01:XXX:XXX - Homework n

Pranav Tikkawar

December 5, 2024

Contents

1	Con	Concepts			
	1.1	Study	Guide Concepts	2	
		1.1.1	2.3 - The Diffusion Equation	2	
		1.1.2	2.4 - Diffusion on the Whole Line	4	
		1.1.3	2.5 - Comparison of Waves and Diffusion	4	
		1.1.4	4.1 - Seperation of Variables	4	
		1.1.5	4.2 - The Neumann Condition	6	
		1.1.6	4.3 - The Robin Condition	7	
		1.1.7	6.1 - Laplace's Equation	7	
		1.1.8	6.2 - Rectangles and Cubes	8	
		1.1.9	6.4 - Circles, Wedges and Annuli	8	
		1.1.10	5.1 - The Fourier Coefficients	9	
2	2 Content to Review				
3	Prob	olems		12	
4	Review after exam				

1 Concepts

1.1 Study Guide Concepts

- 2.3
- 2.4
- 2.5
- 4 Boundary Value Problems
- 6
- Laplacian in polar
- Separation of Variables
- Rectagles (6.2)
- Circles Wedges and Annuli (6.4)
- NO max principle, MVT, Poisson's formula
- 5.1
 - Fourier Series, full, sin and cos
 - No convergence

1.1.1 2.3 - The Diffusion Equation

Definition (Max Principle (weak)). If u(x,t) is a solution to the Diffusion Equation in a rectangle $0 \le x \le L$, $0 \le t \le T$, then the maximum of u(x,t) occurs on the boundary of the rectangle. In other words on x = 0, x = L, t = 0.

The minimum is similar as we can show that -u(x,t) satisfies the same equation.

The natrual interpretaion of this is that if you have a rod with no internal heat sourse, the hottest or coldest spot can only occour at t = 0 or on the edges.

Definition (Uniqueness). There is uniqueness for the Dirichlet problem for the Diffusion Equation. That means there is at most one solution of

$$\begin{cases} u_t - ku_{xx} = f(x,t) \text{ for } 0 < x < L, t > 0 \\ u(x,0) = \phi(x) \\ u(0,t) = g(t) \\ u(L,t) = h(t) \end{cases}$$

For any given $f(x,t), \phi(x), g(t), h(t)$ We can do proof by max principle. *Proof.* We want to show that for all u_1, u_2 that satisfy the above conditions, $u_1 = u_2$. Let $w = u_1 - u_2$. Then w satisfies the following:

$$\begin{cases} w_t - kw_{xx} = 0 \text{ for } 0 < x < L, t > 0 \\ w(x, 0) = 0 \\ w(0, t) = 0 \\ w(L, t) = 0 \end{cases}$$

By max prinicple w(x,t) has a maximum on its boundary. Also it must have a minimum on its boundary. Since w(x,0) = 0, the minimum and the maximum must be 0. Thus w(x,t) = 0 for all x,t.

Thus
$$u_1 = u_2$$
.

Now we can do a proof by energy.

Proof. We know that $w = u_1 - u_2$

$$0 = 0 \cdot w \tag{1}$$

$$= (w_t - kw_{xx})w \tag{2}$$

$$= (1/2w^2)_t + (-kww_x)_x + kw_x^2 \tag{3}$$

We can now integrat about 0 < x < L

$$0 = \int_0^L (1/2w^2)_t dx - kw_x w \Big|_{0 \text{ goesto0}}^L + k \int_0^L w_x^2 dx$$
 (4)

$$\frac{d}{dt} \int_0^L 1/2w^2 dx = -k \int_0^L w_x^2 dx$$
 (5)

(6)

Clearly the derivative of $\int_0^L w^2 dx$ is decreasing

$$\int_0^L w^2 dx \le \int_0^L w(x,0)^2 dx$$

The RHS is 0, so the LHS is 0. Thus w = 0.

Definition (Stablitity). The solution to the Diffusion Equation is stable. That means that if you have a small perturbation in the initial conditions, the solution will not change much. In other words they functions are "bounded" by initial conditions. This is in a L_2 sense.

$$\int_0^l [u_1(x,t) - u_2(x,t)]^2 dx \le \int_0^l [u_1(x,0) - u_2(x,0)]^2 dx$$

1.1.2 2.4 - Diffusion on the Whole Line

Definition (Invariance Properties). We have 5 basic invariance properties of the Diffusion Equation.

- Translation u(x-y,t) is a solution if u(x,t) is a solution.
- Any derivative of u(x,t) is a solution.
- A linear combination of solutions is a solution.
- An integral of a solution is a solution. Thus if S(x,t) is a solution then so is S(x-y,t) and so is $v(x,t) = \int_{-\infty}^{\infty} S(x-y,t)g(y)dy$. for any g(y).
- Dilation. If u(x,t) is a solution then so is $u(\sqrt{a}x,at)$ for any a>0.

Definition (Fundamental Solution to the Diffusion Equation). The fundamental solution to the Diffusion Equation is

$$S(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{-x^2/4kt}$$

This is a solution to the Diffusion Equation with f(x,t) = 0 and $u(x,0) = \delta(x)$. We can derive this by utilizing the invariance properties.

1.1.3 2.5 - Comparison of Waves and Diffusion

Property	Waves	Diffusion
Speed of Propogation	c	Infinite
Singulatities for $t > 0$	Transported along characteristics with speed c	Lost immediately
Well posed for $t > 0$	Yes	Yes for bounded
Well posed for $t < 0$	Yes	No
Max Principle	No	Yes
Behavior at infinity	Energy is constant so it doesn't decay	Decays to zero
Information	Transported	Lost gradually

Table 1: Comparison of Waves and Diffusion

1.1.4 4.1 - Separation of Variables

Definition (Separation Solution Process for waves). We can consider the homogeneous Dirichlet problem for wave Equation. Due to linearity we can see that we have a separated solution of the form u(x,t) = X(x)T(t).

$$\begin{cases} u_{tt} = c^2 u_{xx} \\ u(0,t) = u(L,t) = 0 \\ u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x) \end{cases}$$

Thus we can see the following ratios:

$$-\frac{T''}{cT} = -\frac{X''}{X} = \lambda$$

We know this must be a consant since it doesn't depend on x or t. We can now do our test cases:

$$\begin{cases} \lambda = \beta^2 \\ \lambda = 0 \\ \lambda = -\beta^2 \end{cases}$$

We can Clearly see that this doesn't make sense for $\lambda = 0$ and $\lambda = -\beta^2$. they lead to solutions that are trivial and solutions that do not follow the boundary conditions. Thus for $\lambda = \beta^2$ we have the following:

$$\begin{cases} X'' + \beta^2 X = 0 \\ T'' + c^2 \beta^2 T = 0 \end{cases} \begin{cases} X(x) = A\cos(\beta x) + B\sin(\beta x) \\ T(t) = C\cos(\beta ct) + D\sin(\beta ct) \end{cases}$$

Thus by imposing the BC we see that A = 0 and $Bsin(\beta l) = 0$. Thus for non trivial solutions we have $\beta = n\pi/l$. Thus our $\lambda = (n\pi/l)^2$ and our particular eigenfunction corresponding to this eigenvalue is $X_n(x) = \sin(n\pi x/l)$ and $T_n(t) = \cos(n\pi ct/l) + \sin(n\pi ct/l)$.

When we take our particular solutions $u_n(x,t) = (A_n \cos(n\pi ct/l) + B_n \sin(n\pi ct/l)) \sin(n\pi x/l)$ we can see that we can form any solution as a linear combination of these solutions.

$$u(x,t) = \sum_{n=1}^{\infty} (A_n \cos(n\pi ct/l) + B_n \sin(n\pi ct/l)) \sin(n\pi x/l)$$

We also require our IC to be satisfied.

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin(n\pi x/l)$$

$$\psi(x) = \sum_{n=1}^{\infty} B_n \sin(n\pi x/l)$$

Definition (Separation Solution Process for Diffusion). We can consider the homogeneous Dirichlet problem for Diffusion Equation.

$$\begin{cases} u_t = ku_{xx} \\ u(0,t) = u(L,t) = 0 \\ u(x,0) = \phi(x) \end{cases}$$

We can see that we have a separated solution of the form u(x,t) = X(x)T(t).

$$\left\{ -\frac{T'}{kT} = -\frac{X''}{X} = \lambda \right.$$

We can now do our test cases:

$$\begin{cases} \lambda = \beta^2 \\ \lambda = 0 \\ \lambda = -\beta^2 \end{cases}$$

We can see that this is the same X''/X as the wave equation. Thus we have the same solutions. Thus our $\lambda = (n\pi/l)^2$ For $n \in \mathbb{Z}$ thus our $T_n(t) = e^{-k(n\pi/l)^2 t}$ and $X_n(x) = \sin(n\pi x/l)$.

Thus our particular solutions $u_n(x,t) = A_n e^{-k(n\pi/l)^2 t} \sin(n\pi x/l)$ and we can form any solution as a linear combination of these solutions.

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-k(n\pi/l)^2 t} \sin(n\pi x/l)$$

We also require our IC to be satisfied.

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin(n\pi x/l)$$

1.1.5 4.2 - The Neumann Condition

Definition (Neumann Condition for Diffusion). The Neumann Condition is the following:

$$\begin{cases} u_t = ku_{xx} \\ u_x(0,t) = u_x(L,t) = 0 \\ u(x,0) = \phi(x) \end{cases}$$

We can see that we can reach the same eigenvalues but we need to check the eigenfunctions for solving the IC.

Thus we can see that $X'(l) = 0 = -C\beta \sin(\beta l)$. Thus $\beta = n\pi/l$ and $X_n(x) = \cos(n\pi x/l)$ and $T_n(t) = e^{-k(n\pi/l)^2 t}$.

Additionally 0 is an eigenvalue and $X_0(x) = 1$ and $T_0(t) = 1$. (which makes it a constant) Thus our particular solutions $u_n(x,t) = A_n e^{-k(n\pi/l)^2 t} \cos(n\pi x/l)$ and we can form any solution as a linear combination of these solutions.

$$u(x,t) = A_0/2 + \sum_{n=1}^{\infty} A_n e^{-k(n\pi/l)^2 t} \cos(n\pi x/l)$$

We also require our IC to be satisfied.

$$\phi(x) = A_0/2 + \sum_{n=1}^{\infty} A_n \cos(n\pi x/l)$$

Definition (Neumann Condition for Waves).

$$\begin{cases} u_{tt} = c^2 u_{xx} \\ u_x(0,t) = u_x(L,t) = 0 \\ u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x) \end{cases}$$

We can see that we can reach the same eigenvalues but we also see that 0 is an eigenvalue with $X_0(x) = 1$ and $T_0(t) = A + Bt$.

Thus we can say the LC of our particulars

$$u(x,t) = A_0/2 + B_0t/2 + \sum_{n=1}^{\infty} (A_n \cos(n\pi ct/l) + B_n \sin(n\pi ct/l)) \cos(n\pi x/l)$$

We also require our IC to be satisfied.

$$\phi(x) = A_0/2 + \sum_{n=1}^{\infty} A_n \cos(n\pi x/l)$$

$$\psi(x) = B_0/2 + \sum_{n=1}^{\infty} (n\pi c/l) B_n \cos(n\pi x/l)$$

1.1.6 4.3 - The Robin Condition

Definition (Robin Condition for Diffusion). The Robin Condition is the following:

$$\begin{cases} u_t = ku_{xx} \\ u_x(0,t) - a_0 u(0,t) = 0 \\ u_x(L,t) + a_L u(L,t) = 0 \\ u(x,0) = \phi(x) \end{cases}$$

THIS IS EXCESSIVE JUST DO ALGEBRA

1.1.7 6.1 - Laplace's Equation

Definition (Laplace's Equation). We define Laplace's Equation (homogeneous) as the following:

$$\Big\{\Delta u = 0$$

And the inhomogeneous Laplace's Equation as the following:

$$\Big\{\Delta u = f(x)$$

Definition (Max Principle). The Max is on the boundary of the region. The max can be inside the region if the region if the solution is constant.

Definition (Invariance Properties). We say Laplace's Equation is invariant under all rigid motions.

A rigid motion in the plane consists of tranlations and rotations.

 $^{\mathrm{IE}}$

$$x' = x + a, y' = y + b$$

and

$$x' = x\cos(\theta) - y\sin(\theta), y' = x\sin(\theta) + y\cos(\theta)$$

Definition (Laplacian in Polar). We can define the 2-D Laplacian in polar coordinates as the following:

$$\Delta_2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

We can prove that if we take the following change of variables:

$$x = r\cos(\theta), y = r\sin(\theta)$$

That the Laplacian in polar coordinates is the following:

$$\Delta_2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

Note: log(r) is the fundamental solution to the Laplacian in 2-D as it solves the rotationally invariant polar Laplacian.

1.1.8 6.2 - Rectangles and Cubes

This is a bitch to do, just know that we seperate it into a LC of each BC and solve each one in order of homogeneous then inhomogeneous

1.1.9 6.4 - Circles, Wedges and Annuli

Definition (Wedge). We can take a wegde being

$$\{0 < \theta < \theta_0, 0 < r < a\}$$

Where our BC are

$$u(r,0) = u(r,\beta) = 0, u_r(a,\theta) = h(\theta)$$

We can seperate the variables into

$$u(r,\theta) = R(r)\Theta(\theta)$$
$$\Theta'' + \lambda\Theta = 0$$
$$r^{2}R'' + rR' - \lambda R = 0$$

$$\Theta(\theta) = \sin \frac{n\pi\theta}{\beta}$$

$$R(r) = r^{\alpha} \text{ for } \alpha = \pm \sqrt{\lambda} = \pm \frac{n\pi}{\beta}$$

Thus the LC of our solution is

$$u(r,\theta) = \sum_{n=1}^{\infty} A_n r^{n\pi/\beta} \sin \frac{n\pi\theta}{\beta}$$

We can solve the inhomogeneous BC

$$h(\theta) = \sum_{n=1}^{\infty} A_n \frac{n\pi}{\beta} a^{n\pi/B - 1} \sin \frac{n\pi\theta}{\beta}$$

We can sove for A_n by recognizing that the RHS is the Fourier Sine Series of $h(\theta)$.

$$A_n = a^{1-n\pi/\beta} \frac{2}{n\pi} \int_0^\beta h(\theta) \sin \frac{n\pi\theta}{\beta} d\theta$$

Definition (Annulus).

Definition (Exterior of a Circle).

1.1.10 5.1 - The Fourier Coefficients

Definition (Fourier Sine Series). These following integrals show the orthogonality of *sin* and *cos* functions.

$$\int_0^l \sin(n\pi x/l)\sin(m\pi x/l)dx = \begin{cases} 0 & \text{if } n \neq m \\ l/2 & \text{if } n = m \end{cases}$$

Thus if we consider the following:

$$\phi(x) = \sum_{n=1}^{\infty} A_n \sin(n\pi x/l)$$

$$\phi(x) \sin(m\pi x/l) = \sum_{n=1}^{\infty} A_n \sin(n\pi x/l) \sin(m\pi x/l)$$

$$\int_0^l \phi(x) \sin(m\pi x/l) dx = \sum_{n=1}^{\infty} A_n \int_0^l \sin(n\pi x/l) \sin(m\pi x/l) dx$$

$$\int_0^l \phi(x) \sin(m\pi x/l) dx = A_m l/2$$

$$A_m = \frac{2}{l} \int_0^l \phi(x) \sin(m\pi x/l) dx$$

Thus we can see that the A_n are the Fourier Sine Coefficients. We can continue for all values of n to get the entire series.

Definition (Fourier Cosine Series). These following integrals show the orthogonality of *sin* and *cos* functions.

$$\int_0^l \cos(n\pi x/l) \cos(m\pi x/l) dx = \begin{cases} 0 & \text{if } n \neq m \\ l/2 & \text{if } n = m \end{cases}$$

Thus if we consider the following:

$$\phi(x) = A_0/2 + \sum_{n=1}^{\infty} A_n \cos(n\pi x/l)$$

$$\phi(x) \cos(m\pi x/l) = A_0/2 \cos(m\pi x/l) + \sum_{n=1}^{\infty} A_n \cos(n\pi x/l) \cos(m\pi x/l)$$

$$\int_0^l \phi(x) \cos(m\pi x/l) dx = A_0/2 \int_0^l \cos(m\pi x/l) dx + \sum_{n=1}^{\infty} A_n \int_0^l \cos(n\pi x/l) \cos(m\pi x/l) dx$$

$$\int_0^l \phi(x) \cos(m\pi x/l) dx = A_m l/2$$

$$A_m = \frac{2}{l} \int_0^l \phi(x) \cos(m\pi x/l) dx$$

We can see that the A_0 has n=0 and the \cos term is 1. Thus $A_0=2/l\int_0^l\phi(x)dx$. Thus we can see that the A_n are the Fourier Cosine Coefficients. We can continue for all values of n to get the entire series.

Definition (Full Fourier Series). We can see that the full Fourier Series is the sum of the Sine and Cosine Series.

$$\phi(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x/l) + \sum_{n=1}^{\infty} b_n \sin(n\pi x/l)$$

We can see that the interval is [-l, l] and our eigenfunctions are $\{1, \cos(n\pi x/l), \sin(n\pi x/l)\}$. Thus we can mulitply any two of these and integrate to get the orthogonality.

$$\begin{cases} A_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos(n\pi x/l) dx \\ B_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin(n\pi x/l) dx \end{cases}$$

Definition (c_n, a_n, b_n) .

Thus we can see that

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

2 Content to Review

- 4.1 Separation of Variables for waves
- 4.3 Robin Bounding Coundition 5.1 Recognizing Fourier Series

3 Problems

1. Pg(110):

Solve the following problem:

$$u_t t = c^2 u_x x$$

$$u(0, t) = u(L, t) = 0$$

$$u(x, 0) = x$$

$$u_t(x, 0) = 0$$

We know that for the wave equation

$$u(x,t) = \sum_{n=0}^{\infty} (A_n \cos(n\pi ct/l) + B_n \sin(n\pi ct/l)) \sin(n\pi x/l)$$

$$u_t(x,t) = \sum_{1}^{\infty} (-A_n \sin(n\pi ct/l) + B_n \cos(n\pi ct/l)) \frac{n\pi c}{l} \sin(n\pi x/l)$$

Thus from our IC

$$0 = \sum_{1}^{\infty} \frac{n\pi c}{l} B_n \sin(n\pi x/l)$$

Thus $B_n = 0$ for all n. Now for our other IC

$$x = \sum_{n=1}^{\infty} A_n \sin(n\pi x/l)$$

We can see that $\{A_i\}$ is the Fourier Sine Coefficients of x.

4 Review after exam

1. 3

$$\begin{cases} \Delta u = 0 \text{ in } x^2 + y^2 > 1\\ u = y^2 \text{ on } x^2 + y^2 = 1u \text{ is bounded as } x^2 + y^2 \to \infty \end{cases}$$

Solution: Sol in form of

$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} r^{-n} (a_n \cos(n\theta) + b_n \sin(n\theta))$$

We can see that the BC is $y^2 = r^2 \sin^2(\theta)$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} r^{-n} (a_n \cos(n\theta) + b_n \sin(n\theta)) = \sin^2(\theta)$$
$$\sin^2(\theta) = \frac{1}{2} - \frac{1}{2} \cos(2\theta)$$
$$\begin{cases} a_0 = 1\\ b_n = 0\\ a_2 = -1/2 \end{cases}$$

So our solution is

$$u(r,\theta) = 1/2 - \frac{1}{2r^2}cos(2\theta)$$

2. 4

$$\begin{cases} \Delta u = \lambda u \text{ in } D \\ u = 0 \text{ on } \partial D \end{cases}$$

Solution: Separating of variables

$$u(x,y) = X(x)Y(y)$$

$$X''Y + XY'' = \lambda XY$$

$$\frac{X''}{X} = -\frac{Y''}{Y} + \lambda = \alpha$$

We solve in
$$X$$

$$\begin{cases} X'' - \alpha X = 0 \\ X(0) = X(\pi) = 0 \end{cases}$$

 $\alpha = -n^2$ and $X_n = \sin(nx)$

We solve in Y

$$\begin{cases} Y'' - (\lambda - \alpha)Y = 0 \\ Y(0) = Y(\pi) = 0 \end{cases}$$

 $\lambda - \alpha = -m^2$ and $Y_m = \sin(mx)$ Thus $\lambda = -m^2 - n^2$.

$$u_{n,m}(x,y) = \sin(nx)\sin(my)$$

for $n, m \in \mathbb{N}$ Notice that each lamda is not uniquely determined

3. 5

$$\partial_{xx}u + \partial_{yy}u + \partial_{xy}u = 0$$

u is in form of u(x,y) = X(x)Y(y)

Solution:

$$X''Y + XY'' + X'Y' = 0$$

$$\frac{X''}{X} + \frac{X'Y'}{XY} = -\frac{Y''}{Y}$$
Take partial x

$$\frac{\partial}{\partial x} \left[\left(\frac{X''}{X} \right)' + \frac{X''}{X} \frac{Y'}{Y} \right] = 0$$

$$\frac{Y'}{Y} = -\frac{\frac{X'''}{X}}{\frac{X''}{X}} = \alpha$$

$$Y' = \alpha Y \implies Y(y) = e^{\alpha y}$$

$$\frac{X''}{X} + \frac{X'}{X} \alpha = -\alpha^2 \implies X'' + \alpha X' + \alpha^2 X = 0$$

$$\lambda = \frac{-1 \pm i\sqrt{3}}{2} \alpha$$

$$X_1(x) = e^{\lambda_0 \alpha x}$$

$$X_2(x) = e^{\overline{\lambda_0} \alpha x}$$

Transport method

$$(\partial_x^2 + \partial_y^2 + \partial_x \partial_y)u = 0$$

Factor as

$$(x - \lambda y)(x - \overline{\lambda}y)$$

Thus our operator is

$$(\partial_x - \lambda \partial_y)(\partial_x - \overline{\lambda}\partial_y)u = 0$$
$$u(x, y) = f(\lambda x + y) + g(\overline{\lambda}x + y)$$

If we take f, g to be exponential then we can see that the solution is sepeble

$$e^{\lambda x}e^y + e^{\overline{\lambda}x}e^y$$

Take $f(z) = e^{\alpha z} = g(z)$