Systèmes dynamiques Corrigé DM n°1

Basé sur la copie de Manh-Linh Nguyen

Notations et préliminaires

1. Soit $f \in \text{Homeo}(\mathbf{T})$. Soit $x \in \pi^{-1}(f(\frac{\hat{1}}{2}))$. Les restrictions

$$\pi|_{\left]-\frac{1}{2},\frac{1}{2}\right[}:\left]-\frac{1}{2},\frac{1}{2}\right[\rightarrow\mathbf{T}-\left\{\hat{\frac{1}{2}}\right\},\qquad\pi|_{\left]x,x+1\right[}:\left]x,x+1\right[\rightarrow\mathbf{T}-\left\{f\left(\hat{\frac{1}{2}}\right)\right\}$$

sont des homéomorphismes. Donc $F:=\pi|_{]x,x+1[}^{-1}\circ f\circ\pi|_{]-\frac{1}{2},\frac{1}{2}[}$ définit un homéomorphisme de $]-\frac{1}{2},\frac{1}{2}[$ dans]x,x+1[(en particulier, il est monotone). On peut étendre F à un homéomorphisme de $]-1,\frac{1}{2}[$ dans un intervalle ouvert contenant]x,x+1[en étendant $F|_{]-\frac{1}{2},0[}$ à]-1,0[

(qui est homéomorphe à $\mathbf{T} - \{\hat{0}\}$) de manière similaire (cette extension est monotone et continue, donc elle est nécessairement un homéomorphisme). De même, F s'étend à un homéomorphisme de \mathbf{R} dans \mathbf{R} .

Soient maintenant F et G deux relevés de f, alors

$$\forall x \in \mathbf{R}, \qquad \pi(F(x)) = f(\pi(x)) = \pi(G(x)),$$

d'où $F(x) - G(x) \in \mathbf{Z}$. Comme \mathbf{Z} est complètement discontinu, l'application continue $x \mapsto F(x) - G(x)$ prend une seule valeur $k \in \mathbf{Z}$.

2. a. Comme

$$\forall x \in \mathbf{R}, \qquad \pi(F(x+1)) = f(\pi(x+1)) = f(\pi(x)),$$

on voit que $x\mapsto F(x+1)$ est encore un relevé de f. Par la partie précédent, il existe $d\in \mathbf{Z}$ satisfaisant

$$\forall x \in \mathbf{R}, \qquad F(x+1) = F(x) + d.$$

b. On sait que F^{-1} relève f^{-1} . Il existe donc $e \in \mathbb{Z}$ tel que

$$\forall y \in \mathbf{R}, \qquad F^{-1}(y+1) = F^{-1}(y) + e.$$

Mais alors $1 = F^{-1}(F(1)) = F^{-1}(F(0) + d) = F^{-1}(F(0)) + de = de$. Il suit que $d = \pm 1$.

Le nombre de rotation de Poincaré

3. Pour $0 \le x \le y < 1$, on a

$$\varphi(x) - \varphi(y) = F(x) - F(y) - x + y \ge F(x) - F(y) > F(0) - F(1) = -1.$$
 De plus,

$$\varphi(x) - \varphi(y) = F(x) - F(y) - x + y < y - x < 1 - 0 = 1.$$

Ainsi,

$$-1 < \varphi(x) - \varphi(y) < 1 \tag{1}$$

pour $x,y\in [0,1[$ (par symmétrie). Par périodicité de $\varphi,$ (1) est vraie pour $x,y\in \mathbf{R}.$

4. Comme $F^n \in \text{Homeo}_+(\mathbf{T})$, (1) s'applique en remplaçant F par F^n . De plus, la fonction $F^n - \text{id}_{\mathbf{R}}$ est continue, périodique, donc m_n et M_n sont bien définis et vérifient a fortiori l'inégalité

$$0 \le M_n - m_n < 1. (2)$$

5. Pour tout $x \in \mathbf{R}$, on a

$$(F^{n}(F^{n'}(x)) - F^{n'}(x)) + (F^{n'}(x) - x) = F^{n+n'}(x) - F(x),$$

d'où

$$\forall x \in \mathbf{R}, \qquad m_n + m_{n'} \le F^{n+n'}(x) - F(x) \le M_n + M_{n'}.$$

Il suit que

$$m_n + m_{n'} \le m_{n+n'} \le M_{n+n'} \le M_n + M_{n'}.$$
 (3)

6. Un résultat basique dit que

$$\lim_{n \to \infty} \frac{M_n}{n} = \inf_{n \ge 1} \frac{M_n}{n}, \qquad \lim_{n \to \infty} \frac{m_n}{n} = \sup_{n > 1} \frac{m_n}{n}.$$

De (2), les deux valeurs ci-dessus sont égales.

7. On a $\frac{m_n}{n} \leq \rho \leq \frac{M_n}{n}$. La fonction $x \mapsto \frac{F^n(x)-x}{n}$ a pour valeurs minimale et minimale respectivement $\frac{m_n}{n}$ et $\frac{M_n}{n}$. Par continuité, il existe $z_n \in \mathbf{R}$ avec

$$\frac{F^n(z_n) - z_n}{n} = \rho.$$

8. Invoquons (1) en remplaçant F par F^n et y par z_n et nous obtenons

$$\forall n \ge 1, \qquad \forall x \in \mathbf{R}, \qquad -1 < F^n(x) - x - n\rho < 1. \tag{4}$$

En remplaçant x par $F^{-n}(x)$, on voit que

$$\forall n \ge 1, \quad \forall x \in \mathbf{R}, \quad -1 < x - F^{-n}(x) - np < 1,$$

i.e. (4) reste vraie pour $n \le -1$. Bien sûr, elle est vraie pour n = 0. En particulier, pour tout $x \in \mathbf{R}$, on a

$$\lim_{n \to \pm \infty} \frac{F^n(x)}{n} = \rho.$$

Quelques propriétés du nombre de rotation

9. Si $\rho(F) = p/q$, on prend $x = z_q$ dans la partie **7.**. Inversement, s'il existe $x \in \mathbf{R}$ avec $F^q(x) = x + p$, alors on peut montrer par récurrence que

$$\forall n \ge 1, \qquad F^{nq}(x) = x + np.$$

Ainsi

$$\rho(F) = \lim_{n \to \infty} \frac{F^{nq}(x)}{nq} = \lim_{n \to \infty} \left(\frac{x}{nq} + \frac{p}{q}\right) = \frac{p}{q}.$$

10. On sait que $\rho(F) \neq p/q$ ssi $F^q(x) - x \neq p$ pour tout $x \in \mathbf{R}$ par la partie précédente. Par connexité, on sait que ou bien $F^q(x) - x > p$ pour tout $x \in \mathbf{R}$, ou bien $F^q(x) - x < p$ pour tout $x \in \mathbf{R}$. On considére le premier cas. Par récurrence, on a

$$\forall n \ge 1, \qquad F^{nq}(0) > np,$$

d'où

$$\rho(F) = \lim_{n \to \infty} \frac{F^{nq}(0)}{nq} \ge \frac{p}{q}.$$

Mais comme $\rho(F) \neq p/q$, on a $\rho(F) > p/q$. Le cas $F^q(x) - x < p$ peut être traité de manière similaire.

11. On a

$$\rho(T_{\alpha}) = \lim_{n \to \infty} \frac{T_{\alpha}^{n}(0)}{n} = \lim_{n \to \infty} \frac{n\alpha}{n} = \alpha.$$

12. Soit $G: \mathbf{R} \to \mathbf{R}$ la fonction $x \mapsto F(x) + p$. Alors

$$\rho(G) = \lim_{n \to \infty} \frac{G^n(0)}{n} = \lim_{n \to \infty} \frac{F^n(0) + np}{n} = \lim_{n \to \infty} \frac{F^n(0)}{n} + p = \rho(F) + p.$$

Il suit que $\widehat{\rho(F)} = \widehat{\rho(G)}$. On en déduit que pour tout $f \in \operatorname{Homeo}_+(\mathbf{T})$, la classe $\widehat{\rho(F)}$ ne dépend pas du relevé F choisi.

