HUDM5126 Linear Models and Regression Analysis Homework 8

Yifei Dong

10/22/2020

0. Data Preparation

```
getwd()
## [1] "/Users/yifei/Documents/Teachers College/Linear Models and Regression/Week 8/hw8/hw8_R"
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(clusterGeneration)
## Loading required package: MASS
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
       select
library(bestglm)
## Loading required package: leaps
library(ggplot2)
library(leaps)
library(MASS)
```

1. Model Selection with Kidney Dataset

In this exercise, we will use kidney function data from Exercise 9.15 on p.378.

```
# change column names
kidney <- kidney %>%
  dplyr::select("Y" = V1, "X1" = V2, "X2" = V3, "X3" = V4)
head(kidney, 10)
##
        Y
            X1 X2
                    ХЗ
## 1
      132 0.71 38
                    71
##
  2
       53 1.48 78
                    69
## 3
       50 2.21 69
## 4
       82 1.43 70
                   100
## 5
      110 0.68 45
                    59
## 6
      100 0.76 65
                    73
       68 1.12 76
                    63
## 8
       92 0.92 61
                    81
## 9
       60 1.55 68
                    74
       94 0.94 64
## 10
                    87
```

a) Obtain the scatterplot matrix. What does it suggest?

X3 0.3459149 -0.08898262 0.06848147

pairs(kidney)

We can conclude from the scatterplot, as well as the correlation table. The response variable Y has a

1.00000000

strong negative relationship with X_1 and X_2 and a positive relationship with X_3 . Also, I observe some multicollinearity problem because there exists a positive correlation between X_1 and X_2 .

b) Fit the multiple regression model containing all three predictors as first-order terms. Are all predictors significant?

```
reg1 <- lm(Y~X1+X2+X3, data = kidney)
summary(reg1)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X3, data = kidney)
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
  -28.668 -7.002
                     1.518
                             9.905
                                    16.006
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) 120.0473
                           14.7737
                                     8.126 5.84e-09 ***
               -39.9393
                                    -7.132 7.55e-08 ***
                            5.6000
## X1
## X2
                -0.7368
                            0.1414
                                    -5.211 1.41e-05 ***
## X3
                            0.1719
                                     4.517 9.69e-05 ***
                 0.7764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 12.46 on 29 degrees of freedom
## Multiple R-squared: 0.8548, Adjusted R-squared: 0.8398
## F-statistic: 56.92 on 3 and 29 DF, p-value: 2.885e-12
```

The model shows that all three predictors as first-order terms are significant because of the low p-value. Therefore, all of the three preictors should be retained.

