Operational Research aspects in Routing: Network Flows

Paola Festa

Department of Mathematics and Applications "R. Caccioppoli" University of Napoli FEDERICO II

http://www.dma.unina.it/~festa/

E-mail: paola.festa@unina.it

Preliminaries: notation

Network flow problems are defined on special directed graphs.

Let G = (V, A) be a **directed graph**, where

- $\bigstar V = \{1, 2, \dots, n\}$ is a set of n nodes;
- \star $A = \{(i, j) | i, j \in V\}$ is a set of m arcs;
- \star for each node $i \in V$, let

$$FS(i) = \{ j \in V \mid (i,j) \in A \}$$

be the *forward star* of node *i*;

 \star for each node $i \in V$, let

$$BS(i) = \{ j \in V \mid (j, i) \in A \}$$

be the backward star of node i.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Network Flow Problems

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

@

Minimum Cost Flow:

alternative form., 1

Minimum Cost Flow:

alternative form., ② Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Circulation

Network Flows: Introduction, ①

Network flow problems are important combinatorial optimization problems arising in any real-wold scenarios, whenever it is needed to organize and coordinate distribution systems of one or more commodities/materials

- ✓ gas, water;
- ✓ phone calls;
- ✓ e-mails, electronic information;
- V ...

from one or more source/distribution locations to one or more destinations/request locations.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

Network Flows: Introduction,

(2)

A general network flow problem, ①

A general network flow

problem, ②

A general network flow problem, ③

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

William Cost Flor

alternative form., @

Minimum Cost Flow:

alternative form., 3

Circulation

Network Flows: Introduction, 2

Network flow problems are special *Linear Programming* problems.

Therefore, they could be solved by **any linear programming method**, e.g. the **simplex method**.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

Network Flows: Introduction,

2

A general network flow problem, ①

A general network flow problem, ②

A general network flow problem, 3

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ${\mathbin{\textcircled{\scriptsize 1}}}$

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Circulation

Network Flows: Introduction, 2

Network flow problems are special *Linear* Programming problems.

Therefore, they could be solved by **any linear** programming method, e.g. the simplex method.

Nevertheless, they have peculiar characteristics and **properties** such that

- the methods for Linear Programming problems becomes "easier" when specialized to deal with them, but also
- those characteristics justify the design of efficient ad-hoc techniques.

Preliminaries: notation

Network Flow Problems Network Flows: Introduction.

Network Flows: Introduction,

A general network flow problem, ①

A general network flow problem, 2

A general network flow problem, 3

A general network flow

problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form.. ①

Minimum Cost Flow:

alternative form.. 2

Minimum Cost Flow: alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 3

Network flow problems can be stated on special di-graphs, called flow networks and whose elements (nodes and arcs) have numerical info associated with.

Definition. A network flow is a di-graph N = (V, A)whose arcs $(i, j) \in A$ are associated with the **following** quantities:

- \diamond a cost c_{ij} representing the cost per unit of flow sent along arc (i, j);
- \Leftrightarrow a capacity $k_{ij} \geq 0$ representing an upper bound on the quantity of flow that can be sent along arc (i, j).

Preliminaries: notation

Network Flow Problems Network Flows: Introduction.

Network Flows: Introduction,

A general network flow problem, ①

A general network flow problem, 2

A general network flow problem, 3

A general network flow

problem, 4 A general network flow

problem, 4

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form.. ①

Minimum Cost Flow:

alternative form.. 2

Minimum Cost Flow: alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 3

Network flow problems can be stated on special di-graphs, called flow networks and whose elements (nodes and arcs) have numerical info associated with.

Definition. A **network flow** is a **di-graph** N = (V, A) whose arcs $(i, j) \in A$ are associated with the **following quantities**:

- \Leftrightarrow a cost c_{ij} representing the cost per unit of flow sent along arc (i, j);
- \Leftrightarrow a capacity $k_{ij} \geq 0$ representing an upper bound on the quantity of flow that can be sent along arc (i, j).

Note:

If $k_{ij} = +\infty$, along arc (i, j) an arbitrary quantity of flow can be sent.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

1

Network Flows: Introduction,

(2)

A general network flow problem, ①

A general network flow problem, ② A general network flow

problem, ③
A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 3

Circulation

Definition. A network flow is a di-graph N = (V, A)whose arcs $(i, j) \in A$ are associated with the **following** quantities:

- \diamond a cost c_{ij} representing the cost per unit of flow sent along arc (i, j);
- \Leftrightarrow a capacity $k_{ij} \geq 0$ representing an **upper bound on** the quantity of flow that can be sent along arc (i, j).

A quantity b_i can be associated with each node $i \in V$:

- \bullet if $b_i > 0$, b_i represents the quantity of material **entering** *i* from outside the network. b_i is called **supply** and i is called **source node**;
- \bullet if $b_i < 0$, $|b_i|$ represents the quantity of material requested by i. $|b_i|$ is called **demand** and i is called **sink node**;
- \bullet if $b_i = 0$, i is called **transit node**.

Preliminaries: notation

Network Flow Problems Network Flows: Introduction,

Network Flows: Introduction,

A general network flow problem, 1

A general network flow problem, 2

A general network flow problem, 3

A general network flow

problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form.. ①

Minimum Cost Flow:

alternative form.. 2

Minimum Cost Flow:

alternative form., ② **Minimum Cost Flow:**

alternative form., ②

Minimum Cost Flow: alternative form., ②

Minimum Cost Flow:

alternative form., ② **Minimum Cost Flow:**

alternative form., 3

Example.
$$V = \{1, 2, 3, 4, 5\}; |A| = 8; \quad k_{ij} = +\infty, \forall (i, j) \in A$$
:

Preliminaries: notation

Network Flow Problems Network Flows: Introduction,

Network Flows: Introduction,

A general network flow

problem, ①

A general network flow

problem, 2

A general network flow problem, 3

A general network flow problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Example.
$$V = \{1, 2, 3, 4, 5\}; |A| = 8; \quad k_{ij} = +\infty, \forall (i, j) \in A$$
:

Source nodes: 1, 2, and 3;

Preliminaries: notation

Network Flow Problems Network Flows: Introduction,

Network Flows: Introduction,

A general network flow

problem, ①

A general network flow

problem, 2

A general network flow problem, 3

A general network flow problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., 3

Circulation

Example.
$$V = \{1, 2, 3, 4, 5\}; |A| = 8; \quad k_{ij} = +\infty, \forall (i, j) \in A$$
:

Source nodes: 1, 2, and 3; **Sink nodes**: 4 and 5.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, 2

A general network flow problem, ③

A general network flow problem, 4

A general network flow

problem, @

Minimum Cost Flow Problem,

①

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Example.
$$V = \{1, 2, 3, 4, 5\}; |A| = 8; \quad k_{ij} = +\infty, \forall (i, j) \in A$$
:

Source nodes: 1, 2, and 3; **Sink nodes**: 4 and 5. **No transit nodes**.

Preliminaries: notation

Network Flow Problems Network Flows: Introduction,

Network Flows: Introduction,

A general network flow

problem, ①

A general network flow

problem, 2

A general network flow problem, 3

A general network flow problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., 3

Example.
$$V = \{1, 2, 3, 4, 5\}; |A| = 8; \quad k_{ij} = +\infty, \forall (i, j) \in A$$
:

Source nodes: 1, 2, and 3; **Sink nodes**: 4 and 5. **No transit nodes**.

Note: $\sum_{i \in V} b_i = 0$.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

2

A general network flow

problem, ①

A general network flow

problem, 2

A general network flow problem, ③

A general network flow problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ③

Circulation

Definition. Given a network flow N = (V, A), a **feasible flow** is an **vector of flow variables**

$$\{x_{ij}\}_{(i,j)\in A}, \quad x_{ij}\in \mathbb{R}, \ \forall (i,j)\in A$$

such that

①
$$l_{ij}(=0) \leq x_{ij} \leq k_{ij}, \forall (i,j) \in A;$$

②
$$b_i + \sum_{(j,i)\in A} x_{ji} = \sum_{(i,j)\in A} x_{ij}, \forall i \in V.$$

•

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

1

Network Flows: Introduction,

2

A general network flow

 $\textbf{problem,} \, \textcircled{1}$

A general network flow

problem, 2

A general network flow problem, ③

A general network flow problem, @

A general network flow problem, 4

Minimum Cost Flow Problem,

①

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ② Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

altamatica fama

alternative form., ② Minimum Cost Flow:

alternative form., ③

Circulation

Definition. Given a network flow N = (V, A), a **feasible flow** is an **vector of flow variables**

$$\{x_{ij}\}_{(i,j)\in A}, \quad x_{ij}\in \mathbb{R}, \ \forall (i,j)\in A$$

such that

①
$$l_{ij}(=0) \leq x_{ij} \leq k_{ij}, \forall (i,j) \in A;$$

②
$$b_i + \sum_{(j,i)\in A} x_{ji} = \sum_{(i,j)\in A} x_{ij}, \forall i \in V.$$

Conditions ① are easy to understand.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow problem, ③

A general network flow problem, @

A general network flow problem, 4

Minimum Cost Flow Problem,

①

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form.. 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{\mathfrak{I}}$

Definition. Given a network flow N = (V, A), a **feasible flow** is an **vector of flow variables**

$$\{x_{ij}\}_{(i,j)\in A}, \quad x_{ij}\in \mathbb{R}, \ \forall (i,j)\in A$$

such that

①
$$l_{ij}(=0) \leq x_{ij} \leq k_{ij}, \forall (i,j) \in A;$$

②
$$b_i + \sum_{(j,i)\in A} x_{ji} = \sum_{(i,j)\in A} x_{ij}, \forall i \in V.$$

Conditions ① are easy to understand.

Conditions ② are known as equation or flow conservation law.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

(1)

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow problem, ③

A general network flow problem, @

A general network flow problem, 4

Minimum Cost Flow Problem,

①

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Definition. Given a network flow N = (V, A), a **feasible flow** is an **vector of flow variables**

$$\{x_{ij}\}_{(i,j)\in A}, \quad x_{ij}\in \mathbb{R}, \ \forall (i,j)\in A$$

such that

①
$$l_{ij}(=0) \leq x_{ij} \leq k_{ij}, \forall (i,j) \in A;$$

②
$$b_i + \sum_{(j,i)\in A} x_{ji} = \sum_{(i,j)\in A} x_{ij}, \forall i \in V.$$

Note: adding all over nodes $i \in V$ both sides of @, it results that

$$\sum_{i \in V} b_i = 0.$$
 (Principle of the total divergence)

The vector $\{b_i\}_{i\in V}$ is called divergence vector.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

(1)

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow problem, 4

A general network flow problem, ④

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Minimum Cost Flow Problem, ①

Definition. The general **minimum cost network flow** problem consists in minimizing a linear cost function of the form

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij},$$

where the vector $\{x_{ij}\}_{(i,j)\in A}$ is a **feasible flow**.

Preliminaries: notation

Network Flow Problems Network Flows: Introduction.

Network Flows: Introduction,

A general network flow

problem, ①

A general network flow

problem, 2

A general network flow problem, 3

A general network flow

problem, 4

A general network flow problem, 4

Minimum Cost Flow Problem.

Minimum Cost Flow Problem,

Minimum Cost Flow Problem,

Minimum Cost Flow:

alternative form.. ①

Minimum Cost Flow:

alternative form.. 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 3

Circulation

Minimum Cost Flow Problem, ①

Definition. The general minimum cost network flow problem consists in minimizing a linear cost function of the form

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij},$$

where the vector $\{x_{ij}\}_{(i,j)\in A}$ is a **feasible flow**.

(MF) min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

(a)
$$\sum_{(i,j)\in A} x_{ij} - \left(b_i + \sum_{(j,i)\in A} x_{ji}\right) = 0, \quad \forall i \in V$$

(b)
$$l_{ij} \leq x_{ij} \leq k_{ij}, \ \forall (i,j) \in A.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

(1)

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, 3

A general network flow

problem, 4

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

9

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ② Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Circulation

Minimum Cost Flow Problem, 2

The general minimum cost network flow problem:

(MF) min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

(a)
$$\sum_{(i,j)\in A} x_{ij} - \left(b_i + \sum_{(j,i)\in A} x_{ji}\right) = 0, \quad \forall i \in V$$

(b) $l_{ij} \leq x_{ij} \leq k_{ij}, \ \forall (i,j) \in A.$

It is evident that it is a linear programming problem.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

2

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, 4

A general network flow problem, 4

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form.. 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

William Cost Flow

alternative form., ②

Minimum Cost Flow:

alternative form., 2

- -- -

Minimum Cost Flow:

alternative form., 3

Circulation

Minimum Cost Flow Problem, 2

The general minimum cost network flow problem:

(MF) min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

(a)
$$\sum_{(i,j)\in A} x_{ij} - \left(b_i + \sum_{(j,i)\in A} x_{ji}\right) = 0, \quad \forall i \in V$$

(b)
$$l_{ij} \leq x_{ij} \leq k_{ij}, \ \forall (i,j) \in A.$$

It is evident that it is a linear programming problem.

If

$$k_{ij} = +\infty, \quad \forall (i,j) \in A,$$

the problem is said uncapacitated and it is in standard form.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

(1)

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., 1

Minimum Cost Flow:

alternative form., $\mathbin{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ③

Circulation

Minimum Cost Flow Problem, 2

Example:
$$N = \{1, 2, 3, 4, 5\}; |A| = 8; \quad k_{ij} = +\infty, \forall (i, j) \in A$$
:

min
$$5x_{12} - 4x_{23} + 6x_{42} - 2x_{13} + 0x_{34} + 2x_{15} + 4x_{53} + 3x_{45}$$

 $x_{12} + x_{13} + x_{15} = 2$, $x_{23} - x_{12} - x_{42} = 5$,
 $x_{34} - x_{13} - x_{23} - x_{53} = 1$, $x_{42} + x_{45} - x_{34} = -4$
 $x_{53} - x_{15} - x_{45} = -4$, $\bar{x} > 0$.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

 $problem,\, {\small \textit{\textcircled{3}}}$

A general network flow

problem, ④

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①
Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Circulation

Alternative and concise math formulation: by using the more economical matrix-vector notation of the network flow N = (V, A).

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

2

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, 4

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ② Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form

alternative form., ②
Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Circulation

Alternative and concise math formulation: by using the more economical matrix-vector notation of the network flow N = (V, A).

Let N = (V, A) be a network flow, where

$$V V = \{1, ..., n\}$$
 and

$$|A|=m$$
,

and let $D \in \{-1, 0, 1\}^{n \times m}$ be the associated **node-arc** incidence matrix s.t.

$$d_{ik} = \begin{cases} -1, & \text{if } i \text{ is the tail (start node) of the } k.\text{th arc;} \\ 1, & \text{if } i \text{ is the head (end node) of the } k.\text{th arc;} \\ 0, & \text{otherwise.} \end{cases}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

1

Network Flows: Introduction,

2

A general network flow

problem, ${\mathbin{\textcircled{\scriptsize 1}}}$

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

(1)

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow: alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Circulation

In matrix form:

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

1

Network Flows: Introduction,

2

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

@

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

. . . .

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

.

Circulation

In matrix form:

Notes: for each row d'_i , i = 1, ..., n,

① the **nr** of "1" in d'_i is $|\{(i,j) \in A\}| = |FS(i)|$;

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

A general network flow

problem, 4

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Circulation

In matrix form:

Notes: for each row d'_i , i = 1, ..., n,

② the **nr** of "-1" in d'_i is $|\{(j,i) \in A\}| = |BS(i)|;$

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, 4

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\mathbin{\mathbb 2}$

Minimum Cost Flow:

alternative form., ③

Circulation

In matrix form:

Notes: for each row d'_i , i = 1, ..., n,

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

①

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., 2

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Circulation

In matrix form:

$$D = \begin{pmatrix} & & & & & & & \\ & \vdots & & & & & & \\ & \vdots & & \ddots & & \vdots & & \\ & & \vdots & & \ddots & & \vdots & \\ & & \vdots & & \ddots & & -1 & \cdots & & \vdots \\ & & \vdots & & \ddots & & \ddots & & -1 \\ & & \vdots & & \ddots & & \ddots & & \ddots & \\ & & \vdots & & \ddots & & \ddots & & \ddots & & \vdots \end{pmatrix}$$

Notes: for each row d'_i , i = 1, ..., n

4 the flow conservation law can be rewritten as $d'_i x = b_i$, $\forall i \in V$ or, in more compact form

Dx = b, b divergence vector.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

 $problem,\, {\small \textit{\textcircled{3}}}$

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

In matrix form:

$$D = \begin{pmatrix} & & & & & & & \\ & \vdots & & & & & & \\ & \vdots & & \ddots & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & & & & \vdots \\ & & \vdots & & \ddots & & & & & \\ & \vdots & & \ddots & & & & & \\ & \vdots & & \ddots & & & & & \\ & \vdots & & \ddots & & & & & \\ & \vdots & & \ddots & & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & & \\ & & \vdots & & \ddots & & & \\ & & \vdots & & \ddots & & & \\ & & \vdots & & \ddots & & & \\ & & \vdots & & \ddots & & & \\ & & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & \\ & \vdots & & \ddots & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & & \\ & \vdots & & \ddots & & \\ & \vdots & \ddots & & \\ & \vdots & &$$

Notes: for each row d'_i , i = 1, ..., n

 $\circled{5}$ adding all rows d'_i results 0, i.e., the rows of D are l.d.

Nevertheless, it is always possible to remove the reduntant constraints without changing the feasible region of the problem.

Preliminaries: notation

Network Flow Problems
Network Flows: Introduction,

1

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

 $problem,\, {\small \textit{\textcircled{3}}}$

A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

1

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③
Circulation

Notes \Longrightarrow alternative and concise math formulation:

(MF') min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

(a')
$$Dx = b$$

(b)
$$l_{ij} \leq x_{ij} \leq k_{ij}, \quad \forall (i,j) \in A.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

1

Network Flows: Introduction,

2

A general network flow

 $\textbf{problem,} \, \textcircled{1}$

A general network flow

problem, ②

A general network flow

 $problem,\, {\small \textit{\textcircled{3}}}$

A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

(1)

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

(2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow: alternative form., ③

Circulation

Notes \Longrightarrow alternative and concise math formulation:

(MF') min
$$\sum_{(i,j)\in A} c_{ij}x_{ij}$$
s.t.
$$(a') \quad Dx = b$$
$$(b) \quad l_{ij} \leq x_{ij} \leq k_{ij}, \quad \forall (i,j) \in A.$$

Further notes:

- each network flow problem is a linear programming problem;
- ② the constraint matrix D of the math formulation is unimodular.

Then, it has an integer optimal solution if

$$l_{ij}, k_{ij} \in \mathbb{Z}^+ \cup \{0\}, \ \forall \ (i,j) \in A.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

1

Network Flows: Introduction,

2

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

1)

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2

Minimum Cost Flow:

alternative form., ①
Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ③

Circulation

Definition. **Any flow vector** (feasible or infeasible) that satisfies

$$Dx = 0$$

is called **circulation** (in this case, it results that b = 0).

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction,

1)

Network Flows: Introduction,

(2)

A general network flow

problem, ①

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, @

A general network flow

problem, 4

Minimum Cost Flow Problem,

(1)

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Circulation

Circulation

Definition. **Any flow vector** (feasible or infeasible) that satisfies

$$Dx = 0$$

is called **circulation** (in this case, it results that b = 0).

The flow conservation law (also known as Kirchkoff's equation) is imposed only within the network, without external supply or demand.

In other words, the flow "circulates" only inside the network.

Preliminaries: notation

Network Flow Problems

Network Flows: Introduction.

1

Network Flows: Introduction,

(2)

A general network flow

problem, 1

A general network flow

problem, ②

A general network flow

problem, ③

A general network flow

problem, @

A general network flow

problem, @

Minimum Cost Flow Problem,

(1)

Minimum Cost Flow Problem,

2

Minimum Cost Flow Problem,

2)

Minimum Cost Flow:

alternative form., ①

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., ②

Minimum Cost Flow:

alternative form., @

Minimum Cost Flow:

alternative form., $\ensuremath{@}$

Minimum Cost Flow:

alternative form., ③

Network Flows: Variants

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants Network Flows: Variants

Network Flows: Variants

Network Flows: Variants
Network Flows: Variants

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

There are several variants of network flow problems, all of which can be shown to be equivalent to each other.

We will discuss now **some examples**.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants Network Flows: Variants Network Flows: Variants

Network Flows: Variants
Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Variant 1:

Every network flow problem can be reduced to one with exactly one source s and exactly one sink node d, $s, d \in V$, $s \neq d$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants Network Flows: Variants Network Flows: Variants

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Variant 1:

Every network flow problem can be reduced to one with exactly one source s and exactly one sink node d, $s, d \in V$, $s \neq d$.

Let us suppose that N = (V, A) has k source nodes s_1, \ldots, s_k and h sink nodes d_1, \ldots, d_h .

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants Network Flows: Variants Network Flows: Variants

Network Flows: Variants

Special cases of the

Network Flow Problem

The Maximum Flow Problem

A solution method:

 $the\ Ford-Fulkers on\ algorithm$

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Variant 1:

Every network flow problem can be reduced to one with exactly one source s and exactly one sink node d, $s, d \in V$, $s \neq d$.

Let us suppose that N = (V, A) has k source nodes s_1, \ldots, s_k and h sink nodes d_1, \ldots, d_h .

It is always possible to define

riangleq a dummy source s^* and a dummy sink d^* ;

$$\triangleq k \text{ dummy arcs } (s^*, s_q) \ (q = 1, \dots, k);$$

 \Rightarrow h dummy arcs (d_l, d^*) (l = 1, ..., h) s.t.

$$\forall q = 1, ..., k, \begin{cases} k_{s^*s_q} = +\infty; \\ c_{s^*s_q} = 0. \end{cases} \quad \forall l = 1, ..., h, \begin{cases} k_{d_ld^*} = +\infty; \\ c_{d_ld^*} = 0. \end{cases}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants
Network Flows: Variants

Network Flows: Variants

Network Flows: Variants Network Flows: Variants Network Flows: Variants

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Variant 1:

Every network flow problem can be reduced to one with exactly one source s and exactly one sink node d, $s, d \in V, s \neq d$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Special cases of the

Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient)

ementation

d-Fulkerson algorithm

Fulkerson algorithm:

Variant 2:

Every network flow problem can be reduced to one without sources or sinks ($b_i = 0, \forall i \in V$, circulation problems).

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants Network Flows: Variants Network Flows: Variants

Network Flows: Variants

Network Flows: Variants
Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Variant 2:

Every network flow problem can be reduced to one without sources or sinks ($b_i = 0$, $\forall i \in V$, circulation problems).

Without loss of generality, consider a network N = (V, A) with a single source node s and a single sink node d.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants Network Flows: Variants Network Flows: Variants

Network Flows: Variants

Network Flows: Variants Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm $\,$

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Variant 2:

Every network flow problem can be reduced to one without sources or sinks ($b_i = 0$, $\forall i \in V$, circulation problems).

Without loss of generality, consider a network N = (V, A) with a single source node s and a single sink node d.

It is always possible to define a dummy arc (d, s) s.t.

 $k_{ds} = +\infty$; $c_{ds} = -M$, where M is a sufficiently large number of food-fulkers on algorithm

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants Network Flows: Variants

Network Flows: Variants Network Flows: Variants

Network Flows: Variants Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient)

Variant 3:

Every network flow problem with *node capacities* (upper bound on the flow that can enter in each node) can be reduced to one with only arc capacities.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants
Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Special cases of the

Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Variant 3:

Every network flow problem with *node capacities* (upper bound on the flow that can enter in each node) can be reduced to one with only arc capacities.

Suppose that in N = (V, A) there is a **source node** i with **supply** b_i and **capacity** g_i , i.e., $b_i + \sum_{(l,i)\in A} x_{li} \leq g_i$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Special cases of the

Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient)

implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Variant 3: (cont'd)

In this case, the following **3 simple operations** can be performed:

- split node i into 2 nodes i^- and i^+ ;
- **2** substitute **each arc** $(l, i) \in A$ with the **arc** (l, i^-) with capacity k_{li} and **cost** c_{li} and **each arc** $(i, j) \in A$ with the **arc** (i^+, j) with capacity k_{ij} and **cost** c_{ij} ;
- **3** define an arc (i^-, i^+) with capacity g_i and null cost.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants
Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm $\,$

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Special cases of the Network Flow Problem

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

Special Network Flows, ①

Special Network Flows, ②

Special Network Flows, 3

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Special Network Flows, ①

Special cases of the network flow problem are important and classical optimization problems, among them

- the transportation problem;
- the assignment problem;
- the shortest path problems (under a certain assumption on the arc costs);
- ✓ the maximum flow problem;
- **/** ..

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

Special Network Flows, ①

Special Network Flows, ② Special Network Flows, ③

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Special Network Flows, 2

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

Special Network Flows, ①

Special Network Flows, ②

Special Network Flows, ③

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Special Network Flows, 2

The shortest path problem under the assumption that $c_{ij} \ge 0$, $\forall (i, j) \in A$, or that there are no negative cycles.

(SP) min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

$$\forall i \in V, \sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = \begin{cases} 1, & \text{if } i = s; \\ -1, & \text{if } i = d; \\ 0, & \text{otherwise.} \end{cases}$$
 $x_{ij} \in \{0, 1\}, \ \forall \ (i, j) \in A.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

Special Network Flows, ①

Special Network Flows, ②

Special Network Flows, ③

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Special Network Flows, ②

The shortest path problem under the assumption that $c_{ij} \ge 0$, $\forall (i, j) \in A$, or that there are no negative cycles.

(SP) min
$$\sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

$$\forall i \in V, \sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = \begin{cases} 1, & \text{if } i = s; \\ -1, & \text{if } i = d; \\ 0, & \text{otherwise.} \end{cases}$$
 $x_{ij} \in \{0, 1\}, \ \forall \ (i, j) \in A.$

SP can be viewed as a minimum cost flow problem, where a single unit of flow has to be sent from a single source node s to a single sink node d.

All nodes $i \in V \setminus \{s, d\}$ are transit nodes.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

Special Network Flows, ①

Special Network Flows, ②

Special Network Flows, ③

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Special Network Flows, 3

The shortest path tree problem under the assumption that $c_{ij} \ge 0$, $\forall (i, j) \in A$, or that there are no negative cycles.

(SPT)
$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

$$\forall i \in V, \sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = \begin{cases} n-1, & \text{if } i = s; \\ -1, & \text{otherwise.} \end{cases}$$

 $x_{ij} \in \{0, 1\}, \ \forall \ (i, j) \in A.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem Special Network Flows, ①

Special Network Flows, ②
Special Network Flows, ③

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Special Network Flows, 3

The shortest path tree problem under the assumption that $c_{ij} \ge 0$, $\forall (i, j) \in A$, or that there are no negative cycles.

(SPT)
$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

s.t.

$$\forall i \in V, \sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = \begin{cases} n-1, & \text{if } i = s; \\ -1, & \text{otherwise.} \end{cases}$$

 $x_{ij} \in \{0, 1\}, \ \forall \ (i, j) \in A.$

SPT can be viewed as a minimum cost flow problem, where n-1 units of flow have to be sent from a single source node s to any other node $i \in V \setminus \{s\}$.

All nodes $i \in V \setminus \{s\}$ are **sink nodes**; there are **no transit nodes**.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem Special Network Flows, ① Special Network Flows, ②

Special Network Flows, ③

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

The Maximum Flow Problem

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

 $\ \, \textbf{Math formulation, } \ \, \textbf{\textcircled{2}} \\$

Math formulation, ③

Math formulation, @

Properties, ①

Properties, 2

Properties, ③

Properties, @

Properties, @

Properties, @

Properties, 4

Properties, @

Properties, 4

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Augmenting path

Optimality conditions, ①
Optimality conditions, ②

Ne Aptimal Houndition 3 \$\pi\$ 105

The Maximum Flow Problem (MF) is a special flow problem defined on a network flow N = (V, A) s.t.

- $O \ \forall (i,j) \in A$
 - \diamond c_{ij} represents the cost per unit of flow sent along arc (i, j);
 - $\Leftrightarrow k_{ij} \ge 0$ represents an upper bound on the quantity of flow that can be sent along arc (i, j);
- \circ s, $d \in V$, $s \neq d$, are the source and the sink nodes in N, respectively.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, ②

Properties, ③

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

residual network,

Residual network, 2

Augmenting path

Optimality conditions, ①

The Maximum Flow Problem (MF) is a special flow problem defined on a network flow N = (V, A) s.t.

- $\bigcirc \ \forall (i,j) \in A$
 - \diamond c_{ij} represents the cost per unit of flow sent along arc (i, j);
 - $\Leftrightarrow k_{ij} \geq 0$ represents an upper bound on the quantity of flow that can be sent along arc (i, j);
- O s, $d \in V$, $s \neq d$, are the source and the sink nodes in N, respectively.

Objective: sent the max amount of flow from the source node s to the sink node d.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation.

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

residual networky

Residual network, ②

Augmenting path

Optimality conditions, ①

The Maximum Flow Problem (MF) is a special flow **problem** defined on a **network flow** N = (V, A) s.t.

- $\bigcirc \ \forall (i,j) \in A$
 - $\diamond c_{ij}$ represents the cost per unit of flow sent along arc(i,j);
 - $\Leftrightarrow k_{ij} \geq 0$ represents an upper bound on the quantity of flow that can be sent along arc (i, j);
- \circ s, $d \in V$, $s \neq d$, are the source and the sink nodes in N, respectively.

Objective: sent the max amount of flow from the source node s to the sink node d.

Note ①: we know that the **hypothesis** that *s* and *d* are the only source and sink nodes is not restrictive.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

The Maximum Flow Problem (MF) is a special flow problem defined on a network flow N = (V, A) s.t.

- $\bigcirc \ \forall (i,j) \in A$
 - $\diamond c_{ij}$ represents the cost per unit of flow sent along arc (i, j);
 - $\Leftrightarrow k_{ij} \ge 0$ represents an upper bound on the quantity of flow that can be sent along arc (i, j);
- O s, $d \in V$, $s \neq d$, are the source and the sink nodes in N, respectively.

Objective: sent the max amount of flow from the source node s to the sink node d.

Note ①: we know that the hypothesis that *s* and *d* are the only source and sink nodes is not restrictive.

Note 2:

Max Flow Problem ⇔ **Min Cost Flow Problem** (**MCF**).

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, 4

Toperties, o

Properties, @

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, 2

NeOptimalHyonogdition34\$105

MF as MCF, ①

Any instance N = (V, A) of MF, where each arc $(i, j) \in A$ is associated with a capacity k_{ij} , can be reduced to an instance $\overline{N} = (\overline{V}, \overline{A})$ of MCF s.t.

$$\overline{V} = V; \quad \overline{A} = A \cup \{(d, s)\};$$

$$\checkmark$$
 \forall $(i,j) \in \overline{A} \setminus \{(d,s)\}, c_{ij} = 0 \text{ and } k_{ij} \text{ is unchanged;}$

$$\checkmark$$
 $c_{ds} = -1$ and $k_{ds} = +\infty$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. @

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

MF as MCF, ②

To find a **max flow from** s **to** d **in** N = (V, A) is equivalent to finding a **min cost flow in** $\overline{N} = (\overline{V}, \overline{A})$:

$$\max x_{ds} \Longleftrightarrow \min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

- Math formulation, ①
- Math formulation, ②
- Math formulation, ③
- Math formulation, 4
- Properties, ①
- Properties, 2
- Properties, 3
- Properties, @
- Properties, @
- Properties, 4
- Properties, 4
- Properties, @
- Properties, 4
- Properties, ®
- Max Flow / Min Cut, ①
- Max Flow / Min Cut, ②
- Satured and unloading arcs
- Residual network, ①
- Residual network, ①
- Residual network, ②
- Residual network, ②
- Augmenting path
- Optimality conditions, ①
- Optimality conditions, ②

MF as MCF, ②

To find a **max flow from** s **to** d **in** N = (V, A) is equivalent to finding a **min cost flow in** $\overline{N} = (\overline{V}, \overline{A})$:

$$\max x_{ds} \Longleftrightarrow \min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

and

$$\max x_{ds} \Longleftrightarrow \max x_{sd}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, @

- Math formulation, ①
- Math formulation, ②
- Math formulation, ③
- Math formulation, 4
- Properties, ①
- Properties, 2
- Properties, 3
- Properties, @
- Properties, 4
- Properties, ®
- Max Flow / Min Cut, ①
- Max Flow / Min Cut, ②
- Satured and unloading arcs
- Residual network, ①
- Residual network, ①
- Residual network, ②
- Residual network, ②
- Augmenting path
- Optimality conditions, ①
- Optimality conditions, ②

MF as MCF, ②

To find a **max flow from** s **to** d **in** N = (V, A) is equivalent to finding a **min cost flow in** $\overline{N} = (\overline{V}, \overline{A})$:

$$\max x_{ds} \Longleftrightarrow \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$
 and $\max x_{ds} \Longleftrightarrow \max x_{sd}$

Nevertheless, typically the math formulation reflects the special peculiarity of the problem.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, @

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalFlooredition36\$105

Math formulation, ①

For each $(i, j) \in A$ let

 x_{ij} be the amount of flow sent along (i,j),

(MF)
$$\max \varphi_0 = \sum_{j \in FS(s)} x_{sj} - \sum_{j \in BS(s)} x_{js}$$

s.t.

(a)
$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = 0, \qquad \forall i \in V \setminus \{s, d\}$$

(b)
$$0 \le x_{ij} \le k_{ij}, \ \forall (i,j) \in A.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Math formulation, ①

For each $(i, j) \in A$ let

 x_{ij} be the amount of flow sent along (i,j),

(MF)
$$\max \varphi_0 = \sum_{j \in FS(s)} x_{sj} - \sum_{j \in BS(s)} x_{js}$$

s.t.

(a)
$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = 0, \qquad \forall i \in V \setminus \{s, d\}$$

(b)
$$0 \le x_{ij} \le k_{ij}, \ \forall (i,j) \in A.$$

Note ①: if $BS(s) = \emptyset$, the o.f. reduces to

$$\max \varphi_0 = \sum_{j \in FS(s)} x_{sj}.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4 Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Math formulation, 2

For each $(i, j) \in A$ let

 x_{ij} be the amount of flow sent along (i, j),

(MF)
$$\max \varphi_0 = \sum_{j \in FS(s)} x_{sj} - \sum_{j \in BS(s)} x_{js}$$

s.t.

(a)
$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = 0, \qquad \forall i \in V \setminus \{s, d\}$$

(b)
$$0 \le x_{ij} \le k_{ij}, \ \forall (i,j) \in A.$$

Note ②: each feasible solution (feasible flow) for (MF) is a circulation.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, ③

Properties, 4

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Netherial Houndition 38\$105

Math formulation, 3

For each $(i, j) \in A$ let

 x_{ij} be the amount of flow sent along (i, j),

(MF)
$$\max \varphi_0 = \sum_{j \in FS(s)} x_{sj} - \sum_{j \in BS(s)} x_{js}$$

s.t.

(a)
$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = 0, \qquad \forall i \in V \setminus \{s, d\}$$

(b)
$$0 \le x_{ij} \le k_{ij}, \ \forall (i,j) \in A.$$

Note 3: constraints (a) become

for
$$i = s$$
:
$$\sum_{j \in FS(s)} x_{sj} - \sum_{j \in BS(s)} x_{js} = \varphi_0;$$

for
$$i = d$$
: $\sum_{j \in FS(d)} x_{dj} - \sum_{j \in BS(d)} x_{jd} = -\varphi_0$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, ②

Properties, ③

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, @

Properties, @

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Netwind House dition 39\$105

Math formulation, 4

For each $(i, j) \in A$ let

 x_{ij} be the amount of flow sent along (i, j),

(MF)
$$\max \varphi_0 = \sum_{j \in FS(s)} x_{sj} - \sum_{j \in BS(s)} x_{js}$$

s.t.

(a)
$$\sum_{j \in FS(i)} x_{ij} - \sum_{j \in BS(i)} x_{ji} = 0, \qquad \forall i \in V \setminus \{s, d\}$$

(b)
$$0 \le x_{ij} \le k_{ij}, \ \forall (i,j) \in A.$$

Note 4: since constraints matrix is unimodular (node-arc incidence matrix), MF has an integer optimal solution if

$$k_{ij} \in \mathbb{Z}^+ \cup \{0\}, \forall (i,j) \in A$$

and it could be solved by the **Simplex Method!**

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, @

Properties, ①

Properties, ②

Properties, $\ \ \,$

Properties, 4

Properties, @

Properties, @

Properties, @

Properties, 4
Properties, 4

Properties, 5

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, 2

Residual network, ②

Augmenting path

Optimality conditions, ①

Properties, ①

Definition. Given a network N = (V, A), a **cut** is a **partition** $(S, V \setminus S)$ of V s.t.

$$s \in S$$
 and $d \in V \setminus S$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, @

Properties, 4

· •

Properties, 4

Properties, @

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual lietwork,

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Properties, 2

Let be

$$\delta_N^+(S) := \{ (i,j) \in A \mid i \in S, j \in V \setminus S \}; \\ \delta_N^-(S) := \{ (i,j) \in A \mid i \in V \setminus S, j \in S \}.$$

Definition. Given a feasible flow vector x, the **amount** of flow crossing a cut $(S, V \setminus S)$ is given by:

$$\varphi(S) = \sum_{(i,j)\in\delta_N^+(S)} x_{ij} - \sum_{(j,i)\in\delta_N^-(S)} x_{ji},$$

i.e., the difference between the total flow "leaving" from *S* and that "entering" *S*.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, ②

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Let be

$$\delta_N^+(S) := \{ (i,j) \in A \mid i \in S, j \in V \setminus S \}; \\ \delta_N^-(S) := \{ (i,j) \in A \mid i \in V \setminus S, j \in S \}.$$

Definition. Given a feasible flow vector x, the **amount** of flow crossing a cut $(S, V \setminus S)$ is given by:

$$\varphi(S) = \sum_{(i,j)\in\delta_N^+(S)} x_{ij} - \sum_{(j,i)\in\delta_N^-(S)} x_{ji},$$

i.e., the difference between the total flow "leaving" from S and that "entering" S.

The quantity

$$\varphi_0 = \varphi(\{s\}) \stackrel{\text{def.}}{=} \sum_{(s,j) \in \delta_N^+(\{s\})} x_{sj} - \sum_{(j,s) \in \delta_N^-(\{s\})} x_{js}$$

is called **value of the flow** *x*.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. @

Properties, ①

Properties, ②

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

, .

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Properties, ③

Definition. Given a cut $(S, V \setminus S)$ in a network flow N = (V, A), the **capacity of the cut** $(S, V \setminus S)$ is given by:

$$K(S) = \sum_{(i,j)\in\delta_N^+(S)} k_{ij}.$$

Note: K(S) does not take into account the capacities of the arcs "entering" S, i.e. those belonging to $\delta_N^-(S)$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

 ${\bf Math\ formulation,\ 2}$

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, ②

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 5

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHousedition\$3\pi105

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, @

Properties, ①

Properties, ②

* '

Properties, 3

Properties, @

Properties, @

Properties, @

Properties, 4

Properties, @

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

ŕ

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Note: the theorem claims that, for every cut $(S, V \setminus S)$, the amount of flow that crosses it is always equal to φ_0 , i.e. it is constant.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Proof:

from the **flow conservation law** applied **to every node** $i \in S \setminus \{s\}.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, @

Properties, 4 Properties, 4

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHoundition\$5\pi105

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Proof:

$$\varphi_{0} = \varphi(\{s\}) = \sum_{(s,j)\in\delta_{N}^{+}(\{s\})} x_{sj} - \sum_{(i,s)\in\delta_{N}^{-}(\{s\})} x_{is}$$

$$= \sum_{h\in S} \left[\sum_{\substack{(h,j)\in\delta_{N}^{+}(\{h\}) \\ =0, \forall h\neq s}} x_{hj} - \sum_{\substack{(j,h)\in\delta_{N}^{-}(\{h\}) \\ =0, \forall h\neq s}} x_{jh} \right]$$

$$= \sum_{h\in S} \sum_{(h,j)\in\delta_{N}^{+}(\{h\})} x_{hj} - \sum_{h\in S} \sum_{(j,h)\in\delta_{N}^{-}(\{h\})} x_{jh}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

.

Properties, 4

Properties, 4

Properties, @

Properties, @

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Proof: Note that,

$$\sum_{h \in S} \sum_{(h,j) \in \delta_N^+(\{h\})} x_{hj} = \sum_{h \in S} \sum_{j \in FS(h)} x_{hj} = \sum_{(i,j) \in A(S)} x_{ij} + \sum_{(i,j) \in \delta_N^+(S)} x_{ij}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, 4

Properties, 5

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHyogogdition\$7\$105

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Proof: Similarly,

$$\sum_{h \in S} \sum_{(j,h) \in \delta_N^-(\{h\})} x_{jh} = \sum_{h \in S} \sum_{j \in BS(h)} x_{jh} = \sum_{(i,j) \in A(S)} x_{ij} + \sum_{(i,j) \in \delta_N^-(S)} x_{ij}$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation.

Properties, ①

Properties, ②

. .

Properties, ③

Properties, 4

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, 5

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, 2

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NetwinklHownsdition\$8\psi105

Theorem. Given a feasible flow vector x in a network flow N = (V, A), for every cut $(S, V \setminus S)$ in N it results that

$$\varphi(S) = \varphi_0 = \varphi(\{s\}).$$

Proof: Therefore,

$$\varphi_{0} = \cdots
= \sum_{h \in S} \sum_{(h,j) \in \delta_{N}^{+}(\{h\})} x_{hj} - \sum_{h \in S} \sum_{(j,h) \in \delta_{N}^{-}(\{h\})} x_{jh}
= \left[\sum_{\substack{(i,j) \in A(S) \\ =}} x_{ij} + \sum_{\substack{(i,j) \in \delta_{N}^{+}(S) \\ =}} x_{ij} \right] - \left[\sum_{\substack{(i,j) \in A(S) \\ =}} x_{ij} + \sum_{\substack{(i,j) \in \delta_{N}^{-}(S) \\ =}} x_{ij} \right]$$

$$= \varphi(S). \square$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHyogogdition\$9\$105

Theorem. For every feasible flow x in a network flow N = (V, A) and for every cut $(S, V \setminus S)$ in N, it results that

$$\varphi(S) \leq K(S)$$
.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, ③

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, 5

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Theorem. For every feasible flow x in a network flow N = (V, A) and **for every cut** $(S, V \setminus S)$ in N, it results that

$$\varphi(S) \le K(S)$$
.

Proof:

$$\varphi(S) \stackrel{\text{def.}}{=} \sum_{\substack{(i,j) \in \delta_N^+(S) \\ (j,i) \in \delta_N^-(S) \\ \leq}} \sum_{\substack{(i,j) \in \delta_N^+(S) \\ (i,j) \in \delta_N^+(S) \\ \\ }} x_{ij}$$

$$\sum_{\substack{(i,j) \in \delta_N^+(S) \\ (i,j) \in \delta_N^+(S) \\ \\ \leq}} x_{ij}$$

$$\sum_{\substack{(i,j) \in \delta_N^+(S) \\ \\ (i,j) \in \delta_N^+(S) \\ \\ }} k_{ij}$$

$$\stackrel{\text{def.}}{=} K(S). \qquad \square$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. @

Properties, ①

Properties, 2

Troperties,

 $Properties,\, {\small \texttt{③}}$

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Max Flow / Min Cut, ①

Theorem [Maximum Flow / Minimum Cut].

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, @

Properties, 4

Properties, @

Properties, @

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, 2

Residual network, ②

Augmenting path

Optimality conditions, ①

Max Flow / Min Cut, ①

Theorem [Maximum Flow / Minimum Cut].

A **feasible flow** x in a network flow N = (V, A) is a **maximum flow iff** there exists a **cut** $(S^*, V \setminus S^*)$ **in** Nwith minimum capacity such that

$$\varphi(S^*) = \varphi_0^* = K(S^*).$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Max Flow / Min Cut, ②

Theorem [Maximum Flow / Minimum Cut].

A **feasible flow** x in a network flow N = (V, A) is a **maximum flow iff** there exists a **cut** $(S^*, V \setminus S^*)$ **in** Nwith minimum capacity such that

$$\varphi(S^*) = \varphi_0^* = K(S^*).$$

Proof: constructive.

It is needed to define

- saturated and unloading arcs and
- $residual network \overline{N}$ that can be built from N, once available a feasible flow x.

 \overline{N} is an auxiliary network built to keep track of the amount of flow that can be pushed along the arcs of the original network N.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHoundition52\$105

Satured and unloading arcs

Definition. Given a feasible flow x crossing a network flow N = (V, A), an arc $(i, j) \in A$ is said

- \checkmark saturated, if $k_{ij} x_{ij} = 0$;
- \checkmark unloading, if $x_{ij} = 0$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

 $\ \, \textbf{Math formulation,} \ \, \textbf{\textcircled{2}} \\$

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, ③

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, 4

roperties,

Properties, 4

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Augmenting path

Optimality conditions, ①
Optimality conditions, ②

NetwinklHlowedition53\$105

Satured and unloading arcs

Definition. Given a feasible flow x crossing a network flow N = (V, A), an arc $(i, j) \in A$ is said

- \checkmark saturated, if $k_{ij} x_{ij} = 0$;
- \checkmark unloading, if $x_{ij} = 0$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

 $\ \, \textbf{Math formulation,} \ \, \textbf{\textcircled{2}} \\$

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, ③

Properties, 4

. . . .

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHyonogdition53\$105

Definition. Given a feasible flow x crossing a network flow N=(V,A), the **residual network** $\overline{N}=(V,\overline{A})$ associated with N is built performing the following 2 operations:

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Toperties,

Properties, ④

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimelPhotograditions4\$105

Definition. Given a feasible flow x crossing a network flow N=(V,A), the **residual network** $\overline{N}=(V,\overline{A})$ associated with N is built performing the following **2** operations:

- ① substitute each arc $(i, j) \in A$ with
 - \Leftrightarrow a **forward arc** (i, j) with *residual capacity* $\overline{k}_{ij} = k_{ij} x_{ij} \ge 0$ (by def. of k_{ij});
 - \Leftrightarrow a **backward arc** (j,i) with *residual capacity* $\overline{k}_{ji} = x_{ij} \geq 0$ (by def. of feasible flow x);

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation.

Properties, ①

Properties, ②

Toperties,

Properties, ③

Properties, 4

Properties, 4
Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Duturou uriu urirouwir

Residual network, ①

Residual network, ①

Residual network, 2

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHownsditions4\$105

Definition. Given a feasible flow x crossing a network flow N=(V,A), the **residual network** $\overline{N}=(V,\overline{A})$ associated with N is built performing the following **2** operations:

② remove all arcs with null residual capacity ((i, j) with $\overline{k}_{ij} = k_{ij} - x_{ij} = 0$ and (j, i) with $\overline{k}_{ji} = x_{ij} = 0$).

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation.

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, @

Properties, 4

roperties, o

Properties, 4

Properties, 4

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Network IH ownship on 5 \$\pi 105

Definition. Given a feasible flow x crossing a network flow N=(V,A), the residual network $\overline{N}=(V,\overline{A})$ associated with N is built performing the following 2 operations:

remove all arcs with null residual capacity (i, j)with $\overline{k}_{ij} = k_{ij} - x_{ij} = 0$ and (j, i) with $\overline{k}_{ji} = x_{ij} = 0$).

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHyogonsdition\$5\$105

The residual network \overline{N} allows to find a flow \overline{x} from $s \in V$ to $d \in V$ higher than x,

- ✓ increasing the flow along non saturated arcs (i.e., those arcs (i, j) with $\overline{k}_{ij} = k_{ij} x_{ij} \neq 0$) and
- ✓ decreasing it along non unloading arcs (i.e., those arcs (j, i) with $\overline{k}_{ji} = x_{ij} \neq 0$).

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual fictwork, ©

Residual network, ②

Residual network, ②

Augmenting path

agmenting path

Optimality conditions, ①

The **residual network** \overline{N} allows to find a **flow** \overline{x} **from** $s \in V$ to $d \in V$ higher than x,

- ✓ increasing the flow along non saturated arcs (i.e., those arcs (i, j) with $\overline{k}_{ij} = k_{ij} - x_{ij} \neq 0$) and
- ✓ decreasing it along non unloading arcs (i.e., those arcs (j, i) with $\overline{k}_{ji} = x_{ij} \neq 0$).

If $\exists P \text{ from } s \text{ to } d \text{ in } \overline{N} \Longrightarrow \exists \text{ in } N \overline{x} \text{ higher than } x!$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Netherial Hounsdition 56\$105

The residual network \overline{N} allows to find a flow \overline{x} from $s \in V$ to $d \in V$ higher than x,

- ✓ increasing the flow along non saturated arcs (i.e., those arcs (i, j) with $\overline{k}_{ij} = k_{ij} x_{ij} \neq 0$) and
- ✓ decreasing it along non unloading arcs (i.e., those arcs (j, i) with $\overline{k}_{ji} = x_{ij} \neq 0$).

If $\exists P \text{ from } s \text{ to } d \text{ in } \overline{N} \Longrightarrow \exists \text{ in } N \overline{x} \text{ higher than } x!$

P from s to d is said augmenting path and in N it corresponds to a sequence

- of forward arcs along which to increase the current flow and
- of backward arcs along which to decrease the current flow.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

P in N is a sequence of forward arcs along which to increase the current flow and backward arcs along which to decrease the current flow.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, @

Properties, ①

1

Properties, ②

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

. . .

Properties, 4

Properties, @

Properties, ⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

NeOptimalHyonogdition\$7\$105

Augmenting path

Definition. Given a feasible flow x in a network flow N = (V, A), an **augmenting path** is a path P from the source s to the sink d in N s.t., denoting by

- \square *F* the **set of forward arcs in** *P* and
- \square B the set of backward arcs in P,

it results that

○ $x_{ij} < k_{ij}$, $\forall (i, j) \in F \Longrightarrow$ it is possible to increase the current flow along (i, j)!

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation, 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, @

-- F ------ / -

Properties, 4 Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Augmenting path

Definition. Given a feasible flow x in a network flow N=(V,A), an augmenting path is a path P from the source s to the sink d in N s.t., denoting by

- F the set of forward arcs in P and
- B the set of backward arcs in P,

it results that

- $\bigcirc x_{ij} < k_{ij}, \forall (i,j) \in F \Longrightarrow$ it is possible to increase the current flow along (i, j)!
- $\bigcirc x_{ij} > 0, \forall (i,j) \in B \Longrightarrow$ it is possible to decrease the current flow along (i,j)!

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ①

Theorem. A feasible flow x in a network flow N=(V,A) is optimal for MF iff node d can not be reached from node s in the residual network \overline{N} .

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

roperties, &

 $Properties,\, {\small \texttt{③}}$

Properties, 4

Properties, @

Properties, 4

Properties, @

Properties, 4

Properties, 4

Properties, ^⑤

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Nethrial Houndition \$9\$105

Optimality conditions, ①

Theorem. A feasible flow x in a network flow N=(V,A) is optimal for MF iff node d can not be reached from node s in the residual network \overline{N} .

Proof. Let φ_0 be the value of flow x.

Scenario ①: d is reachable from s in \overline{N} .

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, @

roperties, o

Properties, 4

Properties, 4

Properties, 5

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, 2

Augmenting path

Optimality conditions, ①

Optimality conditions, ①

Theorem. A **feasible flow** *x* in a network flow N = (V, A) is optimal for MF iff node d can not be reached from node s in the residual network \overline{N} .

Proof. Let φ_0 be the value of flow x.

Scenario ①: d is reachable from s in N.

Then, $\exists P$ augmenting from s to d in N.

Let be $\delta = \min\{\overline{k}_{ij} \mid (i,j) \in P\} (>0!)$ and $\forall (i,j) \in P$

$$\overline{x}_{ij} := \begin{cases} x_{ij} + \delta, & \text{if } (i,j) \in F; \\ x_{ij} - \delta, & \text{if } (i,j) \in B, \end{cases}$$

 \overline{x} is a **feasible flow in** N with value $\varphi_0 + \delta > \varphi_0 \Longrightarrow$ $\implies x$ is not optimal. \square

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

Definition

MF as MCF. ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, ③

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 4

Properties, 5

Max Flow / Min Cut. ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, 2

Theorem. A feasible flow x in a network flow N=(V,A) is optimal for MF iff node d can not be reached from node s in the residual network \overline{N} .

Proof. Let φ_0 be the value of flow x.

Scenario ②: d is not reachable from s in \overline{N} .

Then,
$$\exists (S^*, V \setminus S^*) \text{ in } \overline{N} \text{ s.t. } \delta^+_{\overline{N}}(S^*) = \emptyset.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

 $\ \, \textbf{Math formulation,} \ \, \textbf{\textcircled{2}} \\$

 $Math\ formulation, \ {\bf 3}$

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, 4

roperties,

Properties, @

Properties, 5

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, 2

Theorem. A feasible flow x in a network flow N=(V,A) is optimal for MF iff node d can not be reached from node s in the residual network \overline{N} .

Proof. Let φ_0 be the value of flow x.

Scenario ②: d is not reachable from s in \overline{N} . By definition of \overline{N} , in N it results that

$$\checkmark$$
 \forall $(i,j) \in \delta_N^+(S^*)$, $x_{ij} = k_{ij}$ (saturated);

$$\checkmark$$
 \forall $(i,j) \in \delta_N^-(S^*)$, $x_{ij} = 0$ (unloading). Therefore,

saturated unloading
$$\varphi_0 \stackrel{\text{Th.}}{=} \varphi(S^*) \stackrel{\text{def}}{=} \sum_{\substack{(i,j) \in \delta_N^+(S^*) \\ (i,j) \in \delta_N^+(S^*)}} x_{ij} - \sum_{\substack{(i,j) \in \delta_N^-(S^*) \\ (i,j) \in \delta_N^+(S^*)}} x_{ij}$$

$$= \sum_{\substack{(i,j) \in \delta_N^+(S^*) \\ (i,j) \in \delta_N^+(S^*)}} k_{ij} \stackrel{\text{def}}{=} K(S^*).$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

Math formulation, ②

Math formulation, 3

Math formulation. 4

Properties, ①

Properties, 2

Properties, ③

Properties, @

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, ®

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Optimality conditions, 2

Theorem. A feasible flow x in a network flow N=(V,A) is optimal for MF iff node d can not be reached from node s in the residual network \overline{N} .

Proof. Let φ_0 be the value of flow x.

Scenario ②: d is not reachable from s in \overline{N} .

Summarizing, $\exists \ (S^*, V \setminus S^*) \text{ in } \overline{N} \text{ s.t. } \delta^+_{\overline{N}}(S^*) = \emptyset \text{ and }$

$$\varphi_0 \stackrel{\text{Th.}}{=} \varphi(S^*) = K(S^*). \square$$

Remember: $\varphi(S) \leq K(S)$, $\forall (S, V \setminus S)$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

Definition

MF as MCF, ①

MF as MCF, ②

Math formulation, ①

 $\ \, \textbf{Math formulation,} \ \, \textbf{\textcircled{2}} \\$

 $Math\ formulation, \ {\bf 3}$

Math formulation. 4

Properties, ①

Properties, 2

Properties, 3

Properties, @

Properties, 4

Properties, 4

Properties, @

Properties, 4

Properties, 4

Properties, ⑤

. . ^ __ _

Max Flow / Min Cut, ①

Max Flow / Min Cut, ②

Satured and unloading arcs

Residual network, ①

Residual network, ①

· ·

Residual network, ②

Residual network, ②

Augmenting path

Optimality conditions, ①

Optimality conditions, ②

Netherlal Hogogadition 62\$105

A solution method: the Ford-Fulkerson algorithm

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ${\scriptsize \textcircled{4}}$

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, @

Ford-Fulkerson: complexity, ③

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Given a network flow N = (V, A) and a feasible flow x from s to d, it iteratively searches in N an augmenting path P.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

- Ford-Fulkerson algorithm, ②
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson: complexity, ①
- Ford-Fulkerson: complexity, ②

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Given a network flow N = (V, A) and a feasible flow x from s to d, it iteratively searches in N an augmenting path P.

If such a path P exists, then it is possible to increase the current flow along the arcs in F and to decrease that sent along those in B.

In order to not violate the capacities constraints, the current flow along the arcs must be changed of the same quantity $\delta(P)$ properly chosen...

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

- Ford-Fulkerson algorithm, ②
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson: complexity, ①
- Ford-Fulkerson: complexity, ②
- Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Given a network flow N = (V, A) and a feasible flow x from s to d, it iteratively searches in N an augmenting path P.

If such a path P exists, then it is possible to increase the current flow along the arcs in F and to decrease that sent along those in B.

In order to not violate the capacities constraints, the current flow along the arcs must be changed of the same quantity $\delta(P)$ properly chosen... but

$$\delta(P) = ?$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

- Ford-Fulkerson algorithm, ②
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson: complexity, ①
- Ford-Fulkerson: complexity, @
- Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Given a network flow N = (V, A) and a feasible flow x from s to d, it iteratively searches in N an augmenting path P.

If such a path P exists, then it is possible to increase the current flow along the arcs in F and to decrease that sent along those in B.

In order to not violate the capacities constraints, the current flow along the arcs must be changed of the same quantity $\delta(P)$ properly chosen... but

$$\delta(P) = ?$$

$$\delta(P) = \min \left\{ \min_{(i,j) \in F} \{ k_{ij} - x_{ij} \}, \min_{(i,j) \in B} x_{ij} \right\}.$$

Note:
$$P \equiv F$$
 ($B = \emptyset$), $k_{ij} = +\infty$, \forall (i, j) $\in P \Longrightarrow \delta(P) = +\infty$ e $\varphi_0 = +\infty$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, @ Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ②

Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

```
algorithm ford-fulkerson (V, A, x, s, d)
1 (P, \delta(P)) := \text{search-augmenting-path}(V, A, x, s, d);
2 if (P = \emptyset) then return (x, \varphi(\{s\}));
3 do
       if (\delta(P) < +\infty) then
         for each (i,j) \in F do /*F: forward arcs in P */
           x_{ij} := x_{ij} + \delta(P);
           k_{ij} := k_{ij} - \delta(P);
         endfor
         for each (i, j) \in B do /* B: backward arcs in P */
           x_{i,i} := x_{i,i} - \delta(P);
           k_{ij} := k_{ij} + \delta(P);
         endfor
       else return (x, +\infty); /* case \delta(P) = +\infty: unlim.max flow */
       endif
       (P, \delta(P)) := \text{search-augmenting-path}(V, A, x, s, d);
4 while (P \neq \emptyset)
5 return (x, \varphi(\{s\}));
end ford-fulkerson
```

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

- Ford-Fulkerson algorithm, ③

- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson algorithm, ④ Ford-Fulkerson algorithm, ④
- Ford-Fulkerson: complexity, ①
- Ford-Fulkerson: complexity, ②

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Function search-augmenting-path.

Input: V, A, x, s, and d.

Output: P, $\delta(P)$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, 3

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ②

Ford-Fulkerson: complexity, 3

A simpler (not more efficient)

implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Function search-augmenting-path.

Input: V, A, x, s, and d.

Output: P, $\delta(P)$.

$$P = \emptyset \Longrightarrow x \text{ optimal};$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ${\bf 4}$
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson: complexity, 1
- Ford-Fulkerson: complexity, ②

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Function search-augmenting-path.

Input: V, A, x, s, and d.

Output: P, $\delta(P)$.

$$P = \emptyset \Longrightarrow x \text{ optimal};$$

$$P \neq \emptyset, \delta(P) = +\infty \Longrightarrow \varphi_0 = +\infty;$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, 2

Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Function search-augmenting-path.

Input: V, A, x, s, and d.

Output: P, $\delta(P)$.

$$P = \emptyset \Longrightarrow x \text{ optimal};$$

$$P \neq \emptyset, \delta(P) = +\infty \Longrightarrow \varphi_0 = +\infty;$$

$$P \neq \emptyset$$
, $\delta(P) < +\infty \Longrightarrow$ increase of the current flow.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ${\mathbin{\textcircled{\scriptsize 1}}}$

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson: complexity, 1
- Ford-Fulkerson: complexity, ②

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

Function search-augmenting-path.

Input: V, A, x, s, and d.

Output: P, $\delta(P)$.

$$P = \emptyset \Longrightarrow x \text{ optimal};$$

$$P \neq \emptyset, \delta(P) = +\infty \Longrightarrow \varphi_0 = +\infty;$$

$$P \neq \emptyset$$
, $\delta(P) < +\infty \Longrightarrow$ increase of the current flow.

But how to look for an augmenting path P?

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ${\mathbin{\textcircled{\scriptsize 1}}}$

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson: complexity, 1
- Ford-Fulkerson: complexity, ②

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Function search-augmenting-path.

Input: V, A, x, s, and d.

Output: P, $\delta(P)$.

$$P = \emptyset \Longrightarrow x \text{ optimal};$$

$$P \neq \emptyset, \delta(P) = +\infty \Longrightarrow \varphi_0 = +\infty;$$

 $P \neq \emptyset$, $\delta(P) < +\infty \Longrightarrow$ increase of the current flow.

But how to look for an augmenting path P?

It is used a *labeling algorithm*, that is a **variant of a visit** of the flow network N starting from the source s.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ${\mathbin{\textcircled{\scriptsize 1}}}$

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ®
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson: complexity, ①
- Ford-Fulkerson: complexity, @
- Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Let x be a feasible flow and let P be a partial path P from s to a node $l \in V$ such that

- ✓ $p(\cdot)$ predecessor array in P(p(s) = s);
- ✓ $\forall (i,j) \in F$ (forward arc in P), $x_{ij} < k_{ij}$ and p(j) = i;
- ✓ $\forall (i,j) \in B$ (backward arc in B), $x_{ij} > 0$ and p(i) = j.

In this case, P is said partial augmenting path from s to l and visiting labeled nodes.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, 4
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson: complexity, ① Ford-Fulkerson: complexity, ②
- Ford-Fulkerson: complexity, ③

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Let x be a feasible flow and let P be a partial path P from s to a node $l \in V$ such that

- ✓ $p(\cdot)$ predecessor array in P(p(s) = s);
- ✓ $\forall (i,j) \in F$ (forward arc in P), $x_{ij} < k_{ij}$ and p(j) = i;
- ✓ $\forall (i,j) \in B$ (backward arc in B), $x_{ij} > 0$ and p(i) = j.

In this case, P is said partial augmenting path from s to l and visiting labeled nodes.

Starting from the labeled node *l*, **2** cases can occur:

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ② Ford-Fulkerson: complexity, ③

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Let x be a feasible flow and let P be a partial path P from s to a node $l \in V$ such that

- ✓ $p(\cdot)$ predecessor array in P(p(s) = s);
- ✓ $\forall (i, j) \in F$ (forward arc in P), $x_{ij} < k_{ij}$ and p(j) = i;
- ✓ $\forall (i,j) \in B$ (backward arc in B), $x_{ij} > 0$ and p(i) = j.

In this case, P is said partial augmenting path from s to l and visiting labeled nodes.

Starting from the labeled node l, 2 cases can occur:

① \exists an arc $(l, j) \in A$ s.t. $x_{lj} < k_{lj}$: it is possible to extend path P to include the forward arc (l, j), so obtaining a partial augmenting path from s to node j, that becomes labeled and p(j) := l; **Preliminaries: notation**

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, 3

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ② Ford-Fulkerson: complexity, ③

A simpler (not more efficient)

implementation of Ford-Fulkerson algorithm

Let x be a feasible flow and let P be a partial path P from s to a node $l \in V$ such that

- ✓ $p(\cdot)$ predecessor array in P(p(s) = s);
- ✓ $\forall (i, j) \in F$ (forward arc in P), $x_{ij} < k_{ij}$ and p(j) = i;
- ✓ $\forall (i,j) \in B$ (backward arc in B), $x_{ij} > 0$ and p(i) = j.

In this case, P is said partial augmenting path from s to l and visiting labeled nodes.

Starting from the labeled node l, 2 cases can occur:

② \exists an arc $(i, l) \in A$ s.t. $x_{il} > 0$: it is possible to extend path P to include the backward arc (i, l), so obtaining a partial augmenting path from s to node i, that becomes labeled and p(i) := l. **Preliminaries: notation**

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, 2

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @ Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ②

Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

search-augmenting-path stops when

X node d is labeled:

in this case, an augmenting path P from the source s to the sink d has been found and it can be built by means of the predecessor array p;

X all labeled nodes are processed and the sink node d results not labeled:

or

in this case, \nexists an augmenting path P from the source s to the sink d.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, 2

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, ${\bf 4}$

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, 4

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, @

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

```
function search-augmenting-path (V, A, x, s, d)
   P := \emptyset; \ \delta(P) := +\infty;
    for each i \in V \setminus \{s\} do p(i) := 0; label[i] := 0; endfor
   p(s) := s; label[s] := 1; Q := \{s\};
    while (Q \neq \emptyset) do
       l:=\mathtt{remove}\,(Q) ; /* breadth, depth, l:=\min_{h\in Q}h , ...*/
       for each j \in FS(l) do
         if (label[j] = 0 and x_{lj} < k_{lj}) then
           label[j] := 1; \ p(j) := l; \ Q := Q \cup \{j\};
         endif
       endfor
       for each i \in BS(l) do
         if (label[i] = 0 and x_{il} > 0) then
           label[i] := 1; \ p(i) := l; \ Q := Q \cup \{i\};
         endif
       endfor
       if (label[d] = 1) then break;
    endwhile
5
6
```

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

- Ford-Fulkerson algorithm, ①
- Ford-Fulkerson algorithm, ②
- Ford-Fulkerson algorithm, 3
- Ford-Fulkerson algorithm, ③
- Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, @

- Ford-Fulkerson algorithm, @
- Ford-Fulkerson algorithm, @
- Ford-Fulkerson: complexity, ①
- Ford-Fulkerson: complexity, 2
- Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

```
function search-augmenting-path (V, A, x, s, d)
    if (label[d] = 0) then return (\emptyset, +\infty);
    i := di
    while (j \neq s) do
       i := p(j);
       if ((i,j) \in A) then
         P := P \cup \{(i, j)\};
         if (\delta(P) > k_{ij} - x_{ij}) then \delta(P) := k_{ij} - x_{ij};
       else /* case (j,i) \in A */
         P := P \cup \{(j, i)\};
         if (\delta(P) > x_{ji}) then \delta(P) := x_{ji};
       endif
       i := i
    endwhile
10 return (P, \delta(P));
end search-augmenting-path
```

```
Preliminaries: notation
Network Flow Problems
Network Flows: Variants
Special cases of the
Network Flow Problem
The Maximum Flow Problem
A solution method:
the Ford-Fulkerson algorithm
Ford-Fulkerson algorithm, ①
Ford-Fulkerson algorithm, ②
Ford-Fulkerson algorithm, 3
Ford-Fulkerson algorithm, 3
Ford-Fulkerson algorithm, 3
Ford-Fulkerson algorithm, 3
Ford-Fulkerson algorithm, @
Ford-Fulkerson algorithm, @
Ford-Fulkerson algorithm, @
Ford-Fulkerson: complexity, 1
Ford-Fulkerson: complexity, ②
Ford-Fulkerson: complexity, 3
A simpler (not more efficient)
implementation
of Ford-Fulkerson algorithm
```

Ford-Fulkerson algorithm:

```
subroutine search-augmenting-path (V, A, x, s, d)
   if (label[d] = 0) then return (\emptyset, +\infty);
   i := di
    while (j \neq s) do
       i := p(j);
       if ((i,j) \in A) then
         P := P \cup \{(i, j)\};
         if (\delta(P) > k_{ij} - x_{ij}) then \delta(P) := k_{ij} - x_{ij};
       else /* case (j,i) \in A */
        P := P \cup \{(j,i)\};
         if (\delta(P) > x_{ji}) then \delta(P) := x_{ji};
       endif
       i := i
    endwhile
                /* O(|A|) */
10 return (P, \delta(P));
end search-augmenting-path
```

Preliminaries: notation **Network Flow Problems Network Flows: Variants** Special cases of the **Network Flow Problem** The Maximum Flow Problem A solution method: the Ford-Fulkerson algorithm Ford-Fulkerson algorithm, ① Ford-Fulkerson algorithm, ② Ford-Fulkerson algorithm, 3 Ford-Fulkerson algorithm, 3 Ford-Fulkerson algorithm, 3 Ford-Fulkerson algorithm, 3 Ford-Fulkerson algorithm, @ Ford-Fulkerson algorithm, @ Ford-Fulkerson algorithm, @ Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ②

Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson: complexity, ①

```
Preliminaries: notation
algorithm ford-fulkerson (V, A, x, s, d)
                                                                                                          Network Flow Problems
     (P, \delta(P)) := \text{search-augmenting-path}(V, A, x, s, d); /*O(|A|)*/
                                                                                                          Network Flows: Variants
    if (P = \emptyset) then return (x, \varphi(\{s\}));
                                                                                                          Special cases of the
     do
                                                                                                          Network Flow Problem
         if (\delta(P) < +\infty) then
                                                                                                          The Maximum Flow Problem
            for each (i,j) \in F do /* F archi forward di P */
                                                                                                          A kolution method:
                                                                                                          the Ford-Fulkerson algorithm
              x_{ij} := x_{ij} + \delta(P);
                                                                                                          Ford-Fulkerson algorithm, ①
              k_{ij} := k_{ij} - \delta(P);
                                                                                                          Ford-Fulkerson algorithm, 2
                                                                                                          Ford-Fulkerson algorithm, 3
            endfor
                                                                                                          Ford-Fulkerson algorithm, 3
                                                                                                          Ford-Fulkerson algorithm, 3
            for each (i,j) \in B do /* B archi backward di P */
                                                                                                          Ford-Fulkerson algorithm, 3
                                                                                                          Ford-Fulkerson algorithm, @
              x_{i,i} := x_{i,i} - \delta(P);
                                                                                                          Ford-Fulkerson algorithm, @
              k_{i,i} := k_{i,i} + \delta(P);
                                                                                                          Ford-Fulkerson algorithm, @
                                                                                                          Ford-Fulkerson: complexity, ①
            endfor
                                                                                                          Ford-Fulkerson: complexity, ②
                                                                                                          Ford-Fulkerson: complexity, 3
         else return (x, +\infty); /* caso \delta(P) = +\infty: max flusso ill.
                                                                                                          A simpler (not more efficient)
         endif
                                                                                                          implementation
                                                                                                          of Ford-Fulkerson algorithm
         (P, \delta(P)) := \text{search-augmenting-path}(V, A, x, s, d); /*O(|A|)*
                                                                                                          Ford-Fulkerson algorithm:
     while (P \neq \emptyset) /*How many times?*/
                                                                                                          an exercise
     return (x, \varphi(s));
end ford-fulkerson
```

Ford-Fulkerson: complexity, 2

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

,

Ford-Fulkerson algorithm, ${\bf @}$

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, ②

Ford-Fulkerson: complexity, ③

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson: complexity, 2

ford-fulkerson: nr of iterations in the worst case.

At each iteration, $\varphi_0 = \varphi(\{s\})$ is augmented in a strictly monotone manner and the increment is $\delta(P) > 0$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, 3

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, @

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, @

Ford-Fulkerson: complexity, 3

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson: complexity, ②

ford-fulkerson: nr of iterations in the worst case.

At each iteration, $\varphi_0 = \varphi(\{s\})$ is augmented in a strictly monotone manner and the increment is $\delta(P) > 0$.

W.l.g., we suppose that

$$\forall (i,j) \in A, k_{ij} \in \mathbb{Z}^+ \cup \{0\} \implies \delta(P) \in \mathbb{Z}^+.$$

Therefore, the max nr of iterations is given by φ_0^* .

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm $\,$

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, @

Ford-Fulkerson: complexity, ③

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson: complexity, 2

ford-fulkerson: nr of iterations in the worst case.

At each iteration, $\varphi_0 = \varphi(\{s\})$ is augmented in a strictly monotone manner and the increment is $\delta(P) > 0$.

W.l.g., we suppose that

$$\forall (i,j) \in A, k_{ij} \in \mathbb{Z}^+ \cup \{0\} \implies \delta(P) \in \mathbb{Z}^+.$$

Therefore, the max nr of iterations is given by φ_0^* . Moreover,

$$\varphi_0^* = \varphi^*(\{s\}) \stackrel{\text{Th}}{\leq} K(\{s\}) = O(|A| \cdot k_{\max}),$$

where $k_{\max} = \max_{(i,j) \in A} k_{ij}$.

Summarizing, the worst case computational complexity of the algorithm is $O(|A|^2 \cdot k_{\text{max}})$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, @

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson: complexity, ①

Ford-Fulkerson: complexity, @

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson: complexity, ③

Instance where ford-fulkerson is not efficient:

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

Ford-Fulkerson algorithm, 2

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, $\ensuremath{\mathfrak{G}}$

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ${\scriptsize \textcircled{4}}$

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, @

Ford-Fulkerson: complexity, ① Ford-Fulkerson: complexity, ②

Ford-Fulkerson: complexity, ③

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson: complexity, ③

Instance where ford-fulkerson is not efficient:

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

Ford-Fulkerson algorithm, ①

and Full conservations (

Ford-Fulkerson algorithm, ②

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, ③

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, 4

Ford-Fulkerson algorithm, @

Ford-Fulkerson: complexity, ① Ford-Fulkerson: complexity, ②

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Nr of iterations: 2M.

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson 2, ①

Ford-Fulkerson 2, 2

Ford-Fulkerson 2, 2

Ford-Fulkerson 2, ①

At each main iteration (**do while loop** lines 3-4), **each node** $j \in V$ is associated with a **label with 2 entries**

$$[\pm p(j), \epsilon_j],$$

where

- \rightarrow p(j) is the predecessor node of j along the augmenting path P from s to j;
- \rightarrow ϵ_i is the increment of flow at node j along P.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson 2, ①

Ford-Fulkerson 2, ②

Ford-Fulkerson 2, @

Ford-Fulkerson 2, ①

At each main iteration (**do while loop** lines 3-4), **each node** $j \in V$ is associated with a **label with 2 entries**

$$[\pm p(j), \epsilon_j],$$

where

- \rightarrow p(j) is the predecessor node of j along the augmenting path P from s to j;
- \rightarrow ϵ_j is the increment of flow at node j along P.
- $(p(j), j) \in A$; is reached traversing the forward arc
- $(j, p(j)) \in A$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson 2, ①

Ford-Fulkerson 2, ②

Ford-Fulkerson 2, ②

Ford-Fulkerson 2, ①

At each main iteration (**do while loop** lines 3-4), **each node** $j \in V$ is associated with a **label with 2 entries**

$$[\pm p(j), \epsilon_j],$$

where

- \rightarrow p(j) is the predecessor node of j along the augmenting path P from s to j;
- \rightarrow ϵ_j is the increment of flow at node j along P.
- \Rightarrow "+" \Rightarrow *j* is reached traversing the forward arc $(p(j), j) \in A$;
- $(j, p(j)) \in A$.

Note: **initially**, also a trivial flow vector $x_{ij} = 0$, $\forall (i, j) \in A$ can be used.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson 2, ①

Ford-Fulkerson 2, ② Ford-Fulkerson 2, ②

Ford-Fulkerson 2, 2

```
algorithm ford-fulkerson2(V, A, s, d)
    for each (i, j) \in A do x_{ij} := 0;
    \varphi_0 := 0;
    do /* main loop */
        for each j \in V do p(j) := 0;
        [p(s), \epsilon_s] := [+s, +\infty]; \quad Q := \{s\};
        while (Q \neq \emptyset) and p(d) = 0 do
          h := remove(Q);
          for each j \in FS(h) , x_{hj} < k_{hj} do /* non saturated forw arcs */
            if (p(i) = 0) then
               [p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; \quad Q := Q \cup \{j\};
            endif
          endfor
          for each i \in BS(h), x_{ih} > 0 do /* non unloading backw arcs */
            if (p(i) = 0) then
               [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; \quad Q := Q \cup \{i\};
            endif
          endfor
        endwhile
5
```

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

A simpler (not more efficient)

implementation of Ford-Fulkerson algorithm

Ford-Fulkerson 2, ①

Ford-Fulkerson 2, @

Ford-Fulkerson 2, ②

Ford-Fulkerson 2, 2

```
algorithm ford-fulkerson2(V, A, s, d)
       if (p(d) \neq 0) then /* augmenting path P from s to d found */
         \delta(P) := \epsilon_d; \varphi_0 := \varphi_0 + \delta(P); j := d;
         while (j \neq s) do /* building P */
           i := p(j);
           if (i > 0) then x_{ij} := x_{ij} + \delta(P);
           else x_{j|i|} := x_{j|i|} - \delta(P);
           j := |i|;
         endwhile
       endif
    until (p(d) = 0)
    print ''Current flow x is optimal and the cut
           (S^*, V \setminus S^*) has minimum capacity,
           where S^* = \{j \in V \mid p_j \neq 0\}'';
    return (x, \varphi_0, S^*);
end ford-fulkerson2
```

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson 2, ①

Fora-Fulkerson 2, U

Ford-Fulkerson 2, @

Ford-Fulkerson 2, ②

Ford-Fulkerson algorithm: an exercise

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

- Exercise, ①
- Exercise, 2
- Exercise, ③
- Exercise, 3
- Exercise, ③
- Exercise, 3
- Exercise, 3
- Exercise, ③
- Exercise, ③
- Exercise, 4
- Exercise, @
- Exercise, @
- Exercise, 4
- Exercise, @
- zaterenoe, o
- Exercise, 4

 Exercise, 4
- Exercise, 4
- Exercise, @

ercise, 4

NetworkeFlows - p. 80/105

Exercise, @

Exercise, ①

Exercise. Find the **maximum flow** from the **source node** s = 1 to the **sink node** d = 7 in the following network flow N = (V, A).

