Problema 1:

Fie limbajul:

$$L = \{a^n b^n c^n \mid n \in N\}$$

Este independent de context?

Rezolvare:

- Facem observatia ca: $\mathbf{z} \in \mathbf{L}$ ddaca:
 - a. ordinea simb. este data de regulile:
 - i. simb. a apar inaintea simb. b si c
 - ii. simb. **b** apar inaintea simb. **c**
 - b. nr. simb. a este egal cu nr. simb. b este egal cu nr. simb. c (si notam: $nr_a(\mathbf{z}) = nr_b(\mathbf{z}) = nr_c(\mathbf{z})$)

Vom dem. ca nu este independent de context, prin reducere la absurd, folosind lema de pompare pentru limbaje independente de context.

• PP. ca este independent de context.

Atunci au loc conditiile din lema de pompare

De aici rezulta ca $\exists p \in \mathbb{N}^*$ astfel incat:

 \forall **z** \in L care satisfice

- |z|>=p
- \exists o descompunere $\mathbf{z} = \mathbf{u}\mathbf{v}\mathbf{w}\mathbf{x}\mathbf{v}$ astfel incat: $\mathbf{u}\mathbf{v}^{i}\mathbf{w}\mathbf{x}^{i}\mathbf{v} \in \mathbf{L}, \forall i \in \mathbf{N}$ si |vx| >= 1si |vwx| <= p

Dem., Versiunea 1:

Alegem \mathbf{z} cu $|\mathbf{z}| > = \mathbf{p}$ (satisface cond. de mai sus)

- $\exists \mathbf{n} \text{ a.i. } |a^n b^n c^n| >= \mathbf{p} ; z \in L => z = a^n b^n c^n \text{ si } |\mathbf{z}| >= \mathbf{p}$
- z = uvwxv descompunerea din lema de pompare ne aflam in unul din urmatoarele cazuri generale:
 - 1. cel putin unul dintre v si x contin cel putin 2 simboluri (dintre a,b,c) diferite: (cazul 1)
 - 2. v si x contin un singur simbol de oricate ori (o sau mai multe) dar acelasi simbol (sau a, sau b, sau c)

dar v si x nu pot fi ambele vide

(cazul 2)

(cazul 3)

3. v si x contin un simbol (a, sau b, sau c) de oricate ori, dar nu pot fi vide,

dar v si x nu contin acelasi simbol

cazul 1: (vezi cazurile posibile pentru cazul 1; aleg unul dintre ele si dem. pt. el; pentru celelalte demonstratia se face analog)

fie:
$$v = a^{k1}b^{k2}$$
, $k1>0$, $k2>0$ (rel.1) (oricare x) fie i =2

cf. Lemei de pompare:
$$uv^2wx^2y \in L$$
 adica: $uv^2wx^2y = u \ a^{k1} \ \underline{b^{k2} \ a^{k1}} \ b^{k2} \ wx^2y \in L$, atunci cand $k1{>}0$ si $k2{>}0$ (cf. rel.1) ar insemna ca simb. \underline{b} pot sa apara inaintea simb. \underline{a} ceea ce nu e adevarat pentru cuvintele din L (observatia (a.)(i.)) => contradictie

Se poate dem. in mod *analog* ca:

- pentru oricare doua (sau trei) simboluri distincte ar fi format v, v^2 nu va mai pastra ordinea simbolurilor care este necesara pt.ca $uv^2wx^2y \in L$
 - ... => <u>contradictie</u>
- pentru oricare doua (sau trei) simboluri distincte ar fi format x, x^2 nu va mai pastra ordinea simbolurilor care este necesara pt.ca $uv^2wx^2y \in L$

... => contradictie

<u>cazul 2</u>: (dintre cazurile posibile pentru cazul 2 aleg unul dintre ele si dem. pt. el)

Se dem. analog pt. orice alte combinatii posibile atunci cand si \mathbf{y} si \mathbf{u} contin un acelasi simbol (\mathbf{a} , sau \mathbf{b} , sau \mathbf{c}), ca in $\mathbf{z}' = \mathbf{u}\mathbf{v}^2\mathbf{w}\mathbf{x}^2\mathbf{y}$ nu are loc relatia $\mathbf{nr_a}(\mathbf{z}') = \mathbf{nr_b}(\mathbf{z}') = \mathbf{nr_c}(\mathbf{z}')$ => contradictie

cazul 3: (dintre cazurile posibile pentru cazul 3 aleg unul dintre ele si dem. pt. el)

fie:
$$v = a^{k1}$$
, $k1>0$ (rel.4)
 $x = b^{k2}$, $k2>0$ (rel.5)
atunci: $u = a^{k3}$, $k3>=0$

$$\begin{array}{c} y=b^{k4}c^n,\,k4>=&0\\ w=a^{n-k1-k3}b^{n-k2-k4}\,,\,n-k1-k2>=&0;\,n-k2-k4>=&0\\ \end{array}$$
 fie i =2; atunci uv^2wx^2y \in L \\ uv^2wx^2y=a^{k3}\ a^{2^*k1}\ a^{n-k1-k2}b^{n-k2-k4}\ b^{2^*k2}\ b^{k4}c^n\\ z'=uv^2wx^2y\in L=>nr_a(z')=nr_b(z')=nr_c(z')\\ k3+2^*k1+n-k1-k3=n-k2-k4+2^*k2+k4=n\\ =>n+k1=n+k2=n\\ =>k1=&0\ contrad\ cu\ (rel.4)\\ (=>k2=&0,\ contrad.\ cu\ (rel.5)) \end{array}

Se dem. analog pt. orice alte combinatii posibile atunci cand si v si x contin cate un simbol (a, sau b, sau c), dar nu acelasi ca in z'= uv^2wx^2y nu are loc relatia $nr_a(z')=nr_b(z')=nr_c(z')$

=> contradictie

cazurile posibile pt. cazul 1

 $z = a^n b^n c^n$, z = uvwxy

cel putin unul dintre v si x contin cel putin 2 simboluri (dintre a,b,c) diferite;

 $v=a^{\kappa 1}b^{\kappa 2} \qquad , \ k1>0, \ k2>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad k3<0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0, \ k2>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3} \qquad , \ k1>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3}c^{k3} \qquad , \ k1>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3}c^{k3}c^{k3}c^{k3} \qquad , \ k1>0 \qquad \text{sinu specificam ce poate contine x} \\ v=a^{k1}b^{k2}c^{k3$, k1>0, k2>0, k3>0 si nu specificam ce poate contine x

 $v = b^{k2} c^{k3}$, k2>0, k3>0 si nu specificam ce poate contine x

daca v contine un singur acelasi simbol, ne situam in cazul 1 daca:

 $x = a^{k1}b^{k2}$, k1>0, k2>0

 $x = a^{k1}b^{k2}c^{k3}$ $x = b^{k2}c^{k3}$, k1>0, k2>0, k3>0

, k2>0, k3>0

analog se face dem. pt. fiecare dintre cazurile de mai sus (ajunge la o contradictie)

Exercitiu:

descrieti cazurile posibile pt. cazul 2 si cazul 3

Dem., Versiunea 2 (scurta 😊):

Alegem \mathbf{z} cu $|\mathbf{z}| >= \mathbf{p}$ (satisface cond. de mai sus) $z = a^p b^p c^p$

- => |z|>=p
- z = uvwxy descompunerea din lema de pompare
- astfel incat: $\mathbf{u}\mathbf{v}^{\mathbf{i}}\mathbf{w}\mathbf{x}^{\mathbf{i}}\mathbf{y} \in \mathbf{L}, \forall \mathbf{i} \in \mathbf{N}$ $\mathbf{s}\mathbf{i} \ |\mathbf{v}\mathbf{x}| > = \mathbf{1}$ $\mathbf{s}\mathbf{i} \ |\mathbf{v}\mathbf{w}\mathbf{x}| < = \mathbf{p}$

Pentru ca |**vwx**|<=**p**: secventa **vwx** contine maxim 2 simboluri dintre a, b,c. Astfel, in secventa **uv**ⁱ**wx**ⁱ**y** exista cel putin un simbol care nu este "pompat" si cel putin unul care este "pompat"; astfel se pierde egalitatea dintre numarul de aparitii ale celor doua simboluri.