06 类型的幂

LATEX Definitions are here.

泛性质

默认函子 $\overset{c}{ o}$: $(C \overset{Cat}{ imes} C) \overset{Cat}{ o} C$ 在范畴 C 中有下述性质 :

• $(c_1 \times c) \xrightarrow{c} c_2 \overset{\text{Set}}{\cong} c \xrightarrow{c} (c_1 \xrightarrow{c} c_2) \overset{\text{Set}}{\cong} c_1 \xrightarrow{c} (c \xrightarrow{c} c_2)$ —— c 为任意 C 中对象 。此即为幂的泛性质 , 亦表示了**指数加乘法之间的运算关系** 。

函子性

如何证明 → 构成函子呢?请看

- $\overset{c}{
 ightarrow}: [\underbrace{(:c_1\mathrm{id} \cdot :c_2\mathrm{id})}_{::c_2} \longmapsto :\underbrace{(c_1\overset{c}{
 ightarrow} c_2)}_{:[c_1\overset{c}{
 ightarrow} c_2)}\mathrm{id}$ 即函子 $\overset{}{
 ightarrow}$ 能保持恒等箭头;
- $\overset{c}{\rightarrow}: [f_1' \circ f_1 \cdot f_2 \circ f_2')] \longmapsto [f \circ f']$ —— 即函子 $\overset{c}{\rightarrow}$ **保持箭头复合运算**。
 下图有助于形象理解证明过程:

下图 自上到下分别为图 1 和图 2 后面会用到。

范畴 C 内任意两对象 c_1 和 c_2 间的箭头构成一个集合 $c_1 \to c_2$, 说明 $\stackrel{c}{\to}$ 只能将两个对象打到一个集合;下面使 $\stackrel{c}{\to}$ 升级为函子: 若还知道箭头 $f_1: \stackrel{c'_1}{\to} c_1$ 以及 $f_2: c_2 \to c'_2$,则规定

• $(_ \xrightarrow{c} c_2)$: C^{op} \xrightarrow{cat} C^{at} \to Set 为函子且 $(_ \xrightarrow{c} c_2)$: $c \longmapsto (c \xrightarrow{c} c_2)$ 且对任意 $f : c' \xrightarrow{c} c$ 有 $(_ \xrightarrow{c} c_2)$: $f \longmapsto (f \xrightarrow{c} c_2) = (f \xrightarrow{c} c_2 \text{id}) = c_2 (f^{c})$ 图 1 有助于理解。

图 2 有助于理解。

Note

不难看出

• よ: $C \xrightarrow{\mathsf{Cat}} (C^{\mathrm{op}} \xrightarrow{\mathsf{Set}} \mathsf{Set})$ $c_2 \longmapsto (c_2 \xrightarrow{\mathsf{Cop}} _) = (_ \xrightarrow{\mathsf{C}} c_2)$ 构成一个函子 $f_2 \longmapsto (f_2 \xrightarrow{\mathsf{Cop}} _) = (_ \xrightarrow{\mathsf{C}} f_2) = (_ \circ f_2)$ 构成一个函子间映射,即自然变换

• $(c_1 \xrightarrow{c}_-): C^{\circ p} \times C \xrightarrow{Cat} Set$ 为函子且 $(c_1 \xrightarrow{c}_-): c \longmapsto (c_1 \xrightarrow{c}_-c), 且对任意 <math>f: c \xrightarrow{c}_-c'$ 有 $(c_1 \xrightarrow{c}_-): f \longmapsto (c_1 \xrightarrow{c}_-f) = (c_1 \text{id} \xrightarrow{c}_-f) = c_1 \xrightarrow{(c_0 f)}$

图 2 有助于理解。

图 1 有助于理解。

(i) Note

不难看出

• 尤: $C^{op} \xrightarrow{Cat} (C \xrightarrow{Set} Set)$ $c_1 \longmapsto (c_1 \xrightarrow{} _)$ 构成一个函子 $f_1 \longmapsto (f_1 \xrightarrow{} _) = (f_1 \circ _)$ 构成一个函子间映射,即自然变换

积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作**积闭范畴**;

若范畴包含始对象 , 所有类型的和 , 则可将其称作是**余积闭范畴** ;

若范畴满足上述条件 , 则可称作**双积闭范畴** 。

很明显我们讨论的范畴 C 就是**双积闭范畴**