HLMA101 - Partie B : Algèbre linéaire

Chapitre 7 Systèmes linéaires et méthode du pivot

Simon Modeste

Faculté des Sciences - Université de Montpellier

2019-2020

1. Équations et systèmes linéaires

2. Résolution d'un système linéaire

Définition : équation linéaire

inconnues $x_1,...,x_p$ de la forme :

 $\diamond x_1,...,x_p$ sont les inconnues

Une équation linéaire en p variables est une équation à p

 $\diamond a_1, a_2, \dots a_p$ sont des nombres réels (ou complexes)

connus : les coefficients de l'équation

 $\Rightarrow x^2 + 4y = 4$ n'est pas une équation linéaire.

 $a_1x_1 + \dots a_px_p = b$,

 $\diamond\ b$ est un nombre connu : le second membre de l'équation

4x - 3y = 2 est une équation linéaire en les variables x et

3. Algorithme du pivot

Sommaire

1. Équations et systèmes linéaires

- 2. Résolution d'un système linéaire
- 3. Algorithme du pivot

Définition : Système linéaire

Un système linaire est une suite de une ou plusieurs équations linéaires en les mêmes variables x_1,\dots,x_p .

Un système linéaire à n équations et à p inconnues est de la forme :

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p &= b_2 \\ \vdots &= \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

- $\diamond (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le i \le n}}$ sont les coefficients
- $\diamond (b_i)_{1 \le i \le n}$ les seconds membres.

Exemples

Exemples

- $\diamond \ (S_1) \begin{cases} 2x_1 & & x_2 & + & 1,5x_3 & = & 8 \\ x_1 & & 4x_3 & = & -7 \end{cases} \text{ est un système} \\ \text{linéaire de 2 équations en les 3 variables } x_1, \ x_2, \ x_3.$
- ♦ Comment déterminer l'intersection de 2 droites du plan ? De trois droites ?
- ♦ L'intersection de deux plans de l'espace?

Solution d'un système

Définition d'une solution

Une solution d'un système à p inconnues (réelles) est un p-uplet (s_1,s_2,\ldots,s_p) (de \mathbb{R}^p) solution de chaque équation du système. Autrement dit, en posant $x_1=s_1,\ldots x_p=s_p$, toute les équations du système sont vérifiées.

L'ensemble des solutions est une partie de \mathbb{R}^p

Exemple

Le triplet $(5,\frac{13}{2},3)$ est <u>une</u> solution du système (\mathscr{S}_1) . En revanche, $(3,\frac{13}{2},5)$ n'est pas une solution (l'ordre est important)

$$(\mathcal{S}_1) \begin{cases} 2x_1 & -x_2 + 1,5x_3 = 8 \\ x_1 & -4x_3 = -7 \end{cases}$$

Questions qu'on peut se poser

♦ Les système a-t-il des solutions?

Pour quels seconds membres a-t-on des solutions? Quelles conditions doit vérifier le second membre pour qu'il y ait des solutions? (conditions de compatibilité)

- $\begin{tabular}{ll} \lozenge \grave{A} quoi ressemble l'ensemble des solutions? \\ Quel objet géométrique est l'ensemble des solutions (comme partie de <math>\mathbb{R}^p$)?
- Calculer l'ensemble des solutions
 Donner une équation paramétrique de l'ensemble des solutions.

Ensemble solution

Définitions

- Un système qui possède au moins une solution est dit compatible.
- Un système qui n'a pas de solution est dit incompatible. Il suffit qu'une de ses équations n'admette aucune solution.
- \diamond L'ensemble de toutes les solutions est appelé <u>ensemble</u> solution : c'est un sous espace de \mathbb{R}^p , où p désigne le nombre d'inconnues du système.
- Deux systèmes sont dits <u>équivalents</u> lorsqu'ils ont même ensemble solution.
- ♦ Résoudre un système, c'est déterminer l'ensemble solution du système.

Exercices

Les systèmes suivants sont-ils compatibles?

