Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" _{Вариант - 3}

Выполнила	Баранов Г.В.		(подпись)
		(фамилия, и.о.)	(подпись)
Проверил		(фамилия, и.о.)	
""	20г.	Санкт-Петербург,	20г.
Работа выполнена	ь с оценкой		
Лата зашиты "	" 20	l T	

Цель работы: Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные. В данной работе частотные характеристики элементарных динамических звеньев (см. таблицу 1) строятся по точкам на основании данных, полученных экспериментально. В эксперименте исследуется реакция звена на синусоидальное входное воздействие $g(t)=g_m\sin\omega t$ с амплитудой входного сигнала $g_m=1$. При заданном значении частоты и амплитуды входного сигнала для определения точек частотной характеристики необходимо измерить значение амплитуды выходного сигнала y_m и сдвиг фаз между входным и выходным сигналом в установившемся режиме ψ (см. рисунок 1). Для определения значения фазы следует учитывать, что на полученных графиках по оси абсцисс отложено время. Значение фазы выходного сигнала в радианах можно рассчитать, используя формулу $\psi=\phi\omega$, где ω значение частоты входного сигнала в радианах. После соответствующей обработки эти данные дадут одну точку на частотной характеристике. Повторение таких измерений при различных значениях частоты входного сигнала даст массив точек по которым строятся частотные характеристики.

Таблица 1 – Исходные динамические звенья.

Тип звена	Передаточная функция
Интегрирующее с замедлением	$W(s) = \frac{k}{Ts^2 + s}$
Изодромное	$W(s) = \frac{k + Tsk}{s}$
Консервативное	$W(s) = \frac{k}{T^2 s^2 + 1}$

Параметры исследуемых звеньев: k=10, T=2 Сопрягающая частота $\frac{1}{T}=0.5c^{-1}$

Рисунок 1 – Временная диаграмма

1 Интегрирующее звено с замедлением

В таблице 2 представлены данные при исследовании интегрирующего звена с замедлением.

Таблица 2 — Экспериментальные данные для интегрирующего звена с замедлением

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, рад
0.05	-1.3	199	45.98	1.67
0.1	-1	98.06	39.83	1.76
0.3	-0.52	28.58	29.12	2.1
0.5	-0.30	14.14	23	2.35
0.9	-0.05	5.4	14.64	2.637
1.4	0.15	2.4	7.6	2.8
2	0.3	1.21	1.66	2.9
2.8	0.45	0.62	-4.15	2.968
3.8	0.58	0.34	-9.37	3.04
5	0.7	0.22	-13.15	3.05

На рисунках 2-7 представлены частотные характеристики.

Рисунок 2 – АЧХ

Рисунок 3 – ФЧХ

Рисунок 4 – ЛАЧХ

Рисунок 5 – ЛФЧХ

Рисунок 6 – АФЧХ

Рисунок 7 – Асимптотическая ЛАЧХ

2 Изодромное звено

В таблице 3 представлены данные при исследовании изодромного звена.

Таблица 3 — Экспериментальные данные для изодромного звена

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, рад
0.05	-1.3	201	46.06	1.47
0.1	-1	101.98	40.17	1.37
0.3	-0.52	38.87	31.79	1.02
0.5	-0.3	28.28	29.03	0.75
0.9	-0.05	22.88	27.19	0.5
1.4	0.15	21.24	26.54	0.336
2	0.3	20.62	26.29	0.24
2.8	0.45	20.32	26.16	0.17
3.8	0.58	20.17	26.09	0.15
5	0.7	20.1	26.06	0.1

На рисунках 8-13 представлены частотные характеристики изодромного звена.

Рисунок 8 – АЧХ

Рисунок 9 – ФЧХ

Рисунок 10 – ЛАЧХ

Рисунок 11 – ЛФЧХ

Рисунок 12 – АФЧХ

Рисунок 13 – Асимптотическая ЛАЧХ

3 Консервативное звено

К сожалению, из-за собственных колебаний консервативного звена, снять эксперементальные данные для него не удалось.

На рисунках 14-15 представлены теоретические графики для консервативного звена.

Рисунок 14 – АФЧХ

Рисунок 15 – Асимптотическая ЛАЧХ

Вывод

В ходе лабораторной работы были изучены частотные и логарифмические частотные характеристики типовых динамических звеньев: интегрирующего с замедлением, изодромного и консервативного. Основываясь на экспериментальных данных можно говорить о том, что фазовый сдвиг для интегрирующего звена с замедлением изменяется в пределах от 1.5 до 3, для изодромного — от 0.1 до 1.47, а для консервативного звена таких данных получено не было.

Сравнивая графики ЛАЧХ и асимптотической ЛАЧХ, можно заметить, что асимптотическая ЛАЧХ интегрирующего звена с замедлением сходится к реальной ЛАЧХ, а ЛАЧХ изодромного звена отличается от асимптотической ЛАЧХ.

Также можно сделать вывод о том, что асимптотическая ЛАЧХ меняет свой наклон при частоте среза $\omega_c=1/T$ и для её построения не требуется выполнения дополнительных вычислений, достаточно лишь знать вид передаточной функции. Также по асимптотический ЛАЧХ можно восстановить передаточную функцию.