

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

* AB156x is only compatible with SDK v3.1.0 and above *

Version: 1.5

Release date: 24 March 2023

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

Document revision history

Revision	Date	Description
1.0	19 January 2022	Initial release
1.1 04 July 2022		Added relay example for dual chip Fixed incorrect example of get audio channel RACE command Fixed incorrect format of Power OFF RACE command
		Fixed incorrect NV ID of Enter DUT mode function
1.2	20 October 2022	Added Airoha defined data format for USB interface Added MIC test commands to support multi-MIC/DCHS test purposes Added DUT/DTM mode commands which do not need to reset device
1.3	26 October 2022	Added description for ULL 1.0/ULL 2.0 pairing commands
1.4	10 March 2023	Added a screenshot of Bluetooth address on smart devices
1.5	24 March 2023	Modified description for ULL 2.0/LE Audio pairing commands

Table of contents

1.	Intro	ductionduction	1
2.	RACE	command packet	2
	2.1.	RCMD Packet Format	2
	2.2.	Type List	
3.	UART	flow control	
4.	_	lata format	
5.		RACE command	
	5.1.	ANC On	
	5.2.	ANC Off	
	5.3.	Set ANC Gain	
	5.4.	Read ANC gain from NvKey	
	5.5. 5.6.	Write ANC gain to NvKey	
	5.0. 5.7.	Get ANC hybrid capability Enter ANC MP Mode	
	5.7. 5.8.	Leave ANC MP Mode	
_			
6.	-	RACE command (For MCSync and Dual Chip)	
	6.1.	Get Available Destination	
	6.2.	Relay command to partner	
7.	ANC (calibration flow	.12
	7.1.	AB156x_V3/AB157x/AB158x Series Hybrid ANC diagram	
	7.2.	FB/FF ANC gains	.12
	7.3.	ANC calibration flow chart	.12
8.	Sub F	unction RACE command	.13
	8.1.	Read NV key	.13
	8.2.	Write NV key	.13
	8.3.	Get version	.14
	8.4.	Set PEQ index	
	8.5.	Power OFF	
	8.6.	Get battery level	
	8.7.	Get BD address	
	8.8.	Write MCSync information	
	8.9.	Read/Write device name	
		Get model name	
		Get audio channel Enable/Disable DUT mode	
		RF test commands for entering 3.0 DUT mode/4.0 DTM	
		Factory Reset	
		Write ULL1.0 dongle & headset pairing information	
		Write ULL1.0 dongle & MCSync pairing information	
		Write ULL2.0/LE dongle & MCSync/Headset SIRK key	
		Un Pairing: Write MCSync information	
		Un Pairing: Write ULL1.0 dongle & headset information	
	8.20.	Un Pairing: Write ULL1.0 dongle & MCSync information	.20
	8.21.	Unpairing: Write ULL2.0/LE dongle & MCSync/Headset SIRK key	.21
9.	Mic t	est RACE Command	.22
	9.1.	MIC Swap	.22
	9.2.	AECNR on/off	

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application

			1401
	9.3.	RACE_DSP_REALTIME_OPEN_ALL_MIC_EXTEND	23
10.	Anal	og Gain calibration flow	25
	10.1.	Read/Write Analog Gain	25
	10.2.	. DSP Suspend RACE command	26
	10.3	DSP Resume RACE command	26

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

Lists of tables and figures

Table 2-1.RACE command format	2
Table 2-2.RACE receive format	2
Table 2-3.RACE type list	2
Table 3-1. UART flow control encoding table	
Table 3-2. UART flow control decoding table	3
Table 4-1. USB data format	4
Table 5-1.ANC RACE payload ID	5
Table 5-2.ANC gain index mapping	
Table 9-1. Indexes of all types of microphones	23
Figure 7-1. AB156x_V3/AB157x/AB158x Series Hybrid ANC diagram	12
Figure 7-2. ANC calibration flow chart	12
Figure 8-1. Bluetooth address on smart devices	16
Figure 10-1. Analog gain calibration flow chart	25

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

1. Introduction

This application note describes AB156x_V3/AB157x/AB158x series Mass Production RACE related information. The following topics are included to help users to establish Audio Mass Production environment.

- 1) AB156x V3/AB157x/AB158x RACE definition
- 2) UART software flow control
- 3) ANC calibration flow
- 4) ANC RACE commands (ANC RACE commands are used to calibrate ANC.)

