

DISEÑO FINAL: CASH TESTER

Andrea Camila Moya Buitrago w.benavides@javeriana.edu.co

Natalia Morales Varón nataliamorales@javeriana.edu.co

Santiago Burgos Martinez santiagoburgos@javeriana.edu.co

Pontificia Universidad Javeriana Bogotá, Colombia

INTRODUCCIÓN

En el presente informe del diseño final (cash tester), se analizará con detalle el proceso de concepción, diseño y construcción del proyecto que se llevó a cabo en la asignatura de fundamentos de diseño.

PALABRAS CLAVE

Amplificador instrumental, filtro pasa bajos, puente de Wheatstone, detector de picos, comparador, frecuencia, buzzer, invidentes.

OBJETIVO GENERAL

 Implementar una solución viable a la problemática que más de 595.288 personas sufren en el país al no poder identificar eficazmente la denominación de las monedas de referencia colombiana.

OBJETIVOS ESPECIFICOS

- Desarrollar desde el campo de trabajo de la ingeniería una respuesta a una problemática latente, apostándole a la inclusión y al desarrollo del país.
- Implementar un sistema, con uso de la electrónica que generé una respuesta sonora, que una persona con baja visión/invidente reconozca a partir de la denominación de la moneda en vigencia.

EQUIPO REQUERIDO

En la realización de la práctica se utilizaron los siguientes equipos:

• Generador de funciones - KEYSIGHT-33500

• Osciloscopio – KEYSIGHT–DSO-X-2024A.

• Fuente – KEYSIGHT-U8031A.

• DVM - KEYSIGHT-344500A.

CALCULOS Y ANÁLISIS

El diseño se compone de un sensor (transductor) el cual es una resistencia sensible a la fuerza. Luego tenemos un acondicionamiento de señal que se compone de un amplificador de instrumentación y por un filtro pasa bajos, posteriormente la señal que sale del filtro es pasada por un detector de picos el cual se encarga de retardar el pico de voltaje lo necesario para que el comparador la detecte, la clasifique y entregue determinado voltaje DC al VCO que variará la frecuencia de un sonido para de esta manera identificar el valor de la moneda.

• Resistencia sensible a la fuerza (FSR)

FlexiForce A101

Para la realización de la practica utilizamos un sensor piezoeléctrico de fuerza ya que tiene un intervalo de medición de fuerza bastante grande y su diseño hace que sea cómodo para la idea principal que es la portabilidad.

Actual size of sensor

Fig 1. Sensor FlexiForce A101 y dimensiones

• Puente de Wheatstone

El puente de Wheatstone dentro de nuestro diseño cumple una función primordial ya que, de acuerdo con las especificaciones de nuestro sensor FSR (Force -Sensitive Resistor) escogido, este solo entrega una señal DC. De esta forma con la ayuda del puente de Wheatstone podemos obtener una señal diferencial la cual ya es posible que funcione de entrada a nuestro amplificador instrumental.

Fig2. Principio de funcionamiento de puente de Wheatstone. [1]

En efecto, cuando el puente está equilibrado sucede lo siguiente:

$$\begin{split} I_g &= 0; I_1 = I_2; I_3 = I_x; V_A = V_B \\ \frac{V_{CA}}{V_{AD}} &= \frac{I_1 R_1}{I_2 R_2} = \frac{R_1}{R_2}; \frac{V_{CB}}{V_{BD}} = \frac{I_3 R_3}{I_x R_x} = \frac{R_3}{R_x} \\ V_A &= V_B \to \frac{V_{CA}}{V_{AD}} = \frac{V_{CB}}{V_{BD}} \to \frac{R_1}{R_2} = \frac{R_3}{R_x} \end{split}$$

Luego, se obtiene que:

$$R_{x} = R_3 \frac{R_2}{R_1}$$

Se puede demostrar que si se tiene un puente de Wheatstone equilibrado (IG = 0)

$$R1 = R2 = R3 = RX = R0.$$

Para determinar el valor de las resistencias del puente de Wheatstone que acompañan a nuestro sensor, partimos del datasheet de donde obtenemos la Fig 3. la cual nos dice que cuando el sensor no tiene fuerza aplicada sobre él, su resistencia máxima es de aproximadamente $32 \text{ K}\Omega$.

Teniendo en cuenta esta resistencia máxima del sensor procedemos a buscar los valores comerciales de resistencias que se aproximen más a este valor para usarlas en el puente de Wheatstone. De la

búsqueda realizada encontramos que el valor más cercano a la resistencia del sensor es una resistencia de $33 \mathrm{K}\Omega$.

Por último, para la realización de simulaciones se opta por un valor base de 33k para el sensor dentro de nuestro puente de Wheatstone.

Fig 3. Grafica de Resistencia VS Presión (Fuerza) del sensor FlexiForce A101

ETAPA DE AMPLIFICACIÓN

• Amplificador de Instrumentación.

El amplificador de instrumentación tiene varias ventajas, una ganancia estable, lineal y seleccionable. Impedancia de entrada alta y una entrada diferencial con CMRR alto.

El esquemático en el cual está basado el amplificador instrumental es el siguiente

Fig 4. Esquemático amplificador instrumentación.

Etapa de pre-amplificación

Análisis

En el punto A:

$$\frac{V_A - V_1}{R_A} = \frac{V_1 - V_2}{R_G}$$

Despejamos V_A

$$V_A = V_1 \left(\frac{R_A}{R_G} + 1\right) - \frac{R_A}{R_G} V_2$$

Ahora en el punto B:

$$\frac{V_1 - V_2}{R_G} = \frac{V_2 - V_B}{R_B}$$

Despejando V_B

$$V_B = V_2 \left(\frac{R_B}{R_G} + 1 \right) - \frac{R_B}{R_G} V_1$$

Si restamos ambas expresiones obtenemos

$$V_{out} = (V_2 - V_1) \left(1 + \frac{R_A + R_B}{R_g} \right)$$

Nuestro paréntesis representa la ganancia diferencial de la etapa pre-amplificadora.

Etapa diferencial

$$V_{out} = \left(-\frac{R_2}{R_1}\right) V_A \left(1 + \frac{R_2}{R_1}\right) * \left(\frac{R_4}{R_2 + R_4}\right) V_B$$

TOTAL

$$V_d = V_B - V_A$$

$$V_{cm} = \frac{V_A + V_B}{2}$$

$$V_{out} = -V_d \left[\frac{1 + \frac{R_2}{R_1}}{1 + \frac{R_3}{R_4}} * \left(\frac{1}{2} + \frac{R_B}{R_g} \right) + \frac{R_2}{R_1} \left(\frac{1}{2} + \frac{R_A}{R_g} \right) \right] + V_{cm} * \left[\frac{1 - \frac{R_2 R_3}{R_1 R_4}}{1 + \frac{R_3}{R_4}} \right]$$

De donde se puede deducir lo siguiente

CMRR es cero sí
$$1 - \frac{R_2 R_3}{R_1 R_4} = 0$$
. Esto si $\frac{R_2}{R_1} = \frac{R_4}{R_3}$

Además, se puede simplificar la ecuación si $R_A = R_B$

$$A_d = \frac{R_2}{R_1} \left(1 + 2 \frac{R_A}{R_g} \right)$$

La resistencia R_g permite variar la ganancia sin afectar el CMRR

Ahora, si nuestro terminal de V_{ref} no se encuentra conectado a tierra, sino a otra tensión de referencia obtenemos entonces

$$V_{out} = A_d(V^+ - V^-) + V_{ref}$$

Por lo tanto:

Para la amplificación se tuvieron en cuenta dos amplificadores y se realizó una breve comparación con el fin escoger el más conveniente.

Amplificado r	Ganancia	CMRR	PSRR	Impedancia entrada	Impedanci a salida	BW	Slew Rate
LM324	100 V/mV	70 típico	100 típico	12M	58.3	1 MHz	0.5 V/us
LM358	100 V/mV	85 típico	100 típico	12 M	58.3	1 MHz	0.3 V/us

Tabla 1. Comparación entre amplificadores.

Observando la tabla podemos ver la diferencia existente en el CMRR y el slew rate. Teniendo en cuenta esta información obtenida de las hojas de especificaciones se puede deducir que el mejor LM358 es un mejor amplificador para esta aplicación.

De acuerdo a los requerimientos de la práctica, tenemos que sustituir los amplificadores previamente comparados por un amplificador de instrumentación. Ahora los requerimientos que tenemos para nuestro diseño son: un voltaje offset bajo tanto de entrada como de salida, un CMRR alto, la posibilidad de ser polarizado de forma single supply, tener una salida Rail to Rail.

