

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 03-29-2004		2. REPORT TYPE Technical Paper (View Graph)		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Fluorinated Polyhedral Oligomeric Silsesquioxanes (FluoroPOSS)				5a. CONTRACT NUMBER F04611-99-C-0025	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) J. M. Mabry, A. Vij, D. Marchant, B. D. Viers, P. N. Ruth, C. E. Schlaefer				5d. PROJECT NUMBER 2303	
				5e. TASK NUMBER M1A3	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ERC Incorporated 555 Sparkman Drive Huntsville, AL 35816-0000				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRSB 4 Draco Drive Edwards AFB CA 93524-7160				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2004-102	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES American Chemical Society Meeting Anaheim, CA, 1 April 2004					
14. ABSTRACT					
20040503 191					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified			17. LIMITATION OF ABSTRACT b. ABSTRACT Unclassified	18. NUMBER OF PAGES c. THIS PAGE Unclassified	19a. NAME OF RESPONSIBLE PERSON Linda Talon
			A	54	19b. TELEPHONE NUMBER (include area code) (661) 275-5865

Fluorinated Polyhedral Oligomeric Silsesquioxanes (FluoroPOSS)

*Silicones and Silicone-
Modified Materials*

April 1, 2004

JM Mabry, A Vij, D Marchant,
BD Viers, PN Ruth, and CE Schlafer
Polymer Working Group
Air Force Research Laboratory
(661)275-5857
joseph.mabry@edwards.af.mil

Hybrid Inorganic/Organic Polymers

Goal: Develop High Performance Polymers that REDEFINE material properties

PAS-03-061

- Hybrid plastics bridge the differences between ceramics and polymers

DISTRIBUTION A. Approved for public release; distribution unlimited.

Anatomy of a POSS Nanostructure

Nonreactive organic → {
(R) groups for
solubilization and
compatibilization.

May possess one or more
functional groups suitable for
polymerization or grafting.

Nanoscopic in size with an
Si-Si distance of 0.5 nm
and a R-R distance of 1.5 nm.

Thermally and chemically
robust hybrid
(organic-inorganic) framework.

Precise three-dimensional structure for molecular level
reinforcement of polymer segments and coils.

POSS Synthesis

RSiX_3 acid or base hydrolysis

Completely
condensed

Resin

Incompletely condensed

Brown, Feher, AFRL, Hybrid Plastics

DISTRIBUTION A. Approved for public release; distribution unlimited.

FluoropOSS Synthesis

$X = -OMe, -OEt$

DISTRIBUTION A. Approved for public release; distribution unlimited

Fluoropropyl_nT_n

R = -CH₂CH₂CF₃

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluorodecyl₈T₈

T₈

(-C₁₀H₄F₁₇ = Fluorodecyl)

$$M_W = -\text{CH}_2\text{CH}_2(\text{CF}_2)_7\text{CF}_3$$
$$\rho = 2.058 \text{ g/mL}$$

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluorohexyl₈T₈

$$\rho = 1.98 \text{ g/mL}$$

$$M_w = \\ 2393.33 \text{ g/mol}$$

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluoroctyl₈T₈

$\rho = 2.05 \text{ g/mL}$

$M_w =$
3193.45 g/mol

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluorodecyl₈T₈

$$\rho = 2.06 \text{ g/mL}$$

$$M_w = \\ 3993.54 \text{ g/mol}$$

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluorodectyl₈T₈

Inter- and intra-molecular Si-F contacts affect crystal packing

DISTRIBUTION A. Approved for public release; distribution unlimited.

Contact Angle of Water on Fluorodecyl POSS Surface

Drop of
 H_2O

POSS
Coated
Surface

- Anti Icing surfaces
- Low Friction Surfaces

40° Higher than PTFE

26°

Contact Angle of Water on Fluorodecyl POSS Surface

154°

40° Higher than PTFE

DISTRIBUTION A. Approved for public release; distribution unlimited.

Contact Angle of Mercury on Fluorodecyl POSS Surface

167°

DISTRIBUTION A. Approved for public release; distribution unlimited.

AFM Image of Spin-Cast Fluorodecyl₈T₈ Surface

DISTRIBUTION A. Approved for public release; distribution unlimited.

