第四章 方程与不等式

开心提示:此章节,注重掌握基础概念,不会出太难的题目,同学们切记不要做太多难度较高题目,掌握基本题目及概念即可。

考纲要求: 1. 一元二次函数及其图像; 2. 代数方程: (1) 一元一次方程; (2) 一元二次方程; (3) 二元一次方程组; 3. 不等式: (1) 不等式的性质; (2) 均值不等式; (3) 不等式求解: 一元一次不等式(组), 一元二次不等式, 简单绝对值不等式, 简单分式不等式.

命题剖析: 方程: 从历年考试中可以方程部分的重点是一元二次方程. 在此类方程中主要从方程的解法、根的判别、韦达定理、根的分布以及一元二次方程的应用等角度出题考查. 不等式: 对于不等式, 主要是以不等式的解法为重点, 包括一元二次不等式, 以及高次不等式、分式不等式、含绝对值的不等式. 根据历年的考试规律发现,由于方程和不等式是建立数学表达式关系的基本问题, 尤其在应用题中,往往要借助方程或不等式来进行求解. 未来的考题方向主要围绕:一个基本(根与解集),两个定理(韦达定理与平均值定理),三个应用(最值、不定方程、线性规划).

知识体系:

1. 方程基本概念和定义

(1) 一元一次方程: 含有一个未知数,且未知数最高次方是 1 的方程,一般式 ax=b ($a\neq 0$)

(2) 一元二次方程: 一般式为 $ax^2+bx+c=0$ ($a\neq 0$) 令 $\triangle=b^2-4ac$ 则:

1	-	12.	(= (= 7, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
	△>0	有两个不等实根	$x_1, \ x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	△=0	有两个相等实根	$x_1, \ x_2 = \frac{-b}{2a}$
	△<0	无实根	

2. 抛物线、方程、不等式的关系

二次函数的图像: $y=ax^2+bx+c=a (x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$

(1) 开口方向:由 a 决定, a>0 开口向上 a<0 开口向下

(2) 对称轴:
$$X = \frac{-b}{2a}$$

(3) 顶点坐标:
$$\left(\frac{-b}{2a}, \frac{4ac-b^2}{4a}\right)$$

(4) y 轴截距 y=c

(5) 最值: 当 a>0 时有最小值 $\frac{4ac-b^2}{4a}$, 当 a < 0 时有最大值 $\frac{4ac-b^2}{4a}$;

类别	△>0	△=0	△<0
二次函数 y=ax ² +bx+c (a>0) 的图像			
一元二次方程 ax ² +bx+c=0(a>0)的根	有两相异实根 x_1 , x_2	有两相等实根 $x_1 = x_2 = \frac{-b}{2a}$	无实根
ax ² +bx+c>0(a>0)的解集	$\{x x < x_1 $	$\{\mathbf{x} \mathbf{x} \neq \frac{-b}{2a}\}$	R
ax²+bx+c<0(a>0)的解集	$\{x \mid x_1 < x < x_2\}$	空集	空集

根与系数的关系

 x_1 , x_2 是方程 $ax^2+bx+c=0$ ($a\neq 0$)的两个根,则 $x_1+x_2=\frac{-b}{a}$ $x_1x_2=\frac{c}{a}$

$$(1) \frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 x_2} = -\frac{b}{c}$$

(2)
$$\frac{1}{x_1^2} + \frac{1}{x_2^2} - \frac{(x_1 + x_2)^2 - 2x_1x_2}{(x_1 x_2)^2} = \frac{b^2 - 2ac}{c^2}$$

(3)
$$|x_1 - x_2| = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \frac{\sqrt{b^2 - 4ac}}{|a|}$$

(4)
$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = \frac{b^2 - 2ac}{a^2}$$

(5)
$$(x_1^2 - x_2^2 = (x_1 + x_2)(x_1 - x_2)$$

(6)
$$x^3 + y^3 = (x + y) (x^2 - xy + y^2)$$

3. 不等式的基本性质(注意等级关系)

- (1) 传递性: $a > b, b > c \Rightarrow a > c$
- (2) 同向相加性: a>b c>d $\Rightarrow a+c>b+d$
- (3) 同向皆正相乘性: $a>b>0 \ c>d>0$ $\Rightarrow ac>bd$;
- (4) 皆正倒数性: $a > b > 0 \Leftrightarrow \frac{1}{b} > \frac{1}{a} > 0$;
- (5) 皆正乘 (开) 方性: $a > b > 0 \Rightarrow a^n > b^n > 0 (n \in \mathbf{Z}^+)$

4. 二元一次方程组

二元一次方程组的形式是 $\{ a_1 x + b_1 y = c_1, \\ a_2 x + b_2 y = c_2,$ 有三种解的情况;

- (1) 如果 $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, 则方程组有唯一解(x, y);
- (2) 如果 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$,则方程组有无穷多解;
- (3) 如果 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$, 则方程组无解.

【注意】可以将二元一次方程组的情况看作两条直线的位置关系,上述三种情况分别对应两条直线相交、重合、平行.

5. 指数和对数运算公式

名称	指数	对数	
定义	$a^b = N$	$\log_a N = b$ (b 叫做以 a 为底 N 的对数)	
关系式	$a^b = N \Leftrightarrow \log_a N = b$, (a>0, a \neq 1, N>0)		
	$(1) \ a^r \cdot a^x = a^{r+x}$	$(1) \log_a M + \log_a N = \log_a (MN) ;$	
	$(2) (a^r) = a^{rs}$	$(2) \log_a M - \log_a N = \log_a \frac{M}{N};$	
运算性	$(3) (ab)^r = a^r b^r$	(3) $\log_a M^n = n \log_a M \text{ (M>0, N>0, a>0 a } \neq$	
质	(4) $a^0 = 1 \ (a \neq 0)$	1);	
	$(5) \ a^{-p} = \frac{1}{a^p},$,	
	(a≠0)	(4) (换底公式) $\log_a N = \frac{\log_b N}{\log_b a}$	