FREQUENCY DOMAIN REPRESENTATION OF LTI SYSTEMS

DICRETE TIME FOURIER TRANSFORM (DTFT)

EXISTENCE

MEAN SQUARE CONVERGENCE

FOURIER TRANSFORM OF A CONSTANT SEQUENCE

FOURIER TRANSFORM OF A COMPLEX EXPONENTIAL SEQUENCE

FOURIER TRANSFORM OF A SINUSOIDAL SEQUENCE

FOURIER TRANSFORM OF UNIT STEP SEQUENCE

SYMMETRY PROPERTIES OF FOURIER TRANSFORM

REAL SEQUENCES

FOURIER TRANSFORM THEOREMS

FOURIER TRANSFORM PAIRS

IDEAL LOWPASS FILTER (IMPULSE RESPONSE)

MOVING AVERAGE FILTER

EXAMPLES

LCCDES AND FREQUENCY RESPONSE

DICRETE TIME FOURIER TRANSFORM (DTFT)

The Fourier transform of a sequence x[n] is defined as

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

If the FT exists (summation converges) the sequence can be obtained from its FT as

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Fourier Transform is periodic with 2π .

LTI SYSTEMS

The frequency response function, $H\!\left(e^{j\omega}\right)$

is the FT of the impulse response

h[n]

EXISTENCE

FT of a sequence x[n] exists, i.e.,

$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

converges to a continuous function of ω ,

if x[n] is absolutely summable.

(sufficient condition)

Proof: Exercise

$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n](\cos(\omega n) - j\sin(\omega n))$$
$$= \sum_{n=-\infty}^{\infty} x[n]\cos(\omega n) - j\sum_{n=-\infty}^{\infty} x[n]\sin(\omega n)$$

Both sums have to converge

ightarrow All stable LTI systems have frequency response functions.

$$\underline{\mathbf{Ex}} : x[n] = a^n \ u[n]$$

$$X\left(e^{j\omega}\right) = \sum_{n=0}^{\infty} a^n e^{-j\omega n} = \sum_{n=0}^{\infty} \left(ae^{-j\omega}\right)^n = \frac{1}{1 - ae^{-j\omega}} \quad \text{if} \quad \left|ae^{-j\omega}\right| < 1 \quad \text{or} \quad \left|a\right| < 1$$

$$\left|X\left(e^{j\omega}\right)\right|^{2} = \frac{1}{\left|1 - ae^{-j\omega}\right|^{2}}$$

$$= \frac{1}{\left|1 - a\cos\omega + j\sin\omega\right|^{2}}$$

$$= \frac{1}{1 + a^{2} - 2a\cos\omega}$$

$$\angle X(e^{j\omega}) = \angle 1 - \angle (1 - ae^{-j\omega})$$

$$= 0 - \angle (1 - a\cos\omega + ja\sin\omega)$$

$$= -\tan^{-1} \left(\frac{a\sin\omega}{1 - a\cos\omega}\right)$$

MEAN SQUARE CONVERGENCE

Some sequences, which are not absolutely summable but square summable

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 < \infty$$

can still be represented by Fourier Transform, but...

Ex: Ideal lowpass filter.

$$H\left(e^{j\omega}\right) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \omega_c < |\omega| \le \pi \end{cases}$$

Let's find h[n]!

$$h[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$
$$= \frac{1}{j2\pi n} \left(e^{j\omega_c n} - e^{-j\omega_c n} \right)$$
$$= \frac{\sin(\omega_c n)}{\pi n}$$

Note that,

$$h[n] = \frac{\sin(\omega_c n)}{\pi n}$$

is not absolutely summable!

Then, one may question the Fourier transform of h[n],

$$\sum_{n=-\infty}^{\infty} \frac{\sin(\omega_c n)}{\pi n} e^{-j\omega n} = ?$$

Define $H_M = \sum_{n=-M}^{M} \frac{\sin(\omega_c n)}{\pi n} e^{-j\omega n}$

Even if you take $M \to \infty$ oscillations do not die to zero.

However $\lim_{M\to\infty}\int\limits_{-\pi}^{\pi}\left|H\left(e^{j\omega}\right)-H_{M}\left(e^{j\omega}\right)\right|^{2}d\omega=0$. This is called "mean square" convergence.

The oscillatory behavior around $\omega = \omega_c$ is called the Gibbs phenomenon.

