Συναρτήσεις Ενα προς ένα (1-1)

Κωνσταντίνος Λόλας

10° ΓΕΛ Θεσσαλονίκης

1-1

Ορισμός

Μία συνάρτηση $f: A \to \mathbb{R}$ λέγεται συνάρτηση συνάστηση 1-1 (ένα προς ένα), όταν για οποιαδήποτε $x_1, x_2 \in A$ ισχύει η συνεπαγωγή

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Αντέχετε?

Ενδιαφέροντα

- $\bullet x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$
- $\bullet \ f(x_1) \neq f(x_2) \implies x_1 \neq x_2$
- $f(x_1) = f(x_2) \implies x_1 = x_2$

Φαντασία θέλει

Μια συνάρτηση:

- Κάθε y το πολύ μία φορά
- Κάθε y του συνόλου τιμών ΑΚΡΙΒΩΣ μία φορό
- Κάθε οριζόντια γραμμή...

Αρα... φαίνονται οι διαφορετικοί!

Φαντασία θέλει

Μια συνάρτηση:

- Κάθε y το πολύ μία φορά
- ullet Κάθε y του συνόλου τιμών ΑΚΡΙΒΩΣ μία φορά
- Κάθε οριζόντια γραμμή...

Αρα... φαίνονται οι διαφορετικοί!

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 4/15

Φαντασία θέλει

Μια συνάρτηση:

- Κάθε y το πολύ μία φορά
- ullet Κάθε y του συνόλου τιμών ΑΚΡΙΒΩΣ μία φορά
- Κάθε οριζόντια γραμμή...

Αρα... φαίνονται οι διαφορετικοί!

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 4/15

Προσοχή

Γνησίως μονότονη ⇒ είναι 1-1

1-1 ⇒ MΠΟΡΕΙ!

Βρείτε την!

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5/15

Προσοχή

ullet Γνησίως μονότονη \Longrightarrow είναι 1-1

1-1 ⇒ MΠΟΡΕΙ

Βρείτε την!

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5/15

Προσοχή

- Γνησίως μονότονη \implies είναι 1-1
- 1-1 ⇒ M∏OPEI!

Βρείτε την!

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5/15

Προσοχή

- Γνησίως μονότονη \implies είναι 1-1
- 1-1 ⇒ MΠΟΡΕΙ!

Βρείτε την!

5/15 Συναρτήσεις

Θα δείχνουμε ότι η συνάρτηση είναι 1-1, αλλά πώς? Κυρίως

Θα δείχνουμε ότι η συνάρτηση είναι 1-1, αλλά πώς? Κυρίως

- Κατασκευή

Θα δείχνουμε ότι η συνάρτηση είναι 1-1, αλλά πώς? Κυρίως

- Κατασκευή
- Μονοτονία σε διάστημα

Θα δείχνουμε ότι η συνάρτηση είναι 1-1, αλλά πώς? Κυρίως

- Κατασκευή
- Μονοτονία σε διάστημα

Γιατί να το κάνουμε?

Λύνουμε σύνθετες εξισώσεις διώχνοντας f

Να βρείτε, ποιες από τις παρακάτω συναρτήσεις είναι 1-1.

- **1** $f(x) = \frac{x-1}{x-2}$

Να βρείτε, ποιες από τις παρακάτω συναρτήσεις είναι 1-1.

- **1** $f(x) = \frac{x-1}{x-2}$
- $f(x) = 2x + e^x 1$

Να βρείτε, ποιες από τις παρακάτω συναρτήσεις είναι 1-1.

- **1** $f(x) = \frac{x-1}{x-2}$
- $f(x) = 2x + e^x 1$
- $f(x) = x^2 1$

Δίνεται η συνάρτηση $f(x) = e^{x-1} + x^3 - 2$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1

Δίνεται η συνάρτηση $f(x) = e^{x-1} + x^3 - 2$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε τις εξισώσεις:

1
$$f(x) = 0$$

$$f(\ln x) =$$

$$f(x^2 - 2x) = f(x - 2)$$

$$f(f(x) + 1) = 0$$

Να λύσετε το σύστημα $\begin{cases} \alpha^3 - \beta = 2 \\ e^{\alpha - 1} + \beta = 0 \end{cases}$

Δίνεται η συνάρτηση $f(x) = e^{x-1} + x^3 - 2$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε τις εξισώσεις:
 - **1** f(x) = 0
 - **2** $f(\ln x) = 0$
- Να λύσετε το σύστημα $\begin{cases} \alpha^3 \beta = 2 \\ e^{\alpha 1} + \beta = 0 \end{cases}$

Δίνεται η συνάρτηση $f(x) = e^{x-1} + x^3 - 2$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε τις εξισώσεις:
 - **1** f(x) = 0
 - **2** $f(\ln x) = 0$
 - $f(x^2-2x)=f(x-2)$
- Να λύσετε το σύστημα $\begin{cases} \alpha^3 \beta = 2 \\ e^{\alpha 1} + \beta = 0 \end{cases}$

Δίνεται η συνάρτηση $f(x) = e^{x-1} + x^3 - 2$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε τις εξισώσεις:
 - **1** f(x) = 0
 - **2** $f(\ln x) = 0$
 - $f(x^2-2x)=f(x-2)$
 - **4** f(f(x) + 1) = 0
- Να λύσετε το σύστημα $\begin{cases} \alpha^3 \beta = 2 \\ e^{\alpha 1} + \beta = 0 \end{cases}$

Δίνεται η συνάρτηση $f(x) = e^{x-1} + x^3 - 2$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε τις εξισώσεις:
 - **1** f(x) = 0
 - **2** $f(\ln x) = 0$
 - $f(x^2-2x)=f(x-2)$
 - **4** f(f(x) + 1) = 0
- 3 Να λύσετε το σύστημα $\begin{cases} \alpha^3 \beta = 2 \\ e^{\alpha 1} + \beta = 0 \end{cases}$

Δίνεται η συνάρτηση $f(x) = \frac{e^x}{e^x - 1}$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1

Δίνεται η συνάρτηση $f(x) = \frac{e^x}{e^x - 1}$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε την εξίσωση $(1 e^{-x})f(x^2 + 2x) = 1$

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f που είναι ορισμένη στο \mathbb{R} . Να λύσετε τις εξισώσεις:

- $f(x^4+1) = f(x^2+1)$

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f που είναι ορισμένη στο \mathbb{R} . Να λύσετε τις εξισώσεις:

- $(x^4 + 1) = f(x^2 + 1)$
- $(\eta \mu x) = f(\sigma v \nu x)$

Στο διπλανό σχήμα φαίνεται η γραφική παράσταση μιας συνάρτησης f που είναι ορισμένη στο \mathbb{R} . Να λύσετε τις εξισώσεις:

- $(x^4 + 1) = f(x^2 + 1)$
- $(\eta \mu x) = f(\sigma v \nu x)$
- **3** f(f(x)) = 1

Εστω συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ η οποία είναι γνησίως αύξουσα. Να λύσετε:

- Την ανίσωση f(x) x > f(2x)

Εστω συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ η οποία είναι γνησίως αύξουσα. Να λύσετε:

- Tην ανίσωση f(x) x > f(2x)
- Την εξίσωση $f(x) \ln x = f(x^2)$

Δίνεται η συνάρτηση $f(x)=e^x+x-1$. Να λύσετε το σύστημα

$$\begin{cases} y = f(x) \\ x = f(y) \end{cases}$$

Εστω $f,g:\mathbb{R} o \mathbb{R}$ δύο συναρτήσεις, όπου η συνάρτηση $g\circ f$ είναι 1-1. Να δείξετε ότι η f είναι 1-1.

Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει

$$f\left(f(x)
ight)+f^{3}(x)-x=0$$
, για κάθε $x\in\mathbb{R}$

- Να δείξετε ότι η f είναι συνάρτηση 1-1

Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει

$$f\left(f(x)
ight)+f^{3}(x)-x=0$$
, για κάθε $x\in\mathbb{R}$

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε την εξίσωση $f(f(x) + x^2 x) = f(f(x) + 2x 2)$

Συναρτήσεις 14/15

Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, για την οποία ισχύει

$$f\left(f(x)
ight)+f^{3}(x)-x=0$$
, για κάθε $x\in\mathbb{R}$

- Να δείξετε ότι η f είναι συνάρτηση 1-1
- Να λύσετε την εξίσωση $f(f(x) + x^2 x) = f(f(x) + 2x 2)$
- Nα λύσετε την εξίσωση f(f(2x+1)) f(f(x)) = x+1

Συναρτήσεις 14/15 Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση