MEASURE THEORETICAL PROBABILITY I HOMEWORK 5

YUFEI FAN; CHENG PENG; TOMMENIX YU STAT 38100 DUE FEB 16

Discussed with classmates.

Exercise 0.

Proof.

Prove the relations below:

conv a.s. \Rightarrow conv in prob:

$$X_n \xrightarrow{as} X$$
 means that

$$\mathbb{P}\left(\forall \varepsilon > 0, \exists N s.t. \forall n > N, |X_n - X| < \varepsilon\right) = 1$$

and we can move the universal quantifier outside to get

$$\forall \varepsilon > 0, \mathbb{P}\left(\exists Ns.t. \forall n > N, |X_n - X| < \varepsilon\right) = 1$$

which then implies

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}\left(|X_n - X| < \varepsilon\right) = 1$$

which is what we want.

conv in prob $\Rightarrow \exists$ subsequence conv a.s.:

To prove convergence almost surely for some subsequence is to prove

$$\mathbb{P}\left(\limsup_{n\to\infty}|X_{\phi(n)}-X|>0\right)=0$$

where we can rewrite

$$\left\{ \limsup_{n \to \infty} |X_{\phi(n)} - X| > 0 \right\} \subset \left\{ \omega \left| |X_{\phi(n)}(\omega) - X(\omega)| \ge \frac{1}{n} i.o. \right\}$$

since for any ω in the left side it has $|X_{\phi(n)}(\omega) - X(\omega)| = c > 0$ and so for any $n > \frac{1}{c}$ the inequality in right side holds, so it holds i.o..

Thus, if we define

$$A_n := \left\{ |X_{\phi(n)} - X| \ge \frac{1}{n} \right\}$$

then

$$\left\{\omega \ \Big| |X_{\phi(n)}(\omega) - X(\omega)| \ge \frac{1}{n}i.o.\right\} = \limsup_{n \to \infty} A_n$$

by definition. Now we just find suitable subsequence $\phi(n)$ to satisfy the Borel-Cantelli condition.

So we use convergence in probability to find $\phi(n) > N = N(n)$ such that

$$\mathbb{P}\left(|X_{\phi(n)} - X| \ge \frac{1}{n}\right) \le 2^{-n}$$

and so

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = 2 < \infty$$

which implies that $\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0$. Now by monotonicity of measure we get

$$0 \le \mathbb{P}\left(\limsup_{n \to \infty} |X_{\phi(n)} - X| > 0\right) \le \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = 0$$

which means

$$\mathbb{P}\left(\limsup_{n\to\infty}|X_{\phi(n)}-X|>0\right)=0$$

and we are done.

conv in prob \Rightarrow conv in dist:

 $\forall \varepsilon > 0$,

$$F_n(x) = \mathbb{P}(X_n \leq x) \leq \mathbb{P}(X \leq x + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$

because in case of $\mathbb{P}(X_n \le x)$, either $\mathbb{P}(X \le x + \varepsilon)$ is true or $\mathbb{P}(|X_n - X| > \varepsilon)$ is true. And by plugging back

$$F_n(x) \leq \mathbb{P}(X \leq x + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon) = F(x + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$

and thus

$$\limsup_{n\to\infty} F_n(x) \le F(x+\varepsilon).$$

Now we need to prove the other direction, but the idea is similar. Note that for the same reason as the above, we have

$$\mathbb{P}(X \le x - \varepsilon) \le \mathbb{P}(X_n \le x) + \mathbb{P}(|X - X_n| > 0)$$

which implies

$$F(x - \varepsilon) \le F_n(x) + \mathbb{P}(|X - X_n| > 0).$$

Taking liminf this time on both sides we have

$$F(x - \varepsilon) \le \liminf_{n \to \infty} F_n(x).$$

Then, we have

$$F(x - \varepsilon) \le \liminf_{n \to \infty} F_n(x) \le \limsup_{n \to \infty} F_n(x) \le F(x + \varepsilon)$$

which exactly at the continuity points of F, we have the good definition of convergence in distribution.

conv in dist to constant \Rightarrow conv in prob:

Let's say that $X_n \stackrel{d}{\to} c$. Since the cdf of c is

$$F_c(x) = \begin{cases} 0 & x < c \\ 1 & x \ge c \end{cases}$$

we get that every where except c is a continuity point of F_c .

