藝術風格探索

利用特徵提取與機器學習進行圖像分類

高崇哲 林青欣 黃翊瑄 陳彥竹 李佳芬 鄭家晏

START

Table of Contents

- 1 動機與目的
- 2 資料介紹
- 3 研究方法

- 4 實證分析
- 5 結論與未來方向
- 6 Demo

研究動機

Topic 1: 圖像分類的耗時

Topic 2: 深度學習的限制與挑戰

資料介紹

資料介紹

資料來源: Kaggle. Art Images

選取範圍: .jpeg格式

最後資料: 2200幅畫來自四種不同類型的作品,每個作品各為550幅

Training	Test
各類型500張	各類型50張

資料介紹:藝術品種類

研究方法

研究方法

• 大小調整:將所有圖片調整成128*128像素

01

•特徵提取:計算每張圖片中的顏色、紋理、結構和形狀特徵值

• 隨機抽樣: 在各類藝術品各抽取550張圖片,達成資料平衡

·特徵選取:透過EDA、模型表現來挑選出具解釋性的特徵

02

· 模型組合:嘗試不同ML模型,選擇表現最佳的模型

· 參數優化: 使用GridSerach,找到使模型表現最佳的參數組合

特徵介紹——顏色特徵

特徵名稱	特徵含義
RGB平均數 (Mean)	 圖像中紅色、綠色、藍色的強度 RGB平均值都越高,代表圖像越亮 單一平均值較高,代表該圖像特定色調明顯
RGB變異數 (Variance)	圖像中紅色、綠色、藍色的變化程度RGB變異數越高,代表圖像包含更多的細節和紋理
RGB一階差分 (Diff)	圖像中紅色、藍色、綠色像素值的變化梯度一階差分值越高,代表圖像中的邊緣和輪廓較清晰

特徵介紹—結構特徵

特徵名稱	特徵含義
分層結構 (layers)	 圖像的整體色彩分佈 值越大表示圖像的色彩分佈越複雜
對稱性 (symmetry)	衡量圖像左右對稱的程度值越小,表示圖像越對稱
對齊度 (alignment)	 主特徵向量與水平方向的夾角 反映圖像的主要結構方向 值越小,表示主要結構與水平方向越對齊

特徵介紹——紋理特徵

特徵名稱	特徵含義
對比度 (Contrast)	相鄰像素之間的灰度差異對比度值越高,代表圖像中的紋理越突出強調灰度差異的平方值
能量 (Energy)	- 圖像紋理粗糙度的特徵- 能量值越高,代表圖像紋理越粗糙
同質性 (Homogeneity)	- 圖像中相似像素對之間的接近程度的特徵- 同質性值越高,代表圖像中的紋理越均匀
異質性 (Dissimilarity)	・圖像中相鄰像素間的灰度差異的特徵・異質性值越高,代表圖像中的紋理越突出・強調灰度差異的絕對值

特徵介紹——形狀特徵

特徵名稱	特徵含義
面積 (Area)	• 圖像中的物體大小
重心 (Centroid)	• 圖像中物體的平均位置
凸包面積 (Convex Hull Area)	圖像的最小凸多邊形面積凸包面積越大,凸度越高
方向 (Orientation)	• 圖像中物體的主要朝向
圓度 (Circularity)	圖像中物體的圓型度值越接近1,表示物體形狀越圓

颜色特徵EDA

結構特徵EDA

紋理特徵EDA

紋理特徵EDA

形狀特徵EDA

實證分析:特徵準確度比較

	特徵數	SVM	Random Forest	GBM
RGB平均數、變異數	6	0.61	0.605	0.605
RGB平均數、變異數、 一階差分值	9	0.705	0.685	0.68
RGB平均數、變異數、 一階差分值、結構特徵值	12	0.75	0.68	0.715
RGB平均數、變異數、 一階差分值、結構特徵值 、紋理特徵值	15	0.77	0.69	0.715
RGB平均數、變異數、 一階差分值、結構特徵值 、紋理特徵值、形狀特徵值	21	0.59	0.7	0.69

特徵準確度比較

```
Log Likelihood for SVM: -150.8133
```

Log Likelihood for GBM: -152.9199

Log Likelihood for Random Forest: -156.363

實證分析: 混淆矩陣

訓練集混淆矩陣

測試集混淆矩陣

實證分析: 分類案例

難區分

drawings

engraving

易區分

iconography

engraving

結論與 未來方向

結論

成功在R語言上實現畫作識別,利用SVM模型在四分類畫作達到77%準確率

同時考慮顏色特徵、結構特徵、紋理特徵效果更好,且
 只使用15個關鍵變數也能有良好分類效果

未來方向

- 測試其他資料集、類型
- 研究額外特徵
- 加入深度學習模型一同進行比較

特徵名稱	計算公式	
RGB平均數 (Mean)	 #計算三個顏色通道的平均數,反映圖像特定色調的明顯程度 mean(img["1]), mean(img["2]), mean(img["3]) 	
RGB變異數 (Variance)	 #計算三個顏色通道的變異數,反映圖像的細節和紋理多寡 var(c(img["1])), var(c(img["2])), var(c(img["3])) 	
RGB一階差分 (Diff)	 #計算三個顏色通道的變化梯度,反映圖像中邊緣和輪廓的深淺 compute_diff <- function(img, x) { Diff <- abs(diff(img[,,x])) c(mean(Diff))} 	

特徵名稱	計算公式
分層結構 (layers)	 #計算所有顏色的總和,反映圖像的整體色彩分佈 layers <- sum(colMeans(colSums(as.array(img))))
對稱性 (symmetry)	 #計算水平投影與其反向的絕對差值,並除以投影長度,衡量圖像左右對稱的程度 symmetry <- sum(abs(horizontal_profile - rev(horizontal_profile))) / length(horizontal_profile)
對齊度 (alignment)	 #計算灰階影像的協方差矩陣最大特徵向量與水平方向的夾角,反映圖像的主要結構方向 alignment <- abs(atan(main_eigenvector[2] / main_eigenvector[1]))

特徵名稱	計算公式
對比度 (Contrast)	 #計算灰度值間的差異,將其平方後乘以該灰度值在圖像中的出現次數,並將結果加總 sum((row(glcm) - col(glcm))^2 * glcm)
能量 (Energy)	 #計算GLCM的元素值平方和[,]反映圖像的粗糙度 energy <- sum(glcm²)
同質性 (Homogeneity)	 #對GLCM每個元素行和列索引的絕對差值加1取倒數,與對應的GLCM元素值相乘再相加 homogeneity <- homogeneity + (1 / (1 + abs(i - j))) * glcm[i, j]
異質性 (Dissimilarity)	 #對GLCM每個元素,計算其行和列索引的絕對差值,與對應的GLCM元素值相乘再相加 dissimilarity <- dissimilarity + abs(i - j) * glcm[i, j]

特徵名稱	計算公式	
重心 (Controid)	$centroid_x = \frac{1}{n} \sum_{i=1}^n x_i$ · $centroid_y = \frac{1}{n} \sum_{i=1}^n y_i$	
凸包面積 (Convex_Hull_Area)	・用高斯面積公式計算 $S=rac{1}{2}igg egin{array}{cccccccccccccccccccccccccccccccccccc$	
方向 (Orientation)	 centered_pixels <- scale(region_pixels, scale = FALSE) #將座標進行中心化。 pca_result <- prcomp(centered_pixels) #用PCA找出多邊形的主要方向。 orientation <- atan2(pca_result\$rotation[2, 1], pca_result\$rotation[1, 1]) #用atan2()計算向量的角度。 #pca_result\$rotation[2, 1]和pca_result\$rotation[1, 1]表PCA1和PCA2的旋轉角度。 	
圓度 (Circularity)	 perimeter <- length(region_pixels) #計算多邊形的周長,即多邊形的邊線長度。 area <- nrow(region_pixels) #計算多邊形的面積,即多邊形所包圍的區域的大小。 circularity <- 4 * pi * area / (perimeter 2) #計算多邊形的圓度。 	

海報展演當天QA

1. 最後結果是否有回歸藝術風格的解析?

Ans: 在Boxplot 就可以看出一些藝術風格在各個特徵上的差異

2. 可以用在測試目前線上AI圖像風格轉換產品的轉換成效

Ans: 未來可以

3. 現有或者未來的實際應用?

Ans: 目前為本地端的成果展現,之後可以朝向手機直接拍攝或加入更加即時性的應用

4. 在R語言上面實現圖像分類是否有遇到什麼困難?

Ans: 現有套件較少,因此我們手動開發實現出特徵函數,以實現特徵擴增

