Maximum Column Sum

Definition: Maximum Column Sum

Let $A \in M_n$, the *maximum column sum* of A is given by:

$$M = \max_{1 \le j \le n} \left\{ \sum_{i=1}^{n} |a_{ij}| \right\}$$

Lemma

Let $A \in M_n$ and M be the maximum column sum for $A : \forall \vec{x} \in \mathbb{C}^n$:

$$\|A\vec{x}\|_1 \leq M\, \|\vec{x}\|_1$$

Proof

Assume $\vec{x} \in \mathbb{C}^n$:

$$||A\vec{x}||_{1} = \left\| \left\| \sum_{j=1}^{n} a_{1j}x_{j} \\ \sum_{j=1}^{n} a_{2j}x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj}x_{j} \right\|_{1}$$

$$= \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij}x_{j} \right|$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}x_{j}|$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij}| \right) |x_{j}|$$

$$\leq \sum_{j=1}^{n} M |x_{j}|$$

$$= M \sum_{j=1}^{n} |x_{j}|$$

$$= M ||\vec{x}||_{1}$$

$$\therefore ||A\vec{x}||_{1} \leq M ||\vec{x}||_{1}$$

Lemma

Let $A \in M_n$ and M be the maximum column sum for A. $\exists \vec{x} \in \mathbb{C}^n$:

$$\|A\vec{x}\|_1 = M \, \|\vec{x}\|_1$$

Proof

Let $1 \le j \le n$ such that:

$$\sum_{i=1}^{n} |a_{ij}| = M$$

Consider \vec{e}_j :

$$||A\vec{e}_j||_1 = \sum_{i=1}^n |a_{ij}| = M = M \cdot 1 = M ||\vec{e}_k||$$

Let $\vec{x} = \vec{e_j}$. Therefore, $\exists \vec{x} \in \mathbb{C}^n$ such that:

$$||A\vec{x}||_1 = M ||\vec{x}||_1$$

Theorem

Let $A \in M_n$ and M be the maximum column sum for A:

$$|||A|||_1 = M$$

Proof

By definition:

$$|||A|||_1 = \max_{\|\vec{x}\|_1 = 1} \{ \|A\vec{x}\|_1 \}$$

By the above lemma: $\forall \vec{x} \in \mathbb{C}^n$:

$$\|A\vec{x}\|_1 \leq M \, \|\vec{x}\|_1$$

And by the subsequent lemma, there exists a $\vec{x} \in \mathbb{C}^n$ such that $\|\vec{x}\|_1 = 1$ and:

$$\left\|A\vec{x}\right\|_1 = M \left\|\vec{x}\right\|_1 = M \cdot 1 = M$$

Therefore:

$$|||A|||_1 = \max_{\|\vec{x}\|_1 = 1} ||A\vec{x}||_1 = M$$