1. Язык, описывающийся следующей атрибутной грамматикой:

 $S \rightarrow AT$; T.rng > A.iter

 $A \rightarrow aA$; $A_0.iter := A_1.iter + 1$

 $A \to \varepsilon$; A.iter := 0

 $T \rightarrow TcT$; $T_0.rng := max(T_1.rng, T_2.rng)$

 $T \rightarrow K$; T.rng := K.rng

 $K \rightarrow \alpha K$; $K_0.rng := K_1.rng + 1$

 $K \rightarrow bK$; $K_0.rng := 0$ $K \rightarrow \varepsilon$; K.rng := 0

- 2. Язык $\{wcvw_{pref}zw_{suff} \mid w,z \in \{a,b\}^* \& v \in \{a,b,c\}^*\}$. Здесь w_{pref} непустой префикс слова w; w_{suff} непустой суффикс слова w.
- 3. Язык, описывающийся следующей атрибутной грамматикой:

 $S \rightarrow SbS$; $S_0.iter := 2 \cdot S_1.iter$, $S_1.iter == S_2.iter$

 $S \rightarrow a$; S.iter := 1

4. Язык SRS с правилами $a \to bab$, $ba \to ab$ над базисным словом aa (единственным).

Решение задачи IV

 \mathscr{L} — язык SRS с правилами $\mathfrak{a} \to \mathfrak{bab}, \, \mathfrak{ba} \to \mathfrak{ab}$ над базисным словом \mathfrak{aa} (единственным).

Правила переписывания показывают, что во-первых, буквы а в словах языка всегда ровно две, а во-вторых, относительно слов, порождаемых по первому правилу $b^n a b^{n+m} a b^m$ они могут перемещаться только влево, причём как угодно далеко. При этом, если мы сначала применим первое правило, а потом второе, то получим композицию $a \to abb$, а если мы сначала применим второе, а потом первое — то $ba \to babb$, то есть правила перестановочны, коль скоро есть хотя бы одна буква b слева от a. Значит, чтобы получить произвольное слово языка, можно сначала максимально применить первое правило, а потом второе.

Обратим также внимание, что если какое-то слово получилось из второй слева буквы а применением k правил 1, то мы могли бы получить его, применив те же k правил 1 к самой левой букве а, а затем к ней же — k правил 2, и ко второй букве а — k правил 2. Пусть область, порождаемая правилами

 $a \to bab$, обозначена красным для первой буквы a и синим — для второй. Тогда ab^kab^k — то же, что $b^kab^kab^kab^kab^k$. Поэтому можно принять допущение, что правила $a \to bab$ применяются только к самой левой букве a.

Таким образом, можно установить, что слова языка $\mathscr L$ имеют вид $b^{n_1}ab^{n_2}ab^{n_3}$, где $n_2+n_3\geqslant n_1$ и сумма $n_1+n_2+n_3$ чётна. Это детерминированный контекстно-свободный (но не регулярный) язык, DPDA для которого выглядит так:

Язык не является LL(k), в чём можно убедиться, рассмотрев слова $b^{n+k}ab^{n+k}a$ и $b^{n+k}aab^{n+k}$ с предполагаемым lookahead для грамматики в ГНФ, равным k, и наблюдаемым префиксом b^n . В силу бесконечности классов по Майхиллу— Нероуду в языке b^* относительно \mathscr{L} , стек на этом префиксе разрастается как угодно сильно, в частности, можно взять такое n, чтобы он уж точно содержал k+3 элемента. Тогда в слове $b^{n+k}aab^{n+k}$ последний элемент стека заведомо разворачивается в $C_1=b^s$ (т.к. префикс b^ka^2 точно прочитан раньше: каждый из k+2 первых элементов стека считал как минимум по одной букве). В слове $b^{n+k}ab^{n+k}a$ последний элемент стека точно разворачивается в $C_2=b^ta$. Этот последний элемент один и тот же, и lookahead у него в обоих случаях равен концу строки. Подменой C_1 на C_2 (или наоборот) получаем слово не из \mathscr{L} .

Язык не является VPL-языком. По условию, в VPL-языке все терминалы строго делятся на непересекающиеся категории: вызывающие, возвращающие и внутренние. Если назначить b вызывающим терминалом, то стек (по-

чти) всегда будет только наполняться; если назначить b читающим — стек (почти) всегда будет пуст. И тот, и другой случай приводят к тому, что количество букв b слева и справа от первой буквы а сравнить невозможно. «Почти» здесь — указание, что в принципе ничего не мешает назначить букву а читающей или вызывающей, однако поскольку их только две в слове, они изменят поведение стека лишь конечным образом.

Решение задачи III

Посмотрим на несколько первых итераций, порождающих слова языка \mathscr{L} :

 $S \rightarrow SbS$; $S_0.iter := 2 \cdot S_1.iter$, $S_1.iter == S_2.iter$

 $S \rightarrow a$; S.iter := 1

Слово ава семантическому критерию удовлетворяет, т.к. оно получается разбором двух нетерминалов с атрибутом iter =1. При этом для ава соответствующий атрибут равен 2.

Из этих базовых слов мы не можем получить слово ababa, т.к. атрибуты его левых и правых частей не равны. То же самое верно и про ababa. Слово abababa построить можно, и его атрибут iter будет равен 4.

Мы видим, что на каждой новой итерации мы получаем возможность скомбинировать только два слова с предыдущей итерации, при этом атрибут iter полученного слова будет не равен атрибутам iter никаких ранее построенных слов. Если на i-й итерации было построено слово $(ab)^k a$, то на i+1-й итерации будет построено слово $(ab)^k ab(ab)^k a=(ab)^{2k+1}a$. Отсюда следует, что множество слов языка в свёрточной форме выглядит так: $\{(ab)^{2^i-1}a\}$.

Проще всего обосновать не КС-свойство для данного языка с помощью теоремы Париха. Действительно, кратности букв b (впрочем, как и α) в словах языка описываются экспоненциально растущей функцией, которая не может быть представлена как объединение линейных. Доказательство не КС-свойства языка \mathcal{L} с помощью леммы о накачке предоставляется читателю.

Построим backref-регулярку для данного языка, пользуясь наблюдением, что $2^n-1=1+2+2^2+\cdots+2^{n-1}$.

$$a([_1ba]_1([_2x_1x_1]_2[_1x_2x_2]_1)^*[_2x_1x_1]_2?)?$$

Заметим, что эту backref-регулярку можно преобразовать в детерминированный MFA. Единственной проблемой, которая в ней может возникнуть, является переход от итерации Клини к последнему чтению x_1x_1 , который решается тем, что промежуточное состояние внутри итерации перед чтением $[{}_{1}x_{2}x_{2}]_{1}$ нужно сделать финальным.

Решение задачи II

$$\mathcal{L} = \{wcvw_{pref}zw_{suff} \mid w, z \in \{a, b\}^* \& v \in \{a, b, c\}^*\}$$

Можно заметить, что для любого слова в $\mathscr L$ при рассмотрении $w_{\text{pref}} = s_{\text{fst}} w'_{\text{pref}}$ и $w_{\text{suff}} = w'_{\text{suff}} s_{\text{last}}$, где s_{fst} и s_{last} — первая и последняя буквы соответственно, получается слово вида $w\text{cvs}_{\text{fst}} w'_{\text{pref}} z w'_{\text{suff}} s_{\text{last}}$, в котором можно положить $z' = w'_{\text{pref}} z w'_{\text{suff}}$, а новыми префиксом и суффиксом — только первую и последнюю буквы. И это слово также принадлежит $\mathscr L$, однако его структура подходит под большее число случаев w, чем исходная. Поэтому язык $\mathscr L$ по факту представляет собой следующий:

$$\mathcal{L} = \{s_{fst}ws_{last}cvs_{fst}zs_{last} \mid s_{fst}ws_{last}, z \in \{a,b\}^* \ \& \ v \in \{a,b,c\}^*\}$$

Поскольку w, v, z здесь можно заменить регулярками $(a|b)^*$ и $(a|b|c)^*$, то данный язык регулярен и является объединением следующих языков:

- ac(a|b|c)*a(a|b)*a
- bc(a|b|c)*b(a|b)*b
- $a(a|b)^*ac(a|b|c)^*a(a|b)^*a$
- a(a|b)*bc(a|b|c)*a(a|b)*b
- $b(a|b)^*ac(a|b|c)^*b(a|b)^*a$

• b(a|b)*bc(a|b|c)*b(a|b)*b

Префикс-свойство для него не выполняется, потому что внутри подвыражения $(a|b|c)^*$ или последнего подвыражения $(a|b)^*$ может встретиться повтор последующего суффикса. В качестве контрпримера, подтверждающего это, достаточно взять слова аасаа и слово аасааа, принадлежащие \mathcal{L} .

