

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

Test Report for FCC

FCC ID: W6YPT200

					FCC ID - W6YP1200		
Repo	rt Number	ESTF151505-002					
	Company name	PASSTECH CO., LTD					
Applicant	Address		ranz Techno, 388, gi-do , South Kor		ungwon-go , Seongnam-si,		
	Telephone	82-31-	-743–7277				
Conta	ack person	Hyung-	-Mo Park				
	Product name	LOCKE	R LOCK				
Product	Model No.		PT200	Manufacturer	PASSTECH CO., LTD		
	Serial No.		None	Country of origin	KOREA		
Test date	2015-05-1	4 ~ 2015	-05-14	Date of issue	28-May-15		
Testing location	347-	69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea					
Standard	F	CC PART	15 Subpart C(15	.225), ANSI C 63.	10(2009)		
	Result		Complied				
Measurement	facility registration	number	659627				
Tested by	Senior Eng	ineer K.H.	. Chung	(Signature)			
Reviewed by	Engineering	Engineering Manager J.M. Yang (Signature)					
Abbreviation	OK, Pass = Com	plied, Fa	il = Failed, N/A	= not applicable			

* Note

- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 1 of 15

Estech Co.. Ltd. 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

Contents

1. Laboratory Information	3
2. Description of EUT	4
3. Test Standards	5
4. Measurement condition	6
5. 20dBm Bandwidth	8
5.1 Procedure ·····	8
5.2 20dBm Bandwidth Set up ······	8
5.3 Measurement Data ······	8
6. Frequency Tolerance	9
6.1 Procedure ·····	9
6.2 Test Equipments	9
6.3 Measurement Data	10
7. Measurement of radiated emission	11
7.1 Radiated emission limits, general requirements	11
7.2 Measurement equipment	11
7.3 Environmental conditions	11
7.4 Test data(9 kHz ~30 MHz)	12
7.5 Test data(30 MHz ~ 1 GHz)	13
7.6 Test data(Above 1 GHz)	13
8. Measurement of conducted emission	14
8.1 Measurement equipment	14
8.2 Environmental conditions	14
8.3 Test data	15
Appendix 1. Special diagram	
Appendix 2. Antenna Requirement	

Report Number: ESTF151505-002, Web: www.estech.co.kr Page 2 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu,

Seoul 153-759, R. O. Korea

EMC/Telecom/Safety Test Lab: 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

1.3 Official Qualification(s)

MSIP: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 3 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

2. Description of EUT

2.1 Summary of Equipment Under Test

Product : LOCKER LOCK

Model Number : PT200 Serial Number : NONE

: PASSTECH CO., LTD Manufacturer

: KOREA Country of origin Operating Frequency : 13.56 MHz

Antenna Type : Mag Integrated Loop Antenna

Modulation Type : ASK Channel : 1

: DC 6.0 V Battery, Power Rating

Receipt Date : 5-Feb-15

The highest operating frequency is 2 475 MHz in the SRD Clock. (32.786 kHz 3 57 MHz 8 MHz 97 10 MHz) X-tal list(s) or

Frequencies generated (32.786 kHz, 3.57 MHz, 8 MHz, 27.12 MHz)

2.2 General descriptions of EUT

▶ Dimension(touch pad main body only) : (52 x 86 x 16) mm, (W x H x D) mm

▶ Weight(without battery and battery pack) : \(\diamonder\) 180 g

▶ Power: DC 6.0 V(1.5 V, alkaline batteries AA Size, 4 EA) & battery pack in port

Report Number: ESTF151505-002, Web: www. estech.co. kr Page 4 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

3. Test Standards

Test Standard: FCC PART 15 Subpart C(15.225)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.10 (2009)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

Applied Satandard : 47 CFR Part 15, Subpart C						
Standard	Test Type	Result	Remark	Limit		
15.203	Antenna Requirement	Pass	Meet the requirement			
15.207	AC Power Conducted Emission	N/A	Powered by battery			
15.225(a)	Radiated Emission (13.553 ~13.567) MHz	Pass	Meet the requirement	15,848 uV/m at 30 m		
15.225(b)	Radiated Emission (13.410 ~13.553 , 13.567 ~ 13.710) MHz	Pass	Meet the requirement	334 uV/m at 30 m		
15.225(c)	Radiated Emission (13.110 ~13.410 , 13.710 ~ 14.010) MHz	Pass	Meet the requirement	106 uV/m at 30 m		
15.225(d)	Apply section 15.209 (out side band of the 13.110 ~14.010) MHz	Pass	Meet the requirement			
15.225(e)	Frequency stability	Pass	Meet the requirement			
15.215(c)	20dB Bandwidth	Pass	Meet the requirement			

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 5 of 15

EST-QP-20-01(2)-(F15)

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea
TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

4. Measurement Condition

4.1 EUT Operation.

- -The EUT was tested, tested under transmission/receiving condition continuously between the EUT
- 1. Check normal communication with RF OUT Frequeny(13.56 MHz / 2.4 GHz Band).
- 2. The EUT is connected to the external wireless Spectrum Analyzer operation test.

