Машинное обучение Проверочная работа по линейной регрессии

ΨHO .	руппа:
-------------	--------

Задача 1 (5 баллов). Ответьте на вопросы:

- 1. Пусть дана функция $f: \mathbb{R}^{m \times n} \to \mathbb{R}$, которая принимает на вход матрицу размера $m \times n$ и переводит её в число. Как определяется производная этой функции по матрице $\frac{\partial}{\partial A} f(A)$?
- 2. Как записывается метрика R^2 ? Какое её значение соответствует модели, идеально предсказывающей ответы?
- 3. Чем отличается обычный градиентный спуск от стохастического градиентного спуска?
- 4. Изобразите на графике примерный вид квантильной функции потерь $\rho_{\tau}(z)$ как функции от z=y-a(x) для $\tau=0.9$.
- 5. Чему равна векторная производная $\frac{\partial}{\partial x}\langle a,x\rangle$?

Задача 2 (5 баллов). Найдите производную по вектору $a \in \mathbb{R}^n$

$$\frac{\partial}{\partial a} \left(a^T \exp(aa^T) a \right) = ?,$$

где $\exp(B)$ — матричная экспонента

$$1 + \frac{B}{1!} + \frac{B^2}{2!} + \frac{B^3}{3!} + \frac{B^4}{4!} + \dots = \sum_{k=0}^{\infty} \frac{B^k}{k!}.$$

При решении вам может пригодиться правило дифференцирования сложных функций. Пусть даны функции $f: \mathbb{R}^n \to \mathbb{R}$ и $g: \mathbb{R} \to \mathbb{R}$. Тогда имеет место следующее равенство:

$$\frac{\partial}{\partial x}g(f(x)) = g'(f(x))\frac{\partial}{\partial x}f(x).$$