Всякий регулярный язык является LL(1). Соответствующую грамматику можно построить, тупо взяв ДКА для него и преобразовав его в праволинейную грамматику с эпсилон-правилами для самой последней буквы (иначе будет LL(1)-конфликт; нигде, кроме как с финальными состояниями, конфликта быть не может в силу того, что автомат детерминирован).

Решение задачи І

Сначала посмотрим на атрибутную грамматику.

 $S \rightarrow AT$; T.rng > A.iter

 $A \rightarrow \alpha A$; $A_0.iter := A_1.iter + 1$

 $A \to \varepsilon$; A.iter := 0

 $T \rightarrow TcT \quad ; \quad T_0.rng := max(T_1.rng, T_2.rng)$

 $T \rightarrow K$; T.rng := K.rng

 $K \rightarrow \alpha K \quad ; \quad K_0.rng := K_1.rng + 1$

 $\begin{array}{lll} \mathsf{K} \to \mathsf{b} \mathsf{K} & ; & \mathsf{K}_0.\mathsf{rng} := 0 \\ \mathsf{K} \to \epsilon & ; & \mathsf{K}.\mathsf{rng} := 0 \end{array}$

Все атрибуты синтетические, кроме того, язык K явно регулярен, и атрибут rng в нём изменяется, только пока в префиксе встречаются исключительно буквы a. То есть если $K \to a^n(b(a|b)^*)$?, то K.rng = n.

Теперь посмотрим на язык Т. Заметим, что его можно переписать в форме $(Kc)^*K$, устранив левую рекурсию (поскольку язык K не содержит букв c, а разделители между K-развёртками не содержат α и b, то можно K представить единственным токеном и далее, например, применить метод Блюма–Коха). При этом семантическое свойство будет выглядеть так: $T.rng = m\alpha x(K.rng)$.

Осталось разобраться с атрибутом А. Здесь, очевидно, если $A \to \mathfrak{a}^{\mathfrak{m}}$, то A.iter = m. Но именно в случае A есть неоднозначность границы разбора: если $S \to AKcT$, причём $K \to \mathfrak{a}^{\mathfrak{m}}(\mathfrak{b}(\mathfrak{a}|\mathfrak{b})^*)$?, $A \to \mathfrak{a}^{\mathfrak{m}}$, то мы можем сделать какие угодно разборы префикса $\mathfrak{a}^{\mathfrak{n}+\mathfrak{m}}$ начиная от $K \to \mathfrak{a}^{\mathfrak{n}+\mathfrak{m}}(\mathfrak{b}(\mathfrak{a}|\mathfrak{b})^*)$?,

 $A \to \varepsilon$ и кончая $K \to (b(a|b)^*)?, A \to a^{n+m}$. С точки зрения языка, наиболее выгодно положить $K \to a^{n+m}(b(a|b)^*)?, A \to \varepsilon$ — это даст возможность породить наиболее широкий класс слов.

Таким образом, условие на атрибуты вырождается в T.rng > 0, а грамматика для данного языка может быть преобразована в следующую форму:

```
\begin{array}{lll} S \rightarrow T & ; & T.rng > 0 \\ T \rightarrow KcT & ; & T_0.rng := max(K.rng, T_1.rng) \\ T \rightarrow K & ; & T.rng := K.rng \\ K \rightarrow aK & ; & K_0.rng := K_1.rng + 1 \\ K \rightarrow bK & ; & K_0.rng := 0 \\ K \rightarrow \epsilon & ; & K.rng := 0 \end{array}
```

Эта грамматика определяет регулярный язык $((a|b)^*c)^*a^+(a|b)^*(c(a|b)^*)$. Если бы условие на атрибуты в корне было T.rng < A.iter, тогда наиболее выгодное с точки зрения языка решение по неоднозначности было бы $K \to (b(a|b)^*)$?, $A \to a^{n+m}$. То есть требовалось бы сравнить по длине максимальные подстроки из букв а в префиксах, идущих сразу после буквы с, с префиксом a^{n+m} (и если ни одной буквы с в слове нет, то это условие тривиально выполняется, если только в начале слова есть хотя бы одна буква а). Будем рассматривать только нетривиальную ситуацию — буквы с присутствуют. Упрощенная атрибутная грамматика станет такая:

```
S 	oup ABcT ; T.rng < A.iter ; A 	oup aA ; A_0.iter := A_1.iter + 1 ; A 	oup \epsilon ; A.iter := 0 ; A.iter := 0 ; T 	oup KcT ; T_0.rng := max(T_1.rng, T_2.rng) ; T 	oup K ; T.rng := K.rng ; K 	oup aK ; K_0.rng := K_1.rng + 1 ; K 	oup B ; K.rng := 0 E 	oup B ; E
```

В свёрточной форме язык переписывается как $\{a^n(b(a|b)^*)?(ca^i(b(a|b)^*)?)^+ \mid \forall i(n>i)\}.$

Похоже, что есть более чем двойственная взаимосвязь между блоками $\mathfrak{a}^{\mathfrak{i}}$ (т.к. каждый из них нужно сравнивать с самым первым, что означало бы, что из первого блока нужно читать в стек несколько раз). Попробуем опровергнуть КС-свойство для полученного языка путём лёммы о накачке. Для этого сначала пересечём наш язык с $\mathfrak{a}^+ \mathfrak{c} \mathfrak{a}^+ \mathfrak{c} \mathfrak{a}^+$, чтобы избавиться от лишних подстрок, определяемых конечноавтоматным поведением, и от накачек, наращивающих число K-фрагментов.

Пусть р — длина накачки. Рассмотрим слово $a^{p+1}ca^pca^p$. Отдельно

фрагмент \mathfrak{a}^{p+1} накачивать мы не можем — отрицательная накачка сразу же выведет из языка. Накачивать его вместе с фрагментом \mathfrak{a}^p тоже не получится — отрицательная накачка даст слово, в котором первый фрагмент не больше по длине, чем фрагмент \mathfrak{a}^p . Однако накачивать только $\mathfrak{a}^p \mathfrak{c} \mathfrak{a}^p$ (в любых вариациях) тоже нельзя — это сразу же приведёт к выходу из языка при повторной положительной накачке.

Можно заметить, что язык конъюнктивен. Действительно, для крайней пары нетерминалов A и K можно КС-свободно описать слова вида

$$a^{n+m+1}(b(a|b)^*|\epsilon)c(a|b|c)^*ca^n(b(a|b)^*|\epsilon)$$

Например, такой грамматикой:

 $S' \rightarrow S'a \mid S'b \mid Cb \mid C$

 $C \rightarrow aCa \mid aAc \mid aAcWc$

 $A \rightarrow aA \mid bW \mid \varepsilon$

 $W \rightarrow (a|b|c)W \mid \varepsilon$

Конъюнктивная грамматика готова:

 $S \rightarrow S' \& ScK$

 $S \rightarrow \alpha K$

 $K \rightarrow (a|b)K \mid \varepsilon$

Заметим, что этот язык — не DMFA. Используем замкнутость DMFA относительно пересечения с регулярными языками и пересечём наш язык с a^+ca^+ . Получим язык слов вида $a^{n+m}ca^n$. Его префиксы a^* определяют бесконечное число классов эквивалентности по Майхиллу–Нероуду, поэтому для них можно применить JL (то есть положить ν_n подсловом префикса a^+). Положим $\nu_n = a^n$. Для p_n есть два варианта: $p_n = a^{n+k}$ и $p_n = a^{n+k}ca^i$, где i < 2n+k. Существуют такие z_i , что слова $p_n\nu_nz_i$ входят в язык, а именно: $z_i = c$ в первом случае и $z_i = a$ во втором случае. Однако слова $a^{n+k}ca^ia$ также входят в язык, а их суффиксы (после p_n) не начинаются с ν_n . Поэтому ни с какой позиции слова запомненный префикс ν_n детерминированно прочитано быть не может.