MATH 322 – Graph Theory Fall Term 2021

Notes for Lecture 20

Tuesday, November 23

Proving some of the sufficient conditions for Hamiltonicity

Recall:

Theorem 1 (Dirac, 1952)

Let G be a graph of order $n\geqslant 3$ such that the minimum degree $\delta(G)\geqslant \frac{n}{2}.$ Then G is Hamiltonian.

Theorem 2 (Ore, 1960)

Let G be a graph of order $n \ge 3$ which satisfies the following property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u) + \deg(v)} \geqslant n$.

Then G is Hamiltonian.

Proposition 3

Let G be a graph of order $n \ge 3$, and suppose that G has at least

$$\binom{n-1}{2}+2$$

edges. Then G is Hamiltonian.

Proving some of the sufficient conditions for Hamiltonicity

Recall:

Theorem 1 (Dirac, 1952)

Let G be a graph of order $n\geqslant 3$ such that the minimum degree $\delta(G)\geqslant \frac{n}{2}.$ Then G is Hamiltonian.

Theorem 2 (Ore, 1960)

Let G be a graph of order $n \ge 3$ which satisfies the following property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u) + \deg(v)} \geqslant n$.

Then G is Hamiltonian.

Proposition 3

Let G be a graph of order $n \ge 3$, and suppose that G has at least

$$\binom{n-1}{2}+2$$

edges. Then G is Hamiltonian.

We have said that Dirac's theorem follows from Ore's theorem (since the condition in Dirac's theorem is stronger than the condition in Ore's theorem).

Proving some of the sufficient conditions for Hamiltonicity

Recall:

Theorem 1 (Dirac, 1952)

Let G be a graph of order $n \geqslant 3$ such that the minimum degree $\delta(G) \geqslant \frac{n}{2}$. Then G is Hamiltonian.

Theorem 2 (Ore, 1960)

Let G be a graph of order $n \ge 3$ which satisfies the following property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u) + \deg(v)} \geqslant n$.

Then G is Hamiltonian

Proposition 3

Let G be a graph of order $n \ge 3$, and suppose that G has at least

$$\binom{n-1}{2}+2$$

edges. Then G is Hamiltonian.

We have said that Dirac's theorem follows from Ore's theorem (since the condition in Dirac's theorem is stronger than the condition in Ore's theorem).

We also showed last time that Proposition 3 follows from Ore's theorem too (because the number of edges required in the statement of Prop 3 implies that the condition in Ore's theorem holds).

Consider a graph G on $n \geqslant 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u) + \deg(v)} \geqslant n$.

Consider a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u)+\deg(v)}\geqslant n$.

1st Side Note: The given condition implies quickly that G is connected.

Consider a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $deg(u) + deg(v) \ge n$.

Ist Side Note: The given condition implies quickly that G is connected. Indeed, assume towards a contradiction that G had at least two connected components, say components G_1 and G_2 . Consider a vertex u_1 in G_1 and a vertex v_1 in G_2 . Assume also that G_1 contains exactly r of the n vertices of G (where r < n since v_1 is not in G_1).

Then we must have $\deg_G(u_1) = \deg_{G_1}(u_1) \leqslant r - 1$, and $\deg_G(v_1) \leqslant n - r - 1$.

Consider a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $deg(u) + deg(v) \ge n$.

Ist Side Note: The given condition implies quickly that G is connected. Indeed, assume towards a contradiction that G had at least two connected components, say components G_1 and G_2 . Consider a vertex u_1 in G_1 and a vertex v_1 in G_2 . Assume also that G_1 contains exactly r of the n vertices of G (where r < n since v_1 is not in G_1).

Then we must have $\deg_G(u_1) = \deg_{G_1}(u_1) \leqslant r-1$, and $\deg_G(v_1) \leqslant n-r-1$. At the same time, u_1 and v_1 are different vertices which are NOT adjacent, so they should satisfy the degree-condition assumed above for such pairs of vertices: we should have

$$(r-1)+(n-r-1)\geqslant \deg_G(u_1)+\deg_G(v_1)\geqslant n,$$

which is absurd.

Consider a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $deg(u) + deg(v) \ge n$.

Ist Side Note: The given condition implies quickly that G is connected. Indeed, assume towards a contradiction that G had at least two connected components, say components G_1 and G_2 . Consider a vertex u_1 in G_1 and a vertex v_1 in G_2 . Assume also that G_1 contains exactly r of the n vertices of G (where r < n since v_1 is not in G_1).

Then we must have $\deg_G(u_1) = \deg_{G_1}(u_1) \leqslant r-1$, and $\deg_G(v_1) \leqslant n-r-1$. At the same time, u_1 and v_1 are different vertices which are NOT adjacent, so they should satisfy the degree-condition assumed above for such pairs of vertices: we should have

$$(r-1)+(n-r-1)\geqslant \deg_G(u_1)+\deg_G(v_1)\geqslant n,$$

which is absurd. This shows that the assumption that ${\it G}$ has at least two connected components was incorrect.

Consider a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $deg(u) + deg(v) \ge n$.

Ist Side Note: The given condition implies quickly that G is connected. Indeed, assume towards a contradiction that G had at least two connected components, say components G_1 and G_2 . Consider a vertex u_1 in G_1 and a vertex v_1 in G_2 . Assume also that G_1 contains exactly r of the n vertices of G (where r < n since v_1 is not in G_1).

Then we must have $\deg_G(u_1) = \deg_{G_1}(u_1) \leqslant r-1$, and $\deg_G(v_1) \leqslant n-r-1$. At the same time, u_1 and v_1 are different vertices which are NOT adjacent, so they should satisfy the degree-condition assumed above for such pairs of vertices: we should have

$$(r-1)+(n-r-1)\geqslant \deg_G(u_1)+\deg_G(v_1)\geqslant n,$$

which is absurd. This shows that the assumption that ${\it G}$ has at least two connected components was incorrect.

Consider a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $deg(u) + deg(v) \ge n$.

Ist Side Note: The given condition implies quickly that G is connected. Indeed, assume towards a contradiction that G had at least two connected components, say components G_1 and G_2 . Consider a vertex u_1 in G_1 and a vertex v_1 in G_2 . Assume also that G_1 contains exactly r of the n vertices of G (where r < n since v_1 is not in G_1).

Then we must have $\deg_G(u_1) = \deg_{G_1}(u_1) \leqslant r-1$, and $\deg_G(v_1) \leqslant n-r-1$. At the same time, u_1 and v_1 are different vertices which are NOT adjacent, so they should satisfy the degree-condition assumed above for such pairs of vertices: we should have

$$(r-1) + (n-r-1) \geqslant \deg_G(u_1) + \deg_G(v_1) \geqslant n$$

which is absurd. This shows that the assumption that G has at least two connected components was incorrect.

Back to the proof of Ore's theorem: we first show that G has a Hamilton path. Let \mathcal{P} be a path in G with maximum possible length, and assume towards a contradiction that \mathcal{P} is NOT a Hamilton path.

Then, if we write

$$\mathcal{P}: W_1 W_2 \ldots W_{k-1} W_k$$

we must have $k \leq n-1$, and thus there exists at least one vertex z_0 different from the vertices appearing in \mathcal{P} (note that k here is the order of \mathcal{P} , while its length is k-1).

Crucial Observation: All the neighbours of the initial vertex w_1 of \mathcal{P} are among the vertices w_2, w_3, \ldots, w_k . (This also implies that z_0 and w_1 are non-adjacent vertices. Moreover, it implies that $\deg(w_1) \leq k-1$.)

Crucial Observation: All the neighbours of the initial vertex w_1 of $\mathcal P$ are among the vertices w_2, w_3, \ldots, w_k . (This also implies that z_0 and w_1 are non-adjacent vertices. Moreover, it implies that $\deg(w_1) \leqslant k-1$.) Indeed, if we could find a neighbour y_0 of w_1 which does not appear in $\mathcal P$, then we could also consider the path

$$y_0 \ W_1 \ W_2 \ \dots \ W_{k-1} \ W_k,$$

which extends $\mathcal{P}.$ This would contradict the assumption that \mathcal{P} has maximum possible length.

Crucial Observation: All the neighbours of the initial vertex w_1 of $\mathcal P$ are among the vertices w_2, w_3, \ldots, w_k . (This also implies that z_0 and w_1 are non-adjacent vertices. Moreover, it implies that $\deg(w_1) \leqslant k-1$.) Indeed, if we could find a neighbour y_0 of w_1 which does not appear in $\mathcal P$, then we could also consider the path

$$y_0 \ W_1 \ W_2 \ \dots \ W_{k-1} \ W_k,$$

which extends $\mathcal{P}.$ This would contradict the assumption that \mathcal{P} has maximum possible length.

Similarly, we observe that all the neighbours of the terminal vertex w_k are among the other vertices of \mathcal{P} (and thus, again in particular, z_0 and w_k are non-adjacent).

Crucial Observation: All the neighbours of the initial vertex w_1 of $\mathcal P$ are among the vertices w_2, w_3, \ldots, w_k . (This also implies that z_0 and w_1 are non-adjacent vertices. Moreover, it implies that $\deg(w_1) \leqslant k-1$.)

Indeed, if we could find a neighbour y_0 of w_1 which does not appear in \mathcal{P} , then we could also consider the path

$$V_0 W_1 W_2 \dots W_{k-1} W_k$$

which extends $\mathcal{P}.$ This would contradict the assumption that \mathcal{P} has maximum possible length.

Similarly, we observe that all the neighbours of the terminal vertex w_k are among the other vertices of \mathcal{P} (and thus, again in particular, z_0 and w_k are non-adjacent).

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \le k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

Crucial Observation: All the neighbours of the initial vertex w_1 of $\mathcal P$ are among the vertices w_2, w_3, \ldots, w_k . (This also implies that z_0 and w_1 are non-adjacent vertices. Moreover, it implies that $\deg(w_1) \leqslant k-1$.)

Indeed, if we could find a neighbour y_0 of w_1 which does not appear in \mathcal{P} , then we could also consider the path

$$V_0 W_1 W_2 \dots W_{k-1} W_k$$

which extends $\mathcal{P}.$ This would contradict the assumption that \mathcal{P} has maximum possible length.

Similarly, we observe that all the neighbours of the terminal vertex w_k are among the other vertices of \mathcal{P} (and thus, again in particular, z_0 and w_k are non-adjacent).

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \le k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1).

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$w_k \ w_{k-1} \ \cdots \ w_{j_s}$$

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$w_k \ w_{k-1} \ \cdots \ w_{j_s} \ w_1 \ w_2 \ \cdots \ w_{j_s-1}$$

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$w_k \ w_{k-1} \ \cdots \ w_{j_s} \ w_1 \ w_2 \ \cdots \ w_{j_s-1} \ z_0$$

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$w_k \ w_{k-1} \ \cdots \ w_{j_s} \ w_1 \ w_2 \ \cdots \ w_{j_s-1} \ z_0$$

which is longer than $\mathcal{P}.$ This contradicts the assumption that \mathcal{P} has maximum possible length, and thus proves the claim.

