e.9 S=(0,1)

#1. Let $S \subseteq \mathbb{R}$ be bounded. Let s = lub(S). Suppose $S \notin S$. Then there is an increasing sequence $(\chi_n)_{n=1}^n \subset S$ s.t. $\chi_n \longrightarrow S$

X; X, S

Proof: For each n=1,2,3,... consider $S-\frac{1}{n} < S$. Since S=lwb(S), $S-\frac{1}{n}$ is not an upper bound for S.

So $\exists x_n \in S$ S.t. $S-\frac{1}{n} < x_n < S$ in eq. is strict since $S \notin S$.

Then when $s \in S$ in $s \in S$.

Therefore $s \in S$ in $s \in S$.

Therefore $s \in S$ in $s \in S$.

Therefore $s \in S$ in $s \in S$.

Therefore $s \in S$ in $s \in S$.

Therefore $s \in S$ in $s \in S$.

Therefore $s \in S$ in $s \in S$.

#Prove that if lub(S)/glb(S) exists than it's unique.

Pf: Sps b, & b2 are both Jub's for the set S As b, is an upper bound, and b2 is a Jub \Rightarrow b2 \leq b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b2 \Rightarrow b4 \Rightarrow b2 \Rightarrow b4 \Rightarrow b5 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b5 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b5 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b5 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b2 \Rightarrow b4 \Rightarrow b2 \Rightarrow b4 \Rightarrow b4 \Rightarrow b6 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b4 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b4 \Rightarrow b4 \Rightarrow b6 \Rightarrow b6 \Rightarrow b6 \Rightarrow b7 \Rightarrow b1 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b4 \Rightarrow b6 \Rightarrow b6 \Rightarrow b6 \Rightarrow b6 \Rightarrow b1 \Rightarrow b1 \Rightarrow b1 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b1 \Rightarrow b2 \Rightarrow b2 \Rightarrow b2 \Rightarrow b3 \Rightarrow b4 \Rightarrow b4

#3. Let p>0. Consider VP+VPI... as a limit of a sequence. Use Mono-tone Seq. thm to show it must exist & calculate it.

Seq: $0, \sqrt{p}, \sqrt{p+p}, \cdots,$ recursive def. $\begin{cases} x_1 = 0 \\ x_n = \sqrt{p+2n} - 1 \end{cases}$

Idea: So need bounded & monotone 1.

Increasing - Proof: Use induction

Base case, 0 < \P \/
Inductive step: Sps that Xn-2 < Xn-1
by induction

 $\chi_{n=\sqrt{p+\chi_{n-1}}} \geqslant \sqrt{p+\chi_{n-2}}$ (*)

(*) follows b/c $f(x)=\sqrt{x}$ is monotone increasing and $p+x_{n-1} \ge p+x_{n-2}$ So $x_n \ge \sqrt{p+x_{n-2}} = x_{n-1}$

Bounded - Proof: Sps first that the limit exists, L=lim /n.

 $L = \lim_{n \to \infty} \chi_n - \lim_{n \to \infty} \chi_{n+1} = \lim_{n \to \infty} \sqrt{p + \chi_n} = \sqrt{p + \lim_{n \to \infty} \chi_n} \quad \text{be gen} = \sqrt{p + \chi_n} \text{ is continuous.}$

Check In is bounded

Claim: X1 ≤2+2p ∀n (*)

Use induction Proof: Base: 0<2+2p b/c p>ov Industrie step: Sps ×n-1 €2+20

Now Xn ≤2+20 (=> Xn ≤(2+2p) = So it's enough to show this.

$$(2+2p)^{3}-\chi_{n}^{2}=(4+8p+4p^{3})-(\sqrt{p+\chi_{n-1}})^{2}=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=4+7p+4p^{3}-\chi_{n-1}$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$\frac{1}{2}$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$=(4+8p+4p^{3})-(p+\chi_{n-1})$$

$$=(2+2p-\chi_{n-1})+(2+5p+4p^{3})$$

$$=(2+2p-\chi_{n-1})+(2+2p-4p^{3})$$

$$=(2+2p-\chi_{n-1})+(2+2p-4p^{3})+(2+2p-4p^{3})$$

$$=(2+2p-4p-4p^{3})+(2+2p-4p^{3})+(2+$$

So(2+2p)2 > 7/1

#4 S is disconnected if its sets Si, Sz (non-empty) s.t. S=SiUS, & SiNSz=Ø = S, NS2

(a). (a) is disconnected. Pf: Lot S=(-0,12) 1 R, S=(12,+0) 1 R.

And S= (-0-, 12) clearly 5.11Sz=0 Similarly, 52 = ... 5, 1 Si=0

Skip (b)(c)

#5. Sec1.6 #6. Let U.V = Rn. d(U.V) = inf[[x-y], x \in U.y \in V].

(i) $d(U,V) > 0 \Rightarrow U,V$ are disconnected Pf: We need to show . $U \cap V = \emptyset = U \cap V$. Let $x \notin U \Longrightarrow we can find a seguence <math>\{x_n\}_{n=1}^{\infty}$ s.t. $x_n \rightarrow x$

Since d(U,V)>0⇒3···

See yesterday's TUT