Emotional Music Generation

Manas Angalakuduti, Matthew Arnold, Ryan Cooper, Pranav Kandarpa, Bradford Peterson

Problem Definition

We seek to implement a recurrent neural net using the LSTM architecture to generate music chords & notes from a user-selected emotional category.

Metrics

Given MIDI notes $X_t, X_{t-1}, \dots X_0$ representing vectors at time intervals t, t-1, ... 0, generate vector X_{t+1} at interval t + 1.

As this problem seeks to predict the t + 1 vector using previous data, it can be classified as a regression problem.

Our L2 loss function is represented using the equation, also referred to as the least squared error formula:

$$l(\theta) \equiv \frac{1}{T} \sum_{t} (X_t - \hat{X}_t)^2$$

Overview

- Music generation using neural nets has been around since 1989
- Deep neural networks have the ability to "learn" from big data sets
- Long short-term recurrent neural networks are useful for making predictions based on previous data, making them useful for generating new music based from a database of predetermined songs.
- Our goal is to generate new music based on an emotion

Evaluation

As discussed in the metrics section, the goal will be to minimize the loss function. This will be represented graphically, as shown below:

Methods

- Upload MIDI sequence files based on each emotion tag
- Implement LSTM recurrent neural network to train model with labeled MIDI sequence data
- Test accuracy at which music generated can match emotion tag
 input

Conclusion

The following are conclusions we seek to arrive at after the implementation of the RNN:

- Teach music chord progressions & patterns that indicate specific emotions
- Create a model capable of generating music catered to a given emotion
- Create a model capable of generating music that is aesthetically pleasing