AUGMENTED SELF-ASSEMBLY

Solving the Intrinsic System Augmentation problem for a self-assembly task

Midterm Presentation

Loic Matthey

Supervisors:

Vijay Kumar Grégory Mermoud Alcherio Martinoli

Special contributions:
Spring Berman

CONTENTS

- 1. Introduction
- 2. Goals
- 3. Stochastic assembly task
- 4. Intrinsic System Augmentation problem
- 5. Puzzle test case
- 6. Webots implementation
- 7. Models and parameters fitting
- 8. Conclusion
- 9. Further work

1. INTRODUCTION

Context

- Joint work with the GRASP Lab from University of Pennsylvania (Penn), Prof. Vijay Kumar.
- Combine interests in assembly and multi-robots teams.
- Strong theoretical foundations needed.

- Considered problem:
 - Stochastic assembly of products

1. INTRODUCTION

Augmented assembly

- Problem of stochastic: poor yield
- Idea: add agents to the initial system to improve performance.
 - Augmented system.
- Questions:
 - How to formulate?
 - How to augment the system?

2. GOALS

- Propose a theoretical framework for the Augmented System problem.
- Validation using a higher-level assembly task (biological scale).
 - Use Webots as physics simulator.
- Develop mathematical models and simulations fitting the tasks.
 - Use Chemical Reactions formalism.
- Optimize the Augmented System using mathematical foundations.

3. STOCHASTIC ASSEMBLY

Definition

- Let M_i pieces of different types, assembling with bidirectional connections.
- Let those pieces move and assemble randomly in an arena of size A.
- Let the final assembled products be known as S_j.
- Let a system of reactions R showing the assembling of pieces via their connections. These reactions can contain disassembling reactions too.
- Then this system will create a certain amount $|S_j|$ after a time T_f .
 - Goal: obtain the bigger $|S_j|$ after the smaller T_f .

4. INTRINSIC SYSTEM AUGMENTATION

- Define two systems:
 - Intrinsic (initial) system.
 - Augmented system.
- Define a common metric (systems should be measurable).
- Model the intrinsic system behavior.
- Optimize the model of the intrinsic system.
- Link the Augmented system to the optimized model.

5. PUZZLE TEST CASE

Description

- Simplification of an assembly task.
- Specific pieces to assemble.
- Robot to carry the pieces.
 - still self-assembly? Yes.
- Measure scalability and efficiency of assembly.
 - Stochastic controllers
 - "Designed" controllers

5. PUZZLE TEST CASE

Relation to Augmented System

- Intrinsic and Augmented system?
- Stochastic controllers:
 - Like self-assembly of pieces, assuming they move and assemble randomly.
- "Designed" controllers:
 - "Augment" virtually the system by changing the stochastic behavior for something better.
 - This is similar to adding extra robots to conduct this new behavior.

Basic components

- Khepera III modified.
 - Protruding arm to carry the pieces.
- Arm with rotating connector.
- Pieces with several connectors.
 - Top connector for the robots.
 - Side connectors to assemble to other pieces.

Capabilities

- Rotating connector:
 - Allows full access to every side connectors
- Pieces and robots communicate with emitter/ receiver.
 - Offers relative positioning for alignment

6. WEBOTS IMPLEMENTATION Capabilities

- Rotating connector:
 - Allows full access to every side connectors
- Pieces and robots communicate with emitter/ receiver.
 - Offers relative positioning for alignment

Systematic experiments

- Webots World Generator written in Python, to generate specific number of robots and pieces.
- Random initial positioning for every robot and piece in the arena.
- Supervisor handling the experiments and writing to files.

Systematic experiments

- Webots World Generator written in Python, to generate specific number of robots and pieces.
- Random initial positioning for every robot and piece in the arena.
- Supervisor handling the experiments and writing to files.

Behavior

- Spring's work, adapted.
- All local radio communications (0.4m radius).
- Robot search for lying pieces and carry them.
- When encounter a robot, check if the assembly is possible.
- Alignment and assembling of pieces.
- Answer to a given plan, written in forms of reactions.

Behavior

- Spring's work, adapted.
- All local radio communications (0.4m radius).
- Robot search for lying pieces and carry them.
- When encounter a robot, check if the assembly is possible.
- Alignment and assembling of pieces.
- Answer to a given plan, written in forms of reactions.

Results

• 1 Puzzle (5 pieces), 4 robots

- 100 experiments, 20 min maximum.
- Initial positions and rotations between each of them.
- 96% assembly success in 20 min.
- 75% of all experiments assembled after 6 min.

Results

• 1 Puzzle (5 pieces), 4 robots

- 100 experiments, 20 min maximum.
- Initial positions and rotations between each of them.
- 96% assembly success in 20 min.
- 75% of all experiments assembled after 6 min.

Results

• 3 Puzzle (15 pieces), 15 robots

- 100 experiments, 20 min maximum.
- Initial positions and rotations between each of them.
- 80% assembly success.
- 75% of all assemblies done after 11 min.

Results

• 3 Puzzle (15 pieces), 15 robots

- 100 experiments, 20 min maximum.
- Initial positions and rotations between each of them.
- 80% assembly success.
- 75% of all assemblies done after 11 min.

7. Models

Description

- Chemical Reactions Networks.
- Used for chemical and biological processes.
- Well adapted because of flexibility and versatility.

7. MODELS Simulations

- Lots of literature available.
- Exact simulation: Stochastic Simulation Algorithm (SSA) by Gillespie, 1976.
- Approximate solutions: ODE Models or Hybrid Models (Stochastic + Deterministic).
- Simulation tools chosen:
 - StochKit for SSA. L. Petzold, UCSB.
 - Matlab for ODE Models.

- Hypothesis:
 - System should be well-mixed.

- Enforced by chemotaxis-like movement of robots.
- We can make nonspatiality assumption then.

- Reaction rates depends on encountering probabilities.
 - Measure them in Webots
 - A-priori guess using theoretical informations
- Chose to use the geometric probabilities, like N. Correll did.
 - Actually is the exact application of a chemical simulation formula to large-scale robots.

$$p_e \sim \frac{1}{A_{total}} v_r T w_d$$

- Reaction rates depends on encountering probabilities.
 - Measure them in Webots
 - A-priori guess using theoretical informations
- Chose to use the geometric probabilities, like N. Correll did.
 - Actually is the exact application of a chemical simulation formula to large-scale robots.

$$p_e \sim \frac{1}{A_{total}} v_r T w_d$$

7. Models

- Rates verifications
- Webots experiments
 - Sample the times to event.
 - 100 experiments.
 - Fit an exponential distribution in Matlab.
- Verify effect of adding "dummy" robots.

- Rates verifications
- Webots experiments
 - Sample the times to event.
 - 100 experiments.
 - Fit an exponential distribution in Matlab.
- Verify effect of adding "dummy" robots.

7. Models

Results - 1 puzzle

- 1 Puzzle (5 pieces), 4 robots
- Same rates for both models, from previous theoretical.

- ODE is too low, due to low numbers effects.
- Stochastic is good. Too high because no failures.

Results - 1 puzzle

- 1 Puzzle (5 pieces), 4 robots
- Same rates for both models, from previous theoretical.

- ODE is too low, due to low numbers effects.
- Stochastic is good. Too high because no failures.

Results - 3 puzzles

- 3 Puzzle (15 pieces), 15 robots
- ODE better but still low.
 Stochastic still better.

- Accurate models.
- Even with other robots and the possible wellmixed problem.

Results - 3 puzzles

- 3 Puzzle (15 pieces), 15 robots
- ODE better but still low.
 Stochastic still better.

- Accurate models.
- Even with other robots and the possible wellmixed problem.

8. CONCLUSION

- Created a Webots platform to simulate realistic assemblies.
 - Further tests possible, with more interesting plans (multiple targets).
- Chemical Reactions Networks seems like a good model for this kind of problem.
- Simulations shows that Stochastic is indeed better at representing small populations dynamics.

9. FURTHER WORK

- Optimize the system!
 - Represent it as a Markov Chain.
 - This is a Multi-affine system that we have to optimize.
- Map the optimized system onto new robot behaviors or added agents.
 - "Augmentation" step.
- Assess the generalizability of this methodology and the possibles applications to other fields.

THANK YOU

ANY QUESTIONS ?

Stochastic Model

Finishing times

Webots

Stochastic model

OPTIMIZATION

• Chemical Reaction Networks are linear in $\{1, x_1, ..., x_n, x_1x_2, ..., x_nx_m\}$:

$$\dot{x} = E \cdot A \cdot y$$

With x vector of x_i , E is the effector matrix, A the tunable parameters and y a vector of $\{x_i, x_i x_j\}$.

- Multi-affine system.
- We need to tune *A*, so that we converge to a desired equilibrium.
- Problem: non-linear.
 - Ideas: calculate several A for small regions (linearization assumption).

