PC조립 캠퍼

PentaCore

김도영

김재정

박정우

이규진

임동욱

목차

- 1. 구현 이유
- 2. 데이터 Preprocessing & Training
- 3. 모델 설명
- 4. 모델 테스트
- 5. 데모
- 6. 기대효과
- 7. 향후 계획

대상

> Pc 조길의 초시었는

목적

2. 데이터 Preprocessing & Training

Labelimg Tool

CPU, RAM, SSD, GPU, MOTHERBOARD에 대해 라벨링 Pascal VOC -> YOLO 포맷 컨버팅

• 전처리 필요 3가지 파일 생성

다크넷 프레임워크 - YOLO 모델(리눅스 기반)

- > 이미지 파일
- > Config 파일
- > 라벨클래스파일
- Darknet Train을 통해 학습모델 weights파일 도출

Onei

Open Dir

Change Save Dir

Novt Imaga

Prev Image

Verify Image

Save

PascalVOC

Create₩nRectBox

Duplicate\mathbb{\psi}nRectBox

Delete₩nRectBox

Zoom In

191 %

Zoom Out

Fit Window

Fit Widith

difficult		
Use d	efault label	
✓ CPU		
✓ RAM		
✓ GPU		
✓ GPU		
✓ SSD		
✓ SSD		
✓ MOTH	ERBOARD	

Hil	8	ligt.
EII	е	LIST

3. 모델 설명 - YOLO v3 선택 배경

3. 모델 설명 - Detection 차이

One-Stage-Detection	Two-Stage-Detection
Single Convolution Network	Region Proposal
1. Bounding Box 안의 object가 무엇인지 동시에 예측	1. Image 안에서 가능성이 높은 Bounding Box를 생성 2. box 속의 이미지를 classifier
YOLO 계열, SSD	R-CNN, Fast-RCNN, Faster-RCNN

3. 모델 설명 - YOLO v3 장점

	YOLO v3	R-CNN 계열
속도	빠르다	YOLO v3 보다 느림
마스크 스캔	전체 확인	분할 확인
Input data	다양한 수용	일부 수용
Stage	One-Stage-Detection	Two-Stage-Detection

R-CNNº 10001H

Fast R-CNN의 100나비의 속도

4. 모델 테스트

• 테스트 과정에서 필요 파일 Config Weights Classes > CPU, RAM, SSD, GPU, MOTHERBOARD

• Test Detection OpenCV > 이미지에 학습 모델을 적용 PYQT5 > UI 구성

5. 데모

포장되어 있을 때는 인식되지 않지만, 포장을 뜯자마자 보드가 인식됩니다.

6. 기대효과

- 조립 PC AI 서비스를 통해서 다양한 조립부품에 대해 실시간 서비스 가능

- 현재 상황에서 필요한 부품과 부품이 어디에 연결해야 하는지 정보 제공

- 조립 PC 초보자를 프로같이 만들어 줌

たくけるないてと:)