

Copyright Gencore version 4.5
(c) 1993 - 2000 Compugen Ltd

GenCore version 4.5
Copyright (c) 1993 - 2000 CompuGen Ltd

C 2 2 28 1.3 28 6 AR090142
3 27 1.2 27 6 A26401
4 26 1.1 26 6 A26401
5 25 1.0 25 6 A26401

AR090142 Sequence
A26401 cDNA fragment
32671 01-iccanig

Ruijg, On September 10, 2004, 23:45:33 (without alignment) 20 seconds
(without alignment time 3.941.20) 11332.580 Million.cell updates/sec

C	6	9	23	1.1	23	6	A39497	A39497 Sequence 1
							A096331	A096331 Sequence 1
1	0	23	1.1	27	6	AR131318	AR131318 Sequences	AR131318 Sequence 1
11	23	1.1	27	6	AR134770	AR134770 Sequences	AR134770 Sequence 1	

```

Scoring: 2161.0000000000002
Sequence: 1 cggcccaatgtatcttgaacc..... tacactaaattcttqaagt 2162
          |           |
          IDENTITY_NUC

```

C	13	22.6	1.0	30	b	A43.84	A43.84 Sequence 9
C	14	22.6	1.0	30	b	A62991	A62991 Sequence 3
C	15	22.6	1.0	30	b	A62995	A62995 Sequence 7
C	16	22.6	1.0	30	b	AX104902	AX104902 Sequence

Searched: 1797656 seqs, 10463268293 residues
Total number of hits satisfying chosen parameters:

Post-processing: Minimum Match 0.9
Minimum DB seq length: 0
Maximum DB seq length: 30

C	23	22	1.0	30	6	AR165925
C	24	22	1.0	30	6	AR165925
C	25	22	1.0	30	6	AR165925
C	26	22	1.0	30	6	AR165925
						Sequence 1

Database : GenEmbl:
Maximum Match 100%
Listing first 45 summaries

2: gb_htg:*

C	334	21.6	1.0	AX353685	AX353685	Sequence
C	333	21.6	1.0	AX353685	AX353685	Sequence
C	332	21.6	1.0	AX353685	AX353685	Sequence
C	331	21.6	1.0	AX353685	AX353685	Sequence
C	330	21.6	1.0	AX051244	AX051244	Sequence

6: gb-pat:*

C	36	21.6	1.0	30	6	I28373	Sequence 1
C	37	21.4	1.0	30	6	AR089237	Sequence 2
C	38	21.2	1.0	29	6	AX161697	Sequence 3
T	39	21.3	1.0	30	6	T1296	Sequence 4

10: gblc:
11: gb_sts:
12: gb_sy:
13: gb_un:
14:

C	40	21	1.0	21	6	A19909	A19909	Synthetic
C	41	21	1.0	21	6	A19910	A19910	Synthetic
C	42	21	1.0	21	6	A19911	A19911	Synthetic
C	43	21	1.0	21	6	A19912	A19912	Synthetic

15: em_ba:*

16: em_fun:*

17: em_hum:*

C 45 21 1.0 21 6 AR134771 AR134771 Sequence

ALIGNMENT

RESULT	1
ARO90141	AR090141
Locus	AR090141
DEFINITION	Sequence 261 from patent US 5994076.
ACCESSION	AR090141
VERSION	AR090141.1
KEYWORDS	
SOURCE	
ORGANISM	Unknown.
REFERENCE	Unclassified.
AUTHORS	1 (bases 1 to 28)
TITLE	Chenck,A., Jokhadze,G. and Bibilashvili,R. Methods of assaying differential expression

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
---------------	-------	----------------	--------	----	----	-------------

Matches 28; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION Oligonucleotide no. 2.

ACCESSION A29671

VERSION A29671.1 GI:1248974

KEYWORDS

ORGANISM synthetic construct.

REFERENCE 1 (bases 1 to 28)

AUTHORS Wallach,D. and Brakebusch,C.

TITLE Multimers of the soluble forms of TNF receptors, their preparation and pharmaceutical compositions containing them

JOURNAL Patent: EP 0566905-A 2 10-FEB-1993;

VERSION VEDA RESEARCH AND DEVELOPMENT CO. LTD

FEATURES Location/Qualifiers

SOURCE 1. 28 /organism="synthetic construct"

BASE COUNT 6 a 6 c 7 g 9 t

ORIGIN

Query Match 1.1%; Score 24; DB 6; Length 24;

Best Local Similarity 100.0%; **Pred.** No. 1.8e+05;

Matches 28; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION Sequence 4 from patent US 6007995.

ACCESSION AR096333

VERSION AR096333.1 GI:1025051

KEYWORDS

ORGANISM Unknown.

REFERENCE 1 (bases 1 to 24)

AUTHORS Baker,B.F. and Cowert,L.M.

TITLE Antisense inhibition of TNFR1 expression

JOURNAL Patent: US 6007995-A 4 28-DEC-1999;

FEATURES Location/Qualifiers

SOURCE 1. 24 /organism="unknown"

BASE COUNT 7 a 7 c 6 g 4 t

ORIGIN

Query Match 1.1%; Score 24; DB 6; Length 24;

Best Local Similarity 100.0%; **Pred.** No. 1.2e+05;

Matches 24; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION Sequence 4 from Patent WO9720924.

ACCESSION A63563

VERSION A63563.1 GI:3717218

KEYWORDS

ORGANISM unidentified.

REFERENCE 1 (bases 1 to 28)

AUTHORS Scagliante,B. and Quadrifoglio,F.

TITLE A CLASS OF OLIGONUCLEOTIDES, THERAPEUTICALLY USEFUL AS ANTITUMOURAL

RESULT 6

DEFINITION Oligonucleotide no. 2.

ACCESSION A29671

VERSION A29671.1 GI:1248974

KEYWORDS

ORGANISM synthetic construct.

REFERENCE 1 (bases 1 to 28)

AUTHORS Wallach,D. and Brakebusch,C.

TITLE Multimers of the soluble forms of TNF receptors, their preparation and pharmaceutical compositions containing them

JOURNAL Patent: EP 0566905-A 2 10-FEB-1993;

VERSION VEDA RESEARCH AND DEVELOPMENT CO. LTD

FEATURES Location/Qualifiers

SOURCE 1. 28 /organism="synthetic construct"

BASE COUNT 6 a 6 c 7 g 9 t

ORIGIN

Query Match 1.1%; Score 24; DB 6; Length 24;

Best Local Similarity 92.9%; **Pred.** No. 8e+05;

Matches 26; **Conservative** 0; **Mismatches** 2; **Indels** 0; **Gaps** 0;

DEFINITION Sequence 4 from patent US 6007995.

ACCESSION AR096333

VERSION AR096333.1 GI:1025051

KEYWORDS

ORGANISM Unknown.

REFERENCE 1 (bases 1 to 24)

AUTHORS Baker,B.F. and Cowert,L.M.

TITLE Antisense inhibition of TNFR1 expression

JOURNAL Patent: US 6007995-A 4 28-DEC-1999;

FEATURES Location/Qualifiers

SOURCE 1. 24 /organism="unknown"

BASE COUNT 7 a 7 c 6 g 4 t

ORIGIN

Query Match 1.1%; Score 24; DB 6; Length 24;

Best Local Similarity 100.0%; **Pred.** No. 1.2e+05;

Matches 24; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION Sequence 4 from Patent WO9720924.

ACCESSION A63563

VERSION A63563.1 GI:3717218

KEYWORDS

ORGANISM unidentified.

REFERENCE 1 (bases 1 to 28)

AUTHORS Scagliante,B. and Quadrifoglio,F.

TITLE A CLASS OF OLIGONUCLEOTIDES, THERAPEUTICALLY USEFUL AS ANTITUMOURAL

RESULT 4

DEFINITION Oligonucleotide no. 2.

ACCESSION A29671

VERSION A29671.1 GI:1248974

KEYWORDS

ORGANISM synthetic construct.

REFERENCE 1 (bases 1 to 28)

AUTHORS Wallach,D. and Brakebusch,C.

TITLE Multimers of the soluble forms of TNF receptors, their preparation and pharmaceutical compositions containing them

JOURNAL Patent: EP 0566905-A 2 10-FEB-1993;

VERSION VEDA RESEARCH AND DEVELOPMENT CO. LTD

FEATURES Location/Qualifiers

SOURCE 1. 28 /organism="synthetic construct"

BASE COUNT 8 a 8 c 8 g 4 t

ORIGIN

Query Match 1.1%; Score 28; DB 6; Length 28;

Best Local Similarity 100.0%; **Pred.** No. 1.8e+05;

Matches 28; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION CDNA fragment from patent EP0417563.

ACCESSION A26401

VERSION A26401.1 GI:904957

KEYWORDS

ORGANISM synthetic construct.

REFERENCE 1 (bases 1 to 27)

AUTHORS Brockhaus,M., Dembic,Z., Gentz,R., Lesslauer,W., Loetscher,H. and Schlaeger,E.J.

TITLE TNF-binding proteins

JOURNAL Patent: EP 0417563-A 12 20-MAR-1991;

FEATURES source

SOURCE 1. 27 /organism="synthetic construct"

BASE COUNT 8 a 3 c 11 g 5 t

ORIGIN

Query Match 1.1%; Score 24; DB 6; Length 24;

Best Local Similarity 100.0%; **Pred.** No. 1.2e+05;

Matches 24; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION Sequence 4 from Patent WO9720924.

ACCESSION A63563

VERSION A63563.1 GI:3717218

KEYWORDS

ORGANISM unidentified.

REFERENCE 1 (bases 1 to 28)

AUTHORS Scagliante,B. and Quadrifoglio,F.

TITLE A CLASS OF OLIGONUCLEOTIDES, THERAPEUTICALLY USEFUL AS ANTITUMOURAL

RESULT 4

DEFINITION Oligonucleotide no. 2.

ACCESSION A29671

VERSION A29671.1 GI:1248974

KEYWORDS

ORGANISM synthetic construct.

REFERENCE 1 (bases 1 to 28)

AUTHORS Wallach,D. and Brakebusch,C.

TITLE Multimers of the soluble forms of TNF receptors, their preparation and pharmaceutical compositions containing them

JOURNAL Patent: EP 0566905-A 2 10-FEB-1993;

VERSION VEDA RESEARCH AND DEVELOPMENT CO. LTD

FEATURES Location/Qualifiers

SOURCE 1. 28 /organism="synthetic construct"

BASE COUNT 8 a 8 c 8 g 4 t

ORIGIN

Query Match 1.1%; Score 24; DB 6; Length 24;

Best Local Similarity 100.0%; **Pred.** No. 1.2e+05;

Matches 24; **Conservative** 0; **Mismatches** 0; **Indels** 0; **Gaps** 0;

DEFINITION Sequence 4 from Patent WO9720924.

