راهنمای کوتاه یادگیری بدون نظارت

اقتين عميدي وشروين عميدي

۱۳۹۸ شهریور ۱۳۹۸

ترجمه به فارسی توسط عرفان نوری. بازبینی توسط محمد کریمی.

مبانی یادگیری بدون نظارت

 $\{x^{(1)},...,x^{(m)}\}$ انگیزه – هدف از یادگیری بدون نظارت unsupervised learning کشف الگوهای پنهان در دادههای بدون برچسب است.

تابرابری ینسن (Jensen's $\,$ inequality) – فرض کنید $\,f\,$ تابعی معدب و $\,X\,$ یک متغیر تصادفی باشد. در این صورت نابرابری زیر را داریم :

$$E[f(X)] \geqslant f(E[X])$$

بیشینهسازی امید ریاضی

🗖 **متغیرهای نهفته** (latent variables) – متغیرهای نهفته متغیرهای پنهان یا مشاهدهنشدهای هستند که مسائل تخمین را دشوار میکنند، و معمولاً با z نمایش داده میشوند. شرایط معمول که در آنها متغیرهای نهفته وجود دارند در زیر آمدهاند :

توضيحات	x z	z متغیر نهفتهی	موقعيت
$\mu_j \in \mathbb{R}^n, \phi \in \mathbb{R}^k$	$\mathcal{N}(\mu_j, \Sigma_j)$	$Multinomial(\phi)$	ترکیب k توزیع گاوسی
$\mu_j \in \mathbb{R}^n$	$\mathcal{N}(\mu + \Lambda z, \psi)$	$\mathcal{N}(0,I)$	تحليل عامل

الگوریتم — الگوریتم بیشینهسازی امید ریاضی (Expectation-Maximization - EM) روشی بهینه برای تخمین پارامتر heta تخمین درستی بشینه در اختیار قرار میدهد. این کار با تکرار مرحلهی به دست آوردن یک کران پایین برای درستی (مرحلهی امید ریاضی) و همچنین بهینهسازی آن کران پایین (مرحلهی بیشینهسازی) طبق توضیح زیر انجام میشود :

ه مرحلهی امید ریاضی : احتمال پسین $Q_i(z^{(i)})$ که هر نمونه داده $x^{(i)}$ متعلق به خوشهی $z^{(i)}$ باشد به صورت زیر محاسبه میشود :

$$Q_i(z^{(i)}) = P(z^{(i)}|x^{(i)};\theta)$$

و مرحلهی بیشینهسازی z با استفاده از احتمالات پسین $Q_i(z^{(i)})$ به عنوان وزنهای وابسته به خوشهها برای نمونههای دادهی و مرحلهی بیشینهسازی $x^{(i)}$ مدل مربوط به هر کدام از خوشهها، طبق توضیح زیر، دوباره تخمین زده میشوند z

خوشهبندی -kمیانگین

. توجه کنید که $c^{(i)}$ خوشهی نمونه دادهی i و μ_i مرکز خوشهی j است

الگوریتم – بعد از مقداردهی اولیهی تصادفی مراکز خوشهه \mathbb{R}^n ، الگوریتم k، الگوریتم kمیانگین مراحل زیر را تا همگرایی تکرار میکند :

$$c^{(i)} = rg \min_{j} ||x^{(i)} - \mu_{j}||^{2}$$
 و $\frac{\displaystyle\sum_{i=1}^{m} 1_{\{c^{(i)} = j\}} x^{(i)}}{\displaystyle\sum_{i=1}^{m} 1_{\{c^{(i)} = j\}}}$

🗖 تابع اعوجاج — برای تشخیص اینکه الگوریتم به همگرایی رسیده است، به تابع اعوجاج (distortion function) که به صورت زیر تعریف میشود رجوع میکنیم :

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

خوشەبندى سلسلەمراتبى

🗖 الگوریتم – یک الگوریتم خوشهبندی سلسلهمراتبی تجمعی است که خوشههای تودرتو را به صورت پیدرپی ایجاد میکند.

🗖 انواع — انواع مختلفی الگوریتم خوشهبندی سلسلهمراتبی وجود دارند که هر کدام به دنبال بهینهسازی توابع هدف مختلفی 🔹 مرحلهی ۱ : دادهها به گونهای نرمالسازی میشوند که میانگین 🤊 و انحراف معیار ۱ داشته باشند. هستند، که در جدول زیر به اختصار آمدهاند :

پیوند کامل (Complete)	(Average) پیوند میانگین	پیوند بخشی (Ward)
کمینهکردن حداکثر فاصله بین هر دو جفت خوشه	کمینهکردن فاصلهی میانگین بین هر دو جفت خوشه	كمينهكردن فاصلمى درون ِخوشه

معيارهاى ارزيابى خوشهبندى

در موردٌ برچسبهای حقیقی دادهها نداریم.

