偏微分方程笔记

陈柏均

2025年5月12日

目录

1	齐次	Ł	5												
	1.1	第一边界条件齐次化	5												
	1.2	第二边界条件齐次化	6												
	1.3	叠加原理	7												
	1.4	Duhamamel 原理之方程齐次化	7												
		1.4.1 第一边界非齐次方程	7												
		1.4.2 第二边界非齐次方程	8												
		1.4.3 无界非齐次方程	8												
2	一阶拟线性方程之传输方程 9														
	2.1	变量替换求解常系数齐次传输方程	9												
		2.1.1 问题描述	9												
		2.1.2 通解	9												
		2.1.3 特解(初始条件或边界条件)	10												
	2.2	波的传播求解常系数齐次传输方程	10												
		2.2.1 问题描述	10												
		2.2.2 通解	10												
		2.2.3 初值问题之特解	11												
	2.3	波的传播求解常系数非齐次传输方程	11												
		2.3.1 问题描述	11												
		2.3.2 求解	11												
	2.4	特征线法求解变系数齐次传输方程	12												
		2.4.1 通解	12												
3	一维	无界齐次波动方程	14												
	3.1	d'Alembert 公式	14												
		3.1.1 问题描述	14												
		3.1.2 求解	14												
4	—	· · · · · · · · · · · · · · · · · · ·	15												

	4.1	第一边	l值条件半直线问题	15
		4.1.1	问题描述	15
		4.1.2	做奇延拓	15
		4.1.3	边界条件与方程验证	16
	4.2	第二边	1值条件半直线问题	17
		4.2.1	问题描述	17
		4.2.2	做偶延拓	18
	4.3	有界之	反射法	18
		4.3.1	有界之第一边值条件	18
		4.3.2	核心思想	18
		4.3.3	达朗贝尔公式的应用	19
		4.3.4	有界之第二边值条件	20
	4.4	第一边	值条件之分离变量法	20
		4.4.1	问题描述	20
		4.4.2	核心思想	20
		4.4.3	空间常微分方程的求解	21
		4.4.4	时间常微分方程的求解	23
		4.4.5	得偏微分方程通解	23
		4.4.6	初始条件求系数	23
		4.4.7	用数分知识求系数,条件和前面泛函内积不一样	24
		4.4.8	总结	25
	4.5	第二边	!值条件之分离变量	26
	11.64			
5		导方程		26
	5.1		·次热传导方程	26
	5.2		-变换	26
		5.2.1	微分性质	26
		5.2.2	幂乘性质	27
		5.2.3		27
		5.2.4	傅里叶逆变换的卷积性质	
	5.3	高斯型	!函数的一些积分	29

5.4	解的导出				 											•	31
5.5	热传导方程齐次化				 												34

1 齐次化

1.1 第一边界条件齐次化

要想利用 Duhamamel 原理,我们首先将第一边界条件齐次化,即要找到一个恰当的变换将第一边界值变为零。对于 (A) 方程问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & 0 \le x \le l, \\ u(0, t) = \mu_1(t), \ u(l, t) = \mu_2(t), & t \ge 0. \end{cases}$$
(1.1.1)

由边界条件

$$u(0,t) = \mu_1(t), \quad u(l,t) = \mu_2(t), \quad t \ge 0.$$
 (1.1.2)

对方程 (A) 构造关于变量 x 的线性辅助函数 (直线方程):

$$U(x,t) = \mu_1(t) + \frac{x}{l}(\mu_2(t) - \mu_1(t)), \qquad (1.1.3)$$

作变换:

$$v(x,t) = u(x,t) - U(x,t),$$
 (1.1.4)

将 u(x,t) = v(x,t) + U(x,t) 代入方程 (A):

$$\begin{cases} u_{tt} - a^2 u_{xx} = f(x, t), & 0 < x < l, \ t > 0, \\ u(x, 0) = \varphi(x), \ u_t(x, 0) = \psi(x), & 0 \le x \le l, \\ u(0, t) = \mu_1(t), \ u(l, t) = \mu_2(t), & t \ge 0. \end{cases}$$
(1.1.5)

得到方程 (B):

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v|_{t=0} = \varphi_1(x), & v_t|_{t=0} = \psi_1(x), & 0 \le x \le l, \\ v|_{x=0} = 0, & v|_{x=l} = 0, & t \ge 0, \end{cases}$$

$$(1.1.6)$$

其中:

$$\begin{cases}
f_1(x,t) = f(x,t) - \mu_1''(t) - \frac{x}{l}(\mu_2''(t) - \mu_1''(t)), \\
\varphi_1(x) = \varphi(x) - \mu_1(0) - \frac{x}{l}(\mu_2(0) - \mu_1(0)), \\
\psi_1(x) = \psi(x) - \mu_1'(0) - \frac{x}{l}(\mu_2'(0) - \mu_1'(0)).
\end{cases} (1.1.7)$$

这样我们就完成了边界条件的齐次化。

1.2 第二边界条件齐次化

为利用 Duhamel 原理,需将非齐次 Neumann 边界条件齐次化,即构造变换使边界导数归零。

以下我们仅考虑如下第二边值问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < l, \ t > 0, \\ u(x,0) = \varphi(x), & u_t(x,0) = \psi(x), & 0 \le x \le l, \\ u_x(0,t) = \mu_1(t), & u_x(l,t) = \mu_2(t), & t \ge 0. \end{cases}$$
(1.2.1)

构造辅助函数:

$$U(x,t) = x\mu_1(t) + \frac{x^2}{2l} (\mu_2(t) - \mu_1(t)), \qquad (1.2.2)$$

作变换:

$$v(x,t) = u(x,t) - U(x,t), (1.2.3)$$

将 u(x,t) = v(x,t) + U(x,t) 代入原方程:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < l, \ t > 0, \\ u(x,0) = \varphi(x), & u_t(x,0) = \psi(x), & 0 \le x \le l, \\ u_x(0,t) = \mu_1(t), & u_x(l,t) = \mu_2(t), \ t \ge 0. \end{cases}$$
(1.2.4)

得到:

$$\begin{cases} v_{tt} - a^2 v_{xx} = -x\mu_1''(t) - \frac{x^2}{2l} \left(\mu_2''(t) - \mu_1''(t) \right) + \frac{a^2}{l} \left(\mu_2(t) - \mu_1(t) \right), \\ v(x,0) = \varphi(x) - x\mu_1(0) - \frac{x^2}{2l} \left(\mu_2(0) - \mu_1(0) \right), \\ v_t(x,0) = \psi(x) - x\mu_1'(0) - \frac{x^2}{2l} \left(\mu_2'(0) - \mu_1'(0) \right), \\ v_x(0,t) = 0, \quad v_x(l,t) = 0. \end{cases}$$

$$(1.2.5)$$

此时的方程被转化为如下形式的混合问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < l, \ t > 0, \\ u(x,0) = \varphi_1(x), & u_t(x,0) = \psi_1(x), & 0 \le x \le l, \\ u_x(0,t) = 0, & u_x(l,t) = 0. \end{cases}$$
 (1.2.6)

叠加原理 1.3

对于问题(1.1.6), 我们可以使用叠加原理将其分解为两个子问题.

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v|_{t=0} = 0, & v_t|_{t=0} = 0, & 0 \le x \le l, \\ v|_{x=0} = 0, & v|_{x=l} = 0, & t \ge 0. \end{cases}$$

$$(1.3.1)$$

$$\begin{cases} v_{tt} - a^2 v_{xx} = 0, & 0 < x < l, \ t > 0, \\ v|_{t=0} = \varphi_1(x), & v_t|_{t=0} = \psi_1(x), & 0 \le x \le l, \\ v|_{x=0} = 0, & v|_{x=l} = 0, & t \ge 0. \end{cases}$$

$$(1.3.2)$$

根据叠加原理,原问题(1.1.6) 的解 v(x,t) 可以表示为子问题 1 和子问题 2 的解的 和:

$$v(x,t) = v^{(1)}(x,t) + v^{(2)}(x,t)$$
(1.3.3)

其中 $v^{(1)}(x,t)$ 是子问题 1 的解, $v^{(2)}(x,t)$ 是子问题 2 的解。

Duhamamel 原理之方程齐次化 1.4

1.4.1 第一边界非齐次方程

对于第一边界非齐次方程问题:

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v|_{t=0} = 0, & v_t|_{t=0} = 0, & 0 \le x \le l, \\ v|_{x=0} = 0, & v|_{x=l} = 0, & t \ge 0, \end{cases}$$

$$(1.4.1)$$

若 $w(x,t,\tau)$ 是以下定解问题的解:

$$\begin{cases} W_{tt} - a^2 W_{xx} = 0, & t > \tau, \\ W|_{t=\tau} = 0, & \frac{\partial W}{\partial t}|_{t=\tau} = f_1(x,\tau), & 0 \leq x \leq l, \end{cases} \tag{1.4.2}$$
 则函数 $v(x,t) = \int_0^t w(x,t,\tau) \, d\tau$ 就是问题的解。然后还有偏导数,那方程的函数转

移到最高偏导函数上,其余依旧为 0.

所以我们最终要解决的就是初始条件非齐次,方程和边界条件齐次(1.1.6)这样的方 程.

1.4.2 第二边界非齐次方程

对于有界方程非齐次问题 (第二边界条件):

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & 0 < x < l, \ t > 0, \\ v|_{t=0} = 0, & v_t|_{t=0} = 0, & 0 \le x \le l, \\ v_x|_{x=0} = 0, & v_x|_{x=l} = 0, & t \ge 0, \end{cases}$$

$$(1.4.3)$$

若 $w(x,t,\tau)$ 是以下定解问题的解:

$$\begin{cases} W_{tt} - a^2 W_{xx} = 0, & t > \tau, \\ W|_{t=\tau} = 0, & \frac{\partial W}{\partial t}|_{t=\tau} = f_1(x,\tau), & 0 \le x \le l, \end{cases}$$
 (1.4.4)

则函数 $v(x,t) = \int_0^t w(x,t,\tau) d\tau$ 就是问题的解。同样地,方程的函数转移到最高偏导函数上,其余依旧为 0.

1.4.3 无界非齐次方程

对于无界区域中的非齐次波动方程:

$$\begin{cases} v_{tt} - a^2 v_{xx} = f_1(x, t), & -\infty < x < \infty, \ t > 0 \\ v|_{t=0} = 0, & v_t|_{t=0} = 0, & -\infty < x < \infty \end{cases}$$
(1.4.5)

假设 $w(x,t,\tau)$ 是以下齐次波动方程的解:

$$\begin{cases} w_{tt} - a^2 w_{xx} = 0, & t > \tau \\ w(x, \tau, \tau) = 0, & -\infty < x < \infty \\ \frac{\partial w}{\partial t}(x, \tau, \tau) = f_1(x, \tau) \end{cases}$$
 (1.4.6)

那么,原非齐次波动方程的解可以表示为:

$$v(x,t) = \int_0^t w(x,t,\tau) \, d\tau$$
 (1.4.7)

有界无界两者齐次化方程形式上是一样的,后面热传导方程也是一样的。

2 一阶拟线性方程之传输方程

2.1 变量替换求解常系数齐次传输方程

2.1.1 问题描述

假设 $a_1 \neq 0$ 且 $a_2 \neq 0$,我们求解常系数传输方程:

$$a_1 \frac{\partial u}{\partial t} + a_2 \frac{\partial u}{\partial x} = 0 \tag{2.1.1}$$

2.1.2 通解

核心思想:通过变量替换,把二元偏微分转化成一元的常微分求解。

其中 u = u(t, x)。引入坐标变换 (α, β) ,使得 $u = u(\alpha, \beta)$,且:

$$\begin{cases} \alpha = ax + bt, \\ \beta = cx + dt. \end{cases}$$
 (2.1.2)

利用链式法则计算偏导数:

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t} + \frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t} = b \frac{\partial u}{\partial \alpha} + d \frac{\partial u}{\partial \beta}, \tag{2.1.3}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x} + \frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x} = a \frac{\partial u}{\partial \alpha} + c \frac{\partial u}{\partial \beta}.$$
 (2.1.4)

将 (2.1.3) 和 (2.1.4) 代入原方程 (2.1.1):

$$a_1 \left(b \frac{\partial u}{\partial \alpha} + d \frac{\partial u}{\partial \beta} \right) + a_2 \left(a \frac{\partial u}{\partial \alpha} + c \frac{\partial u}{\partial \beta} \right) = 0. \tag{2.1.5}$$

整理后得到:

$$(a_1b + a_2a)\frac{\partial u}{\partial \alpha} + (a_1d + a_2c)\frac{\partial u}{\partial \beta} = 0.$$
 (2.1.6)

为消去一个变量, pde 转 ode, 选择让第二项系数为 0, 把方程 (2.1.6) 简化为:

$$\frac{\partial u}{\partial \alpha} = 0. {(2.1.7)}$$

选择系数

$$\begin{cases} a = 0, & b = 1, \\ c = a_1, & d = -a_2. \end{cases}$$
 (2.1.8)

此时坐标变换为:

$$\begin{cases} \alpha = t, \\ \beta = a_1 x - a_2 t. \end{cases}$$
 (2.1.9)

由(2.1.7) 表明 u 仅依赖于 β , 即通解为:

$$u(t,x) = L(a_1x - a_2t), (2.1.10)$$

其中 $L(\cdot)$ 是任意可微函数。

2.1.3 特解(初始条件或边界条件)

已知初始条件 $u(x,0) = e^{-x^2}$, 求下面常系数运输方程:

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \tag{2.1.11}$$

由(2.1.10)可知

$$u(x,t) = f(x-t) = e^{-(x-t)^2}$$
(2.1.12)

2.2 波的传播求解常系数齐次传输方程

2.2.1 问题描述

在一阶线性方程中,有一种最简单的形如

$$u_t + b \cdot Du = 0, \quad x \in \mathbb{R}^n, \ t \in (0, \infty)$$
 (2.2.1)

的方程,称为传输方程,其中, $b=(b_1,b_2,\cdots,b_n)$ 是已知 n 维常向量,u=u(x,t), $Du=(u_{x_1},u_{x_2},\cdots,u_{x_n})$ 。

2.2.2 通解

$$\frac{\partial u}{\partial t} + b \frac{\partial u}{\partial x} = (1, b) \cdot \left(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x} \right) = 0 \tag{2.2.2}$$

 $\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ 为梯度,(1, b) 为方向,一整个乘积为方向导数,方向导数为 0 意味着,u(t, x) = C 在切向量为 (1, b) 这条曲线上,即

$$u(t,x)|_{\Gamma} = C \tag{2.2.3}$$

由方程的形式可以看出,u(x,t) 沿 (1,b) 微商等于零。事实上,固定一点 $(x,t) \in \mathbb{R}^{n+1}$,记过该直线 Γ 的参数方程为 $(x+bs,t+s),s \in \mathbb{R}$,考查函数 u 在该直线上的值。令

$$z(s) = u(x + bs, t + s), \quad s \in \mathbb{R}. \tag{2.2.4}$$

于是

$$\frac{dz}{ds} = Du(x + sb, t + s) \cdot b + u_t(x + sb, t + s) = 0,$$
 (2.2.5)

因此,函数 z(s) 在过点 (x,t) 且具有方向 $(b,1) \in \mathbb{R}^{n+1}$ 的直线上取常数值,特征线上的取值和 s 没有关系(和下文中特征线法求解传输方程的 (1,p(x,y)) 含义相同)。所以,如果我们知道解 u 在这条直线上一点的值,则就得到它沿此直线上的值。这就引出下面求解初值问题的方法。

2.2.3 初值问题之特解

设 $a \in \mathbb{R}^n$ 是已知常向量, $f : \mathbb{R}^n \to \mathbb{R}$ 是给定函数。考察传输方程的初值问题

$$\begin{cases} u_t + a \cdot Du = 0, & (x,t) \in \mathbb{R}^n \times (0,\infty), \\ u(x,0) = f(x), & x \in \mathbb{R}^n. \end{cases}$$
 (2.2.6)

如上取定 (x,t),过点 (x,t) 且具有方向 (a,1) 的直线的参数式为 (x+as,t+s), $s \in \mathbb{R}$ 。当 s=-t 时,此直线与平面 $\Gamma:\mathbb{R}^n \times \{t=0\}$ 相交于点 (x-at,0)。由上文分析知 u 沿此直线取常数值,而由初值条件便得

$$u(x,t) = z(0) = z(-t) = u(x - at, 0) = f(x - at), \quad x \in \mathbb{R}^n, \ t \ge 0.$$
 (2.2.7)

注记 2.1. 这表示对于每一个特定的点都有一条特征线,他的函数为特定的 f。取遍每个特征线就能取遍域内所有点,对于任意的点都有任意的函数表达式。因为上面的式子,at 是任意的,所以 x-at 是任意的,可以取遍整个

所以,如果有解,必由上式子表示,因此解是唯一的,反之,若 f 一阶连续可微,则可直接验证由上式子表示的函数 u(x,t) 是问题的解。这就是齐次传输方程初值问题解的存在唯一性。

2.3 波的传播求解常系数非齐次传输方程

2.3.1 问题描述

考察非齐次传输方程的初值问题

$$\begin{cases} u_t + a \cdot Du = f, & x \in \mathbb{R}^n, t > 0, \\ u(x,0) = g(x) \end{cases}$$
 (2.3.1)

2.3.2 求解

受齐次问题解法的启示,我们仍然先取定 $(x,t)\in\mathbb{R}^{n+1}$,对 $s\in\mathbb{R}$,令 z(s)=u(x+as,t+s),则

$$\frac{dz}{ds} = Du(x + as, t + s) \cdot a + u_t(x + as, t + s) = f(x + as, t + s).$$
 (2.3.2)

因此,

$$u(x,t) - u(x - at, 0) = u(x,t) - g(x - at)$$

$$= z(0) - z(-t) = \int_{-t}^{0} \frac{dz}{ds} ds$$

$$= \int_{-t}^{0} f(x + as, t + s) ds$$

$$= \int_{0}^{t} f(x + a(s - t), s) ds.$$
(2.3.3)

于是,得到问题的在 $x \in \mathbb{R}^n$, $t \ge 0$ 上的解

$$u(x,t) = g(x-at) + \int_0^t f(x+a(s-t),s) \,ds.$$
 (2.3.4)

在下一章,这个公式将被用来求解一维波动方程。

2.4 特征线法求解变系数齐次传输方程

2.4.1 通解

一阶线性变系数偏微分方程如下:

$$\frac{\partial u}{\partial x} + p(x, y) \frac{\partial u}{\partial y} = (1, p(x, y)) \cdot \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = 0$$
 (2.4.1)

其中 p(x,y) 是 x 和 y 的函数。 $\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right)$ 为梯度,(1, p(x,y)) 为方向,一整个乘积为方向导数,方向导数为 0 意味着,u(x,y)=C 在切向量为 (1, p(x,y)) 这条曲线上,即

$$u(x,y)|_{\Gamma} = C \tag{2.4.2}$$

$$u(x,y) = f(C) \tag{2.4.3}$$

 Γ 曲线上,任意点 (x,y) 求导 $(\Gamma$ 曲线为 XOY 平面上的曲线,故 y 可表示成 x 的函数),可得切向量 $(1,\frac{dy}{dx})$

所以我们找到 Γ 曲线, 把二元偏微分转化成一元的常微分, 令

$$\frac{dy}{dx} = p(x,y) \tag{2.4.4}$$

可解得

$$C = \phi(x, y) \tag{2.4.5}$$

得方程解

$$u(x,y) = f(C) = f(\phi(x,y))$$
 (2.4.6)

 $(1, \frac{dy}{dx})$ 为该曲线的切向量。我们称这条曲线叫特征线。只需要取遍所有的特征曲线就可以取遍 XOY 平面上所有的点,若有初始条件或者边界条件可以确定每条特征线在 u(x,y) 对应的取值,就可以完整确定 u(x,y) 这个函数。

命题 2.4.1. 求解方程

$$\frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = 0. {(2.4.7)}$$

此时我们有 p(x,y)=x,解 $\frac{dy}{dx}=x$,我们得到特征线 $y=\frac{1}{2}x^2+C$,或 $y-\frac{1}{2}x^2=C$ 。从而 $\phi(x,y)=y-\frac{1}{2}x^2$,偏微分方程的通解为 $u(x,y)=f(\phi(x,y))$,其中 f 是任意函数。把它们代回方程,直接验证,便知是解。

3 一维无界齐次波动方程

3.1 d' Alembert 公式

3.1.1 问题描述

先考察初值问题

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & x \in \mathbb{R}, t > 0, \\ u(x, 0) = \varphi(x), & u_t(x, 0) = \psi(x), & x \in \mathbb{R}. \end{cases}$$
(3.1.1)

3.1.2 求解

由算子复合作用的概念, 易验证下述算子因式分解

$$\left(\frac{\partial}{\partial t} + a \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - a \frac{\partial}{\partial x}\right) u = u_{tt} - a^2 u_{xx} = 0.$$
(3.1.2)

令

$$v(x,t) = \left(\frac{\partial}{\partial t} - a\frac{\partial}{\partial x}\right)u. \tag{3.1.3}$$

由 (2.1.2), 得

$$v_t(x,t) + av_x(x,t) = 0, \quad x \in \mathbb{R}, t > 0.$$
 (3.1.4)

这是一维传输方程,且由(2.1.3)知 v满足初值条件

$$v(x,0) = \psi(x) - a\varphi'(x). \tag{3.1.5}$$

由 (2.2.7), 得

$$v(x,t) = \psi(x-at) - a\varphi'(x-at). \tag{3.1.6}$$

将 v 代入 (2.1.3), 得

$$u_t(x,t) - au_x(x,t) = \psi(x-at) - a\varphi'(x-at),$$
 (3.1.7)

其中 $(x,t) \in \mathbb{R} \times (0,\infty)$ 。

对此非齐次传输方程,已知 $u(x,0) = \varphi(x)$,用公式(2.3.4)得到

$$u(x,t) = \varphi(x+at) + \int_{0}^{t} \left[\psi(x - 2as + at) - a\varphi'(x - 2as + at) \right] ds$$

$$= \varphi(x+at) + \frac{1}{2a} \int_{x-at}^{x+at} \left[\psi(y) - a\varphi'(y) \right] dy$$

$$= \frac{1}{2} \left[\varphi(x+at) + \varphi(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} \psi(y) dy.$$
(3.1.8)

称此式为 d'Alembert (达朗贝尔) 公式.

4 一维齐次波动方程的初边值问题

4.1 第一边值条件半直线问题

反射法的核心思想:利用达朗贝尔公式把解延拓

4.1.1 问题描述

求解半直线 $\mathbb{R}_+ = \{x > 0\}$ 上的初边值问题:

$$\begin{cases} u_{tt} - u_{xx} = 0, & x \in \mathbb{R}_+, t > 0, \\ u(x, 0) = g(x), & u_t(x, 0) = h(x), & x \in \mathbb{R}_+, \\ u(0, t) = 0, & t \ge 0, \end{cases}$$

$$(4.1.1)$$

其中, g,h 是已知函数, 满足 g(0) = h(0) = 0。

4.1.2 做奇延拓

先把问题转换到全空间 \mathbb{R} 上去。为此,对函数 u,g,h 作奇延拓(或称奇反射)如下:

$$\bar{u}(x,t) = \begin{cases} u(x,t), & x \ge 0, t \ge 0, \\ -u(-x,t), & x \le 0, t \ge 0, \end{cases}$$
(4.1.2)

$$\bar{g}(x) = \begin{cases} g(x), & x \ge 0, \\ -g(-x), & x \le 0, \end{cases}$$
 (4.1.3)

$$\bar{h}(x) = \begin{cases} h(x), & x \ge 0, \\ -h(-x), & x \le 0. \end{cases}$$
 (4.1.4)

