Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Steve Göring

13.07.2012

Gliederung

Einleitung

Grundlagen

Vertex-Cover-Problem Set-Cover-Problem

Lösungsalgorithmen

Vertex-Cover-Problem Set-Cover-Problem

Auswertung/Fazit

- Angriffe auf Netzwerke
- ▶ → mehrere Knoten
- Netzwerk → Graphenabstraktion
- ► Zerfall durch Angriff auf:
- ► Vertex-Cover/ Set-Cover Lösungen

3/18

Einleitung

- Angriffe auf Netzwerke
- ► → mehrere Knoten
- Netzwerk → Graphenabstraktion
- Zerfall durch Angriff auf:
- ► Vertex-Cover/ Set-Cover Lösungen

3/18

Einleitung

- Angriffe auf Netzwerke
- ▶ → mehrere Knoten
- lacktriangle Netzwerk ightarrow Graphenabstraktion
- ► Zerfall durch Angriff auf:
- ► Vertex-Cover/ Set-Cover Lösungen

Einleitung 3/18

- Angriffe auf Netzwerke
- ▶ → mehrere Knoten
- $\begin{array}{c} \blacktriangleright \ \ \mathsf{Netzwerk} \to \\ \mathsf{Graphenabstraktion} \end{array}$
- Zerfall durch Angriff auf:
- ► Vertex-Cover/ Set-Cover Lösungen

3/18

Einleitung

- Angriffe auf Netzwerke
- ▶ → mehrere Knoten
- $lackbox{Netzwerk}
 ightarrow$ Graphenabstraktion
- Zerfall durch Angriff auf:
- Vertex-Cover/ Set-Cover Lösungen

Einleitung 3/18

Vertex-Cover-Problem

- ► VC = Knotenüberdeckung eines Graphen
- Problemvarianten:
 - minimales VCP
 - ▶ k-VCP
 - gewichtetes VCP (später)
 - partielles VCP + exaktes partielles VCP
- im allgemeinen NP-vollständig
- Spezialfälle: Baum, bipartiter Graph ...

Vertex-Cover-Problem- Varianten: mVCP

minimale Knotenmenge *C* gesucht

Vertex-Cover-Problem- Varianten: kVCP

k-elementige Knotenmenge *C* gesucht

Bsp: k = 4

Vertex-Cover-Problem- Varianten: pVCP

 \leq k-elementige Knotenmenge C, die mindestens t Kanten überdeckt gesucht Bsp: t=4, k=1

Zielfunktion:

$$F(\vec{x}) = \sum_{x_i} w_v(i) \cdot x_i \to min$$

Nebenbedingungen:

$$x_i + x_j \ge 1, \forall (i, j) \in E$$

$$x_i \in \{0,1\}$$

$$0 \le x_i \le 1, x_i \in \mathbb{R}$$

$$F(\vec{x}) = x_a + x_b + x_c + x_d + x_f \rightarrow x_d + x_b \ge 1, x_a + x_c \ge 1$$
$$x_b + x_c \ge 1, x_b + x_e \ge 1$$
$$x_c + x_d \ge 1, x_c + x_f \ge 1$$

Zielfunktion:

$$F(\vec{x}) = \sum_{x_i} w_v(i) \cdot x_i \to min$$

Nebenbedingungen:

$$x_i + x_j \ge 1, \forall (i,j) \in E$$

$$x_i \in \{0,1\}$$

$$0 \le x_i \le 1, x_i \in \mathbb{R}$$

$$F(\vec{x}) = x_a + x_b + x_c + x_d + x_f \rightarrow$$

$$x_a + x_b \ge 1, x_a + x_c \ge 1$$

$$x_b + x_c \ge 1, x_b + x_e \ge 1$$

$$x_c + x_d \ge 1, x_c + x_f \ge 1$$

Zielfunktion:

$$F(\vec{x}) = \sum_{x_i} w_v(i) \cdot x_i \to min$$

Nebenbedingungen:

$$x_i + x_j \ge 1, \forall (i,j) \in E$$

$$x_i \in \{0,1\}$$

$$0 \le x_i \le 1, x_i \in \mathbb{R}$$

$$F(\vec{x}) = x_a + x_b + x_c + x_d + x_f \rightarrow$$

$$x_a + x_b \ge 1, x_a + x_c \ge 1$$

$$x_b + x_c \ge 1, x_b + x_e \ge 1$$

$$x_c + x_d \ge 1, x_c + x_f \ge 1$$

Zielfunktion:

