§1-3 對數

(甲)對數概念的引進

(1)對數的引入:

西元 1554 年, Michael Stifel 在<<整數算術>>一書中寫出兩個數列:

(0) a	 -2	-1	0	1	2	3	4	5	 х	 у	•••	<i>x</i> + <i>y</i>
2^a	 1/4	1/2	1	2	4	8	16	32	 M	 N		$M \times N$

現在想要計算 $M \times N$,如果能得知 x,y 的值(或是近似值),根據指數律可知: $M=2^x$, $N=2^y \Rightarrow M \times N=2^x \cdot 2^y=2^{x+y} \Rightarrow$ 因此只要能得出上表就可得出 x+y 所對的值 $M \times N$ 。這樣想法經過數學化之後就形成了**對數**的概念。

數學化

根據前面的想法,已知一個正數 M , 我們想要定義一個符號來代表一數 x , 使得 $M=2^x$, 而這個工作是由英國的納皮爾(John Napier 1550~1617)完成的。如何 定義呢?

給定底數 2,大家知道 2 的 3 次方等於 8。反過來說,如果已知 8,我們想知道 8 是 2 的幾次方,這等於求方程式 $2^x=8$ 的解,通常以符號 log_28 表示之,即 $3=log_28$

$$2^{3}=8 \Leftrightarrow \log_{2}8=3$$
 $10^{2}=100 \Leftrightarrow \log_{10}100=2$
 $3^{\frac{1}{2}}=\sqrt{3} \Leftrightarrow \log_{3}\sqrt{3}=\frac{1}{2}$

(2)對數的定義:

如果 a>0,且 $a\ne 1$,當 $a^x=b$ 時,我們用符號 $\log_a b$ 來表示 x,即 $\log_a b=x$,我們稱 $\log_a b$ 為以 a 為底數時 b 的對數,b 稱為真數。

反過來說,如果 $\log_a b = x$,那麽 $a^x = b$,即 $a^{\log_a b} = b$ 。

為何a要大於0,不等於1呢?

我們在討論指數 a^x 時,a 必須大於 0,所以規定對數時,我們也假設 a>0,,因為 a>0, $a^x>0$ 所以只有正數的對數才有意義。因此 b 必須大於 0,當 a=1 時,因為 $1^2=1$, $1^3=1$,那麽 $\log_1 1$ 到底要代表 2 或是 3 呢?這就無法定義清楚了,所以我們不以 1 為底數,

結論:

- (1) $\log_a b$ 有意義 \Leftrightarrow a>0 且 $a\neq 1$, b>0。
- (2) $\log_a b = x \Leftrightarrow a^x = b \Leftrightarrow a^{\log_a b} = b$

[**例題1**] 將下列的x值用對數表示:

$$(1)4^x = \frac{1}{64} (2)5^x = 100 (3)8^x = 17$$

Ans:
$$(1)\log_{4}\frac{1}{64}$$
 $(2)\log_{5}100$ $(3)\log_{8}17$

[例題2] 求下列各式的值:

$$(1)\log_3 1 \quad (2)\log_{0.5}\frac{1}{2} \quad (3)\log_2\sqrt{8} \quad (4)\log_{10}1000^{\frac{1}{10}} \quad (5)\log_4 8 \quad (6) \quad 2^{\log_2 5}$$

Ans:
$$(1)0(2)1(3)\frac{3}{2}(4)\frac{3}{10}(5)\frac{3}{2}(6)5$$

[**例題3**] 求下列各式的 *x*。

$$(1)\log_{25}x = -2.5$$
 $(2)\log_x 9\sqrt{3} = 5$ $(3)\log_x 81 = \frac{4}{3}$

Ans:
$$(1)\frac{1}{3125}$$
 $(2)\sqrt{3}$ $(3)27$

(練習1) 將下列等式中的x 值用對數表示:

$$(1)3^x = 8$$
 $(2)(2.51)^x = 7$ $(3)5^x = 17$

Ans:
$$(1)\log_3 8 (2)\log_{2.51} 7 (3)\log_5 17$$

(練習2) 求下列各式的值:

$$(1)3^{\log_3 7}$$
 $(2)5^{\log_5 9}$ $(3)a^{\log_a b}$

Ans:
$$(1)7(2)9(3)b$$

(練習3) 試求下列各對數值: $(1)\log_{\frac{1}{2}}\frac{1}{4}$ (2) $\log_{\frac{1}{2}}\frac{1}{2}$ (3) $\log_{\frac{3}{2}}1$ (4) $\log_2\sqrt[3]{2}$ Ans: $(1)2(2)\frac{1}{2}(3)0(4)\frac{1}{2}$

(練習4) 設 $\log_{10}2=p$, $\log_{10}=q$, 則 $10^{3p+2q+1}=$? Ans: 720

(練習5) 試求下列的x值:

 $(1)\log_x 27 = 6 \ (2)\log_7 x = \frac{3}{2} \ (3)\log_x 8\sqrt{2} = 7$ Ans: $(1)\sqrt{3} (2)7\sqrt{7} (3)\sqrt{2}$

(練習6) 設 $\log_a b = r$, a 是不等於 1 的正數 , 則下列何者為真 ? (A) b > 0 (B) r > 0 (C) b > 1 (D) r > 1 (E) $b = a^r$ Ans: (A)(E)

(乙)對數的基本性質

 $\overline{\mathfrak{b}}$ a>0 , 且 $a\neq 1$, b,r,s 均為正數

(1) 設 a>0,且 $a\neq 1$,b>0, $a^{\log_a b}=b$

說明: $\log_a b$ 代表一個數, a 的這個數次方就等於 b, 換句話說, a 的 $\log_a b$ 次方等於 b。寫成式子: $x = \log_a b$ \Leftrightarrow $b = a^x = a^{\log_a b}$

 $(2) \log_a 1 = 0 , \log_a a = 1$ 證明:因為 $a^0=1$, $a^1=a$.

(3) $\log_a r + \log_a s = \log_a rs$, $\log_a r - \log_a s = \log_a \frac{r}{s}$

同底的對數相加等於真數相乘,同底的對數相減等於真數相除

證明:因為 $a^{\log_a r} = r$, $a^{\log_a s} = s$,

所以 $rs = a^{\log_a r} \cdot a^{\log_a s} = a^{\log_a r + \log_a s}$ $\Rightarrow \log_a rs = \log_a r + \log_a s$ $\frac{r}{s} = a^{\log_a r} \div a^{\log_a s} = a^{\log_a r - \log_a s} \implies \log_a \frac{r}{s} = \log_a r - \log_a s$

 $(4) \log_a r^t = t \cdot \log_a r \quad (t$ 為實數)

讚明: $r=a^{\log_a r}$ $\Rightarrow r^t=(a^{\log_a r})^t=a^{t \cdot \log_a r}$ $\Rightarrow \log_a r^t = t \cdot \log_a r$

從(4) (5)可以得到: $\log_{a^m} b^n = \frac{n}{m} \log_a b$.

$$(6) log_a b = \frac{\log_c b}{\log_c a}, 其中 c > 0, c \neq 1 (換底公式)$$

先觀察一個例子:
$$\log_2 3 = \log_{5^{\log_5 2}} 5^{\log_5 3} = \frac{\log_5 3}{\log_5 2} \cdot \log_5 5 = \frac{\log_5 3}{\log_5 2}$$
。

證明:
$$\log_a b = \log_{c^{\log_c a}} c^{\log_c b} = \frac{\log_c b}{\log_c a} \cdot \log_c c = \frac{\log_c b}{\log_c a}$$
。

$$(7) \log_a b = \frac{1}{\log_b a} \quad (b > 0, b \neq 1), \log_a b \cdot \log_b c \cdot \log_c d = \log_a d \quad (連鎖律)$$

證明:由換底公式,
$$\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$$
。

換底公式的用意:

只要 *a* 是異於 1 的正實數, *a* 都可以當對數的底數, 所以對數的底數有無限多個。當我們求對數值需要去查對數表時, 是不是需要製作不同底數的對數表呢?接下來我們介紹換底公式, 利用換底公式可以使對數值處理更容易。

對數的底數中,以10為底數較常使用。

我們想問 log₂3 如何用 log₁₀3 與 log₁₀2 來表示?

