$M_{tot} = c_{A,i} V_A$

Initial:

Final $(D = \frac{c_{o,f}}{c_{A,f}})$:

$$M_{tot} = c_{A,f} V_A + c_{o,f} V_o$$

Solving for
$$c_{o,f}$$
 in terms of D :
$$c_{o,f} = \frac{M_{tot}}{V_{A \perp} V}$$

 $c_{o,f} = \frac{M_{tot}}{\frac{V_A}{D} + V_o}$

$$c_{o,f} = \frac{1}{\frac{V_A}{D} + V_o}$$
 Solving for $\frac{c_{A,i}}{c_{o,f}}$:

 $\frac{c_{A,i}}{c_{o,f}} = \frac{\frac{V_A}{D} + V_o}{V_A} = \frac{1}{D} + \frac{V_o}{V_A}$