Quantum dynamics....with the dynamics

2-level system (oscillations forever)

- Consider a two-state system : $\Psi(r,t) = c_1(t)\phi_1(r) + c_2(t)\phi_2(r)$
- $\phi_1(r)$ and $\phi_2(r)$ are orthonormal states, that is $<\phi_1\,|\,\phi_1> = <\phi_2\,|\,\phi_2> = 1$ and $<\phi_1\,|\,\phi_2> = <\phi_2\,|\,\phi_1> = 0$ (Recall that $<\phi_1\,|\,\phi_1> = \int\phi_1^*(r)\,\phi_1(r)\,dr = 1$, with ϕ_1^* complex conjugate of ϕ_1)
- In addition, the states $|\phi_1\rangle$ and $|\phi_2\rangle$ are eigenstates of the Hamiltonian, that is: $H|\phi_1\rangle=E_1|\phi_1\rangle$ and $H|\phi_2\rangle=E_2|\phi_2\rangle$
- The time-dependent Schrödinger equation (TDSE) reads:

$$i\hbar \frac{\partial \Psi(r,t)}{\partial t} = H(r,t)\Psi(r,t)$$

$$i\hbar \frac{\partial \left[c_1(t)\phi_1 + c_2(t)\phi_2\right]}{\partial t} = H(r,t)\left[c_1(t)\phi_1 + c_2(t)\phi_2\right]$$

We can determine an expression for the time-evolution of each time-dependent coefficients, $c_1(t)$ or $c_2(t)$ by multiplying the TDSE by the complex conjugate of the corresponding stationary-state and integrating (in Dirac notation this amounts to multiplying by the bra ($<\phi_1$ | to obtain $c_1(t)$ for instance). Doing so for $c_1(t)$ in Dirac notation we get:

$$\begin{split} &i\hbar\left[\frac{\partial c_{1}(t)}{\partial t}<\phi_{1}\,|\,\phi_{1}>+\frac{\partial c_{2}(t)}{\partial t}<\phi_{2}\,|\,\phi_{1}>\right]=c_{1}(t)<\phi_{1}\,|\,H(r,t)\,|\,\phi_{1}>+c_{2}(t)<\phi_{1}\,|\,H(r,t)\,|\,\phi_{2}>\\ &i\hbar\frac{\partial c_{1}(t)}{\partial t}=c_{1}(t)<\phi_{1}\,|\,H(r,t)\,|\,\phi_{1}>+c_{2}(t)<\phi_{1}\,|\,H(r,t)\,|\,\phi_{2}> \end{split}$$

We do the same procedure with $|\langle \phi_2 |$ to obtain an expression for $\dot{c}_2(t)$

$$i\hbar \frac{\partial c_2(t)}{\partial t} = c_2(t) < \phi_2 | H(r,t) | \phi_2 > + c_2(t) < \phi_2 | H(r,t) | \phi_1 >$$

We can write this system of equations in matrix form:

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} c_1(t) \\ c_2(t) \end{pmatrix} = \begin{pmatrix} E_1(t) & V_{12}(t) \\ V_{21}(t) & E_2(t) \end{pmatrix} \begin{pmatrix} c_1(t) \\ c_2(t) \end{pmatrix}$$

We take the case where the Hamiltonian matrix is independent of time, t and we can write:

$$i\hbar \frac{\partial \mathbf{c}}{\partial t} = \mathbf{H}\mathbf{c} \text{ and } \mathbf{c}(t) = \exp\left(\frac{-i}{\hbar}\mathbf{H}t\right)\mathbf{c}(0)$$

where c is a column vector and H a matrix.

We can clearly see if there is no interaction energy between states $(V_{21}(t) = V_{12}(t) = 0)$, then the transition probability for a given state will be constant $(|c|^2 = cst)$, the state remains in a stationary state and does not oscillate.

A brief note on the unitary evolution operator:

The wavefunction is a time-dependent quantity. We can define an evolution operator $\hat{U}(t,t_0)$ that propagates the wavefunction in time:

$$|\,\Psi(r,t)>\,=\,\hat{U}(t,t_0)\,|\,\Psi(r,t_0)>$$

This operator must satisfy certain properties, namely:

Unitarity

If the wavefunction is normalized at t_0 it must remain normalized at a later date t, hence, the operator \hat{U} should not change the norm of the wavefunction. As a result, we have:

$$<\Psi(r,t)|\Psi(r,t)> = <\Psi(r,t_0)|\hat{U}^{\dagger}(t,t_0)\hat{U}(t,t_0)|\Psi(r,t_0)> = 1.$$

For the above relation to hold, $\hat{U}^{\dagger}(t,t_o)\hat{U}(t,t_0)=\mathbf{1}$, where $\mathbf{1}$ is the identity operator. This implies that $\hat{U}^{\dagger}(t,t_o)=\hat{U}^{-1}(t,t_0)$.

Continuity

 $|\Psi(r,t)\rangle = \hat{U}(t,t)|\Psi(r,t)\rangle$, which implies that $\hat{U}(t,t) = 1$. The operator acting on the wavefunction at a time t, when the wavefunction is already at time t gives the wavefunction back again, hence the operator acts as an identity operator.

Composition

We can propagate the wavefunction to two consecutive points in time, either by applying \hat{U} once or two times consecutively:

$$|\Psi(r,t_2)\rangle = \hat{U}(t_2,t_0)|\Psi(r,t_0)\rangle$$

or

$$|\Psi(r,t_2)\rangle = \hat{U}(t_2,t_1)\hat{U}(t_1,t_0)|\Psi(r,t_0)\rangle$$

Hence we have:

$$\hat{U}(t_2, t_0) = \hat{U}(t_2, t_1)\hat{U}(t_1, t_0)$$

In order to obtain an expression for \hat{U} , we can insert it into the TDSE:

$$\begin{split} &i\hbar\frac{\partial\left|\Psi(r,t)\right>}{\partial t}=H(r,t)\left|\Psi(r,t)\right>\\ &\text{with }t_{0}=0\\ &i\hbar\frac{\partial\hat{U}(t)}{\partial t}\left|\Psi(r,t=0)\right>=H(r,t)\hat{U}(t)\left|\Psi(r,t=0)\right>\\ &i\hbar\frac{\partial\hat{U}(t)}{\partial t}=H(r,t)\hat{U}(t)\\ &\hat{U}(t)=\exp\left(\frac{-i}{\hbar}\int_{0}^{t}H(r,t')\;dt'\right) \end{split}$$

If H(r,t) is time independent, it can be taken out of the integral, and the integral evaluates to t. Hence for a time-independent Hamiltonian, the unitary evolution operator

$$\hat{U}(t) = \exp\left(\frac{-i}{\hbar}Ht\right)$$

is: