

# Winning Space Race with Data Science

Andrea Neveling May 2022



### **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

#### Summary of methodologies

- Data was collected by webscraping and using the SpaceX API
- Data wrangling and Exploratory Data Analysis (EDA) with Jupyter Notebooks
- Machine Learning prediction of Falcon 9 first stage landings
- Visualizations with Folium and Plotly Dash

#### Summary of all results

- Data collection, wrangling and exploration was successful
- EDA and visualizations display certain correlations
- Models achieved up to 83,33% accuracy

#### Introduction

#### Project background

- The new player SpaceY wants to compete with SpaceX
- SpaceX advertises Falcon 9 rocket launches with a cost of 62 million dollars
- Other providers cost upward of 165 million dollars each
- SpaceX is cheaper because they can reuse the first stage

#### Problems you want to find answers

- SpaceY wants to bid against SpaceX for a rocket launch
- Therefor they have to determine the cost of a launch
- To be able to do this, we have to determine if the first stage will successfully land



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - The data used was gathered from the SpaceX REST API and web scraped from related Wiki pages with the Python module BeautifulSoup
- Perform data wrangling
  - Statistical calculations
  - Five NULL values in the PayloadMass column have been replaced with the mean
  - Additional columns have been added to facilitate the research
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

#### **Data Collection**



- The data used was gathered from the SpaceX REST API and webscraped from related Wiki pages with the Python module BeautifulSoup
- The gathered data contains information about launches: The rockets used, payload delivered, launch specifications, landing specifications, and landing outcome.
- Data was filtered to Falcon9 launches

## Data Collection – SpaceX API

#### Link: Jupyter Notebook on GitHub

- SpaceX offers a public API:
   spacex\_url=https://api.spacexdata.com/v4/launches/past
- The API was used with a GET-request according to the chart below...





...then the result was normalized and loaded into a Pandas dataframe:

data = pd.json\_normalize(response.json())

### **Data Collection - Scraping**

- HTML data was downloaded from Wikipedia: https://en.wikipedia.org/w/index.php?title=List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches&oldid=1027686922
- HTML Tables on SpaceX launches were processed through the Python module BeautifulSoup
- Processed data was loaded into a Pandas dataframe



## **Data Wrangling**

- Identification of data types, missing values etc.
- Calculations of launches per site, mission outcomes etc.
- New column inserted into data frame for labeling different outcomes as landing success (O/ 1)



#### **EDA** with Data Visualization

- Python modules Matblotlib and Seaborn were used for visualization
- Scatter plots, bar plots and linear plots were built to find relations of features and mission outcomes:
  - Relationship between Flight Number and Launch Site
  - · Relationship between Payload and Launch Site
  - · Relationship between success rate of each orbit type
  - Relationship between FlightNumber and Orbit type
  - · Relationship between Payload and Orbit type
  - · Launch success yearly trend



### **EDA** with SQL

- SQL queries performed
  - Names of the unique launch sites in the space mission
  - Total payload mass carried by boosters launched by NASA (CRS)
  - Average payload mass carried by booster version F9 v1.1
  - · Date when the first successful landing outcome in ground pad was achieved
  - Boosters which have success in drone ship and have payload mass greater than 4000 but less than
     6000
  - Total numbers of successful and failure mission outcomes
  - Booster Versions which have carried the maximum payload mass
  - Failed landing outcomes in drone ship, their booster versions, and launch site names (in year 2015)
  - Ranking of the count of landing outcomes



### Build an Interactive Map with Folium



- Finding an optimal location for building a launch site involves many factors
- We built maps with markers to discover some of those factors by analyzing the existing launch site
  locations (e.g. depending on the outcome)
- We also calculate the distances between a launch site to its proximities

### Build a Dashboard with Plotly Dash

- This interactive dashboard allows the user to choose a site and/ or the payload as filters
- The following plots were used to visualize data
  - Percentage of launches by site
  - Payload range
- A pie chart visualizes the success rate of sites
- A scatter plot visualizes the relationship between payload and outcome

# Predictive Analysis (Classification)

- Comparison of the performance of 4 classification algorithms:
  - Logistic Regression
  - Support Vector Machine
  - Decision Tree
  - K Nearest Neighbors



#### Results

- Space X uses four different launch sites
- Launch site, orbit, payload and flight numbers correlate with the outcome
- Launch site KSC LC-39A had the most successful launches and with 76,9% also the highest launch success rate
- Many Falcon 9 booster versions successfully landed with a payload above the average
- Booster version 1.1 has been only successful below 2000kg payload mass
- The number of successful landing outcomes increases over the years
- The predictive models achieved up to 83,33% accuracy.







# Flight Number vs. Launch Site



# Payload vs. Launch Site



# Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

• Show the screenshot of the scatter plot with explanations



# Flight Number vs. Orbit Type



# Payload vs. Orbit Type



# Launch Success Yearly Trend

- Successful outcomes increase with the years
- This might relate to technological and analytical progress



### All Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

%sql SELECT DISTINCT LAUNCH\_SITE FROM SPACEXTBL ORDER BY 1

# Launch Site Names Begin with 'CCA'

%sql SELECT \* FROM SPACEXTBL WHERE LAUNCH\_SITE LIKE 'CCA%' LIMIT 5

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb Done.

