

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 09-190003
 (43)Date of publication of application : 22.07.1997

(51)Int.CI. G03G 5/06

(21)Application number : 08-354461 (71)Applicant : HEWLETT PACKARD CO <HP>
 (22)Date of filing : 19.12.1996 (72)Inventor : NGUYEN KHE C
 GANAPATHIAPPAN SIVAPACKIA

(30)Priority
 Priority number : 95 576233 Priority date : 21.12.1995 Priority country : US

(54) ELECTROPHOTOGRAPHIC ELEMENT AND ITS ASSEMBLY METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain specific electron transfer agents useful in an electrophotographic printing by incorporating the specific electron transfer materials into a charge transfer region.

SOLUTION: At least one of the electron transfer agents expressed by formula are incorporated into the charge transfer regions 20 of the electrophotographic element which contains the charge generating regions 18 and charge transfer regions 20 for use in electrophotographic printing and is formed on a conductive substrate 16. In the formula A is =CH-CH=, etc., B1, B2 are independently selected from a group consisting of O, S, Se, Te, dicyano and alkoxy; R1 to R20 are independently selected from a group consisting of alkyl, alkene, aryl, hydroxy, halogen, cyano, nitro and sulfuryl and (n) is an integer within a range of 0 to 3. Such diiminoquinone derivatives are inexpensively materials and have excellent solubility and compatibility with most of binders by the presence of a long alkyl chain (n=0, 1, 2).

LEGAL STATUS

[Date of request for examination] 18.12.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

[Number of appeal against examiner's decision
of rejection]

[Date of requesting appeal against examiner's
decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-190003

(43)公開日 平成9年(1997)7月22日

(51)Int.Cl.⁶

G 0 3 G 5/06

識別記号

府内整理番号

3 1 3

F I

G 0 3 G 5/06

技術表示箇所

3 1 3

審査請求 未請求 請求項の数2 FD (全15頁)

(21)出願番号 特願平8-354461

(22)出願日 平成8年(1996)12月19日

(31)優先権主張番号 5 7 6 2 3 3

(32)優先日 1995年12月21日

(33)優先権主張国 米国(US)

(71)出願人 590000400

ヒューレット・パッカード・カンパニー
アメリカ合衆国カリフォルニア州パロアルト
ハノーバー・ストリート 3000

(72)発明者 ケ・チエ・ヌグエン

アメリカ合衆国カリフォルニア州ロス・アルトス
ファーンダン・アベニュー 1808

(72)発明者 シババッキア・ガナバチアパン

アメリカ合衆国カリフォルニア州フレモン
ト アミレンス・アベニュー 4723

(74)代理人 弁理士 久保田 千賀志 (外1名)

(54)【発明の名称】電子写真素子及びその組立方法

(57)【要約】 (修正有)

【課題】電子写真印刷における電子写真素子を提供する。

【解決手段】電子写真印刷に使用するための、電荷発生層18と電荷輸送層20とを含み、且つ電導性基板16上に形成された電子写真素子であって、前記の電荷輸送層が、一般式(I)で表される少なくとも1つの電子輸送剤を含む。

一般式(I)

例えば

【特許請求の範囲】

【請求項1】 電子写真印刷に使用するための、電荷発生領域と電荷輸送領域とを含み且つ電導性基板上に形成された電子写真素子であって、

一般式(I)

(ここで、Aは、=CH-CH=、

【化2】

から成る群から独立に選択され、且つここで、nは0、1、又は2の整数である。

B₁とB₂は、O、S、Se、Te、ジシアノ、及びアルコキシから成る群から独立に選択され、

R₁～R₂₀は、アルキル、アルケン、アリール、ヒドロキシ、ハログン、シアノ、ニトロ、及びスルフリルから成る群から独立に選択され、

nは、0～3の範囲内の整数であり、

【化3】

は、

【化4】

前記の電荷輸送領域が、一般式(I)で表される少なくとも1つの電子輸送剤を含むことを特徴とする電子写真素子。

【化1】

から成る群から独立に選択され、且つここで、nは0、1、又は2の整数である。

【請求項2】 請求項1記載の電子写真素子に請求項1の構造を有する少なくとも1つの電子輸送剤を混入させることを特徴とする請求項1の電子写真素子の組立方法。

【発明の詳細な説明】

【0001】

【発明が属する技術分野】本発明は、全般的に、電子写真印刷に関し、より詳細には、電子写真印刷において有用な特有の電子輸送剤に関する。

【0002】

【技術背景】電子写真(electrophotographic)レーザ印刷では、絶縁性の光伝導材料の選択表面領域上に形成された潜像を、普通紙、塗被紙、(伝導性又は絶縁性の)透明基体、又は中間転送媒体のような、像レシーバーへ転送するための、顔料成分と熱可塑性成分とを含有するトナーを用いる。

【0003】レーザプリンタ産業では、多色画像に対する需要がある。画像の品質は、5μm未満の平均粒径を有するドライトナーを含む小粒子現像剤を利用する技術を含む、多数のアプローチによって高めることができる；例えば、米国特許第4,927,727号；第4,968,578号；第5,037,718号；及び第5,284,731号。しかし、1μm未満の粒径を有する電子写真用ドライトナーは特異領域が増大するため

作成が非常に困難であり、従って、液体トナーがサブミクロン・ゼログラフ (xerographic) 用現像剤の実用的作製法に対する解法の1つとなっていることも分かっている。

【0004】液体トナーは、液体キャリヤー媒質、即ち、通常は特定の炭化水素溶液、に分散された顔料成分と熱可塑性成分とから成る。液体トナーに関しては、多色画像を作るのに、基本印刷色（黄色、マゼンタ、シアン、及び黒色）を、光伝導体表面、及びそこから枚葉紙又は中間転送媒体に、順番に適用してよいことが見い出されている。

【0005】今日、市場に出ている有機光伝導体製品は、一般的に云えば、主成分として電荷発生層 (CGL) と電荷輸送層 (CTL) とから成る二重層のOPCである。これらの層に加えて、光伝導体本体は、他の材料を下塗り又は上塗りして、基板への付着性を改善するか、又は耐表面磨耗性を改善するか、又は画像転送効率を改善するために表面付着性を減じてよい。下塗り層又は上塗り層を追加した有機光伝導体 (OPC) は、有機光レセプター (OPR) となり、様々な電子写真システムの設計に即座に使えるものである。

【0006】市場に出回っている殆どの多層OPRは、厚いホール（正孔）輸送層を薄いOGLの最上面に載せた負帯電のOPCである。これは、標準の、又は慣用の、二重層OPCと呼ばれている。慣用の場合では、CGLは、通常、不活性バインダーに分散された、含量が約90wt%未満の範囲にある光伝導性の顔料又は染料を包含する。100%の顔料含有CGLは可能であり、この場合、顔料CGLは、薄膜の形で真空蒸着される；例えば、米国特許第4,578,334号参照。分散安定化機能に加えて、CGLバインダーはまた、付着性についても重要な役割を演ずる。

【0007】正帯電OPCも知られており、この場合

一般式(I)

は、厚い電子輸送層を薄いCGLの最上面に配する。電子輸送分子は、正バイアスの下で、電子を輸送できる分子である。

【0008】電子輸送剤の利点は、主キャリヤーが電子である場合の、正帯電の光レセプターの設計に当たって見い出すことができる。この設計では、電子輸送剤も、それが最小の表面電荷注入 (surface charge injection) を示す故、光レセプターについて優れた電気的安定性をもたらすものと期待されている。

【0009】他方、電子輸送分子の設計に関する課題は、電子輸送剤が一般に嵩張る故、種々のタイプのバインダーでの溶解性と相容性に関連する。

【0010】4-チオピラン、ジシアノフルオレノン、イミン、ジフェノベンゾキノン、及びスチルベンジフェノベンゾキノンの諸誘導体を含む、様々な電子輸送剤が開示されている；例えば、米国特許第5,013,849号；第5,034,293号；及び第5,213,923号参照。しかし、4-チオピランは高価であり、前記化合物の殆どは、CTL形成に用いられるバインダーとの相容性が劣っており、且つこれらの化合物の殆どは、電子移動度の範囲が限定されるという欠点を持つ。

【0011】

【発明の目的】従って、本発明は、従来技術の輸送剤に関わる諸問題の、全てではなくても、殆どを避けることができる電子輸送剤を提供し、この電子輸送剤を用いて電子写真素子を提供することを目的とする。

【0012】

【発明の概要】本発明に沿って、ジイミノキニリジンの誘導体は、電子輸送剤として有効である。本発明のジイミノキニリジンは、次の一般式(I)で表され：

【0013】

【化5】

【0014】ここで、Aは、=CH-CH=、

【化6】

から成る群から選択される部分 (moiety) であり、

【0015】B₁とB₂は、O、S、Se、Te、ジシアノ、及びアルコキシから成る群から独立に選択され、そしてR₁～R₂₀は、アルキル、アルケン、アリール、ヒドロキシ、ハロゲン、シアノ、ニトロ、及びスルフリルから成る群から独立に選択され、nは0～3の範囲内の整数であり、

【0016】

【化7】

は、

【化8】

から成る群から独立に選択され、且つここで、nは0、1、又は2の整数である。

【0017】本発明のジイミノキニリジン誘導体は、安価な材料であり、合成に必要なプロセスは僅かに2段階だけであり、長いアルキル鎖 (n=0, 1, 2) の存在により殆どのバインダーに対して優れた溶解性と相容性を有するものである。

【0018】

【発明の好ましい実施の態様】次に、図を参照して本発明を説明するが、図では、類似の構成要素に同じ符号を付す。図1は、本発明の電子輸送剤が使える1つの光伝

導性の発生及び輸送層の構成10を示すものである。この具体例では、伝導性支持体12は、下層をなすウェブ(図示せず)への付着性を改善するために、ウェブ即ち下層のような、基板16上に形成された、典型的にはアルミニウムから成る、電導性層14を含む。ウェブ、例えば、ドラムは、よく知られているように、電子写真用プリンタ及びコピー機において1構成部品として用いられるものである。電荷発生層(CGL)18は、電導性層14の上に形成される。CGL18は、典型的には、バインダーに分散させるか又は薄膜としてデポジットさせた、光伝導性顔料又は染料、もしくは他のよく知られた光伝導性無機材料(非晶質セレン(a-Se)、a-As₂Se₃、a-As₂Se₃Te、非晶質のSi、ZnO、CdS、及びTiO₂を含む)から成る。

【0019】適當な光伝導性顔料と染料の例としては：

- (a) 準安定型のフタロシアニン顔料：金属を含まないx-形、τ-形のフタロシアニン顔料(x-H₂Pc)、α-、ε-、β-形の銅フタロシアニン含量(CuPc)、チタニルフタロシアニン顔料(TiOPcX₄、ここでXはH、F、Cl、Br、I)、バナジルフタロシアニン顔料(VOPc)、マグネシウムフタロシアニン顔料(MgPc)、亜鉛フタロシアニン顔料(ZnPc)、クロロインジウムフタロシアニン顔料(ClInPc)、プロモインジウムフタロシアニン顔料(BrInPc)、クロロアルミニウムフタロシアニン顔料(ClAlPc)、ヒドロキシガリウムフタロシアニン、及びその類；
- (b) ピロロピロル(pyrrolo pyrrole)顔料；
- (c) テトラカルボキシミドペリレン顔料；
- (d) アンタントロン顔料；
- (e) ピースーアゾー、トリアゾー、及びテトラキスアゾ顔料；
- (f) 酸化亜鉛顔料；
- (g) 硫化カドミウム顔料；
- (h) 六方晶セレン；
- (i) スクアリリウム(squarilium)染料；及び
- (j) ピリリウム染料

がある。

【0020】顔料及び染料に使える適當なバインダーの例としては、ポリビニルカルバゾール、ポリスチレン、ポリシラン、ポリカーボネイト、ポリイミド、ポリゲルマン、ポリエステル、ポリビニルブチラール(PVB)、フルオロポリマー、シリコン樹脂、及びその他の当分野でよく知られているような材料がある。さらに別の適當なバインダーとしては、Khe C. Nguyen等により1994年8月8日に米国出願されたSerial No. 08/287, 437、名称“Reusable Inverse Composite Du-

all-Layer Organic Photoconductor Using Specific Polymers Available for Diffusion Coating Process with Non-Chlorinated Solvents"に開示されているような、そのフレキシブルなバックボーンの故にポリマー配座において高度のフレキシブル性を有し、且つ約120℃を下回るガラス転移温度を有する、熱硬化性で且つ熱可塑性のポリマーが含まれる。これらの追加バインダーは、特定のビニルポリマーを包含する。使用時の、バインダー中の顔料又は染料の濃度範囲は、約10～80wt%である。

【0021】電荷発生層18も、上述の光伝導性材料の薄膜であってもよい。薄膜電荷発生層18は、好都合にも、真空蒸着、スパッタリング、グロー放電、及びその類を含む真空技術の技法により作製される。該薄膜が使われる場合、バインダーは不要である。

【0022】使用時の、バインダーにおける本発明の電子輸送剤の濃度範囲は、約0.1～70wt%である。

【0023】電荷輸送層(CTL)20は、CGL18の最上面に形成され、本発明の1つ以上の電子輸送剤をバインダー中に含む。バインダーは、前述の在来のバインダーの何れか、並びに、やはり前述したK. C. Nguyuen等による米国出願に記載されているような、約120℃より低いガラス転移温度を有する重縮合ポリマー又は特定のビニルポリマーから成ってよい。

【0024】図1に示すように、光hvは、電子輸送層20を通過して、電荷発生層18中に電子(-)/ホール(+)対を生じさせる。電子は、電子輸送層20を通してその外表面へ輸送され、ここで選択的に静電表面電荷21("+"で表示)を放電し；ホールは、電導層14へ移動する。

【0025】図2では、別方式の光伝導性発生及び輸送層の構成10aを示す。ホール輸送層24は、電導性基板16上に形成される。ホール輸送層24は、限定するものではないが、典型的には、トリアリールメタン、トリアリールアミン、ヒドロゾン、ピラゾリン、オキサジアゾール、スチリル誘導体、カルバゾリル誘導体、及びチオフェン誘導体を含む在来のホール輸送分子の何れから成る。この具体例では、電子輸送及び電荷発生機能は、CGL24上に形成された単一層26で与えられる。電子輸送/電荷発生層26は、適当なバインダー中に本発明の電子輸送剤を含有する。光hvは、電子輸送/電荷発生層26において電子/ホール対を発生させ

る。その電子は、本層26の表面へ輸送され、ここで選択的に静電表面電荷21を放電し；ホールは、ホール輸送層24を通して電導層14へ運ばれる。

【0026】図3では、さらに別の光伝導性発生及び輸送層の構成10bを示す。ホール輸送層24は、電導性層14上に形成され、別の電荷発生層28を支持し、この電荷発生層は、上述のように、典型的には、バインダー中の電荷発生分子(顔料又は染料)の何れかと、該電荷発生層の最上面に形成される電子輸送層30とから成る。電子輸送層30は、適当なバインダー中に本発明の電子輸送剤を含有し、正電荷注入阻止層として作用する。光hvは、電荷発生層28において電子/ホール対を発生させる。その電子は、電子輸送層30を通してその外表面へ輸送され、ここで選択的に静電表面電荷21を放電し；ホールは、ホール輸送層24を通して電導層14へ運ばれる。

【0027】図4では、さらに別の光伝導性発生及び輸送層の構成10cを示す。本発明の1つ以上のホール輸送分子と、1つ以上の電子輸送分子とを包含し、且つ電荷発生をもたらす層32は、ホール輸送層24の最上面に形成される。光hvは、電荷発生層32において電子/ホール対を発生させる。その電子は、電荷発生層32の外表面へ移動し、ここで選択的に静電表面電荷21を放電し；ホールは、ホール輸送層24を通して電導層14へ運ばれる。

【0028】図5では、さらに別の光伝導性発生及び輸送層の構成10dを示す。単一層34は、本発明の1つ以上の電子輸送剤を含む、電荷輸送分子と、バインダー中の電荷発生分子の両方を含有する。この単一層34は、電導性層14上に直に形成する。電荷の極性(正電荷に対しては21a、負電荷に対しては21b)は、この単一層34の表面上に表されており、電荷輸送分子の優位性に依存する、二極性であってよい。

【0029】本発明の電子輸送剤は、前記化1の一般式(I)で表されるジイミノキニリジンの誘導体から成る：

【0030】本発明のジイミノキニリジン誘導体は、安価な材料であり、合成に必要なのは僅かに2段階だけであり、長いアルキル鎖の存在により殆どのバインダーに對して優れた溶解性と相容性を有し、且つ高い電子移動度を呈するものである。特に好ましい化合物には、以下のものが含まれる：

【0031】

【化9の1】

【0032】

【化9の2】

【0033】

【化9の3】

【0034】

【化9の4】

【0035】

【化9の5】

(13)

(14)

(15)

【0036】

【化9の6】

(10)

特開平9-190003

(16)

(17)

(18)

【0037】

【化9の7】

【0038】

【化9の8】

【0039】

【実施例】

実施例1

化合物(A)の作製:

【化10】

(A)

【0040】クロロホルム(200g)を500mlの丸底フラスコに採り、ドライ窒素で脱ガスした。3,5-Di-*t*-ブチル-4-ヒドロキシベンズアルデヒド半水塩(15.3g, 62.87mmol)を加え、十分混合した。ヒドラジン(1ml, 31.86mmol)を加え、周囲温度で1/2時間混合した。その混合物を48時間で48℃に加熱した。真空下で溶媒を蒸発させて化合物Aを得た(13.9g, 収率95.3%)。この化合物の融点は236~245℃であった。

【0041】化合物(B)の作製:

【化11】

(B)

【0042】フェノール系化合物A(11.0g, 23.7mmol)をクロロホルム(107g)に溶解した。過マンガン酸カリウム(18.5g, 117.1mmol)を加えて21時間で52℃に及び65℃で5時間加熱した。反応混合物を遠心分離し、そして濾過した。次いで、濾過液からの溶媒を真空下で除去した。褐色の固体物を得た(10.54g, 収率96.3%)。この化合物のアセトンからの再結晶化で純化合物を製した。この化合物の融点が215~217℃であることが分かった。

【0043】化合物(C)の作製：

【化12】

(C)

【0044】酸化した化合物B(1.52g)をメタノール(25g)中でメロノニトリル(melononitrile)(0.21g)と混合した。ピペリジンの小滴を加えて60℃で15時間還流した。温度を3時間で75℃に昇温した。減圧下でメタノールを蒸発させた。得られるオレンジ色の固体物を水で洗浄した。この固体物をテトラヒドロフラン(15ml)で溶解し、水(400ml)中で沈殿させ、氷で冷却して、化合物Cを得、これを大気中で乾燥した(収量1.65g)。

【0045】実施例2

金属を含まない20gのx-形フタロシアニン顔料、10gのポリビニルブチラールB-76(Monsanto Chemical Co.)、500gのジクロロメタジ(DCM)及びステンレス鋼ビーズ(直径3mm)を、ボールミルを使って、72時間、一緒にしてすり潰した。溶液を希釈して、その粘性を1%固形分以下に調節した。ドクターブレードを使って、その懸濁液を、アルミニウム被覆マイラー上に塗り、オープン中で数秒間80℃で乾燥後、電荷発生層(CGL)を形成する1μm厚のコーティングを得た。

【0046】次に、化合物(1)～(24)の中の何れかを40gと、60gのポリカーボネイトPanlite L(Teijin Chemical)と、900gのDCMとを、完全に溶解するまで一緒に攪拌した。これが電荷輸送層(CTL)を形成する電子輸送液であった。ドクターブレードを使って、その溶液を、上述のCGLの最上面に塗り、オープン中で80℃で2時間乾燥後、20μm厚のコーティングを得、完全構造の在来型二重層光レセプターを形成した。

【0047】Gentek Co.で開発した、Cynthia 1000として知られているドラムテストシステムで光伝導体を試験した。この試験では、十分接地した光レセプターの試料をコロナ充電器を使って+6kVで充電し、10秒間暗所に置き、その後、ハログランプと、干渉フィルタと、10msの電気式シャッターとを組合せて装備した780nmの光源に露出させた。本発明の電子輸送剤に関して得られた代表的な結果を以下に要約する：

$V_0 = 700$

暗崩壊率(DDR)=96%

$E_{1/2} \text{ (} V_0 \text{ に対して } 50\% \text{ 放電するのに要するエネルギー) } = 4 \text{ erg/cm}^2$

シャッター閉後の残留電圧 $V_r = 50V$

消去後の残留電圧 $V_{re} = 0V$

【0048】

【産業上の応用性】本発明で開示したジイミノキニリジンの誘導体は、電子写真印刷において、特にカラー電子写真印刷において、その用途を見い出すものと期待する。

【0049】以上のように、電子写真印刷用のジイミノキニリジンの誘導体から成る改良型電子輸送剤を開示した。明らかな特性についての様々な変更及び修正は、本発明の範囲から逸脱することなく実行し得ることは、熟練した当業者には容易に理解されよう。

【0050】以上詳述したように、本発明は、〔1〕電子写真印刷に使用するための、電荷発生領域と電荷輸送領域とを含み且つ電導性基板上に形成された電子写真素子であって、前記の電荷輸送領域が、一般式(I)で表される少なくとも1つの電子輸送剤を含むことを特徴とする電子写真素子に関し、以下のような好ましい実施態様を有する。

【0051】〔2〕上記の電子輸送剤において：

(a) $n=0$ 、 $B_1=B_2=O$ 又はシアノ、 $R_1=R_3=R_8=R_{10}=CH_3$ 、 C_3H_7 、 OCH_3 、又は C_6H_5 、 $R_2=R_4=R_7=R_9=H$ 、 $R_5=CH_3$ 、及び $R_6=CH_3$ 又は $COOCH_3$ ；又は(b) $n=0$ 、 $B_1=O$ 、 $B_2=O$ 又はシアノ、 $R_1=R_3=C_3H_7$ 、 $R_8=R_{10}=CH_3$ 、及び $R_2=R_4=R_5=R_6=R_7=R_9=H$ ；又は(c) $n=0$ 、 $B_1=B_2=O$ 、 $R_1=R_{10}=C_6H_5$ 、 $R_2=R_4=R_5=R_6=R_7=R_9=H$ 、 $R_3=R_8=C_6H_4-COOCH_3$ ；又は(d) $n=1$ 、 A =下記式で表されるものの1つ(下記式中、 R_{18} は H 又は CH_3)、

【化13】

$B_1=B_2=O$ 又はシアノ、 $R_1=R_3=R_8=R_{10}=CH_3$ 、 C_3H_7 、 OCH_3 又は C_6H_5 、及び $R_2=R_4=R_5=R_6=R_7=R_9=H$ ；又は(e) $n=1$ 、 A =下記式で表されるもの(下記式中、 R_{11} は H)

【化14】

$B_1 = B_2 = O$ 又はシアノ、 $R_1 = R_3 = R_8 = R_{10} = CH_3$ 、 C_3H_7 又は t -ブチル、及び $R_2 = R_4 = R_5 = R_6 = R_7 = R_9 = H$ ；又は (f) $n = 1$ 、 $A =$ 下記式で表されるもの (下記式中、 R_{19} は CH_3)

【化15】

$B_1 = B_2 = O$ 又はシアノ、 $R_1 = R_3 = R_8 = R_{10} = C_3H_7$ 、及び $R_2 = R_4 = R_5 = R_6 = R_7 = R_9 = H$ ；又は (g) $n = 1$ 、 $A =$ 下記式で表されるもの、

【化16】

上記式中、 R_{12} は H 又は

【化17】

$B_1 = B_2 = O$ 、 $R_1 = R_3 = R_8 = R_{10} = C_3H_7$ 、及び $R_2 = R_4 = R_5 = R_6 = R_7 = R_9 = H$ ；又は (h) $n = 1$ 、 $A =$ 下記式で表されるもの (下記式中、 $R_{20} = CH_3$)

