CHAPITRE 7

LA DÉRIVATION

7.1 Le nombre dérivé en un point - l'interprétation géométrique du nombre dérivé - la droite tangente en un point

7.1.1 Activités et définitions

Activité 1:

Soit f la fonction définie par : f(x) = 3x + 2

1) Calculer: f(1)

2) Déterminer : $\frac{f(x) - f(1)}{x - 1}$

3) Calculer: $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$

Solution:

1) on a: $f(1) = 3 \times 1 + 2 = 3 + 2 = 5$

2)
$$\frac{f(x)-f(1)}{x-1} = \frac{3x+2-5}{x-1} = \frac{3x-3}{x-1} = \frac{3(x-1)}{x-1} = 3$$

3)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{3(x - 1)}{x - 1} = 3$$

Remarque 7.1

Le nombre 3 est appelé le nombre dérivé de la fonction f en 1 on le note par : f'(1).

on a donc :
$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$$
 dans ce cas : $f'(1) = 3$

Activité 2:

Calculer: $\lim_{x\to a} \frac{f(x) - f(a)}{x - a}$ dans les cas suivantes:

1)
$$f(x) = -2x + 1$$
; $a = 2$

2)
$$f(x) = x^2 + 1$$
; $a = 1$

3)
$$f(x) = \frac{1}{x}$$
; $a = -1$

Solution:

1) On a :
$$a = 2 \Rightarrow f(a) = f(2) = -2 \times 2 + 1 = -3$$

et : $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{-2x + 1 - (-3)}{x - 2} = \lim_{x \to a} \frac{-2x + 4}{x - 2} = \lim_{x \to 2} \frac{-2(x - 2)}{x - 2} = -2$
On dit que la fonction f est dérivable en 2 et $f'(2) = -2$

2)
$$f(x) = x^2 + 1$$
 et $f(1) = 2$ et : $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 1 - 2}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} x + 1 = 1 + 1 = 2$ La fonction f est dérivable en 1 et $f'(1) = 2$.

Définition 7.1

Soit f une fonction et $a \in D_f$:

On dit que la fonction f est dérivable en le nombre : a si la limite : $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ est finie. cette limite s'appelle **Le nombre dérivé** de la fonction f en a on le note par : f'(a) :

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

7.1.2 L'équation de la tangente à la courbe en un point :

Proprieté 7.1

Soit f une fonction dérivable en un point a:

L'équation de la tangente à la courbe de f en le point d'abscisse a est : (T) : y = f'(a)(x-a) + f(a)

Par exemple a=1: alors l'équation de la tangente à la courbe de f en le point d'abscisse 1 est : (T): y = f'(1)(x-1) + f(1)

Exemple 7.1

Soit f la fonction définie par : $f(x) = x^2$

Pour déterminer l'équation de la tangente à la courbe de f en le point d'abscisse 1 :

• **Premièrement :** Calculons :
$$f(1)$$
 et $f'(1)$: on a : $f(1) = 1^2 = 1$ et
$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} x + 1 = 1 + 1 = 2$$
• **Deuxièmement :** L'équation de la tangente à la courbe de f en le point d'abscisse 1 est :

$$(T): y = f'(1)(x-1) + f(1)$$
 c'est à dire : $(T): y = 2(x-1) + 1$ c'est à dire : $(T): y = 2x - 1$

La construction de la courbe s'il est demandé:

Exercice 51

Déterminer l'équation de la tangente à la courbe de la fonction f en le point d'abscisse a dans les cas suivants :

1)
$$f(x) = x^2 + x$$
; $a = 0$

2)
$$f(x) = \frac{1}{3}x^3 - 2x + 1$$
; $a = 0$

3)
$$f(x) = \frac{x}{x-1}$$
; $a = 2$

Solution:

1) on a: $f(x) = x^2 + x$ donc: f(0) = 0 et:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 + x}{x} = \lim_{x \to 0} \frac{x(x + 1)}{x} = \lim_{x \to 0} x + 1 = 0 + 1 = 1$$
L'équation de la tangente à la courbe de la fonction f en le point d'abscisse 0 est :

$$(T): y = f'(0)(x-0) + f(0)$$
 c'est à dire : $(T): y = 1(x-0) + 0$ c'est à dire : $(T): y = x$

7.2 La fonction dérivée :

7.2.1 **Définition**

Définition 7.2

On dit que la fonction f est dérivable sur un intervalle ouvert I si f est dérivable en tous les points de I. et la fonction définie par :

$$f': I \to \mathbb{R}$$
$$x \mapsto f'(x)$$

s'appelle la dérivée de la fonction f sur I on le note par f'.

7.2.2 La dérivation de quelques fonctions usuelles

Soient a et b deux nombres réelles :

La fonction $x \mapsto f'(x)$	La fonction $x \mapsto f(x)$	L'ensemble de définition D_f
La fonction nulle $x \mapsto f'(x) = 0$	La fonction constante $x \mapsto f(x) = a$ avec $(a \in \mathbb{R})$	\mathbb{R}
$x \mapsto f'(x) = a \text{ avec } (a \in \mathbb{R})$	$x \mapsto f(x) = ax \text{ avec } (a \in \mathbb{R})$	\mathbb{R}
f'(x) = a	$x \mapsto f(x) = ax + b$	\mathbb{R}
f'(x) = 2x	$x \mapsto f(x) = x^2$	\mathbb{R}
$f'(x) = nx^{n-1}$	$x \mapsto f(x) = x^n \text{ avec } (n \in \mathbb{N}^*)$	\mathbb{R}
$f'(x) = 3x^2$	$x \mapsto f(x) = x^3$	\mathbb{R}
$f'(x) = -\frac{1}{x^2}$	$x \mapsto f(x) = \frac{1}{x}$	$\mathbb{R}^* = \mathbb{R} - \{0\}$

Exemple 7.2

1) Si: f(x) = 3x alors: f'(x) = 3

2) Si: f(x) = 4x + 1 alors: f'(x) = 4

3) Si: f(x) = 5 alors: f'(x) = 0

4) Si: $f(x) = x^4$ alors: $f'(x) = 4x^3$

5) Si: $f(x) = x^5$ alors: $f'(x) = 5x^4$

6) Si: f(x) = x alors: f'(x) = 1

7.2.3 Les opérations sur les fonctions dérivables :

Les opérations	La fonction $x \mapsto f(x)$	La fonction $x \mapsto f'(x)$	La condition
La somme	f+g	(f+g)' = f' + g'	
La multiplication par un nombre	$k \cdot f$ avec $k \in \mathbb{R}$	$(k \cdot f)' = k \cdot f'$	
Le produit	$f \times g$	$(f \times g)' = f' \times g + f \times g'$	
L'inverse	$\frac{1}{f}$	$\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$	$f \neq 0$
La quotient	$\frac{f}{g}$	$\left(\frac{f}{g}\right)' = \frac{f' \times g - f \times g'}{g^2}$	$g \neq 0$
Le carré	f^2	$(f^2)' = 2 \cdot f' \cdot f$	
La puissance	f^n	$(f^n)' = n \cdot f' \cdot f^{n-1}$	

Exercice 52

Déterminer la dérivée de la fonction f dans les cas suivants :

1)
$$f(x) = 4x^2$$

2)
$$f(x) = x^3 + 4x^2 + 5x + 1$$

3)
$$f(x) = (2x+1)(3x-1)$$

4)
$$f(x) = \frac{2x+1}{x-1}$$

5)
$$f(x) = (x^2 - 1)^5$$

$$6) f(x) = \left(\frac{x+1}{x-1}\right)^6$$

7)
$$f(x) = \frac{1}{3x+2}$$

Solution:

1)
$$f(x) = 4x^2$$
 donc: $f'(x) = (4x^2)' = 4(x^2)' = 4 \times 2x = 8x$

2)
$$f(x) = x^3 + 4x^2 + 5x + 1$$
 donc:

$$f'(x) = (x^3 + 4x^2 + 5x + 1)'$$

$$= (x^3)' + 4(x^2)' + (5x + 1)'$$

$$= 3x^2 + (4 \times 2x) + 5$$

$$= 3x^2 + 8x + 5$$

3)
$$f(x) = (2x+1)(3x-1)$$
 donc:

$$f'(x) = ((2x+1)(3x-2))'$$

$$= (2x+1)'(3x-2) + (2x+1)(3x-2)'$$

$$= 2(3x-2) + (2x+1) \cdot 3$$

$$= 6x-4+6x+3$$

$$= 12x-1$$

4)
$$f(x) = \frac{2x+1}{x-1}$$
 donc:

