1 Исследование неуправляемых выпрямителей и фильтров выпрямленного тока

Целью работы является исследование характеристик различных вариантов схем неуправляемых выпрямителей однофазного напряжения и влияние на их работу сглаживающих фильтров.

1.1 Виртуальная установка для исследования свойств неуправляемых выпрямителей

Рис. 1: схема виртуальной установки для исследования свойств неуправляемых выпрямителей

Виртуальная установка, представленная на схеме 1, запускается с помощью программы tina с бесплатной лицензией.

На виртуальной установке с помощью тумблеров можно исследовать следующие схемы выпрямителей:

- 1. однофазную однополупериодную;
- 2. однофазную однополупериодную с шунтирующим диодом;
- 3. однофазную двухполупериодную с выведенной нулевой точкой на вторичной обмотке преобразовательного трансформатора;
- 4. однофазную мостовую.

Далее следовать методике описанной в методичке для реальной лабораторной установке.

1.2 порядок выполнения измерений на виртуальной установке

- Открыть схему для пунктов 1, 2, 4 или схему для пункта 3 в программе tina;
- С помощью тумблеров S_3 , S_{11} , S_{13} , S_{14} , S_{16} , S_{17} составить схему выпрямителя, указанную преподавателем;
- Выбрать в меню анализ ⇒ переходных процессов (transient analisys) ⇒ для нескольких периодов колебаний входной сети, например, с момента времени 40 мс до 100 мс.

Рис. 2: выбор начального и конченого времен в анализе переходных процессов

• получаем графики для мгновенных значений токов и напряжений:

Рис. 3: результат анализа переходных процессов

Рис. 4: отдельные графики токов и напряжений

- Можно отобразить отдельную кривую «show/hide curves». Также можно разобрать кривые по отдельным графикам. Для этого в меню графика выбрать «split curves»
- В реальной установке для измерения действующих значений и средних значений используются приборы с различной измерительной системой. В виртуальной установке для получения действующих значений и средних значений выбрать график параметра, например, PV4 мышью, в меню графика выбрать $Process \Rightarrow \text{«Averages...»}$.

Рис. 5: действующие и средние значения

• параметры дросселя изменять в соответствии с параметрами реальной установки:

2-е положение	$\mid L_d = 0.394 \; \Gamma$ н	R_d $= 11$ ом
3-е положение	$\mid L_d = 0.86 \ \Gamma$ н	R_d = 19,3 ом
4-е положение	$\mid L_d = 2,12$ Гн	R_d = 29,3 om
5-е положение	$\mid L_d = 4,07 \Gamma$ н	$R_d=38$ ом

Таблица 1: параметры дросселя

$R_{\rm трансформатора}$	=	8 ом
$R_{\text{вентиля динамическое}}$	=	1,6 ом
x_a	=	37 om
$U_{ m o. вентиля}$	=	0,4 B

Таблица 2: Прочие параметры

• прочие параметры также соответствуют параметрам реальной установки:

Рис. 6: фотография реальной лабораторной установки

Рис. 7: принципиальная схема реальной лабораторной установки