Nama Dosen : Teguh Iman Hermanto, M.Kom

Mata Kuliah : Machine Learning 1

Pembahasan : Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Pokok Pemb : - Membangun Model DBSCAN

- Simulasi Algoritma DBSCAN

- Profiling Hasil Clustering DBSCAN

1. Load Library dan dataset pada file Notebook

df.head() ✓ 0.0₅ Python													
	src_ip	dst_ip	protocol	src_port	dst_port	bytes_sent	bytes_received	duration	packet_count	attack_type			
0	39.170.115.188	133.204.219.238	TCP	1762	62458	3422	5989	213	131	normal			
1	80.35.125.105	246.113.106.207	TCP	32718	9699	3736	989	277	96	normal			
2	49.134.137.30	151.26.62.67	TCP	1225	43970	2865	5943	305	89	ddos			
3	157.51.229.193	175.153.3.55	TCP	20804	303	1852	9389	552	80	normal			
4	121.123.112.174	72.234.63.118	UDP	15457	17942	8318	5160	533	46	normal			

- 2. Exploratory data analysis
 - a. Menghitung jumlah data yang ada pada kolom protocol

```
# menghitung jumlah data yang ada pada kolom protocol
protocol_counts = df['protocol'].value_counts()
protocol_counts
```

```
# membuat bar plot hasil perhitungan kolom protocol
plt.figure(figsize=(10, 6))
protocol_counts.plot(kind='bar')
plt.title('Number of Data Points per Protocol')
plt.xlabel('Protocol')
plt.ylabel('Count')
plt.show()
```

Lakukan perhitungan untuk mendapatkan jumlah pada kolom "attack_type" dan buatkan bar plot nya

b. Membuat box plot untuk menampilkan rata-rata nilai source plot berdasarkan jenis attack type

```
plt.figure(figsize=(12, 6))
sns.boxplot(x='attack_type', y='src_port', data=df)
plt.title('Source Port Distribution by Attack Type')
plt.xlabel('Attack Type')
plt.ylabel('Source Port')
plt.show()
```

Buatkan boxplot untuk menampilkan bytes sent dan berdasarkan senis protocol

3. Buat model DBSCAN

```
# pilih fitur untuk clustering
features = ['src_port','dst_port','bytes_sent','bytes_received']
X = df[features]
```

```
1 # Standardize the data
2 scaler = StandardScaler()
3 X_scaled = scaler.fit_transform(X)
```

```
# implementasi algoritma DBSCAN
2 # tentukan nilai epsilon dan min sample
3 dbscan = DBSCAN(eps=0.5, min_samples=5)
4 df['dbscan_cluster'] = dbscan.fit_predict(X_scaled)
```

```
# Plot hasil cluster
plt.figure(figsize=(10, 6))
sns.scatterplot(x='bytes_sent', y='bytes_received',
hue='dbscan_cluster', data=df,
palette='viridis')
plt.title('DBSCAN Clustering Results')
plt.show()
```

df.head() ✓ 00s													
	src_ip	dst_ip	protocol	src_port	dst_port	bytes_sent	bytes_received	duration	packet_count	attack_type	dbscan_cluster		
0	39.170.115.188	133.204.219.238	TCP	1762	62458	3422	5989	213	131	normal			
1	80.35.125.105	246.113.106.207	TCP	32718	9699	3736	989	277	96	normal			
2	49.134.137.30	151.26.62.67	TCP	1225	43970	2865	5943	305	89	ddos			
3	157.51.229.193	175.153.3.55	TCP	20804	303	1852	9389	552	80	normal			
4	121.123.112.174	72.234.63.118	UDP	15457	17942	8318	5160	533	46	normal			

```
# memisahkan data anomaly yang bernilai -1
df['anomaly'] = df['dbscan_cluster'] == -1
```

```
# Plot hasil deteksi anomaly
plt.figure(figsize=(10, 6))
sns.scatterplot(x='bytes_sent', y='bytes_received',
hue='anomaly', data=df,
palette=['blue', 'red'])
plt.title('Anomaly Detection')
plt.show()
```

df.head() ✓ 00s Python												
	src_ip	dst_ip	protocol	src_port	dst_port	bytes_sent	bytes_received	duration	packet_count	attack_type	dbscan_cluster	anomaly
0	39.170.115.188	133.204.219.238	TCP	1762	62458	3422	5989	213	131	normal		True
1	80.35.125.105	246.113.106.207	TCP	32718	9699	3736	989	277	96	normal		False
2	49.134.137.30	151.26.62.67	TCP	1225	43970	2865	5943	305	89	ddos		True
3	157.51.229.193	175.153.3.55	TCP	20804	303	1852	9389	552	80	normal		True
4	121.123.112.174	72.234.63.118	UDP	15457	17942	8318	5160	533	46	normal		False

```
1 # simpan hasil cluster
2 df.to_csv('hasil_dbscan.csv', index=False)
```

4. Buatkan profiling hasil cluster

```
1 # membuat df untuk type serangan ddos
2 ddos_df = df[df['attack_type'] == 'ddos']
```

```
# hitung jumlah anomalynya
anomaly_counts = ddos_df['anomaly'].value_counts()
anomaly_counts
```

```
# bar plot untuk serangan DDOS
plt.figure(figsize=(8, 6))
anomaly_counts.plot(kind='bar')
plt.title('Jumlah Anomaly untu tipe DDoS')
plt.xlabel('Anomaly')
plt.ylabel('Count')
plt.show()
```

Lakukan analisis untuk deteksi anomaly pada jenis serangan lainnya seperti brute force, icmp flood, dan port scan.