Chapter 8 Multimedia IR: Models and Languages

Introduction

- Complex structures instead of simple data types
 - Different media types (images, sounds, text, graphs)
 - Mix of structured and unstructured data
 - Metadata
 - Semi-structured data
 - Data whose structure may not match, or only partially match, the structure prescribed by the data schema
 - The system must typically extract some features from the multimedia objects
- Multimedia IR system should handle Metadata
- Architecture of system depends on
 - Characteristics of data
 - Operations performed on data

Introduction

Data modeling

Find all images similar to a car

- Store multimedia object Find multimedia objects containing an apple
- Different kinds of med

Find all red images

Semistructured data

Find multimedia objects containing a video clip

- Data retrieval
 - Data attribut sand cont
 - Query specification

Fuzzy predicates, content-based predicates, object attributes, structural predicates

- Query processing and optimization
 Query is parsed and compiled into an internal form
- Query iteration
 The query execution until the user is satisfied

Goal

- Multimedia IR systems should combine DBMS and IR technology
 - Data modeling capabilities of DBMSs
 - Similarity-based query capabilities of IR systems
- System should support attribute-based as well as content-based queries

Data modeling

Main tasks

- A data model should be defined by which the user can specify the data to be stored into the system
 - Support conventional and multimedia data types
 - Provide methods to analyze, retrieve, and query such data
- Provide a model for the internal representation of multimedia data

Data modeling

RDBMSs may help

- But integration of multimedia data in traditional DBMSs is difficult
 - Unstructured data which requires methods to identify and represent content features and semantic structures
 - Large storage requirements

OODBMSs may help

- But performance stays behind
 - Storage, query processing, transaction management

Object-relational technology may help

 Extending the relational model with ability to represent complex data types (SQL3)

Data modeling Object-oriented DBMS

Provide rich data model

 More suitable for modeling both multimedia data types and their semantic relationships

Class

- Attributes +operations
- Inheritance

Drawback

- the performances of storage techniques, query processing, and transaction management is not comparable to that of relational DBMSs
- Highly non-standard

Data modeling Object-relational DBMS

Extend the relational model

- Represent complex data types
- Maintain the performance and the simplicity of relational DBMSs and related query languages
- Define abstract data types
 - Allows one to define ad hoc data types for multimedia data

Support in commercial DBMSs

- Variable-length data types
- Details are platform specific
 - RAW, LONGRAW, LOB, BLOB, CLOB
 - IMAGE, TEXT
- No interpretation of data content
- SQL3 brings an extensible type system
 - OO like manner
- Proprietary implementations abound
 - Data cartridges in Oracle (ConText)
 - Data blades in Illustra (2D/3D spatial, text, images)

B-TreeTraditional DBMS

R-tree (Region Tree)

R-tree

- Represent a spatial object by its minimum bounding rectangle (MBR)
- Data rectangles are grouped to form parent nodes (recursively grouped)
- The MBR of a parent node completely contains the MBRs of its children
- MBRs are allowed to overlap
- Nodes of the tree correspond to disk pages

R-tree

R-Tree

R-Tree Example

name	semester	credits
A	8	100
В	4	10
C	6	35
D	1	10
E	6	40
F	5	45
G	7	85
H	3	20
I	10	70
J	2	30
K	8	50
L	4	50

R-Tree Example

R-Tree Example Searching

name	semester	credits
A	8	100
В	4	10
C	6	35
D	1	10
E	6	40
F	5	45
G	7	85
Н	3	20
I	10	70
J	2	30
K	8	50
L	4	50

Sixth semester or higher and earned between 20 and 65 credits

R-Tree Example Insert

Insert (Q,10,65)

Query languages

- Exact match is only one of the possible ways to query multimedia objects
 - Due to the semistructured nature of the data
- Content-based querying considers both structure and content of the data
 - Matching of features and degree of similarity
- Request specification
 - Browsing and navigation
 - Query by example
 - Specific query language

SQL3

Support extensible type system

 Provide constructs to define userdependent abstract data types, in an object-oriented like manner

Collection data types

- Sets, multisets, and lists
- The elements of a collection must have compatible types

SQL3 / SQL99

- Perspective from query language point of view
 - Functions and stored procedures
 - Active database facilities
- Perspective from multimedia point of view
 - Suitable for being used as an interface language for multimedia applications
 - External functions, user-defined data types
 - Triggers can enforce spatial and temporal constraints
 - A "standard"
 - However, no integrated IR techniques
 - Content-based search is application dependent
 - SQL/MM Full Text, SFQL

SQL3 Example

```
CREATE TABLE branch(
        VARCHAR(3),
  address ROW(
    street
              VARCHAR(25),
              VARCHAR(15),
    town
              ROW( city_id
    pcode
                                VARCHAR(4)
              subpart VARCHAR(4))));
INSERT INTO branch
VALUES('B5', ('22 Deer Rd', 'Sidcup', ('SW1', '4EH')));
```

SQL3 Example

```
CREATE TYPE person_type AS (
  PRIVATE
      date_of_birth DATE CHECK(date_of_birth > DATE '1990-01-01');
  PUBLIC
      fname VARCHAR(15) NOT NULL,
      Iname VARCHAR(15) NOT NULL,
      FUNCTION get_age (P person_type) RETURNS INTEGER
             RETURN /* code to calc age */
      END;
  END);
```

SQL3 Example

SELECT s.lname, s.get_age FROM staff s WHERE s.is_manager;

SELECT p.lname, p.address FROM person p WHERE p.get_age > 65;

SELECT p.lname, p.address FROM ONLY (person) p WHERE p.get_age > 65;

OQL (Object Query Language)

```
class Student
(extent students)
  attribute short id:
  attribute string name;
  attribute string address;
  attribute date birthdate;
  relationship set<Module> takes
       inverse Module takenby;
  short age();
```

OQL (Object Query Language)

```
class Module
  (extent modules)
  attribute string title;
  attribute short semester;
  relationship set<Student> takenby
       inverse Student takes;
};
class Postgrad extends Student
  (extent postgrads)
  attribute string thesis_title;
```

OQL (Object Query Language)

- select distinct x.age from Persons x where x.name = "Pat";
- Return literal of type set<struct>

```
select distinct struct(a:x.age, s:x.sex)
from Persons x
where x.name = "Pat";
```

OQL Examples

Path Expressions

```
select c.address
from Persons p, p.children c
where p.address.street = "Main Street"
and count(p.children) >= 2
and c.address.city != p.address.city;
```

Methods

```
select max(select c.age from p.children c)
from Persons p
where p.name = "Paul";
```

Query languages

- Conditions on multimedia data
 - Multimedia query languages should provide predicates for expressin Metadata, Database schema
 - Attribute predicates
 - Structural predicates
 - Semantic predicates

- Content of query data and feature data
- Structural and se antic predicates can refer to spatial or a gral properties
 - Contain, intersect, be

Find all the objects containing the world OFFICE

Query languages Query Expression

- Uncertainty, proximity and weigths
 - Imprecise terms and predicates
 - Normal, unacceptable, typical
 - Proximity predicates
 - Based on semantic distance, such as "nearest object"
 - Weights
 - Specifying degree of precision by which a condition must be verified
 - Allow the user to drive similarity-based selection of relevant objects