4.2 Configuration and Peripherals

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 6 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

4.3 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
LOCKER LOCK	PT200	NONE	PASSTECH CO., LTD	EUT
RFID CARD	NONE	NONE	PASSTECH CO., LTD	

4.4 Cable Connecting

Start Equi	pment	End Equ	End Equipment			Domork	
Name	I/O port	Name	I/O port	Length	Shielded	Remark	
LOCKER LOCK	WIRELESS (2.4 GHz)	Spectrum Analyzer (External)	WIRELESS (2.4 GHz)	_	-		
LOCKER LOCK	RFID(13.56 MHz)	RFID CARD	RFID(13.56 MHz)	-	-		

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 7 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

5. 20 dB Bandwidth

5.1 Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer. The 20 dB bandwidth is defined as the bandwidth at 20 dB below from peak power point.

5.2 20dB Bandwidth setup

The spectrum analyzer is set to as following

RBW: 30 Hz VBW: 300 Hz Span: 5 kHz

Sweep:suitable duration based on the EUT specification

20dB Bandwidth Test Instruments

Decription	Model	Serial Number	Cal. Due Data
Spectrum Analyzer	E4407B	US40241281	15-Jan-16

5.3 Measurement Data

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 8 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

6. Frequency Tolerance

6.1 Procedure

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -20 ℃ to +50 ℃ using an environmental chamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85 % to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

The frequency tolerance of the carrier shall be maintained within ± 0.01 % of the operating frequency.

6.2 Equipment lists

The following test equipments are used during test

Decription	Model	Serial Number	Cal. Due Data
Spectrum Analyzer	E4407B	US40241281	15-Jan-16
Temp./Humidity Chamber	SM-150-2	04-TH24	13-Jan-16

Report Number: ESTF151505-002, Web: www.estech.co.kr Page 9 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

6.3 Measurement Data

Voltage	Power	Temperature	Frequency	Deviation
(%)	(Vdc)	$(^{\circ}\!$	(Hz)	(%)
100		+20 ℃(Ref)	13,562,502	-0.000723
100		-20	13,562,960	0.002654
100		-10	13,561,938	-0.004881
100		0	13,561,580	-0.007521
100	6.00	10	13,562,072	-0.003893
100		20	13,561,909	-0.005095
100		30	13,561,834	-0.005648
100		40	13,561,768	-0.006135
100		50	13,561,851	-0.005523
85	5.10	20	13,562,459	-0.001040
115	6.90	20	13,562,448	-0.001121
BATT.ENDPOINT	3.60	20	13,561,678	-0.006798

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 10 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

Measurement of radiated disturbance

The EUT was placed on the top of a rotating table 0.8 m above the ground at a 10 m semi-anechoic chamber. The table was rotated 360° to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at 1 m above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0° to 360° to find the maximum reading. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

7.1 Radiated emission limits, general requirements

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator

shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength @30 m (uV/m)	Field strength @30 m (dBuV/m)	Field strength @3m (dBuV/m)
Below 13.110	30	29.5	69.5
13.110 ~13.410	106	40.5	80.5
13.410~13.553	334	50.5	90.5
13.553~13.567	15,848	84	124
13.567~13.710	334	50.5	90.5
13.710~14.010	106	40.5	80.5
Above 14.010	30	29.5	69.5

^{*} dBuV/m=20*log(uV/m) * Distance factor=40dB / decade(15.31(f))

7.2 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESCI7	ROHDE & SCHWARZ	1166.5950.07	13-Jan-16
Logbicon Antenna	VULB 9168	SCHWARZBECK	9168-193	18-Sep-15
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Antenna Master & Turn table controller	CO2000-P	Innco System GmbH	CO2000/641 /28051111/L	-
Loop Antenna	HFH2-Z2	ROHDE & SCHWARZ	100188	29-Jul-15

7.3 Environmental Condition

Test Place : 10 m Semi-anechoic chamber

Below 1 GHz

Temperature (°C) : 23.1 °C Humidity (% R.H.) : 52.5 % R.H.

Test Place : 3 m Semi-anechoic chamber(3 m)

Above 1 GHz-N/A Temperature (°C) Humidity (% R.H.)

