University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, DECEMBER 2000

First Year - Programs 1,2,3,4,6,7.8,9

MAT 188H1F Linear Algebra

SURNAME	Examiners
	D. Burbulla
GIVEN NAME	 N. Derzko
STUDENT NO.	P. Mezo
	F. Recio
SIGNATURE	

INSTRUCTIONS:

Non-programmable calculators permitted.

Answer all questions.

Present your solutions in the space provided; use the back of the **preceding** page if more space is required.

TOTAL MARKS: 100

The value for each question is shown in parentheses after the question number.

MARKER'S REPORT		
Q1		
Q2		
Q3		
Q4		
Q5		
Q6		
$\overline{\mathbf{Q7}}$		
Q 8		
TOTAL		

- 1. [15 marks: 5 marks for each part] Find the following:
 - (a) parametric equations of the line of intersection of the two planes with equations x + y z = 6 and 3x y + 3z = 4.

(b)
$$\det \begin{pmatrix} 1 & 1 & 2 & -5 \\ -1 & 0 & 1 & 0 \\ 5 & -1 & 0 & -2 \\ 0 & 1 & -1 & 4 \end{pmatrix}$$

(c) the adjoint of
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$

2.(a) [5 marks] Find the
$$LU$$
 decomposition of the matrix $A = \begin{pmatrix} 1 & 2 & 7 \\ 1 & 5 & -1 \\ 1 & 0 & 5 \end{pmatrix}$. (Do not use any row interchanges.)

2.(b) [5 marks] Let A and B be 3×3 matrices such that det A = -2 and det B = 4. Find the value of det $\left(B^2A^TB^{-3}A^2\right)$.

3. [10 marks] Let S be the subspace of \mathbb{R}^4 consisting of all vectors of the form (a-c,a-b,c,2a+b+c), where a,b, and c are in \mathbb{R} . Find an orthogonal basis of S, relative to the usual dot product in \mathbb{R}^4 .

- 4. [20 marks: 2 marks for each part] Indicate whether each of the following statements is true (T) or false (F), and give a brief justification for your choice:
 - (a) If E and F are any 3×3 elementary matrices, then EF = FE.

(b) If 3 is an eigenvalue of the square matrix A, then 27 is an eigenvalue of the matrix A^3 .

(c) If the 6×6 matrix B is obtained from the 6×6 matrix A by replacing the third column of A with the sum of the second and fourth columns of A, then det $B = \det A$.

(d) If λ is an eigenvalue of the $n \times n$ matrix A, then $\lambda^2 + 1$ is an eigenvalue of $A^2 + I$, where I is the $n \times n$ identity matrix.

(e) The set of all $n \times n$ symmetric matrices is a subspace of $M^{n,n}$.

(f) Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal basis of \mathbf{R}^m , with respect to the usual dot product, and A is the $m \times m$ matrix with v_1, v_2, \ldots, v_m as its columns. Then the rows of $(14A)^T$ form an orthogonal basis of \mathbf{R}^m .

(g) If A and B are two 2×3 matrices such that Ax = 0 and Bx = 0 have the same solution spaces, then A = B.

(h) (3,2,-4) is the coordinate vector of $-3+x-4x^2$, relative to the ordered basis $\{x+1,x-1,1+x+x^2\}$ of P_2 .

(i) The value of y in the solution of the system of equations

$$\begin{array}{rclrcrcr}
2x & + & 4y & + & z & = & 6 \\
x & - & y & + & 3z & = & 3 \\
-x & + & y & - & 4z & = & -3
\end{array}$$

is y = 0.

(j) $\dim P_n = n + 1$

5. [10 marks] For which values of k does the following system of equations

$$2x + ky - z = 2
y + kz = 2
kx + y = 2$$

have

- (a) no solutions?
- (b) a unique solution?
- (c) infinitely many solutions?

6. [15 marks] Let
$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 6 & 0 & 0 & 3 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$
. Find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.

7. [10 marks] For this question let the inner product on \mathbb{R}^3 be defined by

$$(\mathbf{u}, \mathbf{v}) = 2u_1v_1 + 4u_2v_2 + u_3v_3.$$

Let **S** be the subset of vectors in \mathbb{R}^3 which are orthogonal to (1,-1,2), with respect to the above inner product.

(a) Show that S is a subspace of \mathbb{R}^3 .

(b) Find an orthonormal basis of S.

- 8. [10 marks] Let $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.
 - (a) Show that for any value of θ the matrix A is orthogonal.
 - (b) Show that for any vector \mathbf{v} in \mathbf{R}^2 , $||A\mathbf{v}|| = ||\mathbf{v}||$, with respect to the usual dot product of \mathbf{R}^2 .
 - (c) Let P be any 2×2 orthogonal matrix with determinant equal to 1. Show that P = A, for some value of θ .