Bisimulation Metric for Continuous MDPs COMP 767

Pascale Gourdeau

March 24th, 2017

Overview

Intro

Continuous MDPs Review Motivation

Metric Spaces

Bisimulation

General Idea
Definition for CMDPs

Kantorovich Metric

Bisimulation Metric

Definition Examples

Definition

A continuous MDP is a tuple (S, Σ, A, P, r) where

• (S, Σ) is a measurable space,

Definition

- (S, Σ) is a measurable space,
- A is a finite set of actions,

Definition

- (S, Σ) is a measurable space,
- A is a finite set of actions,
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is a measurable reward function,

Definition

- (S, Σ) is a measurable space,
- A is a finite set of actions,
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite set of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A$, $\forall s \in S$, $P(s, a, \cdot) : \Sigma \to [0, 1]$ is a probability measure,

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite set of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A, \forall s \in S, P(s, a, \cdot) : \Sigma \rightarrow [0, 1]$ is a probability measure,
 - ▶ $\forall a \in A, \ \forall X \in \Sigma, \ P(\cdot, a, X) : S \rightarrow [0, 1]$ is a measurable function.

▶ Very large state space.

- Very large state space.
- ightharpoonup CMDPs ightharpoonup continuous state space.

- Very large state space.
- ▶ CMDPs \rightarrow continuous state space.
- ▶ First thought: discretization. Inconvenient because:

- Very large state space.
- ▶ CMDPs \rightarrow continuous state space.
- ▶ First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.

- Very large state space.
- ▶ CMDPs \rightarrow continuous state space.
- ▶ First thought: discretization. Inconvenient because:
 - We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.

- Very large state space.
- ▶ CMDPs \rightarrow continuous state space.
- ▶ First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.
- Second thought: aggregate states with similar values.

- Very large state space.
- ► CMDPs → continuous state space.
- ▶ First thought: discretization. Inconvenient because:
 - ▶ We may aggregate states that are "physically" close together, but that have very different state values.
 - As we refine the space, we have an exponential blowup in the number of states.
- Second thought: aggregate states with similar values.
 - Bisimulation!

Definitions

Definition

A *metric* on a set X is a map $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$:

- 1. $x = y \iff d(x, y) = 0$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Definition

We say that the tuple (X,d) where X is a set with a metric $d: X \times X \to [0,\infty)$ is a *metric space*.

Separable Metric Space

Definition

A metric space (X, d) is said to be *separable* if it has some countable dense subset.

Separable Metric Space

Definition

A metric space (X, d) is said to be *separable* if it has some countable dense subset.

Definition

A metric space (X, d) is said to be *complete* if every Cauchy sequence converges.

Separable Metric Space

Definition

A metric space (X, d) is said to be *separable* if it has some countable dense subset.

Definition

A metric space (X, d) is said to be *complete* if every Cauchy sequence converges.

Definition

A metric space (X, d) is said to be *Polish* if it is both separable and complete.

Bisimulation

- ▶ Originally due to Park (1981) and extended to probabilistic systems by Larsen and Skou (1991).
- ▶ Abstract notion of *behavioural equivalence* between processes.
- ▶ More flexible and subtle than *isomorphism*.
- ▶ If I have two bisimilar systems, I can replace one by the other and no test (sequence of experiments) can distinguish them.

Bisimulation as a game

- ► Two-way simulation
- Bisimulation

Bisimulation as a game

- ► Two-way simulation
- Bisimulation

MDP assumptions:

▶ S is a Polish space with its Borel σ -algebra Σ .

- ▶ S is a Polish space with its Borel σ -algebra Σ .
- ▶ $img(r) \subseteq [0,1]$

- ▶ S is a Polish space with its Borel σ -algebra Σ .
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.
- ▶ For each $a \in A$, P_s^a is continuous as a function of s.

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.
- ▶ For each $a \in A$, P_s^a is continuous as a function of s.

MDP assumptions:

- \triangleright S is a Polish space with its Borel σ-algebra Σ.
- ▶ $img(r) \subseteq [0,1]$
- ▶ For each $a \in A$, $r(\cdot, a)$ is continuous on S.
- ▶ For each $a \in A$, P_s^a is continuous as a function of s.

Definition

Let (S, Σ, A, P, r) be an MDP satisfying the above assumptions. An equivalence relation R on S is a *bisimulation relation* if and only if it satisfies

$$sRs' \iff$$
 for every $a \in A$, $r_s^a = r_{s'}^a$ and for every $X \in \Sigma(R)$, $P_s^a(X) = P_{s'}^a(X)$.

If $r_{\hat{y}} = 0$, all states are bisimilar.

