

Resolutions of matroid ideals

Luis David Garcia-Puente

lgarcia@math.vt.edu

Virginia Tech

Cellular Resolutions

- Let $M=\langle a^2b,ac,b^2,bc^2\rangle$ monomial ideal in $S=\mathbf{k}[a,b,c]$.
- Let X be the finite regular CW-complex:

- Let $M = \langle a^2b, ac, b^2, bc^2 \rangle$ monomial ideal in $S = \mathbf{k}[a, b, c]$.
- Let X be the finite regular CW-complex:

• Let \mathbb{F}_X be the complex of \mathbb{Z}^n -graded free S-modules

$$0 \to S[-(2,2,1)] \oplus S[-(1,2,2)] \xrightarrow{\partial_2} S[-(2,1,1)] \oplus S[-(2,2,0)] \oplus$$
$$S[-(1,2,1)] \oplus S[-(1,1,2)] \oplus S[-(0,2,2)] \xrightarrow{\partial_1} S[-(2,1,0)] \oplus$$
$$S[-(1,0,1)] \oplus S[-(0,1,2)] \oplus S[-(0,2,0)] \xrightarrow{\partial_0} S$$

 \blacksquare The differential ∂ acts on basis vectors

$$\begin{split} \partial(a^2b^2c) &= -b \cdot a^2bc + c \cdot a^2b^2 - a \cdot ab^2c, \\ \partial(F) &= \sum_{\text{facets } G \text{ of } F} \operatorname{sign}(G,F) \frac{\mathbf{x}^{\mathbf{a}_F}}{\mathbf{x}^{\mathbf{a}_G}}G. \end{split}$$

 \blacksquare The differential ∂ acts on basis vectors

$$\begin{split} \partial(a^2b^2c) &= -b \cdot a^2bc + c \cdot a^2b^2 - a \cdot ab^2c, \\ \partial(F) &= \sum_{\text{facets } G \text{ of } F} \operatorname{sign}(G,F) \frac{\mathbf{x}^{\mathbf{a}_F}}{\mathbf{x}^{\mathbf{a}_G}}G. \end{split}$$

Observe $\partial_0 = \begin{bmatrix} a^2b & ac & bc^2 & b^2 \end{bmatrix}$. Thus $\operatorname{Coker}(\partial_0) = S/M$.

For $\mathbf{b} \in \mathbb{N}^n$, let $X_{\leq \mathbf{b}}$ be the subcomplex of X consisting of all faces whose degrees are coordinatewise at most \mathbf{b} .

Example. Let $\mathbf{b}=(1,1,2)$, then $X_{\preceq \mathbf{b}}$ is the subcomplex $\overset{ac}{\bullet} \overset{abc^2}{\bullet} \overset{bc^2}{\bullet}$

For $\mathbf{b} \in \mathbb{N}^n$, let $X_{\prec \mathbf{b}}$ be the subcomplex of X consisting of all faces whose degrees are coordinatewise at most b.

Example. Let $\mathbf{b}=(1,1,2)$, then $X_{\preceq \mathbf{b}}$ is the subcomplex $\overset{ac}{\bullet} \overset{abc^2}{\bullet} \overset{bc^2}{\bullet}$

Theorem. \mathbb{F}_X is exact if and only if $X_{\prec \mathbf{b}}$ is acyclic over \mathbf{k} for all $\mathbf{b} \in \mathbb{N}^n$.

For $\mathbf{b} \in \mathbb{N}^n$, let $X_{\leq \mathbf{b}}$ be the subcomplex of X consisting of all faces whose degrees are coordinatewise at most \mathbf{b} .

Example. Let $\mathbf{b}=(1,1,2)$, then $X_{\preceq \mathbf{b}}$ is the subcomplex $\overset{ac}{\bullet} \overset{abc^2}{\bullet} \overset{bc^2}{\bullet}$

Theorem. \mathbb{F}_X is exact if and only if $X_{\leq \mathbf{b}}$ is acyclic over \mathbf{k} for all $\mathbf{b} \in \mathbb{N}^n$.

