Project Bioinformatic Resources

Annalisa Xamin, Nicola Perotti

Introduction

The following analysis focus on RNA-seq count data extracted from different cancer datasets from the Cancer Genome Atlas (TCGA). From the original TCGA data 50 cases (tumor samples) and 50 controls (normal samples) were randomly selected.

Analysis

Task 1: Load data

In particular, we consider data coming from Lung adenocarcinoma.

```
load("./RData/Lung_adenocarcinoma.RData")
```

After loading the data, the following three data-frames are available:

- raw_counts_df which contains the raw RNA-seq counts;
- c anno df, which contains sample name and condition (case and control);
- r_anno_df, which contains the ENSEMBL genes ids, the length of the genes and the genes symbols.

Task 2: Filter protein coding genes

To extract only protein coding genes from raw_counts_df and r_anno_df, we use the biomaRt package. First, we retrieve the information about the protein coding genes from Ensembl.

```
database <- useMart("ensembl")
datasetHuman <- useDataset("hsapiens_gene_ensembl", mart = database)
query <- getBM(attributes = c("ensembl_gene_id", "external_gene_name", "gene_biotype"),
    filters = c("ensembl_gene_id"), values = r_anno_df$ensembl_gene_id, mart = datasetHuman)
query_protein_coding <- query[which(query$gene_biotype == "protein_coding"), ]</pre>
```

Then, we filter the data frames containing the raw counts and the annotation to keep only the protein coding genes.

```
indexes_r_anno_df <- which(r_anno_df$ensembl_gene_id %in% query_protein_coding$ensembl_gene_id)
r_anno_df_protein_coding <- r_anno_df[indexes_r_anno_df, ]

indexes_raw_counts_df <- which(rownames(raw_counts_df) %in% query_protein_coding$ensembl_gene_id)
raw_counts_df_protein_coding <- raw_counts_df[indexes_raw_counts_df, ]</pre>
```

Task 3: Differential expression analysis

To perform the differential expression analysis, we will use the edgeR package.

It is important to remove genes with low signal that will have low statistical power. Since, we want to focus on the transcripts we can use to perform the analysis, we can filter raw counts data using a threshold of raw count > 20 in at least 5 replicates.

Then, we filter the previously updated data frames.

```
filter_counts_df <- raw_counts_df_protein_coding[filter_vec >= repl_thr, ]
dim(filter_counts_df) # 17289

## [1] 17289 100

filter_anno_df <- r_anno_df_protein_coding[rownames(filter_counts_df), ]
dim(filter_anno_df) # 17289

## [1] 17289 3</pre>
```

Now we check the library size of each sample (how many reads we have sequenced for each experiment)

```
size_df <- data.frame(sample = colnames(filter_counts_df), read_millions = colSums(filter_counts_df)/1e

ggplot(data = size_df, aes(sample, read_millions)) + geom_bar(stat = "identity",
    fill = "indianred", colour = "indianred", width = 0.7, alpha = 0.7) + coord_flip() +
    theme_bw()</pre>
```

Then, we visualize a boxplot of gene counts.

Figure 1: Library size of each sample.

Figure 2: Boxplot of gene counts before normalization.

As we can see from the plots, there is a significant variability across samples in term of library sizes (reads per million). We have to take into account this aspect because the expected size of each count is the product of the relative abundance of that gene in that sample but also of the library size.

As we can see from the boxplot, we need to normalize our data before testing for differential expression. Normalization can be obtained using different methodologies. Among them, TMM (the default method) is a method that consider in the normalization also variables related to the library size.

To perform the DEG analysis, we first need to create a DGRList object containing information about counts, annotation, samples and genes. To do that, we use the function DGEList to create the input for the following normalization step. This object contains information about counts, samples and genes.

The normalization intra- and inter-sample is done using the function calcNormFactors and specifying method = "TMM", which is the weighted trimmed mean of M-values approach.

Then, we create a cpm table containing the normalized expression values for each transcript expressed as counts per million (CPM).

```
# create a cpm table (normalized expression values)
cpm_table <- as.data.frame(round(cpm(edge_n), 2))</pre>
```

To see the effect of the normalization, we look at the boxplot distribution of gene expression signals after normalization.

We notice that, with respect to the previous boxplot, after the normalization, the distributions are comparable. That means that now our data is ready to be tested for DE analysis.

We define the experimental design matrix, later needed to calculate the dispersion and fit. This matrix is based on the experimental design, so we define the conditions we want to test (case VS control).

```
design <- model.matrix(~0 + group, data = edge_n$samples)
colnames(design) <- levels(edge_n$samples$group)
rownames(design) <- edge_n$samples$sample</pre>
```

Once we normalized the data and the design, we proceed by calculating the dispersion fit.

```
# calculate dispersion and fit with edgeR (necessary for differential
# expression analysis)
edge_d <- estimateDisp(edge_n, design)
edge_f <- glmQLFit(edge_d, design)</pre>
```


Figure 3: Boxplot distribution of gene expression signals after normalization.

The estimateDisp function tries to estimate the variability at different levels: in the data, inter sample and intra sample. The over dispersion of counts across the samples can be modeled as a Poisson distribution, which can be approximated using a negative binomial distribution by using glmQLFit function.

We define the contrasts (conditions to be compared).

```
contro <- makeContrasts("control-case", levels = design)</pre>
```

We performed a test through function glmQLFTest to determine which genes are differentially expressed. Then, we selected genes based on a 0.01 p-value cutoff and ordered them based on the log2 fold change.

```
# fit the model with generalized linear models
edge_t <- glmQLFTest(edge_f, contrast = contro)
DEGs <- as.data.frame(topTags(edge_t, n = 20000, p.value = 0.01, sort.by = "logFC"))</pre>
```

Then, we improve the selection, considering not only the p-value, but also the average expression of the genes (logCPM). We used the logFC value to assign genes to different classes:

- up-regulated genes if logFC > 1.5
- down-regulated genes if logFC < -1.5
- not significant genes (unchanged) otherwise.

```
DEGs$class <- "="
DEGs$class[which(DEGs$logCPM > 1 & DEGs$logFC > 1.5 & DEGs$FDR < 0.25)] = "+" # upregulated genes
DEGs$class[which(DEGs$logCPM > 1 & DEGs$logFC < (-1.5) & DEGs$FDR < 0.25)] = "-" # downregulated genes
DEGs <- DEGs[order(DEGs$logFC, decreasing = T), ]</pre>
head(DEGs)
##
                   ensembl_gene_id external_gene_name length
                                                                 logFC
                                                                          logCPM
## ENSG00000179914 ENSG00000179914
                                                ITLN1
                                                        8640 6.684901 5.8661078
## ENSG00000108576 ENSG00000108576
                                               SLC6A4 41683 6.084705 6.6338451
## ENSG00000180440 ENSG00000180440
                                               SERTM1
                                                       23819 5.663190 3.2093449
## ENSG00000108342 ENSG00000108342
                                                 CSF3
                                                        2452 5.588520 5.2512424
## ENSG00000034971 ENSG00000034971
                                                 MYOC
                                                        17271 5.397462 1.5811486
## ENSG00000178084 ENSG00000178084
                                                        7626 5.325742 0.5517057
                                                HTR3C
##
                           F
                                   PValue
                                                   FDR class
## ENSG00000179914 75.57703 6.388727e-14 4.459213e-13
## ENSG00000108576 122.16543 3.992071e-19 7.518401e-18
## ENSG00000180440 181.47838 2.383659e-24 1.325115e-22
## ENSG00000108342 90.91727 8.943402e-16 8.552128e-15
## ENSG00000034971 170.30732 1.866103e-23 8.293843e-22
## ENSG00000178084 120.55392 5.781068e-19 1.046585e-17
table(DEGs$class) # 1193-, 877+, 14949=
```

From the results, we saw that 1193 genes are down-regulated, 877 genes are up-regulated and 14949 genes have no changes in their regulation.

We then create the volcano plot.

Figure 4: Volcano plot

The volcano plot allows to have a quick visual identification of genes with large fold changes that are also statistically significant.

We also report the heatmap of only up and down-regulated genes.

To create an annotated heatmap focusing only on up- and down-regulated genes we need first of all a matrix in which we select genes with class "+" or "-. Moreover, we also need to assign a color to each sample. In this case, we assign green to the case condition and beige to the control, and save the corresponding color into the variable cols. In this way, we can then set the ColSideColors parameter in order to have a color code to recognize the sample condition.

Figure 5: Heatmap up and down-regulated genes.

On the top of the heatmap, we can see the dendrogram indicating how distant our samples are, while on the left the dendrogram related to genes. The dendogram is built by hierarchical clustering, a method based on the concept of dissimilarity.

To simplify the later analysis, we save the list of differentially expressed genes in a text file.

```
up_DEGs <- DEGs[which(DEGs$class == "+"), ]
down_DEGs <- DEGs[which(DEGs$class == "-"), ]

write.table(up_DEGs, file = "output/up_DEGs.txt", row.names = F, col.names = T, sep = "\t",
    quote = F)

write.table(down_DEGs, file = "output/down_DEGs.txt", row.names = F, col.names = T,
    sep = "\t", quote = F)

write.table(DEGs, file = "output/DEGs.txt", row.names = F, col.names = T, sep = "\t",
    quote = F)</pre>
```

Task 4: Gene set enrichment analysis

To perform the gene set enrichment analysis, we will use the clusterProfiler package.

```
DEGs <- read.table("output/DEGs.txt", header = T, sep = "\t", as.is = T)
table(DEGs$class)

##
## - + =
## 1199 884 9258</pre>
```

We use the biomaRt package to retrieve the entrezgene_id for all the genes in the DEGs dataset.

```
ensembl <- useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")
convert <- getBM(attributes = c("ensembl_gene_id", "entrezgene_id"), filters = c("ensembl_gene_id"),
    values = DEGs$ensembl_gene_id, mart = ensembl)

DEGs <- merge(DEGs, convert, by.x = "ensembl_gene_id", by.y = "ensembl_gene_id") # include the new inf
DEGs <- DEGs[which(!is.na(DEGs$entrezgene_id)), ]
DEGs <- DEGs[-which(duplicated(DEGs$entrezgene_id)), ]</pre>
```

We removed all the NA and duplicates in the dataset DEGs.

We created new lists for the down and up-regulated genes.

```
# list of up-regulated genes
upDEGs <- DEGs %>%
    filter(class == "+")
# list of down-regulated genes
downDEGs <- DEGs %>%
    filter(class == "-")
```

Performing enrichment analysis for GO biological process

```
# biological process up regulated genes
ego_BP_up <- enrichGO(gene = upDEGs$external_gene_name, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
    ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05, qvalueCutoff = 0.05)

# biological process down regulated genes
ego_BP_down <- enrichGO(gene = downDEGs$external_gene_name, OrgDb = org.Hs.eg.db,
    keyType = "SYMBOL", ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.05, qvalueCutoff = 0.05)</pre>
```

We report the top 10 enriched GO terms related to the Biological Process for both up and down regulated genes.

In the barplots we can see that the elements are ordered by adjusted p-value (where the most significant is placed on the top) and on the x-axis we have the gene counts, so the number of elements of our lists were found in the category.

```
barplot(ego_BP_up, showCategory = 10, main = "Up-regulated gene list: top 10 enriched BP terms")
```


Figure 6: Biological process up regulated genes

Both the first two biological processes are related to the microtubules, which might be explained by the fact that tumour cells have a high growth rate thus the cytoskeleton is assembled over and over again. We also notice that angiogenesis is among the most enriched biological processes as we expected. In fact, angiogenesis is particularly important in tumorigenesis to allow the growth of the tumour tissue, providing nutrients to cells.

barplot(ego_BP_down, showCategory = 10, main = "Down-regulated gene list: top 10 enriched BP terms")

Figure 7: Biological process down regulated genes

We would expect most of these biological processes to be enriched in the up-regulated genes since tumour cells tend to replicate more than normal cells. A possible explaination is that tumour cells genes accumulate numerous mutations usually ending up in loss of function or downregulation. These mutations might occur on transcription factors binding sites or RNA binding sites, reducing their expression.

Performing enrichment analysis for GO molecular function

The same analysis was done also for the molecular function.

```
# molecular function up regulated genes
ego_MF_up <- enrichGO(gene = upDEGs$external_gene_name, OrgDb = org.Hs.eg.db, keyType = "SYMBOL",
    ont = "MF", pAdjustMethod = "BH", pvalueCutoff = 0.05, qvalueCutoff = 0.05)</pre>
```

```
# molecular function down regulated genes
ego_MF_down <- enrichGO(gene = downDEGs$external_gene_name, OrgDb = org.Hs.eg.db,
    keyType = "SYMBOL", ont = "MF", pAdjustMethod = "BH", pvalueCutoff = 0.05, qvalueCutoff = 0.05)
barplot(ego_MF_up, showCategory = 10, main = "Up-regulated gene list: top 10 enriched MP terms")</pre>
```


Figure 8: Molecular function up regulated genes

```
barplot(ego_MF_down, showCategory = 10, main = "Down-regulated gene list: top 10 enriched MP terms")
eWP_up <- enrichWP(gene = upDEGs\sentrezgene_id, organism = "Homo sapiens", pvalueCutoff = 0.05,
    qvalueCutoff = 0.1)
head(eWP_up, n = 10)
                                                               Description
## WP2806 WP2806
                                                         Complement system
                                                     Complement activation
## WP545
           WP545
## WP558
                                      Complement and coagulation cascades
           WP558
## WP2431 WP2431
                                                        Spinal cord injury
## WP5094 WP5094
                                                   Orexin receptor pathway
## WP5090 WP5090 Complement system in neuronal development and plasticity
```


Figure 9: Molecular function down regulated genes

```
GeneRatio BgRatio
                                   pvalue
                                               p.adjust
                                                              qvalue
## WP2806
             19/437 97/8444 4.087733e-07 0.0001962112 0.0001789997
## WP545
              8/437 23/8444 1.188920e-05 0.0028534071 0.0026031083
             12/437 58/8444 3.217488e-05 0.0051479809 0.0046964036
## WP558
## WP2431
             18/437 121/8444 4.548782e-05 0.0054585389 0.0049797197
             24/437 201/8444 1.048950e-04 0.0089843459 0.0081962454
## WP5094
             16/437 107/8444 1.123043e-04 0.0089843459 0.0081962454
## WP5090
##
## WP2806
                                 6401/729/2219/2160/7448/6404/730/653509/22918/5199/5648/11326/5806/235
## WP545
                                                                                                  732/729
## WP558
                                                                             729/1361/7450/730/5648/713/
## WP2431
                                             2920/4842/57556/6347/1958/3164/7538/3569/7099/9353/2353/361
## WP5094 6401/862/2920/4616/1839/8013/1958/1959/3164/2354/3949/5468/3569/9314/2890/1346/2353/5581/3400
## WP5090
                                                         732/729/2219/7448/730/5199/5648/8547/81035/1524
##
          Count
## WP2806
             19
## WP545
              8
## WP558
             12
## WP2431
             18
## WP5094
             24
## WP5090
eWP_down <- enrichWP(gene = downDEGs$entrezgene_id, organism = "Homo sapiens", pvalueCutoff = 0.05,
    qvalueCutoff = 0.1)
head(eWP_down, n = 10)
##
              TD
## WP2446 WP2446
## WP2361 WP2361
## WP179
           WP179
## WP1604 WP1604
## WP45
            WP45
## WP466
           WP466
## WP4240 WP4240
## WP698
## WP4016 WP4016
## WP5283 WP5283
                                                                              Description
##
## WP2446
                                                            Retinoblastoma gene in cancer
## WP2361
                                                                 Gastric cancer network 1
## WP179
                                                                                Cell cycle
## WP1604
                                                          Codeine and morphine metabolism
## WP45
                                                               G1 to S cell cycle control
## WP466
                                                                          DNA replication
## WP4240 Regulation of sister chromatid separation at the metaphase-anaphase transition
## WP698
                                                                          Glucuronidation
## WP4016
                                              DNA IR-damage and cellular response via ATR
## WP5283
                                     Chronic hyperglycemia impairment of neuron function
##
          GeneRatio BgRatio
                                   pvalue
                                               p.adjust
                                                              qvalue
             26/618 90/8444 5.946692e-10 3.098226e-07 2.835633e-07
## WP2446
## WP2361
             13/618 28/8444 2.049156e-08 4.347812e-06 3.979308e-06
## WP179
             28/618 120/8444 2.503538e-08 4.347812e-06 3.979308e-06
              9/618 16/8444 4.082807e-07 4.384779e-05 4.013143e-05
```

WP1604

```
## WP4016
             17/618 81/8444 6.111340e-05 3.537787e-03 3.237938e-03
## WP5283
             12/618 46/8444 8.178878e-05 4.261195e-03 3.900033e-03
             1870/54443/4175/4998/24137/8318/5427/1869/4173/898/1871/7272/7153/891/10733/890/1111/9133/
## WP2446
## WP2361
                                                                       6790/22974/4605/4173/1894/1063/71
## WP179 1870/4171/4175/4998/23594/8318/990/1869/4173/898/1871/7272/991/9088/891/9700/890/1029/1111/91
                                                                                              1244/1565/8
                                                      1870/4171/4175/4998/23594/8318/5427/1869/4173/898/
## WP45
## WP466
                                                                           55388/4171/4175/4998/23594/83
## WP4240
## WP698
                                                                                            7358/7363/545
## WP4016
                                                          672/5888/4171/63967/8318/1869/2305/83990/55215
## WP5283
                                                                                   8277/4320/4318/6513/4
##
          Count
## WP2446
             26
## WP2361
## WP179
             28
## WP1604
## WP45
             18
```

18/618 64/8444 4.208041e-07 4.384779e-05 4.013143e-05

13/618 42/8444 5.352265e-06 4.647550e-04 4.253642e-04

7/618 15/8444 4.161758e-05 3.097537e-03 2.835002e-03

9/618 26/8444 5.724683e-05 3.537787e-03 3.237938e-03

Task 5: Visualization of the enriched pathway

WP45

WP466

WP4240

WP698

WP466

WP4240

WP4016

WP5283

WP698

13

7

9

17

12

KEGG analysis was performed using the function enrichKEGG.

```
eWP_KEGG <- enrichKEGG(gene = upDEGs$entrezgene_id, organism = "human", pvalueCutoff = 0.05,
    qvalueCutoff = 0.1)</pre>
```

Here are reported the top 10 enriched KEGG pathways resulting from the up-regulated list of genes.

```
knitr::kable(head(eWP_KEGG[, 1:6], n = 10))
```

ID	Description	GeneRat	ioBgRatio	pvalue	p.adjust
hsa05144 hsa0514	4 Malaria	13/382	50/8464	0.0000002	0.0000306
$hsa04610\; hsa0461$	0 Complement and coagulation cascades	17/382	86/8464	0.0000002	0.0000306
$hsa04270 \ hsa0427$	0 Vascular smooth muscle contraction	17/382	134/8464	0.0001035	0.0098968
$hsa04061\ hsa0406$	1 Viral protein interaction with cytokine and	14/382	100/8464	0.0001464	0.0105063
	cytokine receptor				
$hsa04614\; hsa0461$	4 Renin-angiotensin system	6/382	23/8464	0.0004262	0.0237535
$hsa03320\; hsa0332$	0 PPAR signaling pathway	11/382	75/8464	0.0004966	0.0237535
$hsa04380\; hsa0438$	0 Osteoclast differentiation	15/382	128/8464	0.0006213	0.0249197
$\mathrm{hsa}04514\;\mathrm{hsa}0451$	4 Cell adhesion molecules	17/382	157/8464	0.0006946	0.0249197
$hsa04060\; hsa0406$	0 Cytokine-cytokine receptor interaction	26/382	297/8464	0.0008879	0.0280393

