Семинар 6

Алексеев Василий

13 + 17 октября 2022

Содержание

	Прямая и плоскость в пространстве		1
	Задачи		
	2.1	# 6.15	4
	2.2	# 6.3	4
	2.3	# 6.10(1)	6
	2.4	# 6.10(4) + # 6.11(8)	7
	2.5	# 6.18(1)	9
	2.6	# 6.17(1)	10

1. Прямая и плоскость в пространстве

Линейное уравнение от координат точки на плоскости

$$\begin{cases} Ax + By + C = 0\\ A^{2022} + B^{2022} > 0 \end{cases}$$

задавало прямую (на плоскости). Плоскость — двумерное пространство, одно линейное равнение — одна "связь" между координатами, в итоге — прямая, одномерное подпространство.

Если же мы рассмотрим линейное уравнение от координат точки в общей декартовой системе координат (ОДСК) в пространстве

$$\begin{cases} Ax + By + Cz + D = 0\\ |A| + (e^{|B|} - 1) + 17.5C^2 > 0 \end{cases}$$
 (1)

то оно будет описывать плоскость. Пространство трёхмерное, снова одно линейное уравнение, получается плоскость — двумерное подпространство...

Рассмотрим ещё несколько способов задать плоскость. Например, векторный. Будем считать, что мы знаем радиус-вектор \boldsymbol{r}_0 некоторой точки плоскости. А также два вектора \boldsymbol{p} и \boldsymbol{q} , параллельных плоскости (направляющие векторы плоскости), но неколлинеарных. Тогда можно заметить, что для радиусов-векторов \boldsymbol{r} точек плоскости и только таких точек верно, что разница $\boldsymbol{r}-\boldsymbol{r}_0$ раскладывается по \boldsymbol{p} и \boldsymbol{q} (1):

$$\mathbf{r} - \mathbf{r}_0 = t_1 \mathbf{p} + t_2 \mathbf{q}$$

для некоторых $t_1 \in \mathbb{R}$ и $t_2 \in \mathbb{R}$ (то есть для любой точки плоскости найдутся подходящие коэффициенты t_1 и t_2 , и в то же время, какие бы t_1 и t_2 ни подставили в формулу, получим радиус-вектор именно какой-то точки плоскости). Или, если перенести \textbf{r}_0 направо и начать "варьировать" t_1 и t_2 , получим векторное параметрическое уравнение плоскости:

$$\boxed{\boldsymbol{r} = \boldsymbol{r}_0 + t_1 \boldsymbol{p} + t_2 \boldsymbol{q}, \quad t_1, t_2 \in \mathbb{R}}$$

Одно векторное уравнение равносильно системе из трёх скалярных уравнений:

$$\begin{cases} x = x_0 + t_1 p_x + t_2 q_x \\ y = y_0 + t_1 p_y + t_2 q_y \\ z = z_0 + t_1 p_z + t_2 q_z \end{cases}$$

где введены обозначения x, y, z для компонент r; x_0 , y_0 , z_0 для компонент r_0 ; и p_x , p_y , p_z и q_x , q_y , q_z для компонент векторов p и q соответственно.

Ёщё один вариант переписать уравнение (2) исходит из того, что векторы $r-r_0$, p и q компланарны. То есть объём параллелепипеда, построенного на них, равен нулю. То есть:

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{p}, \mathbf{q}) = 0$$

Как и для прямой на плоскости, для плоскости в пространстве, из аналогичных рассуждений, можно выписать *нормальное векторное уравнение*:

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{n}) = 0$$

$$\mathbf{r}, \mathbf{n} = D, \quad D \in \mathbb{R}$$
(3)

Рис. 1: Два направляющих вектора p и q, таких что $p \not\parallel q$, и начальная точка r_0 однозначно задают плоскость.

где n — нормальный вектор плоскости, то есть вектор, перпендикулярный плоскости.

От нормального векторного уравнения можно перейти к "популярной задачке" на нахождение расстояния от точки до плоскости. Пусть есть точка M(x, y) и плоскость α , заданная нормальным векторным уравнением (3). Тогда расстояние $\rho(M, \alpha)$, находится точно так же, как в прошлый раз для случая точки и прямой:

$$\rho(M,\alpha) = \left| \frac{(r - r_0, n)}{|n|} \right| \tag{4}$$

Если система координат декартова прямоугольная (ПДСК) и известно уравнение плоскости α в виде (1), то, точно так же, как и в прошлый раз, формула для вычисления расстояния преобразуется в следующую:

$$\rho(M,\alpha) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Зададимся теперь вопросом о связи разных представлений одной и той же плоскости в пространстве. Так, если, например, известно уравнение плоскости вида (1), то как из него получить направляющие векторы, необходимые, например, для уравнения (2)? Это можно сделать так же, как в прошлый раз для прямой. Пусть есть две различные точки на плоскости: $P(x_1, y_1)$ и $Q(x_2, y_2)$. Тогда направляющий вектор можно выбрать в виде $\overrightarrow{PQ} = (x_2 - x_1, y_2 - y_1)$. Запишем, что значит, что точки P и Q лежат на плоскости — их координаты удовлетворяют уравнению плоскости:

$$\begin{cases} Ax_1 + By_1 + Cz_1 + D = 0 \\ Ax_2 + By_2 + Cz_2 + D = 0 \end{cases}$$

Нам нужны разности координат — тогда вычтем из второго уравнения первое. Получим:

$$A(x_2 - x_1) + B(y_2 - y_1) + C(z_2 - z_1) = 0$$

Но нам не нужны сами точки P и Q. Мы хотим найти только направляющий вектор плоскости. Допустим, у искомого направляющего вектора координаты (α, β, γ) . Тогда для поиска этих координат можно использовать уравнение:

$$A\alpha + B\beta + C\gamma = 0 \tag{5}$$

По виду это уравнение напоминает полученное в прошлый раз для поиска компонент направляющего вектора прямой (что в принципе не удивительно, ведь рассуждения были проведены те же самые). В прошлый раз получилось довольно быстро подобрать направляющий вектор прямой — подошёл вектор вида (-B, A). Здесь же... всё уже не так очевидно, поэтому обычно направляющие векторы плоскости ищут отдельно в каждой конкретной задаче, просто "внимательно вглядываясь" в соотношение (5). Но вообще... можно попытаться найти направляющие векторы и в общем виде. Сделаем же это (почему бы и нет)!

(...Внимательно смотрим на (5), при этом понимая, что хотя бы одна компонента у направляющего вектора обязана быть отлична от нуля.)

Не сложно видеть, что направляющие векторы плоскости могут быть выбраны в общем случае как следующие векторы:

$$p = \begin{pmatrix} B+C\\ -A-C\\ -A+B \end{pmatrix}, \quad q = \begin{pmatrix} B-C\\ -A+C\\ A-B \end{pmatrix} \tag{6}$$

Но запоминать эти формулы не стоит) Проще каждый раз "подбирать".

Теперь вернёмся ещё раз к прямой. Как на прямую "можно смотреть" в пространстве? Векторное параметрическое уравнение

$$\boxed{r = r_0 + at, \quad t \in \mathbb{R}} \tag{7}$$

и в пространстве, очевидно, описывает прямую ("сдвиг в r_0 ", а потом "сдвиг вдоль a"). Правда, в скалярном виде получается система из $mp\ddot{e}x$ уравнений:

$$\begin{cases} x = x_0 + a_x t \\ y = y_0 + a_y t \\ z = z_0 + a_z t \end{cases}$$

Выражая из каждого уравнения системы параметр t и приравнивая, получаем *каноническое уравнение прямой в пространстве*:

$$\frac{x - x_0}{a_x} = \frac{y - y_0}{a_y} = \frac{z - z_0}{a_z}$$

Уравнение (7) фактически говорит о том, что для точек прямой и только для них верно, что $r-r_0 \parallel a$. В пространстве условие коллинеарности двух векторов можно записать таким образом:

$$[r - r_0, a] = \mathbf{0}$$
$$[r, a] = \mathbf{b}$$

В пространстве также появляется ещё один, совершенно новый, способ описать прямую. Как пересечение двух непараллельных плоскостей (2):

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$
 (8)

Рис. 2: Две непараллельных плоскости пересекаются по прямой.

2. Задачи

Последний рассмотренный сюжет (про прямую как пересечение плоскостей) плавно перетекает в номер

2.1. # 6.15

Задача. Доказать, что направляющий вектор a прямой, заданной системой (8), может быть найден по формуле¹:

$$a = \begin{vmatrix} e_1 & e_2 & e_3 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$$
 (9)

Решение. Распишем компоненты вектора:

$$\mathbf{a} = \left\{ B_1 C_2 - C_1 B_2, C_1 A_2 - A_1 C_2, A_1 B_2 - B_1 A_2 \right\}$$

Можно теперь просто подставить эти компоненты в соотношения (5), выписанные для обеих плоскостей, и убедиться, что a в самом деле им обеим параллелен. А значит, параллелен и прямой, по которой плоскости пересекаются. То есть может быть выбран её направляющим вектором.

Проверить было несложно. Сложнее... понять, как вообще дошли до того, чтобы искать a в описанном виде) Некоторую интуицию за всем этим можно подметить из того, что "разности" между коэффициентами, соответствующими одной и той же плоскости, стоят в компонентах a в целом так же, по "такой же схеме", как мы получили в (6)...

2.2. # 6.3

Задача. Выписать необходимое и достаточное условие, при котором прямые $l_1: \mathbf{r} = \mathbf{r}_1 + \mathbf{a}_1 t$ и $l_2: \mathbf{r} = \mathbf{r}_2 + \mathbf{a}_2 t$

- пересекаются в одной точке
- скрещиваются

¹В общей декартовой системе это **не** векторное произведение. На формулу надо смотреть именно так, как она написана: определитель некоторой матрицы.

- параллельны, но не совпадают
- совпадают

Рис. 3: Возможные случаи взаимного расположения двух прямых в пространстве.

Решение. Для пересечения надо потребовать $a_1 \not\parallel a_2$ (3).

На плоскости этого было достаточно. В пространстве же это условие подходит ещё и для скрещивания. Надо как-то "разделить" пересечение и скрещивание. Прямые скрещиваются, если не лежат в одной плоскости. Отсюда можно заметить, что для скрещивающихся прямых векторы $\mathbf{r}_2 - \mathbf{r}_1$, \mathbf{a}_1 и \mathbf{a}_2 будут некомпланарны. И наоборот: если указанные векторы компланарны, то прямые будут лежать в одной плоскости. Итого, условие скрещивания:

$$\begin{cases} [\boldsymbol{a}_1, \boldsymbol{a}_2] \neq \boldsymbol{0} \\ (\boldsymbol{r}_2 - \boldsymbol{r}_1, \boldsymbol{a}_1, \boldsymbol{a}_2) \neq 0 \end{cases}$$

где воспользовались тем, что условие $a_1 \not\parallel a_2$ можно переписать в пространстве как $[a_1,a_2] \neq 0$.