Relay RACE commands (Relay RACE commands are used to send RACE to partner for MCSync/dual chip ANC calibration.)

Sub-function RACE commands (Sub-function RACE commands is to support version check, model name check...etc.)

Mic test RACE commands (Mic test RACE commands are used to test mic functionality.)

* For AB156x, The content of this application note is only applicable in AB156x SDK v3.1.0 and below. *

2. RACE command packet

The Race Command (RCMD) packet is used to send commands to AB156x_V3/AB157x/AB158x device from the Host (external MCU or PC tool) or receive events (indications or responses) from AB156x_V3/AB157x/AB158x device. Any AB156x_V3/AB157x/AB158x device can accept an RCMD with up to 1000 bytes of data excluding the RCMD header and length field. Each RCMD command is assigned two types of transported fields that are used to uniquely identify different format of commands. These two fields are called "Transported by H4" and "Transported by H5".

2.1. RCMD Packet Format

2.1.1. RCMD Command Format (sent to AB156x V3/AB157x/AB158x)

Command				
Channel	Type	Length	ID	Payload
1 byte	1 byte	2 bytes	2 bytes	Varied
0x05	0x5A or 0x5C	#1	RACE Command ID	#2

Table 2-1.RACE command format

#1 ID + Payload

#2 Command parameters

#3 Little Endian used for multi-bytes area

2.1.2. RCMD Receive Format (received from AB156x_V3/AB157x/AB158x)

Response				
Channel	Туре	Length	ID	Payload
1 byte	1 byte	2 bytes	2 bytes	Varied
0x05	0x5B or 0x5D	#1	RACE Command ID	#2

Table 2-2.RACE receive format

The host sends RCMD Commands to AB156x_V3/AB157x/AB158x via UART. AB156x_V3/AB157x/AB158x responds with the individual 'ID' which represents the ID of the responding command.

2.2. Type List

Type ID	Description	
0x5A	Command needs a response	
0x5B	Response	
0x5C	Command does not need a response	
0x5D	Notification	

Table 2-3.RACE type list

3. UART flow control

AB156x_V3/AB157x/AB158x implements the UART software flow control which uses 0x11 and 0x13 as the control bytes. Encode/decode data according to the following tables if you are sending RACE via UART.

Sending raw data	Encoded data
0x11	0x77 0xEE
0x13	0x77 0xEC
0x77	0x77 0x88

Table 3-1. UART flow control encoding table

Receiving raw data	Decoded data
0x77 0xEE	0x11
0x77 0xEC	0x13
0x77 0x88	0x77

Table 3-2. UART flow control decoding table

4. USB data format

AB156x_V3/AB157x/AB158x supports the USB interface for sending RACE commands for MP/tuning purposes.

Byte 0	Byte 1	Byte 2	Byte 3-61
Report ID	Length	Target Device	Data
- 0x06: Out	- Valid length of Data	- 0x00: Local	- Race command
- 0x07: In		- 0x80: Remote	

Table 4-1. USB data format

■ Byte 0: Report ID

In HID specification, the first byte must be the report ID

Out Report ID: 0x06; IN Report ID: 0x07

■ Byte 1: Valid length of data

The data of HID packet is padded to the maximum size by zero data of each HID report.

The USB module can know according to this byte how many bytes is valid and send the appropriate data to the race module.

Byte 2: Target device

0x00: The local device

0x80: The remote device which is connected to the local device

■ Byte 3~61: Data

Race command

5. ANC RACE command

Payload ID

All ANC commands use the RACE command ID **0x0E06** and Payload ID in the payload. Table 5-1 shows the definitions for the Payload IDs.

Payload ID		
Description	ID	
ANC On	0x0A	
ANC Off	0x0B	
Set ANC Gain	0x0C	
Read ANC gain from NvKey	0x0D	
Write ANC gain to NvKey	0x0E	
Get ANC hybrid capability	0x16	

Table 5-1.ANC RACE payload ID

ANC gain index mapping

Table 5-2 shows the Gain Index and the Gain Values for ANC.

