```
#include <stdlib.h>
#include <string.h>
Fdefine MAXPAROLA 30
#define MAXRIGA 80
int main(int arge, char "argv[])
   int treq[MAXPAROLA]; /* vettore di contatoni
delle frequenze delle lunghezze delle perole
   char nga[MAXRIGA] ;
Int i, inizio, lunghezza ;
```

Graphs

Single Source Shortest Paths

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Problem definition

Example

- Given a road map on which the distance between each pair of adjacent intersactions is marked
- How is it possible to determine the shortest route?
- One possibility is to
 - Enumerate all routes, add the distance on each route, disallowing routes with cycles
 - Select the shortes routes
- This implies examining an enourmous number of possibilities
- A better solution implies solving the so called Single-Source Shortest Path problem

Shortest Paths

- ❖ Given a graph G = (V, E)
 - Directed
 - Weighted
 - With a positive real-value weight function w: E→R
 - > With a weight w(p) over a path

$$p = \langle v_0, v_1, ..., v_k \rangle$$

is equal to

•
$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Shortest Paths

* We define the shortest path weight $\delta(u,v)$ from u to v as

•
$$\delta(u,v) = \begin{cases} \min\{w(p)\} & \text{if } \exists \ u \to_p v \\ \infty & \text{otherwise} \end{cases}$$

A shortest path from u to v is any path p with weigth

•
$$w(p) = \delta(u,v)$$

Variants

- Shortest path problems
 - Single-source shortest-paths
 - Minimum path and its weight from s to all other vertices v
 - **Dijkstra**'s algorithm
 - Bellman-Ford's algorithm
 - ➤ Notice that with **unweighted** graphs a simple **BFS** (Breadth-First Search) solves the problem

Example

Observation

SSSPs and MSTs are different

Variants

Single-destination shortest-paths

- Find the shortest path to a given destination
- Use the reverse graph

Single-pair shortest-paths

- Find a shortest path from v₁ to v₂ given vertices v₁
 to v₂
- Soved when the SSSP is solved
- All alternative solutions have the same worst-case asymptotic running time

> All-pairs shortest-path

- Find a shortest-path for every vertex pair
- Can be solved running SSSP from each vertex
- Can be solved faster

Negative Weight Edges

- If there are edges with negative weight but there are no cycles with negative weight
 - Dijkstra's algorithm
 - Optimum solution not guaranted
 - Bellman-Ford's algorithm
 - Optimum solution guaranted
- It there are cycle with negative weight
 - The problem is not defined (there is no solution)
 - Dijkstra's algorithm
 - Meaningless result
 - Bellman-Ford's algorithm
 - Find cycles with negative weights

Example

Representing Shortest Paths

- Often we wish to compute vertices on shorterst path, not only weights
 - > A few representations are possible
- Array of predecessors v.pred

```
■ \forall v \in V v.pred = \begin{cases} parent(v) \text{ if } \exists \\ NULL \text{ otherwise} \end{cases}
```

Predecessor's sub-graph

Attribute pred (predecessor) for each vertex

- $ightharpoonup G_{pred} = (V_{pred}, E_{pred}), where$
 - $V_{pred} = \{v \in V: v.pred \neq NULL\} \cup \{s\}$
 - $E_{pred} = \{(v.pred, v) \in E : v \in V_{pred} \{s\}\}$

Representing Shortest Paths

Shortest-Paths Tree

- ightharpoonup G' = (V', E')
 - Where $V' \subseteq V \&\& E' \subseteq E$
 - V' is the set of vertices reachable from s
 - S is the tree root
 - $\forall v \in V'$ the unique simple path from s to v in G' is a minimum weight from s to v in G

Theoretical Background

Lemma

- > Sub-paths of shortest paths are shortest paths
- \succ G = (V, E)
 - Directed, weighted w: E→R
- $\triangleright P = \langle v_1, v_2, ..., v_k \rangle$
 - Is a shortest path from v₁ to v_k
- $\rightarrow \forall i, j \ 1 \le i \le j \le k, p_{ij} = \langle v_i, v_{i+1}, ..., v_j \rangle$
 - Sub-path of p from v_i to v_i
- \triangleright The p_{ij} is a shortest path from v_i to v_j

Theoretical Background

Corollary

- \triangleright G = (V, E)
 - Directed, weighted w: E→R
- A shortest path p from s to v may be decomposed into
 - A shortest sub-path from s to u
 - An edge (u,v)
- > Then
 - $\delta(s,v) = \delta(s,u) + w(u,v)$

