MATH211: Linear Methods I

Matthew Burke

Tuesday 16th October, 2018

Lecture on Tuesday 16th October, 2018

Orthogonality

Projections

Closest points

Misc

Last time

► Lines and planes

► Scalar product, length and distance

Orthogonality

Orthogonality

Orthogonality

Definition

Two vectors u and v are orthogonal iff

$$u \cdot v = 0$$

Note that a zero vector is orthogonal to any other vector.

Orthogonal complement

Definition (Slightly non-standard)

If v is a vector then the *orthogonal complement* v^{\perp} of v is the set of all vectors u such that $u \cdot v = 0$.

Therefore

- ▶ If $v \neq 0 \in \mathbb{R}^1$ then $v^{\perp} = 0$.
- ▶ If $v \neq 0 \in \mathbb{R}^2$ then v^{\perp} is the line perpendicular to v.
- ▶ If $v \neq 0 \in \mathbb{R}^3$ then v^{\perp} is a plane.

In general if $v \neq 0 \in \mathbb{R}^n$ then v^{\perp} is a (n-1)-dimensional subspace.

Lines via normal vector

- Let P and n be vectors in \mathbb{R}^2 .
- ► The set of points Q such that \overrightarrow{PQ} is orthogonal to nform a line.
- Therefore the solutions to

$$n \cdot (x - P) = 0$$

form a line through P and orthogonal to n.

Planes via normal vector

- ▶ Let *P* and *n* be vectors in \mathbb{R}^3 .
- ► The set of points *Q* such that \overrightarrow{PQ} is orthogonal to n form a plane.
- Therefore the solutions to

$$n \cdot (x - P) = 0$$

form a plane through P and orthogonal to n.

Examples

Example

Find all vectors orthogonal to both

$$\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Example

Are the following the vertices of a right angled triangle?

$$\left[\begin{array}{c}4\\-7\\9\end{array}\right], \left[\begin{array}{c}6\\4\\4\end{array}\right], \left[\begin{array}{c}7\\10\\-6\end{array}\right]$$

Example

Example

Find an equation of the plane containing

$$\left[\begin{array}{c}1\\-1\\0\end{array}\right]$$

orthogonal to

$$\begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}$$

Example

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Questions?

Projections

Projection onto a vector

If e is a unit vector then

$$e \cdot v = |e||v|\cos\theta = |v|\cos\theta$$

and so $e \cdot v$ is the length of v projected onto the line in direction e.

Projection onto a vector

Therefore we can write

$$v = (e \cdot v)e + (v - e(e \cdot v))$$

where $(e \cdot v)e$ is parallel to e and $(v - e(e \cdot v))$ is orthogonal to e.

Examples

Example

Let

$$v = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 and $u = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$

Find vectors v_0 and v_1 such that $v = v_0 + v_1$, v_0 is orthogonal to u and v_1 is parallel to u.

Questions?

Closest points

Line given by parametric equations

First we project onto the direction of the line:

$$\overrightarrow{PA} = \frac{d}{\|d\|} \cdot (Q - P) \frac{d}{\|d\|}$$

and then we can find A:

$$A = P + \frac{d}{\|d\|} \cdot (Q - P) \frac{d}{\|d\|}$$

(Use same technique for line in \mathbb{R}^n also.)

Line given by normal

In this picture

$$\overrightarrow{PB} \| \overrightarrow{AQ}$$
 and $\overrightarrow{PA} \| \overrightarrow{BQ}$

First we project onto the normal:

$$\overrightarrow{PB} = \frac{n}{\|n\|} \cdot (Q - P) \frac{n}{\|n\|}$$

and then we can find A:

$$A = Q - \frac{n}{\|n\|} \cdot (Q - P) \frac{n}{\|n\|}$$

(Use same technique for (n-1)-dimensional hyperplane in \mathbb{R}^n also.)

Example

lf

Example

$$p = \left[\begin{array}{c} 3 \\ 2 \\ -1 \end{array} \right]$$

find the closest point to p on the following line:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + s \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

Example

Example

Find the closest point to

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

on the line with equation 5x + y = -2.

Example

Find the closest point to

$$\left[\begin{array}{c}2\\3\\0\end{array}\right]$$

on the plane with equation 5x + y + z = -1.

Misc

Cauchy-Schwarz inequality

If e is a unit vector then

$$|e \cdot v| \leq ||v||$$

More generally:

$$|u\cdot v|\leq \|u\|\|v\|$$

which is the *Cauchy-Schwarz* inequality.

Triangle inequality

Theorem

If u and v are vectors in \mathbb{R}^n then

$$||u + v|| \le ||u|| + ||v||$$

Theorem

If u and v are vectors in \mathbb{R}^n then

$$|||u|| - ||v||| \le ||u - v||$$

Example

Example

Find equations for the lines through

$$\left[egin{array}{c} 1 \ 0 \ 1 \ \end{array}
ight]$$

that meet the line

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$

at the two points distance three from (1, 2, 0).

Examples

Example

The diagonals of a parallelogram bisect each other.

Example

If ABCD is an arbitrary quadrilateral then the midpoints of the four sides form a parallelogram.