Trabalho 4 - Algoritmos Genéticos Sistemas Inteligentes

Alexandre Herrero Matias RA: 1890484

Universidade Tecnológica Federal do Paraná

- 1. O que é um estado neste problema? As posições das rainhas no tabuleiro. (Linha, Coluna).
- **2. Qual o tamanho do espaço de estados?** Considerando que uma rainha pode ocupar n espaços, a segunda rainha (n-9) espaços, e assim por diante, temos:

$$Tamanho = n * (n - 9) * (n - (9 * 2) * (n - (9 * 3) * ... * (n - (9 * k)).$$

Onde k é o número de rainhas (no nosso problema, são 10), e n é a quantidade de posições disponíveis. No caso, por conta das regras de ataque de uma rainha, é no mínimo necessário uma coluna e uma linha por rainha, tal que:

$$n = k * k = k^2$$
;
Assim sendo, computando para $k = 10$, temos que:
 $Tamanho = 100 * (91) * (82) * (73) * ... * (10) \approx 1,73 * 10^{18}$

3. Explique o método de cálculo de fitness utilizado. Para situações normais, o fitness é iniciado em 18 (nosso MAX.FIT). Para cada rainha que está em ataque, vamos subtraindo um desse fitness. De modo geral, se um cromossomo tem fitness de 16, é porque ele tem 2 rainhas que se atacam, e assim por diante.

Para situações de penalização, quando um cromossomo é infactível (mais rainhas do que deveria ter), ele tem seu fitness setado em zero.

- 4. Como você codificou um cromossomo (quantos genes, quantos locus por gene e quais os valores possíveis para os alelos)? O cromossomo é codificado da seguinte maneira. Cada gene corresponde a uma coluna (ao todo, são 10 genes), e cada gene carrega consigo 4 locus. Esses 4 locus são uma representação binária da onde a rainha se encontra na coluna. Esse modelo de configuração proíbe a existência de rainhas na mesma coluna.
- 5. Na codificação que você adotou é possível que o AG produza cromossomos infactíveis (que não representam um estado do pro-

blema)? Explique. Como fica o cálculo de fitness para cromossomos infactíveis? Sim, é possível que uma rainha caia fora do tabuleiro. Como usamos a configuração baseada em 4 bits, (0 até 16), temos 7 posições que podem aparecer em um gene, mas que não representam posições do nosso tabuleiro.

Para os cromossomos infactíveis, caso o algoritmo esteja configurado para penalização, os cromossomos infactíveis recebem o menor fitness possível (0), dificultando sua sobrevivência. Ao passo de que, quando a configuração de reparação está ativada, resolvemos a infactibilidade removendo alguma rainha aleatória do cromossomo.

- 6. Caso tenha respondido sim na pergunta anterior, como você lidou com esta situação? Para os cromossomos infactíveis, caso o algoritmo esteja configurado para penalização, os cromossomos infactíveis recebem o menor fitness possível (0), dificultando sua sobrevivência. Ao passo de que, quando a configuração de reparação está ativada, resolvemos a infactibilidade removendo alguma rainha aleatória do cromossomo.
- 7. Escolha três configurações diferentes para o AG e execute 5.000 vezes para cada uma delas. Calcule a métrica de qualidade do algoritmo para cada configuração. Faça isto para cada uma das implementações (penalização e reparação) utilizando as mesmas configurações. Compare os valores da métrica de qualidade obtidos na forma de uma tabela e, também, analise com base nas configurações escolhidas:
- a. qual parâmetro do AG influenciou mais na qualidade das soluções obtidas (observar o número de soluções encontradas e a média de fitness das execuções). Há uma tendência de penalização ou reparação produzirem melhores resultados? O parâmetro que foi percebido mais influenciar na qualidade das soluções obtidas foi MAX_GERAÇÕES. Também foi percebida uma tendencia que o processo de Reparação produziu resultados com melhor qualidade.
- b. qual configuração produziu melhor custo computacional-qualidade da solução. Há uma tendência de penalização ou reparação produzirem melhores resultados? Em termos de custo computacional, a configuração de penalização produziu melhores resultados. Contudo, olhando de forma geral, a configuração de reparação produz melhores resultados.

	Penalizaç	ão		Reparação			
Configurações	1	2	3	1	2	3	
TAM_POP	20	50	100	20	50	100	
MAX_GERACOES	50	80	130	50	80	130	
PROB_CROSS	0.70	0.80	0.99	0.70	0.80	0.99	
PROB_MUT	0.045	0.055	0.100	0.045	0.055	0.100	
Média Fitness	118,31	129,89	128,01	135,87	130,51	145,79	
Soluções (inclusive repetidas)	239	266	261	264	250	275	
Desempenho	0,0478	0,0532	0,0522	0,0528	0,0500	0,0550	
Nº de chamadas Fitness	4933460	4918640	4929660	4922460	4931160	4926300	
Soluções/1.000 Fit	0,0484	0,0541	0,0529	0,0536	0,0507	0,0558	
Tempo(s)	26,85	26,33	25,81	26,55	26,20	25,80	

8. Liste três soluções encontradas para o problema das 10 rainhas. $4,8,0,9,3,6,2,7,5,1\,$

		R							
									R
						R			
				R					
R									
								R	
					R				
							R		
	R								
			R						

1,5,7,2,6,3,9,0,8,4

							R		
R									
			R						
					R				
									R
	R								
				R					
		R							
								R	
						R			

6,2,7,1,3,0,9,4,8,5

					R				
			R						
	R								
				R					
							R		
									R
R									
		R							
								R	
						R			