Theoretical Background

Lemma

- \triangleright G = (V, E)
 - Directed, weighted w: E→R
- ∀(u,v) ∈ E
 - $\delta(s,v) \leq \delta(s,u) + w(u,v)$
- A shortest path from s to v cannot have a weight larger than the path formed by a shortest path from s to u and an edge (u, v)

Relaxation

- The algorithms we are going to analyze use the technique of relaxation
- For each vertex we mantain an estimate v.dist (superior limit) of the weight of the path from s to v
 (Single) source

v.pred = predecessor

```
initialize_single_source (G, s)
for each v ∈ V
   v.dist = ∞
   v.pred = NULL
   s.dist = 0
```

v.dist
= shortest path estimate =
upper bound on the weight of
a shortest path from s to v

Relaxation

Relaxation

Update v.dist and v.pred by testing whether it is possibile to improve the shortest path to v found so far by going through the edge e = (u,v), where w(u,v) is the weigth of the edge

```
relax (u, v, w) {
  if ( v.dist > (u.dist + w(u, v)) ) {
    v.dist = u.dist + w (u, v)
    v.pred = u
  }
}
```

Example

v.dist = 9
u.dist = 5
w(u,v) = 2
v.dist >
u.dist + w(u,v)

Shortest path from s to v = shortest path from s to u + edge (u,v) v.dist =

Example

Relaxation has no effect v.dist = unchanged

= 6

v.pred = unchanged

Properties

- Lemma
 - Given G=(V,E)
 - \triangleright Directed, weighted w: E \rightarrow R, with e = (u,v) \in E
- - \triangleright v.dist \leq u.dist + w (u, v)
- That is, after relaxing e, v.d cannot increase
 - Either v.dist is unchanged (relaxation with no effect)
 - Or v.dist is decreased (effective relaxation)

Properties

Lemma

- ightharpoonup Given G=(V,E), directed, weighted w: E \rightarrow R, with source s \in V
- After a proper initialization of v.dist and v.pred
- $\forall v \in V \text{ v.dist} \geq \delta(s, v)$
 - For all relaxation steps on the edges
 - > When v.dist = $\delta(s,v)$, then v.dist does not change any more

Properties

- Lemma
 - ightharpoonup Given G=(V,E) directed, weighted w: E \rightarrow R, with source s \in V
 - > After a proper initialization of v.dist and v.pred
- The shortest path from s to v is made-up of
 - Path from s to u
 - \triangleright Edge e = (u, v)
- Application of relaxation on e=(u, v)
 - \triangleright If before relaxation u.dist = δ (s, u)
 - \triangleright After relaxation v.dist = $\delta(s, v)$

Dijkstra's Algorithm

- It works on graphs with no negative weigths
- It is a greedy strategy
 - > It applies relaxation once for all edges
- Algorithm
 - S: set of vertices whose shortest path from s has already been computed
 - > V-S: priority queue Q of vertices till to estimate
 - Stop when Q is empty
 - Extract u from V-S (u.dist is minimum)
 - Insert u in S
 - Relax all outgoing edges from u

Pseudo-code

Pseudo-code

```
sssp_Dijkstra (G, w, s)
initialize_single_source (G, s)
S = \( \phi \)
Q = V
while Q \( \neq \phi \)
u = extract_min (Q)
S = S U {u}
for each vertex v \( \in \) adjacency list of u
relax (u, v, w)
For all vertices
starting from s

Extract vertex with
minimum distance
```

Insert if in S

Relax all adjancecy vertices

Example 1

Example 1

Example 2: Negative edges

There are no cycles with negative weight

Example 2: Negative edges


```
struct graph s {
 vertex_t *g;
  int nv;
};
struct edge s {
  int weight;
  int dst;
};
struct vertex s {
  int id;
  int ne;
  int color;
  int dist;
  int scc;
  int disc time;
  int endp_time;
  int pred;
  edge t *edges;
};
```

Graph ADT (same used for Kruskal's algorithm)

Array of vertices of array of edges

Client (code extract)

```
g = graph_load (argv[1]);
fprintf (stdout, "Initial vertex? ");
scanf("%d", &i);
sssp dijkstra (g, i);
fprintf (stdout, "Weights starting from vertex %d\n", i);
for (i=0; i<q->nv; i++) {
  if (q->q[i].dist != INT MAX) {
    fprintf (stdout, "Node %d: %d (%d) \n",
      i, g->g[i].dist, g->g[i].pred);
graph dispose (g);
```

```
void sssp dijkstra (graph t *g, int i) {
 int j, k;
                                               For each outgoing vertex
 g->g[i].dist = 0;
 while (i >= 0) {
   g->g[i].color = GREY;
   for (k=0; k<g->g[i].ne; k++)
                                                  Relax the connected nodes
     j = g->g[i].edges[k].dst;
     if (g->g[j].color == WHITE) {
        if (g->g[i].dist+g->g[i].edges[k].weight < g->g[j].dist) {
         q \rightarrow q[j].dist = q \rightarrow q[i].dist + q \rightarrow q[i].edges[k].weight;
         g->g[j].pred = i;
   g->g[i].color = BLACK;
   i = graph_min (g);
                                      Move to next vertex
```

Simplification:
Instead of a priority queue
there is an array with linear
searches of the maximum

```
int graph_min (graph_t *g) {
  int i, pos=-1, min=INT_MAX;

for (i=0; i<g->nv; i++) {
  if (g->g[i].color==WHITE && g->g[i].dist<min) {
    min = g->g[i].dist;
    pos = i;
  }
}

return pos;
}
```

Complexity

Pseudo-code

```
O(|V|)
sssp Dijkstra (G, w, s)
  initialize single source (G, s)
  S = \phi
                                            Executed |V| times
  o = v
  while Q \neq \phi
                                          O(|g|V|) \rightarrow O(|V| \log |V|)
    u = extract min (Q)
    S = S \cup \{u\}
     for each vertex v ∈ adjacency list of u
       relax (u, v, w)
                                                              Overall
                                                               O(|E|)
```

Overall running time complexity $T(n) = O((|V|+|E|) \cdot |g|V|)$

O(|V|) \rightarrow O($|E|\log|V|$) due to PQ change

Complexity

- In general
 - $ightharpoonup T(n) = O((|V|+|E|) \cdot |g|V|)$
- This can be reduced to
 - \rightarrow T(n) = O(|E| · lg |V|)

if all vertices are reachable from the source s

Exercise

Given the following graph apply Dijkstra's algorithm starting from vertex A

Exercise

Given the following graph apply Dijkstra's algorithm starting from vertex S

Bellman-Ford's Algorithm

Bellman-Ford may run on graphs

- With negative weight edges
- > If there is a cycle with negative weight it detects it
- > It applies relaxation more than once for all edges
- > |V|-1 step of relaxation on all edges
- > At the i-th relaxation step either
 - It decreases at least one estimate

or

 It has already found an optimal solution and it can stop returning an optimum solution

Returns TRUE otherwise

Pseudo-code

Pseudo-code

```
Iterates |V|-1 times
sssp Bellman Ford (G, w, s)
  initialize_single_source (G, s)
  for i = 1 to |V| - 1
                                                  Relaxes all edges
    for each edge (u, v) \in E
       relax (u, v, w)
  for each edge (u, v) \in E
    if (v.dist > (u.d + w(u, v))
                                                 Checks for negative
       return FALSE
                                                   weight cycles
return TRUE
                                 Returns FALSE if a negative
                                   weight cycle is detected
```

Pseudo-code

Pseudo-code

After |V|-1 iterations, all vertices reachable from s have been reached with the shortest path

```
sssp_Bellman_Ford (G, w, s)
initialize_single_source (G, s)
for i = 1 to |V| - 1
  for each edge (u, v) ∈ E
    relax (u, v, w)

for each edge (u, v) ∈ E
  if ( v.dist > (u.d + w(u, v)) )
    return FALSE
return TRUE
```

Proof

With |V| vertices the longest simple path includes |V| vertices, that is |V|-1 edges. All of them are relaxed in |V|-1 iterations. Thus, all paths are the shortest ones for the property of relaxation

	#0	#1	#2	#3	#4
Α					
В					
С					
D					
Е					

Lessicographic order of the edges
(A, B)
(A, D)
(B, C)
(B, D)
(B, E)
(C, B)
(D, C)
(D, E)
(E, A)
(E, C)

Step # (5 vertices → 4 iterations)

	#0	#1	#2	#3	#4
Α	0	0	0	0	0
В	∞	6	2	2	2
С	∞	11 → 4	4	4	4
D	∞	7	7	7	7
Е	∞	2	2	-2	-2

Lessicographic order of the edges
(A, B)
(A, D)
(B, C)
(B, D)
(B, E)
(C, B)
(D, C)
(D, E)
(E, A)
(E, C)

Step # (5 vertices → 4 iterations)

	#0	#1	#2	#3	#4
Α					
В					
С					
D					
Е					

Lessicographic order of the edges
(A, B)
(A, D)
(B, C)
(B, D)
(B, E)
(C, B)
(D, C)
(D, E)
(E, A)
(E, C)

Step # (5 vertices → 4 iterations)

	#0	#1	#2	#3	#4
Α	0	0	0	0	0
В	∞	6→3	1	-2	-5
С	∞	5 → 4	3	0	-3
D	∞	7	7	7	7
Е	∞	2	-1	-3	-7

Lessicographic order of the edges
(A, B)
(A, D)
(B, C)
(B, D)
(B, E)
(C, B)
(D, C)
(D, E)
(E, A)
(E, C)

At the next iteration, edges BC and CB would make B and C reachable in -8 and -6

Example 2: Negative cycles

Step # (5 vertices → 4 iterations)

	#0	#1	#2	#3	#4
Α	0	0	0	0	0
В	∞	6→3	1	-2	-5
С	∞	5 → 4	3	0	-3
D	∞	7	7	7	7
Е	∞	2	-1	-3	-7

At the next iteration, edges BC and CB would make B and C reachable in -8 and -6

```
typedef struct graph_s graph_t;
typedef struct vertex_s vertex_t;
typedef struct edge_s edge_t;

struct graph_s {
  vertex_t *g;
  int nv;
};
```

Graph ADT (same used for Prim's algorithm)

```
Array of vertex of lists of edges
```

```
struct edge_s {
  int weight;
  int dst;
  edge t *next;
};
struct vertex s {
  int id;
  int color;
  int dist;
  int disc time;
  int endp time;
  int pred;
  int scc;
  edge t *head;
};
```

Client (code extract)

```
g = graph load (argv[1]);
printf("Initial vertex? ");
scanf("%d", &i);
if (sssp bellman ford (g, i) != 0) {
  fprintf (stdout, "Negative weight loop detected!\n");
} else {
  fprintf (stdout, "Weights starting from vertex %d\n", i);
  for (i=0; i<q->nv; i++) {
    if (q->q[i].dist != INT MAX) {
      fprintf (stdout, "Node %d: %d (%d) \n",
        i, g->g[i].dist, g->g[i].pred);
graph dispose (g);
```

```
int sssp bellman ford (graph t *g, int i) {
  edge t *e;
  int k, stop=0;
                                             For each edge in the graph
  g->g[i].dist = 0;
  for (k=0; k<q>nv-1 && !stop; k++) {
    stop = 1;
    for (i=0; i<g->nv; i++) {
                                             Relax the connected nodes
      if (g->g[i].dist != INT MAX) {
         e = q->q[i].head;
         while (e != NULL) {
           if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
             g->g[e->dst].dist = g->g[i].dist+e->weight;
             q-\geq q[e-\geq dst].pred = i;
             stop = 0;
           e = e - next;
                                    Move to next edge
```

```
Verify negative
                                              weight loops
if (!stop) {
  for (i=0; i<g->nv; i++) {
    if (g->g[i].dist != INT MAX) {
       e = g->g[i].head;
      while (e != NULL) {
         if (g->g[i].dist+e->weight < g->g[e->dst].dist) {
           return 1;
                                                     Relax the
         e = e->next;
                                                  connected nodes
return 0;
```

Complexity

```
Pseudo-code
                                          O (|V|)
                                                 Executed |V|-1 times
sssp Bellman Ford (G, w, s)
  initialize single source (G, s)
  for i = 1 to |V| - 1
                                                  Executed |E| times
    for each edge (u, v) \in E
       relax (u, v, w)
                                              O(1) \rightarrow O(|E|\cdot|V|)
  for each edge (u, v) \in E
    if (v.dist > (u.d + w(u, v)))
                                                Executed |E| times →
       return FALSE
                                                     O(|E|)
return TRUE
```

Overall running time complexity $T(n) = O(|V| \cdot |E|)$

Exercise

Given the following graph apply Bellman-Ford's algorithm from vertex B

Exercise

Given the following graph apply Bellman-Ford's algorithm from vertex A

