DNA	 ২০০টি বৃত্তাকার DNA থাকতে পারে।
હ	 70 S রাইবোসোম থাকে।
রাইবোসোম	 • নিজয় এই DNA না থাকলে ক্লোরোপ্লাস্টের পক্ষে ফটোসিনথেসিস প্রক্রিয়া সম্পন্ন করা সম্ভব হতো না।

রাসায়নিক গঠন ঃ

- শুষ্ক ওজনের ১০-২০% লিপিড এবং ৩৫-৫৫% প্রোটিন।
- প্রোটিনের মধ্যে ৮০% হচ্ছে অদ্রবণীয়, ২০% দ্রবণীয়।
- ক্লোরোপ্লাস্টে ৭৫%, ক্লোরোফিল-a ও ২৫% ক্লোরোফিল-b রয়েছে।

ক্লোরোপ্লাস্টের কাজ ঃ

- (i) সালোকসংশ্লেষণ প্রক্রিয়ায় শর্করা জাতীয় খাদ্য প্রস্তুত করা ক্লোরোপ্লাস্টের প্রধান কাজ।
- (ii) সৌরশক্তিকে জৈবিকশক্তিতে রূপান্তর করা এবং বায়ুর CO_2 কে কোয়ান্টোসোমে সংবন্ধন করা।
- (iii) ক্লোরোপ্লাস্টের প্রয়োজনে প্রোটিন, নিউক্লিক এসিড তৈরি করা।
- (iv) ফটোফসফোরাইলেশন অর্থাৎ সূর্যালোকের সাহায্যে ADP-কে ATP-তে রূপান্তর করা।
- (v) ফটোরেসপিরেশন করা।
- (vi) সাইটোপ্লাজমকি ইনহেরিটেন্সে সাহায্য করা।

Good to know:

মাইটোকন্ড্রিয়া ও প্লাস্টিড এর মধ্যে পার্থক্য ঃ

পার্থক্যের বিষয়	মাইটোকন্ড্ৰিয়া	প্লাস্টিড
১। রঞ্জক পদার্থ	রঞ্জক পদার্থ অনুপস্থিত।	রঞ্জক পদার্থ উপস্থিত।
২। অবস্থান	উদ্ভিদ ও প্রাণী উভয় কোষেই	শুধুমাত্র উদ্ভিদ কোষেই
	থাকে।	থাকে।
৩। অন্তঃপর্দা	অন্তঃপর্দা ভেতরের দিকে অসংখ্য	অন্তঃপর্দায় কোনো ভাঁজ
	ভাঁজযুক্ত, এদের ক্রিস্টি বলে।	থাকে না, থাইলাকয়েড
		বিদ্যমান।
৪। প্রকোষ্ঠ	এটি অসম্পূর্ণ প্রকোষ্ঠে বিভক্ত।	এতে ৩ ধরনের প্রকোষ্ঠ
		শনাক্তযোগ্য।
ে। কাজ	শক্তি উৎপন্ন করা এর প্রধান কাজ।	খাদ্য তৈরি করা এর প্রধান
		কাজ।
৬। খাদ্য সঞ্চয়	কোনো খাদ্য সঞ্চয় করে না।	লিউকোপ্লাস্ট খাদ্য সঞ্চয়
		করে।
৭। রাসায়নিক	প্রধান রাসায়নিক উপাদান প্রোটিন,	প্রধান রাসায়নিক উপাদান
উপাদান	লিপিড ও নিউক্লিক অ্যাসিড।	প্রোটিন, লিপিড,
		ক্লোরোফিল ও এনজাইম।

Nice to know:

মাইটোকদ্রিয়া ও ক্লোরোপ্লাস্টের মধ্যে সাদৃশ্য ঃ

- (i) মাইটোকন্ড্রিয়া ও ক্লোরোপ্লাস্ট দুটিই পর্দাবেষ্টিত কোষীয় অঙ্গাণু।
- (ii) দুটি অঙ্গাণু নিজস্ব প্রতিরূপ সৃষ্টি করতে পারে।
- (iii) দুটি অঙ্গাণুতেই নিজম্ব রাইবোসোম ও DNA থাকে।
- (iv) দুটি অঙ্গাণুতে ETC বর্তমান এবং ATP এর উৎপাদন ঘটে।
- (v) দুটি অঙ্গাণুই একপ্রকার শক্তিকে অন্য প্রকার শক্তিতে রূপান্তরিত করে।

লিউকোপ্লাস্ট, ক্রোমোপ্লাস্ট ও ক্লোরোপ্লাস্ট এর তুলনামূলক পার্থক্য

	লিউকোপ্লাস্ট 	ক্রোমোপ্লাস্ট	ক্লোরোপ্লাস্ট
১। বর্ণ	এরা বর্ণহীন	এরা রঙিন	এরা সবুজ
২। অবস্থান	মূল, ভূ-নিমুস্থ কাভ	উদ্ভিদের যেসব অঙ্গ	উদ্ভিদের সবুজ অঙ্গ
	প্রভৃতি যেসব অঙ্গে	বর্ণময় যেমন- ফুলের	যেমন- পাতা, ফুলের
	সূর্যের আলো পৌছায়	পাপড়ি, রঙিন ফল ও	সবুজ বৃতি ও কচি
	না সেসব অঙ্গের	বীজ, গাজরের মূল	কান্ডে ক্লোরোপ্লাস্ট
	কোষে লিউকোপ্লাস্ট	ইত্যাদিতে	থাকে।
	থাকে।	ক্রোমোপ্লাস্ট থাকে।	
৩। রঞ্জক	এতে কোনো ধরনের	এতে ক্যারোটিন,	এতে ক্লোরোফিল
	পিগমেন্ট থাকে না।	জ্যান্থোফিল ইত্যাদি	নামক সবুজ রঞ্জক
		পিগমেন্ট থাকে।	পদার্থ থাকে।
৪। উৎপত্তি		সূর্যালোকের	সূর্যালোকের
	উপস্থিতিতে	উপস্থিতিতে	অনুপস্থিতিতে
	ক্রোমোপ্লাস্ট ও	ক্লোরোপ্লাস্ট হতে	লিউকোপ্লাস্টে
	ক্লোরোপ্লাস্টে পরিণত	ক্রোমোপ্লাস্টে পরিণত	পরিণত হয় অর্থাৎ
	र ग्न ।	হয়।	সবুজ অঙ্গ বর্ণহীন
			হয়ে যায়।
৫। কাজ	খাদ্য সঞ্চয় করে	ফুলের পরাগায়ন এবং	সালোকসংশ্লেষণ
	রাখা এবং শর্করা	ফল ও বীজ বিস্তারের	প্রক্রিয়ার মাধ্যমে
	থেকে শ্বেতসার	জন্য কীটপতঙ্গ ও	শর্করা জাতীয় খাদ্য
	জাতীয় খাদ্য তৈরি	প্রাণিকুলকে আকৃষ্ট	প্রস্তুত করা এর প্রধান
	করা এর প্রধান	করা এর প্রধান কাজ।	কাজ।
	কাজ।		

Good to know:

- (i) কোষরসের pH ক্ষারীয় প্রকৃতির হলে ফুলের রং নীল হয়।
- (ii) pH এসিড প্রকৃতির হলে ফুলের রং লাল হয়।
- (iii) pH নিউট্রাল হলে ফুলের রং বেগুনী বা কালচে নীল বর্ণ হয়

