ArchSummit

全球架构师峰会(北京)2014

阿里云虚拟化技术自研之路 阿里云张献涛(旭卿)

自我介绍

- 张献涛,花名旭卿,毕业于武汉大学,获信息安全博士学位。
- 供职于阿里巴巴集团,负责阿里云虚拟化技术团队,主导阿里云下一 代虚拟化架构的设计与研发工作。
- 加入阿里巴巴之前,供职于英特尔亚太研发中心虚拟化部门,有9年的虚拟化项目经验,先后担任高级工程师、主任工程师、虚拟化架构师等职位。
- 多个开源虚拟化项目Xen、Linux/KVM的主要贡献者,曾担任Xen项目子系统的Maintainer,并为KVM虚拟化项目增加了跨平台支持,实现了KVM在IA64平台的支持,并担任Linux内核KVM/IA64项目的Maintainer。
- 2011年,研发的HAXM虚拟机加速器为Android系统模拟器插上了飞翔的翅膀,性能提升数倍,开发效率倍增,惠及数以百万的Android应用开发人员,并因此获得英特尔最高成就奖(IAA)。
- 在国内外发表虚拟化相关论文多篇以及拥有多项美国专利。

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

ECS产品简介

• 应用程序的基础运行环境

- ECS(云服务器)是阿里云产品体系中,最基础的计算服务,通常用作应用程序的运行环境,其最重要的特点是弹性。
- 每个ECS实例上都运行着用户选择的操作系统,一般是某个Linux或Windows的发行版。用户的应用程序运行在实例的操作系统之上。

• 弹性的伸缩能力

ECS的最重要的特点是弹性,支持垂直和水平扩展两种能力。垂直扩展,可以在几分钟内升级CPU和内存,实时升级带宽;水平扩展,可以在几分钟内,创建数百个新的实例,完成任务后,可以立刻销毁这些实例

ECS系统架构图

- •虚拟化支持
- •分布式文件存储
- •快照制作
- •快照回滚
- •自定义image
- •故障迁移
- •在线迁移
- •网络组隔离
- •防ARP欺骗
- •自定义防火墙功能
- •支持防DDos攻击
- •提供流量清洗服务
- •动态升级

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

ECS软件系统架构

基于Xen/KVM虚拟化的Linux集群

硬件平台

ECS虚拟化底层架构

ECS虚拟化软件模块

- · Hypervisor 虚拟层(Including Xen, Xen Tools, Xend等)
 - 基于成熟的开源软件Xen
 - 为优化性能和稳定性, Xen核心代码改动超过100+项
 - 为增加系统多样性,基于KVM的其它Hypervisor方案在研

・Dom0 内核

- 基于Ali 内核分支,独立研发
- 涉及700+多个内核改动
- · 高性能前后端通讯技术 (PV Driver)
 - 基于开源的PV Driver进行研发优化
 - 优化后的高性能Driver提供更稳定高性能服务,优化项达近20项
 - 虚拟化网络驱动最高支持300W+ PPS

ECS虚拟化关键技术

- 硬件虚拟化技术
 - CPU采用硬件虚拟化技术VT-x , 内存采用EPT方式
 - 基于硬件虚拟化技术, VM性能可达同规格物理机95%以上
- 热迁移技术
 - 底层基于Xen热迁移研发,改动超过20+项
 - 独立研发热迁移控制系统
 - 优化后的热迁移达到业界领先水平
- ·内核Hotfix技术
 - 独立研发AliHotfix技术
 - 独立研发Hypervisor Hotfix技术,独具创新型

议程

- 阿里云弹性计算服务ECS介绍
- · ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

Intel® Virtualization Technology 即里云

- A hardware-assisted virtualization technology, named as Intel® Virtualization Technology, or Intel® VT
 - For Intel[®] 64, VT-x
 - For directed I/O, VT-d
 - For connectivity, VT-c
- VT-x: A new form of Intel® 64 CPU operation
 - Provides mechanisms for VMM software control of Intel[®] 64 CPUs
 - Includes "hooks" necessary for software control of memory and I/O resources
- VT-d: An extension of chipset technology for directed I/O
 - DMA remapping
 - Interrupt remapping etc.
- VT-c: A collection of I/O virtualization technologies
 - Lower CPU utilization
 - Reduced system latency
 - Improved throughput

ECS全面支持Intel VT技术提升计算性能

Intel VT-x CPU硬件虚拟化技术

VT-x技术让ECS CPU虚拟化效率提升至物理机95%以上

- EPT是为内存虚拟化而生
 - 降低软件复杂度
 - 提高内存虚拟化效率
- EPT让CPU感知两层页表
 - 完全消除内存虚拟化的软件参与
 - 客户机页表由硬件直接使用
- VM自由控制自己页表
 - 减少大量的VM Exit事件
 - 减少由于影子页表等机制造成的内存浪费
 - 内存虚拟化逻辑复杂度大大降低

- CPU TLB 'walks' Virtual memory to Physical memory
- EPT 'walks' Physical memory to Machine memory

EPT使VM内存访问效率<70%提高至97%以上

IO硬件虚拟化技术(SRIOV)

- One PF (Physical Function) can support multiple VF
 - Physical Function is a normal PCIe function support SR-IOV capability
 - Virtual Function is light-weight PCIe function that can be accessed by guest directly
 - Resource sharing among VF like ATC, configuration etc
 - VF own non-shared resource for function-specific service, like data buffer, working queue etc
- VF is discovered and configured by VMM before passing to guest
- Configuration to VF under control of PF and VMM

ECS使用SRIOV技术提供网络硬件级别Qos

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

ECS的典型业务场景

动态的热点均衡场景

灾难恢复

虚拟机热迁移技术

- 热迁移定义
 - 在不同物理机之间在线迁移虚拟机实例
 - 做到VM内的业务基本无感知
- 热迁移技术应用场景
 - 集群内的负载均衡
 - 机器硬件故障修复
 - 线上系统软件修复
 - 过保机器替换
 - 绿色计算
 - 主动运维

热迁移面临的技术挑战

- 线上运维标准极高
 - 要求VM Downtime控制在毫秒级
 - 网络链接无中断
 - 存储无感知
- 线上系统的复杂性
 - 镜像多样,机器型号复杂
 - 无法在线升级hypervisor, dom0
 - 历史遗留问题较多
- 虚拟化层热迁移不成熟
 - 虚拟化层Bug较多
 - Tool stack层热迁移算法和流程设计不合理
 - Qemu问题也较多

热迁移面临的技术挑战(续)

- Guest内核及PV driver支持不足
 - Debian, ubuntu等内核问题较多
- 存储层面
 - Pangu分布式存储系统
 - 锁争抢
 - Cache刷新
- 网络层面
 - 线上网络环境比较复杂
 - 各种型号交换机
 - MAC, ARP
 - SLB, VPC等

热迁移增强

- 修复虚拟化层面的一系列问题
 - Centos中断风暴问题
 - Windows双鼠标光点问题
 - ubuntu1204 2059年时间漂移问题
 - ubuntu1204 3500次迁移失败一次问题
 - VNC端口绑死问题
 - RDTSC模拟引起的性能问题
 - 解除Downtime和VM内存大小的绑定
- 修复网络层面的多个问题
 - 解决了i350网卡问题
 - 解决了mac漂移导致的交换机封端口问题
 - 解决了某型交换机在迁移场景下的bug
 - 解决了vm迁移后fake arp网络不通问题
 - 解除网络Breaktime和VM内存大小的绑定
 - **–**
- 存储层面
 - 解决了锁争抢问题: chunksweep, snapshot
 - 解决热迁移vm downtime过长的问题

