Math3 CM

Cours de L. PASQUEREAU Tapé par C. THOMAS

8 septembre 2022

Table des matières

1	Fon	ctions	$\operatorname{de} \mathbb{R} \operatorname{dans} \mathbb{R}$	5
	1.1	Limite	9	5
		1.1.1	Adhérence	5
		1.1.2	Limite	5
		1.1.3	Fonctions négligeables	5
		1.1.4	Croissance comparée	6
		1.1.5	Fonctions Équivalentes	6
		1.1.6	Opération sur les équivalents	7
	1.2	Contin	nuité	8
1.3 Dérivabilité		Dériva	a <mark>bilité</mark>	8
		1.3.1	Dérivée successives	8
	1.4	Dévelo	oppements Limités (DL)	8
		1.4.1	Taylor-Young	8
		1.4.2	DL usuels	10
		1.4.3	Opération sur les DL	11
		1.4.4	Application au calcul de dérivé	12

Chapitre 1

Fonctions de $\mathbb R$ dans $\mathbb R$

Soit $D \in \mathbb{R}$, soit $f \in \mathbb{R}^D$

1.1 Limite

1.1.1 Adhérence

Définition 1.1.1 On appelle adhérence de D le plus petit ensemble fermé qui contient D. Noté \bar{D}

1.1.2 Limite

Soit f définie sur D, Soit $a \in \bar{D}$, Soit $l \in \mathbb{R}$

Définition 1.1.2 On dit que f a pour limite l quand x tends vers a si

$$\forall \varepsilon > 0, \exists \eta > 0 | |x - a| < \eta \Rightarrow |f(x) - l| < \varepsilon$$

1.1.3 Fonctions négligeables

Définition 1.1.3 Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que $f = o_a(g)$ si $\frac{f(x)}{g(x)} \to_a 0$

$$\frac{f(x)}{g(x)} = \frac{x}{\sqrt{x}} \tag{1.1}$$

$$\rightarrow_{0^{+}} 0 \tag{1.2}$$

$$f = o_{O^+}(g) \tag{1.3}$$

Croissance comparée 1.1.4

Théorème 1.1.1 Croissances Comparées

Soient $(\alpha, \beta, \gamma) \in \mathbb{R}^{+*}$ avec $\gamma > 1$ avec

$$f: x \mapsto (\log x)^{\alpha}$$

$$g: x \mapsto x^{\beta}$$

$$h: x \mapsto \gamma^x$$

alors on a

$$g = o_{\infty}(f)$$

$$h = o_{\infty}(g)$$

c'est à dire

$$\frac{(\log x)^{\alpha}}{x^{\beta}} \to_{\infty} 0$$

$$\frac{(\log x)^{\alpha}}{x^{\beta}} \to_{\infty} 0$$
$$\frac{x^{\beta}}{\gamma^x} \to_{\infty} 0$$

Fonctions Équivalentes 1.1.5

Soit $f, g \in \mathbb{R}^D$ et $a \in \bar{D}$ on dit que f est équivalente à gDéfinition 1.1.4 quand x tends vers a si $\frac{J}{a} \rightarrow_a 1$.

On note $f \equiv_a g$

- Un polynome est équivalent à son monôme de plus haut degrès (resp bas) quand x tends vers ∞ (resp 0)
- $-\sin x \equiv_0 x$
- $-\ln(1+x) \equiv_0 x$

1.1. LIMITE 7

1.1.6 Opération sur les équivalents

Soient $f_1, g_1, f_2, g_2 \in \mathbb{R}^D$ soit $a \in \bar{D}$ soit $\alpha \in \mathbb{R}$ si

$$f_1 \equiv_a g_1$$
$$f_2 \equiv_a g_2$$

alors

_

$$f_1 \cdot f_2 \equiv_a g_1 \cdot g_2$$

$$\frac{f_1}{f_2} \equiv_a \frac{g_1}{g_2}$$

$$f_1^{\alpha} \equiv_a g_1^{\alpha}$$

 $f = o_a g \Rightarrow f + g \equiv_a g \tag{1.4}$

— Si $f \equiv_a g$ et $\lim_{x \to a} f(x) = l$ alors $\lim_{x \to a} g(x) = l$

Proposition 1.1.1 Si $f \equiv_a g$ et $\lim_a f \neq 1$ alors $\log f \equiv_a \log g$

Démonstration.

$$\frac{\log g(x)}{\log f(x)} - 1 = \frac{\log g(x) - \log f(x)}{\log f(x)}$$

$$= \frac{\log \left(\frac{g(x)}{f(x)}\right)}{\log f(x)} \quad \text{or } f \equiv_a g$$

$$\to_a \frac{0}{f(a)} \quad \text{par passage à la limite car } \lim_a f \neq 1$$

$$= 0$$

Donc
$$\lim_{x \to a} \frac{\log f(x)}{\log g(x)} = 1$$
 donc $\log f \equiv_a \log g$

Cas particulier où l=1

1.1.3 f(x) = 1 + x et $g(x) = 1 + \sqrt{x}$ on a bien $f \equiv_0 g$ et $f \to_0 1$ on a aussi $\log f(x) = \log 1 + x \equiv_0 x$ et $\log g(x) = \log 1 + \sqrt{x} \equiv_0 \sqrt{x}$ et $x \neq \sqrt{x}$

1.2 Continuité

Définition 1.2.1 Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est continue en a si et seulement si $\lim_{x\to a} f(x) = f(a)$. On note \mathcal{C}^0 l'ensemble des fonctions continues, c'est un espace vectoriel.

1.3 Dérivabilité

Définition 1.3.1 Soit f définie sur un ouvert D de \mathbb{R} et $a \in D$. On dit que f est dérivable en a si et seulement si $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe dans \mathbb{R} . On note f' la fonction $a \mapsto \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ définie sur l'ensemble des valeurs dérivables de f.

1.3.1 Dérivée successives

On peut ensuite étudier la dérivabilité des dérivées successives de f

1.4 Développements Limités (DL)

Définition 1.4.1 On appelle Développement Limité (DL) à l'ordre n et au point $a \in I$ d'une fonction f défini sur un interval ouvert I de \mathbb{R} , un polynome P tel que

$$\deg P = n$$

$$f(x) = P(x - a) + o_0((x - a)^n)$$

C'est une propriété **locale** de f en a

1.4.1 Taylor-Young

Théorème 1.4.1–Formule de Taylor-Young Soit f une fonction définie de I dans \mathbb{R} , n fois dérivable, alors f admet un DL_n pour un point a de la forme

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n})$$

Remarque 1.4.1 Dans la majorité des cas pratiques, on prend a=0 ce qui donne

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)x^{k}}{k!} + o(x^{n})$$

1.4.1 En exemple on prend $f = \exp$, $\exp \in \mathcal{C}^{\infty}$ et on a $\forall n \in \mathbb{N}, f^{(n)} = \exp$ donc $\forall n \in \mathbb{N}, f^{(n)}(0) = 1$ donc d'après le théorème de Taylor-Young, $\forall n \in \mathbb{N}$, exp admet un DL_n de la forme

$$\exp(x) = \sum_{k=0}^{n} \frac{\exp^{(k)}(0)}{k!} x^{k} + o(x^{n})$$
$$\exp(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

Remarque 1.4.2 La formule de Taylor-Young permet aussi de faire l'inverse, de trouver la valeur d'une dérivée en un point si l'on connaît le DL de la fonction.

1.4.2 Un exemple pour la valeur en 0 de la dérivée quatrième de 1

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + o(x^4)$$

Et d'après Taylor-Young on a

$$\frac{1}{1-x} = \frac{f(0)}{1} + \frac{f'(0)}{1}x + \frac{f''(0)}{2}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + o(x^4)$$

Or les deux DL sont égaux, donc les polynômes aussi, et donc par identification des coefficients on a

$$\frac{f^{(4)}(0)}{4!} = 1$$

ce qui donne

$$\frac{f^{(4)}(0)}{4!} = 1$$
$$f^{(4)}(0) = 4! = 24$$

On a donc la valeur de la dérivée quatrième en ${\cal O}$ sans avoir à dériver la fonction.

