

WACO: Learning workload-aware co-optimization of the format and schedule for a sparse tensor program

Jaeyeon Won, Charith Mendis, Joel Emer, Saman Amarasinghe

Sparse Tensors are Everywhere

Scientific Computing

Deep Learning

Graph Analytics

Sparse Data Representation

Sparse Data Representation

Skipping Ineffectual Computation

Sparse Data Representation

Skipping Ineffectual Computation

Different Loop Traversal

Sparse Data Representation

Skipping Ineffectual Computation

Different Loop Traversal

Writing Fast Sparse Code is Hard!

What would be the optimal format and schedule?

Writing Fast Tensor Program is Hard!

Optimization depends on tensor's shape

Dense Matrix

Matrix1

Optimal Loop Transformation

(Optimal Scheduling Language)

.split(i,i1,i0,256)
.split(k,k1,k0,256)
.split(j,j1,j0,16)
.reorder(i1,k1,j1,i0,k0,j0)
.unroll(k0,4)
.vectorize(i0)
.parallelize(i1)

Matrix 2

.split(i,i1,i0,64)
.reorder(i1,k,i0)
.parallelize(i1)

```
Matrix 3
```

```
.split(i,i1,i0,64)
.split(k,k1,k0,16)
.reorder(k1,i1,i0,k0)
.parallelize(i1)
```

In sparse program, Matrix1 sparsity pattern now matters! Matrix 2

Sparse Matrix

Optimal Loop Transformation

```
.split(i,i1,i0,256)
.split(k,k1,k0,256)
.split(j,j1,j0,16)
.reorder(i1,k1,j1,i0,k0,j0)
.unroll(k0,4)
.vectorize(i0)
.parallelize(i1)
```

```
.split(i,i1,i0,64)
.reorder(i1,k,i0)
.parallelize(i1)
```

```
.split(i,i1,i0,64)
.split(k,k1,k0,16)
.reorder(k1,i1,i0,k0)
.parallelize(i1)
```


Optimal Loop Transformation

- .split(i,i1,i0,256)
 .split(k,k1,k0,256)
 .split(j,j1,j0,16)
 .reorder(i1,k1,j1,i0,k0,j0)
 .unroll(k0,4)
 .vectorize(i0)
 .parallelize(i1)
- .split(i,i1,i0,64) .reorder(i1,k,i0) .parallelize(i1)
- .split(i,i1,i0,64) .split(k,k1,k0,16) .reorder(k1,i1,i0,k0) .parallelize(i1)

Optimal Sparse Format

Given an input sparsity pattern, what is the best schedule and format?

Proposed Approach: WACO

Co-Optimized Format and Schedule

1. Existing approach considers either format or schedule

2. Existing approach considers small search space

1. Existing approach considers either format or schedule

SpMM	Format-only	Schedule-only	Co-optimization
Speedup	1.11×	1.12×	2.02 ×

2. Existing approach considers small search space

1. Existing approach considers either format or schedule

	Format-only	Schedule-only	Co-optimization
Speedup	1.11×	1.12×	2.02 ×

2. Existing approach considers small search space

PLDI'13 [Li et al.]

4 formats

PPoPP'18 [Zhao et al.]

4 formats

SC'20 [Sun et al.]

5 formats

(Matrix-Vector Multiply)

SuperSchedule Template of $C_i = A_{i,k} * B_k$

```
.split(i,i1,i0,?)
.split(k,k1,k0,?)
.reorder(?,?,?,?)
.parallelize(?,?)
```

Compute Schedule

```
A.reorder(?,?,?,?)
A.lvlFormat(i1,?)
A.lvlFormat(i0,?)
A.lvlFormat(k1,?)
A.lvlFormat(k0,?)
```

Format Schedule

```
.split(i,i1,i0,?)
.split(k,k1,k0,?)
.reorder(?,?,?,?)
.parallelize(?,?)
```

Compute Schedule

```
for i in range(32):
  for k in range(32):
```

Initial loop

```
.split(i,i1,i0,2)
.split(k,k1,k0,2)
.reorder(i1,k1,i0,k0)
.parallelize(i1,4)
```

Compute Schedule

Transformed loop

Determines what loop transformations to apply.

