CS420

Introduction to the Theory of Computation

Lecture 18: Pumping Lemma for Context-Free Languages

Tiago Cogumbreiro

Today we will learn...

- The Pumping Lemma for Context-Free Languages
- Using the Pumping Lemma to identify non-context-free languages

Section 2.3 Non-Context-Free Languages Supplementary material:

Professor Harry Porter's video

$$L_1 = \{w \mid w \in \{a,b\}^\star \land |w| \text{ is divisible by } 3\}$$

- (i) Regular? Give a REGEX/NFA/DFA
- (ii) Context-free (and not regular)? Give a CFG/PDA. Prove using the pumping lemma.
- (ii) Not context-free

$$L_1 = \{w \mid w \in \{a,b\}^\star \wedge |w| \text{ is divisible by } 3\}$$

- (i) Regular? Give a REGEX/NFA/DFA
- (ii) Context-free (and not regular)? Give a CFG/PDA. Prove using the pumping lemma.
- (ii) Not context-free

(i) Regular:
$$\left((a+b)(a+b)(a+b)\right)^{\star}$$

 $L_2 = \{z \mid z \text{ has the same number of a's and b's}\}$

- (i) Regular? Give a REGEX/NFA/DFA
- (ii) Context-free (and not regular)? Give a CFG/PDA. Prove using the pumping lemma.
- (ii) Not context-free

 $L_2 = \{z \mid z \text{ has the same number of a's and b's}\}$

- (i) Regular? Give a REGEX/NFA/DFA
- (ii) Context-free (and not regular)? Give a CFG/PDA. Prove using the pumping lemma.
- (ii) Not context-free

(ii) Context-free:

$$S
ightarrow aSb \mid bSa \mid \epsilon$$

$$L_3 = \{a^nb^nc^n \mid n \geq 0\}$$

- (i) Regular? Give a REGEX/NFA/DFA
- (ii) Context-free (and not regular)? Give a CFG/PDA. Prove using the pumping lemma.
- (ii) Not context-free

$$L_3=\{a^nb^nc^n\mid n\geq 0\}$$

- (i) Regular? Give a REGEX/NFA/DFA
- (ii) Context-free (and not regular)? Give a CFG/PDA. Prove using the pumping lemma.
- (ii) Not context-free

Not context-free

How do we prove that a language is **not** context free?

The Pumping Lemma for CFL

Intuition

If we have a string that is long enough, then we will need to repeat a non variable, say R, in the parse tree.

Example

$$R
ightarrow 2R4 \mid 3$$

If we vary the number of times R o 2R4 appears we note that:

- 1223445 is accepted (repeat 2×)
- 135 is accepted (repeat 0×)
- 12345 is accepted (repeat 1×)
- 122234445 is accepted (repeat 3×)

Parse tree for 1223445

$$S
ightarrow 1R5 \ R
ightarrow 2R4 \mid 3$$

- ullet $\underbrace{1}_{u}\underbrace{22}_{v^{2}}\underbrace{3}_{x}\underbrace{44}_{u^{2}}\underbrace{5}_{z}$, where i=2
- $\underbrace{1}_{u}\underbrace{3}_{x}\underbrace{5}_{z}$, where i=0
- ullet $\underbrace{1}_{u}\underbrace{2}_{v^{1}}\underbrace{3}_{x}\underbrace{4}_{u^{1}}\underbrace{5}_{z}$, where i=2
- ullet 1 222 3 444 5 , where i=3

Thus, uv^ixy^iz is also in the language

Generalizing

For a long enough string, say uvxyz in the language, then uv^ixy^iz is also in the language.

Pumping Lemma for context-free languages

The pumping lemma tells us that all context-free languages (that have a loop) can be partitioned:

Every word in a context-free language, $w \in L$, can be partitioned into 5 parts w = uvxyz:

- ullet an outer portion u and z
- ullet a repeating portion v and y
- ullet a non-repeating center portion x

Additionally, since v and y are a repeating portion, then v and y may be omitted or replicated as many times as we want and that word will also be in the given language, that is $uv^ixy^iz\in L$.

 $L_2 = \{z \mid z \text{ same number of a's and b's}\}$

You: Give me a string of size 4.

 $L_2 = \{z \mid z \text{ same number of a's and b's}\}$

You: Give me a string of size 4.

Example: abab

 $L_2 = \{z \mid z \text{ same number of a's and b's}\}$

You: Give me a string of size 4.

Example: abab

Me: I will partition abab into 5 parts abab = uvxyz such that uv^ixy^iz is accepted for any i:

$$\underbrace{a}_{u}\underbrace{a}_{v}\underbrace{\epsilon}_{x}\underbrace{b}_{y}\underbrace{b}_{z}$$

- $ullet |vy|>0, ext{since} \ |ab|=2$
- $|vxy| \leq 4$, since $|a\epsilon b| = 2$
- $ullet \ uxz=ab$ is accepted
 - $u\underline{v}xyz=a\underline{a}\epsilon\underline{b}b$ is accepted
- $u\underline{v}\underline{v}xyyz=a\underline{a}\underline{a}\epsilon\underline{b}\underline{b}b$ is accepted
 - $u\underline{v}\underline{v}\underline{v}\underline{y}\underline{y}\underline{y}z=a\underline{a}\underline{a}\underline{a}\underline{\epsilon}\underline{b}\underline{b}\underline{b}$ is accepted

The Pumping Lemma (Theorem 2.34)

For context-free languages

If L is **context free**, then there is a $pumping length \ p$ where, if $w \in L$ and $|s| \geq p$, then there exists u, v, x, y, z such that:

- 1. w = uvxyz
- $|2.|vy| \geq 1$
- $|3.|vxy| \leq p$
- 4. $uv^ixy^iz\in L$ for any $i\geq 0$

```
Theorem pumping_cfl:
 forall L,
 ContextFree L →
 exists p, p \geq 1 /\
 forall w, L w \rightarrow (* w \in L *)
 length w \ge p \rightarrow (* |w| \ge p *)
 exists u v x y z, (
    W = U ++ V ++ X ++ Y ++ Z / (* W = UVXVZ *)
    length (v ++ y) \ge 1 / (* |vy| \ge 1 *)
    length (v ++ x ++ y) \le p / (* |vxy| \le p *)
    forall i,
    L (u ++ (pow v i) ++ x ++ (pow v i) ++ z)
   (* u v^i x y^i z ∈ L *)
```

Non-context-free languages

Theorem: non-context-free languages

Informally

If there exist a word $w \in L$ such that for any pumping length $p \geq 1$,

- $w \in L$
- $|w| \geq p$
- $ullet w = uvxyz, |vy| \geq 1, |vxy| \leq p ext{ implies} \ \exists i, uv^ixy^iz
 otin L$

then, L is not context-free.

Formally

```
Lemma not_cfl:
  forall (L:lang),
  (* Assume 0 *) (forall p, p \geq 1 \rightarrow
  (exists w,
  (* Goal 1 *) L w /\
  (* Goal 2 *) length w \ge p / 
  forall u v x y z, (
    (* Assume 1 *) w = u ++ v ++ x ++ y ++ z \rightarrow
    (* Assume 2 *) length (v ++ v) \ge 1 \rightarrow
    (* Assume 3 *) length (v ++ x ++ y) \leq p \rightarrow
    (* Goal 3 *) exists i,
    ~ L (u ++ (pow v i) ++ x ++ (pow v i) ++ z)
 ))) \rightarrow
  ~ ContextFree L.
```

Theorem: non-context-free languages

Part 1

There exist a word w such that for any pumping length $p \geq 1$

Goal 1: $w \in L$

Goal 2: $|w| \geq p$

Part 2

Assumptions:

- H_1 : w = uvxyz
- H_2 : $|vy| \geq 1$
- H_3 : $|vxy| \leq p$

Goal 3: $\exists i, uv^i x y^i z$

Show that $L_3 = \{a^nb^nc^n \mid n \geq 0\}$ is not context-free.

Proof.

We use the theorem of non-CFL.

For any pumping length p>0 we pick $w=a^pb^pc^p$.

Goal 1: $w \in L_3$. **Proof.** which holds since $w = a^p b^p c^p$ and $p \ge 0$ (by hypothesis).

Goal 2: $|w| \geq p$. Proof. |w| = 3p, thus $|w| \geq p$.

Assumptions

- H_1 : w = uvxyz
- $H_2: |vy| \ge 1$
- H_3 : $|vxy| \leq p$

Goal 3: $\exists i, uv^i xy^i z
otin L_3$

Proof. We pick i=2. Let

$$w = a^p b^p c^p$$

Assumptions

- $H_1: w = uvxyz$
- $H_2: |vy| \ge 1$
- H_3 : $|vxy| \leq p$

Goal 3: $\exists i, uv^i xy^i z
otin L_3$

Proof. We pick i=2. Let

$$w = a^p b^p c^p$$

Let N=|vxy|. From (H_1) $a^pb^pc^p=u\underline{vxy}z$ and (H_2) $|vxy|\leq p$ we can conclude that vxy can match one of two cases:

- 1. vxy has only a's (or only b's) (or only c's)
- 2. vxy has only a's and b's (or only b's and c's)

Proof. (Continuation...)

UMASS BOSTON

Case: only contains one type of letter

- 1. Without loss of generality, let us consider that there are only a's.
- 2. We must show that $a^{p+N}b^pc^p \notin L_3$.
- 3. It is enough to show that there are more a's than b's, thus $p+N \neq p$. This holds because N>0 (from H_2).

Proof. (Continuation...)

UMASS BOSTON

Case: contains two types of letters.

Without loss of generality, let us consider that v contains a's and y contains b's. Let N=n+m, where n is the number of a's and m is the number of b's.

$$\underbrace{a^pb^pc^p}_{uvxyz} = \underbrace{a^{p-n}a^nb^mb^{p-m}c^p}_{vxy}$$

Next, we recall that vx may still contain only a's, or it may contain a's and b's (because of H_2 and H_3). In the case of the latter, then since we picked i=2 the string is trivially not in L_3 . The rest of the proof assumes that v only has a's and y only has b's.

Our goal is to show that

$$\underbrace{a^{p-n}}_{u}\underbrace{a^{n+|v|}b^{m+|y|}}_{v^2xy^2}\underbrace{b^{p-m}c^p}_z\notin L_3$$

Proof. (Continuation...)

UMASS BOSTON

Goal

$$\underbrace{a^{p-n}a^{n+|v|}b^{m+|y|}}_{u}\underbrace{b^{p-m}c^{p}}_{z}
otin L_{3}$$

Since $(H_2)|vy| \geq 1$, then either $|v| \geq 1$ or $|y| \geq 1$.

- If $|v| \ge 1$, it is enough to show that the number of a's differs from the number of c's, thus $p-n+n+|v| \ne p$, which holds because $|v| \ge 1$.
- If $|y| \ge 1$, then we must show that the number of b's differs from the number of a's. Hence, $m+|y|+p-n \ne p$, which holds because $|y| \ge 1$.

$$L_4 = \{ww \mid w \in \{a,b\}^{\star}\}$$

The language is **not** context free.

We pick $w=a^pb^pa^pb^p$

Goal 1: $w \in L_4$, because $a^p b^p \in \{a,b\}^\star$

Goal 2: $|w| \geq p$, because |w| = 4p.

Goal 3: $\exists i, uv^i xy^i z \notin L_4$.

Assumptions

- $H_1: w = uvxyz$
- $H_2: |vy| \ge 1$
- H_3 : $|vxy| \leq p$

(Proof...) Let |vxy|=V. If $a^pb^pa^pb^p=uvxyz$, then because $H_3:|vxy|\leq p$, we have that w can be divided into two cases:

(Proof...) Let |vxy|=V. If $a^pb^pa^pb^p=uvxyz$, then because $H_3:|vxy|\leq p$, we have that w can be divided into two cases:

Case 1: only a's/only b's.