🗖 فىرىيب ئىمرخ (Silhouette coefficient) – با نمايش a به عنوان ميانگين فاصلهي يک نمونه با همهي نمونههاي ديگر مرحلهي a : دادهها بر روي فضاي $\operatorname{span}_{\mathbb{R}}(u_1,...,u_k)$ تصوير ميشوند. اين رويه واريانس را در فضاي -a بعدي به دست در همان کلاس، و با نمایش d به عنوان میانگین فاصلهی یک نمونه با همهی نمونههای دیگر از نزدیکnرین خوشه، ضریب نیمرخ s به صورت زیر تعریف می شود s

$$s = \frac{b - a}{\max(a, b)}$$

و B_k با در نظر گرفتن A به عنوان تعداد خوشهها، ماتریس پراکندگی درون خوشهای B_k با در نظر گرفتن $oldsymbol{\square}$ ، ماتریس پراکندگی میانخوشهای W_k به صورت زیر تعریف میشوند

$$B_k = \sum_{j=1}^k n_{c(i)} (\mu_{c(i)} - \mu) (\mu_{c(i)} - \mu)^T, \qquad W_k = \sum_{i=1}^m (x^{(i)} - \mu_{c(i)}) (x^{(i)} - \mu_{c(i)})^T$$

شاخص s(k) Calinski-Harabaz بیان میکند که یک مدل خوشهبندی چگونه خوشههای خود را مشخص میکند، به گونهای که هر چقدر مقدار این شاخص بیشتر باشد، خوشهها متراکمتر و از هم تفکیکیافتهتر خواهند بود. این شاخص به صورت زیر

$$s(k) = \frac{\operatorname{Tr}(B_k)}{\operatorname{Tr}(W_k)} \times \frac{N-k}{k-1}$$

تحليل مولفههای اصلی

روشی برای کاهش ابعاد است که جهتهایی را با حداکثر واریانس پیدا میکند تا دادهها را در آن جهتها تصویر کند.

است اگر وجود داشته باشد بردار $z\in\mathbb{R}^nackslash\{0\}$ که به آن بردار ویژه میگویند، به طوری که :

$$Az = \lambda z$$

ورن مورت A واشد. اگر A متقارن باشد، در این مورت A توسط یک میزی $A \in \mathbb{R}^{n imes n}$ ورض کنید $A \in \mathbb{R}^{n imes n}$ ، داریم داریس حقیقی متعامد $\Lambda=\mathrm{diag}(\lambda_1,...,\lambda_n)$ قطری پذیر است. با نمایش $U\in\mathbb{R}^{n imes n}$ داریم

$$\exists \Lambda \text{ diagonal}, \quad A = U\Lambda U^T$$

نکته : بردار ویژهی متناظر با بزرگترین مقدار ویژه، بردار ویژهی اصلی ماتریس A نام دارد.

الگوریتم – رویهی تحلیل مولفههای اصلی یک روش کاهش ابعاد است که دادهها را در فضای -k بعدی با بیشینه کردن \Box واریانس دادهها، به صورت زیر تصویر میکند :

$$\boxed{x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{\sigma_j}} \quad \text{g} \quad \boxed{\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}} \quad \text{g} \quad \boxed{\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2}$$

و مرحلهی بر : مقدار
$$x^{(i)}x^{(i)}$$
 جین میاب که ماتریسی متقارن با مقادیر ویژهی حقیقی است محاسبه $\Sigma=rac{1}{m}\sum_{i=1}^m x^{(i)}x^{(i)}$ و مرحلهی بر مقدار $\Sigma=\frac{1}{m}\sum_{i=1}^m x^{(i)}x^{(i)}$

- دریک وضعیت یادگیری بدون نظارت، معمولاً ارزیابی یک مدل کار دشواری است، زیرا برخلاف حالت یادگیری نظارتی اطلاعاتی 🔹 مرحلهی ۳ : بردارهای $u_1,...,u_k \in \mathbb{R}^n$ که k بردارهای ویژهی اصلی متعامد Σ هستند محاسبه میشوند. این بردارهای ویژه متناظر با k مقدار ویژه با بزرگترین مقدار هستند.
- آمده بیشینه میکند.

تحليل مولفههاى مستقل

روشی است که برای پیدا کردن منابع مولد داده به کار میرود.

ورضیه ها – فرض میکنیم که داده یx توسط بردار n- بعدی $s=(s_1,\dots,s_n)$ تولید شده است، که s_i ها متغیرهای تصادفی مستقل هستند، و این تولید داده از طریق بردار منبع به وسیلهی یک ماتریس معکوسپذیر و ترکیبکننده ی A به صورت زیر

$$x = As$$

هدف پیدا کردن ماتریس ضدترکیب $W = A^{-1}$ است.

 \square الگوریتم تحلیل مولفههای مستقل Bell و $\operatorname{Sejnowski}$ – این الگوریتم ماتریس ضدترکیب W را در مراحل زیر پیدا میکند :

، احتمال $x=As=W^{-1}s$ به صورت زیر نوشته می شود :

$$p(x) = \prod_{i=1}^{n} p_s(w_i^T x) \cdot |W|$$

، با نمایش تابع سیگموئید با g، لگاریتم درستنمایی با توجه به دادههای $\{x^{(i)},i\in \llbracket 1,m
rbracket\}$ به صورت زیر نوشته میشود :

$$l(W) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \log \left(g'(w_{j}^{T} x^{(i)}) \right) + \log |W| \right)$$

بنابراین، رویهی یادگیری گرادیان تصادفی افزایشی برای هر نمونه از دادههای آموزش $x^{(i)}$ به گونهای است که برای بهروزرسانی W داریم :

$$W \longleftarrow W + \alpha \begin{pmatrix} \begin{pmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{pmatrix} x^{(i)^T} + (W^T)^{-1} \end{pmatrix}$$