4.1.3 边界条件与方程验证

设波动方程参数为 a,考虑有限区间 $x \in [0, L]$ 的延拓问题。已知 f, g 为以 2L 为周期的奇函数,即满足:

$$\forall y \in \mathbb{R}, \begin{cases} f(y+2L) = f(y) \\ f(-y) = -f(y) \\ g(y+2L) = g(y) \\ g(-y) = -g(y) \end{cases}$$

$$(4.1.5)$$

达朗贝尔解表达式 延拓后的解可表示为:

$$u(x,t) = \frac{1}{2}[f(x+at) + f(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} g(y)dy$$
 (4.1.6)

边界点验证

• 左端点 x = 0:

$$u(0,t) = \frac{1}{2}[f(at) + f(-at)] + \frac{1}{2a} \int_{-at}^{at} g(y)dy$$
$$= \frac{1}{2}[f(at) - f(at)] + 0 \quad (奇函数性质)$$
$$= 0$$

• 右端点 x = L: 利用周期性与奇性

$$u(L,t) = \frac{1}{2}[f(L+at) + f(L-at)] + \frac{1}{2a} \int_{L-at}^{L+at} g(y)dy$$

$$= \frac{1}{2}[f(L+at) + f(-(at-L))] + \frac{1}{2a} \int_{-at}^{at} g(y+L)dy \quad (y \mapsto y-L)$$

$$= \frac{1}{2}[f(L+at) - f(at-L)] + \frac{1}{2a} \int_{-at}^{at} -g(-y+L)dy \quad (周期奇性)$$

$$= \frac{1}{2}[f(L+at) - f(L+at-2L)] + 0 \quad (积分对称性)$$

$$= 0 \quad (\because f的2L周期性)$$

方程验证

- **正半轴** $x \ge 0$: 直接满足原波动方程
- **负半轴** x < 0: 令 x = -y, y > 0,则延拓解为

$$\bar{u}(x,t) = -u(y,t) = -u(-x,t)$$

计算二阶导数:

$$\bar{u}_{xx}(x,t) = \frac{\partial^2}{\partial x^2} [-u(-x,t)] = -u_{xx}(-x,t)$$
 (4.1.7)

$$\bar{u}_{tt}(x,t) = \frac{\partial^2}{\partial t^2} [-u(-x,t)] = -u_{tt}(-x,t)$$
 (4.1.8)

验证波动方程:

$$\bar{u}_{tt} - a^2 \bar{u}_{xx} = -u_{tt}(-x, t) + a^2 u_{xx}(-x, t) = 0$$

则 $\bar{u}(x,t)$ 满足问题:

$$\begin{cases} \bar{u}_{tt} - \bar{u}_{xx} = 0, & (x,t) \in \mathbb{R} \times (0,\infty), \\ \bar{u}(x,0) = \bar{g}(x), & \bar{u}_t(x,0) = \bar{h}(x), & x \in \mathbb{R}. \end{cases}$$

$$(4.1.9)$$

区域分析

$$u(x,t) = \begin{cases} \frac{1}{2} \left[g(x+at) + g(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} h(s)ds, & x > at \ge 0\\ \frac{1}{2} \left[g(x+at) - g(at-x) \right] + \frac{1}{2a} \int_{at-x}^{x+at} h(s)ds, & 0 \le x < at \end{cases}$$
(4.1.10)

注记 4.1. 还可以用特征线法对问题 (3.1.1) 求解,即用初值问题中方程的特征线作自变量的变换,把方程化为双曲型的第二标准型 $u_{\xi\eta}=0$ 的形式,对它积分两次求出通解 $u=F(\xi)+G(\eta)$,其中,F 和 G 是任意二次光滑函数。然后利用初值条件确定通解中的两个任意函数,便得 d'Alembert 公式。

4.2 第二边值条件半直线问题

反射法的核心思想:利用达朗贝尔公式把解延拓

4.2.1 问题描述

求解半直线 $\mathbb{R}_+ = \{x > 0\}$ 上的初边值问题:

$$\begin{cases} u_{tt} - u_{xx} = 0, & x \in \mathbb{R}_+, t > 0, \\ u(x, 0) = g(x), & u_t(x, 0) = h(x), & x \in \mathbb{R}_+, \\ u_x(0, t) = 0, & t \ge 0, \end{cases}$$
(4.2.1)

其中, g,h 是已知函数, 满足 g'(0) = h'(0) = 0 (自然相容性条件)。

4.2.2 做偶延拓

先把问题转换到全空间 \mathbb{R} 上去。为此,对函数 u,g,h 作偶延拓(或称偶反射)如下:

$$\bar{u}(x,t) = \begin{cases} u(x,t), & x \ge 0, t \ge 0, \\ u(-x,t), & x \le 0, t \ge 0, \end{cases}$$
(4.2.2)

$$\bar{g}(x) = \begin{cases} g(x), & x \ge 0, \\ g(-x), & x \le 0, \end{cases}$$
 (4.2.3)

$$\bar{h}(x) = \begin{cases} h(x), & x \ge 0, \\ h(-x), & x \le 0. \end{cases}$$
 (4.2.4)

(验证过程省略)则 $\bar{u}(x,t)$ 满足问题:

$$\begin{cases} \bar{u}_{tt} - \bar{u}_{xx} = 0, & (x,t) \in \mathbb{R} \times (0,\infty), \\ \bar{u}(x,0) = \bar{g}(x), & \bar{u}_t(x,0) = \bar{h}(x), & x \in \mathbb{R}. \end{cases}$$

$$(4.2.5)$$

注记 4.2. 对于第二边值条件问题,需保证延拓后的函数 $\bar{g}(x)$ 和 $\bar{h}(x)$ 在 x=0 处满足导数连续的条件。通过偶延拓可自然满足 $u_x(0,t)=0$ 的边界条件。

4.3 有界之反射法

4.3.1 有界之第一边值条件

考虑初边值问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < L, \ t > 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x), & 0 \le x \le L, \\ u(0,t) = \alpha(t), \ u(L,t) = \beta(t), & t \ge 0. \end{cases}$$

$$(4.3.1)$$

其中, 弦的两端固定, 即 $\alpha(t) \equiv \beta(t) \equiv 0$ 。

4.3.2 核心思想

当两端固定时, 若 $f, g \in \mathbb{C}^2$ 满足相容条件:

$$f(0) = f'(0) = f''(0) = 0, \quad f(L) = f'(L) = f''(L) = 0,$$

$$g(0) = g'(0) = g''(0) = 0, \quad g(L) = g'(L) = g''(L) = 0,$$
(4.3.2)

则可将 f,g 延拓为实轴上以 2L 为周期的奇函数:

$$f(x) = -f(-x), \quad f(x+2L) = f(x),$$

$$g(x) = -g(-x), \quad g(x+2L) = g(x).$$
(4.3.3)

延拓后, $f,g \in C^2(\mathbb{R})$,代入达朗贝尔公式得到延拓问题的解,其在区间 [0,L] 上的限制即为原问题的解。

4.3.3 达朗贝尔公式的应用

因为 f,g 是以 2L 为周期函数,而且是奇函数。故

$$g(y+L) = g(y-L) = -g(-y+L)$$
(4.3.4)

f(y+L)、g(y+L) 是奇函数。

达朗贝尔公式为:

$$u(x,t) = \frac{1}{2} \left[f(x+at) + f(x-at) \right] + \frac{1}{2a} \int_{x-at}^{x+at} g(y) \, dy \tag{4.3.5}$$

由于 f,g 为 \mathbb{R} 上以 2L 为周期的奇函数,代入边界点 x=0 和 x=L 验证: 对于 x=0:

$$u(0,t) = \frac{1}{2} \left[f(at) + f(-at) \right] + \frac{1}{2a} \int_{-at}^{at} g(y) \, dy = 0 \tag{4.3.6}$$

对于 x = L:

$$u(L,t) = \frac{1}{2} [f(L+at) + f(L-at)] + \frac{1}{2a} \int_{L-at}^{L+at} g(y) \, dy$$

$$= \frac{1}{2} [f(L+at) + f(L-at)] + \frac{1}{2a} \int_{-at}^{at} g(y+L) \, dy$$

$$= 0$$
(4.3.7)

当 x > 0 时,一定满足波动方程。

当 x < 0 时, 令 x = -y, y > 0,

$$\bar{u}(x,t) = \bar{u}(-y,t) = -u(y,t),$$

对于 $\bar{u}_{xx}(x,t)$:

$$\bar{u}_{xx}(x,t) = \bar{u}_{xx}(-y,t) = \frac{d^2}{dx^2}[-u(y,t)] = \frac{d^2}{dx^2}[-u(-x,t)]$$
$$= -u_{xx}(-x,t) = -u_{xx}(y,t).$$

对于 $\bar{u}_{tt}(x,t)$:

$$\bar{u}_{tt}(x,t) = \bar{u}_{tt}(-y,t) = \bar{u}_{tt}(y,t) = -u_{tt}(y,t).$$

验证波动方程:

$$\bar{u}_{tt} - \bar{u}_{xx} = -u_{tt}(y, t) + u_{xx}(y, t) = 0$$

故问题延拓到全平面上就可以用达朗贝尔公式,

$$\begin{cases} \bar{u}_{tt} - a^2 \bar{u}_{xx} = 0, & x \ge 0, \ t > 0, \\ \bar{u}(x,0) = \bar{f}(x), \ \bar{u}_t(x,0) = \bar{g}(x), & x \ge 0 \\ \bar{u}(0,t) = 0, \ u(L,t) = 0 \end{cases}$$

4.3.4 有界之第二边值条件

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0, & 0 < x < L, \ t > 0, \\ u(x,0) = f(x), \ u_t(x,0) = g(x), & 0 \le x \le L, \\ u_x(0,t) = 0, \ u_x(L,t) = 0, & t \ge 0. \end{cases}$$

$$(4.3.8)$$

对于第二边值条件,我们先做偶延拓,再做周期延拓。

4.4 第一边值条件之分离变量法

4.4.1 问题描述

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < l, \quad t > 0$$
 (4.4.1)

边界条件:

$$u(0,t) = 0$$
 $u(l,t) = 0$ $\forall t > 0$ (4.4.2)

初始条件:

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x) \qquad 0 < x < l$$
(4.4.3)

4.4.2 核心思想

核心思想:分离变量法把偏微分转成为两个常微分。

设 $u(x,t) = X(x) \cdot T(t)$, 假设解为乘积解。

代入方程:

$$\frac{\partial^2 u}{\partial t^2} = X \cdot T'' \qquad \frac{\partial^2 u}{\partial x^2} = X'' \cdot T \tag{4.4.4}$$

代入原方程:

$$X \cdot T'' = c^2 \cdot X'' \cdot T \tag{4.4.5}$$

转化为可分离变量方程:

$$\frac{T''}{c^2T} = \frac{X''}{X} \tag{4.4.6}$$

两个线性无关的变量相等,只能同为常数:

$$\frac{T''}{c^2T} = \frac{X''}{X} = k (4.4.7)$$

转化为两个常微分方程:

$$\begin{cases} X'' = kX \\ T'' = kc^2T \end{cases}$$
 (4.4.8)

4.4.3 空间常微分方程的求解

$$X'' - kX = 0 \quad X(0) = 0 \quad (X(l) = 0$$
(4.4.9)

情况 1 若 k > 0

通解为 $X(x) = C_1 \cdot \cosh \mu x + C_2 \cdot \sinh \mu x$,其中 $k = \mu^2$

代入初始条件

$$X(0) = C_1 = 0$$
 $X(l) = C_2 \cdot \sinh \mu l = 0$ $\therefore C_2 = 0$ (4.4.10)

验证 4.3.

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 双曲余弦 $\sinh x = \frac{e^x - e^{-x}}{2}$ 双曲正弦

$$e^{ix} = \cos x + i\sin x$$
 $e^{-ix} = \cos x - i\sin x$

$$\therefore \cos x = \frac{e^{ix} + e^{-ix}}{2} \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$(\cosh x)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = \sinh x$$

$$(\sinh x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \cosh x$$

 $\therefore X = C_1 \cdot u \cdot \sinh \mu x + C_2 \cdot u \cdot \cosh \mu x$

$$X'' = C_1 \cdot \mu^2 \cdot \cosh \mu x + C_2 \cdot \mu^2 \cdot \sinh \mu x$$

$$X'' - kX = 0$$
 : $k = \mu^2$

情况 2 若 k=0

则 X''=0

$$X(x) = C_1 x + C_2$$
 \exists $X(0) = 0$ $X(l) = 0$ (4.4.11)

$$\therefore C_1 = C_2 = 0 \tag{4.4.12}$$

情况 3 若 k < 0

$$\label{eq:continuous} \mathbb{E} X'' + \mu^2 X = 0 \hspace{0.5cm} X(0) = 0 \hspace{0.5cm} X(l) = 0 \hspace{0.5cm} k = -\mu^2$$

通解:

$$X = C_1 \cos \mu x + C_2 \sin \mu x \tag{4.4.13}$$

边界条件:

$$X(0) = C_1 = 0$$
 $X(l) = C_2 \sin \mu l = 0$ (4.4.14)

非平凡解要求:

$$\sin \mu l = 0$$
 ∴ $\mu l = n\pi$ n 为任意正整数 (4.4.15)

特征值:

$$\mu_n = \frac{n\pi}{l} \tag{4.4.16}$$

特征函数:

$$X_n = C_2 \sin \frac{n\pi}{l} x$$
 $n = 1, 2, 3, \dots$ (C 吸收正负号) (4.4.17)

特征值:

$$k = -\mu^2 = -\left(\frac{n\pi}{l}\right)^2 \tag{4.4.18}$$

验证 4.4. 一阶导数:

$$X' = -C_1 \mu \sin \mu x + C_2 \mu \cos \mu x \tag{4.4.19}$$

二阶导数:

$$X'' = -C_1 \mu^2 \cos \mu x - C_2 \mu^2 \sin \mu x \tag{4.4.20}$$

满足方程:

$$X'' + \mu^2 X = 0 \tag{4.4.21}$$

4.4.4 时间常微分方程的求解

 $T'' + \left(c \cdot \frac{n\pi}{l}\right)^2 \cdot T = 0 \implies T'' + (c\mu_n)^2 T = 0$,其中 $\lambda_n = c\mu_n = \frac{cn\pi}{l}$ 同理可得通解:

$$T = C_3 \cos \lambda_n t + C_4 \sin \lambda_n t \tag{4.4.22}$$

4.4.5 得偏微分方程通解

因此:

$$u_n(x,t) = X \cdot T = \sin \frac{n\pi}{l} x \cdot (a_n \cos \lambda_n t + b_n \sin \lambda_n t)$$
 (4.4.23)

由于方程为线性齐次,故可用叠加原理:

$$u(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi}{l} x \cdot (a_n \cos \lambda_n t + b_n \sin \lambda_n t)$$
 (4.4.24)

4.4.6 初始条件求系数

原函数初始条件求 a_n

$$u(x,0) = f(x) \quad \frac{\partial u}{\partial t}(x,0) = g(x) \tag{4.4.25}$$

由初始条件:

$$u(x,0) = \sum_{n=1}^{\infty} \sin \frac{n\pi}{l} x \cdot a_n = f(x)$$
 (4.4.26)

利用内积公式 (需要 $f \in L^2$):

$$a_n = \frac{\langle f(x), \sin\frac{n\pi}{l}x\rangle}{\langle \sin\frac{n\pi}{l}x, \sin\frac{n\pi}{l}x\rangle} = \frac{\int_0^l f(x) \cdot \sin\frac{n\pi}{l}x \, dx}{\int_0^l \sin^2\frac{n\pi}{l}x \, dx}$$
(4.4.27)

化简得:

$$a_n = \frac{2}{l} \cdot \int_0^l f(x) \cdot \sin \frac{n\pi}{l} x \, dx \tag{4.4.28}$$

偏导初始条件求 bn

对 u_n 求偏导:

$$\frac{\partial u_n}{\partial t}(x,t) = \sin\frac{n\pi}{l}x \cdot (-a_n\lambda_n\sin\lambda_n t + b_n\lambda_n\cos\lambda_n t) \tag{4.4.29}$$

在 t = 0 时:

$$\frac{\partial u_n}{\partial t}(x,0) = \sin\frac{n\pi}{l}x \cdot b_n \lambda_n \tag{4.4.30}$$

对总解求偏导:

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} \frac{\partial u_n}{\partial t}(x,0) = \sum_{n=1}^{\infty} b_n \lambda_n \sin \frac{n\pi}{l} x = g(x)$$
 (4.4.31)

利用内积公式 (需要 $f \in L^2$):

$$b_n \lambda_n = \frac{\langle g(x), \sin \frac{n\pi}{l} x \rangle}{\langle \sin \frac{n\pi}{l} x, \sin \frac{n\pi}{l} x \rangle} = \frac{2}{l} \int_0^l g(x) \cdot \sin \frac{n\pi}{l} x \, dx \tag{4.4.32}$$

化简得:

$$b_n = \frac{2}{l\lambda_n} \cdot \int_0^l g(x) \cdot \sin\frac{n\pi}{l} x \, dx = \frac{2}{cn\pi} \int_0^l g(x) \cdot \sin\frac{n\pi}{l} x \, dx \tag{4.4.33}$$

4.4.7 用数分知识求系数,条件和前面泛函内积不一样

考虑函数 f(t) 的傅里叶级数展开:

$$f = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (4.4.34)

计算 a₀:

$$\frac{a_0}{2} = f - \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (4.4.35)

$$a_0 = 2f - 2\sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (4.4.36)

对 a_0 积分, 若积分和求和可换序:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} a_0 dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f dt - \sum_{n=1}^{\infty} \frac{1}{\pi} a_n \int_{-\pi}^{\pi} \cos nt dt - \sum_{n=1}^{\infty} \frac{1}{\pi} b_n \int_{-\pi}^{\pi} \sin nt dt \qquad (4.4.37)$$

化简得:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f \, dt \tag{4.4.38}$$

计算 a_n :

$$f\cos nt = \frac{a_0}{2}\cos nt + \sum_{k=1}^{\infty} (a_k\cos kt + b_k\sin kt)\cos nt$$
 (4.4.39)

积分得, 若积分和求和可换序:

$$\int_{-\pi}^{\pi} f \cos nt \, dt = \int_{-\pi}^{\pi} \frac{a_0}{2} \cos nt \, dt + \sum_{k=1}^{\infty} \left(a_k \int_{-\pi}^{\pi} \cos kt \cos nt \, dt + b_k \int_{-\pi}^{\pi} \sin kt \cos nt \, dt \right)$$
(4.4.40)

化简得:

$$\int_{-\pi}^{\pi} f \cos nt \, dt = a_n \pi \tag{4.4.41}$$

因此:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nt \, dt \tag{4.4.42}$$

同理可得:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \sin nt \, dt \tag{4.4.43}$$

级数收敛性:

$$\sum_{n=1}^{\infty} a_n \cos nx < \infty \qquad \sum_{n=1}^{\infty} b_n \sin nx < \infty \tag{4.4.44}$$

详细条件可以去看我的傅里叶分析笔记。

4.4.8 总结

一维波动方程:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \cdot \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < l, \quad t > 0 \tag{4.4.45}$$

边界条件:

$$u(0,t) = 0$$
 $u(l,t) = 0$ $\forall t > 0$ (4.4.46)

初始条件:

$$u(x,0) = f(x) \quad \frac{\partial u}{\partial t}(x,0) = g(x) \qquad 0 < x < l \tag{4.4.47}$$

解为:

$$u(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi}{l} x \cdot (a_n \cos \lambda_n t + b_n \sin \lambda_n t)$$
 (4.4.48)

其中:

$$a_n = \frac{2}{l} \int_0^l f(x) \cdot \sin \frac{n\pi}{l} x \, dx \tag{4.4.49}$$

$$b_n = \frac{2}{cn\pi} \int_0^l g(x) \cdot \sin\frac{n\pi}{l} x \, dx \tag{4.4.50}$$

$$\lambda_n = c\mu_n = \frac{cn\pi}{l} \tag{4.4.51}$$

4.5 第二边值条件之分离变量

求解过程一样,就是解不同,第一边界条件是把通解求出来,代入得系数,第二边界条件就还要求个导再代入。这样就不展开详细说明。

5 热传导方程

5.1 无界齐次热传导方程

对于无界的热传导方程:

$$\begin{cases} u_t - \Delta u = 0, \\ u(x, 0) = \varphi(x), \end{cases}$$
(5.1.1)

其中,

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2}.$$
 (5.1.2)

热传导方程的基本解:

$$E(x-y,t) = \frac{1}{t^{\frac{n}{2}}} e^{-\frac{|x-y|^2}{4t}}.$$
 (5.1.3)

5.2 傅里叶变换

傅里叶变换定义为:

$$\mathcal{F}(f) = \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi} dx.$$
 (5.2.1)

5.2.1 微分性质

若 $f \in C \cap L^p$, 则:

$$\mathcal{F}(f') = (i\xi_j)\mathcal{F}(f). \tag{5.2.2}$$

这里求导是对于 x_i

证明.

$$\mathcal{F}(f') = \hat{f}'(\xi) = \int_{\mathbb{R}^n} f'(x)e^{-ix\cdot\xi} dx$$

对 x_i 做分部积分

$$= \left[f(x) e^{-ix \cdot \xi} \right]_{-\infty}^{+\infty} - \int_{\mathbb{R}^n} f(x) \cdot \frac{\partial}{\partial x_j} \left(e^{-ix \cdot \xi} \right) dx$$

因为 $f \in C \cap L^p$,则 $\lim_{|x| \to \infty} f(x) = 0$ (衰减性,紧支撑也有),故可化简为:

$$= (i\xi_j)\mathcal{F}(f)$$

若 $f \in C^{\alpha} \cap L^{p}$, 用多次分布积分,则傅里叶变换的高阶导数性质为:

$$\mathcal{F}(\partial^{\alpha} f) = (i\xi)^{\alpha} \mathcal{F}(f) \tag{5.2.3}$$

其中, α 为多指标,表示高阶导数。

5.2.2 幂乘性质

若 $f \in L^1$,则傅里叶变换的幂乘性质为:

$$\mathcal{F}[-ix_j f(x)] = \frac{\partial}{\partial \xi_i} \mathcal{F}[f](\xi)$$
 (5.2.4)

证明.

$$\frac{\partial}{\partial \xi_j} \int_{\mathbb{R}^n} f(x) e^{-ix\cdot \xi} dx = \int_{\mathbb{R}^n} f(x) \cdot \frac{\partial}{\partial \xi_j} e^{-ix\cdot \xi} dx = (-ix_j) \cdot \int_{\mathbb{R}^n} f(x) e^{-ix\cdot \xi} dx$$

5.2.3 傅里叶变换的卷积性质

卷积定义:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y) \cdot g(x - y) \, dy$$
 (5.2.5)

若 $f,g \in L^1$, 卷积性质:

$$\mathcal{F}[f * g] = \mathcal{F}[f] \cdot \mathcal{F}[g] \tag{5.2.6}$$

证明.

$$\mathcal{F}[f * g] = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \left(\int_{\mathbb{R}^n} f(y) \cdot g(x - y) \, dy \right) dx$$

根据 Fubini 定理, 若 $f,g \in L^1$, 我们交换外层关于 x 的积分和内层关于 y 的积分:

$$\mathcal{F}[f * g] = \int_{\mathbb{R}^n} f(y) \cdot \left(\int_{\mathbb{R}^n} e^{-ix \cdot \xi} g(x - y) dx \right) dy$$

变量替换 z = x - y, 即 x = z + y, 则 dz = dx, 代入后:

$$= \int_{\mathbb{R}^n} f(y) \cdot \left(\int_{\mathbb{R}^n} e^{-i(z+y) \cdot \xi} g(z) \, dz \right) dy$$

化简指数项:

$$= \int_{\mathbb{R}^n} e^{-iy\cdot\xi} \cdot \left(\int_{\mathbb{R}^n} e^{-iz\cdot\xi} g(z) \, dz \right) f(y) \, dy = \mathcal{F}[g] \cdot \int_{\mathbb{R}^n} e^{-iy\cdot\xi} f(y) \, dy = \mathcal{F}[g] \cdot \mathcal{F}[f]$$

