Special Topics in Security ECE 5698

Engin Kirda ek@ccs.neu.edu

Admin News

- Challenge 2 will go online right after class
 - You need to solve 2 out of 4 programs to get full points
 - One of them very similar to what I will show in class today

SUID Programs

- Each process has real and effective user / group ID
 - usually identical
 - real IDs
 - determined by current user
 - login, su
 - effective IDs
 - determine the "rights" of a process
 - system calls (e.g., setuid())
 - suid/sgid bits
 - to start process with effective ID different from real ID
 - attractive target for attacker
- You cannot use SUID shell scripts anymore

DEMO, SUID program...

Shell Tricks Demo

Resource Limits

File system limits

- restrict number of storage blocks and number of inodes
- hard limit
 - can never be exceeded (operation fails)
- soft limit
 - can be exceeded temporarily
- can be defined per mount-point
- defend against resource exhaustion (denial of service)

Process resource limits

number of child processes, open file descriptors

DEMO, quotas...

Signals

Signal

- simple form of interrupt
- asynchronous notification
- can happen anywhere for process in user space
- used to deliver segmentation faults, reload commands, ...
- kill command

Signal handling

- process can install signal handlers
- when no handler is present, default behavior is used
 - ignore or kill process
- possible to catch all signals except SIGKILL (-9)

Signals

- Security issues
 - code has to be be re-entrant
 - atomic modifications
 - no global data structures
 - race conditions
 - unsafe library calls, system calls
 - examples
 - wu-ftpd 2001, sendmail 2001 + 2006, stunnel 2003, ssh 2006
- Secure signals
 - write handler as simple as possible
 - block signals in handler

Shared Libraries

Library

- collection of object files
- included into (linked) program as needed
- code reuse

Shared library

- multiple processes share a single library copy
- save disk space (program size is reduced)
- save memory space (only a single copy in memory)
- used by virtually all Unix applications (at least libc.so)
- check binaries with 1dd

Shared Libraries

- Static shared library
 - address binding at link-time
 - not very flexible when library changes
 - code is fast
 - depends on kernel version

- Dynamic shared library
 - address binding at load-time
 - uses procedure linkage table (PLT) and global offset table (GOT)
 - code is slower (indirection)
 - loading is slow (binding has to be done at run-time)
 - classic .so or .dll libraries
- PLT and GOT entries are very popular attack targets
 - more when discussing buffer overflows

Shared Libraries

Management

- stored in special directories (listed in /etc/ld.so.conf)
- manage cache with ldconfig

Preload

- override (substitute) with other version
- use /etc/ld.so.preload
- can also use environment variables for override
- possible security hazard
- now disabled for SUID programs (old Solaris vulnerability)

- If you are maintaining a UNIX-based system...
 - Turn off unused services
 - Services that are not enabled cannot be attacked
 - Services may be vulnerable (e.g., the printer example)
 - You might want to check inetd (/etc/inetd.conf), /etc/init.d

#pop stream tcp nowait root /etc/uva/tcp_wrapper/tcpd /usr/local/etc/popper
popper #imap stream tcp nowait root /etc/uva/tcp_wrapper/tcpd /usr/local/etc/imapd4

If you use xinetd, check /etc/xinetd

```
service finger{
socket_type = stream     wait = no     user = nobody     server =
/usr/sbin/in.fingerd     disable = yes
}
```

imapd

- Install IP filter or firewall rules...
 - Even back in 2002, some UNIX systems were open (!)
 - ipchains is available with Linux 2.2, as of 2.4, iptables
 - AIX and IRIX have similar filtering capabilities
 - In Solaris, IP filtering is not part of the OS until version 8
 - You can buy it ;-) Eeehmmm... maybe not a good idea
- Install tcpd
 - tcpd is a wrapper daemon for tcp-based services
 - With a configuration file, one has fine-grained control over accesses

Install sshd

- ssh is stable and secure.
 - ssh has a good reputation
 - Nevertheless, there have been problems in the past (so patch your system)
- Ideally, passwords should not be typed (on keyboard) and remote root access should be disabled
- ssh in combination with IP-based restrictions and public-key configurations is a good idea
- Try not to use "web application frameworks" and the like
 - Some of them are riddled with holes (e.g., Wordpress)
 - E.g., Dan Kaminsky, Kevin Mitnick, sites, etc.