Gain Index	Gain Value (dB)
0x0258(600)	6
0x0000	0
0xFFFF(-1)	-0.01
0xFFFE(-2)	-0.02
	Gain value = Gain index/100
0xFF9C(-100)	-1
0xFA24(-1500)	-15
0xDCD8(-9000)	-90

Table 5-2.ANC gain index mapping

5.1. ANC On

				Cor	nmand (0)	(055A)		
Len	gth		D			Pay	rload	
2 by	/tes	2 b	ytes			5 b	ytes	
				Status	ID	Filter coefficient index	ANC mode	Sync mode
0x07	0x00	0x06	ОхОЕ	0х00	0x0A	хх	00:Hybrid 01:FF only 02:FB only 04:AiroThru	00: Turn on agent ANC only 01: Turn on both agent and partner ANC

				Resp	onse (0x	055B)			
Len	gth	1	D			Pa	yload		
2 by	/tes	2 b	ytes	6 bytes					
				Status	ID	Filter coefficient index	ANC mode	Sync mode	reserved
0x08	0x00	0x06	0x0E	0x00: success Else: fail	0x0A	xx	00:Hybrid 01:FF only 02:FB only 04:AiroThru	00 or 01	XX

Filter coefficient index: ANC: 0x01 ~ 0x04

AiroThru: 0x09 ~ 0x0B

5.2. ANC Off

				Command (0x055	5A)				
Len	gth		D		Payload				
2 by	rtes .	2 b	ytes	3 bytes					
				Status	ID	Sync mode			
0x05	0x00	0x06	0x0E	0x00	ОхОВ	00: Turn off agent ANC only 01: Turn off both agent and partner ANC			

				Response (0x	055B)				
Len	gth		D		Pay	load			
2 by	rtes	2 b	ytes		6 b	ytes			
0x08	0x00	0x06	0x0E	Status	ID	Sync mode		Reserved	I
OXUS	UXUU	UXUO	UXUE	0x00: success Else: fail	0x0B	00 or 01	хх	хх	хх

5.3. Set ANC Gain

				Con	nmand (0x	(055A)							
Len	gth		D				P	ayload					
2 by	tes	2 by	/tes	10 bytes									
0,,00	0,,00	0,,00	0,,05	Status	ID	Gain	FF L	Gain	FB L	Gain	FF R	Gain	FB R
0x0C	0x00	0x06	0x0E	0x00	XX	XX	XX	XX	XX	XX	XX	XX	

				Respons	e (0x055	В)							
Len	gth	1	D	Payload									
2 by	rtes	2 b	ytes	10 bytes									
0,,00	0.00	0,,06	0,,05	Status	ID	Gain	FF L	Gain	FB L	Gai:		Gair R	
0x0C	0x00	0x06	0x0E	Ox00:success Else: fail Ox0C XX XX XX XX XX XX XX				хх	хх				

5.4. Read ANC gain from NvKey

				Command (0x055A)	
Le	ngth	I	D	Pay	load
2	oytes	2 b	ytes	2 b	ytes
0x04	0x00	0x06	0x0E	Status	ID
UXU4	UXUU	UXU6	UXUE	0x00	0x0D

				Response	(0x055B)								
Len	gth	П	D			F	Paylo	ad					
2 by	tes	2 by	ytes			1	0 byt	es					
0x0C	0x00	0x06	0x0E	Status	ID	Gain	FF L	Gain	FB L	Gain	FF R	Gain	FB R
- OXOC	CACC	ono o	0,102	0x00: success	0x0D	XX	XX	XX	XX	XX	ХХ	ХХ	XX

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application

Note

		Else: fail					

5.5. Write ANC gain to NvKey

				Con	nmand (0x055A	()						
Len	gth	II	D					Payloa	d				
2 by	tes	2 b	ytes					10 byte	es				
0x0C	0,,00	0,,00	0.00	Status	Status ID Ga		FF L	Gain	FB L	Gain	FF R	Gain	FB R
UXUC	0x00	0x06	0x0E	OxOO OxOE XX XX XX XX XX XX XX XX				XX					

				Response (0	x055B)								
Len	gth	1	D			Pa	ayload	d l					
2 by	tes	2 b	ytes			10	byte	S					
0x0C	0x00	0x06	0x0E	Status	ID	Gai	n FF L	Gair L	n FB	Gair F		Gair F	
UXUC	UXUU	UXUO	UXUE	0x00: success Else: fail	0x0E	хх	хх	хх	хх	хх	хх	хх	хх

5.6. Get ANC hybrid capability

				Command (0x055A)	
Len	gth	-	D	Pay	load
2 by	tes	2 by	ytes	2 b	ytes
0.04	0,,00	0,,00	٥٠٠٥٢	Status	ID
0x04	0x00	0x06	0x0E	0x00	0x16

	Response (0x055B)									
Len	Length ID		Payload							
2 by	2 bytes 2 bytes		3 bytes							
				Status	ID	Hybrid capability				
0x05	0x00	0x06	0x0E	0x00: success Else: fail	0x16	0x01: support hybrid				

5.7. Enter ANC MP Mode

	Command (0x055A)						
Length ID Payload							
2 by	2 bytes 2 bytes		/tes	2 bytes			
0.04	0,,00	0,,00	0،،0۲	Status	ID		
0x04	0x00	0x06	0x0E	0x00	0x10		

Response (0x055B)								
Len	Length ID			Payload				
2 by	tes	2 b	ytes	2	2 bytes			
				Status	ID			
0x04	0x00	0x06	0x0E	0x00: success Else: fail	0x10			

5.8. Leave ANC MP Mode

	Command (0x055A)						
Length ID Payload					load		
2 by	2 bytes 2 bytes		ytes	2 bytes			
0.04	0,,00	000	0x06 0x0E	Status	ID		
0x04	0x00	UXUb	UXUE	0x00	0x11		

	Response (0x055B)							
Length ID				Payload				
2 by	rtes .	2 by	/tes	2	2 bytes			
				Status	ID			
0x04	0x00	0x06	0x0E	0x00: success Else: fail	0x11			

Not

6. Relay RACE command (For MCSync and Dual Chip)

6.1. Get Available Destination

	Command (0x055A)						
Le	Length ID			Payload			
2 k	bytes 2 bytes		ytes	N/A			
0x02	0x00	0x00	0x0D	N/A			

	Response (0x055B)						
Len	gth	ID		Payload			
2 by	tes	2 by	ytes	N bytes			
				Destination list			
XX	0x00	0x00	0x0D	Pairs of [dst type:1 byte][dst id: 1 byte] For example: 0x01020506 (type USB and type AWS peer)			

^{*} dst type: 0 uart, 1 usb, 2 airapp, 5 AWS peer

6.2. Relay command to partner

	Command (0x055A)								
L	ength	I	D	Payload					
2	bytes	2 bytes		N bytes					
				Dst type	Dst ID	Data to partner			
XX	XX	0x01	0x0D	0x05	%AWS_peer_ID				

	Response (0x055C)								
Len	gth	I	D	Payload					
2 by	2 bytes 2 bytes		N bytes						
xx	xx	0x01	0x0D	Status	Dst type	Dst ID	Data from partner		
^^	^^	OXUI	UXUD	0x00: success Else: fail	0x05	%AWS_peer_ID			

^{* %}AWS_peer_ID is queried by Get Available Destination command. Type is 0x05 (AWS_peer).

Relay example: (for MCSync)

Step 1: Get the AWS peer destination ID.

055A0200000D

055B040000D0506 => get AWS peer ID: **06**

Step 2: Use AWS peer destination ID to send ANC OFF command to partner.

Relay the ANC OFF command to partner.

055A0D00010D0506 055A0500060E000B00

Get ANC OFF Response from partner

055D1000010D0506 055B0800060E000B00000000

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

Relay example: (for Dual Chip) Step 1: Get the UART destination ID. 055A0200000D

055B040000D0506 => UART ID: 0D

Step 2: Use the UART destination ID to send the ANC OFF command to the Dual chip partner. Relay the ANC OFF command to partner.

055A0D00010D000D 055A0500060E000B00

Get the ANC OFF Response from partner.

055D1000010D000D 055B0800060E000B00000000

7. ANC calibration flow

7.1. AB156x_V3/AB157x/AB158x Series Hybrid ANC diagram

Figure 7-1. AB156x_V3/AB157x/AB158x Series Hybrid ANC diagram

7.2. FB/FF ANC gains

There are two gains to be calibrated during the ANC test.

- 1) FB DG gain: The FB gain must be calibrated in the first stage under ANC FB mode.
- 2) FF DG gain: After FB gain is calibrated, the FF gain must be calibrated under ANC hybrid mode.

