Mathematical Logic

Lecture 12, Monday June 26, 2023 Ari Feiglin

Proposition 12.0.1 (Tarski-Vaught Test):

Suppose \mathcal{M} is a substructure of \mathcal{N} . Then \mathcal{M} is an elementary substructure if and only if for any formula $\varphi(v, \vec{w})$ and $\vec{a} \in \mathcal{M}^n$, if there is a $b \in \mathcal{N}$ such that $\mathcal{N} \vDash \varphi(b, \vec{a})$, then there is a $c \in \mathcal{M}$ such that $\mathcal{N} \vDash \varphi(c, \vec{a})$.

Proof:

If \mathcal{M} is an elementary substructure of \mathcal{N} , then since

$$\mathcal{N} \vDash \exists x (\varphi(x, \vec{a}))$$

we have, by definition,

$$\mathcal{M} \vDash \exists x (\varphi(x, \vec{a}))$$

as required.

To show the converse, we must show that for every $\vec{a} \in \mathcal{M}^n$,

$$\mathcal{M} \vDash \varphi(\vec{a}) \iff \mathcal{N} \vDash \varphi(\vec{a})$$

we will prove this by formula induction. If φ is quantifier-free, then this is due to \mathcal{M} being a substructure of \mathcal{N} . The induction step for boolean combinations is trivial. Now suppose

$$\mathcal{M} \vDash \exists x \varphi(x, \vec{a})$$

then there is a $b \in \mathcal{M}$ such that $\mathcal{M} \models \varphi(b, \vec{a})$ and since $b \in \mathcal{N}$, and so inductively $\mathcal{N} \models \varphi(b, \vec{a})$, which means that $\mathcal{N} \models \exists x \varphi(x, \vec{a})$, as required. And if

$$\mathcal{N} \vDash \exists x \varphi(x, \vec{a})$$

then there exists a $c \in \mathcal{N}$ such that $\mathcal{N} \vDash \varphi(c, \vec{a})$ which by our assumption means that $\mathcal{N} \vDash \varphi(b, \vec{a})$ for $b \in \mathcal{M}$ and thus $\mathcal{M} \vDash \varphi(b, \vec{a})$ so $\mathcal{M} \vDash \exists x \varphi(x, \vec{a})$ as required.

Definition 12.0.2:

An \mathcal{L} -theory T has built-on Skolem functions if for every \mathcal{L} -formula $\varphi(v, w_1, \dots, w_n)$ there is a function symbol f such that

$$T \vdash \forall \vec{w} ((\exists v \varphi(v, \vec{w})) \rightarrow \varphi(f(\vec{w}), \vec{w}))$$

Or in other words, if $\varphi(\cdot, \vec{w})$ can be witnessed, there is a function symbol f so that it can be witnessed by $f(\vec{w})$.

Lemma 12.0.3:

Let T be an \mathcal{L} -theory. Then there exists a signature $\mathcal{L} \subseteq \mathcal{L}^*$ and an \mathcal{L}^* -theory $T \subseteq T^*$ such that T^* has built-in Skolem functions. Furthermore, if $\mathcal{M} \models T$ then we can extend \mathcal{M} to an \mathcal{L}^* -model \mathcal{M}^* such that $\mathcal{M}^* \models T^*$. Even further, \mathcal{L}^* can be chosen such that

$$|\mathcal{L}*| = |\mathcal{L}| + \aleph_0$$

Proofs

Let us construct an ascending sequence of languages $\{\mathcal{L}_i\}_{i=0}^{\infty}$, and an ascending sequence of theories $\{T_i\}_{i=0}^{\infty}$ where T_i is an \mathcal{L}_i -theory.

We define $\mathcal{L}_0 = \mathcal{L}$, and recursively

$$\mathcal{L}_{i+1} = \mathcal{L}_i \cup \{ f_{\varphi} \mid \varphi(v, w_1, \dots, w_n) \text{ is an } \mathcal{L}_i\text{-formula for } n = 1, 2, \dots \}$$

where f_{φ} is a function symbol. Then for an \mathcal{L}_i -formula $\varphi(v, \vec{w})$, we define

$$\Phi_{\varphi} = \forall \vec{w} \big((\exists v \varphi(v, \vec{w})) \to \varphi(f_{\varphi}(\vec{w}), \vec{w}) \big)$$

Then we define

$$T_{i+1} = T_i \cup \{\Phi_{\varphi} \mid \varphi \text{ is an } \mathcal{L}_i\text{-formula}\}$$

Now we claim that if $\mathcal{M} \models T_i$, it can be extended to an \mathcal{L}_{i+1} -model of T_{i+1} . Let $c \in \mathcal{M}$, then if $\varphi(v, w_1, \dots, w_n)$ is an \mathcal{L}_i -formula, we define a function $g \colon \mathcal{M}^n \longrightarrow \mathcal{M}$ such that for every $\vec{a} \in \mathcal{M}^n$ if

$$X_{\vec{a}} = \{b \in \mathcal{M} \mid \mathcal{M} \vDash \varphi(b, \vec{a})\}$$

is non-empty $(\varphi(\cdot, \vec{a}))$ has a witness), then let $g(\vec{a}) \in X_{\vec{a}}$. Otherwise $g(\vec{a}) = c$. Such a function is guaranteed by the axiom of choice.

