القدرات المنتظرة

- *- التعرف على تقايس وتشابه الأشكال استعمال الإزاحة و التحاكي والتماثل.
 - *- استعمال الإزاحة و التحاكي و التماثل في حل مسائل هندسية.

I – التماثل المحوري – التماثل المركزي – الإزاحة

1-أنشطة:

igl[ADigr] و igl[ABigr] و I و I و I و I و I

- 1- أنشئ الشكل
- O حدد مماثلة كل من A و B و O بالنسبة للنقطة O على التوالي استنتج مماثل -2
- النسبة (IO) على التوالي استنتج مماثل (IO) على النسبة (IO) على التوالي استنتج مماثل (IO) النسبة -3 (AC)
 - BC حدد صورة A بالإزاحة ذات المتجهة -4 IJ حدد صورة B بالإزاحة ذات المتجهة IJ جدد صورة BO بالإزاحة ذات المتجهة

- 1- الشكل
- O نحدد مماثلة كل من A و B و O بالنسبة -2 للنقطة O على التوالي و نستنتج مماثل (AB) بالنسبة لـ 0
 - مماثل O بالنسبة لـ O هي نفسها *
- و C فان BD و AC و فان ACO مماثلا A و B على التوالي بالنسبة لـ D(DC) و منه مماثل (AB) بالنسبة لـ O هو المستقيم
- Aو G و G بالنسبة للمستقيم B(AC)على التوالي و نستنتج مماثل (IO) بالنسبة لـ (AC)
- D هو AC) هو B معين فان AC معين فان B واسط B و منه مماثل B بالنسبة للمستقيم B
 - لدينا $O \in (AC)$ و منه مماثل O بالنسبة للمستقيم +
 - ig(ACig) التماثل المحوري الذي محوره $S_{(AC)}$ -*

ig(ACig) تقرأ M مماثل M بالنسبة للمستقيم $S_{(AC)}ig(Mig)=M'$ تذكير:

بما أن $S_{(AC)}(A)=D$ و $S_{(AC)}(B)=D$ فان مماثل S(AB) هو $S_{(AC)}(A)=A$ بالنسبة للمستقيم

و نعلم أن مماثل منتصف قطعة هو منصف مماثل القطعة

 $S_{(AC)}ig(Iig)$ و حيث أن I و I منتصفا I و I و I على التوالي فان I

(AC) نستنتج مماثل (IO) بالنسبة *

(JO) لدينا $S_{(AC)}(I)=J$ ومنه مماثل $S_{(AC)}(I)=J$ هو المستقيم $S_{(AC)}(I)=J$

 $B\dot{C}$ نحدد صورة A بالإزاحة ذات المتجهة -4 $\overrightarrow{AD} = \overrightarrow{BC}$ بما آن ABCD معین فان

 $t_{\overline{BC}}$ (A) = D نكتب نكتب \overline{BC} و منه صورة A هي النقطة D بالإزاحة ذات المتجهة

 \overrightarrow{IJ} نحدد صورة B بالإزاحة ذات المتجهة *-

 $\overrightarrow{IJ}=rac{1}{2}\overrightarrow{BD}$ في المثلث ABD لدينا I و J منتصفا BD في المثلث

$$t_{\overrightarrow{IJ}} \ (B) = O$$
 وحيث أن $\overrightarrow{BO} = \overrightarrow{IJ}$ فان $\overrightarrow{BO} = \overline{BO} = \overline{BO} = \overline{BO} = \overline{BO}$ وحيث أن O منتصف

 \overrightarrow{IJ} نحدد صورة BO بالإزاحة ذات المتجهة *-

$$t_{\overrightarrow{IJ}} \ \left(O
ight) = D$$
 مما سبق نستنتج أن $\overrightarrow{OD} = \overrightarrow{IJ}$ أذن

 \overrightarrow{IJ} و حيث أن BO فان صورة BO هي BO الإزاحة ذات المتجهة $t_{\overrightarrow{IJ}}$

