Bayesian Regression

Learn about Bayesian regression techniques.

Chapter Goals:

• Learn about Bayesian regression techniques

A. Bayesian techniques

So far, we've discussed hyperparameter optimization through cross-validation. Another way to optimize the hyperparameters of a regularized regression model is with Bayesian techniques.

In Bayesian statistics, the main idea is to make certain assumptions about the probability distributions of a model's parameters *before* being fitted on data. These initial distribution assumptions are called *priors* for the model's parameters.

In a Bayesian ridge regression model, there are two hyperparameters to optimize: α and λ . The α hyperparameter serves the same exact purpose as it does for regular ridge regression; namely, it acts as a scaling factor for the penalty term.

The λ hyperparameter acts as the precision of the model's weights. Basically, the smaller the λ value, the greater the variance between the individual weight values.

B. Hyperparameter priors

Both the α and λ hyperparameters have gamma distribution priors, meaning we assume both values come from a gamma probability distribution.

There's no need to know the specifics of a gamma distribution, other than the fact that it's a probability distribution defined by a shape parameter and scale parameter.

Specifically, the a hymerparameter has prior

specifically, the diffyperparameter has prior.

$$\Gamma(\alpha_1,\alpha_2)$$

and the λ hyperparameter has prior:

$$\Gamma(\lambda_1,\lambda_2)$$

where $\Gamma(k,\theta)$ represents a gamma distribution with shape parameter k and scale parameter θ .

C. Tuning the model

When finding the optimal weight settings of a Bayesian ridge regression model for an input dataset, we also concurrently optimize the α and λ hyperparameters based on their prior distributions and the input data.

This can all be done with the BayesianRidge object (part of the linear_model module). Like all the previous regression objects, this one can be initialized with no required arguments.

```
# predefined dataset from previous chapter
print('Data shape: {}\n'.format(data.shape))
print('Labels shape: {}\n'.format(labels.shape))

from sklearn import linear_model
reg = linear_model.BayesianRidge()
reg.fit(data, labels)
print('Coefficients: {}\n'.format(repr(reg.coef_)))
print('Intercept: {}\n'.format(reg.intercept_))
print('R2: {}\n'.format(reg.score(data, labels)))
print('Alpha: {}\n'.format(reg.alpha_))
print('Lambda: {}\n'.format(reg.lambda_))
```

We can manually specify the α_1 and α_2 gamma parameters for α with the alpha_1 and alpha_2 keyword arguments when initializing BayesianRidge . Similarly, we can manually set λ_1 and λ_2 with the lambda_1 and lambda_2 keyword arguments. The default value for each of the four gamma parameters is 10^{-6} .

Time to Code!

The coding exercise in this chapter uses the BayesianRidge object of the linear_model module (imported in backend) to complete the bayes_ridge function.

The function will fit a Bayesian ridge regression model to the input data and labels.

Set reg equal to linear_model.BayesianRidge, initialized with no input arguments.

Call reg.fit with data and labels as the two input arguments. Then return reg.

