ig. $\lambda, \overline{V}, + \cdots + \lambda_k \overline{V}_k = \overline{\phi}$ is only true if $\lambda, = \cdots = \lambda_k = \emptyset$.

18 the columns of A are linearly indpotent also implies... OA^{-1} exists $O(A^{-1})$ exists $O(A^{-1})$. Standard Equality Form max (- c) λ 立·文+S,=B 立·元-S2=B Solutions 3 types of solutions ... inzeasible, unbounded, and optimal. >no zeosible >given an LP in SEF we need to Jinda vector g ÿ A>O 4-640 Basis & Canonical Form AB=I

Basis i& AB is squore \$

CB=0 >given a basis B we can put any LP into cononical form

を(な)=対する+(さーガーA)な

now lets choose \$ to ensure \$ = \$ = \$...

3 we choose one variable kto basis β and solut $\frac{1}{x_8}I + x_kA_k = \frac{1}{b} \Rightarrow \frac{x_k \leq b}{x_k}$

4) if ENSO then & is the optimal solution :

Lets use what we grew in the garden

A Linear Program

lets apply these concepts we've learned to some actual problems. Lets look

	I pink bouquet	I green bouquet	avail.	LP-	۱ (
Flowers	12	8	200		
oork (hr)		1.5	24		
2008it (\$)		25			(
demond	00	20			
10.0	a Arthurta a community	11.1			

1/2= green b's to make obj > max 20x,+25x2 cons > 5.+. 124,+842 < 200 x1+(1.5)22<24 x2 ≤ 20 x1, x2 ≥0

Solving Graphically

is we don't want to use the simplex method we can also solve 2 vor. Ex

the isoprofit line based on the objective and pash it to the edge of the feasible region.

the point where the region and isoprofit line intersect is the optimal solution.

F = amount of flower soilton

now lets look at some types of LP's we could see.

Blending Problem

d Cici mix their own special alower soil. They buy 3 dig types og gordening so hbine them to make 3dig types og glower soil...

soil	fertilizer:	/silt %	cost \$	avail.		LP > v
typel	•5	30	25	50		
typez	2	10	35		lets make an LPto	
type3	3	20	45	50	max Lulu+ Cici's	ok
soil	Fert. min	siltmax	Flowers	5 per Flower	prozits	co
typel	2	15	2500	4	05	9,,92,95
typez	3	15	5000	4	9:=	* X:1+ X:2
type3	1	25	900	3	j	: X, j + Xzj +
4.1L		10.	- bla	100		

x; = amount or soil i used for flower soil; i,j e 21,2,33 -25·9, -35·92-45·93 $\begin{array}{c} .05 \times_{1} + .02 \times_{2} + .03 \times_{3} + .02 \times_{1} \\ .05 \times_{12} + .02 \times_{2} + .03 \times_{3} \times .03 F_{1} \\ .05 \times_{13} + .02 \times_{2} + .03 \times_{3} \times .01 F_{1} \\ .3 \times_{11} + .1 \times_{21} + .2 \times_{31} > .15 F_{1} \\ .3 \times_{12} + .1 \times_{22} + .2 \times_{32} > .15 F_{1} \\ .3 \times_{13} + .1 \times_{23} + .2 \times_{33} > .25 F_{1} \end{array}$

LP-> var > 1:= Flowers grown in month i

Si=Flowers legatover and instance agter demand is satisgied in month...

obj. > min \(\sum_{i=1}^n \ p_i \cdot \cdot \)

min 2 3.t. 2>2, 2>x2 |x| = Max{x,-x}

Portfolio Optimization

Vocab used in this scenario...

*Return Matrix > return for every \$1 invested in stock; if scenario to cours. R=[rij]

*Probability of scenario to ?

*return in scenario $i = r_i = \sum_{j=1}^{m} R_{i,j} x_j$ *expected return = $r_p = \sum_{j=1}^{m} p_i r_j$ *downside risk ins. $i = d_i = \begin{cases} 0, i \ge r_i \ge 0 \end{cases}$ avg. downside risk = ADR = Zimpidi

*Now lets use what we learned to help Lulu+Cici w/ their portfolio... $R = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ $\overrightarrow{P} = [0.7, 0.3]$ Lets maximize expected return. Lets maximize expected return...

LP -> var -> x=amaint invested in each s

r=return ineach s.

rp=expected return

obj -> max rp

const > rp=.7r, + .3r,

r1=2x, , r2=-x1+.1x2

x1, x2>0, x4*x2<1

what; we wanted to min risk?

obj -> min ADR

const -> ADR=.7d; -> 3d, >0

d==max50, -r; -> d, >0

d==max50, -r; -> d, >0

d==max50, -r; -> d, >0

dz=max {0,-r2} → d1>-r

Integer Programing

ci made 3 big bouquets of flowers, they have 5 people interested bouquet, how much each person will pay is below. Lets maximize Lulu + Cici's

	Appa	Rop	Cara	Dom	Erin	~	A - 60				7	1×11=	boughet i to	
	\$60 \$50						7- 50	70	55 9 75 0	0 80		1.9	O, otherwise	
63		\$80	\$75	370	\$70									
											max 2	3 5 A;: X;	Const \Rightarrow $\sum_{j=1}^{5} x_{ij} = 1 \cdot 1$ $\sum_{j=1}^{5} x_{ij} \leq 1 \cdot 1$	/i
	IT	100		D									Σ 12 / 2 ij & ,	٧,

ld LP>Var → Xi=flowers grown in month i
Si=flowers leatouer and in storage
agter demand is satisfied in
month i.

obj. → min∑i=1 pi·X;
const.→ Xi+Si-1=di+Si, 0 «Si<40

