

An Introduction to Chvatal-Gomory Cuts

Akang Wang wangakang@sribd.cn

Shenzhen Research Institute of Big Data

July 19, 2023

Outline

Shenzhen Research Institute of Big Data

- Chvatal-Gomory (CG) cuts [Chv73]
- Three variants of CG cuts
 - strong CG cuts [LL02]
 - 0-1/2 cuts [CF96]
 - mod-k cuts [CFL00]

Consider an integer program:

where $X \equiv \{x \in P : x_i \in \mathbb{Z} \ \forall i \in I\}, P \equiv \{x \in \mathbb{R}^n_+ : Ax \leq b\}, I = [n].$ Let conv(X) denote the convex hull of X.

Given $X \equiv \{x \in \mathbb{Z}_+^n : Ax \leq b\}$ and any $u \in \mathbb{R}_+^m$, we have

$$u^{\top} A x \le u^{\top} b$$
$$\lfloor u^{\top} A x \rfloor \le \lfloor u^{\top} b \rfloor$$

Since $x_i \in \mathbb{Z}_+$, therefore,

$$\sum_{j \in I} \lfloor u^{\top} A_{\cdot j} \rfloor x_j \le \lfloor u^{\top} b \rfloor \tag{2}$$

The resulting inequality (2) is called a "Chvatal-Gomory cut".

Remarks

- CG cuts depend on on P, not directly on conv(X).
- If $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, then undominated CG cuts only arise for $u \in [0,1)^m$.

Theorem ([CL01])

Given $X \equiv \{x \in \mathbb{Z}_+^n : Ax \leq b\}$, define Chvatal closure

$$\boldsymbol{X}^{\textit{Chvatal}} \equiv \left\{ \boldsymbol{x} \in \mathbb{R}^{\textit{n}} : \lfloor \boldsymbol{u}^{\top} \boldsymbol{A} \rfloor \boldsymbol{x} \leq \lfloor \boldsymbol{u}^{\top} \boldsymbol{b} \rfloor \quad \forall \boldsymbol{u} \in \mathbb{R}_{+}^{\textit{m}} \right\}$$

and Gomory fractional closure

$$X^{F} \equiv \left\{ x \in \mathbb{R}^{n} : \lfloor \lambda^{\top} A \rfloor x - \lfloor \lambda^{\top} \rfloor A x \leq \lfloor \lambda^{\top} b \rfloor - \lfloor \lambda^{\top} \rfloor b \quad \forall \lambda \in \mathbb{R}^{m} \right\}$$

Then $X^{Chvatal} = X^F$

Check Gomory fractional cuts.

Proof.

■ WLOG, assume $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$, hence we consider a CG cut $\lfloor u^\top A \rfloor \times \leq \lfloor u^\top b \rfloor$ with $u \in [0, 1)$. As a result,

$$\lfloor u^{\top} A \rfloor \mathbf{x} - \lfloor u^{\top} \rfloor A \mathbf{x} \leq \lfloor u^{\top} b \rfloor - \lfloor u^{\top} \rfloor b,$$

which is a Gomory fractional cut.

■ Given a fractional cut $\lfloor \lambda^\top A \rfloor x - \lfloor \lambda^\top \rfloor A x \leq \lfloor \lambda^\top b \rfloor - \lfloor \lambda^\top \rfloor b$, one has

$$\left[\lambda^{\top} A - \lfloor \lambda^{\top} \rfloor A\right] \times \leq \left[\lambda^{\top} b - \lfloor \lambda^{\top} \rfloor b\right].$$

This is a Chvatal cut $\lfloor u^{\top}A \rfloor x \leq \lfloor u^{\top} \rfloor b$ with $u \equiv \lambda - \lfloor \lambda \rfloor$.

Theorem ([LL02])

Given $X \equiv \{x \in \mathbb{Z}_+^{|I|} : Ax \leq b\}$, a valid inequality $u^\top Ax \leq u^\top b$ with $u \in \mathbb{R}_+^m$ can be written as

$$\sum_{j\in I} a_j x_j \le a_0. \tag{3}$$

Let $f_j \equiv a_j - \lfloor a_j \rfloor$ for $j \in I \cup \{0\}$ and $k \geq 1$ be an integer such that $\frac{1}{1+k} \leq f_0 < \frac{1}{k}$. Partition I into classes I_0 , I_1 , ..., I_k as follows. Let $I_0 \equiv \{j \in I : f_j \leq f_0\}$, and for p = 1, 2, ..., k, let $I_p \equiv \left\{j \in I : f_0 + \frac{(p-1)(1-f_0)}{k} < f_j \leq f_0 + \frac{p(1-f_0)}{k} \right\}$. The inequality (4) is valid for S and dominates the CG cut (2).

$$\sum_{p=0}^{k} \sum_{j \in I_{p}} \left(\lfloor a_{j} \rfloor + \frac{p}{1+k} \right) x_{j} \leq \lfloor a_{0} \rfloor. \tag{4}$$

Proof.

After multiplying (3) by k and applying a Chvatal procedure, we obtain

$$\sum_{j\in I} \lfloor ka_j \rfloor x_j \le \lfloor ka_0 \rfloor. \tag{5}$$

Note that $f_0 = a_0 - \lfloor a_0 \rfloor < \frac{1}{k}$, hence $ka_0 - k \lfloor a_0 \rfloor < 1$. Furthermore, $ka_0 \geq \lfloor ka_0 \rfloor \geq k \lfloor a_0 \rfloor$, therefore, $\lfloor ka_0 \rfloor = k \lfloor a_0 \rfloor$. For $j \in I$ such that $\frac{p}{k} \leq f_j < \frac{p+1}{k}$, $k \lfloor a_j \rfloor + p \leq ka_j$, hence $k \lfloor a_j \rfloor + p \leq \lfloor ka_j \rfloor$.

$$\sum_{p=0}^{k-1} \sum_{\substack{j \in I: \\ \frac{p}{k} \le f_j < \frac{p+1}{k}}} (k \lfloor a_j \rfloor + p) x_j \le k \lfloor a_0 \rfloor.$$
 (6)

Proof (Cont'd).

Choose $\delta>0$ such that $1-\delta\geq rac{f_0}{f_j}$ for all $j\in I\setminus I_0$. We can multiply (3)

by $\frac{1-\delta}{f_0}$ and multiply (6) by $1+\frac{1-\frac{1-\delta}{f_0}}{k}$, sum the two resulting inequalities together to obtain the valid inequality

$$\sum_{p=0}^{k-1} \sum_{\substack{j \in I: \\ \frac{p}{k} \le f_j < \frac{p+1}{k}}} \left((k+1) \lfloor a_j \rfloor + p + \frac{(1-\delta)(f_j - \frac{p}{k})}{f_0} + \frac{p}{k} \right) x_j$$

$$\leq (k+1) \lfloor a_0 \rfloor + 1 - \delta.$$
(7)

Applying integer rounding to (7) gives the strong CG inequality (4).

Remark

■ There is no dominance between strong CG cuts and MIR cuts.

$$\sum_{p=0}^{k} \sum_{j \in I_{p}} \left(\lfloor a_{j} \rfloor + \frac{p}{1+k} \right) x_{j} \leq \lfloor a_{0} \rfloor \quad \text{(strong CG)}$$

$$\sum_{j \in I} \left(\lfloor a_{j} \rfloor + \frac{(f_{j} - f_{0})^{+}}{1 - f_{0}} \right) x_{j} \leq \lfloor a_{0} \rfloor \quad \text{(MIR)}$$

For a pure integer program with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$, given a fractional solution x^* , we aim to solve

$$\max_{u \in \left\{0, \frac{1}{2}\right\}^m} \left\lfloor u^\top A \right\rfloor x^* - \left\lfloor u^\top b \right\rfloor \tag{8}$$

Remark

- Problem (8) is \mathcal{NP} -hard [CF96].
- Neither the strengthening procedure (4) nor the MIR strengthening technique is applicable to 0-1/2 cuts.

Separation protocol [KZK07]

- i. reduction
- ii. heuristic separation: enumerate all possible combinations of k rows

Define $s=b-Ax^*$, $\bar{A}\equiv A \mod 2$, and $\bar{b}\equiv b \mod 2$, we can process (\bar{A},\bar{b}) as follows:

- i. All columns in \bar{A} corresponding to $x_i^* = 0$ can be removed
- ii. Zero rows in (\bar{A}, \bar{b}) can be removed
- iii. Zero columns in \bar{A} can be removed
- iv. Identical columns in \bar{A} can be replaced by a single representative with associated variable value as a sum of the merged variables
- v. Any unit vector columns $\bar{A}_{\cdot i} = e_j$ in \bar{A} can be removed provided that x_i^* is added to the slack s_j of row j
- vi. Any row j with slack $s_i \ge 1$ can be removed (see next slide)
- vii. Identical rows in (\bar{A}, \bar{b}) can be removed except for the one with smallest slack value.

Lemma

There exists a vector $u \in \left\{0, \frac{1}{2}\right\}^m$ such that $\lfloor u^\top A \rfloor x^* - \lfloor u^\top b \rfloor > 0$ iff there exists a vector $v \in \left\{0, 1\right\}^m$ such that

$$v^{\top} \bar{b} \mod 2 = 1,$$

 $v^{\top} s + (v^{\top} \bar{A} \mod 2) x^* < 1.$

Proof.

$$\lfloor u^{\top} A \rfloor x^* - \lfloor u^{\top} b \rfloor = \frac{1}{2} \left((2u)^{\top} b \mod 2 \right) - u^{\top} s - \frac{1}{2} \left((2u)^{\top} A \mod 2 \right) x^*$$

$$= \frac{1}{2} \left(\left(v^{\top} \bar{b} \mod 2 \right) - v^{\top} s - \left(v^{\top} \bar{A} \mod 2 \right) x^* \right)$$

For a pure integer program with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$, we aim to generate CG cuts with weights $u \in \{0, \frac{1}{k}, ..., \frac{k-1}{k}\}^m$.

- The 0 1/2 cut is a special case of mod-k cuts.
- Consider the following separation problem

$$\max_{\substack{u \in \left\{0, \frac{1}{k}, \dots, \frac{k-1}{k}\right\}^m \\ \text{s.t.}}} u^{\top} A x^* - \lfloor u^{\top} b \rfloor$$

This problem is \mathcal{NP} -hard, however, given k, finding a maximally violated mod-k cut (vio = (k-1)/k) can be achieved in $\mathcal{O}(mn \min\{m,n\})$ [CFL00].

In practice, this type of cut is often separated for combinatorial optimization problems such as TSP.

- [CF96] Alberto Caprara and Matteo Fischetti, {0, 1/2}-chvátal-gomory cuts, Mathematical Programming **74** (1996), no. 3, 221–235.
- [CFL00] Alberto Caprara, Matteo Fischetti, and Adam N Letchford, *On the separation of maximally violated mod-k cuts*, Mathematical Programming **87** (2000), no. 1, 37–56.
- [Chv73] Vasek Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete mathematics **4** (1973), no. 4, 305–337.
- [CL01] Gérard Cornuéjols and Yanjun Li, Elementary closures for integer programs, Operations Research Letters 28 (2001), no. 1, 1–8.
- [KZK07] Arie MCA Koster, Adrian Zymolka, and Manuel Kutschka, Algorithms to separate-chvátal-gomory cuts, European Symposium on Algorithms, Springer, 2007, pp. 693–704.

[LL02] Adam N Letchford and Andrea Lodi, *Strengthening* chvátal–gomory cuts and gomory fractional cuts, Operations Research Letters **30** (2002), no. 2, 74–82.