PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-191698

(43) Date of publication of application: 22.07.1997

(51)Int.CI.

H02P 21/00 H02P 5/00 H02P 6/18 // G05B 13/02

(21)Application number: 08-003690

(71)Applicant: YASKAWA ELECTRIC CORP

(22)Date of filing:

12.01.1996

(72)Inventor: OGURO RYUICHI

INAZUMI SUKEATSU **UMEDA NOBUHIRO** YAMAMOTO AKIHIRO

(54) METHOD FOR PRESUMING SPEED OF PERMANENT MAGNET SYNCHRONOUS MOTOR, METHOD FOR PRESUMING SLIP ANGLE OF ITS ROTOR AND METHOD FOR CORRECTING ROTOR POSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To precisely presume an induced voltage occurring on the γ - δ axis of a permanent magnetic

synchronous motor.

SOLUTION: A γ axis current iy(k) and a δ axis current i δ (k) are calculated by detecting a stator current for two phases fed to a synchronous motor at the time of k.TS (where k=0,1,..., TS is a sampling time), and by converting it into a γ - δ coordinate system set up on a rotor. In a state presuming device 8, a corrected amounts are the difference between these currents and a y axis current iyest (k) and a δ axis current iδest (k) presumed previously, voltage command value Vy* (k) and V δ * (k) converted into the γ - δ coordinate system are used as inputs, and induced voltages εy (k) of the γ axis and ε $\delta(k)$ of the δ axis generated every time the rotor rotates are used as the disturbance against a current response while the rotor is not in motion. Then, currents iyest(k+1), iδest(k+1) and induced voltages εγest(k+1) and εδest(k+1) are presumed in the γ - δ coordinate system at the time of (k+1).TS second.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-191698

(43)公開日 平成9年(1997)7月22日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ		技術表示箇所		
H02P 21/00			H02P	5/408	(2	
5/00			ļ	5/00			
6/18			G05B 1	3/02			
// G 0 5 B 13/02			H02P	5/408	Α		
				6/02 3 7 1 S			
			審查請求	未請求	請求項の数3	OL	(全 7 頁)
(21)出願番号	特願平8-3690		(71)出願人	0000066	22		
(DI) PILIDINI				株式会社	上安川電機		
(22)出顧日	平成8年(1996)1月12日			福岡県	比九州市八幡西印	X黒崎城/	百2番1号
			(72)発明者				
					化九州市八幡西(会社安川電機内	X 黒崎城	万2番1号
			(72)発明者	稲積 4	佑敦		
					化九州市八幡西印 会社安川電機内	区黒崎城	石2番1号
			(72)発明者	梅田(官弘		
					北九州市八幡西(会社安川電機内	区黒崎城	石2番1号
			(74)代理人				
			(14)142/)	- 4 - 1904		終頁に続く

(54) 【発明の名称】 永久磁石形同期電動機の速度推定方法及びその回転子ずれ角推定方法並びに回転子位置修正方法

(57)【要約】

(修正有)

【課題】 永久磁石形同期電動機の $\gamma - \delta$ 軸に発生する 誘起電圧を精度良く推定する。

1

【特許請求の範囲】

【請求項1】 永久磁石を回転子とし、回転子の磁極上 に設定したd-q軸に、回転子上に想定した $\gamma-\delta$ 軸が 一致するように制御する永久磁石形同期電動機の制御方 法において、時間 $k \cdot T_S$ 時(但し、k = 0, 1, 2, 3, ···, TSはサンプリングタイム)に同期電動機 に供給される少なくとも2相分のステータ電流を検出 し、同ステータ電流をγ-δ座標系に変換することによ り、γ軸電流 i γ (k) 及びδ軸電流 i δ (k) を導出 し、これらのγ軸電流 ίγ (k) 及びδ軸電流 ίδ (k) と前回の制御ループで推定された y 軸電流 i y est (k) 及びδ軸電流 i δ_{est} (k) との差 i γ (k) - i γ_{est} (k) 及び i δ (k) - i δ_{est} (k) を補正 量、γ-δ軸座標系に変換された電圧指令値 Vγ *(k) とVδ*(k) を入力とし、同期電動機の回転子 が回転することにより発生するγ軸の誘起電圧εγ (k) とδ軸の誘起電圧εδ(k)を、回転子が回転し ていない時の電流応答に対する外乱として状態推定器を 構成し、時間(k+1)・ T_S 秒の $\gamma-\delta$ 軸座標系にお ける電流 i yest (k+1) 及び i δest (k+1) 並び に誘起電圧 ε y_{est} (k+1) 及び ε δ_{est} (k+1) を 推定し、この推定された誘起電圧 ϵ δ est (k+1) の 符号より、回転子の速度の符号を判別し、前記誘起電圧 $\epsilon \gamma_{est} (k+1) と \epsilon \delta_{est} (k+1) の 2 乗和と前記$ 判別された符号より、回転子の角速度ωrm(k+1)の 推定値 ω_{rmest} (k+1) を推定することを特徴とする 永久磁石形同期電動機の速度推定方法。

