Miniproject - Introduction to Schemes

Simon Pohmann

March 20, 2022

1 Definition of Proj

Definition 1. A graded ring S is a ring S with a decomposition $S = \bigoplus_{d \in \mathbb{Z}} S_d$ into groups $S_i \subseteq S$ (w.r.t. addition in S) such that $S_i S_j \subseteq S_{i+j}$ for all $i, j \in \mathbb{Z}$. If all $S_d = \{0\}$ for d < 0, call S naturally graded ring. Write further $S_+ := \sum_{d \neq 0} S_d$. For a homogeneous $f \in S_d$ say that $\deg(f) := d$ is its degree.

An element $f \in S$ is called *homogeneous* (of degree n), if $f \in S_n$. An ideal $I \leq S$ is called *homogeneous*, if it has a set of homogeneous generators.

Definition 2. For a naturally graded ring S, define the set

$$\operatorname{Proj}(S) := \{ \mathfrak{p} \in \operatorname{Spec}(S) \mid \mathfrak{p} \text{ homogeneous, } S_{+} \not\subseteq \mathfrak{p} \}$$

of homogeneous prime ideals not containing S_{+} .

This becomes a topological space by endowing it with the Zariski-topology on Proj(S), given by the open sets

$$D_{\mathfrak{a}} := \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a} \not\subseteq \mathfrak{p} \}$$

for any homogeneous ideal $\mathfrak{a} \leq S$.

From now on let S be a naturally graded ring.

Proposition 3. The above definition is well-defined, i.e. the sets $D_{\mathfrak{a}}$ indeed form a topology on $\operatorname{Proj}(S)$.

Proof. Clearly $\operatorname{Proj}(S) = D_{\langle 1 \rangle}$ and $\emptyset = D_{\langle 0 \rangle}$ are open. Furthermore, for open sets $D_{\mathfrak{a}}$ and $D_{\mathfrak{b}}$, have that

$$D_{\mathfrak{a}} \cap D_{\mathfrak{b}} = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p} \} = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{ab} \not\subseteq \mathfrak{p} \} = D_{\mathfrak{ab}}$$

This holds, as $\mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p}$ implies that there are $f \in \mathfrak{a}$ and $g \in \mathfrak{b}$ with $f, g \notin \mathfrak{p}$. However, then $fg \notin \mathfrak{p}$ as \mathfrak{p} is prime. Obviously \mathfrak{ab} is homogeneous, and so $D_{\mathfrak{a}} \cap D_{\mathfrak{b}}$ is open.

Finally, given a collection \mathcal{A} of homogeneous ideals in S, have that

$$\bigcup_{\mathfrak{a}\in\mathcal{A}}D_{\mathfrak{a}}=\{\mathfrak{p}\in\operatorname{Proj}(S)\mid\exists\mathfrak{a}\in\mathcal{A}:\ \mathfrak{a}\not\subseteq\mathfrak{p}\}=\{\mathfrak{p}\in\operatorname{Proj}(S)\mid\exists\mathfrak{a}\in\mathcal{A}\exists f\in\mathfrak{a}:\ f\notin\mathfrak{p}\}$$

$$= \Bigl\{ \mathfrak{p} \in \operatorname{Proj}(S) \ \Bigl| \ \exists f \in \sum_{\mathfrak{a} \in \mathcal{A}} \mathfrak{a} : \ f \notin \mathfrak{p} \Bigr\} = D_{\mathfrak{b}} \quad \text{for } \mathfrak{b} = \sum_{\mathfrak{a} \in \mathcal{A}} \mathfrak{a}$$

Clearly \mathfrak{b} is again homogeneous, and so $\bigcup_{\mathfrak{a}\in\mathcal{A}} D_{\mathfrak{a}}$ is open.

Proposition 4. The sets $D_f := D_{\langle f \rangle}$ for homogeneous $f \in S$ form a basis of the topology on Proj(S).

Proof. Clearly $\langle f \rangle$ is a homogeneous ideal, so D_f is open. For any homogeneous ideal $\mathfrak{a} = \langle f_i \mid i \in I \rangle$ with $f_i \in S$ homogeneous have

$$\mathfrak{a} = \bigcup_{i \in I} D_{f_i}$$

as $\mathfrak{a} \not\subseteq \mathfrak{p}$ implies there is some $g = \sum_{i \in I} g_i f_i \notin \mathfrak{p}$, with $g_i \in S$. Hence, at least one $g_j f_j \notin \mathfrak{p}$ and so $f_j \notin \mathfrak{p}$, thus $\mathfrak{p} \in D_{f_j}$. It follows that the D_f generate the topology on Proj(S), so it is left to show that they are a basis.

Consider $\mathfrak{p} \in D_f \cap D_g$, so $f, g \notin \mathfrak{p}$. Since \mathfrak{p} is prime, it follows that $fg \notin \mathfrak{p}$ and so $D_{fg} \subseteq D_f \cap D_g$ is an open neighborhood of \mathfrak{p} .

Lemma 5. Let S be a graded ring (not necessarily naturally graded) and $T \subseteq S$ a multiplicative set consisting of homogeneous elements. Then $T^{-1}S$ becomes a graded ring via

$$(T^{-1}S)_d = \left\{ \frac{g}{h} \in T^{-1}S \mid g \text{ homogeneous with } \deg(g) - \deg(h) = d \right\}$$

Proof. Clearly $(T^{-1}S)_i(T^{-1}S)_j \subseteq (T^{-1}S)_{i+j}$. To see that $(T^{-1}S)_d$ is a subgroup of S, consider $g/f, l/h \in (T^{-1}S)_d$. Now have

$$\frac{g}{f} + \frac{l}{h} = \frac{gh + lf}{hf}$$

and by assumption, find $\deg(gh) = \deg(g) - \deg(h) = d + \deg(f) - d + \deg(l) = \deg(lf)$. So gh + lf is homogeneous and we have

$$\deg(gh + lf) - \deg(fh) = \deg(f) + \deg(l) - \deg(f) - \deg(h) = \deg(l) - \deg(h) = d$$

Thus $g/f + l/h \in (T^{-1}S)_d$.

Finally, we show that $(T^{-1}S)_n \cap (T^{-1}S)_m = \{0\}$ for $i \neq j$. Assume there is $g/f = l/h \in (T^{-1}S)_n \cap (T^{-1}S)_m$ with $\deg(g) - \deg(f) = n$ and $\deg(l) - \deg(h) = m$. Then there exists $t \in T$ such that

$$0 = t(gh - lf) = tgh - tlf \quad \text{with } tgh \in S_{\deg(t) + \deg(g) + \deg(h)}$$
 and
$$tlf \in S_{\deg(t) + \deg(l) + \deg(f)} = S_{\deg(t) + \deg(g) + \deg(h) + (m-n)}$$

If $n \neq m$, then $S_{\deg(t)+\deg(g)+\deg(h)+(m-n)} \cap S_{\deg(t)+\deg(g)+\deg(h)} = \{0\}$ and so tgh = tlf = 0. Thus th(g-0) = 0 and so g/f = 0/1 = 0. Thus $(T^{-1}S)_m \cap (T^{-1}S)_n = \{0\}$.

Lemma 6. Let $\mathfrak{p} \leq S$ be a prime ideal. Then

$$\mathfrak{p}' := \langle f \in \mathfrak{p} \mid f \ homogeneous \rangle \leq S$$

is a (homogeneous) prime ideal.

Proof. Consider $f, g \in S$ with $fg \in \mathfrak{p}'$ and assume $f, g \notin \mathfrak{p}'$. Write $f = \sum_d f_d$ and $g = \sum_d g_d$ with $f_d, g_d \in S_d$. So

$$\sum_{i,j} f_i g_j = \sum_n \sum_{i+j=n} f_i g_j \in \mathfrak{p}'$$

Since \mathfrak{p}' is homogeneous, it follows that

$$\sum_{i+j=n} f_i g_j \in \mathfrak{p}'$$

for all $n \in \mathbb{Z}$.

Let now d resp. e be maximal such that $f_d \notin \mathfrak{p}'$ resp. $g_e \notin \mathfrak{p}'$. We have

$$f_d g_e + \sum_{\substack{i+j=d+e\\(i,j)\neq(d,e)}} f_i g_j = \sum_{\substack{i+j=d+e}} f_i g_j \in \mathfrak{p}'$$

and so $f_d g_e \in \mathfrak{p}' \subseteq \mathfrak{p}$. Since \mathfrak{p} is prime, it follows that $f_d \in \mathfrak{p}$ or $g_e \in \mathfrak{p}$. However both f_d and g_e are homogeneous, so $f_d \in \mathfrak{p}'$ or $g_e \in \mathfrak{p}'$, a contradiction.

Lemma 7. If $D_g \subseteq D_f$ then there is a homogeneous $h \in S$ such that $g^n = fh$ for some $n \in \mathbb{N}$.

