Logarithmic Voronoi polytopes for discrete linear models

Yulia Alexandr (UC Berkeley)

AMS Special Session on Nonlinear Algebra with Applications to
Statistics
March 26, 2022

Basic definitions

• A probability simplex is defined as

$$\Delta_{n-1} = \{(p_1, \dots, p_n) : p_1 + \dots + p_n = 1, p_i \ge 0 \text{ for } i \in [n]\}.$$

- An algebraic statistical model is a subset $\mathcal{M} = \mathcal{V} \cap \Delta_{n-1}$ for some variety $\mathcal{V} \subseteq \mathbb{C}^n$.
- For an empirical data point $u=(u_1,...,u_n)\in\Delta_{n-1}$, the log-likelihood function defined by u assuming distribution $p=(p_1,...,p_n)\in\mathcal{M}$ is

$$\ell_u(p) = u_1 \log p_1 + u_2 \log p_2 + \cdots + u_n \log p_n + \log(c).$$

◆ロト ◆個ト ◆恵ト ◆恵ト 恵 めの(*)

Maximum likelihood estimation

• The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(p)$ over all points $p \in \mathcal{M}$.

Maximum likelihood estimation

• The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(p)$ over all points $p \in \mathcal{M}$.

2 Computing logarithmic Voronoi cells:

Given a point $q \in \mathcal{M}$, what is the set of all points $u \in \Delta_{n-1}$ that have q as a global maximum when optimizing the function $\ell_u(p)$ over \mathcal{M} ?

We call the set of all such elements $u \in \Delta_{n-1}$ above the *logarithmic Voronoi cell* at q.

Proposition (A., Heaton)

Logarithmic Voronoi cells are convex sets.

The *log-normal space* at q is the space of possible data points $u \in \mathbb{R}^n$ for which q is a critical point of $\ell_u(p)$. It is a *linear* space.

Intersecting this space with the simplex Δ_{n-1} , we obtain a polytope, which we call the *log-normal polytope* at q.

The log-normal polytope at q contains the logarithmic Voronoi cell at q.

Proposition (A., Heaton)

Logarithmic Voronoi cells are convex sets.

The *log-normal space* at q is the space of possible data points $u \in \mathbb{R}^n$ for which q is a critical point of $\ell_u(p)$. It is a *linear* space.

Intersecting this space with the simplex Δ_{n-1} , we obtain a polytope, which we call the *log-normal polytope* at q.

The log-normal polytope at q contains the logarithmic Voronoi cell at q.

Example (The twisted cubic.)

The curve is given by $p \mapsto (p^3, 3p^2(1-p), 3p(1-p)^2, (1-p)^3)$.

Discrete linear models

A linear model is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)

Let $\mathcal M$ be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any d-dimensional linear model inside Δ_{n-1} can be written as

$$\mathcal{M} = \{c - Bx : x \in \Theta\}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

Discrete linear models

A linear model is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)

Let $\mathcal M$ be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any d-dimensional linear model inside Δ_{n-1} can be written as

$$\mathcal{M} = \{c - Bx : x \in \Theta\}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

A co-circuit of B is a vector $v \in \mathbb{R}^n$ of minimal support such that vB = 0. A co-circuit is *positive* if all its coordinates are positive.

We call a point $p = (p_1, \dots, p_n) \in \mathcal{M}$ is *interior* if $p_i > 0$ for all $i \in [n]$.

Interior points

For an interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at p is the set

$$\log \mathsf{Vor}_{\mathcal{M}}(p) = \left\{ r \cdot \mathsf{diag}(p) \in \mathbb{R}^n : rB = 0, \ r \geq 0, \ \sum_{i=1}^n r_i p_i = 1 \right\}.$$

Proposition (A.)

For any interior point $p \in \mathcal{M}$, the vertices of log $Vor_{\mathcal{M}}(p)$ are of the form $v \cdot diag(p)$ where v are unique representatives of the positive co-circuits of B such that $\sum_{i=1}^{n} v_i p_i = 1$.

Gale diagrams

Let $\{v_1, \ldots, v_n\}$ be a vector configuration in \mathbb{R}^d , whose affine hull has dimension d. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}.$$

Let $\{B_1, \ldots, B_{n-d-1}\}$ be a basis for $\ker(A)$ and $B := [B_1 \ B_2 \cdots B_{n-d-1}]$. The configuration $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of row vectors of B is the *Gale diagram* of $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$.

Gale diagrams

Let $\{v_1, \ldots, v_n\}$ be a vector configuration in \mathbb{R}^d , whose affine hull has dimension d. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}.$$

Let $\{B_1, \ldots, B_{n-d-1}\}$ be a basis for $\ker(A)$ and $B := [B_1 \ B_2 \cdots B_{n-d-1}]$. The configuration $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of row vectors of B is the *Gale diagram* of $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$.

Theorem (A.)

For any interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at p is combinatorially isomorphic to the dual of the polytope obtained by taking the convex hull of a vector configuration with Gale diagram B.

Corollary

Logarithmic Voronoi cells of all interior points in a linear models have the same combinatorial type.

Proposition (A.)

Every (n-d-1)-dimensional polytope with at most n facets appears as a logarithmic Voronoi cell of a d-dimensional linear model inside Δ_{n-1} .

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

9/12

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

9/12

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [1, -5, 3, 1]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

$$B = [-2, -1, 1, 2]^T$$

 $c = (1/4, 1/4, 1/4, 1/4)$

On the boundary

Theorem (A.)

Let $\mathcal M$ be the d-dimensional linear model, obtained by intersecting the affine linear space L with Δ_{n-1} . Let $w \in \mathcal M$ be a point on the boundary of the simplex. If L intersects Δ_{n-1} transversally, then the logarithmic Voronoi polytope at w has the same combinatorial type as those at the interior points of $\mathcal M$.

Example: d = 1.

Let \mathcal{M} be a 1-dimensional linear model inside the simplex Δ_{n-1} . Then $\mathcal{M}=\{c-Bx:x\in\Theta\}$, where

$$B = \left[\underbrace{b_1 \ldots b_m}_{>0} \underbrace{b_{m+1} \ldots b_n}_{<0}\right]^T \text{ and } c = (c_i).$$

Then Θ is the interval $[x_\ell, x_r] = [c_\ell/b_\ell, c_r/b_r]$ where $b_\ell < 0$ and $b_r > 0$. Assume r = 1. The log-Voronoi cell at x_r is the polytope at the boundary of Δ_{n-1} with the vertices

$$\{e_j: b_j < 0\} \cup \left\{ \underbrace{\frac{(c_i - b_i(c_1/b_1))b_j}{b_jc_i - b_ic_j}}_{v_{ij}} e_i - \underbrace{\frac{(c_j - b_j(c_1/b_1))b_i}{b_jc_i - b_ic_j}}_{v_{ij}} e_j : b_j < 0 \right\}.$$

The log-Voronoi cell at x_{ℓ} is described similarly.

Thanks!