Rozdział 1

28 września 2015

Procesy stochastyczne - teoria służąca do opisu analizy (wnioskowań) zjawisk losowych ewoluujących w czasie. Wywodzą się z rachunku prawdopodobieństwa. Modelowanie rzeczywistości obarczonej niepewnością (losowością). Przeciwieństwo równań różniczkowych.

$$y' = f(y,t)$$
$$y(t) = g(t,y_0)$$

Równania różniczkowe dostarczają modeli deterministycznych. Idealizuje, możliwe w warunkach laboratoryjnych. Bardzo dużo praktycznych zagadnień nie ma charakteru deterministycznego (a jak już ma to będzie to determinizm chaotyczny). Chaos to nie to samo, co losowość. Losowość tkwi w głębi natury. Dla przykładu mechanika kwantowa.

Podstawowe elementy (pojęcia) procesów stochastycznych:

Przestrzeń probabilistyczna (Ω, \mathcal{F}, P) Ω - zbiór zdarzeń elementarnych $\omega \in \Omega$ - zdarzenie elementarne \mathcal{F} - σ -ciało podzbioru Ω

Definicja 1 (σ -ciało)

Mówimy, że rodzina \mathcal{F} podzbiorów Ω jest σ -ciałem, jeśli spełnia:

1.

$$\emptyset \in \mathcal{F}, \quad \Omega \in \mathcal{F},$$

2.

$$\forall_{A \in \Omega} [A \in \mathcal{F} \Rightarrow A^{c} = \Omega \backslash A \in \mathcal{F}],$$

3.

$$\forall_{A_1,A_2,\dots\in\Omega}\left[\forall_nA_n\in\mathcal{F}\Rightarrow\bigcup_{n=1}^\infty A_n\in\mathcal{F}\right],$$

Definicja 2

Mówimy, że funkcja zbioru P określona na (Ω, \mathcal{F}) jest σ -addytywnym prawdopodobieństwem (miarą probabilistyczną σ -addytywną), jeżeli spełnia:

1.

$$P: \mathcal{F} \to [0,1],$$

2.

$$P(\emptyset) = 0,$$

3.

$$P(\Omega) = 1$$
,

4. warunek σ -addytywności

$$\forall_{A_1, A_2, \dots \in \mathcal{F}} \left[\forall_{i \neq j} A_i \cap A_j = \emptyset \Rightarrow P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n) \right]$$

Definicja 3 (Proces stochastyczny)

Procesem stochastycznym na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) nazywamy rodzinę zmiennych losowych $\{X_t\}_{t\in T}$ określonych na (Ω, \mathcal{F}, P) . T - zbiór indeksów (czasowych, gdy T interpretujemy jako czas)

Definicja 4 (Zmienna losowa)

Zmienna losowa X_t .

$$\forall_{t \in T} \forall_{B \in \mathfrak{B}_{\mathbb{D}}} X_t^{-1}(B) \in \mathcal{F}$$

 X_t jest \mathcal{F} mierzalne; X_t jest $\sigma(\mathcal{F}, \mathfrak{B}_{\mathbb{R}})$ mierzalna

- \bullet $\mathfrak{B}_{\mathbb{R}}$ $\sigma\text{-ciało}$ zbiorów borelowskich w \mathbb{R}
- $\mathfrak{B}_{\mathbb{R}} = \sigma\left(\left\{(\alpha, \beta) : \alpha < \beta\right\}\right)$

Uwaga!

$$\operatorname{card}(\mathfrak{B}_{\mathbb{R}}) = \mathfrak{c} < 2^{\mathfrak{c}} = \operatorname{card}(\mathcal{L}_{\mathbb{R}})$$

Definicja 5

Niech Ω będzie ustalonym zbiorem. Mówimy, że rodzina $\mathcal C$ podzbiorów Ω tworzy ciało, jeżeli spełnia:

1.

$$\emptyset, \Omega \in \mathcal{C}$$

2.

$$\forall_{A\subseteq\Omega} \left[A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C} \right]$$

3.

$$\forall_{A,B \in \Omega} \left[A < B \in \mathcal{C} \Rightarrow A \cup B \in \mathcal{C} \right] \equiv$$

$$\equiv \left[A_1, A_2, \dots, A_n \in \mathcal{C}, \quad n \in \mathbb{N} \Rightarrow \bigcup_{j=1}^n A_j \in \mathcal{C} \right]$$

Definicja 6

Mówimy, że funkcja zbioru μ określona na (Ω, \mathcal{C}) jest miarą probabilistyczną σ -addytywną, jeśli spełnia:

1.

$$\mu(\emptyset) = 0$$

$$\mu(\Omega) = 1$$

$$\forall_{A \in \mathcal{C}} 0 \leqslant \mu(A) \leqslant 1$$

2.

$$\forall_{A_{1},A_{2},\ldots\in\mathcal{C}}\left[\forall_{i\neq j}A_{i}\cap A_{j}=\emptyset\wedge\bigcup_{n=1}^{\infty}A_{n}\in\mathcal{C}\Rightarrow\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mu\left(A_{n}\right)\right]$$