k-Nearest Neighbor

Problem: The following table gives the Speed and Agility rankings of 10 football players from last year's graduating class, and whether they were drafted or not:

Players	Speed (1-10)	Agility (1-10)	Drafted?
1	2.5	6.0	No
2	2.0	5.5	No
3	3.0	7.5	No
4	3.5	5.0	No
5	4.0	4.0	No
6	2.0	2.0	No
7	8.0	8.5	No
8	5.0	6.0	Yes
9	5.0	9.5	Yes
10	7.5	8.0	Yes

The goal is to predict whether a new player will be drafted, using the k-Nearest Neighbor classification algorithm.

<u>k-Nearest Neighbor algorithm:</u>

- 1. Choose *k* and distance metric *d*
- 2. Find *k* nearest neighbors to sample
- 3. Assign class label via majority vote

Euclidean Distance metric

Similarity (distance) between instances x_i and x_j . There are n attributes $(a_1..a_n)$.

$$d(x_i, x_j) \equiv \sqrt{\sum_{z=1}^n \left(a_z(x_i) - a_z(x_j)\right)^2}$$

1. The new player has rankings Speed=7.0 and Agility=3.0. Determine the distance *d* between the new player and last year's players:

Example: distance between new player and Player 1:

$$d = \sqrt{(7.0 - 2.5)^2 + (3.0 - 6.0)^2} = 5.41$$

Players	Distance	
1	5.41	
2	5.59	
3	6.02	
4	4.03	
5	3.16	
6	5.10	
7	5.59	
8	3.61	
9	6.80	
10	5.02	

2. For k=1, how is the new player classified:

Nearest neighbor is Player 5 (3.16) \Rightarrow classification = No.

3. For k=3, how is the new player classified:

Nearest 3 neighbors are:

Player 5 (3.16) No

Player 8 (3.61) Yes

Player 4 (4.03) No

Use majority vote to assign label:

 \Rightarrow classification = No.