UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Pharmacocinétique

Cours N° 2

Dr. F. DESPAS

Pharmacocinétique

- Etude du devenir du Principe Actif (PA) dans l'organisme, depuis son administration jusqu'à son élimination
 - Absorption
 - Distribution
 - MétabolisationElimination
 - Excrétion

Phases A, D, M et E coexistent dans le temps

- 1. Définitions
- 2. Administration intravasculaire
- 3. Administration extravasculaire: Absorption digestive
 - a. Rappels anatomiques
 - Etudes Pharmacocinétiques
 - c. Cycle entérohépatique
- 4. Biodisponibilité des médicaments
- 5. Facteurs modifiant l'absorption des médicaments

- 1. Définitions
- 2. Administration intravasculaire
- 3. Administration extravasculaire: Absorption digestive
 - a. Rappels anatomiques
 - b. Etudes Pharmacocinétiques
 - c. Cycle entérohépatique
- 4. Biodisponibilité des médicaments
- 5. Facteurs modifiant l'absorption des médicaments

1. Définitions

- Absorption
 - Transfert du Principe Actif (PA) depuis son site d'administration jusqu'à la circulation sanguine systémique
- Types de voies d'administration
 - Administration intravasculaire : absorption immédiate et totale
 - Administration extravasculaire : absorption non immédiate et potentiellement partielle
 - Absorption digestive
 - Absorption transcutanée
 - Absorption pulmonaire
 - ...

Résorption

 Disparition du PA de son site d'administration, mais pouvant ne pas gagner la circulation systémique (métabolisation présystémique)

- 1. Définitions
- 2. Administration intravasculaire
- 3. Administration extravasculaire: Absorption digestive
 - a. Rappels anatomiques
 - b. Etudes Pharmacocinétiques
 - c. Cycle entérohépatique
- 4. Biodisponibilité des médicaments
- 5. Facteurs modifiant l'absorption des médicaments

1. Administration intravasculaire

- Absorption intravasculaire est
 - Immédiate
 - Temps de la durée d'administration
 - Totale
 - Intégralité de la dose est transférée dans la circulation sanguine systémique
- Ex. si 10 mg médicament M par voie I.V. :
 - Durée absorption = durée de l'administration
 - Quantité dans circulation systémique = 10 mg de M

1. Administration intravasculaire

Administration Voie I.V.

- 1. Définitions
- 2. Administration intravasculaire
- 3. Administration extravasculaire: Absorption digestive
 - a. Rappels anatomiques
 - b. Etudes Pharmacocinétiques
 - c. Cycle entérohépatique
- 4. Biodisponibilité des médicaments
- 5. Facteurs modifiant l'absorption des médicaments

- Tube digestif va de la bouche au rectum
 - Assure les fonctions de digestion et d'absorption des nutriments
- Surface d'échange
 - Estomac : 0,15 m²
 - intestin grêle : 200-300 m²
- Tube digestif = digestion
 - Destruction de certains PA rendant impossible administration per os

- Gradient de pH du tube digestif
 - Estomac : pH=2-3
 - Intestin grêle :
 - Duodénum, jéjunum et iléon : pH=6-7
 - Gros intestin :
 - Cæcum, colon et rectum: pH=7-8

- Charge ionique différente suivant pH du milieu (Henderson-Hasselbach)
 - Pour les médicaments acides faibles
 - pH = pKa + log [forme ionisée]
 [Forme NON ionisée]
 - Pour les médicaments bases faibles
 - pH = pKa + log [forme NON ionisée]
 [forme ionisée]
- Charge ionique des P.A. diffère suivant fractions du tube digestif

- Gradient de pH du tube digestif
 - Estomac : pH=2-3
 - Intestin grêle :
 - Duodénum, jéjunum et iléon : pH=6-7
 - Gros intestin :
 - Cæcum, colon et rectum: pH=7-8

- Acide acétylsalicylique : aspirine, pka=3,5 (per os : Tmax=1h)
 - A pH acide : Ionisation faible, médicament franchit facilement les membranes cellulaires
 - A pH alcalin : Ionisation importante, médicament franchit difficilement les membranes cellulaires
- Phénobarbital : barbiturique, pKa=7,2 (per os : Tmax =8-12 h)

- Franchissement barrière digestive
 - Système veine porte
 - Connexion réseau veineux depuis tube digestif jusqu'au foie
 - Premier passage hépatique OBLIGATOIRE

- Disparition du PA de la lumière du tube digestif (résorption digestive), mais possibilité de métabolisation présystémique
 - Dégradation dans la lumière du tube digestif
 - Métabolisation entérocytaire (EFFET de 1^{er} passage entérocytaire)
 - Métabolisation hépatique (EFFET de 1^{er} passage hépatique)
- Seule fraction dose administrée atteint la circulation systémique

b. Etudes Pharmacocinétiques

b. Etudes Pharmacocinétiques

c. Cycle entérohépatique

- Pour certains médicaments
 - Boucle de réabsorption après captation hépatique, puis excrétion biliaire et nouvelle absorption (réabsorption)

- 1. Définitions
- 2. Administration intravasculaire
- 3. Administration extravasculaire: Absorption digestive
 - a. Rappels anatomiques
 - b. Etudes Pharmacocinétiques
 - c. Cycle entérohépatique
- 4. Biodisponibilité des médicaments
- 5. Facteurs modifiant l'absorption des médicaments

- Fraction de la dose de médicament administré atteignant la circulation systémique et la vitesse à laquelle elle l'atteint
- Permet de quantifier l'absorption d'un médicament pour une voie donnée
 - Administration intravasculaire : absorption immédiate et totale
 - Biodisponibilité : 100%
 - Administration extravasculaire : absorption non immédiate et potentiellement partielle.
 - Biodisponibilité : de 0 à 100% avec un Tmax

Heures

- Biodisponibilité absolue
 - Même dose de P.A., deux voies d'administrations différentes

 Rapport des Surfaces Sous la Courbe (SSC), entre voie à l'étude et une voie de référence (I.V.)

• Détermination Facteur F

$$F(\%) = \frac{SSC vo}{SSC iv}$$

- Exemples
 - Paracétamol, voie orale : F≈ 90%
 - Tramadol, voie orale : F≈ 70-90%
- Amlodipine, voie orale : F≈ 70%
- Morphine, voie orale : F≈ 33%

- Détermination Tmax, Cmax
- Permet calcul de bioéquivalence de doses entre 2 voies d'administrations
 - Ex : Equi-analgésie de la morphine relais IV / per os, Morphine F=33%
 - 3,33 mg de morphine IV = 10 mg de morphine voie orale

- Biodisponibilité relative
 - Même dose de P.A., même voie d'administration, deux spécialités différentes
 - Comparaison des SSC pour une même dose de PA mais excipients différents (cas des génériques)
 - Marge de tolérance pour définir la bioéquivalence

- 1. Définitions
- 2. Administration intravasculaire
- 3. Administration extravasculaire: Absorption digestive
 - a. Rappels anatomiques
 - b. Etudes Pharmacocinétiques
 - c. Cycle entérohépatique
- 4. Biodisponibilité des médicaments
- 5. Facteurs modifiant l'absorption des médicaments

4. Facteurs de variation de l'absorption

- Quelques exemples
 - Modification absorption transcutanée
 - Nouveau-Né: absorption accrue (immaturité+++)
 - Personne âgée : modifications en + ou en -

- Augmentation flux inspiratoire (asthme) impaction particules sur bifurcations bronchiques: diminution absorption des aerosols
- Augmentation débit sanguin pulmonaire chez la femme enceinte : augmentation absorption gaz anesthésiques
- Modification absorption digestive
 - Alimentation
 - Études systématiques dossier AMM (cf. RCP)
 - » Evaluation si impact sur : Cmax, Tmax, ASC...
 - Dépend aussi de la composition
 - » Repas riche en graisses : dissolution médicaments lipophiles
 - » Laitages : précipitation tétracyclines

4. Facteurs de variation de l'absorption

- Conditions modifiant fonctionnement du tube digestif
 - Pathologies digestives (modification motricité, inflammation...)
 - Nouveau-Né (absence gradient ph, temps transit : 6-8 h.)
 - Grossesse (↗ pH; ↘ motricité; ↗ débit cardiaque)
 - Interactions Médicamenteuses
 - » Ralentisseurs de la vidange gastrique (morphine ; intoxication tricycliques)
 - » Anti-acides modifiant le pH gastrique (oméprazole)
 - » Pansements gastriques créant une « barrière » physique (sels d'aluminium ou de magnésium)

Exemple

- Absorption de ciprofloxacine réduite de 90% lors co-administration antiacide
- ⇒Espacer les prises d'au moins 4h.

- Mr. X. 45 ans, est hospitalisé aux soins intensifs de gastroentérologie du CHU de Toulouse pour tentative autolyse par ingestion de soude caustique
 - Traitement chronique :
 - Amiodarone cp (Cordarone®) 200 mg, 1 fois par jour
- Aucune ingestion possible pendant 4 semaines
 - Conduite à tenir ?

Merci de votre attention