Market Maker Experiments

Luke Camery and Amy Greenwald

December 11, 2016

1 Motivation

So... LMSR... while great in theory (why?? path independence), sucks in practice (why??). We want to

2 Goals

To test five different market maker mechanisms for their liquidity sensitivity, profit expectation and accuracy.

3 Definitions

We denote time by $t \in \mathbb{R}_+$. We denote money by $m \in \mathbb{R}$.

An **event** has an outcome where we restrict our attention to a binary outcome. The outcome is equal to YES in case the event occurs and NO otherwise. We assume there is a way to unambiguously determine the outcome of an event. The mechanism for making the determination is R.

R is an oracle for mapping an **event** to an outcome.

An **option** is a security that yields a return depending on the outcome of an event. Each **option** has a price, a o_t when R(o) will be evaluated, and an outcome. The **option** will convert to \$1 if $o_{outcome}$ equals R(o) otherwise it converts to \$0.

The function p(o,t) at time t reflects the likelihood of the $o_{outcome}$ being realized at the strike date o_t .

An **agent** $a \in A$ has a belief $v_{at} \in [0, 1]$ at time t. The v_{at} reflects the agent's private belief in the expected likelihood of the $o_{outcome}$ being realized. This belief maps directly to the price that the agent is willing to pay for the o.

A **prediction market** M trades outcomes in an event. Formally, a prediction market is a tuple $\langle o_0, o_1, A, B \rangle$. Each **agent** $a \in A$ purchases some number of o_0 and o_1 paying the price quoted by the **prediction market** at each time t when the **agent** a made the purchases. A prediction market has a **book** B that maps $a \in A$ to a tuple $\langle \mathbb{R}, \mathbb{R} \rangle$ which tracks the number of o_0 and o_1 purchased by that **agent** a.

A book $B_{M,t}$ accepts an **agent** a and returns the number of each **option** o that **agent** a has purchased at time t. A **book** B at time t records all the transactions made up to time t.

A market maker MM is predciction market and strategy for setting prices on each option o_0 and o_1 at time t. Each market maker has their own function $P(o, t, a, \mathbb{R})$ where the quantity \mathbb{R} is the number of the option desired by the **agent** a, and the output is the money m required by the **market maker** MM from the **agent** a.

We formalize the pricing fraction as $P: \langle o, t, a, \mathbb{R} \rangle \to m$.

A market is defined as a prediction market.

4 Market Makers

In these experiments we will test the following five market markers.

- 4.1 Logarithmic Market Scoring Rule
- 4.2 Luke's Online Budget Weighted Average
- 4.3 Yiling and Jen's Expert Weighted Majority
- 4.4 Luke's Weighted Majority
- 4.5 Practical Liquidity Sensitive Market Maker
- 5 Setup
- 5.1 Types
- 5.2 Metrics
- 5.2.1 Liquidity Sensitivity
- 5.2.2 Market Maker Profit
- 5.2.3 Social Welfare
- 5.2.4 Accuracy

Regret

Expectation

Mean Squared Error

5.2.5 Precision