

PREDICT THE RETURN OF STOCKS

IBM ADVANCED DATA SCIENCE SPECIALIZATION CAPSTONE PROJECT PAUL LI 2019/10

USE CASE: PREDICT THE RETURN OF STOCKS

- Knowing the future return of stocks would be the best way of getting rich
- However this is a extremely hard task
- Our goal is to use public data to provide useful suggestions of investing in stocks
- In this project, we will use the stock TSE:L (Loblaw Companies Limited) to test the idea

DATA SET: STOCKS, ECONOMICS, AND GOOGLE TREND

STOCKS PRICE & VOLUME
OF COMPETITORS AND COMPOSITE
INDICES

ECONOMICAL INDICES INCLUDE CPI, BCPI, INTEREST RATE, EXCHANGE RATE

GOOGLE TREND

DATA QUALITY ASSESSMENT: MISSING VALUES

```
data extracted.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 5495 entries, 1999-01-01 to 2019-10-18
Data columns (total 21 columns):
loblaw price
                       5019 non-null float64
loblaw volume
                       5019 non-null float64
metro price
                       5020 non-null float64
                       5020 non-null float64
metro volume
empa price
                       5020 non-null float64
                       5020 non-null float64
empa volume
gwl price
                       5019 non-null float64
gwl volume
                       5019 non-null float64
atd price
                       5020 non-null float64
atd volume
                       5020 non-null float64
tsx price
                       5020 non-null float64
                       5020 non-null float64
tsx volume
sp500 price
                       4981 non-null float64
                       4981 non-null float64
sp500 volume
BCPI
                       1030 non-null float64
CPI
                       237 non-null float64
bank interest
                       1030 non-null float64
CEER
                       5421 non-null float64
                       190 non-null float64
trend grocery store
trend loblaws
                       190 non-null float64
                       190 non-null float64
trend stock
```

dtypes: float64(21) memory usage: 944.5 KB

data extracted.describe()

	loblaw_price	loblaw_volume	metro_price	metro_volume
count	5019.000000	5.019000e+03	5020.000000	5.020000e+03
mean	35.579635	5.293163e+05	16.246786	7.024548e+05
std	12.863246	5.922035e+05	15.055826	8.051032e+05
min	0.000000	0.000000e+00	1.101700	0.000000e+00
25%	26.289250	2.512000e+05	4.063425	3.465000e+05
50%	32.522400	4.141000e+05	8.986750	5.455500e+05
75%	44.048600	6.444000e+05	23.034000	8.541750e+05
max	75.770000	1.482520e+07	58.520000	3.157200e+07

date	loblaw_price	loblaw_volume	metro_price	metro_volume
1999-01-01	NaN	NaN	NaN	NaN
1999-01-04	NaN	NaN	NaN	NaN
1999-01-05	NaN	NaN	NaN	NaN
1999-01-06	NaN	NaN	NaN	NaN
1999-01-07	NaN	NaN	NaN	NaN

- > Removal
- > Interpolation

DATA EXPLORATION AND VISUALIZATION

> Fluctuation

- 0.6

- ➤ Distribution
- > Small Correlations

FEATURE ENGINEERING

qcut = 5

```
df['loblaw_5d_future'] = df['loblaw_price'].shift(-5)
df['loblaw_5d_future_pct'] = df['loblaw_5d_future'].pct_change(5)
df['loblaws_5d_return_level'] = pd.qcut(df['loblaw_5d_future_pct'], 5, labels=False)
```

outliers

```
feature_names = []
stock_list = ['loblaw', 'metro', 'gwl', 'empa', 'atd', 'tsx', 'sp500']
for stock in stock_list:
    for n in [14, 30, 50, 200]:
        df[stock + '_ma' + str(n)] = talib.SMA(df['loblaw_price'].values, timeperiod=n) / df['loblaw_price']
        df[stock + '_rsi' + str(n)] = talib.RSI(df['loblaw_price'].values, timeperiod=n)
        feature_names = feature_names + [stock + '_ma' + str(n), stock + '_rsi' + str(n)]

df[stock + '_5d_pct'] = df[stock + '_price'].pct_change(5)
    feature_names = feature_names + [stock + '_5d_pct']
    feature_names = feature_names + [stock + '_price']

df[stock + '_volume_ld_pct_SMA'] = talib.SMA(df[stock + '_volume'].pct_change().values, timeperiod=5)
    feature_names = feature_names + [stock + '_volume_ld_pct_SMA']
```

```
economic_indecis = ['BCPI', 'CPI', 'bank_interest', 'CEER']
google_trends = ['trend_grocery_store', 'trend_loblaws', 'trend_stock']
feature_names = feature_names + economic_indecis + google_trends
```

Simple Moving Average (SMA)

$$\mathrm{SMA} = \frac{A_1 + A_2 + ... + A_n}{n}$$

where:

 A_n = the price of an asset at period nn = the number of total periods

Relative Strength Index - RSI

$$RSI_{ ext{step one}} = 100 - \left[rac{100}{1 + rac{ ext{Average gain}}{ ext{Average loss}}}
ight]$$

RANDOM FOREST CLASSIFIER

```
qcut = 5
```

```
df['loblaw_5d_future'] = df['loblaw_price'].shift(-5)
df['loblaw_5d_future_pct'] = df['loblaw_5d_future'].pct_change(5)
df['loblaws_5d_return_level'] = pd.qcut(df['loblaw_5d_future_pct'], 5, labels=False)
```

```
from sklearn.model_selection import ParameterGrid
from sklearn.ensemble import RandomForestClassifier
```

```
grid = {'n_estimators':[200], 'max_depth': [3,5,7], 'max_features': [4,8,16,32,64], 'random_state': [42]}
test_scores = []
rfc = RandomForestClassifier()

for g in ParameterGrid(grid):
    rfc.set_params(**g)
    rfc.fit(train_features, train_targets)
    test_scores.append(rfc.score(test_features, test_targets))

best_idx = np.argmax(test_scores)
print(test_scores[best_idx], ParameterGrid(grid)[best_idx])

0.1902439024390244 {'random_state': 42, 'n_estimators': 200, 'max_features': 64, 'max_depth': 3}
```


RANDOM FOREST CLASSIFIER – CONT'D

outliers

```
from sklearn.model_selection import ParameterGrid
from sklearn.ensemble import RandomForestClassifier
```

```
grid = {'n_estimators':[200], 'max_depth': [3,5,7], 'max_features': [4,8,16,32,64], 'random_state': [42]}
test_scores = []
rfc = RandomForestClassifier()

for g in ParameterGrid(grid):
    rfc.set_params(**g)
    rfc.fit(train_features, train_targets)
    test_scores.append(rfc.score(test_features, test_targets))

best_idx = np.argmax(test_scores)
print(test_scores[best_idx], ParameterGrid(grid)[best_idx])
```

```
0.5795121951219512 {'random_state': 42, 'n_estimators': 200, 'max_features': 4, 'max_depth': 3}
```


RANDOM FOREST CLASSIFIER – CONT'D

qcut = 2 20d return in the future

```
df['loblaw_20d_future'] = df['loblaw_price'].shift(-20)
df['loblaw_20d_future_pct'] = df['loblaw_20d_future'].pct_change(20)
df['loblaws_20d_return_level'] = pd.qcut(df['loblaw_20d_future_pct'], 2, labels=False)
```

```
from sklearn.model_selection import ParameterGrid
from sklearn.ensemble import RandomForestClassifier
```

```
grid = {'n_estimators':[200], 'max_depth': [3,5,7], 'max_features': [4,8,16,32,64], 'random_state': [42]}
test_scores = []
rfc = RandomForestClassifier()

for g in ParameterGrid(grid):
    rfc.set_params(**g)
    rfc.fit(train_features, train_targets)
    test_scores.append(rfc.score(test_features, test_targets))

best_idx = np.argmax(test_scores)
print(test_scores[best_idx], ParameterGrid(grid)[best_idx])
```

```
0.5788442703232125 {'random state': 42, 'n estimators': 200, 'max features': 8, 'max depth': 7}
```


