Tabelle: Vergleich von verschiedenen Oszillatoren (schwingungsfähigen Systemen)

Größe, Eigenschaften	Federschwinger	Fadenpendel (Länge l)	Drehpendel
Auslenkung	Strecken x(t)	Winkel $\varphi(t)$ Bahnstrecke $s_B(t)$	Winkel $\varphi(t)$
rücktreibende Kraft	elastische (Feder-) Kraft $F = -D x$	Schwerkraft $F = -m g \sin \alpha$	elastisches (Torsions-) Moment $M = -D^* \varphi$
Trägheit	Masse m	Masse m	Trägheitsmoment Θ
Dämpfung	Reibungskraft $F = -\alpha v$ $\alpha : Reibungskoeffizient$	Reibungskraft $F = -\alpha v$	Torsionsreibung $M = -\alpha^* \varphi$
Lösung der Differentialgleichung	$x(t) = x_0 \sin[\omega_0 t + \varphi_0]$	$s_B(t) = s_0 \sin[\omega_0 t + \xi_0]$ oder $\varphi(t) = \varphi_0 \sin[\omega_0 t + \xi_0]$ mit $\sin \varphi \approx \varphi$	$\varphi(t) = \varphi_0 \sin[\omega_0 t + \xi_0]$
Kreisfrequenz ω ₀ : Eigenfrequenz	$\omega_0 = \sqrt{\frac{D}{m}}$	$\omega_0 = \sqrt{\frac{g}{l}}$	$\omega_0 = \sqrt{\frac{D^*}{\Theta}}$
gedämpfte Frequenz 🐠	$\omega_1 = \sqrt{\omega_0^2 - \frac{\alpha^2}{4m^2}}$	$\omega_1 = \sqrt{\omega_0^2 - \frac{\alpha^2}{4m^2}}$	$\omega_1 = \sqrt{\omega_0^2 - \frac{\alpha^{*2}}{4\Theta^2}}$