Realizando una búsqueda intensiva de amplificadores de instrumentación en la página web de Texas Instruments (http://www.ti.com/amplifier-circuit/instrumentation/overview.html) buscando aquellos que cumplieran la mayoría de nuestros requisitos, como también estuvieran disponibles en el mercado colombiano reducimos nuestro resultado al amplificador de instrumentación INA 128, el cual a pesar de no poder cumplir nuestro requerimiento de Rail to Rail, obtenemos a cambio su disponibilidad en el mercado colombiano.

Amplificador Instrumental	Offset Voltaje	CMRR	Power supply	Rango de voltaje en la salida
INA 128	50 μV Max	120 dB min	±18 V Max	(V+) – 1.4 min

Tabla 2. Características por las cuales se escogió el INA128.

Teniendo la facilidad de la utilización de un Amplificador Instrumental como lo son los INA, procedimos a realizar los siguientes cálculos con el INA 128.

Para nuestros cálculos de la amplificación teniendo en cuenta la teoría nos basamos en el siguiente esquemático obtenido de la hoja de especificaciones.

Simplified Schematic 97 INA128, INA129 Over-Voltage W W 40kΩ 40kΩ 25k (1) ₩ ₩ 25kΩ(1) W O Ref Over-Voltage 40kΩ 40kΩ Protection NOTE: (1) INA129: 24.7kΩ

Fig 5. Esquemático INA 128.

Para determinar la ganancia que debería tener nuestro amplificador de instrumentación procedimos a realizar pruebas repetitivas (caracterización) con nuestro sensor para determinar el voltaje máximo que obtendremos de este. (anexo1)

De esta forma procedemos a calcular la ganancia teniendo en cuenta los voltajes de entrada, su voltaje máximo de salida, y su voltaje de referencia

$$(v^+ - v^-)G + v_{re_f} = v_{\text{out}}$$

$$v_{out} = v_{polarizacion} - v_{rango \, salida} \rightarrow v_{out} = 6v - 0.9 \rightarrow v_{out} = 5.1v$$

$$v^+ = 3.81v$$

$$v^- = 2.25v$$

$$v_{re_f} = 1v$$

Despejando G de la ecuación obtenemos que

$$G = 2.63$$

Ahora procedemos a calcular la resistencia R_G para obtener dicha ganancia. Para esto hacemos uso de la ecuación proporcionada por el datasheet del amplificador para el cálculo de G

$$G = 1 + \frac{50k}{R_g}$$

En donde reemplazamos G por su valor previamente encontrado y procedemos a despejar R_g , de lo cual obtenemos que

$$R_a = 30.67 K\Omega$$

Con el valor de R_g encontrado procedemos a realizar la búsqueda de la resistencia teniendo en cuenta los valores comerciales. De la búsqueda realizada obtenemos que la resistencia más cercana es de $33 \mathrm{K}\Omega$.

Por último, habiendo obtenido la resistencia $R_g=33K\Omega$ procedemos a recalcular tanto G como $v_{\rm out}$.

$$G = 1 + \frac{50k}{33k} = 2.52$$

Para hallar el v_{out} máximo que obtendremos a la salida, resolvemos la ecuación

$$(v^+ - v^-)G + v_{re_f} = v_{out}$$

 $v_{out} = 4.93v$

Ahora sabemos que con nuestra moneda de mayor masa (1000= 9.7g) obtendremos un voltaje a la salida de nuestro amplificador instrumental máximo de 4.93v, que se encuentra dentro del rango aceptable especificado por el datasheet del componente.

ETAPA DE FILTRADO

Filtro pasa bajos

Fig 6. aplicación filtro pasa bajos. [2]

Los filtros pasa-bajos son aquellos que introducen muy poca atenuación a las señales que son menores que una determinada frecuencia, está siendo la frecuencia de corte. Las frecuencias que son mayores que la de corte son atenuadas fuertemente.

En el caso más sencillo de implementación se tiene la siguiente configuración:

Fig 7. Filtro pasa-bajos simple/pasivo.[3]

El funcionamiento en el cual se basa un pasa bajos es en que el condensador presentará una gran oposición al paso de corrientes debidas a frecuencias bajas y como forma un divisor de tensión con la resistencia (en el dominio de frecuencia), aparecerá sobre él casi toda la tensión de entrada. Para frecuencias altas el condensador presentará poca oposición al paso de la corriente y la resistencia se quedará con aproximadamente el total de la tensión de entrada, apareciendo muy poca tensión en extremos del condensador.

Una vez obtenida la etapa de amplificación se obtuvo un mejor y más trabajable pico de voltaje. En el dominio de la frecuencia Fig 23 se observó que la frecuencia fundamental, es decir la que nos interesa está en aproximadamente 2KHz, esta frecuencia equivale a la obtenida por la moneda de 1000. Para evitar que rebotes de la moneda u otras señales parasitas intervinieran en nuestro circuito se diseñó un filtro pasa bajas activo, debido a que fue el que mejor se acomoda a los requerimientos del sistema, con una frecuencia de corte de

5KHz (esto es porque la otra frecuencia-armónico está alrededor de 15KHz).para el diseño del filtro se usó la herramienta de "*filter pro*" de Texas instrument la cual planteó un filtro de quinto orden para tener una pendiente de caída mayor y por lo tanto un filtrado más eficiente.

Fig 8. Filtro del circuito

Los circuitos integrados que se usaron en la práctica fueron diversos debido a que estábamos sujetos a la disponibilidad, por lo tanto, en la protoboard se usó el circuito integrado LM324 y en PCB se usó el TLV3544, pero se adquirieron estos circuitos integrados con el objetivo de que cumplieran la misma o similar función del TLV171 para que no representara una diferencia muy significativa.

#	Name	Manufacturer	Part Number	Properties
1.	A1_S1	Texas Instruments Inc.	TLV171	GbwTyp= 3MHz VccMax= 36V VccMin= 2.7V

Obteniendo el filtro se procedió a verificar por medio de las gráficas más relevante su correcta funcionalidad para verificar si es el modelo óptimo para la aplicación.

Fig 9. Respuesta de la magnitud del filtro pasa bajas.

Fig 10. Respuesta en fase del filtro pasa bajas.

Fig 11. Delay del filtro pasa bajas.

Por lo tanto, se tienen las siguientes especificaciones:

Tipo de filtro	Pasa bajos
Tipo de respuesta del filtro	Chebyshev
Orden del filtro	5.0
Topología del circuito	Un solo polo
Número de estados	3.0

13

Frecuencia de la pasa banda	5.0kHz
ganancia	1
SingleSupply	5
Tolerancia de las resistencias	E6
Tolerancia de los capacitores	E6

Tala 3. Especificaciones del filtro.

ETAPA DE DETECCIÓN DE PICOS

Para la etapa de detección de picos se usó una topología brindada por el profesor Helio Forero en la asignatura de núcleo fundamental electrónica analógica, el cual corresponde al siguiente esquemático.

Fig. 12 Detector de picos.

En donde lo que sucederá es que el capacitor se va cargar al voltaje del pico detectado, posteriormente se agrega una resistencia en paralelo para controlar el tiempo de descarga del capacitor, obteniendo un τ (tao) de 5 mili segundos el cual nos da una idea aproximada del tiempo de descarga del capacitor.

ETAPA DE COMPARACIÓN

Para poder identificar la denominación de cada moneda se implementó la siguiente topología, la cual consta de 5 comparadores que al final llegan a un sumador.

Cada comparador funciona con un voltaje de comparación el cual está conectado a la terminal inversora del amplificador operacional, si el voltaje de la entrada del comparador (es decir, a la salida del detector de picos) es mayor o igual que este voltaje se encenderá y prendera un diodo, por lo tanto, la salida va a ser este voltaje, que usualmente oscila entre 0.56V a 0.62V

(valores reales). Al sumador le entraran los voltajes de la salida de cada comparador y las sumará, saliendo un voltaje distinto para cada moneda.

Fig. 13 Comparador

Para los voltajes de comparación es poco viable tener una fuente para cada voltaje, por lo tanto, se implementaron 5 divisores de voltaje.

PROCEDIMIENTO

Inicialmente la práctica se desarrolló en torno al análisis de la señal que proporciona el sensor de presión (FSR), por lo tanto, para obtener una salida diferencial se utilizó el puente de Wheatstone, una vez obtenida la salida diferencial requerida se inició con la etapa de amplificación y posteriormente con la etapa de filtrado, una vez obtenida la señal de entrada tratada se paso por un detentor de picos, el cual se encarga de retardar el voltaje pico y con ese voltaje DC se procede a compararlo para identificar la denominación de la moneda y esta

señal se manifiesta de manera sonora a través de la variación de la frecuencia de sonido determinado.

En las imágenes siguientes se evidencia la implementación de nuestro diseño.

Para la realización de la practica implementamos todos nuestros cálculos teóricos y los esquemáticos propuestos.

Inicialmente la práctica se desarrolló en torno al análisis de la señal que proporciona el sensor de presión (FSR), por lo tanto, para obtener una salida diferencial se utilizó el puente de Wheatstone, una vez obtenida la salida diferencial requerida se inició con la etapa de amplificación, filtrado, detector de picos, comparador y por ultimo variación de la frecuencia de un buzzer.

Etapa de amplificación

Para la desarrollar la etapa de amplificación, primero se obtuvo por medio de medidas repetitivas un pico de voltaje que fue de aproximadamente 1.8 V por lo tanto se requería una amplificación de aproximadamente 2.5 voltios para obtener un pico de mayor, más visible y cercano a el mismo voltaje de polarización (6 - 0) sin sobrepasarlo.

Etapa de filtrado

Una vez obtenida la etapa de amplificación se obtuvo un mejor y más trabajable pico de voltaje, en el dominio de la frecuencia se observó que la frecuencia fundamental, es decir la que nos interesa está en aproximadamente 2KHz, para evitar que rebotes de la moneda u otras señales parasitas intervinieran en nuestro circuito se diseñó un circuito pasa bajas, debido a que fue el que mejor se acomoda a los requerimientos del sistema, con una frecuencia de corte de 5KHz (debido a que la otra frecuencia está alrededor de 15KHz), se desarrolló usando la herramienta de filter pro de Texas instrument y se planteó de sexto orden para tener una pendiente de caída más empinada y por lo tanto un filtrado más eficiente.

Fig. 14 Filtro del circuito

Los circuitos integrados que se usaron en la practica fueron diversos debido a que estábamos sujetos a la disponibilidad, por lo tanto en la protoboard se usó el circuito integrado LM324 y en PCB se usó el TLV3544, pero se adquirieron estos operacionales con el objetivo de que cumplieran la misma función del TLV171 por lo tanto esto representa una diferencia no muy significativa.

#	Name	Manufacturer	Part Number	Properties
1.	A1_S1	Texas Instruments Inc.	TLV171	GbwTyp= 3MHz VccMax= 36V VccMin= 2.7V

Detección de picos

Para la etapa de detección de picos se usó la siguiente topología comúnmente usada y funcionó de manera óptima sin necesidad de cambios relevantes, solo se adecuaron los valores de R y C para prolongar el tiempo en el cual el pico se mantiene constante.

Fig. 15 Simulación detector de picos

La fórmula por la cual se calcularon los valores de R y C para hallar un valor de τ (tao) es la siguiente:

$$\tau = \frac{1}{RC} = 5$$
ms

Comparación

Para la etapa de comparación se diseñó una topología especial que cumpliera con los requerimientos del proyecto, debido, a que ninguna etapa previamente establecida era óptima.

El diseño se basó en el siguiente comparador, que se seleccionó básicamente por el poco espacio que usa y la facilidad de su implementación.

Fig. 16 topología básica de un comparador [8]

Lo cual tendrá a su salida:

Fig. 17 Graficas de salida de un comparador básico. [8]

Luego se decidió agregar al diseño diodos para que si la comparación era igual o mayor se encendiera y por ende el comparador quedara a este voltaje y con la siguiente topología no inversora de un sumador obtener un voltaje distinto para cada moneda, debido a que para el pico de voltaje más grande todos los comparadores se van a encender, debido a que este voltaje es mayor que a todos los voltajes de comparación.

Fig. 18 Topología implementada de un sumador. [9]

En donde se adecuó el diseño para 5 entradas, debido a que todos los voltajes son similares (los del diodo) se usaron las mismas resistencias (10K ohms), para las resistencias de la entrada inversora del amplificador operacional y la salida (realimentación) se halló la función de transferencia y se reemplazó para una ganancia unitaria.

Para el análisis del sumador se efectuaron todos los cálculos necesarios para entender con profundidad el proceso que se lleva a cabo, para esto se hizo superposición para calcular el voltaje que teóricamente debería salir del sumador para cada moneda, siempre basándonos en la función de transferencia, la cual es la siguiente:

$$v_0 = v_x \cdot \left(1 + \frac{R_f}{R_1}\right)$$
 $v_x = v_1 + v_2 + v_3 + v_4 + v_5$

En las cuales remplazamos v_0 por el voltaje deseado cuando tenemos todos los diodos encendidos (se introduce la moneda de mayor denominación), el cual fue de 5 voltios.

Teniendo en cuenta que:

$$0.56 = v_1 = v_2 = v_3 = v_4 = v_5$$

Remplazamos para hallar la relación entre las resistencias R_f y R_1 la cual fue de aproximadamente de 8, por lo tanto, usamos $R_f = 8.2 \text{k}\Omega$ y $R_1 = 1.2 \text{k}\Omega$, cumpliendo así los requerimientos deseados.

Posteriormente apagamos uno por uno los diodos para calcular los voltajes DC que saldrían del sumador con cada entrada, teniendo en cuenta que cuando no se prende un comparador, a la entrada del sumador tenemos la resistencia de $10k\Omega$ en serie con la resistencia de $8.2k\Omega$ a tierra. Los voltajes a la salida del sumador teóricamente son:

Denominación de la moneda	Voltaje de salida (V)
1000	5
500	4.37
200	3.6
100	3.1
50	2.6

Tabla 4. Voltajes teóricos de salida del comparador con cada moneda

Implementando el circuito anteriormente descrito (Fig. 18) se obtuvo el esquematico de la figura 19, cumpliendo el objetivo de que con cada pico del voltaje saliera un valor DC a la salida del sumador.

Fig. 19 simulación de la etapa de comparación

Por último, se implementó el detector de picos junto al comparador para verificar que sirviera de manera adecuada, el proceso fue exitoso y con esto se dio paso a la implementación física en la protoboard.

Fig. 20 Simulación etapa de detección de picos y etapa de comparación

Posteriormente se unieron las dos etapas comprobando la congruencia de los dos diseños y verificando que van acorde con los requerimientos del proyecto, lo cual se evidencio en la siguiente imagen que corresponde a la simulación de las dos etapas. Luego se implementó en protoboard y en PCB.

Fig 21. Esquemático de las primeras dos etapas del proyecto.

Fig 22. Simulación del filtro.

Basándonos en este esquemático, realizamos el montaje en protoboard.

Fig 23. Montaje en protoboard.

ANÁLISIS DE RESULTADOS

• Ganancia.

La ganancia es una magnitud que expresa la relación entre amplitudes de señales de entrada con señales de salida. Su unidad es adimensional. (V/V)

Fig 24. Ganancia protoboard.

De la gráfica de ganancia de protoboard podemos observar la señal que entra y sale de nuestro amplificador instrumental en donde comprobamos con las ecuaciones previamente descritas en el documento nuestros cálculos teóricos.

Al realizar la comparación entre las salidas de nuestro amplificador de instrumentación implementado tanto en protoboard como en PCB se puede ver que hay concordancia entre ellos, con la diferencia que los resultados obtenidos en PCB poseen menor ruido al final del pulso, lo cual se traduce en un mayor rango dinámico.

Manejo

Para la realización del manejo de nuestro filtro, configuramos el generador de funciones para obtener una onda seno, con un offset de 2.5v. estos valores son en concordancia a los valores que obtendremos del INA128 en la práctica.

Fig 25. Manejo filtro protoboard por arriba.

Observando los resultados obtenidos de nuestro filtro en protoboard, al realizar un aumento en el Vpp de la señal seno obtenemos que nuestro filtro presenta saturación cuando en su entrada tiene un Vpp= 4.4 Vpp. Esto con un voltaje offset de 2.7v.

Fig 26. Manejo filtro protoboard por abajo.

Por otro lado, los resultados que obtuvimos de nuestro filtro en protoboard al reducir el Vpp de la señal y configurar nuestro offset en 2.5v obtenemos que nuestra señal se satura por abajo con un Vpp = 4.3Vpp

• Factor de rechazo en modo común.

El factor de rechazo al modo común o CMRR, (Common Mode Rejection Ratio) es uno de los parámetros de un amplificador operacional

Es un valor que principalmente mide lo bien que un amplificador operacional puede ignorar los voltajes que son comunes a ambas de sus entradas de corriente directa, describe cuan limpiamente este amplifica las señales que aparecen como diferencias de tensión en sus entradas.

El CMRR siempre es positivo y sus unidades son los decibelios. Mientras más alto se obtenga el CMRR mejor rechazo a ruido se obtendrá.

Este dado por la siguiente formula:

$$CMRR = 20 \log_{10} \left(\frac{A_d}{A_s} \right)$$

En donde A_d es la ganancia en modo diferencial y A_s es la ganancia en modo común.

	CMRR (dB)
Protoboard	46.64

Tabla 4. Datos obtenidos de CMRR.

Factor de rechazo a fuentes

El Factor de Rechazo a Fuente de Alimentación o PSRR (Power Supply Rejection Ratio) es principalmente usado para describir la cantidad de ruido de una fuente que un dispositivo puede rechazar.

Es la capacidad de un amplificador para mantener su voltaje de salida a medida que varía la tensión de alimentación en DC. Relación entre el cambio en la alimentación a la tensión de entrada equivalente diferencial que se produce entre los terminales del operacional. Un amplificador operacional ideal tiene PSRR infinito.

Este se calcula con la siguiente formula

$$PSRR = 20 \log_{10} \left(\frac{\Delta v_{fuente}}{\Delta v_{ios}} * A_v \right) dB$$

En donde Δv_{fuente} es la variación que se efectúa a la fuente y Δv_{ios} es la variación del voltaje de salida del circuito respecto a la variación del voltaje de entrada.

	PSRR
Protoboard	55.91

Tabla 5. Datos obtenidos de PSRR

• Impedancia de entrada y de salida.

	Zin	Zout
Protoboard	16.695k Ω	1.6kΩ

Tabla 6. Datos obtenidos de las impedancias de los circuitos

• Ancho de banda.

El ancho de banda es la diferencia existente entre las frecuencias superior e inferior de varias frecuencias del sistema. Su medición está dada en hertz (Hz). Una de sus características principales es que cualquier banda de una anchura puede llevar bastante información independientemente donde se encuentre el espectro de frecuencia.

Para determinar el ancho de banda se definen dos frecuencias limites, estas deben corresponder a una amplitud aproximada de 0.7 de la amplitud de la señal.

Fig 27. Comparación bode.

Basados sobre la definición del ancho de banda en el filtro pasa bajas que se diseñó con frecuencia de corte de aproximadamente 5KHz (es decir se introduce un polo en aproximadamente 5KHz), se puede observar que la frecuencia de corte del filtro es aproximadamente ese valor en donde el bode del circuito implementado en protoboard (gráfica de color azul) tiene una frecuencia de corte un poco más grande debido a que los condensadores usados no fueron de los valores exactos del diseño. En tanto las gráficas de la simulación (naranja) y el bode del PCB (rojo) tienen gran congruencia entre ellas.

• Rango dinámico

El rango dinámico es la diferencia existente entre el nivel más alto de la señal que se puede producir con un sistema y la frecuencia de mayor nivel que componga el piso de ruido.

Se define por el margen que existe entre un nivel de referencia del sistema y el ruido de fondo de este mismo. Su medición se realiza con la ayuda de la herramienta FFT (fast fourier transform).

Fig 28. Gráfica de rango dinámico.

El rango dinámico del circuito completo del proyecto (cash tester) se puede analizar en la imagen anterior y su valor se puede aproximar a 57 dB.

Potencia

Para calcular la potencia disipada del circuito se utilizó la siguiente formula:

$$P = v \cdot I$$

Se procedió a medir la corriente que consume el circuito y se multiplico con el voltaje de alimentación brindándonos una potencia de 32.22mW.

Piso de ruido

Relación señal a ruido se define como la relación de la potencia señal que se transmite y la potencia de ruido que la corrompe. Refiere a la diferencia en dB entre el nivel promedio de la señal y el nivel promedio del piso de ruido

Fig 29. Gráfica piso de ruido

En la figura 29 de puede observar a escalas reales que el piso de ruido del proyecto completo en protoboard es aproximadamente 74dB.

CONCLUSIÓNES

- La ingeniería a parte de tener componente muy fuerte en cuanto al desarrollo tecnológico debe tener un componente humano y dar soluciones viables a problemáticas constantes que viven millones de personas.
- Teniendo en cuenta el rango dinámico obtenido en la protoboard y en la PCB universal, podemos ver que en PCB generalmente el rango dinámico es más alto debido a que el ruido que se encuentra en este sistema es menor, ya sea por los cables utilizados en montaje, los componentes utilizados (ya que en PCB se utilizan componentes para montaje superficial), entre otros.
- Es necesario tener en cuenta los parámetros necesarios para la escogencia de todos los elementos que se utilicen en el montaje y que además tengan todos aquellos

requisitos que nuestro sistema requiere para que se pueda realizar satisfactoriamente, ya que cualquier cambio de nuestro sistema hace que se cambien nuestros cálculos y probablemente las señales obtenidas a la salida.

• Es importante verificar siempre en nuestros montajes el buen estado de la protoboard y de la PCB universal, puesto que esto puede llegar a afectar bastante algún resultado de medición de nuestro sistema.

REFERENCIAS

- Link datasheet INA128 http://www.ti.com/lit/ds/symlink/ina128.pdf
- Link Data sheet lm324
 http://www.electronicoscaldas.com/datasheet/LM124-LM124A-LM224-LM224A-LM324-LM324A-LM2902V-LM2902V-LM224K-LM224KA-LM324K-LM324KA-LM2902K-LM2902KV-LM2902KAV_TI.pdf
- Link Datasheet lm358
 <a href="http://www.electronicoscaldas.com/datasheet/LM158-LM158A-LM258-LM2
- [1] Rodríguez Pozueta, Miguel Angel "PUENTE DE WHEATSTONE" https://personales.unican.es/rodrigma/PDFs/Puente%20de%20Wheatstone.pdf
- [2] Learning about electronics http://www.learningaboutelectronics.com/Articles/Low-pass-filter.php
- [3] Filtro pasa bajos https://www.ecured.cu/Filtro_pasa_bajos
- [4] CMRR https://es.wikipedia.org/wiki/Rechazo_al_modo_com%C3%BAn
- https://es.wikipedia.org/wiki/Rechazo_al_modo_com%C3%BAi
 PSRR
- [6] Piso de ruido http://azimadli.com/vibman-spanish/pisoderuido1.htm
- Ancho de banda http://musiki.org.ar/Ancho de banda (%CE%94f)
- Rango dinámico y piso de ruido http://www.equaphon-university.net/rango-dinamico-y-relacion-senal-ruido/
- [7] AMPLIFICADOR SUMADOR NO INVERSOR https://www.electronicafacil.net/tutoriales/AMPLIFICADOR-SUMADOR-NO-INVERSOR.php

https://es.wikipedia.org/wiki/Factor de Rechazo a Fuente de Alimentaci%C3%B3n

- [8] https://unicrom.com/comparador-con-amplificador-operacional/
- [9] https://www.electronicafacil.net/tutoriales/AMPLIFICADOR-SUMADOR-NO-INVERSOR.php

ANEXOS

1. Caracterización del sensor Flexiforce A101

Monedas	Peso (g)
50	2
100	3,3
200	4,6
500	7,1
1000	9,7

Polarización de 4,5

	altura	5 cm	10cm	15cm
1000	1	3.67	3.75	3.43
		3.51	3.83	3.75
		3.67	3.83	3.75
		3.51	3.83	3.83

a	ltura 5 cm	10cm	15cm	
500	1 3.35	3.59	3.51	
	3.35	3.51	3.59	
	3.35	3.59	3.67	
	3.27	3.43	3.59	

	altura	5 cm	10cm	15cm
200	1	2.46	3.03	3.59
		2.78	3.07	3.99
		2.94	3.27	3.51
		2.62	3.51	3.51

	altura	5 cm	10cm	15cm
100	1	3.03	2.70	2.54
		2.86	2.38	2.14
		3.19	2.62	3.19
		3.03	2.54	3.43

	altura	5 cm	10cm	15cm
50	1	2.06	3.35	3.19
		2.22	3.11	3.11
		2.30	3.11	3.11
		2.06	3.03	2.54

2. Parámetros requeridos del INA 128

INA128, INA129

SBOS051E - OCTOBER 1995-REVISED APRIL 2019

INA12x Precision, Low-Power Instrumentation Amplifiers

A newer version of this device is now available: INA828

1 Features

- A newer version of this device is now available: INA828
- Low offset voltage: 50 μV maximum
- Low drift: 0.5 μV/°C maximum
- · Low Input Bias Current: 5 nA maximum
- · High CMR: 120 dB minimum
- Inputs protected to ±40 V
- Wide supply range: ±2.25 V to ±18 V
- . Low quiescent current: 700 μA
- · Packages: 8-pin plastic DIP, SO-8

2 Applications

- · Bridge amplifier
- · Thermocouple amplifier
- · RTD sensor amplifier
- · Medical instrumentation
- · Data acquisition

3 Description

The INA128 and INA129 are low-power, general purpose instrumentation amplifiers offering excellent accuracy. The versatile 3-op amp design and small size make these amplifiers ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (200 kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. The INA128 provides an industry-standard gain equation; the INA129 gain equation is compatible with the AD620.

The INA12x is available in 8-pin plastic DIP and SO-8 surface-mount packages, specified for the -40°C to +85°C temperature range. The INA128 is also available in a dual configuration, the INA2128.

The upgraded INA828 offers a lower input bias current (0.6 nA maximum) and lower noise (7 nV/\Hz) at the same quiescent current. See the Device Comparison Table for a selection of precision instrumentation amplifiers from Texas Instruments.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
INA128,	SOIC (8)	3.91 mm × 4.90 mm
INA129	PDIP (8)	6.35 mm × 9.81 mm

 For all available packages, see the package option addendum at the end of the data sheet.

Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

INA128, INA129

SBOS051E - OCTOBER 1995-REVISED APRIL 2019

www.tl.com

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
V power supply	±2.25	±15	±18	V
Input common-mode voltage range for V _O = 0	V-2V		V + -2 V	
T _A operating temperature INA128-HT	-55		175	°C
T _A operating temperature INA129-HT	-55		210	°C

7.4 Thermal Information

		INA	INA12x		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	P (PDIP)	UNIT	
		8 PINS	8 PINS		
Reja	Junction-to-ambient thermal resistance	110	46.1	°C/W	
R _{6JC(top)}	Junction-to-case (top) thermal resistance	57	34.1	°C/W	
R _{eJB}	Junction-to-board thermal resistance	54	23.4	°C/W	
ΨЈТ	Junction-to-top characterization parameter	11	11.3	°C/W	
Ψјв	Junction-to-board characterization parameter	53	23.2	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

at T_A = 25°C, V_8 = ±15 V, and R_L = 10 k Ω (unless otherwise noted)

F	ARAMETER	TE	TEST CONDITIONS		TYP	MAX	UNIT
INPUT							
	Inital	T 25°C	INA128P, U INA129P, U		±10±100/G	±50±500/G	μV
	i iluai	1 _A = 25 C	INA128PA, UA INA129PA, UA		±25±100/G	±125±1000/G	μv
	ur tomporatum	T - T - to T	INA128P, U INA129P, U		±0.2±2/G	±0.5±20/G	μV/°C
Offset voltage, RTI	vs temperature	T _A = T _{MIN} to T _{MAX}	INA128PA, UA INA129PA, UA		±0.2±5/G	±1±20/G	μw/ C
	ue neuros eurolu	V _e = ±2.25 V to	INA128P, U INA129P, U		±0.2±20/G	±1±100/G	μV/V
	vs power supply	±18 V	INA128PA, UA INA129PA, UA			±2±200/G	μν/ν
	Long-term stability		•		±0.1±3/g		μV/mo
	Differential				1010 2		0.11-5
Impedance	Common mode				1011 9		Ω∥pF
Common mod	Se voltage range(1)	Vo = 0 V		(V+) - 2	(V+) - 1.4		v
Commortmod	ie volage range…	Vo - U V		(V) + 2	(V-) + 1.7		V
Safe input voi	tage					±40	٧

(1) Input common-mode range varies with output voltage; see Typical Characteristics.

Copyright © 1995–2019, Texas Instruments Incorporated

Submit Documentation Feedback

5

A newer version of this device is now available: INA828

INA128, INA129

SBOS051E - OCTOBER 1995-REVISED APRIL 2019

www.tl.com

Electrical Characteristics (continued)

at T_A = 25°C, V_S = ±15 V, and R_L = 10 k Ω (unless otherwise noted)

	ARAMETER		ST CONDITIO		MIN	TYP	MAX	UNIT
			G-1	INA128P, U INA129P, U	80	86		
			G=1	INA128PA, UA INA129PA, UA	73			
			G = 10	INA128P, U INA129P, U	100	106		
Common-mode	a rejection	V _{CM} = ±13 V, ΔR _s	0-10	INA128PA, UA INA129PA, UA	93			dΒ
Collinorinos	rejewon	- 1 kΩ	G = 100	INA128P, U INA129P, U	120	125		ub.
			- 1.00	INA128PA, UA INA129PA, UA	110			
			G = 1000	INA128P, U INA129P, U	120	130		
				INA128PA, UA INA129PA, UA	110			
Blas current		INA128P, U INA129P, U				±2	±5	nA
		INA128PA, UA INA129PA, UA					±10	
Blas current vs	temperature					±30		pA/*C
Offset current		INA128P, U INA129P, U				±1	±5	nA
		INA128PA, UA INA129PA, UA					±10	
Offset current v						±30		pA/*C
	f = 10 Hz]				10		
Noise	f = 100 Hz	G = 1000, R ₆ = 0Ω				8		nV/√Hz
voltage, RTI	f = 1 kHz	G = 1000, 1\g = 0.2				8		
	f ₆ = 0.1 Hz to 10 Hz					0.2		μV _{PP}
	f = 10 Hz					0.9		pA/√ Hz
Noise current	f = 1 kHz]				0.3		pre vnz
	F _B = 0.1 Hz to 10 Hz					30		рА _{рр}
GAIN ⁽²⁾	•						·	
Gain equation	INA128				1	$+$ (50 $k\Omega/R_G$)		V/V
Gairi equation	INA129				1+	(49.4 kΩ/R _G)		W/W
Range of gain					1		10000	V/V
		G = 1		INA128P, U INA129P, U		±0.01%	±0.024%	
		-		INA128PA, UA INA129PA, UA			±0.01%	
	G = 10			INA128P, U INA129P, U		±0.02%	±0.4%	
Gain error		- "-		INA128PA, UA INA129PA, UA			±0.5%	
		G = 100		INA128P, U INA129P, U		±0.05%	±0.5%	
				INA128PA, UA INA129PA, UA			±0.7%	
		G = 1000		INA128P, U INA129P, U		±0.5%	±1%	
		G - 1000		INA128PA, UA INA129PA, UA			±2%	

(2) Nonlinearity measurements in G = 1000 are dominated by noise. Typical non-linearity is ±0.001%.

6 Submit Documentation Feedback

Copyright © 1995–2019, Texas Instruments Incorporated

Product Folder Links: INA128 INA129

A newer version of this device is now available: INA828

INA128, INA129

SBOS051E - OCTOBER 1995-REVISED APRIL 2019

Electrical Characteristics (continued)

at T_A = 25°C, V_8 = ±15 V, and R_L = 10 k Ω (unless otherwise noted)

	PARAMETER	TEST CON	IDITIONS	MIN	TYP	MAX	UNIT	
Gain vs tem	nombum (3)	G-1			±1	±10		
Gain vs tem	perature (=)	50-kΩ (or 49.4-kΩ) Resistar	50-kΩ (or 49.4-kΩ) Resistance (3)(4)		±25	±100	ppm/*C	
		V .425V.0.4	INA128P, U INA129P, U		±0.0001	±0.001		
		V ₀ = ±13.5 V, G = 1	INA128PA, UA INA129PA, UA			±0.002		
		G = 10	INA128P, U INA129P, U		±0.0003	±0.002		
Nonlinearity		G = 10	INA128PA, UA INA129PA, UA			±0.004	% of FSR	
		G = 100	INA128P, U INA129P, U		±0.0005	±0.002		
		G = 100	INA128PA, UA INA129PA, UA			±0.004		
		G = 1000	•		±0.001	/>		
OUTPUT ⁽²⁾								
Voltage	Positive	R _L = 10 kΩ		(V+) - 1.4	(V+) = 0.9		V	
voltage	Negative	R _L = 10 kΩ (V-) + 1.4 (V-) + 0.8			V			
Load capaci	tance stability				1000		pF	
Short-circuit	current				6/-15		mΑ	
FREQUENC	Y RESPONSE	•		•				
		G-1			1.3		MHz	
Bandwidth, -	3.45	G = 10			700			
Danuwuin, -	-5 ub	G = 100			200		kHz	
		G = 1000			20			
Siew rate		Vo = ±10 V, G = 10			4		V/µs	
		G = 1			7			
Settling time	0.01%	G = 10			7		IIE.	
ocurry afte	, 0.0176	G = 100			9		με	
		G = 1000			80			
Overload red	covery	50% overdrive			4		με	
POWER SU	PPLY							
Voltage rang	pe e			±2.25	±15	±18	V	
Current, tota	ı	V _{IN} = 0 V			±700	±750	μA	
TEMPERAT	URE RANGE							
Specification	1			-40		85	•c	
Operating				-40		125	*C	

Copyright © 1995–2019, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: INA128 INA129

3. Especificaciones tenidas en cuenta para la Tabla 1

LM324

⁽³⁾ Specified by wafer test. (4) Temperature coefficient of the 50 k Ω (or 49.4 k Ω) term in the gain equation.

LM124, LM124A, LM224, LM224A, LM324, LM324A, LM2902, LM2902V LM224K, LM224KA, LM324K, LM324KA, LM2902K, LM2902KV, LM2902KAV

SLOS066V - SEPTEMBER 1975-REVISED JANUARY 2014

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		LM2902	ALL OTHER DEVICES	UNIT
Supply voltage, V _{CC} ⁽²⁾		±13 or 26	±16 or 32	V
Differential input voltage, V _{ID} (3)		±26	±32	V
Input voltage, V _I (either input)		-0.3 to 26	-0.3 to 32	V
Duration of output short circuit (one amplifier) to ground at (or below) T _A = 25°C, V _{CC} ≤ 15 V ⁽⁴⁾	Unlimited	Unlimited	
	D package	86	86	
	DB package	96	96	1
Package thermal impedance, θ _{JA} ⁽⁴⁾⁽⁵⁾	N package	80	80	°C/W
	NS package	76	76	
	PW package	113	113]
	FK package		5.61	
Package thermal impedance, θ _{JC} (6)(7)	J package		15.05	°C/W
	W package		14.65	1
Operating virtual junction temperature, T _J	•	150	150	°C
Case temperature for 60 seconds	FK package		260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or W package	300	300	°C
Storage temperature range, T _{stg}		-65 to 150	-65 to 150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 (2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.

 (3) Differential voltages are at IN+, with respect to IN-.

 (4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

 (5) Maximum power dissipation is a function of T_{i(max)}, 9_{IA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_{J(max)} T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.

 (6) Maximum power dissipation is a function of T_{J(max)}, 9_{IA}, and T_C. The maximum allowable power dissipation at any allowable case temperature is P_D = (T_{J(max)} T_C)/θ_{JC}. Operating at the absolute maximum T_J of 150°C can affect reliability.

 (7) The package thermal impedance is calculated in accordance with MIL-STD-883

ESD Protection

TEST CONDITIONS		TYP	UNIT
Human-Body Model	LM224K, LM224KA, LM324K, LM324KA, LM2902K, LM2902KV, LM2902KAV	±2	kV

	PARAMETER	TEST CONDITIONS(1)		T _A (2)	LM1	24, LM224		LM3	24, LM324K		UNIT
	PARAMETER	TEST COND	ITIONS"	TA ^(v)	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	UNIT
V _{io}	Input offset voltage	V _{CC} = 5 V to MAX,	V _{IC} = V _{ICR} min,	25°C		3	5		3	7	mV
V _{IO}	input onset votage	V _O = 1.4 V		Full range			7			9	mv
	Input offset ourrent	V _O = 1.4 V		25°C		2	30		2	50	nA
0	input onset current	V ₀ = 1.4 V		Full range			100			150	IDA
	Input bias current	V ₀ = 1.4 V		25°C		-20	-150		-20	-250	nA
	input bias current	V ₀ = 1.4 V		Full range			-300			-500	IIA
		V _{cc} = 5 V to MAX		25°C	0 to V _{oc} = 1.5			0 to V _{oc} = 1.5			v
V _{ICR}	Common-mode input voltage range	V _{CC} = 5 V to MACK		Full range	0 to V _{CC} = 2			0 to V ₀₀ = 2			٧
		$R_L = 2 k\Omega$	25°C	V _{cc} - 1.5			V _{oc} - 1.5				
V _{OH}	High-level output voltage	R _L = 10 kΩ		25°C							v
*OH		Vcc = MAX	$R_L = 2 k\Omega$	Full range	26			26			٧
			R _L ≥ 10 kΩ	Full range	27	28		27	28		
VoL	Low-level output voltage	$R_L \le 10 \text{ k}\Omega$		Full range		5	20		5	20	mV
A _{vo}	Large-signal differential voltage	V _{CC} = 15 V, V _C = 1	V _{CC} = 15 V, V _O = 1 V to 11 V,		50	100		25	100		V/mV
~ 0	amplification	$R_L \ge 2 k\Omega$		Full range	25			15			
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		25°C	70	80		65	80		dB
k _{ave}	Supply-voltage rejection ratio (ΔV _{CC} /ΔVIO)			25°C	65	100		65	100		dB
Vor/Vox	Crosstalk attenuation	f = 1 kHz to 20 kHz	:	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60	
		V _{ID} = 1 V, V _O = 0	Source	Full range	-10			-10			mA
0	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		
		V _{ID} = -1 V, V _O = 15 V	Sink	Full range	5			5			
		$V_{1D} = -1 \text{ V}, V_{0} = 20$	00 mV	25°C	12	30		12	30		μΑ
los	Short-circuit output current	V_{CC} at 5 V, V_{O} = 0, GND at -5 V		25°C		±40	±60		±40	±60	mA
	<u> </u>	V ₀ = 2.5 V, No load	i	Full range		0.7	1.2		0.7	1.2	
loc	Supply current (four amplifiers)	V _{CC} = MAX, V _O = 0 No load	.5 V _{cc} ,	Full range		1.4	3		1.4	3	mA

 ⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others.
 (2) Full range is -55°C to 125°C for LM124, -25°C to 85°C for LM224, and 0°C to 70°C for LM324.
 (3) All typical values are at T_A = 25°C

	PARAMETER	TEST CONDI	TIONE	T _A (2)	L	M2902		LI	M2902V		UNIT
	PARAMETER	TEST CONDI	IIONS."	IA.	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	UNII
			Non-A-suffix	25°C		3	7		3	7	
V _{io}	Input offset voltage	$V_{CC} = 5 \text{ V to MAX},$ $V_{IC} = V_{ICR}min.$	devices	Full range			10			10	mV
VIO.	input onset voltage	V ₀ = 1.4 V	A-suffix	25°C					1	2	IIIV
			devices	Full range						4	
$\Delta V_{10}/\Delta T$	Input offset voltage temperature drift	R _S = 0 Ω		Ful range					7		µV/°C
lo	Input offset current	Vo = 1.4 V	Vo = 1.4 V			2	50		2	50	nA
***	report Contract Contracts	V6 - 1.4 V		Full range			300			150	
ΔΙ _{ιο} /ΔΤ	Input offset voltage temperature drift			Ful range					10		pA/°C
l _e	Input bias current	V ₀ = 1.4 V	V. = 14 V			-20	-250		-20	-250	nA
-		-8-11-1		Full range			-500			-500	
				25°C	0 to V _{cc} = 1.5			0 to V _{oc} = 1.5			
V _{ICR} Common-mode input voltage ran	Common-mode input voltage range	V _{CC} = 5 V to MAX		Full range	0 to V _{CC} = 2			0 to V _{CC} = 2			V
	High-level output voltage	R _L = 2 kΩ		25°C							
V _{OH}		$R_L = 10 \text{ k}\Omega$		25°C	V _{cc} - 1.5			V _{cc} - 1.5			v
		V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	22			26			v
			$R_L \ge 10 \text{ k}\Omega$	Full range	23	24		27			
Vol	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
	Large-signal differential voltage	$V_{CC} = 15 \text{ V},$ $V_{O} = 1 \text{ V to } 11 \text{ V},$ $R_{L} \ge 2 \text{ k}\Omega$		25°C	25	100		25	100		V/mV
A _{VD}	amplification			Full range	15			15			
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		25°C	50	80		60	80		dB
k _{gvR}	Supply-voltage rejection ratio (ΔV _{CC} /ΔVIO)			25°C	50	100		60	100		dB
Vod Vos	Crosstalk attenuation	f = 1 kHz to 20 kHz	!	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60	
		$V_{10} = 1 V,$ $V_{0} = 0$	Source	Full range	-10			-10			mA
l ₀	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		mA
		V _{ID} = -1 V, V _O = 15 V	Sink	Full range	5			5			
		$V_{10} = -1 \text{ V}, V_{0} = 200 \text{ mV}$		25°C		30		12	40		μΑ
los	Short-circuit output current	$V_{\rm CC}$ at 5 V, $V_{\rm O}$ = 0,	GND at -5 V	25°C		±40	±60		±40	±60	mA
	·	V ₀ = 2.5 V, No load	ı	Full range		0.7	1.2		0.7	1.2	
loc	Supply current (four amplifiers)	V _{CC} = MAX, V _O = 0 No load	.5 V _{cc} .	Full range		1.4	3		1.4	3	mA

 ⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 32 V for LM2902V.
 (2) Full range is -40°C to 125°C for LM2902.
 (3) All typical values are at T_A = 25°C.

