子图,并且是一个树。对任意的生成树 T,如果 T 包含 (V_{α}, E_{α}) ,则称 T 为包含 (V_{α}, E_{α}) 的生成树。如果赋予所有的生成树相同的概率,我们称所得到的概率测度 为 G 上的一致生成树。同样可以定义 G 上包含 (V_{α}, E_{α}) 的一致生成树。

设 Ω 为一个 Jordan 区域。对任意的 $\delta > 0$,定义 $\Omega_{\delta} = \Omega \cap \delta \mathbb{Z}^2$ (当 δ 足够小时, Ω_{δ} 可成为一个连通图)。设 $a,b \in \partial \Omega$ 。记弧 ab 为 $\partial \Omega$ 上沿着逆时针方向的的从 a 到 b 的弧。选取 δ 足够小,可以使与 ab 相邻的的 Ω_{δ} 的顶点形成一个树 l_{ab}^{δ} ,设 T 为 Ω_{δ} 上的从包含 l_{ab}^{δ} 的一致生成树,则有位于 $(\delta(\mathcal{Z})^2)^*$ 中的与 T 对应的对偶树 T^* 。存在唯一一条曲线 γ^{δ} 位于 $\frac{\delta}{2}\mathbb{Z}^2 + (\frac{\delta}{4}, \frac{\delta}{4})$,连结 a 和 b。如下示意图:

定理 2.51 ([22]). 采用以上记号,当 δ 趋于 0 时, γ^{δ} 弱收敛到 Ω 上从 a 到 b 的 弦 $\mathrm{SLE}(8)$ 。

注记 2.22. γ^{δ} 遍历了 $\Omega \cap \left[\frac{\delta}{2}\mathbb{Z}^2 + \left(\frac{\delta}{4}, \frac{\delta}{4}\right)\right]$ 的每一个点,因此直观上可以得到 SLE(8) 是填满 Ω 的。

正是由于 SLE(8) 是一列随机曲线的弱极限, Schramm, Werner 和 Lawler 证明 SLE(8) 是由曲线生成的。(参见文章 [22])

2.5.5 离散高斯自由场

一维的布朗运动时以 R+ 为指标的一族正态随机变量,自然地是否存在一族正态随机变量,使其指标集合为 2 维的并且满足类似于布朗运动的性质? 2 维的高斯自由场便是满足此条件的随机过程。具体将在下一章节介绍。本节主要介绍离散的高斯自由场以及其与 SLE 的关系。

如果 G = (V, E) 为一个有限连通图。 $V_{\alpha} \subset V$ 为一个非空的子集。记

$$\Omega := \{ h : V \to \mathbb{R}, h|_{V_{\alpha} = 0} \}.$$