2022-2023 MP2I

À chercher pour lundi 05/12/2022, corrigé

TD 11:

Exercice 13. On commence par étudier la monotonie de (a_n) . Pour $n \in \mathbb{N}^*$:

$$a_{n+1} = \sum_{k=1}^{n+1} \frac{1}{n+k+1}$$

$$= \sum_{j=2}^{n+2} \frac{1}{n+j}$$

$$= \sum_{j=1}^{n} \frac{1}{n+j} + \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$= a_n + \frac{2n+2+2n+1-2(2n+1)}{(2n+1)(2n+2)}$$

$$= a_n + \frac{1}{(2n+1)(2n+2)}.$$

On en déduit que la suite (a_n) est croissante. Montrons à présent que (b_n) est décroissante. Toujours pour $n \in \mathbb{N}^*$:

$$b_{n+1} = \sum_{k=n+1}^{2n+2} \frac{1}{k}$$

$$= \sum_{k=n}^{2n} \frac{1}{k} - \frac{1}{n} + \frac{1}{2n+1} + \frac{1}{2n+2}$$

$$= b_n + \frac{-(2n+1)(2n+2) + n(2n+2) + n(2n+1)}{n(2n+1)(2n+2)}$$

$$= b_n + \frac{-4n-2}{n(2n+1)(2n+2)}.$$

On en déduit que (b_n) est décroissante. Il ne reste plus qu'à montrer que la différence tend vers 0. On a pour $n \in \mathbb{N}^*$:

$$b_n - a_n = \sum_{k=1}^n \frac{1}{n+k} - \sum_{k=n}^{2n} \frac{1}{k}$$
$$= \sum_{k=n+1}^{2n} \frac{1}{k} - \sum_{k=n}^{2n} \frac{1}{k}$$
$$= -\frac{1}{2n}.$$

La différence tend donc vers 0. On a donc une suite croissante, l'autre décroissante et la différence qui tend vers 0. Les deux suites sont adjacentes.

Exercice 18.

1) Ordre 1.

a) Le point fixe est ω tel que $\omega = 3\omega - 2$ donc $\omega = 1$. On en déduit que $(u_n - 1)$ est géométrique de raison 3. On a alors que :

$$\forall n \in \mathbb{N}, \ u_n - 1 = 3^n (u_0 - 1),$$

ce qui entraine que $\forall n \in \mathbb{N}, u_n = 1$.

b) Le point fixe vérifie $\omega = \frac{\omega}{2} + 3$, soit $\omega = 6$. La suite $(u_n - 6)$ est donc géométrique de raison $\frac{1}{2}$, ce qui entraine :

$$\forall n \in \mathbb{N}^*, \ (u_n - 6) = \left(\frac{1}{2}\right)^{n-1} (u_1 - 6),$$

ce qui entraine que $\forall n \in \mathbb{N}^*, \ u_n = -\frac{3}{2^{n-1}} + 6.$

2) Ordre 2.

a) déjà fait en cours, c'est la suite de Fibonacci. L'équation caractéristique est $X^2-X-1=0$. Les racines sont $\frac{1\pm\sqrt{5}}{2}$. Les suites solutions sont donc de la forme (avec λ et μ à déterminer) :

$$u_n = \lambda \left(\frac{1-\sqrt{5}}{2}\right)^n + \mu \left(\frac{1+\sqrt{5}}{2}\right)^n.$$

On détermine λ et μ à l'aide des conditions initiales en évaluant en n=0 et n=1. On en déduit que :

$$\forall n \in \mathbb{N}, \ u_n = \frac{1}{\sqrt{5}} \left(-\left(\frac{1-\sqrt{5}}{2}\right)^n + \left(\frac{1+\sqrt{5}}{2}\right)^n \right).$$

b) $u_0=0, u_1=1$ et $u_{n+2}=u_{n+1}-u_n$. L'équation caractéristique est $X^2-X+1=0$. On a $\Delta=-3$. On en déduit que les racines du polynômes caractéristiques sont $x_1=\frac{1-\sqrt{3}i}{2}$ et $x_2=\frac{1+\sqrt{3}i}{2}$. Ceci entraine qu'il existe $a,b\in\mathbb{C}$ tels que pour tout $n\in\mathbb{N}$:

$$u_n = ax_1^n + bx_2^n.$$

Avec les conditions initiales, on trouve que a+b=0 et $ax_1+bx_2=1$. On a alors b=-a et $a(x_1-x_2)=1$ d'où :

$$a \times (-\sqrt{3}i) = 1.$$

On en déduit que $a=\frac{i}{\sqrt{3}}$ et $b=-\frac{i}{\sqrt{3}}$. On en déduit finalement que pour tout $n\in\mathbb{N}$:

$$u_n = \frac{i}{\sqrt{3}} \left(\frac{1 - \sqrt{3}i}{2} \right)^n - \frac{i}{\sqrt{3}} \left(\frac{1 + \sqrt{3}i}{2} \right)^n.$$

On peut en déduire une expression réelle de (u_n) en exprimant les racines sous la forme $\rho e^{i\theta}$. Le module est ici égal à 1 et l'argument égal à $\pm \frac{\pi}{3}$. Pour tout $n \in \mathbb{N}$:

$$u_n = \frac{i}{\sqrt{3}} \left(e^{-\frac{i\pi}{3}} \right)^n - \frac{i}{\sqrt{3}} \left(e^{\frac{i\pi}{3}} \right)^n$$

$$= \frac{i}{\sqrt{3}} \left(e^{-\frac{in\pi}{3}} - e^{\frac{in\pi}{3}} \right)$$

$$= \frac{i}{\sqrt{3}} \times \left(-2i \sin\left(\frac{n\pi}{3}\right) \right) = \frac{2}{\sqrt{3}} \sin\left(\frac{n\pi}{3}\right).$$

c) L'équation caractéristique est $X^2-4X+4=0$. On a 2 qui est racine double. Les solutions sont donc de la forme $u_n=\lambda 2^n+\mu n2^n$ avec $\lambda,\mu\in\mathbb{R}$. Avec les conditions initiales, on veut $3=2\lambda+2\mu$ et $8=4\lambda+12\mu$. On obtient alors $2=8\mu$ donc $\mu=\frac{1}{4}$ et $\lambda=\frac{5}{4}$. On en déduit que :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{5}{4}2^n + \frac{1}{4}n2^n.$$

TD 10:

Exercice 4.

1) f_n est dérivable sur \mathbb{R}_+^* et pour $x \in \mathbb{R}_+^*$, $f_n'(x) = -\frac{n}{x^2} + 1 = \frac{x^2 - n}{x^2}$. On en déduit que f_n est décroissante sur $]0, \sqrt{n}]$ et croissante sur $[\sqrt{n}, +\infty[$. Les limites en 0 et $+\infty$ valent $+\infty$ donc on a le graphe suivant :

On remarque que f_n admet un minimum en $x=\sqrt{n}$. Puisque $\{\frac{n}{k}+k,\ k\in\mathbb{N}^*\}\subset\{f(x),\ x>0\}$, on en déduit que $f(\sqrt{n})=2\sqrt{n}$ minore $\{\frac{n}{k}+k,\ k\in\mathbb{N}^*\}$. Cet ensemble étant clairement non vide (il contient n+1 (pour k=1)) et minoré, il admet une borne inférieure d'où l'existence de a_n .

 a_n étant le plus grand des minorants et $2\sqrt{n}$ étant un minorant, on en déduit que $a_n \ge 2\sqrt{n}$.

2) Pour n=1, on remarque que l'on a $a_1 \geq 2$ et que $2 \in \left\{\frac{1}{k} + k, \ k \in \mathbb{N}^*\right\}$. On en déduit que $a_1=2$ (et c'est même un minimum).

On étudie ici l'ensemble $\{a_n, n \in \mathbb{N}^*\}$. Puisque pour $n \in \mathbb{N}^*$, $a_n \ge 2\sqrt{n} \ge 2 = a_1$, on a que a_1 minore cet ensemble (et appartient à l'ensemble en n = 1). On a donc $\inf_{n \in \mathbb{N}^*} (a_n) = \min_{n \in \mathbb{N}^*} (a_n) = a_1 = 2$.

Enfin, on a puisque $\forall n \in \mathbb{N}^*$, $a_n \geq 2\sqrt{n}$ que $\lim_{n \to +\infty} a_n = +\infty$ donc $\{a_n, n \in \mathbb{N}^*\}$ n'est pas majoré. On en déduit que $\sup_{n \in \mathbb{N}^*} (a_n) = +\infty$ (dans $\overline{\mathbb{R}}$) ou n'existe pas (dans \mathbb{R}).

Exercice 12. Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Puisque $\bigcup_{k=0}^{n-1} \left[\frac{k}{n}, \frac{k+1}{n} \right[$ forme une partition de [0,1[et que $x - \lfloor x \rfloor \in [0,1[$, on en déduit qu'il existe $k_0 \in [0,n-1]$ tel que $x = \lfloor x \rfloor + \frac{k_0}{n} + \alpha$ avec $\alpha \in \left[0,\frac{1}{n}\right[$.

Essayons alors de déterminer $\lfloor \left(x + \frac{k}{n}\right) \rfloor$ pour $k \in [0, n-1]$. Cette partie entière est soit égale à $\lfloor x \rfloor$, soit égale à $\lfloor x \rfloor + 1$, selon les valeurs que prend k. En effet, on a toujours l'encadrement $\lfloor x \rfloor \leq x + \frac{k}{n} < \lfloor x \rfloor + 2$.

Supposons que $k \in [0, n - k_0 - 1]$, on a alors :

$$x + \frac{k}{n} = \lfloor x \rfloor + \frac{k_0 + k}{n} + \alpha$$

$$\leq \lfloor x \rfloor + \frac{n - 1}{n} + \alpha$$

$$\leq \lfloor x \rfloor + 1 + \alpha - \frac{1}{n}$$

$$\langle \lfloor x \rfloor + 1.$$

3

On en déduit alors que $\lfloor \left(x + \frac{k}{n}\right) \rfloor = \lfloor x \rfloor$.

