28/04/2025 TEMA 2

Hoja 1 de 4

APELLIDO:		
NOMBRE:	CALIFICACIÓN:	
DNI (registrado en SIU Guaraní):		
E-MAIL:	DOCENTE (nombre y apellido):	
TEL:		
AULA:		

Tabla de uso exclusivo para el docente

	1	2	3	4
Puntaje de cada ejercicio	2,50	2,50	2,50	2,50

Duración del examen: 1h 30'. Completar los datos personales con letra clara, mayúscula e imprenta.

No se aceptarán respuestas en lápiz.

1. Dada la función cuadrática $f(x) = (2x - 3)^2 - 5$ escribirla en forma canónica y hallar el vértice.

Sabiendo que la forma canónica $f(x) = a(x - x_v)^2 + y_v$ de una función cuadrática nos muestra el vértice, al reescribirla de dicha manera, conoceremos el vértice.

La forma canónica de la función dada es:

$$f(x) = (2x - 3)^2 - 5$$
$$f(x) = ((2(x - \frac{3}{2}))^2 - 5$$

$$f(x) = 4(x - \frac{3}{2})^2 - 5$$

Por lo que el vértice es $(\frac{3}{2}, -5)$

APELLIDO Y NOMBRE:

DNI:

TEMA 2 Hoja 2 de 4

2. Sea $f(x) = \frac{x+4}{ax-1} + 3$, hallar $a \in \mathbb{R}$ tal que f tenga asíntota horizontal en y = 2.

Para que f tenga asíntota horizontal en y=2, el límite de f(x) cuando x tiende a infinito debe ser igual a 2, es decir: $\lim_{x\to\infty} f(x)=2$.

Entonces, evaluamos el límite:

$$\lim_{x \to \infty} \frac{x+4}{ax-1} + 3 =$$

$$\lim_{x \to \infty} \frac{x+4}{ax-1} + 3 \cdot \frac{ax-1}{ax-1} =$$

$$\lim_{x \to \infty} \frac{x+4+3(ax-1)}{ax-1} =$$

$$\lim_{x \to \infty} \frac{x+4+3ax-3}{ax-1} =$$

$$\lim_{x \to \infty} \frac{(1+3a)x + (4-3)}{ax-1} = indeterminación \frac{\infty}{\infty}$$

Para resolver la indeterminación " $\frac{\infty}{\infty}$ ", si el grado del numerador es igual al grado del denominador, el resultado del límite será el cociente entre los coeficientes principales. Además, teniendo en cuenta que $\lim_{x\to\infty} f(x) = 2$. Planteamos:

$$\frac{1+3a}{a} = 2$$

$$1+3a = 2a$$

$$3a = 2a - 1$$

$$3a - 2a = -1$$

$$a = -1$$

APELLIDO Y NOMBRE: DNI:

TEMA 2 Hoja 3 de 4

3. Expresar como intervalo o unión de intervalos, la siguiente expresión:

$$(x-5)\cdot(x+3)<0$$

Considerando que un producto es negativo cuando ambos factores son de distinto signo planteamos:

$$(x-5>0 \land x+3<0) \lor (x-5<0 \land x+3>0)$$

 $(x>5 \land x<-3) \lor (x<5 \land x>-3)$
 $\emptyset \cup (-3;5)$

Solución: (-3;5)

.UBAXXI

APELLIDO Y NOMBRE: DNI: TEMA 2
Hoja 4 de 4

4. Hallar el conjunto de positividad de la función $f(x) = x \cdot (x+2) \cdot (x-5)$

Para hallar el conjunto de positividad de la siguiente función, tenemos que considerar que, al tener la forma factorizada podemos obtener fácilmente sus raíces que son x = 0; x = -2 y x = 5

Con esto sabemos que la recta real queda dividida en los intervalos:

$$(-\infty; -2); (-2; 0); (0; 5) y (5; +\infty)$$

Tomando un valor representativo de cada intervalo, podemos analizar el signo que toma la función en cada uno de ellos.

En
$$(-\infty; -2)$$
: Tomamos $x = -3$: $f(-3) = (-3)(-3+2)(-3-5) < 0$, entonces $f(x) < 0$

En
$$(-2, 0)$$
: Tomamos $x = -1$: $f(-1) = (-1)(-1 + 2)(-1 - 5) > 0$, entonces $f(x) > 0$

En
$$(0; 5)$$
: Tomamos $x = 1$: $f(1) = (1)(1+2)(1-5) < 0$, entonces $f(x) < 0$

En
$$(5; +\infty)$$
: Tomamos $x = 6$: $f(6) = (6)(6+2)(6-5) > 0$, entonces $f(x) > 0$

Por lo tanto: $C^+ = (-2, 0) \cup (5, +\infty)$