This form documents the artifacts associated with the article (i.e., the data and code supporting the computational findings) and describes how to reproduce the findings.

	-4 7	
Part		Data
1 416		lala

This paper	does	not	involve	analysis	of	${\it external}$	data	(i.e.,	no	${\rm data}$	are	${\it used}$	or	the	only	data	are
generated l	by the	auth	iors via	simulatio	n i	n their co	ode).										

⊠ I certify that the author(s) of the manuscript have legitimate access to and permission to use the data used in this manuscript.

Abstract

The Mentoring dataset is a randomized controlled trial conducted on German adolescents. It contains baseline covariates of the following categories: demographics (age, gender, migrant status), home environment (books at home, parental support), academic grades (math, German, English), personality (Big Five scales), and socioeconomic status. Treatment is a binary indicator for assignment to a mentoring intervention. A standardized labor market outcome was measured for each child.

Availability

\boxtimes	Data	are publicly available.	
	${\rm Data}$	cannot be made publicly available.	

If the data are publicly available, see the Publicly available data section. Otherwise, see the Non-publicly available data section, below.

Publicly available data

	Data are available online at: $https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IP98QW$
\boxtimes	Data are available as part of the paper's supplementary material.
	Data are publicly available by request, following the process described here:
	Data are or will be made available through some other mechanism, described here:

Non-publicly available data

Description

File format(s)

	CSV or other plain text.
\boxtimes	Software-specific binary format (.Rda, Python pickle, etc.): pkcle
	Standardized binary format (e.g., netCDF, HDF5, etc.):
	Other (please specify):

Data dictionary
 □ Provided by authors in the following file(s): □ Data file(s) is(are) self-describing (e.g., netCDF files) ☑ Available at the following URL: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi 10.7910/DVN/IP98QW
Additional Information (optional)
Data can be accessed through the Harvard Dataverse, but for convenience is also attached in the data

Part 2: Code

Abstract

subfolder.

The code is organized into three parts: R/replication_functions.R defines all relevant functions for analysis, then, two analysis scripts (scripts/generate_figures.R and scripts/generate_tables.R) call those functions to produce all figures and tables. The master script (scripts/run_analysis.R) activates the renv environment, creates the necessary output directories, and runs the figure and table scripts.

Description

ode	format(s)
	Script files
	⋈ R□ Python□ Matlab□ Other:
	Package
	□ R□ Python□ MATLAB toolbox□ Other:
	Reproducible report
	□ R Markdown□ Jupyter notebook□ Other:
	Shell script Other (please specify):

 ${\bf Supporting\ software\ requirements}$

Version of primary software used R version 4.4.2

Libraries and dependencies used by the code

• here (1.0.1) • renv (0.18.0) • dirmult (0.3.0) • pracma (2.3.3) • MASS (7.3-58) • abind (1.4-5) • reshape2 (1.4.4) • ggplot2 (3.4.2) • foreach (1.5.2) • doParallel (1.0.18) • parallel (base) • stats (base) • dplyr (1.1.1) • haven (2.6.1) • fastDummies (1.7.0)• SuperLearner (2.0-30) • gbm (2.1.8) • glmnet (4.1-7)

Supporting system/hardware requirements (optional)

Parallelization used

• earth (5.5.1)

• ranger (0.14.1)

No parallel code used Multi-core parallelization on a single machine/node
- Number of cores used: 15
${\bf Multi-machine/multi-node\ parallelization}$
 Number of nodes and cores used:

License

Additional information (optional)
Part 3: Reproducibility workflow
Scope
The provided workflow reproduces:
 ⊠ Any numbers provided in text in the paper ∑ The computational method(s) presented in the paper (i.e., code is provided that implements the method(s)) ∑ All tables and figures in the paper ∑ Selected tables and figures in the paper, as explained and justified below:
Workflow
Location
The workflow is available:
 □ As part of the paper's supplementary material. □ In this Git repository: https://anonymous.4open.science/r/rerandomization-quadratic-forms-3DAC □ Other (please specify):
$\operatorname{Format}(\mathbf{s})$
 ⊠ Single master code file Wrapper (shell) script(s) □ Self-contained R Markdown file, Jupyter notebook, or other literate programming approach □ Text file (e.g., a readme-style file) that documents workflow □ Makefile □ Other (more detail in Instructions below)
Instructions
To reproduce the full analysis, including Figures 1–3 and Table 2:

git clone https://anonymous.4open.science/r/rerandomization-quadratic-forms-3DAC.git

1. Clone the repository

cd rerandomization-quadratic-forms

2. Restore R environment

```
Rscript -e "install.packages('renv', repos='https://cloud.r-project.org')"
Rscript -e "renv::restore(repos='https://cloud.r-project.org')"
```

3. Run master script

```
Rscript scripts/run_analysis.R
```

Expected run-time

Approximate time needed to reproduce the analyses on a standard desktop machine:

- $\square\,<1$ minute
- \square 1-10 minutes
- $\hfill\Box$ 10-60 minutes
- \square 1-8 hours
- $\boxtimes > 8 \text{ hours}$
- ⊠ Not feasible to run on a desktop machine, as described here: It is possible to run on a desktop machine, but it will take several days. Analysis from the paper was run in batches.

Additional information (optional)

None.

Notes (optional)

None.