If $r_{\hat{y}}=0$, all states are bisimilar. If $r_{\hat{y}}>0$,

▶ No state is bisimilar to \hat{y} (other than itself),

If $r_{\hat{y}}=0$, all states are bisimilar. If $r_{\hat{v}}>0$,

- ▶ No state is bisimilar to \hat{y} (other than itself),

If $r_{\hat{y}}=0$, all states are bisimilar. If $r_{\hat{v}}>0$,

- ▶ No state is bisimilar to \hat{y} (other than itself),
- \triangleright $x \sim y \iff p = 1$,

If $r_{\hat{y}}=0$, all states are bisimilar. If $r_{\hat{v}}>0$,

- ▶ No state is bisimilar to \hat{y} (other than itself),
- $x \sim \hat{x} \iff p = p',$
- \triangleright $x \sim y \iff p = 1$,
- $\hat{x} \sim y \iff p' = 1.$

Kantorovich Metric

Definition

Let (S,d) be a Polish metric space, h a bounded pseudo-metric on S that is lower semi-continuous on $S \times S$ and Lip(h) the set of all bounded functions $f: S \to \mathbb{R}$ that are measurable w.r.t. $\mathcal{B}(S)$ and satisfy the Lipschitz condition $f(x) - f(y) \leq h(x,y)$ for every $x,y \in S$. Given two probability measures P and Q, the Kantorovich distance $T_K(h)$ is defined by

$$T_K(h)(P,Q) = \sup_{f \in Lip(h)} (P(f) - Q(f)) = \sup_{f \in Lip(h)} \left(\int f dP - \int f dQ \right)$$

Link to Transportation Problem

Link to Transportation Problem

Goal: determine a plan for transferring all the mass from X to Y while minimizing the cost.

Kantorovich Metric

Theorem (Kantorovich-Rubinstein Duality Theorem)

$$T_K(h)(P,Q) = \sup_{f \in Lip(h)} (P(f) - Q(f)) = \inf_{\lambda \in \Lambda(P,Q)} h(\lambda)$$

Kantorovich Metric

Theorem (Kantorovich-Rubinstein Duality Theorem)

$$T_K(h)(P,Q) = \sup_{f \in Lip(h)} (P(f) - Q(f)) = \inf_{\lambda \in \Lambda(P,Q)} h(\lambda)$$

Lemma

Let $\mathfrak{lsc}_{\mathfrak{m}}$ be the set of bounded pseudometrics on S which are lower semi-continuous on $S \times S$, $h \in \mathfrak{lsc}_{\mathfrak{m}}$ and Rel(h) be the kernel of h. Then

$$T_K(h)(P,Q) = 0 \iff P(X) = Q(X) \ \forall X \in \Sigma(Rel(h))$$
.

What is a Bisimulation Metric?

Definition

A pseudometric $\rho: S \times S \to [0, +\infty)$ on the states of an MDP is a bisimulation metric if it satisfies

$$\rho(s,s')=0\iff s\sim s'.$$

A Map on Pseudometrics

Let (S, Σ, A, P, r) be an MDP satisfying the conditions in the previous slide, $c \in (0,1)$ be a discount factor and $\mathfrak{lsc}_{\mathfrak{m}}$ be the set of bounded pseudometrics on S which are lower semi-continuous on $S \times S$. Define the map $F : \mathfrak{lsc}_{\mathfrak{m}} \to \mathfrak{lsc}_{\mathfrak{m}}$:

$$F(h)(s,s') = \max_{a \in A} [(1-c)|r_s^a - r_{s'}^a| + cT_K(h)(P_s^a, P_{s'}^a)]$$

Bisimulation Metric through Fixed Point

The map

$$F(h)(s,s') = \max_{a \in A} \left[(1-c)|r_s^a - r_{s'}^a| + cT_K(h)(P_s^a, P_{s'}^a) \right]$$

has a unique fixed point $\rho^*: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$.

Bisimulation Metric through Fixed Point

The map

$$F(h)(s,s') = \max_{a \in A} \left[(1-c)|r_s^a - r_{s'}^a| + cT_K(h)(P_s^a, P_{s'}^a) \right]$$

has a unique fixed point $\rho^*: S \times S \to [0,1]$. This ρ^*

- is a bisimulation metric;
- scales with rewards.

Bisimulation Metrics are Optimal Value Functions

$$|V^*(s) - V^*(s')| \le \frac{1}{1-c} \rho_c^*(s,s')$$

Bisimulation Metrics are Optimal Value Functions

$$|V^*(s) - V^*(s')| \leq \frac{1}{1-c} \rho_c^*(s,s')$$

- ► The closer the distance (relative to bisimilarity) the more likely they will share optimal value functions (and hence policies).
- Aggregating states that are close in behaviour (w.r.t. bisimilarity) implies aggregating states with similar value functions.

Note that:

1. There is only one action,

Note that:

- 1. There is only one action,
- 2. $T_K(\rho^*)(\delta_x, \delta_y) = \rho^*(x, y)$,

Note that:

- 1. There is only one action,
- 2. $T_K(\rho^*)(\delta_x, \delta_y) = \rho^*(x, y),$
- 3. $F(\rho^*)(s, s') = (\rho^*)(s, s')$ and ρ^* is unique.