TTK4150 Nonlinear Control Systems Lecture 5

Stability analysis for autonomous system

continued

Previous lecture:

Lyapunov's direct method:

- Lyapunov functions a generalization of energy functions
- Lyapunov's theorems for
 - stability
 - local and global asymptotic stability
 - local and global exponential stability
- How to apply Lyapunov's direct method

Introduction

Outline I

- Previous lecture
- Today's goals
- Literature
- 2 The Invariance Principle
 - Invariant sets
 - LaSalle's theorem
 - Prove asymptotic stability when $\dot{V} \leq 0$
 - Estimate Region of attraction
 - Convergence to other invariant sets
- Methods for choosing Lyapunov function candidates
 - Variable gradient method
 - Lyapunov functions for linear systems
- 4 How to handle terms with indeterminate sign
 - Tools for dominating cross-terms

Outline II

After this lecture you should...

- Know La Salle's theorem, and how to use this
 - $\dot{V} \leq 0$ asymptotic stability of equilibrium points
 - Regions of attraction find an estimate
 - Convergence to other invariant sets than equilibrium points
- Know some methods for finding Lyapunov function candidates (LFCs)

Today's lecture is based on

Khalil Section 4.1 p. 120-122

Sections 4.2-4.3

Section 8.2

Part I

La Salle's theorem

Let x(t) be a solution of $\dot{x} = f(x)$ $f: \mathbb{D} \to \mathbb{R}^n$

Positive limit point

A point p is a positive limit point of x(t) iff

$$\exists$$
 sequence $\{t_n\}$ in \mathbb{R}_+ with $t_n \stackrel{n \to \infty}{\longrightarrow} \infty$

such that

$$x(t_n) \xrightarrow{n \to \infty} p$$

Positive limit set

The positive limit set of x(t) is:

The set of all positive limit points of x(t)

Lemma 4.1

If a solution x(t) is <u>bounded</u> and belongs to $\mathbb D$ for $t\geq 0$, then its positive limit set L^+ is a <u>nonempty, compact, invariant set</u>. Moreover, x(t) approaches L^+ as $t\to\infty$.

Invariant sets cont.

Definition (Invariant set)

A set *M* is an invariant set with respect to $\dot{x} = f(x)$ iff

$$x(0) \in M \Rightarrow x(t) \in M, \quad \forall t \in \mathbb{R}$$

Definition (Positively invariant set)

A set M is a positively invariant set with respect to $\dot{x} = f(x)$ iff

$$x(0) \in M \Rightarrow x(t) \in M, \quad \forall t \ge 0$$

 $\dot{x} = f(x)$ $f: \mathbb{D} \to \mathbb{R}^n$ locally Lipschitz

Theorem 4.4 (LaSalle's theorem)

If $\exists V : \mathbb{D} \to \mathbb{R}$ such that

- i) V is C^1
- ii) $\exists c > 0$ such that $\Omega_c = \{x \in \mathbb{R}^n | V(x) \le c\} \subset \mathbb{D}$ is bounded
- iii) $\dot{V}(x) \leq 0 \quad \forall \ x \in \Omega_c$

Let
$$E = \{x \in \Omega_c | \dot{V}(x) = 0\}$$

Let M be the largest invariant set contained in E Then

$$x(0) \in \Omega_c \Rightarrow x(t) \stackrel{t \to \infty}{\longrightarrow} M$$

Note: *V* does not have to be positive definite

- V positive definite $\Rightarrow \Omega_c$ bounded for small c
- V radially unbounded $\Rightarrow \Omega_c$ bounded for $\forall c$

Special cases:

- Cor. 4.1 $(M = \{0\})$
- Cor. 4.2 (Global version)

Applications of La Salle's theorem:

- $\dot{V} \leq 0$ Prove asymptotic stability of equilibrium points
- Regions of attraction find an estimate
- Convergence to other invariant sets than equilibrium points

Example: $\dot{V} \leq 0$ Prove asymptotic stability of eq.point

$$\ddot{x} + b(\dot{x}) + c(x) = 0$$

$$b, c \quad C^{0}$$

$$b(0) = c(0) = 0$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -b(x_{2}) - c(x_{1})$$

$$b, c \quad C^{0}$$

$$x_{1} = c(0) = 0$$

$$x_{1} = c(x_{1}) > 0 \quad x_{1} \neq 0 \quad x_{1} \in (-a_{1}, a_{1})$$

$$x_{2}b(x_{2}) > 0 \quad x_{2} \neq 0 \quad x_{2} \in (-a_{2}, a_{2})$$

Analyze the stability properties of x = 0 using Lyapunov theory.

Pendulum with friction, x =angle, $\dot{x} =$ angle velocity

$$c(x_1) = \frac{g}{l}\sin x_1 \qquad a_1 = \pi$$

$$b(x_2) = \frac{k}{m}x_2 \qquad a_2 \to \infty$$

Mass-spring-damper x = position, $\dot{x} = velocity$

$$c(x_1)$$
 = spring force (kx_1)

$$b(x_2)$$
 = damping force (dx_2)

$$x = \text{charge}, \dot{x} = \text{current}$$

$$c(x_1)$$
 = Capacitor voltage $(\frac{1}{C}x_1)$

$$b(x_2)$$
 = Resistor voltage (Rx_2)

Example cont.

