

Ayudantía 9 - Cardinalidad

19 de octubre de 2024 Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

Principio del palomar Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m>n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x,y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Equinumeroso Sean A y B dos conjuntos cualesquiera. Diremos que A es equinumeroso con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f: A \to B$. Lo denotamos como

 $A \approx B$

Video: Les dejamos este video que puede servirles para entender numerabilidad AQUI :)

Meme del día

(the set of all rational numbers) are countable. [c]
The set of all real numbers is uncountable,

Theorem 8.1 (The rationals are dense among the reals): For any two $x,y\in\mathbb{R}$ where x< y exists a $q\in\mathbb{Q}$ such that

x < q < y

1. Equinumerosidad

Demuestre que $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N})$, donde $(0,1) \subseteq \mathbb{R}$.

2. Numerabilidad

- 1. Demuestre que si A es numerable y B es numerable, entonces $A \cup B$ es numerable.
- 2. Demuestre que todo subconjunto infinito de un conjunto numerable es numerable.
- 3. Demuestre que la unión de una cantidad numerable de conjuntos finitos o numerables es numerable.

3. Numerabilidad (Hardcore)

El conjunto \mathbb{R} de los números reales puede ser particionado en dos subconjuntos:

■ El primer subconjunto, llamémoslo A, tendrá todos los números reales que son raíz de algún polinomio con coeficientes enteros no todos nulos. En otras palabras,

$$A = \{x \in \mathbb{R} \mid \exists n \in \mathbb{N}, \exists q_0, q_1, \dots, q_n \in \mathbb{Z} \text{ tales que } \sum_{i=0}^n q_i x^i = 0 \land \bigvee_{i=0}^n q_i \neq 0\}$$

■ El segundo subconjunto tendrá todos los números reales que no están en el primer conjunto, esto es, será $\mathbb{R} \setminus A$.

Esta partición de los números reales es conocida y muy famosa. Al conjunto A se le llama números algebraicos, y al conjunto $\mathbb{R} \setminus A$ se le llama números trascendentes¹.

Demuestre que el conjunto de los números trascendentes no es numerable.

 $^{^{1}}$ Los números algebraicos y trascendentes también están definidos como partición de los complejos (\mathbb{C}). Ambas definiciones son válidas.