Proof. Assume not, then f is not a unit in S_g . Hence, there is a maximal ideal $\mathfrak{m} \leq S_g$ such that $f \in \mathfrak{m}$. Now let \mathfrak{p} be the preimage of \mathfrak{m} under the localization map $S \to S_g$. Since \mathfrak{m} is maximal, we see that \mathfrak{p} is prime.

Now apply Lemma 6 and see that also

$$\mathfrak{p}' = \langle f \in \mathfrak{p} \mid f \text{ homogeneous} \rangle \subseteq \mathfrak{p}$$

is prime. Furthermore, $g \notin \mathfrak{p}$ and so $g \notin \mathfrak{p}'$. wlog we have that $g \in S_+$, so $S_+ \not\subseteq \mathfrak{p}'$. Since now \mathfrak{p}' is a homogeneous prime ideal, it follows that $\mathfrak{p}' \in \operatorname{Proj}(S)$.

Finally, observe that $f \in \mathfrak{p}'$ as $f \in \mathfrak{p}$ and f is homogeneous. Hence, we have that $\mathfrak{p}' \notin D_f$ and $\mathfrak{p}' \in D_g$, which contradicts the assumption that $D_g \subseteq D_f$.

The next proof works exactly as the corresponding one for Spec in the lecture.

Proposition 8. Let $B = \{D_f \mid f \in S \text{ homogeneous}\}$. The functor

$$\mathcal{F}: \operatorname{Top}(\operatorname{Proj}(S))\big|_{B} \to \operatorname{\textbf{\it Ring}}, \quad D_{f} \mapsto (S_{f})_{0}$$

$$(D_{fg} \subseteq D_{f}) \mapsto \left(\cdot\big|_{D_{fg}} : \frac{s}{f^{n}} \mapsto \frac{sg^{n}}{(fg)^{n}}\right)$$

is a B-sheaf on B (here Top(X) is the category given by the open sets of X and their inclusion, as defined in the lecture).

Proof. Clearly, \mathcal{F} is a functor and thus a presheaf. Hence, we have to show the local-to-global property.

Let $D_f = \bigcup_{i \in I} D_{q_i f}$ be a cover and $s_i \in \mathcal{F}(D_{q_i f})$ such that

$$\forall x \in D_{g_if} \cap D_{g_jf} \ \exists V \in B: \ V \subseteq D_{g_if} \cap D_{g_jf}, \ x \in V, \ \frac{s_i}{1} = \frac{s_j}{1} \in \mathcal{F}(V)$$

To show uniqueness, it suffices to show that if

$$\alpha|_{D_{h_i}} = \beta|_{D_{h_i}}$$
 for any h_i with $Proj(S) = \bigcup_i D_{h_i}$

then $\alpha = \beta$.

By assumption, have $h_i^{n_i}(\alpha - \beta) = 0$ for each i, and wlog there are only finitely many i. Thus find $N = \max_i n_i \in \mathbb{N}$ and get that $h_i^N(\alpha - \beta) = 0$. Since $\bigcup_i D_{h_i} = \operatorname{Proj}(S)$ it follows that $\bigcup_i D_{h_i^N} = \operatorname{Proj}(S)$ and so $1 \in \langle h_i^N \mid i \rangle$. It follows that

$$\alpha - \beta = 1(\alpha - \beta) \in \langle h_i^N \mid i \rangle (\alpha - \beta) = \langle h_i^N (\alpha - \beta) \mid i \rangle = \{0\}$$

and so $\alpha = \beta$.

Now we show existence. By the uniqueness above, it follows that

$$s_i|_{D_{fg_ig_j}} = s_i|_{D_{fg_i} \cap D_{fg_j}} = s_j|_{D_{fg_i} \cap D_{fg_j}} = s_j|_{D_{fg_ig_j}}$$

wlog have again a finite cover, i.e. only finitely many g_i . Hence find an $N \in \mathbb{N}$ such that each $s_i = s_i'/(fg_i)^N$ with $s_i' \in S$ homogeneous. By possibly replacing N with a bigger N, we can now assume that

$$(f^2 g_i g_j)^N \left(s_i' (f g_j)^N - s_j' (f g_i)^N \right) = 0$$
 as $s_i \big|_{D_{f g_i g_i}} = s_j \big|_{D_{f g_i g_i}}$

Now note that

$$s_i = \frac{a_i}{b_i}$$
 with $a_i = s_i'(fg_i)^N$, $b_i = (fg_i)^{2N}$

and

$$a_i b_j - a_j b_i = s_i' (fg_i)^N (fg_j)^{2N} - s_j' (fg_j)^N (fg_i)^{2N} = \underbrace{(f^2 g_i g_j)^N \left(s_i' (fg_j)^N - s_j' (fg_i)^N\right)}_{=0}$$

Now observe that $D_{b_i} = D_{fg_i}$ and so $f^m \in \langle b_i \mid i \rangle$ for some m. Let $1 = \sum_i r_i b_i$ and get

$$a_i f^m = \sum_l r_l b_l a_i = \sum_l r_l a_l b_i = b_i \sum_l r_l a_l$$

Note that a_i, b_i, f are homogeneous, and so we can also choose r_i to be homogeneous. Then find that $0 = \deg(s_i) = \deg(a_i) - \deg(b_i) = \deg(\sum r_l a_l) - m \deg(f)$.

Thus

$$s_i = s := \frac{\sum_l r_l a_l}{f^m} \in S_f$$

and since $\deg(\sum r_l a_l) = m \deg(f)$ we find that $s \in (S_f)_0 = \mathcal{F}(D_f)$. Clearly $s|_{D_{fg_i}} = s_i$ and the claim follows.

Corollary 9. Hence we can (uniquely) extend the B-sheaf \mathcal{F} to a sheaf $\mathcal{O}_{\text{Proj}(S)}$ on Proj(S).

The next to lemmas are based on [Har77, p. II.2.5] and show that $(\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$ is a scheme.

Lemma 10. For $\mathfrak{p} \in \text{Proj}(S)$, the stalk

$$\mathcal{O}_{\operatorname{Proj}(S),\mathfrak{p}} = (T^{-1}S)_0$$

is a local ring, where $T = \{ f \notin \mathfrak{p} \mid f \text{ homogeneous} \}$ contains all homogeneous elements not in \mathfrak{p} .

Proof. Consider the ideal

$$\mathfrak{m} = \left\{ \frac{f}{q} \in (T^{-1}S)_0 \mid f \in \mathfrak{p} \right\}$$

We claim this is the unique maximal ideal of $(T^{-1}S)_0$.

First, note that $1 \notin (T^{-1}S)_0$ as otherwise, there would be $f/g \in T^{-1}S$, $f \in \mathfrak{p}$ with t(f-g)=0 for some $t \in T$. However then $tg=tf \in \mathfrak{p}$, and so $g \in \mathfrak{p}$ (as $t \notin \mathfrak{p}$), contradicting $g \in T$.

Now assume there is any ideal \mathfrak{a} such that $\mathfrak{a} \setminus \mathfrak{m} \neq \emptyset$, i.e. there is $f/g \in \mathfrak{a} \setminus \mathfrak{m}$. Then $f \in T$ as f homogeneous and $f \notin \mathfrak{p}$. Thus $g/f \in (T^{-1}S)_0$ and so $f/g \in (T^{-1}S)_0^*$, which implies $\mathfrak{a} = \langle 1 \rangle$.

Lemma 11. For $f \in S_+$ homogeneous have that $(D_f, \mathcal{O}_{\text{Proj}(S)}|_{D_f})$ is an affine scheme.

Proof. Let $R = (S_f)_0$. Consider the map

$$f: D_f \to \operatorname{Spec}(R), \quad \mathfrak{p} \mapsto \mathfrak{p}S_f \cap (S_f)_0$$

Note that it is continuous, as the preimage of some basic open set D_{g/f^n} is $D_{fg} \subseteq D_f$ open. Furthermore, f has the inverse

$$f^{-1}: \operatorname{Spec}(R) \to D_f, \quad \mathfrak{p} \mapsto \mathfrak{p} S_f$$

which is also continuous, as the preimage of some basic open set D_{fg} is D_{g^n/f^m} where $n \deg(g) = m \deg(f)$. Thus f is a homeomorphism.

Now consider the natural transformation

$$\eta: \mathcal{O}_{\operatorname{Spec} R} \Rightarrow f_* \Big(\mathcal{O}_{\operatorname{Proj}(S)} \Big|_{D_f} \Big)$$

given on basic open sets by

$$\eta_{D_{g/f^n}}: R_{g/f^n} \to (S_{fg})_0, \quad \frac{h/f^m}{g/f^n} \mapsto \frac{hf^n}{gf^m}$$

Clearly this is a ring isomorphism, so η is a natural isomorphism. The claim follows.

Corollary 12. $(\text{Proj}(S), \mathcal{O}_{\text{Proj}(S)})$ is a scheme.

References

[Har77] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, 1977.