

Débit réseau vs débit constaté (affiché par la machine)

- En réseau, le débit se mesure en bits/seconde
- ullet En informatique, on travail par paquet de 8 bits (= 1 octet)
- Une capacité de stockage est donc mesurée en nombre d'octets
- Un débit dans une application (navigateur internet) se fait aussi en octet.

Débit informatique = Débit Réseau / 8

Débit de 16 Mbits/s annoncé par un fournisseur d'accès = 2 Mo constaté en téléchargement.

Mo!= Mio

- 1 Ko = 1000 octets
- $1 \text{Kio} = 2^10 = 1024 \text{ octets}$
- 50 000 000 000 octets = 50 Go = 46,56 Gio

Le cablage : paire torsadée

- Issu du monde de la téléphonie
- Peut supporter un débit jusqu'à 1 Gbits/s
- Longueur maximale : 100 mètres
- Architecture physique en etoile (à l'aide de hub ou switch).
- Prise RJ45

Le cablage : coaxial

- Similaire à celui de la télévision.
- Câble coaxial fin (couleur noire) 10Base2 10Mbits/s sur 200m avec des terminaison de 50 Ohm
- Câble coaxial épais (couleur jaune) 10Base5 10Mbits/s sur 500m.
- Pour le coaxial l'achitecture physique est en Bus les machines se suivent.
- Prise BNC

Le cablage : la fibre multimode et monomode

Avantages:

- Trés haut débit,
- Longue distance (multimode 500m, 1Gbits/s et monomode 5 KM, 1Gbits/s)
- Insensible au perturbation électromagnétique
- Difficile à pirater
- Liaison inter-bâtiment (problème de Terre)
- Inconvénients:
 - coût élevé (installation, elements actifs)
 - difficile à mettre en oeuvre
 - difficile à tester (matériel coûteux)
- Prise spécifique fibre

Le concentrateur

- Permet de connecter plusieurs machines entre elles au niveau Ethernet
- Toute information qui arrive sur un port est diffusée sur les autres ports
- Dispose d'un nombre variable de ports (4, 24 par exemple)
- Les ports d'un concentrateur ne disposent pas d'adresse MAC ni d'adresse IP
- Les ports in croisent les paires de fils torsadés.
- Le port out n'est pas croisé pour permettre la liaison d'un autre concentrateur.
- Sur un réseau 10 Mbit/s, pas plus de 5 segments (cables) entre deux terminaux (donc 4 concentrateurs).
- On parle de réseau Ethernet partagé.
- Plus utilisé en filaire, existe toujours dans les technologies sans fil

Les commutateurs (switch)

- Les terminaux sont reliés à un port du commutateur
- Le commutateur enregistre les adresses MAC des terminaux connectés pour n'envoyer les trames reçues que sur le bon port (table de commutation).
- Moins de problèmes de collision
- La diffusion (broadcast) est toujours possible sur les commutateurs
- Par défaut, on évitera de mettre des machines de réseaux différents sur un même commutateur.
- Des commutateurs spécifiques existent pour garantir la sécurité de réseaux différents sur un même appareil (VLAN port, MAC, IP)

Les routeurs (passerelles IP)

- Ressemblent à des concentrateurs ou des commutateurs de l'extérieur (prises RJ45)
- Contrairement à ceux ci, les prises RJ45 sont associées à une adresse MAC et une adresse IP
- Permet de gérer finement le traffic réseau entre sous-réseaux (table de routage)
- C'est un ordinateur administrable depuis le réseau.

Le cablage en paire torsadée

- Cable droit: relie une interface réseau (prise RJ45 avec adresse MAC et IP) avec une 'multiprise pour cable RJ45" (concentrateur ou commutateur).
- Cable croisé : relie directement deux interfaces réseau (deux ordinateurs, un ordinateur et un routeur).
- Les matériels récents sont capables de gérer automatiquement le croisement des paires torsadées sur leur prise RJ45.
- Possibilité d'alimenter électriquement les terminaux (Power over Ethernet, PoE): téléphonie sur IP par exemple.

Le domaine de collision

- Un seul terminal peut émettre à un moment donné sur le réseau partagé.
- Avant d'envoyer une trame, le terminal vérifie que la ligne est libre.
- Cette vérification ne fonctionne pas pour les trames émises mais pas encore reçues (temps de parcours sur le réseau).
- Si deux terminaux émettent en même temps, une collision se produit.
- La détection peut se faire en comparant le signal émit et le signal reçu par l'envoyeur.
- Si une collision est détectée, chaque terminal attend un temps aléatoire avant de re-émettre.
- Après un nombre d'essais, l'emission est annulée.

Approche Carrier Sense Multiple Access (CSMA)

Le proxy

- Un intermédiaire entre deux machines
 - Les deux machines ne communiquent pas directement
 - Chaque machine ne connaît que l'intermédiaire
- Usages (proxy HTTP squid à l'université) :
 - Mise en cache des pages web souvent consultées
 - Journalisation des accès
 - Contrôle des accès

Le pare-feu

- Protège un réseau interne des intrusions externe
- Fonctionne généralement au niveau 4 (transport : TCP/UDP)
 - filtrage des ports
 - filtrage des adresses IP
- Problème des ports dynamiques : nécessite d'analyser le contenu des trames (niveau applicatif)

Le futur : des matériels génériques configurables

- Les commutateurs et routeurs font de plus en plus de choses
- in fine il s'agit d'ordinateurs spécialisés
- D'où l'idée de brancher des boitiers génériques et de configurer leurs fonctionnalités de manière logicielle Software Defined Networking
- Le contrôle (calcul des routes) est alors découplé des données (le routage des paquets)
- OpenFlow est un protocole pour créer des réseaux logiciels.

