Local point spread function Hessian approximation

Nick Alger¹

Joint work with:

Noémi Petra,² Tucker Hartland,² Omar Ghattas¹

¹Oden Institute The University of Texas at Austin
²Applied Mathematics, School of Natural Sciences University of California, Merced

CCGO meeting

Outline

• Motivation: Antartic ice sheet

New Hessian approximation: big idea

New Hessian approximation: technical details

Preliminary numerical results (heat inverse problem)

Outline

• Motivation: Antartic ice sheet

New Hessian approximation: big idea

New Hessian approximation: technical details

Preliminary numerical results (heat inverse problem)

Antartic ice sheet

Observed surface flow velocity from InSAR (Rignot et. al, 2011)

Antarctic ice sheet inversion for the basal friction parameter field from InSAR surface velocities

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).

Ice sheet dynamics: forward and inverse

Balance of linear momentum, mass, and energy

$$\begin{split} -\boldsymbol{\nabla} \cdot [\boldsymbol{\eta}(\boldsymbol{\theta}, \boldsymbol{u}) \, \dot{\boldsymbol{\varepsilon}} - \boldsymbol{I} \boldsymbol{p}] &= \rho \boldsymbol{g}, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} &= 0, \\ \rho \boldsymbol{c} \left(\frac{\partial \boldsymbol{\theta}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{\theta} \right) - \boldsymbol{\nabla} \cdot (K \boldsymbol{\nabla} \boldsymbol{\theta}) &= 2 \, \boldsymbol{\eta} \, \mathrm{tr} (\dot{\boldsymbol{\varepsilon}}^2) \end{split}$$

We have: Satellite observations of surface velocity

We want: The sliding/friction coefficient β in Robin boundary condition

$$\mathbf{T}(\boldsymbol{\sigma}\mathbf{n}) + \boldsymbol{\beta}(\boldsymbol{x})\mathbf{T}\mathbf{u} = 0$$

(T is tangential component)

Nick Alger (UT) December 17, 2021

Bayesian approach

Inverse problem: given noisy data d and a model f, infer parameters β that characterize the model, i.e.,

$$f(\beta) + e = d$$

Interpret β , d as random variables; solution of inverse problem is the "posterior" probability density function $\pi_{\text{post}}(\beta)$ found via Bayes' theorem.

Ill-conditioning and sampling

Objective: characterize posterior distribution by drawing samples with Markov chain Monte Carlo.

Dilemma: If the directional scalings of the proposal distribution are inconsistent with the directional scalings of the posterior, then sampling will be slow.

Hessian: local Gaussian approximation

Local Gaussian approximation proposal:

$$\pi_{\mathsf{prop}}(\beta) := \frac{\det \boldsymbol{H}^{1/2}}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \left(\boldsymbol{y} - \boldsymbol{\beta}_k + \boldsymbol{H}^{-1} \boldsymbol{g}\right)^T \boldsymbol{H} \left(\boldsymbol{y} - \boldsymbol{\beta}_k + \boldsymbol{H}^{-1} \boldsymbol{g}\right)\right)$$

Low rank Hessian approximation

Low-rank approximation/Woodbury formula:

$$\boldsymbol{\Gamma}_{\mathsf{prop}} = \boldsymbol{H}^{-1} = \left(\boldsymbol{F}^T\boldsymbol{\Gamma}_{\mathsf{noise}}^{-1}\boldsymbol{F} + \boldsymbol{\Gamma}_{\mathsf{prior}}^{-1}\right)^{-1} \approx \boldsymbol{\Gamma}_{\mathsf{prior}}^{1/2}(\boldsymbol{V}_r\boldsymbol{\Lambda}_r\boldsymbol{V}_r^T + \boldsymbol{I})^{-1}\boldsymbol{\Gamma}_{\mathsf{prior}}^{1/2}$$

where $m{V}_r$ and $m{\Lambda}_r$ are the eigenvectors/values of $m{F}^Tm{\Gamma}_{\scriptscriptstyle{\mathsf{noise}}}^{-1}m{F}m{v}_i=\lambda_im{\Gamma}_{\scriptscriptstyle{\mathsf{prior}}}^{-1}m{v}_i$

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet, Journal of Computational Physics, 296, 348-368 (2015).

Nick Alger (UT) December 17, 2021

MCMC sampling: stochastic Newton

Performance results / Convergence diagnostics

	MPSRF	IAT	ESS	MSJ	ARR	#Stokes	time (s)
SN	1.348	600	875	64	2	8400	420

- MPSRF: multivariate potential scale reduction factor
- IAT: integrated autocorrelation time
- ESS: effecitive sample size
- MSJ: mean squared jump distance

- ARR: average rejection rate
- #Stokes: # of Stokes solves per independent sample

10 / 34

• time: time per independent sample

• Statistics: 21 parallel chains (each 25k); # samples: 525k; dof: 139; rank Hessian: 15

Too many PDE solves!!

