DSC40B: Theoretical Foundations of Data Science II

Lecture 10: *Graphs: basics and representations*

Instructor: Yusu Wang

News

Midterm 1 grades released

▶ Redemption of midterm- 1 will be in the final exam week

▶ Recap video with solutions/explanations will be posted soon.

Graphs: directed and undirected

Common data types

- \blacktriangleright A set of feature vectors in some feature space (e.g, R^d)
 - A collection of patients' record, each represented by a feature vector containing information such as name, age, health history etc.
 - Focus on attributes of individuals

Graph data:

- Focus on (pairwise) relations among individuals
- Social networks, co-authorship networks, knowledge graphs

Examples

Social networks

Moreno's sociogram of a 2nd grade class

Facebook friendship social graph

Examples

Biological networks

Protein-protein interaction networks

▶ Road networks

Tokyo subway map

What is a graph?

- ▶ On the high level, a graph G is a pair G = (V, E)
 - ▶ *V*: a set of graph nodes (or vertices)
 - ▶ $E \subset V \times V$: a set of graph edges
 - \blacktriangleright each edge $(a,b) \in E$ represents a certain relation between the pair of graph nodes $a,b \in V$
- Directed vs undirected graphs

Directed graphs

A directed graph (or digraph) G is a pair (V, E) where V is a finite set of nodes and E is a set of ordered pairs called (directed) edges.

- G = (V, E) where
 - $V = \{a, b, c, d, e, f\};$
 - $E = \{(a,b), (a,d), (b,c), (b,e), (c,e), (d,b), (e,a), (e,c), (e,d), (f,e)\}$

Remarks

- Note that each edge $(a, b) \in V \times V$ is an ordered pair
 - lacktriangleright meaning that there is an edge from a to b
- ▶ Hence edges $(a, b) \neq (b, a)$
 - e.g, Alex follows Elon Musk in twitter, so (Alex, Elon) is an edge in E. But Elon does not follow Alex, so (Elon, Alex) $\notin E$
 - Note that both (a, b) and (b, a) could be in the edge set
- There can also be self-loop: (a, a)
- Simple graph:
 - \blacktriangleright for any ordered pair, there can be at most one edge in E

Directed graphs

A undirected graph G is a pair (V, E) where V is a finite set of nodes and E is a set of unordered pairs called edges.

- ightharpoonup G = (V, E) where
 - $V = \{a, b, c, d, e, f\};$
 - $E = \{(a,b), (a,d), (a,e), (b,c), (b,d), (b,e), (c,e), (d,e), (e,f)\}$

Remarks

- ▶ An edge is a subset of nodes V with cardinality 2.
 - ▶ Hence the formal way to represent an edge is $\{a, b\}$
 - \blacktriangleright By convention however, we often still write it as (a, b).
- ▶ There is no order for each pair
 - Thus edge (a, b) = (b, a)
- Simple graphs:
 - There is no self-loops of the form (a, a)
 - ▶ There is at most one edge for each pair of nodes $\{a, b\}$

Summary

- Edge direction ?
 - directed graph: Yes
 - undirected graph: No
- Self-loop?
 - directed graph: Yes
 - undirected graph: No
- ▶ Opposite edges: (a, b) and (b, a)?
 - directed graph: Yes
 - undirected graph: No (they are the same edge)

Graphs: More notations

Node degree in undirected graph

- Given an undirected graph G = (V, E)
 - given an edge $e = (u, v) \in E$, we refer u, v as end-points of e
 - ightharpoonup we say that edge e is incident on node u if u is an end-point of e
- ▶ Given an undirected graph G = (V, E), the degree of a node $v \in V$ is
 - $ightharpoonup \deg(v) \coloneqq \text{number of edges incident on } v$

Example:

deg(e) = 5, deg(f) = 1

Observations

- Given a undirected graph G = (V, E) with n = |V|
 - ▶ $0 \le \deg(v) \le n 1$, for any node $v \in V$
 - $\sum_{v \in V} \deg(v) = 2|E|$
- Given a undirected graph G = (V, E) with n = |V|
 - The maximum number of edges is $\frac{n(n-1)}{2}$
 - This also implies that $|E| = O(n^2)$
- A undirected graph G = (V, E) is a complete graph iff
 - \triangleright There is one edge between every pair of distinct nodes in V
 - i.e, $|E| = \frac{n(n-1)}{2}$