সেন্ট্রিয়োল

- ⇒ নিউক্লিয়াসের কাছে অবস্থিত, স্ব-প্রজনন ক্ষমতা সম্পন্ন।
- ⇒ নামকরণ ঃ Theodor Bovery
- ⇒ বিস্তৃতি ঃ আদিকোষ , ডায়াটম , ঈস্ট ও আবৃতবীজী উদ্ভিদে এটি অনুপস্থিত।
- ⇒ একজোড়া সেন্ট্রিয়োলকে একসাথে ডিপ্লোসোম বলে।
- ⇒ ভৌত গঠন ঃ
 - নলাকার, ০.১৫-০.২৫ μm ব্যাসবিশিষ্ট।
 - তিনটি অংশ, যথা ঃ
 - (i) প্রাচীর বা সিলিন্ডার ওয়াল
 - (ii) ত্রয়ী অনুনালিকা বা ট্রিপলেটস
 - (iii) যোজক বা লিংকার
- ⇒ সেন্ট্রিয়োল প্রাচীর ৯টি ত্রয়ী অণুনালিকা নিয়ে গঠিত। প্রত্যেক অণুনালিকায় ৩টি করে উপনালিকা থাকে।
- ⇒ এতে DNA ও RNA থাকে না।

রাসায়নিক গঠন ঃ

P	A	L
প্রোটিন	ATP	লিপিড

সেন্ট্রিয়োলের কাজ ঃ

- (i) কোষ বিভাজনের সময় মাকুতন্তু গঠন করা।
- (ii) কোষ বিভাজনে সাহায্য করে।
- (iii) সিলিয়া ও ফ্ল্যাজেলা সৃষ্টি করা।
- (iv) শুক্রাণুর লেজ গঠন করা।

প্যাঁচ লাগে নাকি ?

সেন্ট্রোস্ফিয়ার = সেন্ট্রিয়োলের চারপাশে অবস্তিত গাঢ় তরল।

সেন্ট্রিয়োল = সিলিন্ডার ওয়াল + ট্রিপলেটস + লিংকার।

সেন্ট্রোসোম = সেন্ট্রোক্ষিয়ার + সেন্ট্রিয়োল

ডিপ্লোসোম = দুটি সেন্ট্রিয়োল একসাথে

কোষের ফ্যাক্টরিতে ঘোরাঘুরি ঃ

প্রোটিন ফ্যাক্ররি = রাইবোসোম

কার্বোহাইড্রেট ফ্যাক্টরি = গলগি বডি

লিপিড ফ্যাক্টরি = মাইটোকদ্রিয়া

Power House = Mitochondria

= ক্লোরোপ্লাস্ট কোষের রান্নাঘর

কোষীয় কঙ্কাল

- ⇒সকল প্রকৃত কোষের সাইটোপ্লাজমীয় অঙ্গাণু গুলোর অন্তর্বর্তী স্থানে কতগুলো সূত্রক সম্মিলিতভাবে জালিকাকার ন্যায় গঠন তৈরি করে। এদেরকে কোষীয় কঙ্কাল বা সাইটোস্ফেলিটন বলা হয়।
- ⇒কোল্টজফ সাইটোক্ফেলিটন শব্দটি প্রথম ব্যবহার করেন।
- ⇒সাধারণত প্রোটিন নির্মিত ৩ ধরনের সূত্রক নিয়ে কোষীয় কক্ষাল গঠিত ঃ

- ১। **মাইক্রোটিবিউলস** | রবার্ট ও ফ্রাঙ্কি আবিষ্কার করেন।
 - ডাইমেরিক প্রোটিনে ১৩টি প্রোটোটিউবিউলস নিয়ে গঠিত।
 - এতে α−β টিউবিউলিন প্রোটিন অণু থাকে।
 - অবস্থান ঃ ফ্লাজেলা, সিলিয়ার উপগাঠনিক উপাদান হিসেবে অবস্থান করে, সেন্ট্রোমিয়ারের সাথে সংযুক্ত থাকে, স্পিডল ফাইবারে, সেন্ট্রিয়োল ও বেসাল বডিতে থাকে।

	 কাজ ঃ 	
	(i) ফ্লাজেলা, সিলিয়ার বিচলন।	
	(ii) কোস বিভাজনের সময় মাকুযন্ত্র গঠন।	
	, ,	
	(iii) কোষের দৃঢ়তা প্রদান।	
	(iv) যোগাযোগ ও পরিবহনে সাহায্য করে।	
	(v) মাইক্রোফাইব্রিলের বিন্যাস নির্দেশ করে।	
	(vi) কোষ প্রাচীর গঠনেও সাহায্য করে।	
২। মাইক্রোফিলামেন্ট	প্যালেভিজ প্রথম পর্যবেক্ষণ করেন।	
৩। অ্যাকটিন	 অ্যাকটিন ও মায়োসিন প্রোটিন দিয়ে গঠিত। 	
ফিলামেন্ট	 কাজ ঃ 	
(10-10-	(i) কোষের আকৃতি দান ও যান্ত্রিক দৃঢ়তা প্রদান।	
	(ii) সাইটোপ্লাজমীয় চলন, ফ্যাগোসাইটোসিস,	
	পিনোসাইটোসিস নিয়ন্ত্রণ।	
	(iii) সাইটোকাইনেসিস ঘটিয়ে কোষ বিভাজনে	
	সহয়তা।	
	(iv) কোষীয় অঙ্গাণুর অবস্থান পরিবর্তনে অংশগ্রহণ	
	(v) ক্রোমোসোমের বিপরীত মেরুতে চলনে সাহায্য	
	করা।	
৪। ইন্টারমিডিয়েট	চার ধররের ঃ	
ফিলামেন্ট	(a) কেরাটিন	
	(b) ল্যামিনিন	
	(c) নিউরোফিলামেন্ট	
	(d) ডাইমেন্টিন	
	 কাজ ঃ 	
	(i) কোষের আকৃতি ও যান্ত্রিক দৃঢ়তা প্রদান।	
	(ii) কোষের অন্যান্য তন্তুকে যথাস্থানে রাখতে সহায়তা	
	করণ।	

<u>পারঅক্সিসোম</u>

- ⇒ এক আবরণী বিশিষ্ট
- 🖈 প্রাণীর কিডনি ও লিভার কোষে অধিক থাকে।
- ⇒ অপর নাম ঃ মাইক্রোসোম
- 🖈 ক্রিস্টিয়াল দ্যা দুবে আবিষ্কার করেন।

⇒ কাজ ঃ

- (i) Catalase এ এনজাইমের সাহায্যে H_2O_2 কে ভেঙ্গে H_2O ও O_2 এ রূপান্তর এবং কোষকে রক্ষা করা।
- (ii) কোষে O_2 এর ঘনত্ব নিয়ন্ত্রণ।
- (iii) NAD, DNA, RNA এর N₂ বেস ভাঙতে ও পুনঃউৎপাদনে ভূমিকা রাখে।

গ্রাইঅক্সিসোম

- ⇒ আবিষ্কারক

 R.W. Briedenback.
- ⇒ উৎপত্তি ঃ এন্ডোপ্লাজমিক রেটিকুলামের সিস্টার্নি
- ➡ সূত্রাকার ছত্রাক, ঈস্ট, ও তৈলবীজের কোষ এবং বীজের লিপিড সঞ্চয়ী কোষে উপস্থিত।

⇒ কাজঃ

- (i) বীজের অঙ্কুরোদগমকালে লিপিড ভেঙ্গে গ্রহণোপযোগী চিনিতে পরিণত করা।
- (ii) লিপিড বিপাক নিয়ন্ত্রণ।
- (iii) গ্লাইঅক্সালেট চক্রের মাধ্যম শ্বসন বস্তু জারিত করে শক্তি উৎপাদন।
- (iv) অ্যামিনো এসিডের বিপাক।

কোষ গহ্বর

- 🖈 টনোপ্লাস্ট নামক পাতলা পর্দা দারা আবৃত থাকে।

⇒ কাজ ঃ

- (i) কোষরস ধারণ।
- (ii) প্রয়োজনীয় বর্জ্য পদার্থ ধারণ।
- (iii) কোষের অভ্যন্তরের pH রক্ষা।
- (iv) কোষের ভিতরে পানির চাপ রক্ষা।

<u>নিউক্লিয়াস</u>

- ⇒ আবিষ্কারক ও নামকরণ ঃ রবার্ট ব্রাউন
- ⇒ নামের উৎপত্তি ঃ ল্যাটিন NUX (nut) থেকে Nucleus শব্দের উৎপত্তি।
- ⇒ বিশেষ নাম ঃ কোষের মন্তিষ, প্রাণকেন্দ্র, কেন্দ্রিকা।
- ⇒ সংখ্যা ও বিষ্ণৃতি ঃ

নিউক্লিয়াস সংখ্যা	উদাহরণ
অনুপস্থিত	আদিকোষ, RBC, সিভকোষ, ভেসেল, অণুচক্রিকা, লেন্স
১ টি	সাধারণ প্রকৃতকোষ
২ টি	প্রাণীর যকৃতকোষ
বহু	<u>Vaucheria</u> , <u>Botrydium</u> , <u>Sphaeroplea</u> , <u>Peneicillum</u> , শস্যকোষ, <u>Mucor</u> , <u>Rhizopus</u> , লেটেক্স

Good to know:

- ⇒ একাধিক নিউক্লিয়াস বিশিষ্ট উদ্ভিদকোষ → সিনোসাইট
- ⇒ একাধিক নিউক্লিয়াস বিশিষ্ট প্রাণীকোষ → প্লাজমোডিয়াম
- ⇒ আকার ও আয়তন ঃ
 - নিউক্লিয়াস কোষের ১০-১৫% স্থান দখল করে।
 - শুক্রাণুর প্রায় ৯০% ই নিউক্লিয়াস।

একটি আদর্শ নিউক্লিয়াসের গঠন

১। নিউক্লিয়ার এনভেলাপ	 দিন্তরী লিপোপ্রোটিন নির্মিত। নিউক্লিয়ার রক্ত্র এর ব্যাস 9nm. মোট ৮টি প্রেটিন গ্রানিউল দ্বারা ছিদ্রটি নিয়ন্ত্রিত।
২। নিউক্লিয়োপ্লাজম / ক্যারিওলিক্ষ	 নিউক্লিয়াসের অভ্যন্তরস্থ্ প্রোটোপ্লাজমিক রস। ক্রোমাটিন জালিকা ধারণ করে। নিউক্লিয়োলাস ধারণ করে। এনজাইমের কার্যকলাপের মূলক্ষেত্র হিসেবে কাজ করে।
৩। নিউক্লিয়োলাস	 বিজ্ঞানী ফন্টানা সর্বপ্রথম এটি দেখতে পান এবং ব্যোমান নামকরণ করেন। প্রোটিন, RNA ও যৎসামান্য DNA দিয়ে গঠিত। তিনটি অংশে ভাগ করা হয়ঃ তন্তুময়, দানাদার ও ম্যাট্রিক্স। RNA ও প্রোটিন সংশ্লেষ করে। নিউক্লিওটাইডের ভাভার হিসেবে কাজ করে।
৪। নিউক্লিয়ার রেটিকুলাম / ক্রোমাটিন	 বংশগত বৈশিষ্টের ধারক ও বাহক। ক্রোমাটিন তন্তু = DNA + হিস্টোল ও নন হিস্টোন প্রোটিন।

Good to know:

- ⇒ প্রধান খনিজ ক্রিস্টাল হলো ক্যালসিয়াম অক্সালেট, সূঁচের মতো এদের অবস্থানকে বলা হয় র্যাফাইড।
- 🖈 আঙ্গুরের থোকার মতো $CaCO_3$ এর ক্রিস্টালকে বলা হয় সিস্টোলিথ।

Do you know?

সাইটোপ্লাজম ও নিউক্লিয়োপ্লাজমের মধ্যে পার্থক্য

পার্থক্যের বিষয়	সাইটোপ্লাজম	নিউক্লিয়োপ্লাজম
প্রধান অংশ	প্রোটোপ্লাজমের প্রধান অংশ	নিউক্লিয়াসের প্রধান অংশ
	অর্থাৎ কোষের ধাত্র বিশেষ।	অর্থাৎ নিউক্লিয়াসের ধাত্র
		বিশেষ।
অবস্থান	প্লজামামেমব্রেন, নিউক্লিয়ার	নিউক্লিয়ার এনভেলপ দারা
	এনভেলপের মাঝখানে	আবৃত অবস্থায়
	থাকে।	নিউক্লিয়াসের ভেতর
		থাকে।
নিউক্লিক এসিড	থাকে না	থাকে
প্রোটিন ও রাইবোসোম	উপস্থিতি বেশ কম	উপস্থিতি অনেক বেশি
শ্বসনিক এনজাইম	থাকে	থাকে না
রঞ্জক	থাকে	থাকে না
কাজ	কোষীয় অঙ্গাণু ধারণ করে	নিউক্লিয়োলাস ও
	এবং কোষীয় বিপাক ক্রিয়ার	ক্রোমাটিন ধারণ করে এবং
	সকল কাঁচামাল সরবরাহ	DNA তৈরির কাাঁচামাল
	করে।	সরবরাহ করে।

Need to know:

নিউক্লিয়াস ও নিউক্লিয়োলাসের মধ্যে পার্থক্য

পার্থক্যের বিষয়	নিউক্লিয়াস	নিউক্লিয়োলাস
অবস্থান	সাইটোপ্লাজমে অবস্থিত।	নিউক্লিয়োপ্লাজমে অবস্থিত।
ঝিল্লী	দিন্তর বিশিষ্ট ঝিল্লী দারা আবদ্ধ।	কোনো ঝিল্লী দ্বারা আবদ্ধ নয়।
ক্রোমাটিন জালিকা	ক্রোমাটিন জালিকা বা ক্রোমোসোম থাকে।	এতে কোনো ক্রোমাটিন জালিকা বা ক্রোমোসোম থাকে না।
কাজ	কোষের সকল কাজ নিয়ন্ত্রণ করে।	RNA ও প্রোটিন সংশ্লেষণে সাহায্য করে।
প্রোটিন সংশ্লেষ	প্রোটিন সংশ্লেষে অংশ নেয় না।	প্রোটিন ও RNA সংশ্লেষে অংশ নেয়।
বংশগতি	বংশগতির গুণাবলি বহন করে।	বংশগতির সাথে কোনো সম্পর্ক নেই।

