Calcul intégral

Calculs d'intégrales par représentations graphiques

Exercice 1

On considère une fonction f dont la courbe représentative est tracée ci-contre dans un repère orthonormé.

Déterminer les valeurs des intégrales suivantes

Exercice 2

On considère la fonction f dont la courbe représentative est donnée ci-contre dans un repère orthonormé.

Donner un encadrement de $\int_{-4}^{5} f(x)dx$.

Exercice 3 Pour tout réel x, on pose f(x) = 2x + 8. Calculer $\int_{-3}^{5} f(x) dx$.

Exercice 4 Soit f la fonction définie pour tout réel $x \in [0;1]$ par $f(x) = \sqrt{1-x^2}$. Après avoir déterminé la nature de la courbe représentative de f, déterminer la valeur de $\int_{-1}^{1} f(x) dx$.

Intégrales et primitives

Exercice 5 Calculer les intégrales suivantes.

$$\mathbf{a.} \int_{-5}^{7} \sqrt{2} dx$$

b.
$$\int_{3}^{14} \frac{1}{x} dx$$

c.
$$\int_{2}^{4} (x^2 + 3x + 4) dx$$

$$\mathbf{d.} \int_0^{10} e^{-5x} \, dx$$

e.
$$\int_{1}^{1} (x^4 - x^2 + x - 1) dx$$

f.
$$\int_{-2}^{2} (8x^5 + 5x^3 + 2x) dx$$

$$\mathbf{g.} \int_0^1 \mathrm{e}^{2x} \, dx$$

h.
$$\int_{1}^{9} \frac{3}{2\sqrt{x}} dx$$

i.
$$\int_0^2 ((x+1)(x+2)) dx$$

j.
$$\int_0^1 \frac{1}{1+x} dx$$

k.
$$\int_{3}^{7} \frac{1}{x^2} dx$$

$$1. \int_{1}^{2} \frac{x+1}{x^3} dx$$

Exercice 6 Calculer les intégrales suivantes.

a.
$$\int_{-2}^{4} 2x e^{x^2} dx$$

b.
$$\int_2^e \frac{1}{x \ln(x)} dx$$

d.
$$\int_0^4 \frac{2x}{1+x^2} dx$$

e.
$$\int_{-1}^{4} \frac{x}{\sqrt{9+x^2}} dx$$

c.
$$\int_{1}^{3} \frac{e^{1/x}}{x^2} dx$$

$$\int_{-3}^{2} \frac{e^x}{(1+e^x)^2} dx$$

Exercice 7 Pour tout réel x > -1, on pose $f(x) = \frac{x}{(x+1)^2}$.

1. Montrer que pour tout réel x > -1, $f(x) = \frac{1}{x+1} - \frac{1}{(x+1)^2}$.

2. En déduire une primitive de f sur] – 1; + ∞ [.

3. Calculer alors $\int_1^3 f(x) dx$.

Exercice 8

On a tracé ci-contre, dans un repère orthonormé, les courbes des fonctions $f: x \mapsto x^2$ et $g: x \mapsto x^3$ sur l'intervalle [0;1].

- 1. Justifier que, pour tout réel $x \in [0;1]$, $f(x) \ge g(x)$.
- 2. Calculer l'aire de la surface grisée.

- Exercice 9 Déterminer la valeur de $\int_0^1 \frac{1}{1+e^x} dx$ en utilisant celle de $\int_0^1 \frac{e^x}{1+e^x} dx + \int_0^1 \frac{1}{1+e^x} dx$.
- **Exercice 10** Déterminer la valeur moyenne de la fonction $f: x \mapsto 3x + 2$ sur [-2;3].
- **Exercice 11** Déterminer la valeur moyenne de la fonction $f: x \mapsto -x^2 + 4x$ sur [0;4].

Intégration par parties

- Exercice 12 À l'aide d'une intégration par parties, calculer $\int_1^4 x \ln(x) dx$. On pourra poser $v = \ln$ et déterminer une fonction u tel que pour tout réel x, u'(x) = x.
- Exercice 13 Le but de cet exercice est de déterminer une primitive de la fonction ln. Puisque ln est continue, le théorème fondamental de l'analyse affirme qu'une primitive est $x \mapsto \int_{1}^{x} \ln(t) dt$, définie pour x > 0.

À l'aide d'une intégration par partie astucieuse, déterminer la valeur de l'intégrale précédente afin de donner une primitive de ln.

- Exercice 14 En utilisant deux intégrations par parties successives, déterminer $\int_0^1 x^2 e^x dx$.
- **Exercice 15** Pour tout entier naturel n, on définit l'intégrale I_n par

$$I_0 = \int_0^1 e^{1-x} dx$$
 et, si $n \ge 1$, $I_n = \int_0^1 x^n e^{1-x} dx$.

- 1. Calculer la valeur exacte de I_0 .
- 2. A l'aide d'une intégration par parties, montrer que pour tout entier naturel n,

$$I_{n+1} = -1 + (n+1)I_n$$
.

- 3. En déduire les valeurs de I_1 et I_2 .
- **Exercice 16** Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n \ln(1+x) dx$.
 - 1. Calculer I_0 .
 - **2**. Montrer que la suite (I_n) est positive et décroissante. Que peut-on en déduire?
 - 3. a. Montrer que, pour tout entier naturel n et tout $x \in [0;1]$, $x^n \ln(1+x) \le x^n$.
 - **b.** En déduire que pour tout $n \in \mathbb{N}$, $I_n \leqslant \frac{1}{n+1}$.
 - c. En déduire $\lim_{n\to+\infty} I_n$.
 - 4. a. En effectuant une intégration par partie, montrer que pour tout entier naturel n, on a

$$I_n = \frac{\ln(2)}{n+1} - \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx.$$

b. Étudier la convergence de la suite (nI_n) .