Algèbre relationnelle

1. Introduction

L'algèbre relationnelle est le support mathématique cohérent sur lequel repose le modèle relationnel. L'algèbre relationnelle propose un ensemble d'opérations élémentaires formelles sur les relations dans le but de créer de nouvelles relations. Ces opérations permettent de représenter des requêtes sur la base de données dont le résultat s'exprime sous la forme d'une relation (i.e. table). C'est ce formalisme qui est au cœur du langage de requête de SQL.

Nous pouvons distinguer trois familles d'opérateurs relationnels :

- **Les opérateurs unaires** (la sélection et la projection), qui sont les plus simples, permettent de produire une nouvelle table à partir d'une autre table.
- Les opérateurs binaires ensemblistes (l'union, l'intersection et la différence) permettent de produire une nouvelle relation à partir de deux relations de même degré et de même domaine.
- Les opérateurs binaires ou n-aires (le produit cartésien, la jointure et la division) permettent de produire une nouvelle table à partir de deux ou plusieurs autres tables.

Remarque: Les notations de l'algèbre relationnelle ne sont pas standardisées.

2. Sélection

Soit la relation PERSONNE suivante :

PERSONNE		
idPersonne nom prénom		prénom
5	Durand	Caroline
1	Germain	Stan
12	Dupont	Lisa
3	Germain	Rose-Marie

Ci-dessous un exemple de sélection $\sigma(idPersonne \ge 5)$ PERSONNE sur la relation PERSONNE :

σ (idPersonne≥5) PERSONNE		
idPersonne nom prénom		prénom
5	Durand	Caroline
12	Dupont	Lisa

Définition: La *sélection* génère une relation regroupant exclusivement toutes les occurrences de la relation R qui satisfont l'expression logique E. **Notation**: $\sigma_{(E)}R$.

Il s'agit d'une opération unaire essentielle dont la signature est :

relation \times expression logique \rightarrow relation

La sélection permet ainsi de choisir (i.e. sélectionner) certaines lignes dans une table. Le résultat de la sélection est donc une nouvelle relation qui a les mêmes attributs que R. Si R est vide (c'est-à-dire sans aucune occurrence), la relation qui résulte de la sélection est vide.

3. Projection

Définition: La *projection* consiste à supprimer les attributs autres que A_1 , A_2 ,..., A_n d'une relation et à éliminer les n-uplets en double apparaissant dans la nouvelle version.

Notation : $\prod_{(A_1, A_2, ..., A_n)} R$

Il s'agit d'une opération unaire essentielle dont la signature est :

relation \times liste d'attributs \rightarrow relation

En d'autres termes, la projection permet de choisir des colonnes dans une table. Si R est vide, la relation qui résulte de la projection est vide, mais pas forcément équivalente étant donné qu'elle contient généralement moins d'attributs.

Exemple de projection sur la table PERSONNE :

∏ _(nom) PERSONNE	
nom	
Durand	
Germain	
Dupont	

4. Union

Définition: l'*union* est une opération portant sur deux relations R_1 et R_2 ayant le même schéma et construisant une troisième relation constituée des n-uplets appartenant à l'une ou l'autre des deux relations R_1 et R_2 sans doublon. **Notation**: $R_1 \cup R_2$.

Il s'agit d'une opération binaire ensembliste commutative essentielle dont la signature est :

relation \times relation \rightarrow relation

Comme nous l'avons déjà dit, R_1 et R_2 doivent avoir les mêmes attributs et si une même occurrence existe dans R_1 et R_2 , elle n'apparaît qu'une seule fois dans le résultat de l'union. Le résultat de l'union est une nouvelle relation qui a les mêmes attributs que R_1 et R_2 . Si R_1 et R_2 sont vides, la relation qui résulte de l'union est vide. Si R_1 (respectivement R_2) est vide, la relation qui résulte de l'union est identique à R_2 (respectivement R_1).

Ci-dessous un exemple d'union :

R ₁	
nom	prénom
Durand	Caroline
Germain	Stan
Dupont	Lisa
Germain	Rose-Marie

R ₂	
nom	prénom
Dupont	Lisa
Juny	Carole
Fourt	Lisa

$R_1 \cup R_2$	
nom	prénom
Durand	Caroline
Germain	Stan
Dupont	Lisa
Germain	Rose-Marie
Juny	Carole
Fourt	Lisa

5. Intersection

Définition: L'*intersection* est une opération portant sur deux relations R_1 et R_2 ayant le même schéma et construisant une troisième relation dont les n-uplets sont constitués de ceux appartenant aux deux relations. **Notation**: $R_1 \cap R_2$.