ACCESSION A63563

VERSION A63563.1 GI:3717218

KEYWORDS

ORGANISM unidentified.

REFERENCE 1 (bases 1 to 28)

AUTHORS Scagliante,B. and Quadrifoglio,F.

TITLE A CLASS OF OLIGONUCLEOTIDES, THERAPEUTICALLY USEFUL AS ANTITUMOURAL

AGENTS
 JOURNAL Patent: WO 9720924-A 4 12-JUN-1997;
 SAIKON S.R.L (IT)
 COMMENT Other publication IT MI952539 19970604
 FEATURES /organism="unidentified"
 source 1..28
 /do_xref="taxon:32644"
 ORIGIN
 BASE COUNT 0 a 0 c 6 g 22 t
 0 a 0 c 6 g 22 t

'Query Match' 1.1%; Score 24; DB 6; Length 28;
 Best Local Similarity 100.0%; Pred. No. 1.2e+06;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 OY 1976 ttttgtttttttttttttttttttttttt 1999
 Db 3 TTTTGTGTTGTTGTTGTTGTT 26

RESULT 7
 A26411/c
 LOCUS A26411
 DEFINITION Oligonucleotide 2 from patent EP0417563.
 ACCESSION A26411
 VERSION A26411.1 GI:904967
 KEYWORDS SOURCE synthetic construct.
 ORGANISM artificial sequence.

REFERENCE 1 (bases 1 to 29)
 AUTHORS Brockhaus, M., Dembic, Z., Gentz, R., Lesslauer, W., Loetscher, H. and Schlaeger, E.J.
 TITLE Non-binding proteins
 JOURNAL P. HOFFMANN LA ROCHE AG
 FEATURES source
 SOURCE /organism="synthetic construct"
 /db_xref="taxon:32630"
 BASE COUNT 5 a 7 c 9 g 8 t
 ORIGIN

Query Match 1.1%; Score 23.8; DB 6; Length 29;
 Best Local Similarity 92.6%; Pred. No. 1.3e+06;
 Matches 25; Conservative 0; Mismatches 2; Indels 0; Gaps 0;

OY 869 ctggggacttaggaccacatcgctgt 895
 Db 29 CTCGAGCTCAGGCCACAGAGCT 3

RESULT 8
 A39497/c
 LOCUS A39497
 DEFINITION Sequence 1 from Patent EP0606869.
 ACCESSION A39497
 VERSION A39497.1 GI:12295815
 KEYWORDS SOURCE unidentified
 ORGANISM unclassified.
 REFERENCE 1 (bases 1 to 23), Wallach, D. and Kemper, O.
 AUTHORS
 TITLE Promotor sequence of the p55 tumor necrosis factor receptor
 JOURNAL Patent: EP 0606869-A 1 20-JUL-1994;
 YEA RES & DEV (IL)
 COMMENT Other publication JP 7046987 95021
 Other publication CA 2113023 940711
 Other publication AU 5307994 940714

FEATURES Other publication ZA 9400129 940819.
 source Location/Qualifiers
 1..23
 /organism="unidentified"
 /db_xref="taxon:32644"
 ORIGIN
 BASE COUNT 5 a 2 c 10 g 6 t
 0 a 6 c 5 g 11 t

Query Match 1.1%; Score 23; DB 6; Length 23;
 Best Local Similarity 100.0%; Pred. No. 1.8e+06;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 OY 122 agtcacaccatcaatgttacc 144
 Db 23 AGTCACACCCTCAATGTACC 1

RESULT 9
 AR096331
 LOCUS AR096331
 DEFINITION Sequence 2 from patent US 6007995.
 ACCESSION AR096331
 VERSION AR096331.1 GI:10025047
 KEYWORDS SOURCE Unknown.
 ORGANISM Unknown.
 REFERENCE 1 (bases 1 to 23)
 AUTHORS Baker, B.F. and Coosert, L.M.
 TITLE Antisense inhibition of TNFRI expression
 JOURNAL Patent: US 6007995-A 2 28-DEC-1999;
 FEATURES source
 SOURCE /organism="unknown"
 BASE COUNT 9 a 8 c 3 g 3 t
 ORIGIN

Query Match 1.1%; Score 23; DB 6; Length 23;
 Best Local Similarity 100.0%; Pred. No. 1.8e+06;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 OY 526 gtttcagaataaccatccgaca 548
 Db 1 GCTTCGAAACCACTCGAGCA 23

RESULT 10
 AR131318
 LOCUS AR131318
 DEFINITION Sequence 18 from patent US 6193972.
 ACCESSION AR131318
 VERSION AR131318.1 GI:14120221
 KEYWORDS SOURCE Unknown.
 ORGANISM Unknown.
 REFERENCE 1 (bases 1 to 27)
 AUTHORS Campbell, R.K., Jamieson, B.A. and Chappel, S.C.
 TITLE Hybrid heterodimeric protein hormone
 JOURNAL Patent: US 6193972-A 18 27-FEB-2001;
 FEATURES source
 SOURCE /organism="unknown"
 BASE COUNT 5 a 6 c 5 g 11 t
 ORIGIN

Query Match 1.1%; Score 23; DB 6; Length 27;
 Best Local Similarity 100.0%; Pred. No. 1.8e+06;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

AUTHORS Oerum, H. and Seeger, C.
TITLE METHOD FOR GENERATING MULTIPLE DOUBLE STRANDED NUCLEIC ACIDS
JOURNAL PATENT: WO 9720068-A 7-05-JUN-1997;
BOEHRINGER MANNHEIM GMBH (DE)
FEATURES Location/Qualifiers
source 1; .30
/organism="unidentified"
/db_xref="taxon:32644"
BASE COUNT 30 a 0 c 0 g 0 t
ORIGIN

Query Match 1.0%; Score 22.6; DB 5; Length 30;
Best Local Similarity 86.2%; Fred. No. 2.2e+06; Gaps 0;
Matches 5; Conservative 0; Mismatches 4; Indels 0;
QY 1966 tttttttgtttttgtttttttttttttttt 1994
Db ||||||| ||||||| ||||||| |||||||
30 TTTTTTTTTTTTTTTTTTTTTTTTTTTT

Search completed: September 19, 2002, 03:02:07
Job time: 11792 sec

GenCore version 4.5
Copyright (c) 1993 - 2000 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on September 19, 2002, 01:03:55 ; Search time 91:01 Seconds

Sequence: (without alignments)
5832.480 Million seq/ updates/sec

Title: US-09-695-451-1
perfect score: 2161
Sequence: 1 cggcccgatgtatcgttgcacc.....tacactaaattcttgcagg 2161
Scoring: identity, NTC
Gapop 10.0 , Gapext 1.0

Searched: 383533 seqs, 122816752 residues

Total number of hits satisfying chosen parameters:

403436

Minimum DB seq length: 0

Maximum DB seq length: 30

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

Issued_Patents_NA:*

- 1: /cgn2_6/podata/2/lna/5A_COMB.seq:*
- 2: /cgn2_6/podata/2/lna/5B_COMB.seq:*
- 3: /cgn2_6/podata/2/lna/6A_COMB.seq:*
- 4: /cgn2_6/podata/2/lna/6B_COMB.seq:*
- 5: /cgn2_6/podata/2/lna/PCRTUS_COMB.seq:*
- 6: /cgn2_6/podata/2/lna/hackfile1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	28	1.3	28	US-09-859-998-261
c 2	28	1.3	28	US-09-859-998-262
c 3	28	1.3	28	US-09-225-928-261
c 4	28	1.3	28	US-09-225-928-262
c 5	25	1.2	25	US-09-19-922-41
c 6	24	1.1	24	US-09-106-038A-4
c 7	23	1.1	23	US-09-106-038A-2
c 8	23	1.1	27	US-09-804-156-18
c 9	23	1.1	27	US-09-910-991-18
c 10	22	1.0	30	US-09-433-505-9
c 11	22	1.0	30	US-09-870-730-9
c 12	22	1.0	30	US-09-083-123-3
c 13	22	1.0	30	US-09-083-123-7
c 14	22	1.0	30	US-09-884-649A-10
c 15	22	1.0	30	US-09-068-747-6
c 16	22	1.0	30	US-09-068-747-11
c 17	22	1.0	30	US-09-863-639A-30
c 18	22	1.0	30	US-09-135-994-4
c 19	21	1.0	25	US-09-113-646A-42
c 20	21	1.0	25	US-09-149-922-42
c 21	21	1.0	29	US-09-244-794A-8
c 22	21	1.0	29	US-09-007-1005-8
c 23	21	1.0	29	US-09-190-8
c 24	21	1.0	29	US-09-244-796-8
c 25	21	1.0	30	US-08-455-627-12
c 26	21	1.0	30	US-08-689-856-12
c 27	21	1.0	30	US-08-787-321-12

ALIGNMENTS

c 28	21.4	1.0	23	2	US-09-637-115-3	Sequence 3, Appl
c 29	21.2	1.0	30	1	US-09-863-495-4	Sequence 4, Appl
c 30	21	1.0	21	4	US-09-804-166-19	Sequence 19, Appl
c 31	21	1.0	21	4	US-09-910-991-19	Sequence 6, Appl
c 32	21	1.0	27	1	US-09-126-016-6	Sequence 5, Appl
c 33	21	1.0	29	3	US-09-910-632-6	Sequence 6, Appl
c 34	21	1.0	29	3	US-09-805-631A-6	Sequence 7, Appl
c 35	20.8	1.0	24	2	US-09-529-190B-7	Sequence 7, Appl
c 36	20.6	1.0	27	1	US-09-208-486-79	Sequence 7, Appl
c 37	20.2	0.9	26	3	US-09-910-632-5	Sequence 5, Appl
c 38	20.2	0.9	26	3	US-09-805-631A-5	Sequence 5, Appl
c 39	20.2	0.9	20	1	US-09-050-319B-7	Sequence 7, Appl
c 40	20	0.9	20	1	US-09-050-319B-16	Sequence 7, Appl
c 41	20	0.9	20	2	US-09-465-982-7	Sequence 7, Appl
c 42	20	0.9	20	2	US-09-465-982-16	Sequence 2, Appl
c 43	20	0.9	20	4	US-09-407-675-2	Sequence 15, Appl
c 44	20	0.9	30	1	US-09-050-319B-15	Sequence 15, Appl

Address: Fish & Richardson, P.C.

Street: 2200 Sand Hill Road, Suite 100

City: Menlo Park

State: CA

Country: US

Zip: 94025

Computer Readable Form:

Medium Type: Diskette

Computer: IBM Compatible

Operating System: Windows95

Software: FASTSEQ for Windows Version 2.0

Current Application Data:

Application Number: US-09-859-998

Filing Date: 21-MAY-1997

Classification: 435

Prior Application Data:

Application Number:

Filing Date:

Attorney/Agent Information:

Name: Field, Bret E.

Registration Number: 37,620

Sequence/DOCKET NUMBER: 09095-002001

Telecommunication Information:

Telephone: 415-322-5070

Telex: 415-854-0875

Information for SEQ ID No: 261:

Sequence Characteristics:

Length: 28 base pairs

Type: nucleic acid

Strandness: single

Topology: linear

Molecule Type: DNA

Feature:

Other Information: oligonucleotide primer

US-09-859-998-261

Query Match

1.38; Score 28; DB 2; Length 28;

Best Local Similarity 100.0%; Pred. No. 1.4e+02; Mismatches 28; Conservative 0; Indels 0; Gaps 0;

Matches 28;

Biblashvili, Robert
TITLE OF INVENTION: METHOD OF ASSAYING DIFFERENTIAL EXPRESSION

NUMBER OF SEQUENCES: 1375

QY 1645 tctaaaggaccgttcgtcgagatcgcctt 1672

Db 1 TCTAAGGACCGTCCTGAGATGCCCTT 28

RESULT 2

US-08-859-998-262/C

Sequence 262, Application US/08859998
Patent No: 5594076

GENERAL INFORMATION:

APPLICANT: Chenchik, Alex

APPENDANT: Biblashvili, Robert

ADDRESS: Fish & Richardson, P.C.

STREET: 2200 Sand Hill Road, Suite 100

CITY: Menlo Park

STATE: CA

COUNTRY: US

ZIP: 94025

COMPUTER READABLE FORM:

MEDIUM TYPE: Diskette

COMPUTER: IBM Compatible

OPERATING SYSTEM: Windows95

SOFTWARE: FASTSEQ for Windows Version 2.0

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/09/225,928

FILING DATE: 05-Jan-1999

CLASSIFICATION: <Unknown>

PRIOR APPLICATION DATA:

APPLICATION NUMBER: 08-859-998

FILING DATE: 21-MAY-1997

ATTORNEY/AGENT INFORMATION:

NAME: Field, Bret E.

REGISTRATION NUMBER: 37,620

TELECOMMUNICATION INFORMATION:

TELEPHONE: 415-322-5070

TELEFAX: 415-854-0875

INFORMATION FOR SEQ ID NO: 261:

SEQUENCE CHARACTERISTICS:

SEQUENCE LENGTH: 28 base pairs

SEQUENCE TYPE: nucleic acid

SEQUENCE STRANDEDNESS: single

SEQUENCE LENGTH: 28 base pairs

SEQUENCE TYPE: nucleic acid

SEQUENCE STRANDEDNESS: single

SEQUENCE TOPOLOGY: linear

SEQUENCE MOLECULE TYPE: DNA

SEQUENCE FEATURE:

OTHER INFORMATION: oligonucleotide primer

SEQUENCE DESCRIPTION: SEQ ID NO: 261:

US-09-225-928-261

Query Match 1.3%; Score 28; DB 2; Length 28;

Best Local Similarity 100.0%; Pred. No. 1.4e+02; Mismatches 0; Indels 0; Gaps 0;

Matches 28; Conservative 0; Indels 0; Gaps 0;

RESULTS 3

US-09-225-928-261

Sequence 262, Application US/09225928

Patent No: 6352829

GENERAL INFORMATION:

APPLICANT: Chenchik, Alex

APPENDANT: Biblashvili, Robert

ADDRESS: Fish & Richardson, P.C.

STREET: 2200 Sand Hill Road, Suite 100

CITY: Menlo Park

STATE: CA

COUNTRY: US

ZIP: 94025

COMPUTER READABLE FORM:

MEDIUM TYPE: Diskette

COMPUTER: IBM Compatible

RESULTS 4

US-09-225-928-262/C

Sequence 262, Application US/09225928

Patent No: 6352829

GENERAL INFORMATION:

APPLICANT: Chenchik, Alex

APPENDANT: Biblashvili, Robert

ADDRESS: Fish & Richardson, P.C.

STREET: 2200 Sand Hill Road, Suite 100

CITY: Menlo Park

STATE: CA

COUNTRY: US

ZIP: 94025

COMPUTER READABLE FORM:

MEDIUM TYPE: Diskette

COMPUTER: IBM Compatible

OPERATING SYSTEM: Windows 95
 SOFTWARE: FASTSEQ for Windows Version 2.0
 CURRENT APPLICATION NUMBER: US/09106038A
 APPLICATION NUMBER: US/09/225,928
 FILING DATE: 05-Jan-1999
 CLASSIFICATION: <unknown>
 ATTORNEY/AGENT INFORMATION:
 NAME: Field, Bret E.
 REGISTRATION NUMBER: 37,620
 REFERENCE/DOCKET NUMBER: 09096/002001
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: 415-322-5070
 FAX: 415-854-0875
 INFORMATION FOR SEQ ID NO: 262:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 28 base pairs
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: DNA
 FEATURE:
 OTHER INFORMATION: oligonucleotide primer
 SEQUENCE DESCRIPTION: SEQ ID NO: 262:
 US-09-225,928-262
 RESULT 5
 Query Match 1.3%; Score 28; DB 4; Length 28;
 Best Local Similarity 100.0%; Pred. No. 1.4e+02;
 Matches 28; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 QY 1864 tgaggacgtatgcctcatggccgtt 1891
 Db 28 TGAGGGACGCTATGCCATGCGGTT 1
 US-09-149-922-41
 RESULT 5
 Sequence 41, Application US/09149922A.
 GENERAL INFORMATION:
 PATENT NO. 6285174
 APPLICANT: Menzel, Rolf
 APPLICANT: Hsing, Weihong
 APPLICANT: Taggart, Pamela
 TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR IDENTIFYING AND MODULATING FILE REFERENCE: 9366-005
 CURRENT APPLICATION NUMBER: US/09/149,922A
 EARLIER APPLICATION NUMBER: 60/064,058
 EARLIER FILING DATE: 1997-11-03
 NUMBER OF SEQ ID NOS: 57
 SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 41
 LENGTH: 25
 TYPE: DNA
 ORGANISM: Artificial Sequence
 FEATURE:
 OTHER INFORMATION: Description of Artificial Sequence: Primer
 US-09-149-922-41
 Query Match 1.2%; Score 25; DB 4; Length 25;
 Best Local Similarity 100.0%; Pred. No. 7.6e+02;
 Matches 25; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 QY 248 tgcctcgactggctctccacgt 272
 Db 1 tgctcgactggctctccacgt 25
 RESULT 6
 Query Match 1.1%; Score 24; DB 3; Len
 Best Local Similarity 100.0%; Pred. No. 1.4e+03;
 Matches 24; Conservative 0; Mismatches 0;
 QY 554 tcagtcgtccaaatgcggaaagg 577
 Db 1 TCAGTCGTCCAAATGCGGAAAG 24
 US-09-106-038A-2
 RESULT 7
 Sequence 2, Application US/09106038A.
 GENERAL INFORMATION:
 PATENT NO. 6007995
 APPLICANT: Brenda F. Baker and Lex M. Cowser
 TITLE OF INVENTION: ANTISENSE MODULATION OF TNFR1
 TITLE OF INVENTION: EXPRESSION
 NUMBER OF SEQUENCES: 91
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: Isis Pharmaceuticals, Inc.
 STREET: 2202 Faraday Avenue
 CITY: Carlsbad
 STATE: CA
 COUNTRY: U.S.A.
 ZIP: 92008
 COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.5 inch disk, 1.44 Mb
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: Windows NT
 SOFTWARE: Microsoft Word 97
 CURRENT APPLICATION DATA:
 ADDRESS: Isis Pharmaceuticals, Inc.
 STREET: 2292 Faraday Avenue
 CITY: Carlsbad
 STATE: CA
 COUNTRY: U.S.A.
 ZIP: 92008
 COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.5 inch disk, 1.44 Mb
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: Windows NT
 SOFTWARE: Microsoft Word 97
 CURRENT APPLICATION DATA:
 ADDRESS: Isis Pharmaceuticals, Inc.
 STREET: 2292 Faraday Avenue
 CITY: Carlsbad
 STATE: CA
 COUNTRY: U.S.A.
 ZIP: 92008
 COMPUTER READABLE FORM:
 MEDIUM TYPE: 3.5 inch disk, 1.44 Mb
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: Windows NT
 SOFTWARE: Microsoft Word 97
 CURRENT APPLICATION DATA:

FILING DATE: June 26, 1998
 CLASSIFICATION: 514
 ATTORNEY/AGENT INFORMATION:
 NAME: Laurel Spear Bernstein
 REGISTRATION NUMBER: 37,280
 REFERENCE/DOCKET NUMBER: RWS-0004
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (760) 931-2200
 TELEFAX: (760) 603-3820
 INFORMATION FOR SEQ ID NO: 2:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 23
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 US-09-10640587-2

RESULT 8
 US-00-804-166-18
 Sequence 18, Application US/08804166
 Patent No. 6,193972
 GENERAL INFORMATION:
 APPLICANT: Campbell, Robert K.
 APPLICANT: Jameson, Bradford A.
 APPLICANT: Chappell, Scott C.
 TITLE OF INVENTION: HYBRID PROTEINS
 NUMBER OF SEQUENCES: 22
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: BROWDY AND NEIMARK
 STREET: 419 Seventh Street N.W., Ste. 300
 CITY: Washington
 STATE: D.C.
 ZIP: 22207
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent Release #1.0, Version #1.30
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/910,991
 FILING DATE: 20 February 1996
 ATTORNEY/AGENT INFORMATION:
 NAME: YUN, Allen C.
 REGISTRATION NUMBER: 37,971
 REFERENCE/DOCKET NUMBER: CAMPBELL-2B
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (202) 628-197
 TELEFAX: (202) 737-3528
 INFORMATION FOR SEQ ID NO: 18:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 27 base Pairs
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA
 US-08-910-991-18

Query Match 1.1%; Score 23; DB 4; Length 27;
 Best Local Similarity 100.0%; Pred. No. 2.6e+03;
 Matches 23; Conservative 0; Mismatches 0;
 Indels 0; Gaps 0;

RESULT 9
 US-08-910-991-18
 Sequence 18, Application US/08910991
 Patent No. 6,194177
 GENERAL INFORMATION:
 APPLICANT: Campbell, Robert K.
 APPLICANT: Jameson, Bradford A.
 APPLICANT: Chappell, Scott C.
 TITLE OF INVENTION: HYBRID PROTEINS
 NUMBER OF SEQUENCES: 22
 CORRESPONDENCE ADDRESS:
 ADDRESSEE: BROWDY AND NEIMARK
 STREET: 419 Seventh Street N.W., Ste. 300
 CITY: Washington
 STATE: D.C.
 ZIP: 22207
 COMPUTER READABLE FORM:
 MEDIUM TYPE: Floppy disk
 COMPUTER: IBM PC compatible
 OPERATING SYSTEM: PC-DOS/MS-DOS
 SOFTWARE: Patent Release #1.0, Version #1.30
 CURRENT APPLICATION DATA:
 APPLICATION NUMBER: US/08/910,991
 FILING DATE: 20 February 1996
 ATTORNEY/AGENT INFORMATION:
 NAME: YUN, Allen C.
 REGISTRATION NUMBER: 37,971
 REFERENCE/DOCKET NUMBER: CAMPBELL-2B
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (202) 628-197
 TELEFAX: (202) 737-3528
 INFORMATION FOR SEQ ID NO: 18:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 27 base Pairs
 TYPE: nucleic acid
 STRANDEDNESS: single
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA
 US-08-910-991-18

Query Match 1.1%; Score 23; DB 4; Length 27;
 Best Local Similarity 100.0%; Pred. No. 2.6e+03;
 Matches 23; Conservative 0; Mismatches 0;
 Indels 0; Gaps 0;

RESULT 10
 US-00-433-505-9/c
 ; Sequence 9, Application US/08433505
 ; Patent No. 5,995935
 ; GENERAL INFORMATION:

APPLICANT: MANDRAND, Bernard

APPLICANT: CROS, Philippe

APPLICANT: DELAIR, Thierry

APPLICANT: CHARLES, Marie-Helene

APPLICANT: EROUT, Marie-No. 569593611E

APPLICANT: PICHOT, Christian

APPLICANT: TONNELIER, Jean-Claude

TITLE OF INVENTION: REAGENT AND METHOD FOR THE DETECTION OF A NUCLEOTIDE SEQUENCE WITH SIGNAL AMPLIFICATION

NUMBER OF SEQUENCES: 11

CORRESPONDENCE ADDRESS:

ADDRESSEE: OLIFF & BERRIDGE

STREET: P. O. Box 19928

CITY: Alexandria

STATE: VA

ZIP: 22320

COMPUTER READABLE FORM:

MEDIUM TYPE: Floppy disk

COMPUTER: IBM PC compatible

OPERATING SYSTEM: PC-DOS/MS-DOS

SOFTWARE: PatentIn Release #1.0, Version #1.30

CURRENT APPLICATION DATA:

APPLICATION NUMBER: US/08/433,505

FILING DATE: 12-MAY-1995

CLASSIFICATION: 435

ATTORNEY/AGENT INFORMATION:

NAME: BERRIDGE, WILLIAM P.

REGISTRATION NUMBER: 30,024

REFERENCE/DOCKET NUMBER: WPB 36349A

TELECOMMUNICATION INFORMATION:

TELEPHONE: 703-836-6400

TELEX/FAX: 703-836-2787

INFORMATION FOR SEQ ID NO: 9:

SEQUENCE CHARACTERISTICS:

SEQUENCE LENGTH: 30 bases

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: DNA

SEQUENCE: US-08-433-505-9

RESULT 12

US-09-083-123-3

Query Match 1.0%; Score 22.6; DB 1; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE:

OTHER INFORMATION: Description of artificial sequence: made by humans

US-08-083-123-3

Query Match 1.0%; Score 22.6; DB 4; Length 30;

Best Local Similarity 86.2%; Pred. No. 3.5e+03;

Matches 25; Conservative 0; Mismatches 4;

Indels 0; Gaps 0;

SEQ ID NO: 3

LENGTH: 30

Thu Sep 19 10:00:57 2002

us-09-695-451-1.rni

Page 7

OM nucleic - nucleic search, using sw model
 Run on September 18, 2002, 23:38:00 ; Search time 2281.52 Seconds
 Sequence: 1 cggcccaagtatgtttaacc.....tacactaaatcttgaagtt 2161
 Scoring method: IDENTITY_NUC GAPOP 10.0 , Gapext 1.0
 Searched: US-09-695-451-1
 Perfect score: 2161
 Post-processing: Minimum Match 0%
 Listing first 45 summaries

Database : EST.*
 1: em_estba:/*
 2: em_esthum:/*
 3: em_estin:/*
 4: em_estmu:/*
 5: em_estov:/*
 6: em_estpl:/*
 7: em_estro:/*
 8: em_htc:/*
 9: gb_estl:/*
 10: gb_est2:/*
 11: gb_htc:/*
 12: gb_gss:/*
 13: em_gss_hum:/*
 14: em_gss_inv:/*
 15: em_gss_pln:/*
 16: em_gss_vrt:/*

Total number of hits satisfying chosen parameters: 28088

Minimum DB seq length: 0
 Maximum DB seq length: 30

Post-processing: Minimum Match 0%
 Listing first 45 summaries

ALIGNMENTS

Result No.	Score	Query Match Length	DB ID	Description
1	24	1.1	26	AZ771474
2	23.6	1.1	30	AZ458127
3	22.8	1.1	28	AZ419708
4	22.6	1.0	29	AZ39566
5	22.6	1.0	29	AZ414283
6	22.6	1.0	29	AZ451930
7	22.6	1.0	29	AZ468402
8	22.6	1.0	29	AZ486793
9	22.6	1.0	29	AZ661709
10	22.6	1.0	29	AZ78420
11	22.6	1.0	29	AZ806470
12	22.6	1.0	29	AZ812242
13	22.6	1.0	29	AZ868731
14	22.6	1.0	29	TA33409Q
15	22.6	1.0	30	HSN03126
16	22.6	1.0	30	BG656435
17	22.6	1.0	30	BG865511

RESULT 1
 AZ771474 LOCUS AZ771474 DEFINITION IM0573108R Mouse 10kb plasmid UGGC1M library Mus musculus genomic
 ACCESSION AZ771474 VERSION AZ771474.1 GI:12893772
 KEYWORDS GSS
 SOURCE house mouse.
 ORGANISM Mus musculus.
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
 REFERENCE 1 (bases 1 to 26)
 Dunn,D., Aoyagi,A., Barber,M., Beacons,T., Duval,B., Hamill,C.,
 Islam,H., Longacre,S., Mahmoud,M., Meenah,E., Pedersen,T., Pederesen,
 M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A.,
 and Wright,D., Weiss,R.
 AUTHORS
 TITLE Mouse whole genome scaffolding with paired end reads from 10kb
 plasmid inserts
 JOURNAL Unpublished (2000)
 COMMENT Contact: Robert B. Weiss
 University of Utah Genome Center
 University of Utah
 Rm. 308, Biomedical Polymers Research Bldg., 20 S. 2030 E., SLC, UT
 84112, USA
 Tel: 801 585 5606
 Fax: 801 585 7177
 Email: ddunningetics.utah.edu
 Insert length: 10000 Std Error: 0.00
 Plate: 053 Row: 1 column: 08
 Seq primer: CACAGGAACAGCTATGACC
 Class: Plasmid ends
 High Quality sequence STOP: 26.
 FEATURES
 /Source
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UGGC1M0573108"
 /clone_lib="Mouse 10kb plasmid UGGC1M library"

Page 2

/lab_host="E. coli strain XL10-Gold, *Ti*-resistant, F-"
 /note="Vector: PWD2nv; Purified genomic DNA from M.
 musculus C57BL/6J (male) was obtained from the Jackson
 Laboratory Mouse DNA Resource
 (<http://wwwjax.org/resources/documents/dnars/>). The DNA
 was hydrodynamically sheared by repeated passage through a
 0.005 inch orifice at constant velocity. The sheared DNA
 was blunt end-repaired with T4 DNA polymerase and T4
 polynucleotide kinase. Adaptor oligonucleotides were
 ligated to the blunt ends in high molar excess. The
 adaptor DNA was purified and size-selected for a 9.5 to
 10.5 kb range using preparative agarose gel
 electrophoresis. Vector DNA was prepared from a derivative
 of PWD4 (g14732114.gbl|AF129072.1), a copy-number
 inducible derivative of plasmid RL. The vector was ligated
 with adaptors complementary to the insert adaptors and
 purified. The sheared, adaptor mouse DNA was annealed to
 adaptor vector DNA, and transformed into
 chemically-competent *E. coli* XL10-Gold (Stratagene) cells
 and selected for ampicillin resistance.

