環論 (第15回)

UFD上の多項式環

今回は UFD 上の多項式環の性質について調べる. 目標は次を示すことである.

$$A \bowtie \text{UFD} \Rightarrow A[x] \bowtie \text{UFD}$$
 (1)

(定理 15-6 を参照). 例えば, $\mathbb Z$ は UFD だったので, $\mathbb Z[x]$ も UFD となる. まずは, (1) を示すために必要な準備をする.

定義 15-1

整域 A の元 $a_1, a_2, ..., a_n$ はいずれかは 0 でないとする.

- (1) $d \in A$ は $d \mid a_i \ (i = 1, ..., n)$ をみたすとき, $a_1, ..., a_n$ の公約元という.
- (2) $g \in A$ は $a_1, ..., a_n$ の公約元で、任意の $a_1, ..., a_n$ の公約元 b に対して $b \mid g$ が成り立つとき、g を $a_1, ..., a_n$ の最大公約元といい、 $\gcd(a_1, ..., a_n)$ で表す.
- (3) $gcd(a_1,...,a_n) = 1$ のとき, $a_1,...,a_n$ は**互いに素**という.

例えば、 $\mathbb{Z}[x]$ の多項式 $f(x) = x^2 - 1$ と $g(x) = x^2 - 2x + 1$ は、

$$f(x) = (x-1)(x+1), \quad q(x) = (x-1)^2$$

と分解されるので, gcd(f(x), g(x)) = x - 1となる.

定理 15-1

- (1) $a_1,...,a_n$ の最大公約元は存在する.
- (2) g, g' がともに $a_1, ..., a_n$ の最大公約元ならば, $g \ge g'$ は同伴である.
- つまり、 $a_1, ..., a_n$ の最大公約元は同伴の差を除き一意的に存在する.

[証明]

(1) $a_1, ..., a_n$ の順番を入れ替えて

$$a_1 \neq 0, ..., a_m \neq 0, a_{m+1} = 0, ..., a_n = 0$$

とする. A は UFD より $1 \le i \le m$ に対して

$$a_i = u_i \prod_{j=1}^l p_j^{\alpha_{ij}} \quad (\alpha_{ij} : 非負整数, u_i \in A^{\times}, p_j : A の素元)$$

と表せる. ここで

$$g := \prod_{i=1}^{l} p_j^{\min\{\alpha_{1j}, \dots, \alpha_{mj}\}}$$

とおくと, $g \mid a_i \ (i=1,...,n)$ である。また, $b \in A$ が $b \mid a_i \ (i=1,...,n)$ を満たすとする.このとき、

$$b = v \prod_{j=1}^{l} p_j^{\beta_j}$$
 (β_j : 非負整数, $v \in A^{\times}$)

とかけて、さらに $b \mid a_1, ..., b \mid a_n$ より

$$\beta_j \leq \min\{\alpha_{1j}, ..., \alpha_{mj}\}.$$

従って $b \mid g$ を得る. よってgは $a_1, ..., a_n$ の最大公約元である.

(2) g,g' がともに $a_1,...,a_n$ の最大公約元とする. g は $a_1,...,a_n$ の公約元で g' は最大公約元だから $g \mid g'$. 同様に $g' \mid g$. よって $g \sim g'$.

問題 15-1 A を PID とし, $a, b \in A$ とする. このとき, $(\gcd(a, b)) = (a, b)$ を示せ.

定義 15-2 (原始多項式)

 $A \in UFD \ge l$,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in A[x]$$

とする. $gcd(a_0, a_1, ..., a_n) = 1$ のとき, f(x) を**原始多項式**という.

例えば、 $f(x) = 6x^2 + 15x^2 + 10$ は gcd(6, 15, 10) = 1 より $\mathbb{Z}[x]$ の原始多項式である.

定理 15-2 (ガウスの補題)

A を UFD とし, $f(x), g(x) \in A[x]$ はともに原始多項式とする. このとき, f(x)g(x) も原始 多項式である.

[証明]

 $h(x) = f(x)g(x) \, \, \xi \, \, \zeta,$

$$f(x) = \sum_{i} a_i x^i$$
, $g(x) = \sum_{i} b_i x^i$, $h(x) = \sum_{i} c_i x^i$

と表す. h(x) が原始多項式でないとすると,

$$p \mid c_i \quad (i = 0, 1, 2, ...)$$
 (2)

をみたすAの素元pが存在する。一方、

$$p \mid a_0, ..., p \mid a_{i_0-1}, p \nmid a_{i_0},$$

 $p \mid b_0, ..., p \mid b_{j_0-1}, p \nmid b_{j_0}$

をみたす i_0, j_0 がとれる. ここで, h(x) = f(x)g(x) の両辺の $i_0 + j_0$ 次の項を比較すると,

$$c_{i_0+j_0} = \underbrace{a_0b_{i_0+j_0} + \dots + a_{i_0-1}b_{j_0+1}}_{p \text{ で割れる}} + a_{i_0}b_{j_0} + \underbrace{a_{i_0+1}b_{j_0-1} + \dots + a_{i_0+j_0}b_0}_{p \text{ で割れる}}.$$

 $p \nmid a_{i_0}b_{j_0}$ より $p \nmid c_{i_0+j_0}$ となる. これは (2) に反する. よって h(x) は原始多項式である.

定理 15-3

UFD A とその商体 K を考える.

- (1) $f(x) \in K[x] \setminus \{0\}$ に対して, $f(x) = \alpha g(x)$ をみたす $\alpha \in K^{\times}$ と A[x] の原始多項式 g(x) が存在する.
- (2) $\alpha, \beta \in K^{\times}$ と A[x] の原始多項式 f(x), g(x) に対して, $\alpha f(x) = \beta g(x)$ ならば $\beta \alpha^{-1} \in A^{\times}$ が成り立つ.

[証明]

(1) まず,

$$f(x) = \frac{a_n}{b_n} x^n + \frac{a_{n-1}}{b_{n-1}} x^{n-1} + \dots + \frac{a_0}{b_0} \quad (a_i, b_i \in A)$$

と表す. $b=b_0\cdots b_n$ と置くと, $ba_i\in A\,(0\leq i\leq n)$ となる. $c=\gcd(ba_0,\ldots,ba_n)$ と置くと,

$$g(x) := \frac{a_n b}{c} x^n + \dots + \frac{a_0 b}{c} \in A[x]$$

は原始多項式で、 $f(x) = \frac{c}{b}g(x)$ をみたす。

$$(2)$$
 $\alpha = \frac{a}{b}, \ \beta = \frac{c}{d} \ (a,b,c,d \in A)$ と置くと,

$$adf(x) = bcg(x)$$

となる. f(x),g(x) は原始多項式より adf(x),bcg(x) のそれぞれの係数の最大公約元は ad,bc である. 定理 15-1 (2) より adu=bc ($u\in A^{\times}$) と表せる. よって

$$\beta \alpha^{-1} = u \in A^{\times}.$$

[補足] 定理 15-3 (1) において,

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in A[x]$

3

のときは

$$c = \gcd(a_0, a_1, ..., a_n), \quad g(x) := \frac{1}{c} f(x) \in A[x]$$

とすればよい.

定理 15-4

A を UFD, K をその商体とし, f(x) を A[x] の原始多項式とする.

- (1) $g(x) \in A[x]$ とする. K[x] において $f(x) \mid g(x)$ ならば, A[x] において $f(x) \mid g(x)$ である.
- (2) 次が成り立つ.

$$f(x)$$
 が $K[x]$ の素元 $\iff f(x)$ が $A[x]$ の素元.

[証明]

$$g(x) = f(x)h(x) \quad (h(x) \in K[x])$$

と表せる. 定理 15-3 (1) とその補足から

$$g(x) = \alpha g_1(x), \quad h(x) = \beta h_1(x)$$

を満たす $\alpha \in A, \beta \in K^{\times}$ と A[x] の原始多項式 $g_1(x), h_1(x)$ がとれる。このとき、

$$\alpha g_1(x) = \beta f(x) h_1(x)$$

であり、定理 15-2 から $f(x)h_1(x)$ は A[x] の原始多項式となる。よって、定理 15-3 (2) より $\beta\alpha^{-1}\in A$. よって $\beta\in A$. これより $h(x)\in A[x]$ となる.

(2) f(x) を K[x] の素元と仮定する. このとき,

$$f(x) \mid g(x)h(x) \quad (g(x), h(x) \in A[x])$$

とすると, K[x] において

$$f(x) \mid g(x)$$
 または $f(x) \mid h(x)$.

$$f(x) \mid g(x)$$
 または $f(x) \mid h(x)$

が成り立つ. よって f(x) は A[x] の素元である.

逆に f(x) を A[x] の素元とする. K[x] は UFD だから, f(x) が K[x] の既約元であることを示せばよい. f(x) は A[x] の素元かつ原始多項式なので $\deg f(x) \geq 1$ となる. 特に $f(x) \notin K^{\times}$ である. 次に, $g(x) \in K[x]$ を f(x) の約元とし, $\alpha \in K^{\times}$ と A[x] の原始多項式 $g_1(x)$ を用いて $g(x) = \alpha g_1(x)$ と表す. K[x] で $g_1(x)$ | f(x) だから, A[x] でも $g_1(x)$ | f(x) である. f(x) は A[x] の既約元だから,

$$g_1(x) \in A[x]^{\times} = A^{\times}$$
 \$\pi t A[x] \cdot f(x) \sim g_1(x).

従って

$$g(x) \in K^{\times} \quad \text{\sharp \hbar ii} \quad K[x] \ \text{\Hat{c} } f(x) \sim g(x).$$

従って f(x) は K[x] の既約元である.

定理 15-5

可換環 A の素元は A[x] の素元でもある.

[証明] 問題 15-2.

問題 15-2 可換環 A の素元 p を考える.

(1) 次の同型を示せ.

$$A[x]/pA[x] \simeq (A/(p))[x].$$

(2) p は A[x] の素元であることを示せ.

以上を踏まえて、目標であった(1)の証明をする.

定理 15-6

[証明]

K を A の商体とする. $f(x) \in A[x]$ $(f(x) \notin A[x]^{\times}, f(x) \neq 0)$ とすると, K[x] は UFD より

$$f(x) = f_1(x) \cdots f_s(x)$$
 $(f_i(x) : K[x]$ の素元)

と表せる. 定理 15-3 より

$$f_i(x) = c_i g_i(x)$$
 $(c_i \in K^{\times}, g_i(x) \in A[x] : 原始多項式)$

と表せる.定理 15-4 (2) より各 $g_i(x)$ は A[x] の素元である.また

$$(c_1 \cdots c_s)g_1(x) \cdots g_s(x) = f(x) \in A[x]$$

で、 $g_1(x) \cdots g_s(x)$ は原始多項式なので $c := c_1 \cdots c_s \in A$ となる。 $c \in A^{\times}$ ならば、

$$f(x) = (cg_1(x))g_2(x)\cdots g_s(x)$$

が f(x) の素元分解である. $c \notin A^{\times}$ ならば, A は UFD より

$$c = p_1 \cdots p_t$$
 $(p_i : A の素元)$

と表せる. 定理 15-5 より各 p_i は A[x] の素元であるから,

$$f(x) = p_1 \cdots p_t \cdot g_1(x) \cdots g_s(x)$$

が f(x) の素元分解である.

[**コメント**] 定理 15-6 を繰り返し使うと, A が UFD のとき, $A[x_1,\ldots,x_n]$ も UFD であることが分かる.

問題 15-3 PID ではない UFD の例を一つ挙げよ.