W6 – Systemy naprawialne

Henryk Maciejewski Marek Woda

Plan wykładu

1. Graf stanów elementu naprawialnego / systemu

 Analiza niezawodnościowa systemu – model Markowa

3. Naprawy prewencyjne – analiza (preventive maintenance)

Graf stanów elementu naprawialnego

S1 – stan sprawności

S2 – stan niesprawności (element uszkodzony – w trakcie naprawy)

 λ_{12} – intensywność przejść (intensywność uszkodzeń)

 λ_{21} – intensywność przejść (intensywność napraw)

Opis i modelowanie takich systemów – za pomocą procesów stochastycznych

Procesy stochastyczne - przypomnienie

Przestrzeń probabilistyczna:

$$[\Omega, \mathcal{B}, P]$$

 Ω – zbiór zdarzeń elementarnych, $\omega \in \Omega$

B – zbiór *zdarzeń losowych*

P-prawdopodobieństwo zdarzeń ze zbioru ${\cal B}$

Proces stochastyczny – rodzina zmiennych losowych:

$${X(t): t \in T}$$

t – parametr (indeks) procesu np. interpretowany jako czas (np. $T=[0, \infty)$)

Wartości zmiennych losowych X – **stany** procesu

Procesy stochastyczne - przypomnienie

Przykład – ruchy Browna (proces Wienera)

(przyrosty procesu $X(t_2) - X(t_1)$ niezależne i mają rozkład normalny)

Stany procesu w R

X(t) dla ustalonego t –

zmienna losowa

Stany procesu w R³

Procesy Markowa, łańcuchy Markowa

Proces Markowa - proces bez pamięci: kolejny stan zależy tylko od stanu bieżącego

Łańcuch Markowa (Markov chain) – proces Markowa z dyskretną przestrzenią stanów

Stany procesu {S1,S2}, czas ciągły

Czas ciągły – określamy **intensywności przejść** (*transition rates*)
Czas dyskretny – określamy **prawdopodobieństwa przejść**

Graf stanów elementu naprawialnego

S1 – stan sprawności

S2 – stan niesprawności (element uszkodzony – w trakcie naprawy)

 λ_{12} – intensywność przejść (intensywność uszkodzeń)

 λ_{21} – intensywność przejść (intensywność napraw)

Analiza niezawodności elementu naprawialnego w oparciu o:

- **F(t)** rozkład czasu pracy
- **G(t)** rozkład czasu naprawy

Przyjmujemy F(t), G(t) – rozkłady wykładnicze, ze średnimi czasami:

T1 – średni czas pracy,

T2 – średni czas naprawy,

wówczas

 $\lambda_{12} = 1/T1$ intensywność uszkodzeń

 $\lambda_{21} = 1/T2$ intensywność napraw

Analizujemy prawdopodobieństwo przebywania systemu w stanach S1, S2: $P_1(t)$, $P_2(t)$

Użyteczną miarą w analizie systemów naprawialnych są prawdopodobieństwa stacjonarne:

$$p_i = \lim_{t \to \infty} P_i(t)$$

Na mocy twierdzenia ergodycznego Markowa, p_1 , p_2 :

- istnieją
- są skończone
- nie zależą od $P_1(0)$ i $P_2(0)$, tj. od stanu początkowego

Zachodzą zależności:

$$p_1 = \lambda_{21}/(\lambda_{12} + \lambda_{21}) = T_1/(T_1 + T_2)$$

$$p_2 = \lambda_{12}/(\lambda_{12} + \lambda_{21}) = T_2/(T_1 + T_2)$$

A – współczynnik gotowości (prawdopodobieństwo przebywania systemu w stanie sprawności)

$$A = p_1$$

Graf stanów systemu naprawialnego

Przykład: Rozważamy system złożony z dwóch elementów, gdzie drugi element jest elementem rezerwowym

- rezerwa gorąca (oba elementy pracują), lub
- rezerwa zimna (drugi włączany w zerowym czasie po awarii pierwszego)

Stany systemu:

- S1 oba elementy sprawne stan sprawności
- S2 jeden element sprawny, drugi uszkodzony stan sprawności
- S3 oba uszkodzone stan niesprawności

S1 – oba elementy sprawne – stan sprawności

S2 – jeden element sprawny, drugi uszkodzony – stan sprawności

S3 – oba uszkodzone – stan niesprawności

 λ - intensywność uszkodzeń

μ- intensywność napraw

 $\lambda^* = 2 \lambda$ dla rezerwy gorącej (oba pracują)

 $\lambda^* = \lambda$ dla rezerwy zimnej (tylko jeden pracuje)

S1 – oba elementy sprawne – stan sprawności

S2 – jeden element sprawny, drugi uszkodzony – stan sprawności

S3 – oba uszkodzone – stan niesprawności

 $A = p_1 + p_2 - współczynnik gotowości tego systemu$

Pokażemy teraz ogólną procedurę wyznaczania prawdopodobieństw stacjonarnych oraz oczekiwanych czasów przejścia do stanu niesprawności dla systemu opisanego modelem Markowa

- Zdefiniować stany niezawodnościowe systemu S1, S2,...,Sn (przyjmujemy, że stany zostały ponumerowane w taki sposób, że indeksy 1,...,m odpowiadają stanom sprawności systemu, zaś m+1,...,n – stanom niesprawności systemu)
- 2. Określić intensywności przejść pomiędzy stanami. Dla rozkładu wykładniczego czasu przejścia Si \rightarrow Sj o dystrybuancie $F(t)=1-\exp(-\lambda_{ij}t)$, intensywność przejścia Si \rightarrow Sj jest równa λ_{ij} .
- 3. Zbudować macierz intensywności przejść $\mathbf{A}=[a_{ij}]_{n\times n}$

$$a_{ij} = \begin{cases} \lambda_{ij} & \text{dla } i \neq j \\ -\sum_{k=1, k \neq i}^{n} \lambda_{ik} & \text{dla } i = j \end{cases}$$

