한국 마이크로소프트 Microsoft Technical Trainer

Enterprise Skills Initiative

AZ-104. Challenge Lab 03

LAB 03. ARM 템플릿을 사용하여 하이브리드 클라우드 Azure 솔루션 배포

이 문서는 Microsoft Technical Trainer팀에서 ESI 교육 참석자분들에게 제공해 드리는 문서입니다.

요약

이 내용들은 표시된 날짜에 Microsoft에서 검토된 내용을 바탕으로 하고 있습니다. 따라서, 표기된 날짜 이후에 시장의 요구사항에 따라 달라질 수 있습니다. 이 문서는 고객에 대한 표기된 날짜 이후에 변화가 없다는 것을 보증하지 않습니다.

이 문서는 정보 제공을 목적으로 하며 어떠한 보증을 하지는 않습니다.

저작권에 관련된 법률을 준수하는 것은 고객의 역할이며, 이 문서를 마이크로소프트의 사전 동의 없이 어떤 형태(전자 문서, 물리적인 형태 막론하고) 어떠한 목적으로 재 생산, 저장 및 다시 전달하는 것은 허용되지 않습니다.

마이크로소프트는 이 문서에 들어있는 특허권, 상표, 저작권, 지적 재산권을 가집니다. 문서를 통해 명시적으로 허가된 경우가 아니면, 어떠한 경우에도 특허권, 상표, 저작권 및 지적 재산권은 다른 사용자에게 허용되지 아니합니다.

© 2023 Microsoft Corporation All right reserved.

Microsoft®는 미합중국 및 여러 나라에 등록된 상표입니다. 이 문서에 기재된 실제 회사 이름 및 제품 이름은 각 소유자의 상표일 수 있습니다.

문서 작성 연혁

날짜	버전	작성자	변경 내용
2023.08.26	1.0.0	우진환	LAB 03 내용 작성

목차

도전 과제	5
STEP 01. 프런트 엔드 서버를 ARM VM으로 배포	5
STEP 02. ARM 템플릿으로 애플리케이션 서버 배포	5
STEP 03. ARM 템플릿으로 데이터베이스 서버 배포	6
TASK 01. 프런트 엔드 서버를 ARM VM으로 배포	8
TASK 02. ARM 템플릿으로 애플리케이션 서버 배포	9
TASK 03 ARM 텐플리으로 데이터베이스 서버 배포 1	5

도전 과제

이 실습에서는 ARM 템플릿을 사용하여 멀티-티어 웹 애플리케이션을 만들고 배포합니다.

STEP 01. 프런트 엔드 서버를 ARM VM으로 배포

- 1. GitHub에서 <u>201-2-vms-loadbalancer-lbrules</u> 링크의 샘플 템플릿으로 이동한 후 Azure에 배포합니다.
- 2. 템플릿에서 다음 속성을 사용하여 두 대의 ARM VM을 배포합니다.

속성	값	
리소스 그룹	corp-datalod <xxxxxxxxx< td=""></xxxxxxxxx<>	
지역	(US) East US	
Storage Account Name	sa <xxxxxxx></xxxxxxx>	
Admin Username	Student	
Admin Password	Pa55w.rd1234	
Dns Namefor LBIP	lbip <xxxxxxxxx< td=""></xxxxxxxxx<>	
Vm Name Prefix	vmweb	
Image SKU	2016-Datacenter	
Lb Name	PublicLB	
Nic Name Prefix	nicweb	
Public IP Address Name	lbip <xxxxxxxxx< td=""></xxxxxxxxx<>	
Vnet Name	vnetweb	
Vm Size	Standard_B2s	

STEP 02. ARM 템플릿으로 애플리케이션 서버 배포

- 1. GitHub의 <u>Deployment of a VM Scale Set of Linux VMs behind an load balancer with NAT rules</u> 링크에 있는 샘플 템플릿을 Azure에 배포합니다.
- 2. 다음과 같은 속성을 사용하여 템플릿에서 VMSS를 배포합니다.

속성	값
리소스 그룹	corp-datalod <xxxxxxxxxx< td=""></xxxxxxxxxx<>
지역	(US) East US
Vm Sku	Standard_A1_v2
Ubuntu OS Version	16.04-LTS
Vmss Name	vm <xxxxxxxx></xxxxxxxx>
Instance Count	2
Admin Username	Student
Authentication Type	암호
Admin Password Or Key	Pa55w.rd1234

3. 배포한 VMSS에서 다음과 같은 자동 크기 조정이 실행되도록 구성합니다.

