Домашнее задание №4. Массивы.

Данная работа включает в себя два задания: на одномерные массивы и на двумерные. Для каждого задания должен быть создан отдельный проект, при этом оба проекта должны находиться в одном решении (Solution).

Общие указания к выполнению работы:

- Можно использовать как консольный проект, так и WPF.
- Массивы должны заполняться случайными числами согласно заданию, то есть, если в задании указано, что массив вещественных чисел, то заполняться должен вещественными числами. Если подразумевается наличие отрицательных элементов, то массив должен включать отрицательные и положительные элементы.
- Для двумерных допускается заполнение массива непосредственно в коде для проверки краевых случаев.
- Все константы, включая размер массива (если не указан явно), должны вводиться с клавиатуры.
- Массив должен быть выведен на экран до и после преобразований.
- В программе должна осуществляться обработка исключений, то есть, она не должна падать и аварийно завершаться при некорректном вводе или ошибках при расчетах. Все нештатные ситуации должны сопровождаться пояснительным сообщением для пользователя.

В случае возникновения вопросов по заданию, обязательно пишите.

Вариант 1

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- сумму отрицательных элементов массива;
- произведение элементов массива, расположенных между максимальным и минимальным элементами.

Упорядочить элементы массива по возрастанию.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- количество строк, не содержащих ни одного нулевого элемента;
- максимальное из чисел, встречающихся в заданной матрице более одного раза.

Вариант 2

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- сумму положительных элементов массива;
- произведение элементов массива, расположенных между максимальным по модулю и минимальным по модулю элементами.

Упорядочить элементы массива по убыванию.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить количество столбцов, не содержащих ни одного нулевого элемента.

Характеристикой строки целочисленной матрицы назовем сумму ее положительных четных элементов. Переставляя строки заданной матрицы, расположить их в соответствии с ростом характеристик.

Вариант 3

Одномерные массивы

В одномерном массиве, состоящем из п-целочисленных элементов, вычислить:

• произведение элементов массива с четными номерами;

• сумму элементов массива, расположенных между первым и последним нулевыми элементами.

Преобразовать массив таким образом, чтобы сначала располагались все положительные элементы, а потом — все отрицательные (элементы, равные нулю, считать положительными).

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- количество столбцов, содержащих хотя бы один нулевой элемент;
- номер строки, в которой находится самая длинная серия одинаковых элементов.

Вариант 4

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- сумму элементов массива с нечетными номерами;
- сумму элементов массива, расположенных между первым и последним отрицательными элементами.

Сжать массив, удалив из него все элементы, модуль которых не превышает единицу. Освободившиеся в конце массива элементы заполнить нулями.

Двумерные массивы

Дана целочисленная квадратная матрица. Определить:

- произведение элементов в тех строках, которые не содержат отрицательных элементов;
- максимум среди сумм элементов диагоналей, параллельных главной диагонали матрицы.

Вариант 5

Одномерные массивы

- максимальный элемент массива;
- сумму элементов массива, расположенных до последнего положительного элемента.

Сжать массив, удалив из него все элементы, модуль которых находится в интервале [a, b]. Освободившиеся в конце массива элементы заполнить нулями.

Двумерные массивы

Дана целочисленная квадратная матрица. Определить:

- сумму элементов в тех столбцах, которые не содержат отрицательных элементов;
- минимум среди сумм модулей элементов диагоналей, параллельных побочной диагонали матрицы.

Вариант 6

Одномерные массивы

В одномерном массиве, состоящем из n-вещественных элементов, вычислить:

- минимальный элемент массива;
- сумму элементов массива, расположенных между первым и последним положительными элементами.

Преобразовать массив таким образом, чтобы сначала располагались все элементы, равные нулю, а потом — все остальные.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- сумму элементов в тех строках, которые содержат хотя бы один отрицательный элемент;
- номера строк и столбцов всех седловых точек матрицы.

Матрица A имеет седловую точку $A_{i,j}$, если $A_{i,j}$ является минимальным элементом в i-й строке и максимальным — в j-м столбце.

Вариант 7

Одномерные массивы

- номер максимального элемента массива;
- произведение элементов массива, расположенных между первым и вторым нулевыми элементами.

Преобразовать массив таким образом, чтобы в первой его половине располагались элементы, стоявшие в нечетных позициях, а во второй половине — элементы, стоявшие в четных позициях.

Двумерные массивы

Для заданной матрицы размером 8х8 найти такие k, при которых k-я строка матрицы совпадает с k-м столбцом.

Найти сумму элементов в тех строках, которые содержат хотя бы один отрицательный элемент.

Вариант 8

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- номер минимального элемента массива;
- сумму элементов массива, расположенных между первым и вторым отрицательными элементами.

Преобразовать массив таким образом, чтобы сначала располагались все элементы, модуль которых не превышает единицу, а потом — все остальные.

Двумерные массивы

Характеристикой столбца целочисленной матрицы назовем сумму модулей его отрицательных нечетных элементов. Переставляя столбцы заданной матрицы, расположить их в соответствии с ростом характеристик.

Найти сумму элементов в тех столбцах, которые содержат хотя бы один отрицательный элемент.

Вариант 9

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- максимальный по модулю элемент массива;
- сумму элементов массива, расположенных между первым и вторым положительными элементами.

Преобразовать массив таким образом, чтобы элементы, равные нулю, располагались после всех остальных.

Двумерные массивы

Соседями элемента $A_{i,j}$ в матрице назовем элементы $A_{k,l}$, где $i-1 \le k \le i+1, j-1 \le l \le j+1, (k,l) \ne (i,j)$. Операция сглаживания матрицы дает новую матрицу того же размера, каждый элемент которой получается как среднее арифметическое имеющихся соседей соответствующего элемента исходной матрицы. Построить результат сглаживания заданной вещественной матрицы размером 10×10 .

В сглаженной матрице найти сумму модулей элементов, расположенных ниже главной диагонали.

Вариант 10

Одномерные массивы

В одномерном массиве, состоящем из п-целочисленных элементов, вычислить:

- минимальный по модулю элемент массива;
- сумму модулей элементов массива, расположенных после первого элемента, равного нулю.

Преобразовать массив таким образом, чтобы в первой его половине располагались элементы, стоявшие в четных позициях, а во второй половине — элементы, стоявшие в нечетных позициях.

Двумерные массивы

Элемент матрицы называется локальным минимумом, если он строго меньше всех имеющихся у него соседей (определение соседних элементов см. в варианте 9). Подсчитать количество локальных минимумов заданной матрицы размером 10 х 10.

Найти сумму модулей элементов, расположенных выше главной диагонали.

Вариант 11

Одномерные массивы

- номер минимального по модулю элемента массива;
- сумму модулей элементов массива, расположенных после первого отрицательного элемента.

Сжать массив, удалив из него все элементы, величина которых находится в интервале [a, b]. Освободившиеся в конце массива элементы заполнить нулями.

Двумерные массивы

Уплотнить заданную матрицу, удаляя из нее строки и столбцы, заполненные нулями.

Найти номер первой из строк, содержащих хотя бы один положительный элемент.

Вариант 12

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- номер максимального по модулю элемента массива;
- сумму элементов массива, расположенных после первого положительного элемента.

Преобразовать массив таким образом, чтобы сначала располагались все элементы, целая часть которых лежит в интервале [a, b], а потом — все остальные.

Двумерные массивы

Коэффициенты системы линейных уравнений заданы в виде прямоугольной матрицы. С помощью допустимых преобразований привести систему к треугольному виду.

Найти количество строк, среднее арифметическое элементов которых меньше заданной величины.

Вариант 13

Одномерные массивы

- количество элементов массива, лежащих в диапазоне от А до В;
- сумму элементов массива, расположенных после максимального элемента.

Упорядочить элементы массива по убыванию модулей.

Двумерные массивы

Осуществить циклический сдвиг элементов прямоугольной матрицы на пэлементов вправо или вниз (в зависимости от введенного режима), п может быть больше количества элементов в строке или столбце.

Вариант 14

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- количество элементов массива, равных нулю;
- сумму элементов массива, расположенных после минимального элемента.

Упорядочить элементы массива по возрастанию модулей.

Двумерные массивы

Осуществить циклический сдвиг элементов квадратной матрицы размером $M \times M$ вправо на k элементов таким образом: элементы первой строки сдвигаются в последний столбец сверху вниз, из него — в последнюю строку справа налево, из нее — в первый столбец снизу вверх, из него — в первую строку; для остальных элементов — аналогично.

Вариант 15

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- количество элементов массива, больших С;
- произведение элементов массива, расположенных после максимального по модулю элемента.

Преобразовать массив таким образом, чтобы сначала располагались все отрицательные элементы, а потом — все положительные (элементы, равные нулю, считать положительными).

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить номер первого из столбцов, содержащих хотя бы один нулевой элемент.

Характеристикой строки целочисленной матрицы назовем сумму ее отрицательных четных элементов. Переставляя строки заданной матрицы, расположить их в соответствии с убыванием характеристик.

Вариант 16

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- количество отрицательных элементов массива;
- сумму модулей элементов массива, расположенных после минимального по модулю элемента.

Заменить все отрицательные элементы массива их квадратами и упорядочить элементы массива по возрастанию.

Двумерные массивы

Упорядочить строки целочисленной прямоугольной матрицы по возрастанию количества одинаковых элементов в каждой строке.

Найти номер первого из столбцов, не содержащих ни одного отрицательного элемента.

