

Tutorium 5

Algorithmen I SS 14

Sortieren (immer noch)

Bucket Sort

- Array aus anfänglich leeren Buckets, denen jeweils ein Schlüssel zugewiesen ist
- Basierend auf den Schlüsseln werden die Elemente in die Buckets sortiert

Eigenschaften

- stabil
- nicht inplace
- Laufzeit $\mathcal{O}(n+k)$
- ⇒ Sinnvoll bei kleiner Schlüsselmenge

Radix Sort

Nutze Stabilität von Bucket Sort: Sortieren nacheinander nach einzelnen Ziffern

Mehrere Varianten

- Beginnend beim Most Significant Digit (MSD)
- Beginnend beim Least Significant Digit (LSD)

Eigenschaften

- stabil
- nicht inplace
- Laufzeit $\mathcal{O}(d*(n+k))$ für d= Anzahl digits

Beispiel

(978, 557, 963, 587, 718, 863, 497)

Vergleichsbasiert vs. Nicht Vergleichsbasiert

Pro Nicht Vergleichsbasiert:

asymptotisch schneller

Pro Vergleichsbasiert:

- weniger Voraussetzungen an die zu sortierenden Elemente
- Cache-Effizienz weniger schwierig
- bei langen Schlüsseln oft schneller
- robust gegen beliebige Eingabeverteilungen

Partitionierung bei Quicksort

Partitionierung mit Zeigern von beiden Seiten

- **Liste** wird durch zwei Zeiger (i, j mit $i \le j$) in drei Teile unterteilt:
 - am Anfang i = Anfang der Folge, j = Ende der Folge
 - bis i: Elemente < p</p>
 - bis j-1: unbetrachtete Elemente
 - bis r: Elemente $\geq p$
- Zeiger laufen aufeinander zu, solange die Zuteilung stimmt
- Sobald beide Zeiger bei falsch positionierten Elementen angekommen sind wird vertauscht
- Abbruch bei i > j

Partitionierung mit beiden Zeigern von links

- Pivotelement (p) steht an der letzten Stelle der Folge (r)
- Folge wird durch zwei Zeiger (i, j mit $i \leq j$) in drei Teile unterteilt:
 - am Anfang i = j = Anfang der Folge
 - bis i-1: Elemente $\leq p$
 - bis j-1: Elemente > p
 - bis r-1: unbetrachtete Elemente
- Wenn Element an der j-ten Stelle $\leq p$, dann tausche die Elemente an Stelle i und j und inkrementiere i
- inkrementiere j
- lacktriangle Wenn j bei r-1 ankommt, vertausche Element bei r mit Element bei i

Quicksort: Worst Case

Worst case bei Quicksort ⇔ Pivot ist immer Max/Min

Gedankenspiel:

Array bestehenend aus nur gleichen Elementen: (2, 2, 2, 2)

 \Rightarrow Standard-Quicksort schlecht bei vielen gleichen Elementen

Stattdessen: 3-way-partition

- 3 Pointer: i, j ,k
 - bis i 1: Elemente < p</p>
 - bis j 1: Elemente > p
 - bis k: unbetrachtete Elemente
 - bis r: Elemente = p
- Wie 2-way von links
- Außer: Wenn Element an j-ter Stelle = p, tausche mit k-tem Element und inkrementiere j nicht
- Am Ende den (=p) Teil zwischen (< p) und (> p) schieben.

Beispiel Partition

Partitioniere $\langle 16, 52, 50, 17, 80, 27, 29, 21, 23, 29, 17, 33, 50, 83 \rangle$ (29 als Pivot) mit

- 1 von beiden Seiten
- von links
- 3-way von links

Quickselect

Quickselect

- Rang eines Elements: Position des Elements in der sortierten Folge
- Nicht eindeutig bei mehreren gleichen Elementen!
- Gesucht: select(s, k) soll das Element mit Rang k in der (unsortierten) Folge s liefern
- Lösung: (einseitiges) Quicksort
- Erwartet $\mathcal{O}(n)$, Worst-Case $\mathcal{O}(n^2)$

Quickselect

Ziel: Element mit Rang k

- Wähle ein Pivot-Element
- 2 Partitioniere Folge wie bei Quicksort in a(<), b(=), c(>)
- 3 Vergleiche Größe von Teillisten mit Rang:
 - Element in a: return select(a, k)
 - Element in b: return Pivot
 - Element in c: return select(c, k |a| |b|)

Beispiel Quickselect

 $s=\langle$ 45, 31, 93, 30, 5, 67, 0, 39, 19, 41, 45 \rangle Finde das Element mit Rang 7 mit Quickselect (erstes Element als Pivot)

Seat Selection

