Virtual Reality Treadmill "Crosswalk"

Thema: Trittplatten die den Füßen folgen

Virtual Reality Treadmill "Crosswalk"

In diesem Dokument geht es darum, wie das Gerät den Füßen des Menschen folgen kann.

Hierfür werden Sensoren und Aktoren benötigt und die notwendigen Formeln hergeleitet.

IMPORTANT: VR-Crosswalk won't use this type of "Camera" anymore.

No need to read this document.

Aufbau von "Crosswalk"

die Plattform kann sich um sich selbst drehen

die horizontale Achse Ansicht von unten

die Trittplatten sind mit einem Zahnriemen verbunden

eine Trittplatte für jeden Fuß

auf einer Trittplatten sind Sensoren anzuordnen

geeignete Sensoren

Bei dem ADNS3080 handelt es sich um einen Sensor wie er in vielen Computermäusen eingebaut ist.

Dieser erfasst die X- und Y- Bewegungsrichtung gegenüber einer Oberfläche.

Wenn dieser Sensor auf der Trittplatte befestigt wird, wird er die Bewegungsrichtung des Fußes gegenüber der stillstehenden Trittplatte erfassen.

geeignete Sensoren

Diesen Sensor gibt es auch mit einer Linse.

Diese Linse ermöglicht es dem Sensor zusätzlich in die Tiefe zu "sehen".

Mit 15,-€ ist dieser Sensor recht günstig.

Positionierung der Sensoren

die Trittplatte kann sich drehen

Mögliche Fußbewegungen

vor/zurück, links/rechts und um sich selbst drehen

Ax und Ay Daten vom ADNS3080

ein Fuß wird bewegt 1. neue Position im Raum

ein Fuß wird bewegt 2. Mitte der Trittplatte

die Mitte wird später horizontal bewegt

ein Fuß wird bewegt 3.Abstand der Trittplatte zum Zentrum

der Abstand b zum Drehzentrum ist zu berechnen

ein Fuß wird bewegt 3.Abstand der Trittplatte zum Zentrum

ein Fuß wird bewegt 4. Winkel der Plattform

Meßfehler der Sensoren erkennen 5. Abstand der Sensoren

der Abstand m und m' stimmen nicht mehr überein

Meßfehler der Sensoren erkennen 5. Abstand der Sensoren

m' ist mit dem tatsächlichen Abstand m zu vergleichen

ein Fuß wird bewegt 6. Rotation der Trittplatte

$$\beta = \arcsin\left(\frac{x'1-x'2}{m'}\right)$$

Zusammenfassung der Formeln

1. neue Position im Raum

$$x' = x_1 + \Delta x_1$$

$$x' = x_2 - \Delta x_2$$

$$y' = y_1 + \Delta y_1$$

 $y' = y_2 - \Delta y_2$

2. Mitte der Trittplatte

$$fx = \frac{x'_{1} + x'_{2}}{2}$$

$$fy = \frac{y'_{1} + y'_{2}}{2}$$

3. Abstand der Trittplatte zum Zentrum

$$b = \sqrt[2]{fx^2 + fy^2}$$

4. Winkel der Plattform

$$\alpha = \arcsin\left(\frac{fy}{b}\right)$$

5. Abstand $\Delta x'$ 12=x'1-x'2 M'2 Sensoren $\Delta y'$ 12=y'1-y'2 M'2 M'2 $\Delta x'$ 12)2+ $(\Delta y'$ 12)2

6. Rotation der Trittplatte

$$\beta = \arcsin\left(\frac{x'1-x'2}{m'}\right)$$

Zusammenfassung Werte

Beide Trittplatten liefern je ein ...

- b
 Hierbei handelt es sich um den Abstand einer Trittplatte zum
 Zentrum
- α der Winkel der Plattform
- β
 den Winkel den die Trittplattform einnehmen muss

Fragen

Zu entscheiden ist nunmehr:

- a) welche Trittplatte ist dominant und bestimmt die Werte für b, β und α?
- b) welche Position hat die andere Trittplatte einzunehmen?

Antwort

Die Werte von b, β und α werden von der Trittplatte herangezogen, dessen Fuß sich in der Luft befindet.

Die andere Trittplatte wird sich automatisch, sobald der Parameter α und b von der dominaten Trittplatte geändert wird, mechanisch verschoben und zieht dabei den auf der Trittplatte befindlichen Fuß automatisch mit sich.

Lediglich der Wert β für die nicht dominante Trittplatte muss angepasst werden.

von den Formeln zurück gelieferte Werte

Der Wert \beta der nicht dominanten Trittplatte

der linke Fuß wird angehoben und nach vorne bewegt

die Plattform dreht sich, die linke Trittplatform ist Ok, rechts fehlerhaft

die rechte Trittplattform muss sich anpassen

korrekte Position beider Trittplatten

die rechte Trittplattform dreht sich "mit"

korrekte Position der nicht dominanten Trittplatte

Verändert sich also α um $\Delta\alpha$, so hat sich das β der anderen Trittplatte um - $\Delta\alpha$ zu ändern.

Der Abstand b der nicht dominanten Trittplatte wird mechanisch durch den Zahnriemen um den selben Betrag geändert.

Schlußbemerkung

In diesem Dokument wird nicht darauf eingegangen, wie erkannt werden soll ob sich ein Fuß auf einer Trittplatte befindet oder nicht, bzw. welche der beiden Trittplatten dominant ist.

Was hier auch nicht erwähnt wurde, sind die Werte für ∆xı ∆yı ∆x₂ ∆y₂ sobald sich der Fuß von dem Sensor ADNS3080 entfernt.

Denn in diesem Fall sind die Werte für $\Delta x_1 \Delta y_1 \Delta x_2 \Delta y_2$ mit der Höhe des Fußes zu verrechnen.

Andernfalls sind die Werte für $\Delta x_1 \Delta y_1 \Delta x_2 \Delta y_2$ nicht korrekt.

Programmierung Beispiel

Programmierung Beispiel