FEATURE SELECTION

DEEP LEARNING - LSTM

```
from sklearn.preprocessing import scale
scaled features = scale(features)
scaled features.shape
(4084, 84)
batch size = 64
timesteps = 20
scaled lstm features = []
for column in range(scaled features.shape[1]):
    time series = []
    for i in range(len(scaled features) - timesteps):
        time series.append(scaled features[i:i + timesteps, column])
    scaled lstm features.append(time series)
scaled lstm features = np.dstack(scaled lstm features)
print(type(scaled lstm features))
print(scaled lstm features.shape)
<class 'numpy.ndarray'>
(4064, 20, 84)
lstm targets = targets[timesteps:]
1stm targets.shape
(4064,)
```


DEEP LEARNING – LSTM – CONT'D

```
n cells = 20
\frac{1}{\text{dropout}} = 0.25
lr = 0.001
momentum = 0.0
epochs = 30
model = Sequential()
model.add(LSTM(n cells, input shape=(scaled train features.shape[1], scaled train features.shape[2]),
               dropout=dropout, recurrent dropout=dropout))
model.add(Dense(1, activation='sigmoid'))
sgd = optimizers.SGD(lr = lr, momentum=momentum)
model.compile(loss='binary crossentropy', optimizer=sgd)
history = model.fit(scaled train features, train targets, epochs=epochs, batch size=batch size,
                    validation data=(scaled test features, test targets), verbose=0, shuffle=False)
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val loss'], label='test')
plt.legend()
plt.show()
test pred = model.predict(scaled test features)
print(confusion matrix(test targets, test pred > 0.5))
print(accuracy score(test targets, test pred > 0.5))
```


[[196 290] [192 338]] 0.5255905511811023

DEEP LEARNING – LSTM – CONT'D

[[404 82] [433 97]] accuracy score: 0.49311023622047245

confusionmatrix: [[76 410] [64 466]] accuracy score: 0.5334645669291339

confusionmatrix:
 [[93 393]
 [89 441]]
accuracy score: 0.5255905511811023

confusionmatrix:
 [[7 479]
 [6 524]]
accuracy score: 0.5226377952755905

confusionmatrix:
 [[20 466]
 [10 520]]
accuracy score: 0.531496062992126

confusionmatrix:
 [[19 467]
 [0 530]]
accuracy score: 0.5403543307086615

confusionmatrix: [[56 430] [69 461]] accuracy score: 0.5088582677165354

confusionmatrix: [[17 469] [16 514]] accuracy score: 0.5226377952755905

DEEP LEARNING –LSTM – CONT'D

confusionmatrix:
 [[21 465]
 [11 519]]

accuracy score: 0.531496062992126

confusion matrix:
 [[117 369]
 [124 406]]
accuracy score: 0.514763779527559

confusionmatrix: [[41 445] [31 499]]

accuracy score: 0.531496062992126

confusion matrix: [[30 456] [36 494]]

accuracy score: 0.515748031496063

confusion matrix:
 [[58 428]
 [30 500]]
accuracy score: 0.5492125984251969

confusion matrix: [[141 345] [182 348]] accuracy score: 0.4812992125984252

confusion matrix:
 [[121 365]
 [117 413]]
accuracy score: 0.5255905511811023

confusion matrix: [[50 436] [32 498]] accuracy score: 0.5393700787401575

EarlyStopping(monitor='val_loss', mode='min',patience=10)

NEXT STEP

Improve data quality

Schedule the task

More research about LSTM

THANK YOU

PAULLIMALE@HOTMAIL.COM

https://github.com/paulkillus/stock_return