І. ПРЕДЕЛЫ

Теоретические вопросы

- 1. Понятие числовой последовательности и ее предела. Теорема об ограниченности сходящейся последовательности.
- 2. Понятие предела функции в точке. Понятие функции, ограниченной в окрестности точки. Теорема об ограниченности функции, имеющей предел.
 - 3. Теорема о переходе к пределу в неравенствах.
 - 4. Теорема о пределе промежуточной функции.
 - 5. Понятие непрерывности функции. Доказать непрерывность функции $\cos x$.
 - 6. Первый замечательный предел $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- 7. Понятие бесконечно малой функции. Теорема о связи между функцией, ес пределом и бесконечно малой.
 - 8. Теорема о сумме бесконечно малых функций.
 - 9. Теорема о произведении бесконечно малой функции на ограниченную функцию.
- 10. Теорема об отношении бесконечно малой функции к функции, имеющей предел отличный от нуля.
 - 11. Теорема о пределе суммы.
 - 12. Теорема о пределе произведения.
 - 13. Теорема о пределе частного.
 - 14. Теорема о переходе к пределу под знаком непрерывной функции.
 - 15. Непрерывность суммы, произведения и частного.
 - 16. Непрерывность сложной функции.
- 17. Понятие бесконечно большой функции. Теоремы о связи бесконечно больших функций с бесконечно малыми.
 - 18. Сравнение бесконечно малых функций.
- 19. Эквивалентные бесконечно малые функции. Теорема о замене бесконечно малых функций эквивалентными.
 - 20. Условие эквивалентности бесконечно малых функций.

Теоретические упражнения

1. Доказать, что если $\lim_{n\to\infty}a_n=a$, то $\lim_{n\to\infty}|a_n|=|a|$. Вытекает ли из существования $\lim_{n\to\infty}|a_n|$ существование $\lim_{n\to\infty}a_n$?

У к а з а н и е. Доказать и использовать неравенство

$$||b|-|a|| \le |b-a|.$$

- 2. Доказать, что последовательность $\left\{ n^2 \right\}$ расходиться.
- 3. Сформулировать на языке «e-d» утверждение: «Число A не является пределом в точке x_0 функции f(x), определенной в окрестности точки x_0 ».
- 4. Доказать, что если f(x) непрерывная функция, F(x) = |f(x)| есь также непрерывная функция. Верно ли обратное утверждение?
- 5. Сформулировать на языке «e-d» утверждение: «Функция f(x), определенная в окрестности точки x_0 , не является непрерывной в этой точке».
- 6. Пусть $\lim_{x \to x_0} f(x) \neq 0$, а $\lim_{x \to x_0} \mathbf{j}(x)$ не существует. Доказать, что $\lim_{x \to x_0} f(x) \mathbf{j}(x)$ не существует.

У к а з а н и е. Допустить противное и использовать теорему о пределе частного.

- 7. Пусть функция f(x) имеет предел в точке x_0 , а функция j(x) не имеет предела Будут ли существовать пределы:
 - 1) $\lim_{x \to x_0} \left[f(x) + j(x) \right];$ 2) $\lim_{x \to x_0} f(x)j(x)?$

Рассмотреть пример: $\lim_{x\to 0} x \sin \frac{1}{x}$.

- 8. Пусть $\lim_{x \to x_0} f(x) \neq 0$, а функция j(x) бесконечно большая при $x \to x_0$ Доказать, что произведение f(x)j(x) является бесконечно большой функцией при $x \to x_0$.
 - 9. Является ли бесконечно большой при $x \to 0$ функция $\frac{1}{x} \cos \frac{1}{x}$?

10.Пусть $a'(x) \square a(x)$ и $b'(x) \square b(x)$ при $x \to x_0$. Доказать, что есл $\lim_{x \to x_0} \frac{a'(x)}{b'(x)}$ не существует, то $\lim_{x \to x_0} \frac{a(x)}{b(x)}$ тоже не существует.

Расчетные задания

Задача 1. Доказать, что $\lim_{n\to\infty}a_n=a$ (указать $N\!\left(e\right)$).

1.1.
$$a_n = \frac{3n-2}{2n-1}$$
, $a = \frac{3}{2}$.

1.3.
$$a_n = \frac{7n+4}{2n+1}$$
, $a = \frac{7}{2}$.

1.5.
$$a_n = \frac{7n-1}{n+1}$$
, $a = 7$.

1.7.
$$a_n = \frac{9 - n^3}{1 + 2n^3}, \ a = -\frac{1}{2}.$$

1.9.
$$a_n = \frac{1-n^2}{2+4n^2}$$
, $a = -\frac{1}{2}$.

1.11.
$$a_n = \frac{n+1}{1-2n}$$
, $a = -\frac{1}{2}$.

1.13.
$$a_n = \frac{1 - n^2}{2 + 4n^2}, \ a = -\frac{1}{2}.$$

1.15.
$$a_n = \frac{n}{3n-1}$$
, $a = \frac{1}{3}$.

1.17.
$$a_n = \frac{4+2n}{1-3n}$$
, $a = -\frac{2}{3}$.

1.19.
$$a_n = \frac{3 - n^2}{1 + 2n^2}, \ a = -\frac{1}{2}.$$

1.21.
$$a_n = \frac{3n-1}{5n+1}$$
, $a = \frac{3}{5}$.

1.23.
$$a_n = \frac{1 - 2n^2}{2 + 4n^2}$$
, $a = -\frac{1}{2}$.

1.25.
$$a_n = \frac{2-2n}{3+4n}$$
, $a = -\frac{1}{2}$.

1.27.
$$a_n = \frac{1+3n}{6-n}$$
, $a = -3$.

1.29.
$$a_n = \frac{3n^2 + 2}{4n^2 - 1}, \quad a = \frac{3}{4}.$$

1.31.
$$a_n = \frac{2n^3}{n^3 - 2}$$
, $a = 2$.

1.2.
$$a_n = \frac{4n-1}{2n+1}$$
, $a = 2$.

1.4.
$$a_n = \frac{2n-5}{3n+1}$$
, $a = \frac{2}{3}$.

1.6.
$$a_n = \frac{4n^2 + 1}{3n^2 + 2}, \ a = \frac{4}{3}.$$

1.8.
$$a_n = \frac{4n-3}{2n+1}$$
, $a = 2$.

1.10.
$$a_n = -\frac{5n}{n+1}$$
, $a = -5$.

1.12.
$$a_n = \frac{2n+1}{3n-5}$$
, $a = \frac{2}{3}$.

1.14.
$$a_n = \frac{3n^2}{2-n^2}$$
, $a = -3$.

1.16.
$$a_n = \frac{3n^3}{n^3 - 1}, \quad a = -3.$$

1.18.
$$a_n = \frac{5n+15}{6-n}$$
, $a = -5$.

1.20.
$$a_n = \frac{2n-1}{2-3n}$$
, $a = -\frac{2}{3}$.

1.22.
$$a_n = \frac{4n-3}{2n+1}$$
, $a = 2$.

1.24.
$$a_n = \frac{5n+1}{10n-3}$$
, $a = \frac{1}{2}$.

1.26.
$$a_n = \frac{23 - 4n}{2 - n}$$
, $a = 4$.

1.28.
$$a_n = \frac{2n+3}{n+5}$$
, $a=2$.

1.30.
$$a_n = \frac{2 - 3n^2}{4 + 5n^2}, \quad a = -\frac{3}{5}.$$

Задача 2. Вычислить пределы числовых последовательностей.

2.1.
$$\lim_{n \to \infty} \frac{(3-n)^2 + (3+n)^2}{(3-n)^2 - (3+n)^2}.$$

2.3.
$$\lim_{n \to \infty} \frac{(3-n)^4 - (2-n)^4}{(1-n)^3 - (1+n)^3}.$$

2.5.
$$\lim_{n \to \infty} \frac{(6-n)^2 - (6+n)^2}{(6+n)^2 - (1-n)^2}.$$

2.7.
$$\lim_{n \to \infty} \frac{(1+2n)^3 - 8n^3}{(1+2n)^2 + 4n^2}.$$

2.9.
$$\lim_{n \to \infty} \frac{(3-n)^3}{(n+1)^2 - (n+1)^3}.$$

2.11.
$$\lim_{n \to \infty} \frac{2(n+1)^3 - (n-2)^3}{n^2 + 2n - 3}.$$

2.13.
$$\lim_{n \to \infty} \frac{(n+3)^3 + (n+4)^3}{(n+3)^4 - (n+4)^4}.$$

2.15.
$$\lim_{n \to \infty} \frac{8n^3 - 2n}{(n+1)^4 - (n-1)^4}.$$

2.17.
$$\lim_{n \to \infty} \frac{(2n-3)^3 - (n+5)^3}{(3n-1)^3 + (2n+3)^3}.$$

2.19.
$$\lim_{n \to \infty} \frac{(2n+1)^3 + (3n+2)^3}{(2n+3)^3 - (n-7)^3}.$$

2.21.
$$\lim_{n \to \infty} \frac{(2n+1)^3 - (2n+3)^3}{(2n+1)^2 + (2n+3)^2}.$$

2.23.
$$\lim_{n \to \infty} \frac{(n+2)^4 - (n-2)^4}{(n+5)^2 + (n-5)^2}.$$

2.25.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 - (n-1)^2}.$$

2.27.
$$\lim_{n \to \infty} \frac{(n+2)^3 + (n-2)^3}{n^4 + 2n^2 - 1}.$$

2.2.
$$\lim_{n \to \infty} \frac{(3-n)^4 - (2-n)^4}{(1-n)^4 - (1+n)^4}.$$

2.4.
$$\lim_{n \to \infty} \frac{(1-n)^4 - (1+n)^4}{(1+n)^3 - (1-n)^3}.$$

2.6.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n+1)^2}{(n-1)^3 - (n+1)^3}.$$

2.8.
$$\lim_{n \to \infty} \frac{(3-4n)^2}{(n-3)^3 - (n+3)^3}.$$

2.10.
$$\lim_{n \to \infty} \frac{(n+1)^2 + (n-1)^2 - (n+2)^3}{(4-n)^3}.$$

2.12.
$$\lim_{n \to \infty} \frac{(n+1)^3 + (n+2)^3}{(n+4)^3 + (n+5)^3}.$$

2.14.
$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}.$$

2.16.
$$\lim_{n \to \infty} \frac{(n+6)^3 - (n+1)^3}{(2n+3)^2 + (n+4)^2}.$$

2.18.
$$\lim_{n \to \infty} \frac{(n+10)^2 + (3n+1)^2}{(n+6)^3 - (n+1)^3}.$$

2.20.
$$\lim_{n \to \infty} \frac{(n+7)^3 - (n+2)^3}{(3n+2)^2 + (4n+1)^2}.$$

2.22.
$$\lim_{n \to \infty} \frac{n^3 - (n-1)^3}{(n+1)^4 + n^4}.$$

2.24.
$$\lim_{n \to \infty} \frac{(n+1)^4 - (n-1)^4}{(n+1)^3 + (n-1)^3}.$$

2.26.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 + (n-1)^2}.$$

2.28.
$$\lim_{n \to \infty} \frac{(n+1)^3 + (n-1)^3}{n^3 - 3n}.$$

2.29.
$$\lim_{n \to \infty} \frac{(n+1)^3 + (n-1)^3}{n^3 + 1}.$$

2.31.
$$\lim_{n \to \infty} \frac{(2n+1)^2 - (n+1)^2}{n^2 + n + 1}.$$

2.30.
$$\lim_{n \to \infty} \frac{(n+2)^2 - (n-2)^2}{(n+3)^3}.$$

Задача 3. Вычислить пределы числовых последовательностей.

3.1.
$$\lim_{n \to \infty} \frac{n \sqrt[3]{5n^2} + \sqrt[4]{9n^8 + 1}}{\left(n + \sqrt{n}\right)\sqrt{7 - n + n^2}}.$$

3.3.
$$\lim_{n \to \infty} \frac{\sqrt{n^3 + 1} - \sqrt{n - 1}}{\sqrt[3]{n^3 + 1} + \sqrt{n - 1}}.$$

3.5.
$$\lim_{n \to \infty} \frac{\sqrt{3n-1} - \sqrt[3]{125n^3 + n}}{\sqrt[5]{n} - n}.$$

3.7.
$$\lim_{n \to \infty} \frac{\sqrt{n+2} - \sqrt{n^2 + 2}}{\sqrt[4]{4n^4 + 1} - \sqrt[3]{n^4 - 1}}.$$

3.9.
$$\lim_{n \to \infty} \frac{6n^3 - \sqrt{n^5 + 1}}{\sqrt{4n^6 + 3} - n}.$$

3.11.
$$\lim_{n \to \infty} \frac{n \sqrt[4]{3n+1} + \sqrt{81n^4 - n^2 + 1}}{\left(n + \sqrt[3]{n}\right)\sqrt{5 - n + n^2}}.$$

3.13.
$$\lim_{n \to \infty} \frac{\sqrt{n^5 + 3} - \sqrt{n - 3}}{\sqrt[5]{n^5 + 3} + \sqrt{n - 3}}.$$

3.15.
$$\lim_{n \to \infty} \frac{\sqrt{4n+1} - \sqrt[3]{27n^3 + 4}}{\sqrt[4]{n} - \sqrt[3]{n^5 + n}}.$$

3.17.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^3 - 7} + \sqrt[3]{n^2 + 4}}{\sqrt[4]{n^5 + 5} + \sqrt{n}}.$$

3.19.
$$\lim_{n \to \infty} \frac{4n^2 - \sqrt[4]{n^3}}{\sqrt[3]{n^6 + n^3 + 1} - 5n}.$$

3.2.
$$\lim_{n \to \infty} \frac{\sqrt{n-1} - \sqrt{n^2 + 1}}{\sqrt[3]{3n^3 + 3} + \sqrt[4]{n^5 + 1}}.$$

3.4.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2 - 1} + 7n^3}{\sqrt[4]{n^{12} + n + 1} - n}.$$

3.6.
$$\lim_{n \to \infty} \frac{n \sqrt[5]{n} - \sqrt[3]{27n^6 + n^2}}{\left(n + \sqrt[4]{n}\right)\sqrt{9 + n^2}}.$$

3.8.
$$\lim_{n \to \infty} \frac{\sqrt{n^4 + 2} + \sqrt{n - 2}}{\sqrt[4]{n^4 + 2} + \sqrt{n - 2}}.$$

3.10.
$$\lim_{n \to \infty} \frac{\sqrt{5n+2} - \sqrt[3]{8n^3 + 5}}{\sqrt[4]{n+7} - n}.$$

3.12.
$$\lim_{n \to \infty} \frac{\sqrt{n+3} - \sqrt{n^2 - 3}}{\sqrt[3]{n^5 - 4} - \sqrt[4]{n^4 + 1}}.$$

3.14.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n} - 9n^2}{3n - \sqrt[4]{9n^8 + 1}}.$$

3.16.
$$\lim_{n \to \infty} \frac{n \sqrt[3]{7n} - \sqrt[4]{81n^8 - 1}}{\left(n + 4\sqrt{n}\right)\sqrt{n^2 - 5}}.$$

3.18.
$$\lim_{n \to \infty} \frac{\sqrt{n^6 + 4} + \sqrt{n - 4}}{\sqrt[5]{n^6 + 6} - \sqrt{n - 6}}.$$

3.20.
$$\lim_{n \to \infty} \frac{\sqrt{n+3} - \sqrt[3]{8n^3 + 3}}{\sqrt[4]{n+4} - \sqrt[5]{n^5 + 5}}.$$

3.21.
$$\lim_{n \to \infty} \frac{n \sqrt[4]{11n} + \sqrt{25n^4 - 81}}{\left(n - 7\sqrt{n}\right)\sqrt{n^2 - n + 1}}.$$

3.23.
$$\lim_{n \to \infty} \frac{\sqrt{n^7 + 5} - \sqrt{n - 5}}{\sqrt[7]{n^7 + 5} + \sqrt{n - 5}}.$$

3.25.
$$\lim_{n \to \infty} \frac{\sqrt{n+2} - \sqrt[3]{n^3 + 2}}{\sqrt[7]{n+2} - \sqrt[5]{n^5 + 2}}.$$

3.27.
$$\lim_{n \to \infty} \frac{\sqrt{n+6} - \sqrt{n^2 - 5}}{\sqrt[3]{n^3 + 3} + \sqrt[4]{n^3 + 1}}.$$

3.29.
$$\lim_{n \to \infty} \frac{n^2 - \sqrt{n^3 + 1}}{\sqrt[3]{n^6 + 2} - n}.$$

3.31.
$$\lim_{n \to \infty} \frac{n \sqrt[6]{n} + \sqrt[3]{n^{10} + 1}}{\left(n + \sqrt[4]{n}\right) \sqrt[3]{n^3 - 1}}.$$

3.22.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} - \sqrt{n^2 + 5}}{\sqrt[5]{n^7} - \sqrt{n + 1}}.$$

3.24.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2 + 2} - 5n^2}{n - \sqrt{n^4 - n + 1}}.$$

3.26.
$$\lim_{n \to \infty} \frac{n \sqrt{71n} - \sqrt[3]{64n^6 + 9}}{\left(n - \sqrt[3]{n}\right)\sqrt{11 + n^2}}.$$

3.28.
$$\lim_{n \to \infty} \frac{\sqrt{n^8 + 6} - \sqrt{n - 6}}{\sqrt[8]{n^8 + 6} + \sqrt{n - 6}}.$$

3.30.
$$\lim_{n \to \infty} \frac{\sqrt{n+1} - \sqrt[3]{n^3 + 1}}{\sqrt[4]{n+1} - \sqrt[5]{n^5 + 1}}.$$

Задача 4. Вычислить пределы числовых последовательностей.

4.1.
$$\lim_{n \to \infty} n \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right)$$
.

4.3.
$$\lim_{n \to \infty} \left(n - \sqrt[3]{n^3 - 5} \right) n \sqrt{n}$$
.

4.5.
$$\lim_{n \to \infty} \frac{\sqrt{n^5 - 8} - n\sqrt{n(n^2 + 5)}}{\sqrt{n}}$$
.

4.7.
$$\lim_{n \to \infty} \left(n + \sqrt[3]{4 - n^3} \right)$$
.

4.2.
$$\lim_{n \to \infty} n \left(\sqrt{n(n-2)} - \sqrt{n^2 - 3} \right)$$
.

4.4.
$$\lim_{n \to \infty} \left[\sqrt{(n^2 + 1)(n^2 - 4)} - \sqrt{n^4 - 9} \right]$$

4.6.
$$\lim_{n \to \infty} \left(\sqrt{n^2 - 3n + 2} - n \right)$$
.

4.8.
$$\lim_{n \to \infty} \left[\sqrt{n(n+2)} - \sqrt{n^2 - 2n + 3} \right].$$

4.9.
$$\lim_{n \to \infty} \left[\sqrt{(n+2)(n+1)} - \sqrt{(n-1)(n+3)} \right]$$

4.10.
$$\lim_{n \to \infty} n^2 \left(\sqrt{n(n^4 - 1)} - \sqrt{n^5 - 8} \right)$$
.

4.11.
$$\lim_{n \to \infty} n \left(\sqrt[3]{5 + 8n^3} - 2n \right)$$
.

4.12.
$$\lim_{n \to \infty} n^2 \left(\sqrt[3]{5 + n^3} - \sqrt[3]{3 + n^3} \right)$$
.

4.13.
$$\lim_{n \to \infty} \left[\sqrt[3]{(n+2)^2} - \sqrt[3]{(n-3)^2} \right].$$

4.14.
$$\lim_{n \to \infty} \frac{\sqrt{(n+1)^3} - \sqrt{n(n-1)(n-3)}}{\sqrt{n}}$$
.

4.15.
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 3n - 2} - \sqrt{n^2 - 3} \right)$$
.

4.16.
$$\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+2} - \sqrt{n-3} \right)$$
.

4.17.
$$\lim_{n \to \infty} \frac{\sqrt{n(n^5 + 9)} - \sqrt{(n^4 - 1)(n^2 + 5)}}{n}.$$

4.18.
$$\lim_{n \to \infty} \left(\sqrt{n (n+5)} - n \right)$$
.

4.19.
$$\lim_{n \to \infty} \sqrt{n^3 + 8} \left(\sqrt{n^3 + 2} - \sqrt{n^3 - 1} \right)$$
.

4.20.
$$\lim_{n \to \infty} \frac{\sqrt{(n^3 + 1)(n^2 + 3)} - \sqrt{n(n^4 + 2)}}{2\sqrt{n}}.$$

4.21.
$$\lim_{n \to \infty} \left[\sqrt{(n^2 + 1)(n^2 + 2)} - \sqrt{(n^2 + 1)(n^2 - 2)} \right].$$

4.22.
$$\lim_{n \to \infty} \frac{\sqrt{(n^5 + 1)(n^2 - 1)} - n\sqrt{n(n^4 + 1)}}{n}$$
.

4.23.
$$\lim_{n \to \infty} \frac{\sqrt{(n^4 + 1)(n^2 - 1)} - \sqrt{n^6 - 1}}{n}.$$

4.24.
$$\lim_{n \to \infty} \left[n - \sqrt{n (n-1)} \right].$$

4.25.
$$\lim_{n \to \infty} n^3 \left(\sqrt[3]{n^2 (n^6 + 4)} - \sqrt[3]{(n^8 - 1)} \right).$$
 4.26. $\lim_{n \to \infty} \left[n \sqrt{n} - \sqrt{n (n + 1)(n + 2)} \right].$

4.26.
$$\lim_{n \to \infty} \left[n \sqrt{n} - \sqrt{n (n+1)(n+2)} \right]$$

4.27.
$$\lim_{n \to \infty} \sqrt[3]{n} \left(\sqrt[3]{n^2} - \sqrt[3]{n(n-1)} \right).$$

4.28.
$$\lim_{n \to \infty} \sqrt{n} + 2 \left(\sqrt{n+3} - \sqrt{n-4} \right)$$
.

4.29.
$$\lim_{n \to \infty} n \left(\sqrt{n^4 + 3} - \sqrt{n^4 - 2} \right)$$
.

4.30.
$$\lim_{n \to \infty} \sqrt{n(n+1)(n+2)} \left(\sqrt{n^3 - 3} - \sqrt{n^3 - 2} \right)$$
.

4.31.
$$\lim_{n \to \infty} \frac{\sqrt{(n^2 + 5)(n^4 + 2)} - \sqrt{n^6 - 3n^2 + 5}}{n}.$$

Задача 5. Вычислить пределы числовых последовательностей.

5.1.
$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n-1}{n^2} \right)$$
 5.2. $\lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)!}$

5.2.
$$\lim_{n \to \infty} \frac{(2n+1)!+(2n+2)!}{(2n+3)!}$$

5.3.
$$\lim_{n \to \infty} \left[\frac{1+3+5+7+...+(2n-1)}{n+1} - \frac{2n+1}{2} \right].$$

5.4.
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}.$$

5.5.
$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{\sqrt{9n^4 + 1}}.$$

5.6.
$$\lim_{n \to \infty} \frac{1+3+5+...+(2n-1)}{1+2+3+...+n}.$$

5.7.
$$\lim_{n \to \infty} \left[\frac{1+3+5+7+...+(2n-1)}{n+3} - n \right]$$
. 5.8. $\lim_{n \to \infty} \frac{1+4+7+...+(3n-2)}{\sqrt{5n^4+n+1}}$.

5.8.
$$\lim_{n \to \infty} \frac{1 + 4 + 7 + \dots + (3n - 2)}{\sqrt{5n^4 + n + 1}}$$

5.9.
$$\lim_{n \to \infty} \frac{(n+4)! - (n+2)!}{(n+3)!}.$$

5.10.
$$\lim_{n \to \infty} \frac{(3n-1)! + (3n+1)!}{(3n)!(n-1)}.$$

5.11.
$$\lim_{n \to \infty} \frac{2^n - 5^n}{2^{n+1} + 5^{n+1}}.$$

5.12.
$$\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}{1 + \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^n}}.$$

5.13.
$$\lim_{n \to \infty} \frac{1 - 3 + 5 - 7 + 9 - 11 + \dots + (4n - 3) - (4n - 1)}{\sqrt{n^2 + 1} + \sqrt{n^2 + n + 1}}.$$

5.14.
$$\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + \dots + (2n - 1) - 2n}{\sqrt{9n^4 + 1}}.$$

5.15.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^3 + 5} - \sqrt{3n^4 + 2}}{1 + 3 + 5 + \dots + (2n - 1)}.$$

5.16.
$$\lim_{n \to \infty} \frac{3^n - 2^n}{3^{n-1} + 2^n}.$$

5.17.
$$\lim_{n \to \infty} \left[\frac{n+2}{1+2+3+...n} - \frac{2}{3} \right].$$

5.18.
$$\lim_{n \to \infty} \left(\frac{5}{6} + \frac{13}{36} + \dots + \frac{3^n + 2^n}{6^n} \right)$$

5.19.
$$\lim_{n \to \infty} \frac{2 - 5 + 4 - 7 + \dots + 2n - (2n + 3)}{n + 3}.$$

5.20.
$$\lim_{n \to \infty} \frac{(2n+1)! + (2n+2)!}{(2n+3)! - (2n+2)!}.$$

5.21.
$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n - n^2 + 3}.$$

5.22.
$$\lim_{n \to \infty} \frac{n^2 + \sqrt{n} - 1}{5 + 7 + 12 + ... + (5n - 3)}.$$

5.23.
$$\lim_{n \to \infty} \left(\frac{3}{4} + \frac{5}{16} + \frac{9}{64} + \dots + \frac{1+2^n}{4^n} \right)$$

5.24.
$$\lim_{n \to \infty} \frac{2+4+6+...+2n}{1+3+5+..+(2n-1)}.$$

5.25.
$$\lim_{n \to \infty} \left[\frac{1+5+9+13+...+(4n-3)}{n+1} - \frac{4n+1}{2} \right].$$

5.26.
$$\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + \dots - 2n}{\sqrt[3]{n^3 + 2n + 2}}.$$

5.27.
$$\lim_{n \to \infty} \frac{2^n + 7^n}{2^n - 7^{n-1}}.$$

5.28.
$$\lim_{n \to \infty} \frac{n! + (n+2)!}{(n-1)! + (n+2)!}.$$

5.29.
$$\lim_{n \to \infty} \frac{3 + 6 + 9 + \dots + 3n}{n^2 + 4}.$$

5.30.
$$\lim_{n \to \infty} \left(\frac{7}{10} + \frac{29}{100} + \dots + \frac{2^n + 5^n}{10^n} \right).$$

5.31.
$$\lim_{n \to \infty} \left(\frac{2+4+...+2n}{n+3} - n \right)$$
.

Задача 6. Вычислить пределы числовых последовательностей.

6.1.
$$\lim_{n \to \infty} \left(\frac{n+1}{n-1} \right)^n.$$

6.2.
$$\lim_{n \to \infty} \left(\frac{2n+3}{2n+1} \right)^{n+1}$$
.

6.3.
$$\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^2} \right)^{n^4}$$
.

6.4.
$$\lim_{n \to \infty} \left(\frac{n-1}{n+3} \right)^{n+2}$$
.

6.5.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 2}{2n^2 + 1} \right)^{n^2}$$
.

6.6.
$$\lim_{n \to \infty} \left(\frac{3n^2 - 6n + 7}{3n^2 + 20n - 1} \right)^{-n+1}.$$

6.7.
$$\lim_{n \to \infty} \left(\frac{n^2 - 3n + 6}{n^2 + 5n + 1} \right)^{n/2}.$$

6.8.
$$\lim_{n \to \infty} \left(\frac{n-10}{n+1} \right)^{3n+1}.$$

6.9.
$$\lim_{n \to \infty} \left(\frac{6n-7}{6n+4} \right)^{3n+2}.$$

6.10.
$$\lim_{n \to \infty} \left(\frac{3n^2 + 4n - 1}{3n^2 + 2n + 7} \right)^{2n+5}.$$

6.11.
$$\lim_{n \to \infty} \left(\frac{n^2 + n + 1}{n^2 + n - 1} \right)^{-n^2}$$
.

6.12.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 5n + 7}{2n^2 + 5n + 3} \right)^n.$$

6.13.
$$\lim_{n \to \infty} \left(\frac{n-1}{n+1} \right)^{n^2}$$
.

6.15.
$$\lim_{n \to \infty} \left(\frac{3n+1}{3n-1} \right)^{2n+3}.$$

6.17.
$$\lim_{n \to \infty} \left(\frac{n+3}{n+5} \right)^{n+4}$$
.

6.19.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 21n - 7}{2n^2 + 18n + 9} \right)^{2n+1}.$$

6.21.
$$\lim_{n \to \infty} \left(\frac{3n^2 - 5n}{3n^2 - 2n + 7} \right)^{n+1}.$$

6.23.
$$\lim_{n \to \infty} \left(\frac{n^2 - 6n + 5}{n^2 - 5n + 5} \right)^{3n+2}.$$

6.25.
$$\lim_{n \to \infty} \left(\frac{7n^2 + 18n - 15}{7n^2 + 11n + 15} \right)^{n+2}.$$

6.27.
$$\lim_{n \to \infty} \left(\frac{n^3 + n + 1}{n^3 + 2} \right)^{2n^2}.$$

6.29.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 2n + 3}{2n^2 + 2n + 1} \right)^{3n^2 - 7}.$$

6.31.
$$\lim_{n \to \infty} \left(\frac{4n^2 + 4n - 1}{4n^2 + 2n + 3} \right)^{1 - 2n}.$$

6.14.
$$\lim_{n \to \infty} \left(\frac{5n^2 + 3n - 1}{5n^2 + 3n + 3} \right)^{n^2}.$$

6.16.
$$\lim_{n \to \infty} \left(\frac{2n^2 + 7n - 1}{2n^2 + 3n - 1} \right)^{-n^2}.$$

6.18.
$$\lim_{n \to \infty} \left(\frac{n^3 + 1}{n^3 - 1} \right)^{2n - n^3}.$$

6.20.
$$\lim_{n \to \infty} \left(\frac{10n-3}{10n-1} \right)^{5n}$$
.

6.22.
$$\lim_{n \to \infty} \left(\frac{n+3}{n+1} \right)^{-n^2}$$
.

6.24.
$$\lim_{n\to\infty} \left(\frac{n+4}{n+2}\right)^n.$$

6.26.
$$\lim_{n \to \infty} \left(\frac{2n-1}{2n+1} \right)^{n+1}$$
.

6.28.
$$\lim_{n \to \infty} \left(\frac{13n+3}{13n-10} \right)^{n-3}.$$

6.30.
$$\lim_{n \to \infty} \left(\frac{n+5}{n-7} \right)^{n/6+1}$$
.

Задача 7. Доказать (найти d(e)), что:

7.1.
$$\lim_{x \to -3} \frac{2x^2 + 5x - 3}{x + 3} = -7.$$

7.3.
$$\lim_{x \to -2} \frac{3x^2 + 5x - 2}{x + 2} = -7.$$

7.2.
$$\lim_{x \to 1} \frac{5x^2 - 4x - 1}{x - 1} = 6.$$

7.4.
$$\lim_{x \to 3} \frac{4x^2 - 14x + 6}{x - 3} = 10.$$

7.5.
$$\lim_{x \to -1/2} \frac{6x^2 + x - 1}{x + 1/2} = -5.$$

7.7.
$$\lim_{x \to -1/3} \frac{9x^2 - 1}{x + 1/3} = -6.$$

7.9.
$$\lim_{x \to -1/3} \frac{3x^2 - 2x - 1}{x + 1/3} = -4.$$

7.11.
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x - 3} = 2.$$

7.13.
$$\lim_{x \to 1/3} \frac{6x^2 - 5x + 1}{x - 1/3} = -1.$$

7.15.
$$\lim_{x \to -7/2} \frac{2x^2 + 13x + 21}{2x + 7} = -\frac{1}{2}.$$

7.17.
$$\lim_{x \to 1/3} \frac{6x^2 + x - 1}{x - 1/3} = 5.$$

7.19.
$$\lim_{x \to 11} \frac{2x^2 - 21x - 11}{x - 11} = 23.$$

7.21.
$$\lim_{x \to -7} \frac{2x^2 + 15x + 7}{x + 7} = -13.$$

7.23.
$$\lim_{x \to -1/3} \frac{6x^2 - x - 1}{3x + 1} = -\frac{5}{3}.$$

7.25.
$$\lim_{x \to 8} \frac{3x^2 - 40x + 128}{x - 8} = 8.$$

7.27.
$$\lim_{x \to 1/2} \frac{2x^2 - 5x + 2}{x - 1/2} = -3.$$

7.29.
$$\lim_{x \to 1/3} \frac{3x^2 + 17x - 6}{x - 1/3} = 19.$$

7.31.
$$\lim_{x \to 1/3} \frac{15x^2 - 2x - 1}{x - 1/3} = 8.$$

7.6.
$$\lim_{x \to 1/2} \frac{6x^2 - x - 1}{x - 1/2} = 5.$$

7.8.
$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{x - 2} = 7.$$

7.10.
$$\lim_{x \to -1} \frac{7x^2 + 8x + 1}{x + 1} = -6.$$

7.12.
$$\lim_{x \to 1/2} \frac{2x^2 + 3x - 2}{x - 1/2} = 5.$$

7.14.
$$\lim_{x \to -7/5} \frac{10x^2 + 9x - 7}{x + 7/5} = -19.$$

7.16.
$$\lim_{x \to 5/2} \frac{2x^2 - 9x + 10}{2x - 5} = \frac{1}{2}.$$

7.18.
$$\lim_{x \to -1/2} \frac{6x^2 - 75x - 39}{x + 1/2} = -81.$$

7.20.
$$\lim_{x \to 5} \frac{5x^2 - 24x - 5}{x - 5} = 26.$$

7.22.
$$\lim_{x \to -4} \frac{2x^2 + 6x - 8}{x + 4} = -10.$$

7.24.
$$\lim_{x \to -5} \frac{x^2 + 2x - 15}{x + 5} = -8.$$

7.26.
$$\lim_{x \to 10} \frac{5x^2 - 51x + 10}{x - 10} = 49.$$

7.28.
$$\lim_{x \to -6} \frac{3x^2 + 17x - 6}{x + 6} = -19.$$

7.30.
$$\lim_{x \to -1/5} \frac{15x^2 - 2x - 1}{x + 1/5} = -8.$$

Задача 8. Доказать, что функция f(x) непрерывна в точке x_0 (найти d(e)).

8.1.
$$f(x) = 5x^2 - 1$$
, $x_0 = 6$.

8.3.
$$f(x) = 3x^2 - 3$$
, $x_0 = 4$.

8.5
$$f(x) = -2x^2 - 5$$
, $x_0 = 2$.

8.7
$$f(x) = -4x^2 - 7$$
, $x_0 = 1$.

8.9
$$f(x) = -5x^2 - 9$$
, $x_0 = 3$.

8.11
$$f(x) = -3x^2 + 8$$
, $x_0 = 5$.

8.13
$$f(x) = 2x^2 + 6$$
, $x_0 = 7$.

8.15
$$f(x) = 4x^2 + 4$$
, $x_0 = 9$.

8.17
$$f(x) = 5x^2 + 1$$
, $x_0 = 7$.

8.19
$$f(x) = 3x^2 - 2$$
, $x_0 = 5$.

8.21
$$f(x) = -2x^2 - 4$$
, $x_0 = 3$.

8.23
$$f(x) = -4x^2 - 6$$
, $x_0 = 1$.

8.25
$$f(x) = -4x^2 - 8$$
, $x_0 = 2$.

8.27
$$f(x) = -2x^2 + 9$$
, $x_0 = 4$.

8.29
$$f(x) = 3x^2 + 7$$
, $x_0 = 6$.

8.31
$$f(x) = 5x^2 + 5$$
, $x_0 = 8$.

8.2.
$$f(x) = 4x^2 - 2$$
, $x_0 = 5$.

8.4.
$$f(x) = 2x^2 - 4$$
, $x_0 = 3$.

8.6
$$f(x) = -3x^2 - 6$$
, $x_0 = 1$.

8.8
$$f(x) = -5x^2 - 8$$
, $x_0 = 2$.

8.10
$$f(x) = -4x^2 + 9$$
, $x_0 = 4$.

8.12
$$f(x) = -2x^2 + 7$$
, $x_0 = 6$.

8.14
$$f(x) = 3x^2 + 5$$
, $x_0 = 8$.

8.16
$$f(x) = 5x^2 + 3$$
, $x_0 = 8$.

8.18
$$f(x) = 4x^2 - 1$$
, $x_0 = 6$.

8.20
$$f(x) = 2x^2 - 3$$
, $x_0 = 4$.

8.22
$$f(x) = -3x^2 - 5$$
, $x_0 = 2$.

8.24
$$f(x) = -5x^2 - 7$$
, $x_0 = 1$.

8.26
$$f(x) = -3x^2 - 9$$
, $x_0 = 3$.

8.28
$$f(x) = 2x^2 + 8$$
, $x_0 = 5$.

8.30
$$f(x) = 4x^2 + 6$$
, $x_0 = 7$.

Задача 9. Вычислить пределы функций.

9.1.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)(x + 1)}{x^4 + 4x^2 - 5}.$$

9.3.
$$\lim_{x \to -1} \frac{\left(x^2 + 3x + 2\right)^2}{x^3 + 2x^2 - x - 2}.$$

9.2.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x + x^2}$$
.

9.4.
$$\lim_{x \to 1} \frac{\left(2x^2 - x - 1\right)^2}{x^3 + 2x^2 - x - 2}.$$

9.5.
$$\lim_{x \to -3} \frac{\left(x^2 + 2x - 3\right)^2}{x^3 + 4x^2 + 3x}.$$

9.7.
$$\lim_{x \to 0} \frac{(1+x)^3 - (1+3x)}{x+x^5}.$$

9.9.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^2 - x - 2}.$$

9.11.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}.$$

9.13.
$$\lim_{x \to 1} \frac{x^3 + 4x^2 + 5x + 2}{x^3 - 3x - 2}.$$

9.15.
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4}.$$

9.17.
$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^3 - 3x^2 + 4}.$$

9.19.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2}.$$

9.21.
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^2 + 2x + 1}$$
.

9.23.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}.$$

9.25.
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^3 + 2x^2 - x - 2}.$$

9.27.
$$\lim_{x \to -1} \frac{x^3 - 2x - 1}{x^4 + 2x + 1}.$$

9.29.
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}.$$

9.31.
$$\lim_{x \to 3} \frac{x^3 - 4x^2 - 3x + 18}{x^3 - 5x^2 + 3x + 9}.$$

9.6.
$$\lim_{x \to -1} \frac{\left(x^3 - 2x - 1\right)^2}{x^4 + 2x + 1}.$$

9.8.
$$\lim_{x \to -1} \frac{x^2 - 2x + 1}{2x^2 - x - 1}.$$

9.10.
$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2}.$$

9.12.
$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}.$$

9.14.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}.$$

9.16.
$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 3x^2 + 4}.$$

9.18.
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 7x^2 + 16x + 12}$$
.

9.20.
$$\lim_{x \to 2} \frac{x^3 - 3x - 2}{x^3 + 7x^2 + 16x + 12}.$$

9.22.
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^3 - x^2 - x + 1}.$$

9.24.
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2}.$$

9.26.
$$\lim_{x \to -3} \frac{x^2 + 2x - 3}{x^3 + 4x^2 + 3x}.$$

9.28.
$$\lim_{x \to 0} \frac{(1+x)^3 - (1+3x)}{x^2 + x^5}.$$

9.30.
$$\lim_{x \to -3} \frac{x^3 + 7x^2 + 15x + 9}{x^3 + 8x^2 + 21x + 18}$$
.

Задача 10. Вычислить пределы функций.

10.1
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$
.

10.3
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{\sqrt[3]{x^2-1}}$$
.

10.5
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x^3+8}$$
.

10.7
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x}-2}$$
.

10.9
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x + x^2} - 2}{x + x^2}$$
.

10.11
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{1 + x} - \sqrt{2x}}$$
.

10.13
$$\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{\sqrt{2 + x} - \sqrt{2x}}$$
.

10.15
$$\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}}$$
.

10.17
$$\lim_{x \to 4} \frac{\sqrt[3]{16x} - 4}{\sqrt{4 + x} - \sqrt{2x}}$$
.

10.19
$$\lim_{x \to 1/2} \frac{\sqrt[3]{x/4} - 1/2}{\sqrt{1/2 + x} - \sqrt{2x}}$$
.

10.21
$$\lim_{x \to 1/4} \frac{\sqrt[3]{x/16} - 1/4}{\sqrt{1/4 + x} - \sqrt{2x}}$$
.

10.23
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{\sqrt[3]{x^2} + \sqrt[5]{x}}$$
.

10.25
$$\lim_{x \to 0} \frac{\sqrt{1 - 2x + 3x^2} - (1 + x)}{\sqrt[3]{x}}.$$

10.2.
$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}.$$

10.4
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$
.

10.6
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}$$
.

10.8
$$\lim_{x \to 0} \frac{\sqrt{1 - 2x + x^2} - (1 + x)}{x}$$
.

10.10
$$\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$$
.

10.12
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$
.

10.14
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1}$$
.

10.16
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{x+2}$$
.

10.18
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x^2}-4}$$
.

10.20
$$\lim_{x \to 1/3} \frac{\sqrt[3]{x/9} - 1/3}{\sqrt{1/3 + x} - \sqrt{2x}}$$
.

10.22
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt{1-x}}{\sqrt[7]{x}}$$
.

10.24
$$\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x - x^2} - 2}{\sqrt[3]{x^2 + x^3}}$$
.

10.26
$$\lim_{x \to 8} \frac{\sqrt{9+2x}-5}{\sqrt[3]{x}-2}$$
.

10.27
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt[3]{(\sqrt{x} - 4)^2}}$$
.

10.29
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{\sqrt[3]{x^2 - 16}}$$
.

10.31
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{\sqrt[3]{x^2 - 9}}$$
.

10.28
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6}+2}{\sqrt[3]{x^3+8}}$$
.

10.30
$$\lim_{x \to -8} \frac{10 - x - 6\sqrt{1 - x}}{2 + \sqrt[3]{x}}$$
.

Задача 11. Вычислить пределы функций.

11.1.
$$\lim_{x \to 0} \frac{\ln(1+\sin x)}{\sin 4x}$$
.

11.3
$$\lim_{x \to 0} \frac{3x^2 - 5x}{\sin 3x}$$
.

11.5
$$\lim_{x \to 0} \frac{4x}{\operatorname{tg}(p(2+x))}$$
.

11.7
$$\lim_{x \to 0} \frac{1 - \cos^3 x}{4x^2}$$
.

11.9
$$\lim_{x \to 0} \frac{2^x - 1}{\ln(1 + 2x)}$$
.

11.11
$$\lim_{x \to 0} \frac{\ln(1-7x)}{\sin(p(x+7))}$$
.

11.13
$$\lim_{x \to 0} \frac{9\ln(1-2x)}{4arctg3x}$$
.

11.15
$$\lim_{x \to 0} \frac{\sin 7x}{x^2 + px}$$
.

11.17
$$\lim_{x \to 0} \frac{2\sin[p(x+1)]}{\ln(1+2x)}$$
.

11.19
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{\sin[p(x+2)]}$$
.

11.2.
$$\lim_{x \to 0} \frac{1 - \cos 10x}{e^{x^2} - 1}.$$

11.4
$$\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 7x - \cos 3x}$$
.

11.6
$$\lim_{x \to 0} \frac{2x}{\text{tg}[2p(x+1/2)]}$$
.

11.8
$$\lim_{x \to 0} \frac{\arcsin 3x}{\sqrt{2+x} - \sqrt{2}}$$
.

11.10
$$\lim_{x \to 0} \frac{arctg 2x}{\sin(2p(x+10))}$$
.

11.12
$$\lim_{x \to 0} \frac{\cos(x + 5p/2)tgx}{\arcsin 2x^2}$$
.

11.14
$$\lim_{x \to 0} \frac{1 - \sqrt{3x + 1}}{\cos[p(x+1)/2]}$$
.

11.16
$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{3arctgx}$$
.

11.18
$$\lim_{x \to 0} \frac{\cos 2x - \cos x}{1 - \cos x}.$$

11.20
$$\lim_{x \to 0} \frac{\sin[5(x+p)]}{e^{3x}-1}$$
.

11.21
$$\lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{x \sin x}$$
.

11.23
$$\lim_{x\to 0} \frac{e^{4x}-1}{\sin(p(x/2+1))}$$
.

11.25
$$\lim_{x \to 0} \frac{\sin^2 x - tg^2 x}{x^4}.$$

11.27
$$\lim_{x \to 0} \frac{tgx - \sin x}{x(1 - \cos 2x)}$$
.

11.29
$$\lim_{x\to 0} \frac{tg(p(1+x/2))}{\ln(x+1)}$$
.

11.31
$$\lim_{x \to 0} \frac{2x \sin x}{1 - \cos x}$$
.

11.22
$$\lim_{x \to 0} \frac{\arcsin 2x}{2^{-3x} - 1} \ln 2$$
.

11.24
$$\lim_{x \to 0} \frac{1 - \cos x}{(e^{3x} - 1)^2}$$
.

11.26
$$\lim_{x \to 0} \frac{\arcsin 2x}{\ln(e-x)-1}$$
.

11.28
$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{1 - \sqrt{x^2 + 1}}$$
.

11.30
$$\lim_{x \to 0} \frac{2(e^{px} - 1)}{3(\sqrt[3]{1 + x} - 1)}$$
.

Задача 12. Вычислить пределы функций.

12.1.
$$\lim_{x \to 1} \frac{x^2 - 1}{\ln x}$$
.

12.3
$$\lim_{x \to p} \frac{1 + \cos 3x}{\sin^2 7x}$$
.

12.5
$$\lim_{x \to 1} \frac{1 + \cos px}{tg^2 px}$$
.

12.7
$$\lim_{x \to p} \frac{\sin x^2 - \lg^2 x}{(x - p)^4}$$
.

12.9
$$\lim_{x \to p} \frac{\cos 5x - \cos 3x}{\sin^2 x}$$
.

$$12.11 \lim_{x \to 2} \frac{\sin 7px}{\sin 8px}.$$

12.13
$$\lim_{x \to 1} \frac{\sqrt{x^2 - 3x + 3} - 1}{\sin px}.$$

12.2.
$$\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{\ln x}.$$

12.4
$$\lim_{x\to p/4} \frac{1-\sin 2x}{(p-4x)^2}$$
.

$$12.6 \lim_{x \to p/2} \frac{\operatorname{tg} 3x}{\operatorname{tg} x}.$$

12.8
$$\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{\operatorname{tg} \boldsymbol{p} x}$$
.

12.10
$$\lim_{x \to 2p} \frac{\sin 7x - \sin 3x}{e^{x^2} - e^{4p^2}}$$
.

12.12
$$\lim_{x \to 2} \frac{\ln(5-2x)}{\sqrt{10-3x}-2}$$
.

12.14
$$\lim_{x \to p} \frac{x^2 - p^2}{\sin x}$$
.

12.15
$$\lim_{x \to 1} \frac{3^{5x-3} - 3^{2x^2}}{\operatorname{tg} p x}$$
.

12.17
$$\lim_{x \to p/2} \frac{\ln 2x - \ln p}{\sin(5x/2)\cos x}.$$

12.19
$$\lim_{x \to p} \frac{e^p - e^x}{\sin 5x - \sin 3x}$$
.

12.21
$$\lim_{x \to 2} \frac{1 - 2^{4 - x^2}}{2(\sqrt{2x} - \sqrt{3x^2 - 5x + 2})}$$
.

12.23
$$\lim_{x \to -2} \frac{\text{tg} p x}{x+2}$$
.

12.25
$$\lim_{x \to p/3} \frac{1 - 2\cos x}{p - 3x}$$
.

12.27
$$\lim_{x \to 1} \frac{1 - x^2}{\sin p x}$$
.

12.29
$$\lim_{x \to 1} \frac{3 - \sqrt{10 - x}}{\sin 3p x}$$
.

12.31
$$\lim_{x \to p} \frac{\cos 3x - \cos x}{\tan^2 2x}$$
.

12.16 $\lim_{x \to 4} \frac{2^x - 16}{\sin px}$.

$$12.18 \lim_{x \to p/4} \frac{\ln \operatorname{tg} x}{\cos 2x}.$$

12.20
$$\lim_{x \to 2} \frac{\ln(9-2x^2)}{\sin 2px}$$
.

12.22
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$
.

12.24
$$\lim_{x \to p} \frac{1 - \sin(x/2)}{p - x}$$
.

12.26
$$\lim_{x \to 2} \frac{\arctan(x^2 - 2x)}{\sin 3px}$$
.

12.28
$$\lim_{x \to 1} \frac{\cos(p x/2)}{1 - \sqrt{x}}$$
.

$$12.30 \lim_{x \to p} \frac{\sin 5x}{\text{tg}3x}.$$

Задача 13. Вычислить пределы функций.

13.1.
$$\lim_{x \to p/2} \frac{2^{\cos^2 x} - 1}{\ln \sin x}.$$

13.3
$$\lim_{x \to 2} \frac{\ln\left(x - \sqrt[3]{2x - 3}\right)}{\sin\left(px/2\right) - \sin\left[(x - 1)p\right]}.$$

13.5.
$$\lim_{x \to p/2} \frac{e^{\lg x} - e^{-\sin 2x}}{\sin x - 1}.$$

13.7.
$$\lim_{x \to 3} \frac{\sin(\sqrt{2x^2 - 3x - 5} - \sqrt{1 + x})}{\ln(x - 1) - \ln(x + 1) + \ln 2}.$$

13.2.
$$\lim_{x \to 1/2} \frac{(2x-1)^2}{e^{\sin px} - e^{-\sin 3px}}.$$

13.4.
$$\lim_{x \to 2} \frac{\operatorname{tg} x - \operatorname{tg} 2}{\sin \ln (x - 1)}$$
.

13.6.
$$\lim_{x \to p/6} \frac{\ln \sin 3x}{(6x - p)^2}.$$

13.8.
$$\lim_{x \to 2p} \frac{(x-2p)^2}{\text{tg}(\cos x - 1)}.$$

13.9.
$$\lim_{x \to 1/2} \frac{\ln(4x-1)}{\sqrt{1-\cos px} - 1}.$$

13.11
$$\lim_{x \to 3} \frac{2^{\sin px} - 1}{\ln(x^3 - 6x - 8)}$$
.

13.13
$$\lim_{x \to 2} \frac{\operatorname{tg} \ln(3x - 5)}{e^{x+3} - e^{x^2 + 1}}$$
.

13.15
$$\lim_{x \to 1} \frac{\sqrt{1 + \ln^2 x} - 1}{1 + \cos p x}$$
.

13.17
$$\lim_{x \to 3} \frac{\ln(2x-5)}{e^{\sin px} - 1}$$
.

13.19
$$\lim_{x \to p/2} \frac{e^{\sin 2x} - e^{tg 2x}}{\ln(2x/p)}$$
.

13.21
$$\lim_{x \to 1} \frac{\sqrt{2^x + 7} - \sqrt{2^{x+1} + 5}}{x^3 - 1}$$
.

13.23
$$\lim_{x \to p} \frac{(x^3 - p^3)\sin 5x}{e^{\sin^2 x} - 1}$$
.

13.25
$$\lim_{x \to p} \frac{\ln \cos 2x}{\ln \cos 4x}.$$

13.27
$$\lim_{x \to a} \frac{a^{x^2 - a^2} - 1}{tg \ln(x/a)}$$
.

13.29
$$\lim_{x \to ap} \frac{\ln(\cos(x/2) + 2)}{a^{a^2p^2/x^2 - ap/x} - a^{ap/x - 1}}$$
.

13.31
$$\lim_{x \to 1/2} \frac{\sin(x^2/p)}{2^{\sqrt{\sin x + 1}} - 2}$$
.

13.10
$$\lim_{x \to -2} \frac{\arcsin(x+2)/2}{3^{\sqrt{2+x+x^2}}}$$
.

13.12
$$\lim_{x \to p} \frac{\ln \cos 2x}{(1 - \mathbf{p}/x)^2}$$
.

13.14
$$\lim_{x \to 2p} \frac{\ln \cos x}{3^{\sin 2x} - 1}$$
.

13.16
$$\lim_{x \to p} \frac{\cos(x/2)}{e^{\sin x} - e^{\sin 4x}}$$
.

13.18
$$\lim_{x \to p/3} \frac{e^{\sin^2 6x} - e^{\sin^2 3x}}{\log_3 \cos 6x}$$
.

13.20
$$\lim_{x \to -2} \frac{\operatorname{tg}(e^{x+2} - e^{x^2 - 4})}{\operatorname{tg} x + \operatorname{tg} 2}$$
.

13.22
$$\lim_{x \to p} \frac{\ln(2 + \cos x)}{(3^{\sin x} - 1)^2}$$
.

13.24
$$\lim_{x \to -1} \frac{tg(x+1)}{e^{\sqrt[3]{x^3-4x^2+6}}-e}$$
.

13.26
$$\lim_{x \to p/2} \frac{\ln \sin x}{(2x-p)^2}$$
.

13.28
$$\lim_{x \to -3} \frac{\sin(e^{\sqrt[3]{1-x^2}} - e^{\sqrt[3]{x+2}})}{\arctan(x+3)}$$
.

13.30
$$\lim_{x \to p} \frac{\operatorname{tg}(3^{p/x} - 3)}{3^{\cos(3x/2)} - 1}$$
.

Задача 14. Вычислить пределы функций.

14.1.
$$\lim_{x \to 0} \frac{7^{2x} - 5^{3x}}{2x - \arctan 3x}.$$

14.2.
$$\lim_{x \to 0} \frac{e^{3x} - e^{-2x}}{2\arcsin x - \sin x}.$$

14.3.
$$\lim_{x \to 0} \frac{6^{2x} - 7^{-2x}}{\sin 3x - 2x}.$$

14.5.
$$\lim_{x \to 0} \frac{3^{2x} - 5^{3x}}{\arctan x + x^3}.$$

14.7.
$$\lim_{x \to 0} \frac{3^{5x} - 2^x}{x - \sin 9x}.$$

14.9.
$$\lim_{x \to 0} \frac{12^x - 5^{-3x}}{2\arcsin x - x}.$$

14.11.
$$\lim_{x \to 0} \frac{3^{5x} - 2^{7x}}{\arcsin 2x - x}.$$

14.13.
$$\lim_{x \to 0} \frac{4^x - 2^{7x}}{\text{tg}3x - x}.$$

14.15.
$$\lim_{x \to 0} \frac{10^{2x} - 7^{-x}}{2 \operatorname{tg} x - \operatorname{arctg} x}.$$

14.17.
$$\lim_{x \to 0} \frac{7^{3x} - 3^{2x}}{tgx + x^3}.$$

17.19.
$$\lim_{x \to 0} \frac{3^{2x} - 7^x}{\arcsin 3x - 5x}.$$

14.21.
$$\lim_{x \to 0} \frac{4^{5x} - 9^{-2x}}{\sin x - \tan^3 x}.$$

14.23.
$$\lim_{x \to 0} \frac{5^{2x} - 2^{3x}}{\sin x + \sin x^2}.$$

14.25.
$$\lim_{x \to 0} \frac{9^x - 2^{3x}}{\arctan 2x - 7x}.$$

14.27.
$$\lim_{x \to 0} \frac{3^{5x} - 2^{-7x}}{2x - tgx}.$$

14.29.
$$\lim_{x \to 0} \frac{e^{2x} - e^x}{x + \lg x^2}.$$

14.4.
$$\lim_{x \to 0} \frac{e^{5x} - e^{3x}}{\sin 2x - \sin x}.$$

14.6.
$$\lim_{x \to 0} \frac{e^{2x} - e^{3x}}{\arctan x - x^2}.$$

14.8.
$$\lim_{x \to 0} \frac{e^{4x} - e^{-2x}}{2 \arctan x - \sin x}.$$

14.10.
$$\lim_{x \to 0} \frac{e^{7x} - e^{-2x}}{\sin x - 2x}.$$

14.12.
$$\lim_{x \to 0} \frac{e^{5x} - e^x}{\arcsin x + x^3}.$$

14.14.
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\operatorname{tg} 2x - \sin x}$$
.

14.16.
$$\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 3x - \sin 5x}.$$

14.18.
$$\lim_{x \to 0} \frac{e^{4x} - e^{2x}}{2 \operatorname{tg} x - \sin x}.$$

14.20.
$$\lim_{x \to 0} \frac{e^{2x} - e^{-5x}}{2\sin x - \tan x}.$$

14.22.
$$\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{\sin 3x - \tan 2x}.$$

14.24.
$$\lim_{x \to 0} \frac{e^x - e^{3x}}{\sin 3x - \tan 2x}.$$

14.26.
$$\lim_{x \to 0} \frac{e^x - e^{-2x}}{x + \sin x^2}.$$

14.28.
$$\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x - \sin x}.$$

14.30.
$$\lim_{x \to 0} \frac{2^{3x} - 3^{2x}}{x + \arcsin x^3}.$$

14.31.
$$\lim_{x \to 0} \frac{2^{3x} - 3^{5x}}{\sin 7x - 2x}.$$

Задача 15. Вычислить пределы функций.

15.1.
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{\sin^2 x}.$$

15.3.
$$\lim_{x \to -1} \frac{x^3 + 1}{\sin(x + 1)}$$
.

15.5.
$$\lim_{x \to 0} \frac{\sqrt{1 + \lg x} - \sqrt{1 + \sin x}}{x^3}.$$

15.7.
$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - 1}{e^{x^2} - 1}.$$

15.9.
$$\lim_{x \to p/3} \frac{1 - 2\cos x}{\sin(p - 3x)}.$$

15.11.
$$\lim_{x \to p/4} \frac{\sin x - \cos x}{\ln \lg x}.$$

15.13.
$$\lim_{x \to 0} \frac{1 - \cos 2x + tg^2 x}{x \sin 3x}.$$

15.15.
$$\lim_{h \to 0} \frac{\ln(x+h) + \ln(x-h) - 2\ln x}{h^2}$$
, $x > 0$. 15.16. $\lim_{x \to 1} \frac{1-x}{\log_2 x}$.

15.17.
$$\lim_{x \to 0} \frac{e^{\sin 2x} - e^{\sin x}}{\tan x}.$$

15.19.
$$\lim_{h\to 0} \frac{\sin(x+h) - \sin(x-h)}{h}.$$

15.21.
$$\lim_{h \to 0} \frac{a^{x+h} + a^{x-h} - 2a^x}{h^2}.$$

15.23.
$$\lim_{x \to 3} \frac{\sqrt[3]{5+x}-2}{\sin px}.$$

15.2.
$$\lim_{x \to 0} \frac{1 + x \sin x - \cos 2x}{\sin^2 x}.$$

15.4.
$$\lim_{x \to a} \frac{tgx - tga}{\ln x - \ln a}$$
.

15.6.
$$\lim_{x \to 0} \frac{e^{ax} - e^{bx}}{\sin ax - \sin bx}$$
.

15.8.
$$\lim_{x \to 0} \frac{x^2 \left(e^x + e^{-x} \right)}{e^{x^3} - e}.$$

15.10.
$$\lim_{x \to 1} \frac{1 - x^2}{\sin p x}.$$

15.12.
$$\lim_{x \to b} \frac{a^x - a^b}{x - b}$$
.

15.14.
$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x \ln \cos 5x}.$$

15.16.
$$\lim_{x \to 1} \frac{1-x}{\log_2 x}$$

15.18.
$$\lim_{x \to 1} \frac{2^x - 2}{\ln x}.$$

15.20.
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{\sin 3x}.$$

15.22.
$$\lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{1 - \cos \sqrt{x}}.$$

15.24.
$$\lim_{x \to p/6} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}.$$

15.25.
$$\lim_{x \to 10} \frac{\lg x - 1}{\sqrt{x - 9} - 1}.$$

15.27.
$$\lim_{x \to 0} \frac{\sqrt{\cos x} - 1}{\sin^2 2x}.$$

15.29.
$$\lim_{x \to p/2} \frac{1 - \sin^3 x}{\cos^2 x}.$$

15.31.
$$\lim_{x \to 1} \frac{e^x - e}{\sin(x^2 - 1)}$$
.

15.26.
$$\lim_{x \to 0} \frac{3^{x+1} - 3}{\ln\left(1 + x\sqrt{1 + xe^x}\right)}.$$

15.28.
$$\lim_{x \to 0} \frac{\sin bx - \sin ax}{\ln \left(\operatorname{tg} \left(p/4 + ax \right) \right)}.$$

15.30.
$$\lim_{x \to 3} \frac{\log_3 x - 1}{\lg p x}.$$

Задача 16. Вычислить пределы функций.

16.1.
$$\lim_{x \to 0} (1 - \ln(1 + x^3))^{3/(x^2 \arcsin x)}$$
.

16.3.
$$\lim_{x \to 0} \left(\frac{1 + x \cdot 2^x}{1 + x \cdot 3^x} \right)^{1/x^2}.$$

16.5.
$$\lim_{x \to 0} \left(\frac{1 + \sin x \cos ax}{1 + \sin x \cos bx} \right)^{\operatorname{ctg}^{3}x}.$$

16.7.
$$\lim_{x \to 0} \left(1 - \ln \left(1 + \sqrt[3]{x} \right) \right)^{x/\sin^4 \sqrt[3]{x}}$$
.

16.9.
$$\lim_{x \to 0} (\cos p x)^{1/(x \sin p x)}$$
.

16.11.
$$\lim_{x \to 0} \left(tg \left(\frac{p}{4} - x \right) \right)^{ctgx}.$$

16.13.
$$\lim_{x \to 0} \left(2 - 5^{\arcsin x^3}\right)^{\left(\cos ec^2 x\right)/x}$$
.

16.15.
$$\lim_{x \to 0} (2 - e^{\sin x})^{\operatorname{ctg} px}$$
.

16.17.
$$\lim_{x \to 0} \left(2 - e^{x^2} \right)^{1/\ln\left(1 + \lg^2\left(\frac{px}{3}\right)\right)}$$
.

16.2.
$$\lim_{x \to 0} (\cos \sqrt{x})^{1/x}$$
.

16.4.
$$\lim_{x \to 0} \left(2 - 3^{\arctan^2 \sqrt{x}} \right)^{2/\sin x}$$
.

16.6.
$$\lim_{x \to 0} \left(5 - \frac{4}{\cos x} \right)^{1/\sin^2 3x}$$
.

16.8.
$$\lim_{x \to 0} \left(2 - e^{\arcsin^2 \sqrt{x}} \right)^{3/x}$$
.

16.10.
$$\lim_{x \to 0} (1 + \sin^2 3x)^{1/\ln \cos x}$$
.

16.12.
$$\lim_{x \to 0} (1 - x \sin^2 x)^{1/\ln(1+px^3)}$$
.

16.14.
$$\lim_{x \to 0} (2 - \cos 3x)^{1/\ln(1+x^2)}$$
.

16.16.
$$\lim_{x \to 0} (\cos x)^{1/\ln(1+\sin^2 x)}$$
.

16.18.
$$\lim_{x \to 0} (3 - 2\cos x)^{-\csc^2 x}$$

16.19.
$$\lim_{x \to 0} \left(2 - 3^{\sin^2 x} \right)^{1/\ln \cos x}.$$

16.21.
$$\lim_{x \to 0} \left(6 - \frac{5}{\cos x} \right)^{\cot 2x}$$
.

16.23.
$$\lim_{x \to 0} \left(\frac{1 + \sin x \cos 2x}{1 + \sin x \cos 3x} \right)^{1/\sin x^3}.$$

16.25.
$$\lim_{x \to 0} \left(1 + \ln \frac{1}{3} \operatorname{arctg}^6 \sqrt{x} \right)^{1/x^3}$$
.

16.27.
$$\lim_{x \to 0} \left(\frac{1 + x \cdot 3^x}{1 + x \cdot 7^x} \right)^{1/\lg^2 x}.$$

16.29.
$$\lim_{x \to 0} (1 - \ln \cos x)^{1/\lg^2 x}$$
.

16.31.
$$\lim_{x \to 0} \left(\frac{1 + x^2 \cdot 2^x}{1 + x^2 \cdot 5^x} \right)^{1/\sin^3 x}.$$

16.20.
$$\lim_{x \to 0} \sqrt[x^2]{2 - \cos x}$$
.

16.22.
$$\lim_{x \to 0} \left(3 - \frac{2}{\cos x} \right)^{\csc^2 x}$$
.

16.24.
$$\lim_{x \to 0} \left(2 - e^{x^2} \right)^{1/(1 - \cos px)}.$$

16.26.
$$\lim_{x \to 0} \left(\frac{1 + \lg x \cos 2x}{1 + \lg x \cos 5x} \right)^{1/x^3}.$$

16.28.
$$\lim_{x \to 0} (1 + tg^2 x)^{1/\ln(1+3x^2)}.$$

16.30.
$$\lim_{x \to 0} \left(1 - \sin^2 \frac{x}{2} \right)^{1/\ln(1 + \log^2 3x)}$$
.

Задача 17. Вычислить пределы функций.

17.1.
$$\lim_{x \to 0} \left(\frac{\sin 2x}{x} \right)^{1+x}.$$

17.3.
$$\lim_{x \to 0} \left(\frac{\sin 4x}{x} \right)^{2/(x+2)}.$$

17.5.
$$\lim_{x \to 0} (\cos x)^{x+3}$$
.

17.7.
$$\lim_{x \to 0} \left(\frac{\ln(1+x)}{6x} \right)^{x/(x+2)}$$
.

17.9.
$$\lim_{x \to 0} \left(\frac{e^{x^3} - 1}{x^2} \right)^{(8x+3)/(1+x)}.$$

17.2.
$$\lim_{x \to 0} \left(\frac{2+x}{3-x} \right)^x$$
.

17.4.
$$\lim_{x \to 0} \left(\frac{e^{3x} - 1}{x} \right)^{\cos^2(p/4 + x)}.$$

17.6.
$$\lim_{x \to 0} \left(\frac{x^2 + 4}{x + 2} \right)^{x^2 + 3}.$$

17.8.
$$\lim_{x \to 0} \left(\frac{\text{tg}4x}{x} \right)^{2+x}$$
.

17.10.
$$\lim_{x \to 0} \left(\frac{x+2}{x+4} \right)^{\cos x}$$
.

17.11.
$$\lim_{x \to 0} \left(\frac{\sin 6x}{2x} \right)^{2+x}.$$

17.13.
$$\lim_{x \to 0} \left(\frac{\sin 2x}{\sin 3x} \right)^{x^2}$$
.

17.15.
$$\lim_{x \to 0} \left(\frac{x^3 + 8}{3x + 10} \right)^{x+2}.$$

17.17.
$$\lim_{x \to 0} \left(\frac{2^{2x} - 1}{x} \right)^{x+1}.$$

17.19.
$$\lim_{x \to 0} \left(\frac{11x + 8}{12x + 1} \right)^{\cos^2 x}.$$

17.21.
$$\lim_{x \to 0} \left(\frac{\ln(1+x^2)}{x^2} \right)^{3/(x+8)}.$$

17.23.
$$\lim_{x \to 0} \left(\frac{\arcsin x}{x} \right)^{2/(x+5)}$$
.

17.25.
$$\lim_{x \to 0} (e^x + x)^{\cos x^4}$$
.

17.27.
$$\lim_{x \to 0} \left(\operatorname{tg} \left(\frac{p}{4} - x \right) \right)^{\left(e^{x} - 1 \right) / x}.$$

17.29.
$$\lim_{x \to 0} \left(\frac{1+8x}{2+11x} \right)^{1/(x^2+1)}.$$

17.31.
$$\lim_{x \to 0} \left(\frac{x^3 + 4}{x^3 + 9} \right)^{1/(x+2)}.$$

17.12.
$$\lim_{x \to 0} \left(\frac{e^{x^2} - 1}{x^2} \right)^{6/(1+x)}.$$

17.14.
$$\lim_{x \to 0} (\operatorname{tg}(x+3))^{x+2}$$
.

17.16.
$$\lim_{x \to 0} (\sin(x+2))^{3/(3+x)}$$
.

17.18.
$$\lim_{x \to 0} \left(\frac{x^4 + 5}{x + 10} \right)^{4/(x+2)}.$$

17.20.
$$\lim_{x \to 0} \left(\frac{x^3 + 1}{x^3 + 8} \right)^{2/(x+1)}.$$

$$17.22. \lim_{x \to 0} \left(\cos \frac{x}{p} \right)^{1+x}.$$

17.24.
$$\lim_{x \to 0} \left(\frac{\arctan tg3x}{x} \right)^{x+2}$$
.

17.26.
$$\lim_{x \to 0} \left(\frac{\sin 5x^2}{\sin x} \right)^{1/(x+6)}.$$

17.28.
$$\lim_{x \to 0} \left(6 - \frac{5}{\cos x} \right)^{\lg^2 x}$$
.

17.30.
$$\lim_{x \to 0} \left(\frac{\arcsin^2 x}{\arcsin^2 4x} \right)^{2x+1}.$$

Задача 18. Вычислить пределы функций.

18.1.
$$\lim_{x \to 1} \left(\frac{3x-1}{x+1} \right)^{1/(\sqrt[3]{x}-1)}$$
.

18.3.
$$\lim_{x \to 1} \left(\frac{2x-1}{x} \right)^{1/(\sqrt[3]{x}-1)}$$
.

18.5.
$$\lim_{x \to 8} \left(\frac{2x - 7}{x + 1} \right)^{1/(\sqrt[3]{x} - 2)}.$$

18.7.
$$\lim_{x \to 1} \left(\frac{2x-1}{x} \right)^{1/(\sqrt[5]{x}-1)}$$
.

18.9.
$$\lim_{x\to 2p} (\cos x)^{\operatorname{ctg} 2x/\sin 3x}.$$

18.11.
$$\lim_{x \to 3} \left(\frac{6-x}{3} \right)^{\lg \frac{px}{6}}$$
.

18.13.
$$\lim_{x \to 1} (3-2x)^{\operatorname{tg} \frac{px}{2}}$$
.

18.15.
$$\lim_{x \to 3} \left(\frac{9 - 2x}{3} \right)^{\operatorname{tg} \frac{px}{6}}$$
.

18.17.
$$\lim_{x \to 1} (2e^{x-1} - 1)^{x/(x-1)}$$
.

18.19.
$$\lim_{x \to 1} (2e^{x-1} - 1)^{(3x-1)/(x-1)}$$
.

18.21.
$$\lim_{x \to 2} (2e^{x-2} - 1)^{(3x+2)/(x-2)}$$
.

18.23.
$$\lim_{x \to 1} \left(\frac{2-x}{x} \right)^{1/\ln(2-x)}$$
.

18.25.
$$\lim_{x \to 1} (2-x)^{\frac{\sin(px/2)}{\ln(2-x)}}.$$

18.2.
$$\lim_{x \to a} \left(\frac{\sin x}{\sin a} \right)^{1/(x-a)}.$$

18.4.
$$\lim_{x \to 2} \left(\frac{\cos x}{\cos 2} \right)^{1/(x-2)}$$
.

18.6.
$$\lim_{x \to p/4} (tgx)^{1/\cos(3p/4-x)}$$
.

18.8.
$$\lim_{x \to a} \left(2 - \frac{x}{a} \right)^{\operatorname{tg} \frac{px}{2a}}.$$

18.10.
$$\lim_{x \to 2p} (\cos x)^{1/\sin^2 2x}$$
.

18.12.
$$\lim_{x \to 4p} (\cos x)^{\text{ctg}x/\sin 4x}$$
.

18.14.
$$\lim_{x \to 4p} (\cos x)^{\frac{5}{\lg 5x \sin 2x}}$$
.

18.16.
$$\lim_{x \to p/2} (\sin x)^{6 \operatorname{tg} x \cdot \operatorname{tg} 3x}$$
.

18.18.
$$\lim_{x \to p/2} \left(\operatorname{tg} \frac{x}{2} \right)^{1/(x-p/2)}$$
.

18.20.
$$\lim_{x \to p/2} (1 + \cos 3x)^{\sec x}$$
.

18.22.
$$\lim_{x \to 1} \left(\frac{\sin(x-1)}{x-1} \right)^{\frac{\sin(x-1)}{x-1-\sin(x-1)}}.$$

18.24.
$$\lim_{x \to p/2} \left(\operatorname{ctg} \frac{x}{2} \right)^{1/\cos x}.$$

18.26.
$$\lim_{x \to 3} \left(\frac{\sin x}{\sin 3} \right)^{1/(x-3)}$$
.

18.27.
$$\lim_{x \to 1} \left(\frac{x+1}{2x} \right)^{\frac{\ln(x+2)}{\ln(2-x)}}.$$

18.29.
$$\lim_{x \to 1} \left(\frac{1}{x} \right)^{\frac{\ln(x+1)}{\ln(2-x)}}$$
.

18.31.
$$\lim_{x \to 1} \left(\frac{2x - 1}{x} \right)^{\frac{\ln(3 + 2x)}{\ln(2 - x)}}.$$

18.28.
$$\lim_{x \to p/2} (\sin x)^{\frac{18\sin}{\cot gx}}$$
.

18.30.
$$\lim_{x \to p} \left(\operatorname{ctg} \frac{x}{4} \right)^{1/\cos(x/2)}.$$

Задача 19. Вычислить пределы функций.

19.1.
$$\lim_{x \to e} \left(\frac{\ln x - 1}{x - e} \right)^{\sin \frac{p}{2e}x}.$$

19.3.
$$\lim_{x \to p/4} \left(\frac{\ln \text{tg}x}{1 - \text{ctg}x} \right)^{1/(x+p/4)}$$
.

19.5.
$$\lim_{x \to 2} \left(\frac{\sin 3p x}{\sin p x} \right)^{\sin^2(x-2)}.$$

19.7.
$$\lim_{x \to 3} \left(2 - \frac{x}{3} \right)^{\sin px}$$
.

19.9.
$$\lim_{x \to 1} (1 + e^x)^{\frac{\sin px}{1-x}}$$
.

19.11.
$$\lim_{x \to 3} \left(\frac{\arcsin(x-3)}{\sin 3px} \right)^{x^2-8}$$
.

19.13.
$$\lim_{x \to 1} \left(\arctan \frac{x - 3/4}{(x - 1)^2} \right)^{x+1}$$
.

19.15.
$$\lim_{x \to a} \left(\frac{\sin x - \sin a}{x - a} \right)^{x^2/a^2}$$
.

19.17.
$$\lim_{x \to p/4} (\sin x + \cos x)^{1/\log x}$$
.

19.2.
$$\lim_{x \to p/4} (tgx)^{ctgx}$$
.

19.4.
$$\lim_{x \to 2} (\sin x)^{3/(1+x)}$$
.

19.6.
$$\lim_{x \to p/6} (\sin x)^{6x/p}$$
.

19.8.
$$\lim_{x \to 1} \left(\frac{1+x}{2+x} \right)^{(1-x^2)/(1-x)}$$
.

19.10.
$$\lim_{x \to 1} \left(\frac{\text{tg} 9px}{\sin 4px} \right)^{x/(x+1)}$$
.

19.12.
$$\lim_{x \to p/4} (\sin 2x)^{\frac{x^2 - p^2/16}{x - p/4}}.$$

19.14.
$$\lim_{x \to p} \left(\operatorname{ctg} \frac{x}{4} \right)^{\sin(x-p)}.$$

19.16.
$$\lim_{x \to 2} \left(\frac{\sqrt{x+2} - 2}{x^2 - 4} \right)^{1/x}.$$

19.18.
$$\lim_{x \to p/8} (tg2x)^{\sin(p/8+x)}$$
.

19.19.
$$\lim_{x \to 1} (\arcsin x)^{\operatorname{tg}x}$$
.

19.21.
$$\lim_{x \to 1} (\ln^2 ex)^{1/(x^2+1)}$$
.

19.23.
$$\lim_{x \to 1} \left(\frac{x^3 - 1}{x - 1} \right)^{1/x^2}$$
.

19.25.
$$\lim_{x \to 2} (\cos p x)^{\operatorname{tg}(x-2)}$$
.

19.27.
$$\lim_{x \to p/2} (\cos x + 1)^{\sin x}$$
.

19.29.
$$\lim_{x \to 1} \left(\frac{x^2 + 2x - 3}{x^2 + 4x - 5} \right)^{1/(2-x)}.$$

19.31.
$$\lim_{x \to 1} \left(\frac{e^{2x} - e^2}{x - 1} \right)^{x+1}$$
.

19.20.
$$\lim_{x \to p} (x + \sin x)^{\sin x + x}$$
.

19.22.
$$\lim_{x \to 1} (\sqrt{x} + 1)^{p/\arctan x}$$
.

19.24.
$$\lim_{x \to 1} \left(\frac{e^{\sin px} - 1}{x - 1} \right)^{x^2 + 1}.$$

19.26.
$$\lim_{x \to 1/2} (\arcsin x + \arccos x)^{1/x}$$
.

19.28.
$$\lim_{x \to 1} \left(\sqrt[3]{x} + x - 1 \right)^{\sin(px/4)}$$
.

19.30.
$$\lim_{x \to 1} \left(\frac{1 + \cos p x}{t g^2 p x} \right)^{x^2}$$
.

Задача 20. Вычислить предел функции или числовой последовательности.

20.1.
$$\lim_{x \to 0} \sqrt{4\cos 3x + x \arctan(1/x)}$$
.

20.3.
$$\lim_{n \to \infty} \frac{2n - \sin n}{\sqrt{n} - \sqrt[3]{n^3 - 7}}$$
.

20.5.
$$\lim_{n \to \infty} \frac{e^{1/n} + \sin \frac{n}{n^2 + 1} \cdot \cos n}{1 + \cos(1/n)}.$$

20.7.
$$\lim_{x \to p/4} \frac{\sqrt[3]{\lg x} + (4x - p) \cos \frac{x}{4x - p}}{\lg (2 + \lg x)}.$$

20.9.
$$\lim_{n \to \infty} \frac{n^2 - \sqrt{3n^5 - 7}}{\left(n^2 - n\cos n + 1\right)\sqrt{n}}.$$

20.2.
$$\lim_{x \to p/2} \sqrt{3\sin x + (2x - p)\sin \frac{x}{2x - p}}$$
.

20.4.
$$\lim_{x \to 0} \frac{\lg x \cos(1/x) + \lg(2+x)}{\lg(4+x)}$$
.

20.6.
$$\lim_{n \to \infty} \frac{\sqrt[4]{2 + n^5} - \sqrt{2n^3 + 3}}{(n + \sin n)\sqrt{7n}}.$$

20.8.
$$\lim_{n \to \infty} \left(\sin \sqrt{n^2 + 1} \cdot \operatorname{arctg} \frac{n}{n^2 + 1} \right).$$

20.10.
$$\lim_{n \to \infty} \frac{3\sin n + \sqrt{n-1}}{n + \sqrt{n+1}}.$$

20.11.
$$\lim_{n \to \infty} \frac{(1 - \cos n) \sqrt[3]{n}}{\sqrt{2n+1} - 1}.$$

$$20.12. \lim_{x \to 0} \ln \left(2 + \sqrt{\arctan x \cdot \sin \frac{1}{x}} \right).$$

20.13.
$$\lim_{x \to -2} \sqrt{\frac{1 + \cos px}{4 + (x+2)\sin \frac{x}{x+2}}}$$
.

$$20.14. \lim_{n \to \infty} \frac{n}{\sqrt[3]{n^4 - 3} + \sin n}.$$

20.15.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2 + \cos n} + \sqrt{3n^2 + 2}}{\sqrt[5]{n^6 + 1}}.$$

20.16.
$$\lim_{x \to 0} \frac{\sqrt[3]{\text{tg}x} \arctan \frac{1}{x} + 3}{2 - \lg(1 + \sin x)}.$$

20.17.
$$\lim_{x \to 0} \sqrt{\arctan x \cdot \sin^2 \frac{1}{x} + 5\cos x}$$
.

20.18.
$$\lim_{x \to 0} \sqrt{4\cos x + \sin \frac{1}{x} \cdot \ln(1+x)}$$
.

20.19.
$$\lim_{x \to 0} \sqrt{2\cos^2 x + (e^x - 1)\sin\frac{1}{x}}$$
.

$$20.20. \lim_{x \to 0} \frac{2 + \ln\left(e + x\sin\frac{1}{x}\right)}{\cos x + \sin x}.$$

20.21.
$$\lim_{x \to 0} \ln \left[\left(e^{x^2} - \cos x \right) \cos \frac{1}{x} + \operatorname{tg} \left(x + \frac{p}{3} \right) \right].$$

$$20.22. \lim_{x \to 0} \frac{\cos x + \ln(1+x)\sqrt{2 + \cos\frac{1}{x}}}{2 + e^x}.$$

20.23.
$$\lim_{x \to 1} \frac{\cos 2px}{2 + \left(e^{\sqrt{x-1}} - 1\right) \arctan \frac{x+2}{x-1}}.$$

20.24.
$$\lim_{x \to 0} \sqrt{\left(e^{\sin x} - 1\right)\cos\frac{1}{x} + 4\cos x}.$$

20.25.
$$\lim_{x \to 0} \frac{\cos(1+x)}{\left(2+\sin\frac{1}{x}\right)\ln(1+x)+2}.$$

20.26.
$$\lim_{x \to 2} \sqrt[3]{\lg(x+2) + \sin\sqrt{4-x^2}\cos\frac{x+2}{x-2}}$$
.

20.27.
$$\lim_{x \to p/2} \frac{2 + \cos x \sin \frac{2}{2x - p}}{3 + 2x \sin x}.$$

20.28.
$$\lim_{x \to 1} \operatorname{tg} \left(\cos x + \sin \frac{x - 1}{x + 1} \cos \frac{x + 1}{x - 1} \right)$$

20.29.
$$\lim_{x \to 0} \sqrt{x \left(2 + \sin \frac{1}{x}\right) + 4\cos x}$$
.

$$\frac{\sin x + \sin p \, x \cdot \arctan \frac{1+x}{1-x}}{1+\cos x}.$$

20.31.
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3n - 1} + \sqrt[3]{2n^2 + 1}}{n + 2\sin n}.$$

II. ДИФФЕРЕНЦИРОВАНИЕ

Теоретические вопросы

- 1. Понятие производной. Производная функции x^n .
- 2. Геометрический смысл производной. Уравнения касательной и нормали к графику функции.
- 3. Понятие дифференцируемости функции и дифференциала. Условиє дифференцируемости. Связь дифференциала с производной.
 - 4. Геометрический смысл дифференциала.
 - 5. Непрерывность дифференцируемой функции.
 - 6. Дифференцирование постоянной и суммы, произведения и частного.
 - 7. Производная сложной функции.
 - 8. Инвариантность формы дифференциала.
 - 9. Производная обратной функции.
 - 10. Производные обратных тригонометрических функций.
 - 11. Гиперболические функции, их производные.
 - 12. Производные высших порядков, формула Лейбница.
- 13. Дифференциалы высших порядков. Неинвариантность дифференциалов порядка выше первого.
 - 14. Дифференцирование функций, заданных параметрически.

Теоретические упражнения

- 1. Исходя из определения производной, доказать, что
 - а. а) производная периодической дифференцируемой функции есть функция периодическая;
 - b. б) производная четной дифференцируемой функции есть функция нечетная;
 - с. в) производная нечетной дифференцируемой функции есть функция четная.
- 2. Доказать, что если функция f(x) дифференцируема в точке x = 0 и f(0) = 0, то

$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x}.$$

3. Доказать, что производная f'(0) не существует, если

4.
$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

5. Доказать, что производная от функции

6.
$$f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

- 7. разрывна в точке x = 0.
- 8. Доказать приближенную формулу

a.
$$\sqrt{a^2 + z} \approx a + z/(2a)$$
, $a > 0$, $|z| \Box a$.

- 9. Что можно сказать о дифференцируемости суммы f(x) + g(x) в точке $x = x_0$ если в этой точке:
 - 10.a) функция f(x) дифференцируема, а функция g(x) не дифференцируема;
 - 11.б) обе функции f(x) и g(x) не дифференцируемы.
- 12.Пусть функция f(x) дифференцируема в точке x_0 и $f(x_0) \neq 0$, а функция g(x) не дифференцируема в этой точке. Доказать, что произведение f(x)g(x) является недифференцируемым в точке x_0 .
- 13. Что можно сказать о дифференцируемости произведения f(x)g(x) предположениях задачи?
 - а. Рассмотреть примеры:

b. a)
$$f(x) = x$$
, $g(x) = |x|$, $x_0 = 0$;

c.
$$f(x) = x$$
, $g(x) = \begin{cases} \sin(1/x), & x \neq 0, \\ 0, & x = 0, \end{cases}$ $x_0 = 0$;

d. 6)
$$f(x) = |x|$$
, $g(x) = |x|$, $x_0 = 0$;

e.
$$f(x) = |x|, g(x) = |x| + 1, x_0 = 0.$$

14. Найти
$$f'(0)$$
, если $f(x) = x(x+1)...(x+1234567)$.

15.Выразить дифференциал d^3y от сложной функции y[u(x)] через производные от функции y(u) и дифференциалы от функции u(x).

16.Пусть y(x) и x(y) дважды дифференцируемые взаимно обратные функции Выразить x'' через y' и y''.

Расчетные задания

Задача 1. Исходя из определения производной, найти f'(0).

