Séries, intégrales et probabilités

Thierry MEYRE

Préparation à l'agrégation interne. Année 2014-2015. Université Paris Diderot. IREM. http://www.proba.jussieu.fr/pageperso/meyre

BIBLIOGRAPHIE.

Les ouvrages de référence

- CMP Analyse MP. Cours (avec exercices-types, méthodes, exercices et problèmes corrigés). Monier. Editions Dunod. 5ème édition. 2007
- CMPSI Analyse MPSI. Cours, méthodes et exercices corrigés. Monier. Éditions Dunod. 5ème édition. 2006
- **DAN** Mathématiques pour l'agrégation interne. Analyse et Probabilités. Cours et exercices corrigés. Dantzer. Éditions Vuibert. 2007.
- **EMP** Analyse MP. 200 exercices développés. 800 exercices d'entraînement. Rappels de cours. Monier. Éditions Dunod. 2ème édition. 2004
- **EMPSI** Les méthodes et exercices de Mathématiques MPSI. Monier. Éditions Dunod. 2008.
- **ESC** Probabilités et Statistiques pour le CAPES et l'Agrégation interne. Escoffier. Éditions Ellipses. 2006
- RUD Principes d'analyse mathématique. Rudin. Éditions Dunod. 2006

Ouvrages plus difficiles

- BAR Probabilité. Barbe, Ledoux. EDP Sciences. 2007.
- **BP** Théorie de l'intégration. Briane, Pagès. Éditions Vuibert. 4ème édition. 2006
- COT Exercices de Probabilités. Cottrell et al. Éditions Cassini. 2005.
- **FOA** Calcul des Probabilités. Foata, Fuchs. Éditions Dunod. 2ème édition. 1998
- GRA Intégration. Gramain. Éditions Hermann. 1998

Chapitre 1

Intégrale de Riemann.

Il existe différentes théories de l'intégration qui s'appliquent à des classes de fonctions plus ou moins vastes. La théorie que nous allons examiner dans ce cours a été formulée par Bernhard Riemann, professeur à l'université de Göttingen (Allemagne), en 1854. Elle a le mérite de reposer sur une construction relativement simple et s'applique bien aux fonctions continues par morceaux, qui sont les seules au programme officiel.

Dans ce chapitre, nous considérons des applications définies sur un intervalle [a,b] et à valeurs dans un espace de Banach E sur le corps $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} . Dans la pratique, nous intégrerons très souvent des applications à valeurs dans \mathbb{R} ou \mathbb{C} mais la construction de l'intégrale de Riemann pour des applications à valeurs dans un espace de Banach général n'apporte aucune difficulté supplémentaire.

De même, nous allons définir l'intégrale de Riemann sur une classe plus large que celle des applications continues par morceaux, à savoir la classe des applications *réglées*, car cela ne nous demandera aucun effort de construction supplémentaire.

1.1 Applications réglées.

Définition 1.1.1 On appelle subdivision d'un intervalle réel [a,b] toute famille finie $\sigma = (a_i)_{0 \le i \le n}$ d'éléments du segment [a,b] telle que :

$$a = a_0 < a_1 < \dots < a_n = b$$

On appelle pas de la subdivision σ le réel positif

$$\|\sigma\| = \max_{0 \le i \le n} (a_i - a_{i-1})$$

On dit qu'une subdivision σ' est plus fine qu'une subdivision σ si tous les éléments de σ appartiennent à σ' .

Nous allons maintenant définir deux classes de fonctions de [a, b] dans E qui nous seront utiles dans la construction de l'intégrale de Riemann.

Définition 1.1.2 On dit qu'une application $f:[a,b] \to E$ est en escalier s'il existe une subdivision $\sigma = (a_i)_{0 \le i \le n}$ de [a,b] et des constantes $(c_i)_{0 \le i \le n-1} \in E^n$ telles que, pour tout $0 \le i \le n-1$, $f|_{]a_i,a_{i+1}[} \equiv c_i$.

On dit que $f:[a,b] \to E$ est une application continue par morceaux s'il existe une subdivision $\sigma = (a_i)_{0 \le i \le n}$ de [a,b] et des applications f_0, \dots, f_{n-1} telles que, pour tout $0 \le i \le n-1$, f_i est définie et continue sur $[a_i, a_{i+1}]$ avec

$$\forall x \in]a_i, a_{i+1}[\quad f(x) = f_i(x)$$

Dans les deux cas, on dit que la subdivision σ est adaptée à l'application en escalier (resp. continue par morceaux) f.

Remarques

- 1. Cette dernière condition équivaut au fait que, pour tout $0 \le i \le n-1$, l'application $f \mid_{]a_i,a_{i+1}[}$ est continue **et** prolongeable par continuité aux extrémités de l'intervalle. Ainsi, l'application suivante $f:[-1,1] \to \mathbb{R}$ est continue sur]-1,0[et]0,1[mais n'est pas continue par morceaux : $f(x)=\frac{1}{x}$ si $x\ne 0$ et f(0)=0.
- 2. Si σ est adaptée à f, alors toute subdivision σ' plus fine que σ est encore adaptée à f.
- 3. On en déduit que si f et g sont deux applications en escalier (resp. continues par morceaux), avec des subdivisions adaptées respectives σ et σ' , alors $\sigma \cup \sigma'$ est une subdivision adaptée aux deux applications f et g à la fois.
- 4. Dans le cas particulier où $E = \mathbb{R}$ ou \mathbb{C} , le lecteur pourra montrer à titre d'exercice que le produit de deux applications en escalier (resp. continues par morceaux) est encore une application en escalier (resp. continue par morceaux).
- 5. Pour tout $k \in \mathbb{N}^* \cup \{+\infty\}$, on définit de façon analogue la notion d'application de classe C^k par morceaux.

Notations et rappels : Nous noterons C([a,b],E), resp. $C_M([a,b],E)$, $\mathcal{E}([a,b],E)$, $\mathcal{B}([a,b],E)$ l'ensemble des applications $f:[a,b] \to E$ continues, resp. continues par morceaux, en escalier, bornées. Nous rappelons que $(\mathcal{B}([a,b],E),+,\cdot)$ est un espace vectoriel que nous munirons de la norme suivante :

$$||f||_{\infty} = \sup_{x \in [a,b]} ||f(x)||_{E}$$

Cette norme est encore appelée norme de la convergence uniforme pour une raison que nous allons rappeler maintenant.

Définitions 1.1.3 Soit $(f_n)_{n\in\mathbb{N}}$ et f des applications définies sur l'intervalle [a,b] et à valeurs dans l'espace de Banach E.

On dit que la suite d'applications $(f_n)_{n\in\mathbb{N}}$ converge simplement vers l'application f sur l'intervalle [a,b] si

$$\forall x \in [a, b] \quad \forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad ||f_n(x) - f(x)|| \le \epsilon.$$

On dit que la suite d'applications $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers l'application f sur l'intervalle [a,b] si

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N \quad \forall x \in [a, b] \quad ||f_n(x) - f(x)|| \le \epsilon.$$

Remarques

- 1. La convergence simple de (f_n) vers f sur [a,b] équivaut donc à dire que pour tout $x \in [a,b]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers f(x) dans E.
- 2. La convergence uniforme est plus forte que la convergence simple, la différence venant de ce que N ne dépend pas de x dans le cas de la convergence uniforme, contrairement à ce qui se passe pour la convergence simple. Ainsi, si l'on prend $f_n = \mathbf{1}_{]0,1/n[}$ et $f \equiv 0$, la suite $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers f sur \mathbb{R} mais ne converge pas uniformément vers f sur \mathbb{R} .

Proposition 1.1.4 Soit (f_n) une suite d'applications bornées de [a,b] dans E qui converge uniformément vers une application $f:[a,b] \to E$. Alors f est une application bornée et $||f_n - f||_{\infty} \to 0$.

La preuve de cette proposition est laissée au lecteur à titre d'exercice.

Remarque: L'espace vectoriel normé $(\mathcal{B}([a,b],E), \|\cdot\|_{\infty})$ est un espace de Banach car il "hérite" de la complétude de E. Preuve : [DAN 43].

Il est facile de vérifier qu'une application continue par morceaux est bornée, en utilisant le fait que chacune des applications f_0, \dots, f_{n-1} de la définition est continue sur un intervalle compact donc bornée.

Nous constatons alors que $\mathcal{E}([a,b],E)$ est un sous-espace vectoriel de $C_M([a,b],E)$, qui est lui-même un sous-espace vectoriel de $\mathcal{B}([a,b],E)$.

Nous allons maintenant prouver l'égalité suivante :

$$C_M([a, b], E) = C([a, b], E) + \mathcal{E}([a, b], E)$$

Commençons en introduisant une définition simple mais bien utile dans la pratique.

Définition 1.1.5 Soit F un ensemble quelconque et A une partie de F. On appelle fonction indicatrice de A l'application notée $\mathbf{1}_A: F \to \{0,1\}$ définie par $\mathbf{1}_A(x) = 1$ si $x \in A$ et $\mathbf{1}_A(x) = 0$ si $x \notin A$.

Remarque: Cette application est appelée dans certains ouvrages d'analyse "fonction caractéristique" de A mais nous n'utiliserons pas ce vocable dans ce cours car la notion de fonction caractéristique en calcul des probabilités est tout autre.

Proposition 1.1.6 Pour toute application $f \in C_M([a,b], E)$, il existe une application $f_c \in C([a,b], E)$ et une application $f_e \in \mathcal{E}([a,b], E)$ telles que :

$$f = f_c + f_e$$

Démonstration: Nous allons prouver par récurrence sur $n \in \mathbb{N}$ la proposition suivante :

 \mathcal{P}_n : 'Toute application $f \in C_M([a,b],E)$ admettant au plus n points de discontinuité peut s'écrire sous la forme annoncée'

La proposition \mathcal{P}_0 est trivialement vraie. Montrons maintenant que \mathcal{P}_{n-1} implique \mathcal{P}_n .

Soit f admettant au plus n points de discontinuités et x_0 l'un de ces points. Nous définissons l'application $g \in \mathcal{E}([a,b], E)$ par :

$$\forall x \in [a, b], \quad g(x) = f(x_0 -) \mathbf{1}_{[a, x_0[}(x) + f(x_0) \mathbf{1}_{\{x_0\}}(x) + f(x_0 +) \mathbf{1}_{]x_0, b]}(x)$$

On vérifie facilement que l'application h=f-g admet au plus n-1 points de discontinuité donc par hypothèse de récurrence, on peut écrire $h=h_c+h_e$. Nous avons donc $f=h_c+h_e+g$ et nous concluons en posant :

$$f_c = h_c$$
 , $f_e = h_e + g$

À titre d'exercice, le lecteur pourra montrer que les applications f_c et f_e sont uniques à constante additive près.

Définition 1.1.7 On dit qu'une application $f:[a,b] \to E$ est réglée si elle est limite uniforme d'une suite d'applications en escalier.

Autrement dit, l'ensemble $\mathcal{R}([a,b],E)$ des applications réglées est le sousespace vectoriel de $\mathcal{B}([a,b],E)$ défini comme l'adhérence de $\mathcal{E}([a,b],E)$ pour la norme de la convergence uniforme :

$$\mathcal{R}([a,b],E) = \overline{\mathcal{E}([a,b],E)}^{\|\cdot\|_{\infty}}$$

Proposition 1.1.8 Toute application $f:[a,b] \to E$ continue par morceaux est réglée. Autrement dit, on a l'inclusion : $C_M([a,b],E) \subset \mathcal{R}([a,b],E)$.

Démonstration: Nous avons évidemment $\mathcal{E}([a,b],E) \subset \mathcal{R}([a,b],E)$ donc, d'après la proposition précédente, il suffit de prouver l'inclusion :

$$C([a,b],E) \subset \mathcal{R}([a,b],E)$$

Considérons donc $f:[a,b]\to E$ continue et, pour tout $n\in\mathbb{N}^*$, définissons la fonction en escalier $f_n:[a,b]\to E$ par

$$\forall x \in [a, b], \quad f_n(x) = \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \mathbf{1}_{[a+k \frac{b-a}{n}, a+(k+1) \frac{b-a}{n}[}(x) + f(b) \mathbf{1}_{\{b\}}(x)$$

Puisque f est continue sur l'intervalle compact [a,b], elle est uniformément continue d'après le théorème de Heine. Ainsi, pour $\epsilon>0$ arbitraire, on peut trouver $\alpha>0$ tel que

$$\forall (x,y) \in [a,b]^2 \quad |x-y| \le \alpha \Longrightarrow ||f(x) - f(y)|| \le \epsilon$$

Posons $N = \left\lceil \frac{b-a}{\alpha} \right\rceil + 1$ de sorte que $n \ge N \Rightarrow \frac{b-a}{n} \le \alpha$. Nous avons alors :

$$\forall n \ge N, \quad \|f - f_n\|_{\infty} \le \epsilon$$

Comme $\epsilon > 0$ était arbitraire, ceci prouve que f est limite uniforme de la suite (f_n) .

On peut caractériser les fonctions réglées par la propriété suivante. Nous admettrons ce résultat, dont le lecteur pourra trouver la preuve dans les anciens livres de classes préparatoires.

Proposition 1.1.9 Une application $f:[a,b] \to E$ est réglée si et seulement si elle admet une limite à droite en tout point de [a,b[et une limite à gauche en tout point de [a,b[.

Remarque: Nous déduisons de cette caractérisation des applications réglées que toute application monotone $f:[a,b]\to\mathbb{R}$ est réglée et qu'un produit de deux applications réglées de [a,b] dans \mathbb{R} (ou \mathbb{C}) est encore une application réglée.

Exemple: L'application $f:[0,1] \to \mathbb{R}$ définie par $f(x) = (E[x^{-1}])^{-1}$ pour $0 < x \le 1$ et f(0) = 0 est réglée : on peut le prouver directement d'après la définition ou bien constater qu'elle est croissante.

En revanche, elle n'est pas continue par morceaux. En effet, l'ensemble de ses discontinuités est infini dénombrable : c'est $\{\frac{1}{n}, n \geq 2\}$.

Nous constatons donc que l'inclusion énoncée dans la proposition 1.1.8 est stricte : $C_M([a,b],E) \subsetneq \mathcal{R}([a,b],E)$.

1.2 Construction de l'intégrale de Riemann

1.2.1 Intégrale d'une application en escalier

Proposition et définition 1.2.1 Soit $f:[a,b] \to E$ une application en escalier et $\sigma = (a_i)_{0 \le i \le n}$ une subdivision adaptée à f:

$$\forall 0 \le i \le n - 1, \quad f|_{a_i, a_{i+1}} \equiv c_i.$$

Alors la somme $\sum_{i=0}^{n-1} (a_{i+1} - a_i)c_i$ est un élément de E indépendant de la subdivision σ choisie. On l'appelle intégrale sur [a,b] de l'application f et l'on note :

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} (a_{i+1} - a_i)c_i$$

Démonstration: Pour prouver que les sommes associées à deux subdivisions adaptées σ et σ' sont identiques, on compare chacune d'entre elles à la somme associée à la subdivision plus fine $\sigma \cup \sigma'$, ce qui permet de conclure facilement.

Proposition 1.2.2 Pour toute application $f \in \mathcal{E}([a,b],E)$, on $a ||f|| \in \mathcal{E}([a,b],\mathbb{R})$ et

$$\left\| \int_{a}^{b} f(x)dx \right\| \le \int_{a}^{b} \|f(x)\|dx$$

Démonstration: Si $\sigma = (a_i)_{0 \le i \le n}$ est une subdivision adaptée à f, nous constatons immédiatement qu'elle est aussi adaptée à l'application ||f|| qui est encore en escalier. L'inégalité que nous cherchons à prouver s'écrit donc

$$\left\| \sum_{i=0}^{n-1} (a_{i+1} - a_i) c_i \right\| \le \sum_{i=0}^{n-1} (a_{i+1} - a_i) \|c_i\|$$

et résulte de l'inégalité triangulaire.

Proposition 1.2.3 L'application $I : \mathcal{E}([a,b],E) \to E$ définie par

$$\forall f \in \mathcal{E}([a,b],E) \quad I(f) = \int_a^b f(x)dx$$

est une application linéaire continue de norme $||I||_{\mathcal{L}} = b - a$.

Démonstration: On vérifie immédiatement que

$$\forall (\lambda, \mu) \in \mathbb{R}^2 \text{ (ou } \mathbb{C}^2 \text{)} \quad \forall (f, g) \in \mathcal{E}([a, b], E)^2 \quad I(\lambda f + \mu g) = \lambda I(f) + \mu I(g)$$

en effectuant le calcul avec une subdivision σ adaptée à la fois à f et g. La proposition précédente nous donne

$$\left\| \int_{a}^{b} f(x)dx \right\| \leq \sum_{i=0}^{n-1} (a_{i+1} - a_i) \|c_i\| \leq \sum_{i=0}^{n-1} (a_{i+1} - a_i) \|f\|_{\infty} = (b - a) \|f\|_{\infty}$$

donc I est une application linéaire continue de norme au plus égale à (b-a). Il nous reste à remarquer que l'égalité est obtenue pour une fonction constante non nulle, ce qui nous permet de conclure.

1.2.2 Intégrale d'une application réglée

Pour prolonger l'application linéaire continue I de $\mathcal{E}([a,b],E)$ à $\mathcal{R}([a,b],E)$, nous allons utiliser un procédé général énoncé dans la proposition suivante.

Proposition 1.2.4 Soient F un espace vectoriel normé, F_1 un sous-espace dense de F et E un espace de Banach. Alors toute application linéaire continue $u: F_1 \to E$ se prolonge de manière unique en une application linéaire continue $\hat{u}: F \to E$ de même norme : $\|\hat{u}\|_{\mathcal{L}} = \|u\|_{\mathcal{L}}$.

Démonstration: Soit $x \in F$; il existe une suite $(x_n) \in F_1^{\mathbb{N}}$ qui converge vers x. La suite (x_n) étant convergente dans F, elle est de Cauchy et l'inégalité

$$||u(x_n) - u(x_m)|| \le ||u||_{\mathcal{L}} ||x_n - x_m||$$

prouve que la suite $(u(x_n))$ est de Cauchy dans l'espace de Banach E donc convergente.

Nous pouvons poser $\hat{u}(x) = \lim u(x_n)$ sans ambiguïté car la valeur de cette limite ne dépend pas du choix de la suite (x_n) qui converge vers x; en effet, si (x_n) et (y_n) convergent toutes deux vers x, alors $||x_n - y_n|| \to 0$ et l'inégalité $||u(x_n) - u(y_n)|| \le ||u||_{\mathcal{L}} ||x_n - y_n||$ implique $\lim u(x_n) = \lim u(y_n)$.

L'application $\hat{u}: F \to E$ ainsi définie est linéaire puisque, si (x_n) converge vers x et (y_n) converge vers y, alors la suite $(\lambda x_n + \mu y_n)$ converge vers $\lambda x + \mu y$ d'où :

$$\hat{u}(\lambda x + \mu y) = \lim u(\lambda x_n + \mu y_n) = \lim (\lambda u(x_n) + \mu u(y_n)) = \lambda \hat{u}(x) + \mu \hat{u}(y)$$

Si (x_n) converge vers x, en passant à la limite dans l'inégalité

$$||u(x_n)|| \le ||u||_{\mathcal{L}}||x_n||,$$

nous obtenons $\|\hat{u}(x)\| \le \|u\|_{\mathcal{L}} \|x\|$ donc $\|\hat{u}\|_{\mathcal{L}} \le \|u\|_{\mathcal{L}}$.

Par ailleurs, si nous notons S (resp. S_1) la sphère unité de F (resp. F_1), nous avons :

$$\|\hat{u}\|_{\mathcal{L}} = \sup_{x \in S} \|\hat{u}(x)\| \ge \sup_{x \in S_1} \|\hat{u}(x)\| = \sup_{x \in S_1} \|u(x)\| = \|u\|_{\mathcal{L}}$$

d'où finalement $\|\hat{u}\|_{\mathcal{L}} = \|u\|_{\mathcal{L}}$.

Il nous reste à démontrer l'unicité de ce prolongement. Soit donc $v: F \to E$ une application linéaire continue telle que $\forall x \in F_1, \ v(x) = u(x)$.

Soit $x \in F$ quelconque; alors il existe $(x_n) \in F_1^{\mathbb{N}}$ qui converge vers x.

A fortiori, (x_n) est une suite d'éléments de F qui converge vers x et donc, par continuité de v sur F, $v(x) = \lim v(x_n)$.

D'autre part, pour tout $n \in \mathbb{N}$, $x_n \in F_1$ et donc $v(x_n) = u(x_n)$.

En définitive, nous obtenons pour $x \in F$ quelconque :

$$v(x) = \lim v(x_n) = \lim u(x_n) = \hat{u}(x)$$

Nous en déduisons immédiatement la proposition suivante, qui nous permet de définir l'intégrale de Riemann d'une application réglée.

Proposition 1.2.5 L'application $I : \mathcal{E}([a,b],E) \to E$ définie par

$$\forall f \in \mathcal{E}([a,b], E) \quad I(f) = \int_a^b f(x)dx$$

se prolonge de façon unique en une application linéaire continue $\hat{I}: \mathcal{R}([a,b],E) \to E$ de norme $\|\hat{I}\|_{\mathcal{L}} = b - a$.

Pour toute application $f:[a,b]\to E$ réglée, nous appellerons intégrale de Riemann de f sur [a,b] la valeur $\hat{I}(f)$ et nous noterons

$$\hat{I}(f) = \int_{a}^{b} f(x)dx$$

Corollaire 1.2.6 (Inégalité de la moyenne)

$$\forall f \in \mathcal{R}([a,b],E) \quad \left\| \int_a^b f(x)dx \right\| \le (b-a)\|f\|_{\infty}$$

Remarques

1. On appelle moyenne de l'application f sur l'intervalle [a,b] l'élément de E suivant :

$$\frac{1}{b-a}\int_a^b f(x)dx$$

Sa norme (dans E) est donc majorée par $||f||_{\infty}$.

2. Par convention, nous poserons

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

1.2.3 Propriétés élémentaires

Proposition 1.2.7 (Relation de Chasles) Soit $f \in \mathcal{R}([a,b],E)$ et $c \in [a,b[$; alors, on a l'égalité

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Démonstration: Si $f \in \mathcal{E}([a,b],E)$, il suffit de choisir une subdivision σ adaptée à f et contenant le point c (ce qui est toujours possible quitte à rajouter ce point à la subdivision) pour obtenir l'égalité.

Dans le cas général, il existe une suite (f_n) d'éléments de $\mathcal{E}([a,b],E)$ qui converge uniformément vers f et nous concluons en passant à la limite dans l'égalité

$$\int_{a}^{b} f_n(x)dx = \int_{a}^{c} f_n(x)dx + \int_{c}^{b} f_n(x)dx$$

Proposition 1.2.8

$$\forall f \in \mathcal{R}([a,b], E) \quad \left\| \int_a^b f(x) dx \right\| \le \int_a^b \|f(x)\| dx$$

Démonstration: Nous prenons une suite (f_n) d'éléments de $\mathcal{E}([a,b],E)$ qui converge uniformément vers f et nous écrivons l'inégalité donnée par la proposition 1.2.2 :

$$\left\| \int_{a}^{b} f_{n}(x) dx \right\| \leq \int_{a}^{b} \|f_{n}(x)\| dx \tag{1.1}$$

Remarquons maintenant que ($||f_n||$) est une suite d'éléments de $\mathcal{E}([a,b],\mathbb{R})$ qui converge uniformément vers $||f|| \in \mathcal{R}([a,b],\mathbb{R})$ puisque l'inégalité triangulaire nous donne

$$\forall n \in \mathbb{N} \quad \forall x \in [a, b] \quad \left| \|f_n(x)\| - \|f(x)\| \right| \le \|f_n(x) - f(x)\| \le \|f_n - f\|_{\infty}$$

Nous en déduisons que $||f|| \in \mathcal{R}([a,b],\mathbb{R})$ et que, par définition même de l'intégrale de Riemann, nous avons l'égalité :

$$\int_{a}^{b} ||f(x)|| dx = \lim_{a} \int_{a}^{b} ||f_{n}(x)|| dx$$

Il nous reste alors à passer à la limite dans l'égalité (1.1) pour conclure.

Exercice: Soit $f \in \mathcal{R}([a,b],\mathbb{C})$. Nous savons qu'il existe une suite (f_n) d'éléments de $\mathcal{E}([a,b],\mathbb{C})$ qui converge uniformément vers f. Montrer que $(\Re f_n)$ est une suite d'éléments de $\mathcal{E}([a,b],\mathbb{R})$ qui converge uniformément vers $\Re f$. Procéder à un raisonnement similaire avec $(\Im f_n)$. En déduire l'égalité :

$$\int_{a}^{b} g(t) dt = \int_{a}^{b} \Re g(t) dt + i \int_{a}^{b} \Im g(t) dt$$

1.2.4 Intégrale d'une application à valeurs réelles

Nous allons maintenant énoncer des propriétés de l'intégrale de Riemann spécifiques au cas où f est une application à valeurs dans $E = \mathbb{R}$.

Proposition 1.2.9 (Positivité)
$$\forall f \in \mathcal{R}([a,b],\mathbb{R}) \ f \geq 0 \Rightarrow \int_a^b f(x) dx \geq 0$$
 (Croissance) $\forall (f,g) \in \mathcal{R}([a,b],\mathbb{R})^2 \quad f \geq g \Rightarrow \int_a^b f(x) dx \geq \int_a^b g(x) dx$

Démonstration: La première propriété résulte de la proposition 1.2.8 puisque nous avons :

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} |f(x)|dx \ge \left| \int_{a}^{b} f(x)dx \right| \ge 0$$

La seconde propriété est une conséquence de la première par linéarité. \Box

Proposition 1.2.10 Soit $f \in C([a,b],\mathbb{R})$ telle que $f \geq 0$. Alors, on a l'implication suivante :

$$\int_{a}^{b} f(x)dx = 0 \Rightarrow f \equiv 0.$$

Démonstration: Nous raisonnons par l'absurde en supposant l'existence de $x_0 \in [a, b]$ tel que $f(x_0) > 0$. Nous remarquons alors que, par continuité de f en x_0 , il existe un segment non réduit à un point [c, d] inclus dans [a, b] et tel que $\forall x \in [c, d]$ $f(x) \geq \frac{f(x_0)}{2}$.

En utilisant la relation de Chasles et la proposition précédente, nous en déduisons :

$$\int_{a}^{b} f(x)dx \ge \int_{c}^{d} f(x)dx \ge \frac{(d-c)f(x_0)}{2} > 0,$$

d'où une contradiction.

Remarque: La proposition précédente ne se généralise pas au cas d'une application f continue par morceaux. Il suffit de considérer $f = \mathbf{1}_{\{a\}}$ pour le constater.

Proposition 1.2.11 (Inégalité de Cauchy-Schwarz) Soient $f, g \in \mathcal{R}([a, b], \mathbb{R})$; alors nous avons l'inégalité suivante :

$$\left| \int_a^b f(x)g(x)dx \right| \le \left(\int_a^b f^2(x)dx \right)^{\frac{1}{2}} \left(\int_a^b g^2(x)dx \right)^{\frac{1}{2}}.$$

Si nous supposons en outre f et g continues sur [a,b], alors il y a égalité si et seulement si f et g sont linéairement liées.

Démonstration: Considérons l'application $P: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall \lambda \in \mathbb{R} \quad P(\lambda) = \int_a^b (\lambda f + g)^2(x) dx.$$

D'après la positivité de l'intégrale de Riemann établie dans la proposition 1.2.9, nous avons $P(\lambda) \geq 0$ pour tout $\lambda \in \mathbb{R}$. En outre, nous constatons que P est un polynôme de degré au plus 2 puisque

$$\forall \lambda \in \mathbb{R} \quad P(\lambda) = \lambda^2 \int_a^b f^2(x) dx + 2\lambda \int_a^b f(x) g(x) dx + \int_a^b g^2(x) dx.$$

Si $\int_a^b f^2(x) dx = 0$, l'inégalité $P(\lambda) \ge 0$, $\forall \lambda \in \mathbb{R}$ implique $\int_a^b f(x) g(x) dx = 0$ (faire tendre λ vers $-\infty$ ou $+\infty$) et donc l'inégalité de Cauchy-Schwarz est immédiatement vérifiée.

Sinon, le polynôme P est de degré 2 et ne prend jamais de valeur strictement négative donc son discriminant est négatif ou nul, ce qui nous donne l'inégalité voulue.

Passons maintenant au cas d'égalité en supposant que

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} = \left(\int_{a}^{b} f^{2}(x)dx\right)\left(\int_{a}^{b} g^{2}(x)dx\right).$$

Si f = 0, il y a évidemment une liaison linéaire entre f et g. Sinon, d'après la proposition 1.2.10, nous avons $\int_a^b f^2(x) dx > 0$ et P est un polynôme de degré 2 dont le discriminant est nul. Il admet alors une unique racine double que nous notons λ_0 . Nous avons donc

$$\int_{a}^{b} (\lambda_0 f + g)^2(x) dx = 0$$

et la proposition 1.2.10 nous permet d'en déduire, puisque $(\lambda_0 f + g)^2 \in C([a, b], \mathbb{R})$, que $\lambda_0 f + g = 0$.

Il est facile de vérifier réciproquement que s'il existe $(\alpha, \beta) \in \mathbb{R}^2 - \{(0, 0)\}$ tel que $\alpha f + \beta g = 0$, alors nous nous trouvons dans le cas d'égalité de Cauchy-Schwarz.

Remarques

1. On démontre par une preuve très similaire l'inégalité de Cauchy-Schwarz dans le cadre beaucoup plus général des espaces préhilbertiens réels. Le lecteur pourra trouver cette preuve dans [DAN 9-10].

2. Dans le cas où $f, g \in \mathcal{R}([a, b], \mathbb{C})$, l'inégalité de Cauchy-Schwarz s'écrit :

$$\left| \int_{a}^{b} f(x)\bar{g}(x)dx \right| \le \left(\int_{a}^{b} |f(x)|^{2}dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} |g(x)|^{2}dx \right)^{\frac{1}{2}}$$

et le cas d'égalité pour des applications continues reste celui où f et g sont linéairement liées. Le lecteur pourra adapter la démonstration précédente à titre d'exercice en choisissant, pour (f,g) fixé, un couple $(\rho,\theta) \in \mathbb{R}_+ \times \mathbb{R}$ tel que $\int_a^b f(x)\bar{g}(x)dx = \rho e^{i\theta}$ puis en considérant :

$$P(\lambda) := \int_a^b |f(x) + \lambda e^{i\theta} g(x)|^2 dx.$$

Exercices Référence :EMPSI pages 81-83

- 1. Soit $f \in C([a, b], \mathbb{R})$ telle qu'il existe $x_1 \in [a, b]$ tel que $f(x_1) > 0$, et $\int_a^b f = 0$. Montrer qu'il existe $x_2 \in [a, b]$ tel que $f(x_2) < 0$.
- 2. Déterminer les limites respectives des suites :

$$a_n = \int_0^1 \frac{x^n}{1+x} dx$$
; $b_n = \int_0^\pi \frac{\sin x}{x+n} dx$; $c_n = \int_0^\pi \frac{n \sin x}{x+n} dx$; $d_n = \int_0^1 \sqrt{1+x^n} dx$.

3. Soient $f,g\in C([0,1],\mathbb{R})$ telles que $f\geq 0,\,g\geq 0,\,fg\geq 1.$ Prouver l'inégalité

$$\int_0^1 f(x)dx \int_0^1 g(x)dx \ge 1.$$

4. Soit $f \in C([0,1],\mathbb{R})$ telle que

$$\int_0^1 f^2 = \int_0^1 f^3 = \int_0^1 f^4.$$

Montrer que $f \equiv 0$ ou $f \equiv 1$.

Nous terminons ce paragraphe en énonçant deux résultats classiques (mais hors programme) faisant intervenir la notion de moyenne qui a été définie dans la remarque suivant la proposition 1.2.6.

Proposition 1.2.12 (Première formule de la moyenne) Soient $f \in C^0([a,b],\mathbb{R})$ et $g \in \mathcal{R}([a,b],\mathbb{R})$ telle que $g \geq 0$. Alors :

$$\exists c \in [a, b] \quad \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx$$

Démonstration: Considérons l'application $h:[a,b]\to\mathbb{R}$ définie par :

$$\forall x \in [a, b] \quad h(x) = f(x) \int_a^b g(x) dx$$

L'application f étant continue sur le compact, connexe [a,b] et l'intégrale de g sur [a,b] étant positive, nous avons :

$$h([a,b]) = \left[\inf_{[a,b]} f \int_a^b g(x)dx, \sup_{[a,b]} f \int_a^b g(x)dx \right]$$

Puisque $g \ge 0$, nous avons les inégalités :

$$\forall x \in [a, b] \quad \inf_{[a, b]} f g(x) \le f(x)g(x) \le \sup_{[a, b]} f g(x)$$

Par intégration sur l'intervalle [a, b], nous en déduisons :

$$\inf_{[a,b]} f \int_a^b g(x)dx \le \int_a^b f(x)g(x)dx \le \sup_{[a,b]} f \int_a^b g(x)dx$$

Autrement dit, le réel $\int_a^b f(x)g(x)dx$ appartient à h([a,b]), d'où l'existence de $c \in [a,b]$ tel que

$$\int_{a}^{b} f(x)g(x)dx = h(c) = f(c) \int_{a}^{b} g(x)dx$$

Proposition 1.2.13 (Seconde formule de la moyenne) Soient $f : [a, b] \to \mathbb{R}$, supposée positive et décroissante et $g \in \mathcal{R}([a, b], \mathbb{R})$. Alors,

$$\exists c \in [a, b] \quad \int_a^b f(x)g(x)dx = f(a+) \int_a^c g(x)dx$$

Démonstration: Voir [DAN 201-202] qui prouve ce résultat dans le cas où f et g sont continues par morceaux. Dans le cas général, remarquons que $\int_a^b f(x)g(x)dx$ est bien définie à cause de la remarque faite à la suite de la proposition 1.1.9: f est réglée car décroissante et fg est réglée en tant que produit d'applications réglées. Le reste de la démonstration s'adapte sans difficulté.

1.3 Outils pratiques de calcul d'une intégrale

Tous les outils que nous présenterons dans ce paragraphe reposent en fait sur le lien entre intégrale et primitive, que nous allons donc traiter en premier. Pour cette partie très classique, le lecteur pourra se reporter de préférence à [DAN 190-195] ou encore à [CMPSI 230-234].

Dans tout ce paragraphe, I désigne un intervalle réel d'intérieur non vide $(i.e.\ I$ ni vide ni réduit à un point).

Nous rappelons ici l'inégalité des accroissements finis :

Proposition 1.3.1 Soit E un espace vectoriel normé et $f:[a,b] \to E$ une application continue sur [a,b] et dérivable sur [a,b[. S'il existe $M \in \mathbb{R}_+$ tel que $||f'(x)|| \le M$ pour tout $x \in]a,b[$, alors nous avons l'inégalité :

$$||f(b) - f(a)|| \le M(b - a)$$

1.3.1 Utilisation d'une primitive

Définition 1.3.2 Soient f et F deux applications de I dans E. On dit que F est une primitive de f sur I si F est dérivable sur I et telle que F' = f.

Proposition 1.3.3 Soient F une primitive de f sur I et $G: I \to E$. Alors G est une primitive de f sur I si et seulement si :

$$\exists C \in E \quad \forall x \in I \quad G(x) = F(x) + C.$$

Démonstration: Il est immédiat de vérifier qu'une application G de la forme précédente est bien une primitive de f sur I.

Réciproquement, si nous supposons que G est une primitive de f sur I, nous constatons que l'application G - F est dérivable sur I, de dérivée nulle.

L'inégalité des accroissements finis entraı̂ne alors (en majorant la norme de la dérivée par la constante nulle!) que l'application G-F est constante sur I, d'où la conclusion.

Remarque: Dans la définition et les deux propositions précédentes, nous avons simplement supposé que E est un espace vectoriel normé quelconque. Désormais, nous aurons besoin de supposer que E est un espace de Banach afin de pouvoir introduire des intégrales d'applications à valeurs dans E.

Théorème 1.3.4 (fondamental de l'analyse) Soit $f: I \to E$ une application continue et $a \in I$. Alors l'application $F: I \to E$ définie par

$$\forall x \in I \quad F(x) = \int_{a}^{x} f(t) dt$$

est une primitive de f sur I.

Démonstration: Soit $x_0 \in I$; nous allons prouver que F est dérivable en x_0 et que $F'(x_0) = f(x_0)$.

Soit $\epsilon > 0$ arbitraire. Puisque l'application f est continue au point x_0 , nous pouvons choisir $\alpha > 0$ tel que

$$\forall t \in I \quad |t - x_0| \le \alpha \Longrightarrow ||f(t) - f(x_0)|| \le \epsilon.$$

Pour tout réel h non nul tel que $x_0 + h \in I$ et $|h| \le \alpha$, nous avons

$$\left\| \frac{1}{h} \left(F(x_0 + h) - F(x_0) \right) - f(x_0) \right\| = \left\| \frac{1}{h} \int_{x_0}^{x_0 + h} f(t) dt - f(x_0) \right\|$$

$$= \left\| \frac{1}{h} \int_{x_0}^{x_0 + h} \left(f(t) - f(x_0) \right) dt \right\|$$

d'où les inégalités

$$\left\| \frac{1}{h} \left(F(x_0 + h) - F(x_0) \right) - f(x_0) \right\| \le \frac{1}{|h|} \left| \int_{x_0}^{x_0 + h} \epsilon \, dt \right| \le \epsilon.$$

Nous en déduisons que F est dérivable en x_0 et que $F'(x_0) = f(x_0)$.

Remarques

- 1. Dans le cas où I = [a, b], si nous supposons seulement $f \in \mathcal{R}([a, b], E)$, l'application F n'est pas forcément dérivable mais est toujours continue sur [a, b]: le lecteur le prouvera facilement en utilisant le fait que l'application f est bornée.
- 2. L'importance de l'hypothèse de continuité est manifeste dans cette preuve. Si l'on suppose seulement que f est continue (resp. continue à droite, continue à gauche) au point $x_0 \in I$, la même démonstration montre que F est dérivable (resp. dérivable à droite, dérivable à gauche) au point x_0 et que la dérivée $F'(x_0)$ (resp. dérivée à droite $F'_d(x_0)$, dérivée à gauche $F'_g(x_0)$) est égale à $f(x_0)$.

Ainsi, si $f \in C_M(I, E)$, nous avons F'(x) = f(x) en tout point x où f est continue; le lecteur vérifiera alors que $F \in C^0 \cap C^1_M(I, E)$.

Corollaire 1.3.5 Toute application continue $f: I \to E$ admet au moins une primitive sur I.

En choisissant $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par f(x) = 1/x, nous pouvons définir le logarithme népérien comme l'unique primitive de f s'annulant au point 1.

Grâce au théorème fondamental de l'analyse, nous obtenons une méthode qui est à la base du calcul pratique des intégrales : l'utilisation d'une primitive. C'est de cette méthode de calcul que découlent l'intégration par parties et le changement de variable que nous énoncerons ci-dessous.

Proposition 1.3.6 Soit $f: I \to E$ une application continue, [a, b] un segment inclus dans I et F une primitive de f sur [a, b]. Nous avons alors l'égalité

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Démonstration: Nous définissons l'application $G: I \to E$ par

$$\forall x \in I \quad G(x) = \int_{a}^{x} f(t) dt.$$

En appliquant la proposition 1.3.3, nous constatons que l'application G - F est constante sur [a, b]. En particulier, G(b) - F(b) = G(a) - F(a), ce qui s'écrit encore G(b) - G(a) = F(b) - F(a), d'où la conclusion.

Remarque: Nous utiliserons la notation suivante :

$$[F(x)]_a^b = F(b) - F(a).$$

1.3.2 Intégration par parties

Proposition 1.3.7 Soient $f, g \in C^1([a, b], \mathbb{K})$. Alors on a l'égalité :

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx.$$

Démonstration: Nous utilisons l'égalité (fg)' = f'g + fg' et, puisque toutes les applications en jeu sont continues sur [a, b], nous l'intégrons entre a et b:

$$\int_{a}^{b} (fg)'(x)dx = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx.$$

D'après la proposition 1.3.6, le membre de gauche est égal à $[f(x)g(x)]_a^b$, d'où la conclusion.

Remarque: On peut facilement généraliser la proposition précédente au cas où $f \in C^1([a, b], \mathbb{R})$ et $g \in C^1([a, b], E)$. Voir [DAN 192].

Un exemple classique d'utilisation de l'intégration par parties est le calcul des *intégrales de Wallis* ([CMPSI 234] ou [DAN 206-208] qui est plus détaillé) :

$$I_n := \int_0^{\pi/2} \sin^n x \, dx \quad , \quad n \in \mathbb{N}$$

On peut en déduire la formule de Wallis [CMP 261] qui nous donne l'équivalent suivant lorsque n tend vers l'infini :

$$I_n \sim \sqrt{\frac{\pi}{2n}}$$

Cet équivalent est utile notamment pour déterminer la constante intervenant dans la formule de Stirling : $n! \sim \sqrt{2\pi} n^{n+1/2} e^{-n}$.

La formule de Taylor avec reste intégral se démontre par récurrence grâce à une intégration par parties :

Proposition 1.3.8 Soient I un intervalle non réduit à un point, $n \in \mathbb{N}$ et $f \in C^{n+1}(I, \mathbb{K})$. Pour tout $(a, b) \in I^2$ avec $a \neq b$, nous avons l'égalité :

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{f^{(n+1)}(t)}{n!} (b-t)^{n} dt$$

Exercices

1. (EMPSI 83) Soit $f \in C^2([0,2\pi],\mathbb{R})$ une application convexe. Prouver l'inégalité

$$\int_0^{2\pi} f(x) \cos x \, dx \ge 0.$$

2. (CMPSI 235) Prouver la convergence suivante lorsque $x \to +\infty$:

$$\frac{\int_1^x e^t \log t \, dt}{e^x \log x} \longrightarrow 1.$$

1.3.3 Changement de variable

Proposition 1.3.9 Soient $f \in C^0(I, E)$ et $u \in C^1([a, b], I)$. Alors on a l'égalité :

$$\int_{a}^{b} f(u(t)) u'(t) dt = \int_{u(a)}^{u(b)} f(x) dx.$$

Démonstration: Considérons l'application $G: I \to E$ définie par

$$\forall x \in I \quad G(x) = \int_{u(a)}^{x} f(t)dt$$

et l'application $F:[a,b]\to E$ définie par $F=G\circ u$.

D'après la proposition 1.3.4, l'application G est une primitive de f sur I; en particulier, $G \in C^1(I, E)$. Comme en outre $u \in C^1([a, b], I)$, nous en déduisons par composition que $F \in C^1([a, b], E)$ et

$$\forall t \in [a, b] \quad F'(t) = f(u(t))u'(t).$$

Ainsi, F est une primitive de l'application continue $t \mapsto f(u(t))u'(t)$ sur [a, b] et nous concluons par la proposition 1.3.6.

Remarques

- 1. On dit couramment que l'on a posé le changement de variable x = u(t) et donc que (formellement) dx = u'(t)dt.
- 2. On peut généraliser la proposition précédente au cas où f est simplement continue par morceaux mais au prix d'une condition supplémentaire : u strictement monotone de [a,b] sur $I=[\alpha,\beta]$. Voir [DAN 194]

Voici une application de la proposition 1.3.9 au cas d'une fonction périodique.

Proposition 1.3.10 Soit $f \in C(\mathbb{R}, E)$ une application T-périodique (T > 0). Alors nous avons l'égalité :

$$\forall (t_1, t_2) \in \mathbb{R}^2 \quad \int_{t_1}^{t_1+T} f(x) \, dx = \int_{t_2}^{t_2+T} f(x) \, dx.$$

Démonstration: D'après la relation de Chasles,

$$\int_{t_1}^{t_1+T} f(x)dx = \int_{t_1}^{t_2} f(x)dx + \int_{t_2}^{t_2+T} f(x)dx + \int_{t_2+T}^{t_1+T} f(x)dx.$$

Il nous suffit donc pour conclure de prouver l'égalité :

$$\int_{t_1}^{t_2} f(x)dx = \int_{t_1+T}^{t_2+T} f(x)dx,$$

qui s'écrit encore, en vertu de la T-périodicité de l'application f,

$$\int_{t_1}^{t_2} f(x+T)dx = \int_{t_1+T}^{t_2+T} f(y)dy$$

et cette dernière égalité résulte du changement de variable y = x + T.

Remarque: En vertu de la remarque précédente, cette proposition se généralise au cas où f est continue par morceaux. En effet, le changement de variable que nous avons utilisé dans la démonstration est strictement croissant puisqu'il s'agit simplement d'une translation.

1.3.4 Exercices suggérés.

Référence : EMPSI pages 81-83

1. Soit $f \in C([0,1],\mathbb{R})$. Prouver l'inégalité

$$\left| \int_0^1 (f(x) + x f(1-x)) dx \right| \le \frac{3}{2} ||f||_{\infty}.$$

2. Calculer la valeur de l'intégrale

$$\int_0^{2\pi} \sqrt{\frac{1+\cos x}{2}} \, dx.$$

3. Calculer la valeur de l'intégrale

$$\int_0^{\pi/4} \log(1+\tan x) \, dx.$$

4. En utilisant une comparaison avec une intégrale, prouver la majoration

$$\forall n \in \mathbb{N}^* \quad \sum_{k=1}^n \frac{1}{k} \le 1 + \log n$$

et en déduire :

$$\forall n \in \mathbb{N}^* \quad \sum_{d|n} d \le n(1 + \log n).$$

5. Déterminer les limites suivantes :

$$\lim_{u\to 0+}\int_0^{\pi/2}e^{-u\sin x}dx\quad ;\quad \lim_{u\to 0+}\int_u^{3u}\frac{\cos x}{x}dx.$$

6. Déterminer l'ensemble des applications $f \in C(\mathbb{R}_+, \mathbb{R})$ telles que $f \geq 0$ et

$$\forall x \in \mathbb{R}_+ \quad f(x) \le \int_0^x f(t) \, dt.$$

Indication : Introduire $g(x) = \exp(-x) \int_0^x f(t) dt$.

7. Etudier et représenter graphiquement l'application $f: \mathbb{R} \to \mathbb{R}$ définie par l'intégrale dépendant d'un paramètre aux bornes suivante :

$$\forall x \in \mathbb{R} \quad f(x) = \int_{x}^{2x} e^{-t^2} dt.$$

Indication : Utiliser les valeurs numériques qui vous sont données cidessous :

$$\alpha = \sqrt{\frac{\log 2}{3}} \approx 0.481$$
 ; $f(\alpha) \approx 0.286$.

8. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une application k-lipschitzienne $(k \ge 0)$. On définit l'application $F: \mathbb{R}_+ \to \mathbb{R}$ par F(0) = f(0) et

$$\forall x \in \mathbb{R}_+^* \quad F(x) = \frac{1}{x} \int_0^x f(t)dt.$$

Montrer que l'application F est k/2-lipchitzienne.

Indication: Effectuer un changement de variable pour fixer les bornes de l'intégrale.

9. Soit $f \in C([0,1),\mathbb{R})$ telle que

$$\forall (x, y) \in [0, 1]^2 \quad xf(y) + yf(x) \le 1.$$

Prouver l'inégalité :

$$\int_0^1 f(x) \, dx \le \frac{\pi}{4}.$$

Indication : Ecrire de deux façons différentes cette intégrale en utilisant les changements de variable $x = \sin u$ et $x = \cos v$.

Référence :CMP 143

1. Calculer les intégrales suivantes :

$$I = \int_0^{\pi/2} \frac{\cos x}{\sqrt{1 + \sin x \cos x}} \, dx \quad ; \quad J = \int_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \sin x \cos x}} \, dx.$$

2. Soit $\theta \in [0, \pi/2]$ fixé. Calculer l'intégrale

$$\int_0^{2\theta} \frac{x}{\cos(x-\theta)} \, dx.$$

3. Calculer l'intégrale suivante :

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x} + \sqrt{1+x} + 2} \, dx.$$

Indication : Effectuer les changements de variables successifs $x = \cos \theta$ puis $\theta = 2(\varphi + \pi/4)$.

4. Soient a>0 fixé et $f\in C([0,a],\mathbb{R}_+^*)$. Calculer l'intégrale

$$\int_0^a \frac{f(t)}{f(t) + f(a-t)} dt.$$

En déduire la valeur de l'intégrale suivante :

$$\int_0^{\pi/2} \frac{(\cos t)^{\sin t}}{(\cos t)^{\sin t} + (\sin t)^{\cos t}} dt.$$

1.3.5 Applications suggérées.

Pour un exposé systématique sur le calcul de primitives, le lecteur pourra par exemple consulter le chapitre 9 de [CMPSI 309].

Le lemme de (Riemann-) Lebesgue, qui concerne les séries de Fourier, est traité dans le cas C^1 par intégration par parties dans [CMPSI 234-235] et dans le cas plus général d'une application continue par morceaux dans [DAN 209-211].

Les applications de \mathbb{R} dans \mathbb{R} qui sont additives et continues sont exactement les applications linéaires : une démonstration à l'aide d'intégrales de ce résultat classique est donnée dans [EMPSI 83].

Le lecteur trouvera dans [CMPSI 232] la démonstration du lemme classique suivant en utilisant le lien entre primitive et intégrale :

Lemme 1.3.11 (Gronwall) Soient $T \in \mathbb{R}_+^*$ et $f, g : [0, T[\to \mathbb{R} \ continues, f \ge 0, g \ge 0, telles que$

$$\exists C > 0 \quad \forall x \in [0, T[\quad f(x) \le C + \int_0^x fg.$$

Alors on a l'inégalité suivante :

$$\forall x \in [0, T[f(x) \le C \exp\left(\int_0^x g\right).$$

Le lemme de Gronwall est très utile en théorie des équations différentielles. Prouvons par exemple que l'équation

$$\frac{dy}{dt} = b(y) \quad ; \quad y(0) = a$$

avec $a \in \mathbb{R}$ fixé et $b : \mathbb{R} \to \mathbb{R}$ supposée k-lipschitzienne, admet au plus une solution.

Supposons donc que x et y soient deux solutions de cette équation différentielle si bien que, pour T > 0 arbitraire,

$$\forall t \in [0, T[x_t = a + \int_0^t b(x_s) \, ds \text{ et } y_t = a + \int_0^t b(y_s) \, ds.$$

Nous en déduisons, en utilisant l'inégalité de Cauchy-Schwarz, que pour tout $t \in [0,T[$

$$(x_t - y_t)^2 = \left(\int_0^t [b(x_s) - b(y_s)] \, ds\right)^2 \le t \int_0^t [b(x_s) - b(y_s)]^2 \, ds.$$

Puisque l'application b est supposée k-lipschitzienne, nous en déduisons :

$$\forall t \in [0, T[(x_t - y_t)^2 \le Tk^2 \int_0^t (x_s - y_s)^2 ds.$$

En appliquant le lemme de Gronwall avec $g \equiv Tk^2$ et C>0 arbitraire, nous en déduisons :

$$\forall t \in [0, T[(x_t - y_t)^2 \le C \exp(Tk^2 t).$$

Nous pouvons alors conclure en faisant tendre C vers 0 puis en utilisant T > 0 arbitraire.

1.4 Sommes de Riemann

La notion de *sommes de Riemann* est introduite dans [CMPSI 222-226] et illustrée par plusieurs exercices.

Elle ne figure pas au programme officiel mais sera néanmoins bien utile dans plusieurs leçons pour fournir des illustrations ou des exercices.

Le résultat essentiel, que nous allons énoncer immédiatement après une première définition, est assez intuitif (faire un dessin).

Définition 1.4.1 On appelle subdivision pointée d'un segment [a,b] un couple (σ,Θ) où $\sigma=(a_i)_{0\leq i\leq n}$ est une subdivision de [a,b] et $\Theta=(\theta_i)_{1\leq i\leq n}$ est une famille de points de [a,b] telle que :

$$\forall 1 \le i \le n \quad \theta_i \in [a_{i-1}, a_i].$$

Définition et proposition 1.4.2 Soit $f \in \mathcal{R}([a,b],E)$ et (σ,Θ) une subdivision pointée de [a,b]. On appelle somme de Riemann associée à l'application f et à la subdivision pointée (σ,Θ) la quantité :

$$S(f, \sigma, \Theta) = \sum_{i=1}^{n} (a_i - a_{i-1}) f(\theta_i).$$

Considérons maintenant une suite $(\sigma_N, \Theta_N)_{N \in \mathbb{N}^*}$ de subdivisions pointées de [a,b] telle que la suite des pas $(\|\sigma_N\|)_{n \in \mathbb{N}^*}$ tende vers 0. Alors nous avons la convergence suivante lorsque N tend vers l'infini :

$$S(f, \sigma_N, \Theta_N) \longrightarrow \int_a^b f(x) dx.$$

Démonstration: Le lecteur trouvera la preuve dans [DAN 196-197] qui se restreint au cas f continue par morceaux mais la démonstration est exactement la même pour f réglée.

L'idée est d'examiner d'abord le cas où f est de la forme $c\mathbf{1}_{[\alpha,\beta]}, \ c \in E$, puis de passer au cas d'une application en escalier par linéarité pour terminer la démonstration par densité de $\mathcal{E}([a,b],E)$ dans $(\mathcal{R}([a,b],E), \|\cdot\|_{\infty})$.

Remarque: Dans le cas où $f \in C([a,b],E)$, l'énoncé précédent résulte de la construction de l'intégrale de Riemann. En effet, en constatant d'une part qu'une somme de Riemann peut s'écrire comme intégrale d'une fonction en escalier bien choisie et d'autre part que le théorème de Heine nous donne l'uniforme continuité de f, nous pouvons écrire le résultat précédent sous la forme

 $\int_{a}^{b} f = \lim_{N \to +\infty} \int_{a}^{b} f_{N},$

où (f_N) est une suite de fonctions en escalier qui converge uniformément vers f sur [a,b].

Un cas particulier souvent utilisé dans la pratique est obtenu en prenant des subdivisions régulières de [a, b]. Plus précisément, pour tout $N \in \mathbb{N}^*$, nous définissons la subdivision σ_N comme la famille $(a_i)_{0 \le i \le N}$ telle que :

$$\forall 0 \le i \le N \quad a_i = a + i \, \frac{b - a}{N}.$$

En outre, nous définissons la subdivision pointée (σ_N, Θ_N) en choisissant simplement $\theta_i = a_{i-1}$ pour tout $1 \le i \le N$. La proposition précédente nous donne alors :

Corollaire 1.4.3 Pour toute application $f \in C_M([a,b])$, nous avons la convergence suivante lorsque N tend vers l'infini :

$$\frac{b-a}{N} \sum_{i=0}^{N-1} f\left(a+i \frac{b-a}{N}\right) \longrightarrow \int_a^b f(x) \, dx.$$

Ce résultat nous fournit une méthode pour calculer une approximation d'une intégrale dite *méthode des rectangles*.

Dans le cas où f est suffisamment régulière, on peut utiliser l'inégalité de Taylor-Lagrange pour mesurer la qualité de cette approximation, ce qui est essentiel dans la pratique. Nous écrivons la proposition suivante dans le cas a=0 et b=1, ce qui ne fait pas perdre de généralité puisqu'on peut toujours se ramener à ce cas par un simple changement de variable (transformation affine).

Proposition 1.4.4 Supposons $f \in C^3([0,1],\mathbb{R})$. Alors on a le développement asymptotique :

$$\frac{1}{N} \sum_{i=0}^{N-1} f\left(\frac{i}{N}\right) = \int_0^1 f(x) \, dx - \frac{f(1) - f(0)}{2N} + \frac{f'(1) - f'(0)}{12N^2} + \mathcal{O}\left(\frac{1}{N^3}\right)$$

Démonstration: Voir [DAN 198-199].

Nous reviendrons beaucoup plus précisément sur les différentes méthodes de calcul de la valeur approchée d'une intégrale dans un chapitre ultérieur.

Exercices Référence :EMPSI pages 82-83

1. Montrer que la suite de terme général

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + 2kn}}$$

est convergente et calculer sa limite.

2. Montrer que la suite de terme général

$$u_n = \prod_{k=1}^{n} \left(1 + \frac{k^2}{n^2} \right)^{1/n}$$

est convergente et calculer sa limite.

3. Montrer que la suite de terme général

$$u_n = \sum_{k=0}^{n} (n+k)^{-\alpha} (n+k+1)^{-\beta},$$

où $\alpha > 0, \beta > 0$ et $\alpha + \beta = 1$, est convergente et calculer sa limite. Indication: Introduire $v_n = \sum_{k=0}^n (n+k)^{-1}$ et prouver que

$$v_n - \frac{1}{n} + \frac{1}{2n+1} \le u_n \le v_n.$$

4. Montrer que la suite de terme général

$$u_n = \sum_{k=1}^n \sin \frac{k}{n^2} \sin \frac{k}{n}$$

est convergente et calculer sa limite.

Indication :Introduire $v_n = \sum_{k=1}^n \frac{k}{n^2} \sin \frac{k}{n}$ et montrer l'inégalité

$$\forall x \in \mathbb{R}_+ \quad x - \frac{x^3}{6} \le \sin x \le x.$$

5. Soit $f\in C([0,1],\mathbb{R})$ et $\varphi:\mathbb{R}\to\mathbb{R}$ convexe. Montrer l'inégalité de Jensen :

$$\varphi\left(\int_0^1 f\right) \le \int_0^1 \varphi(f).$$

1.5 Convergences de suites d'applications

Les définitions des convergences simple et uniforme ont été données page 7. Rappelons simplement ici que la continuité en un point x_0 (ou sur l'intervalle [a, b]) est conservée par passage à une limite uniforme [DAN 271], ce qui n'est pas le cas pour une limite simple.

On peut en déduire que $(C([a,b],E),\|\cdot\|_{\infty})$ est un espace de Banach en tant que sous-espace fermé de $(\mathcal{B}([a,b],E),\|\cdot\|_{\infty})$ qui est lui-même un espace de Banach.

Proposition 1.5.1 Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications réglées de [a,b] dans E qui converge uniformément sur [a,b] vers une application f. Alors $f \in \mathcal{R}([a,b],E)$ et nous avons l'égalité :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} f_n(x) dx.$$

Démonstration: Dans l'espace vectoriel normé $(\mathcal{B}([a,b],E), \|\cdot\|_{\infty})$, nous avons $f = \lim f_n$ avec $(f_n) \in (\mathcal{R}([a,b],E))^{\mathbb{N}}$. Or $\mathcal{R}([a,b],E)$ est un sous-espace fermé de $(\mathcal{B}([a,b],E), \|\cdot\|_{\infty})$ puisque, par définition,

$$\mathcal{R}([a,b],E) = \overline{\mathcal{E}([a,b],E)}^{\|\cdot\|_{\infty}}$$

Nous en déduisons que $f \in \mathcal{R}([a,b],E)$ et donc que l'intégrale du membre de gauche est bien définie.

Par construction, l'intégrale de Riemann est une application linéaire continue $\hat{I}: (\mathcal{R}([a,b],E), \|\cdot\|_{\infty}) \to E$ de norme (b-a), comme nous l'avons établi dans la proposition 1.2.5. Nous déduisons de cette propriété de continuité que $\hat{I}(f) = \lim \hat{I}(f_n)$, d'où la conclusion.

Une autre façon d'aboutir à cette conclusion est d'écrire les inégalités :

$$\left\| \int_{a}^{b} f(x) \, dx - \int_{a}^{b} f_{n}(x) \, dx \right\| \leq \int_{a}^{b} \|f(x) - f_{n}(x)\| \, dx \leq (b - a) \|f - f_{n}\|_{\infty}$$

Remarque: Cette interversion entre limite et intégrale n'est pas valable lorsqu'il y a seulement convergence simple, même si toutes les applications en jeu sont continues. Un contre-exemple est obtenu en prenant a = 0, b = 1 et en définissant comme suit f_n , $n \in \mathbb{N}^*$: $f_n(x) = n^2x$ si $0 \le x \le 1/n$, $f_n(x) = 2n - n^2x$ si $1/n \le x \le 2/n$ et $f_n(x) = 0$ sinon.

Dans toute la suite de ce paragraphe, nous allons considérer des applications numériques définies sur [a, b] et nous allons définir de nouveaux types de convergences pour des suites de telles applications.

Proposition et définition 1.5.2 L'application $\|\cdot\|_1$ définie sur $C([a,b],\mathbb{R})$ par

$$\forall f \in C([a,b], \mathbb{R}) \quad ||f||_1 = \int_a^b |f(x)| \, dx$$

est une norme sur $C([a,b],\mathbb{R})$ appelée norme 1.

Soient $(f_n)_{n\in\mathbb{N}}$ et f des applications numériques continues sur [a,b]. Si la suite (f_n) converge vers f dans $(C([a,b],\mathbb{R}),\|\cdot\|_1)$, on dit que (f_n) converge en moyenne vers f.

Démonstration: La seule vérification qui ne soit pas immédiate est celle de l'implication suivante : $||f||_1 = 0 \Rightarrow f = 0$. Elle résulte de la proposition 1.2.10.

Remarque: L'énoncé précédent se généralise sans difficulté à C([a,b],E), avec E espace de Banach quelconque. En revanche, le produit scalaire que nous allons introduire maintenant pourrait être généralisé à $C([a,b],\mathbb{C})$ mais pas au-delà.

Proposition et définition 1.5.3 L'application $\langle \cdot, \cdot \rangle$ définie $sur\left(C([a,b],\mathbb{R})\right)^2$ par

$$\forall (f,g) \in (C([a,b],\mathbb{R}))^2 \quad \langle f,g \rangle = \int_a^b f(x)g(x) \, dx$$

est un produit scalaire sur $C([a,b],\mathbb{R})$. La norme induite par ce produit scalaire est appelée norme 2 et donc définie par :

$$\forall f \in C([a, b], \mathbb{R}) \quad ||f||_2 = \left(\int_a^b f^2(x) \, dx\right)^{\frac{1}{2}}.$$

Soient $(f_n)_{n\in\mathbb{N}}$ et f des applications numériques continues sur [a,b]. Si la suite (f_n) converge vers f dans $(C([a,b],\mathbb{R}),\|\cdot\|_2)$, on dit que (f_n) converge en moyenne quadratique vers f.

Démonstration: Le lecteur vérifiera sans difficulté que l'application $\langle \cdot, \cdot \rangle$ est bilinéaire symétrique positive. Le fait qu'elle soit définie résulte de la proposition 1.2.10.

Remarque: L'inégalité de Cauchy-Schwarz, énoncée dans la proposition 1.2.11, se réécrit donc dans notre cadre

$$\forall (f,g) \in (C([a,b],\mathbb{R}))^2 \quad |\langle f,g \rangle| \le ||f||_2 ||g||_2.$$

Sous cette forme, elle est d'ailleurs vraie dans le cadre beaucoup plus général des espaces préhilbertiens, ainsi que son cas d'égalité. Le lecteur pourra se reporter à [DAN 9-10].

C'est précisément l'inégalité de Cauchy-Schwarz que nous allons utiliser pour comparer les trois normes que nous avons précédemment définies sur $C([a, b], \mathbb{R})$.

Proposition 1.5.4 Pour toute application $f \in C([a,b],\mathbb{R})$, nous avons les inégalités

$$||f||_1 \le \sqrt{b-a} \, ||f||_2 \le (b-a) ||f||_{\infty}.$$

Démonstration: Grâce à l'inégalité de Cauchy-Schwarz, nous pouvons écrire (en notant 1 l'application constante et égale à 1 sur [a, b])

$$||f||_1 = \int_a^b |f(x)| \, dx = \langle |f|, \mathbf{1} \rangle \le ||f||_2 ||\mathbf{1}||_2 = \sqrt{b-a} ||f||_2,$$

d'où la première inégalité. Nous obtenons alors la seconde inégalité en écrivant

$$||f||_2 = \left(\int_a^b f^2(x) \, dx\right)^{\frac{1}{2}} \le \left(\int_a^b ||f||_\infty^2 \, dx\right)^{\frac{1}{2}} = \sqrt{b-a} ||f||_\infty.$$

Corollaire 1.5.5 Soient $(f_n)_{n\in\mathbb{N}}$ et f des applications numériques continues sur [a,b].

 $Si(f_n)$ converge uniformément vers f sur [a,b], alors (f_n) converge en moyenne quadratique vers f sur [a,b].

 $Si(f_n)$ converge en moyenne quadratique vers f sur [a,b], alors (f_n) converge en moyenne vers f sur [a,b]

Dans les deux cas, la réciproque est fausse comme nous allons le voir maintenant.

Contre-exemples:

1. Prenons $a=0, b=1, f\equiv 0$ et définissons $f_n, n\in \mathbb{N}^*$ par : $f_n(x)=n^4x$ si $0\leq x\leq 1/n^3, f_n(x)=2n-n^4x$ si $1/n^3\leq x\leq 2/n^3$ et $f_n(x)=0$ sinon.

Alors la suite (f_n) converge en moyenne quadratique vers f mais ne converge pas uniformément vers f.

2. Prenons $a=0, b=1, f\equiv 0$ et définissons $f_n, n\in \mathbb{N}^*$ par : $f_n(x)=n^3x$ si $0\leq x\leq 1/n^2, f_n(x)=2n-n^3x$ si $1/n^2\leq x\leq 2/n^2$ et $f_n(x)=0$ sinon.

Alors la suite (f_n) converge en moyenne vers f mais ne converge pas en moyenne quadratique vers f: on pourra remarquer que $f_n(x) \ge n/2$ dès que $1/(2n^2) \le x \le 3/(2n^2)$.

Remarque et exercice suggéré : On peut montrer que pour tout $p \in \mathbb{N}^*$, l'application $\|\cdot\|_p$ définie sur $C([a,b],\mathbb{R})$ par

$$\forall f \in C([a,b], \mathbb{R}) \quad ||f||_p = \left(\int_a^b |f(x)|^p \, dx\right)^{\frac{1}{p}}$$

est une norme sur $C([a,b],\mathbb{R})$: on l'appelle norme p. Ce résultat qui repose en fait sur une inégalité de convexité n'est pas trivial. Le lecteur intéressé par la démonstration pourra se reporter aux inégalités dites de Hölder et Minkowski dans tout livre de théorie de la mesure et de l'intégration.

La notation que nous avons utilisée pour la norme de la convergence uniforme est alors justifiée par le résultat suivant :

$$\forall f \in C([a, b], \mathbb{R}) \quad \lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

Le lecteur trouvera ce résultat sous la forme d'un exercice corrigé dans [DAN 205-206].

1.6 Intégrale d'une fonction dépendant d'un paramètre

Nous considérons une application $f: E \times [a,b] \to F$, où (E,d) est un espace métrique et F un espace de Banach.

Rappelons ici que $E \times [a, b]$ est alors lui-même un espace métrique en tant que produit de deux espaces métriques.

Théorème 1.6.1 (Continuité) Si $f: E \times [a,b] \to F$ est continue, alors nous pouvons définir l'application $\Phi: E \to F$ par :

$$\forall x \in E$$
 $\Phi(x) = \int_a^b f(x,t) dt$

et cette application Φ est continue

Nous supposons désormais que E = I, intervalle réel.

Soit $(x_0, t_0) \in I \times [a, b]$. Rappelons que la dérivée partielle $f'_x(x_0, t_0)$ désigne, sous réserve de son existence, la dérivée au point $x_0 \in I$ de l'application $x \mapsto f(x, t_0)$ de I dans F.

Théorème 1.6.2 (Dérivabilité) $Si\ f: I \times [a,b] \to F$ est continue, telle que la dérivée partielle f'_x existe et soit continue sur $I \times [a,b]$, alors l'application $\Phi: I \to F$ définie par :

$$\forall x \in I$$
 $\Phi(x) = \int_a^b f(x,t) dt$

est de classe C^1 et nous avons l'égalité :

$$\forall x \in I$$
 $\Phi'(x) = \int_a^b f'_x(x,t) dt$

Le lecteur trouvera la preuve de ces deux théorèmes dans les anciens livres de classes préparatoires, par exemple dans le chapitre 8 de Ramis-Deschamps-Odoux, tome 3.

Ces résultats seront considérablement généralisés dans la section 3.3 grâce au théorème de convergence dominée.

1.7 Arcs paramétrés

1.7.1 Rectification d'un arc paramétré.

Le lecteur pourra se reporter à [DAN 203-205] à propos de la rectification des arcs paramétrés, que nous présentons très succinctement ici.

Définition 1.7.1 Soit $d \in \mathbb{N}^*$ fixé et $f \in C([a,b],\mathbb{R}^d)$. On dit que le couple $\Gamma = ([a,b],f)$ est un arc paramétré continu de \mathbb{R}^d . Cet arc est dit rectifiable si

$$\sup \left\{ \sum_{i=0}^{n-1} \|f(a_{i+1}) - f(a_i)\| \right\} < +\infty,$$

cette borne supérieure portant sur toutes les subdivisions $(a_i)_{0 \le i \le n}$ $(n \in \mathbb{N}^*)$ de l'intervalle [a,b] et $\|\cdot\|$ désignant la norme euclidienne dans \mathbb{R}^d . Dans ce cas, cette borne supérieure est appelée longueur de l'arc paramétré continu Γ et notée $L(\Gamma)$.

Un exemple d'arc continu non rectifiable nous est donné par l'application $f:[0,1]\to\mathbb{R}^2$ définie par

$$f(0) = (0,0) \text{ et } \forall t \in]0,1]$$
 $f(t) = (t, t \sin \frac{1}{t}).$

Le lecteur pourra démontrer que la borne supérieure ci-dessus est infinie en choisissant judicieusement des subdivisions et en utilisant la divergence de la série harmonique (i.e. $\sum_{n} \frac{1}{n} = +\infty$).

Proposition 1.7.2 Soit $f \in C^1([a,b],\mathbb{R}^d)$ et $\Gamma = ([a,b],f)$ l'arc paramétré associé. Alors cet arc est rectifiable, de longueur

$$L(\Gamma) = \int_a^b \|f'(x)\| dx.$$

Exercice suggéré: Référence: "Topologie, Analyse" par G. FLORY, exercices avec solutions, tome 3, éditions Vuibert.

Calculer la longueur totale de l'astroïde (voir figure ci-dessous) définie sous forme paramétrée par :

$$f(t) = (a\cos^3 t, a\sin^3 t)$$
 , $0 \le t \le 2\pi$.

1.7.2 Intégrale curviligne d'une forme différentielle.

Une autre application aux arcs paramétrés concerne la notion d'intégrale curviligne d'une forme différentielle le long d'une courbe orientée. Cette notion permet en particulier de calculer le travail d'une force le long d'une courbe en Physique. Référence : [CMPSI 396-403].

Chapitre 2

Intégrales impropres.

Dans tout ce chapitre, nous considérons des applications à valeurs dans le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Nous pourrions en fait définir les intégrales impropres dans le cadre plus général des applications à valeurs dans un espace de Banach E mais dans la pratique ce sont surtout des intégrales impropres réelles ou complexes qui apparaissent. Le lecteur intéressé par les énoncés généraux dans E pourra les trouver dans les anciens livres de classes préparatoires (Ramis-Deschamps-Odoux par exemple).

2.1 Définition des intégrales impropres.

Définition 2.1.1 Soit I un intervalle réel et $f: I \to \mathbb{K}$. Nous dirons que l'application f est continue par morceaux sur I si la restriction de f à tout segment inclus dans I est continue par morceaux. Dans ce cas, nous noterons $f \in C_M(I, \mathbb{K})$.

Exemple: Soit I = [a, b[avec $-\infty < a < b \le +\infty.$ Alors $f \in C_M([a, b[, \mathbb{K})$ si et seulement si, pour tout $x \in [a, b[$, la restriction de f à l'intervalle compact [a, x] est continue par morceaux.

Remarque: Si nous définissons une application en escalier sur [a,b[par :

$$\exists \sigma : a = a_0 < \dots < a_n = b, \ \exists (c_i)_{0 \le i \le n-1} \in \mathbb{K}^n, \ \forall i = 0, \dots, n-1, \ f \mid_{]a_i, a_{i+1}} [\equiv c_i]$$

remarquons qu'une application continue par morceaux sur [a,b[n'est pas forcément limite uniforme sur [a,b[de fonctions en escalier car cela impliquerait qu'elle soit bornée. L'application $f:[0,1[\to\mathbb{R}$ définie par $f(x)=(1-x)^{-1}$ fournit alors un contre-exemple.

Définition 2.1.2 Soit $f \in C_M([a,b[,\mathbb{K}) \ avec -\infty < a < b \leq +\infty)$. Nous définissons l'application $F : [a,b[\rightarrow \mathbb{K} \ par :$

$$\forall x \in [a, b[F(x) = \int_{a}^{x} f(t)dt$$

Si l'application F admet une limite $l \in \mathbb{K}$ lorsque x tend vers b, nous dirons que l'intégrale impropre $\int_a^b f(t)dt$ est convergente et que sa valeur est :

$$\int_{a}^{b} f(t)dt = l$$

Dans le cas contraire (F n'admet pas de limite ou bien tend vers l'infini), nous dirons que l'intégrale impropre est divergente.

Remarque: Si $c \in [a, b[$, la relation de Chasles implique immédiatement que les intégrales impropres $\int_a^b f(t)dt$ et $\int_c^b f(t)dt$ ont même nature, convergentes ou divergentes. Dans le cas où elles convergent, nous avons l'égalité :

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

La notion d'intégrale impropre généralise l'intégrale de Riemann dans deux directions : intervalle non borné (cas $b=+\infty$) ou bien application non bornée (par exemple, f(x) tend vers $+\infty$ lorsque $x\to b-$). Nous allons rencontrer ces deux situations dans l'exemple très classique suivant.

Exemple de Riemann L'intégrale impropre $\int_1^{+\infty} \frac{dt}{t^{\alpha}}$ converge si et seulement si $\alpha > 1$.

L'intégrale impropre $\int_a^b \frac{dt}{(b-t)^{\alpha}}$ converge si et seulement si $\alpha < 1$.

Malgré la simplicité de la preuve (prendre une primitive), cet exemple est important car il sert souvent de référence lorsqu'on emploie des relations de comparaison pour étudier la convergence d'une intégrale impropre (nous y reviendrons ci-dessous).

Même si, pour fixer les idées, nous avons travaillé jusqu'à présent avec des intégrales impropres sur un intervalle de la forme [a,b[, il est évident que tout ce qui précède s'adapte immédiatement pour définir des intégrales impropres sur un intervalle de la forme [a,b[. Ainsi, l'exemple de Riemann se réécrit comme suit sur [a,b]:

Exemple: L'intégrale impropre $\int_a^b \frac{dt}{(t-a)^{\alpha}}$ converge si et seulement si $\alpha < 1$.

Nous pouvons alors combiner les deux cas précédents pour définir comme suit une intégrale impropre sur un intervalle ouvert.

Proposition et définition 2.1.3 Soit I =]a,b[avec $-\infty \le a < b \le +\infty$ et $f \in C_M(]a,b[,\mathbb{K})$. Supposons qu'il existe $c_0 \in]a,b[$ tel que les intégrales $\int_a^{c_0} f(t)dt$ et $\int_{c_0}^b f(t)dt$ soient convergentes. Alors, pour tout $c \in]a,b[$, les intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent et leur somme est indépendante du choix de c.

On dit que l'intégrale impropre $\int_a^b f(t)dt$ est convergente et que sa valeur est :

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Dans le cas contraire, on dit que l'intégrale impropre $\int_a^b f(t)dt$ est divergente.

Nous pourrions même considérer le cas d'une application $f:[a,b] \to \mathbb{K}$, avec $-\infty < a < b < +\infty$, qui n'est pas bornée au voisinage d'un certain nombre de points d'un ensemble fini $F \subset [a,b]$. On découpe alors le segment [a,b] en segments dont l'intérieur ne contient aucun point de F et l'on étudie la convergence de l'intégrale de f, à gauche et à droite, aux points de F comme ci-dessus. Notons néanmoins que, dans ce cas, l'application f n'est pas forcément continue par morceaux sur [a,b].

Dans la suite de ce cours, nous allons mettre en évidence diverses méthodes d'étude de la convergence d'une intégrale impropre; nous écrirons les propositions dans le cas d'une intégrale impropre définie sur un intervalle de la forme I = [a, b[, laissant au lecteur le soin de les adapter aux autres cas.

2.2 Étude de la convergence : cas positif

Avant d'examiner plusieurs critères de convergence ou divergence, nous commençons par une remarque générale propre au cas positif. Si $f \in C_M([a,b[,\mathbb{R}_+)$ et si nous définissons l'application $F:[a,b[\to\mathbb{R}]$ par

$$\forall x \in [a, b[F(x) = \int_{a}^{x} f(t)dt$$

l'hypothèse $f \geq 0$ implique la croissance de F (par la relation de Chasles). Nous en déduisons, en utilisant la définition d'une borne supérieure :

$$\lim_{x \to b-} F(x) = \sup_{[a,b[} F \le +\infty$$

Preuve : Si $\sup_{[a,b[} F = +\infty$, alors $\forall A > 0$, $\exists c \in [a,b[, F(c) > A]$. Grâce à la croissance de l'application F, nous pouvons donc écrire :

$$\forall A > 0 \quad \exists c \in [a, b[\quad \forall x \in [c, b[\quad F(x) > A])]$$

si bien que $\lim_{x\to b^-} F(x) = +\infty$.

Si $\sup_{[a,b[}F = M \in \mathbb{R}_+ \text{ alors, la borne supérieure étant le plus petit des majorants, <math>\forall \epsilon > 0, \exists c \in [a,b[,F(c) > M - \epsilon]$.

En utilisant la croissance de F, nous obtenons donc :

$$\forall \epsilon > 0 \quad \exists c \in [a, b] \quad \forall x \in [c, b] \quad M - \epsilon < F(x) \le M$$

d'où $\lim_{x\to b^-} F(x) = M$.

Autrement dit, si $\sup_{[a,b[} F < +\infty$, l'intégrale impropre $\int_a^b f(t)$ converge et l'on a :

$$\int_{a}^{b} f(t)dt = \sup_{[a,b[} F$$

Si au contraire $\sup_{[a,b[}F=+\infty$, l'intégrale impropre $\int_a^b f(t)$ est divergente et nous conviendrons de noter :

$$\int_{a}^{b} f(t)dt = +\infty$$

Insistons sur le fait que cette notation n'est autorisée que si l' $intégrande\ f$ est une application positive.

Nous allons maintenant décrire plusieurs méthodes permettant de déterminer la nature d'une intégrale impropre (convergente ou divergente) dans ce cas.

2.2.1 Comparaison avec une intégrale de référence.

Proposition 2.2.1 Soient $f, g \in C_M([a, b[, \mathbb{R}) \text{ telles que } 0 \leq f \leq g. \text{ Alors, on a les implications suivantes :}$

- 1. Si $\int_a^b g(t)dt$ converge, alors $\int_a^b f(t)dt$ converge.
- 2. Si $\int_a^b f(t)dt$ diverge, alors $\int_a^b g(t)dt$ diverge.

Démonstration: Définissons l'application $F:[a,b[\to \mathbb{R} \text{ comme précédemment et l'application } G$ de façon similaire. Puisque $0 \le f \le g$, nous avons

$$\forall x \in [a, b[F(x) \le G(x).$$

1. Les hypothèses impliquent que

$$\sup_{[a,b[} F \le \sup_{[a,b[} G = \int_a^b g(t)dt < +\infty$$

d'où la convergence de F(x) vers $\sup_{[a,b[}F$ lorsque x tend vers b par valeurs inférieures.

2. C'est la contraposée de la première implication.

En utilisant l'exemple de Riemann, nous en déduisons les critères suivants, souvent utiles dans la pratique.

Corollaire 2.2.2 Soient $-\infty < a < b < +\infty$ et $f \in C_M([a, b[, \mathbb{R}_+).$

- 1. S'il existe $\alpha < 1$ tel que $\lim_{x\to b} (b-x)^{\alpha} f(x) = 0$, alors l'intégrale impropre $\int_a^b f(x) dx$ est convergente.
- 2. S'il existe $\alpha \geq 1$ tel que $\lim_{x\to b} (b-x)^{\alpha} f(x) = +\infty$, alors l'intégrale impropre $\int_a^b f(x) dx$ est divergente.

Démonstration: Nous traitons le premier cas, laissant le second à titre d'exercice au lecteur.

L'hypothèse implique l'existence de $c \in [a, b]$ tel que :

$$\forall x \in [c, b[(b-x)^{\alpha} f(x) \le 1]$$

Nous concluons en appliquant la proposition précédente aux intégrales

$$\int_{c}^{b} f(t)dt \text{ et } \int_{c}^{b} \frac{dt}{(b-t)^{\alpha}},$$

cette dernière intégrale étant convergente d'après l'exemple de Riemann.

Corollaire 2.2.3 Soient $a \in \mathbb{R}$ et $f \in C_M([a, +\infty[, \mathbb{R}_+).$

- 1. S'il existe $\alpha > 1$ tel que $\lim_{x \to +\infty} x^{\alpha} f(x) = 0$, alors l'intégrale impropre $\int_a^{+\infty} f(x) dx$ est convergente.
- 2. S'il existe $\alpha \leq 1$ tel que $\lim_{x \to +\infty} x^{\alpha} f(x) = +\infty$, alors l'intégrale impropre $\int_a^{+\infty} f(x) dx$ est divergente.

2.2.2 Intégration des relations de comparaison

Dans toute cette sous-section, nous considérons deux applications $f, g \in C_M([a, b[, \mathbb{R}_+) \text{ avec } -\infty < a < b \leq +\infty.$

Le lecteur pourra réviser les notions de comparaison locale ou asymptotique de fonctions (domination, prépondérance et équivalence) dans [DAN 119ss].

Proposition 2.2.4 (Intégration de la domination) Supposons qu'au voisinage de b, l'application f est dominée par g, ce que nous notons f = O(g). Alors, nous avons les implications suivantes :

1. Si $\int_a^b g(t)dt$ converge, alors $\int_a^b f(t)dt$ converge et, au voisinage de b, nous avons la relation de domination

$$\int_{x}^{b} f(t)dt = O\left(\int_{x}^{b} g(t)dt\right)$$

2. Si $\int_a^b f(t)dt$ diverge, alors $\int_a^b g(t)dt$ diverge et, au voisinage de b, nous avons la relation de domination

$$\int_{a}^{x} f(t)dt = O\left(\int_{a}^{x} g(t)dt\right)$$

Remarque: Lorsque $x \to b$, les intégrales qui apparaissent dans les relations de domination établies par ce théorème ont pour limite 0 dans le premier cas (on parle de *reste intégral* d'une intégrale impropre convergente) et pour limite $+\infty$ dans le second cas.

Démonstration: Voir [DAN 220]. Nous détaillons plutôt la preuve de la proposition suivante qui est légèrement plus difficile.

Proposition 2.2.5 (Intégration de la prépondérance) Supposons qu'au voisinage de b, l'application f est négligeable devant g (on dit encore que g est prépondérante devant f), ce que nous notons f = o(g). Alors, nous avons les implications suivantes :

1. Si $\int_a^b g(t)dt$ converge, alors $\int_a^b f(t)dt$ converge et, au voisinage de b, nous avons la relation de prépondérance

$$\int_{a}^{b} f(t)dt = o\left(\int_{a}^{b} g(t)dt\right)$$

2. Si $\int_a^b f(t)dt$ diverge, alors $\int_a^b g(t)dt$ diverge et, au voisinage de b, nous avons la relation de prépondérance

$$\int_{a}^{x} f(t)dt = o\left(\int_{a}^{x} g(t)dt\right)$$

Démonstration: Soit $\epsilon > 0$ arbitraire; notre hypothèse nous donne :

$$\exists c \in [a, b[\quad \forall t \in [c, b[\quad 0 \le f(t) \le \epsilon g(t)$$
 (2.1)

1. Puisque $\int_a^b g(t) \, dt$ converge, il en est de même de $\int_c^b g(t) \, dt$. L'inégalité précédente implique alors la convergence de $\int_c^b f(t) \, dt$, d'où celle de $\int_a^b f(t) \, dt$. En outre, si $c \leq x \leq y < b$, nous avons :

$$\int_{x}^{y} f(t) dt \le \epsilon \int_{x}^{y} g(t) dt$$

En passant à la limite lorsque $y \to b-$, nous obtenons :

$$\forall x \in [c, b[\int_{x}^{b} f(t) dt \le \epsilon \int_{x}^{b} g(t) dt$$

d'où la relation de prépondérance annoncée lorsque $x \to b-$ entre les restes intégraux.

2. Puisque $\int_a^b f(t) \, dt$ diverge, il en est de même de $\int_c^b f(t) \, dt$. L'inégalité (2.1) implique alors la divergence de $\int_c^b g(t) \, dt$, d'où celle de $\int_a^b g(t) \, dt$. Cette divergence (vers $+\infty$) implique l'existence de $c' \in [c,b[$ tel que :

$$\forall x \in [c', b] \quad \int_a^x g(t) dt \ge \frac{1}{\epsilon} \int_a^c f(t) dt$$

Nous en déduisons, pour tout $x \in [c', b[$:

$$\int_a^x f(t) dt = \int_a^c f(t) dt + \int_c^x f(t) dt \le \epsilon \int_a^x g(t) dt + \epsilon \int_c^x g(t) dt$$

En majorant cette dernière intégrale par $\int_a^x g(t)\,dt,$ nous en déduisons :

$$\forall x \in [c', b[\int_a^x f(t) dt \le 2\epsilon \int_a^x g(t) dt$$
,

ce qui nous permet de conclure puisque ϵ était arbitraire.

Des deux propositions précédentes, nous pouvons déduire :

Corollaire 2.2.6 (Intégration de l'équivalence) Nous supposons qu'au voisinage de b, les applications f et g sont équivalentes, ce que nous notons $f \sim g$. Alors, nous avons les implications suivantes :

- 1. Les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ sont de même nature.
- 2. (a) Si ces intégrales convergent, alors, au voisinage de b, nous avons la relation d'équivalence suivante :

$$\int_{x}^{b} f(t)dt \sim \int_{x}^{b} g(t)dt$$

(b) Si ces intégrales divergent, alors, au voisinage de b, nous avons la relation d'équivalence suivante :

$$\int_{a}^{x} f(t)dt \sim \int_{a}^{x} g(t)dt$$

Démonstration: Voir [DAN 221-222]. On utilise |f-g| = o(g) au voisinage de b, ainsi que l'inégalité triangulaire pour les intégrales.

Exercices suggérés L'exercice 14.4 de [DAN 222-223], l'exercice 3.1.1 de [CMP 164], les exercices 3.3.1 à 3.3.3 de [CMP 184], l'exercice 3.1 de [EMP 195] permettent de mettre en oeuvre les méthodes précédentes sur des exemples assez simples.

Remarque: Les résultats précédents tombent en défaut lorsque nous considérons des fonctions de signe quelconque.

Ainsi, il est facile de constater que nous avons l'équivalence suivante :

$$\frac{\sin t}{\sqrt{t}} + \frac{|\sin t|}{t} \sim \frac{\sin t}{\sqrt{t}}$$
 lorsque $t \to +\infty$.

En effet, nous avons bien sûr:

$$\frac{|\sin t|}{t} = \frac{|\sin t|}{\sqrt{t}} \times \frac{1}{\sqrt{t}} = o\left(\frac{\sin t}{\sqrt{t}}\right) \text{ lorsque } t \to +\infty.$$

Néanmoins, à l'aide de méthodes que nous verrons ci-dessous, nous pourrons établir que :

$$\int_{1}^{+\infty} \left(\frac{\sin t}{\sqrt{t}} + \frac{|\sin t|}{t} \right) dt \text{ diverge et } \int_{1}^{+\infty} \frac{\sin t}{\sqrt{t}} dt \text{ converge.}$$

2.2.3 Comparaison avec une série

Il est parfois possible d'étudier la convergence d'une intégrale impropre par un argument direct de comparaison avec une série. C'est ce que nous allons voir sur un exemple.

Exemple: La fonction $\frac{\sin t}{t}$ définie sur \mathbb{R}^* et prolongée par 1 pour t=0 est continue sur \mathbb{R} . Nous allons prouver la divergence suivante :

$$\int_0^{+\infty} \frac{|\sin t|}{t} dt = +\infty$$

Pour cela, nous introduisons la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N} \quad u_n = \int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt$$

Par décroissance de l'application $t \to \frac{1}{t}$ sur \mathbb{R}_+^* , nous avons la minoration :

$$\forall n \in \mathbb{N} \quad u_n \ge \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt,$$

ce qui s'écrit encore, en calculant l'intégrale par π -périodicité et à l'aide d'une primitive :

$$\forall n \in \mathbb{N} \quad u_n \ge \frac{2}{(n+1)\pi}.$$

Nous en déduisons, grâce à la relation de Chasles,

$$\forall n \in \mathbb{N} \quad \int_0^{(n+1)\pi} \frac{|\sin t|}{t} dt = \sum_{k=0}^n u_k \ge \frac{2}{\pi} \sum_{k=0}^n \frac{1}{k+1}$$

En faisant tendre n vers l'infini, la divergence de cette dernière série permet de conclure car elle implique, avec nos notations habituelles :

$$\sup_{[0,+\infty[} F = +\infty.$$

Remarque: Contrairement à ce qui se passe pour les séries positives, la convergence d'une intégrale impropre positive sur $[a, +\infty[$ n'implique pas que son intégrande tende vers 0: on trouvera un contre-exemple avec un intégrande continu et non borné au voisinage de l'infini dans [DAN 234]. En revanche, si l'intégrande est uniformément continu, il est nécessaire qu'il tende vers 0 en $+\infty$ pour que l'intégrale impropre converge : voir par exemple «Oraux X-ENS, Analyse 3» par Francinou, Gianella et Nicolas page 183.

2.3 Cas général : critère de Cauchy et autres méthodes.

Dans toute cette section, sauf indication explicite, nous considérons une application $f \in C_M([a, b[, \mathbb{K}) \text{ avec } -\infty < a < b \leq +\infty.$

2.3.1 Critère de Cauchy et conséquences.

Puisque $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} est complet, nous avons la condition nécessaire et suffisante de convergence suivante :

Proposition 2.3.1 (Critère de Cauchy pour les intégrales) L'intégrale impropre $\int_a^b f(t)dt$ converge si et seulement si :

$$\forall \epsilon > 0, \exists c \in [a, b[, \forall (x, y) \in [c, b[^2]] \left| \int_x^y f(t) dt \right| < \epsilon.$$

Démonstration: Soit $F:[a,b] \to \mathbb{R}$ définie par

$$\forall x \in [a, b[F(x) = \int_{a}^{x} f(t)dt.$$

Il s'agit de démontrer l'équivalence entre les deux propositions suivantes :

- 1. L'application F admet une limite dans K lorsque $x \to b$.
- 2. Le critère de Cauchy suivant est satisfait :

$$\forall \epsilon > 0, \ \exists c \in [a, b[, \ \forall (x, y) \in [c, b[^2 \quad |F(y) - F(x)| < \epsilon])$$

L'implication (1 \Rightarrow 2) résulte facilement de l'inégalité triangulaire.

Pour prouver l'implication réciproque, on utilise une caractérisation séquentielle et le fait que si $(x_n) \in [a, b]^{\mathbb{N}}$ tend vers b, alors $(F(x_n))$ est une suite de Cauchy dans \mathbb{K} qui est complet.

Le lecteur trouvera les détails dans [DAN 223-224].

2.3. CAS GÉNÉRAL : CRITÈRE DE CAUCHY ET AUTRES MÉTHODES.47

Nous allons maintenant énoncer trois conséquences de cette proposition, en commençant par un corollaire presque immédiat.

Corollaire 2.3.2 $Si - \infty < a < b < +\infty$ et $si f \in C_M([a, b[, \mathbb{K}) \ est \ bornée sur <math>[a, b[, \ alors \ l'intégrale \ impropre \int_a^b f(t)dt \ converge.$

Démonstration: En notant $M = \sup_{[a,b[} |f| < +\infty$ et en prenant $\epsilon > 0$ arbitraire, nous constatons que le critère précédent est satisfait en prenant

$$c = \max\left(a, b - \frac{\epsilon}{M}\right)$$

puisque nous avons les inégalités

$$\left| \int_{x}^{y} f(t)dt \right| \le \int_{x}^{y} |f(t)|dt \le M(y-x).$$

Par exemple, l'intégrale impropre $\int_0^1 \sin(1/t) dt$ est convergente.

Une importante conséquence du critère de Cauchy pour les intégrales concerne la notion d'absolue convergence.

Proposition et définition 2.3.3 Soit $f \in C_M([a, b[, \mathbb{K}). Alors nous avons l'implication :$

$$\int_a^b |f(t)|dt \ converge \implies \int_a^b f(t)dt \ converge.$$

On dit dans ce cas que l'intégrale impropre de f est absolument convergente sur [a,b[. Si l'intégrale impropre de f sur [a,b[est convergente mais non absolument convergente, on dit qu'elle est semi-convergente.

Démonstration: Puisque l'intégrale impropre $\int_a^b |f(t)|dt$ est convergente, le critère de Cauchy suivant est satisfait :

$$\forall \epsilon > 0, \ \exists c \in [a, b[, \forall (x, y) \in [c, b[^2]] \int_x^y |f(t)| dt < \epsilon.$$

Il suffit alors d'appliquer l'inégalité, valable si $c \le x \le y < b$,

$$\left| \int_{x}^{y} f(t)dt \right| \le \int_{x}^{y} |f(t)|dt$$

pour conclure en utilisant de nouveau le critère de Cauchy pour les intégrales.

Exemples Nous montrerons ci-dessous que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ est semi-convergente.

Pour $\alpha > 1$, l'intégrale impropre $\int_1^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ est absolument convergente.

En utilisant la seconde formule de la moyenne, nous pouvons énoncer une autre conséquence du critère de Cauchy pour les intégrales.

Proposition 2.3.4 (Règle d'Abel) Considérons deux applications $f \in C_M([a, b[, \mathbb{R}_+)$ et $g \in C_M([a, b[, \mathbb{K})$. Supposons que les deux conditions suivantes sont satisfaites :

- 1. f est décroissante avec $\lim_{x\to b} f(x) = 0$,
- 2. il existe M > 0 tel que

$$\forall x \in [a, b[\left| \int_{a}^{x} g(t)dt \right| \leq M.$$

Alors l'intégrale impropre $\int_a^b f(t)g(t)dt$ converge.

Démonstration: Traitons dans un premier temps le cas $\mathbb{K} = \mathbb{R}$. Puisque $f \geq 0$ et $\lim_{x \to b} f(x) = 0$, pour $\epsilon > 0$ arbitraire, nous pouvons trouver $c \in [a, b[$ tel que

$$\forall x \in [c, b[\quad 0 \le f(x) \le \epsilon.$$

Soit $(x, y) \in [c, b[^2 \text{ tel que } x < y]$. La seconde formule de la moyenne (Proposition 1.2.13 page 18) implique l'existence de $z \in [x, y]$ tel que

$$\int_{x}^{y} f(t)g(t)dt = f(x+) \int_{x}^{z} g(t)dt$$

Nous en déduisons

$$\left| \int_{x}^{y} f(t)g(t)dt \right| \le 2M\epsilon,$$

ce qui permet de conclure puisque le critère de Cauchy pour les intégrales est ainsi satisfait.

Passons maintenant au cas $\mathbb{K} = \mathbb{C}$ en écrivant $g = \Re g + i \Im g$. Les hypothèses sur g impliquent alors que, pour tout $x \in [a, b[$,

$$\left| \int_{a}^{x} \Re g(t) dt \right| = \left| \Re \left(\int_{a}^{x} g(t) dt \right) \right| \le \left| \int_{a}^{x} g(t) dt \right| \le M$$

(on a utilisé l'inégalité, valable pour tout $z \in \mathbb{C}, |\Re z| \leq |z|$).

Nous constatons que les applications f et $\Re q$ satisfont les hypothèses de

l'énoncé dans le cas $\mathbb{K} = \mathbb{R}$. Nous en déduisons la convergence de l'intégrale impropre $\int_a^b f(t)\Re g(t)dt$. Par un raisonnement similaire, nous obtenons la convergence de l'intégrale impropre $\int_a^b f(t)\Im g(t)dt$, d'où finalement celle de l'intégrale impropre complexe $\int_a^b f(t)g(t)dt$.

Exemple: Pour tout $\alpha > 0$, l'intégrale impropre suivante est convergente :

$$\int_{1}^{+\infty} \frac{\sin t}{t^{\alpha}} dt$$

Il suffit en effet d'appliquer la règle d'Abel avec $f(x) = x^{-\alpha}$ et $g(x) = \sin x$ sur $[1, +\infty[$, en constatant que

$$\forall x \in [1, +\infty[\quad \left| \int_{1}^{x} \sin t dt \right| = |\cos x - \cos 1| \le 2.$$

On peut obtenir ce résultat sans la règle d'Abel, en procédant par intégration par parties, mais c'est un peu plus long : voir [EMP 216-217].

2.3.2 Méthodes directes

Référence : "Intégration" par A. GRAMAIN, collection Méthodes, éditions Hermann.

On peut étudier directement la convergence d'une intégrale impropre en appliquant les outils classiques de calcul d'une intégrale, comme l'intégration par parties ou le changement de variable. Une application classique de ce dernier est l'exemple de Bertrand, qui généralise l'exemple de Riemann.

Exemple de Bertrand Pour $(\alpha, \beta) \in \mathbb{R}^2$, nous considérons l'intégrale impropre

$$\int_{2}^{+\infty} \frac{1}{x^{\alpha} (\log x)^{\beta}} \, dx.$$

Cette intégrale converge si et seulement si $\alpha > 1$ ou $(\alpha = 1$ et $\beta > 1)$. Le lecteur pourra consulter la démonstration dans [CMP 162].

On peut également avoir recours à un développement asymptotique pour appliquer ensuite l'intégration des relations de domination, prépondérance ou équivalence.

On trouvera des exemples d'application de ces méthodes dans les exercices 3.4.1 et 3.4.3 de [CMP 189] et dans [GRA 35].

On peut également faire une comparaison ad hoc avec une série : [GRA 34] prouve ainsi la semi-convergence de l'intégrale impropre $\int_0^{+\infty} \frac{\sin t}{t}$.

2.4 Calcul des intégrales impropres

Puisqu'une intégrale impropre est par définition la limite d'une intégrale de Riemann (fonction de la borne d'en haut par exemple), nous allons retrouver dans cette section les méthodes classiques de calcul d'une intégrale de Riemann : utilisation d'une primitive, intégration par parties, changement de variables. Ces deux dernières méthodes admettent des généralisations qui nous fournissent des formules directement applicables aux intégrales impropres comme nous allons le voir maintenant.

Proposition 2.4.1 (Intégration par parties généralisée) Considérons deux applications $f, g \in C^1([a, b[, \mathbb{K})]$. Alors nous avons les propriétés suivantes :

1. $Si \lim_{x\to b} f(x)g(x)$ existe, alors les deux intégrales impropres suivantes sont de même nature :

$$\int_a^b f(t)g'(t) dt \ et \ \int_a^b f'(t)g(t) dt.$$

2. Dans le cas où ces deux intégrales sont convergentes, nous avons l'égalité

$$\int_{a}^{b} f(t)g'(t) dt = \lim_{x \to b} f(x)g(x) - f(a)g(a) - \int_{a}^{b} f'(t)g(t) dt.$$

Démonstration: Pour tout $x \in [a, b[$, la formule d'intégration par parties classique nous donne :

$$\int_{a}^{x} f(t)g'(t) dt = f(x)g(x) - f(a)g(a) - \int_{a}^{x} f'(t)g(t) dt.$$

Si $\lim_{x\to b} f(x)g(x)$ existe, la convergence d'une des intégrales impropres équivaut donc à celle de l'autre, d'où le premier point.

Nous obtenons alors le second point par simple passage à la limite lorsque $x \to b$ dans l'égalité précédente.

Remarque: Dans le cas où les deux intégrales impropres convergent, nous emploierons encore la notation

$$\int_{a}^{b} f(t)g'(t) dt = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt.$$

Proposition 2.4.2 (Changement de variable généralisé) Soit u une application de classe C^1 bijective strictement croissante de l'intervalle [a, b[sur l'intervalle $[\alpha, \beta[$ et $f \in C_M([\alpha, \beta[, \mathbb{K}).$ Alors les deux intégrales impropres

$$\int_a^b f(u(t))u'(t) dt \ et \ \int_\alpha^\beta f(x) dx$$

sont de même nature et égales en cas de convergence.

Démonstration: Voir [DAN 230-231].

Remarque: Lorsqu'il y a convergence des deux intégrales impropres, la formule du changement de variables peut s'écrire sous la forme :

$$\int_{a}^{b} f(u(t))u'(t) dt = \int_{u(a)}^{u(b-)} f(x) dx.$$

Cette égalité se généralise alors au cas où u est un C^1 -difféomorphisme : voir [CMP 177].

Exercices suggérés Quand il s'agit de calculer une intégrale impropre, on commence toujours par étudier la convergence de celle-ci. Le lecteur pourra procéder ainsi pour l'exercice 3.2.6 de [CMP 180] et pour les exercices 3.2, 3.5, 3.6 de [EMP 195-205]. L'exercice 1.3 de [EMP 201] utilise la formule de Wallis (qui nous fournit un équivalent de l'intégrale de Wallis) pour calculer l'intégrale impropre suivante, utile par exemple en calcul des probabilités pour définir la densité gaussienne :

$$\int_0^{+\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}.$$

2.5 Application à l'étude de séries.

Proposition 2.5.1 Soit $f \in C_M([1, +\infty[, \mathbb{R}_+)])$ une application décroissante. Alors la série $\sum_{n\geq 1} f(n)$ et l'intégrale impropre $\int_1^{+\infty} f(t) dt$ sont de même nature. En outre, nous avons :

- 1. Si $\int_1^{+\infty} f(t) dt$ diverge, alors $S_n := \sum_{k=1}^n f(k) \sim \int_1^n f(t) dt$.
- 2. Si $\int_{1}^{+\infty} f(t) dt$ converge et si la condition suivante est satisfaite

$$\lim_{n \to +\infty} \frac{\int_{n+1}^{+\infty} f(t) dt}{\int_{n}^{+\infty} f(t) dt} = 1$$

alors
$$R_n := \sum_{k=n+1}^{+\infty} f(k) \sim \int_n^{+\infty} f(t) dt$$
.

Remarque: Si $\int_1^{+\infty} f(t) dt$ converge, nous savons que la suite $\left(\int_n^{+\infty} f(t) dt\right)$ converge vers 0 en décroissant. La condition énoncée dans le deuxième point exprime que cette convergence est *lente* (le lecteur pourra se reporter aux définitions générales dans [DAN 147]). Si cette condition n'est pas respectée, la conclusion tombe en défaut comme le montre le contre-exemple suivant : Si $f(t) = e^{-t}$ pour tout $t \in [1, +\infty[$, alors on trouve

$$\forall n \in \mathbb{N} \quad R_n = \frac{e^{-n}}{e-1} \text{ et } \int_n^{+\infty} f(t) dt = e^{-n}$$

donc les suites (R_n) et $\left(\int_n^{+\infty} f(t) dt\right)$ ne sont pas équivalentes.

La démonstration de la proposition précédente passe par un lemme que nous allons maintenant prouver, laissant le lecteur se reporter à [DAN 242-244] pour le reste de la démonstration.

Lemme 2.5.2 Soit $f \in C_M([1, +\infty[, \mathbb{R}_+)])$ une application décroissante. Nous définissons la suite $(u_n)_{n \in \mathbb{N}^*}$ par

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n f(k) - \int_1^n f(t) dt.$$

Alors la suite $(u_n)_{n\in\mathbb{N}^*}$ est positive et décroissante donc convergente.

Démonstration: Par décroissance de l'application f, nous avons, pour tout $k \in \mathbb{N}^*$,

$$\forall t \in [k, k+1] \quad f(k+1) \le f(t) \le f(k).$$

Par croissance de l'intégrale de Riemann, nous en déduisons

$$\forall k \in \mathbb{N}^* \quad f(k+1) \le \int_k^{k+1} f(t) \, dt \le f(k). \tag{2.2}$$

Nous remarquous maintenant que, pour tout $n \in \mathbb{N}^*$,

$$u_{n+1} - u_n = f(n+1) - \int_n^{n+1} f(t) dt \le 0,$$

cette dernière inégalité résultant de (2.2). Ceci prouve la décroissance de la suite $(u_n)_{n\in\mathbb{N}^*}$.

53

En outre, il est évident que $u_1 \ge 0$ et, en utilisant encore (2.2), nous obtenons

$$\forall n \ge 2 \quad u_n = \sum_{k=1}^{n-1} \left(f(k) - \int_k^{k+1} f(t) \, dt \right) + f(n) \ge 0,$$

ce qui nous permet de conclure.

Corollaire 2.5.3 La suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=1}^n \frac{1}{k} - \log n$$

est convergente. Sa limite est notée γ et appelée constante d'Euler.

Démonstration: Il suffit d'appliquer la proposition précédente avec f définie par

$$\forall x \in [1, +\infty[\quad f(x) = \frac{1}{x}]$$

qui est une application continue décroissante et positive, admettant pour primitive le logarithme népérien.

Remarque: Une valeur approchée de la constante d'Euler est $\gamma \approx 0,577$. On ne sait pas à l'heure actuelle si γ est rationnel ou non.

Une application classique de la proposition 2.5.1 est donnée dans l'exemple suivant. Le lecteur pourra démontrer les résultats à titre d'exercice ou se référer à [DAN 244-245].

Exemple : Séries de Riemann Soit $\alpha \in \mathbb{R}$. La série de Riemann

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

converge si et seulement si $\alpha > 1$ et, dans ce cas,

$$R_n := \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \sim \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

Pour $\alpha \in]0,1[$ (cas de divergence) on a

$$S_n := \sum_{k=1}^n \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha}$$

Enfin, le cas $\alpha = 1$ (cas de divergence) a déja été traité dans le corollaire 2.5.3 qui nous donne un résultat plus précis que la simple équivalence $S_n \sim \log n$.

En utilisant l'intégrale de Bertrand, le lecteur pourra démontrer le résultat suivant, qui est traité dans [CMP 229].

Exemple : Séries de Bertrand Pour tout $(\alpha, \beta) \in \mathbb{R}^2$ fixé, la série

$$\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} (\log n)^{\beta}}$$

converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

En utilisant le même genre de technique que pour prouver le lemme 2.5.2, on obtient [GOU 155] :

Proposition 2.5.4 Soit $f \in C_M(\mathbb{R}, \mathbb{R})$ une application décroissante telle que l'intégrale $\int_0^{+\infty} f$ converge et est non nulle. Alors, pour tout t > 0, la série $\sum_{n \in \mathbb{N}^*} f(nt)$ converge et nous avons l'équivalent suivant lorsque $t \to 0+$:

$$\sum_{n=1}^{+\infty} f(nt) \sim \frac{1}{t} \int_0^{+\infty} f$$

En appliquant cette proposition avec $f(t) = \exp(-t^2)$, on peut établir l'équivalent suivant lorsque $x \to 1-$:

$$\sum_{n=1}^{+\infty} x^{n^2} \sim \frac{\sqrt{\pi}}{2\sqrt{1-x}}$$

En utilisant la formule de Taylor avec reste intégral, on peut démontrer la proposition suivante [GOU 217] :

Proposition 2.5.5 Soit $f \in C^1(\mathbb{R}_+^*, \mathbb{C})$ telle que :

$$\int_{1}^{+\infty} |f'(t)| \, dt < +\infty$$

Alors la série $\sum_{n\in\mathbb{N}^*} f(n)$ a la même nature que la suite $(\int_1^n f)_{n\in\mathbb{N}}$.

On peut appliquer ce résultat à l'étude de la série suivante [GOU 217-218] en fonction du paramètre $\alpha>0$:

$$\sum_{n \in \mathbb{N}^*} \frac{e^{i\sqrt{n}}}{n^{\alpha}}$$

55

En utilisant une comparaison série-intégrale, on peut établir l'existence d'une constante C > 0 telle que $n! \sim C n^n e^{-n} \sqrt{n}$. La formule de Wallis permet alors d'identifier cette constante C pour en déduire [CMP 260-261] :

Proposition 2.5.6 (Formule de Stirling) Nous avons l'équivalent suivant lorsque n tend vers l'infini :

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

Chapitre 3

Intégration sur un intervalle quelconque

Dans tout ce chapitre, I désigne un intervalle réel non vide et nous notons encore $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Rappelons qu'une application $f: I \to \mathbb{K}$ est dite continue par morceaux sur l'intervalle I, ce que l'on note $f \in C_M(I, \mathbb{K})$, si f est continue par morceaux sur tout segment inclus dans I.

3.1 Fonctions intégrables

Nous ne ferons qu'énoncer ici les définitions et résultats essentiels sur le sujet. Le lecteur est donc encouragé à étudier l'intégrabilité d'une fonction sur un intervalle quelconque dans [DAN 465-472] ou encore dans [CMP 154-177] qui la traite en détail, parfois d'une façon redondante avec ce que nous avons vu dans le chapitre sur les intégrales impropres.

3.1.1 Le cas positif

Définition 3.1.1 Soit $f \in C_M(I, \mathbb{R}_+)$; on appelle intégrale de l'application positive f sur l'intervalle I l'élément de \mathbb{R}_+ suivant :

$$\int_{I} f = \sup_{[a,b] \subset I} \int_{a}^{b} f(t) dt$$

On dit que l'application f est intégrable sur I si $\int_I f < +\infty$.

La proposition suivante fait le lien entre la notion d'intégrabilité sur un intervalle quelconque I que nous venons d'introduire et celle de convergence d'une intégrale impropre que nous avons étudiée dans le chapitre précédent.

Proposition 3.1.2 Soit $f \in C_M(I, \mathbb{R}_+)$. Alors f est intégrable sur I si et seulement si l'intégrale impropre de f sur I est convergente. Dans ce cas, les deux intégrales sont égales.

Pour fixer les idées, prenons par exemple le cas où $I =]c, +\infty[$. D'après cette proposition, nous avons l'équivalence :

$$\sup_{[a,b]\subset]c,+\infty[}\int_a^b f(t)\,dt<+\infty\iff \text{L'intégrale impropre }\int_c^{+\infty} f(t)\,dt\text{ converge }$$

et dans ce cas, nous avons l'égalité:

$$\sup_{[a,b]\subset]c,+\infty[} \int_a^b f(t) dt = \int_c^{+\infty} f(t) dt \quad ,$$

ce que nous notons :

$$\int_{]c,+\infty[} f = \int_c^{+\infty} f(t) dt$$

3.1.2 Le cas réel

Rappelons ici que, pour tout nombre réel x, nous définissons sa partie positive $x^+ = \sup(x, 0)$ et sa partie négative $x^- = \sup(-x, 0)$, d'où les égalités :

$$\forall x \in \mathbb{R} \quad x = x^+ - x^- \text{ et } |x| = x^+ + x^-$$

Par composition, nous définirons donc pour $f \in C_M(I, \mathbb{R})$ les deux applications $f^+ \in C_M(I, \mathbb{R}_+)$ et $f^- \in C_M(I, \mathbb{R}_+)$ par $f^+(x) := \sup(f(x), 0)$ et $f^-(x) := \sup(-f(x), 0)$.

Définition et proposition 3.1.3 Une application $f \in C_M(I, \mathbb{R})$ est dite intégrable si l'application positive |f| est intégrable sur I. Ceci équivaut à l'intégrabilité des deux applications positives f^+ et f^- sur I.

Dans ce cas, nous appellerons intégrale de l'application f sur l'intervalle I le réel suivant :

$$\int_I f = \int_I f^+ - \int_I f^-$$

Comme précédemment, nous allons faire le lien entre cette notion et celle de convergence d'une intégrale impropre.

Proposition 3.1.4 Soit $f \in C_M(I, \mathbb{R})$. Alors f est intégrable sur I si et seulement si l'intégrale impropre de f sur I est <u>absolument</u> convergente. Dans ce cas, $\int_I f$ et l'intégrale impropre de f sur I sont égales.

Si nous considérons par exemple l'application $f: \mathbb{R}_+ \to \mathbb{R}$ définie par f(0) := 1 et $f(t) := \frac{\sin t}{t}$ si $t \in \mathbb{R}_+^*$, nous savons que l'intégrale impropre $\int_0^{+\infty} f(t) \, dt$ est semi-convergente. L'application f n'est donc pas intégrable sur $I = \mathbb{R}_+$ et l'écriture $\int_{\mathbb{R}_+} f$ n'a pas de sens!

3.1.3 Le cas complexe

le nombre complexe suivant :

Pour tout nombre complexe z, nous noterons $\Re z$ sa partie réelle et $\Im z$ sa partie imaginaire.

Définition et proposition 3.1.5 Une application $f \in C_M(I,\mathbb{C})$ est dite intégrable si l'application positive |f| est intégrable sur I. Ceci équivaut à l'intégrabilité des deux applications réelles $\Re f$ et $\Im f$ sur I. Dans ce cas, nous appellerons intégrale de l'application f sur l'intervalle I

$$\int_{I} f = \int_{I} \Re f + i \int_{I} \Im f$$

Le lecteur pourra vérifier facilement l'équivalence qui vient d'être énoncée en utilisant les trois inégalités suivantes, valables pour tout $z \in \mathbb{C}$: $|\Re z| \leq |z|$, $|\Im z| \leq |z|$, $|z| \leq |\Re z| + |\Im z|$.

Proposition 3.1.6 Soit $f \in C_M(I,\mathbb{C})$. Alors f est intégrable sur I si et seulement si l'intégrale impropre de f sur I est <u>absolument</u> convergente. Dans ce cas, $\int_I f$ et l'intégrale impropre de f sur I sont égales.

3.2 Théorèmes de convergence

Les deux théorèmes suivants, dont la démonstration relève de la théorie de la mesure et de l'intégration abstraite de Lebesgue, sont admis.

Théorème 3.2.1 (de convergence monotone) Soit $(f_n) \in (C_M(I, \mathbb{R}_+))^{\mathbb{N}}$ une suite croissante d'applications positives intégrables sur I qui converge simplement vers $f \in C_M(I, \mathbb{R}_+)$. Alors, nous avons l'égalité

$$\int_{I} f(t) dt = \lim_{n \to +\infty} \int_{I} f_n(t) dt \in \bar{\mathbb{R}}_{+}$$

60CHAPITRE 3. INTÉGRATION SUR UN INTERVALLE QUELCONQUE

Remarques

- 1. En particulier, l'application f est intégrable sur I si et seulement si la suite $\left(\int_{I} f_n(t) dt\right)_{n \in \mathbb{N}}$ est majorée.
- 2. On note parfois cette égalité sous la forme

$$\int_{I} \lim \uparrow f_n = \lim \uparrow \int_{I} f_n$$

Application 3.2.2 Soit $(u_n) \in (C_M(I, \mathbb{R}_+))^{\mathbb{N}}$ une suite d'applications positives intégrables sur I telle que la série $\sum u_n$ converge simplement vers $S = \sum_{n=0}^{+\infty} u_n \in C_M(I, \mathbb{R}_+)$. Alors, on a l'égalité :

$$\int_{I} \sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \int_{I} u_n$$

Démonstration: On applique le théorème précédent avec :

$$\forall n \in \mathbb{N} \quad f_n := \sum_{k=0}^n u_k \text{ et } f := S$$

Remarque: En particulier, S est intégrable sur I si et seulement si la série $\sum \int_I u_n$ converge.

Exemple: En faisant deux intégrations par parties successives, on démontre facilement :

$$\forall n \in \mathbb{N}^* \quad I_n := \int_0^{+\infty} e^{-nx} x^2 \, dx = \frac{2}{n^3}$$

Nous en déduisons que $\sum_n I_n$ converge. Comme d'autre part la série d'applications $\sum e^{-nx}x^2$ converge simplement sur $]0, +\infty[$ vers $S \in C^0(]0, +\infty[, \mathbb{R}_+)$ définie par $S(x) = x^2/(e^x - 1)$, nous déduisons de l'application 3.2.2 :

$$\int_0^{+\infty} \frac{x^2}{e^x - 1} \, dx = \sum_{n=1}^{+\infty} \frac{2}{n^3} = 2\,\zeta(3)$$

61

Exercice : Référence : "Théorie de l'intégration" par Marc BRIANE et Gilles PAGÈS chez Vuibert, pages 126-127.

1. Pour tout $n \in \mathbb{N}^*$, nous définissons l'application $g_n : [0, n] \to \mathbb{R}$ par

$$g_n(x) := (n+1)\log\left(1 - \frac{x}{n+1}\right) - n\log\left(1 - \frac{x}{n}\right),$$

Montrer que $g_n' \geq 0$, puis que $g_n \geq 0$ et en déduire l'inégalité

$$\forall x \in [0, n[\quad \left(1 - \frac{x}{n}\right)^n \le \left(1 - \frac{x}{n+1}\right)^{n+1}.$$

2. Pour tout $n \in \mathbb{N}^*$, nous définissons l'application $f_n : \mathbb{R}_+ \to \mathbb{R}_+$ par

$$f_n(x) := \mathbf{1}_{[0,n]}(x) \left(1 - \frac{x}{n}\right)^n.$$

Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers l'application $f: \mathbb{R}_+ \to \mathbb{R}_+$ définie par $f(x) = \exp(-x)$.

3. Pour tout $\alpha \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, nous définissons l'intégrale

$$I_n^{\alpha} := \int_0^n \left(1 - \frac{x}{n}\right)^n \exp(\alpha x) \, dx.$$

Montrer que la suite $(I_n^{\alpha})_{n\in\mathbb{N}^*}$ converge si et seulement si $\alpha < 1$ et que, dans ce cas,

$$\lim_{n \to +\infty} I_n^{\alpha} = \frac{1}{1 - \alpha}.$$

Théorème 3.2.3 (de convergence dominée) $Soit(f_n) \in (C_M(I,\mathbb{C}))^{\mathbb{N}}$ une suite d'applications qui converge simplement vers $f \in C_M(I,\mathbb{C})$. On suppose qu'il existe une application $g \in C_M(I,\mathbb{R}_+)$ intégrable sur I telle que :

$$\forall n \in \mathbb{N} \quad \forall t \in I \quad |f_n(t)| \le g(t).$$

Alors l'application f est intégrable sur I et nous avons l'égalité

$$\int_{I} f(t) dt = \lim_{n \to +\infty} \int_{I} f_n(t) dt.$$

Remarques

- 1. C'est l'existence d'une telle application g qui est l'hypothèse essentielle : on l'appelle «majorant intégrable» ou parfois «chapeau intégrable».
- 2. Les intégrales du membre de droite sont bien définies car l'existence du majorant intégrable implique l'intégrabilité des applications f_n , $n \in \mathbb{N}$.

Exercice proposé: Intégrale de Gauss Le lecteur pourra traiter à titre d'exercice cette application du théorème de convergence dominée, développée en détail dans [DAN 475-476].

Le changement de variable $t=\sqrt{n}\cos x$ permet de démontrer l'égalité suivante pour tout $n\in\mathbb{N}^*$:

$$\sqrt{n} \int_0^{\pi/2} \sin^{2n+1} x \, dx = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n} \right)^n dt.$$

Un raisonnement de concavité permet de prouver la majoration $\log(1+u) \leq u$ pour tout u > -1, d'où :

$$\forall t \in [0, \sqrt{n}[\quad \left(1 - \frac{t^2}{n}\right)^n \le e^{-t^2}$$

qui nous fournit un majorant intégrable nous permettant de prouver, grâce au théorème de convergence dominée,

$$\lim_{n \to +\infty} \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n} \right)^n dt = \int_0^{+\infty} e^{-t^2} dt.$$

En utilisant la formule de Wallis

$$\int_0^{\pi/2} \sin^p x \, dx \sim \sqrt{\frac{\pi}{2p}},$$

nous en déduisons l'égalité suivante

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2},$$

qui est utile par exemple en calcul des probabilités pour définir la $loi\ de$ Gauss.

Corollaire 3.2.4 (Intégration terme à terme) Soit $(u_n) \in (C_M(I,\mathbb{C}))^{\mathbb{N}}$ une suite d'applications intégrables sur I telle que la série $\sum u_n$ converge simplement vers $S = \sum_{n=0}^{+\infty} u_n \in C_M(I,\mathbb{C})$ et telle que la série $\sum \int_I |u_n|$ converge. Alors S est intégrable sur I et l'on a:

$$\int_{I} \sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \int_{I} u_n$$

Démonstration: L'idée est d'appliquer le théorème précédent en posant, pour tout $n \in \mathbb{N}$, $f_n := \sum_{k=0}^n u_k$ et en utilisant le majorant $g := \sum |u_n|$. Notons que nos hypothèses ne garantissent pas que g soit continue par morceaux sur I. Nous admettrons (cela relève de la théorie de la mesure) que l'on peut donner néanmoins un sens à $\int_I g$ et que ceci nous permet de conclure.

Exemple: En procédant comme dans l'exemple qui suit l'application 3.2.2, on démontre l'égalité :

$$\int_0^{+\infty} \frac{\sin x}{e^x - 1} \, dx = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

On est amené à prouver la convergence de la série $\sum_{n\geq 1} \int_0^{+\infty} |\sin x| e^{-nx} dx$ en utilisant la majoration $|\sin x| \leq x$. On termine le calcul grâce à deux intégrations par parties successives.

En fait, le théorème de convergence dominée reste valable sous l'hypothèse plus faible que toute les applications en jeu sont réglées au lieu d'être continues par morceaux. Ceci justifie l'application suivante [BP 136] :

Application 3.2.5 (Intégration d'une dérivée bornée) Soit f une fonction partout dérivable sur [a,b], à valeurs dans \mathbb{K} et de dérivée $f' \in \mathcal{R}([a,b],\mathbb{K})$. Alors, nous avons l'égalité :

$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$

Démonstration: Nous notons d'abord que, quitte à introduire l'application $g:[0,1] \to \mathbb{K}$ définie par

$$\forall x \in [0,1] \quad g(x) = f(a + (b-a)x),$$

et à faire un simple changement de variable, nous pouvons supposer a=0 et b=1 sans perte de généralité.

Nous introduisons alors la suite $(f_n)_{n\in\mathbb{N}^*}$ d'applications de [0,1] dans \mathbb{K} définies par :

$$\forall x \in \left[0, 1 - \frac{1}{n}\right] f_n(x) = n\left(f\left(x + \frac{1}{n}\right) - f(x)\right) \text{ et } \forall x \in \left]1 - \frac{1}{n}, 1\right] f_n(x) = 0$$

Pour tout $n \in \mathbb{N}^*$, nous vérifions facilement que $f_n \in C_M([0,1], \mathbb{K})$ puisque f est dérivable donc a fortiori continue sur [0,1].

En outre, nous constatons immédiatement que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur [0,1[vers f'.

Comme $M:=\sup_{[0,1]}|f'|$ est fini par hypothèse, le théorème des accroissements finis nous donne :

$$\forall n \in \mathbb{N}^* \quad \forall x \in [0,1] \quad |f_n(x)| \le M$$

Puisque l'application constante égale à M est intégrable sur [0,1], le théorème de convergence dominée nous donne

$$\int_{0}^{1} f'(x) \, dx = \lim_{x \to \infty} \int_{0}^{1} f_n(x) \, dx$$

Pour conclure, nous allons préciser la valeur du membre de droite. Nous calculons d'abord, à l'aide d'un simple changement de variable :

$$\int_0^1 f_n(x) dx = n \int_0^{1-\frac{1}{n}} f\left(x + \frac{1}{n}\right) dx - n \int_0^{1-\frac{1}{n}} f(x) dx$$
$$= n \int_{\frac{1}{n}}^1 f(x) dx - n \int_0^{1-\frac{1}{n}} f(x) dx$$

Introduisons maintenant l'application $F:[0,1]\to\mathbb{K}$ définie par

$$\forall x \in [0,1] \quad F(x) = \int_0^x f(t) dt$$

qui est une primitive de l'application continue f. Nous avons alors :

$$\int_0^1 f_n(x) dx = n \left(F(1) - F\left(1 - \frac{1}{n}\right) \right) - n \left(F\left(\frac{1}{n}\right) - F(0) \right),$$

d'où l'égalité suivante, qui nous permet de conclure :

$$\lim_{x \to 0} \int_0^1 f_n(x) \, dx = F'(1) - F'(0) = f(1) - f(0)$$

Remarque: On déduit de cette application que, si $f \in \mathcal{R}([a,b],\mathbb{K})$ admet une primitive F sur [a,b], alors celle-ci est nécessairement de la forme :

$$\forall x \in [a,b] \quad F(x) = \int_a^x f(t) dt + C$$
, où C est une constante

En effet, notons pour l'instant $G:[a,b]\to\mathbb{K}$ l'application définie par

$$\forall x \in [a, b] \quad G(x) = \int_{a}^{x} f(t) dt$$

Puisque F est une primitive de f sur [a,b], nous avons $F'=f\in\mathcal{R}([a,b],\mathbb{K})$ si bien que, d'après l'application précédente, pour tout $x\in[a,b]$

$$G(x) = \int_{a}^{x} f(t) dt = \int_{a}^{x} F'(t) dt = F(x) - F(a)$$

d'où la conclusion.

Les deux théorèmes qui vont apparaître dans le paragraphe suivant sont des exemples importants d'application du théorème de convergence dominée.

3.3 Intégrale dépendant d'un paramètre

Dans toute cette section, I et J désignent des intervalles réels d'intérieurs non vides (i.e. ces intervalles ne sont ni vides ni réduits à un point).

3.3.1 Étude de la continuité

Cette étude repose sur le théorème suivant :

Théorème 3.3.1 (de continuité) Considérons $f: I \times J \to \mathbb{C}$ telle que, pour tout $t \in J$ fixé, l'application $x \mapsto f(x,t)$ est continue sur I et, pour tout $x \in I$ fixé, l'application $t \mapsto f(x,t)$ est continue par morceaux sur J. Supposons que l'hypothèse suivante, dite de domination, est satisfaite : II existe $g \in C_M(J, \mathbb{R}_+)$ intégrable sur J telle que

$$\forall (x,t) \in I \times J \quad |f(x,t)| \le g(t)$$

Nous pouvons alors définir l'application $F: I \to \mathbb{C}$ par :

$$\forall x \in I \quad F(x) = \int_J f(x, t) dt$$

et cette application F est continue sur l'intervalle I.

Démonstration: Notons d'abord que l'hypothèse de domination implique l'intégrabilité de $t \mapsto f(x,t)$ sur J, ce qui nous permet de définir F.

Soit $x \in I$ arbitraire fixé. Nous allons montrer que F est continue au point x en utilisant la caractérisation séquentielle de la continuité.

Considérons donc une suite $(x_n) \in I^{\mathbb{N}}$ qui converge vers x et définissons, pour tout $n \in \mathbb{N}$, une application $f_n : J \to \mathbb{C}$ par $f_n(t) = f(x_n, t)$.

Nos hypothèses impliquent que $f_n \in C_M(J, \mathbb{C})$ pour tout entier n.

De même, définissons $f^x \in C_M(J, \mathbb{C})$ par $f^x(t) = f(x, t)$. Nos hypothèses entraînent que la suite d'applications $(f_n)_{n \in \mathbb{N}}$ converge simplement sur J vers l'application f^x .

En outre, l'application g nous fournit un majorant intégrable puisque :

$$\forall n \in \mathbb{N} \quad \forall t \in J \quad |f_n(t)| \le g(t).$$

Les conditions sont donc réunies pour appliquer le théorème de convergence dominée, qui nous donne :

$$\lim_{n \to +\infty} \int_{I} f_n(t) dt = \int_{I} f^x(t) dt,$$

ce qui s'écrit encore :

$$\lim_{n \to +\infty} F(x_n) = F(x).$$

Nous en déduisons la continuité de l'application F au point x. Finalement, comme x avait été fixé arbitrairement dans I, nous concluons : $F \in C(I, \mathbb{C})$.

Exercice: Pb 5.2 de [CMP 346] paragraphe I.

Pour toute application $f \in C_M(\mathbb{R}, \mathbb{C})$ intégrable sur $]-\infty, +\infty[$, nous définissons sa transformée de Fourier $\mathcal{F}f : \mathbb{R} \to \mathbb{C}$ par :

$$\forall x \in \mathbb{R} \quad \mathcal{F}f(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-ixt} dt$$

Montrer que $\mathcal{F}f$ est continue et bornée sur \mathbb{R} .

Remarque: La continuité étant une propriété locale, nous obtenons la même conclusion sous une hypothèse plus faible, dite de domination locale : Pour tout segment K inclus dans I, il existe une application $g_K \in C_M(J, \mathbb{R}_+)$ intégrable sur J et telle que

$$\forall (x,t) \in K \times J \quad |f(x,t)| \le g_K(t).$$

En effet, ceci entraîne la continuité de l'application F sur tout segment K inclus dans I et nous en déduisons sa continuité en tout point de I. Le lecteur trouvera la preuve formelle dans [CMP 191] mais nous pourrons aussi simplement en appliquer l'idée au cas par cas, comme nous allons le voir dans l'exemple suivant.

Application à la fonction Γ d'Euler Nous allons justifier la définition de la fonction $\Gamma: \mathbb{R}_+^* \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^* \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \, dt$$

et montrer que cette fonction est continue sur \mathbb{R}_{+}^{*} .

Soit x>0 fixé; montrons que $\Gamma(x)$ est bien définie. Puisque l'application $t\mapsto t^{x-1}e^{-t}$ est continue sur $]0,+\infty[$, il reste à étudier la convergence de l'intégrale impropre en 0 et $+\infty$. Comme nous avons l'équivalence suivante lorsque $t\to 0+$:

$$t^{x-1}e^{-t} \sim t^{x-1}$$
.

avec x-1 > -1, nous obtenons par comparaison avec l'exemple de Riemann la convergence de notre intégrale impropre en 0.

Pour étudier la convergence de l'intégrale impropre en $+\infty$, nous utilisons

$$\lim_{t \to +\infty} t^{x+1} e^{-t} = 0,$$

pour en déduire

$$\exists T>0 \quad \forall t\geq T \quad t^{x-1}e^{-t}\leq \frac{1}{t^2},$$

ce qui nous donne la convergence de notre intégrale impropre en $+\infty$ par comparaison avec l'exemple de Riemann.

Considérons maintenant un segment $[a,b] \subset \mathbb{R}_+^*$. L'application $(x,t) \mapsto t^{x-1}e^{-t}$ est clairement continue sur $[a,b] \times \mathbb{R}_+^*$. En outre, nous avons la majoration suivante :

$$\forall (x,t) \in [a,b] \times \mathbb{R}_{+}^{*} \quad |t^{x-1}e^{-t}| \le (t^{a-1} + t^{b-1})e^{-t},$$

cette dernière application étant intégrable sur $]0, +\infty[$ d'après ce qui précède. Le théorème 3.3.1 nous donne alors la continuité de l'application Γ sur [a,b]. Enfin, ce segment $[a,b] \subset \mathbb{R}_+^*$ ayant été choisi de façon arbitraire, nous en déduisons la continuité de la fonction Gamma d'Euler sur \mathbb{R}_+^* .

68CHAPITRE 3. INTÉGRATION SUR UN INTERVALLE QUELCONQUE

Le lecteur montrera facilement à l'aide d'une intégration par parties généralisée l'égalité suivante :

$$\forall x \in \mathbb{R}_+^* \quad \Gamma(x+1) = x \, \Gamma(x)$$

et il en déduira, par une simple récurrence, les valeurs particulières prises par la fonction Gamma d'Euler sur les entiers :

$$\forall n \in \mathbb{N}^* \quad \Gamma(n) = (n-1)!$$

Résumons-nous:

Proposition 3.3.2 On définit bien une application $\Gamma: \mathbb{R}_+^* \to \mathbb{R}$ en posant :

$$\forall x \in \mathbb{R}_+^* \quad \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} \, dt$$

En outre, $\Gamma \in C^0(\mathbb{R}_+^*, \mathbb{R})$, $\Gamma(1) = 1$ et on a l'égalité :

$$\forall x \in \mathbb{R}_+^* \quad \Gamma(x+1) = x \, \Gamma(x)$$

Exercice: [CMP 306] Grâce au thm de convergence monotone, établir :

$$\forall x \in \mathbb{R}_+^* \quad \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt \xrightarrow[n \to +\infty]{} \Gamma(x)$$

En déduire la proposition suivante.

Proposition 3.3.3 (Formule d'Euler-Gauss)

$$\forall x \in \mathbb{R}_+^* \quad \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\cdots(x+n)}$$

La formule d'Euler-Gauss permet d'établir le lien suivant entre la constante γ d'Euler et la fonction Γ d'Euler [CMP 306] :

Corollaire 3.3.4 (Formule de Weierstrass) Pour tout $x \in \mathbb{R}_+^*$, nous avons :

$$\frac{1}{\Gamma(x)} = x \exp(\gamma x) \prod_{n=1}^{+\infty} \left[\left(1 + \frac{x}{n} \right) \exp\left(-\frac{x}{n} \right) \right]$$

3.3.2 Étude de la dérivabilité

Théorème 3.3.5 (de dérivation) Considérons $f: I \times J \to \mathbb{C}$ telle que, pour tout $x \in I$ fixé, l'application $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur J.

Nous pouvons alors définir l'application $F: I \to \mathbb{C}$ par :

$$\forall x \in I \quad F(x) = \int_{I} f(x, t) dt$$

Supposons en outre que, pour tout $t \in J$ fixé, l'application $x \mapsto f(x,t)$ est dérivable (resp. de classe C^1) sur I et que, pour tout $x \in I$ fixé, l'application $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur J.

Si l'hypothèse (de domination) suivante est satisfaite :

Il existe $q \in C_M(J, \mathbb{R}_+)$ intégrable sur J telle que

$$\forall (x,t) \in I \times J \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \le g(t)$$

alors l'application F est dérivable (resp. de classe C^1) sur I, de dérivée :

$$\forall x \in I \quad F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$
 (3.1)

Démonstration: Soit $x \in I$ fixé. Comme dans le théorème précédent, c'est par une caractérisation séquentielle que nous allons démontrer la dérivabilité de l'application F au point x et exprimer sa dérivée.

Nous considérons donc une suite $(x_n) \in (I - \{x\})^{\mathbb{N}}$ qui converge vers x et, pour tout $n \in \mathbb{N}$, nous définissons une application $h_n : J \to \mathbb{C}$ par

$$\forall t \in J \quad h_n(t) = \frac{f(x_n, t) - f(x, t)}{x_n - x}$$

de sorte que

$$\frac{F(x_n) - F(x)}{x_n - x} = \int_I h_n(t) dt.$$
 (3.2)

Nous aimerions appliquer le théorème de convergence dominée à l'intégrale du membre de droite afin de prouver que le membre de gauche admet une limite. La suite (x_n) étant arbitraire, ceci entraînera la dérivabilité de l'application F au point x par caractérisation séquentielle d'une limite.

Pour cela, nous remarquons d'abord que les hypothèses sur f impliquent :

$$\forall t \in J \quad \lim_{n \to +\infty} h_n(t) = \frac{\partial f}{\partial x}(x, t).$$

Nous cherchons maintenant un majorant intégrable. L'hypothèse de domination et *l'inégalité des accroissements finis* nous donnent :

$$\forall t \in J \quad \forall n \in \mathbb{N} \quad |h_n(t)| \le g(t).$$

Nous pouvons donc appliquer le théorème de convergence dominée pour passer à la limite lorsque n tend vers l'infini dans l'égalité (3.2) et obtenir

$$\lim_{n \to +\infty} \frac{F(x_n) - F(x)}{x_n - x} = \lim_{n \to +\infty} \int_J h_n(t) \, dt = \int_J \frac{\partial f}{\partial x}(x, t) \, dt$$

ce qui prouve la dérivabilité de l'application F au point x et nous donne l'égalité (3.1).

Si, en outre, l'application $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur I, notre hypothèse de domination permet de démontrer la continuité de F' grâce à l'égalité (3.1) et au théorème 3.3.1.

Application : Transformée de Fourier Pb 5.2 de [CMP 346] V 1)3). Soit $n \in \mathbb{N}^*$ et $f \in C_M(\mathbb{R}, \mathbb{C})$ telle que les applications $f, f_1 : t \mapsto tf(t), \cdots, f_n : t \mapsto t^n f(t)$ soient toutes intégrables sur $]-\infty, +\infty[$. Alors $\mathcal{F}f \in C^n(\mathbb{R}, \mathbb{C})$ et :

$$\forall k \in \{1, \dots, n\} \quad \forall x \in \mathbb{R} \quad (\mathcal{F}f)^{(k)}(x) = (-i)^k \mathcal{F}f_k(x)$$

Remarque: La dérivabilité étant une propriété locale, nous obtenons la même conclusion sous une hypothèse plus faible, dite de domination locale : Pour tout segment K inclus dans I, il existe une application $g_K \in C_M(J, \mathbb{R}_+)$ intégrable sur J et telle que

$$\forall (x,t) \in K \times J \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leq g_K(t).$$

En effet, ceci entraı̂ne la dérivabilité de l'application F sur tout segment K inclus dans I et l'égalité :

$$\forall x \in K \quad F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt.$$

Nous en déduisons la dérivabilité de F en tout point de I et l'égalité

$$\forall x \in I \quad F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt.$$

Application : Intégrale de Gauss [DAN 479-480] calcule l'intégrale de Gauss en établissant l'égalité F'+G'=0 pour les applications $F,G:\mathbb{R}\to\mathbb{R}$ définies par :

$$\forall x \in \mathbb{R} \quad F(x) = \int_0^1 \frac{\exp[-x^2(1+t^2)]}{1+t^2} dt \quad \text{et} \quad G(x) = \left(\int_0^x \exp(-t^2) dt\right)^2$$

3.4 La fonction Γ d'Euler

Nous avons introduit la fonction Γ d'Euler dans la proposition 3.3.2. En appliquant le théorème de dérivation 3.3.5 sous une hypothèse de domination locale, nous obtenons :

Proposition 3.4.1 La fonction Γ d'Euler est de classe C^{∞} sur \mathbb{R}_{+}^{*} et

$$\forall k \in \mathbb{N} \quad \forall x \in \mathbb{R}_+^* \quad \Gamma^{(k)}(x) = \int_0^{+\infty} (\log t)^k t^{x-1} e^{-t} dt.$$

Le lecteur trouvera la démonstration détaillée dans [CMP 200-202], qui établit des propriétés supplémentaires et trace l'allure de la courbe représentative de la fonction Γ .

En particulier, nous constatons immédiatement que $\Gamma'' \geq 0$ ce qui implique la convexité de Γ . En fait, nous avons même mieux :

Définition et proposition 3.4.2 Soient I un intervalle réel non trivial et $f: I \to \mathbb{R}_+^*$. On dit que l'application f est logarithmiquement convexe si l'application $\log f$ est convexe.

Toute application logarithmiquement convexe est convexe.

Démonstration: Soient $(x,y) \in I^2$ et $\lambda \in [0,1]$. Par hypothèse, on a :

$$\log f[\lambda x + (1 - \lambda)y] \le \lambda \log f(x) + (1 - \lambda) \log f(y)$$

Le logarithme étant une fonction concave, on en déduit :

$$\log f(\lambda x + (1 - \lambda)y) \le \log[\lambda f(x) + (1 - \lambda)f(y)]$$

On obtient alors le résultat voulu en passant à l'exponentielle dans cette dernière inégalité.

Remarque: Le lecteur constatera que la réciproque est fausse en prenant $f(x) = x^2$.

Proposition 3.4.3 La fonction Γ d'Euler est logarithmiquement convexe.

Démonstration: Comme nous avons les égalités

$$(\log \Gamma)'' = \left(\frac{\Gamma'}{\Gamma}\right)' = \frac{\Gamma\Gamma'' - (\Gamma')^2}{\Gamma^2} ,$$

il suffit de prouver que $(\Gamma'(x))^2 \leq \Gamma(x)\Gamma''(x)$ pour tout x>0. Or ceci résulte immédiatement de l'inégalité de Cauchy-Schwarz appliquée à $f(t)=t^{\frac{x-1}{2}}e^{-\frac{t}{2}}$ et $g(t)=\log t$ $t^{\frac{x-1}{2}}e^{-\frac{t}{2}}$:

$$\left(\int_0^{+\infty} \log t \ t^{x-1} e^{-t} \, dt\right)^2 \le \int_0^{+\infty} t^{x-1} e^{-t} \, dt \int_0^{+\infty} (\log t)^2 t^{x-1} e^{-t} \, dt$$

La notion de convexité logarithmique nous donne une caractérisation intéressante de la fonction Γ d'Euler :

Théorème 3.4.4 (Bohr-Mollerup) Soit $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ une application logarithmiquement convexe telle que f(1) = 1 et f(x+1) = xf(x) pour tout $x \in \mathbb{R}_+^*$. Alors $f = \Gamma$.

Le lecteur trouvera la démonstration de ce théorème dans [RUD 179-180] qui retrouve au passage la formule d'Euler-Gauss (cf. Proposition 3.3.3).

Corollaire 3.4.5 (Fonction Bêta) Nous pouvons bien définir une fonction $B: (\mathbb{R}^*_{+})^2 \to \mathbb{R}^*_{+}$ en posant :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2 \quad B(x,y) = \int_0^{+\infty} t^{x-1} (1-t)^{y-1} dt$$
 (3.3)

Nous avons alors l'égalité :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2 \quad B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 (3.4)

Le lecteur vérifiera facilement la première phrase par comparaison avec l'exemple de Riemann. Nous le renvoyons à [RUD 180-181] pour déduire l'égalité (3.4) du théorème précédent.

