1 Бестиповое λ -исчисление

Здесь комбинатор неподвижной точки — стандартный ленивый комбинатор $\mathbf{Y} = \lambda f.(\lambda x. f(x\,x)) \; (\lambda x. f(x\,x)).$

Задачи на редукцию, содержащие комбинатор \mathbf{Y} , можно решать двумя способами. Либо тупо раскрывать редукции, либо пользоваться уравнением для неподвижной точки $f(\mathbf{Y}\,f) = \mathbf{Y}\,f$. Чтобы доказать, что нормальной формы не существует, достаточно найти бесконечный цикл при нормальном порядке вычислений, то есть такой внешний редекс, который повторно появляется после нескольких внешних бета-редукций.

Решить уравнение в комбинаторах — это построить λ -термы в головной нормальной форме, которые удовлетворяют данному уравнению.

Задачи на решение уравнений в комбинаторах решаются применением подходящего комбинатора неподвижной точки, если одна из частей уравнения имеет вид \mathbf{M} x_1 x_2 ... x_n . Если ни одна из частей уравнения не имеет такого вида, то в случае, если некоторые x_i заменены на комбинаторы, можно построить такой \mathbf{M} , который будет удовлетворять указанному уравнению для всех x_i . Если же обе части уравнений имеют более сложную структуру, тогда придётся использовать другие эвристики.

Чтобы доказать, что уравнение в комбинаторах не имеет решения, можно воспользоваться леммой о генеричности.

Теорема 1. Пусть M, N — термы λ -исчисления, причем терм M неразрешим (т.е. не имеет нормальной формы), а N имеет н.ф. Тогда для любого контекста $C[\]$

$$C[M] \rightarrow_{\beta} N \Rightarrow \forall L(C[L] \rightarrow_{\beta} N)$$

Пользуясь данными указаниями, разберём несколько задач на бестиповое λ -исчисление.

1. Привести к нормальной форме или доказать, что её не существует.

$$\mathbf{Y}\left(\mathbf{Y}\left(\lambda xy.y\right)\right)\left(\lambda xy.x\right)$$

Разберёмся сначала с внутренней редукцией $\mathbf{Y}(\lambda xy.y)$. По уравнению, $\mathbf{Y}(\lambda xy.y) = (\lambda xy.y) (\mathbf{Y}(\lambda xy.y))$, что нормализуется к $\lambda y.y$. Осталось вычислить $\mathbf{Y}(\lambda y.y) (\lambda xy.x)$. Явно подставив $\lambda y.y$ в \mathbf{Y} ,

получаем терм $(\lambda x.x \, x) \, (\lambda x.x \, x)$, который, как известно, зацикливается.

Данное рассуждение не является полным доказательством отсутствия нормальной формы (поскольку мы сначала сокращали внутренний редекс, чего при нормальном порядке вычислений делать были не должны), но позволяет легко его построить. Обозначим $\mathbf{N} = \mathbf{Y}(\lambda xy.y)$ и подставим \mathbf{N} во внешний комбинатор \mathbf{Y} , тем самым произведя редукцию согласно нормальному порядку вычислений.

Получим $(\lambda x.\mathbf{N}(x\,x))(\lambda x.\mathbf{N}(x\,x))(\lambda xy.x)$. Ещё раз производим β -редукцию внешнего редекса:

$$\mathbf{N}((\lambda x.\mathbf{N}(x x))(\lambda x.\mathbf{N}(x x)))(\lambda xy.x)$$

Вот теперь ${\bf N}$ — во внешнем редексе, и мы можем воспользоваться тайным знанием, что он нормализуется к $\lambda y.y.$ Применение этого терма к первому аргументу возвращает уже знакомый терм $(\lambda x.{\bf N}\,(x\,x))\,(\lambda x.{\bf N}\,(x\,x))\,(\lambda xy.x)$ с тем же самым внешним редексом.

