

-Operating System: OS

邹姝稚主讲

参考书目

- 1.操作系统教程(第4版) 孙钟秀等 高等教育出版社
- 2.计算机操作系统教程(第4版)张荛学等 清华大学出版社
- 3.UNIX操作系统设计 [美]莫里斯.贝奇 北京大学出版社
- 4. Modern Operating System (3rd Edition)

Andrew S. Tanenbaum Prentice Hall, 2007

5. Operating Systems —Internals and Design Principle

(5th Edition) William stallings Prentice Hall,2005

6.Operating System Concept (7th Edition)

Abraham Silberschatz, Peter B.Galvin

§1Why—为什么需要OS

 $oxed{eg1:读磁盘:}$ 读长 $oxed{eg1:读磁盘:}$ 读长 $oxed{length字节的一个扇区,内存目标始址为<math>MAR$ 。OS提供驱动程序

用户程序控制读盘的逻辑伪码:

S1:启动(硬件接入方式、接口地址)

S2:移臂定位 (接口地址)

S3:旋转定位 (接口地址)

S4:读1B=>MAR(地址/状态/控制数

据/寄存器)

S5:MAR++,length--(内存地址细节)

S6:若length ≠0转S4, 否则结束

§1Why—为什么需要OS

eg2:内存用户空闲空间为100M,有一个长200M的用户程序 要求启动运行?—OS提供虚拟存储技术机制

eg3:有5个用户程序结束运行需要打印。如何在1台打印机上 实现?—OS提供Spooling输出机制

- 1.构建硬件与用户间的接口, 使得裸机功能更强、使用更方便。
- ◆目标——方便性:配置OS后应使得计算机系统更容易使用。
- ◆作用——OS是用户接口的提供者, 该接口提供各类公共服务。
- 2.有效管理系统中的硬软件资源, 使之得到充分使用。
- ◆目标——有效性:有效管理与调度资源。合理组织系统工作流 程,增强系统性能(资源利用率、吞吐量、响应时间等)。
- ◆作用——OS是资源的管理者,资源控制是OS的特权。

§1Why—为什么需要OS

OS在计算机中承上启下的关键地位

一、OS如何被激活而获得控制权?

- \bigcirc ()S 最为重要的硬件基础是硬件的中断机构。
- ullet OS无事可做时以闲逛形式等待事件发生。各种事件以不同中断 源发向CPU. 经中断机构响应后, 进入对OS某部分功能的调 用。OS由此被驱动。
- ullet 因为 \mathbf{OS} 的所有功能都是由中断驱动的,所以只有借助中断, OS才能获得系统监控权。中断是驱动和激活OS的唯一手段。
- ■操作系统内核代码运行在核心态(亦称管态、特态)。
- ●用户程序的代码运行在用户≈(亦称目≈、常≈)。
- ■从用户态进入核心态的唯一途径是中断。

二、CPU及其工作状态

1.CPU主要寄存器:

- ●数据寄存器:暂存来自内存的数据或将要写入内存的数据。
- ●指令寄存器: 存放正执行的指令, 以便指令译码器译码执行。
- ●地址寄存器:保存CPU当前访问的内存地址单元,直至内存读 写操作完成。
- ●累加寄存器:暂存来自算术逻辑单元ALU运算出的结果信息。
- ●程序计数器(Program Counter)寄存器PC: 存放现行程序将要执 行的指令地址。
- ●程序状态字(Program Status Word)寄存器PSW: 用以保留与指 示与程序执行相关的系统状态。eg:CPU状态、中断屏蔽位、存 储保护键等等。

二、CPU及其工作状态

2.特权指令:仅供OS内核程序使用的指令,如启动外设、清空内

存、加载PSW等敏感操作。

3.普通指令: 特权指令之外的指令。

4. 管态: 可执行指令全集、访问全部内存和所有系统资源。

5.目念: 只能执行规定指令、访问指定寄存器和指定地址区域。

eg1: 算术运算指令,诸如: ADD、SUB etc

eg2: 取数存数指令. 诸如: LOAD、STORE etc

eg3: 启动外设指令

eg5: 清除内存指令

eg4: 设置系统时钟指令

三、中断(interrupt)概念

中断是指计算机在执行程序过程中。遇到需要立即处理 的事件, 暂停当前正在运行的程序, 转而执行相应的事 件处理程序(中断处理程序, 设置在OS内核中), 处理完 成再返回断点或调度其它程序执行的过程。

三、中断(interrupt)概念

- ●现场:指在中断那一刻,确保被中断程序能恢复继续运行的有 关信息:如PC(断点)、通用寄存器、特殊寄存器(如PSW)等。
- 中断机构: 发现中断源的中断请求, 保留现场, 识别中断源, 引出中断处理程序的硬件机构。
- 中断处理程序:设置于OS内核,处理各类中断事件的系统程序。

四、中断源分类

分类

- 一次自愿性中断是一次系统调用(system call)过程系统调用是OS
 - 提供在程序一级 的接口(API)

强迫性中断

自愿性中断

I/O中断

来自设备、 控制器或通 道的反映 I/O情况 的中断

故障中断

机器硬件 故障导致的中断: 电源 故障、主存 出错等

外部中断

由系统外 部发送的中 断:时钟中 断、控制台 中断等

程序性中断

程序执行中的例外情况导致:非法操作码、除数为()等

程序执行" 访管指令"所 导致的中断, 表明现行程序 对()S有某种 服务请求

例1:	当计算机提供了管态和目态时,	D	_ 必须在管态下执
行。			

A. 从内存中取数指令 B.把运算结果送内存指令

C.算术运算指令 D.输入/输出指令

例2: 访管指令 A 使用。

A. 仅在目态时 B. 仅在管态时 C. 在规定时间 D. 调度时间

例3: (1) 系统调用指令就是访管指令, 它的功能由硬件直接提 供。 (F)

(2)I/O中断是指I/O设备完成I/O操作后所发出的。(F)

(3)中断处理程序必须在管态执行。(T)

例4: 下列选项中能引起外部中断的事件是 A

A. 键盘输入 B. 除数为0 C. 浮点运算下溢 D. 访存缺页

例5:中断处理和子程序调用都需要压栈以保护现场。 中断处理

一定会保存而子程序调用不需要保存其内容的是 B。

A. 程序计数器 R. 程序状态字寄存器

C. 通用数据寄存器 D. 通用地址寄存器

1. 虚机器观点

OS是一个比裸机功能更强、使用更方便的虚拟机。是以OS语言(机器指令+系统调用)作为机器语言的虚拟机。

1. 虚机器观点

OS是一个比裸机功能更强、使用更方便的虚拟机。是以OS语言(机器指令+系统调用)作为机器语言的虚拟机。

2.用户观点

OS是硬件与用户之间的软件接口界面,是友好用户接口和各种公共服务的提供者。

1. 虚机器观点

OS是一个比裸机功能更强、使用更方便的虚拟机。是以OS语言(机器指令+系统调用)作为机器语言的虚拟机。

2.用户观点

OS是硬件与用户之间的软件接口界面,是友好用户接口和各种公共服务的提供者。

OS是管理系统资源、合理组织计算机工作流程和为用户使用 计算机提供良好运行环境的一种系统软件。

1. 虚机器观点

OS是一个比裸机功能更强、使用更方便的虚拟机。是以OS语言(机器指令+系统调用)作为机器语言的虚拟机。

2.用户观点

OS是硬件与用户之间的软件接口界面,是友好用户接口和各种公共服务的提供者。

OS是管理系统资源、合理组织计算机工作流程和为用户使用 计算机提供良好运行环境的一种系统软件。

4.进程观点 一一 动态观点

OS以进程作为分配资源的单位和独立运行的单位。

OS组成(体系结构)

- ●CPU管理(进程管理):实现进程控制、进程通信和进程调度。
- ●存储管理:解决主存分配、地址映射、保护及供求矛盾问题。
- ●设备管理:实现方便性(分配、驱动)和高效率(缓冲、假脱机)。
- ●文件管理: 文件存储器管理、信息存取(目录)及安全问题。
- Ψ 作业管理(OS接口):构造OS接口,并组织计算机工作流程。

—— 动态观点 4.进程观点

()S以进程作为分配资源的单位和独立运行的单位。

5.资源观点 —— 功能观点

OS是硬软件资源的管理者和控制者。

例1	操	作系	系统的主要	功能是管理计	算机系统中
的	D	0			
A.程	序		B. 数据	C. 文件	D.资源

例2:操作系统的主要作用是 D 。

A. 管理设备 B. 提供操作命令 C. 管理文件

D. 为用户提供使用计算机的接口。 管理计算机资源

例3:以下关于操作系统的描述中,正确的有____。

A. 操作系统是系统资源的管理者

B.操作系统的主要设计目标是最大限度实现资源共享

C.操作系统是覆盖在裸机上的第一层软件

D.操作系统是计算机工作流程的组织者

E.操作系统用于扩充机器

F.操作系统为系统中其它软件提供服务

除B之外

- 一、手工操作及其存在的效率问题
- 1.装卡(作业建立):安装卡片或纸带,按下控制台按钮装入程序。
- 2.用手工"拨开关"方式控制程序的执行过程。
- 3. 通过"看氖灯"观察程序运行情况。
- 4.卸带取卡(作业衔接):程序运行结束, 手工安装下一个作业的卡片或纸带。

- ◆ 人机矛盾:高速CPU等待缓慢人工干预,导致机器闲置。
- ◆ 高速CPU和低速I/O设备速度不匹配的矛盾。

二、单道批处理系统(监督程序)

- 1.联机单道批处理系统(56年)
- ◆作业按作业说明书的控制要求自动运行,消除了人工干预。
- ◆ 联机I/O: 慢速外设的I/O过程由主机直接控制的I/O方式。

二、单道批处理系统(监督程序)

- 1.联机单道批处理系统(56年)
- ◆作业按作业说明书的控制要求自动运行,消除了人工干预。
- ◆ 联机I/O: 慢速外设的I/O过程由主机直接控制的I/O方式。
- 2.脱机单道批处理系统(50' 后期~60' 中期)
 - ▶ 脱机I/O:慢速外设的I/O过程由卫星机控制脱离主机进行。
 - ◆卫星机的代价。

- 3.单道批处理系统特点 ◆批处理(脱机控制)特性:
- 在作业的运行过程中, 不允许用户与计算机及 作业交互
- ◆单道性: 内存始终只有
- 一道用户程序。

三、多道程序设计

1.基本思想:允许多个程序同时进入内存并运行的方法。宏观上 看, 多个程序均开始而尚未结束运行, 同时运行; 微观上看, 某 一时刻处理机只运行某道程序,交替运行。

—————————————————————————————————————	-1
├── B I/O事件	-2
├───────── C计等 (上图)	丰事件3
	A的运行事件 B的运行事件
	D的运行事件 - C的运行事件
(下图)	

并行性:若干个活动或事件在同一时刻发生。

并发性:若干个活动或事件在同一时间间隔内发生。

三、多道程序设计

1.基本思想:允许多个程序同时进入内存并运行的方法。宏观上看,多个程序均开始而尚未结束运行,同时运行;微观上看,某一时刻处理机只运行某道程序,交替运行。 2.特点

三、多道程序设计

1.基本思想:允许多个程序同时进入内存并运行的方法。宏观上看,多个程序均开始而尚未结束运行,同时运行;微观上看,某一时刻处理机只运行某道程序,交替运行。 2.特点

三、多道程序设计

1.基本思想:允许多个程序同时进入内存并运行的方法。宏观上看,多个程序均开始而尚未结束运行,同时运行;微观上看,某一时刻处理机只运行某道程序,交替运行。

2.特点

- ◆ 充分发挥CPU和外设并行性,提高各类资源利用率。
- ◆增加系统吞吐量 (系统单位时间的算题量)。

例1:在多道系统中,将 <u>D</u>作业投入内存,系统效率越高。

A.越多道 B.同是计算型 C.同是I/O型 D.不同类型

例2: 是非题。

- (1)单处理器系统中并发执行的程序不具有并行性。(T)
- (2)多道程序技术的实现需要多处理机支持。(\mathbf{F})

三、多道程序设计

例3: 设系统有输入机和打印机各一台。现有A、B程序同时投入运行,且程序A先于程序B运行。程序A的运行轨迹为: 计算50ms,打印信息100ms,再计算50ms,打印信息100ms,结束。程序B的运行轨迹为: 计算50ms,输入数据80ms,再计算100ms,结束。忽略系统调度开销,试回答: (1) 二道并发比单道运行节省多少时间?

- (2) 在二道并发时, CPU有无空闲时间?若有, 是哪段时间?
- (3)程序A、B运行时有无等待CPU现象?若有,指出等待时间段和等待原因。

单道串行运行时间=50+100+50+100+50+80+100=530ms

- (1) 节省时间=530-300=230ms
- (2) CPU空载发生在A运行后100ms至150ms之间
- (3) A启动后无等待现象,B的等待发生在180至200ms之间

