Introducción Gestión del proyecto Implementación Conclusiones Trabajo futuro

FlinkBWA

Uso de tecnologías Big Data para el alineamiento de secuencias genéticas

> Grado en Ingeniería Informática Universidad de Santiago de Compostela

Autora: Silvia Rodríguez Alcaraz

Tutor: Juan C. Pichel Campos Cotutor: José M. Abuín Mosquera

Tabla de contenidos

- Introducción
 - Alineadores de secuencias genéticas
 - Burrows-Wheeler Aligner
 - Apache Flink
 - Objetivos
- ② Gestión del proyecto
 - Metodología
 - Gestión del tiempo
- O Diseño
 - Diagrama de clases
 - Diagramas de secuencia

- Implementación
 - Requisitos y medios utilizados
 - Funcionamiento
 - Caso especial
- Opening the second of the s
 - Especificación de las pruebas
 - Resultados
- 6 Conclusiones
- Trabajo futuro

Alineadores de secuencias genéticas Burrows-Wheeler Aligner Apache Flink Objetivos

Alineadores de secuencias genéticas

Utilidad

- Representar cadenas de ADN, ARN o estructuras primarias proteicas.
- Comparar dos o más secuencias genéticas.
 - Encontrar similitudes.
 - Detectar mutaciones.
 - ...

Alineadores de secuencias genéticas Burrows-Wheeler Aligner Apache Flink Objetivos

Alineadores de secuencias genéticas

Problemas

- Manejo de gran cantidad de datos.
- Coste temporal del alineamiento.
- Paralelización de los alineadores
 - Implementaciones complejas.
 - Poca escalabilidad.

Burrows-Wheeler Aligner (BWA)

Características

- Alineador extensamente utilizado.
- Alineamiento basado en la transformación Burrows-Wheeler.
- Implementado mayoritariamente en C.

Input y Output

- Formato de entrada: ficheros BAM o FASTQ.
- Formato de salida: ficheros SAM.

Burrows-Wheeler Aligner (BWA)

Figura: Ejemplo del formato FASTQ

Apache Flink

Características

- Plataforma Big Data creada por la Apache Software Foundation.
- Aparición en el mercado en 2015.
- Permite el procesado de datos por lotes y en flujos (streaming).

Apache Flink

Figura: Arquitectura de Flink

Objetivos

- Estudio del arte: tecnologías Big Data.
- Pormación en Apache Flink y en aplicaciones de alineamiento genético.
- 3 Diseño modular del nuevo alineador BWA paralelo.
- Implementación de FlinkBWA.
- 4 Análisis del rendimiento de la aplicación en un cluster.

Metodología

Factores tenidos en cuenta para escoger la metodología

- Inexperiencia de la desarrolladora con las tecnologías.
- Aplicación orientada a un ámbito muy específico.
- Carácter innovador: la plataforma Flink sólo lleva 4 años en el mercado.
 - Poca documentación.
 - Escasa comunidad de usuarios.

Metodología

Alta incertidumbre ⇒ Metología ágil: Scrum

Figura: Ciclo de un sprint

Gestión del tiempo

Sprints

- Sprint 1: planificación del proyecto.
- Sprint 2: diseño de la aplicación y configuración del entorno de trabajo.
- Sprint 3: implementación de la aplicación.
- *Sprint 4:* ejecución de la aplicación en el *cluster*, corrección de errores y pruebas de rendimiento.

Gestión del tiempo

Diagrama de clases

Patrón *Facade* o Fachada.

Patrón *Template Method* o Método
Plantilla.

"Controlador".

Figura: Diagrama de clases

Diagramas de secuencia

Figura: Diagrama de secuencia: Single Reads

Diagramas de secuencia

Figura: Diagrama de secuencia: Paired Reads

Requisitos y medios utilizados

Requisitos de Flink

- Entorno Unix
- Maven (> 3.1.1)
- Java 8.x

Herramientas de desarrollo

- IDE: Intellij IDEA Ultimate 2019.
- Control de versiones: Git

Entorno: Cluster Big Data 1 del CiTIUS

- 16 Servidores Dell EMC
 - 2 x Intel Xeon E5-2630
 v4 (2,2Ghz 10c)
 - 384 GB de RAM: 12 x 32GB RDIMM
 - 32 TB HDD
- Apache Flink 1.7.2
- Hadoop 2.7.3: sistema de ficheros HDFS.

Funcionamiento

Figura: Modelo funcional de FlinkBWA

Caso especial

Uso de 2 ficheros de entrada

- Necesidad de combinar ambos ficheros en un Dataset.
- Orden del contenido del Dataset.

2 soluciones

- SortHDFS: operación de preprocesado.
- Operaciones Join y sortByKey de Flink.

Caso especial

Figura: Operación join de Flink en entorno HDFS

Especificación de las pruebas

Parámetros de Flink

- Número de Task Managers: tantos como particiones se indiquen sobre el fichero de entrada.
- Memoria por Task Manager: 30 GB.

Parámetros del programa

- Algoritmo: MEM.
- Número de ficheros de entrada: uno (Single Reads).
- Particiones: 4, 8, 16, 32 y 64.
- Ordenamiento: no.
- Reducción: no.

Resultados

BWA secuencial

Tiempo de cómputo: 66.43 minutos.

FlinkBWA

Pruebas			
Nivel paralelismo	Tiempo (minutos)	Media (minutos)	Desviación Típica
	16,54		
	17,2		
4	17,9	17,2133	0,55530
	10,31		
	10,35		
8	10,15	10,2700	0,08641
	7,23		
	7,22		
16	7,3	7,2500	0,03559
	5,47		
	5,37		
32	5,46	5,4333	0,04497
	5,06		
	4,52		
64	4,59	4,7233	0,23977

Cuadro: Resultados FlinkBWA

Conclusiones

Eficiencia temporal

• FlinkBWA mejora el tiempo del BWA secuencial original.

Figura: Tiempo vs. Nivel de paralelismo

Conclusiones

Escalabilidad

- El programa es escalable.
- Caso ideal: ley de Amdahl

Figura: Speedup

Introducción Gestión del proyecto Diseño Implementación Pruebas Conclusiones Trabajo futuro

Trabajo futuro

- Reducir el consumo de RAM.
- Implementar el ordenamiento del fichero SAM de salida.
- Tener en cuenta posible versión *streaming*.

Introducción Gestión del proyecto Diseño Implementación Pruebas Conclusiones Trabajo futuro

FlinkBWA

Uso de tecnologías Big Data para el alineamiento de secuencias genéticas

Grado en Ingeniería Informática Universidad de Santiago de Compostela

Autora: Silvia Rodríguez Alcaraz

Tutor: Juan C. Pichel Campos Cotutor: José M. Abuín Mosquera

19 de julio de 2019