Lecture 18: Radiation: Processes and Properties: Basic Principles and Definitions

Chapter 12 Sections 12.1 through 12.4

Announcement

- Exam02 next Wed. Everything on Convection!
- 2 sided cheat sheet.
 - Remember to include all your tables!!!

Content

- 1. What is the wavelength range for thermal radiation?
- 2. What is the physical origin of radiation emission?
- 3. How different is radiation from other forms of heat transfer?
- 4. What is the difference between radiative surface and volumetric phenomena?
- 5. What radiation characteristics are important when considering thermal radiation?
- 6. What can happen to radiation after it hits a surface?
- 7. How is the directionality handled in radiation?
- 8. How is the spectral nature handled in radiation?

Radiation vs Conduction and Convection

How does the Sun reach thermal equilibrium with its environment?

Radiation: no matter needed

General Considerations - Radiation

Thermal radiation

- Emission from matter with T > 0 K
- Temperature causes electrons to jump across orbitals
- These high-energy electrons cool and relax back by emitting radiation
- Hence, thermal energy is transferred out

General Considerations - Radiation

Radiation may also be intercepted and absorbed by matter, resulting in its increase in thermal energy

- Consider a solid with temperature T_s in an evacuated enclosure whose walls are at a fixed temperature T_{sur} :
 - \triangleright What will occur if $T_s > T_{sur}$? Why?

 \triangleright What will occur if $T_s < T_{sur}$? Why?

<u>General Considerations – Surface/volume effects</u>

Emission from

- opaque solid or liquid is treated as a surface phenomenon
- gas or a semitransparent solid or liquid is a volumetric phenomenon.

- But radiation within a solid is absorbed by neighboring atoms/molecules.
- Radiation usually originates from atoms and molecules within $1 \mu m$ of the surface => Surface phenomenon for most matter

General Considerations – Duality of radiation

Dual nature of radiation:

- In some cases, radiation is treated as particles (known as photons). (Quantum Mechanics)
- In other cases, radiation behaves as an electromagnetic wave.
 (Classical)
- In all cases, radiation has a wavelength λ and frequency V, which are related through the speed of radiation propagates in the medium of interest:

$$\lambda = \frac{c}{v}$$

For propagation in a vacuum,

$$c = c_0 = 2.998 \text{ x } 10^8 \text{ m/s}$$

The EM Spectrum

Spectral Nature:

• Thermal radiation is confined to the infrared, visible and ultraviolet regions of the spectrum. $(0.1 < \lambda < 100 \mu m)$

The EM Spectrum

Directionality

- The amount of radiation emitted by an opaque surface
 - > Varies with wavelength
 - ➤ There is a spectral distribution
 - > Varies with direction
 - ➤ A directional preference

Radiation Heat Fluxes

Section 12.2


```
Define,
```

 $\rho \rightarrow \text{reflectivity} \rightarrow \text{fraction of irradiation } (G) \text{ reflected where } G_{\text{ref}} = \rho G$

 $\alpha \rightarrow$ absorptivity \rightarrow fraction of irradiation absorbed where $G_{abs} = \alpha G$

 $\tau \to \text{transmissivity} \to \text{fraction of irradiation transmitted through the medium where } G_{tr} = \tau G$

Hence,

 $\rho + \alpha + \tau = 1$ for any medium.

 $\rho + \alpha = 1$ for an opaque medium.

Ignoring Emission

Define,

 $\rho \rightarrow \text{reflectivity} \rightarrow \text{fraction of irradiation } (G) \text{ reflected where } G_{\text{ref}} = \rho G$

 $\alpha \rightarrow$ absorptivity \rightarrow fraction of irradiation absorbed where $G_{abs} = \alpha G$

 $\tau \to \text{transmissivity} \to \text{fraction of irradiation transmitted through the medium where } G_{tr} = \tau G$

Hence,

 $\rho + \alpha + \tau = 1$ for any medium.

 $\rho + \alpha = 1$ for an opaque medium.

