Working with Genomic Ranges

Mireia Ramos-Rodriguez

March 14, 2019

Introduction to GenomicRanges¹

The GenomicRanges serves as the foundation for representing genomic locations within the Bioconductor project. This package lays a foundation for genomic analysis by introducing three classes (GRanges, GPos, and GRangesList), which are used to represent genomic ranges, genomic positions, and groups of genomic ranges.

```
library(GenomicRanges)
z <- GRanges("chr1", IRanges(1000001,1001000), strand="+")
start(z)
end(z)
width(z)
strand(z)
mcols(z) # the 'metadata columns', any information stored alongside each range
ranges(z) # gives the IRanges
seqnames(z) # the chromosomes for each ranges
seqlevels(z) # the possible chromosomes
seqlengths(z) # the lengths for each chromosome</pre>
```

Intra-range methods

Affects ranges independently

function	description
shift	moves left/right
narrow	narrows by relative position within range
resize	resizes to width, fixing start for $+$, end for $-$
flank	returns flanking ranges to the left $+$, or right -
promoters	similar to flank
restrict	restricts ranges to a start and end position
trim	trims out of bound ranges
+/-	expands/contracts by adding/subtracting fixed amount
*	zooms in (positive) or out (negative) by multiples

Inter-range methods

Affects ranges as a group

function	description
range	one range, leftmost start to rightmost end

¹Reference card extracted from mikelove/bioc-refcard

function	description
reduce	cover all positions with only one range
gaps	uncovered positions within range
disjoin	breaks into discrete ranges based on original starts/ends

Nearest methods

Given two sets of ranges, x and subject, for each range in x, returns...

function	description
nearest	index of the nearest neighbor range in subject
precede	index of the range in subject that is directly preceded by the range in x
follow	index of the range in subject that is directly followed by the range in x
${\tt distanceToNearest}$	distances to its nearest neighbor in subject (Hits object)
distance	distances to nearest neighbor (integer vector)

A Hits object can be accessed with queryHits, subjectHits and mcols if a distance is associated.

set methods

If y is a GRangesList, then use punion, etc. All functions have default ignore.strand=FALSE, so are strand specific.

```
union(x,y)
intersect(x,y)
setdiff(x,y)
```

Overlaps

```
x %over% y # logical vector of which x overlaps any in y
fo <- findOverlaps(x,y) # returns a Hits object
queryHits(fo) # which in x
subjectHits(fo) # which in y</pre>
```

Seqnames and seqlevels

 ${\bf Genomic Ranges \ and \ Genome InfoDb}$

```
gr.sub <- gr[seqlevels(gr) == "chr1"]
seqlevelsStyle(x) <- "UCSC" # convert to 'chr1' style from "NCBI" style '1'</pre>
```