Application of Multilevel Demand Subscription Pricing for Mobilizing Residential Demand Response in Belgium - Appendix

Yuting Mou Center for Operations Research and **Econometrics**

Université catholique de Louvain Voie du Roman Pays 34 Louvain la Neuve, Belgium

Email: yuting.mou@uclouvain.be

Anthony Papavasiliou Center for Operations Research and Econometrics

Université catholique de Louvain Voie du Roman Pays 34 Louvain la Neuve, Belgium

Philippe Chevalier Center for Operations Research and

Econometrics

Université catholique de Louvain Voie du Roman Pays 34 Louvain la Neuve, Belgium

APPENDIX

Following [1], we assume that demand is linear with a constant slope $P(D, \gamma) = a(\gamma) - bD$, where $a(\gamma) = a_0 - a_1 e^{-\lambda_2 \gamma}$ and the PDF of γ is given by $f(\gamma) = \lambda_1 e^{-\lambda_1 \gamma}$. This PDF corresponds to the exponential distribution, whose CDF is given by $F(\gamma) = 1 - e^{-\lambda_1 \gamma}$. In the formulas, D denotes demand and P denotes price, while the 'state of the world' is represented by γ .

Consider the LDC under constant price p_0 and denote G(L)as the probability that demand is lower than L. G(L) can then be expressed as

$$G(L, p_0) = \Pr\left(\frac{a(\gamma) - p_0}{b} \le L\right)$$

$$= \Pr\left(a(\gamma) \le p_0 + bL\right)$$

$$= \Pr\left(a_0 - a_1 e^{-\lambda_2 \gamma} \le p_0 + bL\right)$$

$$= \Pr\left(e^{-\lambda_2 \gamma} \ge \frac{a_0 - (p_0 + bL)}{a_1}\right)$$

$$= \Pr\left(\gamma \le \frac{\ln \frac{a_0 - (p_0 + bL)}{a_1}}{-\lambda_2}\right). \tag{1}$$

Using the CDF of γ and letting $\lambda = \frac{\lambda_1}{\lambda_2}$ yield

$$G(L, p_0) = 1 - \exp\left[\frac{\lambda_1}{\lambda_2} \ln \frac{a_0 - (p_0 + bL)}{a_1}\right]$$
$$= 1 - \left[\frac{a_0 - (p_0 + bL)}{a_1}\right]^{\lambda}$$
(2)

Then $1-G(L,p_0)=\Pr(\operatorname{load}\geq L)=\left[\frac{a_0-(p_0+bL)}{a_1}\right]^{\lambda}$ can be estimated using the actual load duration curve. The function L(p,t) is then calculated using

$$\left[\frac{a_0 - (p_0 + bL)}{a_1}\right]^{\lambda} = \frac{t}{T} \tag{3}$$

$$\Rightarrow L(p_0, t) = -\frac{a_1}{b} \left(\frac{t}{T}\right)^{\frac{1}{\lambda}} - \frac{p_0}{b} + \frac{a_0}{b} \tag{4}$$

where T is the horizon.

The next step is to estimate the parameters a_0, a_1, b and λ . Using regression, we can find the optimal values of λ , m = $-\frac{a_1}{b}$ and $n = -\frac{p_0}{b} + \frac{a_0}{b}$.

The parameter b is calculated using elasticity as follows. Since $P(D, \gamma) = a(\gamma) - bD$, the elasticity of demand $e(\pi, \gamma)$ for a given price π in state γ is

$$e(\pi, \gamma) = \frac{\Delta D/D}{\Delta \pi/\pi} = \frac{\Delta D/D}{(\pi(D + \Delta D) - \pi(D))/\pi}$$

$$= \frac{\Delta D/D}{-b\Delta D/\pi} = \frac{\pi}{-bD}$$

$$= \frac{\pi}{\pi(D, \gamma) - a(\gamma)} = -\frac{\pi}{a(\gamma) - \pi}.$$
 (5)

Thus

$$\mathbb{E}[e(\pi,\gamma)] = \mathbb{E}\left[-\frac{\pi}{a(\gamma) - \pi}\right]$$

$$= -\pi \int_0^{+\infty} \frac{\lambda_1 e^{-\lambda_1 \gamma}}{a_0 - a_1 e^{-\lambda_2 \gamma} - \pi} d\gamma.$$
 (6)

Substituting $e^{-\lambda_1 \gamma}$ with x yields

$$\mathbb{E}[e(\pi,\gamma)] = -\pi \int_0^1 \frac{dx}{a_0 - a_1 x^{\frac{1}{\lambda}} - \pi} \tag{7}$$

$$= -\pi \int_0^1 \frac{dx}{p_0 + bn + bmx^{\frac{1}{\lambda}} - \pi}.$$
 (8)

At $\pi = p_0$, assume $\bar{e} = \mathbb{E}[e(\pi, \gamma)] = -0.13$, as observed in [2] using Dutch data, then b can be calculated.

REFERENCES

- [1] T.-O. Leautier, "Is mandating" smart meters" smart?" Energy Journal, vol. 35, no. 4, 2014.
- P. G. Boonekamp, "Price elasticities, policy measures and actual developments in household energy consumption-a bottom up analysis for the netherlands," Energy Economics, vol. 29, no. 2, pp. 133-157, 2007.