Statistical inference for the slope and intercept in SLR

Simple Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
, for $i = 1, ...n$

Simple Linear Regression Model Parameters

- β_0 is the intercept.
- β_1 is the slope.
- ε_i are independent, normally distributed random errors with mean 0 and variance σ^2 ,

$$\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

The point estimate of $\beta 1$ is b_1

Recall that,

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$

which we can rewrite as,

$$= \sum c_i (Y_i - \overline{Y}) = \sum c_i Y_i - \overline{Y} \sum c_i = \sum c_i Y_i$$
where $c_i = \frac{(X_i - \overline{X})}{\sum (X_i - \overline{X})^2}$

It can be proved that, $E(b_1)=\beta_1$ and $\sigma^2(b_1)=\sigma^2\frac{1}{\sum{(X_i-\overline{X})^2}}$, therefore

By replacing the parameter σ^2 with MSE, the unbiased estimator of $\sigma^2\{b_1\}$,

$$s^{2}\{b_{1}\} = \frac{MSE}{\sum (X_{i} - \overline{X})^{2}}$$
$$s\{b_{1}\} = \sqrt{\frac{MSE}{\sum (X_{i} - \overline{X})^{2}}}$$

The Sampling Distribution of b_1 is Normal $(\beta_1, \sigma^2(b_1))$

$$\frac{b_1-\beta_1}{s\{b_1\}}\sim t(n-2)$$

Confidence Interval for β_1

Since
$$t^* = \frac{b_1 - \beta_1}{s\{b_1\}} \sim t(n-2)$$

$$P\left\{t\left(\frac{\alpha}{2};n-2\right) \le \frac{b_1-\beta_1}{s\{b_1\}} \le t\left(1-\frac{\alpha}{2};n-2\right)\right\} = 1-\alpha$$

Where $t(\frac{\alpha}{2}; n-2)$ denotes the $(\frac{\alpha}{2})$ 100 percentile of the t distribution with n-2 degrees of freedom.

Because of the symmetry of the t distribution around its mean 0, it follows that:

$$t\left(\frac{\alpha}{2}; n-2\right) = -t(1-\frac{\alpha}{2}; n-2)$$

Hence the $1 - \alpha$ confidence interval for β_1 are:

$$b_1 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_1\}$$

Point estimate \pm Margin error, where Margin error (denoted by ME) = t * standard error

Significance Tests for β_1

$$Ho: \beta_1 = \beta_1^*$$
 $Ha: \beta_1 \neq \beta_1^*$

The test statistic $t^* = (b_1 - \beta_1^*)/s\{b_1\} \sim t(n-2)$

For two sided test

Reject
$$H_0$$
 if $t^* \geq t_c$, $t_c = t_{n-2}(1 - \alpha/2)$
Or, reject H_0 if $p - value \leq \alpha$

For one sided test

Reject
$$H_0$$
 if $t^* \ge t_c$, $t_c = t_{n-2}(1 - \alpha)$
Or, reject H_0 if $p - value \le \alpha$

Inference for the intercept, β_0

$$b_0 = \bar{Y} - b_1 \, \bar{X}$$

It can be proved that, $E(b_0) = \beta_0 \ and \ \sigma^2\{b_0\} = \sigma^2[\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2}]$

$$s^{2}\{b_{0}\} = MSE\left[\frac{1}{n} + \frac{\bar{X}^{2}}{\sum (X_{i} - \bar{X})^{2}}\right]$$

$$s\{b_{0}\} = \sqrt{MSE\left[\frac{1}{n} + \frac{\bar{X}^{2}}{\sum (X_{i} - \bar{X})^{2}}\right]}$$

Analogous to theorem for b_1 , $t^* = (b_0 - \beta_0)/s\{b_0\} \sim t(n-2)$

Confidence Interval for β_0

$$b_0 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_0\}$$

Significance Tests for β_0

$$Ho: \beta_0 = \beta_0^*$$
 $Ha: \beta_0 \neq \beta_0^*$

The test statistic $t^* = (b_0 - \beta_0^*)/s\{b_0\} \sim t(n-2)$

Comments on the inference assumptions

• Both b_1 and b_0 follow *Normal distribution* because they are based on ε which is normally distributed.

• As long as the εs are close to normal, the t-method for the inferences based on b_1 and b_0 is approximately correct, even with small sample sizes.

Comments on the inference assumptions

• Often, the value of the intercept is not of direct interest, so there is no need to calculate CIs or hypothesis tests β_0 . Because it is just a single value of Y when X=0 and will be of no much value to predict other Y values.

• Reduce the standard error for estimating the linear impact, β_1 , by increasing the dilation in X, i.e., bigger $SSX = \Sigma (X_i - \bar{X})^2$, since $s\{b_1\} = \frac{s}{\sqrt{SSX}}$

One way to do confidence interval for β_1

```
alpha=0.05
n=48
qt(1-0.5*alpha,n-2)
confint(lm(price~weight, diamond),"weight",level=0.95)
```

$$\alpha = 0.05$$
 $n = 48$
 $t\left(1 - \frac{\alpha}{2}, n - 2\right) = t(0.975, 46) = 2.013$
 $b_1 \pm t\left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_1\}$

Conclusion: we are 95% confident that,
the average price will
increase by at least 3556 and at most 3889
when the weight increase by 1 carat.

The other way to do confidence interval for β_1

$$b_1 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_1\}$$

 $= 3721 \pm 2.013 (81.79) = 3556.4, 3885.65$

Do hypothesis test for β_1

Ho:
$$\beta_1 = 3500 \ vs \ Ha$$
: $\beta_1 \neq 3500$

The test statistic:
$$t_s = \frac{b_1 - 3500}{S\{b_1\}} = \frac{3721 - 3500}{81.79} = 2.702$$

The reject region: reject
$$H_0$$
, if $|t_s| > t\left(1 - \frac{\alpha}{2}, n - 2\right) = t(0.975, 46) = 2.103$

The
$$p$$
 $value = 2Pr(T > 2.702) = 0.00962$

[1] 0.00962015

Conclusion: at a significant level of 5%,
when the weight increases by 1 caret,
the incensement in the average price
is not statistically different
from 3500 dollars.

One sided hypothesis test for β_1

Ho:
$$\beta_1 = 3500 \text{ vs } Ha: \beta_1 > 3500$$

The test statistic:
$$t_s = \frac{b_1 - 3500}{S\{b_1\}} = \frac{3721 - 3500}{81.79} = 2.702$$

The reject region: reject
$$H_0$$
, if $|t_s| > t(1 - \alpha, n - 2) = t(0.95, 46) = 1.679$

The
$$p$$
 $value = Pr(T > 2.702) = 0.0048$

Conclusion: at a significant level of 5%,
when the weight increases by 1 caret,
the incensement in the average price
is not statistically greater than
3500 dollars.