8. **NP**

Ansatz

Problem ist leicht, wenn es in Polynomialzeit lösbar ist.

Worst-Case-Laufzeit des Algorithmus ist also $\Theta\left(\sum\limits_{i=0}^k a_i n^i\right) = poly(n)$ mit konstanten a_i, k

Leicht zu lösende Problem:

- Sortieren eines Arrays
- Breitensuche im Graphen
- Minimale Spannbäume berechnen
- ...

Probleme mit leicht zu überprüfender Lösung:

- TSP
- Faktorisieren
- ...

Unentscheidbare Probleme:

- Halteproblem
- Code-Erreichbarkeit
- ...

Berechnungsprobleme vs. Entscheidungsprobleme

Berechnungsproblem:

- Gegeben: Problem P
- Gesucht: Lösung S
- Beispiel: Berechne kürzeste Pfade im Graphen

Entscheidungsproblem:

- Gegeben: Problem P
- Gesucht: Hat P Eigenschaft E? Antwort ist wahr/falsch
- Beispiel: Ist gerichteter Graph stark zusammenhängend?
 Im Folgenden werden nur Entscheidungsprobleme betrachtet
 Man kann jedes Berechnungs- in ein Entscheidungsproblem überführen, so dass Polynomialzeit-Lösung für Entscheidungsproblem auch Polynomialzeit-Lösung für Berechnungsproblem ergibt.

Beispiel: Faktorisieren

Faktorisierungsproblem (Berechnungsproblem):

```
    Gegeben: n-Bit Zahl N ≥ 2
    Gesucht: Primfaktoren von N
    ⇒ Entscheidungsproblem:
```

• Gegeben: n-Bit Zahl $N \ge 2$, zahl B

Gesucht: Ist kleinster Primfaktor von N maximal B?

sub steht für Suboutine

In jeder Iteration wird Suchintervall um Hälfte reduziert, runden kann man ignorieren Zu Beginn Intervalllänge N, also nach $\Theta(\log_2 N) = \Theta(n)$ Iterationen fertig Laufzeit $\Theta(\log_2 N) = \Theta(n)$ Iterationen von decideFactor, in jeder Iteration konstanter Aufwand

Laufzeit Factorize:

In jeder Iteration wird Primfaktor $p \geq 2$ abgespalten, also maximal $\Theta(\log_2 N) = \Theta(n)$ Iterationen

Annahme der Laufzeit von (decideFactor): poly(n)Gesamtlaufzeit $\Theta(n^2 \cdot poly(n))$

Berechnung durch Entscheidung

Berechnungsproblem:

Gegeben: Problem P

Gesucht: Lösung S

Kreiere daraus Entscheidungsproblem:

- Gegeben: Problem P, String s
- Gesucht: Ist s Präfix der Binärdarstellung einer Lösung S?

Sofern Bitlänge der Lösungen polynomiell beschränkt ist und decide in Polynomialzeit läuft, läuft compute auch in Polynomialzeit

Es wird bit-weise in richtige Richtung gesucht

Laufzeit:
$$\Theta\left(2 \cdot \max_{S} |S| + 1
ight)$$
 Iterationen von `decide`

Komplexitätsklassen P und NP

Komplexitätsklasse P

Betrachte Entscheidungsproblem für Eigenschaft als Menge:

```
L_E:=\{P:P \text{ hat Eigenschat } E\}
 L kommt von "language"
 Beispiel: L_{Sc}:=\{G:G \text{ ist gerichtetet, stark zusammenhängender Graph}\}
 Komplexitätsklasse P:
```

Ein Entscheidungsproblem L_E ist genau dann in der Komplexitätsklasse P, wenn es einen Polynomialzeit-Algorithmus A_{L_E} mit Ausgabe 0/1 gibt, der stets korrekt entscheidet, ob eine Eingabe P die Eigenschaft E hat oder nicht, also $P \in L_E \Leftrightarrow A_{L_E}(P) = 1$ für alle P gilt. Eigentliche Definition: Algorithmus = Turing-Maschine und Problem-Universum = $\{0,1\}^*$

Komplexitätsklasse NP

Das Prüfen einer vermeintlichen Lösung ist einfach für L_E :

Gegeben: Problem P und vermeintliche Lösung S

- Entscheide: Zeigt S, dass P Eigenschaft E hat oder nicht?
- ullet S dient als zusätzliche Entscheidungshilfe, heißt auch "witness", Zeuge, Zertifikat,... für P

Technische Einschränkung:

Lösungen S sind von polynomieller Komplexität in Eingabeproblem P, meist: Lösungen S haben polynomielle Bitlänge (in Bitlänge von P)

