

# E22-400T22S 产品规格书

SX1262 433/470MHz 160mW LoRa 无线模块



# 成都亿佰特电子科技有限公司



#### 目录

| 第一章 产品概述         | 3  |
|------------------|----|
| 1.1 产品简介         | 2  |
| 1.2 特点功能         |    |
| 1.3 应用场景         |    |
| 第二章 规格参数         |    |
| 2.1 极限参数         |    |
| 2.2 工作参数         |    |
| 第三章 机械尺寸与引脚定义    |    |
| 第四章 推荐连线图        |    |
| 第五章 功能详解         | 8  |
| 5.1 定点发射         | 8  |
| 5.2 广播发射         | 8  |
| 5.3 广播地址         | 9  |
| 5.4 监听地址         | 9  |
| 5.5 模块复位         | 9  |
| 5.6 AUX 详解       | 9  |
| 5. 6. 1 串口数据输出指示 | 9  |
| 5. 6. 2 无线发射指示   | 10 |
| 5.6.3 模块正在配置过程中  |    |
| 5. 6. 4 注意事项     | 10 |
| 第六章 工作模式         | 11 |
| 6.1 模式切换         | 11 |
| 6.2 一般模式 (模式 0)  | 12 |
| 6.3 WOR 模式(模式 1) | 12 |
| 6.4 配置模式 (模式 2)  | 12 |
| 6.5 深度休眠模式(模式 3) | 12 |
| 第七章 寄存器读写控制      | 13 |
| 7.1 指令格式         | 13 |
| 7.2 寄存器描述        | 14 |
| 7.3 出厂默认参数       | 16 |
| 第八章 中继组网模式使用     | 16 |
| 第九章 上位机配置说明      | 17 |
| 第十章 硬件设计         | 18 |
| 第十一章 常见问题        | 19 |
| 11.1 传输距离不理想     |    |
| 11.2 模块易损坏       | 19 |
| 11.3 误码率太高       | 19 |
| 第十二章 焊接作业指导      | 20 |
| 12.1 回流焊温度       |    |
| 12.2 回流焊曲线图      |    |
| 第十三章 相关型号        | 21 |
| 第十四章 天线指南        |    |
| 14.1 天线推差        | 21 |



| 第十五章 批量包装方式 | 22 |
|-------------|----|
| 修订历史        | 22 |
| 关于我们        | 22 |





# 免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。 文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责 任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反 言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

文中所得测试数据均为亿佰特实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

最终解释权归成都亿佰特电子科技有限公司所有。

注意:

由于产品版本升级或其他原因,本手册内容有可能变更。亿佰特电子科技有限公司保留在没有任何通知或者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,成都亿佰特电子科技有限公司尽全力在本手册中提供准确的信息,但是成都亿佰特电子科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。





## 第一章 产品概述

## 1.1 产品简介

E22-400T22S 是全新一代的 LoRa 无线模块,基于 SX1262 射频芯片的无线 串口模块(UART),具有多种传输方式,工作在(410.125~493.125MHz)频段 (默认 433.125MHz), LoRa 扩频技术, TTL 电平输出, 兼容 3.3V 与 5V 的 I0 口电压。

E22-400T22S 采用全新一代 LoRa 扩频技术,与传统 SX1278 方案相比, SX1262 方案传输距离更远,速度更快,功耗更低,体积更小;支持空中唤醒、 无线配置、载波监听、自动中继、通信密钥等功能, 支持分包长度设定, 可提 供定制开发服务。



### 1.2 特点功能

- 基于 SX1262 开发全新 LoRa 扩频调制技术,带来更远的通讯距离,抗干扰能力更强;
- 支持自动中继组网, 多级中继适用于超远距离通信, 同一区域运行多个网络同时运行;
- 支持用户自行设定通信密钥,且无法被读取,极大提高了用户数据的保密性;
- 支持 LBT 功能,在发送前监听信道环境噪声,可极大的提高模块在恶劣环境下的通信成功率
- 支持 RSSI 信号强度指示功能,用于评估信号质量、改善通信网络、测距;
- 支持无线参数配置,通过无线发送指令数据包,远程配置或读取无线模块参数;
- 支持空中唤醒,即超低功耗功能,适用于电池供电的应用方案;
- 支持定点传输、广播传输、信道监听;
- 支持深度休眠,该模式下整机功耗约 2uA;
- 支持全球免许可 ISM 433MHz 频段, 支持 470MHz 抄表频段;
- 理想条件下,通信距离可达 5.5km:
- 参数掉电保存,重新上电后模块会按照设置好的参数进行工作;
- 高效看门狗设计,一旦发生异常,模块将在自动重启,且能继续按照先前的参数设置继续工作
- 支持 2.4K~62.5kbps 的数据传输速率;
- 支持 2.3~5.5V 供电,大于 5V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选(IPEX/邮票孔),便于用户二次开发,利于集成

## 1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案:
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。



# 第二章 规格参数

# 2.1 极限参数

| <b>十</b>   | 性能   |      | 备注               |
|------------|------|------|------------------|
| 主要参数       | 最小值  | 最大值  | <b>笛</b> 仁       |
| 电源电压(V)    | 2. 3 | 5. 5 | 超过 5.5V 可能永久烧毁模块 |
| 阻塞功率 (dBm) | ((-) | 10   | 近距离使用烧毁概率较小      |
| 工作温度(℃)    | -40  | +85  | 工业级              |

# 2.2 工作参数

| 主要参数 |             | 性能 最小值 典型值 最大值 |               |          | ۵۶ کیا۔                                |
|------|-------------|----------------|---------------|----------|----------------------------------------|
|      |             |                |               | 最大值      | — <b>备注</b>                            |
|      | 工作电压 (V)    | 3. 3           | 5. 0          | 5. 5     | ≥5.0V 可保证输出功率                          |
|      | 通信电平 (V)    | 60             | 3. 3          | ( )      | 使用 5V 电平有烧毁风险                          |
|      | 工作温度(℃)     | -40            | -             | 85       | 工业级设计                                  |
|      | 工作频段 (MHz)  | 410. 125       | _             | 493. 125 | 支持 ISM 频段                              |
| r.l. | 发射电流(mA)    | - 3            | 110           | -700     | 瞬时功耗@22dBm                             |
| 功士   | 接收电流(mA)    | (t(2))         | 11            | ((2))    | -((0))                                 |
| 耗    | 休眠电流(uA)    | -              | 2             |          | 软件关断                                   |
|      | 最大发射功率(dBm) | 21.5           | 22. 0         | 22. 5    | ED ED                                  |
|      | 接收灵敏度 (dBm) | -146           | <b>⊚</b> −147 | -148     | 空中速率 2.4 kbps                          |
|      | 空中速率 (bps)  | 2. 4k          | 2. 4k         | 62. 5k   | 用户编程控制                                 |
|      | 参考距离        |                | 5km           |          | 晴朗空旷,天线增益 5dBi,天线高度 2.5 米,空中速率 2.4kbps |
|      | 发射长度        | 240 Btye       |               |          | 可通过指令设置分包 32/64/128/240 字节发送           |
|      | 缓存容量        | 1000 Btye      |               |          | ® <u> </u>                             |
|      | 调制方式        | LoRa           |               | 1110)    | 新一代 LoRa 调制技术                          |
| 通信接口 |             | UART 串口        |               |          | TTL电平                                  |
| 封装方式 |             | 贴片式            |               |          | EB -EB                                 |
| 接口方式 |             | 1. 27mm        |               |          | 邮票孔,间距 1.27mm                          |
|      | 外形尺寸        | -57            | 16*26 mm      | -77      | 5 - 5                                  |
| 射频接口 |             |                | IPEX/邮票孑      |          | 等效阻抗约 50 Ω                             |



# 第三章 机械尺寸与引脚定义



Pad quantity: 22 Unit: mm

| 引脚序号 | 引脚名称  | 引脚方向     | 引脚用途                                              |
|------|-------|----------|---------------------------------------------------|
| 1    | GND   | -        | 模块地线                                              |
| 2    | GND ® | - ®      | 模块地线 🔞                                            |
| 3    | GND   | 5 (UED)  | 模块地线                                              |
| 4    | GND   | CITY     | 模块地线                                              |
| 5    | МО    | 输入(极弱上拉) | 和 M1 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)               |
| 6    | M1    | 输入(极弱上拉) | 和 MO 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)               |
| 7    | RXD   | 输入       | TTL 串口输入,连接到外部 TXD 输出引脚;                          |
| 8    | TXD   | 输出       | TTL 串口输出,连接到外部 RXD 输入引脚;                          |
| 9    | AUX   | 输出       | 用于指示模块工作状态;<br>用户唤醒外部 MCU, 上电自检初始化期间输出低电平; (可以悬空) |
| 10   | VCC   | <u> </u> | 模块电源正参考, 电压范围: 2.3~5.5V DC                        |
| 11   | GND   | -50      | 模块地线                                              |
| 12   | NRST  | 输入       | 模块复位引脚,低电平复位                                      |
| 13   | GND   | -        | 模块地线                                              |
| 14   | NC    | _        | 空脚                                                |
| 15   | NC    | -        | 空脚                                                |
| 16   | NC    | -        | 空脚                                                |
| 17   | NC    | _        | 空脚                                                |



| 18 | NC  | _ | 空脚   |
|----|-----|---|------|
| 19 | GND | - | 模块地线 |
| 20 | GND | - | 模块地线 |
| 21 | ANT |   | 天线   |
| 22 | GND |   | 模块地线 |

# 第四章 推荐连线图



| 序号 | 模块与单片机简要连接说明(上图以 STM8L 单片机为例)               |
|----|---------------------------------------------|
| 1  | 无线串口模块为 TTL 电平, 请与 TTL 电平的 MCU 连接。          |
| 2  | 某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。 |





# 第五章 功能详解

# 5.1 定点发射



## 5.2 广播发射





## 5.3 广播地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为发射时(相同模式,透明传输方式), 0x04 信道下所有的接收模块都可以收到数据,达到广播的目的。

#### 5.4 监听地址

- 举例:将模块 A 地址设置为 0xFFFF, 信道设置为 0x04。
- 当模块 A 作为接收时,可以接收到 0x04 信道下所有的数据,达到监听的目的。

## 5.5 模块复位

● 模块上电后,AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置; 在此过程中,AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M1、M0 组合而成的工作模式开始正常工作; 所以,用户需要等待 AUX 上升沿,作为模块正常工作的起点。

#### 5.6 AUX 详解

- AUX 用于无线收发缓冲指示和自检指示。
- 它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自 检过程中。

#### 5.6.1 串口数据输出指示

● 用于唤醒休眠中的外部 MCU;



模块串口外发数据时, AUX引脚时序图



#### 5.6.2 无线发射指示

缓冲区空:内部 1000 字节缓冲区的数据,都被写入到无线芯片(自动分包);

当 AUX=1 时用户连续发起小于 1000 字节的数据,不会溢出;

当 AUX=0 时缓冲区不为空:内部 1000 字节缓冲区的数据,尚未全部写入到无线芯片并开启发射,此时模块有可能在等 待用户数据结束超时,或正在进行无线分包发射。

【注意】: AUX=1 时并不代表模块全部串口数据均通过无线发射完毕,也可能最后一包数据正在发射中。

分包发射:最后一包数据已 写入RF芯片并自动发射,用户 可以继续输入1000字节。(实 质是缓冲区为空)



模块接收串口数据时, AUX引脚时序图

#### 5.6.3 模块正在配置过程中

仅在复位和退出休眠模式的时候;



自检期间, AUX引脚时序图

#### 5.6.4 注意事项

| 序号 | AUX 注意事项                                                                     |
|----|------------------------------------------------------------------------------|
| 1  | 上述功能 1 和功能 2,输出低电平优先,即:满足任何一个输出低电平条件,AUX 就输出低电平;<br>当所有低电平条件均不满足时,AUX 输出高电平。 |
| 2  | 当 AUX 输出低电平时,表示模块繁忙,此时不会进行工作模式检测;<br>当模块 AUX 输出高电平后 1ms 内,将完成模式切换工作。         |
| 3  | 用户切换到新的工作模式后,至少需要在 AUX 上升沿 2ms 后,模块才会真正进入该模式;如果 AUX 一直处于高电平,那么模式切换将立即生效。     |
| 4  | 用户从模式 3 (休眠模式) 进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。                      |
| 5  | 因 LoRa 调制方式的特点,信息传输时延相较于 FSK 要长很多,建议客户不要在低空速下进行大数据量传输,以免 因数据堆积造成数据丢失引发通信异常。  |



# 第六章 工作模式

模块有四种工作模式,由引脚 M1、M0 设置;详细情况如下表所示:

| 模式 (0-3) | M1  | МО | 模式介绍                       | 备注         |
|----------|-----|----|----------------------------|------------|
| 0 传输模式   | 0   | 0  | 串口打开,无线打开,透明传输             | 支持特殊指令空中配置 |
| 1 WOR 模式 | 0   | 1  | 可以定义为 WOR 发送方和 WOR 接收方     | 支持空中唤醒     |
| 2 配置模式   | 1.5 | 0  | 用户可通过串口对寄存器进行访问,从而控制模块工作状态 | 1(0)       |
| 3 深度休眠   | 1   | 1  | 模块进入休眠                     |            |

# 6.1 模式切换

| 序号 | 备注                                                                                                                                                                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | <ul> <li>● 用户可以将 M1、M0 进行高低电平组合,确定模块工作模式。可使用 MCU 的 2 个 GPIO 来控制模式切换;</li> <li>● 当改变 M1、M0 后: 若模块空闲,1ms 后,即可按照新的模式开始工作;</li> <li>● 若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式;</li> <li>● 若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式;</li> <li>● 所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。</li> </ul> |
| 2  | <ul> <li>● 例如:用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;模块会将所有用户数据处理完毕后,才进行新的模式检测;</li> <li>● 所以一般建议为:检测 AUX 引脚输出状态,等待输出高电平后 2ms 再进行切换。</li> </ul>                                                                                                                                        |
| 3  | <ul> <li>● 当模块从其他模式被切换到休眠模式时,如果有数据尚未处理完毕;</li> <li>● 模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功耗;例如:发射模块工作在模式0,用户发起串口数据"12345",然后不必等待AUX引脚空闲(高电平),可以直接切换到休眠模式,并将用户主MCU立即休眠,模块会自动将用户数据全部通过无线发出后,1ms内自动进入休眠;</li> <li>● 从而节省MCU的工作时间,降低功耗。</li> </ul>                          |
| 4  | <ul> <li>● 同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在1ms内,会自动进入新的模式;从而省去了用户查询AUX的工作,且能达到快速切换的目的;</li> <li>● 例如从发射模式切换到接收模式;用户MCU也可以在模式切换前提前进入休眠,使用外部中断功能来获取AUX变化,从而进行模式切换。</li> </ul>                                                                                                      |
| 5  | ● 此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作<br>负荷,提高系统效率,降低功耗。                                                                                                                                                                                                           |



## 6.2 一般模式 (模式 0)

| 类型 | 当 MO = 0, M1 = 0 时,模块工作在模式 0      |
|----|-----------------------------------|
| 发射 | 用户可以通过串口输入数据,模块会启动无线发射。           |
| 接收 | 模块无线接收功能打开,收到无线数据后会通过串口 TXD 引脚输出。 |