【請求項2】 請求項1記載の方法により推定された γ 軸誘起電圧推定値 ϵ γ est (k+1) と回転子の角速度推定値 ω rmest (k+1) より、回転子の永久磁石上に設定した d-q 座標と前記 $\gamma-\delta$ 座標とのずれ角 θ e (k+1) を推定することを特徴とする永久磁石形同期電動機の回転子ずれ角推定方法。

【請求項3】 請求項2記載の方法により推定されたずれ角 θ eest (k+1) にゲインを乗じた値より、(k+1) 番目の制御ループで使用する $\gamma-\delta$ 軸の位置を修正することを特徴とする永久磁石形同期電動機の回転子位置修正方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、永久磁石形同期電 動機の速度推定方法及びその回転子ずれ角推定方法並び に回転子位置修正方法に関する。

[0002]

【従来の技術】永久磁石を回転子とするブラシレスDC モータを同期電動機として運転する場合、回転子の絶対 位置を得て、正確な電流制御を行う必要がある。回転子 の絶対位置を得るためには、エンコーダやレゾルバなど の回転子位置検出器を用いることが一般的であるが、配 線や構造の複雑さ、価格や使用環境などについて問題が 2

あるため、回転子位置検出器を用いないで回転子の磁極 位置を求める方法が提案されている。従来の永久磁石形 同期電動機の磁極位置推定方法としては、[1] 論D、113巻、5号、平成5 p579~586、 電学論D、114巻、5号、平成6 p591 ~592、[3] 電学論D、115巻、4号、平成7 p420~427が知られている。[1]は、固定子 上に設定された軸αーβ座標系に変換されたステータ電 流ία, ίβを観測値、ステータ電圧να, νβを入力 とし、 $\alpha - \beta$ 軸座標系の磁束 $\lambda \alpha$, $\lambda \beta$ 、および回転子 速度を適応則を用いて推定する方法である。 [2] は、 $\alpha - \beta$ 座標系に変換されたステータ電流 i α , i β を観 測値、ステータ電圧 ν α 、 ν β を入力とし、α ー β 軸座 標系におけるα軸方向に発生する誘起電圧εα、β軸方 向に発生する誘起電圧 ε β を外乱として推定する方法で ある。 [3] は、回転子上に設定した、同期速度で回転 する γ - δ 座標系に変換されたステータ電流 i γ , i δ と、モデルより算出された電流計算値 $i y_0$ 、 $i \delta_0$ との 差より、 $\gamma - \delta$ 軸とd - q軸とのずれ角 θ_e を推定する 方法である。

[0003]

【発明が解決しようとする課題】しかし、上述した従来の方法では、 [1] については、極性のある永久磁石形同期電動機に採用した場合は、 $\alpha-\beta$ 座標上では、インダクタンスがモータ回転子角 θ_r の関数となり、状態方程式が複雑であり、オブザーバを構成する際、計算量が増大し、実用化が困難である。また磁束 $\lambda\alpha$ 、 $\lambda\beta$ を未知量としているため、状態方程式は、回転子速度0において不可観測となり、推定器自体が不安定となる。

[2]については、 $\alpha-\beta$ 軸に変換した誘起電圧は交流量となるため、オブザーバの極を大きく設定しなければ実際量と推定量との位相差が発生し、使い物にならなくなる。[3]は、[1],[2]に比較し、簡便な手法であり、しかも、d-q軸とほぼ同期した角速度で回転する $\gamma-\delta$ 軸を基準として考えているため、d-q軸と $\gamma-\delta$ 軸のズレ θ_e が小さいときは、状態方程式も複雑化せず、実用化に関してすぐれた方法である。しかし、実際値と比較するものが、d-q軸に $\gamma-\delta$ 軸が一致したときのモデルから単純に導かれた計算値であり、ズレ θ_e がモデル化誤差などにより、正しく推定できるとは限らない。そこで本発明が解決すべき課題は、 $\gamma-\delta$ 軸に発生する誘起電圧 ϵ γ 、 ϵ δ を精度良く推定し、 $\gamma-\delta$ 軸とd-q軸とのズレ θ_e 、回転子の角速度 ω_{rm} を導出することにある。

[0004]

【課題を解決するための手段】前記課題を解決するため、本発明の永久磁石形同期電動機の速度推定方法は、永久磁石を回転子とし、回転子の磁極上に設定した d ー q 軸に、回転子上に想定した γ - δ 軸が一致するように制御する永久磁石形同期電動機の制御方法において、時

(3)

間 $k \cdot T_S$ 時(但し、k=0, 1, 2, 3, \cdots , T_S はサンプリングタイム)に同期電動機に供給される少なくとも2相分のステータ電流を検出し、同ステータ電流を $\gamma-\delta$ 座標系に変換することにより、 γ 軸電流 $i\gamma$ (i) 及び δ 軸電流 i i (i) を導出し、これらのi 電流 i i (i) 及び δ 軸電流 i i (i) と前回の制御ループで推定されたi 軸電流 i i (i) との差 i i (i) との差 i i (i) との差 i (i) との差 i (i) との差 i (i) との差 i (i) を補正量、i (i) を入力 i0 とし、同期電動機の回転子が回転することにより発生するi0 軸の誘起電圧 i i0 に i2 を i3 中の誘起電圧 i5 に i5 を i4 に i5 を i5 を i6 に i7 を i7 を i7 を i7 に i7 を i7 を i7 を i7 を i8 を i9 を

(k) を、回転子が回転していない時の電流応答に対する外乱として状態推定器を構成し、時間 (k+1) ・ T S秒の $\gamma-\delta$ 軸座標系における電流 i γ_{est} (k+1) 及び i δ_{est} (k+1) 並びに誘起電圧 ϵ γ_{est} (k+1) 及び ϵ δ_{est} (k+1) を推定し、この推定された誘起電圧 ϵ δ_{est} (k+1) の符号より、回転子の速度の符号を判別し、前記誘起電圧 ϵ γ_{est} (k+1) と ϵ δ_{est} (k+1) の2乗和と前記判別された符号より、回転子の角速度 ω_{rm} (k+1) の推定値 ω_{rmest} (k+1) を推定することを特徴とする。また、本発明の永久磁石形 **

*同期電動機の回転子ずれ角推定方法は、前記の方法により推定されたγ軸誘起電圧推定値 ϵ γ $_{\rm est}$ (k+1)と回転子の角速度推定値 ω r $_{\rm mest}$ (k+1)より、回転子の永久磁石上に設定したd-q座標と前記γ $-\delta$ 座標とのずれ角 θ $_{\rm e}$ (k+1)を推定することを特徴とする。また、本発明の永久磁石形同期電動機の回転子位置修正方法は、前記の方法により推定されたずれ角 θ $_{\rm eest}$ (k+1)にゲインを乗じた値より、(k+1)番目の制御ループで使用するγ $-\delta$ 軸の位置を修正することを特徴とする。

[0005]

【数 1 】

$$\frac{d}{dt} \begin{bmatrix} i\gamma \\ i\delta \end{bmatrix} = \begin{bmatrix} -\frac{R_S}{L_d} & \frac{L_q}{L_d} \omega_{rm} \\ -\frac{L_d}{L_q} \omega_{rm} & -\frac{R_S}{L_q} \end{bmatrix} \begin{bmatrix} i\gamma \\ i\delta \end{bmatrix} + \begin{bmatrix} \frac{1}{L_d} & 0 \\ 0 & \frac{1}{L_q} \end{bmatrix} \begin{bmatrix} v\gamma \\ v\delta \end{bmatrix} + \begin{bmatrix} \epsilon\gamma \\ \epsilon\delta \end{bmatrix} \quad \cdots (1)$$

但し、 $\epsilon \gamma = -s i n \theta_e (\omega_{rm}/L_q) \phi_{mag}$ $\epsilon \delta = c o s \theta_e (\omega_{rm}/L_q) \phi_{mag}$

RS:ステータ側抵抗、Lq:q軸インダクタンス、

Ld:d軸インダクタンス、

 $\theta_e: \gamma - \delta$ 軸と d - q軸とのずれ角、

【0006】状態推定器である

$$\frac{d}{dt} \begin{pmatrix} i_{\gamma} \\ i_{\delta} \\ \hat{\epsilon}_{\gamma} \\ \hat{\epsilon}_{\delta} \end{pmatrix} = \begin{pmatrix} -\frac{R_{S}}{L_{d}} & \frac{L_{q}}{L_{d}} \hat{\omega}_{rm} & 1 & 0 \\ -\frac{L_{d}}{L_{q}} \hat{\omega}_{rm} & -\frac{R_{S}}{L_{q}} & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} i_{\gamma} \\ i_{\delta} \\ \hat{\epsilon}_{\gamma} \\ \hat{\epsilon}_{\delta} \end{pmatrix} + \begin{pmatrix} \frac{1}{L_{d}} & 0 \\ 0 & \frac{1}{L_{q}} \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_{\gamma} \\ v_{\delta} \end{pmatrix} + \begin{pmatrix} k_{1} & k_{2} \\ k_{3} & k_{4} \\ k_{5} & k_{6} \\ k_{7} & k_{8} \end{pmatrix} \begin{pmatrix} i_{\gamma} - i_{\gamma} \\ i_{\delta} - i_{\delta} \end{pmatrix} \dots (2)$$

但し、「・」は推定値を表し、添字の「est」と同じ意味である。

を離散値系に展開した

$$\frac{d}{dt} \begin{pmatrix} i\gamma(k+1) \\ i\delta(k+1) \\ \hat{\epsilon}\gamma(k+1) \\ \hat{\epsilon}\delta(k+1) \end{pmatrix} = \begin{pmatrix} 1 \cdot \frac{R_S}{L_d} T_S & \frac{L_q}{L_d} \hat{\omega}_{rm}(k) \cdot T_S & T_S & 0 \\ \frac{L_d}{L_q} \hat{\omega}_{rm}(k) \cdot T_S & 1 \cdot \frac{R_S}{L_q} T_S & 0 & T_S \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i\gamma(k) \\ i\delta(k) \\ \hat{\epsilon}\gamma(k) \\ \hat{\epsilon}\delta(k) \end{pmatrix}$$

$$+T_{S}\begin{pmatrix} \frac{1}{L_{d}} & 0 \\ 0 & \frac{1}{L_{q}} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} v_{\gamma}(k) \\ v_{\delta}(k) \end{pmatrix} +T_{S}\begin{pmatrix} k_{1} & k_{2} \\ k_{3} & k_{4} \\ k_{5} & k_{6} \\ k_{7} & k_{8} \end{pmatrix}\begin{pmatrix} i_{\gamma} - \hat{i}_{\gamma} \\ i_{\delta} - \hat{i}_{\delta} \end{pmatrix} \cdots (S)$$

によって、時間(k+1) T S 秒時の電流推定値 i γ * γ_{est} (k+1)、 ϵ δ_{est} (k+1)を求める。 est (k+1)、 i δ_{est} (k+1)、誘起電圧推定値 ϵ * 【0007】

$$\sharp \hbar$$
, $\epsilon \gamma_{\text{est}} (k+1) = -s \text{ in } \theta_{\text{eest}} (k+1) \cdot \{\omega_{\text{rmest}} (k+1)\}$

$$/Lq$$
} · ϕ_{mag}

$$\epsilon \delta_{est} (k+1) = -c \circ s \theta_{eest} (k+1) \cdot \{\omega_{rmest} (k+1)\}$$

$$/Lq$$
} · ϕ_{mag} · · · · (4)

であるから、 θ_e が小さいと考え、 ω_{rmest} (k+1) の%20%符号

sign
$$(\omega_{\text{rmest}}(k+1)) = -sign(\epsilon \delta_{\text{est}}(k+1))$$

 \cdots (5)

とし、(4)式の2乗和と(5)式の結果より、次式で★ ★ ω_{rmest}(k+1)を求め、

$$\omega_{\text{rmest}}$$
 (k+1) = s i g n (ω_{rmest} (k+1)) · { $\epsilon \gamma_{\text{est}}^2$ (k+1) + $\epsilon \delta^2$ } $^{1/2}$ · (L_q/ ϕ_{mag}) · · · · (6)

