Bio-marker selection problem

Overview

The flow chart of this project is as follows

- Read Data: directly read the data from the excel file
- Preprocess Data
 - (1) Add cross terms $x_i x_j$ (We ignore the triple terms $x_i x_j x_k$ since it requires large memory)
 - (2) The above data is set as the solution space. The goal is to find 30 selection from it.
- Optimization Alogrithms:
 It includes Genetic Programming (GP), Competitive Coevolution, Cooperative Coevolution,
 NSGA-II. The detail setting of each algorithm is describe in the following section.
- Predict Train (LR): predict training data by logistic regression based on the selected index
- Predict Test (LR): predict test data set based on the previous logistic regression model
- Predict (GP): predict the training, valid and testing data by the tree-based model.

Genetic Programming

Data Structure Setting

Parameter	Number	Note
# Tree	5	Each tree corresponds to a class
# Operation	3	["+","-","*"]
# Tree level	4	The depth of the full tree

The following figure illustrates the above setting:

Algorithm Setting

Parameter	Number	Note			
# Generation	40	Times for the iterative algorithm to be processed			
# Solution	20	Each tree corresponds to a class			
# Parents	10	Hald of the solution size			
# num_mutations	6	one-third of solution size			

Flow Chart

The following figure illustrates the flow of GP:

Notice that in each solution, the feature vector in each class must be the same. On the other hand, the solution in the same class can have different feature vector. In our work, the feature vector will also be mutated.

Results

C01

When $(T_{4377} + T_{141} * T_{3785} + T_{1609} * T_{3785} * T_{1883} + T_{518} + T_{1187}) < 0$ is true, C01 is 1. Otherwise, it is 0.

C02

When $(T_{4377} + T_{4241} * T_{1187} + T_{518} + T_{778} * T_{141} * T_{1187} + T_{3785}) < 0$ is true, C02 is 1. Otherwise, it is 0.

C03

When $(T_{1883} + T_{4377} + T_{1609} * T_{1187} * T_{4241} + T_{141} * T_{1187} * T_{1883}) < 0$ is true, C03 is 1. Otherwise, it is 0.

C04

When $(T_{4377} + T_{1609} * T_{1883} * T_{1187} + T_{518} + T_{1609} - T_{141} * T_{1883}) < 0$ is true, C04 is 1. Otherwise, it is 0.

C05

When $(T_{518} + T_{778} + T_{1609} * T_{3785} - T_{518} * T_{141} * T_{1609} + T_{1187}) < 0$ is true, C05 is 1. Otherwise, it is 0.

Competitive Coevolution

Algorithm Setting

Parameter	Number	Note			
# Generation	10	Times for the iterative algorithm to be processed			
# Internal	25	Number of samples for calculating the internal Fitness			
# Worst Internal	12	Number of worse samples leaved for the next generation			
# Solution	10	Size of the population			
# Parents	5	Half of the solution size			

Parameter	Number	Note
# num_mutations	2	number of features being mutated for the offspring

Flow Chart

The following figure illustrates the flow of the algorithm:

Notice that the breeding strategy for the feature vector is implement by crossover between the parenets along with mutations.

Results

Each class is predict by the logistic regression model LR(.) based on the training data corresponding to its class. The definition of T_i can be found in appendix.

C01

$$LR([T_{4471}, T_{148}, T_{1148}, T_{3200}, T_{1326}, T_{1126}, T_{2316}, T_{3279}, T_{2879}, T_{1134}])$$

C02

$$LR([T_{322}, T_{4214}, T_{2399}, T_{4126}, T_{1501}, T_{2321}, T_{2372}, T_{2263}, T_{4355}, T_{3344}])$$

C03

$$LR([T_{4450}, T_{3727}, T_{1277}, T_{1688}, T_{2483}, T_{4525}, T_{2045}, T_{4042}, T_{1008}, T_{549}])$$

C04

$$LR([T_{3063}, T_{4055}, T_{4353}, T_{3052}, T_{3643}, T_{3788}, T_{1833}, T_{3369}, T_{2258}, T_{580}])$$

C05

$$LR([T_{545}, T_{1238}, T_{3097}, T_{2174}, T_{2643}, T_{2584}, T_{4223}, T_{2411}, T_{3002}, T_{3395}])$$

Cooperative Coevolution

Algorithm Setting

Parameter	Number	Note
# Generation	10	Times for the iterative algorithm to be processed
# Solution	5	Size of the population
# Parents	2	Half of the solution size
# num_mutations	2	number of features being mutated for the offspring
# k	5	k-fold test for the internal fitness

Flow Chart

The following figure illustrates the flow of the algorithm:

Notice that the breeding strategy for the feature vector is implement by crossover between the

parenets along with mutations.

