

Método dos Mínimos Quadrados

R. Urbano, J. Marconi e V. Rodrigues

Introdução

Para entendermos o Método de Mínimos Quadrados, primeiramente supomos que temos um conjunto de N dados (x_i, y_i) , onde cada valor y_i tem um erro associado que chamamos de σ_i , ou seja $(y_i \pm \sigma_i)$ (os σ_i não têm que ser iguais entre si). Não confunda σ com o desvio padrão! Assim, nesta apostila σ será o erro (incerteza) da variável y que até agora definimos como Δy . Vamos supor também que os dados representam certo fenômeno físico que segue uma lei descrita por uma função f.

Usando a descrição gaussiana de erros, a probabilidade P_i de ocorrer a medida (x_i, y_i, σ_i) é dada por:

$$P_{i} = \frac{C}{\sigma_{i}} exp \left[-\frac{1}{2} \left(\frac{(y_{i} - \overline{y_{i}})}{\sigma_{i}} \right)^{2} \right]$$
 (1)

onde $\overline{y_i}$ é o valor médio de y_i e C é uma constante de normalização. Portanto, a probabilidade P de ocorrer o conjunto das N medidas será:

$$P = P_1 P_2 \dots P_N$$

$$= \frac{C}{\sigma_1} exp \left[-\frac{1}{2} \left(\frac{(y_1 - \overline{y_1})}{\sigma_1} \right)^2 \right] \dots \frac{C}{\sigma_N} exp \left[-\frac{1}{2} \left(\frac{(y_N - \overline{y_N})}{\sigma_N} \right)^2 \right]$$

$$= \frac{C^N}{\sigma_1 \sigma_2 \dots \sigma_N} exp \left[-\frac{1}{2} \sum_{i=1}^N \left(\frac{(y_i - \overline{y_i})}{\sigma_i} \right)^2 \right]$$
(2)

Como $\overline{y_i}$ seria o valor que se aproxima do valor "verdadeiro" de y_i e supondo um modelo físico para nossas medidas que segue uma lei descrita por uma função f, podemos escrever que:

$$\overline{y_i} = f(x_i, a_1, a_2, ..., a_n) \tag{3}$$

onde $a_1, a_2, \dots a_n$ são os parâmetros do modelo. Definindo:

$$\chi^2 = \sum_{i=1}^n \left(\frac{(y_i - f(x_i, a_1, a_2, ..., a_n))}{\sigma_i} \right)^2$$
 (4)

podemos reescrever a equação (2) como:

$$P = \frac{C^n}{\prod_{i=1}^n \sigma_i} exp\left[-\frac{1}{2}\chi^2\right]$$
 (5)

Neste caso, para que a função f seja a mais adequada para nossas medidas, ou seja, para que P seja máximo, χ^2 deve ser mínimo.

O método dos mínimos quadrados consiste em ajustar os parâmetros $a_1, a_2, \dots a_n$ de tal forma que χ^2 seja mínimo, ou seja, procuramos resolver o sistema abaixo:

$$\frac{\partial \chi^2}{\partial a_1} = 0 \qquad \frac{\partial \chi^2}{\partial a_2} = 0 \quad \dots \quad \frac{\partial \chi^2}{\partial a_n} = 0 \tag{6}$$

Ajuste de uma função linear: Regressão Linear

Supondo um conjunto de dados e que a função que descreve o nosso sistema seja linear.

$$f(x_i) = ax_i + b (7)$$

A sua representação gráfica típica seria:

Figura 1: Gráfico obtido com dados experimentais no caso particular em que o ajuste é linear (Regressão Linear).

Definindo $w_i = 1/\sigma_i^2$, podemos escrever χ^2 como:

$$\chi^2 = \sum_{i=1}^n w_i (y_i - ax_i - b)^2 \tag{8}$$

Aplicando o método dos mínimos quadrados para obter os parâmetros a e b:

$$\frac{\partial \chi^2}{\partial a} = 2\sum_{i=1}^n w_i (y_i - ax_i - b)(-x_i) = 0 \tag{9}$$

$$\frac{\partial \chi^2}{\partial b} = 2\sum_{i=1}^n w_i (y_i - ax_i - b)(-1) = 0$$
 (10)

Obtemos então um sistema de duas equações e duas incógnitas. Para simplificar a escrita vamos omitir os índices nas somatórias.

$$(\sum wx^2) a + (\sum wx) b = (\sum wyx)$$
 (11)

$$(\sum wx) a + (\sum w) b = (\sum wy)$$
 (12)

Resolvendo o sistema, os valores de a e b são:

$$a = \frac{(\sum w) (\sum wyx) - (\sum wy) (\sum wx)}{\Delta}$$
 (13)

$$b = \frac{(\sum wy)(\sum wx^2) - (\sum wyx)(\sum wx)}{\Delta}$$
 (14)

E os erros associados:

$$\sigma_a^2 = \frac{(\sum w)}{\Delta} \qquad \qquad \sigma_b^2 = \frac{(\sum wx^2)}{\Delta}$$
 (15)

onde

$$\Delta = (\sum w) (\sum wx^2) - (\sum wx)^2$$
 (16)

As equações (13), (14), (15) e (16) são gerais e valem para o caso onde cada σ_i seja diferente dos outros. No caso de termos $\sigma_i = constante = \sigma$ (ou seja o mesmo valor para todo i) as expressões de a, b, σ_a^2 e σ_b^2 podem ser simplificadas:

$$a = \frac{N(\sum yx) - (\sum x)(\sum y)}{\Delta}$$
 (17)

$$b = \frac{(\sum y)(\sum x^2) - (\sum yx)(\sum x)}{\Delta} \tag{18}$$

$$\sigma_a^2 = \frac{N}{\Delta} \sigma^2 \qquad \qquad \sigma_b^2 = \frac{\left(\sum x^2\right)}{\Delta} \sigma^2 \qquad (19)$$

$$\Delta = N \left(\sum x^2 \right) - \left(\sum x \right)^2$$
 (20)

Estas equações são exatas e em princípio são as mesmas utilizadas pelos programas comerciais. Porém, sempre é recomendável verificar a notação e a maneira com que as equações foram definidas, especialmente quando temos um conjunto de dados onde os erros são diferentes em cada ponto $(x_i; y_i \pm \sigma_i)$.

Referência Bibliográfica:

José Henrique Vuolo, Fundamentos da Teoria de Erros (Editora Edgard Blücher Ltda, São Paulo, 1992).