雨中行走

一 问题重述

要在雨中从一处沿直线跑到另一处, 若雨速为常数且方向不变, 试建立数学模型讨论是否跑的越快, 淋雨量越少。

二 问题分析

总淋雨量既单位路程淋雨量对路程积分, 考虑单位路程淋雨量就可以。单位路程淋雨量与行进速度, 雨的方向, 大小均有关系, 题中说到雨速为常数且方向不变, 因此得出单位路程的淋雨量为:

$$Q = F(v) dt$$

其中t为经过单位路程的时间。

三 问题假设

- ①假设雨的密度均匀
- ②假设路面平坦
- ③假设人的受雨面面积不变

四 符号说明

符号	定义
V_x	雨在x轴上的速度
$V_{\mathcal{Y}}$	雨在 y 轴上的速度
V_z	雨在 z 轴上的速度
v_x	人在 x 轴上的速度
v_y	人在 y 轴上的速度
v	人的合速度
α	雨相对人在×轴上的速度
β	雨相对人在 y 轴上的速度
γ	雨相对人在 z 轴上的速度
t	人经过单位路程的时间
ρ	雨在云层中的密度
$ ho_1$	雨在 yoz 平面上的密度
$ ho_2$	雨在 xoz 平面上的密度
$ ho_3$	雨在 xoy 平面上的密度
S_1	人在 yoz 平面上的受雨面积
S_2	人在 xoz 平面上的受雨面积
S_3	人在 xoy 平面上的受雨面积

五 模型建立及求解

单位路程淋雨量为

$$Q(v_x, v_y) = \int S_1 \rho_1 dt + S_2 \rho_2 dt + S_3 \rho_3 dt$$

以下求 $\rho_1 \rho_2 \rho_3$ 与 ρ 的关系

如图 A 面的雨经过向量 α + γ 投影到 B 面因雨的总量不变 所以有

$$S_A \rho = S_B \rho_1'$$

$$\rho_1' = \frac{S_A}{S_B} \rho = \frac{|\alpha||\beta|}{|\beta||\gamma|} \rho = \frac{|\alpha|}{|\gamma|} \rho$$

加上向量β后, S_B 不变, 故

$$\rho_1 = \rho_1' = \frac{|\alpha|}{|\gamma|} \rho$$

同理可得

$$\rho_2 = \frac{|\beta|}{|\gamma|} \rho$$
$$\rho_3 = \rho$$

接下来讨论 α β γ 与 v_x v_y 的关系

$$\alpha = \frac{v_x v_x + v_y v_y}{\sqrt{v_x^2 + v_y^2}} - \sqrt{v_x^2 + v_y^2} \quad \beta = \sqrt{V_x^2 + V_y^2 - (\alpha + v)^2} \quad \gamma = V_z$$

t为人经过单位路程的时间,即

$$t = \frac{1}{|v|} = \frac{1}{\sqrt{v_x^2 + v_y^2}}$$

将其带入 $Q(v_x, v_y)$ 中得

$$Q(v_x, v_y) = \int \left(S_1 \frac{\left| \frac{v_x V_x + v_y V_y}{\sqrt{v_x^2 + v_y^2}} \right|}{|V_z|} \rho + S_2 \frac{\sqrt{V_x^2 + V_y^2 - \frac{(v_x V_x + v_y V_y)^2}{v_x^2 + v_y^2}}}{|V_z|} \rho + S_3 \rho \right) d\frac{1}{\sqrt{v_x^2 + v_y^2}}$$

随机取雨的速度并通过 matlab 进行多次模拟 图像呈以下形式 可见存在最优解

速度在[-20,20]范围内

速度在[-50,50]范围内

并且行进速度最优解和雨速有明显的相关性:

V_{χ}	$V_{\mathcal{Y}}$	V_z	v_x	v_y
-6.5178	-0.8576	5.6709	-6.4	-0.8
3.7172	4.1328	4.3081	3.8	4.2
-0.1433	-0.7618	7.5242	-3.7	-19.9
2.9311	3.5656	4.9322	3.0	3.7
2.5158	2.1714	4.1383	2.6	2.3
-5.3340	-0.0229	9.7182	-5.2	0.1
-2.2346	1.1937	4.5667	-2.1	1.3

可见 v_x 与 V_x , v_y 与 V_y 成正比关系

结论:

并不是跑的越快淋雨量越少,而是和雨速水平速度相同时淋雨量最少。