Отчёт по лабораторной работе №8

дисциплина: Администрирование локальных сетей

Студент: Кузнецова София Вадимовна

Содержание

Цель работы	5
Выполнение лабораторной работы	6
Выводы	16
Ответы на контрольные вопросы	17

Список иллюстраций

0.1	Открытие проекта lab_PT-08.pkt	6
0.2	Добавление сервера dns и подключение его к коммутатору msk-	
	donskaya-sw-3	7
0.3	Активация порта на коммутаторе	8
0.4	Настройка конфигурации сервера	9
0.5	Настройка сервиса DNS	10
0.6	Настройка DHCP-сервис на маршрутизаторе	11
0.7	Замена статического распределение адресов на динамическое	12
0.8	Проверка выделения адресов оконечных устройств	13
0.9	Проверка доступности устройств из разных подсетей	14
0.10	Режим симуляции	15

Список таблиц

Цель работы

Приобрести практические навыки по настройке динамического распределения IP-адресов посредством протокола DHCP (Dynamic Host Configuration Protocol) в локальной сети.

Выполнение лабораторной работы

Откроем проект с названием lab_PT-07.pkt и сохраним его под названием lab_PT-08.pkt. После чего откроем его для дальнейшего редактирования.

Рис. 0.1: Открытие проекта lab_PT-08.pkt

В логическую рабочую область проекта добавим сервер dns и подключим его к коммутатору msk-donskaya-sw-3 через порт ${\rm Fa}0/2$.

Рис. 0.2: Добавление сервера dns и подключение его к коммутатору msk-donskayasw-3

Далее активируем порт при помощи соответствующих команд на коммутаторе.

Рис. 0.3: Активация порта на коммутаторе

В конфигурации сервера укажем в качестве адреса шлюза 10.128.0.1, а в качестве адреса самого сервера — 10.128.0.5 с соответствующей маской 255.255.255.0.

Рис. 0.4: Настройка конфигурации сервера

Далее настроим сервис DNS: – в конфигурации сервера выберите службу DNS, активируйте её (выбрав флаг On); – в поле Туре в качестве типа записи DNS выберите записи типа A (A Record); – в поле Name укажите доменное имя, по которому можно обратиться, например, к web-серверу — www.donskaya.rudn.ru, затем укажите его IP-адрес в соответствующем поле 10.128.0.2; – нажав на кнопку Add, добавьте DNS-запись на сервер; – аналогичным образом добавьте DNS-записи для серверов mail, file, dns; – сохраните конфигурацию сервера.

Рис. 0.5: Настройка сервиса DNS

Настроим DHCP-сервис на маршрутизаторе, используя приведённые в лабораторной работе команды для каждой выделенной сети(укажем IP-адрес DNS-сервера; затем перейдём к настройке DHCP; зададим название конфигурируемому диапазону адресов (пулу адресов), укажем адрес сети, а также адреса шлюза и DNS-сервера; зададим пулы адресов, исключаемых из динамического распределени).

Рис. 0.6: Настройка DHCP-сервис на маршрутизаторе

На оконечных устройствах заменим в настройках статическое распределение адресов на динамическое.

Рис. 0.7: Замена статического распределение адресов на динамическое

Затем проверим, какие адреса выделяются оконечным устройствам.

Рис. 0.8: Проверка выделения адресов оконечных устройств

Не забываем также проверить доступность устройств из разных подсетей.

```
C:\>ping mail.donskaya.rudn.ru

Pinging 10.128.0.4 with 32 bytes of data:

Request timed out.

Reply from 10.128.0.4: bytes=32 time<lms TTL=127

Ping statistics for 10.128.0.4:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms

C:\>ping file.donskaya.rudn.ru

Pinging 10.128.0.3 with 32 bytes of data:

Request timed out.

Reply from 10.128.0.3: bytes=32 time<lms TTL=127

Reply from 10.128.0.3: bytes=32 time<lms TTL=127

Ping statistics for 10.128.0.3: bytes=32 time=lms TTL=127

Reply from 10.128.0.5: bytes=32 time=lms TTL=127
```

Рис. 0.9: Проверка доступности устройств из разных подсетей

В режиме симуляции изучим, каким образом происходит запрос адреса по протоколу DHCP.

Рис. 0.10: Режим симуляции

Выводы

В ходе выполнения лабораторной работы мы приобрели практические навыки по настройке динамического распределения IP адресов посредством протокола DHCP (Dynamic Host Configuration Protocol) в локальной сети.

Ответы на контрольные вопросы

- 1. За что отвечает протокол DHCP?
- За автоматическое получение IP и других параметров.
- 2. Какие типы DHCP-сообщений передаются по сети? DHCPDISCOVER (клиент <> сервер) начальное сообщение. DHCPOFFER (сервер <> клиент) ответ на начальное сообщение с сетевыми настройками. DHCPREQUEST (клиент <> сервер) настройки приняты. DHCPACK (сервер <> клиент) авторизация клиента, настройки приняты. DHCPNAK (сервер <> клиент) авторизация невозможна. DHCPDECLINE (клиент <> сервер) IP уже используется. DHCPINFORM (клиент <> сервер) присвоен статический IP, а нужен динамический. DHCPRELEASE (клиент <> сервер) завершение использования IP.
- 3. Какие параметры могут быть переданы в сообщениях DHCP?
- По умолчанию запросы от клиента делаются к серверу на порт 67, сервер в свою очередь отвечает клиенту на порт 68, выдавая адрес IP и другую необходимую информацию, такую, как сетевую маску, маршрутизатор и серверы DNS.
- 4. Что такое DNS?
- Система, ставящая в соответствие доменному имени хоста IP и наоборот.
- 5. Какие типы записи описания ресурсов есть в DNS и для чего они используются?
 - RR-записи описывают все узлы сети в зоне и помечают делегирование

поддоменов. • SOA-запись — указывает на авторитативность для зоны. • NS-запись — перечисляет DNS-серверы зоны. • A — задаёт отображение имени узла в IP. • PTR — задаёт отображение IP в имя узла.