Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- A. The following function definition in LISP is given

 (DEFUN F(L)

 (COND

 ((NULL L) 0)

 (> (F (CDR L)) 2) (+ (F (CDR L)) (CAR L)))

 (T (+ (F (CDR L)) 1))

)

Rewrite the definition in order to avoid the repeated recursive call **(F (CDR L))**. Do NOT redefine the function. Do NOT use SET, SETQ, SETF. Justify your answer.

B. Write a PROLOG program that generates the list of permutations of the set 1..N, having the property that the absolute value of the difference between 2 consecutive values from the permutation is >=2. Write the mathematical models and flow models for the predicates used. For example, for N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]] (not necessarily in this order).

C. An n-ary tree is represented in Lisp as (node subtree1 subtree2 ...). Write a Lisp program to return the *height* of a node of a tree. **A MAP function shall be used.**

Example for the tree (a (b (g)) (c (d (e)) (f))) **a)** nod=e => the height is 0 **b)** nod=v => the height is -1

c) nod=c => the height is 2.