2일차: 8월 15일

https://bit.ly/2023어쩌다텍스트분석

Time Table

8월 13일	오전 (09:00~12:00)	1. 오리엔테이션 2. 오늘, 우리에게 필요한 머신러닝 1	
	오후 (13:00~16:00)	3. 5장 연합뉴스 타이틀 주제 분류	
8월 14일	@home	개별 프로젝트 구상 및 발표준비 (생성형 인공지능을 많이 많이 활용해 보세요! ChatGPT, Bing, wrtn, bard 중 하나를 선택하여 활용하기)	
8월 15일	오전 (09:00~12:00)	1. 오늘, 우리에게 필요한 머신러닝2 2. 6장 연합뉴스 타이틀 주제 분류 3. 7장 '120다산콜재단' 토픽 모델링과 RNN, LSTM 4. 8장 인프런 이벤트 댓글분석	
	오후 (13:00~16:00)	4. 개별 프로젝트 발표 자료 정리 및 발표★	

인공지능, 머신 러닝, 딥러닝

머신 러닝의 분류

지도학습, 분류 Vs. 회귀

분류(Classification)

<u>회귀(regression)</u>

이미지 출처 : https://ittrue.tistory.com/35

비지도학습, 군집

군집(Clustering)

우리가 공부할 5,6,7,8장의 목차를 살펴보았더니,

5장 연합뉴스 타이틀 주제 분류

- 학습 세트와 시험 세트 분리하기 / 랜덤포레스트

6장 국민청원 데이터 시각화와 분류

- 학습 세트와 시험 세트 분리하기 / 이진 분류, LightGBM

7장 '120다산콜재단' 토픽 모델링과 RNN, LSTM

- 학습-시험 데이터 세트 분리하기 / Bidirectional LSTM

지도학습

8장 인프런 이벤트 댓글 분석

- 군집화 하기 / KMeans

비지도학습

모델 생성, 훈련, 예측, 평가

모델 생성, 훈련, 예측, 평가

지금부터, 편안하게 들어주세요.

단, 어려워보이는 수학식이 나오면 해석을 부탁할 수도 있습니다. Д

자료의 경향성과 예측

번호	수학	과학	번호	수학	과학
1	90	86	11	73	84
2	64	65	12	82	83
3	94	89	13	78	59
4	57	62	14	68	64
5	82	74	15	54	55
6	92	64	16	92	95
7	84	98	17	65	70
8	72	85	18	76	72
9	52	62	19	83	88
10	86	84	20	95	93

수학점수(x)와 과학점수(y)에 대한 산점도

자료의 경향성과 예측

번호	수학	과학	번호	수학	과학
1	90	86	11	73	84
2	64	65	12	82	83
3	94	89	13	78	59
4	57	62	14	68	64
5	82	74	15	54	55
6	92	64	16	92	95
7	84	98	17	65	70
8	72	85	18	76	72
9	52	62	19	83	88
10	86	84	20	95	93

산점도에 선을 하나 그으면?

쌤은,

Can machines think?

Yes, But machines can't think as people do.

Fail Fast, Fail Often

자료의 경향성과 예측

지점	풍속(m/s)	최대 파고(m)
울릉도	12,7	5,8
덕적도	1,6	1,9
포항	13,1	3,8
외연도	2,0	2,7
거제도	7,3	1,7
서귀포	8,4	2,6
통영	9.0	2,0
인천	4.2	2,9
울산	9.7	3,6

(출처: 기상자료개방포털, 2021)

풍속과 최대파고의 산점도

추세선과 관계식

자료의 경향성과 예측

• 우리는, 이 추세선으로 풍속이 4m/s이면 최대파고가 2.31m일 것이라고 "예측"한다.

예측과 오차

• 추세선에 따른 각 지점의 오차

예측과 오차

• 예측값과 오차

지점	풍속(m/s)	최대 파고(m)	예측값(m)	오차(m)
울릉도	12,7	5,8	3,963	1,837
덕적도	1.6	1.9	1,854	0.046
포항	13,1	3,8	4,039	-0.239
외연도	2.0	2.7	1,930	0.770
거제도	7,3	1,7	2,937	-1,237
서귀포	8.4	2.6	3,146	-0.546
통영	9.0	2.0	3,260	-1,260
인천	4.2	2.9	2,348	0,552
울산	9.7	3,6	3,393	0,207

• 예측이 좋은 추세선이란?

예측과 오차

오차의합
$$=\sum_{i=1}^{n} \left(p_i - y_i\right)^2$$

평균제곱오차(
$$\mathit{MSE}$$
) $= \frac{1}{n} \sum_{i=1}^{n} \left(p_i - y_i \right)^2$

평균제곱근 오차
$$(RMSE) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - y_i)^2}$$

선형 회귀(Linear Regression)

선형 회귀(linear regression)란,

<u>임의의 직선(y = ax + b)</u>을 그어서 이에 대한 <u>평균 제곱근 오차</u>를 구하고,

이 값을 가장 작게 만들어 주는 기울기 a와 절편 b를 찾아가는 작업이다.

• 오차 수정하기

기울기a와 오차의 상관관계는?

• 오차가 가장 작은 점은 어디일까요?

• 각 점에서 순간의 기울기를 구할 때, 기울기가 0이 되는 지점

• 우리가 오차가 가장 작은 점을 구하는 방법

- 1. a_1 에서 미분을 구한다.
- 2. 구해진 기울기의 반대방향으로 얼마간 이동시킨 a_2 에서 미분을 구한다.
- 3. a_3 에서 미분을 구한다
- 4. 3의 값이 0이 아니면 위의 과정을 반복한다.

• 우리가 오차가 가장 작은 점을 구하는 방법

- 1. a_1 에서 미분을 구한다.
- 2. 구해진 기울기의 반대방향으로 얼마간 이동시킨 a_2 에서 미분을 구한다.
- 3. a_3 에서 미분을 구한다
- 4. 3의 값이 0이 아니면 위의 과정을 반복한다.

• 우리가 오차가 가장 작은 점을 구하는 방법 : 경사하강법

- 1. a_1 에서 미분을 구한다.
- 2. 구해진 기울기의 반대방향으로 얼마간 이동시킨 a_2 에서 미분을 구한다.
- 3. a_3 에서 미분을 구한다
- 4. 3의 값이 0이 아니면 위의 과정을 반복한다.

• 우리가 오차가 가장 작은 점을 구하는 방법 : 경사하강법

- 1. a_1 에서 미분을 구한다.
- 2. 구해진 기울기의 반대방향으로 얼마간 이동시킨 a_2 에서 미분을 구한다.
- 3. a_3 에서 미분을 구한다
- 4. 3의 값이 0이 아니면 위의 과정을 반복한다.

로지스틱 회귀(Logistic Regression)

공부한 시간	합격여부
2	불합격
4	불합격
6	불합격
8	합격
10	합격
12	합격
14	합격

로지스틱 회귀(Logistic Regression) : 선긋기

로지스틱 회귀(Logistic Regression) : 시그모이드 함수

$$y = \frac{1}{1 + e^{(-ax+b)}}$$

로지스틱 회귀(Logistic Regression) : 시그모이드 함수

$$y = \frac{1}{1 + e^{(-ax+b)}} \qquad \Rightarrow \qquad ax + b$$

로지스틱 회귀(Logistic Regression) : 시그모이드 함수

$$ax + b$$

로지스틱 회귀(Logistic Regression) : 시그모이드 함수

로지스틱 회귀(Logistic Regression) : 오차와 로그함수

$$-\{ylogh + (1-y)log(1-h)\}$$

로지스틱 회귀(Logistic Regression) : 오차와 로그함수

로지스틱 회귀(Logistic Regression) : 다중 입력

$$y = a_1 x_1 + a_2 x_2 + b$$

퍼셉트론

딥러닝

퍼셉트론

$$a$$
는 기울기, b 는 절편 $y = ax + b$ $y = wx + b$ w 는 가중치, b 는 바이어스

퍼셉트론 , 1956

• 가중치, 가중합, 바이어스, 활성화 함수

뉴런, 퍼셉트론, 신경망

- 네 점 사이에 하나의 <u>직선</u>을 그을 거예요.
- 직선의 한쪽 편에는 검은 점만 있고
 다른 한쪽 편에는 흰 점만 있게 선을 그을 수 있을까요?

AND 게이트 ㅡ

x1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

OR 게이트 ____

x1	x2	У
0	0	0
0	1	1
1	0	1
1	1	1

NAND 게이트 _____

x1	x2	У
0	0	1
0	1	1
1	0	1
1	1	0

NOR 게이트 _____

x1	x2	У
0	0	1
0	1	0
1	0	0
1	1	0

XOR 게이트 그

x1	x2	У
0	0	0
0	1	1
1	0	1
1	1	0

XOR 게이트

x1	x2	У
0	0	0
1	0	1
0	1	1
1	1	0

퍼셉트론의 문제: XOR와 인공지능의 암흑기

퍼셉트론 XOR 문제의 해결

퍼셉트론 XOR 문제의 해결 : 은닉층(Hidden Layer)

우리는, 파란색과 빨간색을 구분하는 선을 그을 거예요!

다층 퍼셉트론

$$n_1 = \partial(x_1 w_{11} + x_2 w_{21} + b_1)$$

$$n_2 = \partial(x_1 w_{12} + x_2 w_{22} + b_2)$$

$$y_{out} = \partial(n_1 w_{31} + n_2 w_{32} + b_3)$$

다층 퍼셉트론

$$W(1) = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \qquad B(1) = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$W(2) = \begin{bmatrix} w_{31} \\ w_{32} \end{bmatrix} \qquad B(2) = [b_3]$$

다층 퍼셉트론: XOR 문제의 해결

$$W(1) = \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix} \qquad B(1) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$W(2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$B(2) = [-1]$$

다층 퍼셉트론: XOR 문제의 해결

$$n_1 = \partial(x_1 w_{11} + x_2 w_{21} + b_1)$$

$$n_2 = \partial(x_1 w_{12} + x_2 w_{22} + b_2)$$

$$y_{out} = \partial(n_1 w_{31} + n_2 w_{32} + b_3)$$

X,	X ₂	n _t	n ₂	You	우리가 원하는 값
0	0	o(0 * (-2) + 0 * (-2) + 3) = 1	$\sigma(0*2+0*2-1)=0$	$\sigma(1 \cdot 1 + 0 \cdot 1 - 1) = 0$	0
0	1	σ(0 * (-2) + 1 * (-2) + 3) = 1	σ(0 * 2 + 1 * 2 - 1) = 1	$\sigma(1 * 1 + 1 * 1 - 1) = 1$	1
1	0	σ(1 * (-2) + 0 * (-2) + 3) = 1	o(1 * 2 + 0 * 2 - 1) = 1	$\sigma(1 * 1 + 1 * 1 - 1) = 1$	1
1	1	$\sigma(1*(-2)+1*(-2)+3)=0$	$\sigma(1*2+1*2-1)=1$	$\sigma(0 * 1 + 1 * 1 - 1) = 0$	0

신경망(Neural Network)

신경망(Neural Network) : 기울기 소실 문제와 활성화 함수

딥러닝(Deep Learning)

딥러닝(Deep Learning)

• 구글 플레이그라운드 (https://playground.tensorflow.org/)

어디서부터 어디까지 공부해야 할 지 모를 만큼 방대하지만,

이미, 우리는 1의 상태입니다 :)