บทที่ 4

ผลการดำเนินงาน

สำหรับผลการดำเนินงานการพัฒนาระบบรู้จำท่าทางภาษามือไทยด้วยโครงข่ายประสาท เทียมแบบวนกลับ แบ่งออกได้เป็น 3 ส่วน ได้แก่

- 4.1 ผลการเตรียมข้อมูล
- 4.2 ผลการฝึกฝนโมเดล
- 4.3 ผลการวัดประสิทธิภาพโมเดล
- 4.4 ผลการเปรียบเทียบประสิทธิภาพโมเดล
- 4.5 ผลการทดสอบโมเดล

4.1 ผลการเตรียมข้อมูล

4.1.1 การหาข้อมูลภาษามือไทย

ในการรวบรวมข้อมูล สำหรับการสร้าง TSL10 (dataset ภาษามือไทย 10 ท่า) ผู้วิจัยต้องการวิดีโอท่าภาษามือที่ใช้ในชีวิตประจำวันของผู้พิการทางการได้ยินและการสื่อความหมาย เป็นจำนวน 10 คำ ผู้วิจัยได้มีการออกหนังสือขอความอนุเคราะห์จากศูนย์บริการสนับสนุนการ นักศึกษาพิการระดับอุดมศึกษา (DSS) ประจำมหาวิทยาลัยราชภัฏสกลนครเพื่อเก็บข้อมูลสำหรับการ เทรนโมเดลสำหรับการรู้จำภาษามือไทยจากทั้งผู้เชี่ยวภาษามือและผู้พิการที่ใช้ภาษามือเป็นหลักใน การสื่อสาร

ภาพที่ 4.1 ตัวอย่างภาษามือไทย 'สวัสดี' จากผู้เชี่ยวชาญภาษามือไทย

4.1.2 การสกัดลักษณะเด่นของข้อมูล

ภาษามือนั้นขึ้นอยู่กับการใช้มือและท่าทาง การนำวิดีโอที่เป็นภาษามือมาใช้ในการ เทรนโมเดลนั้นจึงเป็นเรื่องยาก ผู้วิจัยจึงได้ใช้เครื่องมือ MediaPipe ที่เป็น Framework มาใช้ในการ แก้ปัญหา ซึ่งวิธีการคือการใช้ MediaPipe ในการสร้าง Key points ขึ้นตามจุดต่าง ๆ ของร่างกาย เป็นค่า มิติ X, Y, Z ของหน้า, มือและท่าทางรูปภาพที่ 4.2

ภาพที่ 4.2 การใช้ MediaPipe ในการจำลอง Key points

4.1.3 การเตรียมไฟล์สำหรับเทรนโมเดล

เมื่อสามารถสร้าง Key points เสร็จขั้นตอนต่อไปคือการนำผลของค่า Key points ของแต่ละจุดของร่างกายเขียนเป็น .npy ไฟล์ ซึ่งมีขั้นตอนดังนี้

- 1. สร้างโฟลเดอร์สำหรับเก็บ Datasets
- 2. ในโฟลเดอร์ Datasets มี โฟลเดอร์ที่เป็นชื่อท่าภาษามือ ดังภาพที่ 4.3
- 3. ในโฟลเดอร์ที่เป็นชื่อท่าภาษามือจะมีโฟลเดอร์สำหรับเก็บวิดีโอท่าภาษามือ 85 วิดีโอ โดยแยกเป็น โฟลเดอร์ละ 1 วิดีโอ ดังภาพที่ 4.4
- 4. ในโฟลเดอร์เก็บวิดีโอท่าภาษามือจะมีไฟล์ .npy 30 ไฟล์ ซึ่ง 1 ไฟล์ จะเก็บค่าที่ได้จากการสกัด Key points จาก Mediapipe X, Y, Z ใน 1 เฟรม ดังภาพที่ 4.5

