Minutes? Start here \$\\

Existing Sketch-Based Image Retrieval backbones

Proposed

Summary

- This paper unveils the latent potential of diffusion models as backbone feature extractors for ZS-SBIR.
- lntermediate UNet features from different upsampling blocks of pre-trained diffusion model depict significant semantic similarity across modalities (e.g., sketch and photo).

- ➤ We also introduce innovative design strategies, including soft prompt learning and visual prompting, for task-specific (i.e., ZS-SBIR) adaptation of pre-trained diffusion model.
- Figure 3. Given an image-prompt pair (x, p), and a time-step t, we first generate the latent image $z_0 = \mathcal{E}(x)$.

- > We then add noise from time-step t to transform z_0 to its t^{th} -step noisy latent image z_t .
- Now we feed, (i) the noisy latent z_t , (ii) scalar time-step value t, and (iii) textual embedding $T_p = \mathcal{T}(p)$ into $\mathcal{F}_{\theta}(\cdot)$ to extract corresponding intermediate features from upsampling layers.
- ➤ With this diffusion-based backbone feature extractor, we demonstrate marked improvements in all forms of ZS-SBIR (*i.e.*, category-level and fine-grained).

Text-to-Image Diffusion Models are

Great Sketch-Photo Matchmakers

Subhadeep Koley^{1,2}, Ayan Kumar Bhunia¹, Aneeshan Sain¹, Pinaki Nath Chowdhury¹, Tao Xiang^{1,2}, Yi-Zhe Song^{1,2}

- ¹SketchX, CVSSP, University of Surrey
- ²iFlyTek-Surrey Joint Research Centre on Artificial Intelligence

Proposed Model

- > Salient Components
 - 1. Stable Diffusion (SD) model as backbone feature extractor.
 - 2. Learnable task-specific visual prompt for task-specific adaptation.
 - 3. Learnable textual prompt to harness the visio-linguistic prior of Stable Diffusion.
- ➤ Visual prompting learns a soft image perturbation in the pixel space to adapt SD model to our problem setup of ZS-SBIR.
- ➤ Text-to-image SD model being trained on text-to-image generative objective, works best with explicit textual prompts.

- Thus, instead of actual textual prompt embedding $T_p = \mathcal{T}(p) \in \mathbb{R}^{77 \times d}$, we use a **learnable** continuous textual prompt embedding matrix $\mathcal{P}_t \in \mathbb{R}^{77 \times d}$, influencing the SD feature extraction process via cross-attention.
- Forward diffusion invokes stochasticity due to the random noise sampling, which deteriorates the quality of extracted features. To tackle this, we extract SD features for each image/sketch six times each from different noise samples, and ensemble them by averaging to obtain the final feature.
- \triangleright Empirically, we observe that timestep t=273, and the decoder level of n=1,2 and n=3,4 works best for ZS-SBIR and ZS-FG-SBIR respectively.

Experiments & Results

Table 1. Results for category-level ZS-SBIR.

Methods	Sketchy [81]		TU-Berlin [21]		Quick, Draw! [27]	
1,10,110,00	mAP@200	P@200	mAP@all	P@100	mAP@all	P@200
ZS-CAAE [103]	0.156	0.260	0.005	0.003		_
ZS-CVAE [103]	0.225	0.333	0.005	0.001	0.003	0.003
ZS-CCGAN [20]	_	_	0.297	0.426	_	_
ZS-GRL [16]	0.369	0.370	0.110	0.121	0.075	0.068
ZS-SAKE [52]	0.497	0.598	0.475	0.599	_	_
ZS-IIAE [35]	0.373	0.485	0.412	0.503	_	_
ZS-Sketch3T [77]	0.579	0.648	0.507	0.671	_	_
ZS-LVM [78]	0.723	0.725	0.651	0.732	0.202	0.388
B-Fine-Tuning	0.115	0.174	0.010	0.006	0.002	0.003
B-Linear-Probing	0.441	0.535	0.410	0.582	0.092	0.099
B-Triplet+VP (VGG)	0.651	0.682	0.582	0.673	0.134	0.310
B-Triplet+VP (ResNet)	0.326	0.342	0.354	0.512	0.105	0.275
B-Triplet+VP (ViT)	0.681	0.697	0.601	0.694	0.185	0.321
Ours	0.746	0.747	0.680	0.744	0.231	0.397

Table 2. Results for cross-category ZS-FG-SBIR on Sketchy

Methods	Acc.@1	Acc.@5	Methods	Acc.@1	Acc.@5
CC-Gen [62]	22.60	49.00	B-Triplet+VP (VGG)	24.20	43.61
CC-Grad [85]	13.40	34.90	B-Triplet+VP (ResNet)	15.61	27.64
CC-LVM [78]	28.68	62.34	B-Triplet+VP (ViT)	26.11	46.81
B-Fine-Tuning	1.85	6.01	Ours	31.94	65.81
B-Linear-Probing	17.32	41.23	Ours	31.94	05.81

