#### Indian Institute of Technology Roorkee

# CHN-323 Computer Applications in Chemical Engineering

#### Ashwini Kumar Sharma

Department of Chemical Engineering Indian Institute of Technology Roorkee

Email: ashwini.fch@iitr.ac.in



#### Example 1

A first order reaction occurs in a jacketed MFR. The material and energy balance equations are:

$$\frac{dC}{dt} = 0.00005 - C \left[ 0.005 + \exp\left(\alpha - \frac{11324}{T}\right) \right]$$

$$\frac{dT}{dt} = 1.74 - 0.0057 T + C \exp\left(\beta - \frac{11324}{T}\right)$$

We have the following experimental "time-series" data. Use the data to estimate the unknown parameters a and  $\beta$ .

| †   | C      | Т      |
|-----|--------|--------|
|     |        |        |
| 0   | 0.0100 | 300.00 |
| 50  | 0.0084 | 303.30 |
| 100 | 0.0068 | 306.20 |
| 150 | 0.0054 | 308.62 |
| 200 | 0.0042 | 310.47 |
| 250 | 0.0034 | 311.75 |
| 300 | 0.0029 | 312.55 |
| 350 | 0.0027 | 313.03 |
| 400 | 0.0025 | 313.31 |
| 450 | 0.0024 | 313.48 |
| 500 | 0.0024 | 313.58 |

#### Differential equations

- > Ordinary differential equations
  - Initial value problem (IVP)
  - Boundary value problem (BVP)
- > Partial differential equations

### Initial value problem (IVP)

> Solve

$$\frac{dy}{dt} = 4e^{0.8t} - 0.5y$$

 $\triangleright$  Initial condition, y(t = 0) = 2

## Boundary value problem (BVP)

> Diffusion followed by 1st order Rxn in a Slab

$$\frac{d^2y}{dx^2} - y = 0$$

> Boundary conditions

1. 
$$\frac{dy}{dx} = 0$$
 at  $x = 0$   
2.  $y = 1$  at  $x = 1$ 

2. 
$$y = 1$$
 at  $x = 1$ 

#### Finite-difference approximations

Finite-difference approximations provide a means to transform derivatives into algebraic form

Forward Difference Formula (1st order accurate)

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Backward Difference Formula (1st order accurate)

$$f'(x) = \frac{f(x) - f(x - h)}{h}$$

Centered Difference Formula (2nd order accurate)

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Centered Difference Formula for 2nd Derivative (2nd order accurate)

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

### Euler's method (IVP)

- > Based on forward difference
- > Consider the following ODE

$$\frac{dy}{dt} = f(t, y)$$

Let us take any time  $t_i$ , corresponding y is  $y_i$ . The ODE should be valid at that point  $(t_i, y_i)$ 

$$\left. \frac{dy}{dt} \right|_{(t_i, y_i)} = f(t_i, y_i)$$

 $\succ$  Taking finite-difference approximation of the derivative at time  $t_i$ 

$$\frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i} = f(t_i, y_i)$$

> Rearranging, we get

$$y(t_{i+1}) = y(t_i) + f(t_i, y_i).\Delta t$$

### Example

> Solve

$$\frac{dy}{dt} = 4e^{0.8t} - 0.5y$$

 $\triangleright$  Initial condition, y(t = 0) = 2

#### Taylor series expansion

- > A Taylor series is a series expansion of a function about a point.
- $\blacktriangleright$  A one-dimensional Taylor series is an expansion of a real function g(t) about a point t=a is given by

$$g(t) = g(a) + g'(a)(t - a) + \frac{g''(a)}{2!}(t - a)^2 + \frac{g^{(3)}(a)}{3!}(t - a)^3 + \dots + \frac{g^{(n)}(a)}{n!}(t - a)^n + \dots$$

#### Derivation of Euler & Runge-Kutta methods

Consider the following ODE

$$\frac{dy}{dt} = f(t, y)$$

> Let us say that the solution of this ODE is

$$y = g(t)$$

ightharpoonup Taylor series expansion of g(t) about point  $t=t_i$ 

$$g(t) = g(t_i) + g'(t_i)(t - t_i) + \frac{g''(t_i)}{2!}(t - t_i)^2 + \frac{g^{(3)}(t_i)}{3!}(t - t_i)^3 + \dots + \frac{g^{(n)}(t_i)}{n!}(t - t_i)^n + \dots$$

As a numerical solution, we are interested to find y value (or g(t)) at time  $t = t_{i+1}$ .

$$g(t_{i+1}) = g(t_i) + g'(t_i)(t_{i+1} - t_i) + \frac{g''(t_i)}{2!}(t_{i+1} - t_i)^2 + \frac{g^{(3)}(t_i)}{3!}(t_{i+1} - t_i)^3 + \dots + \frac{g^{(n)}(t_i)}{n!}(t_{i+1} - t_i)^n + \dots$$

As 
$$y=g(t)$$
 and  $\frac{dy}{dt}=f(t,y)$ , we can write 
$$g'(t_i)=f(t_i,y_i), \ g''(t_i)=f'(t_i,y_i)$$
 
$$g(t_{i+1})=y_{i+1}, \ \ g(t_i)=y_i$$

- $\triangleright$  Let us define  $t_{i+1} t_i = h$
- > Incorporating the above, we can write

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{f'(t_i, y_i)}{2!}h^2 + \frac{f''(t_i, y_i)}{3!}h^3 + \dots + \frac{f^{(n)}(t_i, y_i)}{n!}h^n + \dots$$

#### Euler's method

> If we consider the first two terms only

$$y_{i+1} = y_i + f(t_i, y_i)h$$

- > This is Euler's method; it is referred to as Runge-Kutta 1<sup>st</sup> order method.
- > The true error in the approximation is given by

$$\frac{f'(t_i, y_i)}{2!}h^2 + \frac{f''(t_i, y_i)}{3!}h^3 + \dots + \frac{f^{(n)}(t_i, y_i)}{n!}h^n + \dots$$

#### Runge-Kutta 2<sup>nd</sup> order method

> If we consider the first three terms

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{f'(t_i, y_i)}{2!}h^2$$

> Example: 
$$\frac{dy}{dt} = e^{-2t} - 3y$$
,  $y(0) = 5$ 

$$f'(t,y) = \frac{df(t,y)}{dt} = \frac{\partial f(t,y)}{\partial t} + \frac{\partial f(t,y)}{\partial y} \frac{dy}{dt}$$

\*Need to find the derivative of  $f(t_i, y_i)$  symbolically

\*Calculation of  $f'(t_i, y_i)$  can be challenging sometimes

#### Runge-Kutta 2<sup>nd</sup> order method

Runge-Kutta proposed that

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

where

$$k_1 = f(t_i, y_i)$$
  
 $k_2 = f(t_i + p_1 h, y_i + q_{11} k_1 h)$ 

- This form allows one to take advantage of the 2nd order method without having to calculate  $f'(t_i, y_i)$
- $\blacktriangleright$  However, there are 4 unknown constants, i.e.,  $a_1$ ,  $a_2$ ,  $p_1$ ,  $q_{11}$

> Going back to the Taylor series expansion with three terms

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{f'(t_i, y_i)}{2!}h^2$$

We know that 
$$f'(t,y) = \frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$
, thus
$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!}h^2 \left[ \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} \frac{dy}{dt} \right]_{(t_i, y_i)}$$

ightharpoonup As  $\frac{dy}{dt} = f(t, y)$ , we can write

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!}h^2 \frac{\partial f}{\partial t}\Big|_{(t_i, y_i)} + \frac{1}{2!}h^2 \frac{\partial f}{\partial y}\Big|_{(t_i, y_i)} f(t_i, y_i)$$

- We have written  $k_2 = f(t_i + p_1 h, y_i + q_{11} k_1 h)$
- Let us revise Taylor series expansion of f(x) around the point x=a (for a single variable)

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$$

 $\triangleright$  Similarly, Taylor series expansion of f(t,y) around the point  $(t_i,y_i)$  (for two variables)

$$f(t,y) = f(t_i, y_i) + \frac{\partial f}{\partial t} \bigg|_{(t_i, y_i)} (t - t_i) + \frac{\partial f}{\partial y} \bigg|_{(t_i, y_i)} (y - y_i) + \cdots$$

Figure Taking  $t = t_i + p_1 h$  and  $y = y_i + q_{11} k_1 h$ , we can write

$$k_{2} = f(t_{i} + p_{1}h, y_{i} + q_{11}k_{1}h) = f(t_{i}, y_{i}) + \frac{\partial f}{\partial t}\Big|_{(t_{i}, y_{i})} p_{1}h + \frac{\partial f}{\partial y}\Big|_{(t_{i}, y_{i})} q_{11}k_{1}h + \cdots$$