				- 19		LM124A			LM224A		LM324A	, LM324F	(A	UNIT
PA	RAMETER	TEST CON	DITIONS	T _A ⁽²⁾	MIN	TYP(2)	MAX	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	UNIT
	Input offset	V ₀₀ = 5 V to 3		25°C			2		2	3		2	3	
Vio	voltage	$V_{IC} = V_{ICR}min$ $V_{O} = 1.4 \text{ V}$		Full range			4			4			5	mV
	Input offset	Vo = 1.4 V		25°C			10		2	15		2	30	nA
lo ol	current	V ₀ = 1.4 V		Full range			30			30			75	nA
l-	Input bias	Vo = 1.4 V		25°C			-50		-15	-80		-15	-100	nA
l _{in}	current	V0 - 1.4 V		Full range			-100			-100			-200	1105
	Common-mode	V -20 V		25°C	0 to V _{CC} = 1.5			0 to V _{CC} = 1.5			0 to V _{CC} - 1.5			v
V _{ICR}	input voltage range	V _{oc} = 30 V		Full range	0 to V _{CC} - 2			0 to V _{CC} = 2			0 to V _{CC} = 2			٧
		$R_L = 2 k\Omega$		25°C	V _{cc} - 1.5			V ₀₀ - 1.5			V _{cc} - 1.5			
VoH	High-level output voltage		R _L =2kΩ	Full range	26			26			26			V
	output voltage	V _{oc} = 30 V	R _c ≥10kΩ	Full range	27			27	28		27	28		
Vol	Low-level output voltage	R _L ≤ 10 kΩ		Full range			20		5	20		5	20	mV
	Large-signal	V _{cc} = 15 V,		25°C	50	100		50	100		25	100		
A _{vo}	differential voltage amplification	V ₀ = 1 V to 1 R _L ≥ 2 kΩ	1 V.	Full range	25			25			15			V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		25°C	70			70	80		65	80		dB
k _{svR}	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO})			25°C	65			65	100		65	100		dB
Vo/Vos	Crosstalk attenuation	f = 1 kHz to 2	0 kHz	25°C		120			120			120		dB
		V ₀₀ = 15 V,		25°C	-20			-20	-30	-60	-20	-30	-60	
		$V_{10} = 1 V$, $V_{0} = 0$	Source	Full range	-10			-10			-10			mA
lo	Output current	$V_{CC} = 15 \text{ V},$		25°C	10			10	20		1	20		III
		$V_{10} = -1 \text{ V},$ $V_0 = 15 \text{ V}$	Sink	Full range	5			5			5			
		V _{ID} = -1 V, V ₀	o = 200 mV	25°C	12			12	30		12	30		μА
los	Short-circuit output current	V _{oc} at 5 V, G V _o = 0	ND at -5 V.	25°C		±40	±60		±40	±60		±40	±60	mA
		V ₀ = 2.5 V, N	o load	Full range		0.7	1.2		0.7	1.2		0.7	1.2	
loc	Supply current (four amplifiers)	V _{oc} = 30 V, V No load	o = 15 V,	Full range		1.4	3.		1.4	3		1.4	3	mA

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
 Full range is -55°C to 125°C for LM124A, -25°C to 85°C for LM224A, and 0°C to 70°C for LM324A.
 All typical values are at T_A = 25°C.

LM358

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

	,	LM158, LM158A LM258, LM258A LM358, LM358A LM2904V	LM2904	UNIT	
Supply voltage, V _{CC} ⁽²⁾		±16 or 32	±13 or 26	٧	
Differential input voltage, V _{ID} ⁽³⁾		±32	±26	٧	
Input voltage, V _I (either input)	-0.3 to 32	-0.3 to 26	٧		
Duration of output short circuit (one amplifier) to ground at	Unlimited	Unlimited			
	D package	97	97		
	DGK package	172	172]	
Package thermal impedance, θ _{JA} ⁽⁴⁾⁽⁵⁾	P package	85	85	°C/W	
	PS package		95]	
	PW package	149	149		
	D package	72.2			
Package thermal impedance, θ _{JC} (6)(7)	FK package	5.61		°C/W	
	JG package	14.5]	
	LM158, LM158A	-55 to 125			
Occastica for airtemanature area. T	LM258, LM258A	-25 to 85		°c	
Operating free air temperature range. T _A	LM358, LM358A	0 to 70		, C	
	LM2904	-40 to 125	-40 to 125	1	
Operating virtual junction temperature, T _J		150	150	°C	
Case temperature for 60 seconds	FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300	300	°C	
Storage temperature range, T _{stg}	·	-65 to 150	-65 to 150	°C	

	PARAMETER	TEST CONDITIONS(1)		T _A ⁽²⁾	LM	158 LM258			LM358		UNIT
	PARAMETER	TEST COND	ITIONS	TA	MIN	TYP(3)	MAX	MIN	TYP ⁽³⁾	MAX	UNIT
,	lanut offeet voltage	V _{CC} = 5 V to MAX,	V _{IC} = V _{ICR} min,	25°C		3	5		3	7	mV
/ _{ID}	Input offset voltage	V _O = 1.4 V		Full range			7			9	mv
αV _{IO}	Average temperature coefficient of input offset voltage					7			7		μV/°C
	book Mark wood			25°C		2	30		2	50	
Ю	Input offset current	V ₀ = 1.4 V	70 - 1.4 V				100			150	nA
alio	Average temperature coefficient of input offset current			Full range		10			10		pA/°C
la	Input bias current V _O = 1.4 V			25°C		-20	-150		-20	-250	nA
la .	input bias current	V ₀ = 1.4 V	0-1.4 V				-300			-500	n/A
V _{ICR} Common-mode input voltage range		V _{cc} = 5 V to MAX		25°C	0 to V _{CC} = 1.5			0 to V _{CC} = 1.5			v
		V _{CC} = 5 V to MAX		Full range	0 to V _{CC} = 2			0 to V _{CC} = 2			
		R _L ≥ 2 kΩ		25°C	$V_{00} = 1.5$			$V_{CC} = 1.5$			
V _{OH}	High-level output voltage	R _L ≥ 10 kΩ		25°C							v
	riginevel output votage	V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26			26			•
		*00 - H5-00	R _L ≥ 10 kΩ	Full range	27	28		27	28		
VaL	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
	Large-signal differential voltage	V _{CC} = 15 V V _O = 1 V to 11 V,		25°C	50	100		25	100		
A _{VD}	amplification	R _L ≥ 2 kΩ		Full range	25			15			V/mV
CMRR	Common-mode rejection ratio	V _{CC} = 5 V to MAX, V _{IC} = V _{ICR(min)}		25°C	70	80		65	80		dB
k _{svR}	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{ID})	V _{CC} = 5 V to MAX		25°C	65	100		65	100		dB
Vos/ Voz	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30		-20	-30		
		$V_{ID} = 1 V$, $V_{O} = 0$	Source	Full range	-10			-10			mA
lo	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		III.
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5			
		$V_{ID} = -1 \text{ V}, V_{O} = 200 \text{ mV}$		25°C	12	30		12	30		μA
los	Short-circuit output current	V _{OC} at 5 V, V _O = 0, GND at -5 V		25°C		±40	±60		±40	±60	mA
		V _O = 2.5 V, No load	i	Full range		0.7	1.2		0.7	1.2	
loc	Supply current (two amplifiers)	V _{CC} = MAX, V _C = 0 No load	.5 V _{cc} .	Full range		1	2	·	1	2	mA

