Bioinformatics II Winter Term 2016/17

Chapter 10: Diffusion MRI

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de/iaan/

E-Mail: schultz@cs.uni-bonn.de

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

January 31, 2017

10.1 Diffusion Tensor MRI

Introduction to Diffusion MRI

Goal: Investigate the microstructure of biological tissue using Magnetic Resonance Imaging (MRI)

Challenge: Voxel size is far too large to resolve the structures of interest

ø ≈ 0.1-20μm

Axon (nerve fiber) size

Images from Gordon Kindlmann

Introduction to Diffusion MRI

Approach: Use water molecules as a contrast agent

Exploits their spontaneous heat motion at the desired spatial scale

Analogy: Observe diffusion of ink on paper

Kleenex

Newspaper

Brownian Motion and Diffusivities

Molecular diffusion = Brownian motion of water molecules

- Random walk due to thermal energy
- Measured with the Diffusion Coefficient D
 - Proportionality constant in Fick's law: $\mathbf{J} = -D\nabla \mathbf{c}$
 - Brownian motion happens even without a concentration gradient ("self-diffusion")
- In white matter: $D \approx 1-5 \cdot 10^{-4} \text{ mm}^2/\text{s}$
- Due to interactions with cellular structures, D depends on spatial direction (anisotropic diffusion)

Introduction to Diffusion Weighting

Standard T₂ MRI

Diffusion Weighted MRI

$$S(d) = S_0 e^{-bd}$$

Vertical Gradient

Horizontal Gradient

The Diffusion Tensor Model

$$S(D(\mathbf{x})) = S_0 e^{-bD(\mathbf{x})}$$

 $D(\mathbf{x}) = \mathbf{x}^T \mathbf{D} \mathbf{x}$

D = 3x3 symmetric matrix "Diffusion Tensor"

Eigenvector Decomposition

Diffusion tensor **D** decomposes into:

- 3 eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3$
 - If **D** is positive definite: All $\lambda > 0$
 - Note: Diffusivity is a non-negative physical quantity. Due to measurement noise, we might obtain $S_0 < S(d)$, which can lead to **D** with negative λ's
- 3 orthogonal eigenvectors e₁/e₂/e₃
 - e₁ indicates single main fiber orientation

Axes of tensor ellipsoid are

- aligned with eigenvectors and
- scaled by eigenvalues

Estimating Diffusion Tensors

Stejskal-Tanner Equation:

$$S(\mathbf{x}) = S_0 e^{-b\mathbf{x}^T \mathbf{D} \mathbf{x}}$$

Taking the logarithm and solving for D
 produces a system of linear equations (one
 per measurement i):

$$\sum_{k,l} \mathbf{D} \mathbf{x}_{i} = -\frac{1}{b} \ln \frac{S(\mathbf{x}_{i})}{S_{0}}$$

$$\sum_{k,l} \mathbf{D}_{kl} [\mathbf{x}_{i}]_{k} [\mathbf{x}_{i}]_{l}$$

- **D** = symmetric 3x3 matrix \rightarrow six free variables
 - Due to noise, we usually take more than six measurements and find least squares solution

Matrix Trace / Mean Diffusivity

Matrix Trace

- Sum of diagonal elements: $tr(\mathbf{D}) = D_{xx}+D_{yy}+D_{zz}$

- Same as sum of eigenvalues: $\lambda_1 + \lambda_2 + \lambda_3$

Mean Diffusivity (MD)

- Average: $tr(\mathbf{D})/3$

- Approximately constant in healthy tissue
- Sensitive to edema, necrosis

Fractional Anisotropy (FA)

Fractional Anisotropy

- Quantifies the degree of anisotropy
 - Correlates with fiber density / integrity
 - Also correlates with orientation dispersion
- Based on variance of eigenvalues
- Normalized to [0,1](if positive definite)

$$FA = \sqrt{\frac{3}{2}} \frac{\sqrt{(\lambda_1 - MD)^2 + (\lambda_2 - MD)^2 + (\lambda_3 - MD)^2}}{\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$

Westin Measures

• Westin's c_l, c_p, c_s quantify the extent to which the tensor ellipsoid is linear / planar / spherical

$$c_l = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}$$

$$c_p = \frac{2(\lambda_2 - \lambda_3)}{\lambda_1 + \lambda_2 + \lambda_3}$$

$$c_s = \frac{3\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}$$

Superquadric Tensor Glyphs

• Ellipsoids suffer from visual ambiguities:

Superquadric Glyphs greatly reduce them:

The Idea Behind Superquadric Glyphs

- Ellipsoids are transformations of the sphere
- Superquadrics smoothly interpolate between sphere, cylinder, and box

Ellipsoids

Superquadrics

Summary: Diffusion Tensor MRI

- DT-MRI is based on measuring magnitude of Brownian heat motion
 - Unlike standard MRI, DT-MRI is quantitative (calibrated), at least in theory
- Probe for tissue microstructure: Interactions between water and tissue leave a "footprint" on diffusion behavior
 - Exploring it requires many measurements, 5 minutes or more scan time for full-brain analysis
- Model: Exponential decay with quadratic diffusivity
 - Diffusion Tensor = Coefficients of the quadratic form
 - Can be thought of in terms of diffusion ellipsoid
 - Main parameters for statistical analysis: Fractional Anisotropy (FA), Mean Diffusivity (MD)

10.2 Tract-Based Spatial Statistics

Skeletonization: Why?