# 6.3 WOR 模式 (模式 1)

| 类型 | 当 MO = 1, M1 = 0 时, 模块工作在模式 1 |  |  |
|----|-------------------------------|--|--|
| 发射 | 当定义为发射方时,发射前会自动增加一定时间的唤醒码     |  |  |
| 接收 | 可以正常接收数据,接收功能等同于模式 0          |  |  |

# 6.4 配置模式 (模式 2)

| 类型 | 当 MO = 0, M1 = 1 时,模块工作在模式 2 |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|
| 发射 | 无线发射关闭                       |  |  |  |  |  |  |  |
| 接收 | 无线接收关闭                       |  |  |  |  |  |  |  |
| 配置 | 用户可以访问寄存器,从而配置模块工作状态         |  |  |  |  |  |  |  |

# 6.5 深度休眠模式(模式3)

| 类型 | 当 MO = 1, M1 = 1 时,模块工作在模式 3                                           |  |  |  |  |  |  |
|----|------------------------------------------------------------------------|--|--|--|--|--|--|
| 发射 | 无法发射无线数据。                                                              |  |  |  |  |  |  |
| 接收 | 无法接收无线数据。                                                              |  |  |  |  |  |  |
| 注意 | 当从休眠模式进入到其他模式,模块会重新配置参数,配置过程中,AUX 保持低电平;<br>完毕后输出高电平,所以建议用户检测 AUX 上升沿。 |  |  |  |  |  |  |



# 第七章 寄存器读写控制

# 7.1 指令格式

配置模式 (模式 2: M1=1, M0=0) 下, 支持的指令列表如下 (**设置时**,

| 序号 | 指令格式                                  | 详细说明                                                                                                                 |  |  |  |  |  |  |
|----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    |                                       | 指令: C0+起始地址+长度+参数<br>响应: C1+起始地址+长度+参数                                                                               |  |  |  |  |  |  |
|    |                                       | 例 1: 配置信道为 0x09<br>指令 起始地址 长度 参数                                                                                     |  |  |  |  |  |  |
| 1  | 设置寄存器                                 | 发送: C0 05 01 09<br>返回: C1 05 01 09                                                                                   |  |  |  |  |  |  |
|    | EBYTE                                 | 例 2: 同时配置模块地址 (0x1234) 、网络地址(0x00)、串口(9600 8N1)、空速(2.4K) 发送: C0 00 04 12 34 00 61 返回: C1 00 04 12 34 00 61           |  |  |  |  |  |  |
|    |                                       | 指令: C1+起始地址+长度<br>响应: C1+起始地址+长度+参数                                                                                  |  |  |  |  |  |  |
|    |                                       | 例 1: 读取信道<br>指令 起始地址 长度 参数                                                                                           |  |  |  |  |  |  |
| 2  | 读取寄存器                                 | 发送: C1 05 01 返回: C1 05 01 09                                                                                         |  |  |  |  |  |  |
|    |                                       | 例 2: 同时读取模块地址、网络地址、串口、空速<br>发送: C1 00 04<br>返回: C1 00 04 12 34 00 61                                                 |  |  |  |  |  |  |
|    |                                       | 指令: C2 +起始地址+长度+参数<br>响应: C1 +起始地址+长度+参数                                                                             |  |  |  |  |  |  |
| 3  | 设置临时寄存器                               | 例 1: 配置信道为 0x09<br>指令 起始地址 长度 参数<br>发送: C2 05 01 09                                                                  |  |  |  |  |  |  |
|    |                                       | 返回: C1 05 01 09 例 2: 同时配置模块地址 (0x1234) 、网络地址 (0x00)、串口 (9600 8N1)、空速 (2.4K)                                          |  |  |  |  |  |  |
|    |                                       | 发送: C2 00 04 12 34 00 61<br>返回: C1 00 04 12 34 00 61                                                                 |  |  |  |  |  |  |
|    |                                       | 指令: CF CF + 常规指令<br>响应: CF CF + 常规响应                                                                                 |  |  |  |  |  |  |
|    | · · · · · · · · · · · · · · · · · · · | 例 1: 无线配置信道为 0x09<br>无线指令头 指令 起始地址 长度 参数                                                                             |  |  |  |  |  |  |
| 4  | 无线配置                                  | 发送: CF CF C0 05 01 09 返回: CF CF C1 05 01 09                                                                          |  |  |  |  |  |  |
|    |                                       | 例 2: 无线同时配置模块地址(0x1234)、网络地址(0x00)、串口(9600 8N1)、空速(2.4 发送: CF CF CO 00 04 12 34 00 61 返回: CF CF C1 00 04 12 34 00 61 |  |  |  |  |  |  |
| 5  | 格式错误                                  | 格式错误响应<br>FF FF FF                                                                                                   |  |  |  |  |  |  |



# 7.2 寄存器描述

| 序号   | 读写  | 名称      |       |        |       | 描述                                                                                                                                                                                                                                     | 备注                                                                |         |  |  |
|------|-----|---------|-------|--------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------|--|--|
| ООН  | 读/写 | ADDH    | ADDH  | (默认)   | 0)    | E CONTE CO                                                                                                                                                                                                                             | 模块地址高字节和低字节;<br>注意: 当模块地址等于FFFF时,可作为广播和                           |         |  |  |
| 01H  | 读/写 | ADDL    | ADDL  | (默认 0) |       |                                                                                                                                                                                                                                        | 监听地址,即:此时模块将不进行地址过滤                                               |         |  |  |
| 02Н  | 读/写 | NETID   | NETID | (默认    | (0)   |                                                                                                                                                                                                                                        | 网络地址,用于区分网络;<br>相互通信时,应设置为相同。                                     |         |  |  |
|      |     | 57)     | 7     | 6      | 5     | UART 串口速率(bps)                                                                                                                                                                                                                         |                                                                   |         |  |  |
|      | (   | (6)     | 0     | 0      | 0     | 串口波特率为 1200                                                                                                                                                                                                                            | 一<br>」相互通信的两个模块,串口波特率可以不同,                                        |         |  |  |
|      |     | 34      | 0     | 0      | 1     | 串口波特率为 2400                                                                                                                                                                                                                            | 校验方式也可以不同;                                                        |         |  |  |
|      |     |         | 0     | 1      | 0     | 串口波特率为 4800                                                                                                                                                                                                                            |                                                                   |         |  |  |
|      |     | 8       | 0     | 1      | 1®    | 串口波特率为 9600 (默认)                                                                                                                                                                                                                       | <ul><li>当连续发射较大数据包时,用户需要考虑波特</li><li>率相同带来的数据阻塞,甚至可能丢失;</li></ul> |         |  |  |
|      | ,   | (10)    | 1     | 0      | 0     | 串口波特率为 19200                                                                                                                                                                                                                           | 一十川,小小八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八八                         |         |  |  |
|      | (   |         | 1     | 0      | 1     | 串口波特率为 38400                                                                                                                                                                                                                           | 一般建议通信双方波特率相同。                                                    |         |  |  |
|      |     | 8       | 1     | 1      | 0     | 串口波特率为 57600                                                                                                                                                                                                                           | B                                                                 |         |  |  |
|      |     |         | 1     | 1      | 1     |                                                                                                                                                                                                                                        |                                                                   |         |  |  |
|      |     | (8      | 4     | 3      | 串口    | 校验位                                                                                                                                                                                                                                    | ® ®                                                               |         |  |  |
|      |     | (6))    | 0     | 0      | 8N1   | (默认)                                                                                                                                                                                                                                   |                                                                   |         |  |  |
| 03Н  | 读/写 | REGO    | 0     | 1      | 801   |                                                                                                                                                                                                                                        | <br>  通信双方串口模式可以不同;                                               |         |  |  |
| 0011 |     | 183,200 | 1     | 0      | 8E1   | EB EF                                                                                                                                                                                                                                  | CIA/X/3 1 1 100 4 5 1 1 1 3,                                      |         |  |  |
|      |     |         | 1     | 1      |       |                                                                                                                                                                                                                                        |                                                                   |         |  |  |
|      |     |         | 2     | 1      | 0     | 无线空中速率(bps)                                                                                                                                                                                                                            |                                                                   |         |  |  |
|      | (   |         | 0     | 0      | 0     | 空中速率 2. 4K                                                                                                                                                                                                                             |                                                                   |         |  |  |
|      |     |         | 0     | 0      | 1     | 空中速率 2. 4K                                                                                                                                                                                                                             |                                                                   |         |  |  |
|      |     |         | 0     | 1      | 0     | 空中速率 2. 4k (默认)                                                                                                                                                                                                                        | 1                                                                 |         |  |  |
|      |     | ®       | 0     | 1      | 1     | 空中速率 4.8k                                                                                                                                                                                                                              | 」通信双方空中速率必须相同;                                                    |         |  |  |
|      |     | (6)     | 1     | 0      | 0     | 空中速率 9.6k                                                                                                                                                                                                                              |                                                                   |         |  |  |
|      |     | (       |       | 1      | 0     | 1                                                                                                                                                                                                                                      | 空中速率 19.2k                                                        | TE CATE |  |  |
|      |     | 8       | 1     | 1      | 0     | 空中速率 38. 4k                                                                                                                                                                                                                            | - 13                                                              |         |  |  |
|      | V   |         | 1     |        | 1     | 空中速率 62. 5k                                                                                                                                                                                                                            |                                                                   |         |  |  |
|      |     | (8      | 7     | 6      | (%)   |                                                                                                                                                                                                                                        |                                                                   |         |  |  |
|      | (   |         |       | 0      | 分包    |                                                                                                                                                                                                                                        | 用户发送数据小于分包长度,接收端串口输出<br>呈现为不间断连续输出;                               |         |  |  |
|      |     |         | 0     |        |       | 字节(默认)                                                                                                                                                                                                                                 |                                                                   |         |  |  |
|      |     | 13      | 0     | 1      | 128 - |                                                                                                                                                                                                                                        |                                                                   |         |  |  |
|      |     |         | 1     | 0      | 64 字  | ·                                                                                                                                                                                                                                      | 包输出。<br>                                                          |         |  |  |
| 04H  |     |         | 1     | 1      | 32 字  |                                                                                                                                                                                                                                        | 自田北人 / / 与 / / / 中 4 · 山 · 京 · · · · · · · · · · · · · · · ·      |         |  |  |
| 0411 | 读/写 | REG1    | 5     |        |       | 車使能                                                                                                                                                                                                                                    | 启用指令(分包设定、发射功率为默认参数,<br>配置模式): C0 04 01 20;                       |         |  |  |
|      |     | 0       | 禁用    | (默认)   |       | 品 [ 侯 八 ) : CO 04 OI 20;<br>启用后,可在传输模式或 WOR 发送模式发送指<br>令 CO C1 C2 C3 指令 读取寄存器;<br>寄存器 0x00 : 当前环境噪声 RSSI;<br>寄存器 0x01 : 上一次接收数据时的 RSSI<br>(当前信道噪声为: dBm = − (256 − RSSI))<br>指令格式: CO C1 C2 C3+起始地址+读取长度;<br>返回: C1 + 地址+读取长度+读取有效值;如: |                                                                   |         |  |  |
|      |     | 1       |       | 启用     | 7     |                                                                                                                                                                                                                                        |                                                                   |         |  |  |



|         |     |          |                                             |            |          |                                                                 | 发送 CO C1 C2 C3 00 01<br>返回 C1 00 01 RSSI (地址只能从 00 开始)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------|-----|----------|---------------------------------------------|------------|----------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         |     |          | 4                                           | 3          | 2        | 保留                                                              | CE OF OF THE PARTY THE PARTY TO PER THE |  |
|         |     | 170      |                                             |            |          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |     | 5)       | 1                                           | 0          | 发射       | <b> </b>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |     | Collin   | 0                                           | 0          | 22dl     | Bm (默认)                                                         | □ 功率和电流是非线性关系,最大功率时,电源<br>□ 效率最高;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|         |     | 3        | 0                                           | 1          | 17d      | 3m                                                              | 从十取间;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|         |     |          | 1                                           | 0          | 13dl     | 3m                                                              | 电流不会随功率降低而同比例降低。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         |     | (8       | 1                                           | 1          | 10dl     | Bm ®                                                            | ® 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 05H     | 读/写 | REG2     |                                             | 空制(Cl      |          | 0.4 & 片光                                                        | 实际频率= 410.125 + CH *1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|         |     |          |                                             |            |          | 84 个信道                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |     | 13       | 7                                           | 启用」        |          |                                                                 | 启用后,模块收到无线数据,通过串口 TXD 输                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|         |     |          | 0                                           | 禁用         | (默认      | .)                                                              | 出后,将跟随一个 RSSI 强度字节。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|         |     | 8        | 1                                           | 启用         | <u> </u> | <u>®</u>                                                        | © ©                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|         |     |          | 6                                           | 传输力        |          | aka .                                                           | 定点传输时,模块会将串口数据的前三个字节                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|         |     |          | 0                                           |            | 4        | 默认)                                                             | │ 识别为: 地址高+地址低+信道,并将其作为无<br>│ 线发射目标。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|         |     | 10       | 1                                           | 定点作        |          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |     | R        | 5                                           | 中继项        | 70.      | (R)                                                             | 中继功能启用后,如果目标地址不是模块自身,<br>□模块将启动一次转发;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|         |     | 50       | 0                                           |            |          | 能(默认)                                                           | 为了防止数据回传,建议和定点模式配合使用;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|         | (   | (3)      | 1                                           | 启用「        |          | 能                                                               | 即:目标地址和源地址不同。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|         |     | 读/写 REG3 | 4                                           | LBT 使      |          |                                                                 | 启用后,无线数据发射前会进行监听,可以在<br>一定程度上避开干扰,但可能带来数据延迟;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|         |     |          | 0                                           | 禁用         | (默认      | )                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |     |          | 1 启用                                        |            |          |                                                                 | LBT 最大停留时间 2 秒, 达到两秒会强制发出。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|         |     |          | 3                                           | 7710       | 1112     | 发控制                                                             | _ 仅针对模式1有效;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 06Н     | 读/写 |          | 0                                           | 工作社        | E WOR    | (默认)<br>监听模式,监听周期见下文(WOR<br>以节省大量功耗。                            | 1. wor 的接收模式下,模块可以修改唤醒后的级时时间,默认时间为0;<br>2. 接收端需要在配置模式下发送指令C0 09 C<br>03 E8(C0 为写命令,09 为寄存起始器地址,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|         |     |          | WOR 发射方<br>1 模块收发打开,且在发射数据时,加入一定<br>时间的唤醒码。 |            |          | 为长度,03 E8 为设置的延时,最大 FFFF 即 65535ms,设置为 0 则关闭唤醒延时。)3. 在延时内可以发送数据 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|         |     | 18       | 2                                           | 1          | 0        | WOR 周期                                                          | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|         |     |          | 0                                           | 0          | 0        | 500ms                                                           | 仅针对模式1有效;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|         |     | 8        | 0                                           | 0          | 1        | 1000ms                                                          | HH T (1) WOD 1500 H 1 1000 H 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|         |     |          | 0                                           | (1         | 0        | 1500ms                                                          | 周期 T= (1+WOR) *500ms,最大 4000ms,最小<br>为 500ms;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|         |     |          | 0                                           | 1          | 1        | 2000ms                                                          | 7,3 33 4 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|         |     |          | 1                                           | 0          | 0        | 2500ms                                                          | WOR 监听间隔周期时间越长,平均功耗越低,但                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|         |     | 3        | 1                                           | 0          | 1 @      | 3000ms                                                          | - 数据延迟越大;<br>- 数据延迟越大;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|         |     |          | 1                                           | 1          | 0        | 3500ms                                                          | 收发双方必须一致(非常重要)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|         |     | 9        | 1                                           | 1          | 1        | 4000ms                                                          | TE CITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 07Н     | 写   | CRYPT_H  | 密钥高                                         | 朗高字节(默认 0) |          |                                                                 | 只写,读取返回 0;<br>用于加密,避免被同类模块截获空中无线数据;<br>模块内部将使用这两个字节作为计算因子对空                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 08H     | 写   | CRYPT_L  | 密钥值                                         | 氐字节(       | (默认      | 0)                                                              | 中无线信号进行变换加密处理。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 80H~86H | 读   | PID      | 产品作                                         | <br>言息 7 个 | 字节       |                                                                 | 产品信息7个字节                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |



## 7.3 出厂默认参数

| 型号          | 出厂默认参数值: CO 00 00 62 00 17 |        |      |         |      |      |       |  |  |
|-------------|----------------------------|--------|------|---------|------|------|-------|--|--|
| 模块型号        | 频率                         | 地址     | 信道   | 空中速率    | 波特率  | 串口格式 | 发射功率  |  |  |
| E22-400T22S | 433.125MHz                 | 0x0000 | 0x17 | 2.4kbps | 9600 | 8N1  | 22dbm |  |  |

## 第八章 中继组网模式使用

| 序号 | 中继模式说明                                                                            |
|----|-----------------------------------------------------------------------------------|
| 1  | 通过配置模式设置中继模式后,切换到一般模式下,中继开始工作。                                                    |
| 2  | 中继模式下 ADDH, ADDL 不再作为模块地址,而是分别对应 NETID 转发配对,如果接收到其中一个网络,则转发到另一个网络;中继器自身的网络 ID 无效。 |
| 3  | 中继模式下,中继模块不能发送和接收数据,无法进行低功耗操作。                                                    |
| 4  | 用户从模式 3(休眠模式)进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。                             |

#### 中继组网规则说明:

- 1、转发规则,中继能将数据在两个NETID之间进行双向转发。
- 2、中继模式下, ADDH\ADDL 不再作为模块地址, 作为 NETID 转发配对

#### 如图:

#### ①一级中继

"节点1" NETID 为08。

"节点 2" NETID 为 33。

中继 1 的 ADDH\ADDL 分别为 08, 33。

所以节点1(08)发送的信号能被转发到节点2(33)

同时节点1和节点2地址相同,因此节点1发送的数据能被节点2收到。

#### ②二级中继

中继 2 的 ADDH\ADDL 分别为 33,05。

所以中继2能转发中继1的数据到网络NETID: 05。

从而节点3和节点4能接收到节点1数据。节点4正常输出数据,节点3与节点1地址不同,所以不输出数据。

#### ③双向中继

如图配置: 节点1发送的数据节点2、4可以收到, 节点2、4发送的数据, 节点1也可以收到。





## 第九章 上位机配置说明

● 下图为 E22-400T22S 配置上位机显示界面,用户可通过 M0、M1 切换为命令模式,在上位机进行参数快速配置和读取。



● 在配置上位机中,模块地址、频率信道、网络 ID、密钥均为十进制显示模式;其中各参数取值范围:

网络地址: 0~65535

频率信道: 0~83

网络 ID: 0~255

密钥: 0~65535

● 用户在使用上位机配置中继模式时,需要特别注意,由于在上位机中,各参数为十进制显示模式,所以模块地址和网络 ID 填写时需要通过转换进制;

如发射端 A 输入的网络 ID 为 02,接收端 B 输入的网络 ID 为 10,则中继端 R 设置模块地址时,将十六进制数值 0X020A 转换为十进制数值 522 作为中继端 R 填入的模块地址;

即此时中继端 R 需要填入的模块地址值为 522。



## 第十章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留 30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在需要经过模块下方,假设模块焊接在Top Layer, 在模块接触部分的Top Layer铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽:
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽:
- 通信线若使用 5V 电平, 必须串联 1k-5. 1k 电阻(不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2. 4GHz 的 TTL 协议, 例如: USB3. 0:
- 天线安装结构对模块性能有较大影响,务必保证天线外露且最好垂直向上;
- 当模块安装于机壳内部时,可使用优质的天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。





# 第十一章 常见问题

#### 传输距离不理想 11.1

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

#### 模块易损坏 11.2

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动:
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

#### 11.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 延长线、馈线品质差或太长, 也会造成误码率偏高。





# 第十二章 焊接作业指导

# 12.1 回流焊温度

| Profile Feature                     | 曲线特征        | Sn-Pb Assembly | Pb-Free Assembly   |
|-------------------------------------|-------------|----------------|--------------------|
| Solder Paste                        | 锡膏          | Sn63/Pb37      | Sn96. 5/Ag3/Cu0. 5 |
| Preheat Temperature min (Tsmin)     | 最小预热温度      | 100℃           | 150℃               |
| Preheat temperature max (Tsmax)     | 最大预热温度      | 150℃           | 200℃               |
| Preheat Time (Tsmin to Tsmax)(ts)   | 预热时间        | 60-120 sec     | 60-120 sec         |
| Average ramp-up rate(Tsmax to Tp)   | 平均上升速率      | 3℃/second max  | 3℃/second max      |
| Liquidous Temperature (TL)          | ⑧ 液相温度 ⑧    | 183℃           | ® 217℃             |
| Time (tL) Maintained Above (TL)     | 液相线以上的时间    | 60-90 sec      | 30-90 sec          |
| Peak temperature (Tp)               | 峰值温度        | 220−235°C      | 230−250℃           |
| Aveage ramp-down rate (Tp to Tsmax) | 平均下降速率      | 6℃/second max  | 6℃/second max      |
| Time 25℃ to peak temperature        | 25℃到峰值温度的时间 | 6 minutes max  | 8 minutes max      |

# 12.2 回流焊曲线图





# 第十三章 相关型号

| 产品型号        | 芯片方案   | 载波频率<br>Hz | 发射功率<br>dBm | 测试距离<br>km | 封装形式 | 产品尺寸    | 通信接口 |
|-------------|--------|------------|-------------|------------|------|---------|------|
| E22-400T22S | SX1262 | 433/470M   | 22          | 5          | 贴片   | 16*26   | UART |
| E22-400T22D | SX1262 | 433/470M   | 22          | 5          | 直插   | 21*36   | UART |
| E22-400T30S | SX1262 | 433/470M   | 30          | 10         | 贴片   | 20*40.5 | UART |
| E22-400T30D | SX1262 | 433/470M   | 30          | 10         | 直插   | 24*43   | UART |
| E22-900T22S | SX1262 | 868/915M   | 22          | 5          | 贴片   | 16*26   | UART |
| E22-900T22D | SX1262 | 868/915M   | 22          | 5          | 直插   | 21*36   | UART |
| E22-900T30S | SX1262 | 868/915M   | 30          | 10         | 贴片   | 20*40.5 | UART |
| E22-900T30D | SX1262 | 868/915M   | 30          | 10         | 直插   | 24*43   | UART |

# 第十四章 天线指南

# 14.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

| 产品型号                 | 类型    | 频段<br>Hz | 接口                 | 增益<br>dBi | 高度<br>mm   | 馈线<br>cm | 功能特点          |
|----------------------|-------|----------|--------------------|-----------|------------|----------|---------------|
| TX433-NP-4310        | 柔性天线  | 433M     | 焊接                 | 2.0       | 43. 8*9. 5 | E - ((   | 内置柔性, FPC 软天线 |
| <u>TX433-JZ-5</u>    | 胶棒天线  | 433M     | SMA-J              | 2.0       | 52         | -        | 超短直式,全向天线     |
| <u>TX433-JZG-6</u>   | 胶棒天线  | 433M     | SMA-J              | 2.5       | 62         | - (5)    | 超短直式,全向天线     |
| <u>TX433-JW-5</u>    | 胶棒天线。 | 433M     | ⊗ SMA-J            | 2. 0      | 50         | -        | 弯折胶棒,全向天线     |
| <u>TX433-JWG-7</u>   | 胶棒天线  | 433M     | SMA-J              | 2.5       | 75         |          | 弯折胶棒,全向天线     |
| <u>TX433-JK-11</u>   | 胶棒天线  | 433M     | SMA-J              | 2.5       | 110        | - (      | 可弯折胶棒,全向天线    |
| TX433-JK-20          | 胶棒天线  | 433M     | SMA-J              | 3.0       | 210        | -        | 可弯折胶棒,全向天线    |
| TX433-XPL-100        | 吸盘天线  | 433M     | SMA-J              | 3.5       | 185        | 100      | 小型吸盘天线, 性价比   |
| TX433-XP-200         | 吸盘天线  | 433M     | <sup>™</sup> SMA-J | 4. 0      | 190        | 200      | 中性吸盘天线,低损耗    |
| TX433-XPH-300        | 吸盘天线  | 433M     | SMA-J              | 6.0       | 965        | 300      | 大型吸盘天线, 高增益   |
| <u>TX490-JZ-5</u>    | 胶棒天线  | 470/490M | SMA-J              | 2.0       | 50         | -        | 超短直式,全向天线     |
| <u>TX490-XPL-100</u> | 吸盘天线  | 470/490M | SMA-J              | 3.5       | 120        | 100      | 小型吸盘天线,性价比    |

# 第十五章 批量包装方式



# 修订历史

| 版本  | 修订日期      | 修订说明 | 维护人      |
|-----|-----------|------|----------|
| 1.0 | 2021-3-8  | 初始版本 | & Linson |
| 1.1 | 2021-5-24 | 手册优化 | Linson   |

## 关于我们



销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: <u>www.ebyte.com</u>

公司地址:四川省成都市高新西区西区大道 199号 B5 栋