En pratique ça permet l'étude des dérivées en un point sur des fonctions bien plus complexes

1.4.2 DL usuels

Proposition 1.4.1 Les développements limités usuels en 0 sont les suivants

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k}}{(2k)!} + o(x^{2n})$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^{k} + o(x^{n})$$

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$$

$$\log(1+x) = \sum_{k=0}^{n} \frac{(-1)^k x^k}{k} + o(x^n)$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} \sigma_{\alpha}(k) x^k + o(x^n) \qquad \text{avec}$$

$$\alpha \in \mathbb{R} \qquad \text{et}$$

$$\sigma_{\alpha}(k) = \begin{cases} 1, & \text{si } k = 0 \\ \frac{\sum_{i=0}^{k-1} (\alpha - i)}{k!}, & \text{sinon} \end{cases}$$

Remarque 1.4.3 Les DL de fonctions paires (resp impaires) ne contiennent que des coefficients sur les degrès pairs (resp impairs)

1.4.3 Exemple, la fonction cos est paire

1.4.3 Opération sur les DL

Sans perte de généralité, les DL sont ici en 0

Soit $P, Q \in R[X]$ et $f, g \in \mathbb{R}^I$ tels que

$$\deg P = \deg Q = n$$

$$f(x) = P(x) + o(x^n)$$

$$g(x) = Q(x) + o(x^n)$$

Troncage

Définition 1.4.2 On appelle "troncage" à l'ordre $k \le n$ d'un DL, le polynome tronqué F_k de degrès k tel que tous les coefficients de F_k sont égaux à ceux de F jusqu'au coefficient de x^k et tel que

$$f(x) = F_k(x) + o(x^k)$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + o(x^5)$$

le DL_5 de exp alors on peut le "tronquer" à l'ordre $k=3\leq 5$ pour avoir le

$$DL_3$$
 de exp

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + o(x^3)$$

Somme

Proposition 1.4.2 Le DL_n de la fonction f + g est la somme des DL_n de f et de g

$$(f+g)(x) = P(x) + Q(x) + o(x^n)$$

Produit

Proposition 1.4.3 Le DL_n de la fonction fg est le produit des DL_n de f et de g tronqué à l'ordre n

$$(fg)(x) = PQ_n(x) + o(x^n)$$

Composée

Proposition 1.4.4 Si g(0) = 0 alors on peut composer les DL_n et le DL_n de $f \circ g$ est la composition des DL_n de f et de g tronqué à l'ordre n

$$(f \circ g)(x) = (P \circ Q)_n(x) + o(x^n)$$

1.4.5 Exemple DL_3 de $\sqrt{1+\sin x}$. On a bien $\sin 0 = 0$.

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$

$$(1+X)^{\alpha} = 1 + \alpha X + \frac{\alpha(\alpha-1)x^2}{2}X^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}X^3 + o(X^3) \quad \text{donc}$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}\left(x - \frac{x^3}{6}\right) - \frac{1}{8}\left(x - \frac{x^3}{6}\right)^2 + \frac{3}{48}\left(x - \frac{x^3}{6}\right)^3 + o(x^9)$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{x^3}{12} - \frac{1}{8}x^2 + \frac{3}{48}x^3 + o(x^3)$$

$$(1+\sin x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{48}x^3 + o(x^3)$$
tronquage

1.4.4 Application au calcul de dérivé

Les DL sont utiles pour résoudre des formes indéterminées lors du calcul de limite

1.4.6 Calcul de la limite en 0 de la fonction $f: x \mapsto \frac{e^{x^2} - \cos x}{x^2}$ On calcule les différents DL à l'ordre 4

$$e^{x^2} = 1 + (x^2) + \frac{(x^2)^2}{2} + o(x^4)$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

$$e^{x^2} - \cos x = \frac{3}{2}x^2 + o(x^2)$$
 tronquage, inutile au delà
$$f(x) = \frac{\frac{3}{2}x^2 + o(x^2)}{x^2}$$

$$f(x) = \frac{3}{2} + o(1)$$
 d'où
$$\lim_{x \to 0} f(x) = \frac{3}{2}$$

On voit après que l'ordre 2 aurait suffit, l'intuition peut aider pour savoir à quel ordre calculer.