

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Miaoshiqi (Shiki) Liu

University of Toronto

July 27, 2022

July 27, 2022

Recap

Learnt in last module:

- Stochastic convergence

 - ▷ Convergence in probability
 - ▷ Convergence almost surely
 - \triangleright Convergence in L^p

Outline

- Convergence of functions of random variables
 - ▷ Slutsky's theorem
- Laws of large numbers

 - ▷ SLLN
- Central limit theorem

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$? $\alpha n \times n + bn \times n$

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then for any real numbers a, b,

- $aX_n + bY_n \xrightarrow{a.s.} aX + bY$;
- $X_n Y_n \xrightarrow{a.s.} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then for any real numbers a, b,

- $aX_n + bY_n \xrightarrow{P} aX + bY$;
- $X_n Y_n \xrightarrow{P} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (L^p)

Suppose the probability space is complete, if $X_n \xrightarrow{L^p} X$, $Y_n \xrightarrow{L^p} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{L^p} aX + bY$$
;

Remark:

• Still require all the random variables to be defined on the same probability space

$$Xn \quad E|Xn| < \omega$$
.
 $Yn \quad E|Yn| < \omega$
 $Xn \mid Yn \quad E|Xn \mid Yn \mid < \omega$?

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} c$ (c is a constant), then

- $X_n + Y_n \xrightarrow{d} X + c;$ $Y_n \xrightarrow{d} c$
- $X_n Y_n \xrightarrow{d} cX$;
- $X_n/Y_n \xrightarrow{d} X/c$, where $c \neq 0$.

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} c$ (c is a constant), then

- $X_n + Y_n \xrightarrow{d} X + c;$ $X_n Y_n \xrightarrow{d} cX;$
- $X_n/Y_n \xrightarrow{d} X/c$, where $c \neq 0$.

Remark:

• The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (c is a constant) is necessary.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (c is a constant) is necessary.

Examples:

$$X_n \sim \mathcal{N}(0,1), Y_n = -X_n$$
, then

$$\times$$
, $\gamma_1 = - \times$,

- $X_n \xrightarrow{d} Z \sim \mathcal{N}(0,1), Y_n \xrightarrow{d} Z \sim \mathcal{N}(0,1);$
- $X_n + Y_n \xrightarrow{d} 0$: $\longrightarrow X_n + Y_n \xrightarrow{d} Z_n = X_n$
- $X_n Y_n = -X_n^2 \xrightarrow{d} -\chi^2(1);$ $\longrightarrow \times_n Y_n \xrightarrow{d} Z^2 \sim \chi^2(1) \times$
- $X_n/Y_n = -1$.

$$\longrightarrow \times n/ \setminus n \xrightarrow{d} 2/2 = 1 \times .$$

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$; ×n /n ~ ×Y $g(x_n) = x_n^2$
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$;

where D_g is the set of discontinuity points of $g(\cdot)$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$;
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$:

where D_g is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_g only include countably many points, then ... P(X = x) = 0. P(X = x) = 0.

$$P(X \in Dg) = \sum_{i=1}^{\infty} P(X = \chi_i) = 0^{-1}$$

$$M = E(xi)$$
 $E(|xi|) < \omega$

 $\overline{X} - M = \frac{\sum_{i=1}^{n} x_i - n_i M}{p} = 0$

Weak Law of Large Numbers (WLLN)

If X_1, X_2, \dots, X_n are i.i.d. random variables, $\mu = \mathbb{E}(|X_i|) < \infty$, then

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \xrightarrow{P} \mu. \qquad \bar{X} - \mu \xrightarrow{P} o.$$

Remark:

A more easy-to-prove version is the L^2 weak law, where an additional assumption $Var(X_i) < \infty$ is required.

1/ar(Xi) = 52 cx

Sketch of the proof:

Sketch of the proof.

$$E(\bar{x}) = M, \quad Var(\bar{x}) = \frac{\sigma^2}{n}.$$

$$E(\bar{x}) = M, \quad Var(\bar{x}) = \frac{\sigma^2}{n}.$$

$$Var(\bar{x}) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x}) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

$$Var(\bar{x} - M) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\{X_{n,k}\}_{1 \le k \le n}$.

Remark: We can consider the limiting property of the row sum S_n .

$$Mn = E(Sn)$$
 $\neq nM$

Law of Large Numbers

L^2 weak law for triangular array

Suppose $\{X_{n,k}\}$ is a triangular array, $n=1,2,\cdots,k=1,2,\cdots,n$. Let $S_n=\sum_{k=1}^n X_{n,k},\ \mu_n=\mathbb{E}(S_n),\ \text{if}\ \frac{\sigma_n^2/b_n^2\to 0}{\sigma_n^2/b_n^2\to 0},\ \text{where}\ \frac{\sigma_n^2=Var(S_n)}{\sigma_n^2/s_n^2}\ \text{and}\ b_n\ \text{is a sequence}$ of positive real numbers, then

$$\frac{S_n-\mu_n}{b_n} \quad \xrightarrow{P} \quad 0.$$

Remark:

The L^2 weak law for i.i.d. random variables is a special case of that for triangular array.

Proof:

$$P\left(\left|\frac{Sn-Mn}{bn}\right| > \mathcal{E}\right) = P\left(\left(\frac{Sn-Mn}{bn}\right)^{2} > \mathcal{E}^{2}\right)$$

$$= \frac{E\left(\frac{Sn-Mn}{bn}\right)^{2}}{\mathcal{E}^{2}} = \frac{E\left(Sn-E(Sn)\right)^{2}}{bn^{2} \mathcal{E}^{2}}$$

$$= \frac{Vor\left(Sn\right)}{\sqrt{Sn}}$$

Proof:

Remark:

 $(\times n1(|\times n| \leq bn))$ A more generalized version incorporates truncation, then the second-moment constraint is relieved.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{n} \xrightarrow{a.s.} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i} \xrightarrow{a.s.} \mu.$

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let X_i , $i = 1, \dots, n$ i.i.d. with distribution function $F(\cdot)$, and let

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$
, then as $n \to \infty$, $f(x) = P(x \le x)$

Empirical CPF
$$\sup_{x \in \mathbb{R}} |F(x) - F_n(x)| \rightarrow 0$$
, a.s.

Proof:

$$\begin{aligned}
& Y \times \in |R| & f_n(X) = \frac{1}{n} \sum_{i=1}^{n} 1(X_i \in X) \\
& = p(X_i \in X) \\
& = p(X_i \in X)
\end{aligned}$$

$$\begin{aligned}
& = p(X_i \in X) \\
& = p(X_i \in X)
\end{aligned}$$

$$\begin{aligned}
& = p(X_i \in X) \\
& = p(X_i \in X)
\end{aligned}$$

$$\begin{aligned}
& = p(X_i \in X)
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
& = p(X_i \in X)
\end{aligned}$$

$$\end{aligned}$$

15 / 18

Proof:
$$F(x_j) - F(x_{j-1}) = \frac{1}{m}$$
. $F(x_j) - F(x_{j-1}) = \frac{1}{m}$. $F(x_j) - F(x_{j-1}) = \frac{1}{m}$. $F(x_j) - F(x_{j-1}) = \frac{1}{m}$. $F(x_j) - F(x_j) = \frac{1}{m}$. $F(x_j) - F(x_j) = \frac{1}{m}$. $F(x_j) - F(x_j) = \frac{1}{m}$.

Sup $|F_n(x) - F_n(x)| \le \max |f_n(x_i) - F_n(x_i)| + m$. $x \in \mathbb{R}$ Denote $A_i = \{w : \lim_{n \to \infty} F_n(x_i) \neq F_n(x_i)\} P(A_i) = 0$. $A = \bigcup_{i \in \mathbb{N}} A_i \qquad P(A_i) = 0$, on $A \in \lim_{n \to \infty} F_n(x_i) = F_n(x_i)$

 $\forall \ \mathcal{E} \neq 0$. choose $m \quad \frac{1}{m} < \mathcal{E}$, $\mathcal{N}(\mathcal{E}, \hat{c})$ $\forall \ \mathcal{E} \neq 0$. $\forall \ \mathcal{E} \neq 0$.

Proof:
$$Choose \ N(E) = max \ N(E, E) < m$$
 $\forall n > N(E)$
 $max \ | F_n(x_i) - F(x_i) | < E - \frac{1}{m}.$
 $sup \ | F_n(x_i) - F(x_i) | < E - \frac{1}{m} + \frac{1}{m} = E.$
 $x \in \mathbb{R}$

A. $P(A) = 0$. on $A \in \mathcal{Y} \in S_0$. $\exists N(E) \ \forall n > N(E)$
 $sup \ | F_n(x_i) - F(x_i) | < E.$
 $sup \ | F_n(x_i) - F(x_i) | < E.$
 $sup \ | F_n(x_i) - F(x_i) | < E.$
 $sup \ | F_n(x_i) - F(x_i) | < E.$
 $sup \ | F_n(x_i) - F(x_i) | < E.$
 $sup \ | F_n(x_i) - F_n(x_i) | < E.$

on Ac

Central Limit Theorem

What is the limiting distribution of the sample mean?

Classic CLT

Suppose $X_1, \dots X_n$ is a sequence of i.i.d. random variables with $\mathbb{E}(X_i) = \mu$,

$$Var(X_i) = \sigma^2 < \infty$$
, then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0,1). \qquad \xrightarrow{p \to \infty} \mathcal{N}$$

Remark:

$$\frac{\sqrt[3]{n}-\sqrt{n}}{\sigma} \xrightarrow{d} \left(\frac{1}{\sqrt{n}} N(0)\right) = 0$$

- The proof involves characteristic function.
- A more generalized CLT is referred to as "Lindeberg CLT".

Central Limit Theorem

Example:

Suppose $X_i \sim Bernoulli(p)$ i.i.d., consider $Z_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$, then by CLT,

 $Z_n \sim \mathcal{N}(0,1)$ asymptotically.

$$\frac{\sqrt{n(x-p)}}{\sqrt{p(1-p)}} \xrightarrow{d} N(0,1)$$

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.

Problem 2: Prove that on a complete probability space, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer i has mean $\mathbb{E}(X_i) = 2$ (minutes) and $Var(X_i) = 1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90 < Y < 110)$.

July 27, 2022