

通信网理论基础

第三章 通信网的结构 第三节 站址问题

北京邮电大学 信息与通信工程学院

授课教师: 武穆清

电子信箱: wumuqing@bupt.edu.cn

课程内容介绍

第一章 引论 通信系统和通信网的种类和基本要求

第二章 通信网的组成要素 通信系统和网络的构成部件、功能、特性

第三章 通信网的结构 图论基础,最短径、最大流、最佳流算法

第四章 网内业务分析 排队论基础,业务模型与分析,网络效率

第五章 通信网的可靠性 可靠性理论,系统可靠性,网络可靠性

第三章 通信网的结构

- 3.1 图论基础
- 3.2 最短径问题
- 3.3 站址问题
- 3.4 流量分配

第三节 站址问题

- 3.3.1 单中点问题
- 3.3.2 k中点问题
- 3.3.3 设站问题

3.3 站址问题

- = 在前节中, 我们假定网内所有端都是预先设定 好了的
 - ≡不能另设新端
 - ≡在这样条件下讨论了最短主树,最短径和网中心等
- = 而在实际的通信网中,并不排除新设一些端
 - ≡交换站是可以选择设置的
 - ■各交换点之间的汇接点或更高一层的交换点也可选择设置
 - ■这样一来,最短主树可以更短
 △网中心所对应的平均最短径长也可最短
- =如果只允许另设一个端,则称为单中点问题 ■如果允许设k个端,则称为k中心问题

3.3.1 单中点问题

- 假设

- =有n个用户点,它们的平面坐标分别为(x_i , y_i)
 - \equiv $i = 1, 2, \dots, n$
- = 各点的加权系数为w;
 - ≡代表该用户所需的联线数或其它需求的量

- 求

- =设置单中点
 - ≡就是要找出一个中点的坐标 (x_a, y_a)
- = 使代价: $L = \sum w_i d_{qi}$ ■取得最小

 - \equiv 其中: $d_{\alpha i}$ 是中点与用户点 (x_i, y_i) 之间的距离测度

- 关于距离测度

- =根据问题的性质,这种测度可以有不同的形式
- = 欧式距离:

$$= \mathbb{P}: \quad d_{qi} = \sqrt{(x_i - x_q)^2 + (y_i - y_q)^2}$$

=平方距离

$$= \mathfrak{P}: \quad d_{qi} = (x_i - x_q)^2 + (y_i - y_q)^2$$

- ≡这适用于广播系统的发射点位置的选择问题
- ≡因为接收功率与欧式距离的平方成反比
- ■为使接收功率一致,就要求发射点的输出功率依上述平方距离d_{ai}成正比地增加
- ≡此时,代价L最小,就是发射总功率最小
- ≡蜂窝状小区的移动通信中也有类似的情况

= 矩形线距离

$$= \mathbb{P}: d_{qi} = |x_q - x_i| + |y_q - y_i|$$

- ≡这适用于城市中铺设通信线路的问题
- ≡铺设工作是沿街道进行的
- ■若街道是方格形的,则从中点到用户点的线路长度就按上式计算

- 关于用户分布

- =用户数目随地理区域连续分布的情况
 - ≡当用户点数目很大时,用有限数n来计算很困难
 - ≡可假设用户数是按ρ(x,y)连续分布的
 - =则在(x,y)点附近的用户数是 ρ (x,y)·Δx·Δy

 $\Delta \rho(x,y)$: 称为 (x,y) 点上用户的密度

≡此时,代价可表示为:

$$L = \iint \rho(x, y) \cdot d_q(x, y) dx dy$$

 Δ 其中: $d_q(x,y)$ 是中点q与(x,y)点之间的距离测度

• 它仍可有前述的三种形式或其它形式

 Δ 加权系数可包括在 $\rho(x,y)$ 中,所以式中已省去

- 求解上述各种情况下中点坐标的方法

= 欧式距离的情况

$$\equiv L = \sum_{i} w_{i} d_{qi} = \sum_{i} w_{i} \cdot \sqrt{(x_{i} - x_{q})^{2} + (y_{i} - y_{q})^{2}}$$

