Volume 3: List of Multi-run Quadratizations

Nike Dattani and Andreas Soteriou (Dated: 16th September 2019)

DECOMPOSITION OF A MONOMIAL

$b_1b_2b_3b_k = \min(b_1b_2b_{k_1}, b_{k_1+1}b_{k_1+2}b_{k_2}, b_{k_2+1}b_{k_2+2}b_{k_3},, b_{k_n+1}b_{k_n+2}b_k)$		(1)
$b_1 b_2 b_3 \dots b_k = \min(b_1, b_2, b_3, \dots, b_k)$	(Example of Eq. 1: Linearization	n of a degree-k monomial). (2)
$b_1 b_2 b_3 b_4 = \min (b_1 b_2, b_3 b_4)$	(Example of Eq. 1: Quadratization	n of a degree-4 monomial). (3)
DECOMPOSITIO	ON OF BINOMIALS OF DEGREE- k TE	ERMS
$b_1b_2b_3b_4 + b_3b_4b_5b_6 = \min(b_2b_3 + b_3b_6, b_1b_4 + b_4b_5, b_1b_2 + b_5b_6 - b_3 - b_4 + 2)$		(k,n) = (4,6). (4)
$b_1b_2b_3b_4b_5b_6+b_2b_3b_4b_5b_6b_7:$		(k,n) = (6,7). (5)
$\longrightarrow 2b_3b_6$		(6)
$\longrightarrow 2b_4b_5 - b_5b_6 + b_5$		(7)
$\longrightarrow b_1b_4 - b_2b_5 + b_2b_6 + b_2b_7 + b_5b_7 - b_6b_7 - b_5 - b_6 + 2$		(8)
$\longrightarrow b_1b_2 - b_1b_5 + b_1b_7 + b_2b_3 + b_3b_6 - b_3b_7$	$-b_4b_5 - b_5b_6 - b_3 + b_5 + 2$	(9)
$b_1b_2b_3b_4 + b_5b_6b_7b_8$:		(k,n) = (4,8). (10)
$\longrightarrow b_1b_2 + b_6b_8 + b_a(1 - b_6 + b_7 - b_8)$		(11)
$\longrightarrow b_3b_4 + b_6b_8 + 2b_8b_a$		(12)
$\longrightarrow b_2 b_3 + b_5 b_7 + b_a \left(1 - b_6 + b_7 \right)$		(13)
$\longrightarrow b_1b_4 + b_5b_7 - b_6b_8 + b_7b_a + b_6$		(14)
$b_1b_2b_3b_4b_5 + b_6b_7b_8b_9b_{10}$:		(k,n) = (5,10). (15)
$\longrightarrow b_2b_3 + b_6b_9 + b_9b_a$		(16)
$\longrightarrow b_1b_4 + b_8b_{10} + b_9b_a$		(17)
$\longrightarrow b_3b_5 + b_7b_{10} + b_1b_a + b_9b_a$		(18)
$\longrightarrow b_4b_5 + b_6b_9 + b_9b_a$		(19)
$\longrightarrow b_1b_2 + b_7b_9 + b_9b_a$		(20)
$\longrightarrow b_2b_5 + b_6b_8 + b_9b_a$		(21)

(22)

(23)

 $\longrightarrow b_2b_3 + b_8b_{10} + b_9b_a$

 $\longrightarrow b_1b_4 + b_6b_7 + b_9b_a$

DECOMPOSITION OF DEGREE-k, EXACT-k-OF-n TRINOMIALS