

Micrometría

Luis Chávez

Efecto de tratamiento

Matching

Microeconometría

Tópico IV: Evaluación de Impacto

Luis Chávez

Facultad de Economía y Planificación **UNALM**

Lima, 2024

Contenido

licrometria

Luis Chávez

Introducción

Métodos no experimentale

Efecto de tratamiento

Efecto de tratamient

Metodos cuas experimentale

experimentale DiD

Propensity Scor Matching

Referencias

- Introducción
- 2 Métodos no experimentales Aleatoriedad Efecto de tratamiento
- Métodos cuasi-experimentales DiD Propensity Score Matching
- 4 Referencias

Causalidad

Micrometri

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuas experimentale

experimental

Propensity Score Matching

Referencia

La estadística ha establecido por muchos años que la correlación no implica causalidad. En economía, estas relaciones se capturan vía teorías y PGDs, para diferenciarlas de las relaciones espurias y los *confounders*.

Definición (Causalidad)

La **causalidad** es toda aquella relación entre dos o más elementos, que comprende:

- 1 Temporalidad: la causa precede al efecto.
- 2 Dirección: la causa produce el efecto.
- 3 Medición: cuantificación de la relación.

Causalidad

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

experimentale

DiD

Propensity Scor Matching

Referencias

Modalidades:

viicrometri

Luis Chávez

Introducción

Métodos no experimentale

Efecto de tratamiento

Métodos cuasi

experimentale

DiD

Propensity Scor Matching

Referencias

Definición (Intervenciones)

Es toda aquella actividad diseñada y gestionada por el gobierno con el objetivo de alcanzar la eficiencia de Pareto.

- Proyectos
- 2 Políticas
- 3 Programas

viicrometri

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Ffecto de tratamiento

Métodos cua experimentale

DiD Propensity Score

Propensity Sco Matching

Referencia

Definición (Evaluación)

Es toda aquella valorización periódica de una intervención que busca responder preguntas específicas relacionadas con su diseño, implementación o resultados.

Definición (Monitoreo)

Examen continuo de una intervención con el objetivo de corregir desvíos identificados.

Definición (Evaluación de impacto)

Es aquel análisis periódico de una intervención que busca responder preguntas específicas de causalidad.

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuasi

experimentale

Propensity Score Matching

Referencias

¿Dónde?

Vlicrometria

Luis Chávez

Introducción

Métodos no experimentale

Aleatorie

Efecto de tratamiento

Métodos cuas experimentale

experimental

Propensity Scor Matching

Referencia

Ejemplo

¿Cuál es el impacto del programa Juntos en el nivel de desnutrición de los niños peruanos menores de 5 años: 2020-2024?

Applied:

https://repositorio.minedu.gob.pe/handle/20.500.12799/3974

https://n9.cl/sxe6y

licrometri

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuasi experimentales

DiD Proposity Score

Matching

Taxonomía:

- Prospectivas: se llevan acabo simultáneamente con el proyecto o programa.
 Ejemplo: el caso de los caminos vecinales del MTC.
- Retrospectivas: se llevan acabo culminado el proyecto o programa. Ejemplo:
 Qali Warma.

¿Cuál es mejor?

licrometri

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuasi experimentales

DiD Propensity Score

Referencia

La evaluación de impacto a veces implica estudios de:

- Eficacia. Se evalúa la viabilidad de un programa, bajo condiciones controladas (ideales). Su generalización podría ser polémica ya que no se conoce lo que ocurrirá en condiciones normales.
- Efectividad. Ofrecen evidencia de un programa que ha sido desarrollado en condiciones normales. Sus resultados pueden ser generalizables.

licrometria

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Ffecto de tratamiento

Métodos cuas

experimentales

Propensity Scor

Referencia:

Definición (Theory of change)

La **teoría del cambio** es aquel método que explica cómo se espera que una determinada intervención obtendrá un cambio específico (resultado deseado), basándose en un análisis causal.