Details in: N. Petra, J. Martin, G. Stadler, O. Ghattas. *A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet inverse problems*, SIAM Journal on Scientific Computing, 2014

Model problems

(a) Antartica (Stokes)

(b) Ice mountain (Stokes)

(c) Heat swirl (heat)

Outline

Motivation: Antartic ice sheet

New Hessian approximation: big idea

• New Hessian approximation: technical details

Preliminary numerical results (heat inverse problem)

Local sensitivities

Local translation invariance

*image shown from ice mountain

*image shown from ice mountain

*image shown from ice mountain

*image shown from ice mountain

Nick Alger (UT)

December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT)

December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021 15/34

*image shown from ice mountain

*image shown from ice mountain

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

*image shown from ice mountain

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Nick Alger (UT) December 17, 2021

*image shown from ice mountain

Hessian approximation method: big idea

- Step 1: Compute "batches" of impulse responses by applying Hessian to Dirac combs
- **Step 2:** Interpolate known impulse responses to approximate unknown impulse responses
- Step 3: Convert to \mathcal{H} -matrix to do linear algebra

16/34

^{*}images shown from heat swirl

Outline

Motivation: Antartic ice sheet

New Hessian approximation: big idea

New Hessian approximation: technical details

Preliminary numerical results (heat inverse problem)

Technical details

• How do we choose the impulse response points?

• How do we interpolate the impulse responses?

• What about boundary issues?

• What are \mathcal{H} -matrices and how do we use them?

Hierarchical matrices (\mathcal{H} -matrices)

Radial basis function interpolation

- Interpolate impulse responses using polyharmonic spline radial basis functions.
- Use only k-nearest neighbors (must solve $k \times k$ linear system)

Nick Alger (UT) December 17, 2021

Boundary considerations (1)

• If $p_i + y - x$ is outside the domain, don't use ith impulse response for H(y,x)

Nick Alger (UT) December 17, 2021

Boundary considerations (2)

Take advantage of symmetry

How to choose impulse response points?

One hessian matrix-vector product \rightarrow many impulse responses

- **Goal:** choose as many points as possible, such that the impulse response supports don't overlap
- **Dilemma:** How can we know the impulse response supports before we compute them?

Nick Alger (UT) December 17, 2021

How to choose impulse response points?

One hessian matrix-vector product \rightarrow many impulse responses

- **Goal:** choose as many points as possible, such that the impulse response supports don't overlap
- **Dilemma:** How can we know the impulse response supports before we compute them?

Nick Alger (UT) December 17, 2021

Matrix analogy: getting all row sums

Matrix: let $A \in \mathbb{R}^{N \times N}$. Then

$$A^T \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} \operatorname{sum \ of} \ A \ \operatorname{col} \ 1 \\ \operatorname{sum \ of} \ A \ \operatorname{col} \ 2 \\ \vdots \\ \operatorname{sum \ of} \ A \ \operatorname{col} \ N \end{bmatrix}$$

Apply matrix to vector of ones \rightarrow get row sums for all rows

Operator: let C(x) = 1 be the constant function. Then

$$(H^T C)^*(y) = \int_{\Omega} (H \delta_y)(x) dx$$

Apply Hessian to constant function o get volumes of every impulse response

Nick Alger (UT) December 17, 2021

Mean and standard deviations of impulse responses

• Let C, L^i , and Q^{ij} be the following functions:

$$C(x) := 1,$$
 $L^{i}(x) := x^{i},$ $Q^{ij}(x) = x^{i}x^{j}$

Then

$$\begin{split} V &= \left(H^TC\right)^* \\ \mu^i &= \left(H^TL^i\right)^*/V \\ \Sigma^{ij} &= \left(H^TQ^{ij}\right)^*/V - \mu^i \cdot \mu^j \end{split}$$

ullet Apply Hessian to constant, linear, and quadratic functions o get estimates of support for every impulse response

Nick Alger (UT) December 17, 2021

Impulse response support ellipsoids

Nick Alger (UT) December 17, 2021

Outline

Motivation: Antartic ice sheet

New Hessian approximation: big idea

New Hessian approximation: technical details

Preliminary numerical results (heat inverse problem)

Heat swirl: CG Hessian solve with different preconditioners

Solving Hp = -g with preconditioned conjutate gradient

Nick Alger (UT) December 17, 2021

Heat swirl: Krylov iter vs. regularization parameter

Solving Hp = -g with preconditioned conjutate gradient

Nick Alger (UT) December 17, 2021

Heat swirl: preconditioned spectrum

Heat swirl: error vs. num batches

tau: number of standard deviations used for ellipsoids

Nick Alger (UT) December 17, 2021

Heat swirl: error vs. mesh size

Nick Alger (UT) December 17, 2021

Summary

- Hessian approximations or preconditioners are essential for Bayesian sampling in inverse problems governed by partial differential equations.
- Low-rank approximations of the Hessian become prohibitive as the data becomes more informative (as is the case for ice sheet inverse problems).
- Local point spread function interpolation combined with Hierarchical matrix representations promise a more efficient Hessian approximation.