Quantum Machine Learning (QML)

January 19th, 2022

Daniel Fink

ML group, Institute for Computational Physics, University of Stuttgart

Content

- Classical Machine Learning
- Quantum Machine Learning
- Quantum Computing
- Amplitude Encoding
- 1st generation QML
- 2nd generation QML
- Discussion

Machine Learning

ML Algorithms

Supervised learning

Support Vector Machine K Nearest Neighbors Neural Networks

• • •

Unsupervised learning

Principal Component Analysis K Means Clustering Neural Networks

• • •

Quantum Machine Learning

Quantum Machine Learning

Quantum Machine Learning

ML Algorithms

Supervised learning

Support Vector Machine K Nearest Neighbors Neural Networks

• • •

Unsupervised learning

Principal Component Analysis K Means Clustering Neural Networks

• • •

QML Algorithms

Supervised learning

Support Vector Machine K Nearest Neighbors Neural Networks

• • •

Unsupervised learning

Principal Component Analysis K Means Clustering Neural Networks

• • •

QML Algorithms

Supervised learning

Support Vector Machine K Nearest Neighbors

Neural Networks

• • •

Unsupervised learning

Principal Component Analysis K Means Clustering Neural Networks

• • •

Exponential speed-up \rightarrow QML became a hype!

Bit

Quantum

Qubit

Quantum

Bit

Qubit

n-bit register $\rightarrow 2^n$ values

$$00 \rightarrow 0$$

$$01 \rightarrow 1$$

$$10 \rightarrow 2$$

$$11 \rightarrow 3$$

Quantum

Bit

Qubit

n-bit register $\rightarrow 2^n$ values

$$00 \rightarrow 0$$

$$01 \rightarrow 1$$

$$10 \rightarrow 2$$

$$11 \rightarrow 3$$

n-bit q-register $\rightarrow 2^n$ values

$$|00\rangle \rightarrow |0\rangle$$

$$|01\rangle \rightarrow |1\rangle$$

$$|10\rangle \rightarrow |2\rangle$$

$$|11\rangle \rightarrow |3\rangle$$

Quantum

Bit

Qubit

n-bit register $\rightarrow 2^n$ values

$$00 \rightarrow 0$$

$$01 \rightarrow 1$$

$$10 \rightarrow 2$$

$$11 \rightarrow 3$$

n-bit q-register $\rightarrow 2^n$ values

$$|00\rangle \rightarrow |0\rangle$$

$$|01\rangle \rightarrow |1\rangle$$

$$|10\rangle \rightarrow |2\rangle$$

$$|11\rangle \rightarrow |3\rangle$$

Superposition!

$$a_0|0\rangle + a_1|1\rangle + a_2|2\rangle + a_3|3\rangle$$

Quantum

Bit

Qubit

n-bit register $\rightarrow 2^n$ values

$$00 \rightarrow 0$$

$$01 \rightarrow 1$$

$$10 \rightarrow 2$$

$$11 \rightarrow 3$$

n-bit q-register $\rightarrow 2^n$ values

$$|00\rangle \rightarrow |0\rangle$$

$$|01\rangle \rightarrow |1\rangle$$

$$|10\rangle \rightarrow |2\rangle$$

$$|11\rangle \rightarrow |3\rangle$$

Superposition!

$$a_0|0\rangle + a_1|1\rangle + a_2|2\rangle + a_3|3\rangle$$

$$\Rightarrow |x\rangle = x_0|0\rangle + \dots + x_{n-1}|n-1\rangle$$

$$\rightarrow |x\rangle = \frac{x_0}{0}|0\rangle + \dots + \frac{x_{n-1}}{n}|n-1\rangle$$

$$\rightarrow |x\rangle = x_0|0\rangle + \dots + x_{n-1}|n-1\rangle$$
 $O(\log_2 n)$ qubits

$$\rightarrow |x\rangle = x_0|0\rangle + \dots + x_{n-1}|n-1\rangle$$
 $O(d)$ qubits

 $4K \text{ movie} \approx 100 \text{ GB}$

40 qubits

1st Generation

1st Generation

gates is low

1st Generation

$$\#$$
 gates = $O(2^n)$

gates is low

1st Generation

2nd Generation

2nd Generation

- PQCs can be highly expressive
 - Benedetti et al., arXiv:1906.07682, 2019

$$f(x,\theta)$$

- PQCs can be highly expressive
 - Benedetti et al., arXiv:1906.07682, 2019

 $f(x,\theta)$

- PQCs can be trained faster
 - Abbas et al., arXiv:2011.00027, 2020

- PQCs can be highly expressive
 - Benedetti et al., arXiv:1906.07682, 2019

 $f(x,\theta)$

- PQCs can be trained faster
 - Abbas et al., arXiv:2011.00027, 2020

PQCs are scalable with the hardware

Further Literature

- Qiskit https://qiskit.org
- PennyLane https://pennylane.ai
- IBMQ https://quantum-computing.ibm.com
- Quantum Computation and Quantum Information
 - Michael Nielsen, Isaac Chuang, ISBN: 978-1-107-00217-3, 2000
- Supervised Learning with Quantum Computers
 - Maria Schuld, Francesco Petruccione, ISBN: 978-3-030-07188-2, 2018
- Talks on YouTube

Thank you very much!

Questions and discussions are highly welcome!