1.1.
$$f(x) = \begin{cases} tg\left(x^3 + x^2\sin\frac{2}{x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.2.
$$f(x) = \begin{cases} \arcsin\left(x^2 \cos\frac{1}{9x}\right) + \frac{2}{3}x, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.3.
$$f(x) = \begin{cases} arctg\left(x\cos\frac{1}{5x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.4.
$$f(x) = \begin{cases} \ln\left(1 - \sin\left(x^3 \sin\frac{1}{x}\right)\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.5.
$$f(x) = \begin{cases} \sin\left(x\sin\frac{3}{x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.6.
$$f(x) = \begin{cases} \sqrt{1 + \ln\left(1 + x^2 \sin\frac{1}{x}\right)} - 1, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.7.
$$f(x) = \begin{cases} \sin\left(e^{x^2\sin\frac{5}{x}} - 1\right) + x, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.8.
$$f(x) = \begin{cases} x^2 \cos \frac{4}{3x} + \frac{x^2}{2}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.9.
$$f(x) = \begin{cases} \arctan\left(x^3 - x^{\frac{3}{2}}\sin\frac{1}{3x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.10.
$$f(x) = \begin{cases} \sin x \cdot \cos \frac{5}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.11.
$$f(x) = \begin{cases} x + \arcsin\left(x^2 \sin\frac{6}{x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.12.
$$f(x) = \begin{cases} tg(2^{x^2\cos(1/8x)} - 1 + x), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.13.
$$f(x) = \begin{cases} \arctan x \cdot \sin \frac{7}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.13.
$$f(x) = \begin{cases} \arctan x \cdot \sin \frac{7}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$
 1.14. $f(x) = \begin{cases} 2x^2 + x^2 \cos \frac{1}{9x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$

1.15.
$$f(x) = \begin{cases} x^2 \cos^2 \frac{11}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.15.
$$f(x) = \begin{cases} x^2 \cos^2 \frac{11}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$
 1.16. $f(x) = \begin{cases} 2x^2 + x^2 \cos \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$

1.17.
$$f(x) = \begin{cases} \frac{\ln \cos x}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.18.
$$f(x) = \begin{cases} 6x + x\sin\frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.19.
$$f(x) = \begin{cases} \frac{e^{x^2} - \cos x}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.20.
$$f(x) = \begin{cases} e^{x \sin \frac{5}{x}} - 1, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.21.
$$f(x) = \begin{cases} 3^{x^2 \sin{\frac{2}{x}}} - 1 + 2x, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.22.
$$f(x) = \begin{cases} \sqrt{1 + \ln\left(1 + 3x^2 \cos\frac{2}{x}\right)} - 1, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.23.
$$f(x) = \begin{cases} e^{x \sin \frac{3}{5x}} - 1, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.23.
$$f(x) = \begin{cases} e^{x\sin\frac{3}{5x}} - 1, & x \neq 0; \\ 0, & x = 0. \end{cases}$$
 1.24. $f(x) = \begin{cases} \frac{2^{\tan x} - 2^{\sin x}}{x^2}, & x \neq 0; \\ 0, & x = 0. \end{cases}$

1.25.
$$f(x) = \begin{cases} \arctan\left(\frac{3x}{2} - x^2 \sin\frac{1}{x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.26.
$$f(x) = \begin{cases} \sin\left(\frac{3}{x^2}\sin\frac{2}{x}\right) \\ e^{-1 + x^2}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.27.
$$f(x) = \begin{cases} \sqrt[3]{1 - 2x^3 \sin \frac{5}{x}} - 1 + x, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.28.
$$f(x) = \begin{cases} x^2 e^{|x|} \sin \frac{1}{x^2}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.29.
$$f(x) = \begin{cases} \frac{\ln(1+2x^2+x^3)}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.30.
$$f(x) = \begin{cases} \frac{\cos x - \cos 3x}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

1.31.
$$f(x) = \begin{cases} 1 - \cos\left(x\sin\frac{1}{x}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Задача 2. Составить уравнение нормали (в вариантах 2.1-2.12) или уравнение касательной (в вариантах 2.13-2.31) к данной кривой в точке с абсциссой x_0 .

2.1.
$$y = (4x - x^2)/4$$
, $x_0 = 2$.

2.3.
$$y = x - x^3$$
, $x_0 = -1$.

2.5.
$$y = x + \sqrt{x^3}$$
, $x_0 = 1$.

2.7.
$$y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}, \quad x_0 = 4.$$

2.9.
$$y = 2x^2 - 3x + 1$$
, $x_0 = 1$.

2.11.
$$y = \sqrt{x} - 3\sqrt[3]{x}$$
, $x_0 = 64$.

2.13.
$$y = 2x^2 + 3$$
, $x_0 = -1$.

2.15.
$$y = 2x + \frac{1}{x}$$
, $x_0 = 1$.

2.17.
$$y = \frac{x^5 + 1}{x^4 + 1}$$
, $x_0 = 1$.

2.19.
$$y = 3(\sqrt[3]{x} - 2\sqrt{x}), \quad x_0 = 1.$$

2.21.
$$y = x/(x^2 + 1)$$
, $x_0 = -2$.

2.23.
$$y = 2x/(x^2+1)$$
, $x_0 = 1$.

2.25.
$$y = \frac{1+3x^2}{3+x^2}$$
, $x_0 = 1$.

2.27.
$$y = 3\sqrt[4]{x} - \sqrt{x}$$
, $x_0 = 1$.

2.29.
$$y = x^2/10 + 3$$
, $x_0 = 2$.

2.31.
$$y = 6\sqrt[3]{x} - 16\sqrt[4]{x}/3$$
, $x_0 = 1$.

2.2.
$$y = 2x^2 + 3x - 1$$
, $x_0 = -2$.

2.4.
$$y = x^2 + 8\sqrt{x} - 32$$
, $x_0 = 4$.

2.6.
$$y = \sqrt[3]{x^2} - 20$$
, $x_0 = -8$.

2.8.
$$y = 8\sqrt[4]{x} - 70$$
, $x_0 = 16$.

2.10.
$$y = (x^2 - 3x + 6)/x^2$$
, $x_0 = 3$.

2.12.
$$y = (x^3 + 2)/(x^3 - 2), x_0 = 2.$$

2.14.
$$y = \frac{x^{29} + 6}{x^4 + 1}$$
, $x_0 = 1$.

2.16.
$$y = -2(x^8 + 2)/(3(x^4 + 1)), x_0 = 1.$$

2.18.
$$y = \frac{x^{16} + 9}{1 - 5x^2}, \quad x_0 = 1.$$

2.20.
$$y = 1/(3x+2)$$
, $x_0 = 2$.

2.22.
$$y = (x^2 - 3x + 3)/3$$
, $x_0 = 3$.

2.24.
$$y = -2(\sqrt[3]{x} + 3\sqrt{x}), \quad x_0 = 1.$$

2.26.
$$y = 14\sqrt{x} - 15\sqrt[3]{x} + 2$$
, $x_0 = 1$.

2.28.
$$y = (3x - 2x^3)/3$$
, $x_0 = 1$.

2.30.
$$y = (x^2 - 2x - 3)/4$$
, $x_0 = 4$.

Задача 3. Найти дифференциал *dy*.

3.1.
$$y = x \arcsin(1/x) + \ln |x + \sqrt{x^2 - 1}|, \quad x > 0.$$

3.3.
$$y = \sqrt{1+2x} - \ln\left|x + \sqrt{1+2x}\right|$$
.

3.5.
$$y = \arccos\left(1/\sqrt{1+2x^2}\right), \quad x > 0.$$

3.7.
$$y = \operatorname{arctg}(\operatorname{sh} x) + (\operatorname{sh} x) \operatorname{lnch} x$$
.

3.9.
$$y = \ln(\cos^2 x + \sqrt{1 + \cos^4 x}).$$

3.11.
$$y = \frac{\ln|x|}{1+x^2} - \frac{1}{2}\ln\frac{x^2}{1+x^2}$$

3.13.
$$y = x\sqrt{4 - x^2} + a\arcsin(x/2)$$
.

3.15.
$$y = 2x + \ln|\sin x + 2\cos x|$$
.

3.17.
$$y = \ln \left| \frac{x + \sqrt{x^2 + 1}}{2x} \right|$$
.

3.19.
$$y = \arctan \frac{x^2 - 1}{x}$$
.

3.21.
$$y = \operatorname{arctg}\left(\operatorname{tg}\frac{x}{2} + 1\right)$$
.

3.23.
$$y = \ln \left| \cos \sqrt{x} \right| + \sqrt{x} \operatorname{tg} \sqrt{x}$$
.

3.25.
$$y = x(\sin \ln x - \cos \ln x)$$
.

3.27.
$$y = \cos x \cdot \operatorname{lntg} x - \operatorname{lntg} \frac{x}{2}$$
.

3.29.
$$y = \sqrt{x} - (1+x) \arctan \sqrt{x}$$
.

3.31.
$$y = x\sqrt{x^2 - 1} + \ln\left|x + \sqrt{x^2 - 1}\right|$$
.

3.2.
$$y = tg(2 \arccos \sqrt{1 - 2x^2}), \quad x > 0.$$

3.4.
$$y = x^2 \arctan \sqrt{x^2 - 1} - \sqrt{x^2 - 1}$$
.

3.6.
$$y = x \ln \left| x + \sqrt{x^2 + 3} \right| - \sqrt{x^2 + 3}$$
.

3.8.
$$y = \arccos((x^2 - 1)/(x^2\sqrt{2}))$$
.

3.10.
$$y = \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} \operatorname{arctg} x$$
.

3.12.
$$y = \ln(e^x + \sqrt{e^{2x} - 1}) + \arcsin^x$$
.

3.14.
$$y = \ln(x/2) - x/\sin x$$
.

3.16.
$$y = \sqrt{\cot x} - \sqrt{\tan^3 x} / 3$$
.

$$3.18. \ \ y = \sqrt[3]{\frac{x+2}{x-2}}.$$

3.20.
$$y = \ln |x^2 - 1| - \frac{1}{x^2 - 1}$$
.

3.22.
$$y = \ln \left| 2x + 2\sqrt{x^2 + x} + 1 \right|$$
.

3.24.
$$y = e^x (\cos 2x + 2\sin 2x)$$
.

3.26.
$$y = \left(\sqrt{x-1} - \frac{1}{2}\right) e^{2\sqrt{x-1}}$$
.

3.28.
$$y = \sqrt{3 + x^2} - x \ln \left| x + \sqrt{3 + x^2} \right|$$
.

3.30.
$$y = x \arctan x - \ln \sqrt{1 + x^2}$$
.

Задача 4. Вычислить приближенно с помощью дифференциала.

4.1.
$$y = \sqrt[3]{x}$$
, $x = 7,76$.

4.3.
$$y = \left(x + \sqrt{5 - x^2}\right) / 2$$
, $x = 0.98$.

4.5.
$$y = \arcsin x$$
, $x = 0.08$.

4.7.
$$y = \sqrt[3]{x}$$
, $x = 26,46$.

4.9.
$$y = x^{11}$$
, $x = 1,021$.

4.11.
$$y = x^{21}$$
, $x = 0.998$.

4.13.
$$y = x^6$$
, $x = 2.01$.

4.15.
$$y = x^7$$
, $x = 1,996$.

4.17.
$$y = \sqrt{4x-1}$$
, $x = 2.56$.

4.19.
$$y = \sqrt[3]{x}$$
, $x = 8,36$.

4.21.
$$y = x^7$$
, $x = 2,002$.

4.23.
$$y = \sqrt{x^3}$$
, $x = 0.98$.

4.25.
$$y = \sqrt[5]{x^2}$$
, $x = 1,03$.

4.27.
$$y = \sqrt{1 + x + \sin x}$$
, $x = 0.01$.

4.29.
$$y = \sqrt[4]{2x - \sin(px/2)}$$
, $x = 1,02$.

4.31.
$$y = 1/\sqrt{2x+1}$$
, $x = 1,58$.

4.2.
$$y = \sqrt[3]{x^3 + 7x}$$
, $x = 1,012$.

4.4.
$$y = \sqrt[3]{x}$$
, $x = 27,54$.

4.6.
$$y = \sqrt[3]{x^2 + 2x + 5}$$
, $x = 0.97$.

4.8.
$$y = \sqrt{x^2 + x + 3}$$
, $x = 1,97$.

4.10.
$$y = \sqrt[3]{x}$$
, $x = 1, 21$.

4.12.
$$y = \sqrt[3]{x^2}$$
, $x = 1,03$.

4.14.
$$y = \sqrt[3]{x}$$
, $x = 8,24$.

4.16.
$$y = \sqrt[3]{x}$$
, $x = 7,64$.

4.18.
$$y = 1/\sqrt{2x^2 + x + 1}$$
, $x = 1,016$.

4.20.
$$y = 1/\sqrt{x}$$
, $x = 4.16$.

4.22.
$$y = \sqrt{4x-3}$$
, $x = 1,78$.

4.24.
$$y = x^5$$
, $x = 2,997$.

4.26.
$$y = x^4$$
, $x = 3.998$.

4.28.
$$y = \sqrt[3]{3x + \cos x}$$
, $x = 0.01$.

4.30.
$$y = \sqrt{x^2 + 5}$$
, $x = 1,97$.

Задача 5. Найти производную.

5.1.
$$y = \frac{2(3x^3 + 4x^2 - x - 2)}{15\sqrt{1+x}}$$
.

5.3.
$$y = \frac{x^4 - 8x^2}{2(x^2 - 4)}$$
.

5.2.
$$y = \frac{(2x^2 - 1)\sqrt{1 + x^2}}{3x^3}$$
.

5.4.
$$y = \frac{2x^2 - x - 1}{3\sqrt{2 + 4x}}$$
.

5.5.
$$y = \frac{(1+x^8)\sqrt{1+x^8}}{12x^{12}}$$
.

5.7.
$$y = \frac{\left(x^2 - 6\right)\sqrt{\left(4 + x^2\right)^3}}{120x^5}$$
.

5.9.
$$y = \frac{4+3x^3}{x\sqrt[3]{(2+x^3)^2}}$$
.

5.11.
$$y = \frac{x^6 + x^3 - 2}{\sqrt{1 - x^3}}$$
.

5.13.
$$y = \frac{1+x^2}{2\sqrt{1+2x^2}}$$
.

$$5.15. \ \ y = \frac{\sqrt{\left(1 + x^2\right)^3}}{3x^3}.$$

5.17.
$$y = \frac{\sqrt{2x+3}(x-2)}{x^2}$$
.

5.19.
$$y = \frac{(2x^2 + 3)\sqrt{x^2 - 3}}{9x^3}$$
.

5.21.
$$y = \frac{(2x+1)\sqrt{x^2-x}}{x^2}$$
.

5.23.
$$y = \frac{1}{(x+2)\sqrt{x^2+4x+5}}$$
.

5.25.
$$y = 3 \cdot \sqrt[3]{\frac{(x+1)}{(x-1)^2}}$$
.

5.27.
$$y = \frac{x\sqrt{x+1}}{x^2 + x + 1}$$
.

$$5.6. \ y = \frac{x^2}{2\sqrt{1 - 3x^4}}.$$

5.8.
$$y = \frac{(x^2 - 8)\sqrt{x^2 - 8}}{6x^3}$$
.

5.10.
$$y = \sqrt[3]{\frac{\left(1 + x^{3/4}\right)^2}{x^{3/2}}}$$
.

5.12.
$$y = \frac{(x^2 - 2)\sqrt{4 + x^2}}{24x^3}$$
.

5.14.
$$y = \frac{\sqrt{x-1}(3x+2)}{4x^2}$$
.

5.16.
$$y = \frac{x^6 + 8x^3 - 128}{\sqrt{8 - x^3}}$$
.

5.18.
$$y = (1 - x^2) \sqrt[5]{x^3 + \frac{1}{x}}$$
.

5.20.
$$y = \frac{x-1}{(x^2+5)\sqrt{x^2+5}}$$
.

$$5.22. \ \ y = 2\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}.$$

5.24.
$$y = 3 \frac{\sqrt[3]{x^2 + x + 1}}{x + 1}$$
.

5.26.
$$y = \frac{x+7}{6\sqrt{x^2+2x+7}}$$
.

5.28.
$$y = \frac{x^2 + 2}{2\sqrt{1 - x^4}}$$
.

5.29.
$$y = \frac{(x+3)\sqrt{2x-1}}{2x+7}$$
.

$$5.30. \ \ y = \frac{3x + \sqrt{x}}{\sqrt{x^2 + 2}}.$$

5.31.
$$y = \frac{3x^6 + 4x^4 - x^2 - 2}{15\sqrt{1 + x^2}}$$
.

Задача 6. Найти производную.

6.1.
$$y = x - \ln(2 + e^x + 2\sqrt{e^{2x} + e^x + 1})$$
.

6.2.
$$y = e^{2x} (2 - \sin 2x - \cos 2x)/8$$
.

6.3.
$$y = \frac{1}{2} \operatorname{arctg} \frac{e^x - 3}{2}$$
.

6.4.
$$y = \frac{1}{\ln 4} \ln \frac{1 + 2^x}{1 - 2^x}$$
.

6.5.
$$y = 2\sqrt{e^x + 1} + \ln \frac{\sqrt{e^x + 1} - 1}{\sqrt{e^x + 1} + 1}$$
.

6.6.
$$y = \frac{2}{3} \sqrt{(\operatorname{arctg} e^x)^3}$$
.

6.7.
$$y = \frac{1}{2} \ln(e^{2x} + 1) - 2 \operatorname{arctg} e^{x}$$
.

6.8.
$$y = \ln(e^x + 1) + \frac{18e^{2x} + 27e^x + 11}{6(e^x + 1)^3}$$
.

6.9.
$$y = \frac{2(\sqrt{2^x - 1} - \arctan\sqrt{2^x - 1})}{\ln 2}$$

6.9.
$$y = \frac{2(\sqrt{2^x - 1} - \arctan\sqrt{2^x - 1})}{\ln 2}$$
. 6.10. $y = 2(x - 2)\sqrt{1 + e^x} - 2\ln\frac{\sqrt{1 + e^x} - 1}{\sqrt{1 + e^x} + 1}$.

6.11.
$$y = \frac{e^{ax} (a \sin bx - b \cos bx)}{a^2 + b^2}$$
. 6.12. $y = \frac{e^{ax} (b \sin bx - a \cos bx)}{a^2 + b^2}$.

6.12.
$$y = \frac{e^{ax} (b \sin bx - a \cos bx)}{a^2 + b^2}$$

6.13.
$$y = e^{ax} \left[\frac{1}{2a} + \frac{a\cos 2bx + 2b\sin 2bx}{2(a^2 + 4b^2)} \right].$$

6.14.
$$y = x + \frac{1}{1 + e^x} - \ln(1 + e^x)$$
.

6.15.
$$y = x - 3\ln\left[\left(1 + e^{x/6}\right)\sqrt{1 + e^{x/3}}\right] - 3\arctan e^{x/6}$$
.

6.16.
$$y = x + \frac{8}{1 + e^{x/4}}$$
.

6.17.
$$y = \ln\left(e^x + \sqrt{e^{2x} - 1}\right) + \arcsin e^{-x}$$
.

6.18.
$$y = x - e^{-x} \arcsin e^{x} - \ln \left(1 + \sqrt{1 - e^{2x}} \right)$$
.

6.19.
$$y = x - \ln(1 + e^x) - 2e^{-x/2} \operatorname{arctg} e^{x/2} - (\operatorname{arctg} e^{x/2})^2$$
.

6.20.
$$y = \frac{e^{x^3}}{1+x^3}$$
.

6.21.
$$y = \frac{1}{m\sqrt{ab}} \arctan\left(e^{mx} \cdot \sqrt{\frac{a}{b}}\right)$$

6.22.
$$y = 3e^{\sqrt[3]{x}} \left(\sqrt[3]{x^2} - 2\sqrt[3]{x} + 2 \right).$$

6.23.
$$y = \ln \frac{\sqrt{1 + e^x + e^{2x}} - e^x - 1}{\sqrt{1 + e^x + e^{2x}} - e^x + 1}$$
.

$$6.24. \ y = e^{\sin x} \left(x - \frac{1}{\cos x} \right).$$

6.25.
$$y = \frac{e^x}{2} \left[\left(x^2 - 1 \right) \cos x + \left(x - 1 \right)^2 \sin x \right].$$

6.26.
$$y = \operatorname{arctg}(e^x - e^{-x})$$
.

6.27.
$$y = 3e^{\sqrt[3]{x}} \left(\sqrt[3]{x^5} - 5\sqrt[3]{x^4} + 20x - 60\sqrt[3]{x^2} + 120\sqrt[3]{x} - 120 \right).$$

6.28.
$$y = -\frac{e^{3x}}{3\sinh^3 x}$$
.

6.29.
$$y = \arcsin e^{-x} - \sqrt{1 - e^{2x}}$$
.

6.30.
$$y = -\frac{1}{2}e^{-x^2}(x^4 + 2x^2 + 2)$$
.

6.31.
$$y = \frac{e^{x^2}}{1+x^2}$$
.

Задача 7. Найти производную.

7.1.
$$y = \sqrt{x} \ln \left(\sqrt{x} + \sqrt{x+a} \right) - \sqrt{x+a}.$$

7.2.
$$y = \ln\left(x + \sqrt{a^2 + x^2}\right)$$
.

7.3.
$$y = 2\sqrt{x} - 4\ln(2 + \sqrt{x})$$
.

7.4.
$$y = \ln \frac{x^2}{\sqrt{1 - ax^4}}$$
.

7.5.
$$y = \ln(\sqrt{x} + \sqrt{x+1})$$
.

7.6.
$$y = \ln \frac{a^2 + x^2}{a^2 - x^2}$$
.

7.7.
$$y = \ln^2(x + \cos x)$$
.

7.8.
$$y = \ln^3 (1 + \cos x)$$
.

7.9.
$$y = \ln \frac{x^2}{1 - x^2}$$
.

7.11.
$$y = \ln \sqrt[4]{\frac{1+2x}{1-2x}}$$
.

7.13.
$$y = \ln \sin \frac{2x+4}{x+1}$$
.

7.15.
$$y = \log_4 \log_2 \lg x$$
.

7.17.
$$y = \ln \cos \frac{2x+3}{x+1}$$
.

7.19.
$$y = \log_a \frac{1}{\sqrt{1 - x^4}}$$
.

7.21.
$$y = \ln \arcsin \sqrt{1 - e^{2x}}$$
.

7.23.
$$y = \ln(bx + \sqrt{a^2 + b^2 x^2})$$
.

7.25.
$$y = \ln\left(\arccos\frac{1}{\sqrt{x}}\right)$$
.

7.27.
$$y = \ln \frac{\sqrt{5} + \text{tg}(x/2)}{\sqrt{5} - \text{tg}(x/2)}$$
.

7.29.
$$y = \ln \ln (1 + 1/x)$$
.

7.31.
$$y = \ln \ln^2 \ln^3 x$$
.

$$7.10. \ \ y = \operatorname{Intg}\left(\frac{p}{4} + \frac{x}{2}\right).$$

7.12.
$$y = x + \frac{1}{\sqrt{2}} \ln \frac{x - \sqrt{2}}{x + \sqrt{2}} + a^{p^{\sqrt{2}}}$$
.

7.14.
$$y = \log_{16} \log_5 \lg x$$
.

7.16.
$$y = x(\cos \ln x + \sin \ln x)/2$$
.

7.18.
$$y = \lg \ln(\operatorname{ctg} x)$$
.

7.20.
$$y = \frac{1}{\sqrt{2}} \ln \left(\sqrt{2} \operatorname{tg} x + \sqrt{1 + 2 \operatorname{tg}^2 x} \right).$$

7.22.
$$y = \ln \arccos \sqrt{1 - e^{4x}}$$
.

7.24.
$$y = \ln \frac{\sqrt{x^2 + 1} + x\sqrt{2}}{\sqrt{x^2 + 1} - x\sqrt{2}}$$
.

7.26.
$$y = \ln\left(e^x + \sqrt{1 + e^{2x}}\right)$$
.

7.28.
$$y = \ln \frac{\ln x}{\sin(1/x)}$$
.

7.30.
$$y = \ln \ln^3 \ln^2 x$$
.

Задача 8. Найти производную.

8.1.
$$y = \sin\sqrt{3} + \frac{1}{3}\frac{\sin^2 3x}{\cos 6x}$$
.

8.3.
$$y = \operatorname{tg} \lg \frac{1}{3} + \frac{1}{4} \frac{\sin^2 4x}{\cos 8x}$$
.

8.5.
$$y = \frac{\cos \sin 5 \cdot \sin^2 2x}{2\cos 4x}$$
.

8.2.
$$y = \cos \ln 2 - \frac{1}{3} \frac{\cos^2 3x}{\sin 6x}$$
.

8.4.
$$y = \operatorname{ctg} \sqrt[3]{5} - \frac{1}{8} \frac{\cos^2 4x}{\sin 8x}$$
.

8.6.
$$y = \frac{\sin \cos 3 \cdot \cos^2 2x}{4\sin 4x}$$
.

8.7.
$$y = \frac{\cos \ln 7 \cdot \sin^2 7x}{7\cos 14x}$$
.

8.9.
$$y = \text{ctg}(\cos 2) + \frac{1}{6} \frac{\sin^2 6x}{\cos 12x}$$
.

8.11.
$$y = \frac{1}{3}\cos\left(tg\frac{1}{2}\right) + \frac{1}{10}\frac{\sin^2 10x}{\cos 20x}$$
.

8.13.
$$y = 8\sin(\cot 3) + \frac{1}{5}\frac{\sin^2 5x}{\cos 10x}$$
.

$$8.15. y = \frac{\cos\left(\operatorname{tg}\frac{1}{3}\right) \cdot \sin^2 15x}{15\cos 30x}.$$

$$8.17. y = \frac{\operatorname{ctg}\left(\sin\frac{1}{3}\right) \cdot \sin^2 17x}{17\cos 34x}.$$

8.19.
$$y = \frac{\operatorname{tg}(\ln 2) \cdot \sin^2 19x}{19\cos 38x}$$
.

8.21.
$$y = \sqrt{\operatorname{tg} 4} + \frac{\sin^2 21x}{21\cos 42x}$$
.

8.23.
$$y = \ln \cos \frac{1}{3} + \frac{\sin^2 23x}{23\cos 46x}$$
.

8.25.
$$y = \sin \ln 2 + \frac{\sin^2 25x}{25\cos 50x}$$
.

8.27.
$$y = \sqrt[7]{\lg(\cos 2)} + \frac{\sin^2 27x}{27\cos 54x}$$
.

8.29.
$$y = \cos^2 \sin 3 + \frac{\sin^2 29x}{29\cos 58x}$$
.

8.31.
$$y = \operatorname{tg} \sqrt{\cos(1/3)} + \frac{\sin^2 31x}{31\cos 62x}$$
.

8.8.
$$y = \cos(\cot 2) - \frac{1}{16} \frac{\cos^2 8x}{\sin 16x}$$
.

8.10.
$$y = \sqrt[3]{\cot 2} - \frac{1}{20} \frac{\cos^2 10x}{\sin 20x}$$
.

8.12.
$$y = \ln \sin \frac{1}{2} - \frac{1}{24} \frac{\cos^2 12x}{\sin 24x}$$
.

8.14.
$$y = \frac{\cos(\cot 3) \cdot \cos^2 14x}{28\sin 28x}$$
.

$$8.16. y = \frac{\sin\left(\operatorname{tg}\frac{1}{7}\right) \cdot \cos^2 16x}{32\sin 32x}.$$

8.18.
$$y = \frac{\sqrt[5]{\cot 2} \cdot \cos^2 18x}{36\sin 36x}$$
.

8.20.
$$y = \text{ctg}(\cos 5) - \frac{1}{40} \frac{\cos^2 20x}{\sin 40x}$$
.

8.22.
$$y = \cos(\ln 13) - \frac{1}{44} \frac{\cos^2 22x}{\sin 44x}$$

8.24.
$$y = \operatorname{ctg}\left(\sin\frac{1}{13}\right) - \frac{1}{48} \frac{\cos^2 24x}{\sin 48x}$$
.

8.26.
$$y = \sqrt[3]{\cos\sqrt{2}} - \frac{1}{52} \frac{\cos^2 26x}{\sin 52x}$$
.

8.28.
$$y = \sin \sqrt[3]{\lg 2} - \frac{\cos^2 28x}{56\sin 56x}$$
.

8.30.
$$y = \sin^3 \cos 2 - \frac{\cos^2 30x}{60\sin 60x}$$
.

Задача 9. Найти производную.

9.1.
$$y = \arctan \frac{\operatorname{tg} x - \operatorname{ctg} x}{\sqrt{2}}$$
.

$$9.2. \ y = \arcsin \frac{\sqrt{x} - 2}{\sqrt{5x}}.$$

9.3.
$$y = \frac{2x-1}{4}\sqrt{2+x-x^2} + \frac{9}{8}\arcsin\frac{2x-1}{3}$$
.

9.4.
$$y = \arctan \frac{\sqrt{1+x^2} - 1}{x}$$
.

9.5.
$$y = \arccos \frac{x^2 - 4}{\sqrt{x^4 + 16}}$$
.

9.6.
$$y = \sqrt{\frac{2}{3}} \arctan \frac{3x-1}{\sqrt{6x}}$$
.

9.7.
$$y = \frac{1}{4} \ln \frac{x-1}{x+1} - \frac{1}{2} \operatorname{arctg} x$$
.

9.8.
$$y = \frac{1}{2}(x-4)\sqrt{8x-x^2-7} - 9\arccos\sqrt{\frac{x-1}{6}}$$
.

9.9.
$$y = \frac{(1+x)\arctan\sqrt{x}}{x^2} + \frac{1}{3x\sqrt{x}}$$
.

9.10.
$$y = \frac{x^3}{3} \arccos x - \frac{2 + x^2}{9} \sqrt{1 - x^2}$$
.

9.11.
$$y = \frac{1}{2\sqrt{x}} + \frac{1+x}{2x} \arctan \sqrt{x}$$
.

9.12.
$$y = \frac{3+x}{2}\sqrt{x(2-x)} + 3\arccos\sqrt{\frac{x}{2}}$$
.

9.13.
$$y = \frac{4 + x^4}{x^3} \arctan \frac{x^2}{2} + \frac{4}{x}$$
.

9.14.
$$y = \arcsin\sqrt{\frac{x}{x+1}} + \arctan\sqrt{x}$$
.

9.15.
$$y = \frac{1}{2} \sqrt{\frac{1}{x^2} - 1} - \frac{\arccos x}{2x^2}$$
.

9.16.
$$y = 6 \arcsin \frac{\sqrt{x}}{2} - \frac{6+x}{2} \sqrt{x(4-x)}$$
.

9.17.
$$y = \frac{x-3}{2}\sqrt{6x-x^2-8} + \arcsin\sqrt{\frac{x}{2}-1}$$
.

9.18.
$$y = \frac{(1+x)\arctan\sqrt{x} - \sqrt{x}}{x}$$
.

9.19.
$$y = \frac{2\sqrt{1-x} \arcsin \sqrt{x}}{x} + \frac{2}{\sqrt{x}}$$
.

9.20.
$$y = \frac{2x-5}{4}\sqrt{5x-4-x^2} + \frac{9}{4}\arcsin\sqrt{\frac{x-1}{3}}$$
.

9.21.
$$y = \operatorname{arctg} x + \frac{5}{6} \ln \frac{x^2 + 1}{x^2 + 4}$$
.

9.22.
$$y = \arcsin \frac{x-2}{(x-1)\sqrt{2}}$$
.

9.23.
$$y = \sqrt{1 - x^2} - x \arcsin \sqrt{1 - x^2}$$
.

9.24.
$$y = \sqrt{x} + \frac{1}{3} \arctan \sqrt{x} + \frac{8}{3} \arctan \frac{\sqrt{x}}{2}$$
.

9.25.
$$y = \arctan \frac{\sqrt{1-x}}{1-\sqrt{x}}$$
.

9.26.
$$y = (2x^2 + 6x + 5) \operatorname{arctg} \frac{x+1}{x+2} - x$$
.

9.27.
$$y = \frac{x}{2\sqrt{1-4x^2}} \arcsin 2x + \frac{1}{8} \ln(1-4x^2)$$
.

9.28.
$$y = \left(2x^2 - x + \frac{1}{2}\right) \arctan \left(\frac{x^2 - 1}{x\sqrt{3}} - \frac{x^3}{2\sqrt{3}} - \frac{\sqrt{3}}{2}x\right)$$

9.29.
$$y = (x + 2\sqrt{x} + 2) \arctan \frac{\sqrt{x}}{\sqrt{x} + 2} - \sqrt{x}$$
.

9.30.
$$y = \sqrt{1 + 2x - x^2} \arcsin \frac{x\sqrt{2}}{1 + x} - \sqrt{2} \ln(1 + x).$$

9.31.
$$y = \arctan \frac{tg(x/2) + 1}{2}$$
.

Задача 10. Найти производную.

10.1.
$$y = \frac{1}{4\sqrt{5}} \ln \frac{2 + \sqrt{5} \operatorname{th} x}{2 - \sqrt{5} \operatorname{th} x}$$
.

10.2.
$$y = \frac{\sinh x}{4 \cosh^4 x} + \frac{3 \sinh x}{8 \cosh^2 x} + \frac{3}{8} \operatorname{arctg}(\sinh x).$$

10.3.
$$y = \frac{1}{2} \ln \frac{1 + \sqrt{\th x}}{1 - \sqrt{\th x}} - \arctan \sqrt{\th x}$$
.

10.3.
$$y = \frac{1}{2} \ln \frac{1 + \sqrt{\tan x}}{1 - \sqrt{\tan x}} - \arctan \sqrt{\frac{\tan x}{1 - \sqrt{\tan x}}} = 10.4.$$
 $y = \frac{3}{8\sqrt{2}} \ln \frac{\sqrt{2} + \tan x}{\sqrt{2} - \tan x} - \frac{\tan x}{4(2 - \tan^2 x)}.$

10.5.
$$y = \frac{1}{2} \operatorname{th} x + \frac{1}{4\sqrt{2}} \ln \frac{1 + \sqrt{2} \operatorname{th} x}{1 - \sqrt{2} \operatorname{th} x}$$
.

10.6.
$$y = -\frac{1}{2} \ln \left(\tanh \frac{x}{2} \right) - \frac{\cosh x}{2 \sinh^2 x}$$
.

10.7.
$$y = \frac{1}{2a\sqrt{1+a^2}} \ln \frac{a + \sqrt{1+a^2} \, \text{th } x}{a - \sqrt{1+a^2} \, \text{th } x}$$
.

10.8.
$$y = \frac{1}{18\sqrt{2}} \ln \frac{1 + \sqrt{2} \coth x}{1 - \sqrt{2} \coth x}$$
.

10.9.
$$y = \arctan \frac{\sqrt{\sinh 2x}}{\cosh x - \sinh x}$$
.

10.10.
$$y = \frac{1}{6} \ln \frac{1 - \sinh 2x}{2 + \sinh 2x}$$
.

10.11.
$$y = \sqrt[4]{\frac{1 + \text{th } x}{1 - \text{th } x}}.$$

10.12.
$$y = \frac{\sinh x}{1 + \cosh x}$$
.

$$10.13. \ y = \frac{\operatorname{ch} x}{\sqrt{\operatorname{sh} 2x}}.$$

10.14.
$$y = \frac{\sinh 3x}{\sqrt{\cosh 6x}}$$
.

10.15.
$$y = \frac{1 + 8 \operatorname{ch}^2 x \cdot \ln(\operatorname{ch} x)}{2 \operatorname{ch}^2 x}$$
.

10.16.
$$y = -\frac{12 \operatorname{sh}^2 x + 1}{3 \operatorname{sh}^2 x}$$
.

10.17.
$$y = -\frac{\sinh x}{2 \cosh^2 x} + \frac{3}{2} \arcsin(\tanh x)$$
.

10.18.
$$y = \frac{1}{\sqrt{8}} \arcsin \frac{3 + \operatorname{ch} x}{1 + 3\operatorname{ch} x}$$
.

10.19.
$$y = \frac{1}{\sqrt{8}} \ln \frac{4 + \sqrt{8} \operatorname{th} \frac{x}{2}}{4 - \sqrt{8} \operatorname{th} \frac{x}{2}}.$$

10.20.
$$y = \frac{1}{4} \ln \left| \tanh \frac{x}{2} \right| - \frac{1}{4} \ln \frac{3 + \cosh x}{\sinh x}$$
.

10.21.
$$y = -\frac{1}{4}\arcsin\frac{5+3\operatorname{ch} x}{3+5\operatorname{ch} x}$$
.

10.22.
$$y = \frac{1 - 8 \operatorname{ch}^2 x}{4 \operatorname{ch}^4 x}$$
.

10.23.
$$y = \frac{2}{\sinh x} - \frac{1}{3 \sinh^3 x} + \frac{\sinh x}{2 \cosh^2 x} + \frac{5}{2} \operatorname{arctg}(\sinh x).$$

10.24.
$$y = \frac{8}{3} \operatorname{cth} 2x - \frac{1}{3 \operatorname{ch} x \cdot \operatorname{sh}^3 x}$$
.

10.25.
$$y = \frac{1}{2} \operatorname{arctg}(\sinh x) - \frac{\sinh x}{2 \cosh^2 x}$$
.

10.26.
$$y = \frac{3}{2} \ln \left(th \frac{x}{2} \right) + ch x - \frac{ch x}{2 sh^2 x}$$
.

10.27.
$$y = -\frac{\sinh x}{2 \cosh^2 x} - \frac{1}{\sinh x} - \frac{3}{2} \operatorname{arctg}(\sinh x)$$
.

10.28.
$$y = \frac{\sinh x}{2 \cosh^2 x} + \frac{1}{2} \arctan(\sinh x)$$
.

10.29.
$$y = \frac{1}{2} \left[\frac{\sinh x}{\cosh^2 x} + \operatorname{arctg}(\sinh x) \right].$$

10.30.
$$y = -\frac{\cosh x}{2 \sinh^2 x} - \frac{1}{2} \ln \left(\tanh \frac{x}{2} \right)$$
.

10.31.
$$y = \frac{2}{3} \operatorname{cth} x - \frac{\operatorname{ch} x}{3 \operatorname{sh}^3 x}$$
.

Задача 11. Найти производную.

11.1.
$$y = (\operatorname{arctg} x)^{(1/2)\ln(\operatorname{arctg} x)}$$
.

11.3.
$$y = (\sin x)^{5e^x}$$
.

11.5.
$$y = (\ln x)^{3^x}$$
.

11.7.
$$y = (\operatorname{ctg} 3x)^{2e^x}$$
.

11.9.
$$y = (tg x)^{4e^x}$$
.

11.11.
$$y = (x \sin x)^{8\ln(x \sin x)}$$
.

11.13.
$$y = (x^3 + 4)^{\operatorname{tg} x}$$
.

11.15.
$$y = (x^2 - 1)^{\sinh x}$$
.

11.17.
$$y = (\sin x)^{5x/2}$$
.

11.19.
$$y = 19^{x^{19}} x^{19}$$
.

11.21.
$$y = \left(\sin\sqrt{x}\right)^{e^{1/x}}$$
.

11.23.
$$y = x^{e^{\cos x}}$$
.

11.25.
$$y = x^{e^{\sin x}}$$
.

11.27.
$$y = x^{e^{\arctan x}}$$
.

11.29.
$$y = x^{29^x} \cdot 29^x$$
.

11.31.
$$y = x^{e^x} x^9$$
.

11.2.
$$y = \left(\sin\sqrt{x}\right)^{\ln\left(\sin\sqrt{x}\right)}$$
.

11.4.
$$y = (\arcsin x)^{e^x}$$
.

11.6.
$$y = x^{\arcsin x}$$
.

11.8.
$$y = x^{e^{tg x}}$$
.

11.10.
$$y = (\cos 5x)^{e^x}$$
.

11.12.
$$y = (x-5)^{ch x}$$
.

11.14.
$$y = x^{\sin x^3}$$
.

11.16.
$$y = (x^4 + 5)^{\text{ctg } x}$$
.

11.18.
$$y = (x^2 + 1)^{\cos x}$$
.

11.20.
$$y = x^{3^x} \cdot 2^x$$
.

11.22.
$$y = x^{e^{\operatorname{ctg} x}}$$
.

11.24.
$$y = x^{2^x} \cdot 5^x$$
.

11.26.
$$y = (tg x)^{\ln(tg x)/4}$$
.

11.28.
$$y = (x^8 + 1)^{\text{th } x}$$
.

11.30.
$$y = (\cos 2x)^{\ln(\cos 2x)/4}$$

Задача 12. Найти производную.

12.1.
$$y = \frac{1}{24} (x^2 + 8) \sqrt{x^2 - 4} + \frac{x^2}{16} \arcsin \frac{2}{x}, \quad x > 0.$$

12.2.
$$y = \frac{4x+1}{16x^2+8x+3} + \frac{1}{\sqrt{2}} \arctan \frac{4x+1}{\sqrt{2}}$$
.

12.3.
$$y = 2x - \ln(1 + \sqrt{1 - e^{4x}}) - e^{-2x} \arcsin(e^{2x})$$
.

12.4.
$$y = \sqrt{9x^2 - 12x + 5} \arctan(3x - 2) - \ln(3x - 2 + \sqrt{9x^2 - 12x + 5})$$
.

12.5.
$$y = \frac{2}{x-1}\sqrt{2x-x^2} + \ln\frac{1+\sqrt{2x-x^2}}{x-1}$$
.

12.6.
$$y = \frac{x^2}{81} \arcsin \frac{3}{x} + \frac{1}{81} (x^2 + 18) \sqrt{x^2 - 9}, \quad x > 0.$$

12.7.
$$y = \frac{1}{\sqrt{2}} \arctan \frac{3x-1}{\sqrt{2}} + \frac{1}{3} \cdot \frac{3x-1}{3x^2 - 2x + 1}$$
.

12.8.
$$y = 3x - \ln(1 + \sqrt{1 - e^{6x}}) - e^{-3x} \arcsin(e^{3x})$$
.

12.9.
$$y = \ln(4x - 1 + \sqrt{16x^2 - 8x + 2}) - \sqrt{16x^2 - 8x + 2} \arctan(4x - 1)$$
.

12.10.
$$y = \ln \frac{1 + 2\sqrt{-x - x^2}}{2x + 1} + \frac{4}{2x + 1}\sqrt{-x - x^2}$$
.

12.11.
$$y = (2x+3)^4 \cdot \arcsin \frac{1}{2x+3} + \frac{2}{3} (4x^2 + 12x + 11) \sqrt{x^2 + 3x + 2}, \quad 2x+3 > 0.$$

12.12.
$$y = \frac{x+2}{x^2+4x+6} + \frac{1}{\sqrt{2}} \arctan \frac{x+2}{\sqrt{2}}$$
.

12.13.
$$y = 5x - \ln(1 + \sqrt{1 - e^{10x}}) - e^{-5x} \arcsin(e^{5x})$$
.

12.14.
$$y = \sqrt{x^2 - 8x + 17} \arctan(x - 4) - \ln(x - 4 + \sqrt{x^2 - 8x + 17}).$$

12.15.
$$y = \ln \frac{1 + \sqrt{-3 + 4x - x^2}}{2 - x} + \frac{2}{2 - x} \sqrt{-3 + 4x - x^2}$$
.

12.16.
$$y = (3x^2 - 4x + 2)\sqrt{9x^2 - 12x + 3} + (3x - 2)^4 \arcsin \frac{1}{3x - 2}, \quad 3x - 2 > 0.$$

12.17.
$$y = \frac{1}{\sqrt{2}} \arctan \frac{x-1}{\sqrt{2}} + \frac{x-1}{x^2 - 2x + 3}$$
.

12.18.
$$y = \ln\left(e^{5x} + \sqrt{e^{10x} - 1}\right) + \arcsin\left(e^{-5x}\right)$$
.

12.19.
$$y = \ln(2x - 3 + \sqrt{4x^2 - 12x + 10}) - \sqrt{4x^2 - 12x + 10} \arctan(2x - 3)$$
.

12.20.
$$y = \ln \frac{1 + \sqrt{-3 - 4x - x^2}}{-x - 2} - \frac{2}{x + 2} \sqrt{-3 - 4x - x^2}$$
.

12.21.
$$y = \frac{2}{3} (4x^2 - 4x + 3) \sqrt{x^2 - x} + (2x - 1)^4 \arcsin \frac{1}{2x - 1}, \quad 2x - 1 > 0.$$

12.22.
$$y = \frac{2x-1}{4x^2-4x+3} + \frac{1}{\sqrt{2}} \arctan \frac{2x-1}{\sqrt{2}}$$
.

12.23.
$$y = \arcsin(e^{-4x}) + \ln(e^{4x} + \sqrt{e^{8x} - 1}).$$

12.24.
$$y = \ln(5x + \sqrt{25x^2 + 1}) - \sqrt{25x^2 + 1} \arctan 5x$$
.

12.25.
$$y = \frac{2}{3x-2}\sqrt{-3+12x-9x^2} + \ln\frac{1+\sqrt{-3+12x-9x^2}}{3x-2}$$
.

12.26.
$$y = (3x+1)^4 \arcsin \frac{1}{3x+1} + (3x^2 + 2x + 1)\sqrt{9x^2 + 6x}, \quad 3x+1 > 0.$$

12.27.
$$y = \frac{1}{\sqrt{2}} \arctan \frac{2x+1}{\sqrt{2}} + \frac{2x+1}{4x^2+4x+3}$$
.

12.28.
$$y = \ln\left(e^{3x} + \sqrt{e^{6x} - 1}\right) + \arcsin\left(e^{-3x}\right)$$
.

12.29.
$$y = \sqrt{49x^2 + 1} \arctan (7x + \sqrt{49x^2 + 1}).$$

12.30.
$$y = \frac{1}{x}\sqrt{1-4x^2} + \ln\frac{1+\sqrt{1+4x^2}}{2x}$$
.

12.31.
$$y = \arcsin(e^{-2x}) + \ln(e^{2x} + \sqrt{e^{4x} - 1}).$$

Задача 13. Найти производную.

13.1.
$$y = \frac{x \arcsin x}{\sqrt{1 - x^2}} + \ln \sqrt{1 - x^2}$$
. 13.2. $y = 4 \ln \frac{x}{1 + \sqrt{1 - 4x^2}} - \frac{\sqrt{1 - 4x^2}}{x^2}$.

13.3.
$$y = x(2x^2 + 5)\sqrt{x^2 + 1} + 3\ln(x + \sqrt{x^2 + 1}).$$

13.4.
$$y = x^3 \arcsin x + \frac{x^2 + 2}{3} \sqrt{1 - x^2}$$
.

13.5.
$$y = 3\arcsin\frac{3}{4x+1} + 2\sqrt{4x^2 + 2x - 2}, \quad 4x+1 > 0.$$

13.6.
$$y = \sqrt{1 + x^2} \arctan \left(x + \sqrt{1 + x^2} \right)$$
.

13.7.
$$y = 2\arcsin\frac{2}{3x+4} + \sqrt{9x^2 + 24x + 12}, \quad 3x+4 > 0.$$

13.8.
$$y = x(2x^2 + 1)\sqrt{x^2 + 1} - \ln(x + \sqrt{x^2 + 1}).$$

13.9.
$$y = \ln\left(x + \sqrt{x^2 + 1}\right) - \frac{\sqrt{1 + x^2}}{x}$$
. 13.10. $y = \sqrt{1 - 3x - 2x^2} + \frac{3}{2\sqrt{2}}\arcsin\frac{4x + 3}{\sqrt{17}}$.

13.11.
$$y = \sqrt{(4+x)(1+x)} + 3\ln(\sqrt{4+x} + \sqrt{1+x}).$$

13.12.
$$y = \ln \frac{\sqrt{x^2 - x + 1}}{x} + \sqrt{3} \arctan \frac{2x - 1}{\sqrt{3}}$$
.

13.13.
$$y = \frac{1}{12} \ln \frac{x^4 - x^2 + 1}{\left(x^2 + 1\right)^2} - \frac{1}{2\sqrt{3}} \operatorname{arctg} \frac{\sqrt{3}}{2x^2 - 1}$$
.

13.14.
$$y = 4\arcsin\frac{4}{2x+3} + \sqrt{4x^2 + 12x - 7}, \quad 2x+3 > 0.$$

13.15.
$$y = 2\arcsin\frac{2}{3x+1} + \sqrt{9x^2 + 6x - 3}, \quad 3x+1 > 0.$$

13.16.
$$y = (2+3x)\sqrt{x-1} - \frac{3}{2} \arctan \sqrt{x-1}$$
.

13.17.
$$y = \frac{1}{3}(x-2)\sqrt{x+1} + \ln(\sqrt{x+1}+1).$$

13.18.
$$y = \sqrt{x^2 + 1} - \frac{1}{2} \ln \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1} + 1}$$
.

13.19.
$$y = \ln \sqrt[3]{\frac{x-1}{x+1}} - \frac{1}{2} \left(\frac{1}{2} + \frac{1}{x^2 - 1}\right) \arctan x$$
.

13.20.
$$y = x \ln \left(\sqrt{1-x} + \sqrt{1+x} \right) + \frac{1}{2} (\arcsin x - x).$$

13.21.
$$y = \arctan \sqrt{x^2 - 1} - \frac{\ln x}{\sqrt{x^2 - 1}}$$
. 13.22. $y = 3\arcsin \frac{3}{x + 2} + \sqrt{x^2 + 4x - 5}$.

13.23.
$$y = \sqrt{(3-x)(2+x)} + 5\arcsin\sqrt{\frac{x+2}{5}}$$
.

13.24.
$$y = x(\arcsin x)^2 + 2\sqrt{1-x^2} \arcsin x - 2x$$
.

13.25.
$$y = \frac{\sqrt{1-x^2}}{x} + \arcsin x$$
. 13.26. $y = x^2 \arccos x - \frac{x^2+2}{3}\sqrt{1-x^2}$.

13.27.
$$y = \frac{\sqrt{x^2 + 2}}{x^2} - \frac{1}{\sqrt{2}} \ln \frac{\sqrt{2} + \sqrt{x^2 + 2}}{x}$$
.

13.28.
$$y = \frac{x}{4} (10 - x^2) \sqrt{4 - x^2} + 6 \arcsin \frac{x}{2}$$
.

13.29.
$$y = \arcsin \frac{1}{2x+3} + 2\sqrt{x^2+3x+2}, \quad 2x+3 > 0.$$

13.30.
$$y = x \arcsin \sqrt{\frac{x}{x+1}} - \sqrt{x} + \arctan \sqrt{x}$$
.

13.31.
$$y = \frac{\arcsin x}{\sqrt{1-x^2}} + \frac{1}{2} \ln \frac{1-x}{1+x}$$
.

Задача 14. Найти производную.

14.1.
$$y = \frac{1}{\sin a} \ln(\operatorname{tg} x + \operatorname{ctg} a)$$
. 14.2. $y = x \cos a + \sin a \ln \sin(x - a)$.

14.3.
$$y = \frac{1}{2\sqrt{2}} \left[\sin \ln x - (\sqrt{2} - 1) \cdot \cos \ln x \right] x^{\sqrt{2} + 1}$$
.

14.4.
$$y = \operatorname{arctg}\left(\frac{\cos x}{\sqrt[4]{\cos 2x}}\right)$$
.

14.5.
$$y = 3\frac{\sin x}{\cos^2 x} + 2\frac{\sin x}{\cos^4 x}$$
. 14.6. $y = (a^2 + b^2)^{-1/2} \cdot \arcsin\left(\frac{\sqrt{a^2 + b^2}\sin x}{b}\right)$.

14.7.
$$y = \frac{7^x (3\sin 3x + \cos 3x \cdot \ln 7)}{9 + \ln^2 7}$$
.

$$14.8. \ y = \ln \frac{\sin x}{\cos x + \sqrt{\cos 2x}}.$$

14.9.
$$y = \frac{1}{a(1+a^2)} \left[\arctan(a\cos x) + a \ln(\frac{x}{2}) \right]$$

14.10.
$$y = -\frac{1}{3\sin^3 x} - \frac{1}{\sin x} + \frac{1}{2} \ln \frac{1 + \sin x}{1 - \sin x}$$
.

14.11.
$$y = (1 + x^2)e^{\arctan x}$$
.

14.12.
$$y = \frac{\operatorname{ctg} x + x}{1 - x \operatorname{ctg} x}$$
.

14.13.
$$y = \frac{1}{2\sin\frac{a}{2}} \arctan \frac{2x\sin\frac{a}{2}}{1-x^2}$$
.

14.14.
$$y = \arctan \frac{\sqrt{\sqrt{x^4 + 1} - x^2}}{x}, \quad x > 0.$$

14.15.
$$y = \frac{6^x \left(\sin 4x \cdot \ln 6 - 4\cos 4x\right)}{16 + \ln^2 6}$$
.

14.16.
$$y = \arctan \frac{\sqrt{2 \operatorname{tg} x}}{1 - \operatorname{tg} x}$$
.

14.17.
$$y = \arctan \frac{2\sin x}{\sqrt{9\cos^2 x - 4}}$$
.

14.18.
$$y = \frac{5^x (2\sin 2x + \cos 2x \cdot \ln 5)}{4 + \ln^2 5}$$
.

14.19.
$$y = \ln \frac{\sqrt{2} + \text{th } x}{\sqrt{2} - \text{th } x}$$
.

14.20.
$$y = \frac{3^x \left(4\sin 4x + \ln 3 \cdot \cos 4x\right)}{16 + \ln^2 3}$$
.

14.21.
$$y = \frac{4^x \left(\ln 4 \cdot \sin 4x - 4\cos 4x\right)}{16 + \ln^2 4}$$
.

14.22.
$$y = \frac{\cos x}{\sin^2 x} - 2\cos x - 3\ln \frac{x}{2}$$
.

14.23.
$$y = \frac{5^x \left(\sin 3x \cdot \ln 5 - 3\cos 3x\right)}{9 + \ln^2 5}$$
.

14.24.
$$y = x - \ln(1 + e^x) - 2e^{-\frac{x}{2}} \operatorname{arctge}^{\frac{x}{2}}$$
.

14.25.
$$y = \frac{2^x (\sin x + \cos x \cdot \ln 2)}{1 + \ln^2 2}$$
.

$$14.26. \ y = \frac{\ln(\operatorname{ctg} x + \operatorname{ctg} a)}{\sin a}.$$

14.27.
$$y = 2 \frac{\cos x}{\sin^4 x} + 3 \frac{\cos x}{\sin^2 x}$$
.

14.28.
$$y = \frac{\cos x}{3(2 + \sin x)} + \frac{4}{3\sqrt{3}} \arctan \frac{2 \operatorname{tg}(x/2) + 1}{\sqrt{3}}$$
.

14.29.
$$y = \frac{3^x (\ln 3 \cdot \sin 2x - 2\cos 2x)}{\ln^2 3 + 4}$$
.

14.29.
$$y = \frac{3^x (\ln 3 \cdot \sin 2x - 2\cos 2x)}{\ln^2 3 + 4}$$
. 14.30. $y = \frac{1}{2} \ln \frac{1 + \cos x}{1 - \cos x} - \frac{1}{\cos x} - \frac{1}{3\cos^3 x}$.

14.31.
$$y = \sqrt{\frac{\lg x + \sqrt{2\lg x} + 1}{\lg x - \sqrt{2\lg x} + 1}}$$
.

Задача 15. Найти производную y'_x .

15.1.
$$\begin{cases} x = \frac{3t^2 + 1}{3t^3}, \\ y = \sin\left(\frac{t^3}{3} + t\right). \end{cases}$$

15.3.
$$\begin{cases} x = \sqrt{2t - t^2}, \\ y = \frac{1}{\sqrt[3]{(1 - t)^2}}. \end{cases}$$

15.5.
$$\begin{cases} x = \ln(t + \sqrt{t^2 + 1}), \\ y = t\sqrt{t^2 + 1}. \end{cases}$$

15.7.
$$\begin{cases} x = \operatorname{ctg}(2e^{t}), \\ y = \ln(\operatorname{tge}^{t}). \end{cases}$$

15.9.
$$\begin{cases} x = \operatorname{arctge}^{t/2}, \\ y = \sqrt{e^t + 1}. \end{cases}$$

15.11.
$$\begin{cases} x = \ln \frac{1}{\sqrt{1 - t^4}}, \\ y = \arcsin \frac{1 - t^2}{1 + t^2}. \end{cases}$$

15.13.
$$\begin{cases} x = \arcsin\left(\sqrt{1 - t^2}\right), \\ y = \left(\arccos t\right)^2. \end{cases}$$

15.2.
$$\begin{cases} x = \sqrt{1 - t^2}, \\ y = \lg \sqrt{1 + t}. \end{cases}$$

15.4.
$$\begin{cases} x = \arcsin(\sin t), \\ y = \arccos(\cos t). \end{cases}$$

15.6.
$$\begin{cases} x = \sqrt{2t - t^2}, \\ y = \arcsin(t - 1). \end{cases}$$

15.8.
$$\begin{cases} x = \ln(\operatorname{ctg} t), \\ y = \frac{1}{\cos^2 t}. \end{cases}$$

15.10.
$$\begin{cases} x = \ln \sqrt{\frac{1-t}{1+t}}, \\ y = \sqrt{1-t^2}. \end{cases}$$

15.12.
$$\begin{cases} x = \sqrt{1 - t^2}, \\ y = \frac{t}{\sqrt{1 - t^2}}. \end{cases}$$

15.14.
$$\begin{cases} x = \frac{t}{\sqrt{1 - t^2}}, \\ y = \ln \frac{1 + \sqrt{1 - t^2}}{t}. \end{cases}$$

15.15.
$$\begin{cases} x = \left(1 + \cos^2 t\right)^2, \\ y = \frac{\cos t}{\sin^2 t}. \end{cases}$$

15.17.
$$\begin{cases} x = \arccos\frac{1}{t}, \\ y = \sqrt{t^2 - 1} + \arcsin\frac{1}{t}. \end{cases}$$

15.19.
$$\begin{cases} x = \arcsin \sqrt{t}, \\ y = \sqrt{1 + \sqrt{t}}. \end{cases}$$

15.21.
$$\begin{cases} x = t\sqrt{t^2 + 1}, \\ y = \ln\frac{1 + \sqrt{1 + t^2}}{t}. \end{cases}$$

15.23.
$$\begin{cases} x = \ln(1 - t^2), \\ y = \arcsin\sqrt{1 - t^2}. \end{cases}$$

15.25.
$$\begin{cases} x = \ln \sqrt{\frac{1 - \sin t}{1 + \sin t}}, \\ y = \frac{1}{2} t g^2 t + \ln \cos t. \end{cases}$$

15.27.
$$\begin{cases} x = \ln t \, t, \\ y = \frac{1}{\sin^2 t}. \end{cases}$$

15.29.
$$\begin{cases} x = e^{\sec^2 t}, \\ y = \operatorname{tg} t \cdot \ln \cos t + \operatorname{tg} t - t. \end{cases}$$

15.16.
$$\begin{cases} x = \ln \frac{1-t}{1+t}, \\ y = \sqrt{1-t^2}. \end{cases}$$

15.18.
$$\begin{cases} x = \frac{1}{\ln t}, \\ y = \ln \frac{1 + \sqrt{1 - t^2}}{t}. \end{cases}$$

15.20.
$$\begin{cases} x = (\arcsin t)^2, \\ y = \frac{t}{\sqrt{1 - t^2}}. \end{cases}$$

15.22.
$$\begin{cases} x = \operatorname{arctg} t, \\ y = \ln \frac{\sqrt{1 + t^2}}{t + 1}. \end{cases}$$

15.24.
$$\begin{cases} x = \arctan \frac{t+1}{t-1}, \\ y = \arcsin \sqrt{1-t^2}. \end{cases}$$

15.26.
$$\begin{cases} x = \sqrt{t - t^2} - \arctan \sqrt{\frac{1 - t}{t}}, \\ y = \sqrt{t} - \sqrt{1 - t} \arcsin \sqrt{t}. \end{cases}$$

15.58.
$$\begin{cases} x = \frac{t^2 \ln t}{1 - t^2} + \ln \sqrt{1 - t^2}, \\ y = \frac{t}{\sqrt{1 - t^2}} \arcsin t + \ln \sqrt{1 - t^2}. \end{cases}$$

15.30.
$$\begin{cases} x = \frac{t}{\sqrt{1 - t^2}} \arcsin t + \ln \sqrt{1 - t^2}, \\ y = \frac{t}{\sqrt{1 - t^2}}. \end{cases}$$

15.31.
$$\begin{cases} x = \ln\left(t + \sqrt{1 + t^2}\right), \\ y = \sqrt{1 + t^2} - \ln\frac{1 + \sqrt{1 + t^2}}{t}. \end{cases}$$

Задача 16. Составить уравнения касательной и нормали к кривой в точке соответствующей значению параметра $t=t_0$.

16.1.
$$\begin{cases} x = a \sin^3 t, \\ y = a \cos^3 t, \quad t_0 = p/3. \end{cases}$$

16.3.
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t), \quad t_0 = p/3. \end{cases}$$

16.5.
$$\begin{cases} x = \frac{2t + t^2}{1 + t^3}, \\ y = \frac{2t - t^2}{1 + t^3}, \quad t_0 = 1. \end{cases}$$

16.7.
$$\begin{cases} x = t(t\cos t - 2\sin t), \\ y = t(t\sin t + 2\cos t), \quad t_0 = p/4. \end{cases}$$

16.9.
$$\begin{cases} x = 2\ln(\operatorname{ctg} t) + \operatorname{ctg} t, \\ y = \operatorname{tg} t + \operatorname{ctg} t, \quad t_0 = p/4. \end{cases}$$

16.11.
$$\begin{cases} x = at \cos t, \\ y = at \sin t, \quad t_0 = p/2. \end{cases}$$

16.13.
$$\begin{cases} x = \arcsin \frac{t}{\sqrt{1+t^2}}, \\ y = \arccos \frac{1}{\sqrt{1+t^2}}, \quad t_0 = 1. \end{cases}$$

16.2.
$$\begin{cases} x = \sqrt{3} \cos t, \\ y = \sin t, \quad t_0 = \mathbf{p}/3. \end{cases}$$

16.4.
$$\begin{cases} x = 2t - t^2, \\ y = 3t - t^3, \quad t_0 = 1. \end{cases}$$

16.6.
$$\begin{cases} x = \arcsin \frac{t}{\sqrt{1+t^2}}, \\ y = \arccos \frac{1}{\sqrt{1+t^2}}, \quad t_0 = -1. \end{cases}$$

16.8.
$$\begin{cases} x = \frac{3at}{1+t^2}, \\ y = \frac{3at^2}{1+t^2}, \quad t_0 = 2. \end{cases}$$

16.10.
$$\begin{cases} x = \frac{1}{2}t^2 - \frac{1}{4}t^4, \\ y = \frac{1}{2}t^2 + \frac{1}{3}t^3, \quad t_0 = 0. \end{cases}$$

16.12.
$$\begin{cases} x = \sin t, \\ y = \cos t, \quad t_0 = p/6. \end{cases}$$

16.14.
$$\begin{cases} x = \frac{1 + \ln t}{t^2}, \\ y = \frac{3 + 2\ln t}{t}, \quad t_0 = 1. \end{cases}$$

16.15.
$$\begin{cases} x = \frac{1+t}{t^2}, \\ y = \frac{3}{2t^2} + \frac{2}{t}, \quad t_0 = 2. \end{cases}$$

16.16.
$$\begin{cases} x = a \sin^3 t, \\ y = a \cos^3 t, \quad t_0 = p/6. \end{cases}$$

16.17.
$$\begin{cases} x = a(t\sin t + \cos t), \\ y = a(\sin t - t\cos t), \quad t_0 = p/4. \end{cases}$$

16.18.
$$\begin{cases} x = \frac{t+1}{t}, \\ y = \frac{t-1}{t}, \quad t_0 = -1. \end{cases}$$

16.19.
$$\begin{cases} x = 1 - t^2, \\ y = t - t^3, \quad t_0 = 2. \end{cases}$$

16.20.
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t, \quad t_0 = 1. \end{cases}$$

16.21.
$$\begin{cases} x = t(1 - \sin t), \\ y = t \cos t, \quad t_0 = 0. \end{cases}$$

16.22.
$$\begin{cases} x = \frac{1+t^3}{t^2 - 1}, \\ y = \frac{t}{t^2 - 1}, \quad t_0 = 2. \end{cases}$$

16.23.
$$\begin{cases} x = 3\cos t, \\ y = 4\sin t, \quad t_0 = p/4. \end{cases}$$

16.24.
$$\begin{cases} x = t - t^4, \\ y = t^2 - t^3, \quad t_0 = 1. \end{cases}$$

16.25.
$$\begin{cases} x = t^3 + 1, \\ y = t^2 + t + 1, \quad t_0 = 1. \end{cases}$$

16.26.
$$\begin{cases} x = 2\cos t, \\ y = \sin t, \quad t_0 = -p/3. \end{cases}$$

16.27.
$$\begin{cases} x = 2 \operatorname{tg} t, \\ y = 2 \sin^2 t + \sin 2t, \quad t_0 = p/4. \end{cases}$$

16.28.
$$\begin{cases} x = t^3 + 1, \\ y = t^2, \quad t_0 = -2. \end{cases}$$

16.29.
$$\begin{cases} x = \sin t, \\ y = a^t, \quad t_0 = 0. \end{cases}$$

16.30.
$$\begin{cases} x = \sin t, \\ y = \cos 2t, \quad t_0 = p/6. \end{cases}$$

16.31.
$$\begin{cases} x = 2e^{t}, \\ y = e^{-t}, \quad t_0 = 0. \end{cases}$$

Задача 17. Найти производную n -го порядка.

17.1.
$$y = xe^{ax}$$
.

17.2.
$$y = \sin 2x + \cos(x+1)$$
.

17.3.
$$y = \sqrt[5]{e^{7x-1}}$$
.

17.5.
$$y = \lg(5x + 2)$$
.

17.7.
$$y = \frac{x}{2(3x+2)}$$
.

17.9.
$$y = \sqrt{x}$$
.

17.11.
$$y = 2^{3x+5}$$
.

17.13.
$$y = \sqrt[3]{e^{2x+1}}$$
.

17.15.
$$y = \lg(3x+1)$$
.

17.17.
$$y = \frac{x}{9(4x+9)}$$
.

17.19.
$$y = \frac{4}{x}$$
.

17.21.
$$y = a^{2x+3}$$
.

17.23.
$$y = \sqrt{e^{3x+1}}$$
.

17.25.
$$y = \lg(2x+7)$$
.

17.27.
$$y = \frac{x}{x+1}$$
.

17.29.
$$y = \frac{1+x}{1-x}$$
.

17.31.
$$y = 3^{2x+5}$$
.

17.4.
$$y = \frac{4x+7}{2x+3}$$
.

17.6.
$$y = a^{3x}$$
.

17.8.
$$y = \lg(x+4)$$
.

17.10.
$$y = \frac{2x+5}{13(3x+1)}$$
.

17.12.
$$y = \sin(x+1) + \cos 2x$$
.

17.14.
$$y = \frac{4+15x}{5x+1}$$
.

17.16.
$$y = 7^{5x}$$
.

17.18.
$$y = \lg(1+x)$$
.

17.20.
$$y = \frac{5x+1}{13(2x+3)}$$
.

17.22.
$$y = \sin(3x+1) + \cos 5x$$
.

17.24.
$$y = \frac{11+12x}{6x+5}$$
.

17.26.
$$y = 2^{kx}$$
.

17.28.
$$y = \log_3(x+5)$$
.

17.30.
$$y = \frac{7x+1}{17(4x+3)}$$
.

Задача 18. Найти производную указанного порядка.

18.1.
$$y = (2x^2 - 7)\ln(x - 1), \quad y^V = ?$$

18.2.
$$y = (3 - x^2) \ln^2 x$$
, $y^{III} = ?$

18.3.
$$y = x \cos x^2$$
, $y^{III} = ?$

18.5.
$$y = \frac{\log_2 x}{x^3}$$
, $y^{III} = ?$

18.7.
$$y = x^2 \sin(5x - 3)$$
, $y^{III} = ?$

18.9.
$$y = (2x+3)\ln^2 x$$
, $y^{III} = ?$

18.11.
$$y = \frac{\ln x}{x^3}$$
, $y^{IV} = ?$

18.13.
$$y = e^{1-2x} \cdot \sin(2+3x), \quad y^{IV} = ?$$

18.15.
$$y = (2x^3 + 1)\cos x$$
, $y^V = ?$

18.17.
$$y = (1 - x - x^2)e^{(x-1)/2}, \quad y^{IV} = ?$$

18.19.
$$y = (x+7)\ln(x+4)$$
, $y^V = ?$

18.21.
$$y = \frac{\ln(2x+5)}{2x+5}$$
, $y^{III} = ?$

18.23.
$$y = \frac{\ln x}{x^5}$$
, $y^{III} = ?$

18.25.
$$y = (x^2 + 3x + 1)e^{3x+2}, y^V = ?$$

18.27.
$$y = \frac{\ln(x-2)}{x-2}$$
, $y^V = ?$

18.29.
$$y = (5x-1)\ln^2 x$$
, $y^{III} = ?$

18.31.
$$y = (x^3 + 3)e^{4x+3}$$
, $y^{IV} = ?$

18.4.
$$y = \frac{\ln(x-1)}{\sqrt{x-1}}, \quad y^{III} = ?$$

18.6.
$$y = (4x^3 + 5)e^{2x+1}, y^V = ?$$

18.8.
$$y = \frac{\ln x}{x^2}$$
, $y^{IV} = ?$

18.10.
$$y = (1 + x^2) \arctan x$$
, $y^{III} = ?$

18.12.
$$y = (4x+3) \cdot 2^{-x}, \quad y^V = ?$$

18.14.
$$y = \frac{\ln(3+x)}{3+x}$$
, $y^{III} = ?$

18.16.
$$y = (x^2 + 3) \ln(x - 3), \quad y^{IV} = ?$$

18.18.
$$y = \frac{1}{x} \sin 2x$$
, $y^{III} = ?$

18.20.
$$y = (3x-7) \cdot 3^{-x}, \quad y^{IV} = ?$$

18.22.
$$y = e^{x/2} \cdot \sin 2x$$
, $y^{IV} = ?$

18.24.
$$y = x \ln(1-3x)$$
, $y^{IV} = ?$

18.26.
$$y = (5x - 8) \cdot 2^{-x}, \quad y^{IV} = ?$$

18.28.
$$y = e^{-x} \cdot (\cos 2x - 3\sin 2x), \quad y^{IV} = ?$$

18.30.
$$y = \frac{\log_3 x}{x^2}, \quad y^{IV} = ?$$

Задача 19. Найти производную второго порядка y_{xx}'' от функции, заданной параметрически.

$$19.1. \begin{cases} x = \cos 2t, \\ y = 2\sec^2 t. \end{cases}$$

19.3.
$$\begin{cases} x = e^t \cos t, \\ y = e^t \sin t. \end{cases}$$

19.5.
$$\begin{cases} x = t + \sin t, \\ y = 2 - \cos t. \end{cases}$$

19.7.
$$\begin{cases} x = \sqrt{t}, \\ y = 1/\sqrt{1-t}. \end{cases}$$

$$19.9. \begin{cases} x = \operatorname{tg} t, \\ y = 1/\sin 2t. \end{cases}$$

19.11.
$$\begin{cases} x = \sqrt{t}, \\ y = \sqrt[3]{t - 1}. \end{cases}$$

19.13.
$$\begin{cases} x = \sqrt{t^3 - 1}, \\ y = \ln t. \end{cases}$$

$$19.15. \begin{cases} x = \sqrt{t-1}, \\ y = 1/\sqrt{t}. \end{cases}$$

19.17.
$$\begin{cases} x = \sqrt{t-3}, \\ y = \ln(t-2). \end{cases}$$

19.19.
$$\begin{cases} x = t + \sin t, \\ y = 2 + \cos t. \end{cases}$$

$$19.21. \begin{cases} x = \cos t, \\ y = \ln \sin t. \end{cases}$$

19.23.
$$\begin{cases} x = e^t, \\ y = \arcsin t. \end{cases}$$

19.2.
$$\begin{cases} x = \sqrt{1 - t^2}, \\ y = 1/t. \end{cases}$$

19.4.
$$\begin{cases} x = \sinh^2 t, \\ y = 1/\cosh^2 t. \end{cases}$$

19.6.
$$\begin{cases} x = 1/t, \\ y = 1/(1+t^2). \end{cases}$$

$$19.8. \begin{cases} x = \sin t, \\ y = \sec t. \end{cases}$$

19.10.
$$\begin{cases} x = \sqrt{t - 1}, \\ y = t / \sqrt{1 - t}. \end{cases}$$

19.12.
$$\begin{cases} x = \cos t / (1 + 2\cos t), \\ y = \sin t / (1 + 2\cos t). \end{cases}$$

$$19.14. \begin{cases} x = \sinh t, \\ y = \sinh^2 t. \end{cases}$$

$$19.16. \begin{cases} x = \cos^2 t, \\ y = \operatorname{tg}^2 t. \end{cases}$$

$$19.18. \begin{cases} x = \sin t, \\ y = \ln \cos t. \end{cases}$$

$$19.20. \begin{cases} x = t - \sin t, \\ y = 2 - \cos t. \end{cases}$$

19.22.
$$\begin{cases} x = \cos t + t \sin t, \\ y = \sin t - t \cos t. \end{cases}$$

19.24.
$$\begin{cases} x = \cos t, \\ y = \sin^4(t/2). \end{cases}$$

19.25.
$$\begin{cases} x = \cosh t, \\ y = \sqrt[3]{\sinh^2 t}. \end{cases}$$

19.27.
$$\begin{cases} x = 2(t - \sin t), \\ y = 4(2 + \cos t). \end{cases}$$

19.29.
$$\begin{cases} x = 1/t^2, \\ y = 1/(t^2 + 1). \end{cases}$$

19.31.
$$\begin{cases} x = \ln t, \\ y = \operatorname{arctg} t. \end{cases}$$

$$19.26. \begin{cases} x = \operatorname{arctg} t, \\ y = t^2/2. \end{cases}$$

19.28.
$$\begin{cases} x = \sin t - t \cos t, \\ y = \cos t + t \sin t. \end{cases}$$

$$19.30. \begin{cases} x = \cos t + \sin t, \\ y = \sin 2t. \end{cases}$$

Задача 20. Показать, что функция у удовлетворяет уравнению (1).

20.1.
$$y = x e^{-x^2/2},$$

 $xy' = (1 - x^2) y.$ (1)

20.3.
$$y = 5e^{-2x} + e^{x}/3$$
,
 $y' + 2y = e^{x}$. (1)

20.5.
$$y = x\sqrt{1-x^2}$$
,
 $yy' = x - 2x^3$. (1)

20.7.
$$y = -\frac{1}{3x+c}$$
,
 $y' = 3y^2$. (1)

20.9.
$$y = \sqrt{x^2 - cx}, (x^2 + y^2) dx - 2xy dy = 0.$$
 (1)

20.11.
$$y = e^{tg(x/2)}$$
,
 $y' \sin x = y \ln y$. (1)

20.2.
$$y = \frac{\sin x}{x},$$
$$xy' + y = \cos x. \quad (1)$$

20.4.
$$y = 2 + c\sqrt{1 - x^2}$$
,
 $(1 - x^2)y' + xy = 2x$. (1)

20.6.
$$y = \frac{c}{\cos x},$$
$$y' - \operatorname{tg} x \cdot y = 0. \quad (1)$$

20.8.
$$y = \ln(c + e^x),$$

 $y' = e^{x-y}.$ (1)

20.10.
$$y = x(c - \ln x),$$

 $(x - y)dx + xdy = 0.$ (1)

$$y = \frac{1+x}{1-x},$$
20.12.
$$y' = \frac{1+y^2}{1+x^2}.$$
 (1)

$$y = \frac{b+x}{1+bx},$$

$$y - xy' = b(1+x^2y'). \quad (1)$$

20.15.
$$y = \sqrt{\ln\left(\frac{1+e^x}{2}\right)^2 + 1}$$
, $(1+e^x)yy' = e^x$. (1)

20.17.
$$y = -\sqrt{\frac{2}{x^2} - 1}$$
,
 $1 + y^2 + xyy' = 0$. (1)

20.19.
$$y = a + \frac{7x}{ax+1}$$
,
 $y - xy' = a(1 + x^2y')$. (1)

$$y = \sqrt[4]{\sqrt{x} + \sqrt{x+1}},$$
20.21.
$$8xy' - y = \frac{-1}{y^3 \sqrt{x+1}}.$$
 (1)

$$y = \frac{2x}{x^3 + 1} + \frac{1}{x},$$

$$20.23.$$

$$x(x^3 + 1)y' + (2x^3 - 1)y = \frac{x^3 - 2}{x}.$$
 (1)

20.25.
$$y = -x\cos x + 3x$$
,
 $xy' = y + x^2 \sin x$. (1)

20.27.
$$y = \frac{x}{x-1} + x^2$$
,
 $x(x-1)y' + y = x^2(2x-1)$. (1)

$$y = \sqrt[3]{2 + 3x - 3x^2},$$
20.14. $yy' = \frac{1 - 2x}{y}$. (1)

$$y = tg \ln 3x,$$
20.16. $(1 + y^2) dx = xdy.$ (1)

20.18.
$$y = \sqrt[3]{x - \ln x - 1},$$
$$\ln x + y^3 - 3xy^2 y' = 0. \quad (1)$$

20.20.
$$y = a \operatorname{tg} \sqrt{\frac{a}{x} - 1}$$
,
 $a^2 + y^2 + 2x\sqrt{ax - x^2} y' = 0$. (1)

20.22.
$$y = (x+1)e^{x^2}$$
,
 $y' - 2xy = 2xe^{x^2}$. (1)

20.24.
$$y = e^{x+x^2} + 2e^x$$
,
 $y' - y = 2xe^{x+x^2}$. (1)

$$y = 1/\sqrt{\sin x + x},$$

$$20.26. \ 2\sin x \cdot y' + y\cos x =$$

$$= y^{3} \left(x\cos x - \sin x\right). \quad (1)$$

20.28.
$$y = \frac{x}{\cos x},$$
$$y' - y \operatorname{tg} x = \sec x. \quad (1)$$

$$y = (x+1)^{n} (e^{x}-1),$$
20.29.
$$y' - \frac{ny}{x+1} = e^{x} (1+x)^{n}.$$
 (1)

20.31.
$$y = -\sqrt{x^4 - x^2}$$
,
 $xyy' - y^2 = x^4$. (1)

$$y = 2\frac{\sin x}{x} + \cos x,$$

$$20.30. x \sin x \cdot y' + (\sin x - x \cos x) y =$$

$$= \sin x \cdot \cos x - x. \quad (1)$$

III. ГРАФИКИ

Теоретические вопросы

- 1. Условия возрастания функции на отрезке.
- 2. Условия убывания функции на отрезке.
- 3. Точки экстремума. Необходимое условие экстремума.
- 4. Достаточные признаки максимума и минимума функции (изменение знака первої производной).
 - 5. Наибольшее и наименьшее значения, функции, непрерывной на отрезке.
- 6. Выпуклость и вогнутость графика функции. Достаточные условия выпуклости и вогнутости.
- 7. Точки перегиба графика функции. Необходимое условие перегиба. Достаточные условия перегиба.
 - 8. Исследование функций на экстремум с помощью высших производных.
 - 9. Асимптоты графика функции.

Теоретические упражнения

- 1. Доказать, что функция $f(x) = x \sin x$ монотонно возрастает на отрезке: а [0, 2p]; б) [0, 4p] Следует ли из монотонности дифференцируемой функции монотонность ее производной?
- 2. Доказать теорему: *если функции* j(x) *и* y(x) *дифференцируемы на отрезке* [a, b] uj'(x) > y'(x) $\forall x \in (a, b), aj(a) = y(a), moj(x) > y(x)$ $\forall x \in (a, b].$ Дать геометрическую интерпретацию теоремы.

У к а з а н и е. При доказательстве теоремы установить и использовать монотонность функциі f(x) = j(x) - y(x).

3. Доказать неравенство $2x/p < \sin x$ для трех случаев:

a)
$$\forall x \in \left[0, \arccos \frac{2}{p}\right];$$

$$\text{ б) } \forall x \in \left[\arccos \frac{2}{p}, \frac{p}{2}\right];$$

B)
$$\forall x \in \left(0, \frac{p}{2}\right)$$
.

Дать геометрическую интерпретацию неравенства.

4. Исходя из определений минимума и максимума, доказать, что функция

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

имеет в точке x = 0 минимум, а функция

$$f(x) = \begin{cases} xe^{-1/x^2}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

не имеет в точке x = 0 экстремума.

- 5. Исследовать на экстремум в точке x_0 функцию $f(x) = (x x_0)^n j(x)$, считая что производная j'(x) не существует, но функция j(x) непрерывна в точке x_0 в $j(x_0) \neq 0$, n— натуральное число.
- 6. Исследовать знаки максимума и минимума функции $x^3 3x + q$ и выяснити условия, при которых уравнение $x^3 3x + q = 0$ имеет а) три различных действительных корня; б) один действительный корень.
- 7. Определить «отклонение от нуля» многочлена $p(x) = 6x^3 27x^2 + 36x 14$ на отрезке [0, 3], т. е. найти на этом отрезке наибольшее значение функции |p(x)|.
 - 8. Установить условия существования асимптот у графика рациональной функции.

Расчетные задания

Задача 1. Построить графики функций с помощью производной первого порядка.

1.1.
$$y = 2x^3 - 9x^2 + 12x - 9$$
.

1.2.
$$y = 3x - x^3$$
.

1.3.
$$y = x^2 (x-2)^2$$
.

1.4.
$$y = (x^3 - 9x^2)/4 + 6x - 9$$
.

1.5.
$$y = 2 - 3x^2 - x^3$$
.

1.6.
$$y = (x+1)^2 (x-1)^2$$
.

1.7.
$$y = 2x^3 - 3x^2 - 4$$
.

1.8.
$$y = 3x^2 - 2 - x^3$$
.

1.9.
$$y = (x-1)^2 (x-3)^2$$
.

1.11.
$$y = 6x - 8x^3$$
.

1.13.
$$y = 2x^3 + 3x^2 - 5$$
.

1.15.
$$y = (2x+1)^2 (2x-1)^2$$
.

1.17.
$$y = 12x^2 - 8x^3 - 2$$
.

1.19.
$$y = 27(x^3 - x^2)/4 - 4$$
.

1.21.
$$y = x^2 (x-4)^2 / 16$$
.

1.23.
$$y = (16 - 6x^2 - x^3)/8$$
.

1.25.
$$y = 16x^3 - 36x^2 + 24x - 9$$
.

1.27.
$$y = -(x-2)^2 (x-6)^2 / 16$$
.

1.29.
$$y = (11 + 9x - 3x^2 - x^3)/8$$
.

1.31.
$$y = 16x^3 + 12x^2 - 5$$
.

1.10.
$$y = (x^3 + 3x^2)/4 - 5$$
.

1.12.
$$y = 16x^2(x-1)^2$$
.

1.14.
$$y = 2 - 12x^2 - 8x^3$$
.

1.16.
$$y = 2x^3 + 9x^2 + 12x$$
.

1.18.
$$y = (2x-1)^2 (2x-3)^2$$
.

1.20.
$$y = x(12 - x^2)/8$$
.

1.22.
$$y = 27(x^3 + x^2)/4 - 5$$
.

1.24.
$$y = -(x^2 - 4)^2 / 16$$
.

1.26.
$$y = (6x^2 - x^3 - 16)/8$$
.

1.28.
$$y = 16x^3 - 12x^2 - 4$$
.

1.30.
$$y = -(x+1)^2 (x-3)^2 / 16$$
.

Задача 2. Построить графики функций с помощью производной первого порядка.

2.1.
$$y = 1 - \sqrt[3]{x^2 - 2x}$$
.

2.3.
$$y = 12\sqrt[3]{6(x-2)^2}/(x^2+8)$$
.

$$2.5. \ \ y = 1 - \sqrt[3]{x^2 + 2x}.$$

2.7.
$$y = 6\sqrt[3]{6(x-3)^2}/(x^2-2x+9)$$
.

2.9.
$$y = 3\sqrt[3]{(x-3)^2} - 2x + 6$$
.

2.11.
$$y = 4x + 8 - 6\sqrt[3]{(x+2)^2}$$
.

2.13.
$$y = \sqrt[3]{x(x+2)}$$
.

$$2.2. \ y = 2x - 3\sqrt[3]{x^2}.$$

2.4.
$$y = -12\sqrt[3]{6(x-1)^2}/(x^2+2x+9)$$
.

2.6.
$$y = 2x + 6 - 3\sqrt[3]{(x+3)^2}$$
.

2.8.
$$y = 1 - \sqrt[3]{x^2 + 4x + 3}$$
.

2.10.
$$y = 6\sqrt[3]{6x^2}/(x^2 + 4x + 12)$$
.

2.12.
$$y = 3\sqrt[3]{6(x-4)^2}/(x^2-4x+12)$$
.

2.14.
$$y = \sqrt[3]{x^2 + 4x + 3}$$
.

2.15.
$$y = -3\sqrt[3]{6(x+1)^2}/(x^2+6x+17)$$
.

2.16.
$$y = 6\sqrt[3]{(x-2)^2} - 4x + 8$$
.

2.17.
$$y = 3\sqrt[3]{6(x-5)^2}/(x^2-6x+17)$$
.

2.18.
$$y = 2 + \sqrt[3]{8x(x+2)}$$
.

2.19.
$$y = 6x - 6 - 9\sqrt[3]{(x-1)^2}$$
.

$$2.20. \ \ y = \sqrt[3]{x^2 + 6x + 8}.$$

2.21.
$$y = \sqrt[3]{4x(x-1)}$$
.

2.22.
$$y = -3\sqrt[3]{6(x+2)^2} / (x^2 + 8x + 24)$$
.

2.23.
$$y = \sqrt[3]{x(x-2)}$$
.

2.24.
$$y = 1 - \sqrt[3]{x^2 - 4x + 3}$$
.

2.25.
$$y = 9\sqrt[3]{(x+1)^2} - 6x - 6$$
.

2.26.
$$y = 6\sqrt[3]{6(x+3)^2} / (x^2 + 10x + 33)$$
.

2.27.
$$y = 8x - 16 - 12\sqrt[3]{(x-2)^2}$$
.

2.28.
$$y = -6\sqrt[3]{6(x-6)^2}/(x^2-8x+24)$$
.

2.29.
$$y = 12\sqrt[3]{(x+2)^2} - 8x - 16$$
.

2.30.
$$y = 3\sqrt[3]{6(x-1)^2} / (2(x^2 + 2x + 9)).$$

2.31.
$$y = 3\sqrt[3]{(x+4)^2} - 2x - 8$$
.

Задача 3. Найти наибольшее и наименьшее значения функций на заданных отрезках.

3.1.
$$y = x^2 + \frac{16}{x} - 16$$
, [1, 4].

3.2.
$$y = 4 - x - \frac{4}{x^2}$$
, [1, 4].

3.3.
$$y = \sqrt[3]{2(x-2)^2(8-x)} - 1$$
, [0, 6].

3.4.
$$y = \frac{2(x^2+3)}{x^2-2x+5}$$
, [-3, 3].

3.5.
$$y = 2\sqrt{x} - x$$
, [0, 4].

3.6.
$$y = 1 + \sqrt[3]{2(x-1)^2(x-7)}$$
, [-1, 5].

3.7.
$$y = x - 4\sqrt{x} + 5$$
, [1, 9].

3.8.
$$y = \frac{10x}{1+x^2}$$
, [0, 3].

3.9.
$$y = \sqrt[3]{2(x+1)^2(5-x)} - 2$$
, [-3, 3].

3.10.
$$y = 2x^2 + \frac{108}{x} - 59$$
, [2, 4].

3.11.
$$y = 3 - x - \frac{4}{(x+2)^2}$$
, [-1, 2].

3.12.
$$y = \sqrt[3]{2x^2(x-3)}$$
, [-1, 6].

3.13.
$$y = \frac{2(-x^2 + 7x - 7)}{x^2 - 2x + 2}$$
, [1, 4].

3.14.
$$y = x - 4\sqrt{x+2} + 8$$
, $[-1, 7]$.

3.15.
$$y = \sqrt[3]{2(x-2)^2(5-x)}$$
, [1, 5].

3.16.
$$y = \frac{4x}{4+x^2}$$
, [-4, 2].

3.17.
$$y = -\frac{x^2}{2} + \frac{8}{x} + 8$$
, $[-4, -1]$.

3.18.
$$y = \sqrt[3]{2x^2(x-6)}$$
, $[-2, 4]$.

3.19.
$$y = \frac{-2x(2x+3)}{x^2+4x+5}$$
, [1, 4].

3.20.
$$y = -\frac{2(x^2+3)}{x^2+2x+5}$$
, [-5, 1].