■ 因为需要使代价最小,所以:

$$\frac{\partial L}{\partial x_q} = \sum_{i} w_i \cdot \frac{x_q - x_i}{d_{qi}} \qquad \frac{\partial L}{\partial y_q} = \sum_{i} w_i \cdot \frac{y_q - y_i}{d_{qi}}$$

$$\frac{\partial^2 L}{\partial x_q^2} = \sum_{i} w_i \cdot \frac{\left(y_q - y_i\right)^2}{d_{qi}^3} \qquad \frac{\partial^2 L}{\partial y_q^2} = \sum_{i} w_i \cdot \frac{\left(x_q - x_i\right)^2}{d_{qi}^3}$$

$$\frac{\partial^2 L}{\partial x_q \partial y_q} = -\sum_{i} w_i \cdot \frac{\left(x_q - x_i\right)\left(y_q - y_i\right)}{d_{qi}^3}$$

≡用二元泰勒级数展开,其二阶增量为:

$$\frac{\partial^{2} L}{\partial x_{q}^{2}} (\Delta x_{q})^{2} + 2 \cdot \Delta x_{q} \cdot \Delta y_{q} \cdot \frac{\partial^{2} L}{\partial x_{q} \cdot \partial y_{q}} + \frac{\partial^{2} L}{\partial y_{q}^{2}} (\Delta y_{q})^{2}$$

$$= \sum_{i} w_{i} \cdot \frac{\left[\left(y_{q} - y_{i} \right) \cdot \Delta x_{q} - \left(x_{q} - x_{i} \right) \cdot \Delta y_{q} \right]^{2}}{d_{qi}^{3}} \ge 0$$

≡所以,L函数是下凸的,L有极小值

△令一阶偏导数为零可求得极小值点的坐标

$$x_{q} = \frac{\sum_{i} w_{i} x_{i} / d_{qi}}{\sum_{i} w_{i} / d_{qi}} \qquad y_{q} = \frac{\sum_{i} w_{i} y_{i} / d_{qi}}{\sum_{i} w_{i} / d_{qi}}$$

 Δ 即: 在 (x_a, y_a) 点,L取得极小值

\equiv 但此式为一个隐函数, d_{qi} 中含有 x_q 和 y_q

△我们可以用它采用选代法来求解

- Δ 先令 $x_q = y_q = 0$, 计算各 d_{qi}
 - 代入上式,得到第一次迭代值 $x_q^{(1)}$ 和 $y_q^{(1)}$
- Δ 再利用它们来计算 $d_{qi}^{(1)}$,代入上式,得到第二次选代值 $x_{q}^{(2)}$ 和 $y_{q}^{(2)}$
- △如此下去,直到后一次迭代值与前一次迭代值之差 可容许为止

 Δ 一般情况下,这种迭代算法是收敛的

$$x_{q} = \frac{\sum_{i} w_{i} x_{i} / d_{qi}}{\sum_{i} w_{i} / d_{qi}} \qquad y_{q} = \frac{\sum_{i} w_{i} y_{i} / d_{qi}}{\sum_{i} w_{i} / d_{qi}}$$

=平方距离的情况

≡当采用欧式距离的平方作为距离测度时

≡置偏导为零,得:

$$\Delta \qquad x_q = \frac{\sum_{i} w_i x_i}{\sum_{i} w_i}$$

$$y_q = \frac{\sum_{i} w_i y_i}{\sum_{i} w_i}$$

$$\frac{\partial L}{\partial y_q} = 2\sum_i w_i (y_q - y_i)$$

△这个解是显式的

△可用来直接算出中点的位置

△这样得到的中点必使L值最小

• 可用二次取导得到证明

 Δ 实际上,这个中点就是以 w_i 为权的各 v_i 的重心

=矩形线距离的情况

≡在矩形线距离的情况,导数将出现不连续点,即:

$$\frac{\partial \left| x_q - x_i \right|}{\partial x_q} = \begin{cases} 1 & x_q > x_i \\ -1 & x_q < x_i \end{cases}$$

$$\pi \not\approx \quad x_q = x_i$$

 Δ 由于当 $x_q = x_i$ 时, $|x_q - x_i| = 0$,这已不影响L值

- 所以,可以不考虑这种情况
- ■把距离表达式代入L算式,并求偏导,得:

$$\frac{\partial L}{\partial x_q} = \sum_{i: x_q > x_i} w_i - \sum_{i: x_q < x_i} w_i$$

$$\frac{\partial L}{\partial y_q} = \sum_{i: y_q > y_i} w_i - \sum_{i: y_q < y_i} w_i$$

≡L的极值应出现在:

$$x_{q}: \sum_{i:x_{q}>x_{i}} w_{i} = \sum_{i:x_{q}

$$y_{q}: \sum_{i:y_{q}>y_{i}} w_{i} = \sum_{i:y_{q}

$$(3-36)$$$$$$

△其含义是:

- · xq的选择应能使xq右边所有点的权之和等于其 左边所有点的权之和
- 或等于所有点(除与x_q有同样横座标值的点外)
 的权之和的一半
- · yq的选择应按它上面和下面所有点的权之和相等来确定

=当Σw_i是偶数,并且在上下和左右均可分割成相等的两部分时,可用(3-36)式来求中点

 Δ 这时的解并不唯一 Δ 如图:

- · vi为端点的名称
- 其后面的数字为其权值
- (x_q, y_q)可位于长方形ABCD内,都能使L极小
- 且这些极小值是相等的

 \equiv 当 Σw_i 是奇数,或虽为偶数,但不能均分时

 Δ 则 x_q 必与某些 x_i 相同, y_q 也是这样 Δ 有时,中点可在一条线上的任一点

如下面左图: 中点可为线段AB上的任一点
 △有时,也可能只有一个点,可作为中心

·如下面右图: 只有A点是中点

≡这样选定的中点可使代价L取得极值

- △ 而且这极值必为极小
- Δ 因为当 x_q 增加 Δx_q 时
 - 左边的权值之和必大于右边的极值之和
 - 则L将增加
- Δ 而当 x_q 減小 Δx_q 时
 - 左边的权值之和必小于右边的极值之和
 - · 也使L增加

\equiv 由此可以想到,当有某 x_i 值恰为 x_a 时

- △左边的权值之和不一定恰等于右边的权值之和
 - · 只要这xi的权值计入左边时,则其权值之和大于右边
 - 反之, 计入右边时, 其权值之和应大于左边
- Δ 亦即,与 x_0 相等的 x_i ,其权值可以一部分放在左边
 - 一部分放在右边
 - · 以使两边平衡,从而使L极小

=用户点连续分布的情况

≡把不同距离测度的公式代入代价算式,即:

$$L = \iint \rho(x, y) \cdot d_q(x, y) dx dy$$

 Δ 再求使L最小的中点坐标 (x_a, y_a)

△求解方法基本与前面相同

- · 即对L取x_a和y_a的偏导数,并置零
- 解出x_q和y_q

≡对于平方距离,有重心公式:

$$x_{q} = \frac{\iint x \cdot \rho(x, y) dx dy}{\iint \rho(x, y) dx dy}$$

$$y_{q} = \frac{\iint y \cdot \rho(x, y) dx dy}{\iint \rho(x, y) dx dy}$$
(3-38)

≡对于矩形线距离,有求解等式:

$$x_{q}: \int_{-\infty}^{x_{q}} dx \int_{-\infty}^{+\infty} \rho(x, y) dy = \int_{x_{q}}^{+\infty} dx \int_{-\infty}^{+\infty} \rho(x, y) dy$$

$$y_{q}: \int_{-\infty}^{+\infty} dx \int_{-\infty}^{y_{q}} \rho(x, y) dy = \int_{-\infty}^{+\infty} dx \int_{y_{q}}^{+\infty} \rho(x, y) dy$$

$$(3-39)$$

3.3.2 k中点问题

- ≡单中点只解决
 - △用户点数目不大
 - △ 且分布范围不太广 情况下的选址问题
- ≡ 当用户点数增多,或地理位置分散时
 - △ 往往要求分成几个群体,每个群体有一个中点
 - △这在实际中经常遇到
 - 且情况各异
 - 还可以有各种不同的限制
- K中点问题的预设条件
 - = K为预先给定的值
 - = 不计各中点之间中继线的代价
 - = 求这些中点的位置,以使总代价最小

