```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

1 BCG EDA

Description of fields in the data set

Field name	Description	Field name	Description
id	contact id	forecast_price_energy_p1	forecasted energy price for 1st period
activity_new	category of the company's activity	forecast_price_energy_p2	forecasted energy price for 2nd period
campaign_disc_ele	code of the electricity campaign the customer last subscribed to	forecast_price_pow_p1	forecasted power price for 1st period
channel_sales	code of the sales channel	has_gas	indicated if client is also a gas client
cons_12m	electricity consumption of the past 12 months	imp_cons	current paid consumption
cons_gas_12m	gas consumption of the past 12 months	margin_gross_pow_ele	gross margin on power subscription
cons_last_month	electricity consumption of the last month	margin_net_pow_ele	net margin on power subscription
date_activ	date of activation of the contract	nb_prod_act	number of active products and services
date_end	registered date of the end of the contract	net_margin	total net margin
date_first_activ	date of first contract of the client	num_years_antig	antiquity of the client (in number of years)
date_modif_prod	date of last modification of the product	origin_up	code of the electricity campaign the customer first subscribed to
date_renewal	date of the next contract renewal	pow_max	subscribed power
forecast_base_bill_ele	forecasted electricity bill baseline for next month	price_date	reference date
forecast_base_bill_year	forecasted electricity bill baseline for calendar year	price_p1_var	price of energy for the 1st period
forecast_bill_12m	forecasted electricity bill baseline for 12 months	price_p2_var	price of energy for the 2nd period
forecast_cons	forecasted electricity consumption for next month	price_p3_var	price of energy for the 3rd period
forecast_cons_12m	forecasted electricity consumption for next 12 months	price_p1_fix	price of power for the 1st period
forecast_cons_year	forecasted electricity consumption for next calendar year	price_p2_fix	price of power for the 2nd period
forecast_discount_energy	forecasted value of current discount	price_p3_fix	price of power for the 3rd period
forecast_meter_rent_12m	forecasted bill of meter rental for the next 12 months	churned	has the client churned over the next 3 months

```
train_data = pd.read_csv('ml_case_training_data.csv')
train_hist_data = pd.read_csv('ml_case_training_hist_data.csv')
output_data = pd.read_csv('ml_case_training_output.csv')
```

Merge the 'churn' to train data
full_train_data = train_data.merge(output_data, on='id')

train_data.shape

(16096, 32)

full_train_data.shape

(16096, 33)

```
total_null = full_train_data.isnull().sum().sort_values(ascending = False)
null_percentage = (full_train_data.isnull().sum() / full_train_data.isnull().co
missing_data = pd.concat([total_null, null_percentage],keys=['Total_Null','Null_
```

missing_data.head(20)

	Iotal_Null	Null_percentage
campaign_disc_ele	16096	1.000000
forecast_base_bill_ele	12588	0.782058
date_first_activ	12588	0.782058
forecast_cons	12588	0.782058
forecast_bill_12m	12588	0.782058
forecast_base_bill_year	12588	0.782058
activity_new	9545	0.593004
channel_sales	4218	0.262053
date_modif_prod	157	0.009754
orecast_discount_energy	126	0.007828
orecast_price_energy_p2	126	0.007828
orecast_price_pow_p1	126	0.007828
orecast_price_energy_p1	126	0.007828
origin_up	87	0.005405
late_renewal	40	0.002485
net_margin	15	0.000932
margin_net_pow_ele	13	0.000808
margin_gross_pow_ele	13	0.000808
oow_max	3	0.000186
date_end	2	0.000124

1.1 We can see that there are multiple variable present too much null valuse, which cannot provide vital information.

General should not exceed 15% null percentage

missing_data.loc[data.columns].sort_values(by='Null_percentage',ascending = Fal

	Total_Null	Null_percentage
date_modif_prod	157	0.009754
forecast_price_energy_p1	126	0.007828
forecast_discount_energy	126	0.007828
forecast_price_energy_p2	126	0.007828
forecast_price_pow_p1	126	0.007828
origin_up	87	0.005405
date_renewal	40	0.002485
net_margin	15	0.000932
margin_net_pow_ele	13	0.000808
margin_gross_pow_ele	13	0.000808
pow_max	3	0.000186
date_end	2	0.000124
imp_cons	0	0.000000
num_years_antig	0	0.000000
nb_prod_act	0	0.000000
id	0	0.000000
has_gas	0	0.000000
cons_12m	0	0.000000
forecast_meter_rent_12m	0	0.000000
forecast_cons_year	0	0.000000
forecast_cons_12m	0	0.000000
date_activ	0	0.000000
cons_last_month	0	0.000000
cons_gas_12m	0	0.000000
churn	0	0.000000

1.2 deal with null values

```
# find the numeric columns
    num_col = data._get_numeric_data().columns.tolist()
    cat_col = set(data.columns) - set(num_col)
    print("Num cols :{}, \n\nCat cols: {}".format(num_col, cat_col))
Num cols :['cons_12m', 'cons_gas_12m', 'cons_last_month', 'forecast_cons_12
m', 'forecast_cons_year', 'forecast_discount_energy', 'forecast_meter_rent_12
m', 'forecast_price_energy_p1', 'forecast_price_energy_p2', 'forecast_price_p
ow_p1', 'imp_cons', 'margin_gross_pow_ele', 'margin_net_pow_ele', 'nb_prod_ac
t', 'net_margin', 'num_years_antig', 'pow_max', 'churn'],
Cat cols: {'has_gas', 'origin_up', 'date_activ', 'date_modif_prod', 'id', 'da
te_renewal', 'date_end'}
    # Replace null with medain for numeric values
    for col in num col:
        data[col] = data[col].fillna(data[col].median())
    data[num_col].isnull().sum()
cons_12m
cons_gas_12m
cons_last_month
forecast_cons_12m
forecast_cons_year
                           0
forecast_discount_energy
                           0
forecast_meter_rent_12m
                           0
forecast_price_energy_p1
forecast price energy p2
forecast_price_pow_p1
                            0
                            0
imp_cons
margin_gross_pow_ele
                            0
margin_net_pow_ele
                            0
nb_prod_act
net_margin
                            0
                            0
num_years_antig
                            0
pow_max
churn
dtype: int64
```

```
# fill categoriacal column by adding an new "Unknown" Category
    # Doing so is due to there are some variable such as date_end, if fill with mod
    for col in cat_col:
        print(col)
        data[col].fillna('Unknown', inplace=True)
has_gas
origin_up
date_activ
date_modif_prod
date_renewal
{\tt date\_end}
    data[cat_col].isnull().sum()
has_gas
origin_up
date_activ
date_modif_prod 0
date_renewal
                  0
date_end
                  0
dtype: int64
```

```
data.isnull().sum()
id
                            0
cons_12m
cons_gas_12m
                            0
cons_last_month
                            0
date_activ
                            0
date end
date_modif_prod
date_renewal
forecast_cons_12m
                            0
forecast_cons_year
                            0
forecast_discount_energy
forecast_meter_rent_12m
forecast_price_energy_p1
forecast_price_energy_p2
                            0
forecast_price_pow_p1
                            0
has_gas
imp_cons
margin_gross_pow_ele
margin_net_pow_ele
                            0
                            0
nb_prod_act
net_margin
num_years_antig
origin_up
                            0
pow_max
churn
dtype: int64
```

1.3 EDA

1.3.1 Detect Outliers

```
def detect_outlier(df, col):
    print(col)
    q1 = df[col].quantile(0.25)
    q3 = df[col].quantile(0.75)
    iqr = q3 - q1
    lower_bound = q1 - (1.5 * iqr)
    upper_bound = q3 + (1.5 * iqr)
    l_outlier = df[col].apply(lambda x: x <= lower_bound).sum()
    u_outlier = df[col].apply(lambda x: x >= upper_bound).sum()
    print("lower outlier :{}, Upper outliers: {}".format(l_outlier,u_outlier))
```

