Zadanie 1. (0-1)

Ciąg (a_n) jest określony wzorem $a_{n+1} = a_n + n - 6$ dla każdej liczby naturalnej $n \ge 1$. Trzeci wyraz tego ciągu jest równy $a_3 = -1$. Wyraz a_2 jest równy

A. -3

B. -2

C. 2

D. 3

Zadanie 2. (0-1)

Liczba punktów wspólnych wykresów funkcji y = -x + 1 i $y = \log_2 x$ jest równa

A. 0

B. 1

C. 2

D. 3

Zadanie 3. (0-1)

Która z poniższych funkcji, określonych w zbiorze liczb rzeczywistych, nie ma minimum lokalnego ani maksimum lokalnego?

A. $f(x) = 4x^2 + 5x$

B. $f(x) = 3x^3 + 2x^2$

C. $f(x) = \frac{1}{3}x^3 + 2x$

D. $f(x) = (4x+1)^2$

Zadanie 4. (0-1)

Dla dowolnego kąta α wartość wyrażenia $\sin \alpha + \sin (180^{\circ} - \alpha)$ jest równa wartości wyrażenia

A. $\sin 2\alpha$

B. $-\sin \alpha$

C. $2\sin\alpha$

D. 0

Zadanie 5. (0-1)

Zbiór K – to zbiór wszystkich liczb rzeczywistych x, dla których wartość liczbowa wyrażenia $\sqrt{x(x^2-9)}$ jest liczbą rzeczywistą. Zatem

A. $K = \langle -3, 0 \rangle \cup \langle 3, +\infty \rangle$

B. $K = (-\infty, -3) \cup (0, 3)$

C. $K = (-3, 0) \cup (3, +\infty)$

D. $K = (-\infty, -3) \cup (0, 3)$

Zadanie 6. (0-2)

Wyznacz największą liczbę całkowitą spełniającą nierówność |x| < |x - 1025|. W poniższe kratki wpisz – kolejno – cyfrę setek, cyfrę dziesiątek i cyfrę jedności otrzymanego wyniku.

Zadanie 7. (0-2)

Prosta o równaniu $y = \frac{3}{4}x - \frac{61}{14}$ jest styczna od okręgu o środku S = (1,-4). Wyznacz promień tego okręgu.

Zadanie 8. (0-3)

Niech $a = \log_{12} 2$. Wykaż, że $\log_6 64 = \frac{6a}{1-a}$.

Zadanie 9. (0-3)

W trójkącie ABC kąt wewnętrzny przy wierzchołku A ma miarę 50° , a kąt wewnętrzny przy wierzchołku C ma miarę 60° . Okrąg o_1 przechodzi przez punkt A i przecina boki AB i AC trójkąta odpowiednio w punktach D i E. Okrąg o_2 przechodzi przez punkt B, przecina okrąg o_1 w punkcie D oraz w punkcie E leżącym wewnątrz trójkąta E0. Ponadto okrąg E0 przecina bok E1 trójkąta w punkcie E3.

Udowodnij, że na czworokącie CEFG można opisać okrąg.

Zadanie 10. (0-4)

Rozwiąż równanie $(4\sin^2 x - 1)\cdot \sin x = \cos^2 x - 3\sin^2 x$, dla $x \in (-\pi, 0)$.

Zadanie 11. (0-4)

W trójkąt prostokątny o przyprostokątnych długości 15 i 20 wpisano okrąg. Oblicz długość odcinka łączącego wierzchołek kąta prostego tego trójkąta z punktem wspólnym okręgu i przeciwprostokątnej.

Zadanie 12. (0-4)

Dany jest trójkąt ABC, w którym |BC|=a. Z wierzchołka B poprowadzono środkową BD do boku AC. Punkt S jest środkiem odcinka BD. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie P. Wykaż, że długość odcinka CP jest równa $\frac{2}{3}a$.

Zadanie 13. (0-5)

Oblicz, ile jest wszystkich liczb naturalnych pięciocyfrowych parzystych, w których zapisie występują co najwyżej dwie dwójki.

Zadanie 14. (0-5)

Podstawą ostrosłupa ABCDS jest trapez ABCD. Przekątna AC tego trapezu ma długość $8\sqrt{3}$, jest prostopadła do ramienia BC i tworzy z dłuższą podstawą AB tego trapezu kąt o mierze 30° . Każda krawędź boczna tego ostrosłupa ma tę samą długość $4\sqrt{5}$. Oblicz odległość spodka wysokości tego ostrosłupa od jego krawędzi bocznej SD.

Zadanie 15. (0-6)

Funkcja f jest określona wzorem $f(x) = \frac{m^2 + m - 6}{m - 5}x^2 - (m - 2)x + m - 5$ dla każdej liczby

rzeczywistej x. Wyznacz całkowite wartości parametru m, dla których funkcja f przyjmuje wartość największą i ma dwa różne miejsca zerowe o jednakowych znakach.

Zadanie 16. (0-7)

Rozpatrujemy wszystkie stożki, w których suma długości tworzącej i promienia podstawy jest równa 2. Wyznacz wysokość tego spośród rozpatrywanych stożków, którego objętość jest największa. Oblicz tę objętość.