Borne de convergence explicite pour l'algorithme Langevin Monte Carlo cinétique.

Aurélien Enfroy¹
Joint work with: Alain Durmus², Eric Moulines²,

¹Télécom SudParis

²ENS Paris-Saclay

³Ecole Polytechnique

Outline

- Motivation and setting
- 2 The Kinetic Langevin algorithm
- 3 Bound distance between semi-group and Discretizetion
- 4 Semi-group convergence
- Convergence

Kinetic Langevin 2 / 27

Introduction

- Sampling distribution over high-dimensional state-space has recently attracted a lot of research efforts in computational statistics and machine learning community...
- Applications (non-exhaustive)
 - 1. Bayesian inference for high-dimensional models,
 - 2. Bayesian inverse problems (e.g., image restoration and deblurring),
 - 3. Aggregation of estimators and experts,
 - 4. Bayesian non-parametrics.
- Most of the sampling techniques known so far do not scale to high-dimension... Challenges are numerous in this area...

Bayesian setting

- A Bayesian model is specified by
 - 1. the sampling distribution of the observed data conditional on its parameters, often termed likelihood: $Y \sim L(\cdot|\theta)$
 - 2. a prior distribution π_0 on the parameter space $\theta \in \mathbb{R}^d$
- The inference is based on the posterior distribution:

$$\pi(\mathrm{d}\theta) = \frac{\pi_0(\mathrm{d}\theta)\mathsf{L}(Y|\theta)}{\int \mathsf{L}(Y|u)\pi_0(\mathrm{d}u)}.$$

• In most cases the normalizing constant is not tractable:

$$\pi(\mathrm{d}\theta) \propto \pi_0(\mathrm{d}\theta)\mathsf{L}(Y|\theta)$$
.

Bayesian setting

Bayesian decision theory relies on computing expectations:

$$\pi(f) = \int_{\mathbb{R}^d} f(x) d\pi(x) = \int_{\mathbb{R}^d} f(x) \pi(x) dx$$

Generic problem: estimation of an integral $\pi(f)$, where

- π is known up to a multiplicative factor ;
- Sampling directly from π is not an option;
- A solution is to approximate $\pi(f)$ by

$$n^{-1}\sum_{i=1}^n f(X_i)\;,$$

where $(X_i)_{i\geq 0}$ is a Markov chain associated with a Markov kernel P with invariant distribution π .

Markov chain theory

Let $(X_k)_{k\geq 0}$ be a Markov chain on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

- P Markov kernel associated with $(X_k)_{k\geq 0}$ if
 - for any ν , νP is the distribution of X_1 starting from $X_0 \sim \nu$
 - νP^k the distribution of X_k for $k \ge 0$
- Invariant probability measure: π is said to be an invariant probability measure for the Markov kernel P if

$$X_0 \sim \pi$$
 then $X_1 \sim \pi$ equivalent to $\pi P = \pi$

• Ergodic Theorem (Meyn and Tweedie, 2003): If π is invariant, With some conditions on P, we have for any $f \in L^1(\pi)$,

$$\frac{1}{n}\sum_{i=1}^n f(X_i) \underset{\pi\text{-a.s.}}{\longrightarrow} \int f(x)\pi(x)dx.$$

◆□ → ◆② → ◆ 불 → ◆ 불 → 의 ○ ○ 6/27

Convergence of Markov chains

• A measure of efficiency of MCMC to target π associated to a Markov kernel P:

$$||P^k(x,\cdot)-\pi||_{\mathrm{TV}} \leq C(x)v(k)\;,$$

1. The total variation distance defined for μ, ν two probability measures on \mathbb{R}^d by

$$\|\mu - \nu\|_{\text{TV}} = \sup_{|f| \le 1} |\mu(f) - \nu(f)|$$
.

- 2. $C(x) \ge 0$: dependence on the initial condition.
- 3. Ideally $\lim_{k\to+\infty} v(k)=0$ (or close to 0) with the better possible rate. We answer to the following questions:
- For a target precision $\varepsilon > 0$, we can find $N \ge 0$ such that

$$\|\delta_{\mathsf{x}}P^n - \pi\|_{\mathrm{TV}} \leq \varepsilon$$
 for all $n \geq N$.

• In general N is not explicit.

Kinetic Langevin 7 / 27

Outline

- Motivation and setting
- 2 The Kinetic Langevin algorithm
- 3 Bound distance between semi-group and Discretizetion
- 4 Semi-group convergence
- Convergence

Kinetic Langevin 8 / 27

Framework

• Denote by π a target density w.r.t. the Lebesgue measure on \mathbb{R}^d , known up to a normalisation factor

$$x \mapsto e^{-U(x)} / \int_{\mathbb{R}^d} e^{-U(y)} dy$$
,

• Assume for the moment that U is L-smooth : continuously differentiable and there exists a constant L such that for all $x,y\in\mathbb{R}^d$,

$$\|\nabla U(x) - \nabla U(y)\| \le L\|x - y\|.$$

Kinetic Langevin diffusion

Kinetic Langevin SDE:

$$\begin{split} \mathrm{d}\mathbf{X}_t &= \mathbf{V}_t \mathrm{d}t \;, \\ \mathrm{d}\mathbf{V}_t &= -(\kappa_1 \mathbf{V}_t + \kappa_2 \nabla U(\mathbf{X}_t)) \mathrm{d}t + \sqrt{2\kappa_1 \kappa_2} \mathrm{d}B_t \;, \end{split}$$

where $(B_t)_{t\geq 0}$ is a d-dimensional Brownian Motion and κ_1, κ_2 are positive constants.

• Notation: $(P_t)_{t\geq 0}$ the Markov semigroup associated to the Kinetic Langevin diffusion:

$$P_t(z,A) = \mathbb{P}((\mathbf{X}_t, \mathbf{V}_t) \in A | (\mathbf{X}_0, \mathbf{V}_0) = z) , \quad x \in \mathbb{R}^{2d}, A \in \mathcal{B}(\mathbb{R}^{2d}) .$$

• $\mu(x, v) \propto \exp(-U(x)) \exp(-\|v\|^2/2) \propto \pi(x) \exp(-\|v\|^2/2)$ is the unique invariant probability measure.

□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ◆ ○ ○ 10/27

Kinetic Langevin 10 / 27

Discretized Kinetic Langevin diffusion

• Idea: Sample the diffusion paths:

$$\begin{split} \mathrm{d}\tilde{\mathbf{X}}_t &= \tilde{\mathbf{V}}_t \mathrm{d}t \;, \\ \mathrm{d}\tilde{\mathbf{V}}_t &= - \big(\kappa_1 \tilde{\mathbf{V}}_t + \kappa_2 \nabla U(\tilde{\mathbf{X}}_{\Gamma_k})\big) \mathrm{d}t + \sqrt{2\kappa_1 \kappa_2} \mathrm{d}B_t \;, \end{split}$$

where

- $(\gamma_k)_{k\geq 1}$ is a sequence of stepsizes, which can either be held constant or be chosen to decrease to 0 at a certain rate
- For any $k \in \mathbb{N}$, $\Gamma_k = \sum_{i=1}^k \gamma_i$
- Noation: For any $k \in \mathbb{N}$, $(X_k, V_k) = (\mathbf{X}_{\Gamma_k}, \mathbf{V}_{\Gamma_k})$
- This algorithm is referred to as the Kinetic Langevin Algorithm.

