

加速计算基础 —— CUDA Python

数据元素数量往往会大于 网格中的线程数量

数据

度循环...

3

若所有线程均按此种方式 执行,所有元素便可覆盖在 内,同时还可尽享访存合并 所带来的性能优势

15

19

23

27

31

3

若所有线程均按此种方式 执行,所有元素便可覆盖在 内,同时还可尽享访存合并 所带来的性能优势

15

19

0 1 2 3 0

1 2 3

27

31

23

3

若所有线程均按此种方式 执行,所有元素便可覆盖在 内,同时还可尽享访存合并 所带来的性能优势

15

19

23

27

31

若所有线程均按此种方式 执行,所有元素便可覆盖在 内, 同时还可尽享访存合并 所带来的性能优势

GPU

19

DEEP LEARNING INSTITUTE

学习更多课程,请访问 www.nvidia.cn/DLI