La formule de Stirling qui nous donne un équivalent de n! lorsque $n \to +\infty$ admet la généralisation suivante :

Proposition 3.4.6 (Formule de Stirling) Nous avons l'équivalence suivante lorsque $x \to +\infty$:

$$\Gamma(x+1) \sim \left(\frac{x}{e}\right)^x \sqrt{2\pi x}$$

Démonstration: [RUD 181-182]

74 CHAPITRE~3.~INT'EGRATION~SUR~UN~INTERVALLE~QUELCONQUE

Chapitre 4

Intégrales multiples

Nous ne donnerons dans ce chapitre que les définitions et résultats essentiels. Pour alléger les écritures, nous ne traiterons que le cas de l'intégrale double : tous les énoncés se généralisent sans difficulté aux intégrales multiples.

Le programme officiel précise que tous les théorèmes relatifs aux intégrales multiples (notamment Fubini et changement de variable) seront admis.

Le lecteur trouvera dans le chapitre 12 de [CMPSI 395-419] les énoncés qui se ramènent à des intégrales simples sur des segments, à savoir ceux qui concernent des intégrales multiples définies sur un sous-ensemble borné (et géométriquement simple) de \mathbb{R}^2 ou \mathbb{R}^3 ; des exercices sur ce thème se trouvent dans le chapitre 12 de [EMPSI 183-194].

Les énoncés qui font apparaître des fonctions intégrables sur des intervalles quelconques pourront être étudiés dans le chapitre 3 de [CMP 206-216] : ils permettent d'intégrer une application continue sur certains sous-ensembles non bornés de \mathbb{R}^2 ou \mathbb{R}^3 .

4.1 Intégrale double sur un domaine simple borné

Proposition et définition 4.1.1 Soit $f : [a, b] \times [c, d] \to \mathbb{K}$ continue. Alors nous avons l'égalité :

$$\int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy$$

La valeur commune de ces deux intégrales est appelée intégrale double de f sur le pavé $[a,b]\times [c,d]$ et notée :

$$\iint_{[a,b]\times[c,d]} f(x,y) \, dx \, dy$$

Définition 4.1.2 On appelle domaine simple du plan toute partie D de \mathbb{R}^2 qui vérifie l'une des deux propriétés suivantes :

1. Il existe $\phi_1, \phi_2 \in C_M([a,b], \mathbb{R})$ telles que :

$$D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ \phi_1(x) \le y \le \phi_2(x)\}$$
 (4.1)

2. Il existe $\psi_1, \psi_2 \in C_M([c,d], \mathbb{R})$ telles que :

$$D = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y)\}$$
 (4.2)

Proposition et définition 4.1.3 Considérons un domaine simple D du plan et une application continue $f: D \to \mathbb{K}$ continue. Nous définissons l'intégrale double de l'application f sur le domaine D comme suit :

1. Si D est de la forme (4.1),

$$\iint_D f(x,y) dx dy = \int_a^b \left(\int_{\phi_1(x)}^{\phi_2(x)} f(x,y) dy \right) dx$$

2. Si D est de la forme (4.2),

$$\iint_D f(x,y) dx dy = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy$$

Cette définition est cohérente en ce sens que si un domaine D peut s'écrire à la fois sous les formes (4.1) et (4.2), alors nous avons l'égalité :

$$\int_{a}^{b} \left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) \, dy \right) \, dx = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) \, dx \right) \, dy$$

L'intégrale double ainsi définie possède les propriétés de linéarité, positivité, croissance et satisfait les inégalités triangulaire et de Cauchy-Schwarz.

4.2 Intégrale double sur un produit d'intervalles quelconques

Dans toute la suite, I et I' désignent des intervalles réels non vides ni réduits à un point.

4.2.1 Le cas positif

Définition 4.2.1 Soit $f \in C(I \times I', \mathbb{R}_+)$. On appelle intégrale double de f sur $I \times I'$ l'élément de \mathbb{R}_+ :

$$\iint_{I\times I'} f = \sup\left\{\iint_{[a,b]\times[c,d]} f(x,y) \, dx \, dy; [a,b] \subset I, [c,d] \subset I'\right\} \le +\infty$$

On dit que f est intégrable sur $I \times I'$ si $\iint_{I \times I'} < +\infty$.

Remarque: Une application $f \in C(I \times I', \mathbb{R}_+)$ est donc intégrable s'il existe M > 0 tel que pour tous segments $[a, b] \subset I$ et $[c, d] \subset I'$,

$$\iint_{[a,b]\times[c,d]} f(x,y) \, dx \, dy \le M$$

Théorème 4.2.2 Soit $f \in C(I \times I', \mathbb{R}_+)$. On suppose que, pour tout $y \in I'$, l'application $x \mapsto f(x,y)$ est intégrable sur I, ce qui nous permet de définir l'application $y \mapsto \int_I f(x,y) dx$, que l'on suppose intégrable sur I'. Alors f est intégrable sur $I \times I'$ et on a l'éqalité :

$$\iint_{I \times I'} f = \int_{I'} \left(\int_{I} f(x, y) \, dx \right) \, dy$$

Symétriquement, nous avons aussi le résultat suivant :

Soit $f \in C(I \times I', \mathbb{R}_+)$. On suppose que, pour tout $x \in I$, l'application $y \mapsto f(x,y)$ est intégrable sur I', ce qui nous permet de définir l'application $x \mapsto \int_{I'} f(x,y) \, dy$, que l'on suppose intégrable sur I.

Alors f est intégrable sur $I \times I'$ et on a l'égalité :

$$\iint_{I \times I'} f = \iint_{I} \left(\int_{I'} f(x, y) \, dy \right) \, dx$$

Voici ce qu'il est important de retenir en substance :

Si toutes les conditions précédentes sont satisfaites, c'est-à-dire si l'on peut légitimement définir les deux intégrales suivantes :

$$\int_{I'} \left(\int_{I} f(x, y) \, dx \right) \, dy \text{ et } \int_{I} \left(\int_{I'} f(x, y) \, dy \right) \, dx$$

alors elles sont égales. L'intégrale double correspondante est encore égale à leur valeur commune. C'est le plus souvent sous cette forme que l'on utilisera ce théorème, dit de *Fubini-Tonelli*.

4.2.2 Le cas réel ou complexe

On adopte exactement la même démarche que celle utilisée dans le chapitre précédent pour définir l'intégrale d'une application sur un intervalle quelconque en partant du cas positif.

Définition et proposition 4.2.3 Une application $f \in C(I \times I', \mathbb{R})$ est dite intégrable si l'application positive |f| est intégrable sur $I \times I'$. Ceci équivaut à l'intégrabilité des deux applications positives f^+ et f^- sur $I \times I'$. Dans ce cas, nous appellerons intégrale de l'application f sur $I \times I'$ le réel :

$$\int_{I \times I'} f = \int_{I \times I'} f^+ - \int_{I \times I'} f^-$$

Définition et proposition 4.2.4 Une application $f \in C(I \times I', \mathbb{C})$ est dite intégrable si l'application positive |f| est intégrable sur $I \times I'$. Ceci équivaut à l'intégrabilité des deux applications réelles $\Re f$ et $\Im f$ sur $I \times I'$. Dans ce cas, nous appellerons intégrale de l'application f sur $I \times I'$ le nombre complexe suivant :

$$\int_{I \times I'} f = \int_{I \times I'} \Re f + i \int_{I \times I'} \Im f$$

L'intégrale double ainsi définie est linéaire et satisfait l'inégalité triangulaire. Dans le cas $\mathbb{K} = \mathbb{R}$, elle possède les propriétés de positivité et croissance et satisfait l'inégalité de Cauchy-Schwarz.

Théorème 4.2.5 Soit $f \in C(I \times I', \mathbb{K})$. Supposons que, pour tout $y \in I'$, l'application $x \mapsto f(x,y)$ est intégrable sur I, ce qui nous permet de définir l'application positive $y \mapsto \int_I |f(x,y)| dx$, que nous supposons intégrable sur I'. Alors f est intégrable sur $I \times I'$.

Si nous supposons en outre que l'application $y \mapsto \int_I f(x,y) dx$ est continue par morceaux sur I', alors elle est intégrable sur I' et nous avons l'égalité :

$$\iint_{I \times I'} f = \int_{I'} \left(\int_{I} f(x, y) \, dx \right) \, dy$$

Symétriquement, nous avons aussi le résultat suivant :

Soit $f \in C(I \times I', \mathbb{K})$. On suppose que, pour tout $x \in I$, l'application $y \mapsto f(x,y)$ est intégrable sur I', ce qui nous permet de définir l'application positive $x \mapsto \int_{I'} |f(x,y)| \, dy$, que l'on suppose intégrable sur I. Alors f est intégrable sur $I \times I'$.

4.2. INTÉGRALE DOUBLE SUR UN PRODUIT D'INTERVALLES QUELCONQUES79

Si, en outre, l'application $x \mapsto \int_{I'} f(x,y) dy$ est continue par morceaux sur I, alors elle est intégrable sur I et on a l'égalité :

$$\iint_{I \times I'} f = \iint_{I} \left(\int_{I'} f(x, y) \, dy \right) \, dx$$

Voici ce qu'il est important de retenir en substance : Si l'une des deux intégrales positives suivantes est finie

$$\int_{I'} \left(\int_{I} |f(x,y)| \ dx \right) \ dy \text{ ou } \int_{I} \left(\int_{I'} |f(x,y)| \ dy \right) \ dx$$

alors il y a égalité entre les deux intégrales suivantes

$$\int_{I'} \left(\int_{I} f(x, y) \, dx \right) \, dy \text{ et } \int_{I} \left(\int_{I'} f(x, y) \, dy \right) \, dx$$

sous réserve des conditions de continuité par morceaux assurant que ces intégrales sont bien définies. L'intégrale double correspondante est alors égale à cette valeur commune. C'est le théorème de *Fubini(-Lebesgue)*.

Remarque: Il est important de vérifier d'abord la condition d'intégrabilité sur |f|, sans quoi la dernière égalité peut tomber en défaut.

Par exemple, nous avons l'égalité :

$$\int_{1}^{+\infty} \left(\int_{1}^{+\infty} \frac{x - y}{(x + y)^{3}} \, dx \right) \, dy = \frac{1}{2}$$
 (4.3)

En effet,

$$\int_{1}^{+\infty} \frac{x+y-2y}{(x+y)^3} dx = \int_{1}^{+\infty} \frac{dx}{(x+y)^2} - y \int_{1}^{+\infty} \frac{2}{(x+y)^3} dx ,$$

ce qui s'écrit encore, en passant aux primitives :

$$\left[\frac{-1}{x+y}\right]_{x=1}^{x\to +\infty} - y \left[\frac{-1}{(x+y)^2}\right]_{x=1}^{x\to +\infty} = \frac{1}{1+y} - \frac{y}{(1+y)^2} = \frac{1}{(1+y)^2}$$

L'intégrale qui nous intéresse vaut donc :

$$\int_{1}^{+\infty} \frac{dy}{(1+y)^2} = \left[\frac{-1}{1+y}\right]_{y=1}^{y \to +\infty} = \frac{1}{2}$$

L'égalité (4.3) étant maintenant prouvée, nous pouvons y intervertir les variables (muettes) x et y pour obtenir :

$$\int_{1}^{+\infty} \left(\int_{1}^{+\infty} \frac{x - y}{(x + y)^{3}} \, dy \right) \, dx = -\frac{1}{2} \neq \int_{1}^{+\infty} \left(\int_{1}^{+\infty} \frac{x - y}{(x + y)^{3}} \, dx \right) \, dy$$

Nous en concluons que l'application f définie par $f(x,y) := \frac{x-y}{(x+y)^3}$ n'est pas intégrable sur $[1,+\infty[^2$.

4.3 Changement de variable

Nous admettons le théorème suivant :

Théorème 4.3.1 Soient U et V deux ouverts de \mathbb{R}^2 , $\Phi: U \to V$ un C^1 -difféomorphisme et $f: V \to \mathbb{R}$ une application positive et continue. Alors nous avons l'égalité suivante dans \mathbb{R}_+ :

$$\iint_{V} f(x,y) \, dx \, dy = \iint_{U} f(\Phi(s,t)) \, |J_{\Phi}(s,t)| \, ds \, dt$$

où J_{Φ} est le déterminant jacobien du C^1 -difféomorphisme Φ .

Ce théorème se démontre grâce à la théorie de la mesure et c'est dans le cadre de celle-ci que l'on peut définir les deux intégrales ci-dessus pour des ouverts quelconques U et V de \mathbb{R}^2 . Dans le cadre de notre programme, nous ne pourrons l'appliquer que lorsque ces ouverts seront de l'une des deux formes suivantes :

- un produit de deux intervalles ouverts,
- l'intérieur d'un domaine simple du plan.

Dans ce dernier cas, par exemple si $V = \mathring{D}$ avec D domaine simple du plan, nous admettrons l'égalité :

$$\iint_{V} f(x,y) dx dy = \iint_{D} f(x,y) dx dy$$

correspondant à l'idée intuitive que la frontière ∂D étant de «surface nulle», elle n'apporte aucune contribution à cette dernière intégrale double.

Nous admettons encore le théorème suivant :

Théorème 4.3.2 Soient U et V deux ouverts de \mathbb{R}^2 , $\Phi: U \to V$ un C^1 -difféomorphisme et $f: V \to \mathbb{R}$ une application continue telle que :

$$\iint_{V} |f(x,y)| \, dx \, dy < +\infty \tag{4.4}$$

Alors nous avons l'égalité suivante dans $\mathbb R$:

$$\iint_{V} f(x,y) \, dx \, dy = \iint_{U} f(\Phi(s,t)) \, |J_{\Phi}(s,t)| \, ds \, dt$$

Remarquons que la condition d'intégrabilité (4.4) assure que l'intégrale du membre de droite est bien définie. En effet, en appliquant le théorème 4.3.1 avec |f|, nous obtenons :

$$\iint_{U} |f(\Phi(s,t))| \ |J_{\Phi}(s,t)| \ ds \, dt = \iint_{V} |f(x,y)| \, dx \, dy < +\infty$$

Chapitre 5

Méthodes de calcul approché d'une intégrale. Majoration de l'erreur.

Bibliographie: Chapitre 24 du livre de DANTZER.

Chapitre 3 de l'ouvrage Analyse numérique et équations différentielles par Jean-Pierre DEMAILLY, collection Grenoble Sciences, Presses Universitaires de Grenoble.

Dans toute la suite, nous considérerons un intervalle réel d'intérieur non vide I et une application $f \in C(I, \mathbb{R})$. Étant donnés un segment $[a, b] \subset I$ et x_0, x_1, \dots, x_p des points distincts de [a, b], avec $p \in \mathbb{N}$, nous cherchons une formule d'approximation de la forme :

$$\int_{a}^{b} f(t) dt \simeq (b-a) \sum_{j=0}^{p} \omega_{j} f(x_{j}) \quad , \tag{5.1}$$

où les ω_j , $0 \le j \le p$ sont des réels tels que $\sum_{j=0}^p \omega_j = 1$, si bien que la formule précédente est une égalité dans le cas où f est constante sur [a, b].

Une telle formule sera appelée $m\acute{e}thode$ de quadrature et nous dirons que l'entier p est le rang de cette méthode.

Ce chapitre sera organisé en suivant trois idées simples.

Idée 1 Soit p un entier fixé. Dans le cas particulier où $f = P \in \mathbb{R}_p[X]$, nous disposons de formules simples de calcul <u>exact</u> de $\int_a^b P$.

Idée 2 Nous pouvons approcher une fonction suffisamment régulière f par un polynôme P et utiliser alors l'approximation $\int_a^b f \simeq \int_a^b P$. Il sera bien sûr essentiel de contrôler l'erreur commise lors de cette approximation.

Idée 3 Par relation de Chasles, nous pouvons découper l'intervalle [a, b] en 'petits' sous-intervalles et appliquer la *méthode élémentaire* décrite ci-dessus sur chacun d'eux puis additionner les résultats : nous obtenons alors une *méthode composée* donnant une approximation plus précise de l'intégrale sur [a, b].

5.1 Intégrale d'une fonction polynomiale.

5.1.1 Ordre d'une méthode de quadrature

Soit $p \in \mathbb{N}$ et x_0, x_1, \dots, x_p des réels **distincts** fixés dans l'intervalle [a, b]. Pour tout $0 \le j \le p$, nous considérons la forme linéaire δ_{x_j} définie sur $\mathbb{R}_p[X]$ par $\delta_{x_j}(P) = P(x_j)$. Nous avons alors la proposition suivante [DAN 488] :

Proposition 5.1.1 Le (p+1)-uplet $(\delta_{x_0}, \dots, \delta_{x_p})$ forme une base de l'espace dual $(\mathbb{R}_p[X])^*$.

L'application $P\mapsto \frac{1}{b-a}\int_a^b P(t)dt$ étant une forme linéaire sur $\mathbb{R}_p[X]$, nous en déduisons immédiatement :

Corollaire 5.1.2 Soit $p \in \mathbb{N}$ et x_0, x_1, \dots, x_p des réels distincts fixés dans l'intervalle [a, b]. Il existe un unique $(\omega_0, \dots, \omega_p) \in \mathbb{R}^{p+1}$ tel que :

$$\forall P \in \mathbb{R}_p[X] \quad \int_a^b P(t) dt = (b-a) \sum_{j=0}^p \omega_j P(x_j).$$

Nous dirons que $(\omega_0, \dots, \omega_p)$ est le (p+1)-uplet de coefficients associé au système interpolateur (x_0, x_1, \dots, x_p) .

Remarques

- 1. Il suffit de prendre $P \equiv 1$ pour constater que la condition $\sum_{j=0}^{p} \omega_j = 1$ est alors bien vérifiée.
- 2. En fait, pour l'instant, l'hypothèse $\{x_0, x_1, \dots, x_p\} \subset [a, b]$ est inutile. Il suffit de supposer que x_0, x_1, \dots, x_p sont des réels distincts pour obtenir les résultats précédents. Néanmoins, notre but étant d'obtenir une méthode de quadrature de la forme (5.1) pour n'importe quelle application f suffisamment régulière (pas nécessairement polynomiale!), il est très naturel de faire cette hypothèse supplémentaire.
- 3. Nous employons dès maintenant la terminologie système interpolateur, qui paraîtra plus naturelle au vu des sections suivantes.

Définition 5.1.3 Une méthode de quadrature de la forme (5.1) est dite d'ordre $q \in \mathbb{N}$ si la formule approchée est exacte pour toute application polynomiale $f \in \mathbb{R}_q[X]$ et inexacte pour au moins une application $f \in \mathbb{R}_{q+1}[X]$.

Si nous considérons le (p+1)-uplet de coefficients $(\omega_0, \dots, \omega_p)$ associé au système interpolateur (x_0, x_1, \dots, x_p) , nous obtenons donc une méthode de quadrature d'ordre $q \geq p$. Nous verrons plus loin sur des exemples que les cas q = p ou q > p se présentent tous deux effectivement.

Une question essentielle dans la pratique est bien sûr de déterminer explicitement les coefficients $\omega_0, \dots, \omega_p$.

Dans ce but, nous définissons les polynômes élémentaires de Lagrange l_j , $0 \le j \le p$, relatifs au (p+1)-uplet (x_0, x_1, \dots, x_p) par :

$$l_j(X) = \prod_{\substack{0 \le i \le p \\ i \ne j}} \frac{X - x_i}{x_j - x_i}$$

$$(5.2)$$

Le lecteur constatera que l_j est l'unique polynôme de $\mathbb{R}_p[X]$ vérifiant (avec $\delta_{i,j}$ symbole de Kronecker) :

$$\forall 0 \le i \le p$$
 $l_j(x_i) = \delta_{i,j}$

Il est alors immédiat d'obtenir les relations :

$$\forall 0 \le j \le p \qquad \omega_j = \frac{1}{b-a} \int_a^b l_j(t) \, dt \tag{5.3}$$

Un simple changement de variable nous permet d'en déduire le lemme suivant, utile pour simplifier les calculs.

Lemme 5.1.4 Soient (x_0, x_1, \dots, x_p) un système interpolateur constitué de points de [a, b], $(\omega_0, \dots, \omega_p)$ le (p+1)-uplet de coefficients qui lui est associé et $\varphi : \mathbb{R} \to \mathbb{R}$ une transformation affine strictement croissante. Alors le (p+1)-uplet de coefficients associé au système interpolateur $(\varphi(x_0), \varphi(x_1), \dots, \varphi(x_p))$, constitué de points de $[\varphi(a), \varphi(b)]$, est encore $(\omega_0, \dots, \omega_p)$. En outre, les deux méthodes de quadrature

$$\int_{a}^{b} f(t) dt \simeq (b-a) \sum_{j=0}^{p} \omega_{j} f(x_{j}) ; \int_{\varphi(a)}^{\varphi(b)} f(t) dt \simeq (\varphi(b) - \varphi(a)) \sum_{j=0}^{p} \omega_{j} f(\varphi(x_{j}))$$

admettent le même ordre.

5.1.2 Exemples

Méthodes des rectangles

La méthode des rectangles à gauche correspond au cas p=0 et $x_0=a$. On a évidemment $\omega_0=1$ de sorte que la formule s'écrit :

$$\int_{a}^{b} f(t) dt \simeq (b - a) f(a)$$

Symétriquement, la méthode des rectangles à droite correspond au cas p = 0 et $x_0 = a$, avec la formule :

$$\int_{a}^{b} f(t) dt \simeq (b - a) f(b)$$

On vérifie immédiatement que ces méthodes sont d'ordre q = 0 = p.

Méthode du point milieu

Elle correspond au cas p=0 et $x_0=\frac{a+b}{2}$. On a bien sûr toujours $\omega_0=1$ et la formule s'écrit donc :

$$\int_{a}^{b} f(t) dt \simeq (b - a) f\left(\frac{a + b}{2}\right)$$

En remarquant que, pour f(t) = t, nous avons :

$$\int_{a}^{b} t \, dt = \frac{b^{2} - a^{2}}{2} = (b - a) \, f\left(\frac{a + b}{2}\right)$$

nous en déduisons par linéarité que la méthode du point milieu est d'ordre $q \ge 1$. En fait, le lecteur vérifiera facilement que q = 1 > p = 0.

Méthode des trapèzes

Elle correspond au cas p = 1, $x_0 = a$ et $x_1 = b$.

Pour calculer ω_1 , nous pouvons nous ramener au cas a=0 et b=1 en utilisant le lemme 5.1.4 avec $\varphi(x):=a+(b-a)x$.

Nous avons alors $l_1(X) = X$ d'où, d'après (5.3), $\omega_1 = 1/2$ et donc $\omega_0 = \omega_1 = 1/2$. Finalement, nous obtenons la formule de quadrature :

$$\int_{a}^{b} f(t) dt \simeq (b-a) \frac{f(a) + f(b)}{2}$$

Nous laissons le soin au lecteur de vérifier que cette méthode est d'ordre q=p=1.

En fait, nous aurions pu utiliser dès le départ l'égalité $\omega_0 = \omega_1$ car la méthode des trapèzes est un cas particulier des méthodes que nous allons étudier maintenant.

Méthodes de Newton-Cotes

Pour tout $p \in \mathbb{N}^*$, on définit la méthode de Newton-Cotes de rang p (en abrégé NC_p) par le choix des points :

$$\forall 0 \le j \le p$$
 $x_j = a + \frac{j}{p}(b - a)$

En d'autres termes, le système interpolateur est constitué de (p+1) points formant une subdivision régulière de l'intervalle [a,b]. Le calcul des coefficients associés est alors facilité par la proposition suivante.

Proposition 5.1.5 Dans la la méthode de Newton-Cotes de rang p, nous avons :

$$\forall 0 \le j \le p \qquad \omega_j = \omega_{p-j}$$

Démonstration: D'après le lemme 5.1.4 avec $\varphi(x) := \frac{a+b}{2} + \frac{b-a}{2}x$, nous pouvons nous ramener au cas a = -1 et b = 1 sans perte de généralité. Notre système interpolateur est alors défini par les points

$$x_j = -1 + j\frac{2}{p} \quad , \quad 0 \le j \le p$$

et l_j est l'unique polynôme de $\mathbb{R}_p[X]$ vérifiant :

$$\forall 0 \le i \le p$$
 $l_j \left(-1 + i\frac{2}{p}\right) = \delta_{i,j}$

Par un simple changement d'indice, ceci s'écrit encore : pour tout $0 \le i \le p$, $l_j\left(-1+(p-i)\frac{2}{p}\right)=\delta_{p-i,j}$, ce que nous récrivons sous la forme

$$\forall 0 \le i \le p$$
 $l_j \left(1 - i \frac{2}{p} \right) = \delta_{i,p-j}$

Définissant le polynôme $\check{l}_j \in \mathbb{R}_p[X]$ par $\check{l}_j(x) := l_j(-x)$, nous avons donc :

$$\forall 0 \le i \le p$$
 $\check{l}_j \left(-1 + i \frac{2}{p} \right) = \delta_{i, p-j}$

ce qui prouve l'égalité $\check{l}_j = l_{p-j}$. Revenant aux relations (5.3), nous en déduisons par un simple changement de variable :

$$\omega_j = \frac{1}{2} \int_{-1}^1 l_j(t) \, dt = \frac{1}{2} \int_{-1}^1 \check{l}_j(t) \, dt = \frac{1}{2} \int_{-1}^1 l_{p-j}(t) \, dt = \omega_{p-j} \qquad \Box$$

Par exemple, pour la méthode NC_2 , encore appelée $m\acute{e}thode$ de Simpson, nous avons $\omega_0=\omega_2$ et, toujours en prenant a=-1 et b=1, $l_1(X)=1-X^2$ d'où $\omega_1=\frac{1}{2}\int_{-1}^1(1-t^2)\,dt=2/3$ et $\omega_0=\omega_2=1/6$. Finalement, nous obtenons la formule de quadrature :

$$\int_{a}^{b} f(t) dt \simeq \frac{b-a}{6} \left[f(a) + f(b) + 4f\left(\frac{a+b}{2}\right) \right]$$

De même, pour la méthode NC_4 , encore appelée méthode de Boole-Villarceau, nous calculons, avec $x_0 = -1, x_1 = -\frac{1}{2}, x_2 = 0, x_3 = \frac{1}{2}, x_4 = 1$:

$$l_2(X) = \frac{(X+1)(X+\frac{1}{2})(X-\frac{1}{2})(X-1)}{1 \cdot \frac{1}{2} \cdot (-\frac{1}{2}) \cdot (-1)} = (X^2-1)(4X^2-1)$$

d'où $\omega_2 = \frac{1}{2} \int_{-1}^{1} (4t^4 - 5t^2 + 1) dt = 2/15;$

$$l_1(X) = \frac{(X+1)X(X-\frac{1}{2})(X-1)}{\frac{1}{2}\cdot(-\frac{1}{2})\cdot(-1)\cdot(-\frac{3}{2})} = -\frac{8}{3}X(X^2-1)(X-\frac{1}{2})$$

d'où, avec des considérations de parité, $\omega_1=-\frac{8}{3}\int_0^1 (t^4-t^2)\,dt=\frac{16}{45}$,

$$\omega_3 = \omega_1 = \frac{16}{45}$$
 et $\omega_0 = \omega_4 = \frac{1}{2} \left(1 - \frac{2}{15} - \frac{32}{45} \right) = \frac{7}{90}$.

La formule de quadrature par la méthode de Boole-Villarceau s'écrit donc :

$$\int_{a}^{b} f(t) dt \simeq \frac{b-a}{90} \left[7f(a) + 7f(b) + 32f\left(\frac{3a+b}{4}\right) + 32f\left(\frac{a+3b}{4}\right) + 12f\left(\frac{a+b}{2}\right) \right]$$

Proposition 5.1.6 Soit $p \in \mathbb{N}^*$. Si p et pair, alors l'ordre de NC_p est (p+1). Si p est impair, alors l'ordre de NC_p est p.

Démonstration: Nous montrerons seulement que, si p est pair, alors l'ordre de NC_p est au moins (p+1), en admettant le reste de la proposition. D'après le lemme 5.1.4, nous pouvons supposer que a=-1 et b=1 sans perte de généralité. Nous avons donc $x_j=-1+j\frac{2}{p},\ 0\leq j\leq p$, si bien que

 $x_{p-j} = -x_j$ pour tout j et $x_{\frac{p}{2}} = 0$.

Nous savons déjà que l'ordre de NC_p est au moins p, c'est-à-dire que :

$$\forall P \in \mathbb{R}_p[X] \quad \int_{-1}^1 P(t) \, dt = 2 \sum_{j=0}^p \omega_j \, P(x_j)$$
 (5.4)

Si nous pouvions démontrer que cette égalité reste vraie pour $P_0(X) := X^{p+1}$, alors par linéarité elle serait satisfaite pour tout polynôme de $\mathbb{R}_{p+1}[X]$, d'où la conclusion.

Or, p + 1 étant impair, le membre de gauche de (5.4) pour P_0 est nul. Le membre de droite peut être récrit, avec un changement d'indice :

$$2\omega_{\frac{p}{2}}P_0(x_{\frac{p}{2}}) + 2\sum_{j=0}^{\frac{p}{2}-1} [\omega_j P_0(x_j) + \omega_{p-j} P_0(x_{p-j})]$$

Nous concluons grâce à la proposition 5.1.5 et au fait que, p+1 étant impair, $P_0(x_{p-j}) = -P_0(x_j)$ et $P_0(x_{\frac{p}{2}}) = 0$.

5.2 Interpolation polynomiale.

On appelle interpolation polynomiale un procédé permettant d'approcher (dans un sens à préciser) une fonction suffisamment régulière $f: I \to \mathbb{R}$, où I est un intervalle réel, par une fonction polynomiale.

Dans toute cette section, nous fixons donc un intervalle réel I, un segment $[a,b] \subset I$, des réels distincts x_0, x_1, \dots, x_p dans le segment [a,b] et des entiers non nuls $\alpha_0, \dots, \alpha_p$; enfin, nous posons $n = \sum_{j=0}^p \alpha_j$.

5.2.1 Interpolation de Lagrange et Hermite

Notre résultat fondamental est le suivant [DAN 486] :

Proposition 5.2.1 Soit $f: I \to \mathbb{R}$ une application admettant pour tout $0 \le j \le p$ une dérivée d'ordre $\alpha_j - 1$ au point x_j . Alors il existe un unique polynôme $H \in \mathbb{R}_{n-1}[X]$ tel que :

$$\forall 0 \le j \le p, \quad \forall 0 \le k \le \alpha_j - 1, \quad H^{(k)}(x_j) = f^{(k)}(x_j).$$

Ce polynôme H est appelé polynôme d'interpolation d'Hermite de l'application f relativement au système interpolateur (x_0, x_1, \dots, x_p) et aux entiers $(\alpha_0, \dots, \alpha_p)$.

Remarque: Pour tout indice j tel que $\alpha_j = 1$, il n'y a pour l'instant aucune condition sur la fonction f au voisinage de x_j (qui peut être même un point de discontinuité).

Nous serons néanmoins amenés à écrire des conditions plus contraignantes cidessous afin de contrôler l'erreur commise dans l'approximation $\int_a^b f \simeq \int_a^b H$.

Dans le cas particulier $\alpha_0 = \alpha_1 = \cdots = \alpha_p = 1$ (et donc n = p + 1), le polynôme obtenu est appelé polynôme d'interpolation de Lagrange, noté L. Nous pouvons l'expliciter simplement grâce aux polynômes élémentaires de Lagrange introduits en (5.2):

$$L = \sum_{j=0}^{p} f(x_j) l_j$$

5.2.2 Évaluation de l'erreur

Pour poursuivre notre démarche, nous aurons besoin de la définition suivante.

Définition 5.2.2 Nous appellerons noyau d'interpolation associé au système interpolateur (x_0, x_1, \dots, x_p) et aux entiers $(\alpha_0, \dots, \alpha_p)$ le polynôme $N \in \mathbb{R}_n[X]$ défini par :

$$N(X) = \prod_{j=0}^{p} (X - x_j)^{\alpha_j}.$$

Rappelons ici le second théorème de Rolle:

Théorème 5.2.3 Si f est n fois dérivable sur I et y admet au moins (n+1) zéros (en comptant les ordres de multiplicité), alors $f^{(n)}$ admet au moins un zéro sur I.

Nous en déduisons :

Proposition 5.2.4 Si $f \in C^n(I, \mathbb{R})$, alors :

$$\forall t \in I, \quad \exists \xi_t \in I, \quad f(t) - H(t) = \frac{1}{n!} N(t) f^{(n)}(\xi_t)$$

Démonstration: Fixonx $t_0 \in I$ et choisissons $\lambda \in \mathbb{R}$ tel que l'application $g: I \to \mathbb{R}$ définie par $g(x) := f(x) - H(x) - \lambda N(x)$ admette t_0 pour zéro. En tenant compte des ordres de multiplicité, nous constatons que g admet $1 + \sum_{j=0}^{p} \alpha_j = n+1$ zéros sur I et y est de classe C^n .

Le théorème précédent nous assure l'existence de $\xi \in I$ tel que $g^{(n)}(\xi) = 0$. Comme $H \in \mathbb{R}_{n-1}[X]$, nous avons $H^{(n)} \equiv 0$ et l'on calcule $N^{(n)} \equiv n!$, d'où $g^{(n)}(\xi) = f^{(n)}(\xi) - \lambda n! = 0$. Nous avons donc $\lambda = f^{(n)}(\xi)/(n!)$, si bien que

$$\forall x \in I \quad g(x) = f(x) - H(x) - \frac{f^{(n)}(\xi)}{n!} N(x)$$

Il reste à écrire $g(t_0) = 0$ pour conclure :

$$\exists \xi \in I, \quad f(t_0) - H(t_0) = \frac{1}{n!} N(t_0) f^{(n)}(\xi)$$

Cette proposition nous permet de majorer l'erreur commise lorsque nous écrivons l'approximation $\int_a^b f \simeq \int_a^b H$.

Corollaire 5.2.5 Si $f \in C^n([a,b],\mathbb{R})$ et si H est son polynôme d'Hermite relativement au système interpolateur (x_0, x_1, \dots, x_p) et aux entiers $(\alpha_0, \dots, \alpha_p)$, alors:

$$\left| \int_{a}^{b} f(t) dt - \int_{a}^{b} H(t) dt \right| \le \frac{1}{n!} \sup_{t \in [a,b]} |f^{(n)}(t)| \int_{a}^{b} |N(t)| dt$$

5.3 Intégration numérique

5.3.1 Avec un polynôme de Lagrange

Nous nous donnons toujours des réels distincts x_0, x_1, \dots, x_p fixés dans le segment [a, b] et nous commençons par mettre en oeuvre le procédé décrit précédemment dans le cas particulier où $\alpha_0 = \alpha_1 = \dots = \alpha_p = 1$ (donc n = p+1), si bien que nous utilisons le polynôme d'interpolation de Lagrange $L \in \mathbb{R}_p[X]$.

Le corollaire 5.1.2 nous permet alors d'écrire :

$$\int_{a}^{b} L = (b - a) \sum_{j=0}^{p} \omega_j L(x_j)$$

En remarquant que $L(x_j) = f(x_j)$ par définition même du polynôme de Lagrange, nous obtenons l'approximation

$$\int_a^b f \simeq \int_a^b L = (b - a) \sum_{j=0}^p \omega_j f(x_j)$$

Sous l'hypothèse $f \in C^{p+1}([a,b],\mathbb{R})$, le corollaire 5.2.5 nous permet de majorer l'erreur commise en faisant cette approximation :

$$\left| \int_{a}^{b} f - (b - a) \sum_{j=0}^{p} \omega_{j} f(x_{j}) \right| \leq \frac{1}{(p+1)!} \sup_{t \in [a,b]} |f^{(p+1)}(t)| \int_{a}^{b} |N(t)| dt$$

Remarquons qu'il nous est inutile de calculer explicitement le polynôme de Lagrange L puisqu'il n'intervient dans cette formule d'approximation que par ses valeurs $L(x_j) = f(x_j)$.

Exemple: Pour la méthode des rectangles à gauche, le noyau d'interpolation est donné par N(t) = t - a, si bien que $\int_a^b |N(t)| dt = (b - a)^2/2$. Nous avons donc, sous l'hypothèse $f \in C^1([a, b], \mathbb{R})$:

$$\left| \int_{a}^{b} f(t) dt - (b - a) f(a) \right| \le \frac{(b - a)^{2}}{2} \sup_{t \in [a, b]} |f'(t)|.$$

5.3.2 Avec un polynôme d'Hermite

Nous fixons maintenant des réels distincts x_0, x_1, \dots, x_p dans le segment [a, b] et des entiers non nuls $\alpha_0, \dots, \alpha_p$ et nous posons toujours $n = \sum_{j=0}^p \alpha_j$. Comme précédemment, nous voudrions pouvoir écrire

$$\int_{a}^{b} f \simeq \int_{a}^{b} H = (b - a) \sum_{j=0}^{p} \omega_{j} H(x_{j}) = (b - a) \sum_{j=0}^{p} \omega_{j} f(x_{j})$$

mais il apparaît ici une difficulté particulière. En effet, puisque $H \in \mathbb{R}_{n-1}[X]$, l'égalité $\int_a^b H = (b-a) \sum_{j=0}^p \omega_j H(x_j)$ n'est justifiée que si notre méthode de quadrature est d'ordre $q \geq n-1 \geq p$, cette dernière égalité devenant stricte dès que l'on sort du cadre $\alpha_0 = \alpha_1 = \cdots = \alpha_p = 1$ traité dans la sous-section précédente.

Autrement dit, pour utiliser un 'vrai' polynôme d'Hermite (qui ne soit pas un polynôme de Lagrange), il est indispensable de choisir une méthode de quadrature d'ordre q > p.

Exemple: Pour la méthode du point milieu, nous avons $p=0, x_0=\frac{a+b}{2}, \omega_0=1$ et q=1>p. Ceci nous permet d'utiliser le polynôme d'Hermite H associé au point x_0 et à l'entier $\alpha_0=2$.

Le noyau d'interpolation vaut alors $N(X) = \left(X - \frac{a+b}{2}\right)^2$, si bien que :

$$\int_{a}^{b} |N(t)| dt = \int_{a}^{b} \left(t - \frac{a+b}{2} \right)^{2} dt = \frac{(b-a)^{3}}{12}.$$

Sous l'hypothèse $f \in C^2([a,b],\mathbb{R})$, le corollaire 5.2.5 nous permet d'en déduire la majoration :

$$\left| \int_{a}^{b} f(t) dt - (b - a) f\left(\frac{a + b}{2}\right) \right| \le \frac{(b - a)^{3}}{24} \sup_{t \in [a, b]} |f''(t)|.$$

De façon générale pour les méthodes de Newton-Cotes, nous savons que le cas q > p ne se présente que si p est pair et nous avons alors q = p + 1. Ceci explique que, hormis NC_1 (méthode des trapèzes), seules les méthodes NC_p avec p pair sont utilisées.

En outre, pour $p \ge 8$, il apparaît des coefficients $\omega_j < 0$, qui peuvent amplifier les erreurs d'arrondis [DEM 63-64], ce qui n'est pas souhaitable.

Finalement, outre les cas NC_2 (Simpson) et NC_4 (Boole-Villarceau) déjà présentés, seule NC_6 , encore appelée $m\acute{e}thode$ de Weddle-Hardy, est aussi utilisée dans la pratique.

5.3.3 Méthodes composées.

Elles consistent à subdiviser l'intervalle [a,b] en sous-intervalles de la forme :

$$\left[a+\frac{k}{N}(b-a),a+\frac{k+1}{N}(b-a)\right],\quad 0\leq k\leq N-1,$$

où $N \in \mathbb{N}^*$ est fixé, puis à appliquer une méthode élémentaire sur chacun des sous-intervalles, et enfin à additionner les résultats obtenus pour trouver une valeur approchée de l'intégrale de f sur [a,b].

Ainsi, la méthode composée des rectangles s'écrit

$$\int_{a}^{b} f(t) dt \approx R_{N}(f) = \frac{b-a}{N} \sum_{k=0}^{N-1} f\left(a + k \frac{b-a}{N}\right)$$

et, si f est de classe C^1 sur [a,b], nous avons la majoration suivante de l'erreur :

$$\left| \int_{a}^{b} f(t) dt - R_{N}(f) \right| \le \frac{(b-a)^{2}}{2N} \sup_{t \in [a,b]} |f'(t)|.$$

De même, la méthode composée du point milieu s'écrit

$$\int_{a}^{b} f(t) dt \approx PM_{N}(f) = \frac{b-a}{N} \sum_{k=0}^{N-1} f\left(a + (k+\frac{1}{2})\frac{b-a}{N}\right)$$

et, si f est de classe C^2 sur [a, b], nous avons :

$$\left| \int_{a}^{b} f(t) dt - PM_{N}(f) \right| \le \frac{(b-a)^{3}}{24N^{2}} \sup_{t \in [a,b]} |f''(t)|.$$

Et ansi de suite pour chaque méthode élémentaire présentée plus haut...

5.4 Méthodes de Gauss.

Nous nous intéressons maintenant à une forme d'intégrale plus générale que celle étudiée précédemment :

$$\int_a^b f(x)\omega(x)\,dx \quad ,$$

où $f \in C^0([a,b],\mathbb{R})$ et $\omega \in C^0(]a,b[,\mathbb{R}_+^*)$ est intégrable sur]a,b[.

Pour obtenir une valeur approchée de cette intégrale, l'idée est de considérer le produit scalaire sur $C^0([a,b],\mathbb{R})$ défini par :

$$\langle f, g \rangle = \int_a^b f(t)g(t)\omega(t) dt.$$

Si nous partons de la base canonique de $\mathbb{R}[X]$ et que nous lui appliquions le procédé d'orthogonalisation de Gram-Schmidt, nous obtenons une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes orthogonaux pour le produit scalaire que nous venons de définir. On peut montrer que pour tout $n\in\mathbb{N}$, P_n est un polynôme de degré n dont le coefficient de plus haut degré vaut 1 et qui admet n racines simples appartenant à l'intervalle a, b.

Pour tout $p \in \mathbb{N}$, la méthode de Gauss consiste à prendre pour système interpolateur (x_0, \dots, x_p) les racines du polynôme P_{p+1} . D'une façon très similaire à ce qui a été fait précédemment, on peut démontrer la proposition suivante :

Proposition 5.4.1 Il existe un unique $(\lambda_0, \dots, \lambda_p) \in \mathbb{R}^{p+1}$ tel que

$$\forall P \in \mathbb{R}_p[X] \quad \int_a^b P(t)\omega(t) dt = \sum_{j=0}^p \lambda_j P(x_j).$$

On peut alors montrer que la méthode de Gauss construite à partir du système interpolateur (x_0, \dots, x_p) et des coefficients $(\lambda_0, \dots, \lambda_p)$ est la seule méthode à (p+1) points qui soit d'ordre (2p+1).

Proposition 5.4.2 Soit $f \in C^{2p+2}([a,b],\mathbb{R})$. On peut majorer l'erreur due à la méthode de Gauss à (p+1) points comme suit :

$$\left| \int_{a}^{b} f(t)\omega(t) dt - \sum_{j=0}^{p} \lambda_{j} f(x_{j}) \right| \leq \frac{\sup_{t \in [a,b]} |f^{(2p+2)}(t)|}{(2p+2)!} \int_{a}^{b} P_{p+1}^{2}(t)\omega(t) dt$$

Dans la pratique, les polynômes orthogonaux étant difficiles à calculer, les méthodes de Gauss ne ont utilisées que dans les deux cas suivants :

Cas 1 : La méthode de Gauss-Legendre, obtenue pour $\omega \equiv 1$ sur [-1,1]. Voir [DEM 76].

Cas 2 : La méthode de Gauss-Tchebychev, obtenue pour $\omega:]-1,1[\to \mathbb{R}_+^*$ défini par :

$$\forall t \in]-1,1[\quad \omega(t) = \frac{1}{\sqrt{1-t^2}}$$

Cette méthode est développée in extenso sous forme d'un exercice entièrement corrigé dans le livre de Dantzer pages 369 à 376. On obtient une méthode d'ordre 2p+1 qui s'écrit :

$$\int_{-1}^{1} f(t) \frac{dt}{\sqrt{1-t^2}} \simeq \frac{\pi}{p+1} \sum_{j=0}^{p} f\left(\cos\left(\frac{2j+1}{2p+2}\pi\right)\right)$$

5.5 Méthode de Romberg

La méthode d'accélération de convergence de Romberg-Richardson peut être appliquée à la suite obtenue par la méthode des trapèzes [DEM 85-86]. On retrouve ainsi les méthodes de Simpson et de Boole-Villarceau mais il est surtout intéressant de constater que ce procédé permet aussi de faire apparaître des méthodes de quadrature qui ne sont pas des méthodes de Newton-Cotes.

Une majoration précise de l'erreur est établie, sous forme d'exercices corrigés, dans l'ouvrage de CHAMBERT-LOIR et FERMIGIER intitulé *Exercices de mathématiques pour l'agrégation - Analyse 2* chez Masson, pages 186 à 193.

5.6 Une méthode probabiliste

Dans le tome 2 de son livre *Probabilités* pages 128-129, Jean-Yves Ouvrard présente le principe des *méthodes de Monte-Carlo* dans un cas simple sous forme de l'exercice corrigé 10.8 utilisant l'inégalité de Bienaymé-Tchebychev.

94CHAPITRE 5. MÉTHODES DE CALCUL APPROCHÉ D'UNE INTÉGRALE

Chapitre 6

Applications de l'analyse au calcul des grandeurs

Avertissement : Ce chapitre ne prétend nullement à l'exhaustivité!

Bibliographie:

FLO Topologie, Analyse (exercices avec solutions) tome 3 par Georges FLORY chez Vuibert

LT Intégrales curvilignes et de surfaces (niveau L2) par LOFFICIAL et TANRÉ chez Ellipses

RDO Cours de Mathématiques Spéciales tome 5 (applications de l'analyse à la géométrie) par RAMIS, DESCHAMPS, ODOUX chez Masson

6.1 Longueur d'un arc de classe C^1

6.1.1 Rectification d'un arc paramétré.

Définitions générales

Définition 6.1.1 Soit $d \in \mathbb{N}^*$ fixé et $f \in C([a,b],\mathbb{R}^d)$. On dit que le couple $\Gamma = ([a,b],f)$ est un arc paramétré continu de \mathbb{R}^d . Cet arc est dit rectifiable si

$$\sup \left\{ \sum_{i=0}^{n-1} \|f(a_{i+1}) - f(a_i)\| \right\} < +\infty,$$

cette borne supérieure portant sur toutes les subdivisions $(a_i)_{0 \le i \le n}$ $(n \in \mathbb{N}^*)$ de l'intervalle [a,b] et $\|\cdot\|$ désignant la norme euclidienne dans \mathbb{R}^d . Dans ce cas, cette borne supérieure est appelée longueur de l'arc paramétré

continu Γ et notée $l(\Gamma)$.

Un exemple d'arc continu non rectifiable nous est donné par l'application $f:[0,1]\to\mathbb{R}^2$ définie par

$$f(0) = (0,0)$$
 et $\forall t \in]0,1]$ $f(t) = (t, t \sin \frac{1}{t}).$

Le lecteur pourra démontrer que la borne supérieure ci-dessus est infinie en choisissant judicieusement des subdivisions et en utilisant la divergence de la série harmonique (i.e. $\sum_{n} \frac{1}{n} = +\infty$).

Remarque: Le fait d'être rectifiable et la longueur d'un arc sont des propriétés *géométriques* pour un arc continu, en ce sens qu'un changement de paramètre admissible (homéomorphisme) ne les modifie pas.

Pour $a \leq t < t' \leq b$, notons $\Gamma_{t,t'}$ le sous-arc $([t,t'],f_{|[t,t']})$ de Γ .

Définition 6.1.2 Soit $\Gamma = ([a,b],f)$ un arc paramétré continu et rectifiable de \mathbb{R}^d . Nous dirons qu'une application $s:[a,b] \to \mathbb{R}$ est une abscisse curviligne de Γ si pour tout $(t,t') \in [a,b]^2$ tel que t < t', on a:

$$l(\Gamma_{t,t'}) = |s(t') - s(t)|$$

Si, en outre, il existe $t_0 \in [a,b]$ tel que $s(t_0) = 0$, nous dirons que s est une abscisse curviligne d'origine t_0 .

Proposition 6.1.3 Soient $\Gamma = ([a, b], f)$ un arc paramétré rectifiable de \mathbb{R}^d , s_1 et s_2 deux abscisses curvilignes de Γ . Alors il existe $\epsilon = \pm 1$ et $c \in \mathbb{R}$ tels que $s_2 = \epsilon s_1 + c$.

Réciproquement, si s est une abscisse curviligne de Γ , alors toute application de la forme $\epsilon s + c$ est une abscisse curviligne de Γ .

Démonstration: RDO 92 □

Arc de classe C^1

Dans toute la suite, nous supposerons que l'arc considéré est de classe C^1 , conformément au titre de la leçon. Nous avons alors le résultat essentiel suivant :

Théorème 6.1.4 Soit $f \in C^1([a,b], \mathbb{R}^d)$ et $\Gamma = ([a,b], f)$ l'arc paramétré associé. Alors cet arc est rectifiable, de longueur

$$l(\Gamma) = \int_a^b ||f'(t)|| dt.$$

Démonstration: DANTZER 203-205 ou RDO 94-95

Corollaire 6.1.5 Sous les hypothèses du théorème précédent, l'application $s:[a,b]\to\mathbb{R}$ définie par

$$\forall t \in [a, b] \quad s(t) = \int_{a}^{t} ||f'(u)|| du$$

est une abscisse curviligne de Γ d'origine a.

6.1.2 Calcul pratique

Nous nous plaçons maintenant en dimension d=3 et nous établissons des formules pratiques pour calculer la longueur d'un arc suivant le système de coordonnées utilisé : cartésiennes, cylindriques ou sphériques.

Coordonnées cartésiennes

Pour tout $t \in [a,b]$, nous noterons f(t) = (x(t),y(t),z(t)) si bien que $||f'(t)|| = \sqrt{x'^2(t) + y'^2(t) + z'^2(t)}$ et le théorème précédent nous donne :

$$l(\Gamma) = \int_{a}^{b} \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} dt$$

Pour obtenir une formule mnémotechnique, nous remarquons que l'abcisse curviligne s qui apparaît dans le corollaire précédent vérifie :

$$\left(\frac{ds}{dt}\right)^2 = \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2$$

ce que nous retenons sous la forme :

$$ds^2 = dx^2 + dy^2 + dz^2$$

Remarque: Tout ce qui vient d'être fait en dimension 3 se généralise immédiatement en dimension d.

Exercice: [FLO 153]

Calculer la longueur totale de l'astroïde définie sous forme paramétrée par

$$f(t) = (a\cos^3 t, a\sin^3 t)$$
 , $0 < t < 2\pi$ $(a > 0)$.

Exercice: [RDO 97] ou [LT 143]

Calculer la longueur d'une arche de cycloïde définie sous forme paramétrée par

$$f(t) = (a(t - \sin t), a(1 - \cos t))$$
, $0 \le t \le 2\pi$.

Coordonnées cylindriques

Pour tout $t \in [a,b]$, nous avons $f(t) = (\rho(t)\cos\theta(t), \rho(t)\sin\theta(t), z(t))$ et nous calculons facilement $\|f'(t)\| = \sqrt{\rho'^2(t) + \rho^2(t)\theta'^2(t) + z'^2(t)}$. En procédant comme précédemment, nous obtenons donc la formule mnémotechnique :

$$ds^2 = d\rho^2 + \rho^2 d\theta^2 + dz^2$$

Exercice: [RDO 104] ou [LT 145]

Calculer la longueur totale de l'hélice circulaire définie en coordonnées cylindriques par

$$\rho \equiv a > 0 \quad , \quad z = b\theta \quad , \quad 0 \le \theta \le 2\pi \quad (b \in \mathbb{R}^*)$$

99

Remarque: En faisant z=0 dans la formule précédente, nous obtenons le cas d'un arc représenté en **coordonnées polaires** dans le plan euclidien orienté :

$$ds^2 = d\rho^2 + \rho^2 d\theta^2$$

Exercice: [RDO 97] ou [LT 141]

Calculer la longueur totale de la cardioïde définie en coordonnées polaires par

$$\rho = a(1 + \cos \theta)$$
, $-\pi \le \theta \le \pi$ $(a > 0)$.

Exercice: [FLO 157]

Sur l'arc d'une lemniscate de Bernoulli défini en coordonnées polaires par

$$\rho = a\sqrt{\cos(2\theta)} \quad , \quad 0 \le \theta \le \frac{\pi}{4}$$

nous considérons le point A obtenu pour $\theta = 0$, ainsi que deux points M et M' obtenus respectivement pour $\theta = t$ et $\theta = t'$, où t et t' sont des éléments

100CHAPITRE 6. APPLICATIONS DE L'ANALYSE AU CALCUL DES GRANDEURS

de l'intervalle $\left[0,\frac{\pi}{4}\right]$ vérifiant la relation :

$$\cos t \cos t' = \frac{1}{\sqrt{2}}$$

Montrer que la longueur de l'arc de la lemniscate entre l'origine O (obtenue pour $\theta = \pi/4$) et le point M est égale à celle de l'arc de la lemniscate entre le point M' et le point A.

Exercice: [EMPSI 390]

Calculer l'abcisse curviligne en tout point $M(\theta)$ de l'arc défini en coordonnées polaires par

$$\rho = \tanh \frac{\theta}{2}$$

en prenant comme origine des abcisses curvilignes le point de cet arc correspondant à $\theta=0.$

Coordonnées sphériques

Pour tout $t \in [a, b]$, nous avons

$$f(t) = (r(t)\sin\theta(t)\cos\varphi(t), r(t)\sin\theta(t)\sin\varphi(t), r(t)\cos\theta(t)),$$

ce qui nous donne $||f'(t)|| = \sqrt{r'^2(t) + r^2(t)\theta'^2(t) + r^2(t)\sin^2\theta(t)\varphi'^2(t)}$. Nous retiendrons donc la formule :

$$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\varphi^2$$

Exercice: [FLO 155]

Déterminer l'application $T: [-\pi/4, \pi/4] \to \mathbb{R}$ pour que la tangente à l'arc défini par

$$f(\varphi) = (a\cos T(\varphi)\cos\varphi, a\sin T(\varphi)\cos\varphi, a\sin\varphi)$$
 , $-\frac{\pi}{4} \le \varphi \le \frac{\pi}{4}$

fasse un angle constant et égal à $\pi/4$ avec l'axe (Oz). Calculer la longueur de cet arc.

Le premier théorème de Guldin

Théorème 6.1.6 Considérons une surface de révolution S engendrée par la rotation d'un arc plan Γ autour d'un axe situé dans le plan de Γ et ne coupant pas cet arc. L'aire de S est égale à la longueur $l(\Gamma)$ mutipliée par la longueur du chemin parcouru par le centre d'inertie G de Γ lors de la révolution autour de l'axe.

L'application classique est le calcul de l'aire latérale du tore à collier [LT 153] ou [RDO 295] mais on peut le généraliser en prenant pour demi-méridienne une ellipse à la place d'un cercle.

Inégalité isopérimétrique

Terminons par ce résultat (plus difficile que les précédents) qui peut trouver sa place dans la leçon "Ex. de calcul de la longueur d'un arc de classe C^1 ".

Théorème 6.1.7 Dans le plan, si un arc de classe C^1 et de longueur l délimite une portion du plan d'aire A, alors on a l'inégalité $4\pi A \leq l^2$ et l'égalité est obtenue si et seulement si l'arc paramétré définit un cercle parcouru une fois.

La démonstration utilise les séries de Fourier et se trouve dans la livre *Analyse pour l'agrégation* par QUEFFELEC et ZUILY chez Dunod, pages 103-105.

6.2 Produit mixte et produit vectoriel dans \mathbb{R}^n

6.2.1 Orientation de \mathbb{R}^n

Si nous considérons deux bases $e=(e_1,\cdots,e_n)$ et $e'=(e'_1,\cdots,e'_n)$ de \mathbb{R}^n et si nous notons $P_e^{e'}$ la matrice de passage de e à e', nous définissons une relation d'équivalence sur l'ensemble des bases de \mathbb{R}^n par :

$$e \sim e' \iff \det P_e^{e'} > 0$$

Ceci résulte en effet des égalités suivantes :

$$P_e^e = I_n$$
 ; $P_{e'}^e = (P_e^{e'})^{-1}$; $P_e^{e''} = P_e^{e'} P_{e'}^{e''}$

Il n'y a que deux classes d'équivalence. En effet, si $e = (e_1, e_2, \dots, e_n)$ est une base arbitraire fixée, alors $e' = (-e_1, e_2, \dots, e_n)$ est une base telle que det $P_e^{e'} = -1$ et donc toute base f de \mathbb{R}^n vérifie soit $f \sim e$ soit $f \sim e'$.

On dit qu'on oriente \mathbb{R}^n en choisissant l'une de ces deux classes d'équivalence. De façon plus pratique, nous orienterons \mathbb{R}^n en choisissant une base e et en disant que les bases qui sont dans la classe d'équivalence de e sont positives, les autres étant qualifiées de négatives.

Convention : Dans toute la suite, nous orienterons systématiquement \mathbb{R}^n en choisissant sa base canonique.

Considérons un *n*-uplet $(x^1, \dots, x^n) \in (\mathbb{R}^n)^n$ tel que

$$\forall j = 1, \cdots, n \quad x^j = (x_1^j, \cdots, x_n^j)$$

et notons X sa matrice par rapport à la base canonique, c'est-à-dire :

$$X = \left[x_i^j\right]_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$

Nous constatons alors facilement que (x^1, \dots, x^n) est une base positive de \mathbb{R}^n si et seulement si det X > 0.

6.2.2 Produit mixte dans \mathbb{R}^n euclidien orienté

Nous nous plaçons désormais dans l'espace euclidien \mathbb{R}^n muni du produit scalaire usuel noté $(x \mid y)$.

La base canonique e constitue une base orthonormée de \mathbb{R}^n .

Rappelons qu'une base e' est alors orthonormée si et seulement si (en notant M^* la transposée de la matrice M):

$$(P_e^{e'})^* P_e^{e'} = P_e^{e'} (P_e^{e'})^* = I_n$$

Nous en déduisons en particulier : $(\det P_e^{e'})^2 = 1$.

Ainsi, si e' est une base orthonormée positive de \mathbb{R}^n , nous avons det $P_e^{e'} = 1$; si e' est une base orthonormée négative de \mathbb{R}^n , nous avons det $P_e^{e'} = -1$.

Proposition et définition 6.2.1 Soit $f = (f_1, \dots, f_n)$ une base orthonormée positive de \mathbb{R}^n (orienté suivant sa base canonique).

Considérons un n-uplet $(x^1, \dots, x^n) \in (\mathbb{R}^n)^n$ et notons $M(x^1, \dots, x^n; f)$ la matrice de ce n-uplet par rapport à la base f, c'est-à-dire la matrice carrée

$$\begin{bmatrix} m_i^j \end{bmatrix}_{\substack{1 \le i \le n \\ 1 \le j \le n}} \quad telle \ que \quad \forall j = 1, \cdots, n \quad x^j = \sum_{i=1}^n m_i^j f_i$$

Alors le réel det $M(x^1, \dots, x^n; f)$ ne dépend pas du choix de la base orthonormée positive f.

On l'appelle produit mixte de (x^1, \dots, x^n) et on le note $[x^1, \dots, x^n]$. Le produit mixte est une application n-linéaire alternée.

Démonstration: Soient f et f' deux bases orthonormées positives de \mathbb{R}^n et $P_f^{f'}$ la matrice de passage de f à f'.

Puisqu'il s'agit d'une matrice de passage entre bases orthonormées, nous savons qu'elle est orthogonale et donc que $(\det P_f^{f'})^2 = 1$. Comme f et f' ont la même orientation, nous en déduisons $\det P_f^{f'} = 1$. L'égalité matricielle :

$$M(x^{1}, \dots, x^{n}; f) = P_{f}^{f'} M(x^{1}, \dots, x^{n}; f')$$

implique donc l'égalité det $M(x^1, \dots, x^n; f) = \det M(x^1, \dots, x^n; f')$. La dernière phrase résulte immédiatement des propriétés des déterminants.

Si nous prenons pour base orthonormée positive f la base canonique, la dernière phrase du paragraphe précédent nous donne l'équivalence :

$$(x^1, \dots, x^n)$$
 base positive de $\mathbb{R}^n \Leftrightarrow [x^1, \dots, x^n] > 0$

Dans le plan (n = 2), un simple raisonnement géométrique permet de constater que |[x,y]| est l'aire du parallélogramme construit à partir des vecteurs non colinéaires x et y.

6.2.3 Produit vectoriel dans \mathbb{R}^n euclidien orienté

Théorème et définition 6.2.2 Dans \mathbb{R}^n orienté suivant sa base canonique, considérons n-1 vecteurs x^1, \dots, x^{n-1} . Il existe un unique vecteur $v \in \mathbb{R}^n$ tel que

$$\forall x^n \in \mathbb{R}^n \quad [x^1, \cdots, x^{n-1}, x^n] = (v \mid x^n)$$

On l'appelle produit vectoriel de x^1, \dots, x^{n-1} et on le note $v = x^1 \wedge \dots \wedge x^{n-1}$. L'application $(x^1, \dots, x^{n-1}) \longmapsto x^1 \wedge \dots \wedge x^{n-1}$ est (n-1)-linéaire et alternée.

Г

Démonstration: Fixons n-1 vecteurs x^1, \dots, x^{n-1} de \mathbb{R}^n et considérons l'application $l: \mathbb{R}^n \to \mathbb{R}$ définie par

$$\forall x^n \in \mathbb{R}^n \quad l(x_n) = [x^1, \cdots, x^{n-1}, x^n]$$

Le produit mixte étant n-linéaire, l'application l est clairement une forme linéaire sur \mathbb{R}^n , donc un élément de son dual : $l \in (\mathbb{R}^n)^*$.

Rappelons que l'application $\varphi: v \longmapsto (\cdot \mid v)$ est un isomorphisme de \mathbb{R}^n sur son dual $(\mathbb{R}^n)^*$ appelé isomorphisme canonique. Nous constatons alors que l'unique vecteur de \mathbb{R}^n vérifiant la condition de l'énoncé est $\varphi^{-1}(l)$.

La dernière phrase résulte des propriétés du produit mixte.

Le lecteur montrera à titre d'exercice, en utilisant le théorème de la base incomplète, que le produit vectoriel $x^1 \wedge \cdots \wedge x^{n-1}$ est nul si et seulement si la famille (x^1, \cdots, x^{n-1}) est liée.

En outre, si la famille (x^1, \dots, x^{n-1}) est libre, il constatera que la famille $(x^1, \dots, x^{n-1}, x^1 \wedge \dots \wedge x^{n-1})$ forme alors une base positive de \mathbb{R}^n puisque :

$$[x^1, \dots, x^{n-1}, x^1 \wedge \dots \wedge x^{n-1}] = ||x^1 \wedge \dots \wedge x^{n-1}||^2 > 0$$

Calcul pratique du produit vectoriel Soit $f = (f_1, \dots, f_n)$ une base orthonormée positive de \mathbb{R}^n . Donnons-nous $(x^1, \dots, x^{n-1}) \in (\mathbb{R}^n)^{n-1}$ par :

$$\forall j = 1, \dots, n - 1 \quad x^j = \sum_{i=1}^n \xi_i^j f_i$$

et posons $x^1 \wedge \cdots \wedge x^{n-1} = \sum_{i=1}^n \alpha_i f_i$.

L'égalité des formes linéaires $(\xi_1, \dots, \xi_n) \longmapsto \alpha_1 \xi_1 + \dots + \alpha_n \xi_n$ et

$$(\xi_1, \cdots, \xi_n) \longmapsto \begin{vmatrix} \xi_1^1 & \cdots & \xi_1^{n-1} & \xi_1 \\ \vdots & \vdots & \vdots & \vdots \\ \xi_n^1 & \cdots & \xi_n^{n-1} & \xi_n \end{vmatrix}$$

équivaut à celle des coefficients de ξ_1, \dots, ξ_n . Nous en déduisons la proposition suivante.

Proposition 6.2.3 Pour tout $i = 1, \dots, n$, la i-ème coordonnée du vecteur $x^1 \wedge \dots \wedge x^{n-1}$ dans la base orthonormée positive f est égale au cofacteur du terme en position (i, n) dans la matrice, par rapport à la base f, de la famille (x^1, \dots, x^{n-1}, x) , où $x \in \mathbb{R}^n$ est arbitrairement choisi.

Soit (x^1, \dots, x^{n-1}) une famille orthogonale dans \mathbb{R}^n . Si nous posons

$$\forall j = 1, \cdots, n - 1 \quad f_j = \frac{x^j}{\|x^j\|}$$

nous pouvons trouver $f_n \in \mathbb{R}^n$ tel que la famille $f = (f_1, \dots, f_n)$ constitue une base orthonormée positive de \mathbb{R}^n . En appliquant la proposition précédente, nous obtenons facilement :

$$(x^1, \dots, x^{n-1})$$
 orthogonale $\Longrightarrow ||x^1 \wedge \dots \wedge x^{n-1}|| = \prod_{j=1}^{n-1} ||x^j||$

6.2.4 Interprétations géométriques en dimension 3

L'interprétation suivante nous sera utile pour les calculs d'aires de surfaces paramétrées dans \mathbb{R}^3 .

Considérons deux vecteurs non colinéaires u et v dans \mathbb{R}^3 et notons π la projection orthogonale sur la droite $\mathbb{R}u$, de sorte que $(u, v - \pi v)$ forme une famille orthogonale. Nous obtenons alors :

$$||u \wedge v|| = ||u \wedge (v - \pi v)|| = ||u|| ||v - \pi v||$$

Un simple dessin nous permet alors d'interpréter $||u \wedge v||$ comme l'aire du parallélogramme construit à partir des vecteurs non colinéaires u et v.

La propriété suivante est souvent utilisée comme définition du produit vectoriel dans \mathbb{R}^3 dans une présentation élémentaire.

Proposition 6.2.4 Soient u et v deux vecteurs de \mathbb{R}^3 . Si (u, v) est lié, alors $u \wedge v$ est le vecteur nul. Sinon, $u \wedge v$ est l'unique vecteur orthogonal au plan engendré par (u, v), tel que $(u, v, u \wedge v)$ soit une base positive et que :

$$||u \wedge v|| = ||u|| \, ||v|| \sin \theta,$$

où θ est l'écart angulaire de u et v.

Dans le même ordre d'idée, si (u, v, w) est un système libre (et donc une base) de \mathbb{R}^3 , le produit mixte $[u, v, w] = (u \wedge v \mid w)$ peut être interprété (au signe près) comme le produit de l'aire du parallélogramme construit à partir de (u, v) par $\|\pi w\|$, où π est la projection sur la droite supplémentaire orthogonal de $\mathrm{Vect}(u, v)$.

Si nous considérons le parallélotope construit à partir de (u,v,w), la quantité $\|\pi w\|$ apparaît comme la "hauteur" de ce parallélotope. Finalement, |[u,v,w]| est le produit de l'aire du parallélogramme qui constitue la "base" du parallélotope par la hauteur de ce dernier, c'est-à-dire son volume, comme on pourrait le montrer par un découpage savant ramenant ce parallélotope à un parallélépipède rectangle...

Retenons que |[u, v, w]| est le volume du parallélotope :

$$\mathcal{P} = \{ \alpha u + \beta v + \gamma w, 0 < \alpha < 1, 0 < \beta < 1, 0 < \gamma < 1 \}$$

Comme le produit mixte est par définition un déterminant dans une base orthonormale positive, cette interprétation géométrique nous permet de comprendre intuitivement pourquoi la valeur absolue du déterminant jacobien apparaît dans le théorème du changement de variable, comme nous allons le voir dans la section suivante.

6.3 Théorème du changement de variables

6.3.1 Enoncé général

Nous rappelons ici cet énoncé en dimension 3 en vue de l'interprétation géométrique annoncée ci-dessus mais le théorème du changement de variables est valable en dimension $d \in \mathbb{N}^*$.

Théorème 6.3.1 Soit $\Phi: U \to V$ un C^1 -difféomorphisme entre deux ouverts de \mathbb{R}^3 et $f: V \to \mathbb{R}$ une application continue. Alors l'application f est

intégrable sur V si et seulement si l'application $f \circ \Phi |J_{\Phi}|$ est intégrable sur U et, dans ce cas, nous avons l'égalité :

$$\int_{V} f(x,y,z) \, dx \, dy \, dz = \int_{U} f(\Phi(s,t,u)) \, |J_{\Phi}(s,t,u)| \, ds \, dt \, du$$

D'un point de vue pratique, on dit que l'on "pose le changement de variables $(x, y, z) = \Phi(s, t, u)$ " et l'on écrit l'égalité entre "éléments différentiels" $dx dy dz = |J_{\Phi}(s, t, u)| ds dt du$.

Intuitivement, ce résultat admet l'interprétation géométrique suivante. Le difféomorphisme de U sur V noté $\Phi:(s,t,u)\longmapsto(x,y,z)$ se comporte localement comme une application linéaire qui transforme le parallélépipède rectangle élémentaire $[s,s+ds]\times[t,t+dt]\times[u,u+du]$ de U en un parallélépipède élémentaire de V, défini (de façon naturelle) par le point (x,y,z) et les trois vecteurs :

$$\left(\frac{\partial x}{\partial s}, \frac{\partial y}{\partial s}, \frac{\partial z}{\partial s}\right) \ ds \quad , \quad \left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t}\right) \ dt \quad , \quad \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \ du \ .$$

Selon le paragraphe précédent, son volume est donné par le produit mixte de ces trois vecteurs, autrement dit par l'élément différentiel $ds \, dt \, du$ multiplié par la valeur absolue du déterminant suivant :

$$\begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} & \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} & \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} & \frac{\partial z}{\partial u} \end{vmatrix}$$

qui n'est autre que $J_{\Phi}(s,t,u)$ par définition.

L'intégrale sur V apparaît comme une somme sur chacun de ces parallélépipèdes élémentaires.

Application : Volume d'une boule dans \mathbb{R}^d

Référence : Topologie, Analyse par Georges FLORY, tome 3, éditions Vuibert, pages 177-178

Pour r > 0, nous notons $B_d(r) = \{x \in \mathbb{R}^d, ||x|| < r\}$. Le volume de cette boule sera noté $V_d(r)$.

1. En appliquant le théorème du changement de variables dans \mathbb{R}^d , montrer l'égalité :

$$V_d(r) = r^d V_d(1)$$

2. Nous utiliserons la notation suivante pour les intégrales de Wallis :

$$I_d = \int_0^{\frac{\pi}{2}} \sin^d u \, du$$

En appliquant le théorème de Fubini puis un changement de variable simple, montrer les égalités

$$V_d(r) = V_{d-1}(1) \int_{-r}^{r} (r^2 - x^2)^{\frac{d-1}{2}} dx = 2r^d I_d V_{d-1}(1)$$

3. On rappelle les valeurs des intégrales de Wallis :

$$I_{2n} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$
 , $I_{2n+1} = \frac{(2^n n!)^2}{(2n+1)!}$ $(n \in \mathbb{N})$

Déduire de ce qui précède les égalités

$$V_{2n}(1) = \frac{\pi^n}{n!}$$
 , $V_{2n+1}(1) = \frac{2^{2n+1} n! \pi^n}{(2n+1)!}$

4. La boule $B_d(1)$ est inscrite dans l'hypercube :

$$C_d = \{ x \in \mathbb{R}^d, \max_{1 \le i \le d} |x_i| < 1 \}$$

Comparer le comportement asymptotique de leurs volumes respectifs lorsque d tend vers l'infini.

Remarque: Il est facile de vérifier numériquement que le volume de la boule unité est maximal en dimension 5. Le volume d'une boule de rayon 2 est quant à lui maximal en dimension 24...Tout cela n'est pas tellement intuitif!

6.3.2 Quelques cas particuliers

Coordonnées polaires

L'application $\Phi: \mathbb{R}_+^* \times]0, 2\pi[\to \mathbb{R}^2/(\mathbb{R}_+ \times \{0\})$ définie par

$$\Phi(\rho, \theta) = (x(\rho, \theta), y(\rho, \theta)) = (\rho \cos \theta, \rho \sin \theta)$$

est un C^1 -difféomorphisme de déterminant jacobien

$$J_{\Phi}(\rho,\theta) = \begin{vmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta \end{vmatrix} = \rho$$

Nous retiendrons donc la formule :

$$dx \, dy = \rho \, d\rho \, d\theta$$

Une application très classique est le calcul de l'intégrale de Gauss :

$$\int_{-\infty}^{+\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

Coordonnées cylindriques

L'application $\Phi: \mathbb{R}_+^* \times]0, 2\pi[\times \mathbb{R} \to \mathbb{R}^3/(\mathbb{R}_+ \times \{0\} \times \mathbb{R})$ définie par

$$\Phi(\rho, \theta, z) = (x(\rho, \theta, z), y(\rho, \theta, z), z(\rho, \theta, z)) = (\rho \cos \theta, \rho \sin \theta, z)$$

est un C^1 -difféomorphisme de déterminant jacobien

$$J_{\Phi}(\rho, \theta, z) = \begin{vmatrix} \cos \theta & -\rho \sin \theta & 0 \\ \sin \theta & \rho \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho$$

Nous retiendrons donc la formule :

$$dx dy dz = \rho d\rho d\theta dz$$

Application : Volume d'un solide de révolution

Réf :Intégrales curvilignes et de surfaces, LOFFICIAL et TANRE, Ellipses noté [LT] dans la suite, page 93.

Soit $f:]a, b[\to \mathbb{R}_+^*$ continue et S le solide de révolution autour de l'axe Oz défini par

$$S := \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 < f^2(z), \ a < z < b\}$$

Calculer son volume V(S).

Définition 6.3.2 Soit $\mathcal{P} \subset \mathbb{R}^2$ (supposée géométriquement simple par exemple) une plaque homogène dans le plan yOz, d'aire $\mathcal{A}(\mathcal{P}) \in \mathbb{R}_+^*$. Son centre d'inertie est le point $G = (y_G, z_G) \in \mathbb{R}^2$ tel que

$$\begin{pmatrix} y_G \\ z_G \end{pmatrix} := \frac{1}{\mathcal{A}(\mathcal{P})} \iint_{\mathcal{P}} \begin{pmatrix} y \\ z \end{pmatrix} dy dz$$

Remarque: La notion de centre d'inertie généralise celle de barycentre (ou centre de gravité) de n points pondérés dans \mathbb{R}^2 . L'hypothèse d'homogénéité de la plaque correspond au cas où tous les points ont même poids.

Application: Un théorème de Guldin

 $R\acute{e}f$: [LT 96]

Avec les notations de l'application précédente, considérons

$$\mathcal{P} := \{0 < y < f(z), a < z < b\}$$

une plaque homogène de centre d'inertie G et soit S le solide de révolution qu'elle engendre par rotation autour de l'axe Oz. Montrer l'égalité :

$$V(S) = 2\pi y_G \mathcal{A}(\mathcal{P})$$

110CHAPITRE 6. APPLICATIONS DE L'ANALYSE AU CALCUL DES GRANDEURS

Remarque: Ce théorème de Guldin se généralise immédiatement à une plaque homogène

$$\mathcal{P} := \{ f_1(z) < y < f_2(z), a < z < b \}$$

où f_1 et f_2 sont deux applications telles que $0 < f_1 < f_2$.

Coordonnées sphériques

L'application $\Phi: \mathbb{R}_+^* \times]0, \pi[\times]0, 2\pi[\to \mathbb{R}^3/(\mathbb{R}_+ \times \{0\} \times \mathbb{R})$ définie par $\Phi(r,\theta,\phi) = (x(r,\theta,\phi),y(r,\theta,\phi),z(r,\theta,\phi)) = (r\sin\theta\cos\phi,r\sin\theta\sin\phi,r\cos\theta)$ est un C^1 -difféomorphisme de déterminant jacobien

$$J_{\Phi}(r,\theta,\phi) = \begin{vmatrix} \sin\theta\cos\phi & r\cos\theta\cos\phi & -r\sin\theta\sin\phi \\ \sin\theta\sin\phi & r\cos\theta\sin\phi & r\sin\theta\cos\phi \\ \cos\theta & -r\sin\theta & 0 \end{vmatrix} = r^2\sin\theta$$

Nous retiendrons donc la formule :

$$dx dy dz = r^2 \sin\theta dr d\theta d\phi$$

Définition 6.3.3 Soit $S \subset \mathbb{R}^3$ (supposé géométriquement simple par exemple) un solide muni d'une "fonction de masse volumique" continue $\rho: S \to \mathbb{R}_+$. Le moment d'inertie du solide S par rapport à l'origine O est l'intégrale :

$$\iiint_{S} (x^{2} + y^{2} + z^{2}) \rho(x, y, z) dx dy dz$$

111

Exercice:

 $R\acute{e}f: [LT 106]$

Calculer le moment d'inertie par rapport à l'origine des solides homogènes de masse volumique 1 définis par :

$$S_1 := \{(x, y, z) \in \mathbb{R}^3 / x > 0, y > 0, z > 0, x^2 + y^2 + z^2 < 1\}$$

$$S_2 := \left\{ (x, y, z) \in \mathbb{R}^3 / x > 0, y > 0, z > 0, \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} < 1 \right\},\,$$

avec $(a, b, c) \in (\mathbb{R}_+^*)^3$ fixés.

6.4 Formule de Green-Riemann

Cette formule permet de calculer une intégrale double (par exemple celle qui définit une aire) sous la forme d'une intégrale curviligne (notée \oint) le long d'un chemin du plan.

Si \mathcal{D} est un sous-ensemble de \mathbb{R}^2 «géométriquement simple», son bord $\partial \mathcal{D}$ est une courbe fermée que nous orienterons dans le sens trigonométrique : ceci signifie intuitivement que si l'on se déplace sur $\partial \mathcal{D}$ dans ce sens, on a le sous-ensemble \mathcal{D} sur sa gauche. Nous noterons $\partial \mathcal{D}^+$ le bord de \mathcal{D} ainsi orienté.

Théorème 6.4.1 Soit P(x,y) dx + Q(x,y) dy une forme différentielle de classe C^1 définie sur un ouvert contenant le sous-ensemble géométriquement simple \mathcal{D} du plan. Alors, on a l'égalité :

$$\oint_{\partial \mathcal{D}^+} P(x, y) \, dx + Q(x, y) \, dy = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

Démonstration: [LT 170-171]

En prenant en particulier P(x,y) = -y et Q(x,y) = x, nous obtenons :

Corollaire 6.4.2 L'aire d'un sous-ensemble géométriquement simple \mathcal{D} du plan est donnée par l'égalité :

$$\mathcal{A}(\mathcal{D}) = \frac{1}{2} \oint_{\partial \mathcal{D}^+} x \, dy - y \, dx$$

On obtient grâce à cette formule l'aire délimitée par un astroïde (arc paramétré défini par $x(t) = \cos^3(t), y(t) = \sin^3(t), t \in [0, \pi/2]$) : elle vaut $3\pi/8$ [LT 172].

Si l'arc est paramétré en coordonnées polaires, c'est-à-dire par $x(\theta) = \rho(\theta)\cos\theta$, $y(\theta) = \rho(\theta)\sin\theta$, la forme différentielle $\frac{1}{2}x\,dy - y\,dx$ s'écrit $\frac{1}{2}\rho^2d\theta$. On en déduit par exemple l'aire délimitée par la lemniscate de Bernoulli $\rho^2 = \cos(2\theta)$: celle -ci vaut 1 [LT 172].

6.5 Aire d'une nappe géométrique

6.5.1 Nappe paramétrée, nappe géométrique

Définition 6.5.1 On appelle C^k -nappe paramétrée $de \mathbb{R}^3$ tout couple (D, F), où D est un domaine (i.e. un ouvert connexe) $de \mathbb{R}^2$ et $F \in C^k(D, \mathbb{R}^3)$. On dit que F(D) est le support de la nappe; c'est un connexe $de \mathbb{R}^3$.

Le lecteur vérifiera que l'on définit une relation d'équivalence sur l'ensemble des C^k -nappes paramétrées de \mathbb{R}^3 par :

$$(D_1, F_1) \sim (D_2, F_2) \iff \exists \Phi : D_2 \to D_1, C^k$$
-difféomorphisme tel que $F_2 = F_1 \circ \Phi$

Les classes d'équivalence sont appelées C^k -nappes géométriques de \mathbb{R}^3 . Les représentants d'une C^k -nappe géométrique Σ sont appelés paramétrisations de cette nappe. C'est pourquoi un C^k -difféomorphisme Φ vérifiant la condition précédente est appelé changement de paramétrisation.

On vérifie immédiatement que toutes les paramétrisations d'une C^k -nappe géométrique Σ fixée ont même support, qui sera donc appelé support de cette nappe géométrique et noté supp Σ .

Exemple: Soit
$$D =]0, \pi[\times]0, 2\pi[$$
 et $F : D \to \mathbb{R}^3$ définie par $F(\theta, \phi) = (x(\theta, \phi), y(\theta, \phi), z(\theta, \phi)) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$

Le couple (D,F) définit une C^{∞} -nappe paramétrée de \mathbb{R}^3 dont le support est la sphère unité privée du demi-cercle correspondant à son intersection avec le demi-plan y=0, $x\geq 0$.

Nous noterons S^2 la C^{∞} -nappe géométrique correspondante.

Soit Σ une C^k -nappe géométrique. Le lecteur vérifiera que l'on définit une relation d'équivalence sur l'ensemble des triplets (D, F, X) tels que (D, F) est une paramétrisation de Σ et $X \subset D$ par :

$$(D_1,F_1,X_1)\sim (D_2,F_2,X_2)\Leftrightarrow \exists \Phi:D_2\to D_1,C^k$$
-difféo. t.q. $F_2=F_1\circ \Phi$ et $X_1=\Phi(X_2)$

Définition 6.5.2 On appelle morceau \mathcal{X} de la C^k -nappe géométrique Σ une classe pour la relation d'équivalence précédente. On dit que F(X), qui est une partie de supp Σ indépendante de la paramétrisation choisie, est le support de ce morceau de nappe géométrique et on le note supp \mathcal{X} .

Un cas particulier important dans la suite est celui où, pour un représentant (D, F, X) du morceau \mathcal{X} , X est un compact de D. Cette propriété reste alors vraie pour n'importe quel représentant de \mathcal{X} , comme le lecteur le vérifiera à titre d'exercice.

Nous dirons dans ce cas que \mathcal{X} est un morceau compact de Σ .

Exemple : Fenêtre de Viviani

On appelle fenêtre de Viviani la partie de la sphère unité de \mathbb{R}^3 qui est incluse dans le solide (cylindrique) d'équation $x^2+(y-\frac{1}{2})^2\leq \frac{1}{4}$.

En reprenant les notations de l'exemple précédent, faire apparaître la fenêtre de Viviani comme un morceau compact $\mathcal V$ de S^2 .

6.5.2 Aire d'une nappe géométrique

Théorème et définition 6.5.3 Soit \mathcal{X} un morceau compact d'une C^k -nappe géométrique Σ . Alors, pour tout représentant (D, F, X) de \mathcal{X} , la valeur de l'intégrale

$$\iint_X \left\| \frac{\partial F}{\partial u}(u,v) \wedge \frac{\partial F}{\partial v}(u,v) \right\| \, du \, dv$$

est indépendante du choix du représentant.

Nous l'appellerons aire du morceau compact \mathcal{X} et nous la noterons $\mathcal{A}(\mathcal{X})$.

114CHAPITRE 6. APPLICATIONS DE L'ANALYSE AU CALCUL DES GRANDEURS

Exercice : Aire de la fenêtre de Viviani

 $R\acute{e}f:$ [LT 164]

Avec les notations de l'exemple précédent, établir l'égalité :

$$\mathcal{A}(\mathcal{V}) = 2\pi - 4$$

Chapitre 7

Espaces de Banach

Stefan Banach (1892-1945) est un mathématicien polonais. Comme d'habitude, nous noterons $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

7.1 Définition et premiers exemples

Définition 7.1.1 On appelle espace de Banach tout espace vectoriel normé (e.v.n.) complet.

Ceci signifie que l'espace E muni de la distance d associée à la norme $\|\cdot\|$ (par la relation $d(x,y) = \|x-y\|$) est un espace métrique complet.

Exemples $(\mathbb{R}, |\cdot|)$ et $(\mathbb{C}, |\cdot|)$ sont des espaces de Banach.

Rappel : Si (E_i, d_i) , $1 \le i \le n$ sont des espaces métriques, nous pouvons munir l'espace produit $E = \prod_{i=1}^n E_i$ des trois distances suivantes :

$$\delta_1(x,y) := \sum_{i=1}^n d_i(x_i,y_i) , \quad \delta_2(x,y) := \left(\sum_{i=1}^n d_i^2(x_i,y_i)\right)^{\frac{1}{2}} , \quad \delta_\infty(x,y) := \max_{1 \le i \le n} d_i(x_i,y_i)$$

Ces trois distances sont équivalentes.

Si tous les (E_i, d_i) , $1 \le i \le n$ sont complets, alors l'espace produit (E, d), où $d \in \{\delta_1, \delta_2, \delta_3\}$, est complet.

Nous en déduisons immédiatement la proposition suivante :

Proposition 7.1.2 Si (E_i, N_i) , $1 \le i \le n$ sont des \mathbb{K} -espaces vectoriels normés, nous pouvons munir l'espace produit $E = \prod_{i=1}^n E_i$ des trois normes suivantes, qui sont équivalentes :

$$||x||_1 := \sum_{i=1}^n N_i(x_i)$$
, $||x||_2 := \left(\sum_{i=1}^n N_i^2(x_i)\right)^{\frac{1}{2}}$, $||x||_{\infty} := \max_{1 \le i \le n} N_i(x_i)$

Si tous les (E_i, N_i) , $1 \le i \le n$ sont des espaces de Banach, alors l'espace produit $(E, \|\cdot\|)$, où $\|\cdot\|$ est l'une quelconque des trois normes précédentes, est un espace de Banach.

Exemples \mathbb{R}^n et \mathbb{C}^n munis d'une norme quelconque sont des espaces de Banach (rappelons ici que sur un espace de dimension finie, toutes les normes sont équivalentes).

Plus généralement, tout \mathbb{K} -e.v.n. de dimension finie est un espace de Banach car, si (e_1, \dots, e_n) est une base de E, on peut le munir de la norme définie par $\|x\| := \sum_{i=1}^n |x_i|$ pour $x = \sum_{i=1}^n x_i e_i$, et donc $\varphi : (\mathbb{K}^n, \|\cdot\|_1) \to (E, \|\cdot\|)$ définie par $\varphi(x_1, \dots, x_n) := \sum_{i=1}^n x_i e_i$ est une isométrie.

Nous verrons plus loin (section 3) des exemples de Banach de dimension infinie.

7.2 Séries à valeurs dans un espace de Banach

Proposition 7.2.1 Soit $\sum u_n$ une série à valeurs dans un Banach $(E, \|\cdot\|)$. Alors $\sum u_n$ converge si et seulement si elle satisfait le critère de Cauchy :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad q \ge p \ge N \Longrightarrow \|\sum_{n=p}^{q} u_n\| < \epsilon$$

Définition 7.2.2 Une série $\sum_{n\in\mathbb{N}} u_n$ à valeurs dans un e.v.n. $(E, \|\cdot\|)$ est dite absolument convergente si la série positive $\sum_{n\in\mathbb{N}} \|u_n\|$ converge.

Remarque: Cette notion est à distinguer de la convergence normale que nous définirons plus loin et qui concerne les séries d'applications à valeurs dans un Banach.

Corollaire 7.2.3 Dans un espace de Banach $(E, \|\cdot\|)$, toute série absolument convergente est convergente.

Démonstration: On applique le critère de Cauchy pour les séries et l'on conclut grâce à l'inégalité triangulaire :

$$\left\| \sum_{n=p}^{q} u_n \right\| \le \sum_{n=p}^{q} \left\| u_n \right\|$$

Remarque: En fait, cette propriété caractérise les Banach parmi les e.v.n. car on a l'équivalence suivante (hors programme) :

Un K-e.v.n. $(E, \|\cdot\|)$ est un Banach si et seulement si toute série absolument convergente dans $(E, \|\cdot\|)$ est convergente.

Référence : BRIANE-PAGES *Théorie de l'intégration* (4ème édition) chez Vuibert, page 162.

7.3 Espaces de Banach usuels de suites et de fonctions

Définition et proposition 7.3.1 On note $l^1_{\mathbb{K}}(\mathbb{N})$, resp. $l^2_{\mathbb{K}}(\mathbb{N})$, le \mathbb{K} -espace vectoriel des suites $(a_n) \in \mathbb{K}^{\mathbb{N}}$ telles que $\sum |a_n|$, resp. $\sum |a_n|^2$, converge. On définit une norme sur $l^1_{\mathbb{K}}(\mathbb{N})$, resp. $l^2_{\mathbb{K}}(\mathbb{N})$, en posant :

$$\|(a_n)\|_1 := \sum_{n=0}^{+\infty} |a_n|, resp. \|(a_n)\|_2 := \left(\sum_{n=0}^{+\infty} |a_n|^2\right)^{\frac{1}{2}}$$

La démonstration est laissée au lecteur qui remarquera que $\|\cdot\|_2$ est une norme euclidienne.

Proposition 7.3.2 $(l^1_{\mathbb{K}}(\mathbb{N}), \|\cdot\|_1)$ et $(l^2_{\mathbb{K}}(\mathbb{N}), \|\cdot\|_2)$ sont des espaces de Banach.

Le lecteur trouvera la démonstration du résultat concernant $l^2_{\mathbb{K}}(\mathbb{N})$ dans [DAN 256-257]. Il adaptera la preuve au cas de $l^1_{\mathbb{K}}(\mathbb{N})$.

Définition et proposition 7.3.3 On note $l_{\mathbb{K}}^{\infty}(\mathbb{N})$ le \mathbb{K} -espace vectoriel des suites $(a_n) \in \mathbb{K}^{\mathbb{N}}$ bornées.

On définit une norme sur $l_{\mathbb{K}}^{\infty}(\mathbb{N})$ en posant $\|(a_n)\|_{\infty} := \sup_{n \in \mathbb{N}} |a_n|$.

Proposition 7.3.4 L'espace $(l_{\mathbb{K}}^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ est un Banach.

Démonstration: Nous noterons $a = (a_n)_{n \in \mathbb{N}}$ un élément de $l_{\mathbb{K}}^{\infty}(\mathbb{N})$. Considérons maintenant une suite de Cauchy $(a^p)_{p \in \mathbb{N}}$ dans $(l_{\mathbb{K}}^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$:

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad q \geq p \geq N \Longrightarrow \|a^q - a^p\|_{\infty} < \epsilon \text{ , i.e. } \sup_{n \in \mathbb{N}} |a_n^q - a_n^p| < \epsilon$$

Soit $n_0 \in \mathbb{N}$ arbitraire fixé; nous avons donc bien sûr :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad q \ge p \ge N \Longrightarrow |a_{n_0}^q - a_{n_0}^p| < \epsilon \tag{7.1}$$

Ceci prouve que $(a_{n_0}^p)_{p\in\mathbb{N}}$ est une suite de Cauchy à valeurs dans \mathbb{K} , qui est complet. Nous sommes donc en droit de définir $a_{n_0} := \lim_{p\to +\infty} a_{n_0}^p$. En réalité, n_0 étant arbitraire, nous avons même défini ainsi $a := (a_n)_{n\in\mathbb{N}}$.

En realite, n_0 etant arbitraire, nous avons meme denni ainsi $a := (a_n)_{n \in \mathbb{N}}$. Nous allons maintenant montrer que, lorsque $p \to +\infty$, $||a^p - a||_{\infty} \to 0$, ce qui nous donnera la conclusion.

Passons à la limite quand $q \to +\infty$ dans l'inégalité (7.1) :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad p \geq N \Longrightarrow |a_{n_0} - a_{n_0}^p| \leq \epsilon$$

Comme n_0 était arbitraire, nous en déduisons :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad p \ge N \Longrightarrow ||a - a^p||_{\infty} = \sup_{n \in \mathbb{N}} |a_n - a_n^p| \le \epsilon$$

Vous retrouverez cette démonstration dans FLORY, *Topologie*, analyse, tome 1, chez Vuibert, page 108.

Définition et proposition 7.3.5 Soit X un ensemble non vide et $(E, \|\cdot\|)$ un \mathbb{K} -e.v.n. Nous noterons $\mathcal{B}(X, E)$ le \mathbb{K} -espace vectoriel des applications bornées de X dans E.

On définit une norme sur $\mathcal{B}(X, E)$ en posant :

$$\forall f \in \mathcal{B}(X, E) \quad \|f\|_{\infty} := \sup_{x \in X} \|f(x)\|$$

Proposition 7.3.6 Si $(E, \|\cdot\|)$ est un Banach, alors $(\mathcal{B}(X, E), \|\cdot\|_{\infty})$ est un Banach.

Le lecteur trouvera dans [DAN 43-44] la démonstration de ce résultat, qui est assez similaire à la démonstration précédente sur $(l_{\mathbb{K}}^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$. On peut dire que $(\mathcal{B}(X, E), \|\cdot\|_{\infty})$ « hérite » de la complétude de l'espace d'arrivée E, de même que $(l_{\mathbb{K}}^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ « hérite » de la complétude de \mathbb{K} .

Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux K-e.v.n. Nous noterons $\mathcal{L}(E, F)$, resp. $\mathcal{L}_c(E, F)$ le K-espace vectoriel des applications linéaires, resp. linéaires continues de E dans F. Rappelons le théorème suivant dont le lecteur pourra retrouver la démonstration à titre d'exercice ou dans [DAN 167].

7.3. ESPACES DE BANACH USUELS DE SUITES ET DE FONCTIONS119

Théorème 7.3.7 Soit $f \in \mathcal{L}(E, F)$. Il y a équivalence entre :

- 1. f est lipschitzienne sur E
- 2. f est uniformément continue sur E
- 3. f est continue sur E
- 4. f est continue en 0
- 5. f est bornée sur la boule unité fermée de E
- 6. f est bornée sur la sphère unité fermée de E
- 7. Il existe une constante $M \ge 0$ telle que $\forall x \in E \quad ||f(x)||_F \le M||x||_E$

Définition et proposition 7.3.8 Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux \mathbb{K} e.v.n. On définit une norme sur $\mathcal{L}_c(E, F)$ en posant :

$$|||u||| = \sup_{x \neq 0} \frac{||u(x)||_F}{||x||_E} = \sup_{||x||_E = 1} ||u(x)||_F$$

On l'appelle norme subordonnée aux normes $\|\cdot\|_E$ et $\|\cdot\|_F$.

Exemple : Notons $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{K} . Par abus d'écriture, nous identifierons un endomorphisme (nécessairement continu) de \mathbb{K}^n avec sa matrice représentative $M = [m_{i,j}] \in \mathcal{M}_n(\mathbb{K})$ dans la base canonique.

Si nous munissons \mathbb{K}^n de la norme $||x||_{\infty} = \max_{1 \leq i \leq n} |x_i|$, nous allons montrer que la norme subordonnée de l'endomorphisme M vaut :

$$|||M||| = \max_{1 \le i \le n} \sum_{j=1}^{n} |m_{i,j}|$$

En effet, pour tout $x \in \mathbb{K}^n$, nous avons :

$$||Mx|| = \max_{1 \le i \le n} |\sum_{j=1}^{n} m_{i,j} x_j| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |m_{i,j}| |x_j| \le ||x||_{\infty} \max_{1 \le i \le n} \sum_{j=1}^{n} |m_{i,j}| ,$$

ce qui prouve l'inégalité :

$$|||M||| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |m_{i,j}|$$

Pour prouver l'inégalité inverse, considérons un indice $i_0 \in [1, n]$ tel que

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |m_{i,j}| = \sum_{j=1}^{n} |m_{i_0,j}|$$

puis $y \in \mathbb{K}^n$ tel que, pour tout $1 \le j \le n$, $|y_j| = 1$ et $m_{i_0,j} y_j = |m_{i_0,j}|$. Nous concluons alors facilement en écrivant :

$$||My|| \ge |\sum_{j=1}^{n} m_{i_0,j} y_j| = \sum_{j=1}^{n} |m_{i_0,j}|$$

Proposition 7.3.9 Si $(F, \|\cdot\|_F)$ est un Banach, alors $(\mathcal{L}_c(E, F), \|\cdot\|)$ est un Banach.

Le lecteur trouvera dans [DAN 172-173] la preuve de ce résultat. Notons que c'est encore de la complétude de l'espace d'arrivée $(F, \|\cdot\|_F)$ qu'hérite $(\mathcal{L}_c(E, F), \|\|\cdot\|\|)$.

Pour clore cette section, nous renvoyons le lecteur au théorème de prolongement d'une application linéaire continue à valeurs dans un Banach (Proposition 1.2.4 page 11) qui nous a permis notamment de construire l'intégrale de Riemann.

7.4 Suites d'applications à valeurs dans un espace de Banach

Soit X un ensemble non vide et $(E, \|\cdot\|)$ un \mathbb{K} -e.v.n. Dans toute la suite, $(f_n)_{n\in\mathbb{N}}$ et f sont des applications définies sur X et à valeurs dans E.

Définitions 7.4.1 La suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur X si :

$$\forall x \in X \quad \forall \epsilon > 0 \quad \exists N_x \in \mathbb{N} \quad \forall n \ge N_x \quad ||f_n(x) - f(x)|| \le \epsilon$$

La suite d'applications $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X si :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad \forall x \in X \quad ||f_n(x) - f(x)|| \leq \epsilon$$

Remarques

- 1. La convergence simple de (f_n) vers f sur X signifie donc que pour tout $x \in X$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers f(x) dans E.
- 2. La convergence uniforme est plus forte que la convergence simple, la différence venant de ce que N ne dépend pas de x dans le cas de la convergence uniforme. Ainsi, si l'on prend X =]0,1[, $E = \mathbb{R}$, $f_n = \mathbf{1}_{]0,1/(n+1)[}$ et $f \equiv 0$, la suite $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers f sur \mathbb{R} mais ne converge pas uniformément vers f sur \mathbb{R} .

7.4. SUITES D'APPLICATIONS À VALEURS DANS UN ESPACE DE BANACH121

La norme $\|\cdot\|_{\infty}$ sur $\mathcal{B}(X, E)$ est encore appelée norme de la convergence uniforme à cause du résultat suivant, laissé au lecteur en exercice.

Proposition 7.4.2 Supposons que (f_n) est une suite dans $\mathcal{B}(X, E)$ qui converge uniformément vers f. Alors $f \in \mathcal{B}(X, E)$ et $||f_n - f||_{\infty} \to 0$.

Définition 7.4.3 On dit que (f_n) satisfait le critère de Cauchy uniforme sur X si $\forall \epsilon > 0$ $\exists N \in \mathbb{N}$ $n \geq p \geq N \Longrightarrow \forall x \in X$ $||f_n(x) - f_p(x)|| \leq \epsilon$

Proposition 7.4.4 Si $(E, \|\cdot\|)$ est un Banach, alors la suite (f_n) converge uniformément sur X si et seulement si elle satisfait le critère de Cauchy uniforme sur X.

Le lecteur trouvera la démonstration de ce résultat dans [DAN 270-271]. Son intérêt est de caractériser la convergence uniforme sans avoir besoin de connaître à l'avance la limite f.

Nous nous plaçons désormais dans le cas où (X, d) est un espace métrique. Le théorème suivant est vrai dans le cas général où $(E, \|\cdot\|)$ est un \mathbb{K} -e.v.n. (il resterait même valable si (E, d') était un espace métrique).

Théorème 7.4.5 (de continuité) Soit $x_0 \in X$. Nous supposons que toutes les applications $f_n, n \in \mathbb{N}$, sont continues au point x_0 et que la suite (f_n) converge uniformément vers f sur X. Alors f est continue au point x_0 .

Le lecteur trouvera la preuve de ce théorème dans [DAN 271]. Une conséquence immédiate de celui-ci est qu'une limite uniforme d'applications continues sur X est continue sur X.

Corollaire 7.4.6 Supposons que (X, d) est un espace métrique compact et que $(E, \|\cdot\|)$ est un Banach. Alors $(C^0(X, E), \|\cdot\|_{\infty})$ est un Banach.

Démonstration: Nous avons l'inclusion $C^0(X, E) \subset \mathcal{B}(X, E)$ puisque l'image du compact X par une application continue $f: X \to E$ est un compact de E, donc f(X) est un sous-ensemble borné de E, autrement dit l'application f est bornée. Ainsi, la norme $\|\cdot\|_{\infty}$ est bien définie sur $C^0(X, E)$. En outre, la proposition 7.3.6 nous apprend que $(\mathcal{B}(X, E), \|\cdot\|_{\infty})$ est un Banach et le théorème précédent nous dit que $C^0(X, E)$ en est un sous-espace fermé, d'où la conclusion.

Théorème 7.4.7 (de dérivabilité) Nous nous plaçons maintenant dans le cas où X = I est un intervalle réel non trivial (i.e. ni vide ni réduit à un point), $(E, \|\cdot\|)$ est un Banach et $f_n \in C^1(I, E)$ pour tout $n \in \mathbb{N}$.

Supposons que la suite (f'_n) converge uniformément sur I et qu'il existe $x_0 \in I$ tel que $(f_n(x_0))$ converge.

Alors la suite (f_n) converge simplement sur I vers $f \in C^1(I, E)$ telle que $f' = \lim_n f'_n$.

En outre, si I est borné, (f_n) converge uniformément vers f sur I.

Idée de la preuve : Nos hypothèses entraînent :

$$\forall x \in I \quad f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t) dt$$

Notons $l = \lim f_n(x_0)$ et g la limite uniforme de la suite (f'_n) puis définissons l'application f par :

$$\forall x \in I \quad f(x) := l + \int_{x_0}^x g(t) dt$$

On majore alors $||f_n(x) - f(x)||$ pour prouver la convergence simple, puis la convergence uniforme dans le cas où l'intervalle I est borné.

Il suffit de prendre $I = E = \mathbb{R}$ et $f_n \equiv n$ pour constater que l'hypothèse « $\exists x_0 \in I$ tel que $(f_n(x_0))$ converge » est indispensable.

Nous terminons cette section en constatant que l'on a aussi un résultat d'intégration relatif à la convergence uniforme, celui-ci résultant de la construction même de l'intégrale de Riemann :

Si $X = [a, b], (E, ||\cdot||)$ est un Banach et $(f_n), f$ sont toutes des éléments de $C_M([a, b], E)$ telles que (f_n) converge uniformément vers f sur [a, b], alors

$$\int_{a}^{b} f_{n} \xrightarrow[n \to +\infty]{} \int_{a}^{b} f$$

En effet, l'application $I: (C_M([a,b],E), \|\cdot\|_{\infty}) \to E, f \mapsto I(f) = \int_a^b f$ est par construction une forme linéaire continue.

7.5 Séries d'applications à valeurs dans un espace de Banach

Nous conservons les notations de la section précédente et nous supposons dans toute la suite que $(E, \|\cdot\|)$ est un Banach.

Pour tout $n \in \mathbb{N}$, nous définissons $S_n : X \to E$ par $S_n := \sum_{k=0}^n f_k$.

Définition 7.5.1 Nous dirons que la série d'applications $\sum_{n\in\mathbb{N}} f_n$ converge simplement (resp. uniformément) sur X si la suite d'applications (S_n) converge simplement (resp. uniformément) sur X

La notion suivante n'avait pas de sens dans le cadre des suites d'applications.

Définition 7.5.2 Nous dirons que la série d'applications $\sum_{n\in\mathbb{N}} f_n$ converge normalement sur X si la série positive $\sum_{n\in\mathbb{N}} ||f_n||_{\infty}$ converge.

Ceci équivaut à l'existence d'une suite $(a_n) \in (\mathbb{R}_+)^{\mathbb{N}}$ telle que $\sum_{n \in \mathbb{N}} a_n$ converge et $\forall x \in X \quad ||f_n(x)|| \leq a_n$.

Proposition 7.5.3 Si la série $\sum_{n\in\mathbb{N}} f_n$ converge normalement sur X, alors elle converge uniformément sur X.

Démonstration: Montrons que la suite (S_n) satisfait le critère de Cauchy uniforme sur X, ce qui suffira d'après la proposition 7.4.4. Puisque la série $\sum_{n\in\mathbb{N}} \|f_n\|_{\infty}$ converge, elle satisfait le critère de Cauchy :

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad n \ge p \ge N \Rightarrow \sum_{k=p}^{n} ||f_k||_{\infty} < \epsilon$$

L'inégalité triangulaire nous permet d'en déduire que, pour $\epsilon > 0$ arbitraire :

$$\exists N \in \mathbb{N} \quad n \ge p \ge N \Rightarrow \forall x \in X \quad ||S_n(x) - S_p(x)|| \le \sum_{k=p+1}^n ||f_k(x)|| < \epsilon$$

Dans la section suivante, nous verrons un exemple important de série normalement convergente qui nous permet de définir l'exponentielle d'un endomorphisme continu sur l'espace de Banach E.

Les résultats (continuité, dérivabilité, intégration) établis pour des suites d'applications uniformément convergentes ont pour corollaires des énoncés analogues pour les séries d'applications qui convergent uniformément. Par exemple, le théorème 7.4.7 nous donne immédiatement :

Théorème 7.5.4 Soient I est un intervalle réel non trivial, $(E, \|\cdot\|)$ un Banach et $f_n \in C^1(I, E)$ pour tout $n \in \mathbb{N}$. Supposons que la série $\sum f'_n$ converge uniformément sur I et qu'il existe

 $x_0 \in I$ tel que $\sum f_n(x_0)$ converge. Alors la série $\sum f_n$ converge simplement sur I vers $S \in C^1(I,E)$ telle que $S' = \sum_{n=0}^{+\infty} f'_n$. En outre, si I est borné, $\sum f_n$ converge uniformément vers S sur I.

Enfin, en utilisant une transformation d'Abel, nous obtenons [DAN 291]:

Théorème 7.5.5 (Critère d'Abel uniforme) Nous nous plaçons ici dans le cas où X = I intervalle réel et, outre (f_n) , nous considérons une suite (g_n) d'applications de I dans \mathbb{R} . Nous supposons :

- 1. $\exists M > 0 \quad \forall n \in \mathbb{N} \quad \forall x \in I \quad \|\sum_{k=0}^{n} f_k(x)\| \leq M$
- 2. La suite (g_n) converge uniformément sur I vers $g \equiv 0$ en décroissant. Alors $\sum_{n \in \mathbb{N}} g_n f_n$ converge uniformément sur I.

Application aux séries trigonométriques : Soit $(c_n) \in \mathbb{R}^{\mathbb{N}}$ une suite décroissante de limite nulle. Alors la série $\sum_{n \in \mathbb{N}} c_n e^{int}$ d'applications de $[0, 2\pi]$ dans \mathbb{C} converge uniformément sur tout compact de $[0, 2\pi]$.

Si nous disposons d'une structure plus riche que celle d'espace de Banach, à savoir celle d'algèbre de Banach qui va être étudiée dans le chapitre suivant, la notion de séries d'applications va nous permettre de définir l'application exponentielle dans un cadre beaucoup plus général que celui de l'exponentielle réelle ou complexe.

Chapitre 8

Exponentielle dans une algèbre de Banach

Bibliographie:

FRA Oraux X-ENS Algèbre 2. Serge Francinou *et al.* Cassini. 2^e éd. 2009 **SAV** Algèbre linéaire (cours et exercices). Jean-Charles Savioz. Vuibert. 2003

8.1 Définitions et premières propriétés

Définition 8.1.1 Soit $(A, +, \times, \cdot)$ une algèbre et $\|\cdot\|$ une norme sur l'espace vectoriel $(A, +, \cdot)$. Nous dirons que $\|\cdot\|$ est une norme d'algèbre si :

$$\forall (u, v) \in A^2 \quad ||u \times v|| \le ||u|| ||v||$$
 (8.1)

Dans ce cas, $(A, +, \times, \cdot, \|\cdot\|)$ est appelée algèbre normée.

Exemple: Le lecteur vérifiera que l'on définit une norme d'algèbre sur $\mathcal{M}_n(\mathbb{K})$ en posant :

$$\forall M \in \mathcal{M}_n(\mathbb{K}) \quad ||M|| = n \max_{1 \le i,j \le n} |m_{i,j}|$$

Notons que pour cette norme, une suite $(M^k)_{k\in\mathbb{N}}$ d'éléments de $\mathcal{M}_n(\mathbb{K})$ converge vers $M\in\mathcal{M}_n(\mathbb{K})$ si et seulement si :

$$\forall (i,j) \in [1;n]^2 \quad m_{i,j}^k \xrightarrow[k \to +\infty]{} m_{i,j}$$

Comme $\mathcal{M}_n(\mathbb{K})$ est de dimension finie, cette propriété reste vraie pour toute autre norme sur l'espace $(\mathcal{M}_n(\mathbb{K}), +, \cdot)$.

Définition 8.1.2 Soit $(A, +, \times, \cdot, \|\cdot\|)$ une algèbre normée. Si $(A, +, \cdot, \|\cdot\|)$ est un espace de Banach, alors nous dirons que $(A, +, \times, \cdot, \|\cdot\|)$ est une algèbre de Banach.

Si nous revenons à l'exemple précédent, $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot, \|\cdot\|)$ est une algèbre de Banach puisque tout espace vectoriel normé de dimension finie est un espace de Banach.

Voyons maintenant un exemple en dimension (éventuellement) infinie.

Exemple: Soit $(E, +, \cdot, \|\cdot\|)$ un espace de Banach et $\mathcal{L}_c(E)$ le \mathbb{K} -espace vectoriel des endomorphismes continus de E.

D'après la proposition 7.3.9, $(\mathcal{L}_c(E), +, \cdot, |||\cdot|||)$ est aussi un espace de Banach. Or nous avons l'inégalité $|||u \circ v||| \le |||u||| |||v|||$ puisque :

$$\forall x \in E \quad \|u \circ v(x)\| = \|u(v(x))\| \le \|\|u\| \|\|v(x)\| \le \|\|u\| \|\|v\| \|x\|$$

Ainsi, $(\mathcal{L}_c(E), +, \circ, \cdot, ||| \cdot |||)$ est une algèbre de Banach.

Nous allons maintenant généraliser une notion déjà rencontrée dans le cadre des séries à valeurs réelles ou complexes.

Définition 8.1.3 Soient $\sum a_n$ et $\sum b_n$ deux séries à valeurs dans une algèbre de Banach $(A, +, \times, \cdot, \|\cdot\|)$. On appelle produit de Cauchy de ces deux séries la série $\sum c_n$ dont le terme général est défini par :

$$\forall n \in \mathbb{N} \quad c_n = \sum_{k=0}^n a_k \times b_{n-k}$$

Proposition 8.1.4 En reprenant les notations de la définition précédente, nous supposons que les séries $\sum a_n$ et $\sum b_n$ sont toutes les deux absolument convergentes. Alors la série produit $\sum c_n$ est absolument convergente et :

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \times \left(\sum_{n=0}^{+\infty} b_n\right)$$

Démonstration: Pour tout $n \in \mathbb{N}$, nous posons :

$$\Delta_n = \left(\sum_{i=0}^n a_i\right) \times \left(\sum_{j=0}^n b_j\right) - \sum_{k=0}^n c_k$$

Nous avons donc:

$$\Delta_n = \left(\sum_{i=0}^n a_i\right) \times \left(\sum_{j=0}^n b_j\right) - \sum_{k=0}^n \sum_{i+j=k} a_i \times b_j = \sum_{(i,j) \in I_n} a_i \times b_j,$$

où $I_n = \{(i, j) \in \mathbb{N}^2 \mid 0 \le i \le n, \ 0 \le j \le n, \ i + j \ge n + 1\}.$

L'inégalité triangulaire nous permet d'en déduire :

$$\|\Delta_n\| \le \sum_{(i,j)\in I_n} \|a_i\| \|b_j\|$$
,

ce qui s'écrit encore :

$$\|\Delta_n\| \le \left(\sum_{i=0}^n \|a_i\|\right) \left(\sum_{j=0}^n \|b_j\|\right) - \sum_{k=0}^n \sum_{i+j=k} \|a_i\| \|b_j\|$$

Nous sommes alors ramenés au produit de Cauchy de séries à valeurs positives, ce qui nous permet de conclure.

Si nous notons I l'unité de notre algèbre de Banach $(A, +, \times, \cdot, \|\cdot\|)$, nous poserons, pour tout $u \in A$ et tout $n \in \mathbb{N}^*$:

$$u^n := \underbrace{u \times u \times \dots \times u}_{n \text{ facteurs}} \quad \text{et} \quad u^0 = I$$

Enfin, pour tout $n \in \mathbb{N}$, nous définissons $f_n : A \to A$, $u \mapsto \frac{1}{n!}u^n$.

Nous constatons alors que $\sum_{n\in\mathbb{N}} f_n$ converge normalement sur toute partie bornée de A. Or chacune des applications f_n est continue sur A puisque, de façon générale, la condition 8.1 implique la continuité du produit dans une algèbre normée. Ceci justifie :

Définition et proposition 8.1.5 Soient $(A, +, \times, \cdot, \|\cdot\|)$ une algèbre de Banach et $u \in A$. On définit l'exponentielle de u comme la somme de la série absolument convergente :

$$\exp(u) := \sum_{n=0}^{+\infty} \frac{1}{n!} u^n$$

 $L'application \exp : A \to A \ est \ continue.$

La notion de produit de Cauchy et la proposition 8.1.4 nous donnent :

Proposition 8.1.6 Soit $(u, v) \in A^2$; nous avons l'implication :

$$u \times v = v \times u \Longrightarrow \exp(u + v) = \exp(u) \times \exp(v)$$

En particulier, pour tout $u \in A$, $\exp(u)$ est un élément inversible d'inverse $\exp(-u)$.

Г

Démonstration: Puisque u et v commutent par hypothèse, nous sommes en droit d'appliquer la formule du binôme de Newton, si bien que :

$$\forall n \in \mathbb{N} \quad \frac{(u+v)^n}{n!} = \sum_{k=0}^n \frac{\binom{n}{k}}{n!} u^k v^{n-k} = \sum_{k=0}^n \frac{u^k}{k!} \frac{v^{n-k}}{(n-k)!}$$

Nous constatons alors que la série définissant $\exp(u+v)$ n'est autre que le produit de Cauchy des séries définissant $\exp(u)$ et $\exp(v)$, ce qui prouve l'égalité annoncée.

Enfin, comme u et -u commutent, nous avons :

$$\exp(u)\exp(-u) = \exp(-u)\exp(u) = \exp(0) = I$$

Si u et v ne commutent pas, on peut avoir $\exp(u+v) \neq \exp(u) \times \exp(v)$, comme nous le constaterons dans la section suivante.

8.2 Exponentielle de matrice

Si nous munissons $\mathcal{M}_n(\mathbb{K})$ d'une norme d'algèbre $\|\cdot\|$ telle que celle de l'exemple page 125, ou encore telle que la norme subordonnée de l'exemple page 119, nous pouvons définir l'exponentielle dans l'algèbre de Banach $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot, |||\cdot|||)$.

Notons que cette définition est indépendante du choix de la norme puisque toutes les normes sont équivalentes, $\mathcal{M}_n(\mathbb{K})$ étant de dimension n^2 . D'après la proposition 8.1.6, nous avons $\exp(\mathcal{M}_n(\mathbb{K})) \subset GL_n(\mathbb{K})$.

Exemple: Dans $\mathcal{M}_2(\mathbb{R})$, considérons $A = \begin{bmatrix} 0 & 0 \\ \theta & 0 \end{bmatrix}$ et $B = \begin{bmatrix} 0 & -\theta \\ 0 & 0 \end{bmatrix}$, où $\theta \in \mathbb{R}^*$. Comme $A^2 = B^2 = 0$, nous avons $\exp(A) = I_2 + A$ et $\exp(B) = I_2 + B$ d'où :

$$\exp(A) \exp(B) = \begin{bmatrix} 1 & -\theta \\ \theta & 1 - \theta^2 \end{bmatrix}$$

D'autre part, nous calculons :

$$\forall n \in \mathbb{N} \quad (A+B)^{2n} = \theta^{2n} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{2n} = \theta^{2n} (-I_2)^n = (-\theta^2)^n I_2$$

d'où $(A+B)^{2n+1} = \begin{bmatrix} 0 & (-1)^{n+1}\theta^{2n+1} \\ (-1)^n\theta^{2n+1} & 0 \end{bmatrix}$ et finalement :

$$\exp(A+B) = \sum_{n=0}^{+\infty} \frac{(A+B)^{2n}}{(2n)!} + \sum_{n=0}^{+\infty} \frac{(A+B)^{2n+1}}{(2n+1)!} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Nous constatons que, pour tout $\theta \in \mathbb{R}^*$, $\exp(A+B) \neq \exp(A) \exp(B)$.

8.2.1 Calcul explicite

Pour pouvoir utiliser nos connaissances sur la réduction des endomorphismes, nous aurons besoin du lemme suivant :

Lemme 8.2.1 Soient $P \in GL_n(\mathbb{K})$ et $A \in \mathcal{M}_n(\mathbb{K})$; alors on a l'égalité :

$$\exp(P^{-1}AP) = P^{-1}\exp(A)P$$

Démonstration: Pour tout $k \in \mathbb{N}$, nous avons $(P^{-1}AP)^k = P^{-1}A^kP$ donc par linéarité :

$$\forall K \in \mathbb{N} \quad \sum_{k=0}^{K} \frac{(P^{-1}AP)^k}{k!} = P^{-1} \left(\sum_{k=0}^{K} \frac{A^k}{k!} \right) P$$

Or $M \mapsto P^{-1}MP$ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$, espace de dimension finie, ce qui implique sa continuité. Ceci nous permet de conclure en passant à la limite quand $K \to +\infty$ dans l'égalité précédente.

Matrice nilpotente

Soit $N \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente d'indice ¹ r. Le calcul de l'exponentielle de N se ramène alors à celui d'une somme finie :

$$\exp(N) = \sum_{k=0}^{r-1} \frac{N^k}{k!}$$

En particulier, si J est une matrice de Jordan d'ordre r (qui est aussi son indice), nous calculons immédiatement :

$$J = \begin{bmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & \dots & 0 & 0 \end{bmatrix} \Longrightarrow \exp(J) = \begin{bmatrix} 1 & 1 & \frac{1}{2!} & & \frac{1}{(r-1)!} \\ 0 & 1 & 1 & \frac{1}{2!} & & \\ \vdots & & \ddots & \ddots & \ddots & \\ \vdots & & & \ddots & \ddots & \frac{1}{2!} \\ \vdots & & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix}$$

Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente. La réduction de Jordan nous apprend qu'il existe une matrice de passage $P \in GL_n(\mathbb{C})$ telle que $P^{-1}NP$

^{1.} L'indice de N est le plus petit entier $q\in\mathbb{N}^*$ tel que $N^q=0$

s'écrive comme une matrice diagonale par blocs, ces blocs étant des matrices nilpotentes de Jordan J_1, \dots, J_m d'ordres respectifs n_1, \dots, n_m . On a bien sûr $n_1 + \dots + n_m = n$ et l'on peut noter qu'une matrice nilpotente de Jordan d'ordre 1 est nulle.

Le lemme 8.2.1 nous permet d'en déduire que la matrice $P^{-1}\exp(N)P$ est aussi diagonale par blocs, ceux-ci valant $\exp(J_1), \dots, \exp(J_m)$. Ceci nous permet de calculer explicitement $\exp(N)$.

Matrice diagonalisable ou trigonalisable

Si $\Delta \in \mathcal{M}_n(\mathbb{K})$ est une matrice diagonale, on vérifie facilement en calculant les sommes partielles associées à la série qui définit l'exponentielle de Δ que :

$$\Delta = \operatorname{Diag}(\lambda_1, \cdots, \lambda_n) \Longrightarrow \exp(\Delta) = \operatorname{Diag}(\exp(\lambda_1), \cdots, \exp(\lambda_n))$$
 (8.2)

Notons qu'un argument similaire montre que si $T \in \mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire (supérieure, resp. inférieure) dont la diagonale est donnée par $(\lambda_1, \dots, \lambda_n)$, alors $\exp(T)$ est aussi une matrice triangulaire (supérieure, resp. inférieure) dont la diagonale est donnée par $(\exp(\lambda_1), \dots, \exp(\lambda_n))$.

Voici une application du lemme 8.2.1 dans le cas où $\mathbb{K} = \mathbb{C}$.

Proposition 8.2.2 Soit $A \in M_n(\mathbb{C})$; nous noterons Sp(A) son spectre, c'est-à-dire l'ensemble de ses valeurs propres, det A son déterminant et Tr(A) sa trace, c'est-à-dire la somme de ses coefficients diagonaux. Alors,

$$\operatorname{Sp}(\exp(A)) = \exp(\operatorname{Sp}(A))$$
 et $\det \exp(A) = \exp(\operatorname{Tr}(A))$

Démonstration: Comme \mathbb{C} est algébriquement clos, le polynôme caractéristique $\chi_A(X) := \det(XI_n - A)$ est scindé:

$$\chi_A(X) = \prod_{i=1}^n (X - \lambda_i) ,$$

avec $\lambda_1, \dots, \lambda_n$ complexes non nécessairement distincts.

Nous pouvons donc trigonaliser la matrice A: il existe une matrice triangulaire $T \in \mathcal{M}_n(\mathbb{C})$ de diagonale $(\lambda_1, \dots, \lambda_n)$ et une matrice inversible $P \in GL_n(C)$ telles que $P^{-1}AP = T$. D'après le lemme précédent, $\exp(A)$ et $\exp(T)$ sont des matrices semblables, cette dernière ayant pour diagonale $(\exp(\lambda_1), \dots, \exp(\lambda_n))$. Il est alors facile de conclure.

Si $D \in \mathcal{M}_n(\mathbb{K})$ est une matrice diagonalisable dans \mathbb{K} , il existe une matrice de passage $P \in GL_n(\mathbb{K})$ et une matrice diagonale $\Delta = \text{Diag}(\lambda_1, \dots, \lambda_n)$, où $\lambda_1, \dots, \lambda_n$ sont les racines – non nécessairement distinctes – du polynôme caractéristique χ_D , telles que $P^{-1}DP = \Delta$ donc $D = P\Delta P^{-1}$.

En utilisant l'égalité (8.2) et le lemme 8.2.1 (avec P^{-1}), nous en déduisons :

$$\exp(D) = P \operatorname{Diag}(\exp(\lambda_1), \cdots, \exp(\lambda_n)) P^{-1}$$

Le lecteur trouvera un tel calcul explicite dans [SAV 342-343].

Il existe néanmoins une autre méthode permettant d'éviter le calcul parfois fastidieux de la matrice de passage P. Pour en introduire l'idée, commençons par prouver le résultat suivant :

Lemme 8.2.3 Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, il existe un polynôme $Q_A \in \mathbb{K}[X]$ tel que $\exp(A) = Q_A(A)$.

Démonstration: Notons $\mathbb{K}[A]$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ constitué par les polynômes en la matrice A.

Ce sous-espace est de dimension finie donc fermé dans $\mathcal{M}_n(\mathbb{K})$. Or $\exp(A)$ est par définition une limite d'éléments de $\mathbb{K}[A]$ donc $\exp(A) \in \mathbb{K}[A]$.

Remarque: Il n'existe pas de polynôme $Q \in \mathbb{K}[X]$ tel que $\exp(A) = Q(A)$ pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$.

En effet, si un tel polynôme existait, en prenant $A = \lambda I_n$ avec $\lambda \in \mathbb{R}$, nous obtiendrions $\exp(\lambda)I_n = Q(\lambda)I_n$ d'où $\exp(\lambda) = Q(\lambda)$ pour tout $\lambda \in \mathbb{R}$, ce qui est absurde par croissances comparées.

Supposons que $D \in \mathcal{M}_n(\mathbb{K})$ est une matrice diagonalisable et écrivons-la sous la forme $D = P\Delta P^{-1}$ comme précédemment. D'après le lemme précédent, il existe un polynôme $Q \in \mathbb{K}[X]$ tel que $\exp(\Delta) = Q(\Delta)$, c'est-à-dire :

$$\operatorname{Diag}(\exp(\lambda_1), \cdots, \exp(\lambda_n)) = \operatorname{Diag}(Q(\lambda_1), \cdots, Q(\lambda_n))$$

Mais dans ce cas particulier d'une matrice diagonale, il est facile d'exhiber un tel polynôme Q: Si $\mathrm{Sp}(D) = \{\mu_1, \dots, \mu_k\}$ avec $k \leq n$, autrement dit si $\{\lambda_1, \dots, \lambda_n\} = \{\mu_1, \dots, \mu_k\}$ où les μ_j , $1 \leq j \leq k$ sont deux à deux distincts, nous pouvons prendre le polynôme d'interpolation de Lagrange:

$$Q = \sum_{j=1}^{k} \exp(\mu_j) l_j \quad \text{où} \quad l_j(X) = \prod_{\substack{1 \le i \le k \\ i \ne j}} \frac{X - \mu_i}{\mu_j - \mu_i}$$

Nous avons alors:

$$Q(D) = Q(P\Delta P^{-1}) = PQ(\Delta)P^{-1} = P\exp(\Delta)P^{-1} = \exp(D)$$
,

ce qui nous permet de calculer explicitement $\exp(D)$.

Exemple Retrouvons par cette méthode la valeur de $\exp M_{\theta}$, avec :

$$M_{\theta} = \begin{bmatrix} 0 & -\theta \\ \theta & 0 \end{bmatrix} ,$$

cette exponentielle ayant déjà été calculée dans l'exemple page 128. Nous trouvons facilement $\operatorname{Sp}(M_{\theta}) = \{i\theta, -i\theta\}$ et $Q(X) = \frac{\sin \theta}{\theta} X + \cos \theta$, d'où :

$$\exp(M_{\theta}) = Q(R_{\theta}) = \frac{\sin \theta}{\theta} M_{\theta} + \cos \theta I_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Cas général

Nous avons traité jusqu'à présent le calcul explicite de l'exponentielle d'une matrice nilpotente et d'une matrice diagonalisable. Rappelons maintenant un important résultat d'algèbre linéaire qui va nous permettre de passer au cas général :

Théorème 8.2.4 (Décomposition de Dunford) Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice dont le polynôme caractéristique est scindé (toujours vrai si $\mathbb{K} = \mathbb{C}$). Alors il existe un unique couple $(D, N) \in (\mathcal{M}_n(\mathbb{K}))^2$ tel que D est diagonalisable, N est nilpotente, DN = ND et M = D + N. En outre, D et N sont des polynômes en M.

Puisque D et N commutent, nous sommes en droit d'écrire $\exp(M) = \exp(D) \exp(N)$ et nous sommes ainsi ramenés aux méthodes précédemment décrites pour faire le calcul explicite.

8.2.2 Quelques applications topologiques

Définition 8.2.5 Nous dirons qu'une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est unipotente si $M = I_n + N$ avec N matrice nilpotente.

Proposition 8.2.6 Notons \mathcal{N} , respectivement \mathcal{U} , l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{K})$ qui sont nilpotentes, respectivement unipotentes. L'exponentielle induit un homéomorphisme de \mathcal{N} sur \mathcal{U} .

Nous renvoyons le lecteur à [FRA 245]. Il s'agit de montrer que l'application $\psi: N \mapsto \exp(N) - I_n$ est un homéomorphisme de \mathcal{N} sur \mathcal{N} . Notons que cette application est en fait polynomiale puisque :

$$\forall N \in \mathcal{N} \quad \psi(N) = \sum_{k=1}^{n-1} \frac{N^k}{k!}$$

L'idée est, par analogie avec le développement en série entière de $\log(1+x)$, de définir l'application $\varphi: \mathcal{N} \to \mathcal{N}$ par :

$$\forall N \in \mathcal{N} \quad \varphi(N) = \sum_{k=1}^{n-1} (-1)^{k-1} \frac{N^k}{k}$$

puis de montrer que $\varphi \circ \psi = \psi \circ \varphi = \mathrm{Id}_{\mathcal{N}}$.

Nous pouvons en déduire la proposition suivante :

Proposition 8.2.7 L'application exp : $\mathcal{M}_n(\mathbb{C}) \to GL_n(\mathbb{C})$ est surjective.

Démonstration: Soit $B \in GL_n(\mathbb{C})$; admet-elle un antécédent dans $\mathcal{M}_n(\mathbb{C})$ par l'application exponentielle? Par décomposition de Jordan, il suffit de répondre à cette question dans le cas où B est un bloc de Jordan de la forme $B = \lambda(I_n + N)$, avec $\lambda \in \mathbb{C}^*$ et N nilpotente.

D'une part, nous savons que exp : $\mathbb{C} \to \mathbb{C}^*$ est surjective, ce qui nous donne l'existence de $\mu \in \mathbb{C}$ tel que $\exp(\mu) = \lambda$.

D'autre part, la proposition précédente nous donne l'existence d'une matrice $M \in \mathcal{M}_n(\mathbb{C})$ telle que $\exp(M) = I_n + N$.

Nous constatons alors que $\exp(\mu I_n + M) = B$.

Remarque: En revanche, l'application $\exp: \mathcal{M}_n(\mathbb{R}) \to GL_n(\mathbb{R})$ n'est pas surjective. En effet, si elle l'était, $GL_n(\mathbb{R})$ serait connexe par continuité de l'exponentielle, l'espace $\mathcal{M}_n(\mathbb{R})$ étant bien sûr connexe. En considérant cette fois l'application continue et surjective det : $GL_n(\mathbb{R}) \to \mathbb{R}^*$, on en déduirait que \mathbb{R}^* est connexe, ce qui est absurde.

Proposition 8.2.8 Notons $S_n(\mathbb{R})$, resp. $S_n^{++}(\mathbb{R})$, le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ constitué par les matrices symétriques, resp. symétriques définies positives. L'exponentielle induit un homéomorphisme de $S_n(\mathbb{R})$ sur $S_n^{++}(\mathbb{R})$.

Démonstration: Par continuité de la transposition (qui est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$), nous vérifions facilement que $\exp({}^tM) = {}^t \exp(M)$ donc $\exp(\mathcal{S}_n(\mathbb{R})) \subset \mathcal{S}_n(\mathbb{R})$.

En outre, d'après la proposition 8.2.2 (en plongeant \mathbb{R} dans \mathbb{C}), nous avons $\det(\exp(M)) = \exp(\operatorname{Tr}(M)) > 0$ d'où $\exp(\mathcal{S}_n(\mathbb{R})) \subset \mathcal{S}_n^{++}(\mathbb{R})$.

Si $A \in \mathcal{S}_n^{++}(\mathbb{R})$, nous savons qu'il existe une matrice orthogonale P et une matrice diagonale $\Delta = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$, avec $(\lambda_1, \dots, \lambda_n) \in (\mathbb{R}_+^*)^n$ telles que $A = P\Delta P^{-1}$. En posant $M = P\operatorname{Diag}(\log \lambda_1, \dots, \log \lambda_n)P^{-1} \in \mathcal{S}_n(\mathbb{R})$, nous constatons que $\exp(M) = A$.

Il reste à montrer que M est l'unique antécédent de A par l'application exponentielle pour prouver que celle-ci est une bijection de $\mathcal{S}_n(\mathbb{R})$ sur $\mathcal{S}_n^{++}(\mathbb{R})$. Enfin, il reste à montrer que sa bijection réciproque est continue. Nous renvoyons le lecteur à [FRA 243-244].

8.2.3 Application aux systèmes différentiels linéaires

Une application importante de l'exponentielle de matrice est la résolution des systèmes différentiels linéaires du premier ordre à coefficients constants, comme nous allons le voir maintenant.

Proposition 8.2.9 Soit $M \in \mathcal{M}_n(\mathbb{K})$ et I un intervalle réel non trivial. L'application $f: I \to \mathcal{M}_n(\mathbb{K})$ définie par $f(t) = \exp(tM)$ est de classe C^1 sur I et vérifie :

$$\forall t \in I \quad f'(t) = Mf(t) = f(t)M$$

Démonstration: Nous appliquons le théorème 7.5.4 avec $f_n: I \to \mathcal{M}_n(\mathbb{K})$ définie par $f_n(t) = \frac{t^n}{n!} M^n$. Nous avons bien $f_n \in C^1(I, \mathcal{M}_n(\mathbb{K})), f'_0 \equiv 0$ et :

$$\forall n \in \mathbb{N}^* \quad \forall t \in I \quad f'_n(t) = \frac{t^{n-1}}{(n-1)!} M^n = f_{n-1}(t) M = M f_{n-1}(t)$$

Nous en déduisons facilement que la série $\sum f'_n$ converge normalement (donc uniformément) sur tout compact de I. En outre, nous savons déjà que la série $\sum f_n(t)$ converge en tout point $t \in I$ vers $f(t) = \exp(tM)$.

Nous en déduisons (la dérivabilité étant une notion locale) que $f \in C^1(I, \mathcal{M}_n(\mathbb{K}))$ et que :

$$\forall t \in I \quad f'(t) = \sum_{n=1}^{+\infty} f'_n(t) = \sum_{n=0}^{+\infty} f_n(t) M = \sum_{n=0}^{+\infty} M f_n(t)$$

Il nous reste à remarquer que le produit de matrices est bilinéaire continu dans l'algèbre de Banach $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot, ||| \cdot |||)$ pour en déduire les égalités

de l'énoncé par passage à la limite quand $N \to +\infty$ dans :

$$\sum_{n=0}^{N} f_n(t) M = \left(\sum_{n=0}^{N} f_n(t)\right) M \quad \text{et} \quad \sum_{n=0}^{N} M f_n(t) = M \left(\sum_{n=0}^{N} f_n(t)\right)$$

Dans le théorème suivant, nous identifierons par abus d'écriture \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$).

Théorème 8.2.10 Soient I un intervalle réel non trivial, $t_0 \in I$, $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in C^0(I, \mathcal{M}_{n,1}(\mathbb{K}))$. Alors les solutions du système différentiel :

$$Y' = AY + B$$

sont exactement les applications de la forme :

$$\forall t \in I \quad Y(t) = \int_{t_0}^t \exp[(t - u)A] B(u) du + \exp(tA) v \quad ,$$

 $où v \in \mathbb{K}^n$ est arbitraire.

Démonstration: En pensant à la méthode de *variation de la constante*, nous posons le changement de variable suivant :

$$Y(t) = \exp(tA)Z(t) \iff Z(t) = \exp(-tA)Y(t)$$

D'après la proposition précédente, nous avons :

$$Y'(t) = A \exp(tA)Z(t) + \exp(tA)Z'(t)$$

si bien que notre système différentiel se réécrit : $\exp(tA)Z'(t) = B(t)$. Les solutions de cette équation différentielle sont de la forme

$$Z(t) = \int_{t_0}^t \exp(-uA)B(u) du + v \quad ,$$

où $v \in \mathbb{K}^n$ est arbitraire, ce qui nous permet de conclure par linéarité 2 de l'intégrale. $\hfill\Box$

^{2.} au sens large : $M \int_a^b N(u) du = \int_a^b MN(u) du$ où $M \in \mathcal{M}_n(\mathbb{K})$ et $N \in C^0([a,b],\mathbb{K}^n)$. Ceci se démontre en passant aux coordonnées dans la base canonique de \mathbb{K}^n .

Remarque: Soient $A \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonalisable et V_1, \dots, V_n une base de \mathbb{K}^n constituée de vecteurs propres associés aux valeurs propres $\lambda_1, \dots, \lambda_n$ (non nécessairement distinctes).

Il est bien connu que la solution générale du système différentiel homogène Y' = AY est de la forme suivante, avec $(\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n$:

$$Y(t) = \alpha_1 \exp(\lambda_1 t) V_1 + \dots + \alpha_n \exp(\lambda_n t) V_n$$

Nous pouvons retrouver ce résultat grâce à l'exponentielle de matrice. En effet, si nous notons P la matrice de passage constituée par les vecteurs colonnes V_1, \dots, V_n , nous avons $P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et donc, pour tout $t \in I$, $\exp(tA) = P \operatorname{diag}(\exp(\lambda_1 t), \dots, \exp(\lambda_n t))P^{-1}$.

D'après le théorème précédent, la solution générale du système homogène s'écrit donc P diag $(\exp(\lambda_1 t), \dots, \exp(\lambda_n t))P^{-1}v$, avec $v \in \mathbb{K}^n$ quelconque. Or P diag $(\exp(\lambda_1 t), \dots, \exp(\lambda_n t))$ est la matrice constituée par les colonnes $\exp(\lambda_1 t)V_1, \dots, \exp(\lambda_n t)V_n$; avec le changement de paramètre $\alpha = P^{-1}v$, nous retrouvons donc le résultat annoncé.

Chapitre 9

Séries de Fourier

9.1 Rappels sur les espaces préhilbertiens

9.1.1 Définitions dans les cas réel et complexe

Définition 9.1.1 Soit E un \mathbb{R} -espace vectoriel. On appelle produit scalaire sur E toute application $(x,y) \mapsto \langle x,y \rangle$ de $E \times E$ dans \mathbb{R} qui est :

- 1. symétrique : $\forall (x,y) \in E^2 \quad \langle x,y \rangle = \langle y,x \rangle$
- 2. linéaire à droite :

$$\forall (x, y_1, y_2) \in E^3 \quad \forall (\lambda_1, \lambda_2) \in \mathbb{R}^2 \quad \langle x, \lambda_1 y_1 + \lambda_2 y_2 \rangle = \lambda_1 \langle x, y_1 \rangle + \lambda_2 \langle x, y_2 \rangle$$

3. définie positive : $\forall x \in E - \{0\} \quad \langle x, x \rangle > 0$

Remarque: Les deux premières propriétés impliquant la linéarité à gauche, nous pouvons dire de façon équivalente qu'un produit scalaire sur un \mathbb{R} -espace vectoriel est une forme bilinéaire symétrique définie positive.

Définition 9.1.2 Soit E un \mathbb{C} -espace vectoriel. On appelle produit scalaire sur E toute application $(x,y) \mapsto \langle x,y \rangle$ de $E \times E$ dans \mathbb{C} qui est :

- 1. à symétrie hermitienne : $\forall (x,y) \in E^2 \quad \langle x,y \rangle = \overline{\langle y,x \rangle}$
- 2. linéaire à droite :

$$\forall (x, y_1, y_2) \in E^3 \quad \forall (\lambda_1, \lambda_2) \in \mathbb{C}^2 \quad \langle x, \lambda_1 y_1 + \lambda_2 y_2 \rangle = \lambda_1 \langle x, y_1 \rangle + \lambda_2 \langle x, y_2 \rangle$$

3. définie positive : $\forall x \in E - \{0\} \quad \langle x, x \rangle > 0$

Remarque : Les propriétés 1. et 2. impliquant la «semi-linéarité» à gauche, nous pouvons dire de façon équivalente qu'un produit scalaire sur un \mathbb{C} -espace vectoriel est une forme sesquilinéaire 1 hermitienne définie positive.

^{1.} du latin sesqui qui signifie «un et demi»

En notant comme d'habitude $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , nous posons la

Définition 9.1.3 Un K-espace vectoriel muni d'un produit scalaire est appelé espace préhilbertien.

Exemples:

- Hermones. $-\mathbb{K} = \mathbb{C} \quad E = \mathbb{C}^n \quad \langle x,y \rangle = \sum_{i=1}^n \overline{x_i} \, y_i \, .$ $-\mathbb{K} = \mathbb{C} \quad E = C^0([0,1],\mathbb{C}) \quad \langle f,g \rangle = \int_0^1 \overline{f(t)} g(t) \, dt.$ $-\mathbb{K} = \mathbb{R} \quad E = l_{\mathbb{R}}^2(\mathbb{N}) \quad \langle (u_n), (v_n) \rangle = \sum_{n=0}^{+\infty} u_n v_n \, , \, \text{la convergence de cette série résultant de l'inégalité } |u_n v_n| \leq \frac{1}{2} (u_n^2 + v_n^2).$ $-\mathbb{K} = \mathbb{R} \quad E = C^0([a,b],\mathbb{R}) \quad \langle f,g \rangle = \int_{]a,b[} fg \, \omega, \, \text{où } \omega \in C^0(]a,b[,\mathbb{R}^*_+)$
- est intégrable sur a, b.

Un exemple important sur $\mathbb{K} = \mathbb{C}$ est donné par la proposition suivante :

Proposition 9.1.4 On note \mathcal{D} le \mathbb{C} -espace vectoriel des applications $f \in$ $C_M(\mathbb{R},\mathbb{C}), 2\pi$ -périodiques et vérifiant :

$$\forall x \in \mathbb{R} \quad f(x) = \frac{f(x-) + f(x+)}{2}$$

On définit un produit scalaire sur \mathcal{D} en posant :

$$\forall (f,g) \in \mathcal{D}^2 \quad \langle f,g \rangle := \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)} \, g(t) \, dt$$

Le \mathbb{C} -espace \mathcal{D} muni de ce produit scalaire est appelé espace préhilbertien de Dirichlet.

Démonstration: La seule difficulté est de vérifier que $\langle f, f \rangle = 0 \Rightarrow f \equiv 0$. Si f est continue, c'est immédiat mais dans le cas général, il faut couper l'intégrale le long de la subdivision par la relation de Chasles puis utiliser $f(a_i) = \frac{1}{2}[f(a_i+) + f(a_i-)]$ en tout point a_i de la subdivision. Le lecteur pourra consulter [DAN 377-378] pour les détails.