2. Best Subset Selection

c) Perform best subset selection in order to choose the best model from the pool of possible predictors that includes X_1, X_2, X_3 plus all quadratic terms and all possible interactions. (That is, you should have 9 predictor variables to choose from.) What are the *two* best models according to BIC? Include a plot BIC as evidence which one is the lowest/highest value. Report the coefficients of the best models obtained.

```
# Generate variables
kidney <- kidney %>%
  mutate(X1sq = X1^2, X2sq = X2^2, X3sq = X3^2,
         X1X2 = X1*X2, X1X3 = X1*X3, X2X3 = X2*X3)
head(kidney, 10)
                                                  X1X3 X2X3
##
            X1 X2
                   ХЗ
                        X1sq X2sq
                                    X3sq
                                           X1X2
## 1
                   71 0.5041 1444
      132 0.71 38
                                    5041
                                          26.98
                                                 50.41 2698
## 2
       53 1.48 78
                   69 2.1904 6084
                                    4761 115.44 102.12 5382
## 3
                   85 4.8841 4761
       50 2.21 69
                                    7225 152.49 187.85 5865
## 4
       82 1.43 70 100 2.0449 4900 10000 100.10 143.00 7000
                                          30.60
## 5
                   59 0.4624 2025
      110 0.68 45
                                    3481
                                                 40.12 2655
## 6
      100 0.76 65
                   73 0.5776 4225
                                    5329
                                          49.40
                                                 55.48 4745
## 7
       68 1.12 76
                   63 1.2544 5776
                                    3969
                                          85.12
                                                 70.56 4788
## 8
       92 0.92 61
                   81 0.8464 3721
                                          56.12 74.52 4941
                                    6561
## 9
                   74 2.4025 4624
                                    5476 105.40 114.70 5032
       60 1.55 68
## 10 94 0.94 64 87 0.8836 4096
                                    7569 60.16 81.78 5568
# Regression with all predictors
summary(lm(Y ~ ., data = kidney))
##
## Call:
## lm(formula = Y ~ ., data = kidney)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
  -27.663
           -6.258
                     1.832
                             5.925
                                     20.164
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
               68.408996
                           98.118427
                                        0.697
                                                0.4927
## (Intercept)
## X1
               -93.900207
                           48.001432
                                       -1.956
                                                0.0627 .
## X2
                -1.220775
                            1.754197
                                       -0.696
                                                0.4935
## X3
                 3.310486
                            1.795766
                                        1.843
                                                0.0782
                 8.645235
                           14.996001
                                                0.5699
## X1sq
                                        0.577
                 0.008801
                            0.009514
                                                0.3646
## X2sq
                                        0.925
## X3sq
                -0.011568
                            0.010288
                                       -1.124
                                                0.2725
## X1X2
                 0.422545
                            0.732978
                                                0.5699
                                        0.576
## X1X3
                -0.030914
                            0.612987
                                       -0.050
                                                0.9602
## X2X3
                -0.011938
                            0.019095
                                       -0.625
                                                0.5380
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11.95 on 23 degrees of freedom
## Multiple R-squared: 0.894, Adjusted R-squared: 0.8526
## F-statistic: 21.56 on 9 and 23 DF, p-value: 3.534e-09
```

```
# Reorder the variables
kidney \leftarrow kidney[c(2:10, 1)]
bs1 <- bestglm(Xy = kidney,
               family = gaussian,
               IC = "BIC")
bs1$Subsets
##
      (Intercept)
                     X1
                           X2
                                 X3 X1sq X2sq X3sq X1X2 X1X3 X2X3
## 0
             TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1
             TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## 2
             TRUE FALSE FALSE
                              TRUE FALSE FALSE FALSE
                                                       TRUE FALSE FALSE
## 3
             TRUE
                   TRUE FALSE
                               TRUE FALSE FALSE FALSE FALSE
                   TRUE
                        TRUE
                               TRUE FALSE FALSE FALSE
## 4*
             TRUE
                                                        TRUE FALSE FALSE
## 5
                   TRUE TRUE
                              TRUE FALSE FALSE
                                                  TRUE
             TRUE
                                                       TRUE FALSE FALSE
                   TRUE FALSE
                               TRUE
                                     TRUE
                                            TRUE
                                                  TRUE FALSE FALSE
## 6
             TRUE
## 7
             TRUE
                   TRUE
                        TRUE
                               TRUE
                                     TRUE
                                            TRUE
                                                  TRUE FALSE FALSE
                                                                    TRUE
                                     TRUE
## 8
             TRUE
                   TRUE
                         TRUE
                               TRUE
                                            TRUE
                                                  TRUE
                                                        TRUE FALSE
                                                                    TRUE
## 9
             TRUE TRUE
                         TRUE
                               TRUE
                                     TRUE
                                            TRUE
                                                  TRUE
                                                                    TRUE
                                                        TRUE
                                                             TRUE
##
      logLikelihood
                         BIC
         -112.94399 225.8880
## 0
## 1
          -92.65821 188.8129
## 2
          -85.63381 178.2606
## 3
          -80.70050 171.8905
## 4*
          -78.12089 170.2278
## 5
          -76.87208 171.2267
## 6
          -76.32314 173.6253
## 7
          -76.15234 176.7802
## 8
          -75.90910 179.7903
## 9
          -75.90727 183.2831
# Select two best models using BIC
bs1$BestModels %>%
 top_n(-2)
## Selecting by Criterion
##
       Х1
                  X3 X1sq X2sq X3sq X1X2 X1X3 X2X3 Criterion
## 1 TRUE
          TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
                                                          170.2278
## 2 TRUE FALSE TRUE TRUE FALSE FALSE FALSE
                                                    TRUF.
The best model includes the following 4 predictors: X_1, X_2, X_3, and X_1X_2.
The second best model includes the following 4 predictors: X_1, X_3, X_1^2, and X_2X_3.
Both two models' BIC values are very close.
# Plot of BIC use ggplot2 package
g1 <- ggplot(bs1$Subsets, aes(x = row.names(bs1$Subsets),
                              y = BIC, label = round(BIC, digits = 2)))+
  geom_point()+
  geom_text(hjust = 0, nudge_x = 0.05, size = 3)+
  scale_x_discrete("Number of Covariates")+
```

scale_y_continuous("BIC")+
geom_line(group = 1)+
ggtitle("Plot of BIC")+

The best model bs1\$BestModel

```
##
## Call:
  lm(formula = y ~ ., data = data.frame(Xy[, c(bestset[-1], FALSE),
##
       drop = FALSE], y = y))
##
##
## Coefficients:
##
   (Intercept)
                          X1
                                        Х2
                                                      ХЗ
                                                                  X1X2
##
      181.6978
                    -95.5593
                                   -1.7536
                                                 0.7951
                                                               0.8620
```

Based on the BIC plot, the lowest value is the model has 4 covariates and the highest value is the model with 0 covariates, which only includes the intercept.

So the estimated best regression model is:

$$\hat{Y}_i = 181.6978 - 95.5593X_{i1} - 1.7536X_{i2} + 0.7951X_{i3} + 0.8620X_{i1}X_{i2}$$

d) Repeat part c) but this time using AIC. Are the results idential?

```
IC = "AIC")
bs2\$Subsets
      (Intercept)
##
                    X1
                          X2
                                X3 X1sq X2sq X3sq X1X2 X1X3 X2X3
## 0
            TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## 1
            TRUE FALSE FALSE FALSE FALSE FALSE
                                                      TRUE FALSE FALSE
## 2
            TRUE FALSE FALSE
                              TRUE FALSE FALSE FALSE
                                                      TRUE FALSE FALSE
## 3
            TRUE
                  TRUE FALSE
                              TRUE FALSE FALSE FALSE FALSE
                       TRUE
## 4
            TRUE
                  TRUE
                             TRUE FALSE FALSE FALSE
                                                      TRUE FALSE FALSE
## 5*
            TRUE
                  TRUE TRUE
                              TRUE FALSE FALSE
                                                TRUE
                                                      TRUE FALSE FALSE
## 6
            TRUE
                  TRUE FALSE
                              TRUE
                                   TRUE
                                          TRUE
                                                TRUE FALSE FALSE
                             TRUE
                                                TRUE FALSE FALSE
## 7
            TRUE TRUE TRUE
                                    TRUE
                                          TRUE
                                                                  TRUE
## 8
            TRUE TRUE
                        TRUE
                              TRUE
                                    TRUE
                                          TRUE
                                                TRUE
## 9
            TRUE TRUE
                        TRUE
                             TRUE
                                    TRUE
                                          TRUE
                                                TRUE
                                                      TRUE
                                                           TRUE
                                                                  TRUE
     logLikelihood
##
                        AIC
## 0
         -112.94399 225.8880
## 1
         -92.65821 187.3164
## 2
         -85.63381 175.2676
## 3
         -80.70050 167.4010
## 4
         -78.12089 164.2418
## 5*
         -76.87208 163.7442
         -76.32314 164.6463
## 6
## 7
         -76.15234 166.3047
## 8
         -75.90910 167.8182
## 9
         -75.90727 169.8145
# Select two best models according to AIC
bs2$BestModels %>%
 top_n(-2)
## Selecting by Criterion
```

```
## X1 X2 X3 X1sq X2sq X3sq X1X2 X1X3 X2X3 Criterion
## 1 TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE 163.7442
## 2 TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE 164.2418
```

Using AIC, the best model includes the following 5 predictors: X_1, X_2, X_3, X_3^2 and X_1X_2 .

The second best model also includes 4 predictors, which are: X_1, X_2, X_3 and X_1X_2 .

The best model using AIC bs2\$BestModel

```
##
## Call:
  lm(formula = y ~ ., data = data.frame(Xy[, c(bestset[-1], FALSE),
##
       drop = FALSE], y = y))
##
##
   Coefficients:
##
##
   (Intercept)
                          X1
                                        X2
                                                                  X3sq
                                                                                X1X2
     103.97280
                   -93.35747
                                  -1.64122
                                                 2.77202
                                                              -0.01299
                                                                             0.80433
##
```

Based on the AIC plot, the lowest AIC value is the model that has 5 covariates and the highest value is the model with 0 covariates, which only includes the intercept.

So the estimated best regression model is:

$$\widehat{Y}_i = 103.9728 - 93.3575X_{i1} - 1.6412X_{i2} + 2.7720X_{i3} - 0.0130X_{i3}^2 + 0.8043X_{i1}X_{i2}$$

The results are not identical. BIC suggests the best model should have 4 covariates, while AIC suggests the best model should have 5 covariates. This is consistent with the theory because BIC imposes additional penalty for more complexity in the model, which means BIC tends to produce a more easily interpretable model.

e) Repeat part c) using adjusted R^2 ? (You might want to use the leaps function from the leaps package)

```
rsOut <- regsubsets(Y ~ ., data = kidney, nvmax = 9)
summary(rsOut)</pre>
```

```
## Subset selection object
## Call: regsubsets.formula(Y ~ ., data = kidney, nvmax = 9)
## 9 Variables (and intercept)
##
       Forced in Forced out
## X1
           FALSE
                      FALSE
## X2
           FALSE
                      FALSE
## X3
           FALSE
                      FALSE
           FALSE
                      FALSE
## X1sq
## X2sq
           FALSE
                      FALSE
## X3sq
           FALSE
                      FALSE
## X1X2
           FALSE
                      FALSE
## X1X3
           FALSE
                      FALSE
## X2X3
           FALSE
                      FALSE
## 1 subsets of each size up to 9
## Selection Algorithm: exhaustive
##
           X1 X2 X3 X1sq X2sq X3sq X1X2 X1X3 X2X3
     (1)"""""""
## 1
     (1)"""
     (1)"*"
      (1
      ( 1
     (1)
## 9 (1)"*"
# Adjusted R^2
plot(rsOut, scale = "adjr2", main = "Adjusted R squared")
```

Adjusted R squared


```
reg.summary <- summary(rsOut)
plot(1:9, reg.summary$adjr2,xlab="Number of Covariates",
     ylab="Adjusted R Squared",
     main="Adjusted R Squared", type="b",</pre>
```

```
lwd = 3)
which.max(reg.summary$adjr2) # Model with 5 covariates has the largest R-Squared

## [1] 5
points(5,reg.summary$adjr2[5], col="red",cex=2,pch=20) # add a red point for the best model
```

Adjusted R Squared


```
# Let's find those five covariates
bs3 <- leaps(x=kidney[, 1:9], y = kidney[, 10], nbest = 9, method = "adjr2")
colnames(bs3$which) <- colnames(kidney[, 0:9]) # change column names to make it clear
# Sort the two best models by adjusted R^2
sort(bs3$adjr2, decreasing = TRUE)
    [1] 0.86684974 0.86625309 0.86523624 0.86442943 0.86429424 0.86382503
   [7] 0.86357578 0.86325172 0.86278452 0.86233566 0.86226141 0.86181642
## [13] 0.86151029 0.86132854 0.86129136 0.86123924 0.86108542 0.86104547
## [19] 0.86067757 0.86057782 0.85976727 0.85976199 0.85954863 0.85899428
## [25] 0.85887848 0.85869815 0.85866310 0.85856170 0.85847391 0.85816939
## [31] 0.85786324 0.85667234 0.85667216 0.85631283 0.85573878 0.85446881
## [37] 0.85345773 0.85257090 0.85201885 0.85191420 0.85136197 0.85094778
## [43] 0.84883436 0.84801042 0.84365820 0.83979979 0.83783736 0.83520681
## [49] 0.83216621 0.83181519 0.83172029 0.82955652 0.82854662 0.82709626
## [55] 0.82522981 0.79620153 0.78550843 0.73618198 0.73298252 0.72967518
## [61] 0.71650290 0.70330969 0.70081943 0.70014903 0.69810991 0.63138133
## [67] 0.55003092 0.46553310 0.42818429 0.32942820 0.11238896 0.09125894
## [73] 0.08039406
# Let's find the two best models with largest R-Squared
head(bs3$which[order(bs3$adjr2, decreasing = TRUE), ], 2)
```

```
## X1 X2 X3 X1sq X2sq X3sq X1X2 X1X3 X2X3
## 5 TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
## 6 TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
```

Using adjusted R^2 , the best model chooses the following 5 covariates, which are X_1, X_2, X_3, X_3^2 , and X_1X_2 . This matches our graph.

