PycWB Tutorial

∨ 0. Install dependencies

!pip install -q condacolab
import condacolab
condacolab.install()

!mamba install -c conda-forge -y -q healpix_cxx=3.81 root=6.26.10 cmake pkg-config !mamba install -c conda-forge -y -q nds2-client python-nds2-client

✓ Install pycwb package

!git clone https://github.com/PycWB/pycwb.git
fatal: destination path 'pycwb' already exists and is not an empty directory.

!cd pycwb && git reset --hard dld26df && pip install .

Successfully installed Mako-1.3.3 PyJWT-2.8.0 PycWB-0.18.5. dev2+gdld2bdf alohttp-3.9.5 alosignal-1.3.1 astropy-5.0.1 astropy-iers-data-0.2024.

WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is reconstituted by the property of th

Install deps for modules

1. Run your first example

First, we download the example user parameter file

```
user_parameters = """
analysis: "2G"
cfg_search: "r"
optim: False
###### network configuration ######
ifo: ["L1", "H1"]
refIFO: "L1"
inRate: 16384
# lags
lagSize: 1
lagStep: 1.
lagOff: 0
lagMax: 0
# superlags
slagSize: 0 \ \# \ number \ of \ super \ lags \ (simulation=1) \ - \ if \ slagSize=0 \ -> \ Standard \ Segments
slagMin: 0
slagMax: 0
slagOff: 0
# job
segLen: 1200
segMLS: 600
segTHR: 200
segEdge: 10
# frequency
fLow: 16.
fHigh: 1024.
1eve1R: 3
// std (sthr = 2)
wdmXTalk: "wdmXTalk/OverlapCatalog16-1024.bin"
healpix: 7
###### cWB production thresholds & regulators ######
bpp: 0.001
subnet: 0.5
subcut: 0.0
netRHO: 5.5
# cedRHO: 5.0
netCC: 0.5
Acore: 1.7
Tgap: 0.2
Fgap: 128.0
delta: 0.5
cfg_gamma: -1.0
LOUD: 300
pattern: 5
iwindow: 30
nSky: 196608
# simulation
# simulation: None
nfactor: 1
with open('user_parameters.yaml', 'w') as fp:
       fp.write(user_parameters)
```



```
import pycwb
from pycwb.config import Config
from pycwb.modules.logger import logger_init

if not os.environ.get('HOME_WAT_FILTERS'):
    pyburst_path = os.path.dirname(os.path.abspath(pycwb.__file__))
    os.environ['HOME_WAT_FILTERS'] = f"{os.path.abspath(pyburst_path)}/vendor"

logger_init()

config = Config('./user_parameters.yaml')

24-04-24 12:56:56 - logger_init - INFO - Logging initialized
24-04-24 12:56:56 - logger_init - INFO - Logging level: INFO
24-04-24 12:56:56 - logger_init - INFO - Logging file: None
24-04-24 12:56:56 - check_MRA_catalog - INFO - Checking_MRA catalog
24-04-24 12:56:56 - load_MRA - INFO - Loading_catalog_of_WDM_cross-talk_coefficients: /usr/local/lib/python3.10/site-packages/pycwb/vendor/wdmXTa
```

generate injected data for each detector with given parameters in config

```
from pycwb.modules.read_data import read_from_catalog, read_from_online
from gwpy.timeseries import TimeSeries
import requests
from gwosc.locate import get_urls
t0 = 1242459857.5
data = []
for ifo in config.ifo:
   url = get_urls(ifo, t0, t0)[-1]
   print('Downloading: ' , url)
   fn = os.path.basename(url)
   with open(fn,'wb') as strainfile:
           straindata = requests.get(url)
           strainfile.write(straindata.content)
   strain = TimeSeries.read(fn,format='hdf5.gwosc')
   d = strain. crop(t0-150, t0+150)
   d_resampled = d.resample(2048)
   data.append(d_resampled)
```

apply data conditioning to the data

```
from pycwb.modules.data_conditioning import data_conditioning
from pycwb.modules.plot import plot_spectrogram

strains, nRMS = data_conditioning(config, data)

# plot the spectrogram for L1
plt = plot_spectrogram(strains[0], gwpy_plot=True)
ax = plt.gca()
ax.set_ylim(15,1024)

strains, nRMS
```


