Esercizio 1. Let $\varphi(x, y) \in L$, where |x| = |y| = 1. Suppose there is an infinite set $A \subseteq \mathcal{U}$ such that $\varphi(a, b) \leftrightarrow \varphi(b, a)$ for every two distinct $a, b \in A$. Prove that $\varphi(x; y)$ is unstable.

Esercizio 2. Prove that the following are equivalent for every $p(x; z) \subseteq L(A)$

- 1. p(x;z) is stable
- 2. for some finite n, there is no ladder of length n for p(x; z)
- 3. there is $q(x;z) \subseteq L(A)$ equivalent to p(x;z) containing only stable formulas.

Esercizio 3. Prove that if p(x;z) admits ladder sequences of arbitrary finite length, then it admits a ladder sequence of infinite length.

Esercizio 4. Prove that the following are equivalent

- 1. $\varphi(x;z)$ is a stable formula
- 2. $|S_{\varphi}(A^z)| \leq |A|$ for all countable sets A
- 3. $\left| S_{\varphi}(A^z) \right| < 2^{|A|}$ for all countable sets A.

Hint: the proof in the lecture notes is incomplete.