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 11 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

7.4 Test data(9 kHz ~ 30 MHz)

Test Date: 14-May-15 Measurement Distance: 3 m

Test Date:	14-May-15 Measurement Distance: 3 m					3 m				
Frequency	Reading	Vertical	CIIT Haiabt		EUT Height Correction Factor		n Factor	Result Value(Quasi-Peak)		
(MHz)	(dB#V)	Position [Angle]	Position		Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB≠V/m)	Margin (dB)	
				Below 1	13.110 MHz					
Noise Floor	ı	_	_	-	18.70	0.5	69.5	_	-	
			13.	110 MHz	to 13.410 M	1Hz				
Noise Floor	_	_	_	_	18.70	0.5	80.5	_	_	
			13.4	410 MHz	to 13.553 M	1Hz				
Noise Floor	-	-	_	_	18.70	0.5	90.5	_	-	
			13.	553 MHz	to 13.567 M	1Hz				
13.5626	37.18	0 °	Z	1.5	18.80	0.5	124.0	56.48	67.52	
		_	13.	567 MHz	to 13.710 M	1Hz				
Noise Floor	_	-	_	_	18.70	0.5	90.5	_	-	
			13.	710 MHz	to 14.010 M	1Hz				
Noise Floor	-	-	-	-	18.70	0.5	80.5	_	-	
			1	4.010 M	Hz to 30 MH	Z				
27.12	19.50	85 °	Z	1.5	18.40	0.8	69.5	38.70	30.80	
	_					_				
	*The 30 m limit was converted to 3 m Limit using square factor(x) as it was found by									

Remark

- * The EUT was measured for the worst case by rotating of antenna angle.
- * The EUT performed at X,Y,Z and recorded the worst data in the report.

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 12 of 15

^{*}The 30 m limit was converted to 3 m Limit using square factor(x) as it was found by measurements as follows;

 $^{*3 \}text{ m Limit}(dBuV/m) = 20log(X)+40log(30/3)=20log(15848)+40log(30/3)=124 dBuV$

 $^{*3 \}text{ m Limit}(dBuV/m) = 20log(X)+40log(30/3)=20log(30)+40log(30/3)=69.5 dBuV$

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

7.5 Test data(30 MHz ~ 1 000 MHz)

Test Date: 14-May-15 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction Factor		Result Value(Quasi-peak)			
(MHz)	(dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
455.40	21.32	Н	2.1	17.04	3.66	46.00	42.02	3.98	
479.20	21.00	Н	1.8	17.39	3.73	46.00	42.11	3.89	
621.10	17.20	Н	2.4	20.00	4.25	46.00	41.45	4.55	
669.30	17.52	Н	1.4	20.68	4.44	46.00	42.64	3.36	
706.50	17.28	Н	2.1	21.13	4.55	46.00	42.96	3.04	
721.60	16.65	Н	2.0	21.34	4.60	46.00	42.59	3.41	
768.10	14.83	Н	2.0	22.04	4.76	46.00	41.63	4.37	

H: Horizontal, V: Vertical

*Result Value = Reading + Antenna + Cable loss

*Correction Factor = Ant Factor + Cable

*The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 13-1 of 15

Remark

Estech Co.. Ltd. 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

7.6 Test data (Above 1 GHz)-N/A

Test Date: Measurement Distance: 3 m

Frequency (MHz)	Reading (dB#V)	Position (V/H)	Height (m)	Correctio	n Factor	Result Value				
				Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)		
Peak(RBW:1 MHz VBW:1 MHz)										
	Average (DD) (A) 1 A 4 1 = 1 \ (D) (A) (1 A 1 1 = 1)									
	Average(RBW:1 MHz VBW:10 Hz)									
Remark	H: Horizontal, V: Vertical *Reading = receiver reading + Amplifier Gain *CL = Cable Loss-Amplifier Gain *The resolution bandwidth and video bandwidth of spectrum analyzer is 1 MHz and 10 Hz for average detection at frequency above 1 GHz. *This test does not require because the highest operating frequency of the EUT is less than 108 MHz. *Application method of the highest frequency is in the following *Highest frequency of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. *Highest frequency of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. *Highest frequency of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. *Highest frequency of the EUT is above 1 GHz, the measurement shall be made up to 10 times the highest frequency or 40 GHz,									

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 13-2 of 15

347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea TEL:+82 31 6318037 FAX:+82 31 6318039 www.estech.co.kr

8. Measurement of conducted disturbance - N/A

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC Part 15 (2010) & ANSI C 63.1 (2003) The test setup was made according to FCC Part 15 (2010) & ANSI C 63.1 (2003) in a shielded Room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

8.1 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date	

8.2 Environmental Condition

Test Place : Shielded Room

Temperature (°C)

Humidity (% R.H.)

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 14 of 15

Estech Co.. Ltd. 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea

TEL: +82 31 6318037 FAX: +82 31 6318039 www.estech.co.kr

8.3 Test data - N/A

Test Date:

Frequency (MHz)	Correction Factor		Line	Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dBW)	Result (dB)
Remark	H: Hot Line, N: Neutral Line *Correction Factor = Lisn + Cable *Result = Correction Factor + Reading								

Report Number: ESTF151505-002, Web: www. estech. co. kr Page 15 of 15

Appendix 1. Special diagram-N/A

* HOT LINE

* NEUTRAL LINE

Appendix 1. Antenna Requirement

Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Result

-Complied

The transmitter has an Mag Integrated Loop Antenna.