

Description

The vs30N10-TC uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_{D} = 30A$
 - $R_{DS(ON)} < 32 m\Omega \ @ \ V_{GS} = 10V \quad (Typ:25 m\Omega)$
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VS30N10-TC	VS30N10-TC	TO-220-3L	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _G S	±20	V
Drain Current-Continuous		I _D	30	Α
Drain Current-Continuous(TC=100℃)		I _D (100℃)	21	А
Pulsed Drain Current (Note 1)		I _{DM}	120	Α
Maximum Power Dissipation		P _D	85	W
Derating factor			0.57	W/℃
Single pulse avalanche energy (Note 5)		E _{AS}	200	mJ
V _{DS} Spike ^(Note 6) 10μs		120	V	
Operating Junction and Storage Temperature Range		T _J ,T _{STG}	-55 To 175	$^{\circ}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	ReJC	1.8	°C/W
---	------	-----	------

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Symbol		arameter	Condition	Min	Тур	Max	Unit
Off Characteristi	cs						
BV _{DSS}	Drain-Source Breakdov	Drain-Source Breakdown Voltage		100	115	-	V
I _{DSS}	Zero Gate Voltage Dra	Zero Gate Voltage Drain Current		-	-	1	μA
I _{GSS}	Gate-Body Leakage	Gate-Body Leakage Current		1-1	-	±100	nA
On Characteristi	CS (Note 3)						
V _{GS(th)}	Gate Threshold Vo	Gate Threshold Voltage		1.3	1.9	2.5	V
R _{DS(ON)}	Drain-Source On-State	Drain-Source On-State Resistance		1-1	25	32	mΩ
g FS	Forward Transcondu	Forward Transconductance		-	15	-	S
Dynamic Charac	teristics (Note4)			,			,
C _{lss}	Input Capacitar	ice	\/ - F0\/\/ - 0\/	x - 1	2479	-	PF
C _{oss}	Output Capacita	nce	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	96	-	PF
C _{rss}	Reverse Transfer Cap	Reverse Transfer Capacitance			79	-	PF
Switching Chara	cteristics (Note 4)			•			,
t _{d(on)}	Turn-on Delay T	ime		1-1	9	-	nS
t _r	Turn-on Rise Ti	me	V_{DD} =50V, R_L =5 Ω	n=1	9	-	nS
$t_{d(off)}$	Turn-Off Delay T	ïme	V_{GS} =10V, R_{GEN} =3 Ω	-	32	-	nS
t _f	Turn-Off Fall Ti	me		1-1	8	-	nS
Qg	Total Gate Char	rge	V -50VI -10A	-	67.2	-	nC
Q _{gs}	Gate-Source Cha	arge	$V_{DS}=50V,I_{D}=10A,$ $V_{GS}=10V$	-	9.4	-	nC
Q_{gd}	Gate-Drain Cha	rge	V _{GS} -10V	-	15.5	-	nC
Drain-Source Die	ode Characteristics						
V _{SD}	Diode Forward Voltage	ge ^(Note 3)	V _{GS} =0V,I _S =10A	-	=	1.2	V
Is	Diode Forward Curre		-	-	-	30	Α
t _{rr}	Reverse Recovery	Time	TJ = 25°C, IF = 10A	_	32	-	nS
Qrr	Reverse Recovery C	harge	di/dt = 100A/µs ^(Note3)		53	-	nC
t _{on}	Forward Turn-On 1	Гime	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS Condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω
- 6. The spike duty cycle 5% max, limited by junction temperature $T_{J}(MAX) \! = \! 125^{\circ}\,$ C

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vseei Semiconductor Co., Ltd

100.0

R_{DS(ON)}

100.0

R_{DS(ON)}

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

Vds Drain-Source Voltage (V)

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance