- **3.7** Let V be a vector space, and π an endomorphism of V.
 - a. Prove that π is a projection if and only if id_V π is a projection, where id_V is the identity endomorphism on V.

Solution.

We need to prove that $\pi \circ \pi = \pi \iff (id_V - \pi) \circ (id_V - \pi) = (id_V - \pi)$

So, we have to prove 2 statements:

$$\pi \circ \pi = \pi \Longrightarrow (id_V - \pi) \circ (id_V - \pi) = (id_V - \pi) - (1)$$

and

$$(id_V - \pi) \circ (id_V - \pi) = (id_V - \pi) \Longrightarrow \pi \circ \pi = \pi - (2)$$

First we simplify $(id_V - \pi) \circ (id_V - \pi)$

$$(id_V - \pi) \circ (id_V - \pi)$$

$$= id_V(id_V(x) - \pi(x)) - \pi(id_V(x) - \pi(x)) \ \forall x \in V$$

$$= id_V(x - \pi(x)) - \pi(x - \pi(x)) \qquad \qquad :: id_V(x) = x \ \forall x \in V$$

$$=id_V(x)-id_V(\pi(x))-\pi(x)+\pi(\pi(x))$$
 :: id_V and π are both

endomorphisms and the property of linearity holds (eqn 2.15 of book)

$$= x - id_V(\pi(x)) - \pi(x) + \pi(\pi(x))$$

$$= x - \pi(x) - \pi(x) + \pi(\pi(x)) \qquad \qquad :: \pi : V \to V$$

-(3)

Now,
$$\pi(\pi(x)) = \pi(x) \forall x \in V \Longrightarrow x - \pi(x) - \pi(x) + \pi(\pi(x)) = x - \pi(x) - \pi(x) + \pi(x)$$

$$= x - \pi(x)$$

(1) is proved.

Now let's assume $(id_V - \pi) \circ (id_V - \pi) = (id_V - \pi)$

Applying (3), it becomes

$$x - \pi(x) - \pi(x) + \pi(\pi(x)) = x - \pi(x)$$

$$\Longrightarrow -\pi(x) + \pi(\pi(x)) = 0$$

$$\implies \pi(\pi(x)) = \pi(x)$$

- (2) is proved.
- b. Assume now that π is a projection. Calculate $Im(id_V \pi)$ and $ker(id_V \pi)$ as a function of $Im(\pi)$ and $ker(\pi)$.

Solution.

Since
$$\pi(id_V - \pi) = \pi - \pi \circ \pi = \pi - \pi = 0_V$$
, $\mathbf{x} - \pi(\mathbf{x}) \in ker(\pi) \forall \mathbf{x} \in V$

$$\Longrightarrow Im(id_V - \pi) \subseteq ker(\pi)$$

Now,
$$\forall \mathbf{x} \in ker(\pi), \, \pi(\mathbf{x}) = 0, \, \text{and} \, (id_V - \pi)(\mathbf{x}) = \mathbf{x}$$

This means that $\forall \mathbf{x} \in ker(\pi), \mathbf{x} \in Im(id_V - \pi)$

$$\Longrightarrow ker(\pi) \subseteq Im(id_V - \pi)$$

Therefore, $Im(id_V - \pi) = ker(\pi)$

Now, $ker(id_V - \pi)$

$$= \{ \mathbf{x} \in V | \mathbf{x} - \pi(\mathbf{x}) = 0_V \}$$

$$= \{ \mathbf{x} \in V | \mathbf{x} = \pi(\mathbf{x}) \}$$

Therefore, $\forall \mathbf{x} \in ker(id_V - \pi), \mathbf{x} = \pi(\mathbf{x}), \text{ and } ker(id_V - \pi) \subseteq Im(\pi)$

Now,
$$\forall \mathbf{x} \in Im(\pi), \ \mathbf{x} = \pi(\mathbf{y}) | \mathbf{y} \in V$$

$$(id_V - \pi)(\mathbf{x}) = (id_V - \pi)(\pi(\mathbf{y})) = \pi(\mathbf{y}) - \pi(\pi(\mathbf{y})) = \pi(\mathbf{y}) - \pi(\mathbf{y}) = 0_V$$

Therefore, $\forall \mathbf{x} \in Im(\pi), \ \mathbf{x} \in ker(id_V - \pi)$

and
$$Im(\pi) \subseteq ker(id_V - \pi)$$

So,
$$Im(\pi) = ker(id_V - \pi)$$