7.3. ANC calibration flow chart

Figure 7-2. ANC calibration flow chart

8. Sub Function RACE command

8.1. Read NV key

	Command (0x055A)							
Len	Length ID Payload							
2 by	/tes	2 b	ytes	4 bytes				
0x06	0x00	0x00 0x0A	NV_ID_B0	NV_ID_B1	Length_B0	Length_B1		
UXUB	UXUU	0x00	UXUA	XX	XX	XX	XX	

	Command (0x055B)							
Len	Length ID Payload							
2 by	/tes	2 by	ytes	N bytes				
XX	xx	000	0x00 0x0A	Length_B0	Length_B1	NV value (N-2 bytes)		
**	^^	0x00	UXUA	XX	XX	XX		

For example:

Read NV ID = 0xF500, Length = 0x0028

055A0600000A00F52800

Response, Length = **0x0028**, NV value = **0x5941595500**

8.2. Write NV key

Command (0x055A)							
Len	Length ID Payload						
2 by	2 bytes 2 bytes			N bytes			
0VV	O-VV	001	0.00	NV_ID_B0	NV_ID_B1	Payload	
0xXX	0xXX	0x01 0x0A		XX	XX	NV values	

	Command (0x055B)							
Length ID		D	Payload					
2 by	2 bytes		ytes	1 byte				
				Status				
03	00	0x01	0x0A	0x00: success				
				Else: fail				

For example:

Write NV ID = 0x3A00, Value = 0x00

055A0500010A003A00

Response, Status = 00

055B0300010A00

8.3. Get version

Command (0x055A)								
Len	gth	II.	Payload					
2 by	tes	2 b	ytes	Role: 1 byte				
0x03	0x00	0x07	0x1C	Agent: 0x00				

	Notification (0x055D)								
Len	Length ID		Payload						
2 by	2 bytes 2 bytes		N bytes						
VV	VV	XX 0x07 0x1C	0×16	Status	Role (1 byte)	Length (1 byte)	version (N-3 bytes) in ASCII		
XX	**		OXIC	0x00: success Else: fail	0x00: agent	xx	хх		

For example: 055A0300071C00

Notification, Length = 0x06, NV value = 0x76312E302E30

055D0B00071C00000676312E302E30

0x76312E302E30 in ASCI is "v1.0.0".

8.4. Set PEQ index

	Command (0x055A)								
Len	gth	II	Payload						
2 bytes		2 bytes		Module	(2 bytes)	PEQ index (1 byte)			
0x05	0x00	0x00	0x09	0x00	0x00	index			

	Notification (0x055D)								
Length ID Payload						Payload			
2 by	2 bytes 2 bytes		ytes	N bytes					
			0x09	Module (2 bytes) Status		Status			
0x05	0x05 0x00	00 0x00		0x00	0x00	0x00: success			
						Else: fail			

8.5. Power OFF

Command (0x055A)							
Length ID Payload							
2 by	tes	2 b	ytes	1 byte			
0x03	0x00	0x11	0x11	0x01			

	Response (0x055B)								
Len	Length ID		D	Payload					
2 by	tes	2 bytes		1 bytes					
0x03 0x00 0x11		0x11	0x11	Status					

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application

0x00: success
Else: fail

8.6. Get battery level

Command (0x055A)							
Len	gth	II	Payload				
2 by	tes	2 by	ytes	Role (1 byte)			
0x03	0x00	0xD6	0x0C	Agent: 0x00			

	Notification (0x055D)								
Length ID		Payload							
2 bytes 2 byt		ytes	N bytes						
005	000	20 20 20	kD6 0x0C	Status	Role (1 byte)	Battery level (1 byte)			
0x05	0x00	OXD6		0x00: success Else: fail	0x00: agent	Unit: percentage			

For example: 055A0300D60C00

055D0500D60C000050 Battery level is **80**%.

8.7. Get BD address

Command (0x055A)								
Len	gth	II	D	Payload				
2 by	rtes	2 by	ytes	Role: 1 byte				
0x03	0x00	0xD5	0x0C	Agent: 0x00				

	Response (0x055B)								
Length ID		Payload							
2 by	2 bytes 2 bytes		N bytes						
0,,05	0,400	00 0xD5	0x0C	Status	Role (1 byte)	BD address (6 bytes)			
0x05	0x00			0x00: success Else: fail	0x00: agent				

For example: 055A0300D50C00

055B0A00D50C0000665544332211 BD address is 0x112233445566.

055A0300D50C00

055B0A00D50C00007CE0E56ADB4D BD address is 0x4DDB6AE5E07C.

The MAC address is shown as the Bluetooth address on smart devices.

Figure 8-1. Bluetooth address on smart devices.

8.8. Write MCSync information

NV key 0x183D saves the MCSync setting. Use the Write NV RACE command to write it.

For example:

Agent BD address: 0x112233445566 Partner BD address: 0x998877665544

MCSync key: 0x01020304050607080910111213141516

Write to agent (0x40)

055A3400010A 3D18 40 0000 445566778899 FF 665544332211

Write to partner (0x20)

055A3400010A 3D18 20 0000 665544332211 FF 445566778899

Note: To keep values of other fields, read the NV back, replace the agent BDA, partner BDA, role, and MCSync key, and then write it back.

Note: Agent and partner must have the same MCSync key in one group but the different agent partner group must use a different MCSync key.

8.9. Read/Write device name

The device name is saved in the NV key 0xF203 in ASCII format. Use Read/Write NV RACE commands to access it.

8.10. Get model name

Model name is saved in the 21^{st} to 40^{th} bytes of NV key 0xF50C in ASCII format. Use Read NV RACE command to get it

8.11. Get audio channel

Audio channel setting is saved in the 2nd byte of NV key 0xE0F1. Use Read NV RACE command to get it.

8.12. Enable/Disable DUT mode

DUT mode control is saved in the NV key 0x183A. Use Write NV RACE command to enable/disable it.

```
For example:
Write NV ID = 0x183A, Value = 0x01 (0x00 for disable, 0x01 for enable)
055A0500010A3A1801
Response, Status = 00
055B0300010A00
```

8.13. RF test commands for entering 3.0 DUT mode/4.0 DTM

There are three commands for entering 3.0 DUT mode and 4.0 DTM.

- 1) standby command
- 2) enter 3.0 DUT mode command
- 3) enter 4.0 DTM command

Send A then B for entering 3.0 DUT mode. Send A then C for entering 4.0 DTM.

A. standby

Command (0x055A)							
Len	Length ID		D	Payload			
2 by	rtes	2 bytes		22 bytes			
				0x41 54 2B 42 54 43 4D 49 54 3D			
0x18	0x00	0x92	0x0F	42 54 5F 53 54 41 4E 44 42 59 0D			
				0A			

B. enter 3.0 DUT mode

	Command (0x055A)							
Len	gth	ID		Payload				
2 by	tes	2 b	ytes	23 bytes				
				0x41 54 2B 45 42 54 45 52 3D 53				
0x19	0x00	00 0x92	0x0F	45 54 5F 44 55 54 5F 4F 4E 4C 59				
				0D 0A				

C. enter 4.0 DTM

Command (0x055A)							
Length		II	D	Payload			
2 bytes		2 b	ytes	12 bytes			
0x0E	0x00	0x00 0x92 0x0F		0x41 54 2B 45 42 54 45 52 3D 30			
UXUE	UXUU	0x92	UXUF	0D 0A			

8.14. Factory Reset

Command (0x055A)							
Len	Length ID			Payload			
2 by	rtes	2 bytes		2 byte			
0x04	0x00	0x01	0x11	0x9500			

Response (0x055B)

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

Length		II	D	Payload		
2 by	tes	2 bytes		1 byte		
0x03	0x00	0x01	0x11	0x00: success Else: fail		

8.15. Write ULL1.0 dongle & headset pairing information

ULL1.0 dongle & headset pairing is saved by NV key 0xF318. Use the Write NV RACE command to write it.

For example:

Dongle BD address: 0x112233445566 Headset BD address: 0x998877665544

Write to Dongle

055A0A00010A 18F3 445566778899

Write to Headset

055A0A00010A 18F3 665544332211

8.16. Write ULL1.0 dongle & MCSync pairing information

Flow:

Step 1. MCSync setting is saved by NV key 0x183D. Use the Write NV RACE command to write it. Refer to 8.8 for more information.

Step 2. ULL1.0 dongle & MCSync pairing is saved by NV key 0xF318. Use the Write NV RACE command to write it.

For example:

Dongle BD address: 0x112233445566 MCSync Agent BD address: 0x998877665544

Write to Dongle

055A0A00010A 18F3 445566778899

Write to MCSync (earbuds)

055A0A00010A 18F3 665544332211

8.17. Write ULL2.0/LE dongle & MCSync/Headset SIRK key

To write the SIRK key:

Step 1. MCSync setting is saved by NV key 0x183D. Use the Write NV RACE command to write it. Refer to Section 8.8 for more details.

