Machine Learning in Finance and Insurance

Ramon Kaspar, ETH Zürich (Fall 2024)

1 Basic Notions of Statistical Learn.

Expected Loss (Expected Risk)

$$\mathbb{E}[\ell(f(X), Y)] = \int_{\mathcal{X} \times \mathcal{V}} \ell(f(x), y) \rho(dx, dy).$$

For a measurable loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$

Goal: Find f that minimizes $\mathbb{E}[\ell(f(X), Y)]$.

Empirical Loss (Empirical Risk)

With training data $(X_i, Y_i)_{i=1}^m$:

$$\mathbb{E}[\ell(f(X), Y)] \approx \frac{1}{m} \sum_{i=1}^{m} \ell(f(X_i), Y_i).$$

 \Rightarrow Empirical loss minimizer depends on hypothesis class $\mathcal H$ and loss function ℓ . For square loss and constant functions, the minimizer is $\bar Y = \frac{1}{m} \sum_{i=1}^m Y_i$. There's a Bias-Variance Tradeoff; the best balance depends on the unknown distribution of Y.

PRED. PROB.: Find meas. func. $f: \mathcal{X} \to \mathcal{Y}$, s.t. $f(X) \approx Y$.

HYPOTHESIS CLASS: A hypothesis class is a family \mathcal{H} of measurable functions $f: \mathcal{X} \to \mathcal{Y}$, e.g. all affine functions.

MODEL ESTIMATION: Find a numerical solution \hat{f}_m to:

$$\min_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell(f(X_i), Y_i)$$

- Deterministic algorithm: $\hat{f}_m(\cdot) = \hat{\varphi}(\cdot, (X_i, Y_i)_{i=1}^m)$
- Stochastic algorithm (e.g., random initialization): $\hat{f}_m(\cdot) = \hat{\varphi}(\cdot, (X_i, Y_i)_{i=1}^m, V)$, where V indep. of (X, Y) & random.

Define the average model $\hat{f}_m^{\text{avg}}(x) := \mathbb{E}[\hat{f}_m(x)].$

RELATIONSHIPS BETWEEN X AND Y:

- Deterministic dependence: Y = g(X)
- Homoscedastic additive noise: $Y=g(X)+\epsilon$, for ϵ independent of X with $\mathbb{E}[\epsilon]=0$
- Heteroscedastic additive noise: $Y = g(X) + h(X)\epsilon$, for ϵ independent of X with $\mathbb{E}[\epsilon] = 0$

- Non-additive noise: $Y = g(X, \epsilon)$, for ϵ independent of X
- Model-free: the form of the underlying model is not known, only iid observations $(X_i, Y_i)_{i=1}^m$ are available

REGRESSION FUNCTION: $\bar{f}(x)$ minimizes $w \mapsto \int_{\mathcal{Y}} \ell(w, y) \rho_{Y|X}(dy|x)$ and is called the regression function. $\mathbb{E}[\ell(\bar{f}(X), Y)]$ is the irreducible error.

Square Loss $\bar{f}(X) = \mathbb{E}[Y|X]$, $\mathbb{E}[\ell(\bar{f}(X), Y)] = \text{Var}(Y) - \text{Var}(\mathbb{E}[Y|X])$ Pinball Loss $\ell_{\alpha}(u) = (\alpha - 1_{\{u < 0\}}) u$ for $u \in \mathbb{R}$, $\bar{f}(X) = q_{\alpha}$ and $\mathbb{E}[\ell(\bar{f}(X), Y)] = \mathbb{E}[\ell_{\alpha}(Y - q_{\alpha}(X))])$

Bias-Variance Decomposition of Square Loss

$$E\left[\left(\hat{f}_{m}(X) - Y\right)^{2}\right] = \underbrace{\mathbb{E}\left[\left(\hat{f}_{m}^{\text{avg}}(X) - \bar{f}(X)\right)^{2}\right]}_{\text{Bias}^{2}} + \underbrace{E\left[\left(\hat{f}_{m}(X) - \hat{f}_{m}^{\text{avg}}(X)\right)^{2}\right]}_{\text{Variance}} + \underbrace{E\left[\left(\bar{f}(X) - Y\right)^{2}\right]}_{\text{Irreducible Error}}.$$

Bias: Error from erroneous assumptions (underfitting).

Variance: Error from sensitivity to data fluctuations (overfitting).

Trade-off: Increase model complexity \Rightarrow lower bias, higher var

R^2 (goodness of in-sample fit)

Let $(X_i, Y_i)_{i=1}^m$ be the training data, and $(X_i, Y_i)_{i=m+1}^{m+n}$ the test data. Let $\hat{f}_m : \mathcal{X} \to \mathcal{Y}$ be a prediction function trained on training data:

$$R^{2} = 1 - \frac{SSR}{SST}$$

$$SSR = \sum_{i=1}^{m} \left(Y_{i} - \hat{f}_{m}(X_{i}) \right)^{2}, SST = \sum_{i=1}^{m} \left(Y_{i} - \overline{Y}_{train} \right)^{2}$$
for $\overline{Y}_{train} = \frac{1}{m} \sum_{i=1}^{m} Y_{i}$. The higher the better.

Similarly, define out-of-sample R_{os}^2 using test data; it measures **prediction power**.

Approximation Error

$$\inf_{f \in \mathcal{H}} \mathbb{E} \ell(f(X), Y) - \mathbb{E} \ell(\overline{f}(X), Y) \ge 0$$

Approximation error occurs if \mathcal{H} is not flexible enough to approximate \bar{f} well. Is decreasing if \mathcal{H} is increasing. Is 0 if $\bar{f} \in \mathcal{H}$. If the empirical loss min. problem $\min_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell(f(X_i), Y_i)$ has a solution, we call it $\hat{f}_m^{\mathcal{H}} \in \mathcal{H}$.

Sampling Error

$$\mathbb{E}\left[\ell\left(\hat{f}_{m}^{\mathcal{H}}(X),Y\right)\Big|\hat{f}_{m}^{\mathcal{H}}\right] - \inf_{f \in \mathcal{H}}\mathbb{E}[\ell(f(X),Y)] =$$

$$\int_{\mathcal{X} \times \mathcal{Y}} \ell\left(\hat{f}_{m}^{\mathcal{H}}(x),y\right)\rho(dx,dy) - \inf_{f \in \mathcal{H}}\int_{\mathcal{X} \times \mathcal{Y}} \ell(f(x),y)\rho(dx,dy) \geq 0$$

Results from minimizing the empirical loss instead of the expected loss. Tends to decrease if the sample size m is increasing.

Direct Optimization Error

Let
$$\hat{f}_m(\cdot) = \hat{\varphi}(\cdot, (X_i, Y_i)_{i=1}^m, V)$$
:
$$\frac{1}{m} \sum_{i=1}^m \ell\left(\hat{f}_m(X_i), Y_i\right) - \inf_{f \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \ell\left(f(X_i), Y_i\right) \ge 0$$

For classical methods (e.g., lin. reg.), assume $\hat{f}_m \approx \hat{f}_m^{\mathcal{H}}$. For complex ML methods (boosted trees, NNs), typically $\hat{f}_m \not\approx \hat{f}_m^{\mathcal{H}}$.

Generalization Error

$$\mathbb{E}\left[\ell(\hat{f}_{m}(X),Y)\mid \hat{f}_{m}\right] = \mathbb{E}[\ell(\bar{f}(X),Y)] \quad (irreducible \ error)$$

$$+ \inf_{f\in\mathcal{H}} \mathbb{E}[\ell(f(X),Y)] - \mathbb{E}[\ell(\bar{f}(X),Y)] \quad (approximation \ error)$$

$$+ \mathbb{E}\left[\ell\left(\hat{f}_{m}^{\mathcal{H}}(X),Y\right)\mid \hat{f}_{m}^{\mathcal{H}}\right] - \inf_{f\in\mathcal{H}} \mathbb{E}[\ell(f(X),Y)] \quad (sampling \ error)$$

$$+ \mathbb{E}\left[\ell\left(\hat{f}_{m}(X),Y\right)\mid \hat{f}_{m}\right] - \mathbb{E}\left[\ell\left(\hat{f}_{m}^{\mathcal{H}}(X),Y\right)\mid \hat{f}_{m}^{\mathcal{H}}\right] \quad (ind. \ opt. \ error)$$

For fixed $m \in \mathbb{N}$ and increasing \mathcal{H} : approx. error decreases, sampling error increases (variance of $\hat{f}_m^{\mathcal{H}}$ grows). There's a tradeoff between them (like bias-variance). For small data, \mathcal{H} should be simple; for large data, it can be complex.

Training Error and Test Error

$$E_{\text{tr}} = \frac{1}{m} \sum_{i=1}^{m} \ell\left(\hat{f}_m(X_i), Y_i\right), \quad E_{\text{te}} = \frac{1}{m} \sum_{i=m+1}^{m+n} \ell\left(\hat{f}_m(X_i), Y_i\right)$$

If $E_{\rm tr} \ll E_{\rm te}$, the data most likely was overfitted.

Sample Variance:
$$\sigma_{\text{te}}^2 = \frac{1}{n-1} \sum_{i=m+1}^{m+n} \left(\ell\left(\hat{f}_m(X_i), Y_i\right) - E_{\text{te}} \right)^2$$

2 Linear Regression

Linear regression models the relationship between predictors and response: $y = \beta_0 + \beta_1 X_1 + \dots + \beta_d X_d + \epsilon$, $\epsilon \sim N(0, \sigma^2)$ In matrix form:

$$y = A\beta + \epsilon$$

where A is the design matrix, β the coefficient vector.

Normal Equation

If $A^T A$ regular (or equivalently columns of A lin. indep.):

$$\hat{\beta} = \min_{b \in \mathbb{R}^{d+1}} \|Ab - y\|_2^2 = (A^{\top}A)^{-1}A^{\top}y$$

$$\Rightarrow \hat{\beta} = (A^T A)^{-1} A^T (A\beta + \epsilon) \sim \mathcal{N}_{d+1} \left(\beta, \sigma^2 (A^T A)^{-1} \right)$$

If columns of A are linearly dependent, $A^{\top}A$ is singular, and the normal equation has infinitely many solutions. The **pseudoinverse** solution $\hat{\beta} = (A^{\top}A)^{\dagger}A^{\top}y$ minimizes $||b||_2$. Here, $(A^{\top}A)^{\dagger} = V\Lambda^{\dagger}V^{\top}$, with Λ^{\dagger} diagonal entries $1_{\{\lambda_i>0\}}\lambda_i^{-1}$.

SINGULAR VALUE DECOMPOSITION (SVD)

Matrix $A \in \mathbb{R}^{m \times l}$, rank $r \leq \min(m, l)$, can be decomposed as:

$$A = U\Sigma V^{\top}$$

- $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{l \times l}$ orthogonal, $\Sigma^{\dagger} \in \mathbb{R}^{l \times m}$ diagonal
- $\lambda_1 \geq ... \geq \lambda_r$ are the positive eigenvalues of $A^{\top}A$ and $\Sigma = \operatorname{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_r}, 0, ...) \in \mathbb{R}^{m \times l}$
- Pseudoinverse $A^{\dagger} = V \Sigma^{\dagger} U^{\top}$; for any $y \in \mathbb{R}^m$, $\hat{\beta} = A^{\dagger} y \in \mathbb{R}^n$ minimizes $b \mapsto ||Ab y||_2$ with minimal $||\cdot||_2$ -norm.
- Regularization: Truncate small σ_i (set $\sigma_i = 0$ if $\sigma_i < c$); then $\hat{\beta}_c = A_c^{\dagger} y \sim \mathcal{N}_l \left(Q_k \beta, \sigma^2 V \Lambda_c^{-1} V^T \right)$ balances bias and variance: increasing c increases bias and decreases variance.

Ridge Regression

$$\hat{\beta}_{\lambda} = \min_{b \in \mathbb{R}^{d+1}} \left(\|Ab - y\|_2^2 + \lambda \|b\|_2^2 \right) = (A^{\top}A + \lambda I_l)^{-1}A^{\top}Y$$

 $\hat{\beta}_{\lambda} = \sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2} + \lambda} v_{i} u_{i}^{T} y \sim \mathcal{N}_{l} \left(\sum_{i=1}^{r} \frac{\lambda_{i}}{\lambda_{i} + \lambda} v_{i} v_{i}^{T} \beta, \sigma^{2} \sum_{i=1}^{r} \frac{\lambda_{i}}{(\lambda_{i} + \lambda)^{2}} v_{i} v_{i}^{T} \right)$ Increasing λ increases bias and decreases variance.

LASSO Regression

$$\hat{\beta}_{\lambda} = \min_{b \in \mathbb{R}^{d+1}} \left(\|Ab - y\|_2^2 + \lambda \|\beta\|_1 \right)$$

 \Rightarrow No closed-form solution, LASSO-Regr. encourages sparsity.

