Content Collection

Tech Support

Quizzes Review Test Submission: Quiz 7N

Review Test Submission: Quiz 7N

User	Kevin Michael Wong
Course	XLS-CS-265-001/2/3/4/5/6-XLIST-201815
Test	Quiz 7N
Started	11/4/18 8:16 PM
Submitted	11/4/18 8:20 PM
Due Date	11/6/18 10:00 AM
Status	Completed
Attempt Score	46 out of 50 points
Time Elapsed	3 minutes out of 20 minutes
Instructions	Where you write code, or output, please use "Formatted Code" style, and a mono-spaced font.
Results Displayed	All Answers, Submitted Answers, Correct Answers

Question 1 4 out of 4 points

With random inputs, on average, insertion into a binary search tree of size n requires lq(n) comparisons

Selected Answer: True

Answers: True

False

Question 2 4 out of 4 points

The choice of programming language is very important to the design of a program

Selected Answer: V False
Answers: True

False

Question 3 8 out of 8 points

Show the result of quicksort on the following array after a single call to partition(). Use the left-most element as the pivot.

47 28 3 73 25 27 26 56 84 63 59 38 23 7 98 78

Selected 47 28 3 73 25 27 26 56 84 63 59 38 23 7 98 78 Answer: *47* 28 3 73 25 27 26 56 84 63 59 38 *33* 7 9

47 28 3 73 25 27 26 56 84 63 59 38 *23* 7 98 78
23 28 3 73 *25* 27 26 47 56 84 63 59 38 *23* 7 98 78
23 23 25 28 *3* 73 27 *26* 47 56 84 63 59 38 *7* 98 78
3 7 23 25 26 *28* 73 *27* 47 56 84 63 59 *38* 98 78
3 7 23 25 26 27 28 38 *73* 47 56 84 63 *59* 98 78
3 7 23 25 26 27 28 38 47 56 59 *84* 63 73 98 *78*

3 7 23 25 26 27 28 38 47 56 59 63 79 73 84 98

Correct 🕜 Answer: 7 28 3 25 27 26 38 23 47 63 59 73 56 84 98 78

Any valid partition is fine, just need to see the last line. Here is a full run using the algorithm from the lecture notes.

																last valu
47	28	3	73	25	27	26	56	84	63	59	38	23	7	98	78	0
47	28	3	73	25	27	26	56	84	63	59	38	23	7	98	78	1
47	28	3	73	25	27	26	56	84	63	59	38	23	7	98	78	2
47	28	3	73	25	27	26	56	84	63	59	38	23	7	98	78	2
47	28	3	25	73	27	26	56	84	63	59	38	23	7	98	78	3
47	28	3	25	73	27	26	56	84	63	59	38	23	7	98	78	3
47	28	3	25	27	73	26	56	84	63	59	38	23	7	98	78	4
47	28	3	25	27	73	26	56	84	63	59	38	23	7	98	78	4
47	28	3	25	27	26	73	56	84	63	59	38	23	7	98	78	5
47	28	3	25	27	26	73	56	84	63	59	38	23	7	98	78	5
47	28	3	25	27	26	73	56	84	63	59	38	23	7	98	78	5
47	28	3	25	27	26	73	56	84	63	59	38	23	7	98	78	5
47	28	3	25	27	26	73	56	84	63	59	38	23	7	98	78	5
47	28	3	25	27	26	73	56	84	63	59	38	23	7	98	78	5
47	28	3	25	27	26	38	56	84	63	59	73	23	7	98	78	6
47	28	3	25	27	26	38	56	84	63	59	73	23	7	98	78	6
47	28	3	25	27	26	38	23	84	63	59	73	56	7	98	78	7
47	28	3	25	27	26	38	23	84	63	59	73	56	7	98	78	7
47	28	3	25	27	26	38	23	7	63	59	73	56	84	98	78	8
47	28	3	25	27	26	38	23	7	63	59	73	56	84	98	78	8
47	28	3	25	27	26	38	23	7	63	59	73	56	84	98	78	8
47	28	3	25	27	26	38	23	7	63	59	73	56	84	98	78	8
7	28	3	25	27	26	38	23	47	63	59	73	56	84	98	78	8
7	28	3	25	27	26	38	23	47	63	59	73	56	84	98	78	

Question 4 7 out of 7 points

> Suppose binary search on a sorted array of some size needed at most k comparisons. How many comparisons would be needed to search a sorted array of double that size?

> > \s*1\s*\+\s*k\s*|\s*k\s*\+\s*1\s*

Selected Answer: 🚫 k+1

Correct Answer:

Evaluation Method Correct Answer Case Sensitivity

Pattern Match

Question 5 4 out of 4 points

Good choice of data structures early will guide the algorithms

Selected Answer: 🚫 True

Answers:

True False

Question 6 0 out of 4 points

Elements in a binary search tree can be accessed in constant time

Selected Answer: (3) True

True Answers:

False

Question 7

4 out of 4 points

A properly maintained hash table with n elements has $\Theta(\lg n)$ lookup time.

Selected Answer: 🚫 False

Answers:

False

Question 8

7 out of 7 points

What is the average run time of quicksort on a random vector of size n?

Selected Answer: 🚫 n log n

Correct Answer:

Evaluation Method

Case Sensitivity Correct Answer

 $n\s^*\s^*([LI][Oo]?$ [Gg]\s\s*n.*|[LI][Oo]? [Gg]\s*\(\s*n\s*\).*) Pattern Match

Question 9

4 out of 4 points

All binary search tress with n elements have a height bound by lg(n)

Selected Answer: 👩 False

Answers: True

False

Question 10

4 out of 4 points

A Binary Search Tree with n elements has, worst case, $\Theta(n)$ lookup time

Selected Answer: 🚫 True

Answers:

True

False

Sunday, December 2, 2018 10:45:54 PM EST

← ок