Программное обеспечение исследования YJMэлементов

Пушкарёв И.А., к.ф.-м.н., доцент ВятГУ, г. Киров; Стерлягов А.А., магистрант ВятГУ, г. Киров

Центр групповой алгебры

- Центр групповой алгебры множество элементов, коммутирующих со всеми элементами групповой алгебры.
- Суммы классов сопряженных элементов образуют стандартный базис центра групповой алгебры.

ҮЈМ-элементы

- Пусть σ такой элемент группы G_m , что никакой элемент, сопряжённый с ним в группе G_m не содержится ни в какой группе с меньшим номером. Символом $\Xi_n(\sigma)$ (при $n \ge m$) обозначим сумму (в групповой алгебре группы G_n) всех элементов, сопряжённых в этой группе с элементом σ .
- В основном примере групповых алгебр симметрических групп $s_i = (i, i+1)$ кокстеровские образующие симметрической группы, $\Xi_n(\sigma) = \sum_{i=1}^{n-1} (i, n)$ классические элементы Юнга-Юциса-Мэрфи.

Симметрические многочлены от YJMэлементов

• Рассмотрим последовательность $Q_n(y_1, y_2, ..., y_n)$ (коммутативных) алгебр симметрических многочленов с целыми коэффициентами от формальных переменных $y_1, y_2, ..., y_n$. Подстановка в переменные y_i элементов индуцирует гомоморфизм алгебры Q_n в центр Z_n групповой алгебры $C[S_n]$ n-ой симметрической группы S_n .

Симметрические многочлены от YJMэлементов

• Теорема

Элементы центра групповой алгебры являются симметрическими многочленами от YJM-элементов.

Симметрические многочлены от YJMэлементов

• $\sum_{i=2}^{n} \Xi_{i}(\sigma) = S((1,2))$ — центральный элемент групповой алгебры S_{n} .

•
$$\sum_{i=2}^{n} \Xi_i^2(\sigma) = S((1,2,3)) + \frac{n*(n-1)}{2} * 1.$$

• $\sum_{i=2}^{n-1} \Xi_i(\sigma) (\sum_{j=i+1}^n \Xi_j(\sigma)) =$ сумма всех тройных циклов + сумма всех двойных транспозиций

Требования к ПО

- Модуль для проведения вычислений в групповой алгебре.
- Модуль для вычисления образа конкретного симметрического многочлена под действием рассматриваемого гомоморфизма.
- Модуль для программной реализации «обратной процедуры» построения по конкретному стандартному элементу центра Z_n одного из многочленов прообраза.

Выводы

- Рассмотрено отображение из алгебры симметрических многочленов в центр групповой алгебры симметрической группы.
- Построены образы некоторых симметрических многочленов под действием рассматриваемого гомоморфизма.
- Выдвинуты требования к программному обеспечению для исследования свойств YJM-элементов групповых алгебр.