

• 欢迎大家报考电磁信息与电子集成研究所:

http://eiei-zju.org

• 欢迎大家直博和保研所内的老师:

http://mypage.zju.edu.cn/ranhao

第一章

信号的定义:

周期信号、能量信号、功率信号、奇偶信号。

基本的连续时间信号:

负指数信号、奇异信号、单位冲激信号、单位阶跃信号、冲激偶函数、斜波信号、抽样信号、方波脉冲信号、三角形脉冲信号、符号函数。

基本的连续时间信号:

单位冲激序列、单位阶跃序列、矩形序列、斜波序列、离散复指数序列。

信号的运算:

相加、相乘、微分、积分、累加、反褶、时移、尺度变换。

第一章

系统的描述:

连续LTI系统用微分方程来描述,离散LTI系统用差分方程来描述。

系统的性质判别:

线性、时不变性、记忆性、因果性、可逆性、稳定性。

系统的连接:

串联、并联、反馈。

第一章

例题:

计算
$$\int_{-\infty}^{2} [\delta(t^2 - 2t - 8) + \delta(3t - 2)]dt$$
 的值

第二章

卷积的定义和计算: $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) \cdot d\tau$

图示法: 反转、平移、相乘、积分。

卷积的性质 (用于求解的简化):

交换律、结合律、分配率、积分与微分性质。

LTI系统的可逆性:

$$h[n] * h_1[n] = \delta[t]$$

LTI系统的稳定性:

充要条件: $\int_{-\infty}^{\infty} |h(\tau)| \cdot d\tau < \infty \qquad \sum_{n=-\infty}^{\infty} |h[n]| < \infty$

LTI系统的因果性:

充要条件: h(t)=0, t<0 h[n]=0, n<0

第二章

LTI系统的单位阶跃响应:

$$s(t) = u(t) * h(t) = \int_{-\infty}^{t} h(\tau) \cdot d\tau$$
 $s[n] = u[n] * h[n] = \sum_{k=-\infty}^{n} h[k]$

LTI系统的微分、差分方程描述

LTI系统的响应求解:

强迫响应与自由响应、零状态响应与零输入响应

LTI系统的框图表示:

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{N} b_k \frac{d^k x(t)}{dt^k}$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{N} b_k x[n-k] , \quad a_0 \neq 0$$

第二章

例题:

1. 已知某连续时间 LTI 系统,其单位阶跃响应为 s(t), 如下图所示,求该系统对如下激励信号 x(t) 的响应。

第二章

例题:

已知信号x(t),h(t)如下图所示,求卷积 $x(t-1)*h(t+2)*\delta(t+2)$,并画出计算结果。

连续时间LTI系统的特征函数:

连续周期时间傅里叶级数:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T_0} \int_{T_0} x(t) \cdot e^{-jk\omega_0 t} \cdot dt$$

信号的傅里叶变换:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} \cdot d\omega \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \cdot dt$$

典型信号的傅里叶级数表示:

	傅里叶级数	信号	傅里叶级数
信 号	$\sin \omega_0 t = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2i}$	对称周期三角信号	$\frac{E}{2} \sum_{k=-\infty}^{\infty} \operatorname{Sa}^{2}(\frac{\pi}{2}k) e^{\mathrm{j}k\omega_{0}t}$
$\sin \omega_0 t$ $\cos \omega_0 t$	$\cos\omega_0 t = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}$	周期半波余弦信号	$\frac{E}{\pi} \sum_{k=-\infty}^{\infty} \frac{\cos(\frac{k\pi}{2})}{1-k^2} e^{jk\omega_0 t}$
1.21	$\frac{\omega_0 T_1}{\pi} \sum_{k=0}^{+\infty} \operatorname{Sa}(k\omega_0 T_1) e^{\mathrm{j}k\omega_0 t}$	冲激串 $\delta_{\mathrm{T}}(t) = \sum_{t=0}^{\infty} \delta(t - kT)$	$x(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{jk\omega_0 t}$
对称周期方波	<i>k</i> = −∞	$o_{\mathrm{T}}(t) = \sum_{k=-\infty}^{\infty} o(t)$	
周期锯齿信号	$\frac{E}{2\pi} \sum_{k=-\infty}^{\infty} \frac{\mathrm{j}}{k} (-1)^k \mathrm{e}^{\mathrm{j}k\omega_0 t}$		

连续时间傅里叶级数性质:

	衣 3. 7 之 3. 7	傅里叶级数系数
性 质	周期信号 $x(t)$ 周期为 T_0 $y(t)$ 基波频率为 $\omega_0 = \frac{2\pi}{T_0}$	$a_k = \operatorname{Re}\{a_k\} + j\operatorname{Im}\{a_k\} = a_k e^{j\theta_k}$ $b_k = \operatorname{Re}\{b_k\} + j\operatorname{Im}\{b_k\} = b_k e^{j\theta_k}$
线性	Ax(t) + By(t)	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0}$
时移	$x(t-t_0)$	The second of th
频移	$e^{iM\omega_0t}x(t)$	a_{k-M}
共轭	x* (t)	a* <u>k</u>
时间反转	x(-t)	a_{-k}
时域尺度变换	$x(at), a>0(周期为\frac{T}{a})$	ak A A A A A A A A A A A A A A A A A A A
周期卷积	$\int_{T_0} x(\tau)y(t-\tau)d\tau$	$T_0 a_k b_k$
相乘	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-1} (卷积和)$
微分	$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$	$jk\omega_0 a_k$
积分	$\int_{-\infty}^{t} x(t) dt (仅当 a_0 = 0 时,才为有限值且 为周期的)$	$\frac{1}{\mathrm{j}k\omega_0^a}a_k$
实信号共轭	x(t)为实信号	$\begin{aligned} a_k &= a^*_{-k} \\ \operatorname{Re}\{a_k\} &= \operatorname{Re}\{a_{-k}\}, \ \operatorname{Im}\{a_k\} &= -\operatorname{Im}\{a_{-k}\} \\ a_k &= a_{-k} , \ \theta_k &= -\theta_{-k} \end{aligned}$
实偶信号	x(t)为实值偶函数	ak 为实值且为偶
实奇信号	x(t)为实值奇函数	ak 为纯虚值且为奇
实信号奇偶分解	$x_{e}(t) = \varepsilon_{v} \{x(t)\}$ $x_{o}(t) = O_{d} \{x(t)\}$	$Re\{a_k\}$ $jIm\{a_k\}$
帕斯瓦尔定理	$\frac{1}{T_0} \int_{T_0} x(t) ^2 dt = \sum_{k=-\infty}^{\infty} a_k ^2$	(6) A ₁ / ₂