Remarque: À toute application $f \in C_M(\mathbb{R}, \mathbb{C})$, 2π -périodique, nous pouvons associer sa «régularisée» $f \in \mathcal{D}$ définie par :

$$\forall x \in \mathbb{R} \quad \tilde{f}(x) := \frac{f(x-) + f(x+)}{2} \tag{9.1}$$

Sur une période donnée, par exemple $[0,2\pi]$, f et \tilde{f} ne différent qu'en un nombre fini de points, inclus dans l'ensemble des discontinuités de f.

9.1.2 Propriétés

Soit E un \mathbb{K} -espace préhilbertien. Nous posons, pour tout $x \in E$, $||x|| := \sqrt{\langle x, x \rangle}$; cette notation sera justifiée ci-dessous en prouvant que $||\cdot||$ est une norme sur E.

Proposition 9.1.5 (Inégalité de Cauchy-Schwarz)

$$\forall (x,y) \in E^2 \quad |\langle x,y \rangle| \le ||x|| \ ||y|| \quad ,$$

avec égalité si et seulement si les vecteurs x et y sont liés.

Démonstration: Pour $\mathbb{K} = \mathbb{R}$, nous définissons l'application $P : \mathbb{R} \to \mathbb{R}_+$ par $P(\lambda) := \|\lambda x + y\|^2 = \langle \lambda x + y, \lambda x + y \rangle = \lambda^2 \|x\|^2 + 2\lambda \langle x, y \rangle + \|y\|^2$. Ainsi, P est une application polynomiale de degré au plus 2 qui ne prend que des valeurs positives ou nulles. Nous en déduisons que son discriminant (réduit) $\Delta' = \langle x, y \rangle^2 - \|x\|^2 \|y\|^2$ est négatif ou nul, ce qui nous permet de conclure.

Pour $\mathbb{K} = \mathbb{C}$, nous considérons $(x, y) \in E^2$ arbitraire fixé et nous choisissons $(\rho, \theta) \in \mathbb{R}_+ \times \mathbb{R}$ tel que $\langle x, y \rangle = \rho e^{i\theta}$. Nous définissons alors $P : \mathbb{R} \to \mathbb{R}_+$ par $P(\lambda) := \|\lambda e^{i\theta} x + y\|^2 = \lambda^2 \|x\|^2 + 2\lambda \rho + \|y\|^2$.

Nous concluons alors comme dans le cas réel.

Proposition 9.1.6 (Inégalité de Minkowski)

$$\forall (x,y) \in E^2 \quad ||x+y|| \le ||x|| + ||y||$$

Démonstration: Pour $\mathbb{K} = \mathbb{R}$, l'inégalité de Cauchy-Schwarz nous permet d'écrire :

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

d'où la conclusion.

Pour $\mathbb{K} = \mathbb{C}$, nous utilisons :

$$\|x+y\|^2 = \|x\|^2 + 2\Re\langle x,y\rangle + \|y\|^2 \le \|x\|^2 + 2|\langle x,y\rangle| + \|y\|^2$$

L'inégalité de Cauchy-Schwarz nous permet alors de conclure comme dans le cas réel.

Corollaire et définition 9.1.7 Soit E un \mathbb{K} -espace préhilbertien. L'application $\|\cdot\|: E \to \mathbb{R}_+$ définie par

$$\forall x \in E \quad ||x|| := \sqrt{\langle x, x \rangle}$$

est une norme sur le \mathbb{K} -espace vectoriel E, appelée norme euclidienne si $\mathbb{K} = \mathbb{R}$ et norme hermitienne si $\mathbb{K} = \mathbb{C}$.

L'inégalité de Minkowski étant établie, le lecteur vérifiera facilement que $\|\cdot\|$ est bien une norme. Un \mathbb{K} -espace préhilbertien est donc un espace vectoriel normé particulier.

Remarque: Un espace préhilbertien complet est appelé espace de Hilbert.

Grâce à un simple calcul, le lecteur vérifiera (en distinguant $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}):

Proposition 9.1.8 (Identité du parallélogramme)

$$\forall (x,y) \in E^2 \quad \|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$$

Remarques

- 1. Cette identité nous permet de montrer que, sur $E = \mathbb{R}^n$, les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ ne sont pas euclidiennes en prenant $x = (1, 0, \dots, 0)$ et $y = (0, 1, 0, \dots, 0)$.
- 2. Le théorème de Fréchet-Von Neumann-Jordan affirme que l'identité du parallélogramme caractérise les normes euclidiennes pour $\mathbb{K} = \mathbb{R}$ et les normes hermitiennes pour $\mathbb{K} = \mathbb{C}$. Le lecteur intéressé trouvera un plan détaillé de démonstration pour $\mathbb{K} = \mathbb{R}$ dans «Topologie et Analyse» par Georges Skandalis chez Dunod, pages 272 et 318.

9.1.3 Orthogonalité et procédé de Gram-Schmidt

Définition 9.1.9 Soit E un \mathbb{K} -espace préhilbertien et $(x,y) \in E^2$. On dit que x et y sont orthogonaux et l'on note $x \perp y$ si $\langle x, y \rangle = 0$.

Théorème 9.1.10 (Pythagore) Dans un \mathbb{K} -espace préhilbertien E, pour tout $(x,y) \in E^2$, nous avons l'implication :

$$x \perp y \Longrightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

Démonstration: Pour $\mathbb{K} = \mathbb{R}$, l'égalité $||x+y||^2 = ||x||^2 + 2\langle x,y\rangle + ||y||^2$ nous donne même l'équivalence.

Pour $\mathbb{K} = \mathbb{C}$, l'égalité $||x+y||^2 = ||x||^2 + 2\Re\langle x,y\rangle + ||y||^2$ nous donne en fait : $\langle x,y\rangle$ imaginaire pur $\iff ||x+y||^2 = ||x||^2 + ||y||^2$

Définition et proposition 9.1.11 Une famille $(e_i)_{i\in I} \in E^I$ est dite orthogonale $si \ \forall (i,j) \in I^2 \ i \neq j \Rightarrow e_i \bot e_j$. Elle est dite orthonormale ou orthonormée si, en outre, $||e_i|| = 1$ pour tout $i \in I$.

Une famille orthogonale est libre dès que $e_i \neq 0$ pour tout $i \in I$.

Démonstration: Soit $J \subset I$, J fini et $(\lambda_j)_{j \in J} \in \mathbb{K}^J$ t.q. $\sum_{j \in J} \lambda_j e_j = 0$. Alors, pour tout $k \in J$, nous avons :

$$\langle e_k, \sum_{j \in J} \lambda_j e_j \rangle = 0 = \lambda_k ||e_k||^2$$
,

d'où $\lambda_k = 0$.

L'exemple suivant nous sera très utile par la suite :

Proposition 9.1.12 Dans l'espace préhilbertien de Dirichlet \mathcal{D} , la famille $(e_n)_{n\in\mathbb{Z}}$ définie par :

$$\forall n \in \mathbb{Z} \quad e_n(x) = e^{inx} \quad ,$$

est orthonormale.

Démonstration: Les applications e_n sont toutes 2π -périodiques et continues donc appartiennent à \mathcal{D} . D'après la définition du produit scalaire dans \mathcal{D} (cf. proposition 9.1.4), nous avons :

$$\forall (m,n) \in \mathbb{Z}^2 \quad \langle e_m, e_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{-imx} e^{inx} \, dx$$

Si $m \neq n$, nous obtenons donc :

$$\langle e_m, e_n \rangle = \frac{1}{2\pi} \left[\frac{e^{i(n-m)x}}{i(n-m)} \right]_0^{2\pi} = 0$$

Si m=n, nous calculons immédiatement $||e_n||^2=1.$

Théorème 9.1.13 (Procédé d'orthogonalisation de Gram-Schmidt) Pour toute famille libre (x_1, \dots, x_n) du \mathbb{K} -espace préhilbertien E, il existe une famille orthogonale (e_1, \dots, e_n) telle que :

$$\forall k \in [1; n] \quad Vect(e_1, \dots, e_k) = Vect(x_1, \dots, x_k)$$

Démonstration: L'idée de la preuve est de prendre $e_1 = x_1$ puis de poursuivre la construction par récurrence sur $k \le n$ en posant :

$$e_k := x_k - \sum_{i=1}^{k-1} \frac{\langle x_k, e_i \rangle}{\|e_i\|^2} e_i$$

Remarques

- 1. On peut même construire (e_1, \dots, e_n) orthonormale en remplaçant e_k par $e_k/\|e_k\|$: c'est le procédé d'orthonormalisation de Gram-Schmidt.
- 2. Cette construction par récurrence se généralise au cas d'une famille libre dénombrable $(x_n)_{n\in\mathbb{N}^*}$ de E. On obtient alors une famille orthonormale $(e_n)_{n\in\mathbb{N}^*}$ telle que $\forall k\in\mathbb{N}^*$ $\mathrm{Vect}(e_1,\cdots,e_k)=\mathrm{Vect}(x_1,\cdots,x_k)$.

Corollaire 9.1.14 Tout sous-espace-vectoriel F de dimension finie de E admet une base orthonormée.

Remarques

- 1. D'après la remarque précédente, si F est un sous-espace vectoriel de E admettant une base dénombrable $(f_n)_{n\in\mathbb{N}^*}$, alors F admet une base orthonormée $(e_n)_{n\in\mathbb{N}^*}$.
- 2. Soit F un sous-espace de dimension finie n de E et (e_1, \dots, e_n) une base orthonormée de F. Nous calculons alors facilement :

$$\forall x \in F \quad x = \sum_{k=1}^{n} \langle e_k, x \rangle e_k \quad \text{et} \quad ||x||^2 = \sum_{k=1}^{n} |\langle e_k, x \rangle|^2$$

9.1.4 Projection orthogonale, meilleure approximation

Définition et proposition 9.1.15 Pour toute partie A non vide de E, on appelle orthogonal de A la partie de E définie par :

$$A^{\perp} := \{x \in E \,,\, \forall a \in A \quad \langle x,a \rangle = 0\}$$

C'est un sous-espace vectoriel de E.

Remarque: Pour toute partie A non vide de E, on vérifie facilement :

$$(\operatorname{Vect} A)^{\perp} = A^{\perp}$$

Proposition 9.1.16 Si F est un sous-espace vectoriel de E, alors $F \subset F^{\perp \perp}$.

Démonstration: Soit $x \in F$. On a $\langle x, a \rangle = 0$ pour tout $a \in F^{\perp}$ par définition de F^{\perp} , d'où $x \in F^{\perp \perp}$.

Proposition 9.1.17 Si F est un sous-espace vectoriel de dimension finie du \mathbb{K} -espace préhilbertien E, alors $E = F \oplus F^{\perp}$. En outre, si (e_0, e_1, \dots, e_n) est une base orthonormée de F, la projection orthogonale sur F, c'est-à-dire la projection sur F parallèlement à F^{\perp} , est donnée par :

$$\forall x \in E \quad p(x) = \sum_{k=0}^{n} \langle e_k, x \rangle e_k \tag{9.2}$$

Enfin, on a $F = F^{\perp \perp}$.

Démonstration: On sait que F admet une base orthonormale (e_0, \dots, e_n) . Soit $x \in E$ arbitraire fixé. Nous cherchons $(y, z) \in F \times F^{\perp}$ tel que x = y + z; autrement dit, nous cherchons $y \in F$ tel que $x - y \in F^{\perp}$. Écrivons $y = \sum_{i=0}^{n} y_i e_i$. Nous avons alors les équivalences :

$$x - y \in F^{\perp} \Leftrightarrow \forall k \in [0, n] \quad \langle e_k, x - y \rangle = 0 \Leftrightarrow \forall k \in [0, n] \quad \langle e_k, x \rangle = y_k$$

Il y a donc une unique solution, ce qui nous donne $E = F \oplus F^{\perp}$ et nous connaissons les coordonnées de y dans la base (e_0, \dots, e_n) , ce qui nous donne la deuxième phrase.

Pour terminer, prenons $x \in F^{\perp \perp}$ et écrivons-le sous la forme précédente x = y + z, avec $(y, z) \in F \times F^{\perp}$. Puisque $x \in F^{\perp \perp}$, nous avons $x \perp z$ d'où :

$$0 = \langle x, z \rangle = \langle y + z, z \rangle = ||z||^2$$

Nous en déduisons que z=0 et donc $x=y\in F$. Ainsi $F^{\perp\perp}\subset F$ et l'inclusion inverse est toujours vraie.

Remarque: Si F est de dimension infinie, on a toujours $F \cap F^{\perp} = \{0\}$ mais on peut avoir $F \oplus F^{\perp} \subsetneq E$, ainsi que $F^{\perp \perp} \not\supseteq F$: [DAN 358].

Définition 9.1.18 Soit F un sous-espace d'un \mathbb{K} -e.v.n. E et $x \in E$. On dit que $x_0 \in F$ est une meilleure approximation de x dans F si:

$$||x - x_0|| = d(x, F) := \inf_{y \in F} ||x - y||$$

Dans le cas général, ni l'existence ni l'unicité d'une telle meilleure approximation ne sont assurées. Le lecteur pourra le constater à l'aide de deux contre-exemples dans [DAN 359].

Proposition 9.1.19 Soit F un sous-espace de dimension finie d'un \mathbb{K} -espace préhilbertien E, et p la projection orthogonale sur F. Alors, pour tout $x \in E$, p(x) est l'unique meilleure approximation de x dans F et l'on a:

$$d(x,F)^{2} = ||x - p(x)||^{2} = ||x||^{2} - ||p(x)||^{2}$$

Démonstration: Soit $x \in E$ arbitraire fixé.

Nous avons $p(x) \in F$ et $x - p(x) \in F^{\perp}$ donc, pour tout $y \in F$,

$$x - p(x) \perp p(x) - y$$

Le théorème de Pythagore nous donne alors :

$$||x - y||^2 = ||x - p(x)||^2 + ||p(x) - y||^2$$
(9.3)

d'où $||x - y|| \ge ||x - p(x)||$ avec égalité si et seulement si y = p(x). En prenant y = 0 dans (9.3), nous obtenons la dernière égalité de l'énoncé.

Remarque: Si (e_0, \dots, e_n) est une base orthonormée de F, la proposition 9.1.17 nous donne $p(x) = \sum_{k=0}^{n} \langle e_k, x \rangle e_k$ d'où

$$||p(x)||^2 = \sum_{k=0}^n |\langle e_k, x \rangle|^2$$
 (9.4)

et

$$d(x,F)^{2} = ||x||^{2} - \sum_{k=0}^{n} |\langle e_{k}, x \rangle|^{2}$$
(9.5)

9.1.5 Inégalité de Bessel et égalité de Parseval

Dans tout ce paragraphe, sauf mention explicite, nous supposons que E est un \mathbb{K} -espace préhilbertien de dimension infinie et nous considérons une famille orthonormée $(e_n)_{n\in\mathbb{N}}$ de E. Nous savons qu'une telle famille existe grâce au procédé d'orthogonalisation de Gram-Schmidt.

Théorème 9.1.20 (Inégalité de Bessel) Pour tout $x \in E$, $\sum_{n \in \mathbb{N}} |\langle e_n, x \rangle|^2$ est une série convergente de somme :

$$\sum_{n=0}^{+\infty} |\langle e_n, x \rangle|^2 \le ||x||^2$$

Démonstration: Pour tout $n \in \mathbb{N}$, posons $F_n := \text{Vect}(e_0, e_1, \dots, e_n)$. D'après (9.5), nous avons :

$$0 \le d(x, F_n)^2 = ||x||^2 - \sum_{k=0}^n |\langle e_k, x \rangle|^2,$$

d'où $\sum_{k=0}^{n} |\langle e_k, x \rangle|^2 \le ||x||^2$. Comme $n \in \mathbb{N}$ est arbitraire, nous obtenons la convergence de la série de l'énoncé et la majoration de sa somme.

Corollaire 9.1.21 (Lemme de Riemann-Lebesgue) Pour tout $x \in E$,

$$\lim_{n \to +\infty} \langle e_n, x \rangle = 0$$

Définition 9.1.22 On dit qu'une famille $(x_i)_{i\in I}$ est totale dans un espace vectoriel normé E si $Vect(x_i)_{i\in I}$ est dense dans E.

Exemple: D'après le théorème de Weierstrass, la suite des fonctions monômes $(x^n)_{n\in\mathbb{N}}$ est totale dans $(C^0([0,1],\mathbb{K}),\|\cdot\|_{\infty})$.

Proposition 9.1.23 Supposons qu'il existe une suite $(e_n)_{n\in\mathbb{N}}$ orthonormée et totale dans le \mathbb{K} -espace préhilbertien E. Pour tout $n\in\mathbb{N}$, notons p_n la projection orthogonale sur le sous-espace $F_n := \text{Vect}(e_0, e_1, \dots, e_n)$. Alors,

$$\forall x \in E \quad p_n(x) \xrightarrow[n \to +\infty]{} x$$

Démonstration: Soit $x \in E$ et $\epsilon > 0$ arbitraires fixés. Puisque $(e_n)_{n \in \mathbb{N}}$ est totale,

$$\exists n_0 \in \mathbb{N} \quad \exists (\lambda_0, \cdots, \lambda_{n_0}) \in \mathbb{K}^{n_0+1} \quad ||x - \sum_{k=0}^{n_0} \lambda_k e_k|| < \epsilon$$

Comme $p_n(x)$ est la meilleure approximation de x sur F_n , nous avons pour tout $n \ge n_0$:

$$||x - p_n(x)|| \le ||x - \sum_{k=0}^{n_0} \lambda_k e_k|| < \epsilon,$$

d'où la conclusion.

Remarque: Puisque (e_0, e_1, \dots, e_n) est une base orthonormale de F_n , nous avons d'après $(9.2): p_n(x) = \sum_{k=0}^n \langle e_k, x \rangle e_k \longrightarrow x$ lorsque $n \to +\infty$. Ainsi, la série $\sum_{k \in \mathbb{N}} \langle e_k, x \rangle e_k$ est convergente dans E et nous pouvons écrire :

$$\sum_{k=0}^{+\infty} \langle e_k, x \rangle \, e_k = x$$

Théorème 9.1.24 (Égalité de Parseval) Supposons qu'il existe une suite $(e_n)_{n\in\mathbb{N}}$ orthonormée et totale dans le \mathbb{K} -espace préhilbertien E. Alors, pour tout $x\in E$, la série positive $\sum_{n\in\mathbb{N}} |\langle e_n, x\rangle|^2$ converge et sa somme vaut :

$$\sum_{n=0}^{+\infty} |\langle e_n, x \rangle|^2 = ||x||^2$$

Démonstration: L'application $\|\cdot\|$ étant continue (car 1-lipschitzienne) de E dans \mathbb{R} , nous déduisons de la proposition précédente :

$$\forall x \in E \quad \|p_n(x)\|^2 \xrightarrow[n \to +\infty]{} \|x\|^2$$

L'égalité (9.4) nous permet alors de conclure.

9.2 Polynôme et série trigonométriques

Définition 9.2.1 On appelle polynôme trigonométrique toute application $P : \mathbb{R} \to \mathbb{C}$ de la forme :

$$P(x) = \sum_{k=-n}^{n} c_k e^{ikx}, avec \ n \in \mathbb{N} \ et \ (c_k)_{-n \le k \le n} \in \mathbb{C}^{2n+1}$$

Un polynôme trigonométrique est donc une application continue et 2π -périodique.

Définition 9.2.2 On appelle série trigonométrique toute série d'applications $de \mathbb{R} dans \mathbb{C} de la forme :$

$$c_0 + \sum_{n \in \mathbb{N}^*} (c_n e^{inx} + c_{-n} e^{-inx}) \text{ avec } (c_n)_{n \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}$$

Nous la noterons $\sum_{n\in\mathbb{Z}} c_n e^{inx}$.

Ainsi, la convergence simple sur \mathbb{R} de la série $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ peut avoir lieu sans que la limite suivante existe pour tout $x\in\mathbb{R}$:

$$\lim_{\substack{p \to -\infty \\ q \to +\infty}} \sum_{n=p}^{q} c_n e^{inx}$$

Néanmoins, si la série $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge simplement, la «convention de Cauchy» veut que l'on note sa somme comme suit :

$$\sum_{n=-\infty}^{+\infty} c_n e^{inx}$$

Proposition 9.2.3 Si les deux séries positives $\sum_{n\in\mathbb{N}} |c_n|$ et $\sum_{n\in\mathbb{N}} |c_{-n}|$ sont convergentes, alors la série trigonométrique $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge normalement sur \mathbb{R} .

Démonstration: L'inégalité triangulaire nous permet d'écrire :

$$\forall n \in \mathbb{N}^* \quad \forall x \in \mathbb{R} \quad |c_n e^{inx} + c_{-n} e^{-inx}| \le |c_n| + |c_{-n}|$$

et ce majorant est le terme général d'une série convergente par hypothèse.

Proposition 9.2.4 Si les deux suites $(c_n)_{n\in\mathbb{N}}$ et $(c_{-n})_{n\in\mathbb{N}}$ sont réelles et tendent vers 0 en décroissant, alors la série trigonométrique $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge simplement sur $\mathbb{R} - (2\pi\mathbb{Z})$ et uniformément sur toute intervalle de la forme $2k\pi + [\alpha, 2\pi - \alpha], k \in \mathbb{Z}, 0 < \alpha < \pi$.

Démonstration: Il suffit d'appliquer le théorème 7.5.5 (critère d'Abel uniforme) avec $f_n(x) = e^{inx}$ et $g_n(x) = c_n$ pour tout $n \in \mathbb{N}$. En effet, l'égalité

$$\sum_{k=0}^{n} f_k(x) = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = \frac{1 - e^{i(n+1)x}}{e^{-ix/2} - e^{ix/2}} e^{-ix/2}$$

entraîne la majoration suivante, pour tout $x \in 2k\pi + [\alpha, 2\pi - \alpha]$:

$$\left| \sum_{k=0}^{n} f_k(x) \right| \le \frac{2}{|e^{-ix/2} - e^{ix/2}|} = \frac{1}{|\sin \frac{x}{2}|} \le \frac{1}{|\sin \frac{\alpha}{2}|}$$

d'où la convergence uniforme de $\sum_{n\in\mathbb{N}} c_n e^{inx}$ sur $2k\pi + [\alpha, 2\pi - \alpha]$. On reprend alors la même démonstration avec $f_n(x) = e^{-inx}$ et $g_n(x) = c_{-n}$ pour obtenir un résultat similaire avec la série $\sum_{n\in\mathbb{N}} c_{-n} e^{-inx}$, ce qui permet de conclure à la convergence uniforme annoncée.

Enfin, la convergence simple de la série trigonométrique $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ sur $[\alpha, 2\pi - \alpha]$ pour tout $0 < \alpha < \pi$ nous donne sa convergence simple sur $[0, 2\pi[$ puis, par 2π -périodicité, sur $\mathbb{R} - (2\pi\mathbb{Z})$.

Nous terminons cette section en citant simplement un théorème (hors programme) qui établit une condition nécessaire à la convergence d'une série trigonométrique :

Théorème 9.2.5 (Cantor-Lebesgue) Si la série trigonométrique $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge simplement sur \mathbb{R} , alors :

$$c_n \xrightarrow[n \to +\infty]{} 0$$

9.3 Coefficients et série de Fourier

Définition 9.3.1 Soit $f \in C_M(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. On appelle coefficients de Fourier de f les nombres complexes :

$$c_n(f) := \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt \quad , \quad n \in \mathbb{Z}$$

On appelle série de Fourier associée à f la série trigonométrique $\sum_{n\in\mathbb{Z}} c_n(f)e^{inx}$.

Cette définition des coefficients et de la série de Fourier est naturelle à cause du résultat suivant :

Lemme 9.3.2 Une série trigonométrique qui converge uniformément sur \mathbb{R} est égale à sa série de Fourier.

Démonstration: Notons $S(x) := \sum_{n=-\infty}^{+\infty} c_n e^{inx}$. Grâce à la proposition 1.5.1 page 30, nous pouvons écrire, pour tout $p \in \mathbb{Z}$:

$$c_p(S) = \frac{1}{2\pi} \int_0^{2\pi} S(t)e^{-ipt} dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} c_0 e^{-ipt} dt + \sum_{n=1}^{+\infty} \frac{1}{2\pi} \int_0^{2\pi} (c_n e^{int} + c_{-n} e^{-int})e^{-ipt} dt$$

$$= c_p$$

en nous souvenant de la famille orthonormale $(e_n)_{n\in\mathbb{Z}}$ qui apparaît dans la proposition 9.1.12.

La série de Fourier associée à f s'écrit encore :

$$\frac{a_0(f)}{2} + \sum_{n \in \mathbb{N}^*} (a_n(f)\cos nx + b_n(f)\sin nx) \quad ,$$

où les coefficients de Fourier $a_n(f), n \in \mathbb{N}$ et $b_n(f), n \in \mathbb{N}^*$ sont définis par :

$$a_n(f) := \frac{1}{\pi} \int_0^{2\pi} f(t) \cos nt \, dt \quad ; \quad b_n(f) := \frac{1}{\pi} \int_0^{2\pi} f(t) \sin nt \, dt$$

Tous les résultats énoncés dans la suite de ce chapitre avec les coefficients de Fourier $(c_n(f))_{n\in\mathbb{Z}}$ ont donc des analogues avec les coefficients $(a_n(f))n\in\mathbb{N}^*$ et $(b_n(f)_{n\in\mathbb{N}^*}$. Nous renvoyons le lecteur à [GOU 256ss] pour en prendre connaissance.

Remarques

- 1. Si la série trigonométrique converge simplement mais pas uniformément sur \mathbb{R} , il n'est pas garanti que sa somme S soit continue par morceaux donc que l'on puisse lui associer une série de Fourier.
- 2. Le critère d'Abel nous permet de prouver la convergence simple sur \mathbb{R} de la série trigonométrique suivante :

$$\sum_{n \in \mathbb{N}^*} \frac{\sin(nx)}{\sqrt{n}}$$

vers une somme S impaire. Néanmoins, s'il existait une application impaire $f \in C_M(\mathbb{R}, \mathbb{C})$ telle que $b_n(S) = 1/\sqrt{n}$ pour tout $n \in \mathbb{N}^*$, l'inégalité de Bessel (que nous prouverons ci-dessous) impliquerait :

$$\sum_{n=1}^{+\infty} \frac{1}{n} = \sum_{n=1}^{+\infty} b_n^2(S) \le \frac{1}{\pi} \int_0^{2\pi} S^2 < +\infty ,$$

ce qui est absurde puisque la série harmonique diverge.

9.4 Approximation en moyenne quadratique

Nous allons maintenant appliquer les résultats généraux que nous avons établis dans la première section de ce chapitre au cas particulier du \mathbb{C} -espace préhilbertien \mathcal{D} .

Nous noterons $\|\cdot\|_2$ la norme hermitienne associée au produit scalaire sur $\mathcal{D},$ donnée par :

$$\forall f \in \mathcal{D} \quad ||f||_2 = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt}$$

et $(e_n)_{n\in\mathbb{Z}}$ la famille orthonormale dans \mathcal{D} définie par $e_n:\mathbb{R}\to\mathbb{C}, x\mapsto e^{inx}$. Considérons la suite $(S_n(f))_{n\in\mathbb{N}}$ des sommes partielles associées à la série de Fourier de f, i.e.

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad S_n(f)(x) := \sum_{k=-n}^n c_k(f)e^{ikx}$$

Nous remarquons que $S_n(f) = \sum_{k=-n}^n c_k(f) e_k$, avec :

$$c_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-ikt} dt = \langle e_k, f \rangle$$

Pour tout $n \in \mathbb{N}$, considérons le sous-espace de \mathcal{D} défini par $F_n := \text{Vect}(e_k)_{-n \le k \le n}$. Par analogie avec la notion de degré d'un polynôme dans $\mathbb{C}[X]$, un élément de F_n est appelé polynôme trigonométrique de degré $\le n$.

Proposition 9.4.1 Pour tout $n \in \mathbb{N}$, nous avons $F_n \oplus F_n^{\perp} = \mathcal{D}$ et la projection orthogonale p_n sur F_n vérifie :

$$\forall f \in \mathcal{D} \quad p_n(f) = \sum_{k=-n}^n c_k(f) e_k = S_n(f)$$

Ainsi, $S_n(f)$ est l'unique meilleure approximation de f dans F_n et l'on a:

$$\inf_{g \in F_n} ||f - g||^2 = ||f - S_n(f)||^2 = \frac{1}{2\pi} \int_0^{2\pi} |f|^2 - \sum_{k=-n}^n |c_k(f)|^2$$

Proposition 9.4.2 (Inégalité de Bessel) Pour toute application $f \in C_M(\mathbb{R}, \mathbb{C})$, 2π -périodique, la série $\sum_{n \in \mathbb{Z}} |c_n(f)|^2$ converge et :

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 \le \frac{1}{2\pi} \int_0^{2\pi} |f|^2$$

Démonstration: Considérons la régularisée $\tilde{f} \in \mathcal{D}$ associée à f selon la formule (9.1) page 138. D'après ce que nous avons établi précédemment, l'inégalité de Bessel est vérifiée pour \tilde{f} .

Or, f et \tilde{f} ne différant sur $[0, 2\pi]$ qu'en un nombre fini de points, nous avons $c_n(\tilde{f}) = c_n(f)$ pour tout $n \in \mathbb{Z}$, ainsi que :

$$\int_0^{2\pi} |\tilde{f}|^2 = \int_0^{2\pi} |f|^2 ,$$

ce qui nous permet de conclure.

Corollaire 9.4.3 (Lemme de Riemann-Lebesgue) Pour toute application $f \in C_M(\mathbb{R}, \mathbb{C})$, 2π -périodique,

$$\lim_{n \to \pm \infty} c_n(f) = 0$$

Admettons temporairement que la suite orthonormale $(e_n)_{n\in\mathbb{Z}}$ est totale dans le \mathbb{C} -espace préhilbertien de Dirichlet \mathcal{D} : ceci sera prouvé dans la dernière section de ce chapitre grâce au théorème de Fejér. Nous en déduisons:

Théorème 9.4.4 (Égalité de Parseval) Soit $f \in C_M(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. Alors la série $\sum_{n \in \mathbb{Z}} |c_n(f)|^2$ converge et :

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f|^2$$

Exercice: Soit $a \in \mathbb{C}$. Notons f la fonction périodique de période 2π telle que, pour tout $x \in [0, 2\pi[$, on ait $f(x) = e^{ax}$.

- 1. Notons $b = \Re a$. Montrer que si b = 0, alors on a $\sum_{k=-\infty}^{+\infty} |c_k(f)|^2 = 1$ et que si $b \neq 0$, alors on a $\sum_{k=-\infty}^{+\infty} |c_k(f)|^2 = \frac{e^{4\pi b} 1}{4\pi b}$.
- 2. Calculer les coefficients de Fourier de f.
- 3. Montrer que pour tout nombre réel non nul a on a

$$\sum_{n=-\infty}^{+\infty} \frac{1}{n^2 + a^2} = \left(\frac{\pi}{a}\right) \left(\frac{e^{2a\pi} + 1}{e^{2a\pi} - 1}\right).$$

4. Montrer que pour tout nombre réel c non entier on a :

$$\sum_{n=-\infty}^{+\infty} \frac{1}{(n-c)^2} = \left(\frac{\pi}{\sin \pi c}\right)^2$$

Solution:

- 1. La fonction f est périodique de période 2π et continue par morceaux. L'identité de Parseval donne $\frac{1}{2\pi}\int_0^{2\pi}|f(t)|^2\,dt=\sum_{k=-\infty}^{+\infty}|c_k(f)|^2$, d'où le résultat puisque $|f(t)|=e^{bt}$.
- 2. On a $c_k(f) = \frac{1}{2\pi} \int_0^{2\pi} e^{(a-ik)t} dt$ donc $c_k(f) = 1$ si a = ik et $c_k(f) = \frac{e^{2\pi(a-ik)} 1}{2\pi(a-ik)} = \frac{e^{2\pi a} 1}{2\pi(a-ik)}$ sinon.
- 3. Pour a réel non nul, il vient

$$\sum_{n=-\infty}^{+\infty} \frac{(e^{2\pi a} - 1)^2}{4\pi^2(a^2 + n^2)} = \frac{e^{4\pi a} - 1}{4\pi a}.$$

Écrivant $e^{4\pi a} - 1 = (e^{2\pi a} - 1)(e^{2\pi a} + 1)$ et simplifiant on trouve le résultat escompté.

4. Posant a = ic, il vient $c_n(f) = \frac{e^{i\pi c} \sin \pi c}{\pi(c-n)}$, donc $1 = \frac{\sin^2 \pi c}{\pi^2} \sum_{n \in \mathbb{Z}} \frac{1}{(c-n)^2}$.

9.5 Le théorème de convergence de Dirichlet

Définition et proposition 9.5.1 On appelle noyau de Dirichlet la suite de polynômes trigonométriques $(D_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad D_n(x) := \sum_{k=-n}^n e^{ikx}$$

Pour tout $n \in \mathbb{N}$, D_n est une fonction paire telle que $\frac{1}{2\pi} \int_0^{2\pi} D_n = 1$. En outre, nous avons l'égalité:

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} - (2\pi\mathbb{Z}) \quad D_n(x) = \frac{\sin(2n+1)\frac{x}{2}}{\sin\frac{x}{2}}$$

Démonstration: La première phrase est immédiate.

Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R} - (2\pi\mathbb{Z})$, nous calculons, en utilisant la somme d'une série géométrique :

$$D_n(x) = e^{-inx} \frac{e^{i(2n+1)x} - 1}{e^{ix} - 1} = e^{-inx} \frac{e^{i(2n+1)x/2}}{e^{ix/2}} \frac{e^{i(2n+1)x/2} - e^{-i(2n+1)x/2}}{e^{ix/2} - e^{-ix/2}}$$

d'où l'égalité annoncée.

Théorème 9.5.2 (Jordan-Dirichlet) Soit $f \in C^1_M(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. Alors la série de Fourier associée à f converge simplement sur \mathbb{R} vers la régularisée de f:

$$\forall x \in \mathbb{R} \quad \sum_{n=-\infty}^{+\infty} c_n(f) e^{inx} = \tilde{f}(x) := \frac{f(x-) + f(x+)}{2}$$

Idée de la démonstration : Puisque remplacer f par sa régularisée $\tilde{f} \in \mathcal{D}$ laisse les coefficients de Fourier inchangés, il suffit de prouver que si $f \in \mathcal{D} \cap C^1_M(\mathbb{R}, \mathbb{C})$, alors la série de Fourier associée à f converge simplement vers f sur \mathbb{R} .

En considérant la fonction $f_{x_0} = f(x_0 + \cdot)$, nous calculons facilement $c_n(f_{x_0}) = \exp(inx_0)c_n(f)$ pour tout $n \in \mathbb{Z}$. Nous en déduisons qu'il suffit

d'établir l'égalité annoncée au point x = 0, i.e.

$$\forall f \in \mathcal{D} \cap C_M^1(\mathbb{R}, \mathbb{C}) \quad \sum_{n=-\infty}^{+\infty} c_n(f) = f(0)$$

Nous posons donc, pour tout $n \in \mathbb{N}$, $s_n := \sum_{k=-n}^n c_k(f)$, $u_n := s_n - f(0)$ et nous cherchons à montrer que $u_n \to 0$.

Un calcul simple utilisant les propriétés de D_n énoncées précédemment nous donne $2\pi u_n = \int_0^{\pi} [f(t) + f(-t) - 2f(0)]D_n(t) dt$, d'où, avec un changement de variable :

$$2\pi u_n = 2\int_0^{\pi/2} \frac{f(2t) + f(-2t) - f(0+) - f(0-)}{\sin t} \sin(2n+1)t \, dt$$

Comme $f \in C^1_M(\mathbb{R}, \mathbb{C})$, nous avons la convergence suivante :

$$\frac{f(2t) + f(-2t) - f(0+) - f(0-)}{\sin t} \xrightarrow[t \to 0+]{} 2(f'(0+) - f'(0-))$$

Nous pouvons définir une application $g \in C_M(\mathbb{R}, \mathbb{C})$, 2π -périodique, vérifiant :

$$\forall t \in]0, 2\pi[\quad g(t) = \frac{f(2t) + f(-2t) - f(0+) - f(0-)}{\sin t} \mathbf{1}_{]0, \frac{\pi}{2}[}(t)$$

Le lemme de Riemann-Lebesgue nous donne alors $\lim_{n\to\pm\infty} c_n(g) = 0$, ce qui nous permet de conclure puisque :

$$u_n = \frac{1}{\pi} \int_0^{2\pi} g(t) \sin(2n+1)t \, dt = i \left[c_{2n+1}(g) - c_{-(2n+1)}(g) \right]$$

Si f est en outre continue, alors sa série de Fourier converge simplement sur \mathbb{R} vers f. En fait, nous avons dans ce cas un résultat bien meilleur :

Théorème 9.5.3 Soit $f \in C^0(\mathbb{R}, \mathbb{C}) \cap C^1_M(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. Alors la série de Fourier associée à f converge normalement vers f sur \mathbb{R} .

En commençant par le cas particulier , le lecteur établira le résultat préliminaire suivant grâce à une intégration par parties :

Lemme 9.5.4 Sous les hypothèses du théorème précédent, nous définissons $\varphi : \mathbb{R} \to \mathbb{C}$ par $\varphi(t) = f'(t)$ si f est dérivable au point t et , sinon,

$$\varphi(t) := \frac{f'(t-) + f'(t+)}{2}$$

Alors $\varphi \in \mathcal{D}$ et, pour tout $n \in \mathbb{Z}$, $c_n(\varphi) = inc_n(f)$.

Г

Démonstration: Si $f \in C^1(\mathbb{R}, \mathbb{C})$, une intégration par parties nous donne :

$$c_n(f') = \frac{1}{2\pi} \int_0^{2\pi} f'(t)e^{-int} dt = \left[\frac{f(t)e^{-int}}{2\pi} \right]_0^{2\pi} + \frac{in}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt$$

d'où $c_n(\varphi) = inc_n(f)$ pour tout $n \in \mathbb{Z}$.

Dans le cas général, on applique la relation de Chasles le long d'une subdivision de $[0,2\pi]$ adaptée à $f\in C^1_M(\mathbb{R},\mathbb{C})$; le reste de la preuve est analogue [GOU 261] .

Démonstration du théorème : En reprenant les notations du lemme, nous avons :

$$\forall n \in \mathbb{Z}^* \quad |c_n(f)| = \frac{1}{n} |c_n(\varphi)| \le \frac{1}{2} \left(\frac{1}{n^2} + |c_n(\varphi)|^2 \right)$$

Puisque $\varphi \in \mathcal{D}$, l'égalité de Parseval nous permet d'en déduire que $\sum_{n \in \mathbb{Z}} |c_n(f)|$ converge. Nous concluons grâce à la proposition 9.2.3.

Remarque: L'hypothèse $f \in C^1_M(\mathbb{R}, \mathbb{C})$ est importante. Le mathématicien allemand Paul Du Bois-Reymond a construit en 1873 une application 2π -périodique $f \in C^0(\mathbb{R}, \mathbb{R})$ dont la série de Fourier diverge en 0. Le lecteur en trouvera un autre exemple, construit ultérieurement par le mathématicien hongrois Lipot Fejér, dans [GOU 264-265].

Exercice: On considère la suite de polynômes à coefficients réels $(P_k)_{k\geq 1}$ caractérisés par les relations $P_1 = \pi - X$ et, pour tout $k \geq 1$, $P'_{k+1} = P_k$ et $\int_0^{2\pi} P_k(t) dt = 0$.

1. Montrer que :

$$\forall k \ge 1 \quad \forall t \in \mathbb{R} \quad P_k(2\pi - t) = (-1)^k P_k(t)$$

2. Montrer que:

$$\forall k \ge 1 \quad \forall n \in \mathbb{Z}^* \quad (2\pi)^{-1} \int_0^{2\pi} P_k(t) e^{-int} dt = (in)^{-k}$$

3. Montrer que, pour tout $k \in \mathbb{N}$, on a $P_{2k+1}(\pi) = 0$ et, pour $k \ge 1$,

$$\frac{1}{2\pi} \int_0^{2\pi} P_k(t)^2 dt = 2 \sum_{k=1}^{+\infty} n^{-2k} = (-1)^k P_{2k}(0).$$

4. En déduire les égalités $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Solution (abrégée):

- 1. Remarquons d'abord que la relation $P'_{k+1} = P_k$ et $\int_0^{2\pi} P_{k+1}(t) dt = 0$ déterminent entièrement P_{k+1} .
 - Si P_k vérifie $P_k(2\pi t) = (-1)^k P_k(t)$, alors le polynôme Q défini par $Q(t) = (-1)^{k+1} P_{k+1}(2\pi - t)$ vérifie $Q' = P_k$ et $\int_0^{2\pi} Q(t) dt = 0$, donc
- 2. Par intégration par parties, on trouve :

$$\int_0^{2\pi} P_k(t)e^{-int} dt = \left[P_k(t) \frac{e^{-int}}{-in} \right]_0^{2\pi} - \int_0^{2\pi} P_k'(t) \frac{e^{-int}}{-in} dt$$

Il vient $(2\pi)^{-1} \int_0^{2\pi} P_1(t) e^{-int} dt = (in)^{-1}$, puis, par récurrence, l'égalité

3. D'après la première question, nous avons $(-1)^{2k+1}P_{2k+1}(\pi) = P_{2k+1}(\pi)$, d'où $P_{2k+1}(\pi) = 0$.

D'après l'identité de Parseval, on a $\frac{1}{2\pi} \int_0^{2\pi} P_k(t)^2 dt = \sum_{n=-\infty}^{+\infty} |c_n(P_k)|^2$. Or $c_0(P_k) = 0$ et $|c_n(P_k)|^2 = n^{-2k}$ pour $n \neq 0$.

D'après le théorème de Dirichlet,

$$P_{2k}(0) = \sum_{n \in \mathbb{Z}} c_n(P_{2k}) = \sum_{n \neq 0} (in)^{-2k} = (-1)^k 2 \sum_{n=1}^{+\infty} n^{-2k}$$

On a $P_2(t) = -\frac{(t-\pi)^2}{2} + c$; or $\int_0^{2\pi} \left(-\frac{(t-\pi)^2}{2} + c\right) dt = 2\pi c - \left[\frac{(t-\pi)^3}{6}\right]_0^{2\pi} =$ $2\pi c - \frac{\pi^3}{3}$ · Il vient $P_2(t) = \frac{\pi^2}{6} - \frac{(t-\pi)^2}{2}$ ·

On en déduit $\sum_{n=1}^{+\infty} n^{-2} = -\frac{P_2(0)}{2} = \frac{\pi^2}{6}$ et

$$\sum_{n=1}^{+\infty} n^{-4} = \frac{1}{4\pi} \int_0^{2\pi} P_2(t)^2 dt = \frac{1}{4\pi} \int_0^{2\pi} \left(\frac{\pi^4}{36} - \frac{\pi^2 (t - \pi)^2}{6} + \frac{(t - \pi)^4}{4} \right) dt$$

$$= \frac{\pi^4}{72} - \left[\frac{\pi}{4} \frac{(t - \pi)^3}{18} \right]_0^{2\pi} + \left[\frac{1}{4\pi} \frac{(t - \pi)^5}{20} \right]_0^{2\pi}$$

$$= \frac{\pi^4}{72} - \frac{\pi^4}{36} + \frac{\pi^4}{40} = \frac{\pi^4}{90}.$$

Le lecteur trouvera un exercice analogue dans [DAN 392-395].

Exercice : Inégalité de Wirtinger Soit $f \in C^1(\mathbb{R}, \mathbb{C})$ une application 2π -périodique telle que $\int_0^{2\pi} f = 0$. Établir l'inégalité :

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} |f'(t)|^2 dt$$

Solution: [GOU 264].

Cette inégalité est utilisée dans la preuve d'un théorème isopérimétrique.

Exercice : Développement du sinus en produit infini [GOU 262].

Soit $\alpha \in \mathbb{R} - \mathbb{Z}$; nous définissons l'application 2π -périodique $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ par $f_{\alpha}(t) = \cos(\alpha t)$ pour tout $t \in]-\pi,\pi]$.

En développant f_α en série de Fourier, montrer l'égalité :

$$\forall t \in \mathbb{R} - \pi \mathbb{Z} \quad \cot nt = \frac{1}{t} - 2t \sum_{n=1}^{+\infty} \frac{1}{t^2 - n^2 \pi^2}$$

En intégrant l'égalité précédente entre 0 et $x \in]0, \pi[$, établir la formule :

$$\forall t \in]-\pi, \pi[\sin t = t \prod_{n=1}^{+\infty} \left(1 - \frac{t^2}{n^2 \pi^2}\right)$$

Ce développement du sinus en produit infini et la formule d'Euler-Gauss (Proposition 3.3.3 page 68) nous permettent d'établir le résultat suivant :

Proposition 9.5.5 (Formule des compléments) La fonction Γ d'Euler vérifie l'équlité suivante :

$$\forall x \in]0,1[$$
 $\frac{1}{\Gamma(x)\Gamma(1-x)} = \frac{\sin(\pi x)}{\pi}$

9.6 Le théorème de Fejér

Nous reprenons ici la notation $(D_n)_{n\in\mathbb{N}}$ pour le noyau de Dirichlet introduit dans la section précédente.

Définition et proposition 9.6.1 On appelle noyau de Fejér la suite de polynômes trigonométriques $(F_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^* \quad \forall x \in \mathbb{R} \quad F_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$$

Pour tout $n \in \mathbb{N}^*$, F_n est une fonction paire telle que $\frac{1}{2\pi} \int_0^{2\pi} F_n = 1$. En outre, nous avons:

$$\forall n \in \mathbb{N}^* \quad \forall x \in \mathbb{R} - (2\pi\mathbb{Z}) \quad F_n(x) = \frac{1}{n} \left(\frac{\sin \frac{nx}{2}}{\sin \frac{x}{2}} \right)^2 \ge 0$$

Démonstration: La première phrase se vérifie immédiatement. En utilisant la proposition 9.5.1, nous calculons pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R} - (2\pi\mathbb{Z})$:

$$F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\sin(2k+1)\frac{x}{2}}{\sin\frac{x}{2}} = \frac{1}{n\sin\frac{x}{2}} \Im\left(\sum_{k=0}^{n-1} e^{i(2k+1)\frac{x}{2}}\right)$$
(9.6)

Or la somme entre parenthèses s'écrit encore :

$$e^{i\frac{x}{2}}\sum_{k=0}^{n-1}e^{ikx}=e^{i\frac{x}{2}}\frac{e^{inx}-1}{e^{ix}-1}=e^{i\frac{x}{2}}\frac{e^{i\frac{nx}{2}}}{e^{i\frac{x}{2}}}\frac{e^{i\frac{nx}{2}}-e^{-i\frac{nx}{2}}}{e^{i\frac{x}{2}}-e^{-i\frac{x}{2}}}=e^{i\frac{nx}{2}}\frac{\sin(\frac{nx}{2})}{\sin(\frac{x}{2})}$$

En passant à la partie imaginaire puis en revenant à (9.6), nous obtenons le résultat annoncé.

Soit $f \in C_M(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. Nous reprenons la notation $(S_n(f))_{n \in \mathbb{N}}$ pour la suite des sommes partielles associées à la série de Fourier de f, i.e.

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad S_n(f)(x) := \sum_{k=-n}^n c_k(f)e^{ikx}$$

Définition 9.6.2 Soit $f \in C_M(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. On appelle sommes de Fejér associées à f la suite $(\sigma_n(f))_{n \in \mathbb{N}^*}$ d'applications de \mathbb{R} dans \mathbb{C} définies par :

$$\forall n \in \mathbb{N}^* \quad \forall x \in \mathbb{R} \quad \sigma_n(f)(x) := \frac{1}{n} \sum_{k=0}^{n-1} S_k(f)(x)$$

Ce sont donc les moyennes de Cesàro associées à la suite $(S_n(f)(x))_{n\in\mathbb{N}}$.

Théorème 9.6.3 (Fejér) Soit $f \in C^0(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. Alors la suite des sommes de Fejér $(\sigma_n(f))_{n \in \mathbb{N}^*}$ converge uniformément vers f sur \mathbb{R} .

Démonstration: Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, nous avons :

$$S_n(f)(x) = \sum_{k=-n}^{n} \frac{1}{2\pi} \left(\int_0^{2\pi} f(t)e^{-ikt} dt \right) e^{ikx}$$

d'où:

$$S_n(f)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t) \sum_{k=-n}^n e^{ik(x-t)} dt = \frac{1}{2\pi} \int_0^{2\pi} f(t) D_n(x-t) dt$$

Nous en déduisons que, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, nous avons :

$$\sigma_n(f)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t) \frac{1}{n} \sum_{k=0}^{n-1} D_k(x-t) dt = \frac{1}{2\pi} \int_0^{2\pi} f(t) F_n(x-t) dt$$

Grâce au changement de variable s=x-t et à la 2π -périodicité de f et F_n , nous en déduisons :

$$\sigma_n(f)(x) = \frac{1}{2\pi} \int_{x-2\pi}^x f(x-t)F_n(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)F_n(t) dt$$

Comme $\frac{1}{2\pi} \int_0^{2\pi} F_n = 1$, nous avons donc pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$:

$$\sigma_n(f)(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [f(x-t) - f(x)] F_n(t) dt$$

Comme f est continue et 2π -périodique, on montre facilement grâce au théorème de Heine que f est uniformément continue sur \mathbb{R} .

Soit $\epsilon > 0$ arbitraire fixé. Il existe donc $\delta \in]0, \pi[$ tel que $|x - y| \le \delta \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{2}$. De l'égalité précédente, nous déduisons :

$$2\pi |\sigma_n(f)(x) - f(x)| \le \int_{-\pi}^{-\delta} |f(x-t) - f(x)| \underbrace{F_n(t)}_{\ge 0} dt + \frac{\epsilon}{2} \underbrace{\int_{-\delta}^{\delta} F_n}_{\le \int_{-\infty}^{\pi} F_n = 2\pi} + \int_{\delta}^{\pi} \cdots$$

Nous allons majorer cette dernière intégrale, la 1ère se traitant de même.

$$\int_{\delta}^{\pi} |f(x-t) - f(x)| F_n(t) \, dt \le 2 \|f\|_{\infty} \int_{\delta}^{\pi} \frac{1}{n} \left(\frac{\sin \frac{nt}{2}}{\sin \frac{t}{2}} \right)^2 \, dt \le \frac{2\pi \|f\|_{\infty}}{n \sin^2 \frac{\delta}{2}}$$

Finalement,

$$\forall n \in \mathbb{N}^* \quad \forall x \in \mathbb{R} \quad |\sigma_n(f)(x) - f(x)| \le \frac{\epsilon}{2} + \frac{2||f||_{\infty}}{n \sin^2 \frac{\delta}{2}}$$

et donc $\exists N \in \mathbb{N}, \forall n \geq N \ \forall x \in \mathbb{R} \ |\sigma_n(f)(x) - f(x)| \leq \epsilon.$

Remarque: On peut montrer plus généralement que si $f \in \mathcal{D}$, alors $(\sigma_n(f))_{n \in \mathbb{N}^*}$ converge simplement sur \mathbb{R} vers f et que la convergence est uniforme sur tout intervalle sur lequel f est continue [DAN 386].

Nous déduisons du théorème de Fejér le résultat suivant, qui est un analogue du théorème de Weierstrass dans le cas des fonctions continues périodiques.

Corollaire 9.6.4 Toute application 2π -périodique $f \in C^0(\mathbb{R}, \mathbb{C})$ est limite uniforme d'une suite de polynômes trigonométriques.

Application : Valeur moyenne d'une fonction périodique continue Soit $\alpha \in \mathbb{R}$ tel que $\frac{\alpha}{\pi} \notin \mathbb{Q}$ et $f \in C^0(\mathbb{R}, \mathbb{C})$ une application 2π -périodique. Alors, on a la convergence suivante :

$$\frac{1}{n} \sum_{k=0}^{n-1} f(k\alpha) \xrightarrow[n \to +\infty]{} \frac{1}{2\pi} \int_0^{2\pi} f(k\alpha) \xrightarrow[n \to +\infty]{} \frac{1}{n} \int_0^{2\pi} f(k\alpha) \xrightarrow[n \to +\infty]{} \frac{1}{n}$$

L'idée est de montrer cette propriété quand f est un monôme trigonométrique, puis un polynôme trigonométrique. On passe ensuite au cas général en utilisant le corollaire précédent [DAN 395-396].

Nous allons maintenant démontrer le résultat que nous avions momentanément admis pour pouvoir énoncer le théorème 9.4.4.

Corollaire 9.6.5 Dans le \mathbb{C} -espace préhilbertien de Dirichlet \mathcal{D} , la suite orthonormée $(e_n)_{n\in\mathbb{Z}}$ définie par $e_n:\mathbb{R}\to\mathbb{C},\ x\mapsto e^{inx}$, est totale.

Démonstration: Soit $f \in \mathcal{D}$. Si f est continue, le théorème de Fejér nous dit qu'il existe une suite $(g_n)_{n \in \mathbb{N}}$ de polynômes trigonométriques telle que $\|g_n - f\|_{\infty} \to 0$. Comme $\|\cdot\|_2 \le \|\cdot\|_{\infty}$, nous en déduisons que $\|g_n - f\|_2 \to 0$. Si f n'est pas continue, on peut construire [DAN 380] pour tout $\epsilon > 0$ une application \tilde{f} continue telle que $\|f - \tilde{f}\|_2 < \frac{\epsilon}{2}$. Or, nous venons de voir qu'il existe un polynôme trigonométrique g tel que $\|g - \tilde{f}\|_2 < \frac{\epsilon}{2}$, d'où $\|g - f\|_2 < \epsilon$. Nous avons ainsi prouvé la densité du sous-espace $\mathrm{Vect}(e_n)_{n \in \mathbb{Z}}$ des polynômes trigonométriques dans \mathcal{D} .

Chapitre 10

Séries entières

Bibliographie:

- DANTZER chapitre 18
- GOURDON Analyse (2ème édition) chapitre 4 paragraphe 4
- RAMIS-DESCHAMPS-ODOUX tome 4, chapitre 3

Nous allons nous placer de préférence sur $\mathbb{K} = \mathbb{C}$. Pour traiter le cas $\mathbb{K} = \mathbb{R}$, nous raisonnerons simplement par restriction.

L'algèbre des séries entières 10.1

Rappelons qu'une série $\sum f_n$ d'applications de $\mathbb C$ dans $\mathbb C$ est définie comme la suite d'applications $(\sum_{k=0}^n f_k)_{n\in\mathbb N}$ sans préjuger de la convergence de la série $\sum f_n(z)$ en un point $z\in\mathbb C$.

Pour l'instant, les définitions que nous allons donner sont donc purement algébriques; elles sont valables même si les séries de fonctions concernées ne convergent nulle part sauf en z=0.

Définition 10.1.1 Une série entière est une série d'applications de la forme $\sum a_n z^n$, $où(a_n) \in \mathbb{C}^{\mathbb{N}}$.

Définition 10.1.2 Nous définissons les 3 opérations suivantes sur les séries entières:

- Somme $\sum a_n z^n + \sum b_n z^n := \sum (a_n + b_n) z^n$
- Produit par un scalaire Pour tout $\lambda \in \mathbb{C}$, $\lambda \sum a_n z^n = \sum (\lambda a_n) z^n$ Produit de Cauchy $(\sum a_n z^n)(\sum b_n z^n) = \sum c_n z^n$, où $c_n := \sum_{k=0}^n a_k b_{n-k}$

Théorème 10.1.3 Muni de ces trois opérations, l'ensemble des séries entières est une \mathbb{C} -algèbre commutative.

Nous pouvons de même, d'une façon purement algébrique, définir la dérivée d'une série entière, sans aucunement préjuger de sa convergence.

Définition 10.1.4 On appelle série entière dérivée $de \sum a_n z^n$ et on note $(\sum a_n z^n)'$ la série entière $\sum (n+1)a_{n+1} z^n$.

Remarque: En itérant le processus, pour tout $p \in \mathbb{N}^*$, nous pouvons définir la série entière dérivée p-ième de $\sum a_n z^n$ par :

$$(\sum a_n z^n)^{(p)} = \sum (n+p)(n+p-1)\cdots(n+1)a_{n+p} z^n = \sum \frac{(n+p)!}{n!}a_{n+p} z^n$$

Exercice: Montrer l'égalité :

$$[(\sum a_n z^n)(\sum b_n z^n)]' = (\sum a_n z^n)'(\sum b_n z^n) + (\sum a_n z^n)(\sum b_n z^n)'$$

10.2 Rayon de convergence

Définition 10.2.1 On appelle rayon de convergence de la série entière $\sum a_n z^n$ l'élément de \mathbb{R}_+ suivant :

$$R = \sup\{r \ge 0, (|a_n|r^n)_{n \in \mathbb{N}} \text{ est born\'ee } \}$$

Pour $r \geq 0$, nous noterons $D(r) := \{z \in \mathbb{C}, |z| \leq r\}$ le disque fermé, $\overset{\circ}{D}(r) := \{z \in \mathbb{C}, |z| < r\}$ le disque ouvert, et enfin $\mathcal{C}(r) := \{z \in \mathbb{C}, |z| = r\}$ le cercle, tous de centre 0 et de rayon r.

Nous conviendrons que $D(+\infty) = \overset{\circ}{D}(+\infty) = \mathbb{C}$.

Proposition 10.2.2 (Lemme d'Abel) Soit $\sum a_n z^n$ une série entière de rayon de convergence R.

- Si |z| < R, alors $\sum a_n z^n$ converge absolument.
- Si 0 < r < R, alors $\sum a_n z^n$ converge normalement sur D(r).
- Si |z| > R, alors $\sum \overline{a_n} z^n$ diverge.

Démonstration: Comparaison avec une série géométrique.

Le disque ouvert D(R) est appelé disque de convergence de la série entière $\sum a_n z^n$. Lorsque $R < +\infty$, le cercle C(R) est appelé cercle d'incertitude car, comme nous le verrons sur des exemples, différents comportements de la série entière y sont possibles.

Passons maintenant au calcul pratique de R. Dans la formule suivante, nous adopterons les conventions $(+\infty)^{-1} = 0$ et $0^{-1} = +\infty$.

Proposition 10.2.3 (Formule d'Hadamard) Le rayon de convergence de la série entière $\sum a_n z^n$ est donné par l'égalité :

$$R = \left(\overline{\lim} \, |a_n|^{1/n}\right)^{-1}$$

Démonstration: Rappelons la *règle de Cauchy* pour une série numérique $\sum u_n$: posons $\lambda = \overline{\lim} |u_n|^{1/n}$; si $\lambda < 1$ alors $\sum u_n$ est absolument convergente, si $\lambda > 1$, alors $\sum u_n$ est divergente.

En considérant $u_n = a_n z^n$, on en déduit facilement le résultat annoncé.

Bien sûr, si la suite $(|a_n|^{1/n})_{n\in\mathbb{N}^*}$ converge, nous avons $R = \left(\lim |a_n|^{1/n}\right)^{-1}$: c'est la règle de Cauchy pour les séries entières.

Exercice: Que vaut le rayon de convergence de $\sum 2^n z^{2n}$?

Solution : Ici, $a_{2p} = 2^p$ et $a_{2p+1} = 0$ pour tout $p \in \mathbb{N}$ donc :

$$\overline{\lim}_{n} |a_n|^{1/n} = \overline{\lim}_{p} (2^p)^{\frac{1}{2p}} = \sqrt{2} \quad ,$$

d'où $R=1/\sqrt{2}$.

Exercice: Soient $\sum a_n z^n$, $\sum b_n z^n$ des séries entières de rayons respectifs R et R'. Que peut-on dire du rayon R'' de la série entière $\sum a_n b_n z^n$?

Solution: Nous avons l'inégalité:

$$\overline{\lim} |a_n b_n|^{1/n} \le \overline{\lim} |a_n|^{1/n} \overline{\lim} |b_n|^{1/n} \quad ,$$

d'où, par Hadamard, $R'' \geq RR'$.

Cette dernière inégalité peut être large (prendre $a_n = b_n = 1 \ \forall n \in \mathbb{N}$) ou stricte, comme nous le constatons sur l'exemple suivant :

 $\sum z^{2n}$ et $\sum z^{2n+1}$ ont pour rayon de convergence R=R'=1 mais nous avons ici $a_nb_n=0$ $\forall n\in\mathbb{N}$ d'où $R''=+\infty$.

Proposition 10.2.4 (Règle de d'Alembert) Soit $\sum a_n z^n$ une série entière telle que :

$$\lim \frac{|a_{n+1}|}{|a_n|} = l \in \bar{\mathbb{R}}_+$$

Alors son rayon de convergence vaut $R = l^{-1}$.

Démonstration: Règle de d'Alembert pour les séries numériques.

Si la règle de Cauchy ne permet pas de conclure pour une certaine série entière, il est inutile d'essayer la règle de d'Alembert :

Lemme 10.2.5 Nous avons l'implication :

$$\lim \frac{|a_{n+1}|}{|a_n|} = l \in \bar{\mathbb{R}}_+ \Longrightarrow \lim |a_n|^{1/n} = l$$

Démonstration: Si $l_1 > l$, d'après la proposition précédente, $\sum |a_n|/l_1^n$ converge donc son terme général tend vers 0. En particulier, il existe un rang $N_1 \in \mathbb{N}$ tel que, pour tout $n \ge N_1$, $|a_n| \le l_1^n$.

Si $0 < l_0 < l, \sum l_0^n/|a_n|$ converge et donc il existe un rang $N_0 \in \mathbb{N}$ tel que, pour tout $n \geq N_0$, $l_0^n \leq |a_n|$.

Si $l_0 < l < l_1$, il existe donc un rang $N := \max(N_0, N_1) \in \mathbb{N}$ tel que, pour tout $n \geq N$, $l_0^n \leq |a_n| \leq l_1^n$, ce qui s'écrit encore $l_0 \leq |a_n|^{1/n} \leq l_1$.

Nous laissons au lecteur les détails de la conclusion (traiter à part les cas $l=0 \text{ et } l=+\infty$).

Exemples:

— La série entière $\sum z^n/n!$ a pour rayon $R=+\infty$. — La série entière $\sum n!\,z^n$ a un rayon de convergence nul. — Pour tout $\alpha\in\mathbb{R}$, la série entière $\sum \frac{z^n}{n^\alpha}$ a pour rayon R=1

Attardons-nous sur ce dernier exemple pour étudier le comportement de la série entière sur le cercle d'incertitude C(1) en fonction des valeurs de α .

Si $\alpha \leq 0$, nous avons $\left|\frac{z^n}{n^{\alpha}}\right| = n^{-\alpha} \geq 1$ pour tout $n \geq 1$ donc la série entière diverge sur $\mathcal{C}(1)$.

Si $\alpha > 1$, la série entière converge absolument sur $\mathcal{C}(1)$ comme le montre l'exemple de Riemann $\sum \frac{1}{n^{\alpha}}$.

Si $0 < \alpha \le 1$, en z = 1 la série diverge, toujours d'après l'exemple de Riemann. En $z \neq 1$, i.e. en $z = \exp(i\theta)$ avec $\theta \in]0, 2\pi[$, la série entière converge comme le montre une application de la règle d'Abel pour les séries.

Bien que la formule d'Hadamard soit universelle, elle ne permet pas toujours un calcul explicite du rayon de convergence. Il arrive qu'il soit plus simple de raisonner directement, comme le lecteur le constatera dans les deux exercices suivants [DAN 304-305].

Exercice: Que vaut le rayon de convergence de $\sum a_n z^n$, où a_n est la n-ième décimale du nombre e?

Solution : Comme la suite (a_n) est bornée, nous avons $R \ge 1$. D'autre part, comme e n'est pas un nombre décimal, nous avons :

$$\forall n_0 \in \mathbb{N} \quad \exists n \ge n_0 \quad a_n \ge 1$$

En particulier, la suite (a_n) ne tend pas vers 0 donc $\sum a_n$ diverge et $R \ge 1$. Finalement, R = 1.

Exercice: Même question avec $a_n = \#\{k \le n, k \text{ nombre premier }\}$

Solution : Pour tout $n \geq 2$, nous avons $a_n \geq 1$ donc $\sum a_n$ diverge et $R \leq 1$.

Par ailleurs, nous avons $0 \le a_n \le n$ pour tout $n \in \mathbb{N}$ d'où, pour tout $r \in [0, 1[$, $0 \le a_n r^n \le n r^n$ ce qui implique : $a_n r^n \to 0$.

En particulier, $(a_n r^n)$ est bornée et donc $R \geq r$. Comme $r \in [0, 1[$ était arbitraire, nous en déduisons $R \geq 1$.

Finalement, R = 1.

Proposition 10.2.6 Soient $\sum a_n z^n$, $\sum b_n z^n$ des séries entières de rayons resp. R_a et R_b . Nous noterons R_{a+b} le rayon de convergence de la série somme $\sum (a_n + b_n) z^n$. Alors,

- $Si R_a \neq R_b, R_{a+b} = \min(R_a, R_b).$
- $Si R_a = R_b, R_{a+b} \ge R_a.$

Dans ce dernier cas, l'inégalité peut être stricte, comme le lecteur le constatera en prenant $a_n = 1 + 2^n$ et $b_n = 1 - 2^n$: on a $R_a = R_b = \frac{1}{2}$ et $R_{a+b} = 1 > \frac{1}{2}$.

Proposition 10.2.7 Soient $\sum a_n z^n$, $\sum b_n z^n$ des séries entières de rayons resp. R_a et R_b . Nous noterons $\sum c_n z^n$ leur produit de Cauchy et R_c son rayon de convergence. Alors $R_c \ge \min(R_a, R_b)$ et nous avons :

$$\forall z \in \mathbb{C}, \quad |z| < \min(R_a, R_b) \Longrightarrow \sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right)$$

Démonstration: Il s'agit du produit de Cauchy de deux séries numériques absolument convergentes.

On peut avoir $R_c > \min(R_a, R_b)$ comme le montre l'exemple suivant : $a_n \equiv 1, b_0 = 1, b_1 = -1$ et $b_n = 0$ pour tout $n \geq 2$. Le lecteur vérifiera que $R_a = 1, R_b = +\infty$ et $R_c = +\infty$.

Proposition 10.2.8 Une série entière et sa série dérivée ont même rayon de convergence.

Démonstration: Notons R et R' les rayons de convergence de $\sum a_n z^n$ et $\sum (n+1)a_{n+1}z^n$.

Si |z| > R, dès que $n+1 \ge |z|$ nous avons $|(n+1)a_{n+1}z^n| \ge |a_{n+1}z^{n+1}|$, cette dernière suite étant non bornée par définition de R. Nous en déduisons :

$$\{r \geq 0, (|(n+1)a_{n+1}| r^n)_{n \in \mathbb{N}} \text{ est bornée }\} \subset [0, R],$$

d'où $R' \leq R$.

Si |z| < R, choisissons $\rho \in]0, \frac{R-|z|}{2}[$ de sorte que $\sum |a_n|(|z|+\rho)^n$ converge. D'après la formule du binôme, nous avons l'inégalité $(|z|+\rho)^{n+1} \ge (n+1)|z|^n \rho$ pour tout $n \in \mathbb{N}$, si bien que :

$$\forall n \in \mathbb{N} \quad |(n+1)a_{n+1}z^n| \le \frac{1}{\rho}|a_{n+1}|(|z|+\rho)^{n+1},$$

ce qui implique la convergence de $\sum (n+1)a_{n+1}z^n$, d'où $R' \geq R$.

10.3 Continuité et dérivabilité

Nous noterons $S(z) = \sum_{n=0}^{+\infty} a_n z^n$ la somme de la série entière en tout point z où elle converge. Dans toute la suite, nous supposerons R > 0 si bien que S est définie au moins sur le disque ouvert D(R).

Proposition 10.3.1 La somme S est continue sur $\overset{\circ}{D}(R)$.

Ceci résulte de la convergence normale donc uniforme de la série entière sur D(r), pour tout 0 < r < R.

Si nous raisonnions sur $\mathbb{K} = \mathbb{R}$, nous pourrions montrer que $S:]-R, R[\to \mathbb{C}$ est dérivable et même de classe C^{∞} . En fait, nous allons prouver un résultat beaucoup plus fort en nous plaçant sur $\mathbb{K} = \mathbb{C}$.

Définition 10.3.2 Soit U un ouvert de \mathbb{C} , $z_0 \in U$ et $f: U \to \mathbb{C}$. On dit que f est holomorphe (ou encore dérivable au sens complexe) au point z_0 si l'application $z \mapsto \frac{f(z) - f(z_0)}{z - z_0}$ de $U - \{z_0\}$ dans \mathbb{C} admet une limite lorsque $z \to z_0$. Dans ce cas, on dit que cette limite est la dérivée de f au point z_0 et l'on note :

$$f'(z_0) = \lim_{\substack{z \to z_0 \\ z \neq z_0}} \frac{f(z) - f(z_0)}{z - z_0}$$

Enfin, on dit que f est holomorphe sur U si f est holomorphe en tout point $z_0 \in U$.

Théorème 10.3.3 L'application somme S est holomorphe sur $\overset{\circ}{D}(R)$ et

$$\forall z \in \overset{\circ}{D}(R) \quad S'(z) = \sum_{n=0}^{+\infty} (n+1)a_{n+1} z^n$$

Démonstration: Soit $z_0 \in \overset{\circ}{D}(R)$; nous choisissons $r \in]|z_0|, R[$. Nous pouvons alors écrire, pour tout $z \in \overset{\circ}{D}(r) - \{z_0\}$:

$$\frac{S(z) - S(z_0)}{z - z_0} = \sum_{n=0}^{+\infty} a_n \frac{z^n - z_0^n}{z - z_0} = \sum_{n=1}^{+\infty} a_n (z^{n-1} + z_0 z^{n-2} + \dots + z_0^{n-2} z + z_0^{n-1})$$

Considérons $f_n: \overset{\circ}{D}(r) \to \mathbb{C}$, $z \mapsto a_n(z^{n-1} + z_0z^{n-2} + \dots + z_0^{n-2}z + z_0^{n-1})$; pour tout $n \in \mathbb{N}^*$, f_n est manifestement une application continue.

La série $\sum f_n$ est normalement convergente sur D(r) car

$$\sup_{|z| < r} |f_n(z)| \le n|a_n|r^{n-1}$$

et la série

$$\sum_{n>1} n|a_n|r^{n-1} = \sum_{n\in\mathbb{N}} (n+1)|a_{n+1}|r^n$$

converge puisque r < R et la série entière dérivée $\sum (n+1)a_{n+1}z^n$ a pour rayon de convergence R.

Ainsi, $\sum_{n=1}^{+\infty} f_n$ est continue sur D(r) et, en particulier,

$$\lim_{z \to z_0} \sum_{n=1}^{+\infty} f_n(z) = \sum_{n=1}^{+\infty} f_n(z_0),$$

ce qui s'écrit encore :

$$\lim_{\substack{z \to z_0 \\ z \neq z_0}} \frac{S(z) - S(z_0)}{z - z_0} = \sum_{n=1}^{+\infty} n a_n z_0^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} z_0^n$$

Corollaire 10.3.4 L'application somme S est infiniment dérivable au sens complexe sur $\overset{\circ}{D}(R)$ et ses dérivées successives sont données par :

$$\forall k \in \mathbb{N}^* \quad \forall z \in \overset{\circ}{D}(R) \quad S^{(k)}(z) = \sum_{n=0}^{+\infty} \frac{(n+k)!}{n!} \, a_{n+k} \, z^n$$

En particulier, pour tout $k \in \mathbb{N}$, $S^{(k)}(0) = k! a_k$.

Par restriction à \mathbb{R} , ce corollaire entraı̂ne évidemment que $S:]-R,R[\to\mathbb{C}$ est de classe C^∞ et que $a_k=\frac{S^{(k)}(0)}{k!}$ pour tout $k\in\mathbb{N}$.

Remarque: L'holomorphie est une propriété très forte, en particulier plus forte que la différentiabilité.

Considérons par exemple une application $f: \overset{\circ}{D}(1) \to \mathbb{C}$ et écrivons z = x + iy en l'identifiant à (x,y) grâce à l'isomorphisme canonique entre \mathbb{C} et \mathbb{R}^2 ; de même, écrivons f(z) = u(x,y) + iv(x,y) en l'identifiant à (u(x,y),v(x,y)).

On peut montrer [GOU 314] que f est holomorphe sur D(1) ssi les applications u et v sont de classe C^1 sur D(1) et vérifient les conditions de Cauchy :

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

10.4 Principe des zéros isolés

Théorème 10.4.1 Supposons qu'il existe une suite $(z_p)_{p\in\mathbb{N}}$ à valeurs dans $\overset{\circ}{D}(R) - \{0\}$ telle que $z_p \to 0$ et $S(z_p) = 0$ pour tout $p \in \mathbb{N}$. Alors $a_n = 0$ pour tout $n \in \mathbb{N}$ et donc $S \equiv 0$.

Démonstration: On raisonne par l'absurde en supposant que la suite (a_n) n'est pas identiquement nulle, ce qui nous permet de définir :

$$q = \min\{n \in \mathbb{N} \, , \, a_n \neq 0\}$$

Nous avons donc, pour tout $z \in \overset{\circ}{D}(R)$,

$$S(z) = \sum_{n=q}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} a_{n+q} z^{n+q} = z^q \sum_{n=0}^{+\infty} a_{n+q} z^n$$

Appelons T(z) la somme de la série $\sum a_{n+q}z^n$, en remarquant que celle-ci a même rayon de convergence R > 0 que $\sum a_n z^n$ puisque ces deux séries convergent ou divergent en même temps.

Notre hypothèse implique que, pour tout $p \in \mathbb{N}$, $T(z_p) = 0$ et donc, par continuité de T en 0, $T(0) = a_q = 0$, d'où une contradiction.

Nous en déduisons que (a_n) est identiquement nulle.

Corollaire 10.4.2 Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs $R_a > 0$, $R_b > 0$ et de sommes respectives S_a , S_b .

Nous posons $R = \inf(R_a, R_b)$ et nous supposons qu'il existe une suite $(z_p)_{p \in \mathbb{N}}$ à valeurs dans $D(R) - \{0\}$ telle que $z_p \to 0$ et $\forall p \in \mathbb{N}$ $S_a(z_p) = S_b(z_p)$. Alors $a_n = b_n$ pour tout $n \in \mathbb{N}$ et donc $S_a = S_b$.

Application 10.4.3 La transformée de Laplace de la densité de Gauss est donnée par l'équlité :

$$\forall z \in \mathbb{C} \quad \int_{-\infty}^{+\infty} e^{zx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = e^{\frac{z^2}{2}}$$

10.5 Formule de Cauchy, égalité de Parseval

Théorème 10.5.1 En reprenant les notations précédentes, on a l'égalité :

$$\forall r \in]0, R[\forall n \in \mathbb{N} \quad 2\pi a_n r^n = \int_0^{2\pi} S(re^{i\theta}) e^{-ni\theta} d\theta$$

Démonstration: Par convergence normale, le membre de droite vaut :

$$\sum_{p=0}^{+\infty} a_p r^p \int_0^{2\pi} e^{i(p-n)\theta} d\theta$$

Application 10.5.2 (Théorème de Liouville) On suppose $R = +\infty$. Si S est bornée sur \mathbb{C} , alors S est constante.

Démonstration: Posons $M = \sup_{z \in \mathbb{C}} |S(z)| < +\infty$.

La formule de Cauchy et l'inégalité triangulaire dans une intégrale nous donnent, pour tout r > 0 et tout $n \in \mathbb{N}$, $2\pi |a_n| r^n \leq 2\pi M$.

En particulier, pour tout $n \in \mathbb{N}^*$, $|a_n| \leq \frac{M}{r^n}$ et il suffit de faire tendre r vers l'infini pour conclure.

Exercice: [GOU 248] S'il existe $m \in \mathbb{N}^*$ et C > 0 tels que $|S(z)| \leq C|z|^m$ pour tout $z \in \mathbb{C}$, alors S est un polynôme de degré inférieur ou égal à m. L'idée est d'introduire $g(z) = \sum_{n=m}^{+\infty} a_n z^{n-m}$ de sorte que :

$$\forall z \in \mathbb{C}^* \quad g(z) = \frac{f(z) - a_0 - a_1 z - \dots - a_{m-1} z^{m-1}}{z^m}$$

On en déduit que g est entière et bornée donc constante, ce qui signifie que $a_n = 0$ dès que n > m.

Terminons cette section par une application de l'égalité de Parseval dans le cadre des séries entières.

Théorème 10.5.3 (Égalité de Parseval) En reprenant les notations précédentes, nous avons :

$$\forall r \in]0, R[\qquad \sum_{n=0}^{+\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |S(re^{i\theta})|^2 d\theta$$

Démonstration: Pour $r \in]0, R[$ fixé, définissons $f : \mathbb{R} \to \mathbb{C}$ par :

$$\forall \theta \in \mathbb{R} \quad f(\theta) = S(re^{i\theta}) = \sum_{n=0}^{+\infty} a_n r^n e^{in\theta}$$

de sorte que f est clairement continue et 2π -périodique.

Grâce à la convergence de la série $\sum_{n=0}^{+\infty} |a_n| r^n$, on calcule facilement les coefficients de Fourier de l'application f:

$$\forall n \in \mathbb{N} \quad c_n(f) = a_n r^n \quad \text{et} \quad \forall n \in \mathbb{Z}_-^* \quad c_n(f) = 0$$

On conclut alors grâce au théorème 9.4.4 page 151.

Remarque: On peut aussi démontrer le théorème de Liouville à partir de ce dernier théorème.

Probabilités : Références pour corrigés des exercices.

BIL Probability and Measure. Billingsley. Wiley.

BAR Probabilité. Barbe, Ledoux. Belin.

COT Exercices de Probabilités. Cottrell et al. Editions Cassini.

DAC¹ cours Probabilités et Statistiques 1. Problèmes à temps fixe. Dacunha-Castelle, Duflo. 2e édition. Editions Masson.

DAC¹ exo Exercices de Probabilités et Statistiques 1. Problèmes à temps fixe. Dacunha-Castelle, Duflo. 3e tirage corrigé. Editions Masson.

FOA Calcul des Probabilités. Foata, Fuchs. Editions Dunod.

FEL¹ An Introduction to Probability Theory and its Applications. Feller. Wiley 3rd edition. Volume I

 ${\rm FEL^2}\,$ An Introduction to Probability Theory and its Applications. Feller. Wiley 2nd edition. Volume II

OUV Probabilités (2 tomes). Ouvrard. Cassini

REV Probabilités. Revuz. Editions Hermann. Collection Méthodes.

ROS Initiation aux Probabilités. Ross. Presses polytechniques et universitaires romandes. Troisième édition.

RUD Analyse réelle et complexe. Rudin. Editions Masson.

Chapitre 11

Espaces mesurés. Espaces probabilisés.

Dans les deux premières sections de ce chapitre, nous allons définir la structure d'espace mesuré. Bien que la théorie abstraite de l'intégration de Lebesgue repose sur cette structure, nous ne la développerons pas ici car elle ne figure pas au programme officiel. En revanche, la structure d'espace mesuré va nous mener au modèle fondamental utilisé en calcul des probabilités, que l'on appelle l'espace probabilisé.

11.1 Clans et tribus.

11.1.1 Définitions.

Définition 11.1.1 Soit E un ensemble. On appelle clan sur E un ensemble C de parties de E tel que les trois conditions suivantes soient satisfaites :

- 1. $E \in \mathcal{C}$
- 2. $A \in \mathcal{C} \Longrightarrow A^c = E A \in \mathcal{C}$
- 3. $(A,B) \in \mathcal{C}^2 \Longrightarrow A \cup B \in \mathcal{C}$

Remarque: Un clan sur E est encore appelé algèbre (de Boole) de parties de E.

De cette définition nous déduisons les propriétés immédiates suivantes :

- 1. $\varnothing \in \mathcal{C}$
- $2. \ (A,B) \in \mathcal{C}^2 \Longrightarrow A \cap B \in \mathcal{C}$
- 3. $(A_1, \dots, A_n) \in \mathcal{C}^n \Longrightarrow \bigcup_{i=1}^n A_i \in \mathcal{C} \text{ et } \bigcap_{i=1}^n A_i \in \mathcal{C}$

- 4. Si A et B sont des ensembles de C, alors leur différence $A-B=A\cap B^c$ est encore un ensemble de C. Un cas particulier est celui où $B\subset A$: on parle alors de différence propre.
- 5. Si A et B sont des ensembles de C, alors leur différence symétrique $A\Delta B = (A\cup B) (A\cap B) = (A-B)\cup (B-A)$ est encore un ensemble de C.

Définition 11.1.2 Soit E un ensemble. On appelle tribu sur E un ensemble \mathcal{T} de parties de E tel que les trois conditions suivantes soient satisfaites :

- 1. $E \in \mathcal{T}$
- 2. $A \in \mathcal{T} \Longrightarrow A^c \in \mathcal{T}$
- 3. $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}^{\mathbb{N}}\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{T}$

Remarque: Une tribu sur E est encore appelée σ -algèbre (de Boole) de parties de E.

Comme $\emptyset = E^c \in \mathcal{T}$, la stabilité par union dénombrable nous donne aussi la stabilité de \mathcal{T} par union finie. Une tribu est donc un clan stable par passage à l'union dénombrable.

Une tribu est aussi stable par passage à l'intersection dénombrable puisque :

$$\bigcap_{n\in\mathbb{N}} A_n = \left[\bigcup_{n\in\mathbb{N}} A_n^c\right]^c$$

Exemples

- 1. L'ensemble $\mathcal{P}(E)$ de toutes les parties de E est la plus grande tribu sur E (au sens de l'inclusion). On l'appelle tribu totale sur E.
- 2. L'ensemble $\{\emptyset, E\}$ est la plus petite tribu sur E. On l'appelle tribu grossière sur E.
- 3. Sur \mathbb{R} , l'ensemble \mathcal{C} des unions finies d'intervalles de la forme

$$]-\infty,a[$$
 , $[a,b[$ ou $[b,+\infty[$

est un clan et non une tribu.

Le lecteur pourra montrer d'abord la stabilité de $\mathcal C$ par intersection finie avant de prouver la stabilité par passage au complémentaire. Il pourra remarquer aussi que tout élément de $\mathcal C$ a un nombre fini de composantes connexes et donc que :

$$\bigcup_{n\in\mathbb{N}} \left[n, n + \frac{1}{2} \right] \notin \mathcal{C}$$

11.1.2 Clans et tribus engendrés.

Proposition 11.1.3 L'intersection d'une famille non vide $(C_i)_{i\in I}$ de clans sur E est encore un clan sur E.

L'intersection d'une famille non vide $(\mathcal{T}_i)_{i\in I}$ de tribus sur E est encore une tribu sur E.

Corollaire 11.1.4 Soit \mathcal{E} un ensemble quelconque de parties de E. Il existe un plus petit clan sur E (au sens de l'inclusion) qui contienne \mathcal{E} ; on l'appelle clan engendré par \mathcal{E} et on le note $\mathcal{C}(\mathcal{E})$.

Il existe une plus petite tribu sur E (au sens de l'inclusion) qui contienne \mathcal{E} ; on l'appelle tribu engendrée par \mathcal{E} et on la note $\sigma(\mathcal{E})$.

Démonstration: La famille des clans sur E contenant \mathcal{E} n'est pas vide car elle contient $\mathcal{P}(E)$. L'intersection de tous les clans sur E contenant \mathcal{E} est donc encore un clan, il contient bien sûr \mathcal{E} et est manifestement le plus petit au sens de l'inclusion ayant cette propriété. Un raisonnement similaire s'applique aux tribus sur E.

Définition 11.1.5 Soient E et F des ensembles et $f: E \to F$ une application. Pour tout $A \subset F$, on appelle image réciproque de A par f et l'on note $f^{-1}(A)$ le sous-ensemble de E défini par :

$$f^{-1}(A) = \{x \in E, f(x) \in A\}$$

Remarques

- 1. Nous utiliserons également la notation $\{f \in A\}$ pour l'image réciproque de A par f.
- 2. Si \mathcal{F} est un ensemble de parties de F, nous noterons $f^{-1}(\mathcal{F})$ l'ensemble des parties de E de la forme $f^{-1}(A)$, avec $A \in \mathcal{F}$.

Proposition 11.1.6 Soient E et F des ensembles et $f: E \to F$ une application.

Si \mathcal{U} est une tribu sur F, alors $f^{-1}(\mathcal{U})$ est une tribu sur E appelée tribu image réciproque de \mathcal{U} par f.

Démonstration: Nous constatons d'abord que $E = f^{-1}(F) \in f^{-1}(\mathcal{U})$. Pour tout $U \in \mathcal{U}$, nous avons l'égalité

$$[f^{-1}(U)]^c = f^{-1}(U^c)$$

d'où la stabilité de $f^{-1}(\mathcal{U})$ par passage au complémentaire. Enfin, si $(U_n) \in \mathcal{U}^{\mathbb{N}}$, l'égalité

$$\bigcup_{n\in\mathbb{N}} f^{-1}(U_n) = f^{-1}\left(\bigcup_{n\in\mathbb{N}} U_n\right)$$

nous donne la stabilité de $f^{-1}(\mathcal{U})$ par union dénombrable.

11.2 Mesures positives.

11.2.1 Définitions.

Définition 11.2.1 On appelle espace mesurable un couple (E, \mathcal{T}) , où E est un ensemble et \mathcal{T} une tribu sur E. Les éléments de la tribu \mathcal{T} sont appelés ensembles mesurables.

Définition 11.2.2 Soit (E, \mathcal{T}) un espace mesurable. On appelle mesure positive sur (E, \mathcal{T}) une application $\mu : \mathcal{T} \to [0, +\infty]$ qui satisfait les deux conditions suivantes :

- 1. $\mu(\emptyset) = 0$,
- 2. pour toute suite $(A_n)_{n\in\mathbb{N}^*}$ d'ensembles de \mathcal{T} deux à deux disjoints, on a l'égalité :

$$\mu\left(\bigcup_{n\in\mathbb{N}^*} A_n\right) = \sum_{n\in\mathbb{N}^*} \mu(A_n)$$

Remarques

- 1. La 2^e condition intervenant dans cette définition s'appelle σ -additivité.
- 2. Pour tout ensemble mesurable $A \in \mathcal{T}$, on appelle $\mu(A)$ la mesure de A.
- 3. Il est fréquent de dire simplement mesure au lieu de mesure positive.

Notation: Pour une suite $(A_n)_{n\in\mathbb{N}^*}$ d'ensembles dont nous aurons préalablement vérifié qu'ils sont 2 à 2 disjoints, nous emploierons la notation :

$$\sum_{n\in\mathbb{N}^*} A_n = \bigcup_{n\in\mathbb{N}^*} A_n$$

De la sorte, la propriété de σ -additivité d'une mesure se réécrit :

$$\mu\left(\sum_{n\in\mathbb{N}^*} A_n\right) = \sum_{n\in\mathbb{N}^*} \mu(A_n)$$

Définition 11.2.3 On appelle espace mesuré un triplet (E, \mathcal{T}, μ) , où μ est une mesure sur l'espace mesurable (E, \mathcal{T}) .

Exemples

- 1. Soit E un ensemble. Sur l'espace mesurable $(E, \mathcal{P}(E))$, nous définissons une mesure μ , dite de comptage, en convenant que pour toute partie A de E, $\mu(A)$ vaut le cardinal de A (noté dans la suite #A). Le lecteur vérifiera la σ -additivité en distinguant les deux cas où le sous-ensemble $\sum_{n\in\mathbb{N}^*} A_n$ est fini ou infini.
- 2. Soit E un ensemble non vide et $a \in E$. Sur l'espace mesurable $(E, \mathcal{P}(E))$, nous définissons la mesure de Dirac au point a, notée δ_a , comme suit :

$$\forall A \in \mathcal{P}(E) \quad \delta_a(A) = 1 \text{ si } a \in A \quad ; \quad \delta_a(A) = 0 \text{ si } a \notin A.$$

Le lecteur vérifiera facilement la propriété de σ -additivité en remarquant que, si les $(A_n)_{n\in\mathbb{N}^*}$ sont deux à deux disjoints, alors a est élément au plus d'un d'entre eux.

11.2.2 Propriétés d'une mesure.

Additivité.

Une conséquence immédiate de la définition est la propriété d'additivité d'une mesure : si A_1, \cdots, A_n sont des ensembles mesurables 2 à 2 disjoints, alors

$$\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n).$$

Il suffit en effet d'appliquer la définition 11.2.2 en prenant $A_k = \emptyset$ pour $k \ge n+1$.

Cette propriété d'additivité nous donne l'égalité suivante :

$$\forall (A,B) \in \mathcal{T}^2 \quad \mu(A) = \mu(A-B) + \mu(A \cap B) \tag{11.1}$$

En effet, l'ensemble A est égal à la réunion des deux ensembles disjoints A-B et $A\cap B$.

En particulier, si $B \subset A$, nous obtenons $\mu(A) = \mu(A - B) + \mu(B)$, d'où la propriété suivante concernant une différence propre :

$$B \subset A \text{ et } \mu(B) < +\infty \implies \mu(A - B) = \mu(A) - \mu(B)$$

Comme l'ensemble $A \cup B$ est réunion des ensembles disjoints B et A - B, nous obtenons en utilisant (11.1):

$$\forall (A, B) \in \mathcal{T}^2 \quad \mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

Si $\mu(A \cap B) < +\infty$, nous pouvons également écrire :

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B).$$

Croissance.

$$\forall (A, B) \in \mathcal{T}^2 \quad A \subset B \Longrightarrow \mu(A) \le \mu(B)$$

En effet, on a l'égalité : $\mu(B) = \mu(A) + \mu(B - A)$.

Sous- σ -additivité.

$$\forall (A_n) \in \mathcal{T}^{\mathbb{N}^*} \quad \mu\left(\bigcup_{n \in \mathbb{N}^*} A_n\right) \le \sum_{n \in \mathbb{N}^*} \mu(A_n)$$
 (11.2)

Démonstration: Posons $U_0 = \emptyset$ et, pour $n \in \mathbb{N}^*$, $U_n = A_1 \cup \cdots \cup A_n$ et $B_n = U_n - U_{n-1} = A_n - U_{n-1}$. Par construction, les ensembles B_n sont deux à deux disjoints, on a $B_n \subset A_n$ pour tout $n \in \mathbb{N}^*$ et :

$$\bigcup_{n\in\mathbb{N}^*} B_n = \bigcup_{n\in\mathbb{N}^*} A_n.$$

Nous en déduisons:

$$\mu\left(\bigcup_{n\in\mathbb{N}^*} A_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}^*} B_n\right) = \sum_{n\in\mathbb{N}^*} \mu(B_n) \le \sum_{n\in\mathbb{N}^*} \mu(A_n)$$

Passage à la limite croissante.

Si $(A_n) \in \mathcal{T}^{\mathbb{N}^*}$ est une suite croissante au sens de l'inclusion, c'est-à-dire telle que $A_n \subset A_{n+1}$ pour tout $n \in \mathbb{N}^*$, nous convenons d'adopter la notation suivante :

$$\bigcup_{n\in\mathbb{N}^*} A_n = \lim \uparrow A_n$$

Pour toute suite $(A_n) \in \mathcal{T}^{\mathbb{N}^*}$ croissante au sens de l'inclusion, nous avons alors :

$$\mu(\lim \uparrow A_n) = \lim \uparrow \mu(A_n)$$

Démonstration: Si nous introduisons les mêmes ensembles que dans la démonstration précédente, la croissance de la suite $(A_n) \in \mathcal{T}^{\mathbb{N}^*}$ nous donne ici : $U_n = A_n = B_1 \cup \cdots \cup B_n$, d'où $\mu(A_n) = \mu(B_1) + \cdots + \mu(B_n)$.

Toujours en procédant comme dans la démonstration précédente, nous en déduisons :

$$\mu\left(\bigcup_{n\in\mathbb{N}^*} A_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}^*} B_n\right) = \sum_{n\in\mathbb{N}^*} \mu(B_n) = \lim \uparrow \mu(A_n).$$

Passage à la limite décroissante.

Si $(A_n) \in \mathcal{T}^{\mathbb{N}^*}$ est une suite décroissante au sens de l'inclusion, c'est-à-dire telle que $A_{n+1} \subset A_n$ pour tout $n \in \mathbb{N}^*$, nous convenons d'adopter la notation suivante :

$$\bigcap_{n\in\mathbb{N}^*} A_n = \lim \downarrow A_n$$

Pour toute suite $(A_n) \in \mathcal{T}^{\mathbb{N}^*}$ décroissante au sens de l'inclusion, nous avons alors l'implication suivante :

$$\mu(A_1) < +\infty \Longrightarrow \mu(\lim \downarrow A_n) = \lim \downarrow \mu(A_n)$$

Démonstration: Pour tout $n \in \mathbb{N}^*$, posons $C_n = A_1 - A_n$; puisque $A_n \subset A_1$, nous avons :

$$\mu(A_1) = \mu(C_n) + \mu(A_n).$$

Puisque $\mu(A_1) < +\infty$, nous en déduisons que $\mu(C_n) < +\infty$ et $\mu(A_n) < +\infty$, ainsi que l'égalité :

$$\mu(C_n) = \mu(A_1) - \mu(A_n) \tag{11.3}$$

La suite $(C_n)_{n\in\mathbb{N}^*}$ est croissante et nous avons l'égalité ensembliste :

$$\bigcup_{n\in\mathbb{N}^*} C_n = A_1 - \lim \downarrow A_n$$

Par passage à la limite croissante, puis en utilisant (11.3) , nous obtenons donc :

$$\mu(A_1 - \lim \downarrow A_n) = \lim \uparrow \mu(C_n) = \mu(A_1) - \lim \downarrow \mu(A_n).$$

Il nous reste à écrire, en utilisant de nouveau $\mu(A_1) < +\infty$:

$$\mu\left(\lim \downarrow A_n\right) = \mu(A_1) - \mu\left(A_1 - \lim \downarrow A_n\right)$$

pour obtenir la conclusion voulue.

Remarques

1. Il est facile de constater que la condition $\mu(A_1) < +\infty$ peut être remplacée dans l'énoncé précédent par :

$$\exists n \in \mathbb{N}^* \quad \mu(A_n) < +\infty$$

2. En revanche, si tous les A_n sont de mesure infinie, la propriété précédente peut tomber en défaut, comme le montre le contre-exemple suivant.

Si nous notons μ la mesure de comptage sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ et si nous prenons $A_n = \{k \in \mathbb{N}, k \geq n\}$, nous avons $\lim_{n \to \infty} A_n = \emptyset$ d'où $\mu(\lim_{n \to \infty} A_n) = 0$ alors que $\lim_{n \to \infty} \mu(A_n) = +\infty$.

11.3 Application à la modélisation du hasard.

L'objet de la théorie des Probabilités est de construire un modèle permettant d'étudier les phénomènes dépendant du hasard. Nous allons procéder en deux étapes en présentant d'abord un modèle simple, mais dont le champ d'application sera limité, puis en le raffinant pour aboutir à notre modèle définitif.

11.3.1 Un modèle simple : le modèle additif.

L'ensemble des résultats possibles.

Qu'est-ce que le hasard? Comme nous enseignons les mathématiques et non la philosophie, nous allons adopter une définition empirique, c'est-à-dire basée sur l'expérience.

Nous dirons qu'une expérience (scientifique ou autre, de la vie courante par exemple) dépend du hasard et nous l'appellerons expérience aléatoire —du mot latin alea qui signifie jet de dés — si elle produit un résultat que l'on ne connaît pas à l'avance mais qui en revanche appartient à un ensemble connu à l'avance. Cet ensemble, appelé ensemble des résultats possibles est noté traditionnellement Ω . Il peut être plus ou moins grand suivant l'expérience considérée.

Exemples:

- 1. Jeu de pile ou face. $\Omega = \{p, f\}$.
- 2. Jet de dé à 6 faces. $\Omega = \{1, 2, \dots, 6\}$.

- 3. On joue à pile ou face de façon répétée et l'on s'intéresse au rang d'apparition du premier pile. $\Omega = \mathbb{N}^*$.
- 4. Durée de vie d'une batterie de voiture. $\Omega = \mathbb{R}_+$ ou $\Omega = [0, T]$ avec T suffisamment grand.
- 5. Courbe d'évolution de la température sur une journée dans une station météo. $\Omega = C^0([0,T],\mathbb{R})$.

Dans les exemples 1 à 3, Ω est fini ou dénombrable : c'est le cas *discret*. Dans les exemples 4 et 5, Ω est infini non dénombrable : c'est le cas *continu*.

L'ensemble Ω est le premier ingrédient du modèle mathématique que nous allons construire pour représenter le mieux possible notre expérience aléatoire. Nous allons mettre en oeuvre deux ingrédients supplémentaires pour construire notre modèle additif.

L'ensemble des événements.

Une fois faite notre expérience aléatoire, nous nous trouvons devant un certain résultat $\omega \in \Omega$. À part peut-être le cas où Ω est très petit, il arrive très souvent que ce ne soit pas le résultat précis ω qui nous intéresse mais que l'on cherche plutôt à répondre à la question : "est-ce que ω appartient à tel sous-ensemble donné de Ω ?"

Exemple: Durée de vie d'un ordinateur.

Si le constructeur vous garantit la machine pendant trois ans, il a bien sûr d'abord étudié la question suivante : "quelles sont les chances pour que $\omega \leq 3$?" De la réponse à cette question dépendra le prix auquel il va vous facturer la garantie. Dans cette exemple, la question intéressante s'écrit donc : " $\omega \in A$?" avec $A = [3, +\infty[\subset \Omega = \mathbb{R}_+]$.

Nous appellerons événement un sous-ensemble A de Ω tel qu'un observateur de l'expérience est capable de répondre à la question " $\omega \in A$?"

Exemples Ω est l'événement certain. \varnothing est l'événement impossible.

Dès que nous allons manipuler des événements, certains opérateurs ensemblistes vont apparaître :

- L'événement contraire de A est son complémentaire $A^c = \Omega A$.
- L'événement "le résultat est dans A_1 ou A_2 " s'écrit $A_1 \cup A_2$
- L'événement "le résultat est dans A_1 et A_2 " s'écrit $A_1 \cap A_2$

Nous travaillerons donc sur des intersections ou des unions finies d'événements, ainsi que sur des complémentaires d'événements.

Un observateur de l'expérience étant donné, il est donc naturel de supposer que l'ensemble des parties de Ω dont il peut discerner la réalisation ou la non-réalisation après l'expérience a une structure de clan. Nous noterons dans la suite \mathcal{C} le clan des événements discernables par notre observateur.

Remarque: Plusieurs observateurs distincts peuvent être associés à une même expérience. Par exemple, si le résultat de l'expérience aléatoire qui nous intéresse est le temps (mesuré en secondes) mis par une athlète pour courir un 100 mètres (prenons $\Omega = [0; 15]$) et si un premier arbitre n'est muni que d'une montre à trotteuse tandis que le second se réfère à un dispositif électronique, nous avons $C_1 \subsetneq C_2$. Ainsi, l'événement A = [0; 9, 73] qui se traduit en langage courant par "elle a battu le record du monde féminin du 9 septembre 2007" vérifie $A \in C_2$ mais $A \notin C_1$.

Probabilités.

Nous avons tous l'intuition que certains événements ont plus de chances de se produire que d'autres. Par exemple, dans une loterie, il est plus probable de tirer un billet perdant que de tirer le gros lot.

Pour préciser cette intuition, nous souhaitons associer à un événement donné un nombre réel qui mesure les chances qu'il se produise; par exemple, si l'événement se produit avec une chance sur deux (pile ou face avec une pièce équilibrée), nous lui associerons le nombre 1/2.

Nous appellerons donc probabilité une application $P: \mathcal{C} \to [0,1]$ vérifiant certaines conditions que nous allons préciser maintenant.

Tout d'abord, Ω étant l'événement certain, nous demanderons $P(\Omega) = 1$ (en langage courant, il y a "100 chances sur 100" qu'il se produise).

Ensuite, il est naturel d'exiger la propriété d'additivité :

$$A \in \mathcal{C}, B \in \mathcal{C}, A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B).$$

Notons que la condition $A \cap B = \emptyset$ – les deux événements A et B sont disjoints – est indispensable pour ne pas compter deux fois les mêmes résultats possibles.

Une des raisons pour lesquelles il est naturel de faire cette hypothèse d'additivité d'une probabilité s'appelle :

La loi empirique des grands nombres Si nous pouvons répéter une même expérience un grand nombre de fois dans des conditions identiques et que nous notions $\varphi_n(A)$ le nombre de fois où le résultat a appartenu à l'événement A au cours des n premières répétitions de l'expérience, nous nous attendons à ce que le rapport $\varphi_n(A)/n$ (fréquence de réalisation de l'événement A au cours des n premières répétitions de l'expérience) tende vers une certaine limite lorsque n augmente.

Intuitivement, c'est cette limite que nous aurions envie d'appeler "probabilité que l'événement A se réalise". Si nous admettons qu'une telle limite existe pour tout événement A et que nous la notions P(A), il est facile de constater que nous avons ainsi défini une application $P: \mathcal{C} \to [0, 1]$, additive et telle que $P(\Omega) = 1$.

Le modèle additif

Nous pouvons donc modéliser une expérience aléatoire par un triplet (Ω, \mathcal{C}, P) , où Ω est un ensemble, \mathcal{C} un clan sur Ω et P une application additive de \mathcal{C} dans [0,1] telle que $P(\Omega) = 1$.

Ce modèle s'avère en général suffisant lorsque l'expérience aléatoire considérée ne mène qu'à un nombre fini de résultats possibles, c'est-à-dire lorsque le cardinal de Ω vérifie : $\#\Omega < +\infty$.

Lorsque Ω est fini, nous prendrons pratiquement toujours $\mathcal{C} = \mathcal{P}(\Omega)$, qui est le seul clan sur Ω contenant tous les singletons : ce clan d'événements correspond à un observateur qui discerne le résultat précis ω de l'expérience.

Nous allons maintenant considérer un cas particulier qui a de nombreuses applications pratiques.

Exemple: Probabilité uniforme sur un ensemble Ω fini.

Nous nous plaçons dans le cas où $\#\Omega < +\infty$ et nous prenons pour ensemble des événements $\mathcal{C} = \mathcal{P}(\Omega)$.

Il existe une unique probabilité sur (Ω, \mathcal{C}) qui attribue les mêmes chances à tous les résultats possibles (on dit alors qu'on est en situation d'équiprobabilité). Elle est appelée probabilité uniforme sur Ω et est définie par :

$$\forall \omega \in \Omega, \quad P(\{\omega\}) = \frac{1}{\#\Omega}.$$

Pour tout événement $A \subset \Omega$, on a alors :

$$P(A) = \frac{\#A}{\#\Omega} = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}.$$

Nous terminons ce sous-paragraphe par une proposition caractérisant les probabilités sur $(\Omega, \mathcal{P}(\Omega))$ lorsque l'ensemble des résultats possibles Ω est fini.

Proposition 11.3.1 Soit $n \in \mathbb{N}^*$ et $\Omega = \{\omega_1, \dots, \omega_n\}$ un ensemble fini. Il existe une bijection entre l'ensemble des probabilités P sur $(\Omega, \mathcal{P}(\Omega))$ et l'ensemble des n-uplets $(p_k)_{1 \leq k \leq n} \in (\mathbb{R}_+)^n$ tels que :

$$\sum_{1 \le k \le n} p_k = 1.$$

Cette bijection est donnée par :

$$\forall k \in \{1, \cdots, n\} \quad p_k = P(\{\omega_k\}).$$

Démonstration: Dans le sens direct, il est évident que si P est une probabilité sur $(\Omega, \mathcal{P}(\Omega))$, alors le n-uplet $(p_k)_{1 \leq k \leq n}$ ainsi défini a les propriétés voulues.

Réciproquement, un tel n-uplet étant donné, s'il existe une probabilité P qui convienne, alors elle satisfait nécessairement la relation suivante par additivité :

$$\forall A \in \mathcal{P}(\Omega) \quad P(A) = \sum_{k/\omega_k \in A} p_k.$$

Il est facile de conclure en vérifiant que l'on a bien défini ainsi une probabilité sur $(\Omega, \mathcal{P}(\Omega))$.

Exemples

 $p \in [0, 1].$

- Le cas le plus simple d'espace de probabilité fini non trivial est donné par #Ω = 2 et correspond à la modélisation du jeu de pile ou face (avec une pièce éventuellement biaisée). Il y alors bijection entre les probabilités sur (Ω, P(Ω)) et le segment [0, 1] : celle-ci est donnée par la probabilité p ∈ [0, 1] que la pièce tombe sur pile. Formellement, on écrit en général Ω = {0, 1} (pile étant représenté par 1 et face par 0) et la probabilité définie par P({1}) = p et donc P({0}) = 1 p est appelée probabilité de Bernoulli de paramètre
- 2. Pour tout $n \in \mathbb{N}^*$ et tout $p \in [0, 1]$, on définit sur $\Omega = \{0, 1, \dots, n\}$ (qui est donc de cardinal n+1) la probabilité binomiale de paramètres n et p, notée $P = B_{n,p}$, par

$$\forall k \in \{0, 1, \dots, n\} \quad B_{n,p}(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Nous verrons plus loin dans quel type de situation la probabilité binomiale apparaît.

11.3.2 Modèle définitif : les espaces probabilisés.

Le modèle développé dans le paragraphe précédent s'applique bien au cas Ω fini, qui couvre un certain nombre de situations courantes : jeux de hasard, sondages d'opinion, contrôles de qualité etc. Néanmoins, même avec un jeu aussi simple que le pile ou face, on ne peut pas toujours se restreindre au cas $\#\Omega < +\infty$: si nous étudions par exemple le rang d'apparition du premier pile lors de jets successifs, on est amené à prendre $\Omega = \mathbb{N}^*$ puisqu'il est impossible de borner à l'avance ce rang par un entier fixé.

Lorsque le temps intervient, nous voyons apparaître naturellement des espaces encore plus "gros" (infinis non dénombrables) :

- durée de vie d'un composant électronique : $\Omega = \mathbb{R}_+$
- évolution du cours d'un actif financier : $\Omega = C^0([0,T],\mathbb{R})$
- déplacement d'une particule : $\Omega = C^0([0,T],\mathbb{R}^3)$

Le modèle du paragraphe précédent présente d'autres insuffisances : la structure de clan pour l'ensemble $\mathcal C$ des événements et l'additivité d'une probabilité sont des hypothèses trop faibles pour nous permettre de mener effectivement des calculs lorsque Ω est infini, comme nous allons le voir sur le simple exemple suivant.

Si nous revenons au rang du premier pile lors de jets successifs d'une pièce équilibrée, une première question qui se pose est de savoir si ce rang est fini : peut-on obtenir face indéfiniment?

Intuitivement, cela paraît extrêmement improbable et l'on s'attend à ce que la probabilité en soit nulle. Plus précisément, il est naturel de faire le raisonnement suivant : l'événement $A_n = \{$ on a obtenu face lors des n premiers jets $\}$ est de probabilité $1/2^n$ et donc l'événement $A = \{$ on obtient face indéfiniment $\}$ a pour probabilité $\lim 1/2^n = 0$.

Pour rendre ce raisonnement rigoureux, il faudrait déjà que $A = \bigcap_n A_n$ soit effectivement un événement, ce qui n'est pas assuré sous la seule hypothèse : l'ensemble des événements est un clan. Nous avons besoin de supposer que l'ensemble des événements est une tribu.

En outre, nous voudrions avoir : $A = \lim_{n \to \infty} A_n \Rightarrow P(A) = \lim_{n \to \infty} P(A_n)$. En passant aux événements complémentaires, cela revient à demander la propriété $P(\lim_{n \to \infty} P(B_n)) = \lim_{n \to \infty} P(B_n)$. Or, pour une application additive comme P, cette propriété est équivalente à la σ -additivité : pour le voir, il suffit d'écrire, pour une suite (A_n) d'événements deux à deux disjoints

$$\bigcup_{n\in\mathbb{N}^*} A_n = \lim \uparrow \bigcup_{k=1}^n A_k.$$

Pour pouvoir mener nos calculs, nous allons donc imposer des contraintes supplémentaires sur les éléments constitutifs de notre modèle : l'ensemble des événements doit être une tribu (ou σ -algèbre), que nous noterons désormais plutôt \mathcal{A} , et P une application σ -additive. Nous en arrivons donc à la définition suivante, qui décrit le modèle que nous utiliserons désormais.

Définition 11.3.2 Une probabilité sur un espace mesurable (Ω, \mathcal{A}) est une mesure positive sur cet espace telle que $P(\Omega) = 1$. Le triplet (Ω, \mathcal{A}, P) est alors appelé espace probabilisé (ou espace de probabilité).

En d'autres termes, un espace probabilisé est un espace mesuré de masse totale égale à 1.

Notons que dans le cas $\#\Omega < +\infty$, cette définition est équivalente à celle du paragraphe précédent. En effet, dans ce cas, $\mathcal{A} \subset \mathcal{P}(\Omega)$ est fini si bien que \mathcal{A} algèbre et \mathcal{A} σ -algèbre sont équivalents, de même que P additive et P σ -additive. Comme nous n'utiliserons le modèle additif que dans le cas $\#\Omega < +\infty$, nous le considérerons comme un cas particulier de notre modèle général.

Contrairement à ce qui se passait dans le cas $\#\Omega < +\infty$, dans le cas général, nous serons amenés à considérer des tribus d'événements $\mathcal{A} \subsetneq \mathcal{P}(\Omega)$. En effet, plus la tribu \mathcal{A} est grande, plus il est difficile de construire une mesure de probabilité sur celle-ci. Lorsque Ω est infini non dénombrable, $\mathcal{P}(\Omega)$ est en général trop grand pour que l'on puisse construire sur cette tribu une mesure de probabilité qui mène à un modèle satisfaisant. En fait, on a souvent recours à une politique minimaliste en prenant pour \mathcal{A} la plus petite tribu (c'est-à-dire la tribu engendrée) qui contienne les événements que nous voulons pouvoir observer.

Dans le cas où Ω est infini dénombrable, nous avons la caractérisation suivante d'une probabilité sur $(\Omega, \mathcal{P}(\Omega))$, que nous admettrons.

Proposition 11.3.3 Soit $\Omega = \{\omega_n, n \in \mathbb{N}\}$ un ensemble infini dénombrable. Il existe une bijection entre l'ensemble des probabilités P sur $(\Omega, \mathcal{P}(\Omega))$ et l'ensemble des suites $(p_n)_{n \in \mathbb{N}} \in (\mathbb{R}_+)^{\mathbb{N}}$ telles que :

$$\sum_{n\in\mathbb{N}} p_n = 1.$$

Cette bijection est donnée par :

$$\forall n \in \mathbb{N} \quad p_n = P(\{\omega_n\}).$$

Par σ -additivité, nous avons alors la relation :

$$\forall A \in \mathcal{P}(\Omega) \quad P(A) = \sum_{k/\omega_k \in A} p_k.$$

Exemples Sur l'espace mesurable $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, on définit :

1. pour tout $p \in]0,1[$, la probabilité géométrique de paramètre p par

$$\forall n \in \mathbb{N} \quad P(\{n\}) = (1-p) \, p^n.$$

2. pour tout $\lambda > 0$, la probabilité de Poisson de paramètre λ par

$$\forall n \in \mathbb{N} \quad P(\{n\}) = e^{-\lambda} \frac{\lambda^n}{n!}.$$

Le choix d'une probabilité P sur (Ω, \mathcal{A}) qui "colle au plus près" à la réalité d'une expérience aléatoire est une question suffisamment vaste pour faire l'objet d'une branche entière des mathématiques : la statistique.

Le fait qu'un même espace probabilisable (Ω, \mathcal{A}) puisse être muni de probabilités différentes correspondant à des "hasards différents" est illustré par le paradoxe de Bertrand, que vous trouverez en ligne par exemple sur Wikipédia.

11.4 Probabilités conditionnelles. Indépendance d'événements.

11.4.1 Définition des probabilités conditionnelles.

La notion de probabilité conditionnelle apparaît naturellement lorsqu'on possède une information partielle sur le résultat d'une expérience aléatoire.

Exemple : À la Foire du Trône, un jeu de loterie est constitué d'une urne contenant 80 billets perdants et 20 billets gagnants, dont 2 seulement donnent droit au gros lot.

Je tire un billet "au hasard" (cette expression sous-entend que nous sommes en situation d'équiprobabilité); avec quelle probabilité vais-je gagner le gros lot?

Nous pouvons représenter cette expérience aléatoire par le modèle suivant :

- $\Omega = \{b_1, \dots, b_{100}\}$ où b_1 et b_2 représentent les billets qui donnent droit au gros lot, b_3, \dots, b_{20} représentent des billets gagnants ordinaires et b_{21}, \dots, b_{100} des billets perdants.
- $--\mathcal{A} = \mathcal{P}(\Omega)$
- la probabilité P est uniforme : $\forall i = 1, 2, \dots, 100$ $P(\{b_i\}) = 1/100$

L'événement qui nous intéresse est $A = \{b_1, b_2\}$ et nous obtenons donc immédiatement : P(A) = 2/100.

Imaginons maintenant que juste après mon tirage et avant que je ne découvre mon billet, le forain –qui a un signe de reconnaissance secret– m'affirme : "Vous avez tiré un billet gagnant!" Sachant cela, je ne vais plus calculer ma probabilité de la même façon.

Muni de ce renseignement, je sais que le résultat de l'expérience appartient à l'ensemble $E = \{b_1, \dots, b_{20}\}$. Comme il y a symétrie entre tous les billets, ils sont encore équiprobables, d'où le nouveau calcul de ma probabilité :

$$\frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}} = \frac{2}{20} = \frac{1}{10}$$

Nous constatons que la valeur de la probabilité n'est plus la même car, disposant d'une information supplémentaire, nous avons en fait modifié le calcul comme suit :

$$P'(A) = \frac{\#(A \cap E)}{\#E} = \frac{P(A \cap E)}{P(E)}$$

P' est appelée probabilité conditionnelle sachant E (i.e. sachant mon information partielle). De façon plus générale, nous avons la proposition suivante :

Proposition 11.4.1 Soit (Ω, \mathcal{A}, P) un espace de probabilité et $E \in \mathcal{A}$ un événement tel que P(E) > 0. L'application $P^E : \mathcal{A} \to [0, 1]$ définie par :

$$\forall A \in \mathcal{A} \quad P^E(A) = \frac{P(A \cap E)}{P(E)}$$

est une probabilité. On l'appelle probabilité conditionnelle à l'événement E ou probabilité sachant E. On note sa valeur sur un événement A comme suit :

$$P(A|E) = P^{E}(A) = \frac{P(A \cap E)}{P(E)}$$

Démonstration: C'est bien une application de A dans [0,1] puisqu'on a :

$$A \cap E \subset E \Rightarrow 0 \le P(A \cap E) \le P(E)$$
.

De plus, on vérifie immédiatement : $P^{E}(\emptyset) = 0$ et $P^{E}(\Omega) = 1$.

Il nous reste à montrer que l'application P^E est σ -additive, ce qui résulte du calcul suivant, valable pour toute suite $(A_n) \in \mathcal{A}^{\mathbb{N}}$ constituée d'événements 2 à 2 disjoints :

$$\frac{P\left(\left(\sum_{n} A_{n}\right) \cap E\right)}{P(E)} = \frac{P\left(\sum_{n} (A_{n} \cap E)\right)}{P(E)} = \frac{\sum_{n} P(A_{n} \cap E)}{P(E)} = \sum_{n} \frac{P(A_{n} \cap E)}{P(E)} \square$$

Remarque: Dans cette définition de la probabilité conditionnelle, l'idée est que, étant donnée l'information partielle E, l'événement intéressant n'est plus l'événement A de départ mais plutôt $A \cap E$. L'application $A \mapsto P(A \cap E)$ est bien positive et σ -additive mais n'a pas la bonne masse totale (i.e. la valeur 1 sur Ω). Pour en faire une probabilité, il suffit de la renormaliser en divisant par P(E) mais ceci n'est possible que si P(E) > 0.

Exemple : On change les règles de la loterie : il y a toujours 20 billets gagnants sur 100 mais pour obtenir le gros lot, il faut d'abord tirer un billet gagnant puis il faut faire tourner une roue divisée en 5 parties égales dont une seule donne droit au gros lot. Quelle est la probabilité d'obtenir celui-ci?

Écrire le modèle serait un peu plus long : $\Omega = \{b_1, \dots, b_{100}\} \times \{r_1, \dots, r_5\}$ etc. Pour gagner du temps, passons directement au calcul, en écrivant les événements informellement :

 $A = \{ \text{le joueur gagne le gros lot} \}; E = \{ \text{le joueur tire un billet gagnant} \}.$

Nous pouvons alors mener le calcul de la façon suivante :

$$P(A) = P(A \cap E) = P(A|E)P(E) = \frac{1}{5} \times \frac{20}{100} = \frac{4}{100}.$$

Nous venons d'utiliser la formule $P(A \cap E) = P(A|E)P(E)$; plus généralement nous avons la proposition suivante.

Proposition 11.4.2 Soient $(A_1, \dots, A_n) \in \mathcal{A}^n$ avec $P(A_1 \cap \dots \cap A_{n-1}) > 0$. Alors, on a l'égalité :

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\cdots P(A_n|A_1 \cap \cdots \cap A_{n-1})$$

Démonstration: Le membre de droite s'écrit par définition d'une probabilité conditionnelle :

$$P(A_1) \frac{P(A_1 \cap A_2)}{P(A_1)} \frac{P(A_1 \cap A_2 \cap A_3)}{P(A_1 \cap A_2)} \cdots \frac{P(A_1 \cap \cdots \cap A_n)}{P(A_1 \cap \cdots \cap A_{n-1})}$$

 \Box

 \Box

et l'on conclut par simplification.

11.4.2 Formule de Bayes.

Proposition 11.4.3 (Formule des probabilités totales) $Si E_1, \dots, E_n$ sont des événements tels que $P(E_i) > 0$ pour tout $1 \le i \le n$ et formant une partition de l'ensemble Ω (i.e. $\sum_{1 \le i \le n} E_i = \Omega$), alors on a pour tout événement $A \in \mathcal{A}$ l'égalité suivante :

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$

Démonstration: Ceci résulte des égalités successives :

$$P(A) = P\left(A \cap (\sum_{1 \le i \le n} E_i)\right) = P\left(\sum_{1 \le i \le n} (A \cap E_i)\right)$$
$$= \sum_{1 \le i \le n} P(A \cap E_i) = \sum_{1 \le i \le n} P(A|E_i)P(E_i)$$

Notons en particulier que la formule des probabilités totales se réécrit dans le cas n=2 :

Soient deux événements E et A avec 0 < P(E) < 1. Alors, on a l'égalité :

$$P(A) = P(A|E)P(E) + P(A|E^c)P(E^c)$$

Nous déduisons de la formule des probabilités totales le théorème suivant :

Théorème 11.4.4 (Formule de Bayes) $Si E_1, \dots, E_n$ sont des événements de probabilités strictement positives, formant une partition de l'ensemble Ω et si A est un événement tel que P(A) > 0, alors on a l'égalité :

$$P(E_1|A) = \frac{P(A|E_1)P(E_1)}{\sum_{i=1}^{n} P(A|E_i)P(E_i)}$$

Démonstration: Il suffit d'écrire les égalités :

$$P(E_1|A) = \frac{P(A \cap E_1)}{P(A)} = \frac{P(A|E_1)P(E_1)}{P(A)}$$

puis d'appliquer la formule des probabilités totales au dénominateur.

Remarque : Revenons au cas particulier n=2. La formule de Bayes s'écrit alors :

$$P(E|A) = \frac{P(A|E)P(E)}{P(A|E)P(E) + P(A|E^c)P(E^c)}$$

Notons qu'il n'est donc pas possible de calculer P(E|A) à partir de la seule donnée de P(A|E); il faut connaître d'autres quantités pour faire ce calcul.

Exercice: Une maladie rare touche 1 personne sur 10000 dans la population française. Quand cette maladie est présente, un test sanguin permet de la détecter dans 99% des cas. En revanche, ce test produit des faux positifs dans 1 cas sur 1000.

Le test d'une personnes est positif. Quelle est la probabilité qu'elle soit vraiment atteinte de la maladie? Que pensez-vous de la qualité de ce test sanguin?

Solution: Définissons les événements:

 $E = \{\text{la personne est atteinte de la maladie}\}; A = \{\text{le test est positif}\}$

L'énoncé nous fournit les données suivantes :

$$P(E) = 10^{-4}$$
, $P(A|E) = 0.99$, $P(A|E^c) = 10^{-3}$

La formule de Bayes nous permet alors de calculer :

$$P(E|A) = \frac{0.99 \times 10^{-4}}{0.99 \times 10^{-4} + 10^{-3} \times 0.9999} \sim \frac{1}{11}$$

Conclusion : À moins de vouloir provoquer beaucoup de panique inutile, le test est bon pour la poubelle!

11.4.3 Indépendance d'événements.

Définissons les événements $A = \{$ au moins un ascenseur du bâtiment Chevaleret sera en panne demain $\}$ et $B = \{$ l'indice CAC40 va s'effondrer demain $\}$. Intuitivement, la réalisation (ou non-réalisation) de l'événement A n'a aucune influence sur les chances que l'événement B se produise, ce qui s'écrit P(A|B) = P(A) ou encore $P(A \cap B) = P(A)P(B)$. De tels événements seront dits indépendants.

Définition 11.4.5 Deux événements A et B sont dits indépendants s'ils vérifient l'égalité :

$$P(A \cap B) = P(A)P(B)$$

La notion d'indépendance est essentielle en calcul des probabilités; elle fera souvent partie de nos hypothèses en modélisation. Par exemple, pour étudier la durée de vie d'un circuit électronique constitué de plusieurs composants élémentaires, nous supposerons souvent que ces différents composants tombent en panne indépendamment les uns des autres.

Remarque: Il est facile de vérifier que si le couple (A, B) est constitué d'événements indépendants, alors il en est de même pour les couples suivants :

$$(A, B^c)$$
, (A^c, B) , (A^c, B^c) .

Exemple: On tire une carte au hasard dans un jeu de 52 et l'on considère les événements $A = \{c'est un roi\}$ et $B = \{c'est un coeur\}$. Nous calculons facilement :

$$P(A \cap B) = \frac{1}{52}, \ P(A) = \frac{4}{52} = \frac{1}{13}, \ P(B) = \frac{13}{52} = \frac{1}{4}.$$

Nous en déduisons que les événements A et B sont indépendants, conformément à la définition précédente.

Plus généralement, dans un tel tirage, la figure et la couleur de la carte sont indépendantes.

Définition 11.4.6 Soient $(A_1, \dots, A_n) \in \mathcal{A}^n$ des événements.

Nous dirons que ces événements sont 2 à 2 indépendants si pour tout $(i,j) \in \{1, \dots, n\}$ avec $i \neq j$, on a $P(A_i \cap A_j) = P(A_i)P(A_j)$.

Nous dirons que ces événements sont mutuellement indépendants (ou encore indépendants dans leur ensemble) si pour toute sous-famille d'indices $\{i_1, \dots, i_k\} \subset \{1, \dots, n\}$, on a :

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$$

Remarque: Des événements mutuellement indépendants sont clairement indépendants 2 à 2 mais la réciproque est fausse, comme nous allons le voir dans le contre-exemple ci-dessous. Autrement dit, la propriété de mutuelle indépendance est plus forte que la propriété d'indépendance 2 à 2.

Lorsqu'un énoncé dit que des événements A_1, \dots, A_n sont indépendants sans autre précision, c'est toujours l'indépendance mutuelle, c'est-à-dire la plus forte, qu'il faut comprendre.

Contre-exemple: On jette une pièce équilibrée 2 fois de suite et l'on considère les événements : $A = \{$ on obtient pile au premier jet $\}$, $B = \{$ on obtient pile au second jet $\}$, $C = \{$ les résultats des deux jets sont différents $\}$.

Il est facile de calculer :

$$P(A) = P(B) = P(C) = 1/2$$

et

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = 1/4.$$

Nous en déduisons que les événements A, B et C sont indépendants 2 à 2. En revanche, ces événements ne sont pas mutuellement indépendants puisque :

$$P(A \cap B \cap C) = P(\emptyset) = 0 \neq P(A)P(B)P(C).$$

Proposition 11.4.7 Des événements $(A_1, \dots, A_n) \in \mathcal{A}^n$ sont mutuellement indépendants si et seulement si on a

$$P\left(\bigcap_{i=1}^{n} C_i\right) = \prod_{i=1}^{n} P(C_i),$$

pour tous $C_i \in \{\Omega, A_i, A_i^c, \emptyset\}, 1 \le i \le n$.

La démonstration est laissée à titre d'exercice.

Nous allons maintenant mettre en évidence une situation générale dans laquelle la *probabilité binomiale* apparaît naturellement.

Proposition 11.4.8 Soient A_i , $1 \le i \le n$, des événements indépendants ayant tous la même probabilité $p \in [0,1]$. Pour tout $0 \le k \le n$, la probabilité que k exactement d'entre eux soient réalisés est égale à :

$$B_{n,p}(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}$$

Démonstration: Notons Θ l'ensemble des parties de $\{1, \dots, n\}$ qui sont de cardinal k, de sorte que $\#\Theta = \binom{n}{k}$.

L'événement dont nous voulons calculer la probabilité est le suivant :

$$\bigcup_{\theta \in \Theta} \left[\left(\bigcap_{i \in \theta} A_i \right) \cap \left(\bigcap_{i \notin \theta} A_i^c \right) \right]$$

Un instant de réflexion montre qu'il s'agit d'une union d'événements deux à deux disjoints, si bien que la probabilité cherchée s'écrit :

$$\sum_{\theta \in \Theta} P\left[\left(\bigcap_{i \in \theta} A_i \right) \cap \left(\bigcap_{i \notin \theta} A_i^c \right) \right]$$

À cause de l'hypothèse d'indépendance des $A_i, 1 \le i \le n$, cette probabilité s'écrit encore :

$$\sum_{\theta \in \Theta} p^k (1 - p)^{n-k} = \binom{n}{k} p^k (1 - p)^{n-k}$$

Après avoir défini l'indépendance d'une famille finie d'événements, nous terminons ce paragraphe en passant au cas d'une famille infinie dénombrable.

Définition 11.4.9 Une suite d'événements $(A_n)_{n\in\mathbb{N}}$ est dite indépendante si pour toute sous-famille finie d'indices $\{i_1, \dots, i_k\} \subset \mathbb{N}$ (avec $k \in \mathbb{N}^*$), on a l'éqalité :

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$$

11.5 Exercices.

11.5.1 Clans.

Indicatrices

Soit A un clan sur Ω ; on définit la fonction $\mathbf{1}_A: \Omega \to \{0,1\}$ par :

$$\mathbf{1}_A(\omega) = 0 \text{ si } \omega \notin A , \mathbf{1}_A(\omega) = 1 \text{ si } \omega \in A.$$

Montrer les égalités suivantes : $\mathbf{1}_{A \cap B} = \inf (\mathbf{1}_A, \mathbf{1}_B) = \mathbf{1}_A \mathbf{1}_B$,

$$\mathbf{1}_{A \cup B} = \sup (\mathbf{1}_A, \mathbf{1}_B) = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_A \mathbf{1}_B$$

$$\mathbf{1}_{A^c} = 1 - \mathbf{1}_A$$
,

ainsi que l'équivalence : $\forall \omega \in \Omega, \ \mathbf{1}_A(\omega) \leq \mathbf{1}_B(\omega) \Leftrightarrow A \subset B.$

On rappelle que la différence symétrique est définie par :

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A^c \cap B) \cup (A \cap B^c).$$

Montrer que :

$$\mathbf{1}_{A\Delta B} = |\mathbf{1}_A - \mathbf{1}_B| = \mathbf{1}_A + \mathbf{1}_B \pmod{2} = \mathbf{1}_A + \mathbf{1}_B - 2 \mathbf{1}_A \mathbf{1}_B.$$

En déduire que la différence symétrique est commutative, associative et que l'intersection est distributive par rapport à la différence symétrique.

11.5. EXERCICES. 197

Clan engendré par une partition.

Soit (P_1, \ldots, P_n) une partition de Ω . Décrire le clan \mathcal{C} qu'elle engendre.

Réunions d'algèbres.

Montrer que la réunion d'une suite croissante d'algèbres est une algèbre. Est-ce que la réunion d'une suite quelconque d'algèbres est une algèbre?

*Description de l'algèbre engendrée.

Soit \mathcal{E} une famille de parties d'un ensemble Ω . Montrer que l'algèbre engendrée par \mathcal{E} est égale à l'ensemble des réunions finies d'intersections finies d'éléments de \mathcal{E} ou de complémentaires d'éléments de \mathcal{E} (parties de la forme $\bigcup_{i=1}^n \bigcap_{j=1}^{m_i} E_{i,j}$, où $\forall i,j \ E_{i,j} \in \mathcal{E}$ ou $(E_{i,j})^c \in \mathcal{E}$).

Remarque : Il est impossible de décrire de façon analogue la σ -algèbre engendrée par \mathcal{E} .

Qu'est-ce qui ne se généralise pas dans la démonstration précédente?

11.5.2 Formule de Poincaré.

[FOA 17]

Démonstration par récurrence.

Soit \mathcal{A} une tribu sur Ω et P une probabilité sur \mathcal{A} . On se donne une famille finie (A_1, \ldots, A_n) d'éléments de \mathcal{A} .

Etablir par récurrence la formule suivante, dite de Poincaré :

$$P(\cup_{i=1}^{n} A_i) = \sum_{1 \le i \le n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n).$$

Application: Indicatrice d'Euler

[FOA 37-38]

On choisit au hasard un nombre parmi $\{1, \ldots, n\}$, tous les choix étant équiprobables. Soit p un entier inférieur à n. On note A_p l'événement "le nombre choisi est divisible par p".

- Calculer $P(A_p)$ lorsque p divise n.
- Soit $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ la décomposition en facteurs premiers de l'entier n. Que représente l'événement $(A_{p_1} \cup \cdots \cup A_{p_r})^c$?

— On note $\phi(n)$ le nombre d'entiers strictement inférieurs à n et premiers avec n. Montrer que l'on a

$$\phi(n) = n \prod_{p \text{ premier, p}|n} (1 - \frac{1}{p}).$$

Application: Facteur distrait.

[FOA 38-39]

Un facteur dispose de n lettre adressées à n destinataires distincts. Il fait la distribution au hasard entre ces n personnes. Quelle est la probabilité de l'événement "une lettre au moins parvient à son destinataire"? En donner une approximation pour n assez grand.

11.5.3 Équiprobabilité.

Trois dés.

[COT 5-6]

On jette trois dés à 6 faces bien équilibrés.

- Calculer la probabilité d'obtenir au moins un as.
- Que vaut la probabilité d'obtenir au moins deux faces portant le même chiffre?
- Calculer la probabilité que la somme des points marqués sur les trois faces soit paire.

Happy birthday to you!

[FOA 31]

Quelle est la probabilité que dans votre promotion deux agrégatifs au moins aient leur anniversaire le même jour?

Remarque : Pour simplifier, on ne s'occupera pas du 29 Février.

Boules et cases.

[DAC¹ exo page 7]

Soit Ω l'ensemble des configurations que l'on peut obtenir en répartissant r boules indiscernables dans n cases numérotées.

- 1. Montrer que le cardinal de Ω est égal au nombre de solutions $(r_1, \dots, r_n) \in \mathbb{N}^n$ de l'équation : $r_1 + r_2 + \dots + r_n = r$.
- 2. Montrer que ce nombre vaut C_{n+r-1}^r de 3 façons différentes :

11.5. EXERCICES. 199

(a) par récurrence sur n à l'aide de l'identité : $C_n^p = C_{n-1}^{p-1} + C_{n-2}^{p-1} + \cdots + C_{p-1}^{p_1}$.

- (b) en développant en série entière les deux membres de l'égalité : $\frac{1}{(1-t)^n} = \left(\sum_{k=0}^{\infty} t^k\right)^n.$
- (c) en identifiant Ω à l'ensemble des façons d'ordonner en ligne r boules indiscernables et n-1 séparations (indiscernables aussi).
- 3. On répartit au hasard r boules indiscernables dans n cases. Calculer la probabilité qu'aucune case ne soit vide.

11.5.4 Probabilités conditionnelles.

Maladie rare.

[COT 11]

On considère une certaine maladie qui touche 1/1000e de la population. Un laboratoire d'analyse de sang assure avec une fiabilité de 99% la détection de cette maladie lorsqu'elle est effectivement présente. Cependant, le test indique aussi un résultat faussement positif pour 0,2% des personnes réellement saines à qui on l'applique.

Quelle est la probabilité qu'une personne soit vraiment malade sachant que son test est positif? Commenter le résultat.

Le rouge et le noir.

[ROS 66-67]

On considère 3 cartes à jouer de même forme mais de couleurs différentes : la première est noire des deux côtés, la seconde rouge des deux côtés, tandis que la troisième a une face noire et une face rouge.

On mélange les trois cartes au fond d'un chapeau puis on en tire une carte au hasard, dont on ne montre qu'une face. Sachant que cette face est rouge, quelle est la probabilité que l'autre face soit noire?

Loi de succession de Laplace.

[COT 15-16]

On dispose de N+1 urnes , numérotées de 0 à N. L'urne numéro k contient k boules rouges et N-k boules blanches . On choisit une urne au hasard .

Sans connaître son numéro, on en tire n fois de suite une boule, avec remise après chaque tirage. Quelle est la probabilité que le $(n+1)^e$ tirage donne encore une boule rouge sachant que, au cours des n premiers tirages,

seules des boules rouges ont été tirées ? Calculer la limite de cette probabilité lorsque $N \to \infty$.

Taux de panne

[COT 16-18]

Soit T une variable aléatoire prenant ses valeurs dans \mathbb{N} telle que pour tout $n \in \mathbb{N}$, $P(T \ge n) > 0$. On appelle taux de panne la suite $\theta(n) = P(T = n \mid T \ge n)$, $n \in \mathbb{N}$.

- 1. Calculer P(T=n) en fonction des $\theta(k)$, $k \leq n$.
- 2. Etablir qu'une suite de réels $\theta(k)$ convient comme taux de panne ssi :

$$\forall k \in \mathbb{N} \ 0 \le \theta(k) < 1 \ \text{et} \ \sum_{k=0}^{\infty} \theta(k) = \infty$$

3. Montrer que T suit une loi géométrique $\mathbf{ssi}\ \theta(k) = \mathrm{constante}\ \mathrm{pour}\ \mathrm{tout}$ $k \in \mathbb{N}$. (On dit que T suit une loi géométrique de paramètre $a \in]0,1[$ si

pour tout
$$k \in \mathbb{N}$$
, $P(T = k) = a(1 - a)^k$.)

11.5.5 Événements indépendants.

Evénement auto-indépendant.

Montrer qu'un événement A est indépendant de lui-même ssi P(A)=0 ou P(A)=1.

Bruit qui court.

[COT 13]

La personne I_1 reçoit l'information 0 ou 1 et la transmet telle quelle à I_2 avec la probabilité p, I_2 de même à I_3 , etc... I_n la transmet au monde entier. On suppose que les n personnes I_1, \ldots, I_n sont indépendantes. Quelle est la probabilité p_n que le monde reçoive la bonne information? Calculer $\lim_{n\to\infty} p_n$.

Indicatrice d'Euler (bis).

On choisit au hasard un nombre parmi $\{1, \ldots, n\}$, tous les choix étant équiprobables. Soit p un entier inférieur à n. On note A_p l'événement "le nombre choisi est divisible par p".

201

- 1. Calculer $P(A_p)$ lorsque p divise n.
- 2. On suppose que (p_1, \ldots, p_k) sont des diviseurs premiers distincts de n, montrer que les événements A_{p_1}, \ldots, A_{p_k} sont indépendants.
- 3. On note $\phi(n)$ le nombre d'entiers strictement inférieurs à n et premiers avec n. Montrer que l'on a

$$\phi(n) = n \prod_{p \text{ premier, p}|n} (1 - \frac{1}{p}).$$

Corrigé:

- 1. Puisque p divise n (notation : p|n), il existe un entier m tel que n=mp; on a alors : $A_p=\{p,2p,\cdots,mp\}$. On en déduit : $P(A_p)=\frac{m}{n}=\frac{1}{p}$.
- 2. Considérant une sous-famille $A_{p_{i_1}}, \cdots, A_{p_{i_l}}$, nous remarquons que

$$\cap_{j=1}^{l} A_{p_{i_j}} = A_{\prod_{j=1}^{l} p_{i_j}},$$

puisque les p_{i_j} sont premiers. Pour la même raison, $(\prod_{j=1}^l p_{i_j})|n|$ donc on peut appliquer a. pour obtenir :

$$P(\bigcap_{j=1}^{l} A_{p_{i_j}}) = \frac{1}{\prod_{j=1}^{l} p_{i_j}} = \prod_{j=1}^{l} P(A_{p_{i_j}}),$$

ce qui prouve l'indépendance demandée.

3. Prenons ici p_1, \dots, p_k tous les diviseurs premiers de n. D'après b), on a :

$$P(\cap_{i=1}^k A_{p_i}^c) = \prod_{\substack{p \ premier, \ p|n}} (1 - \frac{1}{p}).$$

Or un entier appartient à $\bigcap_{i=1}^k A_{p_i}^c$ ssi il n'est divisible par aucun des diviseurs premiers de n, autrement dit ssi il est premier avec n. En passant aux probabilités, on en déduit :

$$\prod_{\substack{p \ premier, \ p|n}} (1 - \frac{1}{p}) = \frac{\phi(n)}{n}.$$

Loi de Hardy-Weinberg.

[REV 18](non corrigé)

Les gènes se présentent le plus souvent en paires et sous deux formes allèliques A,a, ce qui donne trois génotypes AA,Aa,aa. Ces génotypes s'expriment par différents phénotypes; par exemple, dans le cas de l'albinisme, les individus aa sont albinos, contrairement aux individus AA ou Aa.

Chaque individu reçoit au hasard un gène de chacun de ses parents et donc chaque allèle composant le gène d'un des parents a la probabilité 1/2 de passer à l'enfant. Les génotypes des parents sont indépendants. On note p,q,r les probabilités qu'un adulte, dans une population donnée, ait les génotypes AA,Aa,aa.

- 1. Calculer les probabilités P, Q, R qu'un enfant ait les génotypes AA,Aa,aa (on pourra poser $\theta = p + q/2$).
- 2. Montrer que $Q^2 = 4PR$.
- 3. A quelle condition sur p, q, r a-t-on P = p, Q = q, R = r? Montrer qu'elle est toujours réalisée dès la 2ème génération.

Corrigé:

1. Nous prenons pour espace Ω l'ensemble des triplets (génotype de l'enfant, génotype du père, génotype de la mère).

L'événement "L'enfant a un génotype AA" s'écrit donc :

$$\{(AA, AA, AA); (AA, Aa, AA); (AA, AA, Aa); (AA, Aa, Aa)\}$$

et , d'après les lois de la génétique rappelées dans l'énoncé, admet pour probabilité :

$$P = p^2 + pq/2 + pq/2 + q^2/4 = \theta^2.$$

Un raisonnement symétrique (en échangeant les lettres A et a) nous donne :

$$R = r^2 + rq/2 + rq/2 + q^2/4 = (1 - \theta)^2.$$

Enfin, puisque P + Q + R = 1, on obtient : $Q = 2\theta(1 - \theta)$.

- 2. Cette relation résulte immédiatement de ce qui précède.
- 3. D'après la question précédente, on a nécessairement $q^2=4pr$.

Réciproquement, si cette condition est vérifiée, les égalitées obtenues dans la première question nous donnent :

$$P = p^2 + pq + q^2/4 = p^2 + pq + pr = p(p+q+r) = p$$

et
$$R = r^2 + rq + q^2/4 = r^2 + rq + rp = r(p+q+r) = r$$
.

Il en résulte Q = q puisqu'on a : P + Q + R = p + q + r = 1.

Finalement, l'égalité $q^2=4pr$ est une condition nécessaire et suffisante de "stationnarité" des probabilités des différents génotypes au cours des générations.

11.5. EXERCICES. 203

Ainsi, le résultat du 2) nous dit que dans tous les cas, la stationnarité s'établit dès la deuxième génération.

Chapitre 12

Variables aléatoires réelles.

12.1 La tribu borélienne réelle

Définition 12.1.1 Si (E,d) est un espace métrique, on appelle tribu borélienne sur E et l'on note $\mathcal{B}(E)$ la tribu engendrée par l'ensemble des ouverts de E. Les éléments de $\mathcal{B}(E)$ sont appelés ensembles boréliens de E.

Remarque: Nous constatons immédiatement que $\mathcal{B}(E)$ est également la tribu engendrée par l'ensemble des fermés de E.

Si l'espace métrique sous-jacent est égal à \mathbb{R} muni de la distance usuelle, nous parlerons de tribu borélienne réelle et nous la noterons donc $\mathcal{B}(\mathbb{R})$. On ne sait pas décrire explicitement tous les boréliens réels mais il sera suffisant pour la suite de ce cours de savoir que $\mathcal{B}(\mathbb{R})$ contient tous les intervalles réels (fermés, ouverts, semi-ouverts) et leurs unions finies ou dénombrables. On peut construire un sous-ensemble réel qui n'est pas borélien mais ce n'est pas si facile...On peut également démontrer que $\#\mathcal{B}(\mathbb{R}) = \#\mathbb{R}$.

Proposition 12.1.2 La tribu $\mathcal{B}(\mathbb{R})$ est engendrée par chacun des ensembles suivants de parties réelles :

- $\mathcal{E}_1 = \{]a, b[, avec (a, b) \in \mathbb{Q}^2 \text{ et } a < b \}$
- $\mathcal{E}_2 = \{]a,b]$, $avec(a,b) \in \mathbb{Q}^2$ et $a < b\}$
- $-\mathcal{E}_3 = \{[a,b] , avec (a,b) \in \mathbb{Q}^2 \ et \ a \leq b\}$
- $-\mathcal{E}_4 = \{]-\infty, a], \quad a \in \mathbb{Q}\}$
- $-\mathcal{E}_5 = \{]-\infty, a[, a \in \mathbb{Q}\}$

Démonstration:

1. Puisque tous les éléments de \mathcal{E}_1 sont des ouverts, on a $\sigma(\mathcal{E}_1) \subset \mathcal{B}(\mathbb{R})$. Prouvons l'inclusion inverse.

Tout ouvert de \mathbb{R} est une union de boules ouvertes, c'est-à-dire d'intervalles de la forme [a, b[, avec $(a, b) \in \mathbb{R}^2$ et a < b.

Par densité de \mathbb{Q} dans \mathbb{R} , nous pouvons trouver une suite strictement décroissante $(a_n) \in \mathbb{Q}^{\mathbb{N}}$ qui converge vers a et une suite strictement croissante $(b_n) \in \mathbb{Q}^{\mathbb{N}}$ qui converge vers b, de sorte que :

$$]a,b[=\bigcup_{n\in\mathbb{N}}]a_n,b_n[.$$

Par conséquent, tout ouvert de \mathbb{R} est une union d'intervalles ouverts de la forme]a,b[, avec $(a,b)\in\mathbb{Q}^2$ et a< b. L'ensemble des intervalles ouverts à extrémités rationnelles étant dénombrable, nous avons prouvé que tout ouvert de \mathbb{R} s'écrivait comme une union dénombrable d'éléments de \mathcal{E}_1 , d'où $\mathcal{B}(\mathbb{R}) \subset \sigma(\mathcal{E}_1)$.

2. On montre que $\sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_1)$ en utilisant des égalités de la forme :

$$[a,b] = \bigcap_{n \in \mathbb{N}^*} [a,b + \frac{1}{n}[\quad ; \quad]a,b[=\bigcup_{n \in \mathbb{N}^*} [a,b - \frac{1}{n}]]$$

3. On montre que $\sigma(\mathcal{E}_3) = \sigma(\mathcal{E}_2)$ en utilisant des égalités de la forme :

$$[a,b] = \bigcap_{n \in \mathbb{N}^*} [a - \frac{1}{n}, b]$$
 ; $[a,b] = \bigcup_{n \in \mathbb{N}^*} [a - \frac{1}{n}, b]$

4. On montre que $\sigma(\mathcal{E}_4) = \sigma(\mathcal{E}_2)$ en utilisant des égalités de la forme :

$$]a,b]=]-\infty,b]-]-\infty,a]\quad;\quad]-\infty,a]=\bigcup_{n\in\mathbb{N}^*}]-n,a]$$

5. On montre que $\sigma(\mathcal{E}_5) = \sigma(\mathcal{E}_4)$ en utilisant des égalités de la forme :

$$]-\infty,a]=\bigcap_{n\in\mathbb{N}^*}]-\infty,a+\frac{1}{n}[\quad;\quad]-\infty,a[=\bigcup_{n\in\mathbb{N}^*}]-\infty,a-\frac{1}{n}].$$

Remarque: Par passage aux complémentaires, nous constatons immédiatement que la tribu $\mathcal{B}(\mathbb{R})$ est aussi engendrée par les demi-droites de la forme $[a, +\infty[$ (respectivement $]a, +\infty[$), avec $a \in \mathbb{Q}$.

12.2 Les variables aléatoires réelles et leurs lois

Dans toute la suite de ce chapitre, nous considérons un espace probabilisé (Ω, \mathcal{A}, P) .

Dans de très nombreuses situations aléatoires, nous allons nous intéresser à une fonction du résultat ω de l'expérience plutôt qu'à ce résultat lui-même.

Exemple : Un joueur lance une fléchette en visant le centre d'une cible. Si nous prenons pour unité le rayon de la cible, nous pouvons modéliser ceci comme une expérience aléatoire dont le résultat est un élément ω du disque unité fermé :

$$\Omega = \bar{D}(0,1) = \{ \omega \in \mathbb{R}^2, \, \omega_1^2 + \omega_2^2 \le 1 \}.$$

En réalité, la seule chose qui nous intéresse vraiment n'est pas la position exacte $\omega = (\omega_1, \omega_2)$ de l'impact de la fléchette sur la cible mais seulement sa distance au centre de la cible, qui nous est donnée par la variable aléatoire réelle :

$$X: \quad \Omega \quad \longrightarrow \quad \mathbb{R}$$

$$\omega = (\omega_1, \omega_2) \quad \longmapsto \quad \sqrt{\omega_1^2 + \omega_2^2}$$

Pour mesurer la qualité de la performance du joueur, on va se poser des questions telles que "est-ce que $X(\omega) \in B$?", où B est un sous-ensemble de [0,1]. Par exemple, on peut décider que le joueur a gagné si $X(\omega) \in [0,\frac{1}{10}]$.

Nous allons donc poser la définition suivante.

Définition 12.2.1 On appelle variable aléatoire réelle (en abrégé v.a.r.) définie sur (Ω, \mathcal{A}, P) toute application $X : \Omega \to \mathbb{R}$ vérifiant :

$$\forall B \in \mathcal{B}(\mathbb{R}) \quad X^{-1}(B) \in \mathcal{A}.$$
 (12.1)

Rappelons que $X^{-1}(B)$ est la partie de Ω définie par $\{\omega \in \Omega, X(\omega) \in B\}$ et que nous la notons encore sous la forme abrégée $\{X \in B\}$. La définition précédente nous assure que, pour tout borélien réel B, cela a un sens de calculer la probabilité $P(\{X \in B\})$ – que l'on note plus simplement $P(X \in B)$ – puisque $\{X \in B\} \in \mathcal{A}$.

Pour vérifier qu'une application $X:\Omega\to\mathbb{R}$ est une variable aléatoire réelle, nous serons souvent amenés à utiliser les deux propositions suivantes, que nous admettrons.

Proposition 12.2.2 Soit \mathcal{E} un ensemble de parties de \mathbb{R} qui engendre la tribu $\mathcal{B}(\mathbb{R})$. Alors une application $X:\Omega\to\mathbb{R}$ est une variable aléatoire réelle sur (Ω,\mathcal{A},P) si et seulement si la condition suivante est satisfaite :

$$\forall B \in \mathcal{E} \quad X^{-1}(B) \in \mathcal{A}.$$

Nous pourrons appliquer cette proposition avec chacune des classes $\mathcal{E}_1, \dots, \mathcal{E}_5$ définies dans la proposition 12.1.2

Par exemple, le lecteur pourra montrer en utilisant la classe \mathcal{E}_4 que, si X et Y sont deux variables aléatoires réelles sur (Ω, \mathcal{A}, P) , alors il en est de même de $\inf(X, Y)$ et $\sup(X, Y)$.

Proposition 12.2.3 Muni des lois $+, \times, \cdot$, l'ensemble des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) est une algèbre sur \mathbb{R} .

Connaître les quantités de la forme $P(X \in B)$ est très intéressant car cela mesure les chances que la valeur prise par la variable X "tombe" dans tel ou tel sous-ensemble borélien réel (par exemple, typiquement, un intervalle). Ainsi, si nous revenons à l'exemple précédent, une information telle que $P(X \in [0, \frac{1}{10}]) = 0,95$ nous dit que le joueur est très habile.

Théorème et définition 12.2.4 Considérons un espace probabilisé (Ω, \mathcal{A}, P) et une variable aléatoire réelle $X : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Alors l'application $P_X : \mathcal{B}(\mathbb{R}) \to [0, 1]$ définie par :

$$\forall B \in \mathcal{B}(\mathbb{R}) \quad P_X(B) = P(X \in B)$$

est une mesure de probabilité sur l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, appelée loi de probabilité (ou simplement loi) de la v.a.r. X.

Démonstration: Il est immédiat d'après la définition que P_X est une application de $\mathcal{B}(\mathbb{R})$) dans [0,1] telle que $P_X(\varnothing) = P(X^{-1}(\varnothing)) = P(\varnothing) = 0$ et $P_X(\mathbb{R}) = P(X^{-1}(\mathbb{R})) = P(\Omega) = 1$.

Il nous reste donc à prouver la σ -additivité de P_X . Pour cela, nous considérons une suite $(B_n)_{n\in\mathbb{N}}\in\mathcal{B}(\mathbb{R})^{\mathbb{N}}$ telle que $i\neq j\Rightarrow B_i\cap B_j=\varnothing$. Nous allons montrer dans un premier temps que :

$$X^{-1}(\sum_{n \in \mathbb{N}} B_n) = \sum_{n \in \mathbb{N}} X^{-1}(B_n).$$

En effet, on a:

$$X^{-1}(\bigcup_{n\in\mathbb{N}} B_n) = \{\omega \in \Omega, \exists n \in \mathbb{N}, X(\omega) \in B_n\} = \bigcup_{n\in\mathbb{N}} X^{-1}(B_n)$$

et, pour $i \neq j$,

$$X^{-1}(B_i) \cap X^{-1}(B_i) = X^{-1}(B_i \cap B_i) = X^{-1}(\emptyset) = \emptyset,$$

d'où le résultat voulu.

Nous déduisons de cette première étape les égalités suivantes :

$$P_X\left(\sum_{n\in\mathbb{N}}B_n\right) = P\left(X^{-1}\left(\sum_{n\in\mathbb{N}}B_n\right)\right) = P\left(\sum_{n\in\mathbb{N}}X^{-1}(B_n)\right)$$
$$= \sum_{n\in\mathbb{N}}P(X^{-1}(B_n)) = \sum_{n\in\mathbb{N}}P_X(B_n),$$

d'où la conclusion.

Remarque: C'est la condition (12.1) définissant une variable aléatoire réelle X sur (Ω, \mathcal{A}, P) qui nous a permis de "transporter" la probabilité P définie sur son ensemble de départ en une nouvelle probabilité P_X sur son ensemble d'arrivée $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit parfois que P_X est la probabilité image de la probabilité P par la variable aléatoire X.

La loi de X nous dit donc avec quelles chances cette v.a.r. prend ses valeurs dans tel ou tel sous-ensemble borélien réel, en particulier dans les intervalles.

Exemple: Soit $a \in \mathbb{R}$ fixé et la variable constante $X \equiv a$. On a donc $P_X(\{a\}) = 1$. C'est la loi la plus simple qui soit : elle est constituée d'une unique masse ponctuelle de poids 1 située au point a. On l'appelle mesure de Dirac au point a et on la note δ_a . C'est la mesure définie sur tout $A \in \mathcal{B}(\mathbb{R})$ par $\delta_a(A) = 1$ si $a \in A$ et $\delta_a(A) = 0$ si $a \notin A$.

Remarque: Il est fréquent d'utiliser de façon interchangeable les termes mesure de probabilité et loi de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

En effet, par définition même, la loi de probabilité d'une v.a.r. est bien une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Mais réciproquement, nous pouvons faire apparaître n'importe quelle mesure de probabilité μ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ comme la loi d'une certaine variable aléatoire que nous allons construire maintenant.

Prenons pour espace probabilisé $(\Omega, \mathcal{A}, P) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ et définissons X comme étant l'application identité sur $\Omega = \mathbb{R}$. Le lecteur vérifiera aisément que X est une variable aléatoire réelle et que la loi de X est égale à μ .

12.3 Fonction de répartition d'une variable aléatoire réelle

A priori, pour déterminer la loi d'une v.a.r. X, il faut connaître la valeur de $P(X \in B)$ pour tout borélien réel B. En fait, nous allons voir dans ce paragraphe qu'il suffit de connaître $P(X \in B)$ pour des boréliens réels bien particuliers : les demi-droites $B =]-\infty, x], x \in \mathbb{R}$.

Nous ne démontrerons pas complètement ce résultat car nous admettrons le résultat intermédiaire suivant : la loi d'une v.a.r. X est entièrement déterminée par ses valeurs sur tous les intervalles réels.

Définition 12.3.1 On appelle fonction de répartition (en abrégé f.r.) de la v.a.r. X l'application $F_X : \mathbb{R} \to [0,1]$ définie par :

$$\forall x \in \mathbb{R}, \quad F_X(x) = P(X \le x)$$

Remarque: On peut très bien parler de fonction de répartition de la loi de X car en réalité F_X ne dépend que de P_X :

$$\forall x \in \mathbb{R} \quad F_X(x) = P(X \in]-\infty, x]) = P_X(]-\infty, x]).$$

Ainsi, une autre façon de présenter cette notion consiste à définir d'abord la fonction de répartition d'une mesure de probabilité μ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ par :

$$\forall x \in \mathbb{R} \quad F_{\mu}(x) = \mu(] - \infty, x])$$

puis à dire que la fonction de répartition d'une variable aléatoire réelle est égale par définition à celle de sa loi de probabilité. \Box

Le théorème suivant nous dit que la connaissance de la fonction de répartition d'une loi de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ détermine cette loi de façon unique.

Théorème 12.3.2 Si deux variables aléatoires réelles X et Y ont même fonction de répartition, alors elles ont même loi :

$$F_X = F_Y \Longrightarrow P_X = P_Y$$

Autrement dit, l'application qui à une loi associe sa fonction de répartition est injective.

Démonstration: Connaître F_X , c'est connaître la valeur de la loi P_X sur les demi-droites $]-\infty,x]$, $x \in \mathbb{R}$. Nous allons montrer que ceci suffit à calculer la valeur de P_X sur n'importe quel intervalle réel I et nous admettrons que la loi P_X est alors parfaitement déterminée sur tous les boréliens réels B.

Nous énumérons les différentes formes possibles pour l'intervalle I et donnons à chaque fois une formule de calcul de $P_X(I)$ à partir de la connaissance de F_X .

Si I est une demi-droite de la forme $]-\infty,x]$, c'est un cas évident puisque par définition $P_X(]-\infty,x])=F_X(x)$.

Si I est une demi-droite ouverte de la forme $]-\infty, x[$,par passage à la limite croissante dans une probabilité, nous pouvons écrire l'égalité :

$$P_X(]-\infty,x[)=\lim_n\uparrow P_X(]-\infty,x-\frac{1}{n}])=\lim_n\uparrow F_X(x-\frac{1}{n})$$

Par passage au complémentaire dans ces deux premiers cas, nous traitons les demi-droites de la forme $]x, +\infty[$ ou $[x, +\infty[$.

$$P_X(|x, +\infty[) = 1 - P_X(|-\infty, x]) = 1 - F_X(x)$$

$$P_X([x, +\infty[) = 1 - P_X(] - \infty, x[) = 1 - \lim_n \uparrow F_X(x - \frac{1}{n})$$

Nous pouvons maintenant traiter les cas où I est un intervalle borné, en le faisant apparaître comme différence propre de demi-droites. Soient a et b deux réels tels que $a \leq b$.

$$P_X([a,b]) = P_X([-\infty,b]-[-\infty,a]) = P_X([-\infty,b]) - P_X([-\infty,a]) = F_X(b) - F_X(a)$$

De la même façon, on trouve:

$$P_X([a,b]) = P_X(]-\infty,b]) - P_X(]-\infty,a[) = F_X(b) - \lim_{n} \uparrow F_X(a-\frac{1}{n})$$

Nous laissons au lecteur le soin de traiter de façon similaire les cas restants.

Comment utiliser ce théorème? Dans la suite, nous citerons un certain nombre de lois de probabilité "classiques", c'est-à-dire d'un usage fréquent en calcul des probabilités. Pour la plupart d'entre elles, il est possible de calculer explicitement les fonctions de répartition correspondantes. Une façon de déterminer la loi d'une v.a.r. X sera de calculer sa fonction de répartition. Si nous reconnaissons alors la fonction de répartition d'une loi classique, en

vertu du théorème précédent, nous pourrons affirmer que la loi de X est égale à cette loi classique.

Nous terminons cette section par un théorème permettant de caractériser les fonctions de répartition d'une loi de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ ou encore les fonctions de répartition des variables aléatoires réelles, ce qui revient au même d'après la remarque qui termine la section précédente.

Théorème 12.3.3 Considérons une application $F : \mathbb{R} \to \mathbb{R}$. Alors F est la fonction de répartition d'une loi de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ si et seulement si elle possède simultanément les quatres propriétés suivantes : F est croissante, continue à droite et vérifie

$$\lim_{t \to -\infty} F(t) = 0 \ et \ \lim_{t \to +\infty} F(t) = 1.$$

Démonstration: Le sens direct sera démontré en cours. Le sens réciproque est admis.

La section et le chapitre suivants concernent deux types particulièrement intéressants de variables aléatoires réelles : les variables discrètes et les variables admettant une densité. Notons que ces deux types sont loin de couvrir toutes les possibilités concernant les v.a.r. Ce sont simplement deux cas particuliers importants et eux seuls figurent au programme officiel.

12.4 Variables discrètes

Une variable aléatoire réelle définie sur (Ω, \mathcal{A}, P) est dite discrète si le sous-ensemble réel $X(\Omega)$ est fini ou dénombrable. Autrement dit, une v.a.r. est dite discrète si elle ne prend qu'un nombre fini ou dénombrable de valeurs. C'est un cas particulièrement simple et si nous notons $X(\Omega) = \{x_0, \dots, x_n, \dots\}$ (dans le cas dénombrable), alors la loi de la variable aléatoire X est entièrement déterminée par la donnée de la suite $(p_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N} \quad p_n = P(X = x_n).$$

Cette suite est bien sûr à valeurs positives ou nulles et telle que

$$\sum_{n=0}^{+\infty} p_n = 1$$

et le lecteur pourra faire le rapprochement avec la proposition 11.3.3. Le lecteur est invité à se référer à [DAN 418-436] qui traite de façon exhaustive les notions du programme officiel qui sont relatives aux variables

213

aléatoires discrètes, en particulier les lois discrètes usuelles suivantes : Bernoulli, binomiale, hypergéométrique, géométrique, Poisson.

Nous n'écrirons ici que la définition de l'espérance d'une variable discrète et le *théorème de transfert* dans le cas discret.

Définition 12.4.1 Soit X une variable aléatoire réelle discrète telle que $X(\Omega) = \{x_0, \dots, x_n, \dots\}$. On appelle espérance de la variable X le nombre réel :

$$E[X] = \sum_{n=0}^{+\infty} x_n P(X = x_n),$$

dès lors que cette série est absolument convergente. On dit alors que la variable X admet une espérance (ou encore qu'elle est intégrable).

Théorème 12.4.2 (de transfert, cas discret) Soit $\psi : \mathbb{R} \to \mathbb{R}$ une application; alors la variable aléatoire $\psi(X)$ admet pour espérance le nombre réel

$$E[\psi(X)] = \sum_{n} \psi(x_n) P(X = x_n)$$

dès que cette série est absolument convergente.

Un outil très utile pour étudier les variables aléatoires à valeurs dans \mathbb{N} est présenté maintenant sous la forme d'un problème corrigé.

Problème : Fonctions génératrices On considère une variable aléatoire X à valeurs dans \mathbb{N} .

- 1. Montrer que pour tout $s \in [-1,1]$, la variable aléatoire s^X admet une espérance (on pose $s^0 = 1$ pour tout s) et que l'on a : $E[s^X] = \sum_{n=0}^{\infty} P(X = n) \ s^n$.
 - On notera $G_X(s) = E[s^X]$ et l'on appellera G_X la fonction génératrice de X.
- 2. Montrer que X et Y ont même loi si et seulement si $G_X = G_Y$.
- 3. Calculer les fonctions génératrices des lois suivantes :
 - (a) Bernouilli de paramètre $p \in [0, 1]$.
 - (b) Géométrique de paramètre $a \in]0,1[$.
 - (c) Poisson de paramètre λ .
- 4. Si X et Y sont deux variables indépendantes, calculer G_{X+Y} en fonction de G_X et G_Y . En déduire :
 - (a) la fonction génératrice d'une loi binomiale de paramètres $(n, p) \in \mathbb{N}^* \times [0, 1]$.

- (b) la loi de la somme de deux variables indépendantes suivant des lois de Poisson de paramètres respectifs λ et μ .
- 5. Montrer que si X est intégrable, alors G_X est dérivable sur [-1,1], de dérivée : $G'_X(s) = E[Xs^{X-1}].$

En déduire les espérances des lois introduites dans la question 3.

Corrigé:

1. Pour tout $s \in [-1,1]$, nous avons l'inégalité $|P(X=n)s^n| \le P(X=n)$ n) qui entraîne l'absolue convergence de la série

$$\sum_{n=0}^{\infty} P(X=n)s^n$$

donc s^X est intégrable et admet pour espérance

$$E[s^X] = \sum_{n=0}^{\infty} P(X=n)s^n.$$

2. L'égalité obtenue dans la question précédente nous donne le développement en série entière de G_X sur [-1,1]. En particulier, G_X admet des dérivées à tous les ordres au point s=0 et l'on a, pour tout $n\in\mathbb{N}$:

$$P(X = n) = \frac{G_X^{(n)}(0)}{n!}$$

Il en résulte que $G_X = G_Y \implies P_X = P_Y$; la réciproque est évidente. La fonction génératrice de X caractérise donc la loi de X.

- 3. (a) $G_X(s) = 1 p + ps$

 - (b) $G_X(s) = \sum_{n=0}^{+\infty} (1-a)a^n s^n = \frac{1-a}{1-as}$. (c) $G_X(s) = \sum_{n=0}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} s^n = e^{-\lambda(1-s)}$.
- 4. On a par définition : $G_{X+Y}(s) = E[s^{X+Y}] = E[s^X s^Y]$.

Si X et Y sont indépendantes, on en déduit, en utilisant une propriété des variables discrètes indépendantes énoncée dans [DAN 427]:

$$\forall s \in [-1, 1] \quad G_{X+Y}(s) = E[s^X]E[s^Y] = G_X(s)G_Y(s)$$

On peut également faire une preuve directe sans utiliser cette propriété, en considérant le produit de Cauchy de deux séries entières absolument convergentes [DAN 430].

215

(a) Une récurrence immédiate prouve que si X_1, \dots, X_n sont des variables aléatoires à valeurs dans \mathbb{N} indépendantes, alors :

$$\forall s \in [-1, 1] \quad G_{X_1 + \dots + X_n}(s) = G_{X_1}(s) \dots G_{X_n}(s).$$

En particulier, si X_1, \dots, X_n suivent la loi de Bernoulli de paramètre p, alors $X_1 + \dots + X_n$ suit la loi binomiale de paramètres (n, p), dont la fonction génératrice vaut donc (en utilisant 3(a)): $G(s) = (1 - p + ps)^n$.

(b) Si $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$ sont indépendantes , alors l'égalité obtenue en 3(c) nous permet d'écrire :

$$G_{X+Y}(s) = G_X(s)G_Y(s) = e^{-\lambda(1-s)}e^{-\mu(1-s)} = e^{-(\lambda+\mu)(1-s)}.$$

On reconnaît la fonction génératrice de la loi $\mathcal{P}(\lambda + \mu)$, ce qui d'après la question 2 prouve que X + Y suit la loi de Poisson de paramètre $\lambda + \mu$.

5. D'après la première question, la série entière qui définit la fonction génératrice de la variable aléatoire X:

$$G_X(s) = \sum_{n=0}^{\infty} P(X=n)s^n$$

a un rayon de convergence $R \geq 1$. Nous en déduisons que G_X est dérivable sur]-1,1[et que :

$$\forall s \in]-1,1[G'_X(s) = \sum_{n=1}^{\infty} P(X=n)ns^{n-1}.$$

Notre hypothèse d'intégrabilité sur X équivaut à la convergence de la série à termes positifs suivante :

$$\sum_{n=1}^{\infty} nP(X=n).$$

Un résultat classique sur les séries entières nous permet d'en déduire que la série :

$$\sum_{n=1}^{\infty} P(X=n)ns^{n-1}$$

converge uniformément sur [0,1] vers une application continue. En particulier, $G'_X(s)$ admet une limite quand $s \nearrow 1$ et nous savons que

cela entraı̂ne la dérivabilité à gauche de G_X au point 1, ainsi que l'égalité :

$$G_X'(1) = \lim_{s \nearrow 1} G_X'(s) = \lim_{s \nearrow 1} \sum_{n=1}^{\infty} P(X=n) n s^{n-1} = \sum_{n=1}^{\infty} n P(X=n) = E[X].$$

Dans les trois exemples suivants, nous allons donc utiliser l'égalité :

$$E[X] = G_X'(1).$$

Si
$$X \sim \text{Bernouilli}(p)$$
, $G'_X(s) = 1 - p \text{ donc } E[X] = 1 - p$.

Si
$$X \sim \text{G\'{e}om}(a)$$
, $G'_X(s) = \frac{a(1-a)}{(1-as)^2}$ donc $E[X] = \frac{a}{1-a}$.

Enfin, pour
$$X \sim \mathcal{P}(\lambda)$$
 , $G_X'(s) = \lambda e^{-\lambda(1-s)}$ d'où $E[X] = \lambda$.

Chapitre 13

Variables à densité

À l'extrême opposé d'une variable aléatoire discrète, dont la loi n'est faite que de masses ponctuelles, la loi d'une variable aléatoire absolument continue correspond à une répartition continue de masse sur la droite réelle et en particulier n'admet aucune masse ponctuelle. Plus précisément, si nous reprenons l'analogie entre une loi sur \mathbb{R} et une répartition de masse sur un fil infiniment long et infiniment mince de masse totale 1, nous allons maintenant nous intéresser à la situation correspondant à un fil admettant une densité de masse linéique, à savoir une application f à valeurs dans \mathbb{R}_+ telle que la masse du segment élémentaire [x, x + dx] soit f(x) dx.

Nous rencontrerons des variables aléatoires absolument continues dans de nombreuses situations de modélisation où interviennent des grandeurs continues comme le temps (1er instant de panne d'une machine, temps d'attente à un guichet etc.), l'espace (mesure d'une longueur perturbée par de petites erreurs aléatoires) ou autre (pression atmosphérique mesurée dans une station météo).

13.1 Définitions

Définition 13.1.1 On appelle densité de probabilité sur \mathbb{R} toute application $f \in C_M(\mathbb{R}, \mathbb{R}_+)$ telle que :

$$\int_{-\infty}^{+\infty} f(x) \, dx = 1.$$

Définition 13.1.2 Soit f une densité de probabilité sur \mathbb{R} . On dit qu'une variable aléatoire réelle X admet f pour densité si, pour tout intervalle réel I, on a l'égalité :

$$P(X \in I) = \int_{I} f(x) \, dx.$$

Remarques

- 1. Nous avons admis que la connaissance des quantités $P(X \in I)$ pour tout intervalle réel I déterminait entièrement la loi de X. Ainsi, si X admet la densité f, sa loi P_X est entièrement déterminée. On dit que P_X est la loi de densité f ou encore que X suit la loi de densité f.
- 2. Il n'est pas nécessaire de vérifier à l'avance que f est une densité de probabilité sur \mathbb{R} mais seulement que $f \in C_M(\mathbb{R}, \mathbb{R}_+)$. En effet, en appliquant l'égalité précédente avec $I = \mathbb{R}$, on en déduit que f est bien une densité de probabilité.

13.2 Exemples classiques de lois à densité

La loi uniforme sur [a,b]

C'est la loi de densité $f(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x)$ (on vérifie immédiatement que $f \in C_M(\mathbb{R}, \mathbb{R}_+)$ et $\int_{\mathbb{R}} f(x) \, dx = 1$).

Cette loi est notée U([a, b]). Elle correspond à l'expression "tirer un nombre au hasard entre a et b". La fonction 'random' d'une calculatrice ou d'un ordinateur est censée simuler une telle loi pour a = 0 et b = 1.

Si la v.a.r. X admet f pour densité, on dit qu'elle *suit* la loi uniforme sur [a,b] et l'on note $X \sim U([a,b])$.

La loi exponentielle

Soit $\lambda > 0$ fixé. L'application f_{λ} définie pour tout $x \in \mathbb{R}$ par :

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}_{+}^{*}}(x)$$

est une densité de probabilité sur \mathbb{R} .

En effet, on constate facilement que $f_{\lambda} \in C_M(\mathbb{R}, \mathbb{R}_+)$ et nous calculons :

$$\int_{-\infty}^{+\infty} f_{\lambda}(x) dx = \int_{0}^{+\infty} \lambda e^{-\lambda x} dx = [-e^{-\lambda x}]_{0}^{+\infty} = 1$$

On appelle loi exponentielle de paramètre λ la loi de densité f_{λ} . Comme nous le verrons dans l'exercice 13.6.2, cette loi est caractérisée par son "absence de mémoire". Par exemple, la durée de vie d'un matériel idéal qui ne subirait aucun vieillissement est une variable aléatoire exponentielle.

La loi gaussienne (ou loi normale)

Nous montrerons plus tard que l'application f définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

vérifie bien $\int_{\mathbb{R}} f(x) dx = 1$. Comme il est clair que $f \in C_M(\mathbb{R}, \mathbb{R}_+)$ (elle est même continue), l'application f représentée ci-dessous est une densité de probabilité appelée densité gaussienne (ou normale) centrée réduite. La loi associée est notée $\mathcal{N}(0,1)$.

FIGURE 13.1 – La densité gaussienne centrée réduite

Si nous fixons deux paramètres $\mu \in \mathbb{R}$ et $\sigma > 0$, nous déduisons de ce qui précède que l'application $f_{\mu,\sigma}$ définie par :

$$\forall x \in \mathbb{R}, \quad f_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

est aussi une densité de probabilité (il suffit de faire un simple changement de variable dans une intégrale pour le voir). On l'appelle densité gaussienne (ou normale) de paramètres μ et σ^2 . La loi associée est notée $\mathcal{N}(\mu, \sigma^2)$.

La loi de Cauchy

Pour tout a>0 fixé, nous définissons l'application f_a par :

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{a}{\pi} \frac{1}{a^2 + x^2}.$$

On a bien sûr $f \in C_M(\mathbb{R}, \mathbb{R}_+)$ (elle est même continue) et l'on calcule :

$$\int_{-\infty}^{+\infty} f_a(x) dx = \frac{1}{\pi} \left[\arctan \frac{x}{a}\right]_{-\infty}^{+\infty} = 1$$

L'application f_a est donc une densité de probabilité appelée densité de Cauchy de paramètre a. La loi associée est notée C(a).

13.3 Fonction de répartition

Proposition 13.3.1 Une variable aléatoire X admet f pour densité si et seulement si sa fonction de répartition est donnée par :

$$\forall x \in \mathbb{R} \quad F_X(x) = \int_{-\infty}^x f(t) \, dt.$$

Remarque: Il n'est pas nécessaire de vérifier à l'avance que f est une densité de probabilité sur \mathbb{R} mais seulement que $f \in C_M(\mathbb{R}, \mathbb{R}_+)$. En effet, en faisant tendre x vers l'infini dans l'égalité précédente, on obtient

$$\int_{-\infty}^{+\infty} f(t) \, dt = 1$$

et donc f est bien une densité de probabilité.

Démonstration: Dans le sens direct, cela résulte de la définition précédente avec $I =]-\infty, x]$. Dans le sens réciproque, cela résulte de ce que la fonction de répartition caractérise la loi d'une variable aléatoire réelle.

Proposition 13.3.2 Soit X une variable aléatoire réelle de fonction de répartition F_X et $f \in C(\mathbb{R}, \mathbb{R}_+)$. Alors la variable X admet f pour densité si et seulement si F_X est dérivable sur \mathbb{R} avec :

$$\forall x \in \mathbb{R} \quad F_X'(x) = f(x).$$

Démonstration: Supposons que X admet la densité f. Alors la fonction de répartition de X est donnée par :

$$\forall x \in \mathbb{R} \quad F_X(x) = \int_{-\infty}^x f(t) \, dt.$$

Comme f est continue, nous en déduisons que F_X est dérivable sur \mathbb{R} et que $F_X' = f$.

Dans le sens réciproque, puisque F_X est une primitive de f, nous avons pour tous réels $w \leq x$:

$$\int_{w}^{x} f(t) dt = F_X(x) - F_X(w).$$

Si nous faisons tendre w vers $-\infty$ dans l'égalité précédente, nous obtenons grâce au théorème 12.3.3 :

$$\forall x \in \mathbb{R} \quad \int_{-\infty}^{x} f(t) dt = F_X(x).$$

Pour conclure, en vertu de la remarque précédente, il nous reste donc simplement à montrer que f est bien une densité de probabilité. Comme nous savons déjà que $f \in C(\mathbb{R}, \mathbb{R}_+)$, il reste à prouver que :

$$\int_{-\infty}^{+\infty} f(x) \, dx = 1,$$

ce qui résulte de l'égalité précédente, dans laquelle nous faisons tendre x vers $+\infty$, en utilisant de nouveau le théorème 12.3.3

Remarque: Cet énoncé admet une généralisation au cas f continue par morceaux. Le lecteur pourra consulter [DAN 408] à ce sujet.

À titre d'application, nous allons démontrer la proposition suivante :

Proposition 13.3.3 Soit X une v.a.r. admettant la densité f. Nous définissons la v.a.r. $Y = \sigma X + \mu$, où $\mu \in \mathbb{R}$ et $\sigma > 0$ sont deux paramètres fixés. Alors Y admet la densité $f_{\mu,\sigma}$ définie par la formule :

$$\forall x \in \mathbb{R}, \quad f_{\mu,\sigma}(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$
 (13.1)

Démonstration: Calculons la f.r. de Y pour tout $t \in \mathbb{R}$:

$$F_Y(t) = P(Y \le t) = P(\sigma X + \mu \le t) = P\left(X \le \frac{t - \mu}{\sigma}\right)$$

En utilisant le théorème précédent dans le sens direct, $(i) \Rightarrow (ii)$, nous en déduisons :

$$F_Y(t) = \int_{-\infty}^{\frac{t-\mu}{\sigma}} f(x) \, dx$$

Dans cette intégrale, nous effectuons le changement de variable $y=\sigma x+\mu\Leftrightarrow x=\frac{y-\mu}{\sigma}$, ce qui nous donne :

$$F_Y(t) = \int_{-\infty}^t f\left(\frac{y-\mu}{\sigma}\right) \frac{1}{\sigma} dy$$

Ceci étant vrai pour tout réel t, la proposition 13.3.1 nous permet d'en déduire que l'application $f_{\mu,\sigma}$ définie par la formule (13.1) est une densité de probabilité et que Y suit la loi de densité $f_{\mu,\sigma}$.

Voici une deuxième application de la proposition 13.3.2 : Soit X v.a.r. de loi uniforme sur] $-\frac{\pi}{2}, \frac{\pi}{2}$ [. Que vaut la loi de $Y = \tan X$?

Calculons la f.r. de Y pour tout $t \in \mathbb{R}$:

$$F_Y(t) = P(Y \le t) = P(X \le \arctan t) = \int_{-\frac{\pi}{2}}^{\arctan t} \frac{1}{\pi} dx = \frac{\arctan t + \frac{\pi}{2}}{\pi}.$$

La proposition 13.3.2 nous permet alors de conclure avec $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ en affirmant que Y admet f pour densité. Autrement dit, Y suit la loi de Cauchy de paramètre 1.

Remarque : La fonction de répartition d'une v.a.r. de densité f s'écrivant $F_X(t) = \int_{-\infty}^t f(x) dx$, c'est en particulier une application continue, d'où le qualificatif "continue" donné à la v.a.r.

Pourquoi précise-t-on v.a.r. absolument continue? Parce que les v.a.r. admettant une densité ne sont qu'un cas particulier de variables dont la f.r. est continue. C'est néanmoins le seul type de variables continues que nous examinerons dans le cadre de ce cours.

13.4 Espérance. Théorème de transfert

Définition 13.4.1 Soit X une variable aléatoire réelle de densité f. On appelle espérance de X le nombre réel

$$E[X] = \int_{-\infty}^{+\infty} x f(x) \, dx,$$

dès lors que cette intégrale impropre est absolument convergente.

Nous énonçons simplement ici un important résultat sur lequel nous reviendrons plus précisément dans le chapitre suivant dans le cas des vecteurs aléatoires. L'implication $1 \Rightarrow 2$ s'appelle le *théorème de transfert* pour une variable aléatoire réelle à densité.

Proposition 13.4.2 Soit X une variable aléatoire réelle et $f : \mathbb{R} \to \mathbb{R}_+$ une application intégrable sur \mathbb{R} . Alors il y a équivalence entre les deux propositions suivantes :

- 1. L'application f est une densité de probabilité sur \mathbb{R} et la variable aléatoire réelle X admet f pour densité.
- 2. Pour toute application $\psi \in C_M(\mathbb{R}, \mathbb{R})$ telle que $|\psi|f$ soit intégrable sur \mathbb{R} , la variable aléatoire $\psi(X)$ admet pour espérance :

$$E[\psi(X)] = \int_{\mathbb{R}} \psi(x) f(x) dx.$$

Remarque: La variable aléatoire $\psi(X)$ n'admet pas forcément de densité, comme nous le constatons en prenant $\psi \equiv 0$.

Le lecteur est invité à consulter [DAN 438-450] pour des exemples et propriétés de variables à densité (que Dantzer appelle des variables *continues*).

13.5 Moments d'une variable aléatoire

Le lecteur pourra étudier dans le livre d'ESCOFFIER ou dans le tome 1 d'OUVRARD (par exemple) les notions de *moments*, variance et écart-type d'une variable aléatoire réelle en distinguant le cas discret et le cas où la variable admet une densité.

Une application importante de la notion de variance est l'inégalité de Bienaymé-Tchebychev, qui est une clé dans la démonstration de la loi faible des grands nombres. Dans l'énoncé suivant, la v.a.r. X est soit discrète, soit à densité.

Proposition 13.5.1 (Inégalité de Bienaymé-Tchebychev) Considérons une variable aléatoire réelle X admettant un moment d'ordre 2. Pour tout t > 0, nous avons :

$$P(|X - E[X]| \ge t) \le \frac{\operatorname{Var} X}{t^2}$$

Dans les ouvrages cités ci-dessus, le lecteur trouvera encore les notions de covariance et de coefficient de corrélation pour un couple de variables aléatoires. Ces notions sont introduites en distinguant à nouveau le cas discret et le cas où les variables admettent des densités, conformément au programme officiel.

13.6 Exercices sur les fonctions de répartition

Dans cette section, nous regroupons quelques exercices sur les variables aléatoires réelles qui peuvent tous être résolus en utilisant la notion de fonction de répartition. En outre, les exercices 13.6.3, 13.6.4 et 13.6.5 peuvent être résolus par une seconde méthode : utiliser la proposition 13.4.2 en faisant un changement de variable dans une intégrale sur \mathbb{R} .

13.6.1 Minimum de variables exponentielles.

Soient X_1, \dots, X_n des v.a.r. suivant des lois exponentielles de paramètres respectifs $\lambda_1, \dots, \lambda_n$. On suppose que ces v.a.r. sont indépendantes , ce qui équivaut à :

 $\forall (x_i)_{1 \leq i \leq n} \in \mathbb{R}^n$, les événements $\{X_i \leq x_i\}, 1 \leq i \leq n$, sont mutuellement indépendants.

Calculer la loi de $X = \min_{1 \le i \le n} X_i$.

13.6.2 Variables amnésiques.

[COT 91-92] Soit T une v.a. à valeurs réelles telle que, pour tous $s, t \ge 0$, on ait :

$$P(T > t + s) = P(T > t)P(T > s).$$

Le but de cet exercice est de montrer que, soit P(T > 0) = 0, soit T suit une loi exponentielle.

- 1. Montrer que si P(T > 0) > 0, alors pour tout t > 0, P(T > t) > 0.
- 2. On définit alors l'application $f(t) = \log P(T > t)$, t > 0. Montrer que f(x) = xf(1) pour tout x rationnel positif, puis pour tout x réel positif.
- 3. Conclure.

13.6.3 Loi du χ^2 à un degré de liberté.

[COT 83 et 86]

Soit $X \sim \mathcal{N}(0,1)$. Montrer que la variable aléatoire réelle $Y = X^2$ admet pour densité l'application $f : \mathbb{R} \to \mathbb{R}_+$ définie par :

$$\forall y \in \mathbb{R} \quad f(y) = \frac{1}{\sqrt{2\pi y}} \exp(-\frac{y}{2}) \mathbf{1}_{\mathbb{R}_+^*}(y).$$

Cette densité définit la loi du χ^2 à un degré de liberté.

13.6.4 Loi gaussienne dans \mathbb{R} .

Soit $X \sim \mathcal{N}(0,1)$. Montrer que la variable aléatoire réelle $Y = m + \sigma X$, où $m \in \mathbb{R}$ et $\sigma > 0$, admet une densité que l'on calculera. Comment s'appelle la loi de Y?

13.6.5 Avec une loi de Cauchy.

[COT 52-53] Soit X une variable aléatoire réelle suivant une loi de Cauchy de paramètre 1.

- 1. Quelle est la loi de aX, où $a \in \mathbb{R}^*$?
- 2. Montrer que $Y = \log |X|$ admet la densité : $p(y) = \frac{1}{\pi \cosh y}$.

Chapitre 14

Vecteurs aléatoires et indépendance

Pour introduire la notion de vecteur aléatoire, nous nous intéressons à quelques situations particulières :

- Nous choisissons une personne au hasard dans la population française; soit X son âge et Y son taux de cholestérol. Est-ce qu'il y a un lien entre les v.a.r. X et Y ou bien prennent-elles leurs valeurs de façon indépendante?
- Nous observons la trajectoire de la fusée Ariane en repérant sa position à différents instants $t_i, 1 \leq i \leq p$, grâce à ses coordonnées $(X_{t_i}, Y_{t_i}, Z_{t_i}), 1 \leq i \leq p$ dans un certain repère orthonormé. Pour tenir compte des erreurs entre la trajectoire idéale et la trajectoire réelle, chacune de ces coordonnées est considérée comme une v.a.r. Une idée de la trajectoire réelle nous est alors donnée par le "grand vecteur" $(X_{t_1}, Y_{t_1}, Z_{t_1}, \cdots, X_{t_p}, Y_{t_p}, Z_{t_p})$ qui est aléatoire.
- Dans une chaîne de production, le responsable du contrôle qualité prélève p pièces au hasard sur la production de la journée et en mesure les masses respectives X_1, \dots, X_p . Comment peut-il estimer le poids moyen d'une pièce produite dans la journée ou encore l'écart-type de la masse d'une pièce?

Dans toutes ces situations, nous constatons notre besoin d'étudier plusieurs variables aléatoires réelles simultanément et non plus une par une. De façon générale, nous sommes amenés à étudier des *n*-uplets dont chacune des composantes est une variable aléatoire réelle.

14.1 Les vecteurs aléatoires et leurs lois

Dans toute la suite, nous considérerons un espace probabilisé (Ω, \mathcal{A}, P) .

Avant de définir les vecteurs aléatoires à valeurs dans \mathbb{R}^n , nous rappelons que la tribu borélienne sur \mathbb{R}^n est la tribu engendrée par l'ensemble des ouverts de \mathbb{R}^n (pour la topologie usuelle).

Proposition 14.1.1 Soit $n \in \mathbb{N}^*$. La tribu $\mathcal{B}(\mathbb{R}^n)$ est engendrée par l'ensemble des pavés ouverts à extrémités rationnelles, c'est-à-dire par :

$$\mathcal{E} = \left\{ \prod_{i=1}^{n} \left[a_i, b_i \right] \text{ avec } (a_1, \dots, a_n, b_1, \dots, b_n) \in \mathbb{Q}^{2n} \right\}$$

Démonstration: Puisque ces pavés sont ouverts, on a $\sigma(\mathcal{E}) \subset \mathcal{B}(\mathbb{R}^n)$. Prouvons l'inclusion inverse.

Si nous munissons \mathbb{R}^n de la norme infinie ($\|(x_1, \dots, x_n)\|_{\infty} = \sup_{1 \leq i \leq n} |x_i|$), nous constatons que les boules ouvertes sont des pavés ouverts. On conclut alors en utilisant le même schéma de démonstration que pour le premier point de la proposition 12.1.2

Remarque: On montre facilement que la tribu $\mathcal{B}(\mathbb{R}^n)$ est aussi engendrée par l'ensemble des pavés fermés à extrémités rationnelles, c'est-à-dire par :

$$\mathcal{E}' = \left\{ \prod_{i=1}^{n} [a_i, b_i] \text{ avec } (a_1, \dots, a_n, b_1, \dots, b_n) \in \mathbb{Q}^{2n} \right\}$$

De façon similaire à ce qui a été fait dans le chapitre précédent à propos des variables aléatoires réelles, nous définissons les vecteurs aléatoires à valeurs dans \mathbb{R}^n comme suit.

Définition 14.1.2 On appelle vecteur aléatoire à valeurs dans \mathbb{R}^n (ou vecteur aléatoire de dimension n) défini sur (Ω, \mathcal{A}, P) toute application $X : \Omega \to \mathbb{R}^n$ vérifiant :

$$\forall B \in \mathcal{B}(\mathbb{R}^n) \quad X^{-1}(B) \in \mathcal{A}.$$
 (14.1)

Un résultat général de la théorie de la mesure permet de démontrer la proposition suivante, que nous admettrons.

Proposition 14.1.3 Soit \mathcal{E} un ensemble de parties de \mathbb{R}^n qui engendre la tribu $\mathcal{B}(\mathbb{R}^n)$. Alors une application $X:\Omega\to\mathbb{R}^n$ est un vecteur aléatoire n-dimensionnel sur (Ω,\mathcal{A},P) si et seulement si la condition suivante est satisfaite :

$$\forall B \in \mathcal{E} \quad X^{-1}(B) \in \mathcal{A}.$$

Cette proposition admet un corollaire important, qui sera notre outil principal pour démontrer qu'une application $X:\Omega\to\mathbb{R}^n$ est un vecteur aléatoire défini sur (Ω,\mathcal{A},P) . Avant de l'énoncer, nous introduisons quelques notations. Pour tout $1\leq i\leq n$, nous appellerons $\phi_i:\mathbb{R}^n\to\mathbb{R}$ la *i*-ème projection canonique, définie par :

$$\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n \quad \phi_i(x) = x_i.$$

Pour tout $1 \leq i \leq n$, nous considérons alors l'application $X_i = \phi_i \circ X : \Omega \to \mathbb{R}$ de sorte que nous pouvons écrire l'application X à valeurs dans \mathbb{R}^n sous la forme $X = (X_1, \dots, X_n)$.

Corollaire 14.1.4 L'application $X : \Omega \to \mathbb{R}^n$ est un vecteur aléatoire de dimension n sur (Ω, \mathcal{A}, P) si et seulement si pour tout $1 \le i \le n$, l'application $X_i = \phi_i \circ X : \Omega \to \mathbb{R}$ est une variable aléatoire réelle sur (Ω, \mathcal{A}, P) .

Démonstration: Supposons que X est un vecteur aléatoire n-dimensionnel et montrons que pour tout $1 \le i \le n$ et tout intervalle réel]a,b[, nous avons $X_i^{-1}(]a,b[) \in \mathcal{A}$, ce qui suffira à établir le sens direct de notre corollaire d'après la proposition 12.2.2. Or nous avons l'égalité :

$$X_i^{-1}(]a,b[) = X^{-1}(\mathbb{R} \times \cdots \underbrace{]a,b[}_{i\text{-\`eme position}} \cdots \times \mathbb{R}) \in \mathcal{A}$$

puisque $\mathbb{R} \times \cdots = a, b[\cdots \times \mathbb{R}$ est un ouvert donc un borélien de \mathbb{R}^n . Passons au sens réciproque. D'après la proposition précédente, il suffit de vérifier que pour tout pavé ouvert $\prod_{i=1}^n |a_i, b_i|$, nous avons :

$$X^{-1}\left(\prod_{i=1}^{n}]a_i, b_i[\right) \in \mathcal{A}.$$

Or ceci résulte de l'égalité :

$$X^{-1}\left(\prod_{i=1}^n]a_i, b_i[\right) = \bigcap_{i=1}^n \underbrace{X_i^{-1}(]a_i, b_i[)}_{\in \mathcal{A}}.$$

Remarque: Autrement dit, un vecteur aléatoire de dimension n n'est autre qu'un n-uplet dont toutes les composantes sont des variables aléatoires réelles. Une conséquence immédiate de ce corollaire est que l'ensemble des vecteurs aléatoires n-dimensionnels définis sur (Ω, \mathcal{A}, P) est un \mathbb{R} -espace vectoriel.

Nous continuons à généraliser ce qui a été fait dans le chapitre précédent à propos des variables aléatoires réelles, en définissant la loi d'un vecteur aléatoire à valeurs dans \mathbb{R}^n comme suit.

Théorème et définition 14.1.5 Considérons un espace probabilisé (Ω, \mathcal{A}, P) et un vecteur aléatoire n-dimensionnel $X:(\Omega,\mathcal{A})\to(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)).$ Alors l'application $P_X : \mathcal{B}(\mathbb{R}^n) \to [0,1]$ définie par :

$$\forall B \in \mathcal{B}(\mathbb{R}^n) \quad P_X(B) = P(X \in B)$$

est une mesure de probabilité sur l'espace mesurable $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, appelée loi de probabilité (ou simplement loi) du vecteur aléatoire X.

Démonstration: Tout-à-fait similaire à celle qui a été faite dans le cas des variables aléatoires réelles.

14.2Vecteurs aléatoires discrets

Définition 14.2.1 Un vecteur aléatoire n-dimensionnel $X = (X_1, \dots, X_n)$ est dit discret si toutes ses composantes X_1, \dots, X_n sont des variables aléatoires réelles discrètes.

Pour tout $1 \le i \le n$, nous notons $E_i = X_i(\Omega)$ qui est donc un sous-ensemble réel fini ou dénombrable. Notons qu'alors $X(\Omega) \subset E_1 \times \cdots \times E_n$ est un sousensemble de \mathbb{R}^n également fini ou dénombrable. Le lecteur pourra montrer que connaître la loi d'un vecteur aléatoire discret équivaut à connaître toutes les quantités suivantes :

$$P(X_1 = x_1, \dots, X_n = x_n), \quad x_1 \in E_1, \dots, x_n \in E_n.$$

14.3Vecteurs aléatoires à densité

Dans cette section, nous écrirons les énoncés dans le cas de la dimension 2 pour alléger les écritures mais tout se généralise en dimension n. Un vecteur aléatoire de dimension 2 est encore appelé couple aléatoire.

Définition 14.3.1 On appelle densité de probabilité sur \mathbb{R}^2 toute application $f: \mathbb{R}^2 \to \mathbb{R}_+$ intégrable et telle que :

$$\int_{\mathbb{R}^2} f(x, y) \, dx dy = 1.$$

Exemple: Si $D \subset \mathbb{R}^2$ admet une aire non nulle et finie, alors l'application $f : \mathbb{R}^2 \to \mathbb{R}_+$ définie par :

$$\forall (x,y) \in \mathbb{R}^2 \quad f(x,y) = \frac{1}{\operatorname{aire}(D)} \mathbf{1}_D(x,y)$$

est une densité de probabilité appelée densité uniforme sur D.

Définition 14.3.2 On dit qu'un couple aléatoire (X,Y) admet f pour densité si pour tous intervalles réels I et J, on a l'égalité :

$$P(X \in I, Y \in J) = \int_{I \times J} f(x, y) \, dx dy.$$

Remarques

1. L'égalité précédente s'écrit évidemment de façon équivalente :

$$P((X,Y) \in I \times J) = \int_{I \times J} f(x,y) \, dx dy.$$

Un résultat de théorie de la mesure nous dit alors que

$$P((X,Y) \in B) = \int_{B} f(x,y) \, dx dy,$$

pour tout sous-ensemble $B \subset \mathbb{R}^2$ pour lequel l'intégrale du membre de droite a un sens (par exemple un domaine simple du plan).

2. Il n'est pas nécessaire de vérifier à l'avance que f est une densité de probabilité sur \mathbb{R}^2 mais seulement que f est une application positive et intégrable sur \mathbb{R}^2 . En effet, en appliquant l'égalité précédente avec $I = J = \mathbb{R}$, on en déduit que f est bien une densité de probabilité.

Théorème 14.3.3 (de transfert) Soit (X,Y) un couple aléatoire de densité f et $\psi : \mathbb{R}^2 \to \mathbb{R}$ une application telle que $|\psi|f$ soit intégrable sur \mathbb{R}^2 . Alors $\psi(X,Y)$ est une variable aléatoire réelle qui admet pour espérance :

$$E[\psi(X,Y)] = \int_{\mathbb{R}^2} \psi(x,y) f(x,y) \, dx dy.$$

Conformément au programme, nous admettons ce théorème. Remarquons simplement que $\psi(X,Y)$ n'est pas nécessairement une variable à densité, comme nous le voyons en prenant $\psi \equiv 0$.

Proposition 14.3.4 Soit (X,Y) un couple aléatoire et $f: \mathbb{R}^2 \to \mathbb{R}_+$ une application intégrable sur \mathbb{R}^2 . Alors il y a équivalence entre les deux propositions suivantes :

- 1. L'application f est une densité de probabilité sur \mathbb{R}^2 et le couple aléatoire (X,Y) admet f pour densité.
- 2. Pour toute application $\psi : \mathbb{R}^2 \to \mathbb{R}$ telle que $|\psi|f$ soit intégrable sur \mathbb{R}^2 , nous avons l'égalité :

$$E[\psi(X,Y)] = \int_{\mathbb{R}^2} \psi(x,y) f(x,y) \, dx dy.$$

Démonstration: L'implication $1 \Rightarrow 2$ n'est autre que le théorème de transfert. Montrons donc $2 \Rightarrow 1$.

En appliquant une première fois notre égalité avec $\psi \equiv 1$, nous obtenons que f est bien une densité de probabilité sur \mathbb{R}^2 .

Pour tous intervalles réels I et J, nous appliquons maintenant l'égalité avec $\psi = \mathbf{1}_{I \times J}$. Remarquons d'abord que

$$E[\mathbf{1}_{I \times J}(X,Y)] = E[\mathbf{1}_{\{X \in I, Y \in J\}}] = P(X \in I, Y \in J).$$

Nous obtenons donc:

$$P(X \in I, Y \in J) = \int_{I \times J} f(x, y) \, dx dy,$$

d'où la conclusion.

En utilisant le théorème du changement de variable dans des intégrales doubles et la proposition précédente, on prouve [FOA 197-198] le résultat suivant qui est très utile pour effectuer des calculs pratiques de densités de couples aléatoires :

Corollaire 14.3.5 Soit Φ un C^1 -difféomorphisme de U sur V, où U et V sont deux ouverts de \mathbb{R}^2 . Considérons un couple aléatoire (X,Y) admettant une densité f nulle en dehors de U (donc $P[(X,Y) \in U] = 1$) et définissons un nouveau couple aléatoire en posant $(S,T) = \Phi(X,Y)$. Alors (S,T) admet pour densité l'application q définie par :

$$\forall (s,t) \in \mathbb{R}^2 \quad q(s,t) = f \circ \Phi^{-1}(s,t) |J_{\Phi^{-1}}(s,t)| \mathbf{1}_V(s,t)$$

où $J_{\Phi^{-1}}(s,t)$ désigne le déterminant jacobien du difféomorphisme Φ^{-1} .

Le lecteur, après avoir lu la section suivante sur l'indépendance de variables aléatoires, pourra utiliser ce corollaire pour résoudre les exercices 14.5.4, 14.5.5 et 14.5.6.

Nous terminons cette section par un résultat sur l'existence de densités pour les v.a.r. coordonnées d'un vecteur aléatoire admettant une densité.

Proposition 14.3.6 Si le couple aléatoire (X,Y) admet une densité f sur \mathbb{R}^2 , alors les variables aléatoires réelles X et Y admettent respectivement des densités de probabilité sur \mathbb{R} données par :

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$
 , $f_Y(y) = \int_{\mathbb{R}} f(x, y) dx$,

dès lors que ces applications f_X et f_Y sont continues par morceaux. On les appelle les densités marginales.

Démonstration: Nous faisons la démonstration pour la variable X; la démonstration pour Y s'en déduit par symétrie.

Soit I un intervalle réel quelconque; nous avons alors les égalités :

$$P(X \in I) = P((X,Y) \in I \times \mathbb{R}) = \int_{I \times \mathbb{R}} f(x,y) \, dx dy.$$

Si nous définissons l'application $f_X : \mathbb{R} \to \mathbb{R}_+$ par :

$$\forall x \in \mathbb{R} \quad f_X(x) = \int_{\mathbb{R}} f(x, y) \, dy,$$

alors le théorème de Fubini-Tonelli implique que f_X est intégrable sur $\mathbb R$ et

$$\int_{I \times \mathbb{R}} f(x, y) \, dx dy = \int_{I} f_{X}(x) \, dx.$$

Finalement, nous avons bien montré que pour tout intervalle réel I,

$$P(X \in I) = \int_{I} f_X(x) \, dx.$$

Remarque: Ainsi, si un vecteur aléatoire admet une densité, alors chacune de ses composantes est une variable aléatoire à densité. Il est à noter que la réciproque est fausse. En effet, soit X une variable aléatoire réelle à densité (nous pouvons prendre $X \sim \mathcal{N}(0,1)$ par exemple). Nous allons prouver que le couple aléatoire (X,X) n'admet aucune densité, ce qui nous fournira un contre-exemple.

Notons $\Delta = \{(x, y) \in \mathbb{R}^2, x = y\}$ la première diagonale du plan. Nous avons bien sûr $P[(X, X) \in \Delta] = 1$.

Raisonnons par l'absurde en supposant que le couple aléatoire (X, X) admet une densité f. Nous avons alors :

$$P[(X,X) \in \Delta] = \int_{\Delta} f(x,y) \, dx dy = \int_{\mathbb{R}^2} \mathbf{1}_{x=y} f(x,y) \, dx dy.$$

D'après le théorème de Fubini-Tonelli, cette dernière intégrale vaut :

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathbf{1}_{x=y} f(x,y) dx \right) dy = \int_{\mathbb{R}} \left(\int_{y}^{y} f(x,y) dx \right) dy = 0,$$

d'où une contradiction.

14.4 Indépendance de p v.a.r.

Dans toute cette section, on fixe un entier $p \geq 2$.

Définition 14.4.1 On dit que p variables aléatoires réelles X_1, \dots, X_p sont indépendantes (sous-entendu dans leur ensemble) si pour tous intervalles réels I_1, \dots, I_p , on a l'égalité :

$$P(X_1 \in I_1, \dots, X_p \in I_p) = P(X_1 \in I_1) \dots P(X_p \in I_p)$$

Un instant de réflexion permet de constater que cette condition équivaut à : Pour tous interv. réels I_1, \dots, I_p , les évènements $\{X_1 \in I_1\}, \dots, \{X_p \in I_p\}$ sont indépendants dans leur ensemble.

Proposition 14.4.2 On considère p variables aléatoires réelles X_1, \dots, X_p indépendantes et admettant des densités respectives f_{X_1}, \dots, f_{X_p} . Alors le vecteur aléatoire (X_1, \dots, X_p) admet pour densité l'application $f: \mathbb{R}^p \to \mathbb{R}_+$ définie par :

$$\forall (x_1, \dots, x_p) \in \mathbb{R}^p \quad f(x_1, \dots, x_p) = f_{X_1}(x_1) \dots f_{X_p}(x_p)$$

Remarque: L'existence de cette densité est déjà un résultat intéressant en soi. En outre, sous nos hypothèses, nous obtenons une formule explicite de cette densité.

Démonstration: Pour tous intervalles réels I_1, \dots, I_p , on a l'égalité :

$$P(X_1 \in I_1, \dots, X_p \in I_p) = \prod_{i=1}^p P(X_i \in I_i) = \prod_{i=1}^p \int_{I_i} f_{X_i}(x_i) dx_i$$

Comme les applications $f_{X_i}, 1 \leq i \leq p$ sont toutes positives, le théorème de Fubini nous permet d'en déduire :

$$P((X_1, \dots, X_p) \in I_1 \times \dots \times I_p) = \int_{I_1 \times \dots \times I_p} f(x_1, \dots, x_p) dx_1 \dots dx_p,$$

où l'application f est définie comme dans l'énoncé, d'où la conclusion.

Réciproquement, nous avons le résultat suivant :

Proposition 14.4.3 Supposons que le vecteur aléatoire (X_1, \dots, X_p) admet pour densité une application $f : \mathbb{R}^p \to \mathbb{R}_+$ à variables séparables, c'est-à-dire vérifiant :

$$\forall (x_1, \cdots, x_p) \in \mathbb{R}^p \quad f(x_1, \cdots, x_p) = f_1(x_1) \cdots f_p(x_p),$$

où les applications $f_i : \mathbb{R} \to \mathbb{R}_+$ sont intégrables. Alors :

- 1. Les variables aléatoires réelles X_1, \dots, X_p sont indépendantes.
- 2. Pour tout $1 \le i \le p$, la variable aléatoire réelle X_i admet une densité de la forme

$$f_{X_i}(x_i) = c_i f_i(x_i) \,,$$

où les c_i sont des constantes positives telles que $\prod_{i=1}^p c_i = 1$.

Démonstration: Dans un souci d'alléger les notations, nous l'écrirons dans le cas p = 2 mais elle se généralise immédiatement.

D'après la proposition 14.3.6 , la variable aléatoire réelle X_1 admet pour densité

$$f_{X_1}(x_1) = \int_{\mathbb{R}} f(x_1, x_2) dx_2 = \int_{\mathbb{R}} f_1(x_1) f_2(x_2) dx_2 = c_1 f_1(x_1),$$

où l'on a posé $c_1 := \int_{\mathbb{R}} f_2(x_2) dx_2 \in \mathbb{R}_+$ puisque f_2 a été supposée intégrable. Par un raisonnement symétrique, on montre que X_2 admet une densité de la forme $f_{X_2}(x_2) = c_2 f_2(x_2)$.

D'une part, nous avons

$$\int_{\mathbb{R}^2} f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2 = \left(\int_{\mathbb{R}} f_{X_1}(x_1) dx_1 \right) \left(\int_{\mathbb{R}} f_{X_2}(x_2) dx_2 \right) = 1$$

puisque f_{X_1} et f_{X_2} sont des densités de probabilité sur \mathbb{R} . D'autre part, nous avons, en utilisant les égalités précédentes :

$$\int_{\mathbb{R}^2} f_{X_1}(x_1) f_{X_2}(x_2) \, dx_1 dx_2 = c_1 c_2 \int_{\mathbb{R}^2} f_1(x_1) f_2(x_2) \, dx_1 dx_2 = c_1 c_2$$

puisque $f(x_1, x_2) = f_1(x_1) f_2(x_2)$ est une densité de probabilité sur \mathbb{R}^2 . Nous en déduisons l'égalité $c_1c_2=1$. Notons qu'elle a pour conséquence :

$$\forall (x_1, x_2) \in \mathbb{R}^2 \quad f(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2) \tag{14.2}$$

Il nous reste à démontrer l'indépendance des v.a.r. X_1 et X_2 . Pour tous intervalles réels I_1, I_2 , nous avons l'égalité :

$$P(X_1 \in I_1, X_2 \in I_2) = P((X_1, X_2) \in I_1 \times I_2) = \int_{I_1 \times I_2} f(x_1, x_2) dx_1 dx_2$$

D'après l'égalité (14.2), nous avons donc :

$$P(X_1 \in I_1, X_2 \in I_2) = \int_{I_1 \times I_2} f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2$$

Comme les applications f_{X_1} et f_{X_2} sont positives, le théorème de Fubini nous permet d'en déduire :

$$P(X_1 \in I_1, X_2 \in I_2) = \left(\int_{I_1} f_{X_1}(x_1) dx_1 \right) \left(\int_{I_2} f_{X_2}(x_2) dx_2 \right) = P(X_1 \in I_1) P(X_2 \in I_2)$$
 d'où la conclusion. \square

14.5Exercices

14.5.1Calcul de densité marginale.

Soit (X,Y) un couple aléatoire à valeurs dans \mathbb{R}^2 , admettant pour densité:

$$p(x,y) = \frac{1}{\pi} \frac{ye^{-y}}{x^2 + y^2} \mathbf{1}_{\mathbb{R}_+^*}(y).$$

Vérifier que p est bien une densité sur \mathbb{R}^2 et calculer la densité marginale de la variable aléatoire réelle Y.

237

14.5.2 Densité gaussienne en dimension 2.

Soit (X,Y) un vecteur aléatoire à valeurs dans \mathbb{R}^2 de densité :

$$p(x,y) = \frac{1}{2\pi\sigma\tau\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma^2} - 2\rho\frac{xy}{\sigma\tau} + \frac{y^2}{\tau^2}\right)\right\} ,$$

où σ et τ sont deux réels positifs strictement et $|\rho| < 1$.

Montrer, par un calcul de densités marginales, que :

$$X \sim \mathcal{N}(0, \sigma^2)$$
 et $Y \sim \mathcal{N}(0, \tau^2)$.

14.5.3 Loi uniforme sur le disque

 $[OUV^1 223]$

Soit (X,Y) un couple aléatoire qui suit la loi uniforme sur le disque $D(0,1)=\{(x,y)\in\mathbb{R}^2,\ x^2+y^2\leq 1\}$. Calculer les densités marginales de X et Y et en déduire que ces deux variables aléatoires réelles ne sont pas indépendantes.

Remarque: Avec la notion de covariance qui apparaîtra dans la suite du cours, il est facile de montrer que Cov(X,Y)=0: on dit que les variables X et Y sont décorrélées. Cet exercice nous fournit donc un exemple de variables décorrélées mais non indépendantes.

14.5.4 Problème sur les lois Gamma et Bêta

[COT 83-87]

- 1. (a) Montrer que pour tout a > 0, on a : $0 < \int_0^{+\infty} e^{-x} x^{a-1} dx < +\infty$. On notera cette intégrale $\Gamma(a)$.
 - (b) Montrer que pour tout a > 0, on a $\Gamma(a+1) = a\Gamma(a)$ et en déduire la valeur de $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
 - (c) Montrer que pour tous $(\lambda, a) \in (\mathbb{R}_+^*)^2$, l'application définie comme suit :

$$g_{\lambda,a}(x) = \frac{\lambda^a}{\Gamma(a)} e^{-\lambda x} x^{a-1} \mathbf{1}_{\mathbb{R}_+^*}(x)$$

est une densité de probabilité.

On appelle loi Gamma de paramètres λ et a et l'on note $\gamma(\lambda, a)$ la loi de densité $g_{\lambda,a}$.

Reconnaître la loi $\gamma(\lambda, 1)$.

(d) Constater que la loi du χ^2 à un degré de liberté, définie dans l'exercice 13.6.3, est une loi γ particulière et en déduire que :

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

2. (a) Montrer que pour tous $(p,q) \in (\mathbb{R}_+^*)^2$, on a :

$$0 < \int_0^1 x^{p-1} (1-x)^{q-1} dx < +\infty.$$

On notera cette intégrale $\beta(p,q)$.

(b) Pour q > 1, établir une relation entre $\beta(p,q)$ et $\beta(p+1,q-1)$; en déduire la valeur de $\beta(p,q)$ pour $p \in \mathbb{N}^*, q \in \mathbb{N}^*$.

On appelle loi Bêta(p,q) de première espèce la loi de densité :

$$\frac{1}{\beta(p,q)}x^{p-1}(1-x)^{q-1}\mathbf{1}_{]0,1[}(x).$$

3. On considère deux v.a.r. indépendantes X et Y de lois respectives $\gamma(\lambda,a)$ et $\gamma(\lambda,b)$. Montrer que S=X+Y et $T=\frac{X}{X+Y}$ sont indépendantes et préciser leurs lois.

Montrer qu'on a la relation :

$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

4. Soit $X = (X_1, X_2, \dots, X_n)$ un vecteur aléatoire dont les composantes sont i.i.d. de loi $\mathcal{N}(0,1)$. Déduire de ce qui précède que la variable aléatoire réelle $||X||^2$ admet la densité :

$$f_n(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} \exp(-\frac{x}{2}) \mathbf{1}_{\mathbb{R}_+^*}(x).$$

Cette densité définit la loi du χ^2 à n degrés de liberté.

14.5.5Gauss et Cauchy.

[FOA 201]

On considère deux v.a.r. indépendantes S et T de même loi $\mathcal{N}(0,1)$. Montrer que le couple $(\frac{S}{T}, T)$ admet une densité que l'on calculera. En déduire, par calcul de densité marginale, que $\frac{S}{T}$ suit une loi de Cauchy de paramètre 1.

14.5. EXERCICES 239

14.5.6 Avec des lois exponentielles.

 $[OUV^2 75-77]$

Soient $X \sim Exp(\lambda)$ et $Y \sim Exp(\mu)$ deux variables aléatoires réelles indépendantes $(\lambda > 0, \, \mu > 0)$.

On définit les variables aléatoires réelles $U=\inf(X,Y)$ et V=|X-Y|. Montrer que U et V sont indépendantes.

Chapitre 15

Loi des grands nombres.

En ce qui concerne les théorèmes limites (c'est-à-dire les théorèmes qui énoncent des résultats asymptotiques) en calcul des probabilités, le programme comprend la loi faible des grands nombres avec sa démonstration par l'inégalité de Bienaymé-Tchebychev, ainsi que deux théorèmes admis : la loi forte des grands nombres et le théorème central limite. Nous traiterons ce dernier théorème, encore appelé théorème-limite central, et ses conséquences dans le chapitre suivant, en nous concentrant dans le présent chapitre sur les deux énoncés (faible et fort) de loi des grands nombres.

Introduction Un célèbre fabricant de piles électriques affirme : "elles durent deux fois plus longtemps". Pour déterminer si c'est de la publicité mensongère ou non, il faudrait connaître l'espérance de vie d'une pile de ce type et la comparer à celle d'une pile "ordinaire". Mais comment procéder dans la pratique pour évaluer, au moins approximativement, la quantité abstraite E[X], où X est la durée de vie d'une pile en fonctionnement continu, que nous modélisons par une variable aléatoire réelle?

Une idée qui vient naturellement à l'esprit est de tester indépendamment les unes des autres N piles du même type et, en notant $X_i(\omega)$ la durée de vie de la i-ème pile observée à la fin de cette expérience, de faire l'approximation suivante pour N suffisamment grand :

$$\frac{X_1(\omega) + \dots + X_N(\omega)}{N} \approx E[X].$$

Pour justifier cette démarche, nous aurons besoin de théorèmes limites en probabilité. Le premier, appelé *loi des grands nombres*, montre que l'on a bien la convergence suivante dans un sens à préciser :

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = E[X].$$

Le second, appelé théorème central limite, précisera à quelle vitesse la convergence a lieu dans la loi des grands nombres, ce qui a une importance énorme dans les applications pratiques (statistique, méthodes de Monte-Carlo...)

Notons que pour donner un sens mathématique rigoureux à la limite précédente, il ne suffit pas d'avoir un "grand nombre" de variables aléatoires réelles X_1, \dots, X_N modélisant les durées de vie des piles testées mais une suite $(X_i)_{i\in\mathbb{N}^*}$ de variables aléatoires réelles. Notre hypothèse de base est que les durées de vie des différentes piles sont indépendantes les unes des autres mais qu'elles ont toute le même comportement aléatoire, plus précisément la même loi de probabilité. Avant d'aborder les théorèmes limites, nous aurons donc besoin d'étudier quelques propriétés d'une suite $(X_i)_{i\in\mathbb{N}^*}$ de variables aléatoires réelles indépendantes ayant toutes même loi.

Dans toute la suite de ce chapitre, les variables aléatoires considérées sont définies sur un espace de probabilité (Ω, \mathcal{A}, P) .

15.1 Suite indépendante équidistribuée.

Définition 15.1.1 Une suite de variables aléatoires réelles $(X_i)_{i \in \mathbb{N}^*}$ est dite indépendante si pour tout $k \in \mathbb{N}^*$ et pour tous indices $1 \le i_1 < i_2 < \cdots < i_k$, les variables aléatoires réelles X_{i_1}, \cdots, X_{i_k} sont indépendantes.

Une suite de variables aléatoires réelles $(X_i)_{i\in\mathbb{N}^*}$ est dite identiquement distribuée (ou équidistribuée) si toutes les variables aléatoires réelles X_i , $i\in\mathbb{N}^*$ ont même loi de probabilité.

Une suite $(X_i)_{i \in \mathbb{N}^*}$ possédant ces deux propriétés est donc dite indépendante identiquement distribuée (i.i.d. en abrégé).

Nous retrouverons cette hypothèse tout au long de ce chapitre. Elle correspond à une expérience répétée à l'infini dans des conditions identiques (bien sûr, dans la pratique, elle n'est répétée qu'un "grand nombre" de fois).

Par exemple, un jeu de pile ou face répété à l'infini est modélisé par une suite i.i.d. de variables de Bernoulli de paramètre p.

Proposition 15.1.2 Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite i.i.d. et $f \in C(\mathbb{R}, \mathbb{R})$. Alors la suite $(f(X_i))_{i \in \mathbb{N}^*}$ est encore i.i.d.

Démonstration: Montrons d'abord que la suite $(f(X_i))_{i \in \mathbb{N}^*}$ est indépendante, c'est-à-dire que pour tout $k \in \mathbb{N}^*$ et tous indices $1 \le i_1 < \cdots < i_k$, les variables aléatoires réelles $f(X_{i_1}), \cdots, f(X_{i_k})$ sont indépendantes.

Nous considérons donc des intervalles ouverts réels arbitraires I_1, \dots, I_k et nous calculons la probabilité suivante :

$$P[f(X_{i_1}) \in I_1, \dots, f(X_{i_k}) \in I_k] = P[X_{i_1} \in f^{-1}(I_1), \dots, X_{i_k} \in f^{-1}(I_k)].$$

Remarquons que les sous-ensembles réels $f^{-1}(I_1), \dots, f^{-1}(I_k)$ sont ouverts en tant qu'images réciproques d'ouverts par une application continue; ce sont donc des éléments de la tribu borélienne $\mathcal{B}(\mathbb{R})$. Or, par hypothèse, les variables X_{i_1}, \dots, X_{i_k} sont indépendantes, si bien que nous pouvons encore écrire la probabilité précédente sous forme du produit :

$$P[X_{i_1} \in f^{-1}(I_1)] \cdots P[X_{i_k} \in f^{-1}(I_k)] = P[f(X_{i_1}) \in I_1] \cdots P[f(X_{i_k}) \in I_k],$$

ce qui nous permet de conclure.

Passons à la démonstration de l'équidistribution de la suite $(f(X_i))_{i\in\mathbb{N}^*}$. En notant P_{X_i} la loi de probabilité de la variable aléatoire réelle X_i , nous avons par hypothèse :

$$\forall i \in \mathbb{N}^* \quad P_{X_i} = P_{X_1}.$$

Pour tout $i \in \mathbb{N}^*$ et tout intervalle ouvert réel I, nous avons donc :

$$P[f(X_i) \in I] = P[X_i \in f^{-1}(I)] = P_{X_i}[f^{-1}(I)] = P_{X_1}[f^{-1}(I)] = P[f(X_1) \in I],$$

ce qui s'écrit encore :

$$P_{f(X_i)}(I) = P_{f(X_1)}(I).$$

Une loi de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ étant entièrement déterminée par ses valeurs sur les intervalles ouverts, nous avons ainsi démontré :

$$\forall i \in \mathbb{N}^* \quad P_{f(X_i)} = P_{f(X_1)}.$$

Remarque: Si nous avions considéré une suite $(f_i)_{i\in\mathbb{N}^*}$ d'applications continues de \mathbb{R} dans \mathbb{R} , alors la suite $(f_i(X_i))_{i\in\mathbb{N}^*}$ serait encore indépendante mais n'aurait aucune raison d'être identiquement distribuée. Le lecteur pourra adapter la première partie de la démonstration précédente à titre d'exercice. Il est très facile de trouver un contre-exemple en ce qui concerne l'équidistribution.

Notations: Dans la suite, nous noterons $L^1(\Omega, \mathcal{A}, P)$ l'ensemble des variables aléatoires réelles définies sur l'espace de probabilité (Ω, \mathcal{A}, P) et admettant une espérance.

De même, nous noterons $L^2(\Omega, \mathcal{A}, P)$ l'ensemble des variables aléatoires réelles X définies sur l'espace de probabilité (Ω, \mathcal{A}, P) et admettant un moment d'ordre deux, c'est-à-dire telles que X^2 admet une espérance.

Nous ferons l'abus de langage courant consistant à appeler variable de variance finie une variable admettant un moment d'ordre deux. C'est un abus

de langage parce que si X n'est pas une variable de variance finie, cela ne signifie pas qu'elle a une variance infinie mais que sa variance n'est pas définie du tout! C'est le cas par exemple si X suit une loi de Cauchy.

On démontre l'inclusion $L^2(\Omega, \mathcal{A}, P) \subset L^1(\Omega, \mathcal{A}, P)$ en utilisant l'inégalité $|x| \leq x^2 + 1$ valable pour tout réel x.

Proposition 15.1.3 Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite identiquement distribuée (mais pas nécessairement indépendante).

Alors nous avons l'équivalence suivante :

$$[\forall i \in \mathbb{N}^* \ X_i \in L^1(\Omega, \mathcal{A}, P)] \iff X_1 \in L^1(\Omega, \mathcal{A}, P).$$

Nous dirons alors que la suite (X_i) est dans $L^1(\Omega, \mathcal{A}, P)$ et, dans ce cas, toutes les variables aléatoires réelles ont la même espérance $m = E[X_i], i \in \mathbb{N}^*$. De même, nous avons l'équivalence :

$$[\forall i \in \mathbb{N}^* \ X_i \in L^2(\Omega, \mathcal{A}, P)] \iff X_1 \in L^2(\Omega, \mathcal{A}, P).$$

Nous dirons alors que la suite (X_i) est dans $L^2(\Omega, \mathcal{A}, P)$ et, dans ce cas, toutes les variables aléatoires réelles ont la même variance $\sigma^2 = \text{Var}X_i$, $i \in \mathbb{N}^*$.

Démonstration: Nous ne ferons la démonstration que dans le cas où la loi commune aux variables X_i admet une densité de probabilité g.

Le lecteur pourra à titre d'exercice faire la preuve dans le cas où cette loi commune est discrète. Nous admettrons cette proposition dans les autres cas. D'après le théorème de transfert, nous avons pour tout $i \in \mathbb{N}^*$:

$$E[|X_i|] = \int_{-\infty}^{+\infty} |x|g(x) dx = E[|X_1|],$$

ce qui nous donne la première équivalence.

En outre, si l'intégrale impropre précédente est convergente, ce qui équivaut à :

$$\forall i \in \mathbb{N}^* \quad X_i \in L^1(\Omega, \mathcal{A}, P)$$
,

le théorème de transfert nous donne encore :

$$E[X_i] = \int_{-\infty}^{+\infty} x g(x) dx = E[X_1]$$

et nous posons $m := E[X_1]$.

De façon similaire, nous obtenons la deuxième équivalence en écrivant, pour tout $i \in \mathbb{N}^*$:

$$E[X_i^2] = \int_{-\infty}^{+\infty} x^2 g(x) dx = E[X_1^2].$$

Si cette espérance est finie, en gardant la notation $m = E[X_i]$ (qui a un sens puisque $L^2(\Omega, \mathcal{A}, P) \subset L^1(\Omega, \mathcal{A}, P)$), nous avons pour tout $i \in \mathbb{N}^*$:

$$\operatorname{Var} X_i = E[X_i^2] - m^2 = E[X_1^2] - m^2 = \operatorname{Var} X_1 = \sigma^2.$$

15.2 Convergences de suites de variables aléatoires réelles

15.2.1 Événements négligeables, égalité presque sûre.

Définition 15.2.1 Un événement $A \in \mathcal{A}$ est dit négligeable si P(A) = 0.

En termes courants, un événement négligeable n'a donc "aucune chance de se produire", il est "extrêmement improbable" mais il ne faudrait pas en conclure pour autant qu'il est impossible : seul l'événement \varnothing est qualifié d'impossible. Pour illustrer cette distinction, prenons l'exemple d'un nombre réel tiré au hasard uniformément entre 0 et 1. Nous pouvons modéliser cette expérience en prenant $\Omega = [0,1]$, $\mathcal{A} = \mathcal{B}([0,1])$, qui est la plus petite tribu sur Ω contenant tous les sous-intervalles de [0,1], et en prenant pour P la mesure de Lebesgue, qui est (nous admettons son existence et son unicité) l'unique probabilité sur (Ω, \mathcal{A}) telle que :

$$\forall [a, b] \subset [0, 1] \quad P([a, b]) = b - a.$$

Soit $x \in [0,1]$ arbitraire fixé. Nous constatons que l'événement $A = \{x\} = [x,x]$ est négligeable. Il n'est néanmoins pas impossible qu'un nombre tiré au hasard entre 0 et 1 soit égal à x.

Proposition 15.2.2 Toute union finie ou dénombrable d'événements négligeables est encore un événement négligeable.

Démonstration: Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ une suite d'événements tels que :

$$\forall n \in \mathbb{N} \quad P(A_n) = 0.$$

Par propriété de sous- σ -additivité de la mesure de probabilité P (cf. formule (11.2) page 180), nous avons alors :

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq\sum_{n\in\mathbb{N}}P(A_n)=0,$$

d'où la conclusion.

Remarque: Cela n'a plus aucune raison d'être vrai pour une union quelconque. Ainsi, si nous reprenons l'exemple précédent, nous avons :

$$\Omega = \bigcup_{x \in [0,1]} \{x\},\,$$

qui n'est évidemment pas négligeable.

Définition 15.2.3 Un événement A est dit presque sûr si l'événement complémentaire A^c est négligeable.

Deux variables aléatoires réelles X et Y sont dites égales presque sûrement si l'événement $\{\omega \in \Omega, X(\omega) = Y(\omega)\}$ est presque sûr.

Un événement presque sûr est donc un événement de probabilité 1. Deux variables aléatoires réelles sont égales presque sûrement si et seulement si l'événement $\{X \neq Y\}$ est négligeable. À titre d'exercice, le lecteur pourra en déduire que l'égalité presque sûre est une relation d'équivalence sur l'ensemble des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) .

15.2.2 Convergences en probabilité et presque sûre.

Nous définissons maintenant deux types de convergence concernant les suites de variables aléatoires réelles.

Définition 15.2.4 Soient $(Y_n)_{n\in\mathbb{N}^*}$ et Y des variables aléatoires réelles définies sur un espace de probabilité (Ω, \mathcal{A}, P) .

On dit que la suite (Y_n) converge presque sûrement vers Y et l'on note $Y_n \xrightarrow{p.s.} Y$ s'il existe un événement négligeable $N \in \mathcal{A}$ tel que :

$$\forall \omega \notin N \quad Y_n(\omega) \longrightarrow Y(\omega).$$

On dit que la suite (Y_n) converge en probabilité vers Y et l'on note $Y_n \xrightarrow[n \to +\infty]{(P)}$ Y si:

$$\forall \epsilon > 0 \quad P(|Y_n - Y| > \epsilon) \longrightarrow 0.$$

Proposition 15.2.5 Une limite en probabilité est unique modulo l'égalité presque sûre.

Démonstration: Supposons que la suite (Y_n) converge en probabilité à la fois vers Y et Z. Pour tout $\epsilon > 0$, nous écrivons alors l'inclusion (facile à vérifier en passant aux événements complémentaires et en appliquant l'inégalité triangulaire) :

$$\{|Y-Z|>\epsilon\}\subset\{|Y_n-Y|>\frac{\epsilon}{2}\}\cup\{|Y_n-Z|>\frac{\epsilon}{2}\}.$$

Par passage aux probabilités puis en faisant tendre n vers l'infini, nous en déduisons : $P(|Y-Z| > \epsilon) = 0$.

Comme $\epsilon > 0$ était arbitraire, nous en déduisons que pour tout $p \in \mathbb{N}^*$, $P(|Y - Z| > \frac{1}{p}) = 0$.

Nous concluons alors en écrivant :

$$P(Y \neq Z) = P\left(\lim \uparrow \left\{ |Y - Z| > \frac{1}{p} \right\} \right) = \lim \uparrow P\left(|Y - Z| > \frac{1}{p}\right) = 0.$$

Il serait facile de démontrer directement qu'une limite au sens de la convergence presque sûre est unique modulo l'égalité presque sûre (vous pouvez le faire à titre d'exercice) mais cela va résulter de la proposition suivante.

Proposition 15.2.6 Si (Y_n) converge presque sûrement vers Y, alors (Y_n) converge en probabilité vers Y.

Démonstration: Le lecteur est invité à lire [DAN 452]. □

Remarque: La réciproque est fausse : le lecteur pourra s'en convaincre en étudiant le contre-exemple suivant.

Nous définissons une suite $(I_n)_{n\in\mathbb{N}^*}$ de sous-intervalles de [0,1] comme suit :

$$\forall k \in \mathbb{N} \quad \forall j \in \{0, 1, \dots, 2^k - 1\} \quad I_{2^k + j} = \left[\frac{j}{2^k}, \frac{j + 1}{2^k} \right].$$

Nous prenons alors pour espace de probabilité $(\Omega, \mathcal{A}, P) = (]0, 1], \mathcal{B}(]0, 1]), \lambda_{[]0,1]})$ et nous définissons pour tout $n \in \mathbb{N}^*$ la variable aléatoire $Y_n = \mathbf{1}_{I_n}$.

Nous constatons alors que $Y_n \xrightarrow[n \to +\infty]{(P)} 0$ mais que la suite (Y_n) ne converge pas presque sûrement puisque :

$$\forall \omega \in \Omega \quad \limsup Y_n(\omega) = 1 \text{ et } \liminf Y_n(\omega) = 0.$$

15.3 Loi des grands nombres

Théorème 15.3.1 (Loi faible des grands nombres) $Soit(X_i)_{i \in \mathbb{N}^*}$ une suite indépendante dans $L^2(\Omega, \mathcal{A}, P)$. Nous supposons que les variables X_i , $i \in \mathbb{N}^*$ ont toutes même espérance, notée m, et même variance.

Pour tout $n \in \mathbb{N}^*$, nous définissons la moyenne empirique d'ordre n:

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}.$$

Alors nous avons la convergence en probabilité suivante :

$$\bar{X}_n \xrightarrow[n \to +\infty]{(P)} m.$$

Démonstration: Pour tout $n \in \mathbb{N}^*$, définissons la variable $S_n = \sum_{i=1}^n X_i$ de sorte que $\bar{X}_n = S_n/n$. Comme $L^2(\Omega, \mathcal{A}, P)$ est un espace vectoriel, nous avons $S_n \in L^2(\Omega, \mathcal{A}, P)$ et nous calculons immédiatement $E[S_n] = nm$ puis, en utilisant l'indépendance des variables X_i ,

$$\operatorname{Var} S_n = \sum_{i=1}^n \operatorname{Var} X_i = n\sigma^2,$$

où l'on a noté σ^2 la variance commune aux variables X_i . Nous en déduisons que, pour tout $n \in \mathbb{N}^*$, $E[\bar{X}_n] = m$ et $\mathrm{Var}\bar{X}_n = \frac{\sigma^2}{n}$. Pour tout $\epsilon > 0$, l'inégalité de Bienaymé-Tchebychev nous permet alors d'écrire :

$$P(|\bar{X}_n - m| > \epsilon) \le \frac{1}{\epsilon^2} \text{Var} \bar{X}_n = \frac{\sigma^2}{n\epsilon^2} \to 0,$$

d'où la conclusion.

Remarques

- 1. La loi des grands nombres nous dit que, conformément à notre intuition, la moyenne empirique (observable après l'expérience) converge vers la moyenne probabiliste théorique, c'est-à-dire l'espérance.
- 2. Ce théorème s'applique en particulier à toute suite (X_i) i.i.d. dans $L^2(\Omega, \mathcal{A}, P)$. Au prix d'une démonstration plus difficile, on peut démontrer alors qu'il se généralise au cas d'une suite (X_i) i.i.d. dans $L^1(\Omega, \mathcal{A}, P)$. Cependant, le théorème suivant va nous conduire à une conclusion encore plus forte sous la même hypothèse d'indépendance et équidistribution dans $L^1(\Omega, \mathcal{A}, P)$.

Théorème 15.3.2 (Loi forte des grands nombres, Kolmogorov) Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite indépendante identiquement distribuée. Alors il y a équivalence entre les deux conditions suivantes :

- 1. La suite (\bar{X}_n) converge presque sûrement vers une certaine variable aléatoire X à valeurs dans \mathbb{R} .
- 2. La suite (X_i) est dans $L^1(\Omega, \mathcal{A}, P)$.

presque sûre de la suite des moyennes empiriques.

En supposant ces conditions satisfaites et en notant m l'espérance commune aux variables X_i , nous avons alors X=m presque sûrement, c'est-à-dire :

$$\bar{X}_n \xrightarrow{p.s.} m = E[X_i].$$

Ce théorème, que nous admettons, porte le nom de loi *forte* des grands nombres parce que la convergence presque sûre est plus forte que la convergence en probabilité qui apparaissait dans le théorème précédent. En outre, il nous donne une condition *nécessaire et suffisante* de convergence

Chapitre 16

Loi normale

16.1 La loi normale centrée réduite

Proposition 16.1.1 (Intégrale de Gauss)

$$\int_{-\infty}^{+\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

[GOURDON 163,335] démontre cette égalité par 3 méthodes différentes :

- dérivation d'une intégrale dépendant d'un paramètre
- inégalité de convexité, changement de variables et formule de Wallis

— passage en coordonnées polaires

Nous suivons maintenant la présentation de Foata et Fuchs dans leur ouvrage "Calcul des probabilités" chez Dunod, 2ème édition, pages 178 à 181.

Proposition et définition 16.1.2 L'application $g : \mathbb{R} \to \mathbb{R}_+$ définie par :

$$\forall x \in \mathbb{R} \quad g(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

est une densité de probabilité. La loi de densité g est appelée loi de Gauss ou loi normale (centrée réduite) et notée $\mathcal{N}(0,1)$.

Gauss a introduit cette loi en 1809 à propos d'un problème statistique d'estimation de paramètre.

Le graphe de la densité de Gauss g est une «courbe en cloche» aplatie (voir figure page 219). On le trace facilement en notant que f est paire, qu'elle admet un maximum global en x=0 égal à $\frac{1}{\sqrt{2\pi}}\simeq 0,399$ et que la courbe

admet deux points d'inflexion en x = -1 et x = 1.

Si $X \sim \mathcal{N}(0,1)$, on calcule immédiatement E[X] = 0 par le théorème de transfert en utilisant la parité de g et

$$Var X = E[X^{2}] = \int_{-\infty}^{+\infty} x^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx = 1$$

par intégration par parties. C'est pourquoi on parle de loi normale centrée réduite.

La fonction de répartition de la loi de Gauss est donnée par

$$\forall x \in \mathbb{R} \quad \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

On vérifie facilement que Φ est de classe C^{∞} , strictement croissante et donc bijective de \mathbb{R} sur son image]0,1[, telle que $\Phi(-x)=1-\Phi(x)$ pour tout $x\in\mathbb{R}$.

Son graphe est une «courbe en S» assez étalée, symétrique par rapport à (0, 1/2), où elle admet un point d'inflexion et où la pente de sa tangente vaut $\frac{1}{\sqrt{2\pi}} \simeq 0,399$.

On n'a pas de formule plus explicite pour Φ mais cette fonction et sa bijection réciproque Φ^{-1} sont tabulées, notamment pour des applications statistiques. Une valeur que nous utiliserons dans la suite est $\Phi(1,96) \approx 0,975$. Si $X \sim \mathcal{N}(0,1)$, alors $P(|X| \leq x) = 2\Phi(x) - 1$ pour tout $x \geq 0$, de sorte que $P(|X| \leq 1,96) \approx 0,95$.

On peut démontrer l'équivalence suivante lorsque $x \to +\infty$:

$$1 - \Phi(x) \sim \frac{1}{x} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$$

Comme cela tend «vite» vers 0, on dit que la loi de Gauss a une queue de distribution peu épaisse.

Proposition 16.1.3 La loi de Gauss admet des moments de tous les ordres. Si $X \sim \mathcal{N}(0,1)$, nous avons, pour tout $n \in \mathbb{N}$:

$$E[X^{2n+1}] = 0$$
 ; $E[X^{2n}] = \frac{(2n)!}{2^n n!}$

Démonstration: Pour tout $k \in \mathbb{N}^*$, nous avons $|x|^k g(x) = o(1/x^2)$ quand $x \to \pm \infty$ donc X admet un moment d'ordre k donné par :

$$E[X^k] = \int_{-\infty}^{+\infty} x^k \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dt$$

Lorsque k=2n+1, cette intégrale est nulle pour des raisons de parité. On démontre par intégration par parties que $E[X^{2n}]=(2n-1)E[X^{2n-2}]$ pour tout $n \in \mathbb{N}^*$, ce qui nous donne par récurrence la formule annoncée puisque $E[X^0]=1$ par convention.

Pour simuler numériquement la loi de Gauss, on utilise la proposition suivante, qui se démontre grâce à un changement de variable dans une intégrale double [OUVRARD tome 2, 67-68]

Proposition 16.1.4 (Méthode de Box-Muller) Soient U_1 et U_2 deux v.a.r. indépendantes, de même loi uniforme sur [0,1]. Nous posons :

$$X := \sqrt{-2\log U_1}\cos(2\pi U_2)$$
 , $Y := \sqrt{-2\log U_1}\sin(2\pi U_2)$.

Alors les variables aléatoires X et Y sont indépendantes et de même loi $\mathcal{N}(0,1)$.

16.2 La loi normale générale

Proposition et définition 16.2.1 Soient $\mu \in \mathbb{R}$ et $\sigma > 0$ deux paramètres fixés. L'application $g_{\mu,\sigma^2} : \mathbb{R} \to \mathbb{R}_+$ définie par :

$$\forall x \in \mathbb{R} \quad g_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

est une densité de probabilité. La loi de densité g_{μ,σ^2} est appelée loi normale de paramètres (μ,σ^2) et notée $\mathcal{N}(\mu,\sigma^2)$.

On vérifie que g_{μ,σ^2} est bien une densité en effectuant un changement de variable affine dans une intégrale simple, puis en utilisant la proposition 16.1.2. Notons que pour $\mu = 0$ et $\sigma^2 = 1$, on retrouve bien la densité de la loi $\mathcal{N}(0,1)$ telle qu'elle a été définie dans la sous-section précédente. Nous allons maintenant préciser les rapports entre la loi normale générale et la loi normale centrée réduite.

Proposition 16.2.2 Soient $\mu \in \mathbb{R}$ et $\sigma > 0$ deux paramètres fixés. On considère deux variables aléatoires réelles X et Y telles que $Y = \mu + \sigma X$. Alors on a l'équivalence suivante :

$$X \sim \mathcal{N}(0,1) \Longleftrightarrow Y \sim \mathcal{N}(\mu, \sigma^2)$$

Démonstration: On vérifie facilement que cette équivalence résulte de la proposition 13.3.3.

Pour simuler numériquement la loi $\mathcal{N}(\mu, \sigma^2)$, on applique d'abord la méthode de Box-Muller pour simuler $X \sim \mathcal{N}(0, 1)$ puis l'on calcule $Y = \mu + \sigma X$.

Corollaire 16.2.3 Soit $Y \sim \mathcal{N}(\mu, \sigma^2)$. Alors $E[Y] = \mu$ et $Var Y = \sigma^2$

Ce résultat justifie que le premier paramètre d'une loi normale soit traditionnellement noté μ ou m (comme «moyenne» probabiliste, c'est-à-dire espérance) et le second σ^2 puisqu'il est égal à la variance de la loi.

Corollaire 16.2.4 La fonction de répartition Φ_{μ,σ^2} de la loi $\mathcal{N}(\mu,\sigma^2)$ est donnée par :

$$\forall x \in \mathbb{R} \quad \Phi_{\mu,\sigma^2}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

Démonstration: En reprenant les notations de la proposition 16.2.2, nous avons, pour tout $x \in \mathbb{R}$:

$$\Phi_{\mu,\sigma^2}(x) = P(Y \le x) = P(\mu + \sigma X \le x) = P\left(X \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

Avant d'établir une importante propriété de stabilité de la loi normale générale, nous introduisons la notion de *produit de convolution* de deux densités de probabilité.

Proposition 16.2.5 Soient X et Y deux v.a.r. indépendantes admettant des densités respectives f et g. Alors la v.a.r. X+Y admet pour densité le produit de convolution de f et g, noté $f \star g$ et défini par :

$$\forall x \in \mathbb{R} \quad f \star g(x) = \int_{-\infty}^{+\infty} f(x - y)g(y) \, dy.$$

Démonstration: cf. [OUVRARD tome 1, 203-204].

La proposition suivante énonce la stabilité de la loi normale par produit de convolution.

Proposition 16.2.6 Soient X et Y deux v.a.r. indépendantes de lois respectives $\mathcal{N}(m_1, \sigma_1^2)$ et $\mathcal{N}(m_2, \sigma_2^2)$, avec $(m_1, m_2) \in \mathbb{R}^2$ et $(\sigma_1, \sigma_2) \in (\mathbb{R}_+^*)^2$. Alors la v.a.r. X + Y suit la loi $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Le résultat essentiel établi par cette proposition est que la somme de deux variables gaussiennes indépendantes est encore gaussienne. Il est alors facile de déterminer ses paramètres en en calculant l'espérance et la variance.

Démonstration: Commençons par réduire le problème au cas où X est centrée réduite et Y centrée en supposant démontrée la proposition suivante : si $X' \sim \mathcal{N}(0,1)$ et $Y' \sim \mathcal{N}(0,s^2)$, avec s > 0, sont indépendantes, alors $X' + Y' \sim \mathcal{N}(0,1+s^2)$. Nous pouvons alors en déduire la proposition dans le cas général en définissant les variables aléatoires réelles :

$$X' = \frac{X - m_1}{\sigma_1} \quad , \quad Y' = \frac{Y - m_2}{\sigma_1} \quad ,$$

si bien que les hypothèses précédentes sont satisfaites avec $s = \sigma_2/\sigma_1$ et :

$$X + Y = m_1 + \sigma_1 X' + m_2 + \sigma_1 Y' = m_1 + m_2 + \sigma_1 (X' + Y').$$

Par transformation affine de la variable $X' + Y' \sim \mathcal{N}(0, 1 + (\sigma_2^2/\sigma_1^2))$, nous obtenons alors la conclusion dans le cas général.

Nous supposons donc désormais $m_1=m_2=0,\,\sigma_1=1$ et $\sigma_2=s>0$. D'après la proposition 16.2.5, la variable aléatoire réelle X+Y admet une densité proportionnelle à :

$$\int_{-\infty}^{+\infty} e^{-\frac{(x-y)^2}{2}} e^{-\frac{y^2}{2s^2}} dy = \int_{-\infty}^{+\infty} \exp\left(-\frac{s^2x^2 - 2s^2xy + (1+s^2)y^2}{2s^2}\right) dy.$$

Cette dernière expression s'écrit encore :

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{(1+s^2)\left(y - \frac{s^2}{1+s^2}x\right)^2}{2s^2}\right) \exp\left(\left(\frac{s^2}{1+s^2} - 1\right)\frac{x^2}{2}\right) dy,$$

ou encore, puisque l'intégration porte sur la variable y,

$$\exp\left(-\frac{x^2}{2(1+s^2)}\right) \int_{-\infty}^{+\infty} \exp\left(-\frac{(1+s^2)\left(y - \frac{s^2}{1+s^2}x\right)^2}{2s^2}\right) dy.$$

Nous constatons que cette dernière intégrale est une constante en effectuant, à x fixé, le simple changement de variable $u=y-\frac{s^2}{1+s^2}\,x$. Nous avons donc prouvé que la variable aléatoire réelle X+Y admet une

Nous avons donc prouvé que la variable aléatoire réelle X+Y admet une densité proportionnelle à $\exp(-x^2/(2(1+s^2)))$. Nous en déduisons que la seule constante de proportionnalité possible pour que ce soit effectivement une densité de probabilité vaut $1/\sqrt{2\pi(1+s^2)}$ et que $X+Y\sim\mathcal{N}(0,1+s^2)$.

Pour une présentation de la loi normale dans \mathbb{R}^d , encore appelée loi de Laplace-Gauss en dimension d, le lecteur pourra lire [ESC 147ss] qui en fait une présentation cadrant bien avec le programme officiel.

16.3 Approximation normale de la loi binomiale

Historiquement, Abraham de Moivre, mathématicien anglais d'origine française, avait mis en évidence dès 1733 une approximation normale de la loi binomiale en étudiant un modèle de pile ou face avec une pièce équilibrée. Sa preuve reposait sur des calculs laborieux d'estimation des coefficients binomiaux.

Pierre-Simon de Laplace avait généralisé ce résultat en 1820 au cas d'une pièce éventuellement biaisée. Il avait également mis en évidence le lien entre la loi normale et la théorie des erreurs d'observation, dont nous reparlerons dans le chapitre suivant.

Nous suivons ici la présentation d'[OUVRARD tome 1, 228-229].

Théorème 16.3.1 (de Moivre, Laplace) Considérons $p \in]0,1[$ et, pour tout $n \in \mathbb{N}^*$, une variable aléatoire réelle S_n qui suit la loi binomiale B(n,p). Nous noterons \tilde{S}_n la variable centrée réduite associée à S_n , i.e.

$$\tilde{S}_n = \frac{S_n - E[S_n]}{\sigma(S_n)} = \frac{S_n - np}{\sqrt{np(1-p)}}.$$

Alors nous avons la convergence suivante, uniforme sur tous les intervalles réels I:

$$\sup_{I} \left| P(\tilde{S}_n \in I) - \int_{I} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt \right| \xrightarrow[n \to +\infty]{} 0.$$

Autrement dit, quand n est «grand», \tilde{S}_n suit une loi approximativement égale à la loi normale centrée réduite, ce que nous notons $\tilde{S}_n \approx \mathcal{N}(0,1)$. En utilisant un changement de variable affine dans une intégrale simple, nous pouvons dire de façon équivalente que $S_n \approx \mathcal{N}(np, np(1-p))$, toujours pour n «grand». Plus précisément, nous avons le résultat suivant :

Corollaire 16.3.2 Considérons $p \in]0,1[$ et, pour tout $n \in \mathbb{N}^*$, une variable aléatoire réelle S_n qui suit la loi binomiale B(n,p). Alors nous avons la convergence suivante, uniforme sur tous les intervalles réels I:

$$\sup_{I} \left| P(S_n \in I) - \int_{I} \frac{1}{\sqrt{2\pi np(1-p)}} \exp\left(-\frac{(t-np)^2}{2np(1-p)}\right) dt \right| \xrightarrow[n \to +\infty]{} 0.$$

Pour pouvoir utiliser cette approximation gaussienne de la loi binomiale, il nous reste à préciser ce que signifie n «grand»! Le théorème de Berry ¹-Esseen ², dont nous donnerons l'énoncé général dans le chapitre suivant, met en évidence le rôle joué par la quantité np(1-p) dans la qualité de l'approximation.

Proposition 16.3.3 (Berry-Esseen, cas binomial) Nous reprenons les hypothèses et les notations du théorème 16.3.1 et nous notons en outre $F_{\tilde{S_n}}$ la fonction de répartition de la variable $\tilde{S_n}$ et Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$. Nous avons alors, pour tout $n \in \mathbb{N}^*$:

$$\sup_{x \in \mathbb{R}} |F_{\tilde{S}_n}(x) - \Phi(x)| \le \frac{p^2 + (1-p)^2}{\sqrt{np(1-p)}}.$$

Si np(1-p) est suffisamment grand, le théorème de Berry-Esseen garantit que l'approximation de la loi binomiale par la loi normale sera bonne. Dans la pratique, certaines règles empiriques existent, variables d'ailleurs d'un ouvrage à l'autre! Une d'entre elles dit que l'approximation de la loi B(n,p) par la loi $\mathcal{N}(np,np(1-p))$ est considérée comme satisfaisante quand np(1-p) > 18 (référence : Dacunha-Castelle, Duflo, tome 1).

^{1.} Andrew C. Berry

^{2.} Carl-Gustav Esseen (1918-2001), mathématicien suédois

Si np(1-p) est trop petit pour que l'on puisse utiliser l'approximation normale, on pourra alors utiliser avantageusement l'approximation de la loi binomiale par la loi de Poisson. OUVRARD écrit que cette dernière est justifiée lorsque $n \geq 30$ et $p \leq 0, 1$. Notons que si $p \geq 0, 9$, l'approximation poissonnienne est aussi utilisable en comptant les échecs à la place des succès (ou les faces au lieu des piles!).

Le lecteur pourra trouver des applications pratiques de l'approximation gaussienne d'une loi binomiale dans l'exercice 7.4 du livre d'Ouvrard déja cité ou encore dans [REV 164-165] (exercice sur un serveur informatique).

Chapitre 17

Le théorème-limite central

Ce théorème-limite est considéré comme central en théorie des probabilités pour les deux raisons suivantes :

- 1. Il précise à quelle vitesse a lieu la convergence énoncée par la loi des grands nombres, ce qui a une importance cruciale pour les applications (intervalle de confiance en statistique, méthode de Monte-Carlo pour le calcul approché d'une intégrale etc.)
- 2. Il permet de répondre à la question suivante : Pourquoi les lois normales (ou gaussiennes) jouent-elles un rôle central dans la modélisation de phénomènes aussi divers qu'une erreur de mesure en Physique, une donnée psychométrique en Psychologie différentielle, une fluctuation dans l'évolution d'un cours de la bourse en Finance ou de la taille d'une population animale en Biologie?
 - Pourquoi le champ d'application des lois de Gauss est-il si large qu'on les a qualifiées de lois *normales*? Après tout, la densité gaussienne n'a pas une forme si simple que cela; pourquoi donc la considérer comme plus normale que les autres?

Le théorème-limite central (ou théorème central limite selon la terminologie du programme officiel) nous dit en gros que si l'on additionne beaucoup de variables indépendantes de variances finies, alors le résultat est une variable approximativement gaussienne.

La précision de ce résultat sous des hypothèses aussi faibles est surprenante car si l'on sait qu'une loi est gaussienne – i.e. de la forme $\mathcal{N}(m, \sigma^2)$ – alors on dispose de procédures statistiques qui permettent d'estimer les deux paramètres m et σ^2 et donc d'identifier complètement la loi (approximative) du phénomène étudié. Or notre hypothèse de départ sur les lois des variables indépendantes que l'on additionne est très faible : on demande simplement qu'elle soient de variances finies.

17.1 Énoncé classique

Conformément au programme officiel, nous admettons ce théorème.

Théorème 17.1.1 (Théorème-limite central) Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite i.i.d. de variables aléatoires réelles dans $L^2(\Omega, \mathcal{A}, P)$; notons m leur espérance commune et σ^2 leur variance commune et posons, pour tout $n \in \mathbb{N}^*$, $S_n = X_1 + \cdots + X_n$. Enfin, soit Z une variable aléatoire réelle de loi $\mathcal{N}(0, 1)$. Alors, pour tout intervalle réel I, nous avons la convergence suivante :

$$P\left(\frac{S_n - nm}{\sigma\sqrt{n}} \in I\right) \xrightarrow[n \to +\infty]{} P(Z \in I). \tag{17.1}$$

On dit que la suite de variables aléatoires réelles $((S_n - nm)/(\sigma\sqrt{n}))_{n \in \mathbb{N}^*}$ converge en loi vers Z (ou encore vers la loi normale $\mathcal{N}(0,1)$) et l'on note :

$$\frac{S_n - nm}{\sigma \sqrt{n}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1)$$

Remarques

1. La variable aléatoire réelle qui apparaît dans le membre de gauche est la variable centrée réduite associée à S_n par transformation affine. On vérifie en effet immédiatement que $E[S_n] = nm$ et $VarS_n = n\sigma^2$. Pour alléger les écritures, nous utiliserons la notation :

$$\tilde{S}_n := \frac{S_n - nm}{\sigma \sqrt{n}}$$

2. Si nous notons X_n la moyenne empirique d'ordre n associée à la suite $(X_i)_{i\in\mathbb{N}^*}$, alors le théorème-limite central s'écrit encore, pour tout intervalle réel I,

$$P\left(\frac{\sqrt{n}}{\sigma}(\bar{X}_n - m) \in I\right) \xrightarrow[n \to +\infty]{} P(Z \in I).$$

Ainsi, si I = [a, b], nous obtenons en utilisant la densité de la loi normale centrée réduite :

$$P\left(a \le \frac{\sqrt{n}}{\sigma}(\bar{X}_n - m) \le b\right) \xrightarrow[n \to +\infty]{} \int_a^b \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt.$$

Si nous prenons -a=b=1,96, nous obtenons (d'après la fin du paragraphe précédent) que lorsque n est «grand», il y a approximativement 95 chances sur 100 pour que l'on ait : $|\bar{X}_n - m| \leq 1,96\sigma/\sqrt{n}$. C'est en ce sens que le théorème-limite central implique que l'erreur commise en faisant une approximation de m par \bar{X}_n , comme nous y invite la loi des grands nombres, est d'ordre de grandeur σ/\sqrt{n} pour n «grand». On dit de façon équivalente que la convergence énoncée par la loi des grands nombres a lieu avec une vitesse d'ordre de grandeur \sqrt{n}/σ .

- 3. La convergence énoncée par la loi des grands nombres était valable sous l'hypothèse $(X_i)_{i\in\mathbb{N}^*}$ i.i.d. dans $L^1(\Omega, \mathcal{A}, P)$ mais pour préciser sa vitesse grâce au théorème-limite central, nous avons besoin d'une hypothèse supplémentaire : la suite $(X_i)_{i\in\mathbb{N}^*}$ est supposée dans $L^2(\Omega, \mathcal{A}, P)$.
- 4. En prenant I = [a, b] (pour fixer les idées) et en faisant un simple changement de variable dans une intégrale, on montre que la suite $((S_n nm)/\sqrt{n})_{n \in \mathbb{N}^*}$ converge en loi vers la loi normale $\mathcal{N}(0, \sigma^2)$.
- 5. La convergence en loi est une notion plus difficile à manipuler que la convergence en probabilité ou la convergence presque sûre. Elle est la plus faible de ces trois types de convergences : on peut montrer que, pour des variables aléatoires réelles quelconques $(Y_n)_{n\in\mathbb{N}^*}$ et Y, on a les implications

$$Y_n \xrightarrow[n \to +\infty]{\text{p.s.}} Y \Longrightarrow Y_n \xrightarrow[n \to +\infty]{\text{(P)}} Y \Longrightarrow Y_n \xrightarrow[n \to +\infty]{\mathcal{L}} Y.$$

Malgré la difficulté de cette notion, on est obligé d'en passer par la convergence en loi tout simplement parce que les types plus forts de convergence ne permettent pas d'obtenir un théorème du genre théorème-limite central : sous les hypothèses de ce théorème, on peut en effet prouver qu'il n'existe aucun $\alpha > 0$ tel que la suite $(n^{\alpha}(\bar{X}_n - m))_{n \in \mathbb{N}^*}$ converge en probabilité vers une variable aléatoire non presque sûrement nulle.

17.2 TLC et fonctions de répartition

Corollaire 17.2.1 Sous les hypothèses du théorème-limite central et en notant Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$, nous avons la convergence suivante pour tout $x \in \mathbb{R}$:

$$P\left(\frac{S_n - nm}{\sigma\sqrt{n}} \le x\right) \xrightarrow[n \to +\infty]{} \Phi(x). \tag{17.2}$$

Démonstration: Il suffit d'appliquer le théorème 17.1.1 avec $I =]-\infty, x]$.

Remarques

- 1. On peut reformuler cet énoncé en disant que, si l'on note F_n la fonction de répartition de la variable aléatoire réelle \tilde{S}_n , alors la suite $(F_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers la fonction de répartition Φ de la loi normale centrée réduite.
- 2. Le corollaire reste vrai si l'on remplace l'inégalité large par une inégalité stricte. Il suffit en effet de prendre $I=]-\infty,x[$ dans le théorème précédent. En nous souvenant des propriétés des fonctions de répartition, nous pouvons écrire ceci sous la forme :

$$\forall x \in \mathbb{R} \quad F_n(x-) \xrightarrow[n \to +\infty]{} \Phi(x) \tag{17.3}$$

3. On peut montrer que cet énoncé 17.2.1 n'est pas seulement un corollaire du théorème 17.1.1 mais lui est en fait équivalent. C'est pourquoi le lecteur trouvera le théorème-central limite énoncé sous cette forme (convergence simple de fonctions de répartition) dans plusieurs ouvrages. De même, la convergence (17.3) est en fait équivalente à l'énoncé du théorème-limite central.

Les convergences (17.2) et (17.3), qui sont donc équivalentes à l'énoncé du théorème-limite central, peuvent être améliorées. En effet, un critère de convergence uniforme appelé second théorème de Dini, permet de démontrer le résultat suivant, que nous admettrons :

Lemme 17.2.2 Soit $(F_n)_{n\in\mathbb{N}^*}$ une suite quelconque de fonctions de répartition qui converge simplement sur \mathbb{R} vers une fonction de répartition continue F. Alors $(F_n)_{n\in\mathbb{N}^*}$ converge uniformément vers F sur \mathbb{R} .

La fonction de répartition Φ de la loi $\mathcal{N}(0,1)$ étant continue (c'est d'ailleurs vrai pour toute fonction de répartition d'une loi qui admet une densité de probabilité), nous déduisons immédiatement de ce lemme que les convergences (17.2) et (17.3) sont en réalité uniformes sur \mathbb{R} . Par exemple, nous avons, en notant F_n la fonction de répartition de la variable aléatoire réelle \tilde{S}_n :

$$\sup_{x \in \mathbb{R}} |F_n(x) - \Phi(x)| \xrightarrow[n \to +\infty]{} 0 \tag{17.4}$$

Il est alors facile d'en déduire la proposition suivante, que le lecteur pourra prouver à titre d'exercice, en utilisant des égalités telles que :

$$P\left(\tilde{S}_{n} \in [a, b]\right) = F_{n}(b) - F_{n}(a-), P\left(\tilde{S}_{n} \in [a, b]\right) = F_{n}(b-) - F_{n}(a)$$

Proposition 17.2.3 Sous les hypothèses et avec les notations du théorèmelimite central, la convergence (17.1) est uniforme sur tous les intervalles réels I, ce qui s'écrit :

$$\sup_{I} \left| P\left(\frac{S_n - nm}{\sigma \sqrt{n}} \in I \right) - P(Z \in I) \right| \xrightarrow[n \to +\infty]{} 0 \tag{17.5}$$

Lorsque n tend vers l'infini, la loi de la variable \tilde{S}_n et la loi de la variable Z, c'est-à-dire la loi $\mathcal{N}(0,1)$, deviennent arbitrairement proches uniformément sur tous les intervalles réels I. C'est en ce sens que l'on peut dire que, lorsque n est suffisamment grand, la loi de la variable \tilde{S}_n est approximativement gaussienne centrée réduite, ce qu'on écrira (informellement) $\tilde{S}_n \approx \mathcal{N}(0,1)$.

Revenons maintenant au fait que les convergences (17.2) et (17.3) ont lieu uniformément sur \mathbb{R} . Si nous notons F_{S_n} la fonction de répartition de la variable S_n et $\Phi_{nm,n\sigma^2}$ la fonction de répartition de la loi $\mathcal{N}(nm,n\sigma^2)$, on démontre facilement que, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$:

$$F_{S_n}(x) = F_n\left(\frac{x - nm}{\sigma\sqrt{n}}\right) \text{ et } \Phi_{nm,n\sigma^2}(x) = \Phi\left(\frac{x - nm}{\sigma\sqrt{n}}\right).$$

Nous en déduisons les convergences uniformes suivantes :

$$\sup_{x\in\mathbb{R}}|F_{S_n}(x)-\Phi_{nm,n\sigma^2}(x)|\xrightarrow[n\to+\infty]{}0\,,\,\sup_{x\in\mathbb{R}}|F_{S_n}(x-)-\Phi_{nm,n\sigma^2}(x)|\xrightarrow[n\to+\infty]{}0.$$

Par un raisonnement similaire à ce qui a été fait précédemment, nous pouvons en déduire que, lorsque n tend vers l'infini, la loi de la variable S_n et la loi $\mathcal{N}(nm, n\sigma^2)$ deviennent arbitrairement proches uniformément sur tous les intervalles réels I. C'est en ce sens que l'on peut dire que, lorsque n est suffisamment grand, la loi de la variable S_n vaut approximativement la loi $\mathcal{N}(nm, n\sigma^2)$, ce que nous écrivons : $S_n \approx \mathcal{N}(nm, n\sigma^2)$.

Il nous reste à préciser ce que signifie n «grand»! Comme nous l'avons fait dans le chapitre précédent à propos du théorème de De Moivre-Laplace, nous utilisons le *théorème de Berry-Esseen*, ici dans son énoncé général, lequel nous donne des précisions sur la vitesse à laquelle a lieu la convergence énoncée par le théorème-limite central.

Le lecteur pourra retrouver cet énoncé dans "L'essentiel en théorie des probabilités" par Jean JACOD et Philip PROTTER chez Cassini, page 191 (corriger le membre de droite en recentrant la variable X_1). On ne connaît pas la valeur optimale de la constante C intervenant ci-dessous mais on sait que l'on peut prendre $C \leq 0, 8$.

Théorème 17.2.4 (Berry-Esseen) Soit $(X_i)_{i\in\mathbb{N}^*}$ une suite indépendante identiquement distribuée de variables aléatoires réelles dans $L^3(\Omega, \mathcal{A}, P)$. En reprenant les notations de (17.4), il existe une constante C > 0 telle que :

$$\forall n \in \mathbb{N}^* \quad \sup_{x \in \mathbb{R}} |F_n(x) - \Phi(x)| \le C \frac{E[|X_1 - E[X_1]|^3]}{\sigma^3 \sqrt{n}}$$

Pour savoir à quelle vitesse avait lieu la convergence dans la loi des grands nombres, nous avons dû rajouter une condition L^2 et la réponse nous a alors été fournie par le théorème-limite central. Pour savoir à quelle vitesse avait lieu la convergence énoncée par ce dernier, nous avons dû rajouter une condition L^3 et la réponse nous a alors été fournie par le théorème de Berry-Esseen. Remarquons que les questions de vitesse de convergence s'arrêtent là car le théorème de Berry-Esseen n'est pas un théorème asymptotique : la majoration qu'il énonce est valable pour tout entier $n \in \mathbb{N}^*$, même petit.

17.3 Un énoncé sans équidistribution

Nous avions annoncé dans l'introduction que, selon le théorème-limite central, si l'on additionne beaucoup de variables indépendantes admettant un moment d'ordre deux, alors le résultat est une variable approximativement gaussienne. C'est ce que nous venons de montrer mais à une objection près : jusqu'à présent, nous n'avons pas seulement supposé les variables indépendantes et dans $L^2(\Omega, \mathcal{A}, P)$ mais nous leur avons également demandé d'avoir toutes la même loi. Nous dirons simplement à ce sujet qu'il existe divers raffinements du théorème-limite central qui permettent, sous certaines conditions, de s'affranchir de l'hypothèse d'équidistribution. Nous donnons un tel énoncé à titre d'exemple, en l'admettant.

Proposition 17.3.1 (TLC, suite bornée dans $L^{2+\epsilon}$) $Soit \epsilon > 0$ $et(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes mais non nécessairement de même loi, formant une famille bornée dans $L^{2+\epsilon}(\Omega, \mathcal{A}, P)$, i.e. telle que:

$$\sup_{i \in \mathbb{N}^*} E[|X_i|^{2+\epsilon}] < +\infty.$$

Par commodité, nous supposons $E[X_i] = 0$ et nous notons $\sigma_i^2 = \text{Var}X_i$ pour tout $i \in \mathbb{N}^*$. Alors, si $\sum_{i=1}^{+\infty} \sigma_i^2 = +\infty$, nous avons la convergence en loi suivante :

$$\frac{S_n}{\sqrt{\sum_{i=1}^n \sigma_i^2}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0,1).$$

265

17.4 Test du χ^2 d'ajustement.

La construction de ce test statistique d'usage très courant fait appel à une version multidimensionnelle du théorème-limite central qui est hors programme. Nous admettrons donc certains résultats dans la suite, en présentant les idées essentielles permettant la mise en oeuvre de ce test.

Nous considérons n répétitions d'une expérience aléatoire qui produit un résultat dans un ensemble fini, par exemple [1; k].

Nous avons des raisons de supposer que la loi sur [1; k] qui gouverne cette expérience est donnée par $p = (p^1, \dots, p^k)$, avec $p^i \geq 0$ pour tout $i \in [1; k]$ et $p^1 + \dots + p^k = 1$, mais nous voudrions confirmer ou infirmer cette hypothèse au regard des valeurs $(x_1, \dots, x_n) = (X_1(\omega), \dots, X_n(\omega))$ observées au cours des n répétitions de l'expérience, c'est-à-dire tester l'ajustement de notre modèle à la réalité expérimentale.

Pour ce faire, une première étape consiste à introduire une sorte de distance entre les lois de probabilité sur l'ensemble [1;k], l'idée étant de regarder ensuite si la loi empirique (définie ci-dessous et calculable à partir du résultat de l'expérience) est proche ou éloignée de la loi théorique p dont nous avons fait l'hypothèse.

Définition 17.4.1 Soient p et q deux lois de probabilité sur [1; k]. On appelle «distance» du χ^2 entre p et q la quantité :

$$d_{\chi^2}(p,q) = \sum_{i=1}^k \frac{(p^i - q^i)^2}{p^i}$$

Le mot distance est entre guillemets car ce n'est pas du tout une distance au sens des espaces métriques : elle n'est visiblement pas symétrique et il est facile de constater qu'elle ne vérifie pas non plus l'inégalité triangulaire. En réalité, son seul rapport avec une distance est la propriété suivante :

$$d_{\chi^2}(p,q) = 0 \Leftrightarrow p = q$$

Remarquons que cette pseudo-distance a tendance a surévaluer les différences entre p et q sur les entiers i où p_i est petit : nous chercherons à limiter ce phénomène dans la suite en imposant des conditions telles que $np_i \geq 5$ pour tout $i \in [1; k]$.

La deuxième étape de construction du test qui va nous permettre de confirmer ou infirmer notre hypothèse consiste à comparer la loi théorique p avec la loi empirique \bar{p}_n que nous définissons comme suit :

Définition 17.4.2 Si (X_1, \dots, X_n) est la variable aléatoire modélisant les n répétitions de notre expérience, nous posons :

$$\forall i \in [1; k], \quad N_n^i = \sum_{j=1}^n \mathbf{1}_{\{X_j = i\}}$$

Nous appelons alors loi empirique, notée \bar{p}_n , la loi sur [1; k] définie par :

$$\forall i \in [1; k], \quad \bar{p}_n^i = \frac{N_n^i}{n}$$

Notons que la valeur de \bar{p}_n dépend du résultat ω de l'expérience, d'où le qualificatif empirique. En toute rigueur, c'est d'ailleurs $\bar{p}_n(\omega)$ (et non pas \bar{p}_n) qui est une loi de probabilité sur [1;k].

Définition 17.4.3 On appelle χ^2 d'ajustement la variable aléatoire suivante :

$$nd_{\chi^2}(p,\bar{p}_n) = n\sum_{i=1}^k \frac{(p^i - \bar{p}_n^i)^2}{p^i} = \sum_{i=1}^k \frac{(np^i - N_n^i)^2}{np^i}$$

Nous rappelons maintenant la définition d'une loi de probabilité sur $\mathbb R$ qui a été introduite dans l'exercice 14.5.4 page 237 et identifiée à une loi Gamma, ce qui nous fournit sa densité.

Définition 17.4.4 Considérons $Z = (Z_1, \dots, Z_d)$ un vecteur aléatoire dont les composantes sont indépendantes et de même loi $\mathcal{N}(0,1)$.

Alors la loi de la variable aléatoire positive $||Z||^2 = Z_1^2 + \cdots + Z_d^2$ est appelée loi du χ^2 à d degrés de liberté et notée $\chi^2(\mathbf{d})$.

Cette loi est en fait égale à la loi $\gamma(\frac{1}{2},\frac{d}{2})$ et admet donc pour densité :

$$g_{\frac{1}{2},\frac{d}{2}}(x) = \frac{1}{2^{\frac{d}{2}}\Gamma(\frac{d}{2})} e^{-\frac{x}{2}} x^{\frac{d}{2}-1} \mathbf{1}_{\mathbb{R}_+^*}(x)$$

Le résultat essentiel qui va nous permettre de construire le test dit du χ^2 est le suivant :

Proposition 17.4.5 (Pearson) Si pour tout $n \in \mathbb{N}^*$, le vecteur aléatoire (X_1, \dots, X_n) suit la loi $p^{\otimes n}$, alors la convergence suivante a lieu :

$$nd_{\chi^2}(p,\bar{p}_n) \xrightarrow[n \to +\infty]{\mathcal{L}} \chi^2(\mathbf{k}-\mathbf{1})$$

Autrement dit, si nous notons F_{k-1} la fonction de répartition de la loi $\chi^2(\mathbf{k}-\mathbf{1})$, nous avons la convergence suivante pour tout $x \in \mathbb{R}$:

$$P(nd_{\chi^2}(p,\bar{p}_n) \le x) \xrightarrow[n \to +\infty]{} F_{k-1}(x)$$

Comme annoncé plus haut, la démonstration de ce résultat nécessite la version multidimensionnelle du théorème-limite central, hors programme, donc nous l'admettrons. Remarquons simplement que si (X_1, \dots, X_n) suit la loi $p^{\otimes n}$, c'est-à-dire si les variables X_i sont indépendantes et de même loi p, alors le TLC (en dimension 1) implique la convergence suivante :

$$\frac{N_n^i - np^i}{\sqrt{np^i}} \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, 1 - p_i)$$

Il est alors assez intuitif que la loi limite du χ^2 d'ajustement, c'est-à-dire de la variable suivante :

$$nd_{\chi^{2}}(p,\bar{p}_{n}) = \sum_{i=1}^{k} \left(\frac{N_{n}^{i} - np^{i}}{\sqrt{np^{i}}}\right)^{2}$$

soit une loi du χ^2 mais on pourrait penser que celle-ci a k degrés de liberté, alors que la vraie loi limite est $\chi^2(\mathbf{k}-\mathbf{1})$. En fait, la «perte» d'un degré de liberté peut se comprendre en constatant que nos variables ne sont pas totalement «libres» puisqu'il existe entre elles la relation linéaire suivante :

$$\sum_{i=1}^{k} (N_n^i - np^i) = 0$$

La proposition de Pearson nous dit donc que, si l'expérience est bien gouvernée par la loi p supposée, alors le χ^2 d'ajustement suit une loi proche de $\chi^2(\mathbf{k}-\mathbf{1})$ lorsque le nombre n de répétitions de l'expérience devient «grand».

En revanche, si l'expérience est en réalité régie par une loi $q \neq p$, alors il existe $1 \leq i \leq k$ tel que $q^i \neq p^i$ et la loi des grands nombres implique la convergence suivante lorsque n tend vers l'infini :

$$d_{\chi^2}(p, \bar{p}_n) = \sum_{i=1}^k \frac{(p^i - \bar{p}_n^i)^2}{p^i} \xrightarrow{\text{p.s.}} d_{\chi^2}(p, q) > 0$$

d'où nous déduisons le comportement asymptotique du χ^2 d'ajustement :

$$nd_{\chi^2}(p,\bar{p}_n) \xrightarrow{\text{p.s.}} +\infty$$
 (17.6)

C'est la différence entre ces deux comportements asymptotiques qui va nous permettre de tester l'hypothèse H_0 : «L'expérience est gouvernée par la loi p» contre l'hypothèse alternative H_1 : «L'expérience est gouvernée par une loi $q \neq p$ ».

Passons à la construction effective du test.

Si nous notons F_{k-1} la fonction de répartition de la loi $\chi^{2}(\mathbf{k}-\mathbf{1})$, nous prouvons facilement que F_{k-1} est une bijection de \mathbb{R}_{+} sur [0,1[en constatant que la densité de la loi $\chi^{2}(\mathbf{k}-\mathbf{1})$ est strictement positive sur \mathbb{R}_{+}^{*} et nulle sur \mathbb{R}_{-} . Par conséquent, pour tout $\alpha \in]0,1]$, il existe un unique $c_{\alpha} \in \mathbb{R}_{+}$ tel que $\chi^{2}(\mathbf{k}-\mathbf{1})$ ($]c_{\alpha},+\infty[$) = α et l'on a $c_{\alpha}=F_{k-1}^{-1}(1-\alpha)$.

Si l'hypothèse H_0 est réalisée, donc si l'expérience est régie par la loi p, la proposition de Pearson implique :

$$P_p\left(nd_{\chi^2}(p,\bar{p}_n) > c_\alpha\right) \xrightarrow[n \to +\infty]{} \alpha \tag{17.7}$$

En revanche, si c'est l'hypothèse H_1 qui est réalisée, donc si l'expérience est gouvernée par une loi $q \neq p$, alors le comportement asymptotique (17.6) entraı̂ne la convergence suivante lorsque n tend vers l'infini :

$$P_q\left(nd_{\chi^2}(p,\bar{p}_n) > c_\alpha\right) \xrightarrow[n \to +\infty]{} 1 \tag{17.8}$$

Nous pratiquons donc notre test comme suit :

Nous choisissons une valeur $\alpha \in]0,1]$ (typiquement α est petit car, comme nous allons le voir, il représente le niveau d'erreur du test) et nous en déduisons la valeur c_{α} . Pour le résultat ω de l'expérience que nous observons, nous calculons la valeur du χ^2 d'ajustement :

$$nd_{\chi^2}(p,\bar{p}_n(\omega)) = \sum_{i=1}^k \frac{(np^i - N_n^i(\omega))^2}{np^i}$$

Nous comparons alors cette valeur à c_{α} pour conclure :

- Si $nd_{\chi^2}(p,\bar{p}_n(\omega)) > c_{\alpha}$, alors nous rejetons l'hypothèse H_0 .
- Si $nd_{\chi^2}(p,\bar{p}_n(\omega)) \leq c_{\alpha}$, alors nous acceptons l'hypothèse H_0 .

De façon générale, lorsque nous pratiquons un test statistique, notre conclusion peut être erronée de deux façons différentes :

Erreur de 1ère espèce : Je rejette l'hypothèse H_0 alors qu'elle est satisfaite en réalité.

Erreur de 2nde espèce : J'accepte l'hypothèse H_0 alors qu'elle n'est pas satisfaite en réalité.

Dans de nombreuses situations pratiques, ces deux types d'erreurs ne sont pas symétriques, l'erreur de première espèce étant considérée comme plus grave que l'autre :

Par exemple, si je teste le câble d'un ascenseur supposé pouvoir accueillir 10 personnes (750kg) et si je note M la masse critique à partir de laquelle le câble casse, je choisirai H_0 :«M \leq 750» et H_1 :«M>750».

L'erreur de 1ère espèce conduirait des usagers de l'ascenseur à un grand plongeon : c'est ce risque que je veux absolument maîtriser. L'erreur de 2nde espèce conduirait à des réparations inutiles sur l'ascenseur : je veux l'éviter mais elle est moins grave que la première.

Dans le test du χ^2 que nous venons de construire, la convergence (17.7) se traduit comme suit : la probabilité de commettre une erreur de 1ère espèce est asymptotiquement égale à α . On dit qu'on a construit un test de niveau d'erreur asymptotique α ou de niveau de confiance asymptotique $1-\alpha$.

Quant à la convergence (17.8), sa traduction est plus vague : lorsque n devient «grand», la probabilité de commettre une erreur de 2nde espèce devient «petite» mais nous ne maîtrisons pas la vitesse à laquelle cette convergence se produit. On dit que la *puissance* du test, c'est-à-dire la probabilité de rejeter l'hypothèse H_0 quand elle n'est effectivement pas satisfaite dans la réalité, tend vers 1 lorsque n tend vers l'infini.

Nous terminons cette introduction au test du χ^2 en le généralisant au cas où l'ensemble E des résultats possibles pour l'expérience est infini. Nous pouvons alors adapter notre méthode comme suit :

Nous choisissons une partition finie (E_1, \dots, E_k) de l'ensemble E. Si ν est la loi sur E supposée gouverner l'expérience, nous posons $p^i = \nu(E_i)$ et nous comptons maintenant le nombre de fois où l'on tombe dans la classe E_i au cours des n répétitions de l'expérience :

$$N_n^i(\omega) = \sum_{j=1}^n \mathbf{1}_{\{X_j(\omega) \in E_i\}}$$

Le reste du test se déroule comme précédemment.

Notons qu'avec cette méthode, nous ne testons en réalité que l'adéquation aux valeurs de ν sur les différentes classes E_i .

Attention, le choix des classes E_i n'est pas du tout innocent! Une règle d'or, liée à la remarque faite à la suite de la définition de d_{χ^2} , est que les effectifs théoriques np_i (espérance de N^i dans le cas où l'expérience est vraiment gouvernée par la loi ν) des classes E_i ne doivent jamais être trop «petits» Dans la pratique, on impose souvent que la condition suivante soit satisfaite :

$$\forall i = [1; k] \quad np^i \ge 5$$

D'autres règles pratiques existent : par exemple, on a constaté qu'il était préférable de choisir les classes E_i de sorte que leurs effectifs théoriques respectifs np_i soient a peu près tous équivalents. Nous n'insisterons pas plus sur ce sujet des règles pratiques qui concernent plus les orfèvres du test du χ^2 que les agrégatifs!

Table des matières

1	$\operatorname{Int} \epsilon$	egrale de Riemann.	5
	1.1	Applications réglées	5
	1.2	Construction de l'intégrale de Riemann	10
		1.2.1 Intégrale d'une application en escalier	10
		1.2.2 Intégrale d'une application réglée	11
		1.2.3 Propriétés élémentaires	13
			15
	1.3	Outils pratiques de calcul d'une intégrale	19
		1.3.1 Utilisation d'une primitive	19
		1.3.2 Intégration par parties	21
		1.3.3 Changement de variable	22
			24
			26
	1.4		27
	1.5	Convergences de suites d'applications	30
	1.6		34
	1.7	Arcs paramétrés	35
			35
		1.7.2 Intégrale curviligne d'une forme différentielle	36
2	Inté	egrales impropres.	37
	2.1	Définition des intégrales impropres	37
	2.2		39
			40
		2.2.2 Intégration des relations de comparaison	42
		2.2.3 Comparaison avec une série	45
	2.3		46
		2.3.1 Critère de Cauchy et conséquences	46
		· · · · · · · · · · · · · · · · · · ·	49
	2.4		50
	2.5		51

3	Inté	egration sur un intervalle quelconque	57
	3.1	Fonctions intégrables	
		3.1.1 Le cas positif	
		3.1.2 Le cas réel	58
		3.1.3 Le cas complexe	59
	3.2	Théorèmes de convergence	59
	3.3	Intégrale dépendant d'un paramètre	65
		3.3.1 Étude de la continuité	65
		3.3.2 Étude de la dérivabilité	69
	3.4	La fonction Γ d'Euler	71
4	Inté	egrales multiples	7 5
	4.1	Intégrale double sur un domaine simple borné	75
	4.2	Intégrale double sur un produit d'intervalles quelconques	
		4.2.1 Le cas positif	
		4.2.2 Le cas réel ou complexe	
	4.3	Changement de variable	
5	Mé	chodes de calcul approché d'une intégrale	81
	5.1	Intégrale d'une fonction polynomiale	82
		5.1.1 Ordre d'une méthode de quadrature	
		5.1.2 Exemples	
	5.2	Interpolation polynomiale	
		5.2.1 Interpolation de Lagrange et Hermite	
		5.2.2 Évaluation de l'erreur	
	5.3	Intégration numérique	
		5.3.1 Avec un polynôme de Lagrange	
		5.3.2 Avec un polynôme d'Hermite	
		5.3.3 Méthodes composées	
	5.4	Méthodes de Gauss	
	5.5		93
	5.6	Une méthode probabiliste	
6	Apı	olications de l'analyse au calcul des grandeurs	95
	6.1	Longueur d'un arc de classe C^1	95
		6.1.1 Rectification d'un arc paramétré	95
		6.1.2 Calcul pratique	97
	6.2	Produit mixte et produit vectoriel dans \mathbb{R}^n	
		6.2.1 Orientation de \mathbb{R}^n	
		6.2.2 Produit mixte dans \mathbb{R}^n euclidien orienté	
		6.2.3 Produit vectoriel dans \mathbb{R}^n euclidien orienté	

TABLE		

MATIÈRES	273

		6.2.4 Interprétations géométriques en dimension 3 105			
	6.3	Théorème du changement de variables			
		6.3.1 Enoncé général			
		6.3.2 Quelques cas particuliers			
	6.4	Formule de Green-Riemann			
	6.5	Aire d'une nappe géométrique			
		6.5.1 Nappe paramétrée, nappe géométrique			
		6.5.2 Aire d'une nappe géométrique			
7	Espa	aces de Banach 115			
	7.1	Définition et premiers exemples			
	7.2	Séries à valeurs dans un espace de Banach			
	7.3	Espaces de Banach usuels de suites et de fonctions			
	7.4	Suites d'applications à valeurs dans un espace de Banach 120			
	7.5	Séries d'applications à valeurs dans un espace de Banach 122			
8	8.1	onentielle dans une algèbre de Banach Définitions et premières propriétés			
	8.2	Exponentielle de matrice			
	0.2	8.2.1 Calcul explicite			
		8.2.2 Quelques applications topologiques			
		8.2.3 Application aux systèmes différentiels linéaires			
		o.2.5 Application aux systemes differentiers fineaires 154			
9	Séri	es de Fourier 137			
	9.1	Rappels sur les espaces préhilbertiens			
		9.1.1 Définitions dans les cas réel et complexe			
		9.1.2 Propriétés			
		9.1.3 Orthogonalité et procédé de Gram-Schmidt 140			
		9.1.4 Projection orthogonale, meilleure approximation 142			
		9.1.5 Inégalité de Bessel et égalité de Parseval			
	9.2	Polynôme et série trigonométriques			
	9.3	Coefficients et série de Fourier			
	9.4	Approximation en moyenne quadratique			
	9.5	Le théorème de convergence de Dirichlet			
	9.6	Le théorème de Fejér			
10	Séri	es entières 163			
		L'algèbre des séries entières			
	10.2	Rayon de convergence			
	10.3	Continuité et dérivabilité			
	10.4	Principe des zéros isolés			

	10.5	Formule de Cauchy, égalité de Parseval	. 171
11	Espa	aces mesurés. Espaces probabilisés.	175
	11.1	Clans et tribus	. 175
		11.1.1 Définitions	. 175
		11.1.2 Clans et tribus engendrés	. 177
	11.2	Mesures positives	. 178
		11.2.1 Définitions	. 178
		11.2.2 Propriétés d'une mesure	. 179
	11.3	Application à la modélisation du hasard	. 182
		11.3.1 Un modèle simple : le modèle additif	
		11.3.2 Modèle définitif : les espaces probabilisés	. 187
	11.4	Probabilités conditionnelles. Indépendance d'événements	
		11.4.1 Définition des probabilités conditionnelles	
		11.4.2 Formule de Bayes	
		11.4.3 Indépendance d'événements	
	11.5	Exercices	
		11.5.1 Clans	
		11.5.2 Formule de Poincaré	
		11.5.3 Équiprobabilité	
		11.5.4 Probabilités conditionnelles	
		11.5.5 Événements indépendants	
12	Vari	lables aléatoires réelles.	205
		La tribu borélienne réelle	
		Les variables aléatoires réelles et leurs lois	
		Fonction de répartition d'une v.a.r	
		Variables discrètes	
	12.1	variables discretes	. 212
13		lables à densité	217
		Définitions	
		Exemples classiques de lois à densité	
		Fonction de répartition	
		Espérance. Théorème de transfert	
	13.5	Moments d'une variable aléatoire	. 223
	13.6	Exercices sur les fonctions de répartition	
		13.6.1 Minimum de variables exponentielles	. 224
		13.6.2 Variables amnésiques	
		13.6.3 Loi du χ^2 à un degré de liberté	. 224
		13.6.4 Loi gaussienne dans \mathbb{R}	. 225
		13.6.5 Avec une loi de Cauchy	. 225

TA	BLE	DES MATIÈRES	275
14	Vect	teurs aléatoires et indépendance	227
	14.1	Les vecteurs aléatoires et leurs lois	. 228
	14.2	Vecteurs aléatoires discrets	. 230
	14.3	Vecteurs aléatoires à densité	. 230
	14.4	Indépendance de p v.a.r	. 234
	14.5	Exercices	. 236
		14.5.1 Calcul de densité marginale	. 236
		14.5.2 Densité gaussienne en dimension 2	. 237
		14.5.3 Loi uniforme sur le disque	. 237
		14.5.4 Problème sur les lois Gamma et Bêta	. 237
		14.5.5 Gauss et Cauchy	. 238
		14.5.6 Avec des lois exponentielles	. 239
15	Loi	des grands nombres.	241
	15.1	Suite indépendante équidistribuée	. 242
	15.2	Convergences de suites de v.a.r	. 245
		15.2.1Événements négligeables, égalité presque sûre	. 245
		15.2.2 Convergences en probabilité et presque sûre	. 246
	15.3	Loi des grands nombres	. 248
16	Loi	normale	251
	16.1	La loi normale centrée réduite	. 251
	16.2	La loi normale générale	. 253
	16.3	Approximation normale de la loi binomiale	. 256
17	Le t	théorème-limite central	259
	17.1	Énoncé classique	. 260
	17.2	TLC et fonctions de répartition	. 261
	17.3	Un énoncé sans équidistribution	. 264
	17.4	Test du χ^2 d'ajustement	. 265

