

Thermodynamik III

Kältemaschinen, Oxyfuel, Carbon Capture and Storage

HS2021

Dr. Ndaona Chokani

Overview

Vorlesung		Übung/Beispiel	
Datum	Thema	Datum	Thema
09.11	Prozess des Energieaustausches	09.11	Geschwindigkeitsdreiecke
16.11	Dampfkraftprozesse	16.11	Rankine Zyklus
23.11	Gasarbeitsprozesse - Verbrennungsmotoren	23.11	Diesel / Otto Zyklus
30.11	Gasarbeitsprozesse - Gasturbinenprozesse	30.11	Brayton Zyklus
07.12	Gasarbeitsprozesse - Kombinierten Zyklen	07.12	Kombinierter Zyklus
14.12	Kältemaschinen und Wärmepumpen	14.12	Kältemaschine/Wärmepumpe
21.12	Kältemaschinen Oxyfuel, Carbon Capture and Storage	21.12	Wärmepumpe

Beispiel

Kompressionskältemaschine, Arbeitsmittel: R134a (CF₃CH₂F)

- gesucht:
$$\dot{W}_V, \dot{Q}_K, \varepsilon, T_0 \dot{S}_{Erz}, (T_0 = 301K)$$

– Lösung:

- Zustand 1:
 - Gesättigter reiner Dampf
 - p₁ = 1.6 bar, Tabelle: h₁ = 237.97 kJ/kg, s₁ = 0.9295 kJ/kgK
- Zustand 2s:
 - $s_{2S} = s_1$, $p_{2S} = 9$ bar, Tabelle $-> h_{2S} = 273.73$ kJ/kg
 - Wirkungsgrad des Verdichters:

$$\eta_{VS} = \frac{h_{2S} - h_1}{h_2 - h_1} = 0.8$$

- $-h_2 = 282.67 \text{ kJ/kg}$
- (p₂ = 9 bar) Tabelle: s₂ = 0.9576 kJ/kgK

Zustand 3:

- $-p_3 = 9 \text{ bar}, T_3 = 32 \degree \text{ C (unterkühlte Flüssigkeit)}$
- Tabelle: $h_3 \rightarrow h_f(32^{\circ} C) = 94.39 \text{ kJ/kg}$
- Tabelle: $s_3 -> s_{3f}(32^{\circ} C) = 0.349 \text{ kJ/kgK}$

Zustand 4:

- $-h_4 = h_3$, $p_4 = 1.6$ bar
- $-x_4 = 0.3104$, $s_4 = 0.37198$ kJ/kgK

- Leistungsziffer:
$$\varepsilon = \frac{h_1 - h_4}{h_2 - h_1} = 3.212$$

Entropiebilanz für den Verdichter:

$$0 = \sum_{j} \left(\frac{\dot{Q}}{T}\right)_{j} + \dot{m}(s_{1} - s_{2}) + \dot{S}_{ErzVerd}$$

$$T_0 \dot{S}_{ErzVerd} = T_0 \dot{m} (s_1 - s_2) = 0.705 \, kW$$

Entropiebilanz für die Drossel:

$$T_0 \dot{S}_{ErzDrossel} = T_0 \dot{m} (s_4 - s_3) = 0.576 kW$$

Carbon Capture and Storage (CCS)

7

Carbon capture

CO₂ can be separated from a carbon emission source either before or after it has been combusted to produce energy or other products (cement, steel, etc.). There are three ways to capture CO₂ from these combustion processes:

- Pre-combustion technology
- Post-combustion technology
- Oxyfuel combustion

Oxyfuel power plant

- Burn carbon based fuels with oxygen
- Combustion main products: CO₂, H₂O
- Different cycles have been developed: Water cycle, Graz cycle, and Matiant cycle

Oxyfuel power plant schematic

Performance over pressure ratio

- Power required to liquefy and separate oxygen reduces efficiency of cycle
- Compared to normal Brayton cycle, Oxyfuel cycle has 7-10% lower efficiency and 15-25 MW lower power output

Performance over temperature ratio

Graz cycle

Combination of a high temperature Brayton cycle, and a low temperature Rankine cycle

