### Cálculo 1

# Lista de Aplicações – Semana 12 – Soluções

Temas abordados: Integral Definida, Teorema Fundamental do Cálculo e Áreas Seções do livro: 5.1, 5.2, 5.3 e 5.4

- 1) Considere a função  $f:[0,1] \to \mathbb{R}$  definida por  $f(x)=x^3$ . Divida o intervalo [0,1] em n partes iguais como o indicado na figura abaixo e resolva os itens a seguir.
  - (a) Defina, para cada i = 1, 2, ..., n, o ponto  $x_i^* = i/n$  e calcule  $f(x_i^*)$ .

(b) Defina agora  $\Delta x_i = 1/n$  e calcule

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i \tag{1}$$

usando a seguinte fórmula

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2.$$



(c) Lembrando que a integral  $\int_0^1 f(x) dx$  é o limite, quando  $n \to +\infty$ , do somatório em (1), encontre a área delimitada pelo gráfico da função e o eixo  $\mathcal{O}x$ .

# Soluções:

- (a) Basta usar que  $f(x) = x^3$ .
- (b) Observe que

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i = \sum_{i=1}^{n} \frac{i^3}{n^3} \cdot \frac{1}{n} = \frac{1}{n^4} \sum_{i=1}^{n} i^3 = \frac{1}{n^4} \left( \frac{n(n+1)}{2} \right)^2 = \frac{(n+1)^2}{4n^2}.$$

(c) Segue de (b) que

$$\lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i = \lim_{n \to +\infty} \frac{(n+1)^2}{4n^2} = \lim_{n \to +\infty} \left( \frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^2} \right) = \frac{1}{4}.$$

- 2) (O Teorema da Média) Seja  $f:[a,b] \to \mathbb{R}$  uma função contínua. Considere m e M os valores máximo e mínimo de f em [a,b], respectivamente.
  - (a) Use as propriedades da integral para verificar que

$$\int_a^b m \, \mathrm{d}x \le \int_a^b f(x) \, \mathrm{d}x \le \int_a^b M \, \mathrm{d}x.$$

(b) Usando o Teorema do Valor Intermediário, conclua que existe  $c \in [a, b]$  tal que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x.$$

(c) Usando o mesmo raciocínio mostre que, se  $p:[a,b]\to\mathbb{R}$  é uma função não negativa tal que  $\int_a^b p(x)\mathrm{d}x>0$ , então existe  $c\in[a,b]$  tal que

$$f(c) = \frac{\int_a^b f(x)p(x) \, \mathrm{d}x}{\int_a^b p(x) \, \mathrm{d}x}.$$

#### Soluções:

(a) Como m e M são o mínimo e o máximo de f em [a,b] temos que

$$m \le f(x) \le M, \ \forall x \in [a, b].$$

Integrando a expressão acima em [a, b] obtemos

$$\int_{a}^{b} m \, \mathrm{d}x \le \int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} M \, \mathrm{d}x. \tag{2}$$

(b) Calculando as integrais das funções constantes acima e dividindo todos os membros por (b-a) > 0, obtemos

$$m \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \le M.$$

Como f é contínua em [a,b] ela assume mínimo e máximo nesse intervalo. Assim, existem  $x_0$  e  $x_1$  em [a,b] tais que

$$m = f(x_0) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(x_1) = M,$$

de modo que pelo T.V.I. existe  $c \in (a, b)$  tal que

$$f(c) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

(c) Como p(x) é positiva temos que

$$mp(x) \le f(x)p(x) \le Mp(x), \ \forall x \in [a, b].$$

Daí, integrando em [a, b] obtemos que

$$m \int_a^b p(x) dx \le \int_a^b f(x)p(x) dx \le M \int_a^b p(x) dx.$$

Agora, como  $\int_a^b p(x) dx > 0$ , basta proceder de maneira análoga ao item (b) para obter o resultado desejado.

3) (O Teorema Fundamental do Cálculo) Seja  $f:[a,b]\to\mathbb{R}$  uma função contínua e defina

$$g(x) = \int_{a}^{x} f(t)dt, \qquad x \in [a, b].$$

(a) Para  $x \in (a,b)$  e h>0 pequeno, use as propriedades da integral e o Teorema da Média para verificar que

$$\frac{g(x+h)-g(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t)dt = f(c_h),$$

para algum  $c_h \in [x, x+h]$ .

