What Is a Lattice?

Given n linearly independent vectors $\mathbf{b_1}, \dots, \mathbf{b_n} \in \mathbb{R}^m$ $(n \leq m)$, the lattice generated by them is the set of vectors

$$L(\mathbf{b_1},\ldots,\mathbf{b_n}) = \{\sum_{i=1}^n x_i \mathbf{b_i} : x_i \in \mathbb{Z}\}$$

The vectors $\mathbf{b_1}, \dots, \mathbf{b_n}$ form a basis of the lattice.

0 0 0 0 • 0 0) • 0 0 0 0 0) • • • ^ ^

The shortest vector

- ► Hermite bound: $\sqrt{n}det(L)^{1/n}$ (uniform)
- On average has length $(1+o(1))\sqrt{\frac{n}{2e\pi}}det(L)^{1/n}$ (Gauss Heuristic)
- Must have length less than $(1 + o(1))\sqrt{\frac{2n}{e\pi}}det(L)^{1/n}$. (The Minkowski Convex Body Theorem)

Closest Vector Problem

For one dimensional lattices, rounding works.

Closest Vector Problem-Dimension two

The LLL reduction

There is a polynomial time algorithm to find a vector b_1 in the lattice such that $|b_1| \leq (2/\sqrt{3})^n \lambda_1$, where λ_1 denotes the length of the shortest vector.

$$b_1 = b_1^*$$
 $b_2 = \mu_{2,1}b_1^* + b_2^*$
 $b_3 = \mu_{3,1}b_1^* + \mu_{3,2}b_2^* + b_3^*$
 $b_4 = \mu_{4,1}b_1^* + \mu_{4,2}b_2^* + \mu_{4,3}b_3^* + b_4^*$

$$b_1 = b_1^*$$

$$b_2 = \mu_{2,1}b_1^* + b_2^*$$

$$b_3 = \mu_{3,1}b_1^* + \mu_{3,2}b_2^* + b_3^*$$

$$b_4 = \mu_{4,1}b_1^* + \mu_{4,2}b_2^* + \mu_{4,3}b_3^* + b_4^*$$

$$b_1 = b_1^*$$
 $b_2 = \mu_{2,1}b_1^* + b_2^*$
 $b_3 = \mu_{3,1}b_1^* + \mu_{3,2}b_2^* + b_3^*$
 $b_4 = \mu_{4,1}b_1^* + \mu_{4,2}b_2^* + \mu_{4,3}b_3^* + b_4^*$

$$b_1 = b_1^*$$
 $b_2 = \mu_{2,1}b_1^* + b_2^*$
 $b_3 = \mu_{3,1}b_1^* + \mu_{3,2}b_2^* + b_3^*$
 $b_4 = \mu_{4,1}b_1^* + \mu_{4,2}b_2^* + \mu_{4,3}b_3^* + b_4^*$

$$b_1 = b_1^*$$

$$b_2 = \mu_{2,1}b_1^* + b_2^*$$

$$b_3 = \mu_{3,1}b_1^* + \mu_{3,2}b_2^* + b_3^*$$

$$b_4 = \mu_{4,1}b_1^* + \mu_{4,2}b_2^* + \mu_{4,3}b_3^* + b_4^*$$

Do

- 1. Calculate b_i^*
- 2. Apply integral linear operations so $|\mu_{ij}| \leq 1/2$
- 3. Swap if $\delta |b_i^*| > |\mu_{i+1,i}b_i^* + b_{i+1}^*|$

Until no swapping in the last step

$$b_1 = b_1^*$$

$$b_2 = \mu_{2,1}b_1^* + b_2^*$$

$$b_3 = \mu_{3,1}b_1^* + \mu_{3,2}b_2^* + b_3^*$$

$$b_4 = \mu_{4,1}b_1^* + \mu_{4,2}b_2^* + \mu_{4,3}b_3^* + b_4^*$$
It is δ LLL-reduced (1/4 < δ < 1) if $|\mu_{i,j}| \le 1/2$ and
$$\delta |b_1^*| \le |\mu_{2,1}b_1^* + b_2^*|$$

$$\delta |b_2^*| \le |\mu_{3,2}b_2^* + b_3^*|$$

$$\delta |b_3^*| \le |\mu_{4,3}b_3^* + b_4^*|$$

More algorithms for SVP

- ► Can be found in $4^{n+o(1)}$ arithmetic operations deterministically. (Micciancio-Voulgaris 2010),
- random $2^{(1+\epsilon)n}$ time (Divesh Aggarwal, Daniel Dadush, Oded Regev, Noah Stephens-Davidowitz 2015).
- For approximation factor 2^k , need time $2^{O(n/k)}$.

