PID for industrial control

Kjartan Halvorsen

October 6, 2021

The PID - practical form

The parameter N is chosen to limit the influence of noisy measurements. Typically,

$$3<\textit{N}<20$$

PID tuning

Method by Smith & Corripio using table by Ziegler-Nichols

Given process model (fitted to response of the system)

$$G(s) = K \frac{\mathrm{e}^{-s\theta}}{\tau s + 1}$$

and PID controller

$$F(s) = k_c \left(1 + rac{1}{ au_i s} + au_d s
ight)$$

Choose the PID parameters according to the following table (Ziegler-Nichols, 1943)

k _c	$ au_i$	$ au_{d}$
$\frac{ au}{ heta K}$		
$rac{0.9 au}{ heta K}$	$\frac{\theta}{0.3}$	
$\frac{1.2 au}{ heta K}$	2θ	$\frac{\theta}{2}$
	$\frac{\frac{\tau}{\theta K}}{\frac{0.9\tau}{\theta K}}$	$\begin{array}{ccc} \frac{\tau}{\theta K} \\ \frac{0.9\tau}{\theta K} & \frac{\theta}{0.3} \end{array}$

Gives good control for

$$0.1 < \frac{\theta}{\tau} < 0.6.$$

The delay

Let $u(t) = \sin \omega_1 t$. Then, after transients have died out,

$$y(t) = |G(\omega_1)| \sin (\omega_1 t + \arg G(i\omega_1)).$$

The delay

Let $u(t) = \sin \omega_1 t$. Then, after transients have died out,

$$y(t) = |G(\omega_1)| \sin (\omega_1 t + \arg G(i\omega_1)).$$

If ouput is simply a delayed input $y(t) = \sin (\omega_1(t-\theta))$

The delay

Let $u(t) = \sin \omega_1 t$. Then, after transients have died out,

$$y(t) = |G(\omega_1)| \sin (\omega_1 t + \arg G(i\omega_1)).$$

If ouput is simply a delayed input $y(t) = \sin \left(\omega_1(t- heta)\right)$

Activity Identify $|G(i\omega)|$ and arg $G(i\omega)$ for the pure delay.

Analytical PID design

Analytical PID design

Activity Solve for F(s) in the closed-loop transfer function

$$G_c(s) = \frac{G(s)F(s)}{1 + G(s)F(s)}$$

Analytical PID design - Solution

Analytical PID design - Solution

Solving for F(s) in the closed-loop transfer function $G_c(s) = \frac{G(s)F(s)}{1+G(s)F(s)}$

$$egin{aligned} ig(1+G(s)F(s)ig)G_c(s)&=G(s)F(s)\ G_c(s)&=ig(1-G_c(s)ig)G(s)F(s)\ F(s)&=rac{G_c(s)}{G(s)}\ 1-G_c(s) \end{aligned}$$

Analytic PID tuning - first-order with delay

Given model $G(s)=K\frac{\mathrm{e}^{-s\theta}}{\tau s+1}$ of the process and desired closed-loop transfer function $G_c(s)=\frac{\mathrm{e}^{-s\theta}}{\tau_c s+1}$

$$egin{aligned} F(s) &= rac{rac{G_c(s)}{G(s)}}{1-G_c(s)} = rac{rac{\mathrm{e}^{-s heta}}{ au_c s+1}rac{ au s+1}{K\mathrm{e}^{-s heta}}}{1-rac{\mathrm{e}^{-s heta}}{ au_c s+1}} = rac{1}{K}\left(rac{ au s+1}{ au_c s+1-\mathrm{e}^{-s heta}}
ight) \ &pprox rac{1}{K}\left(rac{ au s+1}{(au_c + heta)s}
ight) \end{aligned}$$

Analytic PID tuning - first-order with delay

Given model $G(s)=K\frac{\mathrm{e}^{-s\theta}}{\tau s+1}$ of the process and desired closed-loop transfer function $G_c(s)=\frac{\mathrm{e}^{-s\theta}}{\tau_c s+1}$

$$egin{aligned} F(s) &= rac{rac{G_c(s)}{G(s)}}{1-G_c(s)} = rac{rac{\mathrm{e}^{-s heta}}{ au_c s+1}rac{ au s+1}{K\mathrm{e}^{-s heta}}}{1-rac{\mathrm{e}^{-s heta}}{ au_c s+1}} = rac{1}{K}\left(rac{ au s+1}{ au_c s+1-\mathrm{e}^{-s heta}}
ight) \ &pprox rac{1}{K}\left(rac{ au s+1}{(au_c + heta) s}
ight) \end{aligned}$$

Activity A PI-controller can be written $F(s) = k_c \frac{\tau_i s + 1}{\tau_i s}$. Determine k_c and τ_i in terms of the parameters K, θ , τ and τ_c .

Example

$$k_c = \frac{\tau}{K(\tau_c + \theta)}$$
 and $\tau_i = \tau$.

Activity Determine the controller for the choice $au_c= au$

The PID - practical aspects

Åström & Hägglund (1988) PID controllers: Theory, design and tuning, 2nd ed Instrument Society of America.

Approximating nonlinear systems with linear models

- Model is accurate only in neighborhood of operating point for which the system is approximated.
- Solution: Divide operating range into many regions, with separate PID parameters for each region

Approximating high-order systems with low-order models

- Only accurate for low frequencies
- Beware of behavior for high-frequency input to the closed-loop system

The PID - practical aspects, contd

When do PID controllers work well?

- ▶ The plant dynamics can be well approximated with low-order model
- ▶ Demands on performance not too high

More sophisticated control needed when

- Higher order dynamics
- Oscillatory modes
- Long deadtime

The PID - practical aspects, contd

Choice of controller

- 1. P-controller if damping and steady-state error satisfied
- 2. PI-controller if steady-state error must be zero (often 1st order dynamics)
- 3. PID-controller if PI does not give sufficient damping (often 2nd order dynamics)
- 4. Tuning parameter τ_c for SIMC tuning method:
 - Smaller (=faster) than τ if sufficiently damped and limitations on input signal not violated.
 - ▶ larger (=slower) than τ if more damping required or smaller input signal required.

Integral windup

Video by Tomás Alejandro Lugo Salinas (MTY)

Anti-windup using back-calculation

Anti-windup using back-calculation

Activity Assume e(t) = 0 and determine the transfer function from $u_s(t)$ to u(t).