

About

COMPANY

weight management program + health data tracking & monitoring + clinical guidance

PROBLEM

customer-generated nutrition data exists in unstructured format

GOAL

predict label for each word in a food log

Data

Last night I was really low on my calorie intake so I treated myself. Had brie, walnuts, and dried peaches. OTHER FOOD FOOD OTHER FOOD

1

DATA PREPARATION

- Manually label training data using Flask web app + MongoDB
- o Labels:
 - 1. Meal 5. Quantity
 - 2. Time 6. Unit
 - 3. Food 7. Comment
 - 4. Drink 8. Other

2

FEATURE ENGINEERING

3

MODELING & EVALUATION

DATA PREPARATION

FEATURE ENGINEERING

- o spaCy part-of-speech tags
- o Boolean: word has numeric digit
- o Boolean: word has punctuation
- o Boolean: word is capitalized
- o POS tags for words before and after

MODELING & **EVALUATION**

1

DATA PREPARATION 2

FEATURE ENGINEERING

3

MODELING & EVALUATION

- Linear Chain
 Conditional Random
 Fields (CRF) →
 graphical model that
 maximizes p(y|x)
- o Baseline: Naïve Bayes
- Performance metric: accuracy

Results

Chain CRF Prediction:

Next Steps

Optimize model given more data

Topic Modeling / Sentiment Analysis on 'comments'

Regression on weight outcomes

Thank You!

github.com/ssychong

in linkedin.com/in/ssychong

Appendix: CRF

CRF model consists of vertices, edges, and unary & pair-wise potentials.

X represents elements of the structured input (in this case, words); Y represents the labels for each input (in this case, tags).

IMPLEMENTATION

Given a sequence $X = [x_1, x_2, ..., x_n]$, predict the corresponding labels $Y = [y_1, y_2, ..., y_n]$

- Creation of feature vectors from the given sequence. $F = [f_1, f_2, ..., f_n]$
- Calculate probability of each possible label y_i given a feature vector f_i
- The y_i with maximum probability for given feature f_i is the label of token x_i . Label of x_i = argmax(P(y_i | f_i))

Appendix: Per-Class Scoring

LABEL	PRECISION	RECALL	F1-SCORE	SUPPORT
meal	0.85	0.84	0.84	789
time	0.79	0.60	0.68	208
food	0.87	0.97	0.92	2604
drink	1.00	0.01	0.02	96
quantity	0.89	0.85	0.87	219
unit	0.81	0.24	0.37	107
comment	0.94	0.88	0.91	964
other	0.88	0.85	0.87	258
avg / total	0.88	0.88	0.86	5245