Introduction to Machine Learning

Wu Yu 武钰

Confidential

- Branch of Artificial Intelligence
- Learn from data
- Make predictions or decisions

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Traditional modeling:

Machine Learning:

Categories of Machine Learning

Machine Learning Problems

	Supervised Learning		Unsupervised Learning
Discrete		classification or categorization	clustering
Continuous	regression		dimensionality reduction

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

Examples:

Spam email filtering:

Image recognition:

Image recognition

 Apply a prediction function to a feature representation of the image to get the desired output:

Image recognition

Training:

Given a *training set* of labeled examples $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$, estimate the prediction function F by minimizing the prediction error on the training set

Testing:

Apply F to a test example x and output the predicted value y = F(x)

Test Image

Image Features

General Principles of Representation

Coverage Ensure that all relevant info is captured

Concision Minimize number of features without sacrificing coverage

Directness Ideal features are independently useful for prediction

Classifiers

- F(x) is label of the training example nearest to x
- All we need is a distance function for our inputs
- No training required!

Classifiers: Linear SVM

- There is a *linear function* to separate the classes:
- $F(\mathbf{x}) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$

Classifiers: Nonlinear SVM

Datasets that are linearly separable work out great:

But what if the dataset is just too hard?

We can map it to a higher-dimensional space:

Classifiers: Nonlinear SVM

General idea: the original input space can always be mapped to some higherdimensional feature space where the training set is separable:

Model Selection

Goal: Choose appropriate model

Generalization error

Unavoidable error

Error due to inaccurate assumptions/simplifications made by the model

Error due to variance of training samples

Under Fitting

Model is too "simple" to represent all the relevant class characteristics:

- High bias and low variance
- High training error and high test error
- Not enough flexibility

Model is too "complex" and fits irrelevant characteristics (noise) in the data:

- Low bias and high variance
- Low training error and high test error
- Too much sensitivity to the sample

Bias-Variance Trade-off

Objective function

• Encode the right loss for the problem

Parameterization

Makes assumptions that fit the problem

Training algorithm

• Find parameters that maximize objective on training set

Inference algorithm

Solve for objective function in evaluation

More about classifiers

- Machine learning algorithms are tools, not dogmas.
- Try simple classifiers first.
- Better to have smart features and simple classifiers than simple features and smart classifiers.
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff).

- SVM, Adaboost, ...
- Neural Networks

Thank You!

