free light chain

Jose Tamez

2023-04-26

Contents

```
1 RRPLOTS and flchain
                                                                             1
  1.3 Performance on the test data set . . . . . . . . . . . . . . .
library(survival)
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
      format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
      cov, smooth, var
#library(corrplot)
source("~/GitHub/FRESA.CAD/R/RRPlot.R")
op <- par(no.readonly = TRUE)</pre>
pander::panderOptions('digits', 3)
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1 RRPLOTS and flchain

```
odata <- flchain
odata$chapter <- NULL
table(odata$death)
##
      0
##
            1
## 5705 2169
rownames(odata) <- c(1:nrow(odata))</pre>
data <- as.data.frame(model.matrix(Surv(futime,death)~.*.,odata))</pre>
data$`(Intercept)` <- NULL</pre>
table(odata[rownames(data), "death"])
##
##
      0
            1
## 4562 1962
dataFL <- cbind(time=odata[rownames(data), "futime"], status=odata[rownames(data), "death"], data)</pre>
dataFL$time <- dataFL$time/365</pre>
colnames(dataFL) <-str_replace_all(colnames(dataFL)," ","")</pre>
colnames(dataFL) <-str_replace_all(colnames(dataFL),"\\.","_")</pre>
colnames(dataFL) <-str_replace_all(colnames(dataFL),":","_")</pre>
colnames(dataFL) <-str_replace_all(colnames(dataFL),"-","_")</pre>
colnames(dataFL) <-str_replace_all(colnames(dataFL),">","_")
trainsamples <- sample(nrow(dataFL),2000)</pre>
dataFLTrain <- dataFL[trainsamples,]</pre>
dataFLTest <- dataFL[-trainsamples,]</pre>
pander::pander(table(dataFLTrain$status))
                                           0
                                                       1
                                         1406
                                                      594
```

pander::pander(table(dataFLTest\$status))

0	1
3156	1368

1.1 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataFLTrain, loops=1)
```

```
sm <- summary(ml)</pre>
pander::pander(sm$coefficients)
```

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
age	0.019209	1.018	1.019	1.021	0.709
${f age_lambda}$	0.017226	1.016	1.017	1.019	0.720
lambda	-1.352607	0.228	0.259	0.293	0.662
${ m flc_grp}$	0.084179	1.079	1.088	1.096	0.604
${f age_creatinine}$	0.024430	1.022	1.025	1.027	0.728
${f sample_yr_creatinine}$	-0.000865	0.999	0.999	0.999	0.650
${ m flc_grp_creatinine}$	0.006657	1.005	1.007	1.009	0.635
creatinine	0.207278	1.154	1.230	1.312	0.654
$ m age_flc_grp$	0.000491	1.000	1.000	1.001	0.656

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC
age	0.635	0.721	0.730	0.621
${f age_lambda}$	0.604	0.731	0.686	0.626
lambda	0.639	0.731	0.617	0.643
${ m flc_grp}$	0.714	0.731	0.626	0.732
${f age_creatinine}$	0.658	0.729	0.703	0.669
${f sample_yr_creatinine}$	0.670	0.729	0.582	0.680
${f flc_grp_creatinine}$	0.709	0.721	0.621	0.730
creatinine	0.729	0.731	0.584	0.727
${ m age_flc_grp}$	0.718	0.729	0.669	0.735

Table 5: Table continues below

	full.AUC	IDI	NRI	z.IDI	z.NRI
age	0.739	0.25702	0.911	26.49	21.57
${f age_lambda}$	0.732	0.12007	0.702	15.13	15.96
lambda	0.732	0.10513	0.693	13.86	15.76
${ m flc_grp}$	0.732	0.04424	0.501	11.17	10.82
${f age_creatinine}$	0.744	0.08810	0.595	11.14	13.02
${f sample_yr_creatinine}$	0.744	0.08324	0.603	11.05	13.24
${\it flc_grp_creatinine}$	0.739	0.01325	0.317	6.79	6.54
creatinine	0.732	0.01099	0.437	6.30	9.15
$ m age_flc_grp$	0.744	0.00863	0.249	3.18	5.16

	Delta.AUC	Frequency
age	0.118044	1
${f age_lambda}$	0.105883	1
lambda	0.088543	1
${ m flc_grp}$	0.000424	1
${f age_creatinine}$	0.074935	1
${f sample_yr_creatinine}$	0.064100	1
${\it flc_grp_creatinine}$	0.009021	1
creatinine	0.004825	1

	Delta.AUC	Frequency
age_flc_grp	0.008926	1

1.2 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

1.2.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
timeinterval <- mean(subset(dataFLTrain,status==1)$time)
h0 <- sum(dataFLTrain$status & dataFLTrain$time <= timeinterval)
h0 <- h0/sum((dataFLTrain$time > timeinterval) | (dataFLTrain$status==1))
pander::pander(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")
```

Table 7: Initial Parameters

h0	timeinterval
0.153	5.82

Cumulative vs. Observed: Raw Train: FLC

Decision Curve Analysis: Raw Train: FLC

Relative Risk: Raw Train: FLC

Time vs. Events: Raw Train: FLC

Kaplan-Meier: Raw Train: FLC

As we can see the Observed probability as well as the Time vs. Events are not calibrated.

1.2.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$OERatio),caption="0/E Ratio")

Table 8: O/E Ratio

est	lower	upper
0.96	0.884	1.04

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 9: O/E Ratio

mean	50%	2.5%	97.5%
0.838	0.838	0.83	0.847

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 10: O/Acum Ratio

mean	50%	2.5%	97.5%
1.44	1.44	1.43	1.44

pander::pander(t(rrAnalysisTrain\$c.index\$cstatCI),caption="C. Index")

Table 11: C. Index

mean.C Index	median	lower	upper
0.78	0.779	0.759	0.799

 $\verb"#pander::pander(rrAnalysisTrain\$c.index, caption="C. Index")$

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 12: ROC AUC

est	lower	upper
0.822	0.801	0.843

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 13: Sensitivity

est	lower	upper
0.554	0.513	0.594

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 14: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 15: Probability Thresholds

90%	80%
0.255	0.173

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 16: Risk Ratio

est	lower	upper
4.04	3.57	4.58

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 17: Logrank test Chisq = 709.746789 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1296	172	427.9	153.00	553
class=1	234	93	67.4	9.72	11
class=2	470	329	98.7	536.99	653

1.2.3 Cox Calibration

h0	Gain	DeltaTime
0.279	0.794	13.2

1.2.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: FLC

Decision Curve Analysis: Calibrated Train: FLC

Relative Risk: Calibrated Train: FLC

Time vs. Events: Calibrated Train: FLC

Kaplan-Meier: Calibrated Train: FLC

1.2.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 19: O/E Ratio

est	lower	upper
1.15	1.06	1.24

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 20: O/E Ratio

mean	50%	2.5%	97.5%
1.01	1.01	1	1.02

pander::pander(t(rrAnalysisTrain\$OAcum95ci), caption="0/Acum Ratio")

Table 21: O/Acum Ratio

mean	50%	2.5%	97.5%
1.02	1.02	1.02	1.02

pander::pander(t(rrAnalysisTrain\$c.index\$cstatCI),caption="C. Index")

Table 22: C. Index

mean.C Index	median	lower	upper
0.78	0.78	0.76	0.799

#pander::pander(rrAnalysisTrain\$c.index, caption="C. Index")

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 23: ROC AUC

est	lower	upper
0.822	0.801	0.843

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 24: Sensitivity

est	lower	upper
0.554	0.513	0.594

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 25: Specificity

est	lower	upper
0.9	0.883	0.915

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 26: Probability Thresholds

90%	80%
0.416	0.294

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 27: Risk Ratio

est	lower	upper
4.04	3.57	4.58

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 28: Logrank test Chisq = 709.746789 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	1296	172	427.9	153.00	553
class=1	234	93	67.4	9.72	11
class=2	470	329	98.7	536.99	653

1.3 Performance on the test data set

index <- predict(ml,dataFLTest)
pp <- predictionStats_binary(cbind(dataFLTest\$status,index),plotname="FLC")</pre>

par(op)

Cumulative vs. Observed: Test: FLC

Decision Curve Analysis: Test: FLC

Relative Risk: Test: FLC

Time vs. Events: Test: FLC

Kaplan-Meier: Test: FLC

Number at risk

Time

10

Low	2867	2641	2208	0
0.294 <= Risk < 0.416		502	380	0
Risk $>= 0.416$	1066	678	355	0

par(op)

1.3.1 External Data Report

0.00

pander::pander(t(rrAnalysis\$0ERatio),caption="0/E Ratio")

Table 29: O/E Ratio

est	lower	upper
1.15	1.09	1.22

pander::pander(t(rrAnalysis\$0E95ci),caption="0/E Ratio")

Table 30: O/E Ratio

mean	50%	2.5%	97.5%
0.991	0.991	0.986	0.995

pander::pander(t(rrAnalysis\$OAcum95ci),caption="O/Acum Ratio")

Table 31: O/Acum Ratio

mean	50%	2.5%	97.5%
1.04	1.04	1.04	1.04

pander::pander(t(rrAnalysis\$c.index\$cstatCI),caption="C. Index")

Table 32: C. Index

mean.C Index	median	lower	upper
0.778	0.778	0.765	0.791

#pander::pander(rrAnalysis\$c.index,caption="C. Index")

pander::pander(t(rrAnalysis\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 33: ROC AUC

est	lower	upper
0.824	0.81	0.838

pander::pander((rrAnalysis\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 34: Sensitivity

est	lower	upper
0.556	0.529	0.582

pander::pander((rrAnalysis\$ROCAnalysis\$specificity), caption="Specificity")

Table 35: Specificity

est	lower	upper
0.903	0.892	0.913

pander::pander(t(rrAnalysis\$thr_atP), caption="Probability Thresholds")

Table 36: Probability Thresholds

90%	80%
0.416	0.294

pander::pander(t(rrAnalysis\$RR_atP),caption="Risk Ratio")

Table 37: Risk Ratio

est	lower	upper
4.04	3.72	4.38

pander::pander(rrAnalysis\$surdif,caption="Logrank test")

Table 38: Logrank test Chisq = 1603.704759 on 2 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	2867	386	960	342.8	1157.9
class=1	591	222	179	10.2	11.7
class=2	1066	760	229	1230.3	1496.4