Пересечение в одной точке определяется такими условиями:

$$\begin{cases} [a_1, a_2] \neq \mathbf{0} \\ (r_2 - r_1, a_1, a_2) = 0 \end{cases}$$

Чтобы перейти к следующим случаям взаимного расположения прямых в пространстве (параллельность и совпадение), можно сразу обратить условие неколлинеарности направляющих векторов. То есть в оставшихся случаях имеем $[a_1,a_2]=\mathbf{0}$. На самом деле мы уже как бы перешли в плоскость, а с плоскостью уже разобрались в прошлый раз. Поэтому можно сразу написать, что параллельность, но не совпадение — это

$$\begin{cases} [a_1, a_2] = \mathbf{0} \\ [r_2 - r_1, a_1] \neq \mathbf{0} \end{cases}$$

И совпадение:

$$\begin{cases} [a_1, a_2] = \mathbf{0} \\ [r_2 - r_1, a_1] = \mathbf{0} \end{cases}$$

2.3. # 6.10(1)

Задача. Составить уравнение проекции l' прямой $l: r = r_0 + at$ $(t \in \mathbb{R})$, не перпендикулярной плоскости $\alpha: (r, n) = D$, на эту плоскость.

Решение. Раз прямая l и плоскость α не перпендикулярны, то проекцией l на α также будет прямая (а не точка).

Случай 1: пересечение. Допустим, прямая l и плоскость α пересекаются в некоторой точке $M(\mathbf{r}_1)$ (см. рисунок 4). Найдём её:

$$\begin{cases} r_1 = r_0 + at_1 \\ (r_1, n) = D \end{cases}$$
$$(r_0 + at_1, n) = D \Rightarrow t_1 = \frac{D - (r_0, n)}{(a, n)}$$

Рис. 4: Проекция прямой на плоскость в случае пересечения прямой и плоскости.

Чем определяется прямая l'? Точка M принадлежит также и l'. Таким образом, для "полного понимания" l' не хватает только направляющего вектора. Но его можно найти, зная направляющий вектор a прямой l. Действительно, упомянутый a можно представить как сумму двух векторов: a_n , параллельного n, и a_α , перпендикулярного ему (то есть лежащего в плоскости α):

$$a = a_n + a_\alpha, \quad a_n \parallel n, a_\alpha \perp n$$

Но составляющая a_{α} — и есть направляющий вектор l':

$$a_{\alpha} = a - \frac{(a, n)}{|n|^2} n$$

И тогда уравнение прямой l':

$$r = r_1 + a_{\alpha}t, \quad t \in \mathbb{R}$$

Случай 2: нет пересечения. Но возможен и такой случай, когда прямая l параллельна плоскости α (5). В этом случае уже нет никакой "особой" точки, за которую можно бы

Рис. 5: Проекция прямой на плоскость в случае, когда прямая и плоскость не пересекаются.

было "зацепиться". Но можно... просто взять некоторую случайную точку с прямой l и спроецировать её на α . Получим точку с l'. А направляющий вектор l' будем таким же, как у l.

Спроецируем на α точку ${m r}_0$. Пусть радиус-вектор ортогональной проекции есть ${m r}_0'$. Тогда условия, однозначно задающие ${m r}_0'$:

$$\begin{cases} (\mathbf{r}_0 - \mathbf{r}_0') \parallel \mathbf{n} \\ \mathbf{r}_0' \in \alpha \end{cases} \Leftrightarrow \begin{cases} \mathbf{r}_0 - \mathbf{r}_0' = k\mathbf{n} \\ (\mathbf{r}_0', \mathbf{n}) = D \end{cases}$$

$$(\mathbf{r}_0 - k\mathbf{n}, \mathbf{n}) = D \Rightarrow k = \frac{(\mathbf{r}_0, \mathbf{n}) - D}{|\mathbf{n}|^2}$$

Уравнение проекции l':

$$r = r_0' + at, \quad t \in \mathbb{R}$$

2.4. # 6.10(4) + # 6.11(8)

Задача. Составить уравнение прямой, пересекающей две скрещивающиеся прямые

$$l_1: r = r_1 + a_1 t$$

$$l_2$$
: $r = r_2 + a_2 t$

под прямыми углами (общий перпендикуляр к скрещивающимся прямым). Найти расстояние между прямыми l_1 и l_2 .

Решение.