Results

Each class is predict by the logistic regression model LR(.) based on the training data corresponding to its class.

C01

$$LR([T_{248}, T_{1296}, T_{1494}, T_{1132}, T_{921}, T_{1130}, T_{85}, T_{1392}, T_{1375}, T_{655}])$$

C02

$$LR([T_{1139}, T_{1449}, T_{1006}, T_{1373}, T_{1025}, T_{953}, T_{960}, T_{221}, T_{1736}, T_{837}])$$

C03

$$LR([T_{1820}, T_{168}, T_{337}, T_{246}, T_{452}, T_{390}, T_{302}, T_{1662}, T_{1599}, T_{449}])$$

C04

$$LR([T_{484}, T_{1098}, T_{502}, T_{601}, T_{222}, T_{483}, T_{503}, T_{528}, T_{752}, T_{591}])$$

C05

$$LR([T_{318}, T_{747}, T_{221}, T_{248}, T_{236}, T_{1302}, T_{1720}, T_{166}, T_{1800}, T_{1824}])$$

NSGA-II

Algorithm Setting

Parameter	Number	Note
# Generation	10	Times for the iterative algorithm to be processed
# Solution	20	Size of the population
# Parents	10	Half of the solution size
# num_mutations	2	number of features being mutated for the offspring

Flow

- (1) Access fitness for each population on Class 1, Class 2 and Class 4
- (2) Select the pareto front as parents and remove them from the population
- (3) Repect (2) until adding the current pareto front exceeds the number of parents. Once this condition happens, we select the most sparse solution based on its fitness. We caculate the L1 distance for the neighbors in each three dimensions and add up, and this value is used as the sparsity factor.
- (4) Breed offspring based on the selected parents. The breeding process is implemented by crossover between parents along with some mutation
- (5) Repeat (2)-(4)

Results

Each class is predict by the logistic regression model LR(.) based on the training data corresponding to its class.

C01 & C02 & C04

 $LR([T_{1293}, T_{854}, T_{1865}, T_{3796}, T_{3245}, T_{2004}, T_{178}, T_{2524}, T_{979}, T_{2042}])$

Performance Results

The training performance:

Algor.	Class 1	Class 2	Class 3	Class 4	Class 5	Mean Acc.
GP	0.830109	0.830109	0.830345	0.830109	0.983011	0.860736
Competitive	0.918122	0.91883	0.830345	0.907739	1	0.915007
Cooperative	0.950684	0.930628	0.830816	0.918122	1	0.92605
NSGA2	0.944313	0.904436	0.830345	0.921425	0.99882	0.919868

Notice that NSGA2 only optmizated on Class 1, 2 and 4.

The validation performance:

Algor.	Class 1	Class 2	Class 3	Class 4	Class 5	Mean Acc.
GP	0.831579	0.831579	0.831579	0.831579	0.993684	0.864
Competitive	0.947368	0.909474	0.831579	0.894737	1	0.916632

Algor.	Class 1	Class 2	Class 3	Class 4	Class 5	Mean Acc.
Cooperative	0.983158	0.922105	0.831579	0.915789	1	0.930526
NSGA2	0.976842	0.922105	0.831579	0.970526	1	0.940211

The results show comparable validation scores. However, the Cooperative coevolution seems to have less variance. It is therefore selected to generate the test results.

File Description

- model/: stores final 10 selection during running 'train.py' (tree-based for GP)
- utils/:
 - eval.py: score evaltion functions
 - optimization.py: all optimization algorithms
 - preprocess.py: read data and set solution space
- test.py: Predict the output and store to 'Test2 Answer.xlsx' (Using Cooperative)
- train.py: Run optmization algorithm on the train set to select the best indices for each classes
- valid.py: Predict the output of 'Test1.xlsx' for validating the training result.

How to Run?

- · To run the training and validation
 - (1) Run 'train.py'
 - (2) Run 'valid.py'
 - (3) Run 'test.py' to generate the answer

Appendix

Definition of T_i

For T_i with i<95 it is the ony-way biomarker $\frac{F_m}{R_n}$ where m=(i+1)mod19 and $n=\lceil\frac{i}{4}\rceil$ For T_i with $i\geq95$ it is the two-way biomarker $\frac{F_mF_k}{R_nR_l}$ where m=LUL(i-94)mod19, $n=\lceil\frac{LUL(i-95)}{4}\rceil$, k=(LUR(i-94))mod19 and $l=\lceil\frac{LUR(i-95)}{4}\rceil$. The LUL(.) and LUR(.) function looks up the left and right value in the list $[(1,2),(1,3),\ldots,(1,95),(2,3),\ldots,(2,95),(3,4),\ldots,(3.95),(94,95)]$