Node degree in directed graph

- ▶ Given a directed graph G = (V, E), the in-degree of a node $v \in V$ is
 - indeg(v) := number of edges entering v
- ▶ Given a directed graph G = (V, E), the out-degree of a node $v \in V$ is
 - outdeg(v) := number of edges leaving v
- ▶ Sometimes we use degree to denote the sum
 - ightharpoonup deg(v) = indeg(v) + outdeg(v)

Example:

- indeg(e) = 3, outdeg(e) = 3
- \rightarrow indeg(f) = 0, outdeg(f) = 1

Observations

- Given a directed graph G = (V, E) with n = |V|
 - ▶ $0 \le \operatorname{indeg}(v)$, $\operatorname{outdeg}(v) \le n$, for any node $v \in V$
 - $\sum_{v \in V} \operatorname{indeg}(v) = \sum_{v \in V} \operatorname{outdeg}(v) = |E|$

- Given a directed graph G = (V, E) with n = |V|
 - The maximum number of edges is n^2
 - This also implies that $|E| = O(n^2)$

More notations

- Given a undirected graph G = (V, E)
 - the set of neighbors of $v \in V$ is the set of all nodes in V that share an edge with v
- Given a directed graph G = (V, E)
 - by the set of successors of $v \in V$ is the set of all nodes at the end of an edge leaving v
 - the set of predecessors of $v \in V$ is the set of all nodes at the start of an edge entering v
- By convention, for a directed graph
 - the set of neighbors of a node often refers to the set of successors of this node.

Paths, reachability and connectivity

Example

Can we fly from Columbus, Ohio to Denver, Colorado?

Paths

A path from u to u' in a (directed or undirected) graph G = (V, E) is a sequence of one or more nodes $u = v_0, v_1, ..., v_k = u'$ such that there is an edge between each consecutive pair of nodes in the sequence.

Paths

- ▶ The length of a path = # of nodes -1 = # of edges in a path
 - ▶ The length of a path could be 0
- A path is simple if it visits each node only once
 - In this class, we usually consider only simple paths.
- A cycle is a path where the first and last nodes are the same

Reachability

lacktriangle Node u is reachable from node v if there is a path from v to u

- In undirected graph,
 - If u is reachable from v, then v is reachable from u
- In a directed graph
 - v is reachable from v does not imply that v is necessarily reachable from v
 - Reachability is not symmetric for directed graphs!

Connectivity

- ▶ This concept is for undirected graphs.
- A undirected graph is connected if every node is reachable from every other node. Otherwise, it is disconnected.

A graph is disconnected means that there exists at least one pair of nodes u, v such that u is not reachable from v.

Connected components

- A connected component of a graph G = (V, E) is a maximally-connected subset of nodes of V.
- ▶ That is, given a undirected graph G = (V, E), a connected component is a set $C \subseteq V$ such that
 - ▶ any pairs $u, v \in C$ are reachable from one another; and
 - if $u \in C$ and $z \notin C$, then u and z are not reachable from one another.
- If a undirected graph is connected, then it has only one connected component.
- ▶ For directed graphs, there is a concept called strongly connected components.

Representations of graphs

Representation of graphs

- ▶ How do we represent a graph in the computer
 - e.g, to be used as input to an algorithm
- Three representations
 - Adjacency matrix
 - Adjacency list
 - Dictionary set

Adjacency matrix representation

- Assume $V = \{v_0, v_1, ..., v_{n-1}\}$ with n = |V|
- \blacktriangleright Adjacency matrix of a graph is a $n \times n$ matrix adj

$$\mathbf{adj}[i,j] = \begin{cases} 1, & (v_i, v_j) \in E \\ 0, & otherwise \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

Adjacency matrix representation

- Assume $V = \{v_0, v_1, ..., v_{n-1}\}$ with n = |V|
- Adjacency matrix of a graph is a $n \times n$ matrix adj

$$\mathbf{adj}[i,j] = \begin{cases} 1, & (v_i, v_j) \in E \\ 0, & otherwise \end{cases}$$

	1	2	3	4
1	0	1	0	0
2	0	0	0	1
3	1	1	0	0
4	0	0	1	0 1 0

Observation:

- If the graph is undirected, then this matrix is a symmetric matrix
- If the graph is directed, then the adjacency matrix is not necessarily symmetric

Complexity

- Size of Adjacency matrix
 - $\Theta(|V|^2)$
- ▶ Time complexity of operations
 - Edge query:
 - ▶ is the edge $(v_i, v_i) \in E$?
 - Degree query:
 - what is the degree of v_i (in undirected graph), or what is the outdegree of v_i (in directed graph)

operation	code	time
• • • •	adj[i,j] == 1 np.sum(adj[i,:])	Θ(1) Θ(V)