Now for contradiction we assume that $X_n \stackrel{p}{\to} c$ doesn't hold, that is, $\exists S \subset \Omega$ with $\mathbb{P}(S) = a > 0$ with $|X_n - c| > \delta$ for some $\delta > 0$ on S.

So on S either $X_n > c + \delta$ or $X_n < c - \delta$, which then means one of the two events has probability larger or equal than $\frac{a}{2}$.

If $\mathbb{P}(S \cap \{X_n > c + \delta\}) \ge \frac{a}{2}$ this means for cdf of X_n , denoted F_n , we have

$$F_n(c+\delta) \le 1 - \frac{a}{2}$$

uniform in n, which means $F_n(c + \delta) \to F_c(c + \delta) = 1$ is not true. Contradiction!

If the other case hold, i.e. $\mathbb{P}(S \cap \{X_n < c - \delta\}) \ge \frac{a}{2}$ we know

$$F_n(c-\delta) \ge \frac{a}{2}$$

and hence $F_n(c - \delta) \to F_c(c - \delta) = 0$ does not hold. Contradiction!

Thus we must have convergence in probability.

conv in $Lp \Rightarrow conv$ in prob:

Convergent in L^p means that

$$\lim_{n\to\infty} \left(\int |X_n - X|^p \right)^{\frac{1}{p}} = 0$$

and for contradiction let's assume that $\mathbb{P}(|X_n - X| > \varepsilon) > c > 0$ for some ε and c. Then integrating we get

$$\int |X_n - X|^p d\mathbb{P} \ge \int_{|X_n - X| > \varepsilon} |X_n - X|^p d\mathbb{P} > c \cdot \varepsilon$$

which, by taking $\frac{1}{p}$ degree we see that the limit as $n \to \infty$ is larger than $(c \cdot \varepsilon)^{\frac{1}{p}}$, so it cannot go to 0. Contradiction! Thus, we have convergence in probability.

conv in prob \Rightarrow conv in L^1 : (Theorem 4.6.3 in Durret book)

We assume uniform integrable here. That is

$$\mathbb{E}\left[|X_n|\cdot\mathbb{1}_{|X_n|>k}\right]<\varepsilon$$

which means

$$\int_{|X_n|>k} |X_n| d\mathbb{P} < \varepsilon.$$

We do truncation of the random variable and define

$$f(x) = \begin{cases} M & x \ge M \\ x & |x| \le M \\ -M & x \le -M \end{cases}$$

then we have

$$|X_n - X| \le |X_n - f(X_n)| + |f(X_n) - f(X)| + |f(X) - X|$$

and taking the expectation (integral) we have

$$\int |X_n - X| \le \int_{|X_n - X| < \delta} \delta d\mathbb{P} + \int_{|X_n - X| > \delta} |X_n - f(X_n)| + |f(X_n) - f(X)| + |f(X) - X| d\mathbb{P}$$

where the first term is nothing but $\delta \cdot \mathbb{P}(|X_n - X| \le \delta) \to 0$ as $\delta \to 0$.

For the first and last term we bound by uniform integrability since

$$\int_{|X_n-X|>\delta} |X_n-f(X_n)|d\mathbb{P} \leq \int |X_n-f(X_n)|d\mathbb{P} \leq \mathbb{E}\left[|X_n|\cdot \mathbb{1}_{|X_n|>M}\right] \to 0$$

since we can find fixed M for any ε we need. Similar for the third term.