속성	값
최소값	2
최대값	4
인스턴스 수	1
Scale-out 메트릭	CPU 80% 이상
Scale-in 메트릭	CPU 25% 이하

- 4. GitHub의 <u>201-existing-vnet-to-vnet-peering</u> 링크로 이동한 후 샘플 템플릿을 Azure에 배포합니다.
- 5. 템플릿 배포에서 다음 속성을 사용하여 배포를 진행합니다.

속성	값
리소스 그룹	corp-datalod <xxxxxxxxx></xxxxxxxxx>
지역	(US) East US
Existing Local Virtual Network Name	vnetweb
Existing Remote Virtual Network Name	vnetapp
Existing Remote Virtual Network Resource Group Name	corp-datalod <xxxxxxxxxx< td=""></xxxxxxxxxx<>

6. 템플릿을 다시 배포하여 반대 방향의 피어링을 설정합니다. 다음 속성을 사용합니다.

속성	값
리소스 그룹	corp-datalod <xxxxxxxxx< td=""></xxxxxxxxx<>
지역	(US) East US
Existing Local Virtual Network Name	vnetapp
Existing Remote Virtual Network Name	vnetweb
Existing Remote Virtual Network Resource Group Name	corp-datalod <xxxxxxxxxx< td=""></xxxxxxxxxx<>

STEP 03. ARM 템플릿으로 데이터베이스 서버 배포

1. 다음 속성을 사용하여 새 데이터베이스 가상 머신을 배포합니다.

속성	값
리소스 그룹	corp-datalod <xxxxxxxxx></xxxxxxxxx>
가상 머신 이름	SQL1
지역	(US) East US
이미지	Free SQL Server License: SQL Server 2017 Developer on Windows Server 2019
크기	Standard_B2s
사용자 이름	Student
암호	Pa55w.rd1234
공용 인바운드 포트	선택한 포트 허용
인바운드 포트 선택	RDP (3389)
OS 디스크 유형	표준 HDD
가상 네트워크 이름	vnetdb
가상 네트워크 주소 범위	10.20.0.0/16
서브넷 이름	dbsubnet
서브넷 주소 범위	10.20.0.0/24
부트 진단	사용 안 함
SQL 인증	사용

- 2. vnetdb 가상 네트워크와 vnetweb 가상 네트워크를 서로 피어링으로 연결합니다.
- 3. vnetdb-nsg 이름의 네트워크 보안 그룹을 만들고 다음과 같은 인바운드 규칙을 설정합니다.

규칙 이름	AllowSQLInbound	DenyAll
소스	Service Tag	Service Tag
원본 서비스 태그	VirtualNetwork	VirtualNetwork
원본 포트 범위	*	*
대상 주소	Service Tag	Service Tag
대상 서비스 태그	VirtualNetwork	VirtualNetwork
서비스	MS SQL	Custom

대상 포트 범위		*
프로토콜		Any
작업	허용	거부
우선 순위	1000	4000

- 4. vmweb0 가상 머신에 부하 분산 장치의 NAT 설정을 사용하여 RDP로 로그온합니다.
- 5. vmweb0 가상 머신에서 SQL1 가상 머신으로 TCP 1433 포트가 허용되고 다른 포트는 차단되는지 확인합니다.

TASK 01. 프런트 엔드 서버를 ARM VM으로 배포

1. 브라우저에서

https://github.com/LODSContent/ChallengeLabs_ArmResources/tree/master/ARMTemplates/201-2-vms-loadbalancer-lbrules 링크로 이동합니다. "README.md" 영역에서 [Deploy to Azure]를 클릭합니다.

README.md

Create 2 Virtual Machines under a Load balancer and configures Load Balancing rules for the VMs

NOTE: This template is a copy of the Microsoft 201-2-vms-loadbalancer-lbrules Azure Quick Start template and is provided here only to support labs on the LODS platform.

This template allows you to create 2 Virtual Machines under a Load balancer and configure a load balancing rule on Port 80. This template also deploys a Storage Account, Virtual Network, Public IP address, Availability Set and Network Interfaces.

