

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Concreto Armado II e Protenc	lido			ETC320			
Course:							
Reinforced Concrete II and Pr	restressed						
Materia:							
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 00 - 02 - 00			
Curso/Habilitação/Ênfase:			Série:	Período:			
Engenharia Civil			6	Noturno			
Engenharia Civil			5	Diurno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação			
Januário Pellegrino Neto		Engenheiro Civ	il	Mestre			
Professores:		Titulação - Graduaç	ção	Pós-Graduação			
Januário Pellegrino Neto		Engenheiro Civ	il	Mestre			
Marcos Monteiro		Engenheiro Civ	il	Especialista			
OBJETIVOS - Conhecimentos, Habilidades, e Atitudes							

Conhecimentos:

- C1- Estado da Arte da construção civil e de obras de arte;
- C2- Forma correta de utilização dos materiais de construção;
- C3- Cuidados e formação de responsabilidade na execusão de obras de engenharia;
- C4- Importância dos custos nas obras de engenharia;
- C5- Noções de estética;
- C6- Conhecimento das normas estruturais.

Habilidades:

- H1- Importância da ordem de grandeza;
- H2- Comportamento adequado nas obras de engenharia;
- H3- Cuidados no manuseio de equipamentos;
- H4- Importância da execução correta de detalhes estruturais.

Atitudes:

- Al- Comportamento ético;
- A2- Capacidade de decisão;
- A3- Transmissão de confiança a subordinados;
- A4- Respeito a superiores.

EMENTA

Concreto protendido: Histórico, motivação e conceitos básicos. Conceito de protensão, sistemas de protensão. Estado limite de serviço (ELS): tipos, força e armaduras de protensão. Faixa de passagem do cabo equivalente, traçado dos cabos. Conceitos relativos às perdas de protensão: imediatas e progressivas. Verificação ELU de flexão. Aplicações da protensão.

Concreto Armado II: Elementos de Fundação: Sapatas e Blocos sobre estacas. Método Biela-Tirante. Elementos Especiais de CA: Consolos Curtos, Dentes Gerber

2020-ETC320 página 1 de 9

e Vigas-Parede. Torção.

SYLLABUS

Prestressed Concrete: History, motivation and basic concepts. Concept of prestressing, prestressing systems. Serviceability limit state (ELS): types, strength and prestressing steel. Cable passband equivalent, tracing cables. Loss of prestress: immediate and progressive. ELU verification of bending. Applications of prestressing.

Reinforced Concrete II: Foundations: direct and pile caps. Strut and Tie Models. Special elements of RA: Corbel, Gerber elements and deep beam. Torsion.

TEMARIO

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida
- Problem Based Learning
- Gamificação

METODOLOGIA DIDÁTICA

Do ponto de vista da metodologia pedagógica, a disciplina utilizará a técnica expositiva e estratégias ativas para aprendizagem, com apoio de recursos áudio-visuais, para aulas de caráter teórico, prática e de exercícios compatíveis com o cálculo manual.

Nas aulas práticas de desenvolvimento de projeto e exercícios, além da técnica expositiva, há a orientação e o acompanhamento no desenvolvimento do projeto em sala de aula, utilizando-se do cálculo manual, assim como estimulando a sistematização por meio de ferramentas computacionais, sempre priorizando a conceituação da solução e a expectativa da qualidade do resultado, ao invés da aceitação passiva das respostas numéricas obtidas pela utilização das ferramentas computacionais e estratégias ativas.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Materiais de Construção: propriedades dos materiais concreto e aço;

Resistência dos Materiais e Teoria das Estruturas: tensões, deformações e comportamento estrutural - determinação dos esforços solicitantes em estruturas usuais da construção civil;

Concreto Armado I: comportamento dos materiais estruturais (concreto e aço), segurança das estruturas - ELU e ELS, solicitações normais e tangenciais.

2020-ETC320 página 2 de 9

CONTRIBUIÇÃO DA DISCIPLINA

- 1- Da ao aluno conhecimentos sobre a correta aplicação da teoria aos problemas da vida prática.
- 2- Demonstra o progresso constante que se verifica na ciência da construção de importantes obras de engenharia.
- 3- Introduz claramente aos alunos a importância da correta utilização de equipamentos sofisticados, representados pelos tipos de instrumentos de precisão usados na execução de obras de concreto protendido.
- 4- Como disciplina de fim de curso, permite ao aluno compreender toda a importância do seu correto aprendizado, nas séries anteriores, das disciplinas básicas ministradas no curso de engenharia civil.
- 5- Colocar o aluno frente ao fato de que engenharia não é uma ciência exata e que seus modelos matemáticos mais simples podem constituir-se em importante instrumento de aferição de resultados e de ordem de grandeza nas soluções de problemas.

BIBLIOGRAFIA

Bibliografia Básica:

CARVALHO, Roberto Chust. Estruturas em concreto protendido: pré-tração, pós-tração, cálculo e detalhamento. São Paulo, SP: Pini, 2012. 431 p.

