PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06305769 A

(43) Date of publication of application: 01.11.94

(51) Int. CI C03C 3/068

(21) Application number: 05119132 (71) Applicant: OHARA INC
(22) Date of filing: 22.04.93 (72) Inventor: OMORI KOJI HATTA HISAO

(54) OPTICAL GLASS

(57) Abstract:

PURPOSE: To produce optical glass having such optical constants as about 1.75-1.85 refractive idnex (Nd) and about 35-50 Abbe's number (ν d) and having excellent chemical durability while improving press moldability.

CONSTITUTION: This optical glass contains, by weight, 6-15% SiO_2 , 15-24% B_2O_3 , 25-50% La_2O_3 , 0.1-10% Ta_2O , 6-25% ZnO and 0.5-5% Li_2O as principal components.

COPYRIGHT: (C)1994,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-305769

(43)公開日 平成6年(1994)11月1日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

C 0 3 C 3/068

審査請求 未請求 請求項の数2 FD (全 6 頁)

(21)出願番号

特願平5-119132

(71)出願人 000128784

株式会社オハラ

(22)出願日

平成5年(1993)4月22日

神奈川県相模原市小山1丁目15番30号

(72)発明者 大森 浩二

神奈川県相模原市小山1丁目15番30号 株

式会社オハラ内

(72)発明者 八田比佐雄

神奈川県相模原市小山1丁目15番30号 株

式会社オハラ内

(54) 【発明の名称】 光学ガラス

(57) 【要約】

【目的】 屈折率 (Nd) が約1.75~1.85、ア ッベ数 (vd) 約35~50の範囲の光学恒数を示し、 モールドプレス成形性を改善しつつ、優れた化学的耐久 性を有する光学ガラスを得ること。

【構成】 主要成分の含有量が、重量%で、SiO2 6~15%, B2O3 15~24%, La2O3 25~ 50%, Ta₂O₅ 0. 1~10%, ZnO 6~25 %、Li₂O 0.5~5%であって上記光学恒数を有 する光学ガラス。

【特許請求の範囲】

【請求項1】 重量%で、SiO₂ 6~15%、B₂O₃ 15~24%、ただしSiO₂+B₂O₃ 21~35%、La₂O₃ 25~50%、Gd₂O₃0~30%、ただしLa₂O₃+Gd₂O₃ 27~60%、Ta₂O₅ 0.1~10%、ZnO 6~25%、ZrO₂ 0~10%、Nb₂O₅ 0~15%、WO₃ 0~5%、Li₂O 0.5~5%、Al₂O₃ 0~10%、TiO₂ 0~3%の範囲の各成分を含有し、かつ屈折率(Nd)約1.75~1.85、アッベ数(νd)約35~50の範囲の光学恒数と、580℃以下の転移温度(Tg)を有することを特徴とする光学ガラス。

【請求項2】 重量%で、 SiO_2 6~15%、 B_2O_3 15~24%、ただし SiO_2 + B_2O_3 21~30 %、 La_2O_3 25~50%、 Gd_2O_3O ~30%、ただし La_2O_3 + Gd_2O_3 32~60%、 Ta_2O_5 0.5~10%、ZnO 6~25%、 ZrO_2 0~10%、 Nb_2O_5 0.5~15%、 WO_3 0.5~5%、 Li_2O 0.5~5%、 Al_2O_3 0~5%、 TiO_2 0~3%の範囲の各成分を含有し、かつ屈折率(Nd)約1.75~1.85、Ty7、Ty7、Ty7、Ty7、Ty7、Ty7、Ty7、Ty7 Ty7、Ty7、Ty7 Ty7 Ty7 Ty7 Ty8 Ty7 Ty7 Ty8 Ty8 Ty9 Ty9

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、基本的に $SiO_2-B_2O_3-La_2O_3-Ta_2O_5-ZnO-Li_2O$ 系からなり、屈折率(Nd)が約1.75~1.85、アッベ数 (νd)が約35~50の範囲の光学恒数を有し、かつ低転移温度特性を付与してモールドプレス成形性を改善しつつ、化学的耐久性に優れた新規な光学ガラスに関する。

[0002]

【従来の技術】従来、前記光学恒数を示すガラスは、硼 酸ランタン系組成のものが代表的であり、例えば特開昭 50-14712号および特開昭55-116641号 等の公報にみられるように種々のガラスが開示されてい る。しかしこれらのガラスは一般に転移温度(以下Tg という)が高く600℃を越えるため、近年要望されて いる光学素子直接成形用のモールドプレス性に優れたガ ラスとしては不適である。一般にTgの値は、ガラス熱 間成形性の難易度を左右する大きな要因となっている が、軟化ガラスをプレス成形する場合、プレス金型はそ のガラスのTg近傍にさらされるため、ガラスのTgが 高いほど金型表面が酸化したり、金属組織に変化を生じ 急速に劣化して金型寿命が短くなりやすい。そこで前記 光学恒数を維持させながら、低Tg特性を与える目的で 種々のガラスが開発されている。例えば特開昭60-2 2 1 3 3 8 号公報には、B₂O₃-L_{a2}O₃-Y₂O₃-L - - $i_2O-R"O(R"は2価のアルカリ土類酸化物及び/又は2価の金属酸化物)系ガラスが開示されているが、このガラスは、耐失透性は改善されているものの化学的耐久性が十分でない。$

[0003]

【発明が解決しようとする課題】本発明は、前記従来のガラスにみられる諸欠点を改善し、屈折率 (Nd) 約 $1.75\sim1.85$ 、アッベ数 (ν d) 約 $35\sim50$ の範囲の光学恒数とモールドプレスに適合する低Tg特性を維持させつつ、一段と優れた化学的耐久性を有する光学ガラスを提供することを目的とする。

[0004]

【課題を解決するための手段】上記目的を達成するため、本発明者等は鋭意試験研究を重ねた結果、従来には具体的に開示されていない特定組成範囲の $SiO_2-B_2O_3-La_2O_3-Ta_2O_5-ZnO-Li_2O系ガラスにおいて、前記所定の光学恒数とモールドプレスに適した低Tg特性を維持しつつ、ガラスの化学的耐久性を一段と改善した所期のガラスが得られることをみいだし、本発明をなすに至った。$

【0005】本発明にかかる光学ガラスの特徴は、**重量**%で、SiO2 6~15%、B2O3 15~24%、ただしSiO2+B2O3 21~35%、La2O3 25~50%、Gd2O3 0~30%、ただしLa2O3+Gd2O3 27~60%、Ta2O5 0.1~10%、ZnO 6~25%、ZrO2 0~10%、Nb2O50~15%、WO3 0~5%、Li2O 0.5~5%、Al2O3 0~10%、TiO2 0~3%の範囲の各成分を含有し、かつ屈折率(Nd)約1.75~1.85、アッベ数(νd)約35~50の範囲の光学恒数と、580℃以下のTgを有するところにある。

【0006】つぎに各成分の含有量を上記のとおり限定した理由について述べる。すなわち、Si O_2 成分は、その量が6%未満であるとガラスの化学的耐久性が低下し、またその量が15%を超えると低Tg特性を維持し得なくなる。 B_2O_3 成分はガラスに低Tgを与えるのに有利なガラス形成成分であるが、その量はガラスの耐失透性と化学的耐久性維持のため、15~24%とすべきである。ただし、Si O_2 と B_2O_3 成分の合計量は、ガラスの耐失透性と目標の光学恒数維持のため21~35%、好ましくは21~30%の範囲とする。

【0007】 La_2O_3 成分はガラスの屈折率を目標の値にするため25%以上含有させる必要があるが、その量が50%を超えるとガラスは失透しやすくなる。 Gd_2O_3 成分は La_2O_3 成分と同様の光学特性をガラスに与えるので添加し得るが、その量が30%を超えるとガラスは失透しやすくなる。ただし、 La_2O_3 と Gd_2O_3 成分の合計量は、目標の光学恒数と耐失透性維持のため $27\sim60\%$ 、好ましくは $32\sim60\%$ の範囲とする。

【0008】本発明において、Ta2O5成分は後述のZ

n O成分とともにガラスに含有させることによって、所定のTgを維持させつつ大幅に化学的耐久性を改善させる効果がみいだされた重要成分である。その量が0.1%未満ではその効果が十分でなく、またその量が10%を超えるとガラスは耐失透性が悪化する。上記効果を得るためには0.5%以上含有させることが好ましい。

【0009】 ZnO成分はガラスの耐失透性、溶融性の 改善の点で有利な重要な成分であり、上記のとおり、 Ta_2O_5 成分と共に含有させて化学的耐久性向上を著しく するが、その量は $6\sim25$ %の範囲が有効である。 ただし、 Ta_2O_5 /ZnOの比率を $0.1\sim0.7$ の範囲に限定すると、一段と化学的耐久性に優れたガラスが得られるので好ましい。

【0010】 $2 \text{ r} \text{ O}_2$ 成分はガラスの光学恒数の調整、化学的耐久性の改善のため必要に応じて添加させ得るが 10%までで十分である。 Nb_2O_5 成分はガラスの屈折率を高め、化学的耐久性を改善するのに有効であるが、 15%を超えるとガラスは失透しやすくなる。上記効果を得るためには0.5%以上含有させることが好ましい。 WO_3 成分はガラスの屈折率を高め失透傾向を抑制し、溶融ガラスの粘性を小さくする効果があるが、5%を超えるとガラスの着色傾向が増大する。上記効果を得るためには、0.5%以上含有させることが好ましい。 【0011】 Li_2O 成分はガラスに低Tg特性を与える効果が特に大きいので重要な成分であるが、ガラスの耐失透性を維持しつつその効果を発揮させるためには、その量は0.5%5%の範囲にすべきである。 Al_2O_3 成分は化学的耐久性向上に有効な成分であるので、10

%まで含有させることができる。しかし、その量が多く なると溶融ガラスの粘性が大きくなり過ぎるので 5 %以 下が好ましい。

【0012】 TiO_2 成分はガラスの化学的耐久性を向上させるのに有効であり、3%まで含有させることができる。なお、本発明の光学ガラスに所望の特性を損なわない範囲で、 Yb_2O_3 10%まで、 F_2 5%まで等の成分を添加し得る。また脱泡清澄剤として、 Sb_2O_3 、 As_2O_3 等の成分を適量添加し得る。

[0013]

【実施例】つぎに、本発明の光学ガラスにかかる実施組 成例 (No. 1~No. 10) および前記従来の光学ガ ラスの比較組成例 (No. AおよびNo. B) をこれら のガラスの光学恒数(Nd、vd)および耐酸性(S R)数値とともに表1に示した。なお、上記SR値は、 国際標準化機構ISO8424;1987(E)の測定 方法に準拠し、測定して得た結果を表したものである。 ここで、SR値は所定の酸処理液中におけるガラス試料 が0.1μmの浸食を受けるのに要した時間(h)によ って等級付けしたものである。 SR値=4および5の場 合はPH0. 3の硝酸溶液を用い、それぞれ0. 1~1 hおよび0.1h以下を要したことを示す。また、SR 値=5、51、52および53の場合はいずれもPH 4. 6の酢酸緩衝液を用い、それぞれ10h以上、1~ 10h、0.1~1hおよび0.1h以下を要したこと を示している。

armous " . ".

[0014]

【表1】

单位:重量%

,,]		実 施	例	
No	1	2	3	4
Si02	7. 5	6. 5	6. 0	9. 0
B ₂ O ₃	18.0	19.0	20.5	21.5
La ₂ 0 ₃	36. 5	35.0	42.0	34. 5
Gd2 02			10.0	
Y b 2 0 3				
Ta 2 0 5	2. 0	4.0	3. 5	6. 0
ZnO	15.0	17.5	12.0	12.0
BaO				
ZrO:	9. 0	3. 0	4. 0	4. 0
Nb2 06	7. 0	9. 5	0. 5	4. D
WO ₃	3. 0	4.0	1. 0	5.0
Li ₂ O	2. 0	1.5	0. 5	4.0
A1= 0,				
TiO:				
Nd	1. 8139	1. 8129	1. 7898	1.7607
νd	40.4	39. 7	46.6	43.5
Tg (°C)	540	548	578	5 3 3
SR	5	5	4	51

【表1】

单位;重量%

,,,		実	ti 191	
No	5	6	7	8
Si02	8. 5	8. 0	10.0	14.0
B ₂ O ₃	18.5	22.0	18.0	15.0
La ₂ 0 ₃	32.0	32.0	28.0	26.0
Gdz 03			10.0	8. 0
Ybz Os	i .			
Taz 0.	6. 0	5. 0	5. 5	4. 5
2n0	10.0	12.5	9. 0	9. 5
BaO				
Zr02	5. 0	6.0	7. 0	8.0
Nb2 05	15.0	8. 5	5. 0	5. 5
wo _s	2. 0	∙3. 5	4. 0	4. 5
Li ₂ 0	3. 0	2. 5	3. 5	4. 5
Alz Oa				0.5
T i O2				
Nd	1.8175	1. 7853	1. 7827	1.7696
νd	38. 5	40.7	41.4	41.4
Tg (℃)	5 3 9	5 4 4	538	5 2 9
SR	5	5	5	5

【表1】

単位:重量%

No	実 1	6 M	比!	 例
14.0	9	10	Α	В
Si 02	12.0	7. 0	8. 5	
B ₂ O ₃	16.0	20.0	20.0	30.0
La ₂ 0 ₂	37. 0	35.0	30.0	35.0
Gd. 0.				
Yb2 03		5. 0	4. 0	3.0
Тав Ов	7. 0	3. 0	8. 0	
ZnO	11.0	20.0	21.0	5. 2
BaO			3. 0	!
Zr02	1.5	3. 5		3. 5
Nb2 05	6.0	4.0	4. 0	17.0
WO ₃	4. 5	0.5		5. 0
Li ₂ O	5. 0	1. 0	1. 5	1.3
A1203				
TiO ₂		1. 0		
Nd	1. 7658	1.8011	1.7767	1. 8187
νd	42. 1	43. 3	41. 4	38. 5
Tg (℃)	5 1 5	565	547	595
SR	5 1	4	53	53

【0015】表1にみられるとおり、本発明の実施組成例のガラス、No.8およびNo.5は、それぞれほぼ同等の光学恒数を有する比較組成例のガラス、No.AおよびNo.Bと比較するといずれもSR値が向上し、一段と優れた化学的耐久性を示している。本発明の他の実施組成例のガラスも同様に優れたSR値を示している。また、これらのガラスはいずれも耐失透性に優れ、また均質化し易い。このため、上記実施例のガラスは製造が容易であり、モールドプレスに適しているうえ、優れた化学的耐久性を有している。なお、本発明の上記実施組成例のガラスは、いずれも硝酸塩、炭酸塩、酸化物等の通常の光学ガラス原料を用いて秤量・混合し、これ

を白金坩堝を用いて約 $1100\sim1350$ \mathbb{C} 、約 $2\sim5$ 時間で溶融脱泡し、撹拌均質化した後、金型に鋳込み徐冷することにより得ることができる。

[0016]

【発明の効果】以上に述べたとおり、本発明の光学ガラスは、 $SiO_2-B_2O_3-La_2O_3-Ta_2O_5-ZnO-Li_2O$ 不成分系の特定組成を有するものであるから、屈折率(Nd)約1. $75\sim1$. 85、アッペ数約35 \sim 50の範囲の光学恒数と580 \sim 以下のTgとを有し、かつ化学的耐久性に一段と優れている。また製造が容易であり均質化し易く、モールドプレスに適している。