Animal Image Classifier using CNN

1. Data Preparation & Exploration

- Download and extract the dataset (from Kaggle or your local folder).
- Organize images into train/validation/test folders by class.
- Visualize sample images from each class.
- Perform data augmentation to increase robustness.. Data Preparation & Exploration

```
import os
import shutil
import random
from glob import glob
from tensorflow.keras.preprocessing.image import ImageDataGenerator,
load img, img to array
import matplotlib.pyplot as plt
# Set paths
base dir = 'dataset/Animals'
classes = ['cats', 'dogs', 'snakes']
output base = 'dataset/organized'
# Create train/val/test split
split ratios = {'train': 0.8, 'val': 0.1, 'test': 0.1}
# Organize images into train/val/test folders
if not os.path.exists(output base):
    for cls in classes:
        img_paths = glob(os.path.join(base_dir, cls, '*'))
        random.shuffle(img paths)
        n total = len(img_paths)
        n train = int(n total * split ratios['train'])
        n val = int(n total * split ratios['val'])
        splits = {
            'train': img_paths[:n train],
            'val': img_paths[n_train:n_train + n_val],
            'test': img paths[n train + n val:]
        for split, files in splits.items():
            split dir = os.path.join(output base, split, cls)
            os.makedirs(split dir, exist ok=True)
            for f in files:
                shutil.copy(f, split dir)
# Visualize sample images from each class
fig, axes = plt.subplots(1, len(classes), figsize=(12, 4))
for idx, cls in enumerate(classes):
    sample dir = os.path.join(output base, 'train', cls)
```

```
sample img = random.choice(os.listdir(sample dir))
    img path = os.path.join(sample dir, sample img)
    img = load_img(img_path, target_size=(128, 128))
    axes[idx].imshow(img)
    axes[idx].set title(cls)
    axes[idx].axis('off')
plt.tight layout()
plt.show()
# Data augmentation
datagen = ImageDataGenerator(
    rotation range=20,
    width shift range=0.1,
    height shift range=0.1,
    shear range=0.1,
    zoom range=0.2,
    horizontal flip=True,
    fill mode='nearest'
)
# Visualize augmented images for one sample
sample dir = os.path.join(output base, 'train', classes[0])
sample img = random.choice(os.listdir(sample dir))
img path = os.path.join(sample dir, sample img)
img = load_img(img_path, target size=(128, 128))
x = img to array(img)
x = x.reshape((1,) + x.shape)
fig, ax = plt.subplots(1, 5, figsize=(15, 3))
i = 0
for batch in datagen.flow(x, batch size=1):
    ax[i].imshow(batch[0].astype('uint8'))
    ax[i].axis('off')
    i += 1
    if i == 5:
plt.suptitle(f'Augmented samples: {classes[0]}')
plt.show()
```


Augmented samples: cats

2. Data Loading with Keras

- Use ImageDataGenerator for loading and augmenting images.
- Split data into training, validation, and test sets.

```
# Prepare ImageDataGenerators for train, validation, and test sets
train_dir = os.path.join(output_base, 'train')
val_dir = os.path.join(output_base, 'val')
test_dir = os.path.join(output_base, 'test')
img height, img width = 128, 128 # Standard for transfer learning
batch size = 32 # batch size means number of images processed
together
# Training data generator with augmentation
train gen = datagen.flow from directory(
    train dir,
    target size=(img height, img width),
    batch size=batch size,
    class mode='categorical'
)
# Validation and test generators without augmentation
test val datagen = ImageDataGenerator()
val gen = test val datagen.flow from directory(
    val dir,
    target size=(img height, img width),
    batch size=batch size,
```

```
class_mode='categorical',
    shuffle=False
)
test_gen = test_val_datagen.flow_from_directory(
    test_dir,
    target_size=(img_height, img_width),
    batch_size=batch_size,
    class_mode='categorical',
    shuffle=False
)
Found 2100 images belonging to 3 classes.
Found 450 images belonging to 3 classes.
Found 450 images belonging to 3 classes.
```

3. Load Pre-trained ResNet Model

- Use ResNet50 (or ResNet101 for more complexity) with imagenet weights.
- Exclude the top layer (include_top=False) to add custom layers.

```
from tensorflow.keras.applications import ResNet50
# Load ResNet50 with imagenet weights, excluding the top layer
base model = ResNet50(weights='imagenet', include top=False,
input shape=(128, 128, 3))
base_model.trainable = False # Freeze base model layers
base model.summary()
Model: "resnet50"
                                              Param # | Connected to
  Layer (type)
                      Output Shape
                      (None, 128, 128,
  input_layer_1
  (InputLayer)
                      3)
  conv1 pad
                      (None, 134, 134,
input layer 1[0]... |
  (ZeroPadding2D)
                       3)
 conv1 conv (Conv2D) | (None, 64, 64,
                                                9,472 | conv1 pad[0]
```

[0]	64)		
conv1_bn [0] (BatchNormalizatio	(None, 64, 64,	256	conv1_conv[0]
conv1_relu [0]	(None, 64, 64,	0	conv1_bn[0]
pool1_pad [0] (ZeroPadding2D)	(None, 66, 66,	0	conv1_relu[0]
pool1_pool [0] (MaxPooling2D)	(None, 32, 32,	0	pool1_pad[0]
conv2_block1_1_conv [0] (Conv2D)	(None, 32, 32,	4,160	pool1_pool[0]
conv2_block1_1_c	(None, 32, 32,	256	
conv2_block1_1_b	(None, 32, 32,	0	
conv2_block1_2_conv conv2_block1_1_r	(None, 32, 32,	36,928	

(Conv2D)	64)		
conv2_block1_2_bn conv2_block1_2_c (BatchNormalizatio	(None, 32, 32, 64)	256	
conv2_block1_2_relu conv2_block1_2_b (Activation)	(None, 32, 32, 64)	0	
conv2_block1_0_conv [0] (Conv2D)	(None, 32, 32, 256)	16,640 	pool1_pool[0]
conv2_block1_3_conv conv2_block1_2_r (Conv2D)	(None, 32, 32, 256)	16,640	
conv2_block1_0_c	(None, 32, 32, 256)	1,024	
conv2_block1_3_bn conv2_block1_3_c (BatchNormalizatio	(None, 32, 32, 256)	1,024	
conv2_block1_add conv2_block1_0_b (Add) conv2_block1_3_b	(None, 32, 32, 256)	0	
conv2_block1_out conv2_block1_add (Activation)	(None, 32, 32, 256)	0	

conv2_block2_1_conv conv2_block1_out (Conv2D)	(None, 32, 32,	16,448	
conv2_block2_1_bn conv2_block2_1_c (BatchNormalizatio	(None, 32, 32,	256	
conv2_block2_1_relu conv2_block2_1_b (Activation)	(None, 32, 32,	0	
conv2_block2_2_conv conv2_block2_1_r (Conv2D)	(None, 32, 32,	36,928	
conv2_block2_2_bn conv2_block2_2_c (BatchNormalizatio	(None, 32, 32,	256	
conv2_block2_2_reluconv2_block2_2_b (Activation)	(None, 32, 32,	0	
conv2_block2_3_conv conv2_block2_2_r (Conv2D)	(None, 32, 32, 256)	16,640	
conv2_block2_3_bn conv2_block2_3_c (BatchNormalizatio	(None, 32, 32, 256)	1,024	

