Problem 5.32. The joint probability distribution of two random variables X and Y is given by: $P(X = 0, Y = 1) = \frac{1}{3}$, $P(X = 1, Y = -1) = \frac{1}{3}$, and $P(X = 1, Y = 1) = \frac{1}{3}$.

Find (i) Marginal distributions of X and Y, and (ii) the conditional probability distribution of X given Y = 1.

Solution. $P(X = -1)$
$=\sum_{y}P(X=-1,Y=y)$
= P(X = -1, Y = -1)
+ P(X = -1, Y = 0)
+ P(X = -1, Y = 1) = 0
Similarly $P(X=0) = \frac{1}{3}$
_

,		•	3
	P(X =	1):	$=\frac{2}{3}$

Y	- 1	0.	1	Marginal Y
-1	- 0	0	1/3	$\frac{1}{3}$
0	0	0	0	↑ 0
1	0	$\frac{1}{3}$	1/3	$\frac{2}{3}$
Marginal (X)	0	$\frac{1}{3}$	<u>2</u> 3	1

Thus

and

Marginal distribution of X is:

Values of
$$X, x : -$$

$$P(X=x)$$
:

$$\frac{1}{3}$$

Marginal distribution of Y is:

Values of Y, y:
$$-1$$

$$P(Y = y): \frac{1}{3}$$

$$P(Y = y)$$
:

$$\frac{1}{3}$$

(ii) The conditional probability distribution of X given Y is:

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
. Now

$$P(X = -1 \mid Y = 1) = \frac{P(X = -1, Y = 1)}{P(Y = 1)} = 0, P(X = 0 \mid Y = 1) = \frac{P(X = 0, Y = 1)}{P(Y = 1)} = \frac{1/3}{2/3} = \frac{1}{2}$$

$$P(X = 1 \mid Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)} = \frac{1/3}{2/3} = \frac{1}{2}$$

Thus the conditional distribution of X given Y = 1 is:

Values of X = x	-1	sa del O	715(5.3.31
$P(X=x\mid Y=1)$. 0	1/2	$\frac{1}{2}$

Example 5.33. For the adjoining bivariate probability distribution of X and Y, find:

			-1	V	_	21	
(i)	Р	(X	≤1,	1	=	۷),	

(ii)
$$P(X \le 1)$$
,

(iii)
$$P(Y \le 3)$$
, and

(iv)
$$P(X < 3, Y \le 4)$$
.

X.	1	2	3	4	5	6
0	0	0	1 32	<u>2</u> .	2 32	3 32
1	1/16	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
2	<u>1</u> 32	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$	0	$\frac{2}{64}$
	J.	32	64	64	3 ,	04

solution. The marginal distributions are given below:

Y	1	2	3	4	5	6	$p_X(x)$
0	0	0	1/32	2 32	<u>2</u> 32	3/32	8/32
1	$\frac{1}{16}$	1 16	1/8	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	10 16
2	32	32	<u>1</u>	$\frac{1}{64}$	0 .	$\frac{2}{64}$	8 64
p _Y (y)	$\frac{3}{32}$	3 32	$\frac{11}{64}$	13 64	<u>6</u> 32	16 64	$\sum p(x) = 1$ $\sum p(y) = 1$

(i)
$$P(X \le 1, Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) = 0 + \frac{1}{16} = \frac{1}{16}$$

(ii)
$$P(X \le 1) = P(X = 0) + P(X = 1) = \frac{8}{32} + \frac{10}{16} = \frac{7}{8}$$

(iii)
$$P(Y \le 3) = P(Y = 1) + P(Y = 2) + P(Y = 3) = \frac{3}{32} + \frac{3}{32} + \frac{11}{64} = \frac{23}{64}$$

(iv)
$$P(X < 3, Y \le 4) = P(X = 0, Y \le 4) + P(X = 1, Y \le 4) + P(X = 2, Y \le 4)$$

= $\left(\frac{1}{32} + \frac{2}{32}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{32} + \frac{1}{32} + \frac{1}{64} + \frac{1}{64}\right) = \frac{9}{16}$.

Example 5-34. For the joint probability distribution of two random variables X and Y given below:

Find (i) the marginal distributions of X and Y, and

(ii) conditional distribution of X given the value of Y = 1 and that of Y given the value of X = 2.

X	1	2	3	4	Total
1	4 36	36	2 36	. 1/36	10 36
2	1 36	3 36 3 36	3/36	2 36	$\frac{9}{36}$
3	<u>5</u> 36	36	$\frac{1}{36}$	1 36	<u>8</u> 36
4	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	5 36	9 36 8 36 9 36
Total	11 36	9 36	<u>7</u> 36	9/36	- 1

Solution. The marginal distribution of X is defined as:

$$P(X=x) = \sum_{y} P(X=x, Y=y)$$

$$P(X = 1) = \sum_{y} P(X = 1, Y = y)$$

$$= P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 1, Y = 4)$$

$$= \frac{4}{36} + \frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{10}{36}$$

Similarly
$$P(X = 2) = \sum_{y} P(X = 2, Y = y) = \frac{9}{36}$$
; $P(X = 3) = \sum_{y} P(X = 3, Y = y) = \frac{8}{36}$

and

$$P(X = 4) = \sum_{y}^{3} P(X = 4, Y = y) = \frac{9}{36}$$

Similarly, we can obtain the marginal distribution of Y.