2- تعاريف و مصطلحات

أ- المماثل المركزي

لتكن I نقطة معلومة و M و M نقطتين من المستوى

: نقوَّل إن النقطة $ar{M}$ هُي مِماَثلة النقطة $ar{M}$ بالنسبة للنقطة I اذا و فقط اذا تحقق ما يلي:

- M'=I فان M=I -
- $\begin{bmatrix} MM' \end{bmatrix}$ فان I فان $M \neq I$ -
- التماثل التي تربط كل نقطة M من المستوى (P) بمماثلتها M بالنسبة للنقطة I تسمى التماثل المركزي الذي مركزه I نرمز له بالرمز S_I

 $S_I:M o M$ ' أو $S_I:M o M$ نقول إن النقطة M أو M بالتماثل المركزي $S_I:M o M$ لذا نقول إن التماثل المركزي $S_I:M o M$ يحول M إلى M لذا نقول إن التماثل المركزي $S_I:M o M$ يحول في المستوى.

ملاحظات:

- $\overrightarrow{IM'} = -\overrightarrow{IM}$ تکافئ $S_I(M) = M'$ *
- S_I نقول إن النقطة I صامدة بالتماثل المركزي $S_I(I) = I$
 - $S_I(M') = M$ تکافئ $S_I(M) = M' *$

ب- المماثل المحوري

Mليكن D مستقيما و M و M نقطتين من المستوى

:نقول إن النقطة M هي مماثلة النقطة M بالنسبة للمستقيم (D) إذا و فقط إذا تحقق ما يلي:

- M'=M فان $M\in (D)$ -
- $\lceil MM' \rceil$ واسط $M \notin (D)$ واسط -
- العلاقة التي تربط كل نقطة M من المستوى (P) بمماثلتها 'M بالنسبة للمستقيم (D) تسمى التماثل المحوري الذي محوره (D) نرمز له بالرمز $S_{(D)}$

 $S_{(D)}: M o M$ ' أو $S_{(D)}(M) = M$ نقول إن النقطة M ' صورة M بالتماثل المحوري $S_{(D)}(M) = M$ نقول كذلك إن $S_{(D)}(M) = M$ لذا نقول إن التماثل المحوري $S_{(D)}(M) = M$ تحويل في المستوى.

ملاحظة:

$$\begin{bmatrix} MM' \end{bmatrix}$$
 واسط $S_{(D)}(M) = M'*$

$$S_{(D)}\!\left(N
ight)\!=\!N$$
 : $\left(D
ight)$ من N نقطة *

 $S_{(D)}$ نقول إن جميع نقط المستقيم D صامدة بالتماثل المحوري

$$S_{(D)}(M') = M$$
 تكافئ $S_{(D)}(M) = M' *$

ب- الإزاحة

ليكن \vec{u} متجهة و M و M' نقطتين من المستوى

 $\overrightarrow{MM'} = \overrightarrow{u}$ نقول إن النقطة ' M صورة M بالإزاحة ذات المتجهة \overrightarrow{u} إذا و فقط إذا *

العلاقة التي تربط كل نقطة $\,M\,$ من المستوى (P) بصورتها $M\,$ بالإزاحة ذا المتجهة $\,\vec{u}\,$ تسمى الإزاحة $\,^*$

 $t_{ec{u}}$ ذات المتجهة $ec{u}$ نرمز لها

$$t_{\vec{u}}:M \to M$$
' أو $t_{\vec{u}}\left(M\right)=M$ ' نكتب

نقول كذلك إن $t_{ec{u}}$ يحول M إلى ' M لذا نقول إن الإزاحة $t_{ec{u}}$ تحويل في المستوى.

ملاحظة:

$$\overrightarrow{MM}' = \overrightarrow{u}$$
 یکافئ $t_{\overrightarrow{u}}(M) = M'^*$

$$t_{\overline{O}}(M) = M$$
 لكل M من المستوى $t_{\overline{AB}}(A) = B$ *

$$\overrightarrow{MM} = \overrightarrow{0}$$
 تكافئ $t_{\overrightarrow{u}}(M) = M$ *

$$t_{-\vec{u}}\left(M'\right)=M$$
 یکافئ $t_{\vec{u}}\left(M\right)=M'*$

2- الخاصية المميزة للإزاحة

$$t_{\vec{u}}\left(M\right)=M$$
' ; $t_{\vec{u}}\left(N\right)=N$ ' حيث ' (P) حيث ' (P) د ' (P)

 $\overrightarrow{MN} = \overrightarrow{M'N'}$ - ليكن T التحويل حيث لكل نقطتين M و M من المستوى حيث T

$$T(M) = M'$$
; $T(N) = N'$

T نحدد طبیعة

لتكن A نقطة معلومة و M نقطة ما من المستوى

$$T(A) = A'$$
 لنعتبر

$$\overrightarrow{MA} = \overrightarrow{M'A'}$$
 تكافئ $T\left(M\right) = M'$ تكافئ $\overrightarrow{MM'} = \overrightarrow{AA'}$ تكافئ $t_{\overrightarrow{AA'}}\left(M\right) = M'$ تكافئ

 $T = t_{\overline{AA'}}$ إذن

الخاصبة المميزة

ليكن T تحويل في المستوى

یکون T اِزاحة اِذَا و فقط اِذا کَانت T تحول کل نقطتین M و N من المستوی الی نقطتین ' M و ' N حیث $\overline{MN} = \overline{M'} = \overline{M'}$

3- الاستقامية و التحويلات

ىشاط

$$D$$
' ; C ' ; B ' ; A ' نعتبر . $\overrightarrow{CD}=\alpha \overrightarrow{AB}$ شقط من المستوى حيث D ; C ; B ; A نتحويل T صورها على التوالي بتحويل

$$T=S_{\Omega}$$
 نبين أن $T=t_{ec{u}}$ في الحالتين $\overrightarrow{C'D'}=lpha \overrightarrow{A'B'}$ و

$$T = t_{\vec{u}}$$
 الحالة -*

$$\overrightarrow{AB} = \overrightarrow{A'B'}$$
 ومنه $T(A) = A'$; $T(B) = B'$

$$\overrightarrow{CD} = \overrightarrow{C'D'}$$
ومنه $T(C) = C'$; $T(D) = D'$

$$\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$$
 فان $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ وحيث أن

$$T = S_{\Omega}$$
 الحالة -*

$$\overrightarrow{AB} = -\overrightarrow{A'B'}$$
 و $\overrightarrow{\Omega A} = -\overrightarrow{\Omega A'}$ و $\overrightarrow{\Omega B} = -\overrightarrow{\Omega B'}$ و بالتالي $T\left(A\right) = A'$; $T\left(B\right) = B'$

$$\overrightarrow{CD} = -\overrightarrow{C'D'}$$
 و بالتالي $\overrightarrow{\Omega}\overrightarrow{D} = -\overrightarrow{\Omega}\overrightarrow{D'}$ و $\overrightarrow{\Omega}\overrightarrow{C} = -\overrightarrow{\Omega}\overrightarrow{C'}$ ومنه $T(C) = C'$; $T(D) = D'$

 $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ فان $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ وحيث أن $T = S_{(D)}$ نقبل الحالة

أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري T

نقط من المستوى D ; C ; B

 $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ حيث D' ; C' ; B' ; A' إذا كان T بالتوالي إلى النقط D ; D جيث D حيث D حيث D $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ فان

نعبر عن هذا بقولنا الإزاحة و التماثل المركزي و التماثل المحوري تحويلات تحافظ على معامل استقامية متجهتين