■ The \mathbb{Z}^n -graded degree **b** part of \mathbb{F}_X is the chain complex

$$0 \to \mathbf{k} \cdot 1 \to \mathbf{k} \cdot bc \oplus \mathbf{k} \cdot a \to \mathbf{k} \cdot abc^2$$

 \bullet is a degree 0 map. Then $(\mathbb{F}_X)_{\mathbf{b}}$ is the reduced chain complex

$$\widetilde{C}(X_{\prec \mathbf{b}}; \mathbf{k}) = 0 \to \mathbf{k} \to \mathbf{k}^2 \to \mathbf{k}$$

For $\mathbf{b} \in \mathbb{N}^n$, let $X_{\leq \mathbf{b}}$ be the subcomplex of X consisting of all faces whose degrees are coordinatewise at most \mathbf{b} .

Example. Let $\mathbf{b}=(1,1,2)$, then $X_{\preceq \mathbf{b}}$ is the subcomplex $\overset{ac}{\bullet} \overset{abc^2}{\bullet} \overset{bc^2}{\bullet}$

Theorem. \mathbb{F}_X is exact if and only if $X_{\leq \mathbf{b}}$ is acyclic over \mathbf{k} for all $\mathbf{b} \in \mathbb{N}^n$.

■ The \mathbb{Z}^n -graded degree **b** part of \mathbb{F}_X is the chain complex

$$0 \to \mathbf{k} \cdot 1 \to \mathbf{k} \cdot bc \oplus \mathbf{k} \cdot a \to \mathbf{k} \cdot abc^2$$

 $m{\partial}$ is a degree 0 map. Then $(\mathbb{F}_X)_{\mathbf{b}}$ is the reduced chain complex

$$\widetilde{C}(X_{\leq \mathbf{b}}; \mathbf{k}) = 0 \to \mathbf{k} \to \mathbf{k}^2 \to \mathbf{k}$$

 $ightharpoonup X_{\prec b}$ is contractible, so it has no reduced homology.

An ideal M is a matroid ideal if and only if the following conditions hold

- lacksquare M is a square-free monomial ideal,
- for every pair of monomials $m_1, m_2 \in M$ and any $i \in \{1, \ldots, n\}$ such that x_i divides both m_1 and m_2 , the monomial $lcm(m_1, m_2)/x_i$ is in M as well.

An ideal M is a matroid ideal if and only if the following conditions hold

- lacksquare M is a square-free monomial ideal,
- for every pair of monomials $m_1, m_2 \in M$ and any $i \in \{1, \ldots, n\}$ such that x_i divides both m_1 and m_2 , the monomial $lcm(m_1, m_2)/x_i$ is in M as well.

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_4, x_2 x_3 x_5, x_4 x_5 \rangle.$$

Hyperplane Arrangements

Let \mathcal{A} be the hyperplane arrangement in \mathbb{R}^2

Let \mathcal{A} be the hyperplane arrangement in \mathbb{R}^2

- The hyperplanes partition \mathbb{R}^2 into cells.
- The set of bounded cells forms a cell complex, denoted B_A , which resolves S/M_A minimally.

Let \mathcal{A} be the hyperplane arrangement in \mathbb{R}^2

- The hyperplanes partition \mathbb{R}^2 into cells.
- The set of bounded cells forms a cell complex, denoted B_A , which resolves S/M_A minimally.
- Hence $0 \longrightarrow S^4 \longrightarrow S^9 \longrightarrow S^6 \longrightarrow S$ is a minimal free resolution for $S/M_{\mathcal{A}}$.

Generic Monomial Ideals

• We say that a monomial m' strictly divides m if $\sup(\frac{m}{m'}) = \sup(m)$.

Generic Monomial Ideals

- We say that a monomial m' strictly divides m if $\sup(\frac{m}{m'}) = \sup(m)$.
- A monomial ideal $M = \langle m_1, \dots, m_r \rangle$ is called generic if, whenever two distinct minimal generators m_i and m_j have the same positive degree in some variable x_s , there is a third generator m_l which strictly divides $lcm(m_i, m_j)$.

Example. $M = \langle x^2y^2, x^2z^2, yz \rangle$ is generic.

Generic Monomial Ideals

- We say that a monomial m' strictly divides m if $\sup(\frac{m}{m'}) = \sup(m)$.
- A monomial ideal $M = \langle m_1, \dots, m_r \rangle$ is called generic if, whenever two distinct minimal generators m_i and m_j have the same positive degree in some variable x_s , there is a third generator m_l which strictly divides $lcm(m_i, m_j)$.

Example. $M=\langle x^2y^2,x^2z^2,yz\rangle$ is generic.

- ullet For $I\subseteq\{1,\ldots,r\}$, let $m_I=\mathrm{lcm}(m_i,i\in I)$.
- ullet The Scarf complex of M consists of the following subsets:

$$\Delta_M := \{ I \subseteq \{1, \dots, r\} \mid m_I = m_J \Rightarrow I = J \}.$$

Let $M = \langle a^2b, ac, b^2, bc^2 \rangle$. The Scarf complex of M is

Let $M = \langle a^2b, ac, b^2, bc^2 \rangle$. The Scarf complex of M is

Theorem. For M generic, the cellular complex \mathbb{F}_{Δ_M} is a minimal free resolution of S/M.

Let $M = \langle a^2b, ac, b^2, bc^2 \rangle$. The Scarf complex of M is

Theorem. For M generic, the cellular complex \mathbb{F}_{Δ_M} is a minimal free resolution of S/M.

● The minimal free resolution of S/M is

$$0 \to S^2 \to S^5 \to S^4 \to S$$

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- ullet $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.
- Let $S = \mathbf{k}[x_1, \dots, x_5]$, and M be the matroid ideal

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$$

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- lacksquare $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.
- Let $S = \mathbf{k}[x_1, \dots, x_5]$, and M be the matroid ideal

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$$

• Fix the order $\pi = 1, 2, 3, 4, 5$ in the indeterminates of S.

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- lacksquare $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.
- Let $S = \mathbf{k}[x_1, \dots, x_5]$, and M be the matroid ideal

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$$

- Fix the order $\pi = 1, 2, 3, 4, 5$ in the indeterminates of S.
- $M_i = \langle m^i \mid m \in \text{Gen}(M), m | x_1 x_2 \cdots x_i, m^i \notin \sum_{i=1}^{i-1} M_j \rangle$

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- lacksquare $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.
- Let $S = \mathbf{k}[x_1, \dots, x_5]$, and M be the matroid ideal

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$$

- Fix the order $\pi = 1, 2, 3, 4, 5$ in the indeterminates of S.
- $M_i = \langle m^i \mid m \in \text{Gen}(M), m | x_1 x_2 \cdots x_i, m^i \notin \sum_{j=1}^{i-1} M_j \rangle$
- $\bullet M^{\pi} = M_1 + M_2 + \dots + M_n$
- M^{π} is a Cohen-Macaulay generic deformation of M

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- lacksquare $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.
- Let $S = \mathbf{k}[x_1, \dots, x_5]$, and M be the matroid ideal

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$$

- Fix the order $\pi = 1, 2, 3, 4, 5$ in the indeterminates of S.
- $M_i = \langle m^i \mid m \in \text{Gen}(M), m | x_1 x_2 \cdots x_i, m^i \notin \sum_{j=1}^{i-1} M_j \rangle$
- $M^{\pi} = M_1 + M_2 + \cdots + M_n$
- M^{π} is a Cohen-Macaulay generic deformation of M

$$M^{\pi} = \langle x_1^2 x_2^2, x_1^4 x_3^4 x_4^4, x_2^4 x_3^4 x_4^4, x_1^5 x_3^5 x_5^5, x_2^5 x_3^5 x_5^5, x_4^5 x_5^5 \rangle$$

- From a monomial ideal M we can get a generic monomial ideal \widetilde{M} by deforming the exponents of the minimal generators of M.
- lacksquare $\mathbb{F}_{\Delta_{\widetilde{M}}}$ is a resolution of M.
- Let $S = \mathbf{k}[x_1, \dots, x_5]$, and M be the matroid ideal

$$M = \langle x_1 x_2, x_1 x_3 x_4, x_2 x_3 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_4 x_5 \rangle$$

