

Fundamentos Físicos de la Informática

- Ingeniería Informática

- -Grupo IIA (subgrupos IIA1, IIA2, IIA3) -Grupo B
- Ingeniería del Software
 - Grupo A
- Ingeniería de Computadores
 - Grupo IC (subgrupos IC1, IC2, IC3)

Profesor: José Manuel Peula García

Dpto: Física Aplicada II

Despacho: 1.2.40

Laboratorio Física Aplicada II: 2.1.6

e-mail: jmpeula@uma.es

Tutorías

Lunes: 12:45-14:30 Lunes: 15:00-17:00 Jueves: 8:30-10:45

Horas	Lunes	Martes	Miércoles	Jueves	Viernes
8.50-9.40	Grupo IIA				Grupo IC
9.50-10.40	Seminarios Problemas				Seminarios
10.50-11.40	Grupo IC Teoría			Grupo IIA Teoría	
11.50-12.40					
12.50-13.40				Grupo IC Seminarios Problemas	Grupo IIA Seminarios
13:50-14:40					

GRADOS Desarrollo del curso

- EEES

- 60 horas presenciales
- 90 horas no presenciales

- Clases de Teoría

- Pruebas periódicas

- Clases de Problemas

- Seminarios

- Experiencias cátedra
- Prácticas de laboratorio
- Aplicaciones informáticas
- Tutorías en grupo

- Tutorías

- Individualizadas

- Evaluación

- Evaluación continua
 - Prácticas de laboratorio
 - Pruebas periódicas
- Examen final

Fundamentos Físicos de la Informática

Profesores Seminarios:

José Manuel Peula García (IIA1, IC1, Problemas) Esperanza Liger Pérez (IC2) Juan Miguel Vargas Domínguez(IIA2, IIA3, IC3)

Dpto: Física Aplicada II

Horas	Lunes	Martes	Miércoles	Jueves	Viernes
8.50-9.40	Grupo IIA Problemas				Grupo IC
9.50-10.40					Seminarios
10.50-11.40	Grupo IC Teoría			Grupo IIA Teoría	
11.50-12.40					
12.50-13.40				Grupo IC	Grupo IIA
13:50-14:40	4:40			Problemas	Seminarios

Desarrollo del curso

- EEES
 - 60 horas presenciales
 - 90 horas no presenciales
- Clases de Teoría:
 Todas las semanas en el horario
 indicado en el aula
 - 205 (grupo IIA)
 - 208 (grupo IC)
- Clases de Problemas Cada dos semanas para todo el grupo en el aula
 - Lunes, Grupo IIA (aula 205)
 - Jueves, Grupo IC (aula 208)

Fundamentos Físicos de la Informática

CAMPUS VIRTUAL

- · CALENDARIO
 - · Convocatoria semanal de actividades IMPORTANTE
- Foro de Noticias
- Material de la Asignatura
 - Transparencias
 - Relaciones de problemas
 - Actividades de laboratorio
- · Enlaces web

Desarrollo del curso

- Seminarios:

Cada dos semanas en el subgrupo correspondiente en el aula y en laboratorio

- Experiencias cátedra
- Prácticas de laboratorio
- Aplicaciones informáticas
- Tutorías en grupo

Horas	Lunes	Martes	Miércoles	Jueves	Viernes
8.50-9.40	IIA1 Seminario Aula 205				IC2,IC3 Seminario Aula 208
9.50-10.40	IIA1 Laboratorio 216				IC2,IC3 Laboratorio 216
10.50-11.40	Grupo IC Teoría			Grupo IIA Teoría	
11.50-12.40					
12.50-13.40				IC1 Seminario Aula 208	IIA2, IIA3 Seminario, Aula 205
13:50-14:40				IC1 Laboratorio 216	IIA2,IIA3 Laboratorio 216

Prerrequisitos y Recomendaciones

El alumno debe conocer los siguientes conceptos de física elemental y manejar con soltura las siguientes herramientas matemáticas básicas

Física

 Nociones de cinemática y dinámica, teoría de campos, campo electrostático, corriente eléctrica y magnetismo. (Física de Bachillerato)

Matemáticas ("curso 0 de matemáticas")

- Saber resolver y manejar ecuaciones algebraicas
- Conocer la definición y propiedades de las funciones elementales (trigonométricas, exponenciales, logarítmicas, etc.)
- Ser capaz de derivar e integrar funciones sencillas de una variable
- Estar familiarizado con las representaciones gráficas y su interpretación
- · Conocer el análisis vectorial

Objetivos

El objetivo principal de la asignatura es que el alumno adquiera conocimientos básicos sobre electromagnetismo y estado sólido que le sirvan de fundamento para el estudio de asignaturas más específicas.

- · Desarrollar curiosidad por el mundo científico-técnico.
- Conocer los fenómenos físicos más directamente relacionados con el funcionamiento de los sistemas informáticos, como monitores, impresoras, memorias magnéticas y ópticas, circuitos electrónicos y fibras ópticas, entre otros.
- Conocer los diferentes tipos de dispositivos semiconductores, su función y características.
- Comprender los modelos matemáticos correspondientes a esos fenómenos.
- Familiarizarse con el trabajo en el laboratorio y la correcta presentación e interpretación de resultados experimentales.
- Fomentar la búsqueda de contenidos en fuentes bibliográficas (libros, internet).

Contenidos

BLOQUE I

Tema 1 Campos eléctrico y magnético

- Carga eléctrica y corriente eléctrica: Fuentes de campo eléctrico y fuentes de campo magnético.
- · Acciones del campo eléctrico y del campo magnético. Fuerza de Lorentz
- Campos conservativos y no conservativos. Energía potencial eléctrica y potencial eléctrico. Ley de Ampère.
- Flujo eléctrico y flujo magnético. Ley de Gauss para el campo eléctrico y para el campo magnético.
- · Campos dependientes del tiempo. Ley de Faraday. Ley de Ampère-Maxwell
- Fcuaciones de Maxwell
- Aplicación a circuitos eléctricos

Tema 2 Ondas electromagnéticas

- · Generalidades sobre ondas
- Ondas electromagnéticas
- Energía y momento de una onda
- · Propagación de oem
- El espectro electromagnético

Contenidos

BLOQUE II

Tema 3

Fundamentos de física cuántica

- Radiación y materia: Dualidad onda-corpúsculo:
- · Principio de incertidumbre
- · Ecuación de Schrödinger.
- Estados de energía atómicos

Tema 4

Introducción al estado sólido

- · Fstructura del estado sólido.
- · Bandas de energía en los sólidos
- · Clasificación de los materiales desde el punto de vista eléctrico

Contenidos

BLOQUE III

Tema 5 Semiconductores

- Conceptos básicos sobre semiconductores
- · Semiconductores intrínsecos
- Semiconductores extrínsecos

Tema 6

Dispositivos electrónicos básicos con semiconductores

- · Conducción eléctrica en semiconductores
- · La unión pn
- Dispositivos electrónicos básicos con semiconductores

Evaluación

Evaluación continua

- · Actividades durante el curso (100 %)
 - Prácticas de laboratorio (30 %)
 - Pruebas periódicas (70 %)
- · Examen final
- ** Aquellos alumnos con justificación adecuada podrán optar por la evaluación sólo con el examen final.
- ** Aquellos alumnos que realicen más de la mitad de las pruebas y trabajos periódicos tendrán que seguir el procedimiento de evaluación continua (No podrán optar a la calificación de NO PRESENTADO).
- ** Aquellos alumnos cuyas calificaciones de evaluación continua así lo permitan podrán aprobar la asignatura por curso (El examen final permitirá aumentar la calificación final).
- ** Los alumnos cuyas calificaciones de evaluación continua no sean adecuadas deberán realizar el examen final.