Cross-Platform Omics Prediction (CPOP)

Kevin YX Wang¹, Gullietta Pupo², Varsha Tembe², Graham Mann^{2,3}, Garth Tarr¹, Samuel Mueller¹, Jean Yang¹

School of Mathematics and Statistics, The University of Sydney
 Melanoma Institute Australia, The University of Sydney, North Sydney, Australia
 The John Curtin School of Medical Research, Australian National University

Motivation

When implementing a prediction model in the clinics, what is more important?

Classification accuracy or stability of prediction?

Which one is more widely reported in publications?

Stable prediction
=
stable features
+
stable modelling

Due to experimentation constrains, we might not be able to normalise our data and use the standard prediction model like Lasso and Random Forest.

Methods

- CPOP is a statistical procedure that enables prediction using omics data in a clinical settings.
- CPOP avoids renormalisation of additional data through the use of logratio features and thus also enable prediction for single omics samples.
- The novelty of the CPOP procedure lies in its ability to construct a transferable model across gene expression platforms and for prospective experiments.
- Such a transferable model can be trained to make predictions on independent validation data with an accuracy that is similar to a re-substituted model.

Results

We tested CPOP on four late-stage melanoma datasets.

- MIA-2015 (Jayawardana et al. 2015)
- MIA-2018 (Unpublished)
- USA (TCGA 2015)
- Sweden ((Cirenajwis et al. 2015)

Equivalent predictions

High prediction accuracy

How does CPOP work?

Weight each feature by its stability across datasets

Select only features
with similar
estimated
coefficients across
datasets