Trig Final (Practice v23)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 40 meters. The angle measure is 1.8 radians. How long is the radius in meters?

Question 2

Consider angles $\frac{15\pi}{4}$ and $\frac{-19\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{15\pi}{4}\right)$ and $\cos\left(\frac{-19\pi}{6}\right)$ by using a unit circle (provided separately).

Find $sin(15\pi/4)$

Find $\cos(-19\pi/6)$

Question 3

If $\sin(\theta) = \frac{45}{53}$, and θ is in quadrant II, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 3.03 meters, a frequency of 7.61 Hz, and a midline at y = 4.7 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).