ELEC 7410 Homework Assignment #3 Sept. 9, 2025 (Due: Sept. 16, 2025)

- 1. (10 points) (Conditional Probability) Problem 30, Chapter 3, Gubner.
 - 30. Let $X \sim \text{Poisson}(\lambda)$, and suppose that given X = n, $Y \sim \text{Bernoulli}(1/(n+1))$. Find P(X = n|Y = 1).
- 2. (10 points) (Continuous Random Variables) Problem 7, Chapter 4, Gubner.
 - 7. A certain computer is equipped with a hard drive whose lifetime, measured in months, is $X \sim \exp(\lambda)$. The lifetime of the monitor (also measured in months) is $Y \sim \exp(\mu)$. Assume the lifetimes are independent.
 - (a) Find the probability that the monitor fails during the first 2 months.
 - (b) Find the probability that both the hard drive and the monitor fail during the first year.
 - (c) Find the probability that either the hard drive or the monitor fails during the first year.

Add part (d):

- (d) Find the probability that the hard drive fails after the monitor fails, i.e., find P(X > Y). Find its numerical value if $\mu^{-1} = 48$ months and $\lambda^{-1} = 24$ months. [Hint: Integrate $\int \int_{\{(x,y):x>y\}} f_{XY}(xy) dx dy$]
- 3. (10 points) (Expectation of a single random variable) Problem 35, Chapter 4, Gubner.
 - 35. A small airline makes five flights a day from Chicago to Denver. The number of passengers on each flight is approximated by an exponential random variable with mean 20. A flight makes money if it has more than 25 passengers. Find the probability that at least one flight a day makes money. Assume that the numbers of passengers on different flights are independent.
- 4. (10 points) (**Transform Methods**) Problem 40, Chapter 4, Gubner. [Hint: Show that the moment generating function of Y is identical to that of $X \sim \exp(1)$.]
 - **40.** If $X \sim \text{uniform}(0,1)$, show that $Y = \ln(1/X) \sim \exp(1)$ by finding its moment generating function for s < 1.

- 5. (10 points) (**Probability Bounds**) Problem 67, Chapter 4, Gubner. [Hint: Continuation of (solved) Example 4.29 on p. 166 in Gubner; reproduced on p. 2.]
 - *67. Let X be an exponential random variable with parameter $\lambda = 1$. Compute the Markov inequality, the Chebyshev inequality, and the Chernoff bound to obtain bounds on $P(X \ge a)$ as a function of a. Also compute $P(X \ge a)$.
 - (a) For what values of *a* is the Markov inequality smaller than the Chebyshev inequality?
 - (b) **MATLAB.** Plot the Markov bound, the Chebyshev bound, the Chernoff bound, and $P(X \ge a)$ for $0 \le a \le 6$ on the same graph. For what range of a is the Markov bound the smallest? the Chebyshev? Now use MATLAB command semilogy to draw the same four curves for $6 \le a \le 20$. Which bound is the smallest?
- 6. (10 points) (Continuous Random Variables) Problem 14, Chapter 5, Gubner. [Hint: First find the cdf and the pdf of $Z = \max(X, Y)$.]
 - 14. If *X* and *Y* are independent $\exp(\lambda)$ random variables, find $E[\max(X,Y)]$.

Example 4.29. Let X be a continuous random variable having exponential density with parameter $\lambda = 1$. Compute $P(X \ge 7)$ and the corresponding Markov, Chebyshev, and Chernoff bounds.

Solution. The exact probability is $P(X \ge 7) = \int_7^\infty e^{-x} dx = e^{-7} = 0.00091$. For the Markov and Chebyshev inequalities, recall that from Example 4.17, $E[X] = 1/\lambda$ and $E[X^2] = 2/\lambda^2$. For the Chernoff bound, we need $M_X(s) = \lambda/(\lambda - s)$ for $s < \lambda$, which was derived in Example 4.16. Armed with these formulas, we find that the Markov inequality yields $P(X \ge 7) \le E[X]/7 = 1/7 = 0.143$ and the Chebyshev inequality yields $P(X \ge 7) \le E[X^2]/7^2 = 2/49 = 0.041$. For the Chernoff bound, write

$$P(X \ge 7) \le \min_{s} e^{-7s}/(1-s),$$

where the minimization is over $0 \le s < 1$. The derivative of $e^{-7s}/(1-s)$ with respect to s is

$$\frac{e^{-7s}(7s-6)}{(1-s)^2}$$
.

Setting this equal to zero requires that s = 6/7. Hence, the Chernoff bound is

$$P(X \ge 7) \le \frac{e^{-7s}}{(1-s)} \Big|_{s=6/7} = 7e^{-6} = 0.017.$$