Region of attraction

Definition (The Region of attraction)

Let $\phi(t,x_0)$ be the solution of $\dot{x}=f(x)$ that starts at initial state x_0 at time t=0. The region of attraction of the origin, denoted by R_A , is defined by

$$R_A = \{x_0 \in \mathbb{D} | \phi(t, x_0) \text{ is defined } \forall \ t \geq 0 \text{ and } \phi(t, x_0) \to 0 \text{ as } t \to \infty \}$$

Is \mathbb{D} an estimate of R_A ?

Given a strict Lyapunov function

Is \mathbb{D} a region attraction?

Example:

Pendulum with friction

$$V(x) = \frac{g}{l}(1 - \cos x_1) + \frac{1}{2}x^T P x$$

$$\mathbb{D} = \{ x \in \mathbb{R}^2 : |x_1| < \pi \}$$

Estimate the region of attraction

Starting point:

You have proved asymptotic stability of the origin by either finding a strict Lyapunov function or by using LaSalle's theorem

Estimate R_A using Ω_C

1) Choose the largest set

$$\Omega_c = \{ x \in \mathbb{R}^n : \ V(x) \le c \}$$

that is contained in $\mathbb D$ (where V>0 and $\dot V<0$) or in which $\dot V\leq 0$ (LaSalle) and which is bounded

2) Choose the connected component in this set that contains the origin.

Then this is a subset of the region of attraction of the origin, and can hence be used as an estimate.

Example: An estimate of the region of attraction

(Do not always trust your intuition)

Example

$$\dot{z}_1 = -z_1 + z_1^2 z_2$$

$$\dot{z}_2 = -z_2$$

Equilibrium point (0,0)

Lyapunov linearization method: Locally asymptotically stable Corollary 4.3: Locally exponentially stable

Q: Is it globally asymptotically/exponentially stable?
Intuition may suggest yes...

Example cont.

For this particular system it is possible to find an analytical solution:

$$z_1(t) = \frac{2z_1(t_0)}{z_1(t_0)z_2(t_0)e^{-t} + [2 - z_1(t_0)z_2(t_0)]e^t}$$
(1)

$$z_2(t) = z_2(t_0)e^{-t} (2)$$

If $z_1(t_0)z_2(t_0) > 2$, the denominator in Eq. (1) becomes zero at the time

$$t_{esc} = \frac{1}{2} \ln \left(\frac{z_1(t_0) z_2(t_0)}{z_1(t_0) z_2(t_0) - 2} \right)$$

The equilibrium point is clearly not globally asymptotically stable. It is locally exponentially stable and the region of attraction is given by $z_1(t_0)z_2(t_0) < 2$.

Example: Region of attraction

Convergence to other invariant sets

Example

Consider the system

$$\dot{x}_1 = x_2 - x_1^7 (x_1^4 + 2x_2^2 - 10)$$

$$\dot{x}_2 = -x_1^3 - 3x_2^5 (x_1^4 + 2x_2^2 - 10)$$

Investigate the stability properties of the invariant set

$$Q = \{x \in \mathbb{R}^2 | x_1^4 + 2x_2^2 - 10 = 0\}$$

using

$$V(x) = \left(x_1^4 + 2x_2^2 - 10\right)^2$$

Part II

Methods for choosing Lyapunov function candidates

Methods for choosing Lyapunov function candidates •

Methods for choosing LFCs

- Total energy
- LFCs with quadratic terms $\frac{1}{2}x^TPx$

•
$$V(x) = \frac{1}{2}(x_1^2 + x_2^2 + \dots + x_n^2)$$

•
$$V(x) = \frac{1}{2}(x_1^2 + a_2x_2^2 + \dots + a_nx_n^2)$$

$$V(x) = \frac{1}{2}x^T P x$$

•
$$V(x) = \frac{1}{2} \ln(1 + x_1^2 + \dots + x_n^2)$$

- The variable gradient method
- LFCs for linear time-invariant systems
- Krasovskii's method (Assignment)
- •

Variable gradient method

Variable gradient method

$$\dot{V} = \frac{dV}{dx}f(x) = g^T(x)f(x)$$
 Choose $g(x)$ such that

$$g(x) \text{ is the gradient of a scalar function}$$

$$V(x) = \int_0^x g^T(y) dy \text{ is positive definite}$$

$$\dot{V}(x) = g^T(x) f(x) \text{ is negative definite}$$

$$\Leftrightarrow \frac{\partial g_i}{\partial x_j} = \frac{\partial g_j}{\partial x_i} \quad \forall i, j = 1, \dots, n$$

$$V(x) = \int_0^x \sum_{i=1}^n g_i(y) dy_i = \int_0^{x_1} g_1(y_1, 0, 0, \dots, 0) dy_1$$

$$+ \int_0^{x_2} g_2(x_1, y_2, 0, \dots, 0) dy_2 + \dots + \int_0^{x_n} g_n(x_1, x_2, \dots, y_n) dy_n > 0$$