Remarks

Pros:

- Support very efficient edge queries
- Simple and easy to use
 - \blacktriangleright only need to allocate a $|V| \times |V|$ (Numpy) array
- Easy to manipulate via linear algebra
 - ightharpoonup e.g, (i,j)-th entry of A^2 gives number of hops of length 2 between v_i and v_j

Cons:

- ▶ Take $\Theta(|V|^2)$ no matter what the graph looks like
- In real-life, graphs are often sparse, with far fewer number of edges
 - e.g, facebook has 2.7 billion users
 - $|V|^2 = (2.7 \times 10^9)^2 \approx 7.3 \times 10^{18} \text{ bits} \approx 11862 \text{ years of video at } 1080 \text{p}$ $\approx 109 \text{ copies of the internet as it was in } 2000$

Adjacency list representation

- ▶ Adjacency matrix allocates a bit for each $|V|^2$ potential edge
 - What if we only store the edges in the graph?
- Adjacency lists
 - \triangleright Each vertex u has a list, recording its neighbors
 - ▶ i.e., all v's such that $(u, v) \in E$
 - ► An array of |V| lists
 - $ightharpoonup adj[i].size = size of AdjList for node <math>v_i$
 - adj[i] = adjacency list for node v_i

Size complexity

- For each vertex v_i , its adjacency list adj[i] has size =
 - $ightharpoonup deg(v_i)$ if the graph is undirected
 - ightharpoonup outdeg(v_i) if the graph is directed
- Hence each edge will be stored
 - twice in the adjacency list if the graph is undirected
 - once if the graph is directed
- ▶ Total size:
 - $\Theta(|V| + |E|)$
 - where $\Theta(|V|)$ for the outer array, and $\Theta(|E|)$ for the total lengths of inner lists .

Time complexity

- Time complexity of operations
 - lacktriangle Accessing the list of neighbors for a specific vertex v_i
 - \blacktriangleright takes $\Theta(1)$ time, as just return the list adj[i]
 - ▶ edge query: is edge $(v_i, v_j) \in E$?
 - \blacktriangleright takes $\Theta(length\ of\ adj[i]) = \Theta(\deg(v_i)) = O(|V|)$
 - □ (deg should be out-deg for directed graphs)
 - degree query: what is the degree of v_i (in undirected graph), or what is the outdegree of v_i (in directed graph)
 - \blacktriangleright takes $\Theta(1)$ time
 - ▶ However, for directed graph, checking indegree takes O(|V| + |E|) time!

Summary of time complexity:

Note: below "degree" refers to the "degree" of a node for an undirected graph, but "out-degree" of a node for a directed graph!

operation	code	time
edge query degree(i)	j in adj[i] len(adj[i])	, • , , ,

Remarks

Pros:

- Optimal space complexity
 - $\Theta(|V| + |E|)$ is the least possible (asymptotically), thus space complexity is optimal
- ▶ Fast for (out-)degree queries.

▶ Cons:

- Slow for edge queries
- No linear algebra operations such as A^2

Adjacency matrix:

Fast edge queries, potentially large space

Adjacency list:

Slow edge queries, but efficient in space

Can we take the advantage of both?

Dictionary-set representation

Idea:

- why not changing the inner list to a Hash table to store the list of neighbors (i.e, adjacency list) of each node
 - ▶ E.g, using the Set data structure in python.
- this will make membership query (which is essentially what edge query is about) efficient!
 - to check whether (v_i, v_j) is in E, we just need to check whether v_j is in the adjacency list of v_i , which is a membership query in the adj[i]
- We further change the outer array to also a Hash table
 - e. g, using the dict data structure in python
 - this also allows us to map non-integer indexed nodes

Dictionary-of-set implementation

Dictionary-of-set implementation

- Using an outer hash table (dict) to represent all non-empty adjacency list for all nodes
- For each node with non-zero neighbors, using a hash table (set) to store all its neighbors

Complexity

Space complexity

$$\Theta(|V| + |E|)$$

Time complexity (in expectation)

operation	code	time
edge query	j in adj[i]	Θ(1) average
degree(i)	len(adj[i])	Θ(1) average

However,

note that time complexity is expected time, and also there will be overhead of using Hash tables.

Dictionary-of-set implementation

- ▶ Install with pip install dsc40graph
 - Or you can also download it and put in the same directory of you code. See Docs below
- Import with:
 - import dsc40graph
- Docs:
 - https://eldridgejm.github.io/dsc40graph/
- Source code:
 - https://github.com/eldridgejm/dsc40graph
- Will be used in HW coding problems

FIN