 $\epsilon \gamma_{est}$ (k+1) と前記 ω_{rmest} (k+1) より、s i \Rightarrow で、ゲイン $k \rho$ で、(k+1) ・ T_S 秒時の γ 軸の位置 n θ_{eest} (k+1) を求める。 θ_{eest} \Rightarrow 0 の領域では、 θ_{eest} \Rightarrow 0 の領域では、 θ_{eest} \Rightarrow 1 の θ_{eest} \Rightarrow 2 の θ_{eest} \Rightarrow 3 の θ_{eest} \Rightarrow 3 の θ_{eest} \Rightarrow 4 の θ_{eest} \Rightarrow 6 の θ_{eest} \Rightarrow 8 の θ_{eest} \Rightarrow 9 の θ_{eest} \Rightarrow 9

$$\rho_{\text{est}} (k+1) = \rho_{\text{est}} (k) + \omega_{\text{rmest}} (k+1) \cdot T_{S} - k \rho \cdot \theta_{\text{eest}} (k+1) \cdot T_{S} - k \rho \cdot \theta$$

で求めて補正を実施する。

[0008]

た同期電動機の制御システムを示すブロック図、図2は 図1の制御システムのデジタル制御動作を示すフローチ ャートである。図1の制御システムブロック図について 説明する。角速度指令ωrm*と角速度推定値ω rmestが、速度コントローラ1に入力され、速度コント ローラ1は、δ相電流指令 i δ*を出力する。δ相電流 コントローラ 2 は i δ*と δ 相電流推定値 i δ est2とを 入力し、 δ 相電流指令V δ *を出力する。一方、 γ 相電 流指令 i y*と y 相電流推定値 i y est2が、 y 相電流コ ントローラ3に入力され、γ相電流コントローラ3はγ 相電圧指令 V γ*を出力する。電圧指令 V δ*と V γ*と $y - \delta$ 軸位置補正器 1 1 から出力される $y - \delta$ 軸位置が ベクトル制御回路4に入力され、電圧値絶対値(Vδ2 $+ V y^2$) 1/2と y 軸からの電圧出力方向の位相 t a n⁻¹ (Vδ/Vy)がインバータ回路5に入力され点弧が実 施される。一方、γ-δ軸電流・誘起電圧推定器 8 は、

【実施例】以下、本発明の実施例を説明する。図1は、 本発明の磁極位置、速度推定方法の一実施例が適用され

【0009】次に、制御動作を。図2のフローチャートにより説明する。 $k \cdot T_S$ 秒の時点で同期機に供給される少なくとも2相分の電流、例えば $i_u(k)$ 、 $i_v(k)$ を検出し(ステップS1)、前回ループで補正された $v-\delta$ 軸座標系に変換し、 $i_v(k)$ 、 $i_v(k)$ を導出する(ステップS2)。 $v-\delta$ 座標系に変換された電圧指令 $v_v(k)$ 、 $v_v(k)$ を入力し(ステップS3)、式(3)により、 $v_v(k)$ により、 $v_v(k)$ で入力し

7

砂時の推定値 i γ_{est} (k+1)、 i δ_{est} (k+1)、 ϵ_{γ} ϵ_{γ} ϵ_{γ} ϵ_{γ} (k+1)、 ϵ_{γ} ϵ_{γ}

[0010]

【発明の効果】以上述べたように、本発明は、回転子上に、推定速度 ω_{rmest} で回転するように設定した $\gamma - \delta$ 軸に発生する θ_e を関数とする γ 軸誘起電圧、 δ 軸誘起

8

電圧を推定する状態推定器を構成しているため、状態推定器の極が安定に設定されていれば、通常 $\gamma-\delta$ 軸と d -q 軸との誤差の変化が遅いため、推定値は、実測値に極を不必要に大きくすることなく収束することができる。

【図面の簡単な説明】

【図1】 本発明の一実施例の同期電動機の制御システムを表すブロック線図である。

【図2】 離散値系における本発明のフローチャートで ある。

【符号の説明】

1 速度コントローラ、2 δ相電流コントローラ、3 γ軸電流コントローラ、4 ベクトル制御回路、5 インバータ回路、6 同期電動機、7 相変換器、8 γーδ軸電流・誘起電圧推定器、9 角速度導出器、1 0 ずれ角θ eest導出器、11 γーδ軸位置補正器、12 γ相・δ相電流補正器

フロントページの続き

(72) 発明者 山本 暁洋 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内