Листок 4

Теорема 1. Класс регулярных языков замкнут относительно операций: объединения, конкатенации, итерации, дополнения, пересечения, разности.

Доказательство. Для регулярных языков L_1 , L_2 рассмотрим описывающие их регулярные выражения $RE(L_1)$, $RE(L_2)$. Язык объединения (соответственно, конкатенации, итерации) описывается выражением $RE(L_1)+RE(L_2)$ (соответственно, $RE(L_1)RE(L_2)$, $RE(L_1)^*$), а значит, регулярен.

Для регулярного языка L построим распознающий его детерминированный конечный автомат $\mathcal{A}(L) = (Q, \Sigma, \delta, q_0, F)$. Легко проверить, что автомат $\widetilde{\mathcal{A}}(L) = (Q, \Sigma, \delta, q_0, Q \setminus F)$ допускает дополнение $\overline{L} = \Sigma^* \setminus L$ языка $L \otimes$, которое является, таким образом, регулярным языком.

Поскольку справедливо $L_1 \cap L_2 = \overline{L_1 \cup L_2}$, язык $L_1 \cap L_2$ регулярен по доказанному выше². Аналогичное можно заключить из равенства $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$.

Доказать (не)регулярность:

- (1) $\{0^n 1^m \mid n \neq m\};$
- (2) $\{w \in \{0,1\}^* \mid w \text{ содержит одинаковое число 0 и 1}\};$
- (3) языка из слов $w \in \{0,\dots,9\}^*$, которые являются десятичной записью чисел, делящихся на 2 или на 3, без лишних лидирующих нулей;
- $(4) \{0^n 1^m 2^{n-m} \mid n \geqslant m\};$
- $(5) \{a^nba^mba^{n+m} \mid n, m \in \mathbb{N}\}.$

Контрпример к достаточности леммы о накачке

Для языка

$$L = \{a^i b^j c^k \mid i, j, k \in \mathbb{N}_0 \land (i = 1 \Rightarrow j = k)\}$$

покажите, что

- (1) L нерегулярен,
- (2) L удовлетворяет условию леммы о накачке.

 $^{^1 \}text{Сделанное}$ дальше утверждение, однако, неверно для недетерминированного конечного автомата — постройте соответствующий контрпример. \otimes

 $^{^2}$ Имеется более полезная конструкция, которая строит ДКА, допускающий $L_1 \cap L_2$, внутри которого «параллельно» работают $\mathcal{A}(L_1)$ и $\mathcal{A}(L_2)$ — попытайтесь придумать её или разберите Теорему 4.8 раздела 4.2.1 книги Хопкрофта и др. Введение в теорию автоматов. . . \otimes