$$f'(x) = \left(\frac{2x+1}{x-1}\right)'$$

$$= \frac{(2x+1)'(x-1) - (2x+1)(x-1)'}{(x-1)^2}$$

$$= \frac{2'(x-1) - (2x+1) \times 1}{(x-1)^2}$$

$$= \frac{2x-2-2x-1}{(x-1)^2}$$

$$= \frac{-3}{(x-1)^2}$$

5)
$$f(x) = (x^2 - 1)^5$$
 donc:

$$f'(x) = ((x^2 - 1)^5)'$$

$$= 5 \cdot (x^2 - 1)^4 \cdot (x^2 - 1)'$$

$$= 5(x^2 - 1)^4 \cdot 2x$$

$$= 10x(x^2 - 1)^4$$

6)
$$f(x) = \left(\frac{x+1}{x-1}\right)^6 \quad \text{donc} : f'(x) = \left(\left(\frac{x+1}{x-1}\right)^6\right)' = 6 \cdot \left(\frac{x+1}{x-1}\right)^5 \cdot \left(\frac{x+1}{x-1}\right)'$$
 donc il faut calculer : $\left(\frac{x+1}{x-1}\right)'$

7)
$$f(x) = \frac{1}{3x+2}$$
 donc : $f'(x) = \left(\frac{1}{3x+2}\right)' = \frac{-(3x+2)'}{(3x+2)^2} = \frac{-3}{(3x+2)^2}$

7.3 Les variations d'une fonction et le signe de la dérivée :

Proprieté 7.2

Soit f une fonction dérivable sur un intervalle I inclus dans D_f :

- f est croissante sur $I \Leftrightarrow (\forall x \in I) : f'(x) \ge 0$
- f est décroissante sur $I \Leftrightarrow (\forall x \in I) : f'(x) \le 0$
- f est constante sur $I \Leftrightarrow (\forall x \in I) : f'(x) = 0$

Exemple 7.3

- Exemple 1: Soit f la fonction définie par : f(x) = 3x + 1, on a la fonction f est dérivable sur \mathbb{R} : et pour tous $x \in \mathbb{R}$: f'(x) = (3x + 1)' = 3 > 0 donc la fonction f est strictement croissante sur \mathbb{R} .
- Exemple 2: Soit f la fonction définie par : f(x) = -2x + 3, on a la fonction f est dérivable sur \mathbb{R} : et pour tous $x \in \mathbb{R}$: f'(x) = (-2x + 2)' = -2 < 0 donc la fonction f est strictement décroissante sur \mathbb{R} .
- Exemple 3: Soit f la fonction définie par : $f(x) = x^2 + 4x$, on a la fonction f est dérivable sur \mathbb{R} : et pour tous $x \in \mathbb{R}$: $f'(x) = (x^2 + 4x)' = (x^2)' + (4x)' = 2x + 4$ Pour déterminer les variations de la fonction f il faut déterminer le signe de f'(x) : c'est à dire : 2x + 4. on a le tableau de signe de 2x + 4 est :

La solution de l'équation 2x+4 = 0 est x = -2

- on a pour tout x de $[-2; +\infty[: f'(x) \ge 0 \text{ donc la fonction } f \text{ est croissante sur } [-2; +\infty[$
- et pour tout x de : $]-\infty;-2]:f'(x) \le 0$ donc la fonction f est décroissante sur : $]-\infty;-2]$

On va résumer ces résultats dans un tableau s'appelle le tableau des variations de la fonction f

$$\lim_{x o +\infty} f(x) = \lim_{x o +\infty} x^2 = +\infty$$
 $\lim_{x o -\infty} f(x) = \lim_{x o -\infty} x^2 = +\infty$
 $f(-2) = (-2)^2 + 4 imes -2 = -4$

-4 est la valeur minimale de f sur R

• Exemple 4:

Soit f la fonction définie par : $f(x) = x^3 - 3x$ On a la fonction f est dérivable sur \mathbb{R} : et pour tout $x \in \mathbb{R}$: $f'(x) = (x^3 - 3x)' = (x^3)' - (3x)' = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$ Pour étudier les variations de la fonction f il faut déterminer le signe de f'(x): c'est à dire : $x^2 - 1$. on a le tableau de signe de f'(x) est :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty \; ; \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$
$$f(1) = 1^3 - 3 \times 1 = -2 \; ; \quad f(-1) = (-1)^3 - 3 \times -1 = 2$$

Exercice 53

Déterminer les variations de la fonction f dans les cas suivants :

- 1) f(x) = 5x 1
- 2) f(x) = -3x + 2
- 3) $f(x) = x^2 2x$
- 4) $f(x) = x^3 3x^2$