Preprocessing

- **□** Data Cleaning
 - Missing Values
 - Noisy Data
- **□** Data Integration
 - Data Merging
 - Redundancies
 - Value conflicts

- **□** Data Transformation
 - Normalization
 - Attribute Construction
- **□** Data Reduction
 - Data Cube Aggregation
 - Attribute Subset Selection
 - Principal Components Analysis
 - Multidimensional Scaling
 - Locally Linear Embedding

Problem

Data Inconsistencies

Solution

Approximate the missing data

Use smoothing methods to remove these errors

?

<u>Missing Values</u> => Approximate the missing data

Why

Many data mining algorithms require a complete set of data to run.

How

- 1. Ignore missing values => large amounts of valuable data might be thrown away
- 2. Statistical Measures: Mean Values, Regression, Decision Tree based on other attributes

```
Mean Values
```

```
import numpy as np
revenue=np.array([7,2,6,4,14,np.nan,16,12,14,20,15,7])
profit=np.array([0.15,0.1,0.13,0.15,0.25,0.27,0.24,0.2,0.27,0.44,0.34,0.17])
# fill in mean of other numbers
revenue[np.isnan(revenue)]=int(revenue[~np.isnan(revenue)].mean())
```

Regression

```
from sklearn.linear_model import LinearRegression
revenue1=revenue[~np.isnan(revenue)]
profit1=np.delete(profit, np.argwhere(np.isnan(revenue))) #delete profit of June

lm_all=LinearRegression()
# reshape array into (11,1)
lm_all.fit(np.reshape(revenue1, (len(revenue1), 1)),np.reshape(profit1, (len(profit1),1)))
# x = (y-b)/a
revenue_jun=float((profit[np.argwhere(np.isnan(revenue))]-float(lm_all.intercept_))/float(lm_all.coef_))
# revenue_jun = 13.612104539202202
```

revenue (new)

revenue (old)

Noisy Data => Smoothing methods

Why

Real world data sets often have random error within their values.

How

- 1. **Binning**: A local smoothing method which means it consults only the immediate neighborhood of each data point for the smoothing operation.
- 2. **Regression**: A global method of smoothing where we attempt to find a function which best fits the data set as a whole.

Table 4.1: Example of Binning

1. Binning:

- Smoothing Method:
 - 1. Bin Means
 - 2. Bin Medians
 - 3. Bin boundaries

	partitioning	smoothing by means	smoothing by bin boundaries
bin 1	2, 4, 5, 6, 9, 10	6, 6, 6, 6, 6, 6	2, 2, 2, 2, 10, 10
bin 2	12, 16, 17, 19	16, 16, 16, 16	12, 19, 19, 19
bin 3	23, 26, 27, 28	26, 26, 26, 26	23, 28, 28, 28
bin 4	31, 33, 35	33, 33, 33	31, 31, 35

Noisy Data => Smoothing methods

```
import numpy as np
a=np.array([2,4,5,6,9,10,12,16,17,19,23,26,27,28,31,33,35])
a_split=np.split(a, [6,10,14]) #split a into 4 groups
```

a_split

0	int32	(6,)	[2 4 5 6 9 10]
1	int32	(4,)	[12 16 17 19]
2	int32	(4,)	[23 26 27 28]
3	int32	(3,)	[31 33 35]

1. Bin Means

```
a_median=a_split.copy()
for i in range(len(a_median)): # replaced by median
    median=int(np.median(a_median[i]))
    a_median[i]=np.full((1,len(a_median[i])),median)
ans=np.concatenate((a_median[0], a_median[1], a_median[2], a_median[3]), axis=None).tolist()
#[5, 5, 5, 5, 5, 5, 16, 16, 16, 16, 26, 26, 26, 26, 33, 33, 33]
```

2. Bin Medians

```
a_median=a_split.copy()
for i in range(len(a_median)): # replaced by median
    median=int(np.median(a_median[i]))
    a_median[i]=np.full((1,len(a_median[i])),median)
ans=np.concatenate((a_median[0], a_median[1], a_median[2], a_median[3]), axis=None).tolist()
#[5, 5, 5, 5, 5, 5, 16, 16, 16, 16, 26, 26, 26, 26, 33, 33, 33]
```


Noisy Data => Smoothing methods

```
import numpy as np
a=np.array([2,4,5,6,9,10,12,16,17,19,23,26,27,28,31,33,35])
a_split=np.split(a, [6,10,14]) #split a into 4 groups
```

a_split

0	int32	(6,)	[2 4 5 6 9 10]
1	int32	(4,)	[12 16 17 19]
2	int32	(4,)	[23 26 27 28]
3	int32	(3,)	[31 33 35]

3. Bin boundaries

whenever the target data is extracted from multiple data stores...

Problem

Solution

The data must be merged

Metadata

Redundancies must be removed

Correlation Analysis

Value conflicts must be resolved

Data Transformation

- 1. The data must be merged. => Metadata
- 2. Redundancies must be removed. => Correlation Analysis
- 3. Value conflicts must be resolved. => Data Transformation

```
import numpy as np
import pandas as pd
df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],'value': [1, 2, 3, 5]})
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],'value': [5, 6, 7, 8]})
df_com=df1.merge(df2, left_on='lkey', right_on='rkey')
```

	df1		d	f2			df_	com	
lkey	value		rkey	value		lkey	value_x	rkey	value_y
foo	1		foo	5		foo	1	foo	5
	-					foo	1	foo	8
bar	2		bar	6		foo	5	foo	5
baz	3	+	baz	7	=	foo	5	foo	8
			_			bar	2	bar	6
foo	5		foo	8		baz	3	baz	7

- 1. The data must be merged. => Metadata
- 2. Redundancies must be removed. => Correlation Analysis
- 3. Value conflicts must be resolved. => Data Transformation

```
a=pd.DataFrame({'feature1':[1,2,3,4,5], 'feature2':[2,4,6,8,11]})
corr=np.corrcoef(a['feature1'],a['feature2'])[0,1] #0.9958932064677037=>high
del a['feature1'] # remove 'feature1' or 'feature2'
```


- 1. The data must be merged. => Metadata
- 2. Redundancies must be removed. => Correlation Analysis
- 3. Value conflicts must be resolved. => Data Transformation

```
s1=pd.DataFrame({'ID':[111,555,1000],'price':[31.12,155.58,311.15]}) # TWD
s2=pd.DataFrame({'ID':[111,555,1000],'price':[1,5,10]}) # USD
s2['s2_TWD']=s2['price']*(155.58/5)
```

31 (1 ((D)
ID	price
111	31.12
555	155.58
1000	311.15

c1 (TWD)

s2 (USD => TWD)

ID	price	s2_TWD
111	1	31.116
555	5	155.58
1000	10	311.16

Data Transformation

Why

For data mining algorithms to work efficiently the input data often has to be in a certain format.

How

1. Normalization: Rescales data values to fit into a specified range such as 0.0 to 1.0.

Method:

- Min-max normalization: It will encounter an error if future input falls outside the original data range of the attribute.
- **Z-score normalization**: We do not need to provide the range of the attribute and therefore ensure that all future data will be accepted.

```
df=pd.DataFrame({'sales_num':[10,2,6], 'price':[1000,350,500]})
# Min-max normalization
df['price']=(df['price']-min(df['price']))/(max(df['price'])-min(df['price']))*(1-0)+0 # targeted range=>[0,1]
# Z-score normalization
df['price']=(df['price']-df['price'].mean())/df['price'].std()
```

	df
sales_num	price
10	1000
2	350
6	500

 df (Min-ma)

 sales_num
 price

 10
 1

 2
 0

 6
 0.230769

$$x'_{n,m} = \frac{x_{n,m} - min_m}{max_m - min_m} \cdot (max'_m - min'_m) + min'_m$$

df(Z-score)

sales_num	price
10	1.12631
2	-0.783523
6	-0.342791

$$x'_{n,m} = \frac{x_{n,m} - \mu_m}{\sigma_m}$$

Data Transformation

Why

For data mining algorithms to work efficiently the input data often has to be in a certain format.

How

- 1. Normalization: Rescales data values to fit into a specified range such as 0.0 to 1.0.
- 2. Attribute Construction: New attributes are constructed from given data.

```
df=pd.DataFrame({'ID':[11,22,33], 'promotion1':[0,0,1], 'promotion2':[1,1,1]})
df['promotion_all']=df['promotion1']+df['promotion2']
```

df df (with new attribute) ID promotion1 promotion2 ID promotion1 promotion2 promotion_all 11 11 22 22 33 1 33 1

Why

Data mining on huge databases is likely to take a very long time, making the analysis practically impossible.

How

1. Data: Data Cube Aggregation

2. Feature: Attribute Subset Selection

3. Dimension:

- Principal Components Analysis (Linear)
- Multidimensional Scaling (Manifold)
- Locally Linear Embedding (Manifold)

3-Dimensional Pixel dataset plotted in 3D. Color shows centroid memberships Pixel dataset plotted in 2D, using PCA for dimensionality reduction

Manifold(流形)

Source: https://reurl.cc/5Ek6M

• Data: Data Cube Aggregation

Goal

Data cubes provide efficient organization of summarized information which is the foundation of on-line analytical processing as used in data exploration.

How

- 1. Choose the attribute to be displayed in value.
- 2. Choose a number of attributes according to which the data should be aggregated.
- 3. Choose the level of abstraction for the aggregation and determine data classes accordingly.
- 4. For all possible combination of classes of the dimensions calculate the aggregated value of the displayed

attribute.

	product	year	sales
1		1997	10
1		1998	20
1		1999	30
2		1997	100
2		1998	200
2		1999	300

• Feature: Attribute Subset Selection

Goal

Remove as many of the original attributes as possible, while maintaining its integrity with respect to a given class or concept.

How

- **1. Stepwise forward selection**: Add the best attribute (decided by a given threshold)
- 2. Stepwise backward elimination: Remove the worst attribute(decided by a given threshold)
- 3. Combination of forward selection and backward elimination
- 4. Decision tree induction

Source: https://reurl.cc/jO7Wq

fea_importance

• **Dimension**: Principal Components Analysis

Goal

Maximize the variability along the new coordinate system, thus conserving as much of the variance of the original data with as few dimensions as possible.

How

- 1. Reduce the dimensionality of the data set.
- 2. The data is projected onto a new set of variables, called principal components. These principal components are a linear combination of the original attributes.

• **Dimension**: Multidimensional Scaling

Goal

Deal with data aligned as a multidimensional, which PCA might not to be able to detect the underlying structure of the data at all.

How

Project the original data onto a plane, preserving the distances between all data points as good as possible.

• **Dimension**: Locally Linear Embedding

Why

Experience shows that even the most complex data usually follows some low-dimensional, nonlinear manifold. For classification and comparison tasks it is sufficient to regard only this manifold instead of the whole data set.

How

Determine such a manifold of the data by analyzing its local correlations.

```
from sklearn.datasets import load_digits
from sklearn.manifold import LocallyLinearEmbedding
X, _ = load_digits(return_X_y=True)
X.shape #(1797, 64)
lle = LocallyLinearEmbedding(n_components=2)
X_transformed= lle.fit_transform(X[:100]) #(100, 2)
Source: https://reurl.cc/ylZyE

X (shape: (1797,64))
```

27.2541 -18.3296 29.616 15.5567 26.1865 -35.902 33,6404 16,3893 -6.91638

X_transformed (shape: (100,2))