모두의 딥러닝 개정 2판 정오표 (최종 수정 : 2021년 7월 30일)

7쇄

페이지	수정 전	수정 후
없음	없음	없음

↓ 아래 모든 내용은 7쇄에 이미 반영되어 있습니다.

6쇄

페이지	수정 전	수정 후
25	pip install jupyter를 입력해 주피터 노트북을 설치합니다.	conda activate py37을 입력해 py37 작업환경을 열어줍니다. 그리고 pip install jupyter를 입력해 주피터 노트북을 설치한니다.
72	print("MSE 최종값: " + str(mse_val(predict_result,y)))	print("MSE 최종값: " + str(mse_val(<mark>y,predict_result</mark>)))
154	from tensorflow.keras.utils import np_utils	import tensorflow as tf
193	y_acc=history.history['acc']	y_acc=history.history['accuracy']
284	generator.add(Conv2D(128, kernel_size=3,)	generator.add(Conv2D(<mark>64</mark> , kernel_size=5,)
284	커널 크기를 3으로 해서 3x3 크기의	커널 크기를 5로 해서 5x5 크기의

↓ 아래 모든 내용은 6쇄에 이미 반영되어 있습니다.

4쇄

쇄	페이지	수정 전	수정 후
	38	epochs=30	epochs=100
	327	w31 값은 이미 알고 있으므로	삭제
	336	밑에서 8째줄, 7째줄, 3째줄 $\left(oldsymbol{\delta} y_{o1} \cdot y_{o1} + oldsymbol{\delta} y_{o2} \cdot y_{o2}\right) y_{h1} (1-y_{h1}) \cdot x_1$	$(\delta y_{\scriptscriptstyle o1} \cdot \overbrace{w_{\scriptscriptstyle 31}}) + \delta y_{\scriptscriptstyle o2} \cdot \overbrace{w_{\scriptscriptstyle 41}}) y_{\scriptscriptstyle h1} (1-y_{\scriptscriptstyle h1}) \cdot x_1$

↓ 아래 모든 내용은 4쇄에 이미 반영되어 있습니다.

1~3쇄 공통

페이지	수정 전	수정 후
	1. <u>2020년 8월</u> 부로 아나콘다 가 업그레이드 되었고, <u>2020년</u>	년 3월 부로 구글 코랩 이 업그레이드 되었습니다.
	2. 현재 1~3쇄를 보고 계시다면, 길벗 자료실에 첨부되어	있는 아래 자료를 따라 설치하셔야 합니다.

3쇄

페이지	수정 전	수정 후
83	a1_diff = -(1/len(x_data)) ~	a1_diff = -(2 /len(x_data)) ~
03	a2 diff = -(1/len(x data)) ~	a2 diff = -(2/len(x data)) ~
84	b_diff = -(1/len(x_data)) ~	b_diff = -(2/len(x_data)) ~
	Ir = 0.05	Ir = 0.02
85	a1_diff = -(1/len(x_data)) ~	$a1_diff = -(2/len(x_data)) \sim$
03	$a2_diff = -(1/len(x_data)) \sim$	$a2_diff = -(2/len(x_data)) \sim$
	h diff = -(1/len(v data)) ~ (맨 아래식에서) 가중합3 = w31yh1+w41yh2=1(바이어	h diff = -(2/len(x data)) ~
331	(현 아테직에서) 가능합3 = W3TyNT+W4TyNZ=T(마이어 스)	가중합3 = w31yh1+w <mark>3</mark> 1yh2=1(바이어스)
332	(7번째 줄) w41yh2	w <mark>3</mark> 1yh2
335	(중간) (y01-yot)	(y01-y t1)
	파이썬 3.7이상	파이썬 3.7
9	아나콘다 파이썬버전 3.7	텐서플로 2.0.0
	텐서플로 2.0	케라스 2.3

↓ 1쇄~2쇄의 모든 수정 내용은 3쇄에 이미 반영되어 있습니다.

2쇄

페이지	수정 전	수정 후
257, 258	model.fit(padded_x, labels, epochs=20)	model.fit(padded_x, classes, epochs=20)

31,35,38,		I
163	loss='mean_squared_error'	loss='binary_crossentropy'
43	→그림 2-4	4-x2
47	→그림 2-7 y=ax^2	y=a^x
78	$\frac{a}{\partial a}MSE(a,b)$	$\frac{\partial}{\partial a}MSE(a,b)$
78	$\frac{a}{\partial a}MSE(a,b)$	$\frac{\partial}{\partial b}MSE(a,b)$
78	$\frac{2}{n}(ax_{i}+b-y_{i})[(ax_{i}+b-y_{i})]'$	$\frac{2}{n} \sum (ax_i + b - y_i) [(ax_i + b - y_i)]'$
78, 80	b_diff = -(1/len(x_data)) * sum(y_data - y_pred)	b_diff = -(1/len(x_data)) * sum(error)
79	lr = 0.05	lr = 0.03
80	a_diff = -(1/len(x_data)) ~	$a_diff = -(2/len(x_data)) \sim$
	b diff = -(1/len(x data)) ~	b diff = -(2/len(x data)) ~
235	그림 16-9, Y_hi에서 512개의 노드	128개의 노드
235	→그림 16-9 두번째 드롭아웃(25%) 상자	드롭아웃(50%)
252	그림 17-1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
253	model.add(Embedding(16,4)	
312	(10째 줄) model.add(Activation('sigmoid'))	model.add(Activation('softmax'))
329	$(y_{t1} - y_{o1})'$	$(y_{t2} - y_{o2})'$
330	그러면 가중합3을 y01에 대해~~	그러면 y01을 가중합3에 대해~~
331	$f(x) = x^2$	$f(x) - x^{\alpha}$
355	from goolgle.colab	from google.colab

↓ 1쇄의 수정 내용은 2쇄에 이미 반영되어 있습니다.

1	쇄	

1쇄	페이지	수정 전	수정 후
	84, 85	b_new = -(1/len(x1_data)) * sum(y_data - y_pred)	<pre>b_diff = -(1/len(x1_data)) * sum(y_data - y_pred)</pre>
	98	plt.scatter(x, y)	plt.scatter(x_data, y_data)
	148	→6번째 줄 np.random.seed(3)	numpy.random.seed(3)
	251	→상단 소스 코드 word_size = len(t.word_index)+1	word_size = len(token.word_index)+1