Architecture: la DMZ

- Certaines machines doivent être visibles du réseau public (web, mail, DNS) et du réseau interne.
- Ces machines sont regroupées dans un sous-réseau particulier appelé DMZ
- L'accès entre le réseau interne et la DMZ est protégé par un pare-feu
- L'accès entre la DMZ et le réseau public est aussi protégé par un pare-feu

Exemple de DMZ

Pour terminer

Quels services de l'université se trouvent dans notre DMZ ?

Comment le vérifier ?

De 194.254.23.3:80 à www.univ-artois.fr

- Les utilisateurs "normaux" d'Internet n'utilisent pas d'adresses IP
- Les adresses IP sont remplacées par des noms
- Les ports associés aux services courants sont normalisés
 - 22 SSH
 - 23 telnet
 - 25 SMTP
 - 80 HTTP
 - 110 POP3
 - 143 IMAP
- Les ports sont donc souvent cachés par les outils

Pour faciliter l'usage du réseau, des noms sont associés aux adresses IP

Noms de domaines

- composé d'une **extension** (.fr, .net, .com, .edu, .info, .biz etc) appelée nom de domaine de premier niveau (*Top Level Domain, TLD*)
 - TLD nationaux/géographiques (fr, en, eu, it, us)
 - TLD génériques originaux (com, org, net, edu, gov, mil)
 - Création en 1998 de l' Internet Corporation for Assigned Names and Numbers (ICANN) pour gérer les nouveaux TLD (aero, biz, coop, info, museum, name, pro en 2000
 - TLD sponsorisés (edu, gov, mil) vs non sponsorisés (com, org, net)
- le nom de domaine de second niveau précède le TLD
- le préfixe qui désigne un service (www pour le web)
- tout ce qui se trouve entre le nom de second niveau et le préfixe représente des sous-domaines du domaine de second niveau.

Exemples de noms de domaine

- www.univ-artois.fr
- wmail.univ-artois.fr
- foad.univ-artois.fr
- ent.univ-artois.fr

fr est un TLD national, univ-artois un nom de domaine de second niveau et www, wmail, foad, ent sont des préfixes représentant des services de l'universités.

- www.impots.gouv.fr
- www.education.gouv.fr
- www.diplomatie.gouv.fr

fr est un TLD national, gouv un nom de domaine de second niveau correspondant à l'état français, impots, education et diplomatie sont des sous domaines représentant les différentes administrations de l'état et www représente pour ces administrations leur site web.

Louer un nom de domaine secondaire

- Il est facile de louer un nom de domaine secondaire si il est libre
- Des restrictions peuvent exister : TLD géographiques ou sponsorisés, noms secondaires correspondant à des marques.
- En france, c'est l'AFNIC qui gère les noms de domaines secondaires du TLD fr (et aussi re lle de la Réunion, pm Saint-Pierre et Miquelon, tf Terres australes et antarctiques Françaises, wf Wallis et Futuna, yt Mayotte)
- Pour connaître le locataire d'un nom de domaine, on utilise le service whois.

Association statique locale

Sous Unix, l'association se fait dans le fichier /etc/hosts

```
$ more /etc/hosts
##
# Host Database
#
 localhost is used to configure the loopback interface
# when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
               localhost
::1
fe80::1%lo0
               localhost
192.168.33.10
              preview.localhost
```

 Au début d'Internet, un fichier complet d'associations était maintenu par un organisme (Network Information Center) et recopié sur les

machines connectées à Internet

Domain Name System

- Depuis le milieu des années 80, un système hiérarchique, dynamique et distribué voit le jour : le DNS.
- L'association (nom, adresse IP) est gérée par des serveurs de noms (Name Server)
- Système hiérarchique : les sous domaines sont gérés par des serveurs de noms internes, les domaines secondaires sont gérés par au moins deux serveurs de noms, les TLD sont gérés par des organismes.
- Les serveurs de nom sont souvent gérés par un logiciel qui s'appelle BIND (Berkeley Internet Name Domain)
- On peut utiliser la commande dig pour connaître les serveurs de noms associés à un nom de domaine.

Résolution inverse

- Permet de retrouver le nom de domaine associé à une adresse IP
- On transforme pour cela l'adresse IP en un domaine particulier
 - on renverse l'adresse IP
 - on ajoute l'extension in-addr.arpa
 - 194.254.23.3 devient 3.23.254.194.in-addr.arpa
- La commande host permet de faire de la résolution inverse

host 194.254.23.3
3.23.254.194.in-addr.arpa domain name pointer srv-arras-23-3.1

Questions relatives au cours de la semaine précédente

Pour chacune des affirmations suivantes, indiquer si elle est vrai ou fausse

- 192.168.34.123:8080 représente l'adresse IP 192.168.34.123 et le masque de réseau 8080
- UCP est un protocole connecté fiable
- TCP est une protocole non connecté rapide
- Les noms de domaine de premier niveau sont toujours géographiques/nationaux
- Dans le nom 3.23.254.194.in-addr.arpa, arpa est un domaine de premier niveau (TLD) et in-addr est un domaine de second niveau