$$F(\vec{x}) = \sum_{x_i} w_v(i) \cdot x_i \to min$$

Nebenbedingungen:

$$x_i + x_j \ge 1, \forall (i, j) \in E$$

$$x_i \in \{0, 1\}$$

$$0 \le x_i \le 1, x_i \in \mathbb{R}$$

$$F(\vec{x}) = x_a + x_b + x_c + x_d + x_f o min$$
 $x_a + x_b \ge 1, x_a + x_c \ge 1$
 $x_b + x_c \ge 1, x_b + x_e \ge 1$
 $x_c + x_d \ge 1, x_c + x_f \ge 1$
 $x_d + x_e \ge 1$

Set-Cover-Problem

- ► SC = Mengenüberdeckung
- Varianten:
 - minimales SCP
 - gewichtetes SCP
- ▶ im allgemeinen NP-vollständig

minimales Set-Cover-Problem

- ▶ Universum *U*
- ▶ Teilmengen $V_i \subset U$
- gesucht: Auswahl Z von Teilmengen die U überdecken mit minimaler Größe
- Optimierungsproblem analog VCP

Set-Cover-Problem-Bsp

$$Z_1 = \{1, 2, 3\}$$
 oder $Z_2 = \{2, 3\}$

Lösungsalgorithmen

minimales VCP:

- ▶ naiv: $\mathcal{O}(2^n m)$
- ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
- ► Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - ▶ KneisRand O*(1.2993^t)
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ► KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ► Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ (2 $\frac{1}{k+1}$)-AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ightharpoonup KneisDet $\mathcal{O}^*(1.369^t)$
 - \blacktriangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ► KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ► Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ightharpoonup KneisDet $\mathcal{O}^*(1.369^t)$
 - \blacktriangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \triangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - \blacktriangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - \blacktriangleright KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \blacktriangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - \triangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ (2 $\frac{1}{k+1}$)-AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \triangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - ightharpoonup KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \triangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - \triangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \triangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - \blacktriangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \triangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - \triangleright KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - \blacktriangleright KneisDet $\mathcal{O}^*(1.369^t)$
 - ightharpoonup KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - ightharpoonup KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - KneisDet $\mathcal{O}^*(1.369^t)$
 - KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: O(m) 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: $\mathcal{O}(m)$ 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ► KneisExact: $\mathcal{O}^*(3^t)$

- minimales VCP:
 - ▶ naiv: $\mathcal{O}(2^n m)$
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: O(m) 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: O*(3^t)

- minimales VCP:
 - ▶ naiv: O(2ⁿ m)
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: O(m) 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: O*(3^t)

- minimales VCP:
 - ▶ naiv: O(2ⁿ m)
 - ▶ Cormen: $\mathcal{O}(n+m)$ 2-AP
 - ▶ Monien-Speckenmeyer: $\mathcal{O}(m \cdot n)$ $(2 \frac{1}{k+1})$ -AP
- ► *k*-VCP:
 - ▶ Buss (k-Vertex Cover): $\mathcal{O}(kn + 2^k \cdot k^{2k+2})$
- gewichtetes VCP:
 - ▶ Bar-Yehuda-Even: O(m) 2-AP
 - ▶ Halperin: polyomiell (2ϵ) -AP
- partielles VCP:
 - ▶ KneisDet $\mathcal{O}^*(1.369^t)$
 - KneisRand $\mathcal{O}^*(1.2993^t)$
 - ▶ Mestre $\mathcal{O}(n \cdot \log n + m)$ 2-AP
- exaktes partielles VCP:
 - ▶ KneisExact: O*(3^t)

Cormen (1)

- 2-Approximation
- minimales VCP
- $ightharpoonup C = \emptyset, E' = E$
- ▶ solange wie E' != \emptyset
 - wähle beliebige Kante $\{u, v\}$ aus E'
 - $C = C \cup \{u, v\}$
 - ► lösche alle in *u* und *v* hineingehenden Kanten

gib C zurück

Cormen (2)

