CS 174C Week 6

Aidan Jan

February 14, 2024

Collision Detection and Response

Aside: Object Geometry

When considering particles colliding with objects, we need to know how to represent objects, and how to answer:

- Is a particle inside/outside an object?
- Does the particle trajectory cross into the object?
- What is the normal vector at some point on the object's surface?
- What is the distance/direction to the surface in space?

Standard geometric representations:

- Special geometries: plane, sphere, cylinder, prism, ...
- Height fields: z = h(x, y)
- Triangle meshes closed or open
- Implicit functions: f(x, y, z) = 0

Ground Collisions

Collisions With a Plane

Represent the plane with a point P on the plane, and the (outward) normal n of the plane

- Often simply $P = [0,0,0]^T$, $n = [0,1,0]^T$ the ground plane
- Particle at position x is "inside" plane if $(x P) \cdot n < 0$
- Trajectory crosses if $(x P) \cdot n$ changes sign
- Distance to surface:
 - if n is unit length, $(x-P) \cdot n$ is the "signed distance"
 - * $vert(-P) \cdot n$ is the regular distance
 - -n or -n is direction to the closest point on the surface
 - * -n if x is "outside"

Collisions With a Sphere

Represent the sphere with a center point C and a radius r

- Particle at position x is inside if ||x C|| r < 0
- Trajectory cross is complicated
 - Need to solve quadratic equation for intersection of straight line trajectory...
- Outward object normal is (x-C)/r
- Signed distance is |x C| r
- Direction to closest point on surface is $\pm (x-C)/|x-C|$
 - Sign depends on whether inside or outside
 - Beware of divide by zero at x = C
 - Note: matches up with object normal again!

Collisions With Height Fields

Especially good for terrain - a 2D array of heights

- Maybe stored as an image
 - i.e., a displacement map from a plane

Split up plane into triangles

- Particle inside:
 - Figure out which triangle (x, y) belongs to, check z against equation of triangle's plane
- Trajectory cross (for a stationary height field):
 - Check all triangles along path (use 2D line-drawing algorithm to figure out which cells to check)
- Object normal: get from the triangle
- Distance, etc.: not so easy, but vertical distance is easy for shallow height fields

Collisions With Triangle Meshes

For any decent sized mesh, will need to use an acceleration structure

- Could use background (hash-)grid, octree, kd-tree
- Can also use bounding volume (BV) hierarchy
 - Spheres, axis-aligned bounding boxes, oriented bounding boxes, polytopes, ...
- More exotic structures exist

Particle inside (for a closed mesh):

• Shoot a ray out to infinity and count the number of crossings

Trajectory cross (for a stationary mesh):

• For each candidate triangle (from acceleration structure), check a sequence of determinants

Collision Resolution

• We can now detect collisions. Now what?

Repulsion Velocity Fields

How do we create a repulsion velocity field?

- $v(x) = f(\operatorname{distance}(x))n(x)$
 - -n(x) is the outward unit normal to surface at x
 - -f is some function that monotonically decreases to zero
 - * Exponential $f(d) = e^{-kd}$
 - * Linear drop, truncated to zero: $f(d) = \max(0, m kd)$
 - * Or more complicated
 - Outward direction is plus/minus direction to closest point

Aside: useful for more than just collisions

• e.g., firing particles streaming out of an object

Repulsion Force Fields

Can do exactly the same trick for force-based motion

• Add repulsion field to f(x)

Simple, often works, but there are sometimes problems

- What are you trying to model?
- Robustness high velocity impacts can penetrate arbitrarily far
 - High velocity impacts may go straight through thin objects!
- How much of a rebound do you want?

Penalty Methods

Penalize Penetration:

- Springs and damers to the rescue!
 - Attach a zero-length "virtual" viscoelastic element at the point of entry

For a Plane:

• Normal force:

$$f_n = k_s ((P_g - x(t)) \cdot \hat{n}) \, \hat{n} - k_d(v(t) \cdot \hat{n}) \hat{n}$$
$$f_n \cdot \hat{n} > 0$$

Spring and Damping Constants

How do you come up with reasonable values for spring constants and damping constants?

• And how do you pick good step sizes for differential equation solver (Symplectic Euler, etc.)

Look at 1-dimensional, simplified model

- ma = F = -Kx Dv
- where...
 - -m is the mass, a is the acceleration, F is the force
 - -K is the spring constant, D is the damping constant
- Can solve it analytically.

Aside: Underdamped

$$D^2 - 4MK < 0$$

• Oscillation with frequency:

$$\omega \sim \frac{1}{2\pi} \sqrt{\frac{K}{M}}$$

• Characteristic time:

$$t\sim 2\pi\sqrt{\frac{M}{K}}$$

• Exponentially decays at rate:

$$r = -\frac{D}{2M}$$

• Characteristic time:

$$t \sim \frac{2M}{D}$$

Aside: Overdamped

$$D^2 - 4MK > 0 D = 2\sqrt{MK}$$

- No continued oscillation
- Fastest decay possible at rate:

$$r = -\frac{D}{2M}$$

• Characteristic time:

$$t \sim \frac{2M}{D}$$

Aside: Critically Damped

$$D^2 - 4MK = 0$$

- No continued oscillation
- Exponentially decays at rates:

$$r \sim -\frac{K}{D}, -\frac{D}{M}$$

• Characteristic times:

$$t \sim \frac{D}{K}, \frac{M}{D}$$

Numerical Time Steps

Should be proportional to minimum characteristic time

• Implicit time integration methods like Backward Euler actually let you take larger steps with stability, but kill all hope of accuracy for systems with small characteristic time

For nonlinear multi-dimensional forces, what are K and D?

- Estimate them by figuring out what is the fastest |F| can change if you modify x or v respectively
- This is all very approximate, so don't get hung up on getting the "right" answer
- Anyhow, will ultimately need a "fudge factor" (from trial-and-error experiments)

Friction

Coulomb friction: $f_f \leq \mu f_n$

- Coefficient of friction μ
- f_f opposes f_a :

$$f_f \le -\mu \|f_n\| \frac{f_a}{\|f_a\|}$$

• Traction: $f_f = -f_a$ until $f_f > f_T \dots$, then motion occurs

Friction Models

Static (Coulomb) friction: $||f_s|| = \mu_s ||f_n||$

- $f_n = -(f \cdot n)n$ is the normal component of the force f
- Must exceed static friction for object to start moving

For object in motion,

- Kinetic (constant) friction model: $f_k = -\mu_k \|f_n\| \frac{v_t}{\|v_t\|}$
 - Tangential component of velocity: $v_t = v v_n$
 - Normal component of velocity: $v_n = (v \cdot n)n$
- Viscous (linear) friction model: $f_v = -\mu_k ||f_n|| v_t$
 - i.e., a drag force that acts tangentially with magnitude proportional to the tangential velocity and normal force

Collisions

Impulsive Collisions

Model collision as a discrete event - a bounce

- Input: incoming velocity, object normal
- Output: outgoing velocity

Need some idea of how "elastic" the collision

- Fully elastic reflection
- Fully inelastic sticks (or slides)

Newtonian Collisions

For normal vector n, compute the components of the velocity v

- Normal component $v_N = (v \cdot n)n$
- Tangential component $v_T = v v_N$
- \bullet Reflect normal component to obtain rebound velocity with coefficient of restitution r

$$v_{new} = v_t - rv_n$$

Relative Velocity in Collisions

What if the particle hits a moving object?

- Now process collisions in terms of the relative velocity
 - $-v_{\text{ref}} = v_{\text{particle}} v_{\text{object}}$
 - Resolve normal and tangential components of the relative velocity
 - Reflect normal part appropriately to get new $v_{\rm rel}$
 - Then new $v_{\text{particle}} = v_{\text{object}} + v_{\text{rel}}^{\text{new}}$