

TRABAJO FIN DE GRADO GRADO EN INGENIERÍA INFORMÁTICA

Clasificación de galaxias mediante Deep Learning

Autor

Jorge Picado Cariño

Director Julián Luengo Martín

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, julio de 2023

Clasificación de galaxias mediante Deep Learning

Autor

Jorge Picado Cariño

Director

Julián Luengo Martín

Clasificación de galaxias mediante Deep Learning

Jorge Picado Cariño

Palabras clave: galaxias, segmentación de imágenes, clasificación de imágenes, Deep Learning, Aprendizaje Supervisado, Aprendizaje No Supervisado, Visión por Computador

Resumen

En las últimas décadas, el campo de la astronomía ha experimentado un crecimiento exponencial gracias a los avances en la tecnología y el acceso a grandes volúmenes de datos. Uno de los aspectos que engloba la astronomía es el estudio de las galaxias, que son agrupaciones de estrellas, cuerpos celestes y materia cósmica que está concentrada en una determinada región del espacio por efecto de la atracción gravitatoria y constituye una unidad en el universo.

La clasificación de galaxias es una tarea fundamental en la astronomía, ya que permite comprender mejor la formación y evolución del universo. Tradicionalmente, esta clasificación se ha llevado a cabo de manera manual por astrónomos expertos, quienes examinan imágenes de galaxias y las categorizan en diferentes tipos según su forma, estructura y otras características observables.

Sin embargo, debido al crecimiento exponencial de los datos astronómicos, se requiere de métodos más eficientes y automatizados para clasificar las galaxias de manera precisa y rápida. En cada imagen del espacio de un telescopio pueden aparecer decenas de galaxias. La tarea de los astrónomos especializados en su clasificación (espiral, elíptica, etc.) puede suponer un tiempo considerable que tiene un coste económico perceptible y una merma de otras tareas que el experto podría estar realizando. En este contexto, el aprendizaje profundo, o "Deep Learning", ha demostrado ser una herramienta poderosa y prometedora.

Se espera que este enfoque de clasificación automatizada de galaxias mediante Deep Learning proporcione resultados eficientes en comparación con los métodos tradicionales. Además, el sistema desarrollado podría utilizarse como una herramienta complementaria para los astrónomos, ayudándoles a procesar grandes volúmenes de datos y acelerar el proceso de clasificación.

El objetivo de este Trabajo de Fin de Grado (TFG) es el uso de técnicas de Deep Learning para segmentar las galaxias de las imágenes astronómicas, así como clasificar su forma si la resolución es suficiente. Se planteará el uso de técnicas supervisadas frente a no supervisadas para ahorrar el máximo tiempo al posible astrónomo experto. Para lograr esto, se utilizarán conjuntos de datos astronómicos que contienen imágenes de galaxias previamente clasificadas, este dataset está disponible en el proyecto Galaxy Zoo. Estas imágenes serán utilizadas para entrenar un modelo que aprenderá a reconocer los patrones y características distintivas de cada tipo de galaxia.

En resumen, este TFG tiene como objetivo principal la clasificación automatizada de galaxias mediante el uso de técnicas de Deep Learning. Se espera que los resultados obtenidos contribuyan al avance del campo de la astronomía y abran nuevas puertas para la exploración y comprensión del universo.

Classification of Galaxies Using Deep Learning

Jorge Picado Cariño

Keywords: galaxies, image segmentation, image classification, Deep Learning, Supervised Learning, Unsupervised Learning, Computer Vision

Abstract

Write here the abstract in English.

D. **Julián Luengo Martín**, Profesor del Área de XXXX del Departamento Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada.

Informa:

Que el presente trabajo, titulado *Clasificación de galaxias mediante Deep Learning*, ha sido realizado bajo su supervisión por **Jorge Picado Cariño**, y autorizo la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a X de julio de 2023.

El director:

Julián Luengo Martín

Agradecimientos

Quiero agradecer a todas las personas que me han apoyado en la realización de mi Trabajo de Fin de Grado, gracias a ellos este logro no hubiera sido posible.

En primer lugar a mi tutor académico Julián, por su orientación, apoyo y valiosos consejos a lo largo de todo el proceso de elaboración de este trabajo.

A mis compañeros y compañeras de clase, por su colaboración, intercambio de ideas y apoyo mutuo. Fue enriquecedor poder contar con sus opiniones y consejos no sólo durante este trabajo, sino a lo largo de estos 4 años.

A mi familia, por su amor, paciencia y comprensión a lo largo de toda mi etapa académica. Su apoyo incondicional me impulsó a alcanzar mis metas.

Sin todas estas personas, este Trabajo de Fin de Grado no hubiera sido posible. Les estoy profundamente agradecido por su tiempo, esfuerzo y dedicación.

Índice general

1.	Intr	oducción	19
	1.1.	Motivación	20
	1.2.	Objetivos	21
	1.3.	Presupuesto	21
	1.4.	Planificación	21
2.	Esta	ado del Arte y Conceptos	23
	2.1.	Visión por Computador	24
	2.2.	Conceptos básicos Deep Learning	25
		2.2.1. Redes Neuronales Convolucionales (CNN)	26
		2.2.2. Capas de pooling	26
		2.2.3. Transferencia de aprendizaje	27
		2.2.4. Aumento de datos	27
		2.2.5. Validación cruzada	28
		2.2.6. Frameworks y bibliotecas	28
	2.3.	Aprendizaje Supervisado	28
	2.4.	Aprendizaje No Supervisado	29

Índice de figuras

1.1.	Ejemplar de tigre de Bengala	20
1.2.	Diagrama de Gantt	22
2.1.	Ejemplo de detección de objetos	24
2.2.	Ejemplo de segmentación semántica	25
2.3.	Ejemplo de Average Pooling	27
2.4.	Ejemplos de patrones (imagen, dígito)	28
2.5.	Ejemplos de aprendizaje no supervisado	29

Índice de cuadros

Capítulo 1

Introducción

En los últimos años, el campo de la astronomía ha experimentado avances significativos gracias al uso de técnicas de aprendizaje automático, en particular el aprendizaje profundo (Deep Learning). Estas técnicas han demostrado ser eficaces en diversas tareas, entre ellas el tema del presente trabajo, la clasificación de galaxias, un campo de estudio fundamental para comprender la evolución y la estructura del universo.

El aprendizaje profundo se basa en redes neuronales artificiales de múltiples capas, que son capaces de aprender representaciones de alto nivel a partir de datos sin procesar. En el contexto de la astronomía, estas redes neuronales pueden analizar grandes volúmenes de datos astronómicos, como imágenes de telescopios, espectros y curvas de luz, para extraer patrones complejos y realizar tareas de clasificación, detección y predicción.

Varios estudios han demostrado la eficacia del aprendizaje profundo en la clasificación de galaxias. Por ejemplo, en el trabajo de Dieleman et al. (2015), se utilizó una red neuronal convolucional para clasificar automáticamente imágenes de galaxias del Sloan Digital Sky Survey (SDSS) en diferentes categorías morfológicas. Los resultados mostraron que el enfoque de aprendizaje profundo superó a los métodos tradicionales de clasificación realizados por expertos astrónomos.

Otro ejemplo relevante es el trabajo de Huertas-Company et al. (2015), donde se utilizó una red neuronal profunda para clasificar galaxias según su evolución. El modelo fue capaz de identificar características sutiles en las imágenes galácticas que están relacionadas con la historia de formación estelar de las galaxias, lo que permitió clasificarlas de manera más precisa que los métodos anteriores.

20 1.1. Motivación

Estos ejemplos demuestran el potencial del aprendizaje profundo en la astronomía y su capacidad para mejorar la eficiencia y la precisión en diversas tareas. A medida que se recopilan más datos astronómicos y se desarrollan nuevas técnicas de aprendizaje profundo, se espera que el campo continúe avanzando y brindando nuevas perspectivas sobre la estructura y evolución del universo.

1.1. Motivación

La clasificación de galaxias tradicionalmente ha sido realizada por astrónomos expertos, quienes analizan y categorizan manualmente las características visuales de las imágenes galácticas. Sin embargo, este enfoque es laborioso, subjetivo y limitado en términos de escala y eficiencia. Aquí es donde entra en juego el poder del aprendizaje profundo, que permite automatizar y mejorar el proceso de clasificación.

En las últimas décadas la cantidad de datos a procesar se ha incrementado exponencialmente. Este número de datos va a seguir aumentando en los próximos años de manera muy significativa, tal y como muestra el siguiente gráfico:

Figura 1.1: Ejemplar de tigre de Bengala

En resumen, este trabajo se centra en la aplicación de técnicas de Deep Learning para la clasificación de galaxias, para mejorar la eficiencia y la precisión en este proceso fundamental para la astronomía. A través de la combinación de conocimientos en astronomía y aprendizaje automático, se espera aportar avances significativos en este campo y abrir nuevas oportunidades de investigación.