Supposons à présent que $k \in [n-k_0, n-1]$, alors, on a :

$$x + \frac{k}{n} = \lfloor x \rfloor + \frac{k_0 + k}{n} + \alpha$$

$$\geq \lfloor x \rfloor + 1 + \alpha$$

$$\geq |x| + 1.$$

On en déduit que :

$$\sum_{k=0}^{n-1} \lfloor \left(x + \frac{k}{n} \right) \rfloor = \sum_{k=0}^{n-k_0 - 1} \lfloor \left(x + \frac{k}{n} \right) \rfloor + \sum_{k=n-k_0}^{n-1} \lfloor \left(x + \frac{k}{n} \right) \rfloor$$

$$= \sum_{k=0}^{n-k_0 - 1} \lfloor x \rfloor + \sum_{k=n-k_0}^{n-1} (\lfloor x \rfloor + 1)$$

$$= (n - k_0 - 1 + 1) \lfloor x \rfloor + (n - 1 - (n - k_0) + 1) (\lfloor x \rfloor + 1)$$

$$= (n - k_0) \lfloor x \rfloor + k_0 (\lfloor x \rfloor + 1)$$

$$= n |x| + k_0.$$

De plus, on a:

$$\lfloor nx \rfloor = \lfloor (n \lfloor x \rfloor + k_0 + n\alpha) \rfloor$$

= $n |x| + k_0.$

La dernière égalité étant valable puisque $0 \le n\alpha < 1$. On en déduit donc que :

$$\sum_{k=0}^{n-1} \lfloor \left(x + \frac{k}{n} \right) \rfloor = \lfloor nx \rfloor.$$

Exercice 19. Soit $f: \mathbb{R} \to \mathbb{R}$ croissante telle que $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y).

- 1) Posons pour $n \in \mathbb{N}$, $\mathcal{P}(n) : \langle f(n) = nf(1) \rangle$.
 - La propriété est vraie au rang 0. En effet, on a f(0+0)=2f(0), ce qui entraine f(0)=0.
 - Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie. On a alors, en utilisant la relation vérifiée par f et l'hypothèse de récurrence :

$$f(n+1) = f(n) + f(1)$$

= $nf(1) + f(1)$
= $(n+1)f(1)$.

On en déduit que $\mathcal{P}(n+1)$ est vraie.

- La propriété étant initialisée et héréditaire, elle est vraie pour tout n entier.
- 2) La propriété demandée est vraie pour $n \in \mathbb{N}$ d'après la question 1. Soit à présent $n \in \mathbb{Z} \setminus \mathbb{N}$. On a alors $-n \in \mathbb{N}$ et, d'après la relation vérifiée par f, on a f(n+(-n))=f(n)+f(-n). Or, f(0)=0. On en déduit que :

$$0 = f(n) + f(-n),$$

ce qui entraine que f(n) = -f(-n). Or, d'après la question 1, puisque $-n \in \mathbb{N}$, f(-n) = (-n)f(1). On en déduit finalement que f(n) = nf(1).

3) Soit $q \in \mathbb{Q}$. On a alors $q = \frac{n}{m}$ avec $n \in \mathbb{Z}$ et $m \in \mathbb{N}^*$. On a alors :

$$\begin{array}{rcl}
f(mq) & = & f(n) \\
 & = & nf(1).
\end{array}$$

Or, on peut montrer par récurrence, de la même manière qu'à la question 1 que f(mq) = mf(q). On en déduit finalement que $f(q) = \frac{n}{m}f(1)$, ce qui entraine f(q) = qf(1).

4) Soit $x \in \mathbb{R}$. Nous n'avons pour l'instant pas encore utilisé la croissance de f. Nous allons nous en servir maintenant! Nous avons démontré que $\frac{\lfloor nx \rfloor}{n} \to x$ quand n tend vers l'infini. D'après les inégalités usuelles sur les parties entières, on a, pour $n \in \mathbb{N}^*$:

$$\frac{(nx-1)}{n} < \frac{\lfloor nx \rfloor}{n} \le x.$$

On en déduit que $\frac{\lfloor nx \rfloor}{n} \le x < \frac{\lfloor nx \rfloor}{n} + \frac{1}{n}$. Posons donc $q_n = \frac{\lfloor nx \rfloor}{n}$ et $p_n = \frac{\lfloor nx \rfloor}{n} + \frac{1}{n}$. Puisque f est croissante, on a alors :

$$f(p_n) \le f(x) \le f(q_n).$$

Or, d'après la question 3, on a donc $p_n f(1) \leq f(x) \leq q_n f(1)$. Puisque $p_n \to x$ et $q_n \to x$, on en déduit en passant à la limite dans les inégalités larges que $xf(1) \leq f(x) \leq xf(1)$. Ceci entraine que f(x) = xf(1) ce qui termine la preuve.