Exploring Shortcut Learning with MedMNIST

Caroline Hixon

Review: Shortcut Learning

Shortcut Learning in Deep Neural Networks. Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, Felix A. (2020).

Shortcuts revealed when tested under slightly different circumstances \rightarrow use o.o.d. data

Where to find shortcuts:

- Overfitting features appear when performs well on training, but not i.i.d. validation
- Shortcut features appear when perform well on training and i.i.d., but not o.o.d
- Intended features appear when succeed with o.o.d. tests

Methodology

Models

- Simple FC neural network
- Baseline CNN
- CNN with dropout
- ResNet

Testing Environments

- No augmentation
- Test set augmentation (random shifts, rotations)
- Train and test set augmentation (random shifts, rotations)

Data: MedMNIST

pneumoniaMNIST

- Chest X-Ray
- o Binary class (2)
- o **5,856** samples

breastMNIST

- Breast ultrasound
- o Binary class (2)
- o 780 samples

Models

- Simple FC Neural Network
 - o 3 dense layers (neurons = 300, 100, 10), relu
- Baseline CNN
 - o 1 Conv2D layer, kernel size 3, relu + maxpool of size 2
- CNN with dropout
 - Two Conv2D layers, kernel size 3, relu + maxpool of size 2
 - o Batch normalization
 - o Dropout = 0.5
- ResNet
 - 4 layers with residual units

Results: No Augmentation

- Highest accuracy in each model (bold)
 - o Train accuracy for all pneumonia
 - train/test accuracy for breast
- Highest accuracy from all models (blue)
 - ResNet for both
- Highest test accuracy (green)
 - o Pneumonia: CNN with dropout
 - o Breast: Simple NN
- Simple and ResNet: val and test accuracy drop significantly from train accuracy

Model	Dataset	train acc	val acc	test acc
Simple NN	Pneumoina	94.35	76.34	63.3
	Breast	75.8	75.6	78.8
Baseline CNN	Pneumoina	95.31	95.61	81.73
	Breast	77.1	75.6	75.64
CNN with dropout	Pneumoina	97.37	96.76	84.13
	Breast	87.73	46.15	48.08
ResNet	Pneumoina	97.58	75.76	62.66
	Breast	95.4	73	73.08

Results: Test set only Augmentation

- Highest accuracy in each model (bold)
 - o Train accuracy for all pneumonia
 - train/val accuracy for breast
- Highest accuracy from all models (blue)
 - o Pneumonia: CNN with dropout
 - o Breast: ResNet
- Highest test accuracy (green)
 - o Baseline CNN for both
- Breast: val and test accuracy drop significantly from train accuracy

Model	Dataset	train acc	val acc	test acc
Simple NN	Pneumoina	94.33	90.27	73.24
	Breast	75.8	62.8	61.53
Baseline CNN	Pneumoina	95.31	95.23	84.13
	Breast	78.75	80.77	79.49
CNN with dropout	Pneumoina	97.39	92.94	74.04
	Breast	90.66	71.79	68.59
ResNet	Pneumoina	97.24	85.31	67.47
	Breast	93.59	73.08	73.08

Results: Train and test Augmentation

- Highest accuracy in each model (bold)
 - Train accuracy for all pneumonia
 - o One val for breast
- Highest accuracy from all models (blue)
 - ResNet for both
- Highest test accuracy (green)
 - o Pneumonia: Baseline CNN
 - o Breast: CNN with dropout
- Breast: val and test accuracy drop significantly from train accuracy

Model	Dataset	train acc	val acc	test acc
Simple NN	Pneumoina	94.6	93.89	85.42
	Breast	78.94	73.08	74.36
Baseline CNN	Pneumoina	95.77	94.66	86.38
	Breast	76.92	78.21	77.56
CNN with dropout	Pneumoina	95.88	63.36	75.48
	Breast	86.26	73.08	78.21
ResNet	Pneumoina	97.77	87.02	69.39
	Breast	94.87	73.08	73.08

Results: Comparing Models

- Highest train accuracy
 - o Pneumonia: 97.77, ResNet, train and test augmentation
 - o Breast: 90.66, CNN with dropout, test augmentation

- Highest val accuracy
 - o Pneumonia: 96.76, CNN with dropout, no augmentation
 - o Breast: 80.77, Baseline CNN, test augmentation

- Highest test accuracy
 - o Pneumonia: 86.38, Baseline CNN, train and test augmentation
 - o Breast: 79.49, Baseline CNN, test augmentation

Conclusions

- Convolutional NN help with obvious shortcuts (like paper showed)
- All test accuracies relatively high, but not close to train/val accuracies
 - \rightarrow shortcuts
- Seems the simple models work better for testing

Future work

- Expand to more MedMNIST datasets
- Try different NN architectures
- Use different variations of augmentation
- Test on o.o.d. data from different sources

```
[ ] #BASIC SEQUENTIAL NN

modelNN = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28,28]),
    keras.layers.Dense(300, activation='relu'),
    keras.layers.Dense(100, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])

modelNN.summary()

modelNN.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
historyNN = modelNN.fit(x_train, y_train, epochs=15, validation_data=(x_val, y_val))
```

```
# BASELINE CNN
epochs = 15
batch size = 100
baseline model = keras.Sequential([
       #first layer
       layers.Conv2D(32, kernel size=(3, 3), activation="relu", input shape=(28,28,1)),
       layers.MaxPool
                     # CNN with Dropout
       layers.Flatter
       layers.Dense( CNN model = keras.Sequential([
       layers.Dense(
                             #first layer
   1)
                             layers.Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=(28,28,1)),
                             layers.BatchNormalization(),
baseline model.summar
                             layers.MaxPooling2D(pool size=(2, 2)),
                             #second layer
opt = optimizers.SGD()
baseline model.compile
                             layers.Conv2D(64, kernel_size=(3, 3), activation="relu", input_shape=(28,28,1)),
historyCNN = baseline
                             layers.BatchNormalization(),
                             layers.MaxPooling2D(pool size=(2, 2)),
                             layers.Flatten(),
                             layers.Dense(100, activation="relu"),
                             layers.Dropout(0.5),
                             layers.Dense(num_classes, activation="softmax"),
```

```
## ResNet
inputs = Input(shape=input_size)
x = Conv2D(num filters, padding='same', kernel initializer='he normal', kernel size=7, strides=2, kernel regularizer=12(1e-4))(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
for i in range(num blocks):
   for j in range(num sub blocks):
        strides = 1
       is_first_layer_but_not_first_block = j == 0 and i > 0
       if is first layer but not first block:
            strides = 2
       y = Conv2D(num_filters, kernel_size=3, padding='same', strides=strides, kernel_initializer='he_normal', kernel_regularizer=12(1e-4))(x)
       y = BatchNormalization()(y)
       y = Activation('relu')(y)
       y = Conv2D(num filters, kernel_size=3, padding='same', kernel_initializer='he_normal', kernel_regularizer=12(1e-4))(y)
       y = BatchNormalization()(y)
       if is first layer but not first block:
           x = Conv2D(num_filters, kernel_size=1, padding='same', strides=2, kernel_initializer='he_normal', kernel_regularizer=12(1e-4))(x)
        x = keras.layers.add([x, y])
        x = Activation('relu')(x)
    num filters = 2 * num filters
x = AveragePooling2D()(x)
v = Flatten()(x)
outputs = Dense(num classes,activation='softmax', kernel initializer='he normal')(y)
modelrn = Model(inputs=inputs, outputs=outputs)
modelrn.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
modelrn.summary()
```