(a)
$$\begin{cases} 2x & -3y + z = -2 \\ x & +2y - z = 3 \end{cases}$$

(b)
$$\begin{cases} 2x & -3y + z + t = 0 \\ x & +2y - z -3t = 0 \\ -x & -y & +2t = 0 \end{cases}$$

(c)
$$\begin{cases} x+y=2\\ -x-y=-2 \end{cases}$$

(d)
$$\begin{cases} x & -y & +z & = & 0 \\ x & -y & +z & = & 2 \end{cases}$$

Exercices

1. Oui : (1;2;2) est une solution.

2. Oui : (0,0,0,0) est une solution.3. Oui : (1,1) est une solution

4. Non, le système est incompatible, car $0 \neq 2$

Ensemble solution

Le but de ce qui suit est de mettre en place une méthode qui permet :

- 1. de trouver le nombre de solutions d'un système,
- 2. le cas échéant, de décrire l'ensemble solution

Un exemple détaillé

On veut résoudre le système

$$(\mathcal{S}) \begin{cases} x & - 2y + z = 0 \\ 2y - 8z = 8 \\ -4x + 5y + 9z = -9 \end{cases}$$

Étape 1 : On souhaite « garder » le x de la première ligne et le faire « disparaître des autres lignes : $L_3 \leftarrow L_3 + 4L_1$. On obtient <u>alors</u> :

$$\begin{cases} x - 2y + z = 0 \\ 2y - 8z = 8 \\ - 3y + 13z = -9 \end{cases}$$

$$\begin{cases} x & - & 2y & + & z & = & 0 \\ & & 2y & - & 8z & = & 8 \\ & - & 3y & + & 13z & = & -9 \end{cases}$$

Étape 2 : On peut simplifier le système en divisant la ligne 2 par 2 : $L_2 \leftarrow \frac{1}{2}L_2$

$$\begin{cases} x & - & 2y & + & z & = & 0 \\ & & y & - & 4z & = & 4 \\ & - & 3y & + & 13z & = & -9 \end{cases}$$

$$\begin{cases} x & - & 2y & + & z & = & 0 \\ & & y & - & 4z & = & 4 \\ & - & 3y & + & 13z & = & -9 \end{cases}$$

Étape 3 : On peut alors « éliminer » le y de la ligne 3 par l'opération $L_3 \leftarrow L_3 + 3L_2$

$$\begin{cases} x - 2y + z = 0 \\ y - 4z = 4 \\ z = 3 \end{cases}$$

Le système obtenu est triangulaire

$$\begin{cases} x - 2y + z = 0 \\ y - 4z = 4 \\ z = 3 \end{cases}$$

Étape 4 : Il suffit maintenant de « remonter » en éliminant les z des lignes 2 et 1 par les opérations $L_2 \leftarrow L_2 + 4L_3$ et $L_1 \leftarrow L_1 - L_3$.

$$\begin{cases} x - 2y & = -3 \\ y & = 16 \\ z & = 3 \end{cases}$$

$$\begin{cases} x - 2y = -3 \\ y = 16 \\ z = 3 \end{cases}$$

Étape 5 : On termine en éliminant le y de la ligne 1 par l'opération $L_1 \leftarrow L_1 + 2L_2$.

$$\begin{cases} x & = 29 \\ y & = 16 \\ z & = 3 \end{cases}$$

On vérifie que le triplet (29,16,3) est bien solution. Et on conclut : l'ensemble solution du système est le sous ensemble de \mathbb{R}^3 :

Représentation des systèmes linéaires

Pour connaître un système, il suffit de connaître les coefficients et les seconds membres. Le nom des inconnues n'a pas d'importance.

Matrice à n lignes et p colonnes

Soit n et p deux entiers naturels non nuls.

 \diamond Une matrice à n lignes et p colonnes d'éléments de $\mathbb R$ est un tableau :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} = \begin{pmatrix} a_{i,j} \end{pmatrix}_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

- \diamond La matrice est de taille $n \times p$ ("n fois p")
- $\diamond a_{i,j}$ est l'élément de A à la i-ème ligne et la j-ème colonne.

L'ensemble des matrices de taille $n \times p$ à coefficients dans $\mathbb R$ se note

$$\mathcal{M}_{n,p}(\mathbb{R})$$

Exemples

Avec les notations précédentes :

- \diamond Si n = 1, on parle de matrice ligne
- \diamond Si p = 1, on parle de matrice colonne
- ♦ Si n = p, on parle de matrice carré d'ordre n. L'ensemble des matrices carrées d'ordre n à coefficients dans $\mathbb R$ se note $\mathcal M_n(\mathbb R)$.

Sommaire

- 1 Équations et systèmes linéaires
- 2. Résolution d'un système linéaire
- 3. Algorithme du pivot

On considère le système

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p &= b_2 \\ \vdots &= \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

Matrice des coefficients : membres :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix}$$
Taille $n \times p$

Matrice des seconds Taille
$$n \times 1$$

On considère le système

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p &= b_2 \\ \vdots &= \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

Matrice augmentée du système :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} & b_n \end{pmatrix}$$
Taille $n \times (p+1)$

Exemple

La matrice des coefficients du système

$$\begin{cases} 2x & -5y & +3z & -4t & +2u & = 4 \\ 3x & -7y & +2z & -5t & +4u & = 9 \\ 5x & -10y & -5z & -4t & +7u & = 22 \end{cases}$$

est

$$\begin{pmatrix} 2 & -5 & 3 & -4 & 2 \\ 3 & -7 & 2 & -5 & 4 \\ 5 & -10 & -5 & -4 & 7 \end{pmatrix}$$

Exemple

La matrice augmentée du système

$$\begin{cases} 2x & -5y & +3z & -4t & +2u & = 4 \\ 3x & -7y & +2z & -5t & +4u & = 9 \\ 5x & -10y & -5z & -4t & +7u & = 22 \end{cases}$$

est

$$\begin{pmatrix} 2 & -5 & 3 & -4 & 2 & | & 4 \\ 3 & -7 & 2 & -5 & 4 & | & 9 \\ 5 & -10 & -5 & -4 & 7 & | & 22 \end{pmatrix}$$

Exercices

1. Quelle est la matrice augmentée du système :

2. Quel est l'ensemble solution du système de matrice

augmentée :
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 4 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Principe de l'approche

- 1. Définir des types de systèmes "faciles à résoudre"
- 2. Montrer qu'on peut toujours se ramener à un de ces systèmes

Systèmes faciles à résoudre

Exemple 1 (diagonal)

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -2 & 0 & 3 \\ 0 & 0 & 3 & 2 \end{pmatrix}$$

Système
$$\begin{cases} x = 1 \\ -2y = 3 \end{cases}$$

1 et 1 seule solution

Systèmes faciles à résoudre

Exemple 2 (diagonal)

Système
$$\begin{cases}
x = b_1 \\
-2y = b_2 \\
3z = b_3
\end{cases}$$

1 et 1 seule solution

Systèmes faciles à résoudre

Exemple 3 (diagonal)

Matrice augmentée $\begin{pmatrix} 1 & 0 & 0 & b_1 \\ 0 & 0 & 0 & b_2 \\ 0 & 0 & 3 & b_2 \end{pmatrix}$

Système $\begin{cases}
x = b_1 \\
0.y = b_2 \\
3z = b_3
\end{cases}$

Si $b_2 \neq 0$: pas de solution Si $b_2 = 0$: infinité de solutions

Si $b_2 = 0$, on a un "paramètre libre" : y peut prendre une valeur arbitraire.

Systèmes faciles à résoudre

Exemple 4 ("presque diagonal")

Matrice augmentée $\begin{pmatrix} 1 & 0 & 0 & 0 & b_1 \\ 0 & -2 & 0 & 0 & b_2 \\ 0 & 0 & 3 & 0 & b_3 \end{pmatrix}$

Système $\begin{cases}
x = b_1 \\
-2y = b_2 \\
3z = b_3
\end{cases}$

Une infinité de solutions!

Le système d'équation est à 4 inconnues (x, y, z, t) et t est un paramètre libre!

Exemple 5 ("presque diagonal")

Matrice augmentée $\begin{pmatrix} 1 & 0 & 0 & 0 & b_1 \\ 0 & 0 & 0 & 0 & b_2 \\ 0 & 0 & 3 & 0 & b_3 \end{pmatrix}$	Système $\begin{cases} x = b_1 \\ 0.y = b_2 \\ 3z = b_3 \end{cases}$	Si $b_2 \neq 0$: pas de solution Si $b_2 = 0$: infinité de solutions avec 2
$(0 \ 0 \ 3 \ 0 \ b_3)$	$\int 3z = b_3$	solutions avec 2
		paramètres libres!

Premier bilan des exemples

- 1. Dans les cas "diagonaux" ou "presque diagonaux" : c'est facile de résoudre un système.
- Si les coefficients diagonaux sont tous non-nuls et qu'il n'y a pas de ligne nulle dans la partie "non-augmentée": une et une seule solution (peu importe le second membre).
- 3. Si il y a une ligne nulle dans la partie "non augmentée", il y a deux cas :
 - Soit le coefficient du second membre sur la même ligne est non nul : pas de solution
 - Soit le coefficient est nul : potentiellement des solutions, et potentiellement une infinité.
- 4. Si il y a une colonne nulle : l'inconnue concernée peut prendre n'importe quelle valeur.

Il faut alors regarder le reste du système.

Exemple où ça se passe bien

Matrice augmentée

$$\begin{pmatrix} 1 & 3 & 4 & -5 & 4 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 3 & 2 & 1 \end{pmatrix}$$

Système
$$\begin{cases}
x +3y +4z -5t = 4 \\
y -z = 1 \\
3z -2t = 1
\end{cases}$$

L'ensemble des solutions est

$$\left\{ \left(\frac{t}{3} - \frac{4}{3}, \frac{2t}{3} + \frac{4}{3}, \frac{2t}{3} + \frac{1}{3}, t\right) / t \in \mathbb{R} \right\}$$

Sous-espace affine : droite passant par $\left(-\frac43,\frac43,\frac13,0\right)$ et dirigé par $\left(\frac13,\frac23,\frac23,1\right)$ dans $\mathbb{R}^4.$

Définition

Soit A une matrice.

- Une <u>ligne nulle</u> est une ligne dont tous les coefficients sont nuls.
- ♦ Le <u>coefficient dominant</u> d'une ligne non-nulle est le coefficient non-nul situé le plus à gauche dans cette ligne.

Définition

Une matrice est dite $\underline{\acute{e}}$ chelonnée si les deux conditions suivantes sont vérifiées :

- (a) Toutes ses lignes nulles sont regroupées en bas de la matrice
- (b) Le coefficient dominant d'une ligne non-nulle est toujours situé strictement plus à droite que les coefficients dominants des lignes situées au-dessus.

Exemple 6 ("presque diagonal")

Exemple 7 ("triangulaire")

$\begin{cases} \textbf{Système} \\ a_{1,1}x_1 & +a_{1,2}x_2 & + & \dots & +a_{1,p}x_p & = b_1 \\ a_{2,2}x_2 & + & \dots & +a_{2,p}x_p & = b_2 \\ & \ddots & & \vdots & \vdots \\ & & a_{n,n}x_n & + \dots & +a_{n,p}x_p & = b_n \end{cases}$

Idée : On résout à partir du bas!

Exemple où ça se passe moins bien

En regardant la "tête" du système, on pourrait penser que t peut être libre, mais en fait la valeur de t est fixée par le système!

Conclusion : Il faut se méfier de nos premières impressions, et identifier précisément les différentes situations.

Exemples

Matrice échelonnée

Matrice non échelonnée $\begin{pmatrix} 1 & 3 & 4 & -5 & 4 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 3 & -2 & 1 \end{pmatrix}$

Définition

Une matrice est dite échelonnée réduite si :

- (a) Elle est échelonnée
- (b) Ses coefficients dominants de lignes valent 1
- (c) Dans une colonne contenant un coefficient dominant d'une ligne, tous les autres coefficients sont nuls.

Exemple

$$\begin{pmatrix}
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Exemple

Matrice augmentée Système 1 8 0 0 7 a (x + 8y)+7u = a $\begin{bmatrix} 0 & 0 & \mathbf{1} & 0 & -1 & b \\ 0 & 0 & \mathbf{1} & -2 & c \end{bmatrix}$ -u = b $(a,b,c) \in \mathbb{R}^3$

- \diamond 2 paramètres libres : y et u
- les autres inconnues voient leur valeurs fixées dès qu'on fixe la valeurs des paramètres libres.

On retient

- 1. Un système <u>échelonné</u> est **compatible** si et seulement si la dernière colonne de sa matrice augmentée n'est pas une colonne-pivot.
- 2. Si un système est échelonné est compatible, alors les valeurs des inconnues correspondant aux colonnes non-pivot peuvent être fixées librement; elles déterminent alors de manière unique les valeurs des inconnues correspondant aux colonnes-pivot.

Si de plus les colonnes de la matrice $\underline{\mathsf{non-augment\acute{e}e}}$ sont toutes des colonnes-pivot, il y a une et une seule solution; dès qu'il existe une colonne non-pivot, il y a une infinité de solutions.

Remarque

Il suffit d'avoir un système échelonné (pas forcément réduit) pour pouvoir conclure sur la compatibilité du système. Le fait d'être réduit simplifie la résolution effective.

Exemple réduit

Exemple redult
$$\begin{cases} x + 8y + 7u = a \\ z - u = b \iff \begin{cases} x = -8y - 7u + a \\ z = u + b \end{cases}$$

$$t - 2u = c$$

On a directement les valeurs des variables principales en fonction des variables libres.

Exemple non réduit

$$\begin{cases} 3x + 8y - z & +7u = a \\ & z & = b \\ & t -2u = c \end{cases}$$

Vocabulaire

- Un coefficient dominant est parfois appelé pivot.
- Une colonne contenant un pivot est parfois appelée colonne-pivot.

Exemple (avec des lignes nulles dans la matrice des coeff)

Matrice augmentée :

- ♦ Le système est incompatible dès qu'un des coefficients est non-nul.
- Conditions de compatibilité données par les équations = 0 dans les lignes nulles de la matrice (non-augmentée).

Vocabulaire

Une inconnue correspondant à :

- une colonne pivot est appelée variable principale.
- o une colonne non-pivot est appelée variable libre.

Sommaire

- 3. Algorithme du pivot

Algorithme du pivot

On va introduire des opérations sur les équations, qui permettent de passer d'un système "général" à un système équivalent qui est échelonné (et réduit).

Théorème

Les opérations élémentaires sont réversibles : on peut toujours « revenir en arrière » par d'autres opérations sur les lignes.

Si un système est obtenu à partir d'un autre par ces opérations élémentaires, les deux systèmes sont équivalents.

Idée de la preuve.

Méthode de Gauss

- 1. On rend la matrice échelonnée ("en partant du haut") :
 - (a) Parmi les variables dominantes du système, on identifie celle de plus petit indice;
 - (b) On échange deux lignes et on fait apparaître en première position du système une des équations dans laquelle la variable xi a un coefficient non nul;
 - (c) En additionnant aux équations suivantes des multiples de la première, en rend nuls tous les coefficients de x_i dans les équations suivantes;
 - (d) On recommence à l'étape 1 en « oubliant »la première équation.
 - (e) On s'arrête dès que l'on rencontre une équation du type 0=1 ou que l'on arrive à un système échelonné.
- 2. On rend la matrice échelonnée réduite ("en partant du bas") :
 - (a) Pour chaque pivot, on effectue les opérations $L_i \leftarrow \frac{1}{\alpha_i} L_i$.
 - (b) En partant du pivot "le plus bas", on soustrait la ligne pour faire apparaître des zéros au-dessus du pivot.

Bilan

Pour résoudre un système linéaire :

- 1. On écrit sa matrice augmentée.
- 2. On utilise le pivot de Gauss pour la rendre échelonnée ou échelonnée réduite.
- 3. Les solutions du système échelonné sont exactement celles du système de départ, et :
 - a. Si la matrice échelonnée (réduite) a une colonne pivot en dernière colonne, le système est incompatible
 - b. sinon, le système est compatible et
 - S'il n'y a que des variables principales, il y a une unique solution
 - S'il y a des variables libres, il y a un infinité de solutions.

Opérations élémentaires

Les opérations élémentaires sont de trois types :

- (1) échange de deux lignes (deux équations) : $L_i \leftrightarrow L_j$ ($i \neq j$)
- (2) produit d'une ligne (d'une équation) par un nombre non nul : $L_i \leftarrow \lambda L_i$ ($\lambda \neq 0$);
- (3) ajout à une ligne (équation) le produit par un nombre d'une autre ligne (équation) : $L_i \leftarrow L_i + \lambda L_i$.

Théorème (admis)

- Tout système linéaire peut être transformé par une suite finie d'opérations élémentaires en un système échelonné réduit
- Le système échelonné <u>réduit</u> obtenu à partir d'un système linéaire donné est unique (ie. indépendant de la suite d'opérations élémentaires effectuées).

Illustration

Théorème

L'ensemble des solutions d'un système linéaire (de n équations à p inconnues) est :

- \diamond soit un point de \mathbb{R}^p
- \diamond soit un sous-espace affine de \mathbb{R}^p .

Théorème

Dans le troisième cas, la mise sous forme échelonnée permet d'écrire sous forme paramétrique le sous-espace affine des solutions.