ID	Description	GeneRati	ioBgRatio	pvalue	p.adjust
hsa04924 hsa04924 Renin secretion		10/382	69/8464	0.0009770	0.0280393

The more enriched pathway (using the list of up-regulated genes) is related to malaria (and has ID hsa05144). We then visualized it using the package pathview:

```
# set working directory to save output
setwd("~/Documents/Repo_Git/Project_BR/output")

logFC <- upDEGs$logFC
names(logFC) <- upDEGs$entrezgene_id
pathview(gene.data = logFC, pathway.id = "hsa05144", species = "human")</pre>
```

Here is reported the network representing the pathway, with the up-regulated genes colored in red:

Figure 10: Most enriched pathway

Task 6: Enrichment score transcription factors

First of all, we retrieve the promoter sequence for all the genes in the list of those down-regulated using ensembl gene id as identifier.

Then we load the background for MotifDb human PWMs and convert the obtained sequence into a DNAS-tring object.

```
data(PWMLogn.hg19.MotifDb.Hsap)
seq <- lapply(promoter_regions$gene_flank, function(x) DNAString(x))</pre>
```

motifEnrichment function performs enrichment analysis on the promoter sequences we obtained a few chunks above.

```
enriched_TFs = motifEnrichment(seq, PWMLogn.hg19.MotifDb.Hsap, score = "affinity")
```

Calculating motif enrichment scores ...

```
report = groupReport(enriched_TFs)
```

Here we plot the top 5 enriched transcription factors resulted from our analysis:

plot(report[1:5])

₹ankTarget	PWM	Motif ID	In top Raw sc Bre value motifs
1 PGAM2	GGGGGGG	PGAM2	7.472.41e-868 %
2 TFAP4	GUCG	M2944_1.02	3.423.37e-848 %
3 SP2		SP2	1206.25e-8 4 9 %
4 CEBPB	SE STATE OF THE SECOND	M4556_1.02	2.311.71e-8 3 7 %
5 JUND	GUVVIG	M4506_1.02	6.861.5e-8119 %

Task 7

We select one among the top enriched TFs (TFAP4), compute the empirical distributions of scores for all PWMs that you find in MotifDB for the selected TF and determine for all of them the distribution (log2) threshold cutoff at 99.75%.

```
tfs <- report$target[2] # contains TFAP4
tfs_motifs = subset(MotifDb, organism == "Hsapiens" & geneSymbol == tfs)
# transformation to a PWM matrix
PWM = toPWM(as.list(tfs_motifs))</pre>
```

For the selected TF we found 15 PWMs:

- Hsapiens-cisbp_1.02-M2943_1.02
- Hsapiens-cisbp_1.02-M2944_1.02
- $\bullet \hspace{0.15cm} \textbf{Hsapiens-cisbp} \underline{\hspace{0.1cm}} 1.02\text{-}M2947\underline{\hspace{0.1cm}} 1.02$
- Hsapiens-cisbp $_1.02$ -M5926 $_1.02$
- Hsapiens-cisbp 1.02-M5927 1.02
- Hsapiens-cisbp_1.02-M6513_1.02
- Hsapiens-HOCOMOCOv11-core-A-TFAP4_HUMAN.H11MO.0.A
- Hsapiens-jaspar2016-TFAP4-MA0691.1
- Hsapiens-jaspar2018-TFAP4-MA0691.1
- Hsapiens-jaspar2022-TFAP4-MA0691.1
- Hsapiens-jaspar2022-TFAP4-MA1570.1
- Hsapiens-jolma2013-TFAP4
- Hsapiens-jolma2013-TFAP4-2
- $\bullet \;\; Hsapiens-SwissRegulon-TFAP4. SwissRegulon$

To get the empirical distribution we used the function motifEcdf, which associates to each PWM a distribution. Then, for each score we computed the scores with a cutoff threshold of 99.75%.

```
ecdf = motifEcdf(PWM, organism = "hg19", quick = TRUE)

thresholds = lapply(ecdf, function(x) log2(quantile(x, 0.9975)))
# for each of the distribution, take the quantile as reference

scores = motifScores(seq, PWM, raw.scores = FALSE, cutoff = unlist(thresholds))
```