計算要訣:

- (1)同底對數相加(減),真數相乘(除)
- (2)對數相乘考慮換底公式。

對數的計算

[例題4] 計算下列各式:

$$(1)\log_{\sqrt{2}} 8$$
 $(2)(\sqrt{5})^{\log_{\sqrt{5}} 7}$ $(3)\log_{2\sqrt{2}} 32\sqrt[5]{2}$

$$(4) \log_{10} 4 - \log_{10} 5 + 2\log_{10} \sqrt{125} \quad (5) \log_4 \frac{28}{15} - 2\log_4 \frac{3}{14} + 3\log_4 \frac{6}{7} - \log_4 \frac{2}{5}$$

Ans:
$$(1) 6 (2)7(3)2 (4)3(5)\frac{52}{15}$$

[例題5] 試求下列各值:

$$(1)(\log_{10}2)^3 + (\log_{10}5)^3 + \log_{10}5 \cdot \log_{10}8$$
 $(2)\frac{\log_4 27}{\log_2 3} + 3\log_9 \frac{1}{4}$

$$(3)\log_2 3 \cdot \log_7 64 \cdot \log_3 5 \cdot \log_5 49$$
 (4) $(\log_2 5 + \log_4 0.2)(\log_5 2 + \log_{25} 0.5)$

Ans:
$$(1)1(2)2(3)12(4)\frac{1}{4}$$

(練習7) 設 a 是不等於 1 的正數 , x, y 為正數 , 則下列何者為真?

(A)
$$\log_a (x + y) = \log_a x + \log_a y$$
 (B) $\log_a xy = \log_a x + \log_a y$

(C)
$$\log_a (x - y) = \log_a x - \log_a y$$
 (D) $\log_a \frac{x}{y} = \log_a x - \log_a y$

(E)
$$\log_a \frac{x}{y} = \frac{\log_a x}{\log_a y}$$
 Ans: (B)(D)

(練習8) 化簡下列各式:

$$(1)\log_{10}\frac{50}{9} - \log_{10}\frac{3}{70} + \log_{10}\frac{27}{35} \qquad (2)\log_{10}\frac{4}{7} - \frac{4}{3}\log_{10}\sqrt{8} + \frac{2}{3}\log_{10}\sqrt{343}$$

$$(3)\log_3 54 + \log_3 6 - 2\log_3 2$$
 Ans: $(1)2(2)0(3)4$

(練習9) 試求下列各值:

$$(1) 2^{-\log_2 3} \qquad (2) 2^{\frac{\log 3}{2 \log 2}} \qquad (3) \log_{144} \sqrt[3]{2} + \log_{144} \sqrt[6]{3} \qquad (4) \log_2(\sqrt{3} + \sqrt{5}) - \sqrt{3} - \sqrt{5})$$

$$(5) \sum_{k=1}^{999} \log \frac{k+1}{k} \qquad (6) \frac{\log_4 27}{\log_2 3} \qquad (7) \frac{\log_5 16}{\log_{25} 8}$$

$$\operatorname{Ans} : (1) \frac{1}{3} \qquad (2) \sqrt{3} \qquad (3) \frac{1}{12} \qquad (4) \frac{1}{2} \qquad (5) 3(6) \frac{3}{2} \qquad (7) \frac{8}{3}$$

(練習10)
$$5^{\frac{\log_2 6}{\log_2 5}} + 4^{\frac{1}{\log_5 4}} = ?$$
 . Ans : 11

(練習11) 設 a,b,c 為正數 , 且 $c\neq 1$, 試證 $a^{\log_c b} = b^{\log_c a}$

[例題6] 由對數表知 log102=0.3010, log103=0.4771, log7=0.8451(皆為近似值), 試求:

- $(1)\log_{10}1$
- $(2)\log_{10}2$
- $(3)\log_{10}3$
- $(4)\log_{10}4$
- $(5)\log_{10}5$

- $(6)\log_{10}6$
- $(7)\log_{10}7$
- $(8)\log_{10}8$
- $(9)\log_{10}9$
- $(10)\log_{10}10$

[例題7] 設 $a=\log_{10}2$, $b=\log_{10}3$, 試將下列各數值以 a,b 表示:

 $(1)log_{6}24 \quad (2)log_{2}\sqrt{3} + log_{3}\sqrt[3]{2} \quad (3)log_{5}\sqrt{6} \quad (4)log_{0.75}100$

Ans: $(1)\frac{3a+b}{a+b}$ $(2)\frac{b}{2a}+\frac{a}{3b}$ $(3)\frac{a+b}{2(1-a)}$ $(4)\frac{2}{b-2a}$

[例題8] 設 $\log_2 3 = a$, $\log_3 11 = b$, 試以 a,b 表 $\log_{66} 44$ 。Ans: $\frac{2 + ab}{1 + a + ab}$

- (練習12) 設 $\log_3 4 = a$, 則 $\log_6 72 =$ ______。(答案以 a 表之)Ans: $\frac{4+3a}{2+a}$

對數與指數方程式

[例題9] 求下列方程式之解:

 $(1)2^{2x}-7\times 2^x+12=0$ $(2)2^{3x}-10\times 2^{2x}+31\times 2^x-30=0$

[例題10] 解下列方程式:

$$(1)\log_6 x + \log_6(x^2 - 7) = 1 \quad (2)\log_{\frac{1}{4}} x + (2\log_{16} x^2) - \frac{3}{2} = 0$$

$$(3)\log_{10}x - 6\cdot\log_x 10 = 1$$
 $(4)\log_{10}(10^x + 100) = \frac{x}{2} + 1 + \log_{10}2$

Ans:
$$(1)x=3(2)x=8(3)x=10^3 \ \mbox{s} \ \frac{1}{100}(4) x=2$$

(練習14) 試解下列方程式:

$$(1)1 + \log_4(x-1) = \log_2(x-9) \quad (2)\log_3(3^x+6) = \frac{x}{2} + \log_3 5$$

(3)
$$\log_5 x + \log_5(x^2 - 6) = 1$$
 (4) $x^{\log x} = 10^8 x^2$

Ans:
$$(1)x=17$$
 $(2)2$ 或 $2\log_3 2$ $(3)x=\frac{1+\sqrt{21}}{2}$

 $(4)x=10^4$ 或 10^{-2} [提示:等號兩邊取對數 $\log(x^{\log x})=\log(10^8x^2)$]

綜合練習

(1) 陳老師證明了 $x^2=2^x$ 有兩個正實數解及一個負實數解後,進一步說,此方程式兩邊各取 \log_2 ,得 $2\log_2 x=x$; 陳老師要同學討論此新的方程式有多少實數解?

小英說:恰有三個實數解;

<u>小明</u>說:恰有兩個正實數解; 小華說:最多只有兩個實數解;

小毛說:仍然有兩個正實數解及一個負實數解;

小芬說:沒有實數解。

____ 請問哪些人說的話,可以成立?______

- (1)小英 (2)小明 (3)小華 (4)小毛 (5)小芬 (92 指定考科乙)
- (2) 根據對數表, $\log 2$ 的近似值是 0.3010, $\log 3$ 的近似值是 0.4771。下列選項有哪些是正確的?(1) $10^9 > 9^{10}$ (2) $10^{12} < 12^{10}$ (3) $10^{11} > 11^{10}$ (4)方程式 $10^x = x^{10}$ 有一負根。(93 指定考科甲)

(3) 設 $f(\log x)=x$, x>0 則 $f(5)=(A)\log 5$ (B) $\log_5 10$ (C) 5^{10} (D) 10^5 (E) $10\log 5$ 。

(4) 下列哪些式子是正確的?

(A)
$$\log_7(-3)^2 = 2\log_7(-3)$$
 (B) $\log_77 = 1$ (C) $\log_{81}3 = 4$ (D) $\log_6(3+4) = \log_63 + \log_64$ (E) $\log_{\sqrt{6}}\sqrt{7} = \log_67$

(5) 方程式
$$2^{\log_3 x} = \frac{1}{4}$$
的解是(A) $x = \frac{1}{9}$ (B) $x = \frac{\sqrt{3}}{3}$ (C) $x = \sqrt{3}$ (D) $x = 9$ 。

(6)
$$2x + 2\log_{10}(2 + 10^{-x}) - \log_{10}(\frac{1}{4} + 10^{x} + 10^{2x}) = (A)2 \times 10^{x} \quad (B)x \cdot \log_{10}\frac{1}{4} \quad (C)1$$

 $(D)2 \cdot \log_{10}2 \quad (E)2x + 10^{2x}$

(7) 試化簡下列各式:

(a)
$$\log_{2\sqrt{2}} 16\sqrt[3]{4}$$
 (b) $2^{2\log_2 3}$ (c) $\frac{\log_5 16}{\log_{25} 8}$