13. On a

$$\rho(F^q) = \lim_{n \to \infty} \frac{(F^q)^n(0)}{n} = \lim_{n \to \infty} q \cdot \frac{F^{nq}(0)}{nq} = q\rho(F).$$

Dynamique des homéomorphismes de nombre de rotation rationel

- 14. Il suit de la partie 9. que F admet un point fixe ssi $\rho(F) = 0$.
- **15.** Let $x \in \mathbf{R}$ et $y \in \omega_F(x)$. Il existe alors une suite strictement croisssante $(n_k)_{k \in \mathbf{N}}$ d'entiers telle que

$$\lim_{k \to \infty} F^{n_k}(x) = y.$$

Par continuité,

$$\lim_{k \to \infty} F^{n_k + 1}(x) = F(y).$$

Considérons le cas où $F(x) \ge x$. Pour $k \in \mathbb{N}$, on a $n_k + 1 \le n_{k+1}$, d'où

$$F^{n_k}(x) \le F^{n_k+1}(x) \le F^{n_{k+1}}(x).$$

En prennant limite quand $n \to \infty$, on obtient F(y) = y. Le cas où F(x) < x est traité de manière similaire. Ainsi $\omega_F(x) \subseteq \text{Fix}(F)$. Finalement,

$$\alpha_F(x) = \omega_{F^{-1}}(x) \subseteq \operatorname{Fix}(F^{-1}) = \operatorname{Fix}(F).$$

16. En ajoutant un multiple de q à p si nécessaire, on peut supposer que $\rho(F) = p/q$.

Fait. Si $\hat{x} \in \mathbf{T}$ est un point r-périodique de f, alors q|r.

Démonstration. Soit $x \in \pi^{-1}(\hat{x})$. On a $F^r(x) = x + n$ pour un certain $n \in \mathbf{Z}$. De $\mathbf{9}$, $\frac{p}{q} = \rho(F) = \frac{n}{r}$. Ainsi, q|qn = pr. L'affirmation suit du fait que p et q sont premiers entre eux.

La fonction $G: x \mapsto F^q(x) - p$ est un relevé de f^q et

$$\rho(G) = q\rho(F) - p = 0.$$

De **14.**, G admet un point fixe x, i.e. \hat{x} est un point q-périodique de f. Le fait ci-dessus implique \hat{x} est de période exactement q, i.e., $\gamma_f(x)$ est une orbite de période q. Supposons maintenant que $\hat{y} \in \mathbf{T}$ est un point périodique. Soit rp sa période, alors

$$G^r(y) - y = F^{rq}(y) - rp - y \in \mathbf{Z}.$$

où $y \in \pi^{-1}(\hat{y})$. Comme $\rho(G^r) = r\rho(G) = 0$, il est nécessaire que

$$G^r(y) = y$$
.

Donc, $y \in \gamma_G(y) = \omega_G(y) \subseteq \text{Fix}(G)$ par la partie 15, d'où G(y) = y et puis $f^q(\hat{y}) = \hat{y}$. Le fait ci-dessus assure que \hat{y} est de période q.

17. Soit x le point fixe de G comme dans la partie précédente. Alors G induit un homéomorphisme de]x, x+1[dans lui-même. Bien sûr, $\omega_f(\hat{x})=\{x,f(x),\ldots,f^{q-1}(x)\}$ est une orbite périodique. Pour $\hat{y}\in\mathbf{T}-\{\hat{x}\}$, soit y l'unique point de $]x,x+1[\cap\pi^{-1}(\hat{y})$. La suite $(G^n(y))_{n\in\mathbf{N}}$ est monotone donc converge. Soit $z\in\mathbf{R}$ sa limite, alors

$$z \in \omega_G(y) \subseteq \operatorname{Fix}(G)$$
.

En particulier, $\lim_{n\to\infty}f^{nq}(\hat{y})=\hat{z}.$ Affirmons que

$$\omega_f(\hat{y}) = {\{\hat{z}, f(\hat{z}), \dots, f^{q-1}(\hat{z})\}}.$$

En effet, soit $\hat{u} \in \omega_f(\hat{y})$. Il existe alors une suite strictement croissante $(n_k)_{k \in \mathbb{N}}$ d'entiers telle que

$$\lim_{k \to \infty} f^{n_k}(\hat{y}) = \hat{u}.$$

Quitte à choisir une sous-suite, on peut supposer que

$$\forall k \in \mathbf{N}, \qquad n_k = b_k q + r$$

pour un certain $r \in \{0, 1, \dots, q-1\}$ et une suite strictement croissante $(b_k)_{k \in \mathbb{N}}$ d'entiers. On a alors

$$f^{-r}(\hat{u}) = \lim_{k \to \infty} f^{b_k q}(\hat{y}) = \hat{z},$$

d'où $\hat{u} = f^r(\hat{z})$. On conclut que $\omega_f(\hat{y}) \subseteq \{\hat{z}, f(\hat{z}), \dots, f^{q-1}(\hat{z})\}$. L'inclusion inverse est claire : pour tout $0 \le i \le q-1$, on a

$$f^{i}(\hat{z}) = \lim_{n \to \infty} f^{nq+i}(\hat{y}).$$

Le cas irrationnel

18. On se donne $(p,q), (p',q') \in \mathbf{Z}$. Si $\psi(p,q) = \psi(p',q')$, on aura

$$q\rho - p = q'\rho - p'$$
.