5.2.4 傅里叶逆变换的卷积性质

若 $f, g \in L^1$

$$\mathcal{F}^{-1}[f \cdot g] = \mathcal{F}^{-1}[f] * \mathcal{F}^{-1}[g]$$
 (5.2.7)

证明. 首先, 根据傅里叶逆变换的定义:

$$\mathcal{F}^{-1}[f \cdot g](x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} (f(\xi) \cdot g(\xi)) d\xi$$

卷积的定义:

$$(\mathcal{F}^{-1}[f] * \mathcal{F}^{-1}[g])(x) = \int_{\mathbb{R}^n} \mathcal{F}^{-1}[f](y) \cdot \mathcal{F}^{-1}[g](x - y) dy$$

根据傅里叶逆变换的定义,将其展开:

$$\mathcal{F}^{-1}[f](y) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{iy\cdot\xi} f(\xi) d\xi$$
$$\mathcal{F}^{-1}[g](x-y) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(x-y)\cdot\eta} g(\eta) d\eta$$

代入卷积表达式:

$$(\mathcal{F}^{-1}[f] * \mathcal{F}^{-1}[g])(x) = \int_{\mathbb{R}^n} \left(\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{iy \cdot \xi} f(\xi) d\xi \right) \cdot \left(\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(x-y) \cdot \eta} g(\eta) d\eta \right) dy$$

根据 Fubini 定理, 若 $f,g \in L^1$, 交换积分顺序:

$$(\mathcal{F}^{-1}[f] * \mathcal{F}^{-1}[g])(x) = \frac{1}{(2\pi)^{2n}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} e^{iy \cdot \xi} e^{i(x-y) \cdot \eta} dy \right) f(\xi) g(\eta) d\xi d\eta$$

合并指数项:

$$=\frac{1}{(2\pi)^{2n}}\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}e^{ix\cdot\eta}\left(\int_{\mathbb{R}^n}e^{iy\cdot(\xi-\eta)}dy\right)f(\xi)g(\eta)d\xi d\eta$$

结果:

$$= \frac{1}{(2\pi)^{2n}} \int_{\mathbb{R}^n} e^{ix\cdot\xi} (2\pi)^n f(\xi) g(\xi) d\xi = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} f(\xi) g(\xi) d\xi = \mathcal{F}^{-1}[f \cdot g](x)$$

5.3 高斯型函数的一些积分

下面是高斯型函数一些积分的计算

命题 5.3.1.
$$\int_{-\infty}^{+\infty} e^{-a(x-b)^2} dx = \sqrt{\frac{\pi}{a}}$$

证明.

$$A^{2} = \left(\int_{-\infty}^{+\infty} e^{-a(x-b)^{2}} dx \right) \left(\int_{-\infty}^{+\infty} e^{-a(y-b)^{2}} dy \right)$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-a((x-b)^{2} + (y-b)^{2})} dx dy$$

由极坐标变量替换可得

$$(x-b)^{2} + (y-b)^{2} = r^{2}$$

$$\begin{cases} x-b = r\cos\theta\\ y-b = r\sin\theta \end{cases}$$

$$\begin{cases} dx = \cos\theta \, dr - r\sin\theta \, d\theta\\ dy = \sin\theta \, dr + r\cos\theta \, d\theta \end{cases}$$

$$J = \begin{vmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{vmatrix} = r$$

$$dxdy = r\,d\theta\,dr$$

$$A^{2} = \int_{-\pi}^{\pi} \int_{0}^{\infty} e^{-ar^{2}} r \, dr \, d\theta = \frac{1}{2} \int_{-\pi}^{\pi} \int_{0}^{\infty} e^{-ar^{2}} d(r^{2}) \, d\theta$$
$$= \frac{1}{2} \int_{-\pi}^{\pi} \left[-\frac{1}{a} e^{-ar^{2}} \Big|_{0}^{+\infty} \right] d\theta = \frac{1}{2} \int_{-\pi}^{\pi} \frac{1}{a} \, d\theta = \frac{\pi}{a}$$
$$\therefore \int_{-\infty}^{+\infty} e^{-a(x-b)^{2}} dx = \sqrt{\frac{\pi}{a}}$$

命题 5.3.2. $\int_c^{+\infty} e^{-a(x-b)^2} dx$ 积分没有原函数

证明. 方法 1. 不成熟的证明方法望指正

$$A^{2} = \left(\int_{0}^{+\infty} e^{-a(x-b)^{2}} dx\right) \left(\int_{0}^{+\infty} e^{-a(y-b)^{2}} dy\right)$$

$$\neq \int_{0}^{\frac{\pi}{2}} \int_{0}^{+\infty} e^{-ar^{2}} \cdot r \, dr \, d\theta$$

在这里不能像上面那样做极坐标变量代换,因为圆心为 (b,b),而坐标点不是全平面,当r 大到一定程度,角度再也不能转一圈,角度会随着 r 的增大而变小,无法用二重积分的定义表示。

命题 5.3.3.
$$\int_{-\infty}^{+\infty} \cos kx \cdot e^{-ax^2} dx = \int_{-\infty}^{+\infty} e^{ikx} \cdot e^{-ax^2} dx = e^{-\frac{k^2}{4a}} \cdot \sqrt{\frac{\pi}{a}}$$

证明.

$$\int_{-\infty}^{+\infty} e^{ikx} \cdot e^{-ax^2} dx = \int_{-\infty}^{+\infty} \cos kx \cdot e^{-ax^2} dx + i \int_{-\infty}^{+\infty} \sin kx \cdot e^{-ax^2} dx$$

第二项为奇函数,积分为0,所以,

$$\int_{-\infty}^{+\infty} e^{ikx} \cdot e^{-ax^2} dx = \int_{-\infty}^{+\infty} \cos kx \cdot e^{-ax^2} dx$$

$$\int_{-\infty}^{+\infty} e^{ikx} \cdot e^{-ax^2} dx = \int_{-\infty}^{+\infty} e^{-ax^2 + ikx} dx$$

配方

$$-ax^{2} + ikx = -a\left(x^{2} - \frac{ik}{a}x\right)$$

$$= -a\left[x^{2} - \frac{ik}{a}x + \left(\frac{ik}{2a}\right)^{2} - \left(\frac{ik}{2a}\right)^{2}\right]$$

$$= -a\left(x - \frac{ik}{2a}\right)^{2} - \frac{k^{2}}{4a}$$

所以,

$$\int_{-\infty}^{+\infty} e^{ikx} \cdot e^{-ax^2} dx = \int_{-\infty}^{+\infty} e^{-ax^2 + ikx} dx = e^{-\frac{k^2}{4a}} \cdot \sqrt{\frac{\pi}{a}}$$

命题 5.3.4. $\int_{-\infty}^{+\infty} z^2 e^{-az^2} dz = \frac{1}{2} \pi^{\frac{1}{2}} a^{-\frac{3}{2}}$

证明.

$$\dot{\nabla} \Phi(a) = \int_{-\infty}^{+\infty} e^{-az^2} dz = \sqrt{\frac{\pi}{a}}$$

$$\frac{d\Phi}{da} = -\int_{-\infty}^{+\infty} z^2 e^{-az^2} dz = \frac{d}{da} \left(\pi^{\frac{1}{2}} a^{-\frac{1}{2}} \right) = \pi^{\frac{1}{2}} a^{-\frac{3}{2}} \cdot \left(-\frac{1}{2} \right)$$

$$\therefore \int_{-\infty}^{+\infty} z^2 e^{-az^2} dz = \frac{1}{2} \pi^{\frac{1}{2}} a^{-\frac{3}{2}}$$

命题 5.3.5. $\int_{-\infty}^{+\infty} (z+bx)^2 e^{-az^2} dz == \frac{1}{2} \pi^{\frac{1}{2}} a^{-\frac{3}{2}} + b^2 x^2 \sqrt{\frac{\pi}{a}}$

