

1557. Minimum Number of Vertices to Reach All Nodes

Medium Topics Companies Hint

Given a **directed acyclic graph**, with n vertices numbered from 0 to n-1, and an array edges where edges [i] = $[from_i, to_i]$ represer

88

8

Find the smallest set of vertices from which all nodes in the graph are reachable. It's guaranteed that a unique solution exists.

Notice that you can return the vertices in any order.

Example 1:

Input: n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]]

Output: [0,3]

Explanation: It's not possible to reach all the nodes from a single vertex. From 0 we can reach [0,1

Example 2:

Input: n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]]

Output: [0,2,3]

Explanation: Notice that vertices 0, 3 and 2 are not reachable from any other node, so we must inclu

Constraints:

- 2 <= n <= 10⁵
- 1 <= edges.length <= $min(10^5, n * (n 1) / 2)$
- edges[i].length == 2
- \bullet 0 <= from_i, to_i < n
- \bullet All pairs (from $_{i}$, to $_{i})$ are distinct.

Seen this question in a real interview before? 1/4

Yes No

Accepted 171.2K Submissions 211.1K Acceptance Rate 81.1%

Topics

Companies