conv2_block2_add conv2_block1_out (Add) conv2_block2_3_b	(None, 32, 32, 256)	0 	
conv2_block2_out conv2_block2_add (Activation)	(None, 32, 32, 256)	0 	
conv2_block3_1_conv conv2_block2_out (Conv2D)	(None, 32, 32, 64)	16,448 	
conv2_block3_1_bn conv2_block3_1_c (BatchNormalizatio	(None, 32, 32, 64)	256	
conv2_block3_1_relu conv2_block3_1_b (Activation)	(None, 32, 32, 64)	0	
conv2_block3_2_conv conv2_block3_1_r (Conv2D)	(None, 32, 32, 64)	36,928	
conv2_block3_2_bn conv2_block3_2_c (BatchNormalizatio	(None, 32, 32, 64)	256	
conv2_block3_2_relu conv2_block3_2_b (Activation)	(None, 32, 32, 64)	0	

conv2_block3_3_conv conv2_block3_2_r (Conv2D)	(None, 32, 32, 256)	16,640	
conv2_block3_3_bn conv2_block3_3_c (BatchNormalizatio	(None, 32, 32, 256)	1,024	
conv2_block2_out	(None, 32, 32, 256)	0	
conv2_block3_add	(None, 32, 32, 256)	0	
conv3_block1_1_conv conv2_block3_out (Conv2D)	(None, 16, 16, 128)	32,896	
conv3_block1_1_bn conv3_block1_1_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block1_1_relu conv3_block1_1_b (Activation)	(None, 16, 16, 128)	0	
conv3_block1_2_conv conv3_block1_1_r (Conv2D)	(None, 16, 16, 128)	147,584	
	_		

conv3_block1_2_bn conv3_block1_2_c (BatchNormalizatio	(None, 16, 16, 128)	512 	
conv3_block1_2_relu conv3_block1_2_b (Activation)	(None, 16, 16, 128)	0	
conv3_block1_0_conv conv2_block3_out (Conv2D)	(None, 16, 16, 512)	131,584	
conv3_block1_3_conv conv3_block1_2_r (Conv2D)	(None, 16, 16, 512)	66,048	
conv3_block1_0_bn conv3_block1_0_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block1_3_bn conv3_block1_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block1_add conv3_block1_0_b (Add) conv3_block1_3_b	(None, 16, 16, 512)	0	
conv3_block1_out conv3_block1_add (Activation)	(None, 16, 16, 512)	0	
conv3_block2_1_conv	(None, 16, 16,	65,664	

conv3_block1_out (Conv2D)	128)		
conv3_block2_1_bn conv3_block2_1_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block2_1_relu conv3_block2_1_b (Activation)	(None, 16, 16,	0	
conv3_block2_2_conv conv3_block2_1_r (Conv2D)	(None, 16, 16,	147,584	
conv3_block2_2_bn conv3_block2_2_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block2_2_relu conv3_block2_2_b (Activation)	(None, 16, 16,	0	
conv3_block2_3_conv conv3_block2_2_r (Conv2D)	(None, 16, 16, 512)	66,048	
conv3_block2_3_bn conv3_block2_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block2_add	(None, 16, 16,	0	

(Add) conv3_block2_3_b	512)		
conv3_block2_out conv3_block2_add (Activation)	(None, 16, 16, 512)	0 0	
conv3_block3_1_conv conv3_block2_out (Conv2D)	(None, 16, 16,	65,664 	
conv3_block3_1_bn conv3_block3_1_c (BatchNormalizatio	(None, 16, 16,	512 	
conv3_block3_1_reluconv3_block3_1_b (Activation)	(None, 16, 16,	0	
conv3_block3_2_conv conv3_block3_1_r (Conv2D)	(None, 16, 16, 128)	147,584	
conv3_block3_2_bn conv3_block3_2_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block3_2_reluconv3_block3_2_b (Activation)	(None, 16, 16, 128)	0	
conv3_block3_3_conv conv3_block3_2_r (Conv2D)	(None, 16, 16, 512)	66,048	

conv3_block3_3_bn conv3_block3_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block3_add conv3_block2_out (Add) conv3_block3_3_b	(None, 16, 16, 512)	0	
conv3_block3_out conv3_block3_add (Activation)	(None, 16, 16, 512)	0	
conv3_block4_1_conv conv3_block3_out (Conv2D)	(None, 16, 16, 128)	65,664 	
conv3_block4_1_c	(None, 16, 16,	512	
conv3_block4_1_relu conv3_block4_1_b (Activation)	(None, 16, 16, 128)	0	
conv3_block4_2_conv conv3_block4_1_r (Conv2D)	(None, 16, 16, 128)	147,584	
conv3_block4_2_bn conv3_block4_2_c (BatchNormalizatio	(None, 16, 16, 128)	512 	

conv3_block4_2_relu conv3_block4_2_b (Activation)	(None, 16, 16, 128)	0	
conv3_block4_3_conv conv3_block4_2_r (Conv2D)	(None, 16, 16, 512)	66,048	
conv3_block4_3_bn conv3_block4_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block4_add conv3_block3_out (Add) conv3_block4_3_b	(None, 16, 16, 512)	0	
conv3_block4_out conv3_block4_add (Activation)	(None, 16, 16, 512)	0	
conv4_block1_1_conv conv3_block4_out (Conv2D)	(None, 8, 8, 256)	131,328	
conv4_block1_1_bn conv4_block1_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block1_1_relu conv4_block1_1_b (Activation)	(None, 8, 8, 256)	0	

conv4_block1_2_conv conv4_block1_1_r (Conv2D)	(None, 8, 8, 256)	590,080	
conv4_block1_2_bn conv4_block1_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block1_2_relu conv4_block1_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block1_0_conv conv3_block4_out (Conv2D)	(None, 8, 8, 1024)	525,312	
conv4_block1_3_conv conv4_block1_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block1_0_bn conv4_block1_0_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block1_3_bn conv4_block1_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block1_add conv4_block1_0_b (Add) conv4_block1_3_b	(None, 8, 8, 1024)	0	
conv4_block1_out	(None, 8, 8,	0	

conv4_block1_add (Activation)	1024)		
conv4_block2_1_conv conv4_block1_out (Conv2D)	(None, 8, 8, 256)	262,400	
conv4_block2_1_bn conv4_block2_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block2_1_relu conv4_block2_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block2_2_conv conv4_block2_1_r (Conv2D)	(None, 8, 8, 256)	590,080	
conv4_block2_2_bn conv4_block2_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block2_2_relu conv4_block2_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block2_3_conv conv4_block2_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block2_3_bn conv4_block2_3_c	(None, 8, 8,	4,096	

(BatchNormalizatio	1024)		
conv4_block2_add conv4_block1_out (Add) conv4_block2_3_b	(None, 8, 8, 1024)	 0 	
conv4_block2_out conv4_block2_add (Activation)	(None, 8, 8, 1024)	 0 	
conv4_block3_1_conv conv4_block2_out (Conv2D)	(None, 8, 8, 256)	262,400 	
conv4_block3_1_bn conv4_block3_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block3_1_relu conv4_block3_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block3_2_conv conv4_block3_1_r (Conv2D)	(None, 8, 8, 256)	590,080	
conv4_block3_2_bn conv4_block3_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block3_2_relu conv4_block3_2_b (Activation)	(None, 8, 8, 256)	 0 	

conv4_block3_3_conv conv4_block3_2_r (Conv2D)	(None, 8, 8, 1024)	263,168 	
conv4_block3_3_bn conv4_block3_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block3_add conv4_block2_out (Add) conv4_block3_3_b	(None, 8, 8, 1024)	0	
conv4_block3_out conv4_block3_add (Activation)	(None, 8, 8, 1024)	0	
conv4_block4_1_conv conv4_block3_out (Conv2D)	(None, 8, 8, 256)	262,400 	
conv4_block4_1_bn conv4_block4_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block4_1_relu conv4_block4_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block4_2_conv conv4_block4_1_r (Conv2D)	(None, 8, 8, 256)	590,080	

1			
conv4_block4_2_bn conv4_block4_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block4_2_relu conv4_block4_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block4_3_conv conv4_block4_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block4_3_bn conv4_block4_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block4_add conv4_block3_out (Add) conv4_block4_3_b	(None, 8, 8, 1024)	0	
conv4_block4_out conv4_block4_add (Activation)	(None, 8, 8, 1024)	0	
conv4_block5_1_conv conv4_block4_out (Conv2D)	(None, 8, 8, 256)	262,400	
conv4_block5_1_bn conv4_block5_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	

(None, 8, 8, 256)		
(None, 8, 8, 256)	590,080 	
(None, 8, 8, 256)	1,024	
(None, 8, 8, 256)	0	
(None, 8, 8, 1024)	263,168	
(None, 8, 8, 1024)	4,096	
(None, 8, 8, 1024)	0	
(None, 8, 8, 1024)	 0 	
	(None, 8, 8, 256) (None, 8, 8, 256) (None, 8, 8, 256) (None, 8, 8, 1024) (None, 8, 8, 1024) (None, 8, 8, 1024)	(None, 8, 8, 256) 590,080 (None, 8, 8, 256) 1,024 (None, 8, 8, 256) 0 (None, 8, 8, 263,168 1024) 4,096 1024) 0 (None, 8, 8, 4,096 1024) 0

conv4_block6_1_conv conv4_block5_out (Conv2D)	(None, 8, 8, 256)	262,400 	
conv4_block6_1_bn conv4_block6_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block6_1_relu conv4_block6_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block6_2_conv conv4_block6_1_r (Conv2D)	(None, 8, 8, 256)	 590,080 	
conv4_block6_2_bn conv4_block6_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block6_2_relu conv4_block6_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block6_3_conv conv4_block6_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block6_3_bn conv4_block6_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block6_add	(None, 8, 8,	0	

conv4_block5_out (Add) conv4_block6_3_b	1024)		
conv4_block6_out conv4_block6_add (Activation)	(None, 8, 8, 1024)	 0 	
conv5_block1_1_conv conv4_block6_out (Conv2D)	(None, 4, 4, 512)	524,800	
conv5_block1_1_bn conv5_block1_1_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block1_1_relu conv5_block1_1_b (Activation)	(None, 4, 4, 512)	0	
conv5_block1_2_conv conv5_block1_1_r (Conv2D)	(None, 4, 4, 512)	2,359,808	
conv5_block1_2_bn conv5_block1_2_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block1_2_relu conv5_block1_2_b (Activation)	(None, 4, 4, 512)	0	
conv4_block6_out	(None, 4, 4,	2,099,200	

(Conv2D)	2048)		
conv5_block1_3_conv conv5_block1_2_r (Conv2D)	(None, 4, 4, 2048)	 1,050,624 	
conv5_block1_0_bn conv5_block1_0_c (BatchNormalizatio	(None, 4, 4, 2048)	8,192	
conv5_block1_3_bn conv5_block1_3_c (BatchNormalizatio	(None, 4, 4, 2048)	8,192 	
conv5_block1_add conv5_block1_0_b (Add) conv5_block1_3_b	(None, 4, 4, 2048)	0	
conv5_block1_out conv5_block1_add (Activation)	(None, 4, 4, 2048)	0 	
conv5_block2_1_conv conv5_block1_out (Conv2D)	(None, 4, 4, 512)	 1,049,088 	
conv5_block2_1_bn conv5_block2_1_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block2_1_relu conv5_block2_1_b (Activation)	(None, 4, 4, 512)	0	

1			
conv5_block2_2_conv conv5_block2_1_r (Conv2D)	(None, 4, 4, 512)	2,359,808	
conv5_block2_2_bn conv5_block2_2_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block2_2_relu conv5_block2_2_b (Activation)	(None, 4, 4, 512)	0	
conv5_block2_3_conv conv5_block2_2_r (Conv2D)	(None, 4, 4, 2048)	1,050,624	
conv5_block2_3_c	(None, 4, 4, 2048)	8,192	
conv5_block2_add conv5_block1_out (Add) conv5_block2_3_b	(None, 4, 4, 2048)	0	
conv5_block2_out conv5_block2_add (Activation)	(None, 4, 4, 2048)	0	
conv5_block3_1_conv conv5_block2_out (Conv2D)	(None, 4, 4, 512)	1,049,088	

(None, 4, 4, 512) 	2,048	
(None, 4, 4, 512) 	0	
(None, 4, 4, 512)	2,359,808	
(None, 4, 4, 512) 	2,048	
(None, 4, 4, 512) 	0	
(None, 4, 4, 2048)	1,050,624	
(None, 4, 4, 2048)	8,192	
(None, 4, 4, 2048)	0	
	(None, 4, 4, 512) (None, 4, 4, 512) (None, 4, 4, 512) (None, 4, 4, 512) (None, 4, 4, 2048) (None, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	(None, 4, 4, 512) 0 (None, 4, 4, 512) 2,359,808 (None, 4, 4, 512) 2,048 (None, 4, 4, 512) 0 (None, 4, 4, 512) 0 (None, 4, 4, 4, 6) 0 (None, 4, 4, 4, 6) (None, 4, 4, 6) (None, 4, 4, 4, 6) (None, 4, 4, 6

4. Add Custom Layers

• Add Global Average Pooling, Dropout, Dense layers, and a final softmax output layer.

```
from tensorflow.keras.layers import GlobalAveragePooling2D, Dropout,
Dense
from tensorflow.keras.models import Model
# Add custom layers on top of the base model
x = GlobalAveragePooling2D()(base model.output)
x = Dropout(0.5)(x)
x = Dense(128, activation='relu')(x)
output = Dense(len(classes), activation='softmax')(x)
model = Model(inputs=base model.input, outputs=output)
model.summary()
Model: "functional 1"
                      Output Shape
                                               Param # | Connected to
  Layer (type)
  input layer 1
                      (None, 128, 128,
  (InputLayer)
                      3)
                      (None, 134, 134,
  conv1 pad
input_layer_1[0]... |
  (ZeroPadding2D)
                      3)
 conv1 conv (Conv2D) | (None, 64, 64,
                                                 9,472 | conv1 pad[0]
```

[0]	64)		
conv1_bn [0] (BatchNormalizatio	(None, 64, 64,	256	conv1_conv[0]
conv1_relu [0]	(None, 64, 64,	0	conv1_bn[0]
pool1_pad [0] (ZeroPadding2D)	(None, 66, 66,	0	conv1_relu[0]
pool1_pool [0] (MaxPooling2D)	(None, 32, 32,	0	pool1_pad[0]
conv2_block1_1_conv [0] (Conv2D)	(None, 32, 32,	4,160	pool1_pool[0]
conv2_block1_1_c	(None, 32, 32,	256	
conv2_block1_1_b	(None, 32, 32,	0	
conv2_block1_2_conv conv2_block1_1_r	(None, 32, 32,	36,928	

(Conv2D)	64)		
conv2_block1_2_bn conv2_block1_2_c (BatchNormalizatio	(None, 32, 32, 64)	256	
conv2_block1_2_relu conv2_block1_2_b (Activation)	(None, 32, 32, 64)	0	
conv2_block1_0_conv [0] (Conv2D)	(None, 32, 32, 256)	16,640 	pool1_pool[0]
conv2_block1_3_conv conv2_block1_2_r (Conv2D)	(None, 32, 32, 256)	16,640	
conv2_block1_0_c	(None, 32, 32, 256)	1,024	
conv2_block1_3_bn conv2_block1_3_c (BatchNormalizatio	(None, 32, 32, 256)	1,024	
conv2_block1_add conv2_block1_0_b (Add) conv2_block1_3_b	(None, 32, 32, 256)	0	
conv2_block1_out conv2_block1_add (Activation)	(None, 32, 32, 256)	0	

conv2_block2_1_conv conv2_block1_out (Conv2D)	(None, 32, 32,	16,448	
conv2_block2_1_bn conv2_block2_1_c (BatchNormalizatio	(None, 32, 32,	256	
conv2_block2_1_relu conv2_block2_1_b (Activation)	(None, 32, 32,	0	
conv2_block2_2_conv conv2_block2_1_r (Conv2D)	(None, 32, 32,	36,928	
conv2_block2_2_bn conv2_block2_2_c (BatchNormalizatio	(None, 32, 32,	256	
conv2_block2_2_reluconv2_block2_2_b (Activation)	(None, 32, 32,	0	
conv2_block2_3_conv conv2_block2_2_r (Conv2D)	(None, 32, 32, 256)	16,640	
conv2_block2_3_bn conv2_block2_3_c (BatchNormalizatio	(None, 32, 32, 256)	1,024	

conv2_block2_add conv2_block1_out (Add) conv2_block2_3_b	(None, 32, 32, 256)	0 	
conv2_block2_out conv2_block2_add (Activation)	(None, 32, 32, 256)	0 	
conv2_block3_1_conv conv2_block2_out (Conv2D)	(None, 32, 32, 64)	16,448 	
conv2_block3_1_bn conv2_block3_1_c (BatchNormalizatio	(None, 32, 32, 64)	256	
conv2_block3_1_reluconv2_block3_1_b (Activation)	(None, 32, 32, 64)	0	
conv2_block3_2_conv conv2_block3_1_r (Conv2D)	(None, 32, 32, 64)	36,928	
conv2_block3_2_bn conv2_block3_2_c (BatchNormalizatio	(None, 32, 32, 64)	256	
conv2_block3_2_reluconv2_block3_2_b (Activation)	(None, 32, 32, 64)	0	

conv2_block3_3_conv conv2_block3_2_r (Conv2D)	(None, 32, 32, 256)	16,640	
conv2_block3_3_bn conv2_block3_3_c (BatchNormalizatio	(None, 32, 32, 256)	1,024	
conv2_block2_out	(None, 32, 32, 256)	0	
conv2_block3_add	(None, 32, 32, 256)	0	
conv3_block1_1_conv conv2_block3_out (Conv2D)	(None, 16, 16, 128)	32,896	
conv3_block1_1_bn conv3_block1_1_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block1_1_relu conv3_block1_1_b (Activation)	(None, 16, 16, 128)	0	
conv3_block1_2_conv conv3_block1_1_r (Conv2D)	(None, 16, 16, 128)	147,584	
	_		

conv3_block1_2_bn conv3_block1_2_c (BatchNormalizatio	(None, 16, 16, 128)	512 	
conv3_block1_2_relu conv3_block1_2_b (Activation)	(None, 16, 16, 128)	0	
conv3_block1_0_conv conv2_block3_out (Conv2D)	(None, 16, 16, 512)	131,584	
conv3_block1_3_conv conv3_block1_2_r (Conv2D)	(None, 16, 16, 512)	66,048	
conv3_block1_0_bn conv3_block1_0_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block1_3_bn conv3_block1_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block1_add conv3_block1_0_b (Add) conv3_block1_3_b	(None, 16, 16, 512)	0	
conv3_block1_out conv3_block1_add (Activation)	(None, 16, 16, 512)	0	
conv3_block2_1_conv	(None, 16, 16,	65,664	

conv3_block1_out (Conv2D)	128)		
conv3_block2_1_bn conv3_block2_1_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block2_1_relu conv3_block2_1_b (Activation)	(None, 16, 16,	0	
conv3_block2_2_conv conv3_block2_1_r (Conv2D)	(None, 16, 16,	147,584	
conv3_block2_2_bn conv3_block2_2_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block2_2_relu conv3_block2_2_b (Activation)	(None, 16, 16,	0	
conv3_block2_3_conv conv3_block2_2_r (Conv2D)	(None, 16, 16, 512)	66,048	
conv3_block2_3_bn conv3_block2_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block2_add	(None, 16, 16,	0	

(Add) conv3_block2_3_b	512)		
conv3_block2_out conv3_block2_add (Activation)	(None, 16, 16, 512)	0 0	
conv3_block3_1_conv conv3_block2_out (Conv2D)	(None, 16, 16,	65,664	
conv3_block3_1_bn conv3_block3_1_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block3_1_reluconv3_block3_1_b (Activation)	(None, 16, 16,	0	
conv3_block3_2_conv conv3_block3_1_r (Conv2D)	(None, 16, 16,	147,584	
conv3_block3_2_bn conv3_block3_2_c (BatchNormalizatio	(None, 16, 16,	512	
conv3_block3_2_reluconv3_block3_2_b (Activation)	(None, 16, 16,	0	
conv3_block3_3_conv conv3_block3_2_r (Conv2D)	(None, 16, 16, 512)	66,048	

conv3_block3_3_bn conv3_block3_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block3_add conv3_block2_out (Add) conv3_block3_3_b	(None, 16, 16, 512)	0	
conv3_block3_out conv3_block3_add (Activation)	(None, 16, 16, 512)	0	
conv3_block4_1_conv conv3_block3_out (Conv2D)	(None, 16, 16, 128)	65,664 	
conv3_block4_1_c	(None, 16, 16,	512	
conv3_block4_1_relu conv3_block4_1_b (Activation)	(None, 16, 16, 128)	0	
conv3_block4_2_conv conv3_block4_1_r (Conv2D)	(None, 16, 16, 128)	147,584	
conv3_block4_2_bn conv3_block4_2_c (BatchNormalizatio	(None, 16, 16, 128)	512 	

conv3_block4_2_relu conv3_block4_2_b (Activation)	(None, 16, 16, 128)	0	
conv3_block4_3_conv conv3_block4_2_r (Conv2D)	(None, 16, 16, 512)	66,048	
conv3_block4_3_bn conv3_block4_3_c (BatchNormalizatio	(None, 16, 16, 512)	2,048	
conv3_block4_add conv3_block3_out (Add) conv3_block4_3_b	(None, 16, 16, 512)	0	
conv3_block4_out conv3_block4_add (Activation)	(None, 16, 16, 512)	0	
conv4_block1_1_conv conv3_block4_out (Conv2D)	(None, 8, 8, 256)	131,328	
conv4_block1_1_bn conv4_block1_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block1_1_relu conv4_block1_1_b (Activation)	(None, 8, 8, 256)	0	

conv4_block1_2_conv conv4_block1_1_r (Conv2D)	(None, 8, 8, 256)	590,080	
conv4_block1_2_bn conv4_block1_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block1_2_relu conv4_block1_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block1_0_conv conv3_block4_out (Conv2D)	(None, 8, 8, 1024)	525,312	
conv4_block1_3_conv conv4_block1_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block1_0_bn conv4_block1_0_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block1_3_bn conv4_block1_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block1_add conv4_block1_0_b (Add) conv4_block1_3_b	(None, 8, 8, 1024)	0	
conv4_block1_out	(None, 8, 8,	0	

conv4_block1_add (Activation)	1024)		
conv4_block2_1_conv conv4_block1_out (Conv2D)	(None, 8, 8, 256)	262,400	
conv4_block2_1_bn conv4_block2_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block2_1_relu conv4_block2_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block2_2_conv conv4_block2_1_r (Conv2D)	(None, 8, 8, 256)	590,080	
conv4_block2_2_bn conv4_block2_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block2_2_relu conv4_block2_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block2_3_conv conv4_block2_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block2_3_bn conv4_block2_3_c	(None, 8, 8,	4,096	

(BatchNormalizatio	1024)		
conv4_block2_add conv4_block1_out (Add) conv4_block2_3_b	(None, 8, 8, 1024)	 0 	
conv4_block2_out conv4_block2_add (Activation)	(None, 8, 8, 1024)	 0 	
conv4_block3_1_conv conv4_block2_out (Conv2D)	(None, 8, 8, 256)	262,400 	
conv4_block3_1_bn conv4_block3_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block3_1_relu conv4_block3_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block3_2_conv conv4_block3_1_r (Conv2D)	(None, 8, 8, 256)	590,080	
conv4_block3_2_bn conv4_block3_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block3_2_relu conv4_block3_2_b (Activation)	(None, 8, 8, 256)	 0 	

conv4_block3_3_conv conv4_block3_2_r (Conv2D)	(None, 8, 8, 1024)	263,168 	
conv4_block3_3_bn conv4_block3_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block3_add conv4_block2_out (Add) conv4_block3_3_b	(None, 8, 8, 1024)	0	
conv4_block3_out conv4_block3_add (Activation)	(None, 8, 8, 1024)	0	
conv4_block4_1_conv conv4_block3_out (Conv2D)	(None, 8, 8, 256)	262,400 	
conv4_block4_1_bn conv4_block4_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block4_1_relu conv4_block4_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block4_2_conv conv4_block4_1_r (Conv2D)	(None, 8, 8, 256)	590,080	

1			
conv4_block4_2_bn conv4_block4_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block4_2_relu conv4_block4_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block4_3_conv conv4_block4_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block4_3_bn conv4_block4_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block4_add conv4_block3_out (Add) conv4_block4_3_b	(None, 8, 8, 1024)	0	
conv4_block4_out conv4_block4_add (Activation)	(None, 8, 8, 1024)	0	
conv4_block5_1_conv conv4_block4_out (Conv2D)	(None, 8, 8, 256)	262,400	
conv4_block5_1_bn conv4_block5_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	

(None, 8, 8, 256)		
(None, 8, 8, 256)	590,080 	
(None, 8, 8, 256)	1,024	
(None, 8, 8, 256)	0	
(None, 8, 8, 1024)	263,168	
(None, 8, 8, 1024)	4,096	
(None, 8, 8, 1024)	0	
(None, 8, 8, 1024)	 0 	
	(None, 8, 8, 256) (None, 8, 8, 256) (None, 8, 8, 256) (None, 8, 8, 1024) (None, 8, 8, 1024) (None, 8, 8, 1024)	(None, 8, 8, 256) 590,080 (None, 8, 8, 256) 1,024 (None, 8, 8, 256) 0 (None, 8, 8, 263,168 1024) 4,096 1024) 0 (None, 8, 8, 4,096 1024) 0

conv4_block6_1_conv conv4_block5_out (Conv2D)	(None, 8, 8, 256)	262,400 	
conv4_block6_1_bn conv4_block6_1_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block6_1_relu conv4_block6_1_b (Activation)	(None, 8, 8, 256)	0	
conv4_block6_2_conv conv4_block6_1_r (Conv2D)	(None, 8, 8, 256)	 590,080 	
conv4_block6_2_bn conv4_block6_2_c (BatchNormalizatio	(None, 8, 8, 256)	1,024	
conv4_block6_2_relu conv4_block6_2_b (Activation)	(None, 8, 8, 256)	0	
conv4_block6_3_conv conv4_block6_2_r (Conv2D)	(None, 8, 8, 1024)	263,168	
conv4_block6_3_bn conv4_block6_3_c (BatchNormalizatio	(None, 8, 8, 1024)	4,096	
conv4_block6_add	(None, 8, 8,	0	

conv4_block5_out (Add) conv4_block6_3_b	1024)		
conv4_block6_out conv4_block6_add (Activation)	(None, 8, 8, 1024)	 0 	
conv5_block1_1_conv conv4_block6_out (Conv2D)	(None, 4, 4, 512)	524,800	
conv5_block1_1_bn conv5_block1_1_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block1_1_relu conv5_block1_1_b (Activation)	(None, 4, 4, 512)	0	
conv5_block1_2_conv conv5_block1_1_r (Conv2D)	(None, 4, 4, 512)	2,359,808	
conv5_block1_2_bn conv5_block1_2_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block1_2_relu conv5_block1_2_b (Activation)	(None, 4, 4, 512)	0	
conv4_block6_out	(None, 4, 4,	2,099,200	

(Conv2D)	2048)		
conv5_block1_3_conv conv5_block1_2_r (Conv2D)	(None, 4, 4, 2048)	 1,050,624 	
conv5_block1_0_bn conv5_block1_0_c (BatchNormalizatio	(None, 4, 4, 2048)	8,192	
conv5_block1_3_bn conv5_block1_3_c (BatchNormalizatio	(None, 4, 4, 2048)	8,192 	
conv5_block1_add conv5_block1_0_b (Add) conv5_block1_3_b	(None, 4, 4, 2048)	0	
conv5_block1_out conv5_block1_add (Activation)	(None, 4, 4, 2048)	0 	
conv5_block2_1_conv conv5_block1_out (Conv2D)	(None, 4, 4, 512)	 1,049,088 	
conv5_block2_1_bn conv5_block2_1_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block2_1_relu conv5_block2_1_b (Activation)	(None, 4, 4, 512)	0	

1			
conv5_block2_2_conv conv5_block2_1_r (Conv2D)	(None, 4, 4, 512)	2,359,808	
conv5_block2_2_bn conv5_block2_2_c (BatchNormalizatio	(None, 4, 4, 512)	2,048	
conv5_block2_2_relu conv5_block2_2_b (Activation)	(None, 4, 4, 512)	0	
conv5_block2_3_conv conv5_block2_2_r (Conv2D)	(None, 4, 4, 2048)	1,050,624	
conv5_block2_3_c	(None, 4, 4, 2048)	8,192	
conv5_block2_add conv5_block1_out (Add) conv5_block2_3_b	(None, 4, 4, 2048)	0	
conv5_block2_out conv5_block2_add (Activation)	(None, 4, 4, 2048)	0	
conv5_block3_1_conv conv5_block2_out (Conv2D)	(None, 4, 4, 512)	1,049,088	

(None, 4, 4, 512) 	2,048	
(None, 4, 4, 512) 	0	
(None, 4, 4, 512)	2,359,808	
(None, 4, 4, 512) 	2,048	
(None, 4, 4, 512) 	0	
(None, 4, 4, 2048)	1,050,624	
(None, 4, 4, 2048)	8,192	
(None, 4, 4, 2048)	0	
	(None, 4, 4, 512) (None, 4, 4, 512) (None, 4, 4, 512) (None, 4, 4, 512) (None, 4, 4, 2048) (None, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	(None, 4, 4, 512) 0 (None, 4, 4, 512) 2,359,808 (None, 4, 4, 512) 2,048 (None, 4, 4, 512) 0 (None, 4, 4, 512) 0 (None, 4, 4, 4, 6) 0 (None, 4, 4, 4, 6) (None, 4, 4, 6) (None, 4, 4, 4, 6) (None, 4, 4, 6

5. Freeze Pre-trained Layers

• Freeze all layers in the ResNet base to train only the custom head.

```
for layer in base_model.layers:
    layer.trainable = False

# Optionally, check if all layers are frozen
print("All base_model layers frozen:", all(not layer.trainable for
layer in base_model.layers))

All base_model layers frozen: True
```

