Homework 11 for **MATH 497A**, Introduction to Ramsey Theory

Due: Monday December 5

Problem 1 - Fundamental sequences

The *Cantor Normal Form* says that every ordinal α can be represented uniquely in the form

$$\alpha = \omega^{\beta_1} k_1 + \dots + \omega^{\beta_n} k_n$$

where $\alpha \ge \beta_1 > \beta_2 > \dots > \beta_n$, and k_1, \dots, k_n are nonzero natural numbers.

Note that we may have $\beta_1 = \alpha$, if $\alpha = \omega^{\alpha}$. However, if $\alpha < \varepsilon_0$, then $\beta_1 < \alpha$.

Use the Cantor Normal Form to construct for every $\alpha < \varepsilon_0$ a fundamental sequence α_n , i.e. an increasing sequence of ordinals such that $\alpha_n \to \alpha$.

Problem 2 – The infinite Pigeonhole Principle

Deduce the infinite Pigeonhole Principle from the recurrence principle for sets, i.e. the fact that for every open covering $(U_i)_{i\in I}$ of $A^{\mathbb{Z}}$, A a finite set, one U_i is recurrent, i.e. $U_i \cap T^nU_i \neq \emptyset$ for infinitely many n.

Problem 3 - Another application of the Hales-Jewett Theorem

Show that if \mathbb{Z}^d is r-colored, and $F \subseteq \mathbb{Z}^d$ is finite, then there exist $v \in \mathbb{Z}^d$ and $r \neq 0$ such that all points of the form

$$v + rw$$
, $w \in F$

are of the same color.

Problem 4 - Same Theorem, different proof

Prove the statement of #3 again, but this time using the following result.

Let X be a compact topological space, and let T_1, \ldots, T_n be commuting homeomorphisms on X. Let $(U_i)_{i \in I}$ be an open cover of X. Then there exists U_i such that

$$T_1^{-r}U_i\cap\cdots\cap T_n^{-r}U_i\neq\emptyset.$$

for infinitely many r.

Problem 5 - Chaoticness of the shift map

A topological dynamical system (X, T) is commonly called *chaotic* if it satisfies three conditions:

- 1. Topological transitivity. For any two open sets U, V, there exists an $n \in \mathbb{Z}$ such that $T^n(U) \cap V \neq \emptyset$.
- 2. The periodic orbits are dense. The set $\{x: \exists n \in \mathbb{Z} \ T^n x = x\}$ is dense in X.
- 3. *Sensitivity to initial conditions.* There exists a $\beta > 0$ such that for any $x \in X$ and any $\varepsilon > 0$, there exists a $y \in X$, $k \in \mathbb{Z}^+$ such that $d(x, y) < \varepsilon$ but $d(T^n x, T^n y) > \beta$.

Show that the shift map on $2^{\mathbb{Z}}$ has all three properties.