Then, for the middle term we simply bound

$$\int_{|X_n - X| > \delta} |f(X_n) - f(X)| d\mathbb{P} \le 2M \mathbb{P}(|X_n - X| > \delta) \to 0$$

as $n \to \infty$ and hence

$$\int |X_n - X| d\mathbb{P} \le \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 \to 0.$$

conv in $L^p \Rightarrow \exists$ subsequence conv a.s.:

conv in $L^p \Rightarrow$ conv in prob $\Rightarrow \exists$ subsequence conv a.s..

conv a.s. + uniform integrable \Rightarrow conv in L^1 :

conv a.s.+ uniform integrable \Rightarrow conv in prob + uniform integrable \Rightarrow conv in L^p .

L^1 is instance of L^p :

By definition.

Exercise 1. Prob 1.

Proof.

Theorem in class says: Suppose X_1, \ldots, X_n are independent random variables and X_i has laws μ_i , then (X_1, \ldots, X_n) has the law $\mu := \mu_1 \times \mu_2 \times \cdots \times \mu_n$, and

$$\mu(A_1 \times A_2 \times \dots \times A_n) = \prod \mu_i(A_i).$$

That is, we can very naturally use the joint law to compute the expectation of f(X,Y) = X + Y. Moreover, the joint measure is a product measure $\mu_{X,Y} = \mu_X \times \mu_Y$. For Z = X + Y we compute

$$\mathbb{E}[Z] = \mathbb{E}[X+Y] = \int_{\Omega^2} (x+y)d\mu_{X,Y}$$
(Fubini)
$$= \int_{\Omega} \int_{\Omega} (x+y)d\mu_X d\mu_Y = \int_{\Omega} \left(\int_{\Omega} (x+y)g(y)dy \right) d\mu_X$$

$$= \int_{\Omega} \left(\int_{\Omega} zg(z-x)dz \right) d\mu_X = \int_{\Omega} \left(\int_{\Omega} zg(z-x)d\mu_X \right) dz$$

$$= \int_{\Omega} \mathbb{E}_X [zg(z-X)]dz = \int_{\Omega} z\mathbb{E}_X [g(z-X)]dz$$

where $\mathbb{E}_X[g(z-X)]$ is thus a density since that's how we did the change of variable z=x+y in the middle.

Exercise 2. Prob 2.

Proof.

(Fubini approach) Let f(X, Y) = XY. Then f(X, Y) is measurable because it is composition of measurable and continuous function. It is integrable since we have both $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ exists and by Fubini.

For the exact same theorem as in problem 1 we can use Fubini to decompose into double integral and we thus have:

$$\mathbb{E}[XY] = \int_{\Omega^2} xy d\mu_{X,Y}$$
(Fubini)
$$= \int_{\Omega} \int_{\Omega} xy d\mu_X d\mu_Y = \left(\int_{\Omega} x d\mu_X\right) \cdot \left(\int_{\Omega} y d\mu_Y\right)$$

$$= \mathbb{E}[X]\mathbb{E}[Y].$$

(simple function approach) Consider two non-negative independent random variables X,Y. Then X and Y can be approximated by $\sum_{i=1}^n a_i \mathbb{1}_{A_i}$ and $\sum_{j=1}^n b_j \mathbb{1}_{B_j}$ separately. And note that the product of simple functions can be written as

$$\sum_{i=1}^{n} a_{i} \mathbb{1}_{A_{i}} \sum_{j=1}^{n} b_{j} \mathbb{1}_{B_{j}} = \sum_{i,j} a_{i} b_{j} \mathbb{1}_{A_{i} \cap B_{j}}$$

we have

$$\mathbb{E}\left[\sum_{i,j} a_i b_j \mathbb{1}_{A_i \cap B_j}\right] = \mathbb{E}\left[\sum_{i=1}^n a_i \mathbb{1}_{A_i}\right] \mathbb{E}\left[\sum_{j=1}^n b_j \mathbb{1}_{B_j}\right].$$

Then by Monotone Convergence Theorem, we have

$$\lim_{n\to\infty} \mathbb{E}\left[\sum_{i,j}^n a_i b_j \mathbb{1}_{A_i \cap B_j}\right] = \mathbb{E}[XY]$$

and

$$\lim_{n\to\infty} \mathbb{E}\left[\sum_{i=1}^n a_i \mathbb{1}_{A_i}\right] \mathbb{E}\left[\sum_{j=1}^n b_j \mathbb{1}_{B_j}\right] = \mathbb{E}[X] \mathbb{E}[Y].$$

