Consider the function
$$\ell(\mathbf{w}) = y \log(\sigma(\mathbf{w}^T \mathbf{x})) + (1 - y) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}))$$

Where \mathbf{w} and \mathbf{x} are k^{th} dimensional vectors. Assume 1 training example.

Find $\nabla_{w_j} \ell(\mathbf{w})$, that is, the partial derivative of $\ell(\mathbf{w})$ with respect to the j^{th} element of vector \mathbf{w} .

- Recall if $\sigma(x) = \frac{1}{1+e^{-x}}$ then $\sigma'(x) = \sigma(x)(1-\sigma(x))$ Show your work!