Bundelkhand Institute of Engineering & Technology Jhansi, Uttar Pradesh

Class Test-1

Class (Yr&Branch): 2nd(EE)Semester: 4th

Subject: Digital Electronics (KEE-401)

Attempt all the questions (3X5 =15) 1. Express the following numbers in decimal: (10110.0101)2, (16.5)16, (26.24)8

2. Simplify the function F(w,x,y,z)=Σm(0,1,2,4,5,12,13,14) using Karnaugh map. don't care conditions

Implement the following Boolean function using 8:1 multiplexer $F(A,B,C,D) = \Sigma m (0,1,2,5,7,8,9,14,15)$

B) Explain about Decimal Adder?

4.4. Explain the SR flip-flop in brief. (2)

5. A) Design a 4 bit binary parallel subtractor and the explain operation in detail?

B) Design the combinational circuit of 4 Bit Parallel Adder?

Bundelkhand Institute of Engineering & Technology Jhansi, Uttar Pradesh

Class Test- 2

Class (Yr&Branch): 2nd(EE)Semester: 4th

Subject: Digital Electronics (KEE-401)

Attempt any three questions (3X5=15)

1. Describe the operation of 4-bit universal shift registers.

Design synchronous UP/DOWN counter.

Explain the operation of Ring counter and Jonshon counter.

Explain the function of 2-input RTL with neat circuit diagram.

(Roll No.	to be filled	by candid	date)		
4		1000	-3	3	9

B. TECH. EVEN SEMESTER THEORY EXAMINATION, 23 KEE-401 DIGITAL ELECTRONICS

Time: 03 Hours
Note:

Max. Marks: 100

- Attempt all questions. All questions carry equal marks.
- Assume missing data suitably.

1. Arte	mpt any FOUR parts of the following:	4×5=20	CO
-a. (65	0)10 to hexadecimal, gray, BCD and binary		COI
b. Gi	ven X= (38) ₁₀ and Y= (105) ₁₀ . Using 2's compethod calculate (i) X-Y (ii) Y-X	lement	COI
c. Re	alize the Boolean expression Z=ABC + AD + a AND gates only	AND THE PARTY OF	CO1
d. Fin	of the standard Product of Sum (POS) for the leavession F=(A + B'C) C		COI
72	ing K map, minimize the expression F $m(1,2,3,8,14,15) + d(0,4,6,10)$.	(A,B,C,D)	COI
F De	sign a full subtractor logic circuit.		COI
2. Atter	mpt any TWO parts of the following:	2×10=2	0 00
a. Rea ∑m MU	dize the following function $F(A,B,C,D) = (1,3,4,10,11,12,13)$ using (i) 4×1 MUX (ii)	8 X 1	CO2
b(i)	Explain the working of decimal to BCD encouit.	oder	CO2
c. Usin	Realise a full adder using two half adders. ng a 4 variable K map, simplify, F(A,B,C,D), 9,10,11,12,14) + d (0,8,13) Realize the function ND gates only	$=\sum_{m}$ tion using	CO2

3. Attempt any TWO parts of the following: 2×10)=20 CO
 a. (i)Draw the logic diagram of J-K flip flop and explain it. What is the advantage of J-K flip flop over S-R flip flop. (ii) Explain a 3 bit asynchronous up counter. Draw the timing diagram and truth table 	CO3
 Design a 3-bit gray code synchronous counter using J-K flip flop and explain the steps in detail. 	CO3
c. Design a mod-11 asynchronous counter using T flip flops and discuss its disadvantages.	s CO3
Attempt any TWO parts of the following: 2×1	0=20 CO
a. Design a MOD-12 asynchronous counter (ripple counter using JK flip flop. Explain the working with truth table a timing diagram.) CO4
b. Describe the operation of 4 bit SISO shift register with the help of block diagram, truth table and timing diagram	he CO4
Synchronous and asynchronous counters. c) Johnson and ring counter.	CO4
5. Attempt any TWO parts of the following: 2×1	0=20 CO
Explain in brief of the following:	CO5
i) DTL, TTL, ECL ii) CMOS inverter b. Explain in brief of the following: i) ROM, RAM, Fan out, Fan in ii) Noise margin, PLA, PAL, CPLD, FPGA	CO5
c. Explain the operation of successive approximation ADC Discuss its merits and demerits.	. CO5