最終更新日: 2009年10月1日

FMPカーネル性能評価プログラムマニュアル

名古屋大学 大学院情報科学研究科 附属組込み研究センター

性能評価プログラムの概要

- 目的
 - FMPカーネルのサービスコール発行に要する時間を測定する.
- 評価項目
 - FMPカーネルを2コアで動作させ以下のサービスコールを評価する
 - act_tsk
 - mig_tsk
 - mact_tsk
 - sig_sem
 - slp_tsk

性能評価プログラムのファイル構成

- act_tsk性能評価
 - perf_act_tsk.c/h/cfg
- mig_tsk性能評価
 - perf_mig_tsk.c/h/cfg
- mact_tsk性能評価
 - perf_mact_tsk.c/h/cfg
- sig_sem性能評価
 - per_sig_sem/h/cfg
- slp_tsk性能評価
 - per_slp_tsk.c/h/cfg

ターゲット依存部の設定(1/2)

本性能評価プログラムを動作させるためには, ターゲット依存部において,以下の設定が必要となる

- 時間計測用関数の定義
 - マクロ HIST_GET_TIM として定義する. 定義されていない場合は, get_utm()を用いる.
 - 計測の前後で呼び出す.
 - 引数と戻り値は次の通りである
 - ER HIST_GET_TIM(HISTTIM *p_tim)
- 時間計測用関数で取得するデータの型
 - マクロHISTTIMとして定義する
- 計測結果単位変換関数の定義
 - マクロ HIST_CONV_TIM として定義する.
 - HIST_CONV_TIMで計測した2点間の差分を引数にとり、単位変換した結果を返す.

ターゲット依存部の設定(2/2)

- 実行時間計測開始時フック
 - マクロ HIST_BM_HOOK として定義する.
 - 実行時間計測の開始時に呼び出す. キャッシュのパージ等を想定
- 測定用タイマの初期化関数
 - void perf_timer_initialize(intptr_t exinf);
 - 性能評価プログラムのcfgファイルにおいて, コア1(クラスTCL_1) で起動時に呼び出されるように, ATT INI指定されている.
- 測定前後のフック
 - ターゲット依存で、各コアで測定の前後に行いたい場合は、次のマクロに定義する。
 - 計測中のタイマ割込みを禁止等を想定している.
 - CPU1_PERF_PRE_HOOK : CPU1測定開始時フック
 - CPU1_PERF_POST_HOOK : CPU1測定終了時時フック
 - CPU2_PERF_PRE_HOOK : CPU2測定開始時フック
 - CPU2_PERF_POST_HOOK : CPU2測定終了時時フック

性能評価プログラムの実行方法

- プロジェクトディレクトリの作成
 - Makefileはsample1付属のものをベースにする
 - •コア数は2とする.
- コンパイル対象のファイルのコピー
 - テスト毎のファイル(h/c/cfg)
- Makeファイルの編集
 - APPNAMEをテスト毎のファイル名とする
 - APPL_COBJS に histogram.o を追加

性能評価内容詳細

act_tsk 性能評価:概要

- 対象タスクの状態により分類
 - パターン1:対象タスクが休止状態 → レディキューにつなぐ
 - ・ パターン2:対象タスクが休止状態以外 → キューイング数の操作のみ
- 上記パターン1, 2に対して, 対象タスクが起動するコアのレディキューの状態により, さらに分類し, 5パターンを抽出
 - 1.対象タスクの優先度が、実行状態のタスクより高い.実行状態のタスクを切り替える.
 - 2. 空のレディキューにつないで、実行状態へ.
 - 3.対象タスクの優先度が,実行状態のタスクより高いので,実行状態のタスクを切り替える.
 - 4.対象タスクの優先度が、実行状態のタスクより低い、レディキューにつなぐ、
 - 5. 起床待ち状態のタスクに対してキューイング数を+する.

対象タスクの状態	対象タスク の割付け	最高優先度	実行状態のタスクと 同優先度	実行状態のタスクより 低い優先度	対象タスクのみ	
パターン1 休止状態 (レディキューへつなぐ作業発生)	自CPU	[1]		[4]		
	他CPU	[3]			[2]	
パターン2 休止状態以外 (レディキューへつなぐ作業なし)	自CPU	[5]				
	他CPU					

act_tsk 性能評価:詳細(1)

【2】act_tsk発行前から、起動までを測定

【3】act_tsk発行前から、起動までを測定

act_tsk 性能評価:詳細(2)

【5】act_tsk発行前から、act_tsk終了までを測定

mig_tsk 性能評価:概要

- CPU1に割り付けられているタスクに対する mig_tsk の実行に対して次のパターン の測定を行う
 - 1.対象タスクが休止状態
 - 2.対象タスクが実行可能状態かつ起動の結果実行状態となる
 - 3.対象タスクが実行状態かつ起動の結果実行状態となる

起動の結果 対象タスクの状態	最高優先度	実行状態の タスクと 同優先度	実行状態の タスクより 低優先度	レディキューが 空の所へ 移動する		
パターン1 休止状態 (レディキューに つながっていない)	[1]					
パターン2 ready状態 (レディキューに つながっている)	[2]					
パターン3 自分自身 (running状態)	[3]					

mig_tsk 性能評価:詳細

mact_tsk 性能評価:概要

- mact_tskの実行に関して次のパターンの測定を行う
 - 1. CPU1に割り付けられている休止状態にタスクに対して, CPU2で起動するようにCPU1から mact_tsk を実行
 - 2. CPU2に割り付けられている休止状態にタスクに対して, CPU1で起動するようにCPU1から mact_tsk を実行

対象タスクの状態	起動の結果 対象タスクの所属	最高優先度	実行状態のタスクと 同優先度	実行状態のタスクより 低い優先度	レディキューが空	
パターン1 休止状態 (レディキューへ つなぐ作業発生)	パターン a 自→他				[1]	
	パターンb 他→自	[2]				
	パターンc 他→他	実施せず	実施せず	実施せず	実施せず	
パターン2 休止状態以外 (レディキューへ つなぐ作業なし)	パターンa 自→他	実施せず				
	パターンb 他→自	実施せず				
	パターン c 他→他	実施せず	実施せず	実施せず	実施せず	

mact_tsk 性能評価:詳細

sig_sem 性能評価:概要

- 目的
 - ロックの取得段数が1段の場合と2段の場合の実行時間を測定する
- •【1】ロック単数1段
 - セマフォに対する待ちタスクが存在せず、セマフォ資源数に1加える.
- ・【2】ロック段数2段
 - セマフォに対する待ちタスクが存在する. sig_semを実行するタスク(実行タスク)と同じプロセッサに割り付けられており, 優先度は実行タスクより低い

slp_tsk 性能評価:概要

- 目的
 - 自プロセッサのPCBへのアクセス速度の評価
- [1]slp_tsk
 - slp_tsk()を実行してから,低優先度のタスクに切り替わるまでの時間.
- [2]wup_tsk
 - 起床待ち状態の高優先度のタスクに対して、wup_tsk()を実行して から、高優先度のタスクの実行が再開されるまで.