【化18】

$B_1 = B_2 = O$ 、 $R_1 = R_3 = R_8 = R_{10} = C_3H_7$ 、及び $R_2 = R_4 = R_5 = R_6 = R_7 = R_9 = H$ ；又は (i) $n = 1$ 、 $A = -CH_2-CH_2-$ 、 $B_1 = B_2 = O$ 、 $R_1 = R_3 = R_8 = R_{10} = C_4H_9$ 、及び $R_2 = R_4 = R_5 = R_6 = R_7 = R_9 = H$ であることを特徴とする。

【0052】 [3] 前記電子写真素子が、前記電導性基板の最上面に形成された電荷発生層のさらに最上面に形成された電荷輸送層を包含し、且つ前記電子輸送剤が、前記電荷輸送層に混入されることを特徴とする。

【0053】 [4] 前記電子写真素子が、前記電導性基板の最上面に形成されたホール (正孔) 輸送層のさらに最上面に形成された電子輸送／電荷発生の組合せ層を包含し、且つ前記電子輸送剤が、この電子輸送／電荷発生の組合せ層に混入されることを特徴とする。

【0054】 [5] 前記電子写真素子が、前記電導性基板の最上面に形成されたホール輸送層の最上面に形成された電荷発生層のさらに最上面に形成された電子輸送層を包含し、且つ前記電子輸送剤が、この電子輸送層に混入されることを特徴とする。

【0055】 [6] 前記電子写真素子が、電子輸送及びホール輸送の組合せ層を包含し、この電子輸送及びホール輸送の組合せ層が、前記電導性基板の最上面に形成されたホール輸送層のさらに最上面に形成されてさらに電荷発生をもたらし、且つ前記電子輸送剤が、この電子輸送及びホール輸送の組合せ層に混入されることを特徴とする。

【0056】 [7] 前記電子写真素子が、前記電導性基板の最上面に形成された、電荷輸送及び電荷発生剤の両方を併合する単一層を包含し、且つ前記電子輸送剤が、前記単一層に混入されることを特徴とする。

【0057】 また、本発明は、[8] 前記電子写真素子に前記 [1] の構造を有する少なくとも 1 つの電子輸送剤を混入させることを特徴とする前記 [1] の電子写真素子の組立方法に関し、以下のような好ましい実施様式を有する。

【0058】 [9] 前記少なくとも 1 つの電子輸送剤が、約 0.1 ~ 7.0 wt % の範囲の量でバインダーに混入されることを特徴とする。

【0059】 [10] 前記バインダーが、約 120°C を下回るガラス転移温度を有する熱硬化性及び熱可塑性のポリマーから成る群から選択されることを特徴とする。

【0060】 [11] 前記少なくとも 1 つの電子輸送剤が、薄膜状に形成されることを特徴とする。

【0061】

【発明の効果】 以上詳述した本発明によれば、従来の輸送剤に起因する諸問題の殆どを解決することができ、好ましい電子写真印刷技術を提供することができる。

【図面の簡単な説明】

【図1】 本発明の電子輸送剤を用いた光伝導性発生及び輸送層構成の 1 具体例の断面図である。

【図2】 本発明の電子輸送剤を用いた光伝導性発生及び輸送層構成の図1とは別の具体例の断面図である。

【図3】 本発明の電子輸送剤を用いた光伝導性発生及び輸送層構成の図1、2とは別の具体例の断面図である。

【図4】 本発明の電子輸送剤を用いた光伝導性発生及び輸送層構成の図1~3とは別の具体例の断面図である。

【図5】 本発明の電子輸送剤を用いた光伝導性発生及び輸送層構成の図1~4とは別の具体例の断面図である。

【符号の説明】

10 光伝導性の発生及び輸送層の構成
 12 伝導性支持体
 14 電導性層
 16 基板
 18 電荷発生層
 20 電子輸送層
 21 静電表面電荷

【図1】

【図2】

【図3】

【図4】

【図5】

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)