Key Claim: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$w_k \ w_{k-1} \ \cdots \ w_{j_s} \ w_1 \ w_2 \ \cdots \ w_{j_s-1} \ z_0$$

which is longer than $\mathcal{P}.$ This contradicts the assumption that \mathcal{P} has maximum possible length, and thus proves the claim.

What the Key Claim essentially tells us: We can find $d_1 = \deg(w_1)$ vertices of G (different from z_0) none of which is a neighbour of z_0

<u>Key Claim</u>: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$w_k \ w_{k-1} \ \cdots \ w_{j_s} \ w_1 \ w_2 \ \cdots \ w_{j_s-1} \ z_0$$

which is longer than $\mathcal{P}.$ This contradicts the assumption that \mathcal{P} has maximum possible length, and thus proves the claim.

What the Key Claim essentially tells us: We can find $d_1 = \deg(w_1)$ vertices of G (different from z_0) none of which is a neighbour of z_0 (in fact, here we could even do slightly better: observe that w_k , the terminal vertex of \mathcal{P} , was not among the vertices we focused on in the Key Claim, however we have also noted that, based on our assumptions, w_k cannot be adjacent to z_0 either).

<u>Key Claim</u>: Let us write $d_1 = \deg(w_1)$, and suppose that $w_{j_1}, w_{j_2}, \ldots, w_{j_{d_1}}$ are all the neighbours of w_1 , where $j_1 = 2 < j_2 < \cdots < j_{d_1} \leqslant k$.

Let us focus on the d_1 vertices in \mathcal{P} , each of which precedes (in \mathcal{P}) one of the neighbours of w_1 : that is, the vertices

$$w_{j_1-1}, w_{j_2-1}, \ldots, w_{j_{d_1}-1}.$$

It can be shown that none of these vertices is a neighbour of z_0 .

Proof of the Key Claim: Assume towards a contradiction that, for some $s \in \{1, 2, \ldots, d_1\}$, we have that w_{j_s-1} is a neighbour of z_0 (recall also that w_{j_s} is a neighbour of w_1). Then we can construct a new path Q of G as follows:

$$W_k W_{k-1} \cdots W_{i_s} W_1 W_2 \cdots W_{i_s-1} Z_0$$

which is longer than \mathcal{P} . This contradicts the assumption that \mathcal{P} has maximum possible length, and thus proves the claim.

What the Key Claim essentially tells us: We can find $d_1 = \deg(w_1)$ vertices of G (different from z_0) none of which is a neighbour of z_0 (in fact, here we could even do slightly better: observe that w_k , the terminal vertex of \mathcal{P} , was not among the vertices we focused on in the Key Claim, however we have also noted that, based on our assumptions, w_k cannot be adjacent to z_0 either).

We conclude that the neighbours of z_0 are among the remaining $n-d_1-1$ vertices of G; or even better, if we exclude w_k as well, among the remaining $n-d_1-2$ vertices of G. In other words, $\deg(z_0) \leq n-d_1-2$.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u)+\deg(v)}\geqslant n$.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of $\underline{\text{distinct}}$ and $\underline{\text{non-adjacent}}$ vertices u and v of G, we have that $\overline{\deg(u)+\deg(v)}\geqslant n$.

– We considered a path \mathcal{P} in G which has maximum possible length:

$$\mathcal{P}: w_1 w_2 \ldots w_{k-1} w_k.$$

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u) + \deg(v)} \geqslant n$.

– We considered a path ${\mathcal P}$ in ${\mathcal G}$ which has maximum possible length:

$$\mathcal{P}: w_1 w_2 \ldots w_{k-1} w_k$$
.

– We assumed towards a contradiction that \mathcal{P} is NOT a Hamilton path, or in other words that $k \leqslant n-1$. Thus, we could find a vertex z_0 in G which does NOT appear in \mathcal{P} .

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u) + \deg(v)} \geqslant n$.

– We considered a path \mathcal{P} in G which has maximum possible length:

$$\mathcal{P}: w_1 w_2 \ldots w_{k-1} w_k$$
.

- We assumed towards a contradiction that \mathcal{P} is NOT a Hamilton path, or in other words that $k \leq n-1$. Thus, we could find a vertex z_0 in G which does NOT appear in \mathcal{P} .
- We showed that z_0 cannot be adjacent to w_1 or to w_k (since we shouldn't be able to extend \mathcal{P} to a longer path).

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u)+\deg(v)}\geqslant n$.

– We considered a path \mathcal{P} in G which has maximum possible length:

$$\mathcal{P}: w_1 w_2 \ldots w_{k-1} w_k$$
.

- We assumed towards a contradiction that \mathcal{P} is NOT a Hamilton path, or in other words that $k \leq n-1$. Thus, we could find a vertex z_0 in G which does NOT appear in \mathcal{P} .
- We showed that z_0 cannot be adjacent to w_1 or to w_k (since we shouldn't be able to extend \mathcal{P} to a longer path). We also showed that we must have $\deg(z_0) \leqslant n \deg(w_1) 2$.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of distinct and non-adjacent vertices
$$u$$
 and v of G , we have that $deg(u) + deg(v) \ge n$.

– We considered a path \mathcal{P} in G which has maximum possible length:

$$\mathcal{P}: w_1 w_2 \ldots w_{k-1} w_k$$

- We assumed towards a contradiction that \mathcal{P} is NOT a Hamilton path, or in other words that $k \leq n-1$. Thus, we could find a vertex z_0 in G which does NOT appear in \mathcal{P} .
- We showed that z_0 cannot be adjacent to w_1 or to w_k (since we shouldn't be able to extend \mathcal{P} to a longer path). We also showed that we must have $\deg(z_0) \leqslant n \deg(w_1) 2$.
- At the same time, z_0 and w_1 are distinct, non-adjacent vertices, thus, by the degree-condition assumed above, we must have

$$n \leqslant \deg(z_0) + \deg(w_1) \leqslant n - 2$$

which is absurd.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of distinct and non-adjacent vertices
$$u$$
 and v of G , we have that $deg(u) + deg(v) \ge n$.

– We considered a path \mathcal{P} in G which has maximum possible length:

$$\mathcal{P}: w_1 w_2 \ldots w_{k-1} w_k$$

- We assumed towards a contradiction that \mathcal{P} is NOT a Hamilton path, or in other words that $k \leq n-1$. Thus, we could find a vertex z_0 in G which does NOT appear in \mathcal{P} .
- We showed that z_0 cannot be adjacent to w_1 or to w_k (since we shouldn't be able to extend \mathcal{P} to a longer path). We also showed that we must have $\deg(z_0) \leq n \deg(w_1) 2$.
- At the same time, z_0 and w_1 are distinct, non-adjacent vertices, thus, by the degree-condition assumed above, we must have

$$n \leq \deg(z_0) + \deg(w_1) \leq n - 2$$

which is absurd.

– We conclude that the assumption that $\mathcal P$ is NOT a Hamilton path, even though it has maximum possible length, was incorrect.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u)+\deg(v)}\geqslant n$

and we have found a Hamilton path

$$\mathcal{P}: w_1 w_2 \ldots w_{n-1} w_n$$

in G.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of distinct and non-adjacent vertices
$$u$$
 and v of G , we have that $\overline{\deg(u) + \deg(v)} \geqslant n$

and we have found a Hamilton path

$$\mathcal{P}: w_1 w_2 \ldots w_{n-1} w_n$$

in G.

To finish the proof, we now consider two cases:

– if w_1 and w_n are adjacent, then we are done (because \mathcal{P} can be extended to a Hamilton cycle by adding the edge w_n w_1 at the end).

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of distinct and non-adjacent vertices
$$u$$
 and v of G , we have that $\overline{\deg(u)+\deg(v)}\geqslant n$

and we have found a Hamilton path

$$\mathcal{P}: w_1 w_2 \ldots w_{n-1} w_n$$

in G.

To finish the proof, we now consider two cases:

- if w_1 and w_n are adjacent, then we are done (because \mathcal{P} can be extended to a Hamilton cycle by adding the edge w_n w_1 at the end).
- If w_1 and w_n are NOT adjacent, then we must have $\deg(w_1) + \deg(w_n) \geqslant n$.

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of distinct and non-adjacent vertices
$$u$$
 and v of G , we have that $\overline{\deg(u) + \deg(v)} \geqslant n$

and we have found a Hamilton path

$$\mathcal{P}: w_1 w_2 \ldots w_{n-1} w_n$$

in G.

To finish the proof, we now consider two cases:

- if w_1 and w_n are adjacent, then we are done (because \mathcal{P} can be extended to a Hamilton cycle by adding the edge $w_n w_1$ at the end).
- If w_1 and w_n are NOT adjacent, then we must have $\deg(w_1) + \deg(w_n) \geqslant n$. Moreover, we have that the graph $G + \{w_1, w_n\}$ contains a Hamilton cycle. Thus we can make use of

HW5, Problem 1

Consider a graph G_0 on n vertices (where $n\geqslant 3$) which has the following property: u,z is a pair of non-adjacent vertices of G_0 such that $\deg_{G_0}(u)+\deg_{G_0}(z)\geqslant n$. Prove that the graph G_0+uz (that is, the graph we get by adding the edge $\{u,z\}$ to G_0) is Hamiltonian if and only if G_0 is Hamiltonian.

Finishing the proof

Recall that: we started with a graph G on $n \ge 3$ vertices which has the property:

for every pair of <u>distinct</u> and <u>non-adjacent</u> vertices u and v of G, we have that $\overline{\deg(u)+\deg(v)}\geqslant n$

and we have found a Hamilton path

$$\mathcal{P}: w_1 w_2 \ldots w_{n-1} w_n$$

in G.

To finish the proof, we now consider two cases:

- if w_1 and w_n are adjacent, then we are done (because \mathcal{P} can be extended to a Hamilton cycle by adding the edge $w_n w_1$ at the end).
- If w_1 and w_n are NOT adjacent, then we must have $\deg(w_1) + \deg(w_n) \geqslant n$. Moreover, we have that the graph $G + \{w_1, w_n\}$ contains a Hamilton cycle. Thus we can make use of

HW5, Problem 1

Consider a graph G_0 on n vertices (where $n \ge 3$) which has the following property: u, z is a pair of **non-adjacent** vertices of G_0 such that $\deg_{G_0}(u) + \deg_{G_0}(z) \ge n$. Prove that the graph $G_0 + uz$ (that is, the graph we get by adding the edge $\{u, z\}$ to G_0) is Hamiltonian if and only if G_0 is Hamiltonian.

We conclude that, since $G + \{w_1, w_n\}$ is Hamiltonian (and since $\deg_G(w_1) + \deg_G(w_n) \ge n$), then G must be Hamiltonian too (it's just that it contains a different Hamilton cycle).

Next Main Topic:

Factors, Matchings and (Stable) Marriages

A fun problem

Suppose that 11 new hires at a company want to get to know each other, so they plan to have a series of dinners at different houses. Their dinner plans are as follows.

- (i) Each evening they will be sitting at a round table.
- (ii) The seating arrangements should be such that no person has the same neighbour at any two different dinners.

Show that this can go on for 5 evenings (and hence each person will eventually sit next to any other person).

