

# CHEMISTRY Chapter 19





**REACCIONES REDOX I** 





# MOTIVATING STRATEGY



$$4Fe + 3O_2 \rightarrow 2Fe_2O_3$$

# **REACCIONES REDOX I**



### Definición:

Una reacción redox o de óxido-reducción es aquella reacción química que involucra una transferencia de electrones entre dos elementos químicos. Mientras que uno pierde electrones (se oxida) otro los gana (se reduce).



$$4Fe + 3O_2 \rightarrow 2Fe_2O_3$$





# Estado de Oxidación:

- ✓ Llamado también número de oxidación o índice redox.
- ✓ Es la carga aparente con la que dicho elemento está actuando en un compuesto.

#### REGLAS

Elemento libre

E.O =0

- $> 0_2^0$
- $> N_2^2$
- $> S_8^0$

Hidrógeno

El hidrógeno trabaja generalmente con

E.O =+1

 En los hidruros metálicos donde lo hace con

E.O =-1

Oxígeno

 El oxígeno trabaja generalmente con estado de oxidación

E.O =-2

en los peróxidos donde lo hace con: -1 y frente al fluor con: +2 Metales

Los metales alcalinos

|A =+1

 Los metales alcalinotérreos

IIA =+2



#### Compuestos químicos estables

$$\sum E.O=0$$

#### Ejemplo:

Determine el número de oxidación del cromo en K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

#### <u>RESOLUCIÓN</u>

$$+1 x -2 K_2Cr_2O_7$$

$$2(+1) + 2(x) + 7(-2) = 0$$

$$x = +6$$
  $x = 6 +$ 

# En los iones ya sea positivo o negativo

$$\sum E.O = carga\ del\ ion$$

#### Ejemplo:

Determine el número de oxidación del azufre en el ion (SO<sub>3</sub>)<sup>2-</sup>

#### **RESOLUCIÓN**

$$x - 2$$
 (SO<sub>3</sub>)<sup>2-</sup>

$$1(x) + 3(-2) = -2$$

$$x = +4$$
  $x = 4 +$ 



#### Oxidación

- ✓ Es el proceso mediante el cual una especie química pierde electrones, por lo tanto el N.O. aumenta.
- ✓ El número de electrones perdidos se halla

$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

⇒ 
$$Zn^{0}$$
 →  $Zn^{2+}+2e^{-}$  # $e^{-}$  =  $(+2)$  –  $(0)$  = 2  
⇒  $Ument_{a}$   
⇒  $Mn^{2+}$  →  $Mn^{7+}+5e^{-}$  # $e^{-}$  =  $(+7)$  –  $(+2)$  = 5  
⇒  $Ument_{a}$   
⇒  $Ument_{a}$   
⇒  $Ument_{a}$ 

#### Reducción

- ✓ Es el proceso mediante el cual una especie química gana electrones, por lo tanto su N.O. disminuye.
- ✓ El número de electrones ganados se halla

$$#e^{-} = {mayor\ carga \choose total} - {menor\ carga \choose total}$$



#### **AGENTES**



#### Ejemplo:



#### **Solved Problems**



Halle el número de oxidación x para los siguientes compuestos:

$$I. \quad H_2SO_4: = 6 + X$$
 $II. \quad (MnO_4)^{-1}: = 7 + X$ 

#### **RESOLUCIÓN**

$$+1 \times 2 - H_2SO_4$$

$$2(+1) + 1(x) + 4(-2) = 0$$

$$x = +6$$

$$x = 6 + 1$$

$$(MnO_4)^{-1}$$

$$1(x) + 4(-2) = -1$$

$$x = +7$$

$$x = 7 + 4$$

#### **Solved Problems**



2

Complete la siguiente semirreacción indicando el número de electrones que se transfieren:



$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

$$#e^{-} = 4(0) - 4(-3)$$
  
 $#e^{-} = 12$ 

 $P_4 \rightarrow P^{3-}$ 

Rpta: 12 e- transferidos

3

Complete los electrones ganados o perdidos e indique en cada caso si es oxidación o reducción.

#### RESOLUCIÓN

a. 
$$Fe^{2+}$$
 pumenta  $Pe^{3+}$   $Pe^$ 

$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

$$#e^- = (+3) - (+2) = 1$$
 Oxidación

$$#e^- = (+1) - (0) = 1$$
 Oxidación

$$#e^- = (+1) - (0) = 1$$
 Reducción

$$#e^- = (+5) - (+3) = 2$$
 Reducción





En la siguiente reacción, determine al agente reductor  $K + H_2O \rightarrow KOH + H_2$ 

#### **RESOLUCIÓN**



Rpta: agente reductor: K





Indique el número de electrones transferidos en

$$Cl_2^0 \rightarrow Cl^{5+}$$

#### **RESOLUCIÓN**



$$#e^{-} = {mayor\ carga \atop total} - {menor\ carga \atop total}$$

$$#e^- = 2(+5) - 2(0) = 10$$

Rpta: 10 e- transferidos

6

Todos los metales alcalinos del grupo IA de la Tabla Periódica reaccionan con agua para formar hidrógeno gaseoso y el hidróxido correspondiente, esta reacción es muy exotérmica. Una reacción común es la que ocurre entre el sodio y el agua:



$$2Na_{(s)} + 2H_2 O_{(I)} \rightarrow 2NaOH_{(ac)} + H_{2(g)}$$

En relación a la reacción mostrada, indique la forma oxidada y la forma reducida.

#### <u>RESOLUCIÓN</u>



Rpta : NaOH H<sub>2</sub> Una reacción de óxido-reducción se caracteriza porque hay una transferencia de electrones, en donde una sustancia gana electrones y otra sustancia pierde electrones.

- La sustancia que pierde electrones aumenta su número de oxidación. Este proceso se llama oxidación.
- La sustancia que gana electrones disminuye su número de oxidación. Este proceso se llama reducción.

Por lo tanto, la reducción es ganancia de electrones y la oxidación es una pérdida de electrones.

Según lo leído, escriba verdadero (V) o falso (F).

- a. El elemento que pierde electrones se llama oxidación. ( )
- b. La especie que se reduce se encuentra en la semiecuación de reducción. (
- c. La reacción de óxido-reducción se denomina redox. ( )
- d. Si el elemento aumenta su número de oxidación, se denomina reducción. ( )

#### **RESOLUCIÓN**

#### a. falso

Un elemento que se encuentra en la sustancia que en una reacción pierde electrones se le llama agente Reductor

#### b. verdadero

En toda reacción química podemos encontrar la semireacción de oxidación y reducción, donde se encuentran las especies que se oxidan y se reducen respectivamente.

#### c. verdadero

En una reacción redox encontramos las sustancias que se reducen y se oxidan.

#### d. falso

La sustancia que pierde electrones aumenta su número de oxidación. Este proceso se llama oxidación.

Rpta: FVVF

# Thank you