COMP9020 - Review

Jack Jiang (z5129432)

23 October 2017

Topic 1: Numbers, Sets, and Alphabets

- 1. Floor and ceiling
 - ||: floor
 - []: ceiling
 - $|-X| = -\lceil X \rceil$
 - |X+t| = |X| + t for $t \in Z$
- 2. Divisibility, prime, gcd and lcm
 - $m \mid n$: m divides n (m is less)
 - $n \mid 0$ is true, and $0 \mid n$ is false, except n = 0
 - prime: n > 1 and $1 \mid n$ and $n \mid n$ only
 - relatively prime: gcd(m, n) = 1
 - gcd: greatest common divisor
 - lcm: least common multiple
 - gcd(m, n) * lcm(m, n) = |m| * |n|
 - Euclid's gcd algorithm: for $m \not\in n$, gcd(m, n) = gcd(m-n, n)
- 3. Set notation and construction
 - a set is a set of elements
 - Notation 1: $S = \{e1, e1, e1 ... \}$
 - Notation 2: $S = \{e: description of e\}$
 - symmetric difference 1: $A \oplus B = (A \cup B) \setminus (A \cap B)$
 - symmetric difference 2: $A \oplus B = (A \setminus B) \cup (B \setminus A)$
 - Subset: \subseteq , Proper subset: \subseteq
 - Power set: $Pow(X) = \{A : A \subseteq X\}$
 - Cardinality: |X|

- Always: $|Pow(X)| = 2^{|X|}$
- \bullet Set of Numbers: $P \subset N \subset Z \subset Q \subset R$

4. Laws of Sets Operations

- Commutativity
- Associativity
- Distribution
- Idempotence
- Identity
- Double Complementation
- De morgan Laws: $(A \cup B)^C = A^C \cap B^C$, $(A \cap B)^C = A^C \cup B^C$

5. Cartesian product

- (a, b): ordered pair
- $\bullet \ \ A \times B = \{(a,b) | a \in A, b \in B\}$

6. Formal language

- Σ : alphabet a finite, none empty set
- λ : a empty word
- Σ^k : set of all words of length k
- Σ^* : set of all words
- Σ^+ : set of all none empty words

Topic 2: Functions Matrix and Relations

- 1. Function Definition
 - notation 1: $f: S \to T$
 - notation 2: $f: x \mapsto y$
 - notation 3: f(x) = y
 - every input has an one and only one output
 - Image: $Im(f) = \{f(x), x \in Dom(f)\}\$
 - $Im(f) \subset Codom(f)$
 - Composition: $g \circ f = g(f(x))$ where $Im(f) \subset Dom(g)$
 - Identity: $f \circ Id = Id \circ f = f$
- 2. Function inverse

• surjective(onto): every output has a related input

$$Im(f) = Codom(f)$$

• injective(one-to-one): every input has an unique output

$$x \neq y \implies f(x) \neq f(y)$$

$$f(x) = f(y) \implies x = y$$

• bijective

surjective and injective

• inverse

$$f^{-1}: y \to x$$

• $f: D \to C, S_D \subseteq D, S_C \subseteq C$, then: $f(S_D) \subseteq C$ is the image, and $f^{\Leftarrow}(S_C) \subseteq D$ is the inverse image if $f^{-1}(S_C) = f^{\Leftarrow}(S_C)$

3. Matrix

• M_{mn} m is row and n is column

$$\begin{bmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ m_{21} & m_{22} & \dots & m_{2n} \\ \dots & & & & \\ m_{m1} & m_{m2} & \dots & m_{mn} \end{bmatrix}$$

- Transpose M^T a matrix is called symmetric if $M^T = M$
- Sum
- product (first row second column)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} a_{11} * b_{11} + a_{12} * b_{21} + a_{13} * b_{31} & a_{11} * b_{12} + a_{12} * b_{22} + a_{13} * b_{32} \\ a_{21} * b_{21} + a_{22} * b_{21} + a_{13} * b_{31} & a_{21} * b_{12} + a_{22} * b_{22} + a_{23} * b_{32} \end{bmatrix}$$

4. • c

Topic 3: Graph theory

1.

2.

1.	
2.	
Topic 5: 1. 2.	Induction
Topic 6: 1. 2.	Recursion
Topic 7: 1. 2.	Running time of programs
Topic 8:	Counting
1. 2.	
Topic 9:	Probability and Expectation
1.	
2.	
Topic 7: 1. 2. Topic 8: 1. 2. Topic 9: 1.	Counting

Topic 4: Logic