```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from datetime import datetime
        from scipy import stats
        from matplotlib.lines import Line2D
        import seaborn as sns
        from sklearn.linear_model import LinearRegression
        from IPython.display import Image
        import statsmodels.api as sm
        import statsmodels.stats.api as sms
        import statsmodels.formula.api as smf
        import linearmodels as plm
        import warnings
        warnings.filterwarnings('ignore')
In [2]: df = pd.read_csv('desktop/productivity.csv')
```

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 816 entries, 0 to 815 Data columns (total 10 columns): Column Non-Null Count Dtype

0	STATE	816 non-null	object
1	YR	816 non-null	int64
2	P_CAP	816 non-null	float64
3	HWY	816 non-null	float64
4	WATER	816 non-null	float64
5	UTIL	816 non-null	float64
6	PC	816 non-null	float64
7	GSP	816 non-null	int64
8	EMP	816 non-null	float64
9	UNEMP	816 non-null	float64
- .			

dtypes: float64(7), int64(2), object(1) memory usage: 63.9+ KB

In [4]: df.head(3)

Out[4]:

		STATE	YR	P_CAP	HWY	WATER	UTIL	PC	GSP	EMP	UNEMP
-	0	ALABAMA	1970	15032.67	7325.80	1655.68	6051.20	35793.80	28418	1010.5	4.7
	1	ALABAMA	1971	15501.94	7525.94	1721.02	6254.98	37299.91	29375	1021.9	5.2
	2	ALABAMA	1972	15972.41	7765.42	1764.75	6442.23	38670.30	31303	1072.3	4.7

```
In [6]: Model = smf.ols(formula='np.log(GSP) ~ np.log(P_CAP) + np.log(PC) + np.log(
        results = Model.fit()
        results.summary()
```

Out[6]: **OLS Regression Results**

np.log(GSP) 0.993 Dep. Variable: R-squared: OLS 0.993 Model: Adj. R-squared: Method: Least Squares **F-statistic:** 2.717e+04 **Date:** Sun, 28 Nov 2021 0.00 Prob (F-statistic): 21:00:53 Log-Likelihood: 826.98 Time: No. Observations: 816 AIC: -1644. -1620.

811 **Df Residuals:** BIC:

4 **Df Model:**

nonrobust **Covariance Type:**

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.6433	0.058	28.536	0.000	1.530	1.756
np.log(P_CAP)	0.1550	0.017	9.036	0.000	0.121	0.189
np.log(PC)	0.3092	0.010	30.100	0.000	0.289	0.329
np.log(EMP)	0.5939	0.014	43.203	0.000	0.567	0.621
UNEMP	-0.0067	0.001	-4.754	0.000	-0.010	-0.004

Omnibus: 23.719 0.180 **Durbin-Watson:** 28.801 Prob(Omnibus): 0.000 Jarque-Bera (JB):

> Skew: 0.333 **Prob(JB):** 5.57e-07

3.635 336. **Kurtosis:** Cond. No.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [7]: df = df.set_index(['STATE', 'YR'], drop=False)
```

Out[9]:

PanelOLS Estimation Summary

Dep. Variable:	np.log(GSP)	R-squared:	0.9413
Estimator:	PanelOLS	R-squared (Between):	0.9503
No. Observations:	816	R-squared (Within):	0.9413
Date:	Sun, Nov 28 2021	R-squared (Overall):	0.9503
Time:	21:01:38	Log-likelihood	1534.5
Cov. Estimator:	Unadjusted		
		F-statistic:	3064.8
Entities:	48	P-value	0.0000
Avg Obs:	17.000	Distribution:	F(4,764)
Min Obs:	17.000		
Max Obs:	17.000	F-statistic (robust):	3064.8
		P-value	0.0000
Time periods:	17	Distribution:	F(4,764)
Avg Obs:	48.000		
Min Obs:	48.000		
Max Obs:	48.000		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
np.log(P_CAP)	-0.0261	0.0290	-0.9017	0.3675	-0.0831	0.0308
np.log(PC)	0.2920	0.0251	11.625	0.0000	0.2427	0.3413
np.log(EMP)	0.7682	0.0301	25.527	0.0000	0.7091	0.8272
UNEMP	-0.0053	0.0010	-5.3582	0.0000	-0.0072	-0.0034

F-test for Poolability: 75.820

P-value: 0.0000

Distribution: F(47,764)

Included effects: Entity id: 0x7fe891e78b20

Looking at the OLS model, I conclude that Public Capital has a statistical significant effect on Production.

Looking at the Fixed Effect Model, I conclude that Public Capital does not have a statistical significant effect on Production.

Out[11]: RandomEffects Estimation Summary

Dep. Variable:	np.log(GSP)	R-squared:	0.9974
Estimator:	RandomEffects	R-squared (Between):	0.9998
No. Observations:	816	R-squared (Within):	0.9274
Date:	Sun, Nov 28 2021	R-squared (Overall):	0.9998
Time:	21:06:08	Log-likelihood	1420.2
Cov. Estimator:	Unadjusted		
		F-statistic:	7.855e+04
Entities:	48	P-value	0.0000
Avg Obs:	17.000	Distribution:	F(4,812)
Min Obs:	17.000		
Max Obs:	17.000	F-statistic (robust):	7.855e+04
		P-value	0.0000
Time periods:	17	Distribution:	F(4,812)
Avg Obs:	48.000		
Min Obs:	48.000		
Max Obs:	48.000		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
np.log(P_CAP)	0.2732	0.0187	14.603	0.0000	0.2365	0.3100
np.log(PC)	0.4401	0.0221	19.949	0.0000	0.3968	0.4834
np.log(EMP)	0.4698	0.0219	21.468	0.0000	0.4268	0.5127
UNEMP	-0.0138	0.0009	-15.961	0.0000	-0.0154	-0.0121

id: 0x7fe891eb1bb0

```
In [13]: b_fe = results_fe.params
b_fe_cov = results_fe.cov
```

After running a Hausman test, we reject the null hypothesis that the Random Effect Model is preferred over the Fixed Effect model, therefore, we will choose to stick the the alternative hypothesis that the Fixed Effect Model is preferrable.