Output tables for 1xN statistical comparisons.

September 9, 2024

1 Average rankings of Friedman test

Average ranks obtained by each method in the Friedman test.

Algorithm Random	Ranking 8.2188
$\frac{NN}{Sween}$	6.8594 7.9844
SaveSeq	3.1562
SaveParall	2.0312
MJ	2.0625
CMT	3.0938
Kilby	9
SaveMatch	5.5938

Table 1: Average Rankings of the algorithms (Friedman)

Friedman statistic (distributed according to chi-square with 8 degrees of freedom): 207.15625.

2 Post hoc comparison (Friedman)

P-values obtained in by applying post hoc methods over the results of Friedman procedure.

$R_i)/SE$ p	22 0	0 96	28 0	73 0	64 0	68 0.100348	81 0.120691	44 0.963594
$z = (R_0 - R_i)/SE$	9.037422	8.695096	7.051928	5.79673	5.203364	1.643168	1.551881	0.045644
algorithm	Random	Sweep	Z Z	Kilby	SaveMatch	SaveSeq	$_{ m CMT}$	MJ
.2	_∞	7	9	ಬ	4	က	2	_

Table 2: Post Hoc comparison Table for $\alpha=0.05$ (FRIEDMAN)

3 Adjusted P-Values (Friedman)

Adjusted P-values obtained through the application of the post hoc methods (Friedman).

unadjusted p	Random 0	0	0	0	0	0.100348	0.120691	0.963594
$_{ m algorithm}$	Random	Sweep	NN	Kilby	SaveMatch	SaveSeq	$_{ m CMT}$	MJ
	-	2	က	4	5	9	_	∞

Table 3: Adjusted p-values (FRIEDMAN) (I)

0	0	0	0	0	0.100348	0.120691	0.963594
\mathbf{Random}	$_{ m Sweep}$	NN	Kilby	SaveMatch	SaveSeq	$_{ m CMT}$	MJ
П	2	က	4	ಬ	9	7	∞
	1 Random 0	$\begin{array}{ccc} 1 & \text{Random} & 0 \\ 2 & \text{Sweep} & 0 \end{array}$	$\begin{array}{cccc} 1 & \operatorname{Random} & 0 \\ 2 & \operatorname{Sweep} & 0 \\ 3 & \operatorname{NN} & 0 \end{array}$	1 Random 0 2 Sweep 0 3 NN 0 4 Kilby 0	1 Random 0 2 Sweep 0 3 NN 0 4 Kilby 0 5 SaveMatch 0	0	0 0

Table 4: Adjusted p-values (FRIEDMAN) (II)