3.21.
$$y = \sqrt[3]{2(x-1)^2(x-4)}$$
, [0, 4].

3.22.
$$y = x^2 - 2x + \frac{16}{x - 1} - 13$$
, [2, 5].

3.23.
$$y = 2\sqrt{x-1} - x + 2$$
, [1, 5].

3.24.
$$y = \sqrt[3]{2(x+2)^2(1-x)}$$
, [-3, 4].

3.25.
$$y = -\frac{x^2}{2} + 2x + \frac{8}{x-2} + 5$$
, [-2, 1].

3.26.
$$y = 8x + \frac{4}{x^2} - 15$$
, $\left[\frac{1}{2}, 2\right]$.

3.27.
$$y = \sqrt[3]{2(x+2)^2(x-4)} + 3$$
, $[-4, 2]$. 3.28. $y = x^2 + 4x + \frac{16}{x+2} - 9$, $[-1, 2]$.

3.28.
$$y = x^2 + 4x + \frac{16}{x+2} - 9$$
, $[-1, 2]$

3.29.
$$y = \frac{4}{x^2} - 8x - 15$$
, $\left[-2, -\frac{1}{2} \right]$.

3.30.
$$y = \sqrt[3]{2(x+1)^2(x-2)}$$
, [-2, 5].

3.31.
$$y = -\frac{10x+10}{x^2+2x+2}$$
, [-1, 2].

Задача 4.

Варианты 1 – 10.

Рыбаку нужно переправиться с острова A на остров B (рис. 1). Чтобы пополнить свои запасы, он должен попасть на участок берега М. Найти кратчайший путь рыбака $s = s_1 + s_2$.

4.1.
$$a = 200$$
, $b = 300$, $H = 400$, $h = 300$, $L = 700$.

4.2.
$$a = 400$$
, $b = 600$, $H = 800$, $h = 600$, $L = 1400$.

4.3.
$$a = 600$$
, $b = 900$, $H = 1200$, $h = 900$, $L = 2100$.

4.4.
$$a = 800$$
, $b = 1200$, $H = 1600$, $h = 1200$, $L = 2800$.

4.5.
$$a = 1000$$
, $b = 1500$, $H = 2000$, $h = 1500$, $L = 3500$.

4.6.
$$a = 400$$
, $b = 500$, $H = 300$, $h = 400$, $L = 700$.

4.7.
$$a = 800$$
, $b = 1000$, $H = 600$, $h = 800$, $L = 1400$.

4.8.
$$a = 1200$$
, $b = 1500$, $H = 900$, $h = 1200$, $L = 2100$.

4.9.
$$a = 1600$$
, $b = 2000$, $H = 1200$, $h = 1600$, $L = 2800$.

4.10.
$$a = 2000$$
, $b = 2500$, $H = 1500$, $h = 2000$, $L = 3500$.

Варианты 11 – 20.

При подготовке к экзамену студент за t дней изучает $\frac{t}{t+k}$ -ю часть курса, а забывает at-ю часть. Сколько дней нужно затратить на подготовку, чтобы была изучена максимальная часть курса?

4.11.
$$k = \frac{1}{2}$$
, $a = \frac{2}{49}$.

4.13.
$$k = \frac{1}{2}$$
, $a = \frac{2}{121}$.

4.15.
$$k = 1$$
, $a = \frac{1}{25}$.

4.17.
$$k = 1$$
, $a = \frac{1}{36}$.

4.19.
$$k = 2$$
, $a = \frac{1}{18}$.

4.12.
$$k = \frac{1}{2}$$
, $a = \frac{2}{81}$.

4.14.
$$k = \frac{1}{2}$$
, $a = \frac{2}{169}$.

4.16.
$$k = 1$$
, $a = \frac{1}{16}$.

4.18.
$$k = 1$$
, $a = \frac{1}{49}$.

4.20.
$$k = 2$$
, $a = \frac{2}{49}$.

Варианты 21 – 31.

Тело массой $m_0=3000$ кг падает с высоты H м и теряет массу (сгорает) пропорционально времени падения. Коэффициент пропорциональности k=100 кг/с² Считая, что начальная скорость $v_0=0$, ускорение g=10 м/с², и пренебрегая сопротивлением воздуха найти наибольшую кинетическую энергию тела.

4.21.
$$H = 500$$
.

4.22.
$$H = 605$$
.

$$4.23. H = 720.$$

$$4.24. H = 845.$$

$$4.25. H = 980.$$

$$4.26. H = 1125.$$

$$4.27. H = 1280.$$

$$4.28. H = 1445.$$

$$4.29. H = 1620.$$

$$4.30. H = 1805.$$

4.31.
$$H = 2000$$
.

Задача 5. Исследовать поведение функций в окрестностях заданных точек с помощью производных высших порядков.

5.1.
$$y = x^2 - 4x - (x-2)\ln(x-1)$$
, $x_0 = 2$.

5.2.
$$y = 4x - x^2 - 2\cos(x - 2)$$
, $x_0 = 2$.

5.3.
$$y = 6e^{x-2} - x^3 + 3x^2 - 6x$$
, $x_0 = 2$.

5.4.
$$y = 2\ln(x+1) - 2x + x^2 + 1$$
, $x_0 = 0$.

5.5.
$$y = 2x - x^2 - 2\cos(x-1)$$
, $x_0 = 1$.

5.6.
$$y = \cos^2(x+1) + x^2 + 2x$$
, $x_0 = -1$.

5.7.
$$y = 2 \ln x + x^2 - 4x + 3$$
, $x_0 = 1$.

5.8.
$$y = 1 - 2x - x^2 - 2\cos(x+1)$$
, $x_0 = -1$.

5.9.
$$y = x^2 + 6x + 8 - 2e^{x+2}$$
, $x_0 = -2$.

5.10.
$$y = 4x + x^2 - 2e^{x+1}$$
, $x_0 = -1$.

5.11.
$$y = (x+1)\sin(x+1) - 2x - x^2$$
, $x_0 = -1$.

5.12.
$$y = 6e^{x-1} - 3x - x^3$$
, $x_0 = 1$.

5.13.
$$y = 2x + x^2 - (x+1)\ln(2+x)$$
, $x_0 = -1$.

5.14.
$$y = \sin^2(x+1) - 2x - x^2$$
, $x_0 = -1$.

5.15.
$$y = x^2 + 4x + \cos^2(x+2)$$
, $x_0 = -2$.

5.16.
$$y = x^2 + 2\ln(x+2)$$
, $x_0 = -1$.

5.17.
$$y = 4x - x^2 + (x - 2)\sin(x - 2)$$
, $x_0 = 2$.

5.18.
$$y = 6e^x - x^3 - 3x^2 - 6x - 5$$
, $x_0 = 0$.

5.19.
$$y = x^2 - 2x - 2e^{x-2}$$
, $x_0 = 2$.

5.20.
$$y = \sin^2(x+2) - x^2 - 4x - 4$$
, $x_0 = -2$.

5.21.
$$y = \cos^2(x-1) + x^2 - 2x$$
, $x_0 = 1$.

5.22.
$$y = x^2 - 2x - (x-1)\ln x$$
, $x_0 = 1$.

5.23.
$$y = (x-1)\sin(x-1) + 2x - x^2$$
, $x_0 = 1$.

5.24.
$$y = x^2 - 4x + \cos^2(x - 2)$$
, $x_0 = 2$.

5.25.
$$y = x^4 + 4x^3 + 12x^2 + 24(x+1-e^x), x_0 = 0.$$

5.26.
$$y = \sin^2(x-2) - x^2 + 4x - 4$$
, $x_0 = 2$.

5.27.
$$y = 6e^{x+1} - x^3 - 6x^2 - 15x - 16$$
, $x_0 = -1$.

5.28.
$$y = \sin x + \sinh x - 2x$$
, $x_0 = 0$.

5.29.
$$y = \sin^2(x-1) - x^2 + 2x$$
, $x_0 = 1$.

5.30.
$$y = \cos x + \cosh x$$
, $x_0 = 0$.

5.31.
$$y = x^2 - 2e^{x-1}$$
, $x_0 = 1$.

Задача 6. Найти асимптоты и построить графики функций.

6.1.
$$y = (17 - x^2)/(4x - 5)$$
.

6.3.
$$y = (x^3 - 4x)/(3x^2 - 4)$$
.

6.5.
$$y = (4x^3 + 3x^2 - 8x - 2)/(2 - 3x^2)$$
.

6.7.
$$y = (2x^2 - 6)/(x-2)$$
.

6.9.
$$y = (x^3 - 5x)/(5 - 3x^2)$$
.

6.11.
$$y = (2-x^2)/\sqrt{9x^2-4}$$
.

6.13.
$$y = (3x^2 - 7)/(2x + 1)$$
.

6.15.
$$y = (x^3 + 3x^2 - 2x - 2)/(2 - 3x^2)$$
.

6.17.
$$y = (2x^2 - 1)/\sqrt{x^2 - 2}$$
.

6.2.
$$y = (x^2 + 1) / \sqrt{4x^2 - 3}$$
.

6.4.
$$y = (4x^2 + 9)/(4x + 8)$$
.

6.6.
$$y = (x^2 - 3) / \sqrt{3x^2 - 2}$$
.

6.8.
$$y = (2x^3 + 2x^2 - 3x - 1)/(2 - 4x^2)$$
.

6.10.
$$y = (2x^2 - 6x + 4)/(3x - 2)$$
.

6.12.
$$y = (4x^3 - 3x)/(4x^2 - 1)$$
.

6.14.
$$y = (x^2 + 16) / \sqrt{9x^2 - 8}$$
.

6.16.
$$y = (21 - x^2)/(7x + 9)$$
.

6.18.
$$y = (2x^3 - 3x^2 - 2x + 1)/(1 - 3x^2)$$
.

6.19.
$$y = (x^2 - 11)/(4x - 3)$$
.

6.21.
$$y = (x^3 - 2x^2 - 3x + 2)/(1 - x^2)$$
.

6.23.
$$y = (x^3 + x^2 - 3x - 1)/(2x^2 - 2)$$
.

6.25.
$$y = (3x^2 - 10) / \sqrt{4x^2 - 1}$$
.

6.27.
$$y = (2x^3 + 2x^2 - 9x - 3)/(2x^2 - 3)$$
.

6.29.
$$y = (-x^2 - 4x + 13)/(4x + 3)$$
.

6.31.
$$y = (9-10x^2)/\sqrt{4x^2-1}$$
.

6.20.
$$y = (2x^2 - 9)/\sqrt{x^2 - 1}$$
.

6.22.
$$y = (x^2 + 2x - 1)/(2x + 1)$$
.

6.24.
$$y = (x^2 + 6x + 9)/(x + 4)$$
.

6.26.
$$y = (x^2 - 2x + 2)/(x+3)$$
.

6.28.
$$y = (3x^2 - 10)/(3 - 2x)$$
.

6.30.
$$y = (-8 - x^2) / \sqrt{x^2 - 4}$$
.

Задача 7. Провести полное исследование функций и построить их графики.

7.1.
$$y = (x^3 + 4)/x^2$$
.

7.3.
$$y = 2/(x^2 + 2x)$$
.

7.5.
$$y = 12x/(9+x^2)$$
.

7.7.
$$y = (4-x^3)/x^2$$
.

7.9.
$$y = (2x^3 + 1)/x^2$$
.

7.11.
$$y = x^2/(x-1)^2$$
.

7.13.
$$y = (12-3x^2)/(x^2+12)$$
.

7.15.
$$y = -8x/(x^2 + 4)$$
.

7.17.
$$y = (3x^4 + 1)/x^3$$
.

7.19.
$$y = 8(x-1)/(x+1)^2$$
.

7.21.
$$y = 4/(x^2 + 2x - 3)$$
.

7.23.
$$y = (x^2 + 2x - 7)/(x^2 + 2x - 3)$$
.

7.2.
$$y = (x^2 - x + 1)/(x-1)$$
.

7.4.
$$y = 4x^2/(3+x^2)$$
.

7.6.
$$y = (x^2 - 3x + 3)/(x-1)$$
.

7.8.
$$y = (x^2 - 4x + 1)/(x - 4)$$
.

7.10.
$$y = (x-1)^2 / x^2$$
.

7.12.
$$y = (1+1/x)^2$$
.

7.14.
$$y = (9+6x-3x^2)/(x^2-2x+13)$$
.

7.16.
$$y = ((x-1)/(x+1))^2$$
.

7.18.
$$y = 4x/(x+1)^2$$
.

7.20.
$$y = (1-2x^3)/x^2$$
.

7.22.
$$y = 4/(3+2x-x^2)$$
.

7.24.
$$y = 1/(x^4 - 1)$$
.

7.25.
$$y = -(x/(x+2))^2$$
.

7.27.
$$y = 4(x+1)^2/(x^2+2x+4)$$
.

7.29.
$$y = (x^2 - 6x + 9)/(x-1)^2$$
.

7.31.
$$y = (x^3 - 4)/x^2$$
.

7.26.
$$y = (x^3 - 32)/x^2$$
.

7.28.
$$y = (3x-2)/x^3$$
.

7.30.
$$y = (x^3 - 27x + 54)/x^3$$
.

Задача 8. Провести полное исследование функций и построить их графики.

8.1.
$$y = (2x+3)e^{-2(x+1)}$$
.

8.3.
$$y = 3 \ln \frac{x}{x-3} - 1$$
.

8.5.
$$y = \frac{e^{2-x}}{2-x}$$
.

8.7.
$$y = (x-2)e^{3-x}$$
.

8.9.
$$y = 3 - 3 \ln \frac{x}{x + 4}$$
.

8.11.
$$y = \frac{e^{2(x+2)}}{2(x+2)}$$
.

8.13.
$$y = (2x+5)e^{-2(x+2)}$$
.

8.15.
$$y = 2 \ln \frac{x}{x+1} - 1$$
.

8.17.
$$y = -\frac{e^{-2(x+2)}}{2(x+2)}$$
.

8.19.
$$y = (2x-1)e^{2(1-x)}$$
.

8.2.
$$y = \frac{e^{2(x+1)}}{2(x+1)}$$
.

8.4.
$$y = (3-x)e^{x-2}$$
.

8.6.
$$y = \ln \frac{x}{x+2} + 1$$
.

8.8.
$$y = \frac{e^{2(x-1)}}{2(x-1)}$$
.

8.10.
$$y = -(2x+1)e^{2(x+1)}$$
.

8.12.
$$y = \ln \frac{x}{x-2} - 2$$
.

$$8.14. \ \ y = \frac{e^{3-x}}{3-x}.$$

8.16.
$$y = (4-x)e^{x-3}$$
.

8.18.
$$y = 2 \ln \frac{x+3}{x} - 3$$
.

8.20.
$$y = -\frac{e^{-(x+2)}}{x+2}$$
.

8.21.
$$y = 2 \ln \frac{x}{x-4} - 3$$
.

8.23.
$$y = \frac{e^{x+3}}{x+3}$$
.

8.25.
$$y = -(2x+3)e^{2(x+2)}$$
.

8.27.
$$y = \ln \frac{x-5}{x} + 2$$
.

8.29.
$$y = \frac{e^{x-3}}{x-3}$$
.

8.31.
$$y = 2\ln\frac{x-1}{x} + 1$$
.

8.22.
$$y = -(x+1)e^{x+2}$$
.

8.24.
$$y = \ln \frac{x}{x+5} - 1$$
.

8.26.
$$y = -\frac{e^{-2(x-1)}}{2(x-1)}$$
.

8.28.
$$y = (x+4)e^{-(x+3)}$$
.

8.30.
$$y = \ln \frac{x+6}{x} - 1$$
.

Задача 9. Провести полное исследование функций и построить их графики.

9.1.
$$y = \sqrt[3]{(2-x)(x^2-4x+1)}$$
.

9.3.
$$y = \sqrt[3]{(x+2)(x^2+4x+1)}$$
.

9.5.
$$y = \sqrt[3]{(x-1)(x^2-2x-2)}$$
.

9.7.
$$y = \sqrt[3]{(x^2 - 4x + 3)^2}$$
.

9.9.
$$y = \sqrt[3]{x^2(x-2)^2}$$
.

9.11.
$$y = \sqrt[3]{x^2(x+4)^2}$$
.

9.13.
$$y = \sqrt[3]{(x+3)x^2}$$
.

9.15.
$$y = \sqrt[3]{(x-1)^2} - \sqrt[3]{x^2}$$
.

9.17.
$$y = \sqrt[3]{(x-4)(x+2)^2}$$
.

9.2.
$$y = -\sqrt[3]{(x+3)(x^2+6x+6)}$$
.

9.4.
$$y = \sqrt[3]{(x+1)(x^2+2x-2)}$$
.

9.6.
$$y = \sqrt[3]{(x-3)(x^2-6x+6)}$$
.

9.8.
$$y = \sqrt[3]{x^2(x+2)^2}$$
.

9.10.
$$y = \sqrt[3]{(x^2 - 2x - 3)^2}$$
.

9.12.
$$y = \sqrt[3]{x^2(x-4)^2}$$
.

9.14.
$$y = \sqrt[3]{(x-1)(x+2)^2}$$
.

9.16.
$$y = \sqrt[3]{(x+6)x^2}$$
.

9.18.
$$y = \sqrt[3]{(x-1)^2} - \sqrt[3]{(x-2)^2}$$
.

9.19.
$$y = \sqrt[3]{(x+1)(x-2)^2}$$
.

9.21.
$$y = \sqrt[3]{(x-2)^2} - \sqrt[3]{(x-3)^2}$$
.

9.23.
$$y = \sqrt[3]{(x-6)x^2}$$
.

9.25.
$$y = \sqrt[3]{x(x-3)^2}$$
.

9.27.
$$y = \sqrt[3]{(x+2)^2} - \sqrt[3]{(x+3)^2}$$
.

9.29.
$$y = \sqrt[3]{x(x+6)^2}$$
.

9.31.
$$y = \sqrt[3]{x(x-1)^2}$$
.

9.20.
$$y = \sqrt[3]{(x-3)x^2}$$
.

9.22.
$$y = \sqrt[3]{(x+2)(x-4)^2}$$
.

9.24.
$$y = \sqrt[3]{x^2} - \sqrt[3]{(x-1)^2}$$
.

9.26.
$$y = \sqrt[3]{x(x+3)^2}$$
.

9.28.
$$y = \sqrt[3]{x(x-6)^2}$$
.

9.30.
$$y = \sqrt[3]{(x+1)^2} - \sqrt[3]{(x+2)^2}$$
.

Задача 10. Провести полное исследование функций и построить их графики.

10.1.
$$y = e^{\sin x + \cos x}$$
.

10.3.
$$y = \ln(\sin x + \cos x)$$
.

10.5.
$$y = e^{\sqrt{2} \sin x}$$
.

$$10.7. \ y = \ln\left(\sqrt{2}\sin x\right).$$

10.9.
$$y = e^{\sin x - \cos x}$$
.

10.11.
$$y = \ln(\sin x - \cos x)$$
.

10.13.
$$y = e^{-\sqrt{2}\cos x}$$

10.15.
$$y = \ln(-\sqrt{2}\cos x)$$
.

10.17.
$$y = e^{-\sin x - \cos x}$$
.

10.19.
$$y = \ln(-\sin x - \cos x)$$
.

10.21.
$$y = e^{-\sqrt{2}\sin x}$$
.

10.2.
$$y = \operatorname{arctg} \left[\left(\sin x + \cos x \right) / \sqrt{2} \right]$$
.

10.4.
$$y = 1/(\sin x + \cos x)$$
.

10.6.
$$y = \arctan(\sin x)$$
.

10.8.
$$y = 1/(\sin x - \cos x)$$
.

10.10.
$$y = \arctan\left[(\sin x - \cos x) / \sqrt{2} \right]$$
.

10.12.
$$y = 1/(\sin x + \cos x)^2$$
.

10.14.
$$y = -\arctan(\cos x)$$
.

10.16.
$$y = 1/(\sin x - \cos x)^2$$
.

10.18.
$$y = \sqrt[3]{\sin x}$$
.

10.20.
$$y = \sqrt{(\sin x - \cos x)/\sqrt{2}}$$
.

10.22.
$$y = \sqrt[3]{\cos x}$$
.

10.23.
$$y = \ln(-\sqrt{2}\sin x)$$
.

10.25.
$$y = e^{\cos x - \sin x}$$
.

10.27.
$$y = \ln(\cos x - \sin x)$$
.

10.29.
$$y = e^{\sqrt{2}\cos x}$$
.

10.31.
$$y = \ln(\sqrt{2}\cos x)$$
.

10.24.
$$y = \sqrt{\cos x}$$
.

10.26.
$$y = \sqrt[3]{(\sin x + \cos x)/\sqrt{2}}$$
.

10.28.
$$y = \sqrt{\sin x}$$
.

10.30.
$$y = \sqrt{(\sin x + \cos x)/\sqrt{2}}$$
.

IV. ИНТЕГРАЛЫ

Теоретические вопросы

- 1. Понятие первообразной функции. Теоремы о первообразных.
- 2. Неопределенный интеграл, его свойства.
- 3. Таблица неопределенных интегралов.
- 4. Замена переменной и интегрирование по частям в неопределенном интеграле.
- 5. Разложение дробной рациональной функции на простейшие дроби.
- 6. Интегрирование простейших дробей. Интегрирование рациональных функций.
- 7 Интегрирование выражений, содержащих тригонометрические функции.
- 8. Интегрирование иррациональных выражений.
- 9. Понятие определенного интеграла, его геометрический смысл.
- 10. Основные свойства определенного интеграла.
- 11. Теорема о среднем.
- 12. Производная определенного интеграла по верхнему пределу. Формула Ньютона Лейбница.
 - 13. Замена переменной и интегрирование по частям в определенном интеграле.
 - 14. Интегрирование биномиальных дифференциалов.
 - 15. Вычисление площадей плоских фигур.
 - 16. Определение и вычисление длины кривой, дифференциал длины дуги кривой.

Теоретические упражнения

- 1. Считая, что функция $\frac{\sin x}{x}$ равна 1 при x=0, доказать, что она интегрируема на отрезке $\begin{bmatrix} 0, & 1 \end{bmatrix}$.
 - 2. Какой из. интегралов больше:

$$\int_{0}^{1} \left(\frac{\sin x}{x}\right)^{2} dx$$
 или
$$\int_{0}^{1} \frac{\sin x}{x} dx?$$

3. Пусть f(t) – непрерывная функция, а функции j(x) и y(x) дифференцируемые. Доказать, что

$$\frac{d}{dx}\int_{j(x)}^{y(x)} f(t)dt = f[y(x)]y'(x) - f[j(x)]j'(x).$$

4. Найти
$$\frac{d}{dx} \int_{\sqrt{x}}^{x^2} e^{t^2} dt$$
.

5. Найти точки экстремума функции

$$f(x) = \int_{0}^{x} (t-1)(t-2)e^{-t^2} dt.$$

6. Пусть f(x) – непрерывная периодическая функция с периодом T . Доказать, что

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx \quad \forall a.$$

7. Доказать, что если f(x) – четная функция, то

$$\int_{-a}^{0} f(x) dx = \int_{0}^{+a} f(x) dx = \frac{1}{2} \int_{-a}^{+a} f(x) dx.$$

8. Доказать, что для нечетной функции f(x) справедливы равенства

$$\int_{-a}^{0} f(x) dx = -\int_{0}^{+a} f(x) dx \text{ и } \int_{-a}^{a} f(x) dx = 0.$$

Чему равен интеграл $\int_{-1}^{+1} \sin^2 x \ln \frac{2+x}{2-x} dx?$

- 9. При каком условии, связывающем коэффициенты a, b, c интеграл $\int \frac{ax^2 + bx + c}{x^3 \left(x 1\right)^2} dx$ является рациональной функцией?
- 10. При каких целых значениях n интеграл $\int \sqrt{1+x^4} \, dx$ выражается элементарными функциями.

Расчетные задания

Задача 1. Вычислить неопределенные интегралы.

1.1. $\int (4-3x)e^{-3x}dx$.

1.3. $\int (3x+4)e^{3x}dx$.

1.5. $\int (4-16x)\sin 4x dx$.

1.7. $\int (1-6x)e^{2x}dx$.

1.9. $\int \ln(4x^2 + 1) dx$.

1.11. $\int \arctan \sqrt{6x-1} dx$.

1.13. $\int e^{-3x} (2-9x) dx$.

1.15. $\int \arctan \sqrt{3x-1} dx.$

 $1.17. \int (5x+6)\cos 2x dx.$

 $1.19. \int \left(x\sqrt{2} - 3\right)\cos 2x dx.$

1.21. $\int (2x-5)\cos 4x dx$.

 $1.23. \int (x+5)\sin 3x dx.$

1.25. $\int (4x+3)\sin 5x dx$.

 $1.27. \int \left(\sqrt{2} - 8x\right) \sin 3x dx.$

 $1.29. \int \frac{xdx}{\sin^2 x}.$

 $1.31. \int \frac{x \cos x dx}{\sin^3 x}.$

1.2. $\int \arctan \sqrt{4x-1} dx.$

1.4. $\int (4x-2)\cos 2x dx$.

1.6. $\int (5x-2)e^{3x}dx$.

1.8. $\int \ln(x^2 + 4) dx$.

1.10. $\int (2-4x)\sin 2x dx$.

1.12. $\int e^{-2x} (4x-3) dx$.

1.14. $\int \arctan \sqrt{2x-1} dx.$

1.16. $\int \arctan \sqrt{5x-1} dx.$

1.18. $\int (3x-2)\cos 5x dx$.

 $1.20. \int (4x+7)\cos 3x dx.$

1.22. $\int (8-3x)\cos 5x dx$.

1.24. $\int (2-3x)\sin 2x dx$.

1.26. $\int (7x-10)\sin 4x dx$.

1.28. $\int \frac{xdx}{\cos^2 x}.$

 $1.30. \int x \sin^2 x dx.$

76

Задача 2. Вычислить определенные интегралы.

2.1. $\int_{2}^{0} (x^{2} + 5x + 6) \cos 2x dx.$

2.2. $\int_{-2}^{0} (x^2 - 4) \cos 3x dx$.

2.3.
$$\int_{-1}^{0} (x^2 + 4x + 3) \cos x dx.$$

2.5.
$$\int_{-4}^{0} (x^2 + 7x + 12) \cos x dx.$$

$$2.7. \int_{0}^{p} (9x^2 + 9x + 11) \cos 3x dx.$$

2.9.
$$\int_{0}^{2p} (3x^2 + 5) \cos 2x dx.$$

2.11.
$$\int_{0}^{2p} (3-7x^2) \cos 2x dx.$$

2.13.
$$\int_{-1}^{0} (x^2 + 2x + 1) \sin 3x dx.$$

2.15.
$$\int_{0}^{p} (x^2 - 3x + 2) \sin x dx.$$

2.17.
$$\int_{-3}^{0} (x^2 + 6x + 9) \sin 2x dx.$$

$$2.19. \int_{0}^{\frac{p}{2}} (1 - 5x^2) \sin x dx.$$

2.21.
$$\int_{1}^{2} x \ln^2 x dx$$
.

2.23.
$$\int_{1}^{8} \frac{\ln^2 x dx}{\sqrt[3]{x^2}}.$$

2.25.
$$\int_{2}^{3} (x-1)^{3} \ln^{2} (x-1) dx.$$

2.4.
$$\int_{-2}^{0} (x+2)^{2} \cos 3x dx.$$

2.6.
$$\int_{0}^{p} (2x^{2} + 4x + 7) \cos 2x dx.$$

2.8.
$$\int_{0}^{p} (8x^{2} + 16x + 17) \cos 4x dx.$$

2.10.
$$\int_{0}^{2p} (2x^2 - 15) \cos 3x dx.$$

2.12.
$$\int_{0}^{2p} (1-8x^{2}) \cos 4x dx.$$

2.14.
$$\int_{0}^{3} (x^2 - 3x) \sin 2x dx.$$

$$2.16. \int_{0}^{\frac{p}{2}} (x^2 - 5x + 6) \sin 3x dx.$$

2.18.
$$\int_{0}^{\frac{R}{4}} (x^2 + 17, 5) \sin 2x dx.$$

2.20.
$$\int_{\frac{P}{4}}^{3} (3x - x^2) \sin 2x dx.$$

$$2.22. \int_{1}^{e^2} \frac{\ln^2 x dx}{\sqrt{x}}.$$

2.24.
$$\int_{0}^{1} (x+1) \ln^{2} (x+1) dx.$$

2.26.
$$\int_{-1}^{0} (x+2)^3 \ln^2(x+2) dx.$$

2.27.
$$\int_{0}^{2} (x+1)^{2} \ln^{2}(x+1) dx.$$

2.29.
$$\int_{0}^{1} x^{2} e^{-\frac{x}{2}} dx.$$

2.31.
$$\int_{-2}^{0} (x^2 + 2) e^{\frac{x}{2}} dx.$$

$$2.28. \int_{1}^{e} \sqrt{x} \ln^2 x dx.$$

$$2.30. \int_{0}^{1} x^{2} e^{3x} dx.$$

$$3.1. \int \frac{dx}{x\sqrt{x^2+1}}.$$

3.3.
$$\int \frac{dx}{x\sqrt{x^2-1}}$$
.

3.5.
$$\int \frac{x dx}{\sqrt{x^4 + x^2 + 1}}.$$

3.7.
$$\int \operatorname{tg} x \ln \cos x dx.$$

3.9.
$$\int \frac{x^3}{(x^2+1)^2} dx.$$

$$3.11. \int \frac{\sin x - \cos x}{(\cos x + \sin x)^5} dx.$$

$$3.13. \int \frac{x^3 + x}{x^4 + 1} dx.$$

3.15.
$$\int \frac{x dx}{\sqrt[3]{x-1}}$$
.

$$3.17. \int \frac{(x^2+1)dx}{(x^3+3x+1)^5}.$$

$$3.19. \int \frac{x^3}{x^2 + 4} dx.$$

$$3.2. \int \frac{1+\ln x}{x} dx.$$

3.4.
$$\int \frac{x^2 + \ln x^2}{x} dx$$
.

3.6.
$$\int \frac{(\arccos x)^3 - 1}{\sqrt{1 - x^2}} dx.$$

$$3.8. \int \frac{\operatorname{tg}(x+1)}{\cos^2(x+1)} dx.$$

$$3.10. \int \frac{1-\cos x}{\left(x-\sin x\right)^3} dx.$$

$$3.12. \int \frac{x \cos x + \sin x}{\left(x \sin x\right)^2} dx.$$

3.14.
$$\int \frac{x dx}{\sqrt{x^4 - x^2 - 1}}.$$

3.16.
$$\int \frac{1 + \ln(x - 1)}{x - 1} dx.$$

3.18.
$$\int \frac{4 \arctan x - x}{1 + x^2} dx$$
.

$$3.20. \int \frac{x + \cos x}{x^2 + 2\sin x} dx.$$

3.21.
$$\int \frac{2\cos x + 3\sin x}{(2\sin x - 3\cos x)^3} dx.$$

$$3.22. \int \frac{8x - \operatorname{arctg} 2x}{1 + 4x^2} dx.$$

$$3.23. \int \frac{1/(2\sqrt{x})+1}{(\sqrt{x+x})^2} dx.$$

$$3.24. \int \frac{x}{x^4 + 1} dx.$$

$$3.25. \int \frac{x+1/x}{\sqrt{x^2+1}} dx.$$

$$3.26. \int \frac{x - 1/x}{\sqrt{x^2 + 1}} dx.$$

$$3.27. \int \frac{\arctan x + x}{1 + x^2} dx.$$

3.28.
$$\int \frac{x - (\arctan x)^4}{1 + x^2} dx.$$

3.29.
$$\int \frac{x^3}{x^2 + 1} dx.$$

3.30.
$$\int \frac{(\arcsin x)^2 + 1}{\sqrt{1 - x^2}} dx.$$

$$3.31. \int \frac{1-\sqrt{x}}{\sqrt{x}(x+1)} dx.$$

Задача 4. Вычислить определенные интегралы.

4.1.
$$\int_{e+1}^{e^2+1} \frac{1+\ln(x-1)}{x-1} dx.$$

4.2.
$$\int_{0}^{1} \frac{\left(x^{2}+1\right) dx}{\left(x^{3}+3x+1\right)^{2}}.$$

4.3.
$$\int_{0}^{1} \frac{4 \arctan x - x}{1 + x^{2}} dx.$$

4.4.
$$\int_{0}^{2} \frac{x^3 dx}{x^2 + 4}$$
.

4.5.
$$\int_{p}^{2p} \frac{x + \cos x}{x^2 + 2\sin x} dx.$$

4.6.
$$\int_{0}^{p/4} \frac{2\cos x + 3\sin x}{\left(2\sin x - 3\cos x\right)^{3}} dx.$$

4.7.
$$\int_{0}^{1/2} \frac{8x - \arctan 2x}{1 + 4x^2} dx.$$

4.8.
$$\int_{1}^{4} \frac{1/(2\sqrt{x})+1}{(\sqrt{x}+x)^{2}} dx.$$

4.9.
$$\int_{0}^{1} \frac{x dx}{x^4 + 1}.$$

4.10.
$$\int_{\sqrt{3}}^{\sqrt{8}} \frac{x+1/x}{\sqrt{x^2+1}} dx.$$

$$4.11. \int_{\sqrt{3}}^{\sqrt{8}} \frac{x - 1/x}{\sqrt{x^2 + 1}} dx.$$

4.12.
$$\int_{0}^{\sqrt{3}} \frac{\arctan x + x}{1 + x^2} dx.$$

4.13.
$$\int_{0}^{\sqrt{3}} \frac{x - (\operatorname{arctg} x)^{4}}{1 + x^{2}} dx.$$

4.15.
$$\int_{0}^{\sin 1} \frac{(\arcsin x)^2 + 1}{\sqrt{1 - x^2}} dx.$$

$$4.17. \int_{\sqrt{3}}^{\sqrt{8}} \frac{dx}{\sqrt{x^2 + 1}}.$$

4.19.
$$\int_{\sqrt{2}}^{2} \frac{dx}{\sqrt{x^2 + 1}}.$$

4.21.
$$\int_{0}^{1} \frac{x dx}{\sqrt{x^4 + x^2 + 1}}.$$

$$4.23. \int_{0}^{p/4} \operatorname{tg} x \ln \cos x dx.$$

4.25.
$$\int_{0}^{1/\sqrt{2}} \frac{\left(\arccos x\right)^{3} - 1}{\sqrt{1 - x^{2}}} dx.$$

4.27.
$$\int_{0}^{p/4} \frac{\sin x - \cos x}{(\cos x + \sin x)^{5}} dx.$$

$$4.29. \int_{0}^{1} \frac{x^{3} + x}{x^{4} + 1} dx.$$

4.31.
$$\int_{2}^{9} \frac{xdx}{\sqrt[3]{x-1}}$$
.

$$4.14. \int_{0}^{1} \frac{x^3}{x^2 + 1} dx.$$

4.16.
$$\int_{1}^{3} \frac{1 - \sqrt{x}}{\sqrt{x}(x+1)} dx.$$

4.18.
$$\int_{1}^{e} \frac{1 + \ln x}{x} dx$$
.

4.20.
$$\int_{1}^{e} \frac{x^2 + \ln x^2}{x} dx.$$

4.22.
$$\int_{0}^{1} \frac{x^{3} dx}{\left(x^{2}+1\right)^{2}}.$$

4.24.
$$\int_{-1}^{0} \frac{\operatorname{tg}(x+1)}{\cos^{2}(x+1)} dx.$$

4.26.
$$\int_{p}^{2p} \frac{1 - \cos x}{(x - \sin x)^2} dx.$$

4.28.
$$\int_{p/4}^{p/2} \frac{x \cos x + \sin x}{(x \sin x)^2} dx.$$

$$4.30. \int_{\sqrt{2}}^{\sqrt{3}} \frac{x dx}{\sqrt{x^4 - x^2 - 1}}.$$

Задача 5. Найти неопределенные интегралы.

$$5.1. \int \frac{x^3 + 1}{x^2 - x} dx.$$

5.3.
$$\int \frac{x^3 - 17}{x^2 - 4x + 3} dx.$$

5.5.
$$\int \frac{2x^3 - 1}{x^2 + x - 6} dx.$$

$$5.2. \int \frac{3x^3 + 1}{x^2 - 1} dx.$$

$$5.4. \int \frac{2x^3 + 5}{x^2 - x - 2} dx.$$

5.6.
$$\int \frac{3x^3 + 25}{x^2 + 3x + 2} dx.$$

5.7.
$$\int \frac{x^3 + 2x^2 + 3}{(x-1)(x-2)(x-3)} dx.$$

5.9.
$$\int \frac{x^3}{(x-1)(x+1)(x+2)} dx.$$

5.11.
$$\int \frac{x^3 - 3x^2 - 12}{(x - 4)(x - 3)x} dx.$$

$$5.13. \int \frac{3x^3 - 2}{x^3 - x} dx.$$

$$5.15. \int \frac{x^5 - x^3 + 1}{x^2 - x} dx.$$

$$5.17. \int \frac{2x^5 - 8x^3 + 3}{x^2 - 2x} dx.$$

5.19.
$$\int \frac{-x^5 + 9x^3 + 4}{x^2 + 3x} dx.$$

5.21.
$$\int \frac{x^3 - 5x^2 + 5x + 23}{(x-1)(x+1)(x-5)} dx.$$

5.23.
$$\int \frac{2x^4 - 5x^2 - 8x - 8}{x(x-2)(x+2)} dx.$$

5.25.
$$\int \frac{3x^4 + 3x^3 - 5x^2 + 2}{x(x-1)(x+2)} dx.$$

5.27.
$$\int \frac{x^5 - x^4 - 6x^3 + 13x + 6}{x(x-3)(x+2)} dx.$$

5.29.
$$\int \frac{2x^4 + 2x^3 - 3x^2 + 2x - 9}{x(x-1)(x+3)} dx.$$

5.31.
$$\int \frac{2x^3 - 40x - 8}{x(x+4)(x-2)} dx.$$

5.8.
$$\int \frac{3x^3 + 2x^2 + 1}{(x+2)(x-2)(x-1)} dx.$$

5.10.
$$\int \frac{x^3 - 3x^2 - 12}{(x-4)(x-3)(x-2)} dx.$$

5.12.
$$\int \frac{4x^3 + x^2 + 2}{x(x-1)(x-2)} dx.$$

5.14.
$$\int \frac{x^3 - 3x^2 - 12}{(x - 4)(x - 2)x} dx.$$

5.16.
$$\int \frac{x^5 + 3x^3 - 1}{x^2 + x} dx.$$

5.18.
$$\int \frac{3x^5 - 12x^3 - 7}{x^2 + 2x} dx.$$

5.20.
$$\int \frac{-x^5 + 25x^3 + 1}{x^2 + 5x} dx.$$

5.22.
$$\int \frac{x^5 + 2x^4 - 2x^3 + 5x^2 - 7x + 9}{(x+3)(x-1)x} dx.$$

5.24.
$$\int \frac{4x^4 + 2x^2 - x - 3}{x(x-1)(x+1)} dx.$$

5.26.
$$\int \frac{2x^4 + 2x^3 - 41x^2 + 20}{x(x-4)(x+5)} dx.$$

5.28.
$$\int \frac{3x^3 - x^2 - 12x - 2}{x(x+1)(x-2)} dx.$$

5.30.
$$\int \frac{2x^3 - x^2 - 7x - 12}{x(x-3)(x+1)} dx.$$

Задача 6. Найти неопределенные интегралы.

6.1.
$$\int \frac{x^3 + 6x^2 + 13x + 9}{(x+1)(x+2)^3} dx.$$

6.3.
$$\int \frac{x^3 - 6x^2 + 13x - 6}{(x+2)(x-2)^3} dx.$$

6.2.
$$\int \frac{x^3 + 6x^2 + 13x + 8}{x(x+2)^3} dx.$$

6.4.
$$\int \frac{x^3 + 6x^2 + 14x + 10}{(x+1)(x+2)^3} dx.$$

6.5.
$$\int \frac{x^3 - 6x^2 + 11x - 10}{(x+2)(x-2)^3} dx.$$

6.7.
$$\int \frac{2x^3 + 6x^2 + 7x + 1}{(x-1)(x+1)^3} dx.$$

6.9.
$$\int \frac{2x^3 + 6x^2 + 7x + 2}{x(x+1)^3} dx.$$

6.11.
$$\int \frac{x^3 - 6x^2 + 13x - 7}{(x+1)(x-2)^3} dx.$$

6.13.
$$\int \frac{x^3 - 6x^2 + 10x - 10}{(x+1)(x-2)^3} dx.$$

6.15.
$$\int \frac{3x^3 + 9x^2 + 10x + 2}{(x-1)(x+1)^3} dx.$$

6.17.
$$\int \frac{2x^3 + 6x^2 + 7x + 4}{(x+2)(x+1)^3} dx.$$

6.19.
$$\int \frac{2x^3 + 6x^2 + 7x}{(x-2)(x+1)^3} dx.$$

6.21.
$$\int \frac{x^3 + 6x^2 + 4x + 24}{(x-2)(x+2)^3} dx.$$

6.23.
$$\int \frac{x^3 + 6x^2 + 18x - 4}{(x - 2)(x + 2)^3} dx.$$

6.25.
$$\int \frac{x^3 - 6x^2 + 14x - 4}{(x+2)(x-2)^3} dx.$$

6.27.
$$\int \frac{2x^3 - 6x^2 + 7x - 4}{(x - 2)(x - 1)^3} dx.$$

6.29.
$$\int \frac{x^3 + 6x^2 - 10x + 52}{(x - 2)(x + 2)^3} dx.$$

6.31.
$$\int \frac{x^3 + 6x^2 + 13x + 6}{(x - 2)(x + 2)^3} dx.$$

6.6.
$$\int \frac{x^3 + 6x^2 + 11x + 7}{(x+1)(x+2)^3} dx.$$

6.8.
$$\int \frac{x^3 + 6x^2 + 10x + 10}{(x-1)(x+2)^3} dx.$$

6.10.
$$\int \frac{x^3 - 6x^2 + 13x - 8}{x(x - 2)^3} dx.$$

6.12.
$$\int \frac{x^3 - 6x^2 + 14x - 6}{(x+1)(x-2)^3} dx.$$

6.14.
$$\int \frac{x^3 + x + 2}{(x+2)x^3} dx.$$

6.16.
$$\int \frac{2x^3 + x + 1}{(x+1)x^3} dx.$$

6.18.
$$\int \frac{2x^3 + 6x^2 + 5x}{(x+2)(x+1)^3} dx.$$

6.20.
$$\int \frac{2x^3 + 6x^2 + 5x + 4}{(x-2)(x+1)^3} dx.$$

6.22.
$$\int \frac{x^3 + 6x^2 + 14x + 4}{(x - 2)(x + 2)^3} dx.$$

6.24.
$$\int \frac{x^3 + 6x^2 + 10x + 12}{(x-2)(x+2)^3} dx.$$

6.26.
$$\int \frac{x^3 + 6x^2 + 15x + 2}{(x - 2)(x + 2)^3} dx.$$

6.28.
$$\int \frac{2x^3 - 6x^2 + 7x}{(x+2)(x-1)^3} dx.$$

6.30.
$$\int \frac{x^3 - 6x^2 + 13x - 6}{(x+2)(x-2)^3} dx.$$

Задача 7. Найти неопределенные интегралы.

7.1.
$$\int \frac{x^3 + 4x^2 + 4x + 2}{(x+1)^2 (x^2 + x + 1)} dx.$$

7.3.
$$\int \frac{2x^3 + 7x^2 + 7x - 1}{(x+2)^2 (x^2 + x + 1)} dx.$$

7.5.
$$\int \frac{x^3 + 6x^2 + 9x + 6}{(x+1)^2 (x^2 + 2x + 2)} dx.$$

7.7.
$$\int \frac{3x^3 + 6x^2 + 5x - 1}{(x+1)^2 (x^2 + 2)} dx.$$

7.9.
$$\int \frac{x^3 + 6x^2 + 8x + 8}{(x+2)^2 (x^2 + 4)} dx.$$

7.11.
$$\int \frac{2x^3 - 4x^2 - 16x - 12}{(x-1)^2 (x^2 + 4x + 5)} dx.$$

7.13.
$$\int \frac{x^3 + 2x^2 + 10x}{(x+1)^2 (x^2 - x + 1)} dx.$$

7.15.
$$\int \frac{4x^3 + 24x^2 + 20x - 28}{(x+3)^2 (x^2 + 2x + 2)} dx.$$

7.17.
$$\int \frac{x^3 + x + 1}{\left(x^2 + x + 1\right)\left(x^2 + 1\right)} dx.$$

7.19.
$$\int \frac{2x^3 + 4x^2 + 2x + 2}{\left(x^2 + x + 1\right)\left(x^2 + x + 2\right)} dx.$$

7.21.
$$\int \frac{4x^2 + 3x + 4}{(x^2 + 1)(x^2 + x + 1)} dx.$$

7.2.
$$\int \frac{x^3 + 4x^2 + 3x + 2}{(x+1)^2 (x^2 + 1)} dx.$$

7.4.
$$\int \frac{2x^3 + 4x^2 + 2x - 1}{(x+1)^2 (x^2 + 2x + 2)} dx.$$

7.6.
$$\int \frac{2x^3 + 11x^2 + 16x + 10}{(x+2)^2 (x^2 + 2x + 3)} dx.$$

7.8.
$$\int \frac{x^3 + 9x^2 + 21x + 21}{(x+3)^2 (x^2 + 3)} dx.$$

7.10.
$$\int \frac{x^3 + 5x^2 + 12x + 4}{\left(x + 2\right)^2 \left(x^2 + 4\right)} dx.$$

7.12.
$$\int \frac{-3x^3 + 13x^2 - 13x + 1}{(x-2)^2 (x^2 - x + 1)} dx.$$

7.14.
$$\int \frac{3x^3 + x + 46}{(x-1)^2 (x^2 + 9)} dx.$$

7.16.
$$\int \frac{2x^3 + 3x^2 + 3x + 2}{(x^2 + x + 1)(x^2 + 1)} dx.$$

7.18.
$$\int \frac{x^2 + x + 3}{\left(x^2 + x + 1\right)\left(x^2 + 1\right)} dx.$$

7.20.
$$\int \frac{2x^3 + 7x^2 + 7x + 9}{(x^2 + x + 1)(x^2 + x + 2)} dx.$$

7.22.
$$\int \frac{3x^3 + 4x^2 + 6x}{(x^2 + 2)(x^2 + 2x + 2)} dx.$$

7.23.
$$\int \frac{2x^2 - x + 1}{(x^2 - x + 1)(x^2 + 1)} dx.$$

7.25.
$$\int \frac{x^3 + x + 1}{\left(x^2 - x + 1\right)\left(x^2 + 1\right)} dx.$$

7.28.
$$\int \frac{x^3 + 2x^2 + x + 1}{\left(x^2 + x + 1\right)\left(x^2 + 1\right)} dx.$$

7.30.
$$\int \frac{2x^3 + 2x^2 + 2x + 1}{(x^2 + x + 1)(x^2 + 1)} dx.$$

7.31.
$$\int \frac{2x^3 + 3x^2 + 3x + 2}{\left(x^2 + x + 1\right)\left(x^2 + 1\right)} dx.$$

7.24.
$$\int \frac{x^3 + x^2 + 1}{\left(x^2 - x + 1\right)\left(x^2 + 1\right)} dx.$$

7.26.
$$\int \frac{2x^3 + 2x + 1}{(x^2 - x + 1)(x^2 + 1)} dx.$$

7.29.
$$\int \frac{x+4}{(x^2+x+2)(x^2+2)} dx.$$

7.30.
$$\int \frac{3x^3 + 7x^2 + 12x + 6}{\left(x^2 + x + 3\right)\left(x^2 + 2x + 3\right)} dx.$$

Задача 8. Вычислить определенные интегралы.

8.1.
$$\int_{p/2}^{2 \arctan 2} \frac{dx}{\sin^2 x (1 - \cos x)}.$$

8.3.
$$\int_{n/2}^{2 \arctan 2} \frac{dx}{\sin^2 x (1 + \cos x)}.$$

8.5.
$$\int_{0}^{p/2} \frac{\cos x - \sin x}{(1 + \sin x)^2} dx.$$

8.7.
$$\int_{2\arctan(1/3)}^{2\arctan(1/2)} \frac{dx}{\sin x (1-\sin x)}.$$

$$8.9. \int_{0}^{p/2} \frac{\cos x dx}{5 + 4\cos x}.$$

8.11.
$$\int_{p/3}^{p/2} \frac{\cos x dx}{1 + \sin x - \cos x}.$$

$$8.13. \int_{0}^{p/2} \frac{\sin dx}{1 + \sin x + \cos x}.$$

8.2.
$$\int_{0}^{p/2} \frac{\cos x dx}{2 + \cos x}.$$

8.4.
$$\int_{2\arctan(1/2)}^{p/2} \frac{\cos x dx}{(1-\cos x)^3}.$$

8.6.
$$\int_{2 \arctan 2}^{2 \arctan 3} \frac{dx}{\cos x (1 - \cos x)}.$$

8.8.
$$\int_{2\arctan(1/2)}^{p/2} \frac{dx}{(1+\sin x - \cos x)^2}.$$

8.10.
$$\int_{0}^{2p/3} \frac{1+\sin x}{1+\cos x+\sin x} dx.$$

8.12.
$$\int_{0}^{p/2} \frac{(1+\cos x)dx}{1+\sin x + \cos x}.$$

8.14.
$$\int_{0}^{2\arctan(1/2)} \frac{1+\sin x}{\left(1-\sin x\right)^{2}} dx.$$

$$8.15. \int_{0}^{p/2} \frac{\cos x dx}{1 + \sin x + \cos x}.$$

8.17.
$$\int_{-2p/3}^{0} \frac{\cos x dx}{1 + \cos x - \sin x}.$$

8.19.
$$\int_{0}^{p/2} \frac{\cos x dx}{(1 + \cos x + \sin x)^{2}}.$$

8.21.
$$\int_{0}^{p/2} \frac{\sin x dx}{(1 + \sin x)^2}.$$

8.23.
$$\int_{-p/2}^{0} \frac{\sin x dx}{(1 + \cos x - \sin x)^{2}}.$$

8.25.
$$\int_{0}^{p/2} \frac{\sin^2 x dx}{(1 + \cos x + \sin x)^2}.$$

8.27.
$$\int_{p/2}^{2\arctan 2} \frac{dx}{\sin x (1 + \sin x)}.$$

8.29.
$$\int_{0}^{p/2} \frac{\sin x dx}{2 + \sin x}.$$

8.31.
$$\int_{0}^{p/2} \frac{\sin x dx}{5 + 3\sin x}.$$

8.16.
$$\int_{0}^{2\arctan(1/3)} \frac{\cos x dx}{(1-\sin x)(1+\cos x)}.$$

8.18.
$$\int_{-p/2}^{0} \frac{\cos x dx}{(1 + \cos x - \sin x)^2}.$$

8.20.
$$\int_{0}^{2\arctan(1/2)} \frac{(1-\sin x)dx}{\cos x(1+\cos x)}.$$

8.22.
$$\int_{0}^{p/2} \frac{\sin x dx}{(1 + \cos x + \sin x)^{2}}.$$

8.24.
$$\int_{-2p/3}^{0} \frac{\cos^2 x dx}{(1 + \cos x - \sin x)^2}.$$

8.26.
$$\int_{0}^{2p/3} \frac{\cos^2 x dx}{(1 + \cos x - \sin x)^2}.$$

8.28.
$$\int_{0}^{p/2} \frac{dx}{(1+\cos x + \sin x)^{2}}.$$

8.30.
$$\int_{0}^{p/4} \frac{dx}{\cos x (1 + \cos x)}.$$

Задача 9. Вычислить определенные интегралы.

9.1.
$$\int_{p/4}^{\arctan 3} \frac{dx}{(3 \lg x + 5) \sin 2x}.$$

9.3.
$$\int_{0}^{\arccos(4/\sqrt{17})} \frac{3 + 2 \operatorname{tg} x}{2 \sin^{2} x + 3 \cos^{2} x - 1} dx.$$

9.5.
$$\int_{0}^{\arctan(1/3)} \frac{(8 + \operatorname{tg} x)}{18\sin^2 x + 2\cos^2 x} dx.$$

9.2.
$$\int_{\arccos(4/\sqrt{17})}^{p/4} \frac{2 \cot x + 1}{(2 \sin x + \cos x)^2} dx.$$

9.4.
$$\int_{p/4}^{\arctan 3} \frac{4 \operatorname{tg} x - 5}{1 - \sin 2x + 4 \cos^2 x} dx.$$

9.6.
$$\int_{0}^{\arccos\sqrt{2/3}} \frac{\operatorname{tg} x + 2}{\sin^2 x + 2\cos^2 x - 3} dx.$$

9.7.
$$\int_{\arcsin(1/\sqrt{37})}^{p/4} \frac{6 \operatorname{tg} x dx}{3 \sin 2x + 5 \cos^2 x}.$$

9.9.
$$\int_{-\arctan(1/3)}^{0} \frac{3 \lg x + 1}{2 \sin 2x - 5 \cos 2x + 1} dx.$$

9.11.
$$\int_{p/4}^{\arccos(1/\sqrt{3})} \frac{\operatorname{tg} x}{\sin^2 x - 5\cos^2 x + 4} dx.$$

9.13.
$$\int_{0}^{\arctan x} \frac{4 + \lg x}{2\sin^2 x + 18\cos^2 x} dx.$$

9.15.
$$\int_{0}^{\arctan(2/3)} \frac{6 + \lg x}{9\sin^2 x + 4\cos^2 x} dx.$$

9.17.
$$\int_{0}^{p/4} \frac{7 + 3 \lg x}{\left(\sin x + 2 \cos x\right)^{2}} dx.$$

9.19.
$$\int_{-\arccos(1/\sqrt{10})}^{0} \frac{3 \operatorname{tg}^{2} x - 50}{2 \operatorname{tg} x + 7} dx.$$

9.21.
$$\int_{p/4}^{\arcsin(2/\sqrt{5})} \frac{4 \operatorname{tg} x - 5}{4 \cos^2 x - \sin 2x + 1} dx.$$

9.23.
$$\int_{-\arccos(1/\sqrt{5})}^{0} \frac{11 - 3 \operatorname{tg} x}{\operatorname{tg} x + 3} dx.$$

9.25.
$$\int_{p/4}^{\arccos(1/\sqrt{26})} \frac{dx}{(6-\lg x)\sin 2x}.$$

9.27.
$$\int_{-\arcsin(2/\sqrt{5})}^{p/4} \frac{2 - \lg x}{\left(\sin x + 3\cos x\right)^2} dx.$$

9.29.
$$\int_{\arccos(1/\sqrt{10})}^{\arccos(1/\sqrt{26})} \frac{12dx}{(6+5\lg x)\sin 2x}.$$

9.8.
$$\int_{0}^{p/4} \frac{2 \operatorname{tg}^{2} x - 11 \operatorname{tg} x - 22}{4 - \operatorname{tg} x} dx.$$

9.10.
$$\int_{p/4}^{\arctan 3} \frac{1 + \cot x}{\left(\sin x + 2\cos x\right)^2} dx.$$

9.12.
$$\int_{0}^{p/4} \frac{6\sin^2 x}{3\cos 2x - 4} dx.$$

9.14.
$$\int_{0}^{\arctan x} \frac{12 + \lg x}{3\sin^2 x + 12\cos^2 x} dx.$$

9.16.
$$\int_{0}^{\arcsin \sqrt{3/7}} \frac{\operatorname{tg}^{2} x dx}{3\sin^{2} x + 4\cos^{2} x - 7}.$$

9.18.
$$\int_{\arcsin(2/\sqrt{5})}^{\arcsin(3/\sqrt{10})} \frac{2 \operatorname{tg} x + 5}{(5 - \operatorname{tg} x) \sin 2x} dx.$$

9.20.
$$\int_{0}^{p/4} \frac{5 \operatorname{tg} x + 2}{2 \sin 2x + 5} dx.$$

9.22.
$$\int_{0}^{\arcsin\sqrt{7/8}} \frac{6\sin^2 x}{4 + 3\cos 2x} dx.$$

9.24.
$$\int_{0}^{\arcsin 3\sqrt{10}} \frac{2 \operatorname{tg} x - 5}{(4 \cos x - \sin x)^{2}} dx.$$

9.26.
$$\int_{0}^{p/4} \frac{4 - 7 \operatorname{tg} x}{2 + 3 \operatorname{tg} x} dx.$$

9.28.
$$\int_{p/4}^{\arcsin\sqrt{2/3}} \frac{8 \operatorname{tg} x dx}{3 \cos^2 x + 8 \sin 2x - 7}.$$

9.30.
$$\int_{0}^{p/3} \frac{\mathsf{tg}^2 x}{4 + 3\cos 2x} dx.$$

9.31.
$$\int_{0}^{\arccos(1/\sqrt{6})} \frac{3 \operatorname{tg}^{2} x - 1}{\operatorname{tg}^{2} x + 5}.$$

Задача 10. Вычислить определенные интегралы.

10.1.
$$\int_{p/2}^{p} 2^8 \sin^8 x \ dx.$$

10.3.
$$\int_{0}^{2p} \sin^4 x \cos^4 x \, dx.$$

10.5.
$$\int_{0}^{p} 2^{4} \cos^{8}(x/2) dx.$$

10.7.
$$\int_{p/2}^{p} 2^4 \sin^6 x \cos^2 x \ dx.$$

10.9.
$$\int_{0}^{2p} \sin^2 x \cos^6 x \, dx.$$

10.11.
$$\int_{0}^{p} 2^{4} \sin^{8}(x/2) dx$$
.

10.13.
$$\int_{p/2}^{2p} 2^8 \sin^4 x \cos^4 x \ dx.$$

10.15.
$$\int_{0}^{2p} \cos^8 x \ dx.$$

10.17.
$$\int_{0}^{p} 2^{4} \sin^{6}(x/2) \cos^{2}(x/2) dx.$$

10.19.
$$\int_{p/2}^{p} 2^8 \sin^2 x \cos^6 x \ dx.$$

10.21.
$$\int_{0}^{2p} \sin^8 x \ dx.$$

$$10.2. \int_{0}^{p} 2^{4} \sin^{6} x \cos^{2} x \, dx.$$

10.4.
$$\int_{0}^{2p} \sin^{2}(x/4) \cos^{6}(x/4) dx.$$

10.6.
$$\int_{-p/2}^{0} 2^8 \sin^8 x \ dx.$$

$$10.8. \int_{0}^{p} 2^{4} \sin^{4} x \cos^{4} x \ dx.$$

10.10.
$$\int_{0}^{2p} \cos^{8}(x/4) dx$$
.

10.12.
$$\int_{-p}^{0} 2^8 \sin^6 x \cos^2 x \, dx.$$

$$10.14. \int_{0}^{p} 2^{4} \sin^{2} x \cos^{6} x \ dx.$$

10.16.
$$\int_{0}^{2p} \sin^{8}(x/4) dx.$$

10.18.
$$\int_{-p/2}^{0} 2^8 \sin^4 x \cos^4 x \ dx.$$

$$10.20. \int_{0}^{p} 2^{4} \cos^{8} x \ dx.$$

10.22.
$$\int_{0}^{2p} \sin^{6}(x/4)\cos^{2}(x/4) dx.$$

10.23.
$$\int_{0}^{p} 2^{4} \sin^{4}(x/2) \cos^{4}(x/2) dx.$$

10.24.
$$\int_{-p/2}^{0} 2^8 \sin^2 x \cos^6 x \ dx.$$

$$10.25. \int_{p/2}^{2p} 2^8 \cos^8 x \ dx.$$

$$10.26. \int_{0}^{p} 2^{4} \sin^{8} x \ dx.$$

$$10.27. \int_{0}^{2p} \sin^6 x \cos^2 x \ dx.$$

10.28.
$$\int_{0}^{2p} \sin^{4}(x/4) \cos^{4}(x/4) dx.$$

10.29.
$$\int_{0}^{p} 2^{4} \sin^{2}(x/2) \cos^{6}(x/2) dx.$$

10.30.
$$\int_{-p/2}^{0} 2^8 \cos^8 x \ dx.$$

$$10.31. \int_{0}^{2p} \sin^4 3x \cos^4 3x \ dx.$$

Задача 11. Вычислить определенные интегралы.

11.1.
$$\int_{0}^{1} \frac{4\sqrt{1-x} - \sqrt{3x+1}}{\left(\sqrt{3x+1} + 4\sqrt{1-x}\right)\left(3x+1\right)^{2}} dx.$$

11.2.
$$\int_{1}^{64} \frac{1 - \sqrt[6]{x} + 2\sqrt[3]{x}}{x + 2\sqrt{x^3} + \sqrt[3]{x^4}} dx.$$

11.3.
$$\int_{-14/15}^{-7/8} \frac{6\sqrt{x+2}}{(x+2)^2 \sqrt{x+1}} dx.$$

11.4.
$$\int_{6}^{9} \sqrt{\frac{9-2x}{2x-21}} dx.$$

11.5.
$$\int_{0}^{5} e^{\sqrt{\frac{5-x}{5+x}}} \frac{dx}{(5+x)\sqrt{25-x^2}}.$$

11.6.
$$\int_{8}^{12} \sqrt{\frac{6-x}{x-14}} dx.$$

11.7.
$$\int_{0}^{1} e^{\sqrt{\frac{1-x}{1+x}}} \frac{dx}{(1+x)\sqrt{1-x^{2}}}.$$

11.8.
$$\int_{5/2}^{10/3} \frac{\sqrt{x+2} + \sqrt{x-2}}{\left(\sqrt{x+2} - \sqrt{x-2}\right)\left(x-2\right)^2} dx.$$

11.9.
$$\int_{1}^{8} \frac{5\sqrt{x+24}}{(x+24)^{2}\sqrt{x}} dx.$$

11.10.
$$\int_{1}^{2} \frac{x + \sqrt{3x - 2} - 10}{\sqrt{3x - 2} + 7} dx.$$

$$11.11. \int_{6}^{10} \sqrt{\frac{4-x}{x-12}} dx.$$

11.12.
$$\int_{0}^{2} \frac{\left(4\sqrt{2-x}-\sqrt{2x+2}\right)dx}{\left(\sqrt{2x+2}+4\sqrt{2-x}\right)\left(2x+2\right)^{2}}.$$

11.13.
$$\int_{-1/2}^{0} \frac{x dx}{2 + \sqrt{2x + 1}}.$$

11.15.
$$\int_{1/8}^{1} \frac{15\sqrt{x+3}}{(x+3)^2 \sqrt{x}} dx.$$

11.17.
$$\int_{2}^{3} \sqrt{\frac{3-2x}{2x-7}} dx.$$

11.19.
$$\int_{0}^{2} \frac{\left(4\sqrt{2-x}-\sqrt{3x+2}\right)dx}{\left(\sqrt{3x+2}+4\sqrt{2-x}\right)\left(3x+2\right)^{2}}.$$

11.21.
$$\int_{3}^{5} \sqrt{\frac{2-x}{x-6}} dx.$$

11.23.
$$\int_{9}^{15} \sqrt{\frac{6-x}{x-18}} dx.$$

11.25.
$$\int_{1}^{64} \frac{\left(2 + \sqrt[3]{x}\right) dx}{\left(\sqrt[6]{x} + 2\sqrt{x^3} + \sqrt{x}\right)\sqrt{x}}.$$

11.27.
$$\int_{0}^{6} \frac{e^{\sqrt{(6-x)/(6+x)}} dx}{(6+x)\sqrt{36-x^{2}}}.$$

11.29.
$$\int_{0}^{1} \frac{\left(4\sqrt{1-x}-\sqrt{x+1}\right)dx}{\left(\sqrt{x+1}+4\sqrt{1-x}\right)\left(x+1\right)^{2}}.$$

11.31.
$$\int_{0}^{2} \frac{\left(4\sqrt{2-x}-\sqrt{x+2}\right)dx}{\left(\sqrt{x+2}+4\sqrt{2-x}\right)\left(x+2\right)^{2}}.$$

11.14.
$$\int_{0}^{4} e^{\sqrt{\frac{4-x}{4+x}}} \frac{dx}{(4+x)\sqrt{16-x^{2}}}.$$

11.16.
$$\int_{-5/3}^{1} \frac{\sqrt[3]{3x+5}+2}{1+\sqrt[3]{3x+5}} dx.$$

11.18.
$$\int_{0}^{7} \frac{\sqrt{x+25}}{(x+25)^{2} \sqrt{x+1}} dx.$$

11.20.
$$\int_{0}^{2} e^{\sqrt{\frac{2-x}{2+x}}} \frac{dx}{(2+x)\sqrt{4-x^{2}}}.$$

11.22.
$$\int_{1/24}^{1/3} \frac{5\sqrt{x+1}}{(x+1)^2 \sqrt{x}} dx.$$

11.24.
$$\int_{0}^{1} \frac{\left(4\sqrt{1-x}-\sqrt{2x+2}\right)dx}{\left(\sqrt{2x+1}+4\sqrt{1-x}\right)\left(2x+1\right)^{2}}.$$

11.26.
$$\int_{16/15}^{4/3} \frac{4\sqrt{x}}{x^2 \sqrt{x-1}} dx.$$

11.28.
$$\int_{1}^{64} \frac{6 - \sqrt{x} + \sqrt[4]{x}}{\sqrt{x^3} - 7x - 6\sqrt[4]{x^3}} dx.$$

11.30.
$$\int_{0}^{3} \frac{e^{\sqrt{(3-x)/(3+x)}} dx}{(3+x)\sqrt{9-x^{2}}}.$$

Задача 12. Вычислить определенные интегралы.

12.1.
$$\int_{0}^{16} \sqrt{256 - x^2} dx.$$

12.2.
$$\int_{0}^{1} x^{2} \sqrt{1 - x^{2}} dx.$$

12.3.
$$\int_{0}^{5} \frac{dx}{(25+x^2)\sqrt{25+x^2}}.$$

12.5.
$$\int_{0}^{\sqrt{5}/2} \frac{dx}{\sqrt{\left(5-x^2\right)^3}}.$$

12.7.
$$\int_{0}^{\sqrt{2}/2} \frac{x^4 dx}{\sqrt{\left(1-x^2\right)^3}}.$$

12.9.
$$\int_{0}^{1} \frac{x^{4} dx}{\left(2 - x^{2}\right)^{3/2}}.$$

12.11.
$$\int_{0}^{2} \sqrt{4-x^2} dx.$$

12.13.
$$\int_{0}^{4} x^{2} \sqrt{16 - x^{2}} dx.$$

12.15.
$$\int_{0}^{5} x^{2} \sqrt{25 - x^{2}} dx.$$

12.17.
$$\int_{0}^{4\sqrt{3}} \frac{dx}{\sqrt{\left(64-x^2\right)^3}}.$$

12.19.
$$\int_{0}^{2\sqrt{2}} \frac{x^4 dx}{(16-x^2)\sqrt{16-x^2}}.$$

12.21.
$$\int_{1}^{\sqrt{3}} \frac{dx}{\sqrt{\left(1+x^2\right)^3}}.$$

12.23.
$$\int_{0}^{2} \frac{x^{4} dx}{\sqrt{\left(8 - x^{2}\right)^{3}}}.$$

12.4.
$$\int_{0}^{3} \frac{dx}{\left(9+x^{2}\right)^{3/2}}.$$

12.6.
$$\int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x^4} dx.$$

12.8.
$$\int_{0}^{\sqrt{3}} \frac{dx}{\sqrt{\left(4-x^{2}\right)^{3}}}.$$

12.10.
$$\int_{0}^{2} \frac{x^2 dx}{\sqrt{16 - x^2}}.$$

12.12.
$$\int_{0}^{4} \frac{dx}{\left(16+x^{2}\right)^{3/2}}.$$

12.14.
$$\int_{0}^{5/2} \frac{x^2 dx}{\sqrt{25 - x^2}}.$$

12.16.
$$\int_{0}^{4} \sqrt{16 - x^2} dx.$$

12.18.
$$\int_{\sqrt{2}}^{2\sqrt{2}} \frac{\sqrt{x^2 - 2}}{x^4} dx.$$

12.20.
$$\int_{-3}^{3} x^2 \sqrt{9 - x^2} dx.$$

12.22.
$$\int_{0}^{2} \frac{dx}{\sqrt{\left(16-x^{2}\right)^{3}}}.$$

12.24.
$$\int_{3}^{6} \frac{\sqrt{x^2 - 9}}{x^4} dx.$$

12.25.
$$\int_{0}^{1} \sqrt{4-x^2} \, dx.$$

12.27.
$$\int_{0}^{2} \frac{dx}{\left(4+x^{2}\right)\sqrt{4+x^{2}}}.$$

12.29.
$$\int_{0}^{1/\sqrt{2}} \frac{dx}{(1-x^2)\sqrt{1-x^2}}.$$

12.31.
$$\int_{0}^{3/2} \frac{x^2 dx}{\sqrt{9 - x^2}}.$$

12.26.
$$\int_{2}^{4} \frac{\sqrt{x^{2}-4}}{x^{4}} dx.$$

12.28.
$$\int_{0}^{\sqrt{2}} \frac{x^4 dx}{\left(4 - x^2\right)^{3/2}}.$$

$$12.30. \int_{0}^{1} \frac{x^2 dx}{\sqrt{4 - x^2}}.$$

Задача 13. Найти неопределенные интегралы.

$$13.1. \int \frac{\sqrt{1+\sqrt{x}}}{x\sqrt[4]{x^3}} dx.$$

$$13.3. \int \frac{\sqrt{1+\sqrt[3]{x}}}{x\sqrt{x}} dx.$$

13.5.
$$\int \frac{\sqrt[3]{1+\sqrt[3]{x^2}}}{x^9\sqrt[9]{x^8}} dx.$$

13.7.
$$\int \frac{\sqrt[3]{\left(1+\sqrt[3]{x^2}\right)^2}}{x^2 \sqrt[9]{x}} dx.$$

13.9.
$$\int \frac{\sqrt{1+\sqrt[3]{x^2}}}{x^2} dx.$$

13.11.
$$\int \frac{\sqrt[4]{\left(1+\sqrt{x}\right)^3}}{x\sqrt[8]{x^7}} dx.$$

13.13.
$$\int \frac{\sqrt[4]{\left(1+\sqrt[3]{x^2}\right)^3}}{x^2\sqrt[6]{x}} dx.$$

13.2.
$$\int \frac{\sqrt[3]{1+\sqrt{x}}}{x\sqrt[3]{x^2}} dx.$$

13.4.
$$\int \frac{\sqrt[3]{1+\sqrt[3]{x}}}{x\sqrt[9]{x^4}} dx.$$

13.6.
$$\int \frac{\sqrt[3]{\left(1+\sqrt[3]{x}\right)^2}}{x\sqrt[9]{x^5}} dx.$$

13.8.
$$\int \frac{\sqrt[3]{\left(1+\sqrt{x}\right)^2}}{x\sqrt[6]{x^5}} dx.$$

$$13.10. \int \frac{\sqrt{1+x}}{x^2 \sqrt{x}} dx.$$

13.12.
$$\int \frac{\sqrt[4]{\left(1+\sqrt[3]{x}\right)^3}}{x\sqrt[12]{x^7}} dx.$$

13.14.
$$\int \frac{\sqrt{1+\sqrt[4]{x^3}}}{x^2\sqrt[8]{x}} dx.$$

13.15.
$$\int \frac{\sqrt[3]{1+\sqrt[4]{x^3}}}{x^2} dx.$$

13.17.
$$\int \frac{\sqrt[5]{\left(1+\sqrt{x}\right)^4}}{x^{10}\sqrt{x^9}} dx.$$

13.19.
$$\int \frac{\sqrt[5]{\left(1+\sqrt[3]{x^2}\right)^4}}{x^2\sqrt[5]{x}} dx.$$

13.21.
$$\int \frac{\sqrt[5]{1 + \sqrt[5]{x^4}}}{x^2 \sqrt[5]{x^{11}}} dx.$$

13.23.
$$\int \frac{\sqrt[3]{1 + \sqrt[5]{x^4}}}{x^2 \sqrt[15]{x}} dx.$$

13.25.
$$\int \frac{\sqrt[4]{\left(1+\sqrt[5]{x^4}\right)^3}}{x^2\sqrt[5]{x^2}} dx.$$

13.27.
$$\int \frac{\sqrt[3]{\left(1+\sqrt[4]{x}\right)^2}}{x\sqrt[12]{x^5}} dx.$$

13.29.
$$\int \frac{\sqrt[4]{1+\sqrt[3]{x^2}}}{x\sqrt[6]{x^5}} dx.$$

13.31.
$$\int \frac{\sqrt[5]{1+\sqrt[3]{x}}}{x\sqrt[5]{x^2}} dx.$$

13.16.
$$\int \frac{\sqrt[3]{\left(1+\sqrt[4]{x^3}\right)^2}}{x^2\sqrt[4]{x}} dx.$$

13.18.
$$\int \frac{\sqrt[5]{\left(1+\sqrt[3]{x}\right)^4}}{x\sqrt[5]{x^3}} dx.$$

13.20.
$$\int \frac{\sqrt[5]{\left(1+\sqrt[4]{x^3}\right)^4}}{x^2 \sqrt[20]{x^7}} dx.$$

13.22.
$$\int \frac{\sqrt{1+\sqrt[5]{x^4}}}{x^2 \sqrt[5]{x}} dx.$$

13.24.
$$\int \frac{\sqrt[3]{\left(1+\sqrt[5]{x^4}\right)^2}}{x^2\sqrt[3]{x}} dx.$$

13.26.
$$\int \frac{\sqrt[3]{1 + \sqrt[4]{x}}}{x\sqrt[3]{x}} dx.$$

13.28.
$$\int \frac{\sqrt[4]{1+\sqrt[3]{x}}}{x^{12}\sqrt[3]{x^5}} dx.$$

13.30.
$$\int \frac{\sqrt[3]{1+\sqrt[5]{x}}}{x\sqrt[15]{x^4}} dx.$$

Задача 14. Вычислить площади фигур, ограниченных графиками функций.

14.1.
$$y = (x-2)^3$$
,
 $y = 4x-8$.

14.2.
$$y = x\sqrt{9 - x^2}, \quad y = 0,$$

(0 \le x \le 3).

14.3.
$$y = 4 - x^2$$
, $y = x^2 - 2x$.

14.5.
$$y = \sqrt{4 - x^2}$$
, $y = 0$, $x = 0$, $x = 1$.

14.7.
$$y = \cos x \sin^2 x, \quad y = 0,$$

 $(0 \le x \le p/2).$

14.9.
$$y = \frac{1}{x\sqrt{1 + \ln x}}, \quad y = 0,$$

 $x = 1, \quad x = e^{3}.$

14.11.
$$y = (x+1)^2$$
,
 $y^2 = x+1$.

14.13.
$$y = x\sqrt{36 - x^2}, \quad y = 0,$$

(0 \le x \le 6).

14.15.
$$y = \arctan x, \quad y = 0,$$

 $x = \sqrt{3}.$

14.17.
$$x = \sqrt{e^y - 1}, \quad x = 0,$$

 $y = \ln 2.$

14.19.
$$y = \frac{x}{1 + \sqrt{x}}, \quad y = 0,$$

 $x = 1.$

14.21.
$$x = (y-2)^3$$
,
 $x = 4y-8$.

14.23.
$$y = \frac{x}{(x^2 + 1)^2}, y = 0,$$

 $x = 1.$

14.4.
$$y = \sin x \cos^2 x, \quad y = 0,$$

 $(0 \le x \le p/2).$

14.6.
$$y = x^2 \sqrt{4 - x^2}, \quad y = 0,$$

(0 \le x \le 2).

14.8.
$$y = \sqrt{e^x - 1}, y = 0,$$

 $x = \ln 2.$

14.10.
$$y = \arccos x$$
, $y = 0$, $x = 0$.

14.12.
$$y = 2x - x^2 + 3$$
,
 $y = x^2 - 4x + 3$.

14.14.
$$x = \arccos y, \quad x = 0,$$

 $y = 0.$

14.16.
$$y = x^2 \sqrt{8 - x^2}, \quad y = 0,$$

 $(0 \le x \le 2\sqrt{2}).$

14.18.
$$y = x\sqrt{4-x^2}, \quad y = 0,$$

(0 \le x \le 2).

14.20.
$$y = \frac{1}{1 + \cos x}$$
, $y = 0$, $x = p/2$, $x = -p/2$.

14.22.
$$y = \cos^5 x \sin 2x, \quad y = 0,$$

 $(0 \le x \le p/2).$

$$14.24. \quad x = 4 - y^2, \\ x = y^2 - 2y.$$

14.25.
$$x = \frac{1}{y\sqrt{1 + \ln y}}, \quad x = 0,$$

 $y = 1, \quad y = e^{3}.$

14.27.
$$y = x^2 \sqrt{16 - x^2}, \quad y = 0,$$

(0 \le x \le 4).

14.29.
$$y = (x-1)^2$$
,
 $y^2 = x-1$.

14.31.
$$x = 4 - (y-1)^2$$
,
 $x = y^2 - 4y + 3$.

14.26.
$$y = \frac{e^{1/x}}{x^2}$$
, $y = 0$, $x = 2$, $x = 1$.

14.28.
$$x = \sqrt{4 - y^2}, \quad x = 0,$$

 $y = 0, \quad y = 1.$

14.30.
$$y = x^2 \cos x, \quad y = 0,$$

 $(0 \le x \le p/2).$

Задача 15. Вычислить площади фигур, ограниченных линиями, заданными уравнениями.

$$\begin{cases} x = 4\sqrt{2}\cos^3 t, \\ y = 2\sqrt{2}\sin^3 t, \end{cases}$$

$$x = 2 \quad (x \ge 2).$$

$$\begin{cases} x = 4(t - \sin t), \\ y = 4(1 - \cos t), \\ y = 4 \quad (0 < x < 8p, \ y \ge 4). \end{cases}$$

$$\begin{cases} x = 2\cos t, \\ y = 6\sin t, \end{cases}$$

$$y = 3 \quad (y \ge 3).$$

$$\begin{cases} x = \sqrt{2}\cos t, \\ y = 2\sqrt{2}\sin t, \\ y = 2 \quad (y \ge 2). \end{cases}$$

$$\begin{cases} x = 16\cos^3 t, \\ y = 2\sin^3 t, \end{cases}$$

$$x = 2 \quad (x \ge 2).$$

$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases}$$

$$y = 3 \quad (0 < x < 4p, \ y \ge 3).$$

$$\begin{cases} x = 16\cos^3 t, \\ y = \sin^3 t, \\ x = 6\sqrt{3} \quad (x \ge 6\sqrt{3}). \end{cases}$$

$$\begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), \\ y = 3 \quad (0 < x < 6p, \ y \ge 3). \end{cases}$$

$$\begin{cases} x = 2\sqrt{2}\cos t, \\ y = 3\sqrt{2}\sin t, \\ y = 3 \quad (y \ge 3). \end{cases}$$

$$\begin{cases}
 x = 32\cos^3 t, \\
 y = \sin^3 t, \\
 x = 4 \quad (x \ge 4).
\end{cases}$$

$$\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \end{cases}$$

$$y = 6 \quad (0 < x < 12p, \ y \ge 6).$$

$$\begin{cases} x = 6\cos^3 t, \\ y = 4\sin^3 t, \end{cases}$$
$$x = 2\sqrt{3} \quad \left(x \ge 2\sqrt{3}\right).$$

$$\begin{cases} x = 2\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, \end{cases}$$

$$x = 1 \quad (x \ge 1).$$

$$\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases}$$

$$y = 1 \quad (0 < x < 2p, \ y \ge 1).$$

$$\begin{cases}
 x = 6\cos t, \\
 y = 2\sin t, \\
 y = \sqrt{3} \quad (y \ge \sqrt{3}).
\end{cases}$$

$$\begin{cases}
 x = 8\sqrt{2}\cos^3 t, \\
 y = \sqrt{2}\sin^3 t, \\
 x = 4 \quad (x \ge 4).
\end{cases}$$

$$\begin{cases} x = 6(t - \sin t), \\ y = 6(1 - \cos t), \\ y = 9 \quad (0 < x < 12p, \ y \ge 9). \end{cases}$$

$$\begin{cases}
 x = 3\cos t, \\
 y = 8\sin t, \\
 y = 4 \quad (y \ge 4).
\end{cases}$$

$$\begin{cases} x = 8\cos^3 t, \\ y = 4\sin^3 t, \end{cases}$$
$$x = 3\sqrt{3} \quad \left(x \ge 3\sqrt{3}\right).$$

$$\begin{cases} x = 10(t - \sin t), \\ y = 10(1 - \cos t), \\ y = 15 \quad (0 < x < 20p, \ y \ge 15). \end{cases}$$

15.20.
$$\begin{cases} x = \sqrt{2} \cos t, \\ y = 4\sqrt{2} \sin t, \\ y = 4 \quad (y \ge 4). \end{cases}$$

$$\begin{cases} x = 8\cos^3 t, \\ y = 8\sin^3 t, \end{cases}$$

$$x = 1 \quad (x \ge 1).$$

$$\begin{cases} x = 9\cos t, \\ y = 4\sin t, \\ y = 2 \quad (y \ge 2). \end{cases}$$

$$15.24. \begin{cases} y = 8(t - \sin t), \\ y = 8(1 - \cos t), \\ y = 12 \quad (0 < x < 16p, y \ge 12). \end{cases}$$

$$\begin{cases} x = 3\cos t, \\ y = 2\sin^3 t, \\ x = 9\sqrt{3} \quad (x \ge 9\sqrt{3}). \end{cases}$$

$$\begin{cases} x = 3(\cos t, \\ y = 8\sin t, \\ y = 4\sqrt{3} \quad (y \ge 4\sqrt{3}). \end{cases}$$

$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \\ y = 2(1 - \cos t), \\ y = 2 \quad (0 < x < 4p, y \ge 2). \end{cases}$$

$$\begin{cases} x = 4\sqrt{2}\cos^3 t, \\ y = \sqrt{2}\sin^3 t, \\ x = 2 \quad (x \ge 2). \end{cases}$$

$$\begin{cases} x = 4(t - \sin t), \\ y = 5\sqrt{2}\sin t, \\ y = 5\sqrt{2}\sin t, \\ y = 5 \quad (y \ge 5). \end{cases}$$

$$\begin{cases} x = 32\cos^3 t, \\ y = 3\sin^3 t, \\ x = 12\sqrt{3} \quad (x \ge 12\sqrt{3}). \end{cases}$$

Задача 16. Вычислить площади фигур, ограниченных линиями, заданными в полярных координатах.

16.1.
$$r = 4\cos 3j$$
, $r = 2$ $(r \ge 2)$.

16.3.
$$r = \sqrt{3}\cos j, \quad r = \sin j,$$
$$(0 \le j \le p/2).$$

16.5.
$$r = 2\cos j$$
, $r = 2\sqrt{3}\sin j$, $(0 \le j \le p/2)$.

16.2.
$$r = \cos 2j$$
.

16.4.
$$r = 4\sin 3j$$
, $r = 2$ $(r \ge 2)$.

16.6.
$$r = \sin 3j$$
.

16.7.
$$r = 6\sin 3j$$
, $r = 3$ $(r \ge 3)$.
 $r = \cos j$,

16.9.
$$r = \sqrt{2} \sin(j - p/4)$$
, $(-p/4 \le j \le p/2)$.

16.11.
$$r = 6\cos 3j$$
, $r = 3$ $(r \ge 3)$.

$$r = \cos j, \quad r = \sin j,$$

$$(0 \le j \le p/2).$$

16.15.
$$r = \cos j$$
, $r = 2\cos j$.

16.17.
$$r = 1 + \sqrt{2} \cos j$$
.

16.19.
$$r = 1 + \sqrt{2} \sin j$$
.

16.21.
$$r = (3/2)\cos j$$
, $r = (5/2)\cos j$.

16.23.
$$r = \sin 6j$$
.

16.25.
$$r = \cos j + \sin j$$
.

16.27.
$$r = 2\cos 6j$$
.

16.29.
$$r = 3\sin j$$
, $r = 5\sin j$.

16.31.
$$r = 6\sin j$$
, $r = 4\sin j$.

16.8.
$$r = \cos 3j$$
.

$$r = \sin j$$
,

16.10.
$$r = \sqrt{2}\cos(j - p/4),$$

 $(0 \le j \le 3p/4).$

16.12.
$$r = 1/2 + \sin j$$
.

$$r = \sqrt{2}\cos(j - p/4),$$

16.14.
$$r = \sqrt{2} \sin(j - p/4)$$
, $(p/4 \le j \le 3p/4)$.

16.16.
$$r = \sin j$$
, $r = 2\sin j$.

16.18.
$$r = 1/2 + \cos j$$
.

16.20.
$$r = (5/2)\sin j$$
, $r = (3/2)\sin j$.

16.22.
$$r = 4\cos 4j$$
.

16.24.
$$r = 2\cos j$$
, $r = 3\cos j$.

16.26.
$$r = 2\sin 4i$$
.

$$16.28. r = \cos j - \sin j.$$

16.30.
$$r = 2\sin j$$
, $r = 4\sin j$.

Задача 17. Вычислить длины дуг кривых, заданных уравнениями в прямоугольной системе координат.

17.1.
$$y = \ln x$$
, $\sqrt{3} \le x \le \sqrt{15}$.

17.2.
$$y = \frac{x^2}{4} - \frac{\ln x}{2}$$
, $1 \le x \le 2$.

17.3.
$$y = \sqrt{1 - x^2} + \arcsin x$$
, $0 \le x \le 7/9$. 17.3. $y = \ln \frac{5}{2x}$, $\sqrt{3} \le x \le \sqrt{8}$.

17.5.
$$y = -\ln \cos x$$
, $0 \le x \le p/6$. 17.6. $y = e^x + 6$, $\ln \sqrt{8} \le x \le \ln \sqrt{15}$.

17.7.
$$y = 2 + \arcsin \sqrt{x} + \sqrt{x - x^2}$$
, $1/4 \le x \le 1$.

17.8.
$$y = \ln(x^2 - 1), 2 \le x \le 3.$$

17.9.
$$y = \sqrt{1 - x^2} + \arccos x$$
, $0 \le x \le 8/9$. 17.10. $y = \ln(1 - x^2)$, $0 \le x \le 1/4$.

17.11.
$$y = 2 + \operatorname{ch} x$$
, $0 \le x \le 1$. 17.12. $y = 1 - \ln \cos x$, $0 \le x \le p/6$.

17.13.
$$y = e^x + 13$$
, $\ln \sqrt{15} \le x \le \ln \sqrt{24}$.

17.14.
$$y = -\arccos\sqrt{x} + \sqrt{x - x^2}$$
, $0 \le x \le 1/4$.

17.15.
$$y = 2 - e^x$$
, $\ln \sqrt{3} \le x \le \ln \sqrt{8}$.

17.16.
$$y = \arcsin x - \sqrt{1 - x^2}$$
, $0 \le x \le 15/16$.

17.17.
$$y = 1 - \ln \sin x$$
, $p/3 \le x \le p/2$. 17.18. $y = 1 - \ln (x^2 - 1)$, $3 \le x \le 4$.

17.19.
$$y = \sqrt{x - x^2} - \arccos \sqrt{x} + 5$$
, $1/9 \le x \le 1$.

17.20.
$$y = -\arccos x + \sqrt{1 - x^2} + 1$$
, $0 \le x \le 9/16$.

17.21.
$$y = \ln \sin x$$
, $p/3 \le x \le p/2$. 17.22. $y = \ln 7 - \ln x$, $\sqrt{3} \le x \le \sqrt{8}$.

17.23.
$$y = \operatorname{ch} x + 3$$
, $0 \le x \le 1$.

17.24.
$$y = 1 + \arcsin x - \sqrt{1 - x^2}$$
, $0 \le x \le 3/4$.

17.25.
$$y = \ln \cos x + 2$$
, $0 \le x \le p/6$.

17.26.
$$y = e^x + 26$$
, $\ln \sqrt{8} \le x \le \ln \sqrt{24}$. 17.27. $y = \frac{e^x + e^{-x}}{2} + 3$, $0 \le x \le 2$.

17.28.
$$y = \arccos \sqrt{x} - \sqrt{x - x^2} + 4$$
, $0 \le x \le 1/2$.

17.29.
$$y = \frac{e^x + e^{-x} + 3}{4}$$
, $0 \le x \le 2$. 17.30. $y = e^x + e$, $\ln \sqrt{3} \le x \le \ln \sqrt{15}$.

17.31.
$$y = \frac{1 - e^x - e^{-x}}{2}$$
, $0 \le x \le 3$.

Задача 18. Вычислить длины дуг кривых, заданных параметрическими уравнениями.

$$\begin{cases} x = 5(t - \sin t), \\ y = 5(1 - \cos t), \\ 0 \le t \le p. \end{cases}$$

18.3.
$$\begin{cases} x = 4(\cos t + t \sin t), \\ y = 4(\sin t - t \cos t), \\ 0 \le t \le 2p. \end{cases}$$

$$\begin{cases}
 x = 10\cos^3 t, \\
 y = 10\sin^3 t, \\
 0 \le t \le p/2.
\end{cases}$$

18.7.
$$\begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), \\ p \le t \le 2p. \end{cases}$$

18.9.
$$\begin{cases} x = 3(\cos t + t \sin t), \\ y = 3(\sin t - t \cos t), \\ 0 \le t \le p/3. \end{cases}$$

$$\begin{cases}
 x = 6\cos^3 t, \\
 y = 6\sin^3 t, \\
 0 \le t \le p/3.
\end{cases}$$

$$\begin{cases} x = 2.5(t - \sin t), \\ y = 2.5(1 - \cos t), \\ p/2 \le t \le p. \end{cases}$$

18.2.
$$\begin{cases} x = 3(2\cos t - \cos 2t), \\ y = 3(2\sin t - \sin 2t), \\ 0 \le t \le 2p. \end{cases}$$

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \\ 0 \le t \le p. \end{cases}$$

18.6.
$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ y = e^{t} (\cos t - \sin t), \\ 0 \le t \le p. \end{cases}$$

$$\begin{cases} x = \frac{1}{2}\cos t - \frac{1}{4}\cos 2t, \\ y = \frac{1}{2}\sin t - \frac{1}{4}\sin 2t, \\ p/2 \le t \le 2p/3. \end{cases}$$

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \\ 0 \le t \le p/3. \end{cases}$$

$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ y = e^{t} (\cos t - \sin t), \\ p/2 \le t \le p. \end{cases}$$

$$\begin{cases} x = 3,5(2\cos t - \cos 2t), \\ y = 3,5(2\sin t - \sin 2t), \end{cases}$$

8.14.
$$y = 3.5(2\sin t - \sin 2t)$$
, $0 \le t \le p/2$.

$$\begin{cases} x = 6(\cos t + t \sin t), \\ y = 6(\sin t - t \cos t), \\ 0 \le t \le p. \end{cases}$$

$$\begin{cases}
x = 8\cos^3 t, \\
y = 8\sin^3 t, \\
0 \le t \le p/6.
\end{cases}$$

18.19.
$$\begin{cases} x = 4(t - \sin t), \\ y = 4(1 - \cos t), \\ p/2 \le t \le 2p/3. \end{cases}$$

$$\begin{cases} x = 8(\cos t + t \sin t), \\ y = 8(\sin t - t \cos t), \\ 0 \le t \le p/4. \end{cases}$$

$$\begin{cases}
x = 4\cos^3 t, \\
y = 4\sin^3 t, \\
p/6 \le t \le p/4.
\end{cases}$$

$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \\ 0 \le t \le p/2. \end{cases}$$

$$\begin{cases} x = 2(\cos t + t \sin t), \\ y = 2(\sin t - t \cos t), \\ 0 \le t \le p/2. \end{cases}$$

$$\begin{cases}
 x = 2\cos^3 t, \\
 y = 2\sin^3 t, \\
 0 \le t \le p/4.
\end{cases}$$

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \\ 0 \le t \le p/2. \end{cases}$$

$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ y = e^{t} (\cos t - \sin t), \\ 0 \le t \le 2p. \end{cases}$$

$$\begin{cases} x = 2(2\cos t - \cos 2t), \\ y = 2(2\sin t - \sin 2t), \\ 0 \le t \le p/3. \end{cases}$$

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \\ 0 \le t \le 2p. \end{cases}$$

$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ y = e^{t} (\cos t - \sin t), \\ 0 \le t \le 3p/2. \end{cases}$$

$$\begin{cases} x = 4(2\cos t - \cos 2t), \\ y = 4(2\sin t - \sin 2t), \\ 0 \le t \le p. \end{cases}$$

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \\ 0 \le t \le 3p. \end{cases}$$

$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ y = e^{t} (\cos t - \sin t), \\ p/6 \le t \le p/4. \end{cases}$$

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t, \\ y = (2 - t^2)\cos t + 2t\sin t, \\ 0 \le t \le p. \end{cases}$$

Задача 19. Вычислить длины дуг кривых, заданных уравнениями в полярных координатах.

19.1.
$$r = 3e^{3j/4}, -p/2 \le j \le p/2.$$

19.3.
$$r = \sqrt{2} e^{j}$$
, $-p/2 \le j \le p/2$.

19.5.
$$r = 6e^{12j/5}, -p/2 \le j \le p/2.$$

19.7.
$$r = 4e^{4j/3}$$
, $0 \le j \le p/3$.

19.9.
$$r = 5e^{5j/12}$$
, $0 \le j \le p/3$.

19.11.
$$r = 1 - \sin j$$
, $-p/2 \le j \le -p/6$.

19.13.
$$r = 3(1 + \sin j), -p/6 \le j \le 0.$$

19.15.
$$r = 5(1 - \cos j), -p/3 \le j \le 0.$$

19.17.
$$r = 7(1-\sin j), -p/6 \le j \le p/6.$$

19.19.
$$r = 2j$$
, $0 \le j \le 3/4$.

19.21.
$$r = 2j$$
, $0 \le j \le 5/12$.

19.23.
$$r = 4j$$
, $0 \le j \le 3/4$.

19.25.
$$r = 5j$$
, $0 \le j \le 12/5$.

19.27.
$$r = 8\cos j$$
, $0 \le j \le p/4$.

19.29.
$$r = 2\sin j$$
, $0 \le j \le p/6$.

19.31.
$$r = 6\sin j$$
, $0 \le j \le p/3$.

19.2.
$$r = 4e^{4j/3}, -p/2 \le j \le p/2.$$

19.4.
$$r = 5e^{5j/12}, -p/2 \le j \le p/2.$$

19.6.
$$r = 3e^{3j/4}, 0 \le j \le p/3.$$

19.8.
$$r = \sqrt{2} e^{j}$$
, $0 \le j \le p/3$.

19.10.
$$r = 12e^{12j/5}, 0 \le j \le p/3.$$

19.12.
$$r = 2(1-\cos j), -p \le j \le -p/2.$$

19.14.
$$r = 4(1-\sin j)$$
, $0 \le j \le p/6$.

19.16.
$$r = 6(1 + \sin j), -p/2 \le j \le 0.$$

19.18.
$$r = 8(1 - \cos j), -2p/3 \le j \le 0.$$

19.20.
$$r = 2j$$
, $0 \le j \le 4/3$.

19.22.
$$r = 2j$$
, $0 \le j \le 12/5$.

19.24.
$$r = 3j$$
, $0 \le j \le 4/3$.

19.26.
$$r = 2\cos j$$
, $0 \le j \le p/6$.

19.28.
$$r = 6\cos j$$
, $0 \le j \le p/3$.

19.30.
$$r = 8\sin j$$
, $0 \le j \le p/4$.

Задача 20. Вычислить объемы тел, ограниченных поверхностями.

20.1.
$$\frac{x^2}{9} + y^2 = 1$$
, $z = y$, $z = 0$ $(y \ge 0)$. 20.2. $z = x^2 + 4y^2$, $z = 2$.

20.3.
$$\frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1$$
, $z = 0$, $z = 3$.

20.4.
$$\frac{x^2}{9} + \frac{y^2}{4} - \frac{z^2}{36} = -1$$
, $z = 12$.

20.5.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
, $z = 1$, $z = 0$.

20.6.
$$x^2 + y^2 = 9$$
, $z = y$, $z = 0$ $(y \ge 0)$.

20.7.
$$z = x^2 + 9y^2$$
, $z = 3$.

20.8.
$$\frac{x^2}{4} + y^2 - z^2 = 1$$
, $z = 0$, $z = 3$.

20.9.
$$\frac{x^2}{9} + \frac{y^2}{16} - \frac{z^2}{64} = -1$$
, $z = 16$.

20.10.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{16} = 1$$
, $z = 2$, $z = 0$.

20.11.
$$\frac{x^2}{3} + \frac{y^2}{4} = 1$$
, $z = y\sqrt{3}$, $z = 0$ $(y \ge 0)$. 20.12. $z = 2x^2 + 8y^2$, $z = 4$.

20.12.
$$z = 2x^2 + 8y^2$$
, $z = 4$

20.13.
$$\frac{x^2}{81} + \frac{y^2}{25} - z^2 = 1$$
, $z = 0$, $z = 2$.

20.14.
$$\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{36} = -1$$
, $z = 12$.

20.15.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{36} = 1$$
, $z = 3$, $z = 0$.

20.16.
$$\frac{x^2}{3} + \frac{y^2}{16} = 1$$
, $z = y\sqrt{3}$, $z = 0$ $(y \ge 0)$.

20.17.
$$z = x^2 + 5y^2$$
, $z = 5$.

20.18.
$$\frac{x^2}{9} + \frac{y^2}{4} - z^2 = 1$$
, $z = 0$, $z = 4$.

20.19.
$$\frac{x^2}{9} + \frac{y^2}{25} - \frac{z^2}{100} = -1, \quad z = 20.$$

20.20.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{64} = 1$$
, $z = 4$, $z = 0$.

20.21.
$$\frac{x^2}{27} + \frac{y^2}{25} = 1$$
, $z = \frac{y}{\sqrt{3}}$, $z = 0$ $(y \ge 0)$. 20.22. $z = 4x^2 + 9y^2$, $z = 6$.

$$20.22. \ z = 4x^2 + 9y^2, \ z = 6.$$

20.23.
$$x^2 + \frac{y^2}{4} - z^2 = 1$$
, $z = 0$, $z = 3$.

20.24.
$$\frac{x^2}{25} + \frac{y^2}{9} - \frac{z^2}{100} = -1, z = 20.$$

20.25.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{100} = 1$$
, $z = 5$, $z = 0$.

20.26.
$$\frac{x^2}{27} + y^2 = 1$$
, $z = \frac{y}{\sqrt{3}}$, $z = 0$ $(y \ge 0)$.

$$20.27. \ z = 2x^2 + 18y^2, \ z = 6.$$

20.28.
$$\frac{x^2}{25} + \frac{y^2}{9} - z^2 = 1$$
, $z = 0$, $z = 2$.

20.29.
$$\frac{x^2}{16} + \frac{y^2}{9} - \frac{z^2}{64} = -1$$
, $z = 16$.

20.30.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{144} = 1$$
, $z = 6$, $z = 0$.

20.31.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{196} = 1$$
, $z = 7$, $z = 0$.

Задача 21. Вычислить объемы тел, образованных вращением фигур, ограниченных графиками функций. В вариантах 1–16 ось вращения Ox, в вариантах 17–31 ось вращения Oy.

21.1.
$$y = -x^2 + 5x - 6$$
, $y = 0$.

21.2.
$$2x - x^2 - y = 0$$
, $2x^2 - 4x + y = 0$.

21.3.
$$y = 3\sin x$$
, $y = \sin x$, $0 \le x \le p$.

21.4.
$$y = 5\cos x$$
, $y = \cos x$, $x = 0$, $x \ge 0$.

21.5.
$$y = \sin^2 x$$
, $x = p/2$, $y = 0$.

21.6.
$$x = \sqrt[3]{y-2}$$
, $x = 1$, $y = 1$.

21.7.
$$y = xe^x$$
, $y = 0$, $x = 1$.

21.8.
$$y = 2x - x^2$$
, $y = -x + 2$, $x = 0$.

21.9.
$$y = 2x - x^2$$
, $y = -x + 2$.

21.10.
$$y = e^{1-x}$$
, $y = 0$, $x = 0$, $x = 1$.

21.11.
$$y = x^2$$
, $y^2 - x = 0$.

21.12.
$$x^2 + (y-2)^2 = 1$$
.

21.13.
$$y = 1 - x^2$$
, $x = 0$, $x = \sqrt{y - 1}$, $x = 1$. 21.14. $y = x^2$, $y = 1$, $x = 2$.

21.14.
$$y = x^2$$
, $y = 1$, $x = 2$

21.15.
$$y = x^2$$
, $y = \sqrt{x}$.

21.16.
$$y = \sin(px/2)$$
, $y = x^2$.

21.17. $y = \arccos(x/3)$, $y = \arccos x$, y = 0.

21.18.
$$y = \arcsin(x/5)$$
, $y = \arcsin x$, $y = p/2$.

21.19.
$$y = x^2$$
, $x = 2$, $y = 0$.

21.20.
$$y = x^2 + 1$$
, $y = x$, $x = 0$, $y = 0$.

21.21.
$$y = \sqrt{x-1}$$
, $y = 0$, $y = 1$, $x = 0.5$. 21.22. $y = \ln x$, $x = 2$, $y = 0$.

21.22.
$$y = \ln x$$
, $x = 2$, $y = 0$.

21.23.
$$y = (x-1)^2$$
, $y = 1$.

21.24.
$$y^2 = x - 2$$
, $y = 0$, $y = x^3$, $y = 1$.

21.25.
$$y = x^3$$
, $y = x^2$.

21.26.
$$y = \arccos(x/5)$$
, $y = \arccos(x/3)$, $y = 0$.

21.27.
$$y = \arcsin x$$
, $y = \arccos x$, $y = 0$. 21.28. $y = x^2 - 2x + 1$, $x = 2$, $y = 0$.

21.28.
$$y = x^2 - 2x + 1$$
, $x = 2$, $y = 0$.

21.29.
$$y = x^3$$
, $y = x$.

21.30.
$$y = \arccos x$$
, $y = \arcsin x$, $x = 0$.

21.31.
$$y = (x-1)^2$$
, $x = 0$, $x = 2$, $y = 0$.

Задача 22

Варианты 1-10

Вычислить силу, с которой вода давит на плотину, сечение которой имеет форму равнобочной трапеции (рис. 2). Плотность воды r = 1000 кг/м³, ускорение свободного падения g положить равным 10 м/с².

У к а з а н и е. Давление на глубине x равно rgx.

22.1.
$$a = 4.5 \text{ m}, b = 6.6 \text{ m}, h = 3.0 \text{ m}.$$

22.2.
$$a = 4.8 \text{ m}, b = 7.2 \text{ m}, h = 3.0 \text{ m}.$$

22.3.
$$a = 5.1 \text{ M}, b = 7.8 \text{ M}, h = 3.0 \text{ M}.$$

22.4.
$$a = 5.4 \text{ m}$$
, $b = 8.4 \text{ m}$, $h = 3.0 \text{ m}$.

22.5.
$$a = 5.7 \text{ M}, b = 9.0 \text{ M}, h = 4.0 \text{ M}.$$

22.6.
$$a = 6.0 \text{ m}, b = 9.6 \text{ m}, h = 4.0 \text{ m}.$$

22.7.
$$a = 6.3 \text{ M}, b = 10.2 \text{ M}, h = 4.0 \text{ M}.$$

22.8.
$$a = 6,6 \text{ M}, b = 10,8 \text{ M}, h = 4,0 \text{ M}.$$

22.9.
$$a = 6.9 \text{ m}, b = 11.4 \text{ m}, h = 5.0 \text{ m}.$$

22.10.
$$a = 7,2$$
 M, $b = 12,0$ M, $h = 5,0$ M.

Варианты 11-20

Определить работу (в джоулях), совершаемую при подъеме спутника с поверхности Земли на высоту H км. Масса спутника равна m т, радиус Земли $R_{_3}=6380$ км Ускорение свободного падения g у поверхности Земли положить равным 10 м/c^2 .

22.11.
$$m = 7,0$$
 т, $H = 200$ км.

22.12.
$$m = 7,0$$
 т, $H = 250$ км.

22.13.
$$m = 6,0$$
 т, $H = 300$ км.

22.14.
$$m = 6,0$$
 т, $H = 350$ км.

22.15.
$$m = 5,0$$
 т, $H = 400$ км.

22.16.
$$m = 5,0$$
 т, $H = 450$ км.

22.17.
$$m = 4,0$$
 т, $H = 500$ км.

22.18.
$$m = 4,0$$
 т, $H = 550$ км.

22.19.
$$m = 3.0$$
 т, $H = 600$ км.

22.20.
$$m = 3,0$$
 т, $H = 650$ км.

Варианты 21-31

Цилиндр наполнен газом под атмосферным давлением (103,3 кПа). Считая газ идеальным, определить работу (в джоулях) при изотермическом сжатии газа поршнем, переместившимся внутрь цилиндра на h м (рис. 3).

У к а з а н и е. Уравнение состояния газа pV = const, где p – давление, V – объем.

22.21.
$$H = 0.4 \text{ M}$$
, $h = 0.35 \text{ M}$, $R = 0.1 \text{ M}$. 22.22. $H = 0.4 \text{ M}$, $h = 0.3 \text{ M}$, $R = 0.1 \text{ M}$.

22.23.
$$H = 0.4 \text{ m}, h = 0.2 \text{ m}, R = 0.1 \text{ m}.$$
 22.24. $H = 0.8 \text{ m}, h = 0.7 \text{ m}, R = 0.2 \text{ m}.$

22.25.
$$H = 0.8$$
 м, $h = 0.6$ м, $R = 0.2$ м. 22.26. $H = 0.8$ м, $h = 0.4$ м, $R = 0.2$ м.

22.27.
$$H = 1,6 \text{ M}, h = 1,4 \text{ M}, R = 0,3 \text{ M}.$$
 22.28. $H = 1,6 \text{ M}, h = 1,2 \text{ M}, R = 0,3 \text{ M}.$

22.29.
$$H = 1,6 \text{ M}, h = 0,8 \text{ M}, R = 0,3 \text{ M}.$$
 22.30. $H = 2,0 \text{ M}, h = 1,5 \text{ M}, R = 0,4 \text{ M}.$

22.31.
$$H = 2.0 \text{ M}, h = 1.0 \text{ M}, R = 0.4 \text{ M}.$$

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Теоретические вопросы

- 1. Основные понятия теории дифференциальных уравнений. Задача Коши для дифференциального уравнения первого порядка. Формулировка теоремы существования и единственности решения задачи Коши.
- 2. Дифференциальные уравнения первого порядка: с разделяющимися переменными однородные и приводящиеся к однородным.
 - 3. Линейные уравнения первого порядка, уравнение Бернулли.
 - 4. Уравнения в полных дифференциалах.
- 5. Приближенное интегрирование дифференциальных уравнений первого порядка методом изоклин.
- 6. Дифференциальные уравнения высших порядков. Задача Коши. Формулировка теоремы существования и единственности решения задачи Коши. Общее и частною решения. Общий и частный интегралы.
 - 7. Дифференциальные уравнения, допускающие понижение порядка.
- 8. Линейный дифференциальный оператор, его свойства. Линейное однороднос дифференциальное уравнение, свойства его решений.
- 9. Линейно-зависимые и линейно-независимые системы функций. Необходимос условие линейной зависимости системы функций.
- 10. Условие линейной независимости решений линейного однородного дифференциального уравнения.
- 11. Линейное однородное дифференциальное уравнение. Фундаментальная система решений. Структура общего решения.
- 12. Линейное неоднородное дифференциальное уравнение. Структура общего решения.
 - 13. Метод Лагранжа вариации произвольных постоянных.
- 14. Линейные однородные дифференциальные уравнения с постоянными коэффициентами (случай простых корней характеристического уравнения).
- 15. Линейные однородные дифференциальные уравнения с постоянными коэффициентами (случай кратных корней характеристического уравнения).
 - 16. Линейные неоднородные дифференциальные уравнения с постоянными

коэффициентами. Метод подбора.

Теоретические упражнения

- 1. Пусть y_1 решение дифференциального уравнения L[y]=0. Показать, что введение новой искомой функции $u=y/y_1$ приводит к дифференциальному уравнению допускающему понижение порядка.
- 2. Написать уравнение линии, на которой могут находиться точки перегиба графиког решений уравнения y' = f(x, y).
- 3. Написать уравнение линии, на которой могут находиться точки графиков решений уравнения y' = f(x, y), соответствующие максимумам и минимумам. Как отличити максимум от минимума?
- 4. Линейное дифференциальное уравнение останется линейным при заменє независимой переменной x = j(t), где функция j(t) произвольная, но дифференцируемая достаточное число раз: Доказать это утверждение для линейного дифференциального уравнения второго порядка.
- 5. Доказать, что линейное дифференциальное уравнение остается линейный при преобразовании искомой функции

$$y = a(x)z + b(x).$$

Здесь z — новая искомая функция, a(x) и b(x) — произвольные, но достаточное число раз дифференцируемые функции.

- 6. Составить общее .peшение уравнения y' + p(x)y = 0, если известно ненулевоє частное решение y_1 этого уравнения.
- 7. Показать, что произвольные дважды дифференцируемые функции $y_1(x)$ и $y_2(x)$ являются решениями линейного дифференциального уравнения.

$$\begin{vmatrix} y & y_1 & y_2 \\ y' & y_1' & y_2' \\ y'' & y_1'' & y_2'' \end{vmatrix} = 0.$$

8. Составить однородное линейное дифференциальное уравнение второго порядка имеющее решения $y_1 = x\,,\; y_2 = x^2\,.$

Показать, что функции x и x^2 линейно -независимы в интервале $(-\infty, \infty)$.

Убедиться в том, что определитель Вронского для этих функций равен нулю в точко x=0. Почему это не противоречит необходимому условию линейной независимости системы решений линейного однородного дифференциального уравнения?

9. Найти общее решение неоднородного линейного дифференциального уравнения второго порядка, если известны три линейно-независимые частные его решения $y_1,\ y_2$ и y_3 .

10. Доказать, что для того чтобы любое решение линейного однородного дифференциального уравнения с постоянными коэффициентами удовлетворяло условик $\lim_{x\to +\infty}y(x)=0$, необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные действительные части.

Расчетные задания

Задача 1. Найти общий интеграл дифференциального уравнения. (Ответ представити в виде y(x,y) = C.)

1.1.
$$4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$
.

1.3.
$$\sqrt{4 + y^2} dx - y dy = x^2 y dy$$
.

1.5.
$$6xdx - 6ydy = 2x^2ydy - 3xy^2dx$$
.

1.7.
$$(e^{2x} + 5)dy + ye^{2x} dx = 0$$
.

1.9.
$$6xdx - 6vdy = 3x^2vdv - 2xv^2dx$$
.

1.11.
$$y(4+e^x)dy - e^x dx = 0$$
.

1.13.
$$2xdx - 2ydy = x^2ydy - 2xy^2dx$$
.

1.15.
$$(e^x + 8) dy - y e^x dx = 0$$
.

1.17.
$$6xdx - ydy = yx^2dy - 3xy^2dx$$
.

1.19.
$$(1+e^x)y' = ye^x$$
.

1.2.
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$
.

1.4.
$$\sqrt{3 + y^2} dx - y dy = x^2 y dy$$
.

1.6.
$$x\sqrt{3+y^2}dx + y\sqrt{2+x^2}dy = 0$$
.

1.8.
$$y'y\sqrt{\frac{1-x^2}{1-y^2}} + 1 = 0.$$

1.10.
$$x\sqrt{5+y^2}dx + y\sqrt{4+x^2}dy = 0$$
.

1.12.
$$\sqrt{4-x^2}y' + xy^2 + x = 0$$
.

1.14.
$$x\sqrt{4+y^2}dx + y\sqrt{1+x^2}dy = 0$$
.

1.16.
$$\sqrt{5 + y^2} + y'y\sqrt{1 - x^2} = 0$$
.

1.18.
$$y \ln y + xy' = 0$$
.

1.20.
$$\sqrt{1-x^2}y' + xy^2 + x = 0$$
.

1.21.
$$6xdx - 2ydy = 2yx^2dy - 3xy^2dx$$
. 1.22. $y(1 + \ln y) + xy' = 0$.

1.22.
$$y(1+\ln y) + xy' = 0$$
.

1.23.
$$(3 + e^x)yy' = e^x$$
.

1.24.
$$\sqrt{3+y^2} + \sqrt{1-x^2}yy' = 0$$
.

$$1.25. xdx - ydy = yx^2dy - xy^2dx.$$

1.26.
$$\sqrt{5+y^2}dx + 4(x^2y + y)dy = 0.$$

1.27.
$$(1+e^x)yy'=e^x$$
.

1.28.
$$3(x^2y + y)dy + \sqrt{2 + y^2}dx = 0.$$

1.29.
$$2xdx - vdv = vx^2dv - xv^2dx$$
.

1.30.
$$2x + 2xy^2 + \sqrt{2 - x^2}y' = 0$$
.

$$1.31. \ 20xdx - 3ydy = 3x^2ydy - 5xy^2dx.$$

Задача 2. Найти общий интеграл дифференциального уравнения.

2.1.
$$y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$$
.

2.2.
$$xy' = \frac{3y^3 + 2yx^2}{2y^2 + x^2}$$
.

2.3.
$$y' = \frac{x+y}{x-y}$$
.

$$2.4. \ xy' = \sqrt{x^2 + y^2} + y.$$

2.5.
$$2y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 3$$
.

2.6.
$$xy' = \frac{3y^3 + 4yx^2}{2y^2 + 2x^2}$$
.

$$2.7. \ y' = \frac{x + 2y}{2x - y}.$$

$$2.8. \ xy' = 2\sqrt{x^2 + y^2} + y.$$

2.9.
$$3y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 4$$
.

$$2.10. xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}.$$

2.11.
$$y' = \frac{x^2 + xy - y^2}{x^2 - 2xy}$$
.

$$2.12. \ xy' = \sqrt{2x^2 + y^2} + y.$$

2.13.
$$y' = \frac{y^2}{x^2} + 6\frac{y}{x} + 6$$
.

$$2.14. xy' = \frac{3y^3 + 8yx^2}{2y^2 + 4x^2}.$$

2.15.
$$y' = \frac{x^2 + 2xy - y^2}{2x^2 - 2xy}$$
.

$$2.16. \ xy' = 3\sqrt{x^2 + y^2} + y.$$

2.17.
$$2y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 8$$
.

2.18.
$$xy' = \frac{3y^3 + 10yx^2}{2y^2 + 5x^2}$$
.

2.19.
$$y' = \frac{x^2 + 3xy - y^2}{3x^2 - 2xy}$$
.

2.21.
$$y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12$$
.

2.23.
$$y' = \frac{x^2 + xy - 3y^2}{x^2 - 4xy}$$
.

2.25.
$$4y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 5$$
.

2.27.
$$y' = \frac{x^2 + xy - 5y^2}{x^2 - 6xy}$$
.

2.29.
$$3y' = \frac{y^2}{x^2} + 10\frac{y}{x} + 10$$
.

2.31.
$$y' = \frac{x^2 + 2xy - 5y^2}{2x^2 - 6xy}$$
.

$$2.20. \ xy' = 3\sqrt{2x^2 + y^2} + y.$$

2.22.
$$xy' = \frac{3y^3 + 12yx^2}{2y^2 + 6x^2}$$
.

2.24.
$$xy' = 2\sqrt{3x^2 + y^2} + y$$
.

2.26.
$$xy' = \frac{3y^3 + 14yx^2}{2y^2 + 7x^2}$$
.

2.28.
$$xy' = 4\sqrt{x^2 + y^2} + y$$
.

2.30.
$$xy' = 4\sqrt{2x^2 + y^2} + y$$
.

Задача 3. Найти общий интеграл дифференциального уравнения.

3.1.
$$y' = \frac{x+2y-3}{2x-2}$$
.

3.3.
$$y' = \frac{3y - x - 4}{3x + 3}$$
.

3.5.
$$y' = \frac{x+y-2}{3x-y-2}$$
.

3.7.
$$y' = \frac{x+y-8}{3x-y-8}$$
.

$$3.9. \ y' = \frac{3y+3}{2x+y-1}.$$

3.11.
$$y' = \frac{x - 2y + 3}{-2x - 2}$$
.

3.2.
$$y' = \frac{x + y - 2}{2x - 2}$$
.

3.4.
$$y' = \frac{2y-2}{x+y-2}$$
.

3.6.
$$y' = \frac{2x + y - 3}{x - 1}$$
.

3.8.
$$y' = \frac{x+3y+4}{3x-6}$$
.

3.10.
$$y' = \frac{x+2y-3}{4x-y-3}$$
.

3.12.
$$y' = \frac{x+8y-9}{10x-y-9}$$
.

3.13.
$$y' = \frac{2x+3y-5}{5x-5}$$
.

3.15.
$$y' = \frac{x+3y-4}{5x-y-4}$$
.

3.17.
$$y' = \frac{x+2y-3}{x-1}$$
.

3.19.
$$y' = \frac{5y+5}{4x+3y-1}$$
.

3.21.
$$y' = \frac{x+y+2}{x+1}$$
.

3.23.
$$y' = \frac{2x + y - 3}{2x - 2}$$
.

3.25.
$$y' = \frac{x+5y-6}{7x-y-6}$$
.

3.27.
$$y' = \frac{2x + y - 1}{2x - 2}$$
.

3.29.
$$y' = \frac{6y-6}{5x+4y-9}$$
.

3.31.
$$y' = \frac{y+2}{2x+y-4}$$
.

3.14.
$$y' = \frac{4y-8}{3x+2y-7}$$
.

3.16.
$$y' = \frac{y - 2x + 3}{x - 1}$$
.

3.18.
$$y' = \frac{3x + 2y - 1}{x + 1}$$
.

3.20.
$$y' = \frac{x+4y-5}{6x-y-5}$$
.

3.22.
$$y' = \frac{2x + y - 3}{4x - 4}$$
.

3.24.
$$y' = \frac{y}{2x + 2y - 2}$$
.

3.26.
$$y' = \frac{x+y-4}{x-2}$$
.

3.28.
$$y' = \frac{3y - 2x + 1}{3x + 3}$$
.

3.30.
$$y' = \frac{x+6y-7}{8x-y-7}$$
.

Задача 4. Найти решение задачи Коши.

4.1.
$$y' - y/x = x^2$$
, $y(1) = 0$.

4.2.
$$y' - y \operatorname{ctg} x = 2x \sin x$$
, $y(p/2) = 0$.

4.3.
$$y' + y \cos x = \frac{1}{2} \sin 2x$$
, $y(0) = 0$. 4.4. $y' + y \log x = \cos^2 x$, $y(p/4) = 1/2$.

4.5.
$$y' - \frac{y}{x+2} = x^2 + 2x$$
, $y(-1) = 3/2.4.6$. $y' - \frac{1}{x+1}y = e^x(x+1)$, $y(0) = 1$.

4.7.
$$y' - \frac{y}{x} = x \sin x$$
, $y\left(\frac{p}{2}\right) = 1$. 4.8. $y' + \frac{y}{x} = \sin x$, $y(p) = \frac{1}{p}$.

4.8.
$$y' + \frac{y}{x} = \sin x$$
, $y(p) = \frac{1}{p}$.

4.9.
$$y' + \frac{y}{2x} = x^2$$
, $y(1) = 1$.

4.10.
$$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, \quad y(0) = \frac{2}{3}.$$

4.11.
$$y' - \frac{2x-5}{x^2}y = 5$$
, $y(2) = 4$.

4.12.
$$y' + \frac{y}{x} = \frac{x+1}{x}e^x$$
, $y(1) = e$.

4.13.
$$y' - \frac{y}{x} = -2\frac{\ln x}{x}$$
, $y(1) = 1$.

4.14.
$$y' - \frac{y}{x} = -\frac{12}{x^3}$$
, $y(1) = 4$.

4.15.
$$y' + \frac{2}{x}y = x^3$$
, $y(1) = -5/6$.

4.16.
$$y' + \frac{y}{x} = 3x$$
, $y(1) = 1$.

4.17.
$$y' - \frac{2xy}{1+x^2} = 1 + x^2$$
, $y(1) = 3$.

4.18.
$$y' + \frac{1-2x}{x^2}y = 1$$
, $y(1) = 1$.

4.19.
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
, $y(1) = 1$.

4.20.
$$y' + 2xy = -2x^3$$
, $y(1) = e^{-1}$.

4.21.
$$y' + \frac{xy}{2(1-x^2)} = \frac{x}{2}$$
, $y(0) = \frac{2}{3}$.

4.22.
$$y' + xy = -x^3$$
, $y(0) = 3$.

4.23.
$$y' - \frac{2}{x+1}y = e^x(x+1)^2$$
, $y(0) = 1$.

4.24.
$$y' + 2xy = xe^{-x^2} \sin x$$
, $y(0) = 1$.

4.25.
$$y'-2y/(x+1)=(x+1)^3$$
, $y(0)=1/2$. 4.26. $y'-y\cos x=-\sin 2x$, $y(0)=3$.

4.26.
$$y' - y \cos x = -\sin 2x$$
, $y(0) = 3$.

4.27.
$$y' - 4xy = -4x^3$$
, $y(0) = -1/2$.

4.28.
$$y' - \frac{y}{x} = -\frac{\ln x}{x}$$
, $y(1) = 1$.

4.29.
$$y' - 3x^2y = x^2(1+x^3)/3$$
, $y(0) = 0$. 4.30. $y' - y\cos x = \sin 2x$, $y(0) = -1$.

4.30.
$$y' - y \cos x = \sin 2x$$
, $y(0) = -1$.

4.31.
$$y' - y/x = -2/x^2$$
, $y(1) = 1$.

Задача 5. Решить задачу Коши.

5.1.
$$y^2 dx + (x + e^{2/y}) dy = 0$$
, $y|_{x=e} = 2$.

5.2.
$$(y^4 e^y + 2x) y' = y$$
, $y|_{x=0} = 1$.

5.3.
$$y^2 dx + (xy - 1) dy = 0$$
, $y|_{x=1} = e$.

5.4.
$$2(4y^2 + 4y - x)y' = 1$$
, $y|_{x=0} = 0$.

5.5.
$$(\cos 2y \cos^2 y - x)y' = \sin y \cos y$$
, $y|_{x=1/4} = p/3$.

5.6.
$$(x\cos^2 y - y^2)y' = y\cos^2 y$$
, $y|_{x=p} = p/4$.

5.7.
$$e^{y^2} (dx - 2xydy) = ydy$$
, $y|_{y=0} = 0$.

5.8.
$$(104y^3 - x)y' = 4y$$
, $y|_{y=8} = 1$.

5.9.
$$dx + (xy - y^3)dy = 0$$
, $y|_{x=-1} = 0$.

5.10.
$$(3y\cos 2y - 2y^2\sin 2y - 2x)y' = y$$
, $y|_{x=16} = p/4$.

5.11.
$$8(4y^3 + xy - y)y' = 1$$
, $y|_{x=0} = 0$.

5.12.
$$(2 \ln y - \ln^2 y) dy = y dx - x dy$$
, $y|_{x=4} = e^2$.

5.13.
$$2(x+y^4)y'=y$$
, $y|_{y=-2}=-1$.

5.14.
$$y^3(y-1)dx + 3xy^2(y-1)dy = (y+2)dy$$
, $y|_{x=1/4} = 2$.

5.15.
$$2y^2 dx + (x + e^{1/y}) dy = 0$$
, $y|_{x=e} = 1$.

5.16.
$$\left(xy + \sqrt{y}\right)dy + y^2dx = 0$$
, $y\Big|_{x=-1/2} = 4$.

5.17.
$$\sin 2y dx = (\sin^2 2y - 2\sin^2 y + 2x) dy$$
, $y|_{x=-1/2} = p/4$.

5.18.
$$(y^2 + 2y - x)y' = 1$$
, $y|_{x=2} = 0$.

5.19.
$$2y\sqrt{y}dx - (6x\sqrt{y} + 7)dy = 0$$
, $y|_{x=-4} = 1$.

5.20.
$$dx = (\sin y + 3\cos y + 3x)dy$$
, $y|_{x=e^{p/2}} = p/2$.

5.21.
$$2(\cos^2 y \cdot \cos 2y - x)y' = \sin 2y$$
, $y|_{x=3/2} = 5p/4$.

5.22. ch
$$ydx = (1 + x \operatorname{sh} x) dy$$
, $y|_{x=1} = \ln 2$.

5.23.
$$(13y^3 - x)y' = 4y$$
, $y|_{x=5} = 1$.

5.24.
$$y^2(y^2+4)dx+2xy(y^2+4)dy=2dy$$
, $y|_{x=p/8}=2$.

5.25.
$$(x + \ln^2 y - \ln y) y' = y/2$$
, $y|_{x=2} = 1$.

5.26.
$$(2xy + \sqrt{y})dy + 2y^2dx = 0$$
, $y|_{x=-1/2} = 1$.

5.27.
$$ydx + (2x - 2\sin^2 y - y\sin 2y)dy = 0$$
, $y|_{x=3/2} = p/4$.

5.28.
$$2(y^3 - y + xy)dy = dx$$
, $y|_{x=-2} = 0$.

5.29.
$$(2y + x \operatorname{tg} y - y^2 \operatorname{tg} y) dy = dx$$
, $y|_{x=0} = p$.

5.30.
$$4y^2 dx + (e^{1/(2y)} + x) dy = 0$$
, $y|_{x=e} = 1/2$.

5.31.
$$dx + (2x + \sin 2y - 2\cos^2 y)dy = 0$$
, $y|_{x=-1} = 0$.

Задача 6. Найти решение задачи Коши.

6.1.
$$y' + xy = (1+x)e^{-x}y^2$$
, $y(0) = 1$.

6.2.
$$xy' + y = 2y^2 \ln x$$
, $y(1) = 1/2$.

6.3.
$$2(xy' + y) = xy^2$$
, $y(1) = 2$.

6.4.
$$y' + 4x^3y = 4(x^3 + 1)e^{-4x}y^2$$
, $y(0) = 1$.

6.5.
$$xy' - y = -y^2 (\ln x + 2) \ln x$$
, $y(1) = 1$.

6.6.
$$2(y' + xy) = (1+x)e^{-x}y^2$$
, $y(0) = 2$.

6.7.
$$3(xy' + y) = y^2 \ln x$$
, $y(1) = 3$.

6.8.
$$2y' + y\cos x = y^{-1}\cos x(1+\sin x), \quad y(0) = 1.$$

6.9.
$$y' + 4x^3y = 4y^2 e^{4x} (1-x^3), y(0) = -1.$$

6.10.
$$3y' + 2xy = 2xy^{-2} e^{-2x^2}, \quad y(0) = -1.$$

6.11.
$$2xy' - 3y = -(5x^2 + 3)y^3$$
, $y(1) = 1/\sqrt{2}$.

6.12.
$$3xy' + 5y = (4x - 5)y^4$$
, $y(1) = 1$.

6.13.
$$2y' + 3y\cos x = e^{2x}(2 + 3\cos x)y^{-1}, y(0) = 1.$$

6.14.
$$3(xy' + y) = xy^2$$
, $y(1) = 3$.

6.15.
$$y' - y = 2xy^2$$
, $y(0) = 1/2$.

6.16.
$$2xy' - 3y = -(20x^2 + 12)y^3$$
, $y(1) = 1/2\sqrt{2}$.

6.17.
$$y' + 2xy = 2x^3y^3$$
, $y(0) = \sqrt{2}$.

6.18.
$$xy' + y = y^2 \ln x$$
, $y(1) = 1$.

6.19.
$$2y' + 3y\cos x = (8 + 12\cos x)e^{2x}y^{-1}, y(0) = 2.$$

6.20.
$$4y' + x^3y = (x^3 + 8)e^{-2x}y^2$$
, $y(0) = 1$.

6.21.
$$8xy' - 12y = -(5x^2 + 3)y^3$$
, $y(1) = \sqrt{2}$.

6.22.
$$2(y'+y)=xy^2$$
, $y(0)=2$.

6.23.
$$y' + xy = (x-1)e^x y^2$$
, $y(0) = 1$.

6.24.
$$2y' + 3y\cos x = -e^{-2x}(2 + 3\cos x)y^{-1}, \quad y(0) = 1.$$

6.25.
$$y' - y = xy^2$$
, $y(0) = 1$.

6.26.
$$2(xy' + y) = y^2 \ln x$$
, $y(1) = 2$.

6.27.
$$y' + y = xy^2$$
, $y(0) = 1$.

6.28.
$$y' + 2y \operatorname{cth} x = y^2 \operatorname{ch} x$$
, $y(1) = 1/\operatorname{sh} 1$.

6.29.
$$2(y'+xy)=(x-1)e^x y^2$$
, $y(0)=2$.

6.30.
$$y' - y \operatorname{tg} x = -(2/3) y^4 \sin x$$
, $y(0) = 1$.

6.31.
$$xy' + y = xy^2$$
, $y(1) = 1$.

Задача 7. Найти общий интеграл дифференциального уравнения.

7.1.
$$3x^2 e^y dx + (x^3 e^y - 1) dy = 0$$
.

7.2.
$$\left(3x^{2} + \frac{2}{y}\cos\frac{2x}{y}\right)dx - \frac{2x}{y^{2}}\cos\frac{2x}{y}dy = 0.$$

7.3.
$$(3x^2 + 4y^2)dx + (8xy + e^y)dy = 0$$
.

7.4.
$$\left(2x-1-\frac{y}{x^2}\right)dx - \left(2y-\frac{1}{x}\right)dy = 0.$$

7.5.
$$(y^2 + y \sec^2 x) dx + (2xy + tg x) dy = 0$$
.

7.6.
$$(3x^2y + 2y + 3)dx + (x^3 + 2x + 3y^2)dy = 0$$
.

7.7.
$$\left(\frac{x}{\sqrt{x^2 + y^2}} + \frac{1}{x} + \frac{1}{y}\right) dx + \left(\frac{y}{\sqrt{x^2 + y^2}} + \frac{1}{x} - \frac{x}{y^2}\right) dy = 0.$$

7.8.
$$\left[\sin 2x - 2\cos(x+y)\right]dx - 2\cos(x+y)dy = 0.$$

7.9.
$$(xy^2 + x/y^2)dx + (x^2y - x^2/y^3)dy = 0.$$

7.10.
$$\left(\frac{1}{x^2} + \frac{3y^2}{x^4}\right) dx - \frac{2y}{x^3} dy = 0.$$

$$7.11. \frac{y}{x^2} \cos \frac{y}{x} dx - \left(\frac{1}{x} \cos \frac{y}{x} + 2y\right) dy = 0.$$

7.12.
$$\left(\frac{x}{\sqrt{x^2 + y^2}} + y\right) dx + \left(x + \frac{y}{\sqrt{x^2 + y^2}}\right) dy = 0.$$

7.13.
$$\frac{1+xy}{x^2y}dx + \frac{1-xy}{xy^2}dy = 0.$$

7.14.
$$\frac{dx}{y} - \frac{x + y^2}{y^2} dy = 0.$$

7.15.
$$\frac{y}{x^2}dx - \frac{xy+1}{x}dy = 0.$$

7.16.
$$\left(xe^{x} + \frac{y}{x^{2}}\right) dx - \frac{1}{x} dy = 0.$$

7.17.
$$\left(10xy - \frac{1}{\sin y}\right) dx + \left(5x^2 + \frac{x\cos y}{\sin^2 y} - y^2\sin y^3\right) dy = 0.$$

7.18.
$$\left(\frac{y}{x^2 + y^2} + e^x\right) dx - \frac{xdy}{x^2 + y^2} = 0.$$

7.19.
$$e^{y} dx + (\cos y + x e^{y}) dy = 0.$$

7.20.
$$(y^3 + \cos x)dx + (3xy^2 + e^y)dy = 0.$$

7.21.
$$xe^{y^2} dx + (x^2 y e^{y^2} + tg^2 y) dy = 0.$$

7.22.
$$(5xy^2 - x^3)dx + (5x^2y - y)dy = 0.$$

7.23.
$$\left[\cos(x+y^2) + \sin x\right] dx + 2y\cos(x+y^2) dy = 0.$$

7.24.
$$(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0.$$

$$7.25. \left(\sin y + y\sin y + \frac{1}{x}\right) dx + \left(x\cos y - \cos x + \frac{1}{y}\right) dy = 0.$$

7.26.
$$\left(1 + \frac{1}{y}e^{x/y}\right) dx + \left(1 - \frac{x}{y^2}e^{x/y}\right) dy = 0.$$

7.27.
$$\frac{(x-y)dx + (x+y)dy}{x^2 + y^2} = 0.$$

7.28.
$$2(3xy^2 + 2x^3)dx + 3(2x^2y + y^2)dy = 0.$$

7.29.
$$(3x^3 + 6x^2y + 3xy^2)dx + (2x^3 + 3x^2y)dy = 0.$$

7.30.
$$xy^2dx + y(x^2 + y^2)dy = 0$$
.

7.31.
$$xdx + ydy + (xdy - ydx)/(x^2 + y^2) = 0$$
.

Задача 8. Для данного дифференциального уравнения методом изоклин построити интегральную кривую, проходящую через точку M .

8.1.
$$y' = y - x^2$$
, $M(1, 2)$.

8.2.
$$yy' = -2x$$
, $M(0, 5)$.

8.3.
$$y' = 2 + y^2$$
, $M(1, 2)$.

8.4.
$$y' = \frac{2x}{3y}$$
, $M(1, 1)$.

8.5.
$$y' = (y-1)x$$
, $M(1, 3/2)$.

8.6.
$$yy' + x = 0$$
, $M(-2, -3)$.

8.7.
$$y' = 3 + y^2$$
, $M(1, 2)$.

8.8.
$$xy' = 2y$$
, $M(2, 3)$.

8.9.
$$y'(x^2+2)=y$$
, $M(2, 2)$.

8.10.
$$x^2 - y^2 + 2xyy' = 0$$
, $M(2, 1)$.

8.11.
$$y' = y - x$$
, $M(9/2, 1)$.

8.12.
$$y' = x^2 - y$$
, $M(1, 1/2)$.

8.13.
$$y' = xy$$
, $M(0, -1)$.

8.14.
$$y' = xy$$
, $M(0, 1)$.

8.15.
$$yy' = -\frac{x}{2}$$
, $M(4, 2)$.

8.16.
$$2(y + y') = x + 3$$
, $M(1, 1/2)$.

8.17.
$$y' = x + 2y$$
, $M(3, 0)$.

8.18.
$$xy' = 2y$$
, $M(1, 3)$.

8.19.
$$3yy' = x$$
, $M(-3, -2)$.

8.20.
$$y' = y - x^2$$
, $M(-3, 4)$.

8.21.
$$x^2 - y^2 + 2xyy' = 0$$
, $M(-2, 1)$. 8.22. $y' = x^2 - y$, $M(2, 3/2)$.

8.23.
$$y' = y - x$$
, $M(2, 1)$.

8.24.
$$yy' = -x$$
, $M(2, 3)$.

8.25.
$$y' = y - x$$
, $M(4, 2)$.

8.26.
$$3yy' = x$$
, $M(1, 1)$.

8.27.
$$y' = x^2 - y$$
, $M(0, 1)$.

8.28.
$$y' = 3y^{2/3}$$
, $M(1, 3)$.

8.29.
$$x^2 - y^2 + 2xyy' = 0$$
, $M(-2, -1)$. 8.30. $y' = x(y-1)$, $M(1, 1/2)$.

8.30.
$$y' = x(y-1)$$
, $M(1, 1/2)$.

8.31.
$$y' = x + 2y$$
, $M(1, 2)$.

Задача 9. Найти линию, проходящую через точку \pmb{M}_0 и обладающую тем свойством что в любой ее точке M нормальный вектор MN с концом на оси Oy имеет длину равную a, и образует острый угол с положительным направлением оси Oy.

9.1.
$$M_0(15, 1)$$
, $a = 25$.

9.2.
$$M_0(12, 2)$$
, $a = 20$.

9.3.
$$M_0(9, 3)$$
, $a = 15$.

9.4.
$$M_0(6, 4)$$
, $a = 10$.

9.5.
$$M_0(3, 5)$$
, $a = 5$.

Найти линию, проходящую через точку \boldsymbol{M}_0 , если отрезок любой ее касательної между точкой касания и осью Oу делится в точке пересечения с осью абсцисс і отношении a:b (считая от оси Oy).

9.6.
$$M_0(1, 1), a:b=1:2.$$

9.7.
$$M_0(-2, 3)$$
, $a:b=1:3$.

9.8.
$$M_0(0, 1), a:b=2:3.$$

9.9.
$$M_0(1, 0)$$
, $a:b=3:2$.

9.10.
$$M_0(2, -1)$$
, $a:b=3:1$.

Найти линию, проходящую через точку \boldsymbol{M}_0 , если отрезок любой ее касательної между точкой касания и осью Oу делится в точке пересечения с осью абсцисс і отношении a:b (считая от оси Oy).

9.11.
$$M_0(2, -1)$$
, $a:b=1:1$.

9.12.
$$M_0(1, 2), a:b=2:1.$$

9.13.
$$M_0(-1, 1)$$
, $a:b=3:1$.

9.14.
$$M_0(2, 1), a:b=1:2.$$

9.15.
$$M_0(1, -1), a:b=1:3.$$

Найти линию, проходящую через точку M_0 , если отрезок любой ее касательной заключенный между осями координат, делится в точке касания в отношении $a\!:\!b$ (считая от оси Oy).

9.16.
$$M_0(1, 2)$$
, $a:b=1:1$.

9.17.
$$M_0(2, 1), a:b=1:2.$$

9.18.
$$M_0(1, 3), a:b=2:1.$$

9.19.
$$M_0(2, -3), a:b=3:1.$$

9.20.
$$M_0(3, -1)$$
, $a:b=3:2$.

Найти линию, проходящую через точку M_0 и обладающую тем свойством, что в любой ее точке M касательный вектор MN с концом на оси Ox имеет проекцию на оси Ox, обратно пропорциональную абсциссе точки M. Коэффициент пропорциональностиравен a.

9.21.
$$M_0(1, e)$$
, $a = -1/2$.

9.22.
$$M_0(2, e)$$
, $a = -2$.

9.23.
$$M_0(-1, \sqrt{e}), a = -1.$$

9.24.
$$M_0(2, 1/e)$$
, $a = 2$.

9.25.
$$M_0(1, 1/e^2)$$
, $a = 1/4$.

Найти линию, проходящую через точку M_0 и обладающую тем свойством, что в любой ее точке M касательный вектор MN с концом на оси Oy имеет проекцию на оси Oy, равную a.

9.26.
$$M_0(1, 2)$$
, $a = -1$.

9.27.
$$M_0(1, 4)$$
, $a = 2$.

9.28.
$$M_0(1, 5)$$
, $a = -2$.

9.29.
$$M_0(1, 3)$$
, $a = -4$.

9.30.
$$M_0(1, 6)$$
, $a = 3$.

9.31.
$$M_0(1, 1)$$
, $a = 1$.

Задача 10. Найти общее решение дифференциального уравнения.

10.1.
$$y'''x \ln x = y''$$
.

10.2.
$$xy''' + y'' = 1$$
.

10.3.
$$2xy''' = y''$$
.

10.4.
$$xy''' + y'' = x + 1$$
.

10.5.
$$\operatorname{tg} x \cdot y'' - y' + \frac{1}{\sin x} = 0.$$

10.7.
$$y''' \operatorname{ctg} 2x + 2y'' = 0$$
.

10.9.
$$tg x \cdot y''' = 2y''$$
.

10.11.
$$x^4y'' + x^3y' = 1$$
.

10.13.
$$(1+x^2)y'' + 2xy' = x^3$$
.

10.15.
$$xy''' - y'' + \frac{1}{x} = 0$$
.

10.17. th
$$x \cdot y^{IV} = y'''$$
.

10.19.
$$y''' \operatorname{tg} x = y'' + 1$$
.

10.21.
$$y''' \text{ th } 7x = 7y''$$
.

10.23.
$$\operatorname{cth} x \cdot y'' - y' + \frac{1}{\operatorname{ch} x} = 0.$$

10.25.
$$(1 + \sin x) y''' = \cos x \cdot y''$$
.

$$10.27. -xy''' + 2y'' = \frac{2}{x^2}.$$

10.29.
$$x^4y'' + x^3y' = 4$$
.

10.31.
$$(1+x^2)y'' + 2xy' = 12x^3$$
.

10.6.
$$x^2y'' + xy' = 1$$
.

10.8.
$$x^3y''' + x^2y'' = 1$$
.

10.10.
$$y''' \operatorname{cth} 2x = 2y''$$
.

10.12.
$$xy''' + 2y'' = 0$$
.

10.14.
$$x^5 y''' + x^4 y'' = 1$$
.

10.16.
$$xy''' + y'' + x = 0$$
.

10.18.
$$xy''' + y'' = \sqrt{x}$$
.

10.20.
$$y''' \operatorname{tg} 5x = 5y''$$
.

10.22.
$$x^3 y''' + x^2 y'' = \sqrt{x}$$
.

10.24.
$$(x+1)y''' + y'' = (x+1)$$
.

10.26.
$$xy''' + y'' = \frac{1}{\sqrt{x}}$$
.

10.28.
$$cth xy'' + y' = ch x$$
.

10.30.
$$y'' + \frac{2x}{x^2 + 1}y' = 2x$$
.

Задача 11. Найти решение задачи Коши.

11.1.
$$4y^3y'' = y^4 - 1$$
, $y(0) = \sqrt{2}$, $y'(0) = 1/(2\sqrt{2})$.

11.2.
$$y'' = 128y^3$$
, $y(0) = 1$, $y'(0) = 8$.

11.3.
$$y''y^3 + 64 = 0$$
, $y(0) = 4$, $y'(0) = 2$.

11.4.
$$y'' + 2\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

11.5.
$$y'' = 32\sin^3 y \cos y$$
, $y(1) = p/2$, $y'(1) = 4$.

11.6.
$$y'' = 98y^3$$
, $y(1) = 1$, $y'(1) = 7$.

11.7.
$$y''y^3 + 49 = 0$$
, $y(3) = -7$, $y'(3) = -1$.

11.8.
$$4y^3y'' = 16y^4 - 1$$
, $y(0) = \sqrt{2}/2$, $y'(0) = 1/\sqrt{2}$.

11.9.
$$y'' + 8\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 2$.

11.10.
$$y'' = 72y^3$$
, $y(2) = 1$, $y'(2) = 6$.

11.11.
$$y''y^3 + 36 = 0$$
, $y(0) = 3$, $y'(0) = 2$.

11.12.
$$y'' = 18\sin^3 y \cos y$$
, $y(1) = p/2$, $y'(1) = 3$.

11.13.
$$4y^3y'' = y^4 - 16$$
, $y(0) = 2\sqrt{2}$, $y'(0) = 1/\sqrt{2}$.

11.14.
$$y'' = 50y^3$$
, $y(3) = 1$, $y'(3) = 5$.

11.15.
$$y''y^3 + 25 = 0$$
, $y(2) = -5$, $y'(2) = -1$.

11.16.
$$y'' + 18\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 3$.

11.17.
$$y'' = 8\sin^3 y \cos y$$
, $y(1) = p/2$, $y'(1) = 2$.

11.18.
$$y'' = 32y^3$$
, $y(4) = 1$, $y'(4) = 4$.

11.19.
$$y''y^3 + 16 = 0$$
, $y(1) = 2$, $y'(1) = 2$.

11.20.
$$y'' + 32\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 4$.

11.21.
$$y'' = 50\sin^3 y \cos y$$
, $y(1) = p/2$, $y'(1) = 5$.

11.22.
$$y'' = 18y^3$$
, $y(1) = 1$, $y'(1) = 3$.

11.23.
$$y''y^3 + 9 = 0$$
, $y(1) = 1$, $y'(1) = 3$.

11.24.
$$y^3y'' = 4(y^4 - 1), y(0) = \sqrt{2}, y'(0) = \sqrt{2}.$$

11.25.
$$y'' + 50\sin y \cos^3 y = 0$$
, $y(0) = 0$, $y'(0) = 5$.

11.26.
$$y'' = 8y^3$$
, $y(0) = 1$, $y'(0) = 2$.

11.27.
$$y''y^3 + 4 = 0$$
, $y(0) = -1$, $y'(0) = -2$.

11.28.
$$y'' = 2\sin^3 y \cos y$$
, $y(1) = p/2$, $y'(1) = 1$.

11.29.
$$y^3y'' = y^4 - 16$$
, $y(0) = 2\sqrt{2}$, $y'(0) = \sqrt{2}$.

11.30.
$$y'' = 2y^3$$
, $y(-1) = 1$, $y'(-1) = 1$.

11.31.
$$y''y^3 + 1 = 0$$
, $y(1) = -1$, $y'(1) = -1$.

Задача 12. Найти общее решение дифференциального уравнения.

12.1.
$$y''' + 3y'' + 2y' = 1 - x^2$$
.

12.3.
$$y''' - y' = x^2 + x$$
.

12.5.
$$y^{IV} - y''' = 5(x+2)^2$$
.

12.7.
$$y^{IV} + 2y''' + y'' = x^2 + x - 1$$
.

12.9.
$$3y^{IV} + y''' = 6x - 1$$
.

12.11.
$$y''' + y'' = 5x^2 - 1$$
.

12.13.
$$7y''' - y'' = 12x$$
.

12.15.
$$y''' - y' = 3x^2 - 2x + 1$$
.

12.17.
$$y^{IV} - 3y''' + 3y'' - y' = x - 3$$
.

12.19.
$$y''' - 4y'' = 32 - 384x^2$$
.

12.21.
$$y''' + y'' = 49 - 24x^2$$
.

12.23.
$$y''' - 13y'' + 12y' = x - 1$$
.

12.25.
$$y''' - y'' = 6x + 5$$
.

12.27.
$$y''' - 5y'' + 6y' = (x-1)^2$$
.

12.29.
$$y''' - 13y'' + 12y' = 18x^2 - 39$$
.

12.31.
$$y''' - 5y'' + 6y' = 6x^2 + 2x - 5$$
.

12.2.
$$y''' - y'' = 6x^2 + 3x$$
.

12.4.
$$y^{IV} - 3y''' + 3y'' - y' = 2x$$
.

12.6.
$$y^{IV} - 2y''' + y'' = 2x(1-x)$$
.

12.8.
$$y^V - y^{IV} = 2x + 3$$
.

12.10.
$$y^{IV} + 2y''' + y'' = 4x^2$$
.

12.12.
$$y^{IV} + 4y''' + 4y'' = x - x^2$$
.

12.14.
$$y''' + 3y'' + 2y' = 3x^2 + 2x$$
.

12.16.
$$y''' - y'' = 4x^2 - 3x + 2$$
.

12.18.
$$y^{IV} + 2y''' + y'' = 12x^2 - 6x$$
.

12.20.
$$y^{IV} + 2y''' + y'' = 2 - 3x^2$$
.

12.22.
$$y''' - 2y'' = 3x^2 + x - 4$$
.

12.24.
$$y^{IV} + y''' = x$$
.

12.26.
$$y''' + 3y'' + 2y' = x^2 + 2x + 3$$
.

12.28.
$$y^{IV} - 6y''' + 9y'' = 3x - 1$$
.

12.30.
$$y^{IV} + y''' = 12x + 6$$
.

Задача 13. Найти общее решение дифференциального уравнения.

13.1.
$$y''' - 4y'' + 5y' - 2y = (16 - 12x)e^{-x}$$
.

13.2.
$$y''' - 3y'' + 2y' = (1 - 2x)e^x$$
.

13.3.
$$y''' - y'' - y' + y = (3x + 7)e^{2x}$$
.

13.4.
$$y''' - 2y'' + y' = (2x+5)e^{2x}$$
.

13.5.
$$y''' - 3y'' + 4y = (18x - 21)e^{-x}$$
.

13.6.
$$y''' - 5y'' + 8y' - 4y = (2x - 5)e^x$$
.

13.7.
$$y''' - 4y'' + 4y' = (x-1)e^x$$
.

13.8.
$$y''' + 2y'' + y' = (18x + 21)e^{2x}$$
.

13.9.
$$y''' + y'' - y' - y = (8x + 4)e^x$$
.

13.10.
$$y''' - 3y' - 2y = -4x \cdot e^x$$
.

13.11.
$$y''' - 3y' + 2y = (4x + 9)e^{2x}$$
.

13.12.
$$y''' + 4y'' + 5y' + 2y = (12x + 16)e^x$$
.

13.13.
$$y''' - y'' - 2y' = (6x - 11)e^{-x}$$
.

13.14.
$$y''' + y'' - 2y' = (6x + 5)e^x$$
.

13.15.
$$y''' + 4y'' + 4y' = (9x + 15)e^x$$
.

13.16.
$$y''' - 3y'' - y' + 3y = (4 - 8x)e^x$$
.

13.17.
$$y''' - y'' - 4y' + 4y = (7 - 6x)e^x$$
.

13.18.
$$y''' + 3y'' + 2y' = (1 - 2x)e^{-x}$$
.

13.19.
$$y''' - 5y'' + 7y' - 3y = (20 - 16x)e^{-x}$$
.

13.20.
$$y''' - 4y'' + 3y' = -4x \cdot e^x$$
.

13.21.
$$y''' - 5y'' + 3y' + 9y = (32x - 32)e^{-x}$$
.

13.22.
$$y''' - 6y'' + 9y' = 4x \cdot e^x$$
.

13.23.
$$y''' - 7y'' + 15y' - 9y = (8x - 12)e^x$$
.

13.24.
$$y''' - y'' - 5y' - 3y = -(8x + 4)e^x$$
.

13.25.
$$y''' + 5y'' + 7y' + 3y = (16x + 20)e^x$$
.

13.26.
$$y''' - 2y'' - 3y' = (8x - 14)e^{-x}$$
.

13.27.
$$y''' + 2y'' - 3y' = (8x + 6)e^x$$
.

13.28.
$$y''' + 6y'' + 9y' = (16x + 24)e^x$$
.

13.29.
$$y''' - y'' - 9y' + 9y = (12 - 16x)e^x$$
.

13.30.
$$y''' + 4y'' + 3y' = 4(1-x)e^{-x}$$
.

13.31.
$$y''' + y'' - 6y' = (20x + 14)e^{2x}$$
.

Задача 14. Найти общее решение дифференциального уравнения.

14.1.
$$y'' + 2y' = 4e^x (\sin x + \cos x)$$
.

14.2.
$$y'' - 4y' + 4y = -e^{2x} \sin 6x$$
.

14.3.
$$y'' + 2y' = -2e^x(\sin x + \cos x)$$
. 14.4. $y'' + y = 2\cos 7x + 3\sin 7x$.

14.4.
$$y'' + y = 2\cos 7x + 3\sin 7x$$

14.5.
$$y'' + 2y' + 5y = -\sin 2x$$
.

14.6.
$$y'' - 4y' + 8y = e^x (5\sin x - 3\cos x)$$
.

14.7.
$$y'' + 2y' = e^x (\sin x + \cos x)$$
. 14.8. $y'' - 4y' + 4y = e^{2x} \sin 3x$.

14.8.
$$y'' - 4y' + 4y = e^{2x} \sin 3x$$
.

14.9.
$$y'' + 6y' + 13y = e^{-3x} \cos 4x$$
.

14.9.
$$y'' + 6y' + 13y = e^{-3x}\cos 4x$$
. 14.10. $y'' + y = 2\cos 3x - 3\sin 3x$.

14.11.
$$y'' + 2y' + 5y = -2\sin x$$
.

14.12.
$$y'' - 4y' + 8y = e^x (-3\sin x + 4\cos x)$$
.

14.13.
$$y'' + 2y' = 10e^x (\sin x + \cos x)$$
.

14.14.
$$y'' - 4y' + 4y = e^{2x} \sin 5x$$
.

14.15.
$$y'' + y = 2\cos 5x + 3\sin 5x$$
.

14.16.
$$y'' + 2y' + 5y = -17\sin 2x$$
.

14.19.
$$y'' + 2y' = 6e^x(\sin x + \cos x)$$
.

14.17.
$$y'' + 6y' + 13y = e^{-3x} \cos x$$
. 14.18. $y'' - 4y' + 8y = e^{x} (3\sin x + 5\cos x)$.
14.19. $y'' + 2y' = 6e^{x} (\sin x + \cos x)$.
14.20. $y'' - 4y' + 4y = -e^{2x} \sin 4x$.

$$14.21 \quad y'' + 6y' + 13y = -e^{3x}\cos 5x$$

14.21.
$$y'' + 6y' + 13y = -e^{3x}\cos 5x$$
. 14.22. $y'' + y = 2\cos 7x - 3\sin 7x$.

14.23.
$$y'' + 2y' + 5y = -\cos x$$
.

14.23.
$$y'' + 2y' + 5y = -\cos x$$
. 14.24. $y'' - 4y' + 8y = e^x (2\sin x - \cos x)$.

14.25.
$$y'' + 2y' = 3e^x (\sin x + \cos x)$$
.

14.26.
$$y'' - 4y' + 4y = e^{2x} \sin 4x$$
.

14.27.
$$y'' + 6y' + 13y = e^{-3x} \cos 8x$$
.

14.28.
$$y'' + 2y' + 5y = 10\cos x$$
.

14.29.
$$y'' + y = 2\cos 4x + 3\sin 4x$$
. 14.30. $y'' - 4y' + 8y = e^x(-\sin x + 2\cos x)$.

14.31.
$$y'' - 4y' + 4y = e^{2x} \sin 6x$$
.

Задача 15. Найти общее решение дифференциального уравнения.

15.1.
$$y'' - 2y' = 2 \operatorname{ch} 2x$$
.

15.2.
$$y'' + y = 2\sin x - 6\cos x + 2e^x$$
.

15.3.
$$y''' - y' = 2e^x + \cos x$$
.

15.4.
$$y'' - 3y' = 2 \operatorname{ch} 3x$$
.

15.5.
$$y'' + 4y = -8\sin 2x + 32\cos 2x + 4e^{2x}$$
.

15.6.
$$y''' - y' = 10\sin x + 6\cos x + 4e^x$$
.

15.7.
$$y'' - 4y' = 16 \operatorname{ch} 4y$$
.

15.8.
$$y'' + 9y = -18\sin 3x - 18e^{3x}$$
.

15.9.
$$y''' - 4y' = 24e^{2x} - 4\cos 2x + 8\sin 2x$$
.

15.10.
$$y'' - 5y' = 50 \operatorname{ch} 5x$$
.

15.11.
$$y'' + 16y = 16\cos 4x - 16e^{4x}$$
.

15.12.
$$y''' - 9y' = -9e^{3x} + 18\sin 3x - 9\cos 3x$$
.

15.13.
$$y'' - y' = 2 \operatorname{ch} x$$
.

15.14.
$$y'' + 25y = 20\cos 5x - 10\sin 5x + 50e^{5x}$$
.

15.15.
$$y''' - 16y' = 48e^{4x} + 64\cos 4x - 64\sin 4x$$
.

15.16.
$$y'' + 2y' = 2 \sinh 2x$$
.

15.17.
$$y'' + 36y = 24\sin 6x - 12\cos 6x + 36e^{6x}$$
.

15.18.
$$y''' - 25y' = 25(\sin 5x + \cos 5x) - 50e^{5x}$$
.

15.19.
$$y'' + 3y' = 2 \sinh 3x$$
.

15.20.
$$y'' + 49y = 14\sin 7x + 7\cos 7x - 98e^{7x}$$
.

15.21.
$$y''' - 36y' = 36e^{6x} - 72(\cos 6x + \sin 6x)$$
.

15.22.
$$y'' + 4y' = 16 \sinh 4x$$
.

15.23.
$$y'' + 64y = 16\sin 8x - 16\cos 8x - 64e^{8x}$$
.

15.24.
$$y''' - 49y' = 14e^{7x} - 49(\cos 7x + \sin 7x)$$
.

15.25.
$$y'' + 5y' = 50 \sinh 5x$$
.

15.26.
$$y'' + 81y = 9\sin 9x + 3\cos 9x + 162e^{9x}$$
.

15.27.
$$y''' - 64y' = 128\cos 8x - 64e^{8x}$$
.

15.28.
$$y'' + y' = 2 \sinh x$$
.

15.29.
$$y'' + 100y = 20\sin 10x - 30\cos 10x - 200e^{10x}$$
.

15.30.
$$y''' - 81y' = 162e^{9x} + 81\sin 9x$$
.

15.31.
$$y''' - 100y' = 20e^{10x} + 100\cos 10x$$
.

Задача 16. Найти решение задачи Коши.

16.1.
$$y'' + p^2 y = p^2 / \cos p x$$
, $y(0) = 3$, $y'(0) = 0$.

16.2.
$$y'' + 3y' = 9e^{3x}/(1+e^{3x})$$
, $y(0) = \ln 4$, $y'(0) = 3(1-\ln 2)$.

16.3.
$$y'' + 4y = 8 \operatorname{ctg} 2x$$
, $y(p/4) = 5$, $y'(p/4) = 4$.

16.4.
$$y'' - 6y' + 8y = 4/(1 + e^{-2x})$$
, $y(0) = 1 + 2\ln 2$, $y'(0) = 6\ln 2$.

16.5.
$$y'' - 9y' + 18y = 9e^{3x}/(1 + e^{-3x}), y(0) = 0, y'(0) = 0.$$

16.6.
$$y'' + p^2 y = p^2 / \sin p x = 1$$
, $y(1/2)$, $y'(1/2) = p^2 / 2$.

16.7.
$$y'' + \frac{1}{p^2}y = \frac{1}{p^2\cos(x/p)}$$
, $y(0) = 2$, $y'(0) = 0$.

16.8.
$$y'' - 3y' = \frac{9e^{-3x}}{3 + e^{-3x}}, \quad y(0) = 4\ln 4, \quad y'(0) = 3(3\ln 4 - 1).$$

16.9.
$$y'' + y = 4 \operatorname{ctg} x$$
, $y(p/2) = 4$, $y'(p/2) = 4$.

16.10.
$$y'' - 6y' + 8y = 4/(2 + e^{-2x})$$
, $y(0) = 1 + 3\ln 3$, $y'(0) = 10\ln 3$.

16.11.
$$y'' + 6y' + 8y = 4e^{-2x}/(2 + e^{2x}), y(0) = 0, y'(0) = 0.$$

16.12.
$$y'' + 9y = 9/\sin 3x$$
, $y(p/6) = 4$, $y'(p/6) = 3p/2$.

16.13.
$$y'' + 9y = 9/\cos 3x$$
, $y(0) = 1$, $y'(0) = 0$.

16.14.
$$y'' - y' = e^{-x}/(2 + e^{-x})$$
, $y(0) = \ln 27$, $y'(0) = \ln 9 - 1$.

16.15.
$$y'' + 4y = 4ctg 2x$$
, $y(p/4) = 3$, $y'(p/4) = 2$.

16.16.
$$y'' - 3y' + 2y = \frac{1}{3 + e^{-x}}, \quad y(0) = 1 + 8\ln 2, \quad y'(0) = 14\ln 2.$$

16.17.
$$y'' - 6y' + 8y = 4e^{2x}/(1 + e^{-2x}), y(0) = 0, y'(0) = 0.$$

16.18.
$$y'' + 16y = 16/\sin 4x$$
, $y(p/8) = 3$, $y'(p/8) = 2p$.

16.19.
$$y'' + 16y = 16/\cos 4x$$
, $y(0) = 3$, $y'(0) = 0$.

16.20.
$$y'' - 2y' = 4e^{-2x}/(1 + e^{-2x})$$
, $y(0) = \ln 4$, $y'(0) = \ln 4 - 2$.

16.21.
$$y'' + \frac{y}{4} = \frac{1}{4} \operatorname{ctg}(x/2)$$
, $y(p) = 2$, $y'(p) = 1/2$.

16.22.
$$y'' - 3y' + 2y = 1/(2 + e^{-x})$$
, $y(0) = 1 + 3\ln 3$, $y'(0) = 5\ln 3$.

16.23.
$$y'' + 3y' + 2y = e^{-x}/(2 + e^x)$$
, $y(0) = 0$, $y'(0) = 0$.

16.24.
$$y'' + 4y = 4/\sin 2x$$
, $y(p/4) = 2$, $y'(p/4) = p$.

16.25.
$$y'' + 4y = 4/\cos 2x$$
, $y(0) = 2$, $y'(0) = 0$.

16.26.
$$y'' + y' = e^x/(2 + e^x)$$
, $y(0) = \ln 27$, $y'(0) = 1 - \ln 9$.

16.27.
$$y'' + y = 2 \operatorname{ctg} x$$
, $y(p/2) = 1$, $y'(p/2) = 2$.

16.28.
$$y'' - 3y' + 2y = 1/(1 + e^{-x})$$
, $y(0) = 1 + 2\ln 2$, $y'(0) = 3\ln 2$.

16.29.
$$y'' - 3y' + 2y = e^x/(1 + e^{-x}), y(0) = 0, y'(0) = 0.$$

16.30.
$$y'' + y = 1/\sin x$$
, $y(p/2) = 1$, $y'(p/2) = p/2$.

16.31.
$$y'' + y = 1/\cos x$$
, $y(0) = 1$, $y'(0) = 0$.

VI. РЯДЫ

Теоретические вопросы

- 1. Сходимость и сумма ряда. Необходимое условие сходимости ряда.
- 2. Теоремы сравнения.
- 3. Признаки Даламбера и Коши.
- 4. Интегральный признак сходимости ряда.
- 5. Теорема Лейбница. Оценка остатка знакочередующегося ряда.
- 6. Теорема о сходимости абсолютно сходящегося ряда. Свойства абсолютно сходящегося ряда.
 - 7. Понятие равномерной сходимости.
 - 8. Теорема о непрерывности суммы функционального ряда.
- 9. Теоремы о почленном интегрировании и почленном дифференцировании функционального ряда.
 - 10. Теорема Абеля. Интервал и радиус сходимости степенного ряда.
 - 11. Теорема о равномерной сходимости степенного ряда. Непрерывность суммы ряда.
 - 12. Почленное интегрирование и дифференцирование степенных рядов.
 - 13. Разложение функции в степенной ряд. Ряд Тейлора.
 - 14. Разложение по степеням x бинома $(1+x)^m$.
 - 15. Условие разложимости функции в ряд Тейлора.
 - 16. Разложение по степеням x функций e^x , $\cos x$, $\sin x$, $\ln(1+x)$.

Теоретические упражнения.

1. Ряды $\sum_{n=1}^{\infty}a_n$ и $\sum_{n=1}^{\infty}b_n$ сходятся. Доказать, что ряд $\sum_{n=1}^{\infty}c_n$ сходится, если $a_n \leq c_n \leq b_n$.

У к а з а н и е. Рассмотреть неравенства $0 \le c_n - a_n \le b_n - a_n$.

- 2. Ряд $\sum_{n=1}^{\infty} a_n \ (a_n \ge 0)$ сходится. Доказать, что ряд $\sum_{n=1}^{\infty} a_n^2$ тоже сходится. Показать что обратное утверждение неверно.
 - 3. Ряды $\sum_{n=1}^{\infty} a_n^2$ и $\sum_{n=1}^{\infty} b_n^2$ сходятся. Доказать, что ряд $\sum_{n=1}^{\infty} |a_n| |b_n|$ тоже сходится.

У к а з а н и е. Доказать и использовать неравенство $|ab| \le a^2 + b^2$.

- 4. Ряды $\sum_{n=1}^{\infty} a_n^2$ и $\sum_{n=1}^{\infty} b_n^2$ сходятся. Доказать, что ряд $\sum_{n=1}^{\infty} (a_n + b_n)^2$ тоже сходится.
- 5. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходиться и $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$. Можно ли утверждать, что сходиться ряд

$$\sum_{n=1}^{\infty} b_n ?$$

Рассмотреть пример
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt{n}}$$
 и $\sum_{n=1}^{\infty} \left[\frac{\left(-1\right)^n}{\sqrt{n}} + \frac{1}{n}\right]$.

6. Пусть ряд $\sum_{n=1}^{\infty} |f_n(x)|$ сходиться равномерно на отрезке [a, b]. Доказать, что ряд

 $\sum_{n=1}^{\infty} f_n(x)$ так же сходиться равномерно на этом отрезке.

- 7. Может ли функциональный ряд на отрезке:
- а) сходиться равномерно и не сходиться абсолютно,
- б) сходиться абсолютно и не сходиться равномерно?

Рассмотреть примеры:

а)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+x^2}$$
, отрезок $[a, b]$ произвольный;

б)
$$\sum_{n=1}^{\infty} x(1-x^2)$$
, отрезок [0, 1].

- 8. Показать, что функция $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{10^n}$ всюду непрерывна.
- 9. Доказать, что ряд $\sum_{n=1}^{\infty} \frac{\sin n^2 x}{n^2}$ сходится равномерно в интервале $(-\infty, +\infty)$

Можно ли его дифференцировать в этом интервале?

10. Доказать, что если ряд $\sum_{n=1}^{\infty} c_n \, \mathrm{e}^{-nx}$ сходиться в точке x_0 , то он сходиться абсолютно $\forall \ x>x_0$.

Расчетные задания.

Задача 1. Найти сумму ряда.

1.1.
$$\sum_{n=1}^{\infty} \frac{6}{9n^2 + 12n - 5}.$$

1.3.
$$\sum_{n=1}^{\infty} \frac{6}{9n^2 + 6n - 8}.$$

1.5.
$$\sum_{n=0}^{\infty} \frac{2}{4n^2 + 8n + 3}.$$

1.7.
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 + 3n - 2}.$$

1.9.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + n - 2}.$$

1.11.
$$\sum_{n=1}^{\infty} \frac{6}{36n^2 - 24n - 5}.$$

1.13
$$\sum_{n=1}^{\infty} \frac{4}{4n^2 + 4n - 3}$$
.

1.15.
$$\sum_{n=1}^{\infty} \frac{9}{9n^2 + 3n - 20}.$$

1.17.
$$\sum_{n=1}^{\infty} \frac{8}{16n^2 - 8n - 15}.$$

1.19.
$$\sum_{n=1}^{\infty} \frac{5}{25n^2 + 5n - 6}.$$

1.21.
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 - 35n - 6}.$$

1.23.
$$\sum_{n=2}^{\infty} \frac{12}{36n^2 + 12n - 35}.$$

1.25
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 - 3n - 2}$$
.

1.2.
$$\sum_{n=2}^{\infty} \frac{24}{9n^2 - 12n - 5}.$$

1.4.
$$\sum_{n=1}^{\infty} \frac{9}{9n^2 + 21n - 8}.$$

1.6.
$$\sum_{n=1}^{\infty} \frac{14}{49n^2 - 28n - 45}.$$

1.8.
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 - 7n - 12}.$$

1.10.
$$\sum_{n=1}^{\infty} \frac{14}{49n^2 - 14n - 48}.$$

$$1.12 \sum_{n=1}^{\infty} \frac{14}{49n^2 - 84n - 13}.$$

1.14
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 + 35n - 6}$$
.

$$1.16 \sum_{n=1}^{\infty} \frac{14}{49n^2 - 42n - 40}.$$

1.18.
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 - 21n - 10}.$$

1.20.
$$\sum_{n=1}^{\infty} \frac{6}{4n^2 - 9}.$$

1.22.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + n - 2}.$$

1.24.
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 + 21n - 10}.$$

1.26.
$$\sum_{n=1}^{\infty} \frac{5}{25n^2 - 5n - 6}.$$

1.27.
$$\sum_{n=1}^{\infty} \frac{8}{16n^2 + 8n - 15}.$$

1.29.
$$\sum_{n=1}^{\infty} \frac{12}{36n^2 - 12n - 35}.$$

1.31.
$$\sum_{n=1}^{\infty} \frac{14}{49n^2 - 70n - 24}.$$

Задача 2. Найти сумму ряда.

2.1.
$$\sum_{n=3}^{\infty} \frac{4-5n}{n(n-1)(n-2)}.$$

2.3.
$$\sum_{n=1}^{\infty} \frac{5n+3}{n(n+1)(n+3)}.$$

2.5.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+3)}.$$

2.7.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)(n+3)}.$$

2.9.
$$\sum_{n=1}^{\infty} \frac{3n-2}{n(n+1)(n+2)}.$$

2.11.
$$\sum_{n=3}^{\infty} \frac{5n-2}{(n-1)n(n+2)}.$$

2.13.
$$\sum_{n=1}^{\infty} \frac{3n+2}{n(n+1)(n+2)}.$$

2.15.
$$\sum_{n=3}^{\infty} \frac{8n-10}{(n-1)(n-2)(n+1)}.$$

2.17.
$$\sum_{n=3}^{\infty} \frac{n-4}{n(n-1)(n-2)}.$$

2.19.
$$\sum_{n=2}^{\infty} \frac{5n-2}{(n-1)n(n+2)}.$$

1.28.
$$\sum_{n=1}^{\infty} \frac{14}{49n^2 - 56n - 33}.$$

1.30.
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 + 7n - 12}.$$

2.2
$$\sum_{n=1}^{\infty} \frac{n+6}{n(n+3)(n+2)}$$
.

2.4.
$$\sum_{n=3}^{\infty} \frac{4n-2}{(n^2-1)(n-2)}.$$

2.6.
$$\sum_{n=3}^{\infty} \frac{3n-5}{n(n^2-1)}.$$

$$2.8. \sum_{n=3}^{\infty} \frac{1}{n(n^2-4)}.$$

2.10.
$$\sum_{n=3}^{\infty} \frac{n+2}{n(n-1)(n-2)}.$$

2.12.
$$\sum_{n=1}^{\infty} \frac{2}{(n+2)(n+1)n}.$$

2.14.
$$\sum_{n=3}^{\infty} \frac{n+5}{(n^2-1)(n+2)}.$$

$$2.16. \sum_{n=3}^{\infty} \frac{3n-1}{n(n^2-1)}.$$

2.18.
$$\sum_{n=1}^{\infty} \frac{5n+9}{n(n+1)(n+3)}.$$

2.20.
$$\sum_{n=1}^{\infty} \frac{n-1}{n(n+1)(n+2)}.$$

2.21.
$$\sum_{n=1}^{\infty} \frac{3n+4}{n(n+1)(n+2)}.$$

2.23.
$$\sum_{n=1}^{\infty} \frac{n+6}{n(n+1)(n+2)}.$$

$$2.25. \sum_{n=2}^{\infty} \frac{1}{n(n^2-1)}.$$

2.27.
$$\sum_{n=3}^{\infty} \frac{3n+1}{(n-1)n(n+1)}.$$

2.29.
$$\sum_{n=3}^{\infty} \frac{4}{n(n-1)(n-2)}.$$

2.31.
$$\sum_{n=1}^{\infty} \frac{3n+8}{n(n+1)(n+2)}.$$

2.22.
$$\sum_{n=3}^{\infty} \frac{2-n}{n(n+1)(n+2)}.$$

2.24.
$$\sum_{n=3}^{\infty} \frac{n-2}{(n-1)n(n+1)}.$$

2.26.
$$\sum_{n=1}^{\infty} \frac{1-n}{n(n+1)(n+3)}.$$

2.28.
$$\sum_{n=1}^{\infty} \frac{4-n}{n(n+1)(n+2)}.$$

2.30.
$$\sum_{n=1}^{\infty} \frac{3-n}{(n+3)(n+1)n}.$$

Задача 1. Исследовать на сходимость ряд.

3.1.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n \sqrt{n}}{n \sqrt{n}}.$$

3.3.
$$\sum_{n=1}^{\infty} \frac{\cos^2(np/2)}{n(n+1)(n+2)}.$$

3.5.
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n - \ln n}.$$

3.7.
$$\sum_{n=1}^{\infty} \frac{n(2 + \cos np)}{2n^2 - 1}.$$

3.9.
$$\sum_{1}^{\infty} \frac{\sin^2 n}{n^2 + 1}$$
.

3.11.
$$\sum_{n=2}^{\infty} \frac{\arccos\frac{(-1)^n n}{n+1}}{n^2 + 2}.$$

3.2.
$$\sum_{n=1}^{\infty} n \sin \frac{2 + (-1)^n}{n^3}$$
.

3.4.
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt[3]{n^7}}$$
.

3.6.
$$\sum_{n=1}^{\infty} \frac{\arctan \frac{1+(-1)^n}{2}n}{n^3+2}.$$

3.8.
$$\sum_{n=2}^{\infty} \frac{\arcsin \frac{n-1}{n}}{\sqrt[3]{n^3 - 3n}}.$$

$$3.10. \sum_{n=2}^{\infty} \frac{\ln \sqrt{n^2 + 3n}}{\sqrt{n^2 - n}}.$$

3.12.
$$\sum_{n=1}^{\infty} \frac{n \cos^2 n}{n^3 + 5}.$$

$$3.13. \sum_{n=2}^{\infty} \frac{n \ln n}{n^2 - 3}.$$

3.15.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[4]{n^3}} \sin \frac{2 + (-1)^n}{6} p.$$

3.17.
$$\sum_{n=1}^{\infty} \frac{1 + \sin \frac{pn}{2}}{n^2}.$$

3.19.
$$\sum_{n=1}^{\infty} \frac{(2 + \cos \frac{np}{2})\sqrt{n}}{\sqrt[4]{n^7 + 5}}.$$

3.21.
$$\sum_{n=1}^{\infty} \frac{\sin^2 2^n}{n^2}.$$

$$3.23. \sum_{n=3}^{\infty} \frac{1}{n^2 \ln n + \sqrt[3]{\ln^2 n}}.$$

$$3.25. \sum_{n=1}^{\infty} \frac{\sin\frac{p}{2n+1}}{n\left(3+\sin\frac{pn}{4}\right)}.$$

3.27.
$$\sum_{n=1}^{\infty} \frac{3 + \left(-1\right)^n}{2^{n+2}}.$$

3.29.
$$\sum_{n=1}^{\infty} \frac{arcctg(-1)^n}{\sqrt{n(2+n^2)}}.$$

$$3.31. \sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 2}}{n^2 \sin^2 n}.$$

3.14.
$$\sum_{n=1}^{\infty} \frac{n^2 + 3}{n^3 (2 + \sin(np/2))}.$$

3.16.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3 + n + 1}.$$

3.18.
$$\sum_{n=1}^{\infty} \frac{\cos^2 \frac{pn}{3}}{3^n + 2}.$$

3.20.
$$\sum_{n=1}^{\infty} \frac{2 + \sin \frac{np}{4}}{n^2} ctg \frac{1}{\sqrt{n}}.$$

3.22.
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n^5 + n}}.$$

3.24.
$$\sum_{n=1}^{\infty} \frac{\frac{3}{p} \operatorname{arctg} \sqrt{n^2 - 1}}{\sqrt{n^2 - n}}.$$

$$3.26. \sum_{n=2}^{\infty} \frac{2\cos\frac{2p}{3n}}{\sqrt[4]{n^4 - 1}}.$$

3.28.
$$\sum_{n=1}^{\infty} \frac{arctg\left[2+\left(-1\right)^{n}\right]}{\ln\left(1+n\right)}.$$

3.30.
$$\sum_{n=1}^{\infty} \frac{\arcsin \frac{3 + (-1)^n}{4}}{2^n + n}.$$

Задача 4. Исследовать на сходимость ряд.

