

EXERCICI 1. (Pengeu el fitxer .sas de l'apartat 1.b al campus digital):

La fàbrica de Filats i Teixits SALAZAR requereix fabricar dos teixits de qualitat diferent T₁ i T₂; es disposa de 500 kg de fil classe "a", 300 kg de fil "b" i 108 kg de fil "c". Per obtenir un metre de T₁ es necessiten 125 gr. de "a", 150 gr. de "b" i 72 gr. de "c". Per produir un metre de T₂ es necessiten 200 gr. de fil "a", 100 gr. de "b" i 27 gr. de "c".

El benefici net que s'aconsegueix amb la venda dels teixits produïts és: $4 \in$ per metre de T_1 i $5 \in$ per metre de T_2 .

a) (2.5 pts) Plantegeu formalment el problema d'optimització parametritzat per tal de planificar la producció dels teixits que maximitza el benefici obtingut.

Conjunts rellevants:

```
Teixits: tipus de teixit a produir. En aquest cas, {1, 2}. Fils: classes de fil disponible. En aquest cas, {a, b, c}.
```

Paràmetres:

 $A\{Fils, Teixits\}; a_{ij}$ és la quantitat (en grams) de fil de classe i necessari per obtenir un metre de teixit j; $disp\{Fils\}; disp_i$ és la disponibilitat (en grams) de fil de classe i;

 $b\{ \textit{Teixits} \}; b_j \text{ \'es el benefici net (en euros) obtingut per metre de teixit } j \text{ produït;}$

En aquest cas:

```
A = \begin{bmatrix} 125 & 200 \\ 150 & 100 \\ 72 & 27 \end{bmatrix}
disp = (500000 & 300000 & 108000)
b = \begin{bmatrix} 4 & 5 \end{bmatrix}
```

Variables de decisió: x_i : metres de teixit de tipus j produït, $j \in Teixits$, $X \ge 0$.

Constriccions:

```
Limitació de fil de tipus i: \sum_{j \in Teixits} a_{ij} x_j \le disp_i, i \in Fils

<u>Funció Objectiu</u>: Max \sum_{j \in Teixits} b_j x_j
```

b) (2.5 pts) Resoleu aquest problema amb OPTMODEL i indiqueu:

proc optmodel presolver = 0;

```
/* Paràmetres */
set<string> FILS = {'a', 'b', 'c'};
set<string> TEIXITS = {'T1','T2'};
number Dispon {FILS} = [500 300 108]; /* Kgs */
number Prod {FILS, TEIXITS} = [ 125 200
                                  150 100
                                   72 27 ];
                                              /* gr./m */
number BN {TEIXITS} = [4 5]; /*
                                  €/m */
var X{TEIXITS} >=0;
                    /* metros */
max Total_benefici = sum {i in TEIXITS} BN[i]*X[i];
con Consum_recurs {i in FILS}:
      sum {j in TEIXITS} Prod[i,j]*X[j]/1000 <= Dispon[i];</pre>
solve;
print X;
print Consum recurs.lb Consum recurs.body Consum recurs.ub Consum recurs.dual
Consum recurs.status;
```

- i. La longitud de cada tipus de teixit que cal fabricar, i el benefici total de la solució.
- ii. La base òptima \mathcal{B}^* de la forma estàndard del problema resolt.

		Th	e OPTMODEL	Proced	ure			
		Resumen de la solución						
		Solver	Solver		LP			
		Algori	Algorithm		Simplex			
		Object	Objective Function		enefici			
		Soluti	Solution Status		Optimal			
		Object	Objective Value		13000			
		Iteration	ons		6			
		Prima	I Infeasibility		0			
		Dual I	Dual Infeasibility		0			
		Bound	Infeasibility		0			
			[1] T1 571 T2 2142					
[1]	Consum_recurs.LB	Consum_recurs.BODY	Consum_rec	urs.UB	Consum	recurs.DUAL	Consum	_recurs.STATUS
a	-1.7977E+308	500		500		20	L	
b	-1.7977E+308	300		300		10	L	
С	-1.7977E+308	99		108		0	В	

571.43 metres de teixit tipus 1, 2142.86 metres de teixit tipus 2. Benefici òptim, 13000€ La base està formada per les variables x_1 , x_2 i la folga de la restricció de disponibilitat de fil classe "c".

