HW-3

A. Kasım Erbay-2017205108-Group A

1)

If we say, the sequence is monotone and bounded, automatically it converges since it is a sequence in \mathbb{R} . So;

we have
$$a_{n+2}=(n.a_{n+1}+a_n)/n+1$$
 where $a_1=0,a_2=1.$ Clearly, $a_n>0, \forall n>0.$

I have a strong intuation that it is bounded above by 1. But I could not prove it algebraically. Only idea that comes up my mind is that $a_{n+2} < a_2, \forall n > 0$. Because $a_{n+2} = [(n/n+1).a_{n+1} + (1/n+1).a_n] < a_{n+1} + a_n$. For the recursive relation; since $a_1 = 0$, we only get a_2 , which is 1. ($a_3 < a_2 + a_1 = a_2 = 1$. Continuing repeatedly, yields the above intuiton.)

Also we have;

$$n+1=(n.a_{n+1}/a_{n+2})+(a_n/a_{n+2}) \implies n.(1-a_{n+1}/a_{n+2})=$$
 $(a_n/a_{n+2}-1) \implies 0 < n=(a_n/a_{n+2}-1)/(1-a_{n+1}/a_{n+2}).$ So the nominator and denominator have the same sign. Either case we reach that a_n is monotone.

Thus, a monotone and bounded sequence in \mathbb{R} is convergent.

2)

a)

sup(S) is the least upper bound of S; say r s.t. $s \le r \ \forall s \in S$. Also, inf(S) is the greatest lower bound of S; say t, s.t. $t \le s \ \forall s \in S$. So, $t \le s \le r \implies inf(S) \le s \le sup(S) \implies inf(S) \le sup(S)$.

b)

Since $S \subset \mathbb{R}$ bounded. We have a bounded interval and sup(S) = inf(S). S consists of only one element (a singleton) since otherwise; say $a,b \in S$ where $a \neq b$. Hence it is either a < b or b < a. In either case we have $inf(S) \leq a < b \leq sup(S)$ or $inf(S) \leq b < a \leq sup(S)$ which implies $sup(S) \neq inf(S)$ which is a contradiction.

3)

Let $A\in\mathbb{R}^n$ be arbitrary. A is bounded means that A is contained in a ball $\iff A\subset B(\vec{a};\vec{r})\subset\mathbb{R}$ where $r>0.\iff \forall x,y\in A\implies x,y\in B(\vec{a},\vec{r}).$ We can say that $diam(B)=sup\{|x-y|,x,y\in B(\vec{a},\vec{r})\}$ is an upper bound for $\{|c-d|;c,d\in A\}$ all the differences for arbitrary $c,d\in A$. So, $\{|c-d|;c,d\in A\}$ is a bounded subset of $\mathbb{R}\implies diam(A)=sup\{|x-y|,x,y\in A\}$ exists.