DOMAĆA ZADAĆA 2 zadatak 1 OSNOVE OPERACIONIH ISTRAŽIVANJA

Student: Mašović Haris

Indeks: 17993

Odsjek: Računarstvo i Informatika

Datum:	Potpis:
26 11 2018	

Zadatak 1 [1.4 poena]

Potrebno je proizvesti lijekove L₁, L₂, L₃, L₄ i L₅ za čiju je proizvodnju potrebno utrošiti sirovine S₁ i S₂. Jedinične prodajne cijene ovih lijekova na tržištu su respektivno 80, 75, 54, 87 i 74 novčanih jedinica. U skladištu se nalazi respektivno 4630 i 4160 težinskih jedinica sirovina S₁ odnosno S₂. Za proizvodnju jedne količinske jedinice lijeka L₁ potrebno je utrošiti respektivno 29 i 14 težinskih jedinica sirovina S₁ odnosno S₂. Za proizvodnju jedne količinske jedinice lijeka L₂ potrebno je utrošiti respektivno 27 i 19 težinskih jedinica sirovina S₁ odnosno S₂. Za proizvodnju jedne količinske jedinice lijeka L₃ potrebno je utrošiti respektivno 6 i 29 težinskih jedinica sirovina S₁ odnosno S₂. Za proizvodnju jedne količinske jedinice lijeka L₄ potrebno je utrošiti respektivno 28 i 30 težinskih jedinica sirovina S₁ odnosno S₂. Za proizvodnju jedne količinske jedinice lijeka L₅ potrebno je utrošiti respektivno 18 i 25 težinskih jedinica sirovina S₁ odnosno S₂. Cilj je napraviti plan proizvodnje koji omogućava maksimalnu zaradu ostvarenu prodajom ovih lijekova.

Vaš zadatak je da formirate matematički model ovog problema kao model linearnog programiranja, pretvorite ga u dualni problem i riješite dobijeni dualni problem dualnim simpleks metodom. Na osnovu tabele dobijene po okončanju dualnog simpleks metoda, odgovorite na sljedeća pitanja:

- a. Koliko količinskih jedinica svakog od traženih lijekova treba proizvesti? [0.6 poena]
- b. Koliko će količinskih jedinica svake od sirovina ostati u skladištu? [0.2 poena]
- c. Za one sirovine koje će biti u potpunosti utrošene, koliko se maksimalno isplati platiti za nabavku jedne dodatne količinske jedinice? [0.3 poena]
- d. Za one lijekove čija je proizvodnja neisplativa, kolika minimalno mora biti njihova cijena da bi im se proizvodnja učinila isplativom? [0.3 poena]

Potrebno je da predate izvještaj koji sadrži postavku problema i kompletan tok rješavanja problema (ne samo krajnje rješenje) u .pdf formatu.

Postavimo matematički model za naš problem:

$$\arg\max Z = 80x_1 + 75x_2 + 54x_3 + 87x_4 + 74x_5$$
$$29x_1 + 27x_2 + 6x_3 + 28x_4 + 18x_5 \le 4630$$
$$14x_1 + 19x_2 + 29x_3 + 30x_4 + 25x_5 \le 4160$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Za rješavanje problema tipa max, lakše je početi sa dualnim problemom pa ćemo imati sljedeći matematički model:

$$\arg \min W = 4630y_1 + 4160y_2$$

$$29y_1 + 14y_2 \ge 80$$

$$27y_1 + 19y_2 \ge 75$$

$$6y_1 + 29y_2 \ge 54$$

$$28y_1 + 30y_2 \ge 87$$

$$18y_1 + 25y_2 \ge 74$$

$$y_1, y_2 \ge 0$$

Naštimajmo naš problem na standardnu verziju za dualni simplex algoritam negirajući ograničenja i dodavanje izravnjajućih promjenljivih:

$$\arg\max -W = -4630y_1 - 4160y_2$$

$$-29y_1 - 14y_2 + y_3 = -80$$

$$-27y_1 - 19y_2 + y_4 = -75$$

$$-6y_1 - 29y_2 + y_5 = -54$$

$$-28y_1 - 30y_2 + y_6 = -87$$

$$-18y_1 - 25y_2 + y_7 = -74$$

$$y_1, y_2 \ge 0$$

Formirajmo našu dualnu simpleks tabelu i uradimo iteracije:

Baza	b_i	y_1	y_2	y_3	y_4	y_5	y_6	y_7
y_3	-80	-29	-14	1	0	0	0	0
y_4	-75	-27	-19	0	1	0	0	0
y_5	-54	-6	-29	0	0	1	0	0
y_6	-87	-28	-30	0	0	0	1	0
y_7	-74	-18	-25	0	0	0	0	1
	0	-4630	-4160	0	0	0	0	0

-4630/-28 =165.35, -4160/-30=138.67

Najnegativnija vrijednost je u redu y_6 , a kolonu koju biramo jest y_2 , jer je tu najmanja vrijednost prilikom dijeljenja.