热迁移优化后的指标

- 满足运维的所有条件,达到业界领先水平
 - 热迁移导致的VM宕机率 < 3%%
 - VM Downtime < 700ms
 - 网络链接无中断,网络无响应时间<2S
 - 线上机器的可迁移率 > 85%
 - 迁移过程中性能波动 <15%
 - 和Xenserver等比较,具有较强的优势
- 持续优化手段和目标
 - Multi-threading 传输
 - 引入内存压缩算法及算法的场景优化模式
 - 进一步降低迁移需要的时间
 - 进一步提高迁移成功率
 - 增加容错,降低迁移引起的宕机
 - 解决异构迁移

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

ECS Hotfix 技术

- · 系统Hotfix对业务运维的意义
 - 软件系统存在Bug在所难免
 - 宕机修复引起业务中断
 - 在云环境中,物理机重启影响面更广
- 系统Hotfix的目标
 - 用户无感知修复,一切尽在不言中
 - 无需宕机,增强系统的可用性
- ECS Hotfix技术分类
 - Xen Dom0 内核 Hotfix技术
 - Xen Hypervisor Hotfix技术
 - 客户机内核的Hotfix技术

Hotfix技术是规模化业务运维立命之本

Xen Dom0 内核Hotfix技术

- 业界较成熟的内核Hotfix方案
 - Ksplice by Oracle
 - Kgraft by Novell
 - Kpatch by Redhat
- 采用自主研发的AliHotfix技术
 - 修复Dom0内核Bug
 - 修复PV 驱动Bug
 - 修复系统安全漏洞

Xen Dom0 内核Hotfix技术

- AliHotfix技术原理
 - 基于函数动态替换技术
 - 新函数会以模块内函数的形式链接入内核
 - 旧函数的第一个指令改成强制跳转指令指向新函数
 - 在替换过程中需要暂停所有CPU,切到一个内核线程并关闭本地中断。
 - 刷新指令缓存,重新让CPU恢复执行
- Hotfix过程中需要注意的点
 - 修复NMI处理函数是不安全的
 - 修复的函数正在内核栈上,修复过程是不安全的
 - 新函数绝对不能调用旧函数,否则无穷递归
 - Inline函数不能被直接修复,需要修复调用者
- Dom0 Hotifx 案例
 - FPU Hotfix , netback hotfix , eflags hotfix
 - **—**

Xen Hypervisor Hotfix

- Hypervisor Hotfix需求
 - Xen 安全漏洞: http://xenbits.xen.org/xsa/
 - Xen功能性Bug
- Hypervisor Hotfix挑战极大
 - Xen Hypervisor 逻辑复杂
 - Xen 是type-1 Hypervisor, 不允许Dom0访问Hypervisor内存
 - 线上系统无法新增Hotfix接口
- Hypervisor Hotfix 是史无前例的工作
 - 仅仅是理论上可行的一种方法,无成功先例
 - 如何解决从Dom0 访问 Hypervisor内存
 - 如何精确定位Hypervisor function 物理地址
 - 如何精确替换有问题的代码段和数据段

Xen Hypervisor 安全架构

- Dom0无法通过CPU访问Xen hypervisor内存
- Dom0可通过设备DMA方式访问 Xen hypervisor 内存

如何计算 Hotfix代码/数据的地址 🥰 ற

- Hypervisor load过程
 - Hypervisor首先会被Load到低端地址
 - Hypervisor会把自己Relocate到高端地址
 - Hypervisor 高端地址的计算由系统的E820表决定
- Hypervisor Hotfix 物理地址计算公式
 - 假设需要fix的Hypervisor 函数 地址为0xffff82c480104818 (VA)
 - Hotfix点在Hypervisor内核实际偏移则为 PA'=VA & 0xffffff
 - 如果E820最后一个内存项为
 - BIOS-e820: pa_start pa_end (usable)
 - 则要Hotfix函数的物理地址为:
 - PA = pa_start (2M align) + PA'

如何通过DMA访问Hypervisor内存?

- 如何构造DMA请求
 - 不能随意构造不存在的DMA请求
 - 需要截获一个正常DMA请求,修改DMA的目的地址,以及要写入的数据
 - 选取哪个硬件设备, 网卡?硬盘?其它?
- 截获DMA请求的方法
 - DMA请求的内存管理来自于两个函数
 - dma_map_sg_attrs/dma_unmap_sg_attrs
 - 利用Alihotfix 替换内核的这两个函数
 - 在新的map_sg/unmap_sg中加入过滤逻辑
 - 筛选出特定的DMA请求,修改DMA目的地址

利用硬盘DMA请求Hotfix Hypervisor 内存

Hypervisor Hotfix 方案实现

- 内核态层面
 - Hotfix xen_pci_swiotlb_mag_sg/xen_pci_swiotlb_unmap_sg
 - 截获所有的DMA 请求的内存分配操作
- 用户态层面
 - 准备新的二进制代码段或数据段,把需要hotfix的代码和数据存入文件
 - 准备一应用程序,用于读写数据文件触发DMA操作,读数据文件,并提供一 buffer
- 用户态和内核态交互
 - 生成一misc device 节点 /dev/hotfix
 - 把需要hotfix的物理地址PA,数据长度,以及用户态 buffer的地址传入内核
 - 内核接受用户态参数后,动态监控是否用户态 buffer加入到sg list中
 - 一旦在sg list中发现用户态传过来的buffer。动态修改dma物理地址和dma 数据 长度(来自用户态)
 - 然后继续 DMA操作,通过这种方式把用户态数据文件中准备的数据动态填充到 Xen hypervisor内存中

关键路径需要暂停所有VM并做cache flush操作

正常的文件读操作流程

Hotfix Hypervisor流程

用户态分配内存buffer准备读文件

用户态把buffer地址以及hotfix信息传入内核

用户态发起read系统调用

内核态把buffer挂入map_sg_list

过滤DMA请求, 修改DMA目的地址

内核态调用驱动接口触发DMA操作

Hypervisor 内存

内存

议程

- 阿里云弹性计算服务ECS介绍
- · ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

实战案例一

ECS VM 热迁移

优化前的热迁移流程

优化后的VM迁移流程

VM downtime和网络无响应时间大大降低

实战案例二

XSA-108事件

问题根源

- KVM 引入了客户机x2apic 支持
 - 增强APIC访问的效率
 - Patch来自KVM maintainer
 - MSR寄存器组的边界计算错误
 - KVM代码进行了出错处理,因此 x2apic:MSR(0x808)
 幸免
- Xen 移植了KVM 的Patch
 - Xen无相关的错误处理,造成安全漏洞
 - 每个vCPU就造成4个页面泄露
 - 黑客可以通过重复启动VM,获得几乎所有的hypervisor内存

Registers in APIC page

PA=0xfee00000+ (MSR_index -0x800) *0x10

造成了虚拟机逃逸事件

如何修复?

- 方法1:打补丁后重启机器
 - 友商们的方法
- 方法2: Hypervisor Hotfix
 - 阿里云研发的Hypervisor Hotfix方案

40 03 74 24 20	1	0-20/8	555500-4-011-45C2.	40 04 74 24 20	1	0-20 (8) 8
48 8d 74 24 30	lea	0x30(%rsp),%rsi	ffff82c4c01b4f63:	48 8d 74 24 30	lea	0x30(%rsp),%rsi
c4c01b4f68: 48 89 5c 24 40		mov %rbx,0x40(%rsp) +	+ <u>+ 37 lines: ffff8</u>	2c4c01b4f68: 48 89 5c 24 40		mov %rbx,0x40
4c 8b 64 24 50	mov	0x50(%rsp),%r12	ffff82c4c01b5009:	4c 8b 64 24 50	MOV	0x50(%rsp),%r12
4c 8b 6c 24 58	mov	0x58(%rsp),%r13	ffff82c4c01b500e:	4c 8b 6c 24 58	mov	0x58(%rsp),%r13
4c 8b 74 24 60	mov	0x60(%rsp),%r14	ffff82c4c01b5013:	4c 8b 74 24 60	mov	0x60(%rsp),%r14
48 83 c4 68	add	\$0x68,%rsp	ffff82c4c01b5018:	48 83 c4 68	add	\$0x68,%rsp
c3	retq	I I	ffff82c4c01b501c:	c3	retq	
0f 1f 00	nopl	(%rax)	ffff82c4c01b501d:	0f 1f 00	nopl	(%rax)
81 fb 3f 08 00 00	cmp	\$0x83f,%ebx	ffff82c4c01b5020:	81 fb ff 0b 00 00	стр	\$0xbff,%ebx
76 40	jbe	ffff82c4c01b5068 <hvm< td=""><td>ffff82c4c01b5026:</td><td>76 40</td><td>jbe</td><td>ffff82c4c01b506</td></hvm<>	ffff82c4c01b5026:	76 40	jbe	ffff82c4c01b506
81 fb 03 01 00 c0	cmp	\$0xc0000103,%ebx	ffff82c4c01b5028:	81 fb 03 01 00 c0	cmp	\$0xc0000103,%eb
Of 84 14 01 00 00	je	ffff82c4c01b5148 <hvm< td=""><td>fffff82c4c01b502e:</td><td>0f 84 14 01 00 00</td><td>je</td><td>ffff82c4c01b514</td></hvm<>	fffff82c4c01b502e:	0f 84 14 01 00 00	je	ffff82c4c01b514
Of 87 4e 01 00 00	ja	ffff82c4c01b5188 <hvm< td=""><td>ffff82c4c01b5034:</td><td>0f 87 4e 01 00 00</td><td>ja</td><td>ffff82c4c01b518</td></hvm<>	ffff82c4c01b5034:	0f 87 4e 01 00 00	ja	ffff82c4c01b518
81 fb 80 00 00 c0	cmp	\$0xc0000080, %ebx	fffff82c4c01b503a:	81 fb 80 00 00 c0	cmp	\$0xc0000080, %eb
05 04 6- 01 00 00	4.	555502-4-01b51b0 ch	EEEE02-4-011-040-	05 04 6- 01 00 00		EEEE00-4-012-12

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

ECS下一代虚拟化架构

基于KVM Hypervisor 架构实现

Arch!

基于KVM Hypervisor 架构实现

- 设计特点
 - 所有组件都支持热升级,升级过程用户无感知
 - 实现非常具有挑战性
 - KVM Hypervisor, Qemu, vhost-net, 前后端驱动, 盘古客户端
 - 网络提供基于SRIOV的技术的Qos功能
 - 计算、存储网络流量隔离,消除系统性能抖动
 - 高速热迁移支持
 - VM Downtime降至毫秒级
 - 利用内存实时压缩算法,降低迁移时间
 - 网络无响应时间缩短到1s以内

研发迭代速度快,对Bug和安全漏洞彻底免疫

议程

- 阿里云弹性计算服务ECS介绍
- ECS虚拟化架构及关键技术
 - ECS虚拟化架构
 - 硬件虚拟化技术
 - 虚拟机热迁移技术
 - Hypervisor 热补丁技术
- ECS实战案例分享
- 阿里云ECS下一代虚拟化架构设计
- 未来展望

未来工作展望

- ECS虚拟化核心技术研发方向
 - 持续优化热点迁移技术
 - GPU虚拟化支持
 - LXC/cgroup/Docker支持
 - CPU 热插拔技术
 - 内存热插拔技术
 - VM fork 技术
 - 全部组件的热升级技术
 - 优化NUMA支持,获得更好的系统性能
- 提供更加富有弹性的计算服务
 - 结合ESS服务,提供计算资源的动态伸缩
- 我们一直在奋斗。。。

Q&A

Thanks!

We are Hiring!!!

Email: xiantao.zxt@alibaba-inc.com