

Type977 fitting for heat pump $LEXETA_EWJR_FIT$

Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@solarenergy.ch

Tuesday 9th July, 2013 at: 09:07 h

Figure 1: Q_{cond} differences between experiments and fitted data

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
Cocincient	Description	[kW]
	1 st condenser polynomial coefficient	[]
P_{Q_1}	To contact to Polyment to Systems	9.7093e+00
P_{Q_2}	2^{st} condenser polynomial coefficient	7.1006e+01
P_{Q_3}	3^{st} condenser polynomial coefficient	-1.4097e + 01
P_{Q_4}	4 st condenser polynomial coefficient	-7.1184e+01
P_{Q_5}	5^{st} condenser polynomial coefficient	1.7675e + 02
P_{Q_6}	6 st condenser polynomial coefficient	1.4445e + 01
P_{COP_1}	1 st COP polynomial coefficient	9.6717e+00
P_{COP_2}	2 st COP polynomial coefficient	7.4779e + 01
P_{COP_3}	3 st COP polynomial coefficient	-4.5478e + 01
P_{COP_4}	4 st COP polynomial coefficient	-2.2890e+02
P_{COP_5}	5 st COP polynomial coefficient	1.3432e+02
P_{COP_6}	6 st COP polynomial coefficient	$6.9782e{+01}$
\dot{m}_{cond}	$1397.20 \ [kg/h]$	
\dot{m}_{evap}	$1930.40 \ [kg/h]$	
$\overline{COP_{nom} \text{ (A0W35)}}$	3.44	
$Q_{cond,nom}$ (A0W35)	6.75 [kW]	
$W_{comp,nom}$ (A0W35)	1.96 [kW]	
COP_{nom} (A2W35)	5.33	
$Q_{c,nom}$ (A2W35)	$8.60 \ [kW]$	
$W_{comp,nom}$ (A2W35)	$1.61 \ [kW]$	

Figure 2: W_{comp} differences between experiments and fitted data

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	°Ĉ	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	$[k\hat{W}]$	[%]
37.45	0.00	4.75	4.75	0.0	8.05	8.05	0.0	1.69	1.70	0.04
38.16	5.00	5.51	5.51	0.1	9.20	9.20	0.0	1.67	1.67	0.05
38.93	10.00	6.33	6.33	0.1	10.46	10.46	0.0	1.65	1.65	0.05
39.77	15.00	7.21	7.21	0.0	11.83	11.83	0.0	1.64	1.64	0.04
40.68	20.00	8.15	8.14	0.0	13.30	13.30	0.0	1.63	1.63	0.04
41.65	25.00	9.13	9.13	0.0	14.88	14.88	0.0	1.63	1.63	0.04
51.54	-5.00	3.04	3.04	0.1	6.57	6.57	0.0	2.16	2.16	0.06
52.14	0.00	3.53	3.53	0.0	7.54	7.55	0.0	2.14	2.14	0.05
52.81	5.00	4.09	4.09	0.1	8.63	8.63	0.0	2.11	2.11	0.07
53.54	10.00	4.71	4.71	0.1	9.83	9.83	0.0	2.08	2.09	0.06
54.35	15.00	5.40	5.39	0.1	11.13	11.13	0.0	2.06	2.06	0.05
55.21	20.00	6.14	6.13	0.1	12.54	12.54	0.0	2.04	2.04	0.05
56.15	25.00	6.93	6.93	0.0	14.06	14.06	0.0	2.03	2.03	0.05
66.32	-5.00	2.44	2.43	0.1	6.21	6.21	0.0	2.55	2.55	0.09
66.88	0.00	2.72	2.72	0.1	7.12	7.12	0.0	2.62	2.62	0.08
67.51	5.00	3.07	3.07	0.1	8.14	8.15	0.0	2.65	2.65	0.06
68.20	10.00	3.49	3.49	0.1	9.28	9.28	0.0	2.66	2.66	0.08
68.97	15.00	3.98	3.97	0.1	10.52	10.52	0.0	2.65	2.65	0.08
69.80	20.00	4.52	4.52	0.1	11.87	11.87	0.0	2.63	2.63	0.07
70.69	25.00	5.12	5.12	0.1	13.32	13.32	0.0	2.60	2.60	0.06
36.81	-5.00	4.05	4.05	0.0	7.01	7.01	0.0	1.73	1.73	0.04
37.45	0.00	4.75	4.75	0.0	8.05	8.05	0.0	1.69	1.70	0.04
Sum				1.2			0.1			1.27
RMS_{COP}	2.62e - 03									
RMS_{O}	3.18e - 04									
$RMS_{W_{comp}}$	1.37e - 03									

Figure 3: COP differences between experiments and fitted data