PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-156898

(43)Date of publication of application: 08.06.2001

(51)Int.CI.

HO4M 1/02

1/38 H04B

H05K 5/02

(21)Application number: 2000-278428

(71)Applicant: NEC SAITAMA LTD

(22)Date of filing:

13.09.2000

(72)Inventor: YAGINUMA DAISUKE

(30)Priority

Priority number: 11259978

Priority date: 14.09.1999

Priority country: JP

(54) PORTABLE TELEPHONE SET

(57)Abstract:

PROBLEM TO BE SOLVED: To solve a problem that it is difficult to make a portable telephone set thinner since a portable telephone set mounting a whip antenna requires a projecting part while the conventional type portable telephone set incorporating an antenna inside a case requires consideration concerning the height of the antenna and a GND surface or the height of parts.

SOLUTION: A receiver 7, a back light 8 and a display part 9 are buried in holes 4-6 opened in the antenna 3 which is incorporated in an upper case 1. Thus, the thickness of the case 1 is made thinner to nearly the height of the parts such as the receiver 7, the back light 8 and the display part 9. Besides, the telephone set is made lighter since the holes 4-6 are opened in the antenna 3.

(19)日本国特許庁(JP)

① 公開特許公報(A)

(11)特許出願公開番号 特開2001-156898 (P2001-156898A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl.7	識別記号	FΙ		テーマコード(参考)
H 0 4 M		H04M	1/02	2
H04B	•	H 0 4 B	1/38	
H05K	5/02	H 0 5 K	5/02	Z

審査請求 有 請求項の数20 〇L (全 7 頁)

(21) 出願番号	特願2000-278428(P2000-278428) 平成12年9月13日(2000.9.13)	(71)出願人	390010179 埼玉日本電気株式会社 埼玉県児玉郡神川町大字元原字豊原300番 18
(31)優先権主張番号 (32)優先日 (33)優先権主張国	特願平11-259978 平成11年9月14日(1999.9.14) 日本(JP)	(72)発明者 (74)代理人	八木沼 大輔 埼玉県児玉郡神川町大字元原字豊原300番 18 埼玉日本電気株式会社内 100082935 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 携帯電話機

(57)【要約】

【課題】 ホイップアンテナを搭載したものは筐体に出っ張り部が必要で、一方、筐体内にアンテナを内蔵した従来の携帯電話機では、アンテナとGND面との高さや部品の高さを考慮する必要があるため、薄型化が不十分である。

【解決手段】 上部筐体1に内蔵されたアンテナ3に開口した穴4~6に、レシーバ7、バックライト8、表示部9が埋め込まれる。これにより、上部筐体1の厚さをレシーバ7、バックライト8、表示部9等の部品の高さ程度まで薄型化することができ、また、アンテナ3に穴4~6を開口した分、軽量化することができる。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 ヒンジ部分を中心にして折り畳み及び拡 開可能な第1及び第2の筐体と、

前記第1の筐体に内蔵されており、部品埋め込み用の穴が複数穿設された、アンテナとして動作する板状のエレメントと

前記エレメントの穴に埋め込まれた部品と、

前記第2の筐体に内蔵されている、回路基板上の制御回路及び送受信回路と、

前記エレメントと前記送受信回路を接続する給電線とを 10 有することを特徴とする携帯電話機。

【請求項2】 前記エレメントに穿設された複数の穴の うち、最大サイズの穴は送受信する電波の波長よりも十 分に小であることを特徴とする請求項1記載の携帯電話 機。

【請求項3】 前記エレメントの穴に埋め込まれる部品は、レシーバ、バックライト及び表示部であり、それ以外の部品は前記第2の筐体に内蔵されることを特徴とする請求項1記載の携帯電話機。

【請求項4】 ヒンジ部分を中心にして折り畳み及び拡 20 開可能な第1及び第2の筐体と、

前記第1の筐体に内蔵されており、部品埋め込み用の穴が複数穿設された、アンテナとして動作する板状の第1のエレメントと、

伸張及び収納可能な第2のエレメントと、

前記第1のエレメントの穴に埋め込まれた部品と、

前記第2のエレメントの伸張時及び前記第1の筐体内への収納時は該第2のエレメントを前記第1のエレメント に接続する接続手段と、

前記第2の筐体に内蔵されている、回路基板上の制御回 30 路及び送受信回路と、

前記第1のエレメントと前記送受信回路を接続する給電 線とを有することを特徴とする携帯電話機。

【請求項5】 前記第1のエレメントに穿設された複数 の穴のうち、最大サイズの穴は送受信する電波の波長よりも十分に小であることを特徴とする請求項4記載の携帯電話機。

【請求項6】 前記第1のエレメントの穴に埋め込まれる部品は、レシーバ、バックライト及び表示部であり、それ以外の部品は前記第2の筐体に内蔵されることを特 40 徴とする請求項4記載の携帯電話機。

【請求項7】 前記板状のエレメントは、板状の一部からなることを特徴とする請求項1~3の何れかに記載の携帯電話機。

【請求項8】 前記板状の第1のエレメントは、板状の一部からなることを特徴とする請求項4~6の何れかに記載の携帯電話機。

【請求項9】 ヒンジ部分を中心にして折り畳み及び拡 / 開可能な第1及び第2の筐体と、

前記第1の筐体に内蔵されており、部品埋め込み用の穴 50

が穿設された、アンテナとして動作するエレメントと、

前記エレメントと前記送受信回路を接続する給電線とを 有することを特徴とする携帯電話機。

【請求項10】 前記穴は、複数であることを特徴とする請求項9記載の携帯電話機。

【請求項11】 前記エレメントは、板状であることを特徴とする請求項9~10の何れかに記載の携帯電話機

【請求項12】 前記エレメントは、板状の一部からなることを特徴とする請求項9~10の何れかに記載の携帯電話機。

【請求項13】 前記エレメントに穿設された穴のうち、最大サイズの穴は送受信する電波の波長よりも十分に小であることを特徴とする請求項9~12の何れかに記載の携帯電話機。

【請求項14】 前記エレメントの穴に埋め込まれる部品は、レシーバ、バックライト及び表示部であり、それ以外の部品は前記第2の筐体に内蔵されることを特徴とする請求項9~12の何れかに記載の携帯電話機。

【請求項15】 ヒンジ部分を中心にして折り畳み及び 拡開可能な第1及び第2の筐体と、

前記第1の筐体に内蔵されており、部品埋め込み用の穴が穿設された、アンテナとして動作する第1のエレメントと

伸張及び収納可能な第2のエレメントと、

前記第2のエレメントの伸張時及び前記第1の筐体内への収納時は該第2のエレメントを前記第1のエレメント に接続する接続手段と、

前記第2の筐体に内蔵されている、送受信回路と、 前記第1のエレメントと前記送受信回路を接続する給電線とを有することを特徴とする携帯電話機。

【請求項 16 】 前記穴は、複数であることを特徴とする請求項 15 記載の携帯電話機。

【請求項17】 前記第1のエレメントは、板状である ことを特徴とする請求項15~16の何れかに記載の携 帯電話機。

【請求項18】 前記第1のエレメントは、板状の一部 からなることを特徴とする請求項15~16の何れかに 記載の携帯電話機。

【請求項19】 前記第1のエレメントに穿設された穴のうち、最大サイズの穴は送受信する電波の波長よりも十分に小であることを特徴とする請求項15~18の何れかに記載の携帯電話機。

【請求項20】 前記第1のエレメントの穴に埋め込まれる部品は、レシーバ、バックライト及び表示部であり、それ以外の部品は前記第2の筐体に内蔵されることを特徴とする請求項15~19の何れかに記載の携帯電話機。

【発明の詳細な説明】

BEST AVAILABLE COPY

前記第2の筐体に内蔵されている、送受信回路と、

3

[0001]

[発明の属する技術分野]本発明は携帯電話機に係り、 特に折り畳み式のアンテナを備えた携帯電話機に関す る。

[0002]

【従来の技術】図6は従来の携帯電話機の一例の筐体上部裏面図、図7は図6の側面図を示す。図6及び図7に示す従来の携帯電話機は、筐体内の回路基板43に、液晶表示素子(LCD)やレシーバ等の部品44が搭載されているため、筐体上部においてアンテナ収納スペースが殆どない。このため、上記の従来の携帯電話機では、ホイップアンテナ式のアンテナ41の収納スペースを作るために、筐体上部裏面に出っ張り部42が必要であるため、携帯電話機の薄型化及び軽量化に制約を与えている。

【0003】そこで、従来、上記の出っ張り部42を無くすため、筐体内にアンテナを内蔵した、図8~図10に示す携帯電話機が従来より知られている。図8は従来の携帯電話機の他の例の筐体上部の構造説明図、図9は図8の側面図を示す。図8及び図9に示すように、この20従来の携帯電話機は、逆Fアンテナ37が筐体内に内蔵されており、その一部がGND面38に接続されている。

[0004]また、図10は従来の携帯電話機の更に他の例の要部の透視図を示す。同図に示すように、この携帯電話機は、バターンへリカルアンテナ40が筐体内に部品として内蔵されている。これら図8~図10に示す従来の携帯電話機では、逆Fアンテナ37あるいはバターンへリカルアンテナ40が筐体内部に内蔵されるため、図6及び図7に示した従来の携帯電話機に比べて薄30型化を実現できる。

[0005]

【発明が解決しようとする課題】しかるに、上記の図 8 及び図 9 に示した従来の携帯電話機は、逆 F アンテナ 3 7 が接続される G N D 面 3 8 は部品 3 9 が搭載されている基板の表面であり、逆 F アンテナ 3 7 の特性を保つためには、逆 F アンテナ 3 7 と G N D 面 3 8 との高さがある程度必要であり、また部品 3 9 の高さをも考慮する必要があるため、薄型化が不十分であるという問題がある。

[0006]また、図10に示した従来の携帯電話機では、バターンへリカルアンテナ40が部品として搭載されているが、基板の厚さと基板の表裏に搭載される部品の厚さが必要であり、より一層の薄型化はできず、また、アンテナとしての帯域幅が狭いという問題もある。[0007]本発明は以上の点に鑑みなされたもので、筐体内蔵アンテナを備えた携帯電話機比べてより上層の薄型化及び軽量化を図り得る携帯電話機を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明は上記の目的を達 成するため、ヒンジ部分を中心にして折り畳み及び拡開 可能な第1及び第2の筐体と、第1の筐体に内蔵されて おり、部品埋め込み用の穴が複数穿設された、アンテナ として動作する板状のエレメントと、エレメントの穴に 埋め込まれた部品と、第2の筐体に内蔵されている、回 路基板上の制御回路及び送受信回路と、エレメントと送 受信回路を接続する給電線とを有する構成としたもので ある。この発明では、第1の筐体に内蔵されたエレメン トに穴を開け、その穴に所定の部品を埋め込むようにし たため、第1の筐体内のスペースを有効に利用できる。 【0009】また、本発明は上記の目的を達成するた め、ヒンジ部分を中心にして折り畳み及び拡開可能な第 1及び第2の筐体と、第1の筐体に内蔵されており、部 品埋め込み用の穴が複数穿設された、アンテナとして動 作する板状の第1のエレメントと、伸張及び収納可能な 第2のエレメントと、第1のエレメントの穴に埋め込ま れた部品と、第2のエレメントの伸張時及び第1の筐体 内への収納時は第2のエレメントを第1のエレメントに 接続する接続手段と、第2の筐体に内蔵されている、回

ものである。
【0010】この発明では、第1の筐体に内蔵された第1のエレメントに穴を開け、その穴に所定の部品を埋め込むようにしたため、第1の筐体内のスペースを有効に利用できると共に、第2のエレメントを伸張したときに第1のエレメントに接続することによりアンテナ長を長くすることができる。

路基板上の制御回路及び送受信回路と、第1のエレメン

トと送受信回路を接続する給電線とを有する構成とした

【0011】 ここで、第1のエレメントに穿設された複数の穴のうち、最大サイズの穴は送受信する電波の波長よりも十分に小であることが望ましい。また、第1のエレメントの穴に埋め込まれる部品は、レシーバ、バックライト及び表示部であり、それ以外の部品は第2の筐体に内蔵されることを特徴とする。この発明では、第1の筐体には必要最小限の部品のみを搭載する。

[0012] ここで、前記板状のエレメントは、板状の一部からなることが望ましい。また、前記板状の第1のエレメントは、板状の一部からなることが望ましい。

[0013] また、本発明は上記の目的を達成するため、ヒンジ部分を中心にして折り畳み及び拡開可能な第1及び第2の筐体と、前記第1の筐体に内蔵されており、部品埋め込み用の穴が穿設された、アンテナとして動作するエレメントと、前記第2の筐体に内蔵されている、送受信回路と、前記エレメントと前記送受信回路を接続する給電線とを有する構成としたものである。

【0014】ことで、前記穴は、複数であることが望ま しい。また、前記エレメントは、板状であることが望ま しい。また、前記エレメントは、板状の一部からなるこ 50 とが望ましい。

BEST AVAILABLE COPY

40

【0015】また、前記エレメントに穿設された穴のう ち、最大サイズの穴は送受信する電波の波長よりも十分 に小であることが望ましい。また、前記エレメントの穴 に埋め込まれる部品は、レシーバ、バックライト及び表 示部であり、それ以外の部品は前記第2の筐体に内蔵さ れることが望ましい。

【0016】また、本発明は上記の目的を達成するた め、ヒンジ部分を中心にして折り畳み及び拡開可能な第 1及び第2の筐体と、前記第1の筐体に内蔵されてお り、部品埋め込み用の穴が穿設された、アンテナとして 10 動作する第1のエレメントと、伸張及び収納可能な第2 のエレメントと、前記第2のエレメントの伸張時及び前 記第1の筐体内への収納時は該第2のエレメントを前記 第1のエレメントに接続する接続手段と、前記第2の筐 体に内蔵されている、送受信回路と、前記第1のエレメ ントと前記送受信回路を接続する給電線とを有する構成 としたものである。

【0017】 ここで、前記穴は、複数であることが望ま しい。また、前記第1のエレメントは、板状であること が望ましい。また、前記第1のエレメントは、板状の一 20 部からなることが望ましい。

【0018】また、前記第1のエレメントに穿設された 穴のうち、最大サイズの穴は送受信する電波の波長より も十分に小であることが望ましい。また、前記第1のエ レメントの穴に埋め込まれる部品は、レシーバ、バック ライト及び表示部であり、それ以外の部品は前記第2の 筐体に内蔵されることが望ましい。

[0019]

【発明の実施の形態】次に、本発明の実施の形態につい て図面と共に説明する。図1は本発明になる携帯電話機 30 の第1の実施の形態の概略斜視図、図2は図1の筐体上 部の裏面図、図3は図1の筐体上部の側断面図を示す。 各図中、同一構成部分には同一符号を付してある。図1 及び図2に示すように、この実施の形態では、上部筐体 1と下部筐体2とがヒンジ部分13を中心に折り畳んだ り、拡開することが可能な構成である。

【0020】上部筐体1には、アンテナ3、レシーバ 7、バックライト8、LCD等の表示部9がフレキシブ ルプリント基板14により配線されている。アンテナ3 4、5及び6がそれぞれ穿設されている。これらの穴の うち穴4にはレシーバ7が、穴5にはバックライト8 が、穴6には表示部9が埋め込まれている。穴4、5及 び6の大きさは、埋め込む部品7~9の大きさに応じて 必要最小限の大きさとされている。

[0021]一方、下部筺体2には、従来筺体上部にあ った基板と、それに伴うレシーパ7、バックライト8及 びLCD等の表示部9以外の部品が搭載されている。す なわち、下部筐体2には、回路基板10とその上に形成 された送受信回路15及び制御回路16が搭載されてい る。送受信回路15は給電線12を介して給電点11で アンテナ3に接続されている。

【0022】これにより、この実施の形態の上部筐体1 の側断面を示す図3から分かるように、アンテナ3に開 口した穴4~6に、レシーバ7、バックライト8、表示 部9が埋め込まれるため、上部筐体1の厚さをレシーバ 7、バックライト8、表示部9等の部品の高さ程度まで 薄型化することができ、また、アンテナ3に穴4~6を 開口した分、軽量化することができる。

