复变函数期末

一. 填空题

1.
$$f(z) = |z|^2$$
 在 $z = 0$ 处的导数为 (

2. 设
$$C$$
 为 $z = 0$ 到 $z = 1 + i$ 的线段, 则 $\int_{C} \bar{z} dz = ($);

3.
$$\sum_{n=1}^{\infty} \frac{(z-2i)^n}{n^3}$$
 的收敛半径和收敛圆为 ();

4.
$$f(z) = z^3 \sin \frac{1}{z^2}$$
 在 $z = 0$ 处的留数为 ()

5.
$$2z^5 - 6z^4 + z^2 + 2$$
 在单位圆内的零点个数为 ();

二. 若
$$f(z) = axy + i(bx^2 + y^2)$$
 在全平面 $\mathbb C$ 上解析, 试求 a,b 的值, 并计算 $f'(z)$, $f''(z)$.

三. 计算
$$\int_C \frac{1}{z(z-2i)} dz$$
, 其中 (1) $C: |z-2i|=1$; (2) $C: |z|=3$.

四. 设
$$f(z) = \int_{|\zeta|=3} \frac{3\zeta^3 + 7\zeta^2}{(\zeta - z)^2} d\zeta$$
, 求 $f(1+i)$, $f'(1+i)$.

五. 设
$$f(z)$$
 在 z_0 处解析, 证明 $\exists \delta > 0$, 在圆盘 $|z - z_0| < \delta$ 内有幂级数展开 $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$.

六. 求
$$e^{-z}\cos z$$
 在 $z=0$ 处的 Laurant 展开式.

七. 利用留数定理计算积分
$$\int_0^\infty \frac{3x^2}{(x^2+4)^2} dx$$
.

八. 设
$$f(x)$$
 在 z_0 处解析, 设 $w_0 = f(z_0)$, 若 $f^{(k)}(z_0) = 0$, $(k = 1, \dots, n-1)$, $f^{(n)}(z_0) \neq 0$,

(1) 证明
$$z_0$$
 是 $h(z) = f(z) - w_0$ 的 n 重零点;

$$(2)$$
 $\exists \rho, \mu > 0$, 对 $0 < |w - w_0| < \mu$, 证明 $g(z) = f(z) - w$ 在 $0 < |z - z_0| < \rho$ 时有 n 个一重零点.