When X, Y are two independent integrable random variables, we can write

$$X = X^+ - X^-$$

and

$$Y = Y^+ - Y^-$$

where $X^+ = \max\{X, 0\}, X^- = \max\{X, 0\}, Y^+ = \max\{X, 0\}$ and $Y^- = \max\{X, 0\}$ are two non-negative random variables. Then by the deduction above, we have

$$\begin{split} \mathbb{E}[X^+Y^+] &= \mathbb{E}[X^+]\mathbb{E}[Y^+] \\ &\vdots \\ \mathbb{E}[X^-Y^-] &= \mathbb{E}[X^-]\mathbb{E}[Y^-] \end{split}$$

And this implies that

$$\begin{split} \mathbb{E}[XY] &= \mathbb{E}[(X^{+} - X^{-})(Y^{+} - Y^{-})] \\ &= \mathbb{E}[X^{+}Y^{+} + X^{-}Y^{-} - X^{+}Y^{-}X^{-}Y^{+}] \\ &= \mathbb{E}[X^{+}]\mathbb{E}[Y^{+}] + \mathbb{E}[X^{-}]\mathbb{E}[Y^{-}] - \mathbb{E}[X^{+}]\mathbb{E}[Y^{-}] - \mathbb{E}[X^{-}]\mathbb{E}[Y^{+}] \\ &= \mathbb{E}[X^{+} - X^{-}]\mathbb{E}[Y^{+} - Y^{-}] \\ &= \mathbb{E}[X]\mathbb{E}[Y]. \end{split}$$

Exercise 3. Prob 3.

Proof.

(a) Since $F_X(t) \to 1$ as $t \to \infty$, then when $\varepsilon > 0$ is fixed, we can always find K such that $F_X(K) \ge 1 - \varepsilon$. Without loss of generality, we can assume that K is a continuity point. Otherwise since continuity points are dense and $F_X(t)$ is increasing, we can find a continuity point K' such that K' > K and $F_X(K') > 1 - \varepsilon$.

Then

$$P(|X_n| > K) = 1 - F_{X_n}(K) + F_X(K) - F_X(K) \le |1 - F_X(K)| + |F_{X_n}(K) - F_X(K)|.$$

Note that the first term is less than or equal to ε by our assumption. And for the second term, since $F_{X_n}(K) \to F_X(K)$ as $n \to \infty$, then $\exists N \in \mathbb{N}$ such that $\forall n > N$, we have $F_{X_n}(K) - F_X(K) \le \varepsilon$.

For others, we can choose $K_0, ..., K_{N-1}$ such that $P(|X_i| > K_i) < \varepsilon$, and this implies that $\sup_{i} P(|X_i| > \max\{K_0, ..., K_{N-1}, K\}) < \varepsilon$.

(b) $\forall m$ we have

$$P(|c_n X_n| > m) \le P\left(|X_n| < K, |c_n| > \frac{m}{K}\right) + P(|X_n| > K)$$

Choose K such that $P(|X_n| > K) < \varepsilon$ for some X_n tight. And then the first term is less than $P\left(|c_n| > \frac{m}{K}\right)$.

By MCT, we have

$$\lim_{n \to \infty} P\left(|c_n| > \frac{m}{K}\right) \le \lim_{n \to \infty} \sum_{n = N}^{\infty} P\left(|c_n| > \frac{m}{K}\right) = P\left(\limsup_{n \to \infty} \left\{|c_n| > \frac{m}{K}\right\}\right)$$

Since
$$c_n \to 0$$
, then $P\left(\limsup_{n \to \infty} \left\{ |c_n| > \frac{m}{K} \right\} \right) = 0$.

Exercise 4. Prob 4

Proof.