Nota: la teoría del cambio debe establecerse al inicio de la fase de diseño de la intervención

Contenido

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Metodos cuas experimentale

experimentale DiD

Propensity Scor Matching

Referencias

- Introducción
- 2 Métodos no experimentales Aleatoriedad

Efecto de tratamiento

- Métodos cuasi-experimentales DiD Propensity Score Matching
- 4 Referencias

Nomenclatura

Vlicrometria

Luis Chávez

Introducció

Métodos no experimental

Aleatoriedad

Efecto de tratami

Métodos cuasi

experime

Propensity Score

Referencias

• Target: *y_i*

• Intervención: $d_i \in \{0, 1\}$

• Muestra: $\{i\}_1^n$

• Efecto de tratamiento: $\Delta_i = (y_i | d_i = 1) - (y_i | d_i = 0) = y_{i,1} - y_{i,0}$.

• Contrafactual (inobservable): $y_{i,0}$.

• Tratamiento: $y_{i,1}$.

• Control: estimador de $y_{i,0}$.

licrometri

Luis Chávez

Introducció

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Metodos c

experiment

Propensity Score

Referencia

Problema del contrafactual

Ayer por mañana, Enamorado tomó eribulina. Hoy en la madrugada fue encontrado muerto.

¿Cuál es la causa de la muerte de Enamorado?

¿Cuál es el contrafactual?

¡Y el control?

Randomización

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cua experimental

DiD

Propensity Scor Matching

Referencias

Dados dos grupos con distribución aleatoria similar (y_0 para ambos).

Figure: Diseño experimental

Randomización

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamien

Métodos cuas experimentale

DiD Propensity Score

Matching

Referencias

Figure: Distribución aleatoria de unidades

Contenido

Micrometría

Luis Chávez

Introducción

Métodos no experimentales

Efecto de tratamiento

Erecto de tratamien

experimentales

DiD

Propensity Scor Matching

Referencias

- Introducción
- 2 Métodos no experimentales

Aleatoriedad

Efecto de tratamiento

- 3 Métodos cuasi-experimentales DiD
 - Propensity Score Matching
- 4 Referencias

····ci o····cti··c

Luis Chávez

Introducció

Métodos no experimentale

Efecto de tratamiento

experi

DiD

Propensity Sco Matching

Referencia

Dado d_i , el resultado observado se define por:

$$y_i = d_i y_{i,1} - (1 - d_i) y_{i,0} (1)$$

Se define el ATE (Average Treatment Effect):

$$ATE = \delta = E(y_{i,1} - y_{i,0}) \tag{2}$$

Supuesto 1 (identificadores)

Si cada *i* se eligió aleatoriamente:

- Independencia: $y_{i,1}, y_{i,0} \perp \!\!\!\perp d_i$.
- $y_{i,1}$ y $y_{i,0}$ son independientes en media: $E(y_{i,j}|d_i) = E(y_{i,j}), \ \forall j = 0, 1.$

/iicrometria

Luis Chávez

Introducción

Métodos no experimentale

Efecto de tratamiento

Métodos cuas

experimentale

Propensity Scor Matching

Referencia

Implicación del supuesto 1:

$$\delta = E(y_{i,1}) - E(y_{i,0}) \tag{3}$$

El estimador será:

$$\hat{\delta} = \frac{1}{n_a} \sum_{i \in A} y_i - \frac{1}{n_b} \sum_{i \in B} y_i = \bar{y}_{|i \in A} - \bar{y}_{|i \in B}$$
 (4)

donde n_a es el número de tratados, n_b es el número de no tratados, $A = \{i \in N | d_i = 1\}$ es el conjunto de tratados y $B = \{i \in N | d_i = 0\}$ es el conjunto de no tratados. El estimador coincide con el estimador OLS en $y_i = \delta_0 + \delta_1 d_i + \epsilon_i$.

licrometria

Luis Chávez

Introducció

Métodos no experimentale

Efecto de tratamiento

Maria

Métodos cuas experimentale DiD

Propensity Sco Matching

Referencia

El ATET (Average Treatment Effect on the Treated) y el ATEN (Average Treatment Effect on the Non-treated), respectivamente, se definen por:

$$ATET = E(y_{i,1} - y_{i,0}|d_i = 1)$$
 (5)

$$ATEN = E(y_{i,1} - y_{i,0}|d_i = 0)$$
 (6)

....