证明. 展开得

$$= \int_{-\infty}^{+\infty} z^2 e^{-az^2} dz + \int_{-\infty}^{+\infty} 2zbx e^{-az^2} dz + b^2 x^2 \int_{-\infty}^{+\infty} e^{-az^2} dz$$
$$= \frac{1}{2} \pi^{\frac{1}{2}} a^{-\frac{3}{2}} + b^2 x^2 \sqrt{\frac{\pi}{a}}$$

5.4 解的导出

对于无界的热传导方程(5.1.1):

$$\begin{cases} u_t - \Delta u = 0, \\ u(x, 0) = \varphi(x), \end{cases}$$
 (5.4.1)

设初值问题的解 u(x,t) 和初始数据 $\varphi(x)$ 都可关于变量 x 进行 Fourier 变换,并记:

$$\hat{u}(\xi,t) = \int_{\mathbb{R}^n} u(x,t)e^{-ix\cdot\xi}dx,$$
(5.4.2)

$$\hat{\varphi}(\xi) = \int_{\mathbb{R}^n} \varphi(x)e^{-ix\cdot\xi}dx. \tag{5.4.3}$$

对热传导方程和初始条件进行 Fourier 变换,根据傅里叶的微分性质(5.2.3):

$$\hat{u}_t = \int_{\mathbb{R}^n} u_t(x, t) e^{-ix\cdot\xi} dx = \frac{d}{dt} \int_{\mathbb{R}^n} u(x, t) e^{-ix\cdot\xi} dx = \frac{d\hat{u}(\xi, t)}{dt}$$
 (5.4.4)

$$\Delta u = \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}$$

$$\mathcal{F}\left[\frac{\partial^{2} u}{\partial x_{j}^{2}}\right](\xi) = -\xi_{j}^{2} \hat{u}(\xi)$$

$$\mathcal{F}[\Delta u](\xi) = \sum_{j=1}^{n} (-\xi_{j}^{2}) \hat{u}(\xi) = -|\xi|^{2} \hat{u}(\xi)$$
(5.4.5)

把 ξ 看作常量, 得到关于 $\hat{u}(\xi,t)$ 的常微分方程初值问题:

$$\begin{cases} \frac{d\hat{u}(\xi,t)}{dt} + |\xi|^2 \hat{u}(\xi,t) = 0, \\ \hat{u}(\xi,0) = \hat{\varphi}(\xi). \end{cases}$$
 (5.4.6)

该方程的解为:

$$\hat{u}(\xi, t) = \hat{\varphi}(\xi)e^{-|\xi|^2 t}.$$
(5.4.7)

证明. 这是一个一阶线性常微分方程,可以通过分离变量法求解。将方程改写为:

$$\frac{d\hat{u}}{\hat{u}} = -a^2|\xi|^2 dt$$

对两边积分:

$$\int \frac{d\hat{u}}{\hat{u}} = \int -a^2 |\xi|^2 dt$$

得到:

$$\ln|\hat{u}| = -a^2|\xi|^2t + C(\xi)$$

其中, $C(\xi)$ 是积分常数,可能依赖于 ξ 。

利用初始条件 $\hat{u}(\xi,0) = \hat{\varphi}(\xi)$,代入上式得:

$$C(\xi) = \ln |\hat{\varphi}(\xi)|$$

将 $C(\xi)$ 代入积分结果:

$$\ln|\hat{u}| = -a^2|\xi|^2 t + \ln|\hat{\varphi}(\xi)|$$

对两边取指数:

$$\hat{u}(\xi, t) = \hat{\varphi}(\xi)e^{-a^2|\xi|^2t}$$

对 $\hat{u}(\xi,t)$ 进行 Fourier 逆变换

$$u(x,t) = \mathcal{F}^{-1}[\hat{\varphi}(\xi)e^{-|\xi|^2t}]$$
 (5.4.8)

利用 Fourier 逆变换卷积的性质(5.2.7):

$$u(x,t) = \mathcal{F}^{-1}[\hat{\varphi}(\xi)] * \mathcal{F}^{-1}[e^{-|\xi|^2 t}]$$
(5.4.9)

命题 5.4.1. 我们需要证明:

$$\mathcal{F}^{-1}\left[e^{-|\xi|^2t}\right](x) = (4\pi t)^{-n/2}e^{-\frac{|x|^2}{4t}}$$

证明. 根据傅里叶逆变换的定义:

$$\mathcal{F}^{-1}\left[e^{-|\xi|^2 t}\right](x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-|\xi|^2 t} d\xi$$

我们可以将这个积分分解为每个坐标的积分:

$$\mathcal{F}^{-1}\left[e^{-|\xi|^2t}\right](x) = \frac{1}{(2\pi)^n} \prod_{i=1}^n \int_{-\infty}^{\infty} e^{ix_j\xi_j} e^{-\xi_j^2t} d\xi_j$$

注记 5.1.

$$\mathcal{F}^{-1}\left[e^{-|\xi|^2t}\right](x) = \frac{1}{(2\pi)^3} \left(\int_{-\infty}^{\infty} e^{ix_1\xi_1} e^{-\xi_1^2t} d\xi_1\right) \left(\int_{-\infty}^{\infty} e^{ix_2\xi_2} e^{-\xi_2^2t} d\xi_2\right) \left(\int_{-\infty}^{\infty} e^{ix_3\xi_3} e^{-\xi_3^2t} d\xi_3\right)$$

对于每个一维积分, 我们有:

$$\int_{-\infty}^{\infty} e^{ix_j\xi_j} e^{-\xi_j^2 t} d\xi_j$$

对指数部分进行配方:

$$-t\xi_j^2 + ix_j\xi_j = -t\left(\xi_j^2 - \frac{ix_j}{t}\xi_j\right)$$

$$= -t\left(\xi_j^2 - \frac{ix_j}{t}\xi_j + \left(\frac{x_j}{2t}\right)^2 - \left(\frac{x_j}{2t}\right)^2\right)$$

$$= -t\left(\left(\xi_j - \frac{ix_j}{2t}\right)^2 - \frac{x_j^2}{4t^2}\right)$$

$$= -t\left(\xi_j - \frac{ix_j}{2t}\right)^2 + \frac{x_j^2}{4t}$$

代入积分中, 由命题(5.3.1):

$$\int_{-\infty}^{\infty} e^{-t\left(\xi_{j} - \frac{ix_{j}}{2t}\right)^{2} + \frac{x_{j}^{2}}{4t}} d\xi_{j} = e^{\frac{x_{j}^{2}}{4t}} \int_{-\infty}^{\infty} e^{-t\left(\xi_{j} - \frac{ix_{j}}{2t}\right)^{2}} d\xi_{j} = \sqrt{\frac{\pi}{t}} e^{\frac{x_{j}^{2}}{4t}}$$

将所有坐标的结果相乘,并乘以系数 $\frac{1}{(2\pi)^n}$, 得到:

$$\mathcal{F}^{-1}\left[e^{-|\xi|^2t}\right](x) = \frac{1}{(2\pi)^n} \left(\sqrt{\frac{\pi}{t}}\right)^n e^{-\frac{|x|^2}{4t}}$$
$$= \frac{1}{(2\pi)^n} \cdot \frac{\pi^{n/2}}{t^{n/2}} e^{-\frac{|x|^2}{4t}} = \frac{1}{(2)^n t^{n/2}} e^{-\frac{|x|^2}{4t}} = (4\pi t)^{-n/2} e^{-\frac{|x|^2}{4t}}$$

因此,解可以表示为:

$$u(x,t) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} \varphi(y) e^{-\frac{|x-y|^2}{4t}} dy$$
 (5.4.10)

其中, $E(x-y,t)=(4\pi t)^{-n/2}e^{-\frac{|x-y|^2}{4t}}$ 称为热传导方程的基本解。

5.5 热传导方程齐次化

和之前波动方程齐次化一样,把边界条件齐次化,用 Duhamamel 原理把方程齐次化。有界无界的情况,把基本解看作达朗贝尔公式,延拓和上面一模样。

分离变量的方法也一样,就是时间常微分函数变成一阶通解为指数函数,而不再是 三角函数。其他全部的求解过程,验证过程全部一样。