```
for col in num col:
        detect_outlier(data, col)
cons_12m
lower outlier: 3, Upper outliers: 2540
cons_gas_12m
lower outlier: 13176, Upper outliers: 16090
{\tt cons\_last\_month}
lower outlier: 29, Upper outliers: 2469
forecast_cons_12m
lower outlier: 9, Upper outliers: 1369
forecast_cons_year
lower outlier :10, Upper outliers: 1594
forecast_discount_energy
lower outlier: 15517, Upper outliers: 16096
forecast_meter_rent_12m
lower outlier :1, Upper outliers: 383
forecast_price_energy_p1
lower outlier: 100, Upper outliers: 367
forecast_price_energy_p2
lower outlier:0, Upper outliers:0
forecast_price_pow_p1
lower outlier: 102, Upper outliers: 749
imp cons
lower outlier :10, Upper outliers: 1522
margin_gross_pow_ele
lower outlier :124, Upper outliers: 638
margin_net_pow_ele
lower outlier: 173, Upper outliers: 616
nb_prod_act
lower outlier :12560, Upper outliers: 16096
net_margin
lower outlier :31, Upper outliers: 1181
num_years_antig
lower outlier :1, Upper outliers: 597
pow max
lower outlier: 1, Upper outliers: 2007
churn
lower outlier :14501, Upper outliers: 16096
```

data.shape

(16096, 25)

1.3.2 Churned vs Non-Churned customers:

Consumption wise:

- cons_12m: electricity consumption of the past 12 months
- cons_gas_12m: gas consumption of the past 12 months

• cons_last_month: electricity consumption of the last month

Relationship wise:

- net margin: total net margin
- num_years_antig: antiquity of the client (in number of years)

```
# Churn Percentage
churn_percentage = data['churn'].sum() / data['churn'].count()
print("Churn Percentage: {:.2}%".format(churn_percentage))
```

Churn Percentage: 0.099%

```
data[['cons_12m','churn']].groupby(['churn'], as_index = False).mean().sort_val
```

	cnurn	cons_12m
0	0	206468.613406
1	1	88758.628213

```
data[['forecast_cons_12m','churn']].groupby(['churn'], as_index = False).mean()
```

churn forecast_cons_12m

```
1 1 2460.528978
```

0 0 2360.659598

```
data[['forecast_cons_year','churn']].groupby(['churn'], as_index = False).mean(
```

churn forecast_cons_year

```
1 1 1951.033856
```

0 0 1902.542032

From Consumption wise, we can find most of customer churn due to the uprise in forecast consumption

As for non-churned customers, mostly already devote lots of resources in the past.

```
BCG_EDA_Analsis - Jupyter Notebook
   data[['net_margin','churn']].groupby(['churn'], as_index = False).mean().sort_v
 churn net_margin
        250.378539
0
        214.322518
   data[['num_years_antig','churn']].groupby(['churn'], as_index = False).mean().se
 churn num_years_antig
        5.070409
        4.668966
```

1.4 model

```
import seaborn as sns
     corrmat = data.corr()
     top_corr_features = corrmat[abs(corrmat['churn'] > 0.02)].index
     plt.figure(figsize=(9,9))
     # Use these attributes to form the heatmap
     # train_data[top_corr_features]
     g = sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="coolwarm")
                               0.63
                                                            0.34
forecast_meter_rent_12m
                                                                                   - 0.8
                      0.63
                                                            0.25
forecast_price_energy_p2
                                                                                  - 0.6
  margin_gross_pow_ele
                                                                                   - 0.4
   margin_net_pow_ele ·
                                                                                   - 0.2
                      0.34
                               0.25
          net margin
                                                                                   0.0
              churn
                                                                      dhum
                                forecast_price_energy_p2
                                                   margin_net_pow_ele
                                          margin gross pow ele
     data.shape
(16096, 25)
     # drop duplicate data entries
     data = data.T.drop_duplicates().T
```

```
data.shape
(16096, 25)
```

1.5 Model

1.5.1 Utilize Lanel Encoder to Encode Data

```
from sklearn.preprocessing import LabelEncoder
labelcoder = LabelEncoder()
```

for col in cat_col:
 data[col] = labelcoder.fit_transform(data[col])

```
churn = data['churn']
churn=churn.astype('int')
```

```
train_data = data.drop(['churn'], axis = 1)
```

train_data.head()

_		id	cons_12m	cons_gas_12m	cons_last_month	date_activ	date_en
	0	4666	309275	0	10025	1737	283
	1	2361	0	54946	0	1928	140
	2	13250	4660	0	0	743	216
	3	7430	544	0	0	941	80
	4	11748	1584	0	0	928	63

5 rows × 24 columns

