(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-351784

(P2000-351784A)

(43)公開日 平成12年12月19日(2000.12.19)

(51) Int.Cl."	設別記号	F I デーマコート (安考)	
C07F 7/00		C07F 7/00	A
7/28	,	7/28	F
C 2 3 C 16/40		C 2 3 C 16/40	
16/448		16/448	
		審査請求 有	請求項の数8 OL (全 9 頁)
(21)出願番号	特願2000-132543(P2000-132543)	(71)出願人 59805747	
(22) 出顧日	平成12年5月1日(2000.5.1)		、浦項工科大學校 引、慶尚北道浦項市南區孝子洞山31
(31)優先権主張番号	1999-15557	(72)発明者 李 時	雨
(32)優先日	平成11年4月30日(1999.4.30)	大韓民国	1、790-390慶尚北道浦項市南区芝

谷洞756番地 教授アパートメント 9-

(72) 発明者 沈 在 鎔

大韓民国、769-860慶尚北道義城郡佳音面

長1洞163番地

(74)代理人 100058479

弁理士 鈴江 武彦 (外5名)

最終頁に続く

(54) 【発明の名称】 有機金属錯体およびその製造方法並びにそれを用いた有機金属化学成長法

(57)【要約】

(33)優先権主張国

(33)優先権主張国

(32) 優先日

【課題】 熱安定性に優れ、湿気に敏感でなく、室温で 液体として存在し、ステップカバレージに優れ、不純物 によって汚染されていない金属化合物膜を製造するため のMOCVDに比較的低温で適用できる無毒な有機金属 錯体を提供する。

韓国 (KR)

韓国(KR)

平成12年1月25日(2000.1.25)

(31)優先権主張番号 2000-3371

【解決手段】 下記一般式(I)で表される有機金属錯 体が提供される:

【化1】

(式中、MはTiまたはZrであり; R1、R1、R1、R1 お よびR。は各々独立にHまたはC、、、アルキルであり;m は2~5の整数である)。

1

【特許請求の範囲】

【請求項1】 下記一般式(I)で表される有機金属錯体:

【化1】

(式中、MはTi またはZr であり; R_1 、 R_2 、 R_3 および R_4 は各々独立にHまたは C_{1-4} アルキルであり;mは $2\sim5$ の整数である)。

【請求項2】 前記有機金属錯体が、チタンテトラ(ジメチルアミノプロポキシド)、チタンテトラ(ジメチルアミノエトキシド) およびジルコニウムテトラ(ジメチルアミノエトキシド) からなる群から選ばれることを特 20 徴とする請求項1記載の有機金属錯体。

【請求項3】 下記一般式(II) または(III) の金属 化合物を下記一般式(IV) のアミン化合物と1:4~ 1:5のモル比で有機溶媒中において混合する工程と、 前記混合物を還流する工程を含む請求項1記載の前記一 般式(I)の有機金属錯体の製造方法:

$$M(NR_2)_4$$

(II)

M (OR').

(III)

 $HO-(CR_1R_4)_{\bullet}-NR_1R_2$ (IV)

(式中、RおよびR'は各々独立に C_{1-4} アルキルであり; R_1 、 R_2 、 R_3 、および R_4 は各々独立にHまたは C_{1-4} アルキルであり;mは $2\sim5$ の整数である)。

【請求項4】 前記金属化合物が、チタンテトラ(ジエチルアミン)、ジルコニウムテトラ(ジエチルアミン)、チタンテトラアルコキシドおよびジルコニウムテトラアルコキシドからなる群から選ばれることを特徴とする請求項3記載の方法。

【請求項5】 前記アミン化合物が、N,N-ジメチルプロパノールアミンまたはN,N-ジメチルエタノールアミンであることを特徴とする請求項3記載の方法。

【請求項6】 請求項1の前記一般式(I)の有機金属 錯体を、任意選択的に他の有機金属前駆体とともに、2 0~300℃の温度で気化させる工程と、生成した蒸気 を300~600℃の温度に加熱した基板に接触させる 工程を含むことを特徴とする基板上に金属酸化物薄膜を 成長させる方法。

【請求項7】 前記金属酸化物が、酸化ジルコニウムまたは酸化チタンであることを特徴とする請求項6記載の方法。

【請求項8】 前記金属酸化物が、パリウムストロンチ 50 び爆発性があり、金属アルコキシドは湿気に敏感であ

2

ウムチタネート (BST)、鉛ジルコネートチタネート (PZT)、ストロンチウムビスマスチタネート (SBT)、ビスマスランタンチタネート (BLT) およびイットリウム安定化ジルコニア (YSZ) からなる群から 選ばれることを特徴とする請求項 6 記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体素子用薄膜 製造用前駆体として有用な有機金属錯体、その製造方法 10 およびそれを用いた有機金属化学成長法に関する。