- When you leave your desk…
 - You can use a screensaver with password protection
 - Unix systems often allow you to "lock" the screen
 - On MacOS, it might be a good idea to activate (multi-user login)
 - These things might sound trivial, but industrial espionage is an issue and unlocked computers are sometimes used to gain access
 - E.g., disguised cleaning lady
 - Companies often have checks and guidelines for desk management

One Advantage of Linux Today

- No matter how popular it has become, it still has a small number of users (compared to Windows)
 - If you use Linux today, you have a very very small risk of getting infected by a drive-by download
 - Malware for Linux exists, but most attacks are server-side and do not target end-users
 - A Linux VM is an ideal tool for accessing online banking
 - UNIX machines do not run as root by default
 - Using MacOS is less safe (mainly because it is more popular) MacOS malware has appeared

The Most Common UNIX Attack

- Brute force attacks against services such as ssh, ftp, telnet
 - If you check server logs, frequently, you see repeated attempts for random user names (e.g., admin, root, etc.)
 - These are often bots who try brute force attacks against Internet hosts
 - A simple defense technique: Run your SSH server on a different port (e.g., 800)
 - The downside: Firewalls might be problematic

Random Number Bug in Debian

- On May 13th, 2008 the Debian project announced that Luciano Bello found an interesting bug
 - The random number generation was flawed in md_rand.c
 - The following lines were removed from code:

```
MD_Update(&m,buf,j);
[ .. ]
MD_Update(&m,buf,j); /* purify complains */
```

- These lines caused Valgrind and Purify to complain (i.e., warnings)
- Removing the code caused the crippling of the seeding process for OpenSSL

Random Number Bug in Debian

What does this bug mean?

- It means that public / secret keys generated after the bug was introduced are not as random as one might think
- In fact, there are lists on the Internet that one can now download
- With these, it is possible to decode SSL traffic, login to a remote account, etc.
- http://www.metasploit.com/users/hdm/tools/debian-openssl/

Random Number Bug in Debian

General Windows Security

Windows

- A lot of computers run Windows. Windows is all around you
 - When dealing with security issues, it is important to have knowledge of Windows.
 - Windows is the best example of non-open source system and security issues.
- Windows security is always in the news (major virus, worm and trojan outbreaks in the past, trojans recently were on Windows). Why?
- Seeing the need (finally), Microsoft started a major initiative for security about 10 years ago
 - Attacks are common, e.g., http://www.windows2000test.com

Reinventing the wheel?

- Development as non-administrator ("Great" idea ;-))
 - Default configuration on Windows system = admin!
 - Principle of least privilege
 - Administrator command shell using runas.exe (i.e., su -)
 - Store configuration and user information under \HKEY_CURRENT_USER
 - Run services under a restricted user (locking down)
 - Take care in giving debugging privileges
- I Love You and Nimda would not have worked if computer did not run as admin.

Code size (Windows vs. Linux)

- 1992 Windows 3.1 (3M)
- 1995 Windows 95 (15M)
- 1998 Windows NT 4 (20M)
- 1999 Windows 2000 (40M)
- 2000 Red Hat 6.2 (17M)
- 2000 Debian GNU/Linux 2.2 (55M)
 - Linux 2.2 kernel (1.78M)
 - XFree86 3.3.6 (1.27M)
- 2001 Red Hat 7.1 (30M)

Security at Microsoft

- Trustworthy Computing
 - Windows security push
 - Lead for improved security
- What is it?
 - Training, code reviews
 - Threat models and security testing
- SD3 Security Framework
 - Mind setting
 - Principles to adhere strictly

Service Packs and Updates

- Hotfix
 - Single issue / small number of issues
- Security rollup package
 - Single package
 - Multiple hotfixes
- Service pack
 - Major updates
 - Cumulative set of previous updates
 - (optional) Previously unannounced fixes
 - (optional) Feature changes
- Major problem: Often rebooting is required!

Single User OS (Windows 95/98)

- Almost no security (just like DOS)
 - Anyone can install anything, locking down not possible
- Local Security
 - Highly vulnerable to viruses and trojan horses
 - Highly vulnerable to unauthorized local access/console
 - No file encryption (e.g., like in WinXP).

- Highly vulnerable to denial-of-service (weak TCP/IP stack)
 - ping of death, winnuke, land attack
- If file/print sharing is used
 - · Registry can be accessed
- Win95/98 are not supported by Microsoft anymore (no online updates). There are "zillion" vulnerabilities meanwhile!

Windows 95/98

Registry

- used to store system configuration (read/write for all)
- Login Process
 - no authentication simply press cancel
 - determine only profile, don't enforce restrictions

Profile

- desktop preferences
- access to saved passwords (in .pwl files)
 - access shared resources, dial-up network
 - Resource Record Triple < type, name, passwd>
 - passwd is encrypted with login password

Windows 95/98

Password files

- login password is not stored encrypted, instead
- pwl-file is decrypted with login password and a checksum verified (using user name as well)
- Windows 95 algorithm very easy to crack
- Windows 98 stronger algorithm (RC4)
 - world-readable
 - vulnerable to brute force / dictionary attacks
- passwords are always converted to uppercase (makes brute force attacks much easier)
- unreliable caching mechanism (important information maybe cached)

Windows 95/98 Attacks

- Screen-Saver protection
 - Ctrl-Alt-Del
 - CD-ROM autorun feature to execute programs
 - autorun.inf and entry "open=progname"
 - Password is stored in Registry
- Malicious Code / Remote exploits
 - 2004 Internet Explorer vulnerabilities (not patched on Win95)
 - Zillion spyware programs, publicly available exploits
 - Good idea not to use Win95/98 but this is not always possible