*"Scalars"	$\alpha \beta$	are elements	of fields	rings etc	
Jealars	α , ρ	are cicilicitis	of ficials,	Tillgs, CtC.	

* Scalars	α, β are eleme	ents of fleids, rin	igs, etc.													
Field Rational numbers Real numbers Complex numbers	The state of the s	Unital Ring/Ring Ring The set of all square n-by-n matrices with entries from R	Commutative Ring/Rng Even integers with the ordinary addition and multiplication of integers	Ring/Rng Set of 3-by-3 real matrices whose bottom row is zero	0. Closure of a binary operation $x,y\in M\Rightarrow x*y\in M$ 1. Associativity of addition $(x+y)+z=x+(y+z)$ 2. Additive identity $x+0=0+x=x$ 3. Additive inverse $x+x'=x'+x=0$ 4. Commutativity of addition $x+y=y+x$	R with "xy-x" as a binary operation	The set of positive integers with addition. Ideal of a ring with the multiplication of the ring. (e.g. 2Z of Z)		Group Symmetry group of a triangle Permutation group Free group	Abelian group Integers with addition Non-negative integers with multiplication Cyclic group Free abelian group	Vector/Linear space (over a field) $\mathbb{R}^n \text{ Field: } \mathbb{R} \text{ very common: just vectors}$ Polynomial vector space $\mathbb{F}[x]$ Field: \mathbb{F} Matrices $M_{n \times m}(\mathbb{F})$ Field: \mathbb{F} Solution space of a linear system $Ax = 0$ $ \text{Module (over a ring)} $ Abelian group may be considered as a module over \mathbb{Z}	Algebra (over a field) Lie algebra: instead of associativity it satisfies the Jacobi identity $[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0$ and also Anticommutativity $[x,y]=-[y,x]$ Vectors in 3D space with cross product as a product and vector addition as addition (also Lie) Algebra (over a ring) Polynomial ring $\mathbb{Z}[x]$ is \mathbb{Z} -algebra				
					5. Associativity of scalar multiples of the scalar mu	iplication of	over vectors https://www	.youtube.com/@vektorfeld			Module (over an algebra) Group representations as modules over group algebras		Associative Algebra Algebra of Square Matrices	Commutative Algebra Jordan algebra	Unital Algebra Split-Octonions	Division Algebra Octonions
					12. Associativity of multiplication $(xy)z = x(yz)$ 13. Commutativity of multiplication $(xy)z = x(yz)$											
					15. Multiplicative inverse $xx' = x'x = e$											