 Obvious approach to full-brain analysis of Fractional Anisotropy maps is "VBM-Style": Normalization + Smoothing + Statistical Mapping (no segmentation or modulation needed)

Problems:

- Would like to avoid smoothing, since it works against our goal of breaking the resolution limit of MRI
- If alignment is imperfect,
 results are difficult to interpret

Tract-Based Spatial Statistics (TBSS)

- Idea: Limit statistical analysis to the center of white matter structures
 - Fractional Anisotropy highest near the center
 - Given the "mean white matter skeleton" as a surface, we can project largest FA values from all subjects to it
 - Reduces number of tests and compensates inaccuracies in the initial registration without any smoothing

The TBSS Pipeline

Fit Diffusion Tensor Model Compute FA Maps Study-Specific Template Nonlinear Normalization Project Individual FA Maps Skeletonize Mean FA Map Statistical Analysis, **Restricted to the Skeleton**

Intuition Behind Ridge Lines

Definitions by Merriam-Webster:

- ridge = "an elongate crest"
- crest = "top line of mountain or hill"

Image: Wikipedia

Reminder: Curvature in 1D

Reminder: Curvature in 2D

Surfaces have two *principal curvatures* whose signs may or may not agree.

Examples:

Eigenvectors and -values of Hessian Matrix

• Reminder: The Hessian matrix is the matrix of partial second derivatives:

$$H = \begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix}$$

- Since Hessian matrix is real and symmetric (for sufficiently smooth f),
 - its eigenvectors e_i are orthogonal
 - can serve as a basis of the domain
 - its eigenvalues λ_i are real
 - $\lambda_i < 0$: f is concave in direction \mathbf{e}_i
 - $\lambda_i > 0$: f is convex in direction \mathbf{e}_i

Definition: Height Ridge Lines in 2D

Definition from [Eberly 1996]:

- Assume a 2D scalar field with gradient **g** and Hessian **H** (\mathbf{e}_i / λ_i s.t. $\lambda_1 \ge \lambda_2$)
- At a **local maximum**, $|\mathbf{g}|=0$, $\lambda_i<0$
 - Only true in isolated points
- To get ridge lines, only ask for vanishing |g| in direction of strongest concavity

$$\mathbf{g} \cdot \mathbf{e}_2 = 0 \wedge \lambda_2 < 0$$

Valleys are defined in complete analogy

$$\mathbf{g} \cdot \mathbf{e}_1 = 0 \wedge \lambda_1 > 0$$

Ridges + Valleys are collectively called Creases

Illustration: Height Ridge Lines in 2D

OnRidgeLine

Height Ridge Lines and Surfaces in 3D

- Assume a 3D scalar field with gradient **g** and Hessian **H** (\mathbf{e}_i / λ_i s.t. $\lambda_1 \ge \lambda_2 \ge \lambda_3$)
- At a **local maximum** (point), $|\mathbf{g}| = 0$, $\lambda_i < 0$
- Asking for vanishing |g| in direction of strongest concavity leads to a ridge surface

$$\mathbf{g} \cdot \mathbf{e}_3 = 0 \wedge \lambda_3 < 0$$

 To get a ridge line, ask for vanishing |g| in plane of strongest concavity

$$\mathbf{g} \cdot \mathbf{e}_3 = 0 \land \mathbf{g} \cdot \mathbf{e}_2 = 0 \land \lambda_3 < 0 \land \lambda_2 < 0$$

Again, valleys are defined in complete analogy

Projection To The Ridge: Practice

Build vector field for projection from

1. Gradient direction **g** (where strong enough)

2. Direction \mathbf{e}_3 of strongest concavity (elsewhere)

3. Slight smoothing

 Justification: Slight inaccuracies along the skeleton can be tolerated

Projection To The Ridge: Sample Results

- Image shows the same mean skeleton (yellow) on six different individuals
 - Arrows point to voxel from which value was taken

TBSS: Synesthesia

- [Rouw/Scholte 2007] showed that graphemecolor synesthesia is associated with increased FA in several white matter regions
 - 18 synesthetes vs. 18 normal controls
 - FA in fusiform gyrus correlated with "strength" of synesthetic experience

TBSS: A Juggling Study

- [Scholz et al. 2009] showed that learning how to juggle not only leads to observable changes in gray matter density, but also to increased FA in adjacent white matter
 - 48 subjects assigned to equally sized training and control groups
 - Longitudinal comparison (across time)

Summary: Skeletonization

- Problem: In statistical analysis of FA maps, we would like to compensate incomplete alignment without smoothing
- Tract-Based Spatial Statistics is the standard approach to this problem
 - Restricts statistical analysis to a "skeleton"
 - Projection to that skeleton compensates for initial misalignment

10.3 Fiber Tracking

Motivation: Fiber Tracking

- Fiber tracking / tractography uses inferred local fiber directions to reconstruct the trajectories of major nerve fiber pathways
 - Find out in which bundle a difference was localized
 - Perform statistical analysis along a bundle
 - Study fiber geometry itself (e.g., particularly of interest when planning surgery)

Deterministic Fiber Tracking

• In deterministic tractography, we proceed along a fixed tangent direction in each step

Sample Result: Deterministic Tracking

Fiber Tracking as Solution of an ODE

 Deterministic Tractography can be viewed as solving the ordinary differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{v}\big(\mathbf{x}(t)\big)$$

- Vector field v derived from dMRI model
- Example: Major eigenvector of diffusion tensor
- Choose sign of v so that we are tracking forwards

Basser et al. [2000]:

- Euler integration with stepsize s: $\mathbf{x}_{i+1} = \mathbf{x}_i + s \ \mathbf{v}(\mathbf{x}_i)$
- More exact: Higher-order schemes (Runge-Kutta)
- Stop on high curvature or low anisotropy
- Use interpolation to obtain continuous tensor field
- At each step, interpolate tensor and compute its principal eigenvector

FACT

Fiber Assignment by Continuous Tracking (FACT)

[Mori et al. 1999]

- Follow principal eigenvector until voxel is left
- Stop when direction would change abruptly

Image taken from Mori et al. [1999]

Success: White Matter Atlases

- [Catani et al. 2002] Deterministic tractography reliably reconstructs many previously known large-scale white matter tracts
 - Previously not possible to study them in vivo

Success: Surgical Planning

- [Wu et al. 2007] randomly either used (n=118) or did not use (n=120) dMRI for planning brain tumor surgery. They report that dMRI led to
 - Greater chance of complete resection
 - Reduced chance of postoperative motor deterioration
 - Longer survival
- But: Due to software constraints, mostly based on FA maps, fiber tracking only used in 23 cases

Success: White Matter Architecture

- [Wedeen et al. 2012] used fiber tracking for a comparative study of white matter geometry in humans and several non-human primates
 - 3D grid of parallel sheets of near-orthogonally interwoven paths
 - Strong cross-species homologies
 - Postulate three principal axes of development

Pros and Cons of Deterministic Tracking

Advantages of Deterministic Tractography:

- Relatively simple and fast
- Successfully reconstructs many known bundles
- Leads to crisp visualizations

Limitations of Deterministic Tractography:

- No way to distinguish between highly reproducible streamlines and noise-induced false positives
- Streamlines do not have an anatomical counterpart
 - Individual axons are much smaller
 - Fiber bundles are not point-to-point connections

Summary: Diffusion MRI

- During its spontaneous heat motion, water interacts with tissue at (sub-)cellular level
- Diffusion MRI probes this restricted diffusion behavior to draw conclusions about structures that are far below image resolution
 - Scalar indices of tissue microstructure (e.g., Fractional Anisotropy)
 - Statistical analysis often involves skeletonization
 - Tractography: Reconstruction of white matter pathways
 - Multi-fiber models to track through crossings
 - Additional contrast even within gray matter

10.4 BundleMAP

One Feature Per Voxel?

- 1st Traditional Approach:
 One feature per voxel and metric
 - Consequence: "small n, large p"
 - ≈60 subjects
 - ≈120.000 features,
 most of which are irrelevant
 - Feature selection / feature weighting required

One Feature Per Tract?