Luis Chávez

Introducció

Métodos no experimentale

Efecto de tratamiento

Métodos cuasi experimentales

Propensity Score Matching

Reference

Nota

Usualmente, sólo $E(y_{i,1}|d_i=1)$ y $E(y_{i,0}|d_i=0)$ son observados (Imbens y Angrist, 1994).

De la ecuación (5) se tiene:

$$ATET = E(y_{i,1}|d_i = 1) - E(y_{i,0}|d_i = 1)$$

Se define

$$D = E(y_{i,1}|d_i = 1) - E(y_{i,0}|d_i = 0)$$
(7)

Entonces, bajo el supuesto 1:

$$ATET = D \Leftrightarrow B = E(y_{i,0}|d_i = 1) - E(y_{i,0}|d_i = 0) = 0$$
 (8)

Micrometr'ia

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Metodos cuasi experimentales

experimentale

Propensity Score Matching

Referencias

Actividad:

Demostrar que podría ocurrir que ATET=ATE.

/licrometria

Luis Chávez

Introducció

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

experimentales

experimental DiD

Propensity Scor Matching

Referencia

Los resultados anteriores se pueden generalizar a características observables, x_i .

Supuesto 2 (condicionalidad)

Si cada i se eligió aleatoriamente:

- Independencia: $y_{i,1}, y_{i,0} \perp \perp d_i | x_i$.
- $y_{i,1}$ y $y_{i,0}$ son independientes en media: $E(y_{i,j}|d_i,x_i)=E(y_{i,j}|x_i), \ \forall j=0,1.$
- Overlapping o matching: $0 < p(d_i = 1|x_i) < 1$.

licrometri

Luis Chávez

Introducció

Métodos no experimentale

Et . I . . .

Efecto de tratamiento

Métodos cuas experimentale

DiD

Propensity Scor Matching

Referencia

Implicación del supuesto 2:

$$E(y_{i,1} - y_{i,0}|x_i) = E(y_{i,1}|x_i) - E(y_{i,0}|x_i) = E(y_i|d_i = 1, x_i) - E(y_i|d_i = 0, x_i)$$

El incumplimiento de alguno de los supuestos genera sesgo en observables (x_i) y en no observables (ϵ_i) , tanto en la estimación de ATE como de ATET. Respectivamente, se conocen como *overt bias* y *hidden bias*.

Contenido

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Ffecto de tratamiento

experimentales

DID

Propensity Score

Referencias

- Introducción
- 2 Métodos no experimentales Aleatoriedad Efecto de tratamiento
- Métodos cuasi-experimentales DiD

Propensity Score Matching

4 Referencias

Generalidades

Micrometría

Luis Chávez

Introducció

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuasi-

exper

Propensity Scor

Matching

Deferencie

Experimentos sociales (Esther Duflo):

https://www.youtube.com/watch?v=0zvrGiPkVcs

Generalidades

licrometrí

Luis Chávez

Introducció

Métodos no experimentales

Efecto de tratamiento

Métodos cuasi-

experimentale

Propensity Score Matching

Referencia

Difference in Difference (DiD) o doble diferencias se basa en la diferencia en los cambios en el resultado entre los grupos de tratamiento y de comparación a lo largo del tiempo.

- Utiliza un grupo de tratamiento y un grupo de comparación.
- El grupo de comparación sirve como contrafactual del grupo de tratamiento.
- Asume trayectorias paralelas del grupo comparador con el contrafactual.

/licrometria

Luis Chávez

Introducció

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

experimenta

DiD

Propensity Scor Matching

Referencia

Matemáticamente, asumiendo que y representa promedios, se define:

$$DiD = (y_{a,1} - y_{b,1}) - (y_{a,0} - y_{b,0})$$
(9)

donde $y_{a,1}$ representa el resultado promedio del grupo de tratamiento after (después) y $y_{b,0}$ representa el resultado promedio del grupo de control before (antes).

