Exercícios - Folha 3 2021/22

- 13. Seja $n \in \mathbb{Z}$. Mostre que $nZ = \{nx : x \in \mathbb{Z}\}$ é um subgrupo de \mathbb{Z} .
- 14. (a) Prove que, se G é um grupo abeliano, então, $A = \{x \in G : (\exists n \in \mathbb{N}) \ x^n = 1_G\}$ é um subgrupo de G.
 - (b) Determine A, sabendo que G é o grupo multiplicativo $\mathbb{R}\setminus\{0\}$;
- 15. (a) Sejam G um grupo e $A=\{n\in\mathbb{Z}: (\forall a\in G)\ a^n=1_G\}$. Mostre que (A,+) é subgrupo de $(\mathbb{Z},+)$, onde + é a adição usual de números inteiros.
 - (b) Determine A sabendo que G é o grupo aditivo \mathbb{Z}_3 .
- 16. Sejam G um grupo, H_1 e H_2 subgrupos de G. Mostre que:
 - (a) $H_1 \cap H_2$ é um subgrupo de G;
 - (b) $H_1 \cup H_2$ é um subgrupo de G se e só se $H_1 \subseteq H_2$ ou $H_2 \subseteq H_1$;
 - (c) H_1H_2 é subgrupo de G se e só se $H_1H_2=H_2H_1$.

Observação: Dados um grupóide S e $A, B \subseteq S$, representa-se por AB o conjunto $AB = \{ab \in S : a \in A \land b \in B\}$.

- 17. Seja G um grupo e $X,Y\subseteq G$. Mostre que:
 - (a) $X \subseteq Y \Rightarrow \langle X \rangle \subseteq \langle Y \rangle$;
 - (b) $X \subseteq Y \in Y \subseteq \langle X \rangle \Rightarrow \langle X \rangle = \langle Y \rangle$;
 - (c) o recíproco de (a) nem sempre é verdadeiro;
 - (d) $\langle \langle X \rangle \rangle = \langle X \rangle$.
- 18. Em cada alínea, determine o subgrupo indicado:
 - (a) $\langle 1 \rangle$ de $(\mathbb{Z}, +)$;

(d) (3, 6, 12) de $(\mathbb{Z}, +)$;

- (b) $\langle 3, 4 \rangle$ de $(\mathbb{Z}, +)$;
- (c) $\langle -2,6 \rangle$ de $(\mathbb{Z},+)$;

- (e) $\langle -1, 1 \rangle$ de $(\mathbb{Z}, +)$.
- 19. Recorde o grupo D_3 cuja operação é definida pela tabela

Determine a ordem de cada um dos elementos de D_3 .

- 20. Considere os grupos $(\mathbb{Z}_6,+)$ e $(\mathbb{Z}_8,+)$, o grupo produto direto $\mathbb{Z}_6\otimes\mathbb{Z}_8$ e o semigrupo comutativo (\mathbb{Z}_{10},\times) .
 - (a) Indique:
 - i. a identidade do grupo $\mathbb{Z}_6 \otimes \mathbb{Z}_8$;
 - ii. o simétrico do elemento $([3]_6, [5]_8) + ([2]_6, [5]_8)$;
 - iii. a ordem dos elementos ($[2]_6, [4]_8$) e ($[5]_6, [5]_8$);
 - iv. o inverso do elemento $[3]_{10}$;
 - v. o elemento $([3]_{10} [9]_{10})^{-1}$.
 - (b) Indique, caso existam, um elemento $(a,b) \in \mathbb{Z}_6 \otimes \mathbb{Z}_8$ com ordem 14 e um subgrupo H de $\mathbb{Z}_6 \otimes \mathbb{Z}_8$ com ordem 12. Justifique.
- 21. Sejam G um grupo comutativo e $a,b \in G$ tais que o(a)=m, o(b)=n e $\mathrm{m.d.c.}(n,m)=1$. Determine a ordem de ab.