Fys 4150 Project 4 Figures and stuff

Peter Killingstad and Karl Jacobsen

https://github.com/kaaja/fys4150

November 4, 2017

4b

mcs	Eavg	absMavg	Cv	chi
100	-2.000000	1.000000	0.000000	0.000000
1000	-1.972000	0.991500	0.220864	0.022711
10000	-1.991000	0.996950	0.071676	0.009263
100000	-1.995180	0.998475	0.038467	0.004321
1000000	-1.995904	0.998634	0.032701	0.004093
10000000	-1.995942	0.998643	0.032401	0.004074

Table 1: Estimated quantitites

mcs	Eavg	absMavg	Cv	chi
100	0.201300	0.134106	-100.000000	-100.000000
1000	-1.201518	-0.717034	588.428762	466.254675
10000	-0.249606	-0.171303	123.412688	130.949678
100000	-0.040185	-0.018598	19.901104	7.728200
1000000	-0.003912	-0.002677	1.928037	2.039441
10000000	-0.002028	-0.001736	0.994274	1.573251

Table 2: Percentage deviations from analytical results

1 4c

Figure 1: Expected Energy divided by L^2 . T=1.0. Equilibrium reached after 2^{20} Monte Carlo cycles.

Figure 3: Expected absolute magnetic momentum divided by L^2 . T=1.0.

Equilibrium reached at same point as for the energy.

Figure 2: Expected Energy divided by L^2 . T = 2.4. Equilibrium reached at same point as for T = 1.

Figure 4: Expected absolute magnetic momentum divided by L^2 . T=2.4.

Equilibrium reached at same point as for the others.

Figure 5: Accepted moved divided by L^2 .

2 4d

log	$_{2}MCs$	Т	μ_E/L^2	$< E > /L^2$	$(\frac{\mu_E/L^2}{< E > /L^2} - 1) \cdot 100$	σ_E^2/L^2	$\tfrac{<\!E^2\!>-<\!E\!>^2}{L^2}$	$\left(\frac{\sigma_E/L^2}{1/L^2(<\!E^2>-<\!E>^2)}-1\right)\cdot 100$	$< M >/L^2$	$\frac{<\! M ^2\!>\!/L^2\!-\!<\! M \!>^2}{L^2}$	Cv/L^2	χ/L^2
	11.0	1.0	-1.997061	-1.99706	0.000002	0.023692	0.023692	-0.000002	0.999246	0.001613	0.023692	0.001613
	11.0	2.4	-1.255015	-1.99706	-37.156904	9.419375	0.023692	39657.141668	0.999246	0.001613	0.023692	0.001613

Table 3: Statistics. Fixed initial config.

•

$\log_2 MCs$	Т	μ_E/L^2	$< E > /L^2$	$\left(\frac{\mu_E/L^2}{\langle E\rangle/L^2} - 1\right) \cdot 100$	σ_E^2/L^2	$\frac{<\!E^2\!>-<\!E\!>^2}{L^2}$	$\left(\frac{\sigma_E/L^2}{1/L^2(\langle E^2 \rangle - \langle E \rangle^2)} - 1\right) \cdot 100$	$< M >/L^2$	$\frac{<\! M ^2\!>\!/L^2\!-\!<\! M \!>^2}{L^2}$	Cv/L^2	χ/L^2
		-1.939932 -1.212202		0.000002 -37.513150		6.746561 6.746561	4.565043e-07 2.977495e+01	0.879219 0.879219	26.793008 26.793008	6.746561 6.746561	

Table 4: Statistics. Random initial config.

Figure 6: Probability distribution. Fixed intital T=1.

Figure 7: Probability distribution. Fixed intital T = 2.4.

Figure 8: Probability distribution. Random intital T=1.

Figure 9: Probability distribution. Random intital T=2.4.

Figure 10: Accepted moved divided by L^2 .

3 4e

ds

$\log_2 MCs$	Т	μ_E/L^2	$< E > /L^2$	$(\tfrac{\mu E/L^2}{< E>/L^2} - 1) \cdot 100$	σ_E^2/L^2	$\frac{<\!E^2\!>-<\!E\!>^2}{L^2}$	$(\frac{\sigma E/L^2}{1/L^2(\langle E^2 \rangle - \langle E \rangle^2)} - 1) \cdot 100$	$< M >/L^2$	$\frac{<\! M ^2\!>\!/L^2\!-\!<\! M \!>^2}{L^2}$	Cv/L^2	χ/L^2
		-1.997061 -1.255015	-1.99706 -1.99706	0.000002 -37.156904		0.023692 0.023692	-0.000002 39657.141668	0.999246 0.999246		0.023692 0.023692	

Table 5: something