Introducción 21

1.2. Objetivos

En este Trabajo de Fin de Grado (TFG), nos proponemos abordar el desafío de la clasificación de galaxias utilizando técnicas de Deep Learning. El objetivo principal es desarrollar un modelo de clasificación preciso y eficiente que pueda analizar grandes conjuntos de datos astronómicos y asignar de manera automática las galaxias a diferentes categorías.

Para lograr este objetivo, se emplearán redes neuronales convolucionales (CNN) y otras técnicas de Deep Learning, que han demostrado su eficacia en la clasificación de imágenes. Estas técnicas permitirán extraer características relevantes de las imágenes galácticas y aprender patrones complejos que son difíciles de discernir para el ojo humano.

Además, se utilizarán conjuntos de datos astronómicos existentes, que proporcionan una gran cantidad de imágenes galácticas etiquetadas con categorías conocidas. Estos datos serán preprocesados y se dividirán en conjuntos de entrenamiento, validación y prueba, para entrenar y evaluar el modelo propuesto.

Se espera que este trabajo contribuya al avance de la clasificación automatizada de galaxias, permitiendo una mayor eficiencia en la investigación astronómica y facilitando el análisis de grandes volúmenes de datos.

1.3. Presupuesto

1.4. Planificación

Con el fin de garantizar un progreso adecuado del proyecto y cumplir con la fecha límite establecida, se han identificado las diferentes actividades que deben llevarse a cabo, así como el tiempo estimado para completar cada una de ellas. A continuación, se detallan las tareas identificadas:

- Análisis de las técnicas del estado del arte para clasificación de imágenes de aprendizaje supervisado y aprendizaje no supervisado.
- Estudio de los conjuntos de datos disponibles, recopilación y preparación de datos con el objeto de reunir un conjunto de datos astronómicos que contenga imágenes de galaxias etiquetadas correctamente.
- Preprocesamiento de las imágenes para asegurarse de que estén en

un formato adecuado para el aprendizaje profundo. Esto incluye la normalización, el escalado y la eliminación de ruido.

- Elección de distintos modelos de aprendizaje profundo, se seleccionarán una serie de modelos concretos y se entrenarán utilizando el conjunto de datos recopilado.
- Evaluación de los modelos analizando la precisión y el rendimiento de cada uno de ellos entrenados utilizando métricas apropiadas.
- Comparación entre modelos seleccionados, examinando el rendimiento de los modelos de clasificación usados.
- Análisis e interpretación de los resultados obtenidos de las clasificaciones realizadas por el modelo.
- Conclusiones y trabajo futuro. Consistirá en resumir los resultados obtenidos y presentar conclusiones sobre la eficacia y las limitaciones del enfoque de clasificación de galaxias mediante el uso de aprendizaje profundo.

En el siguiente diagrama de Gantt, se muestra de manera visual la secuencia y duración de las tareas que se han llevado a cabo para la elaboración de este proyecto. Las tareas se han clasificado en colores para su fácil identificación.

Figura 1.2: Diagrama de Gantt

Capítulo 2

Estado del Arte y Conceptos

El objetivo principal de este capítulo es realizar un análisis exhaustivo del estado del arte en la clasificación de galaxias. Se introducirán los conceptos básicos del Deep Learning y su aplicación en la clasificación de imágenes astronómicas.

El estado del arte proporciona una visión general de los enfoques existentes y los desafíos que aún persisten en el campo de la clasificación de galaxias. En primer lugar, se hablará de la Visión por Computador ya que juega un papel fundamental en este proyecto. A continuación, se revisarán técnicas de Deep Learning en la clasificación de galaxias, como las redes neuronales convolucionales (CNN) y las redes neuronales profundas.

En cuanto a los conceptos del Deep Learning, se explicarán los fundamentos teóricos y arquitecturas clave de las redes neuronales utilizadas en la clasificación de imágenes astronómicas. Se abordarán conceptos como las capas convolucionales, las capas de pooling, las redes neuronales profundas y el aprendizaje supervisado. Además, se presentarán herramientas y bibliotecas populares utilizadas para implementar y entrenar modelos de Deep Learning en el contexto de la clasificación de galaxias.

Este capítulo proporcionará una base sólida para comprender los avances actuales en la clasificación de galaxias mediante el uso de técnicas de Deep Learning. A partir de esta revisión del estado del arte y la comprensión de los conceptos fundamentales.

2.1. Visión por Computador

La visión por computador es una disciplina interdisciplinaria que combina el procesamiento de imágenes, el aprendizaje automático y la inteligencia artificial para permitir que las máquinas vean, comprendan e interpreten el contenido visual de las imágenes o vídeos de manera similar a como lo hacen los seres humanos.

