实证 Stata 代码命令汇总

作者: 马克数据网

官网: www.macrodatas.cn

更新时间: 2023.12

目录

实证 Stata 代	码命令汇总 1.0	.1
	导入和管理	
(1)	数据导入	.3
(2)	数据导出	.3
二、数据	的处理	.4
(1)	生成新变量	.4
(2)	格式转换	.4
	缺失数据	
	异常数据	
	重命名变量	
	编码分类变量	
(7)	设定面板数据	.5
(8)	数据合并	.5
(9)	33 VI C 7 F	
	性统计	
	基本统计	
	变量的详细统计	
	变量的频率表	
	变量间的相关性	
	回归分析及其描述性统计	
	简单统计	
	性分析	
	绘制直方图	
	绘制散点图	
	矩阵散点图	
	相关图	
	回归拟合图	
	相关系数	
	相关系数矩阵	
	模型	
	单变量分析	
(2)	0LS 回归	8.

	(3) 分位数回归	8
	(4) Probit 模型	8
	(5) Logit 模型	9
	(6) Tobit 模型	9
六、	、内生性解决	9
	(1) 工具变量法	9
	(2) 固定效应模型	9
	(3) 随机效应模型	10
	(4) 系统 GMM 模型	10
	(5) DID 模型	10
	(6) PSM 模型	10
	(7) 滞后期模型	12
七、	、检验分析	13
	(1)豪斯曼检验	13
	(2) Heckman 两阶段检验	13
	(3) 调节效应检验	13
		13
八、	、结果导出	15
	(1) 导出描述性统计	15
	(2) 导出相关系数	
	(3) 导出回归结果	15

一、数据导入和管理

- * 清除内存中的所有现有数据 clear
- *设置工作路径(根据你的文件位置进行调整) cd "C:\马克数据网\实证代码命令大全 202311 版'"

(1) 数据导入

- * 从 Excel 文件导入数据 import excel "example.xlsx", firstrow
- * 从 CSV 文件导入数据 import delimited "example.csv", delimiter(",")
- * 从 Stata 文件 (.dta 格式) 导入数据 use "example.dta", clear
- * 检查导入的数据 describe list in 1/5

(2) 数据导出

- * 导出数据到 Excel 文件 export excel using "exported_data.xlsx", firstrow(variables)
- * 导出数据到 CSV 文件 export delimited using "exported_data.csv", delimiter(",")
- * 保存为 Stata 格式的数据文件 save "exported_data.dta", replace

二、数据的处理

(1) 生成新变量

```
gen new_var = var1 * var2
gen new_var = ln(var)
```

(2) 格式转换

```
* 将字符串日期转换为 Stata 日期
gen date_var = date(date_string, "DMY")
* 年份生成
gen year=real(substr("统计日期",1,4))
* 字符转为数字格式
destring year, replace
```

(3) 缺失数据

```
* 如果变量 var1 和 var2 的任何行存在缺失值,则删除该行drop if missing(var1) | missing(var2)
* 或者通过循环删除变量缺失的数据
foreach i in 变量 1 变量 2 变量 3 {
    drop if `i'==.
}
```

(4) 异常数据

```
* 将 var2 中不合理的负值设为 0
replace var2 = 0 if var2 < 0
* 缩尾处理
winsor2 last_income, replace cuts(0 99) //缩尾代替
winsor2 last_income, replace cuts(0 99) trim //缩尾删除
```

(5) 重命名变量

rename var3 new_var3

(6) 编码分类变量

* 将字符串变量 gender 转换为数字 encode gender, gen(gender_code) * 生成行业虚拟变量, 为了避免共线性, 删掉 indul tab Industry, gen(indu) drop indul tab year, gen(time) drop timel

(7) 设定面板数据

* 假设 id 和 year 是面板数据的两个维度 xtset id year

(8) 数据合并

* 根据 id、year 合并另一个数据集"raw_data.data" merge 1:1 id year using raw_data

(9) 数据追加

* 追加另一个数据集 "extra_data.dta" append using extra_data

三、描述性统计

(1) 基本统计

summarize //或者 sum

(2) 变量的详细统计

summarize income, detail

(3) 变量的频率表

tabulate gender

(4) 变量间的相关性

correlate income education

(5) 回归分析及其描述性统计

regress income education age estat summarize

(6) 简单统计

tabstat y x1 x2 x3, stat(max min mean p50 sd n)

四、相关性分析

(1) 绘制直方图

histogram income

(2) 绘制散点图

scatter income education

(3) 矩阵散点图

graph matrix var1 var2 var3

(4) 相关图

pwcorr var1 var2 var3, sig star(0.05) matrix(corr_matrix)
matrix plot corr_matrix

(5) 回归拟合图

twoway (scatter varl var2) (1fit varl var2)

(6) 相关系数

法 1: pwcorr varname pwcorr varname, sig //看相关性是否显著

法2: pwcorr_a varname

其中 pwcorr 是命令, varname 是分析变量, pwcorr 命令需要下载。 使用 pwcorr_a 可以输出带*的相关性系数,*表示显著性水平,需要安装

(7) 相关系数矩阵

graph matrix price wei len

五、实证模型

(1) 单变量分析

用途:分析单个变量的基本统计特性,如均值、中位数、方差等,以获取对数据的基本理解。

例子: 在研究家庭收入时,单变量分析可以用来计算整个样本的平均家庭收入。

* 安装 ttable3 命令:解释变量虚拟形式为 01 虚拟变量形式 logout, save (单变量分析) word replace:ttable3 被解释变量, by (解释变量 虚拟形式) f(%8.4f) notitle

(2) OLS 回归

用途:分析一个或多个自变量如何线性影响因变量。

例子: 研究教育水平(自变量)如何影响个人收入(因变量)

reg y x x1 x2 x3

*导出结果

reg 被解释变量 解释变量 控制变量 1 控制变量 2 i.year i.industry est store reg1

esttab regl using 主变量回归结果.rtf,replace nogap ar2 b(%6.4f) t(%6.4f) star(* 0.1 ** 0.05 *** 0.01)

(3) 分位数回归

用途:分析自变量对因变量不同分位数的影响,提供比 OLS 更全面的视角。例子:研究培训项目(自变量)对员工工资(因变量)在不同工资水平(如中位数、上四分位数)的影响。

*分位数为 0.1 0.25 0.5 0.75 0.9,可根据研究问题自行调整 sqreg y x1 x2 x3,q(.1.25.5.75.9)

(4) Probit 模型

用途:分析自变量如何影响二元因变量的概率(发生与不发生),基于正态分布。例子:分析个人的某些特征(如年龄、教育水平)如何影响其是否选择退休(二元因变量:退休/不退休)

* y 为虚拟变量 01 probit y x x1 x2 x3

(5) Logit 模型

用途:与 Probit 模型类似,但基于逻辑分布,用于分析自变量对二元因变量的影响。

例子:研究信用评分(自变量)如何影响个人获得贷款的概率(二元因变量:批准/未批准)。

* y 为虚拟变量 01 logit y x x1 x2 x3

(6) Tobit 模型

用途:处理因变量受限的情况(如有下限或上限),常见于存在截断或下限数据。例子:研究广告支出(自变量)如何影响产品销售(因变量),当部分产品销售为零(即数据被截断于零)时。

xttobit y x x1 x2 x3, 11(0) nolog tobit

六、内生性解决

(1) 工具变量法

用途:用于解决内生性问题,即当解释变量和误差项相关时。工具变量是与因变量无关但与内生解释变量相关的变量。

例子:研究教育对收入的影响时,教育年数可能与个人能力相关(内生性)。使用某些与个人能力无关但影响教育年数的变量(如地区教育政策)作为工具变量。

*两阶段最小二乘法: y 是被解释变量, x1 x2 是内生变量, z1 z2 是工具变量, w 是控制变量

ivregress 2s1s y w (x1 x2 c.x1#c.x2 = z1 z2 c.z1#c.z2)

(2) 固定效应模型

用途:用于控制不随时间变化但可能影响因变量的未观测变量。

例子:分析公司政策对员工生产力的影响,固定效应模型可以控制每个公司的特定特征(如公司文化)。

* 设为面板数据

xtset id year

* 固定效应模型

xtreg v x x1 x2 x3, fe

(3) 随机效应模型

用途: 当个体效应(如个体、公司)被认为是随机且与其他解释变量无关时使用。例子: 在分析多个国家的经济增长数据时,每个国家的特定效应可能被视为随机。

* 随机效应模型 xtreg y x x1 x2 x3,re est store reg2

* 导出回归结果

xtreg 被解释变量 var1 var2 var3 i.year i.industry, fe est store reg2 esttab reg1 reg2 using 回归结果.rtf, replace b(%6.4f) t(%6.

esttab regl reg2 using 回归结果.rtf,replace b(%6.4f) t(%6.4f) nogap ar2 star(* 0.1 ** 0.05 *** 0.01)

(4) 系统 GMM 模型

用途:用于处理动态面板数据模型中的同时方程偏差和未观测变量偏差。例子:研究企业投资行为对其未来收益的影响时,系统 GMM 可以有效控制内生性问题。

xtabond2 y L. y x x1 x2 x3, iv(x1 x2 x3) gmm(L. y L. (x), lag(1 2) c) robust twostep

(5) DID 模型

用途:评估某项政策或事件对处理组和对照组之间影响的差异。 例子:评估"宽带中国"政策对受影响城市(处理组)和未受影响城市(对照组)创新水平的影响。

*post 为实验组,若是则取值为 1,否则为 0;after 为是否政策实施前后变量,若政策前则取值为 0,若政策后,取值为 1。c. post#c. after 为交乘项,根据 ID 进行聚类

xtreg 被解释变量 c.post#c.after 控制变量,fe cluster(id) est store ml

esttab m1 using DID 模型.rtf,replace ar2 b(%6.4f) t(%6.4f) star(* 0.1 ** 0.05 *** 0.01)

(6) PSM 模型

用途:用于观测数据中的因果推断,通过匹配处理组和对照组来减少选择偏差。

例子:研究培训计划对员工晋升的影响时,PSM可以用于匹配参加培训和未参加培训的员工。

*导入基础数据

use macrodata basic.dta, clear

*生成解释变量的虚拟变量形式

bys year Industry:egen PLD_RATE1_meidan=median(PLD_RATE1)
gen ifPLD RATE1 = (PLD RATE1>= PLD RATE1 meidan) if !missing(PLD RATE1)

* 匹配效果检验 pstest, both

- * 画核密度图
- * 匹配之前

tw (kdensity _pscore if _treat==0) (kdensity _pscore if _treat==1) graph export 匹配前.png, as(png) replace

* 匹配之后

tw (kdensity _pscore if _treat==0 & _wei!=.) (kdensity _pscore if _treat==1 & _wei!=.) graph export 匹配后.png, as(png) replace

* 匹配后基本回归结果

reg 被解释变量 解释变量 控制变量 i.indcd i.year if _weight!=. est store ml

esttab ml using PSM-近邻匹配结果.rtf,replace b(%6.4f) t(%6.4f) ar2 nogaps star(* 0.1 ** 0.05 *** 0.01)

psmatch2 ifPLD_RATE1(解释变量的虚拟变量形式) 匹配变量,outcome(被解释变量) logit kernel common ate ties

* 匹配后基本回归结果

reg 被解释变量 解释变量 控制变量 i.indcd i.year if _weight!=. est store m2

esttab m2 using PSM-核匹配结果.rtf,replace b(%6.4f) t(%6.4f) ar2 nogaps star(* 0.1 ** 0.05 *** 0.01)

psmatch2 ifPLD_RATE1(解释变量的虚拟变量形式) 匹配变量,outcome(被解释变量) logit common radius caliper(.01) ate ties

* 匹配后基本回归结果

reg 被解释变量 解释变量 控制变量 i.indcd i.year if _weight!=. est store m3

esttab m3 using PSM-半径匹配结果.rtf,replace b(%6.4f) t(%6.4f) ar2 nogaps star(* 0.1 ** 0.05 *** 0.01)

(7) 滞后期模型

用途:用于探究先前时期的变量值(滞后期变量)对当前时期因变量的影响。

例子:分析上一年度的研发投入对本年度专利产出的影响。

*被解释变量滞后1期:使用F.

xtset stkcd year

xtreg F. 被解释变量 解释变量 控制变量 1 控制变量 2 i. year i. industry est store ml

esttab ml using 滞后期回归 1.rtf, replace nogap ar2 b(%6.4f) t(%6.4f) star(* 0.1 ** 0.05 *** 0.01)

*解释变量滞后期:使用 L.

xtsset stkcd year

xtreg 被解释变量 L.解释变量 控制变量 1 控制变量 2 i.year i.industry est store m2

esttab m2 using 滞后期回归 2.rtf,replace nogap ar2 b(%6.4f) t(%6.4f) star(* 0.1 ** 0.05 *** 0.01)

七、检验分析

(1) 豪斯曼检验

* 豪斯曼检验: 面板数据回归中,用于选择固定效应模型还是随机效应模型。一般选择标准为显著性在 0.1 及其以下选择固定效应,否则选择随机效应

xtreg y x x1 x2 x3, re

est store re

xtreg y x x1 x2 x3, fe

est store fe

hausman fe re

(2) Heckman 两阶段检验

*用途: Heckman 两阶段方法主要用于解决样本选择偏差问题。 Heckman 被解释变量 控制变量, select (D(解释变量虚拟变量) =Z(工具变量 其他影响因素) X(控制变量)) twostep

(3) 调节效应检验

*用途: 节效应检验用于评估一个或多个变量(调节变量)如何影响其他变量之间关系的强度和方向

* y 为被解释变量, x 为解释变量, x1 x2 x3 为控制变量; m 为调节变量

reg y x x1 x2 x3 //回归 1

reg y x m x1 x2 x3 //回归 2

*若回归 1 中的 x 显著,回归 3 中的 x 和 m 的乘积项显著,则存在调节效应 reg y x m x*m x1 x2 x3 //回归 <math>3

(4) 中介效应检验

*用途:介效应检验用于评估某个变量(中介变量)在因变量和自变量之间的作用机制。

*法1: 回归模型三阶段法

reg y x x1 x2 x3 //(1):y 为被解释变量, x 为解释变量, x1 x2 x3 为控制变量

reg Z x x1 x2 x3 //(2):Z 为中介变量

reg y x Z x1 x2 x3 //(3):(1)中的 x 要显著 (2)中的 x 要显著 (3)中的 x 和 Z 要显著,则存在中介效应

*法 2: Sobel-Goodman 检验

sgmediation y, mv(x) iv(Z) cv(x1 x2 x3) //y 为被解释变量, x 为解释变量, x1 x2 x3 为控制变量, Z 为中介变量

*检验结果中: Indirect effect:中介效应, Direct effect:直接效应

*法 3: Bootstrap 检验

bootstrap r(ind_eff) r(dir_eff), reps(1000): sgmediation y, mv(x) iv(Z) $cv(x1 \ x2 \ x3)$

*检验结果:间接效应 ind_eff(_bs_1)、直接效应 dir_eff(_bs_2),中介效应占比=_bs_1/(_bs_1+_bs_2)

estat bootstrap, percentile bc

*结果分析: 计算间接效应(_bs_1)的置信区间(检验中介效应: 若该置信区间不包括 0,则拒绝 H0); 若直接效应(_bs_2)的置信区间不包括 0 就表明是"部分中介效应";若直接效应(_bs_2)的置信区间包括 0 就表明是"完全中介效应"。

八、结果导出

(1) 导出描述性统计

*输入论文的代码写法: 该代码直接输出论文格式,简单调整即可sum2docx 变量 1 变量 2 变量 3 using 描述性统计.docx,replace stats(N mean(%9.4f) sd min(%9.2f) median(%9.2f) max(%9.2f)) title("Table 2: Summary Statistics")

*outreg2 导出

outreg2 using xxx.doc, replace sum(log) title(Decriptive statistics) // xxx.doc 为输出文件名;sum(log) 即输出一般统计指标命令,一般统计指标包括样本数、中值、标准误、最大值和最小值

outreg2 using xxx.doc, replace sum(detail) title(Decriptive statistics)

(2) 导出相关系数

* 导出相关系数,需要先下载 pwcorr_a 命令包 logout, save (相关系数分析) word replace:pwcorr_a 变量1 变量2 变量3, star1(.01) star5(.05) star10(.1)

(3) 导出回归结果

展示回归结果

reg y x x1 x2 x3
est store a1
xtreg y x x1 x2 x3, re
est store a2
xtreg y x x1 x2 x3, fe
est store a3
esttab a1 a2 a3 using 回归结果.rtf, replace b(%6.4f) t(%6.4f) nogap
ar2 star(* 0.1 ** 0.05 *** 0.01)

线性回归结果

sysuse auto, clear
reg price mpg
outreg2 using xxx.doc, replace tstat bdec(3) tdec(2) ctitle(y)

/* ctitle 为自定义表格内标题命令,如果不进行设定则直接输出为被解释变量名;按照 outreg2 命令输出的表格内相关系数下括号内数字为标准误,因此我们一般利用命令 tstat 将其更改为 t 值;相关系数 bdec(3)保留 3 位有效数字; t 值 tdec(2),保留 2 位有效数字 */

面板数据的回归结果

webuse grunfeld, clear xtset company year xtreg invest mvalue kstock, fe robust outreg2 using xxx.doc, replace tstat bdec(3) tdec(2) ctitle(y) keep(invest mvalue kstock) addtext(Company FE, YES) // addtext 为在表中增加信息命令,由于 Stata 进行固定效应回归后单纯利用 outreg2 命令输出不会展示是否控制固定效应,因此我们需要利用 addtext 命令追加。

工具变量法的回归结果

sysuse auto
ivregress2 2sls mpg weight (length=displacement), first
est restore first
outreg2 using xxx.doc, cttop(first) tstat bdec(3) tdec(2) replace

ivregress2 2sls mpg weight (length=displacement), first

outreg2 using xxx.doc, cttop(two) tstat bdec(3) tdec(2)

按照 outreg2 命令输出的表格内相关系数下括号内数字为标准误,利用命令tstat 将其更改为 t 值。

outreg2 命令输出时默认相关系数和 t 值都保留 3 位有效数字,而一般期刊要求相关系数保留 3 位有效数字,t 值保留 2 位有效数字,因此利用 bdec (3) 和 tdec (2) 命令限定。