HW11_Sampathirao_A

 $Anvita\ Sampathirao$ 8/5/2019

```
suppressMessages(library(AER))
data(HMDA)
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
     method
                     from
##
     [.quosures
                     rlang
##
     c.quosures
                     rlang
     print.quosures rlang
##
suppressMessages(library(stargazer))
HMDA$deny <- ifelse(HMDA$deny == "yes", 1, 0)</pre>
HMDA$afam <- ifelse(HMDA$afam == "yes", 1, 0)</pre>
HMDA$phist <- ifelse(HMDA$phist == "yes", 1, 0)</pre>
HMDA$selfemp <- ifelse(HMDA$selfemp == "yes", 1, 0)
HMDA$insurance <- ifelse(HMDA$insurance == "yes", 1, 0)</pre>
HMDA$condomin <- ifelse(HMDA$condomin == "yes", 1, 0)</pre>
HMDA$single <- ifelse(HMDA$single == "yes", 1, 0)</pre>
HMDA$hschool <- ifelse(HMDA$hschool == "yes", 1, 0)</pre>
HMDA$chist <- as.numeric(HMDA$chist)</pre>
HMDA$mhist <- as.numeric(HMDA$mhist)</pre>
#1
plot1<- ggplot(data = HMDA, aes(x= pirat, y= deny)) +</pre>
  geom_point () +
  geom_smooth(method= "lm", formula = y~x, se= FALSE)
plot1
```


#2

```
LinReg1<- lm(deny ~ pirat, data = HMDA)
LinReg2<- lm(deny ~ pirat + afam, data = HMDA)
LinRegs<- list (LinReg1, LinReg2)
stargazer(LinRegs, type = "latex", intercept.bottom = FALSE, df = FALSE)</pre>
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Tue, Aug 13, 2019 - 12:38:31 AM

In Model (1), - the estimator for pirat variable is statistically different than 0 and hence, a unit change in payments to income ratio will result in a loan most likely being denied by 60.4%

In Model (2), - the estimator for pirat variable is statistically different than 0 and a unit change in payments to income ratio will result in a in a loan most likely being denied by 55.9%

• the estimator for afam is also statistically different than 0. A loan is likely to get denied by 17.7% if a person applying for it is an african american as compared to not being an african american

Yes, afam is a relevant omitted variable in Model (1), as we note that the value of beta_pirat has changed from Model (1) to Model (2)

```
PIavg<- mean(HMDA$pirat)
betas<- LinReg2$coefficients
P1.1<- as.numeric(betas[1] + (PIavg*betas[2]) + (1*betas[3])) #When an african american
```

Table 1:

	Dependent variable:			
	deny			
	(1)	(2)		
Constant	-0.080***	-0.091***		
	(0.021)	(0.021)		
pirat	0.604***	0.559***		
	(0.061)	(0.060)		
afam		0.177***		
		(0.018)		
Observations	2,380	2,380		
\mathbb{R}^2	0.040	0.076		
Adjusted R ²	0.039	0.075		
Residual Std. Error	0.318	0.312		
F Statistic	98.406***	97.760***		
Note:	*p<0.1; **p<	(0.05; ***p<0		

```
P1.0<- as.numeric(betas[1] + (PIavg*betas[2]) + (0*betas[3])) #When not an african american P1.1/P1.0
```

[1] 2.878033

```
#Finding out the order in which variables are to be added by strength of correlation
corData<- cor(HMDA)
corData<- corData[, colnames(corData) %in% c("deny", "afam")]
corData</pre>
```

```
##
                   deny
                              afam
## deny
             1.00000000 0.20516050
## pirat
             0.19934276 0.07667742
## hirat
             0.13307622 0.04605482
## lvrat
             0.16222276 0.16207609
## chist
             0.26236869 0.22115730
## mhist
             0.10964947 0.11991007
## phist
             0.27292927 0.16155178
## unemp
             0.04359448 -0.06623347
## selfemp
             0.05177546 -0.05418954
## insurance 0.35215423 0.08691480
## condomin 0.03958091 0.18390619
## afam
             0.20516050 1.00000000
## single
           0.07660881 0.10257731
## hschool -0.06452406 -0.05156050
```

```
a<- corData[,1] * corData[,2]</pre>
sort(a, decreasing = TRUE)
##
                                     chist
                                                  phist
           deny
                        afam
                                                            insurance
##
  0.205160498 0.205160498 0.058024752 0.044092209 0.030607413
##
          lvrat
                       pirat
                                     mhist
                                                 single
                                                             condomin
## 0.026292431 0.015285089 0.013148075 0.007858325 0.007279174
##
          hirat
                     hschool
                                   selfemp
                                                  unemp
## 0.006128802 0.003326893 -0.002805688 -0.002887413
#Running Logit Regressions
LogitReg1 <- glm(deny ~ pirat + afam,</pre>
                 data = HMDA, family = "binomial")
LogitReg2 <- glm(deny ~ pirat + afam + chist,</pre>
                 data = HMDA, family = "binomial")
LogitReg3 <- glm(deny ~ pirat + afam + chist + phist,</pre>
                 data = HMDA, family = "binomial")
LogitReg4 <- glm(deny ~ pirat + afam + chist + phist + insurance,</pre>
                 data = HMDA, family = "binomial")
LogitReg5 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat,
                 data = HMDA, family = "binomial")
LogitReg6 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat
                 + mhist, data = HMDA, family = "binomial")
LogitReg7 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat</pre>
                 + mhist + single, data = HMDA, family = "binomial")
LogitReg8 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat
                 + mhist + single + condomin,
                 data = HMDA, family = "binomial")
LogitReg9 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat</pre>
                 + mhist + single + condomin + hirat,
                 data = HMDA, family = "binomial")
LogitReg10 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat
                  + mhist + single + condomin + hirat + hschool,
                  data = HMDA, family = "binomial")
LogitReg11 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat
                  + mhist + single + condomin + hirat + hschool + selfemp,
                  data = HMDA, family = "binomial")
LogitReg12 <- glm(deny ~ pirat + afam + chist + phist + insurance + lvrat</pre>
                  + mhist + single + condomin + hirat + hschool + selfemp + unemp,
                  data = HMDA, family = "binomial")
LogitRegs1 <- list(LogitReg1, LogitReg2, LogitReg3, LogitReg4, LogitReg5,
                  LogitReg6)
LogitRegs2 <- list(LogitReg7, LogitReg8, LogitReg9, LogitReg10,</pre>
                  LogitReg11, LogitReg12)
stargazer(LogitRegs1, type = "latex", intercept.bottom = FALSE, df= FALSE)
```

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Tue, Aug 13, 2019 - 12:38:31 AM

Table 2:

-			Table 2.						
	Dependent variable:								
	deny								
	(1)	(2)	(3)	(4)	(5)	(6)			
Constant	-4.126^{***} (0.268)	-4.849^{***} (0.288)	-4.751^{***} (0.292)	-4.959^{***} (0.304)	-6.263^{***} (0.488)	-6.663^{***} (0.533)			
pirat	5.370*** (0.728)	5.133*** (0.732)	4.913*** (0.749)	4.819*** (0.768)	4.705*** (0.777)	4.745*** (0.779)			
afam	1.273*** (0.146)	0.950^{***} (0.155)	0.864*** (0.160)	0.815*** (0.171)	0.708*** (0.174)	0.688*** (0.174)			
chist		0.340*** (0.034)	0.277^{***} (0.037)	0.305^{***} (0.039)	0.298*** (0.039)	0.286*** (0.039)			
phist			1.290*** (0.192)	1.289*** (0.202)	1.250*** (0.202)	1.247*** (0.203)			
insurance				4.708*** (0.545)	$4.524^{***} \\ (0.552)$	4.513*** (0.551)			
lvrat					1.807*** (0.497)	1.695*** (0.500)			
mhist						0.283** (0.140)			
Observations Log Likelihood Akaike Inf. Crit.	2,380 -795.695 $1,597.390$	$ 2,380 \\ -748.766 \\ 1,505.532 $	$2,380 \\ -727.667 \\ 1,465.334$	$ 2,380 \\ -654.791 \\ 1,321.582 $	2,380 -647.895 1,309.791	$ 2,380 \\ -645.863 \\ 1,307.725 $			

Note: *p<0.1; **p<0.05; ***p<0.01

```
stargazer(LogitRegs2, type = "latex", intercept.bottom = FALSE, df= FALSE)
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Tue, Aug 13, 2019 - 12:38:32 AM

We see that the value of Beta_afam is changing in every regression until Model (12). Hence, we have to test for multicollinearity.

```
#Check for multi collinearity
aux1_lr12 <- lm(pirat ~ afam + chist + phist + insurance + lvrat +</pre>
                  mhist + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux2_lr12 <- lm(afam ~ pirat + chist + phist + insurance + lvrat +
                  mhist + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux3_lr12 <- lm(chist ~ pirat + afam + phist + insurance + lvrat +</pre>
                  mhist + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux4 lr12 <- lm(phist ~ pirat + afam + chist + insurance + lvrat +
                  mhist + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux5_lr12 <- lm(insurance ~ pirat + afam + chist + phist + lvrat +</pre>
                  mhist + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux6_lr12 <- lm(lvrat ~ pirat + afam + chist + phist + insurance +</pre>
                  mhist + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux7_lr12 <- lm(mhist ~ pirat + afam + chist + phist + insurance +
                  lvrat + single + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux8_lr12 <- lm(single ~ pirat + afam + chist + phist + insurance +
                  lvrat + mhist + condomin + hirat + hschool + selfemp + unemp,
                data = HMDA)
aux9_lr12<- lm(condomin ~ pirat + afam + chist + phist + insurance +
                 lvrat + mhist + single + hirat + hschool + selfemp + unemp,
               data = HMDA)
aux10_lr12<- lm(hirat ~ pirat + afam + chist + phist + insurance +
                  lvrat + mhist + single + condomin + hschool + selfemp + unemp,
                data = HMDA)
aux11_lr12<- lm(hschool ~ pirat + afam + chist + phist + insurance +
                  lvrat + mhist + single + condomin + hirat + selfemp + unemp,
                data = HMDA)
aux12_lr12<- lm(selfemp ~ pirat + afam + chist + phist + insurance +</pre>
                  lvrat + mhist + single + condomin + hirat + hschool + unemp,
                data = HMDA)
aux13_lr12 <- lm(unemp ~ pirat + afam + chist + phist + insurance +</pre>
                   lvrat + mhist + single + condomin + hirat + hschool + selfemp,
                 data = HMDA)
aux1_r2 <- summary(aux1_lr12)$r.squared</pre>
aux2_r2 <- summary(aux2_lr12)$r.squared</pre>
aux3_r2 <- summary(aux3_lr12)$r.squared</pre>
aux4_r2 <- summary(aux4_lr12)$r.squared</pre>
aux5 r2 <- summary(aux5 lr12)$r.squared
aux6_r2 <- summary(aux6_lr12)$r.squared</pre>
```

Table 3:

	Dependent variable:							
	deny							
	(1)	(2)	(3)	(4)	(5)	(6)		
Constant	-6.733^{***} (0.535)	-6.724^{***} (0.535)	-6.686^{***} (0.538)	-5.592^{***} (0.674)	-5.744^{***} (0.673)	$-6.047^{***} (0.697)$		
pirat	4.684*** (0.773)	4.671*** (0.774)	5.075*** (1.025)	5.097*** (1.020)	4.811*** (1.034)	4.798*** (1.035)		
afam	0.645*** (0.175)	0.659*** (0.178)	0.662*** (0.178)	0.639*** (0.179)	0.673*** (0.180)	0.704*** (0.180)		
chist	0.290*** (0.039)	0.290*** (0.039)	0.288*** (0.039)	0.290*** (0.040)	0.295*** (0.040)	0.296*** (0.040)		
phist	1.267*** (0.204)	1.267*** (0.204)	1.265*** (0.204)	1.268*** (0.204)	1.240*** (0.205)	1.231*** (0.205)		
insurance	4.510*** (0.552)	4.504*** (0.553)	4.499*** (0.553)	4.528*** (0.554)	4.548*** (0.554)	$4.545^{***} \\ (0.554)$		
lvrat	1.682*** (0.499)	1.689*** (0.499)	1.699*** (0.499)	1.702*** (0.499)	1.790*** (0.498)	1.804*** (0.499)		
mhist	0.242^* (0.143)	0.243^* (0.143)	0.249^* (0.142)	0.240^* (0.143)	0.263^* (0.142)	0.242^* (0.143)		
single	0.387** (0.151)	0.404^{***} (0.155)	0.411*** (0.156)	0.453^{***} (0.157)	0.453^{***} (0.157)	0.450*** (0.157)		
condomin		-0.075 (0.168)	-0.079 (0.168)	-0.109 (0.169)	-0.097 (0.169)	-0.066 (0.170)		
hirat			-0.737 (1.233)	-0.788 (1.231)	-0.496 (1.235)	-0.483 (1.237)		
hschool				-1.116^{***} (0.421)	-1.166^{***} (0.420)	-1.080** (0.421)		
selfemp					0.693*** (0.211)	0.647*** (0.213)		
unemp						0.060^* (0.034)		
Observations Log Likelihood Akaike Inf. Crit.	$ 2,380 \\ -642.576 \\ 1,303.152 $	2,380 -642.477 $1,304.953$	2,380 -642.299 1,306.598	2,380 -639.234 1,302.469	$ 2,380 \\ -634.259 \\ 1,294.518 $	$ \begin{array}{r} 2,380 \\ -632.772 \\ 1,293.544 \end{array} $		

