

Escola de Inverno de Física 2024

Introdução ao Jupyter Notebook: 1

Cadernos Jupyter

Nos teus cadernos podes escrever texto, desenhar gráficos e figuras, colar uma foto, resolver exercícios e até escrever endereços URL que o teu professor(a) indique para consultares.

Um **caderno Jupyter**, ou *Jupyter notebook* como lhe chamaremos daqui em diante, pode incluir tudo isso e muito mais. Podes escrever código em várias linguagens de programação, executar programas, gerar gráficos, controlar um computador quântico, que nem sabes onda está, e até incluir vídeos.

É uma ferramenta de trabalho muito útil, amplamente usada quer nos meios académicos, quer na indústria e quanto mais cedo a conheceres, mais produtivo serás. Vamos começar por uma volta breve sobre o que podes fazer num *Notebook*.

Um Jupyter notebook (JN) é um conjunto de *células*. O que estás a ler é uma célula. Clica duplo em qualquer parte do texto para veres o que está por trás. Para já não te preocupes em perceber tudo. Para voltares ao aspeto anterior *executa a célula* carregando em SHIFT-RETURN ou clicando no botão Run na barra por baixo do menu principal.

Clica na célula novamente e repara na barra verde à esquerda. Indica uma célula Markdown, que é uma linguagem muito simples para formatar texto. Nota que a indicação Markdown aparece na barra por baixo do menu. Em breve veremos mais detalhes sobre o Markdown.

Passa agora para a célula seguinte, clicando nela como rato. Repara no prefixo In [] e na cor azul da barra à esquerda; indica uma célula de Code . Na barra por baixo do menu lês agora Code em vez de Markdown . Executa a célula (SHIFT-RETURN ou Run)

```
In [1]: 17+3
Out[1]: 20
```

Viste o que aconteceu? Executaste uma instrução de **Python**, a linguagem associada a este notebook. O resultado do **In**put [1], 17 + 3, foi o **Out**put [1], 20.

Repara no programa seguinte. Mesmo sem sabereres o que vai fazer, executa-o.

Exercício 1

Mesmo sem perceberes o código da célula acima, copia-o para a célula abaixo e modifica-o para imprimires os inteiros de 0 a 10.

In [3]:

Faz aqui o teu exercício. Tudo o que começar por '#' é ignorado pelo Python. # São comentários para benefício do utilizador.

Links

Vamos agora fazer algo que não consegues fazer no teu caderno de notas.

Clica no link sequinte Intro JupyterNotebook.pdf

Se tudo funcionou como esperado, o teu browser abriu noutra janela um documento pdf muito parecido com este notebook. Mas aos contrário deste, que está *vivo*, o pdf está *estático*: podes lê-lo e mais nada.

Neste caso o documento estava no teu disco. Mas podes usar esta possibilidade para ligar a qualquer sítio da internet: Sítio da Pordata.

Também podes criar ligações entre partes do teu documento.Clica neste link para voltares ao início: Cadernos Jupyter

Exercício 2

Neste exercício vais criar o teu primeiro notebook. No menu, clica em File -> New Notebook-> Python3 (ipykernel)

Aparece-te um novo notebook com uma célula *Code*. Usando a barra por baixo do menu transforma a célula em *Markdown* e cria uma célula com hiperligações para até 5 sítios de que gostas (e que a Faculdade não bloqueie). O endereço URL que tens de inserir no teu notebook pode ser copiado da barra do browser. Podes adornar o teu notebook com texto que indique a razão das tuas preferências.

Imagens

Uma figura vale mil palavras, por isso deve haver maneira de inserir figuras num notebook. Pode-se fazer pelo menu Edit->Insert Image; na caixa de diálogo procura no teu disco o ficheiro desejado,

seleciona-o e clica em 0K . `

Esta maneira simples tem o inconveniente de não se poder variar o tamanho e a posição.

Em alternativa podes usar código html

Nota: evita caracteres especiais (hifen, - , underscore,_, ou espaços) no nome dos ficheiros de figuras.

A não ser que possuas um caderno como os do Universo de Harry Potter, precisas do Jupyter para ver **no teu caderno** um vídeo.

```
In [4]: from IPython.display import YouTubeVideo
YouTubeVideo('HW29067qVWk', width=600, height=400)
```

Out[4]:

Gráficos

Antes de deixarmos esta breve introdução vamos dar dois exemplos de criação de gráficos. Mais tarde vampos perceber o código. Para já limita-te a tentar antecipar o resultado da execução de cada célula.


```
In [6]: # gráfico de 2 funções
x= np.linspace(0,10,100)  # lista de abcissas de 0 a 10 com 100 pontos
y = np.sin(x)  # lista de ordenadas; a função sin é aplicada a c
z= np.cos(x)  # lista de ordenadas; a função cos é aplicada a c
plot(x,y,'bo',x,z,'gs')
```

Out[6]: [<matplotlib.lines.Line2D at 0x7f70845e9160>, <matplotlib.lines.Line2D at 0x7f70845e9250>]


```
In [7]: # Um gráfico mais arranjadinho
    figure(figsize=(4,2))
    xlabel("x", fontsize=12)
    ylabel ("sin(x)", fontsize=12)
```

title("Gráfico de sin(x)", fontsize=14)
grid(True)
plot(x,y);

Exercício 3

Copia a célula do último gráfico e modifica-o para fazeres o gráfico do $\cos(x)$. Não te esqueças de alterar o título e as legendas dos eixos.

In [8]: # Faz aqui o exercício 3

Terminamos esta introdução. Nos notebooks seguintes vamos dissecar esta ferramenta para que possas criar os teus próprios documentos.