

Universidade do Minho

Dep. de Matemática e Aplicações

equações diferenciais - noções básicas

Exercício 1. Classifique cada uma das equações diferenciais seguintes (ordinárias ou com derivadas parciais) e indique a sua ordem:

(a)
$$\frac{dT(t)}{dt} = -k(T(t) - T_m)$$
, lei do arrefecimento de Newton (k é um parâmetro, T_m é a temperatura ambiente);

(b)
$$\frac{\partial T(t,x)}{\partial t} = k \frac{\partial^2 T(t,x)}{\partial x^2}$$
, equação do calor (k é um parâmetro);

(c)
$$\frac{d^2x}{dt^2} + \omega^2x = 0$$
, lei de Hooke do movimento de uma mola, $\omega^2 = k/m$.

Exercício 2. Mostre que as seguintes funções são solução das respetivas equações diferenciais:

(a)
$$f(x) = x + 3e^{-x}$$
, $\frac{dy}{dx} + y = x + 1$, $x \in \mathbb{R}$

(b)
$$g(x) = 2e^{3x} - 5e^{4x}$$
, $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$, $x \in \mathbb{R}$

(c)
$$h(x) = x^2 - \frac{1}{x}$$
, $x^2 \frac{d^2 y}{dx^2} = 2y$, $x \in \mathbb{R}^+$

Exercício 3. Mostre que $y^2+x-3=0$ é uma solução implícita da equação diferencial $\frac{dy}{dx}=-\frac{1}{2y}$, no intervalo $I=(-\infty,3)$.

Exercício 4. Mostre que $x^3 + 3xy^2 = 1$ é uma solução implícita da equação diferencial

$$2xyy' + x^2 + y^2 = 0,$$

no intervalo I = (0, 1).

Exercício 5. Assumindo que as relações dadas definem y implicitamente como uma função diferenciável de x, verifique que são soluções implícitas das respetivas equações diferenciais:

(a)
$$y - \log y = x^2 + 1$$
, $\frac{dy}{dx} = \frac{2xy}{y - 1}$

(b)
$$e^{xy} + y = x - 1$$
, $\frac{dy}{dx} = \frac{e^{-xy} - y}{e^{-xy} + x}$

(c)
$$x^2 - \text{sen}(x + y) = 1$$
, $\frac{dy}{dx} = 2x \sec(x + y) - 1$

Exercício 6.

- (a) Mostre que qualquer função da família de funções $f(x)=(x^3+c)e^{-3x}$, onde c é uma constante arbitrária, é solução da equação diferencial $\frac{dy}{dx}+3y=3x^2e^{-3x}$.
- (b) Encontre o valor da constante c para as soluções cujos gráficos se apresentam na figura seguinte:

Figura 1: Família de soluções.

Exercício 7. Mostre que a função $y(x)=(2x^2+2e^{3x}+3)e^{-2x}$ é solução do seguinte PVI:

$$\begin{cases} y'(x) + 2y(x) = 6e^x + 4xe^{-2x} \\ y(0) = 5 \end{cases}$$

Figura 2: Gráfico da função $y(x) = (2x^2 + 2e^{3x} + 3)e^{-2x}$.

Exercício 8. Mostre que a função $y(x) = 1/(1 + e^{x^2})$ é solução do seguinte PVI:

$$\begin{cases} y' = 2xy(y-1) \\ y(0) = \frac{1}{2} \end{cases}$$

Figura 3: Gráfico da função $y(x) = 1/(1 + e^{x^2})$.

Exercício 9. Mostre que a função $y(x) = \operatorname{sen}(x)/\operatorname{sen}(1)$ é solução do seguinte problema (dito um problema com condições de fronteira): $\begin{cases} y'' = -y \\ y(0) = 0 \\ y(1) = 1 \end{cases}$

Figura 4: Gráfico da função $y(x) = \operatorname{sen}(x)/\operatorname{sen}(1)$.

Exercício 10. Sabendo que toda a solução da equação diferencial $y'+y=2xe^{-x}$ pode ser escrita na forma $y(x)=(x^2+c)e^{-x}$, com c uma constante arbitrária, resolva o seguinte PVI:

$$\begin{cases} y'(x) + y(x) = 2xe^{-x} \\ y(-1) = e + 3 \end{cases}$$

Figura 5: Gráfico da solução do PVI.