1. Estimating N-gram Probabilities

Table 1 shows several statistics of two different corpora, corpus 1 and corpus 2, including some of their unigram and bigram counts. In both corpora, the beginning and end of each sentence are marked with the start and end tokens <s> and </s>.

For both corpora, compute the Maximum Likelihood Estimate (MLE) for the unigram and bigram probabilities and enter them in table 2.

Corpus 1		Corpus 2	
# sentences # tokens size of vocabulary	3600 60000 10900	# sentences # tokens size of vocabulary	5100 90000 11300
Unigrams	Count	Unigrams	Count
Lisa likes to run	4 40 2700 2	Lisa likes to run	1 15 3040 10
Bigrams	Count	Bigrams	Count
<s> Lisa Lisa likes likes to to run run </s>	3 1 20 1	<s> Lisa Lisa likes likes to to run run </s>	1 1 4 5

Table 1: Statistics of corpora 1 and 2

	Corpus 1	Corpus 2
Unigrams	P(w)	P(w)
Lisa		
likes		
to		
run		
Bigrams	$P(w_2 w_1)$	$P(w_2 w_1)$
<s> Lisa</s>		
Lisa likes		
likes to		
to run		
run		

Table 2: Unigram and bigram probabilities for corpora 1 and 2 $\,$

2. Creating a Language Model

Given is the following text corpus:

```
<s> ain't no sunshine </s>
<s> when she's gone </s>
<s> it's not warm </s>
<s> when she's away </s>
<s> ain't no sunshine </s>
<s> when she's gone </s>
```

Hint: "ain't", "she's" and "it's" are considered as one word.

- (a) Create both a unigram and a bigram model from the given corpus.
- (b) What is the most frequent unigram and bigram, respectively that includes no start or end token? What is the most likely next word after "she's" in each model?
- (c) Compute the probability of each of the following sentences using first your unigram and then your bigram model:

```
i. <s> ain't no warm </s>ii. <s> she's not gone </s>
```

- (d) Recalculate the probabilities of sentences i. and ii. in the bigram model using add-one smoothing. Additionally, compute their perplexity.
- (e) What problem does add-one smoothing address? What other methods do you know that tackle the same issue? Explain them briefly.