ภาพที่ 4.3 โฟลเดอร์ชื่อท่าภาษามือ

ภาพที่ 4.4 โฟลเดอร์ 60 โฟลเดอร์สำหรับเก็บ .npy ไฟล์

ภาพที่ 4.5 ไฟล์ .npy 30 ไฟล์ ใน 1 โฟลเดอร์วิดีโอ

```
| 6.917/30964176/178, 0.2023/2580661226, 0.277766478538513, 0.90983382/2591662, 0.552266297518909, 0.27374630844321442, 0.68625621094419495, 0.909617944276887, 0.544437725693434, 0.251666275563472, 0.686257630847158, 0.909647736543774, 0.55678078258, 0.23774618084363, 0.66975528087, 0.69975280876, 0.4997627400770724, 0.24122662040770355, 0.699793067446171143, 0.909707996847464, 0.4772472690972847, 0.24212789319887434, 0.6097528087655499, 0.9097655557228088, 0.457524082759931946, 0.243177592754364, 0.699280725806128, 0.909575421424866, 0.57794708252993, 0.44712648731314155, -0.4396409084331864, 0.909827451862556, 0.4575240248466, 0.5759470825993, 0.44712648731314155, -0.459570924759911, 0.9099128580093384, 0.4489961684806255, 0.3456931974419101, 0.630857055554199, 0.909953391677856, 0.6759540369398, 0.54891637340979, -0.3931030929663464, 0.9098277425765991, 0.6098756931575, 0.54136253807275, -0.25695069129273775, 0.93287566040587, 0.9098277425765991, 0.60987569185655214, 0.8859756918565214, 0.8859756917165760256, -0.158805555554199, 0.90995318567856918, 0.6898756965552149, 0.8939717657562569, -0.158805565555199, 0.90995318567856918, 0.6898756965552149, 0.893975856024, 0.8859758608524, 0.885974640808220267, -0.6128095565555199, 0.9098757457565918, 0.6898756965555114, 0.1187678560855214, 0.88597566855214, 0.8859756685551, 0.6869756685551, 0.6898756685551, 0.6898756685551, 0.689875668551, 0.6898756685551, 0.689875668551, 0.689875668551, 0.689875668551, 0.689875668551, 0.689875668551, 0.689875668551, 0.689875668551, 0.689875668551, 0.689875668551, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.68987566851, 0.6898756685
```

ภาพที่ 4.6 ไฟล์ .npy ที่เก็บค่า X, Y, Z ของ Key points

4.2 ผลการฝึกฝนโมเดล

4.2.1 โมเดล LSTM

ภาพที่ 4.7 โครงสร้างโมเดล LSTM

ผลจากการพัฒนาระบบรู้จำท่าทางภาษามือไทยด้วยโครงข่ายประสาทเทียมแบบวนกลับ พบว่า การกำหนดค่าอัตราการเรียนรู้ Epochs เท่ากับ 350 และ Batch Size เท่ากับ 32 ของโมเดล LSTM ให้ค่า Accuracy และค่า Loss ดังภาพด้านล่าง

ภาพที่ 4.8 กราฟแสดงจำนวนรอบการเทรนและค่าความถูกต้องของโมเดล LSTM

ภาพที่ 4.9 กราฟแสดงรอบการเทรนและค่าความผิดพลาดของโมเดล LSTM

ภาพที่ 4.10 โครงสร้างโมเดล GRU

ผลจากการพัฒนาระบบรู้จำท่าทางภาษามือไทยด้วย RNN พบว่า การกำหนดค่าอัตราการ เรียนรู้ Epochs เท่ากับ 370 และ Batch Size เท่ากับ 32 ของโมเดล GRU ให้ค่า Accuracy และค่า Loss ดังภาพด้านล่าง

ภาพที่ 4.11 กราฟแสดงจำนวนรอบการเทรนและค่าความถูกต้องของโมเดล GRU

ภาพที่ 4.12 กราฟแสดงรอบการเทรนและค่าความผิดพลาดของโมเดล GRU

ภาพที่ 4.13 โครงสร้างโมเดล BiLSTM

ผลจากการพัฒนาระบบรู้จำท่าทางภาษามือไทยด้วย RNN พบว่า การกำหนดค่าอัตราการ เรียนรู้ Epochs เท่ากับ 520 และ Batch Size เท่ากับ 32 ของโมเดล BiLSTM ให้ค่า Accuracy และ ค่า Loss ดังภาพด้านล่าง

ภาพที่ 4.14 กราฟแสดงจำนวนรอบการเทรนและค่าความถูกต้องของโมเดล BiLSTM

ภาพที่ 4.15 กราฟแสดงรอบการเทรนและค่าความผิดพลาดของโมเดล BiLSTM

จากภาพของโครงสร้างโมเดลทั้ง 3 โมเดล ผู้วิจัยได้มีการใช้ Dense และ Dropout ซึ่ง Dense layer เป็นชั้นของโครงข่ายประสาทเทียมที่มีการเชื่อมต่อ (connection) ระหว่างโนด (node) ในชั้นก่อนหน้ากับชั้นต่อไป โดยทุกโนดในชั้นจะมีการเชื่อมต่อกับโนดทุกตัวในชั้นต่อไป ชั้น Dense จะมีการปรับค่าน้ำหนัก (weight) และค่าไบแอส (bias) ของโนดในแต่ละชั้น ซึ่งช่วยให้โมเดล สามารถเรียนรู้และสร้างรูปแบบ (pattern) ที่ซับซ้อนได้มากขึ้น

Dropout layer เป็นชั้นที่มีไว้เพื่อลดการเกิด overfitting ในโมเดล โดย Dropout layer จะ สุ่มตัดการเชื่อมต่อระหว่างโนดในชั้นก่อนหน้ากับชั้นต่อไป โดยตัดการเชื่อมต่อเหล่านี้ด้วยการ กำหนดค่าเป็นศูนย์ (zero) โดยสุ่มตัดบางโนดออกจากการคำนวณในแต่ละรอบการฝึกฝน การทำ Dropout จะช่วยให้โมเดลสามารถเรียนรู้และสร้างรูปแบบที่เหมาะสมกับข้อมูลได้ดีขึ้นโดยไม่เกิดการ เรียนรู้ที่ผิดพลาดจาก overfitting

การใช้ Dense layer และ Dropout layer ในโมเดลประสาทเทียมช่วยให้โมเดลมีความ แม่นยำในการทำนายข้อมูลมากขึ้น โดย Dense layer เป็นชั้นหลักในการสร้างโมเดลและ Dropout layer เป็นชั้นช่วยลดการเกิด overfitting ในโมเดลให้มีประสิทธิภาพสูงขึ้น การใช้ Dense layer และ Dropout layer นั้นเป็นเพิ่มความแม่นยำมากขึ้นนั่นเอง

4.3 ผลการวัดประสิทธิภาพโมเดล

4.3.1 ผลการวัดประสิทธิภาพโมเดล LSTM

จากการเทรนโมเดลด้วยชุดข้อมูลสำหรับเทรนและข้อมูลสำหรับทดสอบได้ค่า Accuracy และค่า Loss ดังนี้

ตารางที่ 4.1 ผลการวัดประสิทธิภาพการเทรนโมเดล LSTM

K-Fold	Accuracy	Loss
Fold 1	0.94	0.08
Fold 2	0.91	0.05
Fold 3	0.93	0.06
Fold 4	0.95	0.05
Fold 5	0.94	0.21
Mean	0.93	0.09

4.3.2 ผลการวัดประสิทธิภาพโมเดล GRU

จากการเทรนโมเดลด้วยชุดข้อมูลสำหรับเทรนและข้อมูลสำหรับทดสอบได้ค่า Accuracy และค่า Loss ดังนี้

ตารางที่ 4.2 ผลการวัดประสิทธิภาพการเทรนโมเดล GRU

K-Fold	Accuracy	Loss
Fold 1	0.92	0.08
Fold 2	0.85	0.13
Fold 3	0.96	0.09
Fold 4	0.94	0.05
Fold 5	0.93	0.13
Mean	0.92	0.10

และผลจากการประเมินด้วย Confusion Matrix ของแต่ละท่าภาษามือไทยได้ดังนี้

4.3.3 ผลการวัดประสิทธิภาพโมเดล BiLSTM

จากการเทรนโมเดลด้วยชุดข้อมูลสำหรับเทรนและข้อมูลสำหรับทดสอบได้ค่า Accuracy และค่า Loss ดังนี้