0

Pendulum with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Find a LFC for this system using the variable gradient method.

$$\begin{split} \frac{\partial g_1(x)}{\partial x_2} &= \frac{\partial g_2(x)}{\partial x_1} \\ V(x) &= \int_0^{x_1} g_1(y_1, 0) dy_1 + \int_0^{x_2} g_2(x_1, y_2) dy_2 \\ \dot{V} &= \left[g_1(x) \quad g_2(x) \right] \left[\begin{array}{c} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{array} \right] \end{split}$$

Pendulum with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1 - \frac{k}{m}x_2$$

Choose a structure for g(x) (Trial and error)

$$g_1(x) = a_{11}(x)x_1 + a_{12}(x)x_2$$

$$g_2(x) = a_{21}(x)x_1 + a_{22}(x)x_2$$

i.e.
$$g(x) = P(x)x$$

LTI systems

The linear time-invariant system

$$\dot{x} = Ax \qquad (\det A \neq 0)$$

has one equilibrium point x = 0

Hurwitz

A is Hurwitz iff

$$\mathsf{Re}(\lambda_i) < 0 \quad \forall i = 1, \dots, n$$

LFC

Which Lyapunov function candidate do we choose?

Theorem 4.6

Given the system $\dot{x} = Ax$

Let $V(x) = x^T P x$ and choose $Q = Q^T$ positive definite. Seek to find a solution $P = P^T$ of Lyapunov's matrix equation

$$A^T P + PA = -Q (3)$$

- If (3) does not have a solution $P = P^T$, or the solution is not unique: x = 0 is not asymptotically stable
- If (3) has a unique solution $P = P^T$, but P is not positive definite: x = 0 is not asymptotically stable
- If (3) has a unique solution $P = P^T$, and P is positive definite: x = 0 is asymptotically stable

Example

Consider the system

$$\dot{x}_1 = -x_1$$

$$\dot{x}_2 = 3x_1 - x_2$$

Analyze the stability properties of x=0 using Lyapunov's direct method

Part III

How to handle terms with indeterminate sign

Handling terms with indeterminate sign

Terms with indeterminate sign

We have seen examples on how to

- Cancel
 - Adjust a_i in $V(x) = \frac{1}{2}(x_1^2 + a_2x_2^2 + \cdots + a_nx_n^2)$ such that cross-terms x_ix_j in V cancel each other
 - Adjust all the parameters in P such that $V(x) = x^T P x > 0$ $(P = P^T > 0)$ and $\dot{V} < 0$
- Dominate
 - Completion of squares
 - Write as $-x^TQx$
 - Young's inequality
 - Cauchy-Schwarz inequality

Completion of squares

$$(x \pm y)^{2} \ge 0, \quad x, y \in \mathbb{R}$$

$$\updownarrow$$

$$x^{2} \pm 2xy + y^{2} \ge 0$$

$$\updownarrow$$

$$x^{2} + y^{2} \ge \pm 2xy$$

$$\Rightarrow xy \le |xy| \le \frac{1}{2}(x^{2} + y^{2}) \quad \Rightarrow x_{1}x_{2} \le \frac{1}{2}(x_{1}^{2} + x_{2}^{2}) = \frac{1}{2} ||x||_{2}^{2}$$

Young's inequality $(x, y \in \mathbb{R})$

$$xy \le \varepsilon x^2 + \frac{1}{4\varepsilon}y^2, \quad \forall \ \varepsilon > 0$$

Proof:

$$\varepsilon(x - \frac{1}{2\varepsilon}y)^2 \ge 0$$

$$\varepsilon(x^2 - \frac{1}{\varepsilon}xy + \frac{1}{4\varepsilon^2}y^2) \ge 0$$

$$\varepsilon(x^2 - xy + \frac{1}{4\varepsilon}y^2) \ge 0$$

Alternatively

Write \dot{V} as $-x^TQx$, where $Q=Q^T$ is positive definite

NB This is similar to completing the squares

Completion of squares

$$\dot{V} = -x_1^2 + 6x_1x_2 - 20x_2^2$$

Cauchy-Schwarz inequality

$$|a_1x_1 + a_2x_2 + \cdots + a_nx_n| \le \sqrt{(a_1^2 + a_2^2 + \cdots + a_n^2)} ||x||_2$$

Example (See page 319)

$$|x_1 - 2x_2| \le |x_1 - 2x_2| \le \sqrt{1^2 + (-2)^2} ||x||_2 = \sqrt{5} ||x||_2$$

Next lecture

- Lyapunov stability analysis for nonautonomous systems
- Recommended reading
 Khalil Sections 4.4-4.5
 Section 8.3