What is claimed is:

1

2

1	1. A frequency-selective circuit comprising:
2	an active device providing an input port and an output port, the active device
3	having a bandwidth defined by a cutoff frequency;
4	a reactive component coupled to the output port; and
5	a compensation resistance coupled to the reactive component, wherein the
6	compensation resistance is effective to compensate for a bandwidth
7	limitation of the active device.

- 2. The frequency-selective circuit defined in Claim 1, wherein the reactive component comprises a capacitor.
- 1 3. The frequency-selective circuit defined in Claim 2, wherein the
 2 compensation resistance comprises a compensation resistor and wherein the
 3 compensation resistor has a resistance value that is inversely proportional to a tangent of
 4 a phase-shift at a predetermined compensation frequency.
- 1 4. The frequency-selective circuit defined in Claim 3, wherein the 2 compensation resistor has a resistance value that is inversely proportional to a 3 capacitance value of the capacitor.
- The frequency-selective circuit defined in Claim 3, wherein the predetermined compensation frequency is a frequency at which a Q_{max} of the frequency-selective circuit appears.

- 1 6. The frequency-selective circuit defined in Claim 1, wherein the active device comprises an operational transconductance amplifier (OTA).
- 7. The frequency-selective circuit defined in Claim 6, wherein the reactive component comprises a capacitor.
- 1 8. The frequency-selective circuit defined in Claim 7, wherein the
 2 compensation resistance comprises a compensation resistor and wherein the
 3 compensation resistor has a resistance value that is proportional to a tangent of a phase4 shift at a predetermined compensation frequency.
- 1 9. The frequency-selective circuit defined in Claim 8, wherein the compensation resistor has a resistance value that is inversely proportional to a capacitance value of the capacitor.
- 1 10. The frequency-selective circuit defined in Claim 7, wherein the
 2 compensation resistance comprises a resistor and, at a predetermined compensation
 3 frequency, the compensation resistor has a resistance value that is proportional to a
 4 tangent of a phase-shift of the OTA transconductance at the compensation frequency.

5	
6	11. A frequency-selective circuit comprising:
7	an operational transconductance amplifier having a bandwidth-limited
8	transconductance that is defined by a cutoff frequency;
9	a capacitor coupled to an output of the OTA so as to reflect an inductor at an input
10	of the OTA; and
11	a compensation resistor coupled to the capacitor and effective to compensate for a
12	bandwidth limitation of the transconductance.
1	12. The frequency-selective circuit defined in Claim 11, wherein, at a
2	predetermined compensation frequency, the resistor has a resistance value that is
3	inversely proportional to a tangent of a phase-shift at a predetermined compensation
4	frequency and inversely proportional to a capacitance value of the capacitor.
1	13. The frequency-selective circuit defined in Claim 12, wherein the
2	frequency-selective circuit exhibits a Q_{max} and a Q_{min} , and wherein the predetermined
3	compensation frequency is selected to correspond to Q_{max} .

I	14. A method of compensating for a bandwidth infination of an active
2	frequency-selective circuit, the method comprising:
3	determining a compensation frequency;
4	determining a value of an effective negative resistance that results, at least in part,
5	from a bandwidth limitation of an active device in the frequency-selective
6	circuit; and
7	providing in the frequency-selective circuit a compensation resistor that, at the
8	compensation frequency, is effective to compensate the negative
9	resistance.
1	15. The method defined in Claim 14, wherein the compensation frequency is
2	a frequency at which a Q _{max} of the active frequency-selective circuit occurs.
1	16. The method defined in Claim 14, wherein the active frequency-selective
2	circuit comprises:
3	an active device providing an input port and an output port, the active device
4	having a bandwidth defined by a cutoff frequency; and
5	a reactive device coupled to the output port.
1	17. The method defined in Claim 16, further comprising:
2	coupling the compensation resistor to the reactive device.
1	18. The method defined in Claim 17, wherein the compensation resistor is
2	selected to have a resistance value, at the compensation frequency, that is inversely
3	proportional to the tangent of a phase-shift at the compensation frequency

1 19. The method defined in Claim 16, wherein the active device comprises an 2 operational transconductance amplifier (OTA) having a transconductance that is 3 bandwidth limited to a frequency approximate to the cutoff frequency. 1 20. The method defined in Claim 17, further comprising: 2 coupling the compensation resistor to the reactive device. 1 21. A method as defined in Claim 20, wherein the compensation resistor is 2 selected to have a resistance value, at the compensation frequency, that is inversely 3 proportional to a phase-shift at the compensation frequency. 1 22. The method defined in Claim 21, wherein the active frequency-selective circuit exhibits a Q_{max} and a Q_{min}, the method further comprising: 2 3 effecting compensation of the negative resistance at a frequency corresponding to

4

 Q_{max} .

