AML

John Min - Victor Ferrand

Predict Heat Consumption with Deep Learning

Goals

 Implement our own deep learning library (get our hands dirty)

 Beat "classical" methods on this learning problem (miserable results: 300% error)

Hope to actually get better results

Deep Learning Implementation

Neural Network

Restricted Boltzmann Machine

Deep Belief Network

Neural Network

- Classic implementation:
 - Feed forward / Back propagation
 - L2 cost function
 - Activation/Output functions (sigm / tanh / linear)
- Weights Initialization inspired from /*some paper*/
 - Uniform distribution over $\left[-\frac{\sqrt{(6)}}{in+out}, \frac{\sqrt{(6)}}{in+out}\right]$

Neural Network

- Directed network
- Training algorithm
 - feed forward
 - error L2
 - backpropagation

$$\Delta w_i = \alpha (t - y) \varphi' x_i$$

RBM

- Undirected network
- Fully connected network
- Contrastive divergence training algorithm (2 phases)
 - positive: ff+(x) = h
 - negative: ff+(ff- (h)) = h'
 - update with error(h'-h)

Stacked RBMs = DBN

- Deep Belief Networks are a concatenation of RBMs
- Train with contrastive divergence algorithm 2 layers by 2 layers
 - train RBM1
 - train RBM2 with input (ff (inputs) in first layer)

DBN

- Modularity of the Network
 - one global training
 - train any added layer as an independent RBM with the previous output layer
- Big picture : Neural Network with different training

Data

- Weather data over 2 years (2012-2013)
 - temperature / humidity / pressure / wind speed / precipitation / global conditions
 - collected hourly

- Steam data from a NY building
 - evaluate heat consumption of the building (Mlbs/hr)
 - collected every 15 min

Data

Tidy up data:

- Linear interpolation on steam data
- Filter (where some data aren't accurate)
- Separate in 3 datasets:
 - Seasons
 - Week days
 - Weekends

Results SVM / Random Tree

	Season data: Winter / Summer Spring / Fall	Week days	Weekends
SVM			
Random Tree			

Results Neural Net / DBN

	Season data: Winter / Summer Spring / Fall	Week days	Weekends
Neural Net			
DBN			

Result Graphics

AML

John Min - Victor Ferrand

Predict Heat Consumption with Deep Learning

Goals

 Implement our own deep learning library (get our hands dirty)

 Beat "classical" methods on this learning problem (miserable results: 300% error)

Hope to actually get better results

Deep Learning Implementation

Neural Network

Restricted Boltzmann Machine

Deep Belief Network

Neural Network

- Classic implementation:
 - Feed forward / Back propagation
 - L2 cost function
 - Activation/Output functions (sigm / tanh / linear)
- Weights Initialization inspired from /*some paper*/
 - Uniform distribution over $\left[-\frac{\sqrt{(6)}}{in+out}, \frac{\sqrt{(6)}}{in+out}\right]$

Neural Network

- Directed network
- Training algorithm
 - feed forward
 - error L2
 - backpropagation

$$\Delta w_i = \alpha(t - y)\varphi' x_i$$

RBM

- Undirected network
- Fully connected network
- Contrastive divergence training algorithm (2 phases)
 - positive: ff+(x) = h
 - negative: ff+(ff- (h)) = h'
 - update with error(h'-h)

Stacked RBMs = DBN

- Deep Belief Networks are a concatenation of RBMs
- Train with contrastive divergence algorithm 2 layers by 2 layers
 - train RBM1
 - train RBM2 with input (ff (inputs) in first layer)

DBN

- Modularity of the Network
 - one global training
 - train any added layer as an independent RBM with the previous output layer
- Big picture : Neural Network with different training

Data

- Weather data over 2 years (2012-2013)
 - temperature / humidity / pressure / wind speed / precipitation / global conditions
 - collected hourly

- Steam data from a NY building
 - evaluate heat consumption of the building (Mlbs/hr)
 - collected every 15 min

Data

Tidy up data:

- Linear interpolation on steam data
- Filter (where some data aren't accurate)
- Separate in 3 datasets:
 - Seasons
 - Week days
 - Weekends

Results SVM / Random Tree

	Season data: Winter / Summer Spring / Fall	Week days	Weekends
SVM			
Random Tree			

Results Neural Net / DBN

	Season data: Winter / Summer Spring / Fall	Week days	Weekends
Neural Net			
DBN			

Result Graphics

References

- Deep Learning for Time Series Modeling Enzo Busseti, Ian Osband, Scott Wong - 2012
- An Introduction to Deep Learning: From Perceptrons to Deep Networks Ivan Vasilev

•

References

- Deep Learning for Time Series Modeling Enzo Busseti, Ian Osband, Scott Wong - 2012
- An Introduction to Deep Learning: From Perceptrons to Deep Networks Ivan Vasilev

•