Q&A (2.21-2.30)

Luo tingyu Jiang Hui December 2019 **Exercise 2.21:** Repeat the proof of the spectral decomposition in Box 2.2 for the case when M is Hermitian, simplifying the proof wherever possible.

answer 2.21:

Exercise 2.22: Prove that two eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal.

answer 2.22:

Firstly, we set A is Hermitian, then we set λ_i and λ_j are different eigenvalues of A, and the corresponding eigenvectors are v_i and v_j .

Secondly, we have that

$$\begin{array}{l} (|v_i\rangle,A|v_j\rangle)=(|v_i\rangle,\lambda_j|v_j\rangle)=\lambda_j\left(|v_i\rangle,|v_j\rangle\right)=\lambda_j\langle v_i|v_j\rangle,\\ (|v_i\rangle,A|v_j\rangle)=\left(A^\dagger|v_i\rangle,|v_j\rangle\right)=(A|v_i\rangle,|v_j\rangle)=(\lambda_i|v_i\rangle,|v_j\rangle)=\lambda_i\langle v_i|v_j\rangle,\\ \text{from above we can know that }\lambda_i\langle v_i|v_j\rangle=\lambda_j\langle v_i|v_j\rangle. \end{array}$$

Since $\lambda_i \neq \lambda_i$, we have that $\langle v_i | v_j \rangle = 0$. Finally, we can conclude that two eigenvectors of a Hermitian operator with different eigenvalues are necessarily orthogonal.

Exercise 2.23: Show that the eigenvalues of a projector P are all either 0 or 1.

answer 2.23:

Firstly, we set λ_i is one of the eigenvalues of a projector P, and the corresponding eigenvector is v_i .

Then we have

$$P|v_i\rangle = \lambda_i |v_i\rangle, \ P^2|v_i\rangle = P\left(P|v_i\rangle\right) = P\left(\lambda_i |v_i\rangle\right) = \lambda_i P|v_i\rangle = \lambda_i^2 |v_i\rangle.$$

Since $P^2 = P$, then we can have

$$\lambda_i |v_i\rangle = \lambda_i^2 |v_i\rangle \Rightarrow (\lambda_i^2 - \lambda_i) |v_i\rangle = 0.$$

We get the result of λ_i is 1 or 0, thus we can conclude that the eigenvalues of a projector P are all either 0 or 1.

Exercise 2.24: (Hermiticity of positive operators) Show that a positive operator is necessarily Hermitian. (Hint: Show that an arbitrary operator A can be written A = B + iC where B and C are Hermitian.)

answer 2.24:

Firstly, we set A is a positive operator, and we have

$$A = \frac{A + A^\dagger}{2} + \frac{A - A^\dagger}{2} = \frac{A + A^\dagger}{2} + i\left(\frac{-iA + iA^\dagger}{2}\right).$$

$$B^{\dagger} = \frac{1}{2} (A + A^{\dagger})^{\dagger} = \frac{1}{2} (A + A^{\dagger}) = B,$$

$$C^{\dagger} = \frac{1}{2} \left(-iA + iA^{\dagger} \right)^{\dagger} = \frac{1}{2} \left[-\left(iA \right)^{\dagger} + \left(iA^{\dagger} \right)^{\dagger} \right] = \frac{1}{2} \left(-iA + iA^{\dagger} \right) = C.$$

Then we let $B=\frac{A+A^{\dagger}}{2}$ and $C=\frac{-iA+iA^{\dagger}}{2}$, and have that $B^{\dagger}=\frac{1}{2}\left(A+A^{\dagger}\right)^{\dagger}=\frac{1}{2}\left(A+A^{\dagger}\right)=B,$ $C^{\dagger}=\frac{1}{2}\left(-iA+iA^{\dagger}\right)^{\dagger}=\frac{1}{2}\left[-\left(iA\right)^{\dagger}+\left(iA^{\dagger}\right)^{\dagger}\right]=\frac{1}{2}\left(-iA+iA^{\dagger}\right)=C.$ Thus B and C are Hermitian. And for any vertor $|\varphi\rangle$, we have $\langle\varphi|B|\varphi\rangle\in\mathbf{R}$ and $\langle \varphi | C | \varphi \rangle \in \mathbf{R}$.

Since A is a positive operator, and for any vector $|v\rangle$ we have that

 $\langle v|A|v\rangle = \langle v|(B+iC)|v\rangle = \langle v|B|v\rangle + i\langle v|C|v\rangle \ge 0.$

Thus C=0, and we have $A^{\dagger}=B^{\dagger}=B=A$.

So we can conclude that a positive operator is necessarily Hermitian.

Exercise 2.25: Show that for any operator A, $A^{\dagger}A$ is positive.

answer 2.25:

For any vertor $|v\rangle$, we have

$$(|v\rangle, A^{\dagger}A|v\rangle) = (A|v\rangle, A|v\rangle) \ge 0.$$

Thus we can conclude that for any operator A, $A^{\dagger}A$ is positive.