EXERCICI 2. (Pengeu el fitxer .sas de l'apartat 2.b al campus digital):

Feu una modificació del model anterior per tenir en compte que la quantitat de teixit de tipus 2 no pot superar el doble de la longitud de teixit de tipus 1.

a) (1.0 pts) Plantegeu formalment els canvis que cal introduir.

Cal introduir la nova constricció $x_2 \le 2x_1$.

b) (1.0 pts) Resoleu aquest problema amb OPTMODEL i doneu la nova solució.

En OPMODEL s'afegeix la constricció

La nova solució obtinguda és

Ara la base té dimensió 4: x_1 , x_2 i les folgues de les restriccions de disponibilitat de fil classes "a" i "b".

EXERCICI 3. (Pengeu el fitxer .sas de l'apartat 3.b al campus digital):

A continuació es vol considerar el problema des d'un altre punt de vista. Es calculen els costos pel consum dels recursos (els fils): classe "a", 20€/Kg; classe "b", 12€/Kg; classe "c", 19€/Kg. A més a més hem de garantir una producció mínima conjunta superior a 2000 metres de teixit. Per aquest apartat oblideu les modificacions que heu introduït en l'exercici 2.

a) (1.5 pts) Plantegeu formalment el nou model per planificar la producció dels teixits en aquesta nova situació per tal de minimitzar els costs dels recursos consumits (ignorant els beneficis).

Nous paràmetres:

Cost { Fils }; cost_i (en euros) és el cost del Kilogram de fil classe i; en aquest cas, Cost = (20 12 19) demanda; és la quantitat de metres a produir considerant tots els tipus de teixit.

Cal introduir la constricció $\sum_{i \in Teixits} x_i \ge demanda$.

Tenint en compte que la quantitat utilitzada del fil de classe i es pot expressar com a $\sum_{j \in Teixits} a_{ij}x_j$, la nova funció objectiu és: $Min \sum_{i \in Fils} cost_i \left[\sum_{j \in Teixits} a_{ij}x_j\right]/1000$. (el 1000 és per transformar les unitats de pes)

b) (1.5 pts) Resoleu aquest problema amb OPTMODEL i indiqueu novament

```
A OPTMODEL cal afegir els nous paràmetres:
```

```
number Coste {FILS} = [20 12 19];  /* Kgs */
number Demanda = 2000; /* m */
```

i la nova constricció:

```
con n1: sum {i in TEIXITS} X[i] >= Demanda;
```

A més a més, cal sustituir la funció objectiu per:

```
min Total_cost = sum {i in FILS, j in TEIXITS} Coste[i]*Prod[i,j]*X[j]/1000;
```

i. La producció final i el cost de la solució.

		TH	ne OPTMODEL P	Procedure			
			Resumen de la solución				
		Solve	r	LP			
		Algor	ithm	Dual Simplex			
		Object	tive Function	Total_cost			
		Solut	ion Status	Optimal			
		Object	tive Value	11372	!		
		Iterati	ons	5	i		
			al Infeasibility	0			
			nfeasibility	0			
		Boun	d Infeasibility	0			
			[1] X.SOL X	/ DC			
			T1 1200	0			
			T2 800	-0			
			12 000	-0			
[1]	Consum_recurs.LB	Consum_recurs.BODY	Consum_recui	rs.UB Cons	um_recurs.DUAL	Consum_recurs.STA	TUS
a	-1.7977E+308	310	_	500	0	В	
b	-1.7977E+308	260		300	0	В	
С	-1.7977E+308	108		108	-1	L	

ii. Compareu en termes de benefici net i de cost les solucions trobades als exercicis 1 i 3

	benefici	cost
Solució 1	13000	15481
Solució 3	8800	11372