```
from sklearn.model_selection import train_test_split
# X_train,X_test,Y_train,Y_test = train_test_split(one_hot_ticket,Survived, tes
X_train,X_test,Y_train,Y_test = train_test_split(train_data,churn, test_size=.3)
```

machine learning

from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier

```
# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_test, Y_test) * 100, 2)
# Stochastic Gradient Descent
sgd = SGDClassifier()
sgd.fit(X_train, Y_train)
Y_pred = sgd.predict(X_test)
acc_sgd = round(sgd.score(X_test, Y_test) * 100, 2)
acc_sgd
# Support Vector Machines
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_test, Y_test) * 100, 2)
acc_svc
# KNN
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_test, Y_test) * 100, 2)
acc_knn
# Gaussian Naive Bayes
gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y pred = gaussian.predict(X test)
acc_gaussian = round(gaussian.score(X_test, Y_test) * 100, 2)
acc_gaussian
# Perceptron
perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_test, Y_test) * 100, 2)
acc_perceptron
# Linear SVC
linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_test, Y_test) * 100, 2)
```

```
acc_linear_svc
    # Decision Tree
    decision_tree = DecisionTreeClassifier()
    decision_tree.fit(X_train, Y_train)
    Y_pred = decision_tree.predict(X_test)
    acc_decision_tree = round(decision_tree.score(X_test, Y_test) * 100, 2)
    acc_decision_tree
    # Random Forest
    random_forest = RandomForestClassifier(n_estimators=100)
    random_forest.fit(X_train, Y_train)
    Y_pred = random_forest.predict(X_test)
    random_forest.score(X_train, Y_train)
    acc_random_forest = round(random_forest.score(X_test, Y_test) * 100, 2)
    acc_random_forest
/home/brian/miniconda3/lib/python3.8/site-packages/sklearn/linear_model/_logi
stic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/mo
dules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (https://scikit-le
arn.org/stable/modules/linear_model.html#logistic-regression)
  n_iter_i = _check_optimize_result(
/home/brian/miniconda3/lib/python3.8/site-packages/sklearn/svm/_base.py:985:
ConvergenceWarning: Liblinear failed to converge, increase the number of ite
rations.
  warnings.warn("Liblinear failed to converge, increase "
90.27
```

1.6 Model Comparison:

We can see using Random Forest has the highest score

Model Accuracy_Score

3	Random Forest	90.29
0	Support Vector Machines	89.81
1	KNN	87.84
4	Naive Bayes	86.60
8	Decision Tree	82.29
5	Perceptron	80.55
7	Linear SVC	80.04
2	Logistic Regression	52.06
6	Stochastic Gradient Decent	20.19

1.7 Dimension Reduction

```
from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

myPCA = PCA(10)
mySVD = TruncatedSVD(10)
myLDA = LinearDiscriminantAnalysis(10)

myPCA.fit(X_train)
PCA(n_components=10)
```

```
RX_train = myPCA.transform(X_train)
RX_test = myPCA.transform(X_test)
```

1.8 PCA

```
# Random Forest
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_test, Y_test) * 100, 2)
acc_random_forest
```

acc_random_forest

90.31

1.9 SVD

```
mySVD.fit(X_train)
```

TruncatedSVD(n_components=10)

```
RX_train = mySVD.transform(X_train)
RX_test = mySVD.transform(X_test)
```

```
# Random Forest
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_test, Y_test) * 100, 2)
acc_random_forest
```

1.10 We can observe that using SVD and PCA did'nt help at the accuracy of the data

```
from sklearn import metrics
```

```
print('Precision:', metrics.precision_score(Y_test, Y_pred))
print('Recall:', metrics.recall_score(Y_test, Y_pred))
print('F1:', metrics.f1_score(Y_test, Y_pred))
```

Precision: 0.9615384615384616 Recall: 0.0508130081300813 F1: 0.09652509652509651

```
fpr, tpr, threshold = metrics.roc_curve(Y_test, Y_pred)
    roc_auc = metrics.auc(fpr, tpr)
    # method I: plt
    import matplotlib.pyplot as plt
    plt.title('Receiver Operating Characteristic')
    plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1],'r--')
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()
                Receiver Operating Characteristic
  1.0
  0.8
True Positive Rate
  0.6
  0.2
                                                AUC = 0.53
  0.0
               0.2
                         0.4
                                    0.6
                                               0.8
                         False Positive Rate
```