- Fix the order $\pi = 1, 2, 3, 4, 5$ in the indeterminates of S.
- $M_i = \langle m^i \mid m \in \text{Gen}(M), m | x_1 x_2 \cdots x_i, m^i \notin \sum_{j=1}^{i-1} M_j \rangle$
- $\bullet M^{\pi} = M_1 + M_2 + \dots + M_n$
- M^{π} is a Cohen-Macaulay generic deformation of M

$$M^{\pi} = \langle x_1^2 x_2^2, x_1^4 x_3^4 x_4^4, x_2^4 x_3^4 x_4^4, x_1^5 x_3^5 x_5^5, x_2^5 x_3^5 x_5^5, x_4^5 x_5^5 \rangle$$

$$M^{\pi} = \langle x_1 x_2, x_1^2 x_3^2 x_4^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

*(*2*)*

$$M^{\pi} = \langle x_1 x_2, x_1^2 x_3^2 x_4^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

$$M^{\pi} = \langle x_1 x_2, x_1^2 x_3^2 x_4^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

• $\Delta_{M^{\pi}}$ has facets $\{1, 2, 4\}, \{1, 3, 5\}, \{1, 2, 6\}, \{1, 3, 6\}$

• The cellular complex $\mathbb{F}_{\Delta_{M^{\pi}}}$ is equal to

$$0 \longrightarrow S^4 \longrightarrow S^9 \longrightarrow S^6 \longrightarrow S$$

Non-minimal resolution

• Fix the order $\sigma = 1, 3, 4, 2, 5$. Then

$$M^{\sigma} = \langle x_1 x_3 x_4, x_1^2 x_2^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

is the CM generic deformation of M associated to the given order.

• Fix the order $\sigma = 1, 3, 4, 2, 5$. Then

$$M^{\sigma} = \langle x_1 x_3 x_4, x_1^2 x_2^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

is the CM generic deformation of M associated to the given order.

 $m{\triangle}$ $\Delta_{M^{\sigma}}$ has facets $\{1,2,4\},\{1,2,5\},\{1,3,5\},\{1,2,6\},\{1,3,6\}$

• Fix the order $\sigma = 1, 3, 4, 2, 5$. Then

$$M^{\sigma} = \langle x_1 x_3 x_4, x_1^2 x_2^2, x_2^2 x_3^2 x_4^2, x_1^3 x_3^3 x_5^3, x_2^3 x_3^3 x_5^3, x_4^3 x_5^3 \rangle$$

is the CM generic deformation of M associated to the given order.

ullet $\Delta_{M^{\sigma}}$ has facets $\{1,2,4\},\{1,2,5\},\{1,3,5\},\{1,2,6\},\{1,3,6\}$

lacksquare $\mathbb{F}_{\Delta_{M^\sigma}}$ is equal to $0\longrightarrow S^5\longrightarrow S^{10}\longrightarrow S^6\longrightarrow S$

Theorem. Let $\dim(\Delta_{M^{\pi}}) = n$, and let $h(\pi)$ be the unique monomial generator of M_1 . Then $\mathbb{F}_{\Delta_{M^{\pi}}}$ is a minimal free resolution if and only if any facet F, with $h(\pi) \in F$, lies in a hyperplane.

- Minimal free resolution

$$0 \longrightarrow S^3 \longrightarrow S^{11} \longrightarrow S^{14} \longrightarrow S^7 \longrightarrow S$$

$$\{x_1, x_2x_3, x_2x_5, x_2x_4\},\$$

$$\{x_1, x_2x_3, x_2x_5, x_2x_4\},$$

$$\{x_1, x_2x_3, x_3x_5, x_3x_4\},\$$

$$\{x_1, x_2x_3, x_2x_5, x_2x_4\},\$$

 $\{x_1, x_2x_3, x_3x_5, x_3x_4\},\$
 $\{x_1, x_2x_3, x_2x_5, x_4x_5\},\$

$$\{x_1, x_2x_3, x_2x_5, x_2x_4\},\$$

 $\{x_1, x_2x_3, x_3x_5, x_3x_4\},\$
 $\{x_1, x_2x_3, x_2x_5, x_4x_5\},\$
 $\{x_1, x_2x_3, x_3x_5, x_4x_5\}$

- ullet There does not exist a minimal \mathcal{A} -deformation.
- Generic deformation which is not CM

$$\langle x_1, x_2 x_4^3, x_3 x_5^3, x_2^2 x_3^2, x_4^2 x_5^2, x_2^3 x_5, x_3^3 x_4 \rangle$$

Scarf complex has dimension 4.