The following equations and data might be useful:

Acceleration due to gravity at earth's surface:	$g = 9.80 \mathrm{m s^{-2}}$
Speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m\ s^{-1}}$
Permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
Mass of one proton	$m_p = 1.673 \times 10^{-27} \text{ kg}$
Mass of one electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
Charge of an electron	$e = 1.60 \times 10^{-19} \mathrm{C}$
Boltzmann's constant	$k_B = 1.38 \times 10^{-23} \mathrm{J \ K^{-1}}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ J s}$
	$=4.136 \times 10^{-15} \text{ eV s}$
	$\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} \mathrm{J \ s}$
	$= 6.582 \times 10^{-16} \text{ eV s}$
The Stefan-Boltzmann constant	$\sigma = 5.67 \times 10^{-8} \mathrm{W m^{-2} K^{-4}}$
Rydberg	$R_{\infty} = 13.606 \text{ eV}$
The universal gas constant	$R = 8.314 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Specific heat of liquid water	$c_{\text{water}} = 4184 \mathrm{J \ kg^{-1} \ K^{-1}}$
Specific heat of ice	$c_{\rm ice} = 2050 \mathrm{J \ kg^{-1} \ K^{-1}}$
Heat of fusion for water	$L_{\rm f, water} = 3.34 \times 10^5 {\rm J \ kg^{-1}}$
Heat of vapourisation for water	$L_{\rm v, water} = 2.26 \times 10^6 {\rm J \ kg^{-1}}$
Speed of sound in air	$= 343 \mathrm{m \ s^{-2}}$
Density of water (20°C and 1 atm)	$= 1.00 \times 10^3 \mathrm{kg} \;\mathrm{m}^{-3}$
Conversion factors:	$1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$
	$0^{\circ}\text{C} = 273.15\text{K}$
	$1 L = 10^{-3} \mathrm{m}^3$
Area of a Sphere:	$A = 4\pi r^2$

Prefixes:

$$f = 10^{-15}$$
, $p = 10^{-12}$, $n = 10^{-9}$, $\mu = 10^{-6}$, $m = 10^{-3}$, $k = 10^{3}$, $M = 10^{6}$, $G = 10^{9}$, $T = 10^{12}$

Heat & Thermodynamics equations

Thermal expansion: $\Delta L = \alpha L_i \Delta T$ $\Delta V = \beta V_i \Delta T$ $\beta = 3\alpha$

Heating/Cooling: $Q = mc\Delta T$ Q = mL

Thermal motion in a gas: $K_{\text{ave,trans}} = \frac{1}{2}mv_{\text{th}}^2 = \frac{3}{2}kT$ $v_{\text{th}} = \sqrt{3kT/m}$

Heat Transfer by radiation: $P_{\rm net} = P_{\rm abs} - P_{\rm em} = e\sigma A (T_{\rm env}^4 - T^4)$

Heat Transfer by conduction: $H = \frac{Q}{t} = kA\frac{T_h - T_c}{L}$ H is heat flow in watts.

First Law and Work: $\Delta U = Q + W$ $W = -\int_{V_i}^{V_f} p \, dV$

Ideal Gas Law: pV = nRT Where n is the number of moles of gas.

Internal energy (ideal gas): $U = \frac{3}{2}nRT$ (monatomic) $\Delta U = nC_V\Delta T$

 γ (ideal gas): $\gamma = \frac{C_p}{C_V}$

 $\gamma_{\rm monatomic} = \frac{5}{3}$

 $\gamma_{\rm diatomic} = \frac{7}{5}$

 $\gamma_{\text{polyatomic}} = \frac{4}{3}$

Work (ideal gas): $W_{\text{isothermal}} = -nRT \ln \left(\frac{V_f}{V_i} \right)$ $W_{\text{adiabatic}} = \frac{p_f V_f - p_i V_i}{\gamma - 1}$

Specific Heat (ideal gas): $Q = nC_V \Delta T$ $Q = nC_p \Delta T$

 $C_p = C_V + R$ $C_V = \frac{f}{2}R$

Adiabatic process in ideal gas: $pV^{\gamma} = \text{constant}$ $TV^{\gamma-1} = \text{constant}$

Entropy change: $\Delta S = \frac{Q}{T}$ (constant T) $\Delta S = \int_i^f \frac{dQ}{T}$ $\Delta S = mc \ln \left(\frac{T_f}{T_i}\right)$

Mechanics equations

 $\begin{aligned} \mathbf{p} &= m\mathbf{v} & \mathbf{F} &= \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} & \mathbf{L} &= I\boldsymbol{\omega} & \boldsymbol{\tau} &= \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} \\ \mathbf{v} &= \boldsymbol{\omega} \times \mathbf{r} & \boldsymbol{\tau} &= \mathbf{r} \times \mathbf{F} & \mathbf{L} &= \mathbf{r} \times \mathbf{p} & I_z &= \sum_i m_i r_i^2 \\ K_{\mathrm{trans}} &= \frac{1}{2} m v^2 & K_{\mathrm{rot}} &= \frac{1}{2} I \omega^2 & F_{\mathrm{grav}} &= -\frac{GMm}{r^2} & U_{\mathrm{grav}} &= -\frac{GMm}{r} + U_0 \\ F(x) &= -\frac{\mathrm{d}U}{\mathrm{d}x} & f &\leq \mu_s N & f &= \mu_k N & \int_{x_0}^x F(x) \mathrm{d}x &= U(x_0) - U(x) \\ \mathrm{Circular\ motion:} & \mathbf{v} &= \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} &= r \, \dot{\vartheta} \, \hat{\mathbf{e}}_{\vartheta} & \mathbf{a} &= \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -r \, \dot{\vartheta}^2 \, \hat{\mathbf{e}}_r &= -\omega^2 \mathbf{r} \\ \mathrm{Kinematics:} & v &= v_0 + at & x &= x_0 + v_0 t + \frac{1}{2} a t^2 & v^2 &= v_0^2 + 2a(x - x_0) \end{aligned}$

Waves & Optics equations

Frequency: $f = \frac{1}{T}$

Angular Frequency: $\omega = 2\pi f$

Wave number: $k = \frac{2\pi}{\lambda}$

Average Power of Wave on a String: $\bar{P} = \frac{1}{2}\mu v\omega^2 A^2$

Intensity: $I = \frac{P}{A}$

Standing Waves: $L = \frac{n}{2}\lambda, \quad n = 1, 2, 3, ...$

 $L = \frac{m}{4}\lambda, \quad m = 1, 3, 5, \dots$

Doppler Effect: $f' = \frac{f}{1 \pm \frac{\pi}{u}}$

Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Refractive Index: $n = \frac{c}{n}$

Critical Angle: $\sin \theta_c = \frac{n_2}{n_1}$

Double Slit (Bright Fringes) $d \sin \theta = m\lambda, \quad m = 0, 1, 2, ...$

Double Slit (Dark Fringes) $d\sin\theta = (m+\tfrac{1}{2})\lambda, \quad m=0,1,2,\dots$

N Slit (Bright Fringes) $d \sin \theta = m\lambda, \quad m = 0, 1, 2, ...$

N Slit (Dark Fringes) $d\sin\theta = \tfrac{m}{N}\lambda, \quad m=1,2,3,\dots \ AND \ m \neq multiple \ of \ N$

Single Narrow Slit (Destructive): $a \sin \theta = m\lambda, \quad m = 1, 2, 3, ...$

Rayleigh Criterion (single slit): $\theta_{min} = \frac{\lambda}{a}$

Law of Malus: $I = I_0 \cos^2 \theta$

Trigonometric Identities: $\sin(\frac{\pi}{2} \pm x) = \cos x$

 $\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$

 $\cos \alpha + \cos \beta = 2\cos \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$

 $\cos \alpha - \cos \beta = 2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\beta - \alpha)$

Electricity equations

 $V_{\rm sphere} = \frac{4}{3}\pi r^3$ $A_{\rm sphere} = 4\pi r^2$

 $A_{\rm circle} = \pi r^2$ $C_{\rm circle} = 2\pi r$

 $\vec{F} = a\vec{E}$ Electric Force:

 $V = \frac{U}{a}$ Electrical Potential:

 $\Delta V = -\int_a^b \vec{E} \cdot d\vec{l}$ Potential difference:

 $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \, \hat{r}$ Field of point charge:

 $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$ Potential of point charge:

Gauss's Law:

$$\begin{split} & \Phi_E = \oint \vec{E} \cdot \mathrm{d}\vec{A} = \frac{q_{\mathrm{enclosed}}}{\epsilon_0} \\ & \vec{E} = -\vec{\nabla}V = -(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}) \end{split}$$
Electric Field from Potential:

Field of Sphere:

 $E_{\text{sheet}} = \frac{\sigma}{\epsilon_0}$ Field near *conducting* sheet:

 $E_{\text{sheet}} = \frac{\sigma}{2\epsilon_0}$ Field near *non-conducting* sheet:

 $E_{\text{line}} = \frac{\lambda}{2\pi\epsilon_0 r}$ Field of linear charge distribution:

 $C = \frac{Q}{V}$ Capacitance:

 $C_{\parallel} = \frac{\epsilon_0 A}{d}$ Parallel plate Capacitor:

 $\Delta V = Ed$

 $U_C = \frac{1}{2}CV^2$ Capacitor Energy:

Breakdown of Classical Physics equations

$$c = f\lambda, \qquad f = \frac{E}{h}, \qquad \lambda = \frac{h}{p}$$

$$I(T) = \sigma T^4$$

$$E = \sqrt{|\vec{p}|^2 c^2 + m^2 c^4},$$
 $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$

$$E = |\vec{p}|c$$
 for photons $\sin \theta = m\frac{\lambda}{a}, \quad m = 1, 2, 3, \dots$

$$K_{\text{max}} = hf - \Phi,$$
 $L = n\hbar = n\frac{h}{2\pi}, \quad n = 1, 2, 3, \dots$

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$$
 $\Delta p \, \Delta x \ge \frac{\hbar}{2}, \qquad \Delta E \, \Delta t \ge \frac{\hbar}{2}$

$$T \approx e^{-2bL}$$
, where $b = \frac{\sqrt{2m(U-E)}}{\hbar}$ $E = -\frac{RZ^2}{n^2}$, where $R = 13.606 \, \text{eV}$

$$r_n = \frac{n^2 \epsilon_0 h^2}{Z \pi e^2 m_e}, \qquad m_e v r = n \hbar$$

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK. It may be used for rough working which will \mathbf{NOT} be marked.

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK. It may be used for rough working which will \mathbf{NOT} be marked.