1	23. A Gm-C filter circuit comprising:
2	an input node;
3	an output node;
4	an intermediate node;
5	a return node;
6	a first compensated reactive branch coupled between the input node and the
7	intermediate node; and
8	a second compensated reactive branch coupled between the output node and the
9	intermediate node.
1	24. The Gm-C filter defined in Claim 23, wherein the first reactive branch
2	comprises:
3	a first operational transconductance amplifier (OTA) device, the first OTA device
4	having an input port and having a bandwidth defined by a first cutoff
5	frequency;
6	a first reactive device coupled to the output port of the first OTA device; and
7	a first compensation resistance coupled to the first reactive device; and wherein
8	the second reactive branch comprises:
9	a second OTA device, the second OTA device having an input port and having a
10	bandwidth defined by a second cutoff frequency;
11	a second reactive device coupled to the output port of the second OTA device;
12	and
13	a second compensation resistance coupled to the second reactive device.

- 1 25. The Gm-C filter defined in Claim 23, wherein the first cutoff frequency is 2 substantially equal to the second cutoff frequency.
- 1 26. The Gm-C filter defined in Claim 23, wherein the first compensation
- 2 resistance is effective to compensate for a bandwidth limitation of the first OTA device
- and the second compensation resistance is effective to compensate for a bandwidth
- 4 limitation of the second OTA device.
- 1 27. The Gm-C filter defined in Claim 25, wherein the first reactive device comprises a first capacitor and a second reactive device comprises a second capacitor.
- 1 28. The Gm-C filter defined in Claim 26, wherein the first compensation
- 2 resistance comprises a first compensation resistor having a first resistance value that is
- 3 inversely proportional to the tangent of a phase-shift at a first compensation frequency
- 4 and wherein the second compensation resistance comprises a second compensation
- 5 resistor having a second resistance value that is inversely proportional to the tangent of a
- 6 phase-shift at a second compensation frequency.
- 1 29. The Gm-C filter defined in Claim 27, wherein, the compensation
- 2 frequency, the first resistance value is inversely proportional to a capacitance value of the
- 3 first capacitor and the second resistance value is inversely proportional to a capacitance
- 4 value of the second capacitor.
- 1 30. The Gm-C filter defined in Claim 28, wherein the Gm-C filter circuit
- 2 exhibits at least a Q_{max} and a Q_{min} and wherein the compensation frequency is selected to
- 3 correspond to the Q_{max} .

1	31. The Gm-C filter defined in Claim 29, wherein the first OTA device and
2	the second OTA device each comprise:
3	a first OTA having differential inputs and differential outputs: and
4	a second OTA having differential inputs and differential outputs, and wherein the
5	differential outputs of the first OTA are coupled to the differential inputs
5	of the second OTA; and
7	the differential outputs of the second OTA are coupled to the differential inputs of
R	the first OTA

1	32. A system comprising:
2	a low-noise amplifier (LNA) to receive a modulated carrier signal;
3	a mixer coupled to the LNA;
4	a demodulator coupled to the mixer; and
5	a bandwidth-compensated filter coupled to the LNA, the bandwidth-compensated
6	filter comprising:
7	an active device providing an input port and an output port, the active
8	device having a bandwidth defined by a cutoff frequency;
9	a reactive component coupled to the output port; and
10	a compensation resistance coupled to the reactive component, wherein the
11	compensation resistance is effective to compensate for a bandwidth
12	limitation of the active device.
13	
1	33. The system defined in Claim 32, wherein the reactive component
2	comprises a capacity and wherein the compensation resistance comprises a compensation
3	resistor having a resistance value that is inversely proportional to a product of a
4	capacitance value of the capacitance and a tangent of a phase-shift at a predetermined

1 34. The system defined in Claim 33, wherein the active device comprises an operational transconductance amplifier (OTA) having a bandwidth-limited transconductance that is defined by a cutoff frequency.

5

compensation frequency.

- 1 35. The system defined in Claim 34, wherein the phase-shift is the phase-shift of the transconductance at the predetermined frequency.
- 1 36. The system defined in Claim 35, wherein the predetermined frequency is 2 the frequency at which a maximum Q of the bandwidth-compensated filter occurs.