Задача 8-4

В трех пронумерованных пробирках находятся растворы солей. К первой и второй пробирке по каплям добавили раствор гидроксида калия, а к третьей — соляную кислоту. В первой пробирке выпал белый осадок $\bf A$, во второй пробирке — белый аморфный осадок $\bf B$, в третьей — белый аморфный осадок $\bf B$. Все осадки разделили на две части. К одной части осадков добавили избыток раствора щелочи, в другую часть осадков — соляную кислоту. Осадок $\bf A$ растворился только в кислоте, осадок $\bf B$ растворился в растворе щелочи и в кислоте, осадок $\bf B$ растворился только в растворе щелочи. Предложите по одной возможной формуле соли, содержащейся в каждой из пронумерованных пробирок, учитывая, что соли могут состоять из следующих ионов: $\bf K^+$, $\bf Mg^{2+}$, $\bf Zn^{2+}$, $\bf Cl^-$, $\bf SO_4^{2-}$, $\bf SiO_3^{2-}$. Составьте уравнения всех описанных химических реакций. Установите формулы осадков $\bf A$, $\bf B$, $\bf B$.

Решение

Возможные варианты:

 $N_{\underline{0}} 1 - MgCl_2;$ $N_{\underline{0}} 2 - ZnSO_4;$ $N_{\underline{0}} 3 - K_2SiO_3.$

A - $Mg(OH)_2$; B - SiO_2 .

В первой пробирке может находиться сульфат магния, а во второй пробирке может быть хлорид цинка.

Уравнения реакций:

Образование осадка А

 $MgCl_2 + 2KOH = Mg(OH)_2 \downarrow + 2KCl;$

Растворение А в кислоте

 $Mg(OH)_2 + 2HCl = MgCl_2 + 2H_2O$.

Образование осадка Б

 $ZnSO_4 + 2KOH = Zn(OH)_2 \downarrow + K_2SO_4$.

Растворение Б в кислоте

 $Zn(OH)_2 + 2HCl = ZnCl_2 + 2H_2O.$

Растворение Б в щелочи

 $Zn(OH)_2 + 2NaOH = Na_2[Zn(OH)_4].$

Образование осадка В

 $K_2SiO_3 + 2HCl = SiO_2 \downarrow + H_2O + 2KCl$.

Растворение В в щелочи

 $SiO_2 + 2KOH = K_2SiO_3 + H_2O$.