Wireless Systems Security

EE/NiS/TM-584-A/WS

Bruce McNair bmcnair@stevens.edu

Week 2

Topics in Wireless Systems

0th Generation Wireless Systems

- Few, high-power, long-range basestations
 - -> No sharing of spectrum
 - -> few users
 - -> expensive

Cellular Systems – 1st Generation

Frequency Re-use

Covering the MTS service area with cells:

Full Duplex Communications in Cellular

North American AMPS frequencies:

Cellular "Hand-off"

Providing coverage as mobile moves between cell site coverage areas

Channel dispersion

- Multipath reflections create time dispersion of the received signal
- Movement of the receiver, transmitter or objects in the environment create changes in the multipath environment

Characterizing the RF Fading Environment

Effects of Multipath

Conditions for complete, destructive interference between path₁ and path₂:

$$A_1 = A_2$$

$$d_1 - d_2 = (k + .5)\lambda$$

Rayleigh Fading

Dealing with the RF Environment

• Consider a representative fading profile. Assume that a transmission block is lost if any part of it is in fade:

Dealing with the RF Environment: Understand the channel characteristics

• Consider a representative fading profile. Assume that a transmission block is lost if any part of it is in fade:

Dealing with the RF Environment: Interleaving

• Consider a representative fading profile. Assume that a transmission block is lost if any part of it is in fade:

Dealing with the RF Environment: Diversity

Consider a *two* representative fading profiles measured at two antennas.
 Assume that a transmission block is lost if any part of it is in fade at *both*:

For description of diversity experiments, see

http://www.novidesic.com/pubs/ICUPC97F.pdf and http://www.novidesic.com/pubs/vtc2000-a34283.pdf

Multiple Access Techniques

• Commonplace multiple access techniques:

TDMA – 2nd Generation

• IS-54/IS-136:

CDMA – 2nd Generation

• Consider a two channel frequency division system:

Fundamentally, what allows RX₁ to receive TX₁ while rejecting TX₂?

For
$$\omega_1 \neq \omega_2$$
, $\int \sin(\omega_1 t) \sin(\omega_2 t) dt = 0$

CDMA – 2nd Generation

• What is magical about sinusoids? Consider some arbitrary functions:

• Constraint on f_1 , f_2 :

$$\int f_1(t)f_2(t)dt = 0$$

CDMA Spreading and Despreading

CDMA Spreading and Despreading

General Receiver Considerations

Radiation from an Antenna

Radiation Pattern

Polarization

The Friis Equation

$$P_r = \frac{G_t G_r \lambda^2}{\left(4\pi R\right)^2} P_t$$

EIRP

Free Space Propagation

Realistic Path Loss

$$L \propto \frac{1}{R^n}$$

Environment	n
Free space	2
Urban	2.7-3.5
Shadowed urban	3-5

$$L \propto \begin{cases} \frac{1}{R^2} & R \le d \\ \frac{1}{R^4} & R > d \end{cases}$$

The Earliest Radio-location services

Geolocation Services

Geolocation Services

Representative Wireless Communications Systems Satellite

Representative Wireless Communications Systems AMPS Cellular

Representative Wireless Communications Systems 2-G PCS

Digital signaling

A and B competing carriers on 850 MHz A,B,C,D,E,F competing carriers on 1900 MHz

Representative Wireless Communications Systems Terrestrial Microwave

4-20+ GHz
Analog SSB FDMA
Digital QPSK, 16QAM, 64QAM TDM: DS1-DS3
Multichannel Voice, Data traffic
Generally not encrypted

Representative Wireless Communications Systems Tactical Military

Representative Wireless Communications Systems 802.11 WLAN