Since $W_n \in S^n$ is symmetric we can diagonalize with respect to unitary matrices and get

$$W_n^k = (PDP^{-1})^k = PD^kP^{-1}$$

which gives that

$$\operatorname{tr}(W_n^k) = \operatorname{tr}(D^k) = \sum_{i=1}^n \lambda_i^k.$$

Thus, it suffices to show

$$\frac{1}{n}\operatorname{tr}(W_n^k) - \mathbb{E}\left[\frac{1}{n}\operatorname{tr}(W_n^k)\right] \stackrel{p}{\to} 0$$

where we have

$$\mathbb{P}\left(\left|\frac{1}{n}\operatorname{tr}(W_n^k) - \mathbb{E}\left[\frac{1}{n}\operatorname{tr}(W_n^k)\right]\right| > \varepsilon\right) \stackrel{Chebyshev}{\leq} \frac{1}{\varepsilon^2} \left(\mathbb{E}\left[\left(\frac{1}{n}\operatorname{tr}(W_n^k)\right)^2\right] - \mathbb{E}\left[\frac{1}{n}\operatorname{tr}(W_n^k)\right]^2\right)$$

so we only need to show that for any fixed α the term

$$A := \mathbb{E}\left[\left(\frac{1}{n}\operatorname{tr}(W_n^k)\right)^2\right] - \mathbb{E}\left[\frac{1}{n}\operatorname{tr}(W_n^k)\right]^2$$

is such that $A \rightarrow 0$.

By brutal computation we get that

$$\frac{1}{n}\operatorname{tr}(W_n^k) = \frac{1}{n^{k/2+1}} \sum_{1 \le i, 1 \le i, k \le n} X_{i1, i2} \cdots X_{ik, i1}.$$

And so we have

$$A = \frac{1}{n^{2+k}} \left(\mathbb{E} \left[S_{i,i'} \right] - \mathbb{E} [S_i] \mathbb{E} [S_{i'}] \right)$$

where

$$S_{i,i'} := \sum_{\substack{1 \le i1, \dots, ik \le n \\ 1 \le i1', \dots, ik' \le n}} X_{i1,i2} \cdots X_{ik,i1} X_{i1',i2'} \cdots X_{ik',i1'}$$

and

$$S_i := \sum_{1 \le i 1, \dots, ik \le n} X_{i1, i2} \cdots X_{ik, i1}$$

$$S_{i'} := \sum_{1 \le i1', \dots, ik' \le n} X_{i1', i2'} \cdots X_{ik', i1'}.$$

To further the question, we use graph theory:

A. Similarly define graph V with vertices
A. Similarly define graph V with vertices Visi' = (i) - (ik) U (i', - ik')
Let w(Y), with he the weight
Let w(V), with he the weight
Similarly, it's obvious that each distinctive with some observation
(un directioned) edge should be repended twice.
with some observation
(2) Siniz ik, il (Siliz, ik' il (+).
treat This = 1211
there Eiii' is awalk.
there $E_{i,i'}$ is awalk. There are $N(n-1)$ $(n-t+1)$ $\leq Nk$
in each of the equivalent class.
By the assignment 2.34
By the assignment 2.34 A standard walk series D S of standard walk series D with wev) we A standard walks scristies D with wev) we Letter walks scristies D with wev) we Letter walks scristies D with wev) we
< ff stantal with tiesties as
sendon walls scristies w wiph will)
4 to well is independent of n.
13 y 01 MINSON 103 A1-111 51

therefore when when we have the state of the
A LEW PARCE OF THE
therefore when
therefore. When Theref
818) E Take 2
WINSK WINSK
of most 2 times I many I desired
even steps to vetum to 11 3 Contralities
an front and le the state of th
when wiv) 7k+2. Since condition Dis required
there're Lt most 12+1 unique veneices. encountered by the walk. No random walk satisfies (ondition D.
The real last the solution
entractived in the desired
No random walk gatisfies (ondition).
THE STATE OF THE S
if w(v)=k+1. every edge is repended exactly twice.
even also is repended expetely in the
but to sutisfly Condition (2)

becase from Condition D we know (1) is has odd I steps of walk. but simultaneously it storts from at most 2 times. Therefore it request even steps to return to it.) Contradicion

Therefore (\$) = Or (1)