Il est nécessaire que q=q' (sinon, $\rho=\frac{p-p'}{q-q'}\in \mathbf{Q}$), d'où p=p'. Ainsi, ψ est injective. On suppose maintenant que $\psi'(p,q)=\psi'(p',q')$, i.e., $F^q(x)-p=F^{q'}(x)-p'$. Si, par exemple, q>q', on aura

$$F^{q-q'}(F^{q'}(x)) = F^{q'}(x) + p - p'.$$

Il suit que $\rho = \frac{p-p'}{q-q'} \in \mathbf{Q}$. De conclure, q = q' et donc p = p'. Autrement dit, ψ' est aussi injective. Le fait que $Z = \psi(\mathbf{Z}^2)$ est dense est un résultat bien connu. Je ne pense pas que Z' soit dense.

19. On considère $(p,q) \neq (p',q')$ dans \mathbb{Z}^2 tels que

$$\psi(p,q) > \psi(p',q').$$

a. Si q > q', alors $\rho > \frac{p-p'}{q-q'}$. Il suit de la partie 10. que

$$F^{q-q'}(F^{q'}(x)) > F^{q'}(x) + p - p',$$

i.e., $\psi'(p,q) > \psi'(p',q')$.

b. Si q = q', alors p < p', d'où

$$\psi'(p,q) = F^{q}(x) - p > F^{q'}(x) - p' = \psi'(p',q').$$

c. Si q < q', alors $\rho < \frac{p'-p}{q'-q}$. De **10.**, on a

$$F^{q'-q}(F^q(x)) < F^q(x) + p' - p,$$

i.e.,
$$\psi'(p,q) > \psi'(p',q')$$
.

On conclut que

- **a.** $\psi(p,q) = \psi(p',q') \iff \psi'(p,q) = \psi'(p',q').$
- **b.** $\psi(p,q) > \psi(p',q') \iff \psi'(p,q) > \psi'(p',q').$
- **c.** $\psi(p,q) < \psi(p',q') \iff \psi'(p,q) < \psi'(p',q').$

Il suit directement que $H:=\psi\circ\psi':Z'\to Z$ est croissante. Affirmons que pour tout $y\in\mathbf{R}$,

$$\sup\{\psi(p,q)|\psi'(p,q) < y\} = \inf\{\psi(p,q)|\psi'(p,q) > y\}.$$

Bien sûr, le côté à gauche est majoré par celui à droite. Si l'inégalité est stricte, le fait que Z est dense nous permet de trouver $(p_0, q_0) \in \mathbb{Z}^2$ avec

$$\sup\{\psi(p,q)|\psi'(p,q) < y\} < \psi(p_0,q_0) < \inf\{\psi(p,q)|\psi'(p,q) > y\}.$$

a. Si $y < \psi'(p_0, q_0)$, soit $(p_1, q_1) \in \mathbf{Z}^2$ tel que $y < \psi'(p_1, q_1) < \psi'(p_0, q_0)$. Mais alors $\psi(p_1, q_1) < \psi(p_0, q_0)$ et à la fois

$$\psi(p_1, q_1) \ge \inf\{\psi(p, q) | \psi'(p, q) > y\} > \psi(p_0, q_0).$$

- **b.** De même, on ne peut pas avoir $y > \psi'(p_0, q_0)$.
- c. Finalement, si $y = \psi'(p_0, q_0)$, trouvons $(p_1, q_1) \in \mathbb{Z}^2$ de sorte que

$$\sup\{\psi(p,q)|\psi'(p,q) < y\} < \psi(p_1,q_1) < \psi(p_0,q_0).$$

On a $\psi'(p_1, q_1) < \psi'(p_0, q_0) = y$, qui implique que

$$\psi(p_1, q_1) \le \sup \{ \psi(p, q) | \psi'(p, q) < y \},$$

c'est contradictoire.

