EEE F311 COMMUNICATION SYSTEMS

NAME: ANANTHA SAI SATWIK VYSYARAJU

ID NO: 2019A3PS1323H

SECTION: P1

Experiment 8: Line Coding

Aim: This experiment is intended to make the students generate line codes corresponding to random bit sequences and examine their time- and frequency-domain properties.

$\boldsymbol{A}-\boldsymbol{Observations}$ on the random bit pattern in both Time and Frequency domains

- Rb = 10 bits/sec ,Bit period = 1/Rb = 1/10 = 0.1 sec
- 3. Code in A3

4. Code in A4

 $\textbf{Table 2: Time \& Spectral Domain Properties of line codes} \ (\texttt{NRZ})$

Digital Bit	Line code Voltage	Bit Rate <i>R_b</i>	Power At 0 Hz	First Deep Null Frequency	Power at First deep null	Essential BW / R _b
1	+1	10	0.00	2.5	0.00222	0.25
0	-1	10	0.09	2.5	0.00332	0.25

 Table 3: Time & Spectral Domain Properties of line codes (MANCHESTER)

Digital Bit	Line code Voltage	Bit Rate <i>R_b</i>	Power At 0 Hz	First Deep Null Frequency	Power at First deep null	Essential BW / R _b
1	-1 -> +1	10	0	2.0	0.00152	0.20
0	+1 -> -1	10	U	2.0	0.00132	0.20

Table 4: Time & Spectral Domain Properties of line codes (RZ)

Digital Bit	Line code Voltage	Bit Rate <i>R_b</i>	Power At 0 Hz	First Deep Null Frequency	Power at First deep null	Essential BW / R _b
1	+1 or -1	10	0.015605	2.5	0.00160	0.25
0	0	10	0.015625	2.5	0.00169	0.25

Table 5: Time & Spectral Domain Properties of line codes (NRZ-M)

Digital	Line	Bit	Power	First Deep	Power	Essential
Bit	code	Rate	At	Null	at First	BW/R_b
	Voltage	R_b	0 Hz	Frequency	deep null	
1	+1 -> -1 or -1 -> +1	10		3.0	0.00291	0.3
0	No change	10	0.053			

B – Effect of Bandwidth Limiting of channels

Code in B

Observation: A low-pass filter (LPF) is a filter that passes signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency.

C – Detection of line coded signals corrupted by bandlimited channels Code in C1,C2,C3

Error Rate: 0

NRZ-L Decoding:
 0 0 1 1 1 0 1 0 0
>> bits
bits =

0 0 1 1 1 0 1 0 0 0

Error Rate: 0

>> bits

bits =

0 1 0 1 0 1 1 1

Error Rate: 0

D – Conclusions:

List out your learnings from the experiments.

Learned various encoding schemes for digital signals, Error calculations, Effect of bandwidth limiting of channels