SuperSchedule Template of $C_i = A_{i,k} * B_k$

```
.split(i,i1,i0,?)
.split(k,k1,k0,?)
.reorder(?,?,?,?)
.parallelize(?,?)
```

Compute Schedule

```
A.reorder(?,?,?,?)
A.lvlFormat(i1,?)
A.lvlFormat(i0,?)
A.lvlFormat(k1,?)
A.lvlFormat(k0,?)
```

Format Schedule

```
A.reorder(?,?,?,?)
A.lvlFormat(i1,?)
A.lvlFormat(i0,?)
A.lvlFormat(k1,?)
A.lvlFormat(k0,?)
```

Format Schedule

Compressed Sparse Row Format

SuperSchedule Template of $C_i = A_{i,k} * B_k$

```
\begin{array}{c} \text{A.reorder}(?,?,?,?)\\ \text{A.lvlFormat}(i1,?)\\ \text{A.lvlFormat}(i0,?)\\ \text{A.lvlFormat}(i0,?)\\ \text{A.lvlFormat}(k1,?)\\ \text{A.lvlFormat}(k1,?)\\ \text{A.lvlFormat}(k0,?)\\ \text{Compute Schedule} \end{array}
```

- 1. Our space considers both format and schedule.
 - 2. Our space contains $\sim 10^6$ SuperSchedules.

WACO: Cost Model

WACO: Cost Model

Dense World
[#Rows, #Cols]

Dense World [#Rows, #Cols]

Sparse World Is this enough?

Human-crafted features

Feature List

Number of Rows

Number of Cols

Number of Non-Zeros

Average NNZ per row

Min/Max NNZ per row

...

CNN after downsampling

Our Approach (Submanifold Sparse CNN)

Original pattern (Arbitrary size)

Submanifold Sparse
Convolutional
Neural Network*

Conventional Convolution

Submanifold Sparse Convolution⁺

Nonzero area grows quickly ()

Sparsity pattern is unchanged (••)

When we simply use a popular submanifold vision model,

Information does not propagate across distant non-zeros!

2. Return result

Search Space

SuperSchedule

1. Pick candidate from search space

Choose better candidate

WACO: Search Strategy

Given a sparsity pattern, Search the SuperSchedule that minimizes the cost.

WACO: Search Strategy

Nearest-Neighbor Search

We viewed our problem as a nearest neighbor search.

WACO: Search Strategy

Nearest-Neighbor Search

Given a query,

Search the **point** that minimizes a **distance function**.

WACO Search

Given a sparsity pattern,

Search the SuperSchedule that minimizes predicted runtime.

WACO is implemented with an existing NNS Library⁺.

Four Feature Extractors

- 1. Hand-crafted features
- 2. Dense CNN after downsample
- 3. Sparse CNN from a computer vision
 - MinkowskiNet
- 4. WACONet
 - More Stride Layers

(Lower the Better)

Train-Validation Loss

Evaluation

• CPU: Intel Xeon E5-2680 v3

• Data: 975 Real-World Sparse Matrices

Evaluation

• CPU: Intel Xeon E5-2680 v3

• Data: 975 Real-World Sparse Matrices

	Auto-tuner		Hand-Written	
Kernels	Format-only	Schedule-only	TACO w/ Expert	ASpT
SpMV				
SpMM				
SDDMM				
MTTKRP				

Evaluation

CPU: Intel Xeon E5-2680 v3

Data: 975 Real-World Sparse Matrices

	Auto-tuner		Hand-Written	
Kernels	Format-only	Schedule-only	TACO w/ Expert	ASpT
SpMV	1.43x	2.32x	1.54x	-
SpMM	1.18x	1.68x	1.26x	1.36x
SDDMM	-	_	1.29x	1.14x
MTTKRP	1.27x	_	1.35x	-

- 1. Outperforms all baselines on all kernels on average
- 2. Shows good result on **3D sparsity pattern** (MTTKRP)

WACO: Summary

1. Search space considering both format and schedule.

Explore space with Nearest Neighbor Search.

2. WACONet with submanifold sparse convolution.

- Avoid downsampling.
- More stride layers identifies distant non-zeros.

Key takeaways

1. Auto-tuning pays the cost

• 1000(100) runs needed in SpMV(SpMM) to amortize.

2. Load-balancing is crucial

Over 50% of matrices had improved performance with better load-balancing.

3. Increasing sparsity in dense block format can be helpful!

Key takeaways

1. Auto-tuning pays the cost

• 1000(100) runs needed in SpMV(SpMM) to amortize.

2. Load-balancing is crucial

Over 50% of matrices had improved performance with better load-balancing.

3. Increasing sparsity in dense block format can be helpful!

Future Direction

1. Auto-tuning pays the cost

• 1000(100) runs needed in SpMV(SpMM) to amortize.

2. Load-balancing is crucial

Over 50% of matrices had improved performance with better load-balancing.

3. Increasing sparsity in dense block format can be helpful!

Thank you!