SINGAPORE HOKKIEN SPEECH RECOGNITION AND APPLICATIONS

Lee Estelle, Lim Zhi Yi Vanessa, Ang Hui Shan¹ and Lim Boon Pang²

¹ Raffles Girls' School (Secondary)

² Institute of Infocomm Research, 1 Fusionopolis Way, Singapore 138632

ABSTRACT

First viable Singapore Hokkien Automatic Speech Recognizer (ASR):

- Can benefit a large community in Singapore
- Builds on previous work
- Improved the language resources for training a Hokkien ASR, especially the lexicon and corpus
- Potential applications: Smart Homes and hospitals
- Experiments showed promising improvements in ASR performance

PROCEDURE

1. Generating Sentences for Applications

Set	# of Sent.	Example
Common Sentences	127	I have two umbrellas, I can lend you one.
Smart Homes	70	Switch on the lights.
Hospitals	50	Draw the divider halfway.

2. Eliciting Natural Hokkien Translations

We asked language experts to translate the English sentences into Singapore Hokkien.

3. Collection of Audio Recordings

For test set: We collected 5 sentences each from 10 speakers, for a total of 50 sentences.

4. Lexicon Building

Our baseline lexicon was based on other researchers' work. We constructed 3 sets of data, shown in the table below, with sets A, B and C.

Figure 2 - Recording Software Interface

Set	Corpus	Lexicon
Α	N	Original
В	N, CS	Original
С	N, CS, CS2, HS, SmHm	New

N: Numbers	HS: Hospital Setting
CS: Common sentences	SmHm: Smart Homes
CS2: Common sentences 2	

Romanization	Pronunciation	Definition (Chinese)	Definition (English)			
Common Words and Phrases						
gei	g ei13	个/位	quantity			
ei	ei13	个/位	quantity			
tsei ui	ts ei11 ui11	座位	seat			
ho bei	h o11 b ei31	号码	number			
kohng	k oh31 ng	零	zero			
tsit	ts i51 t	_	one			
it	i51 t	_	one			
nuhng	n uh11 ng	=	two			

Figure 3 - Sample Section of Lexicon

HOW DOES AN ASR WORK?

- The ASR makes intelligent guesses using a probabilistic framework in to convert a given audio into text
- Main components: feature extractor and decoder

Figure 1 - ASR Decoder

The most likely sentence is found using the following equations:

 $S^*=argmax_{\forall S}P(S|X)$

 $P(S|X)=P(W)P(W|\Phi)P(\Phi|X)$

EXPERIMENTATION AND EVALUATION

Experiment 1: Lexicon Quality and Size: Show improvement over baseline using two metrics:

- Word count
- Percentage of Chinese characters covered by our lexicon

Experiment 2: Corpus Quality and Size: Show improvement over baseline corpus using three metrics:

- Sentence count
- Number of unique syllables
- Number of unique triphones

Experiment 3: Effectiveness of AM: Show improvement in performance of ASR with more data.

- Collected 50 utterances for testing
- Word Error Rate (WER)
 - Measure of inaccuracy of speech recogniser

 $WER \triangleq \frac{I + D + S}{N}$

- Sentence Error Rate (SER)
 - Proportion of sentences that do not match word for word
 - Suitable for assessing voice command applications

CONCLUSION

- We managed to expand our original lexicon and corpus extensively by almost doubling the word count, increasing the word diversity and providing more data in general that can be used for training.
- We showed that an ASR trained with a larger lexicon and corpus, showed much better performance,
- This suggests that an ASR system trained with Set C would probably perform even better.
- Our best trained system achieved a 6% WER and 12% SER, indicating that we have already have a highly usable voice command system for Hokkien.