Without loss of generality we handle the case for only a's and any portion of the string will work.

Thus,
$$w=\underbrace{a^{|u|}}_{u}\underbrace{a^{V}}_{xuz}\underbrace{b^{p}a^{p}b^{p}}_{z}$$
 and $|u|+V=p$.

(Proof...) Let |vxy|=V. If $a^pb^pa^pb^p=uvxyz$, then because $H_3:|vxy|\leq p$, we have that w can be divided into two cases:

Case 1: only a's/only b's.

Without loss of generality we handle the case for only a's and any portion of the string will work.

Thus,
$$w=\underbrace{a^{|u|}}_{u}\underbrace{a^{V}}_{xuz}\underbrace{b^{p}a^{p}b^{p}}_{z}$$
 and $|u|+V=p.$

Case 2: some a's and some b's. Let A be the number of a's and B be the number of b's. where V=A+B. Without loss of generality we handle the case where the string has some a's and some b's. Thus, $w=\underbrace{a^{p-A}a^Ab^B}b^{p-B}a^pb^p$

Why do we need only this 2 cases?

• Whatever a's and b's you pick (even in the middle), you must always show that that either you add/subtract |x| non-empty and then you add/subtract |y| non empty.

Turing machines

1. Recap

- Deterministic Finite Automaton that recognize Regular Languages
- Pushdown Automaton that recognize Context-Free Languages

2. Turing Machines

- Introduced to research into the foundations of mathematics
- characterizes computation
- can represent any computable machine unbounded by time and space

In general, describes problems of the form:

Decide for any given x whether or not x has property P

Next lecture

Historical background on Turing machines

The big picture

Recall DFA operation

- Automaton processes a finite input string (acceptance)
- Transition moves the cursor forward
- Final state accepts the string if the cursor is at the end

Recall PDA operation

- Automaton processes a finite input string (acceptance) and a stack
- Transition may move the cursor forward and may push/pop the stack
- Final state accepts the string if the cursor is at the end

Turing Machine operation

- Automaton processes an infinite tape
- Transition may move the cursor forward or backward
- Elements of the tape may be written or read (tape combines the input string and the stack)
- Tapes may contain a special character called black, notation _ (akin to NULL)

Turing Machine operation

- The **tape head** (or cursor) points to a position in the tape (akin the instruction pointer in a processor)
- Transition: read \rightarrow write, move direction $q \xrightarrow{a \rightarrow b, \mathsf{R}} q'$

Turing Machine control

- The automaton (the turing machine) is known as the control or the program
- The automaton is deterministic (nondeterminism has same expressiveness!)
- A single initial state
- A single accept state
- A reject state

Turing Machines acceptance

Given a tape (with an *input string*) and a Turing machine, there are three kinds of answers:

Accept

Whenever the machine reaches the accept state, the automaton halts and the input string is accepted.

Reject

Whenever the machine reaches the reject state, the automaton halts and the input string is rejected.

Loop forever

The machine keeps doing transitions in a loop, never accepting nor rejecting the input string.

While a PDA and a DFA can either accept or reject a string, a Turing machines can also loop forever!

$$L=01^{\star}0$$

- Deterministic (only one outgoing edge **per input**)
- Convention: missing transitions go to reject state (hidden).

Example

State	Таре
S	<u>0</u> 1110
B	x <u>1</u> 110
B	ху <u>1</u> 10
B	хуу <u>1</u> 0
B	хууу <u>0</u>
C	хууух_
q_{accept}	хууух _

<u>Simulate</u>

$$L_1 = \{0^n 1^n \mid n \geq 0\}$$

Mark 0 seek and mark 1 and cycle back.