Generalidades

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamien

experimentale

DiD

Propensity Scor Matching

Referencias

Figure: Esquema DiD

Generalidades

Micrometría

Luis Chávez

Introducción

Métodos no

Aleatoriedad

Efecto de tratamiento

experimental

DiD

Propensity Sco Matching

Referencias

Ejemplo:

	1997		2001		2003	
	Project	Non- project	Project	Non- project	Project	Non- project
Local market development						
Market	0.51	0.44	0.57	0.51	0.62	0.46
Market frequency	1.13	1.05	1.29	1.20	1.43	1.16
Shop	0.63	0.59	0.82	0.80	0.84	0.77
Bicycle repair shop	0.76	0.65	0.80	0.78	0.87	0.81
Pharmacy	0.62	0.58	0.73	0.62	0.69	0.52
Restaurant	0.35	0.33	0.50	0.41	0.52	0.44
Services availability						
Women's hairdressing	0.38	0.39	0.46	0.51	0.66	0.53
Men's barber	0.59	0.58	0.72	0.68	0.85	0.75
Men and women's tailoring	0.65	0.66	0.82	0.72	0.84	0.77
Employment: % households whose main of	occupation	n is:				
Farming	89.53	90.67	89.65	91.07	87.02	90.15
Trade	1.45	1.41	1.73	1.75	3.17	2.56
Services	1.12	0.54	1.42	1.52	3.20	1.60
School enrolments						
Primary school completion (<15 years)	0.31	0.31	0.32	0.32	0.39	0.35
Secondary school enrolment	0.80	0.88	0.91	0.94	0.92	0.91

Figure: Outcomes de Mu y Van de Walle (2011)

Micrometría

Luis Chávez

Matching

El indicador DiD no dice nada sobre su insignificancia estadística. Se usa regresión para ello.

Vlicrometria

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cua

exper

Propensity Sco

Referencias

Estructura OLS:

$$y_{ist} = \alpha_s + \lambda_t + \beta d_{st} + \epsilon_{ist}, \quad \forall s = T, C; \ \forall t = a, b$$
 (10)

Entonces,

$$E(y_{ist} \mid s = C, t = b) = \alpha_C + \lambda_b$$

$$E(y_{ist} \mid s = C, t = a) = \alpha_C + \lambda_a$$

$$E(y_{ist} \mid s = T, t = b) = \alpha_T + \lambda_b$$

$$E(y_{ist} \mid s = T, t = a) = \alpha_T + \lambda_a + \beta$$

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cua

DiD

Propensity Scor Matching

Referencias

Asumiendo un set de variables de control, se puede redefinir:

$$y_{ist} = \alpha_s + \lambda_t + \beta d_{st} + \chi'_{ist} \theta + \epsilon_{ist}, \quad \forall s = T, C; \ \forall t = a, b$$
 (11)

Ejemplo

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratamien

Métodos cuasi-

experimentale

DiD

Propensity Sco Matching

Referencias

Galiani y Gertler:

https://n9.cl/6zokt

Contenido

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Métodos cuasi experimentales

Propensity Score Matching

Referencias

- Introducción
- 2 Métodos no experimentales Aleatoriedad Efecto de tratamiento
- Métodos cuasi-experimentales DiD Propensity Score Matching
- 4 Referencias

Generalidades

licrometrí

Luis Chávez

Introducció

Métodos no experimentale

Efecto de tratamiento

Métodos cuas experimentale

DiD Propensity Score Matching

Referencia

- El método de *Propensity Score Matching* (PSM) construye un grupo de comparación que se basa en un modelo de probabilidad de participar en el tratamiento, utilizando características observadas.
- Los participantes se emparejan en función de esa probabilidad (propensity score) con los no participantes.
- La validez del método PSM depende de la verificación de supuestos.

Identificación

/licrometría

Luis Chávez

Introducció

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuasi experimentales

DiD Propensity Score

Propensity Score Matching

Referencia

- Se trata de encontrar el mejor contrafactual en base a datos observados.
- Cada participante se empareja con un no participante análogo y se compara la diferencia meda en ambos grupos.
- Las unidades individuales *no match* se descartan.

Identificación

Micrometría

Luis Chávez

Introducción

Métodos no

Aleatoriedad

Electo de tratamie

experimental

DiD

Propensity Score Matching

Referencias

i	Covariables	Identificador	Outcomes	
	Tratado, Matched		Tratado, Matched	
1	x_1, x_1^m	1,0	$y_1(1), y_1^m(0)$	
2	x_2, x_2^m	1,0	$y_2(1), y_2^m(0)$	
3	x_3, x_3^m	1,0	$y_3(1), y_3^m(0)$	
4	x_4, x_4^m	1,0	$y_4(1), y_4^m(0)$	
:	:	:	:	
n	x_n, x_n^m	1,0	$y_n(1), y_n^n(0)$	

Table: Matching

Especificación

·····c··o····cc····a

Luis Chávez

Introducció

Métodos no experimental

Aleatoriedad

Efecto de tratamiento

experimentale

Propensity Score Matching

Referencia

El score matching, dado un set de observables x_i es:

$$p(x_i) = p(T = 1|x) \tag{12}$$

Supuesto 1

Se asume:

• Independencia condicional:

$$(y_{i,1}, y_{i,0} \perp d_i | x_i)$$
 (13)

• Apoyo común (overlap condition):

$$0 < p(d_i = 1|x_i) < 1 \tag{14}$$

Especificación

ncrometri

Luis Chávez

Introducció

Métodos no experimentale

Aleatoriedad

Efecto de tratamiento

Métodos cuasi experimentales

DiD Propensity Score

Matching

Referencia

ATET usando PSM

$$ATET_{psm} = E_{p(x)|d_i=1} \{ E[y_1|d=1, p(x)] - E[y_0|d=0, p(x)] \}$$
 (15)

0

$$ATET_{psm} = \frac{1}{n_T} \left[\sum_{i \in T} Y_i^T - \sum_{j \in C} \omega(i, j) Y_j^C \right]$$
 (16)

donde n_T es el número de participantes y $\omega(u,j)$ es el peso utilizado para agregar los resultados de los no participantes emparejados j.

Criterios de Matching

Micrometría

Luis Chávez

Efecto de tratamiento

Propensity Score Matching

- Nearest-neighbor matching.
- Caliper or radius matching.
- Stratifi cation or interval matching.
- Kernel and local linear matching.

Ejemplo

Micrometría

Luis Chávez

Introducción

Métodos no

Aleatoriedad

Efecto de tratamien

experimental

DiD Propensity Score

Propensity Scor Matching

Referencias

Sea el conjunto de datos sobre funcionarios del sector público:

i	d_i	educación	ingreso		
1	0	2	6000		
2	0	3	8000		
3	0	5	9000		
4	0	12	20000		
5	1	5	10000		
6	1	3	8000		
7	1	4	9000		
8	1	2	7000		

Ejemplo (continuación)

Micrometría

Luis Chávez

Introducción

Métodos no experimentale

Aleatoriedad

Efecto de tratami

Métodos cuas experimentale

Propensity Score Matching

Referencia

i	di	educación	ingreso	match	<i>y</i> _{i,1}	<i>y</i> _{i,0}	diferencia
1	0	2	6000	-	-	-	-
2	0	3	8000	-	-	-	-
3	0	5	9000	-	-	-	-
4	0	12	20000	-	-	-	-
5	1	5	10000	[3]	10000	9000	1000
6	1	3	8000	[2]	8000	8000	0
7	1	4	9000	[2,3]	9000	8500	500
8	1	2	7000	[1]	7000	6000	1000

Referencias

Micrometría

Luis Chávez

Introducció

Métodos no experimentale

Efecto de tratamiento

Electo de tratamier

Métodos cuas experimentale

Propensity Score Matching

Matching

Referencias

- Khandker, S., Koolwal, G. y Samad, H. (2010). Handbook on Impact Evaluation: Quantitative Methods and Practices. The International Bank for Reconstruction and Development. https://n9.cl/j8jdp
- Gertler, P. J., Martinez, S., Premand, P., Rawlings, L. B., & Vermeersch, C. M. (2016). Impact evaluation in practice. World Bank Publications. https://n9.cl/e04ar
- StataCorp (2021). Stata Causal Inference and treatment-effects reference manual. Stata Press.

https://www.stata.com/manuals/causal.pdf