SECTION A (46 marks)

1.	(a)	The following scheme is part of the radioactive decay of thorium $234_{Th} \rightarrow \rightarrow Y+a$	l .
		$Th \rightarrow \rightarrow Pa \rightarrow$	
		90 91	(½ marks)
		(i) Identify the particle emitted in the first stage.	•
		(ii) State the atomic number and the atomic mass of Y.	(1 mark)
	(b)	The activity of ${}^{234}Th$ reduced by 80% in 160 days. Determine the	
		take the activity of Thorium to reduce to half.	(2½ marks)
		***************************************	***************************************

		•••••••••••••••••••••••••••••••••••••••	••••••
Ž.	(a)	Methyl benzene reacts with chlorine to form 2-chloromethylbenze	
		condition for the reaction.	(1 mark)
		•••••••••••••••••••••••••••••••••••••••	100000000000000000000000000000000000000
	(b)	Under a different condition the product is phenylchloromethane in	stead of
		chloromethyl benzene.	
		(i) State the condition for the reaction.	(1 mark)

		(ii) Write the acceptable mechanism for the reaction.	(3 marks)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		***************************************	•••••
		***************************************	•••••
		***************************************	,
			016
O UN	MTA Joint	t Mocks 2023 Page 2 of	1 10

Write equation to show the reaction between aqueous sodium hydroxide and the following oxides:			ide and the	
	(a)	· Ti	in (II) oxide.	(1½ marks
	(b)	Si	licon (IV) oxide.	(1½ marks
	(c)	Tr	ilead tetraoxide.	(1½ marks
4.	Pot (a)	assiur Sta	n dichromate (VI) is used as a primary standard in volumetric ate two reasons why potassium dichromate (VI) is used as a pr	rimary standard. (2 marks)
		••••		•••••••
		•••••		
	(b)	Na	me one substance that can be standardised using potassium die	chromate (VI).
			***************************************	(½ mark)

si oʻ	(c)		acidified potassium dichromate (VI) solution, hydrogen peroxi	
		(i)	State what was observed.	(1 mark)
		•••••		
		(ii)	Write the ionic equation for the reaction.	(1½ marks)
		••••••		•••••••••••••••••••••••••••••••••••••••

		Draw the structure and name the shapes of the following species.	(3 marks)
5.	(a)	Draw the Structure Shape	
		Species	
		(i) 10 ₃	
		(ii)ClO ₄	
			•
	(b)	To the aqueous solution of the species from (a) (i), an acidified solution	on of
	(0)	potassium iodide was added.	
		(i) State what was observed.	(1 mark)
		***************************************	••••••
		***************************************	(1½ marks)
		(ii) Write equation for the reaction that took place.	(172 marks)
		***************************************	***************************************
		***************************************	1' - lead in
6.	(a)	Phenylamine hydrochloride, $C_6H_5NH_3Cl$, undergoes hydrolysis when	1 dissolved iii
		water.	
		Write an equation for the hydrolysis reaction.	(1½ marks)
			•••
			•••••••
	(b)	A 0.02M solution of phenylamine hydrochloride has a pH of 3.4. Cal	
		(i) The molar concentration of the hydrogen ions in the solution.	(2 marks)

© UMTA Joint Mocks 2023

Page 4 of 16

		(ii) the hydrolysis constant, Kh, of phenylamine hydrochloride.	••••••

7.	1.18	Bg of compound Z , on vapourisation occupied 300cm ³ at s.t.p.	
	(a)	Calculate the relative molecular mass of Z.	(1½ marks)
	(b)	The empirical formula of \mathbb{Z} is C_2H_4O .	••••••••
		(i) Determine the molecular formula of Z .	(1½ marks)
3.00		***************************************	
. :		***************************************	
· 9 c.		(ii) Write the structural formulae of the possible isomers of Z.	
	(c)	Compound Z reacts with sodium carbonate to produce a gas that turn	s lime water
		milky. Identify Z .	(½ marks)
8.	Heino	g equations show the following conversion can be carried out:	
		$CH_3CH_2C = NOH \text{ from } CH_3CHCH_3$ $CH_3 \qquad OH$	(2½ marks)
		***************************************	***************************************
			••••••
			••••••

	(b).	OH From Cl	(3 marks)

