Outline

- Motivation and Prior Arts
- Proposed Receiver Architecture
- Circuit Implementation
- Measurement Results
- Conclusion

Outline

- Motivation and Prior Arts
- Proposed Receiver Architecture
- Circuit Implementation
- Measurement Results
- Conclusion

Motivation – 1

 Applications of THz imaging Biomedical Diagnosis

[T. Bowman, J. of Biomedical Optics., 2018]

Security

[K. Eaton, Fast Company., 2009]

Defect Inspection

- CMOS THz imaging system
 - Solutions for low-cost, high yield, and higher integration density

Motivation – 2

Typical imaging system

- Requirements for CMOS THz receiver

 - Low-power implementation for portable applications
 - High integration level for low-cost and small form factors

Prior Arts

Heterodyne RX architecture

High power consumption for LO stabilization

Heterodyne RX with

Conventional PLL Mixer

IF-Amp [C. Jiang, JSSC., 2016]

*t*vco VCO

Heterodyne RX with

Frequency Stabilization Feedback Loop

Operating divider chain or VCO buffer @ f_{VCO} .

High power/area consumption

High design difficulty

Outline

- Motivation and Prior Arts
- Proposed Receiver Architecture
- Circuit Implementation
- Measurement Results
- Conclusion

Proposed Receiver Architecture

Proposed Dual-Locking Receiver-based FLL (DL-RBFLL)

- Eliminating divider chain & VCO buffer
 - Low power/area consumption 🙂
 - Low design difficulty

- Dual-locking loop implementation
 - Widening acquisition range without increasing f_{REF}

Proposed Receiver Architecture

Proposed Dual-Locking Receiver-based FLL (DL-RBFLL)

- Eliminating divider chain & VCO buffer
 - Low power/area consumption
 - Low design difficulty

- Dual-locking loop implementation
 - Widening acquisition range without increasing f_{REF}

Block Diagram of Proposed Receiver

Block Diagram of Proposed Receiver

Block Diagram of Proposed Receiver

Block Diagram of Proposed Receiver – CL

Frequency Plan – CL

 f_{RF} = 490.3 GHz, Desired f_{LO} = 245 GHz, f_{IF} = f_{RF} -2* f_{LO} = 0.3 GHz

<u>Initial</u>

CL loop ON

(A) RF IN

(B) VCO OUT

(C) IF-LNA OUT

(D) IF-PGA OUT

Block Diagram of Proposed Receiver – FL

Frequency Plan – FL

 $f_{\rm RF}$ = 490.3 GHz, Desired $f_{\rm LO}$ = 245 GHz, $f_{\rm IF}$ = $f_{\rm RF}$ -2* $f_{\rm LO}$ = 0.3 GHz FL loop ON

N-path filter ON

- (A) RF IN
- (B) VCO OUT
- © IF-LNA OUT

(D) IF-PGA OUT

Outline

- Motivation and Prior Arts
- Proposed Receiver Architecture
- Circuit Implementation
- Measurement Results
- Conclusion

THz Receiver Front-End – Mixer

2nd-order sub-harmonic mixer (SHM) structure

Equivalent circuit for RF

Equivalent circuit for LO

[K. Choi, IEEE MWCL., 2019]

THz Receiver Front-End – VCO

2nd-harmonic push-push VCO

Output power and DC-to-RF efficiency (Sim.)

Fine-Locking Loop

Block diagram of FL loop [7]

Rotational frequency detector (RFD)

$$-f_{RFF} < f_{IF}/2$$
: UP

$$-f_{RFF} > f_{IF}/2$$
: DN

- Pull in range = \pm 50%

•
$$f_{IF} = f_{RF} - 2 * f_{IO}$$

Outline

- Motivation and Prior Arts
- Proposed Receiver Architecture
- Circuit Implementation
- Measurement Results
- Conclusion

Chip Photo & Measurement Setup

Chip Photo

Measurement setup

• TSMC 65nm CMOS process

- 1.2 V supply
- Chip size : $1705 \times 960 \, \mu m^2$

Power Breakdown

Coarse Locking Loop

Fine Locking Loop

Total $P_{DC} = 31.9 \text{ mW}$

Total P_{DC} = 31.9 mW

Measured Output Spectrum

Free-running LO Coarse Locking ON Fine Locking ON

- The spectrums are measured at the IF-Buffer output.
 - Coarse locking loop ON: The IF frequency changes 1.85 → 0.24 GHz
 - Fine locking loop ON: The IF frequency changes 0.24 → 0.3 GHz

Measured Noise Floor

Noise bandwidth is reduced to 17 MHz when N-path filter is ON.

MDS/NEP Measurement Methods

- Minimum discernible (detectable) signal (MDS) for a 1 kHz noise BW.
 - MDS [dBm] = 174 [dBm/Hz] + NF [dB] + 10log(1 kHz).
 - NF [dB] = 174 [dBm/Hz] Conversion Gain [dB] Output noise floor [dBm/Hz].
 - Conversion gain [dB] = Output 300 MHz IF power [dBm] Input power [dBm]

- Noise equivalent power (NEP) for a 1 MHz on/off modulation.
 - NEP [W/Hz^{0.5}]= (Output noise voltage [V²/Hz])^{0.5} / Responsivity [V/W].
 - Responsivity [V/W] = Output DC voltage [V] / Input power [W].

Input power is estimated based on the Friis transmission equation.

Measured MDS

- Changing LO frequency by controlling V_D and V_G of the VCO
- Minimum MDS = -101.3 dBm

Measured NEP

• **Minimum NEP** is improved from 0.63 to **0.12 pW/Hz^{0.5}** due to the adoption of *N*-path filter.

Performance Comparison Table

		-		-	
References	JSSC'16 [4]	TTST'17 [1]	JSSC'19 [5]	VSLI'19 [2]	This work
Process	130 nm SiGe	130 nm SiGe	65 nm CMOS	65 nm CMOS	65 nm CMOS
RF freq. (GHz)	320	300	240	426	490
Mixer topology	2 nd SHM	Fund.	Fund.	Fund.	2 nd SHM
LO freq. (GHz)	160	300	240	426	245
LO type	PLL	Free-running	PLL	Injection-locking (@ 142 GHz)	FLL
MDS (dBm)	-71.5	N/A	-102.4	-86.6*	-101.3
NEP (pW/Hz ^{0.5})	N/A	3.9	N/A	N/A	0.12
Integration level	Fully-integrated	Fully-integrated	No IF-stage	No IF-stage, External 142 GHz source	Fully-integrated
Power (mW)	5.2 (Mixer) 75.5 (PLL)	21 (Mixer+VCO+ IF-stage)	21.6 (Mixer+VCO) 288 (PLL)	52 (Mixer+VCO)	32 (Mixer+FLL+ IF-stage)

^{*} Estimated SSB NF from measured DSB NF + 3 dB

Conclusion

- A fully-integrated 490 GHz CMOS receiver adopting a DL-RBFLL is presented.
- The proposed DL-RBFLL allows to eliminate the power-hungry divider and buffer, thus the low-power implementation is achieved.
- The **DL** implementation extends acquisition range **six times** without increasing f_{RFF} .
- The proposed receiver achieves;
 - power consumption of 32 mW from a 1.2 V supply.
 - MDS of -101.3 dBm for a 1 kHz noise bandwidth.
 - NEP of 0.12 pW/Hz^{0.5} for a 1 MHz lock-in amplifier on/off modulation.