Surface Energy of Fluorosiloxanes

<u>Polymer</u>	<u>Surface Energy (mJ/m²)</u>
Poly(methylheptafluorodecylsiloxane)	7.0
Poly(methylnonafluoroheptylsiloxane)	9.5
Poly(methyltrifluoropropylsiloxane)	13.6
Poly(dimethylsiloxane) (PDMS)	22.8
Poly(tetrafluoroethylene) (PTFE)	19.1

Maxson, M. T.; Norris, A. W.; Owen, M. J "Fluorosilicones" In "Modern Fluoropolymers"; Scheirs, J. Ed.; J. Wiley & Sons: New York, 1997, pp 359-372.

DISTRIBUTION A. Approved for public release; distribution unlimited.

Contact Angle and Chain Length

Chain Length vs. Contact Angle

Number of Fluorocarbon Atoms

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Polymer Incorporation

Cross-linker

POSS Pendant

Bead Copolymer

POSS Blending

DISTRIBUTION A. Approved for public release; distribution unlimited.

Importance of R groups: Affect compatibility with polymer matrix

50 Wt % POSS Blends in 2 Million MW PS

Cp₈T₈

Domain Formation

Partial Compatibility

R = cyclopentyl

Cp₇T₈

Immiscible POSS Crystallites

Complete Compatibility

PhenethylT₈

Cp₇T₈ Styryl

Vi₈T₈

PVDF/Fluoroocetyl₈T₈ POSS

DISTRIBUTION A. Approved for public release; distribution unlimited.

PVDF/Fluoropropyl POSS

DISTRIBUTION A. Approved for public release; distribution unlimited.

PVDF/Fluoropropyl_nT_n POSS

SEM

SEM Image

Carbon Map

SEM Image taken on cross-section of $\frac{1}{4}$ inch thick sample bar.

DISTRIBUTION A. Approved for public release; distribution unlimited.

PVDF/Fluoropropyl_nT_n POSS

Fluorine Map

Silicon Map

Silicon map shows reasonable dispersion of POSS in polymer.

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluorinated Ethylene/Propylene

97°

FEP

110°

114°

15% FOT₈

15% FD₈T₈

DISTRIBUTION A. Approved for public release; distribution unlimited.

Poly(chlorotrifluoroethylene)

88°

PCTFE

108°

128°

10% FO₈T₈

10% FD₈T₈

DISTRIBUTION A. Approved for public release; distribution unlimited.

Amorphous FEP

92°

AFEP

100°

103°

AFEP with 10% FO_8T_8

AFEP with 10% FD_8T_8

DISTRIBUTION A. Approved for public release; distribution unlimited.

Water Contact Angle

Polymer	No POSS	FO_8T_8	FD_8T_8
PCTFE	88°	108°	128°
FEP	97°	110°	114°
Amor. FEP	92°	100°	103°

Fluoropropyl POSS (FP_nT_n) 101°
Fluoroctyl POSS (FO_8T_8) 115°
Fluorodecyt POSS (FD_8T_8) 154°

DISTRIBUTION A. Approved for public release; distribution unlimited.

Summary

DISTRIBUTION A. Approved for public release; distribution unlimited.

Acknowledgements

Assistance from others at AFRL:

Crystal Structures

SEM Images

SEM Images

AFM Images

Ashwani Vij

Marietta Fernandez

Erik Weber

Brian Moore

Financial Support:

Air Force Office of Scientific Research
Air Force Research Laboratory, Propulsion Directorate

Acknowledgements

The Polymer Working Group at Edwards Air Force Base is:

Maj Connie Schlafer
Mr. Pat Ruth
Dr. Sandra Tomczak
Mr. Brian Moore
Dr. Brent Viers
Dr. Darrell Merchant
Lt Will Cooper
Mr. Scott Barker

Dr. Shawn Phillips
Lt Amy Palacek
Dr. Rusty Blanski
Dr. Joe Mabry
Mrs. Sherly Largo
Dr. Tim Haddad
Lt Laura Moody

Financial Support:

Air Force Office of Scientific Research
Air Force Research Laboratory, Propulsion Directorate

Backup Slides

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

Gas Phase Model of Fluorodecyl₈T₈

DISTRIBUTION A. Approved for public release; distribution unlimited.

Density

Compound

- PVDF
- PCTFE
- FEP

Density (g/mL)

• PVDF	1.75-1.78
• PCTFE	2.08-2.19
• FEP	2.12-2.17
• Fluoropropyl POSS	1.59
• Fluorohexyl POSS (crystal)	1.86 (1.98)
• Fluoroctyl POSS (crystal)	1.88 (2.05)
• Fluorodecyl POSS (crystal)	1.95 (2.06)

DISTRIBUTION A. Approved for public release; distribution unlimited.

Fluorinated POSS Trisilanol

Et_4NOH
reflux

Et_3N

(or other chlorosilanes)

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Macromers for Nanocomposites

POSS-based macromers are available through either Gelest or Aldrich
POSS technology is commercialized by Hybrid Plastics in Fountain Valley CA

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

PVDF Fluoropropyl_nT_n Blends

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Siloxanes

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

Tg's For Bead Siloxane Copolymers

Glass Transition vs % Siloxane

POSS Bead acts as a hard segment

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Siloxanes

- Copolymers with low softening temperatures can be molded into bars.
- Dynamic mechanical analysis reveals a T_g (64°C).

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Siloxanes

The POSS/Siloxane copolymers with four or more Si-O repeat units in the siloxane segment have softening temperatures well below the decomposition temperatures.

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

TMA of Pendent POSS-Siloxanes

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

Hydrosilation to High MW PDMS

There are about 7 POSS-macromers per PDMS chain

Used 5 weight % POSS

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

Experimental Setup for Rheology

$$\gamma(\omega) = \gamma_0 \sin(\omega t)$$

$$\omega = 2\pi \text{ (sec}^{-1}\text{)}$$

- 25 mm diameter cone-and plate with cone angle of 2° was used.
- The strain amplitude γ_0 is 1% and angular frequency ω is 2π per second.
- The temperature is ramped from - 60°C to 70°C with a rate of $2^\circ\text{C}/\text{min}$.

The loss modulus G'' and $\tan\delta = G''/G'$ were obtained as a function of temperature.

Comparison of Three T8-POSS Macromers

DISTRIBUTION A. Approved for public release; distribution unlimited.

Andre Lee, AFRL

Comparison of Two POSS Polyhedra

PAS-03-061

Continue this collaboration with Andre Lee

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Cyclotrisiloxane

DISTRIBUTION A. Approved for public release; distribution unlimited.

Reactivity

DISTRIBUTION A. Approved for public release; distribution unlimited.

POSS Siloxane Copolymers

DISTRIBUTION A. Approved for public release; distribution unlimited.

Space-Survivable Materials

PAS-03-061

DISTRIBUTION A. Approved for public release; distribution unlimited.

Space Materials

- The International Space Station, the Space Shuttle, and the Hubble Space Telescope are among satellites that operate in Low Earth Orbit (LEO)
- Metallized Teflon FEP is commonly used as outer layer of multi-layer insulation.

DISTRIBUTION A. Approved for public release; distribution unlimited.

Space-Survivable Polymers

LEO Environment (Altitudes of 200 to 1500 km)

- Atomic Oxygen (AO): $\sim 10^8$ atoms/cm³
- Actual AO flux on spacecraft $\sim 10^{15}$ atoms/cm²•s
- AO Collision energy $\sim 5\text{eV}$ (**7.8 km/sec**)
- Low-energy and high energy charged particles.
- Thermal cycling -50 to 150°C
- Solar VUV and UV radiation ($\sim 150 - 400$ nm).
- Bond scission and radical formation can lead to embrittlement.

Satellites & Space Systems

Bond	Dissociation Energy (eV)	λ (nm)	Material
CF ₂ -CF ₂	4.3	290	FEP Teflon®
CF ₂ -F	5.5	230	FEP Teflon®
Si-O	8.3	150	Nanocomposite

Objectives

- Increase space-survivability of polymeric materials
- Develop self-passivating layer based on nanocomposite incorporation

DISTRIBUTION A. Approved for public release; distribution unlimited.

Siloxanes

- Siloxane systems exhibit superior resistance to AO
- High Si-O bond strength ~ 8 eV

However, pure siloxane systems have disadvantages

- Volatile cyclic species which recondense on optical surfaces

POSS-Siloxane

After AO exposure, POSS siloxane had no erosion

Composition, at %

Sample Treatment	C	O	Si
As entered	65.0	18.5	16.6
2.0 hr	48.4	33.8	17.8
24.6 hr	22.1	49.1	28.8
63.0 hr	16.3	55.7	28.0
4.8 hr air	19.5	52.8	27.7

Gonzalez, R. I., Phillips, S. H., Hoflund, G. B., *J. of Spacecraft and Rockets*, Vol 37, No. 4, 2000, pp. 463-467.

XPS survey spectra obtained from a solvent-cleaned, POSS-PDMS film.

DISTRIBUTION A. Approved for public release; distribution unlimited.

Materials International Space Station Experiment (MISSE)

MISSE 5

Pictures courtesy of NASA
DISTRIBUTION A. Approved for public release; distribution unlimited.