		***************************************	***************************************
		***************************************	***************
			•••••
9.		general formula of a polymer A is	
	+00	general formula of a polyfiler A is $C - \left(\bigcirc \right) - COCH_2CH_2O \right)_n$	
	(a)	Write the formula and names of the monomer(s) of A.	(3 marks)
		***************************************	***************************************
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		************************************	***************************************
	(b)	Name the type of polymerization by which A is formed.	(1 mark)
		***************************************	•••••••
	(c)	Evaluit 1	••••••
	(0)	Explain why depression freezing point method is not convenient for	determination
		of the molecular mass of A.	(1½ marks)

		47447474744444444444444444	***************************************

SECTION R

		PECTION B	
10.		exothermic reaction between nitrogen and hydrogen takes place accor	ding to the
	_	ation.	
	$N_2(\xi$	$g) + 3H_2(g) \longrightarrow 2NH_3(g)$	
	(a)	Write the expression for the equilibrium constant, Kc, for the forward	d reaction.
			(1 mark)
		***************************************	•••••

	(b)	At 500°C, the equilibrium concentration of hydrogen is 0.250 mold and nitrogen is 2.7 $moldm^{-3}$.	m^{-3}
		Calculate the equilibrium concentration of ammonia at 500 °C.	
		$(kc = 6.0 \times 10^{-2} dm^{-6} mol^{-2})$	(3 marks)

	8 45.	074480800000000000000000000000000000000	**********************
đ			***************
	(c)	State what would happen to;	
		(i) the value of Kc and equilibrium position if the pressure of the	system
		was reduced.	(1 mark)
			000000000000000000000000000000000000000
		(ii) the volume of ammonia, if nitrogen was constantly removed fr	om reaction
		mixture.	(½ mark)

			1
~, ~			

		Page 8	of 16
© UM1	TA Joint	Mocks 2023	

	(c)	$CH_3CH_2CH_2OH \xrightarrow{Conc. H_3PO_4} $	(3½ marks)
		***************************************	•••••••••••
		***************************************	•••••••••••

		***************************************	•••••
	(b)	$CH_3 - \bigcirc $	(3 marks)
		***************************************	••••••
	·	***************************************	••••••
		***************************************	***************************************
		***************************************	••••••
	(a)	$CH_3CH_2Br \xrightarrow{KOH/CH_3CH_2OH}$	(2½ marks)
11.		aplete the following reactions and write a mechanism.	
		***************************************	***************************************

		***************************************	***************************************
		***************************************	*********************
		***************************************	***********************

	(d)	Explain are	(2½ marks)
	(L)	Explain the effect of adding herium to the equilibrium mixture at	constant pressure

12.	Meth max	manoic acid, <i>HCOOH</i> and water are miscible in all proportions. They form a mum boiling point mixture containing 78% methanoic acid that boils at 108°C.				
	(a)	(i) Define the term maximum boiling point mixture.	(1 mark)			
			•••••••••••••••••••••••••••••••••••••••			
		(ii) Sketch a labelled boiling point – composition diagram for mix and methanoic acid. (boiling point of HCOOH=101°C)				
	(b)	Explain briefly why methanoic acid and water form a maximum boiling point				
		mixture.	(3 marks)			
		***************************************	••••••			
		***************************************	••••••••••••••••••••••••			

© UMT.	Page 9 of 16					

	(c) Describe what would happen when a mixture containing 40% methanoic		
		distilled.	(2 marks)

			•••••••••••••••••••••••••••••••••••••••

		***************************************	••••••••
13.	what	e a reagent that can be used to distinguish the following species, in each would be observed if the named reagent is separately reacted with each	ch case state member of
	the p	2-	(2 montes)
	(a)	cr_2o_7 and cro_4	(3 marks)
		•••••••••••••••••••••••••••••••••••••••	*************
		•••••••••••••••••••••••••••••••••••••••	
	<i>a</i> >	D. 31	
	(b)	Ba^{2+} and Ca^{2+}	(3 marks)
		***************************************	0.200200.000000000000000000000000000000

	(c)	OH and CH_2OH	(3 marks)

		,	

		***************************************	*******
. 27.4	1		

14.	The following half-cell reactions are given						
	Cu ²⁺ (aq) + 1	$2e \rightarrow \rightarrow Cu(s)$	$E^{\theta}/V + 0.34$			
	$I_2(aq)$	+ 2e -	$\rightarrow \rightarrow 2I^{-}(aq)$	+0.54			
	$H_2O_2(aq) + 2e + 2H^+(aq) \rightarrow 2H_2O_{(i)}$ +1.77						
	$Cl_2(g)$	+ 2e ·	\rightarrow 2Cl ⁻ (aq)	+1.36			
	(a)	(i)	Write the cell notation for the cell made up of the		nsisting of		
		•••••	iodide ions and acidified hydrogen peroxide.		(1½ marks)		