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONE(I)	T _A (2)	LI	M2904		UNIT
	PARAMETER	TEST CONDIT	IONS	IA.	MIN	TYP ⁽¹⁾	MAX	UNII
			Non-A-suffix	25°C		3	7	
	hand offered and the second	V _{DC} = 5 V to MAX,	devices	Full range			10	_,,
/10	Input offset voltage	$V_{IC} = V_{ICR(min)_i}$ $V_O = 1.4 \text{ V}$	A-suffix devices	25°C		1	2	mV
		A-sunix device		Full range			4	
αV _{IO}	Average temperature coefficient of input offset voltage		•	Full range		7		μV/°C
				25°C		2	50	
			Non-V device	Full range			300	
ю	Input offset current	V ₀ = 1.4 V		25°C		2	50	nA
			V-suffix device	Full range			150	
al _{io}	Average temperature coefficient of input offset current			Full range		10		pA/°C
				25°C		-20	-250	
	Input bias current	V _O = 1.4 V		Full range			-500	nA
				25°C	0 to V _{CC} = 1.5			
V _{ICR}	Common-mode input voltage range	V _{CC} = 5 V to MAX		Full range	0 to V _{CC} = 2			V
		R _L ≥ 10 kΩ	25°C	V _{cc} - 1.5				
		V _{CC} = MAX,	$R_L = 2 k\Omega$	Full range	22		-	
V _{OH}	High-level output voltage	Non-V device	R _c ≥ 10 kΩ	Full range	23	24		v
		V _{CC} = MAX	R _L = 2 kΩ	Full range	26			
		V-suffix device	R _c ≥ 10 kΩ	Full range	27	28		
Vol.	Low-level output voltage	R _c ≤ 10 kΩ		Full range		5	20	mV
		V _{CC} = 15 V,		25°C	25	100		
A _{VD}	Large-signal differential voltage amplification	$V_0 = 1 \text{ V to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		Full range	15			V/mV
		V _{CC} = 5V to MAX,	Non-V device	25°C	50	80		
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR(min)}	V-suffix device	25°C	65	80		dB
kave	Supply-voltage rejection ratio (ΔV _{CC} /ΔV _{IO})	V _{CC} = 5 V to MAX		25°C	65	100		dB
o _r /V _{oz}	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB
		V _{CC} = 15 V,		25°C	-20	-30		
		V _{ID} = 1 V, V _O = 0	Source	Full range	-10			mA
		V _{CC} = 15 V,		25°C	10	20		mA
0	Output current	V _{ID} = -1 V, V _O = 15 V	Sink	Full range	5			
		Vo = -1 V Vo = 200 mV	Non-V device	25°C		30		uð.
		V _{ID} = -1 V, V _O = 200 mV V-suffix device		25°C	12	40		μА
os	Short-circuit output current	V _{CC} at 5 V, V _O = 0, GND at	-5 V	25°C		±40	±60	mA
	Supply current (four amplifiers)	V ₀ = 2.5 V, No load	Full range		0.7	1.2	m/t	
ec	ouppy current (rour ampiners)	V _{CC} = MAX, V _C = 0.5 V _{CC} , N	Full range		1	2	mA	

				- 00	L	M158A			LM258A		
-	PARAMETER	TEST CON	DITIONS	T _A ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
		V _{oc} = 5 V to 30 V	1,	25°C			2		2	3	
Vio	Input offset voltage	V _{IC} = V _{ICR(min)} , V _O = 1.4 V		Full range			4			4	mV
αV _{IO}	Average temperature coefficient of input offset voltage					7	15 ⁽³⁾		7	15	µA/°C
l _o	Input offset current	V ₀ = 1.4 V		25°C		2	10		2	15	nA
10	input onset current	v ₀ - 1.4 v	v ₀ - 1.4 v				30			30	104
al _{io}	Average temperature coefficient of input offset current			Full range		10	200		10	200	pA/°C
	legal blas surrent	Vo = 1.4 V		25°C		-15	-50		-15	-80	nA
l _B	Input bias current	V ₀ = 1.4 V		Full range			-100			-100	nA
	Common-mode	W - 20 W		25°C	0 to V _{CC} - 1.5			0 to V _{CC} = 1.5			v
Vice input voltage range	V _{CC} = 30 V		Full range	0 to V _{CC} = 2			0 to V _{cc} = 2			٧	
		$R_L \ge 2 \ k\Omega$		25°C	V _{CC} = 1.5			V _{CC} = 1.5			
V _{OH}	High-level output voltage	V _{CC} = 30 V	R _L = 2kΩ	Full range	26			26			v
			R _c ≥ 10kΩ	Full range	27	28		27	28		
V _{OL}	Low-level output voltage	$R_L \le 10 \text{ k}\Omega$		Full range		5	20		5	20	mV
	Large-signal	V _{cc} = 15 V, V _c = 1 V to 11 V,		25°C	50	100		50	100		141-14
A _{VD}	differential voltage amplification	R _L ≥2kΩ		Full range	25			25			V/mV
CMRR	Common-mode rejection ratio			25°C	70	80		70	80		dB
k _{gvR}	Supply-voltage rejection ratio (ΔV _D /ΔV _{IO})			25°C	65	100		65	100		dB
V _{or} / V _{oz}	Crosstalk attenuation	f = 1 kHz to 20 ki	Hz	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60	
		$V_{10} = 1 V$, $V_{0} = 0$	Source	Full range	-10			-10			
l _o	Output current	V ₀₀ = 15 V,		25°C	10	20		10	20		mA
		V _{ID} = -1 V, V _O = 15 V	Sink	Full range	5			5			
		V _{ID} = -1 V, V _O = 200 mV		25°C	12	30		12	30		μА
los	Short-circuit output current	V _{CC} at 5 V, GND V _O = 0	at -5 V,	25°C		±40	±60		±40	±60	mA
		V _o = 2.5 V, No lo	ad	Full range		0.7	1.2		0.7	1.2	2
loc	Supply current (four amplifiers)	V _{CC} = MAX V, V _C No load	= 0.5 V,	Full range		1	2		1	2	mA

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS[1]		T _A (2)	LM	1358A		UNIT	
	PARAMETER	TEST CO	NOTTIONS	TA**	MIN	TYP ⁽³⁾	MAX	UNIT	
		V _{cc} = 5 V to 30 V,		25°C		2	3		
/10	Input offset voltage	V _{IC} = V _{ICR(ren)} , V _O = 1.4 V		Full range			5	mV	
yV _{io}	Average temperature coefficient of input offset voltage			Full range		7	20	µA/°C	
	Input offset current	V ₀ = 1.4 V		25°C		2	30	nA	
0	Input offset current	V ₀ = 1.4 V		Full range			75	nA.	
al _{io}	Average temperature coefficient of input offset current					10	300	pA/°C	
	Input bias current	V ₀ = 1.4 V		25°C		-15	-100	nA.	
•	input bias current	V ₀ = 1.4 V		Full range			-200	Tipe.	
V _{IOR}	Common-mode input			25°C	0 to V _{cc} – 1.5			v	
voltage	voltage range	V _{cc} = 30 V		Full range	0 to V _{cc} – 2				
		R _L ≥2kΩ		25°C	V _{cc} - 1.5				
V _{OH}	High-level output voltage	V _{cc} = 30 V	R _L = 2kΩ	Full range	26			v	
		V _{CC} = 30 V	R _c ≥ 10kΩ	Full range	27	28			
V _{os.}	Low-level output voltage	$R_L \le 10 \text{ k}\Omega$		Full range		5	20	m/V	
A	Large-signal differential	V _{cc} = 15 V, V _c = 1 V to 11 V,		25°C	25	100		V/mV	
A _{VD}	voltage amplification	R _L ≥ 2 kΩ		Full range	15			Ville	
CMRR	Common-mode rejection ratio			25°C	65	80		dΒ	
Kove	Supply-voltage rejection ratio (ΔV _{ID} /ΔV _{ID})			25°C	65	100		dΒ	
V _{as} / V _{ca}	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB	
		V _{cc} = 15 V,		25°C	-20	-30	-60		
		$V_{10} = 1 V,$ $V_{0} = 0$	Source	Full range	-10			mA	
0	Output current	V _{cc} = 15 V,		25°C	10	20		inoc.	
		V ₁₀ = -1 V, V ₀ = 15 V	Sink	Full range	5				
		V _{ID} = -1 V, V _D = 200 mV		25°C		30		μA	
los	Short-circuit output current	V _{cc} at 5 V, GND at - V _o = 0	-5 V,	25°C		±40	±60	mA	
	Construction of the same	V _D = 2.5 V, No load		Full range		0.7	1.2		
lee	Supply current (four amplifiers)	V _{cc} = MAX V, V _c = (No load	V _{CC} = MAX V, V _C = 0.5 V,			1	2	mA	

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.
 All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.
 All typical values are at T_A = 25°C.

Operating Conditions, V_{CC} = ±15 V, T_A = 25°C

-				
	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 \text{ M}\Omega$, $C_L = 30 \text{ pF}$, $V_I = \pm 10 \text{ V (see Figure 1)}$	0.3	V/µs
B ₁	Unity-gain bandwidth	R _L = 1 MΩ, C _L = 20 pF (see Figure 1Figure 1)	0.7	MHz
V.	Equivalent input noise voltage	$R_0 = 100 \Omega$, $V_1 = 0 V$, $f = 1 kHz$ (see Figure 2)	40	nV/√Hz