PE Malware Detection

Using Machine Learning

Mohamed Asem • Flothers Interview Task

Introduction

Malware analysis

- Basic static.
- Advanced static.
- Basic dynamic.
- Advanced dynamic.

Basic static

- No execution.
- Inspecting the PE File Format.
- Strings.
- DLL's.
- Imported Functions.
- Signes of Packed Malware.
- Resources.

Objective

- 1. Collect Dataset
- 2. Extract Features
- 3. Train different ML models
- 4. Test with random samples
- 5. Build simple GUI

Dataset Collection

Benign Samples

- https://github.com/bormaa/B enign-NET
- https://figshare.com/articl es/dataset/Malware Detectio n PE-Based Analysis Using D eep Learning Algorithm Data set/6635642

Malware Samples

- https://dasmalwerk.eu/
- https://figshare.com/articles/dataset/Malware Detection
 n PE-Based Analysis Using Deep Learning Algorithm Dataset/6635642
- https://bazaar.abuse.ch/

Dataset Collection (statistics)

Extract Features

YARA rules

- PEID signatures
- Packer signatures
- Crypto signatures
- Anti-debug/Anti-VM
- Capabilities

PE Header

- Sections name(.rsrc, .txt,)
- Imported DLLs
- Imported DLLs imports (removed later for performance issues)

Training the Models

1082 Benign One-Hot-Encoding1082 Malware 859 features

5 Yara rules

2 PE format

70% of the dataset

7 ML classifiers

Dataset Split

Training

```
Number of 1s (MALICIOUS): 752
Number of 0s (BENIGN) : 762
```

Validation

```
Number of 1s (MALICIOUS): 752
Number of 0s (BENIGN) : 762
```

Random Malware-only for client environment testing

Number of 1s (MALICIOUS): 973

Machine learning models

XGBoost Random Forest **Decision Tree Adaptive Boosting** Naive Bayes Stochastic Gradient Descent (SGD) Multi-layer perceptron (MLP)

1- XGBoost

Detailed Report :

Metrics		Value
Sensitivity Specificity Precision Negative Predictive Value False Positive Rate False Discovery Rate False Negative Rate Accuracy F1-Score Matthews Correlation Coefficient	-+- 	0.96970 0.98750 0.98765 0.96933 0.01250 0.01235 0.03030 0.97846 0.97859 0.95709

Accuracy of the model: 97.85 % F1_score of the model: 97.86 %

2- Random Forest

Detailed Report :

Metrics		Value
Metrics ===================================	 	Value 0.97273 0.99375 0.99381 0.97248 0.00625 0.00619 0.02727 0.98308 0.98315
Matthews Correlation Coefficient	İ	0.96638

Accuracy of the model: 98.31 % F1_score of the model: 98.32 %

3- Decision Tree

Detailed Report :

Metrics		Value
Sensitivity Specificity Precision Negative Predictive Value False Positive Rate False Discovery Rate False Negative Rate Accuracy F1-Score Matthews Correlation Coefficient	. +	0.96061 0.99687 0.99686 0.96084 0.00313 0.00314 0.03939 0.97846 0.97840

Accuracy of the model: 97.85 % F1_score of the model: 97.84 %

4- Adaptive Boosting

5- Naive Bayes

6- Stochastic Gradient Descent (SGD)

Detailed Report :

Metrics		Value
Sensitivity Specificity Precision Negative Predictive Value False Positive Rate False Discovery Rate False Negative Rate Accuracy F1-Score Matthews Correlation Coefficient	=+= 	0.98788 0.98750 0.98788 0.98750 0.01250 0.01212 0.01212 0.98769 0.98788 0.97538

Accuracy of the model: 98.77 % F1 score of the model: 98.79 %

7- Multi-layer perceptron (MLP)

Detailed Report :

Metrics		Value
Sensitivity Specificity Precision Negative Predictive Value False Positive Rate False Discovery Rate False Negative Rate Accuracy F1-Score		0.97273 0.99375 0.99381 0.97248 0.00625 0.00619 0.02727 0.98308 0.98315
Matthews Correlation Coefficient	ı	0.96638

Accuracy of the model: 98.31 % F1_score of the model: 98.32 %

Accuracy Comparisons

F1-Score Comparisons

Production Environment Performance (973 Malware)

Simple GUI

User Scenario

window 1

Chose the file path for analysis

window 2

Progress bar represent the feature extraction and analysis

window 3

Print the final result of the models (benign or malicious)

Window 1

Window 2

Window 3

Window 3 (Different results)

Limitation

- 1. Files used for training are not variant enough.
- 2. More features to be extracted needs more computational power.
- 3. More tests are required for the GUI and proper documentations.

Thanks Q&A

Appendix

Detailed Metrics Calculations

Accuracy	$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$
F1 Score	$F1 = \frac{2 \times TP}{2 \times TP + FP + FN}$
Matthews Correlation Coefficient	$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

Detailed Metrics Calculations

Precision	$Precision = \frac{TP}{TP + FP}$
Sensitivity	$Recall = Sensitivity = \frac{TP}{TP + FN}$
Specificity	$Specificity = \frac{TN}{FP + TN}$