Основные свойства аффинных ортогональных тензоров

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

29 мая 2019 г.

Аннотация

Классификация тензоров. Теорема о полном тензоре. Теорема о существовании обратного тензора. Главные значения тензора. Инварианты тензора. Бискалярное произведение. Тензорное поле. Дивергенция тензора.

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

• все $\vec{r'}$ равны 0, тогда **A** – нулевой;

Пусть для выбранного тензора ${m A}$ и произвольного вектора ${m r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **А** линейный;

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **А** линейный;
- все $\vec{r'}$ лежат в одной плоскости, тогда **A** планарный;

Пусть для выбранного тензора ${m A}$ и произвольного вектора ${m r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r},$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **А** линейный;
- все $\vec{r'}$ лежат в одной плоскости, тогда **A** планарный;
- $\vec{r'}$ описывают все векторы, тогда **A** полный;

Пусть для выбранного тензора ${\pmb A}$ и произвольного вектора ${\vec r}$

$$\vec{r'} = \mathbf{A} \cdot \vec{r}$$

тогда возможны следующие варианты:

- все $\vec{r'}$ равны 0, тогда **A** нулевой;
- все $\vec{r'}$ лежат на одной прямой, тогда **A** линейный;
- все $\vec{r'}$ лежат в одной плоскости, тогда **A** планарный;
- $\vec{r'}$ описывают все векторы, тогда **A** полный;

Задача

Привести пример тензора каждого типа и обосновать.

Теорема о полном тензоре

Теорема (о полноте тензора)

Для того, чтобы тензор Π был полным необходимо и достаточно, чтобы его определитель был отличен от 0.

Теорема о полном тензоре

Теорема (о полноте тензора)

Для того, чтобы тензор Π был полным необходимо и достаточно, чтобы его определитель был отличен от 0.

Доказательство.

 (\Rightarrow) Пусть тензор Π полный, тогда для любого вектора $\vec{r'} \in \mathbf{R}^3$ существует вектор $\vec{r} \in \mathbf{R}^3$, такой что $\vec{r'} = \Pi \cdot \vec{r}$. Для фиксированной системы координат это эквивалентно матричному равенству

$$\begin{cases}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{cases}
\begin{pmatrix}
r_1 \\
r_2 \\
r_3
\end{pmatrix} = \begin{pmatrix}
r'_1 \\
r'_2 \\
r'_3
\end{pmatrix},$$

где r_i' , r_j и p_{ks} – координаты соответствующих векторов и компоненты тензора в выбранной системе координат. Полученная система линейных уравнений имеет решение при любой правой части, следовательно $D(\mathbf{\Pi}) \neq 0$.

Теорема о полном тензоре

Теорема (о полноте тензора)

Для того, чтобы тензор Π был полным необходимо и достаточно, чтобы его определитель был отличен от 0.

Доказательство.

 (\Leftarrow) Пусть $D(\mathbf{\Pi})
eq 0$, тогда система линейных уравнений

$$\begin{cases} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{cases} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} r'_1 \\ r'_2 \\ r'_3 \end{pmatrix},$$

имеет решение r_j $(j=\overline{1,3})$ при любых значениях правой части r_i' $(i=\overline{1,3})$ где r_i' , r_j и p_{ks} – координаты векторов и компоненты тензора в фиксированной системе координат. Таким образом, у каждого вектора $\vec{r'}$ есть прообраз \vec{r} такой, что $\vec{r'}=\mathbf{\Pi}\cdot\vec{r}$. Следовательно тензор $\mathbf{\Pi}$ – полный.

Обратный тензор

Определение

Если для тензора Π существует тензор B такой, что

$$B \cdot \Pi = \Pi \cdot B = I$$
,

тогда тензор ${\pmb B}$ называется обратным тензором и обозначается ${\pmb \Pi}^{-1}.$

Теорема о существовании обратного тензора

Теорема

Полнота тензора есть необходимое и достаточное условие существования обратного тензора.

Доказательство.

Доказательство очевидно и вытекает из правила произведения тензоров как матриц и теоремы о полноте тензора.