№ §50S基本类型

一、多道批处理系统

允许多个用户将作业批量提交 给系统, 由系统以脱机方式 加以多道并发处理的OS称 为批处理OS。

- 2.资源利用率高(多道并发)
- 3.作业脱机控制, 天交互功能
- 4. 平均周转时间长

№ §50S基本类型

二、分时系统

一台主机连接多个带有显示器和键盘的终端。OS允许多个 用户同时使用该系统进行联机交互式计算,这样的OS称作 分时OS。

§ 5 OS基本类型

二、分时系统

1.多路性:分时OS同时处理来自多个终端的信息交互。

— 同时性:宏观上多个用户同时使用CPU,形成虚拟CPU。

— 分时性:微观上各用户按时间片轮流使用CPU。

№ §5OS基本类型

二、分时系统

1.多路性: 分时OS同时处理来自多个终端的信息交互。

2.独立性: 分时OS的用户彼此独立操作,互不干扰。

3.交互性: 支持广泛的人机交互, 请求OS多方面的服务。

4.及时性:用户请求能在合理的时间内获得响应。

№ §50S基本类型

二、实时系统

及时响应随机发生的外部请求或信号,并在限定时间内完成对 该事件处理的OS。分为: 实时控制系统、实时信息处理系统。

§ 5 OS基本类型

二、实时系统

及时响应随机发生的外部请求或信号,并在限定时间内完成对 该事件处理的OS。分为: 实时控制系统、实时信息处理系统。

实时性:对外部事件在严格时间内接收、分析及处理

特点

可靠性: 确保即使在过载时也能正确响应

交互性: 以多路方式独立地、有限的交互

一专用性:只运行系统中固定的程序,不接收外来程序

§50S基本类型

通用OS: 兼具批处理、分时和实时OS的两种以上功能或以一种为主兼具其他类功能的操作系统(例如: 前后台系统)

♀§50S基本类型

例1:在下列给出的OS中,交互性最强的是 C。

A. 批量处理系统 B.实时系统

C. 分时系统

D. 网络操作系统

例2: R 不是设计实时OS主要的追求目标。

A. 安全可靠

B. 资源利用率

C. 及时响应

D. 快速处理

例3:下列作业类型中,适合在分时系统中运行的有 \mathbf{A} 、 \mathbf{C} 。 适合在批处理系统中运行的有 B_{-} 、 D_{-} 。

A. 学习编程 B. 数据统计 C. 发送邮件 D. 整理硬盘

№ §5OS基本类型

例4: 下列有关OS特征的描述中, C 是正确的。

A.独立性是批处理系统的特征

B.交互性不是分时系统特征

C.及时性是实时系统特征

D.可靠性不是多任务系统特征

例5: 下面6个系统中,必须是实时OS的有 C 个。

.计算机辅助设计系统

.航空订票系统

过程控制系统

.机器翻译系统

.办公室自动化系统

.计算机激光照排系统

A. 1

B.2

C. 3

D. 4

1.并发性(Concurrency)

并发性是指两个或以上的活动或事件在同一时间间隔内发生。操作系统是一个并发系统。

1.并发性(Concurrency)

并发性是指两个或以上的活动或事件在同一时间间隔内发生。操作系统是一个并发系统。

2. 共享性(Sharing)

系统资源不再为某个程序所独占,而为多个用户程序共同使用。

- —如何保证对硬件资源的互斥共享
- —如何保证对软件资源正确共享?

A: loop: (1) a := a+1;

② a := a+1;

goto loop;

B: loop: ③print a;

(4)a := 0;

goto loop;

切换序列为:

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \dots$

输出结果为: 22......

切换序列为:

 $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \dots$

输出结果为: 11......

1.并发性(Concurrency)

并发性是指两个或以上的活动或事件在同一时间间隔内发生。操作系统是一个并发系统。

2. 共享性(Sharing)

系统资源不再为某个程序所独占,而为多个用户程序共同使用。

3.虚拟性(Virtual): 把物理上的一个实体变成逻辑上的多个对应物, 或把物理上的多个实体变成逻辑上的一个对应物的技术。

多道程序设计:虚拟CPU

微软的窗口技术:虚拟屏幕

主存+辅存: 虚拟主存

1.并发性(Concurrency)

并发性是指两个或以上的活动或事件在同一时间间隔内发生。操作系统是一个并发系统。

2. 共享性(Sharing)

系统资源不再为某个程序所独占,而为多个用户程序共同使用。

- 3.虚拟性(Virtual): 把物理上的一个实体变成逻辑上的多个对应物, 或把物理上的多个实体变成逻辑上的一个对应物的技术。
- 4.异步性、随机性、不确定性(Asynchronism)

并发程序以不可预知的速度向前推进,并发活动不可再现。

可能导致程序执行结果不唯一,OS需在随机环境下保证确定结果

- ◆作业到达系统的类型和时间是随机的
- ◆操作员发出命令或点击按钮的时刻是随机的
- ◆形形色色的中断事件, 其发生是随机的

学习指导

