Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly What is normal?

What methods are used?

Regression: fitting curves

Seasonal Hybrid ESD

Anomaly Detection

State of the art algorithm breakdown

Peter Tillotson

Acumed Training

September 24, 2016

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly What is normal?

What methods are used?

Conclusions

Regression: fitting curves

Seasonal Hybrid ESD

- 1 What is Anomaly Detection?
- 2 Seasonal Hybrid ESD

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly

What is normal? What methods are used?

What methods are use

Regression: fitting curves

Seasonal Hybrid ESD

Definition: Anomaly

Anomaly from the Oxford Dictionary:

Something that deviates from what is standard, normal, or expected

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly

What is normal? What methods are used?

Conclusions
Regression: fitting curves

Seasonal Hybrid ESD

data:yahoo

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly What is normal?

What methods are used?

Conclusions
Regression: fitting curves

Seasonal Hybrid ESD

Methods for anomaly detection

- Curve fitting: Builing a model directly from signal stats
- Classification
- Clustering

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly What is normal?

What methods are used?

Conclusions

Regression: fitting curves

Seasonal Hybrid ESD

Definition: Anomaly

- Seasonality:
- Underlying trend

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly

What is normal?
What methods are used?

Regression: fitting curves

Seasonal Hybrid ESD

Curve fitting

More often than not, time series data are 'non-stationary'; that is, the values of the time series do not fluctuate around a constant mean or

with a constant variance.

Programming: basic understanding of program-	Good
ming concepts including:	
• flow control	
functions	
 data structures 	
types (int, float)	
Python: be familiar with the Python	Some
Math: basic statistics (mean, variance)	Some

Peter Tillotson

What is Anomaly Detection?

Definition: Anomaly What is normal?

What methods are used?

Conclusions

Regression: fitting curves

Seasonal Hybrid ESD

Twitter's Seasonal Hybrid ESD

- Time series decomposition
- Generalised ESD (Extreme Studentized Deviate)

Peter Tillotson

What is Anomaly Detection?

What is normal?
What methods are used?

Conclusions

Regression: fitting curves

Seasonal Hybrid ESD

Generalized ESD (Extreme Studentized Deviate) I

The Generalized ESD**ref:rosner** test is defined for the two hypothesis:

 H_0 There are no outliers in the data set

 H_r There are up to r outliers in the data set

Compute:

$$R_i = \frac{\max_i |x_i - \mu|}{\sigma} \tag{1}$$

with μ and σ denoting the mean and standard deviation, respectively.

Remove the observation that maximizes $|x_i - \mu|$ and then recompute the above statistic with n-1 observations. Repeat this process until r observations have been removed. This results in the r test statistics R_1, R_2, \ldots, R_r .

Regression: fitting curves Seasonal Hybrid ESD

Corresponding to the r test statistics, compute the following r critical values:

$$\lambda_i = \frac{(n-1)t_{p,n-i-1}}{\sqrt{(n-i-1+t_{p,n-i-1}^2)(n-i+1)}}$$
(2)

for i = 1, 2, ..., r

where $t_{p,v}$ is the 100p percentage point from the t distribution with v degrees of freedom and

$$p=1-\frac{\alpha}{2(n-i+1)}$$

The number of outliers is the largest i such that $R_i > i$.

References

Peter Tillotson