Step 2. ULL2.0/LE dongle & MCSync/Headset SIRK key is saved by NV key 0x1900. Make sure that the dongle and earbuds/headset have the same SIRK key. Use the Read NV RACE command to read NV back, replace the SIRK key, and then use the Write NV RACE command to write it back.

For example:

ULL2.0/LE Dongle, MCSync(earbuds), Headset:

Read NV ID = 0x1900, Length = 0x0012

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

055A0600000A00191200

Write NV ID = 0x1900, New SIRK Key = 0x01020304050607080910111213141516 (SIRK: 16bytes random num.)

Keep others field unchanged.

055A1600010A001901020304050607080910111213141516XXXX (XXXX: Do not Change.)

Note: The LE dongle and earbuds/headset must have the same SIRK key in one group, but the different LE dongle and earbuds/headset group should use a different SIRK key.

8.18. Un Pairing: Write MCSync information

Flow:

Step 1. Un Pairing MCSync setting is saved by NV key 0x183D. Use the Write NV RACE command to write it.

For example:

Write to agent and partner

055A3400010A 3D18 40 0000 00000000000 FF 000000000000

Step 2. Use command: Factory Reset (refer to Section 8.14 for more information).

8.19. Un Pairing: Write ULL1.0 dongle & headset information

Flow:

Step 1. Un Pairing ULL1.0 dongle & headset is saved by NV key 0xF318. Use the Write NV RACE command to write it.

For example:

Write to Dongle

055A0A00010A 18F3 000000000000

Write to Headset

055A0A00010A 18F3 000000000000

Step 2. Use command: Factory Reset (refer to Section 8.14 for more information).

8.20. Un Pairing: Write ULL1.0 dongle & MCSync information

Flow:

Step 1. Un Pairing MCSync setting is saved by NV key 0x183D. Use the Write NV RACE command to write it. Refer to Section 8.18 for more information.

Step 2. Un Pairing ULL1.0 dongle & MCSync is saved by NV key 0xF318. Use the Write NV RACE command to write it

For example:

Write to Dongle

055A0A00010A 18F3 000000000000

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

Write to MCSync (earbuds)
055A0A00010A 18F3 000000000000

3. Use command: Factory Reset (refer to Factory Reset for more information).

8.21. Unpairing: Write ULL2.0/LE dongle & MCSync/Headset SIRK key

To unpair:

Step 1. Un Pairing MCSync setting is saved by NV key 0x183D. Use the Write NV RACE command to write it. Refer to Section 8.18 for more details.

Step 2. Un Pairing ULL2.0/LE dongle & MCSync/Headset, SIRK key is saved by NV key 0x1900. Use the Read NV RACE command to read NV back, replace SIRK key so that each device has a different SIRK key, and then use the Write NV RACE command to write it back.

For example:

Original SIRK Key: 0x01010101010101010101010101010101

ULL2.0/LE Dongle, MCSync(earbuds), Headset:

Read NV ID = 0x1900, Length = 0x0012

055A0600000A00191200

Response, Length = 0x0012, NV value = 0x010101010101010101010101010101XXXX

055B1600000A1200 010101010101010101010101010101 XXXX (XXXX: Do not Change.)

Make each device write a different SIRK key. Keep others fields unchanged.

055A1600010A001902020202020202020202020202020XXXX (XXXX: Don't Change.)

Note: Let the LE dongle and earbuds/headset have a different SIRK key.

Step 3. Use command: Factory Reset (refer to Section 8.14 for more information).

9. Mic test RACE Command

9.1. MIC Swap

	Command (0x055A)							
Len	gth	Ш	D	Payload				
2 by	rtes	2 b	ytes	1 byte				
				MIC0 (0x00)				
			0x0E	MIC1 (0x01)				
				MIC2 (0x02)				
0x03	0x00	0x0C		MIC3 (0x03)				
				MIC4 (0x04)				
				MIC5 (0x05)				
				Not Used (0xFF)				

	Response (0x055B)							
Len	Length		D	Payload				
2 by	rtes	2 b	ytes	1 byte				
0x03	0x00	0x0C	0x0E	0x00: success Else: fail				

