HOMEWORK 6

- (1) Give an example to show that the infinite analogue of the pasting lemma for closed sets is not necessarily true.
- (2) Let A_{α} be a subspace of X_{α} for each α . Then show that the product topology on $\prod_{\alpha} A_{\alpha}$ equals the subspace topology induced from $\prod_{\alpha} X_{\alpha}$.
- (3) If X_{α} is a Hausdorff space for each X_{α} , then show that $\prod_{\alpha} X_{\alpha}$ is Hausdorff.
- (4) Let A_{α} be a subspace of X_{α} for each α . Then show that the closure of the product of A_{α} is equal to the product of the closures.
- (5) Prove or disprove If $\{X_{\alpha}\}_{{\alpha}\in J}$ is such that each X_{α} has at least two points and the product $X:=\prod_{\alpha}X_{\alpha}$ is Hausdorff, then X_{α} is Hausdorff for each α .
- (6) Show that the product $\mathbb{R}^{\mathbb{N}}$ is separable in the product topology. (Note that $\mathbb{Q}^{\mathbb{N}}$ will not work, so you have to apply a fix to that idea.)
- (7) Show that the product $\mathbb{R}^{\mathbb{R}}$ is separable in the product topology. (This is a bit surprising!) (Hint : Go about this in 'steps'.)
- (8) Let J be an uncountable index set and let $\{X_{\alpha}\}$ be a collection of topological spaces X_{α} , each of which is T_1 and has at least two points, indexed by J. Let $X := \prod_{\alpha \in J} X_{\alpha}$. Then show that X has a non-separable subspace. (So that the esotericism of the previous exercise might feel salvaged a bit.) You can use the following steps for this -
 - (1) Fix a point $f \in X$. (Remember that f can be thought of as a function.) Define a subset

$$A \subseteq X := \{g \in X : g(\alpha) = f(\alpha) \text{ for all but countably many } \alpha \in J\}.$$

Then the aim is to show that A is not separable in its subspace topology.

- (2) Fix any countable subset $C = \{g_1, g_2, \ldots\} \subseteq A$. Then show that there exists an $\alpha \in J$ such that $g_n(\alpha) = f(\alpha)$ for all n.
- (3) Find an open subset $U \subseteq X$ such that $g_n \notin U \cap A$ for all n.
- (4) Conclude that A is not separable.
- (9) let $\{X_{\alpha}\}_{{\alpha}\in J}$ be a collection of separable Hausdorff topological spaces X_{α} , each of which has at least two points, indexed by J. Assume that $X := \prod_{{\alpha}\in J} X_{\alpha}$ is separable. Then show that $|J| \leq |\mathbb{R}|$, i.e. there is an injection from J to \mathbb{R} . (This provides some more psychological sense; you cannot have 'too large' products of separable spaces be separable.) You can use the following steps for this -
 - (1) For each $\alpha \in J$, find disjoint nonempty open subsets U_{α} and V_{α} in X_{α} .
 - (2) Let D be a countable dense set in X. Define for each $\alpha \in J$, $D_{\alpha} := \pi_{\alpha}^{-1}(U_{\alpha}) \cap D$. Show that $D_{\alpha} \neq 0$ for each $\alpha \in J$.
 - (3) Show that if $\alpha \neq \beta$, $D_{\alpha} \neq D_{\beta}$.
 - (4) Conclude the existence of the required injection.
- (10) Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in $\mathbb{R}^{\mathbb{N}}$ (i. e. a sequence of sequences) such that each x_n (thought of as a sequence in \mathbb{R}) has infinitely many nonzero terms. Show that the sequence $\{x_n\}_{n\in\mathbb{N}}$ does not converge to the constant zero sequence $(0,0,0,\ldots)$ in the box topology on $\mathbb{R}^{\mathbb{N}}$. (So that almost any interesting sequence in $\mathbb{R}^{\mathbb{N}}$ fails to converge in the box topology.)

1