ALGOINVEST&TRADE

Rapport d'exploration

Abstrait

Dans le contenu de ce document, vous trouverez le « Rapport d'exploration » qui contient bien l'analyse des algorithmes mise en place (force brute et optimisé), ainsi que la comparaison côte à côte entre leurs résultats et l'ensemble des données obtenus par Sienna.

Consignes

Les consignes à suivre sont :

- Chaque action ne peut être achetée qu'une seule fois.
- Nous ne pouvons pas acheter une fraction d'action.
- Nous pouvons dépenser au maximum 500 euros par client.

Algorithme force brute

Algorithme mis en place

Afin de prendre toute les combinaisons possibles, l'algorithme pour le programme « bruteforce » prend en compte la notion de « combinaison mathématique ».

Une combinaison en mathématiques est définie comme :

$$\binom{n}{m} = \frac{n!}{m! (n-m)!}$$

Où « n » est le nombre total d'éléments, « m » et le nombre d'éléments à combiner et « n! » et « m! » sont les factoriels, respectivement.

Nota : Afin d'opérer avec les combinaisons, la condition « $0 \le m \le n$ » doit s'accomplir.

Pseudocode

Fig. 1 Pseudocode de l'algorithme de force brute

Complexité Big-O

La complexité de cet algorithme est une complexité factorielle O(n!) vu que la prise en compte de toutes les combinaisons entraîne l'utilisation d'opérations factorielles.

Algorithme optimisé

Algorithme mis en place

L'algorithme mis en place pour la solution optimisée est celle de la « programmation dynamique », laquelle consiste à mettre en place une matrice de « n » fois « m » où « n » est le nombre d'éléments à évaluer (dans notre cas, le nombre d'actions) et « m » est la valeur de la capacité maximale à respecter (dans notre cas, le budget maximum de 500 €).

Pseudocode

Fig. 2 Pseudocode de l'algorithme optimisé

Complexité Big-O

Vu qu'il faut parcourir chaque cellule de la matrice de dimensions « n*m », la complexité de cet algorithme est une complexité quadratique $O(n^2)$.

Comparaison

Avantages et inconvénients de l'algorithme « bruteforce »

Avantages:

- > La prise en compte de toutes les possibilités.
- Effectif avec un nombre petit d'éléments à combiner.

Inconvénients:

- Sa complexité O(n!) qui entraîne un grand nombre d'opérations, encore plus grande qu'un calcul exponentiel.
- Pas viable à partir d'un nombre moyen d'éléments à combiner.

Avantages et inconvénients de l'algorithme « optimisé »

Avantages:

- Sa complexité O(n²) qui entraine un nombre plus petit d'opérations par rapport à la complexité factorielle.
- Accès aux données vu qu'il s'agit d'une matrice.

Inconvénients:

- Besoin d'utiliser des numéros entiers.
- Gourmand en mémoire.

Résultats

Partie 1 : Solution force brute (pour 20 actions)

Les résultats de l'algorithme « bruteforce » sont :

```
Action : Action-4 | Coût : 70.0 € | Profit : 20.0 % Action : Action-5 | Coût : 60.0 € | Profit : 17.0 % Action : Action-6 | Coût : 80.0 € | Profit : 25.0 % Action : Action-8 | Coût : 26.0 € | Profit : 11.0 % Action : Action-10 | Coût : 34.0 € | Profit : 27.0 % Action : Action-11 | Coût : 42.0 € | Profit : 17.0 % Action : Action-13 | Coût : 38.0 € | Profit : 23.0 % Action : Action-18 | Coût : 10.0 € | Profit : 14.0 % Action : Action-19 | Coût : 24.0 € | Profit : 21.0 % Action : Action-20 | Coût : 114.0 € | Profit : 18.0 %
```

Argent investi : 498.0 € Meilleur bénéfice : 99.08 €

Temps d'exécution de l'algorithme 'bruteforce' : 2.97 secondes

Partie 2 : Solution optimisée (pour 20 actions)

Les résultats de l'algorithme « optimized » sont :

Action : Action-20 | Coût : 114.0 € | Profit : 18.0 %

Action : Action-19 | Coût : 24.0 € | Profit : 21.0 %

Action : Action-18 | Coût : 10.0 € | Profit : 14.0 %

Action : Action-13 | Coût : 38.0 € | Profit : 23.0 %

Action : Action-11 | Coût : 42.0 € | Profit : 17.0 %

Action : Action-10 | Coût : 34.0 € | Profit : 27.0 %

Action : Action-8 | Coût : 26.0 € | Profit : 11.0 %

Action : Action-6 | Coût : 80.0 € | Profit : 25.0 %

Action : Action-5 | Coût : 60.0 € | Profit : 17.0 %

Action : Action-4 | Coût : 70.0 € | Profit : 20.0 %

Argent investi : 498.0 €

Meilleur bénéfice : 99.08 €

Temps d'exécution de l'algorithme 'optimized' : 0.42 secondes

Comparaison des deux algorithmes

Fig. 3 Graphique du temps de traitement (s) des algorithmes avec 20 actions

On peut constater dans le graphique que le temps de traitement de l'algorithme « bruteforce » est encore plus grand que celui de l'algorithme « optimized » (2.97 s et 0.42 s respectivement) pour un nombre d'opérations très approché (1 048 575 d'opérations vs 1 000 000 respectivement).

En conclusion, l'algorithme « forcebrute » prend presque 7 fois plus de temps que l'algorithme « optimized ».

Partie 3 : Backtesting et optimisation pour le fichier « dataset2_Python+P7.csv » Résultats de l'algorithme optimisé

Action: Share-KMTG | Coût: 23.21 € | Profit: 39.97 % Action : Share-GHIZ | Coût : 28.0 € | Profit : 39.89 % Action: Share-NHWA | Coût: 29.18 € | Profit: 39.77 % Action : Share-UEZB | Coût : 24.87 € | Profit : 39.43 % Action: Share-LPDM | Coût: 39.35 € | Profit: 39.73 % Action: Share-MTLR | Coût: 16.48 € | Profit: 39.97 % Action : Share-USSR | Coût : 25.62 € | Profit : 39.56 % Action : Share-GTQK | Coût : 15.4 € | Profit : 39.95 % Action : Share-FKJW | Coût : 21.08 € | Profit : 39.78 % Action : Share-MLGM | Coût : 0.01 € | Profit : 18.86 % Action: Share-QLMK | Coût: 17.38 € | Profit: 39.49 % Action : Share-WPLI | Coût : 34.64 € | Profit : 39.91 % Action : Share-LGWG | Coût : 31.41 € | Profit : 39.5 % Action: Share-ZSDE | Coût: 15.11 € | Profit: 39.88 % Action : Share-SKKC | Coût : 24.87 € | Profit : 39.49 % Action : Share-QQTU | Coût : 33.19 € | Profit : 39.6 % Action : Share-GIAJ | Coût : 10.75 € | Profit : 39.9 % Action: Share-XJMO | Coût: 9.39 € | Profit: 39.98 % Action : Share-LRBZ | Coût : 32.9 € | Profit : 39.95 % Action: Share-KZBL | Coût: 28.99 € | Profit: 39.14 % Action : Share-EMOV | Coût : 8.89 € | Profit : 39.52 % Action: Share-IFCP | Coût: 29.23 € | Profit: 39.88 %

Argent investi : 499.95 €

Meilleur bénéfice : 198.54 €

Temps d'exécution de l'algorithme 'optimized' : 16.64 secondes

Résultats de Sienna

Share-GRUT

Total cost: 498.76â,¬

Total return: 196.61â,¬

Bilan des résultats

Les résultats obtenus par Sienna montrent qu'il faut juste acheter une action (Share-GRUT) qui a un coût de 498.76 € ce qui donne un bénéfice de 196.61 €. Cela signifie qu'il y a un profit de 39.4197%.

En revanche, l'algorithme optimisé montre qu'il faut acheter 22 actions avec un coût total de 499.95€ ce qui donne un bénéfice de 198.54 €. Cela signifie qu'il y a un profit de 39.7119%.

En conclusion, l'algorithme mis en place nous offre un bénéfice et un profit un peu plus grand par rapport à celui obtenu par Sienna (une différence de +1.93 € de bénéfice et une différence de +0.2922 % de profit).

Partie 3 : Backtesting et optimisation pour le fichier « dataset1_Python+P7.csv » Résultats de l'algorithme optimisé

Action: Share-ECAQ | Coût: 31.66 € | Profit: 39.49 % Action : Share-IXCI | Coût : 26.32 € | Profit : 39.4 % Action : Share-FWBE | Coût : 18.3 € | Profit : 39.82 % Action: Share-ZOFA | Coût: 25.32 € | Profit: 39.78 % Action: Share-PLLK | Coût: 19.94 € | Profit: 39.91 % Action: Share-LXZU | Coût: 4.24 € | Profit: 39.54 % Action : Share-YFVZ | Coût : 22.55 € | Profit : 39.1 % Action: Share-ANFX | Coût: 38.54 € | Profit: 39.72 % Action: Share-PATS | Coût: 27.7 € | Profit: 39.97 % Action : Share-SCWM | Coût : 6.42 € | Profit : 38.1 % Action: Share-NDKR | Coût: 33.06 € | Profit: 39.91 % Action: Share-ALIY | Coût: 29.08 € | Profit: 39.93 % Action: Share-JWGF | Coût: 48.69 € | Profit: 39.93 % Action: Share-JGTW | Coût: 35.29 € | Profit: 39.43 % Action: Share-FAPS | Coût: 32.57 € | Profit: 39.54 % Action : Share-VCAX | Coût : 27.42 € | Profit : 38.99 % Action: Share-LFXB | Coût: 14.83 € | Profit: 39.79 % Action: Share-DWSK | Coût: 29.49 € | Profit: 39.35 % Action : Share-XQII | Coût : 13.42 € | Profit : 39.51 % Action: Share-ROOM | Coût: 15.06 € | Profit: 39.23 %

Argent investi : 499.9 € Meilleur bénéfice : 197.96 €

Temps d'exécution de l'algorithme 'optimized' : 9.04 secondes

Résultats de Sienna

Share-ECAQ 3166

Share-IXCI 2632

Share-FWBE 1830

Share-ZOFA 2532

Share-PLLK 1994

Share-YFVZ 2255

Share-ANFX 3854

Share-PATS 2770

Share-NDKR 3306

Share-ALIY 2908

Share-JWGF 4869

Share-JGTW 3529

Share-FAPS 3257

Share-VCAX 2742

Share-LFXB 1483

Share-DWSK 2949

Share-XQII 1342

Share-ROOM 1506

Total cost: 489.24â,¬

Profit: 193.78â,¬

Bilan des résultats

Les résultats obtenus par Sienna montrent qu'il faut juste acheter 18 actions avec un coût total de 489.24 € ce qui donne un bénéfice de 193.78 €. Cela signifie qu'il y a un profit de 39.6083%.

En revanche, l'algorithme optimisé montre qu'il faut acheter 20 actions avec un coût total de 499.90€ ce qui donne un bénéfice de 197.96 €. Cela signifie qu'il y a un profit de 39.5999%.

Dans ce cas, ce qui est curieux est que les résultats de l'algorithme offrent un bénéfice plus grand que celui de Sienna (+ 4.18 €), mais un profit légèrement plus petit (une différence de -0.0084%).

Cela peut s'expliquer car l'algorithme prend en compte le bénéfice maximum obtenu. Autrement dit, l'algorithme maximise le bénéfice prenant toujours en compte les 500 € de budget maximum, ce qui est bien le cas car le bénéfice de l'algorithme est bien plus grand que celui de Sienna.