[0002]

40

【従来の技術】最近、半導体素子が高集積化し、小型化 するにつれて、半導体素子の製造において薄膜形成に用 いられる先端材料および工程技術の開発が要求されてい る。とのような要求に応じて、DRAM (dynamic rand om access memory) 用キャパシターに用いられるバリウ ムストロンチウムチタネート(BST)、強誘電体メモ リ (ferroelectric random access memory、FRAM) に応用される鉛ジルコネートチタネート (PZT)、ス トロンチウムビスマスチタネート(SBT)、ビスマス ランタンチタネート(BLT)などの強誘電材料および イットリウム安定化ジルコニア(YSZ)、TiOzお よびZrO,などの金属酸化物が開発されている。この ような材料の薄膜は、RFマグネトロンスパッタリン グ、イオンビームスパッタリング、反応性共蒸着法(re active co-evaporation)、有機金属分解法(MOD, Metal Organic Decomposition), LSMCD (Liquid SourceMisted Chemical Decomposition)、レーザーア ブレーション、MOCVD (Metal Organic Chemical V apor Deposition)のような技術を用いて製造される。 【0003】とれらのうち、有機金属化学気相成長法 (MOCVD)は、一つ以上の有機金属前駆体化合物を 気化した後、キャリアガスを用いて気化した前駆体を加 熱された半導体基板の表面に移動させて、化学反応によ り前記基板の表面に薄膜を形成する工程である。MOC VDは、比較的に低温で行うことが可能であること、原 料物質の導入量とキャリアガス量を調節して薄膜の組成 と成長速度を制御することができること、基板の表面を 損傷することなく均一性が高くステップカバレージに優 れた薄膜が得られることなどの利点を有している。した がって、MOCVDはDRAMおよびFRAMのような 半導体素子の製造に広範囲に用いられている。 【0004】一般的にCVD用前駆体は、高い蒸気圧、

[0004]一般的にCVD用前駆体は、高い蒸気圧、高純度、高い成長速度、取り扱いの容易さ、無毒性、低コストおよび適切な蒸着温度などの性質を有することが要求される。しかし、CVDに用いられる従来の有機金属化合物、たとえば、金属アルキル、金属アルコキシド、βージケトネートは多くの問題点を有する。たとえば、Pb(C₂H₃)4のような金属アルキルは毒性および爆発性があり、金属アルコキシドは混気に触感であ

1

3

り、比較的高価なβ-ジケトネートは蒸気圧が低く室温 で固体であるため取扱いにくいという問題がある(文献 [Anthony C. Jones 5. Journal of the European Cera mic Society, 19(1999), 1431-1434] 参照)。

[0005] ** Ti (O'Pr), (O'Pr=// プロポキシド) は室温で不安定であるという短所があ \mathfrak{h} . Ti (O'Pr), (tmhd), (tmhd = tetra)methylheptanedionate、テトラメチルヘプタンジオネー ト)の場合は、Ti薄膜の製造時に温度変化によってT i含有量が変化するという問題がある(イ・ジョンヒョ ン、Electrochemical and Solid-State Letters, 2(10) (1999), 507-509).

[0006]

【発明が解決しようとする課題】したがって、本発明の 目的は、熱安定性に優れ、湿気に敏感でなく、室温で液 体として存在し、ステップカバレージに優れ、不純物に よって汚染されていない金属化合物膜を製造するための MOCVDに比較的低温で適用できる無毒な有機金属錯 体を提供することにある。

[0007]

【課題を解決するための手段】本発明の一態様によれ ば、下記一般式(1)で表される有機金属錯体が提供さ れる:

[0008] [化2]

$$R_{1}$$
 R_{2} R_{3} R_{1} R_{2} R_{3} R_{1} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{4} R_{1} R_{2} R_{3} R_{2} R_{3} R_{4} R_{5} R_{1} R_{1} R_{2} R_{3} R_{4} R_{1} R_{2} R_{3} R_{4} R_{5} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{7} R_{1}

【0009】(式中、MはTiまたはZrであり: R₁、R₂、R₃およびR₄は各々独立にHまたはC₁₋₄ア ルキルであり; mは2~5の整数である)。

【0010】本発明の他の態様によれば、下記一般式 (II) または (III) の金属化合物を下記一般式 (IV) のアミン化合物と1:4~1:5のモル比で有機溶媒中 において混合する工程と、前記混合物を還流する工程を 含む請求項1記載の前記一般式(1)の有機金属錯体の 製造方法が提供される:

M (OR'), (III)

 $HO-(CR_1R_4)_{\bullet}-NR_1R_2$

(式中、RおよびR'は各々独立にC1-1アルキルであ

(II)

,,アルキルであり; mは2~5の整数である)。

【0011】本発明のさらに他の態様によれば、前記一 般式(1)の有機金属錯体を、任意選択的に他の有機金 属前駆体とともに、20~300℃の温度で気化させる 工程と、生成した蒸気を300~600℃の温度に加熱 した基板に接触させる工程を含むことを特徴とする基板 上に金属化合物薄膜を成長させる方法が提供される。

[0012]

【発明の実施の形態】以下、本発明をさらに詳細に説明 する。本発明の一般式(1)の有機前駆体のうち特に好 ましいものは、それぞれ下記一般式(V)~(VII)で 表される、チタンテトラ(ジメチルアミノブロポキシ ド) (Ti (dmap),)、チタンテトラ (ジメチル アミノエトキシド) (Ti(dmae),) およびジル コニウムテトラ(ジメチルアミノエトキシド)(Ζ Γ (dmae),) である。

[0013]

[化3]

20

30

40

N(CH 3)2 (CH3)2N N(CH 3)2 (CH₃)₂N (VII)

【0014】本発明の一般式(1)の化合物は、チタン り;R,、R,、R,、およびR,は各々独立にHまたはC 50 またはジルコニウム化合物を一般式(IV)のアミン化合 10

物と反応させて製造することができる。

【0015】本発明において用いられるチタンまたはジルコニウム化合物は、一般式(II)または(III)の化合物であり、好ましくは、チタンテトラ(ジエチルアミン)、ジルコニウムテトラ(ジエチルアミン)、チタンテトラアルコキシド、ジルコニウムテトラアルコキシドである。本発明において用いられる代表的なアミン化合物は、N、Nージメチルブロバノールアミン、N、Nージメチルエタノールアミンなどである。

【0016】本発明の化合物の製造に用いられる溶媒は、たとえば、ヘキサン、トルエン、ベンタンなどである。一般式(II)または(III)の金属化合物および一般式(IV)のアミン化合物は、1:4~1:5の範囲のモル比で使用される。生成した混合物は15~20時間還流すると、目的とする一般式(I)の化合物が90%以上の高い収率で得られる。

[0017]本発明の一般式(1)の有機金属化合物 は、室温で液体であり、低温で高い揮発性を有するた め、半導体索子用の金属を含む薄膜を製造するためのC VDに前駆体として用いることができる。たとえば、本 20 発明は、通常のMOCVD法を用いて、金属酸化物たと えばTiOュ、ZrOュ(Anthony C. Jonesら、Chemical Vapor Deposition, 4(2)(1998), 46-49) およびイット リウム安定化ジルコニア(YSZ)(C. Dubourdieuら、 Thin Solid Films, 339(1999), 165-173) からなる薄 膜、または強誘電材料のたとえばバリウムストロンチウ ムチタネート(BST)(イ・ジョンヒョンら、Electr ochemical and Solid-State Letters, 2(10)(1999), 50 7-509)、鉛ジルコネートチタネート (PZT) (Anthon y C. Jones B. Journal of the European Ceramic Soci 30 ety, 19(1999), 1431-1434)、ストロンチウムビスマス チタネート (SBT) (C. Isobeら、Integrated Ferroe lectrics, 14(1999), 95-103)、ピスマスランタンチタ ネート (BLT) からなる薄膜を製造するのに有用であ る。

【0018】本発明を実施するにあたり、本発明の有機金属前駆体を用いて金属化合物薄膜を形成するためのCVD工程は、20~300℃で本発明の前駆体を気化させ、生成した蒸気を減圧下、たとえば0.1~10torで、300~600℃、より好ましくは400~550℃に加熱した基板の表面にキャリアガスとともに輸送することによって行うことができる。

【0019】前駆体は通常のバブリング送出(bubbling delivery)または液体送出(liquid delivery)によって気化される。バブリング送出は容器に入れた液状前駆体にキャリアガスを通すことによってなされ、液体送出は適量の液体前駆体を気化器に注入することによってなされる。液体送出工程の場合には、前駆体をテトラヒドロフラン(THF)、n-ブチルアセテートなどの有機溶媒で希釈してもよい。

【0020】本発明に用いられる基板は、通常のシリコン基板、およびPt、Ir、IrOz、Ru、RuO、SrRuO、などでコーティングされたシリコン基板を含む。

[0021]

【実施例】以下、本発明を下記実施例によってさらに詳細に説明する。ただし、下記実施例は本発明を例示するだけであり、本発明の範囲を限定しない。

[0022]実施例1:Ti(dmap),の製造(1)

Ti (O¹Pr)。(チタンテトライソプロポキシド) (18.45g、65mmol)を無水ヘキサン150mlに加えた後、これにN, N-ジメチルプロパノールアミン(DPMA) (30.76ml、260mmol)を徐々に加えた。混合物を20時間還流した後、冷却した。減圧下で溶媒を除去して、オレンジ色の液体を得た。これを150℃で蒸留して、Ti (dmap)。を濃褐色液体として得た(収率>90%)。

【0023】とのようにして得られたTi(dmap)。の熱重量分析(以下、TGAという)曲線を図1に示す。

[0024] H NMR (CDCI, 300MHz): 84.61 (t, CH1, 8H), 2.43 (t, CH1, 8H), 2.20 (s, CH1, 24H), 2.90 (t, CH2, 8H)。
[0025] 実施例2: Ti (dmap) の製造(2)

 $Ti(NEt_1)$ (チタンテトラジエチルアミン) (2 1.87g、65 mm o 1) を無水ヘキサン 150ml に加えた後、これにN、N-ジ メチルプロバノールアミン (DPMA) (30.76 m 1、260 mm o 1) を徐々に加えた。混合物を 20 時間還流した後、冷却した。減圧下で溶媒を除去してTi(dmap) を濃褐色の液体として得た(収率 >90%)。

[0026] H NMR (CDC1, 300MHz): 84.61(t, CH2, 8H), 2.43(t, CH2, 8H), 2.20(s, CH3, 24H), 2.90(t, CH2, 8H).

[0027] 実施例3: Ti(dmae),の製造 Ti(O'Pr),(10g、35mmol)を無水へキサン150mlに加えた後、これにN, N-ジメチルエタノールアミン(DMEA)(12.5g、140mmol)を徐々に加えた。混合物を20時間還流した後、冷却した。溶媒を減圧下で除去してTi(dmae),を濃褐色の液体として得た(収率>90%)。

[0028] H NMR (CDC1, 300MHz): δ 4.34 (t.CH₂,8H), 2.55 (t.CH₁,8H), 2.28 (s.CH₁,24H).

o 【0029】実施例4:Zr (dmae),の製造

Ti(NEtュ)。(ジルコニウムテトラ(ジエチルアミ ン)) (24.68g、65mmol) を無水トルエン 150m1に加えた後、これにN、N-ジメチルエタノ ールアミン (26ml、260mmol) を徐々に滴下 した。混合物を20時間還流した後、冷却した。溶媒を 減圧下で除去してZr(dmae),を無色の液体とし て得た(収率>90%)。

[0030] このようにして得られた乙ェ(dmae) 、のTGA曲線を図2に示す。

[0031]'H NMR (CDC1, 300MH z) : δ 4. 09 (t, CH₂, 8H), 2. 48 (t, CH₂, 8H), 2.16 (s, CH₃, 24 H).

【0032】試験例1:熱安定性試験

図3 (a) および図3 (b) は、それぞれ − 25 ℃およ び60℃で測定したTi(dmae),のNMRスペク トルを示す。図3(a)および図3(b)から分かるよ うに、-25℃で測定したTi(dmae)₄のNMR スペクトルは60℃で測定したものと同じである。した がって、本発明の有機金属錯体は60℃で熱定に安定で 20 あることが分かる。

【0033】試験例2:質量分析

図4~図6はそれぞれTi (dmap),、Ti (dm ae) およびZr (dmae) の質量スペクトルを示 す。図4~図6から分かるように、それぞれTi(dm ap), Ti (dmae),およびZr (dmae),

の分子量に対応するピークである457、401および 444の後にはピークが観察されなかった。したがっ て、本発明の化合物は単分子の形態で存在する。 【0034】試験例3:気化温度

一般的に、半導体素子用薄膜のCVDに用いられる有機 前駆体は、液体送出工程の場合、200~260℃で気 化することが要求される。図1および2から分かるよう に、本発明の有機金属錯体であるTi(dmap).お よびZr (dmae),は、200~260℃の温度領 10 域で気化する挙動を示しているため、薄膜製造用前駆体 として有効に用いることができる。

