Energy Balances and Constraints

Or
$$dU(S, V, n_i) = TdS - pdV + \sum_i \mu_i dN_i$$

Jimmy Jia

jimmy@jimmyjia.com

Last Edit: April 14, 2019

This work is licensed under a <u>Creative Commons</u>
Attribution 4.0 International License

Agenda for Intensive

AM

- Introductions
- Energy Balance
- Niagara Falls Case Study

PM

- The Utility Business Model
- Team Formation and Term Project
- General Q&A

Hi! - Jimmy

- CEO, Distributed Energy Management
- Chair, MIT Enterprise Forum of the Northwest
 - Territory Manager, Olympus
 - Associate Engineer, Panasonic

- Energy pervades everything we do.
- How should we interact with it?

Introductions

- What do you do?
- A quandary or a question that the world faces
- How energy may/may not impact that issue
- How you wish to contribute to that answer

Historical timeline – the need for high temperatures

Ages of Man	Metallurgical	Fuel	Technology
Stone Age 1.5M BCE – 2400 BCE	N/A	Hunter-Gather	Human
		Agriculture	Animals
		300 °C Wood	350 °C Campfire
			800 °C Pit Kiln
Bronze Age 3000 BCE – 1500 BCE	850 °C Bronze	2000 °C Oil	1000 °C Bloomery
Iron Age 1300 BCE – 500 AD	1538 °C Iron	2000 °C Coal	2000 °C Blast Furnace

Evolution of energy consumption in society

Need → manual → automation

Is this how we relate to energy?

http://www.youtube.com/watch?v=BVxOb8-d7Ic

What the Greeks thought

 Energy (Ancient Greek: ἐνέργεια energeia "activity, operation")

 an indirectly observed quantity that is often understood as the ability to do Work.

 Work is the ability of one physical object to move a second physical object.

Energy is never stationary

Forms of Energy

Forms of Energy

Three laws of thermodynamics

École Polytechnique	Glasgow school	Berlin school	Edinburgh school
<u>Sadi Carnot</u> (1796-1832)	William Thomson (1824-1907)	Rudolf Clausius (1822-1888)	<u>James Maxwell</u> (1831-1879)
Vienna school	Gibbsian school	Dresden school	Dutch school
CHAP CHAP			
Ludwig Boltzmann (1844-1906)	Willard Gibbs (1839-1903)	<u>Gustav Zeuner</u> (1828-1907)	Johannes der Waals (1837-1923)

The three laws of thermodynamics

First Law: Energy must always be in balance

(Energy in) == (Useful energy out) + (Wasted energy out)

Second Law: We transform energy between forms

Wasted energy out

From	With	То
Light	Solar Cell	Electricity
Electricity	Stove	Heat
Petroleum	Engine	Motion

Transformations need dedicated machinery

Wasted energy out

Steam Engine

Steam Clock

Third Law: There will always be loss

Common Devices that Convert

Efficiencies of common energy conversion devices

Energy Conversion Device	Energy Conversion	Typical Efficiency, %
Electric heater	Electricity/Thermal	100
Hair drier	Electricity/Thermal	100
Electric generator	Mechanical/Electricity	95
Electric motor (large)	Electricity/Mechanical	90
Battery	Chemical/Electricity	90
Steam boiler (power plant)	Chemical/Thermal	85
Home gas furnace	Chemical/Thermal	85
Home oil furnace	Chemical/Thermal	65
Electric motor (small)	Electricity/Mechanical	65
Home coal furnace	Chemical/Thermal	55
Steam turbine	Thermal/Mechanical	45
Gas turbine (aircraft)	Chemical/Mechanical	35
Gas turbine (industrial)	Chemical/Mechanical	30
Automobile engine	Chemical/Mechanical	25
Fluorescent lamp	Electricity/Light	20
Silicon solar cell	Solar/Electricity	15
Steam locomotive	Chemical/Mechanical	10
Incandescent lamp	Electricity/Light	5

The three laws of thermodynamics

Energy Balance of the USA

Estimated U.S. Energy Use in 2008: ~99.2 Quads

Supply (or Energy In)

Solar 0.09

Nuclear 8.45

> Hydro 2.45

> > Wind 0.51

Geothermal 0.35

> Natural Gas 23.84

> > Coal 22.42

Biomass 3.88

Energy Out

42% of fuel becomes "Energy Services"

Energy Out

Demand

Solar 0.09 Nuclear 8.45 Wind 0.51 Geothermal 0.35 Natural Gas 23.84 Coal 22.42 **Biomass** 3.88

Petroleum

Rejected Energy 57.07

Energy Services 42.15

Electricity

Solar 0.09

Nuclear 8.45

> Hydro 2.45

> > Wind 0.51

Geothermal 0.35

> Natural Gas 23.84

> > Coal 22.42

Biomass 3.88

Petroleum 37.13 Electricity Generation 39.97

> Residential 11.48

Commercial 8.58

Industrial 23.94

Transportation 27.86 Rejected Energy 57.07

Energy Services 42.15

Transport via Transmission Lines

Rejected Energy 57.07

Energy Services 42.15

Transport via Roads

How efficient are we?

Estimated U.S. Energy Use in 2008: ~99.2 Quads

Some Physical Constraints

Some Regulatory Constraints

Some Financial Constraints

The Constrained Energy Ecosystem

The Constrained Energy Ecosystem

The People Involved

Akio Toyoda CEO Toyota Builds cars

Rex Tillerson, CEO ExxonMobil Gasoline to runs cars

Douglas Oberhelman
CEO Caterpillar
Builds paving equipment

Richard Fairbanks
CEO Capital One
Auto loans

Lynn Peterson
WA Sec. of Transportation
Taxes and funds roads

The People Involved

Akio Toyoda **CEO** Toyota **Builds** cars

Richard Fairbanks **CEO Capital One** Auto loans

What this course is about

This is NOT a course about ENERGY

What this course is about

This is NOT a course about ENERGY

This IS a course about our societal CONTEXT and the demands it places on energy

Philosophy of this Term

Energy is what has historically propelled societal accomplishments.

- It is a measure of work and accomplishment.

Philosophy of this Term

Energy is what has historically propelled societal accomplishments.

- It is a measure of work and accomplishment.

Access to energy has traditionally dictated strength of a civilization

- Energy is merely another resource.

Philosophy of this Term

Energy is what has historically propelled societal accomplishments.

- It is a measure of work and accomplishment.

Access to energy has traditionally dictated strength of a civilization

- Energy is merely another resource.

Needs are based on our societal assumptions and expectations.

- Energy is a symptom, not the problem, that society faces.

Framework for the course

Generation	Transmission	Consumption

Framework for the course

Public Interest			
Government			
Business			
Generation	Transmission	Consumption	

Map for the Curriculum

Term 1:

How we got into this mess?

Term 2:

Problem with no solutions

Term 3:

Questions yet to be asked

- Electric Grid
- Transportation
- Adv. Manufacturing
- Heat and Steam
- The Future Grid
- Waste

- Built Environment
- Insurance
- Marketing

- Generation
- Transmission
- Regulation
- Wholesale Markets
- Adv. Manufacturing

- 'Clean' Generation
- Distributed Generation
- Energy Storage
- Financial Markets
- Law

- National Security
- National Treaties
- Critical Materials
- Developing Countries
- Oil Sands

Term 4: Action Learning Practicum

Do something about it!

Expectations

- Prepared for class discussions
- Homework
 - Cite your sources
 - Spell check
 - Well thought out arguments
- Class participation
 - Cold Calls (!)
- Group work

Homework

- Expectation is to turn in on Wednesday before class.
- Discussions on the Forum
- The Course Page is the official guide to homework.
- Each homework is different. Be prepared to think.

Grading

Class Participation 25%

Homework 25%

Team Assignment 25%

Presentation 25%

Total 100%

The Ultimate Rule