Beispiel

```
L_{Fakt} := \{(N, B) : V > \text{ hat Primfaktor } \leq B\}
```

Gegenwärtig ist es unklar, wie in Polynomialzeit ohne Hilfe (und ohne Quantencomputer) entschieden werden kann, ob Eingabe (N,B) in L_{Fakt} ist oder nicht Mit Hilfe ist das Entscheiden einfach:

Zeuge S zu P = (N, B) ist Faktor p von N mit 1

```
verify(N,B,p) // check alleged solution
1 IF N>1 AND 1<p=<B AND p|N THEN return 1 else return 0;</pre>
```

Es wird nicht geprüft, ob p prim ist, wenn der zusammengesetzte Faktor in der Schranke B liegt, dann ist p erst recht ein Primfaktor

Es gibt keine falshce Hilfe für nicht-zugehörige Eingaben:

- Wenn $(N,B) \in L_{Fakt}$, dann gibt es ein S, das verify akzeptieren lässt
- Wenn $(N,B) \notin L_{Fakt}$, dann gibt es kein S, das verify akzeptieren lässt Entscheidung mit Hilfe muss in beiden Fällen richtig sein

NP (Nicht-deterministische Polynomialzeit)

Ein Entscheidungsproblem L_E ist in der Komplexitätsklasse NP gdw. es einen Polynomialzeit-Algorithmus A_{L_E} mit Ausgabe 0/1 gibt, der bei Eingabe eines Zeugen S_P für Eingabe $P \in L_E$ bzw. für jede Eingabe S_P für Eingabe $P \notin L_E$ stets korrekt entscheidet, ob eine Eingabe P die Eigenschaft E hat oder nicht, also $P \in L_E \Leftrightarrow \exists S_P : A_{L_E}(P,S_P) = 1$ f.a. P gilt.

```
Äquivalent: F.a. P gilt P 
otin L_E \Leftrightarrow \forall S_P : A_{L_E}(P,S_P) = 0
Komplexität der Hilfseingabe S_P polynomiell in der von P
```

P vs. NP

Jedes Problem in P ist auch in NP: Algorithmus A_{L_E} entscheidet ohne Hilfe \leadsto P \subseteq NP Bis heute ist offen, ob auch NP \subseteq P gilt

Mögliche Welten

Faktorisieren ist in NP, jedoch ist nicht klar, ob Faktorisieren auch in P liegt.

- 1. Wahrscheinlichste Welt, Bild wird durch Quantum-Computer verfeinert:
 - $P \neq NP$, Faktorisieren $\notin P \rightsquigarrow$ Faktorisieren schwierig
- 2. $P \neq NP$, Faktorisieren $\in P \rightsquigarrow$ Faktorisieren leicht
- 3. P = NP → Alle Probleme sind leicht

NP-Vollständigkeit

Ziel: Identifiziere schwierigsten Probleme in NP

NPC (NP-Complete): Klasse der NP-vollständigen Probleme Eigenschaften:

- 1. NPC \subseteq NP
- 2. Wenn P \neq NP, dann definitiv NPC \nsubseteq P

Reduktionen (Problemtransformationen)

Siehe Berechnung durch Entscheidung für Problemdefinition
Wenn das Entscheidungsproblem leicht ist, ist das Berechnungsproblem es auch
Das Entscheidungsproblem ist mindestens so schwierig wie das Berechnungsproblem

Transfer auf NP-Entscheidungsprobleme

NP-Problem L_A :

- Gegeben: Problem P
- Gesucht: Entscheidung

Reduktion auf NP-Problem L_B :

- Gegeben: Problem Q
- Gesucht: Entscheidung

Die Reduktion von L_A auf L_B ist Polynomialzeit-Algorithmus R, sodass gilt:

```
P \in L_A \Leftrightarrow R(P) \in L_B f.a. P, Schreibweise: L_A \leq L_B
```

Die Reduktion transformiert Problem P in Problem Q=R(P), sodass eine korrekte Entscheidung für Q automatisch eine korrekte Entscheidung für P liefert

```
decideA(P)
    Q=R(P);
    return decideB(Q);

decideB(Q)
    ...
    return d; // boolean
```

NP-vollständige Probleme

Komplexitätsklasse NPC (NP-vollständige Probleme): Alle Probleme $L_C \in \text{NP}$, sodass $L_A \leq L_C$ f.a. $L_A \in \text{NP}$ Zwei Bedingungen an L_C :

- 1. $L_C \in \mathsf{NP}$
- 2. jedes NP-Problem ist auf L_C reduzierbar (L_C ist NP-hart)

Beispiel für Reduktion: Hamiltonscher Zyklus TSP

- HamCycle für G:
 - Gibt es Tour (jeden Knoten einmal besuchen und zu Startknoten zurück) im Graphen ${\cal G}$?
- TSP für (*G*, *B*):

Gibt es Tour im Graphen G mit Gewicht maximal B?

