Buck Converter using voltage mode control

Presented to: Dr. A.V. Raviteja

MOHD ANAS KHAN MANISH PANT

Parameters of Buck Converter

Name of parameter	Value of parameter
V_S	30 V
f_{sw}	20~kHz
L	10 mH
С	$1000~\mu F$
R	100 Ω
V_o	15 V

Fang, J. & Tsai, Sheng-Hong & Yan, Jun-Juh & Chen, P. & Guo, Shu-Mei. (2021). Realization of DC-DC Buck Converter Based on Hybrid H2 Model Following Control. IEEE Transactions on Industrial Electronics. PP. 1-1. 10.1109/TIE.2021.3062268.

Schematic of simulation model

Voltage mode controlled buck converter

Controller

Output Voltage and Ref Voltage

Transfer functions

Converter transfer function:

$$G1(s) = \frac{3000000}{s^2 + 10s + 1000000}$$

Controller transfer function:

$$G2(s) = \frac{s^2 + 2900s + 1800000}{90s + 60000}$$

Open loop transfer function:

Bode plots

Bode plot of system with controller

Nyquist plot

Transfer function with esr

$$G2(s) = \frac{s^2 + 2900s + 1800000}{90s + 60000}$$

$$\frac{V_o}{d} = \frac{V_{in}(1 + s * r * C) * G_c}{L * C * \left(s^2 + s\left(\frac{1}{R * C} + \frac{r}{L}\right) + \frac{1}{L * C}\right)}$$

$$M(s) = \frac{100 * s^3 + 29030 * s^2 + 1.802 * 10^8 * s}{3 * s^3 + 102030 * s^2 + 2.903 * 10^8 * s + 1.802 * 10^{11}}$$

Root locus

Output Voltage waveforms for different values of Ref Voltage

Output voltage variation with resistance

Output voltage variation with inductor resistance

Inductor and output current during short circuit condition

EXPLANATIONS OF QUESTION ASKED DURING PRESENTATION

- Q.) What is the reason behind increase in rise time with increase in ESR of inductor?
- A.) An increase in ESR increases the value of damping ratio which in turn reduces the value of rise time according to the following formula.

$$t_r = \frac{\pi - \theta}{w_n \sqrt{1 - \zeta^2}}$$

Thank You