=设有n个用户点

$$\equiv$$
它们的坐标是 (x_j, y_j) , $j = 1, 2, \dots, n$

≡要求找出k个交换点的位置 (x_{qi}, y_{qi})

$$\Delta$$
 $i = 1, 2, \dots, k$

$$\equiv$$
使代价L最小: $L = \sum_{i,j} C_{ij} w_j d_{ij}$ (3-48) Δ 其中:

$$C_{ij} = \begin{cases} 1 & ext{ 若第i个中点与j端有联线} \\ 0 & ext{ 若第i个中点与j端无联线} \end{cases}$$
 $d_{ij} =$ 第i个中点与j端间的距离测度

- 距离测度可以是欧式距离,也可以是其它意义的距离
- · w_j: 是j端的权重

-一般求解方法

- ≡可按下述两步逐次递推
- =步骤1 任取k个点作为中点(x_{qi} , y_{qi}) =把所有端按最近距离的原则分配给这些中点

$$\Delta$$
即: $C_{ij} = 1$, 当 $d_{ij} = \min_i d_{q_i j}$

 $\Delta \ d_{q_i j}$: 是第i个中点与j端之间的距离

$$\equiv$$
并计算总代价 \mathbf{L} : $L = \sum_{i,j} C_{ij} w_j d_{ij}$

- =步骤2 把归到每个中点的端作为一群
 - \equiv 按单中点的方法求这群端的中点 (x_{qi}', y_{qi}')

 Δ 这个中点可能与原定的 (x_{qi}, y_{qi}) 不同 Δ 而且会破坏步骤1中的最近距离的原则

■计算总代价L'

≡判断是否已满足要求

△若总代价L'与L已相差不多

△ 即在容许的误差范围之内

△则认为已得到最后解,停止运算

 Δ 否则,返回步骤1

=说明

≡这种解法与起始选择的k个中点的位置关系 很大

△不能保证得到最优解

■可以多换几种起始位置,分别求得最后解 △比较后可确定出在已有解中的最佳解 △此最佳解为准最优解

- k中点问题解法举例

= 已知条件

≡设有16个端

 Δ 均匀地处于一正方形内 Δ 如图,各点坐标为 (x_i, y_i)

- (1, 1), (-1, 1), (-1, -1), (1, -1)
- (3, 1), (-3, 1), (-3, -1), (3, -1)
- (1, 3), (-1, 3), (-1, -3), (1, -3)
- (3, 3), (-3, 3), (-3, -3), (3, -3)

△各点相应的权值为:

- 2, 2, 1, 1
- 1, 1, 1, 1
- · 2, 2, 1, 1
- · 2, 2, 1, 1

■要在这些端中设三个中点, 即k=3

△所用距离测度为矩形线距离

= 试解一

≡步骤1:取初始的三个中点

△如图中红色点:

•
$$q_1 = (0, 2)$$

•
$$q_2 = (-2, -1)$$

•
$$q_3 = (2, -1)$$

△按矩形线距离最短来分群:

- 上面六个 $w_i = 2$ 的端属于 $q_1 = (0, 2)$ 的范围
- 左边五个 w_i = 1的端属于 q_2 = (-2, -1) 的范围
- 右边五个 $w_i = 1$ 的端属于 $q_3 = (2, -1)$ 的范围

△ 计算总代价:

$$L_0 = 2 \times (4 \times 2 + 2 \times 4) + 2 \times [1 \times (1 \times 2 + 3 \times 3)] = 54$$