CROSS-VALIDATION

Technique to estimate model's predictive performance and tune hyperparameters. $\,$

Divide data into K folds:

- Train on K-1 folds.
- Validate on the remaining fold.
- Repeat K times; average validation error.

STANDARDIZED LINEAR REGRESSION

$$\tilde{x}_i = \frac{x_i - \bar{x}}{s_x}, \quad \tilde{y}_i = \frac{y_i - \bar{y}}{s_y}$$

with mean \bar{x}_j and $s_j^2 = \frac{1}{m} \sum_{i=1}^m (x_{ij} - \bar{x}_j)^2$. The prediction \hat{y} for a new datapoint $x = (x_1, ..., x_d)$ is $\hat{y} = s_y \sum_{j=1}^d \frac{x_j - \bar{x}_j}{s_i} \hat{\beta}_j + \bar{y}$

3 Gradient Descent

A function $h: \mathbb{R}^d \to \mathbb{R}$ is said to be **convex** if $h(\lambda x + (1-\lambda)y) \le \lambda h(x) + (1-\lambda)h(y)$, for all $x, y \in \mathbb{R}^d$ and $\lambda \in (0,1)$.

Setup: Given a convex function $h : \mathbb{R}^d \to \mathbb{R}$ with minimizer x^* , start at x_0 (might be random) and update with gradient steps:

$$x_{k+1} = x_k - \eta_k \nabla h(x_k)$$

If $\|\nabla h(x_k)\|_2 \leq L$ for all k, then:

$$\min_{0 \le k \le K} h(x_k) - h(x^*) \le \frac{\|x_0 - x^*\|_2^2 + L^2 \sum_{k=0}^K \eta_k^2}{2 \sum_{k=0}^K \eta_k}$$

If $\sum_{k=0}^{\infty} \eta_k^2 < \infty$ and $\sum_{k=0}^{\infty} \eta_k = \infty$, then $h(x_k) \to h(x^*)$. For accuracy ε , one needs $K = \left\lceil \left(\frac{L \|x_0 - x^*\|_2}{\varepsilon} \right)^2 \right\rceil$ gradient steps (which does not depend on the dimension!).

Stochastic Gradient Descent (SGD)

Consider $H: \Omega \times \mathbb{R}^d \to \mathbb{R}$, convex in θ , measurable in ω , with $\mathbb{E}[|H(\theta)|] < \infty$ for all $\theta \in \mathbb{R}^d$. Let H_i be independent copies of H, and $I \in \mathbb{N}$. Define the gradient estimator:

$$g_k(\theta) = \frac{1}{I} \sum_{i=kI+1}^{(k+1)I} \nabla H_i(\theta) \approx \nabla h(\theta), \quad k \ge 0.$$

Start with $\theta_0 \in \mathbb{R}^d$ (random) and perform updates:

$$\theta_{k+1} = \theta_k - \eta_k g_k(\theta_k), \quad k \ge 0.$$

For I = 1: SGD; for I > 1: SGD with mini-batches.

Let \widetilde{H}_i , $i=1,\ldots,v$, be independent copies of H, independent of H_i (validation set). Monitor the empirical loss $\frac{1}{v}\sum_{i=1}^v \widetilde{H}_i(\theta_k)$ for θ_k , $k=0,1,\ldots$ If the validation loss stops decreasing, decrease the learning rate η_k ; if it increases, stop the SGD.

4 Logistic Regression

Logistic Regression (Binary Classification)

Let $Y \mid X \sim \text{Ber}(p(X))$, where $X = (X_1, \dots, X_d), p(X) = \psi \left(\beta_0 + \beta_1 X_1 + \dots + \beta_d X_d\right)$ and $\psi(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$. The empirical loss function, derived from conditional negative log-likelihood, corresponds to the *cross-entropy loss*:

$$\hat{b} = \min_{b \in \mathbb{R}^{d+1}} \sum_{i=1}^{m} \left\{ -y_i \log(\psi(x_i^T b)) - (1 - y_i) \log(1 - \psi(x_i^T b)) \right\}$$
$$= \min_{b \in \mathbb{R}^{d+1}} \sum_{i=1}^{m} \left\{ \log(1 + e^{x_i^T b}) - y_i x_i^T b \underbrace{+\lambda ||b||_2}_{\text{Regularization}} \right\}$$

 \Rightarrow Convex min. problem in $b \in \mathbb{R}^{d+1}$, can be solved with (S)GD.

Having obtained $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_d)$ from the empirical loss minimization, we predict Y = 1 for a new data point $X = (x_1, \dots, x_d)$ by computing: $\hat{p}(x) = \psi\left(\hat{\beta}_0 + \sum_{j=1}^d x_j \hat{\beta}_j\right)$. Using a decision

threshold
$$c \in (0,1)$$
, we predict: $\hat{y}(x) = \begin{cases} 1, & \text{if } \hat{p}(x) \ge c, \\ 0, & \text{if } \hat{p}(x) < c. \end{cases}$

 $\underset{TP}{\operatorname{PERFORMANCE}} \underset{FP}{\operatorname{METRICS}} (\underset{FP}{\operatorname{DIAGNOSTICS}})$

TPR (Recall) =
$$\frac{TP}{P}$$
 FPR = $\frac{FP}{N}$ FDR = $\frac{FP}{TP + FP}$

$$Accuracy = \frac{TP + TN}{P + N} \qquad Precision (PPV) = \frac{TP}{TP + FP}$$

$$F1 Score = 2\frac{TPR \times PPV}{TPR + PPV} = \frac{2TP}{2TP + FP + FN} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

ROC: plots TPR vs. FPR for $c \in [0, 1]$. Random guessing produces the diagonal with AUC = 1/2. **AUROC** (Area under ROC): the larger the better (1 indicates a perfect classifier).

CREDIT ANALYTICS

Let P be a good borrower and N a bad borrower.

Try to minimize FDR = FP/(FP+TP) (FP's result in losses), Try to maximize TPR = TP/P (increases business volume). \Rightarrow Try to obtain a flat FDR/TPR-curve, i.e., a small area under the plotted FDR/TPR-curve is desirable.