(b) Usando o item anterior e a continuidade de f, mostre que

$$\lim_{h \to 0^+} \frac{g(x+h) - g(x)}{h} = f(x).$$

(c) Repita o argumento acima para h < 0, e conclua que a função g é derivável e

$$g'(x) = f(x), \qquad x \in (a, b).$$

(d) Supondo agora que F é uma primitiva qualquer de f, mostre que

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

#### Soluções:

(a) Como  $\int_a^{x+h} = \int_a^x + \int_x^{x+h}$ , temos que

$$g(x+h) - g(x) = \left(\int_a^x f(t)dt + \int_x^{x+h} f(t)dt\right) - \int_a^x f(t)dt = \int_x^{x+h} f(t)dt.$$

Dividindo por h > 0 e usando o Teorema da Média, obtemos  $c_h \in [x, x + h]$ , tal que

$$\frac{g(x+h) - g(x)}{h} = \frac{1}{h} \int_{a}^{x+h} f(t) dt = f(c_h),$$

- (b) Quando  $h \to 0^+$ , temos que  $c_h \to x$ . Como f é contínua,  $f(c_h) \to f(x)$ , o que mostra que a derivada lateral à direita é igual a f(x).
- (c) Argumentando como acima, obtemos

$$\lim_{h \to 0^{-}} \frac{g(x+h) - g(x)}{h} = f(x).$$

Deste modo, a derivada lateral à direita e à esquerda existem e valem f(x), o que mostra que

$$g'(x) = f(x), \qquad x \in (a, b).$$

(d) Como a derivada de F e g são iguais em (a,b), obtemos uma constante  $C \in \mathbb{R}$  tal que

$$g(x) = \int_{a}^{x} f(t)dt = F(x) + C, \qquad x \in (a, b).$$

A função g, por ser derivável, é contínua em (a,b). Por outro lado, a expressão acima nos permita concluir que g é também contínua em x=a e x=b, porque F o é. Assim, a desigualdade acima vale para todo  $x \in [a,b]$ . Fazendo x=a, concluímos que g(a) = F(a) + C, ou ainda C = -F(a). Agora, fazendo x=b, obtemos

$$\int_{a}^{b} f(t)dt = F(b) - C = F(b) - F(a).$$

- 4) Suponha que, no instante t, a posição em relação à origem de uma partícula que se desloca ao longo de uma reta seja dada por  $s(t) = \int_0^t v$ , em que  $v \colon [0,9] \to \mathbb{R}$  é a função velocidade, cujo gráfico está ilustrado abaixo. Considere ainda que t seja dado em segundos, que s(t) seja dada em metros e que, para  $0 \le t \le 3$ , o gráfico de v(t) seja um segmento de reta. A partir do gráfico da função velocidade, julgue os itens a seguir.
  - (a) A partícula está se afastando da origem entre os instantes t=5 e t=6.
  - (b) A partícula percorre menos de 4 metros nos primeiros 3 segundos.
  - (c) No instante t = 6 a partícula está na origem.
  - (d) No instante t=9 a posição da partícula é positiva.
  - (e) O espaço total percorrido pela partícula é igual a  $\int_0^6 v \int_\epsilon^9 v$ .



## Soluções:

- (a) Pelo Teorema Fundamental, a velocidade da partícula é s'(t) = v(t), e o sinal da velocidade indica o sentido de percurso. Assim, a partícula está se afastando da origem entre os instantes t=5 e t=6, uma vez que v(t)>0 nesse intervalo.
- (b) Esse espaço corresponde à área abaixo do gráfico de v(t) para  $t \in [0,3]$ . Pelo gráfico, essa área é igual a  $3 \times 3/2 = 9/2$ , e portanto o espaço percorrido é maior do que 4 metros.
- (c) Até o instante t=6, a partícula tem velocidade s'(t)=v(t) positiva, e está se afastando da origem. Logo, ela se encontra à direita da origem nesse instante.
- (d) No intervalo [6,9], a partícula tem velocidade negativa, e está se aproximando da origem. Porém, comparando as áreas sob o gráfico de v(t), verifica-se que o espaço percorrido no intervalo [0,6] é maior do que o percorrido no intervalo [6,9], e portanto a partícula ainda está à direita da origem.
- (e) O espaço percorrido no intervalo [0,6] é igual a  $\int_0^6 v$ . Já no intervalo [6,9], como s'(t) é negativa, o espaço percorrido é igual a  $-\int_6^9 v$ . Assim, o espaço total percorrido pela partícual é igual a  $\int_0^6 v \int_6^9 v$ .

5) A figura ao lado indica a área delimitada pelos gráficos das funções

$$f(x) = 2 - 2x^2$$

е

$$g(x) = |\operatorname{sen}(\pi x)|,$$

com  $x \in [-1, 1]$ . Use a integral definida para calcular o valor dessa área.



Soluções: Observe que a função f(x) é sempre maior do que g(x) no intervalo (-1,1). Logo a área A em questão é dada por

$$A = \int_{-1}^{1} (f(x) - g(x)) dx = \int_{-1}^{1} (2 - 2x^{2} - |\sin(\pi x)|) dx$$
$$= \int_{-1}^{1} (2 - 2x^{2}) dx - \int_{-1}^{1} |\sin(\pi x)| dx = \frac{8}{3} - \int_{-1}^{1} |\sin(\pi x)| dx.$$

Para eliminar o módulo na última integral acima vamos separá-la em dois pedaços e lembrar que  $\operatorname{sen}(\pi x) \leq 0$  se  $x \in [-1,0]$  e  $\operatorname{sen}(\pi x) \geq 0$  se  $x \in [0,1]$ . Assim

$$\int_{-1}^{1} |\operatorname{sen}(\pi x)| \, \mathrm{d}x = \int_{-1}^{0} (-\operatorname{sen}(\pi x)) \, \, \mathrm{d}x + \int_{0}^{1} \operatorname{sen}(\pi x) \, \mathrm{d}x = \frac{2}{\pi} + \frac{2}{\pi} = \frac{4}{\pi}.$$

No cálculo acima usando o fato de que a função  $-\frac{1}{\pi}\cos(\pi x)$  é uma primitiva de  $\sin(\pi x)$ . Uma outra maneira de calcular a mesma área é notar que a função f(x) - g(x) é par em [-1,1]. Logo

$$A = 2 \int_0^1 (f(x) - g(x)) dx = \dots = 2 \left( \frac{4}{3} - \frac{2}{\pi} \right).$$

6) Considere a curva  $g(x) = \frac{1}{1+x^2}$ , definida para  $0 \le x \le t$ . Ao girarmos o gráfico de g em torno do eixo  $\mathcal{O}y$  obtemos um sólido cujo volume é dado por

$$V(t) = \int_0^t 2\pi x g(x) \, dx = \pi \int_0^t \frac{2x}{1+x^2} \, dx$$





- (a) Verifique que a função  $G(x) = \ln(1+x^2)$  é uma primitiva de  $(2x)/(1+x^2)$ .
- (b) Use o Teorema Fundamental do Cálculo para calcular o volume do sólido no caso em que t=2.
- (c) Calcule V(t) para  $t \ge 0$ .
- (d) Calcule agora V'(t) e, em seguida, determine  $\lim_{t\to\infty} V'(t)$ .

#### Soluções:

(a) Pela regra da cadeia temos que

$$\frac{d}{dx}G(x) = \frac{d}{dx}(\ln(1+x^2)) \cdot \frac{d}{dx}(1+x^2) = \frac{2x}{1+x^2}.$$

- (b) Pelo Teorema Fundamental do Cálculo  $\int_0^2 (2x)/(1+x^2) dx = (G(2)-G(0)) = \ln(5)$  e portanto  $V(2) = \pi \ln(5)$ .
- (c) Observe que pelo item (a),  $\pi G(x)$  é uma primitiva de  $\frac{2\pi x}{1+x^2}$ . Logo, pelo Teorema Fundamental do Cálculo

$$V(t) = \int_0^t \frac{2\pi x}{1+x^2} dx = \pi(G(t) - G(0)) = \pi \ln(1+t^2).$$

(d) Basta usar a regra da cadeia para obter

$$V'(t) = \frac{d}{dt}\pi \ln(1+t^2) = \pi \frac{d}{dt}(\ln)(1+t^2) \cdot \frac{d}{dt}(1+t^2) = \frac{2\pi t}{1+t^2}.$$

Uma outra maneira, mais simples, de calcular V' é notar que como  $f(x) = \frac{2\pi x}{1+x^2}$  é uma função contínua, fixando-se F(t) = V(t), temos pelo Exercício 2(d) que

$$V'(t) = (2\pi t)/(1+t^2).$$