常用的连续傅里叶变换对及其对偶关系

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(0) = \int_{-\infty}^{+\infty} f(t) dt$$

	连续傅里叶	·变换对	对偶的连续傅里叶变换对				
重要	连续时间函数 f(t)	傅里叶变换 F(Φ)	连续时间函数 f(t)	傅里叶变换 F(ω)	重要		
1	沖激 <i>S(t)</i>	1	直流 1	$2\pi\delta(\omega)$	1		
√	冲激偶 δ'(t)	jω	t	2πj δ'(ω)			
	$\mathcal{S}^{(n)}(t)$	(j Ø)"	t"	$2\pi j^n \mathcal{S}^{(n)}(\omega)$			
√	阶跃 u(t)	$\pi \delta(\omega) + \frac{1}{j \omega}$	$\frac{1}{2}\mathcal{S}(t) - \frac{1}{2\mathrm{rij}t}$	<i>u</i> (ω)			
	单位斜变 tu(t)	$j\pi\delta'(\omega) - \frac{1}{\omega^2}$					
1	符号 $\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$	$\frac{2}{i\omega}$	$\frac{1}{\pi t}, t \neq 0$	$F(\omega) = \begin{cases} -j, & \omega > 0 \\ 0, & \omega = 0 \\ j, & \omega < 0 \end{cases}$			
1	冲激延时 $\delta(t-t_0)$	e ^{−jωt} ₀	复指数信号 e ^{jø} øl	$2\pi\delta(\omega-\omega_0)$	~		
1	余弦 cos(aot)	$\pi[\mathcal{S}(\omega+\omega_0)+\mathcal{S}(\omega-\omega_0)]$	$\delta(t+t_{o})+\delta(t-t_{o})$	$2\cos(t_0\omega)$			
1	正弦 $sin(o_0t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$S(t+t_0) - S(t-t_0)$	$j2\sin(t_0\omega)$			
1	门脉冲 $G_{\epsilon}(t) = \begin{cases} 1, & t < \epsilon/2 \\ 0, & t \ge \epsilon/2 \end{cases}$	抽样函数 $\tau Sa(\frac{\omega \tau}{2})$	抽样脉冲 $\frac{\omega_c}{\pi}$ Sa $(\omega_c t)$	低道 $G_{2\omega_{\varepsilon}}(\omega) = \begin{cases} 1, & \omega < \omega_{\varepsilon} \\ 0, & \omega \ge \omega_{\varepsilon} \end{cases}$	~		
1	三角 $f(t) = \begin{cases} 1- t /\tau, t < \tau \\ 0, t \ge \tau \end{cases}$	$\tau \operatorname{Sa}^2(\frac{\omega \tau}{2})$	$\frac{\omega_{\rm c}}{2\pi} {\rm Sa}^2(\frac{\omega_{\rm c}t}{2})$	$F(\omega) = \begin{cases} 1 - \omega /\omega_{\epsilon}, \omega < \omega_{\epsilon} \\ 0, & \omega \ge \omega_{\epsilon} \end{cases}$			
4	单边指数 e ^{-at} u(t), a > 0	$\frac{1}{a+j\omega}$	$\frac{1}{\tau - jt}$	$2\pi e^{-\omega}u(\omega), \tau > 0$			
1	双边指数 e ^{-a} , a > 0	$\frac{2a}{a^2 + \omega^2}$	$\frac{\tau}{t^2 + \tau^2}$	$\pi e^{-\epsilon \omega }, \tau > 0$			
√	$e^{-at}\cos(\omega_0 t)u(t), a>0$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$					
√	$e^{-at}\sin(\omega_0 t)u(t), a>0$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$					
	指数脉冲 te ^{-at} u(t), a > 0	$\frac{1}{(a+j\omega)^2}$	$\frac{1}{(\tau - jt)^2}, \tau > 0$	2πωe ^{-ω} u(ω)			
	$\frac{t^{k-1}e^{-at}}{(k-1)!}u(t), a > 0$	$\frac{1}{(a+j\omega)^k}$					
1	时域周期冲激序列 $\delta_{T_1}(t) = \sum_{n=-\infty}^{+\infty} \delta(t-nT_1) \leftrightarrow \omega_1 \sum_{n=-\infty}^{+\infty} \delta(\omega-n\omega_1) = \delta_{\omega_1}(\omega)$ 頻域周期冲激序列						
√	钟形脉冲 e ^{-(-1/2)2}	钟形脉冲 $\sqrt{\pi}\tau e^{-(\frac{\omega t}{2})^2}$					
√	矩形调幅 $\cos \omega_{i} f \left[u(i + \frac{\epsilon}{2}) - u(i - \frac{\epsilon}{2}) \right]$	$\frac{\tau}{2} \left[Sa \frac{(\omega + \omega_0)\tau}{2} + Sa \frac{(\omega - \omega_0)\tau}{2} \right]$					
√	$f(t) = \sum_{i=0}^{+\infty} F(n\omega_1)e^{jn\omega_i t}$	$F(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} F(n\omega_1) \delta(\omega - n\omega_1)$	$F(n\omega_1) = \frac{1}{\pi} F_0(\omega)$ $f_0(t)$	$= f(t) \left[u(t + \frac{T_1}{2}) - u(t - \frac{T_1}{2}) \right] \leftrightarrow F$	· (ω)		