Вариант 17

Одномерные массивы

В одномерном массиве, состоящем из п-целочисленных элементов, вычислить:

- количество положительных элементов массива;
- сумму элементов массива, расположенных после последнего элемента, равного нулю.

Преобразовать массив таким образом, чтобы сначала располагались все элементы, целая часть которых не превышает единицу, а потом — все остальные.

Двумерные массивы

Путем перестановки элементов квадратной вещественной матрицы добиться того, чтобы ее максимальный элемент находился в левом верхнем углу, следующий по величине — в позиции (2, 2), следующий по величине — в позиции (3, 3) и т. д., заполнив таким образом всю главную диагональ.

Найти номер первой из строк, не содержащих ни одного положительного элемента.

Вариант 18

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- количество элементов массива, меньших С;
- сумму целых частей элементов массива, расположенных после последнего отрицательного элемента.

Преобразовать массив таким образом, чтобы сначала располагались все элементы, отличающиеся от максимального не более чем на 20%, а потом — все остальные.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- количество строк, содержащих хотя бы один нулевой элемент;
- номер столбца, в котором находится самая длинная серия одинаковых элементов.

Вариант 19

Одномерные массивы

В одномерном массиве, состоящем из п вещественных элементов, вычислить:

- произведение отрицательных элементов массива;
- сумму положительных элементов массива, расположенных до максимального элемента.

Изменить порядок следования элементов в массиве на обратный.

Двумерные массивы

Дана целочисленная квадратная матрица. Определить:

- сумму элементов в тех строках, которые не содержат отрицательных элементов;
- минимум среди сумм элементов диагоналей, параллельных главной диагонали матрицы.

Вариант 20

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- произведение положительных элементов массива;
- сумму элементов массива, расположенных до минимального элемента.

Упорядочить по возрастанию отдельно элементы, стоящие на четных местах, и элементы, стоящие на нечетных местах.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- количество отрицательных элементов в тех строках, которые содержат хотя бы один нулевой элемент;
- номера строк и столбцов всех седловых точек матрицы.

Матрица А имеет седловую точку $A_{i,j}$, если $A_{i,j}$ является минимальным элементом в і-й строке и максимальным — в ј-м столбце.

Вариант 21

Одномерные массивы

В одномерном массиве, состоящем из n-вещественных элементов, вычислить:

- сумму отрицательных элементов массива;
- произведение элементов массива, расположенных между максимальным и минимальным элементами.

Упорядочить элементы массива по возрастанию.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- количество строк, не содержащих ни одного нулевого элемента;
- максимальное из чисел, встречающихся в заданной матрице более одного раза.

Вариант 22

Одномерные массивы

- сумму положительных элементов массива;
- произведение элементов массива, расположенных между максимальным по модулю и минимальным по модулю элементами.

Упорядочить элементы массива по убыванию.

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить количество столбцов, не содержащих ни одного нулевого элемента.

Характеристикой строки целочисленной матрицы назовем сумму ее положительных четных элементов. Переставляя строки заданной матрицы, расположить их в соответствии с ростом характеристик.

Вариант 23

Одномерные массивы

В одномерном массиве, состоящем из п-целочисленных элементов, вычислить:

- произведение элементов массива с четными номерами;
- сумму элементов массива, расположенных между первым и последним нулевыми элементами.

Преобразовать массив таким образом, чтобы сначала располагались все положительные элементы, а потом — все отрицательные (элементы, равные нулю, считать положительными).

Двумерные массивы

Дана целочисленная прямоугольная матрица. Определить:

- количество столбцов, содержащих хотя бы один нулевой элемент;
- номер строки, в которой находится самая длинная серия одинаковых элементов.

Вариант 24

Одномерные массивы

- сумму элементов массива с нечетными номерами;
- сумму элементов массива, расположенных между первым и последним отрицательными элементами.

Сжать массив, удалив из него все элементы, модуль которых не превышает единицу. Освободившиеся в конце массива элементы заполнить нулями.

Двумерные массивы

Дана целочисленная квадратная матрица. Определить:

- произведение элементов в тех строках, которые не содержат отрицательных элементов;
- максимум среди сумм элементов диагоналей, параллельных главной диагонали матрицы.

Вариант 25

Одномерные массивы

В одномерном массиве, состоящем из п-вещественных элементов, вычислить:

- максимальный элемент массива;
- сумму элементов массива, расположенных до последнего положительного элемента.

Сжать массив, удалив из него все элементы, модуль которых находится в интервале [a, b]. Освободившиеся в конце массива элементы заполнить нулями.

Двумерные массивы

Дана целочисленная квадратная матрица. Определить:

• сумму элементов в тех столбцах, которые не содержат отрицательных элементов;

минимум среди сумм модулей элементов диагоналей, параллельных побочной диагонали матрицы.