

- 9. Which of the following operation creates an overflow if numbers and the result are represented in 8-bit two's complement representation? a. $11000010_2 + 00111111_2$ b. $00000010_2 + 00111111_2$

 - 10. Using the instruction set of the Table 5.4 and the initial state of CPU and memory, write the content of memory after that the CPU reaches a HALT instruction.

Table 5.4 List of instructions for the simple computer

Instruction	Code	Operands			Action
	d,	d ₂	d_3	d ₄	
HALT	0				Stops the execution of the program
LOAD	1	R _D		Ms	$R_D \leftarrow M_S$
STORE	2	M _D R		R _s	$M_D \leftarrow R_S$
ADDI	3	R _D	R _{S1}	R _{S2}	$R_D \leftarrow R_{S1} + R_{S2}$
ADDF	4	R _D	R _{S1}	R _{S2}	$R_D \leftarrow R_{S1} + R_{S2}$
MOVE	5	R _D	R _s		$R_D \leftarrow R_S$
NOT	6	R _D	R _s		$R_D \leftarrow R_S$
AND	7	R _D	R _{s1}	R _{s2}	$R_D \leftarrow R_{S1} \text{ AND } R_{S2}$
OR	8	R _D	R _{S1}	R _{S2}	$R_D \leftarrow R_{S1} \text{ OR } R_{S2}$
XOR	9	R _D	R _{S1}	R _{S2}	$R_{D} \leftarrow R_{S1} \times ORR_{S2}$
NC	Α	R			R ← R + 1
DEC	В	R			R ← R−1
ROTATE	С	R	n	0 or 1	Rot _n R
IUMP	D	R	n		IF $R_0 \neq R$ then $PC = n$, otherwise continu

Key: R_s, R_{s1}, R_{s2}: Hexadecimal address of source registers

R_D: Hexadecimal address of destination register

M_s: Hexadecimal address of source memory location
M_p: Hexadecimal address of destination memory location

n: hexadecimal number

d₁, d₂, d₃, d₄: First, second, third, and fourth hexadecimal digits