Отчёт по лабораторной работе №6

Дисциплина: Администрирование локальных сетей

Выполнил: Танрибергенов Эльдар

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Ответы на контрольные вопросы	14
5	Выводы	15

Список иллюстраций

3.1	Добавление маршрутизатора в сеть	7
3.2	Первоначальное конфигурирование маршрутизатора	8
3.3	Настройка интерфейса коммутатора	8
3.4	Настройка виртуальных интерфейсов на маршрутизаторе	9
3.5	Настройка виртуальных интерфейсов на маршрутизаторе	9
3.6	Настройка виртуальных интерфейсов на маршрутизаторе	10
3.7	Проверка доступности оконечных устройств из разных VLAN	11
3.8	Симуляция движения пакета ICMP по устройствам из разных VLAN	12
3.9	Симуляция движения пакета ICMP по устройствам из разных VLAN	12
3 10	Пакет ІСМР	13

Список таблиц

1 Цель работы

Настроить статическую маршрутизацию VLAN в сети.

2 Задание

- 1. В логической области проекта разместить маршрутизатор Cisco 2811, подключить его к порту 24 коммутатора msk-donskaya-sw-1 в соответствии с таблицей портов.
- 2. Используя приведённую ниже последовательность команд по первоначальной настройке маршрутизатора, сконфигурируйте маршрутизатор, задав на нём имя, пароль для доступа к консоли, настройте удалённое подключение к нему по ssh.
- 3. Настройте порт 24 коммутатора msk-donskaya-sw-1 как trunk-порт.
- 4. На интерфейсе f0/0 маршрутизатора msk-donskaya-gw-1 настройте виртуальные интерфейсы, соответствующие номерам VLAN. Согласно таблице IP-адресов задайте соответствующие IP-адреса на виртуальных интерфейсах.
- 5. Проверьте доступность оконечных устройств из разных VLAN.
- 6. Используя режим симуляции в Packet Tracer, изучите процесс передвижения пакета ICMP по сети. Изучите содержимое передаваемого пакета и заголовки задействованных протоколов.

3 Выполнение лабораторной работы

1. В логической области проекта разместил маршрутизатор Cisco 2811, подключил его к порту 24 коммутатора msk-donskaya-etanribergenov-sw-1 в соответствии с таблицей портов.

Рис. 3.1: Добавление маршрутизатора в сеть

2. Сконфигурировал маршрутизатор, задав на нём имя, пароль для доступа к консоли, настроил удалённое подключение к нему по ssh.

Рис. 3.2: Первоначальное конфигурирование маршрутизатора

3. Настроил порт 24 коммутатора msk-donskaya-etanribergenov-sw-1 как trunk-порт.

```
msk-donskaya-etanribergenov-sw-l>enable
Password:
msk-donskaya-etanribergenov-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-etanribergenov-sw-l(config)#interface f0/24
msk-donskaya-etanribergenov-sw-l(config-if)#switchport mode trunk
msk-donskaya-etanribergenov-sw-l(config-if)#exit
```

Рис. 3.3: Настройка интерфейса коммутатора

4. На интерфейсе f0/0 маршрутизатора msk-donskaya-etanribergenov-gw-1 настроил виртуальные интерфейсы, соответствующие номерам VLAN.

Согласно таблице IP-адресов задал соответствующие IP-адреса на виртуальных интерфейсах.

```
msk-donskaya-etanribergenov-gw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-etanribergenov-gw-l(config)#interface f0/0
msk-donskaya-etanribergenov-gw-l(config-if)#no shutdown
msk-donskaya-etanribergenov-gw-l(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
msk-donskaya-etanribergenov-gw-1(config-if)#
msk-donskaya-etanribergenov-gw-1(config-if)#interface f0/0.2
msk-donskaya-etanribergenov-gw-1(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2, changed state to up
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 2
msk-donskaya-etanribergenov-gw-1(config-subif)#ip address 10.128.1.1 255.255.255.0
msk-donskaya-etanribergenov-gw-l(config-subif)#description management
msk-donskaya-etanribergenov-gw-l(config-subif)#
msk-donskaya-etanribergenov-gw-1(config-subif)#interface f0/0.3
msk-donskaya-etanribergenov-gw-1(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.3, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 3
msk-donskaya-etanribergenov-gw-1(config-subif)#ip address 10.128.0.1 255.255.255.0
msk-donskaya-etanribergenov-gw-l(config-subif) #description servers
```

Рис. 3.4: Настройка виртуальных интерфейсов на маршрутизаторе

```
msk-donskaya-etanribergenov-gw-1(config-subif) #interface f0/0.101
msk-donskaya-etanribergenov-gw-1(config-subif) #
%LINK-5-CHANGED: Interface FastEthernet0/0.101, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.101, changed state to up
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 101
msk-donskaya-etanribergenov-gw-1(config-subif) #ip address 10.128.3.1 255.255.255.0
msk-donskaya-etanribergenov-gw-1(config-subif) #description dk
msk-donskaya-etanribergenov-gw-1(config-subif) #
msk-donskaya-etanribergenov-gw-1(config-subif) #interface f0/0.102
msk-donskaya-etanribergenov-gw-1(config-subif) #
%LINK-5-CHANGED: Interface FastEthernet0/0.102, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.102, changed state to up
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 102
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 102
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation departaments
```

Рис. 3.5: Настройка виртуальных интерфейсов на маршрутизаторе

```
msk-donskaya-etanribergenov-gw-1(config-subif)#interface f0/0.103
msk-donskaya-etanribergenov-gw-l(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.103, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.103, changed state to up
msk-donskaya-etanribergenov-gw-1(config-subif) #encapsulation dot1Q 103
msk-donskaya-etanribergenov-gw-1(config-subif) #ip address 10.128.5.1 255.255.255.0
msk-donskaya-etanribergenov-gw-l(config-subif)#description adm
msk-donskaya-etanribergenov-gw-l(config-subif)#
msk-donskaya-etanribergenov-gw-1(config-subif)#interface f0/0.104
msk-donskaya-etanribergenov-gw-1(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.104, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.104, changed state to up
msk-donskaya-etanribergenov-gw-l(config-subif) #encapsulation dot1Q 104
msk-donskaya-etanribergenov-gw-1(config-subif)#ip address 10.128.6.1 255.255.255.0
msk-donskaya-etanribergenov-gw-l(config-subif) #description other
msk-donskaya-etanribergenov-gw-1(config-subif)#
```

Рис. 3.6: Настройка виртуальных интерфейсов на маршрутизаторе

5. Проверил доступность оконечных устройств из разных VLAN при помощи команды *ping*.

```
C:\>ipconfig
FastEthernet0 Connection: (default port)
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address.....: FE80::2D0:58FF:FE30:42A
  IPv6 Address....: ::
  IPv4 Address..... 10.128.3.201
  Subnet Mask..... 255.255.255.0
  Default Gateway....: ::
                                 10.128.3.1
Bluetooth Connection:
  Connection-specific DNS Suffix..:
  Link-local IPv6 Address....: ::
  IPv6 Address....::::
  IPv4 Address..... 0.0.0.0
  Subnet Mask..... 0.0.0.0
  Default Gateway....: ::
                                 0.0.0.0
C:\>ping 10.128.4.201
Pinging 10.128.4.201 with 32 bytes of data:
Request timed out.
Reply from 10.128.4.201: bytes=32 time=57ms TTL=127
Reply from 10.128.4.201: bytes=32 time<1ms TTL=127
Reply from 10.128.4.201: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.4.201:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 57ms, Average = 19ms
```

Рис. 3.7: Проверка доступности оконечных устройств из разных VLAN

В начале пинг не проходит, потому что коммутаторы получают информацию и пополняют таблицу МАС-адресов, а затем устройство пингуется.

6. Используя режим симуляции в Packet Tracer, изучил процесс передвижения пакета ICMP по сети.

Рис. 3.8: Симуляция движения пакета ICMP по устройствам из разных VLAN

Рис. 3.9: Симуляция движения пакета ICMP по устройствам из разных VLAN Изучил содержимое передаваемого пакета и заголовки задействованных про-

токолов.

Рис. 3.10: Пакет ІСМР

В заголовке Ethernet есть тег, идентифицирующий VLAN.

4 Ответы на контрольные вопросы

- 1. IEEE 802.1Q открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности к VLAN по сетям стандарта IEEE 802.3 Ethernet. Так как 802.1Q не изменяет заголовки кадра (фрейма), то сетевые устройства, которые не поддерживают этот стандарт, могут передавать трафик без учёта его принадлежности к VLAN. Поскольку данный стандарт является открытым, он используется для построения «транковых» портов между оборудованием различных производителей. 802.1Q помещает внутрь фрейма тег, который передает информацию о принадлежности трафика к VLAN.
- 2. Формат кадра IEEE 802.1Q: адрес назначения, адрес источника, тег (идентификаторы протокола тэга TPID, канонического формата CFI и VLAN VID; приоритет), тип протокола, данные, контрольная сумма.

5 Выводы

Я получил навыки по настройке статической маршрутизации VLAN в сети.