Chap 19: Polynômes

 \mathbb{K} est un corps commutatif

I. Algèbre **K**[X]

Un polynôme à coefficients dans \mathbb{K} est une suite presque nulle (nulle à partir d'un certain rang) $(a_k)_{k\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$

 $\mathbb{K}[X] = \{\text{polynômes à coefficients dans } \mathbb{K}\}$

 $(\mathbb{K}[X],+,\cdot)$ est un sous-espace vectoriel de $(\mathbb{K}^{\mathbb{N}},+,\cdot)$

Multiplication sur $\mathbb{K}[X]$: $(a_k)_{k \in \mathbb{N}} \times (b_k)_{k \in \mathbb{N}} = \left(\sum_{k=0}^n a_k b_{n-k}\right)_{n \in \mathbb{N}}$

 $(\mathbb{K}[X],+, imes)$ est un anneau d'élément neutre $1_{\mathbb{K}[X]}=(\delta_{0,n})_{n\in\mathbb{N}}=(1,0,0,\ldots)$

 \mathbb{K} corps commutatif $\Rightarrow \mathbb{K}[X]$ anneau commutatif

 $\mathcal{G} \begin{cases} \mathbb{K} \to \mathbb{K}[X] \\ \alpha \mapsto \alpha \times 1_{\mathbb{K}} = (\alpha, 0, 0, \ldots) \end{cases} \text{ est un morphisme d'algèbre injectif } \qquad \alpha \cdot (a_n)_{n \in \mathbb{N}} = (\alpha \cdot 1_{\mathbb{K}[X]}) \times (a_n)_{n \in \mathbb{N}}$

 $X = (\delta_{1,n})_{n \in \mathbb{N}} = (0,1,0,0,...)$

 $X^{k} = (\delta_{k,n})_{n \in \mathbb{N}} = (0,...,0,1,0,0,...)$ (le 1 est en $k - i\grave{e}me$ position) $X^{k} \times X^{l} = X^{k+l}$

 $(X^n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ $P = (a_n)_{n\in\mathbb{N}} = \sum_{k\in\mathbb{N}} a_k X^k$

Degré du polynôme : $\deg P = -\infty$ si $P = 0_{\mathbb{K}[X]}$ $\deg P = \max\{k \in \mathbb{N}, a_k \neq 0\}$ sinon

Valuation d'un polynôme non nul $val(P) = min\{k \in \mathbb{N}, a_k \neq 0\}$

 $\deg P \le n \Leftrightarrow \forall k > n, a_k = 0 \qquad \qquad \deg P = n \Leftrightarrow \forall k > n, a_k = 0 \text{ et } a_n \neq 0$

 $\deg P \in \mathbb{N} \Leftrightarrow P \neq 0_{\mathbb{K}[X]} \qquad \qquad \deg(P \times Q) = \deg P + \deg Q$

 $\deg(P+Q) \le \max(\deg P, \deg Q)$ avec égalité si $\deg P \ne \deg Q$

Le coefficient dominant de $P = \sum_{k=0}^{n} a_k X^k$ de degré n est a_n P est unitaire si $a_n = 1$

 $a_{\scriptscriptstyle p}$ coefficient dominant de $P,\,b_{\scriptscriptstyle q}$ celui de $Q \Rightarrow a_{\scriptscriptstyle p} \times b_{\scriptscriptstyle q}$ est celui de $P \times Q$

 $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X], d \text{ geP} \le n\} \text{ sev de } \mathbb{K}[X]$

 $(X^k)_{k \in [0,n]}$ base de $\mathbb{K}_n[X]$ \Rightarrow d $\mathbf{mi}_{\mathbb{K}}(\mathbb{K}_n[X]) = n+1$

 $(P_k)_{k \in \llbracket 0,n \rrbracket}$ avec pour tout k: $\deg P_k = k$, est une base de $\mathbb{K}_n[X]$

 $/! \setminus \mathsf{seul} \ \mathbb{K}_0[X]$ est un sous-anneau

 $P \in \mathbb{K}[X]$ est inversible $ssi \deg P = 0$

 $\mathbb{K}[X]$ est intègre

II. Arithmétique sur $\mathbb{K}[X]$

Division euclidienne : $(A,B) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ $\exists ! (Q,R) \in \mathbb{K}[X]^2 \ tq$ $\begin{cases} A = BQ + R \\ \deg R < \deg B \end{cases}$

Preuve: Unicité: regrouper chacun d'un côté, utiliser les degrés pour montrer l'égalité

Existence: Récurrence forte sur deg A. A = $a_{n+1}X^{n+1} + A_0$, p = deg B, $A_1 = A - \left(\frac{a_{n+1}}{b_p}X^{n+1-p}\right)B$

 $\deg A_{1} \leq n \Rightarrow hyp.rec. \quad A_{1} = Q_{1}B + R_{1} \quad A = \left(\frac{a_{n+1}}{b_{p}}X^{n+1-p} + Q_{1}\right)B + R_{1}$

 $\mathbb{K}[X]$ est un anneau principal : pour tout I idéal de $\mathbb{K}[X]$, il existe $P \in \mathbb{K}[X]$ tq $I = P \cdot \mathbb{K}[X] = \{PQ, Q \in \mathbb{K}[X]\}$ Si $I \neq \{0_{\mathbb{K}[X]}\}$, on a unicité du P unitaire

Preuve: on prend l'ensemble des degrés des polynômes de l'idéal I, on le minore, on prend un polynôme A_0 de I qui corresponde à ce degré minimum, un prend P dans I, on en fait la division euclidienne par A_0 , le reste est dans I (car R=P-A₀Q), il a donc un degré plus petit que A, ce qui est impossible si deg $R \geqslant 0 \Rightarrow A_0 \mid P$

On dit que B divise $A \in \mathbb{K}[X]$ s'il existe $Q \in \mathbb{K}[X]$ tel que A = QB

 $B \mid A \Leftrightarrow \text{le reste de la } DE \text{ de } A \text{ par } B \text{ est nul} \Leftrightarrow A \in B\mathbb{K}[X] \Leftrightarrow A\mathbb{K}[X] \subset B\mathbb{K}[X]$

P et Q sont associés si $\begin{cases} P \mid Q \\ Q \mid P \end{cases} \Leftrightarrow \exists \lambda \in \mathbb{K}^* \text{ tq } P = \lambda Q$

Il existe un unique $D \in \mathbb{K}[X]$ tel que $A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X]$: $D = PGCD(A, B) = A \wedge B$

$$D = A \wedge B \Rightarrow \exists (U, V) \in \mathbb{K}[X]^2, \ D = AU + BV \qquad D = A \wedge B \ ssi \begin{cases} D \mid A \quad D \mid B \\ D = AU + BV \end{cases} \qquad (U, V) \in \mathbb{K}[X]^2$$

A et B sont premiers entre eux $ssi\ A \land B = 1\ ssi\ \exists (U,V) \exists \mathbb{K}[X]^2, AU + BV = 1$

Lemme de Gauss : $(A, B, C) \in \mathbb{K}[X]^3$, $\begin{cases} A \mid BC \\ A \land B = 1 \end{cases} \Rightarrow A \mid C$

$$\begin{cases} P \wedge Q_1 = 1 \\ P \wedge Q_2 = 1 \end{cases} \Rightarrow P \wedge (Q_1 Q_2) = 1$$

$$(P, Q_1, ..., Q_n) \in \mathbb{K}^{n+1} \quad \forall j \in \llbracket 1, n \rrbracket, P \quad \mathcal{Q}_j \quad \Rightarrow \quad \wedge P \quad \prod_{j=1}^n Q_j \quad 1$$

$$(P, Q_1, ..., Q_n) \in \mathbb{K}^{n+1} \quad \forall (j, k) \in \llbracket 1, n \rrbracket, j \neq k, Q_k \wedge Q_j = 1 \qquad \forall k \in \llbracket 1, n \rrbracket, Q_j \mid P \qquad \Rightarrow \prod_{j=1}^n Q_j \mid P$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C = A \wedge B \wedge C$$

/!\ Premiers entre eux dans leur ensemble : $P_1 \wedge P_2 \wedge ... \wedge P_n = 1$

 \neq Premiers entre eux deux à deux : $\forall (j,k) \in [1,n]^2$, $j \neq k, P_j \land P_k = 1$

$$A\mathbb{K}[X] \cap B\mathbb{K}[X] = M \mathbb{K}[X] \quad M = PPCM(A, B) = A \vee B$$

$$(A, B) \in (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})^{2} \quad \begin{cases} D = A \wedge B \\ M = A \vee B \end{cases} \Rightarrow \exists \lambda \in \mathbb{K}^{*}, AB = \lambda MD$$

$$\begin{aligned} \textbf{Preuve}: \ A = DA_1, B = DB_1, \{mult.comm.A \& B\} = \{D \times P, P \ mult.comm.A_1 \& B_1\} \Rightarrow A \vee B = D(A_1 \vee B_1) \\ A_1 \wedge B_1 = 1 \Rightarrow A_1 \vee B_1 = \mu A_1 B_1 \qquad DM = D \times D(\mu A_1 B_1) = \mu AB \end{aligned}$$

P est irréductible si ses seuls diviseurs sont les polynômes inversibles $(\lambda, \lambda \in \mathbb{K}^*)$

les polynômes associés à $P(\mu P, \mu \in \mathbb{K}^*)$

$$P$$
 irréductible $\Leftrightarrow \forall (Q,R) \in \mathbb{K}[X]$ $P = QR \Rightarrow Q = \lambda \in \mathbb{K}^*$ ou $R = \lambda \in \mathbb{K}^*$

$$\Leftrightarrow \forall Q \in \mathbb{K}[X] \qquad P \land Q = \begin{cases} \frac{P}{\lambda} & \text{si } P \mid Q \\ 1 & \text{sinon} \end{cases}$$

 $K \subset \mathbb{K}$ Si P est irréductible dans $\mathbb{K}[X]$, alors il est irréductible dans K[X]

$$\mathsf{Algorithme}\;\mathsf{d'Euclide} \Rightarrow (P,Q) \in K[X]^2 \qquad PGCD_{\mathbb{K}[X]}(P,Q) = PGCD_{K[X]}(P,Q) \in K[X]$$

Un polynôme de degré 1 est toujours irréductible

P et Q irréductibles \Rightarrow Ils sont soit premiers entre eux, soit associés

$$P$$
 irréductible, $P \mid \prod_{k=1}^{n} Q_k \Rightarrow \exists j \in [[1, n]], P \mid Q_j$

Tout polynôme $P \in \mathbb{K}[X]$ de degré ≥ 1 admet un diviseur irréductible

 \Rightarrow Décomposition en polynômes irréductibles : $\forall P \in \mathbb{K}[X]$, $\deg P \ge 1$,

$$\exists \lambda \in \mathbb{K}^*, \qquad (P_1,...,P_n)$$
 polynômes irréductibles unitaires premiers 2 à 2

$$(\alpha_1,...,\alpha_n) \in (\mathbb{N}^*)^n$$
 $P = \prod_{k=1}^n P_k^{\alpha_k}$, et cette décomposition est unique à l'ordre près des facteurs

III. Polynômes et fonctions polynômiales associées

$$P = \sum_{k=0}^{n} a_k X^k$$
 $P \circ Q = \sum_{k=0}^{n} a_k Q^k \in \mathbb{K}[X] \operatorname{car} \mathbb{K}[X]$ anneau

$$\varphi \begin{cases} \mathbb{K}[X] & \to \mathbb{K}[X] \\ P & \mapsto P \circ Q \end{cases}$$
 est un morphisme d'algèbre (app. lin. + morphisme d'anneau)

$$\deg P \ge 1 \text{ et } \deg Q \ge 1 \Longrightarrow \deg(P \circ Q) = \deg P \times \deg Q$$

$$\deg P = 0 \Rightarrow P \circ Q = P, \ \deg(P \circ Q) = 0 \qquad \qquad \deg Q = 0 \Rightarrow \deg(P \circ Q) \le 0$$

$$P \in \mathbb{K}[X], P = \sum_{k=0}^n a_k X^k \text{ sa fonction polynômiale associée est} : \widetilde{P} \begin{cases} \mathbb{K} \to \mathbb{K} \\ x \mapsto \widetilde{P}(x) = \sum_{k=0}^n a_k x^k \end{cases}$$

$$\theta \begin{cases} \mathbb{K}[X] & \to \mathcal{F}(\mathbb{K}, \mathbb{K}) \\ P & \mapsto \tilde{P} \end{cases} \text{ est un morphisme d'algèbre}$$

