SBMLsqueezer: Differential Equation System "Xu2003 Phosphoinositide turnover"

September 11, 2009

1 Rate Laws

1.1 Reaction: PIPSyn

$$v_1 = \operatorname{area}(PM) \cdot (Ratebasal_PIPsyn + Ratestim_PIPsyn) \cdot [PI_PM]$$
 (1)

1.2 Reaction: PIP2_hyd

$$v_2 = \text{area}(PM) \cdot k_P PP2hyd \cdot [PP2_PM] \cdot [PLC_act_PM]$$
 (2)

1.3 Reaction: IP3_uncaging

$$v_3 = \text{vol}(\texttt{Cytosol}) \cdot \texttt{intensity} \cdot [\texttt{IP3X_Cytosol}] \cdot [\texttt{hv_Cytosol}]$$
 (3)

1.4 Reaction: PLCact

$$v_4 = \operatorname{area}(PM) \cdot (KfPLCact \cdot [PLC_PM] \cdot signal - krPLCact \cdot [PLC_act_PM])$$
 (4)

1.5 Reaction: PIP2_PH_hyd

$$v_5 = \text{area}(PM) \cdot k_P IP2PHhyd \cdot [PLC_act_PM] \cdot [PIP2_PHGFP_PM]$$
 (5)

1.6 Reaction: PIP2_PH

$$v_6 = \operatorname{area}\left(\mathtt{PM}\right) \cdot \left(\left[\mathtt{PIP2_PM}\right] \cdot \mathtt{kf_PIP2PH} \cdot \left[\mathtt{PH_GFP_Cyt}\right] - \mathtt{kr_PIP2PH} \cdot \left[\mathtt{PIP2_PHGFP_PM}\right]\right) \quad (6)$$

1.7 Reaction: IP3deg

$$v_7 = \text{vol}(\texttt{Cytosol}) \cdot \texttt{kIP3deg} \cdot ([\texttt{IP3_Cyt}] - \texttt{IP3_basal})$$
 (7)

1.8 Reaction: PIP2Syn

$$v_8 = \text{area}(PM) \cdot (\text{Rate_PIP2Synbasal} + \text{Rate_PIP2SynStim}) \cdot [PIP_PM]$$
 (8)

1.9 Reaction: IP3_PHGFP

$$v_9 = \text{vol}\left(\text{Cytosol}\right) \cdot \left(\left[\text{PH_GFP_Cyt}\right] \cdot \text{kf_IP3PH} \cdot \left[\text{IP3_Cyt}\right] - \text{kr_IP3PH} \cdot \left[\text{IP3_PHGFP_Cyt}\right]\right)$$
 (9)

2 Equations

2.1 Species: PIP2_PHGFP_PM

$$\frac{\mathrm{d}[\mathrm{PIP2_PHGFP_PM}]}{\mathrm{dt}} = -v_5 \tag{10}$$

2.2 Species: PH_GFP_Cyt

$$\frac{\mathrm{d}[\mathrm{PH_GFP_Cyt}]}{\mathrm{dt}} = -v_9 - v_6 \tag{11}$$

2.3 Species: PI_PM

$$\frac{\mathrm{d[PI_PM]}}{\mathrm{dt}} = -v_1 \tag{12}$$

2.4 Species: IP3_PHGFP_Cyt

$$\frac{d[IP3_PHGFP_Cyt]}{dt} = 0 \tag{13}$$

2.5 Species: PIP2_PM

$$\frac{\mathrm{d[PIP2_PM]}}{\mathrm{dt}} = -v_6 - v_2 \tag{14}$$

2.6 Species: PIP_PM

$$\frac{\mathrm{d[PIP_PM]}}{\mathrm{dt}} = -v_8 \tag{15}$$

2.7 Species: DAG_PM

$$\frac{\mathrm{d}[\mathrm{DAG_{P}M}]}{\mathrm{d}t} = 0 \tag{16}$$

2.8 Species: hv_Cytosol

$$\frac{\mathrm{d}[\mathrm{hv}_{\mathrm{C}}\mathrm{ytosol}]}{\mathrm{d}t} = 0 \tag{17}$$

2.9 Species: IP3X_Cytosol

$$\frac{d[IP3X_{Cytosol}]}{dt} = 0 \tag{18}$$

2.10 Species: PLC_PM

$$\frac{\mathrm{d[PLC_PM]}}{\mathrm{dt}} = -v_4 \tag{19}$$

2.11 Species: PLC_act_PM

$$\frac{\mathrm{d[PLC_act_PM]}}{\mathrm{d}t} = 0 \tag{20}$$

2.12 Species: IP3_Cyt

$$\frac{\mathrm{d[IP3_{Cyt}]}}{\mathrm{dt}} = -v_9 - v_7 \tag{21}$$

3 Events

3.1 Event:

Triggers if:

$$[PIP_PM] < PIP_basal$$
 (22)

and assigns the following rule:

$$PIPsynbasal = 1$$
 (23)

3.2 Event:

Triggers if:

$$time > tauPIPsyn$$
 (24)

and assigns the following rule:

$$PIPsynstim = 1$$
 (25)

3.3 Event:

Triggers if:

$$[PIP2_PM] < PIP2_basal$$
 (26)

and assigns the following rule:

$$PIP_2 = 1 (27)$$

3.4 Event:

Triggers if:

$$time > tauPIP2syn$$
 (28)

and assigns the following rule:

$$PIP_2 = 1 (29)$$

3.5 Event:

Triggers if:

$$time > tau0$$
 (30)

and assigns the following rule:

$$Signal = 1$$
 (31)

4 Parameters

Parameter	Value
PIP	2857.0
PIP_2	4000.0
PIP synstim	0.0
PIPsynbasal	0.0
PIP_2	0.0
PIP_{2}	0.0
Ratebasal	NaN
Ratestim	NaN
signal	NaN
kr_{PIP_2}	NaN
$Rate_{PIP_2}$	NaN
$Rate_{PIP_2}$	NaN
kr_{IP_3}	NaN
kBasalSynPIP	0.0055
kStimSynPIP	0.019
tauPIPsyn	0.05
PIP syndecay	1.0
tau_0	0.05
stimdecay	1.0
kf_{PIP_2}	0.12
$KdPIP_2$	2.0
$kBasalSynPIP_{2}$	0.048
$kStimSynPIP_2$	0.92
$tauPIP_2$	0.05
PIP_2	1.0
kf_{IP_3}	10.0
$KdIP_3$	0.1
Signal	0.0
k_{PIP_2}	2.4

5 Species

Species Initial concentration compartment

PIP_2	0.0	PM
PH	0.0	Cytosol
PI	142857.0	PM
IP_3	0.0	Cytosol
PIP_2	4000.0	PM
PIP	2857.0	PM
DAG	2000.0	PM
hv	0.0	Cytosol
IP_3	0.0	Cytosol
PLC	100.0	PM
PLC	0.0	PM
IP_3	0.16	Cytosol

6 Compartments

Compartment	Volume
\overline{PM}	1.0
Cytosol	1.0

For a more comprehensive LATEX export, see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX