

REPORTE

Programa 3 - tablero

Materia: Teoría de la Computación

Grupo: 4CM1

Alumno : Julio Cesar Hernández Reyes Docente : Juárez Martínez Genaro

1. Introducción

En este reporte se explicara como se realizo el programa 3 -protocolo, el cual es un programa que simula un tablero de 4 x 4 cuadrados, y la pieza del rey colocada en el cuadrado 1, a partir de este cuadrante el rey puede realizar movimientos hacia los otros cuadrantes de color negro(black) o rojo(red). La entrada del programa es una secuencia de movimientos de acuerdo al color al que se movera la pieza del rey, r para rojo, n para negro. El programa evalúa la secuencia ingresada con un autómata finito no determinista que evalúa todas los posibles movimientos del rey de acuerdo a la secuencia ingresada. La salida del programa son dos archivos, uno para todos los movimientos posibles que el autómata encuentre, y el archivo de los movimientos ganadores, si es que encuentra.

Resumen del programa:

Entrada: secuencia de caracteres r y b, ejemplo (rrrb")

Salida: Dos archivos de texto:

1-TodosLosMovimientos

2-MovimientosGanadores

Al final del programa se debe poder escoger dos salidas de los movimientos ganadores y mostrarlos en una animación del tablero con el rey moviendose de acuerdo a los movimientos ganadores.

Para la realización del programa se uso Python, por sus funciones de graficación y animación

Se uso un IDE en vez de compilar y ejecutar por consola, esto para una mayor facilidad a la hora de corregir errores y algunos detalles del programa.

PyCharm Community Edition 2021.2.1 Aplicación

2. Desarrollo

2.1. Código del programa

Código creado en Python en el IDE de Pycharm:

```
# Programa3
   # Tablero 4 * 4
2
3
   from threading import Thread
4
   import os
   import random
8
9
   def limpiarpantalla(): # Definimos la funci n estableciendo el nombre
10
        que queramos
        if os.name == "posix":
11
            os.system("clear")
12
        elif os.name == "ce" or os.name == "nt" or os.name == "dos":
13
            os.system("cls")
14
15
16
   def verificarsecuencia(secuencia):
17
        secuencia = secuencia + "."
18
        todoslosmovimientos (secuencia)
19
        largo = len(secuencia)
20
        for i in range(0, largo):
21
            if secuencia[i] == '1':
22
                if secuencia[i+1] == '6':
23
                     if secuencia[i+2] == ' ':
24
                         if secuencia[i+3] == '.':
25
                              movimientosganadores (secuencia)
26
27
28
   def movimientosganadores(cadena):
29
        archivo = open("MovimientosGanadores.txt", "a")
30
        archivo.write(cadena)
31
        archivo.write("\n")
32
        archivo.close()
33
34
35
   def generarsecuencia(conta):
36
        secuencia = ""
37
        for i in range(0, conta):
38
```

```
i = random.randrange(0, 2)
39
            if i == 0:
40
                 secuencia = secuencia + 'r'
41
            elif i == 1:
42
                secuencia = secuencia + 'b'
43
        return secuencia
44
45
   def todoslosmovimientos(cadena):
46
        archivo = open("TodosLosMovimientos.txt", "a")
47
        archivo.write(cadena)
48
        archivo.write("\n")
49
        archivo.close()
50
51
   def manual():
52
        limpiarpantalla()
53
        print("Manual")
54
        cadena = input("Favor de ingresar secuencia\n")
55
        if len(cadena) <= 20:</pre>
56
            automata(cadena, 0, 0, "")
57
        elif len(cadena) > 20:
58
            print("ERROR mas de 20 caracteres en la cadena")
59
       print(" ")
60
        os.system("pause")
61
62
63
   def automatico():
64
        limpiarpantalla()
65
        print("Automatico")
66
        cantcaracteres = random.randrange(0,100)
67
        secuencia = generarsecuencia(cantcaracteres)
68
        print("Secuencia generada: " + secuencia)
        automata(secuencia, 0, 0, "")
70
        os.system("pause")
71
72
73
   def menu():
74
75
        if os.path.isfile("MovimientosGanadores.txt"):
76
            os.remove("MovimientosGanadores.txt")
77
        if os.path.isfile("TodosLosMovimientos.txt"):
78
            os.remove("TodosLosMovimientos.txt")
79
80
        while True:
81
            limpiarpantalla()
82
83
```

```
print("Menu Programa 3")
84
             print("1.Forma manual")
85
             print("2.Forma automatica")
86
             print("3.Salir")
87
             respuesta = input("Favor de escoger una opci n\n")
88
89
             if respuesta == '1':
90
                  manual()
91
             elif respuesta == '2':
92
                  automatico()
93
             elif respuesta == '3':
94
95
                  break
96
             else:
97
                  print("Ingrese un valor entre 1 y 3")
98
         print("Fin del programa")
100
101
    def automata(cadena, actual, conta, camino):
102
         q0 = 0
103
         q1 = 1
104
         q2 = 2
105
         q3 = 3
106
         q4 = 4
107
         q5 = 5
108
         a6 = 6
109
         q7 = 7
110
         q8 = 8
111
         q9 = 9
112
         q10 = 10
113
         q11 = 11
114
         q12 = 12
115
         q13 = 13
116
         q14 = 14
117
         q15 = 15
118
         largo = len(cadena)
119
120
         camino = camino + str(actual + 1) + " "
121
         #print(camino)
122
123
         if conta == largo + 1:
124
             camino = camino + "."
125
             return
126
         verificarsecuencia(camino)
127
128
```

```
129
130
131
132
        conta = conta + 1
133
134
        if conta < largo + 1:</pre>
135
136
             # estado q0
137
             if actual == q0:
138
                  if cadena[conta-1] == 'r':
139
                      h1 = Thread(target=automata, args=(cadena, q1, conta,
140
                          camino,))
                      h1.start()
141
                      h1.join()
142
                      h2 = Thread(target=automata, args=(cadena, q4, conta,
143
                          camino,))
                      h2.start()
144
                      h2.join()
145
146
                  if cadena[conta-1] == 'b':
147
                      h3 = Thread(target=automata, args=(cadena, q5, conta,
148
                          camino,))
                      h3.start()
149
                      h3.join()
150
151
             # estado q1
152
             if actual == q1:
153
                  if cadena[conta-1] == 'r':
154
                      h4 = Thread(target=automata, args=(cadena, q4, conta,
155
                          camino,))
                      h4.start()
156
                      h4.join()
157
                      h5 = Thread(target=automata, args=(cadena, q6, conta,
158
                          camino,))
                      h5.start()
159
                      h5.join()
160
161
                  if cadena[conta-1] == 'b':
162
                      h6 = Thread(target=automata, args=(cadena, q0, conta,
163
                          camino,))
                      h6.start()
164
                      h6.join()
165
                      h7 = Thread(target=automata, args=(cadena, q2, conta,
166
                          camino,))
```

```
h7.start()
167
                      h7.join()
168
                      h8 = Thread(target=automata, args=(cadena, q5, conta,
169
                          camino,))
                      h8.start()
170
                      h8.join()
171
172
             # estado q2
173
             if actual == q2:
174
                 if cadena[conta-1] == 'r':
175
                      h9 = Thread(target=automata, args=(cadena, q1, conta,
176
                         camino,))
                      h9.start()
177
                      h9.join()
178
                      h10 = Thread(target=automata, args=(cadena, q3, conta,
179
                         camino,))
                      h10.start()
180
                      h10.join()
181
                      h11 = Thread(target=automata, args=(cadena, q6, conta,
182
                         camino,))
                      h11.start()
183
                      h11.join()
184
185
                 if cadena[conta-1] == 'b':
186
                      h12 = Thread(target=automata, args=(cadena, q5, conta,
187
                         camino,))
                      h12.start()
188
                      h12.join()
189
                      h13 = Thread(target=automata, args=(cadena, q7, conta,
190
                         camino,))
                      h13.start()
                      h13.join()
192
193
             # estado q3
194
             if actual == q3:
195
                 if cadena[conta-1] == 'r':
196
                      h14 = Thread(target=automata, args=(cadena, q6, conta,
197
                         camino,))
                      h14.start()
198
                      h14.join()
199
200
                 if cadena[conta-1] == 'b':
201
                      h15 = Thread(target=automata, args=(cadena, q2, conta,
202
                         camino,))
                      h15.start()
203
```

```
h15.join()
204
                      h16 = Thread(target=automata, args=(cadena, q7, conta,
205
                         camino,))
                      h16.start()
206
                      h16.join()
207
208
             # estado q4
209
             if actual == q4:
210
                 if cadena[conta-1] == 'r':
211
                      h17 = Thread(target=automata, args=(cadena, q1, conta,
212
                         camino,))
                      h17.start()
213
                      h17.join()
214
                      h18 = Thread(target=automata, args=(cadena, q9, conta,
215
                         camino,))
                      h18.start()
216
                      h18.join()
217
218
                 if cadena[conta-1] == 'b':
219
                      h19 = Thread(target=automata, args=(cadena, q0, conta,
220
                         camino,))
                      h19.start()
221
                      h19.join()
222
                      h20 = Thread(target=automata, args=(cadena, g5, conta,
223
                         camino,))
                      h20.start()
224
                      h20.join()
225
                      h21 = Thread(target=automata, args=(cadena, q8, conta,
226
                         camino,))
                      h21.start()
227
                      h21.join()
228
229
             # estado q5
230
             if actual == q5:
231
                 if cadena[conta-1] == 'r':
232
                      h22 = Thread(target=automata, args=(cadena, q1, conta,
233
                         camino,))
                      h22.start()
234
                      h22.join()
235
                      h23 = Thread(target=automata, args=(cadena, q4, conta,
236
                         camino,))
237
                      h23.start()
                      h23.join()
238
                      h24 = Thread(target=automata, args=(cadena, q6, conta,
239
                         camino,))
```

```
h24.start()
240
                     h24.join()
241
                     h25 = Thread(target=automata, args=(cadena, q9, conta,
242
                         camino,))
                     h25.start()
243
                     h25.join()
244
                 if cadena[conta-1] == 'b':
245
                     h26 = Thread(target=automata, args=(cadena, q0, conta,
246
                         camino,))
                     h26.start()
247
                     h26.join()
248
                     h27 = Thread(target=automata, args=(cadena, q2, conta,
249
                         camino,))
                     h27.start()
250
                     h27.join()
251
                     h28 = Thread(target=automata, args=(cadena, q8, conta,
                         camino,))
                     h28.start()
253
                     h28.join()
254
                     h29 = Thread(target=automata, args=(cadena, q10, conta,
255
                          camino,))
                     h29.start()
256
                     h29.join()
257
             # estado q6
258
             if actual == q6:
259
                 if cadena[conta-1] == 'r':
260
                     h30 = Thread(target=automata, args=(cadena, q1, conta,
261
                         camino,))
                     h30.start()
262
                     h30.join()
263
                     h31 = Thread(target=automata, args=(cadena, q3, conta,
                         camino,))
                     h31.start()
265
                     h31.join()
266
                     h32 = Thread(target=automata, args=(cadena, q9, conta,
267
                         camino,))
                     h32.start()
268
                     h32.join()
                     h33 = Thread(target=automata, args=(cadena, g11, conta,
270
                          camino,))
                     h33.start()
271
                     h33.join()
272
                 if cadena[conta-1] == 'b':
273
                     h34 = Thread(target=automata, args=(cadena, q2, conta,
274
                         camino,))
```

```
h34.start()
275
                      h34.join()
276
277
                      h35 = Thread(target=automata, args=(cadena, q5, conta,
                         camino,))
                      h35.start()
278
                      h35.join()
279
                      h36 = Thread(target=automata, args=(cadena, q7, conta,
                         camino,))
                      h36.start()
281
                      h36.join()
282
                      h37 = Thread(target=automata, args=(cadena, g10, conta,
283
                          camino,))
                      h37.start()
284
                      h37.join()
285
286
             # estado q7
287
             if actual == q7:
288
                 if cadena[conta-1] == 'r':
289
                      h38 = Thread(target=automata, args=(cadena, q3, conta,
290
                         camino,))
                      h38.start()
291
                      h38.join()
292
                      h39 = Thread(target=automata, args=(cadena, q6, conta,
293
                         camino,))
                      h39.start()
294
                      h39.join()
295
                      h40 = Thread(target=automata, args=(cadena, q11, conta,
296
                          camino,))
                      h40.start()
297
                     h40.join()
298
                 if cadena[conta-1] == 'b':
                      h41 = Thread(target=automata, args=(cadena, q2, conta,
300
                         camino,))
                      h41.start()
301
                      h41.join()
302
                      h42 = Thread(target=automata, args=(cadena, q10, conta,
303
                          camino,))
                      h42.start()
                      h42.join()
305
             # estado q8
306
             if actual == q8:
307
                 if cadena[conta-1] == 'r':
308
                      h43 = Thread(target=automata, args=(cadena, q4, conta,
309
                         camino,))
                     h43.start()
310
```

```
h43.join()
311
                      h44 = Thread(target=automata, args=(cadena, q9, conta,
312
                         camino,))
                      h44.start()
313
                      h44.join()
314
                      h45 = Thread(target=automata, args=(cadena, q12, conta,
315
                          camino,))
                      h45.start()
316
                      h45.join()
317
                 if cadena[conta-1] == 'b':
318
                      h46 = Thread(target=automata, args=(cadena, g5, conta,
319
                         camino,))
                      h46.start()
320
                      h46.join()
321
                      h47 = Thread(target=automata, args=(cadena, q13, conta,
322
                          camino,))
                     h47.start()
323
                      h47.join()
324
             # estado q9
325
             if actual == q9:
326
                 if cadena[conta-1] == 'r':
327
                      h48 = Thread(target=automata, args=(cadena, q4, conta,
328
                         camino,))
                      h48.start()
329
                      h48.join()
330
                      h49 = Thread(target=automata, args=(cadena, g6, conta,
331
                         camino,))
                      h49.start()
332
                      h49.join()
333
                      h50 = Thread(target=automata, args=(cadena, q12, conta,
334
                          camino,))
                      h50.start()
335
                      h50.join()
336
                      h51 = Thread(target=automata, args=(cadena, q14, conta,
337
                          camino,))
                      h51.start()
338
                      h51.join()
339
340
                 if cadena[conta-1] == 'b':
341
                      h52 = Thread(target=automata, args=(cadena, q5, conta,
342
                         camino,))
343
                      h52.start()
                      h52.join()
344
                      h53 = Thread(target=automata, args=(cadena, q8, conta,
345
                         camino,))
```

```
h53.start()
346
                      h53.join()
347
                      h54 = Thread(target=automata, args=(cadena, q10, conta,
348
                          camino,))
                      h54.start()
349
                      h54.join()
350
                      h55 = Thread(target=automata, args=(cadena, q13, conta,
351
                          camino,))
                      h55.start()
352
                      h55.join()
353
354
             # estado q10
355
             if actual == q10:
356
                 if cadena[conta-1] == 'r':
357
                      h56 = Thread(target=automata, args=(cadena, q6, conta,
358
                         camino,))
                      h56.start()
359
                      h56.join()
360
                      h57 = Thread(target=automata, args=(cadena, q9, conta,
361
                         camino,))
                      h57.start()
362
                      h57.join()
363
                      h58 = Thread(target=automata, args=(cadena, q11, conta,
364
                          camino,))
                      h58.start()
365
                      h58.join()
366
                      h59 = Thread(target=automata, args=(cadena, q14, conta,
367
                          camino,))
                     h59.start()
368
                      h59.join()
                 if cadena[conta-1] == 'b':
370
                      h60 = Thread(target=automata, args=(cadena, q5, conta,
371
                         camino,))
                      h60.start()
372
                      h60.join()
373
                      h61 = Thread(target=automata, args=(cadena, q7, conta,
374
                         camino,))
                      h61.start()
375
                      h61.join()
376
                      h62 = Thread(target=automata, args=(cadena, q13, conta,
377
                          camino,))
                      h62.start()
378
                      h62.join()
379
                      h63 = Thread(target=automata, args=(cadena, q15, conta,
380
                          camino,))
```

```
h63.start()
381
                      h63.join()
382
             # estado q11
383
             if actual == q11:
384
                 if cadena[conta-1] == 'r':
385
                      h64 = Thread(target=automata, args=(cadena, q6, conta,
386
                         camino,))
                     h64.start()
                      h64.join()
388
                      h65 = Thread(target=automata, args=(cadena, q14, conta,
389
                          camino,))
                      h65.start()
390
                      h65.join()
391
392
                 if cadena[conta-1] == 'b':
393
                      h67 = Thread(target=automata, args=(cadena, q7, conta,
                         camino,))
                      h67.start()
395
                      h67.join()
396
                      h68 = Thread(target=automata, args=(cadena, q10, conta,
397
                          camino,))
                     h68.start()
                      h68.join()
                      h69 = Thread(target=automata, args=(cadena, g15, conta,
400
                          camino,))
                      h69.start()
401
                      h69.join()
402
403
             # estado q12
404
             if actual == q12:
405
                 if cadena[conta-1] == 'r':
406
                      h70 = Thread(target=automata, args=(cadena, q9, conta,
407
                      h70.start()
408
                      h70.join()
409
410
                 if cadena[conta-1] == 'b':
411
                      h71 = Thread(target=automata, args=(cadena, q8, conta,
412
                         camino,))
                      h71.start()
413
                      h71.join()
414
                      h72 = Thread(target=automata, args=(cadena, q13, conta,
415
                          camino,))
                      h72.start()
416
                      h72.join()
417
```

```
418
             # estado q13
419
             if actual == q13:
420
                 if cadena[conta-1] == 'r':
421
                      h73 = Thread(target=automata, args=(cadena, q9, conta,
422
                         camino,))
                      h73.start()
423
                      h73.join()
424
                      h74 = Thread(target=automata, args=(cadena, g12, conta,
425
                          camino,))
                      h74.start()
426
                      h74.join()
427
                      h75 = Thread(target=automata, args=(cadena, g14, conta,
428
                          camino,))
                      h75.start()
429
                      h75.join()
430
431
                 if cadena[conta-1] == 'b':
432
                      h76 = Thread(target=automata, args=(cadena, q8, conta,
433
                         camino,))
                      h76.start()
434
                      h76.join()
435
                      h77 = Thread(target=automata, args=(cadena, q10, conta,
436
                          camino,))
                      h77.start()
437
                     h77.join()
438
             # estado q14
439
             if actual == q14:
440
                 if cadena[conta-1] == 'r':
441
                      h78 = Thread(target=automata, args=(cadena, q9, conta,
442
                         camino,))
                      h78.start()
443
                      h78.join()
444
                      h79 = Thread(target=automata, args=(cadena, g11, conta,
445
                          camino,))
                      h79.start()
446
                     h79.join()
447
                 if cadena[conta-1] == 'b':
448
                      h80 = Thread(target=automata, args=(cadena, g10, conta,
449
                          camino,))
                      h80.start()
450
                      h80.join()
451
                      h81 = Thread(target=automata, args=(cadena, q13, conta,
452
                          camino,))
                      h81.start()
453
```

```
h81.join()
454
                      h82 = Thread(target=automata, args=(cadena, q15, conta,
455
                           camino,))
                      h82.start()
456
                      h82.join()
457
             # estado q15
458
             if actual == q15:
459
                  if cadena[conta-1] == 'r':
460
                      h83 = Thread(target=automata, args=(cadena, q11, conta,
461
                      h83.start()
462
                      h83.join()
463
                      h84 = Thread(target=automata, args=(cadena, q14, conta,
464
                           camino,))
                      h84.start()
465
                      h84.join()
466
467
                  if cadena[conta-1] == 'b':
468
                      h85 = Thread(target=automata, args=(cadena, q10, conta,
469
                           camino,))
                      h85.start()
470
                      h85.join()
471
472
473
    if __name__ == '__main__':
474
        menu()
475
```

Explicación: En el código use hilos para simular el autómata finito no determinista el cual puede estar en varios estados a la vez. Cuando se crea una nueva posibilidad para los caminos que se pueden crear se crea un hilo, en total para el automata cree 85 hilos de acuerdo a la tabla de estados cuando es un AFN:

	r	b
->1	2,5	6
2	5,7	1,3,6
3	2,7,4	6,8
4	7	3,8
5	2,10	1,6,9
6	2,5,7,10	1,3,9,11
7	2,4,10,12	3,6,8,11
8	4,7,12	3,11
9	5,10,13	6,14
10	5,7,13,15	6,9,11,14
11	7,10,12,15	6,8,14,16
12	7,15	8,11,16
13	10	9,14
14	10,13 ,15	9,11
15	10,12	11, 14, 16
*16	12,15	11

Tabla de estados AFN

AFND	r	b
->q0	q1, q4	q5
q1	q4, q6	q0, q2, q5
q2	q1, q3, q6	q5, q7
q3	q6	q2, q7
q4	q1, q9	q0, q5, q8
q5	q1, q4, q6, q9	q0, q2, q8, q10
q6	q1, q3, q9, q11	q2, q5, q7, q10
q7	q3, q6, q11	q2, q10
q8	q4, q9, q12	q5, q13
q9	q4, q6, q12, q14	q5, q8, q10, q13
q10	q6, q9, q11, q14	q5, q7, q13, *q15
q11	q6, q14	q7, q10, *q15
q12	q9	q8, q13
q13	q9, q12, q14	q8, q10
q14	q9, q11	q10, q13, *q15
*q15	q11, q14	q10

Tabla de estados usando notacion con q0...qn

2.2. Ejecución del programa, en Phyton

C:\Users\cesar\AppData\Local\Pr

@Menu Programa 3

1.Forma manual

2.Forma automatica

3.Salir

Favor de escoger una opción

Manual
Favor de ingresar secuencia
bbbr

Presione una tecla para continuar . . .

Automatico Secuencia generada: rrbbrrrrbrrbbrbrrrrbbrrrrbbbrrbbbbrbbbbrbbrbbrrbbbrrbbrrr

```
Menu Programa 3

1.Forma manual

2.Forma automatica

3.Salir

Favor de escoger una opción

3

Fin del programa
```

3. Conclusiones

El programa fue muy complicado al grado de que no complete la ultima parte de la animacion solo pude realizar el funcionamiento interno del AFN y generar los archivos. Espero que para los otros programas si los pueda terminar a tiempo.