La fonction H s'étendre alors à une fonction $\mathbf{R} \to \mathbf{R}$ en posant

$$\forall y \in \mathbf{R}, \qquad H(y) := \sup \{ \psi(p, q) | \psi'(p, q) < y \} = \inf \{ \psi(p, q) | \psi'(p, q) > y \}.$$

Montrons que H est surjective. Étant donné $z \in \mathbf{R}$, on peut trouver une suite $((p_n, q_n))_{n \in \mathbf{N}}$ délément de \mathbf{Z}^2 telle que $\psi(p_n, q_n) \uparrow z$. De plus, on peut trouver un certain $(p', q') \in \mathbf{Z}^2$ vérifiant $\psi(p', q') \geq z$. La suite $(\psi'(p_n, q_n))_{n \in \mathbf{N}}$ est alors croissante est a une borne supérieure $\psi'(p', q')$. Soit $y \in \mathbf{R}$ sa limite. Montrons que H(y) = z.

Pour tout $(p,q) \in \mathbf{Z}^2$ tel que $\psi'(p,q) < y$, il existe $n \in \mathbf{N}$ vérifiant $\psi'(p,q) < \psi'(p_n,q_n) \leq y$. On a donc $\psi(p,q) < \psi(p_n,q_n) \leq z$. Il suit que

$$H(y) = \sup \{ \psi(p, q) | \psi'(p, q) < y \} < z.$$

De même, pour tout $(p,q) \in \mathbf{Z}^2$ tel que $\psi'(p,q) > y$, on a

$$\forall n \in \mathbf{N}, \qquad \psi'(p,q) > y \ge \psi'(p_n, q_n),$$

d'où

$$\forall n \in \mathbf{N}, \qquad \psi(p,q) > \psi(p_n,q_n).$$

On obtient alors $\psi(p,q) \geq z$. Il suit que

$$H(y) = \inf\{\psi(p, q) | \psi'(p, q) > y\} \ge z.$$

Ainsi, H(y) = z. La surjectivité de H est démontrée. Bien sûr, H est croissante, donc est continue. Finalement, pour $y \in \mathbf{R}$,

$$H(y+1) = \sup\{q\rho - p|F^q(x) - p < y + 1\}$$

$$= \sup\{q\rho - (p-1)|F^q(x) - p < y\}$$

$$= \sup\{q\rho - p|F^q(x) - p < y\} + 1$$

$$= H(y) + 1.$$

20. La composition $\pi \circ H : \mathbf{R} \to \mathbf{T}$ satisfait $\pi(H(y+1)) = \pi(H(y)+1) = \pi(H(y))$ pour tout $y \in \mathbf{R}$, donc elle se factorise par $\pi : \mathbf{R} \to \mathbf{T}$. Autrement dit, il existe une surjective continue $h : \mathbf{T} \to \mathbf{T}$ telle que H soit un relevé de h. Montrons que

$$h \circ f = R_{\rho} \circ h.$$

En effet, pour tout $y \in \mathbf{R}$, on a

$$H(F(y)) = \sup\{q\rho - p|F^{q}(x) - p < F(y)\}$$

$$= \sup\{q\rho - p|F^{q}(x - p) < F(y)\}$$

$$= \sup\{q\rho - p|F^{q-1}(x - p) < y\}$$

$$= \sup\{q\rho - p|F^{q-1}(x) - p < y\}$$

$$= \sup\{(q + 1)\rho - p|F^{q}(x) - p < y\}$$

$$= \sup\{q\rho - p|F^{q}(x) - p < y\} + \rho$$

$$= H(y) + \rho.$$

Il suit que

$$h(f(\hat{y})) = h(\hat{y}) + \hat{\rho} = R_{\rho}(h(\hat{y})).$$

Le théorème de Denjoy

21. On suppose que \hat{y}, \hat{z} sont deux points différents dans \mathbf{T} qui sont envoyés par h sur \hat{x} . Soit $x \in \pi^{-1}(\hat{x}), y \in \pi^{-1}(\hat{y})$ et $z \in$ tels que H(y) = x et que y < z < y + 1. Alors $H(z) - H(y) \in \mathbf{Z}$ et

$$x = H(y) < H(z) < H(y+1) = H(y) + 1 = x + 1.$$

Donc $H(z) \in \{x, x+1\}$. Considérons le cas où H(z) = x. Comme H est croissante, on a H(u) = x pour tout $y \le u \le z$. L'intervalle

$$I := \{\hat{u} | y < u < z\}$$

de **T** est errant. En effet, $h(I) = \{\hat{x}\}$ et pour tout $n \geq 1$, on a

$$\forall \hat{u} \in I, \qquad h(f^n(\hat{u})) = h(\hat{u}) + n\hat{\rho} = \hat{x} + n\hat{\rho}.$$

