数据可视化

DATA

主讲教师: 宋晖

数据可视化

- 数据探索阶段的重要方法
 - 数据以图形图像形式表示
 - 揭示隐藏的数据特征, 直观传达关键信息
- Matplotlib库
 - 专门用于开发二维(包括三维)图表的工具包
 - 实现图像元素精细化控制, 绘制专业的分析图表
- Pandas封装了Matplotlib的主要绘图功能
 - Series和DataFrame提供绘图函数
 - 简便快捷地创建标准化图表

认识基本图形

- 按照数据值特性,可视图形大致可以分为3类
 - 展示离散数据: 散点图、柱状图、饼图等;

• 展示数据的区域或 空间分布: 统计地 图、曲面图等 • 展示连续数据: 直方图、箱须图、折线图、半对数图等;

4.1.2 Pandas快速绘图

- 基本步骤
 - 导入matplotlib、Pandas
 - 准备数据
 - 使用Series或DataFrame封装数据
 - 绘图
 - 调用Series.plot()或DataFrame.plot()函数完成绘图

例4-1: 绘制2010-2016年我国GDP折线图

4.1.2 Pandas 快速绘图

例4-1 (续): 绘制2010-2016年我国GDP折线图

参 数 名	说 明				
х	x轴数据,默认值为None				
у	y轴数据,默认值为None				
kind	绘图类型。'line':折线图,默认值;'bar':垂直柱状图;'barh':水平柱状图;'hist':直方图;'box':箱形图;'kde':Kernel核密度估计图;'density'				
KIIIU	与kde相同; 'pie': 饼图; 'scatter': 散点图				
title	图形标题,字符串				
color	画笔颜色。用颜色缩写,如'r'、'b',或者RGB值,如'#CECECE'。主要颜色缩写: 'b': blue、'c': cyan、'g': green、'k': black、'm': magenta、'r':				
COIOI	red、'w': white、'y': yellow				
grid	图形是否有网格,默认值为None				
fontsize	坐标轴(包括x轴和y轴)刻度的字体大小。整数,默认值为None				
alpha	图表的透明度,值为0~1,值越大颜色越深				
use_index	默认为True,用索引作为x轴刻度				
linewidth	绘图线宽				
linestyle	绘图线型。'-': 实线; '': 破折线; '': 点画线; ':': 虚线				
marker	标记风格。'∴ 点; ',':像素(极小点); 'o':实心圈; 'v':倒三角; '^':上三角; '>':右三角; '<':左三角; '1':下花三角; '2':上花三角; '3':				
marker	左花三角; '4': 右花三角; 's': 实心方形; 'p': 实心五角; '*': 星形; 'h'/'H': 竖/横六边形; ' ': 垂直线; '+': 十字; 'x': x; 'D': 菱形; 'd': 瘦菱形				
xlim、ylim	x轴、y轴的范围,二元组表示最小值和最大值				
ax	axes对象				

4.1.3 Matplotlib精细绘图

• 基本步骤

- 导入matplotlib、Pandas,导入matplotlib的pyplot模块
- 创建figure对象,matplotlib的图像都位于figure对象内
- 绘图: 利用pyplot的绘图函数plot()或pandas绘图
- 设置图元: plt的图元设置函数, 实现图形精细控制

例4-1(续): 绘制2010-2016年我国GDP折线图

```
#导入绘图库
import matplotlib.pyplot as plt
plt.figure() #创建绘图对象
GDPdata=[[41.3,48.9,54.0,59.5,64.4,68.9,74.4] #准备绘图的序列数据
plt.plot(GDPdata,color="red",linewidth=2,linestyle='dashed',mar
     ker='o',label='GDP')
#精细设置图元
plt.title('2010~2016 GDP: Trillion')
plt.xlim(0,6)
                    #x轴绘图范围
plt.ylim(35,75) #y轴绘图范围
plt.xticks(range(0,7),('2010','2011','2012','2013','2014','2015
     ','2016')) #将x轴刻度映射为字符串
plt.legend(loc='upper right')
                              #在右上角显示图例说明
              #显示网格线
plt.grid()
              #显示并关闭绘图
plt.show()
```

