

OLIMPIADA NATIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie 2009

Pagina 1 din 3

Problema 1 (Electromagnetism)

A.O ramă metalică fixă, de forma literei Π (alfabetul grecesc), asezată vertical, se află într-un câmp magnetic omogen având inducția B orientată perpendicular pe planul ramei. O tijă metalică MN, orizontală, începe să alunece din repaus, pe cele două laturi verticale ale ramei, fără frecare, dar mentinând permanent contacte electrice cu aceste laturi. Cunoscând distanta l dintre laturile verticale ale ramei, masa m și rezistența electrică R ale tijei, să se stabilească:

- a) Dependența de timp v = v(t) a vitezei tijei;
- **b)** Legea de miscare z = z(t) a tijei;
- c) Dependenta de timp a = a(t) a accelerației tijei.
- d) Să se reprezinte grafic, calitativ, dependențele stabilite la punctele a), b) și c).

Se neglijează rezistența electrică și inductanța ramei. Se cunoaște accelerația gravitațională g a locului.

Indicație: Soluția ecuației diferențiale $\frac{dy}{dx} = A + By$, cu A și B constante, are forma generală $y(x) = -\frac{A}{B} + Ce^{Bx}$, C fiind o constantă de integrare.

B. Un cadru metalic pătratic de latură a, supraconductor (R = 0), cu inductanța L și masa m, așezat pe o suprafață orizontală netedă, se află în întregime într-un câmp magnetic vertical, neomogen, a cărui inducție variază de-a lungul axei Ox după legea $B_z = B_0(1 + \alpha x)$, unde α este o constantă pozitivă. Axa Ox este perpendiculară pe două din laturile cadrului. Se imprimă cadrului o viteză inițială $\vec{v}_0(v_0, 0, 0)$.

a) Să se determine legea de mișcare a cadrului, precizând caracteristicile acestei mișcări.

b) Ce influență ar avea asupra mișcării, existența unei rezistențe electrice diferite de zero a cadrului ?

(Explicație calitativă).

Problema 2 (Optică)

A. Două surse punctiforme de lumină, S_1 și S_2 , sunt situate, în aer, la distanța d una de alta. Ele emit în fază radiație monocromatică cu aceeași lungime de undă λ. Rezultatul interferenței undelor ce pornesc de la cele două surse se urmărește în lungul axei S₁z, care este perpendiculară pe S₁S₂ (vezi figura alăturată, în care punctul s, joacă rol de origine).

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subjectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

OLIMPIADA NAȚIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie 2009

- a). Localizați prin coordonate $z_{Max} > 0$, poziția punctelor cu intensitate luminoasă maximă.
- **b).** Care este valoarea cea mai mare (superioară) a ordinului de interferență pentru maxime și cât este coordonata $z_{\text{Max}}^{\text{(sup)}}$ corespunzătoare?
- c). Undele emise de sursele S_j , j=1,2, au forma $E_j = (K/r_j) \exp[i(kr_j \omega t)]$, unde K este o

amplitudine constantă pozitivă, r_j cu j=1,2, sunt distanțele de la sursele S_j la punctul de observație de pe axa z, iar k și ω au semnificațiile fizice uzuale (k=2 π / λ , ω =2 π /T). Să se determine raportul intensităților luminoase ale celui mai îndepărtat (ultimului) maxim față de S_i și a celui mai apropiat (penultimului) maxim de lângă acest maxim îndepărtat.

- **d).** Localizați (prin coordonata z) minimul de intensitate luminoasă dintre maximele avute în vedere la punctul anterior al problemei.
- e). Este constantă (sau nu) distanța dintre două maxime (sau două minime) vecine? Argumentați prin calcule răspunsul dat !
 - f). Care este valoarea raportului dintre intensitățile luminoase ale maximelor extreme ? Aplicație numerică (pentru toate cerințele problemei) : $d = 0.1 \,\text{mm}$, $\lambda = 700 \,\text{nm}$.

Precizare: Intensitatea luminoasă este direct proporțională cu mărimea $|E|^2 = E^*E$, steluța desemnând conjugarea complexă; se va avea în vedere relația $\exp(i\theta) + \exp(-i\theta) = 2\cos\theta$.

- **B. 1).** Un lichid refringent, neabsorbant, curge cu viteza v într-un tub cilindric [vezi figura (a)], cu axa AB, de lungime ℓ . Într-un referențial legat de lichid, lumina se propagă cu viteza c/n, unde n este indicele de refracție al lichidului iar c este viteza luminii în vid. Calculați relativist, din punctul de vedere al observatorului din sistemul (S), al laboratorului, timpul t_{AB} necesar unui puls luminos pentru a se propaga de la A la B. Cât este t_{AB} în limita $n \rightarrow 1$?
- 2). Se realizează o circulație închisă a lichidului, cu viteza constantă v, ca în figura (b). Traiectele AB și CD se presupun egale, cu lungimea ℓ . O undă plană, monocromatică, de pulsație ω , venind din stânga, sosește în A și C cu aceeași fază și se propagă pe cele două brațe, din A în B și din C în D.

- 2.1). Folosind legea relativistă de compunere a vitezelor, să se determine defazajul oscilațiilor sosite în punctele B și D.
- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

OLIMPIADA NAȚIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie 2009

- 2.2). Cum ar putea fi observat experimental defazajul oscilațiilor sosite în B și D ? Prezentați schița unei instalații imaginate de D-voastră în acest scop!
- 3). Refaceți calculul defazajului solicitat la punctul 2.1) al problemei bazându-vă pe cinematica clasică (nerelativistă). Calculați limita $n \rightarrow 1$ a rezultatului obținut și discutați-l din punct de vedere fizic

Problema 3 (Nave cosmice relativiste)

Trei nave cosmice (A, B şi C) se deplasează rectiliniu şi uniform pe direcții paralele foarte apropiate, având față de o stea fixă, Σ , vitezele \vec{v}_A , \vec{v}_B şi respectiv \vec{v}_C , ale căror module sunt comparabile cu viteza luminii în vid (c), și orientate așa cum indică figura alăturată, astfel încât vitezele relative ale navelor A și C în raport cu nava B sunt egale în modul și de sens contrar ($\vec{v}_{AB} = -\vec{v}_{CB}$; $\vec{v}_{AB} = \vec{v}_{CB} = \vec{v}_{CB}$). Fiecare navă este dotată cu un ceasornic.

Se realizează mai întâl întâl nirea navelor A şi B, când ceasornicele acestora se sincronizează astfel încât ambele să indice ora zero. La următoarea întâlnire, aceea a navelor A şi C, ceasornicul lui C se sincronizează după ceasornicul din A, astfel încât ambele ceasornice indică ora t'.

- a) $S\check{a}$ se determine indicațiile ceasornicelor de pe navele B și C la întâlnirea acestora, precum și diferența acestor indicații. $S\check{a}$ se particularizeze rezultatul pentru varianta nerelativistă (v << c).
- **b**) Cunoscând v_A și v_C *să se determine* v_B astfel încât vitezele relative ale navelor A și C în raport cu nava B să fie egale în modul și de sens contrar ($\vec{v}_{AB} = -\vec{v}_{CB}$). *Să se justifice* rezultatul.

Probleme selecționate și propuse de prof. univ. dr.Florea Uliu - Universitatea din Craiova, prof. dr. Mihail Sandu - Călimănești și prof. Liviu Arici - C.N. "N.Bălcescu"- Brăila

- 1. Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b, respectiv c.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- 4. Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.