REAL ANALYSIS Qualifying Exam Saturday, April 2, 1994 Bennett & Moore

Do all ten.

- 1. Let X be a normed linear space and let X^* be its dual. Prove that $\{||x_n||\}$ is bounded if $\{x_n\}$ is a sequence in X such that $\{f(x_n)\}$ is bounded for every $f \in X^*$.
- 2. A nonnegative measurable function w(x) is said to be an A_2 weight if it satisfies:

$$\sup_{\substack{I:\,I\subseteq\mathbb{R}\\I\text{ an interval}}}\left(\frac{1}{|I|}\int_I w\ dx\right)\left(\frac{1}{|I|}\int_I\frac{1}{w}dx\right)< C$$

where $C < \infty$ is a constant.

If w(x) is an A_2 weight, show that for every $a \in \mathbb{R}$

$$\liminf_{\epsilon \to 0} \left(\frac{1}{2\epsilon} \int_{a-\epsilon}^{a+\epsilon} w \ dx \right) \left(\frac{1}{2\epsilon} \int_{a-\epsilon}^{a+\epsilon} \frac{1}{w} dx \right) > 0.$$

- 3. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers with $\lim_{n\to\infty} a_n = 0$. Show that there exists an $f(x) \in L^1([0,1])$ such that $\int_0^1 x^n f(x) dx \ge a_n$ for every n.
- 4. Prove that if $f \in L^1(\mathbb{R})$ then $Mf \not\in L^1(\mathbb{R})$ unless f is zero a.e. Here Mf(x) is the Hardy-Littlewood maximal function

$$Mf(x) = \sup \frac{1}{|I|} \int_{I} |f(y)| dy$$

where the sup is taken over all intervals centered at x.

5. Suppose a sequence of real valued polynomials $\{p_n(x)\}_{n=1}^{\infty}$ on the interval [-1,1] satisfies:

$$\int_{-1}^{1} p_n(x) p_m(x) dx = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}.$$

Let N be fixed and let

$$M = \text{span } \{p_1(x), p_2(x), \dots, p_N(x)\}.$$

Show that for every $f \in L^2[-1,1]$, $\min\{\|f-g\|_2 : g \in M\}$ is attained for a unique $g = \sum_{i=1}^{N} c_i p_i(x)$. Find a formula for the coefficients c_i for the g which attains this minimum.

- 6. Suppose T is a bounded linear operator, $T:L^p\to L^q$ with $1< p,\ q<\infty$. Define T^* by $\int (Tf)\overline{g}d\mu=\int f(\overline{T^*g})d\mu$ for all $f\in L^p$, $g\in L^{q'}$. Show T^* is a well-defined bounded linear operator, $T^*:L^{q'}\to L^{p'}$ where $\frac{1}{p}+\frac{1}{p'}=1$ and $\frac{1}{q}+\frac{1}{q'}=1$.
- 7. State and prove
 - (a) Fatou's lemma.
 - (b) Monotone convergence theorem.
 - (c) Dominated convergence theorem.
- 8. Suppose $T:L^2(\mathbb{R})\to L^2(\mathbb{R})$ is a bounded linear operator which commutes with translation. Show

$$(Tf)^{\wedge}(\xi) = m(\xi)\hat{f}(\xi)$$
 for some $m \in L^{\infty}$.

(Note
$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-2\pi i x \cdot \xi} f(x) dx$$
 is the Fourier transform.)

- 9. Suppose $f \in L^1(\mathbb{R})$ and $\int_{\mathbb{R}} (1 + 4\pi^2 |\xi|^2) |\hat{f}(\xi)|^2 d\xi < \infty$. Show f is continuous. (Note $\hat{f}(\xi) = \int_{\mathbb{R}} e^{-2\pi i x \cdot \xi} f(x) dx$ is the Fourier transform.)
- 10. Show that any nonempty closed convex subset of a Hilbert space has an element of minimal norm. Is this statement true for every Banach space?