Home Assignment 3 Solutions

STAT 151A Linear Modelling: Theory and Applications

Ajay Sharma — Spring 2025

Problem 1: Understand the summary of OLS - Part 1

(No real data is required for this problem.) Consider a hypothetical dataset, bodyfat.csv, containing the following columns: BODYFAT, AGE, WEIGHT, HEIGHT, WRIST, and THIGH. I want to run some OLS models for fitting and predicting BODYFAT.

(a) A colleague of mine suggests the following model:

BODYFAT =
$$\beta_0 + \beta_1 \text{ AGE} + \beta_2 \text{ WEIGHT} + \beta_3 \text{ HEIGHT} + \beta_4 (\text{WEIGHT} + 3 \times \text{HEIGHT}) + \beta_5 \text{ WRIST} + e.$$

Is this a good model to run? Why or why not?

Solution. It is not a good idea, because WEIGHT, HEIGHT, and WEIGHT+3*HEIGHT have perfect multicollinearity.

(b) I decide against including the variable WEIGHT+3*HEIGHT in the model, and instead fit

BODYFAT =
$$\beta_0 + \beta_1$$
 AGE + β_2 WEIGHT + β_3 HEIGHT + β_4 WRIST + e .

The following Python code fits this model:

```
X = bodyfat[["AGE", "WEIGHT", "HEIGHT", "WRIST"]]
X = sm.add_constant(X)
y = bodyfat["BODYFAT"]
model_M = sm.OLS(y, X).fit()
print(model_M.summary2())
```

The printed summary is:

Results: Ordinary least squares

Model: OLS Adj. R-squared: 0.460

Dependent Variable: BODYFAT AIC: 1595.0001

Date: ---- BIC: 1605.5883

No. Observations: 252 Log-Likelihood: -794.50

Df Model: 2 F-statistic: 107.9

Df Residuals: 249 Prob (F-statistic): 1.83e-34

R-squared: 0.464 Scale: 32.449

Coef.	Std.Err.	t P	 > t [0.025	0.975]	
const AGE WEIGHT	0.1827	0.0285	6.4027	0.000		0.2389

Omnibus: 0.941 Durbin-Watson: 1.834

Prob(Omnibus): 0.625 Jarque-Bera (JB): 0.876

Skew: 0.144 Prob(JB): 0.645 Kurtosis: 2.984 Condition No.: 1340

(i) Using the reported R-squared value in the summary, calculate the RSS of the model m. (Recall that we already know the TSS.)

Solution. Using the R^2 formula, we can calculate the RSS as

RSS = TSS ×
$$(1 - R^2)$$
 = 15079.0166 × $(1 - 0.464) \approx 8082$.

(ii) Calculate the F-statistic for testing the model m against the model M. Determine the distribution of this test statistic, and calculate the corresponding p-value.

Solution. We've learned from the class that the F-statistic is

$$\frac{\mathrm{RSS}(m) - \mathrm{RSS}(M)}{p - q} / \frac{\mathrm{RSS}(M)}{n - p - 1} \sim F_{p - q, n - p - 1},$$

where p and q are the number of variables in model M and model m. Thus,

$$\frac{8082 - 6530.9933}{4 - 2} / \frac{6530.9933}{252 - 4 - 1} \approx 29.32927.$$

As the F-statistic follows $F_{2,247}$, the p-value is $P_{X \sim F_{2,247}}(X > 29.3297) \approx 0.00$.

Problem 2: Understand the summary of OLS - Part 2

(No real data is required for this problem.) Using the same dataset (bodyfat.csv) from Problem 1, consider a different linear model:

BODYFAT =
$$\beta_0 + \beta_1 AGE + \beta_2 WEIGHT + \beta_3 HEIGHT + \beta_4 THIGH + e$$
.

If X represents the design matrix (including an intercept) with columns ordered as intercept, AGE, WEIGHT, HEIGHT, THIGH, then Python provides that:

$$(X^{\top}X)^{-1} = \begin{pmatrix} 3.740212 & -5.908838 \times 10^{-3} & 6.662131 \times 10^{-3} & -3.218478 \times 10^{-2} & -4.048953 \times 10^{-2} \\ -5.908838 \times 10^{-3} & 3.238651 \times 10^{-5} & -1.222843 \times 10^{-5} & 3.416435 \times 10^{-5} & 7.148357 \times 10^{-5} \\ 6.662131 \times 10^{-3} & -1.222843 \times 10^{-5} & 2.632523 \times 10^{-5} & -4.483899 \times 10^{-5} & -1.292477 \times 10^{-4} \\ -3.218478 \times 10^{-2} & 3.416435 \times 10^{-5} & -4.483899 \times 10^{-5} & 3.866748 \times 10^{-4} & 1.944136 \times 10^{-4} \\ -4.048953 \times 10^{-2} & 7.148357 \times 10^{-5} & -1.292477 \times 10^{-4} & 1.944136 \times 10^{-4} \end{pmatrix}$$

Additionally, the regression summary is given as follows (with missing entries filled):

Results: Ordinary least squares

Model: OLS Adj. R-squared: -----

Dependent Variable: BODYFAT AIC: -----

Date: ----- BIC: -----

No. Observations: 252 Log-Likelihood: -----

Df Model: 4 F-statistic: 71.01

Df Residuals: 247 Prob (F-statistic): -----

R-squared: 0.535 Scale: -----

Coef.	Std.Err.	t P>	t [0.0	0.97	[5]	
const AGE WEIGHT HEIGHT THIGH	-1.0742 0.1890 0.1237 -0.4607 0.3655	10.3055 0.0303 0.0273 0.1048 0.1495	-0.1042 6.2328 4.5256 -4.3970 2.4443			

(a) In the OLS model with intercept and p variables, the unbiased estimator of variance is given by $\hat{\sigma}^2 = \text{RSS}/(n-p-1)$. Using the provided information, compute $\hat{\sigma}^2$. **Solution.** Calculating via the relation between standard errors and $(X^{\top}X)^{-1}$:

$$\frac{10.3055^2}{3.74021202}\approx 28.3950, \quad \frac{0.0303^2}{3.23865148\times 10^{-5}}\approx 28.3479.$$

The exact value of $\hat{\sigma}^2$ is 28.3952.

(b) Using the computed $\hat{\sigma}^2$, compute RSS and TSS of the model. **Solution.** RSS = $247 \times \hat{\sigma}^2 \approx 7013.61$. From R^2 and RSS, TSS = 15079.0166.

- (c) Fill the five missing values (one in $(X^{\top}X)^{-1}$ and four in the summary). **Solution.**
 - Bottom-right entry of $(X^{\top}X)^{-1}$: 7.873440 × 10⁻⁴.
 - F-statistic: 71.01.
 - Standard error of WEIGHT: 0.0273.
 - $\bullet\,$ t-value of WEIGHT: 4.5256.
 - Coefficient of THIGH: 0.3655.

Problem 3: Leverage

Partition the design matrix $\widetilde{X} = [\mathbf{1}_n, X] \in \mathbb{R}^{n \times (p+1)}$, where X is the $n \times p$ matrix of non-intercept covariates, and $H_1 := \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\top}$. The sample covariance of X is

$$S := \frac{1}{n-1} \sum_{i=1}^{n} (x_i^{\top} - \bar{X})(x_i^{\top} - \bar{X})^{\top}.$$

- (a) Show that H_1 is symmetric and idempotent. Solution. Symmetry is immediate. Then $H_1^2 = \frac{1}{n^2} \mathbf{1}_n \mathbf{1}_n^{\top} \mathbf{1}_n \mathbf{1}_n^{\top} = H_1$.
- (b) Define $X_c = (I_n H_1)X$. Show that $S = \frac{1}{n-1}X_c^{\top}X_c$. **Solution.** The *i*th row of $(I_n - H_1)X$ is $x_i - \bar{X}^{\top}$. Summation yields $S = \frac{1}{n-1}X_c^{\top}X_c$.
- (c) Show that $S = \frac{1}{n-1}X^{\top}(I_n H_1)X$. **Solution.** Using idempotence and symmetry, $X_c^{\top}X_c = X^{\top}(I_n - H_1)X$.
- (d) Define $H_c = X_c (X_c^{\top} X_c)^{-1} X_c^{\top}$. Show that the *i*th diagonal of H_c is $h_{ii} 1/n$. **Solution.** Since $\widetilde{X} (\widetilde{X}^{\top} \widetilde{X})^{-1} \widetilde{X}^{\top} = H_1 + H_c$ and diagonals of H_1 are 1/n, it follows.

Problem 4: Leave-one-out

Consider the linear model $y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$, with ε_i iid $N(0, \sigma^2)$.

(a) Let \hat{y}_i be the fitted value and $\hat{y}_{i(i)}$ the prediction omitting the *i*th observation. Write $\hat{y}_i - \hat{y}_{i(i)}$ in terms of ε_i and h_{ii} .

Solution.

$$\hat{y}_{i(i)} = \hat{y}_i - \frac{h_{ii}}{1 - h_{ii}} (y_i - \hat{y}_i) = \hat{y}_i - \frac{h_{ii}}{1 - h_{ii}} \varepsilon_i,$$

thus $\hat{y}_i - \hat{y}_{i(i)} = \frac{h_{ii}}{1 - h_{ii}} \varepsilon_i$.

(b) Find the distribution of $\hat{y}_i - \hat{y}_{i(i)}$. **Solution.** Since $\varepsilon_i \sim N(0, (1 - h_{ii})\sigma^2)$,

$$\hat{y}_i - \hat{y}_{i(i)} \sim N\left(0, \sigma^2 \frac{h_{ii}^2}{1 - h_{ii}}\right).$$

(c) Suggest an unbiased estimator of σ^2 . **Solution.** From (b), set $\frac{1-h_{ii}}{h_{ii}^2}(\hat{y}_i - \hat{y}_{i(i)})^2$.

Problem 5: Bootstrap confidence interval for bias

The bootstrap bias estimate is defined as

$$\hat{\text{bias}} = \bar{\theta}^* - \hat{\theta}.$$

Use B = 1000 replicates to estimate the bias of $\hat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum (Y_i - \bar{Y})^2$ for $Y_i \sim N(0, 50)$, n = 20.

Solution. Refers to the .ipynb file; bias ≈ -2.39 .