Si \mathbb{K} est fini, θ n'est pas injective (dans $\mathbb{Z}/p\mathbb{Z}$: $x \to x^p - x$ fonction nulle (Fermat), mais $X^p - X$ non nul)

Une racine (ou zéro) de P dans \mathbb{K} est un $a \in \mathbb{K}$ tel que $\tilde{P}(a) = 0_{\mathbb{K}}$

 $P \in \mathbb{K}, a \in \mathbb{K}$, le reste de la div. euclidienne de P par (X - a) est $\tilde{P}(a)$

Preuve :
$$P = (X - a)Q + R$$
 $\tilde{P}(a) = (a - a)Q + R$

 $P \in \mathbb{K}[X], a \in \mathbb{K}$ est racine de P ssi $(X - a) \mid P$

 $P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\}$ P a un nombre fini de racines différentes (nbre $\leq \deg P$)

Soit $\mathbb K$ corps infini. $\theta \begin{cases} \mathbb K[X] & \to \mathfrak F(\mathbb K,\mathbb K) \\ P & \mapsto \tilde P \end{cases}$ est injective. (car fct nulle $\Rightarrow \infty$ racines)

a racine de P, son ordre de multiplicité est $ord_P(a) = \max\{j \in \mathbb{N}^*, (X-a)^j \mid P\}$

$$(X-a)^k \mid P \Leftrightarrow ord_p(a) \ge k$$

$$\begin{cases} (X-a)^k \mid P \\ (X-a)^{k+1} / P \end{cases} \Leftrightarrow ord_p(a) = k$$

Le nombre de racines de P (non nul) comptées avec leur multiplicité est inférieur au degré de P

P est scindé sur $\mathbb K$ s'il a autant de racines comptées avec leur multiplicité que son degré

$$\Leftrightarrow \exists (a_1,...,a_n) \in \mathbb{K}^n \text{ 2 à 2} \neq \text{, } (\alpha_1,...,\alpha_n) \in (\mathbb{N}^*)^n, \lambda \in \mathbb{K}^*, \qquad P = \lambda \prod_{k=0}^n (X - a_k)^{\alpha_k}$$

La fonction polynômiale associée à $P = \sum_{k=0}^{n} a_k X^k$ est paire ssi pour tout k impair, $a_k = 0$

IV. Polynôme dérivé

$$P = \sum_{k=0}^{n} a_k X^k$$
 Son polynôme dérivé $DP = \sum_{k=1}^{n} k a_k X^{k-1} = \sum_{k=0}^{n-1} (k+1) a_{k+1} X^k$

$$Digg\{ egin{aligned} \mathbb{K}[X] & o \mathbb{K}[X] \\ P & \mapsto DP \end{aligned}$$
 est une application linéaire

$$D(PQ) = D(P) \times Q + P \times D(Q)$$
Leibniz: $D^{n}(PQ) = \sum_{k=0}^{n} {n \choose k} (D^{k}P)(D^{n-k}Q)$

Dans \mathbb{R} ou $\mathbb{C}:\widetilde{DP}=(\widetilde{P})'$

Pour la suite, on prend $car(\mathbb{K}) = 0$ (par exemple $\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

Si
$$\deg P \ge 1$$
, $\deg DP = \deg P - 1$ Si $\deg P \le 0$, $\deg DP = -\infty$ $\Rightarrow \ker D = \mathbb{K}$