La visión por computador se aplica en una amplia gama de campos, incluyendo la medicina, la industria automotriz, la seguridad, la robótica, la realidad virtual..., en nuestro caso se utilizará en astronomía.

La visión por computador aborda una amplia gama de tareas, que incluyen:

Detección de objetos: La detección de objetos implica identificar y localizar la presencia de objetos específicos dentro de una imagen o vídeo. Esto puede involucrar la detección de rostros, vehículos, personas u otros objetos de interés.

Figura 2.1: Ejemplo de detección de objetos

- Seguimiento de objetos: El seguimiento de objetos implica rastrear y seguir el movimiento de un objeto específico a lo largo de una secuencia de imágenes o vídeo. Esto puede ser útil en aplicaciones de vigilancia, realidad aumentada o análisis de comportamiento.
- Reconocimiento de objetos: El reconocimiento de objetos implica identificar y clasificar diferentes clases de objetos en una imagen o vídeo.
 Puede abarcar desde reconocimiento de gestos y reconocimiento de caracteres hasta reconocimiento de objetos más complejos, como animales o edificios.
- Reconocimiento de escenas: El reconocimiento de escenas se centra en la identificación y clasificación de diferentes tipos de entornos o escenas

en una imagen o vídeo, como paisajes urbanos, interiores de edificios o paisajes naturales.

 Segmentación semántica: La segmentación semántica implica asignar una etiqueta semántica a cada píxel en una imagen, lo que permite identificar y distinguir diferentes objetos y regiones en la imagen.

Figura 2.2: Ejemplo de segmentación semántica

Estimación de pose: La estimación de pose se refiere a determinar la posición y orientación de un objeto en el espacio tridimensional a partir de una imagen o vídeo. Puede ser utilizado, por ejemplo, para el seguimiento de movimientos humanos o para la navegación autónoma de robots.

2.2. Conceptos básicos Deep Learning

El Deep Learning, también conocido como aprendizaje profundo, es una rama de la inteligencia artificial que se basa en el uso de redes neuronales artificiales con múltiples capas para aprender y extraer representaciones de alto nivel de los datos. A diferencia del aprendizaje automático tradicional, el Deep Learning permite que los modelos aprendan automáticamente a través de capas de abstracción, lo que les permite capturar características complejas y realizar tareas más sofisticadas.

En la clasificación de imágenes, el Deep Learning ha demostrado ser altamente efectivo. Las imágenes de galaxias suelen ser grandes, complejas y con una gran cantidad de detalles. Las técnicas de Deep Learning pueden extraer características relevantes y aprendidas automáticamente, lo que permite una clasificación más eficiente. A continuación, se presentan algunos conceptos básicos del Deep Learning y su aplicación en la clasificación de imágenes:

2.2.1. Redes Neuronales Convolucionales (CNN)

Las redes neuronales convolucionales son un tipo de arquitectura de Deep Learning diseñada específicamente para el procesamiento de imágenes. Utilizan capas convolucionales para extraer características locales y aprendidas automáticamente, y capas de pooling para reducir la dimensionalidad de los datos. Las CNN han logrado grandes avances en la clasificación de imágenes, incluidas las imágenes astronómicas.

Las redes convolucionales aplican filtros de convolución a las entradas. Se aprenden los parámetros de los filtros, siendo un filtro convolucional aquel que aplica una función de convolución sobre la entrada. El filtro convolucional de una 1D, 2D o múltiples dimensiones. Un ejemplo de filtro convolucional 2D es el siguiente:

$$S(m,n) = (X * Y)(m,n) = \sum_{j} \sum_{i} X(i,j)Y(m-i,n-j)$$
 (2.1)

2.2.2. Capas de pooling

Las capas de pooling, son conocidas como capas de submuestreo. Como se ha comentado anteriormente, estas capas ayudan a reducir la dimensionalidad espacial de las características extraídas, lo que a su vez disminuye la cantidad de parámetros en el modelo y ayuda a controlar el sobreajuste u overfitting (concepto en la ciencia de datos que ocurre cuando un modelo estadístico se ajusta exactamente a sus datos de entrenamiento, siendo incapaz de generalizarse bien a nuevos datos). Además, las capas de pooling proporcionan cierta invarianza a pequeñas traslaciones y deformaciones en las características.

La operación principal de las capas de pooling es aplicar una función de agrupación como:

- Max Pooling: que reduce los datos calculando el máximo, dentro de una ventana de filtro indicada.
- Average Pooling: que reduce los datos calculando su media dentro de una ventana de filtro indicada.