MATLAB code

```
clear all; close all;
precision =0.0001
w = [-pi:precision:pi];
ideaL = zeros(1,length(w));
wc = pi/2;
orta = round(length(w)/2);
ideaL((orta-round(wc/precision)):(orta+round(wc/precision)))=1;
M = 10000;
H = 0;
for n = -M:-1
  H = H+(\sin(wc^*n)/(pi^*n))^*\exp(-i^*w^*n);
end
for n = 1:M
  H = H + (\sin(wc*n)/(pi*n))*\exp(-i*w*n);
  H = H+(wc/pi);
plot(w,H); hold on;
plot(w,idea,'r')
grid
```

FOURIER TRANSFORM OF A CONSTANT SEQUENCE

$$x[n] = 1 \qquad \Longleftrightarrow \qquad X\left(e^{j\omega}\right) = 2\pi \sum_{r=-\infty}^{\infty} \delta\left(\omega + 2\pi r\right)$$
 not absolutely summable
$$\underbrace{ \left(e^{j\omega}\right)}_{-4\pi} = 2\pi \sum_{r=-\infty}^{\infty} \delta\left(\omega + 2\pi r\right)$$

or we can write as

$$X(e^{j\omega}) = 2\pi \delta(\omega)$$
 $0 \le \omega < 2\pi$

keeping in mind that FT is periodic with 2π .

FOURIER TRANSFORM OF A COMPLEX EXPONENTIAL SEQUENCE

$$x[n] = e^{j\omega_0 n} \qquad \longleftrightarrow \qquad X\left(e^{j\omega}\right) = 2\pi \sum_{r=-\infty}^{\infty} \delta\left(\omega - \omega_0 + 2\pi r\right) \qquad \underbrace{\uparrow}_{\omega_0 + 4\pi} \underbrace{\uparrow}_{\omega_0 - 2\pi} \underbrace{\uparrow}_{\omega_0 - \omega_0 + 2\pi} \underbrace{\uparrow}_{\omega_0 + 4\pi} \underbrace{\uparrow}_{\omega_0 + 2\pi} \underbrace{\uparrow}_{\omega_0 + 4\pi} \underbrace{\downarrow}_{\omega_0 + 2\pi} \underbrace{\uparrow}_{\omega_0 + 4\pi} \underbrace{\downarrow}_{\omega_0 + 2\pi} \underbrace{\uparrow}_{\omega_0 + 4\pi} \underbrace{\downarrow}_{\omega_0 + 2\pi} \underbrace{\downarrow}_{\omega_0$$

or we can write as

$$X(e^{j\omega}) = 2\pi\delta(\omega - \omega_0)$$
 $0 \le \omega < 2\pi$

keeping in mind that FT is periodic with $2\pi\,$

FOURIER TRANSFORM OF A SINUSOIDAL SEQUENCE

$$x[n] = \cos(\omega_0 n) = \frac{1}{2} \left(e^{j\omega_0 n} + e^{-j\omega_0 n} \right) \quad \Longleftrightarrow \quad X(e^{j\omega}) = \pi \left(\sum_{r=-\infty}^{\infty} \delta(\omega + \omega_0 + 2r\pi) + \delta(\omega - \omega_0 + 2r\pi) \right)$$
not absolutely summable

or $X(e^{j\omega}) = \pi(\delta(\omega + \omega_0) + \delta(\omega - \omega_0))$ $0 \le \omega < 2\pi$ since FT is periodic with 2π

FOURIER TRANSFORM OF UNIT STEP SEQUENCE

$$x[n] = u[n]$$
 \longleftrightarrow $X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{r = -\infty}^{\infty} \delta(\omega + 2\pi r)$

not absolutely summable

SYMMETRY PROPERTIES OF FOURIER TRANSFORM

Definitions:

Conjugate symmetric (CS) sequence.

$$x[n] = x^*[-n]$$

Conjugate antisymmetric (CaS) sequence.

$$x[n] = -x^*[-n]$$

Using the above definitions, any sequence can be written as

$$x[n] = x_e[n] + x_o[n]$$

where

$$x_e[n] = \frac{1}{2}(x[n] + x^*[-n])$$
 is the CS part

and

$$x_o[n] = \frac{1}{2}(x[n] - x^*[-n])$$
 is the CaS part.

SYMMETRY PROPERTIES

Fundamental relations

Let $x[n] \leftrightarrow X(e^{j\omega})$ be a FT pair. Then, the following hold:

$$x^*[n] \longleftrightarrow X^*(e^{-j\omega})$$

$$x^*[n] \leftrightarrow X^*(e^{-j\omega})$$
 since $X^*(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} x^*[n]e^{-j\omega n}$

$$x[-n] \leftrightarrow X(e^{-j\omega})$$

since
$$X(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n}$$

Above yields

$$x^*[-n] \longleftrightarrow X^*(e^{j\omega})$$

The two relations above also yield:

1)
$$\operatorname{Re}\left\{x[n]\right\} = \frac{x[n] + x^*[n]}{2} \iff X_e\left(e^{j\omega}\right) = \frac{X\left(e^{j\omega}\right) + X^*\left(e^{-j\omega}\right)}{2}$$
 (CS part of $X\left(e^{j\omega}\right)$)

2)
$$j\operatorname{Im}[x[n]] = \frac{x[n] - x^*[n]}{2} \leftrightarrow X_o(e^{j\omega}) = \frac{X(e^{j\omega}) - X^*(e^{-j\omega})}{2}$$
 (CaS part of $X(e^{j\omega})$)

3)
$$x_e[n] = \frac{x[n] + x^*[-n]}{2} \iff \text{Re}\left\{X\left(e^{j\omega}\right)\right\} = \frac{X\left(e^{j\omega}\right) + X^*\left(e^{j\omega}\right)}{2}$$
 (real part of $X\left(e^{j\omega}\right)$)

Therefore FT of an even seq. is real!

4)
$$x_o[n] = \frac{x[n] - x^*[-n]}{2} \iff j \operatorname{Im}\left\{X\left(e^{j\omega}\right)\right\} = \frac{X\left(e^{j\omega}\right) - X^*\left(e^{j\omega}\right)}{2}$$
 (imag. part of $X\left(e^{j\omega}\right)$)

Therefore FT of an odd seq. is purely imaginary!

Ex: Let a[n] and b[n] be two real sequences with their DTFTs $A(e^{j\omega})$ and

 $B(e^{j\omega})$, respectively.

Let

$$x[n] = a[n] + jb[n]$$

Then,

$$X(e^{j\omega}) = A(e^{j\omega}) + jB(e^{j\omega})$$

Note that $A(e^{j\omega})$ is NOT the real part of $X(e^{j\omega})$.

However,

$$A(e^{j\omega}) = \frac{X(e^{j\omega}) + X^*(e^{-j\omega})}{2}$$

Since

$$X^*(e^{-j\omega}) = \underbrace{A^*(e^{-j\omega})}_{A(e^{j\omega})} - j\underbrace{B^*(e^{-j\omega})}_{B(e^{j\omega})}$$

Similarly,

$$jB(e^{j\omega}) = \frac{X(e^{j\omega}) - X^*(e^{-j\omega})}{2}$$

Ex: (cont'd)

a[n]: $[-1 \ 1]$

b[n]: [1 1]

 $x[n]: [-1+j \ 1+j]$

$$A(e^{j\omega}) = -1 + e^{-j\omega}$$

$$B\!\left(e^{j\omega}\right)=1+e^{-j\omega}$$

$$X(e^{j\omega}) = -1 + e^{-j\omega} + j + je^{-j\omega}$$

$$X^*(e^{-j\omega}) = -1 + e^{-j\omega} - j - je^{-j\omega}$$

$$\frac{X(e^{j\omega}) + X^*(e^{-j\omega})}{2} = -1 + e^{-j\omega}$$

$$\frac{X(e^{j\omega}) - X^*(e^{-j\omega})}{2} = j + je^{-j\omega}$$

REAL SEQUENCES

Based on the above relations, for real sequences ($x[n] = x^*[n]$):

 $X(e^{j\omega}) = X^*(e^{-j\omega})$, conjugate symmetry

which implies

Magnitude is even..... $|X(e^{j\omega})| = |X(e^{-j\omega})|$

Verification by an example

$$\underline{\mathbf{Ex}} \colon x[n] = a^n \ u[n] \quad \Longleftrightarrow \quad X\left(e^{j\omega}\right) = \frac{1}{1 - ae^{-j\omega}} \qquad |a| < 1$$

$$0 < a \le 1$$

$$\cdots$$

$$-1 \qquad 0 \qquad 1 \qquad 2$$

a) FT is conjugate symmetric:

$$X(e^{j\omega}) = X^*(e^{-j\omega}) = \frac{1}{1 - ae^{-j\omega}} \qquad |a| < 1$$

b) Real part of FT is an even function:

$$\operatorname{Re}\left\{X\left(e^{j\omega}\right)\right\} = X_{R}\left(e^{j\omega}\right) = \frac{1 - a\cos\omega}{1 + a^{2} - 2a\cos\omega} = X_{R}\left(e^{-j\omega}\right)$$

c) $X_R(e^{j\omega})$ is the FT of $x_e[n]$:

$$X_{R}\left(e^{j\omega}\right) = \frac{1 - a\cos\omega}{1 + a^{2} - 2a\cos\omega}$$
$$X_{e}\left[n\right] = \frac{1}{2}\left(a^{n} u\left[n\right] + a^{-n} u\left[-n\right]\right)$$

d) Imaginary part of Ft is an odd function.

$$\operatorname{Im}\left\{X\left(e^{j\omega}\right)\right\} = X_{I}\left(e^{j\omega}\right) = \frac{-a\sin\omega}{1 + a^{2} - 2a\cos\omega} = -X_{I}\left(e^{-j\omega}\right)$$

e) $X_{I}(e^{j\omega})$ is the FT of $x_{o}[n]$:

$$X_{I}\left(e^{j\omega}\right) = \frac{-a\sin\omega}{1 + a^{2} - 2a\cos\omega}$$

$$x_o[n] = \frac{1}{2}(a^n u[n] - a^{-n} u[-n])$$

f) Magnitude of FT is an even function:

$$\left| X\left(e^{j\omega}\right) \right| = \frac{1}{\sqrt{1+a^2 - 2a\cos\omega}} = \left| X\left(e^{-j\omega}\right) \right|$$

g) Phase of FT is an odd function

$$\angle X(e^{j\omega}) = -\tan^{-1}\left(\frac{a\sin\omega}{1-a\cos\omega}\right) = -\angle X(e^{-j\omega})$$

FOURIER TRANSFORM THEOREMS

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \qquad \left(x[n] = F\left\{X(e^{j\omega})\right\}, \quad X(e^{j\omega}) = F^{-1}\left\{x[n]\right\}\right)$$

1)
$$ax[n] + by[n] \qquad \stackrel{F}{\leftrightarrow} \qquad aX(e^{j\omega}) + bY(e^{j\omega})$$
 Linearity

2)
$$x[n-n_0] \longleftrightarrow e^{-j\omega n_0} X(e^{j\omega})$$
 Time-shift

3)
$$e^{j\omega_0 n}x[n]$$
 $\stackrel{F}{\longleftrightarrow}$ $X\left(e^{j(\omega-\omega_0)}\right)$ Freq. shift

4)
$$x[-n] \longleftrightarrow X(e^{-j\omega})$$
 Time reversal

5)
$$nx[n] \leftrightarrow j\frac{dX(e^{j\omega})}{d\omega}$$
 Differentiation in frequency domain

6)
$$x[n] * y[n] \qquad \stackrel{F}{\leftrightarrow} \qquad X(e^{j\omega})Y(e^{j\omega})$$
 Convolution

7)
$$y[n] = x[n]w[n] \leftrightarrow Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\phi})W(e^{j\omega-\phi}) d\phi$$
 Modulation, windowing

Parseval's theorem (prove as an exercise)

8)
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{0}^{\pi} |X(e^{j\omega})|^2 d\omega$$
 energy of the signal

 $\left|X\left(e^{j\omega}\right)\right|^2$ is called the "energy density spectrum".

9)
$$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

Proof of (6):

$$w[n] \stackrel{\text{def}}{=} \sum_{k=-\infty}^{\infty} x[k]y[n-k] = x[n] * y[n]$$

$$W(e^{j\omega}) = ?$$

$$x(e^{j\omega}) - \sum_{k=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k]y[n-k]\right) e^{-j\omega n}$$

$$W(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k]y[n-k]\right) e^{-j\omega n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] \left(\sum_{n=-\infty}^{\infty} y[n-k]e^{-j\omega n}\right)$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \left(\sum_{m=-\infty}^{\infty} y[m]e^{-j\omega m}\right)$$

$$= X(e^{j\omega})Y(e^{j\omega})$$

Proof of (8) using (6):

Let

$$w[n] \stackrel{\text{def}}{=} \sum_{k=-\infty}^{\infty} x[k]x^*[k-n] = x[n] * x^*[-n]$$

$$W(e^{j\omega}) = X(e^{j\omega})X^*(e^{j\omega}) = |X(e^{j\omega})|^2$$

$$w[0] = \sum_{k=-\infty}^{\infty} x[k]x^*[k] = \sum_{k=-\infty}^{\infty} |x[k]|^2$$

$$w[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(e^{j\omega}) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

Proof of (9):

$$\sum_{n=-\infty}^{\infty} x[n]y^*[n]$$

$$= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega\right) y^*[n]$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) \left(\sum_{n=-\infty}^{\infty} y^*[n]e^{j\omega n}\right) d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

FOURIER TRANSFORM PAIRS

$\delta[n]$	1
$\frac{\delta[n]}{\delta[n-n_0]}$	$e^{-j\omega n_0}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$X\left(e^{j\omega}\right) = 2\pi \sum_{n=-\infty}^{\infty} \delta(\omega + 2\pi r)$
$x[n] = a^n \ u[n] \qquad a < 1$	$\frac{1}{1-ae^{-j\omega}}$
x[n] = u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \ \delta(\omega + 2\pi k)$
$na^n u[n]$ $ a < 1$	$\frac{ae^{-j\omega}}{\left(1-ae^{-j\omega}\right)^2}$
$ \begin{array}{c c} (n+1)a^n & u[n] & a < 1 \\ = (a^n & u[n]) * (a^n & u[n]) \end{array} $	$\frac{1}{\left(1-ae^{-j\omega}\right)^2}$
$\frac{(n+2)(n+1)a^n u[n]}{2}$	$\frac{1}{\left(1-ae^{-j\omega}\right)^3}$
$\frac{1}{(k-1)!} \frac{(n+k-1)!}{n!} a^n u[n]$	$\frac{1}{\left(1-ae^{-j\omega}\right)^k}$
$\frac{1}{(k-1)!}(n+k-1)(n+k-2)(n+1) a^n u[n]$	
$\left \frac{1}{\sin \omega_p} r^n \sin \left(\omega_p (n+1) \right) u[n] \right r < 1$	$\frac{1}{1-2r\cos(\omega_p)e^{-j\omega}+r^2e^{-j2\omega}}$ show using
	$x[n] = a^n \ u[n]$
$\frac{\sin(\omega_c n)}{\pi n}$	$X\left(e^{j\omega}\right) = \begin{cases} 1, & \omega < \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$
$x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin(\omega(M+1)/2)}{\sin(\omega/2)}e^{-j\omega M/2}$
`	` /
e^{ja_0n}	$2\pi\sum_{r=-\infty}^{\infty}\delta(\omega-\omega_0+r2\pi)$
$\frac{e^{j\omega_0 n}}{\cos(\omega_0 n + \phi)}$	m

Ex: IDEAL LOWPASS FILTER (IMPULSE RESPONSE)

They are infinitely long sequences in $-\infty < n < \infty$ Plots are arbitrarily in -20 < n < 20

Ex: MOVING AVERAGE FILTER

DTFT functions are plotted in $-\pi \le \omega \le \pi$ or in $0 \le \omega \le 2\pi$

$$\mathbf{M} = \mathbf{1}$$

$$h[n] = \frac{1}{2} \left(\delta[n] + \delta[n-1] \right) \rightarrow H\left(e^{j\omega}\right) = \frac{1}{2} \left(1 + e^{-j\omega}\right) = e^{-j\frac{\omega}{2}} \cos\frac{\omega}{2}$$

$$y[n] = \frac{1}{2} \left(x[n] + x[n-1]\right)$$

M = 4

$$y[n] = \frac{1}{5} (x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4])$$
$$h[n] = \frac{1}{5} (\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4])$$

or

$$H(e^{j\omega}) = \frac{1}{5} \left(1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega} + e^{-j4\omega} \right)$$

$$= \frac{1}{5} \frac{1 - e^{-j5\omega}}{1 - e^{-j\omega}} = \frac{1}{5} \frac{e^{-j\frac{5}{2}\omega} \left(e^{j\frac{5}{2}\omega} - e^{-j\frac{5}{2}\omega} \right)}{e^{-j\frac{\omega}{2}} \left(e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}} \right)}$$

$$= \frac{1}{5} e^{-j2\omega} \frac{\sin\left(\frac{5}{2}\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$$