The second best model chooses 6 covariates, which are $X_1, X_2, X_1^2, X_2^2, X_3^2$ and X_2X_3 . This also matches our graph.

```
# Best model using adjusted R^2
coefficients(rsOut, 5) #R^2 = 0.8668
```

```
## (Intercept) X1 X2 X3 X3sq X1X2 ## 103.97279806 -93.35746856 -1.64121863 2.77202222 -0.01299075 0.80432836 So the estimated regression model with largest adjusted R^2 is:
```

$$\widehat{Y}_i = 103.9728 - 93.3575X_{i1} - 1.6412X_{i2} + 2.7720X_{i3} - 0.0130X_{i3}^2 + 0.8043X_{i1}X_{i2}$$

This result matches the result we get using AIC. AIC's best model has the largest adjusted R^2 .

3. Foward Stepwise Selection

f) Repeat parts c & d, but this time using forward selection, as shown in class with the **stepAIC** function. How does your answer compare to the results in parts c to e?

```
# Forward Selection with AIC
min.model <- lm(Y ~ 1, data = kidney) # start with only intercept
max.model <- lm(Y ~ ., data = kidney) # stop with model with everything
scp <- list(lower = min.model, upper = max.model)</pre>
fwd <- stepAIC(min.model, direction = 'forward', scope = scp)</pre>
          AIC=227.89
## Start:
## Y ~ 1
##
##
          Df Sum of Sq
                            RSS
                                   AIC
## + X1X2
           1
               21930.7
                        9064.8 189.32
## + X1
               19927.0 11068.5 195.91
           1
## + X1sq
           1
               17484.3 13511.2 202.49
## + X2sq
               14947.1 16048.4 208.17
           1
## + X2
           1
               13825.7 17169.9 210.40
## + X1X3 1
               10860.3 20135.2 215.65
## + X2X3 1
                4343.3 26652.2 224.91
## + X3
                3708.8 27286.7 225.68
           1
## + X3sq 1
                3382.6 27612.9 226.07
## <none>
                        30995.5 227.89
## Step: AIC=189.32
## Y ~ X1X2
##
##
          Df Sum of Sq
                           RSS
                                  AIC
## + X3
           1
               3142.79 5922.0 177.27
## + X3sq
          1
               2832.07 6232.8 178.96
## + X2X3
          1
               1305.75 7759.1 186.18
## + X1X3
                826.88 8237.9 188.16
           1
## <none>
                       9064.8 189.32
## + X1
           1
                371.15 8693.7 189.94
## + X1sq 1
                  2.15 9062.7 191.31
## + X2sq
           1
                  0.60 9064.2 191.31
## + X2
           1
                  0.16 9064.7 191.32
##
## Step: AIC=177.27
## Y \sim X1X2 + X3
##
##
          Df Sum of Sq
                           RSS
                                  AIC
## + X3sq 1
                439.64 5482.4 176.72
                       5922.0 177.27
## <none>
## + X1
           1
                141.03 5781.0 178.47
## + X2X3
           1
                117.85 5804.2 178.60
## + X1X3
           1
                 95.05 5827.0 178.73
## + X2
           1
                 71.76 5850.3 178.87
## + X2sq
                 38.61 5883.4 179.05
          1
## + X1sq 1
                 38.56 5883.5 179.05
##
## Step: AIC=176.72
```

```
## Y \sim X1X2 + X3 + X3sq
##
##
          Df Sum of Sq
                          RSS
                       5482.4 176.72
## <none>
## + X1
           1
               278.642 5203.8 177.00
## + X1X3 1
               270.423 5212.0 177.05
## + X2X3 1
               29.961 5452.4 178.54
## + X2
           1
                 9.384 5473.0 178.67
## + X2sq 1
                 1.933 5480.5 178.71
## + X1sq 1
                 0.497 5481.9 178.72
fwd$coefficients
## (Intercept)
                        X1X2
                                       ХЗ
                                                  X3sq
## -16.20594947 -0.59715466
                               3.18911906 -0.01585003
# Do the results match up with best subset selection?
(d1 = names(fwd$coefficients)[-1]) # Names of predictor variables without the intercept
## [1] "X1X2" "X3"
                     "X3sq"
(minAIC = which.min(bs2$Subsets$AIC)) # Which model is the best for AIC
## [1] 6
# Names of predictor variables without intercept: Best Subset Selection
(d2 = names(bs2$Subsets[minAIC, bs2$Subsets[minAIC,] == TRUE])[-1])
              "X2"
                     "X3"
## [1] "X1"
                            "X3sq" "X1X2"
# Check if the two names sets are equivalent:
d1 %in% d2
## [1] TRUE TRUE TRUE
d2 %in% d1
## [1] FALSE FALSE TRUE TRUE TRUE
```

