Single-Source Shortest Paths

謝仁偉 教授 jenwei@mail.ntust.edu.tw 國立台灣科技大學 資訊工程系 2017 Spring

Jen-Wei Hsieh, CSIE, NTUST

Overview (1/2)

How to find the shortest route between two points on a map?

- Input:
 - Directed graph G = (V, E)
 - Weight function $w:E \to \mathbb{R}$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$= \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

= sum of edge weights on path p.

Outline

- Shortest Paths
- Shortest-Paths Properties
- The Bellman-Ford Algorithm
- Single-Source Shortest Paths in Directed Acyclic Graphs
- Dijkstra's Algorithm
- Difference Constraints and Shortest Paths

Jen-Wei Hsieh, CSIE, NTUST

Overview (2/2)

• Shortest-path weight *u* to *v*:

$$\delta(u, v) = \begin{cases} \min \left\{ w(p) : u \stackrel{p}{\leadsto} v \right\} & \text{if there exists a path } u \leadsto v ,\\ \infty & \text{otherwise .} \end{cases}$$

Shortest path u to v is any path p such that $w(p) = \delta(u, v)$.

Example (1/2)

Find shortest paths from s

Jen-Wei Hsieh, CSIE, NTUST

Variants

- Single-source: Find shortest paths from a given source vertex $s \in V$ to every vertex $v \in V$.
- Single-destination: Find shortest paths to a given destination vertex.
- Single-pair: Find shortest path from *u* to *v*. If we solve the single-source problem with source vertex *u*, we solve this problem also.
- All-pairs: Find shortest path from u to v for all u, v
 ∈ V. We'll see algorithms for all-pairs in the next
 chapter.

Example (2/2)

• Shortest paths from s

- This example shows that the shortest path might not be unique.
- It also shows that when we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.

Jen-Wei Hsieh, CSIE, NTUST

ents Optimal Substructure (1/2)

• **Lemma 24.1** Any subpath of a shortest path is a shortest path.

Proof. Cut-and-paste.

Suppose this path p is a shortest path from u to v. Then $\delta(u, v) = w(p) = w(p_{ux}) + w(p_{xy}) + w(p_{yy})$.

Now suppose there exists a shorter path $x \stackrel{p'_{xy}}{\leadsto} y$. Then $w(p'_{xy}) < w(p_{xy})$.

Optimal Substructure (2/2)

Construct p':

Then

$$w(p') = w(p_{ux}) + w(p'_{xy}) + w(p_{yv}) < w(p_{ux}) + w(p_{xy}) + w(p_{yv}) = w(p).$$

Contradicts the assumption that p is a shortest path.

Jen-Wei Hsieh, CSIE, NTUST

Cycles

Shortest paths can't contain cycles:

- Already ruled out negative-weight cycles.
- Positive-weight ⇒ we can get a shorter path by omitting the cycle.
- Zero-weight: no reason to use them ⇒ assume that our solutions won't use them.

Negative-Weight Edges

- OK, as long as no negative-weight cycles are reachable from the source.
- If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.
- But OK if the negative-weight cycle is not reachable from the source.
- Some algorithms work only if there are no negative-weight edges in the graph. We'll be clear when they're allowed and not allowed.

Jen-Wei Hsieh, CSIE, NTUST

Output of Single-Source Shortest-Path Algorithm

For each vertex $v \in V$:

- $v.d = \delta(s, v)$.
 - Initially, $v.d = \infty$.
 - Reduces as algorithms progress. But always maintain v.d ≥ δ(s, v).
 - Call v.d a shortest-path estimate.
- $v.\pi$ = predecessor of v on a shortest path from s.
 - If no predecessor, $v.\pi = NIL$.
 - $-\pi$ induces a tree shortest-path tree.
 - We won't prove properties of π in lecture see text.

Initialization

 All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

INITIALIZE-SINGLE-SOURCE (G, s)

- **for** each vertex $v \in G.V$
- $\nu.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

Jen-Wei Hsieh, CSIE, NTUST

Relaxation (2/2)

For all the single-source shortest-paths algorithms we'll look at.

- start by calling INIT-SINGLE-SOURCE,
- then relax edges.
- The algorithms differ in the order and how many times they relax each edge.

Relaxation (1/2)

• Can we improve the shortest-path estimate for v by going through u and taking (u, v)?

RELAX(u, v, w)

1 **if**
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$\nu.\pi = u$$

Jen-Wei Hsieh, CSIE, NTUST

Outline

- Shortest Paths
- Shortest-Paths Properties
- The Bellman-Ford Algorithm
- Single-Source Shortest Paths in Directed Acyclic Graphs
- Dijkstra's Algorithm
- Difference Constraints and Shortest Paths

Shortest-Paths Properties (1/2)

- Lemma 24.10 (Triangle inequality) For any edge $(u, v) \in E$, we have $\delta(s, v) \le \delta(s, u) + w(u, v)$.
- Lemma 24.11 (Upper-bound property) Always have $v.d \ge \delta(s, v)$ for all v. Once $v.d = \delta(s, v)$, it never changes.
- Corollary 24.12 (No-path property) If there is no path from s to v, then we always have $v.d = \delta(s, v) = \infty$.

Jen-Wei Hsieh, CSIE, NTUST

Outline

- Shortest Paths
- Shortest-Paths Properties
- The Bellman-Ford Algorithm
- Single-Source Shortest Paths in Directed Acyclic Graphs
- Dijkstra's Algorithm
- Difference Constraints and Shortest Paths

Shortest-Paths Properties (2/2)

- Lemma 24.14 (Convergence property) If $s \leadsto u \to v$ is a shortest path in G for some u, $v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.
- Lemma 24.15 (Path-relaxation property) If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

Jen-Wei Hsieh, CSIE, NTUST

The Bellman-Ford Algorithm (1/3)