Flux (W/m²)	Description	Comment
Emissive power, E	Rate at which radiation is emitted from a surface per unit area	$E = \varepsilon \sigma T_s^4$
Irradiation, G		Irradiation can be reflected, absorbed, or transmitted
Radiosity, J		For an opaque surface $J = E + \rho G$
Net radiative flux, $q''_{rad} = J - G$		For an opaque surface $q''_{\text{rad}} = \varepsilon \sigma T_s^4 - \alpha G$

- From $q_{rad}^{"} = J G$ how to get $q_{rad}^{"} = \varepsilon \sigma T_s^4 \alpha G$?
- Directionality is considered by comparing with radiation intensity
- Spectral effect is considered by comparing with Blackbody radiation

Flux (W/m²)	Description	Comment
Emissive power, E	Rate at which radiation is emitted from a surface per unit area	$E = \varepsilon \sigma T_s^4$
Irradiation, G	Rate at which radiation is incident upon a surface per unit area	Irradiation can be reflected, absorbed, or transmitted
Radiosity, J	Rate at which all radiation leaves a surface per unit area	For an opaque surface $J = E + \rho G$
Net radiative flux, $q''_{rad} = J - G$	Net rate of radiation leaving a surface per unit area	For an opaque surface $q''_{\text{rad}} = \varepsilon \sigma T_s^4 - \alpha G$

- From $q_{rad}^{"} = J G$ how to get $q_{rad}^{"} = \varepsilon \sigma T_s^4 \alpha G$?
- Directionality is considered by comparing with radiation intensity
- Spectral effect is considered by comparing with Blackbody radiation

Radiation Intensity I and E, G, J, q

Section 12.3

Content

- 1. What is a solid angle? How is it defined? What is its unit?
- 2. What is intensity?
- 3. What is the difference between spectral and total radiation?
- 4. What is the difference between directional and hemispherical radiation?
- 5. What is spectral emissive intensity? What is emissive power?
- 6. What is irradiation?
- 7. What is radiosity?

Content

- I Intensity
- E-Emission
- *G* Irradiation
- J Radiosity
- q net radiation heat rate

What are the relationships between them? How to calculate each of them?

Directional Considerations

In general, radiation fluxes $(q_{rad}^{"})$ can be determined only from knowledge of the directional and spectral nature of the radiation.

• Radiation emitted by a surface is in all directions and compared to a hypothetical hemisphere about the surface and is characterized by a directional distribution.

• Direction may be represented in a spherical coordinate system characterized by polar angle θ and the azimuthal angle ϕ .

Directional Considerations – Solid Angle

radiation

 $d\omega$

The amount of radiation emitted from a surface, dA_1 , and propagating in a particular direction, θ , ϕ , is quantified in terms of a differential solid angle, $d\omega$ associated with the direction.

$$d\omega \equiv \frac{dA_n}{r^2}$$

 $dA_n \rightarrow$ unit element of surface on a θ, ϕ hypothetical sphere and normal to the direction.

(a) 2D angle

(b) 3D angle

 dA_1

Directional Considerations – Solid Angle

- The solid angle associated with a complete hemisphere is

$$\omega_{\text{hemi}} = \int_0^{2\pi} \int_0^{\pi/2} \sin\theta d\theta d\phi = 2\pi \text{ sr}$$

- The solid angle ω has units of steradians (sr).

Intensity, I

Intensity?

- How powerful it is over a small area
- The radiant heat flux (W/m²) within a unit solid angle about a prescribed direction (W/m²⋅sr)
- Intensity is considered
 - For emission, irradiation, and radiosity
 - Depends on the direction (ϕ, θ) and wavelength of radiation (λ)

Spectral intensity, I_{λ}

Spectral Intensity $(I_{\lambda}) =$ radiation of a certain wavelength at a certain direction per unit wavelength per unit solid angle $[W/(m^2 \cdot sr \cdot \mu m)]$.

- The area for I is the area perpendicular to the radiation direction. This is known as the projected area, $dA_1\cos\theta$
- So, $I_{\lambda}(\lambda, \theta, \phi) = \frac{dq}{dA_1 \cos\theta \ d\omega \ d\lambda}$

– What is the projected area for $\theta = 0$?

– What is the projected area for $\theta = \pi / 2$?

Spectral Emissive intensity, $I_{\lambda,e}$

Spectral emissive intensity $I_{\lambda,e}$ [W/(m² · sr · μ m)]

• due to emission from a surface element dA_1 in the solid angle $d\omega$ about θ , ϕ and the wavelength interval $d\lambda$ about λ is defined as (similar to infront):

$$I_{\lambda,e}(\lambda,\theta,\phi) \equiv \frac{dq}{(dA_1\cos\theta)\cdot d\omega\cdot d\lambda}$$

• From above:

$$dq_{\lambda} \equiv \frac{dq}{d\lambda} = I_{\lambda,e}(\lambda,\theta,\phi) dA_1 \cos\theta d\omega$$

$$dq''_{\lambda} = I_{\lambda,e}(\lambda,\theta,\phi) \cos\theta \ d\omega$$

= $I_{\lambda,e}(\lambda,\theta,\phi) \cos\theta \sin\theta \ d\theta \ d\phi$ as $d\omega = \frac{dA_n}{r^2} = \sin\theta d\theta d\phi$

Emissive Power, E

The spectral hemispherical emissive power $(W/m^2 \cdot \mu m)$ of a surface corresponds to spectral emission over all possible directions => E_{λ} is based on actual surface area.

$$E_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$$

• Why over all possible directions, the $d\theta$ is only from 0 to 90°?

