Question 1 solution:

a)
$$A = \begin{pmatrix} 2 & 1 & -1 & 2 \\ 4 & 5 & -3 & 6 \\ -2 & 5 & -2 & 6 \\ 4 & 11 & -4 & 8 \end{pmatrix}$$
, This is a square matrix. $det(A) = -12 \neq 0$. So, A is non-singular.

This system has unique solution.

b) Augmented matrix =
$$\begin{pmatrix} 2 & 1 & -1 & 2 & 5 \\ 4 & 5 & -3 & 6 & 9 \\ -2 & 5 & -2 & 6 & 4 \\ 4 & 11 & -4 & 8 & 2 \end{pmatrix}$$

c)
$$m_{21} = 2$$
, $m_{31} = -1$, $m_{41} = 2$. So, using these multipliers $\begin{pmatrix} 2 & 1 & -1 & 2 & 5 \\ 0 & 3 & -1 & 2 & -1 \\ 0 & 6 & -3 & 8 & 9 \\ 0 & 9 & -2 & 4 & -8 \end{pmatrix}$

$$m_{32} = 2, m_{42} = 3$$
. So, using these multipliers $\begin{pmatrix} 2 & 1 & -1 & 2 & 5 \\ 0 & 3 & -1 & 2 & -1 \\ 0 & 0 & -1 & 4 & 11 \\ 0 & 0 & 1 & 2 & -5 \end{pmatrix}$

$$m_{43} = -1$$
 . So, using these multipliers $\begin{pmatrix} 2 & 1 & -1 & 2 & 5 \\ 0 & 3 & -1 & 2 & -1 \\ 0 & 0 & -1 & 4 & 11 \\ 0 & 0 & 0 & 2 & 6 \end{pmatrix}$

d) Using Back Substitution:
$$x_4 = 3$$
, $x_3 = 1$, $x_2 = -2$, $x_1 = 1$

Question 2 solution:

a)
$$F^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}$$
 $A^{(2)} = F^{(1)} * A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \end{pmatrix}$, $F^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$

b)
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$

c)
$$A^{(3)} = F^{(2)} * A^{(2)} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{pmatrix} = U,$$

$$Ly=b \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 20 \\ 17 \end{pmatrix} \Rightarrow y_1 = 6, y_2 = 8, y_3 = -9$$

$$Ux=y \qquad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ -9 \end{pmatrix} \Rightarrow x_3 = 3, x_2 = 2, x_1 = 1$$

Question 3 solution:

- a) $A = \begin{pmatrix} 3 & 3 & 4 \\ 0 & 0 & -1 \\ 0 & -1 & 3 \end{pmatrix}$ here, $m_{32} = 0$. So, Gaussian elimination method fails to solve the system.
- b) Swap row 2 and 3. pivoting

Hence, the set is not ontho normal.

$$\underbrace{e} \cdot S = \left\{ \left(\frac{3}{V_{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right)^{T}, \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right)^{T}, \left(-\frac{1}{\sqrt{66}}, -\frac{4}{\sqrt{66}}, \frac{7}{\sqrt{66}} \right)^{T} \right\}$$

$$\chi^{T} = \left(\frac{3}{V_{11}}, \frac{1}{\sqrt{V_{11}}}, \frac{1}{\sqrt{V_{11}}} \right)^{T}$$

$$\chi^{T} = \left(-\frac{1}{\sqrt{66}}, -\frac{4}{\sqrt{66}}, \frac{7}{\sqrt{66}} \right)^{T}$$

$$\vdots \cdot \chi^{T} = \frac{3}{V_{11}} \left(-\frac{1}{\sqrt{6}} \right) + \frac{1}{\sqrt{V_{11}}} \cdot \frac{2}{\sqrt{6}} + \frac{1}{\sqrt{V_{11}}} \cdot \frac{1}{\sqrt{6}} = \frac{-3}{\sqrt{66}} + \frac{2}{\sqrt{66}} + \frac{1}{\sqrt{66}} = 0$$

$$\vdots \cdot \chi^{T} = \left(\frac{3}{\sqrt{10}} \right) \left(-\frac{1}{\sqrt{66}} \right) + \frac{2}{\sqrt{66}} \left(-\frac{4}{\sqrt{10}} \right) + \frac{7}{\sqrt{66}} \cdot \frac{1}{\sqrt{V_{11}}} = 0$$

$$\chi^{T} = \left(\frac{3}{\sqrt{V_{11}}} \right)^{2} + \left(\frac{1}{\sqrt{V_{11}}} \right)^{2} + \left(\frac{1}{\sqrt{V_{11}}} \right)^{2} = 1$$

$$\chi^{T} = \left(\frac{3}{\sqrt{10}} \right)^{2} + \left(\frac{1}{\sqrt{V_{11}}} \right)^{2} + \left(\frac{1}{\sqrt{V_{11}}} \right)^{2} = 1$$

$$\chi^{T} = \left(-\frac{1}{\sqrt{66}} \right)^{2} + \left(-\frac{4}{\sqrt{66}} \right)^{2} + \left(\frac{7}{\sqrt{66}} \right)^{2} = 1$$

$$\chi^{T} = \left(-\frac{1}{\sqrt{66}} \right)^{2} + \left(-\frac{4}{\sqrt{66}} \right)^{2} + \left(\frac{7}{\sqrt{66}} \right)^{2} = 1$$

$$\chi^{T} = \left(-\frac{1}{\sqrt{66}} \right)^{2} + \left(-\frac{4}{\sqrt{66}} \right)^{2} + \left(\frac{7}{\sqrt{66}} \right)^{2} = 1$$

Since, it matches both of the conditions, it is an onthononmal set.