Esta función se aplica a regiones locales no solapadas de las características de entrada. La región de agrupación se desliza a través de las características,

generalmente con un tamaño de ventana y un desplazamiento definidos, manteniendo las características más relevantes.

Figura 2.3: Ejemplo de Average Pooling

Las capas de pooling han sido ampliamente utilizadas en el procesamiento de imágenes y han demostrado ser útiles en tareas de clasificación de imágenes, un ejemplo es el artículo ÏmageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems" donde se hace uso de las capas para mejorar el rendimiento de la red. Al reducir la dimensionalidad de las características, las capas de pooling permiten una representación más compacta y manejable de la información, lo que facilita el procesamiento posterior y mejora la eficiencia computacional.

2.2.3. Transferencia de aprendizaje

La transferencia de aprendizaje es una técnica en la que se aprovecha un modelo pre-entrenado en un conjunto de datos grande y general, como ImageNet, y se ajusta para una tarea específica, como la clasificación de galaxias. Esto permite aprovechar el conocimiento previo del modelo en la extracción de características y acelerar el proceso de entrenamiento.

2.2.4. Aumento de datos

El aumento de datos es una técnica comúnmente utilizada en la clasificación de imágenes astronómicas mediante Deep Learning. Consiste en generar nuevas instancias de imágenes a partir de las existentes mediante transformaciones como rotaciones, cambios de escala, desplazamientos, entre otros. Esto ayuda a aumentar la diversidad de datos de entrenamiento y a mejorar la generalización del modelo.

2.2.5. Validación cruzada

En clasificación de imágenes, es esencial evaluar el rendimiento del modelo de Deep Learning de manera robusta. La validación cruzada es una técnica que divide el conjunto de datos en subconjuntos de entrenamiento y prueba, permitiendo evaluar el rendimiento del modelo en diferentes particiones de los datos y evitar el sobreajuste.

2.2.6. Frameworks y bibliotecas

Existen varios frameworks y bibliotecas populares para implementar y entrenar modelos de Deep Learning en la clasificación de imágenes astronómicas, como PyTorch. Estas herramientas proporcionan una interfaz fácil de usar y optimizada para el cálculo numérico, lo que facilita la implementación y el entrenamiento de modelos de Deep Learning.

2.3. Aprendizaje Supervisado

El aprendizaje supervisado es una técnica en el campo del aprendizaje automático que implica entrenar un modelo utilizando datos etiquetados, es decir, datos que contienen ejemplos de entrada junto con sus correspondientes salidas deseadas. El objetivo es que el modelo aprenda una función o mapeo entre las entradas y las salidas, de modo que pueda predecir las salidas para nuevas entradas no vistas previamente.

En el aprendizaje supervisado, se trabaja con un conjunto de datos de entrenamiento que consiste en pares de ejemplos de entrada-salida. El modelo se ajusta a estos datos de entrenamiento mediante la búsqueda de una función o un conjunto de parámetros que minimicen una medida de error o pérdida. Una vez que el modelo ha sido entrenado, se puede utilizar para realizar predicciones en nuevos datos de prueba.

$$7 \rightarrow 7 \quad 5 \rightarrow 5$$

$$8 \rightarrow 8 \quad 3 \rightarrow 3$$

$$2 \rightarrow 2 \quad 4 \rightarrow 4$$

Figura 2.4: Ejemplos de patrones (imagen, dígito)

2.4. Aprendizaje No Supervisado

El aprendizaje no supervisado es una rama del aprendizaje automático en la que se busca descubrir patrones o estructuras ocultas en los datos sin la ayuda de etiquetas o información de salida conocida. A diferencia del aprendizaje supervisado, en el que se tienen datos etiquetados, en el aprendizaje no supervisado se trabaja con datos no etiquetados y el objetivo principal es explorar la estructura subyacente de los datos.

De forma matemática, mientras que en aprendizaje supervisado contamos con patrones de datos (x, y), donde x es un array de atributos numéricos, e y un valor numérico que se quiere predecir como y = f(x), en aprendizaje no supervisado, sólo se dispone de patrones de datos de entrada x_i y se trata de intentar abstraer los datos para su mejor comprensión.

Un ejemplo gráfico del objetivo del aprendizaje no supervisado sería el siguiente:

Figura 2.5: Ejemplos de aprendizaje no supervisado

Donde cada uno de los colores identificaría a cada uno de los grupos en los que se intenta crear subconjuntos de datos.