Support Vector Machine (SVM)

Derivation (Hard-margin SVM): Let $(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}$ for $i = 1, \dots, m$, with linear classification, i.e., there exist $w \in$ \mathbb{R}^d and $b \in \mathbb{R}$ such that $\operatorname{sign}(\langle w, x_i \rangle + b) = y_i$ for all i. Each classifier (w, b) defines the decision hyperplane: $H(w, b) = \{x \in$ \mathbb{R}^d : $\langle w, x \rangle + b = 0$. The distance from x_i to H(w, b) is: $d_i = \frac{|\langle w, x_i \rangle + b|}{\|w\|}$, and the margin is the minimal distance: $\gamma =$ $\min_i d_i$. We aim to maximize the margin: $\max_{w,b} \gamma$ subject to: $y_i(\langle w, x_i \rangle + b) > \gamma ||w|| \quad \forall i. \text{ By scaling } w \text{ and } b \text{ such that } \gamma ||w|| =$ 1, the constraints simplify to: $y_i(\langle w, x_i \rangle + b) \geq 1, \forall i$. Maximizing γ is equivalent to minimizing ||w||, yielding:

Hard-margin SVM

$$\min_{w,b} ||w||^2$$
 s.t. $y_i(\langle w, x_i \rangle + b) \ge 1 \quad \forall i \in \{1, \dots, m\}.$

Problem: Linear separation may be infeasible or lead to overfitting. Solutions using RKHS learning:

- Lift x_i into a Hilbert space H_0 via a feature map $\Phi: \mathbb{R}^d \to H_0$. The classifier becomes $w \in H_0$.
- Introduce slack variables $\xi_i > 0$ to allow constraint violations with a penalty in the objective.

Soft-margin SVM (Kernelized)

$$\begin{split} \hat{w}_{SVM} &= \min_{w,b,\xi} \|w\|_2^2 + C \sum_{i=1}^m \xi_i \quad \text{s.t.} \quad y_i \left(\langle w, \Phi(x_i) \rangle + b \right) \geq 1 - \xi_i \\ &= \min_{(w,b) \in H_0 \times \mathbb{R}} \|w\|_2^2 + \lambda \sum_{i=1}^m \underbrace{\max \left(0, 1 - y_i (\langle w, \Phi(x_i) \rangle + b) \right)}_{\text{Hinge loss}} \\ &= \min_{f \in H} \frac{1}{m} \sum_{i=1}^m \ell_{\text{Hinge}}(y_i, f(x_i)) + \lambda \|f\|_H^2 \\ &\quad \text{where } H = \{ f : \mathbb{R}^d \to \mathbb{R} : f = \langle w, \Phi(\cdot) \rangle \} \text{ is a Hilbert Space} \end{split}$$

Support Vector Regression (SVR): Find $(w, b) \in H_0 \times \mathbb{R}$ to approximate $y \in \mathbb{R}$. Goal: Fit data within an ϵ -tube around $f(x) = \langle w, \Phi(x) \rangle + b$. The optimization problem becomes: $\min_{(w,b,\xi)} ||w||^2 + C \sum_{i=1}^m \xi_i \text{ s.t. } |y_i - \langle w, \Phi(x_i) \rangle - b| \le \epsilon + \xi_i \text{ with}$ $\xi_i \ge 0$. Or similarly: $\min_{f \in H} \lambda ||f||_H^2 + \frac{1}{m} \sum_{i=1}^m \ell_{\epsilon}(y_i, f(x_i) + b)$ where ϵ -insensitive loss $\ell_{\epsilon}(y, y') = \max(0, |y - y'| - \epsilon)$.

Kernels & Hilbert Spaces

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** on \mathcal{X} if there exists a Hilbert space H and a map $\Phi: \mathcal{X} \to H$ such that for all $x, x' \in \mathcal{X}$ we have $k(x, x') = \langle \Phi(x), \Phi(x') \rangle_H$.

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** if and only if it is **symme**tric and pos. semidefinite $(\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) \ge 0)$.
• Linear kernel: $k(x, x') = \langle x, x' \rangle$

- Polynomial kernel: $p \in \mathbb{N}$ and $c \in \mathbb{R}_+$, $k(x, x') = (\langle x, x' \rangle + c)^p$
- Gaussian kernel: for $\gamma > 0$, $k(x, x') = \exp\left(-\frac{\|x x'\|_2^2}{\gamma^2}\right)$
- Compactly supported radial basis kernel: for p > d/2, k(x, x') = $\max\{1-\|x-x'\|_2,0\}^p$
- Radial basis function kernels: $k(x, x') = \phi(||x x'||_2)$ for ϕ : $\mathbb{R}_+ \to \mathbb{R}$. The factor γ , s.t. $k_{\gamma}(x, x') = \phi(\|x - x'\|_2/\gamma)$ is the bandwidth (the higher, the smoother the function).

Decomposition Rules: $k(\mathbf{x}, \mathbf{y}) = k_1(\mathbf{x}, \mathbf{y}) + k_2(\mathbf{x}, \mathbf{y}), k(\mathbf{x}, \mathbf{y}) =$ $k_1(\mathbf{x}, \mathbf{v})k_2(\mathbf{x}, \mathbf{v}), k(\mathbf{x}, \mathbf{v}) = f(\mathbf{x})f(\mathbf{v}), k(\mathbf{x}, \mathbf{v}) = ck(\mathbf{x}, \mathbf{v}) \text{ for } c > 0$ $0, k(\mathbf{x}, \mathbf{y}) = k(\phi(\mathbf{x}), \phi(\mathbf{y})).$

REPRODUCING KERNEL HILBERT SPACES

We call H a reproducing kernel Hilbert space (RKHS), if $\delta_x: H \to \mathbb{R}$ given by $\delta_x(f) := f(x)$ is continuous for all $x \in \mathcal{X}$. A kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel of** H, if $k(\cdot, x) \in H$ and $f(x) = \langle f, k(\cdot, x) \rangle$ for all $x \in \mathcal{X}$, $f \in H$. If such a kernel k exists, we call $\Phi: \mathcal{X} \to H$ given by $\Phi(x) := k(\cdot, x)$ the canonical feature map.

Theorem: Every RKHS has a unique reproducing kernel, and conversely, every positive definite kernel k corresponds to a unique RKHS H.

Mercer's Theorem

If k is a continuous, symmetric, positive definite kernel on a compact set \mathcal{X} , then: $k(x, x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(x')$, where $\lambda_i \geq 0$ are eigenvalues and $\{\phi_i\}$ are orthonormal in $L^2(\mathcal{X})$. Furthermore, the RKHS H associated with k is: $H = \left\{ f = \sum_{i=1}^{\infty} a_i \phi_i : \sum_{i=1}^{\infty} \frac{a_i^2}{\lambda_i} < \infty \right\}, \text{ with inner pro-}$ duct $\langle f, g \rangle_H = \sum_{i=1}^{\infty} \frac{a_i b_i}{\lambda_i}$, for $f = \sum a_i \phi_i$, $g = \sum b_i \phi_i$.

Representer Theorem

Any minimizer $f \in H$ of the regularized empirical risk $\min_{f \in H} \lambda ||f||_H^2 + \sum_{i=1}^m \ell(y_i, f(x_i))$ admits a representation of the form $f^*(x) = \sum_{i=1}^m \alpha_i k(x_i, x)$ for some coefficients $\alpha_i \in \mathbb{R}$.

Implications: Mercer's Theorem allows kernels to implicitly map data into high-dimensional spaces. Representer Theorem ensures solutions are finite sums over training data using kernels

Corollary: Let $\ell(y,y')=(y-y')^2$. Assume x_1,\ldots,x_m are distinct and k is strictly positive definite. Then, the parameters $a = (\alpha_1, \alpha_2, \dots, \alpha_m)$ of the optimizer $f_m^* = \sum_{i=1}^m \alpha_i k(x_i, \cdot)$ from Representer Theorem are given by

$$a = (\lambda m I_m + K_m)^{-1} b.$$

where $I_m \in \mathbb{R}^{m \times m}$ is the identity matrix, $K_m \in \mathbb{R}^{m \times m}$ is given by $K_m[i, j] = k(x_i, x_j)$, and $b = (y_1, \dots, y_m)$.

NUMERICAL APPROACHES

Regression: $\hat{w} = \mathbf{\Phi}^{\top} \hat{\alpha}$ (sklearn.kernel_ridge.KernelRidge). Binary Classification: Use SMO Algorithm. For *Hinge loss* use sklearn.svm.SVC, for ϵ -sens. loss use sklearn.svm.SVR.

Analytic solution not feasible for large datasets. Solutions:

- Feature selection: select a subset $I \subset \{1,...,m\}, |I| = k < 1$ m and build an estimator of the form $\hat{f}(x) = \sum_{i \in I} \alpha_i k(x_i, x)$. E.g. Nyström (sklearn.kernel_approximation.Nystroem)
- Preconditioning: Approximate A^{-1} via $BB^{\top} \approx A^{-1}$ to solve Ax = b efficiently (e.g., FALKON).

FUNCTION APPROXIMATION WITH RKHS

Kernel k is **universal**, if for every continuous function $f: X \to X$ R and $\epsilon > 0$, there exists $h \in H$ such that: $||h - f||_{\inf} \leq \epsilon$. **Examples:** Exponential kernel: $k(x, x') = \exp(\gamma \langle x, x' \rangle)$ for $\gamma >$ 0, Gaussian kernel: $k(x, x') = \exp\left(-\gamma ||x - x'||_2^2\right)$ for $\gamma > 0$, Bi- $\mathbb{R}^d: ||x||_2 < 1$.

Kernel Rate: For estimators \hat{f}_m in RKHS with smoothness s, the estimation error decreases at rate $m^{-\frac{s}{2s+d}}$, i.e.,

$$\lim_{m \to \infty} \mathbb{P}\left(\|\hat{f}_m^* - \bar{f}\|_2 \ge Cm^{-\frac{s}{2s+d}}\right) = 0$$

Minimax Rate: This rate $m^{-\frac{s}{2s+d}}$ is the optimal rate achievable by any estimator over functions with smoothness s, i.e., $\lim_{m\to\infty}\inf_{\hat{T}_m}\sup_{\theta\in\Theta}\mathbb{P}\left(\|\hat{T}_m-\bar{f}_\theta\|_2\geq cm^{-\frac{s}{2s+d}}\right)=1.$

⇒ Kernel methods achieve optimal convergence rates for estimating f, making them effective for high-dimensional nonparametric regression. However, neural networks can be seen as kernel methods where the feature map is learned from data and thus better than any a-priori fixed kernel.

Neural Networks

Definition Feedforward Neural Network (FNN)

A **FNN** is a function $F_{\theta}: \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ defined as:

$$F_{\theta} = F^{(L)} \circ \rho \odot F^{(L-1)} \circ \cdots \circ \rho \odot F^{(1)}$$

- each $F^{(k)}: \mathbb{R}^{N_{k-1}} \to \mathbb{R}^{N_k}$ an affine function: $F^{(k)}(x) =$ $W^{(k)} \cdot x + b^{(k)}$, where $W^{(k)} \in \mathbb{R}^{N_k \times N_{k-1}}$ are weights and $b^{(k)} \in \mathbb{R}^{N_k}$ biases.
- N_k the number of neurons in the k-th layer and $(N_0,\ldots,N_L)\in\mathbb{N}^{L+1}$ is the network's architecture,
- $\theta = ((W^{(k)}, b^{(k)}), k = 1, \dots, L)$ are network parameters,
- parameter space is $\mathbb{R}^{P(N_0,\ldots,N_L)} \ni \theta$, with P := $P(N_0, ..., N_L) = \sum_{k=1}^{L} N_k N_{k-1} + N_k,$
- $\rho: \mathbb{R} \to \mathbb{R}$ is the non-linear activation function applied to vectors element-wise.
- k = 0 is the input layer, k = L is the output layer, $k \in$ $\{1,\ldots,L-1\}$ are the hidden layers. L+1 is the number of layers and L is the depth,
- $||N||_{\infty} = \max_{0 \le k \le L} N_k$ is the width of the network.

Algorithm 1 Forward propagation

Require: Params $\theta = ((W^{(k)}, b^{(k)}), k = 1, \dots, L)$; datapoint (x, y)**Ensure:** Loss value $\ell(\hat{F_{\theta}}(x), y)$

1: $a^{(0)} := x$

2: **for** k = 1, ..., L - 1 **do**

 $\tilde{a}^{(k)} := W^{(k)} a^{(k-1)} + b^{(k)}$

 $a^{(k)} := \rho(\tilde{a}^{(k)})$

5: end for

6: $\hat{y} := W^{(L)}a^{(L-1)} + b^{(L)}$

7: **return** $\ell(\hat{y}, y)$

Mini-batch Stochastic Gradient Descent (SGD)

$$\theta_0 \sim \mathbb{P}_{\text{initialization}}, \quad \theta_{t+1} = \theta_t - \eta_t \nabla_{\theta} \mathcal{L}(\theta, D_t) \big|_{\theta = \theta_t}$$

where D_t is a mini-batch of size B. For B=1, this reduces to standard SGD.

- Non-convex loss \Rightarrow SGD result depends on initialization.
- Identical initial weights (e.g., $\theta_0 = c$) lead to identical gradients \Rightarrow Initialize weights differently.

Xavier Initialization: (often used in practice)

$$W_{j,l}^{(k)} \sim \mathcal{N}\left(0, \frac{1}{N_k}\right), \quad b^{(k)} = 0,$$

where N_k is the width of the k-th layer.

Algorithm 2 Back-propagation $\mathcal{O}(L)$ time & memory

Require: Params $\theta = ((W^{(k)}, b^{(k)}), k = 1, \dots, L)$; datapoint (x, y)**Ensure:** Gradient $\nabla_{\theta} \ell(\hat{F}_{\theta}(x), y)$

1: Compute $\ell(F_{\theta}(x), y)$ using forward propagation

2: grad $\leftarrow \nabla_{\hat{y}} \ell(\hat{y}, y)$

 $\begin{array}{l} 3 \colon \nabla_{W^{(L)}} \ell(\hat{y}, y) = \operatorname{grad} \cdot a^{(L-1)^T} \\ 4 \colon \nabla_{b^{(L)}} \ell(\hat{y}, y) = \operatorname{grad} \end{array}$

5: **for** $k = L - 1, \dots, 1$ **do**

 $\operatorname{grad} \leftarrow \nabla_{\tilde{a}(k)} \ell(\hat{y}, y) = \operatorname{grad}^T \cdot W^{(k+1)} \cdot \operatorname{diag} \left(\rho'(\tilde{a}^{(k)}) \right)$

 $\nabla_{W^{(k)}}\ell(\hat{y},y) = \operatorname{grad} \cdot a^{(k-1)^T}$

 $\nabla_{b(k)} \ell(\hat{y}, y) = \operatorname{grad}$

9: end for

10: **return** $(\nabla_{W^{(k)}}\ell(\hat{y},y), \nabla_{h^{(k)}}\ell(\hat{y},y))$ for $k=1,\ldots,L$

BATCH NORMALIZATION

Problem: Parameter updates cause internal covariate shift, slowing training.

Solution: Normalize activations in each layer using batch mean and variance:

$$a_j^{(k)}(x_i) \leftarrow \frac{a_j^{(k)}(x_i) - \mu_j^{(k)}}{\sqrt{\sigma_j^{(k)2} + \epsilon}},$$

$$\mu_j^{(k)} = \frac{1}{n_{\text{batch}}} \sum_{i=1}^{n_{\text{batch}}} a_j^{(k)}(x_i), \quad \sigma_j^{(k)2} = \frac{1}{n_{\text{batch}}} \sum_{i=1}^{n_{\text{batch}}} \left(a_j^{(k)}(x_i) - \mu_j^{(k)} \right)^2$$

 $\epsilon \approx 10^{-5}$ prevents division by zero, Gradients are backpropagated through normalization.

REGULARIZATION:

Loss functions are typically regularized, i.e. minimize objective:

$$\tilde{\mathcal{L}}(\theta, D) = \mathcal{L}(\theta, D) + \lambda \mathcal{R}(\theta),$$

Ridge: $\mathcal{R}(\theta) = \|\theta\|_2^2$ (shrinks θ , prevents overfitting)

Lasso: $\mathcal{R}(\theta) = \|\theta\|_1$ (leads to sparse θ)

Notes: Only weights W are regularized (not biases), and different λ can be used per layer.

Training Techniques as Regularizers:

- Early Stopping: Stop training if no improvement on validation set for p steps (patience). Limits parameter space (similar to L^2 -regularization).
- **Dropout:** Set each neuron to zero with probability p before each gradient step; encourages sparse, redundant represent..
- Other Techniques: Bagging, dataset augmentation, weight robustness, parameter sharing.

NEURAL TANGENT KERNEL (NTK)

Generalization Puzzle: Overparametrized NNs generalize well despite classical bias-variance trade-off.

Goal: Study the dynamics of a NN $F_{\theta}: \mathbb{R}^{N_0} \to \mathbb{R}$ during GD.

For a NN $F_{\theta}: \mathbb{R}^{N_0} \to \mathbb{R}$, the **NTK** is defined as:

$$K(x, x'; \theta_t) = D_{\theta_t} F_{\theta}(x) \cdot D_{\theta} F_{\theta_t}(x')^{\top} \in \mathbb{R}.$$

Loss: $\mathcal{L}(\theta_t, D) = \frac{1}{m} \sum_{i=1}^m \ell(F_{\theta_t}(x_i), y_i).$

Gradient flow: $\frac{d\theta_t}{dt} = -D_{\theta} \mathcal{L}(\theta_t, D)^{\top}$. Using chain rule: $\frac{d}{dt}\mathcal{L}(\theta_t, D) = -\frac{1}{m^2} \sum_{i,j=1}^m D_{\hat{y}}\ell(F_{\theta_t}(x_i), y_i)$.

 $K(x_i, x_j; \theta_t) \cdot D_{\hat{y}} \ell(F_{\theta_t}(x_j), y_j)^{\top} = -\|D_{\hat{y}} \ell(F_{\theta_t}(\cdot), y)\|_{K(\cdot, \cdot, \theta_t)}^2$

CONVERGENCE RESULTS [Jacot et. al. 2018]

Theorem (NTK at Initialization): For shallow NN $(N_0, N_1, 1)$ with $\theta_0 \sim \mathcal{N}(0, I)$, as $N_1 \to \infty$: $F_{\theta_0} \to \mathrm{GP}(0, C)$ where C(x, x') = $\mathbb{E}_{f \sim \text{GP}(0,\Sigma)}[\rho(f(x))\rho(f(x'))] + \beta^2 \text{ with } \Sigma(x,x') = \frac{x^\top x'}{N_0} + \beta^2$ **Theorem (NTK During Training):** For any T > 0 with bounded $\int_0^T \frac{1}{m} \sum_i \|D_{\hat{y}}\ell(F_{\theta_t}(x_i), y_i)\|_2^2 dt$: $\sup_{t \in [0, T]} \|K(x, x'; \theta_t) - G_{\theta_t}(x, x'; \theta_t)\|_2^2 dt$ $\tilde{K}(x,x') \parallel \xrightarrow{P} 0$ as width $\to \infty$.

MINIMUM-NORM SOLUTION

For squared loss $\ell(\hat{y}, y) = (\hat{y} - y)^2$, as $t \to \infty$: $F_{\theta_{\infty}}(x) =$ $F_{\theta_0}(x) + \sum_{i=1}^m \sum_{j=1}^m \tilde{K}^{(L)}(x, x_i) \bar{K}_{i,j}^{-1}(y_j - F_{\theta_0}(x_j)) \text{ where } \tilde{K}_{i,j} :=$ $\tilde{K}^{(L)}(x_i, x_i)$ (limiting NTK evaluated on dataset), First term is initial network output and Second term is correction towards minimum-norm interpolator in RKHS.