Baza	b_i	y_1	y_2	y_3	y_4	<i>y</i> ₅	<i>y</i> ₆	y_7
y_3	-39.4	-15.933	0	1	0	0	-0.4667	0
y_4	-19.9	-9.2667	0	0	1	0	-0.6333	0
y_5	30.1	21.0667	0	0	0	1	-0.9667	0
<i>y</i> ₂	2.9	0.9333	1	0	0	0	-0.0333	0
<i>y</i> ₇	-1.5	5.3333	0	0	0	0	-0.8333	1
	12064	-747.3333	0	0	0	0	-138.6667	0

-747.3333/-15.933 = 46.90, -138.6667 / -0.4667 = 297.14

Najnegativnija vrijednost je u redu y_3 , a kolonu koju biramo jest y_1 , jer je tu najmanja vrijednost prilikom dijeljenja.

Baza	b_i	y_1	y_2	<i>y</i> ₃	y_4	y_5	y_6	y_7
y_1	2.4728	1	0	-0.0628	0	0	0.0293	0
y_4	3.0146	0	0	-0.5816	1	0	-0.3619	0
y_5	-21.9937	0	0	1.3222	0	1	-1.5837	0
y_2	0.5921	0	1	0.0586	0	0	-0.0607	0
<i>y</i> ₇	-14.6883	0	0	0.3347	0	0	-0.9895	1
	13912.0084	0	0	-46.9038	0	0	-116.7782	0

Najnegativnija vrijednost je u redu y_5 , a kolonu koju biramo jest y_6 , jer je tu najmanja vrijednost prilikom dijeljenja (najmanja kako god).

Baza	b_i	y_1	<i>y</i> ₂	<i>y</i> ₃	y_4	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
y_1	2.0661	1	0	-0.0383	0	0.0185	0	0
y_4	8.041	0	0	-0.8838	1	-0.2285	0	0
<i>y</i> ₆	13.8877	0	0	-0.8349	0	-0.6314	1	0
<i>y</i> ₂	1.4346	0	1	0.0079	0	-0.0383	0	0
<i>y</i> ₇	-0.9458	0	0	-0.4914	0	-0.6248	0	1
	15533.7913	0	0	-144.3989	0	-73.3484	0	0

^{-144.3989/-0.4914 = 293.84, -73.3484/-0.6248 = 118.0127}

Najnegativnija vrijednost je u redu y_7 , a kolonu koju biramo jest y_5 , jer je tu najmanja vrijednost prilikom dijeljenja.

Baza	b_i	y_1	y_2	<i>y</i> ₃	y_4	y_5	y_6	y ₇
y_1	2.0381	1	0	-0.0529	0	0	0	0.0296
<i>y</i> ₄	8.3869	0	0	-0.704	1	0	0	-0.3658
<i>y</i> ₆	14.8436	0	0	-0.3383	0	0	1	-1.0106
y_2	1.4926	0	1	0.0381	0	0	0	-0.0613
y_5	1.5137	0	0	0.7865	0	1	0	-1.6004
	15645.4123	0	0	-86.4059	0	0	0	-118.0127

Vidimo da nema više negativnih vrijednost u b_i redu shodno tome algoritam terminira.

a. Koliko količinskih jedinica svakog od traženih lijekova treba proizvesti? [0.6 poena]

Treba proizvesti 86.4059 količinih jedinica prvog lijeka i 118.0127 količinskih jedinica petog lijeka.Drugi, treći i četvrti ne treba uopšte proizvoditi da bi se ostvarila optimalna zarada (jednaki 0).

b. Koliko će količinskih jedinica svake od sirovina ostati u skladištu? [0.2 poena]

Vidimo da će ostati čitajući iz kolona u kojima figuriraju y_1i y_2 da ostane 0 količiniskih jedinica za obje sirovine.

c. Za one sirovine koje će biti u potpunosti utrošene, koliko se maksimalno isplati platiti za nabavku jedne dodatne količinske jedinice? [0.3 poena]

Vidimo da će maxinalno isplati platiti za nabavke jedne dodatne količinske jedinice sirovina iz redova u kojima figuriraju y_1i y_2 , a to znači da se za sirovinu $y_12.0381$ novčanih jedinica odnosno $y_21.4926$ novčanih jedinica.

d. Za one lijekove čija je proizvodnja neisplativa, kolika minimalno mora biti njihova cijena da bi im se proizvodnja učinila isplativom? [0.3 poena]

Vidimo u finalnoj iteraciji da su y_4 , y_5 , y_6 različiti od nule što znači da nisu isplativi za proizvoditi.

Njihova minimalna cijena treba biti 75+8.3869 = 83.3869 nj, 54+1.5137= 55.5137 nj, 87+14.8436= 101.8436 nj, respektivno za drugi,treći i četvrti lijek.