MARGINAL DISTRIBUTION OF X

MARGINAL DISTRIBUTION OF Y

Values of X, x	1	2	3	4
P(X=x)	10 36	9/36	8/36	9 36

Values of Y, y	1	2	3	4
$P\left(Y=y\right)$	11 36	9 36	7 36	9 36

(ii) The conditional probability function of X given Y is defined as follows:

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
. Therefore

$$P(X = 1 \mid Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)} = \frac{4/36}{11/36} = \frac{4}{11}$$

$$P(X = 2 \mid Y = 1) = \frac{P(X = 2, Y = 1)}{P(Y = 1)} = \frac{1/36}{11/36} = \frac{1}{11}$$

$$P(X = 3 \mid Y = 1) = \frac{P(X = 3, Y = 1)}{P(Y = 1)} = \frac{5/36}{11/36} = \frac{5}{11}$$

$$P(X = 4 \mid Y = 1) = \frac{P(X = 4, Y = 1)}{P(Y = 1)} = \frac{1/36}{11/36} = \frac{1}{11}$$

Hence the conditional distribution of X given Y = 1 is:

x: 1 2 3

 $P(X = x \mid Y = 1):$ $\frac{4}{11}$ $\frac{1}{11}$ $\frac{5}{11}$ $\frac{1}{11}$

Similarly, we can obtain the conditional distribution of Y for X = 2 as given below:

y: 1 2 3 4 $P(Y = y \mid X = 2):$ $\frac{1}{9}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{9}$

Example 5.35. A two-dimensional r.v. (X, Y) have a bivariate distribution given by:

$$P(X = x, Y = y) = \frac{x^2 + y}{32}$$
, for $x = 0, 1, 2, 3$ and $y = 0, 1$.

Find the marginal distributions of X and Y.

(b) A two-dimensional r.v. (X, Y) have a joint probability mass function:

 $p(x, y) = \frac{1}{27}(2x + y)$, where x and y can assume only the integer values 0, 1 and 2.

Find the conditional distribution of Y for X = x.

tion. (a) We have

solution. (")		4			
X	0	1	5	. 3	Marginal distribution of Y.
Y				1.5	P(Y=y)
0	0	$\frac{1}{32}$	$\frac{4}{32}$	9 32	14 32
1	$\frac{1}{32}$	2 32	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{18}{32}$
Marginal distribution of X , $p(X = x)$	$\frac{1}{32}$	$\frac{3}{32}$	32	1 <u>9</u> 32	1 1
p(X=x)					

The marginal probability distribution of X is given by:

 $P(X = x) = \sum P(X = x, Y = y)$ and is tabulated in last row of above table.

The marginal probability distribution of Y is given by:

$$P(Y = y) = \sum_{x} P(X = x, Y = y)$$
 and is tabulated in last column of above table.

(b) The joint probability function:

$$p_{XY}(x, y) = \frac{1}{27}(2x + y)$$
; $x = 0, 1, 2$; $y = 0, 1, 2$

gives the following table of joint probability distribution of X and Y.

JOINT PROBABILITY DISTRIBUTION p(x, y) OF X AND Y

	X	Υ	0	1	2	$f_{X}(x)$
	- 0	T V	0	1 27	2/27	3 27
SW.	1		27	$\frac{3}{27}$	4 27	9 27
	2		$\frac{4}{27}$	$\frac{5}{27}$	$\frac{6}{27}$	15 27

For example, $p(0,0) = \frac{1}{27}(0+2\times0) = 0$, $p(1,0) = \frac{1}{27}(0+2\times1) = \frac{2}{27}$;

 $p(2,0) = \frac{1}{27}(0+2\times2) = \frac{4}{27}$; and so on, CONDITIONAL DISTRIBUTION OF Y FOR X = x

The conditional distribution of Y for X = x is given by:

 $P_{Y|X}(Y = y \mid X = x) = \frac{p_{XY}(x,y)}{p_{Y}(x)}$ and is obtained in the adjoining table.

Y	0	1 3	2
0	0	1/3	2 3
1	2 9	3 9	4 9
2	4 15	<u>5</u>	6 15

Example 5.36. Two discrete random variables X and Y have the joint probability

Example 5.37. If X and Y are two random variables having joint density function:

$$f(x,y) = \begin{cases} \frac{1}{8} (6 - x - y); 0 \le x < 2, 2 \le y < 4 \\ 0, \text{ otherwise} \end{cases}$$

Find (i) $P(X < 1 \cap Y < 3)$, (ii) P(X + Y < 3), and (iii) $P(X < 1 \mid Y < 3)$.

Solution. We have

(i)
$$P(X < 1 \cap Y < 3) = \int_{-\infty}^{1} \int_{-\infty}^{3} f(x, y) dx dy = \int_{0}^{1} \int_{2}^{3} \frac{1}{8} (6 - x - y) dx dy = \frac{3}{8}$$

(ii)
$$P(X+Y<3)$$
 = $\int_0^1 \int_2^{3-x} \frac{1}{8} (6-x-y) dx dy = \frac{5}{24}$

(iii)
$$P(X < 1 \mid Y < 3) = \frac{P(X < 1 \cap Y < 3)}{P(Y < 3)} = \frac{3/8}{5/8} = \frac{3}{5}$$

From part (i) and
$$P(Y < 3) = \int_{0}^{2} \int_{2}^{3} \frac{1}{8} (6 - x - y) dx dy = \frac{5}{8}$$

Example 5.38. Suppose that two-dimensional continuous random variable (X, Y) has joint p.d.f. given by:

 $f(x, y) = \begin{cases} 6x^2y, & 0 < x < 1, & 0 < y < 1 \\ 0, & elsewhere \end{cases}$