Key insight: Solution converges to minimum-norm interpolator in NTK RKHS: $\arg\min_{f\in\mathcal{H}, f(x_i)=y_i} ||f||_{\mathcal{H}}$.

GENERALIZATION IN OVERPARAMETRIZED REGIME

Linear Regression Setting: Model: $Y = X^{\top} \beta + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$, where $X = (X_1, ..., X_p) \in \mathbb{R}^p$ with covariance $\Sigma \to \hat{\beta} = (A^\top A)^\dagger A^\top Y$. **Bias-Variance Decomposition** (conditioned on *A*):

$$\mathbb{E}[(\hat{f}_D(X) - f^*(X))^2 | A] = \underbrace{\beta^{\top} \Pi \Sigma \Pi \beta}_{B_A = \text{bias}^2} + \underbrace{\frac{\sigma^2}{m} \text{Tr}(\hat{\Sigma}^{\dagger} \Sigma)}_{V_A = \text{variance}}$$

where $\hat{\Sigma} = \frac{1}{m} A^{\top} A$, $\Pi = I_p - \hat{\Sigma}^{\dagger} \hat{\Sigma}$

Theorem (Asymptotic Variance): For $p, m \to \infty$ with $p/m \to \infty$ $\gamma: V_A \to \sigma^2 \frac{1-\max 1-\gamma,0}{|1-\gamma|}$. [Hastie et al., 2022]

Double Descent Phenomenon: γ quantifies model complexity $(\gamma \gg 1 \Rightarrow p \gg m \Rightarrow \text{Complex model})$. Variance increase for $\gamma \in (0,1)$ (classical bias-variance trade-off), but decreases for $\gamma > 1$ (overparametrized).

⇒ Variance decreases as soon as model complexity passes the interpolation threshold. The test error can decrease even after

8 Convolutional Neural Networks

Three components: convolution-, detector- and pooling layer. Convolutional layer: Let $I \in \mathbb{R}^{n_1 \times n_2}$, $K \in \mathbb{R}^{m_1 \times m_2}$, $m_1 \leq n_1$, $m_2 \leq n_2$, then their cross-correlation $(I \otimes K)$ is:

$$(I \circledast K)_{i,j} := \sum_{m=1}^{m_1} \sum_{n=1}^{m_2} I_{m+i-1,n+j-1} K_{m,n}.$$

- Kernels: Square $m \times m$ matrices (m hyperparameter); convolution layer uses M > 1 kernels in parallel to produce multiple feature maps.
- Padding (p): 0's added around input to control output size.
- Stride (s): steps kernel moves over input matrix.

Output size formula: $\left(\frac{n_1+2p-m}{s}+1, \frac{n_2+2p-m}{s}+1, M\right)$

Detector layer: Applies non-linear activation ρ componentwise $(I_{i,j,k} \mapsto \rho(I_{i,j,k}))$; output shape same as input; no trainable parameters.

Pooling Layer: Fixed filter (e.g., m=2, $s=2,\ p=0$); operates per channel; no trainable parameters.

Convolution \equiv Linear transformation via sparse, parameter-shared weights (doubly block-circulant matrix).

- Parameter sharing: Same kernel used at every position ⇒ shared learning, translation equivariance.
- Sparsity: Small kernels reduce parameters \Rightarrow computational efficiency; layers extract local (edges) to global (digits) features.

9 Recurrent Neural Networks

Hidden states of RNN form a dynamical system with stationary transition functions: $h^{\langle t \rangle} = f_{\theta} \left(h^{\langle t-1 \rangle}, x^{\langle t \rangle} \right)$. The parameter $\theta = (W, U, b)$ are used at each time step t (parameter sharing). Hidden state $h^{\langle t \rangle}$ summarizes statistics of past sequence.

Back-Propagation Through Time (BPTT): Consider Loss $\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}^{(t)} = \sum_{t=1}^{T} \ell(\hat{y}^{(t)}, y^{(t)}), \quad t = 1, \dots, T$

Compute recursively the gradients of \mathcal{L} : $D_{\hat{y}^{\langle t \rangle}}\mathcal{L} = D_{\hat{y}^{\langle t \rangle}}\ell(\hat{y}^{\langle t \rangle}, y^{\langle t \rangle})$ and $D_{h^{\langle t \rangle}}\mathcal{L} = D_{\hat{y}^{\langle t \rangle}}\mathcal{L} \cdot V + D_{h^{\langle t+1 \rangle}}\mathcal{L} \cdot \mathrm{diag}\left(\rho'\left(a^{\langle t+1 \rangle}\right)\right) \cdot W$

Vanishing/Exploding Gradient Problem: Gradients increase/decrease exponentially over time steps:

$$D_{ heta}\mathcal{L}^{\langle t
angle} = \sum_{k=1}^t \left(\prod_{i=k+1}^t D_{h^{\langle i
angle}} h^{\langle i+1
angle}
ight) D_{h^{\langle k
angle}} \mathcal{L}^{\langle t
angle} \cdot D_{ heta} h^{\langle k
angle}$$

If $\|D_{h^{(i)}}h^{\langle i+1\rangle}\| > 1$, gradients explode; if < 1, gradients vanish. Solution to exploding gradient problem: $gradient\ clipping$; at each gradient step, if the gradient is larger than a threshold K, 'clip' it to K:

$$D_{\theta} \mathcal{L} \leftarrow \begin{cases} D_{\theta} \mathcal{L} & \text{if } ||D_{\theta} \mathcal{L}|| < K \\ K \frac{D_{\theta} \mathcal{L}}{||D_{\theta} \mathcal{L}||} & \text{if } ||D_{\theta} \mathcal{L}|| \ge K \end{cases}$$

Solutions to vanishing gradient:

(1) GRU: Two gates control information flow (by learning optimal gate parameters, model learns how to accumulate/forget past info dynamically):

$$\begin{cases} \Gamma_r = \rho(W_r h^{\langle t-1 \rangle} + U_r x^{\langle t \rangle} + b_r) & \text{(reset)} \\ \Gamma_u = \rho(W_u h^{\langle t-1 \rangle} + U_u x^{\langle t \rangle} + b_u) & \text{(update)} \\ h^{\langle t \rangle} = (1 - \Gamma_u) \odot h^{\langle t-1 \rangle} + \Gamma_u \odot \tanh(W[\Gamma_r \odot h^{\langle t-1 \rangle}, x^{\langle t \rangle}]) \end{cases}$$

