A08 - CAL

Vinicius Gasparini e Lucas Meneghelli

7 de outubro de 2019

1 Crivo de Eratostenes

Sabemos que, dado um primo p, sendo p < n, serão marcados $\frac{n}{p}$ números. Fazendo isso para todos os primos temos

$$\sum_{\substack{p \le n, \\ p \text{ primo}}} \frac{n}{p} = n \cdot \sum_{\substack{p \le n, \\ p \text{ primo}}} \frac{1}{p}.$$

Utilizando do fato que existe aproximadamente $\frac{n}{\ln n}$ primos menores que n, portanto temos $\sqrt{\frac{n}{\ln n}}$ primos menores que $\sqrt{n}.$ E que o k-ésimo primo é aproximadamente $k\ln k,$ obtemos

$$\sum_{\substack{p \leq n, \\ p \text{ primo}}} \frac{1}{p} \approx \frac{1}{2} + \sum_{k=2}^{\sqrt{\frac{n}{\ln n}}} \frac{1}{k \ln k}.$$

$$\frac{1}{2} + \sum_{k=2}^{\sqrt{\frac{n}{\ln n}}} \frac{1}{k \ln k} \approx \int_{2}^{\sqrt{\frac{n}{\ln n}}} \frac{1}{k \ln k} dk.$$

$$\int_{2}^{\sqrt{\frac{n}{\ln n}}} \frac{1}{k \ln k} dk \approx \ln \ln \sqrt{n}.$$

Por fim, temos assintoticamente a complexidade de tempo

$$T(n) = n \ln \ln \sqrt{n} + o(n)$$
$$O(n \log \log n)$$

E a complexidade de espaço O(n)