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise, ①

- Exercise, ②
- Exercise, ③
- Exercise, 3
- Exercise, 4
- Exercise, 4
- 2,1010100,
- Exercise, @
- Exercise, @
- Exercise, @
- Exercise, 4
- Exercise, 4
- Exercise, 4
- Exercise, 4

Inizialization:

$$p(i) = 0, \forall i \in V \setminus \{s\};$$
 $x_{ij} = 0, \forall (i, j) \in A.$
 $\varphi_0 = 0.$
 $[+s, +\infty] = [+1, +\infty].$
 $Q = \{1\}.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise, ①

Exercise, ②

Exercise, 3

Exercise, 3

Exercise, ③

Exercise, ③

Exercise, 3
Exercise, 3

_ . .

Exercise, ③

Exercise, 4

Exercise, 4

Exercise, @

Exercise, @

. . .

Exercise, 4

Exercise, 4

Exercise, @

Exercise, @

```
h := \text{remove}(Q);
for each j \in FS(h), x_{hj} < k_{hj} do /* non saturated forward arcs */
     if (p(i) = 0) then {
        [p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}
for each i \in BS(h), x_{ih} > 0 do /* non unloading backward arcs */
     if (p(i) = 0) then \{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}
```


Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Exercise, 4

NetworkeFlows - p. 83/105

h := remove(Q);**for each** $j \in FS(h)$, $x_{hj} < k_{hj}$ **do** /* non saturated forward arcs */ if (p(i) = 0) then { $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ **for each** $i \in BS(h)$, $x_{ih} > 0$ **do** /* non unloading backward arcs */ **if** (p(i) = 0) **then** $\{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise, 3

Exercise, 3 Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Exercise, 4

NetworkeFlows - p. 84/105 Exercise, 4

```
h := \operatorname{remove}(Q); for each j \in FS(h), x_{hj} < k_{hj} do /* non saturated forward arcs */
        if (p(j) = 0) then {
            [p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}
        for each i \in BS(h), x_{ih} > 0 do /* non unloading backward arcs */
        if (p(i) = 0) then { [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\};\}
```


Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

LACICISC,

Exercise, ②

Exercise, 3

Exercise. 3

Exercise, ③

Exercise, ③

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 4

Exercise, 4

Excitioe, ©

Exercise, @

Exercise, 4

Exercise, @

Excitioe, ©

Exercise, 4

Exercise, 4

Exercise, @

NeEwerikeFlows - p. 85/105

Exercise, 4

h := remove(Q);**for each** $j \in FS(h)$, $x_{hj} < k_{hj}$ **do** /* non saturated forward arcs */ if (p(i) = 0) then { $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ **for each** $i \in BS(h)$, $x_{ih} > 0$ **do** /* non unloading backward arcs */ **if** (p(i) = 0) **then** $\{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Exercise, 4

NetworkeFlows - p. 86/105

Exercise, 4

Iteration I:

Augmenting path $P = \{(1, 2), (2, 3), (3, 7)\}$. $\delta(P) = \epsilon_d = 2$.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise, ①

Exercise, ②

Exercise, ③

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, ③

Exercise,

Exercise, 4

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

LACICIOC,

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Iteration I:

Increasing / decreasing of $\delta(P) = \epsilon_d = 2$ along the augmenting path $P = \{(1, 2), (2, 3), (3, 7)\}.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise, ①

Exercise, ②

Exercise, ③

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Exercise, 4

NeEwerikeFlows - p. 88/105

End of Iteration I:

$$\varphi_0=2.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

 $For d-Fulkers on \ algorithm:$

an exercise

Exercise, ①

Exercise, 2

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, ③

Exercise, ③

Exercise, ③

Excreise

Exercise, ③

Exercise, 4

Exercise, @

Exercise, @

Exercise, 4

Exercise, @

LACICIOC,

Exercise, @

Exercise, @

Exercise, @

Exercise, @

 $h := \operatorname{remove}(Q);$ for each $j \in FS(h)$, $x_{hj} < k_{hj}$ do /* non saturated forward arcs */
 if (p(j) = 0) then {
 $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ for each $i \in BS(h)$, $x_{ih} > 0$ do /* non unloading backward arcs */
 if (p(i) = 0) then { $[p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\};\}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise, ①

Exercise, ②

- . .

Exercise, ③

Exercise, ③

Exercise, ③

Exercise, ③

Exercise, ③

Exercise, 3

Exercise, 3

Exercise, @

Exercise, @

Exercise. 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, @

Exercise, @

Exercise, 4

NetworkeFlows - p. 90/105

 $h := \operatorname{remove}(Q);$ for each $j \in FS(h)$, $x_{hj} < k_{hj}$ do /* non saturated forward arcs */
 if (p(j) = 0) then {
 $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ for each $i \in BS(h)$, $x_{ih} > 0$ do /* non unloading backward arcs */
 if (p(i) = 0) then { $[p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\};\}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise, ①

Exercise, ②

Exercise, ③

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

Ne**Ewoike**Fflows - p. 91/105

 $h := \operatorname{remove}(Q);$ for each $j \in FS(h)$, $x_{hj} < k_{hj}$ do /* non saturated forward arcs */
 if (p(j) = 0) then {
 $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ for each $i \in BS(h)$, $x_{ih} > 0$ do /* non unloading backward arcs */
 if (p(i) = 0) then { $[p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\};\}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

LACICISC,

Exercise, ②

Exercise, 3

Exercise, 3

_ . .

Exercise, ③

Exercise, 3

.....

Exercise, ③

Exercise, @

Exercise, 4

Exercise, @

zacrense, c

Exercise, @

Exercise, 4

.

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

NetworkeFows - p. 92/105

Iteration II:

Augmenting path $P = \{(1,5), (5,6), (6,7)\}.$ $\delta(P) = \epsilon_d = 2.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise Exercise. ①

Exercise, 2

Exercise, ③

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 3 Exercise, ③

Exercise, 3

Exercise, 4

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Exercise, @

Exercise, @ Exercise, 4

Exercise, 4

NeEworkeFlows - p. 93/105

Iteration II:

Increasing / decreasing of $\delta(P) = \epsilon_d = 2$ along the augmenting path $P = \{(1,5), (5,6), (6,7)\}.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient)

implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise, ①

Exercise, ②

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, ③

Exercise, @

Exercise, 4

Exercise, @

.....

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

End of Iteration II:

$$\varphi_0=4.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise Exercise, ①

Exercise, 2

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, 4

Exercise, 4

Exercise, @

Exercise, @

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

h := remove(Q);**for each** $j \in FS(h)$, $x_{hj} < k_{hj}$ **do** /* non saturated forward arcs */ **if** (p(i) = 0) **then** { $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ **for each** $i \in BS(h)$, $x_{ih} > 0$ **do** /* non unloading backward arcs */ **if** (p(i) = 0) **then** $\{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise. 4

Exercise, @

Exercise, 4

Exercise, 4

NetworkeFlows - p. 96/105

 $h := \operatorname{remove}(Q);$ for each $j \in FS(h)$, $x_{hj} < k_{hj}$ do /* non saturated forward arcs */
 if (p(j) = 0) then {
 $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ for each $i \in BS(h)$, $x_{ih} > 0$ do /* non unloading backward arcs */
 if (p(i) = 0) then { $[p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\};\}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the Network Flow Problem

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient)

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

implementation

Exercise, ①

Exercise, ②

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, ③

Exercise, ③

Exercise, ③

Exercise, @

Exercise, @

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Exercise, @

Exercise, 4

Ne**Ewerike**Flows - p. 97/105

h := remove(Q);**for each** $j \in FS(h)$, $x_{hj} < k_{hj}$ **do** /* non saturated forward arcs */ **if** (p(i) = 0) **then** { $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ **for each** $i \in BS(h)$, $x_{ih} > 0$ **do** /* non unloading backward arcs */ **if** (p(i) = 0) **then** $\{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Exercise, @

```
h := \text{remove}(Q);
for each j \in FS(h), x_{hj} < k_{hj} do /* non saturated forward arcs */
     if (p(i) = 0) then {
        [p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}
for each i \in BS(h), x_{ih} > 0 do /* non unloading backward arcs */
     if (p(i) = 0) then \{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}
```


Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise. 4 Exercise, 4

Exercise, 4

Exercise. 4

Exercise, @

h := remove(Q);**for each** $j \in FS(h)$, $x_{hj} < k_{hj}$ **do** /* non saturated forward arcs */ **if** (p(i) = 0) **then** { $[p(j), \epsilon_j] := [+h, \min\{\epsilon_h, k_{hj} - x_{hj}\}]; Q := Q \cup \{j\};\}$ **for each** $i \in BS(h)$, $x_{ih} > 0$ **do** /* non unloading backward arcs */ **if** (p(i) = 0) **then** $\{ [p(i), \epsilon_i] := [-h, \min\{\epsilon_h, x_{ih}\}]; Q := Q \cup \{i\}; \}$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm A simpler (not more efficient)

implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise. 3

Exercise, 3

Exercise. 3

Exercise, 4

Exercise, 4

Exercise. 4

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

Iteration III:

Augmenting path $P = \{(1,4), (4,3), (2,3), (2,6), (6,7)\}.$ $\delta(P) = \epsilon_d = 1.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise, ①

Exercise, 2

Exercise, ③

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, 4

Exercise, 4

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

NetworkisFlows - p. 101/105

Iteration III:

Increasing/decreasing of $\delta(P) = \epsilon_d = 1$ along the augmenting path $P = \{(1,4), (4,3), (2,3), (2,6), (6,7)\}.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise, 4

Exercise, @

Exercise, @

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4

End of Iteration III:

$$\varphi_0=5.$$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise, ①

Exercise, 2

Exercise, ③

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, 3

Exercise, ③

Exercise, 3

Exercise, 4

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Iteration IV:

d can not be reached from s.

 $(S^*, V \setminus S^*) = (\{1, 4\}, \{2, 3, 5, 6, 7\})$ is the minimum cut. $\varphi_0^* = 5.$

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method:

the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation

of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm:

an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 3 Exercise, 3

Exercise, ③

Exercise, 3

Exercise, 4

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 7

$$(S^*, V \setminus S^*) = (\{1, 4\}, \{2, 3, 5, 6, 7\}); \varphi_0^* = \varphi(S^*) = K(S^*) = 5.$$

Notes:

- \checkmark every arc $(i,j) \in \delta_N^+(S^*)$ is saturated;
- \checkmark every arc $(i,j) \in \delta_N^-(S^*)$ is unloading.

Preliminaries: notation

Network Flow Problems

Network Flows: Variants

Special cases of the **Network Flow Problem**

The Maximum Flow Problem

A solution method: the Ford-Fulkerson algorithm

A simpler (not more efficient) implementation of Ford-Fulkerson algorithm

Ford-Fulkerson algorithm: an exercise

Exercise. ①

Exercise, 2

Exercise, 3

Exercise. 3

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 3

Exercise, 4

Exercise, 4

Exercise, @

Exercise, 4

Exercise, @

Exercise, 4

Exercise, 4

Exercise, 4