TD 1 : L'espace vectoriel \mathbb{R}^n

Exercice 1. Dessiner les ensembles suivants, et dire s'il s'agit de sous-espaces vectoriels de \mathbb{R}^2 :

- $B_1 = \{(x, y) \mid x = 1\}$
- $B_2 = \{(x, y) \mid x > y\}$
- $B_3 = \{(x, y) \mid x = 2y\}$
- $B_4 = \{(x, y) \mid x^2 = y\}$
- $B_4 = \{(x, y) \mid xy = 0\}$
- $B_4 = \{(x, y) \mid x^2 + y^2 = 0\}$
- $B_5 = \{(x,y) \mid x \in \mathbb{Q}\}$

Exercice 2. Pour chacune des parties suivantes de \mathbb{R}^3 , préciser (en le justifiant) s'il s'agit d'un sous-espace vectoriel:

- $A_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 5z = 0\}$
- $A_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 5z \ge 0\}$
- $A_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 5z = 4\}$
- $A_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 5z = 0 \text{ et } x y = 0\}$
- $A_5 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 = y^2\}$
- $A_6 = \{(x, y, z) \in \mathbb{R}^3 \mid \max(x, y, z) = 0\}$
- $A_7 = \{(x, y, z) \in \mathbb{R}^3 \mid (x + 2y 5z)^2 + (x y)^2 = 0\}$
- $A_8 = \{(x, y, z) \in \mathbb{R}^3 \mid (x + 2y 5z)(x y) = 0\}$

Exercice 3. Les familles suivantes de vecteurs de \mathbb{R}^2 et \mathbb{R}^3 sont-elles libres ou liés? Justifier.

- 1. $\{(1,1)\}$ 8. $\{(1,0,1), (0,1,0)\}$ 9. $\{(4,2), (2,1)\}$
- 3. $\{(3,2), (1,5)\}$ 10. $\{(1,0,1), (0,1,0), (1,1,1)\}$
- 4. $\{(1,0), (-1,1)\}$ 11. $\{(1,0,0), (1,1,0), (1,1,1)\}$
- 5. $\{(0,0), (1,10)\}\$ 12. $\{(1,0,0), (0,1,0), (0,0,1)\}\$
- 6. $\{(1,2), (\pi,2\pi)\}\$ 13. $\{(1,2,3), (4,5,6)\}\$
- 7. $\{(1,1), (0,1), (1,-1)\}$ 14. $\{(1,0,-2), (0,2,1), (-2,0,4)\}$

Exercice 4. Reprendre les familles de l'exercice 3. Sont-elles des familles génératrices de \mathbb{R}^2 ou \mathbb{R}^3 ? Sont-elles des bases de \mathbb{R}^2 ou \mathbb{R}^3 ?

Exercice 5. Montrer que le vecteur (5,2,1) de \mathbb{R}^3 peut s'exprimer comme combinaison linéaire des vecteurs (1,0,1), (0,1,1) et (1,1,0).

Exercice 6. Soient les vecteurs suivants dans \mathbb{R}^3 :

$$u_1 = (2, 3, -1), \quad u_2 = (1, -1, -2), \quad v_1 = (3, 7, 0), \quad v_2 = (5, 0, -7), \quad v_3 = (0, 0, 1).$$

- Soit F_1 l'espace vectoriel engendré par u_1 et u_2 . Est-ce que v_1, v_2 et v_3 appartiennent à F_1 ?
- Soit F_2 l'espace vectoriel engendré par v_1 et v_2 . Montrer que $F_1 = F_2$.

Exercice 7.

- Montrer que la famille de vecteurs $\{(1,1,1), (-1,1,0), (1,0,-1)\}$ est une base de \mathbb{R}^3 . Calculer les coordonnées des vecteurs (1,0,0), (1,0,1) et (0,0,1) dans cette base.
- Montrer que la famille de vecteurs $\{(1,0,1,0), (1,-1,2,1), (-1,1,-1,-2), (0,-1,-1,1)\}$ est une base de \mathbb{R}^4 . Exprimer les coordonnées du vecteur (1,2,2,3) dans cette base.

Exercice 8. Déterminer une base et la dimension des sous-espaces vectoriels de \mathbb{R}^n suivants:

- $A = \{(x, y) \in \mathbb{R}^2 \mid x 2y = 0\}$
- $B = \{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0 \text{ et } x = y\}$
- $C = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = z\}$
- $D = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = y = z + t \text{ et } x + y z + t = 0\}$

Exercice 9. Soit a un réel. On pose u = (a, 1, 1), v = (1, a, -1) et w = (1, -1, 0).

- 1. Trouver les valeurs de a possibles pour que $\{u, v, w\}$ soit une famille liée, et donner dans ce cas une base de E = Vect(u, v, w).
- 2. Donner une base et la dimension de $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et de $F \cap E$.

Exercice 10. On pose u = (a, b, c), v = (a', b', c') et w = (a'', 0, 0). Montrer que $\{u, v, w\}$ est une base si et seulement si a'', b' et c sont non nuls.