4.17

The set of $n \times n$ upper-triangular matrices with determinant 1 under matrix multiplication is a group.

Proof. Let M_n denote the set of $n \times n$ upper triangular matrices with determinant 1. First note that the multiplication of two upper triangular matrices also results in an upper triangular matrix. Let $A, B \in M_n$ and C = AB. An entry C_{ij} from C with i > j is given by

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{jk}.$$

The sum can be split into two parts, resulting in

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{jk}$$

$$= \sum_{k=1}^{i-1} a_{ik} b_{jk} + \sum_{k=i}^{n} a_{ik} b_{jk}$$

$$= 0 + 0 = 0.$$

Therefore the entries below the diagonal of C are 0, meaning C is also upper-triangular. Additionally, $\det(C) = \det(AB) = \det(A) \det(B) = 1$. Therefore M_n is closed under matrix multiplication. Consider now the three group axioms.

- \mathcal{G}_1 .) Associativity is satisfied since matrix multiplication is associative.
- \mathcal{G}_2 .) The identity matrix I_n is an upper-triangular matrix with $\det(I_n) = 1$, therefore M_n has an identity element.
- \mathcal{G}_3 .) Let $A \in M_n$. Note that the inverse of A can be found by row reducing the augmented matrix [A|I] to $[I|A^{-1}]$. This will look like

$$\left(egin{array}{ccc|c} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \ 0 & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \ 0 & 0 & \ddots & dots & 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & a_{nn} & 0 & 0 & 0 & 1 \end{array}
ight).$$

Since A is in upper triangular form, its augmented form can be row-reduced using back substitution which will maintain the upper triangular form on the right side. Therefore once the matrix is in the form $\left[I|A^{-1}\right]$, the inverse matrix will be upper-triangular as well. Additionally, $\det(A^{-1}) = \frac{1}{\det(A)} = 1$. Therefore $A^{-1} \in M_n$, meaning every element in M_n has an inverse.

Since M_n under matrix multiplication satisfies the group axioms, it is a group.

4.18

All $n \times n$ matrices with determinant either 1 or -1 under matrix multiplication forms a group

Proof. Let M_n denote all $n \times n$ matrices with determinant 1 or -1. Let $A, B \in M_n$. Their product is an $n \times n$ matrix since both are $n \times n$. Additionally $\det(AB) = \det(A) \det(B)$. Therefore the determinant of their product is also ± 1 , hence M_n is closed under matrix multiplication. Consider now the three group axioms.

- \mathcal{G}_1 .) Associativity is satisfied since matrix multiplication is associative.
- \mathcal{G}_2 .) The identity matrix I_n is an $n \times n$ matrix and has $\det(I_n) = 1$ meaning $I_n \in M_n$, hence M_n has an identity element.
- \mathcal{G}_3 .) Let $A \in M_n$. Since $\det(A) \neq 0$ and $\det(A^{-1}) = \frac{1}{\det(A)}$ which is either 1 or -1, A has an inverse A^{-1} such that $AA^{-1} = A^{-1}A = I_n$ with $A^{-1} \in M_n$. Therefore M_n has an inverse for each element.

Since M_n under matrix multiplication satisfies the group axioms, it is a group.

4.19

o.1 Part A

* is a binary operation on S.

Proof. Let S be the set $\mathbb{R} \setminus \{-1\}$ and define the mapping $*: S \times S \to S$ where a*b = a+b+ab. Examine if * is a well defined map. Since the addition and multiplication of real numbers is well defined, * can only ever be not well-defined if there exists $a,b \in S$ such that a*b = -1. Assume towards contradiction that these a and b exist. Then

$$a + b + ab = -1$$

 $a + ab + b + 1 = 0$
 $(a + 1)(b + 1) = 0$.

However, this implies that one of a or b is -1, contradicting the assumption that $a, b \in S$ since elements in S cannot be equal to -1. Note also that a+b+ab results in a singular value. Therefore since * maps into S exclusively and has only one associated value for every input, it is a well-defined map and hence a binary operation.

o.2 Part B

 $\langle S, * \rangle$ is a group.

Proof. Define the binary algebraic structure $\langle S, * \rangle$ with the prior S and *. Examine the axioms for S to be a group under *.

 \mathcal{G}_1 .) Let $a, b, c \in S$. It follows that

$$a * (b * c) = a * (b + c + bc)$$

= $a + b + c + bc + ab + ac + abc$.

Additionally,

$$(a * b) * c = (a + b + ab) * c$$

= $a + b + ab + c + ca + cb + cab$
= $a + b + c + bc + ab + ac + abc$.

Since a * (b * c) = (a * b) * c, associativity is satisfied.

 G_2 .) Consider the element $0 \in S$. Let $a \in S$. Then

$$a * 0 = 0 * a = a + 0 + a(0) = a.$$

Therefore 0 is the identity element of S.

 \mathcal{G}_3 .) Let $a \in S$. Choose $a' = -\frac{a}{1+a}$. Note then that

$$a * a' = a' * a = a - \frac{a}{1+a} - a \cdot \frac{a}{1+a}$$

$$= \frac{a(1+a)}{1+a} - \frac{a}{1+a} - \frac{a^2}{1+a}$$

$$= \frac{a+a^2-a-a^2}{1+a}$$

$$= \frac{0}{1+a}$$

$$= 0$$

Since $a \neq -1$, the inverse is well defined and therefore there is an inverse for every element in S.

Since S under * satisfies the group axioms, it is a group.

Part C

Note the operation is commutative (because a + b + ab = b + a + ba).

$$2 * x * 3 = 7$$

$$x * 3 * 2 = 7$$

$$x * (3 + 2 + 3 \cdot 2) = 7$$

$$x * 11 = 7$$

$$x * 11 * 11' = 7 * 11'$$

$$x * 0 = 7 * 11'$$

$$x = 7 * (-\frac{11}{12})$$

$$x = 7 - \frac{11}{12} - \frac{77}{12}$$

$$x = \frac{84}{12} - \frac{11}{12} - \frac{77}{12}$$

$$x = \frac{84 - 11 - 77}{12}$$

$$x = -\frac{4}{12}$$

$$x = -\frac{1}{3}$$

4.20

Displayed are all of the 4 element groups.

	e	a	b	c
e	e	a	b	c
\overline{a}	a	e	c	b
b	b	c	e	\overline{a}
c	c	b	a	e

	e	a	b	c
e	e	a	b	c
\overline{a}	a	b	c	e
\overline{b}	b	c	e	a
c	c	e	a	b

		e	a	b	c
	e	e	a	b	c
	\overline{a}	a	e	c	b
_	b	b	c	a	e
	c	c	b	e	a

The second table can be made into the third table by swapping all instances of a with b, resulting in

	e	b	a	c
e	e	b	a	c
b	a	a	c	e
\overline{a}	b	c	e	b
\overline{c}	c	e	b	a

and then rearranging the order back to e, a, b, c provides

	e	a	b	c
\overline{e}	e	a	b	c
\overline{a}	b	e	c	b
\overline{b}	a	c	\overline{a}	e
\overline{c}	c	b	e	a

Part A

Every table is symmetric across its diagonal, hence every group of 4 elements is abelian.

Part B

The second table is isomorphic to U_4 with the mapping

$$\begin{aligned} e &\to 1 \\ a &\to i \\ b &\to -1 \\ c &\to -i. \end{aligned}$$

This is true since the table

	1	i	-1	-i
1	1	i	-1	-i
\overline{i}	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

is equivalent under the mapping outlined above.

Part C

Consider the first table. Choose n=2 and define the following matrices

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

These are all in the group outlined in Example 14 since all their determinants are 1 or -1. If the following mapping is used

$$e \to E$$

$$a \to A$$

$$b \to B$$

$$c \to C$$

then the same structure is achieved between the two groups. This can be checked by the fact that the table is the Klein-4 group, therefore if $A^2 = B^2 = C^2 = E$, the isomorphism is correct.

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E$$

$$B^{2} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E$$

$$C^{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E.$$

4.21

Let S be a set of 3 elements. That is $S = \{x_1, x_2, x_3\}$. For a group structure to emerge from a binary operation on S, one of the elements must be chosen as an identity element. Therefore there are 3 possible choices for an identity element. There is only one group structure for a given identity element as seen in the following table:

Therefore since there is only one associated group structure for every choice of an identity element and there are 3 choices for an identity element, there are 3 binary operations that give a group structure over a set of 3 elements.