(2) LSTM: Memory cell $c^{\langle t \rangle}$ separates information flow:

$$\begin{cases} \Gamma_f, \Gamma_i, \Gamma_o = \text{forget/input/output gates} \\ c^{\langle t \rangle} = \Gamma_f \odot c^{\langle t-1 \rangle} + \Gamma_i \odot \tilde{c}^{\langle t \rangle} & \text{(memory)} \\ h^{\langle t \rangle} = \Gamma_o \odot \tanh(c^{\langle t \rangle}) & \text{(output)} \end{cases}$$

10 Classification & Regression Trees

Key Idea: Transform input x into output y via sequence of simple binary decisions. **Advantages:**

- Easy to interpret (medicine, insurance)
- Powerful with ensemble methods
- $\bullet\,$ Can approximate any continuous function

Binary Tree Definition

Triplet $(\mathcal{T}, \mathcal{P}, \mathcal{V})$ where:

- $\mathcal{T} \subseteq \bigcup_{l \in \mathbb{N}_0} \{0, 1\}^l$: nodes $(t^{\text{flip}}, t^{\text{cut}} \in \mathcal{T} \text{ if } t \in \mathcal{T} \setminus \{()\})$
- $\mathcal{P} = \{P_t \subseteq \mathcal{X}\}: \text{ partitions } (P_t \cup P_{t^{\text{flip}}} = P_{t^{\text{cut}}})$
- $\mathcal{V} = \{y_t \in \mathcal{Y}\}$: values

Tree function: $f(x) = \sum_{t \in \mathcal{T}} y_t \mathbb{1}_{P_t}(x)$

Algorithm 3 Basic structure of tree growing algorithm

- 1: Initialize $\mathcal{T} = \{()\}$ and $P_{()} = \mathcal{X}$.
- 2: while Stopping criterion (*) is not reached do
- 3: Choose a node $t \in \mathcal{T}$ $(t \in \{0, 1\}^l)$, a variable $i \in \{1, ..., d\}$, and a set $C_i \subseteq \mathcal{X}_i$ according to criterion (**).
- 4: Set $\mathcal{T} \leftarrow \mathcal{T} \cup \{t0, t1\}$, where $t0 = (t_1, t_2, \dots, t_l, 0)$ and $t1 = (t_1, t_2, \dots, t_l, 1)$.
- 5: Set $P_{t0} = P_t \cap \{x \in \mathcal{X} : x_i \in C_i\}, P_{t1} = P_t \cap \{x \in \mathcal{X} : x_i \notin C_i\}.$
- 6: end while
- 7: Compute the values $\mathcal{V} = \{y_t : t \in \mathcal{T}\}$; hereby, for all $t \in \mathcal{T}$, y_t is calculated solely using the training data $\{y^i : i \in \{1, \dots, m\}, x^i \in P_t\}$ according to criterion (***).
- 8: return $(\mathcal{T}, \mathcal{P}, \mathcal{V})$.

(***) HOW TO ASSIGN VALUES TO LEAVES?

Node Statistics: $p(t) = \frac{|\{i:x^i \in P_t\}|}{m}$, $p(y|t) = \frac{|\{i:x^i \in P_t, y^i = y\}|}{|\{i:x^i \in P_t\}|}$ Here, p(t) is the estimated probability of an input x belonging to the set P_t , and p(y|t) the likelihood of y being the output given that an input x belongs to the set P_t .

Regression $(\mathcal{Y} \in \mathbb{R})$: $y_t = \frac{1}{|\{i:x^i \in P_t\}|} \sum_{i:x^i \in P_t} y^i$ (emp. mean) Classification $(\mathcal{Y} = \{1, ..., K\})$: $y_t = \arg \max_{c \in \mathcal{Y}} |\{i: x^i \in P_t, y^i = c\}|$ (majority vote)

General: $y_t \in \arg\min_{y \in \mathcal{Y}} \sum_{i=1}^m L(y, y^i) \mathbb{1}_{x^i \in P_t}$ (empirical mean for $L(y, y') = (y - y')^2$, majority vote for $L(y, y') = \mathbb{1}_{y \neq y'}$.

(**) HOW TO GROW A TREE/SPLIT NODES? Tree Impurity: For tree structure $(\mathcal{T}, \mathcal{P})$: $I(t) \in [0, \infty)$ is impurity of node $t \in \mathcal{T}$, $\bar{I}(\mathcal{T}) = \sum_{t \in \mathcal{T}} p(t)I(t)$ is impurity of \mathcal{T} . Lower impurity is better. \Rightarrow The impurity determines the loss function which the overall tree function wants to minimize.

Optimal Split: $(t, i, C_i) \in \arg\min_{(t', i', C_{i'})} \bar{I}(\mathcal{T}^{(t', i', C_{i'})})$

Classification: $I(t) = \phi(p(1|t), \dots, p(K|t)) \Rightarrow \bar{I}(T) \equiv \text{cross-entropy}$

$$\begin{cases} \text{Gini: } \phi(p) = \frac{1}{2} \sum_{i=1}^{K} p_i (1 - p_i) \\ \text{Entropy: } \phi(p) = -\sum_{i=1}^{K} p_i \log(p_i) \end{cases}$$

Regression: $I(t) = \text{Var}(\{y^i : x^i \in P_t\}) \Rightarrow \bar{I}(T) \equiv \text{square loss}$

(*) STOPPING CRITERION/REGULARIZATION

Problem: Without stopping, tree splits until zero loss (overfitting). *Solution:* Add penalty term α for complexity, i.e., Penalizes number of leaves, locally defined for each node.

$$I_{\alpha}(t) = I(t) + \frac{\alpha}{p(t)}$$
 $\bar{I}_{\alpha}(\mathcal{T}) = \bar{I}(\mathcal{T}) + \alpha |\mathcal{T}| = \sum_{t \in \mathcal{T}} p(t) I_{\alpha}(t)$

Split Criterion: Split node $t \in \mathcal{T}$ if it decreases \bar{I}_{α} , i.e., if:

$$\min_{(i,C_i)} \bar{I}_{\alpha} \left(\mathcal{T}^{(t,i,C_i)} \right) < \bar{I}_{\alpha}(\mathcal{T}) \Leftrightarrow \min_{i,C_i} (p(t0)I(t0) + p(t1)I(t1)) < p(t)I(t) - \alpha$$

Choice of α : Grow large tree (small α), then prune (increase α). Pruning exploits: α only affects *number* of splits, not their *structure*. Cross-validation efficient through pruning sequence.