Summarizing Data

Computational Mathematics and Statistics

Jason Bryer, Ph.D.

January 28, 2025

One Minute Paper Results

What was the most important thing you learned during this class?

What important question remains unanswered for you?

```
first covered confusing future be everything using EL Class data syntax question Qet moment new know since language programming session analysis upon both session analysis of the confusion of t
```

Data Types / Descriptives / Visualizations

Data Type	Descriptive Stats	Visualization
Continuous	mean, median, mode, standard deviation, IQR	histogram, density, box plot
Discrete	contingency table, proportional table, median	bar plot
Categorical	contingency table, proportional table	bar plot
Ordinal	contingency table, proportional table, median	bar plot
Two quantitative	correlation	scatter plot
Two qualitative	contingency table, chi-squared	mosaic plot, bar plot
Quantitative & Qualitative	grouped summaries, ANOVA, t-test	box plot

Variance

Population Variance:

$$S^2 = rac{\Sigma (x_i - ar{x})^2}{N}$$

Consider a dataset with five values (black points in the figure). For the largest value, the deviance is represented by the blue line ($x_i-ar{x}$).

See also:

https://shiny.rit.albany.edu/stat/visualizess/ https://github.com/jbryer/VisualStats/

Population Variance:

$$S^2 = rac{\Sigma (x_i - ar{x})^2}{N}$$

In the numerator, we square each of these deviances. We can conceptualize this as a square. Here, we add the deviance in the *y* direction.

Population Variance:

$$S^2 = rac{\Sigma (x_i - ar{x})^2}{N}$$

We end up with a square.

Population Variance:

$$S^2 = rac{\Sigma (x_i - ar{x})^2}{N}$$

We can plot the squared deviance for all the data points. That is, each component in the numerator is the area of each of these squares.

Population Variance:

$$S^2 = rac{\Sigma (x_i - ar{x})^2}{N}$$

The variance is therefore the average of the area of all these squares, here represented by the orange square.

Population versus Sample Variance

Typically we want the sample variance. The difference is we divide by n-1 to calculate the sample variance. This results in a slightly larger area (variance) then if we divide by n.

Population Variance (yellow):

$$S^2 = rac{\Sigma (x_i - ar{x})^2}{N}$$

Sample Variance (green):

$$s^2 = rac{\Sigma (x_i - ar{x})^2}{n-1}$$

Consider the following data randomly selected from the normal distribution:

```
set.seed(41)
x < - rnorm(30, mean = 100, sd = 15)
mean(x); sd(x)
## [1] 103.1934
## [1] 16.8945
median(x); IQR(x)
## [1] 103.9947
## [1] 25.68004
```


Let's add an extreme value:

x < -c(x, 1000)

Median and IQR are more robust to skewness and outliers than mean and SD. Therefore,

- for skewed distributions it is often more helpful to use median and IQR to describe the center and spread
- for symmetric distributions it is often more helpful to use the mean and SD to describe the center and spread

Grammer of Graphics

Data Visualizations with ggplot2

- ggplot2 is an R package that provides an alternative framework based upon Wilkinson's (2005) Grammar of Graphics.
- ggplot2 is, in general, more flexible for creating "prettier" and complex plots.
- Works by creating layers of different types of objects/geometries (i.e. bars, points, lines, polygons, etc.) ggplot2 has at least three ways of creating plots:

```
1. qplot
2. ggplot(...) + geom_XXX(...) + ...
3. ggplot(...) + layer(...)
```

• We will focus only on the second.

Parts of a ggplot2 Statement

Data ggplot(myDataFrame, aes(x=x, y=y))

Layers geom_point(), geom_histogram()

Facetsfacet_wrap(~ cut), facet_grid(~ cut)

Scales scale_y_log10()

Other options
 ggtitle('my title'), ylim(c(0, 10000)), xlab('x-axis label')

Lots of geoms


```
ls('package:ggplot2')[grep('^geom_', ls('package:ggplot2'))]
```

```
[1] "geom abline"
                                  "geom_area"
                                                            "geom bar"
    [4] "geom_bin_2d"
                                  "geom_bin2d"
                                                            "geom_blank"
                                  "geom_col"
    [7] "geom_boxplot"
                                                            "geom_contour"
   [10] "geom_contour_filled"
                                  "geom_count"
                                                            "geom_crossbar"
                                  "geom_density"
   [13] "geom_curve"
                                                            "geom_density_2d"
   [16] "geom_density_2d_filled" "geom_density2d"
                                                            "geom_density2d_filled"
   [19] "geom_dotplot"
                                  "geom_errorbar"
                                                            "geom_errorbarh"
   [22] "geom_freqpoly"
                                  "geom_function"
                                                            "geom_hex"
   [25] "geom_histogram"
                                                            "geom_jitter"
                                  "geom_hline"
   [28] "geom_label"
                                  "geom_line"
                                                            "geom_linerange"
                                  "geom_path"
                                                            "geom_point"
   [31] "geom_map"
                                                            "geom_qq"
   [34] "geom_pointrange"
                                  "geom_polygon"
                                  "geom_quantile"
   [37] "geom_qq_line"
                                                            "geom_raster"
                                  "geom_ribbon"
   [40] "geom_rect"
                                                            "geom_rug"
   [43] "geom_segment"
                                  "geom_sf"
                                                            "geom_sf_label"
   [46] "geom_sf_text"
                                  "geom_smooth"
                                                            "geom_spoke"
  [49] "geom_step"
                                  "geom_text"
                                                            "geom_tile"
## [52] "geom_violin"
                                  "geom_vline"
```

Data Visualization Cheat Sheet

Scatterplot

ggplot(legosets, aes(x=pieces, y=US_retailPrice)) + geom_point()

Scatterplot (cont.)

ggplot(legosets, aes(x=pieces, y=US_retailPrice, color=availability)) + geom_point()

Scatterplot (cont.)

ggplot(legosets, aes(x=pieces, y=US_retailPrice, size=minifigs, color=availability)) + geom_point()

Scatterplot (cont.)

ggplot(legosets, aes(x=pieces, y=US_retailPrice, size=minifigs)) + geom_point() + facet_wrap(~ availability)

Boxplots

ggplot(legosets, aes(x='Lego', y=US_retailPrice)) + geom_boxplot()

Boxplots (cont.)

ggplot(legosets, aes(x=availability, y=US_retailPrice)) + geom_boxplot()

Boxplot (cont.)

ggplot(legosets, aes(x=availability, y=US_retailPrice)) + geom_boxplot() + coord_flip()

Histograms

ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram(binwidth = 25)

Histograms (cont.)

ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram(bins = 15) + scale_x_log10()

Histograms (cont.)

ggplot(legosets, aes(x = US_retailPrice)) + geom_histogram(binwidth = 25) + facet_wrap(~ availability)

Density Plots

ggplot(legosets, aes(x = US_retailPrice, color = availability)) + geom_density()

Density Plots (cont.)

ggplot(legosets, aes(x = US_retailPrice, color = availability)) + geom_density() + scale_x_log10()

ggplot2 aesthetics

Likert Scales

Likert scales are a type of questionnaire where respondents are asked to rate items on scales usually ranging from four to seven levels (e.g. strongly disagree to strongly agree).

```
library(likert)
library(reshape)
data(pisaitems)
items24 <- pisaitems[,substr(names(pisaitems), 1,5) == 'ST24Q']</pre>
items24 <- rename(items24, c(</pre>
            ST24Q01="I read only if I have to.",
            ST24Q02="Reading is one of my favorite hobbies.",
            ST24Q03="I like talking about books with other people.",
            ST24004="I find it hard to finish books.",
            ST24Q05="I feel happy if I receive a book as a present.",
            ST24Q06="For me, reading is a waste of time.",
            ST24Q07="I enjoy going to a bookstore or a library.",
            ST24Q08="I read only to get information that I need.",
            ST24Q09="I cannot sit still and read for more than a few minutes.",
            ST24Q10="I like to express my opinions about books I have read.",
            ST24Q11="I like to exchange books with my friends."))
```

likert R Package


```
l24 <- likert(items24)
summary(l24)</pre>
```

```
##
                                                                     low neutral
                                                           Item
## 10
        I like to express my opinions about books I have read. 41.07516
## 5
                I feel happy if I receive a book as a present. 46.93475
                                                                               0
## 8
                   I read only to get information that I need. 50.39874
                                                                               0
                    I enjoy going to a bookstore or a library. 51.21231
## 7
## 3
                 I like talking about books with other people. 54.99129
                                                                                0
## 11
                     I like to exchange books with my friends. 55.54115
                                                                               0
## 2
                        Reading is one of my favorite hobbies. 56.64470
                                                                                0
## 1
                                     I read only if I have to. 58.72868
                                                                                0
## 4
                               I find it hard to finish books. 65.35125
                                                                               0
     I cannot sit still and read for more than a few minutes, 76,24524
                                                                               0
## 6
                           For me, reading is a waste of time. 82.88729
                                                                               0
          high
##
                               sd
                   mean
## 10 58.92484 2.604913 0.9009968
     53.06525 2.466751 0.9446590
     49.60126 2.484616 0.9089688
     48.78769 2.428508 0.9164136
     45.00871 2.328049 0.9090326
## 11 44.45885 2.343193 0.9609234
## 2 43.35530 2.344530 0.9277495
```

likert Plots

plot(l24)

likert Plots

plot(l24, type='heat')

likert Plots

plot(l24, type='density')

Pie Charts

There is only one pie chart in *OpenIntro Statistics* (Diez, Barr, & Çetinkaya-Rundel, 2015, p. 48). Consider the following three pie charts that represent the preference of five different colors. Is there a difference between the three pie charts? This is probably a difficult to answer.

Pie Charts

There is only one pie chart in *OpenIntro Statistics* (Diez, Barr, & Çetinkaya-Rundel, 2015, p. 48). Consider the following three pie charts that represent the preference of five different colors. Is there a difference between the three pie charts? This is probably a difficult to answer.

38 / 41

"There is no data that can be displayed in a pie chart that cannot better be displayed in some other type of chart"

John Tukey

Additional Resources

For data visualization:

- ggplot2 website: https://ggplot2.tidyverse.org
- R for Data Science book: https://r4ds.had.co.nz/data-visualisation.html
- R Graphics Cookbook: https://r-graphics.org
- Data visualization cheat sheet: https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf

One Minute Paper

- 1. What was the most important thing you learned during this class?
- 2. What important question remains unanswered for you?

https://forms.gle/sTwKB3HivjtbafBb7