Ex: Express $X_1(e^{j\omega})$, $X_2(e^{j\omega})$, in terms of $X(e^{j\omega})$, the DTFT of x[n].

$$x_1[n] = x[n] + x[-(n-7)] = x[n] + x[-n+7] \quad \Rightarrow \quad X_1(e^{j\omega}) = X(e^{j\omega}) + e^{-j7\omega}X(e^{-j\omega})$$

$$\rightarrow X_1(e^{j\omega}) = X(e^{j\omega}) + e^{-j7\omega}X(e^{-j\omega})$$

$$x_2[n] = x[n] + x[n-4]$$

$$\rightarrow$$
 $X_2(e^{j\omega}) = X(e^{j\omega}) + e^{-j4\omega}X(e^{j\omega})$

One can also write as

$$X_{1}(e^{j\omega}) = X(e^{j\omega}) + e^{-j7\omega}X(e^{-j\omega})$$

$$= X(e^{j\omega}) + e^{-j7\omega}X^{*}(e^{j\omega}) \quad \text{since } x[n] \text{ is real}$$

$$= |X(e^{j\omega})| \left(e^{j \angle X(e^{j\omega})} + e^{-j7\omega}e^{-j \angle X(e^{j\omega})} \right)$$

$$= |X(e^{j\omega})| e^{-j\frac{7}{2}\omega} \left(e^{j\frac{7}{2}\omega}e^{j \angle X(e^{j\omega})} + e^{-j\frac{7}{2}\omega}e^{-j \angle X(e^{j\omega})} \right)$$

$$= 2 \operatorname{Re} \left\{ e^{j\left(\angle X(e^{j\omega}) + \frac{7}{2}\omega \right)} \right\} |X(e^{j\omega})| e^{-j\frac{7}{2}\omega}$$

$$X_{2}(e^{j\omega}) = X(e^{j\omega}) (1 + e^{-j4\omega})$$

$$= X(e^{j\omega})e^{-j2\omega} (e^{j2\omega} + e^{-j2\omega})$$

$$= X(e^{j\omega})e^{-j2\omega} 2 \cos(2\omega)$$

$$= 2 \cos(2\omega) |X(e^{j\omega})| e^{-j2\omega}e^{j \angle X(e^{j\omega})}$$

Ex: What is the inverse DTFT, y[n], of $Y(e^{j\omega}) = \frac{2e^{-j3\omega}}{\left(1-\frac{1}{8}e^{-j\omega}\right)^2}$?

From the table $(n+1)a^n u[n] \longleftrightarrow \frac{1}{(1-ae^{-j\omega})^2}$ for |a| < 1

$$2(n+1)\frac{1}{8}^{n} u[n] \qquad \Longleftrightarrow \qquad \frac{2}{\left(1-\frac{1}{8}e^{-j\omega}\right)^{2}}$$

$$2(n-2)\frac{1}{8}^{(n-3)}u[n-3] \qquad \Longleftrightarrow \qquad \frac{2e^{-j3\omega}}{\left(1-\frac{1}{8}e^{-j\omega}\right)^2}$$

Why does the high frequency gain of MA filter "decrease" as M increases?

Comment on the above illustrations.

LCCDES AND FREQUENCY RESPONSE

$$y[n] = x[n] * h[n] \stackrel{FT}{\longleftrightarrow} Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

$$\Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

$$N$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k] \stackrel{FT}{\longleftrightarrow} \sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega})$$
$$= \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})$$

$$\Rightarrow Y(e^{j\omega})\sum_{k=0}^N a_k e^{-jk\omega} = X(e^{j\omega})\sum_{k=0}^M b_k e^{-jk\omega}$$

$$\Rightarrow \frac{Y(e^{j\omega})}{X(e^{j\omega})} = H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

$$H(e^{j\omega}) = \frac{b_0 + b_1 e^{-j\omega} + b_2 e^{-j2\omega} + \dots + b_M e^{-jM\omega}}{a_0 + a e^{-j\omega} + a_2 e^{-j2\omega} + \dots + a_N e^{-jN\omega}}$$