Assignment-04°

Amircum Nahin

ID: 23201416

Sec: 06

Course: CSE330

Semesten: Summer 2025

Date: 13/08/2025

Answer to the gues. no- 01

@

given function,

$$f(x) = x^3 - x^2 - 4x + 4$$

the function has three moots and one most is $n_*=1$. So, (n-1) is a factor of f(n). Hence, f(n) is divisible by (n-1).

So, the remaining two roots of the function f(x) over +2 and -2. (Ans.)

We have,

Now, we have to construct two fixed point functions g(x) such that,

$$f(x) = 0$$

firestly,

$$=) \chi^3 \chi^2 - 4\chi = -4$$

$$=) \quad \chi \left(\chi^2 - \chi - Y \right) = -Y$$

$$\Rightarrow \chi = \frac{-4}{\chi - \chi - 4} = g_1(\chi)$$

$$g_1(x) = \frac{-4}{x^2 - x - 4}$$

again,

$$\Rightarrow \chi^2 = \chi^3 - 4\chi + \Upsilon$$

=) n = \nn-4n+4 [using only non-negative]

$$g_2(x) = \sqrt{x^3 - 4x + 4}$$

$$g_i(x) = \frac{-y}{x^2 - x - y}$$

$$g_2(x) = \sqrt{x^3 - 4x + 4}$$
 (Ams)

$$g_i(x) = \frac{-4}{x^2 - x - 4}$$

$$g_2(x) = \sqrt{x^3 - 4x + 4}$$

we have,
$$x_* = 1, -2, 2$$
 for $f(x) = x^2 - x^2 - 4x + 4$.

Now, to know the convergence rate,

$$\beta = \left| \frac{dg(n)}{dn} \right|_{x=x_*}$$

$$\beta = \left| \frac{d}{dx} g_i(x) \right| x = 1, -2, 2$$

$$\beta = \left| \frac{d}{dx} \left(\frac{-4}{x^{-} x^{-} y^{-} y} \right) \right|_{x=1,-2,2}$$

$$\Rightarrow \lambda = \left| (-4)^{x} \frac{-1(2x-1)}{(x^{2}-x-4)^{2}} \right|_{x=1,-2,2}$$

=)
$$\beta = \frac{-4(2x-1)}{(x-x-4)^{2}}$$
 $\chi = 1,-2,2$

Now, for nx =1,

$$\lambda = \left| g_{1}(\chi_{*}) \right| = \left| g_{1}(1) \right| = \left| \frac{4(2\cdot 1 - 1)}{(1^{2} - 1 - 4)^{2}} \right| = \frac{1}{4} = 0.25$$

So, this is linearly converging.

$$\lambda = \left| \frac{9}{1}(x_{+}) \right| = \left| \frac{9}{1}(-2) \right| = \left| \frac{4}{3}(-2)^{2} - (-2)^{-1} \right| = \left| -5 \right| = 5$$

this mont is diverging.

for
$$\chi_* = 2$$
,

$$A = |g'(2)| = |g'(2)| = \left| \frac{4(2\cdot 2-1)}{(2^2-2-1)^2} \right| = 3$$

:. this room is diverging.

Therefore, $g_1(x)$ converges to x=1 and the convergence rate, $\beta=0.25$.

Again, for 92(x)

$$\lambda = \left| \frac{d}{dn} \left(g_2(n) \right) \right|_{\mathcal{H}_{q} = 1, -2, 2}$$

$$\Rightarrow \lambda = \left| \frac{d}{dn} \left(\sqrt{n^3 - 4n + 4} \right) \right|_{n_{\#}} = 1, -2, 2$$

$$\frac{1\times(3x^{2}-4)}{2\sqrt{x^{3}-4x+4}} \left| x_{4}=1,-2,2 \right|$$

$$\Rightarrow \lambda = \left| \frac{3n^2 - 4}{2\sqrt{n^2 + 1}} \right|_{\chi_{+} = 1, -2, 2}$$

Now, for Xx = 1,

$$\lambda = \left| g_2'(x_i) \right| = \left| g_2'(1) \right| = \left| \frac{3 \cdot 1^2 - 4}{2\sqrt{1^3 - 4 \cdot 1 + 4}} \right| = \left| -\frac{1}{2} \right| = 0.5$$

so, this most is linearly converging.

$$\lambda = \left| 9_2'(\gamma_4) \right| = \left| 9_2'(-2) \right| = \left| \frac{3 \cdot (-2)^2 - 4}{2\sqrt{(-2)^2 + 4(-2) + 4}} \right| = 2$$

this is diverging.

$$\lambda = \left| g_2'(x_4) \right| = \left| g_2'(z) \right| = \left| \frac{3 \cdot 2^2 - 4}{2 \sqrt{2^3 - 4.2 + 4}} \right| = 2$$

this is diverging.

finally, 92(x) converges to 24=1 with convergence

(Ans.)

Ans. to the que. no-02

given function,

$$f(x) = x^3 - x + \sin(x)$$

and,
$$N_0 = 1.5$$
 , $S = 10^{-5}$

Now, to find the superclinear fixed point function g(n), we can use Newton's method.

In this method.

$$g(x) = \pi - \frac{f(x)}{f'(x)}$$

$$= g(x) = \pi - \frac{\chi^3 - \chi + \sin(x)}{\frac{d}{dx}(\chi^2 - \chi + \sin(\chi))}$$

$$g(x) = \chi - \frac{x^3 - x + \sin x}{3x^2 - 1 + \cos x}$$

Now, let's check the critical value of the function f(0), so,

$$f'(x) = 0$$

$$\Rightarrow \frac{d}{d(x)}(x^2-x+\sin x)=0$$

$$\therefore \chi = 0$$

Now, let's check two successive iteration starting with $n_0 = 1.5$ to n_1 and see if the critical value lies between the iterations.

$$\chi_1 = g(\chi_0) = g(1.5) = 1.5 - \frac{(1.5)^3 - 1.5 + \sin 1.5}{3(1.5)^2 - 1 + \cos (1.5)}$$

 $\Rightarrow \chi_1 = 1.00651$

$$\mathcal{H}_{2} = g(\mathcal{H}_{1}) = g(1.00651) = 1.00651 - \frac{(1.00651)^{3} - 1.00651 + Sin(1.0065)}{3(1.00651)^{2} + 1.00651}$$

$$=)$$
 $\chi_2 = 0.673131$

So, critical value is not in between n_1 and n_2 .

Now, let's proceed with the Newton's method to find the root, given that $n_0 = 1.5$.

K	XK	J(NK)	Is f(Mx) < 8 = 10-5?
0	Xo = 1.5	2.87249	No
1	$x_1 = g(x_0)$ =) $x_1 = 1.00651$	0.858118	No
2	$ \chi_2 = 9(\chi_1) $ $ = \chi_2 = 0.673129 $	0.255303	No

3	713 = 9(x2) ⇒ 713 = 0.449411	0.0757917	No
4	2y = 9(23) $= 24 = 0.299806$	0.0224765	No
5	715 = 9 (714) => 715 = 0.199930	6.66233×10 ⁻³	No
6	$\chi_6 = 9(\chi_5)$ $\Rightarrow \chi_6 = 0.133305$	1.9744×10-3	No
7	$ \chi_7 = g(\chi_7) $ => $\chi_7 = 0.088875$	5.85049×10-4	No
8	218 = 9(214) $= 218 = 0.0592516$	1.73354×104	No
9	70= 9(78) =) 2g=0.0395015	5.13649×10-5	No
10	710 = 9(Ng) => N10 = 0.0263345	1.52194410-5	No
11		4.50948710-6	Yes

So, $n_1 = 0.0175564$ is our root within the bound 10^{-5} and 11 iterations are needed to find the root. (Ans.)