Unification of reduced-space and full-space methods for large-scale design optimization

Anugrah Jo Joshy University of California San Diego Outline

Existing Architectures
Reduced space method
Full space method

Hybrid Example

Code Example

Existing Architectures

Feel free to contact me if you have any suggestions! •

- 1. Simple
- 2. Clean
- 3. Oxford University Colours

Enjoy! ©

Feel free to contact me if you have any suggestions! •

Hybrid

Example

Let
$$p(x) = \mathcal{N}(\mu_1, \sigma^2_1)$$
 and $q(x) = \mathcal{N}(\mu_2, \sigma^2_2)$:

$$\mathcal{N} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{1}$$

Kullback-Leibler divergence for continuous probabilities:

$$D(p,q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

$$= \int p(x) \ln p(x) dx - \int p(x) \ln q(x) dx$$

$$= \frac{1}{2} \ln \left(2\pi \sigma_2^2 \right) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} \left(1 + \ln 2\pi \sigma_1^2 \right)$$

$$= \ln \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

Code

⟨/>

Greatest Common Divisor

```
1 def greatest_c_remainder(a,b):
           ''', Greatest common divisor of a and b''',
2
           r = a \% b
3
           if r == 0:
4
                    return b
5
           else:
6
                   m = b
                   n = r
8
          return greatest_c_remainder (m, n)
9
```