典型信号的傅里叶变换:

信号	傅里叶变换	傅里叶级数系数(若为周期的
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_0)$	a_k
e ^{jw} o ^t	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$,其余 k
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$
$\sin \omega_0 t$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$	$a_k = 0$,其余 k $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$,其余 k $a_0 = 1, a_k = 0, k \neq 0$
x(t)=1	2πδ(ω)	$a_0 = 1, a_k = 0, k \neq 0$ (周期 $T = \infty$)
周期方波 $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \leqslant \frac{T}{2} \end{cases}$ 和 $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{k=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$, $\forall x \in \mathbb{R}^k$
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega} = 2T_1 Sa(\omega T_1)$	秦 62.9818 25 FT 0 F0
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	MACHALITY - COLO
δ(t)	以1,一次是(X)。 提倡 建高级一位为	2月一旦自然数果裁
u(t)	$\frac{1}{\mathrm{j}\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t)$, $Re\{a\}>0$	$\frac{1}{a+j\omega}$	AND STREET
$te^{-at}u(t), Re\{a\} > 0$ $\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$ $\frac{1}{(a+j\omega)^n}$	CONTRACTOR DE LA CONTRA

傅里叶变换的性质:

	非周期信号	傅里叶变换
性 质	x(t)	$X(j\omega) = \text{Re}\{X(j\omega)\} + j\text{Im}\{X(j\omega)\} = X(j\omega) e^{j\theta(\omega)}$
	y(t)	$Y(j\omega) = \text{Re}\{Y(j\omega)\} + j\text{Im}\{Y(j\omega)\} = Y(j\omega) e^{j\varphi(\omega)}$
线性	ax(t)+by(t)	$aX(j\omega) + bY(j\omega)$
时移	$x(t-t_0)$	$e^{-j\omega t_0} X(j\omega)$
频移	$e^{j\omega_0} x(t)$	$X[j(\omega-\omega_0)]$
共轭	x*(t)	$X^{\bullet}(-j\omega)$
时间反转	x(-t)	$X(-j\omega)$
尺度变换	$\frac{1}{ a }x\left(\frac{t}{a}\right)$	$\frac{1}{ a }X\left(\frac{\mathrm{j}\omega}{a}\right)$ $X(\mathrm{j}a\omega)$
卷积性质	x(t) * y(t)	$X(j\omega)Y(j\omega)$
调制性质	$x(t) \cdot y(t)$	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
时域微分	$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$	$j\omega X(j\omega)$
积分	$\int_{-\infty}^{t} x(t) dt$	$\frac{1}{\mathrm{j}\omega}X(\mathrm{j}\omega) + \pi X(0)\delta(\omega)$
频域微分	tx(t)	$j \frac{dX(j\omega)}{d\omega}$
实信号的共轭对称性	x(t)为实数 (m) / (m)	$X(j\omega) = X^* (-j\omega)$ $Re\{X(j\omega)\} = Re\{X(-j\omega)\}$ $Im\{X(j\omega)\} = -Im\{X(-j\omega)\}$ $ X(j\omega) = X(-j\omega) , \theta(-\omega) = -\theta(-\omega)$
实、偶信号对称性	x(t)为实、偶信号	X(jω)为实值偶函数
实、奇信号对称性	x(t)为实、奇信号	X(jω)纯虚值奇函数
实信号的奇偶分解	$x_{e}(t) = \varepsilon_{v} \{x(t)\}$ $x_{o}(t) = O_{d} \{x(t)\}$	$Re\{X(j\omega)\}$ $jIm\{X(j\omega)\}$
对偶性	$f(t) = X(j\omega) \big _{\omega = t}$	$2\pi x(-\omega)$
帕斯瓦尔定理	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(j\omega) ^2 d\omega$	可表示的系统。已知工作系统的新型的工

连续时间LTI系统的频率响应:

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$
 $H(j\omega) = |H(j\omega)| e^{j\theta(\omega)}$

零状态响应的频域求解

周期信号激励下的系统响应

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

$$A\cos(\omega_0 t + \theta_0) \rightarrow A |H(j\omega_0)|\cos(\omega_0 t + \theta_0 + \theta(\omega_0))$$

$$A\sin(\omega_0 t + \theta_0) \rightarrow A | H(j\omega_0) | \sin(\omega_0 t + \theta_0 + \theta(\omega_0))$$

信号的滤波与理想滤波器

例题:

已知离散时间信号的傅里叶变换 $X(e^{j\omega})$ 下图所示,求x[n]。

例题:

(8分) 考虑一LTI系统, 其单位冲激响应为 $h(t) = \frac{\sin 3(t-1)}{\pi(t-1)}$, 求系统对下列各

(1)
$$x(t) = \sum_{k=0}^{\infty} \frac{1}{k^2} \cos(kt)$$
; (2) $x(t) = 2\left(1 + \frac{\sin t \cos(3t)}{\pi t}\right)$

例题:

- (15 分) 某一因果 LTI 系统的微分方程 y''(t) + 5y'(t) + 6y(t) = 3x'(t) + x(t)。
- (1) 画出系统实现框图;
- (2) 求系统的频率响应 H(e^{j®});
- (3) 求 $x(t) = 1 + e^{-\frac{t}{3}}u(t)$ 激励下的系统响应 y(t)。

例题:

已知实偶信号 $x(t) \xleftarrow{F} 2\pi G(\omega)$,求频谱 $x(\omega - \omega_0) + x(\omega + \omega_0)$ 的反变换。

例题:

(15 分) 已知一连续因果 LTI 系统 y''(t)+3y'(t)+2y(t)=x'(t)+x(t).

