NAME

UCID

- 1. Answer all four questions. Maximum mark is 18.
- 2. Show your work as much as possible, within time and space constraints.

n	=	$\frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$	$D_C(E)$	=	$\frac{8\pi m_n \sqrt{2m_n(E - E_C)}}{h^3}$
	=	$N_D - N_A$ if $N_D - N_A > 10n_i$	$D_V(E)$	=	$\frac{8\pi m_p \sqrt{2m_p(E_V - E)}}{h^3}$
p	=	$\frac{N_A - N_D}{2} + \sqrt{\left(\frac{N_A - N_D}{2}\right)^2 + n_i^2}$	f(E)	=	$\frac{1}{1 + e^{(E - E_F)/kT}}$
	=	$N_A - N_D \text{ if } N_A - N_D > 10n_i$	Constants		
np	=	n_i^2	k	=	$1.38 \times 10^{-23} \ J/K$
n	=	$N_C e^{-(E_C - E_F)/kT}$	h	=	$6.63 \times 10^{-34} \ Js$
p	=	$N_V e^{-(E_F - E_V)/kT}$	q	=	$1.60 \times 10^{-19} C$
		$(2\pi m_{-}kT)^{3/2}$	@300K		
N_C	=	$2\left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$			26~meV
N_V	=	$2\left(\frac{2\pi m_p kT}{h^2}\right)^{3/2}$	$\frac{kT}{q}$	=	26~mV
Silicon@300K			Germanium@300K		
N_C	=	$2.8 \times 10^{19}/cm^3$	N_C	=	$1.0 \times 10^{19}/cm^3$
N_V	=	$1.0\times10^{19}/cm^3$	N_V	=	$6.0 \times 10^{18}/cm^3$
n_i	=	$1.0 \times 10^{10}/cm^3$	n_i	=	$2.0\times10^{13}/cm^3$
E_g	=	1.1~eV	E_g	=	0.67~eV

- 1. (2 marks) State true or false. Make no assumptions beyond what is stated.
- (i) Carrier concentrations always increase with increased doping concentration.
- (ii) In intrinsic semiconductors, there are no free electrons in the valence band.
- 2. (2 marks) Consider the regulator shown below. Answer the two questions to the right.

- (i) Choosing R effects the ripple voltage measured between
- (a) $\alpha \alpha'$
- (b) $\beta\beta$
- (c) $\gamma \gamma'$
- (ii) Choosing C effects the ripple voltage measured between
- (a) $\alpha\alpha'$
- (b) $\beta\beta'$
- (c) $\gamma\gamma$
- 3. (2 marks) Consider the energy band diagram below. Is the probability of finding an electron at E_C higher, lower or equal to that of finding a hole at E_V ? Circle your answer in the options below the diagram and justify it.

- (a) Higher
- (b) Lower
- (c) Equal
- 4. (12 marks) (a) What doping (acceptor/donor and concentration) is required to create p-Si with majority concentration 10^4 times the minority concentration?
- (b) How would you dope (acceptor/donor and concentration) germanium to create a hole concentration equal to the doped silicon hole concentration in part (a)?
- (c) Where is the Fermi level located in germanium after doping as in part (b)?
- (d) After doping, is the germanium n or p type? Why?
- (e) After doping, what is the minority carrier concentration in the germanium?

NAME

- 1. Answer all four questions. Maximum mark is 18.
- 2. Show your work as much as possible, within time and space constraints.

n	=	$\frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$			$\frac{8\pi m_n \sqrt{2m_n(E - E_C)}}{h^3}$
		$N_D - N_A$ if $N_D - N_A > 10n_i$	$D_V(E)$	=	$\frac{8\pi m_p \sqrt{2m_p(E_V - E)}}{h^3}$
p	=	$rac{N_A-N_D}{2}+\sqrt{\left(rac{N_A-N_D}{2} ight)^2+n_i^2}$			$\frac{1}{1 + e^{(E - E_F)/kT}}$
	=	$N_A - N_D$ if $N_A - N_D > 10n_i$	Constants		
np	=	n_i^2	k	=	$1.38 \times 10^{-23} \ J/K$
n	=	$N_C e^{-(E_C - E_F)/kT}$	h	=	$6.63 \times 10^{-34} Js$
p	=	$N_V e^{-(E_F - E_V)/kT}$	q	=	$1.60 \times 10^{-19} C$
		$(2\pi m kT)^{3/2}$	@300K		
N_C	=	$2\left(\frac{2\pi m_n kT}{h^2}\right)^{3/2}$			26~meV
N_V	=	$2\left(\frac{2\pi m_p kT}{h^2}\right)^{3/2}$	$\frac{kT}{q}$	=	26~mV
${\rm Silicon@300K}$			Germanium@300K		
N_C	=	$2.8 \times 10^{19}/cm^3$	N_C	=	$1.0 \times 10^{19}/cm^3$
N_V	=	$1.0 \times 10^{19}/cm^3$	N_V	=	$6.0 \times 10^{18}/cm^3$
n_i	=	$1.0 \times 10^{10}/cm^3$	n_i	=	$2.0 \times 10^{13}/cm^3$
E_g	=	1.1~eV	E_g	=	0.67~eV

- 1. (2 marks) State true or false. Make no assumptions beyond what is stated.
- (i) Carrier concentrations always increase with increased doping concentration.
- (ii) In intrinsic semiconductors, there are no free electrons in the valence band.
- 2. (2 marks) Consider the regulator shown below. Answer the two questions to the right.

- (i) Choosing R effects the ripple voltage measured between

- (b) $\beta\beta'$ (c) $\gamma\gamma'$
- (ii) Choosing C effects the ripple voltage measured between

- 3. (2 marks) Consider the energy band diagram below. Is the probability of finding an electron at E_C higher, lower or equal to that of finding a hole at E_V ? Circle your answer in the options below the diagram and justify it.

- (a) Higher
- (b) Lower
- (c) Equal
- 4. (12 marks) (a) What doping (acceptor/donor and concentration) is required to create n-Si with majority concentration 10⁴ times the minority concentration?
- (b) How would you dope (acceptor/donor and concentration) germanium to create an electron concentration equal to the doped silicon electron concentration in part (a).
- (c) Where is the Fermi level located in germanium after doping as in part (b)?
- (d) After doping, is the germanium n or p type? Why?
- (e) After doping, what is the minority carrier concentration in the germanium?