Kinetic Langevin 11 /

Explicit form of the Kinetic Langevin Algorithm

Explicit form:

$$\begin{split} X_{k+1} &= X_k - \frac{1}{\kappa_1} (\mathrm{e}^{-\kappa_1 \gamma_{k+1}} - 1) V_k - \frac{\kappa_2}{\kappa_1} \left(\gamma_{k+1} + \frac{\mathrm{e}^{-\kappa_1 \gamma_{k+1}} - 1}{\kappa_1} \right) \nabla U(X_k) \\ &\qquad \qquad - p_{\mathbb{R}^d \times \{0\}} \left(\Sigma_{\gamma_{k+1}}^{1/2} G_{k+1} \right) \; , \\ V_{k+1} &= \mathrm{e}^{-\kappa_1 \gamma_{k+1}} V_k + \frac{\kappa_2}{\kappa_1} (\mathrm{e}^{-\kappa_1 \gamma_{k+1}} - 1) \nabla U(X_k) + p_{\{0\} \times \mathbb{R}^d} \left(\Sigma_{\gamma_{k+1}}^{1/2} G_{k+1} \right) \; , \end{split}$$

where

- $(G_k)_{k>1}$ is i.i.d. $\mathcal{N}(0, I_{2d})$
- $(\gamma_k)_{k\geq 1}$ is a sequence of stepsizes, which can either be held constant or be chosen to decrease to 0 at a certain rate

$$\begin{split} \Sigma_{\gamma} &= 2\kappa_1^{-1}\kappa_2 \begin{pmatrix} \frac{\kappa_1\gamma - 2^{-1}(1 - \mathrm{e}^{-\kappa_1\gamma})^2 - (1 - \mathrm{e}^{-\kappa_1\gamma})}{\kappa_1} I_d & -2^{-1}(1 - \mathrm{e}^{-\kappa_1\gamma})^2 I_d \\ & -2^{-1}(1 - \mathrm{e}^{-\kappa_1\gamma})^2 I_d & 2^{-1}\kappa_1(1 - \mathrm{e}^{-2\kappa_1\gamma}) I_d \end{pmatrix} \; . \end{split}$$

Kinetic Langevin 12 / 2

Discretized Kinetic Langevin diffusion: constant stepsize

- When the stepsize is held constant, i.e. $\gamma_k = \gamma$, then $(X_k, V_k)_{k \geq 1}$ is an homogeneous Markov chain with Markov kernel R_{γ}
- Under some appropriate conditions,

$$R_{\gamma}$$

is irreducible, positive recurrent \leadsto unique invariant distribution μ_{γ} which does not coincide with the target distribution μ .

- Questions:
 - For a given precision $\epsilon > 0$, how should I choose the stepsize $\gamma > 0$ and the number of iterations n so that : $\|\delta_x R_\gamma^n \mu\|_{\mathrm{TV}} \le \epsilon$
 - quantify the distance between μ_{γ} and μ .

Kinetic Langevin 13 /

Discretized Kinetic Langevin diffusion: decreasing stepsize

- When $(\gamma_k)_{k\geq 1}$ is nonincreasing and non constant, $(X_k, V_k)_{k\geq 1}$ is an inhomogeneous Markov chain associated with the kernels $(R_{\gamma_k})_{k>1}$.
- Notation: Q_{γ}^{p} is the composition of Markov kernels

$$Q_{\gamma}^{p} = R_{\gamma_1} R_{\gamma_2} \dots R_{\gamma_p}$$

With this notation, $\mathbb{E}_{\mathbf{x}}[f(X_p, V_p)] = \delta_{\mathbf{x}} Q_{\gamma}^p f$.

- Questions:
 - Convergence : is there a way to choose the step sizes so that $\|\delta_{\mathbf{x}}Q_{\gamma}^{p}-\mu\|_{\mathrm{TV}} \to 0$?

Kinetic Langevin 14 /

Outline

- Motivation and setting
- 2 The Kinetic Langevin algorithm
- 3 Bound distance between semi-group and Discretizetion
- 4 Semi-group convergence
- Convergence

Kinetic Langevin 15 / 27

Kullback-Leibler divergence

• For $f: \mathbb{R}^d \to \mathbb{R}$, such that for any $x \in \mathbb{R}^d$, f(x) > 0, $\int_{\mathbb{R}^d} f(x) d\mu(x) < +\infty$, define the entropy of f with respect to μ by

$$\operatorname{Ent}_{\mu}(f) = \int_{\mathbb{R}^d} f(x) \log(f(x)) d\mu(x) - \log\left(\int_{\mathbb{R}^d} f(x) d\mu(x)\right) \int_{\mathbb{R}^d} f(x) d\mu(x) .$$

 \bullet The Kullback-Leibler divergence between μ and ν is defined by

$$KL(\nu,\mu) = Ent_{\mu} (d\nu/d\mu)$$
,

if $\nu \ll \mu$ and $\mathsf{KL}(\mu, \nu) = +\infty$ otherwise.

Kinetic Langevin 16 / 2

Main result

Theorem 1

For any $k \in \mathbb{N}^*$ and $z \in \mathbb{R}^{2d}$,

$$\mathsf{KL}\left(\delta_{z} P_{\mathsf{\Gamma}_{k}} \mid \delta_{z} Q_{\gamma}^{k}\right) \leq \left(L^{2} \kappa_{2} / (2\kappa_{1})\right) \sum_{i=0}^{\kappa-1} \gamma_{j+1}^{3} D(\gamma_{j+1}, \delta_{z} Q_{\gamma}^{j}),$$

where for any distribution ν on $\mathcal{B}(\mathbb{R}^d)$ and $\gamma \in \mathbb{R}_+^*$,

$$D(\gamma, \nu) = \int_{\mathbb{R}^{2d}} \{ \mathbf{A}(\gamma) \|\mathbf{x}'\|^2 + \mathbf{B}(\gamma) \|\mathbf{v}'\|^2 \} d\nu (d\mathbf{x}'d\mathbf{v}') + d\kappa_1 \kappa_2 \gamma/4 ,$$

$$\mathbf{A}(\gamma) = L^2 \left(\frac{\kappa_2^2 \gamma^2}{15} + \frac{\kappa_2 \gamma}{8} \right) , \quad \mathbf{B}(\gamma) = \frac{1}{3} + \frac{\kappa_2 \gamma}{8} .$$

Main result

Corollary 2

For any $z \in \mathbb{R}^{2d}$, $k \in \mathbb{N}^*$, $p \in \mathbb{N}$, p < k,

$$\left\|\delta_{z}Q_{\gamma}^{k}-\mu\right\|_{TV} \leq L\sqrt{\frac{\kappa_{2}}{\kappa_{1}}\left(\sum_{j=p}^{k-1}\gamma_{j+1}^{3}D(\gamma_{j+1},\delta_{z}Q_{\gamma}^{j})\right)}+\left\|\delta_{z}Q_{\gamma}^{p}P_{\Gamma_{p,k}}-\mu\right\|_{TV}.$$

Kinetic Langevin 18 / 2

Outline

- Motivation and setting
- 2 The Kinetic Langevin algorithm
- 3 Bound distance between semi-group and Discretizetion
- Semi-group convergence
- Convergence

Kinetic Langevin 19 / 27

Poincaré

- ullet Objective compute bound for $\left\|\delta_z Q_\gamma^p P_{\Gamma_{p,k}} \mu \right\|_{TV}$
- Assumption: π satisfies a Poincaré inequality i.e there exists C_P such that, for any $f \in C^2(\mathbb{R}^d)$ satisfying $\int_{\mathbb{R}^d} f d\pi = 0$, $\int_{\mathbb{R}^d} (\nabla f)^2 d\pi \geq C_P \int_{\mathbb{R}^d} f^2 d\pi$.
- Remark: If U is such that $\langle \nabla U(x), x \rangle \geq L\chi_2 ||x|| \tau_2$ then π satisfies a Poincaré inequality.

Theorem 3

For any $t \in \mathbb{R}_+$ and initial distribution ν_0 such that $\nu_0 \ll \mu$,

$$\|\nu_0 P_t - \mu\|_{TV} \le A e^{-\alpha t} Var_{\mu} (d\nu_0/d\mu)$$

where A and α are explicit constants.

□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ □ ◆ ○ ○ ○ 20/27

Kinetic Langevin 20 /

Log-Sobolev

• Assumption:

- π satisfies a log-Sobolev inequality *i.e.* there exists $C_{LS}>0$ such that, for any continuously differentiable function $f:\mathbb{R}^d\to\mathbb{R}$ satisfying f(x)>0 for any $x\in\mathbb{R}^d$, $\int_{\mathbb{R}^d}f(x)\mathrm{d}x<+\infty$

$$\operatorname{Ent}_{\pi}\left(f\right) \leq C_{LS} \int_{\mathbb{R}^d} \{\left\|\nabla f(x)\right\|^2 / f(x)\} \mathrm{d}\pi(x) \;.$$

- The potential U is infinitely continuously differentiable on \mathbb{R}^d and for any $\alpha \in \mathbb{N}^d$ multi-index, $\sup_{x \in \mathbb{R}^d} |\partial_x^\alpha U(x)| < +\infty$.
- ullet Remark: If U is strongly convex then π satisfies a log-Sobolev inequality.

Log-Sobolev

Theorem 4

For any distribution u_0 such that $\mathrm{d}\nu_0/\mathrm{d}\mu\in\mathrm{C}^{2,+,*}_b(\mathbb{R}^{2d})$ and $t\in\mathbb{R}_+$,

$$\mathsf{KL}(\nu_0 P_t, \mu) \leq \exp\left(-\alpha t\right) \left(\mathsf{KL}(\nu_0, \mu) + \frac{1}{\beta} \int \Phi_2\left(\frac{\mathrm{d}\nu_0}{\mathrm{d}\mu}\right) \mathrm{d}\mu\right) \;,$$

where α is an explicit constant and Φ_2 , β are defined by,

$$\Phi_{2}(f) = \left(\left\| (\nabla_{x} + \kappa_{1} \nabla_{v}) f \right\|^{2} + \left\| \nabla_{v} f \right\|^{2} \right) / f , \qquad \beta = 2(1 + \kappa_{2}^{2} L^{2} + \kappa_{1}^{2} / 2) / (\kappa_{1}^{2} \kappa_{2}) .$$

Kinetic Langevin 22 / 2

Outline

- Motivation and setting
- 2 The Kinetic Langevin algorithm
- 3 Bound distance between semi-group and Discretizetion
- 4 Semi-group convergence
- Convergence

Kinetic Langevin 23 / 27

Convergence

• By the previous section there exist $\varrho \in (0,1)$, such that for any initial distribution ν_0 , there exists $C(\nu_0) < +\infty$ such that,

$$\|\nu_0 P_t - \mu\|_{TV} \le C(\nu_0) \varrho^t$$

Theorem 5

Assume that $\lim_{k\to+\infty}\gamma_k=0$, $\lim_{k\to+\infty}\Gamma_k=+\infty$ and some technical conditions. Then for any $z\in\mathbb{R}^{2d}$

$$\lim_{k \to +\infty} \left\| \delta_z Q_{\gamma}^k - \mu \right\|_{TV} = 0$$

Algorithm complexity

Theorem 6

For all $\varepsilon > 0$, we get $\left\| \delta_z R_{\gamma}^k - \mu \right\|_{TV} \le \varepsilon$ if

$$k > T\gamma^{-1} + 1$$
 and $\gamma \leq \sqrt{\frac{\kappa_1 \varepsilon^2}{4\kappa_2 \overline{D}(z) L^2(T + \overline{\gamma})}} \wedge \overline{\gamma}$,

where

$$T = (\log(\overline{C}(z)) - \log(\varepsilon/2))/(-\log(\varrho)),$$

for some explicit constants $\overline{C}(z)$ and $\overline{D}(z)$.

Kinetic Langevin 25 / 2

Distance between μ_{γ} and μ

• Assumtion: There exist $C<+\infty$, v>0 such that, for any initial distribution $\nu_0,\mu_0,$

$$\|\nu_0 P_t - \mu_0 P_t\|_{TV} \le C e^{-vt} \|\nu_0 - \mu_0\|_{TV}$$
.

Theorem 7

For any $\gamma < \overline{\gamma}$,

$$\|\mu - \mu_{\gamma}\|_{TV} \le \gamma E$$

for some constant E .

Kinetic Langevin 26 / 27

Thank you for your attention.