		(ii)	Write the overall equation for the reaction.		(1 mark)		
		•••••	***************************************	••••••			
		(iii)	Calculate the e.m.f of the cell and state whether the	e reaction is	feasible or		
			not.		(2½ marks)		
		••••••	***************************************				
	(b)	(i)	Will the iodide ions reduce copper (II) ions to copp	er solid? Gi	ve a reason		
			for your answer.		(1½ marks)		
		••••••		••••••••	••••••		
		••••••	,	•••••	••••••		
		••••••	***************************************	••••••••••	••••••		
		••••••		: 4:6-: 1 - 1	•••••		
		(ii)	Explain whether hydrochloric acid is suitable for ac	adirying nyd	rogen		
			peroxide				
		*******		••••••			
		*******		••••			
		••••••		***************************************	•••••		

© UMTA Joint Mocks 2023

Page 11 of 16

15.	(a)	Copper (II) carbonate occurs as a basic carbonate.	
4 .	(4)	Write equation for the reaction to show how this carbonate can be	oe prepared.
			(1½ marks)

			•••••
	(b)	Copper (II) carbonate was dissolved in warm nitric acid and to the	he resultant
	. ` ′ ›	solution, potassium iodide solution was added.	- Salvalle
		(i) State what was observed.	(14 manls)
		(4)	(½ mark)
	,	***************************************	389802929788999988888888888
		(ii) Write equation for the reaction that took place.	04999000000000000000000000000000000000
		(ii) Write equation for the reaction that took place.	(½mark)
	(c)	To the mixture from (h) shows and in this will be a like the same that t	300000000000000000000000000000000000000
	(0)	To the mixture from (b) above, sodium thiosulphate solution was (i) State what was observed.	added.
		(1) State what was observed.	(½ mark)
		***************************************	19900000950000000000000000
		(**)	1845534373838548654908694523
		(ii) Write equation for the reaction that took place.	(11/2 mark)
		••••••••••••••••••••••••••••••••••••••	180000000000000000000000000000000000000
	(d)	0.8g of copper ore was reacted with dilute sulphiric acid and the r diluted to 250cm ³ with distilled water. To 30cm ³ of this solution, expossing iodide was added The time.	avoor 0 2NA
		solution of sodium thiosulphate for complete reaction	n ³ of 0.05M
	• •	Determine the percentage of copper in the ore.	(3½ marks)
		***************************************	,
		***************************************	***********************
		The Land Company	••••••••••

		***************************************	24
UMT	A Joint N	10cks 2023	**************************************
		Page 12 c	of 16.
			11. 1. 47. 7

16.	(a)	For each of the following species, determine the oxidation state of (i) $MnO_{\overline{A}}$	manganese
			(1 mark)

		(ii) <i>MnO</i> ₄ ²	(1 mark)
		***************************************	•

	(b)	State what is observed and write equation for the reaction that occu (i) acidified hydrogen peroxide is added to potassium mangana	ırs when; te (VII) solution.
		Observation:	(2½ marks)
		***************************************	***************************************
		***************************************	••••••
		***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Equation:	
		***************************************	•••••••••
		***************************************	******************
		***************************************	******************************
		(ii) dilute sulphiric acid is added to a solution of potassium mang	;anate (VI)
		solution.	(2½ marks)
		Observation	
		***************************************	***********************

		Equation	
		***************************************	•••••••
		***************************************	••••••
<u> </u>		***************************************	,
UMTA J	oint Mo	Page 13 of 1	.6

CS CamScanner

excess sodium hydroxide solution when exposed to air.	
***************************************	*****
***************************************	******
***************************************	***************************************

17. 0.155g of an organic compound W when burnt in oxygen gave 0.22g or	f carbon dioxide
and 0.135g of water.	aroxide
(a) Determine the empirical formula of W.	(3½ marks)

(b) When vapourised at 127°C, 0.225g of W occurried 111 11 and at 7°C.	3008836863633538638*648666
o, o.220g of w occupied 111.11cm at /	60mmHg.
(i) Calculate the molecular mass of W.	(2½ marks)
***************************************	56500000000000000000000000000000000000
***************************************	*******************
	200200000000000000000000000000000000000
*****	***************
(ii) Determine the molecular formula of W.	(1½ marks)
***************************************	••••••••••
***************************************	•••••

© UMTA Joint Mocks 2023	

ethane -1, 2-dioic acid. Write the formula and IUPAC name of W. (1½ marks						

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	*****************				
			•••••••			
,						
•			4 V			