> The solution has been proposed as

$$y_{i+1} = y_i + (a_1k_1 + a_2k_2)h$$

 $\triangleright$  Substituting for  $k_1$  and  $k_2$ 

$$k_1 = f(t_i, y_i)$$

$$y_{i+1} = y_i + \left[ a_1 f(t_i, y_i) + a_2 \left\{ f(t_i, y_i) + \frac{\partial f}{\partial t} \middle|_{(t_i, y_i)} p_1 h + \frac{\partial f}{\partial y} \middle|_{(t_i, y_i)} q_{11} k_1 h \right\} \right] h$$

$$y_{i+1} = y_i + (a_1 + a_2)f(t_i, y_i)h + a_2p_1 \frac{\partial f}{\partial t} \bigg|_{(t_i, y_i)} h^2 + a_2q_{11} \frac{\partial f}{\partial y} \bigg|_{(t_i, y_i)} f(t_i, y_i)h^2$$

#### Comparing

$$y_{i+1} = y_i + (a_1 + a_2)f(t_i, y_i)h + a_2 p_1 \frac{\partial f}{\partial t}\Big|_{(t_i, y_i)} h^2 + a_2 q_{11} \frac{\partial f}{\partial y}\Big|_{(t_i, y_i)} f(t_i, y_i)h^2$$

$$y_{i+1} = y_i + f(t_i, y_i)h + \frac{1}{2!}h^2 \frac{\partial f}{\partial t}\Big|_{(t_i, y_i)} + \frac{1}{2!}h^2 \frac{\partial f}{\partial y}\Big|_{(t_i, y_i)} f(t_i, y_i)$$

> We can get values the following equations

$$a_1 + a_2 = 1$$
  
 $a_2 p_1 = 1/2$   
 $a_2 q_{11} = 1/2$ 

3 equations, 4 unknowns -> infinite choices of  $a_1$ ,  $a_2$ ,  $p_1$ ,  $q_{11}$ 

One of the solutions is  $a_1 = a_2 = 1/2, \ p_1 = q_{11} = 1$ 

# Substituting the suggested values of constants, we can define 2<sup>nd</sup> order Runge-Kutta formulae as

$$y_{i+1} = y_i + \frac{h}{2}(k_1 + k_2)$$

where

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + h, y_i + k_1 h)$$

#### Runge-Kutta 4th order method

$$\frac{dy}{dt} = f(t, y)$$

$$y_{n+1} = y_n + h \left[ \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} \right]$$

$$egin{array}{lcl} oldsymbol{k}_1 &=& oldsymbol{f}(t_n, oldsymbol{y}_n) \ oldsymbol{k}_2 &=& oldsymbol{f}\left(t_n + rac{h}{2}, oldsymbol{y}_n + rac{h}{2}oldsymbol{k}_1
ight) \ oldsymbol{k}_3 &=& oldsymbol{f}\left(t_n + rac{h}{2}, oldsymbol{y}_n + rac{h}{2}oldsymbol{k}_2
ight) \ oldsymbol{k}_4 &=& oldsymbol{f}\left(t_n + h, oldsymbol{y}_n + holdsymbol{k}_3
ight). \end{array}$$

#### Example

> Solve

$$\frac{dy}{dt} = 4e^{0.8t} - 0.5y$$

- $\triangleright$  Initial condition, y(t = 0) = 2
- ➤ Solve this problem by Euler method, RK-2, and RK-4 and compare the solutions.

#### Example

Let us consider a simple isothermal reaction  $A \to B$  taking place in a MFR with constant holdup V. The kinetics of the reaction is given by second order reaction. The material balance for the reactor is written as

$$V \frac{dC_A}{dt} = F \left( C_{AF} - C_A \right) - k C_A^2 V$$

where  $C_{AF}$  is the concentration of A in the reactor inlet stream (mol/m³),  $C_A$  is the instantaneous concentration of A in the reactor (the exit stream composition is equal to the reactor composition for an ideal MFR), F is the inlet flow rate (also the effluent flow rate) in m³/min, k is the reaction rate constant in m³/(mol\*min) and V is the reactor holdup in m³. The nominal values are: F = 9 m³/min,  $C_{AF} = 5$  mol/m³, k = 2 m³/(mol\*min) and V = 1 m³. If the feed concentration changes from 5 mol/m³ to 6 mol/m³, how does the concentration of A in the reactor evolve with time?

#### Example continued...

- ➤ Due to some constraints, it is required to reduce the effluent concentration of species A below 1 mol/m³. The operation team suggests the use of a train of MFRs of similar size (same holdup). How many reactors will be needed to achieve the desired operation?
- For the above train of MFRs, Determine how the concentration of reactant A changes in the N<sup>th</sup> reactor when the feed concentration to the first reactor changes from 5 to 6 mol/m<sup>3</sup>.