EJERCICIOS¹

1. En la Figura 1 aparece la tabla de transiciones de un AFD.

δ	0	1
\rightarrow A	В	A
В	Α	C
C	D	В
*D	D	A
Е	D	F
F	G	Е
G	F	G
Н	G	D
·-	Figur	n 1

Figura 1.

Construir el AFD mínimo equivalente.

2. En la Figura 2 aparece la tabla de transiciones de un AFD.

δ	0	1
\rightarrow A	В	Е
В	С	F
*C	D	Н
D	Е	Н
Е	F	I
*F	G	В
G	Н	В
Н	I	C
*I	A	Е
	г.	^

Figura 2.

Construir el AFD mínimo equivalente.

¹ Ejercicios seleccionados de: Hopcroft, J.; Motwani, R. y Ullman, J. (2002). *Introducción a la Teoría de Autómatas, Lenguajes y Computación*. (2a ed.). Addison Wesley. Capítulos: 2.3.7, 2.5.6, 3.2.4 y 4.4.5.

Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Informática Ingeniería Civil en Informática Procesamiento de Lenguajes Formales

3. Convertir el siguiente AFN a AFD:

δ	0	1
$\rightarrow p$	{p, q}	{p}
q	{r}	{r}
r	{s}	Ø
*s	{s}	{s}

4. Convertir el siguiente AFN a AFD:

 δ	0	1
$\rightarrow p$	{q, s}	{q}
*q	{r}	{q, r}
r	{s}	{p}
*s	Ø	{p}

5. Sea el siguiente AFN-ε.

	δ	3	a	b	c
	→ p	Ø	{p}	{q}	{r}
-	q	{p}	{q}	{r}	Ø
	*r	{q}	{r}	Ø	{p}

Convertir el autómata en un AFD.

6. Sea el siguiente AFN-ε.

	δ	3	a	b	c
_	→ p	{q, r}	Ø	{q}	{r}
	q	Ø	{p}	{r}	{p, q}
	*r	Ø	Ø	Ø	Ø

Convertir el autómata en un AFD.

7. Convertir las siguientes expresiones regulares a AFN con transiciones ϵ .

- a) 01*
- b) (0+1)01
- c) $00(0+1)^*$
- 8. Eliminar las transiciones ε de los AFN- ε del ejercicio 7.

Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Informática Ingeniería Civil en Informática Procesamiento de Lenguajes Formales

9. Aquí tenemos la tabla de transición de un AFD:

δ	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
*q3	\mathbf{q}_3	q_2

Obtener una expresión regular para el lenguaje del autómata.

10. Aquí tenemos la tabla de transición de un AFD:

δ	0	1
\rightarrow q ₁	q_2	q_3
q_2	q_1	\mathbf{q}_3
*q ₃	q_2	q_1

Obtener una expresión regular para el lenguaje del autómata.