Every tangent of the convex function $g_k(x) = f(x_k) + f'(x_k)(x - x_k)$ is below the function graph f(x). Thus $x_k > x^*$ for every $k \ge 1$ and then the limit of the sequence exists with $\lim_{k\to\infty} x_k = y^* \ge x^*$. If $y^* > x^*$, then $g_k(y^*) = f(y^*) > f(x^*) = 0$ which means that the method can not be stopped at this moment (as the stopping criterion $|x_{k+1} - x_k| = \frac{f(x_k)}{f'(x_k)}$ is not small enough). Thus $y^* = x^*$. $q_k(x_k)$ $g_k(x) = f(x_k) + f'(x_k)(x - x_k)$