连续傅里叶变换性质及其对偶关系

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(0) = \int_{-\infty}^{+\infty} f(t) dt$$

连续傅里叶变换对				对偶的连续傅里叶变换对			
重要	名称	连续时间函数 $f(t)$	傅里叶变换 F(Φ)	名称	连续时间函数 $f(t)$	傅里叶变换 F(ω)	重要
1	线性	$Of_1(t) + \beta f_1(t)$	$\alpha F_1(\omega) + \beta F_2(\omega)$				
1	尺度变换	$f(at), a \neq 0$	$\frac{1}{ a }F(\frac{\omega}{a})$	尺度 + 时移	$f(at-b), a \neq 0$	$\frac{1}{ a }F(\frac{\omega}{a}) e^{-j\omega\frac{b}{a}}$	4
√	对偶性	$f(t) \leftrightarrow F(\omega)$		互易性	$F(t) \leftrightarrow 2\pi f(-\omega)$		1
1	时移	$f(t-t_0)$	$F(\varpi)\mathrm{e}^{-\mathrm{j}\omega\iota_0}$	频移	$f(t)e^{\mathbf{j}\boldsymbol{\omega}_0t}$	$F(\omega - \omega_{\scriptscriptstyle 0})$	1
4	时域 微分	f'(t)	j ω F (ω)	频域 微分	(-jt)f(t)	F'(ω)	J
7	时域 积分	$f^{(-1)}(t) = \int_{-\infty}^{t} f(\tau) d\tau$	$\pi F(0)S(\omega) + \frac{F(\omega)}{j\omega}$	频域 积分	$\pi f(0)\delta(t) + \frac{f(t)}{-jt}$	$\int_{-\infty}^{\infty} F(\sigma) d\sigma$	
4	时域 卷积	f(t) * h(t)	$F(\omega)H(\omega)$	频域 卷积	f(t)p(t)	$\frac{1}{2\pi}F(\omega)^*P(\omega)$	1
	反褶 共轭		F(-ω) 频域反褶 F*(-ω) 共轭取反	奇偶	f(t) 为实函数	$F(\omega) = R(\omega) + jX(\omega)$ 实部 $R(\omega)$ 为偶函数 虚部 $X(\omega)$ 为奇函数	
1	对称 性	f*(-t) 共轭取反	F (-ω) 共轭収及 F*(ω) 共轭	虚 实 性	$f_{\epsilon}(t) = \text{even}\{f(t)\}$ 实偶	$F(\omega) = R(\omega)$ 实偶	1
				$f_o(t) = \operatorname{odd}\{f(t)\}$ 实奇	$F(\omega)=jX(\omega)$ 虚奇		
	希尔伯 特变换	f(t) = f(t)u(t)	$F(\omega) = R(\omega) + jI(\omega)$ $R(\omega) = I(\omega) * \frac{1}{\pi \omega}$				
1	时域 抽样	$f(t)\sum_{n=-\infty}^{+\infty}\mathcal{S}(t-nT_{s})$	$\frac{1}{T_{\rm s}} \sum_{n=-\infty}^{+\infty} F(\omega - n\omega_{\rm s})$	频域 抽样	$\frac{1}{\omega_{\rm s}} \sum_{n=-\infty}^{+\infty} f(t - nT_{\rm s})$	$F(\omega)\sum_{n=-\infty}^{+\infty}\delta(\omega-n\omega_{\epsilon})$	
1	帕筆 瓦 2						

