3.1 Taux de variation

Définition 1.3.

Soient f une fonction définie sur un intervalle I de \mathbb{R} , et a et b deux nombres de l'intervalle I, distincts.

Le $taux\ de\ variation$ de f entre a et b est le nombre noté τ se lisant « tau » défini par :

$$\tau = \frac{f(b) - f(a)}{b - a}$$

Exemple 1.3.
Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$.
Calculer le taux de variation de f entre 2 et 4.

3.2 Polynôme du second degré

Définition 2.3.

Les fonctions de la forme $x \mapsto ax^2 + b$ (avec a et b des nombres réels, et $a \neq 0$) et $x \mapsto a(x-x_1)(x-x_2)$ (avec a, x_1, x_2 des nombres réels, et $a \neq 0$) sont des polynômes du second degré.

Exemples.

Propriété 1.3. Représentation graphique

La représentation graphique d'une fonction polynôme du second degré est une parabole :

- 1. si a < 0, la fonction est d'abord *croissante* puis *décroissante*, et admet un maximum;
- 2. si a > 0, la fonction est d'abord décroissante puis croissante, et admet un minimum.

Propriété 2.3. Sommet

- 1. La parabole représentative d'un polynôme de la forme $f(x) = ax^2 + b$ a pour sommet S(0; b).
- 2. La parabole représentative d'un polynôme de la forme $f(x) = a(x x_1)(x x_2)$ a pour sommet $S(\alpha; \beta)$, avec :

$$\alpha = \frac{x_1 + x_2}{2}$$
 et $\beta = f(\alpha)$

► Note.

La parabole est symétrique par rapport à la droite d'équation $x = \alpha$ (où α est l'abscisse de son sommet).

Exemple 2.3.

Soient les deux polynômes du second degré définis sur $\mathbb R$ par :

$$f(x) = 3x^2 + 1$$
 et $g(x) = -2(x-1)(x+2)$.

1. Identifier les nombres a, b, x_1 ou x_2 sur ces deux expressions.

2. Dans un repère, placer le sommet de chacune des courbes, puis tracer son allure.

Propriété 3.3. Tableaux de variations

	a < 0	a > 0
$f(x) = ax^2 + b$	$ \begin{array}{ c c c c c } \hline x & -\infty & 0 & +\infty \\ \hline f & $	$ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f & & b & \\ \end{array} $
$f(x) = a(x - x_1)(x - x_2)$	$ \begin{array}{ c c c c c } \hline x & -\infty & \alpha & +\infty \\ \hline f & & f(\alpha) & \\ \hline \end{array} $	$ \begin{array}{ c c c c c } \hline x & -\infty & \alpha & +\infty \\ \hline f & & & \\ \hline f(\alpha) & & \\ \hline \end{array} $

Exemple 3.3.

On considère les deux fonctions définies sur $\mathbb R$ par :

$$f(x) = -4x^2 - 1$$
 et $g(x) = 2(x - 4)(x + 1)$.

Pour chacune des deux fonctions :

1. Dresser son tableau de variations.

~	T (•	-	•			
2	- Déterr	niner	la.	valeur	de	ses	extremums	3

Propriété 4.3. Racines

Soit un polynôme du second degré de la forme $f(x) = a(x - x_1)(x - x_2)$.

L'équation f(x) = 0 a deux solutions, qui sont appelées racines du polynôme, et sont égales à x_1 et x_2 .

Dans le cas où $x_1=x_2$, il n'y a qu'une racine appelée $racine\ double$.

Exemples.

4	7 •	, .
An	กมาก	ation.
11D	$\rho u u c c$	$uuuuu_{I}u$

- 1. Soit f la fonction définie sur \mathbb{R} par f(x) = -3(x-4)(x+2).
 - (a) Résoudre f(x) = 0.

(b) Déterminer les coordonnées du sommet de la parabole associée à f.

(c) Placer le sommet et les racines dans un repère, et tracer l'allure de la courbe.

(d) Par lecture graphique, dresser le tableau de signes de f.

- 2. Soit g la fonction définie sur \mathbb{R} par $g(x) = 4x^2 + 1$.
 - (a) Résoudre g(x) = 0.

(b) Dresser le tableau de signes de g.

3.3 Polynôme de degré 3

Définition 3.3.

Les fonctions de la forme $x \mapsto ax^3 + b$ (avec a et b des nombres réels, et $a \neq 0$) et $x \mapsto a(x-x_1)(x-x_2)(x-x_3)$ (avec x_1, x_2, x_3 des nombres réels distincts, et $a \neq 0$) sont des polynômes du troisième degré.

Propriété 5.3. Variations

- Fonction de la forme $x \longmapsto ax^3 + b$:
 - si a < 0, la fonction est $d\acute{e}croissante$;
 - si a > 0, la fonction est *croissante*.
- Fonction de la forme $x \mapsto a(x-x_1)(x-x_2)(x-x_3)$:
 - si a < 0, la fonction est décroissante, puis croissante, puis décroissante;
 - si a > 0, la fonction est *croissante*, puis *décroissante*, puis *croissante*.

	a < 0	a > 0
$f(x) = ax^3 + b$	$ \begin{array}{c cc} x & -\infty & +\infty \\ \hline f & & \\ \end{array} $	$x - \infty + \infty$ f
$f(x) = a(x - x_1)(x - x_2)(x - x_3)$	$\begin{array}{ c c c c }\hline x & -\infty & & +\infty \\\hline f & & & \\\hline \end{array}$	$\begin{array}{ c c c c c }\hline x & -\infty & & +\infty \\\hline f & & & & \\\hline \end{array}$

Application. Dresser le tableau de variations des deux fonctions suivantes :

1.
$$f(x) = -2x^3 + 4$$

2.
$$g(x) = 4(x-2)(x+1)(x+3)$$

Application.

- 1. On définit la fonction f sur \mathbb{R} par $f(x) = -2x^3 + 3$.
 - (a) Identifier a et b.
 - (b) Dresser le tableau de variations de f.

- 2. On définit la fonction g sur \mathbb{R} par g(x) = 2(x-2)(x+3)(x-1).
 - (a) Identifier a, x_1, x_2, x_3 .
 - (b) Dresser le tableau de variations de g.

(c) Quelles sont les solutions de g(x) = 0?

(d) Dresser le tableau de signes de g.

Propriété 7.3.

L'équation $a(x - x_1)(x - x_2)(x - x_3) = 0$ a trois solutions : $x = x_1, x = x_2$ ou $x = x_3$.