In this template, we use the resource loops capability to create the network interfaces and virtual machines

- 2. [사용자 지정 배포] 블레이드의 [기본] 탭에서 아래와 같이 구성한 후 [검토 + 만들기]를 클릭합니다. [검토 + 만들기] 탭에서 [만들기]를 클릭합니다.
 - [프로젝트 정보 리소스 그룹]: corp-datalod<xxxxxxxx>
 - [인스턴스 정보 지역]: (US) East US
 - [인스턴스 정보 Storage Account Name]: sa<xxxxxxxx>
 - [인스턴스 정보 Admin Username]: Student
 - [인스턴스 정보 Admin Password]: Pa55w.rd1234
 - [인스턴스 정보 Dns Namefor LBIP]: lbip<xxxxxxxxx>
 - [인스턴스 정보 Vm Name Prefix]: vmweb
 - [인스턴스 정보 Image Publisher]: MicrosoftWindowsServer
 - [인스턴스 정보 Image Offer]: WindowsServer
 - [인스턴스 정보 Image SKU]: 2016-Datacenter
 - [인스턴스 정보 Lb Name]: PublicLB
 - [인스턴스 정보 Nic Name Prefix]: nicweb
 - [인스턴스 정보 Public IP Address Name]: lbip<xxxxxxxx>
 - [인스턴스 정보 Vnet Name]: vnetweb
 - [인스턴스 정보 Vm Size]: Standard B2s

TASK 02. ARM 템플릿으로 애플리케이션 서버 배포

1. 브라우저에서 <u>ChallengeLabs_ArmResources/ARMTemplates/201-vmss-internal-loadbalancer</u> at master · LODSContent/ChallengeLabs_ArmResources · GitHub 링크로 이동한 후 "readme.md" 영역에서 [Deploy to Azure]를 클릭합니다.

- 2. [사용자 지정 배포] 블레이드의 [기본] 탭에서 아래와 같이 구성한 후 [검토 + 만들기]를 클릭합니다. [검토 + 만들기] 탭에서 [만들기]를 클릭합니다.
 - [프로젝트 정보 리소스 그룹]: corp-datalod<xxxxxxxx>
 - [인스턴스 정보 지역]: (US) East US
 - [인스턴스 정보 Vm Sku]: Standard_A1_v2
 - [인스턴스 정보 Ubuntu OS Version]: 16.04-LTS

- [인스턴스 정보 Vmss Name]: vm<xxxxxxxx>
- [인스턴스 정보 Instance Count]: 2
- [인스턴스 정보 Admin Username]: Student
- [인스턴스 정보 Authentication Type]: 암호
- [인스턴스 정보 Admin Password Or Key]: Pa55w.rd1234

3. 배포가 완료되면 Azure 포털의 검색창에서 "VMSS"를 검색한 후 클릭합니다. [Virtual Machine Scale Sets] 블레이드에서 Vm<xxxxxxxxx> 이름의 VMSS 리소스를 클릭합니다.

4. [vm<xxxxxxxxx 가상 머신 확장 집합] 블레이드의 [설정 - 확장 중]으로 이동합니다. "리소스 크기를 조정하는 방법 선택"에서 [사용자 지정 자동 크기 조정]을 선택합니다.

- 5. [vm<xxxxxxxx> | 확장 중] 블레이드에서 [기본값] 타일에서 아래와 같이 구성하고 "규칙 추가" 링크를 클릭합니다.
 - 크기 조정 모드: 메트릭 기준 크기 조정
 - 인스턴스 제한

- 6. [크기 조정 규칙] 창에서 아래와 같이 구성한 후 [추가]를 클릭합니다.
 - 메트릭 네임스페이스: 가상 머신 호스트
 - 메트릭 이름: Percentage CPU
 - 연산자: 보다 큼
 - 크기 조정 작업을 트리거하는 메트릭 임계값: 80%
 - 작업: 다음 기준으로 개수 늘이기
 - 인스턴스 수: 1
 - 다른 설정은 기본 설정을 유지합니다.

7. [vm<xxxxxxxxx> | 확장 중] 블레이드에서 "규칙 추가" 링크를 다시 클릭합니다.

- 8. [크기 조정 규칙] 창에서 아래와 같이 구성한 후 [추가]를 클릭합니다.
 - 메트릭 네임스페이스: 가상 머신 호스트
 - 메트릭 이름: Percentage CPU
 - 연산자: 보다 큼
 - 크기 조정 작업을 트리거하는 메트릭 임계값: 25%
 - 작업: 다음 기준으로 개수 줄이기
 - 인스턴스 수: 1
 - 다른 설정은 기본 설정을 유지합니다.

9. [vm<xxxxxxxx> | 확장 중]에서 스케일 아웃과 스케일 인 규칙이 구성된 것을 확인한 후 [저장]을 클릭합니다.

10. 브라우저에서 <u>ChallengeLabs_ArmResources/ARMTemplates/201-existing-vnet-to-vnet-peering at master · LODSContent/ChallengeLabs_ArmResources · GitHub</u> 링크로 이동한 후 "README.md" 영역에서 [Deploy to Azure]를 클릭합니다.