Способ 1: "понятный, но долгий". Пусть прямая – общий перпендикуляр пересекает прямые l_1 и l_2 в точках $P(\pmb{r}_p)$ и $Q(\pmb{r}_q)$ соответственно. Эти точки можно найти. Они одно-

7

значно определяются следующим набором условий:

$$\begin{cases} P \in l_1 \\ Q \in l_2 \\ \overrightarrow{PQ} \perp \boldsymbol{a}_1 \\ \overrightarrow{PQ} \perp \boldsymbol{a}_2 \end{cases} \Leftrightarrow \begin{cases} \boldsymbol{r}_p = \boldsymbol{r}_1 + \boldsymbol{a}_1 \boldsymbol{t}_p \\ \boldsymbol{r}_q = \boldsymbol{r}_2 + \boldsymbol{a}_2 \boldsymbol{t}_q \\ (\boldsymbol{r}_q - \boldsymbol{r}_p, \boldsymbol{a}_1) = 0 \\ (\boldsymbol{r}_q - \boldsymbol{r}_p, \boldsymbol{a}_2) = 0 \end{cases}$$

При подстановке ${\it r}_p$ и ${\it r}_q$ из первого и второго уравнений в третье и четвёртое, получаем систему линейных уравнений 2×2 относительно t_p и t_q . Её точно можно будет решить (в процессе решения должно будет "вылезти" условие того, что прямые должны скрещиваться). Найдя t_p и t_q , можно будет вычислить ${\it r}_p$ и ${\it r}_q$. А далее можно уже получить и уравнение общего перпендикуляра (на тот момент будем знать и начальную точку, и направляющий вектор), и длину $PQ = |{\it r}_q - {\it r}_p|$ — расстояние между прямыми l_1 и l_2 . Но... есть способ решения покороче.

Способ 2 (перпендикуляр): "непонятный, но покороче", или "а так вообще... можно?.." Найдём уравнение общего перпендикуляра как прямой, являющейся пересечением двух плоскостей α и β (6). Первая плоскость α проходит через прямую l_1 и общий перпендикуляр. Вторая плоскость β проходит через прямую l_2 и общий перпендикуляр. (Очевидно, плоскости α и β пересекаются по искомому перпендикуляру.) Какие уравнения описывают указанные плоскости?

Рис. 6: К поиску общего перпендикуляра к двум скрещивающимся прямым.

Ещё раз посмотрим на α . Раз $l_1 \subset \alpha$, то и точка с радиусом-вектором r_1 (начальная точка прямой l_1) лежит на α . В то же время a_1 и направляющий вектор общего перпендикуляра будут направляющими векторами плоскости α (неколлинеарными). Направляющий вектор общего перпендикуляра можно выбрать как $[a_1,a_2]$. Таким образом, для точки плоскости α с радиусом-вектором r и только для такой точки верно, что векторы $r-r_1$, a_1 , $[a_1,a_2]$ оказываются компланарны. Аналогично, компланарны будут векторы $r-r_2$, r_2 и r_3 и r_4 для любой точки с радиусом-вектором r_4 на плоскости r_4 . Объединяя уравнения описанных плоскостей в систему, получаем... "уравнение" общего перпендикуляра:

$$\begin{cases} (r - r_1, a_1, [a_1, a_2]) = 0 \\ (r - r_2, a_2, [a_1, a_2]) = 0 \end{cases}$$

Способ 2 (расстояние).

Перейдём к вопросу о расстоянии между скрещивающимися прямыми. Один возможный вариант решения уже разобрали (через поиск радиусов-векторов \mathbf{r}_p и \mathbf{r}_q). Рассмотрим ещё один несложный способ.

Рис. 7: К поиску расстояния между скрещивающимися прямыми.

