Statistical inference links data and theory in network science

Who am 1?

Who am 1?

• Background:

- Master: Engineering Mathematics (Bristol)
- PhD: Computer Science (UCL)
- Postdoc:
 - Biofronters (Colorado)
 - Applied Maths (UCLouvain)
- Now: DAD department SBE
- (and publishes in physics journals)
- Research in Network Science

Background:

- Master: Engineering Mathematics (Bristol)
- PhD: Computer Science (UCL)
- Postdoc:
 - Biofronters (Colorado)
 - Applied Maths (UCLouvain)
- Now: DAD department SBE
- (and publishes in physics journals)
- Research in Network Science

Who am 1? = undisciplined researcher

What I'm going to tell you about today...

nature communications

Perspective

Statistical inference links data and theory in network science

Reconstructing networks from uncertain time-evolving data

Networks are all around us

Advances in scientific discovery across domains

Science of science

Personalised healthcare

Ecology

Crime science

Neuroscience

Network science allows us to analyse these systems as a whole

THEORY

APPLICATION

*Dramatic oversimplification

 Observations/ measurements

1. Observations/ measurements

2. Network representation

1. Observations/ measurements

- 2. Network representation
- 3. Network analysis

1. Observations/ measurements

2. Network representation

3. Network analysis

1. Observations/ measurements

2. Network representation

3. Network analysis

Obscured quality of data

1. Observations/ measurements

2. Network representation

3. Network analysis

Obscured quality of data

1. Obscured quality of data

This is NOT fine

Zachary's Karate Club

Zachary's Karate Club

Individual Number

Zachary's Karate Club

Does this edge exist?

Errors in network data create systematic biases...

Errors in network data create systematic

biases...

We don't know if the network represents the system

True Network

Reconstructed Network

$$P(\boldsymbol{A}|\boldsymbol{D}) = \frac{P(\boldsymbol{D}|\boldsymbol{A})P(\boldsymbol{A})}{P(\boldsymbol{D})}$$
.

Bayesian inference

11. Choice of representation

"I see networks!"

How does the network generate data?

(a) True network

Correlation "networks"

(a) True network t = 0.09t = 0.12t = 0.15

Correlation "networks"

(a) True network

(a) True network (b) Graphical LASSO

Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-441 (2008).

(a) True network (b) Graphical LASSO (c) Bayesian inference

Peixoto, T. P. Network Reconstruction and Community Detection from Dynamics. Phys. Rev. Lett. 123, 128301 (2019).

III. Suitability of the methods

Shortest path of a correlation network?

Maximum modularity of a network?

So now I have a network,
I can apply any network method, right?

How does a network generate my (noisy) data?

Dynamic generative model

How does a network generate my (noisy) data?

Dynamic generative model

How does a network generate my (noisy) data?

Dynamic generative model

How well can we reconstruct the network?

Generative model

Infer generating sequence of networks and underlying model parameters

Who are friends, who are enemies?

Dávid Ferenczi

Dávid Ferenczi

Who are friends, who are enemies?

Yijie Zhou

Assortativity in Chromatin networks

Investigate features of chromatin fragments and their interactions

Yiiie Zhou

Observations/ measurements

Obscured quality of data

Network representation

Network analysis

These steps are interdependent

Observations/ measurements

Network representation

Network analysis

Obscured quality of data

My group

Jiaze Li

Mingrong She

Dávid Ferenczi

Yijie Zhou

Contact:

I.peel@maastrichtuniversity.nl

Check out the paper!

Peel, L., Peixoto, T.P. & De Domenico, M. Statistical inference links data and theory in network science. *Nat Commun* **13**, 6794 (2022).

