- 1. Let J be any S-interpretation, where $S = \{P, Q\}$.
 - Case 1. If $[[\forall x. P(x)]]_J$ =true, then for any element a in J's domain, $[[P(x)]]_{J[x\mapsto a]}$ =True and $[[\forall y. P(y)]]_J$ = true. Thus $[[P(x) \to \forall y. P(y)]]_{J[x\mapsto a]}$ = true. So $[[\exists x. (P(x) \to \forall y. P(y))]]_J$ =true.
 - Case 2. If $[[\forall x. P(x)]]_J = \text{false}$, which means there exists at least one element a in J's domain, such that $[[P(x)]]_{J[x\mapsto a]} = \text{false}$. Thus $[[P(x) \to \forall y. P(y)]]_{J[x\mapsto a]} = \text{true}$. So $[[\exists x. (P(x) \to \forall y. P(y))]]_J = \text{true}$.

Therefore, $[[\exists x. (P(x) \rightarrow \forall y. P(y))]]_I$ =true is right on any interpretation J.

- 2. a) $\forall z. \exists y. \exists x. \neg T(x, y, z)$.
 - b) $(\forall x. \forall y. \neg P(x, y)) \lor (\exists x. \exists y. \neg Q(x, y)).$
 - d) $\exists y. \forall x. \forall z. (\neg T(x, y, z)) \land \neg Q(x, y)).$
- 3. a) {0,1,4,9,16,25,36,49,64,81}
 - b) Ø, {Ø}, {{Ø}}, {Ø, {Ø}}.
- 4. a) False, for $\emptyset \in \{\emptyset\}$.
 - b) True, for $\{\emptyset\}$ is an element of $\{\{\emptyset\}\}$.
 - c) False, for $A \in P(A)$.
 - d) True, for A is an element of P(A).
- 5. We can let $A = \{0\}, B = \{0, \{0\}\}\$ as a simple example.
- 6. We can let $A = \emptyset$, $B = \{\emptyset\}$, $C = \{\emptyset, \{\emptyset\}\}$ as a simple example.