Beide Probleme sind in NP

Reduktion:

Existierende Kanten bekommen Gewicht 0, vervollständige anschließend Graphen mit

Kanten mit Gewicht 1, setze B = 0

Nun zu zeigen: $G \in \mathsf{HamCycle} \Leftrightarrow R(G) = (G^*, B) \in \mathsf{TSP}$

#TODO maybe add proof

SAT: Die Mutter aller NP-vollständigen Probleme

Gegeben:

Boolesche Formel ϕ aus \vee, \wedge, \neg in n variablen x_1, x_2, \dots, x_n

 ϕ hat polynomielle Komplexität in n

Gesucht:

Entscheide, ob ϕ erfüllende Belegung hat oder nicht

SAT ∈ NP: Gegeben ist Belegung als Zeuge, werte Formel aus

SAT ist NP-hart

#TODO elaborate further

Reduktion R(P) von L_A auf SAT berechnet:

 $\phi_P(ext{alle Eingabebits})$ = gültiger Anfangszustand für $P \land$ gültige Übergänge \land Endzustand mit d=1

Wenn P in L_A ist, gibt es eine Lösung S, die verifyA mit d=1 akzeptiert, dann gibt es aber auch eine erfüllende Belegung für "Rechenschritte" ϕ_P

Wenn P nicht in L_A ist, gibt es keine Lösung S, die verifyA akzeptiert, dann gibt es aber auch keine erfüllende Belegung für "Rechenschritte" ϕ_P

$SAT \leq 3SAT$

Boolesche Formeln in konjunktiver Normalform (KNF) mit jeweils 3 Literalen:

$$\phi(x_1, x_2, x_3, x_4) = (\neg x_2 \wedge x_3 \wedge x_4) \vee (x_1 \wedge \neg x_2 \wedge x_3) \vee (x_4 \wedge x_3 \wedge x_4)$$

KNF = Und-Verknüüfung von Klauseln, Klausel = Oder-Verknüpfung

Klausel besteht aus 3 Literalen $x_j \in \{x_j, \neg x_j\}$

Falls weniger Literale in Klausel, transformiere:

$$(x_j) = (x_j \wedge x_j \wedge x_j), (x_j \wedge x_k) = (x_j \wedge x_k \wedge x_k)$$

3SAT:

Gegeben:

Boolesche 3KNF-Formel ϕ in n Variablen x_1, x_2, \ldots, x_n , ϕ hat polynomielle Komplexität in n Gesucht:

Entscheide, ob ϕ erfüllende Belegung hat oder nicht

SAT: Boolesche Formel σ aus \vee, \wedge, \neg in n Variablen y_1, y_2, \dots, y_n (σ polynomielle Komplexität in n)

lässt sich in Polynomialzeit überführen zu

3SAT: 3KNF-Formel ϕ in poly(n) Variablen $x_1, x_2, \ldots, x_{poly(n)}$ (ϕ polynomielle Komplexität in n

sodass σ erfüllbar ist gdw. ϕ erfüllbar ist \leadsto SAT \leq 3SAT

3-Färbbarkeit von Graphen

3COLORING für G:

Gibt es eine Knotenfärbung im Graphen G mit 3 Farben, sodass benachbarte Knoten nie die gleiche Farbe haben?

 $3COLORING \in NP$:

Gegeben Färbung, durchlaufe Knoten und prüfe jeweils Farbe der Nachbarknoten

3SAT < 3COLORING

#TODO add proof maybe

Einer für alle, alle für einen

Wenn Problem L_B NP-vollständig ist und $L_B \leq l_C$ für $L_C \in \mathsf{NP}$ gilt, dann ist auch L_C NP-vollständig.

 $L_A \leq L_B$ per Reduktion R_{AB} , $L_B \leq L_C$ per Reduktion $R_{BC} \leadsto L_A \leq L_C$ per Reduktion $R_{AC} := R_{BC} \circ R_{AB}$ (Hintereinanderausführung)

Also folgt aus 3SAT \leq 3COLORING und 3COLORING \in NP auch, dass 3COLORING NP-vollständig ist.

NPC - eine Auswahl

- SAT: Ist Formel φ erfüllbar?
- 3SAT: Ist Formel ϕ in 3KNF erfüllbar?
- 3COLORING: Ist Graph mit 3 Farben kantenkonsistent f\u00e4rbbar?
- HamCycle: Gibt es eine Tour im Graphen?
- TSP: Gibt es eine Tour im Graphen, mit Gesamtgewicht < B?

- VertexCover: Gibt es im Graphen eine Knotenmenge der Größe $\leq B$, sodass jede Kante an einem der Knoten hängt?
- IndependentSet: Gibt es im Graphen Knotenmenge der Größe $\geq B$, sodass kein Knotenpaar durch eine Kante verbunden ist?
- Knapsack: Für Gegenstände mit Wert und Volumen, gibt es eine Auswahl mit Gesamtwert $\geq W$, aber Gesamtvolumen $\leq V$?

•

P vs. NP vs. NPC

Für jedes NP-vollständige Problem L_C gilt: $L_C \in P \Leftrightarrow P=NP$.

Wenn es also einen Polynomialzeit-Algorithmus für ein $L_C \in NPC$ gibt, dann gibt es einen Polynomialzeit-Algorithmus für jedes Problem in NP.

#TODO maybe add proof

Approximation

NPC-Probleme sind vermutlich nicht effizient lösbar, aber eventuell leicht approximierbar

```
3SAT-Approx(φ, n)
    A[]=ALLOC(n); // assignment for variables
FOR i=1 TO n DO
         A[i]=true resp. A[i]= false with probability 1/2
return A;
```

#TODO add explanation

2-Färbbarkeit und 2SAT in P

2-Färbbarkeit von Graphen ist relativ einfach

Idee:

- Farbe eines Knoten bestimmt eindeutig Farben der Nachbarknoten
- Prüfe jeweils, ob Färbung Widerspruch erzeugt Ansatz:
- Beginne mit einem Knoten und beliebiger Farbe
- Durchlaufe den Graphen per BFS, f\u00e4rbe Knoten und identifiziere eventuelle Widerspr\u00fcche

```
2ColoringSub(G,s,col) // G=(V,E), s node
s.color=col; newQueue(Q); enqueue(Q,s);
WHILE !isEmpty(Q) DO
```

Zunächst nur für zusammenhängenden Graphen mit vorgegebenem Startknoten und vorgegebener Startfarbe

Man muss eventuell mit anderem Startknoten nochmal starten, wie ist die Farbe zu wählen?

Von gerichtet zu ungerichtet

Betrachte ungerichteten Graphen, Lösungsmenge ändert sich nicht Bei Neustart keine Kante zwischen Zusammenhangskomponenten: Jede individuelle 2-Färbung der Zusammenhangskomponenten kann zu 2-Färbung des Graphen kombiniert werden

Algorithmus findet ohne zusätzlichen Aufwand auch Färbung Laufzeit $\Theta(|V|+|E|)$

2-SAT

Keine Symmetrie zwischen Belegungen und Farben bei 2-Färbbarkeit

Implikationsgraph aus 2-SAT

Konstruiere aus Formel ϕ (gerichteten) Implikationsgraphen G = (V, E):

- 1. Knotenmenge V besteht aus Literalen $x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n$
- 2. Für jede Klausel $(x_j \wedge x_k)$ nehme Kanten $(\neg x_j, x_k)$ und $(\neg x_k, x_j)$ auf

Starke Zusammenhangskomponenten im Implikationsgraphen

Formel ist erfüllbar gdw. in keiner Zusammenhangskomponenten $x_j, \neg x_j$ für ein j liegen #TODO maybe add proof

Erfüllende Belegung berechnen

Annahme: kein x_j und $\neg x_j$ in gleicher SCC

SCC-dag:

Graph mit Superknoten aus allen Knoten einer SCC

Es gibt eine Kante zwischen SCCs, wenn es eine Kante für zwei Knoten aus den SCCs

1. Sortiere SCC-dag topologisch

2. Erfüllende Belegung (wohldefiniert, da kein x_i und $\neg x_i$ in gleicher SCC):

```
x_j = true, wenn x_j in SCC nach SCC mit \neg x_j x_j = false, wenn \neg x_j in SCC nach SCC mit x_j #TODO maybe add proof
```

MAX-2SAT

Gegeben: 2SAT-Formel ϕ , Zahl k

Gesucht: Gibt es eine Belegung, die mindestens k Klauseln erfüllt?

 $\begin{aligned} \mathsf{MAX-2SAT} \in \mathsf{NPC} \\ \mathsf{MAX-2SAT} \in \mathsf{NP} \end{aligned}$

Gegeben ist eine Belegung als Zeuge; prüfe, ob mindestens k Klauseln erfüllt werden

 $3SAT \leq MAX-2SAT$

#TODO maybe add proof