ตารางที่ 4.3 ผลการวัดประสิทธิภาพการเทรนโมเดล BiLSTM

K-Fold	Accuracy	Loss
Fold 1	0.89	0.13
Fold 2	0.97	0.04
Fold 3	0.98	0.05
Fold 4	0.91	0.23
Fold 5	0.97	0.06
Mean	0.94	0.11

4.4 ผลการเปรียบเทียบประสิทธิภาพโมเดล

ผลจากการพัฒนาและวัดประสิทธิภาพของโมเดลทั้ง 3 แบบได้แก่ LSTM, GRU และ BiLSTM ที่ใช้ในการพัฒนาระบบรู้จำท่าทางภาษามือไทยด้วย RNN ซึ่งแสดงได้ดังต่อไปนี้

占	ıa		~	<i>و</i>	~
ตารางที่ 4.4	เปรียบเ	ไระสัทธิภาข	เของเมเดถ	ลทง 3	เมเดล

Madal	Model Epoch	Train	Train	Test	Test
Modet Epoch	Epoch	Accuracy	Loss	Accuracy	Loss
LSTM	350	0.93	0.09	0.94	0.16
GRU	370	0.92	0.10	0.93	0.34
BiLSTM	520	0.94	0.11	0.97	0.05

จากตารางเปรียบเทียบประสิทธิภาพโมเดลทั้ง 3 โมเดล BiLSTM มีค่าความถูกต้องสูงอยู่ที่ 0.97 ซึ่งมากที่สุดในโมเดลทั้ง 3 และมีค่า Loss อยู่ที่ 0.05 มีจำนวนรอบการในการเทรนอยู่ที่ 520 รอบและโมเดล GRU ที่มีจำนวนการเทรน 370 รอบ แต่ให้ค่า Accuracy ใกล้เคียงกับโมเดล LSTM นอกจากความแตกต่างของจำนวนในการเทรนของโมเดลแล้วยังมีเรื่องของเวลาที่ใช้ในการเทรนที่ แตกต่างระหว่างโมเดล LSTM และโมเดล GRU แม้ว่าจำนวนในการเทรนของโมเดล LSTM จะน้อย กว่าโมเดล GRU แต่ใช้เวลาในการเทรนมากกว่าเนื่องจากจำนวนพารามิเตอร์ของโมเดล GRU นั้นน้อย กว่าจึงทำให้ใช้เวลาในการเทรนน้อยกว่าแม้จำนวนรอบที่ใช้ในการเทรนจะมากกว่าส่วนโมเดล BiLSTM มีจำนวนรอบในการเทรนมากที่สุดและใช้เวลาในหนึ่งรอบการเทรนมากที่สุดเนื่องจากตัว โมเดลมีการใช้จำนวนโหนดมากกว่า 2 โมเดล จึงทำให้ใช้เวลานานในการเทรน

4.5 ผลการทดสอบโมเดล

จากผลการทดสอบโมเดลทั้ง 3 โมเดลที่ผ่านการเทรนแล้วนำมาทดสอบด้วยวิดีโอที่จัดเตรียม ไว้เพื่อทดสอบโมเดลโดยเป็นวิดีที่ได้รับมาจากนักศึกษาที่ใช้ภาษามือในการสื่อสารจำนวน 5 คน ประจำมหาวิทยาลัยราชภัฏสกลนคร ผู้วิจัยได้ใช้วิธีการ Confusion Matrix ในการประเมินหา ประสิทธิภาพของโมเดล ผลที่ได้ดังต่อไปนี้

ภาพที่ 4.16 ตัวอย่างผลการสอบทดโมเดลท่า "สบายดี"

ภาพที่ 4.17 ตัวอย่างผลการสอบทดโมเดลท่า "รัก"

4.5.1 โมเดล LSTM

ตารางที่ 4.5 ผลการทดสอบโมเดล LSTM

คำศัพท์	С	onfusic	Accuracy		
PITPINI	TP	FP	TN	FN	Accuracy
สบายดี	7	3	0	0	70 %
สวัสดี	5	5	0	0	50 %
หิว	10	0	0	0	100 %
ฉัน	2	8	0	0	20 %
ชอบ	4	6	0	0	40 %
รัก	8	2	0	0	80 %
ป่วย	10	0	0	0	100 %
ขอโทษ	10	0	0	0	100 %
ขอบคุณ	7	3	0	0	70 %
คุณ	5	5	0	0	50 %
รวม	68	29	0	0	68 %

จากตารางพบว่า คำศัพท์ "หิว", "รัก", "ขอโทษ" และ "ป่วย" มีความแม่นยำสูงสุดที่ 100% คำศัพท์ "สบายดี" มีความแม่นยำที่ 70% คำศัพท์ "ขอบคุณ", "คุณ" มีความแม่นยำที่ 50 % คำศัพท์ "ชอบ" มีความแม่นยำที่ 40% คำศัพท์ "ฉัน" มีความแม่นยำที่ 20% รวมแล้วค่า Accuracy รวมทั้งหมดเท่ากับ 68%

4.5.2 โมเดล GRU

ตารางที่ 4.6 ผลการทดสอบโมเดล GRU

คำศัพท์	С	Accuracy			
PITPINI	TP	FP	TN	FN	Accuracy
สบายดี	10	0	0	0	100 %
สวัสดี	6	4	0	0	60 %
หิว	10	0	0	0	100 %
ฉัน	1	9	0	0	10 %
ชอบ	6	4	0	0	60 %
รัก	10	0	0	0	100 %
ป่วย	5	5	0	0	50 %
ขอโทษ	4	6	0	0	40 %
ขอบคุณ	5	5	0	0	50 %
คุณ	4	6	0	0	40 %
รวม	61	39	0	0	61 %

จากตารางพบว่าคำศัพท์ "สบายดี", "หิว", และ "รัก" มีความแม่นยำสูงสุดที่ 100% คำศัพท์ "สวัสดี" และ "ชอบ" มีความแม่นยำอยู่ที่ 60% คำศัพท์ "ป่วย" มีความแม่นยำที่ 50% คำศัพท์ "ฉัน" มีความแม่นยำที่ 10% รวมแล้วค่า Accuracy รวมทั้งหมดเท่ากับ 61%

4.5.3 โมเดล BiLSTM

ตารางที่ 4.7 ผลการทดสอบโมเดล BiLSTM

คำศัพท์	С	Confusion Matrix				
PITPINI	TP	FP	TN	FN	Accuracy	
สบายดี	8	2	0	0	80 %	
สวัสดี	8	2	0	0	80 %	
หิว	9	1	0	0	90 %	
ฉัน	2	8	0	0	20 %	
ชอบ	5	5	0	0	50 %	
รัก	5	5	0	0	50 %	
ป่วย	9	1	0	0	90 %	
ขอโทษ	4	6	0	0	40 %	
ขอบคุณ	6	4	0	0	60 %	
คุณ	4	6	0	0	40 %	
รวม	60	40	0	0	60 %	

จากตารางพบว่าคำศัพท์ "หิว", "ป่วย" มีความแม่นยำอยู่ที่ 90 % คำศัพท์ "สบายดี", "สวัสดี" มีความแม่นยำอยู่ที่ 80 % คำศัพท์ "ชอบ", "รัก", "ขอโทษ", "คุณ" มีความแม่นยำอยู่ที่ 50 % คำศัพท์ "ขอโทษ", "คุณ" มีความแม่นยำอยู่ที่ 40 % คำศัพท์ "ฉัน" มีความแม่นยำที่ 20 % รวมแล้วค่า Accuracy รวมทั้งหมดเท่ากับ 60 %

ตารางที่ 4.8 การเปรียบเทียบความเหมือนความแตกต่างในงานวิจัย

งานวิจัย	Language	Class	Key points	Dataset (videos)	Video size	Train Splitting	Model	Train Accuracy	Train Loss	Test Accuracy	Test Loss	Confusion Matrix Accuracy
งานวิจัย ของ A. Chaikaew	Thai	5	42	500	-	Train: 60 Validate: 30 Test:10	LSTM, GRU, BiLSTM	0.94 0.93 0.97	0.16 0.20 0.39	0.97 0.94 0.94	0.06 0.14 0.23	-
งานวิจัย ของ Gerges H. Samaan	English	10	258, 1662	750	640 × 480	Train: 60 Test: 40	LSTM, GRU, BiLSTM	0.99 1.0 0.99	-	0.99 1.0 0.99	ı	-
งานวิจัย ของผู้วิจัย	Thai	10	1662	850	640 X 480	90:10 and 5 k- fold	LSTM, GRU, BiLSTM	0.93 0.92 0.94	0.09 0.10 0.11	0.94 0.93 0.97	0.16 0.34 0.05	0.68 0.61 0.60

จากในตารางที่ 4.8 ที่เป็นการเปรียบเทียบความเหมือนความแตกต่างในงานวิจัยสามารถ อธิบายได้ดังต่อไปนี้

ในส่วนที่ 1 คืองานวิจัยที่นำมาเปรียบเทียบกับงานวิจัยนี้ได้แก่ งานวิจัยของ A. Chaikaew, K Somkuan and T. Yuyen (2564) และงานวิจัยของ Gerges H. Samaan, Abanoub R. Widie, Abanoub K. Attia, Abanoub M. Asaad, Andrew E. Kamel, Salwa O. Slim, Mohamed S. Abdallah and Young-Im Cho (2022)

ในส่วนที่ 2 คือ ภาษาที่ใช้ในการทำระบบรู้จำภาษามือ งานวิจัยที่ 1 ใช้ภาษาไทย งานวิจัยที่ 2 ใช้ภาษาอังกฤษ และงานวิจัยของผู้วิจัยนั้นใช้ไทยเหมือนกับงานวิจัยที่ 1

ในส่วนที่ 3 คือ จำนวน class หรือจำนวนท่าภาษามือที่ใช้ในการวิจัย งานวิจัยที่ 1 ใช้ท่า ทั้งหมด 5 ท่าภาษามือ งานวิจัยที่ 2 ใช้ท่าทั้งหมด 10 ท่าภาษามือ และงานวิจัยนี้ใช้ท่าทั้งหมด 10 ท่า ภาษามือ

ในส่วนที่ 4 คือ จำนวน Key points ที่จะสกัดนำมาให้โครงข่ายประสาทเทียมรู้จำ งานวิจัยที่ 1 ใช้ key points 42 Key points ซึ่งได้มากจากการนำ Key points ของมือซึ่งมีทั้งหมด 21 Key points ของมือแต่ละข้างมารวมกันจึงได้ 42 Key points ส่วนในงานวิจัยที่ 2 ใช้ แบ่งการทดลอง ออกเป็น 2 แบบได้แก่ การทดลองที่ 1 คือ การใช้ Key points ในส่วนของมือและตัวซึ่งจะได้ Key points ทั้ง 258 Key points ส่วนในการทดลองที่ 2 จะใช้ 1662 ซึ่งเป็น Key points ที่มีการรวม Key points ของมือ ตัวและหน้าเข้าไปด้วย และในงานวิจัยนี้ได้ใช้ 1662 เหมือนกับการทดลองที่ 2 ของงานวิจัยที่ 2

ในส่วนที่ 5 คือ dataset หรือวิดีโอที่จะนำมาเทรนโมเดลงานวิจัยที่ 1 ใช้วิดีโอทั้งหมด 500 วิดีโอหรือ 100 วิดีโอต่อ 1 ท่าภาษามือ งานวิจัยที่ 2 ใช้วิดีโอทั้งหมด 750 วิดีโอทั้งหมด 750 วิดีโอ หรือ 75 วิดีโอต่อ 1 ท่าภาษามือและในงานวิจัยนี้ใช้วิดีโอทั้งหมด 850 วิดีโอหรือ 85 วิดีโอต่อ 1 ท่า ภาษามือ

