Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 2 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x,y\in V$ and $c\in\mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

	Mark:			
Standard V3.				
Determine if the vectors	$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix},$	$\begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, an	span \mathbb{R}^4

Standard V4.	ark:
--------------	------

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Standard S2.

Determine if the set $\left\{ \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 3 & 9 \end{bmatrix} \right\}$ is a basis of $M_{2,2}$ or not.

Additional Notes/Marks