# **Directed Percolation Simulation Example**

This notebook demonstrates how to use the DirectedPercolation module to simulate the model and visualize the results.

### **Project Setup**

Your directory structure should now look like this:

```
In [1]: using Pkg
   Pkg.activate(".")
   Pkg.add(["Plots", "Statistics"])

Activating project at `~/GitHub/Directed_Percolation`
   Resolving package versions...
   No Changes to `~/GitHub/Directed_Percolation/Project.toml`
   No Changes to `~/GitHub/Directed_Percolation/Manifest.toml`
```

## Loading the Module and Dependencies

```
In [2]: include("src/Directed_Percolation.jl")
    using .DirectedPercolation
    using Random
    using Plots
```

#### Main Execution

```
In [3]: Random.seed!(1234)

# --- Parameters for the density vs. time plot ---
N_time_plot = 100
p_time_plot = 0.7
q_time_plot = 0.8
t_max_time_plot = 200
num_trials_time_plot = 50

plot1 = plot_density_vs_time(N_time_plot, p_time_plot, q_time_plot, t_max
# savefig(plot1, "density_vs_time.png")
```

#### display(plot1)

Generating plot for p=0.7, q=0.8...



### **Debugging Plot: Staggered Lattice Structure**

This plot shows the underlying bond structure of the staggered lattice, which is useful for verifying the geometry of the simulation.

```
In [4]: # --- Parameters for the lattice plots ---
N_lattice = 100
t_max_lattice = 100

debug_plot = plot_staggered_lattice_grid(N_lattice, t_max_lattice)
display(debug_plot)
```



#### **Lattice Evolution Plot**

```
In []: # --- Parameters for a single lattice evolution run ---
p_lattice = 0.75
q_lattice = 0.80

initial_state_lattice = generate_initial_state(N_lattice, density=0.3)

history = evolve(N_lattice, p_lattice, q_lattice, t_max_lattice, initial_
plot_lattice = plot_lattice_evolution(history, dpi=600)
# savefig(plot_lattice, "lattice_evolution.png")
display(plot_lattice)
```



```
In [6]: # --- Parameters for the phase diagram ---
N_phase = 100
t_final_phase = 100
p_steps_phase = 100
q_steps_phase = 100
num_trials_phase = 10

plot2 = plot_phase_diagram(N_phase, t_final_phase, p_steps_phase, q_steps # savefig(plot2, "phase_diagram.png")
display(plot2)
```

Generating phase diagram...

Progress: 10.0%
Progress: 20.0%
Progress: 30.0%
Progress: 40.0%
Progress: 50.0%
Progress: 60.0%
Progress: 70.0%
Progress: 80.0%
Progress: 90.0%
Progress: 100.0%





In [7]: