Using the "Elbow" method and the Silhouette Score to determine the optimal value of k.

- 1 # Import required packages
- 2 import pandas as pd
- 3 from sklearn.preprocessing import MinMaxScaler
- 4 from sklearn.cluster import KMeans
- 5 import matplotlib.pyplot as plt
- data = pd.read\_csv('/wholesale.csv')
- 2 data.head()

| ₽ |   | Channel | Region | Fresh | Milk | Grocery | Frozen | Detergents_Paper | Delicassen |
|---|---|---------|--------|-------|------|---------|--------|------------------|------------|
|   | 0 | 2       | 3      | 12669 | 9656 | 7561    | 214    | 2674             | 1338       |
|   | 1 | 2       | 3      | 7057  | 9810 | 9568    | 1762   | 3293             | 1776       |
|   | 2 | 2       | 3      | 6353  | 8808 | 7684    | 2405   | 3516             | 7844       |
|   | 3 | 1       | 3      | 13265 | 1196 | 4221    | 6404   | 507              | 1788       |
|   | 4 | 2       | 3      | 22615 | 5410 | 7198    | 3915   | 1777             | 5185       |

Determine categorical and continuous variables

```
categorical_features = ['Channel', 'Region']
continuous_features = ['Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', 'Delicassen']
```

Provide the descriptive statistics on spending items

1 data[continuous\_features].describe()

| _ |       | _             |              |              |              |                  |              |
|---|-------|---------------|--------------|--------------|--------------|------------------|--------------|
| 7 |       | Fresh         | Milk         | Grocery      | Frozen       | Detergents_Paper | Delicassen   |
|   | count | 440.000000    | 440.000000   | 440.000000   | 440.000000   | 440.000000       | 440.000000   |
|   | mean  | 12000.297727  | 5796.265909  | 7951.277273  | 3071.931818  | 2881.493182      | 1524.870455  |
|   | std   | 12647.328865  | 7380.377175  | 9503.162829  | 4854.673333  | 4767.854448      | 2820.105937  |
|   | min   | 3.000000      | 55.000000    | 3.000000     | 25.000000    | 3.000000         | 3.000000     |
|   | 25%   | 3127.750000   | 1533.000000  | 2153.000000  | 742.250000   | 256.750000       | 408.250000   |
|   | 50%   | 8504.000000   | 3627.000000  | 4755.500000  | 1526.000000  | 816.500000       | 965.500000   |
|   | 75%   | 16933.750000  | 7190.250000  | 10655.750000 | 3554.250000  | 3922.000000      | 1820.250000  |
|   | max   | 112151.000000 | 73498.000000 | 92780.000000 | 60869.000000 | 40827.000000     | 47943.000000 |

To use the categorical features, we need to convert the categorical features to binary using pandas get dummies.

```
1 for col in categorical_features:
```

- dummies = pd.get\_dummies(data[col], prefix=col)
- 3 data = pd.concat([data, dummies], axis=1)
- 4 data.drop(col, axis=1, inplace=True)
- 5 data.head()

 $\Box$ 

| ₽ |   | Fresh | Milk | Grocery | Frozen | Detergents_Paper | Delicassen | Channel_1 | Channel_2 | Region_1 | Region_2 | Region_3 |
|---|---|-------|------|---------|--------|------------------|------------|-----------|-----------|----------|----------|----------|
|   | 0 | 12669 | 9656 | 7561    | 214    | 2674             | 1338       | 0         | 1         | 0        | 0        | 1        |
|   | 1 | 7057  | 9810 | 9568    | 1762   | 3293             | 1776       | 0         | 1         | 0        | 0        | 1        |
|   | 2 | 6353  | 8808 | 7684    | 2405   | 3516             | 7844       | 0         | 1         | 0        | 0        | 1        |
|   | 3 | 13265 | 1196 | 4221    | 6404   | 507              | 1788       | 1         | 0         | 0        | 0        | 1        |
|   | 4 | 22615 | 5410 | 7198    | 3915   | 1777             | 5185       | 0         | 1         | 0        | 0        | 1        |

To give equal importance to all features, we need to scale the continuous features.

- 1 mms = MinMaxScaler()
- 2 mms.fit(data)
- 3 data\_transformed = mms.transform(data)

For each k value, we will initialize k-means and use the inertia attribute to identify the sum of squared distances of samples to the nearest cluster center.

```
1 Sum_of_squared_distances = []
```

2 K = range(1,15)

```
for k in K:
    km = KMeans(n_clusters=k)
    km = km.fit(data_transformed)
    Sum_of_squared_distances.append(km.inertia_)
```

As k increases, the sum of squared distance tends to zero. Imagine we set k to its maximum value n (where n is number of samples) each sample will form its own cluster meaning sum of squared distances equals zero.

```
plt.plot(K, Sum_of_squared_distances, 'bx-')
plt.xlabel('k')
plt.ylabel('Sum_of_squared_distances')
plt.title('Elbow Method For Optimal k')
plt.show()
```



## Sihouette Method

```
import matplotlib.pyplot as plt
    %matplotlib inline
 2
    X=data_transformed
    # Variables to store silhouette score and inertia for different clusters
    scores = []
    from sklearn.metrics import silhouette_score
    # Calculate silhouette scores and inertia for different number of clusters
 7
    for cluster_number in range(2,10):
      km = KMeans(n_clusters=k)
9
10
      km = KMeans(n_clusters=cluster_number, random_state=42).fit(X)
       scores.append(silhouette_score(X,km.labels_))
11
    #plot the results
12
13
    plt.clf()
    plt.figure(figsize=(15,4))
14
15
    #plot Silhouette Score
    plt.subplot(121)
    plt.plot(range(2,10), scores, 'bo-')
17
18
    plt.plot(2, scores[0], 'ro-')
    plt.plot(3, scores[1], 'yo-')
19
20
    plt.title('Silhouette Method For Optimal k')
     plt.xlabel('Number of Clusters')
21
22
    plt.ylabel('Silhouette Score')
   Text(0, 0.5, 'Silhouette Score')
     <Figure size 432x288 with 0 Axes>
```