 $y(0^{-}) = 1, y'(0^{-}) = -1, \hat{m} \lambda x(t) = e^{-t}u(t), \vec{x}$:

- (1) 求该系统的频率响应 $H(j\omega)$ 和单位冲激响应 h(t);
- (2) 零输入响应和零状态响应;
- (3) 求该系统的框图。

离散时间LTI系统的特征函数:

$$x[n] = \sum_{k} a_{k} z_{k}^{n} \longrightarrow y[n] = \sum_{k} a_{k} H(z_{k}) z_{k}^{n}$$

周期离散时间傅里叶级数:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n} \qquad a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$$

离散时间傅里叶变换:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} \cdot d\omega \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

典型信号的傅里叶级数:

表 4.1	典型信号的傅里叶级数
* **.	傅里叶级数系数
信号	
$\sum_{k=\langle N\rangle} a_k e^{\mathrm{j}k\left(\frac{2\pi}{N}\right)\kappa}$	a_k
	$\omega_0 = \frac{2\pi m}{N}$
cosω ₀ n(为周期)	$a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & $ 其余 $k \end{cases}$
THE REPORT OF THE PARTY OF THE	
· 一概里時受拍。 形象市场斯灵岛	$\omega_0 = \frac{2\pi r}{N}$
文章和佛教用得里叶被约而定义	The state of the s
sinω _{an} (为周期)	$a_{k} = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \end{cases}$
	$a_k = \begin{cases} -\frac{1}{2}, & k = -r, -r + N, -r + 2N, \dots \end{cases}$
AND THE RESERVED AND DESIGNATION OF THE PERSON OF THE PERS	2j, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
The state of the s	(0, 其余 k
周期方波	$\sin \left[\left(2\pi h/N \right) \left(N_1 + \frac{1}{n} \right) \right]$
$\lceil 1, n \leqslant N_1$	$a_{k} = \frac{\sin\left[\left(\frac{2\pi k}{4}\right)^{\frac{1}{4}}\left(\frac{1}{4}\right)^{\frac{1}{2}}\right]}{2}$
$x[n] = \begin{cases} 1, n \leqslant N_1 \\ 0, N_1 < n \leqslant \frac{N}{2} \end{cases}$	$a_{k} = \frac{\sin\left[\left(2\pi k/N\right)\left(N_{1} + \frac{1}{2}\right)\right]}{N\sin\left[\frac{2\pi k}{N}\right]}$
$\forall x \mid x \mid x + i x \rfloor = x \mid x \rfloor$	$a_k = \frac{2N_1 + 1}{N}, k = 0, \pm N, \pm 2N, \cdots$
$\sum_{n=0}^{+\infty} \delta[n-kN]$	(A reversely when an energy 1 and a service of the service of
k=-∞	$a_k = \frac{1}{N}$,对全部 k

离散时间傅里叶级数的性质:

表 4.2 离散时间傅里叶级数性质		
Mary to the State of the	周期信号	傅里叶级数
性 质	$x[n]$ 周期为 N , $y[n]$ 基本頻率 $\omega_0 = \frac{2\pi}{N}$	$\begin{pmatrix} a_k \\ b_k \end{pmatrix}$ 周期的,周期为 N
线性	Ax[n]+By[n]	$Aa_k + Bb_k$
时移	x[n-n ₀] = x 10 22 11 22	$a_k e^{-jk} \left(\frac{2\pi}{N}\right)^{n_0}$
频移	$e^{iM(\frac{2\pi}{N})n}x[n]$	= 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
共轭	x*[n]	a*_k
时间反转	x[-n]	a_{-k}
时域尺度变换	$x_{(m)}[n] = $ $\begin{cases} x[n/m], & \text{若 } n \neq m \text{ 的倍数} \\ 0, & \text{若 } n \neq m \text{ 的倍数} \end{cases}$ (周期的,周期为 mN)	$\frac{1}{m}a_k$ (看作周期的,)
周期卷积	$\sum_{r=< N>} x[r]y[n-r]$	Na _k b _k
相乘	x[n]y[n]	$\sum_{l=< N>} a_l b_{k-l}$
一阶差分	x[n]-x[n-1]	$[1-e^{-jk}(\frac{2\pi}{N})]a_k$

离散时间傅里叶级数的性质:

	医神灵性造脉不至 医中央	续表
(四名甲衣茶)或果如	周期信号《五五四四	傅里叶级数
性 质	$x[n]$ 周期为 N , $y[x]$ 基本频率 $\omega_0 = \frac{2\pi}{N}$	$\left. egin{align*} a_k \ b_k \end{array} \right\}$ 周期的,周期为 N
求和	$\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} Q \leq a_0 = 0 \text{ 才为有限} \\ \mathring{\mathbf{u}}, \mathbb{L} \end{pmatrix}$	$\frac{1}{1-e^{-jk\left(\frac{2\pi}{N}\right)}}a_k$
实信号的共轭对称性	x[n]为实信号	$\begin{cases} a_k = a_{-k}^* \\ \operatorname{Re}[a_k] = \operatorname{Re}[a_{-k}] \\ \operatorname{Im}[a_k] = -\operatorname{Im}[a_{-k}] \\ a_k = a_{-k} \\ \not \preceq (a_k = - \not \preceq a_{-k}) (相位) \end{cases}$
实、偶信号	x[n]为实、偶信号	a _k 为实且偶
实、奇信号	x[n]为实、奇信号	a _k 纯虚且为奇
实信号的奇偶分解	$x_e[n]$:信号的偶部 $x_o[n]$:信号的奇部	$\operatorname{Re}[a_k]$ $\operatorname{jIm}[a_k]$
周期信号的帕斯瓦尔定理	$\frac{1}{N} \sum_{n=< N>} x[n] ^2 = \sum_{k=< N>} a_k ^2$	C (1)

基本傅里叶变换对:

信号	傅里叶变换	傅里叶级数系数(若为周期的)
$\sum_{k=\langle N\rangle} a_k e^{jk} \left(\frac{2\pi}{N}\right)^n$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
e ^{jw} o ⁿ	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	$(a)\omega_0=rac{2\pi m}{N}$ $a_k=egin{cases} 1, & k=m,m\pm N,m\pm 2N, \ 0, & ext{其余 }k \end{cases}$ $(b)rac{\omega_0}{2\pi}$ 为无理数⇒信号是非周期的
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$(a)\omega_0 = \frac{2\pi m}{N}$
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{\infty} \left[\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right]$	$\begin{vmatrix} a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \\ 0, & \text{其余 } k \end{cases}$
PARTE L	使形在,实现几点	(b) α ₀ / _{2π} 为无理数⇒信号是非周期的
T to Topill	manumith.	$(a)\omega_0 = \frac{2\pi r}{N}$
NN:	The state of the s	
sinω₀n	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \left[\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right]$	$\begin{vmatrix} a_k = \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \\ 0, & \text{ $\sharp \hat{x}$ } k \end{vmatrix}$
200		(b) α ₀ /2π 为无理数⇒信号是非周期的
x[n]=1	$2\pi\sum_{k=-\infty}^{+\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \cancel{\exists} x \notin k \end{cases}$

