

NCERT solutions for class 8 maths chapter-7 cubes and cube roots

Q1. Which of the following numbers are not perfect cubes:

- (i)216
- (ii)128
- (iii)1000
- (iv)100
- (v)46656

Ans: (i)216

Prime factors of 216 = $2 \times 2 \times 2 \times 3 \times 3 \times 3$

Here all factors are in groups of 3's (in triplets)

2	216
2	108
2	54
3	27
3	9
3	3
	1

Therefore, 216 is a perfect cube number.

(ii) 128

Prime factors of 128

$$= 2 \times 2$$

Here one factor 2 does not appear in a 3's group.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Therefore, 128 is not a perfect cube.

(iii) 1000

Prime factors of $1000 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Here all factors appear in 3's group.

Therefore, 1000 is a perfect cube.

2	1000
2	500
2	250
5	125
5	25
5	5
	1

(iv) 100

Prime factors of $100 = 2 \times 2 \times 5 \times 5$

Here all factors do not appear in 3's group.

Therefore, 100 is not a perfect cube.

2	100
2	50
5	25
5	5
	1

(v) 46656

Prime factors of 46656

Here all factors appear in 3's group.

Therefore, 46656 is a perfect cube.

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

Q2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:

- (i) 243
- (ii) 256
- (iii) 72
- (iv) 675
- (v) 100

Ans: (i) 243

Prime factors of 243 = $3 \times 3 \times 3 \times 3 \times 3$

Here 3 does not appear in 3's group.

Therefore, 243 must be multiplied by 3 to make it a perfect cube.

3	243
3	81
3	27
3	9
3	3
	1

(ii) 256

Prime factors of 256

Here one factor 2 is required to make a 3's group.

Therefore, 256 must be multiplied by 2 to make it a perfect cube.

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 72

Prime factors of $72 = 2 \times 2 \times 2 \times 3 \times 3$

Here 3 does not appear in 3's group.

Therefore, 72 must be multiplied by 3 to make it a perfect cube.

2	72
2	36
2	18
3	9
3	3
	1

(iv) 675

Prime factors of $675 = 3 \times 3 \times 3 \times 5 \times 5$

Here factor 5 does not appear in 3's group.

Therefore 675 must be multiplied by 3 to make it a perfect cube.

3	675
3	225
3	75
5	25
5	5
	1

(v) 100

Prime factors of 100 = $2 \times 2 \times 5 \times 5$

Here factor 2 and 5 both do not appear in 3's group.

Therefore 100 must be multiplied by $2 \times 5 = 10$ to make it a perfect cube.

2	100
2	50
5	25
5	5
	1

Q3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:

(i)81

(ii)128

(iii)135

(iv)192

(v)704

Ans: (i)81

Prime factors of $81 = 3 \times 3 \times 3 \times 3$

Here one factor 3 is not grouped in triplets.

Therefore 81 must be divided by 3 to make it a perfect cube.

3	81
3	27
3	9
3	3
	1

(ii) 128

Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Here one factor 2 does not appear in a 3's group.

Therefore, 128 must be divided by 2 to make it a perfect cube.

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) 135

Prime factors of $135 = 3 \times 3 \times 3 \times 5$

Here one factor 5 does not appear in a triplet.

Therefore, 135 must be divided by 5 to make it a perfect cube.

3	135
3	45
3	15
5	5
	1

(iv) 192

Prime factors of $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$

Here one factor 3 does not appear in a triplet.

Therefore, 192 must be divided by 3 to make it a perfect cube.

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

(v) 704

Prime factors of 704

$$= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$$

Here one factor 11 does not appear in a triplet.

Therefore, 704 must be divided by 11 to make it a perfect cube.

2	704
2	352
2	176
2	88
2	44
2	22
2	11
	1

Q4. Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Ans: Given numbers = $5 \times 2 \times 5$

Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by $2 \times 5 \times 2 = 20$ to make it a perfect cube.

Hence he needs 20 cuboids.

****** END *******