calculate coherence

from pycwb. modules. coherence import coherence

```
# calculate coherence
```

fragment_clusters = coherence(config, strains, nRMS)

```
max energy in units of noise variance: 8.19392
thresholds in units of noise variance: Eo=8.47861 Emax=16.9572
live time in zero lag: 280
lag | clusters | pixels
 0 |
           4
                   29
Coherence time for single level: 14.322297 \ensuremath{\text{s}}
24-04-24 12:52:37 - _coherence_single_res - INFO - level : 8
                                                                             layers : 256
                                                                                                                     dt(ms): 125.000000
                                                               rate(hz): 8
                                                                                             df (hz) : 4,000000
\max energy in units of noise variance: 8.71556
thresholds in units of noise variance: Eo=8.49242 {\tt Emax=16.9848}
live time in zero lag: 280
lag | clusters | pixels
           5
                   151
Coherence time for single level: 14.193154 \text{ s}
24-04-24 12:52:38 - _coherence_single_res - INFO - level : 7
                                                                                                                     dt(ms): 62.500000
                                                               rate(hz) : 16 layers : 128
                                                                                              df(hz): 8.000000
max energy in units of noise variance: 9.11623
thresholds in units of noise variance: Eo=8.55191 Emax=17.1038
live time in zero lag: 280
lag | clusters | pixels
0 | 10 | 177
Coherence time for single level: 14.687993 \ensuremath{\text{s}}
24\mbox{-}04\mbox{-}24 12:52:45 - _coherence_single_res - INFO - level : 6
                                                               rate(hz): 32 layers: 64
                                                                                              df (hz) : 16.000000
                                                                                                                     dt(ms): 31.250000
max energy in units of noise variance: 10.1297
thresholds in units of noise variance: Eo=8.7107 Emax=17.4214
live time in zero lag: 280
lag | clusters | pixels
       11
                 138
Coherence time for single level: 8.517567 s
24-04-24 12:52:45 - _coherence_single_res - INFO - level : 5
                                                               rate(hz): 64 layers: 32
                                                                                              df(hz): 32,000000
                                                                                                                     dt(ms): 15,625000
max energy in units of noise variance: 12.1488
thresholds in units of noise variance: Eo=8.99028 Emax=17.9806
live time in zero lag: 280
lag | clusters | pixels
 0
          18
                 184
Coherence time for single level: 7.973651 s
df (hz) : 64.000000
                                                                                                                     dt(ms) : 7.812500
max energy in units of noise variance: 14.4034
```

```
U
                     U. UUUUU
                                    U. UUUUU
                       ifoL1
                                      ifoH1
           1ag
                     0.00000
                                    0,00000
            0
           lag
                       ifoL1
                                      ifoH1
                     0.00000
                                    0.00000
            0
           lag
                       ifoL1
                                     ifoH1
                     0.00000
            0
                                    0.00000
                        ifoL1
                                      ifoH1
           1ag
                      0.00000
                                    0.00000
                        ifoL1
                                      ifoH1
           lag
                      0.00000
                                    0.00000
                       ifoL1
                                      ifoH1
           lag
                      0.00000
                                    0,00000
# # %matplotlib inline
Ħ
  from gwpy.spectrogram import Spectrogram
#
   for fragment_cluster in fragment_clusters:
       for cluster in fragment_cluster.clusters:
π
               merged_map, start, dt, df = cluster.get_sparse_map("likelihood")
               plt = Spectrogram(merged\_map, \quad t0=start, \quad dt=dt, \quad f0=0, \quad df=df).plot()
#
π
               plt.colorbar()
supercluster
from \quad pycwb.\ modules.\ super\_cluster \quad import \quad supercluster
from pycwb.types.network import Network
network = Network(config, strains, nRMS)
pwc_list = supercluster(config, network, fragment_clusters, strains)
     24-04-24 12:52:47 - set_time_shift - INFO - lag step: 1.0
      24-04-24 12:52:47 - set_time_shift - INFO - number of time lags: 1
     24-04-24 12:52:48 - sparse_table_from_fragment_clusters - INFO - -
     24-04-24\ 12:52:48\ -\ sparse\_table\_from\_fragment\_clusters\ -\ INFO\ -\ Sparse\ series\ time:\ 1.77\ s
     24-04-24 12:52:48 - sparse_table_from_fragment_clusters - INFO - -
     24-04-24 12:52:51 - supercluster - INFO - -> Processing lag=0 ... 24-04-24 12:52:51 - supercluster - INFO -
     24-04-24 12:52:51 - supercluster - INFO - coher clusters|pixels
                                                                                      75 | 1006
     24-04-24 12:52:51 - supercluster - INFO -
                                                    super clusters pixels
                                                                                       6 486
     24-04-24 12:52:51 - supercluster - INFO - defrag clusters|pixels
                                                                                       6 486
      24-04-24 12:52:51 - supercluster - INFO -
                                                  subnet clusters pixels
                                                                                       1 | 381
     24-04-24 12:52:51 - supercluster - INFO - Supercluster done
     24-04-24 12:52:51 - supercluster - INFO - total clusters|pixels|frac :
                                                                                  1 | 381 | 1. 000000
     24-04-24 12:52:52 - supercluster - INFO - -
      24-04-24 12:52:52 - supercluster - INFO - Supercluster time: 5.83 s
     24-04-24 12:52:52 - supercluster - INFO -
          lag
                       ifoL1
                                     ifoH1
            0
                      0.00000
                                    0.00000
%matplotlib inline
from gwpy.spectrogram import Spectrogram
for cluster in pwc_list[0].clusters:
        merged_map, start, dt, df = cluster.get_sparse_map("likelihood")
        plt = Spectrogram(merged_map, t0=start, dt=dt, f0=0, df=df).plot()
        nlt.colorbar()
```


Likelihood

 ${\tt mchirp_2g : 1\ 1\ 3.78e+01\ 2.480\ 149.961\ 0.000\ 0.965}$

from pycwb.modules.likelihood import likelihood

plot statistics

```
%matplotlib inline
from pycwb.modules.plot import plot_event_on_spectrogram
plt = plot_event_on_spectrogram(strains[0], events)
plt.show()
```

1.4

1.5

0

0.6

```
%matplotlib inline
from gwpy.spectrogram import Spectrogram
for cluster in clusters:
        merged_map, start, dt, df = cluster.get_sparse_map("likelihood")
        plt = Spectrogram(merged_map, t0=start, dt=dt, f0=0, df=df).plot()
        plt.colorbar()
                                                                                                    - 50
         350
         300
                                                                                                    40
      Frequency [Hz] 250 200 150
                                                                                                    - 30
                                                                                                    - 20
         100
                                                                                                    10
          50
```

Time [seconds] from 1980-01-06 00:02:29 UTC (149.0)

%matplotlib inline
from gwpy.spectrogram import Spectrogram

for cluster in clusters:
 merged_map, start, dt, df = cluster.get_sparse_map("null")

 plt = Spectrogram(merged_map, t0=start, dt=dt, f0=0, df=df).plot()
 plt.colorbar()