A fun problem

Suppose that 11 new hires at a company want to get to know each other, so they plan to have a series of dinners at different houses. Their dinner plans are as follows.

- (i) Each evening they will be sitting at a round table.
- (ii) The seating arrangements should be such that no person has the same neighbour at any two different dinners.

Show that this can go on for 5 evenings (and hence each person will eventually sit next to any other person).

Analysing what the problem asks for:

- Each seating arrangement can be viewed as a Hamilton cycle of K_{11} .
- Since no person can have the same neighbour twice, any two such Hamilton cycles must be edge-disjoint.

A fun problem

Suppose that 11 new hires at a company want to get to know each other, so they plan to have a series of dinners at different houses. Their dinner plans are as follows.

- (i) Each evening they will be sitting at a round table.
- (ii) The seating arrangements should be such that no person has the same neighbour at any two different dinners.

Show that this can go on for 5 evenings (and hence each person will eventually sit next to any other person).

Analysing what the problem asks for:

- Each seating arrangement can be viewed as a Hamilton cycle of K_{11} .
- Since no person can have the same neighbour twice, any two such Hamilton cycles must be edge-disjoint.
- Recall why there can be at most 5 such dinners:
 - Consider one of the hires, say person A. At the first dinner, person A has a pair of neighbours, who can come from the remaining 10 new hires.
 - At the second dinner, person A cannot sit next to any of the two
 colleagues he or she sat next to during the first dinner, so the new
 neighbours of person A are among the remaining 10 2 = 8 new hires.
 - Continuing like this, we see that the pairs of neighbours of person A form a collection of pairwise disjoint 2-subsets of the set of 10 collleagues of person A, so this collection can have at most 5 such subsets.

Definition

Let G = (V, E) be a graph (or multigraph) of order n and size m.

1 A <u>factor</u>, or equivalently <u>spanning subgraph</u>, of *G* is a subgraph (or 'sub-multigraph') of *G* that contains all vertices of *G* (that is, a subgraph of order *n*).

Definition

Let G = (V, E) be a graph (or multigraph) of order n and size m.

- 1 A <u>factor</u>, or equivalently <u>spanning subgraph</u>, of *G* is a subgraph (or 'sub-multigraph') of *G* that contains all vertices of *G* (that is, a subgraph of order *n*).
- **2** A <u>factorization</u> of G is any collection of s factors (spanning subgraphs) H_1, H_2, \ldots, H_s of G such that
 - any two different factors H_i and H_j are edge-disjoint;

Definition

Let G = (V, E) be a graph (or multigraph) of order n and size m.

- 1 A <u>factor</u>, or equivalently <u>spanning subgraph</u>, of G is a subgraph (or 'sub-multigraph') of G that contains all vertices of G (that is, a subgraph of order n).
- **2** A <u>factorization</u> of G is any collection of s factors (spanning subgraphs) H_1, H_2, \ldots, H_s of G such that
 - any two different factors H_i and H_j are edge-disjoint;
 - every edge of G is contained in one of the factors H_1, H_2, \ldots, H_s , that is, $E(G) = E(H_1) \cup E(H_2) \cup \cdots \cup E(H_s)$.

Definition

Let G = (V, E) be a graph (or multigraph) of order n and size m.

- ① A <u>factor</u>, or equivalently <u>spanning subgraph</u>, of G is a subgraph (or 'sub-multigraph') of G that contains all vertices of G (that is, a subgraph of order n).
- **2** A <u>factorization</u> of G is any collection of s factors (spanning subgraphs) H_1, H_2, \ldots, H_s of G such that
 - any two different factors H_i and H_j are edge-disjoint;
 - every edge of G is contained in one of the factors H_1, H_2, \ldots, H_s , that is, $E(G) = E(H_1) \cup E(H_2) \cup \cdots \cup E(H_s)$.

Some immediate observations:

Definition

Let G = (V, E) be a graph (or multigraph) of order n and size m.

- ① A <u>factor</u>, or equivalently <u>spanning subgraph</u>, of G is a subgraph (or 'sub-multigraph') of G that contains all vertices of G (that is, a subgraph of order n).
- **2** A <u>factorization</u> of G is any collection of s factors (spanning subgraphs) H_1, H_2, \ldots, H_s of G such that
 - any two different factors H_i and H_j are edge-disjoint;
 - every edge of G is contained in one of the factors H_1, H_2, \ldots, H_s , that is, $E(G) = E(H_1) \cup E(H_2) \cup \cdots \cup E(H_s)$.

Some immediate observations:

- A spanning tree (or spanning forest, in cases where G is not connected) is a factor of G.
- Every graph (or multigraph) G has a trivial factorization: since G is a factor of itself, the collection {G} is a factorization of G.

Definition

Let G = (V, E) be a graph (or multigraph) of order n and size m.

- 1 A <u>factor</u>, or equivalently <u>spanning subgraph</u>, of G is a subgraph (or 'sub-multigraph') of G that contains all vertices of G (that is, a subgraph of order n).
- 2 A <u>factorization</u> of G is any collection of s factors (spanning subgraphs) H_1, H_2, \ldots, H_s of G such that
 - any two different factors H_i and H_j are edge-disjoint;
 - every edge of G is contained in one of the factors H₁, H₂,..., H_s, that is, E(G) = E(H₁) ∪ E(H₂) ∪ · · · ∪ E(H_s).

Some immediate observations:

- A spanning tree (or spanning forest, in cases where G is not connected) is a factor of G.
- Every graph (or multigraph) *G* has a trivial factorization: since *G* is a factor of itself, the collection { *G* } is a factorization of *G*.
- The problem in the previous slide asks us to find a factorization of K₁₁ consisting of Hamilton cycles of K₁₁.

Definition

Let G be a graph (or multigraph).

Definition

Let G be a graph (or multigraph).

A spanning subgraph of G is called a <u>one-factor</u> of G if it is 1-regular.
 A <u>one-factorization</u> of G is a factorization of G consisting of one-factors of G.

Definition

Let G be a graph (or multigraph).

- A spanning subgraph of G is called a <u>one-factor</u> of G if it is 1-regular.
 A <u>one-factorization</u> of G is a factorization of G consisting of one-factors of G.
- Similarly, a spanning subgraph of G is called a <u>two-factor</u> of G if it is 2-regular.
 A <u>two-factorization</u> of G is a factorization of G consisting of two-factors of G.

Definition

Let G be a graph (or multigraph).

- A spanning subgraph of G is called a <u>one-factor</u> of G if it is 1-regular.
 A <u>one-factorization</u> of G is a factorization of G consisting of one-factors of G.
- Similarly, a spanning subgraph of G is called a <u>two-factor</u> of G if it is 2-regular.
 A <u>two-factorization</u> of G is a factorization of G consisting of two-factors of G.

A subtle point. Note that a Hamilton cycle of G is a two-factor of G, but not every two-factor needs to be a Hamilton cycle. E.g. the graph on the right below is a two-factor of the graph on the left (but not a Hamilton cycle):

The solution will be a special case of the following proposition.

Proposition 1

(i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.

The solution will be a special case of the following proposition.

Proposition 1

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

The solution will be a special case of the following proposition.

Proposition 1

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

Proof of (i). Let s=2k+1 with $k\geqslant 1$, and suppose that the vertices of K_s are indexed by the integers $0,1,2,\ldots,2k$. For each $i=1,2,\ldots,k$, define the walks Z_i by

$$Z_i$$
: $v_0 v_i v_{i+1} v_{i-1} v_{i+2} v_{i-2} \dots v_{i+j} v_{i-j} \dots v_{i+k} v_0$

and according to the convention that, whenever $i-j\leqslant 0$ (for any of the internal vertices of the walk), then the index i-j is replaced by the unique integer in $\{1,2,\ldots,2k-1,2k\}$ which is congruent to i-j modulo 2k.

The solution will be a special case of the following proposition.

Proposition 1

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

Proof of (i). Let s=2k+1 with $k\geqslant 1$, and suppose that the vertices of K_s are indexed by the integers $0,1,2,\ldots,2k$. For each $i=1,2,\ldots,k$, define the walks Z_i by

$$Z_i$$
: $v_0 v_i v_{i+1} v_{i-1} v_{i+2} v_{i-2} \dots v_{i+j} v_{i-j} \dots v_{i+k} v_0$

and according to the convention that, whenever $i-j\leqslant 0$ (for any of the internal vertices of the walk), then the index i-j is replaced by the unique integer in $\{1,2,\ldots,2k-1,2k\}$ which is congruent to i-j modulo 2k.

We can check that these walks are Hamilton cycles of K_s , and that the collection $\{Z_1, Z_2, \ldots, Z_k\}$ is a two-factorization of K_s .

In the specific case of K_{11} , we have...

 $11 = 2 \cdot 5 + 1$, and hence k = 5.

In the specific case of K_{11} , we have...

 $11 = 2 \cdot 5 + 1$, and hence k = 5. Moreover,

 Z_1 : $v_0 v_1 v_2 v_{10} v_3 v_9 v_4 v_8 v_5 v_7 v_6 v_0$,

 Z_2 : $v_0 v_2 v_3 v_1 v_4 v_{10} v_5 v_9 v_6 v_8 v_7 v_0$,

 Z_3 : $v_0 v_3 v_4 v_2 v_5 v_1 v_6 v_{10} v_7 v_9 v_8 v_0$,

 Z_4 : $v_0 v_4 v_5 v_3 v_6 v_2 v_7 v_1 v_8 v_{10} v_9 v_0$,

and Z_5 : $v_0 v_5 v_6 v_4 v_7 v_3 v_8 v_2 v_9 v_1 v_{10} v_0$.

Note that all these are Hamilton cycles of K_{11} , and any two of them are edge-disjoint.

Proposition

- (i) If $s \geqslant 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

Proposition

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

Proof of (ii). Now write t=2r+2 with $r\geqslant 0$, and suppose that the vertices of K_t are indexed by the integers $0,1,2,\ldots,2r$ and the symbol ∞ . For each $j=1,2,\ldots,r$, define the walks Z_j by

$$Z_j: \ v_{\infty} \ v_j \ v_{j-1} \ v_{j+1} \ v_{j-2} \ v_{j+2} \ \dots \ v_{j-l} \ v_{j+l} \ \dots \ v_{j-r} \ v_{j+r} \ v_{\infty}.$$

and according to the convention that, whenever j-l < 0, then the index j-l is replaced by the unique integer in $\{0,1,2,\ldots,2r-1,2r\}$ which is congruent to j-l modulo 2r+1.

Proposition

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

Proof of (ii). Now write t=2r+2 with $r\geqslant 0$, and suppose that the vertices of K_t are indexed by the integers $0,1,2,\ldots,2r$ and the symbol ∞ . For each $j=1,2,\ldots,r$, define the walks Z_j by

$$Z_j: \ v_{\infty} \ v_j \ v_{j-1} \ v_{j+1} \ v_{j-2} \ v_{j+2} \ \dots \ v_{j-l} \ v_{j+l} \ \dots \ v_{j-r} \ v_{j+r} \ v_{\infty}.$$

and according to the convention that, whenever j-l < 0, then the index j-l is replaced by the unique integer in $\{0,1,2,\ldots,2r-1,2r\}$ which is congruent to j-l modulo 2r+1.

We can check that these walks are pairwise edge-disjoint Hamilton cycles of K_t .

Proposition

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2} 1$ Hamilton cycles and a one-factor.

Proof of (ii). Now write t=2r+2 with $r\geqslant 0$, and suppose that the vertices of K_t are indexed by the integers $0,1,2,\ldots,2r$ and the symbol ∞ . For each $j=1,2,\ldots,r$, define the walks Z_j by

$$Z_j: \ v_{\infty} \ v_j \ v_{j-1} \ v_{j+1} \ v_{j-2} \ v_{j+2} \ \dots \ v_{j-l} \ v_{j+l} \ \dots \ v_{j-r} \ v_{j+r} \ v_{\infty}.$$

and according to the convention that, whenever j-l < 0, then the index j-l is replaced by the unique integer in $\{0,1,2,\ldots,2r-1,2r\}$ which is congruent to j-l modulo 2r+1.

We can check that these walks are pairwise edge-disjoint Hamilton cycles of K_t . Moreover, consider the one-factor H_0 of K_t given by

$$H_0 = \big(V(K_t),\, \big\{\{v_\infty,v_0\},\, \{v_1,v_{2r}\},\, \{v_2,v_{2r-1}\},\, \ldots,\, \{v_r,v_{r+1}\}\big\}\big).$$

Proposition

- (i) If $s \ge 3$ is an odd positive integer, then K_s can be decomposed into $\frac{s-1}{2}$ pairwise edge-disjoint Hamilton cycles.
- (ii) If t is an even positive integer, then K_t has a factorization consisting of $\frac{t}{2}-1$ Hamilton cycles and a one-factor.

Proof of (ii). Now write t=2r+2 with $r\geqslant 0$, and suppose that the vertices of K_t are indexed by the integers $0,1,2,\ldots,2r$ and the symbol ∞ . For each $j=1,2,\ldots,r$, define the walks Z_j by

$$Z_j: \ v_{\infty} \ v_j \ v_{j-1} \ v_{j+1} \ v_{j-2} \ v_{j+2} \ \dots \ v_{j-l} \ v_{j+l} \ \dots \ v_{j-r} \ v_{j+r} \ v_{\infty}.$$

and according to the convention that, whenever j-l < 0, then the index j-l is replaced by the unique integer in $\{0,1,2,\ldots,2r-1,2r\}$ which is congruent to j-l modulo 2r+1.

We can check that these walks are pairwise edge-disjoint Hamilton cycles of K_t . Moreover, consider the one-factor H_0 of K_t given by

$$H_0 = (V(K_t), \{\{v_\infty, v_0\}, \{v_1, v_{2r}\}, \{v_2, v_{2r-1}\}, \ldots, \{v_r, v_{r+1}\}\}).$$

Then the collection $\{Z_1, Z_2, \dots, Z_r, H_0\}$ is a factorization of K_t .

Say, in the specific case of K_8 , we have...

$$8 = 2 \cdot 3 + 2$$
, and hence $r = 3$. Moreover,

$$Z_1: v_{\infty} v_1 v_0 v_2 v_6 v_3 v_5 v_4 v_{\infty},$$

$$Z_2$$
: $v_{\infty} v_2 v_1 v_3 v_0 v_4 v_6 v_5 v_{\infty}$,

$$Z_3: v_{\infty} v_3 v_2 v_4 v_1 v_5 v_0 v_6 v_{\infty},$$

while
$$E(H_0) = \{\{v_{\infty}, v_0\}, \, \{v_1, v_6\}, \, \{v_2, v_5\}, \, \{v_3, v_4\}\}.$$

Say, in the specific case of K_8 , we have...

$$8 = 2 \cdot 3 + 2$$
, and hence $r = 3$. Moreover,

$$Z_1: v_{\infty} v_1 v_0 v_2 v_6 v_3 v_5 v_4 v_{\infty},$$

$$Z_2: v_{\infty} v_2 v_1 v_3 v_0 v_4 v_6 v_5 v_{\infty},$$

$$Z_3$$
: $v_{\infty} v_3 v_2 v_4 v_1 v_5 v_0 v_6 v_{\infty}$,

while
$$E(H_0) = \{\{v_{\infty}, v_0\}, \{v_1, v_6\}, \{v_2, v_5\}, \{v_3, v_4\}\}.$$

Note that all these are factors of K_8 , any two of them are edge-disjoint, and combined together they give us a factorization of K_8 .

Say, in the specific case of K_8 , we have...

$$8=2\cdot 3+2$$
, and hence $r=3$. Moreover,
$$Z_1:\ v_\infty\ v_1\ v_0\ v_2\ v_6\ v_3\ v_5\ v_4\ v_\infty,$$

$$Z_2:\ v_\infty\ v_2\ v_1\ v_3\ v_0\ v_4\ v_6\ v_5\ v_\infty,$$

$$Z_3: v_{\infty} v_3 v_2 v_4 v_1 v_5 v_0 v_6 v_{\infty},$$

while
$$E(H_0) = \big\{\{v_\infty, v_0\}, \, \{v_1, v_6\}, \, \{v_2, v_5\}, \, \{v_3, v_4\} \big\}.$$

Note that all these are factors of K_8 , any two of them are edge-disjoint, and combined together they give us a factorization of K_8 .

Question. Can we also find a one-factorization of K_8 based on this factorization? How many one-factors will we get?

Remarks about one-factors

Question 1. What about a one-factor of the last (non-complete) graph we saw?

Remarks about one-factors

Question 1. What about a one-factor of the last (non-complete) graph we saw?

Question 2. Does the given graph have a one-factorization?

Two (very simple) necessary conditions for the existence of one-factors

If a graph (or multigraph) G has a one-factor, then

(i) G has an even number of vertices.

Two (very simple) necessary conditions for the existence of one-factors

If a graph (or multigraph) G has a one-factor, then

- (i) G has an even number of vertices.
- (ii) G cannot have isolated vertices (be careful that, if G is a multigraph, this condition is not immediately equivalent to $\delta(G)\geqslant 1$, given that some vertices of G may have no neighbours, but may have loops attached to them, so their degree will still be positive).

Two (very simple) necessary conditions for the existence of one-factors

If a graph (or multigraph) G has a one-factor, then

- (i) G has an even number of vertices.
- (ii) G cannot have isolated vertices (be careful that, if G is a multigraph, this condition is not immediately equivalent to $\delta(G)\geqslant 1$, given that some vertices of G may have no neighbours, but may have loops attached to them, so their degree will still be positive).

Necessary conditions for the existence of a one-factorization

Let G be graph of order n=2k and size m. Suppose that G has a one-factorization. Then

(I) $k = \frac{n}{2}$ must divide m.

Two (very simple) necessary conditions for the existence of one-factors

If a graph (or multigraph) G has a one-factor, then

- (i) G has an even number of vertices.
- (ii) G cannot have isolated vertices (be careful that, if G is a multigraph, this condition is not immediately equivalent to $\delta(G)\geqslant 1$, given that some vertices of G may have no neighbours, but may have loops attached to them, so their degree will still be positive).

Necessary conditions for the existence of a one-factorization

Let G be graph of order n=2k and size m. Suppose that G has a one-factorization. Then

- (I) $k = \frac{n}{2}$ must divide m.
- (II) Even more restrictively, the following property must be true for G: the graph G must be d-regular for some d which divides m. (Justification?

Two (very simple) necessary conditions for the existence of one-factors

If a graph (or multigraph) G has a one-factor, then

- (i) G has an even number of vertices.
- (ii) G cannot have isolated vertices (be careful that, if G is a multigraph, this condition is not immediately equivalent to $\delta(G)\geqslant 1$, given that some vertices of G may have no neighbours, but may have loops attached to them, so their degree will still be positive).

Necessary conditions for the existence of a one-factorization

Let G be graph of order n=2k and size m. Suppose that G has a one-factorization. Then

- (I) $k = \frac{n}{2}$ must divide m.
- (II) Even more restrictively, the following property must be true for G: the graph G must be d-regular for some d which divides m. (Justification? Note that, if G can be decomposed into d pairwise edge-disjoint one-factors, then each vertex v of G must be incident with precisely d edges.)

Two (very simple) necessary conditions for the existence of one-factors

If a graph (or multigraph) G has a one-factor, then

- (i) G has an even number of vertices.
- (ii) G cannot have isolated vertices (be careful that, if G is a multigraph, this condition is not immediately equivalent to $\delta(G)\geqslant 1$, given that some vertices of G may have no neighbours, but may have loops attached to them, so their degree will still be positive).

Necessary conditions for the existence of a one-factorization

Let G be graph of order n=2k and size m. Suppose that G has a one-factorization. Then

- (I) $k = \frac{n}{2}$ must divide m.
- (II) Even more restrictively, the following property must be true for G: the graph G must be d-regular for some d which divides m. (Justification? Note that, if G can be decomposed into d pairwise edge-disjoint one-factors, then each vertex v of G must be incident with precisely d edges.)
- (III) G cannot have bridges (except if G is a 1-regular graph itself, and hence the trivial factorization $\{G\}$ of G is a one-factorization too).

None of these conditions are sufficient too

Example 1. The following graph has even order, and no isolated vertices, but it does not have a one-factor (why?).

None of these conditions are sufficient too

Example 1. The following graph has even order, and no isolated vertices, but it does not have a one-factor (why?).

As a consequence of this, we obtain that the graph is not Hamiltonian either why?

None of these conditions are sufficient too

Example 1. The following graph has even order, and no isolated vertices, but it does not have a one-factor (why?).

As a consequence of this, we obtain that the graph is not Hamiltonian either [why? note again that a Hamilton cycle with **an even number** of vertices has both a one-factor, and a one-factorization (in fact, it can be decomposed into two edge-disjoint one-factors)].

None of these conditions are sufficient too (cont.)

Example 2. The following graph is 3-regular (or equivalently, a <u>cubic graph</u>), but it does not have any one-factors (and of course it does not have a one-factorization).

Note that this is the smallest cubic graph without one-factors.

None of these conditions are sufficient too (cont.)

Example 3: The Petersen graph. As we have said, this is a cubic graph which satisfies $\kappa(G_0) = \lambda(G_0) = 3$, so it has no bridges. However, it does not have a one-factorization (although it has one-factors).

One more (non-)example

The following graph is the smallest cubic graph with no one-factorization (can you see why it does not have a one factorization? also, can you find one factors of this graph?).

Let us now give a **necessary and sufficient** condition for a (not necessarily regular) graph to have one-factors.

Tutte's theorem

Theorem (Tutte, 1947)

Let G = (V, E) be a graph (or multigraph). Given a proper subset S of V, write OC(G - S) for the number of <u>odd</u> connected components of G - S (that is, the number of those connected components of G - S which have odd order).

G has a one-factor **if and only if** for every proper subset S of V, we have that $OC(G - S) \leq |S|$.

Testing Tutte's theorem on examples and non-examples