4.1.
$$\sum_{n=1}^{\infty} \frac{2}{5^{n-1} + n - 1}.$$

4.3.
$$\sum_{n=1}^{\infty} \ln \frac{n^2 + 5}{n^2 + 4}.$$

4.5.
$$\sum_{n=2}^{\infty} \frac{1}{n-1} arctg \frac{1}{\sqrt[3]{n-1}}.$$

$$4.7. \sum_{n=1}^{\infty} \frac{n^3 + 2}{n^5 + \sin 2^n}.$$

4.9.
$$\sum_{n=1}^{\infty} \frac{1}{n - \cos^2 6n}.$$

$$4.11. \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} arctg \frac{p}{4\sqrt{n}}.$$

4.13.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n+5}} \sin \frac{1}{n-1}.$$

4.15.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+3}} \left(e^{1/\sqrt{n}} - 1 \right).$$

4.17.
$$\sum_{n=1}^{\infty} \sqrt[3]{n} \operatorname{arctg} \frac{1}{n^3}$$
.

4.19.
$$\sum_{n=3}^{\infty} n^3 t g^5 \frac{p}{n}$$
.

$$4.21. \sum_{n=1}^{\infty} \left(1 - \cos \frac{p}{n} \right).$$

4.23.
$$\sum_{n=2}^{\infty} \left(e^{\sqrt{n}/(n^3-1)} - 1 \right).$$

4.25.
$$\sum_{n=1}^{\infty} \frac{\sin \frac{2p}{2n+1}}{\sqrt{n}}.$$

$$4.2. \sum_{n=1}^{\infty} \frac{1}{n} \cdot tg \frac{1}{\sqrt{n}}.$$

4.4.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin \frac{1}{n}$$
.

4.6.
$$\sum_{n=1}^{\infty} \frac{\left(n^2 + 3\right)^2}{n^5 + \ln^4 n}.$$

4.8.
$$\sum_{n=1}^{\infty} \frac{2^n + \cos n}{3^n + \sin n}.$$

4.10.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n+1}} \sin \frac{1}{\sqrt{n}}.$$

4.12.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - \ln n}.$$

$$4.14 \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}+2} arctg \frac{n+3}{n^2+5}.$$

4.16.
$$\sum_{n=1}^{\infty} \ln \frac{n^2 + 1}{n^2 + n + 2}.$$

4.18.
$$\sum_{n=1}^{\infty} \ln \frac{n^3}{n^3 + 1}$$
.

4.20.
$$\sum_{n=2}^{\infty} \frac{n+1}{\left(\sqrt[3]{n}-1\right)\left(n\sqrt[4]{n^3}-1\right)}.$$

4.22.
$$\sum_{n=1}^{\infty} \sin \frac{\sqrt[3]{n}}{\sqrt{n^5 + 2}}.$$

4.24.
$$\sum_{n=1}^{\infty} \sin \frac{2n+1}{n^2(n+1)^2}.$$

4.26.
$$\sum_{n=1}^{\infty} \frac{3+7n}{5^n+n}.$$

4.27.
$$\sum_{n=1}^{\infty} n \left(e^{1/n} - 1 \right)^2.$$

4.28.
$$\sum_{n=1}^{\infty} n \sin \frac{1}{\sqrt[3]{n^4}}.$$

4.29.
$$\sum_{n=1}^{\infty} arctg \frac{1}{(n-1)\sqrt[5]{n^2+1}}.$$

4.30.
$$\sum_{n=1}^{\infty} \sin \frac{n}{n^2 \sqrt[3]{n} + 5}.$$

4.31.
$$\sum_{n=1}^{\infty} \arcsin \frac{n}{(n^2+3)^{5/2}}$$
.

Задача 5. Исследовать на сходимость ряд.

$$5.1. \sum_{n=2}^{\infty} \frac{n+1}{2^n (n-1)!}.$$

5.2.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}.$$

5.3.
$$\sum_{n=1}^{\infty} \frac{2^{n+1} (n^3 + 1)}{(n+1)!}.$$

5.4.
$$\sum_{n=1}^{\infty} \frac{10^n 2n!}{(2n)!}.$$

5.5.
$$\sum_{n=1}^{\infty} \frac{(2n+2)!}{3n+5} \cdot \frac{1}{2^n}.$$

5.6.
$$\sum_{n=1}^{\infty} \frac{n+5}{n!} \sin \frac{2}{3^n}.$$

$$5.7. \sum_{n=1}^{\infty} \frac{arctg \frac{5}{n}}{n!}.$$

$$5.8. \sum_{n=1}^{\infty} \frac{n^n}{3^n n!}.$$

5.9.
$$\sum_{n=1}^{\infty} \frac{n}{(2n)!} tg \frac{1}{5^n}.$$

5.10.
$$\sum_{n=1}^{\infty} \frac{6^n \left(n^2 - 1 \right)}{n!}.$$

5.11.
$$\sum_{n=1}^{\infty} \frac{n^2}{(n+2)!}.$$

5.12.
$$\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$$
.

5.13.
$$\sum_{n=1}^{\infty} \frac{7^{2n}}{(2n-1)!}.$$

5.14.
$$\sum_{n=1}^{\infty} \frac{n!}{(3n!)}$$
.

5.15.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 ... (2n-1)}{3^n (n+1)!}.$$

5.16.
$$\sum_{n=1}^{\infty} \frac{n!}{n^{n-1}}.$$
 ?

5.17.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(3^n+1)(2n)!}.$$

5.18.
$$\sum_{n=1}^{\infty} n! \sin \frac{p}{2^n}$$
.

5.19.
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{n^n}.$$

5.21.
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}.$$

5.23.
$$\sum_{n=1}^{\infty} \frac{3^n}{(n+2)!4^n}.$$

5.25.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 ... (3n-2)}{7 \cdot 9 \cdot 11 ... (2n+5)}.$$

5.27.
$$\sum_{n=1}^{\infty} \frac{(3n+2)!}{10^n n^2}.$$

5.29.
$$\sum_{n=1}^{\infty} \frac{n! \sqrt[3]{n}}{3^n + 2}.$$

5.31.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 ... (3n-2)}{2^{n+1} n!}.$$

5.20.
$$\sum_{n=1}^{\infty} \frac{5^n \sqrt[3]{n^2}}{(n+1)!}.$$

5.22.
$$\sum_{n=1}^{\infty} \frac{5^n (n+1)!}{(2n)!}.$$

5.24.
$$\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \dots (2n+1)}{2 \cdot 5 \cdot 8 \dots (3n-1)}.$$

5.26.
$$\sum_{n=1}^{\infty} \frac{2n!}{\sqrt{2^n + 3}}.$$

5.28.
$$\sum_{n=2}^{\infty} \frac{4^{n-1} \sqrt{n^2 + 5}}{(n-1)!}.$$

5.30.
$$\sum_{n=1}^{\infty} \frac{n!(2n+1)!}{(3n)!}.$$

Задача 6. Исследовать на сходимость ряд.

6.1.
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n}{n+1} \right)^{-n^2}.$$

6.3.
$$\sum_{n=1}^{\infty} \left(\frac{2n^2 + 1}{n^2 + 1} \right)^{n^2}.$$

6.5.
$$\sum_{n=1}^{\infty} \left(\frac{2n+1}{3n-2} \right)^{n^2}.$$

6.7.
$$\sum_{n=1}^{\infty} \left(\frac{4n-3}{5n+1} \right)^{n^3}.$$

6.9.
$$\sum_{n=1}^{\infty} n \arcsin^n \frac{p}{4n}.$$

6.2.
$$\sum_{n=1}^{\infty} \frac{1}{4^n} \left(1 + \frac{1}{n} \right)^{n^2}.$$

6.4.
$$\sum_{n=1}^{\infty} n^4 \left(\frac{2n}{3n+5} \right)^n$$
.

6.6.
$$\sum_{n=1}^{\infty} \left(\frac{2n+2}{3n+1} \right)^n (n+1)^3.$$

6.8.
$$\sum_{n=1}^{\infty} \left(\frac{n}{10n+5} \right)^{n^2}$$
.

6.10.
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{3n-1} \right)^{n^2}.$$

$$6.11. \sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^n \frac{n}{5^n}.$$

6.13.
$$\sum_{n=1}^{\infty} \left(\frac{3n+2}{4n-1} \right)^n (n-1)^2.$$

6.15.
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n+1} \right)^{2n+1}.$$

6.17.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n^n}.$$

6.19.
$$\sum_{n=2}^{\infty} \frac{n^3}{(\ln n)^n}.$$

6.21.
$$\sum_{n=1}^{\infty} n^3 arctg^n \frac{p}{3n}.$$

6.23.
$$\sum_{n=1}^{\infty} 2^{n-1} e^{-n} .$$

6.25.
$$\sum_{n=1}^{\infty} \left(\frac{2n}{4n+3} \right)^{n^2}.$$

6.27.
$$\sum_{n=1}^{\infty} \sqrt{n} \left(\frac{n}{3n-1} \right)^{2n}$$
.

6.29.
$$\sum_{n=1}^{\infty} \frac{n \cdot 3^{n+2}}{5^n}.$$

6.31.
$$\sum_{n=1}^{\infty} n^4 arct g^{2n} \frac{p}{4n}$$
.

6.12.
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{n+1} \right)^{n^2}.$$

6.14.
$$\sum_{n=2}^{\infty} \left(\frac{n+1}{2n-3} \right)^{n^2}.$$

6.16.
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+1} \right)^{n/2}.$$

6.18.
$$\sum_{n=1}^{\infty} n^2 \sin^n \frac{p}{2n}.$$

6.20.
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n-1} \right)^{n^3}.$$

6.22.
$$\sum_{n=1}^{\infty} \frac{n^5 3^n}{(2n+1)^n}.$$

6.24.
$$\sum_{n=1}^{\infty} n \left(\frac{3n-1}{4n+2} \right)^{2n}.$$

6.26.
$$\sum_{n=1}^{\infty} \frac{n^{n+2}}{\left(2n^2+1\right)^{n/2}}.$$

6.28.
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n^2} \frac{1}{2^n}.$$

6.30.
$$\sum_{n=2}^{\infty} \sqrt[3]{n} \left(\frac{n-2}{2n+1} \right)^{3n}.$$

Задача 7. Исследовать на сходимость ряд.

7.1.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln^2 (3n+1)}.$$

7.2.
$$\sum_{n=1}^{\infty} \frac{1}{n \ln^2 (2n+1)}.$$

7.3.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+3)\ln^2(2n+1)}.$$

7.5.
$$\sum_{n=1}^{\infty} \frac{1}{(3n+4)\ln^2(5n+2)}.$$

7.7.
$$\sum_{n=1}^{\infty} \frac{1}{(n\sqrt{2}+1)\ln^2(n\sqrt{3}+1)}.$$

7.9.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)\ln(2n)}.$$

7.11.
$$\sum_{n=2}^{\infty} \frac{1}{(3n-1)\ln n}.$$

7.13.
$$\sum_{n=2}^{\infty} \frac{1}{(2n-3)\ln(3n+1)}.$$

7.15.
$$\sum_{n=2}^{\infty} \frac{1}{(n+3)\ln^2(2n)}.$$

7.17.
$$\sum_{n=3}^{\infty} \frac{1}{n \ln (n-1)}.$$

7.19.
$$\sum_{n=5}^{\infty} \frac{1}{(n-2)\sqrt{\ln(n-3)}}.$$

7.21.
$$\sum_{n=2}^{\infty} \frac{1}{(n+5)\ln^2(n+1)}.$$

7.23.
$$\sum_{n=2}^{\infty} \frac{n^2}{(n^3+1)\ln n}.$$

7.25.
$$\sum_{n=4}^{\infty} \frac{1}{(n/3-1)\ln^2(n/2)}.$$

$$7.27. \sum_{n=2}^{\infty} \frac{3n}{(2n^2+3)\ln n}.$$

7.4.
$$\sum_{n=3}^{\infty} \frac{1}{(3n-5)\ln^2(4n-7)}.$$

7.6.
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)\ln^2(n\sqrt{5}+2)}.$$

7.8.
$$\sum_{n=5}^{\infty} \frac{1}{(n-2)\ln(n-3)}.$$

7.10.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(2n)}.$$

7.12.
$$\sum_{n=2}^{\infty} \frac{1}{(2n-1)\ln(n+1)}.$$

7.14.
$$\sum_{n=2}^{\infty} \frac{1}{(n+2)\ln^2 n}.$$

7.16.
$$\sum_{n=2}^{\infty} \frac{1}{(2n+3)\ln^2(n+1)}.$$

7.18.
$$\sum_{n=2}^{\infty} \frac{1}{2n\sqrt{\ln(3n-1)}}.$$

7.20.
$$\sum_{n=4}^{\infty} \frac{1}{(3n-1)\sqrt{\ln(n-2)}}.$$

7.22.
$$\sum_{n=2}^{\infty} \frac{1}{(n/3) \ln^2 (n+7)}.$$

7.24.
$$\sum_{n=3}^{\infty} \frac{n}{(n^2-3)\ln^2 n}.$$

7.26.
$$\sum_{n=2}^{\infty} \frac{n}{(n^2+5) \ln n}.$$

7.28.
$$\sum_{n=4}^{\infty} \frac{n+1}{(5n^2-9)\ln(n-2)}.$$

7.29.
$$\sum_{n=3}^{\infty} \frac{2n+1}{(3n^2/2+2)\ln(n/2)}.$$

7.31.
$$\sum_{n=2}^{\infty} \frac{3n}{(n^2-2)\ln(2n)}.$$

Задача 8. Исследовать на сходимость ряд.

8.1.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{2n+1}{n(n+1)}.$$

8.3.
$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n+1}}{\ln(n+1)}.$$

8.5.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n 2n^2}{n^4 - n^2 + 1}.$$

8.7.
$$\sum_{n=3}^{\infty} \frac{\left(-1\right)^n}{n \ln(n+1)}.$$

8.9.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin \frac{p}{2\sqrt{n}}}{\sqrt{3n+1}}.$$

$$8.11. \sum_{n=1}^{\infty} \frac{\sin n}{n!}.$$

8.13.
$$\sum_{n=1}^{\infty} (-1)^n tg \frac{1}{n}.$$

8.15.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{\left(n+1\right)2^{2n}}.$$

8.17.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{\left(n+1\right)\left(3/2\right)^{n}}.$$

7.30.
$$\sum_{n=2}^{\infty} \frac{n}{(n^2 - 1) \ln n}.$$

8.2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{2n+1} \right)^n$$
.

8.4.
$$\sum_{n=3}^{\infty} \frac{\left(-1\right)^n}{n(\ln \ln n) \ln n}.$$

8.6.
$$\sum_{n=3}^{\infty} \frac{\left(-1\right)^n}{\left(n+1\right) \ln n}.$$

8.8.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n\sqrt[4]{2n+3}}.$$

8.10.
$$\sum_{n=1}^{\infty} (-1)^n \cos \frac{p}{6n}$$
.

8.12.
$$\sum_{n=3}^{\infty} \frac{\left(-1\right)^n}{n \ln{(2n)}}.$$

8.14.
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$$
.

8.16.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\cos \frac{p}{3\sqrt{n}} \sqrt[3]{3n + \ln n}}.$$

8.18.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{2n-1}{3n}.$$

8.19.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+3)}{\ln (n+4)}.$$

8.21.
$$\sum_{n=1}^{\infty} \frac{(-1)^n tg \frac{p}{4\sqrt{n}}}{\sqrt{5n-1}}.$$

$$8.23. \sum_{n=1}^{\infty} \left(-1\right)^n \frac{\sin\left(n\sqrt{n}\right)}{n\sqrt{n}}.$$

8.25.
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{p}{2^n}.$$

8.27.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin 3^n}{3^n}.$$

8.29.
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n} \cdot tg \frac{1}{n}.$$

8.31.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{(n+1)!}.$$

8.20.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{n+1}{\sqrt{n^3}}.$$

8.22.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(2n+1\right)2^{2n+1}}.$$

8.24.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n + \cos(2/\sqrt{n+4})}.$$

8.26.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n^2 + \sin^2 n}.$$

8.28.
$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n^2} \right).$$

8.30.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \cos \frac{1}{\sqrt{n}} \right)$$
.

Задача 9. Вычислить сумму ряда с точностью а.

9.1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{3n^2}$$
, $a = 0.01$.

9.2.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n!}, \quad a = 0,01.$$

9.3.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(2n)^3}, \quad a = 0,001.$$

9.4.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n!(2n+1)}, \quad a = 0,001.$$

9.5.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n^3(n+1)}, \quad a = 0,01.$$

9.6.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{(2n+1)!}, \quad a = 0,0001.$$

9.7.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \cdot n}{2^n}, \quad a = 0,1.$$

9.8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n^2}{3^n}, \quad a = 0,1.$$

9.9.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n} \cdot n}{\left(2n-1\right)^{2} \left(2n+1\right)^{2}}, \quad a = 0,001. \quad 9.10. \quad \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n}}{\left(2n+1\right)!!}, \quad a = 0,0001.$$

9.11.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{(2n)!!}, \quad a = 0,001.$$

9.12.
$$\sum_{n=0}^{\infty} \left(-\frac{2}{5}\right)^n$$
, $a = 0,01$.

9.13.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \cdot n}{7^n}, \quad a = 0,0001.$$

9.14.
$$\sum_{n=0}^{\infty} \left(-\frac{2}{3}\right)^n$$
, $a = 0,1$.

9.15.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!}, \quad a = 0,001.$$

9.16.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{3n!}, \quad a = 0.01.$$

9.17.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(2n\right)!2n}, \quad a = 0,00001.$$

9.18.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (2n+1)}{(2n)! n!}, \quad a = 0,001.$$

9.19.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n \cdot n!}, \quad a = 0,001.$$

9.20.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n \cdot n!}, \quad a = 0,001.$$

9.21.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(2n\right)!n!}, \quad a = 0,00001.$$

9.22.
$$\sum_{n=0}^{\infty} \frac{\cos pn}{3^n (n+1)}, \quad a = 0,001.$$

9.23.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{4^n \left(2n+1\right)}, \quad a = 0,001.$$

9.24.
$$\sum_{n=1}^{\infty} \frac{\sin(p/2 + pn)}{n^3}, \quad a = 0,01.$$

9.25.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^n}{(n+1)^n}, \quad a = 0,001.$$

9.26.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{\left(n+1\right)^n}, \quad a = 0,001.$$

9.27.
$$\sum_{n=1}^{\infty} \frac{\sin(p/2 + pn)}{n^3 + 1}, \quad a = 0,01.$$

9.28.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n^3(n+3)}, \quad a = 0,01.$$

9.29.
$$\sum_{n=0}^{\infty} \frac{\cos(pn)}{(n^3+1)^2}, \quad a = 0,001.$$

9.30.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n}{1+n^2}, \quad a = 0,01.$$

9.31.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n \cdot n}{\left(1+n^3\right)^2}, \quad a = 0,001.$$

Задача 10. Доказать справедливость равенства. (Ответом служит число *т* получаемое при применении признака Даламбера или признака Коши.)

10.1.
$$\lim_{n\to\infty} \frac{n!}{n^n} = 0$$
.

10.3.
$$\lim_{n\to\infty} \frac{2n!!}{n^n} = 0$$
.

10.5.
$$\lim_{n\to\infty} \frac{(2n)!}{2n^2!} = 0.$$

10.7.
$$\lim_{n\to\infty} \frac{(2n)!!}{5^{n^2}} = 0.$$

10.9.
$$\lim_{n\to\infty} \frac{(n+1)!}{n^n} = 0$$
.

10.11.
$$\lim_{n\to\infty} \frac{(2n-1)!!}{n^n} = 0.$$

10.13.
$$\lim_{n\to\infty} \frac{(3n)!}{2^{n^2}} = 0.$$

10.15.
$$\lim_{n\to\infty} \frac{n^5}{(2n)!} = 0.$$

10.17.
$$\lim_{n\to\infty} \frac{(n+2)!}{n^n} = 0.$$

10.19.
$$\lim_{n\to\infty} \frac{(2n+1)!!}{n^n} = 0.$$

10.21.
$$\lim_{n\to\infty}\frac{(4n)!}{2^{n^2}}=0.$$

10.23.
$$\lim_{n\to\infty} \frac{n^3}{4^{n^2}} = 0.$$

10.25.
$$\lim_{n\to\infty} \frac{(n+3)!}{n^n} = 0$$
.

10.2.
$$\lim_{n\to\infty}\frac{n^n}{(2n)!}=0$$
.

10.4.
$$\lim_{n\to\infty} \frac{(2n)^n}{(2n-1)!} = 0.$$

10.6.
$$\lim_{n\to\infty} \frac{n^n}{(n!)^2} = 0$$
.

10.8.
$$\lim_{n\to\infty} \frac{n^2}{n!} = 0$$
.

10.10.
$$\lim_{n\to\infty} \frac{n^n}{(2n+1)!} = 0.$$

10.12.
$$\lim_{n\to\infty} \frac{(3n)^n}{(2n-1)!} = 0.$$

10.14.
$$\lim_{n\to\infty}\frac{n^n}{(n!)^3}=0$$
.

10.16.
$$\lim_{n\to\infty} \frac{2^{3n}}{n!} = 0.$$

10.18.
$$\lim_{n\to\infty}\frac{n^n}{(2n-1)!}=0.$$

10.20.
$$\lim_{n\to\infty} \frac{(2n)^n}{(2n+1)!} = 0.$$

10.22.
$$\lim_{n \to \infty} \frac{n^n}{\left[(n+1)! \right]^2} = 0.$$

10.24.
$$\lim_{n\to\infty} \frac{n!}{2^{n^2}} = 0.$$

10.26.
$$\lim_{n\to\infty} \frac{n^n}{(2n+3)!} = 0.$$

10.27.
$$\lim_{n\to\infty}\frac{(2n+3)!!}{n^n}=0.$$

10.28.
$$\lim_{n\to\infty} \frac{(5n)^n}{(2n+1)!} = 0.$$

10.29.
$$\lim_{n\to\infty} \frac{(5n)!}{2^{n^2}} = 0.$$

10.30.
$$\lim_{n \to \infty} \frac{n^n}{\left[(n+2)! \right]^2} = 0.$$

10.31.
$$\lim_{n\to\infty} \frac{n^2+1}{(2n)!!} = 0.$$

Задача 11. Найти область сходимости функционального ряда.

11.1.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(x+n\right)^{-1/5}}.$$

11.2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \left(\frac{1-x}{1+x} \right)^n.$$

11.3.
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \frac{1}{\left(3x^2+4x+2\right)^n}.$$

11.4.
$$\sum_{n=1}^{\infty} \frac{n+1}{3^n} \left(x^2 - 4x + 6 \right)^n.$$

11.5.
$$\sum_{n=1}^{\infty} \frac{x^n}{1-x^n}.$$

11.6.
$$\sum_{n=1}^{\infty} \frac{n+3}{n+1} \frac{1}{\left(27x^2+12x+2\right)^n}.$$

11.7.
$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}.$$

11.8.
$$\sum_{n=1}^{\infty} \frac{n2^n}{n+1} \frac{1}{\left(3x^2+8x+6\right)^n}.$$

11.9.
$$\sum_{n=1}^{\infty} \frac{1}{n+3} \left(\frac{1+x}{1-x} \right)^n.$$

11.10.
$$\sum_{n=1}^{\infty} \frac{\left(x^2 - 6x + 12\right)^n}{4^n \left(n^2 + 1\right)}.$$

11.11.
$$\sum_{n=1}^{\infty} \frac{1}{\left(\sqrt[3]{n^2} + \sqrt{n} + 1\right)^{2x+1}}.$$

11.12.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(x+n\right)^3}.$$

11.13.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt[3]{x+n}}.$$

11.14.
$$\sum_{n=1}^{\infty} \frac{\left(x^2 - 5x + 11\right)^n}{5^n \left(n^2 + 5\right)}.$$

11.15.
$$\sum_{n=1}^{\infty} \frac{(n+x)^n}{n^n}.$$

11.16.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+x)}.$$

11.17.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(x+n\right)^2}.$$

11.18.
$$\sum_{n=1}^{\infty} \frac{1+x^n}{1-x^n}.$$

11.19.
$$\sum_{n=1}^{\infty} \frac{n+1}{xn^x}.$$

11.20.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{x^2-1}}.$$

11.21.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n (n^2 + 1)} (25x^2 + 1)^n.$$

11.22.
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{x^2 + n^2}.$$

11.23.
$$\sum_{n=1}^{\infty} \frac{2n^3}{n^3 + 2} \frac{1}{\left(3x^2 + 10x + 9\right)^n}.$$

11.24.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{x+2^n}.$$

11.25.
$$\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}.$$

11.26.
$$\sum_{n=1}^{\infty} \frac{|x|^n + |x|^{-n}}{2}.$$

$$11.27. \sum_{n=1}^{\infty} \frac{x}{n(n+e^x)}.$$

11.28.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n n}{\left(n-e^x\right)\left(n^2+1\right)}.$$

11.29.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(n-x\right)^{1/3}}.$$

11.30.
$$\sum_{n=1}^{\infty} \frac{\sqrt{x}}{3^{nx} + 2}.$$

11.31.
$$\sum_{n=1}^{\infty} \frac{x}{n+x^2}.$$

Задача 12. Найти область сходимости функционального ряда.

12.1.
$$\sum_{n=1}^{\infty} \frac{9^n}{n} x^{2n} \sin(x + pn).$$

12.2.
$$\sum_{n=1}^{\infty} \frac{4^{n}}{n} x^{4n} \sin(2x - pn).$$

12.3.
$$\sum_{n=1}^{\infty} \frac{3^n}{n} x^{4n} \cos(x + pn).$$

12.4.
$$\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^n \frac{1}{\sqrt{n}} x^{2n} \cos(x - pn).$$

12.5.
$$\sum_{n=1}^{\infty} \frac{2^{3n}}{\sqrt[3]{n}} x^{4n} \sin(3x + pn).$$

12.6.
$$\sum_{n=1}^{\infty} \frac{6^n}{n} x^{2n} \sin(5x - pn).$$

12.7.
$$\sum_{n=1}^{\infty} \frac{5^n}{\sqrt[4]{3n}} x^{2n} \cos(x+pn).$$

12.8.
$$\sum_{n=1}^{\infty} \frac{9^n}{2n} x^{2n} \sin(3x - pn).$$

12.9.
$$\sum_{n=1}^{\infty} 2^n x^{3n} \sin \frac{x}{n}.$$

12.10.
$$\sum_{n=1}^{\infty} 3^{2n} x^n \sin \frac{x}{2n}.$$

12.11.
$$\sum_{n=1}^{\infty} 2^{3n} x^n \sin \frac{2x}{n}.$$

12.13.
$$\sum_{n=1}^{\infty} 3^n x^n \operatorname{tg} \frac{3x}{n}$$
.

12.15.
$$\sum_{n=1}^{\infty} x^{3n} \operatorname{tg} \frac{2x}{3n}$$
.

12.17.
$$\sum_{n=1}^{\infty} 16^n x^{3n} \arcsin \frac{x}{\sqrt[3]{n}}.$$

12.19.
$$\sum_{n=1}^{\infty} 2^n x^n \arctan \frac{2x}{n+1}$$
.

12.21.
$$\sum_{n=1}^{\infty} 27^n x^{3n} \arctan \frac{3x}{2n+3}.$$

12.23.
$$\sum_{n=1}^{\infty} 8^n n^2 \sin^{3n} x.$$

12.25.
$$\sum_{n=1}^{\infty} \frac{3^n}{n} \operatorname{tg}^{2n} x.$$

12.27.
$$\sum_{n=1}^{\infty} \frac{4^n}{n^2} \sin^{2n} x.$$

12.29.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \operatorname{tg}^n x.$$

12.31.
$$\sum_{n=1}^{\infty} \frac{4 \cdot 3^{n/2}}{\sqrt{n}} \operatorname{tg}^{n}(2x).$$

12.12.
$$\sum_{n=1}^{\infty} 3^n x^{3n} \sin \frac{3x}{\sqrt{n}}.$$

12.14.
$$\sum_{n=1}^{\infty} 8^n x^{3n} \operatorname{tg} \frac{x}{4\sqrt{n}}$$
.

12.16.
$$\sum_{n=1}^{\infty} 2^n x^{3n} \arcsin \frac{x}{3n}$$
.

12.18.
$$\sum_{n=1}^{\infty} 32^n x^{5n} \arcsin \frac{x}{\sqrt{n}}$$
.

12.20.
$$\sum_{n=1}^{\infty} 2^n x^{3n} \operatorname{arctg} \frac{x}{2(n+3)}$$
.

12.22.
$$\sum_{n=1}^{\infty} \frac{8^n}{n^2} \sin^{3n} x.$$

12.24.
$$\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} \sin^{2n}(2x).$$

12.26.
$$\sum_{n=1}^{\infty} \frac{2^n}{n^4} \sin^n(3x).$$

12.28.
$$\sum_{n=1}^{\infty} \frac{1}{n^3} \operatorname{tg}^n(2x).$$

12.30.
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^{n/2}} \operatorname{tg}^{n} x.$$

Задача 13. Найти область сходимости функционального ряда.

13.1.
$$\sum_{n=1}^{\infty} 2n^2 \sqrt{x-2} \cdot e^{-n^2/(x-1)^3}.$$

13.3.
$$\sum_{n=1}^{\infty} \left(1 + \frac{2}{n} \right)^n \cdot 5^{-n/(x+1)^2}.$$

13.5.
$$\sum_{n=1}^{\infty} e^{-(1-x\sqrt{n})^2}$$
.

13.2.
$$\sum_{n=1}^{\infty} \frac{\ln^n \left(x + 1/n \right)}{\sqrt{x - e}}.$$

13.4.
$$\sum_{n=1}^{\infty} n^2 \sqrt{x-1} \cdot e^{-n/x}.$$

13.6.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^n \cdot 3^{n/(x-1)}.$$

13.7.
$$\sum_{n=1}^{\infty} 5^{-n^3 \cdot \sin(x^2+1)/n}.$$

13.9.
$$\sum_{n=1}^{\infty} 5^{nx} \arctan \frac{x}{7^{nx} (x-1)}$$
.

13.11.
$$\sum_{n=1}^{\infty} \left(1 + \frac{5}{n}\right)^n \cdot 3^{-n/x^2}.$$

13.13.
$$\sum_{n=1}^{\infty} e^{n^2 \cdot \sin(x^2+1)/n}.$$

13.15.
$$\sum_{n=1}^{\infty} \frac{\left(\ln\left(1+1/n\right) + \ln\ln x\right)^n}{\sqrt{x-e^{1/e}}}.$$

13.17.
$$\sum_{n=1}^{\infty} \frac{1}{\ln^n (x+1/e)}.$$

13.19.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{e^{n\sin x}}.$$

13.21.
$$\sum_{n=1}^{\infty} (-1)^n 3^{-n^2 \cdot \ln(1+x/n)}.$$

13.23.
$$\sum_{n=1}^{\infty} n^{\sqrt{x}} \arcsin \frac{x}{3^{nx}}.$$

13.25.
$$\sum_{n=1}^{\infty} (-1)^{n-1} 2^{-n^2 \cdot \left(\ln n / \left(x^2 + 1\right)\right)}.$$

13.27.
$$\sum_{n=1}^{\infty} \frac{1}{\ln^n x}.$$

13.29.
$$\sum_{n=1}^{\infty} e^{-n^4 \left(\sin \left(\frac{1}{n^2 x^2} \right)}.$$

13.31.
$$\sum_{n=1}^{\infty} \left(3 + \frac{1}{n} \right)^n \cdot 4^{-n^2/x}.$$

13.8.
$$\sum_{n=1}^{\infty} \frac{1}{\ln^n (x-1)}.$$

13.10.
$$\sum_{n=1}^{\infty} \frac{1}{\ln^n (x+2)}.$$

13.12.
$$\sum_{n=1}^{\infty} \frac{1}{\ln^n (x+e)}.$$

13.14.
$$\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n/\cos x}.$$

13.16.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n^{\ln|x|}}.$$

$$13.18. \sum_{n=1}^{\infty} \sin^n \frac{x \ln n}{x - n}.$$

13.20.
$$\sum_{n=1}^{\infty} (-1)^n 5^{-n^2 \cdot \arctan(1/(n|x|))}.$$

13.22.
$$\sum_{n=1}^{\infty} \frac{\cos(n/(x-1))}{e^{n\sqrt{x}}}.$$

13.24.
$$\sum_{n=1}^{\infty} n^{2x} \arctan \frac{\sqrt{x}}{2^{nx}}$$
.

$$13.26. \sum_{n=1}^{\infty} n \ln \left(x - \frac{1}{2} \right) \cdot e^{n/\ln x}.$$

13.28.
$$\sum_{n=1}^{\infty} (-1)^n 5^{-n(\ln n/x^2)}.$$

13.30.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\ln(1+x^2)}}.$$

Задача 14. Найти область сходимости функционального ряда.

14.1.
$$\sum_{n=1}^{\infty} \frac{\left(n-2\right)^3 \left(x+3\right)^{2n}}{2n+3}.$$

14.3.
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n9^n}.$$

14.5.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{\left(x-2\right)^{2n}}{2n}.$$

14.7.
$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{3^n (x-2)^n}.$$

14.9.
$$\sum_{n=1}^{\infty} \frac{\left(x+5\right)^{2n-1}}{4^n \left(2n-1\right)}.$$

14.11.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{(3n+1)2^n}.$$

14.13.
$$\sum_{n=1}^{\infty} (x+5)^n \operatorname{tg} \frac{1}{3^n}$$
.

14.15.
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot 9^n (x-1)^{2n}}.$$

14.17.
$$\sum_{n=1}^{\infty} \frac{\left(x+2\right)^{n^2}}{n^n}.$$

14.19.
$$\sum_{n=1}^{\infty} \frac{(3n-2)(x-3)^n}{(n+1)^2 2^{n+1}}.$$

14.21.
$$\sum_{n=2}^{\infty} \frac{1}{(n+2)\ln(n+2)(x-3)^{2n}}.$$

14.23.
$$\sum_{n=1}^{\infty} \frac{\left(x-4\right)^{n^2}}{n^{n+1}}.$$

14.2.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \left(x-3\right)^n}{\left(n+1\right)5^n}.$$

14.4.
$$\sum_{n=1}^{\infty} \frac{2n+3}{(n+1)^5 x^{2n}}.$$

14.6.
$$\sum_{n=1}^{\infty} \frac{\left(x-5\right)^{2n+1}}{3n+8}.$$

14.8.
$$\sum_{n=1}^{\infty} \frac{n!}{x^n}$$
.

14.10.
$$\sum_{n=1}^{\infty} \frac{\left(x-7\right)^{2n-1}}{\left(2n^2-5n\right)4^n}.$$

14.12.
$$\sum_{n=2}^{\infty} \frac{3n(x-2)^{3n}}{(5n-8)^3}.$$

14.14.
$$\sum_{n=1}^{\infty} \sin \frac{\sqrt{n}}{n^2 + 1} (x - 2)^n.$$

14.16.
$$\sum_{n=1}^{\infty} 3^{n^2} x^{n^2}.$$

14.18.
$$\sum_{n=1}^{\infty} \frac{n^5}{(n+1)!} (x+5)^{2n+1}.$$

14.20.
$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{(n+4)\ln(n+4)}.$$

14.22.
$$\sum_{n=5}^{\infty} \frac{1}{2^n n^2 (x+2)^n}.$$

14.24.
$$\sum_{n=1}^{\infty} \frac{n^5}{x^n}$$
.

14.25.
$$\sum_{n=5}^{\infty} \frac{\sqrt{n+1}}{3^n (x+3)^n}.$$

14.27.
$$\sum_{n=1}^{\infty} \frac{3n+5}{(2n+9)^5 (x+2)^{2n}}.$$

14.29.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{(2n+1)3^n}.$$

14.31.
$$\sum_{n=1}^{\infty} \frac{\left(n+1\right)^5 x^{2n}}{2n+1}.$$

14.26.
$$\sum_{n=1}^{\infty} \frac{4^n (x+1)^{2n}}{n}.$$

14.28.
$$\sum_{n=5}^{\infty} \frac{n^2 + 1}{5^n (x+4)^n}.$$

14.30.
$$\sum_{n=1}^{\infty} \frac{n^2 (x-3)^n}{(n^4+1)^2}.$$

Задача 15. Доказать, исходя из определения, равномерную сходимости функционального ряда на отрезке [0,1]. При каких n абсолютная величина остаточного члена ряда не превосходит $0.1 \ \forall x \in [0,1]$?

15.1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{7n-11}.$$

15.3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4n-6}.$$

15.5.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4n-5}.$$

15.7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{3n-4}.$$

15.9.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{6n-11}.$$

15.11.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{7n-10}.$$

15.13.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n^3 - 4}}.$$

15.15.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{8n-12}.$$

15.2.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{5n-6}.$$

15.4.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{\sqrt[3]{n^3 - 5}}.$$

15.6.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{5n-9}.$$

15.8.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n^3 - 2}}.$$

15.10.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n^3 - 7}}.$$

15.12.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{6n-8}.$$

15.14.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{2n-3}.$$

15.16.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{6n-7}.$$

15.17.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{5n-8}.$$

15.19.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{4n-7}.$$

15.21.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{7n-13}.$$

15.23.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{3n-5}.$$

15.25.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{8n-11}.$$

15.27.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{8n^3 - 12}}.$$

15.29.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{9n-15}.$$

15.31.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{n^3 - 6}}.$$

15.18.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{6n-10}.$$

15.20.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{5n-7}.$$

15.22.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{8n^3 - 21}}.$$

15.24.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{\sqrt[3]{8n^3 - 19}}.$$

15.26.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{\sqrt[3]{8n^3 - 11}}.$$

15.28.
$$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{x^n}{\sqrt[3]{n^3 - 3}}.$$

15.30.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{10n-12}.$$

Задача 16. Для данного функционального ряда построить мажорирующий ряд и доказать равномерную сходимость на указанном отрезке.

16.1.
$$\sum_{n=0}^{\infty} \frac{\sqrt{x+1} \cos nx}{\sqrt[3]{n^5+1}}, [0, 2].$$

16.3.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^n}$$
, [-2, 2].

16.5.
$$\sum_{n=1}^{\infty} x^{n!}$$
, $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

16.7.
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{(2n+1)\sqrt{n+1}}, [2, 4].$$

16.9.
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n9^n}, [-1, 3].$$

16.2.
$$\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$$
, $\left[-\frac{3}{2}, \frac{3}{2}\right]$.

16.4.
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{2}\right)^n, \left[-\frac{3}{2}, \frac{3}{2}\right].$$

16.6.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n5^n}, [-1, 6].$$

16.8.
$$\sum_{n=0}^{\infty} \frac{(p-x)\cos^2 nx}{\sqrt[4]{n^7+1}}, [0, p].$$

16.10.
$$\sum_{n=1}^{\infty} \frac{n!(x+3)^n}{n^n}, [-5, -1].$$

16.11.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^{2n}}{(n+1)^2 \ln(n+1)}, [1, 3].$$
 16.12.
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}, [-3, 3].$$

16.12.
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
, [-3, 3].

16.13.
$$\sum_{n=1}^{\infty} \frac{2^{n-1} x^{2n-1}}{(4n-3)^2}, \quad [-\frac{1}{\sqrt{2}}, \quad \frac{1}{\sqrt{2}}].$$

16.14.
$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n3^n \ln n}, \quad [-2, \ 2].$$

16.15.
$$\sum_{n=1}^{\infty} \frac{\left(x+5\right)^{2n-1}}{n^2 4^n}, \quad [-7, -3].$$

16.16.
$$\sum_{n=1}^{\infty} \frac{\left(x+2\right)^{n^2}}{n^n}, \quad [-3, -1].$$

16.17.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} x^{n}}{n}, \left[-\frac{1}{2}, \frac{1}{2}\right].$$

16.18.
$$\sum_{n=0}^{\infty} \frac{\left(n+1\right)^4 x^{2n}}{2n+1}, \ \left[-\frac{1}{2}, \ \frac{1}{2}\right].$$

16.19.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-2)^{2n}}{n}, \ [\frac{3}{2}, \ \frac{5}{2}].$$

16.20.
$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{n^2}, [-6, -4].$$

16.21.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{(2n-1)2^n}, [1, 3].$$

16.22.
$$\sum_{n=1}^{\infty} \frac{(x+1)\sin^2 nx}{n\sqrt{n+1}}, \quad [-3, \ 0].$$

16.23.
$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+2)}, \quad [-1, 1].$$

16.24.
$$\sum_{n=0}^{\infty} \frac{\left(x+5\right)^n}{\sqrt[3]{n+1}\sqrt{n^2+1}}, \quad [-6, -4].$$

16.25.
$$\sum_{n=0}^{\infty} \frac{x^{n^2}}{3^{n^2}}$$
, [-2, 2].

16.26.
$$\sum_{n=0}^{\infty} \left(\sin \frac{p}{2^n} \right) (x-2)^n, [1, 3].$$

16.27.
$$\sum_{n=0}^{\infty} \frac{\left(x-1\right)^n}{2^n \left(n+3\right)}, [0, 2].$$

16.28.
$$\sum_{n=1}^{\infty} \frac{\left(x+1\right)^{2n}}{n4^n}, \quad [-1, \ 0].$$

16.29.
$$\sum_{n=0}^{\infty} \left(-1\right)^{n-1} \frac{n(x+2)^n}{(n+1)\sqrt[3]{n+2}}, \quad [-3, -1]. \quad 16.30. \sum_{n=0}^{\infty} \frac{(x-3)^{2n}}{n\sqrt{n+1}}, \quad [2, 4].$$

16.30.
$$\sum_{n=0}^{\infty} \frac{\left(x-3\right)^{2n}}{n\sqrt{n+1}}, [2, 4].$$

16.31.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{(n+1)\ln^2(n+1)}, \quad [-2, \ 0].$$

Задача 17. Найти сумму ряда.

17.1.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \left(1 + \frac{1}{n}\right) x^{n-1}.$$

17.2.
$$\sum_{n=2}^{\infty} \frac{x^{2n}}{(2n-3)(2n-2)}.$$

17.3.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \left(\frac{1}{n} - \frac{1}{n+2}\right) x^{n+2}.$$

17.5.
$$\sum_{n=0}^{\infty} \frac{1 + \left(-1\right)^n}{2n+1} x^{2n+1}.$$

17.7.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1} x^n}{n(n-1)}.$$

17.9.
$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$
.

17.11.
$$\sum_{n=0}^{\infty} \frac{x^{2n+2}}{(2n+1)(2n+2)}.$$

17.13.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{x^{n+1}}{n(n+1)}.$$

17.15.
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n(2n-1)}.$$

17.17.
$$\sum_{n=1}^{\infty} \left[1 + \frac{\left(-1\right)^{n+1}}{n} \right] x^{n-1}.$$

17.19.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n x^{n+1}}{(n+1)(n+2)}.$$

17.21.
$$\sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n(2n+1)}.$$

17.23.
$$\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+1)(n+2)}.$$

17.25.
$$\sum_{n=2}^{\infty} \frac{x^{2n}}{(2n-2)(2n-1)}.$$

17.27.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \cos^{n+1} x}{n(n+1)}.$$

17.4.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} x^{2n-1}}{4^n \left(2n-1\right)}.$$

17.6.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \left(1 - \frac{1}{n}\right) \frac{1}{x^n}.$$

17.8.
$$\sum_{n=0}^{\infty} \frac{1 + \left(-1\right)^{n-1}}{2n+1} x^{2n+1}.$$

17.10.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n-1} x^{2n+2}}{16^n \left(2n+1\right)}.$$

17.12.
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \left(\frac{1}{n} + \frac{1}{n+1}\right) x^{n}.$$

17.14.
$$\sum_{n=1}^{\infty} \frac{e^{-nx}}{n}.$$

17.16.
$$\sum_{n=1}^{\infty} \left[\left(-1 \right)^n + \frac{1}{n} \right] x^{2n} .$$

17.18.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n(n+1)x^{n+1}}.$$

17.20.
$$\sum_{n=2}^{\infty} \frac{\sin^n x}{n(n-1)}.$$

17.22.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{n+1} \right) x^{n}.$$

17.24.
$$\sum_{n=1}^{\infty} \left[2^n + \frac{(-1)^n}{n} \right] x^n.$$

17.26.
$$\sum_{n=2}^{\infty} \frac{x^n}{n(n-1)}.$$

17.28.
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \operatorname{tg}^{n} x}{n(n+1)}.$$

17.29.
$$\sum_{n=0}^{\infty} \frac{3^n}{(n+1)x^{n+1}}.$$

17.30.
$$\sum_{n=2}^{\infty} \frac{n + (-1)^n}{n(n-1)} x^n.$$

17.31.
$$\sum_{n=0}^{\infty} \frac{x^{2n+2}}{(2n+2)(2n+3)}.$$

Задача 18. Найти сумму ряда.

18.1.
$$\sum_{n=0}^{\infty} (4n^2 + 9n + 5) x^{n+1}.$$

18.2.
$$\sum_{n=0}^{\infty} (3n^2 + 7n + 4) x^n.$$

18.3.
$$\sum_{n=0}^{\infty} (n^2 + n + 1) x^{n+3}.$$

18.4.
$$\sum_{n=0}^{\infty} (2n^2 + 4n + 3) x^{n+2}.$$

18.5.
$$\sum_{n=0}^{\infty} (n^2 + 5n + 3) x^n.$$

18.6.
$$\sum_{n=0}^{\infty} (2n^2 + 5n + 3) x^{n+1}.$$

18.7.
$$\sum_{n=0}^{\infty} (3n^2 + 8n + 5) x^{n+2}.$$

18.8.
$$\sum_{n=0}^{\infty} (2n^2 + 8n + 5) x^n.$$

18.9.
$$\sum_{n=0}^{\infty} (2n^2 + 7n + 5) x^{n+1}.$$

18.10.
$$\sum_{n=0}^{\infty} (3n^2 + 7n + 5) x^n.$$

18.11.
$$\sum_{n=0}^{\infty} n(2n-1)x^{n+2}$$
.

18.12.
$$\sum_{n=0}^{\infty} (n^2 - n + 1) x^n.$$

18.13.
$$\sum_{n=0}^{\infty} (2n^2 - n - 1) x^n.$$

18.14.
$$\sum_{n=0}^{\infty} (3n^2 + 5n + 4) x^{n+1}.$$

18.15.
$$\sum_{n=0}^{\infty} (n^2 + 7n + 4) x^n.$$

18.16.
$$\sum_{n=0}^{\infty} (2n^2 - n - 2) x^{n+1}.$$

18.17.
$$\sum_{n=0}^{\infty} (2n^2 + 2n + 1) x^n.$$

18.18.
$$\sum_{n=0}^{\infty} (n^2 + 2n - 1) x^{n+1}.$$

18.19.
$$\sum_{n=0}^{\infty} (n^2 + 2n + 2) x^{n+2}.$$

18.20.
$$\sum_{n=0}^{\infty} (n^2 + 4n + 3) x^{n+1}.$$

19.21.
$$\sum_{n=0}^{\infty} (n^2 + 5n + 4) x^{n+2}.$$

18.22.
$$\sum_{n=0}^{\infty} (2n^2 - 2n + 1) x^n.$$

18.23.
$$\sum_{n=0}^{\infty} (n^2 - 2n - 1) x^{n+1}.$$

18.24.
$$\sum_{n=0}^{\infty} (n^2 - 2n + 2) x^n.$$

18.25.
$$\sum_{n=0}^{\infty} (n^2 - 2n - 2) x^{n+1}.$$

18.26.
$$\sum_{n=0}^{\infty} (4n^2 + 6n + 5) x^n.$$

18.27.
$$\sum_{n=0}^{\infty} (n^2 + 6n + 5) x^{n+1}.$$

18.28.
$$\sum_{n=0}^{\infty} n(2n+1)x^{n+2}.$$

18.29.
$$\sum_{n=0}^{\infty} (2n^2 + n + 1) x^{n+1}.$$

18.30.
$$\sum_{n=0}^{\infty} (2n^2 + n - 1) x^n.$$

18.31.
$$\sum_{n=0}^{\infty} (n^2 + 9n + 5) x^{n+1}.$$

Задача 19. Разложить функцию в ряд Тейлора по степеням x.

19.1.
$$\frac{9}{20-x-x^2}$$
.

19.2.
$$\frac{x^2}{\sqrt{4-5x}}$$
.

19.3.
$$\ln(1-x-6x^2)$$
.

19.4.
$$2x\cos^2(x/2) - x$$
.

19.5.
$$\frac{\sinh 2x}{x} - 2$$
.

19.6.
$$\frac{7}{12+x-x^2}$$
.

19.7.
$$\frac{x}{\sqrt[3]{27-2x}}$$
.

19.8.
$$\ln(1+x-6x^2)$$
.

19.9.
$$(x-1)\sin 5x$$
.

19.10.
$$\frac{\cosh 3x - 1}{x^2}$$
.

19.11.
$$\frac{6}{8+2x-x^2}$$
.

19.12.
$$\frac{1}{\sqrt[4]{16-3x}}$$
.

19.13.
$$\ln(1-x-12x^2)$$
.

19.14.
$$(3+e^{-x})^2$$
.

19.15.
$$\frac{\arcsin x}{x} - 1$$
.

$$19.16. \ \frac{7}{12 - x - x^2}.$$

19.17.
$$x^2 \sqrt{4-3x}$$
.

19.18.
$$\ln(1+2x-8x^2)$$
.

19.19.
$$2x\sin^2(x/2) - x$$
.

19.20.
$$(x-1)$$
shx.

19.21.
$$\frac{5}{6+x-x^2}$$
.

19.22.
$$x\sqrt[3]{27-2x}$$
.

19.23.
$$\ln(1+x-12x^2)$$
.

$$19.24. \frac{\sin 3x}{x} - \cos 3x.$$

19.25.
$$\frac{\operatorname{arctg} x}{x}$$
.

$$19.26. \frac{5}{6 - x - x^2}.$$

19.27.
$$\sqrt[4]{16-5x}$$

19.28.
$$\ln(1-x-20x^2)$$
.

19.29.
$$(2-e^x)^2$$
.

19.30.
$$(x-1)$$
chx.

19.31.
$$\frac{3}{2-x-x^2}$$
.

Задача 20. Вычислить интеграл с точностью до 0,001.

$$20.1. \int_{0}^{0.1} e^{-6x^2} dx.$$

$$20.2. \int_{0}^{0.1} \sin(100x^2) dx.$$

20.3.
$$\int_{0}^{1} \cos x^2 dx$$
.

$$20.4. \int_{0}^{0.5} \frac{dx}{\sqrt[4]{1+x^4}}.$$

20.5.
$$\int_{0}^{0.1} \frac{1 - e^{-2x}}{x} dx.$$

20.6.
$$\int_{0}^{1} \frac{\ln(1+x/5)}{x} dx.$$

20.7.
$$\int_{0}^{1.5} \frac{dx}{\sqrt[3]{27+x^3}}.$$

$$20.8. \int_{0}^{0.2} e^{-3x^2} dx.$$

$$20.9. \int_{0}^{0.2} \sin(25x^2) dx.$$

20.10.
$$\int_{0}^{0.5} \cos(4x^2) dx$$
.

$$20.11. \int_{0}^{1} \frac{dx}{\sqrt[4]{16+x^4}}.$$

20.12.
$$\int_{0}^{0.2} \frac{1 - e^{-x}}{x} dx.$$

20.13.
$$\int_{0}^{0.4} \frac{\ln(1+x/2)}{x} dx.$$

20.14.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{64+x^3}}.$$

$$20.15. \int_{0}^{0.3} e^{-2x^2} dx.$$

$$20.16. \int_{0}^{0.4} \sin(5x/2)^2 dx.$$

$$20.17. \int_{0}^{0.2} \cos(25x^2) dx.$$

20.18.
$$\int_{0}^{1.5} \frac{dx}{\sqrt[4]{81+x^4}}.$$

20.19.
$$\int_{0}^{0.4} \frac{1 - e^{-x/2}}{x} dx.$$

$$20.20. \int_{0}^{0.1} \frac{\ln(1+2x)}{x} dx.$$

$$20.21. \int_{0}^{2.5} \frac{dx}{\sqrt[3]{125 + x^3}}.$$

$$20.23. \int_{0}^{0.5} \sin(4x^2) dx.$$

20.25.
$$\int_{0}^{2} \frac{dx}{\sqrt[4]{256 + x^4}}.$$

20.27.
$$\int_{0}^{2.5} \frac{dx}{\sqrt[4]{625 + x^4}}.$$

20.29.
$$\int_{0}^{0.5} e^{-3x^2/25} dx.$$

$$20.31. \int_{0}^{0.1} \cos(100x^2) dx.$$

$$20.22. \int_{0}^{0.4} e^{-3x^2/4} dx.$$

20.24.
$$\int_{0}^{0.4} \cos(5x/2)^2 dx$$
.

20.26.
$$\int_{0}^{0.5} \frac{dx}{\sqrt[3]{1+x^3}}.$$

20.28.
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{8+x^3}}.$$

$$20.30. \int_{0}^{1} \sin x^{2} dx.$$

VII. КРАТНЫЕ ИНТЕГРАЛЫ

Теоретические вопросы

- 1. Определение двойного и тройного интегралов. Их геометрический и физический смысл.
 - 2. Основные свойства двойных и тройных интегралов.
 - 3. Теорема о среднем для двойного и тройного интегралов.
- 4. Вычисление двойных интегралов двумя последовательными интегрированиями (случай прямоугольной области).
- 5. Вычисление двойных интегралов двумя последовательными интегрированиями (общий случай).
 - 6. Замена переменных в двойном интеграле.
 - 7. Якобиан, его геометрический смысл.
 - 8. Двойной интеграл в полярных координатах.
 - 9. Тройной интеграл в цилиндрических координатах.
 - 10. Тройной интеграл в сферических координатах.

Теоретические упражнения

1. Пользуясь определением двойного интеграла, доказать, что

$$\iint\limits_{x^2+y^2\leq R^2} x^m y^n dx dy = 0,$$

если m и n - натуральные числа, и, по меньшей мере, одно из них нечетно.

2. С помощью теоремы о среднем найти

$$\lim_{R\to 0} \frac{1}{pR^2} \iint_{x^2+y^2 \le R^2} f(x,y) dx dy,$$

где f(x, y) - непрерывная функция.

3. Оценить интеграл

$$\iiint_{x^2+y^2+z^2 \le R^2} \frac{dxdydz}{\sqrt{\left(x-x_0^2\right)^2+\left(y-y_0^2\right)^2+\left(z-z_0^2\right)^2}}, \quad x_0^2+y_0^2+z_0^2 > R^2,$$

т.е. указать, между какими значениями заключена его величина.

4. Вычислить двойной интеграл

$$\iint\limits_{D} f(x,y) dx dy,$$

если область D - прямоугольник { $a \le x \le b, \ c \le y \le d$ }, а $f(x,y) = F''_{xy}(x,y)$.

5. Доказать равенство

$$\iint_{D} f(x)g(y)dxdy = \int_{a}^{b} f(x)dx \int_{c}^{d} g(y)dy \delta$$

если область D - прямоугольник { $a \le x \le b, \ c \le y \le d$ }.

6. Доказать формулу Дирихле

$$\int_{0}^{a} dx \int_{0}^{x} f(x, y) dy = \int_{0}^{a} dy \int_{y}^{a} f(x, y) dx, \qquad a > 0.$$

7. Пользуясь формулой Дирихле, доказать равенство

$$\int_{0}^{a} dy \int_{0}^{y} f(x) dx = \int_{0}^{a} (a-x) f(x) dx.$$

8. Какой из интегралов больше

$$\int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} f(x, y, z) dz$$
 или
$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} f(x, y, z) dz,$$

если f(x, y, z) > 0?

счетные задания

Задача 1. Изменить порядок интегрирования.

1.1.
$$\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f \ dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f \ dx.$$

$$\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f \ dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f \ dx.$$
 1.2.
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{-y}}^{0} f \ dx.$$

1.3.
$$\int_{0}^{1} dy \int_{0}^{y} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^{2}}} f \ dx.$$

1.4.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f \ dx + \int_{1}^{2} dy \int_{0}^{\sqrt{2-y}} f \ dx.$$

1.5.
$$\int_{-\sqrt{2}}^{-1} dx \int_{-\sqrt{2-x^2}}^{0} f dy + \int_{-1}^{0} dx \int_{x}^{0} f dy.$$

1.6.
$$\int_{0}^{1/\sqrt{2}} dy \int_{0}^{\arcsin y} f \, dx + \int_{1/\sqrt{2}}^{1} dy \int_{0}^{\arccos y} f \, dx.$$

1.7.
$$\int_{-2}^{-1} dy \int_{0}^{\sqrt{2+y}} f \ dx + \int_{-1}^{0} dy \int_{0}^{\sqrt{-y}} f \ dx.$$

1.8.
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f \ dx + \int_{1}^{e} dy \int_{-1}^{-\ln y} f \ dx.$$

1.9.
$$\int_{-\sqrt{2}}^{-1} dx \int_{0}^{\sqrt{2-x^2}} f \ dy + \int_{-1}^{0} dx \int_{0}^{x^2} f \ dy.$$

1.10.
$$\int_{-2}^{-\sqrt{3}} dx \int_{-\sqrt{4-x^2}}^{0} f dy + \int_{-\sqrt{3}}^{0} dx \int_{\sqrt{4-x^2}-2}^{0} f dy.$$

1.11.
$$\int_{0}^{1} dx \int_{1-x^{2}}^{1} f dy + \int_{1}^{e} dx \int_{\ln x}^{1} f dy.$$

1.12.
$$\int_{0}^{1} dy \int_{0}^{\sqrt[3]{y}} f \ dx + \int_{1}^{2} dy \int_{0}^{2-y} f \ dx.$$

1.13.
$$\int_{0}^{p/4} dy \int_{0}^{\sin y} f \ dx + \int_{p/4}^{p/2} dy \int_{0}^{\cos y} f \ dx..$$

1.14.
$$\int_{-2}^{-1} dx \int_{-(2+x)}^{0} f dy + \int_{-1}^{0} dx \int_{3/x}^{0} f dy.$$

1.15.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f \ dx + \int_{1}^{e} dy \int_{\ln y}^{1} f \ dx.$$

1.16.
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f \ dx + \int_{1}^{2} dy \int_{-\sqrt{2-y}}^{0} f \ dx.$$

1.17.
$$\int_{0}^{1} dy \int_{-y}^{0} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{-\sqrt{2-y^{2}}}^{0} f \ dx.$$

1.18.
$$\int_{0}^{1} dy \int_{0}^{y^{2}} f \ dx + \int_{1}^{2} dy \int_{0}^{2-y} f \ dx.$$

1.19.
$$\int_{0}^{\sqrt{3}} dx \int_{\sqrt{4-x^2}-2}^{0} f dy + \int_{\sqrt{3}}^{2} dx \int_{-\sqrt{4-x^2}}^{0} f dy.$$

1.20.
$$\int_{-2}^{-1} dy \int_{-(2+y)}^{0} f \ dx + \int_{-1}^{0} dy \int_{\sqrt[3]{y}}^{0} f \ dx.$$

1.21.
$$\int_{0}^{1} dy \int_{0}^{y} f \ dx + \int_{1}^{e} dy \int_{\ln y}^{1} f \ dx.$$

1.23.
$$\int_{0}^{p/4} dx \int_{0}^{\sin x} f \, dy + \int_{p/4}^{p/2} dx \int_{0}^{\cos x} f \, dy.$$

1.25.
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f \ dy + \int_{1}^{2} dx \int_{0}^{2-x} f \ dy.$$

1.27.
$$\int_{0}^{1} dx \int_{-\sqrt{x}}^{0} f \ dy + \int_{1}^{2} dx \int_{-\sqrt{2-x}}^{0} f \ dy.$$

1.29.
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f \ dx + \int_{1}^{\sqrt{2}} dy \int_{0}^{\sqrt{2-y^{2}}} f \ dx.$$

1.31.
$$\int_{-2}^{-\sqrt{3}} dx \int_{0}^{\sqrt{4-x^2}} f dy + \int_{-\sqrt{3}}^{0} dx \int_{0}^{2-\sqrt{4-x^2}} f dy.$$

Задача 2. Вычислить.

$$\iint_{D} (12x^2y^2 + 16x^3y^3) dxdy;$$

$$D: x = 1, y = x^2, y = -\sqrt{x}.$$

$$\iint_{D} (36x^2y^2 - 96x^3y^3) dxdy;$$

$$D: x = 1, y = \sqrt[3]{x}, y = -x^3.$$

$$\iint_{D} \left(27x^2y^2 + 48x^3y^3\right) dxdy;$$

$$D: x = 1, y = x^2, y = -\sqrt[3]{x}.$$

1.22.
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f \ dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^{2}}} f \ dy.$$

1.24.
$$\int_{-\sqrt{2}}^{-1} dy \int_{-\sqrt{2-y^2}}^{0} f dx + \int_{-1}^{0} dy \int_{y}^{0} f dx.$$

1.26.
$$\int_{0}^{\sqrt{3}} dx \int_{0}^{2-\sqrt{4-x^2}} f \, dy + \int_{\sqrt{3}}^{2} dx \int_{0}^{\sqrt{4-x^2}} f \, dy.$$

1.28.
$$\int_{0}^{1} dx \int_{0}^{x} f \ dy + \int_{1}^{\sqrt{2}} dx \int_{0}^{\sqrt{2-x^2}} f \ dy.$$

1.30.
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x}} f \ dy + \int_{1}^{2} dx \int_{0}^{\sqrt{2-x}} f \ dy.$$

$$\iint_{D} (9x^2y^2 + 48x^3y^3) dxdy;$$

$$D: x = 1, y = \sqrt{x}, y = -x^2.$$

$$\iint_{D} \left(18x^2y^2 + 32x^3y^3\right) dxdy;$$

$$D: x=1, y=x^3, y=-\sqrt[3]{x}.$$

$$\iint_{D} (18x^2y^2 + 32x^3y^3) dxdy;$$

$$D: x = 1, y = \sqrt[3]{x}, y = -x^2.$$

$$\iint_{D} (18x^2y^2 + 32x^3y^3) dxdy;$$

$$D: x = 1, y = x^3, y = -\sqrt{x}.$$

2.9.
$$\iint_{D} (4xy + 3x^{2}y^{2}) dxdy;$$
$$D: x = 1, y = x^{2}, y = -\sqrt{x}.$$

$$\iint_{D} (8xy + 9x^{2}y^{2}) dxdy;$$

$$D: x = 1, y = \sqrt[3]{x}, y = -x^{3}.$$

$$\iint_{D} (12xy + 27x^{2}y^{2}) dxdy;$$
2.13. $D: x = 1, y = x^{2}, y = -\sqrt[3]{x}.$

2.15.
$$\iint_{D} \left(\frac{4}{5}xy + \frac{9}{11}x^{2}y^{2} \right) dxdy;$$
$$D: x = 1, y = x^{3}, y = -\sqrt{x}.$$

$$\iint_{D} (24xy - 48x^{3}y^{3}) dxdy;$$

$$D: x = 1, y = x^{2}, y = -\sqrt{x}.$$

2.19.
$$\iint_{D} (4xy + 16x^{3}y^{3}) dxdy;$$
$$D: x = 1, y = \sqrt[3]{x}, y = -x^{3}.$$

$$\iint_{D} (44xy + 16x^{3}y^{3}) dxdy;$$
2.21. $D: x = 1, y = x^{2}, y = -\sqrt[3]{x}.$

$$\iint_{D} (xy - 4x^{3}y^{3}) dxdy;$$
2.23. $D: x = 1, y = x^{3}, y = -\sqrt{x}.$

$$\iint_{D} (27x^{2}y^{2} + 48x^{3}y^{3}) dxdy;$$
2.8. $D: x = 1, y = \sqrt{x}, y = -x^{3}.$

$$\iint_{D} (12xy + 9x^{2}y^{2}) dxdy;$$
2.10. $D: x = 1, y = \sqrt{x}, y = -x^{2}.$

2.12.
$$\iint_{D} (24xy + 18x^{2}y^{2}) dxdy;$$
$$D: x = 1, y = x^{3}, y = -\sqrt[3]{x}.$$

$$\iint_{D} (8xy + 18x^{2}y^{2}) dxdy;$$
2.14. $D: x = 1, y = \sqrt[3]{x}, y = -x^{2}.$

2.16.
$$\iint_{D} \left(\frac{4}{5} xy + 9x^{2} y^{2} \right) dx dy;$$
$$D: x = 1, y = \sqrt{x}, y = -x^{3}.$$

$$\iint_{D} (6xy + 24x^{3}y^{3}) dxdy;$$
2.18. $D: x = 1, y = \sqrt{x}, y = -x^{2}.$

$$\iint_{D} (4xy + 16x^{3}y^{3}) dxdy;$$
2.20. $D: x = 1, y = x^{3}, y = -\sqrt[3]{x}.$

$$\iint_{D} (4xy + 176x^{3}y^{3}) dxdy;$$
2.22. $D: x = 1, y = \sqrt[3]{x}, y = -x^{3}.$

2.24.
$$\iint_{D} (4xy + 176x^{3}y^{3}) dxdy;$$
$$D: x = 1, y = \sqrt{x}, y = -x^{3}.$$

2.25.
$$\iint_{D} \left(6x^{2}y^{2} + \frac{25}{3}x^{4}y^{4} \right) dxdy;$$
$$D: x = 1, y = x^{2}, y = -\sqrt{x}.$$

2.27.
$$\iint_{D} \left(3x^{2}y^{2} + \frac{50}{3}x^{4}y^{4} \right) dxdy;$$
$$D: x = 1, y = \sqrt[3]{x}, y = -x^{3}.$$

$$\iint_{D} (54x^{2}y^{2} + 150x^{4}y^{4}) dxdy;$$

$$D: x = 1, y = x^{2}, y = -\sqrt[3]{x}.$$

$$\iint_{D} (54x^{2}y^{2} + 150x^{4}y^{4}) dxdy;$$
2.31. $D: x = 1, y = x^{3}, y = -\sqrt{x}.$

Задача 3. Вычислить.

3.1.
$$\iint_{D} ye^{xy/2} dxdy;$$

$$D: y = \ln 2, y = \ln 3, x = 2, x = 4.$$

3.3.
$$\iint_{D} y \cos xy \, dxdy;$$
$$D: y = p/2, y = p, x = 1, x = 2.$$

3.5.
$$\int_{D} y \sin xy \, dx dy;$$

 $D: y = p/2, y = p, x = 1, x = 2.$

$$\iint_{D} 4ye^{2xy} dxdy;$$
3.7. $D: y = \ln 3, y = \ln 4, x = \frac{1}{2}, x = 1.$

2.26.
$$\iint_{D} (9x^{2}y^{2} + 25x^{4}y^{4}) dxdy;$$
$$D: x = 1, y = \sqrt{x}, y = -x^{2}.$$

2.28.
$$\iint_{D} (9x^{2}y^{2} + 25x^{4}y^{4}) dxdy;$$
$$D: x = 1, y = x^{3}, y = -\sqrt[3]{x}.$$

2.30.
$$\iint_{D} (xy - 9x^{5}y^{5}) dxdy;$$
$$D: x = 1, y = \sqrt[3]{x}, y = -x^{2}.$$

3.2.
$$\iint_{D} y^{2} \sin \frac{xy}{2} dxdy;$$
$$D: x = 0, y = \sqrt{p}, y = \frac{x}{2}.$$

3.4.
$$\iint_{D} y^{2}e^{-xy/4}dxdy;$$
$$D: x = 0, y = 2, y = x.$$

3.6.
$$\iint_{D} y^{2} \cos \frac{xy}{2} dxdy;$$
$$D: x = 0, y = \sqrt{p/2}, y = x/2.$$

$$\iint_{D} 4y^{2} \sin xy \, dxdy;$$
3.8.

3.8.
$$D: x = 0, y = \sqrt{\frac{p}{2}}, y = x.$$

$$\iint_{D} y \cos 2xy \ dxdy;$$

$$\iint_{D} 12y \sin 2xy \ dxdy;$$

3.11.
$$D: y = \frac{p}{4}, y = \frac{p}{2}, x = 2, x = 3.$$

3.13.
$$\iint_{D} ye^{xy/4} dxdy;$$

$$D: y = \ln 2, y = \ln 3, x = 4, x = 8.$$

3.15.
$$\iint_{D} 2y \cos 2xy \, dxdy;$$

$$D: y = \frac{p}{4}, y = \frac{p}{2}, x = 1, x = 2.$$

$$D: y = \frac{p}{4}, y = \frac{p}{2}, x = 1, x = 2.$$

$$\iint\limits_{D} y \sin xy \ dxdy;$$

$$\iint_{D} y \sin xy \, dxdy;$$
3.17. $D: y = p, y = 2p, x = \frac{1}{2}, x = 1.$

$$\iint_{D} 8ye^{4xy} dxdy;$$

$$\iint_{D} 8ye^{4xy} dxdy;$$
3.19.
$$D: y = \ln 3, y = \ln 4, x = \frac{1}{4}, x = \frac{1}{2}.$$

3.21.
$$\iint_{D} y \cos xy \, dxdy;$$

 $D: y = p, y = 3p, x = 1/2, x = 1.$

3.23.
$$\iint_{D} y \sin 2xy \ dxdy;$$
$$D: y = p/2, y = 3p/2, x = 1/2, x = 2.$$

$$\iint_{D} y^{2}e^{-xy/8}dxdy;$$
3.10. $D: x = 0, y = 2, y = \frac{x}{2}.$

3.12.
$$\iint_{D} y^{2} \cos xy \, dxdy;$$
$$D: x = 0, y = \sqrt{p}, y = x.$$

3.14.
$$\iint_{D} y^{2} \sin 2xy \ dxdy;$$

 $D: x = 0, y = \sqrt{2p}, y = 2x.$

3.16.
$$\iint_{D} y^{2}e^{-xy/2}dxdy;$$
$$D: x = 0, y = \sqrt{2}, y = x.$$

$$\iint_{D} y^{2} \cos 2xy \, dxdy;$$
3.18.
$$D: x = 0, y = \sqrt{\frac{p}{2}}, y = \frac{x}{2}.$$

$$\iint_{D} 3y^{2} \sin \frac{xy}{2} dxdy;$$
3.20.
$$D: x = 0, y = \sqrt{\frac{4p}{3}}, y = \frac{2}{3}x.$$

$$\iint_{D} y^{2}e^{-xy/2}dxdy;$$
3.22.
$$D: x = 0, y = 1, y = \frac{x}{2}.$$

$$\iint_{D} y^{2} \cos xy \, dxdy;$$

$$3.24. \quad D: \quad x = 0, \quad y = \sqrt{p}, \quad y = 2x$$

$$\iint_{D} 6y e^{xy/3} dx dy;$$

$$D: y = \ln 2, y = \ln 3, x = 3, x = 6.$$

$$\iint_D y^2 \sin \frac{xy}{2} dxdy;$$

$$D: x = 0, y = \sqrt{p}, y = x.$$

$$\iint y \cos 2xy \ dxdy;$$

3.27.
$$\iint_{D} y \cos 2xy \ dxdy;$$
$$D: y = p/2, y = 3p/2, x = 1/2, x = 2.$$

$$\iint_{\mathbb{R}^{3}} y^{2}e^{-xy/8}dxdy$$

$$D: x = 0, y = 4, y = 2x$$

$$\iint 3y \sin xy \ dxdy;$$

3.29.
$$\iint_{D} 3y \sin xy \, dxdy;$$
$$D: y = p/2, y = 3p, x = 1, x = 3.$$

$$\iint_D y^2 \cos \frac{xy}{2} dxdy;$$

$$D: x = 0, y = \sqrt{2p}, y = 2x.$$

$$\iint_{D} 12 y e^{6xy} dx dy;$$

$$D: y = \ln 3, y = \ln 4, x = 1/6, x = 1/3.$$

Задача 4. Вычислить.

$$\iiint 2y^2e^{xy}\ dx\ dy\ dz;$$

$$\iiint_{V} 2y^{2}e^{xy} dx dy dz;$$
4.1.
$$V \begin{cases} x = 0, y = 1, y = x, \\ z = 0, z = 1. \end{cases}$$

$$\iiint\limits_V y^2 \operatorname{ch}(2xy) \ dx \ dy \ dz;$$

4.3.
$$V \begin{cases} x = 0, y = -2, y = 4x, \\ z = 0, z = 2. \end{cases}$$

$$\iiint_{Y} x^{2} \operatorname{sh}(3xy) \ dx \ dy \ dz;$$

$$\iiint_{V} x^{2} \operatorname{sh}(3xy) \, dx \, dy \, dz;$$
4.5.
$$V \begin{cases} x = 1, \ y = 2x, \ y = 0, \\ z = 0, \ z = 36. \end{cases}$$

$$\iiint\limits_V x^2 z \sin(xyz) \ dx \ dy \ dz;$$

$$\iiint_{V} x^{2}z \sin(xyz) dx dy dz;$$
4.2.
$$V \begin{cases} x = 2, y = p, z = 1, \\ x = 0, y = 1, z = 0. \end{cases}$$

$$\iiint_{\mathcal{U}} 8y^2z \ e^{2xyz} \ dx \ dy \ dz;$$

$$\iiint_{V} 8y^{2}z \ e^{2xyz} \ dx \ dy \ dz;$$
4.4.
$$V \begin{cases} x = -1, \ y = 2, \ z = 1, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint\limits_V y^2 z \cos(xyz) \ dx \ dy \ dz;$$

$$\iiint_{V} y^{2}z\cos(xyz) dx dy dz;$$
4.6.
$$V \begin{cases} x = 1, \ y = 2p, \ z = 2, \\ x = 0, \ y = 1, \ z = 0. \end{cases}$$

4.7.
$$\iiint_{V} y^{2} \cos\left(\frac{\boldsymbol{p}}{4}xy\right) dx dy dz;$$

$$V \begin{cases} x = 0, \ y = -1, \ y = x/2, \\ z = 0, \ z = -\boldsymbol{p}^{2}. \end{cases}$$

$$\iiint\limits_{V}y^{2}e^{-xy}\ dx\ dy\ dz;$$

$$\iiint_{V} y^{2}e^{-xy} dx dy dz;$$
4.9.
$$V \begin{cases} x = 0, \ y = -2, \ y = 4x, \\ z = 0, \ z = 1. \end{cases}$$

$$\iiint\limits_V y^2 \mathrm{ch}(2xy) \ dx \ dy \ dz;$$

4.11.
$$V \begin{cases} x = 0, \ y = 1, \ y = x, \\ z = 0, \ z = 8. \end{cases}$$

$$\iiint\limits_V y^2 e^{xy/2} \ dx \ dy \ dz;$$

$$\iiint_{V} y^{2}e^{xy/2} dx dy dz;$$
4.13.
$$V \begin{cases} x = 0, y = 2, y = 2x, \\ z = 0, z = -1. \end{cases}$$

4.15.
$$\iiint_{V} y^{2} \cos\left(\frac{\boldsymbol{p} \, xy}{2}\right) dx \, dy \, dz;$$

$$V \begin{cases} x = 0, \ y = -1, \ y = x, \\ z = 0, \ z = 2\boldsymbol{p}^{2}. \end{cases}$$

$$\iiint\limits_{V} y^2 \cos(\boldsymbol{p} \, xy) \, dx \, dy \, dz;$$

4.17.
$$V \begin{cases} x = 0, y = 1, y = 2x, \\ z = 0, z = p^2. \end{cases}$$

$$\iiint\limits_V x^2 \mathrm{sh}(2xy) \ dx \ dy \ dz;$$

4.19.
$$V \begin{cases} x = -1, \ y = x, \ y = 0, \\ z = 0, \ z = 8. \end{cases}$$

$$\iiint_{V} x^{2} z \sin \frac{xyz}{4} dx dy dz;$$

4.8.
$$V \begin{cases} x = 1, \ y = 2p, \ z = 4, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint\limits_{V}2y^{2}z\ e^{2xyz}\ dx\ dy\ dz;$$

4.10.
$$V \begin{cases} x = 1, \ y = 1, \ z = 1, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint_{\mathcal{U}} x^2 z \, \operatorname{sh}(xyz) \, dx \, dy \, dz;$$

4.12.
$$V \begin{cases} x = 2, \ y = 1, \ z = 1, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint_{V} y^{2}z \cos \frac{xyz}{3} dx dy dz;$$
4.14.
$$V \begin{cases} x = 3, \ y = 1, \ z = 2p, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint_V x^2 z \, \operatorname{sh}(xyz) \, dx \, dy \, dz;$$

4.16.
$$V \begin{cases} x = 1, \ y = -1, \ z = 1, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint_{V} 2x^2 z \, \operatorname{sh}(2xyz) \, dx \, dy \, dz;$$

4.18.
$$V \begin{cases} x = 2, \ y = 1/2, \ z = 1/2, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

4.20.
$$V \begin{cases} x^2 z \sin \frac{xyz}{2} dx dy dz; \\ x = 1, y = 4, z = p, \\ x = 0, y = 0, z = 0. \end{cases}$$

$$\iiint_{V} y^{2} \operatorname{ch}(xy) dx dy dz;$$
4.21.
$$V \begin{cases} x = 0, \ y = -1, \ y = x, \\ z = 0, \ z = 2. \end{cases}$$

4.23.
$$V \begin{cases} x^2 \cos\left(\frac{p}{2}xy\right) dx dy dz; \\ x = 2, y = x, y = 0, \\ z = 0, z = p. \end{cases}$$

$$\iiint_{V} x^{2} \cos(p xy) dx dy dz$$
4.25.
$$V \begin{cases} x = 1, \ y = 2x, \ y = 0, \\ z = 0, \ z = 4p. \end{cases}$$

$$\iiint_{V} y^{2} \operatorname{ch}(3xy) \, dx \, dy \, dz;$$
4.27.
$$V \begin{cases} x = 0, \ y = 2, \ y = 6x, \\ z = 0, \ z = -3. \end{cases}$$

$$\iiint_{V} x^{2} \sin(4p xy) dx dy dz;$$
4.29.
$$V \begin{cases} x = 1, \ y = x/2, \ y = 0, \\ z = 0, \ z = 8p. \end{cases}$$

$$\iiint_{V} x^{2} \operatorname{sh}(xy) \ dx \ dy \ dz;$$

4.31.
$$V \begin{cases} x = 2, \ y = x/2, \ y = 0, \\ z = 0, \ z = 1. \end{cases}$$

$$\iiint_{V} x^{2}z \, \operatorname{ch}(xyz) \, dx \, dy \, dz;$$
4.22.
$$V \begin{cases} x = 1, \ y = 1, \ z = 1, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint_{V} y^{2}z \cos \frac{xyz}{9} dx dy dz;$$
4.24.
$$V \begin{cases} x = 9, \ y = 1, \ z = 2p, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

4.26.
$$V \begin{cases} x = 2, y = -1, z = 2, \\ x = 0, y = 0, z = 0. \end{cases}$$

$$\iiint\limits_V 2y^2z \, \cosh(2xyz) \, dx \, dy \, dz;$$

4.28.
$$V \begin{cases} x = \frac{1}{2}, \ y = 2, \ z = -1, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint\limits_V 8y^2z \ e^{-xyz} \ dx \ dy \ dz;$$

4.30.
$$V \begin{cases} x = 2, \ y = -1, \ z = 2, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\iiint\limits_V x\ dx\ dy\ dz;$$

5.1.
$$V: y = 10x, y = 0, x = 1,$$

 $z = xy, z = 0.$

$$\iiint\limits_V 15(y^2+z^2)\ dx\ dy\ dz;$$

5.3.
$$V: z = x + y, x + y = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint_V (1+2x^3) dx dy dz;$$

5.5.
$$V: y = 9x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint\limits_V y\ dx\ dy\ dz;$$

5.7.
$$V: y = 15x, y = 0, x = 1,$$

 $z = xy, z = 0.$

$$\iiint\limits_V \left(3x^2 + y^2\right) dx dy dz;$$

5.9.
$$V: z = 10y, x + y = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint_V \left(4 + 8z^3\right) dx dy dz;$$

5.11.
$$V: y = x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint\limits_V \frac{dx\ dy\ dz}{\left(1+\frac{x}{3}+\frac{y}{4}+\frac{z}{8}\right)^4};$$

5.2.
$$V: 1 + \frac{x}{3} + \frac{y}{4} + \frac{z}{8} = 1$$
,
 $x = 0, y = 0, z = 0$.

$$\iiint\limits_{V} (3x+4y) \ dx \ dy \ dz;$$

5.4.
$$V: y = x, y = 0, x = 1,$$

 $z = 5(x^2 + y^2), z = 0.$

$$\iiint\limits_V \left(27 + 54y^3\right) dx dy dz;$$

5.6.
$$V: y = x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint\limits_V \frac{dx\ dy\ dz}{\left(1+\frac{x}{16}+\frac{y}{8}+\frac{z}{3}\right)^5};$$

5.8.
$$V: \frac{x}{16} + \frac{y}{5} + \frac{z}{3} = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_V (15x + 30z) \ dx \ dy \ dz;$$

5.10.
$$V: z = x^2 + 3y^2, z = 0,$$

 $y = x, y = 0, z = 0.$

$$\iiint_V (1+2x^3) dx dy dz;$$

5.12.
$$V: y = 36x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint_{V} 21xz \ dx \ dy \ dz;$$

5.13.
$$V: y = x, y = 0, x = 2,$$

 $z = xy, z = 0.$

$$\iiint\limits_V \left(x^2 + 3y^2\right) dx dy dz;$$

5.15.
$$V: z = 10x, x + y = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_V \left(\frac{10}{3}x + \frac{5}{3}\right) dx \ dy \ dz;$$

5.17.
$$V: y = 9x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint_V 3y^2 \ dx \ dy \ dz;$$

5.19.
$$V: y = 2x, y = 0, x = 2,$$

 $z = xy, z = 0.$

$$\iiint\limits_V x^2 \ dx \ dy \ dz;$$

5.21.
$$V: z = 10(x+3y), x + y = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_V 63(1+2\sqrt{y})\ dx\ dy\ dz;$$

5.23.
$$V: y = x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint\limits_V \frac{dx\,dy\,dz}{\left(1+\frac{x}{10}+\frac{y}{8}+\frac{z}{3}\right)^6};$$

5.14.
$$V: \frac{x}{10} + \frac{y}{8} + \frac{z}{3} = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint_{V} (60y + 90z) \ dx \ dy \ dz;$$

5.16.
$$V: y = x, y = 0, x = 1,$$

 $z = x^2 + y^2, z = 0.$

$$\iiint\limits_{\mathcal{U}} (9+18z) \ dx \ dy \ dz;$$

5.18.
$$V: y = 4x, y = 0, x = 1,$$

 $z = \sqrt{xy}, z = 0.$

$$\iiint\limits_V \frac{dx\ dy\ dz}{\left(1+\frac{x}{2}+\frac{y}{4}+\frac{z}{6}\right)^6};$$

5.20.
$$V: \frac{x}{2} + \frac{y}{4} + \frac{z}{6} = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_{V} (8y+12z) \ dx \ dy \ dz;$$

5.22.
$$V: y = x, y = 0, x = 1,$$

 $z = 3x^2 + 2y^2, z = 0.$

$$\iiint\limits_V (x+y)\ dx\ dy\ dz;$$

5.24.
$$V: y = x, y = 0, x = 1,$$

 $z = 30x^2 + 60y^2, z = 0.$

$$\iiint\limits_V \frac{dx\ dy\ dz}{\left(1+\frac{x}{6}+\frac{y}{4}+\frac{z}{16}\right)^6};$$

5.25.
$$V: \frac{x}{6} + \frac{y}{4} + \frac{z}{16} = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_V y^2 \ dx \ dy \ dz;$$

5.27.
$$V: z = 10(3x + y), x + y = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_V \left(x^2 + 4y^2\right) dx dy dz;$$

5.29.
$$V: z = 20(2x + y), x + y = 1,$$

 $x = 0, y = 0, z = 0.$

$$\iiint\limits_V x^2 z\ dx\ dy\ dz;$$

5.31.
$$V: y = 3x, y = 0, x = 2,$$

 $z = xy, z = 0.$

$$\iiint\limits_V xyz\ dx\ dy\ dz;$$

5.26.
$$V: y = x, y = 0, x = 2,$$

 $z = xy, z = 0.$

$$\iiint\limits_V \left(5x + \frac{3z}{2}\right) dx \ dy \ dz;$$

5.28.
$$V: y = x, y = 0, x = 2,$$

 $z = x^2 + 15y^2, z = 0.$

$$\iiint\limits_V \frac{dx\ dy\ dz}{\left(1+\frac{x}{8}+\frac{y}{3}+\frac{z}{5}\right)^6};$$

5.30.
$$V: \frac{x}{8} + \frac{y}{3} + \frac{z}{5} = 1,$$

 $x = 0, y = 0, z = 0.$

Задача 6. Найти площадь фигуры, ограниченной данными линиями.

6.1.
$$y = 3/x$$
, $y = 4e^x$, $y = 3$, $y = 4$.

6.2.
$$x = \sqrt{36 - y^2}$$
, $x = 6 - \sqrt{36 - y^2}$.

6.3.
$$x^2 + y^2 = 72$$
, $6y = -x^2$ ($y \le 0$).

6.4.
$$x = 8 - y^2$$
, $x = -2y$.

6.5.
$$y = \frac{3}{x}$$
, $y = 8e^x$, $y = 3$, $y = 8$.

6.6.
$$y = \frac{\sqrt{x}}{2}$$
, $y = \frac{1}{2x}$, $x = 16$.

6.7.
$$x = 5 - y^2$$
, $x = -4y$.

6.8.
$$x^2 + y^2 = 12$$
, $-\sqrt{6}y = x^2 \ (y \le 0)$.

6.9.
$$y = \sqrt{12 - x^2}$$
, $y = 2\sqrt{3} - \sqrt{12 - x^2}$, $x = 0$ $(x \ge 0)$.

6.10.
$$y = \frac{3}{2}\sqrt{x}$$
, $y = \frac{3}{2x}$, $x = 9$.

6.11.
$$y = \sqrt{24 - x^2}$$
, $2\sqrt{3}y = x^2$, $x = 0$ $(x \ge 0)$.

6.12.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $(x \ge 0)$.

6.13.
$$y = 20 - x^2$$
, $y = -8x$.

6.14.
$$y = \sqrt{18 - x^2}$$
, $y = 3\sqrt{2} - \sqrt{18 - x^2}$.

6.15.
$$y = 32 - x^2$$
, $y = -4x$.

6.16.
$$y = 2/x$$
, $y = 5e^x$, $y = 2$, $y = 5$.

6.17.
$$x^2 + y^2 = 36$$
, $3\sqrt{2}y = x^2 \ (y \ge 0)$.

6.18.
$$y = 3\sqrt{x}$$
, $y = 3/x$, $x = 4$.

6.19.
$$y = 6 - \sqrt{36 - x^2}$$
, $y = \sqrt{36 - x^2}$, $x = 0$ $(x \ge 0)$.

6.20.
$$y = 25/4 - x^2$$
, $y = x - 5/2$.

6.21.
$$y = \sqrt{x}$$
, $y = 1/x$, $x = 16$.

6.22.
$$y = 2/x$$
, $y = 7e^x$, $y = 2$, $y = 7$.

6.23.
$$x = 27 - y^2$$
, $x = -6y$.

6.24.
$$x = \sqrt{72 - y^2}$$
, $6x = y^2$, $y = 0$ ($y \ge 0$).

6.25.
$$y = \sqrt{6 - x^2}$$
, $y = \sqrt{6} - \sqrt{6 - x^2}$.

6.26.
$$y = \frac{3}{2}\sqrt{x}$$
, $y = \frac{3}{2x}$, $x = 4$.

6.27.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $(x \le 0)$.

6.28.
$$y = \frac{1}{x}$$
, $y = 6e^x$, $y = 1$, $y = 6$.

6.29.
$$y = 3\sqrt{x}$$
, $y = 3/x$, $x = 9$.

6.30.
$$y = 11 - x^2$$
, $y = -10x$.

6.31.
$$x^2 + y^2 = 12$$
, $x\sqrt{6} = y^2 \ (x \ge 0)$.

Задача 7. Найти площадь фигуры, ограниченной данными линиями.

$$y^2 - 2y + x^2 = 0,$$

7.1.
$$y^2 - 4y + x^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$y^2 - 6y + x^2 = 0,$$

7.3.
$$y^2 - 8y + x^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 4x + y^2 = 0$$

$$7.2. \ x^2 - 8x + y^2 = 0,$$

$$y = 0, \ y = x/\sqrt{3}$$
.

$$x^2 - 2x + y^2 = 0,$$

7.4.
$$x^2 - 4x + y^2 = 0$$
, $y = 0$, $y = x$.

$$y^2 - 8y + x^2 = 0,$$

7.5.
$$y^2 - 10y + x^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$y^2 - 4y + x^2 = 0,$$

7.7.
$$y^2 - 6y + x^2 = 0$$
,
 $y = x$, $x = 0$.

$$y^2 - 6y + x^2 = 0,$$

7.9.
$$y^2 - 10y + x^2 = 0$$
,
 $y = x$, $x = 0$.

$$y^2 - 2y + x^2 = 0,$$

7.11.
$$y^2 - 4y + x^2 = 0$$
,
 $y = \sqrt{3}x$, $x = 0$.

$$y^2 - 4y + x^2 = 0,$$

7.13.
$$y^2 - 6y + x^2 = 0$$
,
 $y = \sqrt{3}x$, $x = 0$.

$$v^2 - 2v + x^2 = 0$$
.

7.15.
$$y^2 - 6y + x^2 = 0$$
, $y = x/\sqrt{3}$, $y = 0$.

$$y^2 - 2y + x^2 = 0,$$

7.17.
$$y^2 - 10y + x^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$y^2 - 4y + x^2 = 0$$

7.19.
$$y^2 - 10y + x^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 4x + y^2 = 0$$

7.6.
$$x^2 - 8x + y^2 = 0$$
, $y = 0$, $y = x$.

$$x^2 - 2x + y^2 = 0,$$

7.8.
$$x^2 - 10x + y^2 = 0$$
,
 $y = 0$, $y = \sqrt{3}x$.

$$x^2 - 2x + y^2 = 0,$$

7.10.
$$x^2 - 4x + y^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 2x + y^2 = 0$$
.

7.12.
$$x^2 - 6x + y^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 2x + y^2 = 0,$$

7.14.
$$x^2 - 8x + y^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 2x + y^2 = 0$$

7.16.
$$x^2 - 4x + y^2 = 0$$
,
 $y = 0$, $y = x/\sqrt{3}$.

$$x^2 - 2x + y^2 = 0$$

7.18.
$$x^2 - 6x + y^2 = 0$$
,
 $y = 0$, $y = x/\sqrt{3}$.

$$x^2 - 2x + y^2 = 0$$

7.20.
$$x^2 - 6x + y^2 = 0$$
,
 $y = 0$, $y = x$.

$$y^{2} - 2y + x^{2} = 0,$$
7.21.
$$y^{2} - 4y + x^{2} = 0,$$

$$y = x, \quad x = 0.$$

$$y^{2} - 6y + x^{2} = 0,$$
7.23.
$$y^{2} - 8y + x^{2} = 0,$$

$$y^{2}-4y+x^{2}=0,$$
7.25.
$$y^{2}-8y+x^{2}=0,$$

$$y=x, x=0.$$

y = x, x = 0.

$$y^{2} - 4y + x^{2} = 0,$$
7.27.
$$y^{2} - 8y + x^{2} = 0,$$

$$y = \sqrt{3}x, \quad x = 0.$$

$$y^{2} - 2y + x^{2} = 0,$$
7.29.
$$y^{2} - 10y + x^{2} = 0,$$

$$y = x/\sqrt{3}, \quad x = 0.$$

$$y^{2} - 4y + x^{2} = 0,$$
7.31.
$$y^{2} - 8y + x^{2} = 0,$$

$$y = x/\sqrt{3}, \quad x = 0.$$

$$x^2 - 2x + y^2 = 0,$$

7.22.
$$x^2 - 4x + y^2 = 0$$
,
 $y = 0$, $y = \sqrt{3}x$.

$$x^2 - 4x + y^2 = 0,$$

7.24.
$$x^2 - 8x + y^2 = 0$$
,
 $y = 0$, $y = \sqrt{3}x$.

$$x^2 - 4x + y^2 = 0,$$

7.26.
$$x^2 - 8x + y^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 4x + y^2 = 0,$$

7.28.
$$x^2 - 6x + y^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

$$x^2 - 6x + y^2 = 0,$$

7.30.
$$x^2 - 10x + y^2 = 0$$
,
 $y = x/\sqrt{3}$, $y = \sqrt{3}x$.

Задача 8. Пластинка D задана ограничивающими ее кривыми, m - поверхностная плотность. Найти массу пластинки.

8.1.
$$D: x=1, y=0, y^2=4x \ (y \ge 0);$$

 $m=7x^2+y.$

D:
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 4$,
8.2. $x = 0$, $y = 0$ $(x \ge 0, y \ge 0)$;
 $m = (x + y)/(x^2 + y^2)$.

8.3.
$$D: x=1, y=0, y^2=4x \ (y \ge 0);$$

 $m=7x^2/2+5y.$

8.5.
$$D: x = 2, y = 0, y^2 = 2x \quad (y \ge 0);$$

 $m = 7x^2/8 + 2y.$

8.7.
$$D: x = 2, y = 0, y^2 = x/2 \quad (y \ge 0);$$

 $m = 7x^2/2 + 6y.$

8.9.
$$D: x=1, y=0, y^2=4x \ (y \ge 0);$$

 $m=x+3y^2.$

8.11.
$$D: x=1, y=0, y^2=x (y \ge 0);$$

 $m=3x+6y^2.$

8.13.
$$D: x = 2, y = 0, y^2 = x/2 \quad (y \ge 0);$$

 $m = 2x + 3y^2.$

8.15.
$$D: x = \frac{1}{2}, y = 0, y^2 = 8x \ (y \ge 0);$$

 $m = 7x + 3y^2.$

8.17.
$$D: x=1, y=0, y^2=4x (y \ge 0);$$

 $m=7x^2+2y.$

D:
$$x^2 + y^2 = 9$$
, $x^2 + y^2 = 16$,
8.4. $x = 0$, $y = 0$ $(x \ge 0, y \ge 0)$;
 $m = (2x + 5y)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 16$,
8.6. $x = 0$, $y = 0$ ($x \ge 0$, $y \ge 0$);
 $m = (x + y)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 25$,
8.8. $x = 0$, $y = 0$ ($x \ge 0$, $y \le 0$);
 $m = (2x - 3y)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 9$,
8.10. $x = 0$, $y = 0$ ($x \ge 0$, $y \le 0$);
 $m = (x - y)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 9$$
, $x^2 + y^2 = 25$,
8.12. $x = 0$, $y = 0$ ($x \le 0$, $y \ge 0$);
 $m = (2y - x)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 16$,
8.14. $x = 0$, $y = 0$ $(x \le 0, y \ge 0)$;
 $\mathbf{m} = (2y - 3x)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 9$$
, $x^2 + y^2 = 16$,
8.16. $x = 0$, $y = 0$ ($x \le 0$, $y \ge 0$);
 $m = (2y - 5x)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 16$,
8.18. $x = 0$, $y = 0$ ($x \ge 0$, $y \ge 0$);
 $m = (x + 3y)/(x^2 + y^2)$.

8.19.
$$D: x = 2, y^2 = 2x, y = 0 \quad (y \ge 0);$$

 $m = 7x^2/4 + y/2.$

8.21.
$$D: x = 2, y = 0, y^2 = 2x \quad (y \ge 0);$$

 $m = 7x^2/4 + y.$

8.23.
$$D: x = 2, y = 0, y^2 = x/2 \quad (y \ge 0);$$

 $m = 7x^2/2 + 8y.$

8.25.
$$D: x=1, y=0, y^2=4x (y \ge 0);$$

 $m=6x+3y^2.$

8.27.
$$D: x = 2, y = 0, y^2 = x/2 \quad (y \ge 0);$$

 $m = 4x + 6y^2.$

8.29.
$$D: x = \frac{1}{2}, y = 0, y^2 = 2x \quad (y \ge 0);$$

 $m = 4x + 9y^2.$

8.31.
$$D: x = \frac{1}{4}, y = 0, y^2 = 16x \ (y \ge 0);$$

 $m = 16x + 9y^2/2.$

$$D: x^{2} + y^{2} = 1, \quad x^{2} + y^{2} = 4,$$

$$8.20. \quad x = 0, \quad y = 0 \quad (x \ge 0, \quad y \ge 0);$$

$$\mathbf{m} = (x + 2y) / (x^{2} + y^{2}).$$

D:
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 9$,
8.22. $x = 0$, $y = 0$ ($x \ge 0$, $y \le 0$);
 $m = (2x - y)/(x^2 + y^2)$.

$$D: x^{2} + y^{2} = 1, \quad x^{2} + y^{2} = 25,$$
8.24.
$$x = 0, \quad y = 0 \quad (x \ge 0, \quad y \le 0);$$

$$\mathbf{m} = (x - 4y) / (x^{2} + y^{2}).$$

D:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 16$,
8.26. $x = 0$, $y = 0$ ($x \ge 0$, $y \le 0$);
 $m = (3x - y)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 9$,
8.28. $x = 0$, $y = 0$ ($x \le 0$, $y \ge 0$);
 $\mathbf{m} = (y - 4x)/(x^2 + y^2)$.

D:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 9$,
8.30. $x = 0$, $y = 0$ ($x \le 0$, $y \ge 0$);
 $\mathbf{m} = (y - 2x)/(x^2 + y^2)$.

Задача 9. Пластинка D задана неравенствами, μ - поверхностная плотность. Найти массу пластинки.

9.1.
$$D: x^2 + y^2/4 \le 1;$$

 $m = y^2.$

$$D: x^{2}/9 + y^{2}/25 \le 1;$$
9.3. $y \ge 0;$
 $m = x^{2}y.$

$$D: 1 \le x^{2}/9 + y^{2}/4 \le 4;$$
9.5. $y \ge 0, y \le x/2;$
 $m = 8y/x^{3}.$

9.7.
$$D: x^2/4 + y^2 \le 1;$$
$$m = 4y^4.$$

D:
$$1 \le x^2/16 + y^2/4 \le 4$$
;
9.9. $x \ge 0, y \le x/2$;
 $m = x/y$.

$$D: x^{2}/4 + y^{2} \le 1;$$
9.11. $x \ge 0, y \ge 0;$
 $m = 6x^{3}y^{3}.$

9.13.
$$D: x^2/9 + y^2/4 \le 1;$$
$$m = x^2 y^2.$$

9.15.
$$D: x^2/4 + y^2 \le 1;$$

 $x \ge 0, y \ge 0;$
 $m = 30x^3y^7.$

$$D: 1 \le x^{2}/9 + y^{2}/4 \le 2;$$
9.2. $y \ge 0, y \le \frac{2}{3}x;$
 $m = y/x.$

$$D: x^{2}/9 + y^{2}/25 \le 1;$$
9.4. $y \ge 0;$
 $m = 7x^{2}y/18.$

$$D: x^{2}/9 + y^{2} \le 1;$$
9.6. $x \ge 0;$
 $m = 7xy^{6}.$

D:
$$1 \le x^2/4 + y^2/9 \le 4$$
;
9.8. $x \ge 0, y \le 3x/2$;
 $m = x/y$.

$$D: x^{2}/4 + y^{2}/9 \le 1;$$
9.10. $x \ge 0, y \ge 0;$
 $m = x^{3}y.$

D:
$$1 \le x^2/4 + y^2 \le 25$$
;
9.12. $x \ge 0, y \le x/2$;
 $m = x/y^3$.

9.14.
$$D: x^2/16 + y^2 \le 1;$$

 $m = 5xy^7.$

$$D: 1 \le x^{2}/9 + y^{2}/4 \le 3;$$

$$9.16. \quad y \ge 0, \quad y \le \frac{2}{3}x;$$

$$m = y/x.$$

$$D: x^2 + y^2/25 \le 1;$$

9.17.
$$y \ge 0$$
; $m = 7x^4y$.

9.19.
$$D: x^2/4 + y^2/9 \le 1;$$

 $m = x^2.$

$$D: x^{2}/9 + y^{2} \le 1;$$
9.21. $x \ge 0;$
 $m = 11xy^{8}.$

$$D: 1 \le x^{2}/9 + y^{2}/4 \le 5;$$
9.23. $x \ge 0, y \le 2x/3;$
 $m = x/y.$

9.25.
$$D: x^2/4 + y^2/25 \le 1;$$

 $m = x^4.$

$$D: 1 \le x^{2}/4 + y^{2}/9 \le 36;$$

$$9.27. \quad x \ge 0, \quad y \ge \frac{3}{2}x;$$

$$m = 9x/y^{3}.$$

9.29.
$$x^2/16 + y^2 \le 1$$
;
 $x \ge 0, y \ge 0$;
 $m = 105x^3y^9$.

$$D: 1 \le x^{2}/16 + y^{2} \le 3;$$
9.31. $x \ge 0, y \ge x/4;$
 $m = x/y^{5}.$

$$D: x^2 + y^2/9 \le 1;$$

9.18.
$$y \ge 0;$$

 $m = 35x^4y^3.$

$$D: 1 \le x^{2} + y^{2}/16 \le 9;$$
9.20. $y \ge 0, y \le 4x;$

$$m = y/x^{3}.$$

D:
$$1 \le x^2/4 + y^2/16 \le 5$$
;
9.22. $x \ge 0, y \le 2x$;
 $m = x/y$.

$$D: x^{2}/4 + y^{2}/9 \le 1;$$
9.24. $x \ge 0, y \ge 0;$
 $m = x^{5}y.$

$$D: x^{2} + y^{2}/4 \le 1;$$
9.26. $x \ge 0, y \ge 0;$

$$m = 15x^{5}y^{3}.$$

9.28.
$$D: x^2/100 + y^2 \le 1;$$

 $x \ge 0, y \ge 0;$
 $m = 6xy^9.$

$$D: 1 \le x^{2}/9 + y^{2}/16 \le 2;$$
9.30. $y \ge 0, y \le \frac{4}{3}x;$

$$m = 27y/x^{5}.$$

Задача 10. Найти объем тела, заданного ограничивающими его поверхностями.

10.1.
$$y = 16\sqrt{2x}, y = \sqrt{2x},$$

 $z = 0, x + z = 2.$

10.3.
$$x^2 + y^2 = 2$$
, $y = \sqrt{x}$, $y = 0$, $z = 0$, $z = 15x$.

10.5.
$$x = 20\sqrt{2y}, x = 5\sqrt{2y},$$

 $z = 0, z + y = 1/2.$

10.7.
$$x^2 + y^2 = 2$$
, $x = \sqrt{y}$, $x = 0$, $z = 0$, $z = 30y$.

10.9.
$$y = 17\sqrt{2x}, y = 2\sqrt{2x},$$

 $z = 0, x + z = 1/2.$

10.11.
$$x^2 + y^2 = 8$$
, $y = \sqrt{2x}$, $y = 0$, $z = 0$, $z = 15x/11$.

10.13.
$$x = \frac{5}{6}\sqrt{y}, \quad x = \frac{5}{18}y,$$
$$z = 0, \quad z = \frac{5}{18}\left(3 + \sqrt{y}\right).$$

10.15.
$$x^2 + y^2 = 8$$
, $x = \sqrt{2y}$, $x = 0$, $z = 30y/11$, $z = 0$.

10.17.
$$y = 6\sqrt{3x}, y = \sqrt{3x},$$

 $z = 0, x + z = 3.$

10.2.
$$y = 5\sqrt{x}, y = 5x/3,$$

 $z = 0, z = 5 + 5\sqrt{x}/3.$

10.4.
$$x + y = 2$$
, $y = \sqrt{x}$, $z = 12y$, $z = 0$.

$$x = 5\sqrt{y}/2, \quad x = 5y/6,$$
10.6.
$$z = 0, \quad z = \frac{5}{6}(3 + \sqrt{y}).$$

10.8.
$$x + y = 2$$
, $x = \sqrt{y}$, $z = 12x/5$, $z = 0$.

10.10.
$$y = 5\sqrt{x}/3$$
, $y = 5x/9$,
 $z = 0$, $z = 5(3 + \sqrt{x})/9$.

10.12.
$$x + y = 4$$
, $y = \sqrt{2x}$, $z = 3y$, $z = 0$.

10.14.
$$x = 19\sqrt{2y}, x = 4\sqrt{2y},$$

 $z = 0, z + y = 2.$

10.16.
$$x + y = 4$$
, $x = \sqrt{2y}$, $z = 3x/5$, $z = 0$.

$$y = \frac{5}{6}\sqrt{x}, \quad y = \frac{5}{18}x,$$

$$z = 0, \quad z = \frac{5}{18}(3 + \sqrt{x}).$$

10.19.
$$x^2 + y^2 = 18$$
, $y = \sqrt{3x}$, $y = 0$, $z = 0$, $z = 5x/11$.

10.21.
$$x = 7\sqrt{3y}, x = 2\sqrt{3y},$$

 $z = 0, z + y = 3.$

10.23.
$$x^2 + y^2 = 18$$
, $x = \sqrt{3y}$, $x = 0$, $z = 0$, $z = 10y/11$.

10.25.
$$y = \sqrt{15x}, \quad y = \sqrt{15}x,$$

 $z = 0, \quad z = \sqrt{15}(1 + \sqrt{x}).$

10.27.
$$x + y = 8, y = \sqrt{4x},$$

 $z = 3y, z = 0.$

10.29.
$$x = \sqrt{y}, x = 15y,$$

 $z = 0, z = 15(1 + \sqrt{y}).$

10.31.
$$x = 17\sqrt{2y}, \quad x = 2\sqrt{2y},$$

 $z = 0, \quad z + y = 1/2.$

10.20.
$$x + y = 6$$
, $y = \sqrt{3x}$, $z = 4y$, $z = 0$.

10.22.
$$x = 5\sqrt{y}/3, \ x = 5y/9,$$

 $z = 0, \ z = 5(3 + \sqrt{y})/9.$

10.24.
$$x + y = 6$$
, $x = \sqrt{3y}$, $z = 4x/5$, $z = 0$.

10.26.
$$x^2 + y^2 = 50$$
, $y = \sqrt{5x}$, $y = 0$, $z = 0$, $z = 3x/11$.

10.28.
$$x = 16\sqrt{2y}, \quad x = \sqrt{2y},$$

 $z + y = 2, \quad z = 0.$

10.30.
$$x^2 + y^2 = 50$$
, $x = \sqrt{5y}$, $x = 0$, $z = 0$, $z = 6y/11$.

Задача 11. Найти объем тела, заданного ограничивающими его поверхностями.

11.1.
$$x^2 + y^2 = 2y$$
,
 $z = 5/4 - x^2$, $z = 0$.

$$x^{2} + y^{2} = 8\sqrt{2}x,$$
11.3. $z = x^{2} + y^{2} - 64,$

$$z = 0 \quad (z \ge 0).$$

11.2.
$$x^{2} + y^{2} = y, \quad x^{2} + y^{2} = 4y,$$
$$z = \sqrt{x^{2} + y^{2}}, \quad z = 0.$$

11.4.
$$x^{2} + y^{2} + 4x = 0,$$
$$z = 8 - y^{2}, z = 0.$$

$$x^{2} + y^{2} = 6x, \quad x^{2} + y^{2} = 9x,$$
11.5. $z = \sqrt{x^{2} + y^{2}}, \quad z = 0,$
 $y = 0 \quad (y \le 0)$

11.7.
$$x^{2} + y^{2} = 2y,$$
$$z = 9/4 - x^{2}, z = 0.$$

$$x^{2} + y^{2} + 2\sqrt{2}y = 0,$$
11.9. $z = x^{2} + y^{2} - 4,$

$$z = 0 \quad (z \ge 0).$$

$$x^{2} + y^{2} = 7x, \quad x^{2} + y^{2} = 9x,$$
11.11. $z = \sqrt{x^{2} + y^{2}}, \quad z = 0,$
 $y = 0 \quad (y \le 0)$

11.13.
$$x^{2} + y^{2} = 2y,$$
$$z = 13/4 - x^{2}, z = 0.$$

$$x^{2} + y^{2} = 6\sqrt{2}x,$$
11.15. $z = x^{2} + y^{2} - 36,$

$$z = 0 \quad (z \ge 0).$$

11.17.
$$x^{2} + y^{2} = 4x,$$
$$z = 12 - y^{2}, z = 0.$$

$$x^{2} + y^{2} = 4\sqrt{2}x,$$
11.19. $z = x^{2} + y^{2} - 16,$

$$z = 0 \quad (z \ge 0).$$

$$x^{2} + y^{2} = 6\sqrt{2}y,$$
11.6. $z = x^{2} + y^{2} - 36,$

$$z = 0 \quad (z \ge 0).$$

11.8.
$$x^{2} + y^{2} = 2y, \quad x^{2} + y^{2} = 5y,$$
$$z = \sqrt{x^{2} + y^{2}}, \quad z = 0.$$

11.10.
$$x^{2} + y^{2} = 4x,$$
$$z = 10 - y^{2}, z = 0.$$

$$x^{2} + y^{2} = 8\sqrt{2}y,$$
11.12. $z = x^{2} + y^{2} - 64,$

$$z = 0 \quad (z \ge 0).$$

11.14.
$$x^2 + y^2 = 3y$$
, $x^2 + y^2 = 6y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

$$x^{2} + y^{2} = 2\sqrt{2}y,$$
11.16. $z = x^{2} + y^{2} - 4,$

$$z = 0 \quad (z \ge 0).$$

$$x^{2} + y^{2} = 8x, \quad x^{2} + y^{2} = 11x,$$
11.18. $z = \sqrt{x^{2} + y^{2}}, \quad z = 0,$
 $y = 0 \quad (y \le 0)$

11.20.
$$x^2 + y^2 = 4y$$
,
 $z = 4 - x^2$, $z = 0$.

11.21.
$$x^2 + y^2 = 4y$$
, $x^2 + y^2 = 7y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

11.23.
$$x^2 + y^2 + 2x = 0$$
,
 $z = 17/4 - y^2$, $z = 0$.

$$x^{2} + y^{2} + 2\sqrt{2}x = 0,$$
11.25. $z = x^{2} + y^{2} - 4,$

$$z = 0 \quad (z \ge 0).$$

$$x^{2} + y^{2} = 10x, \quad x^{2} + y^{2} = 13x,$$
11.27. $z = \sqrt{x^{2} + y^{2}}, \quad z = 0,$
 $y = 0 \quad (y \ge 0)$

11.29.
$$x^2 + y^2 = 2x$$
,
 $z = 21/4 - y^2$, $z = 0$.

11.31.
$$x^2 + y^2 + 2x = 0$$
,
 $z = 25/4 - y^2$, $z = 0$.

$$x^{2} + y^{2} = 4\sqrt{2}y,$$
11.22. $z = x^{2} + y^{2} - 16,$

11.22.
$$z = x^2 + y^2 - 16$$
,
 $z = 0 \quad (z \ge 0)$.

$$x^{2} + y^{2} = 9x, \quad x^{2} + y^{2} = 12x,$$
11.24. $z = \sqrt{x^{2} + y^{2}}, \quad z = 0,$
 $y = 0 \quad (y \ge 0)$

11.26.
$$x^2 + y^2 = 4y$$
,
 $z = 6 - x^2$, $z = 0$.

$$x^{2} + y^{2} = 2\sqrt{2}x,$$
11.28. $z = x^{2} + y^{2} - 4,$

$$z = 0 \quad (z \ge 0).$$

11.30.
$$x^2 + y^2 = 5y$$
, $x^2 + y^2 = 8y$, $z = \sqrt{x^2 + y^2}$, $z = 0$.

Задача 12. Найти объем тела, заданного ограничивающими его поверхностями.

$$y = 5x^2 + 2$$
, $y = 7$,
12.1. $z = 3y^2 - 7x^2 - 2$,

$$z = 3y^2 - 7x^2 - 5.$$

$$x = -5y^2 + 2$$
, $x = -3$,

12.3.
$$z = 3x^2 + y^2 + 1$$
,
 $z = 3x^2 + y^2 - 5$.

$$y = 5x^2 - 2$$
, $y = -4x^2 + 7$,

12.2.
$$z = 4 + 9x^2 + 5y^2$$
,
 $z = -1 + 9x^2 + 5y^2$.

$$x = 2y^2 - 3$$
, $x = -7y^2 + 6$,

12.4.
$$z = 1 + \sqrt{x^2 + 16y^2}$$
,
 $z = -3 + \sqrt{x^2 + 16y^2}$.

$$y = -6x^2 + 8, \quad y = 2,$$

12.5.
$$z = x - x^2 - y^2 - 1$$
,
 $z = x - x^2 - y^2 - 5$.

$$x = 5y^2 - 9$$
, $x = -4$,

12.7.
$$z = x^2 + 4x - y^2 - 4$$
,
 $z = x^2 + 4x - y^2 + 2$.

$$x = 5y^2 - 1$$
, $x = -3y^2 + 1$,

12.9.
$$z = 2 - \sqrt{x^2 + 6y^2}$$
,
 $z = -1 - \sqrt{x^2 + 6y^2}$.

$$y = -5x^2 + 3$$
, $y = -2$,

12.11.
$$z = 2x^2 - 3y - 6y^2 - 1$$
,
 $z = 2x^2 - 3y - 6y^2 + 2$.

$$x = 3y^2 - 5$$
, $x = -2$,

12.13.
$$z = 2 - \sqrt{x^2 + 16y^2}$$
,
 $z = 8 - \sqrt{x^2 + 16y^2}$.

$$y = 2x^2 - 1$$
, $y = 1$,

12.15.
$$z = x^2 - 5y^2 - 3$$
,
 $z = x^2 - 5y^2 - 6$.

$$x = -4y^2 + 1$$
, $x = -3$,

12.17.
$$z = x^2 - 7y^2 - 1$$
,
 $z = x^2 - 7y^2 + 2$.

$$y = 1 - 2x^2$$
, $y = -1$,

12.19.
$$z = x^2 + 2y + y^2 - 2$$
,
 $z = x^2 + 2y + y^2 + 1$.

$$y = 5x^2 - 1$$
, $y = -3x^2 + 1$,

12.6.
$$z = -2 + \sqrt{3x^2 + y^2}$$
,
 $z = -5 + \sqrt{3x^2 + y^2}$.

$$y = 6x^2 - 1$$
, $y = 5$,

12.8.
$$z = 2x^2 + x - y^2$$
,
 $z = 2x^2 + x - y^2 + 4$.

$$x = -3y^2 + 7$$
, $x = 4$,

12.10.
$$z = 2 + \sqrt{6x^2 + y^2}$$
,
 $z = 3 + \sqrt{6x^2 + y^2}$.

$$y = x^2 - 5$$
, $y = -x^2 + 3$,

12.12.
$$z = 4 + \sqrt{5x^2 + 8y^2}$$
,
 $z = 1 + \sqrt{5x^2 + 8y^2}$.

$$x = y^2 - 2$$
, $x = -4y^2 + 3$,

12.14.
$$z = \sqrt{16 - x^2 - y^2} + 2$$
,
 $z = \sqrt{16 - x^2 - y^2} - 1$.

$$y = x^2 - 2$$
, $y = -4x^2 + 3$,

12.16.
$$z = 2 + \sqrt{x^2 + y^2}$$
,
 $z = -1 + \sqrt{x^2 + y^2}$.

$$x = 7y^2 - 6$$
, $x = -2y^2 + 3$,

12.18.
$$z = 3-12y^2 + 5x^2$$
,
 $z = -2-12y^2 + 5x^2$.

$$y = x^2 - 7$$
, $y = -8x^2 + 2$,

12.20.
$$z = 3-12y^2 + 5x^2$$
,
 $z = -2-12y^2 + 5x^2$.

$$x = 2y^{2} + 3, \quad x = 5,$$

$$12.21. \quad z = 1 + \sqrt{9x^{2} + 4y^{2}},$$

$$z = 4 + \sqrt{9x^{2} + 4y^{2}}.$$

$$x = 5y^{2} - 2, \quad x = -4y^{2} + 7,$$

$$12.23. \quad z = 4 - \sqrt{2x^{2} + 3y^{2}},$$

$$z = -1 - \sqrt{2x^{2} + 3y^{2}}.$$

$$y = -3x^{2} + 5, \quad y = 2,$$

$$12.25. \quad z = 3 + \sqrt{5x^{2} + y^{2}},$$

$$z = -1 + \sqrt{5x^{2} + y^{2}}.$$

$$x = 4y^{2} + 2, \quad x = 6,$$

$$12.27. \quad z = x^{2} + 4y^{2} + y + 1,$$

$$z = x^{2} + 4y^{2} + y + 4.$$

$$y = 2x^{2} - 5, \quad y = -3,$$

$$12.29. \quad z = 2 + \sqrt{x^{2} + 4y^{2}},$$

12.29.
$$z = 2 + \sqrt{x^2 + 4y^2}$$
,
 $z = -1 + \sqrt{x^2 + 4y^2}$.
 $y = -2x^2 + 7$, $y = 5$,
12.31. $z = 1 - 2x^2 + 3y^2$.

 $z = 4 - 2x^2 + 3y^2$.

$$y = 3x^{2} + 4, \quad y = 7,$$

$$12.22. \quad z = 5 - \sqrt{2x^{2} + 3y^{2}},$$

$$z = 1 - \sqrt{2x^{2} + 3y^{2}}.$$

$$x = -2y^{2} + 5, \quad x = 3,$$

$$12.24. \quad z = 5 - \sqrt{x^{2} + 25y^{2}},$$

$$z = 2 - \sqrt{x^{2} + 25y^{2}}.$$

$$y = 3x^{2} - 5, \quad y = -6x^{2} + 4,$$

$$12.26. \quad z = 2 + 10x^{2} - y^{2},$$

$$z = -2 + 10y^{2} - y^{2}.$$

$$x = 3y^{2} - 2, \quad x = -4y^{2} + 5,$$

$$12.28. \quad z = 4 - 7x^{2} - 9y^{2},$$

$$z = 1 - 7x^{2} - 9y^{2}.$$

$$y = 2x^{2} - 3, \quad y = -7x^{2} + 6,$$

$$12.30. \quad z = 1 - 5x^{2} - 6y^{2},$$

$$z = -3 - 5x^{2} - 6y^{2}.$$

Задача 13. Найти объем тела, заданного ограничивающими его поверхностями.

13.1.
$$z = \sqrt{9 - x^2 - y^2},$$
$$9z/2 = x^2 + y^2.$$

13.2.
$$z = 15\sqrt{x^2 + y^2}/2$$
,
 $z = 17/2 - x^2 - y^2$.

13.3.
$$z = \sqrt{4 - x^2 - y^2},$$
$$z = \sqrt{(x^2 + y^2)/255}.$$

13.5.
$$z = \sqrt{\frac{16}{9} - x^2 - y^2}$$
,
 $2z = x^2 + y^2$.

13.7.
$$z = \sqrt{25 - x^2 - y^2},$$
$$z = \sqrt{(x^2 + y^2)/99}.$$

13.9.
$$z = 21\sqrt{x^2 + y^2}/2$$
,
 $z = 23/2 - x^2 - y^2$.

13.11.
$$z = \sqrt{9 - x^2 - y^2},$$
$$z = \sqrt{\left(x^2 + y^2\right)/80}.$$

13.13.
$$z = \sqrt{1 - x^2 - y^2},$$
$$3z/2 = x^2 + y^2.$$

13.15.
$$z = \sqrt{36 - x^2 - y^2},$$
$$z = \sqrt{\left(x^2 + y^2\right)/63}.$$

13.17.
$$z = \sqrt{144 - x^2 - y^2},$$
$$18z = x^2 + y^2.$$

13.19.
$$z = \sqrt{9 - x^2 - y^2},$$
$$z = \sqrt{\left(x^2 + y^2\right)/35}.$$

$$z = \sqrt{64 - x^2 - y^2}, \quad z = 1,$$

13.4.
$$x^2 + y^2 = 60$$
 (внутри цилиндра).

13.6.
$$z = 3\sqrt{x^2 + y^2}$$
,
 $z = 10 - x^2 - y^2$.

$$z = \sqrt{100 - x^2 - y^2}, \quad z = 6,$$

13.8.
$$x^2 + y^2 = 51$$
 (внутри цилиндра).

13.10.
$$z = \sqrt{16 - x^2 - y^2},$$
$$6z = x^2 + y^2.$$

$$z = \sqrt{81 - x^2 - y^2}, \quad z = 5,$$

13.12.
$$x^2 + y^2 = 45$$
 (внутри цилиндра).

13.14.
$$z = 6\sqrt{x^2 + y^2},$$
$$z = 16 - x^2 - y^2.$$

$$z = \sqrt{64 - x^2 - y^2}, \quad z = 4,$$

13.16.
$$x^2 + y^2 = 39$$
 (внутри цилиндра).

 $z = 3\sqrt{x^2 + y^2} / 2,$

13.18.
$$z = 5/2 - x^2 - y^2.$$

$$z = \sqrt{49 - x^2 - y^2}, \quad z = 3,$$

13.20.
$$x^2 + y^2 = 33$$

(внутри цилиндра).

13.21.
$$z = \sqrt{36 - x^2 - y^2},$$
$$9z = x^2 + y^2.$$

13.23.
$$z = \sqrt{16 - x^2 - y^2},$$
$$z = \sqrt{(x^2 + y^2)/15}.$$

13.25.
$$z = \sqrt{4/9 - x^2 - y^2},$$

 $z = x^2 + y^2.$

13.27.
$$z = \sqrt{9 - x^2 - y^2},$$
$$z = \sqrt{\left(x^2 + y^2\right)/8}.$$

13.29.
$$z = \sqrt{64 - x^2 - y^2},$$
$$12z = x^2 + y^2.$$

13.31.
$$z = \sqrt{36 - x^2 - y^2},$$
$$z = \sqrt{(x^2 + y^2)/3}.$$

13.22.
$$z = 9\sqrt{x^2 + y^2}$$
,
 $z = 22 - x^2 - y^2$.

$$z = \sqrt{36 - x^2 - y^2}, \quad z = 2,$$

13.24.
$$x^2 + y^2 = 27$$
 (внутри цилиндра).

13.26.
$$z = 12\sqrt{x^2 + y^2}$$
,
 $z = 28 - x^2 - y^2$.

$$z = \sqrt{25 - x^2 - y^2}, \quad z = 1,$$

13.28.
$$x^2 + y^2 = 21$$
 (внутри цилиндра).

13.30.
$$z = 9\sqrt{x^2 + y^2}/2$$
,
 $z = 11/2 - x^2 - y^2$.

Задача 14. Найти объем тела, заданного ограничивающими его поверхностями.

14.1.
$$z = 2 - 12(x^2 + y^2),$$

 $z = 24x + 2.$

14.3.
$$z = 8(x^2 + y^2) + 3$$
,
 $z = 16x + 3$.

14.5.
$$z = 4 - 14(x^2 + y^2),$$

 $z = 4 - 28x.$

14.2.
$$z = 10[(x-1)^2 + y^2] + 1$$
,
 $z = 21 - 20x$.

14.4.
$$z = 2 - 20[(x+1)^2 + y^2],$$

 $z = -40 - 38x.$

14.6.
$$z = 28[(x+1)^2 + y^2] + 3,$$

 $z = 56x + 59.$

14.7.
$$z = 32(x^2 + y^2) + 3$$
,
 $z = 3 - 64x$.

14.9.
$$z = 2 - 4(x^2 + y^2),$$

 $z = 8x + 2.$

14.11.
$$z = 24(x^2 + y^2) + 1$$
,
 $z = 48x + 1$.

14.13.
$$z = -16(x^2 + y^2) - 1$$
,
 $z = -32x - 1$.

14.15.
$$z = 26(x^2 + y^2) - 2$$
,
 $z = -52x - 2$.

14.17.
$$z = -2(x^2 + y^2) - 1$$
,
 $z = 4y - 1$.

14.19.
$$z = 30(x^2 + y^2) + 1$$
,
 $z = 60y + 1$.

14.21.
$$z = 2 - 18(x^2 + y^2),$$

 $z = 2 - 36y.$

14.23.
$$z = 22(x^2 + y^2) + 3,$$

 $z = 3 - 44y.$

14.25.
$$z = 4 - 6(x^2 + y^2),$$

 $z = 12y + 4.$

14.27.
$$z = 28(x^2 + y^2) + 3$$
,
 $z = 56y + 3$.

14.8.
$$z = 4 - 6[(x-1)^2 + y^2],$$

 $z = 12x - 8.$

14.10.
$$z = 22[(x-1)^2 + y^2] + 3,$$

 $z = 47 - 44x.$

14.12.
$$z = 2 - 18[(x+1)^2 + y^2],$$

 $z = -36x - 34.$

14.14.
$$z = 30[(x+1)^2 + y^2] + 1$$
,
 $z = 60x + 61$.

14.16.
$$z = -2[(x-1)^2 + y^2] - 1,$$

 $z = 4x - 5.$

14.18.
$$z = 26[(x-1)^2 + y^2] - 2,$$

 $z = 50 - 52x.$

14.20.
$$z = -16[(x+1)^2 + y^2] - 1,$$

 $z = -32x - 33.$

14.22.
$$z = 24[(x+1)^2 + y^2] + 1$$
,
 $z = 48x + 49$.

14.24.
$$z = 2 - 4[(x-1)^2 + y^2],$$

 $z = 8x - 6.$

14.26.
$$z = 32[(x-1)^2 + y^2] + 3$$
,
 $z = 67 - 64x$.

14.28.
$$z = 4 - 14[(x+1)^2 + y^2],$$

 $z = -28x - 24.$

14.29.
$$z = 2 - 20(x^2 + y^2),$$

 $z = 2 - 40y.$

14.30.
$$z = 8[(x+1)^2 + y^2] + 3,$$

 $z = 16x + 19.$

14.31.
$$z = 10(x^2 + y^2) + 1$$
,
 $z = 1 - 20y$.

Задача 15. Найти объем тела, заданного неравенствами.

$$1 \le x^{2} + y^{2} + z^{2} \le 49,$$

$$1 \le x^{2} + y^{2} + z^{2} \le 64,$$

$$15.1. -\sqrt{\frac{x^{2} + y^{2}}{35}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{3}},$$

$$-x \le y \le 0.$$

$$1 \le x^{2} + y^{2} + z^{2} \le 64,$$

$$15.2. \sqrt{\frac{x^{2} + y^{2}}{15}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{3}},$$

$$-\sqrt{3}x \le y \le 0.$$

$$1 \le x^{2} + y^{2} + z^{2} \le 64,$$

$$15.2. \sqrt{\frac{x^{2} + y^{2}}{15}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{3}},$$

$$-\sqrt{3}x \le y \le 0.$$

$$4 \le x^2 + y^2 + z^2 \le 64,$$
15.3.
$$z \le \sqrt{\frac{x^2 + y^2}{3}}, \quad -\frac{x}{\sqrt{3}} \le y \le 0.$$

 $1 \le x^2 + y^2 + z^2 \le 36$

$$4 \le x^{2} + y^{2} + z^{2} \le 64, \qquad 4 \le x^{2} + y^{2} + z^{2} \le 36,$$

$$15.3. \quad z \le \sqrt{\frac{x^{2} + y^{2}}{3}}, \quad -\frac{x}{\sqrt{3}} \le y \le 0.$$

$$15.4. \quad z \ge -\sqrt{\frac{x^{2} + y^{2}}{63}}, \quad 0 \le y \le -\frac{x}{\sqrt{3}}.$$

15.5.
$$z \ge \sqrt{\frac{x^2 + y^2}{99}}, \quad -\sqrt{3}x \le y \le \sqrt{3}x.$$
 15.6. $z \le -\sqrt{\frac{x^2 + y^2}{99}}, \quad \sqrt{3}x \le y \le -\sqrt{3}x.$

$$25 \le x^{2} + y^{2} + z^{2} \le 100,$$

$$z \le -\sqrt{\frac{x^{2} + y^{2}}{99}}, \quad \sqrt{3}x \le y \le -\sqrt{3}x.$$

$$1 \le x^{2} + y^{2} + z^{2} \le 49,$$

$$15.7. \ 0 \le z \le \sqrt{\frac{x^{2} + y^{2}}{24}},$$

$$y \le -\frac{x}{\sqrt{3}}, \quad y \le -\sqrt{3}x.$$

$$25 \le x^2 + y^2 + z^2 \le 49,$$

$$4 \le x^{2} + y^{2} + z^{2} \le 64,$$

$$15.9. -\sqrt{\frac{x^{2} + y^{2}}{35}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{3}},$$

$$x \le y \le 0.$$

15.8.
$$-\sqrt{\frac{x^2 + y^2}{24}} \le z \le 0,$$

 $y \ge -\frac{x}{\sqrt{3}}, \quad y \ge -\sqrt{3}x.$

$$16 \le x^{2} + y^{2} + z^{2} \le 100,$$

$$15.10. \sqrt{\frac{x^{2} + y^{2}}{15}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{3}},$$

$$\sqrt{3}x \le y \le 0.$$

$$16 \le x^{2} + y^{2} + z^{2} \le 100,$$

$$15.11. \quad z \le \sqrt{\frac{x^{2} + y^{2}}{3}}, \quad -\sqrt{3}x \le y \le -\frac{x}{\sqrt{3}}.$$

$$16 \le x^{2} + y^{2} + z$$

$$15.12. \quad z \ge -\sqrt{\frac{x^{2} + y^{2}}{63}},$$

$$-\frac{x}{-\sqrt{3}} \le y \le -\sqrt{3}$$

15.11.
$$z \le \sqrt{\frac{x^2 + y^2}{3}}, \quad -\sqrt{3}x \le y \le -\frac{x}{\sqrt{3}}.$$
 15.12. $z \ge -\sqrt{\frac{3}{63}}, \quad -\frac{x}{\sqrt{3}} \le y \le -\sqrt{3}x.$ $4 \le x^2 + y^2 + z^2 \le 49,$ $36 \le x^2 + y^2 + z^2 \le 121,$

15.13.
$$z \ge \sqrt{\frac{x^2 + y^2}{99}}, \quad y \le 0, \quad y \le \sqrt{3}x.$$

15.13.
$$z \ge \sqrt{\frac{x^2 + y^2}{99}}$$
, $y \le 0$, $y \le \sqrt{3}x$. 15.14. $z \ge -\sqrt{\frac{x^2 + y^2}{99}}$, $y \ge 0$, $y \ge \sqrt{3}x$.

$$4 \le x^{2} + y^{2} + z^{2} \le 64,$$

$$15.15. \ 0 \le z \le \sqrt{\frac{x^{2} + y^{2}}{24}},$$

$$y \le \sqrt{3}x, \quad y \le \frac{x}{\sqrt{3}}.$$

$$9 \le x^{2} + y^{2} + z^{2} \le 81,$$

$$15.17. -\sqrt{\frac{x^{2} + y^{2}}{3}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{35}},$$

$$0 \le y \le -x.$$

$$36 \le x^2 + y^2 + z^2 \le 144,$$
15.19.
$$z \le \sqrt{\frac{x^2 + y^2}{3}}, \quad \sqrt{3}x \le y \le \frac{x}{\sqrt{3}}.$$

$$9 \le x^{2} + y^{2} + z^{2} \le 64,$$

$$15.21. \ z \ge \sqrt{\frac{x^{2} + y^{2}}{99}},$$

$$y \le \frac{x}{\sqrt{3}}, \quad y \le -\frac{x}{\sqrt{3}}.$$

$$36 \le x^{2} + y^{2} + z^{2} \le 144,$$

$$15.16. -\sqrt{\frac{x^{2} + y^{2}}{24}} \le z \le 0,$$

$$y \ge \sqrt{3}x, \quad y \ge \frac{x}{\sqrt{3}}.$$

 $16 \le x^2 + y^2 + z^2 \le 64$

$$36 \le x^{2} + y^{2} + z^{2} \le 144,$$

$$15.18. -\sqrt{\frac{x^{2} + y^{2}}{3}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{35}},$$

$$0 \le y \le -\sqrt{3}x.$$

$$36 \le x^{2} + y^{2} + z^{2} \le 100,$$

$$15.20. \ z \ge -\sqrt{\frac{x^{2} + y^{2}}{63}},$$

$$\frac{x}{\sqrt{3}} \le y \le \sqrt{3}x.$$

$$49 \le x^{2} + y^{2} + z^{2} \le 144,$$

$$15.22. \ z \le -\sqrt{\frac{x^{2} + y^{2}}{99}},$$

$$y \ge \frac{x}{\sqrt{3}}, \quad y \ge -\frac{x}{\sqrt{3}}.$$

$$9 \le x^{2} + y^{2} + z^{2} \le 81,$$

$$15.23. \ 0 \le z \le \sqrt{\frac{x^{2} + y^{2}}{24}},$$

$$y \le 0, \quad y \le \frac{x}{\sqrt{3}}.$$

$$16 \le x^{2} + y^{2} + z^{2} \le 100,$$

$$15.25. -\sqrt{\frac{x^{2} + y^{2}}{3}} \le z \le \sqrt{\frac{x^{2} + y^{2}}{35}},$$

$$0 \le y \le x.$$

$$64 \le x^2 + y^2 + z^2 \le 196,$$

$$15.27. \quad z \le \sqrt{\frac{x^2 + y^2}{3}}, \quad \frac{x}{\sqrt{3}} \le y \le 0.$$

 $16 \le x^2 + y^2 + z^2 \le 81.$

15.29.
$$z \ge \sqrt{\frac{x^2 + y^2}{99}}$$
, $y \le 0$, $y \le -\sqrt{3}x$.

$$16 \le x^2 + y^2 + z^2 \le 100,$$

15.31.
$$0 \le z \le \sqrt{\frac{x^2 + y^2}{24}}$$
, $y \le 0$, $y \le \frac{x}{\sqrt{3}}$.

$$49 \le x^{2} + y^{2} + z^{2} \le 81,$$

$$15.24. -\sqrt{\frac{x^{2} + y^{2}}{24}} \le z \le 0,$$

$$y \ge 0, \quad y \ge \frac{x}{\sqrt{3}}.$$

$$64 \le x^{2} + y^{2} + z^{2} \le 196,$$

$$15.26. -\sqrt{\frac{x^{2} + y^{2}}{3}} \le z \le -\sqrt{\frac{x^{2} + y^{2}}{15}},$$

$$0 \le y \le \sqrt{3}x.$$

$$64 \le x^2 + y^2 + z^2 \le 144,$$

$$15.28. \quad z \ge -\sqrt{\frac{x^2 + y^2}{63}}, \quad 0 \le y \le \frac{x}{\sqrt{3}}.$$

$$64 \le x^2 + y^2 + z^2 \le 169,$$

15.30.
$$z \le -\sqrt{\frac{x^2 + y^2}{99}}$$
, $y \ge 0$, $y \ge -\sqrt{3}x$.

Задача 16. Тело V задано ограничивающими его поверхностями, µ - плотность.

Найти массу тела.

$$64(x^{2} + y^{2}) = z^{2}, \quad x^{2} + y^{2} = 4,$$

$$16.1. \quad y = 0, \quad z = 0 \quad (y \ge 0, \quad z \ge 0),$$

$$m = 5(x^{2} + y^{2})/4.$$

$$x^{2} + y^{2} + z^{2} = 4, \quad x^{2} + y^{2} = 1,$$

$$16.2. \quad (x^{2} + y^{2} \le 1), \quad x = 0 \quad (x \ge 0);$$

$$m = 4|z|.$$

$$x^{2} + y^{2} = 1, \quad x^{2} + y^{2} = 2z,$$

$$16.3. \quad x = 0, \quad y = 0, \quad z = 0 \quad (x \ge 0, \quad y \ge 0);$$

$$m = 10x.$$

$$x^{2} + y^{2} = \frac{16}{49}z^{2}, \quad x^{2} + y^{2} = \frac{4}{7}z,$$

$$16.4. \quad x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0);$$

$$m = 80yz.$$

$$x^{2} + y^{2} + z^{2} = 1, \quad x^{2} + y^{2} = 4z^{2},$$

$$16.5. \quad x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0, \quad z \ge 0);$$

$$m = 20z.$$

$$36(x^{2} + y^{2}) = z^{2}, \quad x^{2} + y^{2} = 1,$$

$$16.6. \quad x = 0, \quad z = 0 \quad (x \ge 0, \quad z \ge 0),$$

$$m = \frac{5}{6}(x^{2} + y^{2}).$$

$$x^{2} + y^{2} + z^{2} = 16, \quad x^{2} + y^{2} = 4,$$

$$16.7. \quad (x^{2} + y^{2} \le 4);$$

m=2|z|.

$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 8z$,

16.8.
$$x = 0$$
, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$;

m = 5x.

$$x^{2} + y^{2} = \frac{4}{25}z^{2}, \quad x^{2} + y^{2} = \frac{2}{5}z,$$

16.9.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0)$;

m = 28xz.

$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = z^2$,

16.10.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$; $m = 6z$.

$$25(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 4$,

16.11.
$$x = 0, y = 0, z = 0$$

 $(x \ge 0, y \ge 0, z \ge 0),$

$$(x \ge 0, y \ge 0, z \ge 0),$$

$$m = 2(x^2 + y^2).$$

$$x^2 + y^2 + z^2 = 9$$
, $x^2 + y^2 = 4$,

16.12.
$$(x^2 + y^2 \le 4)$$
, $y = 0 (y \ge 0)$;

$$m = |z|$$
.

$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 6z$,

16.13.
$$x = 0$$
, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$; $m = 90 y$.

$$x^{2} + y^{2} = \frac{1}{25}z^{2}, \quad x^{2} + y^{2} = \frac{1}{5}z,$$

16.14.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0)$; $m = 14yz$.

$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = 9z^2$,

16.15.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$; $m = 10z$.

$$9(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 4$,

16.16.
$$x = 0, y = 0, z = 0$$

 $(x \ge 0, y \ge 0, z \ge 0),$

$$(x \ge 0, y \ge 0, z \ge 0),$$

$$m = 5(x^2 + y^2)/3.$$

$$x^2 + y^2 + z^2 = 4$$

16.17.
$$x^2 + y^2 = 1$$
, $(x^2 + y^2 \le 1)$; $m = |z|$.

$$x^2 + y^2 = 1$$
, $x^2 + y^2 = z$,

$$x = 0$$
, $y = 0$, $z = 0$,

16.18.
$$x = 0, y = 0, z = 0,$$

 $(x \ge 0, y \ge 0);$

$$m = 10 y$$
.

$$x^{2} + y^{2} = \frac{1}{49}z^{2}, \quad x^{2} + y^{2} = \frac{1}{7}z,$$

16.19.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0)$; $m = 10xz$.

$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = 4z^2$,

16.20.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$; $m = 10z$.

$$16(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 1$,

16.21.
$$x = 0$$
, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0, z \ge 0)$, $m = 5(x^2 + y^2)$.

$$x^2 + y^2 + z^2 = 16,$$

16.22.
$$x^2 + y^2 = 4 \quad (x^2 + y^2 \le 4);$$

 $m = |z|.$

$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 4z$,

16.23.
$$x = 0$$
, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$; $m = 5y$.

$$x^2 + y^2 = z^2$$
, $x^2 + y^2 = z$,

16.24.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0)$; $m = 35 yz$.

$$x^2 + y^2 + z^2 = 1$$
, $x^2 + y^2 = z^2$,

16.25.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$; $m = 32z$.

$$x^2 + y^2 = z^2$$
, $x^2 + y^2 = 4$,

$$x = 0$$
, $y = 0$, $z = 0$

16.26.
$$(x \ge 0, y \ge 0, z \ge 0),$$

 $m = 5(x^2 + y^2)/2.$

$$x^2 + y^2 + z^2 = 9$$
, $x^2 + y^2 = 4$,

16.27.
$$(x^2 + y^2 \le 4)$$
, $z = 0 \ (z \ge 0)$; $m = 2z$.

$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 3z$,

$$x = 0$$
, $y = 0$, $z = 0$

$$(x \ge 0, y \ge 0);$$

$$m = 15x$$
.

$$x^{2} + y^{2} = \frac{4}{49}z^{2}, \quad x^{2} + y^{2} = \frac{2}{7}z,$$

16.29.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0)$; $m = 20xz$.

$$x^2 + y^2 + z^2 = 16$$
, $x^2 + y^2 = 9z^2$,

16.30.
$$x = 0$$
, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$; $m = 5z$.

$$4(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 1$,

16.31.
$$y = 0$$
, $z = 0$ $(y \ge 0, z \ge 0)$, $m = 10(x^2 + y^2)$.

VIII. ВЕКТОРНЫЙ АНАЛИЗ

Теоретические вопросы

- 1. Скалярное поле. Производная по направлению.
- 2. Градиент, его свойства. Инвариантное определение градиента.
- 3. Векторное поле. Поток векторного поля через поверхность, его физический смысл.
- 4. Формула Остроградского.
- 5. Дивергенция векторного поля, ее физический смысл. Инвариантное определения дивергенции. Свойства дивергенции.
 - 6. Соленоидальное поле, его основные свойства.
 - 7. Линейный интеграл в векторном поле, его свойства и физический смысл.
 - 8. Циркуляция векторного поля, ее гидродинамический смысл.
 - 9. Формула Стокса.
 - 10. Ротор векторного поля, его свойства. Инвариантное определение ротора.
 - 11. Условия независимости линейного интеграла от формы пути интегрирования.
 - 12. Потенциальное поле. Условия потенциальности.

Теоретические упражнения

- 1. Найти производную скалярного поля u = u(x, y, z) по направлению градиента скалярного поля u = u(x, y, z).
- 2. Найти градиент скалярного поля $u = \mathbf{Cr}$, где \mathbf{C} постоянный вектор, а \mathbf{r} радиус-вектор. Каковы поверхности уровня этого поля и как они расположены по отношению к вектору \mathbf{C} ?
- 3. Доказать, что если S замкнутая кусочно-гладкая поверхность и ${\bf C}$ ненулевої постоянный вектор, то

$$\iiint_{S} \cos(\mathbf{n}, \mathbf{C}) dS = 0,$$

где ${\bf n}$ — вектор, нормальный к поверхности S .

4. Доказать формулу

$$\iiint_{S} \mathbf{j} \, \mathbf{a} \mathbf{n}^{0} dS = \iiint_{V} (\mathbf{j} \, \operatorname{div} \mathbf{a} + \mathbf{a} \operatorname{grad} \mathbf{j}) dV,$$

где $\mathbf{j} = \mathbf{j}(x, y, z)$; S — поверхность, ограничивающая объем V; \mathbf{n}^0 — орт внешней нормали к поверхности S. Установить условия применимости формулы.

5. Доказать, что если функция u(x, y, z) удовлетворяет уравнению Лапласа

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0, \text{ TO } \iiint_S \frac{\partial u}{\partial n} dS = 0,$$

где $\frac{\partial u}{\partial n}$ — производная по направлению нормали к кусочно-гладкой замкнутої поверхности S .

6. Доказать, что если функция u(x, y, z) является многочленом второй степени и S — кусочно-гладкая замкнутая поверхность, то интеграл

$$\iint_{S} \frac{\partial u}{\partial n} dS$$

пропорционален объему, ограниченному поверхностью S .

- 7. Пусть $\mathbf{a} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$, где P, Q, R линейные функции от x, y, z и пусть Γ замкнутая кусочно-гладкая кривая, расположенная в некоторой плоскости Доказать, что если циркуляция $\int_{\Gamma} \mathbf{a} d\mathbf{r}$ отлична от нуля, то она пропорциональна площади фигуры, ограниченной контуром Γ .
- 8. Твердое тело вращается с постоянной угловой скоростью вокруг неподвижной оси проходящей через начало координат. Вектор угловой скорости $\mathbf{w} = \mathbf{w}_x \mathbf{i} + \mathbf{w}_y \mathbf{j} + \mathbf{w}_z \mathbf{k}$ Определить ротор и дивергенцию поля линейных скоростей $\mathbf{v} = [\mathbf{wr}]$ точек тела (здесь \mathbf{r} радиус-вектор).

Расчетные задания

Задача 1. Найти производную скалярного поля u(x,y,z) в точке M по направлению нормали к поверхности S , образующей острый угол с положительным направлением оси Oz .

1.1.
$$u = 4\ln(3+x^2) - 8xyz$$
, $S: x^2 - 2y^2 + 2z^2 = 1$, $M(1, 1, 1)$.

1.2.
$$u = x\sqrt{y} + y\sqrt{z}$$
, $S: 4z + 2x^2 - y^2 = 0$, $M(2, 4, 4)$.

1.3.
$$u = -2\ln(x^2 - 5) - 4xyz$$
, $S: x^2 + 2y^2 - 2z^2 = 1$, $M(1, 1, 1)$.

1.4.
$$u = \frac{1}{4}x^2y - \sqrt{x^2 + 5z^2}$$
, $S: z^2 = x^2 + 4y^2 - 4$, $M\left(-2, \frac{1}{2}, 1\right)$.

1.5.
$$u = xz^2 - \sqrt{x^3y}$$
, $S: x^2 - y^2 - 3z + 12 = 0$, $M(2, 2, 4)$.

1.6.
$$u = x\sqrt{y} - yz^2$$
, $S: x^2 + y^2 = 4z$, $M(2, 1, -1)$.

1.7.
$$u = 7 \ln(1/13 + x^2) - 4xyz$$
, $S: 7x^2 - 4y^2 + 4z^2 = 7$, $M(1, 1, 1)$.

1.8.
$$u = \operatorname{arctg}(y/x) - 8xyz$$
, $S: x^2 + y^2 - 2z^2 = 10$, $M(2, 2, -1)$.

1.9.
$$u = \ln(1+x^2) - xy\sqrt{z}$$
, $S: 4x^2 - y^2 + z^2 = 16$, $M(1, -2, 4)$.

1.10.
$$u = \sqrt{x^2 + y^2} - z$$
, $S: x^2 + y^2 = 24z$, $M(3, 4, 1)$.

1.11.
$$u = x\sqrt{y} - (z+y)\sqrt{x}$$
, $S: x^2 - y^2 + z^2 = 4$, $M(1, 1, -2)$.

1.12.
$$u = \sqrt{xy} - \sqrt{4 - z^2}$$
, $S: z = x^2 - y^2$, $M(1, 1, 0)$.

1.13.
$$u = (x^2 + y^2 + z^2)^{3/2}$$
, $S: 2x^2 - y^2 + z^2 - 1 = 0$, $M(0, -3, 4)$.

1.14.
$$u = \ln(1+x^2+y^2) - \sqrt{x^2+z^2}$$
, $S: x^2-6x+9y^2+z^2=4z+4$, $M(3, 0, -4)$.

Найти производную скалярного поля u(x,y,z) в точке M по направлению вектора

l.

$$u = \left(x^2 + y^2 + z^2\right)^{3/2},$$

$$1.15. \mathbf{l} = \mathbf{i} - \mathbf{j} + \mathbf{k},$$

M(1, 1, 1).

$$u = x^2 y - \sqrt{xy + z^2},$$

1.17. $\mathbf{l} = 2\mathbf{j} - 2\mathbf{k}$,

M(1, 5, -2).

$$u = x + \ln\left(z^2 + y^2\right),\,$$

1.16.
$$\mathbf{l} = -2\mathbf{i} + \mathbf{j} - \mathbf{k}$$
,

$$u = y \ln \left(1 + x^2\right) - \arctan z,$$

1.18.
$$\mathbf{l} = 2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$$
,

$$u = x(\ln y - \operatorname{arctg} z),$$

1.19.
$$\mathbf{l} = 8\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}$$
, $M(-2, 1, -1)$.

$$u = \sin(x + 2y) + \sqrt{xyz},$$

1.21.
$$\mathbf{l} = 4\mathbf{i} + 3\mathbf{j}$$
,
 $M(p/2, 3p/2, 3)$.

$$u = x^3 + \sqrt{y^2 + z^2},$$

1.23.
$$\mathbf{l} = \mathbf{j} - \mathbf{k}$$
, $M(1, -3, 4)$.

$$u = \sqrt{xy} + \sqrt{9 - z^2},$$

1.25.
$$\mathbf{l} = -2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$
,
 $M(1, 1, 0)$.

$$u = z^2 + 2\arctan(x - y),$$

1.27.
$$\mathbf{l} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$$
, $M(1, 2, -1)$.

$$u = xy - \frac{x}{z},$$

1.29.
$$\mathbf{l} = 5\mathbf{i} + \mathbf{j} - \mathbf{k}$$
, $M(-4, 3, -1)$.

$$u = x^2 - \arctan(y + z),$$

1.31.
$$\mathbf{l} = 3\mathbf{j} - 4\mathbf{k}$$
,
 $M(2, 1, 1)$.

$$u = \ln\left(3 - x^2\right) + xy^2 z,$$

1.20.
$$\mathbf{l} = -\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$$
, $M(1, 3, 2)$.

$$u = x^2 y^2 z - \ln(z - 1),$$

1.22.
$$\mathbf{l} = 5\mathbf{i} - 6\mathbf{j} + 2\sqrt{5}\mathbf{k}$$
,
 $M(1, 1, 2)$.

$$u = \frac{\sqrt{x}}{y} - \frac{yz}{x + \sqrt{y}},$$

1.24.
$$\mathbf{l} = 2\mathbf{i} + \mathbf{k}$$
,
 $M(4, 1, -2)$.

$$u = 2\sqrt{x + y} + y \arctan z,$$

1.26.
$$\mathbf{l} = 4\mathbf{i} - 3\mathbf{k}$$
,
 $M(3, 2, -1)$.

$$u = \ln\left(x^2 + y^2\right) + xyz,$$

1.28.
$$\mathbf{l} = \mathbf{i} - \mathbf{j} + 5\mathbf{k}$$
,
 $M(1, -1, 2)$.

$$u = \ln\left(x + \sqrt{y^2 + z^2}\right),\,$$

1.30.
$$\mathbf{l} = -2\mathbf{i} - \mathbf{j} + \mathbf{k}$$
,
 $M(1, -3, 4)$.

Задача 2. Найти угол между градиентами скалярных полей u(x, y, z) и u(x, y, z) точке M .

2.1.
$$\mathbf{u} = \frac{x^3}{2} + 6y^3 + 3\sqrt{6}z^3$$
, $u = \frac{yz^2}{x^2}$, $M\left(\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$

2.2.
$$u = \frac{4\sqrt{6}}{x} - \frac{\sqrt{6}}{9y} + \frac{3}{z}$$
, $u = x^2 yz^3$, $M\left(2, \frac{1}{3}, \sqrt{\frac{3}{2}}\right)$.

2.3.
$$\mathbf{u} = 9\sqrt{2}x^3 - \frac{y^3}{2\sqrt{2}} - \frac{4z^3}{\sqrt{3}}, \quad \mathbf{u} = \frac{z^3}{xy^2}, \quad M\left(\frac{1}{3}, 2, \sqrt{\frac{3}{2}}\right).$$

2.4.
$$u = \frac{3}{x} + \frac{4}{y} - \frac{1}{\sqrt{6}z}$$
, $u = \frac{z}{x^3 y^2}$, $M\left(1, 2, \frac{1}{\sqrt{6}}\right)$.

2.5.
$$\mathbf{u} = \frac{x^3}{2} + 6y^3 + 3\sqrt{6}z^3$$
, $u = \frac{x^2}{yz^2}$, $M\left(\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$

2.6.
$$u = 3\sqrt{2}x^2 - \frac{y^2}{\sqrt{2}} + 3\sqrt{2}z^3$$
, $u = \frac{z^2}{xy^2}$, $M\left(\frac{1}{3}, 2, \sqrt{\frac{2}{3}}\right)$.

2.7.
$$u = 6\sqrt{6}x^3 - 6\sqrt{6}y^3 + 2z^3$$
, $u = \frac{xz^2}{y}$, $M\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 1\right)$.

2.8.
$$u = \frac{\sqrt{6}}{2x} - \frac{\sqrt{6}}{2y} + \frac{2}{3z}$$
, $u = \frac{yz^2}{x}$, $M\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$.

2.9.
$$\mathbf{u} = 3\sqrt{2}x^2 - \frac{y^2}{\sqrt{2}} - 3\sqrt{2}z^2$$
, $u = \frac{xy^2}{z^2}$, $M\left(\frac{1}{3}, 2, \sqrt{\frac{2}{3}}\right)$.

2.10.
$$u = \frac{3}{x} + \frac{4}{y} - \frac{1}{\sqrt{6}z}$$
, $u = \frac{x^3y^2}{z}$, $M\left(1, 2, \frac{1}{\sqrt{6}}\right)$.

2.11.
$$u = -\frac{4\sqrt{2}}{x} + \frac{\sqrt{2}}{9y} + \frac{1}{\sqrt{3}z}, \quad u = \frac{1}{x^2 yz}, \quad M\left(2, \frac{1}{3}, \frac{1}{\sqrt{6}}\right).$$

2.12.
$$u = \frac{6}{x} + \frac{2}{y} - \frac{3\sqrt{3}}{2\sqrt{2}z}$$
, $u = \frac{x^2}{y^2 z^3}$, $M\left(\sqrt{2}, \sqrt{2}, \frac{\sqrt{3}}{2}\right)$.

2.13.
$$u = x^2 + 9y^2 + 6z^2$$
, $u = xyz$, $M\left(1, \frac{1}{3}, \frac{1}{\sqrt{6}}\right)$.

2.14.
$$u = \frac{2}{x} + \frac{3}{2y} - \frac{\sqrt{6}}{4z}$$
, $u = \frac{y^3}{x^2 z}$, $M\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{3}{2}}, \frac{1}{2}\right)$.

2.15.
$$u = \sqrt{2}x^2 - \frac{3y^2}{\sqrt{2}} - 6\sqrt{2}z^2$$
, $u = xy^2z$, $M\left(1, \frac{2}{3}, \frac{1}{\sqrt{6}}\right)$.

2.16.
$$u = -\frac{\sqrt{6}}{2x} + \frac{\sqrt{6}}{2y} - \frac{2}{3z}$$
, $u = \frac{x}{yz^2}$, $M\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$.

2.17.
$$u = \frac{6}{x} + \frac{2}{y} + \frac{3\sqrt{3}}{2\sqrt{2}z}, \quad u = \frac{y^2 z^3}{x^2}, \quad M\left(\sqrt{2}, \sqrt{2}, \frac{\sqrt{3}}{2}\right).$$

2.18.
$$u = \frac{1}{\sqrt{2}x} - \frac{2\sqrt{2}}{y} - \frac{3\sqrt{3}}{2z}, \quad u = \frac{y^2 z^3}{x}, \quad M\left(\frac{1}{\sqrt{2}}, \sqrt{2}, \frac{\sqrt{3}}{2}\right).$$

2.19.
$$u = 6\sqrt{6}x^3 - 6\sqrt{6}y^3 + 2z^3$$
, $u = \frac{y}{xz^2}$, $M\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, ?\right)$

2.20.
$$u = x^2 - y^2 - 3z^2$$
, $u = \frac{yz^2}{x}$, $M\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$

2.21.
$$u = \frac{3x^2}{\sqrt{2}} - \frac{y^2}{\sqrt{2}} + \sqrt{2}z^2$$
, $u = \frac{z^2}{x^2y^2}$, $M\left(\frac{2}{3}, 2, \sqrt{\frac{2}{3}}\right)$.

2.22.
$$u = \frac{x^3}{\sqrt{2}} - \frac{y^3}{\sqrt{2}} - \frac{8z^3}{\sqrt{3}}, \quad u = \frac{x^2}{y^2 z^3}, \quad M\left(\sqrt{2}, \sqrt{2}, \frac{\sqrt{3}}{2}\right).$$

2.23.
$$u = \frac{3}{2}x^2 + 3y^2 - 2z^2$$
, $u = x^2yz^3$, $M\left(2, \frac{1}{3}, \sqrt{\frac{3}{2}}\right)$.

2.24.
$$u = 9\sqrt{2}x^3 - \frac{y^3}{2\sqrt{2}} - \frac{4z^3}{\sqrt{3}}, \quad u = \frac{xy^2}{z^3}, \quad M\left(\frac{1}{3}, 2, \sqrt{\frac{3}{2}}\right).$$

2.25.
$$u = \sqrt{2}x^2 - \frac{3y^2}{\sqrt{2}} - 6\sqrt{2}z^2$$
, $u = \frac{1}{xy^2z}$, $M\left(1, \frac{2}{3}, \frac{1}{\sqrt{6}}\right)$.

2.26.
$$u = x^2 + 9y^2 + 6z^2$$
, $u = \frac{1}{xyz}$, $M\left(1, \frac{1}{3}, \frac{1}{\sqrt{6}}\right)$.

2.27.
$$u = \frac{1}{\sqrt{2}x} - \frac{2\sqrt{2}}{y} - \frac{3\sqrt{3}}{2z}$$
, $u = \frac{x}{y^2 z^3}$, $M\left(\frac{1}{\sqrt{2}}, \sqrt{2}, \frac{\sqrt{3}}{2}\right)$.

2.28.
$$u = -\frac{4\sqrt{2}}{x} + \frac{\sqrt{2}}{9y} + \frac{1}{\sqrt{3}z}, \quad u = x^2yz, \quad M\left(2, \frac{1}{3}, \frac{1}{\sqrt{6}}\right).$$

2.29.
$$u = \frac{x^3}{\sqrt{2}} - \frac{y^3}{\sqrt{2}} - \frac{8z^3}{\sqrt{3}}, \quad u = \frac{y^2 z^3}{x^2}, \quad M\left(\sqrt{2}, \sqrt{2}, \frac{\sqrt{3}}{2}\right).$$

2.30.
$$u = -\frac{3x^3}{\sqrt{2}} + \frac{2\sqrt{2}y^3}{3} + 8\sqrt{3}z^3$$
, $u = \frac{x^2z}{x^2}$, $M\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{3}{2}}, \frac{1}{2}\right)$.

2.31.
$$u = x^2 - y^2 - 3z^2$$
, $u = \frac{x}{yz^2}$, $M\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$.

Задача 3. Найти векторные линии в векторном поле а.

3.1.
$$\mathbf{a} = 4y\mathbf{i} - 9x\mathbf{j}$$
.

3.3.
$$\mathbf{a} = 2x\mathbf{i} + 4y\mathbf{j}$$
.

3.5.
$$\mathbf{a} = x\mathbf{i} + 4y\mathbf{j}$$
.

3.7.
$$\mathbf{a} = 4z\mathbf{i} - 9x\mathbf{k}$$
.

3.9.
$$\mathbf{a} = 4y\mathbf{j} + 8z\mathbf{k}$$
.

3.11.
$$\mathbf{a} = 2x\mathbf{i} + 8z\mathbf{k}$$
.

3.13.
$$\mathbf{a} = 4z\mathbf{j} - 9y\mathbf{k}$$
.

3.15.
$$\mathbf{a} = 5x\mathbf{i} + 10y\mathbf{j}$$
.

3.17.
$$\mathbf{a} = y\mathbf{j} + 4z\mathbf{k}$$
.

3.19.
$$\mathbf{a} = 9y\mathbf{i} - 4x\mathbf{j}$$
.

3.21.
$$\mathbf{a} = 6x\mathbf{i} + 12z\mathbf{k}$$
.

3.23.
$$\mathbf{a} = 4x\mathbf{i} + y\mathbf{j}$$
.

3.25.
$$\mathbf{a} = x\mathbf{i} + z\mathbf{k}$$
.

3.27.
$$\mathbf{a} = 7y\mathbf{j} + 14z\mathbf{k}$$
.

3.2.
$$\mathbf{a} = 2y\mathbf{i} + 3x\mathbf{j}$$
.

3.4.
$$\mathbf{a} = x\mathbf{i} + 3y\mathbf{j}$$
.

3.6.
$$\mathbf{a} = 3x\mathbf{i} + 6z\mathbf{k}$$
.

3.8.
$$\mathbf{a} = 2z\mathbf{i} + 3x\mathbf{k}$$
.

3.10.
$$\mathbf{a} = y\mathbf{j} + 3z\mathbf{k}$$
.

3.12.
$$\mathbf{a} = x\mathbf{i} + 3z\mathbf{k}$$
.

3.14.
$$\mathbf{a} = 2z\mathbf{j} + 3y\mathbf{k}$$
.

3.16.
$$\mathbf{a} = 2x\mathbf{i} + 6y\mathbf{j}$$
.

3.18.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j}$$
.

3.20.
$$\mathbf{a} = 5y\mathbf{i} + 7x\mathbf{j}$$
.

3.22.
$$\mathbf{a} = 2y\mathbf{j} + 6z\mathbf{k}$$
.

3.24.
$$\mathbf{a} = 9z\mathbf{i} - 4x\mathbf{k}$$
.

3.26.
$$\mathbf{a} = 5z\mathbf{i} + 7x\mathbf{k}$$
.

3.28.
$$\mathbf{a} = 2x\mathbf{i} + 6z\mathbf{k}$$
.

3.29.
$$\mathbf{a} = 4x\mathbf{i} + z\mathbf{k}$$
.

3.31.
$$\mathbf{a} = 9z\mathbf{i} - 4y\mathbf{k}$$
.

3.30.
$$\mathbf{a} = 5z\mathbf{j} + 7y\mathbf{k}$$
.

Задача 4. Найти поток векторного поля ${\bf a}$ через часть поверхности S, вырезаемук плоскостями P_1, P_2 (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
.

4.1.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 2$.

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}.$$

4.3.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 3$.

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + xyz\mathbf{k}.$$

4.5.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 5$.

$$\mathbf{a} = (x+y)\mathbf{i} - (x-y)\mathbf{j} + xyz\mathbf{k}.$$

4.7.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 4$.

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + \sin z\mathbf{k}$$
.

4.9.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 5$.

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} - z\mathbf{k}.$$

4.2.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 4$.

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z^3\mathbf{k}.$$

4.4.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 1$.

$$\mathbf{a} = (x - y)\mathbf{i} + (x + y)\mathbf{j} + z^2\mathbf{k}.$$

4.6.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 2$.

$$\mathbf{a} = (x^3 + xy^2)\mathbf{i} + (y^3 + x^2y)\mathbf{j} + z^2\mathbf{k}.$$

4.8.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 3$.

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + \mathbf{k}.$$

4.10.
$$S: x^2 + y^2 = 1$$
,
 $P_1: z = 0, P_2: z = 2$.

Найти поток векторного поля \mathbf{a} через часть поверхности S, вырезаемую плоскостью F (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

4.11.
$$\mathbf{a} = (x + xy^2)\mathbf{i} + (y - yx^2)\mathbf{j} + (z - 3)\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 1$.

4.12.
$$\mathbf{a} = y\mathbf{i} - x\mathbf{j} + \mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 4$.

4.13.
$$\mathbf{a} = xy\mathbf{i} - x^2\mathbf{j} + 3\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 1$.

4.14.
$$\mathbf{a} = xz\mathbf{i} + yz\mathbf{j} + (z^2 - 1)\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 4$.

4.15.
$$\mathbf{a} = y^2 x \mathbf{i} - y x^2 \mathbf{j} + \mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 5$.

4.16.
$$\mathbf{a} = (xz + y)\mathbf{i} + (yz - x)\mathbf{j} + (z^2 - 2)\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 3$.

4.17.
$$\mathbf{a} = xyz\mathbf{i} - x^2z\mathbf{j} + 3\mathbf{k}$$
, $S: x^2 + y^2 = z^2$ $(z \ge 0)$, $P: z = 2$.

4.18.
$$\mathbf{a} = (x + xy)\mathbf{i} + (y - x^2)\mathbf{j} + (z - 1)\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 3$.

4.19.
$$\mathbf{a} = (x+y)\mathbf{i} + (y-x)\mathbf{j} + (z-2)\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 2$.

4.20.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + (z-2)\mathbf{k}$$
, $S: x^2 + y^2 = z^2 \ (z \ge 0)$, $P: z = 1$.

4.21.
$$\mathbf{a} = (x + xz)\mathbf{i} + y\mathbf{j} + (z - x^2)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 4$ $(z \ge 0)$, $P: z = 0$.

4.22.
$$\mathbf{a} = x\mathbf{i} + (y + yz^2)\mathbf{j} + (z - zy^2)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $P: z = 0 \ (z \ge 0)$.

4.23.
$$\mathbf{a} = (x+z)\mathbf{i} + (y+z)\mathbf{j} + (z-x-y)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $P: z = 0 \ (z \ge 0)$.

4.24.
$$\mathbf{a} = (x + xy)\mathbf{i} + (y - x^2)\mathbf{j} + z\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

4.25.
$$\mathbf{a} = (x+z)\mathbf{i} + y\mathbf{j} + (z-x)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

4.26.
$$\mathbf{a} = x\mathbf{i} + (y + yz)\mathbf{j} + (z - y^2)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

4.27.
$$\mathbf{a} = (x - y)\mathbf{i} + (x + y)\mathbf{j} + z\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 1$, $P: z = 0 \ (z \ge 0)$.

4.28.
$$\mathbf{a} = (x + xz^2)\mathbf{i} + y\mathbf{j} + (z - zx^2)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 9$, $P: z = 0 \ (z \ge 0)$.

4.29.
$$\mathbf{a} = (x+y)\mathbf{i} + (y-x)\mathbf{j} + z\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 4$, $P: z = 0 \ (z \ge 0)$.

4.30.
$$\mathbf{a} = (x + xy^2)\mathbf{i} + (y - yx^2)\mathbf{j} + z\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 9$, $P: z = 0 \ (z \ge 0)$.

4.31.
$$\mathbf{a} = x\mathbf{i} + (y+z)\mathbf{j} + (z-y)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 9$, $P: z = 0 \ (z \ge 0)$.

Задача 5. Найти поток векторного поля ${\bf a}$ через часть плоскости P, расположеннук в первом октанте (нормаль образует острый угол с осью Oz).

5.1.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$P: x + y + z = 1.$$

$$\mathbf{a} = y\mathbf{j} + z\mathbf{k}$$

$$P: x + y + z = 1.$$

5.3.
$$\mathbf{a} = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

P: $x + y + z = 1$.

5.5.
$$\mathbf{a} = 2x\mathbf{i} + 3y\mathbf{j}$$

 $P: x + y + z = 1$.

5.7.
$$\mathbf{a} = x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$$

P: $x/2 + y + z = 1$.

5.9.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

 $P: x + y/2 + z/3 = 1.$

5.11.
$$\mathbf{a} = 3x\mathbf{i} + 2z\mathbf{k}$$

P: $x + y/2 + z/2 = 1$.

5.13.
$$\mathbf{a} = x\mathbf{i} + 3y\mathbf{j} - z\mathbf{k}$$

P: $x/3 + y + z/2 = 1$.

5.15.
$$\mathbf{a} = x\mathbf{i} - y\mathbf{j} + 6z\mathbf{k}$$

P: $x/2 + y/3 + z = 1$.

5.17.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

P: $2x + y/2 + z = 1$.

5.19.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + 2z\mathbf{k}$$

P: $2x + y/2 + z = 1$.

5.21.
$$\mathbf{a} = x\mathbf{i} + 3y\mathbf{j} + 8z\mathbf{k}$$
$$P: x + 2y + z/2 = 1.$$
$$\mathbf{a} = x\mathbf{i} + 2y\mathbf{j} + 5z\mathbf{k}$$

5.23.
$$P: x+2y+\frac{z}{2}=1.$$

5.25.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

P: $2x + 3y + z = 1$.

5.27.
$$\mathbf{a} = 2x\mathbf{i} + 3y\mathbf{j} + z\mathbf{k}$$

P: $2x + 3y + z = 1$.

5.29.
$$\mathbf{a} = x\mathbf{i} + 9y\mathbf{j} + 8z\mathbf{k}$$

P: $x + 2y + 3z = 1$.

5.4.
$$\mathbf{a} = x\mathbf{i} + 3y\mathbf{j} + 2z\mathbf{k}$$

P: $x + y + z = 1$.

5.6.
$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

P: $x/2 + y + z = 1$.

5.8.
$$\mathbf{a} = y\mathbf{j} + 3z\mathbf{k}$$

P: $x/2 + y + z = 1$.

5.10.
$$\mathbf{a} = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

P: $x + y/2 + z/3 = 1$.

5.12.
$$\mathbf{a} = 2x\mathbf{i} + 3y\mathbf{j} + z\mathbf{k}$$

P: $x/3 + y + z/2 = 1$.

5.14.
$$\mathbf{a} = -2x\mathbf{i} + y\mathbf{j} + 4z\mathbf{k}$$

P: $x/3 + y + z/2 = 1$.

5.16.
$$\mathbf{a} = 2x\mathbf{i} + 5y\mathbf{j} + 5z\mathbf{k}$$
$$P: x/2 + y/3 + z = 1.$$

5.18.
$$\mathbf{a} = 2x\mathbf{i} + y\mathbf{j} - 2z\mathbf{k}$$

P: $2x + y/2 + z = 1$.

5.20.
$$\mathbf{a} = -x\mathbf{i} + y\mathbf{j} + 12z\mathbf{k}$$

P: $2x + y/2 + z = 1$.

5.22.
$$\mathbf{a} = x\mathbf{i} - y\mathbf{j} + 6z\mathbf{k}$$
$$P: x + 2y + z/2 = 1.$$
$$\mathbf{a} = x\mathbf{i} + 4y\mathbf{j} + 5z\mathbf{k}$$

5.24.
$$P: x+2y+\frac{z}{2}=1.$$

5.26.
$$\mathbf{a} = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

P: $2x + 3y + z = 1$.

5.28.
$$\mathbf{a} = 2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}$$

P: $2x + 3y + z = 1$.

5.30.
$$\mathbf{a} = 8x\mathbf{i} + 11y\mathbf{j} + 17z\mathbf{k}$$

 $P: x + 2y + 3z = 1$.

5.31.
$$\mathbf{a} = -x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$$

P: $x + 2y + 3z = 1$.

Задача 6. Найти поток векторного поля ${\bf a}$ через часть плоскости P, расположеннук в 1 октанте (нормаль образует острый угол с осью Oz).

6.1.
$$\mathbf{a} = 7x\mathbf{i} + (5py + 2)\mathbf{j} + 4pz\mathbf{k},$$

 $P: x + y/2 + 4z = 1.$

6.3.
$$\mathbf{a} = 9p x \mathbf{i} + \mathbf{j} - 3z \mathbf{k},$$

 $P: x/3 + y + z = 1.$

6.5.
$$\mathbf{a} = 7x\mathbf{i} + 9py\mathbf{j} + \mathbf{k},$$

 $P: x + y/3 + z = 1.$

6.7.
$$\mathbf{a} = x\mathbf{i} + (\mathbf{p}z - 1)\mathbf{k},$$

P: $2x + y/2 + z/3 = 1.$

6.9.
$$\mathbf{a} = 2\mathbf{i} - y\mathbf{j} + \frac{3p}{2}z\mathbf{k}$$
,
 $P: x/3 + y + z/4 = 1$.