Emissive Power, E

The total hemispherical emissive power (W/m^2) corresponds to emission over all directions and wavelengths => E is also based on actual surface area.

$$E = \int_0^\infty E_\lambda(\lambda) d\lambda$$

• For a diffuse surface, emission is independent of directions => isotropic:

$$E_{\lambda}(\lambda) = \pi I_{\lambda,e}(\lambda)$$
 $E = \pi I_{e}$

- Why it is a π not 2π ?

Spectral Irradiation intensity, $I_{\lambda,i}$

The spectral intensity of radiation incident on a surface, $I_{\lambda,i}$

- is defined in terms of the unit solid angle about the direction of incidence, the wavelength interval $d\lambda$ about λ , and the projected area of the receiving/intercepting surface, $dA_1\cos\theta$.
- Same definition as emission but now the radiation is hitting the surface.
- What is the formula of $I_{\lambda,i}$?

Irradiation, G

The spectral irradiation $(W/m^2 \cdot \mu m)$ is then:

$$G_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$$

and the total irradiation (W/m^2) is

$$G = \int_0^\infty G_\lambda\left(\lambda\right) d\lambda$$

- \triangleright How may G_{λ} and G be expressed if the incident radiation is diffuse (i.e., independent of directions)?
- \triangleright Note: G_{λ} and G are also based on actual surface area

The radiosity of an opaque surface == all of the radiation leaving the surface in all directions

- Include contributions from both reflection and emission.
 - $J = \rho G + E$

Radiosity, J

 $I_{\lambda,e+r}$ includes the spectral intensity from radiation emitted by the surface and the reflection of incident radiation, the spectral radiosity $(W/m^2 \cdot \mu m)$ is:

$$J_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$$

and the total radiosity (W/m²) is

$$J = \int_0^\infty J_\lambda\left(\lambda\right) d\lambda$$

- \blacktriangleright How may J_{λ} and J be expressed if the surface emits and reflects diffusely?
- \triangleright Note: J_{λ} and J are based on actual surface area but $I_{\lambda,e+r}$ is based on projected area

Difference between the outgoing radiosity J and incoming irradiation G,

$$q_{rad}^{"} = J - G$$

• Can be simplified by expressing using blackbody radiation and emissivity, absorptivity, and reflectivity.

Summary

Radiation

- Nature of Radiation
 - What causes it?
 - Spectral + Directionality
- Emission
- Irradiation
- Radiosity
- Net q_{rad}

Example 1: Solar Irradiation

Problem 12.93: Evaluation of total solar irradiation at the earth's surface when direct incident radiation is at $\theta = 30^{\circ}$ with a total flux (area normal to the rays) $q_{dir}^{"} = 1000 \text{ W/m}^2$, as well as a total intensity of the diffuse radiation is $I_{dif} = 70 \text{ W/m}^2$ sr. What is the total solar irradiation at the earth's surface?

KNOWN: Flux and intensity of direct and diffuse components, respectively, of solar irradiation.

FIND: Total irradiation.

SCHEMATIC:

- Total irradiation comes from?
- Irradiation, G is based on what area?
- Intensity, *I* is based on what area?
- How to combine them?

SCHEMATIC:

ANALYSIS: Since the irradiation is based on the actual surface area, the contribution due to the direct solar radiation is

$$G_{\text{dir}} = q''_{\text{dir}} \cdot \cos \theta.$$

For the contribution due to the diffuse radiation

$$G_{\text{dif}} = \pi I_{\text{dif}}$$
.

Hence

$$G = G_{\text{dir}} + G_{\text{dif}} = q''_{\text{dir}} \cdot \cos \theta + \pi I_{\text{dif}}$$

or

$$G = 1000 \,\text{W/m}^2 \times 0.866 + \pi \text{sr} \times 70 \,\text{W/m}^2 \cdot \text{sr}$$

$$G = (866 + 220) \text{W/m}^2$$

$$G = 1086 \text{ W/m}^2$$
.

COMMENTS: Although a diffuse approximation is often made for the non-direct component of solar radiation, the actual directional distribution deviates from this condition, providing larger intensities at angles close to the direct beam.