【0023】次に、この実施の形態の動作について説明 する。図1において、送信時には制御回路16からの信 号により送受信回路15が動作し、給電線12よりアン テナ3に送信電力が給電される。また、アンテナ3で受 信された受信波は給電点11から給電線12を通して送 受信回路15に入力され、とこで所定の受信処理が行わ れる。

【0024】この送受信時に用いられるアンテナ3は、 例えば縦方向7.5cm、横方向4.0cmの平板形状 をしており、モノポールアンテナとして動作する。ま た、アンテナ3に穿設した穴4~6は、一番大きなもの は表示部9を埋め込むための穴6で縦方向約2.5c m、横方向約3.5cmの長方形状のサイズである。と れはこの携帯電話機で送受信しようとする波長(800 MHzなら37.5cm)に比べて十分に小さいので、 携帯電話機で使用するアンテナ特性に影響を与えること はない。また、レシーバ7、バックライト8、LCD等 の表示部9などの部品の配線と、搭載のためのフレキシ ブルプリント板14はアンテナ3に影響を与えることは ない。

【0025】次に、本発明の第2の実施の形態について 説明する。図4は本発明になる携帯電話機の第2の実施 の形態の概略斜視図、図5は図4の筐体上部の裏面図を 示す。各図中、図1及び図2と同一構成部分には同一符 号を付し、その説明を省略する。図4及び図5に示すよ うに、この実施の形態では、伸張、収納可能なエレメン ト21を上部筐体1に設けた点に特徴がある。図4はエ レメント21の伸張時、図5はエレメント21の収納時 の上部筐体1の裏面を示す。

【0026】図4に示すように、上部筐体1に設けられ は導体であり、板状のエレメントに部品埋め込み用の穴 40 ている、導体である板状のエレメント20に部品埋め込 み用の穴4、5及び6がそれぞれ穿設され、穴4にはレ シーバ7が、穴5にはバックライト8が、穴6には表示 部9が埋め込まれている。図4のエレメント21の伸張 時には、エレメント21が接続用の金具22を介して穴 あき内蔵タイプのエレメント20に接続されており、こ れらエレメント20とエレメント21がアンテナとして 動作する。

> 【0027】また、エレメント21の収納時は、図5に 示すように、エレメント21が下部の金属24と接続用 50 金具23を介して穴あき内蔵タイプのエレメント20に

10

20

8

接続され、エレメント20がアンテナとして動作する。

【0028】この実施の形態は、第1の実施の形態と同様に、従来筺体上部にあった基板と、それに伴うレシーバ7、バックライト8及びLCD等の表示部9以外の部品が下部筐体2に搭載され、かつ、エレメント20に開口した穴4~6に、レシーバ7、バックライト8、表示部9が埋め込まれるため、上部筐体1の厚さをレシーバ7、バックライト8、表示部9等の部品の高さ程度まで薄型化することができ、また、エレメント20に穴4~6を開口した分、軽量化することができる。

【0029】更に、この実施の形態では、エレメント21は伸張時にエレメント20を含めてのアンテナ長を長くすることができるため、従来のような筐体の出っ張り部は存在することなく、ある程度の筐体の薄さを保ちながら、アンテナ特性を向上することができる。

【0030】次に、本発明の第3の実施の形態について 説明する。図11は本発明になる携帯電話機の第3の実 施の形態の概略斜視図を示す。図中、図1その他の図と 同一構成部分には同一符号を付し、その説明を省略す る。

【0031】上部筐体1には、回路基板100が内蔵されており、回路基板100の表面に配線バターンからなるアンテナ3が平面状にプリント形成されている。即ち、第1、第2の実施の形態で示した板状のアンテナ3に代えて、板状の一部からなるアンテナ3としたものである。アンテナ3は給電点11、給電線12を介して下側筐体2の送受信回路15に接続されている。