ในส่วนที่ 6 คือ ขนาดของวิดีโอที่ถ่ายงานวิจัยที่ 1 นั้นไม่ได้ระบุไว้ ส่วนงานวิจัยที่ 2 และ งานวิจัยนี้ใช้ขนาดวิดีโอเท่ากับ 640 x 480

ในส่วนที่ 7 คือการแบ่งข้อมูลสำหรับเทรนโมเดลและทดสอบโมเดลในงานวิจัยที่ 1 นั้นมีการ แบ่งข้อมูลออกเป็น 3 ส่วนได้แก่ ส่วนที่เทรน 60 % ส่วนในการทำ validation 30% และในการ ทดสอบ 10 % ในงานวิจัยที่ 2 นั้นแบ่งข้อมูลออกเป็น 2 ส่วนได้แก่ 60 % สำหรับเทรนโมเดลและ 40 % สำหรับทดสอบ ส่วนในงานวิจัยครั้งนี้ได้แบ่งข้อมูลออกเป็น 2 ส่วนได้แก่ 90 % สำหรับการเทรน และทำ k-fold cross validation 5 fold และอีก 10 % สำหรับทดสอบและหา accuracy ด้วยการ ทำ confusion matrix

ในส่วนที่ 8 คือโมเดลที่ทั้ง 3 งานวิจัยใช้ในการเทรนโมเดลและทดสอบโมเดล ได้แก่ Long Short-Term Memory : LSTM, Gate Recurrent Unit : GRU, Bidirectional Long Short-Term Memory : BiLSTM

ในส่วนที่ 9 คือ ผลค่า Accuracy ของการเทรนโมเดลในแต่ละโมเดล งานวิจัยที่ 1 มีค่า Train Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.94, 0.93, 0.97 ตามลำดับ งานวิจัยที่ 2 มีค่า Train Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.99, 1.0, 0.99 ตามลำดับและงานวิจัยนี้ มีค่า Train Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.93, 0.92, 0.94 ตามลำดับ

ในส่วนที่ 10 คือ ผลค่า Loss ของการเทรนโมเดลในแต่ละโมเดล งานวิจัยที่ 1 มีค่า Train Loss ได้แก่ LSTM, GRU, BiLSTM เป็น 0.16, 0.20, 0.39 ตามลำดับ งานวิจัยที่ 2 ไม่ได้ระบุค่า Loss ไว้ และงานวิจัยนี้ มีค่า Train Loss ได้แก่ LSTM, GRU, BiLSTM เป็น 0.09, 0.10, 0.11 ตามลำดับ

ในส่วนที่ 11 คือ ผลค่า Accuracy ของการทดสอบโมเดลในแต่ละโมเดล งานวิจัยที่ 1 มีค่า Train Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.97, 0.94, 0.94 ตามลำดับ งานวิจัยที่ 2 มีค่า Train Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.99, 1.0, 0.99 ตามลำดับและงานวิจัยนี้ มีค่า Train Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.94, 0.93, 0.97 ตามลำดับ

ในส่วนที่ 12 คือ ผลค่า Loss ของการทดสอบโมเดลในแต่ละโมเดล งานวิจัยที่ 1 มีค่า Train Loss ได้แก่ LSTM, GRU, BiLSTM เป็น 0.06, 0.14, 0.23 ตามลำดับ งานวิจัยที่ 2 ไม่ได้ระบุค่า Loss ไว้ และงานวิจัยนี้ มีค่า Train Loss ได้แก่ LSTM, GRU, BiLSTM เป็น 0.16, 0.34, 0.05 ตามลำดับ

ในส่วนที่ 13 คือ ผลการหาค่า Accuracy ด้วยการทำ confusion matrix ด้วยข้อมูลสำหรับ ทดสอบเนื่องจากในงานวิจัยที่ 1 และงานวิจัยที่ 2 นั้นไม่ได้มีการทำ confusion matrix จึงมีแค่ งานวิจัยนี้ที่มีการทำ มีค่า Accuracy ได้แก่ LSTM, GRU, BiLSTM เป็น 0.68, 0.61, 0.60 ตามลำดับ