- ► Kante (*a*, *b*)
- ▶ $C = \{a, b\}$
- ► Lösche Kanten (a, b), (a, c), (b, c), (b, e)

Cormen (2)

- ► Kante (*a*, *b*)
- $C = \{a, b\}$
- ► Lösche Kanten (a, b), (a, c), (b, c), (b, e)

Cormen (3)

- ► Kante (*c*, *d*)
- $C = \{a, b, c, d\}$
- ▶ Lösche Kanten (c, f), (c, d), (d, e)
- ▶ Vertex-Cover *C* berechnet
- ▶ nicht minimal! $C^* = \{c, b, e\}$

Cormen (3)

- ► Kante (*c*, *d*)
- ► $C = \{a, b, c, d\}$
- ▶ Lösche Kanten (c, f), (c, d), (d, e)
- ▶ Vertex-Cover *C* berechnet
- nicht minimal! $C^* = \{c, b, e\}$

Bar-Yehuda-Even (1)

- 2-Approximation
- gewichtetes VCP
- ▶ für jede Kante (u, v):

$$b d = \min\{w_v(v), w_v(u)\}$$

$$w_{\nu}(u) = w_{\nu}(u) - d$$

$$w_v(v) = w_v(v) - d$$

$$\mathbf{w}_{v}(v) = \mathbf{w}_{v}(v) - \mathbf{d}$$

$$C = \{v \in V \mid w_v(v) = 0\}$$

Bar-Yehuda-Even (1)

- 2-Approximation
- gewichtetes VCP
- ▶ für jede Kante (u, v):

$$b d = \min\{w_v(v), w_v(u)\}$$

$$w_{\nu}(u) = w_{\nu}(u) - d$$

$$w_v(v) = w_v(v) - d$$

$$C = \{v \in V \mid w_v(v) = 0\}$$

Bar-Yehuda-Even (2)

Optimale Lösung:

 $C = \{a, b, d, f\}$ Kosten: 5

Bar-Yehuda-Even (3)

- ► Kante (*a*, *b*)
- \rightarrow d=1
- ▶ neue Gewichte *a*₀, *b*₁

Bar-Yehuda-Even (3)

- ► Kante (*a*, *b*)
- ▶ *d* = 1
- ▶ neue Gewichte a₀, b₁

Bar-Yehuda-Even (4)

- ► Kante (*c*, *d*)
- \rightarrow d=1
- ▶ neue Gewichte c_3 , d_0

Bar-Yehuda-Even (4)

- ► Kante (*c*, *d*)
- \rightarrow d=1
- ▶ neue Gewichte c_3 , d_0

Bar-Yehuda-Even (5)

- ► Kante (*b*, *e*)
- \rightarrow d=1
- ▶ neue Gewichte b_0 , e_1

Bar-Yehuda-Even (5)

- ► Kante (*b*, *e*)
- \rightarrow d=1
- ▶ neue Gewichte b_0 , e_1

Bar-Yehuda-Even (6)

- \blacktriangleright Kante (f, c)
- ▶ *d* = 1
- ▶ neue Gewichte f_0, c_2

Bar-Yehuda-Even (6)

- ▶ Kante (f, c)
- \rightarrow d=1
- ▶ neue Gewichte f_0, c_2

Bar-Yehuda-Even (7)

- ► Kanten (a, c), (b, c), (d, e)
- d = 0
- keine Änderungen an den Gewichten
- gewichtetes VC:
 C = {a, b, d, f}
- lacktriangledown ightarrow optimal, aber nicht die Regel

Algorithmen SCP

- ▶ Johnson: polyomiell log *m* -AP
- gewichtetes SCP:
 - ▶ Bar-Yehuda-Even SC: $\mathcal{O}(\sum_{i \in Z} |V_i|)$ x-AP mit $x \max_{u \in U} \{|\{i \mid u \in V_i\}|\}$
 - ► Yung: polynomiell In *m*-AP

Fazit

- verschiedene Problemvarianten
- ► Approximationen der gewichteten / ungewichteten Varianten gut
- partielles VCP schlecht
- SCP schlecht
- kleiner Einstieg in die Problematik

Fragen?

Vielen Dank für Ihre Aufmerksamkeit.