In the following table are reported the calculated scores for each PWM of the first 10 motifs.

```
head(scores, n = 10)
```

```
## Hsapiens-cisbp_1.02-M2943_1.02 Hsapiens-cisbp_1.02-M2944_1.02
## [1,] 2 2
## [2,] 3 2
## [3,] 3 4
## [4,] 6
```

```
##
    [5,]
                                         2
                                                                           3
##
    [6,]
                                         0
                                                                           0
    [7,]
                                                                           4
##
##
   [8,]
                                                                           3
    [9,]
                                                                           3
##
## [10,]
                                         3
         Hsapiens-cisbp_1.02-M2947_1.02 Hsapiens-cisbp_1.02-M5926_1.02
##
##
    [1,]
##
    [2,]
                                         2
                                                                           0
    [3,]
                                                                           2
##
   [4,]
                                                                           5
##
##
   [5,]
                                                                           2
##
   [6,]
                                                                           4
##
   [7,]
##
   [8,]
                                                                           0
   [9,]
                                                                           3
##
## [10,]
                                         1
##
         Hsapiens-cisbp_1.02-M5927_1.02 Hsapiens-cisbp_1.02-M6513_1.02
##
    [1,]
    [2,]
                                                                           4
##
   [3,]
                                                                           3
##
                                         1
##
   [4,]
                                                                           4
##
   [5,]
                                                                           4
    [6,]
                                                                           0
##
##
   [7,]
                                                                           3
##
   [8,]
                                                                          10
##
   [9,]
                                                                           6
##
  [10,]
                                                                           2
##
         Hsapiens-HOCOMOCOv10-TFAP4_HUMAN.H10MO.C
##
    [1,]
                                                    2
    [2,]
                                                    4
##
##
   [3,]
                                                    3
##
   [4,]
                                                    4
   [5,]
                                                    4
##
                                                    0
##
   [6,]
##
   [7,]
                                                    3
   [8,]
##
##
   [9,]
## [10,]
##
         Hsapiens-HOCOMOCOv11-core-A-TFAP4_HUMAN.H11MO.O.A
##
    [1,]
##
   [2,]
                                                              3
##
    [3,]
                                                              1
##
   [4,]
                                                              3
   [5,]
                                                              2
##
   [6,]
                                                              2
##
                                                              6
##
    [7,]
   [8,]
                                                              4
##
##
   [9,]
                                                              5
## [10,]
         Hsapiens-jaspar2016-TFAP4-MA0691.1 Hsapiens-jaspar2018-TFAP4-MA0691.1
##
##
   [1,]
                                             6
                                                                                   6
##
   [2,]
                                             0
                                                                                   0
##
   [3,]
                                             1
                                                                                   1
```

```
[4,]
##
                                                 4
                                                                                          4
##
    [5,]
                                                 2
                                                                                          2
    [6,]
                                                 4
##
                                                                                          4
    [7,]
                                                 4
##
                                                                                          4
##
    [8,]
                                                                                          1
##
    [9,]
                                                 4
                                                                                          4
##
   [10,]
          Hsapiens-jaspar2022-TFAP4-MA0691.1 Hsapiens-jaspar2022-TFAP4-MA1570.1
##
##
    [1,]
##
    [2,]
                                                 0
                                                                                          0
##
    [3,]
                                                 1
                                                                                          2
    [4,]
                                                 4
##
                                                                                         8
##
    [5,]
                                                 2
                                                                                         0
##
    [6,]
                                                 4
                                                                                          6
##
    [7,]
                                                 4
                                                                                        11
##
    [8,]
                                                                                         6
##
    [9,]
                                                                                          4
##
   [10,]
                                                                                          3
##
          Hsapiens-jolma2013-TFAP4 Hsapiens-jolma2013-TFAP4-2
##
    [1,]
##
    [2,]
                                     0
                                                                    0
##
    [3,]
                                     2
                                                                    1
    [4,]
                                     5
##
                                                                    4
##
    [5,]
                                     2
                                                                    2
                                     4
##
    [6,]
                                                                    4
##
    [7,]
                                     6
                                                                    4
##
    [8,]
                                     0
                                                                    1
##
    [9,]
                                     3
                                                                    4
                                     0
##
   [10,]
                                                                    0
##
          Hsapiens-SwissRegulon-TFAP4.SwissRegulon
    [1,]
                                                        2
##
##
    [2,]
                                                        0
##
    [3,]
                                                        2
                                                        5
##
    [4,]
                                                        2
##
    [5,]
                                                        4
##
    [6,]
##
    [7,]
                                                        6
##
    [8,]
                                                        0
                                                        3
##
    [9,]
## [10,]
                                                        0
```