Главные значения тензора

Определение

Если для заданного тензора Π , вектора \vec{r} и числа λ справедливо равенство

$$\mathbf{\Pi} \cdot \vec{r} = \lambda \vec{r} \quad (\vec{r} \neq 0),$$

то говорят, что λ — главное значение тензора Π , а \vec{r} — собственный вектор.

Пояснения

Так как тензоры и векторы перемножаются по таким же законам как и матрицы, то главные значения тензора и его собственные векторы аналогичны собственным значениям и векторам соответствующим матрице тензора Π в выбранной системе координат и не зависят от неё.

Инварианты тензора

Определение

Характеристическим многочленом тензора Π называется функция

$$\chi(\lambda) = D(\mathbf{\Pi} - \lambda I) = -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3.$$

Величины I_1 , I_2 , I_3 – называются инвариантами тензора Π .

Инварианты тензора

Определение

Характеристическим многочленом тензора Π называется функция

$$\chi(\lambda) = D(\mathbf{\Pi} - \lambda I) = -\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3.$$

Величины I_1 , I_2 , I_3 – называются инвариантами тензора Π .

Независимость от системы координат

Величины I_1 , I_2 , I_3 не зависят от выбора системы координат, т.к.

$$\chi(\lambda) = D(\mathbf{\Pi} - \lambda I) = \det(\Pi' - \lambda I) = \det(Q^T \Pi Q - \lambda E) =$$

$$= \det(Q^T (\Pi - \lambda E)Q) = \det Q^T \det(\Pi - \lambda E) \det Q = \det(\Pi - \lambda E),$$
где Π' и Π компоненты тензора $\mathbf{\Pi}$ в различных ортогональных

где Π' и Π компоненты тензора Π в различных ортогональных системах координат, Q – матрица перехода ($Q^T = Q^{-1}$).

Формулы для вычисления инвариантов

Свойство Если $\Pi=(p_{ij})_{1\leq i,j\leq 3}$ матрица компонент тензора Π в некотором базисе, тогда

$$\begin{split} I_1 &= p_{11} + p_{22} + p_{33} = \lambda_1 + \lambda_2 + \lambda_3, \\ I_2 &= \begin{vmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{vmatrix} + \begin{vmatrix} p_{22} & p_{23} \\ p_{32} & p_{33} \end{vmatrix} + \begin{vmatrix} p_{11} & p_{13} \\ p_{31} & p_{33} \end{vmatrix} = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3, \\ I_3 &= \begin{vmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{vmatrix} = \lambda_1 \lambda_2 \lambda_3, \end{split}$$

где λ_i – собственные числа тензора Π .

Бискалярное произведение тензоров

Определение

Бискалярным произведением тензоров называется первый инвариант (след) их скалярного произведения.

Бискалярное произведение тензоров

Определение

Бискалярным произведением тензоров называется первый инвариант (след) их скалярного произведения.

Формула для бискалярного произведения Пусть $\mathbf{A}=(a_{ij})_{1\leq i,j\leq 3}$, $\mathbf{B}=(b_{ij})_{1\leq i,j\leq 3}$, $\mathbf{C}=(c_{ij})_{1\leq i,j\leq 3}$ — три тензора, причём $\mathbf{C}=\mathbf{A}\cdot\mathbf{B}$, тогда бискалярное произведение \mathbf{A} и \mathbf{B} равно

$$A \cdot \cdot B = I_{1(C)} = \sum_{i=1}^{3} c_{ii} = \sum_{i=1}^{3} \sum_{k=1}^{3} a_{ik} b_{ki}.$$

Таким образом, бискалярное произведение рассчитывается как свёртка компонентов первого и сопряжённых компонентов второго тензора.