11. [사용자 지정 배포] 블레이드의 [기본] 탭에서 아래와 같이 구성한 후 [검토 + 만들기]를

클릭합니다. [검토 + 만들기] 탭에서 [만들기]를 클릭합니다.

- [프로젝트 정보 리소스 그룹]: corp-datalod<xxxxxxxx>
- [인스턴스 정보 지역]: (US) East US
- [인스턴스 정보 Existing Local Virtual Network Name]: vnetweb
- [인스턴스 정보 Existing Remote Virtual Network Name]: vnetapp
- [인스턴스 정보 Existing Remote Virtual Network Resource Group Name]: corp-

- 12. 동일한 템플릿을 다시 배포합니다. [사용자 지정 배포] 블레이드의 [기본] 탭에서 아래와 같이 구성한 후 [검토 + 만들기]를 클릭합니다. [검토 + 만들기] 탭에서 [만들기]를 클릭합니다.
 - [프로젝트 정보 리소스 그룹]: corp-datalod<xxxxxxxx>
 - [인스턴스 정보 지역]: (US) East US
 - [인스턴스 정보 Existing Local Virtual Network Name]: vnetapp
 - [인스턴스 정보 Existing Remote Virtual Network Name]: vnetweb
 - [인스턴스 정보 Existing Remote Virtual Network Resource Group Name]: corp-datalod<xxxxxxxx>

TASK 03. ARM 템플릿으로 데이터베이스 서버 배포

1. Azure 포털에서 [리소스 만들기]를 클릭한 후 "SQL Server 2017"을 검색합니다. [SQL Server 2017 on Windows Server 2019] 타일을 클릭합니다. [SQL Server 2017 on Windows Server 2019] 블레이드에서 "Free SQL Server License: SQL Server 2017 Developer on Windows Server 2019"를 선택한 후 [만들기]를 클릭합니다.

- 2. [가상 머신 만들기] 블레이드의 [기본 사항] 탭에서 아래와 같이 구성한 후 [다음]을 클릭합니다.
 - [프로젝트 정보 리소스 그룹]: corp-datalod<xxxxxxxx>
 - [인스턴스 정보 가상 머신 이름]: SQL1
 - [인스턴스 정보 지역]: (US) East US
 - [인스턴스 정보 가용성 옵션]: 인프라 중복이 필요하지 않습니다.
 - [인스턴스 정보 보안 유형]: 표준
 - [인스턴스 정보 크기]: Standard_B2s

- [관리자 계정 사용자 이름]: Student
- [관리자 계정 암호]: Pa55w.rd1234
- [인바운드 포트 규칙 공용 인바운드 포트]: 선택한 포트 허용
- [인바운드 포트 규칙 인바운드 포트 선택]: RDP (3389)

3. [디스크] 탭에서 OS 디스크 유형을 "표준 HDD(로컬 중복 스토리지)"로 선택한 후 [다음]을 클릭합니다.

4. [네트워킹] 탭에서 "가상 네트워크"의 "새로 만들기" 링크를 클릭합니다.

- 5. [가상 네트워크 만들기] 창에서 아래와 같이 구성한 후 [확인]을 클릭합니다.
 - 이름: vnetdb
 - 주소 공간: 10.20.0.0/16
 - 서브넷: 서브넷 이름(dbsubnet)과 주소 범위(10.20.0.0/24)를 입력합니다.

6. [가상 머신 만들기] 블레이드의 [모니터링] 탭으로 이동합니다. [모니터링] 탭에서 부트 진단을 "사용 안 함"으로 설정하고 [SQL Server 설정] 탭을 클릭합니다.

- 7. [SQL Server 설정] 탭에서 아래와 같이 구성한 후 [검토 + 만들기]를 클릭합니다. [검토 + 만들기] 탭에서 [만들기]를 클릭합니다.
 - [보안 및 네트워킹 SQL 연결]: 프라이빗(가상 네트워크 내)
 - [보안 및 네트워킹 포트]: 1433
 - [SQL 인증 SQL 인증]: 사용
 - [SQL 인증 로그인 이름]: Student
 - [SQL 인증 암호]: Pa55w.rd1234
 - 다른 설정은 기본 설정을 유지합니다.

8. Azure 포털의 검색창에서 "가상 네트워크"를 검색한 후 클릭합니다.[가상 네트워크] 블레이드에서 vnetdb 가상 네트워크를 클릭합니다.

9. [vnetdb 가상 네트워크] 블레이드의 [설정 - 피어링]으로 이동한 후 메뉴에서 [추가]를 클릭합니다.

- 10. [피어링 추가] 블레이드에서 아래와 같이 구성한 후 [추가]를 클릭합니다.
 - [이 가상 네트워크 피어링 링크 이름]: vnetdb-vnetweb
 - [원격 가상 네트워크 피어링 링크 이름]: vnetweb-vnetdb
 - [원격 가상 네트워크 가상 네트워크]: vnetweb

11. Azure 포털의 검색창에서 "네트워크 보안 그룹"을 검색한 후 클릭합니다. [네트워크 보안 그룹] 블레이드의 메뉴에서 [만들기]를 클릭합니다.

- 12. [네트워크 보안 그룹 만들기] 블레이드의 [기본 사항] 탭에서 아래와 같이 구성한 후 [검토 + 만들기]를 클릭합니다. [검토 + 만들기] 탭에서 [만들기]를 클릭합니다.
 - [프로젝트 정보 리소스 그룹]: corp-datalod<xxxxxxxxx>
 - [인스턴스 정보 이름]: vnetdb-nsq

■ [인스턴스 정보 - 지역]: East US

13. 새로 만든 [vnetdb-nsg 네트워크 보안 그룹] 블레이드로 이동한 후 [설정 - 인바운드 보안 규칙]을 클릭합니다. 메뉴에서 [추가]를 클릭합니다.

- 14. [인바운드 보안 규칙 추가] 창에서 아래와 같이 구성한 후 [추가]를 클릭합니다.
 - 소스: Service Tag
 - 원본 서비스 태그: VirtualNetwork
 - 원본 포트 범위: *
 - 대상 주소: Service Tag
 - 대상 서비스 태그: VirtualNetwork
 - 서비스: MS SOL
 - 작업: 허용
 - 우선 순위: 1000
 - 이름: AllowSQLInbound

- 15. [vnetdb-nsg 네트워크 보안 그룹 | 인바운드 보안 규칙] 블레이드에서 [추가]를 클릭합니다. [인바운드 보안 규칙 추가] 창에서 아래와 같이 구성한 후 [추가]를 클릭합니다.
 - 소스: Service Tag
 - 원본 서비스 태그: VirtualNetwork
 - 원본 포트 범위: *
 - 대상 주소: Service Tag
 - 대상 서비스 태그: VirtualNetwork
 - 서비스: Custom
 - 대상 포트 범위: *
 - 프로토콜: Any
 - 작업: 거부
 - 우선 순위: 4000
 - 이름: DenyAll

- 16. [vnetdb-nsg 네트워크 보안 그룹] 블레이드의 [설정 서브넷]으로 이동한 후 [연결]을 클릭합니다. [서브넷 연결] 창에서 아래와 같이 구성한 후 [확인]을 클릭합니다.
 - 가상 네트워크: vnetdb(corp-datalod<xxxxxxxxx)
 - 서브넷: dbsubnet

17. Azure 포털의 검색창에서 "부하 분산"을 검색한 후 클릭합니다. [부하 분산] 블레이드의 [부하 분산 서비스 - 부하 분산 장치]로 이동한 후 PublicLB 부하 분산 장치를 클릭합니다.

18. [PublicLB 부하 분산 장치] 블레이드의 [설정 - 인바운드 NAT 규칙]으로 이동합니다. RDP-VM0 가상 머신에 대한 프런트 엔드 IP와 프런트엔드 포트를 확인합니다.

- 19. 위에서 확인한 프런트 엔드 IP와 포트를 사용하여 vmweb0 가상 머신에 RDP로 연결합니다. 사용자 계정(Student)와 암호(Pa55w.rd1234)를 사용합니다.
- 20. vmweb0 가상 머신에서 PowerShell ISE를 열고 다음 명령을 실행하여 웹 서버에서 데이터베이스 서버로 TCP 1433 연결이 가능한지 확인합니다.

21. PowerShell ISE에서 NSG로 차단한 다른 포트에 대해 연결 테스트를 진행합니다. 아래와 같이 TCP 1433을 제외한 다른 포트는 연결되지 않는 것을 확인합니다.

```
# RDP 포트 차단 확인

Test-NetConnection -ComputerName 10.20.0.4 -Port 3389

PS C:\Users\Student> # RDP 포트 차단 확인

Test-NetConnection -ComputerName 10.20.0.4 -Port 3389

WARNING: TCP connect to 10.20.0.4:3389 failed

WARNING: Ping to 10.20.0.4 failed -- Status: TimedOut

ComputerName : 10.20.0.4

RemotePort : 3389

InterfaceAlias : Ethernet

SourceAddress : 10.0.0.5

PingSucceeded : False

PingReptyDetails (RTT) : 0 ms

TcpTestSucceeded : False
```