Task 8: Pattern matching

We identify which down-regulated genes have a region in their promoter (defined as previously) with binding scores above the computed thresholds for any of the previously selected PWMs.

To do that, we using the table of scores displayed before. We selected only genes having a region in their promoter with binding scores above the computed thresholds for any of the previously selected PWMs.

```
fractions_99.75 <- c()
fractions_99.75 <- c(fractions_99.75, length(which(apply(scores, 1, sum) > 0))/length(scores))
fractions_99.75
```

```
highscore_seq <- which(apply(scores, 1, sum) > 0)
genes_id <- downDEGs[highscore_seq, ]</pre>
```

The resulting list contains 1179 genes.

```
dim(genes_id)
## [1] 1179 10
```

Task 9: PPI interactions

We use STRING database to find PPI interactions among differentially expressed genes.

We generate a .txt file with the gene of interest to retrieve from STRING the network. Then, the network is exported in .tsv format.

Task 10: visualize the network

We import the network in R and, using igraph package, we identify and plot the largest connected component. A connected component of a graph is a subgraph in which all nodes are connected with each other via a path. So, it exists a path (series of edges belonging to set of edges E) that connects any two nodes belonging to the subgraph. Identifying connected components is usually useful in biology to underline some patterns or groups of genes which are extremely connected and which tend to influence each other.

FAMP 1 A


```
# this first plot looks very confusing, there are a lot of connections. Let's
# try to take only nodes with at least a certain degree value.

deg <- degree(net.c, mode = "all")
names_nodes <- names(deg[which(deg > 150)])

nodes.deg <- nodes[nodes$external_gene_name %in% names_nodes, ]

nodes.deg <- nodes.deg[nodes.deg$external_gene_name %in% links$X.node1 & nodes.deg$external_gene_name % links$node2, ]

links.deg <- links[links$X.node1 %in% nodes.deg$external_gene_name & links$node2 %in% nodes.deg$external_gene_name, ]

net.deg <- graph_from_data_frame(d = links.deg, vertices = nodes.deg, directed = FALSE)

plot(net.deg, edge.width = 0.5, vertex.color = "orange", vertex.size = 10, vertex.frame.color = "darkgr vertex.label.color = "black", vertex.label.cex = 0.7, edge.curved = 0.1)</pre>
```


Let's try now to set a higher confidence on STRING since we have just seen that the first graph is quite dense of nodes and edges.


```
# Let's try again to keep only nodes with at least a certain degree value
deg <- degree(net.c, mode = "all")
names_nodes <- names(deg[which(deg > 110)])

nodes.deg <- nodes[nodes$external_gene_name %in% names_nodes, ]

nodes.deg <- nodes.deg[nodes.deg$external_gene_name %in% links_high_conf$X.node1 &
    nodes.deg$external_gene_name %in% links_high_conf$node2, ]

links.deg.high <- links_high_conf[links_high_conf$X.node1 %in% nodes.deg$external_gene_name &
    links_high_conf$node2 %in% nodes.deg$external_gene_name, ]

net.deg <- graph_from_data_frame(d = links.deg.high, vertices = nodes.deg, directed = FALSE)

plot(net.deg, edge.width = 0.5, vertex.color = "orange", vertex.size = 10, vertex.frame.color = "darkgr vertex.label.color = "black", vertex.label.cex = 0.7, edge.curved = 0.1)</pre>
```