Exercise 2.26: Let $|\psi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$. Write out $|\psi\rangle^{\otimes 2}$ and $|\psi\rangle^{\otimes 3}$ explicitly, both in terms of tensor products like $|0\rangle|1\rangle$, and using the Kronecker product.

answer 2.26:

We have that

$$\begin{split} |\psi\rangle^{\otimes 2} &= |\psi\rangle \otimes |\psi\rangle \\ &= \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \\ &= \frac{1}{2} \left[|0\rangle \otimes (|0\rangle + |1\rangle) + |1\rangle \otimes (|0\rangle + |1\rangle)\right] \\ &= \frac{1}{2} \left(|0\rangle |0\rangle + |0\rangle |1\rangle + |1\rangle |0\rangle + |1\rangle |1\rangle) \\ &= \frac{1}{2} \left(\begin{bmatrix}1\\0\\0\\0\end{bmatrix} + \begin{bmatrix}0\\1\\0\\0\end{bmatrix} + \begin{bmatrix}0\\0\\1\\0\end{bmatrix} + \begin{bmatrix}0\\0\\0\\1\end{bmatrix}\right) \\ &= \frac{1}{2} \begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}; \end{split}$$

$$\begin{split} |\psi\rangle^{\otimes 3} &= |\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle \\ &= \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \\ &= \frac{1}{2\sqrt{2}} \left(|0\rangle|0\rangle|0\rangle + |0\rangle|0\rangle|1\rangle + \dots + |1\rangle|1\rangle|0\rangle + |1\rangle|1\rangle|1\rangle) \\ &= \frac{1}{2\sqrt{2}} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} + \dots + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} \\ &= \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}. \end{split}$$

Exercise 2.27: Calculate the matrix representation of the tensor products of the Pauli operators (a) X and Z; (b) I and X; (c) X and I. Is the tensor product commutative?

answer 2.27:

Firstly, we Calculate the matrix representation of the tensor products of the Pauli operators (a) X and Z; (b) I and X; (c) X and I:

$$X \otimes Z = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \times \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 \times \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} & 1 \times \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix};$$

$$I \otimes X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & 0 \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix};$$

$$X \otimes I = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 1 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Secondly, since

$$I \otimes X - X \otimes I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$
$$\neq \mathbf{0}.$$

We can conclude that the tensor product is not commutative.

Exercise 2.28: Show that the transpose, complex conjugation, and adjoint operations distribute over the tensor product,

$$(A \otimes B)^* = A^* \otimes B^*; (A \otimes B)^T = A^T \otimes B^T; (A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}.$$

answer 2.28:

Suppose the matrix representation of A is m by n, then we have

$$A^* \otimes B^* = \begin{bmatrix} A_{11}^* B^* & A_{12}^* B^* & \dots & A_{1n}^* B^* \\ A_{21}^* B^* & A_{22}^* B^* & \dots & A_{2n}^* B^* \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1}^* B^* & A_{m2}^* B^* & \dots & A_{mn}^* B^* \end{bmatrix}$$

$$= \begin{bmatrix} (A_{11}B)^* & (A_{12}B)^* & \cdots & (A_{1n}B)^* \\ (A_{21}B)^* & (A_{22}B)^* & \cdots & (A_{2n}B)^* \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (A_{m1}B)^* & (A_{m2}B)^* & \cdots & (A_{mn}B)^* \end{bmatrix}$$

$$= (A \otimes B)^*;$$

$$A^T \otimes B^T = \begin{bmatrix} A_{11}B^T & A_{21}B^T & \dots & A_{m1}B^T \\ A_{12}B^T & A_{22}B^T & \dots & A_{m2}B^T \\ \vdots & \vdots & \vdots & \vdots \\ A_{1n}B^T & A_{2n}B^T & \dots & A_{mn}B^T \end{bmatrix}$$

$$= \begin{bmatrix} (A_{11}B)^T & (A_{21}B)^T & \cdots & (A_{m1}B)^T \\ (A_{12}B)^T & (A_{22}B)^T & \cdots & (A_{m2}B)^T \\ \vdots & \vdots & \vdots & \vdots \\ (A_{1n}B)^T & (A_{2n}B)^T & \cdots & (A_{mn}B)^T \end{bmatrix}$$

$$= (A \otimes B)^T;$$

$$A^{\dagger} \otimes B^{\dagger} = (A^*)^T \otimes (B^*)^T = (A^* \otimes B^*)^T = [(A \otimes B)^*]^T = (A \otimes B)^{\dagger}.$$

Exercise 2.29: Show that the tensor product of two unitary operators is unitary.

answer 2.29:

We set A is an unitary operator in m dimensions, and B is an unitary operator in n dimensions. And we let $U = A \otimes B$, then we have

$$U^{\dagger}U = (A \otimes B)^{\dagger} (A \otimes B)$$
$$= (A^{\dagger} \otimes B^{\dagger}) (A \otimes B)$$
$$= A^{\dagger}A \otimes B^{\dagger}B$$
$$= I_{m \times m} \otimes I_{n \times n}$$
$$= I_{(mn) \times (mn)}.$$

Thus we can conclude that the tensor product of two unitary operators is unitary.

Exercise 2.30: Show that the tensor product of two Hermitian operators is Hermitian.

answer 2.30:

We Suppose that A and B are Hermitian operators, and we can knnw that $A^\dagger=A, B^\dagger=B.$

Then we have $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger} = A \otimes B$, so we can conclude that the tensor product of two Hermitian operators is Hermitian.