কোমোসোম

সংজ্ঞাগত বৈশিষ্ট্য ঃ নিউক্লিয়াসের মধ্যে অবস্থিত, অনুলিপন ক্ষমতাসম্পন্ন, রং ধারণকারী, নিউক্লিয়ো প্রোটিন দারা গঠিত, বংশগতীয় উপাদান, মিউটেশন, প্রকরণ প্রভৃতি কাজে ভূমিকা পালন করে।

বিজ্ঞানীদের অবদান ঃ

বিজ্ঞানী	অবদান
Karl Nageli	সর্বপ্রথম উদ্ভিদকোষে ক্রোমোসোম প্রত্যক্ষ করেন।
Walter Flemming	ক্রোমাটিন নামকরণ করেন।
W. Waldeyer	ক্রোমোসোম নামকরণ করেন।
Sutton & Boveri	ক্রোমোসোমকে বংশগতীয় বৈশিষ্টের ধারক ও বাহক
	বলেন।
Theophilus	মানুষের ক্রোমোসোম সংখ্যা প্রকাশ করেন।
Painter	

সংখ্যা ঃ

প্রজাতিভেদে ক্রোমোসোম সংখ্যা ঃ ২-১৬০০

Ophioglossum reticulatum (ফার্ণবর্গীয় উদ্ভিদের মধ্যে সর্বোচ্চ)

এ ক্রোমোসোম সংখ্যা : ১২০০

Haplopappus gracilis (পুষ্পক উদ্ভিদে সর্বনিম্ন) এ ক্রোমোসোম সংখ্যা : 8

Poa littarosa (পুষ্পক উদ্ভিদে সর্বোচ্চ সংখ্যক)

এ ক্রোমোসোম সংখ্যা : ৫০৬-৫৩০

উচ্চতর জীবে ক্রোমোসোম সংখ্যা ঃ ২-৪০

গোলকৃমির (প্রাণীতে সর্বনিম্ন) ক্রোমোসোম সংখ্যা ঃ ২

Aulacantha sp (প্রাণীতে সর্বোচ্চ) এর ক্রোমোসোম সংখ্যা ঃ ১৬০০

কয়েকটি জীবের ক্রোমোসোম সংখ্যা (2n):

উদ্ভিদের নাম	বৈজ্ঞানিক নাম	ক্রোমোসোম সংখ্যা (2n)
ধান	Oryza sativa	24
গম	Triticum aestivum	42
ভূটা	Zea mays	20
পিঁয়াজ	Allium cepa	16
শসা	Cucumis sativus	14
গোলআলু	Solanum tuberosum	48
টমেটো	Lycopersicon esculentum	24
তামাক	Nicotonia tabacum	28
পেঁপে	Carcia papaya	18
বাঁধাকপি	Brassica oleracea	18
পাট	Corchorus capsularis	14
মূলা	Raphanus sativus	18
চীনাবাদাম	Arachis hypogaea	40
যব	Hordeum vulgare	14
কলা	Musa paradisiaca	14

প্রাণীর নাম	বৈজ্ঞানিক নাম	ক্রোমোসোম সংখ্যা (2n)
মানুষ	Homo sapiens	46
গরু	Boss indica	60
ছাগল	Capra hircus	60
কবুতর	Culumba livia	80
সোনাব্যাঙ	Rana pipiens	26
খরগোশ	Oryctolagus cuniculus	44
গরিলা	Gorilla gorilla	48
গিনিপিগ	Cavia porcellus	64
গৃহমাছি	Musca domestica	12
ফলের মাছি	Drosophila melanogaster	08
কিউলেক্স মশা	Culex pipiens	06
গোলকৃমি	Ascaris megalocephalus	2
রেশম পোকা	Bombys mori	46
ইঁদুর	Mos musculus	40
হাইড্রা	Hydra vulgaris	32

আয়তন ও আকৃতি ঃ

- প্রজাতি অনুসারে ক্রোমোসোমের দৈর্ঘ্য ৩.৫-৩০ মাইক্রোমিটার ও ব্যাস ০.২-২ মাইক্রোমিটার।
- মানবদেহের ক্রোমোসোমের গড় দৈর্ঘ্য ৪-৬ মাইক্রোমিটার।
- <u>Drosophila</u> মাছির ৩ মাইক্রোমিটার ও ভূটার ৮-১২ মাইক্রোমিটার।

<u>অবস্থান ঃ</u> নিউক্লিয়াসে।

ক্রোমোসোমরে ভৌত গঠন ঃ

ক্রোমাটিন	 এটি DNA প্রোটিন যৌগ ও ক্রোমোসোমের মূল উপাদান। 	
	 নিউক্লিওসোম = হিস্টোন প্রোটিন + DNA । 	
	 হেটারোক্রোমাটিন ঃ ক্রোমাটিনের যে অংশ অধিক কুন্ডলিত থাকে। 	
	 ইউক্রোমাটিন ঃ ক্রোমাটিনের যে অংশ কম কুন্ডলিত থাকে। 	
<u>কোমাটিড</u>	• মেটাফেজ পর্যায়ে ক্রোমোসোমকে লম্বালম্বি ভাবে দুটি অংশে	
	বিভক্ত দেখা যায় যার প্রতিটিকে ক্রোমাটিড বলা হয়।	
	 ক্রোমাটিড একটি একক DNA অণু দ্বারা গঠিত। 	
সেন্ট্রোমিয়ার	 প্রতিটি ক্রোমোসোমের একটি অরঞ্জিত অঞ্চল। 	
	• সেন্ট্রোমিয়ারের অবস্থানে ক্রোমোসোমে যে খাঁজ তৈরি হয়	
	তাকে মূখ্যকুঞ্চন বলে।	
বাহু	 সেন্ট্রোমিয়ারের দুপাশের ক্রোমোসোমাল অংশকে বাহু বলা হয়। 	
	 প্রতিটি ক্রোমোসোমের দুটি বাহু থাকে। 	
কাইনেটোকোর	 কাইনেটোকোর-এ মাইক্রোটিউবিউলস যুক্ত থাকে। 	
<u>কোমোমিয়ার</u>	মায়োটিক প্রোফেজ এর সূচনালগ্নে ক্রোমোসোমের দেহে যেসব	
/Idiomere	ক্ষুদ্র ক্ষুদ্র গুটিকা দেখা যায়।	
	 প্যাকাইটিন উপদশায় এদের অবস্থানও সংখ্যা স্পষ্ট দেখা যায়। 	
গৌণ কুঞ্জন	 একে "নিউক্লিয়োলাস পুনর্গঠন অঞ্চল" বলা হয়। 	
স্যাটেলাইট	ক্রোমোসোমের প্রান্তের দিকের এ গোলাকৃতি অঞ্চলকে স্যাটেলাইট	
	এবং স্যাটেলাইট বহনকারী ক্রোমোসোম স্যাট ক্রোমোসোম বলে।	
	 ছোলার ১নং ক্রোমোসোমে স্যাটেলাইট থাকে। 	
	 SAT নামক সেকেন্ডারি কুঞ্চন নিউক্লিওলাস গঠনে সাহায্য করে। 	

টেলোমিয়ার

- বিজ্ঞানী এইচ. জে. মুলার এর মতে, ক্রোমোসোমের উভয় প্রান্তের বিশেষ বৈশিষ্ট্যপূর্ণ অঞ্চল হলো টেলোমিয়ার।
- টেলোমারেজ এনজাইম মানুষের জরা রোধ করে।
- ক্রোমোসোমের মাথায় DNA এর repeated sequence হলো টেলোমিয়ার।

Nice to know:

হেটারোক্রোমাটিন	<u>ইউক্রোমাটিন</u>
স্থির নিউক্লিয়াসে গাঢ়ভাবে এবং	স্থির নিউক্লিয়াসে হালকাভাবে এবং
বিভাজিত নিউক্লিয়াসে হালকাভাবে রঞ্জিত	বিভাজিত নিউক্লিয়াসে গাঢ়ভাবে রঞ্জিত
থাকে	থাকে
DNA এর পরিমাণ খুবই কম	DNA এর পরিমাণ অনেক বেশি
এই অংশে ক্রসিংওভার ঘটে না	এই অংশে ক্রসিংওভার ঘটে
ন্তির নিউক্লিয়াসে প্যাঁচানো অবস্থায় থাকে	ন্তির নিউক্লিয়াসে প্রসারিত অবস্থায় থাকে
জেনেটিক পদার্থ বহন করে না	জেনেটিক পদার্থ বহন করে
প্রজননিকভাবে নিষ্ক্রিয়	প্রজননিকভাবে সক্রিয়

Need to know:

সেন্টোমিয়ার	ক্রোমোমিয়ার
১। সব ধরনের প্রকৃত ক্রোমোসোমেই	১। সাধারণত প্রকৃত কোষের মাইটোসিস
দেখা যায়।	ক্রোমোসোমে দেখা যায় না ,
	মায়োসিস প্রোফেজ-১ পর্যায়ে
	লেপ্টোটিন) দেখা যায়।
২। রঞ্জিত ক্রোমোসোমে অরঞ্জিত খাঁজ	২। এরা ক্রোমোসোমে ডার্ক ব্যাভ
বিশেষ।	হিসেবে অবস্থিত।
৩। প্রতিটি ক্রোমোসোমের সাধারণত	৩। প্রতিটি ক্রোমোসোমে লম্বালম্বিভাবে
একটি থাকে	অবস্থিত এবং অসংখ্য থাকে।
৪। RNA অল্প কুন্ডলিত থাকে।	৪। DNA অধিক কুডলিত থাকে, ফলে
	দানার মতো দেখায়।
৫। সেন্ট্রোমিয়ারে সাধারণত কোনো জিন	ে। প্রতিটি ক্রোমোমিয়ারে এক বা
থাকে না।	একাধিক জিন থাকে।

Good to know:

সেন্ট্রোসোম ও সেন্ট্রামিয়ার এর মধ্যে পার্থক্য ঃ

পার্থক্যের বিষয়	সেন্ট্রোসোম	সেন্ট্রোমিয়ার
১। অবস্থান	প্রধানত প্রাণীকোষে থাকে।	উদ্ভিদ ও প্রাণীকোষের
		ক্রোমোসোমের দুই বাহুর
		সংযোগস্থলে থাকে।
২। অঙ্গাণু	এটি একটি সাইটোপ্লাজমীয়	এটি একটি নিউক্লিও বস্তু।
	অঙ্গাণু।	
৩। মাকুতন্তু	মাকুতন্তু গঠনে সহায়তা করে।	মাকুতন্তুর সাথে
		ক্রোমোসোমকে সংযুক্ত রাখে।
৪। গঠন	RNA ও প্রোটিন দিয়ে গঠিত।	DNA ও প্রোটিন দিয়ে এটি
		গঠিত।
৫। সেন্ট্রিয়োল	সেন্ট্রিয়োল থাকে।	সেন্ট্রিয়োল অনুপস্থিত।

<u>ক্রোমোসোমের প্রকারভেদ</u>

বৈশিষ্ট্য অনুসারে ক্রোমোসোম ২ প্রকার ঃ

	দৈহিক বৈশিষ্ট্য নিয়ন্ত্রণকারী জিন বহনকারী ক্রোমোসোম।
২। সেক্স ক্রোমোসোম	জীবের লিঙ্গ নির্ধারণ করে।

সেন্ট্রোমিয়ারের অবস্থান অনুযায়ী চার ধরণের ক্রোমোসোম পাওয়া যায় ঃ

মধ্যকেন্দ্রিক/ মটাসেন্ট্রিক	ইংরেজি ' V ' অক্ষরের মতো।
উপ-মধ্যকেন্দ্রিক/ সাব-মেেটাসেন্ট্রিক	ইংরেজি ' L ' অক্ষরের মতো।
উপ-প্রান্তকেন্দ্রিক/অ্যাক্রোসেন্ট্রিক	ইংরেজি ' J ' অক্ষরের মতো।
প্রান্কেন্দ্রিক/টেলোসেন্ট্রিক	ইংরেজি ' I ' অক্ষরের মতো।

সেন্ট্রোমিয়ারের সংখ্যা অনুযায়ী ৫ প্রকার ঃ

মনোসেন্ট্রিক	অধিকাংশ প্রজাতিতে মনোসেন্ট্রিক ক্রোমোসোম দেখা যায়।
ডাইসেন্ট্রিক	দুই সেন্ট্রোমিয়ার বিশিষ্ট ক্রোমোসোমকে ডাইসেন্ট্রিক ক্রোমোসোম
	বলে। যেমনঃ গম।
পলিসেন্ট্রিক	কলা গাছের (<u>Musa</u> <u>sp</u>) কয়েকটি প্রজাতিতে পলিসেন্ট্রিক
	ক্রোমোসোম দেখা যায়।
ডিফিউজড	ক্রোমোসোমের সুনির্দিষ্টস্থানে সুস্পষ্টভাবে কোনো সেন্ট্রোমিয়ার থাকে না।
অ্যাসেন্ট্রিক	এক্ষেত্রে ক্রোমোসোমের কোনো সেন্ট্রোমিয়ার থাকে না।

ক্রোমোসোমের রাসায়নিক গঠন ঃ

Need to know:

- ক্রোমোসোমের বিভিন্ন উপাদানের মধ্যে DNA এর পরিমাণ শতকরা প্রায় ৪৫ ভাগ।
- ক্রোমোসোমে DNA ও হিস্টোন প্রোটিনের অনুপাত ১ ঃ ১।
- ক্রোমোসোমে প্রোটিনের অনুপাত শতকরা ৫৫ ভাগ।

ক্রোমোসোমের কাজ ঃ

- ১) বংশগতির ধারক ও বাহক।
- ২) কোষ বিভাজনে প্রত্যক্ষ ভূমিকা পালন করে।
- ৩) DNA বা জিন অণু ধারণ করে।
- 8) mRNA এর মাধ্যমে প্রোটিন সংশ্লেষণ
- ৫) জীবের লিঙ্গ নির্ধারণ
- ৬) বংশগতির বাহক জিন জীবের ব্লু প্রিন্ট হিসেবে কাজ করে।
- ৭) ক্রোমোসোমের সংখ্যা ও গঠনের পরিবর্তন অভিব্যক্তির মূল উপাদান
 হিসেবে কাজ করে।

Do you know?

<u>B কোমোসোম ঃ</u> সাধারণ কেরিওটাইপ এর অতিরিক্ত ক্রোমোসোম হিসেবে উদ্ভিদ, প্রাণী, ছত্রাকের কোনো কোনো প্রজাতিতে B ক্রোমোসোম থাকে। B ক্রোমোসোম ক্ষুদ্র ও নন ভাইটাল ক্রোমোসোম, হেটারোক্রোমাটিন গুণ সম্পন্ন এবং অল্প জিন বহনকারী। মেন্ডেলের সূত্র অনুসরণ করে না। এরা কতকটা আত্মকেন্দ্রিক বংশগতীয় পদার্থ। ভূটাতে B ক্রোমোসোম থাকে।

নিউক্লিক এসিড

নিউক্লিক এসিড হলো N_2 ঘটিত ক্ষারক, পেন্টোজ শুগার এবং ফসফোরিক এসিডের সমন্বয়ে গঠিত এসিড যা জীবের বংশগত ধারাসহ সকল কার্যক্রম নিয়ন্ত্রণ করে।

বিশেষ নাম ঃ মাস্টার মলিকিউল

আবিষ্কার ও নামকরণ ঃ

- Friedrich Miescher ক্ষতস্থানের পুঁজের WBC এর নিউক্লিয়াস থেকে একটি রাসায়নিক বস্তুকে পৃথক করেন এবং "নিউক্লিন" নামকরণ করেন।
- অল্টম্যান "নিউক্লিক এসিড" নামকরণ করেন।
- Albert Kossel নিউক্লিক এসিডে দু'ধরণের N₂ বেস-পিউরিন ও পাইরিমিডিন এবং শুগার, ফসফোরিক এসিড শনাক্ত করেন।
- Lavine ১৯২১ সালে DNA ও RNA নামক দু'ধরনের নিউক্লিক এসিড
 আবিষ্কার করেন।

নিউক্লিক এসিডের মূল উপাদান ঃ

৩। ফসফোরিক এসিড ঃ নিউক্লিক এসিডে নাইট্রোজেনের পরিমাণ ১৫% এবং ফসফরাসের পরিমাণ ১০%।

Nice to know:

<u>ক্ষারসমূহের নামকরণের উৎস ঃ</u>

- অ্যাডিনিন ও থাইমিন থাইমাস গ্ল্যান্ড থেকে
- সাইটোসিন → সাইটো (যার অর্থ Cell) থেকে
- গুয়ানোসিন → গুয়ানো (বাঁদুড় বা সীবার্ড এর পড়ন্ত মল) থেকে

Need to know:

পিউরিন ও পাইরিমিডিনের মধ্যকার পার্থক্য ঃ

পিউরিন	পাইরিমিডিন
১। দুই রিং দারা গঠিত।	১। এক রিং দারা গঠিত।
২। সাধারণ সংকেত : $C_5H_4N_4$	২। সাধারণ সংকেত : $C_4H_4N_2$
৩। নিউক্লিক এসিডে দুই ধরণের	৩। নিউক্লিক এসিডে ৩ ধরনের
পিউরিন থাকে : এডিনিন $(A),$	পাইরিমিডিন থাকে; সাইটোসিন
গুয়ানিন (G)	(C), থাইমিন (T) [শুধু DNA
, ,	তে প্রাপ্ত], ইউরাসিল (U) [শুধু
	RNA তে প্রাপ্ত],
৪। পিউরিনগুলোকে	৪। পাইরিমিডিনগুলোকে
anticlockwise নাম্বারিং করা	clockwise নাম্বারিং করা হয়।
হয়।	

নিউক্লিওসাইড ও নিউক্লিওটাইড এর মধ্যকার সম্পর্ক ঃ

সহজ কথায় ঃ নিউক্লিওটাইড থেকে ফসফেট গ্রুপকে সাইড করলেই (পৃথক করলে) পাওয়া যাবে নিউক্লিওসাইড।

<u>নিওক্লিওটাইডের কাজ ঃ</u>

- (i) DNA ও RNA এর কাঠামো গঠন।
- (ii) মধ্যবর্তী বিপাকে NAD^+ এবং $NADP^+$ সাহায্য করে।
- (iii) প্রোটিন সংশ্লেষণে GTP সাহায্য করে।
- (iv) শ্বসনে ATP সাহায্য করে।
- (v) ফসফোলিড সংশ্লেষণে (CTP) সাহায্য করে।

Need to know:

Deoxyribonucleic Acid

- অ্যাকোনিম ঃ DNA
- বিশেষ নাম ঃ জীবের বংশগত বৈশিষ্ট্যের ধারক ও বাহক, জীবনের আণবিক ভিত্তি, মাস্টার মলিকিউল।
- পরিমাণ ঃ মানুষের ডিপ্লয়েড কোষে ৫-৬ পিকোগ্রাম DNA থাকে।
- একজন প্রাপ্তবয়য় মানুষের দেহে ১০০ গ্রাম DNA থাকে।

ভৌত গঠন

- Robert Feulgen, DNA এর রঞ্জন পদ্ধতি উদ্ভাবন করেন।
- DNA তে সমপরিমাণ A ও T এবং সমপরিমাণ G ও C থাকে। একে Chargaff's rule বলে।
- ১৯৫৩ সালে Watson ও Crick, DNA অণুর একটি ভৌত
 মডেল উপস্থাপন করেন।

Watson ও Crick প্রদত্ত DNA এর Double Helix মডেল ঃ

- **১.** DNA অণু দ্বিসূত্রক।
- সূত্র দুটি সমদূরত্বে পরষ্পরের বিপরীতমুখী।
- ৩. একটি সূত্রের অ্যাডিনিন দুইটি হাইড্রোজেন বভ দ্বারা অপর সূত্রের থাইমিনের সাথে যুক্ত থাকে A = T. একটি সূত্রের গুয়ানিন তিনটি হাইড্রোজেন বভ দ্বারা অপর সূত্রের সাইটোসিনের সাথে যুক্ত থাকে C ≡ G.
- 8. ডাবল হেলিক্স প্রতিটি প্যাঁচ বা ঘূর্ণনের দৈর্ঘ্য 34 Å.
- ৫. একটি পূর্ণ ঘূর্ণনে 10 জোড়া মনোনিউক্লিওটাইড থাকে। তাই প্রতিটি নিউক্লিওটাইডের দূরত্ব 3.4 Å.
- ৬. ডাবল হেলিক্স এর ব্যাস 20 Å.
- ৭. প্রতিটি প্যাঁচে হাইড্রোজেন বন্ড সংখ্যা 25 টি।
- ৮. DNA এর আণবিক ওজন 10^6 - 10^9 .
- ৯. ক্ষারগুলো শুগারের ১নং কার্বনের সাথে যুক্ত থাকে।
- **১০.** ফসফেট অণু একদিকে পেন্টোজ শুগার এর ৫নং কার্বনের সাথে এবং অপরদিকে পাশের পেন্টোজ শুগার এর ৩নং কার্বনের সাথে যুক্ত থাকে।

DNA এর কাজ ঃ

- ক্রোমোসোমের গাঠনিক উপাদান।
- ২. বংশগতির আণবিক ভিত্তি।
- জীবের সকল বৈশিষ্ট্যের ধারক ও নিয়য়্রক।
- 8. বৈশিষ্ট্যসমূহ বংশপরম্পরায় স্থানান্তর।
- ৫. জীবের যাবতীয়় বৈশিষ্ট্যের প্রকাশ।
- ৬. জীবের সকল শারীরতাত্ত্বিক ও জৈবিক কার্যক্রমের নিয়ন্ত্রক।
- ৭. পরিবৃত্তির ভিত্তিম্বরূপ।
- ৮. হেলিক্সের কোনো অংশে গোলযোগ দেখা দিলে DNA নিজেই তা মেরামত করতে সক্ষম।
- ৯. DNA প্রতিলিপন করা এবং প্রজাতি শনাক্তকরণে ভূমিকা রাখে।

DNA এর জৈবিক তাৎপর্য বা গুরুত্ব ঃ

- ১. কোষ বিভাজনের সময় DNA এর এক নির্ভুল প্রতিলিপি সৃষ্টি হয়।
- ২. DNA কোষের জন্য নির্দিষ্ট প্রকারের প্রোটিন সংশ্লেষ করে।
- ৩. DNA বংশগতির সব ধরনের জৈবিক সংকেত বহন করার ক্ষমতা রাখে।
- 8. DNA এর গঠন অত্যন্ত স্থায়ী এবং মিউটেশন ছাড়া এর কোনো পরিবর্তন হয় না।
- ৫. জীবকোষের জৈবিক সংকেত প্রেরক হচ্ছে ${
 m DNA}$ ।
- ৬. কোনো কারণে DNA অণুর গঠনে কোনো পরিবর্তন হলে পরিবৃত্তির উদ্ভব হয়। আর পরিবৃত্ত হলো বিবর্তনের মূল উপাদান।

Ribonucleic Acid

- অ্যাক্রোনিম ঃ RNA
- অবস্থান ও বিস্তৃতি ঃ সকল জীবকোষে RNA থাকে।
- RNA এর ৯০% থাকে সাইটোপ্লাজমে ও ১০% থাকে নিউক্লিয়াসে।
- ব্যাকটেরিয়া ও কিছু ভাইরাসেও RNA উপস্থিত।

•

RNA এর ভৌত গঠন ঃ

- একসূত্রক চেইন।
- RNA এর গঠনে একাধিক U আকৃতির ফাঁস পাওয়া যায়। একে হেয়ারপিন লুপ বলে।

প্রকারভেদ ঃ গঠন ও কাজের ভিত্তিতে ৫ প্রকার

প্রকারভেদ	গঠন ও বৈশিষ্ট্য	কাজ
১। ট্রান্সফার	কোষের প্রায় ১৫ ভাগ RNA বা tRNA	প্রোটিন
RNA	 প্রতিটি কোষে ৩১-৪২ ধরণের tRNA থাকে। 	সংশ্লেষণের সময়
বা tRNA	 সবচেয়ে ক্ষুদ্রাকার RNA ও ওজন ২৫,০০০ ডাল্টন ক্লোভার লিফ বা লবঙ্গপত্র মডেল অনুযায়ী tRNA তে ৫টি বাহু ও ৪টি লুপ থাকে। ৫টি বাহু হল ঃ (i) অ্যামিনো এসিড বাহু (ii) T বাহু (iii) D বাহু (iv) অ্যান্টিকোডন বাহু (v) অতিরিক্ত বাহু উৎপত্তি ঃ DNA থেকে 	জেনেটিক কোড অনুয়ায়ী অ্যামিনো এসিডকে mRNA অণুতে স্থানান্তর করা।
২। বার্তাবহ	কোষের মোট RNA এর ৫-১০% হলো	প্রোটিন
RNA বা mRNA	mRNA অত্যন্ত ক্ষণস্থায়ী আণবিক ওজন ৫-২০ লাখ।	সংশ্লেষণের বার্তা নিউক্লিয়াস থেকে সাইটোপ্লাজমে বহন করে।
৩। রাইবো- সোমাল RNA বা rRNA	 রাইবোসোমের প্রধান গাঠনিক উপাদান। কোষের সব RNA এর ৮০-৯০% ই rRNA সর্বাপেক্ষা স্থায়ী ও অদ্রবণীয় 	রাইবোসোম গঠনে অবদান রাখে।
8। বংশগতীয় RNA বা gRNA	কিছু ভাইরাসদেহে বংশগতীয় বস্তু হিসেবে কাজ করে। যেমন ঃ TMV কখনো দ্বিসূত্রক হতে পারে (রিওভাইরাস)	প্রোটিন তৈরি ও বংশগতীয় উপাদান হিসেবে কাজ করে।
৪। মাইনর RNA বা miRNA	 এরা কোষে বিভিন্ন এনজাইমের সাথে মিশে এনজাইমের কাঠামো দান করে। RNA এর মধ্যে এনজাইমের বৈশিষ্ট্য থাকায় "রাইবোজাইম" নামে অভিহিত করা হয়। 	বিভিন্ন ধরণের এনজাইমের কাঠামো দান ও এনজাইম হিসেবে কাজ করে।

Good to know:

mRNA ও t RNA এর মধ্যকার পার্থক্য

mRNA	tRNA
১। একসূত্রক, সামান্য ভাঁজযুক্ত	১। প্রাথমকিভাবে একসূত্রক তবে
হলেও দ্বিসূত্রক অবস্থা গঠন করে না।	ভাঁজযুক্ত হয়ে এবং পরিপূরক
এতে কোনো ফাঁস তৈরি হয় না।	বেসগুলো যুক্ত হয়ে কোনো কোনো
এরা ৫'ও ৩' প্রান্ত দুইদিকে অবস্থান	অংশ গৌণভাবে দ্বিসূত্রক হয়। এতে
করে।	একাধিক ফাঁস থাকে। এদের ৫′ ও
	৩´ প্রান্ত কাছাকাছি অবস্থান করে।
২। এরা নিউক্লিয়াসে সৃষ্টি হয়ে	২। এরা নিউক্লিয়াসে সৃষ্টি হয়ে
নিউক্লিয়াস ও সাইটোপ্লাজমে অবস্থান	সাইটোপ্লাজমে অবস্থান করে।
করে।	
৩। অপেক্ষাকৃত বড়।	৩। আকারে বেশ ছোট।
৪। এর কোডিং অঞ্চলে কোডন	৪। এতে কোডন থাকে না বরং
থাকে।	একটি অ্যান্টিকোডন থাকে।

Need to know:

DNA ও RNA এর মধ্যকার পার্থক্য

বৈশিষ্ট্য	DNA	RNA
১। ভৌত গঠন	দ্বিসূত্রক , প্যাঁচানো বা ঘুরানো	একসূত্রক শিকলের ন্যায়
	সিঁড়ির মতো।	
২। রাসায়নিক	(i) এতে থাকে ডি-	(i) এতে থাকে রাইবোজ
গঠন	অক্সিরাইবোজ শু্যগার এবং	শুগার এবং
	(ii) DNA -এর পাইরিমিডিনে	(ii) RNA -এর
	থাইমিন ও সাইটোসিন বেস	পাইরিমিডিনে ইউরাসিল
	থাকে।	ও সাইটোসিন বেস
		থাকে।
৩। প্রকার	DNA -অণুর কোনো প্রকারভেদ	কাৰ্যগত দিক থেকে RNA ৫
	নেই। কাৰ্যগত দিক হতে DNA	প্রকার। যথা- tRNA, rRNA,
	-একই রকম হয়।	mRNA, gRNA, মাইনর
		RNA I
৪। উৎপত্তি	অনুলিপির মাধ্যমে নতুন DNA	নতুনভাবে RNA সৃষ্টি হয়।
	সৃষ্টি হয়।	কোনো অনুলিপন হয় না।
৫। অবস্থান	প্রধানত ক্রোমোসোম থাকে।	ক্রোমোসোম , সাইটোপ্লাজম ,
	সামান্য পরিমাণ মাইটোকন্ড্রিয়া	রাইবোসোম ও
	এবং ক্লোরোপ্লাস্টেও থাকে।	নিউক্লিয়োলাসে থাকে।
৬। প্রধান কাজ	প্রধার কাজ বংশগতির ধারক, বাহক	প্রোটিন সংশ্লেষ করা।
	ও নিয়ন্ত্রক হিসেবে কাজ করা।	
৭। বংশগতি	DNA বংশগত চরিত্র বহন	ভাইরাল RNA ছাড়া
	করে।	বংশগত চরিত্র বহন করে না।
৮। সংখ্যা	এতে নিউক্লিয়োটাইডের সংখ্যা	এতে নিউক্লিয়োটাইডের
	অনেক বেশি।	সংখ্যা অনেক কম।
৯। অতিবেগুনী	অধিক পরিমাণে অতিবেগুনী রশ্মি	তুলনামূলক কম অতিবেগুনী
রশ্মি	শোষণ করে।	রশ্মি শোষিত হয়।
১০। আণবিক	এদের আণবিক ওজন দশ লক্ষ	এদের আণবিক ওজন কয়েক
ওজন	হতে বহু কোটি ডাল্টন পর্যন্ত হয়।	লক্ষের বেশি হয় না।

DNA এর প্রতিরূপ সৃষ্টি

প্রক্রিয়াটির নাম ঃ DNA Replication প্রতিলিপন বা দ্বিতন

সংঘটনের সময় ঃ কোষচক্রের S ধাপে।

বিজ্ঞানীদের অবদান ঃ

বিজ্ঞানী	অবদান
লেভিয়েস্থান ও ক্রেন	DNA প্রতিলিপনের অনুকল্প প্রস্তাব করেন।
	(i) সংরক্ষণশীল অনুকল্প
	(ii) অর্ধ-সংরক্ষণশীল অনুকল্প
	(iii) বিচ্ছুরণশীল অনুকল্প
স্টেন্ট	"অর্ধ-সংরক্ষণশীল" শব্দটি প্রথম প্রয়োগ করেন।
মেসেলসন স্টাহ্ল	E.coli তে অর্ধ-সংরক্ষণশীল অনুকল্পটি প্রমাণ
	করেন।
সুয়েকা	মানব হেলা কোষে অর্ধ-সংরক্ষণশীল পদ্ধতিটি প্রমাণ
	করেন।
সাইমন	<u>Chlamydomonas</u> শৈবালে অর্ধ-সংরক্ষণশীল
	পদ্ধতি প্রমাণ করেন।

DNA Replication এর জন্য প্রয়োজনীয় উপাদান ঃ

- (i) একটি ছাঁচ
- (ii) অসংখ্যা নিউক্লিওটাইড ট্রাইফসফেট (dATP, dGTP, dTTP, dCTP)
- (iii) রেপ্লিকেশন কমপ্লেক্স বা রেপ্লিসোম, যার প্রধান এনজাইম DNA পলিমারেজ

Need to know:

রেপ্লিকেশন কমপ্লেক্সের প্রধান উপাদান ঃ

উপাদান	DNA রেপ্লিকেশনে কাজ
(i) টপোআইসোমারেজ	DNA অণুকে অতিমাত্রায় প্যাঁচানো অবস্থা থেকে মুক্ত
	করে থাকে।
(ii) DNA হেলিকেজ	রেপ্লিকেশন ফর্কে DNA ডাবল হেলিক্স প্যাঁচগুলো
	খুলে দেয়।
(iii) DNA পলিমারেজ	নিউক্লিয়োটাইড অণু যুক্ত করে পরিপূরক স্ট্র্যান্ডে
	শিকল গঠন করে থাকে। DNA প্রুফ রিডিং করে।
(iv) সিঙ্গেল স্ট্র্যান্ড	DNA অণুর একক স্ট্র্যান্ডে সংযুক্ত হয় যাতে এরা
বাইভিং প্রোটিন	পুনরায় দ্বি-তন্ত্রী অবস্থায় ফিরে না আসে।
(SSBP)	
(v) লাইগেজ	ওকাজাকি খন্ডকে পরিপূরক স্ট্র্যান্ডে যুক্ত করে।
(vi) প্রাইমেজ	RNA প্রাইমারকে স্ট্র্যান্ডের প্রান্তে যুক্ত করে।

DNA অণুর রেপ্লিকেশন ধাপসমূহ ঃ

গুরুত্বপূর্ণ তথ্য ঃ

DNA			
আদিকোষ	প্রকৃতকোষ		
• DNA বৃত্তাকার	DNA সূত্রাকার লম্বা		
কোনো প্রান্ত বা মাঝ নেই	২টি প্রান্ত থাকে		
যেকোনো জায়গায় প্রতিলিপন শুরু	DNA এর প্রতিলিপন প্রতি মিনিটে		
হয়।	৫০০-৫০০০ পর্যন্ত বেসপেয়ার যুক্ত		
• ব্যাকটেরিয়ার বৃত্তাকার DNA	হয়।		
প্রতিলিপনে প্রতি মিনিটে ১০ লাখ	`		
পর্যন্ত বেসপেয়ার যুক্ত হয়।	একসাথে প্রতিলিপন শুরু হয়।		

- অনুলিপনের সূচনা বিন্দুকে অরবিন্দু বলে
- DNA প্রতিলিপনের নতুন স্ট্র্যান্ড সর্বদা ৫' ৩' অভিমুখী হয়ে বৃদ্ধিপ্রাপ্ত হয়।
- DNA অনুলিপনের জন্য বিভিন্ন পর্যায় প্রায় ৩০ ধরণের এনজাইম প্রয়োজন পড়ে।
- লিডিং সূত্র ঃ পুরাতন হেলিক্সের ৩′ থেকে ৫′ এর দিকে অবিচ্ছিন্নভাবে যে প্রতিলিপন ঘটে।
- ল্যাগিং সূত্র ঃ পুরাতন হেলিক্সের ৫ থেকে ৩ এর দিকে বিচ্ছিন্নভাবে যে প্রতিলিপন ঘটে।
- DNA অণুর অনুলিপনে ল্যাগিং সূত্রের খন্ড খন্ড বিচ্ছিন্ন অংশকে Okazaki খন্ড বলে।

DNA Proofreading এবং DNA মেরামত ঃ

- UV ray, বিষাক্ত পদার্থ, কারসিনোজেনিক পদার্থ ইত্যাদি দ্বারা DNA এর ক্ষত হতে পারে।
- Mismatch এর কারণে কোলন ক্যান্সার হয়ে থাকে।
- Xeroderma Pigmentosum নামক এক প্রকার চর্মরোগ হয়ে থাকে।
- DNA পলিমারেজ I, DNA পলিমারেজ II এবং কিছু প্রোটিন দিয়ে গঠিত রিপেয়ার কমপ্লেক্স, কোথাও ভুল ধরা পড়লে তা সংশোধন করে দেয়।