- Start (S): if 0 {write X; move right; goto B}; if Y {skip right; goto D}
- Seek O(B): while 1 or X {skip right}; if 1 {write Y; move right; goto C}
- Seek 1 (C): while 0 or Y {skip left}; if X {skip; move right; goto S}
- Check valid (D): while Y {skip right}; if _ {skip; move right; goto accept}

Таре	State	Rule
<u>0</u> 011	S	read 0; write X; move right; goto B
XO <u>1</u> 1	В	skip right while 1 or x; if 1 {write Y; move right; goto C}
<u>X</u> 0Y1	С	skip left while 0 or y; if x {skip; move right; goto S}
X <u>O</u> Y1	S	read 0; write x; move right; goto B
XXY <u>1</u>	В	skip right while 1 or x; if 1 {write Y; move right; goto C}
X <u>X</u> YY	С	skip left while 0 or y; if x {skip; move right; goto S}
XX <u>Y</u> Y	S	read y; skip right; goto D
XXYY	D	read 🔲, goto accept

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 <mark>1</mark> 1
C	XOY1

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 <mark>1</mark> 1
C	X <mark>O</mark> Y1

State	Таре
C	XOY1
S	XOY1
B	XX <mark>Y</mark> 1
B	XXY <mark>1</mark>

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 1 1
C	XOY1

State	Таре
C	X0Y1
S	XOY1
B	XX <mark>Y</mark> 1
B	XXY <mark>1</mark>

State	Таре
C	XXYY
C	XXYY
S	XX <mark>Y</mark> Y
D	XXYY

State	Tape
S	0011
B	X <mark>0</mark> 11
B	X0 1 1
C	XOY1

State	Tape
C	XOY1
S	X <mark>O</mark> Y1
B	XX <mark>Y</mark> 1
B	XXY <mark>1</mark>

State	Tape
C	XXYY
C	XXYY
S	XXYY
D	XXYY

State	Таре
D	XXYY

Accept!

<u>Simulate</u>

$$L_3=\{a^nb^nc^n\mid n\geq 0\}$$

$$L_3 = \{a^n b^n c^n \mid n \ge 0\}$$

- START: Skip marks **right** until we: i) read a; mark it; go to A; ii) read blank, accept.
- A: Skip **right** until read b; mark it; go to Bs
- B: Skip **right** until read c; mark it; go to Cs
- C: Skip **right** until read blank; move left; go to REWIND
- REWIND: Skip left until we reach blank, go to START

Simulate

Turing Machines

Formally

Turing Machines

Definition 3.3

A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

- 1. Q set of states
- 2. Σ input alphabet not containing the blank symbol \Box
- 3. Γ the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- 4. $\delta: Q imes \Gamma o Q imes \Gamma imes \{\mathsf{L},\mathsf{R}\}$ transition function
- 5. $q_0 \in Q$ is the start state
- 6. q_{accept} is the accept state
- 7. q_{reject} is the reject state ($q_{reject} \neq q_{accept}$)

Configuration

A configuration is a snapshot of a computation. That is, it contains all information necessary to resume (or replay) a computation from any point in time.

A configuration consists of

- the tape
- the head of the tape
- the current state

Configuration

Textual notation

We write the table and place the current state **before** (left of) where the head of the tape points to:

In the following example, the head points to position no.5, the tape is 0130045, and the current state is q_3 :

Recall example 1

State	Tape	Configuration
S	<u>0</u> 1110	S 01110
B	x <u>1</u> 110	
B	ху <u>1</u> 10	
B	хуу <u>1</u> 0	
B	хууу <u>0</u>	
B	xyyyx_	

Fill in the configuration...

State	Tape	Configuration
S	<u>0</u> 1110	S 01110
B	x <u>1</u> 110	x B 1110
B	xy <u>1</u> 10	xy B 110
B	xyy <u>1</u> 0	xyy B 10
B	хууу <u>0</u>	хууу В 0
B	xyyyx_	хууух В

Configuration history

The configuration history (sequence of configurations), describes all configurations from the initial state until a current state.

Definition

We say that C_1 yields C_2

Configuration history
S 01110
x B 1110
xy B 110
xyy B 10
хууу В 0
хууух В

More examples

- $L_5 = \{w \# w \mid w \in \{a,b\}^{\star}\}$
- $L_6 = \{w \mid w \text{ is a palindrome}\}$
- $L_7 = \{a^n b^{2n} \mid n \ge 0\}$