【0035】反面、図7において破線で表されているよ うに、下記一般式(VIII)のZr(TMDH)。(ジル コニウムテトラキス-2,2,6,6-テトラメチルー 3,5-ヘプタンジオン)は350℃以上の高温で気化 するためCVD用として適していない。さらに、他の従 来の前駆体である下記一般式(IX)のZr(TMDH) (O'Pr), (ジルコニウム-2, 2, 6, 6-テトラ メチル-3.5-ヘブタンジオン-トリイソポキシド) は250℃で気化するが(図7、実線)、室温で固体で あるため、MOCVDに用いる場合には取り扱いが難し いという問題を有する。したがって、本発明の化合物は 従来の前駆体より優れたMOCVD用の前駆体として用 いられる。

[0036] 【化4】

(VIII)

(IX)

【0037】試験例4:薄膜堆積

それぞれ実施例3 および4 で製造したTi(dmae)、およびZr(dmae)、を用いてMOCVDにより基板上にTiO.およびZrO.薄膜を形成した。この際、前記有機金属錯体の気化温度(気化器温度)は250℃、Ar/O.は300/300(sccm)、堆積時間は20分、前駆体の濃度は0.2M(THF中)であった。

[0038] 図8 (Ti (dmae),) および図9 (Zr (dmae),) は、基板温度を変化させながら 測定した堆積層の成長速度を示す。

【0039】図8から分かるように、Ti(dmae)。を用いて酸化チタン膜を製造する場合、基板温度が400℃で堆積速度が最大となるが、その後500℃まで 40の温度領域では蒸着速度がほぼ一定になる。したがって、Ti(dmae)。は酸化チタン薄膜を形成するためのCVD前駆体として有効に用いることができる。また、図9から分かるように、Zr(dmae)。を用いて酸化ジルコニウム膜を製造する場合、約425℃で高い堆積速度を示す。したがって、Zr(dmae)。も酸化ジルコニウム薄膜を形成するためのCVD前駆体として有効に用いることができる。

【0040】試験例5:BST薄膜の堆積 前駆体として実施例3で製造したTi(dmae)。を 用いるMOCVDによりPt/TaOx/SiO₂/Si基板上にBST薄膜を形成した。この際、BaおよびSrの出発物質としては、Ba(thd),LおよびSr(thd),L(thd=2,2,6,6-テトラメチルー3,5-ヘプタンジオネート、L=PMDT)を用い、Ba:Sr:Tiのモル比を1:1:2になるように調節した。堆積は、気化器温度270℃、Ar200sccm、O2400sccm、N2O400sccm、および基板温度は400℃~500℃の条件下で行った。

【0041】図10は、基板の温度による全金属中のTi分率およびBST膜の成長速度の変化を示す。図10から分かるように、420~480℃の温度範囲で高い成長速度を示し、Ti含有量はこの温度範囲でおおよそ一定である。

【0042】したがって、本発明の化合物は、種々の半 導体素子用強誘電体複合薄膜のCVDに用いることがで きる。

【図面の簡単な説明】

【図1】本発明の実施例1で製造したTi(dmap) 。のTGA曲線を示す図。

【図2】本発明の実施例4で製造したZr (dmae)。のTGA曲線を示す図。

50 【図3】本発明の実施例3で製造したTi(dmae)

、のそれぞれ − 2 5 °C と 6 0 °Cで測定したNMR スペクトルを示す図。

11

【図4】本発明の実施例lで製造したTi(dmap) 。の質量スペクトルを示す図。

【図5】本発明の実施例3で製造したTi(dmae) ,の質量スペクトルを示す図。

【図6】本発明の実施例4で製造したZr (dmae) の質量スペクトルを示す図。

【図7】従来の有機金属錯体のTGA曲線を示す図。

*【図8】本発明の実施例3で製造したTi(dmae) 、を用いたCVD工程において、基板温度によるTiO。 薄膜の堆積速度の変化を示す図。

【図9】本発明の実施例4で製造したZr(dmae) ₄を用いたCVD工程において、基板温度によるZrO₂ 薄膜の堆積速度の変化を示す図。

【図10】本発明の実施例3で製造したTi(dmae)。を用いたCVD工程において、基板温度によるBST蒸着速度およびTi含有量の変化を示す図。

【図2】

【図1】

【図3】

【図4】

【図5】

【図6】

【図8】

【図10】

フロントページの続き

(72)発明者 李 正 賢

大韓民国、463-050京畿道城南市盆唐区ソ ヒョン洞 大字アパートメント 619-908

(72)発明者 金 大 煥

大韓民国、790-390慶尚北道浦項市南区芝 谷洞756番地 ポステックアバートメント 3-905