Note: *p<0.1; **p<0.05; ***p<0.01

```
aux7_r2 <- summary(aux7_lr12)$r.squared</pre>
aux8_r2 <- summary(aux8_lr12)$r.squared</pre>
aux9_r2 <- summary(aux9_lr12)$r.squared</pre>
aux10_r2 <- summary(aux10_lr12)$r.squared</pre>
aux11_r2 <- summary(aux11_lr12)$r.squared</pre>
aux12_r2 <- summary(aux12_lr12)$r.squared</pre>
aux13_r2 <- summary(aux13_lr12)$r.squared</pre>
vif1 \leftarrow 1/(1 - aux1_r2)
vif2 \leftarrow 1/(1 - aux2_r2)
vif3 <- 1/ (1 - aux3_r2)
vif4 \leftarrow 1/(1 - aux4_r2)
vif5 <- 1/ (1 - aux5_r2)
vif6 <- 1/ (1 - aux6_r2)
vif7 <- 1/ (1 - aux7_r2)
vif8 \leftarrow 1/(1 - aux8_r2)
vif9 <- 1/ (1 - aux9_r2)
vif10 \leftarrow 1/(1 - aux10_r2)
vif11 \leftarrow 1/(1 - aux11_r2)
vif12 \leftarrow 1/(1 - aux12_r2)
vif13 \leftarrow 1/(1 - aux13_r2)
vifs <- list(vif1, vif2, vif3, vif4, vif5, vif6, vif7,</pre>
               vif8, vif9, vif10, vif11, vif12, vif13)
vifs > 10
```

[1] FALSE FALSE

```
vifs > 5
```

[1] FALSE FALSE

We can note that for all regressors VIF is less than 5 we can be confident that imperfect multicollienarity is not an issue in regression (12). And, if is not an issue in regression (12) - which includes the larger number of independent variables - then it won't be an issue in models (1) to (11). Hence, Model (12) is the model with the least bias.

The logistic regression model is a more appropriate specification as it fits the values of deny better than the linear regressor which extends beyond the bounds of deny variable.

#6

```
betalog <- LogitReg12$coefficients
exp(betalog[3])</pre>
```

```
## afam
## 2.021119
```

Because the relation is non-linear, the odds of a loan getting denied for an african american is 2.02 times the odds of a loan getting denied for a non african american.

```
chistavg <- mean(HMDA$chist)
phistavg <- mean(HMDA$phist)
insuranceavg <- mean(HMDA$insurance)
lvratavg <- mean(HMDA$lvrat)
mhistavg <- mean(HMDA$mhist)
singleavg <- mean(HMDA$single)
condominavg<- mean(HMDA$condomin)
hiratavg <- mean(HMDA$hirat)
hschoolavg <- mean(HMDA$selfemp)
unempavg <- mean(HMDA$sunemp)</pre>
```

```
invlogit <- function(x){
  yloghat <- betalog[1] + (betalog[2]*PIavg) + (betalog[3]*x) +
        (betalog[4]*chistavg) + (betalog[5]*phistavg) + (betalog[6]*insuranceavg) +
        (betalog[7]*lvratavg) + (betalog[8]*mhistavg) + (betalog[9]*singleavg) +
        (betalog[10]*condominavg) + (betalog[11]*hiratavg) + (betalog[12]*hschoolavg) +
        (betalog[13]*selfempavg) + (betalog[14]*unempavg)
        yhat <- exp(yloghat)/ (1 + exp(yloghat))
        return(yhat)
}
P7.1.1 <- invlogit(1) #When an african american
P7.1.0 <- invlogit(0) #When not an african american
as.numeric(P7.1.1/P7.1.0)</pre>
```

[1] 1.89095

The odds of a loan getting denied when an applicant is an african american versus when an applicant is not an african american is 1.89. This is a better estimator than the odds determined with the linear regression model because the range of the odds ratio is bounded by (0,1)- that fits all values within the domain of deny variable.