#import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer

Load the dataset
titanic_df = pd.read_csv('titanic.csv')

#View the data
titanic_df.head()

₽		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2833
	+										•

#Basic information

titanic_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
Column Non-Null Court Days

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

#Describe the data

titanic_df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200


```
titanic_df.isnull().sum()
```

```
PassengerId
                 0
Survived
                 0
Pclass
                 0
Name
                 0
Sex
                 0
Age
               177
SibSp
                 0
Parch
                 0
Ticket
                 0
                 0
Fare
Cabin
               687
Embarked
dtype: int64
```

2 -

#Replace null values

```
titanic_df.replace(np.nan,'0',inplace = True)
                                              J
                                                                                                      400
```

#Check the changes now titanic_df.isnull().sum()

> PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 0 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 0 Embarked 0 dtype: int64

#cheking the Datatypes

titanic_df.dtypes

int64 PassengerId Survived int64 Pclass int64 Name object Sex object Age object SibSp int64 Parch int64 Ticket object Fare float64 Cabin object Embarked object dtype: object

#Filter data

titanic_df[titanic_df['Pclass']==1].head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
23	24	1	1	Sloper, Mr. William Thompson	male	28.0	0	0	113788	35.5000	A6	S

#Boxplot

titanic_df[['Fare']].boxplot()

#Correlation

titanic_df.corr()

<ipython-input-35-682f5432db94>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
titanic_df.corr()

_							
	PassengerId	Survived	Pclass	SibSp	Parch	Fare	1
Passengerld	1.000000	-0.005007	-0.035144	-0.057527	-0.001652	0.012658	
Survived	-0.005007	1.000000	-0.338481	-0.035322	0.081629	0.257307	
Pclass	-0.035144	-0.338481	1.000000	0.083081	0.018443	-0.549500	
SibSp	-0.057527	-0.035322	0.083081	1.000000	0.414838	0.159651	
Parch	-0.001652	0.081629	0.018443	0.414838	1.000000	0.216225	
Fare	0.012658	0.257307	-0.549500	0.159651	0.216225	1.000000	
4							
,							

#Correlation plot

sns.heatmap(titanic_df.corr())

```
<ipython-input-37-dec87e11b1d9>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
       sns.heatmap(titanic_df.corr())
     <Axes: >
                                                                             - 1.0
      Passengerld -
                                                                             - 0.8
         Survived
                                                                              0.6
                                                                             0.4
           Pclass
                                                                              0.2
            SibSp
                                                                              0.0
            Parch
                                                                              -0.2
             Fare
# Select features and target variable
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
target = 'Survived'
X = titanic_df[features]
y = titanic_df[target]
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# One-hot encode the categorical variables
cat_vars = ['Sex', 'Embarked']
enc = OneHotEncoder(handle_unknown='ignore')
X_train_enc = enc.fit_transform(X_train[cat_vars])
X_test_enc = enc.transform(X_test[cat_vars])
feature_names = enc.get_feature_names_out(cat_vars)
# Handle missing values
imp = SimpleImputer(strategy='median')
X_train_num = pd.DataFrame(X_train.select_dtypes(include='number'))
X_test_num = pd.DataFrame(X_test.select_dtypes(include='number'))
X_train_imputed = imp.fit_transform(X_train_num)
X_test_imputed = imp.transform(X_test_num)
# Concatenate the numeric and encoded categorical variables
X train final = pd.concat([pd.DataFrame(X train imputed, columns=X train num.columns), pd.DataFrame(X train enc.toarray(), columns=feature na
X_test_final = pd.concat([pd.DataFrame(X_test_imputed, columns=X_test_num.columns), pd.DataFrame(X_test_enc.toarray(), columns=feature_names)
# Train a logistic regression model on the training data
model = LogisticRegression()
model.fit(X_train_final, y_train)
     /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (\max\_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       n_iter_i = _check_optimize_result(
     ▼ LogisticRegression
     LogisticRegression()
# Evaluate the model on the test data and print the accuracy score
y_pred = model.predict(X_test_final)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
    Accuracy: 0.7653631284916201
```

✓ 0s completed at 3:23 PM

• ×