[H. Jericha, et al., ASME paper GT2003-38120]

Combustion:

- Fuel with high hydrogen content (e.g.: CH_4) is mixed in stochiometric ratio with O_2
- Negligible N₂ content → no NO_x production
- Danger of too high flame temperature (in normal combustion 70% of the gas is just getting heated, but here 100% is reacting), danger of dissociation of the products
- Need of cooling medium: CO₂ from C3, H₂O from HPT
- Combustion at 40bar, exit temperature 1400° C, heat released: 1.62MJ/kg
- Mixture leaving the combustor of about 74% steam, 25.3% CO_2 , 0.5% O_2 , 0.2% N_2

Expansion:

3 turbines, 2 for H₂O+CO₂, 1 for H₂O, total turbine power: 1.25MJ/kg

Compressors and pumps:

3 compressors for CO₂, 2 pumps for H₂O, total power consumption:
 0.21MJ/kg

Heat recovery steam generator (HRSG):

HSRG brings the steam to 180bar and 567° C, cooling the mixture 482° C

Further components:

 O_2 generator: needs 1.08MJ/(kg of O_2) or 50.9kJ/(kg of mixture)

 O_2 compressor: brings the O_2 from atmosphere to burner pressure level, needs

 $0.87MJ/(kg of O_2) or 41kJ/(kg of mixture)$

Overall maximum theoretical efficiency:

$$\eta_{th} = \eta_{gen} (W_{HTT} + W_{HPT} + W_{LPT} - W_{C1} - W_{C2} - W_{C3} - W_{pump1} - W_{pump2} - W_{O2gen} - W_{O2compr}) / Q_{comb}$$
= 57.5%

Comments:

- CO₂ storage has to be safe
- Pilot power plants in Texas and Berlin
- The power plant has to be close to the storage point to avoid CO₂ transportation costs

Population in Europe

 Difficult to find safe spot for carbon dioxide storage in Europe, due to population density

 One option is in the ocean while another is mineralization

Scenario analysis: How can EU achieve 45% renewable electricity by 2030?

- EU targets 45% renewable electricity by 2030
- Unlike for 2020 targets, no targets for individual countries are derived for 2030
- ➤ Which combination of wind and solar, being installed in which locations, will achieve EU target with lowest detrimental effects on cost and security of supply?

45%-RES study: Optimization target

- Optimum shall respect energy policy trilemma: Sustainability, competitiveness and security of supply
- Optimization target

$$\min(C + (1 - E) + T + V)$$

Where

while $R \ge 45\%$

Renewable share

$$R = \frac{electricity\ from\ RES}{total\ electricity\ demand}$$

Curtailment

$$C = 1 - \frac{dispatched\ RES\ electricity}{available\ RES\ electricity}$$

Energy capacity factor

$$E = \frac{available RES \ electricity}{24h \times 365 \ days \times installed \ RES \ power}$$

Transmission lines

$$T = number\ of\ transmission\ lines\ to\ upgrade$$

Variability of residual load

$$V = stdev(ResLoad(t) \forall t)$$

$$ResLoad(t) = total \ load(t) - nondispatchable \ RES(t)$$

Results: Optimal RES portfolio across Europe

 To achieve 45% RES target, 221 GW of wind and 82 GW of solar need to be installed across central Europe

	Installed Wind [GW]	Installed Solar [GW]
AUT	2	12
CZE	14	6
DEU	60	15
FRA	72	9
ITA	33	26
POL	37	2
SUI	3	12
Total	221	82

Results: Transmission grid in Italy limits penetration of solar power

Exam topics

- Velocity triangles for compressors and turbines:
 - Relative and absolute velocities
 - Work, Power, Δh, Δp
- Calculate the thermodynamic properties in the process points around a cycle with and without tables
- Draw T-s and p-V diagrams
- Use the turbine/compressor efficiency
- Calculate work and heat
- Calculate the thermal efficiency
- Understand issues and potential solutions for carbon capture and storage

Cycles

- Rankine cycle
- Otto cycle
- Diesel cycle
- Brayton cycle
- Stirling cycle
- Carnot cycle: heat pump / refrigerator
- Combined cycles (combination of all the cycles above)