Splošno

• Lahko izračunamo spremembo posamezne energije v odvisnosti od časa:

$$-W_{\rm k}(t) = \frac{1}{2}mv^2(t)$$
 in $W_{\rm p}(t) = mgh(t)$.

- II. Newtonov zakon za vrtenje: ∑M = Jα
 Steinerjev izrek: Vztrajnostni moment J_ξ okrog osi ξ je enak J_ξ = J_T + mx², kjer je J_T vztrajnostni moment okoli vzporedne osi skozi težišče, x pa razdalja med osema.

Mehansko nihanje in valovanje 1

Nihanje brez dušenja 1.1

Nihalo na vijačni vzmet

- Enačba gibanja:
 - Zapišimo vse sile, ki delujejo na telo, ko je ono odmaknjeno za y od ravnovesne lege
 - Zapišemo II. Newtonov zakon. Dobimo enačbo $\ddot{y} + \omega_0^2 y = 0$
 - * Splošna rešitev (vsota dveh posameznih rešitev): $y(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$
 - * Lahko jo zapišemo v obliki $y(t) = C \sin(\omega_0 t + \delta), C > 0$, kjer $C = \sqrt{A^2 + B^2}$ in $\delta = \arctan \frac{B}{A}$.
 - Konstante določimo iz začetnih pogojev (položaj in hitrost pri t=0).
 - * Začetni trenutek (ki ustreza času t=0) lahko izberimo poljubno
- Energija nihanja $(W = W_k + W_p + W_{pr} \frac{1}{2}ky_r^2 = \text{const})$: $-W_k = \frac{1}{2}m\dot{y}^2,\ W_p = -mgy,\ W_{pr} = \frac{1}{2}k(y+y_r)^2$
- Osnovne koli<u>či</u>ne:
 - $-\omega_0=\sqrt{\frac{k}{m}},\,\omega_0$ je lastna frekvenca
 - $-t_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{m}{k}}, \ \nu = \frac{1}{t_0}, \ \omega_0 = 2\pi\nu, t_0 \ \text{je nihajni čas}$

Matematično nihalo

- Enačba gibanja:
 - Zapišemo navor na točkasto telo: $\vec{M} = \vec{r} \times (\sum \vec{F})$
 - Zapišemo II. Newtonov zakon za vrtenje. Dobimo enačbo $\ddot{\phi} + \omega_0^2 \phi = 0$
- Energija nihanja ($W = W_k + W_p = \text{const}$):

$$-W_{\rm k} = \frac{1}{2}m(l\dot{\phi})^2, \ W_{\rm p} = -mgl\cos\phi \approx -mgl(1 - \frac{\phi^2}{2})$$

- Osnovne količine:
 - $-\omega_0=\sqrt{\frac{g}{l}}$
 - $-t_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{l}{q}}, \ \nu = \frac{1}{t_0}, \ \omega_0 = 2\pi\nu$
 - * Če kroglica pri nihanju zadeva v horizontalni drog: $\tilde{t_0} = \frac{t_0}{2} + \frac{t_0'}{2}$, kjer je t_0' nihajni čas okrog droga.
 - $-v_{\rm max} = l\dot{\phi}_{\rm max}$ (ali preko energije)

Fizično nihalo

- Enačba gibanja:
 - Zapišemo navor na togo telo: $\vec{M} = \vec{M}_T + \vec{M}_* = \vec{r}_T \times (\sum_j \vec{F}_j) + \sum_j (\vec{r}_j \times (\sum' \vec{F}_j))$ Zapišemo II. Newtonov zakon za vrtenje. Dobimo enačbo $\ddot{\phi} + \omega_0^2 \phi = 0$
 - - * J_z izračunamo z uporabo Steinerjevega izreka
- Osnovne koli<u>čine</u>:
 - $-\omega_0 = \sqrt{\frac{mgl^*}{J_z}}$
 - $-t_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{J_z}{mgl^*}}, \ \nu = \frac{1}{t_0}, \ \omega_0 = 2\pi\nu$

Torzijska vzmet (okrožna)

- $F=kx\leadsto \vec{M}=D\vec{\phi},\,\vec{M}$ poskuša zavrteti vzmet nazaj, tj. ponavadi kaže v nasprotno smer od $\vec{\phi}$ $\sum \vec{F}=m\vec{a}\leadsto \sum \vec{M}=J\vec{\alpha}$

Splošni nasveti

• Lahko obravnavamo gibanje v neinercialnem sistemu z upoštevanjem sistemskih sil.

1.2 Dušeno nihanje

- Enačba gibanja:
 - Zapišimo vse sile, ki delujejo na telo, ko je ono odmaknjeno za y od ravnovesne lege
 - * Arhimedova sila normalizira silo teže in v končne faze ni pomembna.
 - Zapišemo II. Newtonov zakon. Dobimo enačbo $\ddot{y} + 2\beta y + \omega_0^2 y = 0$
 - * Rešujemo z nastavkom $x(t) = Ae^{\lambda t}$
 - * Splošna rešitev: $y(t) = A \exp((-\beta + i\omega)t) + B \exp((-\beta i\omega)t)$, kjer $\omega = \sqrt{\omega_0^2 \beta^2}$
 - * Lahko jo zapišemo v obliki $y(t) = C \exp(-\beta t) \sin(\omega t + \delta), \ C > 0$, kjer $C = \sqrt[r]{A^2 + B^2}$ in $\delta = \arctan \frac{B}{A}$
- Zakoni upora:
 - Linearni zakon: $\vec{F} = C\vec{v}$. Ponavadi označimo $\beta = \frac{C}{m}$ ali $2\beta = \frac{C}{m}$ in β imenujemo koeficient dušenja

1.3 Vsiljeno nihanje

- Enačba gibanja:
 - Zapišimo vse sile, ki delujejo na telo, ko je ono odmaknjeno za \boldsymbol{y} od ravnovesne lege
 - Zapišemo II. Newtonov zakon. Dobimo enačbo $\ddot{y} + 2\beta \dot{y} + \omega_0^2 y = \frac{F_0}{m} \sin(\omega_v t)$
 - Splošna rešitev je oblike $y = y_h + y_p$
 - * Nastavek: $y(t) = y_0 \exp(-\beta t) \sin(\omega t + \delta) + B_p \sin(\omega_v t \delta_p)$, kjer $\omega = \sqrt{\omega_0^2 \beta^2}$
 - $\ast \ y_h$ se zaduši za dovolj velike čase
- Vrednosti B_p in δ_p :
 - Izračunamo jih tako, da vstavimo nastavek v enačbo in izberimo $t_1=0$ in $t_2=\frac{\pi}{2\omega_n}$
 - V primeru harmoničnega vsiljevanja: $\tan \delta_p = \frac{2\beta\omega_v}{\omega_0^2 \omega_v^2}, \ \delta_p \in [0, \pi] \text{ in } B_p = \frac{F_0}{m} \frac{1}{\sqrt{(\omega_0^2 \omega_v^2)^2 + (2\beta\omega_v)^2}},$

kjer je F_0 amplituda sile vzbujanja

- Pogoj za maksimalni odmik, hitrost, pospešek: odvajamo partikularni del
- Moč pri vsiljenem nihanju:
 - Povprečna moč: $\overline{P} = \beta m B_p^2 \omega_v^2$
 - Pogoj za največjo moč: $\nu_v = \nu_0$

1.4 Sestavljeno nihanje

- Enačba gibanja (nihalo na vijačni vzmet):
 - Zapišemo vse sile, ki delujejo na nihali
 - Zapišemo II. Newtonov zakon za vsako nihalo posebej. Dobimo enačbi:
 - * $\ddot{x}_1 + \omega_1^2 x_1 + \omega_2^2 (x_1 x_2) = 0$
 - $* \ddot{x}_2 + \omega_1^2 x_2 \omega_2^2 (x_1 x_2) = 0$
 - Definiramo težiščni odmik: $\phi^* = \phi_1 + \phi_2$ in relativni odmik $x_r = x_2 x_1$. Seštejemo in odštejemo enačbi, dobimo dve enačbi za vsako funkcijo posebej, ki imata rešitvi:
 - * $x_1 = B_1 \sin(\omega_a t + \delta_a) + B_2 \sin(\omega_b t + \delta_b)$
 - * $x_2 = B_1 \sin(\omega_a t + \delta_a) B_2 \sin(\omega_b t + \delta_b)$
 - Zveze med prvotnimi enačbi in rezultatom:
 - * $\omega_a = \omega_1$ in $\omega_b = \sqrt{\omega_1^2 + 2\omega_2^2}$
 - * $x_1 = \frac{x^* x_r}{2}$ in $x_2 = \frac{x^* + x_r}{2}$

1.5 Opis nihanja z Greenovimi funkcijami

Naj bo enačba gibanja

$$m\ddot{x} = F(t) - kx \iff m\ddot{x} + kx = F(t),$$

kjer je kx sila vzmeti in $F(t) = \Delta G \cdot \delta(t)$ enkraten sunek sile. Funkcija $\delta(t)$ je Diracova delta, za katero velja:

$$\bullet \ \delta(t) = \begin{cases} 0; & x \neq 0 \\ \infty^*; & x = 0 \end{cases}$$

•
$$\int \delta(t)dt = 1$$

Rešitev tej enačbe je:

$$x(t) = \frac{v_0}{\omega_0} \sin(\omega_0(t - t_i)) \implies x(t) = \frac{mv_0}{m\omega_0} \sin(\omega_0(t - t_i)) = \frac{\Delta G_i}{m\omega_0} \sin(\omega_0(t - t_i))$$

Zdaj seštejemo po vseh enkratnih sunkih:

$$x(t) = \sum_{i} \frac{mv_0}{m\omega_0} \sin(\omega_0(t - t_i)) = \sum_{i} \frac{F_i \Delta t}{m\omega_0} \sin(\omega_0(t - t_i))$$

Za zvezen potek časa dobimo:

$$x(t) = \frac{1}{m\omega_0} \int_{-\infty}^{t} F(t') \sin(\omega_0(t - t_i)) dt',$$

kjer je F(t') časovni potek motnje in $\sin(\omega_0(t-t_i))$ Greenova funkcija nedušenega nihala.

Postopek reševanja nalog:

- Določimo lastno frekvenco
- Izračunamo integral

1.6 Valovanje

Valovanje po vijačni vzmeti

Newtonov zakon za i-ti utež je

$$\frac{\partial^2 u}{\partial t^2} = \frac{kl^2}{m} \cdot \frac{u(x+h,t) - 2u(x,t) + u(x-h,t)}{h^2}$$

Valovna enačba:

$$\boxed{ \frac{\partial^2 u(x,t)}{\partial t^2} = C^2 \frac{\partial^2 u(x,t)}{\partial x^2} }$$

kjer $C^2 = \frac{kl^2}{m}$ hitrost valovanja.

Valovanje v tekočini, zaprti v tanki togi cevi

$$C^2 = \frac{1}{\chi \rho}$$

Valovanje po elastični palici

$$C^2 = \frac{E}{\rho}$$

Valovanje pu strune

$$C^2 = \frac{F}{\rho S}$$

Valovanje v plinu

$$C^2 = \frac{\kappa RT}{M}$$