(d)
$$\log_2(\log_2 49) + \log_2(\log_7 2)$$
 (e) $3^{\frac{\log 4}{2\log 3}}$

(8) 試求下列各值:

(a)
$$(\log_2 3 + \log_4 9)(\log_3 4 + \log_9 2)$$

(b)
$$\log_3 \sqrt{2} + \frac{1}{2} \log_3 \frac{1}{3} - \frac{3}{2} \log_3 \sqrt[3]{6}$$

$$\text{(c)} \, (\log_5 2 + \log_{25} 8) (\log_4 3 + \log_{\sqrt{2}} 27) (\log_3 0.2 + \log_9 5)$$

$$(d)(log_29)\cdot(log_34)\cdot(log_{\frac{1}{4}}8)$$

(a)試求
$$\log_{10}20$$
 , $\log_{10}\frac{25}{4}$, $\log_{10}\frac{1}{4}$, $\log_{10}\frac{128}{5}$ 之值。

(b)比較
$$6^{\sqrt{8}}$$
, $8^{\sqrt{6}}$ 的大小。

(10) 設
$$10^{-\log_2 x} = \frac{1}{10\sqrt{10}}$$
 , 求 x 之值。

(11) 已知
$$2x = \log_2 3$$
,則 $\frac{2^{3x} - 2^{-3x}}{2^x + 2^{-x}} = ?$

(12) 試求下列二小題:

(a)若
$$a=\log 2$$
 , $b=\log 3$, 則 $\log 7.5=$? $(\log x=\log_{10}x)$

(b)若 $\log(1+\frac{1}{7})=a$, $\log(1+\frac{1}{49})=b$, 則 $\log 2= ? \log 7= ?$

- (13) 若 $\log_2 3 = a$, $\log_3 7 = b$, 試以 a,b 表示 $\log_{42} \frac{56}{9} = ?$
- (14) 若 $2^{x-1}+2^x=5^{x-1}+5^x$,則 $(a)\frac{5^x}{2^x}=$? (b)求x的值化為小數,小數點以後第一位為何?
- (15) 方程式 $\log x + \log(x-3) = 1$ 與下列那一個方程式的「解」完全相同。 (A) $\log x(x-3) = 1$ (B)x(x-3) = 10 (C) $10^{x(x-3)} = 10^{10}$ (D) $10^x \cdot 10^{x-3} = 10^{10}$ (E)x > 3,且 x(x-3) = 10。
- (16) 解下列各方程式:
 - $(a)\log(2x-3) + \log(4x-1) = 2\log 5$
 - (b) $2\log(3x-1) + \log(x+1)$
 - $(c)1+\log_4(x-1)=\log_2(x-9)$
 - $(d)4^{x}-2^{x+3}+15=0$
- (17) 解下列方程式:
 - (a) $\log_x(x+3) \frac{1}{2} \log_x(x+6) = \log_x 2$
 - $(b)x^{\log x} = 10^6 x$
 - $(c)\log_8(8^x+128)=\frac{x}{2}+1+\log_83$
- (18) 設 α 、 β 為方程式 $(\log x)^2 \log x^2 6 = 0$ 之二相異實根,則 $\log_{\alpha}\beta + \log_{\beta}\alpha = ?$

進階問題

- (19) 在方程式 $\log_2 x + a \cdot \log_x 2 + b = 0$ 中,甲生誤寫 b,得二根為 $\frac{1}{4}$, $\frac{1}{8}$,乙生誤寫 a,得二根為 $\frac{1}{2}$,64,則 a = ? b = ? 又正確解為何?
- (20) α 、 β 為方程式 $x^2+2x\log 5+\log 2.5=0$ 之二根,求 $10^{\alpha}+10^{\beta}=$?

(21) 設
$$a,b,c,d$$
 為異於 0 的實數 , 且 $2^a=3^{-b}=5^c=\sqrt{90^d}$, 請證明 : $\frac{1}{a}+\frac{1}{c}=2(\frac{1}{b}+\frac{1}{d})$ 。

(22) 設
$$184^x = 32$$
 , $23^y = 8$, 則 $\frac{5}{y} - \frac{3}{x} = ?$

- (23) 求 log₂2+log₂4+log₂8+...至第 100 項的和。
- (24) (a)設 a,b 均為正數,證明: $a^{\log b} = b^{\log a}$ 。 (b)求解 $2^{\log x} \cdot x^{\log 2} - 3 \cdot x^{\log 2} - 2^{1 + \log x} + 4 = 0$ 。

綜合練習解答

(1)(2)(3)

[解法]:

由新方程式 $2 \log x = 2^x$ 思考,因 x 為真數,所以 x > 0。

$$\Leftrightarrow \log_2 x^2 = x , x > 0$$

 $\Leftrightarrow x^2=2^x$, x>0, 但原方程式 $x^2=2^x$ 有二正一負實數解

故 2 log₂x= x 恰有兩正實數解⇒小明,小華說法正確。

(2)(3)(4)

[解法]:

- (1) $9 \cdot \log 10 = 9 < 10 \cdot \log 9 = 20 \cdot \log 3 = 9.542 \Rightarrow 10^9 < 9^{10}$
- (2) $12 \cdot \log 10 = 12 > 10 \cdot \log 12 = 10 \cdot (2 \log 2 + \log 3) = 10.791 \Rightarrow 10^{12} > 12^{10}$
- (3) $11 \cdot \log 10 = 11 > 10 \cdot \log 12 = 10.791 > 10 \cdot \log 11 \Rightarrow 10^{11} > 12^{10} > 11^{10}$
- (4) 令 $f(x) = 10^x x^{10}$,因 f(0) = 1 > 0且 $f(-1) = 10^{-1} 1 < 0$ 故存在實數 $a \in (-1,0)$ 使得 f(a) = 0 即 $10^x = x^{10}$ 有一負根。
- (3)(D)
- (4)(B)(E)
- (5)(A)
- (6)(D)

$$(7)(a)\frac{28}{9}$$
 (b)9 (c) $\frac{8}{3}$ (d)1 (e)2

(8) (a) 5 (b)
$$-1$$
 (c) $-\frac{65}{8}$ (d) -6

(9) (a)1.3010, 0.7960, -0.6020, 1.4080 (b) $6^{\sqrt{8}} < 8^{\sqrt{6}}$

(10)
$$x = 2\sqrt{2}$$

$$(11)\frac{13}{6}$$

(12) (a)1-2a+b (b)log2=
$$\frac{2a-b+2}{7}$$
 log7= $\frac{-a-3b+6}{7}$

$$(13)\frac{ab-2a+3}{ab+a+1}$$

$$(14)(a)\frac{5}{4}$$
 (b)2

(15)(E)

(16) (a)
$$x = \frac{11}{4}$$
 (b) $x = \frac{-1 + \sqrt{21}}{6}$ (c) $x = 17$ (d) $x = \log_2 3$ 或 $\log_2 5$

(17) (a)
$$x=3$$
 (b) $x=\frac{1}{100}$ $\stackrel{?}{=}$ 1000 (c) $x=2$ $\stackrel{?}{=}$ $\frac{8}{3}$

- (18) 令 $t=\log x$, 原方程式可化為 $t^2-2t-6=0$, 因為 α 、 β 為原方程式的二相異實根,所以 $\log \alpha$ 、 $\log \beta$ 為 $t^2-2t-6=0$ 的兩根,所以 $\log \alpha + \log \beta = 2$,($\log \alpha$)($\log \beta$)=-6 $\log \alpha \beta + \log \beta \alpha = \frac{\log \beta}{\log \alpha} + \frac{\log \alpha}{\log \beta} = \frac{-8}{3}$ 。
- (19) a=6,b=-5, x=4,8 [提示:可令 $A=\log_2 x$]
- $(20)\frac{1}{2}$
- (21) 提示:可令 $t=2^a=3^{-b}=5^c=\sqrt{90^d}$ $\Rightarrow a=\log_2 t$, $b=-\log_3 t$, $c=\log_5 t$, $\frac{d}{2}=\log_{90} t$, $\Rightarrow \frac{1}{a}$ $=\log_t 2$, $\frac{1}{b}=-\log_t 3$, $\frac{1}{c}=\log_t 5$, $\frac{2}{d}=\log_t 90$, 再代入驗證即可
- **(22)**3
- **(23)** 5050
- (24)(a) 證 明 $\log(a^{\log b}) = \log(b^{\log a})$ (b) 可令 $A = 2^{\log x} = x^{\log 2}$, 原方程式可化為 $A^2 5A + 4 = 0$,解得 A = 1或 4,再解 x = 1或 100