Производная тензора одного аргумента

Определение

Пусть компоненты тензора **П** зависят от переменной t, т.е.

$$\Pi(t) = \vec{i}_1 \vec{p}_1(t) + \vec{i}_2 \vec{p}_2(t) + \vec{i}_3 \vec{p}_3(t),$$

тогда производной тензора Π по переменной t называется

$$rac{d\mathbf{\Pi}}{dt} = \lim_{\Delta t o 0} rac{\mathbf{\Pi}(t + \Delta t) - \mathbf{\Pi}(t)}{\Delta t}$$

Производная тензора одного аргумента

Определение

Пусть компоненты тензора Π зависят от переменной t, τ .е.

$$\Pi(t) = \vec{i}_1 \vec{p}_1(t) + \vec{i}_2 \vec{p}_2(t) + \vec{i}_3 \vec{p}_3(t),$$

тогда производной тензора Π по переменной t называется

$$rac{d\mathbf{\Pi}}{dt} = \lim_{\Delta t o 0} rac{\mathbf{\Pi}(t + \Delta t) - \mathbf{\Pi}(t)}{\Delta t}$$

Производная через компоненты

$$\frac{d\mathbf{\Pi}}{dt} = \vec{i_1} \frac{d\vec{p_1}}{dt} + \vec{i_2} \frac{d\vec{p_2}}{dt} + \vec{i_3} \frac{d\vec{p_3}}{dt} = \begin{cases} \frac{dp_{11}}{dt} & \frac{dp_{12}}{dt} & \frac{dp_{13}}{dt} \\ \frac{dp_{21}}{dt} & \frac{dp_{22}}{dt} & \frac{dp_{23}}{dt} \\ \frac{dp_{31}}{dt} & \frac{dp_{32}}{dt} & \frac{dp_{33}}{dt} \end{cases}$$

Свойства производной тензора

Для произвольного вектора $\vec{a} = \vec{a}(t)$ и тензора $\Pi = \Pi(t)$ справедливы следующие формулы:

$$1. \ \frac{d(\mathbf{\Pi} \cdot \vec{a})}{dt} = \frac{d\mathbf{\Pi}}{dt} \cdot \vec{a} + \mathbf{\Pi} \cdot \frac{d\vec{a}}{dt};$$

2.
$$\frac{d(\mathbf{\Pi} \times \vec{a})}{dt} = \frac{d\mathbf{\Pi}}{dt} \times \vec{a} + \mathbf{\Pi} \times \frac{d\vec{a}}{dt};$$

3.
$$\frac{d(\mathbf{\Pi}^{-1})}{dt} = -\mathbf{\Pi}^{-1} \cdot \frac{d\mathbf{\Pi}}{dt} \cdot \mathbf{\Pi}^{-1}.$$

Первые два равенства следуют из определения производной от тензора, последнее – из определения обратного тензора.

Тензорное поле

Определение

Если в каждой точке пространства определён тензор, то говорят что задано <u>тензорное</u> поле

$$\Pi = \Pi(\vec{r}) = \vec{i_1}\vec{p_1}(\vec{r}) + \vec{i_2}\vec{p_2}(\vec{r}) + \vec{i_3}\vec{p_3}(\vec{r}).$$

Тензорное поле

Определение

Если в каждой точке пространства определён тензор, то говорят что задано <u>тензорное</u> поле

$$\Pi = \Pi(\vec{r}) = \vec{i_1}\vec{p_1}(\vec{r}) + \vec{i_2}\vec{p_2}(\vec{r}) + \vec{i_3}\vec{p_3}(\vec{r}).$$

Определение

Назовём потоком тензора через поверхность *S* вектор, образованный по формуле

$$\int_{S} \vec{n} \cdot \mathbf{\Pi} dS,$$

 \vec{n} – вектор внешней единичной нормали к поверхности S.

Теорема о потоке тензора

Теорема

Для любого объёма V, ограниченного поверхностью S, справедлива формула

$$\int\limits_{S} \vec{n} \cdot \mathbf{\Pi} dS = \int\limits_{V} \left(\frac{\partial \vec{p}_1}{\partial x_1} + \frac{\partial \vec{p}_2}{\partial x_2} + \frac{\partial \vec{p}_3}{\partial x_3} \right) dV.$$

