Final Assign mont - 01

Name: Moon, Md. Mamunur Rahman ID: 20-42439-1 Section: 0 Serial: 12

Problem - 01/

Triend values using Semi- average method:

Yean	Income	3-year Semi-total	3-year Semi-average	Triend values
	43	11 (12-8046)	52.66	52.66-10.56= 42.1
2009		158		42.1 +10.56 = 52.66
2010				52.66 + 10.56 = 63.22
2011	76	253	94.33	63.22 + 10.96 = 73.78
2012	81			73.78 + 10.56 = 84.34
2012	96			84.34 + 10.56 = 94.9

Difference between the semi-averages,
= 34.33 - 52.66
= 31.67

Frenesse in thend value for 1-year,

= 31.67/3

= 10.56

Problem - 02/

Veon	Loan	3-year seri	3-year semi average
2004	40	2.66-452	
2005	42	121	40.33
2006	39	106	35.33
1	25	91	30.33
2007	27	103	34.33
2008		106	35.33
2009	51		35
2 00	28	105	28.33
2011	2-6	85	
2012	31	87	29
2013	30	109	36.33
2014	48		

of denotes between the semi- wends

= 84.33 - 52.66

F3.18 =

silver brank

Problem - 03/

Ceiren, Probability of, (9-10) and (10-11) is 6.6 (10-11) is 0.8

The probability of ortening costomers up to 2PM to 9 AM (starting) is at Stage - 05.

$$P = \begin{bmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.4 \\ 0.8 & 0.2 \end{bmatrix}$$

$$P^{5} = [P] \times [P] \times [P] \times [P] \times [P]$$

$$= \begin{bmatrix} 0.6665 & 0.3334 \end{bmatrix}$$

$$0.6668 & 0.3331$$

.. The nequired probability is 0.6665 on 66.69 %

(Ang.)

Problem - 04%

Given,

Poisson rate of email entening, 2=2 per minute

Probability of claspsed time between the entrarce of to the and 11th mail is,

(i) more than I minute,

$$P(T>1) = e^{-\lambda t} = e^{-(2\times 1)} = 0.13533$$

(ii) less than 2 minutes,

$$P(T(2)) = 1 - e^{-\lambda t} = 1 - e^{-(2 \times 2)}$$

$$= 1 - 0.01831$$

(iii) between 1 to 2 minutes,

$$P(1 \angle T \angle 2)$$
 z $e^{-\lambda t_1}$ $e^{-\lambda t_2}$ $e^{-(\lambda x_1)}$ $e^{-(2x_2)}$

$$=(0.13533-0.01831)$$

 $=0.11702$ (Ans.)

= 0.98169