6.11.
$$\mathbf{a} = 7p x \mathbf{i} + 2p y \mathbf{j} + (7z + 2) \mathbf{k},$$

 $P: x + y + z/2 = 1.$

$$\mathbf{a} = (3p-1)x\mathbf{i} + (9py+1)\mathbf{j} + 6pz\mathbf{k},$$

6.13.
$$P: \frac{x}{2} + \frac{y}{3} + \frac{z}{9} = 1.$$

$$\mathbf{a} = \mathbf{p} x \mathbf{i} + \frac{\mathbf{p}}{2} y \mathbf{j} + (4 - 2z) \mathbf{k},$$
6.14.

$$P: x + \frac{y}{3} + \frac{z}{4} = 1.$$

6.15.
$$\mathbf{a} = (5y+3)\mathbf{j} + 11\mathbf{p}z\mathbf{k},$$
$$P: x + y/3 + 4z = 1.$$

6.17.
$$\mathbf{a} = p y \mathbf{j} + (1 - 2z) \mathbf{k},$$

 $P: x/4 + y/2 + z = 1.$

6.2.
$$\mathbf{a} = 2p x \mathbf{i} + (7y + 2) \mathbf{j} + 7p z \mathbf{k},$$

 $P: x + y/2 + z/3 = 1.$

6.4.
$$\mathbf{a} = (2x+1)\mathbf{i} - y\mathbf{j} + 3pz\mathbf{k},$$

P: $x/3 + y + 2z = 1.$

6.6.
$$\mathbf{a} = \mathbf{i} + 5y\mathbf{j} + 11pz\mathbf{k},$$

 $P: x + y + z/3 = 1.$

6.8.
$$\mathbf{a} = 5p x \mathbf{i} + (9y+1) \mathbf{j} + 4p z \mathbf{k},$$

 $P: x/2 + y/3 + z/2 = 1.$

6.10.
$$\mathbf{a} = 9px\mathbf{i} + (5y+1)\mathbf{j} + 2pz\mathbf{k},$$

 $P: 3x + y + z/9 = 1.$

6.12.
$$\mathbf{a} = p y \mathbf{i} + (4 - 2z) \mathbf{k},$$

 $P: 2x + y/3 + z/4 = 1.$

6.16.
$$\mathbf{a} = 9p y\mathbf{j} + (7z+1)\mathbf{k},$$

 $P: x+y+z=1.$

$$\mathbf{a} = (27p - 1)x\mathbf{i} + (34py + 3)\mathbf{j} + 20pz\mathbf{k},$$

6.18.
$$P: 3x + \frac{y}{9} + z = 1.$$

6.19.
$$\mathbf{a} = p x \mathbf{i} + 2 \mathbf{j} + 2 p z \mathbf{k},$$
$$P: x/2 + y/3 + z = 1.$$

6.20.
$$\mathbf{a} = 4p x \mathbf{i} + 7p y \mathbf{j} + (2z+1) \mathbf{k},$$
$$P: 2x + y/3 + 2z = 1.$$

6.21.
$$\mathbf{a} = 3p x \mathbf{i} + 6p y \mathbf{j} + 10 \mathbf{k},$$

 $P: 2x + y + z/3 = 1.$ $\mathbf{a} = p x \mathbf{i} - 2y \mathbf{j} + \mathbf{k},$
 $P: 2x + y/6 + z = 1.$

6.23.
$$\mathbf{a} = (21p - 1)x\mathbf{i} + 62py\mathbf{j} + (1 - 2pz)\mathbf{k},$$
$$P: 8x + y/2 + z/3 = 1.$$

6.24.
$$\mathbf{a} = px\mathbf{i} + 2py\mathbf{j} + 2\mathbf{k},$$

 $P: x/2 + y/4 + z/3 = 1.$
6.25. $\mathbf{a} = 9px\mathbf{i} + 2py\mathbf{j} + 8\mathbf{k},$
 $P: 2x + 8y + z/3 = 1.$

6.26.
$$\mathbf{a} = 7px\mathbf{i} + (4y+1)\mathbf{j} + 2pz\mathbf{k},$$
$$P: x/3 + 2y + z = 1.$$

6.27.
$$\mathbf{a} = 6p x \mathbf{i} + 3p y \mathbf{j} + 10 \mathbf{k},$$

$$P: 2x + y/2 + z/3 = 1.$$

$$\mathbf{a} = (p-1)x \mathbf{i} + 2p y \mathbf{j} + (1-pz) \mathbf{k},$$

6.28.
$$P: \frac{x}{4} + \frac{y}{2} + \frac{z}{3} = 1.$$

6.29.
$$\mathbf{a} = \frac{p}{2}x\mathbf{i} + py\mathbf{j} + (4 - 2z)\mathbf{k},$$
$$P: x + \frac{y}{3} + \frac{z}{4} = 1.$$

6.30.
$$\mathbf{a} = 7p x \mathbf{i} + 4p y \mathbf{j} + 2(z+1) \mathbf{k},$$

P: $x/3 + y/4 + z = 1.$

6.31.
$$\mathbf{a} = 5px\mathbf{i} + (1-2y)\mathbf{j} + 4pz\mathbf{k},$$

 $P: x/2 + 4y + z/3 = 1.$

Задача 7. Найти поток векторного поля ${\bf a}$ через замкнутую поверхность S (нормалі внешняя).

7.1.
$$\mathbf{a} = (e^z + 2x)\mathbf{i} + e^x\mathbf{j} + e^y\mathbf{k}$$
, $S: x + y + z = 1$, $x = 0$, $y = 0$, $z = 0$.

7.2.
$$\mathbf{a} = (3z^2 + x)\mathbf{i} + (e^x - 2y)\mathbf{j} + (2z - xy)\mathbf{k}, S: x^2 + y^2 = z^2, z = 1, z = 4.$$

7.3.
$$\mathbf{a} = (\ln y + 7x)\mathbf{i} + (\sin z - 2y)\mathbf{j} + (e^y - 2z)\mathbf{k}, S: x^2 + y^2 + z^2 = 2x + 2y + 2z - 2.$$

7.4.
$$\mathbf{a} = (\cos z + 3x)\mathbf{i} + (x - 2y)\mathbf{j} + (3z + y^2)\mathbf{k}, S : z^2 = 36(x^2 + y^2), z = 6.$$

7.5.
$$\mathbf{a} = (e^{-z} - x)\mathbf{i} + (xz + 3y)\mathbf{j} + (z + x^2)\mathbf{k}$$
, $S: 2x + y + z = 2$, $x = 0$, $y = 0$, $z = 0$.

7.6.
$$\mathbf{a} = (6x - \cos y)\mathbf{i} - (e^x + z)\mathbf{j} - (2y + 3z)\mathbf{k}, S: x^2 + y^2 = z^2, z = 1, z = 2.$$

7.7.
$$\mathbf{a} = (4x - 2y^2)\mathbf{i} + (\ln z - 4y)\mathbf{j} + (x + 3z/4)\mathbf{k}, S: x^2 + y^2 + z^2 = 2x + 3.$$

7.8.
$$\mathbf{a} = (1 + \sqrt{z})\mathbf{i} + (4y - \sqrt{x})\mathbf{j} + xy\mathbf{k}, S : z^2 = 4(x^2 + y^2), z = 3.$$

7.9.
$$\mathbf{a} = (\sqrt{z} - x)\mathbf{i} + (x - y)\mathbf{j} + (y^2 - z)\mathbf{k}$$
, $S: 3x - 2y + z = 6$, $x = 0$, $y = 0$, $z = 0$.

7.10.
$$\mathbf{a} = (yz + x)\mathbf{i} + (x^2 + y)\mathbf{j} + (xy^2 + z)\mathbf{k}, S: x^2 + y^2 + z^2 = 2z.$$

7.11.
$$\mathbf{a} = (e^{2y} + x)\mathbf{i} + (x - 2y)\mathbf{j} + (y^2 + 3z)\mathbf{k}$$
, $S: x - y + z = 1$, $x = 0$, $y = 0$, $z = 0$.

7.12.
$$\mathbf{a} = (\sqrt{z} - 2x)\mathbf{i} + (e^x + 3y)\mathbf{j} + \sqrt{y + x}\mathbf{k}, S: x^2 + y^2 = z^2, z = 2, z = 5.$$

7.13.
$$\mathbf{a} = (\mathbf{e}^z + x/4)\mathbf{i} + (\ln x + y/4)\mathbf{j} + \frac{z}{4}\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 2x + 2y - 2z - 2$.

7.14.
$$\mathbf{a} = (3x - 2z)\mathbf{i} + (z - 2y)\mathbf{j} + (1 + 2z)\mathbf{k}$$
, $S: z^2 = 4(x^2 + y^2)$, $z = 2$.

7.15.
$$\mathbf{a} = (\mathbf{e}^y + 2x)\mathbf{i} + (x - y)\mathbf{j} + (2z - 1)\mathbf{k}$$
, $S: x + 2y + z = 2$, $x = 0$, $y = 0$, $z = 0$.

7.16.
$$\mathbf{a} = (x + y^2)\mathbf{i} + (xz + y)\mathbf{j} + (\sqrt{x^2 + 1} + z)\mathbf{k}$$
, $S: x^2 + y^2 = z^2$, $z = 2$, $z = 3$.

7.17.
$$\mathbf{a} = (e^y + 2x)\mathbf{i} + (xz - y)\mathbf{j} + (1/4)(e^{xy} - z)\mathbf{k}$$
, $S: x^2 + y^2 + z^2 = 2y + 3$.

7.18.
$$\mathbf{a} = (\sqrt{z} + y)\mathbf{i} + 3x\mathbf{j} + (3z + 5x)\mathbf{k}, S: z^2 = 8(x^2 + y^2), z = 2.$$

7.19.
$$\mathbf{a} = (8yz - x)\mathbf{i} + (x^2 - 1)\mathbf{j} + (xy - 2z)\mathbf{k}, S: 2x + 3y - z = 6, x = 0, y = 0, z = 0.$$

7.20.
$$\mathbf{a} = (y + z^2)\mathbf{i} + (x^2 + 3y)\mathbf{j} + xy\mathbf{k}, S: x^2 + y^2 + z^2 = 2x.$$

7.21.
$$\mathbf{a} = (2yz - x)\mathbf{i} + (xz + 2y)\mathbf{j} + (x^2 + z)\mathbf{k}$$
, $S: y - x + z = 1$, $x = 0$, $y = 0$, $z = 0$.

7.22.
$$\mathbf{a} = (\sin z + 2x)\mathbf{i} + (\sin x - 3y)\mathbf{j} + (\sin y + 2z)\mathbf{k}, S: x^2 + y^2 = z^2, z = 3, z = 6.$$

7.23.
$$\mathbf{a} = (\cos z + x/4)\mathbf{i} + (e^x + y/4)\mathbf{j} + (\frac{z}{4} - 1)\mathbf{k}, S: x^2 + y^2 + z^2 = 2z + 3.$$

7.24.
$$\mathbf{a} = (\sqrt{z} + 1 + x)\mathbf{i} + (2x + y)\mathbf{j} + (\sin x + z)\mathbf{k}, S: \begin{cases} z^2 = x^2 + y^2, \\ z = 1. \end{cases}$$

7.25.
$$\mathbf{a} = (5x - 6y)\mathbf{i} + (11x^2 + 2y)\mathbf{j} + (x^2 - 4z)\mathbf{k}, S : \begin{cases} x + y + 2z = 2, \\ x = 0, y = 0, z = 0. \end{cases}$$

7.26.
$$\mathbf{a} = (y^2 + z^2 + 6x)\mathbf{i} + (\mathbf{e}^z - 2y + x)\mathbf{j} + (x + y - z)\mathbf{k}, S: \begin{cases} x^2 + y^2 = z^2, \\ z = 1, z = 3. \end{cases}$$

7.27.
$$\mathbf{a} = \frac{1}{2}(x+z)\mathbf{i} + \frac{1}{4}(x\cdot z + y)\mathbf{j} + (xy-2)\mathbf{k}, S: x^2 + y^2 + z^2 = 4x - 2y + 4z - 8.$$

7.28.
$$\mathbf{a} = (3yz - x)\mathbf{i} + (x^2 - y)\mathbf{j} + (6z - 1)\mathbf{k}, S: \begin{cases} z^2 = 9(x^2 + y^2), \\ z = 3. \end{cases}$$

7.29.
$$\mathbf{a} = (yz - 2x)\mathbf{i} + (\sin x + y)\mathbf{j} + (x - 2z)\mathbf{k}, S: \begin{cases} x + 2y - 3z = 6, \\ x = 0, y = 0, z = 0. \end{cases}$$

7.30.
$$\mathbf{a} = (8x+1)\mathbf{i} + (zx-4y)\mathbf{j} + (e^x-z)\mathbf{k}, S: x^2 + y^2 + z^2 = 2y.$$

7.31.
$$\mathbf{a} = (2y - 5x)\mathbf{i} + (x - 1)\mathbf{j} + (2\sqrt{xy} + 2z)\mathbf{k}, S:$$

$$\begin{cases} 2x + 2y - z = 4, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

 ${f 3}$ адача ${f 8}$. Найти поток векторного поля ${f a}$ через замкнутую поверхность ${f S}$ (нормали внешняя).

$$\mathbf{a} = (x+z)\mathbf{i} + (z+y)\mathbf{k}, \qquad \mathbf{a} = 2x\mathbf{i} + z\mathbf{k},$$
8.1.
$$S: \begin{cases} x^2 + y^2 = 9, \\ z = x, \ z = 0 \ (z \ge 0). \end{cases}$$
8.2.
$$S: \begin{cases} z = 3x^2 + 2y^2 + 1, \\ x^2 + y^2 = 4, \ z = 0. \end{cases}$$

$$\mathbf{a} = 2x\mathbf{i} + 2y\mathbf{j} + z\mathbf{k},$$

8.3.
$$S: \begin{cases} y = x^2, \ y = 4x^2, \ y = 1 \ (x \ge 0) \\ z = y, \ z = 0. \end{cases}$$

$$\mathbf{a} = (z + y)\mathbf{i} + y\mathbf{j} - x\mathbf{k},$$

8.5.
$$S: \begin{cases} x^2 + y^2 = 2y, \\ y = 2. \end{cases}$$

$$\mathbf{a} = 2(z - y)\mathbf{j} + (x - z)\mathbf{k}$$

8.7.
$$S: \begin{cases} z = x^2 + 3y^2 + 1, \ z = 0, \\ x^2 + y^2 = 1. \end{cases}$$

$$\mathbf{a} = z\mathbf{i} - 4y\mathbf{j} + 2x\mathbf{k},$$

8.9.
$$S: \begin{cases} z = x^2 + y^2, \\ z = 1. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} - 2y\mathbf{j} + x\mathbf{k},$$

8.11.
$$S: \begin{cases} x+y=1, & x=0, y=0, \\ z=x^2+y^2, & z=0. \end{cases}$$

$$\mathbf{a} = 6x\mathbf{i} - 2y\mathbf{j} - z\mathbf{k}$$

8.13.
$$S: \begin{cases} z = 3 - 2(x^2 + y^2), \\ z = x^2 + y^2 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = (y + 2z)\mathbf{i} - y\mathbf{j} + 3x\mathbf{k},$$

8.15.
$$S: \begin{cases} 3z = 27 - 2(x^2 + y^2), \\ z^2 = x^2 + y^2, (z \ge 0). \end{cases}$$

$$\mathbf{a} = y\mathbf{i} + 5y\mathbf{j} + z\mathbf{k},$$

8.17.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = x, \ z = 0 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = 3x\mathbf{i} - z\mathbf{j}.$$

8.4.
$$S: \begin{cases} z = 6 - x^2 - y^2, \\ z^2 = x^2 + y^2 (z \ge 0). \end{cases}$$

$$\mathbf{a} = x\mathbf{i} - (x + 2y)\mathbf{j} + y\mathbf{k},$$

8.6.
$$S: \begin{cases} x^2 + y^2 = 1, z = 0, \\ x + 2y + 3z = 6. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} + z\mathbf{j} - y\mathbf{k},$$

8.8.
$$S: \begin{cases} z = 4 - 2(x^2 + y^2), \\ z = 2(x^2 + y^2). \end{cases}$$

$$\mathbf{a} = 4x\mathbf{i} - 2y\mathbf{j} - z\mathbf{k}$$

8.10.
$$S: \begin{cases} 3x + 2y = 12, \ 3x + y = 6, \ y = 0, \\ x + y + z = 6, \ z = 0. \end{cases}$$

$$\mathbf{a} = z\mathbf{i} + x\mathbf{j} - z\mathbf{k},$$

8.12.
$$S: \begin{cases} 4z = x^2 + y^2, \\ z = 4. \end{cases}$$

$$\mathbf{a} = (z + y)\mathbf{i} + (x - z)\mathbf{j} + z\mathbf{k},$$

8.14.
$$S: \begin{cases} x^2 + 4y^2 = 4, \\ 3x + 4y + z = 12, z = 1. \end{cases}$$

$$\mathbf{a} = (y + 6x)\mathbf{i} + 5(x + z)\mathbf{j} + 4y\mathbf{k},$$

8.16.
$$S: \begin{cases} y = x, \ y = 2x, \ y = 2, \\ z = x^2 + y^2, \ z = 0. \end{cases}$$

$$\mathbf{a} = z\mathbf{i} + (3y - x)\mathbf{j} - z\mathbf{k}$$

8.18.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = x^2 + y^2 + 2, \ z = 0. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} + (x + 2y)\mathbf{j} + x\mathbf{k},$$

8.19.
$$S: \begin{cases} x^2 + y^2 = 2x, \\ z = x^2 + y^2, \\ z = 0. \end{cases}$$

$$\mathbf{a} = (x+y+z)\mathbf{i} + (2y-x)\mathbf{j} + (3z+y)\mathbf{k},$$

8.20.
$$S: \begin{cases} y = x, \ y = 2x, \ x = 1, \\ z = x^2 + y^2, \\ z = 0. \end{cases}$$

$$\mathbf{a} = 7x\mathbf{i} + z\mathbf{j} + (x - y + 5z)\mathbf{k},$$

$$\mathbf{a} = 17x\mathbf{i} + 7y\mathbf{j} + 11z\mathbf{k},$$

8.21.
$$S: \begin{cases} z = x^2 + y^2, \\ z = x^2 + 2y^2, \\ y = x, \ y = 2x, \ x = 1. \end{cases}$$

8.22.
$$S: \begin{cases} z = x^2 + y^2, \\ z = 2(x^2 + y^2), \\ y = x^2, y = x. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} - 2y\mathbf{j} + 3z\mathbf{k},$$

$$\mathbf{a} = (2x + y)\mathbf{i} + (y + 2z)\mathbf{k},$$

8.23.
$$S: \begin{cases} x^2 + y^2 = z, \\ z = 2x. \end{cases}$$

8.24.
$$S: \begin{cases} z = 2 - 4(x^2 + y^2), \\ z = 4(x^2 + y^2). \end{cases}$$

$$\mathbf{a} = (2y - 3z)\mathbf{i} + (3x + 2z)\mathbf{j} + (x + y + z)\mathbf{k},$$

8.25.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = 4 - x - y, z = 0. \end{cases}$$

$$\mathbf{a} = -2x\mathbf{i} + z\mathbf{j} + (x + y)\mathbf{k},$$

8.26.
$$S: \begin{cases} x^2 + y^2 = 2y, \\ z = x^2 + y^2, z = 0. \end{cases}$$

$$\mathbf{a} = (2y-15x)\mathbf{i} + (z-y)\mathbf{j} - (x-3y)\mathbf{k},$$

8.27.
$$S: \begin{cases} z = 3x^2 + y^2 + 1, \ z = 0, \\ x^2 + y^2 = \frac{1}{4}. \end{cases}$$

$$\mathbf{a} = (y+z)\mathbf{i} + (x-2y+z)\mathbf{j} + x\mathbf{k},$$

8.28.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = x^2 + y^2, z = 0. \end{cases}$$

$$\mathbf{a} = (3x - y - z)\mathbf{i} + 3y\mathbf{j} + 2z\mathbf{k},$$

8.29.
$$S: \left\{ z = x^2 + y^2, \ z = 2y. \right.$$

$$\mathbf{a} = (x+y)\mathbf{i} + (y+z)\mathbf{j} + (z+x)\mathbf{k},$$

8.30.
$$S: \begin{cases} y = 2x, \ y = 4x, \ x = 1, \\ z = y^2, \ z = 0. \end{cases}$$

$$\mathbf{a} = (x+z)\mathbf{i} + y\mathbf{k},$$

8.31.
$$S: \begin{cases} z = 8 - x^2 - y^2, \\ z = x^2 + y^2. \end{cases}$$

Задача 9. Найти поток векторного поля **a** через замкнутую поверхность S (нормали внешняя).

$$\mathbf{a} = x^2 \mathbf{i} + x \mathbf{j} + x z \mathbf{k},$$

9.1.
$$S: \begin{cases} z = x^2 + y^2, \ z = 1, \\ x = 0, \ y = 0 \ (1 \text{ октант}). \end{cases}$$

$$\mathbf{a} = (x^2 + y^2)\mathbf{i} + (x^2 + y^2)\mathbf{j} + (x^2 + y^2)\mathbf{k},$$

9.2.
$$S: \begin{cases} z = x^2 + y^2, \\ z = 0, z = 1. \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k},$$

9.3.
$$S: \begin{cases} x^2 + y^2 + z^2 = 4, \\ x^2 + y^2 = z^2 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = xz\mathbf{i} + z\mathbf{j} + y\mathbf{k},$$

9.5.
$$S: \begin{cases} x^2 + y^2 = 1 - z, \\ z = 0. \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + y \mathbf{j} + z \mathbf{k},$$

9.4.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ z = 0 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = 3xz\mathbf{i} - 2x\mathbf{j} + y\mathbf{k},$$

9.6.
$$S: \begin{cases} x+y+z=2, & x=1, \\ x=0, & y=0, & z=0. \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k},$$

9.7.
$$S: \begin{cases} x^2 + y^2 + z^2 = 2, \\ z = 0 \ (z \ge 0). \end{cases}$$

9.8.
$$\mathbf{a} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k},$$

 $S: x^2 + y^2 + z^2 = 1.$

$$\mathbf{a} = (zx + y)\mathbf{i} + (zy - x)\mathbf{j} - (x^2 + y^2)\mathbf{k},$$

9.9.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ z = 0 \ (z \ge 0). \end{cases}$$

9.10.
$$\mathbf{a} = y^2 x \mathbf{i} + z^2 y \mathbf{j} + x^2 z \mathbf{k},$$
$$S: x^2 + y^2 + z^2 = 1.$$

$$S: x^2 + y^2 + z^2 = 1.$$

$$\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k},$$

9.11.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ x = 0, \ y = 0, \ z = 0 \\ (1 \text{ октант}). \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + xy \mathbf{j} + 3z \mathbf{k},$$

9.12.
$$S: \begin{cases} x^2 + y^2 = z^2, \\ z = 4. \end{cases}$$

$$\mathbf{a} = (zx + y)\mathbf{i} + (xy - z)\mathbf{j} + (x^2 + yz)\mathbf{k},$$

9.13.
$$S: \begin{cases} x^2 + y^2 = 2, \\ z = 0, z = 1. \end{cases}$$

$$\mathbf{a} = xy^2\mathbf{i} + x^2y\mathbf{j} + z\mathbf{k},$$

9.14.
$$S: \begin{cases} x^2 + y^2 = 1, \ z = 0, \ z = 1, \\ x = 0, \ y = 0 \\ (1 \text{ октант}). \end{cases}$$

$$\mathbf{a} = 3x^2\mathbf{i} - 2x^2y\mathbf{j} + (2x-1)z\mathbf{k},$$

9.15.
$$S: \begin{cases} x^2 + y^2 + z^2 = 16, \\ x^2 + y^2 = z^2 \ (z \ge 0). \end{cases}$$

 $\mathbf{a} = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$

9.16.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = 0, z = 1. \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + y^2 \mathbf{j} + 2z \mathbf{k},$$

$$\mathbf{a} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k},$$

9.17.
$$S: \begin{cases} x^2 + y^2 = \frac{1}{4}, \\ z = 0, \ z = 2. \end{cases}$$

9.18.
$$S: \begin{cases} x^2 + y^2 = 4, \\ z = 0, z = 1. \end{cases}$$

$$\mathbf{a} = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k},$$

9.19.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ x = 0, \ y = 0, \ z = 0 \\ (1 \text{ октант}). \end{cases}$$

$$\mathbf{a} = z\mathbf{i} + yz\mathbf{j} - xy\mathbf{k},$$

9.20.
$$S: \begin{cases} x^2 + y^2 = 4, \\ z = 0, z = 1. \end{cases}$$

$$\mathbf{a} = (zx + y)\mathbf{i} - (2y - x)\mathbf{j} - (x^2 + y^2)\mathbf{k},$$

9.21.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ z = 0 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = (x^2 + xy)\mathbf{i} + (y^2 + yz)\mathbf{j} + (z^2 + xz)\mathbf{k},$$

9.22.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ x^2 + y^2 = z^2 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = 3x^2\mathbf{i} - 2x^2y\mathbf{j} - (1 - 2x)\mathbf{k},$$

9.23.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = 0, z = 1. \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i}$$
,

9.24.
$$S: \begin{cases} z = 1 - x - y, \\ x = 0, \ y = 0, \ z = 0. \end{cases}$$

$$\mathbf{a} = (y^2 + xz)\mathbf{i} + (yx - z)\mathbf{j} + (yz + x)\mathbf{k},$$

9.25.
$$S: \begin{cases} x^2 + y^2 = 1, \\ z = 0, \ z = \sqrt{2}. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} + y^2\mathbf{j} + yz\mathbf{k},$$

9.26.
$$S: \begin{cases} z = x^2 + y^2, \ z = 1, \\ x = 0, \ y = 0 \\ (1 \text{ октант}). \end{cases}$$

$$\mathbf{a} = y\mathbf{i} + 2zy\mathbf{j} + 2z^2\mathbf{k},$$

9.27.
$$S: \begin{cases} x^2 + y^2 = 1 - z, \\ z = 0. \end{cases}$$

$$\mathbf{a} = y^2 x \mathbf{i} + x^2 y \mathbf{j} + z^3 \mathbf{k} / 3,$$

9.29.
$$S: \begin{cases} x^2 + y^2 + z^2 = 1, \\ z = 0, \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = 2xy\mathbf{i} + 2xy\mathbf{j} + z^2\mathbf{k},$$

9.28.
$$S: \begin{cases} x^2 + y^2 + z^2 = \sqrt{2}, \\ z = 0 \ (z \ge 0). \end{cases}$$

$$\mathbf{a} = -x\mathbf{i} + 2y\mathbf{j} + yz\mathbf{k},$$

9.30.
$$S: \begin{cases} x^2 + y^2 = z^2, \\ z = 4. \end{cases}$$

$$\mathbf{a} = (y^{2} + z^{2})\mathbf{i} + (xy + y^{2})\mathbf{j} + (xz + z)\mathbf{k},$$
9.31.
$$S: \begin{cases} x^{2} + y^{2} = 1, \\ z = 0, z = 1. \end{cases}$$

Задача 10. Найти работу силы ${\bf F}$ при перемещении вдоль линии L от точки M в точке N .

$$\mathbf{F} = (x^2 - 2y)\mathbf{i} + (y^2 - 2x)\mathbf{j},$$

10.1.
$$L$$
: отрезок MN , $M(-4,0)$, $N(0,2)$.

$$\mathbf{F} = (x^2 + 2y)\mathbf{i} + (y^2 + 2x)\mathbf{j},$$

10.3.
$$L: 2 - \frac{x^2}{8} = y$$
,
 $M(-4,0), N(0,2)$.

$$\mathbf{F} = x^3 \mathbf{i} - y^3 \mathbf{j},$$

10.5.
$$L: x^2 + y^2 = 4 \ (x \ge 0, y \ge 0),$$

 $M(2,0), N(0,2).$

$$\mathbf{F} = x^2 y \mathbf{i} - y \mathbf{j},$$

10.7.
$$L$$
: отрезок MN , $M(-1,0)$, $N(0,1)$.

$$\mathbf{F} = (x+y)\mathbf{i} + (x-y)\mathbf{j},$$

10.9.
$$L: x^2 + \frac{y^2}{9} = 1 \ (x \ge 0, \ y \ge 0),$$

 $M(1,0), N(0,3).$

$$\mathbf{F} = (x^2 + 2y)\mathbf{i} + (y^2 + 2x)\mathbf{j},$$

10.2.
$$L$$
: отрезок MN , $M(-4,0)$, $N(0,2)$.

$$\mathbf{F} = (x + y)\mathbf{i} + 2x\mathbf{j},$$
10.4. $L: x^2 + y^2 = 4 \ (y \ge 0),$

$$M(2,0), N(-2,0).$$

$$\mathbf{F} = (x + y)\mathbf{i} + (x - y)\mathbf{j},$$

10.6. $L: y = x^2,$

10.6.
$$L: y = x$$
,
 $M(-1,1), N(1,1)$.

$$\mathbf{F} = (2xy - y)\mathbf{i} + (x^2 + x)\mathbf{j},$$

10.8.
$$L: x^2 + y^2 = 9 \ (y \ge 0),$$

 $M(3,0), N(-3,0).$

$$\mathbf{F} = y\mathbf{i} - x\mathbf{j},$$
10.10. $L: x^2 + y^2 = 1 \ (y \ge 0),$

$$M(1,0), N(-1,0).$$

$$\mathbf{F} = (x^2 + y^2)\mathbf{i} + (x^2 - y^2)\mathbf{j},$$

10.11.
$$L: \begin{cases} x, \ 0 \le x \le 1; \\ 2-x, \ 1 \le x \le 2; \end{cases}$$

 $M(2,0), N(0,0).$

$$\mathbf{F} = xy\mathbf{i} + 2y\mathbf{j},$$

10.13.
$$L: x^2 + y^2 = 1 \ (x \ge 0, y \ge 0),$$

 $M(1,0), N(0,1).$

$$\mathbf{F} = (x^2 + y^2)(\mathbf{i} + 2\mathbf{j}),$$

10.15.
$$L: x^2 + y^2 = R^2 \ (y \ge 0),$$

 $M(R,0), N(-R,0).$

$$\mathbf{F} = \left(x + y\sqrt{x^2 + y^2}\right)\mathbf{i} + \left(y - x\sqrt{x^2 + y^2}\right)\mathbf{j},$$

10.16.
$$L: x^2 + y^2 = 1 \ (y \ge 0),$$

 $M(1,0), N(-1,0).$

$$\mathbf{F} = x^2 y \mathbf{i} - x y^2 \mathbf{j},$$

10.17.
$$L: x^2 + y^2 = 4 \ (x \ge 0, y \ge 0),$$

 $M(2,0), N(0,2).$

$$\mathbf{F} = \left(x + y\sqrt{x^2 + y^2}\right)\mathbf{i} + \left(y - \sqrt{x^2 + y^2}\right)\mathbf{j},$$

10.18.
$$L: x^2 + y^2 = 16 \ (x \ge 0, y \ge 0),$$

 $M(4,0), N(0,4).$

$$\mathbf{F} = y^2 \mathbf{i} - x^2 \mathbf{j},$$

10.19.
$$L: x^2 + y^2 = 9 \ (x \ge 0, y \ge 0),$$

 $M(3,0), N(0,3).$

$$\mathbf{F} = y\mathbf{i} - x\mathbf{j},$$

10.12.
$$L: x^2 + y^2 = 2 \ (y \ge 0),$$

 $M(\sqrt{2}, 0), N(-\sqrt{2}, 0).$

$$\mathbf{F} = y\mathbf{i} - x\mathbf{j}$$

10.14.
$$L: 2x^2 + y^2 = 1 \ (y \ge 0),$$

$$M\left(\frac{1}{\sqrt{2}}, 0\right), N\left(-\frac{1}{\sqrt{2}}, 0\right).$$

$$\mathbf{F} = (x + y)^2 \mathbf{i} - (x^2 + y^2) \mathbf{j},$$

10.20.
$$L$$
: отрезок MN , $M(1,0), N(0,1)$.

$$\mathbf{F} = (x^{2} + y^{2})\mathbf{i} + y^{2}\mathbf{j},$$

$$10.21. \ L: \text{ otpesok } MN,$$

$$M(2,0), N(0,2).$$

$$\mathbf{F} = (y^{2} - y)\mathbf{i} + (2xy + x)\mathbf{j},$$

$$10.23. \ L: x^{2} + y^{2} = 9 \ (y \ge 0),$$

$$M(3,0), N(-3,0).$$

$$\mathbf{F} = (xy - y^{2})\mathbf{i} + x\mathbf{j},$$

$$10.25. \ L: y = 2x^{2},$$

$$M(0,0), N(1,2).$$

$$\mathbf{F} = (xy - x)\mathbf{i} + \frac{x^{2}}{2}\mathbf{j},$$

$$10.27. \ L: y = 2\sqrt{x},$$

$$M(0,0), N(1,2).$$

$$\mathbf{F} = -y\mathbf{i} + x\mathbf{j},$$

$$10.28. \ L: x^{2} + \frac{y^{2}}{9} = 1 \ (x \ge 0, y \ge 0),$$

$$M(1,0), N(0,3).$$

$$\mathbf{F} = (x^{2} - y^{2})\mathbf{i} + (x^{2} + y^{2})\mathbf{j},$$

$$\mathbf{F} = -x\mathbf{i} + y\mathbf{j},$$

$$10.28. \ L: x^{2} + \frac{y^{2}}{9} = 1 \ (x \ge 0, y \ge 0),$$

$$M(1,0), N(0,3).$$

$$\mathbf{F} = (x^{2} - y^{2})\mathbf{i} + (x^{2} + y^{2})\mathbf{j},$$

$$10.29. \ L: y = x^{3},$$

$$M(0,0), N(2,8).$$

$$10.30. \ L: \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1 \ (y \ge 0),$$

$$M(3,0), N(-3,0).$$

$$\mathbf{F} = (x - y)\mathbf{i} + \mathbf{j},$$
10.31. $L: x^2 + y^2 = 4 \ (y \ge 0),$
 $M(2,0), N(-2,0).$

Задача 11. Найти циркуляцию векторного поля **а** вдоль контура Γ (в направлении соответствующем возрастанию параметра t).

$$\mathbf{a} = y\mathbf{i} - x\mathbf{j} + z^2\mathbf{k},$$

11.1.
$$\Gamma : \begin{cases} x = \frac{\sqrt{2}}{2} \cos t, \ y = \frac{\sqrt{2}}{2} \cos t, \\ z = \sin t. \end{cases}$$

$$\mathbf{a} = -x^2 y^3 \mathbf{i} + \mathbf{j} + z \mathbf{k},$$

11.2.
$$\Gamma : \begin{cases} x = \sqrt[3]{4} \cos t, \ y = \sqrt[3]{4} \sin t, \\ z = 3. \end{cases}$$

$$\mathbf{a} = (y-z)\mathbf{i} + (z-x)\mathbf{j} + (x-y)\mathbf{k},$$

11.3.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = 2(1 - \cos t). \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + y \mathbf{j} - z \mathbf{k},$$

11.3.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = 2(1 - \cos t). \end{cases}$$
11.4.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = (\sqrt{2}\cos t)/2. \end{cases}$$

$$\mathbf{a} = (y-z)\mathbf{i} + (z-x)\mathbf{j} + (x-y)\mathbf{k},$$

11.5.
$$\Gamma : \begin{cases} x = 4\cos t, \ y = 4\sin t, \\ z = 1 - \cos t. \end{cases}$$
 11.6.
$$\Gamma : \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 2 - 2\cos t - 2\sin t. \end{cases}$$

$$\mathbf{a} = 2y\mathbf{i} - 3x\mathbf{j} + x\mathbf{k},$$

$$\Gamma: \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 2 - 2\cos t - 2\sin t. \end{cases}$$

$$\mathbf{a} = 2z\mathbf{i} - x\mathbf{j} + y\mathbf{k},$$

11.7.
$$\Gamma : \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 1. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} - x\mathbf{j} + z\mathbf{k},$$

11.8.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = 3. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} + z^2\mathbf{j} + y\mathbf{k},$$

11.9.
$$\Gamma: \begin{cases} x = \cos t, \ y = 2\sin t, \\ z = 2\cos t - 2\sin t - 1. \end{cases}$$

$$\mathbf{a} = 3y\mathbf{i} - 3x\mathbf{j} + x\mathbf{k},$$

11.10.
$$\Gamma: \begin{cases} x = 3\cos t, \ y = 3\sin t, \\ z = 3 - 3\cos t - 3\sin t. \end{cases}$$

$$\mathbf{a} = -x^2 y^3 \mathbf{i} + 2 \mathbf{j} + xz \mathbf{k},$$

11.11.
$$\Gamma: \begin{cases} x = \sqrt{2}\cos t, \ y = \sqrt{2}\sin t, \\ z = 1. \end{cases}$$

$$\mathbf{a} = 6z\mathbf{i} - x\mathbf{j} + xy\mathbf{k},$$

11.12.
$$\Gamma:\begin{cases} x = 3\cos t, \ y = 3\sin t, \\ z = 3. \end{cases}$$

$$\mathbf{a} = z\mathbf{i} + y^2\mathbf{j} - x\mathbf{k},$$

11.13.
$$\Gamma: \begin{cases} x = \sqrt{2}\cos t, \ y = 2\sin t, \\ z = \sqrt{2}\cos t. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} + 2z^2\mathbf{j} + y\mathbf{k},$$

11.14.
$$\Gamma: \begin{cases} x = \cos t, \ y = 3\sin t, \\ z = 2\cos t - 3\sin t - 2. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} - \frac{1}{3}z^2\mathbf{j} + y\mathbf{k},$$

$$\Gamma: \begin{cases} x = (\cos t)/2, \ y = (\sin t)/3, \ ^{11.16.} \\ z = \cos t - (\sin t)/3 - 1/4. \end{cases} \Gamma: \begin{cases} x = 4\cos t, \ y = 4\sin t, \\ z = 4\cos t - 4\sin t. \end{cases}$$

$$\mathbf{a} = 4y\mathbf{i} - 3x\mathbf{j} + x\mathbf{k},$$

$$\Gamma: \begin{cases} x = 4\cos t, \ y = 4\sin t, \\ z = 4 - 4\cos t - 4\sin t. \end{cases}$$

$$\mathbf{a} = -z\mathbf{i} - x\mathbf{j} + xz\mathbf{k}$$

11.17.
$$\Gamma: \begin{cases} x = 5\cos t, \ y = 5\sin t, \\ z = 4 \end{cases}$$

$$\mathbf{a} = (y-z)\mathbf{i} + (z-x)\mathbf{j} + (x-y)\mathbf{k},$$

11.19.
$$\Gamma: \begin{cases} x = 3\cos t, \ y = 3\sin t, \\ z = 2(1-\cos t). \end{cases}$$

$$\mathbf{a} = xz\mathbf{i} + x\mathbf{j} + z^2\mathbf{k},$$

11.21.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = \sin t. \end{cases}$$

$$\mathbf{a} = 7z\mathbf{i} - x\mathbf{j} + yz\mathbf{k},$$

11.23.
$$\Gamma:\begin{cases} x = 6\cos t, \ y = 6\sin t, \\ z = 1/3. \end{cases}$$
 11.24. $\Gamma:\begin{cases} x = \cos t, \ y = \sin t, \\ z = \sin t. \end{cases}$

$$\mathbf{a} = x\mathbf{i} - z^2\mathbf{j} + y\mathbf{k},$$

11.25.
$$\Gamma: \begin{cases} x = 2\cos t, \ y = 3\sin t, & 11.26. \\ z = 4\cos t - 3\sin t - 3. \end{cases} \Gamma: \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 3(1 - \cos t). \end{cases}$$

$$\mathbf{a} = -2z\mathbf{i} - x\mathbf{j} + x^2\mathbf{k},$$

11.27.
$$\Gamma: \begin{cases} x = (\cos t)/3, \ y = (\sin t)/3, \ 11.28. \\ z = 8. \end{cases} \Gamma: \begin{cases} x = \cos t, \ y = 4\sin t, \\ z = 2\cos t - 4\sin t + 3. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} - 2z^2\mathbf{j} + y\mathbf{k},$$

11.29.
$$\Gamma: \begin{cases} x = 3\cos t, \ y = 4\sin t, \\ z = 6\cos t - 4\sin t + 1. \end{cases}$$

$$\mathbf{a} = y\mathbf{i}/3 - 3x\mathbf{j} + x\mathbf{k},$$

11.31.
$$\Gamma: \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 1 - 2\cos t - 2\sin t. \end{cases}$$

$$\mathbf{a} = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}.$$

11.17.
$$\Gamma : \begin{cases} x = 5\cos t, \ y = 5\sin t, \\ z = 4. \end{cases}$$
 11.18.
$$\Gamma : \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 0. \end{cases}$$

$$\mathbf{a} = 2y\mathbf{i} - z\mathbf{j} + x\mathbf{k},$$

11.20.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = 4 - \cos t - \sin t. \end{cases}$$

$$\mathbf{a} = -x^2 y^3 \mathbf{i} + 3 \mathbf{j} + y \mathbf{k},$$

11.22.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = 5. \end{cases}$$

$$\mathbf{a} = xy\mathbf{i} + x\mathbf{j} + y^2\mathbf{k},$$

11.24.
$$\Gamma: \begin{cases} x = \cos t, \ y = \sin t, \\ z = \sin t. \end{cases}$$

$$\mathbf{a} = (y-z)\mathbf{i} + (z-x)\mathbf{j} + (x-y)\mathbf{k},$$

$$\Gamma: \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 3(1-\cos t). \end{cases}$$

$$\mathbf{a} = x\mathbf{i} - 3z^2\mathbf{j} + y\mathbf{k},$$

$$\Gamma: \begin{cases} x = \cos t, \ y = 4\sin t, \\ z = 2\cos t - 4\sin t + 3 \end{cases}$$

$$\mathbf{a} = -x^2 y^3 \mathbf{i} + 4 \mathbf{j} + x \mathbf{k},$$

11.29.
$$\Gamma: \begin{cases} x = 3\cos t, \ y = 4\sin t, \\ z = 6\cos t - 4\sin t + 1. \end{cases}$$
 11.30.
$$\Gamma: \begin{cases} x = 2\cos t, \ y = 2\sin t, \\ z = 4. \end{cases}$$

Задача 12. Найти модуль циркуляции векторного поля ${\bf a}$ вдоль контура ${\bf \Gamma}$.

$$\mathbf{a} = (x^2 - y)\mathbf{i} + x\mathbf{j} + \mathbf{k},$$

12.1.
$$\Gamma: \begin{cases} x^2 + y^2 = 1, \\ z = 1. \end{cases}$$

$$\mathbf{a} = yz\mathbf{i} + 2xz\mathbf{j} + xy\mathbf{k},$$

12.3.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 9 \ (z > 0). \end{cases}$$

$$\mathbf{a} = (x - y)\mathbf{i} + x\mathbf{j} - z\mathbf{k},$$

12.5.
$$\Gamma: \begin{cases} x^2 + y^2 = 1, \\ z = 1. \end{cases}$$

$$\mathbf{a} = yz\mathbf{i} + 2xz\mathbf{j} + y^2\mathbf{k},$$

12.7.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 16 \ (z > 0). \end{cases}$$

$$\mathbf{a} = y\mathbf{i} + (1 - x)\mathbf{j} - z\mathbf{k},$$

12.9.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 4, \\ x^2 + y^2 = 1 \ (z > 0). \end{cases}$$

$$\mathbf{a} = 4x\mathbf{i} + 2\mathbf{j} - xy\mathbf{k}$$

12.11.
$$\Gamma: \begin{cases} z = 2(x^2 + y^2) + 1, \\ z = 7. \end{cases}$$

$$\mathbf{a} = -3z\mathbf{i} + y^2\mathbf{j} + 2y\mathbf{k},$$

12.13.
$$\Gamma : \begin{cases} x^2 + y^2 = 4, \\ x - 3y - 2z = 1. \end{cases}$$

$$\mathbf{a} = 2y\mathbf{i} + \mathbf{j} - 2yz\mathbf{k},$$

12.15.
$$\Gamma: \begin{cases} x^2 + y^2 - z^2 = 0, \\ z = 2. \end{cases}$$

$$\mathbf{a} = xz\mathbf{i} - \mathbf{j} + y\mathbf{k},$$

12.2.
$$\Gamma: \begin{cases} z = 5(x^2 + y^2) - 1, \\ z = 4. \end{cases}$$

$$\mathbf{a} = x\mathbf{i} + yz\mathbf{j} - x\mathbf{k},$$

12.4.
$$\Gamma$$
:
$$\begin{cases} x^2 + y^2 = 1, \\ x + y + z = 1. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} - x\mathbf{j} + z^2\mathbf{k},$$

12.6.
$$\Gamma: \begin{cases} z = 3(x^2 + y^2) + 1, \\ z = 4. \end{cases}$$

$$\mathbf{a} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$$

12.8.
$$\Gamma: \begin{cases} x^2 + y^2 = 9, \\ x + y + z = 1. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} - x\mathbf{j} + z^2\mathbf{k},$$

12.10.
$$\Gamma : \begin{cases} x^2 + y^2 = 1, \\ z = 4. \end{cases}$$

$$\mathbf{a} = 2y\mathbf{i} - 3x\mathbf{j} + z^2\mathbf{k}$$

12.12.
$$\Gamma: \begin{cases} x^2 + y^2 = z, \\ z = 1. \end{cases}$$

$$\mathbf{a} = 2y\mathbf{i} + 5z\mathbf{j} + 3x\mathbf{k}$$
,

12.14.
$$\Gamma: \begin{cases} 2x^2 + 2y^2 = 1, \\ x + y + z = 3. \end{cases}$$

$$\mathbf{a} = (x - y)\mathbf{i} + x\mathbf{j} + z^2\mathbf{k},$$

12.16.
$$\Gamma : \begin{cases} x^2 + y^2 - 4z^2 = 0, \\ z = \frac{1}{2}. \end{cases}$$

$$\mathbf{a} = xz\mathbf{i} - \mathbf{j} + y\mathbf{k}$$

12.17.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 4, \\ z = 1. \end{cases}$$

$$\mathbf{a} = 4x\mathbf{i} - yz\mathbf{j} + x\mathbf{k},$$

12.19.
$$\Gamma: \begin{cases} x^2 + y^2 = 1, \\ x + y + z = 1. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} + 3x\mathbf{j} + z^2\mathbf{k},$$

12.21.
$$\Gamma: \begin{cases} z = x^2 + y^2 - 1, \\ z = 3. \end{cases}$$

$$\mathbf{a} = (2 - xy)\mathbf{i} - yz\mathbf{j} - xz\mathbf{k},$$

12.23.
$$\Gamma : \begin{cases} x^2 + y^2 = 4, \\ x + y + z = 1. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} - x\mathbf{j} + 2z\mathbf{k},$$

12.25.
$$\Gamma: \begin{cases} x^2 + y^2 - \frac{z^2}{4} = 0, \\ z = 2. \end{cases}$$

$$\mathbf{a} = y\mathbf{i} - 2x\mathbf{j} + z^2\mathbf{k},$$

12.27.
$$\Gamma: \begin{cases} z = 4(x^2 + y^2) + 2, \\ z = 6. \end{cases}$$

$$\mathbf{a} = (x + y)\mathbf{i} - x\mathbf{j} + 6\mathbf{k},$$

12.29.
$$\Gamma: \begin{cases} x^2 + y^2 = 1, \\ z = 2. \end{cases}$$

$$\mathbf{a} = yz\mathbf{i} - xz\mathbf{j} + xy\mathbf{k},$$

12.31.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 9, \\ x^2 + y^2 = 9. \end{cases}$$

$$\mathbf{a} = 2yz\mathbf{i} + xz\mathbf{j} - x^2\mathbf{k},$$

12.18.
$$\Gamma : \begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 9 \ (z > 0). \end{cases}$$

$$\mathbf{a} = -y\mathbf{i} + 2\mathbf{j} + \mathbf{k},$$

12.20.
$$\Gamma: \begin{cases} x^2 + y^2 - z^2 = 0, \\ z = 1. \end{cases}$$

$$\mathbf{a} = 2yz\mathbf{i} + xz\mathbf{j} + y^2\mathbf{k},$$

12.22.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 25, \\ x^2 + y^2 = 16 \ (z > 0). \end{cases}$$

$$\mathbf{a} = -y\mathbf{i} + x\mathbf{j} + 3z^2\mathbf{k},$$

12.24.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 9, \\ x^2 + y^2 = 1 \ (z > 0). \end{cases}$$

$$\mathbf{a} = x^2 \mathbf{i} + yz \mathbf{j} + 2z \mathbf{k},$$

12.26.
$$\Gamma: \begin{cases} x^2 + y^2 + z^2 = 25, \\ z = 4. \end{cases}$$

$$\mathbf{a} = 3z\mathbf{i} - 2y\mathbf{j} + 2y\mathbf{k},$$

12.28.
$$\Gamma : \begin{cases} x^2 + y^2 = 4, \\ 2x - 3y - 2z = 1. \end{cases}$$

$$\mathbf{a} = 4\mathbf{i} + 3x\mathbf{j} + 3xz\mathbf{k},$$

12.30.
$$\Gamma: \begin{cases} x^2 + y^2 - z^2 = 0, \\ z = 3. \end{cases}$$

ІХ. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Теоретические вопросы

- 1. Векторы. Линейные, операции над векторами.
- 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя векторами.
 - 3. Определители, их свойства.
 - 4. Векторное произведение. Свойства. Геометрический смысл.
- 5. Смешанное произведение, его свойства. Геометрический смысл. Необходимое и достаточное условие компланарности трех векторов.
 - 6. Плоскость: Уравнение плоскости.
 - 7. Расстояние от точки до плоскости.
- 8. Уравнения прямой в пространстве. Нахождение точки пересечения прямой и плоскости.

Теоретические упражнения

- 1. Пусть векторы ${\bf a}$ и ${\bf b}$ не коллинеарны и ${\it AB}=a{\bf a}/2$, ${\it BC}=4(b{\bf a}-{\bf b})$,
- $\overrightarrow{CD} = -4b\mathbf{b}$, $\overrightarrow{DA} = \mathbf{a} + a\mathbf{b}$. Найти a и b и доказать коллинеарность векторов \overrightarrow{BC} и \overrightarrow{DA}
- 2. Разложить вектор $\mathbf{s} = \mathbf{a} + \mathbf{b} + \mathbf{c}$ по трем некомпланарным векторам $\mathbf{m} = \mathbf{a} + \mathbf{b} 2\mathbf{c}, \ \mathbf{n} = \mathbf{a} \mathbf{b}, \ \mathbf{p} = 2\mathbf{b} + 3\mathbf{c}.$
- 3. Найти угол между единичными векторами ${\bf e}_1$ и ${\bf e}_2$, если известно, что векторы ${\bf a}={\bf e}_1+2{\bf e}_2$ и ${\bf b}=5{\bf e}_1-4{\bf e}_2$ взаимно перпендикулярны.
 - 4. Доказать компланарность векторов ${\bf a}$, ${\bf b}$ и ${\bf c}$ зная, что

$$[\mathbf{a}\mathbf{b}] + [\mathbf{b}\mathbf{c}] + [\mathbf{c}\mathbf{a}] = 0.$$

5. Доказать, что уравнение плоскости; проходящей через точки $\begin{pmatrix} x_1, & y_1, & z_1 \end{pmatrix}$ и $\begin{pmatrix} x_2, & y_2, & z_2 \end{pmatrix}$ перпендикулярно плоскости Ax + By + Cz + D = 0, можно записать в виде

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ A & B & C \end{vmatrix} = 0.$$

6. Доказать, что уравнение плоскости, проходящей через пересекающиеся прямые

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}$$
и
$$\frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$$

можно записать в виде

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$$

7. Доказать, что уравнения прямой, проходящей через точку $\begin{pmatrix} x_1, & y_1, & z_1 \end{pmatrix}$ параллельно плоскостям $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$ можно записать в виде

$$\frac{x - x_1}{\begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}} = \frac{y - y_1}{-\begin{vmatrix} A_1 & C_1 \\ A_2 & C_2 \end{vmatrix}} = \frac{z - z_1}{\begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}}.$$

8. Доказать, что необходимым и достаточным условием принадлежности двух прямых

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1} \text{ if } \frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$$

одной плоскости является выполнение равенства

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$$

9. Доказать, что расстояние от точки A до прямой, проходящей через точку B и имеющей направляющий вектор S, определяется формулой $d = \left[\begin{bmatrix} \mathbf{S}, & AB \end{bmatrix} \middle/ \middle| \mathbf{S} \middle| ... \right]$

10. Даны две скрещивающиеся прямые, проходящие соответственно через точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2)$. Их направляющие векторы \mathbf{S}_1 и \mathbf{S}_2 известны. Доказать, что расстояние между ними определяется формулой $d = \left|\mathbf{S}_1\mathbf{S}_2\overrightarrow{AB}\right|/\left|\mathbf{S}_1\mathbf{S}_2\right|$.

Расчетные задания

Задача 1. Написать разложение вектора ${\bf x}$ по векторам ${\bf p}, {\bf q}, {\bf r}.$

1.1.
$$\mathbf{x} = \{-2, 4, 7\}, \mathbf{p} = \{0, 1, 2\}, \mathbf{q} = \{1, 0, 1\}, \mathbf{r} = \{-1, 2, 4\}.$$

1.2.
$$\mathbf{x} = \{6, 12, -1\}, \mathbf{p} = \{1, 3, 0\}, \mathbf{q} = \{2, -1, 1\}, \mathbf{r} = \{0, -1, 2\}.$$

1.3.
$$\mathbf{x} = \{1, -4, 4\}, \mathbf{p} = \{2, 1, -1\}, \mathbf{q} = \{0, 3, 2\}, \mathbf{r} = \{1, -1, 1\}.$$

1.4.
$$\mathbf{x} = \{-9, 5, 5\}, \mathbf{p} = \{4, 1, 1\}, \mathbf{q} = \{2, 0, -3\}, \mathbf{r} = \{-1, 2, 1\}.$$

1.5.
$$\mathbf{x} = \{-5, -5, 5\}, \mathbf{p} = \{-2, 0, 1\}, \mathbf{q} = \{1, 3, -1\}, \mathbf{r} = \{0, 4, 1\}.$$

1.6.
$$\mathbf{x} = \{13, 2, 7\}, \mathbf{p} = \{5, 1, 0\}, \mathbf{q} = \{2, -1, 3\}, \mathbf{r} = \{1, 0, -1\}.$$

1.7.
$$\mathbf{x} = \{-19, -1, 7\}, \mathbf{p} = \{0, 1, 1\}, \mathbf{q} = \{-2, 0, 1\}, \mathbf{r} = \{3, 1, 0\}.$$

1.8.
$$\mathbf{x} = \{3, -3, 4\}, \mathbf{p} = \{1, 0, 2\}, \mathbf{q} = \{0, 1, 1\}, \mathbf{r} = \{2, -1, 4\}.$$

1.9.
$$\mathbf{x} = \{3, 3, -1\}, \mathbf{p} = \{3, 1, 0\}, \mathbf{q} = \{-1, 2, 1\}, \mathbf{r} = \{-1, 0, 2\}.$$

1.10.
$$\mathbf{x} = \{-1, 7, -4\}, \mathbf{p} = \{-1, 2, 1\}, \mathbf{q} = \{2, 0, 3\}, \mathbf{r} = \{1, 1, -1\}.$$

1.11.
$$\mathbf{x} = \{6, 5, -14\}, \mathbf{p} = \{1, 1, 4\}, \mathbf{q} = \{0, -3, 2\}, \mathbf{r} = \{2, 1, -1\}.$$

1.12.
$$\mathbf{x} = \{6, -1, 7\}, \mathbf{p} = \{1, -2, 0\}, \mathbf{q} = \{-1, 1, 3\}, \mathbf{r} = \{1, 0, 4\}.$$

1.13.
$$\mathbf{x} = \{5, 15, 0\}, \mathbf{p} = \{1, 0, 5\}, \mathbf{q} = \{-1, 3, 2\}, \mathbf{r} = \{0, -1, 1\}.$$

1.14.
$$\mathbf{x} = \{2, -1, 11\}, \mathbf{p} = \{1, 1, 0\}, \mathbf{q} = \{0, 1, -2\}, \mathbf{r} = \{1, 0, 3\}.$$

1.15.
$$\mathbf{x} = \{11, 5, -3\}, \mathbf{p} = \{1, 0, 2\}, \mathbf{q} = \{-1, 0, 1\}, \mathbf{r} = \{2, 5, -3\}.$$

1.16.
$$\mathbf{x} = \{8, 0, 5\}, \mathbf{p} = \{2, 0, 1\}, \mathbf{q} = \{1, 1, 0\}, \mathbf{r} = \{4, 1, 2\}.$$

1.17.
$$\mathbf{x} = \{3, 1, 8\}, \mathbf{p} = \{0, 1, 3\}, \mathbf{q} = \{1, 2, -1\}, \mathbf{r} = \{2, 0, -1\}.$$

1.18. $\mathbf{x} = \{8, 1, 2\}, \mathbf{p} = \{1, 2, -1\}, \mathbf{q} = \{3, 0, 2\}, \mathbf{r} = \{-1, 1, 1\}.$

1.19. $\mathbf{x} = \{-9, -8, -3\}, \mathbf{p} = \{1, 4, 1\}, \mathbf{q} = \{-3, 2, 0\}, \mathbf{r} = \{1, -1, 2\}.$

1.20. $\mathbf{x} = \{-5, 9, -13\}, \mathbf{p} = \{0, 1, -2\}, \mathbf{q} = \{3, -1, 1\}, \mathbf{r} = \{4, 1, 0\}.$

1.21. $\mathbf{x} = \{-15, 5, 6\}, \mathbf{p} = \{0, 5, 1\}, \mathbf{q} = \{3, 2, -1\}, \mathbf{r} = \{-1, 1, 0\}.$

1.22. $\mathbf{x} = \{8, 9, 4\}, \mathbf{p} = \{1, 0, 1\}, \mathbf{q} = \{0, -2, 1\}, \mathbf{r} = \{1, 3, 0\}.$

1.23. $\mathbf{x} = \{23, -14, -30\}, \mathbf{p} = \{2, 1, 0\}, \mathbf{q} = \{1, -1, 0\}, \mathbf{r} = \{-3, 2, 5\}.$

1.24. $\mathbf{x} = \{3, 1, 3\}, \mathbf{p} = \{2, 1, 0\}, \mathbf{q} = \{1, 0, 1\}, \mathbf{r} = \{4, 2, 1\}.$

1.25. $\mathbf{x} = \{-1, 7, 0\}, \mathbf{p} = \{0, 3, 1\}, \mathbf{q} = \{1, -1, 2\}, \mathbf{r} = \{2, -1, 0\}.$

1.26. $\mathbf{x} = \{11, -1, 4\}, \mathbf{p} = \{1, -1, 2\}, \mathbf{q} = \{3, 2, 0\}, \mathbf{r} = \{-1, 1, 1\}.$

1.27. $\mathbf{x} = \{-13, 2, 18\}, \mathbf{p} = \{1, 1, 4\}, \mathbf{q} = \{-3, 0, 2\}, \mathbf{r} = \{1, 2, -1\}.$

1.28. $\mathbf{x} = \{0, -8, 9\}, \mathbf{p} = \{0, -2, 1\}, \mathbf{q} = \{3, 1, -1\}, \mathbf{r} = \{4, 0, 1\}.$

1.29. $\mathbf{x} = \{8, -7, -13\}, \mathbf{p} = \{0, 1, 5\}, \mathbf{q} = \{3, -1, 2\}, \mathbf{r} = \{-1, 0, 1\}.$

1.30. $\mathbf{x} = \{2, 7, 5\}, \mathbf{p} = \{1, 0, 1\}, \mathbf{q} = \{1, -2, 0\}, \mathbf{r} = \{0, 3, 1\}.$

1.31. $\mathbf{x} = \{15, -20, -1\}, \mathbf{p} = \{0, 2, 1\}, \mathbf{q} = \{0, 1, -1\}, \mathbf{r} = \{5, -3, 2\}.$

Задача 2. Коллинеарны ли векторы \mathbf{c}_1 и \mathbf{c}_2 , построенные по векторам \mathbf{a} и \mathbf{b} ?

2.1. $\mathbf{a} = \{1, -2, 3\}, \mathbf{b} = \{3, 0, -1\}, \mathbf{c}_1 = 2\mathbf{a} + 4\mathbf{b}, \mathbf{c}_2 = 3\mathbf{b} - \mathbf{a}.$

2.2. $\mathbf{a} = \{1, 0, 1\}, \mathbf{b} = \{-2, 3, 5\}, \mathbf{c}_1 = \mathbf{a} + 2\mathbf{b}, \mathbf{c}_2 = 3\mathbf{a} - \mathbf{b}.$

2.3. $\mathbf{a} = \{-2, 4, 1\}, \mathbf{b} = \{1, -2, 7\}, \mathbf{c}_1 = 5\mathbf{a} + 3\mathbf{b}, \mathbf{c}_2 = 2\mathbf{a} - \mathbf{b}.$

2.4. $\mathbf{a} = \{1, 2, -3\}, \mathbf{b} = \{2, -1, -1\}, \mathbf{c}_1 = 4\mathbf{a} + 3\mathbf{b}, \mathbf{c}_2 = 8\mathbf{a} - \mathbf{b}.$

2.5. $\mathbf{a} = \{3, 5, 4\}, \mathbf{b} = \{5, 9, 7\}, \mathbf{c}_1 = -2\mathbf{a} + \mathbf{b}, \mathbf{c}_2 = 3\mathbf{a} - 2\mathbf{b}.$

2.6. $\mathbf{a} = \{1, 4, -2\}, \mathbf{b} = \{1, 1, -1\}, \mathbf{c}_1 = \mathbf{a} + \mathbf{b}, \mathbf{c}_2 = 4\mathbf{a} + 2\mathbf{b}.$

2.7. $\mathbf{a} = \{1, -2, 5\}, \mathbf{b} = \{3, -1, 0\}, \mathbf{c}_1 = 4\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 2\mathbf{a}.$

2.8. $\mathbf{a} = \{3, 4, -1\}, \mathbf{b} = \{2, -1, 1\}, \mathbf{c}_1 = 6\mathbf{a} - 3\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 2\mathbf{a}.$

2.9.
$$\mathbf{a} = \{-2, -3, -2\}, \mathbf{b} = \{1, 0, 5\}, \mathbf{c}_1 = 3\mathbf{a} + 9\mathbf{b}, \mathbf{c}_2 = -\mathbf{a} - 3\mathbf{b}.$$

2.10.
$$\mathbf{a} = \{-1, 4, 2\}, \mathbf{b} = \{3, -2, 6\}, \mathbf{c}_1 = 2\mathbf{a} - \mathbf{b}, \mathbf{c}_2 = 3\mathbf{b} - 6\mathbf{a}.$$

2.11.
$$\mathbf{a} = \{5, 0, -1\}, \mathbf{b} = \{7, 2, 3\}, \mathbf{c}_1 = 2\mathbf{a} - \mathbf{b}, \mathbf{c}_2 = 3\mathbf{b} - 6\mathbf{a}.$$

2.12.
$$\mathbf{a} = \{0, 3, -2\}, \mathbf{b} = \{1, -2, 1\}, \mathbf{c}_1 = 5\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = 3\mathbf{a} + 5\mathbf{b}.$$

2.13.
$$\mathbf{a} = \{-2, 7, -1\}, \mathbf{b} = \{-3, 5, 2\}, \mathbf{c}_1 = 2\mathbf{a} + 3\mathbf{b}, \mathbf{c}_2 = 3\mathbf{a} + 2\mathbf{b}.$$

2.14.
$$\mathbf{a} = \{3, 7, 0\}, \mathbf{b} = \{1, -3, 4\}, \mathbf{c}_1 = 4\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 2\mathbf{a}.$$

2.15.
$$\mathbf{a} = \{-1, 2, -1\}, \mathbf{b} = \{2, -7, 1\}, \mathbf{c}_1 = 6\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 3\mathbf{a}.$$

2.16.
$$\mathbf{a} = \{7, 9, -2\}, \mathbf{b} = \{5, 4, 3\}, \mathbf{c}_1 = 4\mathbf{a} - \mathbf{b}, \mathbf{c}_2 = 4\mathbf{b} - \mathbf{a}.$$

2.17.
$$\mathbf{a} = \{5, 0, -2\}, \mathbf{b} = \{6, 4, 3\}, \mathbf{c}_1 = 5\mathbf{a} - 3\mathbf{b}, \mathbf{c}_2 = 6\mathbf{b} - 10\mathbf{a}.$$

2.18.
$$\mathbf{a} = \{8, 3, -1\}, \mathbf{b} = \{4, 1, 3\}, \mathbf{c}_1 = 2\mathbf{a} - \mathbf{b}, \mathbf{c}_2 = 2\mathbf{b} - 4\mathbf{a}.$$

2.19.
$$\mathbf{a} = \{3, -1, 6\}, \mathbf{b} = \{5, 7, 10\}, \mathbf{c}_1 = 4\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 2\mathbf{a}.$$

2.20.
$$\mathbf{a} = \{1, -2, 4\}, \mathbf{b} = \{7, 3, 5\}, \mathbf{c}_1 = 6\mathbf{a} - 3\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 2\mathbf{a}.$$

2.21.
$$\mathbf{a} = \{3, 7, 0\}, \mathbf{b} = \{4, 6, -1\}, \mathbf{c}_1 = 3\mathbf{a} + 2\mathbf{b}, \mathbf{c}_2 = 5\mathbf{a} - 7\mathbf{b}.$$

2.22.
$$\mathbf{a} = \{2, -1, 4\}, \mathbf{b} = \{3, -7, -6\}, \mathbf{c}_1 = 2\mathbf{a} - 3\mathbf{b}, \mathbf{c}_2 = 3\mathbf{a} - 2\mathbf{b}.$$

2.23.
$$\mathbf{a} = \{5, -1, -2\}, \mathbf{b} = \{6, 0, 7\}, \mathbf{c}_1 = 3\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = 4\mathbf{b} - 6\mathbf{a}.$$

2.24.
$$\mathbf{a} = \{-9, 5, 3\}, \mathbf{b} = \{7, 1, -2\}, \mathbf{c}_1 = 2\mathbf{a} - \mathbf{b}, \mathbf{c}_2 = 3\mathbf{a} + 5\mathbf{b}.$$

2.25.
$$\mathbf{a} = \{4, 2, 9\}, \mathbf{b} = \{0, -1, 3\}, \mathbf{c}_1 = 4\mathbf{b} - 3\mathbf{a}, \mathbf{c}_2 = 4\mathbf{a} - 3\mathbf{b}.$$

2.26.
$$\mathbf{a} = \{2, -1, 6\}, \mathbf{b} = \{-1, 3, 8\}, \mathbf{c}_1 = 5\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = 2\mathbf{a} - 5\mathbf{b}.$$

2.27.
$$\mathbf{a} = \{5, 0, 8\}, \mathbf{b} = \{-3, 1, 7\}, \mathbf{c}_1 = 3\mathbf{a} - 4\mathbf{b}, \mathbf{c}_2 = 12\mathbf{b} - 9\mathbf{a}.$$

2.28.
$$\mathbf{a} = \{-1, 3, 4\}, \mathbf{b} = \{2, -1, 0\}, \mathbf{c}_1 = 6\mathbf{a} - 2\mathbf{b}, \mathbf{c}_2 = \mathbf{b} - 3\mathbf{a}.$$

2.29.
$$\mathbf{a} = \{4, 2, -7\}, \mathbf{b} = \{5, 0, -3\}, \mathbf{c}_1 = \mathbf{a} - 3\mathbf{b}, \mathbf{c}_2 = 6\mathbf{b} - 2\mathbf{a}.$$

2.30.
$$\mathbf{a} = \{2, 0, -5\}, \mathbf{b} = \{1, -3, 4\}, \mathbf{c}_1 = 2\mathbf{a} - 5\mathbf{b}, \mathbf{c}_2 = 5\mathbf{a} - 2\mathbf{b}.$$

2.31.
$$\mathbf{a} = \{-1, 2, 8\}, \mathbf{b} = \{3, 7, -1\}, \mathbf{c}_1 = 4\mathbf{a} - 3\mathbf{b}, \mathbf{c}_2 = 9\mathbf{b} - 12\mathbf{a}.$$

Задача 3. Найти косинус угла между векторами \overrightarrow{AB} и \overrightarrow{AC} .

3.1.
$$A(1, -2, 3)$$
, $B(0, -1, 2)$, $C(3, -4, 5)$.

3.2.
$$A(0, -3, 6)$$
, $B(-12, -3, -3)$, $C(-9, -3, -6)$.

3.3.
$$A(3, 3, -1)$$
, $B(5, 5, -2)$, $C(4, 1, 1)$.

3.4.
$$A(-1, 2, -3)$$
, $B(3, 4, -6)$, $C(1, 1, -1)$.

3.5.
$$A(-4, -2, 0)$$
, $B(-1, -2, 4)$, $C(3, -2, 1)$.

3.6.
$$A(5, 3, -1)$$
, $B(5, 2, 0)$, $C(6, 4, -1)$.

3.7.
$$A(-3, -7, -5)$$
, $B(0, -1, -2)$, $C(2, 3, 0)$.

3.8.
$$A(2, -4, 6)$$
, $B(0, -2, 4)$, $C(6, -8, 10)$.

3.9.
$$A(0, 1, -2)$$
, $B(3, 1, 2)$, $C(4, 1, 1)$.

3.10.
$$A(3, 3, -1)$$
, $B(1, 5, -2)$, $C(4, 1, 1)$.

3.11.
$$A(2, 1, -1)$$
, $B(6, -1, -4)$, $C(4, 2, 1)$.

3.12.
$$A(-1, -2, 1)$$
, $B(-4, -2, 5)$, $C(-8, -2, 2)$.

3.13.
$$A(6, 2, -3)$$
, $B(6, 3, -2)$, $C(7, 3, -3)$.

3.14.
$$A(0, 0, 4)$$
, $B(-3, -6, 1)$, $C(-5, -10, -1)$.

3.15.
$$A(2, -8, -1)$$
, $B(4, -6, 0)$, $C(-2, -5, -1)$.

3.16.
$$A(3, -6, 9)$$
, $B(0, -3, 6)$, $C(9, -12, 15)$.

3.17.
$$A(0, 2, -4)$$
, $B(8, 2, 2)$, $C(6, 2, 4)$.

3.18.
$$A(3, 3, -1)$$
, $B(5, 1, -2)$, $C(4, 1, 1)$.

3.19.
$$A(-4, 3, 0)$$
, $B(0, 1, 3)$, $C(-2, 4, -2)$.

3.20.
$$A(1, -1, 0)$$
, $B(-2, -1, 4)$, $C(8, -1, -1)$.

3.21.
$$A(7, 0, 2)$$
, $B(7, 1, 3)$, $C(8, -1, 2)$.

3.22.
$$A(2, 3, 2)$$
, $B(-1, -3, -1)$, $C(-3, -7, -3)$.

3.23.
$$A(2, 2, 7)$$
, $B(0, 0, 6)$, $C(-2, 5, 7)$.

3.24.
$$A(-1, 2, -3)$$
, $B(0, 1, -2)$, $C(-3, 4, -5)$.

3.25.
$$A(0, 3, -6)$$
, $B(9, 3, 6)$, $C(12, 3, 3)$.

3.26.
$$A(3, 3, -1)$$
, $B(5, 1, -2)$, $C(4, 1, -3)$.

3.27.
$$A(-2, 1, 1)$$
, $B(2, 3, -2)$, $C(0, 0, 3)$.

3.28.
$$A(1, 4, -1), B(-2, 4, -5), C(8, 4, 0).$$

3.29.
$$A(0, 1, 0)$$
, $B(0, 2, 1)$, $C(1, 2, 0)$.

3.30.
$$A(-4, 0, 4)$$
, $B(-1, 6, 7)$, $C(1, 10, 9)$.

3.31.
$$A(-2, 4, -6)$$
, $B(0, 2, -4)$, $C(6, 8, -10)$.

Задача 4. Вычислить площадь параллелограмма, построенного на векторах а и b.

4.1.
$$\mathbf{a} = \mathbf{p} + 2\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 2\mathbf{q}$; $|\mathbf{p}| = 1$, $|\mathbf{q}| = 2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/6$.

4.2.
$$\mathbf{a} = 3\mathbf{p} + \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 2\mathbf{q}$; $|\mathbf{p}| = 4$, $|\mathbf{q}| = 1$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/4$.

4.3.
$$\mathbf{a} = \mathbf{p} - 3\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 2\mathbf{q}$; $|\mathbf{p}| = 1/5$, $|\mathbf{q}| = 1$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/2$.

4.4.
$$\mathbf{a} = 3\mathbf{p} - 2\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 5\mathbf{q}$; $|\mathbf{p}| = 4$, $|\mathbf{q}| = 1/2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = 5\mathbf{p}/6$.

4.5.
$$\mathbf{a} = \mathbf{p} - 2\mathbf{q}$$
, $\mathbf{b} = 2\mathbf{p} + \mathbf{q}$; $|\mathbf{p}| = 2$, $|\mathbf{q}| = 3$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = 3\mathbf{p}/4$.

4.6.
$$\mathbf{a} = \mathbf{p} + 3\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 2\mathbf{q}$; $|\mathbf{p}| = 2$, $|\mathbf{q}| = 3$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/3$.

4.7.
$$\mathbf{a} = 2\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 3\mathbf{q}$; $|\mathbf{p}| = 3$, $|\mathbf{q}| = 2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = p/2$.

4.8.
$$\mathbf{a} = 4\mathbf{p} + \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - \mathbf{q}$; $|\mathbf{p}| = 7$, $|\mathbf{q}| = 2$, $(\mathbf{p} \hat{\mathbf{q}}) = \mathbf{p}/4$.

4.9.
$$\mathbf{a} = \mathbf{p} - 4\mathbf{q}$$
, $\mathbf{b} = 3\mathbf{p} + \mathbf{q}$; $|\mathbf{p}| = 1$, $|\mathbf{q}| = 2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/6$.

4.10.
$$\mathbf{a} = \mathbf{p} + 4\mathbf{q}$$
, $\mathbf{b} = 2\mathbf{p} - \mathbf{q}$; $|\mathbf{p}| = 7$, $|\mathbf{q}| = 2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/3$.

4.11.
$$\mathbf{a} = 3\mathbf{p} + 2\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - \mathbf{q}$; $|\mathbf{p}| = 10$, $|\mathbf{q}| = 1$, $(\mathbf{p} \cdot \mathbf{q}) = \mathbf{p}/2$.

4.12.
$$\mathbf{a} = 4\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 2\mathbf{q}$; $|\mathbf{p}| = 5$, $|\mathbf{q}| = 4$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/4$.

4.13.
$$\mathbf{a} = 2\mathbf{p} + 3\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 2\mathbf{q}$; $|\mathbf{p}| = 6$, $|\mathbf{q}| = 7$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/3$.

4.14.
$$\mathbf{a} = 3\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 2\mathbf{q}$; $|\mathbf{p}| = 3$, $|\mathbf{q}| = 4$, $(\mathbf{p} \hat{\mathbf{q}}) = \mathbf{p}/3$.

4.15.
$$\mathbf{a} = 2\mathbf{p} + 3\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 2\mathbf{q}$; $|\mathbf{p}| = 2$, $|\mathbf{q}| = 3$, $(\mathbf{p} \hat{\mathbf{q}}) = p/4$.

4.16.
$$\mathbf{a} = 2\mathbf{p} - 3\mathbf{q}$$
, $\mathbf{b} = 3\mathbf{p} + \mathbf{q}$; $|\mathbf{p}| = 4$, $|\mathbf{q}| = 1$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/6$.

4.17.
$$\mathbf{a} = 5\mathbf{p} + \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 3\mathbf{q}$; $|\mathbf{p}| = 1$, $|\mathbf{q}| = 2$, $(\mathbf{p} \hat{\mathbf{q}}) = \mathbf{p}/3$.

4.18.
$$\mathbf{a} = 7\mathbf{p} - 2\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 3\mathbf{q}$; $|\mathbf{p}| = 1/2$, $|\mathbf{q}| = 2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/2$.

4.19.
$$\mathbf{a} = 6\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + \mathbf{q}$; $|\mathbf{p}| = 3$, $|\mathbf{q}| = 4$, $(\mathbf{p} \hat{\mathbf{q}}) = \mathbf{p}/4$.

4.20.
$$\mathbf{a} = 10\mathbf{p} + \mathbf{q}$$
, $\mathbf{b} = 3\mathbf{p} - 2\mathbf{q}$; $|\mathbf{p}| = 4$, $|\mathbf{q}| = 1$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = p/6$.

4.21.
$$\mathbf{a} = 6\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 2\mathbf{q}$; $|\mathbf{p}| = 8$, $|\mathbf{q}| = 1/2$, $(\mathbf{p} \cdot \mathbf{q}) = \mathbf{p}/3$.

4.22.
$$\mathbf{a} = 3\mathbf{p} + 4\mathbf{q}$$
, $\mathbf{b} = \mathbf{q} - \mathbf{p}$; $|\mathbf{p}| = 2, 5$, $|\mathbf{q}| = 2$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/2$.

4.23.
$$\mathbf{a} = 7\mathbf{p} + \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 3\mathbf{q}$; $|\mathbf{p}| = 3$, $|\mathbf{q}| = 1$, $(\mathbf{p} \hat{\mathbf{q}}) = 3\mathbf{p}/4$.

4.24.
$$\mathbf{a} = \mathbf{p} + 3\mathbf{q}$$
, $\mathbf{b} = 3\mathbf{p} - \mathbf{q}$; $|\mathbf{p}| = 3$, $|\mathbf{q}| = 5$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = 2\mathbf{p}/3$.

4.25.
$$\mathbf{a} = 3\mathbf{p} + \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 3\mathbf{q}$; $|\mathbf{p}| = 7$, $|\mathbf{q}| = 2$, $(\mathbf{p} \hat{\mathbf{q}}) = \mathbf{p}/4$.

4.26.
$$\mathbf{a} = 5\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + \mathbf{q}$; $|\mathbf{p}| = 5$, $|\mathbf{q}| = 3$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = 5\mathbf{p}/6$.

4.27.
$$\mathbf{a} = 3\mathbf{p} - 4\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} + 3\mathbf{q}$; $|\mathbf{p}| = 2$, $|\mathbf{q}| = 3$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = p/4$.

4.28.
$$\mathbf{a} = 6\mathbf{p} - \mathbf{q}$$
, $\mathbf{b} = 5\mathbf{q} + \mathbf{p}$; $|\mathbf{p}| = 1/2$, $|\mathbf{q}| = 4$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = 5\mathbf{p}/6$.

4.29.
$$\mathbf{a} = 2\mathbf{p} + 3\mathbf{q}$$
, $\mathbf{b} = \mathbf{p} - 2\mathbf{q}$; $|\mathbf{p}| = 2$, $|\mathbf{q}| = 1$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = \mathbf{p}/3$.

4.30.
$$\mathbf{a} = 2\mathbf{p} - 3\mathbf{q}$$
, $\mathbf{b} = 5\mathbf{p} + \mathbf{q}$; $|\mathbf{p}| = 2$, $|\mathbf{q}| = 3$, $(\mathbf{p} \hat{\mathbf{q}}) = p/2$.

4.31.
$$\mathbf{a} = 3\mathbf{p} + 2\mathbf{q}$$
, $\mathbf{b} = 2\mathbf{p} - \mathbf{q}$; $|\mathbf{p}| = 4$, $|\mathbf{q}| = 3$, $(\mathbf{p}^{\hat{}}\mathbf{q}) = 3\mathbf{p}/4$.

Задача 5. Компланарны ли векторы ${\bf a}$, ${\bf b}$ и ${\bf c}$?

5.1.
$$\mathbf{a} = \{2, 3, 1\}, \mathbf{b} = \{-1, 0, -1\}, \mathbf{c} = \{2, 2, 2\}.$$

5.2.
$$\mathbf{a} = \{3, 2, 1\}, \mathbf{b} = \{-1, 1, -1\}, \mathbf{c} = \{3, 1, -1\}.$$

5.3.
$$\mathbf{a} = \{1, 5, 2\}, \mathbf{b} = \{-1, 1, -1\}, \mathbf{c} = \{1, 1, 1\}.$$

5.4.
$$\mathbf{a} = \{1, -1, -3\}, \mathbf{b} = \{3, 2, 1\}, \mathbf{c} = \{2, 3, 4\}.$$

5.5.
$$\mathbf{a} = \{3, 3, 1\}, \mathbf{b} = \{1, -2, 1\}, \mathbf{c} = \{1, 1, 1\}.$$

5.6.
$$\mathbf{a} = \{3, 1, -1\}, \mathbf{b} = \{-2, -1, 0\}, \mathbf{c} = \{5, 2, -1\}.$$

5.7.
$$\mathbf{a} = \{4, 3, 1\}, \mathbf{b} = \{1, -2, 1\}, \mathbf{c} = \{2, 2, 2\}.$$

5.8.
$$\mathbf{a} = \{4, 3, 1\}, \mathbf{b} = \{6, 7, 4\}, \mathbf{c} = \{2, 0, -1\}.$$

5.9.
$$\mathbf{a} = \{3, 2, 1\}, \mathbf{b} = \{1, -3, -7\}, \mathbf{c} = \{1, 2, 3\}.$$

5.10.
$$\mathbf{a} = \{3, 7, 2\}, \mathbf{b} = \{-2, 0, -1\}, \mathbf{c} = \{2, 2, 1\}.$$

5.11.
$$\mathbf{a} = \{1, -2, 6\}, \mathbf{b} = \{1, 0, 1\}, \mathbf{c} = \{2, -6, 17\}.$$

5.12.
$$\mathbf{a} = \{6, 3, 4\}, \mathbf{b} = \{-1, -2, -1\}, \mathbf{c} = \{2, 1, 2\}.$$

5.13.
$$\mathbf{a} = \{7, 3, 4\}, \mathbf{b} = \{-1, -2, -1\}, \mathbf{c} = \{4, 2, 4\}.$$

5.14.
$$\mathbf{a} = \{2, 3, 2\}, \mathbf{b} = \{4, 7, 5\}, \mathbf{c} = \{2, 0, -1\}.$$

5.15.
$$\mathbf{a} = \{5, 3, 4\}, \mathbf{b} = \{-1, 0, -1\}, \mathbf{c} = \{4, 2, 4\}.$$

5.16.
$$\mathbf{a} = \{3, 10, 5\}, \mathbf{b} = \{-2, -2, -3\}, \mathbf{c} = \{2, 4, 3\}.$$

5.17.
$$\mathbf{a} = \{-2, -4, -3\}, \mathbf{b} = \{4, 3, 1\}, \mathbf{c} = \{6, 7, 4\}.$$

5.18.
$$\mathbf{a} = \{3, 1, -1\}, \mathbf{b} = \{1, 0, -1\}, \mathbf{c} = \{8, 3, -2\}.$$

5.19.
$$\mathbf{a} = \{4, 2, 2\}, \mathbf{b} = \{-3, -3, -3\}, \mathbf{c} = \{2, 1, 2\}.$$

5.20.
$$\mathbf{a} = \{4, 1, 2\}, \mathbf{b} = \{9, 2, 5\}, \mathbf{c} = \{1, 1, -1\}.$$

5.21.
$$\mathbf{a} = \{5, 3, 4\}, \mathbf{b} = \{4, 3, 3\}, \mathbf{c} = \{9, 5, 8\}.$$

5.22.
$$\mathbf{a} = \{3, 4, 2\}, \mathbf{b} = \{1, 1, 0\}, \mathbf{c} = \{8, 11, 6\}.$$

5.23.
$$\mathbf{a} = \{4, -1, -6\}, \mathbf{b} = \{1, -3, -7\}, \mathbf{c} = \{2, -1, -4\}.$$

5.24.
$$\mathbf{a} = \{3, 1, 0\}, \mathbf{b} = \{-5, -4, -5\}, \mathbf{c} = \{4, 2, 4\}.$$

5.25.
$$\mathbf{a} = \{3, 0, 3\}, \mathbf{b} = \{8, 1, 6\}, \mathbf{c} = \{1, 1, -1\}.$$

5.26.
$$\mathbf{a} = \{1, -1, 4\}, \mathbf{b} = \{1, 0, 3\}, \mathbf{c} = \{1, -3, 8\}.$$

5.27.
$$\mathbf{a} = \{6, 3, 4\}, \mathbf{b} = \{-1, -2, -1\}, \mathbf{c} = \{2, 1, 2\}.$$

5.28.
$$\mathbf{a} = \{4, 1, 1\}, \mathbf{b} = \{-9, -4, -9\}, \mathbf{c} = \{6, 2, 6\}.$$

5.29.
$$\mathbf{a} = \{-3, 3, 3\}, \mathbf{b} = \{-4, 7, 6\}, \mathbf{c} = \{3, 0, -1\}.$$

5.30.
$$\mathbf{a} = \{-7, 10, -5\}, \mathbf{b} = \{0, -2, -1\}, \mathbf{c} = \{-2, 4, -1\}.$$

5.31.
$$\mathbf{a} = \{7, 4, 6\}, \mathbf{b} = \{2, 1, 1\}, \mathbf{c} = \{19, 11, 17\}.$$

Задача 6. Вычислить объем тетраэдра с вершинами в точках A_1 , A_2 , A_3 , A_4 и его высоту, опущенную из вершины A_4 на грань $A_1A_2A_3$.

6.1.
$$A_1(1, 3, 6), A_2(2, 2, 1), A_3(-1, 0, 1), A_4(-4, 6, -3).$$

6.2.
$$A_1(-4, 2, 6), A_2(2, -3, 0), A_3(-10, 5, 8), A_4(-5, 2, -4).$$

6.3.
$$A_1(7, 2, 4)$$
, $A_2(7, -1, -2)$, $A_3(3, 3, 1)$, $A_4(-4, 2, 1)$.

6.4.
$$A_1(2, 1, 4), A_2(-1, 5, -2), A_3(-7, -3, 2), A_4(-6, -3, 6).$$

6.5.
$$A_1(-1, -5, 2)$$
, $A_2(-6, 0, -3)$, $A_3(3, 6, -3)$, $A_4(-10, 6, 7)$.

6.6.
$$A_1(0, -1, -1), A_2(-2, 3, 5), A_3(1, -5, -9), A_4(-1, -6, 3).$$

6.7.
$$A_1(5, 2, 0), A_2(2, 5, 0), A_3(1, 2, 4), A_4(-1, 1, 1).$$

6.8.
$$A_1(2, -1, -2), A_2(1, 2, 1), A_3(5, 0, -6), A_4(-10, 9, -7).$$

6.9.
$$A_1(-2, 0, -4)$$
, $A_2(-1, 7, 1)$, $A_3(4, -8, -4)$, $A_4(1, -4, 6)$.

6.10.
$$A_1(14, 4, 5), A_2(-5, -3, 2), A_3(-2, -6, -3), A_4(-2, 2, -1).$$

6.11.
$$A_1(1, 2, 0)$$
, $A_2(3, 0, -3)$, $A_3(5, 2, 6)$, $A_4(8, 4, -9)$.

6.12.
$$A_1(2, -1, 2), A_2(1, 2, -1), A_3(3, 2, 1), A_4(-4, 2, 5).$$

6.13.
$$A_1(1, 1, 2)$$
, $A_2(-1, 1, 3)$, $A_3(2, -2, 4)$, $A_4(-1, 0, -2)$.

6.14.
$$A_1(2, 3, 1)$$
, $A_2(4, 1, -2)$, $A_3(6, 3, 7)$, $A_4(7, 5, -3)$.

6.15.
$$A_1(1, 1, -1)$$
, $A_2(2, 3, 1)$, $A_3(3, 2, 1)$, $A_4(5, 9, -8)$.

- 6.16. $A_1(1, 5, -7), A_2(-3, 6, 3), A_3(-2, 7, 3), A_4(-4, 8, -12).$
- 6.17. $A_1(-3, 4, -7), A_2(1, 5, -4), A_3(-5, -2, 0), A_4(2, 5, 4).$
- 6.18. $A_1(-1, 2, -3), A_2(4, -1, 0), A_3(2, 1, -2), A_4(3, 4, 5).$
- 6.19. $A_1(4, -1, 3), A_2(-2, 1, 0), A_3(0, -5, 1), A_4(3, 2, -6).$
- 6.20. $A_1(1, -1, 1)$, $A_2(-2, 0, 3)$, $A_3(2, 1, -1)$, $A_4(2, -2, -4)$.
- 6.21. $A_1(1, 2, 0), A_2(1, -1, 2), A_3(0, 1, -1), A_4(-3, 0, 1).$
- 6.22. $A_1(1, 0, 2), A_2(1, 2, -1), A_3(2, -2, 1), A_4(2, 1, 0).$
- 6.23. $A_1(1, 2, -3)$, $A_2(1, 0, 1)$, $A_3(-2, -1, 6)$, $A_4(0, -5, -4)$.
- 6.24. $A_1(3, 10, -1), A_2(-2, 3, -5), A_3(-6, 0, -3), A_4(1, -1, 2).$
- 6.25. $A_1(-1, 2, 4)$, $A_2(-1, -2, -4)$, $A_3(3, 0, -1)$, $A_4(7, -3, 1)$.
- 6.26. $A_1(0, -3, 1), A_2(-4, 1, 2), A_3(2, -1, 5), A_4(3, 1, -4).$
- 6.27. $A_1(1, 3, 0)$, $A_2(4, -1, 2)$, $A_3(3, 0, 1)$, $A_4(-4, 3, 5)$.
- 6.28. $A_1(-2, -1, -1), A_2(0, 3, 2), A_3(3, 1, -4), A_4(-4, 7, 3).$
- 6.29. $A_1(-3, -5, 6)$, $A_2(2, 1, -4)$, $A_3(0, -3, -1)$, $A_4(-5, 2, -8)$.
- 6.30. $A_1(2, -4, -3)$, $A_2(5, -6, 0)$, $A_3(-1, 3, -3)$, $A_4(-10, -8, 7)$.
- 6.31. $A_1(1, -1, 2)$, $A_2(2, 1, 2)$, $A_3(1, 1, 4)$, $A_4(6, -3, 8)$.

Задача 7. Найти расстояние от точки \boldsymbol{M}_0 до плоскости, проходящей через точки $\boldsymbol{M}_1,~\boldsymbol{M}_2,~\boldsymbol{M}_3.$

- 7.1. $M_1(-3, 4, -7), M_2(1, 5, -4), M_3(-5, -2, 0), M_0(-12, 7, -1).$
- 7.2. $M_1(-1, 2, -3), M_2(4, -1, 0), M_3(2, 1, -2), M_0(1, -6, -5).$
- 7.3. $M_1(-3, -1, 1), M_2(-9, 1, -2), M_3(3, -5, 4), M_0(-7, 0, -1).$
- 7.4. $M_1(1, -1, 1), M_2(-2, 0, 3), M_3(2, 1, -1), M_0(-2, 4, 2).$
- 7.5. $M_1(1, 2, 0), M_2(1, -1, 2), M_3(0, 1, -1), M_0(2, -1, 4).$

```
7.6. M_1(1, 0, 2), M_2(1, 2, -1), M_3(2, -2, 1), M_0(-5, -9, 1).
7.7. M_1(1, 2, -3), M_2(1, 0, 1), M_3(-2, -1, 6), M_0(3, -2, -9).
7.8. M_1(3, 10, -1), M_2(-2, 3, -5), M_3(-6, 0, -3), M_0(-6, 7, -10).
7.9. M_1(-1, 2, 4), M_2(-1, -2, -4), M_3(3, 0, -1), M_0(-2, 3, 5).
7.10. M_1(0, -3, 1), M_2(-4, 1, 2), M_3(2, -1, 5), M_0(-3, 4, -5).
7.11. M_1(1, 3, 0), M_2(4, -1, 2), M_3(3, 0, 1), M_0(4, 3, 0).
7.12. M_1(-2, -1, -1), M_2(0, 3, 2), M_3(3, 1, -4), M_0(-21, 20, -16).
7.13. M_1(-3, -5, 6), M_2(2, 1, -4), M_3(0, -3, -1), M_0(3, 6, 68).
7.14. M_1(2, -4, -3), M_2(5, -6, 0), M_3(-1, 3, -3), M_0(2, -10, 8).
7.15. M_1(1, -1, 2), M_2(2, 1, 2), M_3(1, 1, 4), M_0(-3, 2, 7).
7.16. M_1(1, 3, 6), M_2(2, 2, 1), M_3(-1, 0, 1), M_0(5, -4, 5).
7.17. M_1(-4, 2, 6), M_2(2, -3, 0), M_3(-10, 5, 8), M_0(-12, 1, 8).
7.18. M_1(7, 2, 4), M_2(7, -1, -2), M_3(-5, -2, -1), M_0(10, 1, 8).
7.19. M_1(2, 1, 4), M_2(3, 5, -2), M_3(-7, -3, 2), M_0(-3, 1, 8).
7.20. M_1(-1, -5, 2), M_2(-6, 0, 3), M_3(3, 6, -3), M_0(10, -8, -7).
7.21. M_1(0, -1, -1), M_2(-2, 3, 5), M_3(1, -5, -9), M_0(-4, -13, 6).
7.22. M_1(5, 2, 0), M_2(2, 5, 0), M_3(1, 2, 4), M_0(-3, -6, -8).
7.23. M_1(2, -1, -2), M_2(1, 2, 1), M_3(5, 0, -6), M_0(14, -3, 7).
7.24. M_1(-2, 0, -4), M_2(-1, 7, 1), M_3(4, -8, -4), M_0(-6, 5, 5).
7.25. M_1(14, 4, 5), M_2(-5, -3, 2), M_3(-2, -6, -3), M_0(-1, -8, 7).
7.26. M_1(1, 2, 0), M_2(3, 0, -3), M_3(5, 2, 6), M_0(-13, -8, 16).
7.27. M_1(2, -1, 2), M_2(1, 2, -1), M_3(3, 2, 1), M_0(-5, 3, 7).
7.28. M_1(1, 1, 2), M_2(-1, 1, 3), M_3(2, -2, 4), M_0(2, 3, 8).
7.29. M_1(2, 3, 1), M_2(4, 1, -2), M_3(6, 3, 7), M_0(-5, -4, 8).
```

7.30.
$$M_1(1, 1, -1)$$
, $M_2(2, 3, 1)$, $M_3(3, 2, 1)$, $M_0(-3, -7, 6)$.
7.31. $M_1(1, 5, -7)$, $M_2(-3, 6, 3)$, $M_3(-2, 7, 3)$, $M_0(1, -1, 2)$.

Задача 8. Написать уравнение плоскости, проходящей через точку A перпендикулярно вектору BC .

8.1.
$$A(1, 0, -2)$$
, $B(2, -1, 3)$, $C(0, -3, 2)$.

8.2.
$$A(-1, 3, 4)$$
, $B(-1, 5, 0)$, $C(2, 6, 1)$.

8.3.
$$A(4, -2, 0), B(1, -1, -5), C(-2, 1, -3).$$

8.4.
$$A(-8, 0, 7)$$
, $B(-3, 2, 4)$, $C(-1, 4, 5)$.

8.5.
$$A(7, -5, 1), B(5, -1, -3), C(3, 0, -4).$$

8.6.
$$A(-3, 5, -2)$$
, $B(-4, 0, 3)$, $C(-3, 2, 5)$.

8.7.
$$A(1, -1, 8)$$
, $B(-4, -3, 10)$, $C(-1, -1, 7)$.

8.8.
$$A(-2, 0, -5)$$
, $B(2, 7, -3)$, $C(1, 10, -1)$.

8.9.
$$A(1, 9, -4)$$
, $B(5, 7, 1)$, $C(3, 5, 0)$.

8.10.
$$A(-7, 0, 3)$$
, $B(1, -5, -4)$, $C(2, -3, 0)$.

8.11.
$$A(0, -3, 5)$$
, $B(-7, 2, 6)$, $C(-3, 2, 4)$.

8.12.
$$A(5, -1, 2)$$
, $B(2, -4, 3)$, $C(4, -1, 3)$.

8.13.
$$A(-3, 7, 2)$$
, $B(3, 5, 1)$, $C(4, 5, 3)$.

8.14.
$$A(0, -2, 8)$$
, $B(4, 3, 2)$, $C(1, 4, 3)$.

8.15.
$$A(1, -1, 5)$$
, $B(0, 7, 8)$, $C(-1, 3, 8)$.

8.16.
$$A(-10, 0, 9)$$
, $B(12, 4, 11)$, $C(8, 5, 15)$.

8.17.
$$A(3, -3, -6)$$
, $B(1, 9, -5)$, $C(6, 6, -4)$.

8.18.
$$A(2, 1, 7)$$
, $B(9, 0, 2)$, $C(9, 2, 3)$.

8.19.
$$A(-7, 1, -4)$$
, $B(8, 11, -3)$, $C(9, 9, -1)$.

8.20.
$$A(1, 0, -6)$$
, $B(-7, 2, 1)$, $C(-9, 6, 1)$.

8.21.
$$A(-3, 1, 0)$$
, $B(6, 3, 3)$, $C(9, 4, -2)$.

8.22.
$$A(-4, -2, 5)$$
, $B(3, -3, -7)$, $C(9, 3, -7)$.

8.23.
$$A(0, -8, 10)$$
, $B(-5, 5, 7)$, $C(-8, 0, 4)$.

8.24.
$$A(1, -5, -2)$$
, $B(6, -2, 1)$, $C(2, -2, -2)$.

8.25.
$$A(0, 7, -9)$$
, $B(-1, 8, -11)$, $C(-4, 3, -12)$.

8.26.
$$A(-3, -1, 7)$$
, $B(0, 2, -6)$, $C(2, 3, -5)$.

8.27.
$$A(5, 3, -1)$$
, $B(0, 0, -3)$, $C(5, -1, 0)$.

8.28.
$$A(-1, 2, -2)$$
, $B(13, 14, 1)$, $C(14, 15, 2)$.

8.29.
$$A(7, -5, 0)$$
, $B(8, 3, -1)$, $C(8, 5, 1)$.

8.30.
$$A(-3, 6, 4)$$
, $B(8, -3, 5)$, $C(10, -3, 7)$.

8.31.
$$A(2, 5, -3)$$
, $B(7, 8, -1)$, $C(9, 7, 4)$.

Задача 9. Найти угол между плоскостями.

9.1.
$$x-3y+5=0$$
, $2x-y+5z-16=0$.

9.2.
$$x-3y+z-1=0$$
, $x+z-1=0$.

9.3.
$$4x-5y+3z-1=0$$
, $x-4y-z+9=0$.

9.4.
$$3x - y + 2z + 15 = 0$$
, $5x + 9y - 3z - 1 = 0$.

9.5.
$$6x + 2y - 4z + 17 = 0$$
, $9x + 3y - 6z - 4 = 0$.

9.6.
$$x - y\sqrt{2} + z - 1 = 0$$
, $x + y\sqrt{2} - z + 3 = 0$.

9.7.
$$3y - z = 0$$
, $2y + z = 0$.

9.8.
$$6x + 3y - 2z = 0$$
, $x + 2y + 6z - 12 = 0$.

9.9.
$$x + 2y + 2z - 3 = 0$$
, $16x + 12y - 15z - 1 = 0$.

9.10.
$$2x - y + 5z + 16 = 0$$
, $x + 2y + 3z + 8 = 0$.

9.11.
$$2x + 2y + z - 1 = 0$$
, $x + z - 1 = 0$.

9.12.
$$3x + y + z - 4 = 0$$
, $y + z + 5 = 0$.

9.13.
$$3x - 2y - 2z - 16 = 0$$
, $x + y - 3z - 7 = 0$.

9.14.
$$2x + 2y + z + 9 = 0$$
, $x - y + 3z - 1 = 0$.

9.15.
$$x + 2y + 2z - 3 = 0$$
, $2x - y + 2z + 5 = 0$.

9.16.
$$3x + 2y - 3z - 1 = 0$$
, $x + y + z - 7 = 0$.

9.17.
$$x-3y-2z-8=0$$
, $x+y-z+3=0$.

9.18.
$$3x - 2y + 3z + 23 = 0$$
, $y + z + 5 = 0$.

9.19.
$$x + y + 3z - 7 = 0$$
, $y + z - 1 = 0$.

9.20.
$$x-2y+2z+17=0$$
, $x-2y-1=0$.

9.21.
$$x + 2y - 1 = 0$$
, $x + y + 6 = 0$.

9.22.
$$2x - z + 5 = 0$$
, $2x + 3y - 7 = 0$.

9.23.
$$5x + 3y + z - 18 = 0$$
, $2y + z - 9 = 0$.

9.24.
$$4x + 3z - 2 = 0$$
, $x + 2y + 2z + 5 = 0$.

9.25.
$$x + 4y - z + 1 = 0$$
, $2x + y + 4z - 3 = 0$.

9.26.
$$2y + z - 9 = 0$$
, $x - y + 2z - 1 = 0$.

9.27.
$$2x-6y+14z-1=0$$
, $5x-15y+35z-3=0$.

9.28.
$$x - y + 7z - 1 = 0$$
, $2x - 2y - 5 = 0$.

9.29.
$$3x - y - 5 = 0$$
, $2x + y - 3 = 0$.

9.30.
$$x + y + z\sqrt{2} - 3 = 0$$
, $x - y + z\sqrt{2} - 1 = 0$.

9.31.
$$x + 2y - 2z - 7 = 0$$
, $x + y - 35 = 0$.

Задача 10. Найти координаты точки A, равноудаленной от точек B и C.

10.1.
$$A(0, 0, z)$$
, $B(5, 1, 0)$, $C(0, 2, 3)$.

10.2.
$$A(0, 0, z)$$
, $B(3, 3, 1)$, $C(4, 1, 2)$.

10.3.
$$A(0, 0, z)$$
, $B(3, 1, 3)$, $C(1, 4, 2)$.

10.4.
$$A(0, 0, z)$$
, $B(-1, -1, -6)$, $C(2, 3, 5)$.

10.5.
$$A(0, 0, z)$$
, $B(-13, 4, 6)$, $C(10, -9, 5)$.

10.6.
$$A(0, 0, z)$$
, $B(-5, -5, 6)$, $C(-7, 6, 2)$.

10.7.
$$A(0, 0, z)$$
, $B(-18, 1, 0)$, $C(15, -10, 2)$.

10.8.
$$A(0, 0, z)$$
, $B(10, 0, -2)$, $C(9, -2, 1)$.

10.9.
$$A(0, 0, z)$$
, $B(-6, 7, 5)$, $C(8, -4, 3)$.

- 10.10. A(0, 0, z), B(6, -7, 1), C(-1, 2, 5).
- 10.11. A(0, 0, z), B(7, 0, -15), C(2, 10, -12).
- 10.12. A(0, y, 0), B(3, 0, 3), C(0, 2, 4).
- 10.13. A(0, y, 0), B(1, 6, 4), C(5, 7, 1).
- 10.14. A(0, y, 0), B(-2, 8, 10), C(6, 11, -2).
- 10.15. A(0, y, 0), B(-2, -4, 6), C(7, 2, 5).
- 10.16. A(0, y, 0), B(2, 2, 4), C(0, 4, 2).
- 10.17. A(0, y, 0), B(0, -4, 1), C(1, -3, 5).
- 10.18. A(0, y, 0), B(0, 5, -9), C(-1, 0, 5).
- 10.19. A(0, y, 0), B(-2, 4, -6), C(8, 5, 1).
- 10.20. A(0, y, 0), B(7, 3, -4), C(1, 5, 7).
- 10.21. A(0, y, 0), B(0, -2, 4), C(-4, 0, 4).
- 10.22. A(x, 0, 0), B(0, 1, 3), C(2, 0, 4).
- 10.23. A(x, 0, 0), B(4, 0, 5), C(5, 4, 2).
- 10.24. A(x, 0, 0), B(8, 1, -7), C(10, -2, 1).
- 10.25. A(x, 0, 0), B(3, 5, 6), C(1, 2, 3).
- 10.26. A(x, 0, 0), B(4, 5, -2), C(2, 3, 4).
- 10.27. A(x, 0, 0), B(-2, 0, 6), C(0, -2, -4).
- 10.28. A(x, 0, 0), B(1, 5, 9), C(3, 7, 11).
- 10.29. A(x, 0, 0), B(4, 6, 8), C(2, 4, 6).
- 10.30. A(x, 0, 0), B(1, 2, 3), C(2, 6, 10).
- 10.31. A(x, 0, 0), B(-2, -4, -6), C(-1, -2, -3).

Задача 11. Пусть k – коэффициент преобразования подобия с центром в начале координат. Верно ли, что точка A принадлежит образу плоскости a ?

11.1.
$$A(1, 2, -1)$$
, $a: 2x+3y+z-1=0$, $k=2$.

11.2.
$$A(2, 1, 2)$$
, $a: x-2y+z+1=0$, $k=-2$.

11.3.
$$A(-1, 1, 1)$$
, $a: 3x - y + 2z + 4 = 0$, $k = 1/2$.

11.4.
$$A(-2, 4, 1)$$
, $a: 3x + y + 2z + 2 = 0$, $k = 3$.

11.5.
$$A(1, 1/3, -2)$$
, $a: x-3y+z+6=0$, $k=1/3$.

11.6.
$$A(1/2, 1/3, 1)$$
, $a: 2x-3y+3z-2=0$, $k=1,5$.

11.7.
$$A(2, 0, -1)$$
, $a: x-3y+5z-1=0$, $k=-1$.

11.8.
$$A(1, -2, 1)$$
, $a: 5x + y - z + 6 = 0$, $k = 2/3$.

11.9.
$$A(2, -5, 4)$$
, $a: 5x+2y-z+3=0$, $k=4/3$.

11.10.
$$A(2, -3, 1)$$
, $a: x+y-2z+2=0$, $k=5/2$.

11.11.
$$A(-2, 3, -3)$$
, $a: 3x+2y-z-2=0$, $k=3/2$.

11.12.
$$A(1/4, 1/3, 1)$$
, $a: 4x-3y+5z-10=0$, $k=1/2$.

11.13.
$$A(0, 1, -1)$$
, $a: 6x-5y+3z-4=0$, $k=-3/4$.

11.14.
$$A(2, 3, -2)$$
, $a: 3x-2y+4z-6=0$, $k=-4/3$.

11.15.
$$A(-2, -1, 1)$$
, $a: x-2y+6z-10=0$, $k=3/5$.

11.16.
$$A(5, 0, -1)$$
, $a: 2x - y + 3z - 1 = 0$, $k = 3$.

11.17.
$$A(1, 1, 1)$$
, $a: 7x-6y+z-5=0$, $k=-2$.

11.18.
$$A(1/3, 1, 1)$$
, $a: 3x - y + 5z - 6 = 0$, $k = 5/6$.

11.19.
$$A(2, 5, 1)$$
, $a: 5x-2y+z-3=0$, $k=1/3$.

11.20.
$$A(-1, 2, 3)$$
, $a: x-3y+z+2=0$, $k=2,5$.

11.21.
$$A(4, 3, 1)$$
, $a: 3x-4y+5z-6=0$, $k=5/6$.

11.22.
$$A(3, 5, 2)$$
, $a: 5x-3y+z-4=0$, $k=1/2$.

11.23.
$$A(4, 0, -3)$$
, $a: 7x-y+3z-1=0$, $k=3$.

11.24.
$$A(-1, 1, -2)$$
, $a: 4x-y+3z-6=0$, $k=-5/3$.

11.25.
$$A(2, -5, -1)$$
, $a: 5x+2y-3z-9=0$, $k=1/3$.

11.26.
$$A(-3, -2, 4)$$
, $a: 2x-3y+z-5=0$, $k=-4/5$.

11.27.
$$A(5, 0, -6)$$
, $a: 6x - y - z + 7 = 0$, $k = 2/7$.

11.28.
$$A(1, 2, 2)$$
, $a: 3x-z+5=0$, $k=-1/5$.

11.29.
$$A(3, 2, 4)$$
, $a: 2x-3y+z-6=0$, $k=2/3$.

11.30.
$$A(7, 0, -1)$$
, $a: x-y-z-1=0$, $k=4$.

11.31.
$$A(0, 3, -1)$$
, $a: 2x - y + 3z - 1 = 0$, $k = 2$.

Задача 12. Написать канонические уравнения прямой.

12.1.
$$2x + y + z - 2 = 0$$
, $2x - y - 3z + 6 = 0$.

12.2.
$$x-3y+2z+2=0$$
, $x+3y+z+14=0$.

12.3.
$$x-2y+z-4=0$$
, $2x+2y-z-8=0$.

12.4.
$$x + y + z - 2 = 0$$
, $x - y - 2z + 2 = 0$.

12.5.
$$2x + 3y + z + 6 = 0$$
, $x - 3y - 2z + 3 = 0$.

12.6.
$$3x + y - z - 6 = 0$$
, $3x - y + 2z = 0$.

12.7.
$$x + 5y + 2z + 11 = 0$$
, $x - y - z - 1 = 0$.

12.8.
$$3x + 4y - 2z + 1 = 0$$
, $2x - 4y + 3z + 4 = 0$.

12.9.
$$5x + y - 3z + 4 = 0$$
, $x - y + 2z + 2 = 0$.

12.10.
$$x - y - z - 2 = 0$$
, $x - 2y + z + 4 = 0$.

12.11.
$$4x + y - 3z + 2 = 0$$
, $2x - y + z - 8 = 0$.

12.12.
$$3x + 3y - 2z - 1 = 0$$
, $2x - 3y + z + 6 = 0$.

12.13.
$$6x - 7y - 4z - 2 = 0$$
, $x + 7y - z - 5 = 0$.

12.14.
$$8x - y - 3z - 1 = 0$$
, $x + y + z + 10 = 0$.

12.15.
$$6x - 5y - 4z + 8 = 0$$
, $6x + 5y + 3z + 4 = 0$.

12.16.
$$x + 5y - z - 5 = 0$$
, $2x - 5y + 2z + 5 = 0$.

12.17.
$$2x-3y+z+6=0$$
, $x-3y-2z+3=0$.

12.18.
$$5x + y + 2z + 4 = 0$$
, $x - y - 3z + 2 = 0$.

12.19.
$$4x + y + z + 2 = 0$$
, $2x - y - 3z - 8 = 0$.

12.20.
$$2x + y - 3z - 2 = 0$$
, $2x - y + z + 6 = 0$.

12.21.
$$x + y - 2z - 2 = 0$$
, $x - y + z + 2 = 0$.

12.22.
$$x + 5y - z + 11 = 0$$
, $x - y + 2z - 1 = 0$.

12.23.
$$x - y + z - 2 = 0$$
, $x - 2y - z + 4 = 0$.

12.24.
$$6x - 7y - z - 2 = 0$$
, $x + 7y - 4z - 5 = 0$.

12.25.
$$x + 5y + 2z - 5 = 0$$
, $2x - 5y - z + 5 = 0$.

12.26.
$$x-3y+z+2=0$$
, $x+3y+2z+14=0$.

12.27.
$$2x + 3y - 2z + 6 = 0$$
, $x - 3y + z + 3 = 0$.

12.28.
$$3x + 4y + 3z + 1 = 0$$
, $2x - 4y - 2z + 4 = 0$.

12.29.
$$3x + 3y + z - 1 = 0$$
, $2x - 3y - 2z + 6 = 0$.

12.30.
$$6x - 5y + 3z + 8 = 0$$
, $6x + 5y - 4z + 4 = 0$.

12.31.
$$2x-3y-2z+6=0$$
, $x-3y+z+3=0$.

Задача 13. Найти точку пересечения прямой и плоскости.

13.1.
$$\frac{x-2}{-1} = \frac{y-3}{-1} = \frac{z+1}{4}$$
, $x+2y+3z-14=0$.

13.2.
$$\frac{x+1}{3} = \frac{y-3}{-4} = \frac{z+1}{5}$$
, $x+2y-5z+20=0$.

13.3.
$$\frac{x-1}{-1} = \frac{y+5}{4} = \frac{z-1}{2}$$
, $x-3y+7z-24=0$.

13.4.
$$\frac{x-1}{1} = \frac{y}{0} = \frac{z+3}{2}$$
, $2x - y + 4z = 0$.

13.5.
$$\frac{x-5}{1} = \frac{y-3}{-1} = \frac{z-2}{0}$$
, $3x + y - 5z - 12 = 0$.

13.6.
$$\frac{x+1}{-3} = \frac{y+2}{2} = \frac{z-3}{-2}$$
, $x+3y-5z+9=0$.

13.7.
$$\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z+1}{-1}$$
, $x-2y+5z+17 = 0$.

13.8.
$$\frac{x-1}{2} = \frac{y-2}{0} = \frac{z-4}{1}$$
, $x-2y+4z-19=0$.

13.9.
$$\frac{x+2}{-1} = \frac{y-1}{1} = \frac{z+4}{-1}$$
, $2x - y + 3z + 23 = 0$.

13.10.
$$\frac{x+2}{1} = \frac{y-2}{0} = \frac{z+3}{0}$$
, $2x-3y-5z-7=0$.

13.11.
$$\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z+2}{3}$$
, $4x + 2y - z - 11 = 0$.

13.12.
$$\frac{x-1}{1} = \frac{y+1}{0} = \frac{z-1}{-1}$$
, $3x - 2y - 4z - 8 = 0$.

13.13.
$$\frac{x+2}{-1} = \frac{y-1}{1} = \frac{z+3}{2}$$
, $x+2y-z-2=0$.

13.14.
$$\frac{x+3}{1} = \frac{y-2}{-5} = \frac{z+2}{3}$$
, $5x - y + 4z + 3 = 0$.

13.15.
$$\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z-4}{3}$$
, $x+3y+5z-42=0$.

13.16.
$$\frac{x-3}{-1} = \frac{y-4}{5} = \frac{z-4}{2}$$
, $7x + y + 4z - 47 = 0$.

13.17.
$$\frac{x+3}{2} = \frac{y-1}{3} = \frac{z-1}{5}$$
, $2x+3y+7z-52=0$.

13.18.
$$\frac{x-3}{2} = \frac{y+1}{3} = \frac{z+3}{2}$$
, $3x + 4y + 7z - 16 = 0$.

13.19.
$$\frac{x-5}{-2} = \frac{y-2}{0} = \frac{z+4}{-1}$$
, $2x-5y+4z+24=0$.

13.20.
$$\frac{x-1}{8} = \frac{y-8}{-5} = \frac{z+5}{12}$$
, $x-2y-3z+18=0$.

13.21.
$$\frac{x-3}{1} = \frac{y-1}{-1} = \frac{z+5}{0}$$
, $x+7y+3z+11=0$.

13.22.
$$\frac{x-5}{-1} = \frac{y+3}{5} = \frac{z-1}{2}$$
, $3x+7y-5z-11=0$.

13.23.
$$\frac{x-1}{7} = \frac{y-2}{1} = \frac{z-6}{-1}$$
, $4x + y - 6z - 5 = 0$.

13.24.
$$\frac{x-3}{1} = \frac{y+2}{-1} = \frac{z-8}{0}$$
, $5x+9y+4z-25=0$.

13.25.
$$\frac{x+1}{-2} = \frac{y}{0} = \frac{z+1}{3}$$
, $x+4y+13z-23=0$.

13.26.
$$\frac{x-1}{6} = \frac{y-3}{1} = \frac{z+5}{3}$$
, $3x-2y+5z-3=0$.

13.27.
$$\frac{x-2}{4} = \frac{y-1}{-3} = \frac{z+3}{-2}$$
, $3x - y + 4z = 0$.

13.28.
$$\frac{x-1}{2} = \frac{y+2}{-5} = \frac{z-3}{-2}$$
, $x+2y-5z+16=0$.

13.29.
$$\frac{x-1}{1} = \frac{y-3}{0} = \frac{z+2}{-2}$$
, $3x-7y-2z+7=0$.

13.30.
$$\frac{x+3}{0} = \frac{y-2}{-3} = \frac{z+5}{11}$$
, $5x+7y+9z-32=0$.

13.31.
$$\frac{x-7}{3} = \frac{y-3}{1} = \frac{z+1}{-2}$$
, $2x + y + 7z - 3 = 0$.

Задача 14. Найти точку M', симметричную точке M относительно прямой (для вариантов 1-15) или плоскости (для вариантов 16-31).

14.1.
$$M(0, -3, -2), \frac{x-1}{1} = \frac{y+1,5}{-1} = \frac{z}{1}.$$

14.2.
$$M(2, -1, 1), \frac{x-4.5}{1} = \frac{y+3}{-0.5} = \frac{z-2}{1}.$$

14.3.
$$M(1, 1, 1), \frac{x-2}{1} = \frac{y+1,5}{-2} = \frac{z-1}{1}.$$

14.4.
$$M(1, 2, 3), \frac{x-0.5}{0} = \frac{y+1.5}{-1} = \frac{z-1.5}{1}.$$

14.5.
$$M(1, 0, -1), \frac{x-3.5}{2} = \frac{y-1.5}{2} = \frac{z}{0}.$$

14.6.
$$M(2, 1, 0), \frac{x-2}{0} = \frac{y+1,5}{-1} = \frac{z+0,5}{1}$$
.

14.7.
$$M(-2, -3, 0), \frac{x+0.5}{1} = \frac{y+1.5}{1} = \frac{z-0.5}{1}.$$

14.8.
$$M(-1, 0, -1), \frac{x}{-1} = \frac{y-1,5}{0} = \frac{z-2}{1}.$$

14.9.
$$M(0, 2, 1), \frac{x-1,5}{2} = \frac{y}{-1} = \frac{z-2}{1}$$
.

14.10.
$$M(3, -3, -1), \frac{x-6}{5} = \frac{y-3,5}{4} = \frac{z+0,5}{0}.$$

14.11.
$$M(3, 3, 3), \frac{x-1}{-1} = \frac{y-1,5}{0} = \frac{z-3}{1}.$$

14.12.
$$M(-1, 2, 0)$$
, $\frac{x+0.5}{1} = \frac{y+0.7}{-0.2} = \frac{z-2}{2}$.

14.13.
$$M(2, -2, -3)$$
, $\frac{x-1}{-1} = \frac{y+0.5}{0} = \frac{z+1.5}{0}$.

14.14.
$$M(-1, 0, 1), \frac{x+0.5}{0} = \frac{y-1}{0} = \frac{z-4}{2}.$$

14.15.
$$M(0, -3, -2)$$
, $\frac{x-0.5}{0} = \frac{y+1.5}{-1} = \frac{z-1.5}{1}$.

14.16.
$$M(1, 0, 1), 4x + 6y + 4z - 25 = 0.$$

14.17.
$$M(-1, 0, -1), 2x + 6y - 2z + 11 = 0.$$

14.18.
$$M(0, 2, 1), 2x + 4y - 3 = 0.$$

14.19.
$$M(2, 1, 0), y+z+2=0.$$

14.20.
$$M(-1, 2, 0), 4x-5y-z-7=0.$$

14.21.
$$M(2, -1, 1), x-y+2z-2=0.$$

14.22.
$$M(1, 1, 1), x+4y+3z+5=0.$$

14.23.
$$M(1, 2, 3), 2x+10y+10z-1=0.$$

14.24.
$$M(0, -3, -2), 2x+10y+10z-1=0.$$

14.25. M(1, 0, -1), 2y+4z-1=0.

14.26. M(3, -3, -1), 2x-4y-4z-13=0.

14.27. M(-2, -3, 0), x+5y+4=0.

14.28. M(2, -2, -3), y+z+2=0.

14.29. M(-1, 0, 1), 2x + 4y - 3 = 0.

14.30. M(3, 3, 3), 8x + 6y + 8z - 25 = 0.

14.31. M(-2, 0, 3), 2x-2y+10z+1=0.

Х. ЛИНЕЙНАЯ АЛГЕБРА

Теоретические вопросы

- 1. Линейное пространство. Базис. Координаты.
- 2. Преобразование координат вектора при переходе к новому базису.
- 3. Линейный оператор. Матрица оператора.
- 4. Преобразование матрицы оператора при переходе к новому базису.
- 5. Действия над линейными операторами.
- 6. Собственные векторы и собственные значения.
- 7. Евклидово пространство. Неравенство Коши-Буняковского.
- 8. Сопряженные и самосопряженные операторы. Их матрицы.
- 9. Ортогональное преобразование; свойства; матрица.
- 10. Квадратичные формы. Приведение квадратичной формы к каноническому виду с помощью ортогонального преобразования.

Теоретические упражнения

- 1. Найти какой-нибудь базис и размерность подпространства L пространства R_3 если L задано уравнением $x_1-2x_2+x_3=0$.
- 2. Доказать, что все симметрические матрицы третьего порядка образуют линейнос подпространство всех квадратных матриц третьего порядка. Найти базис и размерности этого подпространства.
- 3. Найти координаты многочлена $P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ в базися 1, (x-1), $(x-1)^2$, $(x-1)^3$.
 - 4. Линейный оператор A в базисе (e_1, e_2, e_3) имеет матрицу

Найти матрицу этого же оператора в базисе $(e_1, e_1+e_2, e_1+e_2+e_3)$.

5. Найти ядро и область значений оператора дифференцирования в пространстве многочленов, степени которых меньше или равны трем.

- 6. Пусть ${\bf x}$ и ${\bf y}$ собственные векторы оператора A, относящиеся к различным собственным значениям. Доказать, что вектор ${\bf z} = a{\bf x} + b{\bf y}, \ a \neq 0, \ b \neq 0$ не является собственным вектором оператора A.
- 7. Пусть $x = \{x_1, x_2, x_3\}$, $Ax = \{a_1x_1, a_2x_2, a_3x_3\}$. Будет ли оператор A самосопряженным?
- 8. Доказать, что если матрица оператора A симметрическая в некотором базисе, то она является симметрической в любом базисе (базисы ортонормированные).

Расчетные задания

- **Задача 1**. Образует ли линейное пространство заданное множество, в котором определены сумма любых двух элементов a и b и произведение любого элемента a на любое число a?
- 1.1. Множество всех векторов трехмерного пространства, координаты которых целык числа;

сумма a+b, произведение $a \cdot a$.

1.2. Множество всех векторов, лежащих на одной оси;

сумма a+b, произведение $a \cdot a$.

1.3. Множество всех векторов на плоскости, каждый из которых лежит на одной из осей;

сумма a+b, произведение $a\cdot a$.

1.4. Множество всех векторов трехмерного пространства;

сумма a+b, произведение $a\cdot a$.

1.5. Множество всех векторов, лежащих на одной оси;

сумма a+b, произведение $a\cdot |a|$.

1.6. Множество всех векторов, являющихся линейными комбинациями векторов x, y, z;

сумма a+b, произведение $a \cdot a$.

1.7. Множество всех функций a = f(t), b = g(t), принимающих положительные значения;

сумма $f(t) \cdot g(t)$, произведение $f^{a}(t)$.

1.8. Множество всех непрерывных функций $a=f\left(t\right),\,b=g\left(t\right),\,$ заданных на $\begin{bmatrix} 0,&1 \end{bmatrix};$

сумма f(t)+g(t), произведение $a \cdot f(t)$.

- 1.9. Множество всех четных функций a = f(t), b = g(t), заданных на [-1, +1]; сумма $f(t) \cdot g(t)$, произведение $f^a(t)$.
- 1.10. Множество всех нечетных функций $a=f\left(t\right),\,b=g\left(t\right),$ заданных на $\begin{bmatrix} -1,&+1 \end{bmatrix};$

сумма f(t)+g(t), произведение $a \cdot f(t)$.

- 1.11. Множество всех линейных функций $a = f(x_1, x_2), b = g(x_1, x_2);$ сумма $f(x_1, x_2) + g(x_1, x_2)$, произведение $a \cdot f(x_1, x_2).$
- 1.12. Множество всех многочленов третьей степени от переменной x; сумма a+b, произведение $a\cdot a$.
- 1.13. Множество всех многочленов степени, меньшей или равной трем от переменных x, y;

сумма a+b, произведение $a \cdot a$.

1.14. Множество всех упорядоченных наборов из n чисел

$$a = \{x_1, x_2, \dots, x_n\}, b = \{y_1, y_2, \dots, y_n\};$$

сумма $\{x_1 + y_1, x_2 + y_2, ..., x_n + y_n\}$, произведение $\{ax_1, ax_2, ..., ax_n\}$.

1.15. Множество всех упорядоченных наборов из n чисел

$$a = \{x_1, x_2, \dots, x_n\}, b = \{y_1, y_2, \dots, y_n\};$$

сумма $\{x_1y_1, x_2y_2, ..., x_ny_n\}$, произведение $\{ax_1, ax_2, ..., ax_n\}$.

- 1.16. Множество всех сходящихся последовательностей $a = \{u_n\}$, $b = \{u_n\}$; сумма $\{u_n + u_n\}$, произведение $\{au_n\}$.
- 1.17. Множество всех многочленов от одной переменной степени меньшей или равной n;

сумма a+b, произведение $a \cdot a$.

- 1.18. Множество всех многочленов от одной переменной степени n; сумма a+b, произведение $a\cdot a$.
- 1.19. Множество всех диагональных матриц

$$a = ||a_{ik}||, b = ||b_{ik}||, i, k = 1, 2, ..., n;$$

сумма $||a_{ik} + b_{ik}||$, произведение $||aa_{ik}||$.

1.20. Множество всех невырожденных матриц

$$a = ||a_{ik}||, b = ||b_{ik}||, i, k = 1, 2, ..., n;$$

сумма $||a_{ik}|| \cdot ||b_{ik}||$, произведение $||aa_{ik}||$.

1.21. Множество всех квадратных матриц

$$a = ||a_{ik}||, b = ||b_{ik}||, i, k = 1, 2, ..., n;$$

сумма $\|a_{ik} + b_{ik}\|$, произведение $\|aa_{ik}\|$.

- 1.22. Множество всех диагональных матриц $a = \|a_{ik}\|$, $b = \|b_{ik}\|$ размера $n \times n$; сумма $\|a_{ik}\| \cdot \|b_{ik}\|$, произведение $\|aa_{ik}\|$.
- 1.23. Множество всех квадратных матриц

$$a = ||a_{ik}||, b = ||b_{ik}||, i = 1, 2, ..., m; k = 1, 2, ..., n;$$

сумма $||a_{ik} + b_{ik}||$, произведение $||aa_{ik}||$.

1.24. Множество всех симметричных матриц

$$a = ||a_{ik}|| (a_{ik} = a_{ki}), b = ||b_{ik}|| (b_{ik} = b_{ki}), i, k = 1, 2, ..., n;$$

сумма $||a_{ik} + b_{ik}||$, произведение $||aa_{ik}||$.

1.25. Множество всех целых чисел;

сумма a+b, произведение $[a\cdot a]$.

1.26. Множество всех действительных чисел;

сумма a+b, произведение $a\cdot a$.

1.27. Множество всех положительных чисел;

сумма $a \cdot b$, произведение a^a .

1.28. Множество всех отрицательных чисел;

сумма $-|a|\cdot|b|$, произведение $-|a|^a$.

1.29. Множество всех действительных чисел;

сумма $a \cdot b$, произведение $a \cdot a$.

1.30. Множество всех дифференцируемых функций a = f(t), b = g(t);

сумма f(t)+g(t), произведение $a \cdot f(t)$.

1.31. Множество всех дифференцируемых функций a = f(t), b = g(t);

сумма $f(t) \cdot g(t)$, произведение $a \cdot f(t)$.

Задача 2. Исследовать на линейную зависимость систему векторов.

2.1.
$$a = \{1, 4, 6\}, b = \{1, -1, 1\}, c = \{1, 1, 3\}.$$

2.2. $\sin x$, $\cos x$, tg x на (-p/2, p/2).

2.3.
$$a = \{2, -3, 1\}, b = \{3, -1, 5\}, c = \{1, -4, 3\}.$$

2.4. 2, $\sin \mathbf{x}$, $\sin^2 \mathbf{x}$, $\cos^2 \mathbf{x}$ ha $(-\infty, +\infty)$.

2.5.
$$a = \{5, 4, 3\}, b = \{3, 3, 2\}, c = \{8, 1, 3\}.$$

2.6. 1, **х**, $\sin \mathbf{x}$ на $(-\infty, +\infty)$.

2.7.
$$a = \{1, 1, 1\}, b = \{0, 1, 1\}, c = \{0, 0, 1\}.$$

2.8. e^{x} , e^{2x} , e^{3x} на $(-\infty, +\infty)$.

2.9.
$$a = \{1, -1, 2\}, b = \{-1, 1, -1\}, c = \{2, -1, 1\}.$$

2.10. **x**, \mathbf{x}^2 , $(1+\mathbf{x})^2$ на $(-\infty, +\infty)$.

2.11.
$$a = \{1, 2, 3\}, b = \{4, 5, 6\}, c = \{7, 8, 9\}.$$

2.12. 1, \mathbf{x} , \mathbf{x}^2 , $(1+\mathbf{x})^2$ на $(-\infty, +\infty)$.

2.13.
$$a = \{1, 1, 1\}, b = \{1, 2, 3\}, c = \{1, 3, 6\}.$$

2.14. $\cos \mathbf{x}$, $\sin \mathbf{x}$, $\sin 2\mathbf{x}$ на (-p/2, p/2).

2.15.
$$a = \{3, 4, -5\}, b = \{8, 7, -2\}, c = \{2, 1, -8\}.$$

2.16. e^{x} , e^{-x} , e^{2x} на $(-\infty, +\infty)$.

2.17.
$$a = \{3, 2, -4\}, b = \{4, 1, -2\}, c = \{5, 2, -3\}.$$

2.18.
$$1 + \mathbf{x} + \mathbf{x}^2$$
, $1 + 2\mathbf{x} + \mathbf{x}^2$, $1 + 3\mathbf{x} + \mathbf{x}^2$ на $(-\infty, +\infty)$.

2.19.
$$a = \{0, 1, 1\}, b = \{1, 0, 1\}, c = \{1, 1, 0\}.$$

2.20. 1,
$$e^{x}$$
, $ch x$ на $(-\infty, +\infty)$.

2.21.
$$a = \{5, -6, 1\}, b = \{3, -5, -2\}, c = \{2, -1, 3\}.$$

2.22.
$$1/x$$
, **x**, 1 Ha $(0, 1)$.

2.23.
$$a = \{7, 1, -3\}, b = \{2, 2, -4\}, c = \{3, -3, 5\}.$$

2.24. 1,
$$tg \mathbf{x}$$
, $ctg \mathbf{x}$ на $(0, p/2)$.

2.25.
$$a = \{1, 2, 3\}, b = \{6, 5, 9\}, c = \{7, 8, 9\}.$$

2.26. **x**, 1+**x**,
$$(1+\mathbf{x})^2$$
 на $(-\infty, +\infty)$.

2.27.
$$a = \{2, 1, 0\}, b = \{-5, 0, 3\}, c = \{3, 4, 3\}.$$

2.28.
$$e^{x}$$
, xe^{x} , $x^{2}e^{x}$ на $(-\infty, +\infty)$.

2.29.
$$a = \{2, 0, 2\}, b = \{1, -1, 0\}, c = \{0, -1, -2\}.$$

2.30.
$$e^{x}$$
, sh x, ch x на $(-\infty, +\infty)$.

2.31.
$$a = \{-2, 1, 5\}, b = \{4, -3, 0\}, c = \{0, -1, 10\}.$$

Задача 3. Найти какой-нибудь базис и определить размерность линейного пространства решений системы.

3.1.
$$\begin{cases} 3x_1 + x_2 - 8x_3 + 2x_4 + x_5 = 0, \\ 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0, \\ x_1 + 11x_2 - 12x_3 + 34x_4 - 5x_5 = 0. \end{cases}$$
 3.2.
$$\begin{cases} 7x_1 + 2x_2 - x_3 - 2x_4 + 2x_5 = 0, \\ x_1 - 3x_2 + x_3 - x_4 - x_5 = 0, \\ 2x_1 + 5x_2 + 2x_3 + x_4 + x_5 = 0. \end{cases}$$

3.3.
$$\begin{cases} x_1 + x_2 + 10x_3 + x_4 - x_5 = 0, \\ 5x_1 - x_2 + 8x_3 - 2x_4 + 2x_5 = 0, \\ 3x_1 - 3x_2 - 12x_3 - 4x_4 + 4x_5 = 0. \end{cases}$$
3.4.
$$\begin{cases} 6x_1 - 9x_2 + 21x_3 - 3x_4 - 12x_5 = 0, \\ -4x_1 + 6x_2 - 14x_3 + 2x_4 + 8x_5 = 0, \\ 2x_1 - 3x_2 + 7x_3 - x_4 - 4x_5 = 0. \end{cases}$$

3.5.
$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 + x_5 = 0, \\ x_1 + 10x_2 - 3x_3 - 2x_4 - x_5 = 0, \\ 4x_1 + 19x_2 - 4x_3 - 5x_4 - x_5 = 0. \end{cases}$$

3.7.
$$\begin{cases} 12x_1 - x_2 + 7x_3 + 11x_4 - x_5 = 0, \\ 24x_1 - 2x_2 + 14x_3 + 22x_4 - 2x_5 = 0, \\ x_1 + x_2 + x_3 - x_4 + x_5 = 0. \end{cases}$$

3.9.
$$\begin{cases} 2x_1 - x_2 + 3x_3 - x_4 - x_5 = 0, \\ x_1 + 5x_2 - x_3 + x_4 + 2x_5 = 0, \\ x_1 + 16x_2 - 6x_3 + 4x_4 + 7x_5 = 0. \end{cases}$$

3.11.
$$\begin{cases} 8x_1 + x_2 + x_3 - x_4 + 2x_5 = 0, \\ 3x_1 - 3x_2 - 2x_3 + x_4 - 3x_5 = 0, \\ 5x_1 + 4x_2 + 3x_3 - 2x_4 + 5x_5 = 0. \end{cases}$$

$$3.13. \begin{cases} 7x_1 - 14x_2 + 3x_3 - x_4 + x_5 = 0, \\ x_1 - 2x_2 + x_3 - 3x_4 + 7x_5 = 0, \\ 5x_1 - 10x_2 + x_3 + 5x_4 - 13x_5 = 0. \end{cases} 3.14. \begin{cases} x_1 + 2x_2 + 3x_3 + x_4 - x_5 = 0, \\ 2x_1 - 2x_2 - 5x_3 - 3x_4 + x_5 = 0, \\ 3x_1 - 2x_2 + 3x_3 + 2x_4 - x_5 = 0. \end{cases}$$

3.15.
$$\begin{cases} x_1 + x_2 + x_3 - x_4 - x_5 = 0, \\ 2x_1 + x_2 - 2x_3 - x_4 - 2x_5 = 0, \\ x_1 + 2x_2 + 5x_3 - 2x_4 - x_5 = 0. \end{cases}$$

3.17.
$$\begin{cases} x_1 + 2x_2 - 3x_3 + 10x_4 - x_5 = 0, \\ x_1 - 2x_2 + 3x_3 - 10x_4 + x_5 = 0, \\ x_1 + 6x_2 - 9x_3 + 30x_4 - 3x_5 = 0. \end{cases}$$

3.19.
$$\begin{cases} 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0, \\ x_1 + 11x_2 - 12x_3 + 34x_4 - 5x_5 = 0, \\ x_1 - 5x_2 + 2x_3 - 16x_4 + 3x_5 = 0. \end{cases}$$

3.6.
$$\begin{cases} 5x_1 - 2x_2 + 3x_3 - 4x_4 - x_5 = 0, \\ x_1 + 4x_2 - 3x_3 + 2x_4 - 5x_5 = 0, \\ 6x_1 + 2x_2 - 2x_4 - 6x_5 = 0. \end{cases}$$

3.8.
$$\begin{cases} x_1 + 2x_2 + x_3 + 4x_4 + x_5 = 0, \\ 2x_1 - x_2 + 3x_3 + x_4 - 5x_5 = 0, \\ x_1 + 3x_2 - x_3 - 6x_4 - x_5 = 0. \end{cases}$$

$$3.10. \begin{cases} \frac{3}{2}x_1 + \frac{5}{4}x_2 + \frac{5}{7}x_3 + x_4 = 0, \\ \frac{3}{5}x_1 + \frac{1}{2}x_2 + \frac{2}{7}x_3 + \frac{2}{5}x_4 = 0, \\ \frac{1}{5}x_1 + \frac{1}{6}x_2 + \frac{2}{21}x_3 + \frac{2}{15}x_4 = 0. \end{cases}$$

3.12.
$$\begin{cases} x_1 + 3x_2 - x_3 + 12x_4 - x_5 = 0, \\ 2x_1 - 2x_2 + x_3 - 10x_4 + x_5 = 0, \\ 3x_1 + x_2 + 2x_4 = 0. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 - x_5 = 0, \\ 2x_1 - 2x_2 - 5x_3 - 3x_4 + x_5 = 0, \\ 3x_1 - 2x_2 + 3x_3 + 2x_4 - x_5 = 0. \end{cases}$$

3.16.
$$\begin{cases} 2x_1 + x_2 - 3x_3 + x_4 - x_5 = 0, \\ 3x_1 - x_2 + 2x_3 - x_4 + 2x_5 = 0, \\ x_1 - 2x_2 + 5x_3 - 2x_4 + 3x_5 = 0. \end{cases}$$

3.18.
$$\begin{cases} 2x_1 + x_2 - x_3 + 7x_4 + 5x_5 = 0, \\ x_1 - 2x_2 + 3x_3 - 5x_4 - 7x_5 = 0, \\ 3x_1 - x_2 + 2x_3 + 2x_4 - 2x_5 = 0. \end{cases}$$

3.20.
$$\begin{cases} 3x_1 + x_2 - 8x_3 + 2x_4 + x_5 = 0, \\ x_1 + 11x_2 - 12x_3 + 34x_4 - 5x_5 = 0, \\ x_1 - 5x_2 + 2x_3 - 16x_4 + 3x_5 = 0. \end{cases}$$

3.21.
$$\begin{cases} x_1 + 3x_2 - 5x_3 + 9x_4 - x_5 = 0, \\ 2x_1 - 2x_2 - 3x_3 - 7x_4 + 2x_5 = 0, \\ x_1 - 5x_2 + 2x_3 - 16x_4 + 3x_5 = 0. \end{cases}$$
 3.22.
$$\begin{cases} 5x_1 + 2x_2 - x_3 + 3x_4 + 4x_5 = 0, \\ 3x_1 + x_2 - 2x_3 + 3x_4 + 5x_5 = 0, \\ 6x_1 + 3x_2 - 2x_3 + 4x_4 + 7x_5 = 0. \end{cases}$$

3.23.
$$\begin{cases} 3x_1 + 2x_2 - 2x_3 - x_4 + 4x_5 = 0 \\ 7x_1 + 5x_2 - 3x_3 - 2x_4 + x_5 = 0 \\ x_1 + x_2 + x_3 - 7x_5 = 0. \end{cases}$$

3.25.
$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 0, \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 0, \\ 5x_1 + 7x_2 - 4x_3 - 6x_4 = 0. \end{cases}$$

3.27.
$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 + x_5 = 0, \\ x_1 + 2x_2 + 7x_3 - 4x_4 + x_5 = 0, \\ x_1 + 2x_2 + 11x_3 - 6x_4 + x_5 = 0. \end{cases}$$

$$3.29. \begin{cases} 3x_1 + 2x_2 + 4x_3 + x_4 + 2x_5 = 0, \\ 3x_1 + 2x_2 - 2x_3 + x_4 = 0, \\ 3x_1 + 2x_2 + 16x_3 + x_4 + 6x_5 = 0. \end{cases}$$

$$3.30. \begin{cases} x_1 + x_2 + x_3 + 2x_4 + x_5 = 0, \\ x_1 - 2x_2 - 3x_3 + x_4 - x_5 = 0, \\ 2x_1 - x_2 - 2x_3 + 3x_4 = 0. \end{cases}$$

3.31.
$$\begin{cases} x_1 - x_2 + x_3 - 2x_4 + x_5 = 0, \\ x_1 + x_2 - 2x_3 - x_4 + 2x_5 = 0, \\ x_1 - 3x_2 + 4x_3 - 3x_4 = 0. \end{cases}$$

$$\begin{cases} 5x_1 + 2x_2 - x_3 + 3x_4 + 4x_5 = 0, \\ 3x_1 + x_2 - 2x_3 + 3x_4 + 5x_5 = 0, \\ 6x_1 + 3x_2 - 2x_3 + 4x_4 + 7x_5 = 0. \end{cases}$$

$$3.23. \begin{cases} 3x_1 + 2x_2 - 2x_3 - x_4 + 4x_5 = 0, \\ 7x_1 + 5x_2 - 3x_3 - 2x_4 + x_5 = 0, \\ x_1 + x_2 + x_3 - 7x_5 = 0. \end{cases}$$

$$3.24. \begin{cases} 6x_1 + 3x_2 - 2x_3 + 4x_4 + 7x_5 = 0, \\ 7x_1 + 4x_2 - 3x_3 + 2x_4 + 4x_5 = 0, \\ x_1 + x_2 - x_3 - 2x_4 - 3x_5 = 0. \end{cases}$$

3.25.
$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 0, \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 0, \\ 5x_1 + 7x_2 - 4x_3 - 6x_4 = 0. \end{cases}$$
3.26.
$$\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 + 3x_5 = 0, \\ 2x_1 + 2x_2 + 4x_3 - x_4 + 3x_5 = 0, \\ x_1 + x_2 + 5x_3 - 5x_4 + 6x_5 = 0. \end{cases}$$

3.28.
$$\begin{cases} 6x_1 + 3x_2 + 2x_3 + 3x_4 + 4x_5 = 0, \\ 4x_1 + 2x_2 + x_3 + 2x_4 + 3x_5 = 0, \\ 2x_1 + x_2 + x_3 + x_4 + x_5 = 0. \end{cases}$$

3.30.
$$\begin{cases} x_1 + x_2 + x_3 + 2x_4 + x_5 = 0, \\ x_1 - 2x_2 - 3x_3 + x_4 - x_5 = 0, \\ 2x_1 - x_2 - 2x_3 + 3x_4 = 0. \end{cases}$$

Задача 4. Найти координаты вектора ${\bf x}$ в базисе $\left({\bf e}_1', \quad {\bf e}_2', \quad {\bf e}_3'\right)$, если он задан в базисе $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$.

4.1.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 2\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = 2\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{6, -1, 3\}. \end{cases}$$

4.2.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} + 3\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (3/2)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, 2, 4\}. \end{cases}$$

4.3.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 4\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (4/3)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, 3, 6\}. \end{cases}$$

4.5.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (4/3)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = 4\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{6, 3, 1\}. \end{cases}$$

4.7.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (5/4)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = 5\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{8, 4, 1\}. \end{cases}$$

4.9.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} + (6/5)\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = 6\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{10, 5, 1\}. \end{cases}$$

4.11.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (7/6)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = 7\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{-12, 6, 1\}. \end{cases}$$

4.13.
$$\begin{cases} \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - \mathbf{e}_3, \\ \mathbf{e}'_2 = (1/2)\mathbf{e}_1 - \mathbf{e}_2, \\ \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \\ \mathbf{x} = \{-3, 2, 4\}. \end{cases}$$

4.4.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} + (3/2)\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = 3\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{2, 4, 1\}. \end{cases}$$

4.6.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 5\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (5/4)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, 4, 8\}. \end{cases}$$

4.8.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 6\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (6/5)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{2, 5, 10\}. \end{cases}$$

4.10.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} + 7\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (7/6)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, 6, 12\}. \end{cases}$$

4.12.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 8\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (8/7)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{-1, 7, 14\}. \end{cases}$$

4.14.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} + (1/2)\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = -\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{2, 4, 3\}. \end{cases}$$

4.15.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} - 2\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (2/3)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{2, 6, -3\}. \end{cases}$$

4.17.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} - 3\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (3/4)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, -4, 8\}. \end{cases}$$

4.19.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} - 4\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (4/5)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{7, -5, 10\} \end{cases}$$

4.21.
$$\begin{cases} \mathbf{e}'_1 = \mathbf{e}_1 + \mathbf{e}_2 - 5\mathbf{e}_3, \\ \mathbf{e}'_2 = (5/6)\mathbf{e}_1 - \mathbf{e}_2, \\ \mathbf{e}'_3 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \\ \mathbf{x} = \{1, -6, 6\}. \end{cases}$$

4.23.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} - 6\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (6/7)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, 7, -7\}. \end{cases}$$

4.25.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} - 7\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (7/8)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{3, -8, 8\}. \end{cases}$$

4.16.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (2/3)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = -2\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{12, 3, -1\}. \end{cases}$$

4.18.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} - 3\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = (3/4)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, 4, -8\}. \end{cases}$$

4.20.
$$\begin{cases} \mathbf{e}_{1}' = \mathbf{e}_{1} + \mathbf{e}_{2} + (4/5)\mathbf{e}_{3}, \\ \mathbf{e}_{2}' = -4\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}_{3}' = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{5, -5, -4\}. \end{cases}$$

4.22.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (5/6)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = -5\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \end{cases}$$
$$\mathbf{x} = \{6, 6, 2\}.$$

4.24.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (6/7)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = -6\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{7, 7, 2\}. \end{cases}$$

4.26.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} - 8\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (8/9)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \\ \mathbf{x} = \{1, -9, 9\}. \end{cases}$$

4.27.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (8/9)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = -8\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \end{cases}$$

$$\mathbf{x} = \{9, 9, 2\}.$$
4.29.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + (9/10)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + (9/10)\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = -9\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \end{cases}$$

$$\mathbf{x} = \{10, 10, 7\}.$$
4.30.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 10\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (10/9)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \end{cases}$$

$$\mathbf{x} = \{1, 9, 18\}.$$
4.31.
$$\begin{cases} \mathbf{e}'_{1} = \mathbf{e}_{1} + \mathbf{e}_{2} + 11\mathbf{e}_{3}, \\ \mathbf{e}'_{2} = (11/10)\mathbf{e}_{1} - \mathbf{e}_{2}, \\ \mathbf{e}'_{3} = -\mathbf{e}_{1} + \mathbf{e}_{2} + \mathbf{e}_{3}, \end{cases}$$

$$\mathbf{x} = \{1, 10, 10\}.$$

Задача 5. Пусть $x = (x_1, x_2, x_3)$. Являются ли линейными следующие преобразования:

$$Ax = (6x_1 - 5x_2 - 4x_3, -3x_1 - 2x_2 - x_3, x_2 + 2x_3),$$
5.1.
$$Bx = (6 - 5x_2 - 4x_3, 3x_1 - 2x_2 - x_3, x_2 + 2),$$

$$Cx = (x_3^4, 3x_1 - 2x_2 - x_3, x_2 + 2x_3).$$

$$Ax = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, x_2 + 2),$$
5.2.
$$Bx = (5x_1 - 4x_2 - 3x_3, 0, x_2^4 + 2x_3),$$

$$Cx = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, x_2 + 2x_3).$$

$$Ax = (4x_1 - 3x_2 - 2x_3, x_1, x_1 + 2x_2^4 + 3x_3),$$

5.3.
$$Bx = (4x_1 - 3x_2 - 2x_3, x_1, x_1 + 2x_2 + 3x_3),$$

 $Cx = (4x_1 - 3x_2 - 2x_3, x_1, x_1 + 2x_2 + 3).$

$$Ax = (3x_1 + 2x_2 + x_3, x_3, 2x_1 - 3x_2 - 4x_3),$$

5.4.
$$Bx = (3x_1 + 2x_2 + x_3, 1, 2x_1 - 3x_2 - 4),$$

 $Cx = (3x_1 + 2x_2 + x_3, x_3, 2x_1^4 - 3x_2 - 4x_3).$

$$Ax = (x_1, x_1 - 2x_2 - 3, 4x_1 - 5x_2 - 6),$$

5.5.
$$Bx = (x_1, x_1 - 2x_2 - 3x_3, 4x_1^4 - 5x_2 - 6x_3),$$

 $Cx = (x_1, x_1 - 2x_2 - 3x_3, 4x_1 - 5x_2 - 6x_3).$

$$Ax = (2x_1 + x_2, x_2 - 2x_3, 3x_1 - 4x_2^2 - 5x_3),$$

5.6.
$$Bx = (2x_1 + x_2, x_2 - 2x_3, 3x_1 - 4x_2 - 5x_3),$$

 $Cx = (2x_1 + x_2, x_2 - 2x_3, 3x_1 - 4x_2 - 5).$

$$Ax = (x_1, x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3),$$

5.7.
$$Bx = (x_1, x_1 + 2x_2 + 3, 4x_1 + 5x_2 + 6),$$

 $Cx = (x_1, x_1 + 2x_2 + 3x_3, 4x_1^4 + 5x_2 + 6x_3).$

$$Ax = (3x_1 - 2x_2 - x_3, 1, x_1 + 2x_2 + 3),$$

5.8.
$$Bx = (3x_1 - 2x_2 - x_3, 0, x_1^3 + 2x_2 + 3x_3),$$

 $Cx = (3x_1 - 2x_2 - x_3, x_3, x_1 + 2x_2 + 3x_3).$

$$Ax = (2x_1 - x_2, x_3, x_1 + 2x_2 + 3x_3^4),$$

5.9.
$$Bx = (2x_1 - x_2, x_3, x_1 + 2x_2 + 3x_3),$$

 $Cx = (2x_1 - x_2, 1, x_1 + 2x_2 + 3).$

$$Ax = (x_3, 2x_1 + 3x_2 + 4x_3, 5x_1 + 6x_2 + 7x_3),$$

5.10.
$$Bx = (x_3, 2x_1 + 3x_2 + 4, 5x_1 + 6x_2 + 7),$$

 $Cx = (x_3, 0, 5x_1^4 + 6x_2 + 7x_3).$

$$Ax = (6x_1 - 5x_2 - 4x_3, 3x_1 - 2x_2 - x_3, 0),$$

5.11.
$$Bx = (6x_1 - 5x_2 - 4, 3x_1 - 2x_2 - x_3, 0),$$

$$Cx = (6x_1 - 5x_2 - 4x_3, 3x_1 - 2x_2 - x_3^2, 0).$$

$$Ax = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, x_3^2),$$

5.12.
$$Bx = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, 1),$$

$$Cx = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, x_3).$$

$$Ax = (4x_1 - 3x_2 - 2x_3, x_1^2, x_2 + 2x_3),$$

5.13.
$$Bx = (4x_1 - 3x_2 - 2x_3, x_1, x_2 + 2x_3),$$

$$Cx = (4x_1 - 3x_2 - 2, x_1, x_2 + 2).$$

$$Ax = (3x_1 + 2x_2 + x_3, 0, x_1 - 2x_2 - 3x_3),$$

5.14.
$$Bx = (3x_1 + 2x_2 + 1, 0, x_1 - 2x_2 - 3),$$

$$Cx = (3x_1 + 2x_2 + x_3, 0, x_1^2 - 2x_2 - 3x_3).$$

$$Ax = (x_1, x_2 - 2x_3, 3x_1 - 4x_2 - 5),$$

5.15.
$$Bx = (x_1, x_2^2, 3x_1 - 4x_2 - 5),$$

$$Cx = (x_1, x_2 - 2x_3, 3x_1 - 4x_2 - 5x_3).$$

$$Ax = (2x_1 + x_2, x_3^2, 2x_1 - 3x_2 - 4x_3),$$

5.16.
$$Bx = (2x_1 + x_2, x_3, 2x_1 - 3x_2 - 4x_3),$$

$$Cx = (2x_1 + x_2, x_3, 2x_1 - 3x_2 - 4).$$

$$Ax = (x_1, x_2 + 2x_3, 3x_1 + 4x_2 + 5x_3),$$

5.17.
$$Bx = (x_1, x_2 + 2x_3, 3x_1 + 4x_2 + 5),$$

 $Cx = (x_1, x_2^2 + 2x_3, 3x_1 + 4x_2 + 5x_3).$

$$Ax = (3x_1 - 2x_2 - 1, 0, x_1 + 2x_2 + 3x_3),$$

5.18.
$$Bx = (3x_1^2 - 2x_2 - x_3, 0, 0),$$

$$Cx = (3x_1 - 2x_2 - x_3, 0, x_1 + 2x_2 + 3x_3).$$

$$Ax = (2x_1^2 - x_2, x_3, 2x_2 + 3x_3),$$

5.19.
$$Bx = (2x_1 - x_2, x_3, 2x_2 + 3x_3),$$

$$Cx = (2x_1 - x_2, x_3, 2x_2 + 3).$$

$$Ax = (0, x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3),$$

5.20.
$$Bx = (0, x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6),$$

$$Cx = (0, x_1^2 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3).$$

$$Ax = (6x_1 - 5x_2 - 4x_3, 3x_1 - 2x_2 - x_3, x_2),$$

5.21.
$$Bx = (6x_1 - 5x_2 - 4, 3x_1 - 2x_2 - x_3, x_2),$$

$$Cx = (6x_1 - 5x_2 - 4x_3^3, 3x_1 - 2x_2 - x_3, 0).$$

$$Ax = (5x_1 - 4x_2 - 3, 2x_1 - x_2, x_1 + 2x_2 + 3x_3),$$

5.22.
$$Bx = (5x_1 - 4x_2 - 3x_3^3, 2x_1 - x_2, x_1 + 2x_2 + 3x_3),$$

$$Cx = (5x_1 - 4x_2 - 3x_3, 2x_1 - x_2, x_1 + 2x_2 + 3x_3).$$

$$Ax = (4x_1 - 3x_2^3 - 2x_3, x_1 + x_3, 0),$$

5.23.
$$Bx = (4x_1 - 3x_2 - 2x_3, x_1 + x_3, 2x_1 + 3x_2 + 4x_3),$$

$$Cx = (4x_1 - 3x_2 - 2, x_1 + x_3, 2x_1 + 3x_2 + 4x_3).$$

$$Ax = (3x_1 + 4x_2 + 5x_3, 6x_1 + 7x_2 + 8x_3, 9x_1 + x_3),$$

5.24.
$$Bx = (3x_1 + 4x_2 + 5, 6x_1 + 7x_2 + 8, 9x_1 + x_3),$$

 $Cx = (3x_1 + 4x_2 + 5x_3^3, 6x_1 + 7x_2 + 8x_3, 0).$

$$Ax = (2x_1 + 3x_2 + 4, 5x_1 + 6x_2 + 7, 8x_1 + x_3),$$

5.25.
$$Bx = (2x_1 + 3x_2 + 4x_3^3, 5x_1 + 6x_2 + 7x_3, 0),$$

 $Cx = (2x_1 + 3x_2 + 4x_3, 5x_1 + 6x_2 + 7x_3, 8x_1 + x_3).$

$$Ax = (x_1^3 + x_3, 2x_1 + 3x_2 + 4x_3, 0),$$

5.26.
$$Bx = (x_1 + x_3, 2x_1 + 3x_2 + 4x_3, 5x_1 + 6x_2 + 7x_3),$$

 $Cx = (x_1 + 1, 2x_1 + 3x_2 + 4, 5x_1 + 6x_2 + 7x_3).$

$$Ax = (3x_1 - 2x_2 - x_3, x_2 + 2x_3, 3x_1 + 4x_2 + 5x_3),$$

5.27.
$$Bx = (3x_1 - 2x_2 - 1, x_2 + 2, 3x_1 + 4x_2 + 5x_3),$$

 $Cx = (3x_1 - 2x_2 - x_3^3, x_2 + 2x_3, 0).$

$$Ax = (2x_1 - x_2, x_1 + 2x_2 + 3, 4x_1 + 5x_2 + 6x_3),$$

5.28.
$$Bx = (2x_1 - x_2^3, x_1 + 2x_2 + 3x_3, 0),$$

 $Cx = (2x_1 - x_2, x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3).$

$$Ax = (x_1^3 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2),$$

5.29.
$$Bx = (x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2),$$

 $Cx = (x_1 + 2x_2 + 3, 4x_1 + 5x_2 + 6, 7x_1 + 8x_2).$

$$Ax = (x_2 + 2x_3, 3x_1 + 4x_2 + 5x_3, 6x_1 + 7x_2 + 8x_3),$$

5.30.
$$Bx = (x_2 + 2, 3x_1 + 4x_2 + 5, 6x_1 + 7x_2 + 8x_3),$$

 $Cx = (x_2^3 + 2x_3, 3x_1 + 4x_2 + 5x_3, 6x_1 + 7x_2 + 8x_3).$

$$Ax = (x_1^2, x_1 - x_3, x_2 + x_3),$$

5.31.
$$Bx = (1, x_1 - x_3, x_2 + x_3),$$

 $Cx = (x_1, x_1 - x_3, x_2 + x_3).$

Задача 6. Пусть $x = \{x_1, x_2, x_3\}$, $Ax = \{x_2 - x_3, x_1, x_1 + x_3\}$,

 $Bx = \{x_2, 2x_3, x_1\}$. Найти:

6.2.
$$A^2x$$
.

6.3.
$$(A^2 - B)x$$
.

6.4.
$$B^4x$$
.

6.5.
$$B^2x$$
.

6.6.
$$(2A+3B^2)x$$
.

6.7.
$$(A^2 + B^2)x$$
. 6.8. $(B^2 + A)x$.

6.8.
$$(B^2 + A)x$$
.

6.10.
$$B(2A-B)x$$
. 6.11. $A(2B-A)x$.

6.11.
$$A(2B-A)x$$
.

6.12.
$$2(AB+2A)x$$
.

6.13.
$$(A-B)^2 x$$
.

6.13.
$$(A-B)^2 x$$
. 6.14. $(B-2A^2)x$.

6.15.
$$BA^2x$$
.

6.16.
$$(3A^2 + B)x$$
. 6.17. $(A^2 + B)x$. 6.18. $(A^2 - B^2)x$.

6.17.
$$(A^2 + B)x$$
.

6.18.
$$(A^2 - B^2)x$$

6.19.
$$(2B - A^2)x$$
. 6.20. B^3x .

6.20.
$$B^3x$$
.

6.21.
$$(B^2 - 2Ax)$$
.

6.22.
$$(A(B+A))x$$
. 6.23. $(AB^2)x$. 6.24. $(A(B-A))x$.

6.23.
$$(AB^2)x$$
.

6.24.
$$(A(B-A))x$$

6.25.
$$2(B+2A^2+B^2)x$$
. 6.26. $(B(A-B))x$. 6.27. $(B-A+B^2)x$.

6.26.
$$(B(A-B))x$$
.

6.27.
$$(B-A+B^2)x$$

6.28.
$$(B(A+B))x$$
.

6.29.
$$(A + BA - B)x$$
.

6.29.
$$(A + BA - B)x$$
. 6.30. $(3B + 2A^2)x$.

6.31.
$$(B(2A+B))x$$
.

Задача 7. Найти матрицу в базисе (e_1', e_2', e_3') , где

$$e'_1 = e_1 - e_2 + e_3$$
, $e'_2 = -e_1 + e_2 - 2e_3$, $e'_3 = -e_1 + 2e_2 + e_3$,

если она задана в базисе (e_1, e_2, e_3) .

$$7.1. \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$7.2. \begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 4 \\ 1 & -1 & 2 \end{pmatrix}$$

$$7.1. \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 0 \\ 1 & 1 & -2 \end{pmatrix}. \qquad 7.2. \begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 4 \\ 1 & -1 & 2 \end{pmatrix}. \qquad 7.3. \begin{pmatrix} 0 & 2 & 3 \\ 4 & 1 & 0 \\ 2 & -1 & -2 \end{pmatrix}.$$

$7.4. \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix}.$ $7.7. \begin{pmatrix} 1 & 3 & 0 \\ 2 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}.$	$7.5. \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 2 \\ -1 & 1 & 2 \end{pmatrix}$ $7.8. \begin{pmatrix} 2 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$	7.6. $ \begin{pmatrix} 0 & 3 & 2 \\ 2 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix} $ 7.9. $ \begin{pmatrix} 0 & 1 & 2 \\ 4 & 0 & 1 \\ -1 & -2 & 1 \end{pmatrix} $
$ \begin{array}{cccc} $	$ \begin{array}{cccc} $	$ \begin{array}{cccc} $
$7.16. \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}.$ $\begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$	$7.17. \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 2 \\ 3 & -1 & 1 \end{pmatrix}.$ $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$	$7.18. \begin{pmatrix} 1 & 0 & 2 \\ 3 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}.$ $\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$
7.19. $ \begin{vmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \end{vmatrix} $ 7.22. $ \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix} $	$7.20. \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \end{bmatrix}.$ $7.23. \begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & 1 \\ -1 & 2 & 1 \end{bmatrix}.$ $(2.0.1)$	7.21. $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ 7.24. $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$
7.25. $ \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix} $ 7.28. $ \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} $	$7.26. \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & -1 \end{pmatrix}.$ $7.29. \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}.$	$7.27. \begin{pmatrix} 2 & 1 & -1 \\ -1 & 3 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$ $7.30. \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$

$$7.31. \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

Задача 8. Доказать линейность, найти матрицу, область значений и ядро оператора:

- 8.1. проектирования на ось Ox;
- 8.2. проектирования на плоскость z = 0;
- 8.3. проектирования на ось Oz;
- 8.4. зеркального отражения относительно плоскости Oyz;
- 8.5. проектирования на ось Oy;
- 8.6. проектирования на плоскость y = 0;
- 8.7. зеркального отражения относительно плоскости x y = 0;
- 8.8. зеркального отражения относительно плоскости y + z = 0;
- 8.9. проектирования на плоскость y z = 0;
- 8.10. проектирования на плоскость $y = \sqrt{3}x$;
- 8.11. проектирования на плоскость Oyz;
- 8.12. зеркального отражения относительно плоскости x z = 0;
- 8.13. зеркального отражения относительно плоскости Oxy;
- 8.14. поворота относительно оси Ox на угол p/2 в положительном направлении;
- 8.15. проектирования на плоскость x y = 0;
- 8.16. проектирования на плоскость y + z = 0;
- 8.17. зеркального отражения относительно плоскости x + y = 0;
- 8.18. зеркального отражения относительно плоскости y z = 0;
- 8.19. проектирования на плоскость x + y = 0;
- 8.20. проектирования на плоскость x z = 0;
- 8.21. зеркального отражения относительно плоскости x + z = 0;
- 8.22. поворота относительно оси Oz в положительном направлении на угол p/2;
- 8.23. проектирования на плоскость $\sqrt{3}y + z = 0$;

- 8.24. зеркального отражения относительно плоскости Oxz;
- 8.25. поворота в положительном направлении относительно оси O_y на угол p/2;
- 8.26. проектирования на плоскость x + z = 0;
- 8.27. проектирования на плоскость $y + \sqrt{3}z = 0$;
- 8.28. проектирования на плоскость $\sqrt{3}x + z = 0$;
- 8.29. проектирования на плоскость $\sqrt{3}x + y = 0$;
- 8.30. поворота относительно оси Oz в положительном направлении на угол p/4;
- 8.31. проектирования на плоскость $x \sqrt{3}z = 0$;

Задача 9. Найти собственные значения и собственные векторы матрицы.

$$9.19. \begin{pmatrix} \frac{7}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{4}{3} & \frac{5}{3} & -\frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

$$9.20. \begin{pmatrix} \frac{2}{3} & \frac{7}{3} & -\frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{5}{3} \end{pmatrix}$$

$$9.21. \begin{pmatrix} \frac{5}{3} & 0 & 0 \\ \frac{2}{3} & \frac{13}{3} & -\frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{11}{3} \end{pmatrix}$$

$$9.22. \begin{pmatrix} \frac{19}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{11}{3} \end{pmatrix}$$

$$9.23. \begin{pmatrix} 4 & ? & -1 \\ 2 & 3 & -2 \\ 1 & -1 & 2 \end{pmatrix}$$

$$9.24. \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$9.25. \begin{pmatrix} 3 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

$$9.26. \begin{pmatrix} 5 & 0 & 0 \\ 1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$$

$$9.27. \begin{pmatrix} 6 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & -1 & 4 \end{pmatrix}$$

$$9.28. \begin{pmatrix} 3 & -2 & -2 \\ -2/3 & 5/3 & -2/3 \\ -2/3 & 2/3 & -13/3 \end{pmatrix}$$

$$9.29. \begin{pmatrix} 5/3 & -2/3 & -4/3 \\ 0 & 1 & 0 \\ -2/3 & 2/3 & 7/3 \end{pmatrix}$$

$$9.30. \begin{pmatrix} 7 & -4 & -2 \\ -2 & 5 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$9.31. \begin{pmatrix} 4 & -3 & -3 \\ 1 & 2 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$

Задача 10. Привести квадратичную форму к каноническому виду методом Лагранжа.

10.1.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 + 4x_3^2$$
.

10.2.
$$4x_1^2 + 4x_1x_2 + 8x_1x_3 - 3x_2^2 + 4x_3^2$$
.

10.3.
$$4x_1^2 + 8x_1x_2 + 4x_1x_3 + x_3^2$$
.

10.4.
$$4x_1^2 + 8x_1x_2 + 4x_1x_3 + 3x_2^2 - 2x_3^2$$
.

10.5.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 3x_2^2 + 4x_2x_3 + x_3^2$$
.

10.6.
$$x_1^2 + 4x_1x_2 + 4x_2x_3 + x_3^2$$
.

10.7.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 - 3x_2^2 - 6x_2x_3 - 2x_3^2$$
.

10.8.
$$x_1^2 + 4x_1x_2 + 2x_1x_3 + 3x_2^2 + 2x_2x_3 + x_3^2$$
.

10.9.
$$x_1^2 + 4x_1x_3 - x_2^2 - 2x_2x_3 + 4x_3^2$$
.

10.10.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 + x_3^2$$
.

10.11.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 8x_2^2 + 12x_2x_3 + 4x_3^2$$
.

10.12.
$$4x_1^2 + 4x_1x_2 + 8x_1x_3 + 5x_2^2 + 8x_2x_3 + 4x_3^2$$
.

10.13.
$$4x_1^2 + 8x_1x_2 + 4x_1x_3 + 8x_2^2 + 8x_2x_3 + x_3^2$$
.

10.14.
$$4x_1^2 + 8x_1x_2 + 4x_1x_3 + 5x_2^2 + 8x_2x_3 + 4x_3^2$$
.

10.15.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 5x_2^2 + 12x_2x_3 + 7x_3^2$$
.

10.16.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 8x_2^2 + 16x_2x_3 + 7x_3^2$$
.

10.17.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 + 5x_2^2 + 10x_2x_3 + 4x_3^2$$
.

10.18.
$$x_1^2 + 4x_1x_2 + 2x_1x_3 + 5x_2^2 + 6x_2x_3 + x_3^2$$
.

10.19.
$$x_1^2 + 4x_1x_3 + x_2^2 + 2x_2x_3 + 4x_3^2$$
.

10.20.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + x_3^2$$
.

10.21.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 + 2x_3^2$$
.

10.22.
$$4x_1^2 + 4x_1x_2 + 4x_1x_3 - 3x_2^2 + 2x_3^2$$
.

10.23.
$$4x_1^2 + 8x_1x_2 + 4x_1x_3 + x_3^2$$
.

10.24.
$$4x_1^2 + 8x_1x_2 + 4x_1x_3 + 3x_2^2 - 4x_3^2$$
.

10.25.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 + 3x_2^2 + 4x_2x_3 - x_3^2$$
.

10.26.
$$x_1^2 + 4x_1x_2 + 4x_1x_3 - x_3^2$$
.

10.27.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 - 3x_2^2 - 6x_2x_3 - 4x_3^2$$
.

10.28.
$$x_1^2 + 4x_1x_2 + 2x_1x_3 + 3x_2^2 + 2x_2x_3 - x_3^2$$
.

10.29.
$$x_1^2 + 4x_1x_2 - x_2^2 - 2x_2x_3 + 2x_3^2$$
.

10.30.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 - x_3^2$$
.

10.31.
$$x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 + 4x_2x_3 + 3x_3^2$$
.

Задача 11. Привести квадратичную форму к каноническому виду ортогональным преобразованием.

11.1.
$$4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
.

11.2.
$$4x_1^2 + 4x_2^2 + x_3^2 - 2x_1x_2 + 2\sqrt{3}x_2x_3$$
.

11.3.
$$2x_1^2 + 2x_2^2 + 2x_3^2 + 8x_1x_2 + 8x_1x_3 - 8x_2x_3$$
.

11.4.
$$2x_1^2 + 9x_2^2 + 2x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

11.5.
$$-4x_1^2 - 4x_2^2 + 2x_3^2 - 4x_1x_2 + 8x_1x_3 - 8x_2x_3$$
.

11.6.
$$x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 - 2\sqrt{3}x_2x_3$$
.

11.7.
$$4x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 4x_1x_3 + 4x_2x_3$$
.

11.8.
$$3x_1^2 + x_2^2 - \frac{3}{2}x_3^2 + 2\sqrt{3}x_1x_2 - x_1x_3 + \sqrt{3}x_2x_3$$
.

11.9.
$$-x_1^2 - x_2^2 - 3x_3^2 - 2x_1x_2 - 6x_1x_3 + 6x_2x_3$$
.

11.10.
$$x_1^2 - 7x_2^2 + x_3^2 - 4x_1x_2 - 2x_1x_3 - 4x_2x_3$$
.

11.11.
$$\frac{5\sqrt{2}}{4}x_1^2 + \frac{5\sqrt{2}}{4}x_2^2 + \frac{3\sqrt{2}}{2}x_3^2 + \frac{\sqrt{2}}{2}x_1x_2 + x_1x_3 + x_2x_3$$
.

11.12.
$$3x_1^2 - 7x_2^2 + 3x_3^2 + 8x_1x_2 - 8x_1x_3 - 8x_2x_3$$
.

11.13.
$$x_1^2 + 5x_2^2 + x_3^2 - 4x_1x_2 + 5\sqrt{2}x_1x_3 + \sqrt{2}x_2x_3$$
.

11.14.
$$x_1^2 + x_2^2 + x_3^2 - \frac{4}{3}x_1x_2 - \frac{8\sqrt{2}}{3}x_2x_3$$
.

11.15.
$$-2x_1^2 + 2x_2^2 - 2x_3^2 - 4x_1x_2 + 5\sqrt{2}x_1x_3 + \sqrt{2}x_2x_3$$
.

11.16.
$$-(1/2)x_1^2 + 5x_2^2 - (1/2)x_3^2 - 4x_1x_2 + 3x_1x_3 + 4x_2x_3$$
.

11.17.
$$x_1^2 + x_2^2 + x_3^2 - 4x_1x_3 + 4x_2x_3$$
.

11.18.
$$-2x_1^2 + 2x_2^2 - 2x_3^2 + 4x_1x_2 - 6x_1x_3 + 4x_2x_3$$
.

11.19.
$$2x_1^2 + 3x_2^2 + 2x_3^2 - 8x_1x_2 - 4\sqrt{2}x_1x_3 + 2\sqrt{2}x_2x_3$$
.

11.20.
$$-4x_1^2 + x_2^2 - 4x_3^2 + 4x_1x_2 - 4x_1x_3 + 4x_2x_3$$
.

11.21.
$$10x_1^2 + 14x_2^2 + 7x_3^2 - 10x_1x_2 - \sqrt{2}x_1x_3 - 5\sqrt{2}x_2x_3$$
.

11.22.
$$(3/2)x_1^2 - 5x_2^2 + (3/2)x_3^2 + 4x_1x_2 - x_1x_3 - 4x_2x_3$$
.

11.23.
$$x_1^2 + x_2^2 + 2x_3^2 + 4x_1x_2 + 2\sqrt{2}x_1x_3 - 2\sqrt{2}x_2x_3$$
.

11.24.
$$2x_2^2 - 3x_3^2 - 2\sqrt{3}x_1x_2 - 4x_1x_3 + 4\sqrt{3}x_2x_3$$
.

11.25.
$$x_1^2 + x_2^2 + x_3^2 + \frac{4}{3}x_1x_2 + \frac{8\sqrt{2}}{3}x_2x_3$$
.

11.26.
$$x_1^2 + x_3^2 + 8x_1x_2 + 4\sqrt{2}x_1x_3 - 2\sqrt{2}x_2x_3$$
.

11.27.
$$5x_1^2 + 13x_2^2 + 5x_3^2 + 4x_1x_2 + 8x_2x_3$$
.

11.28.
$$2x_1^2 + 2x_2^2 + 2x_3^2 + \frac{2}{3}x_1x_2 + \frac{4\sqrt{2}}{3}x_2x_3$$
.

11.29.
$$5x_1^2 + 4x_2^2 + 2x_3^2 - 4x_1x_2 - 2\sqrt{2}x_1x_3 + 4\sqrt{2}x_2x_3$$
.

11.30.
$$-2x_1^2 + 5x_2^2 - 2x_3^2 + 4x_1x_2 + 4x_2x_3$$
.

11.31.
$$-3x_1^2 + 9x_2^2 + 3x_3^2 + 2x_1x_2 + 8x_1x_3 + 4x_2x_3$$
.

Задача 12. Исследовать кривую второго порядка и построить ее.

12.1.
$$-x^2 - y^2 + 4xy + 2x - 4y + 1 = 0$$
.

12.2.
$$2x^2 + 2y^2 - 2xy - 2x - 2y + 1 = 0$$
.

12.3.
$$4xy + 4x - 4y = 0$$
.

12.4.
$$-2x^2 - 2y^2 + 2xy - 6x + 6y + 3 = 0$$
.

12.5.
$$-3x^2 - 3y^2 + 4xy - 6x + 4y + 2 = 0$$
.

12.6.
$$-2xy - 2x - 2y + 1 = 0$$
.

12.7.
$$-x^2 - y^2 - 4xy - 4x - 2y + 2 = 0$$
.

12.8.
$$-4x^2 - 4y^2 + 2xy + 10x - 10y + 1 = 0$$
.

12.9.
$$4xy + 4x - 4y - 2 = 0$$
.

12.10.
$$x^2 + y^2 + 2xy - 8x - 8y + 1 = 0$$
.

12.11.
$$x^2 + y^2 + 4xy - 8x - 4y + 1 = 0$$
.

12.12.
$$x^2 + y^2 - 2xy - 2x + 2y - 7 = 0$$
.

12.13.
$$2xy + 2x + 2y - 3 = 0$$
.

12.14.
$$4x^2 + 4y^2 + 2xy + 12x + 12y + 1 = 0$$
.

12.15.
$$3x^2 + 3y^2 + 4xy + 8x + 12y + 1 = 0$$
.

12.16.
$$x^2 + y^2 - 8xy - 20x + 20y + 1 = 0$$
.

12.17.
$$3x^2 + 3y^2 - 2xy - 6x + 2y + 1 = 0$$
.

12.18.
$$4xy + 4x + 4y + 1 = 0$$
.

12.19.
$$3x^2 + 3y^2 - 4xy + 6x - 4y - 7 = 0$$
.

12.20.
$$-4xy - 4x + 4y + 6 = 0$$
.

12.21.
$$5x^2 + 5y^2 - 2xy + 10x - 2y + 1 = 0$$
.

12.22.
$$2x^2 + 2y^2 + 4xy + 8x + 8y + 1 = 0$$
.

12.23.
$$-x^2 - y^2 + 2xy + 2x - 2y + 1 = 0$$
.

12.24.
$$2x^2 + 2y^2 - 4xy - 8x + 8y + 1 = 0$$
.

12.25.
$$3x^2 + 3y^2 + 2xy - 12x - 4y + 1 = 0$$
.

12.26.
$$-4xy + 8x + 8y + 1 = 0$$
.

12.27.
$$2x^2 + 2y^2 - 2xy + 6x - 6y - 6 = 0$$
.

12.28.
$$x^2 + y^2 + 4xy + 4x + 2y - 5 = 0$$
.

12.29.
$$4xy + 4x - 4y + 4 = 0$$
.

12.30.
$$3x^2 + 3y^2 - 4xy + 4x + 4y + 1 = 0$$
.

12.31.
$$x^2 + y^2 - 4xy + 4x - 2y + 1 = 0$$
.