Перенесём параллельно прямую l_2 до пересечения с l_1 . Получим плоскость γ_1 , проходящую через l_1 и параллельную также l_2 (7). Перенесём также параллельно l_1 до пересечения с l_2 , получим плоскость γ_2 . Не сложно видеть, что расстояние между l_1 и l_2 есть расстояние между γ_1 и γ_2 . Которое равно расстоянию от некоторой точки плоскости γ_2 (например, точки r_2) до плоскости γ_1 . Но это просто "расстояние от точки до плоскости", которое можно посчитать по формуле (4). При этом точка, от которой считаем расстояние — это r_2 ; начальная точка плоскости γ_1 — это r_1 ; а вектор нормали к плоскости γ_1 можно взять как $[a_1, a_2]$:

$$\rho(l_1, l_2) = \left| \frac{(\mathbf{r}_2 - \mathbf{r}_1, [\mathbf{a}_1, \mathbf{a}_2])}{|[\mathbf{a}_1, \mathbf{a}_2]|} \right|$$

Если посмотреть теперь внимательнее на полученную формулу, то можно увидеть за ней ещё такой смысл. Искомое расстояние — это высота параллелепипеда, построенного на векторах $(\mathbf{r}_2 - \mathbf{r}_1)$, \mathbf{a}_1 и \mathbf{a}_2 . Высота, проведённая к основанию, соответствующему векторам \mathbf{a}_1 и \mathbf{a}_2 .

2.5. # 6.18(1)

Задача. Составить уравнение прямой l, проходящей через точку A(1,3,1) и параллельной прямой l_2 , заданной как пересечение плоскостей:

$$l_2: \begin{cases} x + y - z + 2 = 0 \\ 2x + 3y + z = 0 \end{cases}$$

Решение. Уже дана начальная точка r_0 прямой l. Не хватает только, например, направляющего вектора. Который, очевидно, надо искать из условия параллельности l и l_2 .

Раз прямые параллельны, то в качестве направляющего l можно взять направляющий l_2 . Его же можно найти по формуле (9):

$$a = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 1 & -1 \\ 2 & 3 & 1 \end{vmatrix} = (4, -3, 1)$$

Итого, уравнение прямой l:

$$r = r_0 + at$$

Расписывая в координатах:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} t, \quad t \in \mathbb{R}$$

Или в каноническом виде:

$$\frac{x-1}{4} = \frac{y-3}{-3} = \frac{z-1}{1}$$

2.6. # 6.17(1)

Задача. Составить уравнение плоскости α , проходящей через точку A(1, -1, 2) и параллельной плоскости α_2 , заданной уравнением в общей декартовой системе координат:

$$\alpha_2$$
: $x - 3y + 2z + 1 = 0$

Решение. Раз плоскости параллельны, то должны быть пропорциональны коэффициенты A, B, C в их уравнениях вида (1). Почему так — можно понять из такого наблюдения. Если известен нормальный вектор плоскости n, то её можно описать уравнением:

$$(\boldsymbol{r} - \boldsymbol{r}_0, \boldsymbol{n}) = 0$$

Разложим радиус-вектор точки плоскости r по базису:

$$\mathbf{r} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$$

Теперь подставим в нормальное уравнение плоскости:

$$(e_1, \mathbf{n})x + (e_2, \mathbf{n})y + (e_3, \mathbf{n})z - (\mathbf{r}_0, \mathbf{n}) = 0$$

Видно, что в общей декартовой системе координат коэффициенты A, B, C — не компоненты вектора нормали, а скалярные произведения вида (e_i , n). Но в любом случае коэффициенты пропорциональны компонентам вектора n.

Если же плоскости параллельны, то вектора нормали для них можно выбрать одинаковыми. Что и даст вообще одинаковые коэффициенты A, B, C. В общем случае у параллельных плоскостей нормали параллельны, поэтому коэффициенты перед переменными в уравнении должны быть пропорциональны.

Итак, уравнение плоскости α можно искать в виде:

$$x - 3y + 2z + D = 0$$

Подставляя координаты точки A, находим D:

$$1 - 3 \cdot (-1) + 2 \cdot 2 + D = 0 \Rightarrow D = -8$$

Итоговое уравнение:

$$x - 3y + 2z - 8 = 0$$