基本傅里叶变换对:

周期方波 $x[n] = \begin{cases} 1, n \leq N_1 \\ 0, N_1 < n \leq N/2 \end{cases}$ 和 $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_{k} = \frac{\sin\left[\left(\frac{2\pi k}{N}\right)\left(N_{1} + \frac{1}{2}\right)\right]}{N\sin\left[\frac{\pi k}{N}\right]}$ $a_{k} = \frac{2N_{1} + 1}{N}, k = 0, \pm N, \pm 2N, \cdots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$,对全部 k
$a^n u[n], a < 1$	$\frac{1}{1-a\mathrm{e}^{-\mathrm{j}\omega}}$	公士 [n] 的模型叶变换存在
$x[n] = \begin{cases} 1, n \leqslant N_1 \\ 0, n > N_1 \end{cases}$	$\frac{\sin\left[\omega\left(N_1+\frac{1}{2}\right)\right]}{\sin\left(\frac{\omega}{2}\right)}$	直接从它的线里中级数的宗教。
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{Sa}(Wn)$ $0 < W < \pi$	$X(\omega) = $ $\begin{cases} 1, & 0 \leqslant \omega \leqslant W \\ 0, & W < \omega < \pi \end{cases}$ $X(\omega)$ 周期的,周期为 2π	(4) 基本、生型信号的频谱 1.4 傅里叶安接性质
δ[n]	The state of the s	· 经基础 医阿斯克斯氏 经 · · · · · · · · · · · · · · · · · ·

傅里叶变换性质:

性 质	非周期信号	傅 里 叶 变 换
1.4)	x[n] $y[n]$	$X(e^{j\omega})$ 周期的,周期为 2π
线性	ax[n]+by[n]	$aX(e^{j\omega})+bY(e^{j\omega})$
时移	$x[n-n_0]$	$e^{-j\omega n_0} X(e^{j\omega})$
频移	$e^{j\omega_0 n}x[n]$	$X[e^{j(\omega-\omega_0)}]$
共轭	x*[n]	$X^* (e^{-j\omega})$
时间反转	x[-n]	$X(e^{-j\omega})$
时域扩展	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{若 } n \text{ 为 } k \text{ 的倍数} \\ 0, & \text{若 } n \text{ 不 为 } k \text{ 的倍数} \end{cases}$	$X(e^{\mathrm{j}k\omega})$
卷 积	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
相乘	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y \left[e^{j(\omega-\theta)} \right] d\theta$
时域差分	x[n]-x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$

傅里叶变换性质:

11 以左刀		+∞
累加	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-\mathrm{e}^{-\mathrm{j}\omega}}X(\mathrm{e}^{\mathrm{j}\omega}) + \pi X(\mathrm{e}^{\mathrm{j}0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$
频域微分	nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$
实信号的共轭对称性	x[n]为实信号	$\begin{cases} X(e^{j\omega}) = X^* (e^{-j\omega}) \\ Re[X(e^{j\omega})] = Re[X(e^{-j\omega})] \\ Im[X(e^{j\omega})] = -Im[X(e^{-j\omega})] \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \not \propto X(e^{j\omega}) = - \not \propto X(e^{-j\omega}) \end{cases}$
实、偶信号的对称性	x[n]为实、偶信号	X(eiw)实且为偶
实、奇信号的对	x[n]为实、奇信号	X(e ^{jω})纯虚且为奇
实信号的奇偶分解	$x_{e}[n]$ $x_{o}[n]$	$\operatorname{Re}[X(e^{j\omega})]$ $\operatorname{jIm}[X(e^{j\omega})]$
非周期信号的帕斯瓦尔定理	$\sum_{n=-\infty}^{+\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	10 现代为中国的发行特色医疗(参照

离散时间傅里叶级数的对偶性:

若
$$x[n] \stackrel{FS}{\longleftrightarrow} a[k]$$
则 $a[n] \stackrel{FS}{\longleftrightarrow} \frac{1}{N} x[-k]$

离散时间傅里叶变换和连续时间傅里叶级数的对偶性:

离散时间LTI系统的频域分析:

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} \qquad H(e^{j\omega}) = |H(e^{j\omega})| e^{j\theta(\omega)}$$

其中 $H(e^{j\omega})$ 的模 $|H(e^{j\omega})|$ 称为系统的幅频特性,相位 $\theta(\omega)$ 称为系统的相频特性。

系统零状态响应的频域求解

周期信号激励下的系统响应:

$$A\cos[\omega_0 n + \theta_0] \rightarrow A |H(e^{j\omega_0})|\cos[\omega_0 n + \theta_0 + \theta(\omega_0)]$$

$$A\sin[\omega_0 n + \theta_0] \rightarrow A |H(e^{j\omega_0})| \sin[\omega_0 n + \theta_0 + \theta(\omega_0)]$$

离散时间信号的滤波与理想滤波器

例题:

求连续时间信号
$$x(t) = \frac{1}{t - j/2}$$
的傅里叶变换。

例题:

- (20分) 已知描述离散时间系统的二阶差分方程为y[n]+y[n-1]-6y[n-2]=x[n]。试求:
- (1) 起始条件 y[-1]=0, y[-2]=1, 输入为 $x[n]=0.5^n u[n]$ 时的零输入响应和零状态响应, 并指自由响应和强波出响应;
- (2) 起始条件不变,输入 $x[n] = 0.5^n u[n-1]$ 时,求系统的响应;
- (3) 若已知输入信号为 $x[n] = \sum_{k=0}^{2} e^{jk\frac{\pi}{2}n}$, 求系统的响应。

例题:

已知 x[n] 如右图所示,请计 $\int_{-\pi}^{\pi} X(e^{j\omega}) \cdot \cos(\omega) d\omega$

例题:

- (10分)已知一离散因果 LTI 系统的差分方程为: $y[n] \frac{1}{2}y[n-1] = \frac{1}{2}x[n]$ 。
- (1) 若 y[-1] = 4, $x[n] = (\frac{1}{4})^n u[n]$, 求系统的完全响应;
- (2) 若 y[-1]=4 , $x[n]=(\frac{1}{4})^n u[n]+u[n]$, 求系统的完全响应。

例题:

- (15 分)某一因果 LTI 系统方框图如图所示。
- 1. 求该系统的方程,判断系统的稳定性;
- 2. 己知 $y[-1] = -\frac{1}{4}$, y[-2] = 0, $x[n] = (\frac{1}{4})^n u[n]$, 求输出 y(n);
- 3. 如初始条件不变,输入信号幅度增加2倍,求输出y(n)。

第五章

连续时间信号的时域采样定理:

$$x_{p}(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT) = \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT)$$

$$X_{p}(j\omega) = \frac{1}{2\pi} [X(j\omega) * P(j\omega)] = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{s}))$$

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - 2\pi k)/T)$$

不发生频谱混叠的条件:

奈奎斯特采样定理。

根据抽样序列恢复原信号

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\omega_c T}{\pi} Sa(\omega_c (t - nT))$$

零阶保持重建信号:

 $H(j\omega)$

$$x_0(t) = \sum_{n=-\infty}^{\infty} x(nT)h_0(t - nT)$$

$$H_0(j\omega) = e^{-j\omega\tau/2} \left[\frac{2\sin(\omega\tau/2)}{\omega} \right]$$

$$H_r(j\omega) = \frac{e^{j\omega\tau/2}}{2\sin(\omega\tau/2)} \cdot H(j\omega), \quad \text{if } \tau = T$$

信号的欠采样:

 $\omega_s < 2\omega_{M_r}$ 在频域上将发生频谱混叠。频谱混叠两个结果:将高频映射为低频信号;相位倒置。

离散时间信号的时域采样定理:

$$X_{p}(e^{j\omega}) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j(\omega-k\omega_{s})})$$

 $\omega_s > 2\omega_M$ 时,频域中不发生频谱混叠。

恢复系统重建:

设恢复系统中的低通滤波器的单位脉冲响应为h[n] ,则重建信号 $x_r[n]$ 为

$$x_r[n] = x_p[n] * h[n] = \sum_{k=-\infty}^{\infty} x[kN] \cdot h[n-kN]$$

如h[n]为理想低通滤波器, $h[n] = \frac{N\omega_c}{\pi} \frac{Sin\omega_c n}{\omega_c n}$,则重建信号可表示为

$$x_{r}[n] = \sum_{k=-\infty}^{\infty} x[kN] \frac{N\omega_{c}}{\pi} \frac{Sin\omega_{c}(n-kN)}{\omega_{c}(n-kN)}$$

离散时间的抽取:

$$x_s[n] = x_p[nN] = x[nN]$$

$$X_s(e^{j\omega}) = X_p(e^{j\omega/N})$$

离散时间的内插:

内插过程也称为增采样,内插的原理其实质就是脉冲串采样的恢复系统。对序列 $x_s[n]$ 内插N-1个零点后,通过一个低通滤波器形成内插序列 $x_i[n]$ 的过程。在 $|\omega| \le \pi$ 内,内插序列x[n]的频谱是将 $x_s[n]$ 的频谱收缩N倍。

连续时间系统的离散时间实现:

连续时间信号x(t)的频谱与其样值x[n]=x(nT)频谱之间关系:

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - 2\pi k)/T)$$
 等价于 $X(j\omega) = TX(e^{j\omega T})$, $|\omega| < \frac{\pi}{T} = \frac{\omega_s}{2}$

连续时间信号离散时间处理的原理框图:

$$H_c(j\omega) = \begin{cases} H_d(e^{j\omega T}), & |\omega| \leq \frac{\omega_s}{2} \\ 0, & 其它 \end{cases}$$

$$H_c(j\omega)$$
和 $H_d(e^{j\omega T})$ 之间关系也可表示为 $H_d(e^{j\omega T}) = \sum_{k=-\infty}^{\infty} H_c(j(\omega-k\omega_s))$, 可得 $h[n] = Th_c(nT)$ 。

正弦载波幅度调制:

 $y(t) = x(t) \cdot cos\omega_s t$, $cos\omega_s t$ 信号与任意信号相乘具有频谱搬移功能,可以将有用信号搬移到适当的频段上。

同步解调的实现:

先对调制信号再做一次调制,然后进行低通滤波。

$$w(t) = x(t)\cos^{2}\omega_{c}t = \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos 2\omega_{c}t$$

脉冲幅度调制 (PAM):

自然采样与时分复用 (TDM)

自然采样形式的脉冲幅度调制

自然采样形式的脉 冲幅度调制的频谱 说明

时分复用

脉冲幅度调制 (PAM):

平顶采样,该调制方式就是零阶保持采样。

对一路平顶采样形式传输的波形,图中虚线代表信号x(t)

离散时间信号正弦幅度调制:

$$y[n] = x[n] \cdot \cos \omega_c n$$

$$Y(e^{j\omega}) = \frac{1}{2} \left[X(e^{j(\omega - \omega_c)}) + X(e^{j(\omega + \omega_c)}) \right]$$

解调时,通过二次调制,利用低通滤波器,就可恢复原信号x[n]。

例题:

(7分)下图所示是一个幅度调制系统,该系统由两部分组成: 先把调制信号与载波之和平方,然后通过带通滤波器获得已调信号,若 g(t)是带限信号,即 $|\omega|>\omega_M$ 时 $G(j\omega)=0$ 。试确定带通滤波器的的参数 A,ω_l,ω_h ,使得 $f(t)=g(t)\cos\omega_c t$ 。

例题:

(10 分) 考虑某一 LTI 系统:

假设以下条件:

- 1. 输入信号 x(t) 的直流量为零;
- 2. 该输入信号 x(t) 对应的输出信号的微分如下图所示。 试求该输入信号,并画出该输入信号。

例题:

(10 分)已知系统如图所示,其中 $g_1(t) = \begin{cases} 1, |t| \le 0.5 \\ 0, \ \ \ \ \ \ \end{cases}$,子系统的单位冲激响应为

$$h_1(t) = \sum_{n=-\infty}^{\infty} \delta(t-2n), h_2(t) = \frac{\sin\frac{3}{2}\pi t}{\pi t}$$
,系统输入 $x(t) = \cos\pi t$ 。 试求子系统输出 $y(t)$ 。

例题:

(5分)设信号 x(t) 经抽样所得的样值离散信号为 x[n] (抽样周期为 T ,满足采样定理。),已知 $h[n] = \frac{\sin \pi (n-0.5)}{\pi (n-0.5)}$, y[n] = x[n]*h[n],试说明 y[n] 与信号 x(t) 之间的关系,并说明理由。

例题:

(10 分)考虑某一个因果 LTI 系统为 $y''(t) + 7y'(t) + 12y(t) = x'(t) + a \cdot x(t)$,已知该系统对直流信号的响应为零。试求:

- 1. 确定 a 值;
- 2. 设输入信号如图所示,求输出信号。

双边拉氏变换:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \qquad x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

单边拉氏变换:

$$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt \qquad x(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

拉氏变换的收敛域:

能使信号x(t)的拉氏变换存在的s值的范围称为信号x(t)的收敛域,当收敛域包含 $j\omega$ 轴时,信号的傅里叶变换一定收敛。

对于有理拉氏变换,收敛域内不应包含任何极点。

若x(t)是有限连续时间信号,而且是绝对可积的,其收敛域为整个s平面。

若x(t)是右边信号,且X(s)存在,则其收敛域在其最右边极点的右半边。

若x(t)是左边信号,且X(s)存在,则其收敛域在其最左边极点的左半边。

若x(t)是双边信号,则其收敛域是由s平面的一条带状区域组成。

常用信号的拉氏变换对:

表 6.1 常用信号的拉氏变换				
变换对	信号 x(t)	h[x(t)]	ROC	
1	$\delta(t)$	1	全部 s	
2	u(t)	((b)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Re(s)>0	
3	-u(-t)	$\frac{1}{s}$	$\operatorname{Re}\{s\} < 0$	
4	$\frac{t^{n-1}}{(n-1)!}u(t)$) 1	Re(s) > 0	
5	$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\}>-a$	
6	$-\mathrm{e}^{-a}u(-t)$	$-\frac{1}{s+a}$	$\operatorname{Re}\{s\} < -a$	
7	$\frac{t^{n-1}}{(n-1)!}e^{-\omega}u(t)$	$\frac{1}{(s+a)^n}$	$\mathbb{R} = \{s\} > -a $	
8	$\delta(t-T)$	est de partir de la recordina a	全部。	
9	$\cos \omega_0 t u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Re{s}>0	
10	$\sin \omega_0 t u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\operatorname{Re}\{s\}>0$	
11	$e^{-u}\cos\omega_0tu(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$Re\{s\}>-a$	
12	$e^{-at}\sin\omega_0 t u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$Re\{s\}>-a$	

双边、单边拉氏变换的主要性质:

线性
$$L{Ax_1(t)+Bx_2(t)} = AX_1(s)+BX_2(s)$$
, ROC至少: $R_1 I R_2$

时移
$$L\{x(t-t_0)\}=e^{-st_0}X(s)$$
, $ROC=R$

S**域平移**
$$L\{x(t)e^{at}\} = X(s-a), \qquad ROC = R_1 = R + \text{Re}\{a\}$$

尺度变换
$$L\{x(at)\} = \frac{1}{|a|} X\left(\frac{s}{a}\right), \qquad ROC = R_1 = R \cdot a$$

时域微分

双边
$$\frac{dx(t)}{dt} = sX(s)$$

单边
$$uL\left\{\frac{dx(t)}{dt}\right\} = sX(s) - x(0)$$
 $uL\left\{\frac{d^2x(t)}{dt^2}\right\} = s^2X(s) - sx(0) - x'(0)$

双边、单边拉氏变换的主要性质:

s域微分
$$\frac{dX(s)}{ds} = \int_{-\infty}^{\infty} -(t)x(t)e^{-st}dt$$

时域积分

双边
$$\int_{-\infty}^{t} x(\tau)d\tau \overset{L}{\longleftrightarrow} \frac{1}{s} X(s)$$

单边
$$uL\left\{\int_{-\infty}^{t} x(\tau)d\tau\right\} = \frac{X(s)}{s} + \frac{x^{-1}(0^{-})}{s}$$

卷积性质
$$L[x_1(t) * x_2(t)] = X_1(s)X_2(s)$$

初值和终值定理 $x(0^+) = \lim_{s \to \infty} sX(s)$ $\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

在应用终值定理时,必须保证存在 $\lim_{t\to\infty} x(t)$,这个条件就意味着在X(s)的极点必定是在s平面的左半平面。

周期信号的拉氏变换:

若将第一个周期的时间函数用 $x_1(t)$ 表示,其拉氏变换用 $X_1(s)$ 表示,则有

$$X(s) = \frac{X_1(s)}{1 - e^{-sT}} = X_1(s) \frac{e^{sT}}{e^{sT} - 1}, \text{ Re}\{s\} > 0$$

抽样信号的拉氏变换:

$$L[x_s(t)] = \int_0^\infty \sum_{n=0}^\infty x(nT)\delta(t-nT)e^{-st}dt = \sum_{n=0}^\infty x(nT)\left(e^{-sT}\right)^n$$

拉氏反变换:

分母多项式有n个互异实根;

分母多项式中包含有重根;

分母多项式中包含共轭复数极点。

连续时间LTI系统的复频域分析:

当 e^{st} 信号激励一个单位冲激响应为h(t)的系统时,它的响应为 $y(t) = H(s)e^{st}$

一个可实现的N阶连续时间LTI系统可用起始状态为零的线性常微分方程来表

示, 即
$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{r=0}^{M} b_r \frac{d^r x(t)}{dt^r}$$

两边进行双边拉氏变换 $\sum_{k=0}^{N} a_k s^k Y(s) = \sum_{r=0}^{M} b_r s^r X(s)$

$$H(s) = \frac{Y_{zs}(s)}{X(s)} = \frac{\sum_{r=0}^{M} b_r s^r}{\sum_{k=0}^{N} a_k s^k} = \frac{N(s)}{D(s)}$$

系统函数的零极点与系统的稳定性和因果性:

因果性:一个因果LTI系统,其收敛域为最右边极点的右半平面;如果系统是反因果的,收敛域为左半平面。相反的结论不一定都成立。

稳定性: 稳定系统的冲激响应应该是绝对可积的: $\int_{-\infty}^{\infty} |h(t)| dt < \infty$ 这表明稳定系统的频率响应存在。从而稳定系统的H(s)的收敛域应包含 $j\omega$ 轴。

因果稳定系统:同时满足因果性和稳定性的系统,称为因果稳定系统。一个 因果稳定的有理系统函数,其全部极点都分布在S左半平面。

系统函数与系统的频率响应:

$$H(j\omega) = H_{\infty} \frac{\prod_{i=1}^{M} \overline{j\omega - z_{i}}}{\prod_{j=1}^{N} \overline{j\omega - p_{j}}}$$

$$\begin{split} H(j\omega) &= H_{\infty} \frac{N_{1}e^{j\phi_{1}}N_{2}e^{j\phi_{2}}...N_{m}e^{j\phi_{m}}}{M_{1}e^{j\theta_{1}}M_{2}e^{j\theta_{2}}...M_{n}e^{j\theta_{n}}} \\ &= H_{\infty} \frac{N_{1}N_{2}...N_{m}}{M_{1}M_{2}...M_{n}} e^{j[(\phi_{1}+\phi_{2}+...+\phi_{m})-(\theta_{1}+\theta_{2}+...+\theta_{n})]} \\ &= |H(j\omega)|e^{j\psi(\omega)} \end{split}$$

$$|H(j\omega)| = H_{\infty} \frac{N_1 N_2 ... N_m}{M_1 M_2 ... M_n} \qquad \psi(\omega) = (\phi_1 + \phi_2 + ... + \phi_m) - (\theta_1 + \theta_2 + ... + \theta_n)$$

系统函数代数属性和方框图表示:

系统的基本连接方式有并联连接、串联连接、反馈连接。

例题:

求下图单边正弦半波整流信号的拉普拉斯变换。

例题:

(20 分)已知某因果的 LTI 系统的微分方程为 y"+4y'+3y=2x(t), $y(0^-)$ =1, $y(0^-)$ =-1, 输入信号为u(t)。试求:

- (1) 求该系统的频率响应 $H(j\omega)$ 和单位冲激响应 h(t);
- (2) 零输入响应和零状态响应;
- (3) 该系统的 s 域模拟框图。

Z变换定义 $(z = re^{j\omega})$:

双边Z变换
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

单边Z变换
$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Z逆变换定义:

$$x[n] = \frac{1}{2\pi i} \oint X(z) \cdot z^{n-1} dz$$

Z逆变换求解方法:

围线积分法(留数定理)、幂级数展开法、部分分式展开法

Z变换零极点图:

X(z)的值等于所有的零点矢量的乘积除以所有的极点矢量的乘积,并乘以一个常数因子。

零点矢量为
$$\overline{z_1} - 0 = Ae^{j\theta}$$

极点矢量为
$$\overline{z_1-1/3}=B_1e^{j\varphi_1}$$

$$\overrightarrow{z_1 - 2} = B_2 e^{j\varphi_2}$$

$$X(z) = K \frac{A}{B_1 \cdot B_2} \cdot \frac{e^{j\theta}}{e^{j(\varphi_1 + \varphi_2)}}$$

当 z_1 位于z平面单位圆上,上式就是x[n]频谱 $H(j\omega)$ 。

Z变换的收敛域:

表 7.1 收敛域的主要特性

信号 x[n]	X(z)的收敛域
大阳 L 停口	收敛域是整个 z 平面,有时要除去 $z=0$ 和/或 $z=\infty$ (如果 $n<0$ 时 $x[n]=0$,则收敛域包
有限长信号	含 $z=\infty$;如果 $n>0$ 时 $x[n]=0$,则收敛域包含 $z=0$)
右边信号	收敛域位于以最大极点的模为半径的圆外,可能不含 $z=\infty$
因果信号	收敛域位于以最大极点的模为半径的圆外,且包含 $z=\infty$
左边信号	收敛域位于以最小极点的模为半径的圆内,可能不含 z=0
反因果信号	收敛域位于以最小极点的模为半径的圆内,且包含 z=0
双边信号	收敛域是以两个极点的模为界的环形(收敛域内不含任何极点)

双边Z变换的性质:

表 7.2 双边 z 变换的性质

		1
性 质	信号	2 变 换
线性	$ax_1[n]+bx_2[n]$	$aX_1(z)+bX_2(z)$
时移	$x[n-n_0]$	$z^{-n_0} X(z)$
时域反转		$X\left(\frac{1}{z}\right)$
时域扩展	$x_k[n] = \begin{cases} x[n/k], & n = rk \\ 0, & n \neq rk \end{cases}$	$X(z^k)$
z 域尺度变换	$a^nx[n]$	$X\left(\frac{z}{a}\right)$
z 域反转	$(-1)^n x [n]$	X(-z)
共轭	x*[n]	X*(z*)
z 域微分	nx[n]	$-z \frac{\mathrm{d}X(z)}{\mathrm{d}z}$
求和	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$
时域卷积	$x_1[n] * x_2[n]$	- 2KE 2K -
频域卷积	$x_1[n]x_2[n]$	$\frac{1}{2\pi \mathbf{j}} \oint_{c} X_{1}(v) X_{2}\left(\frac{z}{v}\right) \frac{\mathrm{d}v}{v}$

单边Z变换的性质:

表 7.3 单边 z 变换的特有性质				
性 质	信号号。为识别的	z 变 换		
	x[n-1]	$z^{-1}X(z)+x[-1]$		
右移	$x[n-2]$ in A th λ the λ	$z^{-2}X(z)+z^{-1}x[-1]+x[-2]$		
	x[n-m]	$z^{-m} [X(z) + \sum_{k=-m}^{-1} x [k] z^{-k}]$		
	x[n+1]	zX(z)-zx[0]		
左移	x[n+2]	$z^2 X(z) - z^2 x [0] - z x [1]$		
NU WE I DO YES	x[n+m]	$z^{m} [X(z) - \sum_{k=0}^{m-1} x[k] z^{-k}]$		
单边周期	$x_p[n]u[n]$,设 $x_1[n]$ 为 $x_p[n]$ 的第一个周期	$\frac{X_1(z)}{1-z^{-N}}$		
初值定理	初值定理 $x[0] = \lim_{z \to \infty} X(z)$ 终值定理 $\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z-1)X(z)$			
终值定理				