【0032】回路基板100の表面にはバックライト8が直接実装されており、回路基板100に形成された穴4、6の内部にそれぞれレシーバ7、LCD等の表示部9が埋め込まれて配置されている。これらレシーバ7、バックライト8、表示部9は回路基板100の表面又は内層に形成された配線パターンを経由し、更にフレキシブルブリント板14を介して下部筐体2の制御回路16に電気的接続されている。

【0033】とのアンテナ3や回路基板100の配線パターンは、回路基板100の表面にエッチング、金属メッキ、蒸着等の方法により配線パターンとして形成しても良いし、金属等の導電体を平面状に配線パターンとして形成し回路基板100の表面に貼り付けたりしても良い。また、アンテナ3や回路基板100の配線パターンは、回路基板100の裏表どちらの面に形成しても良く、更に回路基板100に多層基板を用いることによりこの回路基板の内層に形成しても良い。

[0034]また、アンテナ3の形状は回路基板100の全面にわたって形成しても良いし、その一部のみに任意の形状で形成しても良い。また、更にアンテナ3の任意の位置に部品埋め込み用の穴4~6を設けてこの穴4~6に部品7~9を埋め込むようにしても良い。更に、部品埋め込み用の穴4~6を設けることなく、回路基板 50

100の表面に部品7~9を直接実装しても良い。

【0035】また、アンテナ3への給電構造として、下部筐体2の送受信回路15から給電線12を介してアンテナ3の給電点11へ給電する構造に代えて、下部筐体2の送受信回路15からフレキシブルブリント板14を介してアンテナ3の給電点3へ給電する構造としても良い。この場合、アンテナ3への給電用のフレキシブルブリント板14と、部品7~9への電気的接続用のフレキシブルブリント板14は、別々に設けても一体に設けても構わない。

[0036] 更に、本発明の第3の実施の形態を本発明の第2の実施に組み合わせても良い。即ち、図11において、回路基板100の表面に形成されたアンテナ3の配線パターンを延長し、図4の接続用金具22、23と電気的接続しても良い。

[0037] 更に、前記の各実施の形態を相互に組み合わせても良い。この場合、前記の各実施の形態で説明した技術的特徴や構造上のバリエーションを別の実施の形態に適用したものも、本発明の概念に含まれることはいうまでもない。

[0038]

[発明の効果]以上説明したように、本発明によれば、 筐体に内蔵されたアンテナあるいはエレメントに穴を開け、その穴に所定の部品を埋め込むことにより、筐体内 のスペースを有効に利用できるようにしたため、アンテナあるいはエレメントを内蔵する上部筐体を薄型化する ことができる。

[0039]また、本発明によれば、筐体に内蔵された アンテナあるいはエレメントに穴を開けるようにしてい るため、装置を軽量化できる。

【0040】更に、本発明によれば、伸張及び収納可能な第2のエレメントを伸張したときに第1の筐体内の第1のエレメントに接続することによりアンテナ長を長くするようにしたため、第1のエレメントだけでアンテナ動作をするときよりも、よりアンテナ特性を向上できる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態の概略斜視図であ る.

【図2】図1の筐体上部の裏面図を示す図である。

【図3】図1の上部筐体の側断面図である。

【図4】本発明の第2の実施の形態の概略斜視図である。

【図5】図4の筐体上部の裏面図を示す図である。

【図6】従来の携帯電話機の一例の筐体上部裏面図であ る。

【図7】図6の側面図である。

【図8】従来の携帯電話機の他の例の筐体上部の構造説 明図である。

【図9】図8の側面図である。

BEST AVAILABLE COPY

10

【図10】従来の携帯電話機の更に他の例の要部の透視 図である。

【図11】本発明の第3の実施の形態の概略斜視図であ ス

【符号の説明】

- 1 上部筐体
- 2 下部筐体
- 3 アンテナ
- 4、5、6 穴
- 7 レシーバ
- 8 バックライト
- 9 表示部

- *10 回路基板
 - 11 給電点
 - 12 給電線
 - 13 ヒンジ部分
 - 14 フレキシブルプリント基板
 - 15 送受信回路
 - 16 制御回路
 - 20 筐体内蔵エレメント
 - 21 伸張、収納可能なエレメント
- 10 22、23 接続用金具
 - 24 エレメント21下部の金属
- * 100 回路基板