2. Привести к нормальной форме или доказать, что её не существует:

$$\mathbf{Y} ((\lambda xyzw.x z (y z) w) (\lambda xy.x (\lambda xyz.y z)) (\lambda z_1z_2.z_1 z_2) (\lambda xy.y))$$

Здесь использование уравнения для неподвижной точки ничего не даст, пока не будет упрощён терм, к которому применяется комбинатор \mathbf{Y} . Три внутренних подтерма можно упростить с помощью η -редукции, а именно $\lambda xyzw.x\,z\,(y\,z)\,w,\,\lambda xyz.y\,z$ и $\lambda z_1z_2.z_1\,z_2$. После чего β -редукцией получаем, что аргумент комбинатора \mathbf{Y} — это $\lambda xyz.z$. Далее можно воспользоваться уравнением для неподвижной точки и показать, что нормальная форма достигается.

3. Решить уравнение в комбинаторах или показать, что решения не существует:

$$\forall x (\mathbf{M} \ x = x \ \mathbf{M})$$

Левая часть уравнения имеет требуемый вид. Воспользуемся комбинатором \mathbf{Y} для построения \mathbf{M} : $\mathbf{M} = \mathbf{Y}(\lambda mx.x\ m)$. Чтобы привести это выражение к головной нормальной форме, воспользуемся уравнением для \mathbf{Y} : $\mathbf{M} = (\lambda mx.x\ m)\ (\mathbf{Y}(\lambda mx.x\ m)) = \lambda x.x\ (\mathbf{Y}(\lambda mx.x\ m))$. Дальше просто подставим $\lambda mx.x\ m$ в \mathbf{Y} и получим:

$$\mathbf{M} = \lambda x_0.x_0 ((\lambda x_1 y.y (x_1 x_1)) (\lambda x_1 y.y (x_1 x_1)))$$

4. Решить уравнение в комбинаторах или показать, что решения не существует:

$$\forall x, y (\mathbf{M} (x y) = x)$$

Здесь пользоваться конструкцией с комбинатором неподвижной точки напрямую нельзя, потому что части уравнения имеют неподходящую структуру. Уравнение выглядит подозрительно, потому что такой комбинатор позволял бы нам отменять применение (вытаскивать любую функцию x из вычисления). Попробуем опровергнуть существование \mathbf{M} с помощью леммы о генеричности. Для этого нужно подобрать хорошее значение x (чтобы x был уже в нормальной форме), но очень неудачный y (зацикливающийся). Проще всего взять $x = \lambda w.w$, $y = (\lambda z.(z\ z))\ (\lambda z.(z\ z))$. Тогда $x\ y$ — это не имеющий нормальной формы терм $(\lambda z.(z\ z))\ (\lambda z.(z\ z))$, и по лемме о генеричности, $\forall V(\mathbf{M}\ V = \lambda w.w)$. Возьмём $V = (\lambda xy.y)\ (\lambda x.x)$, и получим, что $\lambda xy.y = \lambda w.w$. Это противоречивое утверждение, значит, такого комбинатора \mathbf{M} не существует.

2 Типизированное λ -исчисление

Для вывода типа можно просто воспользоваться алгоритмом Хиндли. Если есть уверенность в себе, не обязательно строго придерживаться разбора сверху вниз, можно попробовать типизировать отдельно подтермы, и затем собрать типы воедино.

Всегда выводим тип того терма, который буквально написан в задаче. Никаких редукций предварительно делать не надо, это может привести к ошибочному ответу. Если есть подозрение, что терм не типизируется, достаточно показать, что не типизируется некоторый его подтерм.

Для построения обитателя типа доказываем утверждение в минимальной логике и затем извлекаем терм из доказательства. Задачи на доказательство ненаселённости (в моделях Крипке) здесь не рассматриваются.

1. Вывести тип терма или показать, что его нельзя типизировать:

$$\lambda x_1. (\lambda x_2. x_2 (\lambda x_3. x_3)) (\lambda x_4. x_4 (\lambda x_5. x_5) x_1)$$

Выводить тип этого терма по Хиндли довольно трудоёмко. Намного проще заметить, что подтермы $\lambda x_3.x_3,\ \lambda x_5.x_5$ и x_1 являются только аргументами функций, поэтому, скорее всего, их типы в общем терме далее уточняться не будут. Типизируем их как $T_3\to T_3,\ T_5\to T_5$ и T_1 соответственно.

Теперь заметим, что терм $\lambda x_4.x_4~(\lambda x_5.x_5)~x_1$ также является аргументом. Поэтому логично начать типизацию остальных частей общего терма с него. Переменная x_4 применяется к двум аргументам, типы которых уже известны. Положим её тип $(T_5 \to T_5) \to T_1 \to T_4$, тогда аргументом выражения $\lambda x_2.x_2~(\lambda x_3.x_3)$ будет выражение типа $((T_5 \to T_5) \to T_1 \to T_4) \to T_4$.

Теперь типизируем отдельно выражение-функцию $\lambda x_2. x_2$ ($\lambda x_3. x_3$), для чего строим тип x_2 : ($T_3 \to T_3$) $\to T_2$. Итоговый тип функции: (($T_3 \to T_3$) $\to T_2$) $\to T_2$, а всего выражения: $T_1 \to T_2$.

Осталось унифицировать $((T_5 \to T_5) \to T_1 \to T_4) \to T_4$ и $(T_3 \to T_3) \to T_2$. Сразу же имеем $T_4 = T_2$, $T_3 = T_4$, $T_3 = (T_5 \to T_5) \to T_1$, значит, итоговый тип общего терма: $T_1 \to (T_5 \to T_5) \to T_1$.

2. Доказать населенность типа и построить его обитателя:

$$(A \lor (A \Rightarrow B)) \Rightarrow (((A \Rightarrow B) \Rightarrow A) \Rightarrow A)$$

Внешний конструктор здесь — следование, поэтому каркас вывода (в нотации Фитча) выглядит так:

$$*A \lor (A \Rightarrow B)$$
 вводим x
Здесь будет остальной вывод $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$ $(A \lor (A \Rightarrow B)) \Rightarrow (((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \land x.???$

Результат вывода — функция (импликация), поэтому опять нужно применить дедукцию (или, что то же самое, ввести ещё одну абстракцию):

$$*A \lor (A\Rightarrow B)$$
 вводим x $*(A\Rightarrow B)\Rightarrow A$ вводим y Осталось только вывести A , имея типы термов x и y A $((A\Rightarrow B)\Rightarrow A)\Rightarrow A$ $\lambda y.???$ $A\lor (A\Rightarrow B))\Rightarrow (((A\Rightarrow B)\Rightarrow A)\Rightarrow A)$ $\lambda xy.???$

Понятно, что придётся разбирать случаи. Сделаем это.

```
*A \lor (A\Rightarrow B) вводим x *(A\Rightarrow B)\Rightarrow A вводим y Разбор возможных типов терма x *A вводим z_1 *A\Rightarrow B вводим z_2 вводим z_3 вводим z_4 вводим z_5 вводим z_5 вводим z_5 вводим z_6 вводим z_7 вводим z_8 вводим z_8 вводим z_8 вводим z_8 вводим z_8 вводим z_9 вводим z_9
```

В левом подвыводе A выводится переносом из контекста, а в правом — применением импликации (т.е. применением функции). Требуемый терм построен.

```
*A \lor (A \Rightarrow B) вводим x *(A \Rightarrow B) \Rightarrow A вводим y Разбор возможных типов терма x *A вводим z_1 *A \Rightarrow B вводим z_2 A это тип x_2 A это тип x_2 A еither (\lambda z_1.z_1, (\lambda z_2.y.z_2), x) ((A \Rightarrow B) \Rightarrow A) \Rightarrow A \lambda y.either (\lambda z_1.z_1, (\lambda z_2.y.z_2), x) ((A \lor (A \Rightarrow B)) \Rightarrow (((A \Rightarrow B) \Rightarrow A) \Rightarrow A) \lambda xy.either (\lambda z_1.z_1, (\lambda z_2.y.z_2), x)
```

3 Категории

4 Функторы и естественные преобразования