Optimizing retrieval augmented generation with graph language model

Aga Kopytko
Founder & CTO @Smabbler
akopytko@smabbler.com

10 years experience in NLP (natural language processing) and graph technologies.

Research areas: natural language algorithms, semantics, symbolism, graph compositionality, lifelong learning, micro-agents.

Fan of planes, cars, diving, climbing and zombie movies.

Key talking points

- 1. RAG (retrieval-augmented generation) in a nutshell
- 2. Key RAG challenges
- 3. Benefits of using graph technologies
- 4. A novel graph architecture with built-in NLP
- 5. Simplified Graph RAG pipeline
- 6. From prototyping to production deployment in hours
- 7. Q&A

RAG in a nutshell

RAG

- extends LLM knowledge with additional data source.
- combines elements of both retrieval-based and generative models.
- allows for more reliable and personalized generative output.

LLM output WITHOUT RAG

 LLM creates a query response based on information it was trained on

LLM output WITH RAG

• a retrieval component is added between a query and an LLM response to firstly pull information from a new data source

Key RAG challenges

3 key RAG challenges

— Creating External Data*

Converting data into numerical representations / relations and storing converted data in a vector database / graph database

The choice of how to create the external data has implications for further steps - including the accuracy and complexity of the RAG pipeline

Maintaining Quality Retrieval

E.g., Semantic search, Vector (similarities) search, Keywords matching

Low retrieval quality reduces the accuracy and relevance of generative outputs

Handling Integration Complexity

RAG systems have several interconnected components, e.g., retrievers, rankers, and generators.

Multitool pipeline can make it challenging to maintain flexibility, scalability, and continuous improvement

Baseline (vector) RAG vs. Graph RAG.

It's easy to start but building RAG is difficult. Current tools are not designed to be simple and / or optimized.

Benefits of using graph technologies

Explainability

More contextually relevant answers

Integration of information from multiple sources (graph relations)

A novel graph architecture with built-in NLP

LLM independent graph language model (Galaxia)

- Symbolism
- Semantics
- Compositionality

Galaxia augments raw text by injecting relations and context into data

Continuous communication: language engine and graph structure / knowledge base

In-memory graph automates retrieval and assures transparency.

Simplified Graph RAG pipeline

Multi-tool 'Classic' pipeline

Optimized 'one-stop' pipeline

- One stop API Graph RAG.
- **✓** No need for databases.
- Cost and energy efficient (runs on CPUs).

Smabbler API Graph RAG - cutting down time from months to hours

1. Parsing

Sentence / text parsing to form intermediate representation - tokenization, lemmatization, part of speech (POS) tagging, dependency parsing. The text is represented as a graph structure.

2. Enrichment

Enriching text with semantics, similarities, definitions, context and relations. The enriched text is represented as a highly interconnected graph structure, creating a user's Language Graph.

3. Storage

Language Graph (Graph Load) in the form of a file (JSON) is stored in the database in the user's account

4. Activation

During the activation graph load connects to the Galaxia graph language model, to create a user Graph Model.

Knowledge base to graph transformation is done by Galaxia - a graph language model

The user query is also transformed into a graph structure

The graph query structure is matched with the in-memory graph model for the knowledge base

The created non-active graph model for the knowledge base is stored in the JSON format

Size & retrieval optimization: Optimizing the size of the graph model by dividing the database into smaller parts

Size & retrieval optimization: The user query then passes through the 'umbrella' root (a cluster of smaller sub-models)

Size & retrieval optimization: During retrieval, the appropriate sub-model returns the result

From prototyping to production deployment in hours

Thx!

We create a new market standard for RAG, standing out with a combination of speed, accuracy, and cost efficiency.

	Smabbler	Other approaches
Use complexity	A few clicks	Multi-tool pipeline
KG¹ building	1-click	Hard coding
KG building speed	Minutes to hours	Weeks
Database	No (in-memory graph)	Graph / Vector DB
Retrieval	Graph model	Database
Processing	CPUs	CPUs / GPUs

Demo

You first RAG in minutes

Scan or <u>click</u> for demo

Smabbler - oparta o autorską technologię mapowania wiedzy na grafie uniwersalna platforma automatyzująca klasyfikowanie komunikacji

Wartość dofinansowania: 3 889 817,89 zł

Całkowity koszt projektu: 6 318 369,88 zł

W ramach projektu opracowane zostanie narzędzie automatyzujące proces klasyfikowania zgłoszeń/zapytań otrzymywanych w ramach obsługi klienta. Platforma umożliwi całkowitą automatyzację procesu niezależnie od skali, stopnia złożoności oraz kontekstu (treści) otrzymywanych zapytań.

Projekt współfinansowany przez Narodowe Centrum Badań i Rozwoju w ramach Strategicznego Programu Badań Naukowych i Prac Rozwojowych INFOSTRATEG