

kokchun giang

using different keys in database to identify rows, ensure data integrity and enforce relationships between tables

identifying primary key in this pokemon table

unique identifier
for the row

pokedex	name
1	Bulbasaur
4	Charmander
7	Squirtle
25	Pikachu
39	Jigglypuff
52	Meowth
95	Onix
131	Lapras
150	Mewtwo
151	Mew

name might also be considered unique here, but some newer versions of pokemon there exists regional pokemons

pokedex is very stable and don't change over time hence it is chosen as a **primary key**

a primary key is a column or a combination of columns to uniquely identify each row

candidate keys are set of keys from which primary key can be chosen

pokedex	name
1	Bulbasaur
4	Charmander
7	Squirtle
25	Pikachu
39	Jigglypuff
52	Meowth
95	Onix
131	Lapras
150	Mewtwo
151	Mew

if there wasn't any regional pokemons, then both name and pokedex would be considered as **candidate**

keys

candidate keys must have uniqueness over time

natural and surrogate keys

pokedex	name
1	Bulbasaur
4	Charmander
7	Squirtle
25	Pikachu
39	Jigglypuff
52	Meowth
95	Onix
131	Lapras
150	Mewtwo
151	Mew

pokedex can be considered a

natural key as it is a unique key

that exists outside of the

database

type_id	type_name
1	Grass
2	Poison
3	Fire
4	Water
5	Electric
6	Normal
7	Fairy

type_id is a **surrogate key** as it has no meaning outside the database

surrogate keys can also be created based on other attributes using hashing, more on that when we come to data warehouse course

different data models for the pokemon example

what are the **differences**between these data
models?

physical data model (PDM)

foreign key establish relationships between relations

	relationship	foreign	key				
					relationshi	p	
pokedex	name						
1	Bulbasaur	pokedex	type_id			type_id	type_name
4	Charmander	1		1		1	Grass
7	Squirtle	1		2		2	Poison
25	Pikachu	4		3		3	Fire
39	Jigglypuff	7		4		4	Water
52	Meowth	25		5		5	Electric
95	Onix	39		6		6	Normal
131	Lapras	39		7		7	Fairy
150	Mewtwo		•			Type instance	
151	Mew	PokemonType	einstance				

Pokemon instance

foreign keys
appear in the many
sides of the entities

foreign keys enforces referential integrity, which prevents orphaned records

foreign key enforces referential integrity

pokedex	name
1	Bulbasaur
4	Charmander
7	Squirtle
25	Pikachu
39	Jigglypuff
52	Meowth
95	Onix
131	Lapras
150	Mewtwo
151	Mew

Pokemon instance

pokedex	type_id
1	1
1	2
4	3
7	4
25	5
39	6
39	7

PokemonType instance

this means the database restricts insertion of a row with pokedex or type_id that don't exist in their parent table

type_id	type_name
1	Grass
2	Poison
3	Fire
4	Water
5	Electric
6	Normal
7	Fairy

Type instance

normal deletion of a row in a parent table that has related entry in child table is not allowed

ON DELETE CASCADE automatically deletes dependent rows on child table

foreign key that references own table

consider the following relation

Employee(employee_id, first_name, last_name, manager_id)

primary key

manager is also an Employee so it is in the Employee table

foreign key that references employee_id in the same table - it is a self-referential relationship

this creates a hierarchical structure