Taylor:
$$n \ge d$$
 g P, $eP(X) = \sum_{k=0}^{n} \frac{D^k P(a)}{k!} (X - a)^k = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^k$

$$\text{Preuve}: \ Mq, \forall b \in \mathbb{K}, \tilde{P}(b) - \sum_{k=0}^n \frac{\widetilde{D^k P(a)}}{k!} (b-a)^k = 0 \qquad Q_b = \tilde{P}(b) - \sum_{k=0}^n \frac{D^k P(X)}{k!} (b-X)^k \qquad DQ_b = 0$$

$$a$$
 racine d'ordre de multiplicité k de P $\Leftrightarrow \begin{cases} \forall j \in \llbracket 0, k-1 \rrbracket & P^{(j)}(a) = 0 \\ P^{(k)}(a) \neq 0 \end{cases}$ (Preuve: div.euclid. $P/(X-a)^p$)

V. Dans \mathbb{R} ou dans \mathbb{C}

 \mathbb{K} est algébriquement clos \Leftrightarrow Tout polynôme $P \in \mathbb{K}[X]$, $\deg P \ge 1$ a au moins une racine dans \mathbb{K}

- \Leftrightarrow Tout polynôme $P \in \mathbb{K}[X]$, $\deg P \ge 1$ est scindé sur \mathbb{K}
- ⇔ Les seuls polynômes irréductibles sont de degré 1

Théorème fondamental de l'algèbre (de d'Alembert-Gauss) : $\mathbb C$ est algébriquement clos

Tout polynôme
$$P \in \mathbb{C}[X]$$
 s'écrit $P = \lambda \prod_{j=0}^n \left(X - a_j\right)^{\alpha_j}$

$$P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X] \Longrightarrow \overline{P} = \sum_{k=0}^{n} \overline{a_k} X^k$$

$$\varphi \begin{cases} \mathbb{C}[X] & \to \mathbb{C}[X] \\ P & \mapsto \overline{P} \end{cases} \text{ est un isomorphisme d'algèbre}$$

 $\alpha \in \mathbb{C}$ est racine de P ssi $\overline{\alpha}$ est racine de \overline{P} , $ord_{P}(a) = ord_{\overline{P}}(\overline{a})$

Les seuls polynômes irréductibles dans $\mathbb R$ sont :

- les polynômes de degré 1
- les polynômes de degré 2 sans racine réelle

Soit $P \in \mathbb{K}[X]$ scindé sur \mathbb{K} , $n = \deg P$, $(\alpha_1 ... \alpha_n)$ les racines de P (avec multiplicité), $P = \sum_{k=0}^n a_k X^k$

$$\text{Pour tout } j \in \llbracket 1, n \rrbracket, \sigma_j = \sum_{\{i_1 \dots i_n\} \in P_n(\mathbb{N}_n)} \prod_{k=1}^j \alpha_{i_k} = \sum_{1 \leq i_1 < \dots < i_n \leq n} \prod_{k=1}^j \alpha_{i_k}. \quad \text{ On a } \forall j \in \llbracket 1, n \rrbracket \qquad \qquad \frac{a_{n-j}}{a_n} = (-1)^j \sigma_j$$

VI. Familles essentielles de polynômes

Polynômes d'interpolation de Lagrange : $(a_1...a_n) \in \mathbb{K}^n$ 2 à 2 distincts; $(\alpha_1...\alpha_n) \in \mathbb{K}^n$ Il existe un unique $P \in \mathbb{K}_{n-1}[X]$ tel que pour tout $j \in [1,n]$, $P(a_j) = \alpha_j$:

$$P = \sum_{k=1}^{n} \alpha_k L_k \text{ avec } \forall k \in \llbracket 1, n \rrbracket, L_k = \prod_{j \neq k} \frac{(X - a_j)}{(a_k - a_j)}$$

Polynômes de Tchebychev : $\forall n \in \mathbb{N}, \exists ! T_n \in \mathbb{R}[X] \text{ tq } \forall x \in \mathbb{R}, T_n(\cos x) = \cos(nx)$ (preuve : $\text{Re}(e^{inx})$)

$$\begin{cases} T_0 = 1 & T_1 = X \\ \forall n \in \mathbb{N}, T_{n+1} = 2XT_n - T_{n-1} \end{cases}$$
 $(preuve : cos((n+1)x) + cos((n-1)x) = 2cos x cos(nx))$

 T_n est scindé sur $\mathbb{R}[X]$ et admet n racines distinctes