Il s'agit d'une opération binaire ensembliste commutative dont la signature est :

relation \times relation \rightarrow relation

Comme nous l'avons déjà dit, R_1 et R_2 doivent avoir les mêmes attributs. Le résultat de l'intersection est une nouvelle relation qui a les mêmes attributs que R_1 et R_2 . Si R_1 ou R_2 ou les deux sont vides, la relation qui résulte de l'intersection est vide.

Ci-dessous un exemple d'intersection :

R_1	
nom	prénom
Durand	Caroline
Germain	Stan
Dupont	Lisa
Germain	Rose-Marie
Juny	Carole

R_2	
nom	prénom
Dupont	Lisa
Juny	Carole
Fourt	Lisa
Durand	Caroline

$R_1 \cap R_2$	
nom prénom	
Durand	Caroline
Dupont	Lisa
Juny	Carole

6. Différence

Définition : La différence est une opération portant sur deux relations R_1 et R_2 ayant le même schéma et construisant une troisième relation dont les n-uplets sont constitués de ceux ne se trouvant que dans la relation R_1 . **Notation : R_1 - R_2**.

Il s'agit d'une opération binaire ensembliste non commutative essentielle dont la signature est :

relation
$$\times$$
 relation \rightarrow relation

Comme nous l'avons déjà dit, R_1 et R_2 doivent avoir les mêmes attributs. Le résultat de la différence est une nouvelle relation qui a les mêmes attributs que R_1 et R_2 . Si R_1 est vide, la relation qui résulte de la différence est vide aussi. Si R_2 est vide, la relation qui résulte de la différence est identique à R_1 .

Exemple de différence entre deux relations :

R ₁	
nom	prénom
Durand	Caroline
Germain	Stan
Dupont	Lisa
Germain	Rose-Marie
Juny	Carole

R_2	
nom	prénom
Dupont	Lisa
Juny	Carole
Fourt	Lisa
Durand	Caroline

$R_1 - R_2$	
nom	prénom
Germain	Stan
Germain	Rose-Marie

7. Produit cartésien

Définition: Le *produit cartésien* est une opération portant sur deux relations R_1 et R_2 et qui construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R_1 et R_2 . **Notation**: $R_1 \times R_2$.

Il s'agit d'une opération binaire commutative essentielle dont la signature est :

relation
$$\times$$
 relation \rightarrow relation

Le résultat du produit cartésien est une nouvelle relation qui a tous les attributs de R_1 et tous ceux de R_2 .Si R_1 ou R_2 ou les deux sont vides, la relation qui résulte du produit cartésien est vide. Le nombre d'occurrences de la relation qui résulte du produit cartésien est le nombre d'occurrences de R_1 multiplié par le nombre d'occurrences de R_2 .

Exemple:

PERSONNE	
nom	prénom
Fourt	Lisa
Juny	Carole

CADEAU		
article	prix	
livre	45	
poupée	25	
montre	87	

PERSONNE × CADEAU			
nom	prénom	article	prix
Fourt	Lisa	livre	45
Fourt	Lisa	poupée	25
Fourt	Lisa	montre	87
Juny	Carole	livre	45
Juny	Carole	poupée	25
Juny	Carole	montre	87

8. Jointure, thêta-jointure, jointure naturelle

> Jointure

Définition: La jointure est une opération portant sur deux relations R_1 et R_2 qui construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R_1 et R_2 qui satisfont l'expression logique E. La jointure est notée : $\mathbf{R_1} \bowtie_E \mathbf{R_2}$.

Il s'agit d'une opération binaire commutative dont la signature est :

relation \times relation \times expression logique \rightarrow relation

Si R1 ou R2 ou les deux sont vides, alors la relation qui résulte de la jointure est vide. En fait, la jointure n'est rien d'autre qu'un produit cartésien suivi d'une sélection :

$$R_1 \bowtie_E R_2 = \sigma_E (R_1 \times R_2)$$

Exemple de jointure :

PERSONNE		
nom	prénom	Age
Fourt	Lisa	6
Juny	Carole	42
Fidus	Laure	16

CADEAU		
âgeC	article	prix
99	livre	30
6	poupée	60
20	baladeur	45
10	déguisement	15

		PERSONNE ⋈ ((âge ≤ âgeC) ∧ (prix ≤ 50)) CADEAU			
nom	prénom	âge	âgeC	article	prix
Fourt	Lisa	6	99	livre	30
Fourt	Lisa	6	20	baladeur	45
Fourt	Lisa	6	10	déguisement	15
Juny	Carole	42	99	Livre	30
Juny	Carole	42	99	Livre	30
Juny	Carole	42	20	baladeur	45

Cette jointure permet de générer toutes les possibilités d'association entre un cadeau et une personne en respectant l'âge maximum conseillé pour un cadeau et la somme de 50€ à ne pas dépasser.