4. Wyznaczyć wektor $\mathbf{p}=[p_1,p_2,...,p_n]$ prawdopodobieństw stacjonarnych przebywania systemu w stanach 1,2,...,n:

$$\mathbf{p} = [0, 0, ..., 0, 1]_{1 \times n} \cdot \mathbf{A}_{prob}^{-1}$$

gdzie A_{prob} powstaje z macierzy A po zastąpieniu ostatniej kolumny A wektorem złożonym z 1

5. Wyznaczyć średni czas t_1 = $\mathbf{t}(1)$ przejścia systemu ze stanu S_1 (sprawności) do stanu niesprawności, gdzie wektor \mathbf{t} otrzymuje się z zależności:

$$\mathbf{t} = -\mathbf{B}_{m \times m}^{-1} \cdot \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{m \times 1}$$

gdzie macierz **B** powstaje z macierzy **A** po usunięciu wierszy i kolumn odpowiadających stanom niesprawności.

Element **t**(i) (i=1,2,...,m) wektora **t** jest **średnim czasem przejścia** ze stanu sprawności i **do stanu niesprawności**.

6. Na podstawie wektora p, wyznaczyć współczynnik gotowości systemu, jako sumę elementów wektora p odpowiadających stanom sprawności:

$$A = \sum_{i: Si-\text{stan sprawności}} p_i$$

średni czas pracy systemu (czas do awarii):

$$t_1 = \mathbf{t}(1)$$

Przykład 1 System składa się z 55 węzłów o modelu: (system bez rezerwy: S_1 – stan sprawności, S_2 – niesprawności)

Przyjmujemy parametry: $1/\lambda_{12} = 20000 \text{ h}$ -- średni czas pracy (MTBF) $1/\lambda_{21} = 24 \text{ h}$ -- średni czas naprawy

Przykład 1 System składa się z 55 węzłów o modelu: (system bez rezerwy: S_1 – stan sprawności, S_2 – niesprawności)

Wyniki analizy:

a	a [dni]	1-a [h]	t [y]	t [w]
(gotowość)	(gotowość – dni w	(niegotowość –	(średni czas do	(średni czas do
	roku)	godziny w roku)	awarii systemu)	awarii systemu –
			-	tygodnie)
0.8743	319.1	1101	0.02038	1.06

Przykład 1 Gotowość w zależności od parametru MTBF urządzenia (system bez rezerwowania)

Przykład 1 Gotowość w zależności od średniego czasu naprawy (system bez rezerwowania)

Przykład 2 System składa się z 55 węzłów o modelu: (system z rezerwą)

Wyniki analizy:

a (gotowość)	a [dni] (gotowość – dni w roku)	1-a [h] (niegotowość – godziny w roku)	t [y] (średni czas do awarii systemu)	t [w] (średni czas do awarii systemu – tygodnie)
0.9984	364.4	14.35	0.04	2.12

Przykład 1 Gotowość w zależności od parametru MTBF urządzenia (system z rezerwowaniem)

Przykład 1 Gotowość w zależności od średniego czasu naprawy (system z rezerwowaniem)

Modelowanie wpływu napraw prewencyjnych

Stany:

- zużycia (D, deterioration)
- przeglądów (I, inspection)
- napraw (M, maintenance)

Henryk MACIEJEWSKI, George ANDERS

Planowanie napraw prewencyjnych

Proponujemy model systemu uwzględniający stany:

- zużycia (D, deterioration)
- przeglądów (I, inspection)
- napraw (M, maintenance)

Parametry systemu:

- intensywności przejść (zał.: D1 \rightarrow D2 \rightarrow D3 \rightarrow F: 6, 10, 2 y)
- prawdopodobieństwa decyzji w stanach I
- prawdopodobieństwa ścieżek M→D (wynik napraw)
- koszty stanów

Henryk MACIEJEWSKI, George ANDERS

Planowanie napraw prewencyjnych

Henryk MACIEJEWSKI, George ANDERS

Przykład: Analiza następującej maintenance policy:

	M21	M22	M32	M33
Cost of state	3.5	10	.10	75
Duration	8 h	32 h	32 h	5 d
Prob M→D1	0	0	0	0.99
Prob M→D2	0.99	0.98	0.8	0.01
Prob M→D3	0.01	0.02	0.2	0
Prob M→next M	0	N/A	0	N/A

Wyniki:

Cost 4.0 Unavailability 0.001

Time to failure 27.8 years

(bez napraw prewencyjnych $T_F=18$ lat)

Henryk MACIEJEWSKI, George ANDERS

Przykład – analiza wpływu przeglądów / napraw prewencyjnych na niezawodność

 Budujemy probabilistyczny model procesu życia/inspekcji/napraw (proces Markowa)

D – stany sprawności systemu I – stany inspekcji M – stany napraw

Określamy czasy przejść między stanami, czas realizacji inspekcji i napraw oraz prawdopodobieństwa decyzji

Przykład – analiza wpływu przeglądów / napraw prewencyjnych na niezawodność

Rozwiązanie:

czasy przejścia (do awarii)

 $D1 \rightarrow F$

 $D2 \rightarrow F$

 $D3 \rightarrow F$

prawdopodobieństwa przebywania w systemu w stanach

 Rozwiązanie analityczne procesu Markowa (rozwiązanie symulacyjne jeśli chcemy znać rozkłady czasów przejść)

Inspekcje co 1 rok