权重 距离 点数 距离 点数 左右两群 权重 距离 点数 距离 点数

≡步骤2:按前一步分成的三群分别求单中点解

△方法是:

$$x_q : \sum_{i:x_q > x_i} w_i = \sum_{i:x_q < x_i} w_i = \frac{1}{2} \sum_{i=1}^n w_i$$

$$y_q: \sum_{i:y_q>y_i} w_i = \sum_{i:y_q< y_i} w_i = \frac{1}{2} \sum_{i=1}^n w_i$$

△可得新的中点为:

•
$$q_1' = (0, 3)$$

•
$$q_2' = (-3, -1)$$

•
$$q_3' = (3, -1)$$

Δ 重新计算总代价

$$L_1 = 2 \times (3 \times 4 + 1 \times 2) + 2 \times [1 \times (2 \times 3 + 4 \times 1)] = 48$$

权重 距离 点数 距离 点数 左右两群 权重 距离 点数 距离 点数

≡步骤1:按三个新中点解

△发现仍为原来的分群,所以已是最后解

△称之为第一种解

= 试解二

≡步骤1:取初始中点:

- $q_1 = (1, 3)$
- $q_2 = (-3, 0)$
- $q_3 = (1, -3)$

Δ 按矩形线距离最短来分群:

- 右边上面五个端属于 q_1 = (1, 3)
- 左边六个端属于 $q_2 = (-3, 0)$
- 右边下面五个端属于 $q_3 = (1, -3)$

△ 计算总代价:

$$\mathbf{L}_{21} = (\ 2 \times 2 \times 3 + 1 \times 4) + (1 \times 1 \times 2 + 2 \times 3 \times 2 + 1 \times 3 \times 2) + (1 \times 2 \times 3 + 1 \times 4) = 46$$

权重 距离 点数 权重 距离 权重 距离 点数 权重 距离 点数 权重 距离 点数 权重 距离

■步骤2: 在每一群中求单中点

 Δ 最左侧的小区需要调整,中点调至 (-3,1)

= 试解二

■ 步骤2: 在每一群中求单中点

 Δ 最左侧的小区需要调整,中点调至 (-3,1)

△ 即:中点调整为:

•
$$q_1 = (1, 3)$$

•
$$q_2 = (-3, 1)$$

•
$$q_3 = (1, -3)$$

Δ 按矩形线距离最短来分群:

- · 右边上面五个端属于q₁=(1,3)
- 左边六个端属于 $q_2 = (-3, 1)$
- 右边下面五个端属于 q_3 = (1, -3)

△ 计算总代价:

$$L_{22} = (2 \times 2 \times 3 + 1 \times 4) + (2 \times 2 \times 2 + 1 \times 2 \times 1 + 1 \times 4 \times 2) + (1 \times 2 \times 3 + 1 \times 4) = 44$$

权重 距离 点数 权重 距离 权重 距离 点数 权重 距离 点数 权重 距离 点数 权重 距离

≡ 步骤1: 重新分群

 Δ 结果仍为这三点,所以, L_{22} 已是最后解

△ 称之为第二种解

= 试解三

■取初始中点:

•
$$q_1 = (3, 1)$$

•
$$q_2 = (-3, 1)$$

•
$$q_3 = (0, -3)$$

△按矩形线距离最短来分群

- · 右上五个点属于q₁=(3, 1)
- 左上五个点属于q₂=(-3,1)
- 下面六个点属于q₃=(0, -3)

△ 计算总代价:

$$L_3 = 2 \times (2 \times 2 \times 2 + 2 \times 4 + 1 \times 2) + (1 \times 1 \times 2 + 1 \times 3 \times 4) = 50$$

≡按此分群, 在每群中求单中点

△ 结果仍为这三点,说明已是最后解

△称之为第三种解

= 比较上面的三种解

≡最佳的是第二种解

 Δ 以(1,3),(-3,1),(1,-3)为中点,总代价为44

■根据对称性可知(本题以纵轴为中心左右对称)

 Δ 若中点设在(3, 1), (-1, 3), (-1, -3)

△ 结果也可得最小总代价44

△第二种解

对称解

业京郵電大學 BEDING UNIVERSITY OF POSTS AND TELECOM

=以上是在无其它限制条件时的准最优解

- ≡ 当有某些限制条件时,解法就需有所调整
- ≡如:把交换节点的容量加以限制

△要求每一群的端的权重之和不能超过某个预先 给定的值

- = 如在上例中,要求每个群的总权值 $\sum_{j} w_{j} \leq 8$
 - △则前面的第二种解就不可用了
 - 因为这时以q₁=(1,3)为中心的群中
 - ·端的权之和已为9

第二种解

因为以q₁=(0,3)为中心的群的总权重为12
 o² o²
 t o² o¹ 能用的只有第三种解

△ 第一种解也不能用

- 总代价为50
- 第三种解

到北京郵電大學 BEDING UNIVERSITY OF POSTS AND TELECOMM

△也可以对第二种解进行调整

- 把(3,1)端划给以 $q_3 = (1, -3)$ 为中点的群
- 这样, 距离将增加2
- 但可满足 $\sum w_j \leq 8$ 的条件
- 而总代价为46
- 优于第三种解

$$L'_{22} = (2 \times 2 \times 3) + (2 \times 2 \times 2 + 1 \times 2 \times 1 + 1 \times 4 \times 2) + (1 \times 2 \times 3 + 1 \times 4 + 1 \times 6) = 46$$

△对第二种解的另一种调整方法

- 把中点q₃=(1, -3) 改为
 q₃=(3, -3)
- · 这样,在按最短距离分群时, (3,1)端自然分给以q₃为中心的群中
- 既保持了最短距离分群的规则不变
- 又满足了总权重 $\sum w_j \leq 8$ 的条件
- 总代价也为46
- 这样调整使中点到各端的最长距离 小了,对降低传输损耗是有利的

- 连续分布的用户点的情况
 - = 其解法仍可按前述两个步骤进行■ 求出准最佳的k个中点
 - =不同点
 - 计算总代价、求解各区域的单中点时 △ 要采用积分, 计算将更为复杂

3.3.3 设站问题

- 引言
 - =在前面讨论的问题中,k值已给定
 - ≡即交换站总数已确定
 - ≡所以设立交换站的总费用是确定的
 - 因此,优化过程未考虑设站的投资和维护费用 Δ而只考虑了线路的代价
 - = 在实际中,要把n个用户点联成星形网
 - ≡需要多少个交换点并不是事先确定的
 - △ 即k值也是需要研究确定的
 - Δ 进而,设立交换站的总费用也不是确定的
 - ■因此,需要把设站费用和线路费用同时考虑
 △一起优化
 - ≡这就是设站问题

- 设站问题的目标函数

$$L = \sum_{i=1}^{k} f_i + \sum_{i=1}^{k} \sum_{j=1}^{n} c_{ij} w_j d_{ij}$$
 (3-49)

- = 其中
 - $\equiv f_i$ 是设立第i个站的费用
 - ≡wj是第j个用户点的权值
 - ■d_{ij}是第i个站与第j个用户点联线的费用

$$\equiv c_{ij} = \begin{cases} 1 & \ddot{\pi}j \wedge \Pi \not = \Lambda \\ 0 & \ddot{\pi}j \wedge \Pi \not = \Lambda \\ 0 & \ddot{\pi}j \wedge \Pi \not = \Lambda \\ \end{cases}$$

$$\ddot{\pi}j \wedge \Pi \not = \Lambda \\ \ddot{\pi}j \wedge \Pi \ddot{\pi}j \wedge \Pi \qquad \rightarrow \Pi \ddot{\pi}j \wedge \Pi$$

=各交换站之间的中继线费用忽略不计,它可以 包括在建站费用中

- 建站问题的求解方法

- = 最直观的方法是:
 - ■顺序求解单中点、双中点、三中点直到 k 中点
 - ≡然后选定其中代价L最低的一个,从而确定了k值
- =说明
 - ≡前面已验证过,多中点的解一般只是准最优解
 - ≡所以,用这种方法所得的解也只能是准最优解
- 建站问题求解举例
 - = 题设
 - ■待选的站址已定为最多三个,分别为 q_i (i=1, 2, 3)
 - Δ 每个站的建设费用都是f
 - =有十个用户点,分别为 v_i (j=1, 2, ··; 10)
 - Δ 它们的权值分别为 w_j
 - Δ 它们与三个站的距离为 d_{ij}

≡所有已知数据列表如下:

V _j		\mathbf{v}_1	V_2	\mathbf{v}_3	V_4	V_5	V_6	\mathbf{v}_7	V_8	V_9	V ₁₀
W_{j}		1	2	1	2	1	2	1	2	1	1
	q_1	1	1	1	1	3	2	5	4	5	6
d_{ij}	q_2	4	2.5	1	1	5	4	2	1	6	1
	q_3	7	3.5	6	2.5	4	1.5	3	1	2	1

= 求解

≡先求单中点的解

 Δ 以 q_1 为中点,即 c_{1j} = 1 (j = 1, 2, ··; 10),其它 c_{ij} 均为零 • 总代价: $L_1 = f + \sum d_{1j} w_j = f + 37$

 Δ 以 \mathbf{q}_2 为中点,即 \mathbf{c}_{2j} =1(\mathbf{j} =1, 2, ···, 10),其它 \mathbf{c}_{ij} 均为零 · 总代价: $L_2=f+36$

 Δ 以 q_3 为中点,即 c_{3j} =1 (j=1, 2, ···, 10),其它 c_{ij} 均为零 · 总代价: $L_3=f+40$

 Δ 比较这些结果,可知:最优解是以 q_2 为单中点,代价是 L_2^{39}

≡再求双中点的解

 Δ 以 q_1 和 q_2 为两个中点

- 按最短距离把用户点分群
- c_{1j} (j = 1, 2, 3, 5, 6, 9) =1
- c_{2i} (j = 4, 7, 8, 10) =1
- · 其它c_{ii}均为零
- · 总代价 $L_4 = 2f + 23$

 Δ 以 q_1 和 q_3 为两个中点

• 用同样方法可得总代价
$$L_{\scriptscriptstyle 5}=2f+20$$

 Δ 以 q_2 和 q_3 为两个中点

• 用同样方法可得总代价
$$L_6=2f+26$$

 Δ 通过比较可知,最佳解是以 q_1 和 q_3 为两个中点,总代价是 L_5

■最后求三中点解

△按最短距离来分配用户点群

 Δ 可得总代价 $L_7 = 3f + 19$

≡求最终的最佳解

 Δ 把 L_2 , L_5 和 L_7 与 f 的关系画成图

 Δ 可见,最佳解与f的取 值有关

- 当f ≤ 1时, 三中 点解 L₇ 为最佳
- 当1≤ f ≤ 16时,
 双中点解 L₅ 为最
 佳
- 当f≥16时,单中 点解L2为最佳

= 附加其它限制条件时

- ≡前面的解是在没有其它限制条件下求得的
- ≡当有另外的限制条件时,则必须加以调整
- ≡比如: 由于交换站设备的容量限制
 - △ 每个站所属用户的权值之和不能大于7
 - Δ 那么,即使在f > 16时,也不能采用单中点解
 - 而需采用双中点解

= 例题的解法实际上是穷举法

- ≡即把所有可能的情况都加以计算,从而取得最优的
- ≡ 若象本例这样,每步计算都是最优的
 - △则最终的解就是真正最优的
- ≡但若待选站不是预先给定的
 - △ 如以前讨论的多中点解,就不一定是最优的
 - △ 则最终的解就只能是准最优的

- ≡穷举法的缺点是计算量较大
- 穷举法的优点是在有限制条件时,可以随时调整
 △ 易于满足要求
- ≡ 当用户点数和中点数目很大时

 △ 这类方法的缺点就比较显著
- ≡还有一些其它的方法来求准最佳解
 - △一般说来,都有各自的优缺点
 - △用户点多时, 计算量也都不小
 - △ 从理论上说,也都不是很完整
 - △而且许多方法的原理也与上述方法相似,不再列举

(本节结束)