PRACTICE SESSION 5
Method 2: Use the thecreus
ASYMPTOTIC THEOREMS
THEOREM 1
If: The system is asymptotically stable V12 = 0
then: ARE has one and only one positive-semidefinite solution P>0 DRE converges to P + Po>0 The corresponding E is such that F-KH is asymptotically stable.
· stable
THEOREM 2
If: $V_{12}=0$ (F,H) is observable (F,P) is reachable $(P^{P^T}=V_2)$
then: ARE has one and only one positive definite solution P>0 • DRE converges to P + Po>0 • The corresponding E is such that F-KH is asymptotically stable.
THEOREM 1 • Is stable (=> all the eigenvalues of F are strictly inside the unitary circle
$F = \frac{2}{5} \implies 2I - F = 0 \qquad 2 = \frac{2}{5} \qquad 2 \le 1 \qquad (ok)$
$V_{12} = O \rightarrow V_1 \perp V_2 \Rightarrow V_{12} = O (OE)$
THEOREM 2
· (F, H) observable - O = H=3 rauk(O)= m (OK)
• (F, Γ) reachable $\rightarrow \Gamma \Gamma^{-1} = \frac{123}{125}$ $\Gamma = \sqrt{\frac{123}{125}}$ $R = \Gamma = \sqrt{\frac{123}{125}}$ rank(Ω)= M (O)= M
$V_{12} - C \longrightarrow U_{1} \perp U_{2} V_{12} = C (OK)$
· ART has one and only one positive definite solution $P>0$ · DRE converges to P \forall $P_0 \ge 0$ · K is such that all the eigenvalues of $F-KH$ are staidly inside the U.C.
$P = = 1$ $\hat{\chi}(t+1 t) = \frac{1}{25}\hat{\chi}(t t-1) + \frac{3}{25}\hat{\chi}(t)$ $\hat{\chi} = = \frac{3}{25}$ $\hat{\chi}(t+1 t) = \frac{1}{25}\hat{\chi}(t t-1) + \frac{3}{25}\hat{\chi}(t)$

$$\hat{X}(t+1|t) = \frac{1}{25} \hat{X}(t+1|t-1) + \frac{3}{25} \hat{y}(t)$$

$$\hat{X}(t+1|t) = \frac{5}{2} \left[\frac{1}{25} \cdot \frac{2}{5} \hat{X}(t-1|t-1) + \frac{3}{16} \hat{y}(t) \right]$$

$$\hat{X}(t+1|t) = \frac{1}{25} \hat{X}(t-1|t-1) + \frac{3}{16} \hat{y}(t)$$

$$\hat{X}(t+1|t) = \hat{X}(t+1|t)$$

$$\hat{X}(t+1|t) = \hat{X}$$

EXETECISE 2

given the system

$$\begin{cases} X_{1}(t+1) = \frac{1}{2} X_{2}(t) + V_{1}(t) \\ X_{2}(t+1) = 2 X_{2}(t) + V_{2}(t) \\ Y_{1}(t) = X_{2}(t) + V_{2}(t) \end{cases}$$

$$v_{i}(t) = \begin{bmatrix} v_{ii}(t) \\ v_{iz}(t) \end{bmatrix}$$
 $v_{i} \wedge w = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $v_{i} \wedge w = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ $v_{i} \wedge w = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ $v_{i} \wedge w = \begin{bmatrix} 1 & 0 \\ 0 \end{pmatrix}$ $v_{i} \wedge w = \begin{bmatrix} 1 & 0 \\ 0 \end{pmatrix}$

$$F = \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix} \quad H = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad V_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad V_2 = 1 \quad V_{12} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(a) Draw the system black schune

(b) Is the 1-step asymptotic state prediction error bounded?

ex is bounded if the kalma predictor exists and it is stable

THEOREM 1 X

$$g$$
 is $A.S$? $F = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$ — we have to find the eigenvalues of F

$$\det(2I - F) = O \det\left(\begin{bmatrix} 2 - \frac{1}{2} & O \\ O & 2 - 2 \end{bmatrix}\right) = O \left(2 - \frac{1}{2}\right)(2 - 2) = O \operatorname{eig}(F) \left(\frac{2}{2} - \frac{1}{2}\right)$$

1221 > 1 -D S is not A.S.

THEOREM 2: X

$$(F,H)$$
 Observable? $\theta = \begin{bmatrix} H \\ HF \end{bmatrix}$

```
\theta(2,:) = HF = [0 1] \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix} = [0 2] \begin{cases} \theta = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{cases} \end{cases} rank(0) = 1
  I is not observable
Considering the whole system neither THX1 nor THX2 is valid.
Since the system is composed by two autonomous subsystems we can truly to analyze one subsystems at a time.
  (X_4(t+1) = Z_1(t) + U_{11}(t) ]A
 \begin{cases} x_{2}(t+1) = 2 \times_{2}(t) + v_{n}(t) \\ y(t) = x_{2}(t) + v_{2}(t) \end{cases} 
 SUBSYSTEY A
  [X1(+1) = 2 X1(+) + V1(+)
 ( Ja(L) = O FICTITIOUS OUTPUT
 FA = 1 HA = O V1A = 1 V2A = O V1ZA = O VZA 1 V,
 det (2I-Fa)=0 2-1=0 2=1 121/1 S is A.S.
  y is A.S. 3 -> THM 1 Is valid
SUBSYSTEM B
 \begin{cases} x_{2}(t+1) = 2 \times_{2}(t) + v_{12}(t) \\ y(t) = x_{2}(t) + v_{2}(t) \end{cases}
(F, H) observable? 8 = 4B = 1 -0 rame(0) = 1
(F,7) reachable? Q=12=1 - Rank(Q)=1 V
                                                                 THM 2 is valid
V12 = 0
to THM 1 it is possible to build an A.S. asymptotic Kalman Predictor
of x1(t)
                       X1(1) - X1(1+1) < 00 Yt
For THM 2 it is possible to build an A.S. asymptotic Kalman predictor
of X2(t)
                      x2(t) - &2(t (t-1) <0 +t
                           [x,(t)-x,(t|t-1)] < 100
e_{x}(t) = x(t) - \hat{x}(t|t-1) =
                                                         bt
                           L x2(t) - x2(t1t-1)
The Asymptotic state prediction ever is bounded
```