双边拉普拉斯变换对与双边z变换对的类比关系

$$F(s) = \int_{-\infty}^{+\infty} f(t) e^{-st} dt$$

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n}$$

	双边拉普拉其	听变换对	双边z变换对				
重要	连续时间函数 $f(t)$	象函数 F(s) 和收敛域	离散时间序列 x(n)	象函数 X(z) 和收敛域	重要		
1	$\delta(t)$	1,整个s平面	$\delta(n)$	1,整个z平面	4		
	n 阶导数 $\delta^{\scriptscriptstyle(n)}(t)$	s",有限 s 平面	k 阶后向差分 $\nabla^k \mathcal{S}(n)$	$\frac{(z-1)^{\lambda}}{z^{\lambda}}, z > 0$			
1	u(t)	$\frac{1}{s}$, $\sigma > 0$	u(n)	$\frac{z}{z-1}, z > 1$	1		
1	tu(t)	$\frac{1}{s^2}, \sigma > 0$	nu(n)	$\frac{z}{(z-1)^2}, z > 1$	1		
1	$t^*u(t), n \in \mathbb{Z}^+$	$\frac{n!}{s^{n+1}}, \sigma > 0$	$\frac{n!}{(n-k)!k!}u(n)$	$\frac{z}{(z-1)^{k+1}}, z > 1$	1		
98	-u(-t)	$\frac{1}{s}$, $\sigma < 0$	-u(-n-1)	$\frac{z}{z-1}, z < 1$			
	-tu(-t)	$\frac{1}{s^2}$, $\sigma < 0$	-nu(-n-1)	$\frac{z}{(z-1)^2}, z < 1$			
10	$-t^n u(-t), n \in \mathbb{Z}^+$	$\frac{n!}{s^{n+1}}$, $\sigma < 0$	$-\frac{n!}{(n-k)!k!}u(-n-1)$	$\frac{z}{(z-1)^{k+1}}, z < 1$			
1	$e^{-at}u(t)$	$\frac{1}{s+a}$, $\sigma > -a$	a''u(n)	$\frac{z}{z-a}, z > a $	4		
,	te ^{-at} u(t)	$\frac{1}{(s+a)^2}, \sigma > -a$	$na^{n-1}u(n)$	$\frac{z}{(z-a)^2}, z > a $	4		
4			$(n+1)a^nu(n)$	$\frac{z^2}{(z-a)^2}, z > a $	1		
7	$t^n e^{-at} u(t), n \in \mathbb{Z}^+$	$\frac{n!}{(s+a)^{n+1}}, \sigma > -a$	$\frac{(n+1)!}{(n+k-1)!k!}a^{k}u(n)$	$\frac{z^{k+1}}{(z-a)^{k+1}}, z > a $	4		
73	$-e^{-at}u(-t)$	$\frac{1}{s+a}, \sigma < -a$	$-a^n u(-n-1)$	$\frac{z}{z-a}$, $ z < a $			
	$-te^{-at}u(-t)$	$\frac{1}{(s+a)^2}, \sigma < -a$	$-(n+1)a^nu(-n-1)$	$\frac{z^2}{(z-a)^2}, z < a $			
	$-t^n e^{-at} u(-t), n \in \mathbb{Z}^+$	$\frac{n!}{(s+a)^{n+1}}, \sigma < -a$	$-\frac{(n+1)!}{(n+k-1)!k!}a^{n}u(-n-1)$	$\frac{z^{k+1}}{(z-a)^{k+1}}, z < a $			
1	$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2 + \omega_0^2}, \sigma > 0$	$\cos(\omega_0 n)u(n)$	$\frac{z(z-\cos\omega_0)}{z^2-2z\cos\omega_0+1}, z >1$	٧		
1	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}, \sigma > 0$	$\sin(\omega_0 n)u(n)$	$\frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}, z > 1$	1		
1	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}, \sigma > -a$	$a^n \cos(\omega_0 n) u(n)$	$\frac{z(z-a\cos\omega_0)}{z^2-2az\cos\omega_0+a^2}, z > a $	1		
1	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}}, \sigma > -a$	$a^n \sin(\omega_0 n) u(n)$	$\frac{az\sin\omega_0}{z^2 - 2az\cos\omega_0 + a^2}, z > a $	1		
.83	$e^{-4 }, a > 0$	$\frac{-2a}{s^2 - a^2}, -a < \sigma < a$	$a^{[n]}$, $ a < 1$	$\frac{(a-a^{-1})z}{(z-a)(z-a^{-1})}, a < z < a^{-1} $			
	$e^{-a \nmid l} \operatorname{sgn}(t), a > 0$	$\frac{2s}{s^2 - a^2}$, $-a < \sigma < a$	$a^{ n }\operatorname{sgn}(n), a < 1$	$\frac{z^2-1}{(z-a)(z-a^{-1})}, a < z < a^{-1} $			