Thus if $\mathcal{M} \vDash \exists v \varphi(v, \vec{a})$ then $X_{\vec{a}}$ is non-empty and so $\mathcal{M} \vDash \varphi(g(\vec{a}), \vec{a})$. So we interpret f_{φ} as g. And thus $\mathcal{M} \vDash \Phi_{\varphi}$.

Let us define

$$\mathcal{L}^* = \bigcup_{i=0}^{\infty} \mathcal{L}_i, \qquad T^* = \bigcup_{i=0}^{\infty} T_i$$

And \mathcal{M}^* is the extension of \mathcal{M} we have defined above. And if we have $\Phi \in T^*$, either $\Phi \in T$ in which case $\mathcal{M}^* \models \Phi$ as it extends \mathcal{M} , and otherwise it is equal to Φ_{φ} for some \mathcal{L}^* -formula φ , which must be an \mathcal{L}_i -formula for some i, and we showed that $\mathcal{M} \models \Phi_{\varphi}$. Thus $\mathcal{M}^* \models T^*$.

Then if $\varphi(v, \vec{w})$ is an \mathcal{L}^* -formula, it is a \mathcal{L}_i -formula for some i and so $\Phi_{\varphi} \in T_{i+1} \subseteq T^*$, and this states exactly the property of φ having a built-in Skolem function. (Note that φ may be Φ_{ψ} for some other \mathcal{L}^* -formula ψ).

Furthermore, note that since we've added function symbols to \mathcal{L}_{i+1} for every formula of \mathcal{L}_i , we have that $|\mathcal{L}_{i+1}| = |\mathcal{L}_i| + \aleph_0$ (if \mathcal{L}_i is uncountable then the number of functions added is $|\mathcal{L}_i| = |\mathcal{L}_i| + \aleph_0$, so this still holds). And so every \mathcal{L}_i has the same cardinality for each i > 0, which is $|\mathcal{L}| + \aleph_0$. Thus their union, as a countable union, also has this cardinality.

Definition 12.0.4:

The T^* defined in the proof above is called the skolemization of T.

Theorem 12.0.5 (Downward Lowenheim-Skolem Theorem):

Suppose \mathcal{M} is an \mathcal{L} -structure and $X \subseteq \mathcal{M}$. Then there exists an elementary substructure \mathcal{N} of \mathcal{M} such that $X \subseteq \mathcal{N}$ and $|\mathcal{N}| \leq |X| + |\mathcal{L}| + \aleph_0$.

Proof:

By the above lemma, we can assume $Th(\mathcal{M})$ has built-in Skolem functions. Let $X_0 = X$, then we recursively define

$$X_{i+1} = X_i \cup \{f^{\mathcal{M}}(\vec{a}) \mid f \text{ is an } n\text{-ary function symbol and } \vec{a} \in X_i^n \text{ for } n = 0, 1, 2, \ldots\}$$

Then let

$$\mathcal{N} = \bigcup_{i=0}^{\infty} X_i$$

Notice that $|X_{i+1}| \leq |X_i| + |\mathcal{L}| \cdot \varkappa_{X_i}$ where

$$\varkappa_X = \left| \bigcup_{n \in \mathbb{N}} X^n \right|$$

We can split this into cases, but it is not hard to show that we get $|\mathcal{N}| \leq |X| + |\mathcal{L}| + \aleph_0$.

If f is an n-ary function symbol of \mathcal{L} and $\vec{a} \in \mathcal{N}^n$, then there exists some i such that $\vec{a} \in X_i^n$, and so $f^{\mathcal{M}}(\vec{a}) \in X_{i+1} \subseteq \mathcal{N}$. Thus $f^{\mathcal{M}}$ can be restricted on \mathcal{N}^n , i.e. \mathcal{N} is a substructure of \mathcal{M} .

If $\varphi(v, \vec{w})$ is an \mathcal{L} -structure and $\mathcal{M} \vDash \varphi(b, \vec{a})$ then since \mathcal{M} has built-in skolem functions, there exists some function f such that $\mathcal{M} \vDash \varphi(f(\vec{a}), \vec{a})$. But since $f^{\mathcal{M}}(\vec{a}) \in \mathcal{N}$, thus by **Tarski-Vaught Test**, \mathcal{N} is an elementary substructure of \mathcal{M} .