Bonus Assignment on Separability Solutions

1

 \mathbf{a}

Using the Freshman's Dream property of characteristic p in \mathbb{Z}_p , we have $f(x)=(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)^p$, so $g(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ and $f(x)=(g(x))^p$.

b

Since F is finite, it has characteristic p. Define a map $\phi(x)=x^p$; since \mathbb{Z}_p is characteristic p, this map is injective. Further, since F is finite and ϕ maps from the set to itself injectively, it is also surjective. So ϕ is bijective and thus for x^ip in F, we have $\phi^{-1}(x^ip)=x^i$. We can then map the polynomial f(x) by $\phi(a_ix^{ip})=a_ix^i$. Defining $g(x)=\phi(a_ix^{ip})$ for $0\geq i\geq n$ and again applying the property in part a), we have $f(x)=(g(x))^p$.