9.2. AECNR on/off

	Command (0x055A)							
Len	gth	II	D	Payload				
2 by	rtes	2 b	ytes	1 byte				
0x03	0x00	0x0D	0х0Е	0x00 (Off) 0x01 (On)				

	Response (0x055B)							
Len	Length ID		D	Payload				
2 by	tes	2 b	ytes	1 byte				
0x03	0x00	0x0D	0x0E	0x00: success Else: fail				

9.3. RACE_DSP_REALTIME_OPEN_ALL_MIC_EXTEND

Command (0x055A)										
Len	gth	10)	Payload						
2 by	tes	2 bytes		6 bytes						
0x08	0x00 0x20	020	0x0E	MIC0 index	MIC1 index	MIC2 index	MIC3 index	MIC4 index	MIC5 index	
		UXZU	UXUE	The values of MIC indexes are listed in Table 9-1.						

	Response (0x055B)								
Length		ID		Payload					
2 by	rtes	2 b	ytes	1 byte					
0x03	0x00	0x20	0x0E	0x00: success Else: fail					

Use this command to enable microphones if some microphones are not use for speech process.

Input Device	Index								
AMIC_0_L	0x00	DMIC_0_L	0x08	12S_M_0_L	0x10	12S_S_0	0x80		
AMIC_0_R	0x01	DMIC_0_R	0x09	I2S_M_0_R	0x20	12S_S_0	0x90		
AMIC_1_L	0x02	DMIC_1_L	0x0A	I2S_M_1_L	0x30	I2S_S_1	0xA0	Not_Use	0xFF
AMIC_1_R	0x03	DMIC_1_R	0х0В	I2S_M_1_R	0x40	I2S_S_1	0xB0		
AMIC_2_L	0x04	DMIC_2_L	0x0C	I2S_M_2_L	0x50	12S_S_2	0xC0		
AMIC_2_R	0x05	DMIC_2_R	0x0F	I2S_M_2_R	0x60	12S_S_2	0xD0		

Table 9-1. Indexes of all types of microphones

After configuring microphones by this command, send MIC swap command to enable MIC0, MIC1, MIC2 ... or MIC5.

For example:

Step 1. Enable AMIC_0_R/AMIC_0_L/DMIC_1_L/DMIC_1_R/I2S_M_2_R/ Not Use

055A 0800 200E 01 00 0A 0B 60 FF

055B 0300 200E 00

Step 2. Switch to MIC1 for AMIC_0_L test

055A 0300 0C0E 01 055B 0300 0C0E 00

AB156x_V3/AB157x/AB158x Series Mass Production RACE Application Note

Step 3. Switch to MIC2 for DMIC_1_L test **055A 0300 0C0E 02** 055B 0300 0C0E 00

Step 4.Switch to MICO for AMIC_0_R test **055A 0300 0C0E 00** 055B 0300 0C0E 00

10. Analog Gain calibration flow

Figure 10-1. Analog gain calibration flow chart

10.1. Read/Write Analog Gain

The analog gain setting is saved by NV key 0xE00A. Use the Read/Write NV RACE command to access it.

In NV key 0xE00A, the 3rd and 4th bytes composes left analog gain and the 7th and 8th bytes composes right analog gain in unit of 0.01 db.

For example:

Analog gain left: 0x0190 (400 in decimal. i.e. 4db)
Analog gain right: 0xFF38 (-200 in decimal. i.e. -2db)

Write NV ID = **0xE00A**, Value = 0x00009001......

Response, Status = 00 **055B0300010A**00

10.2. DSP Suspend RACE command

Command (0x055A)					
	Length		ID		Payload
Ī	2 by	tes	2 bytes		0 byte
	0x02	0x00	0x01	0x0E	

Command (0x055B)					
Len	Length		D	Payload	
2 by	rtes .	2 b	ytes	1 byte	
				Status	
0x03	0x00	0x01	0x0E	00: success	
				Else: fail	

For example: 055A0200010E

055B0300010E00

10.3. DSP Resume RACE command

	Command (0x055A)				
Length		ID		Payload	
2 by	tes	2 bytes		0 byte	
0x02	0x00	0x02	0x0E		

Command (0x055B)				
Length		ID		Payload
2 bytes		2 bytes		1 byte
	0x00	0x02	0x0E	Status
0x03				00: success
				Else: fail

For example: 055A0200020E

055B0300020E00