Теорема о потоке тензора

Доказательство. Пусть
$$\mathbf{\Pi}=\vec{i_1}\vec{p_1}+\vec{i_2}\vec{p_2}+\vec{i_3}\vec{p_3},\ \vec{n}=\vec{i_1}n_1+\vec{i_2}n_2+\vec{i_3}n_3,\ \text{тогда}$$

$$\int\limits_{S}\vec{n}\cdot\mathbf{\Pi}dS=\int\limits_{S}(n_1\vec{p_1}+n_2\vec{p_2}+n_3\vec{p_3})=$$

$$=\vec{i_1}\int\limits_{S}(n_1p_{11}+n_2p_{21}+n_3p_{31})dS+\vec{i_2}\int\limits_{S}(n_1p_{12}+n_2p_{22}+n_3p_{32})dS+$$

$$+\vec{i_3}\int\limits_{S}(n_1p_{13}+n_2p_{23}+n_3p_{33})dS=$$

Теорема о потоке тензора

Доказательство.

Пользуясь теоремой Гаусса-Остроградского, имеем

$$= \vec{i}_1 \int_V \left(\frac{\partial p_{11}}{\partial x_1} + \frac{\partial p_{21}}{\partial x_2} + \frac{\partial p_{31}}{\partial x_3} \right) dV + \vec{i}_2 \int_V \left(\frac{\partial p_{21}}{\partial x_1} + \frac{\partial p_{22}}{\partial x_2} + \frac{\partial p_{32}}{\partial x_3} \right) dV +$$

$$+ \vec{i}_3 \int \left(\frac{\partial p_{31}}{\partial x_1} + \frac{\partial p_{32}}{\partial x_2} + \frac{\partial p_{33}}{\partial x_3} \right) dV = \int \left(\frac{\partial \vec{p}_1}{\partial x_1} + \frac{\partial \vec{p}_2}{\partial x_2} + \frac{\partial \vec{p}_3}{\partial x_3} \right) dV.$$

Дивергенция тензора

Определение

Дивергенцией тензора Π в заданной точке называется вектор равный пределу отношения потока тензора через замкнутую поверхность S к ограниченному ей объему V, когда последний стягивается к этой точке:

$$\operatorname{div} \mathbf{\Pi} = \lim_{V \to 0} \frac{1}{V} \int_{S} \vec{n} \cdot \mathbf{\Pi} dS.$$

Дивергенция тензора

Определение

Дивергенцией тензора Π в заданной точке называется вектор равный пределу отношения потока тензора через замкнутую поверхность S к ограниченному ей объему V, когда последний стягивается κ этой точке:

$$\operatorname{div} \mathbf{\Pi} = \lim_{V \to 0} \frac{1}{V} \int_{S} \vec{n} \cdot \mathbf{\Pi} dS.$$

Замечание Из определения дивергенции тензора и теоремы о потоке тензора следует, что

$$\operatorname{div} \mathbf{\Pi} = \frac{\partial \vec{p}_1}{\partial x_1} + \frac{\partial \vec{p}_2}{\partial x_2} + \frac{\partial \vec{p}_3}{\partial x_3}.$$

Уравнения законов сохранения сплошной среды

Законы сохранения в операторном виде

Закон сохранения массы:
$$\frac{d\rho}{dt} + \rho \operatorname{div} \vec{v} = 0,$$
 Закон сохранения импульса:
$$\rho \left(\vec{F} - \frac{d\vec{v}}{dt} \right) + \operatorname{div} \mathbf{\Pi} = 0,$$
 Закон сохранения энергии:
$$\rho c_v \frac{dT}{dt} = \mathbf{\Pi} \cdot \cdot \mathbf{D} - \operatorname{div} \vec{q}.$$

Здесь $\rho(t,\vec{r})$, $\vec{v}(t,\vec{r})$, $T(t,\vec{r})$ – плотность, скорость и температура сплошной среды в момент времени t в точке $\vec{r}=\vec{i_1}x_1+\vec{i_2}x_2+\vec{i_3}x_3$; $\Pi(t,\vec{r})$, $D(t,\vec{r})$ – тензоры напряжений и скоростей деформаций индуцированные движением сплошной среды; $\vec{q}(t,\vec{r})$ – вектор притока тепла; c_v – коэффициент теплопроводности при постоянном объёме; $\frac{d}{dt}=\frac{\partial}{\partial t}+(\vec{v}\cdot\nabla)$ – оператор субстанциональной производной.