常用信号的Z变换:

表 7.4 常见信号的 z 变换		
信号	z 变 换	收敛域
JF1-22(3	有限长信号	liag
$\delta[n]$	And the second s	全部 z
u[n]-u[n-N]	$\frac{1-z^{-N}}{1-z^{-1}}$	z≠0
1]e-1+x[2]e-1+	大小一[0]水小水 因果信号 [8]水小	$X(e) = \sum_{\alpha} X(e)$
	$\sum_{z=1}^{\infty} \frac{1}{1-z^{-1}} \vec{x} \frac{z}{z-1} + M \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x} \vec{x}$	z >1
nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2} \vec{\mathfrak{p}} \frac{z}{(z-1)^2}$	z >1
$a^nu[n]$	$(\mathbf{x}) \mathbf{X} \mathbf{U} \mathbf{T} \mathbf{A} \mathbf{U} \mathbf{T} \mathbf{A} \mathbf{U} \mathbf{T} \mathbf{A} \mathbf{U} \mathbf{U} \mathbf{T} \mathbf{A} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$ 或 $\frac{az}{(z-a)^2}$	z > a
$[\cos\omega_0 n]u[n]$	$\frac{1 - [\cos\omega_0]z^{-1}}{1 - [2\cos\omega_0]z^{-1} + z^{-2}} \underbrace{\mathbb{E}_{z^2 - z\cos\omega_0}^{z^2 - z\cos\omega_0 + 1}}$	z >1
$[\sin\omega_0 n]u[n]$	$1 - \left[2\cos\omega_0\right]z^{-1} + z^{-2} + z^2 - 2z\cos\omega_0 + 1$	z >1 < n
$[r^n\cos\omega_0 n]u[n]$	$\frac{1 - [r \cos \omega_0] z^{-1}}{1 - [2r \cos \omega_0] z^{-1} + r^2 z^{-2}} \vec{\mathfrak{U}} \frac{z^2 - rz \cos \omega_0}{z^2 - 2rz \cos \omega_0 + r^2}$	z >r
$[r^n \sin \omega_0 n] u[n]$	$\frac{\lceil r \sin \omega_0 \rceil z^{-1}}{1 - \lceil 2r \cos \omega_0 \rceil z^{-1} + r^2 z^{-2}} \stackrel{\cancel{\text{Pl}}}{\Rightarrow} \frac{rz \sin \omega_0}{z^2 - 2rz \cos \omega_0 + r^2}$	z >r

常用信号的Z变换:

反因果信号		
-u[-n-1]	$\frac{1}{1-z^{-1}} \vec{\boxtimes} \frac{z}{z-1}$	z <1
-nu[-n-1]	$\frac{1}{(1-z^{-1})^2}$ 或 $\frac{z}{(z-1)^2}$	z <1
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}} \vec{\mathfrak{Q}} \frac{z}{z-a}$	z < a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$ $\frac{az}{(z-a)^2}$	z < a

LTI系统的Z域分析:

$$X(z)$$
 $Y(z) = X(z) \cdot H(z)$

因果性:一个离散LTI系统是因果,当且仅当它的系统函数H(z)的ROC是某一个圆的外部,且包含无限远点 $z=\infty$ 。

稳定性:一个离散时间LTI系统是稳定的,当且仅当它的系统函数H(z)的ROC包含单位圆。

线性常系数差分方程的Z域分析:

$$\sum_{k=0}^{N} a_k y[n \pm k] = \sum_{k=0}^{M} b_r x[n \pm k]$$

$$H(z) = \frac{\sum_{k=0}^{M} b_r z^{\pm k}}{\sum_{k=0}^{N} a_k z^{\pm k}} = \frac{b_M z^{\pm M} + b_{M-1} z^{\pm (M-1)} + \dots + b_1 z^{\pm 1} + b_0}{a_N z^{\pm N} + a_{N-1} z^{\pm (N-1)} + \dots + a_1 z^{\pm 1} + a_0}$$

系统函数的方框图表示 (直接II型):

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{N} b_k x[n-k] , \qquad a_0 \neq 0$$

系统函数的方框图表示(级连型):

系统函数的方框图表示(并联结构):

例题:

己知
$$X(z) = \ln(1 - \frac{z^{-1}}{3})$$
, $|z| > \frac{1}{3}$, 求 $x[n]$ 。

例题:

(15分) 某因果离散时间 LTI 系统, 其输入和输出有下列差分方程描述:

$$y[n-1] + 2y[n] = x[n]$$

- 1. 写出该系统的系统函数,并判断其稳定性;
- 若 y[-1]=1, x[n]=3(1/4)ⁿ u[n], 求 n ≥ 0 时系统的输出 y[n], 并指出零输入响应与零状态响应;
- 3. x[n] = sgn[n] + <math> (n] x x x x x x x x x x x x x x x x <math> x

例题:

某一因果离散 LTI 系统的零极图如图所示,已知其对信号 x[n]=0.5u[n]+0.5u[n-2] 的响应 s[n]满足: $s[\infty]=3$,试求该系统的的单位样值响应。

例题:

- (10分)已知离散 LTI 系统的单位脉冲响应为 $h[n] = \frac{1}{6}(0.25^n + 0.5^n)u[n]$ 。
- (1) 求该系统的系统函数 H(z) ,并判断其稳定性; (2) 当输入等于 $x[n] = \left(\frac{1}{3}\right)^n u[n]$ 时,试求该系统的输出。

例题:

(10分) 某一因果 LTI 系统如题图六(b)所示,已知: $h_1[n] = \frac{\sin \pi (n-0.25)}{\pi (n-0.25)}$,

$$H_2(z) = \frac{0.75z^2}{(z-0.5)(z-0.25)}$$
, 输入信号如题图六(a)所示。试问:

- (1) 系统 h₁[n] 的频率响应?
- (2) 输出信号 y[n]?

题图六