ليكن T أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري

 $AC = \alpha AB$ حيث α حيث $A \neq B$ ومنه يوجد α حيث C ; B ; A

مستقيمية. C' ; B' ; A' اذن $\overline{A'C'} = \alpha \overline{A'B'}$ مستقيمية T صورها بالتحويل T ومنه T

الإزاحة و التماثل المركزي و التماثل المحوري تحافظ على استقامية النقط

4- التحويل و ال<mark>مسافات</mark>

B و A صورتي A و B و التماثل المحوري تحويلات تحافظ على المسافة أي إذا كان A و A صورتي AAB = A'B' بأحد هذه التحويلات فان

5- صورة أشكال بتحويل: الإزاحة –التماثل المركزي – التماثل المحوري

ننشئ صورة الشكل (F) بالتحويلات الإزاحة و التماثل المركزي و التماثل المحر

لیکن (F) شـکلا

T مجموعة صور نقط الشكل (F) بتحويل T تكون شكلا (F') يسمى صورة شكل

صورة تقاطع شكلين (F_1) و (F_2) بتحويل T هو تقاطع (F_1) و (F_2) صورتي هذين الشكلين بهذا التحويل $T\left(\left(\mathbf{F}_{1}\right)\cap\left(F_{2}\right)\right)=T\left(\left(\mathbf{F}_{1}\right)\right)\cap T\left(\left(F_{2}\right)\right)$

ب- صور أشكال اعتيادية بتحويل

صورة مستقيم – صورة نصف مستقيم – صورة قطعة

ليكن T أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري T $T(\lceil AB \rceil) = \lceil A'B' \rceil$ و $T(\lceil AB \rangle) = \lceil A'B' \rceil$ و $T(\lceil AB \rangle) = \lceil A'B' \rceil$ و $T(AB) = \lceil A'B' \rceil$ و $T(AB) = \lceil A'B' \rceil$

(D') مستقیم $S_{(\Delta)}$ هو مستقیم -*

(D') افي نقطة I فان (Δ) افي نقطة I فان +

I يقطع (Δ) في نقطة

$$(\Delta)//(D')$$
 فان $(\Delta)//(D)$ + إذا كان

$$(D) = (D')$$
 فان $(D) \perp (\Delta)$ +

يوازيه (D') بإزاحة أو تماثل مركزي هو مستقيم (D') بإزاحة أو تماثل مركزي هو مستقيم *

ملاحظة

- عورة مستقيم المستقيم نفسه (D) بتماثل مركزي مركزه ينتمي الح(D) هو المستقيم نفسه *-
 - هو المستقيم نفسه (D) بإزاحة متجهتها موجهة لـ(D) هو المستقيم نفسه*-

ب- صورة منتصف قطعة

ليكن T أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري T أحد التحويلات التالية : T و T و T و T و T فان T فان T منتصف T

ج- صورة دائرة

صورة دائرة مرکزها $\,O\,$ و شعاعها $\,r\,$ بإزاحة أو تماثل محوري أو تماثل مرکزي هو دائرة مرکزها' $\,O\,$ صورة $\,O\,$ و شعاعها $\,r\,$

د- صورة زاوية

ليكن $\, T \,$ أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري

 $\widehat{BAC} = \widehat{B'A'C'}$ و $T(B) = \widehat{B'A'C'}$ فان T(C) = C' و T(B) = B' و T(A) = A'

الإزاحة و التماثل المركزي و التماثل المحوري تحافظ على قياس الزوايا الهندسية

6- صورة مثلث

ليكن T أحد التحويلات التالية : الإزاحة -التماثل المركزي - التماثل المحوري

إذا كان A'B'C' و T(A)=B' و T(B)=B' و أن صورة المثلث T(C)=C' فان صورة المثلث T(A)=A'

7- التحويلات و التوازي و التعامد خاصية

الإزاحة التماثل المركزي و التماثل المحوري تحويلات تحافظ على التعامد و التوازي

8- محاور تماثل شکل – مراکز تماثل شکل أ- تعریف

 $S_{(D)}\left((F)\right)=\left(F\right)$ نقول إن المستقيم D محور تماثل شكل F إذا و فقط إذا كان

أمثلة: + محاور تماثل مستقيم هو المستقيم نفسه و جميع المستقيمات العمودية عليه.

+ محاور تماثل دائرة هي حاملات أقطارها + محاور تماثل زاوية هو حامل منصفها

ب تعریف

 $S_{I}\left(\left(F
ight)
ight)=\left(F
ight)$ نقول إن النقطة I مركز تماثل شـكل $\left(F
ight)$ اذا و فقط اذا كان

أمثلة: + مركز تماثل مستقيم جميع نقطه + مركز تماثل دائرة هي دائرته

+ مركز تماثل متوازي الأضلاع هو مركزه

II – التحاكي

1-نشاط

لتكن O و A و B نقط من المستوى

 $\overrightarrow{OB}' = -2\overrightarrow{OB}$ و A' و B' حيث $\overrightarrow{OA}' = -2\overrightarrow{OA}$ و O'

نقول ان A' و B' و A' و A على التوالي بالتحاكي الذي مركزه A' ونسبته A'

-أنشىئ M' صورة M بالتحاكي الذي مركزه O ونسبته D

(AB)//(A'B') بين أن A'B' = -2AB و استنتج أن

 $\left(A'M'\right)$ ما هو الوضع النسبي للمستقيمين

2- تعریف

لتكن I نقطة معلومة من المستوى P و R عددا حقيقا غير منعدم

k العلاقة التي تربط النقطة M بالنقطة M حيث M حيث $\overline{IM'}=k\overline{IM'}$ تسمى التحاكي الذي مركزه M و نسبته ونرمز له بالرمز h أو h

h:M o M ' أو h(M)=M ' نقول ان النقطة M طورة النقطة M بالتحاكي

M' نقول كذلك h يحول M إلى

التحاكي h تحويل في المستوى

مثال

h أ- M تحاك مركز I و نسبته 3 أنشى M صورة M بالتحاكي h

___M'

h بالتحاكي M صورة M بالتحاكي h بالتحاكي h

M' I

ملاحظات

 $k \neq 0$ تحاك حيث h(I;k) ليكن

يحول كل نقطة إلى نفسها k=1 خان كان k=1 إذا كان k=1

"تكبير" hig(I;kig) نقول إن $|k|\succ 1$ تكبير" -

- "تصغير " h(I;k) نقول إن $|k| \prec 1$ تصغير -
- الى 'M فان I و M و 'M نقط مستقيمية h(I;k) إلى 'M إذا كان
- I و بالتحاكي الذي مركزه M و بالتحاكي الذي مركزه M فان M'=IM'=IM أي أي أي أي أي أي أي أي M'=IM'=IM' و بالتحاكي الذي مركزه M'=M'

 $\frac{1}{k}$ و نسبته

- h(I;k) نقول إن I بالتحاكي h(I) = I *
- مركز التحاكي هو النقطة الوحيدة الصامدة بهذا التحاكي

2- خاصیات

أ- أنشطة

h(N)=N' و M و M'=M' ليكن h(M)=M' تحاك حيث $M\in M$ و $M\in M$ و $M\in M$

$$M$$
 ' N ' = $|k|MN$ و أن $\overline{M$ ' N ' = $k\overline{MN}$ و أن -1

$$(MN)//(M'N')$$
 و $M' \neq N'$ فان $M \neq N$ و -2

نشاط2

$$\overrightarrow{M'N'}=k\overrightarrow{MN}$$
 نقط حیث N و M و N و M و M و M ایکن $k\in\mathbb{R}^*-\{1\}$

I متقاطعين في نقطة $\left(N\!N'
ight)$ و $\left(M\!M'
ight)$ متقاطعين في نقطة 1

N' و M' و استنتج أه يوجد تحاك يحول M و M و $\overline{IM'}=k\overline{IM}$ و $\overline{IM'}=k\overline{IM}$ و -2 بين أن أن أط3.

$$\overrightarrow{CD} = lpha \overrightarrow{AB}$$
 لتكن A ; B ; B نقط من المستوى حيث D ; B ; A

$$k \neq 0$$
 عيث $h(I;k)$ عيث التوالي بالتحاكي D' ; C' ; B' ; A' عين أن $\overline{C'D'} = \alpha \overline{A'B'}$ عين أن

ب- الخاصية المميزة

ليكن T تحويل في المستوى و k عدد حقيقي غير منعدم يخالف N و N و المستوى إلى نقطتين M و اN و N

 $k \overrightarrow{MN} = \overrightarrow{M'N'}$ حيث

نتيجه

اذا كان M و N من المستوى و كان ' M و 'N صورتيهما على التوالي بتحاك نسبته k غير منعدمة فان M 'N' = |k|MN

ج- خاصية: المحافظة على معامل الاستقامية

لتكن D ' ; C ' ; B ' ; A ' نقط من المستوى و D ' ; C ' ; B ; D نقط من التوالي

 $k \neq 0$ بالتحاکی h(I;k) حیث

 $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ اذا کان $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ فان

نعبر عن هذا بقولنا التحاكي يحافظ علة معامل استقامية متجهتين

التحاكي يحافظ على استقامية النقط

h تحاك

 $h\big(\big[AB\big]\big) = \big[A'B'\big] \text{ o } h\big(\big[AB\big)\big) = \big[A'B'\big) \text{ o } h\big(\big(AB\big)\big) = \big(A'B'\big) \text{ oid } h\big(B\big) = B' \text{ o } h\big(A\big) = A' \text{ oid } h(AB\big) = A' \text{ oid } h(AB) = A'$

لیکن h تحاك

igl[A'B'igr] و h(A)=A' و h(A)=I' و h(B)=B' و h(A)=A' و المنتصف I' فان I' منتصف I' حور بعض الأشكال بتحاك -3

خاصية1

يوازيه (D')صورة مستقيم (D') بتحاك هو مستقيم

ملاحظة : صورة مستقيم(D) بتحاك مركزه ينتمي إلى(D) هو المستقيم نفسه

 $\widehat{BAC} = \widehat{B'A'C'}$ و $T(\widehat{BAC}) = \widehat{B'A'C'}$ فان h(C) = C' و h(B) = B' و h(A) = A'التحاكي يحافظ على قياس الزوايا الهندسية

خاصية3

التحاكي يحافظ على التعامد و التوازي أي صورتا مستقيمان متعامدان هما مستقيمان متعامدان صورتا مستقيمان متوازيان هما مستقيمان متوازيان

خاصية4

صورة دائرة مركزها O و شعاعها r بتحاك نسبته k هو دائرة مركزها O صورة o بهذا التحاكي و شعاعها |k|r

خاصية5: صورة مثلث

 $k \neq 0$ ليكن h نسبته

A'B'C' و h(B)=B' و h(A)=A' فان صورة المثلث h(C)=C' و h(B)=B' هو المثلث

ملاحظة و اصطلاح:

A'B'C' إذا كان المثلث ABC صورة المثلث ABC بتحاك نسبته k غير منعدمة فان المثلث ABC صورة المثلث

 $\frac{1}{k}$ بالتحاکي نسبته

B'A'C'نقول إن المثلثين ABC و

خاصية6

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$
 إذا كان المثلثان $B'A'C'$ و $B'A'C'$ متحاكيان فان

$$\widehat{ACB} = \widehat{A'C'B'}$$
 g $\widehat{ABC} = \widehat{A'B'C'}$ g $\widehat{BAC} = \widehat{B'A'C'}$ g $(CB)//(C'B')$ g $(AC)//(A'C')$ g $(AB)//(A'B')$