图元添加完后,再调用show()

- 显示图像
- 图形绘制过程关闭

多子图绘制

- figure对象内可绘制多个子图
 - 创建子图对象axes, 在子图上绘制图
 - 可使用pyplot或axes对象提供的绘图
 - 可pandas绘图
- 创建子图

figure.add_subplot(numRows, numCols, plotNum)

参数说明:	
numRows	绘图区域被分成numRows行
numCols	绘图区域被分成numCols列
plotNum	创建的axes对象所在的区域

多子图绘制实例

例4-2: 用多个子图绘制2010~2016年GDP状况

设置图元和说明

函数	说明	
plt.title	设置图标题	
plt.xlabel plt.ylabel	设置x、y轴标题	
plt.xlim、plt.ylim	设置x、y轴刻度范围	
plt.xticks plt.yticks	设置x、y轴刻度值	
plt.legend	添加图例说明	
plt.grid	显示网格线	
plt.text	添加注解文字	
plt.annotate	添加注释	

例4-3: 为图4-2增加注解、坐标轴标题

保存图表到文件

• 保存函数 figure.savefig(filename,dpi,bbox_inches) plt.savefig(filename,dpi,bbox_inches)

参数说明:	
filename	文件路径及文件名,文件类型可以是jpg、png、pdf、svg、ps等
dpi	图片分辨率,每英寸点数,默认100
bbox_inches	图表需保存的部分,设置为"tight"可以剪除当前图表周围的空白部分

• 将例4-2绘制图形保存到当前文件夹

fig.savefig('2010-2012GDP.jpg',dpi=400,bbox_inches='tight')

思考与练习

- 1. 2012~2017年我国人均可支配收入为[1.47, 1.62, 1.78, 1.94, 2.38, 2.60](单位: 万元)。按照要求绘制以下图形。
- 1)模仿例4-1和4-3,绘制人均可支配收入折线图。用小矩形标记数据点,红色虚线,用注解标注最高点,图标题"Income chart",设置坐标轴标题,最后将图形保存为JPG文件。一维数组访问。
- 2) 模仿例4-2, 使用多个子图分别绘制人均可支配收入的折线图、箱须图以及柱状图。

【提示:】

- 1) 创建3个子图分别使用(2,2,1)、(2,2,2)和(2,1,2)作为参数。
- 2) 使用plt.subplots adjust()函数调整子图间距离,以便添加图标题。

4.2.1 绘制常用图形

- 函数绘图
- 散点图
- 柱状图
- 折线图
- 直方图
- 密度图
- 饼图
- 箱须图

函数绘图

- 函数 描述了变量y随自变量x的变化过程
- plt.plot()根据给定的x、y坐标值绘图

例4-4: 绘制 $y = \sin(x)$ 和 $y = e^{-x}$ 的函数图

- 给定x的范围采样生成x列表
- 计算对应y值

```
import numpy as np #导入numpy

#生成x数组

x = np.linspace(0,6.28,50) #start, end, num-points

y=np.sin(x) #计算y=sin(x)数组

plt.plot(x,y, color='r') #用红色绘图y=sin(x)

plt.plot(x,np.exp(-x),c='b') #用蓝色绘图y=exp(-x)
```


散点图(Scatter diagram)

- 描述两个一维数据序列之间的关系
 - 将两组数据分别作为点的横坐标和纵坐标

DataFrame.plot(kind='scatter',x,y,title, grid,xlim,ylim,label,...)

DataFrame.plot.scatter(x,y,title, grid,xlim,ylim,label,...)

参数说明:	
Х	DataFrame中x轴对应的数据列名
у	DataFrame中y轴对应的数据列名
label	图例标签

- Matplotlib的scatter函数也可以绘制散点图
 - 图元的设置需要采用独立的语句

plt.scatter(x,y,...)

散点图绘制

例4-5: 绘制散点图观察学生身高和体重之间的关系

```
stdata = pd.read_csv('data\students.csv') #读文件
stdata.plot(kind='scatter', x='Height', y='Weight', title='Student
s Body Shape', marker='*', grid=True, xlim=[150,200],
ylim=[40,80], label='(Height, Weight)') #绘图
```

男女生身高、体重明显存在差异性

• 分组散点图清晰显示数据聚集特性

学生的身高与体 重具有正相关性, 但不显著

散点图矩阵

• 同时观察多组数据之间的关系

pd.plotting.scatter_matrix(data,diagonal,...)

参数说明:			
data	包含多列数据的DataFrame对象		
diagonal	对角线上的图形类型。通常放置该列数据的密度图或直方图		

例4-6: 绘制散点图矩阵观察学生各项信息之间的关系 身高、体重、年龄、成绩

```
data = stdata[['Height', 'Weight','Age','Score']] #准备数据
pd.plotting.scatter_matrix(data,diagonal='kde',color='k') #绘图
```


柱状图 (Bar Chart)

- 用多个柱体描述单个总体处于不同状态的数量
 - 柱体高度或长度与该状态下的数量成正比
 - 分为垂直柱状形图和水平柱状图
- 堆叠柱状图
 - 多个总体同一状态的直条叠加

Series.plot(kind,xerr,yerr,stacked,...)

DataFrame.plot(kind,xerr,yerr,stacke

d,...)

参数说明:	
kind	bar: 垂直柱状图; barh: 水平柱状
xerr,yerr	x、y轴向误差线
stacked	是否为堆叠图,默认为False
rot	刻度标签旋转度数,值0~360

柱状图绘制

Year	Total	Boys	Girls	Ratio
年度	出生人口总数	男孩数	女孩数	男女比例

• 从population.csv文件中读取人口数据,绘制各性别的出生人口比较图

```
#读取数据
data = pd.read csv('data\population.csv', index col ='Year')
data1 = data[['Boys','Girls']]
                                #计算均值
mean = np.mean(data1,axis=0)
std = np.std(data1,axis=0)
                                #计算标准差
#创建图
fig = plt.figure(figsize = (6,2)) #设置图片大小
plt.subplots adjust(wspace = 0.6) #设置两个图之间的纵向间隔
#绘制均值的垂直和水平柱状图,标准差使用误差线来表示
ax1 = fig.add subplot(1, 2, 1)
mean.plot(kind='bar',yerr=std,color='cadetblue',title = 'Average
     of Births', rot=45)
ax2 = fig.add subplot(1, 2, 2)
mean.plot(kind='barh',xerr=std,color='cadetblue',title = 'Average
     of Births')
#绘制复式柱状图和堆叠柱状图
data1.plot(kind='bar', title = 'Births of Boys & Girls')
data1.plot(kind='bar', stacked=True, title = 'Births of Boys &
     Girls')
```


堆叠柱状图

折线图

- 用线条描述事物的发展变化及趋势
 - 普通折线图: 横、纵坐标轴上都使用算术刻度
 - 半对数折线图: 横、纵坐标分别使用算术刻度与对数刻度
 - 比较的两种或多种事物的数据值域相差较大
 - 指标"相对增长量"的变化关系
- 从GDP.csv文件中读取数据,绘制国民经济生产总值GDP和居民人均可支配收入 Income的折线图与半对数折现图

直方图(Histogram)

- 描述总体的频数分布情况
 - 将横坐标按区间个数等分
 - 每个区间上长方形的高度表示该区间样本的频率, 面积表示频数

Series.plot(kind='hist',bins,normed,...)

参数说明:	
bins	横坐标区间个数
normed	是否标准化直方图,默认值False

直方图绘制

例4-9: 从student.csv文件中读取学生信息, 绘制身高分布直方图。 将身高155~185划分为6个区间

```
stdata = pd.read_csv('data\students.csv') #读文件
stdata['Height'].plot(kind='hist',bins=6,title='Students Height Dstribution') #绘图
```


分箱的数量与数据集大小和分布本身相关,通过改变分箱bins的数量,可以改变分布的离散化程度

密度图 (Kernel Density Estimate)

- 基于样本数据拟合概率密度函数
 - 采用平滑的峰值函数: 核函数
 - 常用高斯核
 - 模拟真实的概率分布曲线
 - 与直方图(标准化后)一起绘制,对比

Series.plot(kind='kde',style,...)

参数说明:			
style	风格字符串,	包括颜色和线型,	如'ko—','r-'

在例4-9基础上,增加密度图

```
stdata['Height'].plot(kind='hist',bins=6,normed=True,title='Stud ents Height Dstribution') #绘图
stdata['Height'].plot(kind='kde',title='Students Height Dstribution', xlim=[155,185],
style = 'k--') #绘制密度图
```

饼图 (Pie Chart)

- 描述总体的样本值构成比
 - 扇形图
 - 反映部分与部分、部分与整体之间的数量关系

Series.plot(kind='pie', explode, shadow, startangle, autopct,...)

参数说明:	
explode	列表,表示各扇形块离开中心的距离
shadow	扇形块是否有阴影,默认False
startangle	起始绘制角度,默认从x轴正方向逆时针开始
autopct	百分比格式,可用format字符串或者format function, '%1.1f%%'指小数点前后各1位(不足空格补齐)

饼图绘制

例4-10: 从advertising.csv中读取营销数据,绘制各类广告投入占比的饼图

	TV	Weibo	WeChat	Sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3

计算各类渠道的广告总投入,绘制饼图表示各类广告占比

箱须图 (Box plot)

- 表达数据的分位数分布, 观察异常值
 - 将样本居中的50%值域用一个长方形表示
 - 较小和较大的四分之一值域各用一根线表示
 - 异常值用"o"表示

Series.plot(kind='box', ...)

例4-10: 从advertising.csv中读取营销数据,绘制各类广告投入投入的箱须图

箱须图 (Box plot)

- Pandas提供专门绘制箱须图的函数boxplot
 - 方便将观察样本按照其他特征进行分组对比

DataFrame.boxplot(by, ...)

参数说明:	
by	用于分组的列名

例4-10: 从students.csv中读取学生数据, 按性别绘制学生成绩的箱须图

```
stdata = pd.read_csv('data\students.csv')
stdata1 = stdata[['Gender','Score']]
stdata1.boxplot(by='Gender',figsize=(6,6))

Dataframe对象要包括绘制列和分组列
```


思考与练习

1. 数据文件high-speed rail.csv存放着世界各国高速铁路的情况

Country	Operation	Under-construction	Planning		
国家	运营里程(公里)	在建里程(公里)	计划里程 (公里)		

- 1) 各国运营里程对比柱状图,标注China为"Longest"
- 2) 各国运营里程现状和发展堆叠柱状图
- 3) 各国运营里程占比饼图, China扇形离开中心点

【提示】:

从文件中读取数据时,使用第一列数据作为index

data = pd.read_csv('High-speed rail.csv', index_col = 'Country'), 获取中国对应的数据行,使用data ['China']

课后作业

文件bankpep.csv存放着银行储户的基本信息

id	age	sex	region	income	married	children	car	save_act	current_act	mortgage	рер
编号	年龄	性别	区域	收入	婚否	孩子数	有车否	存款账户	现金账户	是否抵押	接受新业务

请通过绘图对这些客户数据进行探索性分析。

- 1) 客户年龄分布的直方图和密度图
- 2) 客户年龄和收入关系的散点图
- 3) 绘制散点图观察账户(年龄,收入,孩子数)之间的关系,对角线显示直方图
- 4) 按区域展示平均收入的柱状图, 并显示标准差
- 5) 多子图绘制: 账户中性别占比饼图, 有车的性别占比饼图, 按孩子数的账户占比饼图
- 6) 各性别收入的箱须图

