Trabalho 02 - Otimização de Sistemas

Nome: Pedro Miranda Questão: No. 36

Dados do Problema

Máquina	Q_n	D_1	D_2	Q_p	Q_p'	Restrições (x_i)
1	1010	8,06	7,53	900	900	$0 \leq x_1 \leq 900$
2	1250	8,13	7,74	1100	1100	$0 \le x_2 \le 1100$
3	1610	10,30	8,91	1500	1200	$0 \leq x_3 \leq 1200$
4	2000	14,10	11,80	1900	1200	$0 \leq x_4 \leq 1200$
Total						$\sum Q = Q_{\Sigma} = 4400$

Função Objetivo

A função objetivo a ser minimizada é a perda total de carga P(Q):

$$P(Q) = \sum_{i=1}^4 \left(rac{D_{1i} \cdot Q_i}{Q_{ni}} + rac{D_{2i} \cdot Q_i^2}{Q_{ni}^2}
ight)$$

Onde Q_i é a vazão de cada máquina, e Q_{ni}, D_{1i}, D_{2i} são os parâmetros de cada máquina.

Cálculo dos Coeficientes:

Máquina	Coeficiente $A_i = rac{D_{1i}}{Q_{ni}}$	Coeficiente $B_i = rac{D_{2i}}{Q_{ni}^2}$
1	$A_1pprox 0,007980$	$B_1\approx 0,000007374$
2	$A_2pprox 0,006504$	$B_2pprox 0,000004954$
3	$A_3pprox 0,006398$	$B_3pprox 0,000003437$
4	$A_4pprox 0,007050$	$B_4pprox 0,000002950$

A função objetivo é:

$$P(x_1,x_2,x_3,x_4) = \sum_{i=1}^4 (A_i x_i + B_i x_i^2)$$

Sujeito à restrição de igualdade:

$$x_1 + x_2 + x_3 + x_4 = 4400$$

E às restrições de desigualdade:

$$0 \le x_1 \le 900$$

 $0 \le x_2 \le 1100$
 $0 \le x_3 \le 1200$
 $0 \le x_4 \le 1200$

Solução por Multiplicadores de Lagrange

O método dos Multiplicadores de Lagrange busca a solução ótima ignorando inicialmente as restrições de desigualdade. A condição de otimalidade é dada por:

$$rac{\partial P}{\partial x_i} = A_i + 2B_i x_i = \lambda$$

Onde λ é o multiplicador de Lagrange. A vazão x_i em função de λ é:

$$x_i(\lambda) = rac{\lambda - A_i}{2B_i}$$

Cálculo Inicial de λ :

Ao somar as expressões de $x_i(\lambda)$ e igualar à restrição de igualdade $\sum x_i = 4400$, obtemos:

$$483,687\lambda - 3,322 = 4400 \implies \lambda \approx 9,10398$$

Verificação das Vazões Iniciais:

Máquina	Vazão x_i	Restrição Máxima	Status
1	$x_1pprox 616,849$	900	OK
2	$x_2pprox 918,194$	1100	OK
3	$x_3pprox 1323,430$	1200	Violada
4	$x_4pprox 1540,895$	1200	Violada

Ajuste das Restrições Violadas:

As restrições de x_3 e x_4 são violadas. Fixamos estas vazões no seu limite máximo:

$$x_3 = 1200$$

 $x_4 = 1200$

A vazão restante a ser distribuída entre x_1 e x_2 é $x_1+x_2=4400-1200-1200=2000$.

Recálculo de λ (para x_1 e x_2):

$$\sum_{i=1}^2 x_i(\lambda) = 2000 \implies 168,732\lambda - 1,197 = 2000 \implies \lambda pprox 11,8605$$

Verificação das Vazões Ajustadas:

Máquina	Vazão x_i	Restrição Máxima	Status
1	$x_1pprox 803,569$	900	OK
2	$x_2pprox 1196,974$	1100	Violada

Ajuste Final:

A restrição de x_2 é violada. Fixamos x_2 no seu limite máximo:

$$x_2 = 1100$$

A vazão restante é alocada para x_1 :

$$x_1 = 4400 - 1100 - 1200 - 1200 = 900$$

Solução Ótima Encontrada (Lagrange):

$$x_1 = 900, \quad x_2 = 1100, \quad x_3 = 1200, \quad x_4 = 1200$$

Solução por Descida Coordenada

O método de Descida Coordenada é um procedimento iterativo que busca a minimização da função objetivo ajustando uma variável por vez, respeitando as restrições. Neste contexto, o método é aplicado para refinar a solução de Lagrange, garantindo a satisfação das restrições de desigualdade.

Passo 1: Inicialização

Definimos um ponto inicial $X^{(0)}$ que satisfaz a restrição de igualdade $\sum x_i=4400$. Utilizaremos a solução de Lagrange sem restrições como ponto de partida para a análise de ajuste:

$$X_{Lagrange} = (616, 849, 918, 194, 1323, 430, 1540, 895)$$

Passo 2: Ajuste Coordenado Iterativo

O processo de Descida Coordenada é aplicado para ajustar as vazões que violam os limites máximos, redistribuindo o excesso para as demais coordenadas que ainda não atingiram seus limites.

Iteração	Variável Ajustada	Valor de Lagrange	Restrição Máxima	Ação	Vazões Atuais
1	x_3	1323, 430	1200	Fixar $x_3=1200$	$(x_1,x_2,1200,x_4)$
1	x_4	1540, 895	1200	Fixar $x_4=1200$	$(x_1, x_2, 1200, 1200)$
				Excesso: 464, 325	$x_1 + x_2 = 2000$
2	x_2	1196, 974	1100	Fixar $x_2=1100$	$(x_1, 1100, 1200, 1200)$
				Excesso: 96, 974	$x_1 = 900$
3	x_1	900, 543	900	Fixar $x_1=900$	(900, 1100, 1200, 1200)

O processo converge para a solução onde todas as restrições são respeitadas, confirmando a solução ótima encontrada pelo método de Lagrange.

Solução Ótima Encontrada (Descida Coordenada):

$$x_1=900, \quad x_2=1100, \quad x_3=1200, \quad x_4=1200$$

Cálculo da Perda Total de Carga Mínima

$$P(x_1,x_2,x_3,x_4)$$

A perda total de carga mínima é calculada com a solução ótima X=(900,1100,1200,1200):

$$P(x_1,x_2,x_3,x_4) = \sum_{i=1}^4 (A_i x_i + B_i x_i^2)$$

Máquina	Vazão x_i	$A_i x_i$	$B_i x_i^2$	Perda P_i
1	900	7,1820	5,9729	13, 1549
2	1100	7,1544	5,9943	13,1487
3	1200	7,6776	4,9493	12,6269
4	1200	8,4600	4,2480	12,7080
Total	4400			51,6385

A perda total de carga mínima é de 51,64.

Resumo da Solução

Máquina	Vazão Ótima (x_i)	Restrição Máxima (Q_p^\prime)	
1	900	900	
2	1100	1100	
3	1200	1200	
4	1200	1200	
Total	4400		

Perda Total de Carga Mínima: $P(x_1,x_2,x_3,x_4)=51,64$