Il suit que $h(f^n(I)) = \{\hat{x} + n\hat{\rho}\}$. Comme ρ est irrationnel, on sait que $h(f^n(I)) \cap h(I) = \emptyset$. Dans le cas où H(z) = x + 1, l'intervalle

$$\{\hat{u}|z < u < y + 1\}$$

est errant. On en déduit que si f n'a pas d'intervalle errant, alors h est injective, donc bijective. Comme \mathbf{T} est compact et séparé, h est un homéomorphisme, i.e., f est conjugué à R_{ϱ} .

22. Comme f est un homéomorphisme, les intervalles $f^n(I)$ et $f^m(I)$ sont disjoints pour tous $n, m \in \mathbf{Z}$ satisfaisant $n \neq m$. Par σ -additivité,

$$1 = \ell(\mathbf{T}) \ge \sum_{n \in \mathbf{Z}} \ell(f^n(I)),$$

qui implique que $\ell(f^n(I)) + \ell(f^{-n}(I)) \to 0$ quand $n \to \infty$.

23. Soit d une distance sur \mathbf{T} qui induit sa topologie. On va montrer qu'il existe une infinité d'indices $q_n \in \mathbf{N}$ tels qu'il existe un intervalle fermé J_n joignant $\hat{0}$ et $q_n\hat{\rho}$ vérifiant la propriété que $k\hat{\rho}$ ne soit pas dans J_n pour tout $k \in \mathbf{Z}$ tel que $0 < |k| < q_n$. Pour ce faire, posons

$$\forall n \ge 1, \qquad A_n := \{k\hat{\rho} \mid 0 < |k| < n\}.$$

On suppose par l'absurde qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, il existe $k_n \in \mathbb{Z}$ avec $0 < |k_n| < n$ tel que l'une des inégalités suivante

$$0 < \beta_n < \alpha_n \le \frac{1}{2}$$
 ou $-\frac{1}{2} < \alpha_n < \beta_n < 0$,

où $\beta_n \in \pi^{-1}(k_n\hat{\rho})$ et $\alpha_n \in \pi^{-1}(n\hat{\rho})$. Dans les deux cas, $d(\hat{0},k_n\hat{\rho}) < d(\hat{0},n\hat{\rho})$ et $d(\hat{0},-k_n\hat{\rho}) < d(\hat{0},-n\hat{\rho})$. Il suit que $d(\hat{0},A_n) = d(\hat{0},A_{n+1})$. Ainsi

$$\lim_{n \to \infty} d(\hat{0}, A_n) = d(\hat{0}, A_N) > 0,$$

qui contradit le fait que $\{k\hat{\rho} \mid k > 0\}$ est dense dans **T**. On conclut. Soit $\hat{x} \in \mathbf{T}$. Soit I_n une composante connexe de $h^{-1}(h(\hat{x}) + J_n)$, qui est un intervalle fermé joignant \hat{x} et $f^{q_n}(\hat{x})$. En effet,

$$h(\hat{x})$$
 et $h(f^{q_n}(\hat{x})) = h(\hat{x}) + q_n \hat{\rho}$

sont les deux extrémités de J_n . Comme h est continue est croissante, \hat{x} et $f^{q_n}(\hat{x})$ sont les deux extrémités de I_n . Affirmons que les intervalles $f^k(I_n)$, $k = 0, \ldots, q_n - 1$ sont disjoints deux à deux. Supposons par l'absurde qu'il existe $0 \le k < k' < q_n$ et un point $\hat{y} \in I_n$ tels que $f^k(\hat{y}) \in f^{k'}(I_n)$. Mais alors

$$h(\hat{y}) + k\hat{\rho} = h(f^k(\hat{y})) \in h(f^{k'}(I_n)) = k'\hat{\rho} + h(I_n) = h(\hat{x}) + k'\hat{\rho} + J_n.$$

De plus, $h(\hat{y}) \in h(I_n) = h(\hat{x}) + J_n$, donc

$$h(\hat{y}) - h(\hat{x}) \in J_n \cap ((k' - k)\hat{\rho} + J_n).$$

Il suit que l'un des extrémités de J_n (à savoir $\hat{0}$ et $q_n\hat{\rho}$) appartient à $(k'-k)\hat{\rho}+J_n$. Si $\hat{0}\in (k'-k)\hat{\rho}+J_n$, $(k-k')\hat{\rho}\in J_n$ (qui est contradictoire comme $-q_n< k-k'<0$). Si $q_n\hat{\rho}\in (k'-k)\hat{\rho}+J_n$, $(q_n+k-k')\hat{\rho}\in J_n$ (impossible car $0< q_n+k-k'< q_n$).

24. On note par Var(g) la variation d'une fonction $g: \mathbf{T} \to \mathbf{R}$. On observe que pour 0 < u < v,

$$0 < \ln v - \ln u = \ln \left(1 + \frac{v - u}{u} \right) \le \frac{v - u}{u}. \tag{5}$$

T étant compact, soit $\varepsilon := \min_{x \in [0,1]} f'(\hat{x}) > 0$. Pour tout $q \ge 1$ et toute séquence $0 \le x_{q+1} = x_1 < \dots < x_q < 1$, en appliquant (5), on obtient

$$\sum_{i=1}^{q} |\ln f'(\hat{x}_{i+1}) - \ln f'(\hat{x}_{i})| = \sum_{i=1}^{q} \left| \ln \left(1 + \frac{f'(\hat{x}_{i+1}) - f'(\hat{x}_{i})}{f'(\hat{x}_{i})} \right) \right|$$

$$\leq \sum_{i=1}^{q} \frac{|f'(\hat{x}_{i+1}) - f'(\hat{x}_{i})|}{\min\{f'(\hat{x}_{i+1}), f'(\hat{x}_{i})\}}$$

$$\leq \frac{1}{\varepsilon} \sum_{i=1}^{q} |f'(\hat{x}_{i+1}) - f'(\hat{x}_{i})|$$

$$\leq \frac{\operatorname{Var}(f')}{\varepsilon}.$$

Ainsi, $\operatorname{Var}(\ln f') \leq \frac{\operatorname{Var}(f')}{\varepsilon} < +\infty$. Pour tout $\hat{x} \in \mathbf{T}$ et $n \geq 1$, soit I_n l'intervalle comme dans la partie précédente. Comme les intervalles $f^k(I_n), k = 0, \ldots, q_n - 1$ sont deux à deux disjoints,

$$\operatorname{Var}(\ln f') \ge \sum_{k=0}^{q_n-1} |\ln f'(f^k(f^{q_n}(\hat{x}))) - \ln f'(f^k(\hat{x}))|$$

$$\ge \left| \ln \prod_{k=0}^{q_n-1} (f' \circ f^k)(f^{q_n}(\hat{x})) - \ln \prod_{k=0}^{q_n-1} (f' \circ f^k)(\hat{x}) \right|$$

$$= |\ln (f^{q_n})'(f^{q_n}(\hat{x})) - \ln (f^{q_n})'(\hat{x})|.$$

En remplçant \hat{x} par $f^{-q_n}(\hat{x})$ et utilisant le théorème de la dérivée de la fonction inverse,

$$|\ln(f^{q_n})'(\hat{x}) + \ln(f^{-q_n})'(\hat{x})| \le \text{Var}(\ln f').$$

Il suit que

$$\frac{1}{C} \le (f^{q_n})'(\hat{x})(f^{-q_n})'(\hat{x}) \le C,$$

où
$$C = e^{\operatorname{Var}(\ln f')}$$
.

25. Pour tout $n \ge 1$, on a

$$\ell(f^{q_n}(I)) + \ell(f^{-q_n}(I)) = \int_I (f^{q_n})'(\hat{x}) d\ell(\hat{x}) + \int_I (f^{-q_n})'(\hat{x}) d\ell(\hat{x})$$

$$\geq 2 \int_I \sqrt{(f^{q_n})'(\hat{x})(f^{-q_n})'(\hat{x})} d\ell(\hat{x})$$

$$= \frac{2\ell(I)}{\sqrt{C}} > 0,$$

qui contradit le fait que $\ell(f^{q_n}(I)) + \ell(f^{-q_n}(I)) \to 0$ quand $n \to \infty$. On en déduit que f n'a pas d'intervalle errant, donc il est conjugué à R_{ρ} .