BASE COUNT
ORIGIN
0 a 0 c 1 g 29 t

FEATURES
source
1. .30
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UFGCIM0261124"

RESULT 3
AZ419708
LOCUS AZ419708 28 bp DNA linear GSS 03-OCT-2000
DEFINITION Clone UFGCIM0196A04 R, DNA sequence.
ACCSSION AZ419708
VERSION AZ419708.1 GI:10543817
KEYWORDS GSS
SOURCE house mouse.
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE I (bases 1 to 30)
AUTHORS Dunn,D., Aoyagi,A., Barber,M., Beacorn,T., Duval,B., Hamil,C.,
Islam,H., Longacre,S., Mahmoud,M., Meenen,E., Pedersen,T., Reilly
,M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A.
and Wright,D., Weiss,R.
TITLE Mouse whole genome scaffolding with paired end reads from 10kb
plasmid inserts
Unpublished (2000)
COMMENT Contact: Robert B. Weiss
University of Utah Genome Center
Rm. 308, Biomedical Polymers Research Bldg., 20 S., 2030 E., SLC, UT
84112, USA
Tel: 801 585 5606
Fax: 801 585 7177
Email: ddunn@genetics.utah.edu
Insert length: 10000 Std Error: 0.00
Plate: 0261 Row: I Column: 24
Seq primer: CACACGGAACAGCTATGACC
Class: Plasmid ends
High quality sequence stop: 30.
Location/Qualifiers
1. .30
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UFGCIM0261124"

FEATURES
source
1. .28
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"

RESULT 2
AZ458127
LOCUS AZ458127 30 bp DNA linear GSS 04-OCT-2000
DEFINITION IM0261124R Mouse 10kb plasmid UFGCIM library Mus musculus genomic
clone UFGCIM0261124 R, DNA sequence.
ACCSSION AZ458127.1 GI:10616252
KEYWORDS GSS
SOURCE house mouse.
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE I (bases 1 to 30)
AUTHORS Dunn,D., Aoyagi,A., Barber,M., Beacorn,T., Duval,B., Hamil,C.,
Islam,H., Longacre,S., Mahmoud,M., Meenen,E., Pedersen,T., Reilly
,M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A.
and Wright,D., Weiss,R.
TITLE Mouse whole genome scaffolding with paired end reads from 10kb
plasmid inserts
Unpublished (2000)
COMMENT Contact: Robert B. Weiss
University of Utah Genome Center
Rm. 308, Biomedical Polymers Research Bldg., 20 S., 2030 E., SLC, UT
84112, USA
Tel: 801 585 5606
Fax: 801 585 7177
Email: ddunn@genetics.utah.edu
Insert length: 10000 Std Error: 0.00
Plate: 0261 Row: I Column: 24
Seq primer: CACACGGAACAGCTATGACC
Class: Plasmid ends
High quality sequence stop: 28.
Location/Qualifiers
1. .30
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UFGCIM0261124"

RESULT 1
AZ458127
LOCUS AZ458127 30 bp DNA linear GSS 04-OCT-2000
DEFINITION IM0261124R Mouse 10kb plasmid UFGCIM library Mus musculus genomic
clone UFGCIM0261124 R, DNA sequence.
ACCSSION AZ458127.1 GI:10616252
KEYWORDS GSS
SOURCE house mouse.
ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE I (bases 1 to 30)
AUTHORS Dunn,D., Aoyagi,A., Barber,M., Beacorn,T., Duval,B., Hamil,C.,
Islam,H., Longacre,S., Mahmoud,M., Meenen,E., Pedersen,T., Reilly
,M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A.
and Wright,D., Weiss,R.
TITLE Mouse whole genome scaffolding with paired end reads from 10kb
plasmid inserts
Unpublished (2000)
COMMENT Contact: Robert B. Weiss
University of Utah Genome Center
Rm. 308, Biomedical Polymers Research Bldg., 20 S., 2030 E., SLC, UT
84112, USA
Tel: 801 585 5606
Fax: 801 585 7177
Email: ddunn@genetics.utah.edu
Insert length: 10000 Std Error: 0.00
Plate: 0196 Row: A Column: 04
Seq primer: CACACGGAACAGCTATGACC
Class: Plasmid ends
High quality sequence stop: 28.
Location/Qualifiers
1. .30
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UFGCIM0261124"

FEATURES
source
1. .28
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"

/clone="UUGC1M01956A04"
 /clone_id="Mouse 10kb plasmid UGGC1M library"
 /sex="Male"
 /lab_host="E. coli strain XL10-Gold, λ -resistant, F-"
 /note="Vector: pMD42nv; Purified genomic DNA from M.
 musculus C57BL/6J (male) was obtained from the Jackson
 Laboratory Mouse DNA Resource
 (<http://www.Jax.org/resources/documents/dnarecs/>). The DNA
 was hydrodynamically sheared by repeated passage through a
 0.005 inch orifice at constant velocity. The sheared DNA
 was blunt end-repaired with T4 DNA Polymerase and T4
 polynucleotide kinase. Adaptor oligonucleotides were
 ligated to the blunt ends in high molar excess. The
 adaptored DNA was purified and size-selected for a 9.5 to
 10.5 kb range using preparative agarose gel
 electrophoresis. Vector DNA was prepared from a derivative
 of pMD42 (9114721149b) (Invitrogen AEP2907.1), a copy-number
 inducible derivative of plasmid pRL. The vector was ligated
 with adaptors complementary to the insert adaptors and
 purified. The sheared adaptored mouse DNA was annealed to
 adaptored vector DNA, and transformed into
 chemically competent E. coli XL10-Gold (Stratagene) cells
 and selected for ampicillin resistance."

ORIGIN BASE COUNT Ua Uc 69 42 L

RESULT
4

AZ389566/C
LOCUS A238956 29 bp linear GSS 02-OCT-2000
DEFINITION 1M0150D21F Mouse 10kb plasmid UGGCIM library Mus musculus genomic
ACCESSION clone UGGCIM0150D21 F, DNA sequence.
VERSION A238956
KEYWORDS A238956.1 GI:10503274
GSS.
SOURCE house mouse.
ORGANISM Mus musculus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

REFERENCE 1 (bases 1 to 29) Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

AUTHORS Dunn, D.; Aoyagi, R.; Barber, M.; Beacock, T.; Duvall, B.; Hamil, C.; Islam, H.; Inouye, S.; Mahmood, M.; Maenen, E.; Pedersen, J.; Reilly, V.

M., Rose, M., Rose, R., Stokes, R., Tingey, A., von Niederhausern, A.
and Wright, D. Weier, P.

TITLE Mouse whole genome scaffolding with paired end reads from 10kb
AUTHORS,,,

JOURNAL plasmid inserts
Unpublished (2000)

COMMENT
Contact: Robert B. Weiss
University of Utah Genome Center

University of Utah
Pm 308 Biomedical Research Plaza 30 S 3030 E 8150 8150

TEL: 801 585 5606
FAX: 801 585 7177

Email: ddunn@genetics.utah.edu
Insert Length: 10000 Std Error: 0.00

plate: 0150 row: D column: 21
Seq nr:mar: CCTGGCTTAAAGGACGGCACT

Class: plasmid ends

FEATURES High quality sequence stop: 29.
 Location/Qualifiers

source 1: .29

/strain="C5BL/6J"
 /ab_xref="taxon:0090"
 /clone="UGCIM0188G12"
 /clone_lib="Mouse 10kb plasmid UGGCIM library"
 /sex="Male"
 /lab_host="E. Coli strain XL10-Gold, T1-resistant, F-"
 /note="Vector: PWD42nv; Purified genomic DNA from M. musculus C5BL/6J (male) was obtained from the Jackson Laboratory Mouse DNA Resource (<http://www.Jax.org/resources/documents/dnares/>). The DNA was hydrodynamically sheared by repeated passage through a 0.005 inch orifice at constant velocity. The sheared DNA was blunt end-repaired with T4 DNA polymerase and T4 polynucleotide kinase. Adaptor oligonucleotides were ligated to the blunt ends in high molar excess. The adaptor DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative agarose gel electrophoresis. Vector DNA was prepared from a derivative of pWD2 (g11731141gb|AF29072.1), a copy-number inducible derivative of plasmid R1. The vector was ligated with adaptors complementary to the insert adaptors and purified. The sheared, adaptor mouse DNA was annealed to adaptored vector DNA, and transformed into chemically-competent E. coli XL10-Gold (Stratagene) cells and selected for ampicillin resistance."

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

Query Match 1.0%; Score 22.6; DB 12; Length 29;
 Best Local Similarity 86.2%; Pred. No. 5.9e+06; Indels 0; Gaps 0;
 Matches 25; Conservative 0; Mismatches 4;

Qy 1965 ttttttttttttttttttttttttttttt 1994
 Db 1 TTTTTTTTTTTTTTTTTTTT 29

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

Query Match 1.0%; Score 22.6; DB 12; Length 29;
 Best Local Similarity 86.2%; Pred. No. 5.9e+06; Indels 0; Gaps 0;
 Matches 25; Conservative 0; Mismatches 4;

Qy 1966 ttttttttttttttttttttttttttttt 1994
 Db 1 TTTTTTTTTTTTTTTTTTTT 29

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

/organism="Mus musculus"
 /strain="C5BL/6J"

/ab_xref="taxon:10090"

/clone="UGCIM0251E05"

/clone.lib="Mouse 10kb Plasmid UGGCIM library"

/sex="Male"

/lab_host="E. Coli strain XL10-Gold, T1-resistant, F-"

/note="Vector: PWD42nv; Purified genomic DNA from M.

musculus C5BL/6J (male) was obtained from the Jackson

Laboratory Mouse DNA Resource

(<http://www.Jax.org/resources/documents/dnares/>)

The DNA

was hydrodynamically sheared by repeated passage through a 0.005 inch orifice at constant velocity. The sheared DNA was blunt end-repaired with T4 DNA polymerase and T4 polynucleotide kinase. Adaptor oligonucleotides were ligated to the blunt ends in high molar excess. The adaptor DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative agarose gel electrophoresis. Vector DNA was prepared from a derivative of pWD2 (g11731141gb|AF29072.1), a copy-number inducible derivative of plasmid R1. The vector was ligated with adaptors complementary to the insert adaptors and purified. The sheared, adaptor mouse DNA was annealed to adaptored vector DNA, and transformed into chemically-competent E. coli XL10-Gold (Stratagene) cells and selected for ampicillin resistance."

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

BASE COUNT
 ORIGIN

0 a 0 c 0 g 29 t

source

1. .29

High quality sequence stop: 29.
Location/Qualifiers

Class: plasmid ends
 High quality sequence stop: 29
 Location/Qualifiers

```

"/clone_1.lib" "Mouse 10kb plasmid UGGCIM library"
"/seq="Male"
"/lab_host="E. coli strain XL10-Gold, T1-resistant, F-
"/note="Vector: PWD2mv; Purified genomic DNA from M.
musculus C5BL/6J (male) was obtained from the Jackson
Laboratory Mouse DNA Resource
(http://www.Jax.org/resources/documents/dnares/). The DNA
was hydrodynamically sheared by repeated passage through a
0.05 inch orifice at constant velocity. The sheared DNA
was blunt end-repaired with T4 DNA polymerase and T4*
polynucleotide kinase. Adaptor oligonucleotides were
ligated to the blunt ends in high molar excess. The
adapted DNA was purified and size-selected after a 9.5 to
10.5 kb range using preparative agarose gel
electrophoresis. Vector DNA was prepared from a derivative
of pW42 (http://jgi3.sj2149b/AF129072.1), a copy-number
inducible derivative of plasmid R1. The vector was ligated
with adaptors complementary to the insert adaptors and
purified. The sheared, adapted mouse DNA was annealed to
adapted vector DNA, and transformed into
chemically-competent E. coli XL10-Gold (Stratagene) cells
and selected for ampicillin resistance.

BASE COUNT          0   a   0   c   0   g   29   t
ORIGIN

RESULT 10
AZ784208/c
LOCUS          AZ784208          29 bp      DNA      linear      GSS 16-FEB-2001
DEFINITION    2M0026113R Mouse 10kb plasmid UGGCIM library Mus musculus genomic
              clone UGGC2M0026113 R, DNA sequence.
ACCESSION     AZ784208
VERSION       AZ784208.1  GI:12919703
GSS
KEYWORDS      house mouse.
SOURCE
ORGANISM      Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
( bases 1 to 29)
AUTHORS       Dunn,D., Aoyada,A., Barber,M., Beacorn,T., Duval,B., Hamill,C.,''
Islam,H., Longacre,S., Mahmoud,M., Meenen,E., Pedersen,T., Reilly,
M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A.,
and Wright,D. Weiss,R.
TITLE         Mouse whole genome scaffolding with paired end reads from 10kb
plasmid inserts
Unpublished (2000)
COMMENT
JOURNAL
Contact: Robert B. Weiss
University of Utah Genome Center
University of Utah
Rm. 308, Biomedical Polymers Research Bldg., 20 S. 2030 E., SLC, UT
84112, USA
Tel: 801 585 5606
Fax: 801 585 7177
Email: ddunn@gene.genetics.utah.edu
Insert Length: 10000 Std Error: 0.00
Plate: 0026 Row: I column: 13
Seq primer: CACACAGGAACACGTATACCC

```

BASE COUNT	29	a	0	c	0	t	
ORIGIN							
RESULT	11						
Locus	AZ806470/c						
DEFINITION	AZ806470 Mouse 10kb plasmid USC1M library	29	bP	DNA	linear	GSS	20-FEB-2001
ACCESSION	AZ806470						
VERSION	AZ806470.1						
KEYWORDS	GSS.						
SOURCE	house mouse.						
ORGANISM	Mus musculus						
EUROPEAN TAXONOMY	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Scurograthi; Muridae; Murine; Mus.						
REFERENCE	1 (bases 1 to 29)						
AUTHORS	Dunn, D., Aoyagi, A., Barber, M., Beacorn, T., Duval, B., Hamil, C., Islam, H., Longacre, S., Mahmoud, M., Meenem, E., Pedersen, T., Reilly, M., Rose, M., Rose, R., Stokes, R., Tingey, A., von Nedderhausern, A., and Wright, D., Weiss, R.						
TITLE	Mouse whole genome scaffolding with paired end reads from 10kb plasmid inserts						
JOURNAL	Unpublished (2000)						
COMMENT	Contact: Robert B. Weiss University of Utah Genome Center University of Utah Rm. 308, Biomedical Polymers Research Bldg., 20 S. 2030 E., SLC, UT 84112, USA Tel: 801 585 5606 Fax: 801 585 7177 Email: dduong@genetics.utah.edu Insert Length: 10000 Std Error: 0.00 Plate: 0068 Row: I Column: 02						

Seq primer: CACACAGGAACAGCTATGACC
 Class: Plasmid ends
 High quality sequence stop: 29.

FEATURES

source

1. 29
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UUGC2M0068J02"
 /clone_id="Mouse 10kb plasmid UUGC1M library"
 /sex="Male"
 /lab_host="E. coli strain XL10-Gold, T1-resistant, F-"
 /note="Vector: PWD4Inv; Purified genomic DNA from M. musculus C57BL/6J (male) was obtained from the Jackson Laboratory Mouse DNA Resource (<http://www.Jax.org/resources/documents/dnarep/>). The DNA was hydrodynamically sheared by repeated passage through a 0.005 inch orifice at constant velocity. The sheared DNA was blunt end-repaired with T4 DNA polymerase and T4 polynucleotide kinase. Adaptor oligonucleotides were ligated to the blunt ends in high molar excess. The adaptor DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative agarose gel electrophoresis. Vector DNA was prepared from a derivative of pMD42 (gi|4732114|gb|AF129072.1), a copy-number inducible derivative of plasmid R1. The vector was ligated with adaptor complementary to the insert adaptors and purified. The sheared, adaptor mouse DNA was annealed to adaptor vector DNA, and transformed into chemically-competent E. coli XL10-Gold (Stratagene) cells and selected for ampicillin resistance."

BASE COUNT

ORIGIN

29 a 0 c 0 g 0 t

Plate: 0078 row: J column: 15
 Seq primer: CACACAGGAACAGCTATGACC
 Class: plasmid ends
 High quality sequence stop: 29.

FEATURES

source

1. 29
 /organism="Mus musculus"
 /strain="C57BL/6J"
 /db_xref="taxon:10090"
 /clone="UUGC2M0078J15"
 /clone_id="Mouse 10kb plasmid UUGC1M library"
 /sex="Male"
 /lab_host="E. coli strain XL10-Gold, T1-resistant, F-"
 /note="Vector: PWD4Inv; Purified genomic DNA from M. musculus C57BL/6J (male) was obtained from the Jackson Laboratory Mouse DNA Resource (<http://www.Jax.org/resources/documents/dnarep/>). The DNA was hydrodynamically sheared by repeated passage through a 0.005 inch orifice at constant velocity. The sheared DNA was blunt end-repaired with T4 DNA polymerase and T4 polynucleotide kinase. Adaptor oligonucleotides were ligated to the blunt ends in high molar excess. The adaptor DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative agarose gel electrophoresis. Vector DNA was prepared from a derivative of pMD42 (gi|4732114|gb|AF129072.1), a copy-number inducible derivative of plasmid R1. The vector was ligated with adaptors complementary to the insert adaptors and purified. The sheared, adaptor mouse DNA was annealed to adaptor vector DNA, and transformed into chemically-competent E. coli XL10-Gold (Stratagene) cells and selected for ampicillin resistance."

BASE COUNT

ORIGIN

29 a 0 c 0 g 0 t

RESULT 12
 A281224/c
 LOCUS A2812242 29 bp DNA linear GSS 20-FEB-2001
 DEFINITION clone UGCC2M0078J15 R, DNA sequence.
 ACCESSION A2812242
 VERSION A281224.1 GI:12991296
 KEYWORDS GSS,
 SOURCE house mouse.
 ORGANISM Mus musculus.

Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

REFERENCE 1 (bases 1 to 29)
 AUTHORS Dunn,D., Aoyagi,A., Barber,M., Beacorn,T., Duval,B., Hamil,C., Islam,H., Longacre,S., Mahmoud,M., Meenen,E., Pedersen,T., Reilly,M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A. and Wright,D., Weiss,R.

TITLE Mouse whole genome scaffolding with paired end reads from 10kb plasmid inserts

JOURNAL Unpublished (2000)

COMMENT Contact: Robert B. Weiss
 University of Utah Genome Center
 University of Utah, Biomedical Polymers Research Bldg., 20 S. 2030 E., SLC, UT 84120, USA
 Tel: 801 585 5606
 Fax: 801 585 7177
 Email: dunn@genetics.utah.edu
 Insert Length: 10000 Std Error: 0.00

RESULT 13
 A2868731/c
 LOCUS A2868731 29 bp DNA linear GSS 21-FEB-2001
 DEFINITION clone UGCC2M0180L02 R, DNA sequence.
 ACCESSION A2868731
 VERSION A2868731.1 GI:13072338
 KEYWORDS GSS,
 SOURCE house mouse.
 ORGANISM Mus musculus.

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

REFERENCE 1 (bases 1 to 29)
 AUTHORS Dunn,D., Aoyagi,A., Barber,M., Beacorn,T., Duval,B., Hamil,C., Islam,H., Longacre,S., Mahmoud,M., Meenen,E., Pedersen,T., Reilly,M., Rose,M., Rose,R., Stokes,R., Tingey,A., von Niederhausern,A. and Wright,D., Weiss,R.

TITLE Mouse whole genome scaffolding with paired end reads from 10kb plasmid inserts

JOURNAL Unpublished (2000)

COMMENT Contact: Robert B. Weiss
 University of Utah Genome Center
 University of Utah, Biomedical Polymers Research Bldg., 20 S. 2030 E., SLC, UT 84120, USA
 Tel: 801 585 5606
 Fax: 801 585 7177
 Email: dunn@genetics.utah.edu

Insert Length: 10000 Std Error: 0.00
 Plate: 0180 Row: L Column: 02
 Seq Primer: CACAGGAAACAGCTAIGAC
 Class: Plasmid ends
 High-quality sequence stop: 29

FEATURES

SOURCE

1..29

/organism="Mus musculus"

/strain="C57BL/6J"

/ab_xref="taxon:10090"

/clone="UUGCG2M0180L02"

/sex="Male"

/lab_host="E. coli strain X110-Gold, T1-resistant, F+

/note="Vector: pMD2uv; Purified genomic DNA from M.

musculus C57BL/6J (male) was obtained from the Jackson

Laboratory Mouse DNA Resource

(http://www.jax.org/resources/documents/dnares/).

The DNA

was hydrodynamically sheared by repeated passage through a

0.005 inch orifice at constant velocity.

The sheared DNA

was blunt end-repaired with T DNA polymerase and T4

polynucleotide kinase. Adaptor oligonucleotides were

ligated to the blunt ends in high molar excess. The

adapted DNA was purified and size-selected for a 9.5 to

10.5 kb range using preparative agarose gel

electrophoresis.

Vector DNA was prepared from a derivative

of pMD2 (gll472119gb1AF12072.1), a copy-number

inducible derivative of plasmid R1. The vector was ligated

with adaptors complementary to the insert adaptors and

purified. The sheared, adapted mouse DNA was annealed to

adapted vector DNA, and transformed into

chemically-competent E. coli X110-Gold ("Stratagene") cells

and selected for ampicillin resistance.

"stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and

selected

for

ampicillin

resistance.

"Stratagene"

cells

and</

Thu Sep 19 10:00:58 2002

us-09-695-451-1.rst

Page 9

Search completed: September 19, 2002, 01:56:34
Job time: 8314 sec

XX WPI; 1999-480840/41.

XX DR

XX New insoluble proteins, and fragments, that bind to tumor necrosis factor, used to treat e.g. septic shock or cerebral malaria

XX Example 8; Page 12; 25pp; German.

XX This invention describes novel homogeneous insoluble proteins (I), their (in)soluble fragments (Ia) and their salts that can bind tumour necrosis factor (TNF). The products of the invention have anti-inflammatory and antimalarial activity. (I) and (Ia) are used (i) to treat diseases in which TNF is involved (e.g. septic shock, autoimmune glomerulonephritis, cerebral malaria, immune responses and inflammation), (ii) to identify TNF (iii) to determine of TNF in body fluids. Antibodies raised against (I) are used for affinity purification of (I). This sequence represents a probe used in the method of the invention.

XX Sequence 27 BP; 8 A; 3 C; 11 G; 5 T; 0 other;

Query Match						
Best Local Similarity 1.2%; Score 27; DB 20; Length 27;						
Matches 27; Conservative 0; Mismatches 0; Indels 0; Gaps 0;						
QY	364	aggagagaagagatagtgtgtcc	390			
Db	1	aggagagaagagatagtgtgtcc	27			

XX RESULT 2

Query Match						
Best Local Similarity 1.00%; Score 27; DB 20; Length 27;						
Matches 27; Conservative 0; Mismatches 0; Indels 0; Gaps 0;						
QY	364	aggagagaagagatagtgtgtcc	390			
Db	1	aggagagaagagatagtgtgtcc	27			

XX DE Human 55 kd TNFBP probe DNA.

XX AAH48867 standard; DNA; 27 BP.

XX AC AAH48867;

XX DT 12-NOV-2001 (first entry)

XX KW TNF; tumor necrosis factor binding protein; TNFBP; treatment; insoluble protein; antiinflammatory; immunosuppressive; antibacterial; antiprotozoal; treatment; meningoococcal sepsis; cerebral malaria; autoimmune glomerulonephritis; probe; ss. Homo sapiens.

XX OS Homo sapiens.

XX PN EP1132471-A2.

XX PD 12-SEP-2001.

XX PF 31-AUG-1990; 2001BP-0108117.

XX PR 17-SEP-1989; 83CH-0003319.

PR 08-MAR-1990; 90CH-0000745.

PR 20-APR-1990; 90CH-0001347.

PR 31-AUG-1990; 90BP-0116707.

PR 31-AUG-1990; 99BP-0100703.

XX PA (HOFFMANN LA ROCHE & CO AG F.

XX PT Brockhaus M, Dembic Z, Gentz R, Lesslauer W, Loetscher H;

PT Schlaeger E;

XX WPI; 2001-559312/63.

XX New homogeneous, insoluble proteins that bind tumor necrosis factor (TNF), useful for treating TNF-mediated disorders, e.g. inflammation

XX Example 8; Page 13; 26pp; German.

XX This invention describes novel insoluble proteins (I), also their

CC (in)soluble fragments and pharmaceutically acceptable salts, able to bind tumor necrosis factor (TNF) and in homogeneous form. The products of the invention have antiinflammatory, antibacterial, antiprotozoal activity. (I), and related recombinant proteins, are used to treat diseases mediated by TNF, e.g. shock in cases of meningococcal sepsis; development of autoimmune glomerulonephritis and cerebral malaria. Also (I), or antibodies specific for them, are used for diagnostic determination of TNF in body fluids, for affinity purification of TNF and for identifying (antagonists of TNF. This sequence represents a probe used in the detection of the human 55 kd TNFBP described in the method of the invention.

CC Sequence 27 BP; 8 A; 3 C; 11 G; 5 T; 0 other;

Query Match						
Best Local Similarity 1.2%; Score 27; DB 22; Length 27;						
Matches 27; Conservative 0; Mismatches 0; Indels 0; Gaps 0;						
QY	364	aggagagaagagatagtgtgtcc	390			
Db	1	aggagagaagagatagtgtgtcc	27			

CC RESULT 3

Query Match						
Best Local Similarity 1.00%; Score 27; DB 22; Length 27;						
Matches 27; Conservative 0; Mismatches 0; Indels 0; Gaps 0;						
QY	364	aggagagaagagatagtgtgtcc	390			
Db	1	aggagagaagagatagtgtgtcc	27			

CC DE AAX58185 standard; DNA; 25 BP.

CC ID AAX58185

CC XX AAX58185;

CC AC AAX58185;

CC DT 21-JUL-1999 (first entry)

CC KW Primer for Cadc-fusion protein construction.

CC PN WO923116-A1.

CC PD 14-MAY-1999.

CC PF 03-NOV-1998; 98WO-US23307.

CC PR 09-SEP-1998; 98US-0149922.

CC PR 01-NOV-1997; 97US-0064058.

CC PA (SMALL-) SMALL MOLECULE THERAPEUTICS INC.

CC PI Hsing W, Menzel R, Taggart PA;

CC DR WPI; 1999-313305/26.

CC PT New Cadc-fusion polypeptide nucleic acid constructs

CC PS Example; Page 83; 123pp; English.

CC XX This sequence represents a PCR primer used in the construction of a Cadc-fusion polypeptide.

CC The invention relates to Cadc-fusion polypeptide nucleic acid constructs, which are used to transform cells to produce systems for identifying compounds which modulate interactions between protein sequences. The Cadc-fusion polypeptides comprise a periplasmic domain, a transmembrane domain and a Cadc transcriptional regulatory domain. Cells transformed with nucleic acid encoding the fusion proteins and a Cadc reporter construct can be used for identifying compounds which modulate a specific protein-protein interaction such as modulation of interactions between protein sequences involved in receptor interactions, e.g. dimerisation. Such methods can be used for identifying ligands for orphan receptors. The system is extremely sensitive in that background is low and the

CC magnitude of signal background is quite robust, such that even minor modulations in protein-protein interactions are readily detectable.

CC

XX

SQ

Sequence

25

BP;

2

A;

9

C;

7

G;

7

T;

0

other;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

XX
 XX
 DE Probe for clone encoding 30kD TNF inhibitor.
 KW Tumour necrosis factor; inhibitor; ss.
 XX
 OS Synthesis
 PN AU9058976-A.
 PD 24-JAN-1991.
 XX
 PR 16-JUL-1990; 90AU-0058976.
 XX
 PR 07-SEP-1990; 90US-0479651.
 PR 18-JUL-1989; 89US-0381000.
 PR 11-DEC-1989; 89US-0450329.
 PA (SYNE-) SYNERGEN INC.
 XX
 DR WPI; 1991-073847/11.
 XX
 PT Tumour necrosis factor inhibitor - for suppression of TNF-alpha
 and ;beta, useful as therapeutic agent.
 XX
 PS Disclosure; Page 53; 142pp; English.
 XX
 CC The sequence corresponds to bases 671-694 of AAQ10878. It was used to
 isolate clones contg. the sequence for the 30 kD TNF inhibitor from
 a human genomic library. The whole gene can be inserted into
 expression vectors for prepn. of TNF inhibitor for use in the
 treatment of inflammatory and degenerative diseases.
 See also AAQ11256-Q11267.
 XX
 SO Sequence 24 BP; 4 A; 8 C; 7 G; 5 T; 0 other;
 XX
 Query Match 1.1%; Score 24; DB 12; Length 24;
 Best Local Similarity 100.0%; Pred. No. 2.3e+04; Indels 0; Gaps 0;
 Matches 24; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
 Qy 460 tacaatgactgtccaggcgggg 483
 ||||| ||||| ||||| |||||
 Db 24 TACATGACTGTCCAGGCCGGG 1
 RESULT 8
 AAC83958/C AAC83958 standard; DNA; 24 BP.
 XX
 AC AAC83958;
 DT 02-MAR-2001; (first entry)
 XX
 DE Human 30 kDa TNF inhibitor probe #6.
 KW TNF inhibitor; antiinflammatory; Tumour Necrosis Factor; interleukin;
 IL-1; inflammatory disease; degenerative disease; human; probe; ss.
 XX
 OS Homo sapiens.
 PN US6143866-A.
 XX
 PD 07-NOV-2000.
 XX
 PR 19-JAN-1995; 95US-0375242.
 XX
 PR 19-JUL-1990; 90US-0555274.
 PR 09-JUL-1993; 93US-0090355.
 PR 18-JUL-1989; 89US-0381080.
 PR 11-DEC-1989; 89US-0450329.
 PR 07-FEB-1990; 90US-0479651.
 PA (AMGE-) AMGEN INC.
 XX
 PI Squires C, King MW, Hale KK, Brever MT, Thompson RC;
 PI Vanderslice RW, Vannice J, Kohno T;
 XX
 DR WPI; 2001-006443/01.
 XX
 PT Novel 30 kDa tumor necrosis factor inhibitor analog comprising a
 non-native cysteine residue cross-linked with polyethylene glycol,
 useful for treating inflammatory and degenerative diseases mediated by
 TNF
 XX
 PS Example 6; Column 28; 82pp; English.
 XX
 CC The present invention relates to Tumour Necrosis Factor (TNF) inhibitors

(see AAB37676 and AAB37685), which have TNF inhibitory activity. The novel TNF inhibitors of the present invention are useful as therapeutic agents for inhibiting the activity of TNF and interleukin (IL-1), and for treating inflammatory and degenerative diseases mediated by TNF. The present sequence is a probe for the coding sequence for 30 kDa TNF inhibitor (AAC83945 and AAB37676). The 30 kDa TNF inhibitor can inhibit TNF 94%.

Sequence 24 BP; 4 A; 8 C; 7 G; 5 T; 0 other;

Query Match 9
Best Local Similarity 1.1%; Score 24; DB 22; Length 24;
Matches 24; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
OY 4601-AAGAAGGACTGTCGAGGGCGGG 483

Db 24 TACAAATGACCTCCAGCCCCGGG.1

RESULT 9
AAT9313
ID AAT9313 standard; DNA; 28 BP.

XX
AC AAT9313;
XX
XX
DT 24-FEB-1998 (first entry)

DE Antitumoural phosphodiester oligonucleotide 3 with cytotoxic activity.
XX Phosphodiester; selective binding; cell viability; growth;
KW tumoural cell line; cytotoxic activity; tumour cell; lymphoma;
KW lymphoblastic tumour; ss.
XX
OS Synthetic.

XX
FH Key location/qualifiers
FT modified_base 1..28
FT /note= "phosphodiester oligonucleotide"
XX
PN WO9720924-A1.
XX
PD 12-JUN-1997.
XX
PF 04-DEC-1996; 96W0-EP05388.
XX
PR 04-DEC-1995; 95IT-0M12539.
XX
PA (SAIC-) SAICOM SRU.
XX
PI Quadrifoglio F, Scaggiante B;
XX
DR WPI; 1997-319771/29.

XX New phosphodiesteric oligo:nucleotide(s) - which exert a specific
PT and selective cytotoxic effect on tumour cells, for treating both
solid and liquid tumours
XX
Claim 10; Page 5; 38pp; English.

XX Novel phosphodiesteric oligonucleotides AAT93811-27 are based on the
generic formula, in the 3'-5' or 5'-3' direction:
(*Gata'*,^a-*Gbtb'*,^b-*Gctc'*,^c-*Gdtd'*,^d-*Gene'**e*',^e-*GtfF'*,^f'-
(*G-gtg'*,^g',^{N'}, where:
N' = T or G, equal or different from each other;
x = 0-8, equal or different from each other;
a,^a',^b,^b',^c,^c',^d,^d',^e,^e',^f,^f', and *g*',^g' = 0-10, equal or different from each other;
a',^a',^b',^b',^c',^c',^d',^d',^e',^e',^f', and *g*',^g' = 0-30, equal or different from each other;
each other;
CC the oligonucleotides are believed to selectively bind and sequester

CC some proteins which are essential to the viability and growth of
CC tumoural cell line. They have specific and selective cytotoxic activity
CC against tumour cells, and can be used for treating tumours of the liquid
CC type, in particular of lymphoblastic origin, and of solid type, in a
CC particular lymphomas. The present phosphodiester oligonucleotide, at a
CC concentration of 15 micromolar, reduced growth of CCRF-CEM tumoural
CC cells by 78%, which is detectable 48 hours after administration.

Sequence 28 BP; 0 A; 0 C; 6 G; 22 T; 0 other;

Query Match 10
AAT09169/C
ID AAT09169 standard; DNA; 29 BP.
XX
AC AAT09169;
XX
DT 18-OCT-1999 (first entry)

DE Human 55kDa tumour necrosis factor binding protein PCR primer 2.
XX Tumour necrosis factor binding protein; TNF; insoluble protein; agonist;
KW anti-inflammatory; antimalarial; treatment; septic shock; inflammation;
KW autoimmune glomerulonephritis; cerebral malaria; immune response;
KW antagonist; diagnosis; PCR primer; ss.
XX
OS Synthetic.
OS Homo sapiens.
XX
PN EP939121-A2.
XX
PD 01-SEP-1999.
XX
PR 31-AUG-1990; 90EP-0116707.
XX
PR 20-APR-1990; 90CH-0001347.
PR 12-SEP-1989; 89CH-0003319.
PR 08-MAR-1990; 90CH-0000746.
XX
(Hoffmann La Roche & Co AG F.
XX
PI Brockhaus M, Dembic Z, Gentz R, Lesslauer W, Loetscher H;
PI Schlaeger E;
XX
DR WPI; 1999-480840/41.
XX
PT New insoluble proteins, and fragments, that bind to tumor necrosis
PT factor, used to treat e.g. septic shock or cerebral malaria
XX
PS Example 11; Page 16; 25pp; German.

XX
CC This invention describes novel homogeneous insoluble Proteins (I),
CC their (In)soluble fragments (Ia) and their salts that can bind tumour
CC necrosis factor (TNF). The products of the invention have
CC anti-inflammatory and antimalarial activity. (I) and (Ia) are used (1)
CC to treat diseases in which TNF is involved (e.g. septic shock, autoimmune
CC glomerulonephritis, cerebral malaria, immune responses and inflammation),
CC (11) to purify TNF, (11) to identify TNF antagonists and (IV) for
CC diagnostic determination of TNF in body fluids. Antibodies raised against
CC (I) are used for affinity purification of (I). This sequence represents
CC a PCR primer used in the amplification of the TNF binding protein of the
CC invention.

Sequence 29 BP; 5 A; 7 C; 9 G; 8 T; 0 other;

OS Synthetic.
 XX
 PN EP60869-A.
 XX
 PD
 XX
 PF 10-JAN-1994; 94EP-0100243.
 XX
 PR 10-JAN-1993; 93IL-0104355.
 XX
 PA (YEDA) YEDA RES & DEV CO LTD.
 XX
 PT Kemper O, Wallach D;
 XX
 PT WPI; 1994-226810/28.
 XX
 DR
 PT Promoter sequence of the p55 TNF receptor - is used to diagnose mutations in the promoter region which contribute to pathology of diseases.
 XX
 PS Disclosure; Column 3; 14pp; English.
 XX
 CC this sequence represents a probe for the isolation and sequencing of the 5' flanking region of the p55 tumour necrosis factor receptor gene. This isolated fragment was found to have promoter activity shown by its ability to drive expression of the CAT reporter gene in both human HeLa cells and mouse A9 cells. Deletion constructs of this clone showed that promoter activity was confined to a 150 bp BglII-EcoRI fragment which included most of the transcription start point. Further analysis showed that a minimal promoter of 70 bp still exhibited activity. S1 nuclease digestion analysis of the RNA of the HeLa and U 937 cells with DNA probes indicated multiple start sites of transcription. It was found that the promoter sequence resembles promoters of house-keeping genes, e.g. hypoxanthine phosphoribosyl-transferase, EGF receptor, NGF receptor or the p55 IL-1 receptor. It is devoid of a TATA box and of a CCAAT motif and is relatively rich in G/C in its 3' end. There is an even higher content of G/C residues in the proximally located, 5' end of the first intron. This region is also rich in the dinucleotide couple Cpg, which may allow for differentiation-related changes in the promoter activity as a function of the extent of methylation of these nucleotides.
 XX
 SQ Sequence 23 BP; 5 A; 2 C; 10 G; 6 T; 0 other;

Query Match 1.1%; Score 23; DB 15; Length 23;
 Best Local Similarity 100.0%; Pred. No. 3.9e+04; Mismatches 0; Indels 0; Gaps 0;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 122 agtctcaacctcaactgtcacc 144
 |||||H|||||H|||||H|||
 Db 23 AGTCTCACCCCACTGTACCC 1

RESULT 14
 AAQ69119/C
 ID AAQ69119 standard; DNA; 23 BP.
 XX
 AC AAQ69119;
 XX
 DT 23-FEB-1995 (first entry)

DE p55 TNF-R gene 5' flanking sequence primer 3.

XX
 KW 5' flanking region; p55 tumour necrosis factor receptor; TNF-R; promoter; CAT reporter gene; human; HeLa cell; mouse; A9 cell; transcription start point; S1 nuclease digestion; U 937 cell; probe; multiple start sites of transcription; house-keeping gene; promoter; transcription start point; S1 nuclease digestion; house-keeping gene; probe; hypoxanthine phosphoribosyltransferase; EGF receptor; NGF receptor; p55 IL-1 receptor; TATA box; CCAAT motif; methylation; ss.

XX
 OS Synthetic.
 XX

PN EP60869-A.
 XX
 PD 20-JUL-1994.
 XX
 PF 10-JAN-1994; 94EP-0100243.
 XX
 PR 10-JAN-1993; 93IL-0104355.
 XX
 PA (YEDA) YEDA RES & DEV CO LTD.
 XX
 PT Kemper O, Wallach D;
 XX
 PT WPI; 1994-226810/28.
 XX
 DR
 PT Promoter sequence of the p55 TNF receptor - is used to diagnose mutations in the promoter region which contribute to pathology of diseases.
 XX
 PS Disclosure; Column 8; 14pp; English.
 XX
 CC This sequence is a primer which was used in the determination of the p55 multiple transcription start sites of the 5' flanking region of the p55 tumour necrosis factor receptor (TNF-R) gene. This isolated fragment was found to have promoter activity, shown by its ability to drive expression of the CAT reporter gene in both human HeLa cells and mouse A9 cells. Deletion constructs of this clone showed that promoter activity was confined to a 150 bp BglII-EcoRI fragment which included most of the transcription start point. Further analysis showed that a minimal promoter of 70 bp still exhibited activity. S1 nuclease digestion analysis of the RNA of the HeLa and U 937 cells with DNA probes indicated multiple start sites of transcription. It was found that the promoter sequence resembles promoters of house-keeping genes, e.g. hypoxanthine phosphoribosyl-transferase, EGF receptor, NGF receptor or the p55 IL-1 receptor. It is devoid of a TATA box and of a CCAAT motif and is relatively rich in G/C residues in the proximally located, 5' end of the first intron. This region is also rich in the dinucleotide couple Cpg, which may allow for differentiation-related changes in the promoter activity as a function of the extent of methylation of these nucleotides.
 XX
 SQ Sequence 23 BP; 5 A; 2 C; 10 G; 6 T; 0 other;

Query Match 1.1%; Score 23; DB 15; Length 23;
 Best Local Similarity 100.0%; Pred. No. 3.9e+04; Mismatches 0; Indels 0; Gaps 0;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 122 agtctcaacctcaactgtcacc 144
 |||||H|||||H|||||H|||
 Db 23 AGTCTCACCCCACTGTACCC 1

RESULT 15
 AAZ48476
 ID AAZ48476 standard; DNA; 23 BP.
 XX
 AC AAZ48476;
 XX
 DT 31-MAR-2000 (first entry)

DE Human TNFR1 DNA amplifying forward primer.
 XX
 KW Tumour necrosis factor receptor type 1; TNFR1; antisense; infection; inflammation; tumour formation; TNFR1; anticancer; PCR primer; ss.
 XX
 OS Homo sapiens.
 XX
 PN US607995-A.
 XX
 PD 28-DEC-1999.
 XX
 PF 26-JUN-1998; 98US-0106038.

PR
XX
PA
(ISIS-) ISIS PHARM INC.
XX
PI
Baker BF; Cowser LM;
XX
DR
WPI: 2000-19333/09.

PT | Antisense inhibition of tumor necrosis factor type 1 expression for
PT diagnosis, treatment and prevention of disease, particularly tumors
XX

PS Example 14; column 28; 34pp; English.

XX
CC
The invention provides antisense compounds targeted to human tumour
neostatin receptor type 1 (TNFR1) RNA. These antisense compounds
can be used in a method of inhibiting the expression of TNFR1 human cells
or tissues. The antisense compounds specifically hybridize with one or
more nucleic acids encoding TNFR1 modulating the function of nucleic
acid molecules encoding TNFR1, ultimately modulating the amount of TNFR1
produced. The antisense compounds and method are useful as research
reagents and diagnostics, and in the treatment and prophylaxis of
infection, inflammation or tumour formation. The present sequence
represents a primer for amplifying the human TNFR1 DNA.
XX

Sequence 23 BP; 9 A; 8 C; 3 G; 3 T; 0 other;

SQ
Query Match 1.1%; Score 23; DB 21; Length 23;
Best Local Similarity 100.0%; Pkd. No. 3.9e+04;
Matches 23; Consecutive 0; Mismatches 0; Indels 0; Gaps 0;
OY 526 gcttcagaaaaccacctcagaca 548
|||||
Db 1 gcttcagaaaaccacctcagaca 23

|||
Search completed: September 19, 2002, 04:11:46
Job time: 10401 sec