| DATE       | timeutc_ | booster_version | launch_site    | payload                                                             | payload_masskg_ | orbit        | customer              | mission_outcome | landing_outcome     |
|------------|----------|-----------------|----------------|---------------------------------------------------------------------|-----------------|--------------|-----------------------|-----------------|---------------------|
| 2010-04-06 | 18:45:00 | F9 v1.0 B0003   | CCAFS<br>LC-40 | Dragon Spacecraft<br>Qualification Unit                             | 0               | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-08-12 | 15:43:00 | F9 v1.0 B0004   | CCAFS<br>LC-40 | Dragon demo flight C1, two<br>CubeSats, barrel of<br>Brouere cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-08-10 | 00:35:00 | F9 v1.0 B0006   | CCAFS<br>LC-40 | SpaceX CRS-1                                                        | 500             | LEO<br>(ISS) | NASA (CRS)            | Success         | No attempt          |
| 2013-01-03 | 15:10:00 | F9 v1.0 B0007   | CCAFS<br>LC-40 | SpaceX CRS-2                                                        | 677             | LEO<br>(ISS) | NASA (CRS)            | Success         | No attempt          |
| 2013-03-12 | 22:41:00 | F9 v1.1         | CCAFS<br>LC-40 | SES-8                                                               | 3170            | GTO          | SES                   | Success         | No attempt          |

## **Total Payload Mass**

The total payload carried by boosters from NASA is 56479 kg

%sql SELECT SUM(PAYLOAD\_MASS\_\_KG\_) AS TOTAL\_PAYLOAD FROM SPACEXTBL WHERE PAYLOAD LIKE '%CRS%'

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb
Done.

total\_payload
56479

# Average Payload Mass by F9 v1.1

The average payload mass carried by booster version F9 v1.1 is 3676 kg

```
%sql SELECT AVG(PAYLOAD_MASS__KG_) AS AVG_PAYLOAD FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1'

* ibm_db_sa://zct66184:***@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb
Done.

avg_payload
    3676
```

# First Successful Ground Landing Date

```
%sql SELECT MIN(DATE) AS FIRST_SUCCESS_GP FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Success (ground pad)'
```

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb Done.

first\_success\_gp

2017-01-05

#### Successful Drone Ship Landing with Payload between 4000 and 6000

%sql SELECT DISTINCT BOOSTER\_VERSION FROM SPACEXTBL WHERE PAYLOAD\_MASS\_\_KG\_ BETWEEN 4000 AND 6000 AND LANDING\_\_OUTCOME = 'Succes s (drone ship)'

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb Done.

#### booster\_version

F9 FT B1031.2

F9 FT B1022

#### Total Number of Successful and Failure Mission Outcomes

%sql SELECT MISSION\_OUTCOME, COUNT(\*) AS QTY FROM SPACEXTBL GROUP BY MISSION\_OUTCOME ORDER BY MISSION\_OUTCOME

\* ibm\_db\_ssyl/=stsc184.\*\*\*\*0135f0fc1\_0715\_46f0\_0300\_s8177b31803b\_s1ssi3sd0tstv01sds00\_dstabases\_sanddamsiz\_s1svd.30436(blue)

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb Done.

| mission_outcome                  | qty |
|----------------------------------|-----|
| Success                          | 44  |
| Success (payload status unclear) | 1   |

## **Boosters Carried Maximum Payload**

# List of boosters which have carried the maximum payload mass:

- F9 B5 B1048.4
- F9 B5 B1058.3
- F9 B5 B1049.4
- F9 B5 B1060.2
- F9 B5 B1049.5

%sql SELECT DISTINCT BOOSTER\_VERSION FROM SPACEXTBL WHERE PAYLOAD\_MASS\_\_KG\_ = (SELECT MAX(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXTBL) ORD ER BY BOOSTER\_VERSION

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb Done.

#### booster\_version

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1049.5

F9 B5 B1058.3

F9 B5 B1060.2

#### 2015 Launch Records

F9 v1.1 B1012 CCAFS LC-40

```
%sql SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Failure (drone ship)' AND DATE_PART('YEAR', DA
TE) = 2015

* ibm_db_sa://zct66184:***@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb
Done.

booster_version launch_site
```

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

No attempt: 7
 Success (ground pad): 2

Failure (drone ship):
 Controlled (ocean):

• Success (drone ship): 2 • Failure (parachute):

%sql SELECT LANDING\_\_OUTCOME, COUNT(\*) AS QTY FROM SPACEXTBL WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY LANDING\_\_OUTCOME ORDER BY QTY DESC

\* ibm\_db\_sa://zct66184:\*\*\*@125f9f61-9715-46f9-9399-c8177b21803b.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:30426/bludb Done.

| landing_outcome      | qty |
|----------------------|-----|
| No attempt           | 7   |
| Failure (drone ship) | 2   |
| Success (drone ship) | 2   |
| Success (ground pad) | 2   |
| Controlled (ocean)   | 1   |
| Failure (parachute)  | 1   |
|                      |     |



# <Folium Map Screenshot 1>



# <Folium Map Screenshot 2>



# <Folium Map Screenshot 3>





### < Dashboard Screenshot 1>



• With 41,7% KSC LC-39A is the launch site with the most successful landing outcomes

### < Dashboard Screenshot 2>



• The launch site KSC LC-39A had 10 successful landing outcomes

### < Dashboard Screenshot 3>



- FT booster version has the highest success rate
- V1.1 booster version has the lowest success rate
- Payload above 6000kg strongly diminishes the success rate



# **Classification Accuracy**



### **Confusion Matrix**



#### **Conclusions**

- The analysis of the data shows the relationships between the mission outcome and features such as payload mass, booster version, launch site
- The most promising launch site is KSC LC 39A
- The number of successful landing outcomes increases over the years, probably to technological and analytical progress
- With the built classification models it is possible to predict the launch outcome with an estimated accuracy of 83,33%.

