Week 4

Jinhong Du

目录

train by cv \hdots

glmnet

1

1

predict 2 train and plot 2
lars 2
train
train by cv
predict
${f glmnet}$
train by cv
library(glmnet)
Loading required package: Matrix
Loading required package: foreach
Loaded glmnet 2.0-13
<pre>PET <- read.table('PET.txt', header = TRUE)</pre>
<pre>index <- sample(1:nrow(PET), 20)</pre>
PET.train <- PET[index,]
<pre>PET.test <- PET[-index,]</pre>
<pre>pet.rr <- cv.glmnet(x = as.matrix(PET.train[,1:268]),</pre>
y = PET.train[,269],
nfolds = 5,
alpha = 0,
type.measure = "deviance")

LARS 2

predict

train and plot

lars

train

LARS 3

```
library(lars)
```

```
## Loaded lars 1.2
```

train by cv

predict

LARS 4

```
newx = as.matrix(PET.test[,1:268]))
sum((pre.lar\fit - PET.test[,269])^2)/length(pre.lar\fit)
```

[1] 373.827