DETERMINISTIC FINITE AUTOMATA

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To construct finite automata for any given pattern and find its equivalent regular expressions
 - To understand what is Regular Expression

FINITE AUTOMATA

- The FA is a mathematical model of a system, with discrete inputs and outputs and a finite number states and a set of transitions from state to state that occurs on input symbols from alphabet Σ .
- The FA is classified as:
 - Deterministic Finite Automata (DFA)
 - Non Deterministic Finite Automata (NFA)

FINITE AUTOMATA CONT...

DFA SPECIFICATION

- A Deterministic Finite Automata (DFA) is a 5-tuple (Q, Σ, S, F, δ) where
 - Q is a finite set of states
 - \(\Sigma\) is an alphabet or set of circul symbols
 - S: q_0 ∈ Q is the initial state
 - $-\underline{F} \subseteq Q$ is a set of accepting states (or final states)
 - $-\delta$: $\underline{Q} \times \underline{\Sigma} \rightarrow \underline{Q}$ is a transition function

DFA for strings containing 01

What makes this DFA deterministic?

•
$$Q = \{q_0, q_1, q_2\}$$

• $\Sigma = \{0, 1\}$
• $S = q_0 \in Q$

	symbols				
<u> </u>	δ	0	1	6 (9 2,0) 5 (9 2,1)	=9/2 =9/2
	→q ₀	q_1	q_0	V	, -
states	q_1	q_1	q_2		
sta	*q ₂	q_2	q_2		

• $F = \{q_2\}$

• Transition table

TRANSITION DIAGRAM OF DFA

• It is a directed graph whose vertices corresponds to states of DFA. The edges are the transitions from one state to another

 In the transition diagram, start state s is represented by → and the final states are represented by double circle.

• The DFA for the above transition is represented as: S, F, δ) where

 $\delta \rightarrow$ Transition Table??

s<u>tart</u>

- Suppose 110101 is input to M, check the validity of the input.
- Finite automata is in start state and reads from left most.

$$\delta (q_0, 1) = q_3$$

 $\delta (q_3, 1) = q_0$ (Reader reads next symbols)

 $\delta (q_0, 0) = q_1$ (Reader moves one position right)

$$\delta (q_1, 1) = q_2$$

$$\delta (q_2, 0) = q_3$$

$$\delta (q_3, 1) = q_0$$

since q_0 is a final state, the given string is accepted.

$$q0 \xrightarrow{1} q3 \xrightarrow{1} q0 \xrightarrow{0} q1 \xrightarrow{1} q2 \xrightarrow{0} q3 \xrightarrow{1} q0$$

- L=? { 2011, 0101...3 [ven 0's 41/3

- 1010
- 1101

$$\delta(q_{0}, 1010) = \delta(q_{3}, 010)$$

= $\delta(q_{1}, 0)$
= $90 \ EF$
= the string is assigned

1101

- L=? L={01, 101, 1101, 01 00....}
- 1010
- 11011

8(90,1010) = 8(90,010)	
= 8(91,10)	
= S(92,0)	
= 92 EF :. The string is accepted	
12 me serrey sacepact	
$\delta(q_0, 11011) = \delta(q_0, 1011)$	
= S(90,011)	
= 8(9,11)	
$=\delta(q_2,1)$	
72 1000000000000000000000000000000000000	
= 92 EF: The string is accepted	

DFA CONSTRUCTION

Construct a DFA which accepts strings containing 01

DFA CONSTRUCTION

• DFA accepting a set of strings over Σ ={a, b} in which the second symbol from left-hand side is always 'b'

Design a DFA that accepts input strings of 0's and 1's that end with 11

Transition Diagram?

• Design a DFA that accepts strings over $\Sigma = \{0,1\}$ with three consecutive 0's.

Transition Diagram?

PROPERTIES OF TRANSITION FUNCTION (δ)

1.
$$\delta(q, \varepsilon) = q$$

This means the state of the system can be changed only by an input symbol else remains in original state.

2. For all strings w and input symbol a

$$\delta(q, aw) = \delta \left(\delta (q, a), w \right)$$

similarly $\delta(q, wa) = \delta \left(\delta (q, w), a \right)$

3. The transition function δ can be extended to $\overline{\delta}(\text{or})'\overline{\delta}$ that operates on states and strings (as opposed to states and symbols)

Basis :
$$\delta$$
 (q, ϵ) = q

Induction:
$$\delta(q, xa) = \delta(\delta(q, x), a)$$

LANGUAGE OF A DFA

• A DFA A accepts string w if there is a path from q_0 to an accepting (or final) state that is labeled by w

• i.e.,
$$L(A) = \{ w \mid \widehat{\delta}(q_0, w) \in F \}$$

• I.e., $L(A) = all \ strings \ that lead to a final state from <math>q_0$

TEST YOUR KNOWLEDGE

- 1. Construct a DFA which contains a substring aabb
- 2. Construct a DFA to accept a strings of even number of zeros over $\Sigma = \{0,1\}$
- 3. Construct a DFA to accepting strings containing odd number of b's over $\Sigma = \{a,b\}$

SUMMARY

- Introduction to Finite Automata
- Definition of DFA
- Transition diagram, transition function and properties of transition function

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

Understand the concepts of DFA (K3)

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

