

TABELA DE DERIVADAS

Considerando u e v funções deriváveis de x e, k e n constantes:

$(1) f(y) = k \Rightarrow f'(y) = 0$	(10) C() V , C() V-1 , V (L))
$(1) f(x) = k \Rightarrow f'(x) = 0$	(18) $f(u) = u^{\nu} \Rightarrow f'(u) = \nu . u^{\nu - 1} . u' + u^{\nu} . (\ln u) . v'$
$(2) f(x) = x \Rightarrow f'(x) = 1$	$(19) f(x) = sen x \implies f'(x) = cos x$
(3) $f(x) = kx \implies f'(x) = k$	(20) $f(u) = sen u \implies f'(u) = cos u \cdot u'$
$(4) f(x) = ku \Rightarrow f'(x) = ku'$	(21) $f(x) = \cos x = f'(x) = -\sin x$
(5) $f(x) = u \pm v \implies f'(x) = u' \pm v'$	(22) $f(u) = \cos u \implies f'(u) = -\sin u \cdot u'$
(6) $f(x) = u.v \implies f'(x) = u'.v + u.v'$	(23) $f(x) = tg x \Rightarrow y' = \sec^2 x$
(7) $f(x) = \frac{u}{v} \implies f'(x) = \frac{u'.v - u.v'}{v^2}$	(24) $f(u) = tg u \implies f'(u) = (\sec^2 u).u'$
(8) $f(x) = x^n \implies f'(x) = n x^{n-1}$	(25) $f(u) = \sec x \implies f'(u) = \sec x \cdot tgx$
$(9) f(u) = u^n \Rightarrow f'(u) = nu^{n-1} u'$	(26) $f(u) = \sec u \implies f'(u) = (\sec u).(tgu).u'$
$(10) f(x) = e^x \Rightarrow f'(x) = e^x$	(27) $f(u) = \cot g \ u \Rightarrow f'(u) = -(\cos ec^2 u).u'$
$(11) f(u) = e^u \Rightarrow f'(u) = e^u \cdot u'$	(28) $f(u) = \cos ecu \implies f'(u) = -(\cos ecu).(\cot g \ u).u'$
$(12) f(x) = a^x \implies f'(x) = a^x \ln a$	(29) $f(u) = arcsenu \implies f'(u) = \frac{1}{\sqrt{1 - u^2}} u'$
(13) $f(u) = a^u \implies f'(u) = a^u \cdot \ln a \cdot u'$	(30) $f(u) = \arccos u \implies f'(u) = \frac{-1}{\sqrt{1 - u^2}} u'$
(14) $f(x) = \ln x \implies f'(x) = \frac{1}{x}$	(31) $f(u) = arctgu \implies f'(u) = \frac{1}{1+u^2}u'$
(15) $f(u) = \ln u \implies f'(u) = \frac{u'}{u}$	(32) $f(u) = \operatorname{arccot} g \ u \implies f'(u) = \frac{-1}{1 + u^2} u'$
(16) $f(u) = \log_a x \Rightarrow f'(u) = \frac{1}{x \cdot \ln a}$	(33) $f(u) = arc \sec u \implies f'(u) = \frac{1}{u \cdot \sqrt{u^2 - 1}} \cdot u'$
(17) $f(u) = \log_a u \Rightarrow f'(u) = \frac{1}{u \cdot \ln a} \cdot u'$	(34) $f(u) = \arccos ecu \implies f'(u) = \frac{-1}{u \cdot \sqrt{u^2 - 1}} \cdot u'$

Identidades Trigonométricas:

1)
$$sen^2 x + \cos^2 x = 1$$

$$6) \cos ec x = \frac{1}{\sin x}$$

11)
$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

$$2) tg x = \frac{sen x}{\cos x}$$

7)
$$1 + tg^2 x = \sec^2 x$$

$$12) \ sen(2x) = 2 sen x \cdot \cos x$$

$$3) \cot g x = \frac{\cos x}{\sin x}$$

8)
$$1 + \cot g^2 x = \cos^2 x$$

13)
$$\cos(a\pm b) = \cos a \cos b \mu \ sen \ a \ sen \ b$$

$$4) \cot g x = \frac{1}{tg x}$$

9)
$$sen^2 x = \frac{1 - \cos(2x)}{2}$$

14)
$$sen(a \pm b) = sen a cos b \pm cos a sen b$$

$$5) \sec x = \frac{1}{\cos x}$$

10)
$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

15)
$$tg(a \pm b) = \frac{tg \ a \pm tg \ b}{1 \pm tg \ a \ tg \ b}$$

	0°	30°	45°	60°	90°
	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∌i

Produtos Notáveis
$a^2 - b^2 = (a+b) \cdot (a-b)$
$(a\pm b)^2 = a^2 \pm 2ab + b^2$
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$
$a^3 \pm b^3 = (a \pm b) \cdot (a^2 \mu ab + b^2)$

