Problem 1:

Exercise 2:

$$A_{11} \rightarrow A_{11}A_{11} \rightarrow A_{23}A_{23} \rightarrow 1A_{23}O 1A_{23}O$$

$$\rightarrow 11600111A_{23}00 \rightarrow 11600111A_{23}000$$

$$\rightarrow 11001116000 \rightarrow 11000$$

Exercise 4:

$$\overline{\Phi}_{\Sigma}: \quad \Sigma^* \to \mathbb{N}^n$$

$$\omega \to (|\omega|_{\sigma_1, \dots}, |\omega|_{\sigma_n})$$

Lemma 1: Any context free language over $\Sigma = \{\sigma\}$ is regular

Proof: Let $Z = \{6\}$: fixed alphabet of L: any context free language over Z.

a) Pumping lemma $\Rightarrow \exists q: |s| \ni q$, then $\omega = uv \times yz$ satisfying the conditions $(u,v,x,y,z \in \{e\}^*)$ (i) $\forall i \ni 0$, $uv^i \times y^i z \in L$ (ii) $|vy| > 0 \Rightarrow at least one of them is not empty (iii) <math>|v \times y| \leq q$

Choose $p=q_1 r= |uxz|_1 s= |vy| \Rightarrow r \geqslant 0, s > 0$ (by ii) |w|=r+s and since $|u,v_1x_1y_1z| \in \{o\}^*$ |v|=r+s and since $|u,v_1x_1y_1z| \in \{o\}^*$ |v|=r+s and since $|u,v_1x_1y_1z| \in \{o\}^*$ Choose |v|=r+s and since |v|=r+s (satisfy (a)) |v|=r+s and since |v|=r+s (satisfy (b)) |v|=r+s and since |v|=r+s (satisfy (b)) |v|=r+s and since |v|=r+s (satisfy (c)) |v|=r+s and since |v|=r+s (satisfy (c)) |v|=r+s and since |v|=r+s (satisfy (c)) |v|=r+s and since |v|=r+s (satisfy (c))

b) Lp = 1 ω ∈ L: |ω| > p 1 ≤ L.

L'p = L| Lp: regular & express L: terms of Lp& Lp

Consider the NFA N

 $\forall \omega \in L_p' \Rightarrow \omega \in \omega \text{ will make each state } Q_{|\omega|} \text{ accepted}$ Hence $L_p' = L(N) \Rightarrow L_p' : \text{ regular}.$ Moreover $L_p' = L_p' = L_p'$