2nd Traditional Approach:

Features from connectivity matrices

- Consequence:
 - One feature per tract and metric
 - Might water down power if only some part of a (long) tract is affected

Along-the-tract Feature Extraction

 BundleMAP: Automatic anatomical correspondences between subjects

- Simplifies visual and statistical comparison:
 - Patients (NPSLE)
 - Healthy Controls

Prior Tools for Along-the-tract Analysis

- Manually specified cutting plane and arc-length
 - [Corouge et al. 2006]
 - [Zhu et al. 2010]
- Selection of prototype fiber and optimal matching of all others (Hungarian algorithm)
 - [O'Donnell et al. 2009]

A New Perspective

- Map curves to an idealized fiber bundle core
 - Latent 1D manifold, connecting two brain regions
 - Can be established using manifold learning
 - We make use of modified ISOMAP, thus the name BundleMAP

52

BundleMAP Pipeline

Tractography and Outlier Removal

- Tractography fully automated
 - Seeds set by registration to a template
 - Rough pre-alignment of fibers using same transform
- Outlier removal using one-class SVM
 - Represents each curve using mean+covariance
 [Brun et al. 2004]
 - Choice of v validated manually (v=0.1 almost always)

54

Manifold Learning

- Modifications to ISOMAP:
 - Apply a custom distance function
 - arc-length along the bundle
 - Projection on tangent otherwise

$$d(\mathbf{v}_1, \mathbf{v}_2) := \frac{1}{2} \sum_{i=1}^{2} \left| \frac{\mathbf{t}_i \cdot (\mathbf{v}_2 - \mathbf{v}_1)}{\|\mathbf{t}_i\|} \right|$$

- Normalize ISOMAP result to [0,1]
- Fix sign so that coordinates run left-to-right, backto-front, bottom-to-top
- Only apply ISOMAP to a subset of curves (cluster centers from k-means)
- Results interpolated to all curves

Results from Manifold Learning

Color-coded correspondences:

FA as a function of position along the tract:

Adaptive Binning

- Most suitable bin resolution will depend on tract and disease
 - We select the binning that maximizes

$$F = \frac{\|\mathbf{x}^{(p)} - \mathbf{x}^{(a)}\|^2 + \|\mathbf{x}^{(n)} - \mathbf{x}^{(a)}\|^2}{\frac{1}{|\mathcal{P}|-1} \sum_{\mathbf{x}_i \in \mathcal{P}} \|\mathbf{x}_i - \mathbf{x}^{(p)}\|^2 + \frac{1}{|\mathcal{N}|-1} \sum_{\mathbf{x}_i \in \mathcal{N}} \|\mathbf{x}_i - \mathbf{x}^{(n)}\|^2}$$

 Choice quite stable in cross-validation and clearly dependent on bundle:

Example Application

- 56 subjects from study on SLE (lupus)
 - 19 with neuropsychiatric symptoms (NPSLE)
 - 19 without NP symptoms (non-NPSLE)
 - 18 healthy controls
- 15 gradient directions at b=800 s/mm²
- 17 major bundles throughout the whole brain, no specific prior hypothesis

Benefit for Classification and Regression

Improved Classification Accuracy:

	HC vs. non-NPSLE	HC vs. NPSLE
TBSS + F-Scores	70%	70%
Tract-Based	54%	70%
BundleMAP	73%	76%

 Regression: Prediction of SLEDAI-Scores (range 0-24)

Baseline (blind): 5.43±3.49

Tract-based: 5.12±3.83

BundleMAP: 4.65±3.86

Ranking of Relevant Bundles

Anatomical Interpretability:

	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
HC vs. non-NPSLE	FOR r	FOR I	ATR r	BODY	CING I
HC vs. NPSLE	ATR r	IFO I	GENU	ATR I	ILF r
SLEDAI	ILF I	CST I	SLF I	IFO r	ATR I

- Good agreement with results from different method applied to independent data [Emmer et al. 2010]
- Fornix very plausible, but was not detected in TBSS analysis of same data
 - Our method was likely more successful to bring this thin structure into alignment [Bach et al. 2014]

Comparison to Arc-Length

- Simple and widely used alternative for parametrization:
 - Arc-length distance from a manually defined origin
 - Requires extrapolation
 - Led to poorer accuracy (68% in both cases)
 - Manifold learning adds robustness

Arc-Length Result

BundleMAP Result

Conclusion

- Propose to treat joint tract parametrization as a manifold learning problem
 - Fully automated and robust result
 - Simple implementation (based on ML packages)
- Integrated framework for supervised learning
 - Includes outlier removal and adaptive binning
 - Relatively good predictive power
 - Can also be used for statistics and visualization
 - Highlights most relevant bundles

Remainder of This Lecture

- Second project will be discussed on Tue Feb
 14 at 9:30 at Marschallsaal, B-IT
- Tue Feb 21 at 10:00 at LBH I.80: Question & Answer Session
- Fri Feb 24 at 9:30: Written exam in B-IT Lecture Hall
 - You can bring one A4 sheet of paper with handwritten notes
- Tue Mar 14 at 9:30: Re-exam in B-IT Lecture Hall

Further Reading

- D.K. Jones (editor): Diffusion MRI: Theory, Methods, and Applications. Oxford University Press, 2011
- Tournier, Mori, Leemans: Diffusion Tensor Imaging and Beyond. Magnetic Resonance in Medicine 65(6):1532-1556, 2011