6. Compile and Train the Model (Initial Training)

- Use Adam optimizer, categorical crossentropy, and accuracy metrics.
- Add callbacks: EarlyStopping, ModelCheckpoint, ReduceLROnPlateau.

```
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint,
```

```
ReduceLROnPlateau
# Compile the model
model.compile(
    optimizer=Adam(learning rate=0.0001),
    loss='categorical crossentropy',
    metrics=['accuracy']
)
# Define callbacks
callbacks = [
    EarlyStopping(monitor='val loss', patience=5,
restore best weights=True, verbose=1),
    ModelCheckpoint('best model.h5', monitor='val loss',
save best only=True, verbose=1),
    ReduceLROnPlateau(monitor='val loss', factor=0.5, patience=2,
verbose=1)
1
# Train the model
history = model.fit(
    train gen,
    epochs=25,
    validation data=val gen,
    callbacks=callbacks
)
c:\Users\This PC\.conda\envs\infotech course\Lib\site-packages\keras\
src\trainers\data adapters\py dataset adapter.py:121: UserWarning:
Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`,
`max queue size`. Do not pass these arguments to `fit()`, as they will
be ignored.
  self._warn_if_super_not_called()
Epoch 1/25
                  ———— 0s 294ms/step - accuracy: 0.5577 - loss:
66/66 ----
1.2418
Epoch 1: val loss improved from inf to 0.32776, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
                       ---- 32s 392ms/step - accuracy: 0.5595 - loss:
1.2365 - val accuracy: 0.8933 - val loss: 0.3278 - learning rate:
1.0000e-04
```

```
Epoch 2/25
                  ———— Os 290ms/step - accuracy: 0.8269 - loss:
66/66 -
0.4896
Epoch 2: val loss improved from 0.32776 to 0.23459, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
                23s 355ms/step - accuracy: 0.8270 - loss:
0.4890 - val accuracy: 0.9289 - val loss: 0.2346 - learning rate:
1.0000e-04
Epoch 3/25
                ———— Os 289ms/step - accuracy: 0.8841 - loss:
66/66 ——
0.3163
Epoch 3: val loss improved from 0.23459 to 0.21907, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my_model.keras')`.
                      --- 23s 354ms/step - accuracy: 0.8839 - loss:
0.3167 - val accuracy: 0.9267 - val loss: 0.2191 - learning_rate:
1.0000e-04
Epoch 4/25
                ———— 0s 290ms/step - accuracy: 0.8729 - loss:
66/66 ——
0.3434
Epoch 4: val loss improved from 0.21907 to 0.21174, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
                      24s 356ms/step - accuracy: 0.8730 - loss:
0.3432 - val accuracy: 0.9311 - val loss: 0.2117 - learning rate:
1.0000e-04
Epoch 5/25
                 ———— Os 293ms/step - accuracy: 0.8906 - loss:
66/66 -
0.2978
Epoch 5: val_loss improved from 0.21174 to 0.20588, saving model to
best model.h5
```

```
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save_model(model, 'my model.keras')`.
               ______ 24s 359ms/step - accuracy: 0.8905 - loss:
66/66 -
0.2981 - val accuracy: 0.9311 - val loss: 0.2059 - learning rate:
1.0000e-04
Epoch 6/25
                  ———— 0s 292ms/step - accuracy: 0.9103 - loss:
66/66 ----
0.2478
Epoch 6: val loss improved from 0.20588 to 0.19631, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
66/66 ———— 24s 358ms/step - accuracy: 0.9102 - loss:
0.2481 - val accuracy: 0.9356 - val loss: 0.1963 - learning rate:
1.0000e-04
Epoch 7/25
66/66 ----
                  ———— Os 296ms/step - accuracy: 0.9057 - loss:
0.2496
Epoch 7: val loss did not improve from 0.19631
                     ---- 24s 355ms/step - accuracy: 0.9057 - loss:
0.2497 - val accuracy: 0.9356 - val loss: 0.2035 - learning rate:
1.0000e-04
Epoch 8/25
66/66 -
                 Os 301ms/step - accuracy: 0.9070 - loss:
0.2133
Epoch 8: val loss did not improve from 0.19631
Epoch 8: ReduceLROnPlateau reducing learning rate to
4.999999873689376e-05.
                       24s 363ms/step - accuracy: 0.9071 - loss:
66/66 -
0.2133 - val accuracy: 0.9356 - val loss: 0.1990 - learning_rate:
1.0000e-04
Epoch 9/25
66/66 -
                ———— Os 295ms/step - accuracy: 0.9253 - loss:
0.1990
Epoch 9: val loss improved from 0.19631 to 0.19373, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
```

```
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
                     ----- 24s 363ms/step - accuracy: 0.9252 - loss:
0.1992 - val accuracy: 0.9356 - val loss: 0.1937 - learning rate:
5.0000e-05
Epoch 10/25
                   ———— Os 305s/step - accuracy: 0.9168 - loss:
66/66 -
0.2070
Epoch 10: val loss improved from 0.19373 to 0.19241, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save_model(model, 'my model.keras')`.
                ______ 19826s 305s/step - accuracy: 0.9168 - loss:
66/66 ----
0.2071 - val accuracy: 0.9400 - val loss: 0.1924 - learning rate:
5.0000e-05
Epoch 11/25
66/66 -
                  ———— 0s 309ms/step - accuracy: 0.9218 - loss:
0.2028
Epoch 11: val loss improved from 0.19241 to 0.18791, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
66/66 ______ 25s 380ms/step - accuracy: 0.9217 - loss:
0.2030 - val accuracy: 0.9400 - val_loss: 0.1879 - learning_rate:
5.0000e-05
Epoch 12/25
66/66 -
                  ———— Os 317ms/step - accuracy: 0.9033 - loss:
0.2367
Epoch 12: val loss did not improve from 0.18791
                       25s 385ms/step - accuracy: 0.9034 - loss:
0.2364 - val accuracy: 0.9422 - val loss: 0.1887 - learning rate:
5.0000e-05
Epoch 13/25
66/66 -
                  ———— Os 340ms/step - accuracy: 0.9207 - loss:
0.2116
Epoch 13: val loss did not improve from 0.18791
Epoch 13: ReduceLROnPlateau reducing learning rate to
2.499999936844688e-05.
```

```
---- 27s 406ms/step - accuracy: 0.9208 - loss:
66/66 -
0.2115 - val accuracy: 0.9422 - val loss: 0.1900 - learning rate:
5.0000e-05
Epoch 14/25
66/66 ———
                  ———— 0s 336ms/step - accuracy: 0.9239 - loss:
0.2007
Epoch 14: val loss did not improve from 0.18791
                 26s 400ms/step - accuracy: 0.9239 - loss:
0.2007 - val accuracy: 0.9422 - val loss: 0.1891 - learning rate:
2.5000e-05
Epoch 15/25
66/66 ---
                  ———— Os 316ms/step - accuracy: 0.9188 - loss:
0.2093
Epoch 15: val loss did not improve from 0.18791
Epoch 15: ReduceLROnPlateau reducing learning rate to
1.249999968422344e-05.
66/66 -
                  _____ 25s 378ms/step - accuracy: 0.9189 - loss:
0.2091 - val accuracy: 0.9400 - val loss: 0.1885 - learning rate:
2.5000e-05
Epoch 16/25
66/66 -
                  ———— 0s 302ms/step - accuracy: 0.9098 - loss:
0.2184
Epoch 16: val loss improved from 0.18791 to 0.18632, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save_model(model, 'my_model.keras')`.
66/66 ————— 24s 369ms/step - accuracy: 0.9098 - loss:
0.2183 - val accuracy: 0.9444 - val_loss: 0.1863 - learning_rate:
1.2500e-05
Epoch 17/25
66/66 —
                  ———— Os 299ms/step - accuracy: 0.9153 - loss:
0.2165
Epoch 17: val loss improved from 0.18632 to 0.18520, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
               24s 367ms/step - accuracy: 0.9154 - loss:
0.2163 - val accuracy: 0.9444 - val loss: 0.1852 - learning rate:
1.2500e-05
```

```
Epoch 18/25
                   ———— 0s 299ms/step - accuracy: 0.9325 - loss:
66/66 -
0.1946
Epoch 18: val loss did not improve from 0.18520
               24s 361ms/step - accuracy: 0.9326 - loss:
0.1944 - val accuracy: 0.9400 - val loss: 0.1870 - learning rate:
1.2500e-05
Epoch 19/25
                 ———— Os 300ms/step - accuracy: 0.9262 - loss:
66/66 ———
0.1922
Epoch 19: val loss did not improve from 0.18520
Epoch 19: ReduceLROnPlateau reducing learning rate to
6.24999984211172e-06.
0.1923 - val accuracy: 0.9422 - val loss: 0.1862 - learning rate:
1.2500e-05
Epoch 20/25
                 ———— 0s 312ms/step - accuracy: 0.9190 - loss:
66/66 ---
0.2148
Epoch 20: val_loss did not improve from 0.18520
                  _____ 25s 386ms/step - accuracy: 0.9191 - loss:
0.2145 - val accuracy: 0.9400 - val loss: 0.1860 - learning rate:
6.2500e-06
Epoch 21/25
66/66 -
                   ——— Os 317ms/step - accuracy: 0.9116 - loss:
0.2110
Epoch 21: val loss did not improve from 0.18520
Epoch 21: ReduceLROnPlateau reducing learning rate to
3.12499992105586e-06.
                     25s 379ms/step - accuracy: 0.9117 - loss:
66/66 —
0.2109 - val accuracy: 0.9400 - val loss: 0.1862 - learning rate:
6.2500e-06
Epoch 22/25
                  ———— Os 314ms/step - accuracy: 0.9223 - loss:
66/66 -
0.1886
Epoch 22: val loss did not improve from 0.18520
               ______ 25s 374ms/step - accuracy: 0.9222 - loss:
0.1888 - val accuracy: 0.9422 - val_loss: 0.1857 - learning_rate:
3.1250e-06
Epoch 22: early stopping
Restoring model weights from the end of the best epoch: 17.
```

7. Fine-tune the Model

- Unfreeze some top layers of ResNet for fine-tuning.
- Retrain with a lower learning rate.

```
# Unfreeze the top layers of the base model for fine-tuning
for layer in base model.layers[-10:]:
   layer.trainable = True
# Recompile the model with a lower learning rate
model.compile(
   optimizer=Adam(learning rate=1e-6),
   loss='categorical crossentropy',
   metrics=['accuracy']
)
# Retrain the model
fine tune history = model.fit(
   train gen,
   epochs=10,
   validation data=val gen,
   callbacks=callbacks
)
Epoch 1/10
                _____ 0s 339ms/step - accuracy: 0.9268 - loss:
66/66 ----
0.1968
Epoch 1: val loss improved from 0.18520 to 0.17922, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
            37s 444ms/step - accuracy: 0.9268 - loss:
0.1968 - val accuracy: 0.9400 - val loss: 0.1792 - learning_rate:
1.0000e-06
Epoch 2/10
                 ———— 0s 358ms/step - accuracy: 0.9181 - loss:
66/66 ---
0.2001
Epoch 2: val loss improved from 0.17922 to 0.17822, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save_model(model, 'my_model.keras')`.
        ______ 29s 432ms/step - accuracy: 0.9181 - loss:
0.2001 - val accuracy: 0.9378 - val_loss: 0.1782 - learning_rate:
1.0000e-06
Epoch 3/10
66/66 -
                     --- 0s 342ms/step - accuracy: 0.9096 - loss:
```

```
0.2156
Epoch 3: val loss improved from 0.17822 to 0.17786, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
                   _____ 27s 409ms/step - accuracy: 0.9096 - loss:
0.2154 - val accuracy: 0.9378 - val loss: 0.1779 - learning_rate:
1.0000e-06
Epoch 4/10
                 ———— 0s 336ms/step - accuracy: 0.9170 - loss:
66/66 ----
0.2163
Epoch 4: val loss improved from 0.17786 to 0.17734, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
                    ----- 27s 403ms/step - accuracy: 0.9169 - loss:
66/66 -
0.2163 - val accuracy: 0.9400 - val loss: 0.1773 - learning rate:
1.0000e-06
Epoch 5/10
                 ———— Os 339ms/step - accuracy: 0.9253 - loss:
66/66 -
0.1899
Epoch 5: val loss improved from 0.17734 to 0.17638, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my_model.keras')` or
`keras.saving.save model(model, 'my_model.keras')`.
                 27s 408ms/step - accuracy: 0.9252 - loss:
66/66 ----
0.1901 - val accuracy: 0.9378 - val loss: 0.1764 - learning rate:
1.0000e-06
Epoch 6/10
                  ———— Os 337ms/step - accuracy: 0.9055 - loss:
66/66 -
0.2120
Epoch 6: val loss did not improve from 0.17638
                   ------ 27s 401ms/step - accuracy: 0.9057 - loss:
0.2119 - val accuracy: 0.9378 - val_loss: 0.1765 - learning_rate:
1.0000e-06
Epoch 7/10
```

```
———— Os 339ms/step - accuracy: 0.9249 - loss:
66/66 -
0.1983
Epoch 7: val loss improved from 0.17638 to 0.17577, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my model.keras')`.
              ______ 27s 407ms/step - accuracy: 0.9250 - loss:
0.1981 - val accuracy: 0.9378 - val loss: 0.1758 - learning rate:
1.0000e-06
Epoch 8/10
                _____ 0s 338ms/step - accuracy: 0.9181 - loss:
66/66 ----
0.2082
Epoch 8: val_loss improved from 0.17577 to 0.17527, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save model(model, 'my_model.keras')`.
             _____ 27s 406ms/step - accuracy: 0.9181 - loss:
66/66 -
0.2081 - val accuracy: 0.9356 - val loss: 0.1753 - learning rate:
1.0000e-06
Epoch 9/10
                  ———— 0s 338ms/step - accuracy: 0.9169 - loss:
66/66 —
0.1955
Epoch 9: val loss improved from 0.17527 to 0.17522, saving model to
best model.h5
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save_model(model, 'my_model.keras')`.
66/66 ————— 27s 406ms/step - accuracy: 0.9168 - loss:
0.1957 - val accuracy: 0.9356 - val loss: 0.1752 - learning_rate:
1.0000e-06
Epoch 10/10
66/66 -
                  ———— Os 337ms/step - accuracy: 0.9253 - loss:
0.1949
Epoch 10: val loss improved from 0.17522 to 0.17508, saving model to
best model.h5
```

```
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`.

66/66 ________ 27s 404ms/step - accuracy: 0.9253 - loss: 0.1948 - val_accuracy: 0.9356 - val_loss: 0.1751 - learning_rate: 1.0000e-06
Restoring model weights from the end of the best epoch: 10.
```

8. Evaluate and Visualize

- Plot training/validation accuracy and loss.
- Show confusion matrix and classification report.
- Visualize predictions on test images.

```
from sklearn.metrics import confusion matrix, classification report
import numpy as np
import seaborn as sns
# Plot training/validation accuracy and loss
fig, axs = plt.subplots(\frac{1}{2}, figsize=(\frac{12}{5}))
axs[0].plot(history.history['accuracy'], label='Train Acc')
axs[0].plot(history.history['val accuracy'], label='Val Acc')
if 'accuracy' in fine tune history.history:
    axs[0].plot(np.arange(len(history.history['accuracy']),
len(history.history['accuracy']) +
len(fine tune history.history['accuracy'])),
fine_tune_history.history['accuracy'], label='Train Acc (ft)')
    axs[0].plot(np.arange(len(history.history['val accuracy']),
len(history.history['val accuracy']) +
len(fine tune history.history['val accuracy'])),
fine tune history.history['val accuracy'], label='Val Acc (ft)')
axs[0].set title('Accuracy')
axs[0].legend()
axs[1].plot(history.history['loss'], label='Train Loss')
axs[1].plot(history.history['val loss'], label='Val Loss')
if 'loss' in fine tune history.history:
    axs[1].plot(np.arange(len(history.history['loss']),
len(history.history['loss']) +
len(fine_tune_history.history['loss'])),
fine tune history.history['loss'], label='Train Loss (ft)')
    __axs[<mark>1]</mark>.plot(np.arange(<mark>len</mark>(history.history['val_loss']),
len(history.history['val loss']) +
len(fine tune history.history['val loss'])),
fine tune history.history['val loss'], label='Val Loss (ft)')
axs[1].set title('Loss')
axs[1].legend()
plt.show()
```

```
# Predict on test set
y true = test gen.classes
y_pred_probs = model.predict(test gen)
y_pred = np.argmax(y_pred_probs, axis=1)
# Confusion matrix
cm = confusion matrix(y true, y pred)
plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=classes, yticklabels=classes)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()
# Classification report
print("Classification Report:")
print(classification report(y true, y pred, target names=classes))
# Visualize predictions on test images
test gen.reset()
fig, axes = plt.subplots(2, 5, figsize=(18, 8))
for i, ax in enumerate(axes.flat):
    img, label = next(test gen)
    pred idx = np.argmax(model.predict(img), axis=1)[0]
    true idx = np.argmax(label, axis=\frac{1}{0})[\frac{0}{0}]
    ax.imshow(img[0].astype('uint8'))
    ax.set_title(f"True: {classes[true_idx]}\nPred:
{classes[pred idx]}")
    ax.axis('off')
plt.tight_layout()
plt.show()
```


cats	0.97	0.93	0.95	150
dogs	0.95	0.97	0.96	150
snakes	0.97	0.99	0.98	150
Silakes	0137	0.55	0.50	130
accuracy			0.96	450
macro avg	0.96	0.96	0.96	450
weighted avg	0.96	0.96	0.96	450
weighted avg	0.50	0130	0.50	150
1/1		2s 2s/step		
1/1		0s 284ms/ste	n	
1/1		0s 291ms/ste	•	
1/1		0s 319ms/ste	•	
1/1 ———		0s 289ms/ste		
1/1 —		0s 209ms/ste		
•			•	
1/1		•	•	
1/1 ———		0s 283ms/ste		
1/1		0s 280ms/ste 0s 282ms/ste		
1/1 ———		0s 282ms/ste	n	

9. Save and Export the Model

```
# Save the trained model in HDF5 format
model.save('final_model.h5')

print("Model saved as 'final_model.h5'")

WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my_model.keras')` or
`keras.saving.save_model(model, 'my_model.keras')`.
```

Model saved as 'final_model.h5'