> Thêta-jointure

Définition: La thêta-jointure est une jointure dans laquelle l'expression logique E est une simple comparaison entre un attribut A_1 de la relation R_1 et un attribut A_2 de la relation R_2 . La thêta-jointure est notée $R_1 \bowtie_E R_2$.

Équi-jointure

Définition: Une équi-jointure est une thêta-jointure dans laquelle l'expression logique E est un test d'égalité entre un attribut A1 de la relation R1 et un attribut A2 de la relation R2. L'équi-jointure est notée $R_1 \bowtie_{A_1=A_2} R_2$.

Remarque : Il vaut mieux écrire $R_1 \bowtie_{A_1=A_2} R_2$ que $R_1 \bowtie_{A_1,A_2} R_2$, car cette dernière notation, bien que parfois dans la littérature, prête à confusion avec une jointure naturelle explicite.

Jointure naturelle

Définition: Une jointure naturelle est une jointure dans laquelle l'expression logique E est un test d'égalité entre les attributs qui portent le même nom dans les relations R_1 et R_2 . Dans la relation construite, ces attributs ne sont pas dupliqués, mais fusionnés en une seule colonne par couple d'attributs. La jointure naturelle est notée $R_1 \bowtie R_2$. Si la jointure ne doit porter que sur un sous-ensemble des attributs communs à R_1 et R_2 il faut préciser explicitement ces attributs de la manière suivante : $R_1 \bowtie A_1, ..., A_n R_2$.

Généralement, R_1 et R_2 n'ont qu'un attribut en commun. Dans ce cas, une jointure naturelle est équivalente à une équi-jointure dans laquelle l'attribut de R_1 et celui de R_2 sont justement les deux attributs qui portent le même nom.

Pour effectuer une jointure naturelle entre R_1 et R_2 sur un attribut A_1 commun à R_1 et R_2 , il vaut mieux écrire $R_1 \bowtie A_1R_2$ que $R_1 \bowtie R_2$. En effet, si R_1 et R_2 possèdent deux attributs portant un nom commun, A_1 et A_2 , $R_1 \bowtie A_1R_2$ est bien une jointure naturelle sur l'attribut A_1 , mais $R_1 \bowtie R_2$ est une jointure naturelle sur le couple d'attributs A_1 , A_2 , ce qui produit un résultat très différent !

Exemple:

PERSONNE			
nom	prénom	âge	
Fourt	Lisa	6	
Juny	Carole	40	
Fidus	Laure	20	
Choupy	Emma	6	

	CADEAU	J
âge	article	prix
40	livre	45
6	poupée	25
20	montre	87

Ci-dessous la jointure naturelle PERSONNE ⋈ CADEAU qui peut également s'écrire PERSONNE ⋈âge CADEAU.

PERSONNE ⋈ CADEAU				
nom	prénom	âge	article	prix
Fourt	Lisa	6	poupée	25
Juny	Carole	40	livre	45
Fidus	Laure	20	montre	87
Choupy	Emma	6	poupée	25

9. Division

Définition: la division est un opération portant sur deux relations R_1 et R_2 , telles que le schéma de R_2 est strictement inclus dans celui de R_1 , qui génère une troisième relation regroupant toutes les parties d'occurrences de la relation R_1 qui, associées à toutes les occurrences de la relation R_2 , se retrouvent dans R_1 . **Notation**: $R_1 \div R_2$.

Il s'agit d'une opération binaire non commutative dont la signature est :

relation
$$\times$$
 relation \rightarrow relation

Autrement dit, la division de R_1 par R_2 ($R_1 \div R_2$) génère une relation qui regroupe tous les n-uplets qui, concaténés à chacun des n-uplets de R_2 , donne toujours un n-uplet de R_1 .

La relation R_2 ne peut pas être vide. Tous les attributs de R_2 doivent être présents dans R_1 et R_2 doit posséder au moins un attribut de plus que R_2 (inclusion stricte). Le résultat de la division est une nouvelle relation qui a tous les attributs de R_1 sans aucun de ceux de R_2 . Si R_1 est vide, la relation qui résulte de la division est vide.

Ci-dessous, un exemple de division ENSEIGNEMENT ÷ ETUDIANT qui permet de dresser la table R de tous les enseignants de la relation ENSEIGNEMENT qui enseignent à tous les étudiants de la relation ETUDIANT.

ENSEIGNEMENT		
enseignant	nom	
Germain	Dubois	
Fidus	Pascal	
Robert	Dubois	
Germain	Pascal	
Fidus	Dubois	
Germain	Durand	
Robert	Durand	

nom	ETUDIANT
	nom
Dubois	Dubois
Pascal	Pascal

ENSEIGNEMENT ÷ ETUDIANT
enseignant
Germain
Fidus