Using the Forward Stepwise selection approach, AIC identified 3 covariates, which are X_1X_2, X_3, X_3^2 . The AIC via best subset identified 5 covariates, which are $X_1, X_2, X_3, X_3^2, X_1X_2$. The best subset selection suggests 2 more covariates compare to the Forward Stepwise selection method. The results are not matching.

```
# Forward selection with BIC (k = log(N)), StepAIC can do the same job for BIC
fwd2 <- stepAIC(min.model,</pre>
                direction = 'forward',
                scope = scp,
                k = log(nrow(kidney)))
## Start: AIC=229.38
## Y ~ 1
##
          Df Sum of Sq
##
                           RSS
                                  AIC
## + X1X2 1
               21930.7 9064.8 192.31
## + X1
           1
               19927.0 11068.5 198.90
## + X1sq 1
               17484.3 13511.2 205.48
## + X2sq 1
               14947.1 16048.4 211.16
## + X2
           1
               13825.7 17169.9 213.39
```

```
## + X1X3 1 10860.3 20135.2 218.65
## + X2X3 1 4343.3 26652.2 227.90
## + X3 1 3708.8 27286.7 228.68
## + X3sq 1 3382.6 27612.9 229.07
## <none>
                      30995.5 229.38
##
## Step: AIC=192.31
## Y ~ X1X2
##
##
                         RSS
         Df Sum of Sq
                                AIC
## + X3 1 3142.79 5922.0 181.76
## + X3sq 1 2832.07 6232.8 183.44
## + X2X3 1 1305.75 7759.1 190.67
## <none>
                      9064.8 192.31
## + X1X3 1
             826.88 8237.9 192.65
## + X1 1
              371.15 8693.7 194.43
## + X1sq 1 2.15 9062.7 195.80
## + X2sq 1
                 0.60 9064.2 195.80
## + X2 1
               0.16 9064.7 195.81
##
## Step: AIC=181.76
## Y \sim X1X2 + X3
##
         Df Sum of Sq RSS
## <none>
                      5922.0 181.76
## + X3sq 1 439.64 5482.4 182.71
## + X1
          1 141.03 5781.0 184.46
## + X2X3 1 117.85 5804.2 184.59
## + X1X3 1 95.05 5827.0 184.72
## + X2 1 71.76 5850.3 184.85
## + X2sq 1 38.61 5883.4 185.04
## + X1sq 1 38.56 5883 5 105 1
fwd2$coefficients
## (Intercept)
                     X1X2
                                  ХЗ
## 73.6149703 -0.5964808 0.7648475
# Do the results match up with best subset selection?
(d3 <- names(fwd2$coefficients)[-1])</pre>
## [1] "X1X2" "X3"
(minBIC = which.min(bs1$Subsets$BIC))
## [1] 5
(d4 <- names(bs1$Subsets[minBIC, bs1$Subsets[minBIC,] == TRUE])[-1])</pre>
## [1] "X1" "X2"
                   "X3"
                          "X1X2"
# Check if the two names sets are equivalent:
d3 %in% d4
## [1] TRUE TRUE
d4 %in% d3
## [1] FALSE FALSE TRUE TRUE
```

Using the Forward Stepwise selection approach, BIC identified 2 covariates, which are X_1X_2, X_3 . The BIC via best subset identified 4 covariates, which are X_1, X_2, X_3, X_1X_2 . The best subset selection suggests 2 more covariates compare to the Forward Stepwise selection method. The results are also not matching.