CHOLFE, L.; BONILHA, L - Concreto Protendido: Teoria e Prática. 2a edição. Editora Oficina de Textos, São Paulo, 2018.

Carvalho, R.C., Estruturas de Concreto Protendido. Ed. PINI, São Paulo, 2012.

Bibliografia Complementar:

Buchaim, R. - Concreto Protendido: Tração Axial, Flexão Simples e Força Cortante. EDUEL - Universidade Estadual de Londrina, 2007.

Freitas, Moacir - Concreto Protendido Apostila EE Mauá

Fusco, P.B. - Técnicas de Armar as Estruturas de Concreto Ed. PINI, São Paulo.

Leonhardt, F.; Monnig, E. - Construções de Concreto Editora Interciência - R.J. - 5 Vols

Pfeil, Walter - Concreto Protendido LTC - Rio de Janeiro - RJ.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-ETC320 página 3 de 9

Disci [.]	plina	anual,	com	trabalhos	е	provas	(quatr	o e	duas	substitutivas) .

Pesos dos trabalhos:

k₁: 1,0 k₂: 1,0

Peso de $\mathrm{MP}(\mathrm{k}_{\mathrm{p}})$: 3,0 Peso de $\mathrm{MT}(\mathrm{k}_{\mathrm{T}})$: 1,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A avaliação T, duas por semestre, constam de trabalhos e exercícios
desenvolvidos ao longo do bimestre, acompanhados pelo
professor em sala de aula, valorizando a presença do aluno em aula, e de
trabalhos desenvolvidos em grupo. Esta avaliação T será uma média ponderada.

2020-ETC320 página 4 de 9

OUTRAS INFORMAÇÕ	DES

2020-ETC320 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

_						
1.	. CAD TQS - Software integrado para	a projeto	de	estruturas	de	concreto.
	. REVIT - Software BIM - Autodesk					
		andida.				
٥.	. VPRO - Calculadora de vigas prote	endidas				

2020-ETC320 página 6 de 9

APROVAÇÕES

Prof.(a) Januário Pellegrino Neto Responsável pela Disciplina

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Data de Aprovação:

2020-ETC320 página 7 de 9

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 E	Planejamento. Preparação de Material Didático.	0
2 E	Concreto ProtendidoHistórico, motivação e aplicações.	11% a 40%
3 E	Conceitos Básicos de Protensão - flexão normal composta. FNC	11% a 40%
	(exercícios)	
4 E	Sistemas de Protensão. Tipos de Protensão. Estado Limite de	0
	Serviço.	
5 E	Força de Protensão e Armadura de Protensão - Exemplo.	0
6 E	Força de Protensão e Armadura de Protensão.Projeto de uma	11% a 40%
	Estrutura Protendida.	
7 E	Verificações Complementares.Faixa de Passagem dos Cabos. Traçado	11% a 40%
	dos Cabos.	
8 E	Projeto de uma Estrutura Protendida.	0
9 E	Prova P1	0
10 E	Perdas de Protensão. Perdas Imediatas.	0
11 E	Perdas de Protensão. Perdas Imediatas e Progressivas.Projeto de	0
	uma Estrutura Protendida.	
12 E	Perdas de Protensão. Perdas Imediatas.	11% a 40%
13 E	Perdas de Protensão. Perdas Progressivas.	11% a 40%
14 E	Verificação no Estado Limite Último (ELU) - Flexão.	11% a 40%
15 E	Semana de Inovação.	0
16 E	Verificação no Estado Limite Último (ELU) - Flexão.Projeto de uma	11% a 40%
	Estrutura Protendida.	
17 E	Aplicações de Protensão.	41% a 60%
18 E	Aplicações de Protensão.	41% a 60%
19 E	Prova P2.	0
20 E	Prova P2.	0
21 E	Atendimento. Revisão final.	0
22 E	Atendimento	0
23 E	Prova PS1.	41% a 60%
24 E	Concreto Armado II - revisão Concreto Armado I: ELU e ELS.	41% a 60%
25 E	Estruturas Pré-moldadas: ELU e ELS.	0
26 E	Projeto de um Galpão Pré-moldado.	0
27 E	Torção.	11% a 40%
28 E	Torção.	0
29 E	Método Biela-Tirante. Regiões de Descontinuidade. Elementos	0
	Especiais deConcreto Armado.	
30 E	Prova P3.	0
31 E	Elementos de Fundação - Sapatas.	11% a 40%
32 E	Elementos de Fundação - Blocos sobre Estacas.Blocos sobre 2	0
	Estacas. Dimensionamento e Detalhamento.	
33 E	Blocos sobre Estacas - Exemplos.	11% a 40%
34 E	Consolos Curtos e Dentes Gerber.	11% a 40%
35 E	Vigas-Parede.	11% a 40%
36 E	Exercícios.	0

2020-ETC320 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

37 E	Prova P4.	0
38 E	Prova P4.	0
39 E	Atividades de Atendimento e Orientação.	0
40 E	Prova PS2	0
41 E	Atividades de Atendimento e Revisão.	0
Legend	a: T = Teoria, E = Exercício, L = Laboratório	

2020-ETC320 página 9 de 9