Uniqueness of Measure Extensions

Uniqueness of Extensions when Target Space is Hausdorff

Proposition 0.1. Let X be a topological space and let $f: A \to Y$ be a continuous function from a dense subspace A of X to a Hausdorff space Y. If there exists a continuous extension of f to all of X, then it must be unique. In other words, suppose $\widetilde{f}_1: X \to Y$ and $\widetilde{f}_2: X \to Y$ are continuous functions such that

$$\widetilde{f}_1|_A = f = \widetilde{f}_2|_A.$$

Then
$$\widetilde{f}_1 = \widetilde{f}_2$$
.

Proof. To prove uniqueness, assume for a contradiction that $\widetilde{f}_1\colon X\to Y$ and $\widetilde{f}_2\colon X\to Y$ are two continuous extensions of f such that $\widetilde{f}_1\neq\widetilde{f}_2$. Choose $x\in X$ such that $\widetilde{f}_1(x)\neq\widetilde{f}_2(x)$. Since Y is Hausdorff, we may choose open neighborhoods V_1 and V_2 of $\widetilde{f}_1(x)$ and $\widetilde{f}_2(x)$ respectively such that $V_1\cap V_2=\emptyset$. Then $\widetilde{f}_1^{-1}(V_1)\cap\widetilde{f}_2^{-1}(V_2)$ is an open neighborhood of x, and so it must have a nonempty intersection with A. Choose $a\in A\cap\widetilde{f}_1^{-1}(V_1)\cap\widetilde{f}_2^{-1}(V_2)$. Then

$$f(a) = \widetilde{f}_1(a) \\ \in V_1.$$

Similarly,

$$f(a) = \widetilde{f}_2(a) \\ \in V_2.$$

Thus $f(a) \in V_1 \cap V_2$, which is a contradiction since V_1 and V_2 were chosen to disjoint from one another.

Uniqueness of Extension for Measures

Proposition 0.2. Let μ and ν be two finite measures defined on $\sigma(A)$ which coincide on A. Then $\mu = \nu$.

Proof. We first note that $d_{\mu} = d_{\nu}$ since μ and ν agree on A. Indeed, let $A, B \in \sigma(A)$. Then we have

$$d_{\mu}(A, B) = \mu^{*}(A\Delta B)$$

$$= \inf \left\{ \sum_{n=1}^{\infty} \mu(E_{n}) \mid (E_{n}) \text{ is a sequence in } \mathcal{A} \text{ such that } A\Delta B \subseteq \bigcup_{n=1}^{\infty} E_{n} \right\}$$

$$= \inf \left\{ \sum_{n=1}^{\infty} \nu(E_{n}) \mid (E_{n}) \text{ is a sequence in } \mathcal{A} \text{ such that } A\Delta B \subseteq \bigcup_{n=1}^{\infty} E_{n} \right\}$$

$$= \nu^{*}(A\Delta B)$$

$$= d_{\nu}(A, B).$$

Therefore d_{μ} and d_{ν} induce a common topology on $\sigma(\mathcal{A})$. Both $\mu \colon \sigma(\mathcal{A}) \to [0, \infty]$ and $\nu \colon \sigma(\mathcal{A}) \to [0, \infty]$ are continuous extensions of $\mu|_{\mathcal{A}} = \nu|_{\mathcal{A}}$ with respect to this common topology. Since $[0, \infty]$ is Hausdorff and since \mathcal{A} is dense in $\sigma(\mathcal{A})$ with respect to this common topology, it follows from Proposition (0.1) that $\mu = \nu$.